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Chapter 0

PREFACE

This study is devoted to the development of powerful tools for morphology (form-

finding) problem of tensegrity structures, as well as provision of conditions for

their stability investigation. Many well-established mathematical theories, such

as optimization techniques, graph theory and group representation theory, have

been extensively applied for these purposes. The results derived in the study

are expected to benefit the in-depth understanding of the distinct properties of

tensegrity structures compared to conventional structures, as well as to inspire

novel applications in any disciplines as long as their principles are applicable.

Tensegrity structures are featured by the fact that they are stabilized in a

self-equilibrium state by the continuous components (cables) in tension and dis-

continuous components (struts) in compression. Although this kind of structures

appear to be very simple, with the truss-like appearances, there involve many

universal principles that are applicable to the structures in nature, from micro

scale (e.g., viruses and cells) to macro scale (e.g., structure of cosmos). Tenseg-

rity structures have been successfully applied in many different areas, such as

architecture, mechanical engineering, bio-medical engineering, mathematics and

arts etc, making use of the structures themselves or their principles.

Tensegrity structures share many common properties together with cable nets:

(a) both of them carry prestresses in the members, and (b) they are treated as

pin-jointed structures. It is because of the introduction of these prestresses that

stabilizes the structures, which are usually unstable in the unstressed state due to

the existence of mechanisms. On the other hand, some difficulties arise in the their
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0.1 Organization

design problem, since configuration and prestresses are highly interdependent on

each other, and hence neither of them can be determined without considering the

other. The design process of determining such a balanced configuration together

with the prestresses in the state of self-equilibrium is called morphology or form-

finding.

However, the morphology methods developed for cable nets cannot be simply

applied to tensegrity structures, because they differ in the facts that (a) tensegrity

structures are usually free-standing, while cable nets are attached to supports,

and (b) tensegrity structures consist of both compressive and tensile members,

while cable nets carry only tension. For the morphology problem of tensegrity

structures, several numerical and analytical methods, including adaptive force

density method, direct approach and symmetry strategy, are proposed to satisfy

different requirements by the designers.

Furthermore, the pattern of distribution of prestresses in tensegrity structures

has great influence on their stability. Unlike cable nets that are always stable since

they carry only tension, stability of tensegrity structures cannot be guaranteed by

the introduction of prestresses. To be more specific, the structures with the same

configuration can be super stable, prestress stable or even unstable dependent on

distribution of prestresses. This leads to the difficulties in their design problem,

but it is also an attractive point since we have the opportunity to design the

structure according to our specific requirements.

0.1 Organization

This study deals with morphology and stability problems in the design of tenseg-

rity structures. The relations among each chapter, the topics as well as mathe-

matical tools are illustrated in Fig. 1.

Chapters 2 and 3 discuss the stability criteria for tensegrity structures, and

then present the stability conditions, which is used to guide their design problem.

There are two categories for the morphology of tensegrity structures: begin

from the assumptions that both of the configuration and prestresses are unknown

as in Chapters 4 and 5, and determine the distribution of prestresses for the

structure with given configuration as in Chapter 9.

2
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Morphology

Graph

Group

Optimization

Chapter 1Chapter 1 Chapter 4Chapter 4

Chapter 5Chapter 5

Chapter 6Chapter 6

Chapter 7Chapter 7

Chapter 8Chapter 8

Chapter 9Chapter 9

Chapter 10Chapter 10Chapter 11Chapter 11

Chapter 3Chapter 3Chapter 2Chapter 2

Stability

Figure 1: Relations between each chapter and the topics (on morphology and
stability) as well as the mathematical tools (graph theory, group representation
theory and optimization techniques).

The general super stability conditions for the structures with similar sym-

metry properties are available only by the analytical formulations for the block-

diagonalization of the matrices presented in Chapter 6. The high level of sym-

metry of the structures is utilized to simplify stability investigation in Chapters

7, and 8, based on group representation theory.

Optimization techniques are utilized to find the optimal distribution of pre-

stresses for the structures with multiple force modes in Chapter 9, as well as to

search for the best measurement positions for the force identification in Chapter

10.

The detailed descriptions of each chapter are given as follows.

Chapter 1: Introduction

Chapter 1 introduces the basic concepts and principles of tensegrity struc-

tures, and investigates the applications in various areas. The existing stud-

ies on morphology and stability problems of tensegrity structures are briefly

reviewed to provide background and motivation of the study.

Chapter 2: Basics

This chapter considers general pin-jointed structures. Formulations of the

self-equilibrium equations of a pin-jointed structure are presented in two

different ways: those with respect to nodal coordinates, and those with re-

spect to prestresses. To avoid ending up in a lower dimensional structure,

3



0.1 Organization

a free-standing tensegrity structure has to satisfy the non-degeneracy con-

dition, which is presented based on the solution space of nodal coordinates

defined by the self-equilibrium equations.

Stiffness matrices are formulated for general pin-jointed structures. Three

stability criteria—stability, prestress stability and super stability—are then

defined and discussed in detail, based on these formulations. The discus-

sions on the stability properties of pin-jointed structures enable us to divide

them into three different categories: (a) trusses, (b) tensile structures, and

(c) tensegrity structures. Tensegrity structures consist of both compressive

and tensile members, and their stability are not clear unlike the structures

in the other two categories.

Chapter 3: Stability Conditions

It is firstly proved that a stable tensegrity structure must satisfy the con-

dition that the geometry matrix is of full rank. Further study shows that

a tensegrity structure is guaranteed to be super stable, if the following two

conditions are also satisfied in addition to the above-mentioned necessary

condition: (a) the geometrical stiffness matrix is positive semi-definite; (b)

the geometrical stiffness matrix is of minimum rank deficiency for non-

degeneracy condition.

Stability conditions of tensegrity structures are also discussed based on

linear dependency of the null-spaces of the linear and geometrical stiffness

matrices. Prestress stability is demonstrated to be the necessary but not

the sufficient condition for stable structures.

Chapter 4: Adaptive Force Density Method

Form-finding of a tensegrity structure by the proposed adaptive force den-

sity method is divided into two design stages: (1) to find the feasible force

densities starting from the given initial values, and (2) to uniquely de-

termine the self-equilibrated configuration (in terms of nodal coordinates).

An efficient numerical method is presented for determining for feasible force

densities that satisfy the non-degeneracy condition presented in Chapter 2.

4
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The method has great advantage in guaranteeing super stable structures

during the form-finding process.

To have more control over geometrical properties of the structure, geometri-

cal constraints, such as symmetry and z-coordinates, that can be formulated

in linear forms with respect to the force densities as well as the nodal coor-

dinates, are incorporated into the two design stages of form-finding process.

Chapter 5: Direct Approach

To have precise control over member directions of a tensegrity structure, the

structure is modelled as a directed graph. Self-equilibrated configuration

of the structure, described in terms of components of prestresses and nodal

coordinates in each direction, is determined by specifying the independent

components consecutively in the proposed method. Furthermore, the non-

degeneracy condition of the structure modeled by a directed graph is derived

in terms of necessary rank deficiency of the modified equilibrium matrix by

an effective algorithm.

Chapter 6: Symmetry-adapted Formulations

The stiffness matrices, the equilibrium matrix and the force density matrix

are rewritten in symmetry-adapted (block-diagonal) forms in an analytical

manner by transforming the current coordinate systems into the symmetry-

adapted systems. Computation cost can then be significantly reduced by

considering only the non-trivial blocks in their diagonals, which are of much

smaller dimensions compared to the original matrices. In stead of using

transformation matrices as in conventional numerical approaches, a direct

strategy is presented for the analytical derivation of these blocks for the

structures with dihedral symmetry, based on group representation theory.

Computational costs are further reduced since the transformation matrices

are no longer necessary. More importantly, these analytical formulations

make it possible to find the general conditions for the super stability of

prismatic and star-shaped structures Chapters 7 and 8, respectively.

Chapter 7: Prismatic Structures

5
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Self-equilibrated configurations of prismatic tensegrity structures with di-

hedral symmetry are determined by considering only self-equilibrium of

the representative nodes. Tt is proved that the prismatic structures are

super stable, if and only if the horizontal cables are connected to adjacent

nodes, using the analytical formulations presented in Chapter 6. It is further

demonstrated that prestress stability of this class of structures is dependent

on connectivity of the members, and is related to their geometry realization

(height/radius ratios), if they are not super stable; moreover, the ratio of

axial stiffness to prestress is another critical factor for their stability.

Chapter 8: Star-shaped Structures

Star-shaped tensegrity structures are also of dihedral symmetry, and have

similar appearance to the prismatic structures. However, they have very

different stability properties since the existence of center nodes introduce

more mechanisms into the structure. Based on the symmetry-adapted for-

mulations presented in Chapter 6, we prove that the star-shaped structures

are super stable if and only if they have odd number of struts and the struts

are as close to each other as possible.

Numerical investigation also indicates that this class of structures are pre-

stress stable if their height/radius ratios are large enough. It is discovered

that some prestress stable structures may have multiple stable configura-

tions, and has been successfully traced by numerical analysis and confirmed

by physical models.

Chapter 9: Force Design

Distribution of prestresses can be written as a linear combination of the

independent force modes satisfying the self-equilibrium equations. For a

structures with multiple force modes, it gives us the opportunity to make

the structure as strong as possible by carefully selecting the prestresses. For

this purpose, a bi-objective optimization problem is presented to maximize

stiffness of the structure as well as to minimize the force deviation from

target values. The curve of Pareto optimal solutions for these two objective

functions is derived using the constrained approach, in order to let the

6
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designers have the freedom to choose a solution according to their preference

as a trade-off between the objectives.

Chapter 10: Force Identification

Distribution of prestresses of prestressed structures in service or under con-

struction is necessary to be identified for their health monitoring, evaluation

and maintenance. The identification error is formulated taking considera-

tion of the measurement errors of the nodal coordinates as well as pre-

stresses. We then study the problem of finding the optimal measurement

positions such that the identification error is minimized with the specified

number of measurement devices. This combinatorial optimization problem

is solved by combining the basic idea of simulated annealing and stingy

method, which shows the versatility in dealing with different preassump-

tions.

Chapter 11: Summaries

The proposed methods for morphology and derived conditions for stability

of tensegrity structures are briefly summarized in this chapter.

Future studies to have deeper understanding of tensegrity structures are

also discussed:

• Some tensegrity structures may consist of unstressed cables, which

have zero stiffness in compression. Conventional stability investiga-

tion does not work well for these cases, since initially stressed mem-

bers remain stressed, and therefore, do not lose their stiffness subject

to infinitesimal displacements. To verify the stability of this kind of

structures, several optimization problems are under consideration.

• When the symmetry operations of translations are also taken into ac-

count, the self-equilibrated configuration can be derived similar to the

way for the structures with symmetry of point group, as illustrated by

a two-dimensional structure with translation of unit cells in one single

direction. However, the symmetry-adapted formulations for stiffness

matrices presented in Chapter 6 may not work well since the structures
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Chapter 1

INTRODUCTION

Weakness indicates strength.

—Tao Te Ching , by Lao-Tzu

Tensegrity structures are constructed by weak and global components (cables)

that are flexible in unstressed state, together with strong and local components

(struts); but they exhibit sufficient capability of resisting external loads while

properly prestressed. The one-dimensional cables and struts are the simplest

structural elements, and are most comprehensible since they carry only axial

forces, either tension or compression. However, tensegrity structures might be

one of the most ‘complicated’ structures in the world—they ‘exist’ universally,

from virus in micro field to cosmos in macro.

For example, in the micro field, response of living cells subject to environmen-

tal changes can be interpreted and predicted by tensegrity models; in the mediate

scale, body of an animal can be modeled as a tensegrity structure—skeletons and

muscles respectively are the compressive members (struts) and tensile members

(cables); and in the macro world, structure of the cosmos can also be regarded

as a tensegrity structure, where the planets are the nodes and their interactions

are the invisible members.

Since the invention of tensegrity structures by the artists, there have been a

number of successful applications of their principles in many academic and non-

academic fields, such as arts, bio-medical engineering, mechanical engineering and
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Figure 1.1: The simplest tensegrity structure in three-dimensional space. Struts
are denoted by thick lines and cables by thin lines. A class of structures sim-
ilar to this one will be revisited in Chapters 6 and 7 for their self-equilibrated
configurations and stability properties.

mathematics etc. There are also some applications in architectural engineering,

in the form of lightweight structures.

In this introduction chapter, Section 1 introduces the basic concepts and ap-

plications of tensegrity structures, and Section 2 reviews the existing researches

for the morphology and stability problems of tensegrity structures.

1.1 Concepts and Applications

This section introduces the basic concepts of tensegrity structures firstly, and then

some applications of their principles in various academic and non-academic fields,

including arts, architecture, mechanical engineering, biomedical engineering and

mathematics.

1.1.1 Basic Concepts

The term of tensegrity was created by Richard Buckminster Fuller as a contrac-

tion of ‘tensional integrity’ (Fuller, 1975). It refers to the integrity of stable

structures as being based in a synergy between the balanced continuous tensile

components and discontinuous compressive components. The tensile components

that carry only tension are called cables, and the compressive components that

carry compression are struts. Struts push the nodes away, while cables intend to
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Radial Cable

Vertical Cable
Vertical Cable

Strut

Radial Cable

Figure 1.2: The simplest star-shaped prismatic tensegrity structure with dihedral
symmetry. This structure is stable although the number of members is smaller
than that is necessary according to the Maxwell’s rule. Stability of this class of
structures is investigated in Chapter 8.

pull them back, which makes all the nodes stay in the state that they are unmoved

and balanced, the so-called self-equilibrium state. For example, Fig. 1.1 shows the

simplest, and perhaps the most well-known, (prismatic) tensegrity structure in

three-dimensional space. It is in the state of self-equilibrium, and composed of

six nodes and twelve members; each node is connected by three cables shown as

thin lines and one strut as thick line in the figure. The struts make no physical

contact to any others.

Relation between struts and cables can be described as, isolated islands of

compressive components (struts) are floating in an ocean of tension provided

by tensile components (cables). In other words, struts are local components of

a tensegrity structure, while cables are global. This distinct characteristics is

very useful for long-span structures that cover large space, since materials can be

effectively made use.

A structure is said to be stable if it returns to its initial configuration subject to

any small disturbance. Stability of trusses that are composed of straight members

connected at their ends by frictionless joints can be validated by the Maxwell’s

rule. In the paper by Maxwell (1864), he showed that a three-dimensional frame

(truss) having n joints (nodes) requires in general 3n− 6 bars (members without

prestresses) to render it stable; i.e., a truss is stable if the number of bars m
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satisfies

m = 3n− 6 (1.1)

where 6 is the number of rigid-body motions of a structure in three-dimensional

space. However, the Maxwell’s rule is usually not applicable to tensegrity struc-

tures, although they have similar appearance and properties compared to trusses

except for the existence of prestresses. Tensegrity structures can be stable with

less members required by the Maxwell’s rule as for conventional trusses. Con-

sider the example structure, called star-shaped prismatic tensegrity structure, as

shown in Fig. 1.2 for instance. The structure consists of eight nodes and twelve

members, hence we have

m = 12 < 3n− 6 = 3× 8− 6 = 18 (1.2)

which indicates that the structure is not stable according to the Maxwell’s rule in

Eq. (1.1). However, this structure is indeed ‘super’ stable, regardless of materials

that it is made of and level of prestresses, as will be discussed in Chapter 8 in

detail.

In the cases of tensegrity structures, stability is ensured by the proper distri-

bution of prestresses together with their self-equilibrated configurations. Based

on their stability properties, trusses and tensegrity structures are classified into

two different categories in Chapter 2.

Tensegrity structures were originally born in art. Their distinct mechanical

properties as well as mathematical principles have then attracted great attentions

of scientists and engineers in many different fields. The remaining of this section

is devoted to brief introductions of their applications.

1.1.2 Applications in Arts

Tensegrity structures were invented by artists, and obtained their initial devel-

opment in the field of art. Among the pioneers, Kenneth Snelson, David Georges

Emmerich and Richard Buckminster Fuller should be remembered for their con-

tribution to the initial development of tensegrity structures in the earliest stage.

Motro (1992, 1996, 2003) gave a detailed history of development of tensegrity

structures from their beginning to most recent.
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(a) X-shape structure (b) the simplest 2D tensegrity structure

Figure 1.3: The X-shape tensegrity structure in (a), courtesy of K. Snelson and
http://www.kennethsnelson.net, is an assemble of the two-dimensional modules
in (b), one to the other. The picture is a reproduction of X-shape tensegrity
structure created by Snelson in 1948.

Tensegrity structure was first explored by Snelson, when he was experimenting

to build flexible modular towers. In the summer of 1948, R.B. Fuller, who was his

teacher at Black Mountain College, posed the question whether one can build a

model to illustrate the structural principle of nature, which was observed to rely

on that continuous tension embraces isolated compression elements. Fuller came

up with the idea of the X-shape tensegrity structure as shown in Fig. 1.3 after

several experiments, as the answer to this question.

In 1968, Snelson built an eighteen-meter-high “Needle Tower” as shown in

Fig. 1.4, which is perhaps one of the most well-known tensegrity artwork in the

world. The structure was constructed from the simplest three-dimensional tenseg-

rity structure as shown in Fig. 1.1 as modules being assembled one to another.

(This class of structures are studied as example structures for the proposed form-

finding method in Chapter 4.) More artworks of tensegrity structures are available

from the links published on our website: http://tensegrity.AIStructure.com

Besides high art, the idea of tensegrity structures has penetrated into low

art as well: some baby toys employ the same principles as Snelson’s original

tensegrity structures.
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(a) side view (b) bottom view

Figure 1.4: Needle tower by Kenneth Snelson in 1968. It has been standing at the
Hirshhorn Museum and Sculpture Garden, Smithsonian Institution, Washington
D.C. since its construction.

Tensegrity structures had been regarded only as artworks for a long time until

they attracted attentions of researchers in academics. After that, the community

of tensegrity structures has been growing up much faster, and many of their

important properties were discovered by theoretical studies. The in-depth under-

standing of them has also inspired novel applications as long-span structures in

architectural engineering.

1.1.3 Applications in Architecture

Tensegrity structures are ideal structural forms for long-span structures because

• Introduction of prestress greatly enhance the stiffness of the tensegrity

structures, such that they can be built with less materials to obtain the

same capacity of resisting external loads.

• The struts in compression that are sensible to member buckling can be made

much slender since they are local components of the tensegrity structures,

and therefore, are much shorter than those of cables.
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Figure 1.5: Inside view of the Georgia Dome, a special tensegrity structure. It
was built in Atlanta U.S. in 1992 for the Atlanta Summer Olympic Games. It is
a multi-purpose public stadium, that can be used for American football, concert,
basketball and gymnastics.

• The cables are in tension such that they can make use of the high-strength

materials without considering member buckling.

• Complex joints are not necessary since the struts in compression are con-

nected by flexible cables.

The followings introduce the applications of tensegrity structures in architec-

tural engineering as a structural system (cable dome) or as a structural compo-

nent.

1.1.3.1 Cable Domes

David Geiger proposed and designed a permanent structure as an architectural

form, called cable dome or tensegrity dome, in a competition of hall for the 1996

Atlanta Summer Olympic games in U.S. Construction of the dome was accom-

plished in 1992, at a cost of 214 million US dollars. The structure has a height

of 82.5 meters, a length of 227 meters, a width of 185 meters, and a total floor

area of 9,490 m2. It seats 71,228 for football, up to 75,000 for concerts, and up

to 40,000 for basketball and gymnastics. The great success aroused the interests

and enthusiasms of many structural engineers and researchers, and a number of
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Figure 1.6: Example of a pair of tensegrity structures used as frames to support a
membrane roof, constructed at Chiba in Japan in 2001. (Architectural design by
A. Fujii and structural design by K. Kawaguchi.) The left photo is the interior
view of the building, the upper-right photo is its exterior view and the lower
right is one of the tensegrity structure under construction. The photos are kindly
provided by one of the designer, Professor K. Kawaguchi at the University of
Tokyo.

tensegrity domes with different styles were built after that. However, difficul-

ties in management and maintenance of prestresses during and after construction

are the barriers for their further applications in architectural engineering. This

problem is dealt with in Chapter 10 for their force identification.

1.1.3.2 Structural components

As another example, Fig. 1.6 shows a pair of tensegrity structures that are

used as structural components in a building to support the roof made in mem-

brane (Kawaguchi and Ohya, 2004). The structure was built in Chiba in Japan

in 2001. One of the tensegrity structure is ten-meter high and the other is seven-

meter high. Both of them are similar to the prismatic structure with three struts

as shown in Fig. 1.1, but with three additional ‘vertical’ cables connecting to
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Figure 1.7: Vibration control of a three-stage tensegrity tower. Vibration on the
top of the structure is to be reduced where enforced vibration is introduced at
the bottom via shake table. The picture is courtesy of Professor R.E. Skleton.

the struts to ensure safety. An isolated strut is placed between the tensegrity

structure and the membrane roof, and connected to the top of the structure.

1.1.4 Applications in Mechanical Engineering

Configuration of a tensegrity structure can be actively controlled by adjusting

the prestresses introduced in the structure, because of the high interdependency

between the self-equilibrated configuration and prestresses. Making use of this

property, a number of ‘smart’ structures have been studied in mechanical engi-

neering.

Tensegrity structure has predictable and linear response over a wide range

of different shapes. And control systems (sensors and actuators) can be easily

embedded and implemented in members, because they carry only axial forces.

These advantages of tensegrity structures attracted some researchers to use them

as smart structures, of which shapes are actively adjusted and controlled to satisfy

different requirements in different circumstances.

For example, Fig. 1.7 is a three-layer tensegrity tower, which was used by Chan
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(a) shape on a flat surface (b) shape on a curved surface

Figure 1.8: Tensegrity model of a living cell, which interprets the different shapes
of cells while placed on different surfaces. A living cell becomes flatter when it is
placed on a flat surface as in (a), and becomes more spherical on a curved surface.
The figures are taken from the introduction paper on applications of tensegrity
structures in biology by Ingber (1998). The pictures are courtesy of Scientific
American, Inc.

et al. (2004) for actively control of its vibration in real time. The structure is

placed on a shake table, and the goal is to reduce vibration of the top of the struc-

ture. For this purpose, piezoelectric actuators and sensors used to adjust member

lengths and measure internal forces are embedded in the members. Movie of the

experiment is available from homepage of Structural Systems and Control Labo-

ratory at UCSD in U.S.: http://maeweb.ucsd.edu/ skelton/laboratory/SSCL.htm

Principles of tensegrity structures can also be found in biomedical engineering,

at various scales.

1.1.5 Applications in Biomedical Engineering

Tensegrity structures also aroused the interests in the biomedical community. The

principles of tensegrity apply at essentially every detectable size scale in the body.

At the macroscopic level, the 206 bones that constitute our skeleton are pulled up

against the force of gravity and stabilized in a vertical form by the pull of tensile

muscles, tendons and ligaments. In other words, bones can be regarded as struts

and muscles (tendons and ligaments) as cables. At the other end of the scale,

proteins and other key molecules in the body also stabilize themselves through

the principles of tensegrity. Researchers in biomedical engineering were initially

interested in using tensegrity structure as a model for the structure of viruses

21



1.1 Concepts and Applications

(Caspar and Klug, 1962), for the purpose of interpretation of their structural

behavior subject to change of external environment. Their increasing interests

were extended to cellular structures at the microscopic level researches (Ingber,

1993).

Previously, biologists generally viewed the cell as a viscous fluid or gel sur-

rounded by a membrane, much like a balloon filed with molasses. Cells were

known to contain an internal framework, or cytoskeleton, composed of three dif-

ferent types of molecular protein polymers. But their role in controlling cell shape

was poorly understood. For example, it was experimentally known that isolated

cells behave differently when they are placed on different surfaces: they spread

out and flatten when they are attached to a rigid glass or plastic culture dish, and

contract to become more spherical when affixed to a flexible rubber substrate.

This phenomenon has not been well interpreted until the tensegrity model for

them was proposed—a smaller spherical tensegrity structure representing the nu-

cleus is contained within a larger structure consisting of six struts as shown in

Fig. 1.8.

Other than arts and engineering, tensegrity structures are not only studied

in mathematics, mainly on their stability (structural rigidity in the language of

mathematics), but also applied to solve some challenging mathematical problems.

1.1.6 Applications in Mathematics

Particle packing is an interesting as well as important problem, among the many

applications of tensegrity structures in the field of mathematics. It studies how

the particles can be packed together to occupy the minimum space. In other

words, particle packing is to study what is the maximum volume that can be

occupied by hard-particles of uniform of size and shape, when they are poured

into a container with a given shape. An example of the problem is illustrated

in Fig. 1.9 (Weiss, 2004). This problem has been a persistent scientific problem

(many still open) for hundreds of years. The study on it helps scientists better

understand the behavior of disordered materials ranging from powders to glassy

solids, and could also lead to denser ceramic materials that might improve heat

shields for furnaces and reduced-porosity glass with exceptional transparency.
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Figure 1.9: Packing problem in mathematics using principles of tensegrity struc-
tures. In packing problem, the maximum number of objects with a given shape
(M&M’s chocolate candies for instance) is to be searched for a container with
given configuration (e.g., the spherical container as in the figure). The picture is
courtesy of Science News.

In any packing problems, the centers of hard-particles must keep a mini-

mum distance but can be as far apart as desired. Thus, it can be regarded as a

tensegrity with invisible struts. Furthermore, the particle packing problem can

be formulated as a problem of detecting stability (rigidity in mathematics) of

the tensegrity structures associated with the contact graph of the packing. The

particle centers correspond to nodes of the structure, and interparticle contacts

correspond to the members. The lengths of the cables are not allowed to decrease,

which models the impenetrability constraints. A linear programming algorithm

for detecting stability in hard sphere packing (equivalently, tensegrity structures)

was proposed (Donev et al., 2004).

1.2 Study Background and Existing Studies

This section introduces the background for our study on morphology and stability

problems of tensegrity structures, and discusses the existing studies on them.

23



1.2 Study Background and Existing Studies

1.2.1 Study Background

Nodes of a tensegrity (or generally prestressed) structure stay in a state of self-

equilibrium under the interaction of prestresses in its members, where struts with

negative forces push the nodes away and cables with positive forces pull them

back. Because of the high interdependence of prestresses and self-equilibrated

configuration of a tensegrity structure, they have to be determined taking consid-

eration of the other. The process of determination of them is called form-finding

or morphology1.

The difficulties in form-finding problem of tensegrity structures are to find

the self-equilibrated configuration that satisfies specific properties required by the

designers, as well as to derive the solutions in an efficient way. Some of the existing

methods for the problem may not be efficient enough so that they can only be

used for relative simple structures, and some others may lose the chance to have

further insight into properties of the structures. To provide efficient analytical and

numerical methods for form-finding problem of tensegrity structures is one of the

main objectives in this study. The proposed methods should be comprehensible

enough and robust, furthermore, should lead to in-depth understanding of their

structural properties.

A stable tensegrity structure is in a state of self-equilibrium when no external

loads are considered; however, self-equilibrium of a structure does naturally mean

that it is stable! This can be explained from the viewpoint of energy: a structure

has extreme value, either maximum or minimum, of strain energy (equivalent to

total potential energy in this case since no external loads are applied), when it is

in a state of self-equilibrium.

Stability of a structure is equivalent to positive definiteness of its tangent

stiffness matrix, which is the second-order derivative of energy with respect to

displacements (Thompson and Hunt, 1984). Stability of trusses carrying no pre-

stresses can be easily verified by Maxwell’s rule, which will be further discussed

1The term ‘morphology’ here is used to indicate the study dealing with the self-equilibrated
configurations of tensegrity structures. Originally, it can mean: 1, The branch of biology that
deals with the form and structure of organisms without consideration of function; 2, The form
and structure of an organism or one of its parts.
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1.2 Study Background and Existing Studies

in Chapter 2. Stability investigation of tensegrity structures is much more com-

plicated due to the fact that prestresses are also involved in the tangent stiffness.

On the other hand, this also provides the opportunity for a tensegrity structure

to be stable with less members than that are necessary for a truss according to

the Maxwell’s rule, and much more important stability properties that are to be

studied in the thesis.

Before introduction to our achievements on morphology and stability problem

of tensegrity structures that are summarized in the next section, existing studies

on them are briefly reviewed as follows.

1.2.2 Existing Studies on Morphology

In the early stage, tensegrity structures were studied by purely geometric ap-

proach, mainly by artists, where regular and convex polyhedra were usually used

as references (Pugh, 1976). New self-equilibrated configurations were found (in-

vented) by making physical models by trial and error, and mimicing polyhedra

that were already known. Many interesting and even amazing tensegrity struc-

tures have been found by this kind of purely geometric approaches. The methods

made the first and one of the most important contributions to the development

of tensegrity structures by exploring and spreading the special structural philos-

ophy behind this kind of structures. However, configurations determined by this

kind of methods are restricted by knowledge on geometry of existing objects and

intuition of human beings. More systematical ways certainly desired in practical

design of tensegrity structures, and many excellent methods have been proposed

after the structures attracted attentions of researchers in academics, especially in

mathematics and engineering.

Tibert and Pellegrino (2003) presented a review paper for the existing methods

for form-finding problem of tensegrity structures. The most recent review paper

for this problem is by Juan and Tur (2007). These existing methods are briefly

summarized as follows.

Symmetry Method:

For the structures with high level of symmetry, self-equilibrium equations of

the whole structure can be simplified to that of its representative nodes. This way,
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1.2 Study Background and Existing Studies

it is possible to derive analytical solutions even for complicated structures with

large number of nodes and members. For example, Connelly and Terrell (1995)

presented the general solution for symmetric prismatic tensegrity structures, and

derived a catalogue of symmetric structures belonging to permutation group that

are published on http://mathlab.cit.cornell.edu/visualization/tenseg/tenseg.html.

Optimization Method:

With the fixed lengths for cables, self-equilibrated configuration of a tensegrity

structure can be determined by solving the optimization where total length of

struts is to be maximized (Pellegrino, 1986).

Dynamic Relaxation Method:

The dynamic relaxation method and force density method were initially devel-

oped for form-finding problem of cable nets and tensile membrane structures Barnes

(1999); Schek (1974).

In the dynamic relaxation method, the structure is enforced to deform from

an initial configuration with zero velocities by the unbalanced loads. Deformation

of the structure obeys the fictitious dynamic equations, and all nodal velocities

are set to zero when the structure has local maximum of total kinetic energy. By

repeating the above-mentioned process, the structure arrives at a self-equilibrated

configuration when the local maximum of total kinetic energy becomes sufficiently

small (Motro, 1984; Zhang et al., 2006).

Force Density Method:

Equilibrium equations of a tensegrity structure can be written as product of

the force density matrix and nodal coordinates. To make the force density matrix

satisfy non-degeneracy condition, which will be presented in Chapter 2, Vassart

and Motro (1999) proposed an analytical method to find the force densities of

members in symbolic or semi-symbolic forms. The method provides opportunity

to look inside the relation between different force densities, but is only applicable

to relatively simple structures because symbolic computations are much time

consuming and the analytical force densities may lose their meaning while there

are too many. In Chapter 4, we will present a more powerful numerical method

based on the similar idea, where stability can also be guaranteed in the form-

finding process.
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1.2 Study Background and Existing Studies

In fact, the symmetry method mentioned previously also belongs to the family

of force density method, where force densities are involved in the self-equilibrium

equations of representative nodes.

Internal Coordinate Method:

Self-equilibrium equations of a structure can be written as product of the

equilibrium matrix in internal coordinate (members) system and prestresses. The

equilibrium matrix should be singular so as to let the structure carry non-trivial

prestresses. For this purpose, Sultan et al. (2001) used symbolic manipulation

software, e.g. Maple or Mathematic, to derive the nodal coordinates that satisfies

this condition.

Energy Method:

A structure is in a state of equilibrium when it has extreme value of energy,

and is stable when the energy is locally minimum. Based on this idea, Connelly

and Whiteley (1996) presented the energy method for determination of the self-

equilibrium configurations of a stable structure. The energy method is equivalent

to the force density method, so that they can also be classified in the family of

force density method.

Each method mentioned above has its own merits and disadvantages as well.

Among these, the force density method is considered to be most efficient and

suitable to searching for new configuration with the given topology. The force

density method may lead to much deeper insight into properties of tensegrity

structures, which will be further discuss in the follows of the study.

1.2.3 Existing Studies on Stability

The stability criterion that the tangent stiffness matrix is positive definite is

widely adopted in structural engineering. Since prestresses also contribute to

stiffness of the structure, their influence should be further investigated to guide

designs and applications in practice. For this purpose, there are two other stabil-

ity criteria adopted in the community of tensegrity structures: prestress stability

where stiffness of each member is assumed to be infinite, and super stability which

indicates that the structure is always stable for any (conventional) materials and

level of prestresses.
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1.2 Study Background and Existing Studies

Assuming the members have infinite stiffness, the tangent stiffness matrix is

reduced to the quadratic form of the geometrical stiffness matrix with respect to

mechanisms that lie in the null-space of the linear stiffness matrix. Stability of

the structure was then believed to be able to be verified by positive definiteness

of the quadratic form (Calladine and Pellegrino, 1991). As discussed in Chapter

2, we will show that this is only the necessary but not the sufficient condition for

stability of a tensegrity structure.

Connelly and Whiteley (1996) gave a detailed investigation on the second-

order stability (prestress stability) of tensegrity structures. Furthermore, Con-

nelly (1982, 1999) presented the necessary and sufficient conditions for the super

stability of tensegrity structures. However, these conditions are descriptive in

terms of mathematical terminologies, and not easy to understand and implement

in computers, which motivates our studies on more comprehensible stability con-

ditions.

Moreover, for the high level of symmetry of some tensegrity structures, the

block-diagonalization of the relevant matrices might lead to thorough understand-

ing the the whole class of structures with similar properties. Chapter 6 will

present the analytical formulations for the studies on the structures with dihe-

dral symmetry—the prismatic and star-shaped structures in Chapters 7 and 8,

respectively.
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Chapter 2

BASICS

This chapter is to provide basic definitions and formulations for further investi-

gation of and discussions on tensegrity structures in the following chapters.

Definitions and formulations are presented for general pin-jointed structures,

including the tensegrity structures. Topology is described in terms of graph

theory and configuration in nodal coordinates. The equilibrium equations of a

structure is formulated with respect to prestresses (member forces) with the equi-

librium matrix and nodal coordinate with the force density matrix, respectively.

The stiffness matrices are then formulated in terms of the equilibrium and force

density matrices. Three stability criteria—stability, prestress stability, and super

stability—are defined and discussed based on the positive definiteness of the stiff-

ness matrices. The general pin-jointed structures are classified into (a) trusses,

(b) tensile structures, and (c) tensegrity structures, based on the discussions of

their stability properties.

To ensure that the final configuration of a tensegrity structure will not de-

generate into the space with lower dimensions, the non-degeneracy condition is

presented in terms of rank deficiency of the force density matrix.

2.1 Configuration

This section is to introduce the basic assumptions for all the studies on tensegrity

structures in this dissertation, and to present the means of description of topology

using graph theory as well as that of configuration in terms of nodal coordinates.
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Figure 2.1: A two-dimensional cable net. The structure consists of both fixed
and free nodes.

2.1.1 Assumptions

To presented the formulations for pin-jointed structures, the following assump-

tions that are widely used in structural engineering are adopted:

[L1] Members are straight and are connected by pin joints at their ends.

[L2] Self-weight of the structure is neglected, and no external loads are consid-

ered for its morphology and stability problem.

[L3] Member failure, such as yielding or buckling, is not considered.

[L4] All members of the structure are in stressed state, such that lose of stiff-

ness of cable in compression is not taken into consideration in its stability

investigation.

[L5] Stability investigation is based on up to second order of the energy.

From the assumptions (a) and (b), pin-jointed structures transmit only axial

forces, if forces exist in the structures. that only axial forces, either in compression

or tension, are transmitted by the members.
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2.1 Configuration

2.1.2 Topology

The way that the members of a pin-jointed structure are connected by the nodes

is called topology or connectivity of the structure.

Because the members of the pin-jointed structures connect the nodes in the

shortest paths, graph theory is used to describe the connectivity (topology) of

them (Harary, 1969; Kaveh, 1992). The vertexes and edges in graph theory are

the nodes and members of the structure, respectively. And the incidence matrix

describing the topology of the structure is called connectivity matrix in the study.

Let k denote a member, and let i and j (i < j) denote two nodes. If member

k is connected to the nodes i and j, then the ith and jth elements of the kth

row of the connectivity matrix Cs are 1 and −1, respectively; otherwise, if nodes

i and j are not connected by the member k, then the corresponding elements in

Cs are zero. Hence, the connectivity matrix Cs can be written as follows

Cs
(k,p) =





1 for p = i
−1 for p = j
0 for other cases

(2.1)

A pin-jointed structure usually has two types of nodes: fixed nodes and free

nodes. The fixed nodes are attached to supports, and therefore, they cannot have

any displacement even subject to external loads, whereas the displacements of the

free nodes are not constrained. For example, the two-dimensional structure as

shown in Fig. 2.1 has two free nodes 1 and 2, and is attached to the fixed nodes

3–8.

Suppose that a structure has m members, n free nodes and nf fixed nodes.

For convenience, the fixed nodes are preceded by the free nodes in the numbering

sequence. Thus, the connectivity matrix Cs ∈ <m×(n+nf ) can be partitioned into

two parts as

Cs = (C, Cf ) (2.2)

where C ∈ <m×n and Cf ∈ <m×nf
describe the connectivities of the members by

the free and fixed nodes, respectively.

For example for the structure as shown in Fig. 2.1, the connectivity matrices

Cs ∈ <7×8, C ∈ <7×2 and Cf ∈ <7×6 of the whole structure, the free and fixed
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Figure 2.2: A two-dimensional tensegrity structure. The structure is free-
standing, i.e., it has no fixed nodes.

nodes are written as follows, respectively

Cs =

1 2 3 4 5 6 7 8
1© 1 −1 0 0 0 0 0 0
2© 1 0 −1 0 0 0 0 0
3© 1 0 0 −1 0 0 0 0
4© 0 1 0 0 −1 0 0 0
5© 0 1 0 0 0 −1 0 0
6© 0 1 0 0 0 0 −1 0
7© 1 0 0 0 0 0 0 −1

C Cf

If a structure has only free nodes, then it is said to be fress-standing, because

the rigid-body motions (see the detailed descriptions of the rigid-body motions

in Chapter 3) have not been constrained and it can be freely transformed in the

space preserving relative positions between the nodes and members. Tensegrity

structures interested in the study are always free-standing, thus the connectivity

matrix becomes

Cs = C (2.3)

For example, the free-standing tensegrity structure in the two-dimensional

space as shown in Fig. 2.2 consists of five free nodes and eight members. The
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2.1 Configuration

connectivity matrix C(= Cs ∈ <8×5) of the structure is

C = Cs =

1 2 3 4 5
1© 1 −1 0 0 0
2© 1 0 −1 0 0
3© 1 0 0 −1 0
4© 1 0 0 0 −1
5© 0 1 0 −1 0
6© 0 0 1 −1 0
7© 0 1 0 0 −1
8© 0 0 1 0 −1

2.1.3 Geometry

Consider a pin-jointed structure in d-dimensional (d=2 or 3) space. Let x, y, z

(∈ <n) and xf , yf , zf (∈ <nf
) denote the nodal coordinates of the free and fixed

nodes in x-, y- and z-directions, respectively.

The coordinate differences uk, vk and wk of the member k connecting to nodes

i and j(i < j) in x-, y- and z-directions can be respectively calculated as follows

uk = xi − xj, vk = yi − yj, wk = zi − zj (2.4)

From the definition of the connectivity matrix, which has only two non-zero

elements in its k-row, 1 and −1 corresponding to the nodes i and j connected by

the member k, Eq. (2.4) can be rewritten as

uk = Ckx + Cf
kx

f

vk = Cky + Cf
ky

f

wk = Ckz + Cf
kz

f

(2.5)

where Ck and Cf
k denote the k-th rows of C and Cf , respectively. Hence, we

can have the coordinate difference vectors u, v and (w ∈ <m) as follows by

combination of the coordinate differences in Eq. (2.5) for all members

u = Cx + Cfxf

v = Cy + Cfyf

w = Cz + Cfzf

(2.6)

In some cases, it might be more convenient for us to use the diagonal form of

a vector, which is denoted by the capital letter. For example, U, V and W(∈
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Figure 2.3: Equilibrium of a free node subject to external loads applied at the
node.

<m×m) are the diagonal forms of the coordinate difference vectors u, v and w,

respectively.

Because the length lk of member k has the following relation with the its

coordinate differences

l2k = u2
k + v2

k + w2
k

the length vector l ∈ <m can be written as follows using the coordinate difference

vectors

l2 = u2 + v2 + w2 (2.7)

The diagonal form of l is denoted by L(∈ <m×m).

2.2 Equilibrium Analysis

In this section, the equilibrium equations are written as linear forms with re-

spect to the prestresses by the equilibrium matrix, and with respect to the nodal

coordinates by the force density matrix.

2.2.1 Equilibrium Matrix

Let s ∈ <m denote the prestress vector of the structure, the k-th element sk of

which is the prestress (axial force) of member k.

34



2.2 Equilibrium Analysis

Consider a free node i as shown in Fig. 2.3, which is connected by nodes

ij(j = 1, 2, . . .) as members kj. A node is in a state of equilibrium only if the

internal forces (prestresses) of the members are equilibrated by the external forces

p applied on that node. Hence, the equilibrium equation of node i in x-direction

can be written as

px
i =

∑
j

skj
(xij − xi)/lkj

(2.8)

Because (xij − xi) is the coordinate difference ukj
of member kj in x-direction,

and the non-zero elements in the i-th column of C correspond to the nodes that

are connected to the node i as members, the equilibrium equation of the free node

i in x-direction can be rewritten as follows

px
i = C>

i UL−1s

where C>
i denotes the ith row of the transpose of C, and L−1 is the inverse of the

length matrix L. C>
i U in the equation ensures that the coordinate differences are

pointing from node i to nodes ij, which is consistent with (xij − xi) in Eq. (2.8).

Hence, the equilibrium equation for all the free nodes in x-direction is

px = C>UL−1s (2.9)

Similarly, the equilibrium equations in y- and z-directions can be written as

py = C>VL−1s
pz = C>WL−1s

(2.10)

Writing

D =




Dx

Dy

Dz







C>UL−1

C>VL−1

C>WL−1


 (2.11)

the equilibrium equations with respect to the prestresses in a linear form can be

combined as

Ds = p =




px

py

pz


 (2.12)

The matrix D ∈ <dn×m is called the equilibrium matrix.
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2.2 Equilibrium Analysis

2.2.2 Force Density Matrix

Let the prestress sk to member length lk denote the force density qk of member

k; i.e., qk = sk/lk. The force density vector q ∈ <m of the structure can then be

calculated by

q = L−1s (2.13)

Because the multiplication Ab of a diagonal matrix A with a vector b is

equal to Ba, where A and B are the diagonal versions of the vectors a and b,

respectively; i.e., Ab = Ba, the equilibrium equations (2.9) and (2.10) in each

direction can be written as follows by using Eqs. (2.6) and (2.13)

C>Qu = C>QCx + C>QCfxf = px

C>Qv = C>QCy + C>QCfyf = py

C>Qw = C>QCz + C>QCfzf = pz

(2.14)

where A is the diagonal version of q.

Denote E ∈ <n×n and Ef ∈ <n×nf
as

E = C>QC
Ef = C>QCf (2.15)

where E is called the force density matrix or stress matrix (Connelly, 1982). Note

that the force density matrix E is not the diagonal version of the force density

vector q.

Instead of using C and A as Eq. (2.15), the force density matrix E can also

be written directly from the force densities. Let I denote the set of members

connected to free node i. The (i, j)-component E(i,j) of E is given as

E(i,j) =





∑
k∈I

qk for i = j

−qk if nodes i and j are connected by member k
0 for other cases

(2.16)

For example, the force density matrix E of the structure as shown in Fig. 2.1

can be written directly from Eq. (2.16) as

E =

(
q1 + q2 + q3 + q7 −q1

−q1 q1 + q4 + q5 + q6

)
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2.2 Equilibrium Analysis

Obviously, E is always square and symmetric, and moreover, it is positive definite

if all members are in tension; i.e. qk > 0 (k = 1, 2, . . . , m).

As comparison, the force density matrix E of the two-dimensional tensegrity

structure as shown in Fig. 2.2 is

E =




q1 + q2 + q3 + q4 −q1 −q2 −q3 −q4

−q1 q1 + q5 + q7 0 −q5 −q7

−q2 0 q2 + q6 + q8 −q6 −q8

−q3 −q5 −q6 q3 + q5 + q6 0
−q4 −q7 −q8 0 q4 + q7 + q8




Apparently, the force density matrix is symmetric.

When the external loads are absent in Eq. (2.14) and there exist prestresses

in the members, the structure is said to be in a state of self-equilibrium. The

self-equilibrium equations of the structure can be written as follows by using

Eq. (2.14)
Ex = −Efxf

Ey = −Efyf

Ez = −Efzf

(2.17)

Because the connectivity of a structure is usually regarded to be constant, E and

Ef defined in Eq. (2.15) are also constant if the force densities are assigned or

determined a priori. This way, the non-linear self-equilibrium equation Eq. (2.17)

with respect to the unknown nodal coordinates x, y and z are transformed into

a set of linear equations, because they are the only unknown parameters in the

equations.

If the force density matrix E is full-rank, the unknown coordinates x, y and

z of the free nodes can be uniquely determined as

x = −E−1Efxf

y = −E−1Efyf

z = −E−1Efzf

Hence, the configuration of the structure described in terms of nodal coordinates

can be uniquely determined. This is the original idea of the force density method

for the form-finding problem of cable nets, which transforms the non-linear self-

equilibrium equations into a set of linear equations by the introduction of force

density. Because the cable nets consist of only cables, the prestresses of which
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2.3 Non-degeneracy Condition

are always positive (tensile), the force density matrix E of this kind of struc-

tures are always positive definite, and therefore, Eq. (2.17) always has unique

solution (Schek, 1974).

The tensile membrane structures hold the most basic characteristics as the

cable nets—both of them have only tensile members with positive prestresses,

although membrane is a kind of continuous materials while cable is discrete.

Hence, the basic idea of the force density method can also be applied to the

form-finding problem of the tensile membrane structures, by substituting the

membrane materials by the cables based on the principle of virtual work (Maurin

and Motro, 1998).

However, the same idea cannot be simply applied to the form-finding prob-

lem of tensegrity structures. The force density matrix of a tensegrity structure

is always rank deficient, because of its being free-standing, and therefore, not in-

vertible for the unique determination of the configuration in the case of tensegrity

structures. Moreover, the existence of struts with negative prestresses can make

the rank deficiency of the force density matrix even larger. As will be discussed

in the next section, the force density matrix of a tensegrity structure should have

the right rank deficiency in order to ensure a non-degenerate configuration in the

interested space. This is one of the motivation for us to extend the excellent

idea of the force density method to the problem of tensegrity structures, which

is called adaptive force density method, presented in Chapter 4.

2.3 Non-degeneracy Condition

From the definition in Eq. (2.15) or Eq. (2.16), the force density matrix of a

tensegrity structure has rank deficiency of at least one, because the sum of its

elements in each row or column is always equal to zero. This is caused by the

fact that the tensegrity structures are free-standing without any fixed nodes.

Hence, the self-equilibrium equations of the tensegrity structures can be written

as follows
Ex = px = 0
Ey = py = 0
Ez = pz = 0

(2.18)
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2.3 Non-degeneracy Condition

Define rank deficiency rE of E as

rE = n− rank(E) (2.19)

From Eq. (2.18), we know that the solution space of the self-equilibrium equa-

tion in each direction is spanned by rE independent vectors.

If a structure lies in a space with less dimensions than d, then the structure

is said to be degenerate in the d-dimensional space. For example, the structure

in Fig. 2.2 is degenerate in the three-dimensional space, because it can lie in a

two-dimensional space (e.g., the plane parallel to the paper). From the definition

of degeneracy of a structure in d-dimensional space, we have the following lemma:

Lemma 2.1 The nodal coordinate vectors are linearly independent if the struc-

ture is non-degenerate.

Proof. Suppose the coordinate vectors x, y and z of a three-dimensional struc-

ture are linearly dependent. Thus, we have the following equation

β1x + β2y + β3z = 0 (2.20)

where the arbitrary coefficients β1, β2 and β3 cannot be equal to zero simultane-

ously.

Since Eq. (2.20) is an equation of a plane, the three-dimensional structure

can then lie in the plane defined by Eq. (2.20). Hence, the structure is de-

generate in the three-dimensional space, which conflicts with the assumption of

non-degeneracy of the structure. Therefore, the nodal coordinate vectors x, y

and z in three-dimensional space are linearly independent, if the structure is

non-degenerate.

Two-dimensional case can be proved similarly, which completes the proof.

Furthermore, for the tensegrity structure, rE should satisfy the following non-

degeneracy condition in order to have the non-degenerate configuration in the

interested space with specific dimensions.
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2.3 Non-degeneracy Condition

Lemma 2.2 Non-degeneracy Condition for Tensegrity Structures:

If a tensegrity structure is non-degenerate in d-dimensional space, then the rank

deficiency rE of its force density matrix should hold the following relation

rE ≥ d + 1 (2.21)

Proof. Let x0, y0 and z0 be defined as

x0 = αx
0 Ī

y0 = αy
0 Ī

z0 = αz
0Ī

where all the elements of the vector Ī ∈ <n are equal to 1, and the coefficients

αz
0, αy

0 and αz
0 can have arbitrary values. Since the sum of the elements of any

row of E is always equal to zero for a tensegrity structure, it is obvious that x0,

y0 and z0 are the solutions of Eq. (2.18). Accordingly, the solutions of Eq. (2.18)

can be combined to a general form as




x
y
z


 =




x0

y0

z0


 +

rE−1∑
i=1




αx
i 0 0

0 αy
i 0

0 0 αz
i







σi

σi

σi


 (2.22)

where σi is in the null-space of E such that Eσi = 0.

From Eq. (2.22), we have the following properties for the configuration of the

tensegrity structure with different rank deficiency of the force density matrix:

[L1] If rE = 1, all nodes degenerate into one node (αx
0 , α

y
0, α

z
0), which is called

base node here.

[L2] If rE = 2, Eq. (2.22) defines a line that passes through the base node.

[L3] Eq. (2.22) forms a two-dimensional space (plane) in the case of rE = 3, and

a three-dimensional space if rE = 4. Both of these solution spaces contain

the base node.

Therefore, in order to obtain a non-degenerate tensegrity structure in d-

dimensional space, rank deficiency rE of its force density matrix should be equal

to or larger than d + 1, which completes the proof.

40



2.4 Stiffness Matrices

Note that the condition rE ≥ d + 1 is only the necessary condition but not

sufficient for the non-degeneracy of a tensegrity structure. From Lemma 1, linear

independence of the coordinate vectors should also be satisfied in addition to

the non-degeneracy condition to ensure a non-degenerate tensegrity structure in

d-dimensional space.

2.4 Stiffness Matrices

The stiffness matrices, including the tangent, linear (material, or first-order), and

geometrical (second-order) stiffness matrices, of a general pin-jointed structure,

with and without prestresses, are formulated in this section in the field of elastic

systems with small strain.

Let ek and Ak denote the Young’s modulus and cross-sectional area of member

k, respectively. The lengths of member k in the prestressed and initial unstressed

states are denoted by lk and l0k, respectively. Assuming that struts and cables are

made of linear elastic materials; i.e., the strain-stress relation is linear, its force

density qk can then be written as follows when the strain is small

qk =
sk

lk
=

1

lk

(
ekAk

lk − l0k
l0k

)

= ekAk

(
1

l0k
− 1

lk

)

Let L0 and L denote the diagonal matrices of which the kth diagonal elements

are l0k and lk, respectively. ekAk of member k are denoted by the (k, k) element

of the diagonal matrix K̂. Hence, we have the following equation for all the force

densities

A = K̂(L−1
0 − L−1) (2.23)

The equivalent nodal load vectors in x-, y- and z-directions, which are compat-

ible to the deformation of the structure, are denoted by fx, fy and f z, respectively.

The following relations hold from the equilibrium equations:

fx = Ex + Efxf

fy = Ey + Efyf

f z = Ez + Efzf

(2.24)
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2.4 Stiffness Matrices

The tangent stiffness matrix K ∈ <3n×3n of a structure is defined by partial

differentiation of the equivalent nodal load vector f = (fx>, fy>, f z>)> ∈ <3n

with respect to nodal coordinate vector X = (x>,y>, z>)> ∈ <3n, which can be

written as

K =
∂f

∂X
=




∂fx

∂x
∂fx

∂y
∂fx

∂z
∂fy

∂x
∂fy

∂y
∂fy

∂z
∂fz

∂x
∂fz

∂y
∂fz

∂z


 (2.25)

Partial differentiation of Eq. (2.24) with respect x results in

∂fx

∂x
=

(
∂E

∂x1

x +
∂Ef

∂x1

xf ,
∂E

∂x2

x +
∂Ef

∂x2

xf , . . . ,
∂E

∂xn

x +
∂Ef

∂xn

xf

)
+ E (2.26-1)

∂fy

∂x
=

(
∂E

∂x1

y +
∂Ef

∂x1

yf ,
∂E

∂x2

y +
∂Ef

∂x2

yf , . . . ,
∂E

∂xn

y +
∂Ef

∂xn

yf

)
(2.26-2)

∂f z

∂x
=

(
∂E

∂x1

z +
∂Ef

∂x1

zf ,
∂E

∂x2

z +
∂Ef

∂x2

zf , . . . ,
∂E

∂xn

z +
∂Ef

∂xn

zf

)
(2.26-3)

where xi denotes the x-coordinate of free node i. By using the definitions E =

C>QC and Ef = C>QCf in Eq. (2.15), where C and Cf are constant, we obtain

∂E

∂xi

= C>∂A

∂xi

C,
∂Ef

∂xi

= C>∂A

∂xi

Cf (2.27)

Because the member lengths L0 in the unstressed state is constant, the partial

differentiation of A with respect to the xi can be written as follows from Eq. (2.23)

∂Q

∂xi

= K̂(L−1)2 ∂L

∂xi

(2.28)

Moreover, K̂ are considered to be constant, since the members are assumed

to be linear elastic that ek is constant and the changes of cross-sectional areas

Ak can be neglected while the strains are very small. From Eq. (2.7), partial

differentiation of L with respect to xi leads to

∂L

∂xi

= L−1

(
U

∂U

∂xi

+ V
∂V

∂xi

+ W
∂W

∂xi

)
(2.29)

From Eq. (2.5), we have

∂U

∂xi

= diag(Ci),
∂V

∂xi

= 0
∂W

∂xi

= 0 (2.30)
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2.4 Stiffness Matrices

where Ci is the ith column of C.

From Eqs. (2.27)–(2.30), we obtain

∂E

∂xi

x +
∂Ef

∂xi

xf = C>K̂(L−1)3Udiag(Ci)(Cx + Cfxf )

= C>K̂(L−1)3Udiag(Cx + Cfxf )Ci

= C>K̂(L−1)3U2Ci

(2.31)

Using Eq. (2.31) and letting Dx = C>UL−1, Eq. (2.26-1) can be written as

∂fx

∂x
= C>K̂(L−1)3U2C + E

= DxK̂L−1D>
x + E = DxK̄D>

x + E
(2.32)

where the diagonal matrix K̄(= K̂L−1) is called the axial stiffness matrix, the

diagonal elements Akek/lk are the axial stiffness of the corresponding members k.

Similarly, Eqs. (2.26-2) and (2.26-3) can be written as

∂fy

∂x
= DyK̄D>

x (2.33)

and
∂f z

∂x
= DzK̄D>

x (2.34)

respectively, where Dy = C>VL−1 and Dz = C>WL−1 as defined in Eq. (7.3).

Let I ∈ <3×3 denote an identity matrix, and D> = (D>
x ,D>

y ,D>
z ). From

Eqs. (2.32)–(2.34) and the similar equations for partial differentiation with respect

to y and z, the tangent stiffness matrix K defined in Eq. (2.25) can be written

as the sum of the linear stiffness matrix KE and the geometrical stiffness matrix

KG as follows

K = DK̄D> + I⊗ E = KE + KG (2.35)

where ⊗ denotes tensor product.The stiffness matrices derived above is equivalent

to those by Murakami (2001), Guest (2006) or Masic et al. (2005).

In this formulation, the stressed equilibrium state is considered as the reference

state. It can be easily observed that the stiffness matrices KE, KG and K are all

symmetric, because K̄ and E are symmetric.

It can also be easily observed that the linear stiffness matrix is independent on

the initial lengths l0k of the members but only dependent on the current lengths lk
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2.5 Stability Criteria

after deformation by the introduction of prestresses. In the case that the structure

has no prestresses, the geometrical stiffness matrix vanishes, and we have lk = l0k
because no member is deformed.

The tangent stiffness matrix presented above can be used for any pin-jointed

structure in the field of elastic systems with small strain, since we have not used

any further assumptions. Note that the rigid-body motions should be appro-

priately constrained in the analysis of tensegrity structures, because they are

free-standing.

2.5 Stability Criteria

Based on the positive definiteness of the stiffness matrices and linear dependence

of their eigenvectors, we introduce three stability criteria – stability (minimality

of energy), prestress stability and super stability, which will be extensively used

in the study for the stability investigation of the tensegrity structures.

Super stability implies stability, which implies prestress stability for the tenseg-

rity structures. Hence, super stability is the strongest criterion and the prestress

stability is the weakest among these three.

2.5.1 Statical and Kinematical Determinacy

From Eq. (2.12), the self-equilibrium equation with respect to the prestresses,

where there is no external load applied on the structure; i.e., p = 0, can be

written as

Ds = 0 (2.36)

Denote the rank of D by rD; i.e.,

rD = rank(D)

If the rank rD of D is less than the number m of members, i.e. rD < m,

there can exist non-trivial prestresses (s 6= 0) in the members, and the structure

is said to be statically indeterminate, because we cannot uniquely determine the

prestresses in the structure without any further information.

44



2.5 Stability Criteria

On the other hand, if rD = m, the structure is statically determinate. The

structure cannot contain any prestresses while no external loads are applied.

Let d ∈ <dn denote (infinitesimal) nodal displacements corresponding to the

external loads p applied on the structure. And let e ∈ <m denote the extensions

of the member lengths due to p. The member extensions e are related to the

small displacements d by the kinematical relations via the compatibility matrix

H ∈ <m×dn:

Hd = e

From the conservation of energy, we know that the work done to the structure

by the external loads should be equal to the increase of strain energy stored in the

structure in the field of small displacement for the elastic conservative systems.

Hence, we have
1

2
p>d =

1

2
s>e

From the relationship between the external loads p and the prestresses s in

Eq. (2.12), we know that

s>D>d = s>Hd

Because the small displacements d are arbitrary, the above equation can be en-

sured to be true only if the following relation holds, based on the principle of

virtual work (Calladine, 1978; Livesley, 1975)

H = D>

Thus, the kinematical relation of the structure can be written as follows by

the transpose D> of the equilibrium matrix

D>d = e (2.37)

When there is no member is extended, we have

D>d = 0 (2.38)

which will be very useful for your discussions on the stability.

If the structure is free-standing in d-dimensional space, it has rb = d(d + 1)/2

rigid-body motions. (This will be explicitly demonstrated in Chapter 3). So
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2.5 Stability Criteria

Table 2.1: Statical and kinematical determinacy of pin-jointed structures
Statically Kinematically

Determinate Indeterminate Determinate Indeterminate
rD −m =0 > 0

rD − dn− rb =0 > 0

the null-space of D> has at least rb independent solutions for a free-standing

structure.

If there exists a non-trivial displacement d(6= 0) that is not a rigid-body mo-

tion preserves the member lengths; i.e., Eq. (2.38) is satisfied, then the structure

is said to be kinematically indeterminate, and this displacement is called mech-

anism of the structure. Otherwise, the structure is kinematically determinate

such that there is no displacement can preserve the member lengths except for

the rigid-body motions.

The statical and kinematical determinacy of the pin-jointed structures are

summarized in Table 2.1, where rb is the number of rigid-body motions that have

not been constrained.

The number of states of prestresses ns and modes of mechanisms nm can

then be very easy to calculate from the numbers of nodes n and members m

and the rank rD of the equilibrium equation D as follows for a d-dimensional

structure (Pellegrino and Calladine, 1986)

ns = m− rD

nm = dn− rD − rb (2.39)

This naturally leads to the generalized Maxwell’s rule by Calladine (1978)

ns − nm = m− dn− rb (2.40)

For example, consider the simple structures as in Fig. 2.4, which consist of

two members and three nodes, two of them are fixed. All the rigid-body motions

have been constrained, so we have rb = 0. Hence, ns − nm = 2− 2 = 0.

Rank of the equilibrium matrix of the structure in Fig. 2.4.(a) is two, and

that of Fig. 2.4.(b) is one. Therefore, we know that the first structure is stat-

ically and kinematically determinate, and the second is indeterminate with one

states of prestresses (ns = 1) along the members and one mode of (infinitesimal)

mechanism (nm = 1) perpendicular to the members.
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2.5 Stability Criteria

self-stress

mechanism

(a) determinate (b) indeterminate

Figure 2.4: Statical and kinematical determinacy of a two-dimensional structure.
(a) is a statically and kinematically determinate structure, and (b) is a statically
and kinematically indeterminate structure than has one mechanism and one pre-
stresses mode.

2.5.2 Stability Criteria

When we discuss the stability of a structure in the study, the rigid-body motions

of the structure are assumed to be properly constrained; i.e., the zero eigenvalues

and eigenvectors of the stiffness matrices corresponding to the rigid-body motions

are not considered.

2.5.2.1 Stability (Minimality of Energy)

Because a structure always tends to transform to the configuration with lower

potential energy (it is equivalent to the stain energy when no external loads

exist), it can be in equilibrium if only if the stationary condition of the energy is

satisfied from the viewpoint of energy.

Moreover, the structure is said to be stable, if it has to stability return back to

the original equilibrium configuration after a deformation subject to some small

disturbances (displacements). This means that the stable structure has the (local)

minimality of (strain) energy at the original configuration, and any disturbances

to the structure would increase the energy stored in the structure. Hence, equi-

librium of the structure does not naturally implies stability, but stability does

imply equilibrium.

When the structure has strict (local) minimum energy, the Hessian of the

energy must be positive definite (Thompson and Hunt, 1984). This leads to our

definition for the stability of a structure:

Definition 2.1 Stability:

A structure is stable, if it strictly has the local minimum (strain) energy, or

the Hessian of the energy (the tangent stiffness matrix excluding the rigid-body
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Figure 2.5: Stability of a structure in view of energy. A structure is state of
self-equilibrium when it has extreme value of energy; and is stable if its energy is
locally minimum in the vicinity.

motions for the free-standing structures) is positive definite; i.e., for any small

displacements d the quadratic form Q of the tangent stiffness matrix is positive:

Q = d>Kd > 0 (2.41)

Note that the structure may still be stable for the case Q = 0, but need

further investigation of higher-order than second terms of the energy. Because

Kd is the external loads applied to the structure from the formulation of the

tangent stiffness matrix in Eq. (2.25), the quadratic form Q is twice of the work

done by the external loads. Eq. (2.41) means that the increase of energy stored in

the structure, converted from the work done by external loads, is strictly positive.

This stability criterion is widely adopted in the field of structural engineering.

Note that material properties are usually involved in the stability of a structure,

except that the structure is super stable, which will be introduced later.

However, a structure is stable only if it can return to its initial configuration

subject to small disturbances. Hence, the structure should have (local) minimum

strain energy so as to be stable associated with the current configuration.

It might be clearer to consider a ball subject to gravity, e.g., as shown in

Fig. 2.5, to illustrate the concept of stability. In the figure, position of the ball
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2.5 Stability Criteria

represents configuration of the structure, the elevation represents the strain en-

ergy, and gravity can be considered as prestresses that tend to move the nodes.

If the ball is in a such position that its gradient is not equal to zero (stationary

condition of the energy is not satisfied), e.g., position 1©, the ball cannot stay

at current position and will move down to the position with smaller elevation

(energy) indicated by the ball with dotted boundary. Hence, the structure is not

in equilibrium in this case.

If the gradient of the curve at some specific position is equal to zero (stationary

condition of the energy is satisfied), the ball can maintain its current position if

no disturbances are applied on it. Hence, this indicates the ball (structure) is in

equilibrium. However, the structure tends to move to a position with lower or

the same elevation by only a little disturbance if the second-order of the curve is

not positive. These cases can be found in positions 3©, 4©, 6© and 7© in Fig. 2.5.

Only in the positions with strictly local minimum elevation (energy), such as

2© and 5©, can the ball be stable against small disturbances (displacements) in

any directions.

Interestingly, there are some structures, called multi-stable structures, may

have more than one local minimum energy so that they can be stable with several

different configurations. In Chapter 10, we will introduce an interesting multi-

stable tensegrity structures with star-like shapes, and trace their multi-stable

behaviors.

2.5.2.2 Prestress Stability

As the tangent stiffness matrix can be written as the sum of the linear and

geometrical stiffness matrices, the quadratic form Q of it with respect to a small

displacement d can be written as

Q = d>Kd = d>KEd + d>KGd = QE + QG

If the structure is kinematically indeterminate, then there exist mechanisms

d that make KEd = 0, and therefore, QE = 0. Hence, we have the following

equation for the mechanism d

Q = 0 + QG
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(a) stable (QG > 0) (b) unstable (QG = 0) (c) unstable (QG < 0)

Figure 2.6: Energy and stability of the kinematically indeterminate structures.
Linear stiffness of a kinematically indeterminate structure is positive semi-
definite; and positive definiteness of the tangent stiffness matrix is sensitive to
the contribution but that of the geometrical stiffness matrix.

From the definition of stability, we know that the structure is possible to be stable

(Q > 0) if and only if QG > 0. Note that Q > 0 is the necessary but not sufficient

condition as will discussed later. This can also be explained intuitively by the

figures in Fig. 2.6.

Write the mechanisms, which lie in the null-space of the transpose of the equi-

librium matrix, or equivalently in the null-space of the linear stiffness matrix, as

the columns of the mechanism matrix M. From Eqs. (2.35) and (2.38), the

quadratic form Q of the tangent stiffness matrix K with respect to the mecha-

nisms M turns out to be equal to that of the geometrical stiffness matrix:

Q = M>KM = M>KGM (2.42)

Let λ and d denote an eigenvalue and its corresponding eigenvector of the

linear stiffness matrix KE. We have

KEd = λd

Let a be a positive value. Then aλ is an eigenvalue of aKE. Suppose that

K = aKE + KG, so that the value of a can represent the scale of the axial

stiffness of the members by considering KE = D(aK̄)D>.

If a →∞ (or a is sufficiently large) and λ 6= 0, we have

Kd = aKEd + KG
∼= aKEd = aλd (2.43)
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from which, we know that aλ is the eigenvalue of K when a is large enough.

In this case, we can consider only the positive definiteness of quadratic form of

the geometry stiffness matrix with respect to the mechanisms as in Eq. (2.42) to

investigate the stability of the structure.

Assuming that the axial stiffness of the members is infinite or large enough,

here comes the definition of prestress stability:

Definition 2.2 Prestress Stability:

If the quadratic form A defined in Eq. (2.42) of the geometrical stiffness matrix

with respect to the mechanisms, where rigid-body motions have been excluded, is

positive definite, then the structure is said to be prestress stable.

Obviously, the concept of minimality of energy is stronger than the prestress

stability, especially when there exit negative eigenvalues in the force density ma-

trix, or the geometrical stiffness matrix as well. This will be investigated in more

detail later in the chapter. For the special case that there exist no infinitesi-

mal mechanisms in the structure, the quadratic form of the geometrical stiffness

matrix vanishes, and the structure is also said to be prestress stable.

If a structure is prestress stable with negative eigenvalues in the geometrical

stiffness matrix, then it can be stable with the positive definite tangent stiffness

matrix when the axial stiffness is relatively very high compared to the level of self

stresses. So, it is sufficient and more convenient to consider only the prestress

stability instead of the minimality of energy, because the material properties do

not need to be considered.

Hence, we usually investigate the prestress stability of the tensegrity structures

instead of the minimality of energy in the study, in order to avoid the confusions

in the selection of materials.

2.5.2.3 Super Stability

If the geometrical stiffness matrix is positive semi-definite, and Q in Eq. (2.42)

is positive definite, then the structure can be guaranteed to be stable, no matter

what materials the structure is made of. This is much stronger than the concept

of stability, and hence, named super stability (Connelly and Whiteley, 1996),

which is defined as

51



2.5 Stability Criteria

Figure 2.7: Relationships among the stability criteria: stability, prestress stability
and super stability. A super stable tensegrity structure is stable, a stable structure
is prestress stable. A structure can be either stable or unstable, so the shaped
area of the prestress stability (PS) in the figure except for those of stability (S)
and unstability (US) is indeed empty, although it is not in the figure for the
convenience of illustrating their relationships.

Definition 2.3 Super Stability:

If the force density matrix is positive semi-definite and there exists no mech-

anism that make the quadratic form Q of the geometrical stiffness in Eq. (2.42)

equal to zero, then the structure is super stable.

If a structure is super stable, then it is always stable, irrespective of the selec-

tion of materials or level of self stresses. The necessary conditions and sufficient

conditions for the super stability of a tensegrity structures will be presented in

Chapter 3.

In these three stability criteria, super stability is the strongest and the pre-

stress stability is the weakest. Super stability implies stability (with the strict

minimum energy), which implies prestress stability for tensegrity structures. The

relations among them can be illustrated in Fig. 2.7.

Hence, we are usually interested in finding the super stable tensegrity struc-

tures if it is possible. Prestress stability is the second choice if super stability

of the structures is not available. But in some cases, prestress stable tensegrity

structures can be multi-stable, which might be interesting and useful for some

special purposes, as will be presented in Chapter 10.
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2.6 Classification

2.6 Classification

In this section, the pin-jointed structures are classified into three types: trusses,

tensile structures, and tensegrity structures, based on their stability properties.

By investigation of the quadratic form of the linear stiffness matrix, we may

have the following two statements for its positive definiteness based on the kine-

matical determinacy.

Statement 2.1 If the structure is kinematically determinate, then the linear

stiffness matrix KE is positive definite, i.e., its quadratic form QE with respect

to any non-trivial vector d(6= 0) excluding the rigid-body motions is positive:

QE = d>KEd > 0 (2.44)

Proof. Since the axial stiffness matrix K̄ for a elastic system is positive definite,

i.e. to any arbitrary non-trivial vector d̄(6= 0) we have

d̄>K̄d̄ > 0 (2.45)

On the other hand, if the structure is kinematically determinate, there ex-

ist extensions in some of the members corresponding to any non-trivial nodal

displacements d(6= 0), we can then have the following relation:

D>d 6= 0 (2.46)

By using this non-trivial vector d, the quadratic form of KE can be written as

d>KEd = (Dd)>K̄(Dd) (2.47)

By letting d̄ = Dd, the statement is clearly true by observing Eqs. (2.45) and

(2.46), which completes the proof.

Statement 2.2 If the structure is kinematically indeterminate, then the linear

stiffness matrix is positive semi-definite.
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Table 2.2: Quadratic form of the linear and geometrical stiffness matrix.
kinematically statically

determinate indeterminate
determinate indeterminate

tensile a tensegrityb

QE > 0 ≥ 0

QG = 0 > 0 indefinitec

aAll prestresses are tension.
bConsist both of tensile and compressional prestresses.
cIt can be positive, zero or negative.

Proof. If the structure is kinematically indeterminate, then the extensions

D>d of members might be equal to zero by some non-trivial nodal displacements

d(6= 0), and therefore, the quadratic form of the geometrical stiffness in Eq. (2.47)

turns out to be zero.

Except for the ones that make D>d = 0, we can know from Statement 2.1

that Eq. (2.47) is positive.

Summarily, the statement can be proved.

Furthermore, we can have the following discussions on the statically determi-

nate and indeterminate pin-jointed structures:

[L1] If the structure is statically determinate, Eq. (2.36) has only trivial solution

(s = 0). Hence, its geometrical stiffness vanishes, and the quadratic form

of the geometrical stiffness matrix must be always equal to zero (QG = 0).

[L2] As have been pointed out by Schek (1974) that if the structure is statically

indeterminate and all the members are in tension, i.e. all the force densities

qk are positive, and there is no isolated points, then the force density matrix

E is positive definite. So the geometrical stiffness matrix KG is positive

definite in this case from its definition in Eq. (2.35).

Denote d(6= 0) as a nontrivial vector. The statements discussed above about

the quadratic form of the linear stiffness matrix KE and the geometrical stiffness

matrix KG can be summarized in Table 7.2.
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Note that the tensile structure denotes the structure that is self-equilibrated

by the introduction of prestresses with all members in tension. This can include

the cable nets and tensile membrane structures, which can be discretized and

substituted by cable net models. Tensile structure has to be suspended to some

fixed nodes (supports) so as to obtain its self-equilibrium state and stability.

Based on the stability criterion concerning minimality of energy, we have the

following statement for a stable structure that is a statically and kinematically

indeterminate.

Statement 2.3 For a statically and kinematically indeterminate structure, the

introduction of prestress stiffens the infinitesimal mechanisms if the structure is

stable.

Proof. For a structure that is kinematically indeterminate, there exists a non-

trivial displacement d(6= 0) that make the following equation hold

KEd = 0

If the structure is stable, the quadratic form Q of the tangent stiffness matrix

with respect to the mechanism d must be positive:

Q = d>Kd = d>KGd > 0 (2.48)

Thus, it is clear that the mechanisms of a kinematically indeterminate structure

are stiffened and stablized by the introduction of prestresses, because the geomet-

rical stiffness matrix is not trivial if there exist prestresses within the structure.

By using the stability criterion in terms of minimality of energy and the

quadratic forms of the linear and geometrical stiffness matrices listed in Table 7.2,

it is very easy to have the following conclusions:

CASE 1 : A kinematically and statically determinate pin-jointed structure is

stable. This is the most simple stable structural form, e.g. a conventional

truss structure.
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2.6 Classification

CASE 2 : A kinematically determinate and statically indeterminate pin-jointed

structure is stable if the introduced prestresses are sufficiently small or the

axial stiffness of the materials is large enough. This has been shown in

Eq. (7.34), and a detailed discussion can also be found in the necessary and

sufficient conditions for the stability in Lemma 3.8 in Chapter 3.

CASE 3 : A structure that is kinematically indeterminate and statically deter-

minate is unstable.

CASE 4 : For a kinematically and statically indeterminate structure, we can

have the following two cases:

a : If all the members are in tension, the structure is stable. Hence, the ten-

sile structures, including cable nets and tensile membrane structures,

are stable.

b : If the members of the structure consist of both compressional and

tensile members, it is not direct to draw a conclusion whether it is

stable or not. The stability of this kind of structures will be discussed

in Chapter 3 in detail.

Based on the above discussions, we classify the pin-jointed structures into the

following three types:

Type I truss, which falls in CASE 1;

Type II tensile structure, which falls in CASE 4.a;

Type III tensegrity structure, which falls in CASE 2 and CASE 4.b.

In the remaining of the study, we will mainly deal with the stability and

morphology (form-finding) of the tensegrity structures, the Type III pin-jointed

structures.
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2.7 Discussions and Conclusions

To formulate the equilibrium equations of a pin-jointed structure, we need to

describe connectivity relation between nodes and members, which is also called

topology, of the structure. Graph theory turns out to be convenient for this

purpose, where topology of a structure is modeled as a graph: nodes of the struc-

ture correspond to vertices of the graph, and members are edges. Equilibrium

equations of the structure can then be easily formulated in terms of connectivity

matrix which describes its topology in a matrix form, by considering equilibrium

of each node in each direction. Equilibrium equations are formulated in two dif-

ferent forms for further study: product of the equilibrium matrix and prestresses,

and that of the force density matrix and nodal coordinates.

It is proved by solution space of nodal coordinates that the force density

matrix should have enough rank deficiency, say, at least d+1 for the d-dimensional

case, to ensure a non-degenerate structure. This condition will be demonstrated

to be important for the presentation of the adaptive force density method in

Chapter 4 for the form-finding problem of tensegrity structures, as well as for the

symmetry strategy in Chapter 6 while considering singularity of specific blocks

of the symmetry-adapted force density matrix.

Formulations of the stiffness matrices, including the tangent, linear (material),

and geometrical stiffness matrices, are given by considering the partial deferential

of the force density matrix with respect to the nodal coordinates. The formula-

tions agree with those formulated in some other ways, and it is shown to have

a simple form such that the linear stiffness is constructed from the equilibrium

matrix, while the geometrical stiffness is directly from the force density matrix.

This will be extensively used in Chapter 3 for presentation of stability conditions,

and in other chapters for stability investigation.

Three stability criteria—stability, prestress stability and super stability—that

are used in the study for stability investigation of tensegrity structures are in-

troduced based on positive definiteness of the stiffness matrices. Among these

stability criteria, super stability indicates stability, which indicates prestress sta-

bility; however, the reverse relation is not always true. From the viewpoint of
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2.7 Discussions and Conclusions

stability, pin-jointed structures are divided into trusses and prestressed struc-

tures, and prestressed structures are further classified into tensile structures and

tensegrity structures. Trusses carry no prestresses, and are stable only if they

are kinematically determinate; tensile structures, including cable nets and tensile

membrane structures, that carry only tension are super stable; and stability of

tensegrity structures that carry both tension and compression in their members

is not apparent and need further investigation, which will be discussed in Chapter

3 in more detail.
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Chapter 3

STABILITY CONDITIONS

This chapter is to present stability conditions for tensegrity structures.

The rigid-body motions need be extracted out from stability investigation of

a tensegrity structure that is free-standing, since the structure will not deform

subject to these motions. From the formulation of the geometrical stiffness ma-

trix and non-degeneracy condition presented in Chapter 2, we may have noticed

that the geometrical stiffness matrix has much more zero eigenvalues than the

number of rigid-body motions. It would be a good question to ask how other non-

rigid-body motions corresponding to these zero eigenvalues influence stability of

the structure. This chapter is to answer such a question, with the presentation

of a necessary stability condition. Further study shows that the structure is

guaranteed to be super stable if two more conditions are satisfied at the same

time.

Moreover, linear independence between the null-spaces of the linear and ge-

ometrical stiffness matrices provides another way for stability investigation of

tensegrity structures. Some important stability properties of tensegrity struc-

tures were found from this view of point.

3.1 Affine Motions

We begin with affine motions to identify the non-rigid-motions lying in the null-

space of the geometrical stiffness matrix.

An affine motion is a motion that preserves colinearity and ratios of distances;

i.e., all points lying on a line are transformed to points on a line, and ratios of the
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3.1 Affine Motions

(a) translation in x-direction (b) translation in y-direction (c) rotation about z-axis

Figure 3.1: Rigid-body motions of a two-dimensional tensegrity structure.

distances between any pairs of the points on the line are preserved (Weisstein,

1999). However, an affine motion does not necessarily preserve angles or lengths.

Hence, any triangle can be transformed into another by an affine motion.

There are d2+d independent affine motions in d-dimensional space. In general,

an affine motion can be a linear combination of rotation, translation, dilation, and

shear. The rotation and translation of the structure are rigid-body motions of a

structure, because they always preserve the member lengths (distances between

the nodes). Thus, only dilation and shear, which are called non-trivial affine

motions in the study, should be considered for the investigation of stability. It is

shown in this section that the rigid-body motions lie in the null-spaces of both

the linear and geometrical stiffness matrices, and the non-trivial affine motions

do also lie in the null-space of the geometrical stiffness matrix if the structure is

non-degenerate.

Thus, half of the d2 + d affine motions of a free-standing tensegrity structure

in d-dimensional space are the rigid-body motions, and the other half are the

non-trivial affine motions.

For example, for a tensegrity structure in two-dimensional space, there exist

six affine motions. The three rigid-body motions and the three non-trivial affine

motions are shown in Figs. 3.1 and 3.2, respectively. The solid and dashed lines

in the figures denote the members before and after transformation, respectively.
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3.1 Affine Motions

(a) dilation in x-direction (b) dilation in y-direction (c) shear in xy-plane

Figure 3.2: Non-trivial affine motions of a two-dimensional tensegrity structure.

3.1.1 Rigid-body Motions

A free-standing structure in d-dimensional space in Cartesian coordinate system

has (d2 + d)/2 independent rigid-body motions: translation in each direction and

rotation about each axis. With respect to the rigid-body motions, the quadratic

form Q of the tangent stiffness matrix K is always equal to zero irrespective of

the geometrical and mechanical properties of the structure, because the member

lengths are not changed by these motions (displacements), and therefore, the

strain energy of the structure does not change.

3.1.1.1 Translation

The translation vectors dr
x, dr

y and dr
z in x-, y- and z-directions are written as

dr
x =




i
0
0


 dr

y =




0
i
0


 dr

z =




0
0
i


 (3.1)

where all the elements of the identity vector i ∈ <n are 1.

From the formulations of the linear KE and geometrical KG stiffness matrices

in Eq. (2.35), the following equations always hold for any translation dr
i (i ∈

{x, y, z}):
QE = (dr

i )
>KEdr

i = 0, QG = (dr
i )
>KGdr

i = 0

Therefore, the translations in Eq. (3.1) are the rigid-body motions.
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3.1 Affine Motions

3.1.1.2 Rotation

In order to show that rotations about the axes are also the rigid-body motions,

the quadratic forms QG and QE of the geometrical and linear stiffness matrices

are considered separately.

For the case of the geometrical stiffness matrix, the rotation can be any ar-

bitrary angle about the axes, while the angle should be infinitesimal for the case

of the linear stiffness matrix. For simplicity, only the rotation about z-axis is

considered. The formulation can be easily extended to the rotations about x-

and y-axes.

1. Rotation of Geometrical Stiffness Matrix

Let x̄i, ȳi and z̄i denote the new coordinates of node i by the rotation about

z-axis through an arbitrary angle θ. The relation between the new and old coor-

dinates of node i can be written as



x̄i

ȳi

z̄i


 =




c −s 0
s c 0
0 0 1







xi

yi

zi


 = r




xi

yi

zi




where c = cos θ and s = sin θ.

Let X̄ and X denote the new and old generalized coordinate vectors, respec-

tively. The relation between X̄ and X can be written as

X̄ = RX

where R is written as follows by an identity matrix In ∈ <n×n

R = r⊗ In =




cIn −sIn

sIn cIn

In




The displacement dr of a structure is equal to the nodal coordinate differences

X̄−X after and before the transformation; i.e., dr = X̄−X. Thus, we have the

following relation for the displacement dr

KGdr = KGX̄− 0 = KGRX = RKGX = 0 (3.2)

from the definitions of KG and R. Hence, the quadratic form QG of KG with

respect to dr vanishes.
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3.1 Affine Motions

2. Rotation for Linear Stiffness Matrix

Consider member k connecting nodes i and j, of which the coordinate vectors

are denoted by Xi and Xj, respectively. The displacements of nodes i and j are

denoted by di and dj, respectively. The elongation ek of member k for small

rotation about z-axis is written as

ek =
1

lk
(Xi −Xj)

>(di − dj)

=
1

lk
(Xi −Xj)

>(r− Id)(Xi −Xj)

=
1

lk
(c− 1)(u2

k + v2
k)

' − 1

lk
θ2(u2

k + v2
k)

which vanishes if θ is small; hence the member length extension equation Eq. (2.38)

is satisfied for all members (k = 1, . . . , m), and the following equation holds for

the rotation dr about z-axis by a small angle θ

KEdr = 0 (3.3)

Thus, the quadratic form of KE with respect to dr vanishes.

Because both of the quadratic forms of KG and KE with respect to the rota-

tion about z-axis are zero, this rotation is a rigid-body motion. Similar approach

can be used to verify that the rotations about x- and y-axes are also rigid-body

motions.

So far, we have demonstrated that translations and rotations in the affine

motions are the rigid-body motions. The linear combination of these motions is

certainly a rigid-body motion too.

3.1.2 Non-trivial Affine Motions

By applying dilation, the structure expands or contracts in one direction and

remains unchanged in the perpendicular directions. Directions of these motions

dx, dy and dz (∈ <dn) of a structure in the three-dimensional space can be written

as follows by using the nodal coordinate vectors

dx =




x
0
0


 , dy =




0
y
0


 , dz =




0
0
z


 (3.4)
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3.1 Affine Motions

Fig. 3.2(a) and (b) show the two dilations dx and dy in x- and y-directions of a

two-dimensional tensegrity structure, respectively.

The shears dxy, dxz and dyz (∈ <dn) in xy-, xz- and yz-planes can be defined

as

dxy =




y
x
0


 , dxz =




z
0
x


 , dyz =




0
z
y


 (3.5)

In the shears dij (i, j ∈ {x, y, z}), the motion in i-direction is proportional to the

nodal coordinates in j-direction, and vice versa. We have only one shear dxy for

the two-dimensional case as shown in Fig. 3.2(c).

It is apparent from the self-equilibrium equations with respect to the nodal

coordinates in Eq. (2.18) and definition of the geometrical stiffness matrix KG

in Eq. (2.35) that the non-trivial affine motions di(j) presented above lie in the

null-space of KG as

KGdi(j) = 0

Because the non-trivial affine motions defined above are dependent on the

nodal coordinates, while the rigid-body motions are not, the non-trivial affine

motions and the rigid-body motions are linearly independent. Hence, the follow-

ing lemma, which shows that the non-trivial motions are linearly independent,

ensures that the dilations and shears together with the rigid-body motions span

the whole space of the affine motions:

Lemma 3.1 The non-trivial affine motions defined in Eqs. (3.4) and (3.5) of a

non-degenerate tensegrity structure in d-dimensional space are linearly indepen-

dent.

Proof. Consider the three-dimensional case. Let an arbitrary affine motion

d(∈ <dn) be denoted as the linear combination of the affine motions defined in

Eqs. (3.4) and (3.5) by the the coefficients βk (k = 1, . . . , 6) as follows

d = β1dx + β2dy + β3dz + β4dxy + β5dxz + β6dyz (3.6)
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By incorporating Eqs. (3.4) and (3.5), Eq. (3.6) can be divided into

d = (d>1 ,d>2 ,d>3 )>

d1 = β1x + β4y + β5z
d2 = β4x + β2y + β6z
d3 = β5x + β6y + β3z

From Lemma 2.1, we know that the coordinate vectors x, y and z of a non-

degenerate (free-standing) structure in three-dimensional space are linearly inde-

pendent. Thus, d1 = d2 = d3 = 0 is satisfied if and only if

β1 = β4 = β5 = 0
β4 = β2 = β6 = 0
β5 = β6 = β3 = 0

Hence, d = 0 is satisfied if and only if

βk = 0 for k = 1, . . . , 6

Therefore, the non-trivial affine motions are linearly independent. Linear inde-

pendence can also be shown for the two-dimensional case, which concludes the

proof.

When the force density matrix E of a d-dimensional non-degenerate tensegrity

structure has the minimum rank deficiency d + 1, the rank deficiency of KG is

d(d + 1) from its definition in Eq. (2.35). Therefore, in this case, the affine

motions, including the rigid-body motions and the non-trivial affine motions,

span the whole null-space of KG. This will be presented as one of the necessary

and sufficient conditions for the super stability of a tensegrity structure later.

3.2 Necessary Stability Condition

Because the tangent stiffness matrix is the sum of the linear and geometrical

stiffness matrices and the linear stiffness matrix is always positive (semi-)definite,

if there exist some prestress modes that let KG be positive semi-definite, the

structure is highly possible to be stable concerning with the positive definiteness

of the tangent stiffness matrix. However, there should be no non-trivial motion

d, excluding the rigid-body motions, that satisfies the following condition:

d>KEd = d>KGd = 0 (3.7)
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Figure 3.3: An unstable tensegrity structure. The structure has semi-definite
force density matrix which is one of the conditions for super stability; however, it
is not stable in three-dimensional space because there exists a finite mechanism
about the member 6.

For example, consider the three-dimensional tensegrity structure as shown in

Fig. 3.3. The members lie on two intersecting planes I and II. The geometrical

stiffness matrix KG is positive semi-definite for this structure with the proper

signs of the prestresses; i.e., tension for cables and compression for struts. How-

ever, obviously the structure is not stable because the two planes can relatively

rotate about the intersecting line without external loads; i.e., there exist non-

trivial motions excluding rigid-body motions that satisfy Eq. (3.7).

Connelly (1982) presented conditions for the stability of tensegrity structures

in the terminologies of mathematics based on structural rigidity. However, it

might be more comprehensible for engineers to understand the problems by uti-

lizing the stability criteria with respect to the stiffness matrices. The purpose

of this section is to present a necessary condition for the stability of tensegrity

structures. It is also proved that the necessary conditions derived in different

ways are equivalent. Hence, the discrepancy in the stability conditions between

the fields of engineering and mathematics is resolved.

3.2.1 Geometry Matrix

Because the non-trivial affine motions presented in Eqs. (3.4) and (3.5) are

linearly independent from Lemma 3.1, any non-trivial affine motion d can be
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3.2 Necessary Stability Condition

written as the linear combination of the six non-trivial affine motions as

d = αxdx + αydy + αzdz + αxydxy + αxzdxz + αyzdyz (3.8)

where the following equation is always satisfied

KGd = 0

Hence, the quadratic form Q of K with respect to d is reduced to

Q = d>Kd = d>KEd = (D>d)>K̄(D>d) (3.9)

Because KE is positive semi-definite, Q in Eq. (8.16) cannot be negative. The

only possibility for the structure with positive semi-definite force density matrix

being unstable is that Q = 0. In this case, Eq. (2.38) (Dd = 0) holds because the

axial stiffness matrix K̄ is positive definite for the usual materials. This indicates

that the member lengths of the structure are not changed by the non-trivial affine

motions.

For the shear dxy, for example, we have the following relation from Eq. (7.3):

D>dxy =
(

D>
x D>

y D>
z

)



y
x
0




= D>
x y + D>

y x = L−1(UCy + VCx) = 2L−1Uv

(3.10)

Similarly, we have

D>dx = L−1Uu, D>dy = L−1Vv, D>dz = L−1Ww,
D>dxz = 2L−1Uw, D>dyz = 2L−1Vw

(3.11)

Substituting Eq. (3.8) into Eq. (2.38) and using Eqs. (8.19) and (8.20), we obtain

Dd = L−1Aα = 0 (3.12)

where α = (αx, αy, αz, 2αxy, 2αxz, 2αyz)
> and

A =
(

Uu, Vv, Ww, Uv, Uw, Vw
)

(3.13)

The matrix A ∈ <m×d(d+1)/2 is called the geometry matrix, because it is related

only to the geometry (nodal coordinates and topology) of the structure.
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3.2 Necessary Stability Condition

For the two-dimensional tensegrity structures, the geometry matrix A ∈ <m×3

becomes

A =
(

Uu, Vv, Uv
)

(3.14)

Thus, A is an m-by-(d2 + d)/2 matrix for a d-dimensional structure.

Because the inverse L−1 of the length matrix L is positive definite, Eq. (8.21)

has a non-trivial solution α 6= 0, if and only if the rank of A is less than (d2 +

d)/2. From this discussion, we have the following necessary stability condition

for tensegrity structures based on the rank of the geometry matrix A:

Lemma 3.2 If a d-dimensional tensegrity structure is stable, then the rank of

the geometry matrix A defined in Eq. (8.22) or Eq. (8.23) is equal to (d2 + d)/2.

Proof. The space spanned by the non-trivial affine motions is a sub-space of

the null-space of the geometrical stiffness matrix. If the rank of A is less than

(d2 + d)/2, then there exist non-trivial motions in this sub-space that make the

quadratic form Q equal to zero from Eqs. (8.16) and (8.21). Therefore, the

structure is unstable. Hence, the lemma has been proved.

Note that if a d-dimensional structure is degenerate, the nodal coordinate vec-

tors are linearly dependent and so are the coordinate difference vectors. Thus,

rank of A must be less than (d2 + d)/2 and the structure is unstable in d-

dimensional space.

It is also observed from the size of A that a tensegrity structure can never be

stable if the number m of members is less than (d2 +d)/2, which is equal to three

and six in two-dimensional and three-dimensional spaces, respectively.

3.2.2 Comparison with Existing Condition

Connelly (1982) presented the equivalent necessary condition as in Lemma 3.2

for the stability of a tensegrity structure in the terminology of mathematics:

Condition by Connelly (1982): The member directions do not lie on the same

conic at infinity.
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3.2 Necessary Stability Condition

Let the coordinates of node i be denoted as pi = (xi, yi, zi)
> ∈ <d. By

applying the affine motion defined by the transformation matrix T ∈ <d×d and

translation vector t ∈ <d, pi is transformed to p̄i as

p̄i = Tpi + t (3.15)

Suppose that nodes i and j are connected by member k. The member direction

of member k is given as pi − pj.

If the directions p(∈ <d) in the d-dimensional space lie on a conic at infinity

denoted by C, then C can be defined as follows by p and a non-trivial symmetric

matrix N(∈ <d×d):

C = {p | p>Np = 0} (3.16)

If the structure has a non-trivial motion preserving the lengths of all members,

the (strain) energy of the structure does not change; therefore, the structure is

unstable. This is the basic idea of Connelly (1982), which can be expressed by

the following lemma:

Lemma 3.3 The member lengths are preserved by some affine motions if all

member directions of the structure lie on the same conic at infinity.

Proof. From the affine transformations of nodes i and j as in Eq. (3.15), the

following equation holds if the length of member k, which is connected by nodes

i and j, does not change by the affine motion:

|p̄i − p̄j|2 − |pi − pj|2 = (p̄i − p̄j)
>(p̄i − p̄j)− (pi − pj)

>(pi − pj)
= (pi − pj)T

>T(pi − pj)− (pi − pj)
>Id(pi − pj)

= (pi − pj)(T
>T− Id)(pi − pj)

= 0
(3.17)

where Id ∈ <d×d is an identity matrix, and pi − pj is the member direction of

member k.

Let N = T>T−Id and p = pi−pj. By comparing Eq. (3.17) with Eq. (3.16),

the member directions pi − pj of the structure lie on the same conic at infinity

defined by N(= T>T− Id) if all member lengths of the structure are preserved.
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3.2 Necessary Stability Condition

The following lemma shows that Connelly’s condition is equivalent to our

necessary stability condition in Lemma 3.2:

Lemma 3.4 The rank of the geometry matrix A is equal to (d2 + d)/2, if and

only if the member directions do not lie on the same conic at infinity.

Proof. Consider the three-dimensional case (d = 3). Since N ∈ <d×d, which

defines the conic at infinity in Eq. (3.16), is a symmetric matrix, it can be written

as a linear combination of (d2 + d)/2 symmetric matrices

N = αx




1 0 0
0 0 0
0 0 0


 + αy




0 0 0
0 1 0
0 0 0


 + αz




0 0 0
0 0 0
0 0 1




+αxy




0 1 0
1 0 0
0 0 0


 + αxz




0 0 1
0 0 0
1 0 0


 + αyz




0 0 0
0 0 1
0 1 0




(3.18)

Because N is a non-trivial matrix, the coefficients αi cannot be zero at the same

time.

The member direction p of member k connecting nodes i and j (i < j) is

written as

p = pi − pj =




uk

vk

wk


 (3.19)

where uk, vk and wk are the kth elements of the coordinate difference vectors u,

v and w, respectively.

Substituting Eqs. (3.18) and (3.19) into Eq. (3.16), we have

p>Np = αxu
2
k + αyv

2
k + αzw

2
k + 2αxyukvk + 2αxzvkwk + 2αyzvkwk = 0 (3.20)

If the member directions lie on the same conic at infinity, all member directions

of the structure should satisfy Eq. (3.20), and the equations Eq. (3.20) for all

members k (= 1, . . . m) can be combined to a matrix form as

Bα = 0 (3.21)

where α> = (αx, αy, αz, 2αxy, 2αxz, 2αyz)
>. It is easy to observe that B = A.
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3.3 Stability Conditions

If the member directions do not lie on the same conic at infinity, then Eq. (3.21)

has no non-trivial solution for the coefficient vector α. Hence, the rank of the

matrix B or A is (d2 + d)/2.

Conversely, if the rank of A is (d2 + d)/2, then there exists no non-trivial

solution α for Eq. (3.21); i.e., there exists no matrix N satisfying Eq. (3.20) for

all members; hence, the member directions do not lie on the same conic at infinity.

The necessary stability condition derived in Lemma 3.2 is considered to be

more applicable than Connelly’s descriptive condition, because only the rank of

the well-established geometry matrix constructed from the nodal coordinates and

connectivity of the structure needs to be investigated.

3.3 Stability Conditions

This section presents the sufficient and necessary conditions for the super stability

of a tensegrity structure, based on the discussion of necessary condition in the

previous section.

Furthermore, based on the study of the linear dependence of the eigenvec-

tors of the linear and geometrical stiffness matrices, we investigate the stability

conditions of the tensegrity structures concerning the minimality of energy.

Note that when we discuss the stability, the rigid-body motions are not taken

into consideration. They are assumed to be properly constrained or the zero

eigenvalues and the corresponding eigenvectors in the stiffness matrices are im-

plicitly ignored.

3.3.1 Super Stability Conditions

From Lemma 3.2, we have known that the rank of the geometry matrix must

have rank of d(d + 1)/2 for a stable tensegrity structure in d-dimensional space.

Because the affine motions can span the whole null-space of the geometrical

stiffness matrix if the force density matrix has the minimum rank deficiency, the

structures are guaranteed to be super stable, irrespective of selection of materials

and level of prestresses, if the two more conditions for the force density matrix
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3.3 Stability Conditions

(the geometrical stiffness matrix as well) are satisfied addition to the necessary

stability condition (Connelly, 1999). Accordingly, we have the following Lemma

for the super stability of a tensegrity structure.

Lemma 3.5 If the following three conditions are all satisfied, then the d-dimensional

tensegrity structure is super stable:

[L1] The force density matrix E has the minimum rank deficiency d + 1.

[L2] E is positive semi-definite.

[L3] The rank of the geometry matrix A is (d2 + d)/2.

Proof. If condition (1) is satisfied, then the affine motions, which are the linear

combination of the rigid-body motions and the non-trivial affine motions, can

span the whole null-space of KG.

Since A has rank of (d2 + d)/2 from condition (3), there exists no non-trivial

affine motion in this space that leads to Q = 0.

From condition (2), both of the linear and geometrical stiffness matrices are

positive semi-definite, and Q cannot have a negative value.

Therefore, the structure is super stable, irrespective of the selection of mate-

rials and level of prestresses, and the lemma can be proved.

Lemma 3.5 shows us that if we want to obtain a super stable tensegrity struc-

ture, the force density matrix should be positive semi-definite with the proper

rank deficiency (d + 1). This leads to the strategy of the adaptive force den-

sity method proposed in Chapter 4 for the form-finding problems of tensegrity

structures.

However, the necessary stability condition should also be satisfied in order

to ensure a stable structure. For example, consider the unstable structure in

Fig. 3.3 again, which satisfies the first two sufficient conditions but violates the

third listed in Lemma 3.5.

The tensegrity structure consisting of six nodes and eleven members. Members

1–6 and 6–11 lie in two different planes I and II, respectively. Planes I and II
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3.3 Stability Conditions

are not parallel and intersect along member 6. Hence, the structure is in three-

dimensional space; i.e., d = 3.

The structure has two modes of prestresses. The prestress mode in one plane

does not affect that of the members in the other plane except the common member

6. The force density matrix E is positive semi-definite, with two positive and four

zero eigenvalues, if the axial forces are properly assigned to the members – tension

to the cables and compression to the struts. The non-degeneracy condition for

a tensegrity structure in three-dimensional space is satisfied, because the rank

deficiency of E is four. Therefore, conditions (1) and (2) in Lemma 3.5 are

satisfied.

However, the structure is not stable, and of course, can never be super stable.

Suppose that one of the planes is rotated about member 6 by an arbitrary angle

without moving the members in the other plane. All member lengths remain

unchanged and the structure is still in a state of self-equilibrium with the same

prestresses after transformation. This motion is actually a finite mechanism.

Using Eq. (8.22), we obtain the 11-by-6 geometry matrix A for this three-

dimensional structure. The rank of A is five, which is less than the necessary

value of six. Therefore, the structure cannot be stable in three-dimensional space

from Lemma 3.2, which agrees with the existence of the finite mechanism as

described above.

3.3.2 Stability Conditions (Minimality of Energy)

Let λE
i and ΨE

i denote the ith eigenvalue and eigenvector, respectively, of the

linear stiffness matrix KE. The jth eigenvalue and eigenvector of the geometrical

stiffness matrix KG are denoted by λG
j and ΨG

j , respectively. Eigenvectors of KE

and KG are ortho-normalized so as to satisfy

ΨE>
i ΨE

j = ΨG>
i ΨG

j =

{
1 for i = j
0 for i 6= j

(3.22)

The eigenvectors ΨE
i are linearly independent, and any nontrivial vector

d (6= 0) in the nodal displacement space can be written as a linear combination

of ΨE
i as

d =
∑

i

αiΨ
E
i (3.23)
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3.3 Stability Conditions

where αi is the coefficient for the corresponding eigenvector. The eigenvectors

ΨG
j are also linearly independent and span the same nodal displacement space as

Eq. (3.23); i.e.

d =
∑

j

γjΨ
G
j (3.24)

where γj is the coefficient.

Hence, the quadratic form Q of the tangent stiffness matrix K with respect to

the nodal displacement d can be written as follows by using Eqs. (3.22)–(3.24):

Q = d>Kd = d>KEd + d>KGd

=
∑

i

α2
i λ

E
i +

∑
j

γ2
j λ

G
j

(3.25)

Moreover, ΨE
i can be written as a linear combination of ΨG

j as

ΨE
i =

∑
j

κjΨ
G
j (3.26)

where ∑
j

κ2
j = 1

is derived from Eq. (3.22).

Note from the definition of KG in Eq. (2.35) that all λG
j are proportional to

the scale of the force densities; i.e. if q is scaled by c to cq, then the eigenvalues

of KG become cλG
j .

It can also be easily observed that if all the eigenvalues of KE and KG are

positive, the quadratic form in Eq. (3.25) is positive, and the corresponding struc-

ture is stable. However, KE usually has zero eigenvalue(s), because tensegrity

structures are usually kinematically indeterminate. Moreover, KG must have zero

eigenvalues for the tensegrity structure because of the non-degeneracy condition,

and even can have even negative eigenvalues depending on the values of the force

densities.

Let JE
0 , JE

+, JG
−, JG

0 and JG
+ denote the set of indices of the eigenvalues for which

λE
i = 0, λE

i > 0, λG
j < 0, λG

j = 0 and λG
j > 0, respectively. For a kinematically

indeterminate structure, the set JE
0 is not empty. Thus, the mechanism which
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3.3 Stability Conditions

preserves the member lengths is denoted by ΨE
i (i ∈ JE

0 ), and the external loads

p applied on the structure in this case if KGΨE
i .

Based on the linear dependence of the eigenvectors ΨE
i (i ∈ JE

0 ) and ΨG
j

(j /∈ JG
+), we have the following sufficient condition for the unstable tensegrity

structures.

Lemma 3.6 If an eigenvector ΨE
i (i ∈ JE

0 ) of KE can be expressed as a linear

combination of the eigenvectors ΨG
j (j /∈ JG

+) of KG, then the structure is unstable.

Proof. The quadratic form Q for an eigenvector ΨE
i (i ∈ JE

0 ) is written as

Q = ΨE>
i KΨE

i = ΨE>
i KGΨE

i =
∑

j /∈JG
+

κ2
jλ

G
j ≤ 0

Hence, we have at least one vector that results in non-positive value of the

quadratic form; i.e. K is not positive-definite, and the structure is unstable.

If the signs of the prestresses are reversed, the self-equilibrium equations with

respect to the prestresses in Eq. (2.36) obviously do also hold. However, if the

structure is kinematically indeterminate, then the structure with reversed signs

of prestresses becomes unstable, although it is still in a state of self-equilibrium.

Lemma 3.7 If signs of all prestresses are reversed for a stable structure that is

kinematically indeterminate, then the structure becomes unstable.

Proof. Because the structure is kinematically indeterminate, the set ΨE
i (i ∈ JE

0 )

of mechanisms is not empty.

Since the original structure is stable, the quadratic form Q is positive for ΨE
i

(i ∈ JE
0 ); i.e.

Q = ΨE>
i KΨE

i = ΨE>
i KGΨE

i > 0

As the signs of the prestresses are reversed, the signs of all elements of KG are

reversed. Therefore, it turns out to be

ΨE>
i KΨE

i < 0
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and the structure becomes unstable, because there is a vector that results in

negative value of the quadratic form.

We have mentioned that the structures with positive semi-definite force den-

sity can be super stable, which is irrelevant to the materials and level of pre-

stresses. We did also explain the axial stiffness of the members are considered

to be infinite in the prestress stability. However, the stability of the tensegrity

structure that are made of practical materials and not super stable (the force

density matrix has negative eigenvalues) depends on the relative relationship be-

tween the axial stiffness of members and level of prestresses. This is illustrated

by the following lemma.

Lemma 3.8 Let λE
min = mini∈JE

+
λE

i and λG
min = minj λG

j . The structure is stable

if the following assumptions are satisfied:

[L1] The prestresses are small enough such that λE
min + λG

min > 0.

[L2] Any eigenvector ΨE
i (i ∈ JE

0 ) of KE can be expressed as a linear combination

of the eigenvectors ΨG
j (j /∈ JG

−) of KG, and at least one coefficient κj

(j ∈ JG
+) has a nonzero value.

Proof. A nontrivial vector d is divided into two parts as

d = d0 + d+

where

d0 =
∑

i∈JE
0

αiΨ
E
i , d+ =

∑

i∈JE
+

αiΨ
E
i

The quadratic form QE of KE is written as

QE = d>KEd = d>0 KEd0 + d>+KEd+

= d>+KEd+

=
∑

i∈JE
+

α2
i λ

E
i

≥
∑

i∈JE
+

α2
i λ

E
min

(3.27)
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where the equality is satisfied if d is in the direction of ΨE
i corresponding to the

lowest positive eigenvalue of KE, or in the null-space of KE.

Using the second assumption, d0 and d+ can be also written in terms of ΨG
j

as

d0 =
∑

j /∈JG
−

κ0jΨ
G
j , d+ =

∑

j∈JG
−

κ+jΨ
G
j +

∑

j /∈JG
−

κ+jΨ
G
j

which leads to

d = d0 + d+

=
∑

j∈JG
−

κ+jΨ
G
j +

∑

j /∈JG
−

(κ0j + κ+j)Ψ
G
j

The quadratic form QG of KG is written as

QG = d>KGd =
∑

j∈JG
−

κ2
+jλ

G
j +

∑

j /∈JG
−

(κ0j + κ+j)
2λG

j

≥
∑

j∈JG
−

κ2
+jλ

G
j

≥
∑

j∈JG
−

κ2
+jλ

G
min

(3.28)

Note from the second assumption that the first inequality of Eq. (3.28) is not

satisfied in equality if d is in the null-space of KE. From Eqs. (3.27), (3.28), the

first assumption λE
min + λG

min > 0, and the relation

√
d>+d+ =

∑

i∈JE
+

α2
i ≥

∑

j∈JG
−

κ2
+j ≥ 0

the following relation is obtained

d>KEd + d>KGd ≥
∑

i∈JE
+

α2
i λ

E
min +

∑

j∈JG
−

κ2
+jλ

G
min

≥ 0

(3.29)

where the second inequality is satisfied in equality only if d is in the null-space

of KE. Hence, the equalities in Eqs. (3.28) and (3.29) are not satisfied simulta-

neously, and the relation

Q = d>Kd > 0 (3.30)
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is obtained and the structure is stable.

It is not necessarily true that a stable structure satisfies the assumptions

in Lemma 3.8. Therefore, Lemma 3.8 is not the necessary but the sufficient

conditions for the stability of a tensegrity structure.

If the structure is stable, then the external work corresponding to any mode

of infinitesimal mechanism (ΨE
i (i ∈ JE

0 ) in our notation) is positive.

Let M denote the mechanism matrix of which the ith column is ΨE
i (i ∈ JE

0 ),

and consider a nontrivial vector d in the null-space of KE as d =
∑

i∈JE
0

αiΨ
E
i =

Mα. The quadratic form of K can be written as

d>Kd = α>M>KGMα (3.31)

Guest (2006) commented that the matrix used for stability test by Calladine

and Pellegrino (1991, 1992) is equivalent to M>KGM in Eq. (3.31) that can be

considered as a reduced form of KG.

If a structure is stable, it is certainly true that M>KGM is positive definite.

So this is a necessary condition for stability. However, because the matrix is a

reduced form of KG, only the mechanisms are considered as deformation modes.

Therefore, positive-definiteness of M>KGM may not necessarily lead to positive-

definiteness of K, especially when the structure is not super stable with negative

eigenvalues in KG. So their condition (in stability test) is not a sufficient condition

for the stability of the tensegrity structures that are kinematically indeterminate.

In fact, their stability test agrees with the definition of prestress stability

introduced in Chapter 2, where the influence of the materials or level of prestresses

are implicitly ignored, because the axial stiffness of the members are assumed to

be infinite (or large enough) so that the level of prestresses can not dominate the

positive definiteness of the quadratic form of the tangent stiffness matrix with

respect to the mechanisms.

A numerical example of symmetric prismatic tensegrity structure in Chapter

7 will show how the materials or level of prestresses can affect the stability of

the tensegrity structures with negative eigenvalues in the force density matrix, so

that the material is also considered to be one of the critical parameters for the

stability of the tensegrity structures.
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3.4 Discussions and Conclusions

A necessary condition, in which the geometry matrix should be full-rank, for

stability of tensegrity structures is firstly presented based on investigation of affine

motions of the structures. This necessary condition is proved to be equivalent to

that derived in the theory of structural rigidity in mathematics, and is considered

to be more comprehensible and easy to implement. Together with this necessary

condition, it is further proved that a tensegrity structure is guaranteed to be

super stable if two more conditions are satisfied: the force density matrix is

positive semi-definite and it has minimum rank deficiency for non-degeneracy

condition. Super stable structures have many superior advantages compared to

the structures that are not super stable: any stretched versions of them are also

super stable. This property could be useful for a practical structure, because

imperfections in construction will not hurt stability of the structure if it is super

stable.

Full-rank of the geometry matrix and positive semi-definiteness of the force

density matrix are also necessary conditions for super stability of a tensegrity

structure. In Chapter 4, we will present an efficient method, called adaptive

force density method, for the form-finding problem of tensegrity structures. In

this method, positive semi-definiteness of the force density method could be en-

sured such that it can lead to a (super) stable structure without much additional

computation cost.

Stability of tensegrity structures can be studied in another way. That is to

investigate linear dependence of the eigenvectors of the linear and geometrical

stiffness matrices. A sufficient condition is presented showing that a tensegrity

structure is stable if level of prestresses is small enough compared to member

stiffness. And it is proved that kinematically indeterminate structures will be-

come unstable if signs of prestresses are reversed, although they are still in self-

equilibrium. Moreover, prestress stability is demonstrated to be the necessary

but not sufficient condition for stability of tensegrity structures.
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Chapter 4

ADAPTIVE FORCE DENSITY
METHOD

This chapter is to present an efficient numerical method, called adaptive force

density method, for the form-finding problem of tensegrity structures.

We have discussed in Chapter 3 that positive semi-definiteness of the force

density matrix is a necessary condition and one of the sufficient conditions for

super stability of a tensegrity structure. A super stable structure is always prefer-

able in the design, since any stretched versions of it are still super stable. Hence,

imperfection in construction will not alter super stability of the structures, which

is considered to be a very important point for practical structures since uncer-

tainties in manufacture and construction are unavoidable. Moreover, the force

density method has great advantage in transforming non-linear equilibrium equa-

tions into linear forms by introduction of the concept of force densities.

These backgrounds motivate our study on an efficient form-finding method

that can ensure a stable structure and have good control over its configuration as

well. The proposed method is an extension of the basic idea of the force density

method, and hence, has its advantages in dealing with non-linear equations in

linear manner and providing insight into structural properties of the structures.

Satisfying the non-degeneracy condition presented in Chapter 2 is the key to this

method.
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4.1 Introduction

Among the existing methods for the form-finding problem of tensegrity struc-

tures, the methods extended from the idea of the force density method, which

is originally proposed for cable nets by Schek (1974), are considered to be very

effective. The concept of force density is introduced to transform the non-linear

equations with respect to the nodal coordinates into linear equations, as discussed

in Chapter 2. Hence, only linear equations need to be solved for the determina-

tion of their configurations. Basically, we are concerned with two methods in the

family of the force density method – the symmetry approach in Chapter 7 and 8,

and the adaptive force density method discussed in this chapter.

Based on the symmetry properties of the structure, where every node can be

transformed to any other by a proper symmetry operation of a specific group,

Connelly and Back (1998) presented a catalogue of tensegrity structures with

spherical shapes. The term ’stress’ used in their literature is actually the force

density used in our study. We will use the similar methods to investigate the self-

equilibrium and stability of the symmetric prismatic and star-shaped tensegrity

structures in Chapter 7 and 8, respectively.

Remind the non-degeneracy condition for the tensegrity structures presented

in Chapter 2. The force density matrix should have rank deficiency of at least

d+1 for a non-degenerate tensegrity structure in d-dimensional space. Notice that

the force density matrix is determined by the connectivity of the structure and

the force densities of its members. Hence, for a non-degenerate tensegrity struc-

ture, there must exist some sets of force densities that satisfy the non-degeneracy

condition, while the topology of the structure is assumed to be given. This gives

us a clear clue to find these feasible force densities, and then to determine the

configuration of the structure.

Vassart and Motro (1999) proposed an analytical technique based on the strat-

egy discussed above. The force densities are denoted by symbols or semi-symbols.

The force density matrix is then calculated in symbolic form to find out the con-

ditions to derive the necessary rank deficiency. This method can have insight

of the structures in some extents by investigating the symbolic non-degeneracy

condition. However, for the structures with relatively large number of members,
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it may not be efficient enough. And it cannot ensure a symmetric structure even

though it has the symmetry form for the force densities. Moreover, the relations

between the force densities may turn out to be less meaningful while there are

too many, since the force density is the ratio of prestress to length, which has no

explicit mechanical nor geometrical meanings.

Thus, an effective numerical method that can have some controls on the con-

figurations of the structure is strongly desired. This motivates us to propose a

new numerical method to conquer the problems in the analytical methods.

In the proposed method, the required rank deficiency of the force density ma-

trix is achieved relying on the efficient algorithm that can be easily implemented

in the computers. The proposed method is called adaptive force density method

because (a) it is an extension of the basic formulation and initial idea of the force

density method proposed, and (b) the method is based on eigenvalue analysis

of the force density matrix, and can automatically adjust the values of the force

densities to adapt to the requirement on rank deficiency.

4.2 Constraints

This section presents the constraints, including those introduced by the definition

of the force density matrix, and constraints on the symmetry properties and

the elevation of the structure, in the linear forms of force densities and nodal

coordinates.

The form-finding process is divided into two design stages. The constraints

with respect to the force densities are incorporated into the first design stage

of the proposed form-finding process introduced in the next section to find the

feasible force densities that satisfy the non-degeneracy condition.

And the constraints with respect to the nodal coordinates are incorporated

into the second design stage to determine the configuration.

4.2.1 Force Density Matrix

The force density matrix can be directly formulated from the force densities as

defined in Eq. (2.16), if the connectivity of the structure is known. Hence, we
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Figure 4.1: A two-dimensional tensegrity structure.

can establish the linear equation between the force density matrix and the force

densities.

Let I denote the set of members connected to node i. From the direct defini-

tion of force density matrix E, the ith column Ei of E can be written in terms of

the force density vector q by a matrix B̄i ∈ <n×m as

B̄iq = Ei

where (j, k)- component B̄i
(j,k) (k = 1, 2, . . . , m) of B̄i is defined as

B̄i
(j,k) =





1 if i = j and k ∈ I

−1 if nodes i and j are connected by member k
0 for other cases

(4.1)

For example, the matrix B̄1 corresponding to node 1 of the two-dimensional

tensegrity structure as shown in Fig. 4.1 can be written as

B̄1 =




1 1 1 1 0 0 0 0
−1 0 0 0 0 0 0 0
0 −1 0 0 0 0 0 0
0 0 −1 0 0 0 0 0
0 0 0 −1 0 0 0 0




By letting B̄> = (B̄1>, . . . , B̄i>, . . . , B̄n>) and ḡ> = (E>
1 , . . . ,E>

i , . . . ,E>
n ),

the following relation between the force density matrix and force density vector
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can be written in a linear form as follows

B̄q = ḡ (4.2)

From the definition of B̄, we can see that there exists a row of which the kth

component (k = 1, 2, . . . , m) is −1 while the others are zero. So the rank of B̄ is

m; i.e. B̄ is full-rank.

Eq. (4.2) can be regarded as a linear constraint on the force densities due

to the force density matrix. Note that this linear constraint has to be exactly

satisfied, while the constraints presented in the following are optional according

to the requirements by the designers.

4.2.2 Specific Force Densities

In some cases, we may expect that some specific force densities can have the

assigned values according to our preference, or we may expect some force den-

sities to have definite relations on their values. These requirements on the force

densities can also be formulated in a linear form so as to be incorporated into the

first design stage for finding the feasible force densities.

The linear constraints on the values and relations of some specific force den-

sities can be formulated as follows by using constant matrix B̂ and vector ĝ

B̂q = ĝ (4.3)

For example, if we have four force densities q1, q2, q3 and q4 for a structure,

and we want that q2 is twice of q1, and q3 has the values 0.5, then the linear

constraints Eq. (4.3) on the force densities can be written as

(
1 −2 0 0
0 0 1 0

)



q1

q2

q3

q4


 =

(
0

0.5

)

4.2.3 Symmetry Properties

Here, we consider the rotational symmetry about the z-axis of the structure as an

example to show how to formulate the symmetry properties in linear equations.
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Figure 4.2: An example of rotational symmetry of five struts.

The linear equations need to be in two different forms: the one with respect

to the force densities, and the one with respect to the nodal coordinates, which

are incorporated into the first and the second design stages, respectively.

4.2.3.1 Symmetry of Force Densities

nb-fold symmetry of a structure refers to the fact that a member among a set of

nb members can be moved to any other member in the set by the rotation about

the z-axis by 2iπ/nb, where i is an appropriate integer value. These nb members

are said to be in the same orbit and have the same lengths and forces, and the

same force densities as well. There are usually more than one orbit of struts in a

symmetric structure.

For example, the five struts shown in thick lines in Fig. 4.2 belong to the same

orbit. Any one of the strut can be moved to another in the same orbit by the

rotation about the z-axis through a proper angle 2iπ/5 (i ∈ {1, 2, 3, 4}). Note

that the cables in thin lines belong to a different orbit.

Since the force densities of the members in the same orbit of a symmetric

structure have the same values, the symmetry of the structure with respect to

the force density vector can be written as

Fq = 0 (4.4)

There are only two non-zero elements +1 and −1 in each row of F.
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Figure 4.3: Directed graph of the five struts in Fig. 4.2.

For example, if members i and j (i < j) are in the same orbit, there must

be one row k of F consisting of +1 and −1 at ith and jth elements, respectively,

and the remaining elements in the row are 0 as

F(k,p) =





1 for p = i
−1 for p = j
0 for other cases

The linear constraint (8.11) on the symmetry properties with respect to the

force densities will be incorporated in the first design stage of the proposed

method in the next section.

4.2.3.2 Symmetry of Nodal Coordinates

Since every node of a tensegrity structure must be connected by at leat one

strut so as to maintain its self-equilibrium in the usual cases, it is sufficient to

consider only the struts while describing the symmetry properties of the structure.

Moreover, since the struts in different orbits are geometrically independent in view

of symmetry, the symmetry properties are formulated only for the struts in one

orbit. The formulation can be simply extended to the whole structure.

Consider one of the orbits, in which there are nb struts. Denote the higher and

lower nodes of the strut i by pt
i and pb

i , respectively. The x- and y-coordinates of

the nodes pt
i and pb

i are denoted by the vectors xt
i = (xt

i, y
t
i)
> and xb

i = (xb
i , y

b
i )
>,

respectively.
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The directed member vector di ∈ <2 (i = 1, . . . , nb) of the struts on xy-plane

is defined as

di = xb
i − xt

i

which corresponds to the edges of a directed graph Harary (1969). The edges are

directing from the nodes with smaller labels to the ones with larger labels. For

example, Fig. 4.3 shows the directed graph of the five struts in Fig. 4.2.

The directed members di in the kth orbit of struts are combined to dk ∈ <2nb

as

dk = (d>1 , . . . ,d>nb)
>

xb
i and xt

i in the orbit are also combined to xk ∈ <4nb
as

xk =
(
(xb

1)
>, . . . , (xb

nb)
>, (xt

1)
>, . . . , (xt

nb)
>)>

The relationship between dk and xk in orbit k can be written as follows by a

matrix Tk ∈ <2nb×4nb
:

dk = Tkxk (4.5)

where the matrix Tk is constructed by the 2nb-by-2nb identity matrix I2nb
as

Tk =
(

I2nb −I2nb
)

The symmetry properties of a structure can be easily described by the group

representation theory. The nb struts in an orbit constitute a cyclic group of order

nb. Details of cyclic group and its representation theory can be found in many

mathematics or chemistry textbooks, e.g., Bishop (1973). However, knowledge on

group representation theory is not necessary here, because the two-dimensional

E1 irreducible representation matrix Ri of the cyclic group defined as follows is

identical to the transformation matrix of counter-clockwise rotation about the

z-axis by 2(i− 1)π/nb, which might be more familiar to the designers:

Ri =

(
Ci −Si

Si Ci

)

where Ci = cos(2(i− 1)π/nb) and Si = sin(2(i− 1)π/nb).
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4.2 Constraints

If d1 coincides with di by the counter-clockwise rotation about z-axis by the

angle 2(i− 1)π/nb, the following relation holds:

di = Rid1

which can be rewritten with respect to dk as follows by using the 2-by-2 identity

matrix I2: (
Ri . . . −I2 . . .

)
dk = 0 (4.6)

Combining all the relations of di (i 6= 1) and d1 similar to Eq. (4.6) by using

the matrix Sk ∈ <2(nb−1)×2nb
, we obtain

Skdk = 0 (4.7)

By substituting Eq. (4.5) into Eq. (4.7) and letting S̄ = SkTk ∈ <2(nb−1)×4nb
,

the rotational symmetry of the struts in orbit k can be expressed in a linear form

with respect to the nodal coordinates in xy-plane as

S̄xk = 0

Because the rotational symmetry of the struts in different orbits can be for-

mulated independently, the rotational symmetry of the whole structure in terms

of the generalized coordinate vector X =
(
(x1)>, . . . , (xnl

)>
)>

∈ <2n in xy-plane

can then be combined as

SX = 0 (4.8)

where the elements of S̄ for each orbit have been incorporated into the matrix S.

If the structure has nl similar orbits of struts, with nb struts in each orbit,

the matrix S(∈ <2nl(nb−1)×4nlnb
) can be calculated by the tensor product of the

nl-by-nl identity matrix Inl
and the matrix S̄; i.e., S = Inl ⊗ S̄.

This way, the symmetry properties of the whole structure can be formulated

as a set of linear equations with respect to the generalized nodal coordinate vector

X in xy-plane. The constraints Eq. (4.8) will be incorporated in the second design

stage to ensure a rotationally symmetry of the structure.
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4.2 Constraints

4.2.4 Elevation

From the self-equilibrium equation with respect to the nodal coordinates in z-

direction, we can also formulate the linear constraint on elevation of the structure

with respect to the force densities.

Suppose that the elevation of the structure is assigned by the designer. Thus,

z-coordinates of all the nodes are determined.

Since the following relation always holds

QCz = diag(Cz)q = Wq

the self-equilibrium equation in z-direction can be rewritten with respect to the

force density vector q as

C>Wq = 0

By letting N = C>W, the linear constraint on the elevation of a tensegrity

structure with respect to the force densities can then be written as

Nq = 0 (4.9)

which is incorporated in the first design stage in the next section for finding

the feasible set of force densities. This way, we can have exact control over the

elevation of the structure.

4.2.5 Summary of Constraints

So far, we have formulated the linear constraints on the force density matrix,

specific force densities, symmetry properties and elevation with respect to the

force densities. Only the constraint on the force density matrix is compulsory

and the other two are optional.

The vectors on the right hand side of the linear constraints on the force density

matrix in Eq. (4.2) and some specific force densities in Eq. (4.3) are usually not

trivial. They are combined as

Bq =

(
B̄

B̂

)
q =

(
ḡ
ĝ

)
= g (4.10)
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4.3 Form-finding Process

The optional constraints on symmetry in Eq. (8.11) and elevation in Eq. (8.4)

with respect to the force density are combined as
(

F
N

)
q = 0 (4.11)

Since the matrix in the linear equation (8.5) with respect to q is usually rank

deficient, the solution of (8.5) can be written as

q = Ψα (4.12)

where α is the coefficient vector, and the columns of the matrix Ψ span the

solution space of Eq. (8.5). Note that Ψ is also a constant matrix when the

constraints are given.

Since the force density matrix E has to satisfy the non-degeneracy condition

and the force densities q are related to E through Eq. (4.10), the coefficient vector

α cannot be selected arbitrarily.

4.3 Form-finding Process

This section demonstrates how the constraints are incorporated into the adaptive

force density method to uniquely determine the configuration of a tensegrity

structure.

The form-finding process is divided into two design stages: the first stage is

to find the feasible force densities that satisfy the non-degeneracy condition and

the constraints, and the second stage is to uniquely determine the configuration

of the structure satisfying the constraints.

4.3.1 Spectral Decomposition

By decomposing the force density matrix by the spectral decomposition and set-

ting the necessary number of eigenvalues of the force density matrix to zero, the

updated force density matrix can then achieve the required rank deficiency.

Because the force density matrix is symmetric, it can be written as follows by

applying spectral decomposition (Lay, 1996):

E = ΦΛΦ>

90



4.3 Form-finding Process

where the diagonal elements {λ1, λ2, . . . , λn} of the diagonal matrix Λ are the

eigenvalues of E, and they are numbered in non-decreasing order as

λ1 ≤ λ2 ≤ . . . ≤ λn

The ith column Φi of Φ is the eigenvector corresponding to λi. It is clear that

the number of nonzero eigenvalues of E is equal to its rank.

Let r denote the number of non-positive eigenvalues of E, and h?(≤ d + 1)

denote the required rank deficiency of the force density matrix. We have the

following two cases for the structure in d-dimensional space:

CASE 1: r ≤ h?

CASE 2: r > h?

For CASE 1, we can simply assign 0 to the first h? eigenvalues of E with

smallest values to zero as

λi = 0, (i = 1, 2, . . . , h?) (4.13)

to obtain Λ̄ with the modified eigenvalues. The force density matrix is modified

by Λ̄ as

Ē = ΦΛ̄Φ
>

(4.14)

This way, Ē will have the required rank deficiency h?, and, it is positive semi-

definite without negative eigenvalues.

However, for CASE 2 where r > h?, the rank deficiency will be larger than

the required number, if the same operation as CASE 1 is applied. For this case,

we may have several strategies; e.g., (a) assign positive values to some of the

negative eigenvalues, or (b) specify more than h? independent coordinates in

the form-finding process presented later, etc. Since arbitrary chosen initial force

densities usually result in r ≤ h?, we will focus on only CASE 1.

Instead of assigning 0 to the h? smallest eigenvalues zero, we can also assign

0 to eigenvalues with the h? smallest absolute values. In some cases, the latter

strategy may show stronger ability of searching new self-equilibrium configura-

tions.
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4.3 Form-finding Process

4.3.2 First Design Stage: Feasible Force Densities

As the first design stage of the form-finding process, an iterative algorithm is pre-

sented to find the feasible force densities satisfying the non-degeneracy condition

and the linear constraints (4.10) and (8.5).

Suppose that we have obtained the force density vector qi at the ith step of

the iterative algorithm, the corresponding force density matrix Ei of which has

the necessary rank deficiency. Substituting Eq. (8.6) into Eq. (4.10), we have

gi = BΨαi (4.15)

Since BΨ in Eq. (8.9) is usually full-rank and not square, the coefficient vector

can be computed as follows by using the least square method

αi = (BΨ)−gi

where ( )− denotes the generalized inverse of a matrix. The force density vector

qi can be updated to qi+1 by Eq. (8.6) as

qi+1 = Ψ(BΨ)−gi (4.16)

Note that qi+1 may not be equal to qi, so the new force density matrix Ei+1

corresponding to qi+1 may not have the necessary rank deficiency and has to be

recomputed based on the eigenvalue analysis and spectral decomposition. Spec-

tral decomposition of the force density matrix presented previously needs to be

applied again until the difference between the new and old force densities is small

enough.

By iteratively applying Eqs. (4.13) and (8.12), we can adaptively find the

feasible force density vector q̂, which can be summarized as follows:

Algorithm 4.1: Feasible force densities

Step 0: Give an initial q0 to obtain E0 by Eq. (2.15). Set i := 0.

Step 1: Assign 0 to the h? smallest (absolute) eigenvalues of Ei and reconstruct

Ēi by Eq. (4.14).

Step 2: Obtain gi+1, calculate qi+1 from Eq. (8.12) and update Ei+1 by Eq. (2.15).
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4.3 Form-finding Process

Step 3: If the updated force density matrix has the required rank deficiency h?,

then let q̂ = qi+1, compute Ê and terminate the algorithm; otherwise, set

i ← i + 1 and return to Step 1.

This way, we can adaptively derive the force densities that satisfy the non-

degeneracy condition for the tensegrity structures and the linear constraints on

them. The next step is to uniquely determine the configuration of the structure.

4.3.3 Second Design Stage: Configuration

Let H ∈ <dn×dn (d = 2 or 3) denote the tensor product of the identity matrix

I(∈ <d×d) and the force density matrix constructed by the feasible force densities

E = Ê as

H = I⊗ E (4.17)

The equilibrium equations in all directions and the linear constraints on sym-

metry can be combined as follows by using H and the generalized coordinate

vector X (
H
S

)
X = 0 (4.18)

Note that if the elevation of the structure has been assigned, then the nodal

coordinates in z-direction have been determined. Hence, the identity matrix

in Eq. (4.17) becomes I(∈ <2×2) for the three-dimensional structures, and the

generalized coordinate vector X is X> = (x>,y>).

It should be noticed that there are h? components of nodal coordinates in

each direction that can be specified, because the rank deficiency of E is equal

to h?. Therefore, the rank deficiency of H is dh?, and dh? independent nodal

coordinates can be specified if no symmetry is considered.

The solution of Eq. (4.18) can be written as

X = Gβ

where β is the coefficient vector. Denote the rank of G by rG(≤ dh?). Hence, the

number of independent nodal coordinate components that can be specified is rG.
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4.3 Form-finding Process

If we specify an independent set of nodal coordinates X̄ ∈ <rG
and obtain

the corresponding components Ḡ ∈ <rG×dh?
in G, where rank(Ḡ)=rG, the con-

figuration of the structure in terms of nodal coordinates X can be determined by

X = GḠ
−1

X̄ (4.19)

Ḡ can be obtained by using the algorithm presented in the Chapter 5, where

the Reduced Row-Echelon Form (RREF) of G> is extensively used to specify the

independent set of nodal coordinates consecutively.

Since tensegrity structure should satisfy the self-equilibrium conditions, the

vector of unbalanced loads ε ∈ <dn defined as follows can be used for evaluating

the accuracy of the results:

ε = HX

The Euclidean norm of ε is used to define the design error ξ as

ξ =
√

ε>ε (4.20)

As a simple example for demonstrating how to determine the independent set

of nodal coordinates to be specified based on the RREF of the transpose form

G> of G, the two-dimensional tensegrity structure consisting of (n =) 5 nodes

and (m =) 8 members as shown in Fig. 4.1 is considered.

The force densities of members 1–4 and 5–8 can be 1.0 and −0.5, respectively,

so that the structure is in a state of self-equilibrium. The force density matrix E

is written as follows

E =




4.0 −1.0 −1.0 −1.0 −1.0
−1.0 0.0 0.0 0.5 0.5
−1.0 0.0 0.0 0.5 0.5
−1.0 0.5 0.5 0.0 0.0
−1.0 0.5 0.5 0.0 0.0




where the no optional constraints are considered.

Since H is defined by E as Eq. (4.17), it is sufficient to investigate only the

null-space G of E, which can be written as

G =




0.0 1.0 0.0
1.0 1.0 0.0
−1.0 1.0 0.0
0.0 1.0 −1.0
0.0 1.0 1.0




(4.21)
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4.3 Form-finding Process

It can be seen from Eq. (4.21) that the rank of G is 3. Therefore, the rank

deficiency rE of E is 3, which satisfies the non-degeneracy condition for a two-

dimensional structure. The RREF of G> is

RREF(G>) =




1.0 0.0 2.0 0.0 2.0
0.0 1.0 −1.0 0.0 0.0
0.0 0.0 0.0 1.0 −1.0


 (4.22)

From Eq. (4.22), we know that the columns corresponding to the node groups

{1, 2, 4}, {1, 2, 5}, {1, 3, 4} and {1, 3, 5} are linearly independent, respectively.

Therefore, we can specify the coordinates of three nodes in one of these four node

groups to obtain a unique and non-degenerate configuration.

4.3.4 Summary of Form-finding Process

The process of finding the configuration of a tensegrity structure with linear

constraints on geometrical and mechanical properties of the structure can be

summarized as follows:

Algorithm 4.2 – Form-finding Process

First Stage: Feasible Force Densities

[L1] Specify the topology.

[L2] Formulate the geometrical constraints with respect to the force densi-

ties.

[L3] Assign an initial set of force densities.

[L4] Find the feasible force densities by Algorithm 4.1.

Second Stage: Determination of Configuration

[L5] Formulate the geometrical constraints with respect to the nodal coor-

dinates.

[L6] Specify an independent set of nodal coordinates to uniquely determine

the configuration.
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Figure 4.4: A symmetric three-layer tensegrity tower with three struts in each
layer.

As will be demonstrated in the numerical examples, designers can control the

configuration of a tensegrity structure by changing the values of the parameters

in Steps (1), (2), (3) and (6). Symmetry of the structure is ensured by the

constraints in Steps (2) and (5).

4.4 Tensegrity Tower

Tensegrity tower, as shown in Fig. 4.4, is a special kind of tensegrity structures.

It has one or more layers and at least three struts in each layer. The needle tower

invented and built by Kenneth Snelson in Bryant Park in New York may be one

of the best-known tensegrity towers in the world.

In this section, we give a detailed description of the geometrical properties and

topology of the tensegrity towers, and use them as examples in the next section

to demonstrate the capability of finding the desired configurations satisfying the

geometrical constraints of the proposed method.
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4.4 Tensegrity Tower

4.4.1 Configuration

Suppose that a tensegrity tower has nl layers (orbits of struts) and nb struts in

each layer. The struts in each layer belong to the same orbit.

The nodes that have the same z-coordinate are said to be in the same plane.

Thus, each layer has two different planes – the bottom and the top planes.

Since no strut physically contacts any other strut, the number n of nodes of

a tensegrity tower is

n = 2nlnb

The cables of a tensegrity tower are classified into the following four types

as shown in Fig. 4.4.(c), based on the connectivity, similar to the classification

by Sultan et al. (2002):

• Horizontal cables that connect the nodes in the same plane. They can only

exist in the bottom plane of the lowest layer and the top plane of the highest

layer.

• Vertical cables that are connected by the nodes in the top and bottom

planes of the same layer.

• Saddle cables that connect the nodes in different planes of the adjacent

layers, e.g., the top plane of layer k and the bottom plane of layer k + 1.

• Diagonal cables that connect the nodes in the same top (or bottom) planes

of the adjacent layers, e.g., the top (or bottom) plane of layer k and the top

(or bottom) plane of the layer k + 1.

4.4.2 Elevation

Denote the height of the ith layer by Hi (i = 1, . . . , nl), and the overlap between

two adjacent layers i and i− 1 by hi (i = 1, . . . , nl) where h1 = 0. Designers are

free to design the elevation of the structure by assigning Hi and hi. The total

height H of the structure can be computed by

H =
nl∑

i=1

(Hi − hi)
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4.4 Tensegrity Tower

Figure 4.5: The one-layer tensegrity tower (also called the prismatic tensegrity
tower with D3 symmetry in Chapter 7.

The z-coordinates zt
k of the nodes in the top plane of layer k (k = 1, . . . , nl)

can be determined as

zt
k =

k∑
i=1

(Hi − hi)

And the coordinates zb
k of the nodes in the bottom plane of layer k can be com-

puted by

zb
k = zt

k −Hk

This way, the vector z of the z-coordinates of the tensegrity tower can be deter-

mined.

4.4.3 Topology

In order to formulate the connectivity matrix C in a simple manner for a tenseg-

rity tower with any number of layers (nl ≥ 1) and any number of struts (nb ≥ 3)

in each layer, topology of a general tensegrity tower is defined in this subsection.

The nodes in the bottom and top planes of layer k are labelled by pb
k,j and

pt
k,j, respectively, as

pb
k,j = 2(k − 1)nb + j

pt
k,j = (2k − 1)nb + j

(j = 1, . . . , nb) (4.23)

4.4.3.1 Struts

The jth strut PB
k,j in layer k is connected by nodes pb

k,j and pt
k,j in different planes:

PB
k,j = [pb

k,j, p
t
k,j]
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Figure 4.6: An example of connectivity of struts, horizontal cables and saddle
cables.

where [i, j] indicates that nodes i and j are connected to construct a member.

A simple example with nb = 3 is illustrated in Fig. 4.6, where the vertical and

diagonal cables are removed for clarity.

4.4.3.2 Horizontal and Saddle Cables

For the one-layer tensegrity towers (nl = 1) as shown in Fig. 7.3, it has been

proved that the structure is not super stable if the horizontal cables are not

connected with the adjacent nodes Connelly and Terrell (1995). Although this is

not always true for the prestress stability as will be discussed in Chapter 7, the

horizontal and saddle cables are assumed to connect the adjacent nodes as shown

in Fig. 4.6, in order to avoid the risk of achieving an unstable structure in view of

either super or prestress stability. Thus the connectivity of horizontal and saddle

cables are given as follows:

• horizontal cables PH
1,j and PH

nl,j
are connected by the adjacent nodes in the

bottom and top planes of the lowest and highest layers, respectively, as

PH
1,j = [pb

1,j, p
b
1,j+1]

PH
nl,j = [pt

nl,j, p
t
nl,j+1]

(j = 1, . . . , nb) (4.24)
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Figure 4.7: An example of connectivity of vertical cables in layer k.

• saddle cables are connected by the nodes in the top plane of layer k and

the bottom plane of layer k + 1 as

P S
k,2j−1 = [pt

k,j, p
b
k+1,j]

P S
k,2j = [pb

k+1,j, p
t
k,j+1]

(4.25)

where j = 1, . . . , nb and k = 1, . . . , nl − 1.

The following relations have been used in Eqs. (4.24) and (4.25) for brevity.

pb
k,nb+1 = pb

k,1, pt
k,nb+1 = pt

k,1

4.4.3.3 Vertical and Diagonal Cables

Connectivity of vertical and diagonal cables is not unique. For example, it may

be noticed in Figs. 4.7.(a) and (b) that pt
k,1 is connected to pt

k,2 and pt
k,3 by

the vertical cables, respectively, leading to different topology. To illuminate this

difference, we introduce the parameters cv and cd to define the connectivity of

vertical and diagonal cables as follows:

• vertical cable: The connectivity of the vertical cables are defined by using

an integer cv ∈ {1, . . . , nb} as

P V
k,j = [pt

k,j, p
b
k,j+cv ]

where j = 1, . . . , nb, k = 1, . . . , nl, and j + cv = j + cv − nb if j + cv > nb.
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(a) Top view (b) Side view Perspective view

Figure 4.8: A three-layer tensegrity tower with four struts in each layer.

• diagonal cable: The connectivity of the diagonal cables are defined by using

an integer cd ∈ {0, . . . , nb − 1} as

PDb
k,j = [pb

k,j, p
b
k+1,j+cd ]

PDt
k,j = [pt

k,j, p
t
k+1,j+cd ]

where j = 1, . . . , nb, k = 1, . . . , nl−1, and j +cd = j +cd−nb if j +cd > nb.

From the connectivity of the members and nodes for a general nl-layer tenseg-

rity tower, with nb struts in each layer, the numbers of struts mb, horizontal cables

mh, vertical cables mv, saddle cables ms and diagonal cables md can be written

as
mb = nlnb, mh = 2nb,
ms = 2(nl − 1)nb, mv = nlnb,
md = 2(nl − 1)nb,

(4.26)

and the number m of all members of the structure is

m = 6nlnb − 2nb (4.27)

Following the definition of connectivity of each type of members and the num-

bering in Eq. (4.23), the connectivity matrix C ∈ <m×n can be easily constructed.
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Figure 4.9: A two-layer tensegrity structure.

4.5 Numerical Examples

Some numerical examples are given in this section to show how to use the pro-

posed method for the form-finding problem of the tensegrity structures, and to

investigate the efficiency of the method.

4.5.1 Two-layer Tensegrity Structures

The proposed adaptive force density method is first applied to a two-layer tenseg-

rity structure as shown in Fig. 4.9. The structure is composed of 12 nodes and

30 members; i.e. n = 12, m = 30. Its six struts are divided into two groups: (1)

struts of the upper stage, and (2) struts of the lower stage. The 24 cables are

divided into: (3) top and bottom bases, (4) saddle, (5) vertical, and (6) diagonal,

as indicated in Fig. 4.9.

Linear constraints on the symmetry properties and elevation are not engaged

in this two-layer tensegrity structure. The required rand deficiency of the force

density matrix is set to the minimum one; i.e., h? = 4 for the three-dimensional

structures considered here.

Example 1:
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Figure 4.10: Example 1: a two-layer tensegrity structure.

By specifying an initial set of force densities as {−1.5, −1.5, 1.0, 2.0, 1.0, 1.0}
for the six groups, Algorithm 4.1 finds the feasible set of force densities {−1.8376,

−1.8376, 0.9281, 1.9918, 1.1737, 0.9958} with 158 iterations.

The relative error of force density vector at each iteration, defined as the

Euclidean norm of the difference of qi to the final value q̂, is plotted in Fig. 4.11.

Termination condition of Algorithm 4.1 is that the force density matrix Ê has the

required rank deficiency h? (=n−rank(Ê)=4) where |λh?| < 10−5 and |λh?+1| >

10−5. A very good convergence of Algorithm 4.1 can be seen from Fig. 4.11,

where the relative error comes very close to zero with only 20 iterations.

If we specify the coordinates of nodes a, b and c, which are defined in

Fig. 4.10(a), as {(−2.6667, 0.0, 0.0), (1.3333, −2.3094, 0.0), (1.3334, 2.3094, 0.0)}
to make the bottom base located on the xy-plane, and node d in the lower stage

as (−1.8867, 1.6666, 3.3333), we can then achieve the final configuration of the

structure as shown in Figs. 4.9 and 4.10.

Example 2:

Since the initial force densities and independent nodal coordinates can be

arbitrarily given by the designers, we can have some controls over the geometrical

and mechanical properties of the structure. Furthermore, new configurations

can be easily found by changing the values of initial force densities and nodal
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Figure 4.11: Convergence of the algorithm for feasible force densities.
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Figure 4.12: Example 2: a two-layer tensegrity structure.

coordinates.

If x-coordinate of node d is modified to −2.8867 from −1.8867 as Example

2 without changing any other parameter, a new configuration of the two-layer

tensegrity structure as shown in Fig. 4.12 is obtained. We can also change the

initial force densities at the first step of Algorithm 4.1 to search for new configu-

rations.

The design errors ξ defined in Eq. (4.20) are less than 10−13 for Examples 1 and

2. Both the structures obtained here have only one infinitesimal mechanism and

one prestress mode; i.e. they are kinematically and statically indeterminate. In

the meantime, the force density matrices for both cases are positive semi-definite

with rank deficiency of four, and the structures are super stable from Lemma
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4.5 Numerical Examples

Table 4.1: Elevation of the three-layer tensegrity tower.
H1 H2 H3 h1 h2 h3 H
10.0 8.0 6.0 0.0 3.0 2.0 19.0

Table 4.2: Feasible force densities of each group of members.
qb1 qb2 qb3 qh1 qh2 qv1 qv2 qv3

−1.1656 −1.1226 −1.2366 1.2758 1.2652 0.5718

qs1 qs2 qd1 qd2 qd3 qd4

1.4572 1.4547 0.8484 0.8262 0.5609 0.4190

4.5. So, it is clear in these examples that introduction of prestresses stiffens the

infinitesimal mechanism to make the structures stable.

4.5.2 Three-layer tensegrity tower

Consider a tensegrity tower as shown in Fig. 4.8, which consists of three layers and

four struts in each layer; i.e., nl = 3 and nb = 4. The structure is composed of 24

nodes and 64 members, including 12 struts, 8 horizontal cables, 12 vertical cables,

16 saddle cables and 16 diagonal cables. The saddle cables that are continuously

connected and the members of other types in the same obit are classified into

different groups. Therefore, there exist 14 groups in total, and the members in

the same group have the same force densities.

As an example, we assign the elevation of the structure as listed in Table 4.1.

Note that the heights of every layer and the overlaps are not uniform. The total

height H is 19.0.

To start Algorithm 4.1, the initial force densities of all struts and all cables

are assigned as −1 and +1, respectively. Algorithm 4.1 runs 394 iterative steps

for finding the feasible force densities as listed in Table 4.2, where qbi , qhi , qvi ,

qsi and qdi denote the force densities of the groups of struts, horizontal cables,

vertical cables, saddle cables and diagonal cables, respectively.

The final force density matrix Ê has four zero eigenvalues and 20 positive

eigenvalues, the minimum and maximum values of which are 0.1803 and 7.1592,

respectively. Therefore, the structure satisfies the non-degeneracy condition.
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(a) Top view (b) Side view Perspective view

Figure 4.13: New configuration of the symmetric three-layer tensegrity tower with
the same force densities and coordinates in z-direction but different coordinates
in xy-plane.

In the second design stage, there are up to four independent coordinates in

xy-plane that can be arbitrarily specified by the designers, while the constraint

on symmetry is considered.

Based on the algorithm of consecutively specifying the independent set of

nodal coordinates described in Chapter 5, the xy-coordinates of the nodes pb
1,1

and pt
1,1 connected by the strut PB

1,1 in the lowest layer are selected to be specified.

Note that this is not the only independent set of coordinates. If the xy-coordinates

of these two nodes are specified as (10.0, 0) and (2.5, 4.0), then the configuration

of the structure is uniquely determined as shown in Fig. 4.8. It is easy to observe

from the top view of the structure that the struts in the same layer (orbit) are

rotationally symmetric by the angle π/2.

If the same nodal coordinates in xy-plane are specified to the strut PB
2,1 in

layer 2, the configuration is then uniquely determined as shown in Fig. 4.13. As

can be easily observed, the new configuration of the structure becomes slightly

slender compared with the configuration in Fig. 4.8. Note that only the nodal

coordinates in xy-plane have been changed in the second stage of the form-finding
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(a) Top view (b) Side view

Figure 4.14: A ten-layer tensegrity tower with four struts in each layer. The
structure is rotationally symmetric about z-axis as specified, and is precisely
control in z-coordinates.

process. Therefore, Algorithm 4.1 need not be applied again to find the feasible

force densities.

Both of these two structures are confirmed to be super stable by the sufficient

conditions listed in Lemma 3.5.

4.5.3 Ten-layer Tensegrity Tower

As a more complex example, a ten-layer tensegrity tower as shown in Fig. 4.14

with four struts in each layer; i.e., nl = 10 and nb = 4, is considered. The

structure is composed of 80 nodes and 232 members.

For simplicity, the heights and overlaps are uniformly assigned as Hi = 10.0

and hi = 2.0 except for h1 = 0.0, respectively. The total height H is 82.0.

Constraint on symmetry is also incorporated for this structure. The initial force
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densities of all struts and cables are given as −1 and +1, respectively.

After 511 iterative steps in Algorithm 4.1 for finding the feasible force density

vector, four independent nodal coordinates in xy-plane need to be specified for

this symmetric ten-layer tensegrity tower. If the xy-coordinates of the nodes

pb
2,1 and pt

2,1 connected by the strut PB
2,1 in layer 2 are specified as (10.0, 0) and

(2.5, 4.0), its configuration is obtained as shown in Fig. 4.14, where the top view

and the side view have been drawn in different scales.

The structure is super stable, and the necessary condition for a non-degenerate

tensegrity structure is also satisfied.

By modifying the values of the initial force densities and the independent

nodal coordinates, more new and interesting configurations can be systematically

found. Hence, it can be concluded that the proposed method is applicable to a

tensegrity tower with any number of layers (nl ≥ 1) and any number of struts

in each layers (nb ≥ 3), although other examples of more complex structures are

not presented.

4.6 Discussions and Conclusions

In this chapter, we have presented an efficient numerical method, called adaptive

force density method, for the form-finding problem of tensegrity structures. The

method is extended from the basic idea of the force density method originally

developed for the problem of cable nets, and hence, it also has the advantage of

the force density method in dealing with non-linear equations in a linear manner.

The proposed method is efficient enough to deal with complex structures with

a large number of nodes and members. By introducing geometrical constraints

into it form-finding process, the method shows a strong capability in controlling

mechanical and geometrical properties of the structures, which was thought to

be a common disadvantage of the family of the force density method. More

importantly, the proposed method can ensure a super stable during the process

of searching for feasible force densities.

The form-finding process is divided into two interrelated design stages: finding

the feasible force densities, and determining the configuration. To control con-

figuration of a structure, the constraints, such as the force density matrix, some
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specific force densities, symmetry properties, and elevation, are formulated as lin-

ear forms with respect to the force densities and nodal coordinates, respectively.

Among these, the constraints with respect to the force densities are incorporated

into the first design stage to constrain the direction of finding the feasible force

densities from the initially given values. And the linear constraints on the nodal

coordinates are incorporated into the second design stage to uniquely determine

the configuration of the structure.

The following parameters are needed as inputs in the form-finding process of

the proposed method:

[L1] topology;

[L2] geometrical constraints;

[L3] an initial set of force densities;

[L4] an independent set of nodal coordinates.

Among these, the geometrical constraints are optional, while the others are nec-

essary for the method.

The tensegrity towers are used as numerical examples to illustrate the capa-

bility of the proposed method in finding proper configurations subjected to the

specified geometrical constraints. Moreover, designers can avoid the tedious job

of modelling the topology, and can concentrate only on the design aspect accord-

ing to their preferences, based on the detailed description of the geometry of the

tensegrity towers.

The proposed method is a general, and hence is applicable to any kind of

tensegrity structures, if the necessary inputs listed above are available. General-

ity of the method comes from that fact that any tensegrity structures that are

free-standing have to satisfy the non-degeneracy condition and self-equilibrium

equations presented in Chapter 2.

However, the proposed method is unlikely to control all aspects of a tensegrity

structure, although it is shown to do an excellent job in some of them. For

example, it is not easy to exactly assign the lengths of all members. This is due

to the variables that are dealt with in the form-finding process are force densities,
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which do not have explicit physical meanings. To have controls over some other

geometrical properties of a structure, a direct approach that makes use of directed

graphs in graph theory will be presented in the next chapter.
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Chapter 5

DIRECT APPROACH

This chapter is to present the direct approach for form-finding problem of tenseg-

rity structures. The method has capability of precisely controlling directions of

some members of the structures, which might be important to designers in the

shape design.

The adaptive force density method presented in Chapter 4 was shown to have

good convergence properties, and have some controls over the mechanical and

geometrical properties of the structures by introducing linear constraints. But it

is still a tough task for it to have controls over some geometrical properties of a

structure in precision, for example, directions of some members. This comes from

that the force densities involved in the method are the ratios of self-stresses to

member lengths, which do not have explicit physical meaning in reality. In this

chapter, we are to show that the direct approach making use of directed graph

in graph theory has such capability.

The final configuration of the structure may end up in a degenerate one, such

that some nodes may contact and/or some members intersect with each other. To

ensure a non-degenerate configuration, an algorithm for calculating the necessary

number of independent coordinate components is presented. It should be noticed

that this non-degeneracy condition for the structures modeled as directed graphs

is different from that presented in Chapter 2 in terms of rank deficiency of the

force density matrix.
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Figure 5.1: A two-dimensional tensegrity structure with fixed nodes. The fixed
nodes cannot be considered in self-equilibrium equations of the structure, and
hence, the final solution of the form-finding process may end up in an undesirable
configuration, as indicated by the dotted lines.
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Figure 5.2: The two-dimensional tensegrity structure with fixed member. The
structure with fixed nodes in Fig. 5.1 is transformed to a free-standing structure
by the introduction of the fixed (auxiliary) member (9).

5.1 Equilibrium Analysis

This section introduces the auxiliary member, which connects the supports, to

transform the tensegrity structures with supports into free-standing structures.

The self-equilibrium equations with respect to the prestresses in each direction

are formulated.

5.1.1 Auxiliary Member

In designing tensegrity structures with supports, the locations of the supports

should be taken into consideration, because the final configuration derived from

the direct approach presented later may end up with undesirable configuration.

For example, suppose that we want to design a two-dimensional tensegrity

structure as shown in Fig. 5.1. The structure consists of n = 6 nodes and m = 8

members. Nodes 5 and 6 are the supports.

If we specify a set of prestresses arbitrarily by the method presented later,
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it may end up with an undesirable configuration, e.g., as shown in the dotted

lines in Fig. 5.1; i.e. nodes 5 and 6 are located unfavorably. This is because that

the equilibrium of the fixed nodes has not been included in the self-equilibrium

equations.

To present a unified approach to the form-finding problem of tensegrity struc-

tures with and without supports, we introduce auxiliary members called fixed

members to connect the supports. For the structure shown in Fig. 5.1, we con-

nect nodes 5 and 6 by the auxiliary member 9 as shown in Fig. 5.2.

5.1.2 Self-equilibrium

Consider a structure consisting of m members and n nodes including the fixed

members and fixed nodes. The numbers of fixed members and nodes are denoted

by mf and nf , respectively.

The free members and nodes are numbered such that the nodes {1, . . . , n−nf}
and members {1, . . . , m−mf}, respectively, which are preceding the fixed ones.

By using the connectivity matrix C defined in Eq. (2.1), the enlarged connec-

tivity matrix B of the d-dimensional structure is defined as

B = C⊗ Id

where ⊗ and Id ∈ <d×d denote tensor product and identity matrix, respectively.

For example, the enlarged connectivity matrix B ∈ <18×12 of the two-dimensional
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sk sk

(a) positive (in tension) (b) negative (in compression)

Figure 5.3: Definition of prestress vector sk (i < j). A cable that is in tension is
defined to have positive direction pointing from one of its node bearing smaller
number to the other node with larger number, and a strut that is in compression
has negative direction.

structure in Fig. 5.2 is

B =

(
Ba Bb

O Bf

)
=

nx
1 ny

1 nx
2 ny

2 nx
3 ny

3 nx
4 ny

4 nx
5 ny

5 nx
6 ny

6

mx
1 0 0 1 0 0 0 0 0 −1 0 0 0

my
1 0 0 0 1 0 0 0 0 0 −1 0 0

mx
2 0 0 1 0 −1 0 0 0 0 0 0 0

my
2 0 0 0 1 0 −1 0 0 0 0 0 0

mx
3 0 0 0 0 1 0 0 0 0 0 −1 0

my
3 0 0 0 0 0 1 0 0 0 0 0 −1

mx
4 1 0 −1 0 0 0 0 0 0 0 0 0

my
4 0 1 0 −1 0 0 0 0 0 0 0 0

mx
5 0 0 0 0 1 0 −1 0 0 0 0 0

my
5 0 0 0 0 0 1 0 −1 0 0 0 0

mx
6 1 0 0 0 0 0 0 0 −1 0 0 0

my
6 0 1 0 0 0 0 0 0 0 −1 0 0

mx
7 1 0 0 0 0 0 −1 0 0 0 0 0

my
7 0 1 0 0 0 0 0 −1 0 0 0 0

mx
8 0 0 0 0 0 0 1 0 0 0 −1 0

my
8 0 0 0 0 0 0 0 1 0 0 0 −1

mx
9 0 0 0 0 0 0 0 0 1 0 −1 0

my
9 0 0 0 0 0 0 0 0 0 1 0 −1

where Ba corresponds to the free members and free nodes, while Bf corresponds

to fixed members and fixed nodes. Note that nx
i and ny

i denote the columns cor-

responding to the equilibrium in x- and y-directions, respectively, at node i. mx
k

and my
k denote the rows corresponding to the x- and y-components, respectively,

of member k.
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Let sk ∈ <d denote the prestress vector of member k that is connected to

nodes i and j (i < j). Note that the prestress vector sk of member k is different

from the prestress sk used so far, which is a value but not vector denoting the

magnitude of the prestress.

The positive direction, i.e., tensile state, of sk as shown in Fig. 5.3(a) is

defined as a vector starting from i and directing to j (i < j). Fig. 5.3(b) shows

the negative direction of sk, which means that member k is in compression.

For member k of a two-dimensional structure, its force components of sk

are written as sk = (sx
k, s

y
k)
>. In three-dimensional space, sk = (sx

k, s
y
k, s

z
k)
>.

The prestress (prestress) vector of all members, called generalized force vector, is

defined as s = (s>1 , · · · , s>m)> ∈ <sm

Consider the two-dimensional structure in Fig. 5.2 again for example. Since

all the free nodes are in self-equilibrium state, the equilibrium equations of a free

node, e.g. node 4, are written as

−sx
5 − sx

7 + sx
8 = 0

−sy
5 − sy

7 + sy
8 = 0

which can be rewritten by using the enlarged connectivity matrix as

(B>)7s = 0

(B>)8s = 0

where (B>)i denotes the ith row of B>. (B>)7 and (B>)8 correspond to the x-

and y-directions, respectively, of node 4.

Hence, the self-equilibrium equation for the whole structure can be written as

B>s = 0 (5.1)

5.2 Geometrical Constraints

This section formulates the geometrical constraints of the structure as linear

equations with respect to the prestresses and nodal coordinates, which will be

incorporated in the form-finding process presented in the next section.
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5.2.1 Member Directions

In the design process of tensegrity structures, it is usually desirable that the

directions of some members can be directly specified by the designers. The direc-

tion of a member, however, should coincide with that of its force vector, because

members of the tensegrity structures can transmit only prestresss.

Consider a tensegrity structure in three-dimensional space. Let dk = (dx
k, d

y
k, d

z
k)
>

denote a vector in the direction of member k, where the vector dk of some mem-

bers are given according to designer’s preference.

The direction vector dk and the prestress vector sk of member k should satisfy

the relation dk × sk = 0 which can be explicitly written as

dx
ks

y
k = dy

ks
x
k

dy
ks

z
k = dz

ks
y
k

dz
ks

x
k = dx

ks
z
k

(5.2)

Define T̄ as

T̄ =




0 1 0
0 0 1
1 0 0




Eq. (5.2) can be written in a linear form as follows

diag(dk)T̄sk − diag(T̄dk)sk = 0 (5.3)

where diag(x) is the diagonal version of x, the ith diagonal component of it is

the ith component xi of x. By letting

N̄k = diag(dk)T̄− diag(T̄dk)

Eq. (5.3) can be rewritten as

N̄ksk = 0 (5.4)

By assembling Eq. (5.4) through all members for which the directions are

specified, the following linear relation is derived for s:

N̄s = 0 (5.5)
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d =X  -X

i

j

k
k j i

Xi

Xj

Figure 5.4: Coordinate difference vector dk of member k (i < j).

5.2.2 Directions of Fixed Members

In order to consider the fixed nodes (supports) in a similar manner as free nodes

(internal nodes) in the self-equilibrium equation, we have introduced the concept

of auxiliary fixed members, of which the directions are to be specified.

For a three-dimensional structure, let Xi = (xi, yi, zi)
> denote the coordinate

vector of node i. The coordinate difference vector dk = (dx
k, d

y
k, d

z
k)
> of member

k that connects nodes i and j (i < j) is defined as

dk = Xj −Xi (5.6)

which is illustrated in Fig. 5.4.

Using the relation between the direction of a member and its prestress vector,

dk × sk = 0 should be satisfied; i.e.

dx
kv

y
k = dy

kv
x
k

dy
kv

z
k = dz

kv
y
k

dz
kv

x
k = dx

kv
z
k

(5.7)

Since Eq. (5.7) has the same form as Eq. (5.2), the relation similar to Eq. (5.3)

can be easily obtained as

diag(dk)T̄sk − diag(T̄dk)sk = 0 (5.8)

dk can be expressed as follows using Eq. (5.6):

dk = −BkX (5.9)

where the rows of Bk ∈ <3×3n consist of the (3k − 2)th, (3k − 1)th, and (3k)th

rows of B for a three-dimensional structure.
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Let df ∈ <3nf
denote the vector consisting of the coordinate difference vectors

of the fixed members. The relation between df and Xf is written as

df = −BfXf

The vector consisting of force vectors of the fixed members is denoted by

sf ∈ <3mf
. Let If ∈ <mf×mf

denote the identity matrix. By using Tf = If ⊗ T̄,

Eq. (5.8) for fixed members is assembled as

diag(df )Tfsf − diag(Tfdf )sf = 0 (5.10)

In Eq. (5.10), df is determined because the coordinates Xf of the fixed nodes

are known a priori, and Tf is a constant matrix. Since sf is the selected com-

ponents of s, it is easy to see that Eq. (5.10) can be rewritten by using a known

matrix N̂ as

N̂s = 0 (5.11)

5.2.3 Symmetry Properties

The configuration of a tensegrity structure usually has symmetry properties; i.e.

invariance conditions to reflection with respect to some planes and/or rotation

around some axes. Therefore, the member direction vectors should be specified

to satisfy such symmetry conditions. The same prestresss should be assigned to

the symmetrically located members.

For example, consider a part of a two-dimensional structure as shown in

Fig. 5.5(a), whose members are rotationally arranged by θ (= π/3). Select two

adjacent members k and k′ as shown in Fig. 5.5(b) to illustrate the process of

formulating their rotational symmetry properties. Members k and k′ connect

pairs of nodes (i, j) and (i′, j′), respectively. The rotation matrix is defined as

Ml =




cos θ sin θ 0
− sin θ cos θ 0

0 0 1




The relation between the coordinate difference vectors of members k and k′ is

written as
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θ

θ
θ

θ

θ
θ

(a) Configuration of a
two-dimensional structure.

θ
θ

Xi' Xi(Xj')

Xj

(b) Rotational symmetry of
members k and k′.

Figure 5.5: Rotational symmetry of a two-dimensional structure (i < j and i′ <
j′).

dk′ = Mldk

From Figs. 5.3 and 5.4, we know that the direction of dk is the same as the

positive direction of sk. So the symmetry property of the prestresses of members

k and k′ can be written as

sk′ = Mlsk (5.12)

By letting Sl =
(
0 · · · Ml · · · −I · · · 0

)
, Eq. (5.12) can be rewritten as

Sls = 0 (5.13)

The rotational symmetry of other members of the structure can be formulated

in a similar way. Reflectional symmetry can be also written in a similar form as

Eq. (5.13). By combining Eq. (5.13) through all the symmetry conditions, the

following linear equation is obtained as

Ss = 0 (5.14)

5.3 Form-finding Process

In this section, we introduce an algorithm for directly specifying the prestresses

and nodal coordinates consecutively. Linear equations are formulated based on
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the equilibrium equations and geometrical constraints in terms of prestresses and

nodal coordinates.

5.3.1 Prestresses

From the equilibrium equation (5.1) and the geometrical constraints (5.5), (5.11)

and (5.14), we obtain 


B>

N̄

N̂
S


 s = 0 (5.15)

By letting H> = (B, N̄>, N̂>,S>), Eq. (5.15) can be rewritten as

Hs = 0 (5.16)

Our task is to find a set of non-trivial prestresses (s 6= 0) that satisfy Eq. (5.16).

Let rH = 3m − rank(H) for a three dimensional structure. If rH = 0, then

there exists only trivial solution s = 0. If rH > 0, then the static relation (5.16)

is underdetermined. Tensegrity structures often fall into this category. So we will

focus only on the underdetermined case here.

The solution of Eq. (5.16) can be written by using a matrix G ∈ <dm×rH
as

s = Gα (5.17)

where the columns of G are self-equilibrium modes and α ∈ <rH
is the coefficient

vector. Since α has no explicit mechanical meaning, we will determine it by

specifying a independent set of prestresses s̄ instead of specifying the coefficients

directly.

Let I ⊆ {1, . . . , dm} denote the set of indices of components of s to be spec-

ified. s̄ is defined as the vector consisting of the component sj (j ∈ I) of s. By

assembling the corresponding rows of G to generate a sub-matrix Ḡ, the relation

between s̄ and α can be written as

s̄ = Ḡα (5.18)

If Ḡ ∈ <rH×rH
is full-rank, Eq. (5.18) can be solved as

α = Ḡ−1s̄
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By substituting α back to Eq. (5.17), the force vector s of all members is obtained

as

s = GḠ
−1

s̄ (5.19)

Let (G)k denote the kth row of G. Π = {π(l)|l = 1, 2, . . . , dm} denotes

a permutation of dm indices 1, 2, . . . , dm, where π(l) stands for the location of

index l in Π. The following algorithm generates I and Ḡ, where the Reduced Row-

Echelon Form (RREF) (Borse, 1997) summarized in Appendix A is effectively

used:

Algorithm 5.1:

Step 0 Let I = ∅, feasible set A = {1, 2, . . . , dm}, Π0 = {π0(l)|l = 1, 2, . . . , dm}
and π0(l) = l (l = 1, . . . , dm). Set i := 0.

Step 1 If i = h, then Ḡ := Ĝ, and STOP. Otherwise, set i ← i + 1.

Step 2 Choose j ∈ A. Update I := I ∪ j. Define Πi = {πi(l)|l = 1, 2, . . . , dm}
by

πi(l) =





πi−1(l) (l < j)

dm (l = j)

πi−1(l)− 1 (l > j)

Step 3 Generate Q by eliminating (G)k (∀k ∈ I) from G. Let Ĝ be the matrix

consisting of (G)k (∀k ∈ I).

Step 4 Compute the RREF of the matrix (Ĝ>,Q>) in a form of

W =

(
I WU

O WL

)

where WU ∈ <i×(dm−i) and WL ∈ <(h−i)×(dm−i).

Step 5 Update A as

A =
{
l|(WL)πi(l) 6= 0 (πi(l) = 1, . . . , dm− i)

}

and go to Step 1.
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5.3.2 Nodal Coordinates

Knowing only the prestresses, we are still unable to uniquely determine the con-

figuration of the structure. Since sk for all members are known by using the

procedure presented previously, Eq. (5.8) is rewritten as

diag(T̄sk)dk − diag(sk)T̄dk = 0 (5.20)

Let Im ∈ <m×m denote the identity matrix. By using T = Im ⊗ T̄, Eq. (5.20) is

assembled through all members as

diag(Ts)d− diag(s)Td = 0 (5.21)

where d = (d>1 , . . . ,d>m)>.

Incorporating Eq. (5.9) into Eq. (5.21), the constraints on X can be written

in the following form:

FX = 0 (5.22)

where

F = diag(Ts)B− diag(s)TB

is a known matrix. Note that the symmetry conditions have been implicitly

included in Eq. (5.22).

Let rF = 3n−rank(F) and suppose an underdetermined case rH > 0. The

solution of Eq. (5.22) can be written as

X = Pβ (5.23)

where β ∈ <rF
is the coefficient vector and P ∈ <dn×rF

.

The nodal coordinates can be divided into the unknown components Xc ∈
<dnc

of the free nodes and the specified components Xf ∈ <dnf
of the fixed nodes

(supports). The matrix P can then be divided into Pc and Pf , accordingly.

Hence, Eq. (5.23) is rewritten as

(
Xc

Xf

)
=

(
Pc

Pf

)
β (5.24)

Let rf =rank(Pf ). Select rf independent rows from Pf to obtain matrix

P̄ by utilizing its RREF form. The vector X̄ of independent nodal coordinates

122



5.3 Form-finding Process

are selected from Xf correspondingly. If rf = rF , the nodal coordinates of the

structure can then be uniquely determined as follows

X = PP̄
−1

X̄ (5.25)

Otherwise, we are able to specify (rF − rf ) independent nodal coordinates to

obtain X̄ by using the same procedure described in Algorithm 5.1.

5.3.3 Stress States

For a tensegrity structure, it is important to know whether each member is in

tension or in compression. From Figs. 5.3 and 5.4, we can see that the direction

of dk is the same as that of the member in tension. So the inner product gk of

dk and sk has the following properties

gk = s>k dk





> 0 tension
< 0 compression
= 0 member k is removable

(5.26)

For the case of gk = 0, member k can be removed because

[L1] If sk = 0, then there exists no force in member k, and its existence is

unnecessary.

[L2] If dk = 0, then nodes i and j coincide. So member k and node i or j can

be removed.

5.3.4 Evaluation of Design

By using Eq. (5.16) and Eq. (5.22), the errors ξs and ξx of the prestresses and

nodal coordinates, respectively, for a d-dimensional structure are defined as

ξs =

√
(Hs)>Hs/(dm) (5.27)

ξx =

√
(FX)>FX/(dn) (5.28)
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5.4 Non-degeneracy Condition

5.3.5 Design Procedure

So far, we have presented the procedure and algorithm for designing a tensegrity

structure, which is modelled by a directed graph. The designer procedure can be

summarized as follows:

Algorithm 5.2: Design procedure

Step 1: Generate the self-equilibrium system by replacing the supports with the

auxiliary fixed members.

Step 2: Give the topology.

Step 3: Assign the directions of some members, and coordinates of supports so

as to define N̄ and N̂, respectively. Give the symmetry properties by the

matrix S.

Step 4: Specify s̄ and obtain Ḡ by using Algorithm 5.1. Compute s from

Eq. (5.19).

Step 5: Specify X̄ and obtain P̄. Compute X from Eq. (5.25).

Step 6: Determine the stress states of the members. Remove member k satisfy-

ing s>k dk = 0. Convert the auxiliary fixed members back to supports.

5.4 Non-degeneracy Condition

The configurations found by using Algorithm 5.2 may be degenerate – the struc-

tures turn out to lie in the space with lower dimensions than the interested one.

This section presents an algorithm for obtaining the non-degeneracy condition,

in terms of the number of independent nodal coordinates that can be specified,

for the tensegrity structures modelled as directed graphs.

In order to do that, we suppose that

[L1] directions of all members have been known;

[L2] no member has zero prestress.
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5.4 Non-degeneracy Condition

5.4.1 Geometrical Interpretation

Before considering the whole structure, it might be helpful to consider firstly the

conditions for the determination of one node and one member in the interested

d-dimensional space. This node and member are called the reference node and

reference member, respectively.

i

k

j
sk1

Figure 5.6: Member k, directed from i to j (i < j).

a. Reference node:

It is easy to learn that we need to specify d coordinates to determine the

location of the reference node in a d-dimensional space, if no other information

is available.

b. Reference member:

Consider the (reference) member k as shown in Fig. 5.6 that is connected to

the reference node i. Since its direction is known from the presumption and the

reference node i has been determined by specifying the d coordinates, it might

be easy to learn that only one parameter is needed to determine the other node

j of the member. This parameter can be length of the member or projection of

the member in any direction as long as it is not equal to zero. This is clear from

the following equation for the nodal coordinates of node j:



xj

yj

zj


 =




xi

yi

zi


 + αdk

where α is an unknown coefficient that can be considered as the distance from

node i to node j along the direction dk of member k.

c. The nodes connected to the reference member:

Now, we can have determined the location of one member by specifying d + 1

coordinate components. Consider any other node p, which is connected to the
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5.4 Non-degeneracy Condition

i

k

j

sk

sk1

sk2

p
k

k2

1

Figure 5.7: The node p connected to the reference member k. Location of p can
be uniquely determined by the coordinate difference vectors sk1 and sk2 if it is
not lying on the extension line of member k.

determined member k as shown in Fig. 5.7. dk1 and dk2 denote the directions of

member k1 and k2, respectively. To determine the location of the unknown node

p, a little more complexity may arise:

• CASE 1: Node p is connected by only two nodes in the structure, or the

members connected to it lie in the same line.

• CASE 2: Node p is connected by more than two nodes.

i

k
j

sk

sk1

sk2
p

Figure 5.8: Node p is connected by only two other nodes i and j. Location of p
cannot uniquely determined because it is lying in (extension line of) member k,
and one more variable is needed to locate it.

Since the structure is in a state of self-equilibrium and no member has zero

prestress from the preassumption, we may know immediately that if the node is

connected by only other two nodes; i.e. two members, then the two members

have to lie on the same line, e.g. Fig. 5.8. Thus, the relation dk1 = ±dk2 between

the directions of member k1 and k2 has to be satisfied for CASE 1. In this case,

one more parameter has to be specified to determine the location of node p.
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5.4 Non-degeneracy Condition

For CASE 2 that we do not need any further information about node p to

locate it since it can be easily determined by run along the (negative) directions

of members k1 and k2 and then find their intersection, e.g. in Fig. 5.7. The

intersection is where the node p is located.

1
2 3

4

1 2

3

4

5 6

7

5

8

Figure 5.9: A two-dimensional tensegrity structure that can be determined by
only 3 coordinate components.

For example, Fig. 5.9 shows a two-dimensional tensegrity structure. Since each

node of the structure connected by more than two nodes, where no member of the

same triangle is parallel to each other, only 3 independent coordinate components

are needed to identify the configuration of the structure, no matter which node

(member) is selected as reference node (member) to start off the counting.

5.4.2 Necessary Condition

Let I and J denote the sets of determined nodes and undetermined nodes, respec-

tively.

By applying the operations mentioned above starting from the reference node

and reference member with d+1 independent coordinate components, it is possible

to determine all the locations of other nodes of the structure. However, as will be

seen in an example later, these operations may not be sufficient. In the follows, we

will see how to systematically apply these operations following a simple example.

Consider a structure consisting of n nodes. Let i and j denote two nodes of

the structure. The (i, j) component C̄(i, j) of the connectivity matrix C̄ ∈ <n×n
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5.4 Non-degeneracy Condition

is defined as

C̄(i, j) = C̄(j, i) =





2 for i = j and the location of node i has been determined
1 if nodes i and j are connected
0 others

(5.29)

Note that the connectivity matrix C̄ defined here is different from the usual one

defined in Eq. (2.1).

From the definition of connectivity matrix C̄ of the structure, we can have

the following lemma.

Lemma 5.1 If the trace of the connectivity matrix is equal to (trace(C̄)=)2n,

locations of all nodes can have been uniquely determined.

5.4.3 Algorithm Description

In the following, the two-dimensional structure as shown in Fig. 5.2 is used to

illustrate how the connectivity matrix is utilized to determine the number r of

independent nodal coordinate components for a unique non-degenerate structure.

Step 0:

The initial connectivity matrix of this structure is

1 2 3 4 5 6
1 0 1 0 1 1 0
2 1 0 1 0 1 0
3 0 1 0 1 0 1
4 1 0 1 0 0 1
5 1 1 0 0 0 1
6 0 0 1 1 1 0

c = 3 3 3 3 3 3

where all the diagonal elements are zero since no node is determined at the first

stage. The i element c(i) is the sum of the i-th column of the connectivity

matrix C̄. Obviously, the value tells how many nodes are connected to the node

i. Accordingly, we may know that all nodes are connected by other three nodes in

the structure, and therefore, every node belongs to the CASE 2 for this structure.

Step 1:
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5.4 Non-degeneracy Condition

We can arbitrarily select a member, e.g. member (6) connecting nodes 1 and

5, as the reference member by specifying (r = d + 1 =)3 independent nodal

coordinate components of them. The components of the connectivity matrix

C̄ ∈ <6×6 corresponding to the determined nodes 1 and 5 can be written as

1© 2 3 4 5© 6
1© 2 1 0 1 1 0
5© 1 1 0 0 2 1

r = 2 0 1 0
c = 3 3 3 3

(5.30)

where i© indicates that the location of node i has been determined. Therefore,

the determined set I of nodes becomes I = {1, 5} and the undetermined set

J = {2, 3, 4, 6} at the current stage. And the (1,1) and (5,5) elements of the

connectivity matrix become 2.

Nodes 1 and 5 are connected by the reference member (6), and the undeter-

mined node 2 is connected by more than two members; i.e., members 1, 2 and

4. Thus, node 2 can be uniquely determined without specifying any additional

coordinate component.

These facts can also be told by observing only the reduced form of the con-

nectivity matrix C̄ in Eq. (5.30), where the rows corresponding to undetermined

nodes have been excluded. Sum of the corresponding rows in the connectivity

matrix C̄ of all undetermined nodes (J = {2, 3, 4, 6}) is denoted as r in Eq. (5.30).

It can be easily observed that the value of ri corresponding to an undetermined

node i is the number of determined nodes that it is connected to. Therefore,

if we have ri ≥ 2 and ci > 2 where i ∈ J, the location of node i can then be

determined.

Step 2:

Thus, node 2 can be uniquely determined without adding additional com-

ponents. Hence, we can obtain r = 3 at this stage where I = {1, 2, 5} and
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5.4 Non-degeneracy Condition

J = {3, 4, 6}. The reduced form of connectivity matrix becomes

1© 2© 3 4 5© 6
1© 2 1 0 1 1 0
2© 0 2 1 0 1 0
5© 1 1 0 0 2 1

r = 1 1 1
c = 3 3 3

(5.31)

There is one problem in this step: as indicated by the values of the corre-

sponding elements of r to the undetermined nodes, all of which are equal to 1

in this case, we cannot determine any node from the determined set I, since all

nodes in J are connected by only one determined node while we need two or more

to locate them.

In order to make the process progress, some more information is needed.

Suppose that we specify one more parameter to locate node 3. The number of

the independent nodal coordinate components r becomes 4 and the reduced form

of the connectivity matrix in Eq. (5.31) becomes

1© 2© 3© 4 5© 6
1© 2 1 0 1 1 0
2© 0 2 1 0 1 0
3© 0 1 2 1 0 1
5© 1 1 0 0 2 1

r = 2 1
c = 3 3

(5.32)

Hence, we have r = 4, I = {1, 2, 3, 5} and J = {4, 6} for this step.

Step 3:

Easily, we know that node 4 can be located by nodes 1 and 3 from Eq. (5.32),

so the reduced form of the connectivity matrix becomes

1© 2© 3© 4© 5© 6
1© 2 1 0 1 1 0
2© 0 2 1 0 1 0
3© 0 1 2 1 0 1
4© 1 0 1 2 0 1
5© 1 1 0 0 2 1

r = 3
c = 3

(5.33)
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5.4 Non-degeneracy Condition

At this step, r = 4, I = {1, 2, 3, 4, 5} and J = {6}. And from Eq. (5.33), it

is obvious that the location node 6 can also be uniquely determined without any

further information. And therefore, all the nodes have been located.

Starting from any member as reference member and selecting any undeter-

mined nodes in J to be located by giving further information in Step 2 will give

us the same answer – in order to determine this non-degenerate two-dimensional

tensegrity structure, four (r = 4) independent nodal coordinate components are

needed.

5.4.4 Algorithm Summarization

Following the process stated above, we can now summarize the algorithm for find-

ing the necessary number of independent coordinate components for a tensegrity

structure as follows:

Algorithm 5.3:

STEP 0: Define the connectivity matrix C̄. Select the reference member with

r = d + 1, and obtain I0 and J0. Let i :=0.

STEP 1: If ri
k < 2 (∀k ∈ Ji), consider STEP 1b; otherwise, consider STEP 1a

for all k(∈ Ji) where ri
k ≥ 2.

STEP 1a: Consider the following two case:

CASE 1 : if ci
k > 2 (k ∈ Ji), let r := r, update Ji+1 := Ji + k and

Ii+1 := Ii − k;

CASE 2 : if ci
k = 2 (k ∈ Ji), let r := r + 1, update Ji+1 := Ji + k and

Ii+1 := Ii − k.

STEP 1b: Arbitrarily select one node k where ri
k = 1 and ci

k > 2. Update

Ji+1 := Ji + k and Ii+1 := Ii − k.

Let C̄(k, k) = 2 (∀k ∈ Ji+1 − Ji).

STEP 2: If trace(C̄)=2n, terminate; otherwise, let i =: i + 1 and return to

STEP 1.

This way, we can find out the necessary number r of independent coordinate

components by using only the connectivity relation (topology) of the structure.
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5.5 Numerical Examples

(a) r = 3 (d = 2) (b) r = 5 (d = 2)

(c) r = 4 (d = 3) (d) r = 4 (d = 3)

Figure 5.10: Examples of the necessary number r of the independent coordinate
components for the non-degenerate tensegrity structures in d-dimensional space.

5.4.5 Non-degenerate Structures

Besides the simple two-dimensional structure presented in detail previously, the

necessary number of independent coordinate components of several other two-

and three-dimensional tensegrity structures are shown in Fig. 5.10.

5.5 Numerical Examples

In this section, a rotationally symmetric three-dimensional tensegrity dome and

a diamond-shaped tensegrity structure are investigated to demonstrate the capa-

bility of the proposed method for generating various shapes.

5.5.1 Diamond-shaped Structure

Consider a tensegrity structure that consists of 6 nodes and 13 members as shown

in Fig. 5.11.

Consider firstly Example 1 without any explicit geometrical constraint. The

rank of matrix H has been computed to find rH = 22; i.e. there are 22 prestress

132



5.5 Numerical Examples
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1
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(1)
(2)

(3)
(4)

(8)

(11)
(12)

(7)

(5)
(10)

(9) (6)

(13)

Figure 5.11: Example 1 of diamond-shaped tensegrity.

Table 5.1: Prestresses of Example 1 of the diamond-shaped
tensegrity structure.

Variables sk Results sk

k 1 2 5 6 7 8 9 10 3 4 10 11 12 13

x 1 1 −1 1 1 −1 0 −1 1 0 0 0 0
y −1 1 0 0 0 0 1 1 1 −1 −1 1 0
z 0 0 1 1 −1 −1 1 1 0 0 −1 −1 −4

components needed to be specified. By using the Algorithm 5.1, we consecu-

tively specify the prestresses (s1, s2, s3, s4, s9, s10, s11, s12, v
z
13) listed as Variables

in Table 5.1. Then the results computed by Eq. (5.19) are shown in Results.

The rank of matrix F has been computed to find rF = 4; i.e. there exist 4

nodal coordinates needed to be specified. This agrees with the necessary number

of independent nodal coordinate components for the non-degenerate tensegrity

structure in three-dimensional space, computed by Algorithm 5.3.

The specified 4 nodal coordinates and the results using a method similar to

Algorithm 5.1 for specifying prestresses are shown in Table 5.2. The obtained

configuration is as shown in Fig. 5.11. Note that the locations and force vectors

of members 1–4 have been obtained to be rotationally symmetric around z-axis

by π/2, although only the prestresses of members 1 and 2 have been specified.

If we specify vz
10 = 3, which is different from vz

10 = 1 in the previous example,
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Table 5.2: Nodal coordinate of Example 1 of the
diamond-shaped tensegrity structure.

Variables Xi Results Xi

i 5 6 1 2 3 4 5

x 0 −2 0 2 0 0
y 0 0 −2 0 2 0
z 4 0 2 2 2 2

then all nodes will be degenerated into one node with only three nodal coordinates

that can be specified; i.e. rH = 3. It means that we cannot obtain the desirable

configuration although the generalized force vector s satisfies the equilibrium

conditions and all geometrical constraints.

In the following examples of the diamond-shaped tensegrity structure, we

will show how to search new configurations practically by changing the values of

some variables to be specified. To reduce the number of independent variables

or to assign geometrical characteristics, we introduce some explicit geometrical

constraints such that members 1–4 are symmetrically located around z-axis by

π/2, and member 13 is chosen as a fixed member; i.e. the nodal coordinates of

nodes 5 and 6 are given as (0, 0, 4) and (0, 0, 0), respectively. In this case, there

are only 13 components of prestresses needed to be specified; i.e. rH = 13, and

no nodal coordinate can be given because rf = rF = 4.

Consider Example 2 with the symmetric geometrical constraints as described

above. In this example, we specify (s1)e2 = 2(s1)e1, where (s1)ei denote the

prestress vector of member 1 in Example i. The prestresses of members 5, 6, 9

and 10 are the same as those in Example 1. The specified variables and computed

results of the prestresses are shown in Table 5.3. The results of nodal coordinates

are listed in Table 5.4.

We can see from Fig. 5.12 that the compressive element consisting of sym-

metrically arranged members 1–4 is located at a higher place than in Example 1,

because larger values have been given for the force components of member 1.

If we let (s1)e3 = 0.2(s1)e2 and the other variables of prestresses remain the

same as those in Example 2, then we obtain a new configuration as shown in

Fig. 5.13 as Example 3.
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Figure 5.12: Example 2 of diamond-shaped tensegrity structure. Components of
prestresses in member (1) are specified as two times to those in Example 1 in
Fig. 5.11, while other specified components are untouched.

Table 5.3: Prestresses of Example 2 of the diamond-shaped
tensegrity structure.

Variables sk Results sk

k 1 5 6 9 10 2 3 4 7 8 10 11 12 13

x 2 −1 1 0 2 −2 2 3 −3 0 0 0 0
y −2 0 0 1 2 2 2 0 0 −1 −3 3 0
z 0 1 1 1 1 0 0 0 −1 −1 −1 −1 −4

5.5.2 Tensegrity Dome

The three-dimensional tensegrity dome (also called cable dome) as shown in

Fig. 5.14(a) consists of 24 free nodes, 8 fixed nodes and 60 members. Its fixed

nodes are located on a circle, the radius of which is 15 m. The auxiliary fixed

members, which are shown in dashed lines in Fig. 5.14(b), are utilized to substi-

tute the fixed nodes to free nodes, and to transform the original structure into

a free-standing structure. Therefore, there are 66 members but no fixed node in

the substituted model.

Without introducing any geometrical or mechanical constraints, there are to-

tally (rH=)99 independent components of the prestresses that can be specified

arbitrarily. This may be a burden rather than benefit since a large number of

prestresses have to be specified by designers.

Since the structure used as an architecture usually has symmetric properties,

we classify its cables into 8 groups; six cables in each group. The cables in each
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Table 5.4: Nodal coordinates of Example 2 of the
diamond-shaped tensegrity structure.

Variables Xi Results Xi

i 5 6 1 2 3 4

x 0 0 −3 0 3 0
y 0 0 0 −3 0 3
z 4 0 3 3 3 3

Figure 5.13: Example 3 of diamond-shaped tensegrity. The members have re-
versed signs of prestresses compared to those in Examples 1 and 2.

group are rotationally symmetric around z-axis by π/3. This way, there are only

(rH=)15 independent components of prestresses needed to be specified.

As Example 1, we specify 15 independent prestress components as listed in

Table 5.5.2. The necessary number of independent nodal coordinates of the struc-

ture is r = 4, and the number that can be specified is rF − rf = 2 since the nodal

coordinates of the fixed nodes have been determined.

If we specify the x-coordinates of nodes 2 and 8 as −5 and −10, respectively,

we can obtain configuration of the structure as shown in Fig. 5.14.(a).

Table 5.5: Prestress components specified for the tensegrity dome.
1 7 13 19 25 31

x −1 −1 −1 −3 −1 −3
y 1.7321 1.7321 0 −1.7321 −5.1963
z 0 0 0.5 −1.5
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(a) initial model (b) substituted model

Figure 5.14: Perspective view of a three-dimensional cable dome (Example 1).
The structure with fixed nodes in (a) is transformed to the free-standing structure
in (b), so as to take all nodes into consideration of self-equilibrium of the structure.

Consider Example 2, where we change the values of sx
31 and sy

31 in Example 1

to −2 and 3.4642, respectively, without changing the values of other parameters,

we can achieve a configuration as shown in Fig. 5.15.

The calculation errors of prestresses and nodal coordinates of the examples

considered in this section are within 10−15 and 10−14, respectively, by using

Eq. (5.27) and Eq. (5.28), which confirms the accuracy of the proposed method.

5.6 Discussions and Conclusions

A general method has been presented for direct design of the member direc-

tions, internal forces (prestresses) and nodal locations of tensegrity structures

with given topology, where the structures are modeled as directed graphs. The

self-equilibrium equations are written in terms of the components of the pre-

stresses using the incidence matrix in graph theory.

A concept of auxiliary (fixed) members is introduced to present a unified

approach for a general tensegrity structures, that do or do not consist of fixed

nodes (supports). A non-degenerate structure investigated in terms of directed

graphs should have enough number of independent nodal coordinate components,

after the determination of components of prestresses. An efficient algorithm using

a special form of incidence matrix is proposed to determine this necessary number
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(a) perspective view (b) side view

Figure 5.15: Example 2 of the three-dimensional prestressed tensegrity structure.
Directions of the struts in the outer circle are specified not to parallel to those in
the inner circle.

for a non-degenerate structure.

In the proposed method, directions of members and symmetry properties are

first assigned as geometrical constraints, and the member force vectors are com-

puted from the constrained equilibrium equations. The locations of some nodes

including the supports are then assigned to obtain the locations of all nodes.

The solution obtained by this method satisfies the equilibrium conditions and

the geometrical constraints exactly. Designers are enabled to have direct control

over prestresses and the configuration of the structure simultaneously, which is

considered to be a major advantage of the method. New configurations can also

be obtained by changing the forces and geometrical constraints.

The proposed method is efficient since only linear equations need to be solved.

A general algorithm has been presented to find the independent variables con-

secutively. Unfortunately, it is not an easy task to specify the members to be in

tension or compression because the equilibrium shape is not known a priori.
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Chapter 6

SYMMETRY-ADAPTED
FORMULATIONS

This chapter is to present analytical formulations for the symmetry-adapted ma-

trices, based on group representation theory. The formulations will be used in

Chapters 7 and 8 to demonstrate that the self-equilibrated configuration and

stability can be effectively studied making use of the high level of symmetry

properties of the structures.

Symmetry properties of some structures have attracted attentions for a long

time for simplification of structural analysis. Many researchers have been trying

to obtain symmetry-adapted (block-diagonal) forms of relevant matrices, such

as the equilibrium matrix, the force density matrix and the stiffness matrices.

Computational costs can be significantly reduced by considering the blocks in

symmetry-adapted forms, which have much smaller dimensions than the original

matrices. Among the existing studies, those based on group representation theory

are more powerful than the others, and provide a more systematical way to make

use of symmetry properties of the structures. However, transformation matri-

ces that transform initial coordinate systems into symmetry-adapted coordinate

systems are usually necessary in these conventional methods. These numerical

methods may lose the opportunity to derive analytical symmetry-adapted forms,

especially for complex structures, since analytical calculations turn out to be

impossible for them.

To have more insight into structural properties and to derive stability condi-

tions for a whole class of structures, it would be more helpful to have the analytical
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symmetry-adapted forms of the matrices. In this chapter, we present the direct

strategy to these analytical forms, for the force density matrix, geometrical stiff-

ness matrix as well as the equilibrium matrix. Self-equilibrated configuration of

a structure with high level of symmetry can also be determined by considering

singularity of specific blocks of the symmetry-adapted force density matrix.

The analytical formulations presented in this chapter makes it possible to de-

rive the super stability and (prestress) stability conditions as will be discussed in

Chapter 7, and to prove in Chapter 8 that star-shaped structures are guaranteed

to be super stable if and only if the structures have odd number of struts, which

are closest to each other.

6.1 Introduction

It has been discussed in Chapter 3 that positive semi-definiteness of the geomet-

rical stiffness matrix KG is the necessary condition for super stability. Since KG

can be written as the Kronecher tensor product (⊗) of a d-by-d identity matrix

I and the force density matrix E for a d-dimensional structure:

KG = I
d×d

⊗ E or KG = E⊗ I
d×d

, (6.1)

it is sufficient to consider positive semi-definiteness of E instead of that of KG in

super stability investigation of a structure.

Sizes of the stiffness matrices will increase in proportion to the number of

nodes. Hence, computational cost for stability investigation may greatly in-

crease for the complex structures with large numbers of nodes and members. One

good way to deal with this situation is to rewrite the matrices in block-diagonal

(symmetry-adapted) forms taking advantage of their symmetry properties, where

the current coordinate system is transformed into a symmetry-adapted coordinate

system. Since eigenvalues of the matrices will not be changed after the transfor-

mation coordinate system, positive definiteness of a matrix can be verified by

that of the independent blocks in the leading diagonal of its symmetry-adapted

form. Computational costs as well as memory needed for storing the entries of

the matrix can then be significantly reduced, because sizes of these blocks are

much smaller compared to the original matrix.
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In the conventional approaches to the derivation of the symmetry-adapted

matrices, transformation matrices are necessary to be applied on both side of the

matrices. Kangwai et al. (1999) presented an introduction and review of these

conventional methods. However, this kind of numerical approaches can only deal

with every specific structure but not the whole class in one calculation; for exam-

ple, super stability of the prismatic structure D1,2
1001 can be easily verified using

the symmetry-adapted forms of its stiffness matrices, however, new computations

are necessary for the structures with similar properties, e.g., the structure D1,5
1001

or D1,2
1002. Furthermore, it might take a lot of computation time in deriving the

symmetry-adapted forms, especially for complicated structures, even though the

total time for structural analysis and stability investigation is still much smaller

than those in the original coordinate systems. To present a direct strategy for

the analytical formulations of the stiffness matrices and the related matrices, so

as to provide the opportunity for further insight into the stability properties of

the whole class of structures with similar symmetry, is the major subject of the

chapter. It is notable in the proposed strategy that transformation matrices, and

therefore, the matrix computations with them, turn out to be unnecessary. As a

result, computational costs are further reduced, although it is not the major mo-

tivation in the development of the methodology. These formulations are mainly

based on group representation theory.

In the chapter, we mainly deal with the structures with dihedral symme-

try, and the strategy is expected to be applicable to the structures belong to

other point group. And because the nodes of prismatic structures have one-to-

one correspondence to the symmetry operations of the dihedral group, they are

used as example structures representing the structures with dihedral symmetry

for simplicity. Another class of structures with dihedral symmetry—star-shaped

structures—will be discussed in Chapter 8.

Following this introduction section, the chapter is organized as follows: Sec-

tion 2 gives a brief introduction to the group representation theory and dihedral

symmetry, which will be used for presenting the symmetry-adapted formulations.

Section 3 presents the formulation of the symmetry-adapted force density matrix,

based on which self-equilibrated configurations and conditions for super stability

of prismatic structures will be presented in Chapter 7 and those for star-shaped
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Figure 6.1: Prismatic tensegrity structure with symmetry of dihedral group D3.
The group D3 has six symmetry operations. The structure consists of six nodes
and six horizontal cables having one-to-one correspondence to symmetry opera-
tions, and three vertical cables and struts having one-to-two correspondence to
symmetry operations.

structures in Chapter 8. Section 4 and Section 5 formulate symmetry-adapted

forms of the geometrical stiffness matrix and the equilibrium matrix. Symmetry-

adapted mechanisms are derived from the transpose of the symmetry-adapted

equilibrium matrix. Section 6 briefly discusses and concludes this chapter.

6.2 Group and Matrix Representation

Symmetry of a structure can be systematically dealt with using group represen-

tation theory. To prepare for the symmetry-adapted formulations in the coming

sections, some basic concepts of group and its matrix representation are briefly

introduced in this section. For more details, see Appendix B or refer to the

textbooks, e.g., those by Bishop (1973); Kettle (1995).

6.2.1 Group

A group is defined by a set of elements and combination rules between these

elements. The elements in a group should satisfy four general criteria—closure,

associativity, identity and inverse. The number of elements in a group is called

order of it. In description of symmetry property of a structure, the elements are
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6.2 Group and Matrix Representation

called symmetry operations. A symmetry operation is an operation, which moves

the structure in such a way that its final position is physically indistinguishable

from its initial position. If there is at least one point in the structure that does

not change its position by any symmetry operations of a group, that group is

called point group. There are in total five different types of symmetry operations

in a point group: (1) identity operation, (2) rotation operation about the princi-

pal axis, (3) reflection operation, (4) rotation operation about an improper axis

(rotation-reflection operation), and (5) inversion operation.

Prismatic tensegrity structures, e.g., the simplest structure in three-dimensional

space as shown in Fig. 6.1, are of dihedral symmetry: they are physically indis-

tinguishable by the symmetry operations of dihedral group Dn. Dihedral group is

a point group, and consists of (1) identity operation, (2) (cyclic) rotation opera-

tions, and (3) rotation-reflection operations (two-fold rotations). For convenience,

we take z-axis of the Cartesian coordinate system as the principal axis, and regard

the point (0,0,0) as the origin. The origin does not change its position by any

symmetry operations of the group. A dihedral group Dn is of order 2n: it consists

of n-fold rotations Ci
n (i ∈ {0, . . . , n− 1}) about z-axis, and n two-fold rotations

C2,i (i ∈ {0, . . . , n− 1}) about the axes through the origin and perpendicular to

z-axis.

A prismatic tensegrity structure with Dn symmetry consists of 2n nodes, 2n

horizontal cables, n vertical cables and n struts. We assign that cables carry

tension and struts carry compression. Nodes of a prismatic structure lie in two

parallel planes; horizontal cables connect the nodes in the same plane, and vertical

cables and struts connect those in different planes. The nodes and horizontal

cables have one-to-one correspondence to the symmetry operations of the group,

while struts and vertical cables have one-to-two correspondence.

6.2.2 Matrix Representation

Group multiplication table describes combinations of two operations (elements)

of a group. If a set of matrices obeys the group multiplication table of a group,

these matrices are said to form a matrix representation of that group. A matrix

representation that can be reduced to a linear combination (direct sum) of several
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6.2 Group and Matrix Representation

Table 6.1: Irreducible matrix representations Rµ
i of dihedral group Dn. The

first column denotes representations µ of the group, the first row denotes its
symmetry operations with i running from 0 to n − 1. Cik and Sik respectively
denote cos(2ikπ/n) and sin(2ikπ/n). x, y, z and Rx, Ry, Rz respectively stand
for symmetry operations of the corresponding coordinates and rotations about
those axes.

Dn Ci
n C2,i

A1 1 1
A2 1 −1 z, Rz

(B1) (−1)i (−1)i n even
(B2) (−1)i (−1)(i+1) n even

E1

(
Ci −Si

Si Ci

) (
Ci Si

Si −Ci

)
(x, y) (Rx, Ry)

Ek

(
Cik −Sik

Sik Cik

) (
Cik Sik

Sik −Cik

)
k ∈ {2, . . . , p}

Rµ
i Rµ

n+i i ∈ {0, . . . , n− 1}

matrix representations is called reducible matrix representation, otherwise, they

form an irreducible matrix representation. Characters are defined as traces of

the irreducible representation matrices. They will be shown to be important in

identifying the block structures of the symmetry-adapted matrices.

A dihedral group Dn consists of two one-dimensional irreducible matrix rep-

resentations A1 and A2 for n odd, or four with B1 and B2 in addition for n even,

and p two-dimensional irreducible matrix representations Ek (k = 1, . . . , p) where

p =

{
(n− 1)/2, n odd
(n− 2)/2, n even

. (6.2)

The irreducible matrix representations of a dihedral group Dn are listed in Ta-

ble 6.1. The one-dimensional matrix representations are unique, and their charac-

ters are the representation matrices themselves; characters of the two-dimensional

representation matrices are also unique—character of the cyclic rotation Ci
n for

Ek is 2Cik, and that of the two-fold rotation C2,i for any Ek is zero, but we

may have some limited choices for their representation matrices. In Table 6.1,

we chose the positive z-direction as the positive direction of rotations to formu-

late the two-dimensional representation matrices. The symbols x, y and z in the

fourth column of the table respectively stand for x-, y- and z-coordinates, and
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6.3 Symmetry-adapted Force Density Matrix

Rx, Ry and Rz stand for rotations about these axes (Atkins et al., 1970). We will

show in the next chapter that the blocks of the symmetry-adapted force density

matrix corresponding to the representations that stand for coordinates—A2 and

E1 representations in the case of dihedral group—should be singular to ensure a

non-degenerate configuration; and we will point out in Section 5 that the rigid-

body motions exist in the blocks of the stiffness matrices corresponding to these

representations.

6.3 Symmetry-adapted Force Density Matrix

This section presents the direct strategy for the symmetry-adapted force density

matrix, of which the blocks are written as sums of the products of the force den-

sities with their associated irreducible representation matrices. Since the nodes

of prismatic structures form a regular representation—they have one-to-one cor-

respondence to the symmetry operation of the dihedral group, they are taken as

example structures for the presentation of the symmetry-adapted force density

matrix.

6.3.1 Force Density Matrix

Every node of a prismatic tensegrity structure is connected by three different

types of members: two horizontal cables, one vertical cable and one strut; and

each type of members has the same self-stress and length. The nodes in the top

plane of the structure are numbered from 0 to n− 1, and those in the bottom are

n to 2n− 1. We use the notation Dh,v
n to describe the connectivity of a prismatic

tensegrity with Dn symmetry: h and v respectively describe the connectivity of

the horizontal and vertical cables, while that of struts is fixed. We describe the

connectivity of a reference node N0 as follows — all other connections are then

defined by the symmetry.

[L1] Without loss of generality, we assume that a strut connects node N0 in the

top plane to node Nn in the bottom plane.
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6.3 Symmetry-adapted Force Density Matrix

[L2] A horizontal cable connects node N0 to node Nh: symmetry also implies

that a horizontal cable must also connect node N0 to node Nn−h. We restrict

1 ≤ h ≤ n/2.

[L3] A vertical cable connects node N0 in the top plane to node Nn+v in the

bottom plane. We restrict 1 ≤ v ≤ n/2 (choosing n/2 ≤ v ≤ n would give

essentially the same set of structures, but in left-handed versions).

For example, the structure in Fig. 6.1 is denoted as D1,1
3 .

Let qh, qv and qs denote the force densities (self-stress to length ratios) of

horizontal cables, vertical cables and struts, respectively. Let I denote the set

of members connected to node i. The (i, j)-component E(i,j) of the force density

matrix E ∈ <2n×2n is given as

E(i,j) =





∑
k∈I

qk for i = j,

−qk if nodes i and j are connected by member k,
0 for other cases.

(6.3)

From the numbering and connectivity of nodes, E can be written as

E =

(
E1 E2

ET
2 E1

)
. (6.4)

Denote q = 2qh + qs + qv, and let Im ∈ <n×n be a matrix with only one non-zero

element I(i,i+m) = 1 (i ∈ {1, 2, . . . , n} and i+m = i+m−n if i+m > n) in each

row and column, E1 and E2 (∈ <n×n) are

E1 = qI0 − qhI
h − qhI

n−h and E2 = −qsI
0 − qvI

v. (6.5)

Note that I0 is an n-by-n identity matrix.

Consider the structure D1,2
4 for example. It has D4 symmetry, and its con-

nectivity is h = 1, v = 2. From the definition of the force density matrix, we

have

E1 = qI0 − qhI
1 − qhI

3 =




q −qh 0 0
−qh q −qh 0
0 −qh q −qh

−qh 0 −qh q




E2 = −qsI
0 − qvI

2 =




−qs −qv 0 0
0 −qs −qv 0
0 0 −qs −qv

−qv 0 0 −qs


 ,
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6.3 Symmetry-adapted Force Density Matrix

where

Ih = I1 =




0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0


 , In−h = I3 =




0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0


 ,

and Iv = I2 =




0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0


 .

6.3.2 Symmetry-adapted Formulation

In this subsection, we present the direct formulation of the symmetry-adapted

force density matrix, structure of which can be identified using the linear combi-

nation of representations of the nodes (Fowler and Guest, 2000; Kettle, 1995).

Linear combination of representations for transformation of nodes (members)

are helpful in identifying structure of the symmetry-adapted force density matrix.

For this purpose, every node (member) is considered to be physically distinct,

unlike the case where all nodes and all members of the same type are regarded to

be physically indistinguishable when we described symmetry of the structure in

Section 2. To consider transformation of nodes under symmetry operations, we

use the structure with D3 symmetry in Fig. 6.1 as an example structure. Rotation

C1
3 exchanges positions of nodes as

N0 → N1 → N2 → N0 and N3 → N4 → N5 → N3.

Moreover, transformations of the nodes under each symmetry operation of D3
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6.3 Symmetry-adapted Force Density Matrix

can be written in matrix form RN as

operations C0
3 C1

3 C2
3

RN




1
1

1
1

1
1







0 1
0 1

0 1
0 1

0 1
1 0







0 1
0 1

0 1
0 1

1 0
1 0




trace(RN) 6 0 0

operations C2,0 C2,1 C2,2

RN




0 1
0 1

0 1
1 0

1 0
1 0







0 1
0 1

0 1
1 0

1 0
1 0







0 1
0 1

0 1
1 0

1 0
1 0




trace(RN) 0 0 0

Trace of RN is equal to the number of nodes that remain unchanged under a

specific symmetry operation. The matrices RN indeed form a reducible matrix

representation of the group D3, since they satisfy its multiplication table. This

reducible matrix representation can be rewritten as a linear combination (direct

sum) of its irreducible matrix representations, making use of the important prop-

erty that a change in coordinate system will not change the trace, or character,

of a representation matrix. For the structure with D3 symmetry for example,

traces of the representation matrices can be summarized as

operations C0
3 C1

3 C2
3 C2,0 C2,1 C2,2

Γ(N) { 6, 0, 0; 0, 0, 0 }
To identify how many copies of each irreducible representation are present in their

linear combination Γ(N), such that trace of the reducible representation matrix

under a symmetry operation is equal to the sum of those of irreducible matrices

under that operation, we consider

Γ(N) {6, 0, 0; 0, 0, 0}
= A1 = {1, 1, 1; 1, 1, 1}
+A2 +{1, 1, 1; −1, −1, −1}

+2E1 +2{2, 2× (−1
2
), 2× (−1

2
); 0, 0, 0}
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From which, we learn that the reducible matrix representation of the nodes is

direct sum of one copy of each one-dimensional irreducible matrix representation

and two copies of each two-dimensional; i.e., Γ(N) = A1 + A2 + 2E1, for the

structure with D3 symmetry.

In general, any node of a prismatic tensegrity structure with Dn symmetry

is transformed to a different node by any symmetry operation except for the

identity operation: all nodes, in total 2n, remain unchanged under the identity

operation such that the trace of RN corresponding to it is 2n, and RN have

zero traces under all other symmetry operations of the group. Hence, we have

Γ(N) = {2n, 0, . . . , 0; 0, . . . , 0}. From characters of the irreducible matrices of

dihedral group, the reducible matrix representation of the nodes can be written

as a linear combination Γ(N) of the irreducible representations in a general form

as follows

Γ(N) = A1 + A2 + (B1 + B2) + 2
p∑

k=1

Ek

= {1, . . . , 1; 1, . . . , 1} A1

+ {1, . . . , 1; −1, . . .− 1} A2

+ ({1, . . . , (−1)i, . . . , (−1)n; 1, . . . , (−1)i, . . . , (−1)n}) (B1)
+ ({1, . . . , (−1)i, . . . , (−1)n; −1, . . . , (−1)i+1, . . . , (−1)n+1}) (B2)

+ 2
p∑

k=1

{2C0k, . . . , 2Cik, . . . , 2C(n−1)k; 0, . . . , 0} 2Ek

= {2n, 0, . . . , 0; 0, . . . , 0}.
(6.6)

We use (̃·) to denote the symmetry-adapted form of a matrix. Γ(N) charac-

terizes structure of the symmetry-adapted force density matrix Ẽ.

[L1] The number of the representation µ in Γ(N) indicates dimensions of Ẽµ.

Hence, we learn from Eq. (6.6) that the blocks corresponding to the one-

dimensional representations are 1-by-1 matrices, and those of two-dimensional

representations are 2-by-2 matrices.

[L2] Dimensions of a representation indicate times of its corresponding block

appearing in the symmetry-adapted form; thus, each one-dimensional rep-

resentation has only one copy, and each two-dimensional representation has

two copies of blocks lying in the leading diagonal of Ẽ.
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Thus, the block structure of Ẽ can be written in a general form as follows

according to the linear combination Γ(N) of representations for transformation

of nodes in Eq. (6.6)

Ẽ
2n×2n

=




ẼA1

1×1

ẼA2

1×1

(ẼB1

1×1
)

(ẼB2

1×1
)

ẼE1

2×2

ẼE1

2×2

. . .

ẼEp

2×2

ẼEp

2×2




, (6.7)

where the blocks ẼB1 and ẼB2 corresponding to representations B1 and B2 exist

only if n is even.

In conventional methods, Ẽ is usually obtained using the unitary transforma-

tion matrix T ∈ <2n×2n:

Ẽ = TETT, (6.8)

where TTT is an identity matrix:

TTT = I
2n×2n

. (6.9)

Although the transformation matrix is not needed to derive the blocks Ẽµ in

our direct strategy as presented later in Eq. (6.12), it is necessary for the proof

of its formulation. Hence, we introduce the details of T for obtaining Ẽ as in

Eq. (6.8) before presenting its direct formulation in Lemma 1. Because nodes

of a symmetric prismatic tensegrity structure have one-to-one correspondence

to the symmetry operations; i.e., any node can be transformed to another by

only one symmetry operation of that group, T can be easily obtained from the

irreducible matrix representations: for one-dimensional representation µ, the row

Tµ ∈ <1×2n of T corresponding to µ is

Tµ =
1√
2n

(
Rµ

0 ,R
µ
1 , . . . ,R

µ
j , . . . ,R

µ
2n−1

)
, (6.10)
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where Rµ
j is the character of the one-dimensional representation µ, and Tµ is nor-

malized as Tµ(Tµ)> = 1 by dividing
√

2n. For example, TA2 for representation

A2 of the structure with D3 symmetry is

TA2 =
1√
6

(1, 1, 1,−1,−1,−1) .

For a two-dimensional representation Ek, there are four rows in TEk ∈ <4×2n.

The irreducible representation matrix REk
j of the jth symmetry operation corre-

sponding to representation Ek is

REk
j =

(
REk

j (1, 1) REk
j (1, 2)

REk
j (2, 1) REk

j (2, 2)

)

The four elements of REk
j are located in the jth column of TEk as follows to

construct the transformation matrix

Tµ =
1√
n




Rµ
0 (1, 1), . . . , Rµ

j (1, 1), . . . , Rµ
2n−1(1, 1)

Rµ
0 (1, 2), . . . , Rµ

j (1, 2), . . . , Rµ
2n−1(1, 2)

Rµ
0 (2, 1), . . . , Rµ

j (2, 1), . . . , Rµ
2n−1(2, 1)

Rµ
0 (2, 2), . . . , Rµ

j (2, 2), . . . , Rµ
2n−1(2, 2)


 =

1√
n




(Cjk) , (Cjk)
− (Sjk) , (Sjk)

(Sjk) , (Sjk)
(Cjk) , − (Cjk)


 ,

(6.11)

where [Cjk] and [Sjk] (∈ <n) are row vectors:

(Cjk) =
(
C0, Ck, . . . , Cjk, . . . , C(n−1)k

)

(Sjk) =
(
S0, Sk, . . . , Sjk, . . . , S(n−1)k

)
, for j = 0, . . . , n− 1.

For example, TE1 for the structure with D3 symmetry is

TE1 =
1√
3




C0 C1 C2 C0 C1 C2

−S0 −S1 −S2 S0 S1 S2

S0 S1 S2 S0 S1 S2

C0 C1 C2 −C0 −C1 −C2




=
1√
3




1 −1
2

−1
2

1 −1
2

−1
2

0 −
√

3
2

√
3

2
0

√
3

2
−
√

3
2

0
√

3
2

−
√

3
2

0
√

3
2

−
√

3
2

1 −1
2

−1
2

−1 1
2

1
2


 .

Combining Tµ for all representations to T, it is easy to verify that T is a uni-

tary transformation matrix satisfying Eq. (6.9) from the great orthogonality theo-

rem (Kettle, 1995). Substituting T into Eq. (6.8), the force density matrix can be
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Table 6.2: Selected irreducible representation matrices corresponding to the nodes
connecting to node 0.

identity horizontal cable strut vertical
µ Rµ

0 Rµ
h Rµ

n−h Rµ
n Rµ

n+v

A1 1 1 1 1 1
A2 1 1 1 −1 −1
B1 1 (−1)h (−1)n−h 1 (−1)v

B2 1 (−1)h (−1)n−h −1 (−1)v+1

Ek

(
1 0
0 1

) (
Chk −Shk

Shk Chk

) (
Chk Shk

−Shk Chk

) (
1 0
0 −1

) (
Cvk Svk

Svk −Cvk

)

block-diagonalized with the structure as in Eq. (11.9). Super stability investiga-

tion and self-equilibrium analysis are then significantly simplified by dealing with

these blocks, dimensions of which are only one or two no matter how complicated

the structure is. However, it is difficult to derive analytical symmetry-adapted

force density matrix for complicated structure that has a large number of nodes

in this way, since size of the transformation matrix T increases in proportion

to the number of its nodes. Moreover, the symmetry-adapted formulation by

Eq. (6.8) can only deal with each specific structure, but not all structures with

similar symmetry properties. To have more systematic solution, Lemma 1 below

presents a direct way for deriving the symmetry-adapted force density matrix of

the structures with dihedral symmetry.

In Lemma 1, only a representative node, e.g., node 0, is sufficient to present

the blocks Ẽµ of Ẽ corresponding to representation µ. Consider the structure

Dh,v
n in general. Irreducible representation matrices corresponding to the nodes

connected to it as members are Rµ
0 , Rµ

h, Rµ
n−h, Rµ

n and Rµ
n+v, which are listed in

Table 6.2. In the following lemma, we show that blocks Ẽµ of each representation

µ can be directly written as sum of products of the force densities and their

corresponding irreducible representation matrices.

Lemma 6.1 The block Ẽµ corresponding to representation µ of the symmetry-

adapted force density matrix Ẽ can be written in a general form as

Ẽµ = qRµ
0 − qhR

µ
h − qhR

µ
n−h − qsR

µ
n − qvR

µ
n+v (6.12)
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Proof. Using components Tµ of T corresponding to representation µ, the block

Ẽµ can be computed as

Ẽµ = TµE(Tµ)T (6.13)

[L1] One-dimensional representations

For the one-dimensional representations, Tµ is a vector denoted as Tµ =

[α1, α2]. From Eq. (11.5), Eq. (6.13) becomes

Ẽµ = α1E1α
T
1 + α2E1α

T
2 + 2α1E2α

T
2 . (6.14)

Consider representation A1 for example. All irreducible representation ma-

trices (equal to their characters) are equal to 1, hence, all the elements in

TA1 (also in α1 and α2) are 1√
2n

. Therefore, we have

α1I
aαT

1 + α2I
aαT

2 =
2n

2n
= 1 = RA1

a , a ∈ {0, h, n− h}. (6.15)

In a similar manner, we can also have

2α1I
bαT

2 = 2
n

2n
= 1 = RA1

n+b, b ∈ {0, v}. (6.16)

From Eqs. (11.6), (6.14), (6.15) and (6.16), we have

ẼA1 = α1E1α
T
1 + α2E1α

T
2 + 2α1E2α

T
2

= α1(qI
0 − qhI

h − qhI
n−h)αT

1 + α2(qI
0 − qhI

h − qhI
n−h)αT

2

+2α1(−qsI
0 − qvI

v)αT
2

= q(α1I
0αT

1 + α2I
0αT

2 )− qh(α1I
hαT

1 + α2I
hαT

2 )

−qh(α1I
n−hαT

1 + α2I
n−hαT

2 )− qs(2α1I
0αT

2 )− qv(2α1I
vαT

2 )

= qRA1
0 − qhR

A1
h − qhR

A1
n−h − qsR

A1
n − qvR

A1
n+v,

where a ∈ {0, h, n − h} and b ∈ {0, v}. hence, Eq. (6.12) holds for repre-

sentation A1.

153



6.3 Symmetry-adapted Force Density Matrix

For other one-dimensional representations A2, B1 and B2, the proof is sum-

marized as follows

A2 : α1I
aαT

1 + α2I
aαT

2 = 1
2n

n−1∑
i=0

[1 + (−1)(−1)] = 1 = RA2
a

2α1I
bαT

2 = 2
2n

n−1∑
i=0

[1× (−1)] = −1 = RA2
n+b

B1 : α1I
aαT

1 + α2I
aαT

2 = 2
2n

n−1∑
i=0

(−1)i+(i+a) = (−1)a = RB1
a

2α1I
bαT

2 = 2
2n

n−1∑
i=0

(−1)i+(i+b) = (−1)b = RB1
n+b

B2 : α1I
aαT

1 + α2I
aαT

2 = 2
2n

n−1∑
i=0

[(−1)i+(i+a) + (−1)(i+1)+(i+1+a)] = (−1)a = RB2
a

2α1I
bαT

2 = 2
2n

n−1∑
i=0

(−1)i+(i+1+b) = (−1)b+1 = RB2
n+b.

(6.17)

Therefore, the lemma is true for the blocks Ẽµ corresponding one-dimensional

representations.

[L2] Two-dimensional blocks

Let TEk
r and TEk

s (r, s ∈ {1, 2, 3, 4}) respectively denote the rth and sth

rows of TEk ∈ <4×4. Denoting TEk
r = [α1, α2] and TEk

s = [β1, β2], the

(r, s)th element ẼEk

(r,s) of ẼEk can be computed as follows from Eq. (11.5)

ẼEk

(r,s) = TEk
r E(TEk

s )T

= (α1E1β
T
1 + α2E1β

T
2 ) + (α1E2β

T
2 + β1E2α

T
2 )

= (qσ0
(r,s) − qhσ

h
(r,s) − qhσ

n−h
(r,s)) + (−qsτ

0
(r,s) − qvτ

v
(r,s)), (6.18)

where α2E
T
2 βT

1 = β1E2α
T
2 has been applied.

From Eq. (11.6), we have

σa
(r,s) = α1I

aβT
1 + α2I

aβT
2 with a ∈ {0, h, n− h}

τ b
(r,s) = α1I

bβT
2 + β1I

bαT
2 with b ∈ {0, v}. (6.19)

Consider the case of (r, s) = (1, 1) for example. From Eq. (6.19), we have

following equations for a ∈ {0, h, n − h} and b ∈ {0, v} since α1 = α2 =
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6.3 Symmetry-adapted Force Density Matrix

β1 = β2 =
(
C0, Ck, . . . , Cjk, . . . , C(n−1)k

)

σa
(1,1) = 2α1I

aαT
1 = 2

n−1∑
i=0

Cik√
n

C(i+a)k√
n

=
2

n

n−1∑
i=0

Cik(CikCak − SikSak)

=
Cak

n

n−1∑
i=0

(1 + C2ik)− Sak

n

n−1∑
i=0

S2ik = Cak

τ b
(1,1) = 2α1I

bαT
1 = 2

1

n

n−1∑
i=0

CikC(i+b)k =
2

n

n−1∑
i=0

Cik(CikCbk − SikSbk) = Cbk,

where
n−1∑
i=0

S2ik =
n−1∑
i=0

C2ik = 0 has been applied.

In a similar way, we have the following table for σa
(r,s) (a ∈ {0, h, n− h})

r\s 1 2 3 4
1 Cak 0 Sak 0
2 0 Cak 0 −Sak

3 Sak 0 Cak 0
4 0 −Sak 0 Cak

(6.20)

and for τ b
(r,s) (b ∈ {0, v}), we have

r\s 1 2 3 4
1 Cbk Sbk 0 0
2 Sbk −Cbk 0 0
3 0 0 Cbk Sbk

4 0 0 Sbk −Cbk

(6.21)

Therefore, we have

(
ẼEk

ẼEk

)
= q




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


− qh




Chk 0 Shk 0
0 Chk 0 −Shk

Shk 0 Chk 0
0 −Shk 0 Chk




−qh




C(n−h)k 0 S(n−h)k 0
0 C(n−h)k 0 −S(n−h)k

S(n−h)k 0 C(n−h)k 0
0 −S(n−h)k 0 C(n−h)k




−qs




1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1


− qv




Cvk Svk 0 0
Svk −Cvk 0 0
0 0 Cvk Svk

0 0 Svk −Cvk


 .
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Therefore, the following equation holds

ẼEk = qREk
0 − qhR

Ek
h − qhR

Ek
n−h − qsR

Ek
n − qvR

Ek
n+v, (6.22)

since Ch + Cn−h = 2Ch, Sh + Sn−h = 0 and

REk
0 =

(
1 0
0 1

)
, REk

h + REk
n−h = 2

(
Chk 0
0 Chk

)
,

REk
n =

(
1 0
0 −1

)
, REk

n+v =

(
Cvk Svk

Svk −Cvk

)
,

Thus, the lemma also holds for the two-dimensional representations.

In summary, the lemma is proved.

Using the following force densities for each type of members that will be

derived in the next chapter

qv = −qs, t =
qh

qv

= +

√
2− 2Cv

2(1− Ch)
, (6.23)

Eq. (6.12) can be rewritten as follows

1

qv

Ẽµ = 2tRµ
0 − tRµ

h − tRµ
n−h + Rµ

n −Rµ
n+v. (6.24)

6.4 Symmetry-adapted Geometrical Stiffness Ma-

trix

In this section, we present the direct strategy for the symmetry-adapted geomet-

rical stiffness matrix, which will be used in the next chapter for the investigation

of prestress stability of prismatic tensegrity structures based on the reduced stiff-

ness matrix (quadratic form of the geometrical stiffness matrix with respect to

the mechanisms).

From Table 6.1, we can see that the representations E1 and A2 respectively

stand for symmetry operations on xy- and z-coordinates. Hence, direct sum

of them, E1 + A2, stands for coordinates a node in three-dimensional external
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6.4 Symmetry-adapted Geometrical Stiffness Matrix

Table 6.3: Reducible representation matrices for external coordinate system.

N0 =




1 0 0
0 1 0
0 0 1


 , Nh =




Ch −Sh 0
Sh Ch 0
0 0 1


 Nn−h =




Ch Sh 0
−Sh Ch 0

0 0 1




Nn =




1 0 0
0 −1 0
0 0 −1


 , Nn+v =




Cv Sv 0
Sv −Cv 0
0 0 −1




(Cartesian) coordinate system. External coordinates of the whole structure can

be constructed by attaching E1+A2 to each node, such that the linear combination

of representations of nodal displacements Γ(D) can be defined as follows using

that of the nodes Γ(N)

Γ(D) = Γ(N)× (E1 + A2)

= (A1 + A2 + (B1 + B2) + 2

p∑

k=1

Ek)× (E1 + A2)

= 3A1 + 3A2 + (3B1 + 3B2) + 6

p∑

k=1

Ek, (6.25)

where × denotes direct product (table of direct product of two representations of

dihedral group can be found in many textbooks on group representation theory,

e.g., the concise book by Altmann and Herzig (1994)). Similar to Γ(N), Eq. (6.25)

characterizes structure of the symmetry-adapted geometrical stiffness matrix K̃G:

the blocks corresponding to the one- and two-dimensional representations are 3-

by-3 and 6-by-6 matrices, respectively.

From Eq. (6.25), (reducible) representation matrix R̄µ
m of the mth operation

of nodal displacements can be formulated as follows using the direct sum of

irreducible matrices of E1 and A2:

R̄µ
m = Rµ

m ⊗
(

RE1
m 0

O RA2
m

)
= Rµ

m ⊗Nm (6.26)

or R̄µ
m = Nm ⊗Rµ, (6.27)

where Nm for m ∈ {0, h, n − h, n, n + v} are listed in Table 6.3. These two

formulations are equivalent, and we will consider only Eq. (6.26) in the following.
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6.4 Symmetry-adapted Geometrical Stiffness Matrix

Similarly to the symmetry-adapted force density matrix, we have the following

lemma for the symmetry-adapted geometrical stiffness matrix K̃G.

Lemma 6.2 The blocks K̃µ
G of the symmetry-adapted geometrical stiffness matrix

K̃G can be written in a general form as

1

qv

K̃µ
G = 2tR̄µ

0 − tR̄µ
h − tR̄µ

n−h + R̄µ
n − R̄µ

n+v. (6.28)

Proof. Lemma 2 can be proved in a similar manner as Lemma 1 using the trans-

formation matrix, which is constructed from the reducible matrix representations

as in Eq. (6.26). And the detailed proof is skipped here.

From Eq. (6.28), the blocks K̃A1
G and K̃A2

G can be written as

1

qv

K̃A1
G =




2t(1− Ch) + 1− Cv −Sv 0
−Sv 2t(1− Ch)− 1 + Cv 0
0 0 0




1

qv

K̃A2
G =




2t(1− Ch)− 1 + Cv Sv 0
Sv 2t(1− Ch) + 1− Cv 0
0 0 0


 . (6.29)

It is easy to verify that the eigenvalues of K̃A1
G are the same as those of ẼE1

and ẼA2 ; similar relationship between the eigenvalues of K̃A2
G and ẼE1 , ẼA1 also

holds. This can also be interpreted using the direct product of representation

A1 (or A2) of the force density matrix and the representation (E1 + A2) of the

attached Cartesian coordinate system as

A1 × (E1 + A2) = E1 + A2

A2 × (E1 + A2) = E1 + A1.
(6.30)

In a similar way, relationships between the eigenvalues of symmetry-adapted

forms of the force density matrix and the geometrical stiffness matrices are sum-

marized in Table 6.4.

Blocks K̃B1
G and K̃B2

G , when they exist for n even, are

1

qv

K̃B1
G =




φ1 (−1)v+1Sv 0
(−1)v+1 φ2 0

0 0 φ3




1

qv

K̃B2
G =




φ4 (−1)vSv 0
(−1)v φ5 0

0 0 φ6


 , (6.31)
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Table 6.4: Relationships between eigenvalues of symmetry-adapted forms of the
geometrical stiffness matrix and the force density matrix.

K̃µ
G Ẽµ n

3A1 A2 E1

3A2 A1 E1

3B1 B2 Ep even
3B2 B1 Ep even
6E1 A1 A2 E1 E2

6Ek Ek−1 Ek Ek+1

6Ep Ep−1 2Ep odd
6Ep B1 B2 Ep−1 Ep even

where

φ1 = 2t(1− (−1)hCh) + 1− (−1)vCv φ2 = 2t(1− (−1)hCh)− 1 + (−1)vCv

φ3 = 2t(1− (−1)h)− 1 + (−1)v φ4 = 2t(1− (−1)hCh) + 1 + (−1)vCv

φ5 = 2t(1− (−1)hCh)− 1− (−1)vCv φ6 = 2t(1− (−1)h)− 1− (−1)v

.

(6.32)

And blocks K̃Ek
G of the two-dimensional representations Ek are

1

qv

K̃Ek
G =




ϕ1 + ϕ2 −ϕ3 0 −ϕ4 −ϕ5 − ϕ6 0
−ϕ3 ϕ1 − ϕ2 0 ϕ5 − ϕ6 ϕ4 0

0 0 ϕ7 − ϕ8 0 ϕ9

−ϕ4 ϕ5 − ϕ6 0 ϕ1 − ϕ2 ϕ3 0
−ϕ5 − ϕ6 ϕ4 0 ϕ3 ϕ1 + ϕ2 0

0 ϕ9 0 0 ϕ7 + ϕ8




,

(6.33)

where
ϕ1 = 2t(1− ChChk) ϕ2 = 1− CvCvk ϕ3 = SvCvk

ϕ4 = CvSvk ϕ5 = 2tShShk ϕ6 = SvSvk

ϕ7 = 2t(1− Chk) ϕ8 = 1− Cvk ϕ9 = Svk.
(6.34)

6.5 Symmetry-adapted Equilibrium Matrix

This section presents the symmetry-adapted equilibrium matrix D̃ and the mech-

anisms M̃ lying in the null-space of its transpose D̃T.
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C 2,0

C 2,1

C 2,0

C 2,2
C 2,3

C 2,4

C 2,1

C 2,2

C 2,4

C 2,3

C 2,0

C 2,1

C 2,0

C 2,2

C 2,4

C 2,1

C 2,2

C 2,4

C 2,3

C 2,3

(a) h = 1, v = 1 (b) h = 1, v = 2

Figure 6.2: Structures Dh,v
n with n(= 5) odd. One strut and one vertical cable

remain unchanged by any two-fold rotations, and all of them are transformed to
different struts by n-fold rotations except for identity operation.

6.5.1 Block Structure

Unlike the force density matrix E or the geometrical stiffness matrix KG, the

equilibrium matrix D ∈ <6n×4n of a prismatic tensegrity structure is not square.

In conventional methods, the symmetry-adapted equilibrium matrix D̃ can be

computed as follows using the transformation matrices TD and TM respectively

for external and internal coordinate systems (see, for example, Kangwai and

Guest (2000) or Kawaguchi and Suzuki (2005))

D̃
6n×4n

= TD
6n×6n

D( TM
4n×4n

)T (6.35)

To make clear the structure of D̃, we firstly investigate linear combination of

representations of its members (internal coordinates). It should be noted that

different types of members cannot be transformed to each other by any symme-

try operation. Thus, the horizontal cables, struts and vertical cables should be

considered separately.

6.5.1.1 Horizontal Cables

Because horizontal cables have one-to-one correspondence to symmetry opera-

tions as the nodes, the linear combination Γ(Mh) of the representations of them
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C 2,0

C 2,1

C 2,2

C 2,3

C 2,4
C 2,5

C 2,6

C 2,7

C 2,0

C 2,1

C 2,2

C 2,3
C 2,4

C 2,5

C 2,6

C 2,7

C 2,0

C 2,1

C 2,2

C 2,3

C 2,4
C 2,5

C 2,6

C 2,7

C 2,0

C 2,1

C 2,2

C 2,3
C 2,4

C 2,5

C 2,6

C 2,7

(a) h = 1, v = 1 (b) h = 1, v = 2

Figure 6.3: Structures Dh,v
n with n(= 8) even. Two struts remain unchanged by

a two-fold rotation C2,2i, and all struts are transformed to other struts by C2,2i+1.
All vertical cables are changed by C2,2i, and two are unchanged by C2,2i+1 for v
odd; Two vertical cables are unchanged by C2,2i, and all are changed by C2,2i+1

for v even.

is the same as that of the nodes, which is

Γ(Mh) = A1 + A2 + (B1 + B2) + 2

p∑

k=1

Ek (6.36)

6.5.1.2 Struts and Vertical Cables

Struts or vertical cables have one-to-two correspondence to symmetry operations;

i.e., there are in total two symmetry operations that can transform a member to

itself. To derive the linear combinations of their representations, we need to

consider the following cases.

[L1] n odd

When n is odd, there are always one strut and one vertical cable remain

unchanged by any two-fold rotation (see the structures with D5 symmetry

shown in Fig. 6.2 as an example). Hence, we have

Γ(Ms) = Γ(Mv) = {n, 0, 0, . . . , 0; 1, 1, . . . , 1} = A1 +

p∑

k=1

Ek (6.37)
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[L2] n even

For any two-fold rotation about C2,2i (i = 0, 1, . . . , n − 1) axis, there are

always two struts remain unchanged while all struts change their positions

by the two-fold rotations about C2,2i+1 axes. Therefore

Γ(Ms) = {n, 0, 0, . . . , 0; 2, 0, 2, 0, . . . , 2, 0} = A1 + B1 +

p∑

k=1

Ek (6.38)

For the linear combination of vertical cables, we need to consider the fol-

lowing two cases dependent on their connectivity v

(a) v odd: e.g., Fig. 6.3.(a)

For any two-fold rotation about C2,2i axis, all vertical cables change

their positions, while there are always two vertical cables remain un-

changed for any two-fold rotation about C2,2i+1 axis, so we have

Γ(Mv) = {n, 0, 0, . . . , 0; 0, 2, 0, 2, . . . , 0, 2} = A1 +B2 +

p∑

k=1

Ek (6.39)

(b) v even: e.g., Fig. 6.3.(b)

By applying any two-fold rotation about C2,2i axis, two vertical ca-

bles remain unchanged, while all are changed by applying any C2,2i+1

rotation, thus

Γ(Mv) = {n, 0, 0, . . . , 0; 2, 0, 2, 0, . . . , 2, 0} = A1 +B1 +

p∑

k=1

Ek (6.40)

The linear combinations of representations of the horizontal cables Γ(Mh),

struts Γ(Ms) and vertical cables Γ(Mv) are summarized as

v odd v even

Γ(Mh) A1 + A2 + (B1 + B2) + 2
p∑

k=1

Ek

Γ(Ms) A1 + (B1) +
p∑

k=1

Ek

Γ(Mv) A1 + (B2) +
p∑

k=1

Ek A1 + (B1) +
p∑

k=1

Ek

Γ(M) 3A1 + A2 + (2B1 + 2B2) + 4
p∑

k=1

Ek 3A1 + A2 + (3B1 + B2) + 4
p∑

k=1

Ek

(6.41)
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Structure of D̃ can be elucidated based on the linear combination Γ(D) of

representations of displacements in Eq. (6.25) and that Γ(M) of members in

Eq. (6.41). For example, the A1 block D̃A1 is a 3-by-3 matrix, because there

are three A1 representations in both of Γ(D) and Γ(M). Furthermore, columns

of D̃A1 come from the horizontal cables, struts and vertical cables separately,

because all of Γ(Mh), Γ(Ms) and Γ(Mv) have one representation A1. Similarly,

D̃A2 is a 3-by-1 matrix (vector), and the only column comes from the horizontal

cables because there is no representation A2 exists for struts or vertical cables.

The structure of other blocks can be identified based on Γ(D) and Γ(M) in a

similar manner.

6.5.2 Unitary Member Direction

The concept of unitary member direction introduced in this subsection has a

vital role in deriving the symmetry-adapted equilibrium matrix, and then, the

mechanisms.

The equilibrium matrix D can be formulated as follows (see details in Chapter

2)

D =




Dx

Dy

Dz


 =




CTUL−1

CTVL−1

CTWL−1


 , (6.42)

where C ∈ <4n×2n describes connectivity of the structure; U, V and W (∈
<4n×4n) are diagonal matrices, of which the diagonal entries are coordinate differ-

ences in each of directions x, y and z; and L∈ <4n×4n is a diagonal matrix, of which

diagonal entries are member lengths. Hence, diagonal entries of UL−1, UL−1,

and UL−1 are components of the unitary member directions in each direction.

When we apply transformation matrices to D to derive its symmetry-adapted

form D̃ as in Eq. (6.35), we are actually dealing with the unitary member direc-

tions. Hence, the symmetry-adapted equilibrium matrix can be directly derived

using these unitary member directions.

Consider a unit cell of the structure as shown in Fig. 6.4. The coordinate of

the reference node can be written in a general form as follows (details for them

163



6.5 Symmetry-adapted Equilibrium Matrix

dh

dn-h

dvds

Figure 6.4: Unit cell of prismatic tensegrity structures with dihedral symmetry.
Every node is connected by two horizontal cables, one vertical cable and one
strut.

can be found in Chapter 7)

X0 =




x0

y0

z0


 =




Cv − 1 +
√

2(1− Cv)
Sv
H
2


 =




2Sv/2(1− Sv/2)
Sv
H
2


 (6.43)

where H denotes height(-to-radius ratio) of the structure. Other nodes of the

structure can be determined using symmetry operations.

Denote the lengths of the strut, horizontal cable and vertical cable as ls, lh

and lv, respectively. The unitary directions dh and dn−h of the two horizontal

cables connected to the reference node can be computed as

lhdh = X0 −NhX0 =




x0 − Chx0 + Shy0

y0 − Chy0 − Shx0

0


 = 4Sh

2
S v

2




Ch+v
2

+ Sh
2

Sh+v
2
− Ch

2

0


 ,

lhdn−h = X0 −Nn−hX0 =




x0 − Chx0 − Shy0

y0 − Chy0 + Shx0

0


 = 4Sh

2
S v

2



−Ch−v

2
+ Sh

2

Sh−v
2

+ Ch
2

0


 .(6.44)

(6.45)

Thus,

dh + dn−h =
8S2

h
2

S v
2

lh




1− S v
2

C v
2

0


 . (6.46)
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Unitary directions of the strut ds and vertical cable dv are

lsds = X0 −NnX0 =




0
2y0

H


 =




0
2Sv

H


 ,

lvdv = X0 −Nn+vX0 =




x0 − Cvx0 − Svy0

y0 + Cvy0 − Svx0

H


 = 4S v

2
(1− S v

2
)



−S v

2

C v
2

H̄


 .(6.47)

where H̄ = H/[4S v
2
(1− S v

2
)].

6.5.3 Symmetry-adapted Formulation and its Mechanisms

It should be noticed again that there is only one symmetry operation of dihe-

dral group that can take one horizontal cable to another, while there are two

different symmetry operations for struts and vertical cables. Hence, rows of TM

corresponding to different members will have different norms, and this difference

should be taken into account in the direct strategy for D̃, because TM is applied

on only one side of D as in Eq. (6.35).

For a one-dimensional representation µ, the transformation matrix hT
µ
M for

horizontal cables is the same as that for the nodes, since both of them have

one-to-one correspondence with the symmetry operations:

hT
µ
M =

1√
2n

(
Rµ

0 , . . . ,R
µ
j , . . . ,R

µ
2n−1

)
. (6.48)

Since the jth and (n + j)th (j =∈ {0, . . . , n− 1}) symmetry operations take the

strut connected by nodes Nj and Nn+j to itself, the transformation matrix sT
µ
M

for struts can be written as

sT
µ
M =

1√
4n

(
Rµ

0 + Rµ
n, . . . ,R

µ
j + Rµ

n+j, . . . ,R
µ
n−1 + Rµ

2n−1

)
; (6.49)

and similarly, vT
µ
M for vertical cables is

vT
µ
M =

1√
4n

(
Rµ

0 + Rµ
n+v, . . . ,R

µ
j + Rµ

n+j+v, . . . ,R
µ
n−1−v + Rµ

2n−1,

Rµ
n−v + Rµ

n, . . . ,R
µ
n−1 + Rµ

n−1+v

)
. (6.50)

Note that there are 2n entries in hT
µ
M but only n entries in sT

µ
M and vT

µ
M , which

are identical to the number of these different types of members. Furthermore,

165



6.5 Symmetry-adapted Equilibrium Matrix

the linear combinations of representations for struts and vertical cables can also

be identified considering entries of sT
µ
M and vT

µ
M . Consider representation A1

for example, RA1
j = 1 holds for all operations (∀j ∈ {1, . . . , 2n − 1}) such that

RA1
j + RA1

n+j = 2 6= 0 and RA1
j + RA1

n+j+v = 2 6= 0, hence, both struts and

vertical cables have A1 representation. However, we have RA2
j + RA2

n+j = 1 +

(−1) = 0 and RA2
j + RA2

n+j+v = 1 + (−1) = 0 for representation A2, from which

we learn that struts and vertical cables do not have representation A2. In a

similar way, we can identify that struts have representation B1 for n even since

RB1
j +RB1

n+j = (−1)j+1 + (−1)n+j+1 6= 0, but do not have representation B2 since

RB2
j +RB2

n+j = (−1)j+1 +(−1)n+j = 0. And it is easy to show that vertical cables

have representation B1 for v odd, and B2 for v odd, when they exist for n even.

For a two-dimensional representation Ek, transformation matrix hT
Ek
M ∈ <4×2n

for the horizontal cables is again the same as that for nodes given in Eq. (6.11).

For the struts and vertical cables, the transformation matrices are respectively

written as follows

sT̄
Ek
M =




(Cjk + Cjk)
− (Sjk + Sjk)

(Sjk + Sjk)
(Cjk + (−Cjk))


 =




(2Cjk)
(0)

(2Sjk)
(0)


 ,

vT̄
Ek
M =




(
Cjk + C(j+v)k

)
− (

Sjk + S(j+v)k

)
(
Sjk + S(j+v)k

)
(
Cjk + (−C(j+v)k)

)


 = 2




(
C(j+ 1

2
v)kC vk

2

)

−
(
C(j+ 1

2
v)kS vk

2

)
(
S(j+ 1

2
v)kC vk

2

)
(
S(j+ 1

2
v)kS vk

2

)




for j = 0, . . . , n− 1.(6.51)

It is apparent that the first and the second rows, and the third and the fourth

rows are dependent, hence, only the first and the third rows need to be contained

in the transformation matrices sT
Ek
M and hT

µ
M (∈ <2×n), which are normalized as

sT
Ek
M =

1√
2n

(
(2Cjk)
(2Sjk)

)
,

vT
Ek
M =

1√
n(1 + Cvk)

( (
Cjk + C(j+v)k

)
(
Sjk + S(j+v)k

)
)

for j = 0, . . . , n− 1. (6.52)

Transformation matrix Tµ
M of the members for the representation µ can then
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Table 6.5: Norms for transformation matrices in internal coordinate system for
different types of members.

Representation\ Member Horizontal Strut Vertical

One-dimensional
√

2n
√

4n
√

4n

Two-dimensional
√

n
√

2n
√

n(1 + Cvk)

be combined as

Tµ
M =




hT
µ
M O O

O sT
µ
M O

O O vT
µ
M


 , (6.53)

and that TM ∈ <4n×4n of the members for all representations can be further

assembled as

TM =




TA1
M

TA2
M
...

T
Ep

M


 (6.54)

Notice from the formulations of transformation matrices that, the transform

matrix for horizontal cables, which is not normalized with the entries coming

directly from the irreducible representation matrices, has different norms com-

pared to those for vertical cables and struts. These norms are used to make the

transformation matrices unitary, and are listed in Table 6.5 for different types of

members as well as representations.

As indicated in the formulations of the equilibrium matrix D and its transfor-

mation matrices, components of its symmetry-adapted form D̃ can be separately

formulated for different types of members. Since horizontal cables have one-

to-one correspondence with the symmetry operations, their symmetry-adapted

components D̃µ
h for representation µ can be directly formulated as follows using

its unitary member directions dh and dn−h

D̃µ
h = Rµ

0 ⊗ dh + Rµ
h ⊗ dn−h, (6.55)

in a similar way to the formulation of the symmetry-adapted geometrical stiffness

matrix presented in Section 4.
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6.5 Symmetry-adapted Equilibrium Matrix

The symmetry-adapted components D̃µ
s of struts and D̃µ

v of vertical cables

can be formulated as follows similarly to that of horizontal cables in Eq. (6.56)

D̃µ
s =

1

aµ
s
(R̄µ

0 + R̄µ
n)⊗ ds and D̃µ

v =
1

aµ
v
(R̄µ

v + R̄µ
n+v)⊗ dv (6.56)

where aµ
s = aµ

v =
√

2 for one-dimensional representation and aµ
s =

√
2, aµ

v =√
1 + Cvk for two-dimensional representation, taking into account of the difference

between the norm of the horizontal cables and those of the vertical cables and

struts as listed in Table 6.5. These coefficients are necessary because the vertical

cables and struts have one-to-two correspondence with the symmetry operations.

Moreover, R̄µ
j = Rµ

j for one-dimensional representations, and

R̄Ek
j =

(
Cjk

Sjk

)
(6.57)

for two-dimensional representations µ = Ek, because of interdependence between

some specific components of the irreducible representation matrices for vertical

cables and struts as discussed in Eq. (6.51); this indeed agrees with the dimensions

of the equilibrium matrix for the components of these two types of members.

For convenience, we write the symmetry-adapted components of all types of

members corresponding to each representation µ together in a form as

Dµ =
(

Dµ
h Dµ

s Dµ
v

)
. (6.58)

Since all types of members consist of representation A1, D̃A1 can be formulated

as

D̃A1

3×3
=

(
dh + dn−h,

1+1√
2
ds,

1+1√
2
dv

)
=

(
dh + dn−h,

√
2ds,

√
2dv

)
.(6.59)

D̃A1 is singular, because its three columns are linear independent. To verify the

independency of these vectors, we need only to figure out whether there exists a

non-zero coefficient a that satisfies the following equation considering the scaled

versions of the three columns of D̃A1 from Eqs. (6.46) and (6.47)



−4S2

v
2
(1− S v

2
)

2Sv(1− S v
2
)

H


 = a




1− S v
2

C v
2

0


 +




0
2Sv

H


 (6.60)
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6.5 Symmetry-adapted Equilibrium Matrix

where the vector on the left-hand side of the equation is the scaled version of

dv by 1
lv

as 1
lv
dv, and the first and second vectors on right-hand side are those

of dh + dn−h by 1
S2

h
2

S v
2

and ds by 1
ls
, respectively. The above equation holds for

a = −4S2
v
2
6= 0, such that the three columns in D̃A1 are linear independent, and

therefore, D̃A1 is singular with rank deficiency of one.

Denote the numbers of self-stress modes and mechanisms, including rigid-

body motions, as ns and nm, respectively. For a structure with Dn symmetry,

the equilibrium matrix D of which is a 6n-by-4n matrix, we have (Calladine,

1978)

nm − ns = 6n− 4n = 2n. (6.61)

We observe from the force densities obtained in Eq. (7.24) that, the structure

consists only one possible relation between different types of members. Hence, it

has only one mode of self-stresses, such that ns = 1. Therefore, the number nm

of mechanisms of the structure including rigid-body motions is

nm = ns + 2n = 2n + 1. (6.62)

To see which blocks these mechanisms are lying in, we consider the minimum

rank deficiency of each block by calculating Γ(D)− Γ(M) for v even

Γ(D)− Γ(M) = (3A1 + 3A2 + (3B1 + 3B2+)6

p∑

k=1

Ek)

−(3A1 + A2 + (2B1 + 2B2+)4

p∑

k=1

Ek)

= 2A2 + (2B2) + 2

p∑

k=1

Ek,

and for v odd

Γ(D)− Γ(M) = (3A1 + 3A2 + (3B1 + 3B2+)6

p∑

k=1

Ek)

−(3A1 + A2 + (3B1 + B2+)4

p∑

k=1

Ek)

= 2A2 + (B1 + B2) + 2

p∑

k=1

Ek,
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from which it is apparent that the block D̃A2 has rank deficiency of at least two

no matter v is even or odd, since it is a 3-by-1 matrix; and rank deficiencies of

other blocks can be calculated in a similar way. To sum up, rank deficiency of the

equilibrium matrix is at least 2n in total for all cases, because 2+(2+)2
p∑

k=1

2 = 2+

(1+1+)2
p∑

k=1

2 = 2n. Since at least 2n of the 2n+1 mechanisms of the structure lie

in the null-space of the blocks expect for D̃A1 from Γ(D)−Γ(M), and furthermore,

D̃A1 is singular with rank deficiency of at least one, all blocks in D̃ except for

D̃A1 are full-rank; and the rank deficiencies of these blocks are characterized by

the number of corresponding representations present in Γ(D)− Γ(M).

Only horizontal cables have A2 representation, thus

D̃A2 =
(

dh + dn−h

)
. (6.63)

The two mechanisms lying in the null-space of its transpose (D̃A2)T are

dA2
1 =




1 + S v
2−C v

2

0


 and dA2

2 =




0
0
1


 . (6.64)

When n is even, the struts have representation B1; the horizontal cables have

representation B1 for v odd and B2 for v even. Hence, for n even and v odd, we

have

D̃B1 =
(

dh + (−1)hdn−h,
√

2ds

)
and D̃B2 =

(
dh + (−1)hdn−h,

√
2dv

)
,

(6.65)

and when both n and v are even, we have

D̃B1 =
(

dh + (−1)hdn−h,
√

2ds

√
2dv

)
and D̃B2 =

(
dh + (−1)hdn−h

)
.

(6.66)

D̃Ek for a two-dimensional representation Ek is

D̃Ek =

(
R0 ⊗ dh + Rh ⊗ dn−h,

1√
2

(
C0 + Cn

S0 + Sn

)
⊗ ds,

1√
1+Cvk

(
C0 + Cvk

S0 + Svk

)
⊗ dv

)

=

( (
1 0
0 1

)
⊗ dh +

(
Chk −Shk

Shk Chk

)
⊗ dn−h,

√
2

(
C0

0

)
⊗ ds,

1√
1+Cvk

(
1 + Cvk

Svk

)
⊗ dv

)
,(6.67)
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which can be written in a symbolic form as

D̃Ek =




ε1 −ε3 0 η1

ε2 −ε4 ζ1 η2

0 0 ζ2 η3

ε3 ε1 0 η4

ε4 ε2 0 η5

0 0 0 η6




(6.68)

where
ε1 = C(h+v)/2 + Sh/2 + Chk(−C(h−v)/2 + Sh/2)
ε2 = S(h+v)/2 − Ch/2 + Chk(S(h−v)/2 + Ch/2)
ε3 = Shk(C(h−v)/2 − Sh/2)
ε4 = −Shk(S(h−v)/2 + Ch/2)

(6.69)

ζ1 = 2Sv, ζ2 = H, H̄ = H/[4Sv/2(1− Sv/2)],
η1 = −(1 + Cvk)Sv/2, η2 = (1 + Cvk)Cv/2, η3 = (1 + Cvk)H̄,
η4 = −SvkSv/2, η5 = SvkCv/2, η6 = SvkH̄.

(6.70)

Hence, the mechanisms lying in the null-space of (D̃Ek)T are

d̃Ek
1 =




η6(ε2ε3 − ε1ε4)
0
0

−η6(ε1ε2 + ε3ε4)
η6(ε

2
1 + ε2

3)
η4(ε1ε2 + ε3ε4)− η1(ε2ε3 − ε1ε4)− η5(ε

2
1 + ε2

3)




(6.71)

and

d̃Ek
2 =




ζ2η6(ε1ε2 + ε3ε4)
−ζ2η6(ε

2
1 + ε2

3)
ζ1η6(ε

2
1 + ε2

3)
ζ2η6(−ε1ε4 + ε2ε3)

0
ζ2η4(ε1ε4 − ε2ε3)− ζ2η1(ε1ε2 + ε3ε4) + (ζ2η2 − ζ1η3)(ε

2
1 + ε2

3)




(6.72)

Some elements in the mechanisms can be computed as follows for convenience

ε2ε3 − ε1ε4 = 2(Sv/2 − 1)(−ShkSh)

ε1ε2 + ε3ε4 = −2(Sv/2 − 1)Cv/2(Chk − Ch)

ε2
1 + ε2

3 = 2(Sv/2 − 1)[(Chk − Ch)(Sv/2 + Ch)− S2
h] (6.73)
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6.5.4 Rigid-body Motions

The rigid-body motions of a prismatic tensegrity structures are identified in this

subsection to be present in A2 and E1 blocks of the stiffness matrices. Because

the symmetry-adapted mechanisms come from the null-space of transpose of the

equilibrium matrix, they must lead to trivial quadratic form of the linear stiffness

matrix with them, hence, we only need to verify whether they also lead to trivial

quadratic form Q̃µ of the geometrical stiffness matrix.

From Eqs. (6.31) and (6.64), we have the following equation for representation

A2

K̃A2
G d̃A2

1 = qv




√
2(1− Cv)− (1− Cv) Sv 0

Sv

√
2(1− Cv) + (1− Cv) 0

0 0 0







1 + Sv/2

−Cv/2

0




= 2qvSv/2




1− Sv/2 Cv/2 0
Cv/2 1 + Sv/2 0

0 0 0







1 + Sv/2

−Cv/2

0


 = 0, (6.74)

and

K̃A2
G d̃A2

2 = qv




√
2(1− Cv)− (1− Cv) Sv 0

Sv

√
2(1− Cv) + (1− Cv) 0

0 0 0







0
0
1


 = 0.

(6.75)

Hence, the quadratic form Q̃A2 of K̃A2
G with respect to the mechanisms d̃A2

1 and

d̃A2
2 corresponding to the representation A2 are zero:

Q̃A2 = M̃A2S̃A2(M̃A2)T = O, (6.76)

where

M̃A2 =
(

dA2
1 dA2

2

)
, (6.77)

from which, we know that the two mechanisms lying in D̃A2 are the rigid-body

motions.
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From Eq. (6.28), K̃E1
G is

K̃Ek
G = qv




ϕ1 + ϕ2 −ϕ3 0 −ϕ4 −ϕ5 − ϕ6 0
−ϕ3 ϕ1 − ϕ2 0 ϕ5 − ϕ6 ϕ4 0

0 0 ϕ7 − ϕ8 0 ϕ9

−ϕ4 ϕ5 − ϕ6 0 ϕ1 − ϕ2 ϕ3 0
−ϕ5 − ϕ6 ϕ4 0 ϕ3 ϕ1 + ϕ2 0

0 ϕ9 0 0 ϕ7 + ϕ8




,

(6.78)

where
ϕ1 = 2Sv/2(1 + Ch) ϕ2 = S2

v ϕ3 = SvCv

ϕ4 = ϕ3 ϕ5 = ϕ1 ϕ6 = ϕ2

ϕ7 = 2Sv/2 ϕ8 = 1− Cv ϕ9 = Sv.
(6.79)

Because mechanisms denote direction of nodal displacements that do not change

member lengths, magnitudes of them are not important. Hence, mechanisms d̃E1
1

and d̃E1
2 can be simplified as follows from Eqs. (6.71) and (6.72)

d̃E1
1 =




1
0
0
0
1
0




and d̃E1
2 =




0
SvH̄

−2Sv/2(1 + Sv/2)H
−SvH̄

0
Sv




. (6.80)

It is easy to verify that

K̃E1
G d̃E1

1 = 0 and K̃E1
G d̃E1

2 = 0, (6.81)

from which, we have

Q̃E1 = M̃E1S̃E1(M̃E1)T = O, (6.82)

where

M̃E1 =
(

dE1
1 dE1

2

)
. (6.83)

Because there are two copies of blocks for each two-dimensional representation,

the four mechanisms—two copies of d̃E1
1 and d̃E1

2 —are the rigid-body motions of

the structure.

In summary, we have identified all the six rigid-body motions of a prismatic

tensegrity structure with dihedral symmetry—two in the A2 block and four in

the E1 blocks.

173



6.6 Discussions and Conclusions

6.6 Discussions and Conclusions

For the structures with dihedral symmetry, we have presented a direct strategy for

the analytical derivation of their symmetry-adapted force density matrix, geomet-

rical stiffness matrix as well as equilibrium matrix. Mechanisms in the symmetry-

adapted coordinate system are derived from transpose of the symmetry-adapted

equilibrium matrix. Moreover, the rigid-body motions are identified to be present

in the blocks corresponding to the representations A2 and E1, as indicated in the

character table.

The symmetry-adapted forms of these matrices can significantly simplify sta-

bility investigation and structural analysis, because sizes of the blocks in their

leading diagonals become much smaller than those of the original matrices; and

more importantly, they provide us the possibility to have further insight into

the stability of the whole class of structures with similar symmetry properties

based on the analytically formulated blocks as will be discussed in the next two

chapters.

As have been discussed, the diagonal blocks of the force density matrix are

only 1-by-1 or 2-by-2 matrices, such that positive semi-definiteness of them can

be easily verified. Using the analytical symmetry-adapted force density matrix,

Chapter 7 will discuss the condition of super stability for prismatic structures,

showing that they are super stable if and only if their horizontal cables are con-

nected to adjacent nodes. Furthermore, Chapter 8 will present the super stability

condition for star-shaped structures: the structures are super stable if they have

odd number of struts, and moreover, the struts are as close to each other as

possible.

From the analytical formulations for the symmetry-adapted geometrical stiff-

ness matrix and mechanisms, it will be demonstrated in Chapter 7 that prestress

stability of prismatic structures can be verified by investigating positive definite-

ness of the reduced stiffness matrix in block-diagonal form, which is the quadratic

form of the geometrical stiffness matrix with respect to the mechanisms lying in

the null-space of transpose of the equilibrium matrix. Height(-to-radius ratio) of

this class of structures is found to be involved in the symmetry-adapted mecha-

nisms, which gives us a clear clue to investigate the influence of height(-to-radius
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ratio) on their prestress stability as will be discussed in Chapter 7.

The formulations presented in this chapter are for the structures with dihedral

symmetry, but the methodologies developed are considered to be applicable to

the structures belonging to other point groups, which will be one of our future

studies.

175



Chapter 7

PRISMATIC STRUCTURES

In this chapter, we study self-equilibrated configuration and stability of prismatic

tensegrity structures, which have symmetry of dihedral group.

Prismatic structures, for example the simplest example as shown in Fig. 7.1,

are one of the most well-known forms of tensegrity structures. Many researchers

have used them as numerical examples to demonstrate the efficiency of their form-

finding methods, however, few study has been carried out to investigate their

stability, except for the super stability investigation of this class of structures by

Connelly and Terrell (1995).

Using the analytical formulation of the symmetry-adapted force density ma-

trix presented in Chapter 6, we will show that the blocks in its diagonal for the

prismatic structures with dihedral symmetry agree with those derived by Con-

nelly and Terrell (1995) in another way, so that this class of structures can be

proved to be super stable if and only if their horizontal cables are connected to

adjacent nodes.

Furthermore, it is shown that the structures that are not super stable may

still be (prestress) stable under certain conditions; investigation of these condi-

tions and classification of the stability of prismatic structures are the other main

subjects of this chapter. The investigation of their prestress stability extensively

makes use of the symmetry-adapted geometrical stiffness matrix and mechanisms

analytically derived in Chapter 6.
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vertical

horizontal

vertical

horizontal

strut

R

H

R

Figure 7.1: The simplest prismatic tensegrity structure in three-dimensional
space. The thin and thick lines denote, respectively, cables that carry tension,
and struts that carry compression. The nodes lie in two horizontal planes. This
structure has D3 symmetry, and using the notation described at the end of Section
2.1, is denoted D1,1

3 .

7.1 Introduction

After showing that some prismatic tensegrity structures are super stable, Connelly

and Terrell (1995) listed the following three questions, where the terms ‘rigid’

and ‘tensigrid’ denote prestress stable and tensegrity structure in the questions,

respectively:

[L1] Can other methods be applied to show that some of the other prismatic

tensigrids are rigid?

[L2] Can it be shown that some of the other prismatic tensigrids are not rigid?

[L3] How “often” it is rigid?

In this chapter, we will demonstrate that stability of prismatic tensegrity

structures is dependent on the connectivity of the members (horizontal cables

and vertical cables), the height/radius ratio, and prestress to member stiffness

ratio. It is shown that structures that are not super stable can still be stable in

some cases. For example, the structure shown in Fig. 7.2(a) is not super stable,

and it is prestress stable if it is assigned the right height/radius ratio as will be

discussed later in this chapter.
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(a) prestress stable (D2,3
8 ) (b) unstable (D2,1

8 ) (c) divisible (D2,2
8 )

Figure 7.2: Prismatic tensegrity structures with D8 symmetry. The structure
D2,3

8 is prestress stable when its height/radius ratio is within the range of [0.4,3.1];
the structure D2,1

8 can never be stable, and the structure D2,2
8 can be physically

divided into two identical substructures D1,1
4 .

Following this introduction, the chapter is organized as follows. Section 2

discusses a simple method for the determination of self-equilibrated configura-

tions of a general prismatic structure by considering the self-equilibrium of a

reference node instead of the whole structure; presents another method for the

self-equilibrated configuration by ensuring enough rank deficiency of the force

density matrix using the symmetry-adapted formulation given in Chapter 6; and

further gives out the condition of super stability for prismatic structures based on

the symmetry-adapted force density matrix. Conditions for the divisible struc-

tures, which can be physically divided into several identical substructures, are

given in Section 3. Section 4 discusses the critical parameters for the stability of

prismatic tensegrity structures. Section 5 presents the catalogue of the stability

of prismatic tensegrity structures with up to ten struts, and Section 6 concludes

the paper.

7.2 Symmetry and Configuration

As shown in Fig. 7.1, we define the class of prismatic tensegrity structures as

follows. The structures have 2n nodes, arranged in two horizontal circles of

radius R around the vertical z-axis, which is an n-fold symmetry-axis. Within

each circle, each node is connected by ‘horizontal’ cables to two other nodes.

The two planes containing the nodes are at z = ±H/2. Each node is connected

by a strut and a ‘vertical’ cable to nodes in the other plane. The structure
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Figure 7.3: The prismatic tensegrity structure D1,1
3 .

has Dn symmetry, using the Schoenflies notation, and this symmetry allows us to

calculate self-equilibrated configurations by considering the equilibrium equations

of only one node.

7.2.1 Orbits

Consider a specific set of elements (nodes or members) of a structure with sym-

metry G. If one element in a set can be transformed to any other member of that

set by a proper symmetry operation in G, then this set of elements are said to

belong to the same orbit. A structure can have several different orbits of elements

of the same type.

We are considering structures that have dihedral symmetry, denoted Dn: there

is a single major n-fold rotation (Ci
n) axis, which we assume is the vertical, z-axis,

and n 2-fold rotation (C2j) axes perpendicular to this axis (Kettle, 1995). In total

there are 2n symmetry operations.

For a prismatic tensegrity structure, there is one orbit of nodes, and each

symmetry operation transforms a reference node into one of the other nodes; there

is a one-to-one correspondence between the nodes and the symmetry operations.

(When there is a one-to-one correspondence between elements and symmetry

operations, the orbit is called a regular orbit). There are in total 2n nodes,

arranged in two horizontal planes, with n nodes in each. An example structure

with D3 symmetry is shown in Fig. 7.3: nodes N0, N1, N2, and nodes N3, N4,
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7.2 Symmetry and Configuration

Table 7.1: Transformation of nodes and members of the structure D1,1
3 in Fig. 7.3

corresponding to the symmetry operations of D3. The elements listed in the left-
hand column are transformed to the elements shown in the table by the symmetry
operations given in the top row.

E(C0
3) C1

3 C2
3 C21 C22 C23

node N0 N0 N1 N2 N3 N4 N5

member 1 1 2 3 6 4 5 horizontal cables
member 7 7 8 9 9 7 8 vertical cables
member 10 10 11 12 10 11 12 struts

N5 lie in the top and bottom horizontal planes, respectively. Any node, e.g.,

node N0, can be transformed to any other node, including itself, by one of the

symmetry operations of D3 as listed in Table 7.1.

There are three orbits of members: horizontal cables, vertical cables, and

struts. Each node is connected by two horizontal cables lying in a horizontal

plane, one vertical cable, and one strut: the vertical cable and strut connect

nodes in different planes. The members in each orbit have the same length; we

assume a symmetric internal prestress state, and hence the internal force, and the

force density (internal force to length ratio) are also the same in each member of

an orbit. There are 2n horizontal cables, and each symmetry operation transforms

a reference cable into one of the other cables; there is a one-to-one correspondence

between the horizontal cables and the symmetry operations (the horizontal cables

form a regular orbit). There are, however, only n vertical cables, and n struts;

there is a one-to-two correspondence between the vertical cables (or struts) and

the symmetry operations. Each vertical cable and strut intersects one of the

2-fold horizontal rotation axes, and this 2-fold operation transforms the vertical

cable (or strut) into itself. For example, transformations of the members of the

structure with D3 symmetry by the symmetry operations are listed in Table 7.1.

For some structures, the horizontal cables may cross one another; we neglect to

consider any interference, essentially assuming that these cables can pass through

one another.
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7.2 Symmetry and Configuration

7.2.2 Transformation Matrices

Let x0 and xi (∈ <3) denote the coordinates of nodes N0 and Ni in three-

dimensional space, respectively. Suppose that node N0 can be transformed to

node Ni by a symmetry operation in the group Dn. Then we have the following

equation with the transformation matrix Ri ∈ <3×3

xi = Rix0. (7.1)

Because the nodes form a regular orbit, there will be one matrix Ri for each

symmetry operation in the group. These matrices are said to form a representa-

tion Γxyz of the group Dn.

The matrices Ri form a reducible representation of Dn. However, it is straight-

forward to write this reducible representation in terms of irreducible representa-

tions. The irreducible representations that make up Γxyz can be read off from a

set of character tables, e.g., Altmann and Herzig (1994). For any Dn, Γxyz is the

direct sum of the irreducible representations A2 and E1 (the standard notation

is E for D3 and D4, but we will use E1 for these cases too). The irreducible

representation A2 is one-dimensional, and corresponds to the transformation of

the z-coordinate. The irreducible representation E1 is two-dimensional, and cor-

responds to the transformation of the x- and y-coordinates. Thus the transfor-

mation matrices Ri ∈ <3×3 can be written as

Ri =

(
RE1

i

RA2
i

)
, (7.2)

where the matrices RE1
i ∈ <2×2 form the representation E1, and the matrices

RA2
i ∈ <1×1 form the representation A2.

The one-dimensional matrices RA2
i are unique, but there is some limited choice

for the two-dimensional matrices RE1
i . By choosing a positive rotation around

the z-axis for R1, the transformation matrix Ri for the cyclic rotation Ci
n through

2iπ/n can be written as

Ri =




Ci −Si 0
Si Ci 0
0 0 1


 for 0 ≤ i ≤ n− 1, (7.3)
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Figure 7.4: All nodes connected to a reference node N0 of the structure D2,1
8 .

where Ci = cos(2iπ/n) and Si = sin(2iπ/n), and i is running from 0 to n− 1. By

choosing that a dihedral rotation about the x-axis transforms node N0 to node

Nn, the transformation matrices Ri for the 2-fold rotations can be written as

Ri =




Ci Si 0
Si −Ci 0
0 0 −1


 for n ≤ i ≤ 2n− 1. (7.4)

7.2.3 Self-equilibrated Configuration by Symmetry

There is only one orbit of nodes, and hence to find a totally symmetric state of

prestress, we only need to consider equilibrium of one node under zero external

loading: equilibrium of any other node is identical, by symmetry (Connelly and

Back, 1998).

Consider a single reference node N0, and the members that are connected to it

— an example is shown in Fig. 7.4. The coordinates xh and xn−h of the nodes Nh

and Nn−h connected to the reference node as horizontal cables can be computed

as follows by using Eq. (7.1)

xh = Rhx0,
xn−h = Rn−hx0,

(7.5)

and the direction vectors dh and dn−h of the horizontal cables can be written as

dh = xh − x0 = (Rh − I3)x0,
dn−h = xn−h − x0 = (Rn−h − I3)x0,

(7.6)
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Figure 7.5: Self-equilibrium of the reference node of prismatic tensegrity struc-
tures. The three cable forces, fh, fn−h and fv are all tensile, and have a positive
magnitude; the strut force fs is compressive, and has a negative magnitude.

where I3 denotes the 3-by-3 identity matrix. Similarly, the coordinates xs and

xv of the nodes Nn and Nn+v in the bottom plane that are connected to N0 by a

strut and a vertical cable, respectively, can be calculated by

xs = Rnx0,
xv = Rn+vx0,

(7.7)

and their direction vectors ds and dv are

ds = xs − x0 = (Rn − I3)x0,
dv = xv − x0 = (Rn+v − I3)x0.

(7.8)

Let qh, qs and qv denote the force densities of the horizontal cables, strut and

vertical cable, respectively, where the force density is the ratio of the axial force

fi to the length li; i.e., qi = fi/li. Because tensegrity structures are pin-jointed

and carry only axial forces in the members, the direction of the axial force is

identical to that of the member. Thus, the axial force vectors fh and fn−h of the

horizontal cables can be written as

fh = fhdh/lh = qhdh = qh(Rh − I3)x0,
fn−h = fhdn−h/lh = qhdn−h = qh(Rn−h − I3)x0.

(7.9)

Similarly, the axial force vectors fs and fv of the strut and vertical cable are

fs = qs(Rn+s − I3)x0,
fv = qv(Rn+v − I3)x0.

(7.10)
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When no external load is applied, the node N0 should be in equilibrium, i.e.,

fh + fn−h + fs + fv = 0. (7.11)

Substituting Eqs. (8.2) and (8.3) into Eq. (8.4), it gives

Ẽx0 = 0, (7.12)

where

Ẽ = 2qh




Ch − 1 0 0
0 Ch − 1 0
0 0 0




+qs




0 0 0
0 −2 0
0 0 −2


 + qv




Cv − 1 Sv 0
Sv −Cv − 1 0
0 0 −2


 . (7.13)

Ẽ is a block-diagonal matrix constructed from a 2-by-2 and a 1-by-1 sub-

matrices on its leading diagonal. Both of these sub-matrices should be singular

to allow the solution of Eq. (7.12) to give the position vector x0 of the reference

node with non-trivial coordinates in three-dimensional space. For the singularity

of the 1-by-1 sub-matrix, we have

0− 2qs − 2qv = 0, (7.14)

i.e.,

qv = −qs. (7.15)

For the 2-by-2 sub-matrix, we can enforce singularity by ensuring that the deter-

minant is equal to zero, i.e.,

[2qh(Ch− 1) + 0 + qv(Cv − 1)][2qh(Ch− 1)− 2qs− qv(Cv + 1)]− q2
vS

2
v = 0. (7.16)

Using qv = −qs from Eq. (7.15), and the trigonometric relationship C2
v + S2

v = 1,

Eq. (7.16) reduces to

4

(
qh

qv

)2

(Ch − 1)2 + 2Cv − 2 = 0. (7.17)
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Since both of qh and qv should have positive sign (they are both cables in tension),

only the positive solution is adopted, i.e.,

t =
qh

qv

= +

√
2− 2Cv

2(1− Ch)
. (7.18)

When both Eqs. (7.15) and (7.18) hold, Ẽ has a nullity of 2, and hence has a

two-dimensional null-space. Any vector in that null-space can be the coordinate

vector x0 of the reference node. In general, the coordinate vector can be written

in terms of two parameters, R and H, as

x0 =
R

R0




Cv − 1 +
√

2− 2Cv

Sv

0


 +

H

2




0
0
1


 , (7.19)

where R0 is the norm of the first vector representing the coordinates in xy-plane,

and then R and H denote the radius and height of the structure, which can have

arbitrary real values. Connectivity of horizontal cables does not affect the self-

equilibrated configuration of prismatic tensegrity structures, but, as we will see

in Section 4, it affects the stability of the structures.

By the application of Eqs. (7.1), (7.3) and (7.4), the coordinates of all the

other nodes Ni can be determined by running i from 1 to 2n− 1.

7.2.4 Force Densities by Non-degeneracy Condition

As another approach to derive the force densities for the prismatic structures, this

section makes use of the non-degeneracy condition in terms of rank deficiency

of the force density matrix in Chapter 2 and its analytical symmetry-adapted

blocks corresponding to the A2 and E1 blocks. The symmetry-adapted force

density matrix is derived from the formulation in Chapter 6, which agrees with

the results by Connelly and Terrell (1995) so as to present the super stability

condition for prismatic structures.

To ensure a non-degenerate tensegrity structure in three-dimensional space,

the force density matrix E, or equivalently Ẽ, should have rank deficiency of

at least four (see Chapter 2 for the non-degeneracy condition for free-standing

structures). Rank deficiency of a symmetric matrix can be calculated by counting
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the number of its zero eigenvalues. From Eq. (6.12), the block ẼA1 is always equal

to zero, since all representation matrices RA1
i of A1 are equal to 1:

ẼA1 = qRµ
0 − qhR

µ
h − qhR

µ
n−h − qsR

µ
n − qvR

µ
n+v

= q − 2qh − qs − qv = 0. (7.20)

The other three zero eigenvalues should come from ẼA2 and the two copies of

ẼE1, because representations A2 and E1 respectively stand for transformation of

z- and xy-coordinates read off from Table 6.1. Hence,

det(ẼA2) = det(ẼE1) = 0, (7.21)

where det(·) denotes determinant of a matrix. From Eq. (6.12), we have

ẼA2 = q − qh − qh − qs(−1)− qv(−1) = 2(qs + qv) = 0, (7.22)

ẼE1 = q

(
1 0
0 1

)
− qh

(
Ch −Sh

Sh Ch

)
− qh

(
Cn−h −Sn−h

Sn−h Cn−h

)

−qs

(
1 0
0 −1

)
− qv

(
Cv −Sv

Sv Cv

)

= qh

(
1− Ch 0

0 1− Ch

)
+ qs

(
0 0
0 2

)
+ qv

(
1− Cv Sv

−Sv 1 + Cv

)
.(7.23)

Relations between the force densities of different types of members from condition

(7.21) as follows

qv = −qs, t =
qh

qv

= +

√
2− 2Cv

2(1− Ch)
, (7.24)

since qv and qh, and therefore, t, should be positive to let cables carry tension

(positive prestress). This way, the force densities in a self-equilibrium state are

derived by making the relevant blocks of the symmetry-adapted force density

matrix to be singular so as to have enough rank deficiency for satisfying the non-

degeneracy condition. It is apparent that they agree with those from the self-

equilibrium equations of the representative node as shown in previous subsection.

7.3 Divisibility Conditions

Depending on the connectivity of members, a prismatic tensegrity structure may

be completely separated into several identical substructures that have no mechan-

ical relation with each other. The substructures are of lower symmetry compared
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Figure 7.6: Divisible structure D2,2
6 and its substructures D1,1

3 . The structure can
be completely divided into two substructures, which have their own force mode
and there is no physical relation between them such that they can have relative
(finite) motions.

to the original structure. For example, the structure D2,2
6 in Fig. 7.6(a) can be

divided into two identical substructures D1,1
3 . We will exclude divisible structures

from our stability investigation, because there is nothing to prevent the substruc-

tures moving relative to one another; the stability of the substructures themselves

will be considered anyway for the lower symmetry case.

This section presents the necessary and sufficient divisibility conditions for

prismatic tensegrity structures. It is demonstrated that divisibility of these struc-

tures depends on the connectivity of the horizontal and vertical cables.

7.3.1 Divisibility of Horizontal Cables

Suppose that we randomly select one node as the starting node, and travel to the

next along the horizontal cables in the same horizontal plane. If we repeat this

in a consistent direction, eventually, we must come back to the starting node.

The nodes and horizontal cables that have been visited in the trip are said to

belong to the same circuit. If there are more than one circuits in the plane, the

horizontal cables are said to be divisible; otherwise, they are indivisible.

Denote the number of circuits of the horizontal cables in one plane by nc, and

the number of nodes in a circuit by ns. Each time we travel along a horizontal

cable of the circuit, we pass by h nodes, and hence by the time we return to the

starting node, we have passed hns nodes. Suppose that, in this circuit, we have
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= +

(a) h = 2, ns = 7, hs = 1, nc = 2

= +

(b) h = 4, ns = 7, hs = 2, nc = 2

= +

(c) h = 6, ns = 7, hs = 3, nc = 2

Figure 7.7: An example of divisible horizontal cables (n = 14). The figures show
the divisible cases of horizontal cables of the structure with D14 symmetry.

travelled around the plane hs times, and have hence passed nhs nodes. Thus,

nsh = nhs. (7.25)

The number of circuits nc in each horizontal plane is then given by

nc =
n

ns
=

h

hs
. (7.26)

The necessary and sufficient condition for the divisibility of horizontal cables

in the same plane is that there is more than one circuit of nodes; i.e., nc 6= 1.

And hence, we have

h 6= hs. (7.27)
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If the structure is divisible, the above parameters give useful information

about the substructures. There will be nc substructures, and they will have ns

nodes in each plane, with a connectivity of the horizontal cables of hs.

Consider, for example, the divisible structure D2,2
6 shown in Fig. 7.6(a): node

N0 is connected to nodes N2 and N4 by the horizontal cables in the upper plane.

It is easy to see that these three nodes form a circuit. This circuit does not

have any mechanical relation with the other constituted by the nodes N1, N3 and

N5. The same situation occurs for the horizontal cables in the bottom plane.

Therefore, the structure has in total four circuits, two in each plane:

Circuit Nodes
1 N0, N2, N4

2 N1, N3, N5

3 N6, N8, N10

4 N7, N9, N11

(7.28)

In this case, travelling along one circuit takes us around the z-axis only once,

but this is not always the case. For example, consider one of the planes of the

structure with D14 symmetry as shown in Fig. 7.7; we can have the following

cases where the horizontal cables are divisible.

[L1] In the case of h = 2, as shown in Fig. 7.7(a), the horizontal cables in the

plane can be divided into two circuits (nc = 2), seven nodes in each (ns = 7).

The horizontal cables connect each node to the adjacent node in the circuit

(hs = 1).

[L2] When h = 4, as shown in Fig. 7.7(b), the horizontal cables are divisible,

with seven nodes in each circuit. For each circuit, the horizontal cables now

connect a node to the second node away in that circuit, i.e., hs = 2.

[L3] When h = 6, as shown in Fig. 7.7(c), the horizontal cables are again divisi-

ble. Now for each circuit, the horizontal cables connect a node to the third

node away in that circuit, i.e., hs = 3.

Note that Eq. (8.14) is only the divisibility condition for the horizontal cables

but not for the whole structure. For example, the structure D2,1
6 in Fig. 7.8(a)
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(a) indivisible (b) divisible (c) indivisible

Figure 7.8: An example of indivisible structure, D2,1
6 : (a) shows the entire struc-

ture; in (b), the vertical cables have been removed, and the remaining structure
is divisible; in (c) the horizontal cables have been removed, showing that the
vertical cables and the struts together connect all of the nodes, and the entire
structure is therefore indivisible.

has two circuits of horizontal cables in each plane of nodes. However, those

circuits are all connected by the struts and vertical cables, and the structure is

indivisible. Hence, connectivity of vertical cables, which connect the circuits in

different horizontal planes, should also be taken into consideration.

7.3.2 Divisibility of Vertical Cables

Suppose that the horizontal cables are divisible: the nodes in the circuits of

horizontal cables containing N0 and Nn are

Circuit 1: N0, Nh, N2h, . . . , N(ns−1)h

Circuit 2: Nn, Nn+h, . . . , Nn+(ns−1)h
(7.29)

Circuit 1 and Circuit 2 are connected by struts from our assumption for the

connectivity of struts. If they are also connected by vertical cables, then the

substructure constructed from these nodes can be completely separated from the

original structure. Thus, the structure is divisible if the horizontal cables are

divisible, and the following relationship holds

v = vsh, with vs integer. (7.30)

As contrasting examples, consider D2,2
6 and D2,1

6 , which both have the same ar-

rangement of (divisible) horizontal cables. The structure D2,2
6 shown in Fig. 7.6(a)
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satisfies Eq. (8.15) with vs = 1 and hence is divisible. By contrast, the structure

D2,1
6 in Fig. 7.8(a) has v/h = 0.5, does not satisfy Eq. (8.15), and is indivisible.

In summary, Eqs. (8.14) and (8.15) are the necessary and sufficient conditions

for a divisible prismatic tensegrity structure. If both are satisfied, the original

structure Dh,v
n can be divided into nc identical substructures Dhs,vs

ns .

7.4 Stability

In this section we show the condition for super stability of prismatic structures,

and investigate their (prestress) stability. In particular we will investigate the

effect of a number of critical factors: the main one is the connectivity of the

structure, but the height/radius ratio and the ratio of the stiffness to the force

density of the members may also be important. All of the results are calculated

using symmetry-adapted coordinates, and the common notation used in applied

group representation theory is used to describe the results.

7.4.1 Super Stability

In Chapter 2, we have presented the sufficient conditions for super stability of

tensegrity structures:

[L1] The member directions do not lie on same conic at infinity (Connelly, 1999),

or equivalently, the geometry matrix of the structure has rank of six for

three-dimensional structures;

[L2] The force density matrix E, or equivalently, the geometrical stiffness matrix

KG is positive semi-definite;

[L3] E or KG has maximal rank, which for prismatic tensegrity structures is

6n− 12.

For prismatic tensegrity structures that are indivisible, the first condition

is satisfied, and hence, only the last two conditions need to be considered for

verifying super stability of the structures.
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From the analytical formulation of each block in Eq. (6.24), the blocks ẼB1

and ẼB2 corresponding to the representations B1 and B2, when they exist for n

even, are

1

qv

ẼB1 = (2− (−1)h − (−1)n−h)t + 1− (−1)v

1

qv

ẼB2 = (2− (−1)h − (−1)n−h)t− 1 + (−1)v, (7.31)

and the two-dimensional blocks ẼEk (k = 1, . . . , p) are

1

qv

ẼEk =

(
2t(1− Chk) + 1− Cvk −Svk

−Svk 2t(1− Chk)− (1− Cvk)

)
, (7.32)

the two eigenvalues of which are easily computed as

λEk
1

qv

= 2t(1− Chk) +
√

2(1− Cvk),
λEk

2

qv

= 2t(1− Chk)−
√

2(1− Cvk). (7.33)

λEk
1 > 0 holds since t > 0, 1−Chk > 0 and 1−Cvk ≥ 0. For representation E1, we

know from Eq. (7.24) that λE1
2 = 0. To satisfy positive semi-definiteness and min-

imum rank deficiency of the force density matrix, which are two of the sufficient

conditions for super stability of tensegrity structures, λEk
2 for k > 1 should be

positive. Connelly and Terrell (1995) obtained the same two-dimensional blocks

making use of the special properties of the force density matrix as a circulant

matrix, and further proved that all other two-dimensional blocks (for k > 1) are

positive definite if and only if h = 1; i.e., horizontal cables are connected to ad-

jacent nodes. Hence, the third sufficient condition is satisfied and the second is

true for the two-dimensional blocks for the structures with h = 1. Furthermore,

from the divisibility condition (8.14), the structure is indivisible for h = 1, so

that the first sufficient condition is satisfied.

To verify whether h = 1 is actually the super stability condition for prismatic

structures, we also need to investigate the one-dimensional blocks: ẼA1 = ẼA2 = 0

always holds as discussed previously; and ẼB1 and ẼB2 exist only when n is even,
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for which we have the following relation from Eq. (7.31) for h = 1

1

qv

ẼB1 = (2− (−1)h − (−1)n−h)t + 1− (−1)v = 4t + 1− (−1)v ≥ 4t > 0

1

qv

ẼB2 = (2− (−1)h − (−1)n−h)t− 1 + (−1)v = 4t− 1− (−1)v

= 2

√
2− 2Cv

1− C1

− 1− (−1)v ≥ 2

√
2− 2C1

1− C1

− 1− (−1)1 =
2
√

2√
1− C1

− 2 > 0

In summary, h = 1 guarantees two of the sufficient conditions for super stabil-

ity of a prismatic tensegrity structure: its force density matrix has rank deficiency

of four (one in ẼA1 , one in ẼA2 and two in two copies of ẼE1), which is the mini-

mum value for non-degeneracy of a structure in three-dimensional space; and the

force density matrix is positive semi-definite with rand deficiency of four.

7.4.2 Prestress Stability

When a prismatic structure is divisible, the reduced stiffness matrix Q, quadratic

form of the geometrical stiffness matrix with respect to the mechanisms, must

have at least one zero eigenvalue, corresponding to the relative motion of the

substructures.

When the structure is indivisible, and satisfies the third condition, but KG

is not positive semi-definite, then the structure may, or may not, be prestress

stable. KG has at least one negative eigenvalue, but whether or not this leads to

a negative eigenvalue of Q depends upon a subtle interplay of the stress matrix

and the mechanisms, which themselves depend upon the geometric realization of

the structure.

7.4.2.1 Symmetry-adapted Forms

Symmetry can be used to simplify calculations and clarify the presentation of the

results (Kangwai et al., 1999; Kangwai and Guest, 2000). By using a symmetry-

adapted coordinate system, the matrices in a structural calculation can be block-

diagonalized. Here, we eventually block-diagonalize the reduced stiffness matrix

Q. The block-diagonalization is simply an orthogonal change of basis, and does
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not affect the eigenvalues — thus the eigenvalues of Q are the assembly of the

eigenvalues of the individual blocks of the symmetry-adapted Q̃.

To block-diagonalize the matrices, we consider symmetry subspaces. Each

symmetry subspace corresponds to one of the irreducible representations µ of the

group. For the dihedral symmetry group Dn, the irreducible representations are,

A1, A2, B1, B2, E1, . . . , En/2−1 for n even, and A1, A2, E1, . . . , E(n−1)/2 for n odd

(Bishop, 1973).

The blocks of the symmetry-adapted stress matrix K̃G and equilibrium matrix

Ã corresponding to µ are denoted by K̃µ
G and Ãµ, respectively. The symmetry-

adapted mechanisms lying in the null-space of the transpose of Ãµ are written

as columns of M̃µ. Then, the block Q̃µ corresponding to the representation µ of

the symmetry-adapted quadratic form Q̃ is

Q̃µ = (M̃µ)TK̃µ
GM̃µ. (7.34)

The matrices Q̃µ have dimensions of only one or two for prismatic tensegrity

structures as discussed in Chapter 6. And the structure is prestress stable if

and only if Q̃µ are positive definite for all representations µ. Note that we have

excluded from Q̃µ the rigid-body motions, which in these cases would correspond

to zero eigenvalues of Q̃A2 and Q̃E1 .

In the follows, we show that the prestress stability of a prismatic tensegrity

structure is not only influenced by the connectivity of horizontal cables but also

that of the vertical cables, and furthermore, is sensitive to the height/radius ratio.

We also show that the selection of materials and level of prestress is one of the

critical factors for the stability of prestress stable structures.

7.4.2.2 Height/Radius Ratio

Consider the indivisible structure D3,2
7 in Fig. 7.9 as an example. The relationship

between the minimum eigenvalues of each block Q̃µ and the height/radius ratio

is plotted in Fig. 7.10.

The matrix Q̃A1 is always positive definite, while positive definiteness of Q̃E2

and Q̃E3 vary depending on the height/radius ratio. The structure is prestress

stable only when the height/radius ratio falls into the small region [0.75, 1.05],

which is shown as a shaded area in the figure.
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(a) top view (b) side view

Figure 7.9: The indivisible structure D3,2
7 .

Consider another indivisible structure D2,3
8 with 16 nodes and 32 members as

shown in Fig. 7.11. The dihedral group D8 has four one-dimensional and three

two-dimensional representations. The relationship of the minimum eigenvalues

of Q̃µ and the height/radius ratio is plotted in Fig. 7.11. The prestress stability

region of the structure ranges from 0.4 to 3.1, which is much wider than that of

the structure D3,2
7 .

These examples have shown that the height/radius ratio of the structure can

be a critical factor in the prestress stability of prismatic tensegrity structures.

7.4.2.3 Connectivity

As a prismatic tensegrity structure is super stable only if h = 1, it is clear

that stability of this class of structures is directly related to the connectivity of

horizontal cables. It has also been illustrated previously that in some special

cases with the right height/radius ratio, the structure can still be prestress stable

although it is not super stable. However, this is dependent upon the connectivity

of both the horizontal and the vertical cables.

As an example, consider the structures D2,1
8 and D2,3

8 , neither of which is super

stable, and which only differ in the connectivity of their vertical cables. As we
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Figure 7.10: Influence of the height/radius ratio on the prestress stability of the
structure D3,2

7 . The structure is prestress stable when the ratio is in the range
[0.75, 1.05]. In order to non-dimensionalize the results, the eigenvalues of Q are
plotted relative to the force density in the vertical cables.

have seen in Fig. 7.11, D2,3
8 is prestress stable for a limited range of height/radius

ratio. By contrast, the structure D2,1
8 in Fig. 7.12 is never prestress stable, because

the minimum eigenvalue of Q̃E3 is always negative.

7.4.2.4 Materials and Prestresses

So far, the prestress stability is investigated based on the positive definiteness of

the quadratic form Q of the stress matrix with respect to the mechanisms, where

the members are assumed to be made of materials with infinite stiffness. Here

we show that selection of materials and level of prestresses does also affect the

stability of the structures when they are not super stable.

We make the simplification that all of the struts and cables have the same

axial stiffness. The key parameter is then the ratio of the axial stiffness to the

prestress in the structure. Suppose that the cables and struts have axial stiffness

AE/l, and that the vertical cables carry a force density of qv. In the following

example, we consider the stiffness for different values of k = AE/(lqv), where k

is dimensionless. If the structure is linear-elastic, the strain due to a particular
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Figure 7.11: Influence of the height/radius ratio on the prestress stability of the
structure D2,3

8 . The structure is prestress stable when the ratio is in the range
[0.40, 3.10]. The eigenvalues of Q are plotted relative to the force density in the
vertical cables.

prestress will be 1/k, and thus even values of k = 100 are too small to be realistic

for conventional structures.

Fig. 7.13 shows the smallest eigenvalues of the tangent stiffness matrix for

the structure D3,2
7 , which is prestress stable with the height/radius ratio of 1.0.

Results are plotted for k = 10, 100, 1000, and for the infinite stiffness case. As

k reduces, the structure becomes less stable, and eventually loses stability alto-

gether. Thus, the selection of materials and level of prestress is also a critical

factor to the stability of tensegrity structures.

7.5 Catalogue of Symmetric Prismatic Struc-

tures

After the stability investigation, we are now in the position to present a catalogue

describing the stability of prismatic tensegrity structures for small n:

• h = 1: The structures are super stable, and therefore are prestress stable.

• h 6= 1: There are two cases:
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Figure 7.12: Influence of the height/radius ratio on the prestress stability of the
structure D2,1

8 . The structure is never stable. The eigenvalues of Q are plotted
relative to the force density in the vertical cables.
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Figure 7.13: The influence of the stiffness/prestress ratio k on the stability of
the structure D3,2

7 . When k reduces, the structure becomes less stable. The
eigenvalues of K are plotted relative to the force density in the vertical cables.
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Figure 7.14: The structure D2,5
10 that is not super stable but is always prestress

stable.

– divisible:

The structures are divisible, and hence, unstable, if both of the condi-

tions (8.14) and (8.15) are satisfied.

– indivisible:

Prestress stability can be verified based on the symmetry-adapted form

Q̃ of reduced stiffness matrix, defined in Eq. (7.34).

We present in Table 7.2 a complete catalogue of prismatic tensegrity structures

with symmetry Dn for n ≤ 10.

From Table 7.2, it is easy to tell the stability of prismatic tensegrity structures.

For example, the structure D2,2
6 can be divided into two identical substructures

D1,1
3 . Another example: for the structures with n = 10 and h = 2, the structure

D2,3
10 is prestress stable in the region [0.70,1.35], and the structure D2,5

10 in Fig. 7.14

is always prestress stable. Note that all struts of the structure D2,5
10 run across

the central (origin) point.
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7.6 Discussions and Conclusions

A simple symmetry method has been presented to determine the self-equilibrated

configuration of a prismatic tensegrity structure with dihedral symmetry. Rather

than considering the whole structure, consideration of only one representative

node is sufficient to find the force densities and the possible configurations in the

state of self-equilibrium.

The symmetry-adapted formulation of the force density matrix presented in

Chapter 6 has been used to derive the force densities of a general prismatic

structure by ensuring the rank deficiency of four, which comes from the blocks

corresponding to the representation A2 and E1. Using the analytical formulation

and the force densities, it is shown that the blocks are identical to those by

Connelly and Terrell (1995) in another way, and it is then further proved that

prismatic structures are super stable if and only if their horizontal cables are

connected to adjacent nodes.

The necessary and sufficient conditions for the divisibility of prismatic struc-

tures have been presented based on the connectivity of horizontal and vertical

cables. Divisible structures have their own states of prestresses and rigid-body

motions so that they can be physically separated into several identical substruc-

tures.

The prestress stability of prismatic structures is demonstrated to be related

to the connectivity of the cables, and is also sensitive to the height/radius ratio.

It is also shown that stability of a tensegrity structure that is not super stable is

influenced by the selection of materials and level of prestress.

A complete catalogue of the prismatic tensegrity structures with relative small

number of members has been presented. We have also developed a Java program

to enable designers to interactively design the prismatic structures. The program

is published online: http://tensegrity.AIStructure.com/prismatic/, where the lat-

est version of JAVA Runtime and JAVA3D Runtime might be needed and can be

freely downloaded from http://java.sun.com
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Table 7.2: The stability of prismatic tensegrity structures Dh,v
n . ‘s’ denotes super

stable, ‘u’ denotes unstable, and ‘p’ indicates that the structure is not super
stable but is always prestress stable with arbitrary height/radius ratio. If the
structure is prestress stable only in a specific region of height/radius ratio from
h1 to h2, then this region is given by [h1, h2]; and if the structure can be divided,
its substructures are given.

h
n = 3 1
v 1 s

h
n = 4 1 2
v 1 s u

2 s 2D1,1
2

h
n = 5 1 2
v 1 s u

2 s u

h
n = 6 1 2 3

1 s u u

v 2 s 2D1,1
3 u

3 s p 3D1,1
2

h
n = 7 1 2 3

1 s u u
v 2 s u [0.75,1.05]

3 s u u

h
n = 8 1 2 3 4

1 s u u u

v 2 s 2D1,1
4 u 2D2,1

4

3 s [0.40,3.10] u u

4 s 2D1,2
4 [0.35,2.35] 4D1,1

2

h
n = 9 1 2 3 4

1 s u u u
v 2 s u u u

3 s u 3D1,1
3 u

4 s u [0.20,1.60] u

h
n = 10 1 2 3 4

1 s u u u u

2 s 2D1,1
5 u 2D2,1

5 u
v 3 s [0.70,1.35] u [0.75,1.25] u

4 s 2D1,2
5 u 2D2,2

5 u

5 s p p p 5D1,1
2
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Chapter 8

STAR-SHAPED STRUCTURES

This chapter is to present self-equilibrated configuration, and more importantly,

super stability condition of star-shaped tensegrity structures.

Star-shaped tensegrity structures have similar configuration to the prismatic

structures studied in Chapter 7—both of them are of dihedral symmetry. How-

ever, as will be demonstrated in this chapter, they have very different stability

properties, because the two additional nodes in star-shaped structures introduce

more mechanisms.

Using the symmetry-adapted formulations presented in Chapter 6 for the

structures with dihedral symmetry, we are to present the necessary and suffi-

cient conditions for super stability of star-shaped structures in this chapter, and

then to investigate their prestress stability. Moreover, some structures that are

not super stable will be shown to have more than one stable configurations.

8.1 Introduction

Prismatic and star-shaped structures have similar symmetric configurations, but

they are slightly different in connectivity. As shown in Fig. 8.1, the star-shaped

structure has two more nodes lying on the (z-)axis going through the centers of

the two circles on which other nodes are located. These two nodes are called cen-

ter nodes, and other nodes are boundary nodes. Boundary nodes of a star-shaped

structure are connected to center nodes by radial cables, unlike the prismatic

structure where the (boundary) nodes are connected to each other by (horizon-

tal) cables. Moreover, the center nodes of a star-shaped structure may have no
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Figure 8.1: Tensegrity structures with dihedral symmetry D3. (a): prismatic
tensegrity structure; (b), (c): star-shaped tensegrity structures. The star-shaped
structures have two more (center) nodes than the prismatic structure. All of
these structures are super stable.

physical connection as in Fig. 8.1(b), or they can be connected by an additional

member (strut or cable) as in Fig. 8.1(c). All of these structures are of dihedral

symmetry D3—the structures are indistinguishable under any of the six symme-

try operations of dihedral group D3.

The prismatic structure has only one type (orbit) of nodes, such that any node

of the structure can be moved to any other by a proper symmetry operation of the

dihedral group. However, center and boundary nodes of a star-shaped structure

are two different types of nodes, since there exists no such a symmetry operation

in dihedral group that can move one node of a type to another node of the other.

The additional center nodes in star-shaped structures introduce more mecha-

nisms than prismatic structures with the same symmetry. For example, numbers

of mechanisms in the structures in Fig. 8.1(a), (b) and (c) are 1, 7 and 6, re-

spectively, since all of these structures have only one mode of self-stress. Every

boundary node of star-shaped structures has one mechanism in three-dimensional

space, perpendicular to the plane in which the three members connecting it are

lying. Hence, the star-shaped structure shown in Fig. 8.1.(b) has seven mecha-

nisms, and the structure in Fig. 8.1.(c) has six mechanisms. Interestingly, both

of these two star-shaped structures are super stable, although they consist of

so many mechanisms. In this chapter, we will prove that there are some cer-

tain ways to verify super stability of star-shaped structures, making use of the

symmetry-adapted formulations presented in Chapter 6.
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Figure 8.2: Star-shaped tensegrity structure D̄1
4 with center member. Configura-

tion of the structure can be described by the parameters r, H and h.

8.2 Self-equilibrated Configuration

In this section, we firstly introduce the connectivity of nodes and members of a

general star-shaped tensegrity structure, and then derive the force densities and

configuration, making use of their symmetry properties as discussed in Chapter

7 for prismatic structures.

8.2.1 Connectivity and Symmetry

A star-shaped structure consists of two types of nodes—center nodes and bound-

ary nodes, and three (or four) types of members—radial cables, vertical cables,

struts (and a center member). The nodes (or members) of each type are of dihe-

dral symmetry, since one of them can be taken to any others of the same type by

proper symmetry operations of the dihedral group they belong to. Accordingly,

we say that the structure has symmetry of dihedral group Dn, where z-axis is

taken as the principal axis. However, it is noticeable that nodes (or members)

of different types can not be taken to each other by any symmetry operation of

the group. Hence, each type of nodes (or members) forms an orbit, and different

types of nodes (or members) belong to different orbits.

A star-shaped structure that is of dihedral symmetry Dn has 2n + 2 nodes:

2n boundary nodes and two center nodes. We number the boundary nodes in

the higher and lower circles as {0, . . . , n − 1} and {n, . . . , 2n − 1}, respectively,

and number the two center nodes 2n and 2n + 1, respectively. For example,
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the numbering of the nodes of the structure D̄1
4 is shown in Fig. 8.2.(b). The

boundary nodes of the star-shaped structures are located on two parallel circles;

and the center nodes are located on the (z-)axis, which goes through the centers

of these two circles.

The members that connect the boundary nodes and the center nodes are called

radial cables, and the struts and vertical cables connect the boundary nodes in

different circles. Denoting the member that connects nodes i and j as [i, j],

members of a star-shaped structure can be defined as follows

Radial cable : [2n, i] and [2n + 1, n + i]
Vertical cable : [i, n + i + v]

Strut : [i, n + i]
Center member : [2n, 2n + 1]

, for i ∈ {0, . . . , n− 1}, (8.1)

where n+i+v = i+v if n+i+v ≥ 2n. Note that parameter v defines connectivity

of vertical cables, and it can be assigned in the region of 1 ≤ v < n
2
, as in that

of the prismatic structures. Since only the connectivity of vertical cables in a

star-shaped structure varies by v, while that of other types of members are fixed,

its connectivity as well as symmetry can be denoted as Dv
n. Moreover, for the

structures with center members connecting their center members, we use the

notation D̄v
n. For example, the structure in Fig. 8.2 is denoted as D̄1

4. Hence, a

star-shaped structure Dv
n (D̄v

n) has 4n (or 4n + 1) members—2n radial cables, n

struts, n vertical cables (and a center member).

To describe configuration of a star-shaped structure, we use the parameter r

to denote radius of the circles of the boundary nodes lying on, 2H for distance

between the two parallel circles, and h for the distance between the center node

and the closes circle to it. Fig. 8.2 shows these notations for description of

configuration of the structure D̄1
4. It can be observed that the structure is convex

if h > 0, and is concave if h < 0.

8.2.2 Self-equilibrium Analysis

Because the nodes of the same type have the same connectivity—every boundary

node is connected by one radial cable, one vertical cable and one strut, and

every center node is connected by n radial cables (and the center member)—and
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moreover, a node with the members connected to it can be indistinguishably

transformed to any other node, self-equilibrium analysis of the whole structure

can be reduced to that of the representative nodes, a boundary node and a center

node for star-shaped structures, to calculate the force density of each type of

members in the state of self-equilibrium. Note that it is slightly different from

the prismatic structures in Chapter 7, for the self-equilibrium analysis of which

there is only one representative node.

Consider self-equilibrium of the boundary nodes first. Take a boundary in the

upper plane as the reference node. Let x0 ∈ <3 denote its coordinate vector in

three-dimensional space. The coordinates of the other two boundary nodes in the

lower plane, which are connected to the reference node by the strut and vertical

cable, respectively, are denoted by xs and xv; and that of the center node in the

upper plane by the radial cable is xc.

Take z-axis as the principle axis and the original point (0, 0, 0) as the invariant

point against the symmetry operations. Because the boundary nodes are in the

same orbit, the reference node x0 can be transformed to the other boundary nodes

xs and xv connected to it by the proper two-fold rotations, which can be written

as follows
xs = Rsx0

xv = Rvx0
(8.2)

where the transformation matrices Rs and Rv are

Rs =




1 0 0
0 −1 0
0 0 −1


 , Rv =




Cv Sv 0
Sv −Cv 0
0 0 −1


 (8.3)

by denoting cos(2vπ/n) and sin(2vπ/n) as Cv and Sv, respectively, for clarity.

The coordinate xc of the center node in the upper plane is

xc =




0
0

H + h


 (8.4)

Denote the force densities of the strut, vertical cable and radial cable as qs,

qv and qr, respectively. From Eqs. (8.3) and (8.4), the self-equilibrium equation

of the reference node can be written as follows

qs(xs − x0) + qv(xv − x0) + qr(xc − x0) = Hx0 + qrxc = 0 (8.5)
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where

H =

(
H1

H2

)
= −




qv(1− Cv) + qr −qvSv

−qvSv 2qs + qv(Cv + 1) + qr

2qs + 2qv + qr




(8.6)

Since the self-equilibrium and prestress (super) stability of the tensegrity

structures do not rely on the magnitude of the self-stresses in the members, we

assume qs = −1 for the strut without any loss of generality.

Since H1 and H2 are the two diagonal blocks of H, Eq. (8.5) can be separated

into the following two independent equations

H1x̄0 = 0 (8.7)

where the vector x̄0 ∈ <2 denotes the coordinates of the reference node in xy-

plane, and

H2H + qr(H + h) = (−2qs − 2qv − qr)H + qr(H + h) = 0 (8.8)

In order to have non-trivial coordinates (x̄0 6= 0) in xy-plane, H1 should be

singular. Hence, we have

(H + h)q2
r + h(Cv − 1)qr + 2H(Cv − 1) = aq2

r + bqr + c = 0 (8.9)

The force density qr of the radial cable can be solved as

qr =
−b +

√
b2 − 4ac

2a
(8.10)

where the negative solution qr = −b−√b2−4ac
2a

has been ignored because we want

only the positive value for the radial cables.

From Eq. (8.8), we have

qv = 1 + qrh/2H (8.11)

The coordinate x̄0 of the reference node in xy-plane lie in the null-space of

H1 and its coordinate in z-direction is H. By applying the symmetry operations

of the dihedral group Dn, coordinates of all the other boundary nodes can then

be uniquely determined.
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The center node is connected by n radius cables and the center member if it

exists. Because the center member lies on the z-axis, it is sufficient to consider

the self-equilibrium of the center nodes only in z-direction, which can be written

as

nqr[(H + h)−H] + qc[(H + h)− (−H − h)] = 0 (8.12)

Hence, we obtain

qc = −nqrh/(2H + 2h) (8.13)

So far, we have derived the force densities qr, qv, and qc of the radial cables,

vertical cables, and center member in Eqs. (8.10), (8.11), and (8.13), respectively,

while the force density qs of the strut is assumed to be −1.

8.3 Stability

In the stability investigation, the divisible structures that can be separated into

several identical substructures should be excluded, because they should have been

considered in the cases with lower symmetry. The conditions for identifying the

divisible structures are presented in this section.

The sufficient and necessary conditions for the super stability of the structures

without center member is presented. For the structures that are not divisible nor

super stable, the prestress stability of them are shown to be dependent on the

height/radius ratio.

8.3.1 Divisibility

A structure is said to be divisible if the members and nodes can be separated into

several identical substructures. The substructures are pinned to the common

center nodes and the center member if it exists. Rotation of one substructure

about z-axis has no mechanical influence on the other substructures. Hence, the

structure has finite mechanisms, and therefore, cannot be stable.

For example, the structure D2
8 with center member as shown in Fig. 8.3.(a)

can be separated into two identical structures D1
4 as shown in Figs. 8.3.(b) and

(c). The struts and vertical cables in each substructure connect one to another to

form a closed circuit, so that the substructures are indivisible. It is obvious that
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= +

(a) original structure (b) substructure 1 (c) substructure 2

Figure 8.3: Divisible star-shaped tensegrity structure D2
8 with center member.

The structure (a) can be ‘divided’ into two identical substructures (b) and (c).
Note that the center member is also ‘divided’ into two halves, each one going to
a substructure.

=
+

(a) original structure (b) substructure D1
4 (c) substructure D1

4

Figure 8.4: Divisible star-shaped tensegrity structure D2
8 without center member.

The structure (a) can be divided into two identical substructures (b) and (c),
without mechanical influence on the structure.

every substructure is in the state of self-equilibrium with the same force densities

except for the center member, the force density of which is half of that of the

original structure D2
8.

Similarly, the structures D2
8 without center member as shown in Fig. 8.4 is

also divisible.

Because the boundary nodes are connected to the center nodes as radial ca-

bles, the structure is originally divisible if the struts and vertical cables are not

considered. Thus, the divisibility of the structures is only related to the connec-

tivities of struts and vertical cables.

Label the boundary nodes in the upper plane of the structure Dv
n from 0 to

n− 1, and the ones in the lower plane from n to 2n− 1. Node n is connected to

node 0 as a strut. Hence, node i in the upper plane is connected by node n + i

in the lower plane as a strut. The center nodes in the upper and lower planes are
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labelled as 2n and 2n + 1, respectively. And node i(0 ≤ i < n) connects node

n + i + v as a vertical cable.

Based on the connectivities of the struts and vertical cables mentioned above,

we know that node i in the upper plane connects node n + i + v as a strut, node

n+ i+v connects node i+v as a vertical cable, node i+v connects n+ i+2v as a

strut, and so on. Eventually, we must return back to the starting node i through

this linkage. If we stop when the linkage returns back to the starting node i for

the first time, the boundary nodes in the upper plane in the linkage can be listed

as follows

i → i + v → i + 2v → · · · → i + jv − kn(= i) (8.14)

where j and k are the minimum integers that they can be to ensure 0 ≤ i + jv−
kn ≤ n − 1. The numbers j and k indicate the number of boundary nodes in

the upper plane that have been visited and the number of rounds about z-axis,

respectively.

From i + jv − kn = i for returning to the starting node i, we have

jv = mn (8.15)

If the structure is indivisible, we should have visited n boundary nodes in the

upper node. Thus, we have j = n, and therefore, v = m, which can happen if

and only if v and n have no common divisor except 1.

Hence, we can have the following lemma for the divisibility of star-shaped

structures:

Lemma 8.1 The necessary and sufficient indivisibility condition for a star-shaped

tensegrity structure is that v and n have no common divisor except 1.

Proof. The lemma has been proved based on the above discussions.

8.3.2 Symmetry-adapted Force Density Matrix

The force density matrix E ∈ <(2n+2)×(2n+2) of a star-shaped tensegrity structure

can be obtained going through the connectivity matrix and force densities as in

Eq. (2.15) or the direct definition as in Eq. (2.16).
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For example, the force density matrix E ∈ <8×8 of the structure D1
3 as shown

in Fig. 8.1.(c) is

E =




q 0 0 1 −qv 0 −qr 0
0 q 0 0 1 −qv −qr 0
0 0 q −qv 0 1 −qr 0
1 0 −qv q 0 0 0 −qr

−qv 1 0 0 q 0 0 −qr

0 −qv 1 0 0 q 0 −qr

−qr −qr −qr 0 0 0 3qr + qc −qc

0 0 0 −qr −qr −qr −qc 3qr + qc




(8.16)

where the force densities of the struts are fixed as −1, and q is the sum of the force

densities of the members connected to a boundary node; i.e., q = −1 + qv + qr.

From the labels for the nodes defined previously, we know that the last two

columns and rows of the force density matrix are corresponding to the center

nodes.

Because the boundary nodes belong to the same orbit and form the regular

dihedral group, we know that the linear combination of them can be written as

follows from the discussion in Chapter 5

Γ(N b) = A1 + A2 + (B1 + B2+)

p∑

k=1

2Ek (8.17)

And the two center nodes belong to the other orbit constituting a regular reflec-

tion group, so the linear combination of them is

Γ(N c) = A1 + A2 (8.18)

Because of the symmetry properties of the nodes, the force density matrix

E can be block-diagonalized by using the unitary transformation matrix T such

that

Ẽ = TET> (8.19)

where Ẽ denotes the symmetry-adapted version of E.

Note that both of the boundary nodes and center nodes have the one-dimensional

representations A1 and A2. Based on the irreducible representation matrices

(characters as well for the one-dimensional representations), the non-normalized
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transformation matrix corresponding to these two representations can then be

written as follows


TA1
b

TA1
c

TA2
b

TA2
c


 =




1 1 . . . 1 1 1 . . . 1 0 0
0 0 . . . 0 0 0 . . . 0 1 1
1 1 . . . 1 −1 −1 . . . −1 0 0
0 0 . . . 0 0 0 . . . 0 1 −1


 (8.20)

where the first n columns of the transformation matrix correspond to the n cyclic

rotations of the boundary nodes about z-axis, the next n columns corresponds to

the two-fold rotations, and the last two columns correspond to the reflection of

the center nodes.

Applying the normalized version of the transformation matrix defined in

Eq. (8.20) to the force density matrix as in Eq. (8.19), we derive the A1 and

A2 blocks ẼA1 and ẼA2 of the symmetry-adapted force density matrix Ẽ as

ẼA1 =

(
qr −√nqr

−√nqr nqr

)
, ẼA2 =

(
2(qv − 1) + qr −√nqr

−√nqr nqr + 2qc

)
(8.21)

ẼA1 and ẼA2 are positive semi-definite because their eigenvalues are

λA1
1 = 0, λA1

2 = (n + 1)qr > 0

λA2
1 = 0, λA2

2 = qr
H+h

H
+ nqr

H
H+h

> 0
(8.22)

from our assumption that qr > 0 for the radial cables.

Since the center nodes have only A1 and A2 representations, we only need to

derive the other blocks for the boundary nodes. And since the boundary nodes

are of dihedral symmetry, the symmetry-adapted blocks corresponding the rep-

resentation µ can be directly obtained as follows by using force densities and the

irreducible representation matrices similar to the symmetry-adapted formulation

of the force density matrix in Eq. (6.12)

Ẽµ = (qv + qr − 1)Rµ
0 − (−1)Rµ

n − qvR
µ
n+v (8.23)

where Rµ
0 , Rµ

n and Rµ
n+v are the irreducible representation matrices corresponding

to the identity, struts and vertical cables for the representation µ, respectively.

When n is even, the one-dimensional representations B1 and B2 exist, and

the irreducible representation matrices (characters) of them are

B1 : RB1
0 = 1, RB1

n = 1, RB1
n+v = (−1)v

B2 : RB2
0 = 1, RB2

n = −1, RB2
n+v = (−1)v+1 (8.24)
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the ẼB1 and ẼB2 blocks corresponding to these representations can be written as

ẼB1 = λB1 = qr + 1 + (−1)v+1 > 0

ẼB2 = λB2 = qr − 1 + (−1)v (8.25)

Because B2 block exists only if n is even, v should not be even; otherwise, n and

v have common divisor except 1 so that the structure is divisible. When v is odd,

we have

λB2 = qr + 2 > 2(> 0) (8.26)

The irreducible representation matrices REk
0 , REk

n and REk
n+v for the two-

dimensional representations Ek(1 ≤ k ≤ (n − 1)/2) of the dihedral group Dn

are

REk
0 =

(
1 0
0 1

)
, REk

n =

(
1 0
0 −1

)
, REk

n+v =

(
Cvk Svk

Svk −Cvk

)
(8.27)

From Eq. (8.23), the ẼEk corresponding to the two-dimensional representa-

tions Ek, which appears twice in the Ẽ, can be written as

ẼEk =

(
qr + qv(1− Ckv) −qvSkv

−qvSkv qr − 2 + qv(1 + Ckv)

)
(8.28)

Determinacy of ẼEk is equal to zero if Cvk = Cv; i.e., k = 1. Hence, the force

density matrix has at least four zero eigenvalues—two in the duplicated ẼE1

blocks and additional two in the one-dimensional ẼA1 and ẼA2 blocks, which

satisfies the non-degeneracy condition for a general tensegrity structure.

8.3.3 Super Stability

In Lemma 3.2, we have presented the sufficient and necessary conditions for the

super stability of a tensegrity structure in three-dimensional space:

[L1] The force density matrix has the minimum rank deficiency of four;

[L2] The force density matrix is positive semi-definite;

[L3] The geometry matrix has rank of six.
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Figure 8.5: Cosine corresponding to the connectivity of vertical cables v (n = 11).
It shows the idea, for super stability condition for the star-shaped tensegrity
structures without center members, that Ckv > Cv holds for any k only if n is
odd.

In the following discussions on the stability, the third condition is assumed to

be satisfied if the star-shaped tensegrity structure is indivisible.

We have known that the one-dimensional blocks are positive semi-definite

if the structure is indivisible, with two zero eigenvalues in ẼA1 and ẼA2 . If

all the two-dimensional blocks ẼEk (k 6= 1) are positive definite, while ẼE1 is

positive semi-definite, the first two conditions are also satisfied, and therefore,

the structure is super stable. Thus, the problem of finding the super stable

structures becomes that of finding the conditions for ẼEk(k 6= 1) being positive

definite and ẼE1 being positive semi-definite.

However, the positive definiteness of ẼEk in Eq. (8.28) is not so clear for the

structures with center member, because the force densities are non-linear with

respect o the h/H ratio. In the follows, we concentrate only on the simpler case

where the center member is removed.
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(c) v = 3 (divisible) (d) v = 4 (indivisible)

Figure 8.6: Connectivity of boundary nodes in one plane through struts and
vertical cables (n = 9). It shows the idea, for super stability condition for the
star-shaped tensegrity structures without center members, that Ckv > Cv holds
for any k only if v = (n− 1)/2.

When the center member is absent, we have h = 0 and the force densities of

the vertical and radial cables become

qv = −qs = 1

qr =
√

2(1− Cv)
(8.29)

The eigenvalues of the two-dimensional blocks ẼEk are

λEk
1 =

√
2(1− Cv) +

√
2(1− Ckv) > 0

λEk
2 =

√
2(1− Cv)−

√
2(1− Ckv)

(8.30)

In order to ensure that ẼEk(k 6= 1) is positive definite, we need

Ckv > Cv (8.31)
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To investigate in what cases can Eq. (8.31) be satisfied, consider the cosine

for different v and kv as shown in Fig. 8.5. The cosine values are of reflection

symmetry with respect to the center line running across n/2, and run as a cycle

for kv.

Consider the boundary nodes in the upper plane. If the structure is indivisible,

we will eventually stop at node 0 (or n as well) while starting from node v after

n steps travelling along by kv, and every node in the plane will have been visited

exactly once. For example, see the difference connectivities of the nine nodes

in the upper plane of the indivisible structures with D9 symmetry as shown in

Figs. 8.6.(a), (b) and (d). If the structure is divisible, at least one node is visited

more than once within the n steps, e.g., three nodes of the divisible structure in

Fig. 8.6.(c) have been visited in the trip.

We may notice that the cosine values in Fig. 8.5 corresponding to the labels

of the nodes in Fig. 8.6 have the same reflection symmetry with respect to the

plane running across n/2. This means that Ci = Cn−i. So, if k can run from 1

to n and the structure is indivisible, then Cvk can have the cosine values as in

Fig. 8.5 exactly twice except for 1 and −1, because of the reflection symmetry.

If the structure is divisible, some nodes with Ckv = Cv for their cosines are

visited more than once. Hence, it will introduce additional zero eigenvalues in the

force density matrix. The only exception is D2
4, because that it has 1 and −1 for

the cosines only once because they are the maximum and minimum values that

they can be. However, the geometry matrix of this structure is not full-rank, and

therefore, the structure is not super stable.

Because the number of the two-dimensional representations of a dihedral

group cannot exceed n/2, we can have the cosine values exactly once for Cvk

if the structure is indivisible. Hence, in order to satisfy Eq. (8.31), the structure

should be indivisible and Cv should have the minimum cosine value. v = n/2 (n is

even) has the minimum cosine −1, but the structure is divisible. So, v = (n−1)/2

(n is odd) is the only possibility that Eq. (8.31) can be satisfied.

From the above discussions, we have the following lemma for super stability

of star-shaped tensegrity structure without center member:
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(a) D2
5 (b) D3

7

Figure 8.7: Star-shaped tensegrity structures that are super stable. All of them
have odd number of struts, and the struts have minimum distances to each other.

Lemma 8.2 A star-shaped tensegrity structure that is of dihedral symmetry and

has no member connecting its center nodes is super stable if and only if the fol-

lowing two conditions are satisfied

[L1] The structure has odd number of struts; i.e., n is odd.

[L2] The struts are as close to each other as possible, or in another term, the

connectivity v of the vertical cables is (n− 1)/2.

Proof. The lemma can be proved from the discussions for satisfying the relation

in (8.31).

When the structure is super stable, its struts come closest to but do not

contact with each other. For example, the structure D1
3 in Fig. 8.1.(b) and the

structures D2
5 and D4

9 in Fig. 8.7 are super stable.

8.3.4 Stability of the Structures without Center Member

Consider the star-shaped tensegrity structures without center member, the bound-

ary nodes of which are of dihedral symmetry D7. In Figs. 8.8, 8.9 and 8.10, the

minimum eigenvalue of the quadratic form of the geometrical stiffness with re-

spect to the mechanisms against the ratio of the height and the radius of the

structure are plotted.

It is obvious that D3
7 is always prestress stable because it is super stable.

And we can observe that the structures D1
7 and D2

7 can be prestress stable if the

height/radius ratio is large enough.
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Figure 8.8: Star-shaped tensegrity structure D1
7 without center member. It is

prestress stable when its height/radius ratio is large enough: H/r > 1.0 in this
case.

Table 8.1: Prestress stable structures.
v\n 3 4 5 6 7 8 9 10
1 S P P P P P P P
2 D S D P D P D
3 D S P N P
4 D S D
5 D

Based on the numerical investigations of the stability of the star-shaped

tensegrity structures without center member up to n = 10, we have the sta-

bility properties of the structures as listed in Table 8.1. Note that in Table 8.1,

’P’, ’S’ and ’D’ denote prestress stable, super stable and divisible, respectively.

From the numerical investigations and Table 8.1, we may observe the follow-

ing facts for the prestress stability of the indivisible structures without center

member, which need to be carefully verified in the future work:

[L1] Prestress stability of the structures is sensitive to the height/radius ratio.

[L2] When the height/radius is large enough, the structures become prestress

stable.
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Figure 8.9: Star-shaped tensegrity structure D2
7 without center member. It is

prestress stable when its height/radius ratio is large enough: H/r > 0.3 in this
case.

However, it seems that it is apparent for us to draw the second conclusion

as mentioned above, and it is a conjecture about the prestress stability of star-

shaped structures at the moment. How to verify the above arguments might

be considered in the future work, perhaps based on the symmetry-adapted form

of the quadratic form of the geometrical stiffness matrix with respect to the

mechanisms.

8.3.5 Stability of the Structures with Center Members

Some numerical examples of the star-shaped tensegrity structures with center

member also show that they are super stable if the two sufficient and necessary

conditions are satisfied as the structures without center member. For example,

numerical investigation tells us that the structure in Fig. 8.1.(c) is super stable.

However, this is not guaranteed, because the distance h from the center node

to the nearest horizontal plane can vary, and the force density matrix is non-linear

with respect to the ratio h/H.

For the prestress stability of the star-shaped structures with center member,

we consider the structure D1
4 as shown in Fig. 8.2. The similar structure to

this without center member is shown in Table 8.1 to be prestress stable if the
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Figure 8.10: Star-shaped tensegrity structure D3
7 without center member. It is

not super stable but always prestress stable.

height/radius ratio is large enough.

When h = 0.0, we can see from Fig. 8.11.(a) that the structure with center

member (note that there exist no self-stress in the center member in this case)

can be prestress stable if the height/radius ratio is large enough, which is larger

than 0.5 in the case.

In order to investigate the influence of the value of h to the prestress stability

of the structure, the ratio between the height and the radius of the structure is

fixed as H/r = 3.0. By letting h run from −1.55 to 5.0, the relationship between

the minimum eigenvalue of the quadratic form and h is plotted in Fig. 8.11.(b).

Remind that when h < 0, the center member is a cable or a strut when h > 0.

From the Fig. 8.11.(b), it is implicit to tell the influence of h to the prestress

stability of the structure when the center member is a cable. And it is apparent

that the structure can become more stable with the increasing h when the center

member is a strut.

From the above discussions on the prestress stability of the star-shaped struc-

tures with and without center member, we learn that it is sensitive to the height/radius

ratio similar to the prismatic tensegrity structures. However, it is unlikely to tell

explicitly in what circumstances the structures can be prestress stable.

And we have the conjecture for the star-shaped tensegrity structures that are
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(a) h = 0.0 with varied H/r (b) H/r = 3.0 with varied h

Figure 8.11: The structure P 1
4 that is not super stable but can be prestress stable.

It has a center member connecting its two center nodes.

not super stable: the structures are prestress stable if the height/radius ratio is

large enough. The conjecture is promised to be proved based on the symmetry-

adapted forms of the matrices.

8.4 Multi-stable Structure

From the super stability condition for a star-shaped tensegrity structure in Lemma

8.2, the structure D1
4 as shown in Fig. 8.12 is not super stable, and it can be pre-

stress stable when the height/radius ratio is large enough from the numerical

investigation.

Interestingly, the structure can have several stable configurations, which can

be switched by proper external loads. For example, the photos of initial and

another stable configurations of the physical model D1
4 are shown in Fig. 8.13.

To confirm the multi-stable behavior of this structure, structural analysis

has been carried out. The ratio of hight to radius of the example structure is

1.0. The linear stiffness AiEi for struts and cables are set to 1.0 × 106 N and

1.0 × 102 N, respectively. The force densities of the struts, vertical cables and

radial cables in the state of self-equilibrium are −1.0, 1.0, and
√

2, respectively.

The displacements of node 10 in the bottom plane as in Fig. 8.14 in every direction
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Figure 8.12: The initial stable configuration of the star-shaped tensegrity struc-
ture D1

4. It is of dihedral symmetry.

(a) initial stable configuration (b) the other stable configuration

Figure 8.13: The physical model of the initial stable configuration of the star-
shaped tensegrity structure D1

4 with dihedral symmetry, and another stable con-
figuration with lower symmetry. The two stable configurations can be switched
to each other by proper external loads.
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Figure 8.14: The other stable configuration of the star-shaped tensegrity structure
D1

4. External loads can be applied to exchange this configuration and the initial
configuration as shown in Fig. 8.12. Note that dihedral symmetry of the initial
structure is broken.

are constrained, while the displacements of node 6 in x-direction and node 9 in

xy-plane are also constrained. This way, the rigid-body motions of the structure

are constrained.

Enforced rotation of node 4 about z-axis is applied. It is moved counter-

clockwise through π/4 by 20 steps, and finally arrives at the position as in

Fig. 8.14 which is the other stable configuration of the structure. Displacement

control has been used in the structural analysis. It can be observed from the figure

that nodes 1, 4, 5 and 6 fall in the same line at the final stable configuration.

The strain energy stored in the structure can be calculated as the sum of those

stored in each member:

Π =
∑

q2
i l

3
i /(2AiEi)

The stain energy for each iteration step is plotted in Fig. 8.15, and the follows

have been observed concerned about the enforced rotation θ of node 4

1. At the initial position θ = 0o :

The strain energy is the local minima in the neighborhood, and therefore,

it is in the state of self-equilibrium as well as stability.
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Figure 8.15: Strain energy of the structure D1
4 at every iteration step of the

enforced rotation of node 4 about z-axis.

2. From θ = 0o to the position with the maximum energy Πmax :

The strain energy increases associated with the enforced rotation. It is

equilibrated by the external loads, and is not in the state of self-equilibrium

since the gradient of the energy Π against rotation θ is not equal to zero.

Moreover, it would return to the initial configuration θ = 0o if the external

loads are removed at this stage.

3. At the position of Πmax :

The structure is at the state of self-equilibrium since the gradient of Π to

θ is zero, but it is not stable because the energy is the maximum. It will

move back to the initial stable configuration, or move forward to next stable

configuration, dependent on the infinitesimal disturbance of external loads.

4. Passing Πmax :

This is not the stable nor the self-equilibrated configuration.

5. At the final position θ = 45o :

Although the structure is not at the state of stability nor self-equilibrium in

the conventional meaning from the figure, further deformation is prevented
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by the contact of three struts, and hence, it stops at this configuration and

forms another ‘stable’ configuration.

The deformations of the structure at each step in the structural analysis are

shown in Fig. 8.16.

8.5 Discussions and Conclusions

In this chapter, self-equilibrated configurations of star-shaped tensegrity struc-

tures have been analytically determined using the symmetry method presented

in Chapter 7. The sufficient and necessary divisibility conditions for this class of

structures have been derived based on the connectivity of vertical cables. Condi-

tions for super stability of them have been further presented and proved using the

analytical formulation of the symmetry-adapted force density matrix presented

in Chapter 6.

Center nodes and boundary nodes of star-shaped structures belong to two

different orbits, and hence, there are two representative nodes for this class of

structures; self-equilibrated configurations are determined by considering self-

equilibrium equations of these representative nodes, instead of the whole structure

to give general solution of the whole class of structures. There are two kinds of

star-shaped structures considered in this chapter: those with center members

connecting the center nodes, and those without center members. Similarly to

prismatic tensegrity structures, xy-coordinates are independent on z-coordinates

for the structures without center members; while z-coordinates of the structures

with center members also influence the xy-coordinates.

The divisible structures should be excluded from stability investigation, since

the substructures should have been considered in the cases with lower symmetry.

It has been proved that the structures are indivisible, only if the parameter n

describing symmetry Dn of the structure and the parameter v describing con-

nectivity of their vertical cables do not have common factors except 1. For the

indivisible structures, numerical investigations shows that they can be prestress

stable, if not super stable, when the height/radius ratios are large enough.
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Figure 8.16: Multi-stable behavior of the star-shaped tensegrity structure D1
4.

The two different stable configuration of the structure can be switched to each
other by the proper external load, for example the enforced rotation of a boundary
node in this numerical computation.
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8.5 Discussions and Conclusions

For the star-shaped structures without center members, the symmetry-adapted

force density matrix formulated in Chapter 6 enables us the find the super sta-

bility condition for them: a structure is super stable if and only if the number of

its struts is odd and the struts are closest to each other.

For the structures that are not super stable, numerical investigations indicate

that they can be prestress stable if the ratio of hight to radius if high enough.

Furthermore, some of the prestress stable structures, for example the structure

D1
4 studied this chapter, might have several stable configurations with lower level

of symmetry other than the initial configuration with dihedral symmetry. This

multi-stable behavior has been successfully confirmed by numerical analysis and

physical models.
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Chapter 9

FORCE DESIGN

In this chapter, we present a bi-objective optimization approach for force design

of tensegrity structures, which have more than one independent force modes.

From the self-equilibrium equation with respect to prestresses, the distribu-

tion of prestresses can be formulated as the linear combination of the independent

modes of prestresses of the structure. Moreover, after the determination of con-

figuration of a tensegrity structure by the designers, the only chance to influence

its stiffness and stability is to determine the distribution of prestresses of the

structure satisfying the self-equilibrium equation. Hence, we are provided the

opportunity to design a structure as strong as possible (with the maximum stiff-

ness) by carefully selecting the distribution of prestresses for the structures with

multiple force modes. The process of determination of the prestresses for the

structures with given configurations is called force design.

In this chapter, we are concerned about the force design of tensegrity struc-

tures through a bi-objective optimization problem. In the problem, the stiffness

against external loads is to be maximized and the force deviation from their ex-

pected values. These two objectives will be demonstrated to be conflicting with

each other such that there is no single optimal solution for both of them at the

same time, and trade-off between them has to be determined in the force de-

sign. For this purpose, we present the curve of Pareto optimal solutions to assist

decision making by the designers.
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9.1 Introduction

(a) prismatic structure D3 (b) cable dome

Figure 9.1: Example structures with different number of prestress modes. The
structure (a) has only one prestress mode, and note from Lemma 3.7 that it be-
comes unstable if signs of prestresses are reversed. The structure (b) has two
prestress modes, and hence, its stiffness is influenced by selecting a linear combi-
nation of these two modes.

9.1 Introduction

In Chapter 2, we discussed several stability criteria for tensegrity structures: a

structure is stable when it has positive definite tangent stiffness matrix, and a

structure is prestress stable if its reduced stiffness matrix is positive definite. In

the definition of prestress stability, only stiffness of the structure in the directions

of mechanisms are considered, while member stiffness is assumed to be infinite.

As has been discussed, prestress stability is the necessary condition of stability,

but not the sufficient condition. Moreover, if the structure has high enough

ratio of stiffness to axial forces, e.g., the numerical example of the structure

D3,2
7 in Chapter 7, then the prestress stable structure is guaranteed to be stable.

Hence, for a kinematically indeterminate structure, it would be more convenient

to investigate prestress stability of the structure, since the structure in practice

usually has high enough member stiffness compared to level of prestresses.

The only possibility to influence stiffness of a kinematically indeterminate

structure is to carefully select the distribution of prestresses in the case that its

configuration is determined a priori, because the mechanisms come from config-

uration of the structure. Therefore, for the structures that have more than one

modes of prestresses, e.g., the cable dome with two prestress modes in Fig. 9.1, we

are provided the chance to select such a distribution; the optimization methods

are considered to be particularly suitable for this purpose.
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El-Lishani et al. (2005) presented a genetic algorithm (GA) to find out whether

there exists any distribution that can stabilize the mechanisms—the reduced stiff-

ness matrix is positive definite. Genetic algorithm is an excellent heuristic opti-

mization method for discrete problems, but on the other hand, it has difficulties

in dealing with continuous problems because continuous feasible region is not

easy to be properly described by coding. Moreover, it is not stability but stiffness

of a structure that mostly concerns the designers in the practical design, since

stiffness describe capability of the structure in resisting external loads.

In this chapter, we formulate a multiobjective optimization problem for deter-

mination of distribution of prestresses of a tensegrity structure that has multiple

prestress modes, and present a method for generating curve of the Pareto optimal

solutions for the problem. There are two objectives considered in the problem:

to increase the stiffness of tensegrity structures, and to have the prestresses as

close as possible to the desired values. These objectives usually conflict with

each other, so that there is no single optimal solution that simultaneously opti-

mizes the two objectives. Presentation of the curve of Pareto optimal solutions

may assist decision making of the designers, and enables they to select the most

preferred solutions in view of the trade-off between the two objectives.

Following this introduction, the paper is organized as follows. Section 2 in-

troduces the basic assumptions, and presents the formulas related to prestresses

and stability criteria. Section 3 formulates the optimization problem with two

objectives. An example of force design of a special kind of tensegrity structure,

called tensegrity grid, is presented in Section 4. Brief conclusions and discussions

are given in Section 5.

9.2 Multiobjective Optimization Problem

In addition to the three basic assumptions introduced for general pin-jointed

structures in Chapter 2, configuration of a structure is assumed to be known

so as to search for the optimal distribution of prestresses in this chapter. We

formulate an optimization problem with two objectives: maximization of the

stiffness, and minimization of deviation of prestresses from target values; signs of
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9.2 Multiobjective Optimization Problem

the prestresses in some specific members and given strain energy for introduction

of prestress into the structure are the constraints for the problem.

9.2.1 Objective Functions

Let rD denote rank of the equilibrium matrix D. For the structure with n nodes

and m members, there exist m−rD independent modes fi of prestress, and hence,

distribution of prestress of the structure can be written as the linear combination

of them as

s =
m−rD∑

i=1

αifi = Fα (9.1)

where Dfi = 0 and αi is the coefficient of the i mode of prestress.

9.2.1.1 Maximum Stiffness

Prestress stability and stiffness of a tensegrity structure can verified by the small-

est eigenvalue of the reduced stiffness matrix Q, which is the quadratic form of

the geometrical stiffness matrix KG with respect to the mechanisms M:

Q = MTKGM (9.2)

When the member stiffness is large enough compared to the level of prestresses.

This is because that Q is also the smallest eigenvalue λ of K in this case. To

simplify the problem, we assume that the stiffness of all members is infinite so that

stability of the structure can be verified by the sign of λ: when λ is positive, the

structure is stable; when it is negative, then the structure is unstable. Note that

stability of the structure needs further investigation based on the higher-order

terms of energy when λ = 0. Furthermore, the stiffness of the structure against

external loads can be evaluated by the magnitude of λ: lager λ corresponds to

higher stiffness of the structure. Hence, to increase the stiffness, a distribution

of prestresses resulting in an increase of λ is to be found. For the given design

conditions, such as material properties and loading conditions, the maximum

deformation of the structure is usually expected to be minimized. Hence, we

maximize the smallest eigenvalue λ of the quadratic form Q as one of the objective

functions of the multiobjective optimization problem.
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9.2.2 Uniform Prestresses

Uniform distribution of prestresses can have many advantages in design, construc-

tion and even in maintenance of tensegrity structures. For example, fabrication

costs and complexity of construction process can be significantly reduced, if the

member cross-sectional areas are same for the same type of members; moreover,

we will have the same safety factor for the failure of members. The target pre-

stresses are denoted by s̄, where the target values may be same for each type of

members, or can be specified arbitrary by the designers. The difference ||s − s̄||
between s and s̄ is to be minimized as the other objective function. The least

square method can simply give the optimal solution for this problem as follows

s = FF−s̄ (9.3)

where F− denotes the generalized inverse of F.

Note that both of the two objectives mentioned above are described in terms

of member forces. However, they cannot have global optimal solutions at the

same time. A trade-off between them is generally required in the force design of

tensegrity structures.

9.2.3 Constraints

Suppose that the member force vector s is scaled to ks (k > 0). The equilibrium

state of the structure is retained after scaling, and the stability does not depend

on the value of k when the member stiffness is assumed to be infinite. However,

λ is also modified to kλ. Therefore, the problem of maximizing the stiffness

becomes that of searching the maximum scalar for the prestresses if we have no

further constraints on the prestresses. To conquer this problem, a specific value

of strain energy provided to pretension the structure is given in the study.

The strain energy Π of the structure can be written as

Π =
∑ s2

i li
2AiEi

(9.4)

where li and AiEi are the length and stiffness of member i. For simplicity, they

are assumed to be same for all members, and therefore, the strain energy of the
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structure is rewritten as

Π = a
∑

s2
i li = as>s (9.5)

where a is a constant denoting li/(2AiEi). The specified value of strain energy Π̄

can be further simplified as follows by ignoring the constant a

Π̄ = s>s (9.6)

Moreover, it is also expected that the prestresses conform to the types of the

members; i.e. tension for cables and compression for struts, because cables have

zero stiffness in compression. Let sc and ss denote the member force vectors of

cables and struts. Then we will have sc > 0 and ss < 0 for the constraints on the

signs of the prestresses.

9.2.4 Formulation

The multiobjective optimization problem is formulated as

Minimize −λ and ||s− s̄||
S.T. sc > 0

ss < 0
s>s = Π̄

(9.7)

For a multiobjective optimization problem, we may have compromise solu-

tions, called Pareto optimal solutions, in which it is impossible to improve all of

the objectives at the same time. Many methods have been developed to solve the

problem, among which we will adopt the constraint approach in the next section

to list the Pareto optimal solutions as candidates for the assistance of decision

making.

9.3 Examples

In this section, we consider the force design of a special tensegrity structure, called

tensegrity grid, proposed by Motro (2003) as shown inFig. 9.2. It is constructed

by assembling the unit cells as shown in Fig. 9.3 in x- and y-directions. Let r

and c denote the numbers of rows and columns of the struts, respectively. Hence,

there are r + 1 struts in each column and c + 1 struts in each row. Thus, the
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x 

y 

(a) Top view (b) Side view

Figure 9.2: An example of tensegrity grid. There are four rows (r=4) and three
columns (c = 3) of struts, which are connected to each other at their ends in each
row and column.

structure has 2rc + r + c struts and n = 2(rc + r + c) nodes. The total number

of members is m = 7rc + 5r + 5c − 4. The structure has only one infinitesimal

mechanism irrespective of r and c. Thus, the quadratic form Q turns out to be a

scalar, which is equal to λ. Moreover, there are at most rc−r−c+3 independent

modes of prestresses. Note that the members, which are parallel to the xy-plane

and connected to the boundary nodes, are bars carrying no force. The bars have

both compressive and tensile stiffness so as to maintain stability of the structure.

The structure as shown in Fig. 9.2, which consists of 38 nodes and 115 mem-

bers (r = 5 and c = 4) is used as a numerical example. Height of the structure is

5.0, and the projection of each strut on xy-plane has length of 5.0 as well. The

prestresses are a linear combination of eight independent modes as in Eq. (9.1),

where the coefficients are to be determined by solving the optimization problem

(9.7).

In order to find the set of Pareto optimal solutions, we adopt the constraint

approach where the second objective function ||s− s̄|| of the optimization problem

(9.7) is incorporated in the constraints. Hence, problem (9.7) is transformed to
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Figure 9.3: Unit cell of tensegrity grid. They are connected consecutively in x-
and y-directions to form a tensegrity grid, e.g., the structure as shown in Fig. 9.2.

a single-objective optimization problem as

Minimize −λ
S.T. sc > 0

ss < 0
s>s = Π̄
||s− s̄|| < ε

(9.8)

where ε is the upper bound of the difference between the member forces from their

target values. The set of Pareto optimal solutions for the original bi-objective

optimization problem (9.7) can be derived by solving the revised single-objective

optimization problem (9.8), where the upper bound ε for ||s− s̄|| is varied grad-

ually and consecutively. The smallest value of ε can be determined by solving

problem (9.7) ignoring the objective function −λ; it can also be easily found

as the least square solution in Eq. (9.3). The largest value of ε can be derived

by solving problem (9.7) to minimize −λ only. We use the function fmincon( )

in the Optimization Toolbox in MATLAB (Borse, 1997) for the single-objective

problem (9.8). fmincon( ) is a nonlinear programming routine, which attempts

to find a constrained minimum of a scalar function of several variables starting

from an initial estimate.

The target prestresses of struts and cables are set to −1 and 1, respectively.

If the prestresses exactly agree with the target values, the revised strain energy

introduced to the structure is s>s = 101 because there are 101 struts and cables

in addition to 14 bars carrying no force on the boundary. Hence, we set Π̄ = 101

for the problem. Note that these values are purely numerical without explicit
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Figure 9.4: Pareto optimal solutions of problem (9.7) for maximizing stiffness
and minimizing the deviation of prestresses from uniform distribution.

physical meaning, and are used to present the set of Pareto optimal solutions.

The coefficients αi of the force modes fi are the variables in the optimization

problem. The initial solution to start the fmincon( ) is determined by the least

square method as in Eq. (9.3). The difference between the prestresses and the

target values is distributed in the region [6.6849, 8.0662]. The upper bound ε is

varied in this region to find λ by solving the problem (9.8). The generated Pareto

optimal solutions are plotted in Fig. 4.

A trade-off relation between the two objective functions is clearly observed

in Fig. 9.4, which conforms to the definition of the Pareto optimal solutions.

Basically, larger difference between the prestresses and the target forces leads to

higher stiffness, but they do not have linear relation. In the force design process,

a compromise between the two objectives should be made. Curve of the Pareto

optimal solutions can provide direct information to help designers in the further

understanding of the structure and decision making in the force design.
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9.4 Conclusions and Discussions

9.4 Conclusions and Discussions

In the structural design, it is always desirable that the structure has the stiffness

as high as possible, for the given design conditions, so as to let the structure be in

good service against external loads. Moreover, uniform distribution of prestresses

has many advantages, such as reduction of fabrication costs and complexity of

construction process, and having the same safety factor for the failure of members.

Since tensegrity structures usually have multiple independent force modes,

we have the freedom to choose the prestresses to have control over the mechan-

ical properties of the structures. A bi-objective optimization problem has been

presented to maximize the stiffness and to minimize the difference between the

prestresses and their target values, subject to the constraints of given strain en-

ergy and types of members.

It is clear from the numerical example in Section 4 that distribution of pre-

stresses has significant influence on the stiffness of the structure. Presentation of

the curve of the Pareto optimal solutions enables designers to select a solution

from the candidate solutions according to their preferences, although it is not

possible to have maximum stiffness and uniform distribution of prestresses at the

same time.
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Chapter 10

FORCE IDENTIFICATION

This chapter is to use optimization methods to determine measurement posi-

tions of prestressed (pin-jointed) structures, for the purpose of identification of

distribution of their prestresses.

Assessment and maintenance of member forces are of great importance for pre-

stressed structures, which take advantages of prestress to enhance their stiffness.

Therefore, the distribution of forces should be precisely identified and carefully

adjusted in the construction process. The member forces should also be moni-

tored and maintained after construction for the process of life-cycle management.

Our problem is to find out the optimal measurement positions such that the

identification error is minimized when the number of measurement devices is

determined a priori. This is a typical combinational discrete optimization problem

that global optimal solution is hardly available, and heuristic methods are thought

to be powerful for these problems. In this study, we focus on making improvement

to Simulated Annealing (SA) method for searching (near) optimal solutions more

efficiently and accurately.

10.1 Introduction

Based on the sensitivity analysis of the equilibrium equations, Zhang et al. (2004)

have formulated the mean identification error (MIE) to reflect the accuracy of

identification of the distribution of prestresses of the tension structures. How-

ever, only the measurement errors of prestresses have been taken into consider-
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ation, while assuming that the configuration of the structure in terms of nodal

coordinates is known a prior or measured without any error.

Four heuristic methods based on the basic idea of Stingy, Greedy methods

and local search strategy were proposed by the authors to find the optimal set of

measurement members with the minimal number, subjected to an upper-bound

constraint on the MIE specified by the users.

In the view point of accuracy, the measurement errors of nodal coordinates

should also be taken into account at the same time to reflect the identification

error exactly, although the measurement errors of nodal coordinates may be small

because of the high capability of advanced measurement devices nowadays.

On the other hand, the upper-bound constraint on mean identification error

may be difficult to decide and needs experience on it, since the magnitude of it

is dependent on the models or types of the structures. In some cases, a specified

number of measurement devices, or a specified number of measurement members

in other words, may be more comprehensible and easy to use to be deployed in

the structure for the identification purpose with minimum error.

To this kind of combinational discrete optimization problem, the simulated

annealing (SA), a heuristic method, has been proved to be a very powerful tool,

because no sensitivity analysis of the objective function is needed.

However, there is no guarantee that the solutions derived by the heuristic

methods are the global optimum, although they are convinced to be close to

that.

In this chapter, we will make an improvement to the standard SA by starting

from a better initial solution, determined by the Stingy method, to find the

optimal solution. This solution derived by the improved SA is shown to be more

robust than that by the standard SA by a numerical example.

10.2 Identification Error

This section is to present the formulation for the identification error, taking the

measurement errors of prestresses as well as nodal coordinates into consideration.
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10.2 Identification Error

10.2.1 Force Errors

The members are divided into two groups—the measurement members, of which

the prestresses are to be measured, and the estimation members, of which the

prestresses are to be estimated by those of the measurement members through

self-equilibrium equations. Let sm ∈ <p denote the prestress vector of the p

measurement members, and let se ∈ <m−p denote the prestress vector of the

m− p estimation members.

The self-equilibrium equation Eq. (2.36) can be rewritten as follows by divid-

ing the member forces into the measured set sm and the estimated set se as

Dmsm + Dese = 0 (10.1)

where Dm ∈ <3n×p and De ∈ <3n×(m−p) are constructed by assembling the

columns in D that correspond to the members in sm and se, respectively.

If De is full-rank; i.e., rank(De) = m− p, then the least squares solution of se

can be determined as follows

se = −(De)−Dmsm (10.2)

Eq. (10.1) where ( )− denotes the Moore-Penrose generalized matrix inverse.

When De is rank deficient; i.e., rank(De) < m− p, there exist m− p− rank(De)

independent modes of se that satisfy Eq. (10.1), and Eq. (10.2) gives the solution

that has the minimum norm among the possible solutions. Hence, De need be

full-rank to have accurate estimation of the member forces. Furthermore, h or

more members should be measured so as to exclude the h dependent columns in

D from De to make it possible to be full-rank.

Combine the nodal coordinates as X> = (x>,y>, z>)>. Suppose that there

exist measurement errors in X and sm. Total differential of Eq. (10.2) with respect

to X and sm leads to

3n∑
i=1

∂Dm

∂Xi

∆Xis
m + Dm∆sm +

3n∑
i=1

∂De

∂Xi

∆Xis
e + De∆se = 0 (10.3)

where ∆xi and ∆sm, respectively, are the measurement errors of nodal coordi-

nates and member forces to be measured, and ∆se is the resulting estimation
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error of the remaining members. ∂Dm

∂Xi
and ∂De

∂Xi
can be derived by assembling the

corresponding entries in ∂D
∂Xi

; see details in Section 4.

From Eqs. (10.2) and (10.3), ∆se is written as

∆se=− (De)−
(

3n∑
i=1

[
∂Dm

∂Xi

− ∂De

∂Xi

(De)−Dm

]
sm∆Xi + Dm∆sm

)
(10.4)

which is simplified as

∆se = (H,G)

(
∆x
∆sm

)
(10.5)

where

Hi = −(De)−
[
∂Dm

∂Xi

− ∂De

∂Xi

(De)−Dm

]
sm

H = (H1, . . . ,Hi, . . . ,H3n)

G = −(De)−Dm (10.6)

Combining the measurement errors ∆sm and estimation errors ∆se of member

forces as ∆s, we have the following equation from Eq. (10.5):

∆s =

(
∆sm

∆se

)
=

(
O Ip

H G

)(
∆X
∆sm

)
(10.7)

where Ip ∈ <p×p is an identity matrix. In the following, the identity matrices

are denoted by I with the size indicated by subscript. This way, the force error

vector ∆s of all members is formulated as a function of measurement errors of

nodal coordinates ∆X and member forces ∆sm.

The partial differential of the equilibrium equation D formulated in Eq. (7.3)

with respect to the parameter t can be written as

∂D

∂t
=




C> ∂U
∂t

L−1 + C>U∂L−1

∂t

C> ∂V
∂t

L−1 + C>V ∂L−1

∂t

C> ∂W
∂t

L−1 + C>W ∂L−1

∂t


 (10.8)

where t can be time or the coordinates of the free nodes in x-, y- or z-directions.

The components ∂U
∂t

, ∂V
∂t

, ∂W
∂t

, and ∂L−1

∂t
in Eq. (10.8) can be found in Eqs.

(2.29) and (2.30) in Chapter 2.
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10.2.2 Identification Error

Let ec and ef denote the upper bounds of measurement errors of nodal coordi-

nates and member forces, respectively, which can be determined by using the

ellipsoidal convex model proposed by Zhu et al. (1996) for example based on

existing measurement data. The member forces and nodal coordinates with dif-

ferent dimensions are transformed into dimensionless variables by dividing them

by ec and ef , respectively. Hence, their measurement errors are transformed into

dimensionless variables, and Eq. (10.7) is rewritten as

∆s = B∆r =

(
O efIp

ecH efG

)(
∆X/ec

∆sm/ef

)
(10.9)

where

B =

(
O efIp

ecH efG

)
, ∆r =

(
∆X/ec

∆sm/ef

)
(10.10)

When the sets of member forces to be estimated and measured are specified,

B is a constant matrix from the definition of H and G. Note that the force error

depends on the patterns of the measurement errors. To incorporate the worst-case

scenario, where ∆s has the maximum Euclidean norm, the performance measure

of the identification is defined as the identification error E as

E = max ‖∆s‖2 (10.11)

which is equivalent to the 2-norm of the matrix B (Horn and Johnson, 1990):

E = ‖B‖2 = max ||B∆r||2 subject to ||∆r||2 = 1 (10.12)

In Eq. (10.12), it is to find a vector ∆r with unit norm leading to the maximum

‖∆s‖2. Furthermore, the 2-norm of matrix B is equal to the square root of the

largest eigenvalue λmax of BHB, where BH is the conjugate transpose:

E =
√

λmax (10.13)

Since B is a real matrix, the conjugate transpose BH of B equals to its transpose

B>; i.e., BH = B>.

When all the members are to be measured; i.e., p = m, we have E = ef , since

B = (O, efIm), BHB =

(
O O
O e2

fIm

)
(10.14)

where Im ∈ Rm×m is an identity matrix.

242



10.3 Optimal Placement of Measurement Devices

10.3 Optimal Placement of Measurement De-

vices

In this section, we formulate an optimization problem, which searches for the

optimal placement of devices for the measurement of some member forces while

all nodal coordinates are assumed to be measured. A heuristic approach called

simulated annealing, with the initial solution determined by the stingy method,

is adopted for solving this combinatorial problem.

10.3.1 Problem formulation

In the process of force identification of a prestressed pin-jointed structure, the key

factors to be considered are (a) the precision of measurement, (b) the number of

measurement devices, and (c) the locations of measurement devices. The study

considers only the last two factors, since the precision of the measurement depends

on the measurement device, which is out of the scope of this paper.

In practical applications of force identification, nodal coordinates can be easily

measured with relatively small cost, while the measurement devices for member

forces are much more expensive. Hence, we assume that all nodal coordinates are

measured, whereas only a part of the member forces are to be measured.

From the definition of identification error in Eq. (10.13), we can see that the

matrix B depends on the set of measurement members to be selected even for

the case where the number of measurement devices is specified. Therefore, our

problem is to find the optimal locations of measurement devices of member forces,

which lead to minimum identification error E, with the fixed number p̄ of devices.

The problem is formulated as

minimize E

subject to p = p̄ (10.15)

Note that there is actually another inherent constraint: the matrix De has to

be full-rank so as to have the least squares solution for the member forces to be

estimated as in Eq. (10.2).
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10.3.2 Solution process

The proposed problem in Eq. (10.15) is a typical combinatorial optimization

problem, for which many heuristic methods have been presented. Simulated

Annealing (SA) is one of the most popular approach that lead to approximate

optimal solution within a practically acceptable computational cost. We modify

SA to start from an initial solution found by the stingy method, which is a simple

approach based on local search.

10.3.2.1 Simulated annealing

As its name implies, SA exploits an analogy between the metal annealing process

and the search process of the best objective function in a general optimization

problem (Kirkpatrick et al., 1983). No sensitivity analysis is needed in the process

of searching for the optimal solution. The major advantage of SA over other

heuristic approaches is its ability to avoid being trapped at the local optimum.

The five important components involved in SA are: (a) feasible solutions, (b)

initial solution, (c) transition of solutions, (d) cooling schedule, and (e) termina-

tion condition.

(a) Feasible Solutions:

For every feasible solution in our problem, the matrix De corresponding to

the member forces to be estimated should be full-rank; i.e., rank(De) = m−p. A

new (candidate) solution can be generated from the current solution by randomly

selecting and exchanging the members in the sets to be measured and to be

estimated.

(b) Initial Solution:

The initial solution should also be feasible. The initial solutions are usually

generated randomly. However, to ensure feasibility of the solution and to improve

convergence property to the global optimum, we use the stingy method discussed

later to determine the initial solution.

(c) Transition of Solutions

One of the main features of the SA is the transition to non-improving solution.

The probability of acceptance of a neighborhood solution is defined as

P = min{1, e∆fi/ti} (10.16)
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where ∆fi is the increase of the objective value from the current solution in

iteration i, and ti is the control parameter known as temperature. Only when P

is larger than a specified value P̄ , which is random value uniformly distributed

in (0,1) in the study, transition of solution takes place. This way, convergence to

a local optimal solution is possible to be avoided.

(d) Cooling Schedule

The temperature ti determines the probability of the non-improving candi-

date solution to replace the current solution: lower temperature contributes to

a lower acceptance probability. SA usually starts at a high initial temperature

t0, and then gradually decreases to a low temperature leading to convergence of

the annealing. This process of decreasing temperature is called cooling schedule

or annealing schedule. Azizi and Zolfaghari (2004) discussed several theoretical

and empirical cooling schedules. Among them, we adopt the simple monotonic

schedule as

ti = ηti−1 (10.17)

where 0 < η < 1.

(e) Termination Condition

There are several criteria to terminate the algorithm. When the current tem-

perature is smaller than the specified lower bound t̄, it is possible that all the

improving solutions in the neighborhood have been searched. If no improvement

has been made during the specified number of iterations, the process can be

regarded to be converged.

The process of SA adopted in the study is summarized as follows:

Algorithm 1 – Simulated annealing:

Step 0: Initialization:

Generate an initial solution. Specify the values of the cooling ratio η, initial

temperature t0, size of neighborhood ns, and the termination parameters t̄

and nt. Set i = 0.

Step 1: Local Search & Solution Update:

Generate ns candidate solutions in the neighborhood of the current solution,

and move to the best one based on the acceptance criterion. Set i =: i + 1.
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Step 2: Cooling:

If the solution is updated in Step 1, then reduce the temperature by Eq. (10.17);

otherwise, do not modify the temperature.

Step 3: Termination:

If the temperature is lower than the specified bound t̄, or there is not any

new solution in Step 1 during nt successive temperatures, then output the

best solution and terminate the algorithm; otherwise, return to Step 1 with

the updated temperature ti.

The initial solution and the cooling schedule play critical roles in finding the

(approximate) optimal solution. A faster cooling schedule may lead to faster

termination but the final solution may not be close enough to the global solution.

Accordingly, the SA starting from a random initial solution may need slower

cooling schedule. However, in practical implementation of SA, value of η close

to 1 may demand much computation cost. On the other hand, a better initial

solution, which is closer to the optimal solution, may lead to faster convergence.

Hence, it is more reliable to start the SA from a better initial solution, which is

determined by the stingy method in the study.

10.3.2.2 Stingy Method

Zhang et al. (2004) developed several simple heuristic approaches, including the

stingy method, to investigate the identification accuracy of force distribution of

prestressed pin-jointed structures, where only the measurement errors of member

forces are considered. It has been demonstrated that the stingy method has rela-

tively high accuracy with small computation cost. Therefore, the stingy method

can be effectively used for producing a good initial solution, rather than random

solutions, to reduce computational cost as well as to improve accuracy in SA.

Stingy method is a basic heuristic approach, based on the local search, to

combinatorial optimization problems. For the problem considered in this paper, it

starts from a complete set of the possible measurement members, and successively

removes the member with least contribution to the objective function from the

current set of solutions, under the condition that the removal does not lead to an

infeasible solution.
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Let I denote the current set of measurement members, and p denote the size

of I. The stingy method is summarized as follows:

Algorithm 2 – Stingy method:

Step 0: Set I = {1, 2, . . . , m}. The forces of all members are to be measured;

i.e., p = m.

Step 1 Find k = argmin
j∈I

(Ej
p − E0

p), where E0
p and Ej

p denote the identification

errors by the sets I and I− {j}, respectively.

Step 2 If p = p̄, then terminate the process; otherwise, set I := I− {k} because

it has the minimum contribution in I to reduction of the identification error.

Set i := i− 1, and return to Step 1.

This way, we can find the p̄ measurement members with the (approximately)

minimal identification error for the optimization problem Eq. (10.15), which is

used as the initial solution in the simulated annealing.

10.3.2.3 Improved simulated annealing

With the initial solution found by Algorithm 2, Step 0 of Algorithm 1 is then

rewritten as follows

Algorithm 3 – Improved simulated annealing (ISA):

Step 0: Initialization:

Generate an initial solution by Algorithm 2. Specify the values of the

cooling ratio η, initial temperature t0, size of neighborhood ns, and the

termination parameters t̄ and nt. Set i = 0.

10.4 Numerical Examples

This section investigates the influence of the measurement errors of nodal coor-

dinates and member forces on the identification error of the member forces, and

is to demonstrate that the proposed improved simulated annealing (ISA) is more

efficient and accurate than the conventional SA. The examples are investigated

using MATLAB (Borse, 1997).
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Figure 10.1: A cable net with 21 members.

10.4.1 Cable Net Model

We first investigate the cable net model of an HP-shaped tension membrane

structure as shown in Fig. 10.1. Although tension membrane structure is made of

continuum membrane material, it can be discretized and substituted by a cable

net model, e.g., as described by Maurin and Motro (1998). Hence, membrane

structure can also be treated as a special kind of prestressed pin-jointed structure.

Diagonal span length and height of the structure are respectively 16.0m and 2.0m.

The cable net model consists of four free nodes, 14 fixed nodes and 21 mem-

bers. The maximum and minimum member forces in the model are 282.9kN and

400.0kN, respectively. The model consists of 9 independent modes of member

forces, and hence, at least 9 independent measurement members are needed so as

to make the matrix De to be full-rank.

10.4.1.1 Exact Solution

To investigate the exact influence of the number of measurement members on the

identification error, enumeration method is applied first to have the exact solution

for the problem (10.15). In order to find the optimal set of 9 measurement mem-

bers for this relatively simple model, the number of combinations of 9 members

out of 21 candidates is 293930. The computational cost increases exponentially

when number of the members in the model becomes larger.
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Figure 10.2: Optimal solutions for 21-member cable net. It shows performance
of the enumeration method and stingy method in minimizing the identification
error subjected to given number p of measurement devices.

Suppose that the variance of measurement error of each member force is ef =

1, and the measurement errors of the nodal coordinates are neglected; i.e., ec =

0. The relationships between the number p of measurement devices and the

identification error derived by the enumeration method and the stingy method

are plotted in Fig. 10.2. It can be observed from the figure that

[L1] There is a tendency for the enumeration method as well as the stingy

method that the higher accuracy can be achieved by adding the measured

members.

[L2] The stingy method has high accuracy especially when p is large.

10.4.1.2 Efficiency and Accuracy of Improved SA (ISA)

To investigate the efficiency and accuracy of the ISA in comparison to the con-

ventional SA, the 21-member cable net in Fig. 10.1 is used again as an example

structure.

The parameters for SA and ISA are specified as follows:
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Table 10.1: Results by SA with random initial solution.

No. of Trials 1 2 3 4 5 6 Mean
Identification Error 1.9219 1.7302 1.7302 1.8252 1.8252 1.9219 1.8258
Computational Cost 24378 19941 16626 18768 16422 27795 20655

Table 10.2: Results by ISA with the initial solution by stingy method.
No. of Trials 1 2 3 4 5 6 Mean

Identification Error 1.7302 1.7302 1.8252 1.7302 1.8252 1.7302 1.7619
Computational Cost 18666 18513 17085 17901 15198 18411 17629

Table 10.3: Comparison of results by Enumeration, SA, Stingy and ISA for p̄ = 12
for the 21-member cable net model.

Enumeration Stingy SA ISA
Identification Error 1.7302 2.6607 1.8258 1.7619

Relative Errora 0% 53.78% 5.53% 1.83%
Computational Cost 293930 165 20655 17629

Relative Costb 100% 0.056% 7.03% 6.0%

aRatio of difference in the identification errors to the exact solution.
bRatio of computational cost of each method to that of the enumeration method.

• Search the ns = 50 neighborhood solutions of the current solution at each

iteration;

• The initial temperature is t0 = 5;

• The constant cooling ratio is η = 0.99;

• The termination parameters are t̄ = 10−6 and nt = 5.

The identification errors and computational costs by SA and ISA are listed in

Tables 10.1 and 10.2, respectively. The results by the two methods are further

investigated in Table 10.3 in comparison to the enumeration method and the

stingy method to demonstrate their efficiencies and accuracies. It can also be

observed from the results that ISA can find the strict optimal solution with higher

frequency and slightly less computation cost than SA.
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Figure 10.3: A two-dimensional tensegrity arch.

Hence, it might be possible for us to draw the conclusion that a better ini-

tial solution obtained by the stingy method, rather than a random one, is more

reliable to achieve more accurate solution with higher efficiency.

10.4.2 Two-dimensional Tensegrity Arch

A two-dimensional tensegrity arch as shown in Fig. 10.3 is considered as another

example structure. The structure consists of 12 nodes and 27 members. The span

is 10.0m, and the height is 3.5m. Rigid-body motions of the structure in two-

dimensional space are constrained by fixing node 7 in x- and y-directions, and

node 12 in x-direction. The structure consists of six independent force modes in

total.

Example 2-1: Suppose that we have 13 measurement devices for member

forces; i.e., p̄ = 13. We first consider the case, where no measurement error exists

in the nodal coordinates. For ISA, we set t0 = 10, η = 0.95, and the same values

for other parameters as in Section 6.1.

The optimal measurement members found by ISA are {2, 4, 13, 15, 17, 18,

20, 21, 22, 23, 25, 26, 27}, which are shown in dashed lines in Fig. 10.4. It is

clear that locations of the measurements are symmetric, since the structure is

symmetric.

Example 2-2: As the other example for the two-dimensional tensegrity arch,

we set the variance of measurement error of each nodal coordinate ec to 1.0mm,
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Figure 10.4: Ex. 2-1 of optimal measurement members (p̄ = 13). The dotted
lines are the optimal members for measurement.

which is very small, because the devices for the measurement of nodal coordinates

are of high accuracy.

Suppose that the maximum of absolute value of the member forces is 2.5697×
103kN, 1.0% of which is set as their variance of measurement errors; i.e., ef =

25.697kN.

ISA finds the optimal measurement members as {1, 3, 11, 12, 14, 16, 18, 19,

20, 22, 23, 24, 25}, which are shown in Fig. 10.5.

10.4.3 Three-dimensional Cable Dome

Fig. 10.6 shows a three-dimensional cable dome, consisting of 12 struts and 48

cables. The nodes of the structure are located on three circles with different radii,

which are respectively set as 5.0m, 10.0m and 15.0m; and four different elevations

of the circles are −1.0m, 0.0m, 1.0m and 2.0m.

The variance of each measurement error of the nodal coordinate ec is set as

ec = 1.0mm, and that of the member force is ef = 0.5kN, which is about 1.7% of

the largest member force of the structure.

In practical applications, it might be more convenient to measure the forces

in the cables rather than those in the struts, because the measurement devices

can be imbedded into the cables more easily. Suppose that we have only 12
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Figure 10.5: Ex. 2-2 of optimal measurement members (p̄ = 13). The dashed
lines are the optimal members for measurement when measurement errors in
nodal coordinates as well as in member forces are considered.

measurement devices, and the object of this example is to find 12 cables to be

measured so as to minimize the identification error.

Example 3-1: Fig. 10.7(a) shows the cables to be measured which are de-

termined by the stingy method. The identification error in this case is 1.1988.

Example 3-2: Use the measurement cables found in Example 3-1 as the

initial solution for the simulated annealing. ISA finds the optimal locations of

cables to be measured, which are shown in the dotted lines in Fig. 10.7(b). The

identification error in this case is reduced to 1.0418, smaller than that by using

stingy method only.

10.5 Discussions and Conclusions

In this study, we formulated the identification error for evaluation of the accuracy

of the force distribution of prestressed pin-jointed structures. Measurement errors

of both member forces and nodal coordinates are taken into consideration in the

formulation.

In the optimization method for finding the optimal employment of measure-

ment devices, the objective function is to minimize the identification error with

specified number of devices. Preferences of employment of measurement devices

to the members can also be easily taken into account—for some structures, it
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Figure 10.6: A three-dimensional cable dome.

might be expected to measure only the member forces of cables, for instance.

This gives more freedom to engineer to arrange measurement devices according

to their distinct requirements, without suffering much lose in accuracy.

The basic idea of simulated annealing is adopted for the formulated combi-

natorial optimization problem. To have a better final solution, the simulated

annealing method is improved by starting from the initial solution found by the

stingy method, rather than a random initial solution. A number of numerical

examples have been given to demonstrate the high efficiency and accuracy of the

proposed method, and to illustrate the influence of measurement errors of nodal

coordinates as well as member forces on the optimal employment of measurement

devices for member forces.
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(a) measurement members by Stingy (b) measurement members by ISA

Figure 10.7: The optimal employment of measurement devices for cables of a
three-dimensional cable dome. The dashed lines are the optimal members for
measurement of member forces found by the stingy method and the improved
simulated annealing (ISA).
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Chapter 11

SUMMARIES

This chapter is to discuss and conclude our study on morphology and stability

problems of tensegrity structures, and to look ahead further studies.

Tensegrity structures have not been well understood as they should, although

a number of successful applications of their principles can be found in many differ-

ent fields. Due to the subtle interplay between configuration and prestresses, the

process of finding the self-equilibrated configuration, called morphology or form-

finding, is a difficult task. Moreover, most tensegrity structures are not stable

without prestresses, because of existence of mechanisms; meanwhile, prestresses

may not always stiffen mechanisms so as to stabilize the structures.

The major objectives of the study are to provide efficient numerical and ana-

lytical methods for determination of self-equilibrated configurations of tensegrity

structures, as well as to present stability conditions leading to deep insight of

their structural properties. The proposed methods are demonstrated to be of

high efficiency, and have excellent capacity in controlling geometrical and me-

chanical properties of the structures as well. The presented stability conditions

are shown to be easy to use, and provide researchers the opportunity to have

in-depth understanding of their distinct structural properties. To study these

two major problems in the design of tensegrity structures in a systematic way, we

have extensively made use of advanced knowledge in mathematics, such as graph

theory, group representation theory and optimization method.

In summary, the study constructs a self-contained and fundamental knowledge

system for design problem of tensegrity structures. It is also expected to lead to
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thorough understanding of their distinct properties so as to benefit and guide

further practical applications, whereas their principles are applicable.

Stability and morphology problems are no way separable in the design of

tensegrity structures, although they are summarized separately in the follows.

And some discussions on future study are given at the end of the chapter.

11.1 Stability

We presented a new way in Chapter 2 to obtain the stiffness matrices of a general

pin-jointed structure. Using these formulations, three different stability criteria—

stability, prestress stability, and super stability—were defined based on positive

definiteness of the stiffness matrices: stability of a structure means that it has

locally minimum energy, a prestress stable structure is stable in the deformation

field spanned by the mechanisms, and a super stable structure is always stable

regardless of its materials and level of prestresses. It is important to note that

any stretched version of a super stable structure is also super stable. Further

investigation showed that prestress stability is only necessary but not sufficient

condition of stability, which was misunderstood before.

Pin-jointed structures were classified in a more logical way in Chapter 2,

based on their stability properties: (1) trusses without prestresses, (2) tensile

structures that carry only tension, and (3) tensegrity structures that carry both

of compression and tension. Tensile and tensegrity structures are also called

prestressed (pin-jointed) structures. It was shown that kinematical determinate

trusses are stable, tensile structures are super stable, but stability of tensegrity

structures are not apparent. This motivates the study on stability conditions for

tensegrity structures in Chapter 3.

Stability of tensegrity structures were shown in Chapter 3 to be highly de-

pendent on distribution of prestresses: prestress stable structures are stable only

if level of prestresses is small enough. Sufficient conditions for super stability

of tensegrity structures were further presented: (a) the geometry matrix is full-

rank; (b) the force density matrix (or geometrical stiffness matrix) is positive

semi-definite; (c) the force density matrix (or geometrical stiffness matrix) has

maximum rank while satisfying the non-degeneracy condition for a free-standing
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structure presented in Chapter 2. Condition (a) is the necessary condition for

stability of a tensegrity structure, and was demonstrated to be equivalent to those

obtained in structural rigidity theory in mathematics, and much easier to use as

well. Conditions (a) and (b) are also the necessary conditions for super stability

of a tensegrity structure.

The stiffness and force density matrices of symmetric structures can be writ-

ten in block-diagonal forms by using group representation theory, which signif-

icantly reduces computational costs and may lead to in-depth understanding of

the structures. We presented a direct strategy in Chapter 6 to analytically derive

the diagonal blocks for a class of structures in general form, rather than dealing

with individual structure as in conventional methods. The strategy enables us

to find the conditions for prestress stability of prismatic tensegrity structures in

Chapter 6 and for super stability of star-shaped tensegrity structures in Chapter

7: it was made clear for the first time that prestress stability of the structures

that are not super stable is influenced by the height/radius ratio and connectivity

of vertical cables; a star-shaped tensegrity structure without center members is

guaranteed to be super stable if and only if it has odd number of struts and these

struts are as close to each other as possible. Further investigation in Chapter

7 discovered that some star-shaped structures have multi-stable configurations,

confirmed by numerical computations and physical models.

Optimization methods have also been extensively applied to stability inves-

tigation and design of tensegrity structures, in order to achieve novel and rea-

sonable design. For the structures with multiple prestress modes, distribution of

prestresses is a linear combination of these modes. Hence, we have the freedom

to carefully select it satisfying self-equilibrium equations to let the structure have

maximum stiffness. For this purpose and considering preference in design and

construction, we presented a multi-objective optimization method to determine

distribution of prestresses of a tensegrity structure, where its stiffness is to be

maximized and the force deviation of prestresses from target values is to be min-

imized. To assist decision making, the curve of Pareto optimal solutions for these

two objective functions was presented, since no simple optimal solution exists.

Designers can have the freedom to choose a solution according to their preference

as a trade-off between the objectives for the force design of the structure.
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11.2 Morphology

Three different methods—adaptive force density method, direct approach and

symmetry strategy—for morphology of tensegrity structures have been proposed.

All of them are general methods, and applicable to different problems according

to specific design requirements: the adaptive force density method is applicable

to complex structure with high efficiency, and more importantly, it can ensure a

stable solution in the form-finding process; the direct approach is good at control-

ling geometrical properties, such as member directions and symmetry properties;

and the symmetry strategy extensively makes use of symmetry properties of the

structure to provide analytical solutions.

The adaptive force density method presented in Chapter 4 makes use of the

great advantage of the force density method in transforming non-linear equations

into linear forms. The process of form-finding is divided into two design stages:

(1) to adaptively find the feasible force densities that satisfy the non-degeneracy

condition for general free-standing structures, and (2) to uniquely determine self-

equilibrated configurations by specifying independent set of nodal coordinates.

Geometrical and mechanical properties can be precisely controlled by respectively

incorporating the constraints formulated in linear terms with respect to force

densities and nodal coordinates into the two design stages. New configurations

of a structure with given topology can be systematically found by modifying

the variables, such as initial force densities, constraints and independent nodal

coordinates. Moreover, super stability can also be ensured during the process

by making the force density matrix positive semi-definite. The proposed method

was demonstrated to be efficient for complex structures that have relatively large

number of members. However, as the common shortcoming of the family of force

density method, it cannot have direct controls over the prestresses and lengths of

the members, because their ratios are involved in the process as variables.

To have some direct controls over geometrical properties of a tensegrity struc-

ture, we presented the direct approach in Chapter 5. It is an excellent application

of graph theory, where structures are modeled as directed graphs. The method

enables us to have the freedom of controlling member directions as well as force

magnitudes. Hence, it is especially useful in the design of large span structures,
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such as cable domes, for the purpose of meeting the requirements by the archi-

tectural designers and the structural engineers as well. The proposed method is

of high efficiency because only linear equations need to be solved, and is capable

of systematically searching for new configurations. However, when the struc-

tures become more complicated, there would be many variables that need to be

specified by the designers, which might be considered as an extra burden.

For the structures with high symmetry, it was demonstrated to be sufficient

to consider only the representative nodes in their morphology problem. This

symmetry strategy can achieve the self-equilibrated configurations of the whole

class of structures in a general form, e.g., the prismatic structures discussed in

Chapter 7 and star-shaped structures in Chapter 8, both of which are of dihedral

symmetry. Another good idea to make use of symmetry properties of a struc-

ture is to observe singularity of specific blocks of the symmetry-adapted force

density matrix: in Chapter 6, we showed that self-equilibrated configurations of

the structures with dihedral symmetry can also be analytically derived by con-

sidering singularities of the A2 and E1 blocks. Super stability is also possible to

be ensured during the form-finding process by considering positive definiteness of

other blocks of the matrix.

It is necessary to identify the distribution of prestresses, in construction, eval-

uation and adjustment of the structures, meanwhile, costs are expected to be

as small as possible. For this purpose, we firstly presented the formulation for

evaluation of identification error, where both measurement errors of prestresses

and coordinates are taken into account. The identification error was utilized as

an objective or constraint for finding the optimal members for measurement of

prestresses: the objective function of the optimization problem is to minimize the

number of measurement devices subject to a constraint on identification error, or

to minimize the identification error when the number of devices is given. Prefer-

ences of employment of measurement devices to the members can also be taken

into account, which gives more freedom to engineer in site, without suffering much

lose in accuracy. To have a better solution, the simulated annealing method is

improved by determining the initial solution by the stingy method, rather than

starting from a random initial solution. The proposed method is demonstrated
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Figure 11.1: Prestress and member length extension relation of the cables and
struts in the elastic system. Cables have zero stiffness in compression, which may
arise difficulties in stability investigation of the structures with unstressed cables.

to be of high efficiency, and has higher capability to find (near) optimal solutions

compared to the method from a random initial solution.

11.3 Future Studies

Some further topics relevant to tensegrity structures are now under study, which

will be outlined in this section. This include stability investigation of the struc-

tures consisting of unstressed cables, which have zero stiffness in compression, and

morphology and stability of the structures that have symmetry of space group

where translation operations are also involved.

11.3.1 Stability of Structures with Unstressed Cables

The stability of the tensegrity structures investigated so far is based on the as-

sumption that all members have non-zero prestresses. Hence, stiffness of the

members do not change for the elastic system in the field of small deformation.

This assumption might be reasonable and acceptable for almost all tensegrity

structures in practice.

However, in some cases, the fact that the cables cannot have stiffness in com-

pression which has been ignored so far may dominate the stability problem of the

structures. If the cables contain no stresses, and their lengths tend to be short-

261



11.3 Future Studies

(a) initial structure (b) unstressed cables removed

Figure 11.2: The structure with some unstressed cables. The four members
(cables) paralleling to xy-plane cannot carry prestresses, because the other three
members connected to each of them are lying in the same plane.

ened, then the cables loss their resistant capability to that tendency, as shown in

Fig. 11.1.

Consider, for example, the tensegrity structure as shown in Fig. 11.2.(a). The

linearized cables in the top and the bottom cannot contain prestresses, because

the other three members connected to a node fall into the same plane except

for these cables. Rank investigation of the equilibrium matrix shows that the

structure has one prestress mode and no mechanism. Hence, the structure seems

to be stable if the material is stiff enough compared to the level of the prestresses.

However, in the discussions on the stability, we have assumed that all of

the members are stressed such that the cables do not loss their stiffness even it is

shorten by the small displacement. But in this case, the stiffness of the unstressed

cables becomes zero if they are shortened.

Therefore, the stability investigation of the tensegrity structures should be

extended to consider the material instability of the unstressed cables. Connelly

and Whiteley (1996) gave a descriptive solution for the problem. But it is not

easy to numerically implement.

From the viewpoint of energy, if there exists a small displacement that does

not change the stressed members and shorten all of the unstressed cables, then the

structure is unstable, because the strain energy of the structure is not changed so

the structure with the present configuration does not has strictly local minimum

energy.

262



11.3 Future Studies

Accordingly, we have the following strategies to investigate the stability of a

tensegrity structure with some unstressed cables.

First Strategy : Assume that the unstressed cables can also have stiffness in

compression to investigate the stability of the strengthened structure. If the

strengthened structure is unstable, then the structure considering material

instability of the cables cannot be stable; otherwise, we consider the second

strategy.

Second Strategy : Find out whether there exists a displacement that does

not change the stressed members and shortens the member lengths of the

unstressed cables. If this displacement exists, then the structure is unstable;

otherwise, it is stable.

Similar to the compatibility equation in Eq. (2.37), which relates the displace-

ment d to the member extension e by the transpose of the equilibrium matrix

for the whole structure, we can also write the following equations for the member

extensions ē and ê for the stressed and unstressed members, respectively

D̄>d = ē

D̂>d = ê
(11.1)

If the displacement d does not change the lengths of the stressed members,

then ē = 0; while ê ≤ 0 for the unstressed cables for the second strategy. Finding

such a displacement can be formulated as the following optimization problem:

Optimization Problem 10.1

Minimize ê = Max(ê)
s.t. D̄>d = 0

||d|| = 1
(11.2)

The problem can be solved by many existing approaches, for example the func-

tion fmincon() with constraints in the optimization package of MATLAB. If the

optimal solution ê for the above optimization problem is equal to or smaller than

zero; i.e., ê ≤ 0, then the structure is unstable.

The solution of the Optimization Problem 10.1 for the structure in Fig. 11.2

shows that there exist displacements that make ê < 0. Note that this is only the
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(a) top view (b) side view

Figure 11.3: One of the unstable mode of displacement of the structure in
Fig. 11.2. The lengths of all stressed members remain unchanged, while some
of the unstressed members (cables) are shortened by the unstable mode. Hence,
strain energy of the structure does not change subject to the displacement, indi-
cating that it is not stable.

solution of the optimization problem, which does not mean that this displace-

ment is the only one that can make the structure change configuration without

increasing its energy. The unstable displacement mode obtained by solving the

optimization problem is shown in Fig. 11.3, where the directions and lengths of

the arrows shows the directions and magnitudes of the displacement at the nodes.

It seems that we have a new and more comprehensible idea for the stability

investigation of the tensegrity structures with unstressed cables in the filed of

small deformation. But more careful considerations are needed in the future

work in order to include all possibilities to obtain a general solution.

11.3.2 Structures with Space Symmetry

Besides applying the symmetry operations, such as rotations and reflections, in

a point group to the nodes to obtain a structure with symmetry of that group,

we can also used the translation involved in the space group. For example, the

prismatic structure, can be translated in the z-direction and rotated so as to

assemble together to obtain an infinite tensegrity tower.
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(a) unit cell (b) an example structure

Figure 11.4: Unit cell and translations of the two-dimensional tensegrity structure
with space symmetry. Only translation operations are involved in this structure.
A unit cell as in (a) consists of two horizontal cables and two crossing struts.
The structure as in (b) is constructed by translations of the unit cell by t in
x-direction.

Figure 11.5: Example 1: self-equilibrated configuration of the structure when
force density of the horizontal cable is given as qh2 = 2.

For a simpler case, we consider only translation in one direction to the two-

dimensional unit cell as shown in Fig. 11.4.(a). The unit cell itself has transverse

and longitudinal reflection symmetries. It is translated t to the right and left

of it as shown in Fig. 11.4.(b) and then goes on to form an infinite structure in

two-dimensional space as in Fig. 11.5. Hence, it is sufficient to investigate the

equilibrium of this reference node only.

Take a node of the unit cell as the reference node. The reference node is

connected by two horizontal cables in x-direction, one strut and one vertical

cables.

Denote the coordinate of the reference node as

X0 =

(
x0

y0

)
(11.3)
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The representation matrices Rt and Rl corresponding to the transverse re-

flection σt and longitudinal reflection σl can be written as

Rt =

( −1 0
0 1

)
and Rl =

(
1 0
0 −1

)

And the matrix representation of the translation in the x-direction can be

written as

t = t

(
1
0

)

where t is the unit translation in x-direction, and t is the unit translation vector.

There are two nodes connecting to the reference node as horizontal cables,

and the coordinates of them can be written as

Xh1 = RtX0 + t and Xh2 = RtX0 + 2t

and the two other nodes connecting to the reference node as strut and vertical

cable can be written as

Xs = RtRlX0 and Xv = RtRlX0 + αt

where α is an arbitrary integer, and the matrix representation RtR is actually

the inversion of the reference node that

RtRl = −I

which is the representation matrix of the two-fold rotation. By using these rep-

resentation matrices and the translation vector, we can generate all the nodes of

the infinite two-dimensional tensegrity structure.

The self-equilibrium equation of the reference node not being subjected to any

external load can be written as

qh1(Xh1 −X0) + qh2(Xh2 −X0) + qs(Xs −X0) + qv(Xv −X0) = 0 (11.4)

where qh1 , qh2 , qs and qv denote the force densities of the two horizontal cables,

strut and vertical cable, respectively. From the definitions of the representa-

tion matrices and the translation vector, we may know that the self-equilibrium

equations in x- and y-directions of the reference node are independent, so they
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can be considered separately in each direction. The self-equilibrium equation in

y-direction can be written as from the above equation

−2qsy0 − 2qvy0 = 0 (11.5)

therefore, we may have

qs = −qv (11.6)

irrespective of the coordinate y0 of the reference node in y-direction.

Subsequently, the self-equilibrium equation in x-direction can be written as

qh1(−2x0 + t) + qh2(−2x0 + 2t) + αqvt = 0 (11.7)

For simplicity, we set the force density of the vertical cable as +1. This will

not reduce the generality of the solution since the force densities of the members

of a self-equilibrated structure can be modified in scale. The coordinate of the

reference node in x-direction can be then calculated as

x0 = t(2qh1 + qh2 + α)/2(qh1 + qh2) (11.8)

From the equation, we may get to know that the unit translation t should have the

following relationship with the coordinate x0 of the reference node in x-direction,

in order to make the two nodes be in two different sides of the reference node to

have the same signs of prestresses:

x0 < t < 2x0 (11.9)

Therefore, we have the following relation for the force density qh2 of the second

horizontal cable

qh2 > α (11.10)

When qh2 is larger, t is closer to 2x0, and only if qh2 becomes infinite, t = 2x0 so

that the nodes after translation will coincide with the original node.

Accordingly, x0 can be determined by specifying the distance of translation

and the values of the force densities of the two horizontal cables. There is no

restrict for the determination of the y0 so that it can be specified arbitrarily.
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Figure 11.6: Example 2: self-equilibrated configuration of the structure when
force density of the horizontal cable is given as qh2 = 3.

Figure 11.7: Example 3: self-equilibrated configuration of the structure when
force density of the horizontal cable is given as qh2 = 5.

Figure 11.8: Example 4: self-equilibrated configuration of the structure when
force density of the horizontal cable is given as qh2 = 10.
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Figure 11.9: Example 5: self-equilibrated configuration of the structure when
force density of the horizontal cable is given as qh2 = 1.
Set α = 1, and force density qh1 = 1 for the first horizontal cable, now let us
investigate the configuration of the structures with different force densities qh2 of
the second horizontal cable, which are listed in Figs. (11.6)–(11.9).
So far, we have obtained the self-equilibrium condition for the infinite two-
dimensional tensegrity structure with space symmetry (translation in only one
direction). However, we still have the following unsolve problems:

[L1] How to constrain the two ends of the structure if we do not want it to be
infinite and want to have only a part of it to be used for some purposes?

[L2] Is the structure obtained super stable and prestress stable? Is there any
simple method to analyze the stability of a structure with space symmetry.

[L3] How to extend the idea of the two-dimensional structure to a three-
dimensional one?
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REDUCED ROW-ECHELON
FORM (RREF)

Any (possibly not square) finite matrix A can be reduced by a finite sequence of

linear elementary row operation E1,E2, . . . ,El, each one invertible, to a Reduced

Row-Echelon From (RREF) U := Em · · ·E2E1A characterized by the following

three properties:

[L1] The first nonzero element in any nonzero row is 1.

[L2] The leading 1 of each nonzero row 1 appears in a column of which all the

other elements are 0.

[L3] Each such leading 1 comes in a column after every preceding row’s leading

zeros.

Matrix A determines its RREF U uniquely, even though A does not determine

uniquely the sequences of Elementary Row-Operations that reduce A to U.

For example, the RREF of matrix

A =




16 2 3 13
5 11 10 8
9 7 6 12
4 14 15 1


 (A.1)
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is

U =




1 0 0 1
0 1 0 3
0 0 1 −3
0 0 0 0


 (A.2)

We can easily see that the rank of U is 3. Since the rank of A is unchanged by

pre multiplication by invertible matrices, rank(A)=rank(U). From the fact that

we have applied only row operations on A to get U, we can know from U that

the first three columns of A are independent.
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SYMMETRY

B.1 Group

A mathematical group may be defined operationally as a set of elements that

satisfy the following four general criteria:

[L1] Any two elements of the group must combine to give an element that is also

a member of the group.

[L2] The associative law of combination must be satisfied.

[L3] The group must contain an element that commutes with all the other ele-

ments and also leaves them unchanged, which is call the identity element.

[L4] The inverse of every element in the group is also a member of the group.

The order of a group is the number of elements in the group.

There are basically two types of groups: point group and space group. Point

group indicates that there is at least one point in the system which is not affected

by any of the operations. If translational operations are allowed, the system can

no longer be described by point symmetry. The symmetry groups that contain

translational elements are referred to as space groups.

Hence, the dihedral group used in Chapters 6, 7 and 8 is a point group.
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B.2 Symmetry Operations

A symmetry operation is an operation which when applied to a structure moves

it in such a way that its final position is physically indistinguishable from its

initial position. In the point group, there are five different types of symmetry

operations that an isolated object may possess listed as follows:

[L1] E, identical operation:

Nothing will be done to the structure, so the structure is unchanged. The

corresponding symmetry operation is called the identity.

[L2] Cn, rotation operation:

An operation of rotation of the structure counter-clockwise or clockwise

about an axis. If a rotation by 2π/n brings the structure into coincidence

with itself, the structure is said to have an n-fold rotation axis.

[L3] σ, reflection operation:

An operation of reflection about a plane.

(a) σv, vertical plane of symmetry contains the principal axis;

(b) σd, dihedral plane of symmetry contains the principal axis and in ad-

dition bisects pairs of two-fold axes which are perpendicular to the

principal axis;

(c) σh, horizontal plane of symmetry is perpendicular to the principal axis;

[L4] Sn, improper axis of rotation (rotation-reflection operation)

The operation can be represented by the product of horizontal plane of

symmetry σh and rotation Cn about the principle axis as

Sn = σhCn (B.1)

[L5] i, inversion operation:

If the origin of a Cartesian coordinate system is placed on the point of inver-

sion, then for every point (x, y, z) in the system there must be a symmetry

related point at (−x,−y,−z).
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Table B.1: Group multiplication table of group G.
G1 G2 G3 . . .

G1 G1G1 G1G2 G1G3 . . .
G2 G2G1 G2G2 G2G3 . . .
G3 G3G1 G3G2 G3G3 . . .
. . . . . . . . . . . . . . .

B.3 Character and Representation

If we lay out a square array, labelling the rows and columns with the operations

of the group and allowing the individual entries of the array to be the product of

the corresponding operations of the group, we have a group multiplication table.

Table B.1 shows the general format of the multiplication table of group G, where

Gi is the element of the group. The product of two operations is to be defined

as successive application of the two operations, the one to the right being carried

out first.

Two groups are said to exhibit isomorphism if a one to one correspondence

can be established between the elements of these two groups. In isomorphism,

each element of one group is uniquely mirrored by an element of the other group.

However, if two or more different elements of one group have the same image in

the other group, then these two groups are said to exhibit homomorphism.

If R, P and Q are the elements of a group and have the following relation

R = Q−1PQ (B.2)

then we say that R is the transform of P by Q, or that P and R are conjugate to

each other. The elements of a group which are conjugate to each other are said

to form a class.

If a set of matrices can be found which form a group that obeys the group

multiplication table for a given group, the matrices are said to form a matrix

representation of that group.

A representation which can be reduced to a sum of other representations is

called a reducible representation. Otherwise, it is a irreducible representation.

Both of these two matrix representations are important to us: in Chapter 7, we

use the irreducible representation matrices of the dihedral group to derive the
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symmetry-adapted forms of the force density matrix and the stiffness matrices;

and in Chapter 8 and 9, the reducible representation matrices of the A2 and

E1 representations, which are respectively corresponding to the transformations

about the z-axis and xy-plane, are used to carry out the self-equilibrium analysis.

We give out the three properties of the irreducible representation of a group

without proof as:

[L1] If the irreducible representations of a group are one-dimensional, they must

form a group in themselves;

[L2] The sum of the squares of the dimensions of the irreducible representations

is equal to the order of the group.

[L3] There are as many irreducible representations for a group as there are

classes.

A character is defined as the trace of an irreducible representation matrix,

representing a given operation in a given group. The character table for a group

lists the characters for the various operations associated with each irreducible

representation.

An extremely important property of the matrices which multiply isomorphi-

cally to group operations is the fact that their characters are invariant to a

similarity transformation.

B.4 Dihedral Group

Suppose that we have a regular n-gon in the xy-plane, with center at the origin

of coordinates. Take the z-axis as the principal axis. When the n-gon is rotated

about the z-axis through the angle 2kπ/n (k = 0, 1, 2, . . . , n − 1), it is carried

into itself. All of these n rotations form a cyclic group of order n. Note that the

rotation corresponding to k = 0 is the unit (identity).

If the surface of the n-gon is taken into account twice (both the top and the

bottom), it is usually called a dihedron. Take any axis of the n-gon joining a

vertex with the opposite vertex if n is even, or with the mid-point of the opposite
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side if n is odd. When the xy-plane is rotated about this axis through the angles

0 and π, the n-gon is carried into itself too. There are n of these operations.

Therefore, the complete group of transformations carrying the n-gon dihedron

into itself consists of 2n transformations as mentioned above. And the group

constructed by these elements (transformations) is called the dihedral group of

order 2n, denoted as Dn.

The symmetry elements of any point group can be produced from its genera-

tors. Any of the four basic symmetry elements can be used as generators, either

alone or in combination. At most, three of these are sufficient to describe the

point symmetry of any system. Table B.2 lists the generator for some common

used point groups including the dihedral group interested in our study.

Table B.2: Generators for the various point group.
Group Cn Sn Cnv Cnh Dn Dnd

Generators Cn Sn Cn, σv Cn, σh Cn, C2 Cn, C2, σd

Group T Td Th O Oh Dnh

Generators Cz
2 , C

xyz
3 Sz

4 , C
xyz
3 Cz

2 , C
xyz
3 , i Cz

4 , C
xyz
3 Cz

4 , C
xyz
3 , i Cn, C2, σh

If the z-axis is selected as the principal axis for the axial point groups, the

matrix representing a proper rotation R(C1
n) in the three-dimensional Cartesian

coordinate system can be written as

R(Cn) = R(C1
n) =




cos(2π/n) −sin(2π/n) 0
sin(2π/n) cos(2π/n) 0

0 0 1


 (B.3)

and the matrix representation R(Cx
2 ) for a twofold axis perpendicular to the

principal axis and lying along the x-axis can be written as

R(Cx
2 ) = R(C21) =




1 0 0
0 −1 0
0 0 −1


 (B.4)

All the representations matrices can be generated by using these two matrices

as

Ri+nj = (R(Cn))i(R(Cx
2 ))j (B.5)
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where i runs from 0 to n − 1 and j is equal to zero or one, and therefore, the

subscript i + nj of the matrix Ri+nj can represent the numbering of the matrix

which is in the range from 0 to 2n− 1.

The irreducible representations and characters of the dihedral point groups

(or subgroups) can be constructed in a straightforward manner. The basic re-

quirement is that the character [χ(Cn)]n must be equal to the character χ(E),

which in turn equals unity. This yields the following results, for the group Dn we

have

[L1] If n is even, there are four one-dimensional representations: two A rep-

resentations, A1 and A2, two B representations, B1 and B2, and a set of

two-dimensional Ek representations with k going from 1 to n/2− 1.

[L2] If n is odd, there is no B representation, and the values of k for the Ek

representations run from 1 to (n− 1)/2.

The characters of the A1 representation are all +1, while the characters of the

A2 are +1 for the cyclic subgroup Ci
n(i = 0, 1, . . . , n − 1) about z-axis, and −1

for the two-fold rotations.

The characters of cyclic subgroup of the B representations, if it exists, alter-

nate between +1 and −1; and the characters for the two-fold rotations alternate

between +1 and −1 or −1 and +1.

The characters for the pairs of degenerate Ek representations are [exp(2πi/n)]jk

and [exp(−2πi/n)]jk, where k is the particular one of the Ek under consideration

and j comes from the rotational elements Cj
n. Note also that the A and B rep-

resentations are special cases of this, with k equal to zero and n/2, respectively.

The generators of the two-dimensional representations can be written as follows

in terms of 2-by-2 matrices

R(Ek)0 =

(
cos(2kπ/n) −sin(2kπ/n)
sin(2kπ/n) cos(2kπ/n)

)
and R(Ek)n =

(
1 0
0 −1

)
(B.6)

All the two-dimensional irreducible representation matrices of the dihedral group

can be generated by using the above two generators as

R(Ek)i+nj = (R(Ek)0)
i(R(Ek)n)j (B.7)

where i runs from 0 to n− 1 and j is equal to 0 or 1.
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Appendix C

LEAST SQUARES SOLUTION

For a linear equation

Ax = b (C.1)

where A ∈ <m×n and x ∈ <n denote the coefficient matrix and the unknown

vector, respectively. Let rA denote the rank of A, therefore, we have rA ≤ m and

rA ≤ n.

From Eq. (C.1), we know that the equation has only one solution x = A−1b

if and only if m = n = rA; the equation has infinite solutions while rA < n and

no exact solution in the case of m > n and rA = n.

For the last case, we can have the error ε of the solution x̄ as

ε = b−Ax̄ (C.2)

The square of this error can be written as

φ = ε>ε = (b−Ax̄)>(b−Ax̄) (C.3)

The following stationary condition of the square of error φ can be written as

A>Ax̄−A>b = 0 (C.4)

Since we are discussing the case that m > n and rA = n, so rank of A>A is rA

so that it is invertible. Therefore, the least square solution of Eq. (C.1) can be

written as

x = (A>A)−1A>b (C.5)
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Note here that (A>A)−1A> satisfies the definitions of Moore-Penrose matrix

inverse, which are

(AA−)> = AA−

(A−A)> = A−A

AA−A = A

A−AA− = A− (C.6)

where ( )− denotes the Moore-Penrose matrix inverse, so (A>A)−1A> can be writ-

ten in terms of Moore-Penrose matrix inverse A− for simplification that Eq. (C.5)

becomes

x = A−b (C.7)
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