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Chapter 1 
INTRODUCTION 

 
 
1.1  Problem Statement 
 Impact occurs when two bodies collide during a very short time period, causing large 
impulsive forces to be exerted between the bodies (Goldsmith, 1960; Chatterjee , 1997, 
1999; Chatterjee and Ruina, 1998; Brach, 1991). Commonly, the impulsive forces 
exerted during collision always excite all vibration modes of the colliding bodies (Son 
and Matsuhisa, 2006; Fegelman and Gross, 2002). Moreover, most of impact problems 
for human body occur at low natural frequency range, generally less than 10 Hz (McKay, 
1972). 
 Recently, low frequency impact problems become common problem in industrial and 
social area (Tanaka and Kikushima, 1986, 1987; Hanagan and Muray, 1994, 1997). 
Moreover, the low frequency components of the vibration mode usually have less 
inherent damping (Setareh and Hanson, 1992; Webster and Vaicajtis, 1992). The large 
vibration response and transmitted force in the processing machines using impact force 
such as forging machines is one example of impact problems found in the industry. 
These problems decrease the machining accuracy and cause vibration pollution to 
surroundings, which is transmitted by machine base structure. Another example of 
impact problem is vibration of floor on the multistory mansion or apartment caused by 
shock excitation by human activities such as walking, dancing, jumping etc (Allen and 
Pernica, 1984). This excitation force induced the floor vibration and noise to the ceiling 
of the lower room. The impact problem also affects the safety and comfort in the 
transportation system such as a boat. When the boat was driven at a high-speed level, 
the crew of boat will have a large shock when it was impacted by a big wave.  
 There are many methods can be used to reduce the impact vibration. Conventional 
methods such as using an added mass, rubber mounting and a passive dynamic vibration 
absorber (DVA) have limitation and can be disruptive if the parameter has changed 
(Collette, 1998). There have been several attempts to use the semi active and active 
control methods to address this problem, but disadvantages such as cost and the need for 
frequent maintenance limit their use (Wu and Griffin, 1997; Tanaka and Kikushima, 
1986, 1987; Kim and Park, 2002). In general, there has been limited success in finding 
appropriate control method for impact problem. Some of previous works for reducing 
the impact vibration are described bellows    
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1.1.1  Flexible Support 
 When machine or engine is rigidly attached to supporting structure, the vibration 
originating from it is transmitted directly to the support, thus often resulting in 
undesirable vibrations of the surrounding structure. To reduce transmitted vibration to 
minimum, the disturbing source must be isolated by means of flexible support 
(Timoshenko, 1974).  
 Figure 1.1(a) shows a schematic diagram of an isolated system. The vibratory force 
Ft originating in the supported mass can influence the foundation only through the 
spring and dashpot hence the transmitted force FTR is represented by the sum of the 
damping force and spring force. The vector diagram of the force components is depicted 
in Fig. 1.1 (b), the transmitted force and acting force are calculated as 

 ( ) ( ) ( )2 2 22
TRF kX cX X k cω ω= + = + , (1.1) 

 ( ) ( ) ( ) ( )2 22 22 2
0F kX mX cX X k m cω ω ω ω= − + = − + . (1.2) 

 

k c

m 

Ft = F0 sinωt

kX 

mXω2 

cXω 

F0 

ϕ 

FTR x 

(a) (b)  
Fig. 1.1  Flexible support. 

 
F0 is the disturbing force, which is transmitted directly to foundation if the system is 
rigidly attached without springs. FTR/F0 represents the ratio of the force transmitted 
through the flexible support to the force transmitted directly when mounted rigidly, and 
is called the transmissibility TR of the system. 

 ( )
( ) ( )

22

2 22
0

TR k cFTR
F k m c

ω

ω ω

+
= =

− +
, (1.3) 

In nondimensional form, Eq. (1.3) can be written as 
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 ( )
( ) ( )

2

2 22

1 2

1 2
TR

ζη

η ζη

+
=

− +
. (1.4) 

where ζ = c/ 2 mk , η = ω/ω0  and ω0 = /k m are damping ratio, frequency ratio and 
natural frequency, respectively. Fig. 1.2 shows the transmissibility for various value of ζ. 
It is shown that all curves pass through TR = 1 when η = 2 . The transmitted force is 
greater than the value for rigid mounting when η < 2  and less than the value for rigid 
mounting when η > 2 . It follows that vibration isolation is possible only in the 
region η > 2 . In the region η > 2 , where vibration isolation is effective, the damping 
tends to increase the transmitted force. Contrariwise in region η < 2  the damping 
limits transmitted force. In point of view of vibration suppression, the damping should 
be as high as possible in order to obtain high vibration suppression. According to this 
condition, the flexible support cannot be used for vibration isolation and suppression 
simultaneously. 
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Fig. 1.2  Transmissibility diagrams. 

 
1.1.2  Bumpered Vibration Isolator 
 The limiting of vibratory energy transmission from a machine to its foundation and 
vice versa may be achieved by the proper use of flexible support. If the natural 
frequencies of the resiliently suspended machine are located well below the lowest 
frequency in the excitation spectrum, a significant attenuation of vibration transmission 
may be achieved in a certain high-frequency range. In this case, it is recommended to 
use a soft and undamped flexural suspension. 
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. In fact, such a simple vibration isolator is feasible in a limited number of cases of 
moderate environmental disturbances. As soon as an application involves exposure to 
severe environmental disturbances such as shock, the spectrum of excitation already 
contains dangerous low frequency components. The low frequency and undamped 
isolator under such condition exhibits excessive deflections that can over-stress the 
flexural suspension and even damage the machine and enclosure. 
 Due to the possible low frequency amplification, the flexible suspension is supplied 
with considerable free oscillation space to avoid impacts against the machine enclosure. 
In order to protect a machine and its enclosure from unavoidable excessive motions, the 
pre-designed deflection limiters (bumpers) are usually an integral component of a 
vibration isolation arrangement (Babitsky and Veprik, 1998). When the sufficient 
stiffness and damping is used, bumpers can effectively trim machine deflection in an 
emergency. Figure 1.3 shows the vibration isolation with bumper.  

k/2 

kb 

m

Fim 

x 

k/2 
cb 

space

 
Fig. 1.3  Vibration isolation with bumper. 

  
1.1.3  Dynamic Vibration Absorber 
 The dynamic vibration absorber DVA usually used to suppress the vibration level of 
system with steady state excitation (Webster and Vaicajtis, 1992). The application of 
DVA for reducing the transmitted force of transient vibration is reported by Tanaka 

(Tanaka and Kikushima, 1986). Figure 1.4 shows the schematic of system with DVA as 
reported in reference. The effect of DVA is significantly determined by mass ratio md/m. 
According to the reference, the reduction of maximum transmitted force by using the 
DVA with mass ratio 0.2 is 8.2 %. As reported in the reference, the DVA fails to 
suppress the first wave of transient response due to the delay of the damper motion. 
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k/2 
kd

m 

Fim 

x 

k/2
cd

md 

 
Fig. 1.4  Dynamic Vibration Absorber (DVA). 

 
1.1.4  Dynamic Damper with Preview Action 
 Active control of impact vibration by using dynamic damper with preview action 
was proposed by Tanaka (Tanaka and Kikushima, 1987). Figure 1.5 shows the 
schematic of dynamic damper with preview action. In this method the optical sensor is 
used to determine the action time. The actuators are consisting of a mass, which is 
rigidly attached to the push rod. The pre load using initial deflection of coil spring is 
applied to the rod. The constant deflection of coil spring is accomplished by using a 
clamp, which is driven by hydraulic force. The rod is initially positioned at a small free 
space from the main mass m. When the impact load excites mass m, the impulsive force 
exerted by this impact load is counteracting by kinetic energy from the rod, which is 
generated by releasing the preload spring.   

k/2 

m x 

k/2 
md 

Optical sensor

Push rod  
Fig. 1.5  Dynamic absorber with preview action. 

 
 This research proposes a new impact damper as an alternative means for reducing 
excessive impact vibrations. The applications of momentum exchange impact damper 
(MEID) in reducing the shock vibration are reported in reference (Son and Matsuhisa, 
2006, Friend and Kinra, 2000, Peterka and Blazejczyk, 2005). The principle of MEID is 
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similar to the three-ball cradle system as shown in Fig. 1.6 (Newton, 1976; Ceanga and 
Hurmuzlu, 2001; Herrmann and Schmalzle, 1981 ; Herrmann and Seitz, 1984). When 
the first ball collides the second ball, a part of its kinetic energy is transferred to the 
second ball (Reinsch, 1994). A part of kinetic energy of the second ball is 
simultaneously transferred to the third ball when the second ball collides with the third 
ball. Consequently, the second ball has a small force induced and it can be possible to 
keep the second ball stable.  

1 32 21 3

before collision after collision

θ

 
Fig. 1.6  Three-ball cradle. 

 
 The MEID was developed by analogy to the three-ball cradle system. In this analogy 
the first, second and third ball were regarding as the impact source, main body and the 
absorber, respectively. Figure 1.7 shows two configurations of the system using impact 
damper. In the first configuration depicted on Fig. 1.7 (a), the main body consists of a 
mass and a spring system. In this configuration, the collision can be regarded as the 
rigid body collision problem (Routh, 1897, Whittaker, 1947) and the transfer of energy 
and momentum during collision is depending on the contact frequency and mass ratio 
between both masses. For the second configuration as shown in Fig. 1.7 (b), the main 
body is a continuous body that has many elastic modes. In this case the transfer of 
energy and momentum is influenced by each vibration mode of the body (Stoianovici 
and Hurmuzlu, 1996).  

k/2 
kd 

m 

Fim 

x 

k/2
cd 

md 

E1 , A1 kd

Fim 

x 

cd

md

E2 , A2 

(a) (b)  
Fig. 1.7  Configuration of momentum exchange impact damper. 
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 One application of MEID is in the floor impact vibration where MEID was used to 
reduce the floor vibration and transmitted force (Son and Matsuhisa, 2006). In the 
application described in the reference, MEID was put on the slab under the floor. The 
mass of MEID is contacted to the floor. When a falling object collides with the floor, the 
floor interacts with the absorber mass and momentum of the falling object is transferred 
to the absorber mass.      
 One of important feature of MEID, which is not obtained from conventional method 
is its ability to reduce the first wave of transient response. In the conventional method 
such as Dynamic Vibration Absorber (DVA), the first wave of transient response is not 
significantly reduced due to the delay of the damper motion. By using the MEID, the 
transient response could be reduced because the collision between impact damper and 
main body occurs simultaneously after the main body impacted by impact source.    
 
1.2  Research Scope and Objectives 
 This study focuses on development of the new control method using MEID and 
dynamic evaluation of the system controlled by MEID. Therefore, this research intends 
to develop a new type of impact control that uses the momentum exchange principle. It 
also intends to asses the comprehensive dynamics of the system with MEID. The 
primary objectives of this study can be summarized as follows: 
 
(1) To evaluate the dynamics of the system using MEID    
(2) To investigate the optimum parameter of MEID to transfer the maximum energy 

during collision. 
(3) Application of MEID to several impact problems such as a flooring system, a 

forging machine and a boat. 
 
1.3  Contribution 
 The findings of this research will contribute to the development of a new class of 
vibration absorber for reducing impact vibrations in structures and mechanical systems. 
This impact damper demonstrates superior performance in reducing the low frequency 
impact vibration level and proves to have better performance than conventional passive 
control system. Moreover, the MEID is more cost effective and maintenance free than a 
comparable active control system. Therefore, the current research is anticipated to 
contribute the broader application of the MEID to mechanical and structural systems. 
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More specific contributions of this research include: 
z This research demonstrates the optimal parameter of MEID for specific application 

of the impact damper 
z This study, numerically and experimentally, evaluates various application of MEID. 

Based on these results, it suggests an adequate design parameter of MEID for each 
application. 

z The experimental result will serve as a valuable proof of concept MEID for 
full-scale application and field use. 

z The outcomes of this research will be the foundation of further research into the use 
of MEID for structures and mechanical vibration control. 

 
1.4  Outline of the Dissertation 
 The next chapter, Chapter 2 presents the basic principle of MEID modeled as 
collision of three-body system. It covers the comprehensive dynamic analysis of two 
types of three-body collision systems. Chapter 3 presents the application of MEID to 
floor system. This chapter investigates the numerical calculation of floor vibration 
response and sound generation in the room bellow the slab. Moreover, experimental 
investigation to the scale model of floor system is also conducted to validate the 
simulation result. Chapter 4 evaluates the application of MEID to forging machine. 
Several configuration of forging machine using MEID is investigated in this chapter. 
The application of MEID to boat system is presented in Chapter 5. A Simple two DOF 
model of boat and impact damper system was proposed to investigate the best parameter 
of impact damper for boat application. Finally, chapter 6 provides a summary of the 
work. Significant results are highlighted, and recommendation for the future research 
also discussed.      
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Chapter 2 
THREE BODIES COLLISION PROBLEM 

 
 
2.1  Introduction  

Impact induced vibrations has recently received a great deal of attention in industrial 
and social environments. Accompanying noise generation and large impact force 
transmission to the surrounding are the primary motivation for studying such problems 
(Schedin and Lambourge, 1999). Many researchers have carried out studies in this area 
and a number of methods have been developed to solve such problems (Hu and 
Eberhard, 2001; Hurmuzlu, 1998; Lee and Byrne, 1998).  

The momentum exchange method using an impact damper was proposed to reduce 
the vibration and force transmission in impact induced vibration problems. By using 
these impact dampers, part of kinetic energy of the main body is transferred to the 
absorber mass during collision. This type of absorber can reduce the impact shock of the 
main body.  
 In the work presented in this chapter, the effect of the contact condition between 
main body and both the impact mass and the absorber mass to the amount of energy 
transfer is investigated. Two simple models, a spring-supported rigid rod and an elastic 
rod, are used as the main body to study the energy exchange within an impact damper. 
The relationship between the natural frequency of the main body and the contact 
frequencies of the impact source and the impact damper are investigated theoretically 
and experimentally. 
 

2.2  Rigid Body Collision 
2.2.1  Solution by Assumption of Contact Spring  
 The main body consists of a mass m and support spring k. An impact source mass mb 
collides m with initial velocity vb-. Before collision, the impact damper mass md is 
contacting with m. When the collision takes place, as shown in Fig. 2.1, the momentum 
and the kinetic energy of mb is transferred to m and md. The momentum and energy 
exchanges continue while the masses remain in contact with each other.  

mb mdm 

k 

mb mdm 

k vb- 

Before collision After collision

vd+vb+ 

 
Fig. 2.1  Rigid body collision. 
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 In this study, the contact condition is assumed to be given by linear springs kb and kd 
as shown in Fig. 2.2. This linear spring model is appropriate to be used in some 
engineering application (Rajaligham and Rakheja, 2000)  
 

mb md

kb kd 
m 

k

xb x xd  
Fig. 2.2  Collision model of rigid body. 

 
The governing equations of the three rigid bodies in Fig. 2.2 are given by  
 0b b bm x f+ = , (2.1) 
 0b dmx kx f f+ − + = , (2.2) 
 0d d dm x f− = , (2.3) 
where xb, x and xd are the displacements of the impact mass, main body, and absorber 
mass, respectively. The variable fb is the contact force between m and mb and fd is 
contact force between m and md. These forces are given by 

 ( ) , 0 ,
0, 0,

b b b
b

b

k x x for x x
f

for x x
 − − ≥

= 
− <

 (2.4) 

 ( ) , 0,
0, 0.

d d d
d

d

k x x for x x
f

for x x
 − − ≥

= 
− <

 (2.5) 

 The transfers of energy from mb to md and m after collision are calculated as 

 
2

2

1
2
1
2

d d
d

b
b b

m vE
E m v

+
+

−
−

= , (2.6) 

 
2 2

2 2

1 1
2 21 1 1
2 2

b b d d

b
b b b b

m v m vE
E m v m v

+ +

−
− −

= − − , (2.7) 

where vb+ and vd+ are the velocity of mb and md after collision.  
 When fb ≠ 0 and fd ≠ 0, the three masses remain in contact with each other. In this 
state, the solution of Eq. (2.1)-(2.3) is given by the combination of three harmonic 
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functions relating to the natural frequencies of the system. The response of mass md is 
calculated as 

( ) ( )( ) ( )( )
2 2

1 22 2 2 2 2 2 2 2
1 1 2 1 3 2 1 2 2 3

1 1sin sind b b d bx t r v t t−


= −

− − − −
ω ω ω ω

ω ω ω ω ω ω ω ω ω ω
 

( )( ) 32 2 2 2
3 1 3 2 3

1 sin t

+

− − 
ω

ω ω ω ω ω
, (2.8) 

where  

 b
b

b

k
m

=ω ,  d
d

d

k
m

=ω ,   (2.9) 

ω1, ω2 and ω3 are the natural frequencies when the masses remain in contact. These 
natural frequencies are obtained by solving the characteristic equation of the system

 ( ) ( )( ) ( )( )6 2 2 2 4 2 2 2 2 2 2 21 1 1b b d d b b d b d ds r r s r r s+ + + + + + + + + +ω ω ω ω ω ω ω ω ω   

 2 2 2 0b d+ =ω ω ω . (2.10) 

where 

 b
b

mr
m

= , d
d

mr
m

= , k
m

=ω , (2.11) 

 
The velocity of md is obtained by differentiating Eq. (2.8), 

 ( ) ( )( ) ( )( )
2 2

1 22 2 2 2 2 2 2 2
1 2 1 3 1 2 2 3

1 1cos cosd b b d bv t r v t t−


= −

− − − −
ω ω ω ω

ω ω ω ω ω ω ω ω
 

( )( ) 32 2 2 2
1 3 2 3

1 cos t

+

− − 
ω

ω ω ω ω
. (2.12) 

 Suppose that mb looses contact at t = π/ωb and md looses contact after mb, the 
velocity of md at t = π/ωb is given by 

 
( )( ) ( )( )

2 2 1 2
2 2 2 2 2 2 2 2
1 2 1 3 1 2 2 3

1 1cos cosd b b d b
b b b

v r v −

 
= − 

− − − −  

πω πωπ ω ω
ω ω ωω ω ω ω ω ω ω ω
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( )( )
3

2 2 2 2
1 3 2 3

1 cos
b


+

− − 

πω
ωω ω ω ω

. (2.13) 

The maximum value of the first term in Eq. (2.13) is found when 

 1cos 1
b

=
πω
ω

, (2.14) 

 1 0, 2, 4,
b

=
ω
ω

. (2.15) 

The maximum value of the second term in Eq.(2.13) is given by 

 2cos 1
b

= −
πω
ω

, (2.16) 

 2 1,3,5,
b

=
ω
ω

. (2.17) 

The maximum value of the third term in Eq.(2.13) is obtained when 

 3cos 1
b

=
πω
ω

, (2.18) 

 3 0, 2, 4,
b

=
ω
ω

. (2.19) 

Eqs. (2.15), (2.17) and (2.19) indicate that the maximum kinetic energy of md can be 
achieved when the ratio of the natural frequencies to ωb are integer numbers.  
 In ideal case, ωb should be as larger as possible to transfer a large amount of kinetic 
energy from mb to md. Regarding this condition, the optimum value for the first term in 
Eq. (13) is achieved when 

 1 0
b

=
ω
ω

,  

 1 0=ω . (2.20) 
Substitution of ω1= 0 into Eq. (2.11), indicates that the zero value of the characteristic 
root is obtained when  

 2 2 2 0b d =ω ω ω , → 0=ω . (2.21) 

For ratios of ωr/ωb =1, (r = 1,2,3, ), an optimum condition is obtained by substitution 

of 2 2
bs = −ω  into Eq. (2.11), which yields, 

 b d=ω ω . (2.22) 
 Equation (2.22) indicates that the optimum condition for transfer of energy is 
obtained when the contact frequencies are the same. Table 2.1 shows the parameter 
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values used in the simulation. One value of mass ratio mb/m and four values of mass 
ratio md/m were used in the simulation. The natural frequency of mass m is fixed at 
200π rad/s.  

Table 2.1  Simulation parameters for rigid body collision. 
Parameter Value  

mb/m 0.5  
m 1.8 kg 

md/m 0.25, 0.5, 1, 1.5 
ω 200π rad/s 
vb- 1 m/s 

 
 Integration of Eq. (2.1)-(2.3) was carried in MatLab/Simulink by using the 
fifth-order Dormand-Prince method with variable time steps. Simulation results for the 
energy transfer with mass ratios md/m 0.25, 0.5, 1 and 1.5 are depicted in Fig. 2.3. The 
solid line is the transfer of energy (Ed+/Eb-) and the dashed line is the energy absorbed by 
the main body m (E/Eb-). It can be shown that the transfer of energy increases with 
increasing values of ωb/ω. The peak transfer of energy and the point of minimum energy 
absorption are located close to point ωb = ωd as indicated by Eq. (2.22). The mass ratio 
md/m is the significant factor in determining energy transfer. The minimum energy of 
main body is obtained when md/m = 1. In this condition, wherein ωb/ω = 100, almost all 
of the kinetic energy of main body is transferred to the absorber mass as shown in Fig. 
2.3(c).  
 

0 5 10 15
0

10

20

30

40

50

60

70

80

90

ω
b
/ω=100 

ω
b
/ω=5 

ω
b
/ω=2.5 

ω
b
/ω=1.7 

ω
b
/ω=1.25 

ω
b
/ω=2.5 

ω
b
/ω=1.7 

ω
b
/ω=1.25 

E d+
/E

b-
 a

nd
  E

/E
b-

 (%
)

Frequency ratio(ωd/ω)

 (a) mb/m=0.5, md/m=0.25 

0 5 10 15
0

10

20

30

40

50

60

70

80

90
ω

b
/ω=100 

ω
b
/ω=5 

ω
b
/ω=1.25 

ω
b
/ω=2.5 ω

b
/ω=1.7 

ω
b
/ω=1.25 

Frequency ratio(ωd/ω)

ω
b
/ω=100 

E d+
/E

b-
 a

nd
  E

/E
b-

 (%
)

P

Q

 (b) mb/m=0.5, md/m=0.5 



Three Bodies Collision Problem 

 14

0 5 10 15
0

10

20

30

40

50

60

70

80

90
ω

b
/ω=100 

ω
b
/ω=5 

ω
b
/ω=2.5 

ω
b
/ω=1.7 

ω
b
/ω=1.25 

Frequency ratio(ωd/ω)

ω
b
/ω=100 ω

b
/ω=5 

ω
b
/ω=2.5 ω

b
/ω=1.25 

ω
b
/ω=1.7 

E d+
/E

b-
 a

nd
  E

/E
b-

 (%
)

 (c) mb/m=0.5, md/m=1 

0 5 10 15
0

10

20

30

40

50

60

70

80

90

ω
b
/ω=100 

ω
b
/ω=5 

ω
b
/ω=2.5 

ω
b
/ω=1.7 

ω
b
/ω=1.25 

Frequency ratio(ωd/ω)

ω
b
/ω=100 ω

b
/ω=5 

ω
b
/ω=2.5 

ω
b
/ω=1.25 

ω
b
/ω=1.7 

E d+
/E

b-
 a

nd
  E

/E
b-

 (%
)
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Fig. 2.3  Transfer of energy in collision of rigid bodies.  

  (solid line: Ed+/Eb-, dashed line : E/Eb-)   
 

 Figure 2.4 and 2.5 show two sets of typical time responses of the system for ωb/ω = 
1.25 and ωb/ω = 2.5. These responses are obtained for mass ratios mb/m = 0.5 and md/m 
0.5. In these figures, force variables fb, fd and fk were normalized by dividing them by 
mbωbvb-. The velocity and time variables were also normalized by dividing them by vb- 
and π(mb/kb)1/2, respectively. As one might observe from these figures, the contact force 
fb follows a nearly sinusoidal path for half a period after the impact. Figure 2.4 and Fig. 
2.5 show that the velocity of md has a maximum value when ωd/ω is located at the peak 
ratio of Ed+/Eb- (denoted by point P and Q in Fig. 2.3(b)). When ωd/ω = 0.1, the velocity 
of md is small compared to the initial velocity of mb. The reason for this is that the 
contact force fd is small so that the transfer of momentum from m to md is low. The 
contact force fd follows an un-smooth path for ωd/ω =15. This phenomenon may be 
caused by multiple collisions.  
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Fig. 2.4  Time history for ωb/ω = 1.25. 
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Fig. 2.5  Time history for ωb/ω = 2.5. 
 

2.2.2  Solution Using the Coefficient of Restitution  
 When ωb >>ω and ωd >>ω, more energy is stored within the contact spring than in 
the oscillator spring (Pinnington, 2003). This state can be regarded as a free collision 
problem(Johnson, 1985; Kane and Levinson, 1985; Kilmister and Reeve, 1966; 
Lagrange, 1811). For this special case, the conservation of momentum and coefficient of 
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restitution can be applied to the collision between mass m and both mb and md(Escalona 
and Mayo, 1999; Chung and Ming, 2003; Smith and Liu, 1992). 
 By using the conservation of momentum and coefficient of restitution for the first 
collision between mb and m, yields 
 b b b bm v mv m v mv+ + − −+ = + , (2.23) 

 ( )
( )

b
b

b

v v
e

v v
+ +

− −

−
=

−
, (2.24) 

 ( )bJ mv mv+ −= − , (2.25) 

where v- is velocity of m before the first collision, v+ is velocity of m after the first 
collision,  eb is coefficient of restitution and Jb is impulse between m and mb. Eq. 
(2.23)-(2.25) can be arranged to give 

 ( )( )1b
b b b

b

m mJ e v v
m m − −= + −

+
. (2.26) 

By using the same procedure for the second collision between m and md the following is 
obtained,  
 d d d dmv m v mv m v++ + + −+ = + , (2.27) 

 ( )
( )

d
d

d

v v
e

v v
+ ++

+ −

−
=

−
, (2.28) 

 ( )d d d d dJ m v m v+ −= − , (2.29) 

 ( )( )1d
d d d

d

mmJ e v v
m m + −= + −

+
, (2.30) 

where v++ is velocity of m after the second collision, vd- is velocity of md before the 
second collision, ed is coefficient of restitution and Jd is impulse between m and md, 
respectively. In this case, 
 0dv v− −= = . (2.31) 
By using Eqs. (2.23)-(2.24) and Eqs. (2.27)-(2.28), the final velocities of mb and md are 
given by 

 b b
b b

b

m mev v
m m+ −

−
=

+
, (2.32) 

 ( )( )
( )( )
1 1b d b

d b
d b

e e mm
v v

m m m m+ −

+ +
=

+ +
. (2.33) 
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If eb = ed=1, the final energy of mass mb, md and m can be expressed as  

 
( ) ( )

2
2

2 2
2

1
162

1
2

d d
d b d

b free d bb b

m vE m m m
E m m m mm v

+
+

−
−

 
= = 

+ + 
, (2.34) 

 
2 2

2

1
2
1
2

b b
b b

b bfree b b

m vE m m
E m mm v

+
+

−
−

   −
= =   +   

, (2.35) 

 1 b d

b b bfree free free

E EE
E E E

+ +

− − −

     
= − −     

     
. (2.36) 

Equation (2.35) shows that the reflected energy is a function of mb and m only. 
Increasing the mass ratio md/m only affects the final energy of mass m and md. When the 
mass ratio md/m=1, the final energy of m becomes zero. 
 Table 2.2 shows the results of final energy, calculated using Eqs. (2.34) ~ (2.36) for 
mb/m=0.5 and md/m 0.25, 0.5, 1 and 1.5. The results in Table 2.2 agree well with the 
calculated results based on the contact spring model using Eqs. (2.1)-(2.5), as shown in 
Fig. 2.3 for ωb/ω ≥ 100.  
 

Table 2.2  Final Energy given by the coefficient of restitution method. 
md/m 

b

E
E −

 b

b

E
E

+

−

 d

b

E
E

+

−

 

0.25 0.23 0.11 0.56 
0.5 0.1 0.11 0.79 
1 0 0.11 0.89 

1.5 0.03 0.11 0.85 
 
2.3  Elastic Rod Collision 
Figure 2.6 shows the model of a free one-dimensional elastic rod in collision with an 
impact source mass mb. Mass md is initially in contact with the rod.  

xb 

mb md ρ 
kb kd 

u(x,t) xd 

L 
radius R radius R  

Fig. 2.6  Collision of free elastic rod.  
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The governing equations of motion are expressed as 

 ( ) ( )
2 2

2 2 0b d
u uEA A f x f x L

x t
∂ ∂

− ρ = δ − − δ −
∂ ∂

, (2.37) 

 0b b bm x f+ = , (2.38) 
 0d d dm x f− = , (2.39) 
where E is Young modulus, A is the cross section area, δ  is delta function and fb and fd 

are the contact force between rod and both mb and md, respectively. The contact forces 
are given by 

 
( ){ } ( )

( )
0, , 0, 0,

0, 0, 0,
b b b

b
b

k x u t for x u t
f

for x u t

 − − ≥= 
− <

 (2.40) 

 
( ){ } ( )

( )
, , 0 ,

0, 0.
d d d

d
d

k u L t x for u L x
f

for u L x

 − − ≥= 
− <

 (2.41) 

Longitudinal vibration of the rod can be given by summation of the normalized 
eigenfunctions ( )r xψ as 

 ( ) ( ) ( )
0

, r r
r

u x t x q t
∞

=

= ∑ψ , (2.42) 

where 

 cosr
r x

L
=

πψ , 0, ,r = ∞ , (2.43) 

and qr is the general coordinate. ψ0 represents the non-vibrational rigid body transverse 
motion. By substituting Eq. (2.42) for u and using the orthogonality of the 
eigenfunctions, the differential equation of motion Eq. (2.37) can be written as(11)  

 ( )2 r
r r r

f t
q q

m
+ =ω , (2.44) 

where ( )rf t is given by  

 ( ) ( ) ( ) ( )
0

0
L

r b d rf t f x f x L x dx= − − −  ∫ δ δ ψ , (2.45) 

and where m = ρA is the mass per unit length, ωr = rπc/L is the natural frequency and c 
is the speed of sound for the rod. 
 Two simulations using a steel rod with differing lengths were conducted to simulate 
the collision of rigid masses with an elastics rod. The simulation parameters were 
shown in Table 2.3, where ω0 - ω3 are the natural frequencies of the rod.  
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Table 2.3  Simulation parameters of elastic rod collision. 
Parameter L = 2m L = 3m 

mb 1 kg 1 kg 
ρA L 5 kg 7.4 kg 
md 1 kg 1 kg 
A 7.85× 10-5m2 7.85× 10-5m2 
vb- 1m/s 1m/s 
ω0 0 rad/s 0 rad/s 
ω1 7.92×103 rad/s 5.28×103 rad/s 
ω2 1.58× 104 rad/s 1.06× 104 rad/s 
ω3 2.38× 104 rad/s 1.58× 104 rad/s 

 Numerical simulation was carried in MatLab/Simulink computational environment 
by using the fifth-order Dormand-Prince method with variable time steps. Variables ωb 
and ωd were varied within the range ωb ∈ [6.6 × 103,4 × 104] rad/s and 
ωd∈[1.6×103,1.6×105] rad/s.  
 Because the elastic rod is modeled as a continuous component, the system has an 
infinite number of vibration modes. Each mode contributes to the transfer of energy 
during the collision. Figure 2.7 shows simulated energy ratios as a function of ωb/ω1 and 
ωd/ω1 using the 50 lowest modes for rod lengths of 2 and 3 m. The solid line represents 
the transfer of energy (Ed+/Eb-) and the dashed line the energy absorbed by main body m 
(E/Eb-). Similarly to the previous case, the peak energy transfer and minimum absorbed 
energy are located near the point ωb = ωd . The transfer of energy is increases as ωb/ω1 is 
increased. For ωd/ω1 >5 the transfer of energy is nearly constant.  
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Fig. 2.7  Transfer of energy of the free rod. 

            (solid line: Ed+/Eb-, dashed line : E/Eb-)   
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 It should be pointed out that the transfer of energy in the free elastic rod problem is 
primarily governed by the elastic modes of the rod. This phenomenon is different from 
the transfer of energy in the free rigid body case described previously. For example, 
when the rod is assumed to be rigid, the transfer of energy calculated using Eq. (2.34) 
for a 2 m rod, yields 

  
( ) ( )

2

2 2

16 31%d b d

b d b

E m m m
E m m m m

+

−

= =
+ +

. (2.46) 

 This result is clearly lower than the resultant energy transfer shown in Fig. 2.7 (a) for 
the elastic rod. This is because its one-dimensional vibration modes were ignored in the 
calculation.   
 Figures 2.8, 2.9 and 2.10 show three sets of typical time responses of the system for 
ωb/ω1 = 0.8, 1.1 and 2. These responses were obtained for L = 2m. In these figures, all 
variables were normalized according to the previously described criteria. Figure 2.8 
shows that the velocity of md has a maximum value when ωd/ω1 is located at the peak of 
the Ed+/Eb- curves (denoted by point P in Fig. 2.7(a)). The contact force fd has two peaks 
for ωd/ω1= 0.2 because the contact stiffness is small and the contact force is not large 
enough to make md loose contact simultaneously.  

0 2 4 6
0

0.5

0 2 4 6
-0.5

0

0 2 4 6
-1

0

1

0 2 4 6
0

0.5

1

0 2 4 6
0

0.5

0 2 4 6
-0.5

0

0 2 4 6
-1

0

1

0 2 4 6
0

0.5

1

0 2 4 6
0

0.5

0 2 4 6
-0.5

0

0 2 4 6
-1

0

1

0 2 4 6
0

0.5

1

f b
f d

v b
v d

ωd/ω1 = 1(peak) 

Non-dimensional time

ωd/ω1 = 0.2 ωd/ω1 = 5 

 
Fig. 2.8  Time history for ωb/ω1= 0.8. 
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Fig. 2.9  Time history for ωb/ω1= 1.1. 

 
 For small values of ωb/ω1 as shown in Fig. 2.8, the reflected energy is almost 42% of 
the initial kinetic energy of mb(indicated by final velocity of mb). In contrast, for large 
values of of ωb/ω1, as shown in Fig. 2.10, the reflected energy is only 7%. In this case, 
nearly all of the kinetic energy of mb is transferred to the rod.  
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Fig. 2.10  Time history for ωb/ω1= 2. 
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2.4  Experiment 
2.4.1  Rigid Body Collision 
 An experimental apparatus consisting of two steel rigid masses and one short rod 
was used to validate the mathematical simulations. A golf ball was attached to each end 
of the rigid masses. The rigid masses were hung from a support frame by an aluminum 
arm (see Fig. 2.11). The impacts were obtained by releasing the first mass from a 
predetermined height. Table 2.4 shows the experimental parameters defining the rod and 
rigid masses. With this configuration, it is possible to assume that the elastic modes of 
vibration can be neglected during impacted because ωb and ωd are small compared with 
the natural frequencies of elastic vibration.  
 

Table 2.4  Experimental parameters for rigid body collision.  
Parameter Value 

mb 0.9 kg 
mL 1.8 kg 
md 0.45, 0.9 kg 
hb 0.15 m 
kb 1× 106 N/m 
kd 1× 106 N/m 
ωb 1× 102 rad/s 
ωd 1× 103, 1.5× 103 rad/s

 
 The rod was supported by leaf springs on two supporting points to avoid yawing 
motion. The natural frequency of the supported rod was varied by altering the spring 
length and thickness. Table 2.5 shows the natural frequencies of the supported rod.   
 

Table 2.5  Natural frequency of the supported rod. 
No Length of leaf 

spring (mm) 
Thickness of leaf 

spring (mm) 
k 

(N/m) 
ω 

(rad/s) 
1 32.15 4 6.1× 106 2835.3  
2 53.35 4 2.2× 106 1562.9 
3 31.30 1 1.8× 105 477.5 
4 42.85 1 7.3× 104 318.9 
5 97.50 1 8.9× 103 95.5 

  
 Kinematics data for md was acquired using a high speed camera with a frame rate of 
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250 frames/sec. Video images of the experimental results were post-processed to 
determine the maximum height of md after the collision. The transfer of energy from mb 
to md was calculated by comparing the maximum height of md after collision to the 
height of mb before collision. 

 maxd d

b b

E h
E h

+

− −

= .   (2.47) 

 

md

High speed camera

Computer

hb-

Leaf spring support frame

mb(1 kg) 

Rod(Steel, d=0.02m, L=0.6m)

cylinder

golf ball

 
Fig. 2.11  Experimental apparatus for collision of rigid body. 

 
 Figure 2.12 shows the influence of leaf spring size on the acceleration of second 
cylinder for mass ratio µ = md/mr = 0.25. T in Figure 2.12 denotes the contact time as 
obtained experimentally. As shown in Figure 2.12, the acceleration on the end surface of 
the second cylinder resembled a single pulse and the amplitude of the subsequent 
periodic waves was reduced.  
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Figure 2.12  Influence of leaf spring size on cylinder acceleration for µ = 0.25. 
 
The influence of leaf spring size on the acceleration of second cylinder for mass ratio 
µ = 0.75 is depicted in Fig. 2.13. Comparison the contact time in Fig. 2.13 with the 
result in Fig. 2.12 shows that the contact ratio increases when the mass ratio increases. 
On the other hand, the maximum peak of acceleration decreases when the mass ratio 
increases.   
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Figure 2.13  Influence of leaf spring size on cylinder acceleration for µ = 0.75. 
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 Figure 2.14 shows the influence of leaf spring size on the rod displacement. As 
shown in Figure 2.14, identical wave pattern was periodically repeated when the leaf 
spring has low stiffness, and the period corresponds to that of the rigid body mode of 
the rod. However, for leaf spring with high stiffness the waveform of displacement 
resembled a single pulse and the amplitude of the subsequent periodic waves 
corresponding to the rigid body mode was lower than the first single pulse.  
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Figure 2.14  Influence of leaf spring size on rod displacement for µ = 0.25. 
 

Figure 2.15 shows the simulation and experimental result of the energy transfer, Ed+/Eb-. 
It should be pointed out that the results shown in Fig. 2.15 are for the special case, 
depicted in Fig. 2.3, wherein kb = kd. The transfer of energy that was obtained in the 
experimental was smaller than that calculated in the simulation. The difference is 
mainly due to energy losses from contact damping.  
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Fig. 2.15  Transfer of energy of rigid body. 
 

2.4.2  Elastic Rod Collision 
 Figure 2.16 shows the experimental apparatus for the elastic rod problem. A long rod 
with 2 m lengths and 0.02 m diameters was hung using two wires. Two rigid masses mb 
and md were positioned on each side of the rod. The initial height of mb from its 
equilibrium position was 0.05 m, while md was initially contacting the rod. The rigid 
mode natural frequency of the rod is 6.2 rad/s. This frequency is small compared to the 
natural frequency of its first elastic mode and the contact frequencies ωb and ωd, which 
allows the rod to be assumed to be in a freely supported condition.  

hb- 

mb(1 kg) 
Rod (steel, d= 0.02m, L=2m) md(1 kg) 

Wire (0.25 m) 

High speed camera

Computer 

Rigid mass Rigid mass 

 
Fig. 2.16  Experimental setup for collision of elastic rod. 
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 Variation of frequency ratio was obtained by using different contact stiffness. The 
contact stiffnesses between the rod and both mb and md were determined by collisions 
with a rigid wall using the experiment set-up shown in Fig. 2.17. A mass is shown 
colliding with a rigid wall with initial velocity vb-. The response of the mass during the 
collision was measured using an accelerometer. The contact duration was measured by 
using an electrical contact switch. The contact stiffness is obtained by reconciling the 
simulation results and the experimental data. Table 2.6 shows the calculated contact 
stiffness for four kinds of contact surfaces.  

accelerometer 

switch
FFT analyser 

Rigid wall 

Amplifier 

Steel ball 

plate 

 
Fig. 2.17  Experimental setup for determining the contact stiffness. 

 
Table 2.6  Contact stiffness and contact frequency. 

Material of contact type Contact 
stiffness (N/m)

Contact 
frequency(rad/s) 

Steel ball(R = 12.5mm)-steel plate 1.5× 108 12000 
Steel ball(R = 12.5mm)-brass plate 8× 107 8900 

Steel ball(R = 12.5mm)-aluminum plate 6× 107 7700 
Steel ball(R = 12.5mm)-plastic plate 6× 106 2400 

 
 The transfer of energy from mb to md is shown in Fig. 2.18. Figure 2.18 shows that 
the simulation results and the experimental data are in good agreement. The differences 
in magnitude between simulation and experimental results are mainly due to contact 
damping.  
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Fig. 2.18  Elastic rod energy transfer.  
 

2.5  Summary 
The formulation and analysis of collision problems consisting of two rigid masses 

with a supported rigid rod and a free elastic rod has been presented. Although these are 
idealized systems, they can be used to simply model systems involving momentum 
exchange impact dampers.  

For collision between rigid bodies, the maximum transfer of energy is obtained 
when the natural frequency of the system in the contact state is the same as contact 
frequency between main body and both the impact mass (ωb) and the absorber mass 
(ωd). In this collision case, the mass ratio is significant in determining the transfer of 
energy. The amount of energy transfer increases as the contact frequency ωb increases. 
When the frequency ratio between ωb and natural frequency of main body greater than 
100, the collision can be regarded as a free collision problem and the transfer of energy 
can be calculated using energy and momentum conservation.  

For collision problems involving a free elastic rod, the maximum transfer of energy 
is obtained when the value of ωb is close to that of ωd. The transfer of energy is 
primarily governed by its elastic modes of vibration. In this case, changing the mass 
ratio does not significantly influence the energy transfer.   
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Chapter 3 
REDUCING FLOOR IMPACT VIBRATION AND SOUND 
USING A MOMENTUM EXCHANGE IMPACT DAMPER 

 
 
3.1  Introduction  
 Floor vibration problems are common in many types of industrial building and 
housing structures. These vibrations can result from many sources (e.g., reciprocating 
machinery, explosions, and human activity). The human activities such as walking, 
dancing, jumping, etc have been reported as the most common problems. The forces 
resulting from these activities are particularly problem because they cannot be easily 
isolated from the structure and they occur frequently.  
 Many researches have been conducted to control floor vibrations. Early studies 
focused the research on the tuned mass dampers (TMDs). Allen and Pernica used TMDs 
consisting of wooden planks with weights on top for the reduction of annoying 
vibrations due to human walking (Allen and Pernica, 1984). Setareh and Hanson used 
TMDs to control the floor vibrations due to dancing in auditorium floor (Setareh and 
Hanson, 1992). Webster and Vaicajtis used TMDs to control the annoying vibrations of 
a long-span cantilevered composite floor system due to human movements (Webster 
and Vaicajtis, 1992).  
 Recent years, research efforts on active control are increasingly used for reducing 
floor vibration. Hanagan and Murray used active control to reduce vibration level of 
floors (Hanagan and Murray, 1994, 1997). Even though active control has better 
performance than passive control, they have several disadvantages, such as needs for 
actuator, high operational costs, and high power requirements.  
 In this work, a momentum exchange impact damper is used to control floor shock 
vibrations. The performance of this control method in reducing the floor impact 
vibration and sound was shown analytically and experimentally. 
 
3.2  Flooring System with Impact Damper  
 An example flooring system consisting of floor (acrylic plate, 0.4× 0.32× 0.005 m, 
mf = 0.75 kg), support frame (steel), slab (concrete, 0.66× 0.57× 0.03 m) and wooden 
box (0.58× 0.47× 0.1 m) for the room bellow the slab was analyzed (Fig. 3.1). The 
system has a novel impact damper placed between floor and a supporting slab. The 
impact damper is positioned in the center of the slab at Os. The impact damper consists 
of a mass supported by spring and air damper (kd = 507 N/m , cd = 40 Ns/m). The 
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damper was designed to have lower damping coefficient for forward motion than that 
for the return motion. The purpose of this technique is to allow fast movement during 
the moment at which the impact takes place. A steel ball (d = 0.005 m) is glued to the 
impact damper mass. The steel ball contacts the floor at point Of which is located at the 
center of the floor. When the floor has an impact load, it will collide with the damper 
resulting in exchange of momentum between floor and damper.  

Of B

Os

spring

air damper

steel ball
(connect to Of )

Of

connect to Os

L
L

(a
)
(b
)floor

slab

support frame

wooden box contact surface

slab(0.66 0.57 0.03)× ×
support frame

0.31

wooden box (0.58 0.47 0.1)× ×

floor (0.4 0.32 0.005)× ×

0.1
0.11

0.03

0.03

B

mass

0.05

0.29

0.05

(shielded by resin foam)

accelerometer

microphon

0.025

0.025

 

Fig. 3.1  Experimental apparatus of the flooring system with impact damper. 
 
 The impact force is generated by dropping a ball (tennis ball, mb = 0.054 kg and 
acrylic ball mb = 0.045 kg) from the height of 0.23 m onto point Of. The contact surface 
between wooden box and the slab was shielded by resin foam. This foam was used to 
block the transmission wave via the gap between slab and wooden box. 
 
3.3  Theoretical Model and Identification 
 Figure 3.2 shows the model of flooring system with momentum exchange impact 
damper. The governing equations for the structure consist of floor, support frame, slab 
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and distributed linear spring are solved using Finite Element Method (FEM)(Zhong, 
1993). Uniformly distributed linear springs are used to express the stiffness of resin 
foam located on the top contact surface of wooden box. Four-node quadrilateral plate 
elements were used to model both the floor and slab system (see Appendix). The 
support frame is modeled using three dimensional frame elements(see Appendix).  

Fig. 3.2  Model of flooring system with impact damper. 
 

The equations of motion for the structure, ball, and impact damper are written as 

 fb fd sdf f f+ + = − +fb fd sdMu Cu Ku B B B , (3.1) 

 1 0b fbm x f+ = , (3.2) 

 2 0d sd fdm x f f+ − = , (3.3) 

where matrix M, C and K are the structure mass matrix, damping matrix and stiffness 
matrix, respectively, while ffb, ffd, fsd, mb and md  are the contact force between floor and 
ball, contact force between floor and impact damper, transmitted force from impact 
damper to slab, mass of ball and mass of impact damper, respectively. Vector u, x1 and 
x2 are displacement vector of the structure, displacement of ball and displacement of 
impact damper, respectively.  
 Bfb, Bfd and Bsd are vectors that depend on the position of external forces. These 
vectors can be expressed as,  

 { }T

11 1 2 1 1e , e , e , j e ,NDOF=fbB δ δ δ δ , (3.4) 

 { }T

2 1 2 2 2 2e , e , e , j e ,NDOF=fdB δ δ δ δ , (3.5) 

 { }T

3 1 3 2 3 3e , e , e , j e ,NDOF=sdB δ δ δ δ , (3.6) 

where, e1, e2 and e3 denote the position of external forces ffb,  ffd and fsd , respectively, 

ball
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x1
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while NDOF is the number of degree of freedom. δi,j is delta function which can be 
expressed as 

 ,

1,
0,i j

i j
i j
=

=  ≠
δ . (3.7) 

 Contact force between floor and ball was modeled using nonlinear spring and 
nonlinear dashpot (Hongo, Sato and Iwata, 1999). Thus, the contact force can be 
expressed as  

 
( ) ( ) ( )

( )

3/ 2 1/ 2

1 1 1 1

1

, 0

0, 0

cb f cb f f f
fb

f

k x u c x u x u x u
f

x u

 − + − − − ≥= 
− <

, (3.8) 

where kcb and ccb are contact stiffness and contact damping coefficient between ball and 
floor, respectively, while uf is displacement of floor at point Of. 
 Note that when the ball is in contact with the floor, the contact force affects the 
equation of motion and for out of contact case the equation of motion is not affected by 
contact force.  
The transmitted force from impact damper to the slab can be expressed as 
 2 2( ) ( )sd d s d sf c x u k x u= − + − , (3.9) 
where kd and cd are the stiffness and damping coefficient of impact damper, respectively, 
while variable us is displacement of slab at point Os. 
The damping coefficient of impact damper for forward motion is very small and leads to 
 20 0d sc if x u= − > . (3.10) 
The contact force between floor and impact damper was modeled using Hertz contact 
theory (Love, 1944)  

 
( ) ( )

( )

3/ 2

2 2

2

, 0

0, 0

cd f f
fd

f

k u x u x
f

u x

 − − ≥= 
− <

, (3.11) 

where kcd is contact stiffness between impact damper and floor.  
Equation (3.1) can be written in modal coordinates giving 

 22i i i i i iq q q+ + =ζ ω ω i fb fd sdf f f − + fb fd sdψ B B B  , i = 1,2, ,∞ , (3.12) 

where qi, ζi, ωi, and iψ are the modal displacement, damping ratio, natural frequency 

and mass normalized eigenvector for ith mode, respectively. 
 The parameters kcb and ccb were determined by reconciling the simulation and the 
experimental results of contact force time response as shown in Table 3.1. The 
experimental results were obtained by dropping a ball from different initial heights on a 
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small acrylic plate supported by a force sensor located in the center of the plate as 
shown in Fig. 3.3(a). Figure 3.3 (b) shows a comparison between the experimental and 
simulation result of tennis ball for h0 = 0.15 m. It can be shown that there are good 
agreement between simulation and experimental result   
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Fig. 3.3  Determination of  kcb and ccb. 

 
Table 3.1 Variation of kcb and ccb. 

Tennis ball Acrylic ball  
h0 (m) kcb 

(N/m3/2) 
ccb 

(Ns/m3/2) 
kcb 

(N/m3/2) 
ccb 

(Ns/m3/2) 
0.15 2.1×105 160 3.3×107 500 
0.2 3.1×105 160 3.3×107 500 
0.25 4.1×105 160 3.3×107 500 

 
Figure 3.4 (a) ~ 3.4 (f) shows several low order mode shapes of the structure without 
damper obtained by FEM analysis. There are five important modes that play an 
important role for the center point response of the floor. The 4th mode, occurring at a 
19.9 Hz frequency, is the first one. This mode is relating to rigid body motion of floor 
and slab in vertical direction. The other important modes are the 8th, 13th, 15th, and 18th 
corresponding to frequencies 151.1, 274.4, 347.1, and 448.3 Hz, respectively. 
 Figure 3.5 (a) and (b) show the comparison of Frequency Response Function (FRF) 
obtained from the simulation and experimental data. The experimental FRF was 
obtained by dividing the measured data of acceleration with input data of force in 
impulse test using impact hammer. Figure 3.5 (a) shows the results for the input point 
Os and output point Os. There are three dominant modes with frequencies about 19.9, 
274.4, and 347.1 Hz. These frequencies relate to the 4th, 13th, and 15th modes, 
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respectively. Figure 3.5 (b) shows the frequency response function for the input point B 
and output point B. It can be shown that the simulation model is good enough in 
expressing the dynamic characteristic of the structure. Based on these responses, seven 
damping ratios were identified: ζ4 = 0.06, ζ8 = 0.018, ζ12 = 0.019, ζ13 = 0.010, ζ14 = 
0.022, ζ15 = 0.01, and ζ18 = 0.019.  

0
0.2

0.4
0.6 0

0.2

0.4

0.6

-1

0

1

Y (m)
X (m)

Z 
(m

)

 
(a) f4=19.9 Hz 
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(b) f8=151.1 Hz 
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(c) f12=264.1 Hz 

0
0.2

0.4
0.6 0

0.2

0.4

0.6

-1

0

1

Y (m)

X (m)

Z 
(m

)

 
(d) f13=274.4 Hz 
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(e) f15=347.1 Hz 
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(f) f18=448.3 Hz 
Fig. 3.4  Floor, support frame and slab mode shape. 
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Fig. 3.5  Frequency responses of floor and slab system. 

 
3.4  Sound Pressure Calculation 
 The transmitted forces from support frame and impact damper to the slab induce the 
vibration of the slab. According to the acoustic theory, the variation of velocity potential 
cause propagation of compressible wave inside the room below the slab as shown in Fig. 
3.6. The wave equation governing the propagation of small disturbance through a 
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homogeneous and compressible fluid flow may be written in rectangular Cartesian 
coordinate as (Craggi, 1986) 

 
22 2 2 2

2 2 2 21
c

t j x y z
  ∂ ∂ ∂ ∂

= + +  ∂ + ∂ ∂ ∂   

φ φ φ φ
β

, (3.13) 
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Fig. 3.6  The room bellow the slab. 
 

where β, φ, and c describe the acoustic damping factor, velocity potential, and sound 
speed, respectively. It should be noted that the complex term of damping factor jβ was 
including in the wave equation to express the energy losses because of air reflection on 
the wall and air dispersion. The velocity potential φ is combination of several acoustic 
modes. Hence, it can be expressed as  

 ( ), , nj t
n

n
x y z e= Φ∑ ωφ , (3.14) 

where nω  is frequency. nΦ  in Eq. (3.14) can be expressed as multiplication of three 
partial functions Xn(x), Yn(y), Zn(z) resulted 

 ( ) ( ) ( ) nj t
n n n

n
X x Y y Z z e=∑ ωφ . (3.15) 

By considering the nth acoustic mode and introducing the velocity potential in Eq. (3.15) 
into wave equation in Eq. (3.13) yields 

 ( )222 2 2

2 2 2 2

11 1 1 0n nn n n

n n n

jd X d Y d Z
X dx Y dy Z dz c

+
+ + + =

ω β
, (3.16) 

 ( )22
2 2 2
, , , 2

1n n
x n y n z n

j
c
+

+ + =
ω β

µ µ µ , (3.17) 

where 
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2

2
,2 0n

x n n
d X X
dx

+ =µ , (3.18) 

 
2

2
,2 0n

y n n
d Y Y
dy

+ =µ , (3.19) 

2
2
,2 0n

z n n
d Z Z
dz

+ =µ . (3.20) 

Solution of Eqs. (3.18) ~ (3.20) is determined in the form 

1, , 2, ,cos sinn n x n n x nX B x B x= +µ µ , (3.21) 

1, , 2, ,cos sinn n y n n y nY C y C y= +µ µ , (3.22) 

1, , 2, ,cos sinn n z n n z nZ D z D z= +µ µ . (3.23) 

The constants B1,n, B2,n, C1,n, C2,n, D1,n, D2,n are determined by satisfying boundary 
conditions. The velocity field inside the room is relating to gradient of velocity potential 
as expressed in Eq. (3.24) 

 ( ), , , , ,v x y z t grad
x y z

 ∂ ∂ ∂
= − = − − − ∂ ∂ ∂ 

φ φ φφ . (3.24) 

Application of boundary conditions of rectangular room as shown in Fig. 3.6 leads to 

 0 for 0, xx L
x

∂
= =

∂
φ , (3.25) 

 0 for 0, yy L
y
∂

= =
∂
φ , (3.26) 

 0 for 0z
z

∂
= =

∂
φ , (3.27) 

 ( ), ,s
z Lz

v x y t
z =

∂
− =
∂
φ , (3.28) 

  
where vs is the normal velocity of the slab. The slab normal velocity can be expressed as

 ( ) ( ) ( ), ,
1

, , ,s s i s i
i

v x y t x y q t
∞

=

=∑ψ , (3.29) 

where ( ), ,s i x yψ , ( ),s iq t  are eigenvector and modal velocity of the slab, respectively. 

Application of boundary conditions Eqs. (3.25) ~ (3.28) into Eqs. (3.21) ~ (3.23) yields 

 ( ) ( ), ,
0 0

cos cos cosn n l m n l m
l m x y

l x m yA z
L L

∞ ∞

= =

Φ =∑∑ π π µ , (3.30) 
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where l,m are nonnegative integer. Substitution of Eq. (3.30) into Eq. (3.14) and 
applying the result into Eq. (3.28) leads to  

 ( ) ( ) ( ){ } ( ), , , , , ,
0 0

cos cos sin , , ,nj t
z sn l m n l m n l m

n l m x y

l x m yA L e v x y z t
L L

∞ ∞

= =

=∑∑∑ ωπ πµ µ (3.31) 

To obtain An,(l,m), the summation term in equation in Eq. (3.31) should be simplified by 
introducing the inverse Fourier transform procedure   

 ( )
/ 2 1

0

2, , , , , q p
N

j t
s p s q

q
v x y z t V x y e

N

−

=

 =  ∑ ωω , (3.32) 

where Vs, N, tp and ωq are Fourier transform of vs, the number of Fourier point, discrete 
time and discrete frequency in Fourier transform, respectively. The value of tp and ωq 
are determined in the form 

 p st pT= , (3.33) 

 2
q

s

q
NT

=
πω , (3.34) 

where q = 0,1,2,…,N/2-1,  p = 0,1,2,…,N-1 and Ts is sampling time.  
Substitution of the result in Eq. (3.32) into Eq. (3.31) and by assuming the acoustic 
mode n is equal to q yields 
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It should be noted that the Fourier transform of vs(x,y,tp) can be expressed as 
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Then, the expression in Eq. (3.29) and Eq. (3.36) is substituted into Eq. (3.35). Next, 

solution of ( ), ,q l mA is written in the form   
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and 
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where βq and ωq are acoustic damping factor, and acoustic natural frequency of the 
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room, respectively. Integral operator 
S

dS∫∫  in Eq. (3.37) is used to express the 

surface integral.  
 
The velocity potential can be calculated as    

 ( ) ( ) ( )

/ 2 1

, , , ,
0 0 0

, , , cos cos cos q p
N

j t
p q l m q l m

q l m x y

l x m yx y z t A ze
L L

− ∞ ∞

= = =

= ∑ ∑∑ ωπ πφ µ . (3.39)  

Finally, the sound pressure generated in the room bellow the slab can be expressed as 

 ap
t

∂
=

∂
φρ , (3.40) 

 ( ) ( ) ( )

/ 2 1

, , , ,
0 0 0

, , , cos cos cos q p
N

j t
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= ∑ ∑∑ ωπ πρ ω µ ,(3.41) 

where aρ  is density of air. 
 
3.5  Simulation Result 
 The initial ball dropping height was 0.23 m. First, the low impact load was applied to 
the simulation system. The low impact load was realized by dropping a tennis ball (mb = 
0.054 kg) into the acrylic plate. The parameters kcb and ccb for tennis ball were 
interpolated from Table 3.1 giving values of 3.7 × 105 N/m3/2 and 150 Ns/m3/2, 

respectively. kcd is taken as 6.1×108 N/m3/2 for contact radius r1 = ∞  and r2 = 0.005 m, 
Young’s modulus E1 = 5.9×109 N/m2 for the acrylic flat contact, and E2 = 210×109 N/m2 
for the steel spherical contact. 
 The sound pressure in the wooden box are calculated with the following constants: c 
= 340 m/s, ρa = 1.29 kg/m3, βq = 1.16 %. The acoustic damping factor was chosen to 
give comparable result with the experimental outcomes. In this case the acoustic 
damping factor was set such that the maximum peak for 4th mode in simulation result 
was almost the same as the peak spectrum obtained from experimental data. 
 Figure 3.7 shows the acceleration of floor at point B for three different cases. The 
first case is the response of the system without impact damper. The second and the third 
cases were the response of the system with mass ratios between impact damper and 
floor md/mf of 0.6 and 1.2, respectively. In the simulation the floor mass mf was set as 
0.75 kg. The simulation results indicated that for mass ratios of 0.6 and 1.2 the 
maximum floor vibration could be reduced by 9% and 24%, respectively.  
 The simulation of velocity response at the center of the slab (point Os) is shown in 
Fig. 3.8. The reductions of velocity response are about 47% and 62 % by using impact 
damper with mass ratio 0.6 and 1.2, respectively. The velocity response is dominated by 
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rigid body mode of vibration(4th mode) as can be shown in the frequency response in 
Fig. 3.8. In the frequency response, the attenuations of velocity spectrum at the 8th mode 
for mass ratios of 0.6 and 1.2 are 8.3 and 14 dB, respectively.  
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Fig. 3.7  Simulation results of acceleration in point B. 
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Fig. 3.8  Simulation results of velocity in point Os. 
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 Simulation results of sound pressure in the room bellow the slab is depicted in Fig. 
3.9. The simulation results show that for mass ratios of 0.6 and 1.2, the sound pressure 
could be reduced by 53% and 67%, respectively. In the frequency response, the 
attenuations of sound power spectrum at the 8th mode for mass ratios of 0.6 and 1.2 are 
4.6 and 7.7 dB, respectively.  
 It should be pointed out that the simulation results of floor acceleration response are 
dominated by 8th mode with frequency 151.1 Hz but for the sound pressure response, 
the 4th mode with frequency 19.9 Hz has the major contribution to the total response.    
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Fig. 3.9  Simulation results sound pressure in the wooden box. 

  
 The vibration suppression obtained by using impact damper is compared to 
conventional added mass method for high impact load case. The high impact load was 
obtained by dropping a mass with high contact stiffness to the floor. The mass tip was 
made from acrylic ball (mb = 0.045 kg). The contact stiffness between floor and acrylic 
ball was obtained from Table 3.1. Three-simulation procedure was conducted. First, the 
response is calculated for case without damper. The second case is calculation using 
added mass 0.3 kg located in the center of the floor. The third case is calculation using 
impact damper with mass ratio 0.4(md = 0.3 kg). The impact damper was used to 
suppress the low frequency vibration response excited by impact force. For this reason 
the low pass filter within 1 kHz frequency was used in the analysis.  
 Figure 3.10 shows the comparison of floor acceleration in point B without damper, 
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with impact damper and with added mass cases, respectively. It can be shown from Fig. 
3.10 that the impact damper has superior performance in suppressing 8th mode (151.1 
Hz) and 18th mode (448.3 Hz) compare to added mass method.  
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Fig. 3.10  Simulation results comparison of acceleration response. 

 
 Figure 3.11 shows the simulation results of sound pressure generation in the room 
bellow the slab for high impact load case. As the soft impact case, the sound pressure 
response is dominated by rigid body mode. It can be shown from Fig. 3.11 that the 
attenuation of sound pressure using impact damper is higher than the conventional 
added mass method.  
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Fig. 3.11  Simulation results comparison of sound pressure. 

 
 

3.6  Experimental Result 
 The simulation result of floor acceleration and sound pressure generation in the room 
bellow the slab was tested experimentally. Experimental results for the case of low 
impact load using tennis ball are shown in Fig. 3.12 and Fig. 3.13. Figure 3.12 shows 
that the maximum acceleration is reduced by 10 % and 25% by using the impact damper 
with mass ratios 0.6 and 1.2, respectively. There are two peaks appear between 150 Hz 
and 400 Hz which are not detected in simulation result. These peaks may be resulted 
from non-center collision between ball and floor. 
 The sound pressure response in the hypothetical room bellow the slab is shown in 
Fig. 3.13. Sound pressure is reduced by 50% and 63 % by the damper for mass ratios 
0.6 and 1.2, respectively. Frequency response in Fig. 3.13 shows that the attenuations of 
sound power spectrum at the 8th mode for mass ratios of 0.6 and 1.2 are 2.55 and 2.79 
dB, respectively. 
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Fig. 3.12  Experimental results of acceleration in point B. 
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Fig. 3.13  Experimental results sound pressure in the wooden box. 

 
 Experimental results of floor acceleration for high impact load are depicted in Fig. 
3.14. Figure 3.14 show that the vibration suppression obtained by using impact damper 
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for 8th mode was better than that of added mass case. The resonance peaks for this mode 
are 24.2 dB and 28.3 dB for impact damper case and added mass case, respectively. The 
resonance peak of 18th mode using impact damper is 31.4 dB. This value is lower than 
added mass case 32.8 dB. The experimental result of floor acceleration as depicted in 
Fig. 3.14 is lower than the simulation result as shown in Fig. 3.10, especially for case 
without impact damper. The reason is that, in the experiment, the impact location of the 
ball is not exactly located at the center of the floor. This un-centered impact force 
excites some of the higher modes.   
 Figure 3.15 shows the experimental results of sound pressure generation for high 
impact load. The sound pressure response is dominated by rigid body mode. The 
resonance peak of rigid body mode using impact damper and added mass method are 
17.5 dB and 30.7dB, respectively. These results show that the attenuation of sound 
pressure generation using impact damper method is higher than that of the added mass 
method. 
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Fig. 3.14  Experimental results comparison of acceleration response. 
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Fig. 3.15  Experimental results comparison of sound pressure. 
 

3.7  Summary 
 In the present research, a new impact damper device has been invented to absorb 
floor vibration and to suppress the resulting sound pressure level generated by a flooring 
system. A numerical model of flooring system was generated using a FEM formulation. 
The model was order-reduced by using modal analysis. A small-scale model of flooring 
system was then fabricated to show the effectiveness of impact damper in reducing the 
impact vibration. Finally, the experimental results were compared to the model 
simulation results. The maximum floor impact vibration and sound generation depended 
strongly on the impact damper mass ratio. The experimental results show that for a mass 
ratio of 1.2, the acceleration of the floor and sound pressure generated could be reduced 
by 25% and 63%, respectively.  
 Comparison of impact damper method to conventional added mass at the center of 
the floor was conducted for case of high impact load. The results show that impact 
damper has the better performance compare to added mass method in suppressing the 
floor acceleration and sound pressure generation. Moreover, it was shown the transfer of 
energy obtained using ball with high contact frequency (acrylic ball) is much larger than 
obtained using ball with low contact frequency (tennis ball).  
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Chapter 4 
APPLICATION OF MOMENTUM EXCHANGE IMPACT 

DAMPER TO FORGING MACHINE 
 

 
4.1  Introduction  
 Industrial machines using impact force, such as forging machines, have two 
dominant problems relating to their dynamic operation. The first problem relates to the 
inertial force caused by rigid-body motion of the machines, which is excited by its 
reciprocating movement. The second problem relates to elastic vibration caused by the 
impacts. These problems compromize the machines accuracy and cause vibration 
pollution to the surroundings.  
 Conventional methods of addressing these problems typically involve using a 
floating base with a large mass to decrease the transmitted force. These methods fail to 
improve the vibration response of the forging machine bed. Some researchers use active 
dynamic damper with preview action to reduce the transient vibration subject to impact 
force (Tanaka and Kikushima, 1986,1987). This method effectively reduces the 
transmitted force and acceleration response. However, it requires sensors, a controller 
and an actuator to realize the preview action of the dynamic damper.    
 In this work, an innovative momentum exchange impact damper is proposed to 
reduce the vibration and transmitted force of the forging machine. This method is based 
on the momentum conservation principle for colliding bodies. When the forging 
machine bed is subjected to an impact force, a part of the energy of forging machine is 
transferred to the impact damper mass, which is initially contacting the forging machine 
bed.   
 
4.2  New Impact Damper for Forging Machine 
 Figure 4.1 shows a dynamic model of a forging machine with an impact damper. 
There are four main components of this system. The first component is a slider, which is 
used as the impact force generator for the forging machine. The second component is 
the bed. The bed typically consists of a steel plate supported by four columns. These 
columns connect the forging machine bed to the third component, a floating base. The 
floating base is a steel plate supported by four coil springs. The last component is the 
impact damper. The impact damper consists of a mass, a spring and a dashpot.  



Application of MEID on Reducing the Impact Vibration of Forging machine 

 47

slider(1.2 kg)

bed(400x300x10)

damper mass

spring  dashpot

force
sensor

floating base
(400x300x30)

columns

slider
guide

ground

slider
guide

300

300

400

25

25

250

floating base
spring

columns

Ob

B

kf

Ks , Cs

Kd , Cd

cdkd

md

ms
slider

impact
damper

bed

 
Fig. 4.1  Experimental model of a forging machine. 

 
4.3  System Modeling and Equations of Motion 
 The dynamics of the forging machine structure, which consists of the slider guides, a 
bed, columns, a floating base and floating base springs is analyzed using the finite 
element method (FEM). Four-node quadrilateral plate elements are used to model both 
the bed and the floating base structure (see Appendix). The columns are modeled using 
the three dimensional frame elements (see Appendix). The slider and the impact damper 
are assumed to be rigid bodies. 
 Values for defining the slider, the bed, the impact damper and the floating base 
parameters are shown in Table 4.1.  
Table 4.1  Simulation parameters for floating base, column, damper, slider and bed. 

Parameter Value 
ms : slider mass  1.2 kg 
vs : slider initial velocity 1.2 m/s 
mb: bed mass 10 kg 
Ks : bed-slider contact stiffness 1× 106 – 5× 107 N/m 
Cs : bed-slider contact damping coefficient  0  Ns/m 
md : damper mass  3.6 kg, 7.2 kg 
kd : damper spring constant 1.8× 103 N/m 
cd : damper damping coefficient 7× 102 Ns/m 
Kd: bed-damper contact stiffness 5.5× 103 – 1.8× 109 N/m 
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Cd : bed-damper contact damping coefficient 0 Ns/m 
mf : floating base mass 41 kg 
kf : floating base spring constant  1.54× 104 N/m 

 
The equations of motion of the forging machine structure, the slider and the impact 
damper are written as follows 

 bs bd fdMu Cu Ku B B Bbs bd fdf f f+ + = − + , (4.1) 

 0s s bsm z f+ = , (4.2) 

 0d d fd bdm z f f+ − = , (4.3) 

where matrix M, C and K are the structure’s; mass matrix, the damping matrix and the 
stiffness matrix, respectively; fbs, fbd and ffd  are the contact forces between the bed and 
the slider, the contact force between the bed and the impact damper and the transmitted 
force from the impact damper to the floating base, respectively; u, zs and zd are the 
displacement vectors of the structure, the displacement of slider and the displacement of 
the impact damper, respectively; Bbs, Bbd and Bfd are vectors that represent the positions 
of external forces.  
 The contact force between the bed and slider is assumed to be given by a linear 
spring and a dashpot. Thus, the contact force can be expressed as  

 
( ) ( ) ( )

( )
, 0

0, 0
s s b s s b s b

bs
s b

K z u C z u for z u
f

for z u
− + − − ≥=  − <

, (4.4) 

where Ks and Cs are the contact stiffness and the contact damping coefficient between 
the slider and the bed, respectively, while ub is the displacement of the bed at the contact 
point Ob. The transmitted force from the impact damper to the floating base can be 
expressed as 

 ( ) ( )fd d d f d d ff c z u k z u= − + − , (4.5) 

where kd and cd are the stiffness and the damping coefficients of the impact damper, 
respectively, while uf is the displacement of the floating base at point Of. The impact 
damper is designed such that it moves smoothly during the impact such that it dissipates 
energy when it releases. A one-way damper is used for this purpose. Mathematically, the 
damping coefficient can be expressed as  

 0 0d d fc for z u= − > . (4.6) 
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The contact force between the bed and the impact damper is modeled using a linear 
spring and dashpot model 

 
( ) ( ) ( )

( )
, 0

0, 0
d b d d b d b d

bd
b d

K u z C u z for u z
f

for u z
− + − − ≥=  − <

, (4.7) 

where Cd and Kd are the contact damping coefficient and the contact stiffness between 
the impact damper and the bed, respectively.  
 Equation (4.1) can be written in modal coordinates giving 

 22i i i i i iq q q+ + =ζ ω ω bs bd fdψ B B Bi bs bd fdf f f − +   , i = 1,2, ,∞ , (4.8) 

where qi, ζi, ωi, and ψ i are the modal displacements, the damping ratio, the natural 

frequency and the mass normalized eigenvector for the ith mode, respectively.  
 Figure 4.2 shows two mode shapes of the forging machine without a damper 
obtained from the FEM. The 6th and the 10th modes significantly contribute to the 
transfer of energy during the collision process. The 6th mode is the rigid body mode of 
forging machine and the 10th mode is the most dominant elastic mode of bed.   
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Fig. 4.2  Significant mode shapes of the bed, column and floating base. 

 
4.4  Energy Transfer and Transmitted Force 
 The main purpose of the impact damper is to minimize the momentum or energy of 
the forging machine. Generally, the transfer of momentum in the collision of elastic 
bodies is influenced by the mass ratio and the contact time. In order to find the optimum 
mass ratio and contact stiffness, several simulations were conducted. In the simulations, 
the energy of the forging machine after collisions are calculated as 
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 p s s dE E E E+ − + += − −  (4.9) 

where Ep+, Es-, Es+ and Ed+ are the energy of the forging machine after collision, the 
energies of the slider before and after collision and the energy of the impact damper 
after collision, respectively. These energies are calculated as 

 21
2s s s sE T m z− − −= =  , (4.10) 

 21
2s s s sE T m z+ + += =   (4.11) 

 ( ) 221 1
2 2d d d d d d d fE T U m z k z u+ + + + +

= + = + −  . (4.12) 

where sz − , sz + , dz +  and ( )d fz u
+

− are velocities of the slider before and after 

collision, velocity of the damper after collision and relative displacement of the damper 
after collision, respectively. Ts-, Ts+, Td+ and Ud+ are the kinetic energies of the slider 
mass before and after collision, kinetic energy of the damper mass after collision and 
potential energy of the damper spring after collision, respectively. It can be assumed that 
there is no potential energy just after the collision. 
 The analysis of energy transfer from the slider to the damper was conducted for three 
different cases. For the first and second cases, the forging machine’s floating base was 
supported by a spring with low stiffness( kf = 1.54× 104 N/m) and high stiffness( kf = 
1× 107 N/m). In the third case, the forging machine column was connected rigidly to the 
ground without using a floating base. 
 

4.4.1  Case 1: Using Floating Base with Soft Support Springs 

 The numerical integrations of Eqs. (4.2), (4.3) and (4.8) was carried in a 
MatLab/Simulink computational environment by using the fifth-order Dormand-Prince 
method with variable time steps. In the simulation, only the 6th mode (ω6 = 40 rad/s) and 
10th mode (ω10 = 1777 rad/s) were considered because they were dominant. Figure 4.3 
shows the ratio of transferred energy (Ep+/ Es-) as a function of ωs /ω6 and ωd /ω6 for 
mass ratios (md/mb) of 0.35 and 0.7. The variables, ωs and ωd, are the natural 
frequencies of the slider and the impact damper. 

 s
s

s

K
m

=ω , (4.13) 
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 d
d

d

K
m

=ω . (4.14) 

These variables relate to the contact time with the bed. 
 
 As can be seen from Fig. 4.3, the minimum energy of the forging machine occurs in 
the neighborhood of the point where ωd = ωs. This energy decreases when the frequency 
ratio ωs/ω6 is increased. The conclusion that can be draw from these figures is that Ks 
must be higher in order to minimize the energy of the forging machine. 
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Fig. 4.3  Relationship between energy transfer and contact condition. 

 
 Figure 4.4 shows the variation of the forging machine energy ratio with the 
frequency ratio ωd/ωs and the impact damper mass ratio md/mb. In the simulation, ωs and 
ω6 were fixed to be 6× 103 rad/s and 40 rad/s, respectively, and the contact frequency ωd  
were varied. Increasing the impact damper mass ratio causes the energy of the forging 
machine to decrease. The minimum energy is located at point ωd/ωs = 1 for all mass 
ratios. Considering the energy ratio Ep+/Es- as impact damper efficiency, it can be 
concluded that the optimal frequency ratio ωd/ωs that is close to 1 is independent of the 
impact damper mass. For the optimal impact damper with a mass ratio of 1, Ep+/Es-= 
2.2 % as shown in Fig. 4.4.  



Application of MEID on Reducing the Impact Vibration of Forging machine 

 52

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
0

10

20

30

40

50
E p+

/E
s-

(%
)

Frequency ratio(ω
d
/ω

s
)

md/mb=0.2

md/mb=0.4

md/mb=0.6

md/mb=1.2md/mb=1
md/mb=0.8

 
Fig. 4.4  Relationship between energy transfers and mass ratio. 

 
 Figure 4.5 shows the variation of the forging machine energy ratio when the 
frequency ratio ωs/ω6 and the mass ratio md/mb are varied. In this simulation the natural 
frequency ω6 = 40 rad/s and the contact frequency ωs and ωd were varied. During the 
simulation, the contact frequency ωd is set to the same value as ωs and ms was kept 
constant. The curves for the energy have a maximum peak at the point close to ωs/ω6 = 
45 (ωs : 283 Hz). This was because the natural frequency of the 10th mode of the forging 
machine (ω10) is 283 Hz and this value is the same as the contact frequency ωs. At this 
point, the energy of the forging machine increases due to resonance. When the forging 
machine is operating at ωs /ω6 < 45, the impact damper mass ratio has little influence on 
the energy of the forging machine as shown in Fig. 4.5. However, for ωs /ω6 >45, the 
mass ratio has a significant effect in determining the energy of forging machine after the 
impact. This is because, for ωs /ω6 < 45, the slider contact stiffness is so small that the 
amount of energy reflected to the slider is larger than the amount transferred. As shown 
in chapter 2, for this condition, the mass ratio has little influence on the amount of 
reflected energy. When ωs /ω6 >>45, the energy transferred to the damper increases and 
this transferred energy is influenced greatly by the mass ratio. 
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Fig. 4.5  Variation of energy ratio with frequency ratioωs/ω6 and mass ratio md/mb. 

 
The time history of the energy during collision for a mass ratio of 0.35 and ωs /ω6=150 
are depicted in Figs. 4.6-4.8. The energy components in Figs. 4.6-4.8 are calculated as 
follows. 
1. The kinetic energy of the slider is  

 21
2s s sKE m m z=  , (4.15) 

2. The potential energy stored internally by the slider contact spring is 

 ( ) ( )( )21 1 1 sgn
2 2s s s b s bPE K K z u z u= − × − − , (4.16) 

3. The kinetic energy and potential energy of the forging machine 

 { } [ ]{ }1
2

T
X M XpKE = , (4.17) 

 { } [ ]{ }1
2

TX K XpPE = , (4.18) 

where { }M , { }K , { }X and { }X are the modal mass, the modal stiffness, the 

displacement vector and the velocity vector of the forging machine, respectively.  
4. The kinetic energy of the damper is 
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 21
2d d dKE m m z=  , (4.19) 

5. The potential energy stored in the damper spring is 

 ( )21
2d d d fPE k k z u= − , (4.20) 

6. The potential energy stored internally by the damper contact spring is  

 ( ) ( )( )21 1 1 sgn
2 2d d b d b dPE K K u z u z= − × − − , (4.21) 

7. Energy dissipated by the forging machine structural damping is given by  

 [s sDissipated energy KE m PE K KE structure PE structure−= − + +  

]d d dKE m PE k PE K+ + + , (4.22) 

where KE ms- is the kinetic energy of the slider before collision. 
 
It should be noted that the energy of the forging machine is the summation of kinetic 
energy, potential energy and dissipated energy. 

 p P pE KE PE Dissipated energy= + + . (4.23) 

 Calculation of the energy components is conducted for ωs /ω6 = 150. Figures 4.6, 4.7 
and 4.8 show the time history of energy for ωd /ω6 =150 (point Q in Fig. 4.3 (a)), ωd /ω6 

= 25 (point P in Fig. 4.3(a)) and ωd /ω6 = 220 (point R in Fig. 4.3(a)). Compared to the 
kinetic energy at point P and point R, the kinetic energy of the damper at point Q is 
much larger. This occurs because when the contact takes place, there is steady drop in 
the kinetic energy of the slider (KE ms) as a result of energy transfer to the other energy 
compartments.  
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Fig. 4.6  Energy time history for md/mb =0.35, ωs /ω6=150 and ωd /ω6 =150 (point Q). 
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Fig. 4.7  Energy time history for md/mb =0.35, ωs /ω6=150 and ωd /ω6 =25 (point P). 



Application of MEID on Reducing the Impact Vibration of Forging machine 

 56

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
x 10-3

0

0.2

0.4

0.6

0.8

1
En

er
gy

 ra
tio

 

Time(s)

KE ms 

PE Ks 

PE Kd 

damper looses
contact                                

slider looses
contact                                

KE md 

PEp+KEp 

Dissipated energy

Total energy 

 

Fig. 4.8  Energy time history for md/mb =0.35, ωs /ω6=150 and ωd /ω6 =220 (point R). 

  The portion of energy transferred into the kinetic energy of the impact damper (KE 
md) is greatly influenced by the amount of potential energy stored in the impact damper 
contact spring (PE Kd). Figure 4.6 shows that when the impact damper is working at 
point Q, the maximum value of PE Kd occurs at the same time at which the slider losses 
contact.    
  When the impact damper is working at point P, as shown in Fig. 4.7, the kinetic 
energy of the impact damper after collision is smaller than that at point Q. This occurs 
because in this case the maximum value of PE Kd occurs after the slider losses contact. 
Alternatively, when the damper is working at point R, the maximum value of PE Kd 
occurs before the slider losses contact, so that the kinetic energy of the impact damper is 
lower than that at point Q. 
 The conclusion that can be reached from the above analysis is that the maximum 
energy transfer from the slider to the impact damper is obtained if the time when PE Kd 
is at a maximum and the time when slider looses contact are the same. 
 One of the conventional ways to reduce impact vibration is to add a mass on the bed 
or floating base. Comparison of performance of the impact damper with the 
conventional added mass method is depicted in Fig. 4.9. In this simulation the weight of 
the added mass is the same as that of the impact damper with a mass ratio 0.35. The 
frequency ratio of the impact damper is ωd/ωs=1. Figure 4.9 shows that the impact 



Application of MEID on Reducing the Impact Vibration of Forging machine 

 57

damper has a better performance compared to the added mass method in the whole 
frequency range defined by the impact stiffness (ωs /ω6).  
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Fig. 4.9  Comparison between added mass and impact damper method. 
 

 Figure 4.10 and 4.11 show the simulated acceleration of the bed and transmitted 
force to the ground at the operating point S (see Fig. 4.3 (a)) for three cases: without 
impact damper, with impact damper and with added mass on the base. The added mass 
and the impact damper mass are md/mb = madd/mb = 0.35. The acceleration and the 
transmitted force for the impact damper case are less than without the impact damper 
and the added mass cases. The added mass case has low transmitted force, but the 
acceleration response is poor compared to the impact damper case. Note that the 
acceleration response is dominated by elastic mode of the bed (283 Hz). Meanwhile the 
transmitted force is dominated by rigid body vibration (6.35 Hz). 
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Fig. 4.10  Simulated acceleration response at point S. 
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Fig. 4.11  Simulated force transmission at point S. 
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4.4.2  Case 2: Using Floating Base with Hard Support Springs  

 Figure 4.12 shows the forging machine energy obtained from the simulation by using 
a floating base stiffness kf = 1× 107 N/m. This stiffness value is much larger than the 
stiffness used in the previous simulation. By using this spring, the 6th and 10th natural 
frequencies of the forging machine become 141 Hz and 292 Hz, respectively, while in 
the case of kf = 1.54× 104 they are 6.35 Hz and 283 Hz. The mass ratio in this simulation 
is 0.35. Compared to the case with kf = 1.54× 104 in Fig. 4.3 (a), the shapes of energy 
curve are similar and the minimum point is located in the vicinity of ωd = ωs.  

0 5 10 15
0

10

20

30

40

50

60

E p+
/E

s-
(%

)

Frequency ratio(ω
d
/ω

6
)

ωs/ω6=6 

ωs/ω6=5 

ωs/ω6=4 

ωs/ω6=3 
ωs/ω6=2 

ωs/ω6=1 T 

 
Fig. 4.12  Relationship between energy transfer and contact condition for Kf  = 1× 107. 
 
 Figure 4.13 and Fig. 4.14 show the response of the bed acceleration and transmitted 
force at the operating point T in Fig. 4.12. The contact stiffness between slider and bed 
(Ks) at point T is the same as Ks at point S in Fig. 4.3 (a). It can be shown that the 
acceleration and transmitted force are less than those in the case with the soft support 
spring because most of energy of the slider is reflected back to the slider after the 
impact. By using the impact damper, the acceleration and transmitted force can be 
reduced by about 3 dB. 
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Fig. 4.13  Simulated acceleration at point T. 
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Fig. 4.14  Simulated force transmission at point T. 
 

 



Application of MEID on Reducing the Impact Vibration of Forging machine 

 61

4.4.3  Case 3: Without Floating Base  

 In the case of small forging machine, the columns are usually connected directly to 
the ground without using a floating base. The transmitted force is simply calculated 
from the column’s deflection (Ft = kcxc where kc and xc are the stiffness and deflection of 
column, respectively). Several mode shapes of forging machine without floating base 
are depicted in Fig. 4.15. It can be shown from these figures that the 4th and 5th modes 
are significant for the case when the excitation point is located at the center of the bed. 
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Fig. 4.15  The significant mode shapes of forging machine without floating base. 
 
 Figure 4.16 show the variation of forging machine energy using the impact damper 
for cases without a floating base. The energy of forging machine is minimum at a point 
close to ωs = ωd as shown in Fig. 4.16.  
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Fig. 4.16  Relationship between energy transfer and contact condition 

without a floating base. 
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 Figure 4.17 shows the variation of energy with frequency ratio ωs/ω4 and mass ratio 
md/mb. In this simulation the contact frequency ωs and ωd were varied. During the 
simulation, the contact frequency ωd was set to the same value as ωs and ms was held 
constant. The energy curve has a maximum peak at the point close to ωs/ω4 = 1 because 
the resonance occurs when the excitation frequency ωs is the same as the bed natural 
frequency ω4.  
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Fig. 4.17  Variation of energy with frequency ratio ωs/ω4 and mass ratio md/mb. 

 
 The acceleration response at the center of bed and transmitted force from the column 
to ground at the operating point U(see Fig. 4.16) are depicted in Fig. 4.18 and Fig. 4.19. 
Figure 4.18 shows that the 4th mode of the forging machine has the most dominant peak. 
The peak for the 5th mode is small compared to the peak of the 4th mode. The 
attenuation of the peak acceleration by the impact damper with a mass ratio of 0.35 is 
2.3dB. 
 The response of transmitted force from the column is depicted in Fig. 4.19. It can be 
shown from this figure that the transmitted force is reduced by 2.4 dB by using the 
impact damper with mass ratio of 0.35.  
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Fig. 4.18  Simulated acceleration response at point U(ωs = ωd). 
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Fig. 4.19  Simulated force transmission at point U(ωs = ωd). 
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4.5  Experimental Validation 

 In order to validate the simulation results, experiments were carried out using an 
experimental apparatus. The shape, size and parameter values are shown in Fig. 4.1 and 
Table 4.1. A photo of the experimental apparatus is shown in Fig. 4.20. Accelerometer 
and force transducer sensors were used in the experiment. The accelerometer is used to 
measure the acceleration response of bed. The acceleration measurement point is 
located at point B as depicted in Fig. 4.1. The force sensor is located at one of the 
floating base springs to measure the force transmitted to the ground.  

 

Fig. 4.20  Photo of experimental apparatus. 
 

 The experimental results of the acceleration and transmited force for the case with 
the soft support spring and mass ratio of 0.35 are shown in Fig. 4.21 and 4.22. These 
figures show that the acceleration and transmitted force response can be reduced by 3.2 
dB and 3.3 dB by using the impact damper. These experimental results and the 
simulation results in Fig. 4.10 and 4.11 are in good agreement, suggesting that the 
simulation results are reliable. 
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Fig. 4.21  Experimentally measured acceleration response. 
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Fig. 4.22  Experimentally measured force transmission. 
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4.6  Summary 

   The proposed forging machine impact control method which is based on a 
momentum exchange principle exhibited a high level of vibration isolation and 
suppression. As shown in the simulation and experimental results, the vibration 
suppression depends on the mass ratio of the impact damper and the bed and the contact 
properties and natural frequencies of the forging machine. The energy of the forging 
machine will be decreased when the mass ratio increases. In addition, the transfer of 
energy from the slider to the damper also increases when the excitation frequency ωs is 
much larger than the natural frequency of the forging machine. In the region where the 
excitation frequency ωs is lower than the natural frequencies of the bed, the energy 
stored in the forging machine is not greatly influenced by the mass ratio because the 
reflected energy of the slider is dominant. However, in the region where the excitation 
frequency ωs is higher than the natural frequencies of the bed, the transferred energy 
from slider to impact damper is dominant and the mass ratio plays a significant role in 
determining the energy of the forging machine. When one of the natural frequencies of 
the forging bed is the same as the excitation frequency, the forging machine resonates 
and the performance of the impact damper is poor.  
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Chapter 5 
APPLICATION OF MOMENTUM EXCHANGE IMPACT  

DAMPER TO BOAT 
 
 

5.1  Introduction  
 The safety and comfort are two important aspects that should be considered in 
designing a good transportation system such as a high speed boat. One important thing 
that affects this consideration is the shock vibration when the boat impacted by a wave. 
The shock vibration will induce the big acceleration that could be felt by the boat crews. 
Moreover, in the severe case a crack could be propagating in the structural material 
located at the bottom of the boat.   
 A method involving momentum exchange using an impact damper was proposed to 
reduce the shock vibration of a boat. The momentum exchange impact damper was 
previously used to reduce the impact vibration in the flooring system and the forging 
machine (Son and Matsuhisa, 2006).  In this work the momentum exchange impact 
damper is applied to the boat. When the boat is impacted by a big wave, the kinetic 
energy of the boat is transferred to the absorber mass. Consequently, the boat receives a 
small amount of shock.    
 
5.2  Two Degree of Freedom Model of Boat with Impact Damper 
 Figure 5.1 shows two degrees of freedom model representing the boat with impact 
damper. The boat was modeled by a mass m and a spring stiffness k. The impact damper 
was modeled using spring-mass system attached to the boat with mass md and stiffness 
kd. The wave excitation is modeled as a half sinusoidal force with amplitude Fw and 
frequency ωw.    

Fwsinωw t 

m 

md 

kd 

xd 

x 

k 

 
Fig. 5.1  Two degree of freedom model of boat. 
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The governing equation of boat model depicted in Fig. 5.1 are expressed as 
 0d d dm x f− = , (5.1) 
 d wmx kx f f+ + = . (5.2) 
where fd and fw are contact force between mass m and md and the force acting on mass m 
caused by wave excitation. These forces can be expressed as 

 
( ) ( )

( )
, 0

0 , 0
d d d

d
d

k x x for x x
f

for x x
− − ≥=  − <

 , (5.3) 

and 

 
sin ,

0 ,

w w
w

w

w

F t for t
f

for t

π ω ≤ ω=  π >
 ω

. (5.4) 

To investigate the free vibration for the system in Eq. (5.1) and (5.2) during contact 
period, the external force fw is set equal to zero and the following homogeneous 
equations are given 
 0d d dm x f− = , (5.5) 
 0dmx kx f+ + = .  (5.6) 
The solution of Eq. (5.5) and (5.6) is given as 

 ( )x Asin pt φ= + , (5.7) 

 ( )dx B sin pt φ= + . (5.8) 

Substitution of Eqs. (5.7) and (5.8) into Eqs. (5.5) and (5.6) produces the following 
algebraic equations that must be satisfied: 

 ( )2 0d dk k p m A k B+ − − = , (5.9) 

 ( )2 0d d dk A k p m B− + − = . (5.10) 

Eqs. (5.9) and (5.10) can have nonzero solutions only if the determinant of the 
coefficients of A and B equal to zero. Thus 

 
( )

( )

2

2
0

d d

d d d

k k p m k

k k p m

+ − −
=

− −
 . (5.11) 

Expansion of this determinant results in 
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 ( )4 2 0d d d d dmm p mk m k k p kk− + + + =   . (5.12) 

The expression in Eq. (5.12) is called the characteristic equation. The roots of this 
characteristic equation are the natural frequencies of vibration. These natural 
frequencies may be determined by quadratic formula  

 
( ) ( )22 2 2 2 2 2 2 2

2
1

4

2
d d d d dp

ω µω ω ω µω ω ω ω+ + − + + −
= , (5.13) 

 
( ) ( )22 2 2 2 2 2 2 2

2
2

4

2
d d d d dp

ω µω ω ω µω ω ω ω+ + + + + −
= , (5.14) 

where 

 d
d

d

k
m

ω = , (5.15) 

 k
m

ω = , (5.16) 

 dm
m

µ = . (5.17) 

 Substituting the characteristic values 2
1p and 2

2p  into the homogeneous algebraic 

equations (5.9) and (5.10) determining the shapes of the two natural modes of vibration 
(principal modes) by the amplitude ratios  

 
2

1
1 1

d

pr
ω

 
= −  

 
, (5.18) 

 
2

2
2 1

d

pr
ω

 
= −  

 
. (5.19) 

The amplitude ratio in Eq. (5.18 ) and (5.19) depends only upon the physical constants 
m, md, k, and kd. Using the smaller angular frequency p1 and the corresponding 
amplitude ratio r1 into Eqs. (5.7) and (5.8) yields  

 ( )1 1 1 1
'x r B sin p t φ= + , (5.20) 

 ( )1 1 1
'
dx B sin p t φ= + . (5.21) 
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Expressions in Eqs. (5.20) and (5.21) completely describe the first mode of vibration, 
which is also called the fundamental mode. At any time during such motion, the 
displacement ratio is the same as the amplitude ratio r1. 
 Substitution of the larger angular frequency p2 and the corresponding amplitude ratio 
r2 into Eqs. (5.7) and (5.8) yields 

 ( )2 2 2 2
"x r B sin p t φ= + , (5.22) 

 ( )2 2 2
"
dx B sin p t φ= + , (5.23) 

which describe the second mode of vibration. This simple harmonic motion of the two 
masses occurs at the angular frequency p2 and displacement ratio is always r2. The 
general solution of Eqs. (5.5) and (5.6) consists of the sum of the principal mode 
solutions in Eqs. (5.20)-(5.23). 

 ( ) ( )1 1 1 1 2 2 2 2
' "x x x r B sin p t r B sin p tφ φ= + = + + + , (5.24) 

 ( ) ( )1 1 1 2 2 2
' "

d d dx x x B sin p t B sin p tφ φ= + = + + + . (5.25) 

The relative velocity between mass m and md can be written as 

 ( ) ( )1 1 1 1 1 2 2 2 2 2dx x r B p cos p t r B p cos p tφ φ− = + + +  

      ( ) ( )1 1 1 1 2 2 2 2B p cos p t B p cos p tφ φ− + + +   , (5.26) 

or 
 ( )( ) ( )( )1 1 1 1 1 2 2 2 2 2

1 2

1 1d

mod e mod e

x x B p cos p t r B p cos p t rφ φ− = + − + + − . (5.27) 

Equation (5.27) indicates that the relative velocity between m and md is summation of 
the relative velocity of each vibration mode. 
 In the real application of impact damper the frequency ratio ω/ωd should be as small 
as possible to obtain maximum transfer of energy. Substitution of the small value of 
ω/ωd into Eq. (5.13) will result the quadrate of frequency ratio (p1/ωd)2 ≈ 0. Application 
this value into Eq. (5.18) resulted that 

 
2

1
1 1 1 0 1

d

pr
ω

 
= − = − = 

 
. (5.28) 

Substitution the result of Eq. (5.28) into Eq. (5.27), indicates that the relative velocity 
for impact damper application is only determined by relative velocity component of the 
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second mode of vibration.  
 Integration of Eq. (5.1)-(5.4) was carried in MatLab/Simulink by using the 
fifth-order Dormand-Prince method with variable time steps. During simulation, the 
acceleration ratio of mass m with using impact damper and without using impact 
damper is calculated. This ratio represents the amount of energy absorbed by mass m.  
 Fig. 5.2 shows the variation of maximum acceleration of mass m with frequency 
ratio ωd/ωw for ω = 0. a and a0 are the maximum of acceleration obtained with and 
without using impact damper, respectively. The acceleration ratio is decreasing with 
increasing in mass ratio.  
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Fig. 5.2  Acceleration ratio of mass m. 

 
 Figure 5.3 shows time responses obtained for case mass ratio md/m = 0.6. When the 
damper operating at minimum peak of acceleration (point P), the relative velocity is 
equal to zero at the time maximum impact force fw. From this result, it can be concluded 
that the location of minimum peak of acceleration could be calculated at the time of 
zero relative velocity. Regarding to Eq. (5.27), the relative velocity in the case of impact 
damper could be obtained using only the response of the 2nd mode of vibration.       
 Figure 5.4 shows the equivalent one-degree of freedom model of the system using 
only the 2nd mode of vibration. m2 and k2 are the modal mass and modal stiffness of the 
2nd mode. The relation between m2 and k2 is expressed as 
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( ) ( )22 2 2 2 2 2 2 2
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= =  (5.29) 
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Fig. 5.3  Time history for md/m = 0.6. 
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Fig. 5.4  One degree of freedom equivalent model. 

 
The equation of motion of one degree of freedom (DOF) system in Fig. 5.4 can be 
written as 

 2 2 2 2 2 sinw wm x k x P tω+ = ,  
w

t π
ω

≤ . (5.30) 

The displacement response of m2 with initial condition x2(0)=0 and dx2(0)/dt = 0 is 
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1

w w
w

w

P kx t p t
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ωω
ω

 
= − 
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. (5.31) 

and the velocity response is obtained by differentiating Eq. (5.31) resulted 

 ( )2 2
2 22

2

cos cos

1

w
w w

w

P kx t p t

p

ω ω
ω

= −
 

−  
 

. (5.32) 

It should be noted that the response of the system in Eq. (5.32) consists of two 
components. The first component is relating to free vibration response with frequency 
p2 and the second one is relating to force vibration response with frequency ωw. When 
the zero velocity of the system response occurs at the same time as the maximum 
excitation force, the transfer of energy will maximum. The zero velocity response 
occurs at the time 
 2 0x = , 

 ( )2 2
22

2

cos cos 0

1

w
w w

w

P k t p t

p

ω ω
ω

− =
 

−  
 

. (5.33) 

The term in the bracket can be written as 

 ( ) ( )2 2
2cos cos 2sin sin

2 2
w w

w

p t p t
t p t

ω ω
ω

+ −
− = − . (5.34) 

Substituting Eq. (5.34) into Eq. (5.33) resulting 

 ( )2w p t nω π± =  ,  (5.35) 

 2
2w

nt
p

π
ω

=
+

 . (5.36) 

where 0, 1, 2,n = ± ± and 0wω > , 2 0p >  and 2w pω ≠ .  
From Fig. 5.4, the maximum of excitation force occurs when 

 
2w

w

t π
ω

= . (5.37) 

The maximum of transfer of energy occurs if t2 = tw so that 

 
2 2w w

n
p

π π
ω ω

=
+

. (5.38) 

Because of ωw > 0, p2>0 and 2w pω ≠ , the maximum transfer of energy can be obtained 
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by choosing n = 2. By inserting n = 2 into Eq. (5.38), yields 
 2 3 wp ω= . (5.39) 
Substituting p2 in Eq. (5.14) into Eq. (5.39), yields 

 ( ) ( )( )22 2 2 2 2 21 1 4 18β γ µ β γ µ β γ+ + + + + − = , (5.40) 

where 

 d

w

ωγ
ω

= , (5.41) 

 
w

ωβ
ω

= . (5.42) 

Solution of Eq. (5.40) for γ is given by 

 
( )

( )

2

2

9 9
9 1

−
=

+ −

β
γ

µ β
. (5.43) 

 In the real impact case between boat and wave, the boat motion is dominated by the 
rigid body mode of vibration with zero natural frequency because the excitation force 
from the wave acts uniformly in the whole surface of the boat bottom part. Considering 
this fact, then 
 0 0ω β= → = , (5.44) 

 13
1

γ
µ

=
+

. (5.45) 

 The location of minimum peak of maximum acceleration is shown in Fig. 5.5. This 
figure shows that for mass ratio greater than 0.3 the result obtained from the simulation 
of Eq. (5.1)-(5.4) is almost the same with the optimal result calculated in Eq. (5.45). 
This may be resulted from the assumption of (p1/ωd)2 ≈ 0 as in Eq. (5.28) which is no 
longer valid for mass ratio less than 0.3.  



Application of MEID on Reducing the Shock Vibration of Boat 

 75

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

3.5

4

Mass ratio(m
d
/m)

Fr
eq

ue
nc

y 
ra

tio
(ω

d/ω
w

 )

Simulation 

Optimal 

 
Fig. 5.5  Optimal value of contact parameter. 

 
5.3  Laboratory Model  
5.3.1  Pinned Beam Model 
 Figure 5.6 shows the pinned beam model of boat with impact damper. The wave 
force and impact damper force act at the center of the beam. The wave is modeled using 
mass-spring system with mass mw and stiffness kw. In the initial condition the beam has 
initial angular velocity ω0. This initial condition is obtained by releasing the beam from 
a predetermined angular displacement. The contact condition between beam and mw is 
modeled using contact spring with stiffness Kw. The impact damper is modeled using 
mass md, which is contacting to beam with contact stiffness Kd.   
 

Kd 

yd 
md 

mw 

kw 

Kw yw 

yb 

ω0 

 
Fig. 5.6  Laboratory model of impact of boat. 
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The governing equations of motion are expressed as 

 ( )
2 4

2 4
b b

i i
y yA EI f x x
t x

ρ δ∂ ∂
+ = −

∂ ∂ ∑ , (5.46) 

 0d d dm y f− = , (5.47) 
 0w w w w wm y f k y+ + = . (5.48) 
where E is Young modulus, A is the cross section of area, I is the second order moment, 
δ is delta function and fd and fw are the contact force between beam and both md and mw, 
respectively. The contact forces are given by 

 ( ) , 0
0, 0

d b d b d
d

b d

K y y for y y
f

for y y
 − − ≥
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− <

, (5.49) 

 ( ) , 0
0, 0

w w b w b
w

w b

K y y for y y
f

for y y
 − − ≥

= 
− <

. (5.50) 

Lateral vibration of the beam can be given by summation of the mass normalized 
eigenfunctions ( )r xψ as 

 ( ) ( ) ( )
0

,b r r
r

y x t x q tψ
∞

=

= ∑ , (5.51) 

where 

 0 3

3 x
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ψ
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= , (5.52) 

 ( )sinh sin sin sinhr r r r r rp L p x p L p xψ α= + ,  ( 1, ,r = ∞ ) (5.53) 
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

,  ( 1, ,r = ∞ ).  

  (5.54) 
and qr is the general coordinate. ψ0 represents the non-vibrational rigid body rotational 
motion. The variable pr are obtained by solving the explicit equation 
 sin cosh cos sinh 0, ( 1, )r r r rp L p L p L p L r− + = = ∞ . (5.55) 
By substituting Eq. (5.51) for yb and using the orthogonality of the eigenfunctions, the 
differential equation of motion Eq. (5.46) can be written as  
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 ( ) ( )2
r r r r i iq q x f tω ψ+ = , (5.56) 

whereωr is the natural frequency given by 
 0 0ω = , (5.57) 

 2 4
r r

EI p
A

ω
ρ

=   , ( 1, ,r = ∞ ). (5.58) 

The simulation parameters were shown in Table 5.1. Only the rigid body mode and five 
lower elastic mode were considered in this simulation.   
 

Table 5.1 Simulation parameters. 
mass md 12～120g Damper 
Stiffness Kd 1.0×105～7.0×107 N/m 
size 400×35×3mm3 
mass mb 120 g 
flexural rigidity EI 5.9Nm2 

 
 
Beam 

natural frequencies 
0, 68.0, 220.4, 459.9, 
786.4, 1200 Hz 

mass mw 22 g 
Stiffness Kw 2.5×105～4.9×105 N/m 

 
Wave 

Stiffness kw 3100 N/m 
 Angular speed ω0 0.70 rad/s 

 
 Figure 5.7 shows mode shapes of the boat model. These figures show that nodal 
point at the 2nd and 4th mode is located close to point L/2. It means that only the rigid 
mode, 1st, 3th and 5th mode have dominant contribution in transfer the energy during 
collision.   
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Fig.  5.7 Mode shape of beam. 

 
 Figure 5.8 shows the simulation result of beam energy variation. ω1 is the natural 
frequency of first elastic mode and ωw and ωd denote the contact frequencies between 
beam and both mw and md which are given by 

 w
w

w

K
m

ω = , (5.59) 

 d
d

d

K
m

ω = . (5.60) 

The energy of beam is calculated as follows 

 2 21 1
2 2o w w d dE E m v m v+ += − − , (5.61) 

where E0, vw+ and vd+ is the initial energy of beam and damper before collision and 
velocity of mw and md after collision, respectively. 
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Fig.  5.8 Beam energy variation. 

 
 Figure 5.9 shows a set of time history of the response for ωw/ω1=9. This figure 
shows that the kinetic energy of md is independent from variation of ωd. Conversely, the 
kinetic energy of mw is influenced by variation of ωd. The minimum energy of beam is 
obtained when the kinetic energy of mw is maximum.  
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Fig. 5.9  Time history for ωw/ω1=9. 
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 The energy profiles of beam vibration mode during collision are depicted in Fig. 
5.10-5.13. Figure 5.10 shows the energy of beam without impact damper. In this figure 
only the elastic mode of vibration is shown because the energy component of beam rigid 
body mode is very large (more than 80% of the total energy) compared with the energy 
of its elastic mode. The contact time between mw and beam is about 0.6 ms. The energy 
of each vibration mode is almost constant after contact time. Figure 5.10 shows that the 
energy portion of the 1st mode and 3rd mode are almost 4% and 5% of the total energy. 
The energy portion of the 2nd and the 4th mode are less than 1% of the total energy. 
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Fig. 5.10  Energy profile of beam mode shape without impact damper with ωw/ω1=9. 

 
 Fig. 5.11 show the energy profile with ωw/ω1=9 and ωd/ω1=5. Comparing to the case 
without impact damper in Fig. 5.10, the energy of 1st mode and 3rd mode are reduced to 
0.7 % and 3.6 % after collision. The energy of 5th mode does not change significantly 
during collision. 
 The energy profile in the position of minimum peak of energy with ωw/ω1=9 (point 
P) is shown in Fig. 5.12. The reduction of total energy in this case is larger than the case 
without impact damper in Fig. 5.10 and with impact damper case for ωd/ω1=5 in Fig. 
5.11. As can be seen from Fig. 5.12, for the 1st , 3rd and 5th modes, the energy decreases 
to 2%, 2.2% and 0.17%, respectively. 
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Fig. 5.11  Energy profile of beam mode shape with ωw/ω1=9 and ωd/ω1=5. 
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Fig. 5.12  Energy profile of beam mode shape with ωw/ω1=9 and ωd/ω1=5 at point P. 
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 Figure 5.13 shows the energy profile with ωw/ω1=9 and ωd/ω1=40. For the 1st, 2nd, 3rd 
and 4th modes, the decreasing of energy obtained in this case are almost the same with 
the case in Fig. 5.12. However, for the 5th mode, the decreasing of energy is smaller 
compared to the case in Fig. 5.12.  
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Fig. 5.13  Energy profile of beam mode shape with ωw/ω1=9 and ωd/ω1=40. 

 
 Figure 5.14 shows variation of beam energy with mass ratio. In the simulation, the 
contact frequency ωw is kept constant as ωw = 4.7× 103 N/m and variable ωd is varied 
within the range ωd∈[2.1×103,1.7× 104]. The increasing in mass ratio of impact damper 
significantly reduces the energy of the beam.   
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Fig. 5.14  Beam energy for ωw= 4.7× 103 N/m. 

 
 Figure 5.15 shows variation of frequency ratio with mass ratio in the location of 
minimum beam energy. The two minimum lines in Fig. 5.15 are plotted from the data of 
minimum beam energy in Fig. 5.14 in the frequency range 0<ωd/ωw<5.  
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 The acceleration response of the beam at the free end of beam for different mass 
ratio is depicted in Fig. 5.16. In this simulation Kw=5× 105 N/m and the contact stiffness 
Kd are calculated using Eq. (5.45).   
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Fig. 5.16  Acceleration response for Kcw=5× 105 and Kd calculated from Eq. (5.45). 

 
 Comparison of acceleration response obtained using impact damper and 
conventional added mass method is shown in Fig. 5.17. In this simulation, the added 
mass is located in the impact damper position with same mass ratio as impact damper 
mass. This figure shows that for the same mass ratio, the impact damper method has 
better performance in reducing the peak of acceleration compare to added mass method.   
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Fig. 5.17  Comparison between impact damper and added mass method. 

 
5.3.2  Small Scale Boat Model 

Figure 5.18 shows the small-scale model of the real boat used for the simulation. The 
size of this boat model is about 1/15 of the real boat size. The boat model is made of 
urethane foam with length of 0.45 m.   

 
Fig. 5.18  The small scale model of the boat. 
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 The model of the small-scale boat with impact damper is shown in Fig. 5.19. The 
boat is modeled using the finite element method (FEM) using ANSYS software. The 
damper is modeled as rigid body system. The wave is modeled as distributed water 
pressure acting on the bottom of the boat. 
 The equations of motion for the boat, damper and wave are written as 

 
1

H

w, w,h d
h

f F
=

+ + = −∑b b b b b b h dM X C X K X B B  (5.62) 

 d d dm z F=  (5.63) 
where matrix Mb, Cb, and Kb are the boat mass matrix, damping matrix and stiffness 
matrix, respectively, while fw,h, Fd and md are the contact force between wave and boat, 
contact force between boat and impact damper and mass of impact damper, respectively. 
Vector Xb and zd are displacement vector of boat and displacement of impact damper, 
respectively. Bw,h and Bd are vector that show the position of the external force.  

dk
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Fig. 5.19  Small scale boat and impact damper model.  

 
The contact force between wave and the boat is given by 

 ( )
0

0

w w
w

w,h

w

F sin t , for t
f t

, for t

πω
ω

π
ω

 ≤ ≤= 
 >


 (5.64) 

Figure 5.20 shows the location of contact force between wave and the boat. As can be 
seen from Fig. 5.20, the contact force is distributed along contact area between water 
and the boat.  
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Fig. 5.20  Contact area between boat and water. 
 
 The contact force between boat and impact damper was modeled using a linear 
spring and dashpot 

 ( ) ( )d d d b d d bF k z z c z z= − − − −  (5.65) 

where kd, cd, zd and zb are contact stiffness and damping coefficient between impact 
damper and the boat, displacement of damper and displacement of boat at the contact 
point with impact damper, respectively. The location of contact point between impact 
damper mass and the boat is denoted as point B as described in Fig. 5.21.   

Fig. 5.21  Location of impact damper. 
 
 Figure 5.22 shows four lowest vibration modes of the boat without impact damper. 
The first and the second elastic mode at frequency 293 Hz and 388 Hz are relating to the 
bending mode and torsional mode of the boat, respectively. 

 

A B
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(a) 1st mode, 293 Hz (b) 2nd mode, 388 Hz 

(c) 3rd mode, 628 Hz (d) 4th mode, 666 Hz 
 

Fig. 5.22  Four lowest mode of the boat. 
 

 The acceleration is calculated at the front end of the boat (point A in Fig. 5.21). 
Simulation result of the acceleration ratio with variation of the frequency ratio (ωd/ωw) 
and mass ratio (µ = md/m) is shown in Fig. 5.23. Here, ωd and m are contact frequency 
between boat and impact damper and mass of the boat, respectively. The increasing in 
mass ratio of impact damper significantly reduces the acceleration of the boat.  
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Fig. 5.23  Acceleration ratio of the boat. 
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5.4  Experiment 
5.4.1  Pinned Beam Model 
 The experimental setup is shown in Fig. 5.24. The beam is made of an aluminum 
plate. The impact damper mass (md) and wave mass (mw) are made of steel ball. The 
initial angular speed of the beam and impact damper is 0.70 rad/s. This initial speed is 
very slow so that the contact damping between beam and both mw and md can be 
neglected. The contact stiffness is calculated by reconciling the impact response from 
experiment with the simulation.    
 
 
 
 
 
 
 
 
 
 

Fig. 5.24  Experimental setup beam and ball. 
 

 Comparison of frequency response function (FRF) obtained from the experiment and 
the simulation result is shown in Fig. 5.25. In the experiment, the transfer function is 
calculated from the data obtained from impact testing using impact hammer. 

 
Fig. 5.25  Comparison between experiment and calculation result  

of transfer function. 
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 Comparison of response system obtained from the experiment and the simulation are 
shown in Fig. 5.26. The parameter values for the simulation are depicted in Table 5.2.  
Figure 5.26 shows that the simulation result is good enough in simulating the 
experimental data. The decreasing in peak amplitude obtained from the experiment is 
also showed in the simulation result.   

 
Table 5.2 Simulation parameters for response calculation. 

Wave stiffness, ( )w N/mK  53 0 10. ×  

 
 0 1.µ =  0 2.µ =  0 4.µ =  

Impact damper 
stiffness, ( )N/mdK  

51 0 10. ×  55 0 10. ×  61 0 10. ×  
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Fig. 5.26  Acceleration response of pinned beam model.  
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5.4.2  Small Scale Boat Model 
The experimental study was conducted to the small-scale model of the boat in order to 
validate the simulation result. The length of this boat model is 0.45 m. The response of 
the boat is measured using an accelerometer. The measurement point is located at point 
A as shown in Fig. 5.21. The schematic of the experimental setup is shown in Fig. 5.27.  

 
Fig. 5.27  Experimental setup of the boat. 

 
 A comparison between simulation result and experimental result of the boat 
acceleration ratio is shown in Fig. 5.28. This figure shows that the theoretical models 
are reliable to simulate the experimental result.  
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Fig. 5.28  Comparison between simulation and experimental result. 

 
5.5 Summary 
The two-degree of freedom model was developed to obtain the optimal impact damper 
parameter for boat application. It was shown that the contact frequency ratio depended 
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on the mass ratio between impact damper and boat. The transfer of energy analysis was 
conducted to pinned beam and ball model of boat impact. The dominant transfer of 
energy was mainly contributed by 1st, 3rd and 5th beam elastic modes of vibration. As the 
result, the optimal impact damper parameter developed for two degree of freedom 
model has a little difference compare to the optimal parameter calculated from the 
pinned beam model. 
 The simulation and experimental study was conducted to the small-scale model of 
the boat. The acceleration ratio obtained from this boat model almost the same as the 
acceleration ratio obtained using two degree of freedom model. As shown in the 
simulation and experimental result, the acceleration ratio decreases when the mass ratio 
increases. 
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Chapter 6 
CONCLUSION 

 
 

6.1 Summary  
 This research proposed a novel momentum exchange impact damper (MEID) for 
controlling impact induced vibration in machine and structures. Typically, MEID has 
provided excellent solutions in many impact problems because it can reduce the first 
transient wave generated by impulsive force. This study evaluated this new absorber, 
assessing its dynamic performance both numerically and experimentally. 
 The first phase of this study was evaluating the three-body collision problems 
consisted of impact mass, main body and absorber mass in which optimal parameter of 
MEID were calculated. Two configurations of three-body collision were evaluated. In 
the first configuration the main body was modeled as a single degree of freedom 
(SDOF) system. The transfer of energy from impact mass to the absorber mass 
depended strongly on the natural frequency of the main body and the contact 
frequencies between main body and both impact mass and absorber mass. It was shown 
from the simulation that the maximum transfer of energy was obtained when the two 
contact frequencies were the same. Moreover, the transfer of energy was increased if the 
natural frequency of main body was much smaller than the contact frequency. On the 
second configuration, the main body was an elastic rod. In contrast to the first 
configuration, the elastic rod has many elastic modes of vibration and these modes has 
contribution to the transfer of energy during collision. The simulation result showed that 
the maximum transfer of energy for this case was obtained if the two contact 
frequencies were almost the same. In addition, by using the same mass ratio between 
absorber mass and main body, the transfer of energy obtained from this configuration 
was much larger than the transfer of energy obtained using SDOF system in the first 
configuration because in this case the transfer of energy was dominated by the elastic 
mode of vibration.  
 The second phase of this study represented the application of MEID on floor impact 
vibration problem. The MEID adopted for this application consisted of a mass and 
spring system. The absorber mass was initially contacting with the floor. When impact 
load was applied to the floor, the kinetic energy and momentum of the floor were 
transferred to the absorber mass so that the floor had a small amount of shock. The 
vibration of the floor and sound generated in the room bellow the slab were simulated 
for various sized damper masses to show the effectiveness of the absorber. A 
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proof-of-concept experimental apparatus was fabricated to represent a floor with an 
impact damper. This example system consisted of an acrylic plate, a ball for falling 
object, and an impact damper. A comparison between the simulated and experimental 
results showed a good agreement in suggesting that the proposed impact damper was 
effective at reducing floor impact vibration and sound. 
   Application of MEID to a forging machine was presented in the third phase. In this 
application, MEID was used to reduce the bed vibration and transmitted force to the 
surrounding. The simulation result showed that the energy of forging machine increased 
when the contact frequency between impact source and press machine was close to the 
natural frequency of forging machine because of resonance phenomena. When this 
contact frequency was lower than the natural frequency of the forging machine, the 
reflected energy from the impact source became larger and as the consequence the 
kinetic energy of forging machine was decreased. Furthermore when this contact 
frequency was much larger than the natural frequency of the forging machine, the 
reflected energy was small but the transfer of energy increased with decreasing of 
forging machine energy. 
 Next, the MEID was applied to suppress the shock vibration of a boat. Two degrees 
of freedom model of boat with impact damper was proposed to evaluate the optimal 
parameter of impact damper for a boat application. A laboratory model of boat impacted 
by wave excitation was developed. The simulation and experimental result were in good 
agreement in suggesting that this model was good enough to simulate the experimental 
data.    
 
6.2 Recommendation for Future Research  
6.2.1 Full-scale Test  
Laboratory model was quite effective for establishing the fundamental aspect of this 
study due to its simplicity. However the test condition may differ from the practical case. 
In order to bridge this gap, it is recommended to perform a series of test with a full scale 
of application system. 
 
6.2.2 Modification of MEID  
In order to obtain the larger transfer of energy, modification of MEID is recommended. 
This modification could be realized by using initial load (preload) and initial velocity of 
absorber mass.  
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APPENDIX 
 
A.1  The Plate Element. 
Consider an elastic element in Fig. A.1 subjected to a set of n forces 

 { }1 2 i j nS S S S S S= . (A.1.1) 

The displacements corresponding to the forces is denoted by the column matrix 

 { }1 2 i j nu u u u u=u . (A.1.2) 

A typical force Si is calculated using the unit displacement theorem. Hence 

 T
iiS dV

υ
= ∫ ε σ . (A.1.3) 

S1

u1

S2

u2
u3

S3

Si 
ui 

 
 

Fig. A.1 Elastic element. 
 
where εi represents the matrix of compatible strains due to a unit displacement in the 
direction of Si and σ is the exact stress matrix due to the applied forces S. The unit 
displacement can be applied in turn at all points where the forces are impressed, and 
hence 

 T dV
υ

= ∫S ε σ , (A.1.4) 

where 1 1 i j nε ε ε ε ε =  ε . (A.1.5) 

For a linear system, the total strains e must be expressed by relationship 
 =e bu . (A.1.6) 
where b represents a matrix of the exact strains due to unit displacement u 
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From Hookes law, the stress-strain relationship is given by 
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(A.1.7) 
which in matrix notation can be presented as 
 =σ χe , (A.1.8) 
substituting Eq. (A.1.6) into (A.1.8), yields 
 =σ χbu , (A.1.9) 
Hence, from Eqs. (A.1.4) and (A.1.9) the element force-displacement relationship 
becomes 

 T dV
υ

= ∫S ε χb u , (A.1.10) 

or  
 =S ku , (A.1.11) 
where  

 T dV
υ

= ∫k ε χb . (A.1.12) 

represent the element stiffness matrix 
 The matrix ε representing compatible strain distribution can be evaluated without 
any appreciable difficulties, even for complex structural elements. On the other hand, 
evaluation of the matrix b, representing exact strain distributions, is often exceedingly 
difficult, if not impossible. In cases for which no exact strain distribution can be found 
approximate procedures must be used. This requires determination of approximate 
functional relationships between strain and displacements. Naturally, the degree of 
approximation then depends on the extent to which the equations of equilibrium and 
compatibility are satisfied. One possible approach is to select the matrix b in such a way 
that it will satisfy only the equations of compatibility. Denoting this approximate matrix 
by b, and noting that ε = b, the stiffness matrix can be written as 
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 T dV
υ∫k b χb . (A.1.13) 

 The model of four-node quadrilateral plate element is shown in Fig. A.2. The 
element properties are specified by four deflections and eight rotations. The degree of 
freedom (DOF) for each node consists of one translation and two rotations. 
Consequently, the total number of DOF for one element is 12.  The interior 
displacements in the z direction (uz) is expressible in terms of the discrete displacement 
u = {u1  u2  u3 ……u12 } 
 auzu = , (A.1.14) 
where a = a(x,y,z) is a function of the position coordinates. The a matrix is calculated as 
follows1  
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, (A.1.15) 

 
where  

 x y b; ;
a b a

ξ η β= = = . (A1.16) 

The deflection function represented by Eqs. (A.1.14) and (A.1.15) ensures that the 
boundary deflections and slope on adjacent plate elements are compatible. 
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Fig. A.2 Plate element.  

 
From the theory of elasticity, the strain are expressed as 

 
2 2 2

2 2 2z z z
xx yy xy

u u ue z ; e z ; e z
x y x y

∂ ∂ ∂
= − = − = −

∂ ∂ ∂ ∂
. (A.1.17) 

which in matrix notation can be presented as 
 e bu= . (A.1.18) 
where 

( )( )( ) ( )( ) ( ) ( ) ( )

( ) ( ) ( )( ) ( ) ( )( )( )

( )( )( ) ( ) ( ) ( )( ) ( )

( )( ) ( )( ) ( ) ( ) ( )

( )( )

2 2
2 2

2 2
2

2 2
2

22
2 2

2
2

6 6 721 2 1 2 1 1 2 1 1 2 1 1

6 2 121 2 1 1 2 1 2 3 1 1 1 3

2 6 122 3 1 2 1 1 1 2 1 1 3 1

6 6 721 2 3 2 1 2 1 1 2 1 1

61 2 1 1

T

z z z
a b ab

bz z z
a b a

z az z
a b b

z z z
a b ab
bz
a

ξ η η ξ ξ η ξ ξ η η

ξ η η ξ ξ η ξ ξ η η

ξ η η ξ ξ η ξ ξ η η

ξ η η ξ ξ η ξ ξ η η

ξ η η

− + − + − − − − −

− − + − − − − −

− − + − − − − − − − −

− − − + − − − −

− − −

=b

( )( ) ( ) ( ) ( )

( )( ) ( ) ( ) ( )( ) ( )

( )( ) ( ) ( ) ( ) ( )

( )( ) ( ) ( ) ( ) ( )

( )( ) ( ) ( ) ( ) ( )

2

22
2

2 2
2 2

2 2
2

2 2
2

2 122 1 1 3 1 2 3

2 6 122 3 3 2 1 1 2 1 1 3 1

6 6 721 2 3 2 3 2 1 2 1 1

6 2 121 2 1 3 2 1 3 1 2 3

2 6 121 3 3 2 1 1 2 2 3 1

1

z z
b a

z az z
a b b
z z z

a b ab
bz z z
a b a

z az z
a b b

ξ ξ η ξ ξ η η

ξ η η ξ ξ η ξ ξ η η

ξ η η ξ ξ η ξ ξ η η

ξ η η ξ ξ η ξ ξ η η

ξ η η ξ ξ η ξ ξ η η

+ − − − − −

− − − − − − − −

− − − − − − − − −

− − − − − −

− − − − − − − − −

−( )( )( ) ( ) ( ) ( ) ( )

( )( )( ) ( ) ( ) ( )( )( )

( )( )( ) ( ) ( ) ( ) ( )

2 2
2 2

2 2
2

2 2
2

6 6 722 1 2 1 3 2 1 2 1 1

6 2 121 2 1 2 1 3 2 2 3 1 1 1 3

2 6 121 3 1 2 1 1 1 2 1 1

z z z
a b ab
bz z z
a b a

z az z
a b b

ξ η η ξ ξ η ξ ξ η η

ξ η η ξ ξ η ξ ξ η η

ξ η η ξ ξ η ξ ξ η η

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

− + − − − − − 
 
 
− − + − − − − − − − 

 
 − − + − − − − −  

  

  (A.1.19) 
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For thin plate element, the stress distribution is the plane stress type. For this case the 
stress distribution assumed  

 0zz zx zyσ σ σ= = = . (A.1.20) 

Considering Eq. (A.1.20), the Hookes law in Eq. (A.1.7) can be written as 

 2

1 0
1 0

1
10 0

2

xx xx

yy yy

xy xy

e
E e

e

σ ν
σ ν

ν
σ ν

 
    
    =    −    −    
 

, (A.1.21) 

which in matrix notation can be presented as 
 σ χe= . (A.1.22) 
Acording to Eq. (A.1.13), element stiffness matrix (ke) is calculated as follows  

 T
e dV

υ∫k b χb . (A.1.23) 

Substitution of Eq. (A.1.19) into Eq. (A.1.23) and yields 

 

1

6
7

12
1 6 7 12

e

Symmetric
 
 
 
 

=  
 
 
 
 

I,I

II,I II,II

K

k

K K
. (A.1.24) 

where the submatrices kI,I, kII,I, and kII,II presented separately Eq. (A.1.25)-(A.1.27) 
 

( )

( )
( ) ( )
( ) ( ) ( ) ( )

( )

2 2156 72
35 25

2 2 2 2 278 6 52 822 4
35 35 25 35 35 25

2 2 2 2 2 2 278 6 52 822 11 1 43 35 35 25 35 50 35 35 25

2 2 2 2 254 156 72 13 78 6
35 35 25 35 35 25

1 5

1 5 1 60

12 1

b b Symmetric

a ab aEt
ab b

−

− −

− − −

− −

β + β +

 β + β + + ν − β + β + 
  − β + β + + ν − β + β + + ν β + β +   =

− ν β − β − β − β −
I,Ik

( ) ( )
( ) ( ) ( ) ( ) ( )

( )

2 2 2 227 6 156 7222
35 35 25 35 25

2 2 2 2 2 2 2 2 2 2 2 213 78 6 3 26 13 78 6 52 82 11 1 22 4
35 35 25 35 35 25 70 35 50 35 35 25 35 35 25

2 2 227 6 1322 11
35 35 25 70 35

1 5

1 5 1 5

1 5

a

b b ab b b

a

− −

− − − − −−

−

 − β + β + + ν β + β + 
   − β + β + β + β − β − β − + ν − β + β + + ν β + β +   

 − β + β + + ν − β + β  ( ) ( ) ( ) ( ) ( ) ( )2 2 2 2 2 2 2 2 2 2 218 8 78 6 52 81 4 22 11 1 4
50 35 35 25 35 35 25 35 50 35 35 251 5 1 5 1 60ab a a ab a− − − − − −

 
 
 
 
 
 
 
 
 
 
     + + ν β − β − − β + β + + ν β + β + + ν β + β +       

  (A.1.25) 

( )

( ) ( ) ( ) ( ) ( )
( ) ( ) ( )

2 2 2 2 2 2 2 2 2 2 2 254 72 13 27 6 27 13 6 156 54 72 27 6 78 13 622
35 25 35 35 25 35 35 25 35 35 25 35 35 25 35 35 25

2 2 2 2 2 2 213 27 6 3 9 132 1 22
35 35 25 35 35 25 70 50 35

3

2

1 5

12 1

b a b a

b b ab

Et
ab

− − − − − −

− − −

 − β + β + − β − β + β + β − − β + β − β − β + + ν β − β + 
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=
− νII,Ik

( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

2 2 2 2 2 2 227 6 18 8 134 11 1
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1

1 5 1 5

1 5

b b ab

a ab a a ab a

− − −

− − − − − −

   β − β + + ν − β + β − − β + β − + ν   

   − β − β + − β + β + β + β + − β + β − β − β + + ν β − β −  

− ( ) ( ) ( ) ( ) ( )
( ) ( ) ( )

2 2 2 2 2 2 2 2 2 2 2 256 54 72 27 6 78 13 6 54 72 13 27 6 27 13 622
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2 2 2 2 2 2 227 6 18 8 13 1322 4 11 1
35 35 25 35 35 25 35 70 50 3

1 5

1 5 1 5

b a b a

b b ab

− − − − − −

− − −−

 β + β − − β + β − + ν β − β + − β + β + β + β − β + β − 

   − β + β − + ν β + β − β − β + + ν −    ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

2 2 2 2 2 2 227 6 3 9 132 1
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b b ab

a ab a a ab a

− − −

− − − − − − −

 
 
 
 
 



  β − β + β + β + β + β −  


  − β + β − − β + β − + ν β − β − − β − β + β + β − β + β +     









  (A.1.26) 
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( )

( )
( ) ( )

( ) ( ) ( ) ( )
( )

2 2156 72
35 25

2 2 2 2 278 6 52 822 4
35 35 25 35 35 25

2 2 2 2 2 2 278 6 52 822 11 1 43 35 35 25 35 50 35 35 25

2 2 2 2 254 156 72 13 78 6
35 35 25 35 35 25

1 5

1 5 1 60

12 1

b b Symmetric

a ab aEt
ab b

−

− −

− − −

− −

β +β +

 − β + β + + ν β + β + 
  β + β + + ν − β +β + + ν β + β +   =

− ν β − β − − β + β +
I,Ik

( ) ( )
( ) ( ) ( ) ( ) ( )

( )

2 2 2 227 6 156 7222
35 35 25 35 25

2 2 2 2 2 2 2 2 2 2 2 213 78 6 3 26 13 78 6 52 82 11 1 22 4
35 35 25 35 35 25 70 35 50 35 35 25 35 35 25

2 2 2 227 6 1322 11 1
35 35 25 70 35

1 5

1 5 1 5

1 5

a

b b ab b b

a

− −

− − − − −−

− −

 β − β − + ν β +β + 
   β − β − β + β − β − β − + ν β + β + + ν β + β +   

 β − β − + ν − β + β +  ( ) ( ) ( ) ( ) ( ) ( )2 2 2 2 2 2 2 2 2 218 8 78 6 52 84 22 11 1 4
50 35 35 25 35 35 25 35 50 35 35 251 5 1 5 1 60ab a a ab a− − − − −

 
 
 
 
 
 
 
 
 
 
     + ν β − β − β + β + + ν β +β + + ν β + β +       

  (A.1.27) 
The element mass matrix (me) is calculated as follows (Pziemeniecky, 1967)  

 T
e dV

ν
ρ= ∫m a a . (A.1.28) 

by subtituting the a matriks in Eq. (A.1.15) into Eq. (A.1.28) and performing integration 
over the whole volume of the rectangle, the mass matrix is obtained as 

2

2

2 2

2 2

2 2

24336
3432 624
3432 484 624
8424 2028 1188 24336
2028 468 286 3432 624
1188 286 216 3432 484 624
2916 702 702 8424 1188 2028 24336176400
702 162 169 1188 216 286 3432 624

b b
a ab b

b a
b b ab b b
a ab a a ab aab

b a b a
b b ab b b ab b

ρ

− −
−

− − −
− − −

=
− − −

− − − −

em

2

2 2 2

2 2 2 2

2 2

702 169 162 2028 286 468 3432 484 624
8424 1188 2028 2916 702 702 8424 2028 1188 24336

1188 216 286 702 162 169 2028 468 286 3432 624
2028 286 468 702 169 162 1188 286

b
a ab a a ab a a ab a

b a b a b a
b b ab b b ab b b ab b b
a ab a a ab a a ab

− − − −
− − − −
− − − −
− − − − 2 2216 3432 484 624a a ab a

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

  (A.1.29)   
 
A.2  The Three Dimensional Frame Element 
A.2.1  Stiffness Matrix and Mass Matrix in Local Coordinate 
 The model of three dimensional frame element is shown in Fig. A.3. The element 
properties are specified by six deflections and six rotations. The degree of freedom 
(DOF) for each node consists of three translation and three rotations. Consequently, the 
total number of DOF for one element is 12.   
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Fig. A.3 Three dimensional frame element. 

 
 



Appendix 

 101

A.2.1.1  The Axial Displacement Shape Function 

The axial displacement of frame element can be approximated using a linear function 
as. 

 ( ) 1 2u x xα α= + . (A.2.1) 

By inserting the of boundary condition into Eq. (A.2.1) yields 
for x = 0 

 ( ) 1 20 0u α α= + , (A.2.2) 

 1 1uα = . (A.2.3) 
for x =  

 ( ) 1 2 7u uα α= + = , (A.2.4) 

 71
2

uuα = − + . (A.2.5) 

Subtitution of α1 and α2 in Eqs. (A.2.3) and (A.2.5) into Eq. (A.2.1) resulting 

 ( ) 71
1

uuu x u x x= − + , (A.2.6) 

 ( ) ( ) ( )( ) 1
1 7

7

u
u x x x

u
ψ ψ

 
=  

 
. (A.2.7) 

Using the result in Eq. (A.2.7), the shape function for axial displacement can be written 
as 

 ( )1 1 xxψ = − , (A.2.8) 

 ( )7
xxψ = . (A.2.9) 

 
A.2.1.2  The Rotational Displacement Shape Function 
The rotational displacement for frame element can be expressed using the same linear 
function as in the axial displacement so that the shape functions are also the same 

 ( )4 1 xxψ = − , (A.2.10) 

 ( )10
xxψ = . (A.2.11) 
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A.2.1.3  The Displacement Shape Function for Flexural in x-y Plane 
The displacement in x-y plane is shown in Fig. A.4. The displacement can be 
approximated using a cubic function as. 

 ( ) 2 3
1 2 3 4u x x x xα α α α= + + + . (A.2.12) 

 ( ) ( ) 2
2 3 42 3'x u x x xθ α α α= = + + . (A.2.13) 

2

6

8

12
 

Fig. A.4 Displacement in x-y plane. 
 
By inserting the of boundary condition into Eq. (A.2.12) and Eq. (A.2.13) yields 
 2 1u α= , (A.2.14) 

 2 3
8 2 2 3 4u u α α α− = ⋅ + ⋅ + ⋅ , (A.2.15)  

 6 2θ α= , (A.2.16) 

 2
12 6 3 42 3θ θ α α− = ⋅ + ⋅ . (A.2.17) 

Solution of Eqs. (A.2.14)- .(A.2.17) for α3 and α4 resulting 

 6 82 12
3 2 2

2 33 uu θ θα = − − + − , (A.2.18) 

 6 82 12
4 3 2 3 2

22 uu θ θα = + − + . (A.2.19) 

Subtitution of α1, α2 ,α3 and α4 into Eq. (A.2.12) given 

 ( ) 2 36 8 6 82 12 2 12
1 2 2 2 3 2 3 2

2 3 23 2u uu uu x u x x xθ θθ θθ    = + + − − + − + + − +   
   

, 

   (A.2.20) 

 ( ) ( ) ( ) ( )( )
2

6
2 6 8 12

8

12

u

u( x ) x x x x
u
θ

ψ ψ ψ ψ

θ

 
 
 =  
 
  

. (A.2.21)  

From Eq. (A.2.21) the shape function are obtained as 
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 ( ) 2 3
2 2 3

3 21x x xψ = − + , (A.2.22) 

 ( ) 2 3
6 2 2

2 1̀x x x xψ = − + , (A.2.23) 

 ( ) 2 3
8 2 3

3 2x x xψ = − , (A.2.24) 

 ( ) 2 3
12 2

1 1x x xψ = − + . (A.2.25) 

 
A.2.1.4  The Displacement Function for Flexural in x-z Plane 
The displacement of frame element in x-z plane is shown in Fig. A.5. The displacement 
can be approximated using a cubic function as. 

 ( ) 2 3
1 2 3 4u x x x xα α α α= + + + , (A.2.26) 

 ( ) ( ) 2
2 3 42 3'x u x x xθ α α α= = + + . (A.2.27) 

 

3
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9

11

 
Fig. A.5 Displacement in x-z plane. 

 
By using the same procedures as for x-y plane, the shape function for x-z plane is given 
by 

: ( ) 2 3
3 2 3

3 21x x xψ = − + , (A.2.28) 

 ( ) 2 3
5 2 2

2 1̀x x x xψ = − + − , (A.2.29) 

 ( ) 2 3
9 2 3

3 2x x xψ = − , (A.2.30) 

 ( ) 2 3
11 2

1 1x x xψ = − . (A.2.31) 
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Table A.1 The shape function and its differentiation for 3D frame element. 
No. ( )xψ  ( )' xψ  ( )'' xψ  

1 ( )1 1 xxψ = −  1
−  

0 

2 ( ) 2 3
2 2 3

3 21x x xψ = − +  
2

2 3

6 6x x
− +  2 3

6 12x
− +  

3 ( ) 2 3
3 2 3

3 21x x xψ = − +  
2

2 3

6 6x x
− +  2 3

6 12x
− +  

4 ( )4 1 xxψ = −  1
−  

0 

5 ( ) 2 3
5 2 2

2 1̀x x x xψ = − + −  
2

2

4 31 x x
− + −  2

4 6x
−  

6 ( ) 2 3
6 2 2

2 1̀x x x xψ = − +  
2

2

4 31 x x
− +  2

4 6x
− −  

7 ( )7
xxψ =  1  

0 

8 ( ) 2 3
8 2 3

3 2x x xψ = −  
2

2 3

6 6x x
−  2 3

6 12x
−  

9 ( ) 2 3
9 2 3

3 2x x xψ = −  
2

2 3

6 6x x
−  2 3

6 12x
−  

10 ( )10
xxψ =  1  

0 

11 ( ) 2 3
11 2

1 1x x xψ = −  
3

2

2 3x x
−  

2

2

2 6x
−  

12 ( ) 2 3
12 2

1 1x x xψ = − +  
3

2

2 3x x
− +  

2

2

2 6x
− +  

 
The stiffness coefficient for frame element in the normal displacement is given by 

 ( )
0

' '
ij i jK AE x dxψ ψ= ∫    i = 1, 7  and j = 1, 7. (A.2.32) 

The stiffness coefficient for frame element in the rotational displacement is given by 
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 ( )
0

' '
ij i jK GJ x dxψ ψ= ∫     i = 4, 10  and  j = 4, 10. (A.2.33) 

The coefficients relating to the flexural displacement in x-y plane and x-z plane are 
given by 

 ( )
0

"' "
ij z i jK EI x dxψ ψ= ∫   i = 2, 6, 8, 12  and  j = 2, 6, 8, 12, (A.2.34) 

 ( )
0

" "
ij y i jK EI x dxψ ψ= ∫    i = 3, 5, 9, 11 and  j = 3, 5, 9, 11.  (A.2.35) 

The stiffness component in the axial direction are given by 

 ( )11 1 1
0

' 'K AE x dxψ ψ= ∫ ,  

1 1

o

AE dx  = − −  
  ∫ , 

AE
= . (A.2.36) 

 ( ) ( )17 1 7
0

' 'K AE x x dxψ ψ= ∫ ,  

1 1

o

AE dx  = −  
  ∫ , 

AE
= − . (A.2.37) 

 ( ) ( )77 7 7
0

' 'K AE x x dxψ ψ= ∫ ,  

1 1

o

AE dx  =   
  ∫ , 

AE
= . (A.2.38) 
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The stiffness component in the rotational direction are given by 

 ( ) ( )44 4 4
0

' 'K GJ x x dxψ ψ= ∫ ,  

1 1

o

GJ dx  = − −  
  ∫ , 

GJ
= . (A.2.39) 

 ( ) ( )4 10 4 10
0

' '
,K GJ x x dxψ ψ= ∫ ,  

1 1

o

GJ dx  = −  
  ∫ , 

GJ
= − . (A.2.40) 

 ( ) ( )10 10 10 10
0

' '
,K GJ x x dxψ ψ= ∫ ,  

1 1

o

GJ dx  =   
  ∫ , 

GJ
= . (A.2.41) 

 
For the stiffness component in the x-y plane, the values are given by 

 ( ) ( )2 2 2 2
0

" "
, zK EI x x dxψ ψ= ∫ ,  

2

2 3

6 12
z

o

xEI dx = − + 
 ∫ , 

3

12 zEI
= . (A.2.42) 



Appendix 

 107

 ( ) ( )2 6 2 6
0

" "
, zK EI x x dxψ ψ= ∫ ,  

2 3 2

6 12 4 6
z

o

x xEI dx  = − + − +  
  ∫ , 

2

6 zEI
= . (A.2.43) 

 ( ) ( )2 8 2 8
0

" "
, zK EI x x dxψ ψ= ∫ ,  

2 3 2 3

6 12 6 12
z

o

x xEI dx  = − + −  
  ∫ , 

3

12 zEI
= − . (A.2.44) 

 ( ) ( )2 12 2 12
0

" "
, zK EI x x dxψ ψ= ∫ ,  

2 3 2

6 12 2 6
z

o

x xEI dx  = − + − −  
  ∫ , 

2

6 zEI
= . (A.2.45) 

 ( ) ( )8 8 8 8
0

" "
, zK EI x x dxψ ψ= ∫ ,  

2

2 3

6 12
z

o

xEI dx = − 
 ∫ , 

3

12 zEI
= . (A.2.46) 

 ( ) ( )6 6 6 6
0

" "
, zK EI x x dxψ ψ= ∫ ,  
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2

2

4 6
z

o

xEI dx = − − 
 ∫ , 

4 zEI
= . (A.2.47) 

 ( ) ( )6 8 6 8
0

" "
, zK EI x x dxψ ψ= ∫ ,  

2 2 3

4 6 6 12
z

o

x xEI dx  = − + −  
  ∫ , 

3

6 zEI
= − . (A.2.48) 

 ( ) ( )6 12 6 12
0

"' "'
, zK EI x x dxψ ψ= ∫ ,  

2 2

4 6 2 6
z

o

x xEI dx  = − + − +  
  ∫ , 

3

2 zEI
= . (A.2.49) 

 ( ) ( )8 12 8 12
0

"' "'
, zK EI x x dxψ ψ= ∫ ,  

2 3 2

6 12 2 6
z

o

x xEI dx  = − − +  
  ∫ , 

2

6 zEI
= − . (A.2.50) 

 ( ) ( )12 12 12 12
0

" "
, zK EI x x dxψ ψ= ∫ ,  

2

2

2 6
z

o

xEI dx = − + 
 ∫ , 



Appendix 

 109

2

4 zEI
= . (A.2.51) 

For the stiffness component in the x-z plane, the values are given by 

 ( ) ( )3 3 3 3
0

" "
, yK EI x x dxψ ψ= ∫ ,  

2

2 3

6 12
y

o

xEI dx = − + 
 ∫ , 

3

12 yEI
= . (A.2.52) 

 ( ) ( )3 5 3 5
0

" "
, yK EI x x dxψ ψ= ∫ ,  

2 3 2

6 12 4 6
y

o

x xEI dx  = − + −  
  ∫ , 

2

6 yEI
= − . (A.2.53) 

 ( ) ( )3 9 3 9
0

" "
, yK EI x x dxψ ψ= ∫ ,  

2 3 2 3

6 12 6 12
y

o

x xEI dx  = − + −  
  ∫ , 

2

12 yEI
= − . (A.2.54) 

 ( ) ( )3 11 3 11
0

" "
, yK EI x x dxψ ψ= ∫ ,  

2 3 3

6 12 2 6
y

o

x xEI dx  = − + −  
  ∫ , 

2

6 yEI
= − . (A.2.55) 
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 ( ) ( )5 5 5 5
0

" "
, yK EI x x dxψ ψ= ∫ ,  

2

2

4 6
y

o

xEI dx = − 
 ∫ , 

4 yEI
= . (A.2.56) 

 ( ) ( )9 9 9 9
0

" "
, yK EI x x dxψ ψ= ∫ ,  

2

2 3

6 12
y

o

xEI dx = + 
 ∫ , 

3

12 yEI
= . (A.2.57) 

 ( ) ( )9 11 9 11
0

" "
, yK EI x x dxψ ψ= ∫ ,  

2 3 2

6 12 2 6
y

o

x xEI dx  = + −  
  ∫ , 

2

6 yEI
= . (A.2.58) 

 ( ) ( )1111 11 11
0

" "
, yK EI x x dxψ ψ= ∫ ,  

2

2

2 6
y

o

xEI dx = − 
 ∫ , 

4 yEI
= . (A.2.59) 

The stiffness matrix of frame element in local coordinate is given by (Bur, 1994) 
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3

3

2

2

3 2 3

3 2 3

2 2

2 2

120

12
0 0

0 0 0

6 4
0 0 0

6 40 0 0 0

0 0 0 0 0

12 6 120 0 0 0 0

12 6 12
0 0 0 0 0 0

0 0 0 0 0 0 0 0

6 2 6 4
0 0 0 0 0 0 0

6 2 60 0 0 0 0 0 0 0

z

y

y y

z z

z z z

y y y

y y y y

z z z

AE

EI

EI

GJ symm

EI EI

EI EI

AE AE

EI EI EI

EI EI EI

GJ GJ

EI EI EI EI

EI EI EI

−

=
−

− −

−

−

−

−

ek

4 zEI

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

  (A.2.60)  
where E,G, J, Iy and Iz are Young Modulus, Shear Modulus and the inertia in x, y and z 
direction, respectively. 
 The components of mass matrix are calculated from the shape function in Table A.1. 
For the mass component in the axial direction, these values are given by 

 ( )11 1 1
0

m m x dxψ ψ= ∫ ,  

2

1
o

xA dxρ  = − 
 ∫ , 

3
Aρ

= . (A.2.61) 

 ( )17 1 7
0

m m x dxψ ψ= ∫ ,  

1
o

x xA dxρ   = −  
  ∫ , 
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6
Aρ

= . (A.2.62) 

 ( )77 7 7
0

m m x dxψ ψ= ∫ ,  

2

o

xA dxρ  =  
 ∫ , 

3
Aρ

= . (A.2.63) 

 
For the mass component in the rotational direction, the values are given by 

 ( )44 4 4
0

mm I ( x ) x dxψ ψ= ∫ ,  

2

0

1m

xI dx = − 
 ∫ , 

3mI= . (A.2.64) 

 ( )4 10 4 10
0

, mm I ( x ) x dxψ ψ= ∫ ,  

0

1m

x xI dx  = −  
  ∫ , 

6mI= . (A.2.65) 

 ( )10 10 10 10
0

, mm I ( x ) x dxψ ψ= ∫ ,  

0
m

x xI dx  =   
  ∫ , 

3mI= . (A.2.66) 
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For the mass component in the x-y plane, the values are given by 

 ( )2 2 2 2
0

,m A ( x ) x dxρ ψ ψ= ∫ ,  

 
2 3 2 3

2 3 2 3
0

3 2 3 21 1x x x xA dxρ
  

= − + − +  
  

∫ , 

13
35

Aρ= . (A.2.67) 

 ( )2 6 2 6
0

,m A ( x ) x dxρ ψ ψ= ∫ ,  

2 3 2 3

2 3 2
0

3 2 21 x x x xA x dxρ
  

= − + − +  
  

∫ , 

11
210

Aρ= . (A.2.68) 

 ( )2 8 2 8
0

,m A ( x ) x dxρ ψ ψ= ∫ ,  

2 3 2 3

2 3 2 3
0

3 2 3 21 x x x xA dxρ
  

= − + −  
  

∫ , 

9
70

Aρ= . (A.2.69) 

 ( )2 12 2 12
0

,m A ( x ) x dxρ ψ ψ= ∫ ,  

2 3 2 3

2 3 2
0

3 21 x x x xA dxρ
  

= − + − +  
  

∫ , 

13
420

Aρ−
= . (A.2.70) 

 ( )6 6 6 6
0

,m A ( x ) x dxρ ψ ψ= ∫ ,  
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2 3 2 3

2 2
0

2 2x x x xA x x dxρ
  

= − + − +  
  

∫ , 

 1
105

Aρ= . (A.2.71) 

 ( )6 8 6 8
0

,m A ( x ) x dxρ ψ ψ= ∫ ,  

2 3 2 3

2 2 3
0

2 3 2x x x xA x dxρ
  

= − + −  
  

∫ , 

13
420

Aρ= . (A.2.72) 

 ( )6 12 6 12
0

,m A ( x ) x dxρ ψ ψ= ∫ ,  

2 3 2 3

2 2
0

2x x x xA x dxρ
  

= − + − −  
  

∫ , 

33
420

Aρ= − . (A.2.73) 

 ( )8 8 8 8
0

,m A ( x ) x dxρ ψ ψ= ∫ ,  

2 3 2 3

2 3 2 3
0

3 2 3 2x x x xA dxρ
  

= − −  
  

∫ , 

13
35

Aρ= . (A.2.74) 

 ( )8 12 8 12
0

,m A ( x ) x dxρ ψ ψ= ∫ ,  

2 3 2 3

2 3 2
0

3 2x x x xA dxρ
  

= − − +  
  

∫ , 
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211
210

Aρ= − . (A.2.75) 

 ( )12 12 12 12
0

,m A ( x ) x dxρ ψ ψ= ∫ ,  

2 3 2 3

2 2
0

x x x xA dxρ
  

= − + − +  
  

∫ , 

31
105

Aρ= . (A.2.76) 

 
For the mass component in the x-z plane, the values are given by 

 ( )3 3 3 3
0

,m A ( x ) x dxρ ψ ψ= ∫ ,  

 
2 3 2 3

2 3 2 3
0

3 2 3 21 1x x x xA dxρ
  

= − + − +  
  

∫ , 

39
105

Aρ= . (A.2.77) 

 ( )3 5 3 5
0

,m A ( x ) x dxρ ψ ψ= ∫ ,  

2 3 2 3

2 3 2
0

3 2 21 x x x xA x dxρ
  

= − + − + −  
  

∫ , 

 211
210

Aρ= − . (A.2.78) 

 ( )3 9 3 9
0

,m A ( x ) x dxρ ψ ψ= ∫ ,  

 
2 3 2 3

2 3 2 3
0

3 2 3 21 x x x xA dxρ
  

= − + −  
  

∫ , 

27
210

Aρ= . (A.2.79) 
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 ( )3 11 3 11
0

,m A ( x ) x dxρ ψ ψ= ∫ ,  

2 3 2 3

2 3 2
0

3 21 x x x xA dxρ
  

= − + +  
  

∫ , 

213
420

Aρ= . (A.2.80) 

 ( )5 5 5 5
0

,m A ( x ) x dxρ ψ ψ= ∫ ,  

2 3 2 3

2 2
0

2 2x x x xA x x dxρ
  

= − + − − + −  
  

∫ , 

 31
105

Aρ= . (A.2.81) 

 ( )5 9 5 9
0

,m A ( x ) x dxρ ψ ψ= ∫ ,  

2 3 2 3

2 2 3
0

2 3 2x x x xA x dxρ
  

= − + − −  
  

∫ , 

213
420

Aρ= − . (A.2.82) 

 ( )5 11 5 11
0

,m A ( x ) x dxρ ψ ψ= ∫ ,  

2 3 2 3

2 2
0

2x x x xA x dxρ
  

= − + − − −  
  

∫ , 

31
140

Aρ= − . (A.2.83) 

 ( )9 9 9
0

9,m A ( x ) x dxρ ψ ψ= ∫ ,  
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2 3 2 3

2 3 2 3
0

3 2 3 2x x x xA dxρ
  

= − −  
  

∫ , 

13
35

Aρ= . (A.2.84) 

 ( )9 11 9 11
0

,m A ( x ) x dxρ ψ ψ= ∫ ,  

2 3 2 3

2 3 2
0

3 2x x x xA dxρ
  

= − −  
  

∫ , 

211
210

Aρ= . (A.2.85) 

 ( )1111 11 11
0

,m A ( x ) x dxρ ψ ψ= ∫ ,  

2 3 2 3

2 2
0

x x x xA dxρ
  

= − −  
  

∫ , 

31
105

Aρ= . (A.2.86) 

The mass matrix of frame element in local coordinate is given by (Bur, 1994) 

 
2

2

2 2

2 2

140
0 156
0 0 156

1400 0 0

0 0 22 0 4
0 22 0 0 0 4
70 0 0 0 0 0 140420
0 54 0 0 0 13 0 156
0 0 54 0 13 0 0 0 156

70 1400 0 0 0 0 0 0 0

0 0 13 0 3 0 0 0 22 0 4
0 13 0 0 0 3 0 22 0 0 0 4

m

m m

I symm
m

A

I I
m m

ρ

 
 
 
 
 
 
 
 − 
 

=  
 
 
 

− 
 
 
 
 −
 

− − − 

em
 

  (A.2.87) 
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where ρ, A, , m  and mI are mass density, cross sectional area, length, mass per unit of 

length and torque inertia of the frame element, respectively. 
 
A.2.2  Stiffness Matrix and Mass Matrix in Global Coordinate 

The local coordinate system and global coordinated system in the three dimensional 

space is shown in Fig. A.6 

 Y

,X X

X 

Z 

XY

,X Y

,X Z

Z  

 

Fig. A.6 Axes rotation in 3 dimensional space. 

 

 The vector component of one axes can be expressed as the function of another axes 

components. This relation is expressed in matrix form as 

 
1 1 1

2 2 2

3 3 3

X m n X
Y m n Y
Z m n Z

     
    =    
        

. (A.2.88)  

where 

 1  = cosine between( X , X), 

 1m = cosine between ( X , Y), 

 1n  = cosine between ( X , Z), 
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 2  = cosine between (Y , X), 

 2m = cosine between (Y , Y)….. 

or 

 1 cos j iX X
L
−

= , (A.2.89) 

 1 cos j iY Y
m

L
−

= , (A.2.90)  

 1 cos j iZ Z
n

L
−

= . (A.2.91)  

where : 

 ( ) ( ) ( )2 2 2

j i j i j iL X X Y Y Z Z= − + − + − . (A.2.92)  

 The direction from coordinated axes Z can be obtained by assumed that each vector 

Z  in Z  axes direction should be perpendicular to the plane which is constructed by 

two vector. These two vectors consist of a vector X  which is originated from node α 

to node β and another vector  is vector P which is originated from node α to point P. The 

orthogonality is showed by cross product 

 Z X P= × , (A.2.93)  

If the vector components in Eqs. (A.2.89)-(A.2.91) is substituted then we have 

ˆ ˆ ˆ
ˆ ˆ ˆ

X Y Z

P P P

Z Z Z X X Y Y Z Z
X X Y Y Z Z

β α β α β α

α α α

+ + = − − −
− − −

i j k
i j k . (A.2.94) 

where î , ĵ and k̂ are the unit vector in the global axes. The cosine direction in Z axes 

can be calculated as 

 cos X

Z

ZZ X
L

= , cos Y

Z

ZZY
L

= , cos Z

Z

ZZZ
L

= , (A.2.95)   
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where 

 ( )( ) ( )( )X P PZ Y Y Z Z Y Y Z Zβ α α α β α= − − − − − , (A.2.96)  

 ( )( ) ( )( )Y P PZ Z Z X X Z Z X Xβ α α α β α= − − − − − , (A.2.97) 

 ( )( ) ( )( )Z P PZ X X Y Y X X Y Yβ α α α β α= − − − − − , (A.2.98) 

and 

 2 2 2
Z X Y ZL Z Z Z= + + . (A.2.99) 

Y

X

Z Z

XY

P

i
j

 

Fig. A.7  The P point in space frame. 

By using the same analogy as in the Z  axes, the cosine direction in the Y  axes can 

be obtained by using the orthogonality between a vector Y  in the Y  axes with the 

unit vector 1Z  and 1X  in X  and Z  axes, respectively 

 1 1Y Z X= × , (A.2.100)  

or 

 

ˆ ˆ ˆ

ˆ ˆ ˆ cos cos cos

cos cos cos
X Y ZY Y Y Z X ZY ZZ

X X XY XZ

+ + =

i j k

i j k , (A.2.101)  

where 
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 cos cos cos cosXY ZY XZ XY ZZ= ⋅ − ⋅ , (A.2.102) 

 cos cos cos cosYY ZZ X X XZ Z X= ⋅ − ⋅ , (A.2.103)  

 cos cos cos cosZY Z X XY X X ZY= ⋅ − ⋅ , (A.2.104)  

where cosine value are calculated as  

 cos X

Y

YY X
L

= , cos Y

Y

YYY
L

= , cos Z

Y

YYZ
L

= , (A.2.105)  

and LY is calculated as follows 

 2 2 2
Y X Y ZL Y Y Y= + + . (A.2.106)  

 The cosine value of rotation matrix T can be calculated using nodal point α and β 

which is located at the end of the frame and one point P which located in X Y−  plane. 

The calculation become simpler if the P point is located in the local axes Y . The 

displacement transformation for 3D coordinate is : 

 

1 1 1

2 2 2

3 3 3

1 1 1

2 2 2

3 3 3

0 0 0
0 0 0
0 0 0

0 0 0
0 0 0
0 0 0

ix ix

iy iy

iz iz

jx jx

jy jy

jz jz

u um n
u um n
u um n
u um n
u um n
u um n

    
    
    
       =     

    
    
    
        

, (A.2.107)  

or 

 =U T U . (A.2.108) 

where U is the displacement in the local coordinated, T is transformation matrix and U 

is the displacement in global coordinate. 
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The stiffness matrix in the global coordinate is calculated as 

 1
e

−=ek T k T . (A.2.109) 

and the mass matrix in global coordinate is 

 1−=e em T m T . (A.2.110) 
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