VOLUME 68, NUMBER 21

PHYSICAL REVIEW LETTERS

25 MAY 1992

Possible Phase Diagrams for Reversibly Interpenetrating Polymer Networks
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We present possible equilibrium phase diagrams on the temperature-concentration plane for binary in-
terpenetrating polymer networks (IPN) in which network junctions are formed by reversible cross-
linking. It is shown that, in most parts of the phase plane, the formed networks of both species are mu-
tually exclusive so that the system demixes into small domains of heterophases, but that there is a small
region just above the top of the miscibility gap in which a molecularly mixed IPN can stay in a stable
phase. The condition for the existence of a stable IPN is examined. Competition between network for-

mation and two-phase demixing is studied.

PACS numbers: 64.70.—p, 64.75.+g, 82.70.Gg

Interpenetrating polymer networks (IPN’s) are defined
as a nonbonded but unseparable combination of two poly-
mers, each in network form. Like most other multicom-
ponent polymer materials, IPN’s usually phase separate
due to their small entropy of mixing, but the presence of
cross-links leads to a reduction of the domain size. As a
consequence of the complex dynamic balance between the
two opposite tendencies, the synthesis of IPN’s can pro-
duce materials ranging from molecularly homogeneous
ones to microscopically phase-separated ones with phase
domains of various sizes, hence yielding a unique method
of controlling the morphology and mechanical properties.
The chemistry and physics of IPN’s are extensively re-
viewed in Refs. [1-3].

In this paper we consider physically cross-linked net-
works in which junctions are formed by noncovalent asso-
ciative forces. The junctions are assumed to be suffi-
ciently weak to break and recombine in thermal fluctua-
tions. These attractive forces include [3] hydrogen bond-
ing in aqueous systems, ionic association in ionomeric
IPN’s, and cross-linking through complex formation in
block-type copolymer networks. In such a weakly con-
nected IPN, polymers can easily reach equilibrium by the
reorganization (creation and annihilation) of the junc-
tions in the course of the phase separation, and, under
certain conditions, the possibility arises that a molecular-
ly homogeneous phase comprised of the two unseparable
networks is stabilized. Although no systematic observa-
tion of the reversible IPN has yet been reported, the
present paper aims at exploring the possible types of
phase diagrams, to find the conditions for the appearance
of a stable IPN.

The phase stability of weakly cross-linked IPN’s was
theoretically studied [4] under the assumption of chemi-
cal quenching—that is, the kinetics of polymerization
and cross-linking is so rapid that any phase separation
during these processes is negligible. Although the free
energy of the IPN was constructed on the basis of the
Flory theory of rubber elasticity [5] in order to study the
stability limit (i.e., spinodals), competition between net-
work formation (or gelation) and phase separation was
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not studied.

In addition to the gelation and the macroscopic phase
separation, microphase formation can simultaneously
coexist in IPN because the topological constraints in the
networks play a similar role to the block copolymer junc-
tions. The effect of the reversible microphase formation
on the macroscopic phase separation was recently studied
by the present author [6] for the simplest case of the di-
block copolymers. The calculation of the scattering func-
tion developed in the study is directly applicable to the
stability analysis of the heteropolymer networks against
fluctuations of finite wavelength, but a detailed analysis is
beyond the scope of this paper.

There are two main methods of synthesizing IPN’s:
simultaneous IPN (sim-IPN) and sequential IPN (seq-
IPN). For sim-IPN, functional monomers (or primary
chains) of both species are mixed together and polymer-
ized. For seq-IPN, a polymer network of species A is
synthesized, and functional monomers B are swollen into
the network and polymerized. We therefore consider the
following model system.

Consider a binary mixture of linear polymers 4 and B.
The number of statistical units (whose sizes are assumed
to be the same for both species and given by a) on a chain
is n4 and ng for each species. In the case of monomer re-
actions, we must set ngy=ng=1. Assume that an A-
chain carries f functional groups capable of forming pair-
wise reversible bonds, and a B-chain, g functional groups.
Functional groups on A-chains and B-chains are assumed
to be nonreactive with each other. In thermal equilibri-
um, we have a distribution of A-clusters and B-clusters in
the system. Let V be the total volume of the system, and
let Q=V/a? be the number of microscopic cells on which
the statistical units are placed within the framework of
the Flory-Huggins lattice theory [7] of polymer mixtures.
Let Nf' (N8) be the number of clusters made up of / A4-
chains (m B-chains). The volume fraction occupied by
the clusters made up of / 4-chains (m B-chains) is then
given by o' =In vi' (98 =mngvB), where vi'=Ni'/Q
(vE=NEB/q) is the number concentration of the clusters.
In addition to these finite-size clusters, macroclusters
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(networks, or gels) can appear for f= 3 (and/or g=3).
Let ¢ be the total composition of species A. (The compo-
sition of species B is given by 1 —¢.) The volume fraction
of A-gel (B-gel) is then given by ¢§=¢— X = ¢/
(@ =1—9¢—Xw=105). The equilibrium thermodynam-
ics of network-forming polymer mixtures was developed
by the present author [8] to study the interrelation be-
tween structure formation and phase separation. The
present study is based on the general framework formu-
lated in the theory.

The free-energy change AF to bring the system from
the starting reference state— that is, the state where all
unreacted monomers (or primary chains) are prepared
separately— to the actual equilibrium state can be written
as

,B‘AI_F= yA(p)+¢& /Z A +Ing/vi+54v§
=

+ 3 (AB+1IngB)vE+8svE+xe(1 —¢), 1)
m=\

where B=1/kT is the reciprocal of the temperature, and
z is the Flory interaction parameter. Here the first term
describes the elastic free energy of the network due to
swelling. In the case of seq-IPN, an A-network, which is
permanently cross-linked in a dry state (¢.=1), is
prepared, and then monomers B are swollen into the net-
work, inside which they form clusters. Hence we have
y> 0, where 7 is the number of elastically active chains
(per unit cell) in the prepared A-network. The elastic en-
ergy of swelling is given by

A(¢) =13 (a®’—1)—3BIna, )

where the swelling ratio a is defined by a=(¢./9)'"".

Numerical values of the coefficient B differ depending on
the various theoretical descriptions: B =0 in the James-
Guth [9] phantom network theory, B =2/f by Flory and
co-workers [10], and B=1 by Kuhn and Griin [11].
Since arguments still remain, we leave B as a parameter.
In a sim-IPN, both networks are formed in the unde-
formed state, so that we have no elastic free energy
(y=0).

In the second term of Eq. (1), A7'=puf 4 —1u3) is the
free-energy change produced in the process of single-
cluster formation—that is, the free energy produced
when [ unreacted A-chains form a single cluster of size /.
(Each u° denotes the internal free energy of the corre-
sponding cluster type.) The term Ing/' comes from the
entropy of mixing. The number v§ of A-chains (per unit
cell) participating in the gel network and the free-energy
change 64 EB(#S —uﬁ") which is produced when an iso-
lated A4-chain becomes a part of the network have been
introduced. The parameter £ in front of the second term
indicates the type of IPN; we have £=1 for a sim-IPN,
while £=0 for a seq-IPN because an A-network is
prepared in the reference state in a seq-IPN. A more de-

tailed description of all these quantities is given in Ref.
[8].

In order to find the distribution of clusters, we now ap-
ply our general theory [8] to the present binary mixtures.
Let us first impose the multiple-equilibrium conditions for
the association-dissociation process of clustering. These
conditions can be written in terms of the chemical poten-
tials of the clusters of various type derived from the free
energy (1). Find the volume fraction of each cluster type
as a function of x=¢{' (or y=¢f) of the corresponding
isolated chains. By using the association constants Ko
=exp(/—1—Af") and Ko, =exp(m—1—AB5), these re-
lations are written as ¢/' =K ox' and ¢5 =Ko n,y™ They
are not altered by the existence of the elastic terms in the
free energy. The sol fraction of each species is then given
by the infinite summation ¢35(x) =X/ K;ox' and
¢l§(y) =X =1 Komy™.

The sol-to-gel transition point can then be found [8]
from the convergence radius of the infinite series given
above for each species. In the pregel regime of species A,
for instance, we have ¢35(x) =¢, because there is no gel
volume fraction. Solving this relation with respect to x,
we can express x in terms of the total composition;
x=x(¢). Similarly in the pregel regime of species B,
we have y =y (¢). Once x or y hits the convergence ra-
dius, however, it is fixed to a different function x*(¢)
=expld4(9p) — 11 (or y*(¢) =explsp(p) —11) giving the
radius of convergence of the infinite series. Suppose the
composition ¢ is changed from 0 to 1 at a fixed tempera-
ture. In the small-¢ region where B-chains are the major-
ity, A-chains form a sol phase with finite clusters only,
while there are a sufficiently large number of B-chains to
form a macronetwork. In the large-composition region
=1, we have the opposite situation; an A-network is
formed in the B-sol. Therefore the possibility arises that,
in the intermediate composition region, an A-network and
a B-network can simultaneously coexist at low tempera-
tures. This is a bulk phase of sim-IPN. Because of the
mutual immiscibility, however, a homogeneous IPN can-
not remain a stable thermodynamic phase at most tem-
peratures.

In order to study the phase stability, let us find the sta-
bility limit (spinodal line) which separates a thermo-
dynamically unstable region from a stable one. This is
found by the condition 82AF/3¢>=0, which takes the ex-
plicit form

" K4 (¢)

yA"(p)+& ) + (=)
for the present system in the regime where there is nei-
ther A-gel nor B-gel. Here the x functions are given by
the logarithmic derivative of x and y: «x,4(¢)=¢dInx/0¢
and xg(¢p)=—(1—¢)dIny/d¢. In the postgel regime,
they must be replaced by corresponding postgel forms.
The binodals (two-phase equilibria) are also found from
the balancing conditions of the chemical potential of each

—2x=0 3)
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species.

To find specific results, we have to specify the internal
free energy Af' and AZ (or, equivalently, the association
constants K; ¢ and Kg_,) of the cluster formation. We in-
troduce here the simplest model system in which each
cluster is made in the form of a Cayley tree [12]. Inter-
nal loop formation is neglected. Simple combinatorial
counting then gives A4K o=w/'(fA4)" and AgKom
=wB(grg)™ for the association constants, where A,
=exp(1 —BAf4) and Ag=exp(l —BAfg) depend only on
the temperature. They are written in terms of the free-
energy change Af4 (and Afp) of A-bond (and B-bond)
formation. The combinatorial coefficients are given by
the Stockmayer distribution function [12] for each
species:  of'=(f1 =D'/N(fI=21+2)! and of =(gm
—m)'lg"/m\(gm—2m+2)!. We now use the scaled
variables x=fA4¢{' and y=ghzof instead of the original
x and y. Upon substitution of the combinatorial factor,
the infinite series can be summed up to give the relations
in the pregel regime:

Aa0=GH(x), rsg(1—¢)=GE(), (@)

where G{(x)=X7= *w/x! (k=0,1,2,3,...) is the kth
moment of the Stockmayer distribution. [G{(y) is simi-
larly defined.] Properties of these moments were ex-
plored in Ref. [12]. Specifically, the radius of conver-
gence was found to be given by x*=(f—2)/"%/(f
—1)/7" for y*=(g—2)¢"%/(g—1)¢""]. Since A’s are
the functions of the temperature only, the relation x =x*
(or y=yp*) decides the sol-to-gel transition line on the
phase plane. Inside the radius of convergence, the func-
tion G}(x) [or G5(»)] is a single-valued function and the
relation (4) can be solved with respect to x (y), the loga-
rithmic derivative of which gives the function x4 (xp).
As soon as x () reaches x* (y*) by increasing (decreas-

FIG. I. Phase diagram of a symmetric low-molecular-weight
sim-IPN. Binodal (outer solid line), spinodal (inner solid line),
and gelation transitions (dashed lines) are shown. The critical
point is indicated by an open circle. The entropy parameter A is
changed from curve to curve.
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ing) the composition ¢, however, it remains constant at
x* (p*). The gel fraction is then given by ¢S
=o—n(f—1)/(f—2)h, lor ¢§=1—9—nglg—1)/
(g—2)%1g]. The «%(¢) lor k%(¢)] therefore vanishes in
its postgel regime.

In the following numerical calculation, the temperature
is measured in terms of the reduced temperature devia-
tion t which is defined by t =1 —6/T, where 8 is the un-
perturbed theta temperature which satisfies the condition
2(8) =% Around this temperature, the interaction pa-
rameter y is assumed to take the form y(7) =% —yr,
where y is a numerical parameter of order unity [7]. We
then split the free energy Af of single-bond formation for
each species into the energy and the entropy parts:
Af =Ae—TAs. Hence the parameter A can be written in
a form A=21%"""7) where the parameter A°=e¢' "4k
includes the entropy change only, and r=—A¢/6 (> 0)
the binding energy measured relative to the theta temper-
ature. In the following calculation we fix y=1 and
rq=rg =1 for simplicity without losing any physical real-
ity. We study how the phase behavior changes for
different values of the entropy parameters A4 and A 3.

Figure | shows a typical result for the low-molecular-
weight symmetric sim-IPN (6=1) (ny=ng=1) with
functionality f=g=3. Solid lines show the binodals and
the spinodals, while the dashed lines show the sol-to-gel
transition lines. In the temperature region below the
dashed lines, we have a gel of each species; B-gel in the
low-concentration region and A-gel in the high-con-
centration region. In the overlapping region of the two,
we have IPN. For a small A4 (such as A4, =1 shown in
this figure) the overlap region lies inside the spinodal,
showing that the IPN cannot remain a stable phase. We
have a critical solution point (CP) shown by an open cir-
cle in the middle of the spinodal line. The intersections
between the spinodal and the gelation lines give critical
end points, which were studied in detail in Ref. [13].
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FIG. 2. Phase diagram of a symmetric sim-IPN for a larger
value of A. In the small triangular region above the top of the
miscibility gap, the IPN is stabilized.
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FIG. 3. Phase diagram of a low-molecular-weight seq-IPN.
The number y of the elastically active chains in the A-network
is changed from curve to curve. Stable IPN’s are formed in the
regions below the B-gel line (dashed line) and outside the spino-
dal (solid lines).

As the entropy parameter A is increased, the overlap
region is enlarged and comes closer to the spinodal, and
eventually the CP disappears; the top part of the overlap
region moves out of the miscibility gap. Figure 2 shows
the case A4 =3 as an example. In this small triangular
region, the IPN remains a stable homogeneous phase.
The intersections between the gelation lines and the spi-
nodal (and also the binodal) are the tricritical points
(TCP). Because a larger entropy loss As4 (<0) gives a
larger value of A4, the existence of a stable IPN is more
probable for the associative force which produces a large
entropy loss when a bond is formed. Orientational re-
striction in the course of bond formation, such as seen in
the hydrogen bonding for instance, can lead to a large en-
tropy loss. The asymmetric high-molecular-weight sim-
IPN, whose n4 is much larger than np for instance, can
also be studied in a similar way. The miscibility gap
shifts to lower concentration region as in the un-cross-
linked polymer solutions, but the triangular IPN region
remains essentially unchanged.

Figure 3 shows a typical result for a low-molecular-
weight seq-IPN (£=0). Monomers (ng=1) carrying
reactive groups (functionality g=3) are connected to
each other to form a gel under the presence of a per-
manent A-network. The James-Guth theory (B =0) has
been employed for the elastic energy [14]. Solid lines

show the spinodal boundaries, while the dashed line
shows the sol-to-gel transition line of species B. The pa-
rameter Ag is fixed at 2. Since we have a permanent A4-
network from the initial stage, the region below the
dashed line and outside the spinodal gives a stable seq-
IPN. Spinodals for the three different values of y—that
is, the number of elastically active chains per unit cell
—are shown in the figure. For calculational simplicity,
and to remove the ambiguity, we have set B=0. The
gelation line turns out to be independent of y in our
molecular-field approximation. We have a single TCP
only as shown in the figure. The high-molecular-weight
seq-IPN can be discussed in a similar way.

In conclusion, the phase behavior of the reversible
IPN’s described in this study provides help in designing
new IPN’s and controlling their morphologies.
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