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The reaction of O2 with Sis111d-s737d has been studied by electron energy-loss spectroscopy at
82 K. In addition to the losses due to Si–O–Si configurations, we observed two Si–O stretch modes
depending on the coverage. A 146-meV peak appears at the initial reaction stage and was ascribed
to a metastable product with one oxygen atom bonding on top of Si adatom and the other inserted
into the backbond. The initial product is further oxidized to produce the second Si–O stretch peak
at 150 meV. The secondary product was partially substituted with isotopes and analyzed with a
simple model of coupled oscillators. The vibrational spectra reflect dynamical couplings between
the isotopes, which is consistent with those predicted from the tetrahedral SiO4 structure with one
on top and three inserted oxygen atoms. ©2005 American Institute of Physics.
fDOI: 10.1063/1.1937394g

I. INTRODUCTION

As a consequence of device miniaturization, silicon ox-
ide will be scaled down to thickness of only a few atomic
layers.1 Initial oxidation of silicon surfaces has been studied
for the atomic-scale understanding of the oxide formation
process. Over the last three decades, the reaction of O2 gas
with Sis111d-s737d has been studied by many researchers
from both experimental2–22 and theoretical23–28 points of
view. A controversy arised from an equivocal assignment of
the metastable 150-meV vibrational peak observed by elec-
tron energy-loss spectroscopysEELSd. The 150-meV peak
was initially assigned to the internal mode of molecular
species,2,3 which was supported by photoemission4 and
work-function measurement.6

On the other hand, Schell-Sorokin and Demuth5 pro-
posed assigning the peak to the diatomiclike silicon monox-
ide sSiO speciesd. By employing density-functional theory,
Lee and Kang25 suggested that the 150-meV vibrational peak
is indeed attributable to the Si–O stretch mode. They pro-
posed that the ad-ins structurefFig. 1sadg is thermally meta-
stable and is a candidate for an initial product at low tem-
perature. The notations “ad” and “ins” represent an oxygen
atom bonded on top of Si adatom and that inserted into a
backbond, respectively. The absence of molecular state was
supported by reactive Cs+ ion scattering experiment, which
detected no CsSiO2

+ or CsO2
+ as a scattering product.11

Comtet et al. observed O+ ion as a photodesorption
product,15 which was attributed to the on-top SiO species
based on the comparative analysis with electron photoemis-
sion spectra. The recent EELS study provided spectroscopic
evidence that the initial reaction results in the ad-ins struc-
ture at 82 K.20

It was proposed that the metastable ad-ins structure
transforms into ins32 structure fFig. 1sbdg by thermal

activation.15,19,20,25The ad-ins and ins32 products were im-
aged by scanning tunneling microscopesSTMd at 78 K
sRefs. 17, 20, and 22d and 30 K,19 which appears dark and
bright at the adatom sites, respectively, in agreement with the
theoretical predictions.24,25 Thus, by recent studies of both
theories and experiments, it is now a consensus that the ini-
tial oxidation product on Sis111d-s737d is the ad-ins-type at
,80 K which converts to the stable ins32 structure at
higher temperaturef200 K sRef. 20dg.

The initial products are further oxidized with increasing
the exposure, although the structure remains controversial.
Several photoemission studies proposed that the molecular
configuration is possible as a secondary product at,100 K
sRefs. 12, 16, and 18d and 300 K,14,18,21and that the structure
is stabilized against the dissociation by the inserted oxygen
atom. Although the temperature reported was different, the
x-ray-absorption study showed distinct molecular feature
only below 200 K.13 The molecular configuration, however,
was not consistent with the theories, which proposed that it
spontaneously dissociates, yielding a tetrahedral SiO4 struc-
ture denoted by ad-ins33 fFig. 1scdg.23,26 Comtet et al.15

supported the SiO4 structure by analyses of O+ photodesorp-
tion yield as a function of temperature, coverage, and photon
energy. The photodesorption yield showed resonances at the
same energies as those observed for silicon oxide, which
suggested the tetrahedral atomic arrangement of oxygen at-
oms. The discrepancy was suggested to arise from the ambi-
guity in the assignment of the photoemission peak to the
specific configuration of the product.29 In this study, we stud-
ied the secondary product by means of isotope-labeled vibra-
tional spectroscopy at 82 K. The secondary product was par-
tially substituted with the isotope and the vibrational spectra
were analyzed with the model of coupled oscillators, which
enabled us to convincingly assign the secondary product as
the ad-ins33 structure.adElectronic mail: hokuyama@kuchem.kyoto-u.ac.jp
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II. EXPERIMENTS

The experiments were carried out in an ultrahigh-
vacuum sUHVd chamber equipped with a high-resolution
electron energy-loss spectrometersLK-5000, LK Technolo-
gies, Inc.d and a four-grid retarding-field analyzer for low-
energy electron diffractionsLEEDd. The base pressure of the
chamber was below 1310−10 Torr. For the EELS measure-
ments, the incidence angleui =60°, reflection angleur =60°,
and energy resolution of 3–4 meVsthe full width at half
maximum of the elastic peakd were used. The scattering

plane was aligned along thef011̄g direction. The angle-
dependent measurements revealed that the dipole scattering
is responsible for the observed losses.30

The silicon used in the experiments was cut from an
n-type, As-doped wafer, which was cleaned by the overnight
degassing at 900 K, followed by the flashing up to 1500 K.
For a clean surface, a sharps737d LEED pattern was ob-
served and EELS showed no trace of impurity. We used iso-
tope gasses of16O2 and 18O2 with the purities of 99.9% and
99%, respectively. The sample was exposed to16O2 and/or
18O2 via two different tube dosers which were positioned
,1 cm apart from the sample surface. Exposures are given
by background O2 pressure multiplied by time in units of
langmuir s1 L=1310−6 Torr sd. The actual exposure was
larger than indicated due to the use of dosers by a factor of
,7. The exposure and EELS measurements were conducted
at 82 K.

III. RESULTS AND DISCUSSION

A series of EELS spectra of16O2/Sis111d-s737d are
shown in Fig. 2 as a function of the exposure. At the initial-
stage reaction, two peaks appear at 80 and 146 meVfsbd and
scdg. As the exposure increases to 0.03 L, two peaks start to
develop at 128 and 150 meVsdd. It was already established
that the 80- and 128-meV losses are ascribed to the Si–O–Si
symmetric and asymmetric stretch modes, respectively.2 The
146- and 150-meV peaks, denoted byn1 andn2, respectively,
were assigned to the Si–O stretch modes.20 The initial fea-

tures at 80 and 146 meV were assigned to the Si–O–Si and
Si–O stretch modes, respectively, of the ad-ins structure.20

The exposure dependences of then1 andn2 peaks are shown
in the inset. Then1 peak grows at first and then attenuates in
intensity, accompanied with the growth of then2 peak. This
result suggests that the initial product is further oxidized to
yield the secondary product. The secondary product is char-
acterized byn2 and two Si–O–Si stretch modes at 80 and
128 meV. At 0.1–0.2 L, the 128-meV peak is broadened and
shifts to 129 meV. Also a broad structure is observed around
70–100 meV, indicating that the surface is inhomogeneous
with various Si–O–Si configurations.

The temperature effect of the initial product is shown in
Fig. 3. The clean surface was exposed to 0.02-L16O2 at
82 K, and two peaks appear at 80 and 146 meV due to the
initial product fspectrumsadg. The sample was subsequently
annealed to 200 K and then cooled to 82 Kfspectrumsbdg.
The n1 peak disappears and two losses are observed at 81
and 104 meV. Spectrumsb8d was taken after a similar
sample preparation except for the use of the18O2 isotope,
which exhibits losses at 80 and 100 meV. Although the
signal-to-noise ratio is not sufficiently high, the isotope shifts
ensure that these two peaks are derived from oxygen. The
disappearance of then1 peak suggests that the metastable
on-top oxygen migrates into the backbond to form the ins
32 structure by thermal activation.25 For the ins32 struc-
ture, it is anticipated that the two inserted oxygen atoms are
dynamically coupled and the Si–O–Si symmetric and asym-
metric stretch modes are further classified by in-phase and
out-of-phase motions. The theory predicted the vibrational
energies of the in-phase symmetric and asymmetric stretch

FIG. 1. Schematic model of oxidation reaction on Sis111d-s737d. The open
and gray circles indicate the Si and O atoms, respectively. The initial prod-
uct at 82 K is of the ad-ins type which transforms to the ins32 structure at
200 K. It was proposed that the successive reaction with further O2 produces
the ad-ins33 structuresRefs. 23 and 26d.

FIG. 2. EELS spectra of Sis111d-s737d as a function of the exposure to
16O2 taken atEp=7 eV. The exposures aresad 0, sbd 0.01,scd 0.02,sdd 0.03,
sed 0.07, sfd 0.1, andsgd 0.2 L. The inset shows the inspect of the Si–O
stretch region taken with another sample atEp=8 eV. The exposures are
0.01, 0.02, 0.04, 0.06, 0.08, 0.1, and 0.15 L from the bottom to the top. The
loss intensities are normalized to the elastic peak intensities.
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modes to be 78 and 97 meV, respectively.26 We assign the
81s80d- and 104s100d-meV peaks to the in-phase symmetric
and asymmetric stretch modes, respectively. The out-of-
phase modes are forbidden according to the surface selection
rule of dipole scattering.30 The experimental energies for the
initial and secondary products are summarized in Table I.

The secondary product results from subsequent oxida-
tion of the ad-ins product as shown in Fig. 2. Then1 peak
disappears and then2 peak becomes dominant at 0.1 L,
where the Si–O–Si stretch peaks are significantly broadened
due to the surface inhomogeneity. We found that the second-
ary species can be readily produced via the ins32 structure.
The surface after annealingfspectrumsbd in Fig. 3g was fur-
ther exposed to 0.02-L16O2 at 82 K stotal exposure is
0.04 Ld fspectrumscdg. The n2 peak appears predominantly
in the Si–O stretch region without significant contribution of
the n1 peak. Furthermore, the Si–O–Si asymmetric stretch
peak at 128 meV is relatively sharp, indicating higher homo-
geneity of the product. Although there may exist unreacted
ins32 species, it gives no vibrational feature at
120–150 meV. These results suggest that the postexposed
oxygen reacts preferentially with the ins32 species: The
ins32 species is more reactive to incoming O2 than the ad-
ins species and possibly even unreacted Si adatoms. The high
reactivity of the ins32 species is corroborated by the STM

observation that a bright sitesins32d is reactive toward the
incoming O2 to produce a dark sitessecondary productd.7,9

The secondary product is characterized by one Si–O
stretch modesn2d and two Si–O–Si stretch modes at 80 and
128 meV. The exposure dependence of then1 andn2 peaks
sFig. 2d suggests that the secondary product is the ad-ins
33 type. Then the 80- and 128-meV peaks are assigned to
the Si–O–Si symmetric and asymmetric stretch modes of the
three inserted oxygen. To make a clearer assignment, the
secondary product was partially substituted with oxygen iso-
tope by way of the two-step reaction demonstrated in Fig. 3.
For example, the clean Sis111d-s737d surface was exposed
to 0.02-L 16O2 and subsequently heated to 200 K, which
yields only ins1632 species on the surface. The surface was
subsequently exposed to 0.02-L18O2 at 82 K to produce the
secondary species. In this way, we prepared the surface with
four different procedures as16O2→200 K→ 16O2,

16O2
→200 K→ 18O2,

18O2→200 K→ 16O2, and 18O2→200 K
→ 18O2. The corresponding EELS spectra are shown in Fig.
4. For the secondary product constituted with only16O, the
Si–O–Si asymmetric and Si–O stretch modes are observed at
128.1±0.2 and 150 meV, respectivelyfspectrumsadg. When
completely substituted with18O, the secondary product
shows corresponding downshifted peaks at 122.8±0.2 and
145 meV. In the case of partial substitutions, the Si–O
stretch modes are observed at 146 and 150 meV forsbd and
scd, respectively, indicating that the postexposed oxygen dis-
sociates and one bonds on top of Si adatom. Furthermore, the
Si–O–Si asymmetric stretch modes appear at 127.1±0.2 and
125.7±0.2 meV forsbd andscd, respectively, which lie in the
intermediate ofsad and sdd. The result indicates that this
mode is associated with both pre- and postexposed isotopes;
the dissociated counterpart of the postexposed isotope is in-
serted into the intact backbond. The multiply inserted oxygen
atoms causes dynamical coupling of the Si–O–Si stretch vi-
bration, giving rise to different normal modes depending on
the isotopic combinations. Thus the spectra are quite consis-
tent with the assignment that the secondary product is of the
ad-ins33 type.

FIG. 3. sad An EELS spectrum of Sis111d-s737d exposed to 0.02-L16O2 at
82 K. The 80- and 146-meV losses are characteristic of the ad-ins product.
sbd The surface was subsequently heated to 200 K. Then1 peak disappears
and two peaks are observed at 81 and 104 meV, which are ascribed to the
ins32 product.sb8d The corresponding spectrum taken with18O2, which
exhibits isotope-shifted peaks at 80 and 100 meV.scd The surface after
annealingfspectrumsbdg was further exposed to 0.02-L16O2. The 80-, 128-,
and 150-meV peaks are characteristic of the secondary product.

TABLE I. A summary of experimental energiessmeVd with 16O2 s18O2d and
mode assignments for the structures shown in Fig. 1.

Structure EnergysmeVd Assignment

ad-ins 80s78d Si–O–Si stretchssd
¯ 146s142d Si–O stretch,n1

ins32 81s80d Si–O–Si stretchssd
¯ 104s100d Si–O–Si stretchsasd

ad-ins33 80s78d Si–O–Si stretchssd
¯ 128–129s122–123d Si–O–Si stretchsasd
¯ 150s145d Si–O stretch,n2

FIG. 4. Isotope-labeled EELS spectra of the secondary oxidation products
prepared by way of the two-step reaction: The clean surface was exposed to
0.02-L 16O2 fsad and sbdg or 18O2 fscd and sddg, and subsequently heated to
200 K. Then the surface was further exposed to 0.02-L16O2 fsad andscdg or
18O2 fsbd andsddg. The Si–O stretch mode is associated with the postexposed
isotope. The Si–O–Si asymmetric stretch modes show energy shifts depend-
ing on the isotopic combinations due to dynamical couplings.
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To make a quantitative analysis of the vibrational spec-
tra, three coupled oscillators are considered as a model of the
Si–O–Si asymmetric stretch vibrations of the ad-ins33
structure. Within the harmonic approximation, the Hamil-
tonian is represented by

H = o
i=1

3

eici
†ci + o

i,j=1

3

Di,jci
†cj . s1d

The notations of the Hubbard model are used for simple
description of the matrix elements, whereci

† scid is the cre-
ationsannihilationd operator for the sitesoscillatord i. ei is the
vibrational energy of oscillatori without dynamical cou-
plings, andDi,j corresponds to the dynamical interaction be-

tween them. We considere16 and e18 for Si–16O–Si and
Si–18O–Si oscillators, respectively, and interaction param-
etersD16,16, D16,18, andD18,18 between them.

We treat the interactions perturbatively and start with the
local oscillator basis as verified frome@D. In the case of
ad18-ins1632-ins18 structure, for example, the Hamiltonian is
represented by

H = 1 e16 D16,16 D16,18

D16,16 e16 D16,18

D16,18 D16,18 e18
2 . s2d

The matrix can be diagonalized analytically to yield the
eigenvalues,

E1,2=
e16 + e18 + D16,16± Îe16

2 + e18
2 − 2e16e18 + 2e16D16,16− 2e18D16,16+ D16,16

2 + 8D16,18
2

2
,

E3 = e16 − D16,16. s3d

In a similar way, the eigenvalues were deduced for the
other combinations. Among the two or three normal modes
for each combination, we consider only totally symmetric
modes according to the surface selection rule of dipole scat-
tering. In the above case, two totally symmetric modes ap-
pear which are classified as in-phasesE1d and out-of-phase
sE2d motions. As described below, the EELS intensities for
the out-of-phase modes are weak compared to those of the
in-phase modes. Thus we fitted the experimental energies to
those for the in-phase modes by the method of least square,
and determined the parameters to be 124.1±0.2, 119.1±0.2,
and 2.0±0.1 meV fore16, e18, andD, respectively. Here, we
put D16,16=D, and approximatelyD16,18=Î17

18D and D18,18

=Î16
18D. The results are presented in Table II and Fig. 5 as a

function of D. The solid and dashed curves indicate the in-
phase and out-of-phase modes, respectively. The experimen-
tal energies are plotted by the dots, which are well repro-
duced by the model.

In the cases of partial substitutions, the out-of-phase
modes are predicted to appear at 118.2 and 119.5 meV
sdashed curvesd for the ins1632-ins18 and ins16-ins1832
combinations, respectively. The EELS intensity is propor-

tional to the square of the dynamic dipole moment induced
by the excitations. The relative dipole moments can be de-
rived from the calculated eigenvectors, which are schemati-
cally shown in Fig. 6. The normal components of the total
dipole moments are larger for the in-phase mode than
the out-of-phase mode by a factor of 3.3 and 2.2 for the
ins18-ins1632 and ins16-ins1832 configurations, respec-
tively. Thus the corresponding intensity ratios are,11 and
,5 for the former and latter, respectively, indicating that the
out-of-phase counterparts are almost invisible in the spectra.

TABLE II. Energies of the Si–O–Si asymmetric stretch modes observed in
the isotope-labeled experiments and the results of the least-squares fitting
smeVd. The procedure16O2+ 18O2 indicates that the clean surface was ex-
posed to16O2, heated to 200 K, and subsequently exposed to18O2.

Procedure Expt. Fit

16O2+ 16O2 128.1±0.2 128.1
16O2+ 18O2 127.1±0.2 127.0
18O2+ 16O2 125.7±0.2 125.7
18O2+ 18O2 122.8±0.2 122.9

FIG. 5. The calculated energies of the Si–O–Si asymmetric stretch modes as
a function of the interaction parameterD. The isotopic combinations aresad
ins1633, sbd ins18-ins1632, scd ins16-ins1832, andsdd ins1833. The sche-
matic structures are depicted in the inset, where the open, gray, and black
circles indicate Si,16O, and18O atoms, respectively. The solid and dashed
curves correspond to the in-phase and out-of-phase modes, respectively. For
sad and sdd, the out-of-phase modes are dipole forbidden and thus are not
presented. The experimental energies are shown by the dots, and the param-
eterse16, e18, andD were determined by the least-squares fitting.
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It is noted that the Si adatom belongs to theCs point
group sslightly distorted fromC3V due to the surface recon-
structiond. The distortion may cause inhomogeneous broad-
ening of the vibrational peaks in the case of partial substitu-
tions. However, no significant broadenings were observed as
compared to the spectra for the pure isotopes, verifying that
the distortion is negligible and three inserted oxygen can be
treated almost equivalently in the calculation of the normal
modes. As a whole, the vibrational energies of the isotope-
labeled experiments are well reproduced by the model of
three coupled oscillators, which enabled us to unequivocally
assign the secondary product as the ad-ins33 structure.

IV. SUMMARY

The secondary oxidation product on Sis111d-s737d was
investigated at 82 K by isotope-labeled EELS. The Si–O–Si
asymmetric stretch mode was analyzed with partial isotopic
substitution. The vibrational spectra can be explained by
considering dynamical couplings between three inserted oxy-
gen atoms, and thus, the secondary product was convincingly
assigned as the ad-ins33 structure. The result further indi-
cates that the reaction scheme shown in Fig. 1 is established
as an initial oxidation process of Sis111d-s737d.
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