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Properties of Electromagnetic Wave Propagation
Emerging in 2-D Periodic Plasma Structures

Osamu Sakai, Member, IEEE, and Kunihide Tachibana, Member, IEEE

Abstract—Periodic structures in plasmas form unique disper-
sions of electromagnetic waves, which are examined in numer-
ical calculation. Above electron plasma frequency, where waves
equivalently propagate in dielectric media, plasma arrays with 2-D
periodicity produce frequency regions of forbidden propagation,
like band gaps in a photonic crystal. Below electron plasma fre-
quency, where waves are usually forbidden to propagate due to
cutoff phenomenon, bulk plasmas with periodic holes can become
wave-propagating media in which localized surface modes play
an important role. Such features give rise to concepts of dynamic
wave controllers that change their inner electron density in time.

Index Terms—Electromagnetic propagation, microwave de-
vices, numerical analysis, plasma devices, plasmons.

I. INTRODUCTION

I T IS A COMMON knowledge that an electromagnetic
wave propagates in a nonmagnetized plasma above electron

plasma frequency ωpe/2π, which is determined by electron
density ne. The equivalent dielectric constant is well described
by the Drude model, and it approaches vacuum value when
the wave frequency ω/2π is much higher than ωpe/2π. Below
ωpe/2π, the electromagnetic wave cannot propagate into the
bulk region and is reflected in a thin evanescent layer on its
surface. In other words, the dielectric constant is negative in
an overdense plasma, and the waves penetrate within the skin
depth in general.

Such an explanation is invalid when a plasma has a finite
size and/or periodic structures. One example was “plasma
phonic crystal” [1], which was experimentally and theoretically
verified in our previous reports [2]–[5]. It is composed of a
2-D periodic array of columnar plasmas, and electromagnetic
waves well above ωpe/2π may face cutoff condition in certain
frequency regions; band gaps form in a similar mechanism to
a photonic band gap in a usual photonic crystal composed of
solid dielectric materials.

Based on this fact and its extrapolation, one can anticipate
other aspects of abnormal and distinctive wave propagation in
a plasma with periodic structures, which are the main targets
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of this paper. After reviewing band diagrams in a 2-D plasma
array, we examine wave propagation in the vicinity of a band
gap above ωpe/2π and on flatbands below ωpe/2π in the
same structure. At the band gap, where wave propagation is
forbidden in the frequency range above ωpe/2π, wave field
patterns show totally different features between its upper and
lower sides. Flat bands with very low group velocity emerge in a
certain range of frequency below ωpe/2π, and localized surface
modes contribute wave propagation along them [4] in a similar
manner to localized surface plasmon in metallic photonic crys-
tals [6]. The latter part of this paper describes wave-propagation
phenomena in a bulk plasma with holes in a 2-D array pattern.
In this case, we again observed band gaps above ωpe/2π.
We also observed that wave propagation is permitted on the
flatbands below ωpe/2π; there is no continuous vacuum gap in
the plasma, unlike the case of 2-D array of columnar plasmas.
The properties of these waves are investigated by calculated
dispersion relation and electric field profiles in comparison with
the surface plasmons on the metallic surface.

II. NUMERICAL METHODS

The numerical methods used here were described in our
previous paper [3], [4], which will be briefly reviewed in the
following.

Dielectric constant in a plasma is assumed to be in the Drude
type, and ne is fixed throughout the calculation; we assume
that power carried by electromagnetic waves is so small that
there is no interaction like plasma production by waves, and
plasmas are maintained by another external power supply. The
periodicity of the plasma structures that we will examine is
restricted to a square lattice.

The dispersion relation of electromagnetic waves, or band
diagram in the notation of crystal theory, is derived using two
methods. A 2-D spatial periodicity of the frequency-dependent
dielectric constant is taken into account. Modified plane-wave
expansion method can deal with periodic structure with the
dielectric constant of the Drude type [4], [7]. This method
solves nonlinear eigenvalue problems with equations, including
frequency ω/2π and wavenumber k, and the relation between ω
and k is analytically clarified. It is necessary to derive adequate
coefficients for spatial Fourier transform in terms of a dielectric
constant profile before solving the eigenvalue problem.

Another method is based on the numerical calculation of
the wave equation using the finite difference method, which
is referred to in this paper as the direct complex-amplitude
method. Usually, one lattice cell with a unit dielectric profile
is solved, and the boundary condition is set to be periodic,
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Fig. 1. Band diagram of the TE mode in square lattice of plasma columns by
plane-wave expansion method. Lattice constant a is 2.5 mm. Columnar plasma
with 1.75 mm in diameter is collisionless, and ne = 1013 cm−3.

i.e., the Bloch theorem. The field is assumed to vary with
exp[j(ωt − k · x)], where t and x are the time and the position
vector, respectively. That is, the numerical solution of the wave
equation shows static fields with specific amplitude and phase
at frequency ω/2π, unlike the finite domain time difference
method. A pair of ω and k along the propagation branch
is searched for in their 2-D plane, and arbitrary distribution
of dielectric constant within one lattice cell can be assumed.
Another advantage of this method is the subproducts of the field
profiles in each calculation step, although the calculation for the
entire band diagram requires much longer calculation time than
the modified plane-wave expansion method. This method was
also successfully applied to a supercell configuration to observe
wave propagation around the band gap [5].

After a brief look at a band diagram derived by the mod-
ified plane-wave expansion method, in the next section, we
examine the field distribution of propagating waves as well as
the band diagrams using the direct complex-amplitude method.
Propagation is assumed to be in the transverse-electric-field
(TE) mode, where electric fields are in parallel to the 2-D
periodic plane. Calculated results are all in the collisionless
case with ne = 1013 cm−3. Effects of electron elastic collisions
which might damp electromagnetic waves were examined in
our previous report [4], and it was concluded that heavy col-
lisionality moulds the band diagrams. However, in the case of
our previous report on experimental verifications of band gaps
[5], collision frequency was approximately half of the electron
plasma frequency, and the band diagram in such a case varies
only slightly without significant differences [4].

III. NUMERICAL RESULTS AND DISCUSSION

A. Propagation in a 2-D Plasma Array Above Electron
Plasma Frequency

Fig. 1 shows a band diagram in an infinite 2-D array of
columnar plasmas, derived by the modified plane-wave expan-

Fig. 2. Band diagram of the TE mode in square lattice of plasma columns
by direct complex-amplitude method. Lattice constant a is 2.5 mm. Columnar
plasma with 1.75 mm in diameter is collisionless, and ne = 1013 cm−3.

sion method. Here, we assumed a square lattice composed of
circular plasmas with a slab ne profile of 1013 cm−3 and a
lattice constant of a = 2.5 mm. The horizontal axis shows wave
vector in the first Brillouin zone in a square lattice by familiar
notation in usual crystal theory; points in the Brillouin zone Γ,
X , and M are wavenumber = π/a times [0,0], [0,1], and [1,1],
respectively. Electron plasma frequency ωpe/2π was around
28 GHz. The diameter of the plasma was 1.75 mm, and there-
fore, the filling fraction of the plasma region inside one lattice
cell was 0.38. The first band gap in the Γ−X direction emerged
at 60–65 GHz or ωa/2πc ∼ 0.5, which is a similar position
to that in dielectric photonic crystals. Below ωpe/2π, flatband
region ranged from 0.37 to 0.82 ω/ωpe. Surface wave mode
or Fano mode was observed below the flatband region, which
is along the vacuum propagation path and joins the lowest
flatband as the frequency increases.

Fig. 2 shows a band diagram in a similar condition to Fig. 1,
derived by the direct complex-amplitude method. A 2-D plane
was discretized into 20 × 20 meshes in one square-shaped
lattice cell. It clarified almost the same features shown in Fig. 1,
including the band gaps, the flatbands, and the Fano mode.
We also successfully obtained a case with a gradient electron-
density profile, which increases the width of the flatband region
due to lower density region in the periphery [4] without chang-
ing other propagation properties. The details about the flatband
regions will be described in the next section. In particular, the
flatband region occupies up to ωpe/2π in Fig. 2, while there
is a vacant region in Fig. 1, which will be discussed using the
calculated electric field profiles.

Unidirectional band gap in the Γ−X direction, which lies
around 61 GHz in Figs. 1 and 2, is examined in the fol-
lowing. Forbidden propagation is enhanced due to anisotropic
wave propagation in the vicinity of the band gap [1]. Here,
we focus on wave field profiles around the plasma columns.
Fig. 3(a) and (b) shows the electric field profiles obtained
as subproducts of the band calculation shown in Fig. 2 by
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Fig. 3. Calculated profiles of electric fields normalized in amplitude in case
of kxa/2π = 0.50 and ky = 0. In (a) and (b), parameters used are similar to
Fig. 2. In (c) and (d), parameters used are similar to Fig. 2 except that ne =
4 × 1013 cm−3. (e) Band-gap region as a function of filling fraction of plasma
area in a lattice. ne is set to be 1 × 1013 cm−3.

the direct complex-amplitude method. Electric fields greatly
showed different patterns just below or above this band gap;
their amplitude was smaller in the plasma region than in the
outer area just below the band gap (61.4 GHz), but their
maximum region spreads over the center of the plasma just
above the band gap (64.0 GHz). These structures were similar
to 1-D standing waves, and effects of the plasma with circular
cross section were ambiguous.

To clarify the impacts of plasmas in the vicinity of the
band gap, we calculated the electric field profiles just below
or above this band gap in the case with ne = 4 × 1013 cm−3,
as shown in Fig. 3(c) and (d), which was higher than in the
case in Fig. 3(a) and (b), and therefore, spatial discontinuity
of dielectric constant was more distinct. Just below the band
gap (66.9 GHz), the electric field was the minimum in the
center of the plasma. On the contrary, just above the band gap
(76.3 GHz), the electric field was peaking in the center of the
plasma.

This fact indicates that the waves belong to completely
different bands instead of the close frequency gap at the same
wavenumber. Field profiles were investigated on the upper and
lower sides of the band gap in solid-dielectric photonic crystals
[8], [9]. In the “dielectric band” of the solid-dielectric photonic
crystal, which is the first and lowest band, fields are localized in
the region of the higher dielectric constant. On the contrary, in
the “air band,” which is the upper band of the band gap, fields
are localized in the region of the lower dielectric constant. In
our study, the region of the lower dielectric constant lies in the

plasma region, and the field profiles in Fig. 3(a) and (b) are con-
sistent with the results of the aforementioned solid-dielectric
photonic band. This difference arises from the frequency gap
that is equivalent to the difference of stored energy.

Fig. 3(e) shows the frequency range of this band gap as a
function of the filling fraction of the plasma region inside one
lattice cell, calculated by the modified plane-wave expansion
method. The band gap shifted to higher frequency as the filling
fraction increased, and the width of the band gap was at
maximum when the filling fraction was 0.4. Since the space-
averaged dielectric constant becomes lower than unity as the
filling fraction increases, band gap emerges for ωa/2πc > 0.5.
The band-gap width also becomes wider as ωpe/2π increases,
and the dielectric constant in plasmas becomes lower at the
band-gap frequency [see, for instance, Fig. 3(a)–(d)]. In gen-
eral, a distinct change of the dielectric constant in space or in
values widens the band gap.

The feature of wave propagation inside the band gap is
evanescent in the array region, which can be analyzed in the
supercell method [5]. Since this band gap shows a function
of the bandstop filter, we obtain a dynamic bandstop filter by
changing ne and a.

B. Propagation in a 2-D Plasma Array Below Electron
Plasma Frequency

As shown in Figs. 1 and 2, flatbands with very low group
velocity region are present below ωpe/2π. Such a wide fre-
quency range arises from both localized surface modes and their
periodicity.

Surface plasmon around a metal particle was well investi-
gated in the photon frequency range [10]. When electromag-
netic waves encounter an individual metal particle smaller than
the wavelength, they are coupled with localized surface modes
called “surface plasmon polalitons.” Maximum frequency is
ωpe/(1 + εd)1/2, where εd is the dielectric coefficient of the
medium surrounding the metal particle. The localized surface
modes have azimuthal (angular) mode number l around the
particle, and l becomes larger as the frequency approaches
ωpe/(1 + εd)1/2. In fact, as shown in Fig. 1, there seems to
be a narrow perfect photonic band gap between the lowest
frequency of the equivalently dielectric branch (∼28 GHz) and
the highest frequency of the flatband region (∼23 GHz). The
highest frequency of the flatband decreases as the dielectric
constant of the surrounding medium increases (not shown here),
which is qualitatively consistent with change of the value of
ωpe/(1 + εd)1/2.

In our case, however, structure periodicity complicates the
problem. Recently, several reports about metallic photonic
crystals [6], [7], [11]–[13] have dealt with this issue. We investi-
gated the electric field profiles calculated by the direct complex-
amplitude method along the band branches to clarify the roles
of surface plasmon and its periodic effects. Fig. 4 shows several
amplitude profiles of electric fields in the propagating waves in
2-D columnar plasmas, in the same parameters as Figs. 1–3.

Electric fields in the Fano mode, present below the flatband
region, are shown in Fig. 4(a). The amplitude of the electric
field inside the columnar plasma was very small, and most
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Fig. 4. Calculated profiles of electric fields normalized in amplitude in case
of kxa/2π = 0.25 and ky = 0. Parameters used are similar to Fig. 2.

of the wave energy was uniformly distributed and flowed
outside the plasma. As we mentioned earlier, this wave branch
coalesces with the flatbands at their lowest frequency as the
frequency increases.

Electric fields of the waves on flatbands are shown in
Fig. 4(b)–(h). A clearly different point from Fig. 4(a) is that
electric fields were localized on the boundary between the
plasma and the vacuum. Another unique feature was the
change of l of the standing waves around the plasma column.
At lower frequency, l around the plasma column was low,
and it became multiple at higher frequency. This tendency is
consistent with the general phenomena of surface plasmons
around the metal particle. The highest l number (∼6) was
observed around 20 GHz, as shown in Fig. 4(e), and this
frequency was approximately in the condition of ωpe/21/2

which agrees with the predicted top frequency of the surface
plasmon around the metal sphere [ωpe/(1 + εd)1/2 in the case
where the surrounding medium is a vacuum (εd = 1)].

However, the sequence of l along the frequency axis was
not perfect as the surface plasmons around the individual metal
sphere [10]. Above 20 GHz in Figs. 2 and 4, there are some
flatbands, separated from the group below 20 GHz. In this
group, however, no sequential change of l was found in Fig. 4.
This might arise from the periodicity, as suggested by Ito and
Sakoda [6]. That is, Fig. 4(f)–(h) shows a different tendency
from that below 20 GHz, and these electric field profiles imply
that surface wave modes are localized in the gap region of
the adjacent plasma columns and no boundary condition for
standing wave around the column affects them. Note that this

Fig. 5. Band diagram of the TE mode in square lattice of plasma holes
by direct complex-amplitude method. Lattice constant a is 2.5 mm. Circular
holes with 1.75 mm in diameter are in a collisionless infinite plasma with
ne = 1013 cm−3.

group of the flatbands above 20 GHz was hardly detected using
the modified plane-wave method, as shown in Fig. 1, where the
region with no detection of flatbands ranges from 20 GHz to
ωpe/2π. The structures of wave propagation are too fine to be
detected in the modified plane-wave method, and therefore, an
increase of assumed plane waves might be required to detect
them in this method.

One additional comment on the effects of electron density
gradient will be beneficial since density profile is not slab
in usual experiments but parabolic or can be approximated
by Bessel-function dependence. In this paper, we assumed a
slab density profile. The effects of the density gradient on
edge regions were discussed in our previous report [4] and
mainly contribute to broaden the flatband region down to lower
frequency, because lower density region on the outer side has a
local electron plasma frequency lower than the center. Such an
assumption of density gradient will be closer to experimental
conditions, but it might make the discussion more complicated
since effects of l and those of local electron plasma frequency
will overlap with each other.

In summary, wave propagation on the flatbands of a 2-D
columnar plasma array is mainly attributed to the dispersion
of the localized surface modes around an individual columnar
plasma and is modified by periodicity in the plasma array. These
phenomena analogically resemble light waveguides composed
of metal nanoparticle chains [14]. The property observed in
the aforementioned calculations will be applied to the dynamic
waveguide of the electromagnetic waves composed of localized
surface modes, since flatbands can intersect with the wave
branches with various characteristic impedances.

C. Propagation in a Bulk Plasma With Periodic Holes Below
Electron Plasma Frequency

So far, we have investigated wave propagation in an array
of plasma columns. The next target is antiparallel structure,
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which is an infinite-size plasma with periodic holes. Above
ωpe/2π, periodic dielectric constant in space will contribute
to form a similar band diagram. When the frequency is low
enough, since there is no continuous vacuum space in this struc-
ture, wave propagation below ωpe/2π is considered difficult
from the first guess of the wave-propagation theory in a bulk
plasma.

A band diagram of infinite plasma with periodic holes,
calculated by the direct complex-amplitude method, is shown
in Fig. 5. The basic features are common to both diagrams
in Figs. 2 and 5, and several different points from Fig. 2 can
be found in Fig. 5. The first band-gap frequency in the Γ−X
direction was slightly higher, since the filling fraction of the
plasma region in one lattice cell in Fig. 5 (0.62) was larger
than that in Fig. 2 (0.38) and it reduced the synthetic dielectric
constant above ωpe/2π. No Fano mode was present in the
low frequency region since there was no continuous vacuum
region. Note that wave propagation remained below ωpe/2π
and the flatband region expanded to lower frequencies, which
are examined in the following.

Fig. 6 shows the electric field profiles in one lattice cell
at various frequencies. In this case, no clear dependence of
the azimuthal mode number l on the frequency was found;
for instance, l = 1 at 12.3 GHz, l = 4 at 12.7 GHz, and
l = 2 at 14.6 GHz. The path for the wave energy flow is
limited to four points from the adjacent lattice cells through
the short gap region between holes, and a plasma hole works
as a wave cavity. Furthermore, conditions for standing eigen-
modes along the inner surface of the hole are also required.
In contrast, in the case of the columnar plasmas in Fig. 4,
wave energy freely flows around the column, and there-
fore, wave patterns fulfill eigenmode conditions around the
plasma columns and their periodicity. These facts yield dif-
ferences between the cases of columnar plasmas and plasma
holes.

This difference is clarified by numerical results in three
sequential lattice cells, as shown in Fig. 7. Bloch condition was
applied for the three lattice cells in the x-direction and for the
one lattice cell in y-direction. Fig. 7 shows typical examples
in the cases of columnar plasma array and hole array, where
the filling fraction of the central circular region is set to be
0.38 (diameter d = 0.7a) to make the diameter and the gap
of the circular areas comparable. Electric field pattern in the
case of the columnar plasma array was only slightly affected by
the adjacent columns [shown in Fig. 7(a)], whereas enhanced
electric field was observed in the gap regions of the adjacent
holes in Fig. 7(b). For the hole array, the only condition for
wave energy flow is an enhanced field on the boundary by
surface modes that compete against the strong decay in the
plasma region.

It is difficult to express the penetration depth of the elec-
tromagnetic waves in surface plasmon in a simple formula
[10], but here, for the first approximation, we estimate usual
skin depth δ on the plasma surface with a slab ne profile
instead. We use the well-known definition in a collisionless
plasma as δ = c/ωpe, where c is the velocity of light, and δ
is 1.7 mm using the assumed ne value in the aforementioned
calculation as 1013 cm−3. Since this value is comparable to

Fig. 6. Calculated profiles of electric fields normalized in amplitude in case
of kxa/2π = 0.25 and ky = 0. Parameters used are similar to Fig. 5.

the size and the gap of the plasma(s) in the aforementioned
calculation, no wave propagation is expected in the normal
cases in the cutoff condition. That is, wave propagation in
the case of the hole array is supported not only by tunneling
effects but also by resonant field enhancement on the boundary
that can amplify the local fields that strongly decay in the
plasma region but couple with those in adjacent cells as near
fields.

These unique wave-propagation phenomena in bulk plasmas
with hole array are completely different from wave transmis-
sion through a metallic plate with hole arrays. The latter is the
case where waves perpendicularly propagate to the metal (and
two-dimensionally periodic) plane and are basically attributed
to spoof surface plasmons due to waveguide effects [15]. On
the contrary, in our case shown in the numerical results, waves
propagate along the two-dimensionally periodic plane. Using
metals and waves in the photon range, similar phenomena will
be found when holes are made in the 2-D lattice structure in the
bulk metal, and waves propagate along this 2-D plane. In that
case, some amount of light will pass through the metal in the
usual cutoff condition; opaque material will become transparent
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Fig. 7. Calculated profiles of electric fields in three sequential lattice cells.
Upper and lower three lattice cells are repeated to see the effects from adjacent
cells. (a) Plasma column array with 1.75 mm in diameter. kxa/2π = 0.25 and
ky = 0 at 19.1 GHz. Other parameters are similar to Fig. 2. (b) Plasma hole
array with 1.75 mm in diameter. kxa/2π = 0.25 and ky = 0 at 14.6 GHz.
Other parameters are similar to Fig. 5.

to a certain extent, although damping by electron collision will
be present in the actual metal material.

IV. CONCLUSION

Using numerical methods based on the plane-wave expan-
sion method and the finite difference method with complex-
amplitude fields in wave equation, we examined the distinctive
wave propagation in periodic plasma structure. The band gap
forms by periodic dielectric constant above the electron plasma
frequency. Propagation on the flatbands below the plasma fre-
quency in the case of a columnar plasma array is based on
surface modes and their periodicity, which has similar mech-
anism to surface plasmons on a metal sphere. In the case of
hole array in an overdense plasma, wave propagates due to the
enhancement of local electric fields in surface modes. These
features are unique in the microwave to terahertz region, which
cannot be realized in solid media and satisfy the needs for
dynamic electromagnetic wave controllers.
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