Influence of elastic scattering of photoelectrons on angle-resolved x-ray photoelectron spectroscopy

Kenji Kimura ${ }^{\text {a) }}$ and Kaoru Nakajima
Department of Micro Engineering, Kyoto University, Yoshida-honmachi, Sakyo, Kyoto 606-8501, Japan
Thierry Conard and Wilfried Vandervorst
IMEC, Kapeldreef 75, B-3001 Leuven, Belgium

(Received 1 June 2007; accepted 26 July 2007; published online 6 September 2007)

Abstract

The validity of the electron effective attenuation length database developed by National Institute of Standards and Technology (NIST) is examined for x-ray photoelectron spectroscopy (XPS) measurement of $\mathrm{HfO}_{2}(2.7 \mathrm{~nm}) / \operatorname{SiON}(0.8 \mathrm{~nm}) / \mathrm{Si}$. The angular dependences of photoelectron yields are calculated using the NIST database and composition depth profiles measured by high-resolution Rutherford backscattering spectroscopy. The calculated result reproduces the observed XPS result fairly well even at larger emission angles up to 80°, indicating that the accuracy of XPS depth profiling can be improved using the NIST database. © 2007 American Institute of Physics. [DOI: 10.1063/1.2772769]

There is an increasing demand to analyze ultrathin films with high accuracy across many industries and research fields, especially in the microelectronics industry. Angleresolved x-ray photoelectron spectroscopy (AR-XPS) is frequently used for this purpose. Recent development of high energy XPS has extended the analyzing depth up to $10 \mathrm{~nm},{ }^{1}$ expanding the application field of AR-XPS. In the AR-XPS analysis, the escape probability of photoelectrons emitted at a certain depth without inelastic scattering, which is called the depth distribution function (DDF), is usually assumed as an exponential decay function with a decay constant equal to the inelastic mean free path (IMFP) for the photoelectrons. This simple assumption, however, is not correct due to elastic scattering. For accurate analysis, the effects of elastic scattering must be properly taken into account; i.e., the effective attenuation length (EAL) should be used instead of the IMFP. ${ }^{2}$

A database providing EALs has been published by the National Institute of Standards and Technology (NIST). ${ }^{3}$ The EALs were estimated from a solution of the kinetic Boltzmann equation within the so-called transport approximation. ${ }^{4}$ The calculated EAL is smaller than IMFP and is almost constant for emission angles θ_{e} less than $\sim 60^{\circ}$ and increases very rapidly when θ_{e} exceeds $\sim 60^{\circ} .^{5}$ A careful measurement of EALs was conducted for $\mathrm{Al} K \alpha$-excited Si $2 p$ photoelectrons in SiO_{2} and $\mathrm{Al}_{2} \mathrm{O}_{3}$ to test the validity of the NIST database. ${ }^{6}$ The measured EAL for SiO_{2} was $3.62 \pm 0.13 \mathrm{~nm}$ at $\theta_{e}=51.5^{\circ}$, which is about 93% of the IMFP calculated with the Tanuma-Powell-Penn (TPP-2M) formula ${ }^{7}$ and was in good agreement with the value (3.593 nm) predicted by the NIST database. Similar agreement was also observed for $\mathrm{Al}_{2} \mathrm{O}_{3}$, although the experimental EAL ($2.71 \pm 0.16 \mathrm{~nm}$) was slightly smaller than the predicted value (2.853 nm). Thus, the NIST database is commonly believed to be reliable at least for emission angles less than 60°, while the validity at larger emission angles has not been examined yet.

Recently, the distinguishability of nitrogen composition profiles in $\mathrm{SiON} / \mathrm{Si}$ by AR-XPS was studied by Powell et

[^0]al. ${ }^{8}$ They calculated $\mathrm{N} 1 s$ peak intensities as a function of θ_{e} for five different N concentration distributions using an XPS spectrum-simulation tool. ${ }^{9}$ They found that appreciable difference in the N $1 s$ intensity can be seen only at $\theta_{e}>60^{\circ}$, indicating that detailed analysis at $\theta_{e}>60^{\circ}$ is crucial for precise composition-depth profiling in AR-XPS. Thus, for depth profiling in AR-XPS, it is of great interest to see if the NIST database is reliable up to larger emission angles. In the present letter, we examine the validity of the NIST EAL database over a wide θ_{e} range up to 80° for $\mathrm{HfO}_{2} / \mathrm{SiON} / \mathrm{Si}$. The observed AR-XPS results are compared with AR-XPS yields calculated with DDFs predicted by the NIST database. In this comparison, we need accurate composition depth profiles for calculation of AR-XPS yields. We employ highresolution Rutherford backscattering spectroscopy (HRBS) for depth profiling because HRBS is one of the most reliable techniques for quantitative depth profiling with a subnanometer depth resolution. ${ }^{10}$

A thin SiON layer was prepared by a direct plasma nitridation on a cleaned $\mathrm{Si}(001)$ surface and, subsequently, a thin HfO_{2} layer was grown on $\mathrm{SiON} / \mathrm{Si}$ by atomic layer chemical vapor deposition at $300^{\circ} \mathrm{C}$. The nominal thicknesses of SiON and HfO_{2} were 1.6 and 2.5 nm , respectively. The composition depth profiling was performed by HRBS using $400 \mathrm{keV} \mathrm{He}^{+}$ion beam as a probe. The details of the HRBS measurement are described elsewhere. ${ }^{10}$ Briefly, energy spectra of He^{+}ions scattered at 50° were measured by a 90° sector magnetic spectrometer. In addition to the so-called random spectra, the [111] axial channeling spectra were measured to reduce the Si substrate signal. The channeling spectrum allows precise measurements of light elements, such as oxygen, nitrogen, and carbon.

Observed HRBS spectra are shown in the inset of Fig. 1. The composition depth profiles were obtained after a simulation of HRBS spectra and are shown in Fig. 1. The obtained profiles show the formation of an almost stoichiometric HfO_{2} layer. The observed total amount of Hf is 7.5 $\times 10^{15}$ atoms $/ \mathrm{cm}^{2}$, which corresponds to 2.7 nm of HfO_{2}. The oxygen profile extends deeper than Hf and the nitrogen peak is seen in the same deeper region, indicating that there is an interfacial layer of SiON . Thus, except for a thin sur-

FIG. 1. Composition depth profiles of $\mathrm{HfO}_{2} / \mathrm{SiON} / \mathrm{Si}$ measured by HRBS. The inset shows the observed HRBS spectra.
face contamination layer (3×10^{14} atoms $/ \mathrm{cm}^{2}$ of carbon) , the observed profiles are in good agreement with the intended sample structure.

AR-XPS measurements were performed on a Thermo instrument equipped with an $\mathrm{Al} K \alpha$ source. This instrument allows us to collect AR-XPS data in parallel without tilting the sample. Photoelectron spectra of $\mathrm{Hf} 4 f, \mathrm{Si} 2 p, \mathrm{O} 1 s$, and N $1 s$ were measured at emission angles from 20° to 80° with respect to the surface normal. Shirley background subtraction and peak fitting were used when extracting peak areas. Figure 2 shows the observed photoelectron yield ratios, $(\operatorname{Hf} 4 f) /(\operatorname{Si} 2 p),(\mathrm{O} 1 s) /(\operatorname{Si} 2 p)$, and (N $1 s) /(\operatorname{Si} 2 p)$. Here, the $\operatorname{Si} 2 p$ yield includes the signals from the substrate Si and the SiON film. The observed ratios, $(\operatorname{Hf} 4 f) /(\operatorname{Si} 2 p)$ and (O $1 s$)/(Si $2 p$), increase with emission angle, indicating that both Hf and O exist at a shallower region than Si , while the ratio of $(\mathrm{N} 1 s) /(\operatorname{Si} 2 p)$ is almost constant, indicating that nitrogen exists at a relatively deeper region. These results are qualitatively consistent with the HRBS profiles.

Photoelectron yields were calculated with a simple exponential decay function with a decay constant equal to the IMFP to examine the effect of the elastic scattering. Because

FIG. 2. Comparison between experimental (symbols) and calculated (lines) emission-angle dependences of XPS yields. The yield ratios $($ Hf $4 f) /(\operatorname{Si} 2 p),(\mathrm{O} 1 s) /(\operatorname{Si} 2 p)$, and $(\mathrm{N} 1 s) /(\operatorname{Si} 2 p)$ are shown. Calculated results with IMFP (dotted lines), modified IMPF (dashed lines) and DDF (solid lines), are shown.
Downloaded 05 Mar 2008 to 130.54.110.22. Redistribution subject to AlP license or copyright; see http://apl.aip.org/apl/copyright.jsp

FIG. 4. Emission depth distribution functions for $\mathrm{Si} 2 p$ photoelectrons excited by $\mathrm{Al} K \alpha$ at different emission angles in HfO_{2} calculated by the NIST EAL database with the TPP-2M formula. The result excluding elastic scattering is shown by a dashed line for comparison (IMFP).
1.86 nm , which is 86% of the IMFP (2.16 nm) indicating good agreement with the above obtained value of 85%. The relatively large effect compared to the previous result for SiO_{2} [EAL is 93% of IMFP (Ref. 7)] can be ascribed to the larger elastic-scattering cross section of Hf. Thus, the effect of the elastic scattering can be taken into account by just reducing IMFP at $\theta_{e}<55^{\circ}$. For precise depth profiling, however, analysis at $\theta_{e}>60^{\circ}$ is crucial, ${ }^{8}$ and such a simple correction cannot reproduce the experimental results for large emission angles (see dashed curves in Fig. 2).

At larger θ_{e}, the DDF deviates considerably from the exponential decay function, as can be seen in Fig. 4. This is also the effect of elastic scattering. At larger emission angles, photoelectrons may escape from the surface by a shortcut, as shown by Fig. 3(b). This effect is pronounced for photoelectrons produced at deeper depths. Due to this effect, the escape probability of $\operatorname{Si} 2 p$ photoelectrons, which are produced in a relatively deeper region than $\mathrm{Hf} 4 f$ and $\mathrm{O} 1 s$, is enhanced from a simple exponential decay function. As a result, better agreement between the experimental and calculated XPS yields could be obtained if DDFs are used instead of the simple exponential decay function. We now examine the extent to which DDFs predicted by the NIST database can improve the calculation of XPS yields.

The photoelectron yields calculated with the DDFs are shown by solid curves in Fig. 2. In the calculation, DDFs for photoelectrons in HfO_{2} were used because the observed photoelectrons travel mainly in the HfO_{2} layer. The agreement between the calculated and experimental results is improved
remarkably for $(\mathrm{Hf} 4 f) /(\operatorname{Si} 2 p)$ and $(\mathrm{O} 1 s) /(\operatorname{Si} 2 p)$ at θ_{e} $>60^{\circ}$. Good agreement over the whole angular region up to 80° is now obtained, indicating that the NIST database is reliable up to 80°. This allows AR-XPS analysis in a wide angular region and so more precise depth profiling in ARXPS can be performed.

Finally, the relatively poor agreement between the experimental and calculated results for $(\mathrm{N} 1 s) /($ Si $2 p)$ in Fig. 2 can be attributed to the errors in nitrogen analysis for both HRRBS and AR-XPS. Due to the small Rutherford cross sections and the overlapping of nitrogen signals with the substrate Si , the accuracy of nitrogen profiling in RBS is rather poor. In XPS measurements, quantitative analysis of N $1 s$ peak in the present sample is also difficult because of the accidental interference by the plasmon loss of the Hf $4 d$ peak.

In summary, the effect of elastic scattering in AR-XPS was experimentally studied for $\mathrm{HfO}_{2} / \mathrm{SiON} / \mathrm{Si}$. The EAL is reduced from the IMFP by $\sim 15 \%$ at $\theta_{e}<55^{\circ}$, while it is increased at $\theta_{e}>60^{\circ}$ due to elastic scattering. The observed AR-XPS result can be reproduced fairly well over a wide angular region up to 80° by simulations using DDFs predicted by the NIST EAL database.

The authors are grateful to T. Hattori, H. Nohira, S. Tanuma, and M. Suzuki for fruitful discussions. This work was supported by JSPS and FWO under the Japan-Belgium Research Cooperative Program and also supported in part by SENTAN, JST.
${ }^{1}$ K. Kobayashi, M. Yabashi, Y. Takata, T. Tokushima, S. Shin, K. Tamasaku, D. Miwa, T. Ishikawa, H. Nohira, T. Hattori, Y. Sugita, O. Nakatsuka, S. Sakai, and S. Zaima, Appl. Phys. Lett. 83, 1005 (2003).
${ }^{2}$ C. J. Powell and A. Jablonski, Surf. Interface Anal. 33, 211 (2002).
${ }^{3}$ C. J. Powell and A. Jablonski, NIST Electron Effective Attenuation Length Database, Version 1.0, National Institute of Standards and Technology, Gaithersburg, MD, 2001.
${ }^{4}$ I. S. Tilinin, A. Jablonski, J. Zemek, and S. Hucek, J. Electron Spectrosc. Relat. Phenom. 87, 127 (1997).
${ }^{5}$ A. Jablonski and C. J. Powell, Surf. Sci. Rep. 47, 33 (2002).
${ }^{6}$ R. G. Vitchev, Chr. Defranoux, J. Wolstenholme, T. Conard, H. Bender, and J. J. Pireaux, J. Electron Spectrosc. Relat. Phenom. 149, 37 (2005).
${ }^{7}$ S. Tanuma, C. J. Powell, and D. R. Penn, Surf. Interface Anal. 21, 165 (1994).
${ }^{8}$ C. J. Powell, W. S. M. Werner and W. Smekal, Appl. Phys. Lett. 89, 172101 (2006).
${ }^{9}$ W. S. M. Werner, W. Smekal, and C. J. Powell, NIST database for the simulation of electron spectra for surface analysis, SRD 100, National Institute of Standards and Technology, Geithersburg, MD, 2005.
${ }^{10}$ K. Kimura, S. Joumori, Y. Oota, K. Nakajima, and M. Suzuki, Nucl. Instrum. Methods Phys. Res. B 219\&220, 351 (2004).
${ }^{11}$ S. Tanuma, C. J. Powell, and D. R. Penn, Surf. Interface Anal. 25, 25 (1997).

[^0]: ${ }^{\text {a) }}$ Electronic mail: kimura@kues.kyoto-u.ac.jp

