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Abstract—In this paper, we regard the sequence of returns as
outputs from a parametric compound source. Utilizing the fact
that the coding rate of the source shows the amount of information
about the return, we describe £-learning algorithms based on the
predictive coding idea for estimating an expected information gain
concerning future information and give a convergence proof of the
information gain. Using the information gain, we propose the ratio
w of return loss to information gain as a new criterion to be used
in probabilistic action-selection strategies. In experimental results,
we found that our w-based strategy performs well compared with
the conventional Q-based strategy.

Index Terms—Information gain, predictive coding, probabilistic
action selection strategy, reinforcement learning.

1. INTRODUCTION

ONSIDERING an agent that learns a policy for optimizing
C systems, we are interested in how the agent chooses an ac-
tion that maximizes future rewards in an unknown environment
without a supervisor’s support. Examples of an agent include
an autonomous robot, a control device, and so on. Reinforce-
ment learning [1] is an effective framework to mathematically
describe a general process that consists of interactions between
an agent and an environment. The framework has been applied
in the fields of online clustering, task scheduling, and financial
engineering [2]-[4], for example.

Inreinforcement learning, the agent maximizes the return (the
discounted sum of future rewards) by exploiting the knowledge
of its environment precedently explored by itself. Hence, it is
important to know how accurate the knowledge is, or more con-
cretely, how well the expected return termed “Q-function” [1],
[5] is estimated for switching its strategies from exploration to
exploitation at an appropriate time step. Accordingly, we often
try to know how much taking an action contributes for esti-
mating the Q-functions. An effective and viable method is to
work out the coding rate of the return that corresponds to the
mean of the codeword length when the observed return is en-
coded; since the coding rate is written as the sum of the essen-
tial uncertainty (entropy rate) and the distance between the true
and the estimated distributions (redundancy). In other words, the
coding rate shows the amount of information on the return, so
the “information gain” concerning future information is given
by the discounted sum of the coding rates to be observed in
future. We accordingly formulate a temporal difference (TD)

Manuscript received March 15, 2003; revised October 21, 2003. This work
was supported in part by Grant 14003714 for scientific research from the Min-
istry of Education, Culture, Sports, Science, and Technology, Japan.

The authors are with the Graduate School of Informatics, Kyoto University,
Kyoto 606-8501, Japan (e-mail: kiwata@sys.i.kyoto-u.ac.jp).

Digital Object Identifier 10.1109/TNN.2004.828760

learning for estimating the expected information gain and prove
the convergence of the information gain under certain condi-
tions.

As an example of applications, we propose a new criterion to
be used in probabilistic action-selection strategies. Some typ-
ical strategies have simply utilized the estimates of the Q-func-
tion. Although the estimate is an experience-intensive value for
exploitative strategies, it is insufficient for exploration because
it does not include factors evaluating the uncertainty and the
accuracy of the estimate. This is one reason why controlling
the tradeoff between exploration and exploitation is difficult.
Hence, we propose the ratio w of return loss to information gain
as a criterion for making action selection strategies more effi-
cient. We apply it to a typical probabilistic strategy and show in
experiments that the w-based strategy performs well compared
with the conventional Q-based strategy.

The organization of this paper is as follows. We begin with
the encoding of return sources by the TD learning in Section II.
In Section III, we apply the proposed criterion w to the softmax
method and show the experimental results comparing the
w-based strategy with the conventional Q-based strategy.
Finally, we discuss the question of model selection and give
some conclusions in Section IV.

II. SOURCE CODING FOR RETURN SEQUENCE

We first review the framework of discrete-time reinforcement
learning with discrete states and actions, where stochastic pro-
cesses are Markovian. Let 7 = {¢ |t = 0,1,2,...} denote the
set of time steps. Let S be the finite set of states of the envi-
ronment, A be the finite set of actions, and & be the set of real
numbers. At each step ¢, an agent senses a current state s; € S
and chooses an action a; € A(s;), where A(s;) denotes the
set of actions available in the state s;. The selected action a;
changes the current state s; to a subsequent state s;+1 € S. The
environment yields a scalar reward 71 € R according to the
state transition. The interaction between the agent and the en-
vironment produces a sequence of states, actions, and rewards,
$1, 41,72, S2,a2,T3, ... The goal of the agent is to learn the op-
timal policy 7*: & — A, that maximizes the return over time

x(St,at) = Teqp1 +Yrep2 + ”727"t+3 +--- = Z”Yiﬁ+i+1 (1
i=0

where 7,47 is called an immediate reward, whereas
Tt4+2,Tt+3,... are called delayed rewards. The parameter
v, where 0 < ~ < 1, is the discount factor that controls the
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relative importance of the immediate reward and the delayed
rewards.

A. Return Source

Suppose that the agent chooses an action a € A at a state
s € S n times in the experience. Let z;(s,a) be the return
given by (1) in the ith trial for “fixed” state-action pair (s, a).
We regard the returns in n trials as a sequence of length n and
denote the “return sequence” by

z"(s,a) = w1(s,a),22(8,a), ..., (s, a). 2

We will make the following three assumptions regarding return
sources. First, for every (s,a), the return source X (s,a) =
{X;(s,a)|li = 1,2,...} is drawn independently according to
parametric probability distribution

Po(s,a) (Ti(s,a)) = Pr(Xi(s,a) = z:(s,a)) 3)

where 0(s,a) = (01(s,a),02(s,a),...,0k(s,a)) denotes
the k-dimensional parameter vector of the distribution
Pé(s,a) I @ compact set © C R*. Second, the model set
My = {py(s,a)|f(s,a) € O} of probability distributions in-
cludes the true probability distribution. Note that the discussion
in this section similarly holds even if we do not assume it.
Third, the return source satisfies the ergodic theorem due to
Birkhoff [6]. In short, this means that it is possible to estimate
the true parameter from a large number of trials. Otherwise, we
cannot gather sufficient information to identify the parameter,
no matter how many returns are observed. For notational
simplicity, we drop (s, a), henceforth, for example we use z,
X, X, and 4.

B. TD Learning for Information Gain Estimation

To acquire the optimal policy to maximize the return, the
agent has to accurately estimate the Q-functions before exploita-
tion. The information gain to be received in future is an impor-
tant value for estimation, particularly in early stages, because it
tells us how taking an action contributes to refining the current
estimates. We will define the information gain as the discounted
sum of the coding rates later.

Consider a coding algorithm for the return source X, so that
we can obtain the coding rate that means the amount of infor-
mation on the return. In order for the algorithm to apply to the
framework of reinforcement learning, it should work online and
its coding rate should asymptotically converge to the entropy
rate. We accordingly employ Rissanen’s predictive coding [7]
for calculating the coding rate and give a TD learning for esti-
mating the information gain expressed by the discounted sum
of the coding rates.

The predictive coding algorithm sequentially encodes
one-by-one each return x; in the sequence x" for any fixed
state-action (s,a). For ¢ > 1, the algorithm finds the max-
imum-likelihood (ML) estimate 6G-1 from the observed
return sequence '~ ! and calculates the conditional probability
distribution

Poi-1) (xi)

— . 2 4
Pyci-1 (z¢71) @

Pacn (wilz' ™) =

using (=1 Since the return source is independently dis-
tributed, the probability distribution is rewritten as

Pai—n (@i]a" ™) = pyen) (). (5)

We will use the convention that log ¥y def log, y for arbitrary
nonnegative y. The codeword length of the ¢th return x; is then

U(zi) = —log pgii—n) (w3). (©)

Therefore, the total codeword length of the sequence is written
n

asl(z™) =Y ., l(z;). By taking its expectation, we have
L(X™) =Y E(X:)]. @)
i=1

Under the assumptions, the total codeword length is asymptoti-
cally equal to what is called the stochastic complexity given by

L(X™) =H(X") + glogn +0o(1) )

where H(-) denotes the entropy. For the proof, see [8, pp.
231-233]. We see that the coding rate L(X™)/n converges
to the entropy rate of the return source as n — o0o. Note
that instead of the above predictive (one-step) coding we can
employ the two-step coding [8, Ch. 7] composed of the two
scans for computing the ML estimate 6 of the whole sequence
x™ and again for computing p, (™). However, such operations
take unnecessarily too much time and memory for storing the
whole sequence when n is large. Accordingly, we extend the
predictive coding form to TD methods.

Using the above predictive coding idea, let us formulate TD-
learning algorithms, called “¢ learning” in this paper, for the pur-
pose of approximating the mean of the information gain. Since
we cannot directly observe the return z in practice, we encode
the return estimate  instead of x. The parameter estimate g is
also calculated using TD methods. We denote the estimate of
the Q-function by Q). Let y, be the discount factor for the value
of @) and ~y, be the discount factor for the value ¢ of the infor-
mation gain. The information gain £(s;, a;) is expressed as the
discounted sum of the amount of information

Ustyar) = =Y vilogps,, (#(serisarsi)) ©)
=0

that is expected to be received in the future. We describe the
{-learning algorithms under the one-step versions of two typical
TD methods, Q-learning [9] and Sarsa [1, Ch. 6]. The /-learning
algorithms take a similar approach to the Q-learning. The algo-
rithms can be readily extended to two-step or more versions.

1) ¢-Learning Under Q-Learning: For each time step t,
given a one-step episode (s;, at, Tt4+1, St+1), Q-learning has
the update form

Q(s¢,at) — Q(8¢,a¢) + 2 0Q (10)
where the learning rate «; is set within [0,1] and
0Qr =mi41 +7g max  Q(sir1,0") — Qs ar). (11
a’'€A(s¢41)
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With the estimate §; = é(st, ay) of the parameter vector at time
step ¢, the information gain is updated according to the rule

K(St, Glt) — [(St, at) + at(%t (12)
where
oy = — logpéi (Z(s¢,at))
+v9¢ max  {(sip1,a") — (s ae)  (13)
a’€A(st41)
Z(s¢,at) =Te41 + 70 a/elil?;)fﬂ) Q(st41, a'). (14)

For the asymptotic behavior, see Appendix I. Under some con-
ditions of ¢ and the convergence conditions of Q-learning, the
value of £ converges to the expected value (see Appendix II). If
§ is the true parameter and v, = 0, then the information gain
converges to the entropy rate of the return source.

2) {-Learning Under Sarsa: For each time step ¢, given a
one-step episode (S, a¢, 41, St+1, G¢41), Sarsa under a policy
7 has the update form

Qﬂ(St, at) — Q”(st, at) + Olt5Q;T (15)

where
0QF =141 +7QQ" (St41, ar41) — Q" (¢, ay). (16)

With the estimate 6; = @ (st, at) of the parameter vector at time
step ¢, the information gain is updated according to the rule

K(Sh at) — K(St, at) + at(%t (17)
where
0ty = — logpy, (2 (81, at))
+v9¢ max  {l(sip1,a") — U(se,a:) (18)
a’€A(S41)
if?(st-,at) =Tt41 + WQQﬁ(St+1;at+1)- (19)

In general, the convergence is dependent on the policy 7. The
value of Q™ converges to the expected value under certain con-
ditions and policies due to Singh e al. [10]. The value of /
also converges to the expected value under the same conditions
and some conditions of ¢ discussed in Appendix II, because the
value of £ is derived from the value of Q™. Given the true pa-
rameter and v, = 0, £ converges to the entropy rate of the return
source.

III. AN EXAMPLE OF APPLICATIONS

In this section, we consider a criterion useful for probabilistic
action-selection strategies using the information gain. We begin
with the review of dilemma between exploration and exploita-
tion in action-selection strategies.

A. Exploration-Exploitation Dilemma

Within the framework of reinforcement learning, an agent
learns a policy based only on the immediate reward and the sub-
sequent state. This means that the learning is influenced by the
distribution of episodes that have been observed. If the agent
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always selects actions that maximize current estimates of the
Q-function, then the agent often favors actions with high-re-
turn estimates in early stages of learning, while failing to notice
other actions that may exhibit even higher returns. This leads
us to the question of what strategy of action selection is most
effective in learning. In other words, the agent faces a tradeoff
in choosing which should be favored, “exploration” to gather
new information of the environment or “exploitation” to max-
imize the return using the knowledge already collected. This
problem is well known as the exploration—exploitation dilemma
[1, Sec. 1.1]. The subject has been widely studied in the commu-
nity of reinforcement learning. See [11], [12], for example. It is
common to try and control the dilemma by using a probabilistic
approach for action selection. Here we propose a new criterion
w for more efficient probabilistic action-selection strategies as
an example of using the information gain. As a typical strategy,
the following softmax method is widely known and has been
used in many cases.

1) (Q-Based) Softmax Method: Let m(s,a) be the proba-
bility that the agent chooses an action a in a state s. The softmax
selection is written as

s,a
def g (@)

o) = Za'eA(s)g(M)

where g is a nonnegative and monotone increasing function.
When g(-) = exp(+), it is called the “Boltzmann selection.”
The temperature parameter 7 is gradually decreased over time
for promoting an exploitation strategy. In practice, it is difficult
to tune the temperature parameter without any prior knowledge
of the values of Q.

(20)

B. Criterion w for Action Selection Strategy

Typical “Q-based” selections refer only to the estimates of the
Q-function as (20) indicates. The estimate is informative for ex-
ploitative strategies, but not for exploratory strategies. Hence,
we introduce a new criterion effective for both strategies uti-
lizing the fact that the coding rate is written as the sum of the es-
sential uncertainty and the distance between the true and the es-
timated distributions. This is based on the idea that the strategy
should make decisions taking into account the long-run return
loss and the information gain. Recall that we can get the infor-
mation gain concerning future information using the ¢-learning
algorithm. We find the optimal policy via a strategy based on the
neat ratio of return loss to information gain, for any state-action
pair

def 7(s,a)
w(s,a) = (5,0) 21
where the loss function is
n(s,a) < max Q(s,d’) — Q(s,a). (22)

a’€A(s)

Note that w(s, a) = 0 for action a = arg max,c 4(s) Q(s,a’).
The smaller the criterion w(s, a) is, the better the state-action
pair (s, a) is in both exploration and exploitation. By setting a
large value as the initial value of /, during early stages the infor-
mation gain £ is large compared to the loss function 7) since the
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associated with each narrow arrow is the probability of the state transition. The letters “a”, “b”, and “c” denote the action available in each state. The reward and
the penalty are indicated by the value of wide arrow. (a) Shortcut domain. (b) Misleading domain. (c) Deterministic domain.

estimated parameter is far from the true parameter, that is, the re-
dundancy of the coding rate is large. A large initial value works
only to prevent from dividing zero and to give priority to choice
of actions which have never been selected. Hence, taking action
a # argmaxgeas) Q(s,a’) that exhibits the smaller value
of w(s,a), where w(s,a) > 0 is a more efficient exploration
so that the agent get a larger amount of information for esti-
mating the Q-functions. As the estimated parameter tends to the
true parameter the information gain ¢ goes to a constant value
and the value of w is determined mainly by the loss function
value. Therefore, taking action a that shows the smaller value of
w(s, a) is better because it yields a smaller loss, in other words,
a higher return. Again, we see that for any state the action which
gives the minimum value w(s, a) = 0 is always consistent with
the best action a = arg max, ¢ 4¢s) Q(s, a’) at each stage. Ac-
cordingly, by assigning higher probabilities to actions with the
smaller value of w we perform an efficient exploration in early
stages and a good exploitation in later stages.

Let us confirm how the criterion w behaves as the number
of time steps increases. For t € 7 and any pair (s, a), we use
we(s,a), ni(s,a), and £(s, a) to denote the values at time step
t. Let I;(s, a) be the event indicator function that the pair (s, a)
occurs at time step ¢. For any (s, a) the evolution has the form

77t+1(5 a) s a ( ) _I(s.a
wisa(s,0) = e L(( >)+ (1 1(s,a)
_ (s, a) + ome(s,a
~ Li(s,a) + 644(s, a) L(s,a)
480 g a). (23)

Li(s,a)

def . .
Define ¢; = 1//;(s,a). Then the form is rewritten as

ne(s,a)—wi(s, a)dl(s,a)
1+e:64:(s,a)

Li(s, a).

(24)
The numerator 67:(s,a) — wy(s,a)éls(s,a) in the second
term characterizes the behavior of time evolution. If
one(s,a) > wi(s,a)dli(s,a), then wiy1(s,a) becomes
larger. This means that the action a is penalized since the
obtained information gain at time step ¢ is few compared to
the payed return loss judged from the current ratio wy(s, a).
Otherwise, wy41(s, a) becomes smaller so that taking the ac-
tion a is encouraged for a good information gain in efficiency.
Hence, while # is still small, taking actions which contribute to
estimating the Q-functions is encouraged and as ¢ increases the
best action a which w(s, a) = 0 holds becomes preferred.
Now, taking the minus value of w and then applying it to the
form of the softmax method, we have

5 (
Ezarefus)g (:ﬂgfiil).

Notice that smaller values of w assign higher probabilities to
actions. We call this the “Boltzmann selection” when g(-)
exp(+). Since the values of w are automatically tuned during the
learning process, this alleviates some troubles associated with
tuning 7.

wt+1(37 a) :wt(37 a)+5t

—w(s,a)

(25)

C. Experiments

We have examined the performance of the Q-based and the
w-based Boltzmann selections. For simplicity, we tested them
on three domains of a Markov decision process (see Fig. 1).
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TABLE 1
PARAMETERS m IN EACH DOMAIN

Strategy Shortcut | Misleading | Deterministic
Q-based Boltzmann Selection m = 50 m = 50 m = 30
w-based Boltzmann Selection m=1 m=1 m=1

In these figures, the circle and the narrow arrow are the state
of the environment and the state transition, respectively. The
number associated with each narrow arrow represents the prob-
ability of state transition, and the letters “a”, “b”, and “c”” denote
the action available in each state. Each wide arrow represents a
scalar reward or a penalty. During each episode, the agent be-
gins at the initial state “S”, and is allowed to perform actions
until it reaches the goal state “G”. For every state-action pair
(s,a), we used the normal distribution pg (s 4) With the param-
eter f(s,a) = (Q(s,a),v(s,a))l where Q(s,a) and v(s,a)
denote the mean return and its variance, respectively, and initial-
ized as 0(s,a) = (0,1)T. Here, T denotes transposition. Let the
integer n(s, a) denote the number of times that the state-action
pair (s, a) has been tried. The agent learns @, v, and ¢ by the
tabular versions of the one-step Q-learning, variance learning
[13], and /-learning, respectively

Q(5¢,a¢) — Q(5t, 1) + A (s,0)0Q¢ (26)
0Qt =Ti41 + 7 o x Q(5141,a")
— Q(s¢, a4) (27)
v(8t,at) —v(8¢,at) + Qp(s,a) OV (28)
dvr = (8Q)?
+74v (8t+1; arg | max Q(s141, a’))
— (s8¢, ar) (29)
U(st,ap) —L(5¢,a1) + On(s,a)0ls (30)
ol = — logp(;t (%(s¢,at))
+v max {(spp1,a’) — (st ar)  (B1)
a’€A(s141)

where the learning rate is v, (s,q) = 20/(100 + n(s,a)), the
discount factors are yg = v, = 0.95, and Z(s, a;) is given
by (14). For every state-action pair (s, a), the initial informa-
tion gain was set as £(s,a) = 50 to prevent from dividing by
zero in the calculation of w(s,a) during early phases of the
learning process.! We applied the function g(-) = exp(-) to each
softmax method, namely, we used the Boltzmann selection. In
order to smoothly shift the strategy from exploration to exploita-
tion, the temperature of each strategy was decreased as 7, (5) =
mx100/(n(s)+1)? where the integer n(s) = D aea(s) M5, a)
is the number of times that the state s has been visited and the
parameter m was tuned as appropriately for each domain as pos-
sible. The values of m are shown in Table 1.

Fig. 1(a) shows a shortcut task that consists of five states; two
actions for each state and one goal. Each action has a similar
value so that it is difficult to decide which action is better. The
optimal policy for this domain is to choose action “a” every-
where. In this domain, the return of each episode is a constant
value “10” regardless of the agent’s strategy. The key point here

1Of course, any large value can be set as the initial value.
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is to find the most efficient policy that allows the agent to reach
the goal as quickly as possible. The next domain, as shown in
Fig. 1(b), is a misleading domain again composed of five states;
two actions for state S and one goal. This has a suboptimal
policy that the agent tends to accept. At first sight choosing ac-
tion “a” looks better because of the reward at the start of the
episode, but the reward is finally offset by the penalty. The point
is to avoid the suboptimal policy as soon as possible so that the
optimal policy taking “b” is encouraged. Finally, the largest do-
main shown in Fig. 1(c) is a deterministic domain where state
transitions are deterministic. This consists of six states; three
actions for each state and five goals each with a different re-
ward. Here the problem is that the agent attempts to select the
best of the goals without performing sufficient exploration. The
optimal policy is to select action “a” everywhere. There are sev-
eral ways for measuring the learning performance of a particular
strategy. To measure the efficiency of a strategy during a fixed
number of episodes, we evaluate the learning performance by
three measures, collected total return, its standard deviation, and
return per episode. However these measures are not suitable for
the shortcut domain because the agent always receives the same
return. For this reason, we evaluate the performance in this do-
main by measuring the return “per step,” using what is called
the “return for effort” principle. The return per step/episode also
yields an analysis of how the efficiency of each strategy changes
as the number of episodes increases.

The results of the total return and its standard deviation are
shown in Table II. Fig. 2 shows the results of the return per
step/episode measure. In addition, in the shortcut domain, the
Q-based and the w-based strategies took 930.4 steps and 912.72
steps per trial, respectively. These results are averaged over
10000 trials and each trial consists of 100 episodes. From the
total steps and return results, we find that the w-based strategy
is better than the conventional Q-based strategy in terms of
policy optimization. The results of the standard deviation,
especially in deterministic domain, show that the w-based
strategy also has a superiority in stability. From the results of
the return per step/episode, we see that the w-based strategy
is more efficient without unnecessary excessive exploration
in early stages. This suggests that our criterion plays a role
for avoiding fruitless exploration. The point here is that the
information gain becomes small according to the complexity
of the probabilistic structure of the domain. If the probabilistic
structure is simple, then the information gain decreases quickly
and vice versa. Therefore, the agent can efficiently explore the
domain. Furthermore, in Table I, we confirm that some troubles
regarding tuning are alleviated because the values of m in the
w-based strategy are constant regardless of the value of return
given in each domain. Thus, the proposed criterion w is a good
criterion for strategies of a probabilistic action-selection, yet it
is simple.

IV. DISCUSSIONS AND CONCLUSION

Our idea is based on the assumption that the return source
is described by a parametric distribution. It is possible that by
assuming a proper distribution we can achieve more efficient
learning, because the prior knowledge about the distribution can
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TABLE II
TOTAL RETURN PER TRIAL (MEAN AND STANDARD DEVIATION)
Strategy Shortcut Misleading Deterministic
mean | s.d. mean s.d. mean s.d.
Q-based Boltzmann Selection 1000 0 769.46 | 37.38 | 753.26 | 99.23
w-based Boltzmann Selection 1000 0 791.59 | 31.84 759.8 64.07
1.28 =
1.26}
5} £ of
& 1.24¢ %
5 L o
g 1.22 sl
£ 12
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21.18 7
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Fig. 2. These are simulation results of return (or per step) measure, averaged over 10 000 trials. Each trial consists of 100 episodes. The x-axis and the y-axis are
the number of episodes and the collected return (or per step) during each episode, respectively. These represent a change of the efficiency of each strategy in the
run. (a) Return per step in shortcut domain. (b) Return in misleading domain. (c) Return in deterministic domain.

be incorporated into the learning process. At the same time, we
need to examine the case where there is no knowledge of the
return source. The key problem is deciding what distribution is
appropriate to express the return source. This is well-known as
the model selection problem in the field of statistics and a great
deal of controversy surrounds this problem [7], [14]-[16].

In the experiments, we assumed that the return source obeys a
normal distribution. Given a large amount of both memory and
time, it is possible that we can select the distribution more effec-
tively. From the view point of the minimum description length
principle, the distribution that minimizes the information gain
is the best distribution for describing the source, because min-
imizing of the information gain corresponds to shortening the
total description length of the source. Thus, a better way is to
apply a distribution that gives the minimum information gain,
by updating the parameter vectors of several distributions. In ad-
dition, if the model set M does not include the true distribution

q, the coding rate of the information gain converges to a positive
constant value determined by the closest point in M, that is, the
point pg € M minimizing the divergence D(pg||g) > 0 as is
well-known in information theory. See [8, Ch. 7], for example.

In this paper, we regarded the sequence of returns as out-
puts from a parametric compound source. We then described
the /-learning algorithms based on the predictive coding idea
for estimating the expected information gain and gave the con-
vergence proof. As an example of applications, we proposed the
ratio w of return loss to information gain as a new criterion for
action-selection, and applied it to the softmax strategy. In ex-
perimental results, we found that our w-based strategy performs
well compared with the conventional Q-based strategy. Finally,
it is likely that our /-learning can be applied to a wide area of
applications including the strategy of action-selection, and gen-
eralization, for example. We would like to consider other appli-
cations such as these in future work.
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APPENDIX [
ASYMPTOTIC BEHAVIOR OF /-LEARNING UNDER Q-LEARNING

The behavior of the information gain £ is not simple, since
for any state-action pair (s,a) the time evolution of the se-
quence {/;(s,a)|t € T} depends on the time evolution of the
sequence {04(s,a)|t € T} of the parameter vector estimate.
However, if the learning rate of the parameter is small, the pa-
rameter changes slowly, roughly speaking, we can assume that
the parameter is almost constant. We hence introduce the fixed-6
process in order to study an asymptotic behavior of the informa-
tion gain. The analysis of ¢-learning under Sarsa is virtually the
same.

For simplicity of notation, let Q* be the expected return
(Q-function) and # be the fixed parameter vector, hereafter. Let
P(s’|s, a) denote the transition probability that taking action a
in state s produces a subsequent state s’. Define

Z*s,aé (s,a) + 7 s,a) max £*(s';ad
(3,0) 3P )
(32)
where
I"(s,a) = —E|logpy (Tt+1+7Q max Q*(3t+1~,a/)>
a’€A(s41)

|t = s,a¢ = a] . (33)

For fixed 6, define the expectations, which are condi-
tioned on the minimal o-algebra F; created by the set
{si,ai,s¢i = 0,1,...,t =1}, by

0,/) |ft, (lt:|
(34

T(:i:(st,at)) “'E [r,_H + 70 erﬁ(ax

)Q(st+1,

and

T(K(st,at))déf [ logp9<7"f+1+'yQ max Q(st+1,a')>

a'€A(s41)

max

+
e a’€A(si41)

Z(st+1,a')|ft7at] . (35)
By the Markov property, we can rewrite this as

T (Z(s¢,a1)) = E[reg1]se, at

+7Q Z

s'eS

) d 36
s'|st, ar) Ienj(?i,)Q(S,a) (36)

and

max
a’€A(s¢41)

T(l(st,a¢))=—F {logpg (’I‘H_l-i-ny Q(St-q-l,a'))

|st, at —|—’WZP "|s¢,ar) max ﬁ(s a) (37
s'eS a'€A(s’
respectively. Define the noise of Z by
SM; (£(sp, ar)) = 2(se,ar) — T (8(se,a0)) . (38)
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With the definition of the noise term

6M (£(s1, a1)) = —logps (T (i(s1, ar)) + OMy (& (s1, ar)))

+v¢  max  l(sgy1,a’) — T (U(se,ae))  (39)
a’€A(si41)
(13) is rewritten as
5£t =T (Z(St./ (lt)) + 6Mt (K(Sh at)) - Z(St./ at). (40)

Note that 6M,(-) is the martingale difference and the condi-
tioned variance is bounded uniformly in ¢, namely

E [6Mt()|ft, at] =0
E [(6My)*()|Fe, ar] < 0.

(41)
(42)

As written in [17, Ch. 2], the map T is a Lipschitz continuous
contraction with respect to the supremum norm and £* (s, a) is a
unique fixed point. Equation (39) suggests that the performance
of the /-learning is at most the Robbins—Monro procedure per-
formance [18], because the evolution of the information gain is
available only after some updates due to delayed rewards. The
convergence speed depends on the propagation delay from oc-
currence points of reward. Under the convergence conditions of
the above and the Q-learning, for every pair (s, a) the value of
{(s,a) converges to the value of £*(s,a) with probability one,
as will be seen in Appendix II.

For any pair (s, a), let £(s, a, -) be the piecewise interpolated
continuous function of the sequence {¢:(s, a)|t € 7} in contin-
uous time. There is also a value of d, ,(t) lying in the interval
[1/@s,q, 1], where the value of % , bounds the time interval be-
tween occurrences of the pair (s,a). For any pair (s,a), the
mean ordinary differential equation that characterizes the limit
point is given by

U(s,a,t) = dqeo(t) (T (U(s,a)) — £(5,a,1)) + 2s.a
where z, , works only to hold |£(s,a,t)| < B for a large B.

(43)

APPENDIX II
ROUGH PROOF OF INFORMATION GAIN CONVERGENCE

The proof that we discuss below is based on the manner due to
Kushner and Yin [17, Ch. 12]. Let us show the convergence by
describing that the theorem [17, Ch. 12, Th. 3.5] that all £(s, a)
converge to the limit point £*(s, a) holds under the following
conditions. The other conditions that we do not write are either
obvious or not applicable for the convergence theorem.

We deal with a practical constrained algorithm in which the
value of £ is truncated at H = [—B, B] for large B, and as-
sume a constant learning rate for simplicity of development. The
proof for a decreasing learning rate is virtually the same. De-
fine C = max(sq)esx.a l(s,a). Let B > C/(1 — ;). Recall
that /;(s, a) denotes the information gain £(s,a) at time step
t. The dimension of the problem is determined by the number
b = ||S x AJ| of state-action pairs and {/;(s,a)|t € T } existing
in H°.

Let « be a small real constant value and I;(s, a) be the event
indicator function that the pair (s, a) is observed at time step ¢.
Recall that for any (s,a) £-learning algorithm with truncation
has the form

liy1(s,a) — oy [li(s,a) + adlili(s, a)] (44)
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where 6¢; is given by (40) and IIy[-] denotes the truncation
which brings - to the closest point in H if - goes out of H. Sup-
pose that the state transition process is reducible with proba-
bility one. Let ¢, ,(n 4 1) be the time step that the (n + 1)st up-
date for the pair (s, a) is done, and let 7, ,(n) denote the time
interval between the nth and the (n + 1)st occurrences of the
pair (s, a). Define the expectation of the time interval

u57a(n + 1) = E I:Ts’a('n + 1)Ift5,a(n+1):| . (45)

We assume that for any nonnegative n the value of u; 4(n) is
uniformly bounded by a real number @, , > 1 and that the
time evolution of the sequence {75 ,(n)|n} is uniformly inte-
grable. Let £(s, a, -) denote the piecewise constant interpolation
[17, Ch. 4] of the sequence {/;(s,a)|t € T} in “scaled real”
time, that is, with interpolation intervals of width «.. Under the
given conditions, {{(s,a,T, + -)|Ts € R} is tight [17, Ch. 7
and 8] for any sequence of real numbers 7Ty,, so under Q-learning
convergence conditions [9] we can show that if T, tends to in-
finity, then as « tends to zero it exhibits a weak convergence to
the process with constant value defined by (32). The process is
written as the ordinary differential equation given by (43). Now
we will show that all solutions of (43) tend to the unique limit
point given by (32). Suppose that £(s, a,t) = B for some ¢ and
pair (s, a). By the bound on B

sup [T (4(s,a)) — £(s,a)]

{(s,a)=B

<C+v Z P(s'|s,a)B — B

s'eS
=C—-—(1-v)B<0. (46)
This means

l{(s,a,t) <0, if{(s,a,t) = B (47
£(s,a,t) >0, if {(s,a,t) = —B"

Hence, the boundary of " is not accessible by a trajectory of
the ordinary differential equation given by (43) from any inte-
rior point. From the contraction property of T and by neglecting
Zs,a, for every (s,a) the value of £*(s,a) is the unique limit
point of (43). Taking into account that (43) is the limit mean
ordinary differential equation, all the conditions for the conver-
gence theorem is satisfied. Accordingly, the convergence proof
is complete. u
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