
0018-9162/02/$17.00 © 2002 IEEE42 Computer

Q: A Scenario
Description Language
for Interactive Agents

A
gent internal mechanisms form the basis
for many of the languages proposed for
describing agent behavior and interagent
protocols. These mechanisms include
Soar,1 a general cognitive architecture for

developing systems that exhibit intelligent behav-
ior, and the Knowledge Query and Manipulation
Language,2 a language and protocol for developing
large-scale sharable and reusable knowledge bases.

For the Web, however, we should also consider
the needs of application designers such as sales man-
agers, travel agents, and schoolteachers. To this end,
we have been developing Q, a language for describ-
ing interaction scenarios between agents and users
based on agent external roles. Q can also provide an
interface between computing professionals and sce-
nario writers. Rather than depending on agent inter-
nal mechanisms, Q seeks to describe how scenario
writers should request that agents behave.

The change in focus from agent internal mecha-
nisms to interaction scenarios significantly affects
the language’s syntax and semantics. For example,
if an agent accepts only two requests, on and off,
Q lets scenario writers use only the commands on
and off. This does not mean the agent lacks intelli-
gence, only that it is not controllable.

Further, the only way to know the semantics of
commands is to try them. For example, the seman-
tics of the move command depend on whether the
agent can run rapidly with a light step or move
slowly, in a thoughtful manner. Since Q cannot con-
trol the agent’s internal mechanism, it cannot use
functions—such as Java function calls—to imple-
ment detailed agent behavior.

Scenarios also help establish a bridge between the
computing professionals who design agents and the
scenario writers who design applications. We can
expect an effective dialog to emerge from the inter-
play between the two different perspectives during
the process of formalizing interaction patterns.

DESCRIBING SCENARIOS
Q is an extension of Scheme, a Lisp programming

language dialect. We introduce sensing and acting
functions and guarded commands in Scheme. Since
Scheme is Q’s mother language, all Scheme func-
tions and forms can be used in any Q scenario.

Cue and action
A cue is an event that triggers interaction.

Scenario writers use cues to request that agents
observe their environment. No cue can have any
side effect. Cues keep on waiting for the specified
event until the observation successfully completes.

Comparable to cues, actions request that agents
change their environment. Unlike functions in pro-
gramming languages, Q scenarios do not define the
semantics of cues and actions. Since different
agents execute cues and actions differently, their
semantics fully depend on the agent. The follow-
ing example shows cues, which start with a ques-
tion mark, and actions, which start with an
exclamation point:

(?hear "Hello" :from Jerry)
(!walk :from bus_terminal

:to railway_station)
(!speak "Hello" :to Jerry)

The Q language—which describes interaction scenarios between agents
and users based on agent external roles—provides an interface between
computing professionals and scenario writers.

Toru Ishida
Kyoto University

C O V E R F E A T U R E

(?see railway_station
:direction south)

In this example, the agent waits for Jerry to say hello,
Jerry walks from the bus terminal to a railway sta-
tion, the agent says hello to Jerry and then asks
whether he can see the railway station to the south.
These synchronous actions return after completion.

Asynchronous actions, however, execute in par-
allel. For example, walk can be an asynchronous
action, since we can speak and walk at the same
time. To represent asynchronous actions, we use
the notation !!walk. If we use !!walk in the pre-
ceding example, the agent says hello to Jerry just
after he starts walking. Asynchronous actions sig-
nificantly extend both the flexibility and the com-
plexity of agent scenario descriptions.

Guarded commands
Q can use all Scheme control structures, such as

conditional branches and recursive calls. In addi-
tion, the language introduces guarded commands
for use in situations that require observing multiple
cues simultaneously. A guarded command combines
cues and forms, including actions. After either cue
becomes true, the guarded command evaluates the
corresponding form. If no cue is satisfied, it evalu-
ates the otherwise clause, if present, as follows:

(guard
((?hear "Hello" :from Jerry)
(!speak "Hello" :to Jerry))
((?see railway_station

:direction south)
(!walk :from bus_terminal

:to railway_station))
(otherwise

(!send "I am still waiting"
:to Tom))))

In this example, if one of the cues is observed—if
the agent hears Jerry say hello—the corresponding
forms are performed afterward: The agent says hello
to Jerry. If the guarded command does not observe
any cue, it performs the otherwise clause, and the
agent sends the message “I am still waiting” to Tom.

Scenarios
A scenario describes state transitions. Scenarios

can be called from other scenarios. The scenario
defines each state as a guarded command, but it
can include conditions in addition to cues.

Writers draft scenarios in the form of simple
state transitions, which can describe fairly com-

plex tasks since any form can be evaluated
in the body of states. Scenarios can be called
recursively, Scheme functions can be called in
scenarios, and any scenario can be called in
Scheme functions.

(defscenario reception (msg)
(scene1
((?hear "Hello" :from $x)
(!speak "Hello":to $x)
(go scene2))
((?hear "Bye")
(go scene3)))

(scene2
((?hear "Hello" :from $x)
(!speak "Yes, may I help you?"

:to $x))
(otherwise (go scene3)))

(scene3 ...))

In this example, each scenario defines states as
scene1, scene2, and so on. The same observa-
tion yields different actions in different states. In
scene1, the agent says hello when it hears some-
one say hello. In scene2, however, the agent
responds with “Yes, may I help you?” when it hears
hello again.

Agents and avatars
Agents, avatars, and a crowd of agents are

defined as follows.

(defagent Tom :scenario
'guide_for_sightseeing)

(defavatar Jerry)
(defcrowd pedestrian :scenario
'sightseeing :population 30)

In Q, scenarios specify what the agents must do.
Even if a crowd of agents executes the same sce-
nario, the agents exhibit different actions as they
interact with their environment, which includes
other agents and human-controlled avatars.

MICROSOFT AGENTS EXAMPLE
We can use Microsoft agents to get a feel for how

scenarios work. Assume that we assign the fol-
lowing task to the Microsoft agent named Merlin:
Let a user who wants to learn more about the tra-
ditional Japanese kimono visit the kimono Web site
and freely click Web pages. Each time the user vis-
its a new page, the agent summarizes its content.
If the user does not react for a while, the agent
moves to the next subject.

November 2002 43

Asynchronous
actions extend

both the flexibility
and the complexity
of agent scenario

descriptions.

44 Computer

Figure 1 shows this Q scenario and its outcome.
The action !gesture can perform any of the 60
different gestures that Microsoft agents support.

Although computing professionals can work
with Q easily, scenario writers may not be familiar
with the Scheme syntax. Further, since Q is a gen-
eral-purpose scenario description language, it
grants too much freedom for describing scenarios
for specific domains. We thus introduced interac-
tion pattern cards (IPCs) to capture the interaction
patterns in each domain.

Figure 2 shows an IPC equivalent of the Q sce-
nario shown in Figure 1. Scenario writers can use
Excel to fill in the card. The IPC translator then
generates a Q scenario according to the card’s con-
tents and predefined semantics. Note that IPC is
not merely an Excel interface to Q. Rather, it pro-
vides a pattern language, and so it should be care-
fully designed by analyzing the interactions in each
domain.

We have used Q and Microsoft agents to develop
a multicharacter interface for information retrieval
in which domain-specific search agents cooperate to
satisfy users’ queries.3 Previous research often used
blackboard systems to integrate the results from mul-
tiple agents. However, given that computing profes-
sionals develop search agents independently, attempts
to integrate these results are often unsatisfactory.

Thus, we have taken a totally different approach.
Instead of integrating the results at the back end,
our interface displays the integration process to
users as a dialogue involving multiple characters,
each of which represents a different search agent.
Users can observe the collaboration process among
the agents and join the conversation if necessary.
This multicharacter interface increases user satis-
faction by integrating the results socially at the front
end.

DESIGNING SCENARIOS
A diverse variety of applications use interactive

agents on the Web.4 To allow application design-
ers to use fairly complex agents, we use Q in a sce-
nario design process that provides a clear interface
between application designers and computing pro-
fessionals.

Q architecture
Figure 3 shows the Q architecture for handling

scenarios. When a particular agent receives a Q sce-
nario, the corresponding agent system creates a Q
processor to execute the scenario. This agent system
can host multiple agents. For example, hundreds
of agents can coexist in the FreeWalk5 3D virtual
space. Although we implemented Q’s processors in
Scheme, we provide the program interface to C++

Figure 1. Sample Q
scenario. Written by
Masahito Fukumoto
and Akishige
Yamamoto in Q, the
scenario uses the
agent Merlin to
guide users to Web
sites and pages with
information about
the Japanese
kimono.

(defscenario card14 ()
(scene1
(otherwise
(!speak "Hm-hum, you are so enthusiastic.")
(!speak "Then, how about this page?")
(!display :url "http://kimono.com/index.
htm")

(go scene2)))
(scene2
((?watch_web :url "http://kimono.com/type.
htm")
(!speak "There are many types of obi.")
(!speak "Can you tell the difference?")
(go scene2))

((?watch_web :url "http://kimono.com/fukuro.
htm")
(!gesture :animation "GestureLeft")
(!speak "Fukuro obi is for a ceremonial dress.")
(!speak "Use it at a dress-up party!")
(go scene2))

((?watch_web :url "http://kimono.com/maru.htm")
(card42 self)
(go scene2))

((?timeout :time 20)
(go scene3)))

(scene3
(otherwise
(!speak "Did you enjoy Japanese Kimono?")
(!speak "OK, let’s go to the next subject."))))

and Java software, so we can easily combine Q and
legacy agent systems.

The Q interpreter can execute hundreds of sce-
narios simultaneously. A problem arises when exe-
cuting concurrent scenarios, however: Execution
results can differ with each run. To avoid this, we
selected Scheme as Q’s mother language because
the interpreter can use Scheme’s continuation to
completely control process switching.

The Q architecture consists of two layers. In the
execution layer, the Q interpreter asks agents to exe-
cute cues and actions. If the agents find any problem
in a given scenario, the execution layer transfers con-
trol to the metalayer. In the metalayer, agents can
request the Q analyzer to investigate the scenario.
Based on the report from the Q analyzer, the agents
can enter into negotiations with the scenario writers.

The Q architecture has some similarities to the
three-layer architectures for robot planning, which
consist of a control layer, sequencing layer, and
deliberative layer.6 The first and third layers corre-
spond to Q’s execution layer and metalayer, respec-
tively. The Q scenario can be seen as a sequencing
layer that scenario writers prepare outside the agent.

Design process
The three-step process of creating a scenario

focuses on a dialogue that bridges two perspectives.

• First, a scenario writer and a computing pro-
fessional agree upon the cues and actions to
use as the interface between them. Rather than
using cues and actions assigned a priori, the
two parties define a scenario vocabulary for

November 2002 45

14 Card name Visiting kimono Web site Card type User initiative
Action

Opening

Cue Action
There are many types of obi.
Can you tell the difference?

http://kimono.
com/type.htm

(GestureLeft)
Fukuro obi is for a ceremonial dress.
Use it at a dress-up party!

http://kimono.
com/fukuro.htm

Mouse
click

http://kimono.
com/maru.htmco (Evaluate card42)

Seconds Action

Reactions
to users’
mouse
click
repeat

 No
reaction 20 (End of repeat)

Action
Did you enjoy Japanese kimono?
OK, let’s move on to the next subject.

Closing

Hm-hum, you are so enthusiastic.
Then, how about this page?
http://www.kimono.com/index.htm

Card ID
Figure 2. Interaction
pattern card by
Yohei Murakami.
This example, which
displays the same
information
contained in Figure
1’s Q scenario, pro-
vides an Excel inter-
face to a pattern
language.

Scheme

Q
Analyzer

Q
Interpreter

Java, C++

Planner
Learner

Sensing
and

acting
functions

Agent systemQ processor

Cues
Actions

Scenario
analysis
request Meta

layer

Execution
layer

Definitions of
cues and actions

Agent designer
(Computing professional)

Interaction designer

Application
designer
(Scenario writer)

Interaction
pattern

Q
ScenarioInteraction

pattern
card

translator

Definition of
Interaction
pattern card

Figure 3. Q archi-
tecture. In the exe-
cution layer, the Q
interpreter asks
agents to execute
cues and actions. If
the agents find a
problem in a given
scenario, control
transfers to the
metalayer, where
the Q analyzer can
investigate the sce-
nario.

46 Computer

each application domain through negotiation.
• Second, the scenario writer uses Q to describe

a scenario, while the computing professional
implements cues and actions.

• Third, the design process can introduce
another actor, the interaction designer. This
third actor observes the patterns of interaction
in each domain and proposes IPCs. These
cards trigger a dialogue between scenario writ-
ers and interaction designers, leading to a bet-
ter understanding of the interaction patterns
in each domain. IPCs also improve a scenario
writer’s productivity.

Agents can be autonomous or dependent. If
autonomous, scenarios can be simple; if not, the
scenario writer should specify all details. The gran-
ularity of cues and actions depends on two inde-
pendent factors: the level of agent autonomy and
the degree of precision scenario writers require.

APPLYING SCENARIOS
Using Q to create interdisciplinary 3D Web appli-

cations presents an interesting challenge. FreeWalk,
a video conference tool that supports casual meet-
ings within 3D communities, can create virtual cities
that exactly mirror their real-world counterparts.

Table 1 summarizes the cues and actions for
FreeWalk agents, and Figure 4 displays a view of
such agents that Q scenarios control. Using the
power of current technology, we can populate each
virtual city with hundreds of agents, all of which
walk around in real time.7

We are using virtual cities to create crisis man-
agement simulations that involve humans and
agents. This pilot application links computer sci-
entists, architects, and social psychologists. In these
simulations, agents act as pedestrians, security
guards, and so on. We can create realistic evacua-
tion simulations by having pedestrian agents act
as humans running around trying to escape. Such
simulations will contribute to the discovery of typ-
ical human mistakes in these situations and will
help train people to make correct decisions in real
crises.

Figure 5 shows 2D and 3D simulations of how
humans behave when a crisis occurs in a small room.
A comparison of the results obtained from the ongo-
ing simulation to previous findings8 confirmed that
we have succeeded in making multiagent simulations
guided by Q scenarios sufficiently realistic.

Based on this experiment, we plan to conduct cri-
sis management simulations in virtual Kyoto’s sub-
way and railway stations. The simulation will
include 20 or more people-controlled avatars con-
nected via the Internet and hundreds of agents con-
trolled by Q scenarios.

A s more humans and agents coexist in the
Internet, describing multiagent scenarios will
become essential for describing interaction sce-

narios and providing an interface between comput-
ing professionals and scenario writers. Rather than
depending on agent internal mechanisms, the Q sce-
nario description language seeks to describe how sce-
nario writers should request that agents behave. In
such experiments, if agents are completely autono-

Figure 4. Virtual
subway station in
Kyoto. Using
current technology,
developers can
populate a virtual
city like this one by
Hideyuki Nakanishi
with hundreds of
agents and more
than a score of
human-controlled
avatars.

Table 1. Sample cues and actions for FreeWalk agents.

Function Cue Action
Motion ?position (get location and orientation) Movement

?observe (observe gestures and actions) !walk* (walk along a route)

?see (see objects) !approach* (approach other agent)

!block* (block another agent)

Rotation

!turn* (turn body)

!face* (turn head)

Gesture

!point* (point at object)

!behave* (perform some gesture)

Appearance

!appear (show up)

!disappear (erase self)

Conversation ?hear (hear voice) !speak* (speak by voice)

?receive (receive text messages) !send* (send text messages)

?answer (receive an answer to questions) !ask* (ask questions)

Miscellaneous ?finish (finish asynchronous actions) !change (mode change)

?input (key input by users) !finish (stop asynchronous actions)

!output (output logs)

*An asterisk indicates the action can be asynchronous.

mous, controlling the entire system becomes diffi-
cult. Thus, Q uses scenarios to represent social con-
straints so that agents can use them to guide their
behavior. Future research includes how agents
should behave under given social constraints. �

Acknowledgments
Thanks to Masahito Fukumoto, Reiko Hishi-

yama, Hideaki Ito, Tomoyuki Kawasoe, Yasuhiko
Kitamura, Kazuhisa Minami, Yohei Murakami,
Hideyuki Nakanishi, Shiro Takata, Ken Tsutsu-
guchi, and Akishige Yamamoto for making this
work possible. The Department of Social Infor-
matics at Kyoto University and JST CREST Digital
City developed Project FreeWalk and Q. The
source code for both is available at http://www.
digitalcity.jst.go.jp/Q/.

References
1. J.E. Laird and P. Rosenbloom, “The Evolution of the

SOAR Cognitive Architecture,” D.M. Steier and
T.M. Mitchell, eds., Mind Matters: A Tribute to Allen
Newell, Lawrence Erlbaum, Hillsdale, N.J., 1996,
pp. 1-50.

2. T. Finin et al., “KQML as an Agent Communication
Language,” Proc. Int’l Conf. Information and
Knowledge Management, ACM Press, New York,
1994, pp. 456-463.

3. Y. Kitamura et al., “Interactive Integration of Infor-

mation Agents on the Web,” Cooperative Informa-
tion Agents V, M. Klusch and F. Zambonelli, eds.,
Springer-Verlag, New York, 2001, pp. 1-13.

4. Y.Y. Yao et al., “Web Intelligence,” Web Intelligence:
Research and Development, N. Zhong et al., eds.,
Lecture Notes in Artificial Intelligence 2198 (LNAI
2198), Springer-Verlag, Heidelberg, 2001, pp. 1-17.

5. H. Nakanishi et al., “FreeWalk: A 3D Virtual Space
for Casual Meetings,” IEEE MultiMedia, vol. 6, no.
2, 1999, pp. 20-28.

6. E. Gat, “Three-Layer Architectures,” Artificial Intel-
ligence and Mobile Robots: Case Studies of Success-
ful Robot Systems, D. Kortenkamp, R.P. Bonasso,
and R. Murphy, eds., MIT Press, Cambridge, Mass.,
1998, pp. 195-210.

7. T. Ishida, “Digital City Kyoto: Social Information
Infrastructure for Everyday Life,” Comm. ACM, vol.
45, no. 7, 2002, pp. 76-81.

8. T. Sugiman and J. Misumi, “Development of a New
Evacuation Method for Emergencies: Control of Col-
lective Behavior by Emergent Small Groups,” J.
Applied Psychology, vol. 73, no. 1, 1988, pp. 3-10.

Toru Ishida is a professor of social informatics at
Kyoto University and a research professor at NTT
Communication Science Laboratories. His research
interests include multiagent systems, the human-
centered semantic Web, digital cities, and commu-
nity computing. Ishida received a PhD in infor-
mation science from Kyoto University. Contact him
at ishida@i.kyoto-u.ac.jp.

November 2002 47

Figure 5. Evacuation
simulation. (a) 2D
simulation by
Tomoyuki Kawasoe
and Kazuhisa
Minami shows a reg-
ularly updated over-
head graphic of
agents’ responses to
a small-room crisis,
while (b) the 3D
simulation
generates a real-
time animation of
the same situation.

After 11.0 secondsAfter 9.0 secondsAfter 7.0 seconds

kyutya.q

Congestion
occurred here

21 23 24 22

2

1
7

14

20

19

17
18

12

5

11
1615

10

0

4
9
83

13

6

(a) (b)

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:
	Intentional blank: This page is intentionally blank

