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Stability Analysis of a Simple Walking Model
Driven by an Oscillator With a Phase Reset
Using Sensory Feedback

Shinya Aoi and Kazuo Tsuchiya

Abstract—This paper deals with the analytical examination of the dy-
namic properties of the walking motion of a biped robot based on a simple
model. The robot is driven by rhythmic signals from an oscillator, which re-
ceives feedback signals from touch sensors at the tips of the legs. Instantly,
the oscillator resets its phase and modifies the walking motion according to
the feedback signals. Based on such a simple model, approximate periodic
solutions are obtained, and the stability of the walking motion is analyti-
cally investigated by using a Poincaré map. The analytical results demon-
strate that the modification of the step period and the walking motion due
to the sensory feedback signals improves the stability of the walking mo-
tion.

Index Terms—Central pattern generator (CPG), phase reset, Poincaré
map, sensory feedback signal, stability analysis.

I. INTRODUCTION

Rhythmic motions such as animal walking are achieved by in-
teraction between the dynamics of a musculoskeletal system and
the rhythmic signals from the central pattern generator (CPG) [6],
[12]. The CPG comprises a set of neural oscillators present in the
spinal cord, and spontaneously generates rhythmic signals even if it
does not receive outer signals, such as a sensor signal. However, it
is very sensitive to outer signals and modifies the rhythmic signals
influenced by the outer signals, resulting in adaptive motions. CPG is
widely modeled using nonlinear oscillators. Many studies have been
carried out in order to elucidate the role for CPG in locomotion using
quadruped robots [4], [16], biped robots [1], [10], [15], a simulated
salamander [8], and human models [11], [13], [14], [17]. In particular,
a recent approach that incorporates the resetting of the CPG’s phase,
depending on outer signals, has been proposed [1], [10], [15]-[17].
For example, in our previous work [1], [15], a locomotion control
system for a biped robot was developed using nonlinear oscillators.
The nominal trajectories of the joints are designed by maps from
the phases of the oscillators. A controller composed of nonlinear
oscillators receives feedback signals from touch sensors. Instantly, the
phase of the oscillator is reset, and the nominal trajectories of the joints
are modified according to the phase reset. Studies revealed that the
phase reset achieves robust walking motions by numerical simulations
and hardware experiments. However, they are not sufficient to clarify
the adaptability mechanism. The purpose of this paper is to clarify
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Fig. 1. Schematic model of a simple walking model of a biped robot.
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the role for the phase reset in adaptive walk based on a simple biped
walking model.

II. SIMPLE WALKING MODEL

A. Biped Robot Model

Fig. 1 shows a simple walking model of a biped robot composed of
a hip and two legs, a swing leg and a stance leg. The legs are connected
at the hip and the leg length is [. A touch sensor is attached to the tip of
each leg. The tip of the stance leg is constrained on the ground, and the
stance leg can only rotate around the tip. It is assumed that hip mass
M and leg mass m are concentrated at the hip and at the tip of the leg,
respectively, and that the robot is constrained on the x—y plane where
the walking direction is the x axis. This system has two degrees of
freedom, ¢, and 6>, where 6, is the angle of the stance leg with respect
to the perpendicular line to the ground and 6> is the angle between the
swing leg and the stance leg. The robot has an oscillator that drives the
robot whose amplitude is v and whose phase is ¢. Acceleration due to
gravity is g.

The step cycle of the robot consists of two types of successive phases,
a single-supported phase and a double-supported phase. In the single-
supported phase, only the stance leg is in contact with the ground, while
in the double-supported phase, both legs are in contact with the ground.
In the single-supported phase, since the robot has no actuator between
the stance leg and the ground, the stance leg is not controlled directly.
On the other hand, the robot has an actuator to manipulate the swing
leg with respect to the stance leg. That is, angle #; is not controlled
directly, while angle 6> is controlled by actuator torque u.

B. Single-Supported Phase

In the single-supported phase, dimensionless equations of motion
are given by

{1 +23(1=cy) —B(1- cez)} {91} N

—(1 - Cez) 1 92
— 365 (6% — 26,6
2 (.7 1 z) n
—9%592
/38(91 - (')2) - ,HSHI - Sﬁl _ 0 (1)
—5(91 bl 92) o 'u'
where cz = cosz, sz = sinz, 3 = m/M > 0,v = u/mgl, 7 =

V/g/1 t, t indicates time, and, from now on, * indicates the derivative
of variable * with respect to 7.
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Fig. 2. Geometric condition for double-supported phase.
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Also, in the single-supported phase, amplitude v of the oscillator
is constant and phase ¢ of the oscillator has constant angular velocity
w(> 0),ie,

6= w. )

Actuator torque v’ manipulates angle 6> using a feedback control.
Here, desired angle #24 of controlled angle 6> is designed so that the
robot is driven by a rhythmic signal from the oscillator. Since the mo-
tion of the swing leg can be modeled as a pendulum-like oscillation [5],
[9], desired angle 62, is designed as the simple function of amplitude
~ and phase ¢ of the oscillator and constant parameter 7 by

02(1 = 92r](¢3 e 7’) = ‘}C(D + - (3)

A condition is imposed on desired angle 2, to take value —S at¢ = 7w
as stride angle. Then, it yields = v — S and, thus, the desired angle
#24 is modified by

O2q = O24(¢,v) = yeb + v — S. 4)

Using desired angle 654, actuator torque ' is given by

u' ==K, {#o = f2a(7. 0)} — Ka {éa — b2a (7, «s)} ®)
where K, and I{, are gain constants.

C. Double-Supported Phase

When the swing leg lands on the ground, both of the legs are in
contact with the ground, as shown in Fig. 2. The condition that brings
the double-supported phase is called the double-support condition and
is geometrically given by

r(q) =261 — #, = 0. (©)

It is assumed that the double-supported phase duration is sufficiently
short, which indicates that immediately following the double-sup-
ported phase, the swing leg is, in turn, constrained on the ground
and the stance leg leaves the ground. That is, the foot constraint on
the ground changes between the two legs, and the swing leg instan-
taneously becomes the stance leg and vice versa. This assumption
implies that an impulsive force may occur at the tip of the swing leg
and result in a discontinuous change in the angular velocities. It is also
assumed that the stance leg lifts from the ground without interaction
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Fig. 3. Modification due to feedback signals from touch sensor. (a) and (b)
show phase ¢ and desired angle —(—1)624/.5, respectively, where 7 is the step
number. Phase ¢ is reset to ¢, and desired angle 6-, is modified to start the
next step according to feedback signals from the touch sensor. (a) Phase reset.
(b) Modification of 82,.

and that, during the short double-supported phase, the influence of the
actuator torque is too small and can be ignored. From the conservation
of the angular momentum and the condition of the swing leg to be
constrained on the ground just after the double-supported phase, the
relationship between the states immediately prior to and immediately
following the double-supported phase is given by

oF N

1 2¢207 _

001 _ | 2+3(1—cd6,) o
05 -6

6 2267 (1—c267) .

240 (1—ca67) '
where *~ and *7 indicate the state immediately prior to and immedi-
ately following a double-supported phase, respectively (for example,
see [7] for details).

When the swing leg touches the ground, the oscillator receives a
feedback signal from the touch sensor. Instantly, the phase of the oscil-
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lator is reset to a certain value ¢o, and then the walking motion is modi-
fied to start the next step according to the phase reset (see Fig. 3). In the
modification, from (7), condition 6, = —#6,, is imposed on desired
angle 24 not to change discontinuously between immediately prior to
and immediately following double-supported phases. As a result, the
amplitude of the oscillator is modified, and the relationship between
the states for the oscillator just before and just after the double-sup-
ported phase is given by

®)

7+ . 25—+ (14+co7)
ot| 1+ ceo '

Relations (7) and (8) are called transition rules.

III. LINEAR ANALYSIS
In this paper, angle ¢ is controlled by a feedback control in (5). It is
assumed that as long as angle 6> is controlled by sufficient high-gain
feedback control torque, angle #> can catch up with desired angle 024
in a sufficiently small period of time, and thus angle ¢ is identical to
desired angle 624, i.e.,

02(7) = O2a (7(7), 9(7)) . Q)

In light of the above description, state variables are defined as

qlv = [91 él ‘} (b]

A set of equations is given from equations of motion (1), double-sup-
port condition (6), and transition rules (7) and (8) by

{d=.f(q), a &5 (10)

at =h(g7). ¢ €5

where S. := {¢|r(¢q) = 0} and the following definitions are given,
along with the one shown at the bottom of the page:

- 9'1
fQ(Q)
0
| w
- _o,
2C291
2+ B(1—c46y)
25 — (1 + c9)
14 coo
oo

flo) =

h(q) =

A. Periodic Solutions

In this paper, walking motion is considered, in which the tipping
motion of the robot from the perpendicular line to the ground is small.
In that case, angles #; and 624 are small. Equations and conditions
are linearized and, thus, the periodic solutions from just following a

f2(q) =

{,@(1 — )b + Bsbaa (égd - 2é1é2d) — Bs(81 — 624) + 356y + sel}

1+ 23(1— o)}
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Fig. 4. Periodic solutions (w = 1.5 rad, 3 = 0.3, = 6°, and ¢y = 0°).

double-supported phase to the next double-supported phase are ob-
tained in the following way. First, equations of motion (10) give

(:).1 (T) — 64 (7‘) = 3oy (7(7_) (b(T))

y(r)=20 an
o) =w
Double-support condition (6) and transition rules (10) become
261(0) = 024 (+(0), 9(0))
6:1(0) = —6.(T)
6.(0) = 6,(T) (12)

024 (7(0),6(0)) = =24 (V(T), o(T))

?(0) = oo
where 7 = 0 and 7 = T indicate the time immediately following
a double-supported phase and the time immediately prior to the next

double-supported phase, respectively. Solutions to (11) and (12) are
obtained by

) 1) 1 e’ e 7
f1(7) =Scoy (7’&2 1 + §> <71 T + 1= =T e—T)

35
_w2/+1c(wr—l—¢o), 0<7<T

Wr) =8  0<r<T
6(r)=wr+60, 0<T<T

T = ﬂ (13)

w
It follows that

24 (7(7), ¢(7)) = Sc(wT + o), 0<7<T. (14)

These solutions imply that the step period and the walking motion are
modified depending on value ¢q. Here, the results are shown using
the following parameters: w = l1.5rad, 5 = 0.3, S = 6°, and
¢o = 0°. Fig. 4 shows the periodic solutions obtained by linear anal-
ysis (Linear Analy.) and numerical simulation (Num. Sim.). Note that
numerical simulation is based on the original nonlinear equations and
conditions. Fig. 5 demonstrates the behavior of the state of the oscillator
(1) 19T} where i(= 0.1, - - ) is the step number, by numer-
ical simulation.

IEEE TRANSACTIONS ON ROBOTICS, VOL. 22, NO. 2, APRIL 2006

0.15

0.1 r :

0.05 .

Im
o

-0.15 _
-0.15 -0.1 -0.05 0 0.05 0.1 0.15

Re

Fig. 5. Behavior of oscillator (w = 1.5 rad, 3 = 0.3, 5 = 6°, and ¢y = 0°).
Arrows indicate the phase reset due to touch sensor signals.

IV. STABILITY ANALYSIS

A. Poincaré Map

In this section, the stability of the walking motion is analytically ex-
amined by using a Poincaré section. The state just after a double-sup-
ported phase is used as the state on the Poincaré section. The Poincaré
map, which is the return map from one point on the Poincaré section
to the next point on the Poincaré section, is denoted as ¢ — p(q), and
then

=p(q")

where ¢ is the state immediately following the ith double-supported
phase. Note that fixed point ¢* on the Poincaré section satisfies

15)

+
diy1

7" =p(q"). (16)
By adding perturbation ¢ from fixed point ¢* just after the ith
double-supported phase, where % indicates the perturbation, and
linearizing Poincaré map p at fixed point ¢*, a Jacobian matrix J(¢™)
of the Poincaré map satisfies

G = J(a)i an
Periodic walk is asymptotically stable if all of the eigenvalues of Jaco-
bian matrix .J(¢™) are inside the unit circle on the complex plane, that
is, all of the magnitudes of the eigenvalues are less than 1.

B. Jacobian Matrix of the Poincaré Map

Since this system has a discontinuous change in the angular veloci-
ties between immediately before and immediately after a double-sup-
ported phase, the influences of the discontinuity need to be considered
to find Jacobian matrix .J (¢*) of the Poincaré map at fixed point ¢*. In
[3], Coleman et al. show that Jacobian matrix .J (¢™) is equivalent to the
product of three matrices B, D, and E shown below. First, the periodic
solution is defined as ¢™(7), the step period as 7", and the perturbed
state from periodic solution ¢*(7) from just after the ith double-sup-
ported phase to the next double-supported phase as ¢*(7) + §i(7),
where §;(7) is subject to the initial condition ¢; (0) = (jj. Then, ma-
trices B and D are given by

B =Dyh(q"(7")) ,
() Dyr (¢ (7))

D=1
Dyr (g7 ()" §* (7%)

(18)
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where I is a unit matrix and D, = 8/8¢. The evolved perturbation
after the 7 + 1th double-supported phase (LT:_ , satisfies
it = BDGi(mh). (19)

The substitution of perturbed state ¢*(7) + §;(7) into the equations of
motion (10) gives

q;(7) = Dyf (a" (1) Gi(7). (20)
Matrix F is derived by integrating (20) as follows:
G:(7") = Eq;". @n

C. Stability Region With Respect to Parameters

In the previous section, periodic solutions (13) were obtained based
on a simple walking model with feedback signals from the touch
sensor. Here, the stability of the periodic solutions is investigated. The
substitution of solutions (13) into (18) and (21) gives matrix BDFE
[see (27), (29), and (31) in the Appendix]. Matrix BDE has two
zero eigenvalues (A3« = 0), and the other two eigenvalues \; > are
obtained from

N = 2a1)\+ a2 =0 (22)
where
1
a) = ———————
207 — b3,
T B +07 L-coo), 0
-0y E_+6 E. —
X{ 1 o ( - 1+C¢0)+1+c¢0
B ,
X L‘z—l—l ((F++4+1)cgo— E—wsao)
+ 8(Ex — 1)]}
gy — 1
YT 2 — 6y,
- 207
H_ 2d
X { 24 T 1+ coo
X L ((E+ + 1)cgo — E_wsoo)
w241
— B(E4 — 1)]
1 —C(;l)o . “_
21T co (9‘ Ev =6 E‘)}
el +et
E. =
- 2
6[ —eiT
E7 —
2
_ & I\ 1+e8 | Bs
_5<\.UZ—|—1 +§) l_eTC(DO+ wz_l_l.ub(ﬁg
b = 6u(T)

1
_S </3 —I‘ 5) (’,(b()

b0 = 20 (V(T). 6(T)) = —Swseo.
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Fig. 6. Transition of stability region with respect to ¢g.

Thus, eigenvalues A1 2 are obtained by the functions of parameters w,
3, and ¢ and are given by

Ata(w, 3, 60) = a1 £4/af — as. (23)
First, and particularly, the case when ¢y = 0 is considered. Then,
(23) becomes equivalent to

Aoa(w, 5,0) =1 - 3u?d, 0 (24)
where d = ((¢™/% 4+ ¢~ ™/% — 2)/(1+ 253 + w?)) > 0. These eigen-
values reveal that the periodic solutions are asymptotically stable for
Bw?d < 2 and that the periodic solutions are unstable for fw?d > 2.
With respect to the stability region of parameters 3 and w, this result
is the same as for the case in which the oscillator does not receive any
feedback signals from external sensors, walking motion cannot be mod-
ified, and the robot is driven by open-loop rhythmic signals. However,
by incorporating feedback signals, the stability is improved (see [2]
for details). When the walking motion becomes unstable depending on
parameters such as w and 3, consecutive period-doubling bifurcations
occur, and the walking motion leads to chaotic motion (see [18]).
Next, the case that includes ¢o # 0 is considered. Fig. 6 shows the
transition of the stability region with respect to parameters 3 and w,
due to parameter ¢o and the comparison of the analytic and the nu-
merical results. In the numerical simulations, parameter .S is set at 6°.
This figure reveals that the asymptotic stability region is enlarged by
increasing parameter ¢o. However, when parameter ¢, exceeds a crit-
ical value which depends on parameters 5 and w, the appearance of the
stability region significantly changes. When parameter ¢ is less than
the critical value, the decrease of 3 or/and the increase of w increases
the stability of the periodic motion, and there is only one boundary with
respect to parameters 3 and w, which divides into asymptotically stable
and unstable regions, as shown in Fig. 6. On the other hand, when pa-
rameter ¢ is beyond the critical value, another boundary appears and
the asymptotically stable region is formed between two unstable re-
gions with respect to parameters 3 and w (see Fig. 7). Therefore, in
that case, there is a region where the decrease of 3 or/and the increase
of w decreases the stability, and, thus, it is necessary to use an adequate
value for parameter ¢¢. This paper focuses on the stability to achieve
such a parameter ¢o. Fig. 8(a) and (b) shows the maximum magnitude
of the eigenvalues versus parameter ¢¢ with respect to parameters 3
and w, respectively, revealing that it has an extreme value with respect
to parameter ¢o. Therefore, we use it as an optimal value of parameter
¢o. Such an optimal value & is obtained by the condition a,f —as = 0.
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In particular, when optimal value ® is small, from the linear analysis,
it is given by

(1 — puw?d)?

31 = fw?d) {m;ﬁ (w2 4)(1} .y

$y =

(25)

Fig. 9 shows optimal value ®, with respect to parameters # and w ob-
tained by the linear analysis and the rigorous numerical analysis. This
analysis concludes that resetting the phase of the oscillator into an ad-
equate value and modifying the walking motion due to the feedback
signals from the touch sensor increases the stability of the walking mo-
tion.

V. CONCLUSION

In this paper, the walking motion of a biped robot was analytically
examined based on a simple model, and a phase reset of the oscillator
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Fig. 9. Optimal value ®, with respect to 3 and w.

that drives the robot was proposed to achieve a robust walking mo-
tion. When the swing leg touches the ground, the oscillator receives a
feedback signal from the touch sensor at the tip of the leg. Instantly,
the phase of the oscillator is reset, and the step period and the walking
motion are modified depending on the phase reset. As a result, not only
the stability, but also the stability region with respect to the parameters,
model size, and walking speed are improved by resetting the phase into
an adequate value, i.e., the analytical results demonstrate that the robot
can walk adaptively by using the phase reset due to sensory feedbacks.

APPENDIX
DERIVATION OF MATRICES B, D, AND E

Here, matrices B, D, and E are derived based on the linearized equa-
tions, conditions, and periodic solutions given above. First, from (10),
the following matrix is obtained:

-1 0 0 0
1 0 0
D)= 1| g o _L1Fco vs¢ (26)
1+L(§0 1+C§/)0
0 0 0 0

By substituting periodic solutions (13) into (26), matrix B is given
by

-1 0 0 0
0 1 0 0
B = 0 0 — 1- cPo Sséo (27)
1+coo 14 coo
0 0 0 0
Second, from (6), it gives
; T
Dyr(g) =12 0 —(1+cp) - Ld
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Thus, it follows that

I 61624
—bos o 6i(1+co) b
201 — o 201 — foq 261 — B2q
D@ _ ) S L
Do)~ | =2 #lted) o
261 — B2q 201 — b2q 201 — 024
0 ) 0 ) 1 0
—24 H(1+ co) 26,
L 26, — g 201 — a0 26, — g 28)
The substitution of periodic solutions (13) into (28) gives
L - , 616 1
_92d 0 91 (1—C@0) w
207 — 6, 2607 — 65, 207 — 65,
. . 01 054
D=| =27 | f(1-con) " (29)
20, — 6, 200 =00 20, — 6,
0 0 1 O
—2w 0 w(l—coo) 267
L 267 — 63, 267 — 65, 207 — 63, ]
Next, from (10), we obtain
0 1 0 0
1 0 B(l4cd) —Byso
D, f(q) = : o
qf(CI) 0 0 0 0
0 0 0 0
Here, perturbation ¢;(7) is defined as §;(7) = [f1:(7),01:(7).

Fi(1), i (7))

The solutions to (20) with initial conditions
~ Tt N
G = 4i(0) = 61,611, 37. 671" are obtained by

. 6T+6_T R eT 6—7 s+
bri(r) = —5 0+ ——hu;
T + -7 T__ T ’
+ { [6 26 CPo— 5 WsPo
y 3 el e T =2 .4
—C(Ldl+()0)] u)2—|—1+’d B Vi
T_I_ T —e T
_ {6 26 ¢0+e 26 wedo
BS 4
—5(u.)7’+d)o)} 2+1(D, 0<7<T
Yi(r)=4". 0<7<T
bi(r)y=0, 0<7<T (30)
From (21) and (30), matrix E is given by
Ey E_ FEys FEu
E_ FEiy Fss FEoy

0 0 1 0
0 0 0 1
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where

3 .
ElBIﬁ (Bt + 1)epo — E_wsdo) + B(Ey — 1)

B , , .
EQBZﬁ (E—_cog — (E+ — 1)ws<po) + BE_
BS , ,
Eri=—- —; 1 ((E+ — 1)s¢o + E_wcdo)
35 .
Eyy=— ‘;—_1_1 (E_s¢o + (E4+ + L)wceo) .
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