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GENERAL INTRODUCTION 

 

1. Hyperthermophilic archaea and the evolution of life 

 All living organisms on our planet can be divided into three domains; Bacteria, 

Eucarya and Archaea. The Archaea were first recognized in the 1970’s by Carl Woese 

through phylogenetic analyses based on sequences of 16S or 18S ribosomal RNA genes 

(1, 2) (Fig. 1). The Archaea are further classified into two major kingdoms; 

Crenarchaeota and Euryarchaeota. The Archaea are mainly comprised from the 

methanogens, halophiles, sulfate reducers, and (hyper)thermophiles. 

 Hyperthermophiles are defined as organisms that grow optimally at 

temperatures above 80˚C (3). They were discovered in the early 1980’s (4, 5) and 

represent one of the six major groups of extremophiles; hyperthermophiles, 

psychrophiles (cold temperature), alkaliphiles (high pH), acidophiles (low pH), 

halophiles (high salinity) and piezophiles (high pressure) (6). Most hyperthermophiles 

are members of the Archaea with the exception of several bacterial genera, Aquifex, 

Thermotoga and Geothermobacterium. All hyperthermophiles are positioned near the 

root of the phylogenetic tree and a majority are obligate anaerobes. Together with the 

assumption that the earth was a thermal and anaerobic environment in the early periods 

when life originated, it has been proposed that the origin of life, or at least the Last 

Universal Common Ancestor (LUCA), was a hyperthermophilic form of life (7). 

 There has been one strong argument against the proposal that life originated in 

the form of hyperthermophiles (the hot origin of life). This was based on the structure 

and distribution of an enzyme called reverse gyrase. Reverse gyrase introduces positive 

supercoils in covalently closed DNA (8) and is the only enzyme/gene that is present in  
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all hyperthermophilic organisms but absent in all mesophilic organisms, i. e. it is the 

one and only hyperthermophile-specific protein (9). On the other hand, the structure of 

reverse gyrase suggests that it is not at all a primitive enzyme in terms of protein 

evolution. Reverse gyrase is formed by the association of two entirely different enzymes 

belonging to the DNA/RNA helicase and the topoisomerase families (10, 11), and thus 

could only have evolved after the diversification of the respective protein families. If 

reverse gyrase were to be a prerequisite for life at high temperatures, this would provide 

a convincing argument that contradicts with the hot origin of life. The evolution of the 

two protein families could only have occurred in less thermophilic organisms (11) (Fig. 

2). 

 
 
Fig. 1. A rooted phylogenetic tree of life based on 16S/18S ribosomal RNA 
sequences. The tree reveals the three domains of life, Archaea, Bacteria and 
Eucarya. The Euryarchaeota and Crenarchaeota branches are shaded. LUCA is 
indicated by an arrow. Hyperthermophiles are indicated in red. 
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In order to evaluate the necessity of reverse gyrase for hyperthermophilic life, 

prior to the studies reported in this thesis, the author attempted to disrupt the reverse 

gyrase gene of the hyperthermophilic archaeon, Thermococcus kodakaraensis (the 

organism is described below) (12). Disruption of the gene was not lethal, but specific 

growth rates of the mutant strain declined with increases in temperature above 80˚C 

compared with the original strain. The gene disruption strain was able to grow at 90˚C 

but not at higher temperatures (Fig. 3). The results indicate that reverse gyrase provides 

a significant advantage for life at high temperatures (>80˚C), and helps in understanding 

why all organisms isolated from hyperthermophilic environments until now harbor a 

reverse gyrase. The results also revive the possibilities of a hot origin of life in which 

primitive hyperthermophiles without a reverse gyrase might have been the first 

organisms to evolve, most likely at temperatures below 90˚C. 

 
 
Fig. 2. The evolution of reverse gyrase. The function of the enzyme is dependent on two domains 
(helicase and topoisomerase) that are members of two entirely different protein superfamilies. 
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2. Biochemical characteristics of the Archaea 

Members of the Archaea and Bacteria are prokaryotes, and share many 

common characteristics including similar cell size, the absence of organelles, circular 

structures of their chromosomes, and the presence of gene operons. However, the 

Archaea display numerous features that are not found in the Bacteria; some unique to 

the Archaea and others that had previously been presumed to be traits specific to the 

Eucarya. One feature that is specific to the Archaea is their unusual membrane 

composition. Archaeal lipids consist of C20-C40 isoprenoid backbones linked to glycerol 

via ether bonds (13). The transcription mechanism and machinery utilized in the 

Archaea are closely related to those of the Eucarya (14-16). σ-factor dependent RNA 

polymerase is not found in the Archaea, and instead transcription initiation is brought 

about by the presence of the TATA box, and factors such as TATA-binding protein, 

 
Fig. 3. Growth characteristics of the wild-type T. kodakaraensis strain and a strain lacking the 
reverse gyrase gene (mutant) at various temperatures. Temperatures are indicated in each panel 
and cell growth was monitored by measuring the optical density of the medium at 660 nm.  
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Transcription Factor IIB and a eukaryotic-type RNA polymerase. DNA replication and 

repair mechanisms in the Archaea also closely resemble those that function in 

eukaryotes (17, 18). 

As the Archaea represent a third form of life that can be distinguished from the 

bacteria and eukaryotes, complete genome sequences of many archaeal strains have 

been determined. At present, the entire genome sequences of 47 archaeal strains, 

including 21 hyperthermophiles, are available. This has revealed that hyperthermophiles 

can maintain life with the function of only 1,500-3,000 genes. The small number of 

genes suggests that their metabolism and biological machinery are simple, which should 

provide an advantage in examining the basic mechanisms of various biological 

phenomena. Studies on hyperthermophiles are also attractive in terms of enzyme 

application (19, 20). All proteins in a hyperthermophile must properly function at high 

temperature ranges, making them much more (thermo)stable when compared to the 

conventional enzymes from mesophiles utilized at present. 

 

3. Protein secretion and signal peptide peptidase 

3-1. Protein secretion in bacteria and eukaryotes 

In bacteria and eukaryotes, the majority of proteins to be secreted from the cell 

are produced with an extension in their amino-termini that directs the precursor proteins 

towards the secretion machinery (21, 22). These regions are called signal peptides and 

are cleaved during the translocation process through the membranes of the cytoplasm 

(bacteria) or endoplasmic reticulum (ER) (eukaryotes) (23). The main mode of protein 

transport in bacteria is post-translational, and the precursor proteins are maintained in a 

translocation-competent conformation by cytosolic chaperones such as SecB. The 
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precursor protein is then delivered to the ATPase SecA, which provides the driving 

force of protein translocation through the translocation channel composed of SecY, 

SecE and SecG (22, 24, 25). In eukaryotes, the majority of proteins are transported into 

the ER in a co-translational manner. The cytoplasmic Signal Recognition Particle (SRP) 

recognizes the signal peptide during the early stage of translation. This triggers an arrest 

in translation, during which the SRP-nascent chain-ribosome complex is directed to the 

protein translocation channel on the ER membrane. Release of SRP allows translation to 

resume, and the ribosome, which remains docked to the channel, provides the driving 

force of protein translocation through protein synthesis. The three proteins that 

constitute the eukaryotic channel are Sec61α (SecY homolog), Sec61β (distantly related 

to SecG) and Sec61γ (SecE homolog) (21, 26). 

 

3-2. Protein secretion machinery in the Archaea 

In the Archaea, research on protein secretion and the machinery involved are 

still at an early stage. Sequence comparison of genome data have shed light on the 

features of the archaeal signal peptide (27), and have also indicated the presence or 

absence of individual components corresponding to eukaryotic or bacterial factors 

participating in protein secretion (28-30). The archaeal genomes harbor homologs 

corresponding to the protein-conducting channel found in bacteria and eukaryotes (31, 

32), and the crystal structure of the channel from Methanocaldococcus jannaschii has 

been determined (33). The archaeal genomes do not harbor homologs of SecA nor SecB 

(34), but possess genes corresponding to the components of an SRP (35, 36), suggesting 

a eukaryotic mode of protein translocation. 
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3-3. Signal peptides, signal peptidases and signal peptide peptidases 

The general features of signal peptides present in the amino-terminal regions of 

proteins exported from bacterial cells have been clarified (37). A positively charged 

domain (n-region) with basic residues is near the extreme amino-terminus, followed by 

a central hydrophobic domain (h-region) and a carboxy-terminal hydrophilic domain 

(c-region) that includes the cleavage site for processing of the precursor protein. The 

signal peptides that are responsible for protein translocation to the eukaryotic ER 

display almost identical characteristics. It has been reported that eukaryotic signal 

peptides are slightly more hydrophobic than their bacterial counterparts. In both cases, 

the sequence that designates the cleavage site is Ala-X-Ala (Fig. 4). 

 

 

 

 

 

 

 

 

 

 

 

Signal peptidases (SPs) cleave the precursor protein during the translocation 

process, resulting in the release of the signal peptide (Fig. 5). Signal peptidase I (SP I) is  

the major enzyme in both eukaryotes and bacteria and is essential for cell viability. The 

 
Fig. 4. A diagram illustrating the general features of signal peptides present in the amino-terminus 
of secretion proteins. Signal peptides are comprised from three regions; a positively charged 
amino-terminus (n-region, 1-5 amino acids) shown in pink, a core of at least six hydrophobic 
amino acids (h-region, 7-15 amino acids) shown in green, and an uncharged polar 
carboxy-terminal region (c-region, 3-7 amino acids) shown in blue. The Ala-X-Ala signature that 
designates the cleavage site by signal peptidases is indicated as AXA. 
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eukaryotic enzyme is a component of a multi-protein complex whereas the bacterial 

enzyme acts independently. All SP I proteins from both bacteria and eukaryotes harbor 

a number of conserved regions (boxes A-E) that are considered to play important roles 

in catalysis (37). 

Signal peptide peptidases (SPPs) are enzymes considered to cleave the signal 

peptide chains of secreted proteins after they are released from the precursor proteins by 

SP (37, 38) (Fig. 5). In bacteria, SPP was first identified as a membrane-anchored 

protein involved in the breakdown of the signal peptide of the outer membrane 

lipoprotein in Escherichia coli (39-41). Gene disruption studies strongly implied that 

SPPs along with other cytoplasmic proteases including oligopeptidase A are involved in 

signal peptide degradation (42, 43). It is now presumed that in E. coli, SPP initiates the 

degradation by introducing endoproteolytic cuts into the signal peptide, whereas the 

other cytoplasmic proteases are responsible for complete degradation of the smaller 

fragments into free amino acids (44). Eukaryotic SPPs are intramembrane enzymes, 

with activity dependent on two aspartate residues. It had long been presumed that the 

signal peptides, after their removal from the precursor protein, have no active function 

in the cell and are simply degraded to free amino acids. However, it is now known that 

in human cells, peptide fragments generated after cleavage by SPP exhibit vital 

regulatory functions in immune surveillance (45, 46). The function of SPP has also been 

reported to be necessary for the proper development of Drosophila larvae (47). 

In the Archaea, genes encoding proteins with putative signal peptides similar to 

the bacterial and eukaryotic sequences are found in abundance (8-32% of total genes) 

on the archaeal genomes (48). Archaeal signal peptides are 20-30 residues in length and 

contain the classical n-, h- and c-regions. In terms of SPs, genes resembling the 
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eukaryotic SP I gene are found on the archaeal genomes (49). The SP I from 

Methanococcus voltae has been characterized, and has been found to exhibit the 

expected SP activity. A catalytic triad comprised from Ser52, His122, and Asp148 has 

been determined to be critical for its peptidase activity (50, 51). Although not described 

in this thesis, the author was not able to disrupt the corresponding gene in T. 

kodakaraensis, suggesting that as in the case of bacteria and eukaryotes, the archaeal SP 

is also essential for cell viability. In contrast to the progress on SPs, the presence or 

examination of archaeal SPPs has not been reported in the Archaea. 

 

 

 

 

 

 

 

 

 

 

 

4. Serine proteases 

 Proteases are ubiquitous in nature and play indispensable roles in both 

intracellular and extracellular processes, as well as in the regulation of physiological 

pathways, including the degradation of misfolded proteins, processing short-lived 

signaling proteins, and signal peptide cleavage (52). Proteases also represent one of the 

 
 
Fig. 5. Schematic model of the function of signal peptidases (SPs) and signal peptide peptidases 
(SPPs) in the protein secretion pathway. For simplicity, various factors related to protein secretion 
such as SRP and SecA are not included. The topologies of SPs and SPPs relative to the 
cytoplasmic membrane do not necessarily reflect their topologies in the cell. 
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most heavily utilized enzymes in various industrial processes and detergents (53-56). 

Most of the proteases known to date fall into four major groups by nature of their active 

center; the serine proteases, cysteine proteases, aspartic proteases, and the 

metallo-proteases. A limited number of proteases that utilize other residues such as 

threonine are also known. 

 The standard mechanism for serine proteases involves a catalytic triad (Fig. 6). 

The catalytic triad consists of a histidine general base, which abstracts the proton from a 

serine to act as a nucleophile and attack the carbonyl group of an amide bond within the 

protein substrate. The third player in the triad, an acidic residue, acts to orient the 

histidine residue and neutralize the charged histidine intermediate (52). A number of 

serine proteases have recently been identified that contain an essential lysine, but no 

essential histidines. It has been proposed that this group of proteases uses a Ser-Lys 

dyad mechanism, whereby an ε-amino group of a lysine side chain acts as the general 

base to increase the nucleo- 

philicity of the active site serine 

(52). According to the 

MEROPS database (The 

peptidase database at http:// 

merops.sanger.ac.uk/index.htm) 

(57), there are now 42 different 

families of serine proteases 

including S1 (chymotrypsin), 

S8 (subtilisin) and S14 (Clp 

peptidase). 

 
Fig. 6. A diagram illustrating the catalytic triad of  
serine proteases. 
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5. Thermococcus kodakaraensis KOD1 

Thermococcus kodakaraensis KOD1 is a hyperthermophilic archaeon isolated 

from a solfatara on Kodakara Island, Kagoshima, Japan (58, 59) (Fig. 7A). The strain is 

an obligate anaerobe and grows optimally at 85˚C. Only heterotrophic growth has been 

observed, and the strain can efficiently utilize and/or degrade amino acids, peptides, 

pyruvate, and a number of polymers such as chitin, pullulan and starch. The author 

contributed in determining the complete genome sequence of T. kodakaraensis (60). 

This is the only Thermococcus genome sequence available at present, and together with 

the Pyrococcus genome sequences, has provided valuable knowledge towards 

understanding the various cellular activities of sulfur-reducing heterotrophic archaea. 

The genome consists of 2,088,737 bp and harbors 2,306 predicted open reading frames, 

among which half were annotatable (Fig. 7B). As expected from the growth 

characteristics of T. kodakaraensis, the genome sequence revealed the presence of a 

large number of putative extracellular enzymes, including chitinase (61), α-amylase 

(62), amylopullulanase, and subtilisin-like protease (63). 

 

 

 

 

 

 

 

 Fig. 7. A; Electron micrograph of T. kodakaraensis. B; Annotation results of the 
T. kodakaraensis genome sequence. 

A 

 

B
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6. Gene disruption systems in hyperthermophiles 

In spite of the many attractive aspects of hyperthermophilic archaea, progress 

in the research on these organisms has been constantly hampered by the limitation of 

tools available for genetic manipulation. In particular, the development of gene 

disruption technology, which is one of the most straightforward methods in examining 

gene function in vivo, has been limited to only two organisms among the 

hyperthermophilic archaea. One was developed in T. kodakaraensis from the 

Euryarchaeota (64, 65) and the other was constructed in Sulfolobus solfataricus from 

the Crenarchaeota (66). Both systems rely on homologous recombination. The former 

system utilizes various host strains with amino acid/nucleotide auxotrophy and 

corresponding marker genes that complement the auxotrophy (Fig. 8). The latter utilizes 

a lacS-deficient host strain and a modified but active lacS marker gene with selection 

based on lactose-dependent growth. The two systems have proved to be powerful tools 

in examining gene function in the respective organisms (12, 67-69). Application of 

these methodologies or developing new gene disruption technologies towards other 

hyperthermophilic archaea will be important to broaden our understanding on these 

unique organisms. 

 

 

 

 

 

 

 

 
Fig. 8. A model illustrating gene disruption in T. kodakaraensis via double 
crossover recombination.  
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7. Objectives of the study 

 Part I of this study focuses on the identification and biochemical 

characterization of signal peptide peptidase in the hyperthermophilic archaeon, 

Thermococcus kodakaraensis. As described above, among the various components of 

the archaeal secretion machinery, the signal peptide peptidases had not been identified 

nor examined in the Archaea. In addition, the two putative peptidases examined in this 

study were representatives of serine proteases whose catalytic mechanisms had not been 

elucidated. The characterization of these peptidases was expected to provide valuable 

information on the degradation mechanism of signal peptides in the Archaea, and also 

clarify the catalytic mechanism of two types of serine proteases. Depending on their 

biochemical properties, the peptidases were also recognized as potential thermostable 

biocatalysts for application in protein cleavage/degradation. In Part II, the author set out 

to develop a gene disruption system in hyperthermophilic archaea based on antibiotic 

resistance. This type of system had not been developed in hyperthermophiles, and was 

expected to provide a general method for gene disruption in these organisms that did not 

require the construction of a specific host cell deficient in a particular cellular function. 

The genes chosen for disruption were those presumed to encode the components of a 

sugar transporter on the membrane of T. kodakaraensis. 

 

REFERENCES 

1. Woese, C. R. & Fox, G. E., Phylogenetic structure of the prokaryotic domain: 

the primary kingdoms. Proc. Natl. Acad. Sci. USA, 74, 5088-5090, 1977. 

2. Woese, C. R., Magrum, L. J. & Fox, G. E., Archaebacteria. J. Mol. Evol., 11, 

245-251, 1978. 



 14

3. Stetter, K. O., Hyperthermophilic procaryotes. FEMS Microbiol. Rev., 18, 

149-158, 1996. 

4. Stetter, K. O., Ultrathin mycelia-forming organisms from submarine volcanic 

areas having an optimum growth temperature of 105˚C. Nature, 300, 258-260, 

1982. 

5. Stetter, K. O., Köning, H. & Stackebrandt, E., Pyrodictium gen. nov., a new 

genus of submarine disc-shaped sulphur reducing archaebacteria growing 

optimally at 105˚C. System. Appl. Microbiol., 4, 535-551, 1983. 

6. Stetter, K. O., Extremophiles and their adaptation to hot environments. FEBS 

Lett., 452, 22-25, 1999. 

7. Di Giulio, M., The universal ancestor was a thermophile or a hyperthermophile: 

tests and further evidence. J. Theor. Biol., 221, 425-436, 2003. 

8. Kikuchi, A. & Asai, K., Reverse gyrase-a topoisomerase which introduces 

positive superhelical turns into DNA. Nature, 309, 677-681, 1984. 

9. Forterre, P., A hot story from comparative genomics: reverse gyrase is the only 

hyperthermophile-specific protein. Trends Genet., 18, 236-237, 2002. 

10. Confalonieri, F., Elie, C., Nadal, M., de La Tour, C. B., Forterre, P. & 

Duguet, M., Reverse gyrase: a helicase-like domain and a type I topoisomerase 

in the same polypeptide. Proc. Natl. Acad. Sci. USA, 90, 4753-4757, 1993. 

11. Forterre, P., A hot topic: the origin of hyperthermophiles. Cell, 85, 789-792, 

1996. 

12. Atomi, H., Matsumi, R. & Imanaka, T., Reverse gyrase is not a prerequisite 

for hyperthermophilic life. J. Bacteriol., 186, 4829-4833, 2004. 

13. Hanford, M. J. & Peeples, T. L., Archaeal tetraether lipids: unique structures 



 15

and applications. Appl. Biochem. Biotechnol., 97, 45-62, 2002. 

14. Bell, S. D., Archaeal transcriptional regulation-variation on a bacterial theme? 

Trends Microbiol., 13, 262-265, 2005. 

15. Geiduschek, E. P. & Ouhammouch, M., Archaeal transcription and its 

regulators. Mol. Microbiol., 56, 1397-1407, 2005. 

16. Reeve, J. N., Archaeal chromatin and transcription. Mol. Microbiol., 48, 

587-798, 2003. 

17. Barry, E. R. & Bell, S. D., DNA replication in the archaea. Microbiol. Mol. 

Biol. Rev., 70, 876-887, 2006. 

18. Kelman, Z. & White, M. F., Archaeal DNA replication and repair. Curr. Opin. 

Microbiol., 8, 669-676, 2005. 

19. Adams, M. W. W. & Kelly, R. M., Finding and using hyperthermophilic 

enzymes. Trends Biotechnol., 16, 329-332, 1998. 

20. Imanaka, T. & Atomi, H., Catalyzing "hot" reactions: enzymes from 

hyperthermophilic Archaea. Chem. Rec., 2, 149-163, 2002. 

21. Corsi, A. K. & Schekman, R., Mechanism of polypeptide translocation into the 

endoplasmic reticulum. J. Biol. Chem., 271, 30299-30302, 1996. 

22. Economou, A., Following the leader: bacterial protein export through the Sec 

pathway. Trends Microbiol., 7, 315-320, 1999. 

23. Izard, J. W. & Kendall, D. A., Signal peptides: exquisitely designed transport 

promoters. Mol. Microbiol., 13, 765-773, 1994. 

24. de Keyzer, J., van der Does, C. & Driessen, A. J. M., The bacterial 

translocase: a dynamic protein channel complex. Cell. Mol. Life Sci., 60, 

2034-2052, 2003. 



 16

25. Oliver, D. B., SecA protein: autoregulated ATPase catalysing preprotein 

insertion and translocation across the Escherichia coli inner membrane. Mol. 

Microbiol., 7, 159-165, 1993. 

26. Nagai, K., Oubridge, C., Kuglstatter, A., Menichelli, E., Isel, C. & Jovine, L., 

Structure, function and evolution of the signal recognition particle. EMBO J., 22, 

3479-3485, 2003. 

27. Pohlschröder, M., Giménez, M. I. & Jarrell, K. F., Protein transport in 

Archaea: Sec and twin arginine translocation pathways. Curr. Opin. Microbiol., 

8, 713-719, 2005. 

28. Albers, S.-V., Szabo, Z. & Driessen, A. J. M., Protein secretion in the 

Archaea: multiple paths towards a unique cell surface. Nat. Rev. Microbiol., 4, 

537-547, 2006. 

29. Pohlschröder, M., Dilks, K., Hand, N. J. & Wesley Rose, R., Translocation of 

proteins across archaeal cytoplasmic membranes. FEMS Microbiol. Rev., 28, 

3-24, 2004. 

30. Ring, G. & Eichler, J., Extreme secretion: protein translocation across the 

archaeal plasma membrane. J. Bioenerg. Biomembr., 36, 35-45, 2004. 

31. Pugsley, A. P., Francetic, O., Driessen, A. J. M. & de Lorenzo, V., Getting 

out: protein traffic in prokaryotes. Mol. Microbiol., 52, 3-11, 2004. 

32. Robson, A. & Collinson, I., The structure of the Sec complex and the problem 

of protein translocation. EMBO Rep., 7, 1099-1103, 2006. 

33. van den Berg, B., Clemons, W. M., Jr., Collinson, I., Modis, Y., Hartmann, 

E., Harrison, S. C. & Rapoport, T. A., X-ray structure of a protein-conducting 

channel. Nature, 427, 36-44, 2004. 



 17

34. Bolhuis, A., The archaeal Sec-dependent protein translocation pathway. Phil. 

Trans. R. Soc. Lond. B Biol. Sci., 359, 919-927, 2004. 

35. Bhuiyan, S. H., Gowda, K., Hotokezaka, H. & Zwieb, C., Assembly of 

archaeal signal recognition particle from recombinant components. Nucleic 

Acids Res., 28, 1365-1373, 2000. 

36. Rosendal, K. R., Wild, K., Montoya, G. & Sinning, I., Crystal structure of the 

complete core of archaeal signal recognition particle and implications for 

interdomain communication. Proc. Natl. Acad. Sci. USA, 100, 14701-14706, 

2003. 

37. Paetzel, M., Karla, A., Strynadka, N. C. J. & Dalbey, R. E., Signal peptidases. 

Chem. Rev., 102, 4549-4579, 2002. 

38. Hussain, M., Ichihara, S. & Mizushima, S., Mechanism of signal peptide 

cleavage in the biosynthesis of the major lipoprotein of the Escherichia coli 

outer membrane. J. Biol. Chem., 257, 5177-5182, 1982. 

39. Ichihara, S., Beppu, N. & Mizushima, S., Protease IV, a cytoplasmic 

membrane protein of Escherichia coli, has signal peptide peptidase activity. J. 

Biol. Chem., 259, 9853-9857, 1984. 

40. Ichihara, S., Suzuki, T., Suzuki, M. & Mizushima, S., Molecular cloning and 

sequencing of the sppA gene and characterization of the encoded protease IV, a 

signal peptide peptidase, of Escherichia coli. J. Biol. Chem., 261, 9405-9411, 

1986. 

41. Pacaud, M., Purification and characterization of two novel proteolytic enzymes 

in membranes of Escherichia coli. Protease IV and protease V. J. Biol. Chem., 

257, 4333-4339, 1982. 



 18

42. Novak, P., Ray, P. H. & Dev, I. K., Localization and purification of two 

enzymes from Escherichia coli capable of hydrolyzing a signal peptide. J. Biol. 

Chem., 261, 420-427, 1986. 

43. Suzuki, T., Itoh, A., Ichihara, S. & Mizushima, S., Characterization of the 

sppA gene coding for protease IV, a signal peptide peptidase of Escherichia coli. 

J. Bacteriol., 169, 2523-2528, 1987. 

44. Novak, P. & Dev, I. K., Degradation of a signal peptide by protease IV and 

oligopeptidase A. J. Bacteriol., 170, 5067-5075, 1988. 

45. Braud, V. M., Allan, D. S. J., O'Callaghan, C. A., Söderström, K., D'Andrea, 

A., Ogg, G. S., Lazetic, S., Young, N. T., Bell, J. I., Phillips, J. H., Lanier, L. 

L. & McMichael, A. J., HLA-E binds to natural killer cell receptors 

CD94/NKG2A, B and C. Nature, 391, 795-799, 1998. 

46. Lemberg, M. K., Bland, F. A., Weihofen, A., Braud, V. M. & Martoglio, B., 

Intramembrane proteolysis of signal peptides: an essential step in the generation 

of HLA-E epitopes. J. Immunol., 167, 6441-6446, 2001. 

47. Casso, D. J., Tanda, S., Biehs, B., Martoglio, B. & Kornberg, T. B., 

Drosophila signal peptide peptidase is an essential protease for larval 

development. Genetics, 170, 139-148, 2005. 

48. Bardy, S. L., Eichler, J. & Jarrell, K. F., Archaeal signal peptides-a 

comparative survey at the genome level. Protein Sci., 12, 1833-1843, 2003. 

49. Ng, S. Y. M., Chaban, B., VanDyke, D. J. & Jarrell, K. F., Archaeal signal 

peptidases. Microbiology, 153, 305-314, 2007. 

50. Bardy, S. L., Ng, S. Y. M., Carnegie, D. S. & Jarrell, K. F., Site-directed 

mutagenesis analysis of amino acids critical for activity of the type I signal 



 19

peptidase of the archaeon Methanococcus voltae. J. Bacteriol., 187, 1188-1191, 

2005. 

51. Ng, S. Y. M. & Jarrell, K. F., Cloning and characterization of archaeal type I 

signal peptidase from Methanococcus voltae. J. Bacteriol., 185, 5936-5942, 

2003. 

52. Paetzel, M. & Dalbey, R. E., Catalytic hydroxyl/amine dyads within serine 

proteases. Trends Biochem. Sci., 22, 28-31, 1997. 

53. Atomi, H., Recent progress towards the application of hyperthermophiles and 

their enzymes. Curr. Opin. Chem. Biol., 9, 166-173, 2005. 

54. Gupta, R., Beg, Q. K. & Lorenz, P., Bacterial alkaline proteases: molecular 

approaches and industrial applications. Appl. Microbiol. Biotechnol., 59, 15-32, 

2002. 

55. Ito, S., Kobayashi, T., Ara, K., Ozaki, K., Kawai, S. & Hatada, Y., Alkaline 

detergent enzymes from alkaliphiles: enzymatic properties, genetics, and 

structures. Extremophiles, 2, 185-190, 1998. 

56. Maurer, K.-H., Detergent proteases. Curr. Opin. Biotechnol., 15, 330-334, 

2004. 

57. Rawlings, N. D., Tolle, D. P. & Barrett, A. J., MEROPS: the peptidase 

database. Nucleic Acids Res., 32 Database issue, D160-D164, 2004. 

58. Atomi, H., Fukui, T., Kanai, T., Morikawa, M. & Imanaka, T., Description 

of Thermococcus kodakaraensis sp. nov., a well studied hyperthermophilic 

archaeon previously reported as Pyrococcus sp. KOD1 Archaea, 1, 263-267, 

2004. 

59. Morikawa, M., Izawa, Y., Rashid, N., Hoaki, T. & Imanaka, T., Purification 



 20

and characterization of a thermostable thiol protease from a newly isolated 

hyperthermophilic Pyrococcus sp. Appl. Environ. Microbiol., 60, 4559-4566, 

1994. 

60. Fukui, T., Atomi, H., Kanai, T., Matsumi, R., Fujiwara, S. & Imanaka, T., 

Complete genome sequence of the hyperthermophilic archaeon Thermococcus 

kodakaraensis KOD1 and comparison with Pyrococcus genomes. Genome Res., 

15, 352-363, 2005. 

61. Tanaka, T., Fujiwara, S., Nishikori, S., Fukui, T., Takagi, M. & Imanaka, 

T., A unique chitinase with dual active sites and triple substrate binding sites 

from the hyperthermophilic archaeon Pyrococcus kodakaraensis KOD1. Appl. 

Environ. Microbiol., 65, 5338-5344, 1999. 

62. Tachibana, Y., Leclere, M. M., Fujiwara, S., Takagi, M. & Imanaka, T., 

Cloning and expression of the α-amylase gene from the hyperthermophilic 

archaeon Pyrococcus sp. KOD1, and characterization of the enzyme. J. Ferment. 

Bioeng., 82, 224-232, 1996. 

63. Kannan, Y., Koga, Y., Inoue, Y., Haruki, M., Takagi, M., Imanaka, T., 

Morikawa, M. & Kanaya, S., Active subtilisin-like protease from a 

hyperthermophilic archaeon in a form with a putative prosequence. Appl. 

Environ. Microbiol., 67, 2445-2452, 2001. 

64. Sato, T., Fukui, T., Atomi, H. & Imanaka, T., Targeted gene disruption by 

homologous recombination in the hyperthermophilic archaeon Thermococcus 

kodakaraensis KOD1. J. Bacteriol., 185, 210-220, 2003. 

65. Sato, T., Fukui, T., Atomi, H. & Imanaka, T., Improved and versatile 

transformation system allowing multiple genetic manipulations of the 



 21

hyperthermophilic archaeon Thermococcus kodakaraensis. Appl. Environ. 

Microbiol., 71, 3889-3899, 2005. 

66. Worthington, P., Hoang, V., Perez-Pomares, F. & Blum, P., Targeted 

disruption of the α-amylase gene in the hyperthermophilic archaeon Sulfolobus 

solfataricus. J. Bacteriol., 185, 482-488, 2003. 

67. Imanaka, H., Yamatsu, A., Fukui, T., Atomi, H. & Imanaka, T., 

Phosphoenolpyruvate synthase plays an essential role for glycolysis in the 

modified Embden-Meyerhof pathway in Thermococcus kodakarensis. Mol. 

Microbiol., 61, 898-909, 2006. 

68. Sato, T., Imanaka, H., Rashid, N., Fukui, T., Atomi, H. & Imanaka, T., 

Genetic evidence identifying the true gluconeogenic fructose-1,6-bisphosphatase 

in Thermococcus kodakaraensis and other hyperthermophiles. J. Bacteriol., 186, 

5799-5807, 2004. 

69. Schelert, J., Dixit, V., Hoang, V., Simbahan, J., Drozda, M. & Blum, P., 

Occurrence and characterization of mercury resistance in the hyperthermophilic 

archaeon Sulfolobus solfataricus by use of gene disruption. J. Bacteriol., 186, 

427-437, 2004. 



 22

SYNOPSIS 

 

In this study, the author has performed a biochemical examination on two 

membrane-anchored peptidases in the hyperthermophilic archaeon, Thermococcus 

kodakaraensis KOD1 (Part I, Chapters 1-4). In Part II (Chapter 5), a method for gene 

disruption in this archaeon based on antibiotic resistance was developed and applied for 

genetic analysis of a putative sugar transporter of T. kodakaraensis.  

In Chapter 1, the author performed a biochemical characterization of a 

putative signal peptide peptidase of T. kodakaraensis. Signal peptide peptidases had not 

been identified in the Archaea, and genes encoding proteins with particularly high 

similarity to bacterial or eukaryotic enzymes were not present on the archaeal genomes. 

The author took notice of a gene encoding a protein (SppATk) of 334 amino acid 

residues that, although much smaller than its bacterial counterpart in Escherichia coli 

(618 residues), displayed 27% identity in primary structure. A predicted 

membrane-spanning domain was present in its amino-terminus, suggesting a membrane 

localization of the protein. Biochemical characterization of the catalytic domain of 

SppATk revealed that the protein indeed exhibits peptidase activity, and recognizes 

peptide sequences with hydrophobic/aromatic residues at the P-3 position and residues 

with relatively small side chains at the P-1 position. Sequences containing acidic 

residues were not cleaved by SppATk. Taking into account that signal sequences in the 

Archaea generally contain a hydrophobic stretch of amino acid residues and do not 

contain acidic amino acid residues, the substrate preference of SppATk strongly suggests 

that the enzyme represents the signal peptide peptidase in the Archaea.  

In Chapter 2, the author further proceeded in elucidating the amino acid 
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residues participating in the catalysis of SppATk. SppATk belongs to a group of putative 

serine peptidases/proteases constituting the S49 family. The catalytic center had not 

been elucidated in any of the members of the S49 family. By individually replacing 

amino acid residues highly conserved in SppATk homologs to alanine, 16 mutant 

proteins were purified and analyzed for peptidase activity. As a result, SppATk was 

found to utilize Ser162 as the nucleophilic serine and Lys214 as the general base, 

comprising a Ser-Lys catalytic dyad for peptide bond hydrolysis. Intriguingly, several 

mutant proteins exhibited higher levels of activity than the wild-type SppATk. As these 

proteins also displayed a broadening in substrate specificity, these residues may be 

present to prevent the enzyme from cleaving unintended peptide/protein substrates in 

the cell. 

In Chapter 3, the author searched for other peptidases that may be involved in 

the degradation of signal peptides in T. kodakaraensis. Although homologs of 

oligopeptidase A and TepA, two peptidases involved in this process in bacteria, were not 

present, the author found a second gene on the T. kodakaraensis genome that encoded a 

putative membrane-bound peptidase (SppBTk) that was 18% identical to SppATk. As in 

the case of SppATk, SppBTk harbored a predicted membrane-spanning domain in its 

amino-terminus. The association of the protein to the cytoplasmic membrane was 

confirmed through Western blot analysis. A genome database search revealed that 

SppBTk homologs were distributed in a number of archaea and bacteria. In order to 

examine the possibilities of whether this protein was also involved in signal peptide 

degradation, the recombinant catalytic domain was biochemically examined. As in the 

case of SppATk, SppBTk showed no activity towards peptide sequences with acidic 

residues. However, in contrast to SppATk, SppBTk exhibited a strong preference for 
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basic amino acid residues at the P-2 position and hydrophobic residues at the P-1 site. 

This substrate specificity raises the possibilities that SppBTk may function in 

cooperation with SppATk in the degradation of signal peptides, with SppBTk mainly 

responsible for the cleavage of sequences located immediately upstream of the 

hydrophobic stretch in signal peptides, which in many cases harbor basic amino acid 

residues. 

In Chapter 4, the author determined the amino acid residues that are important 

for the peptidase activity of SppBTk. No information had been available on the catalytic 

mechanism of SppBTk homologs. A sequence comparison of over 40 archaeal and 

bacterial SppBTk homologs was performed, and 18 conserved amino acid residues were 

selected as candidates for components of the catalytic center. A detailed site-directed 

mutagenesis study was performed by constructing and analyzing mutant proteins in 

which the selected residues were replaced by alanine. The study revealed that 

substitution of Ser130, His226 or Asp154 led to the abolishment or dramatic decrease in 

SppBTk activity. In contrast to the catalytic center of SppATk, the results suggested that 

SppBTk relies on a Ser-His-Asp catalytic triad for proteolytic activity. 

In Part II (Chapter 5), the author developed a method for gene disruption in T. 

kodakaraensis KOD1 based on antibiotic resistance. Conventional antibiotics and 

antibiotic resistance marker genes cannot be used in hyperthermophiles due to their lack 

of thermostability. Therefore a strategy based on inhibition of a particular endogenous 

protein by an antibiotic and relieving the inhibition by overexpressing the protein was 

applied. The author utilized simvastatin, a specific inhibitor of the enzyme 

3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase, which is essential for 

archaeal membrane synthesis. Using an overexpression cassette of a thermostable 
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HMG-CoA reductase gene as a marker, the author was able to efficiently select gene 

disruption strains of a putative sugar transporter complex gene cluster of T. 

kodakaraensis. Phenotypic examinations clearly revealed that the transporter was the 

only transporter involved in maltooligosaccharide uptake in this strain. The gene 

disruption system developed in this chapter can be applied in nutrient-rich media, and 

should be helpful in developing gene disruption systems in other hyperthermophilic 

archaea as there is no need for the initial development of auxotrophic host strains. In 

addition, the methodology will surely be a powerful tool in future genetic studies on 

membrane transporters, as isolation of disruption mutants of microbial 

transporters/channels can be expected to be in some cases difficult in minimal media.  
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Studies on membrane-bound peptidases from Thermococcus kodakaraensis 
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CHAPTER 1 

 

Biochemical properties of a putative signal peptide peptidase 

from Thermococcus kodakaraensis 

 

INTRODUCTION 

Compared to the wealth of studies reported on bacterial and eukaryotic protein 

secretion, the number of experimental examinations on archaeal secretion is still very 

low (1). A comparative genomics approach has been taken to examine the presence or 

absence of archaeal homologs structurally related to genes that function in the 

eukaryotic or bacterial secretion systems (2). Comparing the primary sequences of 

putative secretion proteins has also revealed the structural characteristics of the archaeal 

signal peptide (GENERAL INTRODUCTION, Fig. 4). Among the factors that comprise 

the archaeal secretion machinery, proteins that have been experimentally examined 

include those involved in flagellum formation in methanogens (3), the signal 

recognition particle of Archaeoglobus fulgidus (4) and Sulfolobus solfataricus (5), and 

the Sec protein-conducting channel complex of Methanocaldococcus jannaschii (6). 

Signal peptide peptidases (SPPs) are enzymes considered to cleave the signal 

peptide chains of secreted proteins after they are removed from the precursor proteins 

by signal peptidases (7, 8). Eukaryotic SPPs are integral membrane enzymes, with 

activity dependent on two aspartate residues (9, 10). They have become a center of 

attention in mammalian cells due to their involvement in immune surveillance. After 

SPP cleaves signal peptides of the major histocompatibility complex I molecules, the 

peptide products are presented on the cell surface by a nonclassical major 
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histocompatibility complex class I molecule, HLA-E, indicating to natural killer cells 

that major histocompatibility complex synthesis is proceeding normally (11, 12). 

The bacterial SPP was initially identified in Escherichia coli as a cytoplasmic 

membrane protein named protease IV (7, 13, 14). The enzyme, encoded by the sppA 

gene (15, 16), was found to cleave the signal peptide of outer membrane lipoprotein 

after its release from the precursor protein. Further studies have indicated that protease 

IV (SppA) carries out only the initial breakdown of the signal peptide into smaller 

peptide fragments, followed by complete digestion through the functions of cytoplasmic 

peptidases including oligopeptidase A (17, 18). The gram-positive counterpart of SppA 

in Bacillus subtilis has also been studied, and has been shown to be involved in signal 

peptide degradation (19). Furthermore, a cytosolic peptidase, TepA, structurally related 

to both SppA and ClpP has also been found to actively participate in the degradation of 

signal peptides in this organism (19). 

In terms of signal peptidases (SPs) and SPPs from the Archaea, the type I SP 

gene from Methanococcus voltae has been cloned and its product characterized, 

confirming that the protein exhibits SP activity (20). Residues critical for the peptidase 

activity of the protein have been determined (21). FlaK, the SP that functions 

exclusively for preflagellin signal cleavage, has also been characterized from this 

organism and has been demonstrated to be an aspartic protease essential for preflagellin 

cleavage (22). In the Crenarchaeota, the homolog of bacterial type IV prepilin 

peptidases from S. solfataricus (PibD) has been characterized, and residues on the 

substrate that are important for recognition by PibD have been examined (23). In 

contrast to the progress on SPs, the presence or examination of SPPs have not been 

reported in the Archaea. 



 30

In this chapter, the author has identified and examined the enzymatic properties 

of a putative SPP from T. kodakaraensis, revealing that the substrate specificity of the 

enzyme is consistent with its presumed role as an SPP in this archaeon. 

 

MATERIALS AND METHODS 

Strains, media, and plasmids 

The standard growth medium for the cultivation of T. kodakaraensis was a 

nutrient-rich ASW-YT medium supplemented with 2.0 g liter-1 elemental sulfur. 

ASW-YT medium is composed of 0.8 x artificial seawater, 5.0 g liter-1 yeast extract, 

and 5.0 g liter-1 tryptone. The composition of 0.8 x artificial seawater is (per liter) 20 g 

NaCl, 3.0 g MgCl2·6H2O, 6.0 g MgSO4·7H2O, 1.0 g (NH4)2SO4, 0.2 g NaHCO3, 0.3 g 

CaCl2·2H2O, 0.5 g KCl, 0.42 g KH2PO4, 0.05 g NaBr, 0.02 g SrCl2·6H2O, and 0.01 g 

Fe(NH4)citrate. Resazurin was added to the medium at a concentration of 0.8 mg liter-1 

as an oxygen indicator. Prior to cell inoculation, Na2S was added to the medium until 

the color of resazurin became transparent. T. kodakaraensis cells were grown under 

anaerobic conditions at 85˚C. E. coli DH5α and plasmid pUC18 were used for gene 

cloning, sequencing, and DNA manipulation. E. coli BL21-CodonPlus(DE3)-RIL 

(Stratagene, La Jolla, CA, USA) and pET21a(+) (Novagen, Madison, WI, USA) were 

used for gene expression. E. coli strains were cultivated in LB medium (10 g of tryptone, 

5.0 g of yeast extract, and 10 g of NaCl per liter) with 100 μg ml-1 ampicillin at 37˚C. 

 

DNA manipulation and sequence analysis 

Restriction and modification enzymes were purchased from Toyobo (Osaka, 

Japan) or Takara (Kyoto, Japan). KOD Plus (Toyobo) was used as a polymerase for 
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Polymerase Chain Reaction (PCR). Plasmid DNA was isolated and purified from E. coli 

cells with the Plasmid mini-kit from QIAGEN (Hilden, Germany). GFX PCR DNA and 

gel band purification kit (GE Healthcare, Little Chalfont, UK) was used to recover DNA 

fragments from agarose gels after electrophoresis. DNA sequencing was performed 

using BigDye terminator cycle sequencing kit v.3.0-3.1 and a model 3100 capillary 

DNA sequencer (Applied Biosystems, Foster City, CA, USA). Sequence alignments 

and construction of the phylogenetic tree with the neighbor-joining method were 

performed with the ClustalW program available at the DNA Data Bank of Japan. 

Bootstrap resampling was performed 1,000 times with the BSTRAP program. 

 

Expression of the sppATk gene in E. coli 

Genomic DNA from T. kodakaraensis was isolated by methods described 

elsewhere (24). The sppATk gene initiating with a Met residue preceding Gln30, 

omitting the transmembrane domain, was amplified from the genomic DNA of T. 

kodakaraensis using the primer set sppN1 and sppC1 (sppN1, 5’-GTTC 

TCCATATGCAGGTCAATCCCCCCGCTGT-3’; sppC1, 5’-CAGAATTCAACCACC 

CCCAATGAGGG-3’). The gene for the truncated protein initiating with a Met residue 

preceding Cys55 was amplified with sppN2 and sppC1 (sppN2, 5’-ACTTTACGCAT 

ATGTGTGAAGGCAGTGTTAAC-3’). After confirming the sequences of the DNA 

fragments, they were inserted into pET21a(+) at the NdeI and EcoRI sites. After 

introduction into E. coli BL21-CodonPlus(DE3)-RIL cells, gene expression was 

induced with 0.1 mM isopropyl-β-D-thiogalactopyranoside at the mid-exponential 

growth phase with further incubation for 6 h at 37˚C. 
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Purification of recombinant SppATk 

After inducing gene expression, cells were washed with 50 mM Tris-HCl (pH 

8.0) and resuspended in the same buffer. Cells were sonicated on ice, and the 

supernatant after centrifugation (20,000 x g, 30 min at 4˚C) was applied to heat 

treatment at 85˚C for 15 min, immediately cooled on ice, and then centrifuged (20,000 x 

g, 30 min at 4˚C). The soluble protein sample was brought to 35% saturation with 

(NH4)2SO4 and the precipitate which included SppATk was dissolved in 50 mM 

Tris-HCl (pH 8.0). This was applied to anion exchange chromatography (ResourceQ, 

GE Healthcare) equilibrated with 50 mM Tris-HCl (pH 8.0), 0.2 M NaCl, and proteins 

were eluted with a linear gradient (0.2 to 1.0 M) of NaCl. After desalting with a 

HiPrep26/10 column (GE Healthcare), the sample was applied to gel filtration 

chromatography (Superdex 200 HR 10/30, GE Healthcare) equilibrated with 50 mM 

Tris-HCl (pH 8.0), 0.15 M NaCl, and the fractions obtained were used for enzyme 

analysis. 

 

Protein analysis of purified recombinant SppATk 

The native molecular mass of the purified protein was examined by 

gel-filtration chromatography using Superdex 200 HR 10/30 in 50 mM Tris-HCl (pH 

8.0), 0.15 M NaCl. The retention time was calibrated with those of the standard proteins 

thyroglobulin (669 kDa), ferritin (440 kDa), catalase (232 kDa), aldolase (158 kDa), 

albumin (67 kDa), ovalbumin (43 kDa), chymotrypsinogen A (25 kDa), and 

ribonuclease A (13.7 kDa). Protein concentration was determined with the protein assay 

kit (Bio-Rad, Hercules, CA, USA) using bovine serum albumin as a standard. 

Determination of amino-terminal amino acid sequences of proteins was performed with 
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a protein sequencer (model 491 cLC, Applied Biosystems) after separation by sodium 

dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis (PAGE) and electroblotting 

onto a polyvinylidene difluoride membrane (Millipore, Bedford, MA, USA). 

 

Enzyme activity measurements 

Most activity measurements were performed with peptidyl-MCA substrates 

[peptidyl–α-(4-methylcoumaryl-7-amide) substrates] available from Peptide Institute 

(Osaka, Japan). Release of 7-amino-4-methylcoumarin was monitored consecutively 

with a fluorescence spectrophotometer capable of maintaining the cuvette at desired 

temperatures between 30 and 100˚C. Excitation and emission wavelengths were 380 nm 

and 460 nm, respectively. Standard activity measurements were performed at 60˚C in a 

final volume of 1 ml with 0.1 μg of purified protein and Ala-Ala-Phe-MCA (200 μM) in 

50 mM CHES (N-cyclohexyl-2-aminoethanesulfonic acid; pH 10.0). The final 

concentration of dimethyl sulfoxide used to dissolve the substrate was constant at 3% of 

the reaction mixture. 

 

Effects of temperature and pH on enzyme activity 

All buffers were prepared so that they would reflect accurate values at the 

applied temperatures. In examining the effect of temperature, the standard assay method 

was applied at each temperature. The effect of pH was examined in the presence of 50 

mM of 2-morpholinoethanesulfonic acid (MES)-NaOH (pH 6.0 to 7.0), 

2-[4-(2-hydroxyethyl)-1-piperazinyl]ethanesulfonic acid (HEPES)-NaOH (pH 7.0 to 

8.0), N, N-bis(2-hydroxyethyl)glycine (Bicine)-NaOH (pH 8.0 to 9.0), CHES-NaOH 

(pH 9.0 to 10.0), and N-cyclohexyl-3-aminopropanesulfonic acid (CAPS)-NaOH (pH 
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10.0 to 12.0), respectively. Thermostability of the protein was analyzed by measuring 

the residual activity of the protein after incubation at various temperatures in 50 mM 

CHES-NaOH (pH 10.0). The initial activity of the enzyme incubated at 60˚C was 

designated as 100%. Alkaline stability was analyzed by measuring the residual activity 

of the protein after incubation at various pH in 50 mM CAPS-NaOH at 60˚C. The initial 

activity of the enzyme incubated in 50 mM CAPS-NaOH (pH 10.0) was designated as 

100%. In measuring thermostability and alkaline stability, the protein concentration 

during incubation was 1 μg ml-1. Residual activities were measured with the standard 

assay method described above. 

 

Effect of protease inhibitors 

The effects of various protease inhibitors at concentrations of 200 μM, 1 mM, 

or 10 mM were examined at 60˚C and pH 10.0. The substrate Ala-Ala-Phe-MCA was 

present at a concentration of 200 μM. Activity in the absence of inhibitors was defined 

as 100%. 

 

Determination of substrate specificity 

Substrate specificity was examined with a FRETS peptide library (25Xaa series, 

Peptide Institute) (25). These peptide substrates harbor a highly fluorescent 

2-(N-methylamino)benzoyl group linked to the side chain of the amino-terminal 

D-2,3-diaminopropionic acid residue (D-A2pr), along with a 2,4-dinitrophenyl group 

(quencher) linked to the ε-amino group of a Lys residue. In between the D-A2pr and Lys 

residue lies the peptide Gly-Zaa-Yaa-Xaa-Ala-Phe-Pro, where Zaa is a mixture of Phe, 

Ala, Val, Glu, and Arg, Yaa is a mixture of Pro, Tyr, Lys, Ile, and Asp, and the Xaa 
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residue is a defined single amino acid of choice (see RESULTS section). Excitation and 

emission wavelengths were 340 nm and 440 nm, respectively. In the initial assay to 

examine the preference for residues at the P-1 position, 1 μg of purified enzyme was 

added to the reaction mixture with a final volume of 1 ml containing 30 μM substrate in 

50 mM CHES (pH 10.0). The final concentration of dimethyl sulfoxide used to dissolve 

the substrate was constant at 3% of the reaction mixture. A second assay to identify the 

cleavage sites and the preference towards residues at the P-2 to P-4 positions was 

performed on selected substrates. Aliquots (100 μl) from the cleavage reactions were 

taken at various time intervals that corresponded to 15 to 30% cleavage of the substrates, 

and subjected to liquid chromatography (LC)-mass spectrometry analysis. An ODS 

A-302 column (YMC, Kyoto, Japan) was used for separation with 0.05% trifluoroacetic 

acid in H2O as eluant A and 0.05% trifluoroacetic acid in CH3CN as eluant B. The 

gradient was 5–40% of eluant B in A at a flow rate of 1.0 ml min-1 over a time span of 

55 min. Aliquots taken from the cleavage reactions were injected and the cleaved 

products were monitored with absorbance at 220 nm, as well as fluorescence intensity 

in order to identify the amino-terminal segments. The structures of the cleaved products 

were deduced from the theoretical molecular weights. 

 

RESULTS 

Putative signal peptide peptidase gene on the genome of T. kodakaraensis 

Using the primary structures of the signal peptide peptidases from E. coli 

(SppAEc) and human, the author performed a BLAST search against the protein 

sequences of T. kodakaraensis. Closely related homologs could not be identified for 

either the bacterial or eukaryotic SPP. However, although significantly smaller in size 
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than SppAEc (618 amino acid residues), one open reading frame (TK1164) encoded a 

protein (334 residues) with 27% identity to SppAEc. The author designated the gene as 

sppATk (Fig. 1). The deduced molecular mass of the protein was 36,211 Da. A BLAST 

search against the complete genome sequences of various archaeal strains was 

performed with the SppAEc and SppATk sequences. Similar homologs were found in 

many genera of the Euryarchaeota, including Picrophilus, Pyrococcus, and 

Thermoplasma, as well as the methanogens and the haloarchaea. The author also found 

homologs in Nanoarchaeum and the crenarchaeon Pyrobaculum. A phylogenetic 

analysis of these sequences along with several selected bacterial sequences is shown in 

Fig. 2. Although the catalytic residues have not been experimentally verified, effects of 

various inhibitors have suggested that SppAEc is a serine protease (13). The author 

indeed observed multiple serine residues that were highly conserved among the archaeal 

and bacterial SppA sequences (Fig. 1). As in the case of SppAEc, SppATk is structurally 

categorized in the S49 family of the SK clan of serine proteases (MEROPS, the 

peptidase database, http://merops.sanger.ac.uk/) (26). Another common feature was that 

both proteins harbored a putative transmembrane region(s) near their amino-termini. 

Based on these similar features, the author set out to express the sppATk gene and 

examine the enzymatic properties of the recombinant protein. 
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Fig. 1. Sequence alignment of putative signal peptide peptidase proteins from Escherichia coli, 
Bacillus subtilis, and representative archaeal strains. The 19 archaeal SppA sequences described 
in Fig. 2 were aligned with the sequences of SppA from E. coli and B. subtilis. After alignment, 
representative sequences were selected. Asterisks indicate highly conserved residues that were 
present in at least 18 of the 21 sequences aligned. Among these, residues that were conserved in 
all sequences examined are indicated by stars. The bar above the alignment indicates the 
putative transmembrane domain of the signal peptide peptidase from T. kodakaraensis. 
Arrowheads indicate the residues that immediately follow the artificial Met residue incorporated 
in ΔN29SppATk and ΔN54SppATk. Tko, T. kodakaraensis; Mja, Methanocaldococcus 
jannaschii; Tac, Thermoplasma acidophilum; PaI, Pyrobaculum aerophilum I; Neq, 
Nanoarchaeum equitans; Hba, Halobacterium sp. strain NRC-1; Bsp, B. subtilis; Eco, E. coli. 
Due to their lengths, not all residues are shown for PaI (608 residues), Hba (300 residues), and 
Eco (618 residues). 
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Fig. 2. Phylogenetic tree of putative archaeal SppA sequences. SppA sequences from archaea 
that displayed similarity to SppAEc and SppATk were analyzed along with the sequences of 
SppAEc and the SppA and TepA from Bacillus subtilis. The proteins used (accession numbers) 
were B. subtilis SppA (CAB14931) and TepA (CAB13552), Escherichia coli (BAA15557), 
Haloarcula marismortui I (AAV45638), II (AAV46904), and III (AAV47811), Halobacterium 
sp. strain NRC-1 (AAG19125), Methanocaldococcus jannaschii (AAB98642), Methanococcus 
maripaludis (CAF30625), Methanosarcina acetivorans (AAM07395), Methanosarcina mazei 
(AAM30562), Methanothermobacter thermautotrophicus (AAB85306), Nanoarchaeum 
equitans (AAR39164), Picrophilus torridus (AAT42796), Pyrobaculum aerophilum I 
(AAL65089) and II (AAL64441), Pyrococcus abyssi (CAB49512), Pyrococcus furiosus 
(AAL81707), Pyrococcus horikoshii (BAA30681), Thermococcus kodakaraensis 
(BAD85353), Thermoplasma acidophilum (CAC11222), and Thermoplasma volcanium 
(BAB59171). Only bootstrap values above 50 are indicated. 
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Expression of the sppATk gene in E. coli and purification of the recombinant 

protein 

The putative transmembrane domain of SppATk corresponds to residues Lys7 

to Tyr29 (Fig. 1). In order to characterize the catalytic domain of the protein, this region 

was omitted when constructing the expression vector. An artificial Met residue was 

incorporated in the place of Tyr29, and this gene was expressed in E. coli. As expected, 

a soluble protein (ΔN29SppATk) was obtained, which was resistant to heat treatment at 

85˚C for 15 min. The author found that the thermostable protein exhibited peptidase 

activity towards peptide substrates such as Ala-Ala-Phe-MCA. The recombinant protein 

was purified with ammonium sulfate fractionation, anion exchange chromatography, 

and gel filtration chromatography. During these procedures, the author observed a 

gradual decrease in the molecular weight of the protein as judged by SDS-PAGE, 

leading to three major molecular species (Fig. 3). The amino-terminal amino acid 

sequences of each species was determined and revealed that in the smaller proteins, 

degradation at the amino-terminal region had occurred, probably due to autoproteolysis. 

As the smallest species harbored the Cys55 at its extreme amino-terminus, the author 

reconstructed an expression plasmid so that translation initiated at a Met residue 

adjacent to Cys55. The protein produced (ΔN54SppATk) was purified with the methods 

mentioned above (Fig. 3), and was found to be relatively stable in terms of proteolytic 

degradation. This protein, ΔN54SppATk, was therefore used for further biochemical 

examination. Although not shown in the results described below, ΔN29SppATk and 

ΔN54SppATk displayed similar tendencies in terms of specific activity, pH dependency, 

and substrate preference using the FRETS peptide library. 
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Oligomeric form of ΔN54SppATk 

The molecular mass of the purified ΔN54SppATk using gel filtration 

chromatography was estimated to be slightly larger than that of catalase (232 kDa). The 

molecular mass of a single subunit of ΔN54SppATk is 30,421 Da, suggesting that the 

protein formed an octamer. Besides this major peak, the author observed a second peak 

at 460 to 500 kDa, which may correspond to a hexadecameric form of the enzyme. The 

octameric form of the protein was used for further examination. It should be noted that 

the results obtained here are those of a truncated protein, and may not accurately reflect 

the oligomeric state of the native protein, which can be assumed to be associated with 

the membrane. It has previously been reported that the oligomeric form of the native 

SppAEc was suggested to be tetrameric through crosslinking experiments, while the 

results of native PAGE raised the possibility of an even higher oligomeric form (15). 

Fig. 3. SDS-PAGE analysis of purified 
ΔN29SppATk (lane 1) and ΔN54SppATk 
(lane 2). Solid dots to the right of lane 1 
indicate the purified ΔN29SppATk and the 
major degradation products. 
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Optimal pH and temperature 

The effects of pH and temperature on the activity of ΔN54SppATk were 

examined with the substrate Ala-Ala-Phe-MCA. As shown in Fig. 4A, the protein 

exhibited maximal activity at an unexpectedly high pH range of 10.0 to 10.5. High 

levels of activity were maintained at even higher pH values of 11.5 (58% relative to the 

activity observed at pH 10.0, CHES) and 12.0 (50%). The effects of temperature on 

activity were analyzed with the same substrate at pH 10.0. Maximum activity under the 

conditions examined was observed at approximately 80˚C (Fig. 4B). The Arrhenius plot 

gave a constant slope from 30˚C to 60˚C, and the activation energy of the reaction was 

calculated to be 54 kJ mol-1 (Fig. 4C). The thermostability of the enzyme was examined 

for 72 h at pH 10.0 (Fig. 4D), and alkaline stability was measured at 60˚C for 48 h (Fig. 

4E). In terms of temperature, the author observed extremely high stability at 60 and 

70˚C, with over 60% of the initial activity remaining after 72 h. At 80˚C, the author 

detected a relatively greater decrease in activity at the initial phases of incubation, 

which was consistently reproduced in multiple experiments. However after 30 min, the 

enzyme seemed to stabilize and follow the usual deactivation kinetics, where the 

deactivation rate (-dNE/dt) is proportional to the amount of enzyme (NE), or -dNE/dt = 

kNE. The author still observed over 30% residual activity after 48 h at 80˚C and pH 10.0. 

ΔN54SppATk also exhibited high alkaline stability. Nearly 50% residual activity was 

observed after 24 h at pH 11.5 and 60˚C, and the calculated half-life at pH 12.0 was 

approximately 10 h. 
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Fig. 4. (A) Effect of pH on the activity of ΔN54SppATk. Measurements were performed at 60˚C 
in the following buffers at a concentration of 50 mM: MES-NaOH (open triangles), 
HEPES-NaOH (solid squares), Bicine-NaOH (open squares), CHES-NaOH (solid circles), and 
CAPS-NaOH (open circles). (B) Effect of temperature on the activity of ΔN54SppATk. Reactions 
were carried out in 50 mM CHES-NaOH (pH 10.0). (C) Arrhenius plot of B, indicating the 
activation energy of substrate hydrolysis catalyzed by ΔN54SppATk. (D) Thermostability of 
ΔN54SppATk at various temperatures. Incubation of the enzyme was carried out in 50 mM 
CHES-NaOH (pH 10.0). Symbols: 60˚C, open circles; 70˚C, solid circles; 80˚C, open squares; 
90˚C, solid squares. (E) Stability of ΔN54SppATk at various pHs. Enzyme incubation was carried 
out at 60˚C in 50 mM CAPS-NaOH (pH 10.0, open circles; pH 10.5, solid circles; pH 11.0, open 
squares; pH 11.5, solid squares; pH 12.0, open triangles). All activity measurements (A to E) 
were carried out with 200 μM Ala-Ala-Phe-MCA. 

A B

C D

E 
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Effects of various inhibitors 

The effects of various protease inhibitors were examined at 60˚C and pH 10.0 

(Fig. 5). Leupeptin, chymostatin, and antipain exhibited relatively strong inhibition, 

leading to an 80% or higher decrease in activity at 200 μM. Diisopropyl 

fluorophosphate, which specifically reacts with serine residues, also strongly inhibited 

the activity of SppATk at 1 mM. In contrast, addition of EDTA, a typical inhibitor of 

metalloproteases, and pepstatin, an inhibitor of aspartate proteases, did not result in 

significant decreases in activity. Although the effects of phenylmethylsulfonyl fluoride 

were lower than expected, the results as a whole agree with the assumption that SppATk 

is a serine protease. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
Fig. 5. Effect of various protease inhibitors on the activity of 
ΔN54SppATk. The inhibitors examined were leupeptin (a), antipain (b), 
chymostatin (c), diisopropyl fluorophosphate (d), phenylmethylsulfonyl 
fluoride (e), pepstatin (f), elastatinal (g), and EDTA (h). Activity 
measurements were performed at 60˚C with the indicated inhibitor 
concentrations. The concentration of the substrate Ala-Ala-Phe-MCA 
was 200 μM. 
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Preference of ΔN54SppATk for various peptidyl-MCA substrates 

The author examined the activity of ΔN54SppATk on various peptidyl-MCA 

substrates shown in Table 1. At pH 10.0, the author found that Ala-Ala-Phe-MCA was 

by far the preferred substrate, followed by moderate activities towards N-glutaryl 

(Glt)-Ala-Ala-Phe-MCA and N-benzyloxycarbonyl (Z)-Val-Lys-Met-MCA. At pH 8.0, 

the preference became stricter, with Ala-Ala-Phe-MCA and Glt-Ala-Ala-Phe-MCA the 

only substrates leading to significant cleavage. 

 

 

Table 1. Activity of ΔN54SppATk towards various peptidyl-MCA substrates. 

 

Specific activity (μmol mg protein-1 min-1) 
Substrate 

pH 10.0 (%)  pH 8.0 

Ala-Ala-Phe-MCA 9.80 100  4.70 

Glt-Ala-Ala-Phe-MCA 2.85 29  0.98 

Z-Val-Lys-Met-MCA 1.05 11  0.05 

Phe-MCA 0.15 1.5  0.04 

Suc-Ala-Ala-Ala-MCA 0.06 0.6  0.04 

Suc-Ile-Ile-Trp-MCA 0.03 0.3  n.d. 

Suc-Leu-Leu-Val-Tyr-MCA 0.02 0.2  0.03 

Ala-MCA n.d. –  0.04 

Suc(OMe)-Ala-Ala-Pro-Val-MCA n.d. –  0.01 

Suc-Ala-Ala-Pro-Phe-MCA n.d. –  0.01 

Z-Leu-Leu-Glu-MCA n.d. –  n.d. 

Z-Ala-Ala-Asn-MCA n.d. –  n.d. 

Z-Leu-Leu-Leu-MCA n.d. –  n.d. 

Z-Leu-Arg-Gly-Gly-MCA n.d. –  n.d. 

Activities were examined with a substrate concentration of 300 μM in 50 mM CHES (pH 10.0) or  

50 mM HEPES (pH 8.0) at 60˚C.  

n.d., activity not detected. 
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Examining the substrate preference of ΔN54SppATk with a FRETS peptide library 

The author next evaluated the peptidase activity of ΔN54SppATk against a 

FRETS peptide library described in MATERIALS AND METHODS. This analysis 

provides detailed information on the preference of a peptidase towards substrate 

residues at the P-1, P-2, P-3, and, in some cases, the P-4 position. The P-1, P-2 and P-3 

sites represent the region of the protease that recognizes the first, second and third 

amino acid at the amino-terminal side of the amide bond that is cleaved, respectively. 

An initial analysis was carried out with 19 substrates corresponding to all amino acids at 

the Xaa site with the exception of cysteine (Fig. 6A). The author detected a preference 

of ΔN54SppATk for substrates with rather small residues (Gly, Ser, Ala, and Thr) at the 

Xaa position (Fig. 6B). Cleavage rates of substrates with charged or aromatic residues 

were low. The author next selected six substrates with relatively high cleavage rates 

(Xaa = Gly, Ser, Ala, Thr, Asn and Val), and subjected the cleaved products to LC-mass 

spectrometry analysis. In order to identify products generated from the initial cleavage 

reaction of the substrate, reactions were stopped at various intervals corresponding to 15 

to 30% substrate cleavage. The most abundant cleavage products for each of the six 

substrates are shown in Fig. 6C. In the case of Xaa = Gly, the author found that 

cleavage predominantly occurred at the carboxy-terminal amide bond of Ala, and not 

the expected Gly residue. In this case, the author can obtain insight on the preferred 

residues at the P-3 and P-4 sites. At the P-3 site, Ile led to the highest levels of cleavage, 

followed by Tyr and Pro. Products with Asp at the P-3 position could not be found. 

Concerning the P-4 position, the author found a high preference for Arg. The author 

also detected products with Phe or Val at the P-4 site. As in the case of the P-3 residue, 

the author could not find products with the negatively charged Glu residue at the P-4 
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site. Among the products that were actually cleaved at the Gly residue, Tyr and Lys 

were found at the P-2 site, and Phe and Val at the P-3 site. With Xaa = Ala, Ser, Thr, 

Asn or Val, the author found a common tendency with the results described above for 

the Xaa = Gly substrate. In all five cases, the most preferred P-3 residue was 

predominantly Ile or Phe, followed by Val, while cleavage products with negatively 

charged residues at this site were not found. A preference for the positively charged Arg 

at the P-4 site was also observed for all five substrates. The results also indicated a 

broad substrate specificity of ΔN54SppATk towards the P-2 residue. 
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Fig. 6. (A) Structure of the peptide substrates from a FRETS peptide library 
utilized in B and C. (B) Peptidase activity towards various substrates from the 
FRETS peptide library. Amino acid residues at the Xaa position are indicated. 
Each substrate was examined at a concentration of 30 μM. (C) The major cleaved 
products of six substrates (Xaa = Gly, Ser, Ala, Thr, Asn and Val) were detected by 
LC-mass spectrometry. Relative quantities are indicated to the right of the 
sequences. 



 47

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

C 

B 



 48

DISCUSSION 

The author has described the biochemical properties of ΔN54SppATk, a 

truncated form of a putative signal peptide peptidase from T. kodakaraensis. One 

remarkable feature of the enzyme was its high activity at high alkaline pH. Alkaliphilic 

proteases have attracted much attention due to their high demand in application, 

particularly in the detergent industry (27-30). A number of enzymes are commercially 

available, including Savinase, subtilisin Carlsberg, and subtilisin BPN’. Various 

strategies in the protein engineering field have been applied to alkaliphilic proteases 

with the aim to improve their (thermo)stability, and this has led to significant 

improvements in terms of catalytic efficiency and stability (28). However, as 

ΔN54SppATk was obtained from a hyperthermophile, the stability of the enzyme can be 

regarded as exceptionally high in comparison with previously known alkaline 

proteases/peptidases. The author has detected over 50% residual activity after 

incubation at 70˚C and pH 10.0 for 3 days. 

As the enzyme exhibits intrinsic thermophilic and alkaliphilic properties, 

ΔN54SppATk should be an attractive target for future protein engineering focusing on 

the modification of its substrate specificity. The author has examined whether 

ΔN54SppATk exhibits hydrolase activity towards proteins at 60˚C and pH 10.0. Using 

bovine serum albumin, ovalbumin, α-casein, hemoglobin, and lysozyme, the author 

found that protease activity of ΔN54SppATk was dependent on the particular protein 

substrate. Degradation of bovine serum albumin and ovalbumin was not observed, while 

α-casein, hemoglobin, and lysozyme were degraded to various extents (Fig. 7). The 

results indicate that ΔN54SppATk is able to cleave substrates longer than the artificial 

substrates used in this study. 
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Fig. 7. Incubation was performed at 60˚C in a final volume of 1 ml with 1 μg of 
ΔN54SppATk and protein substrate (1 μg or 3 μg) in 50 mM CHES-NaOH (pH 10.0). After 
incubation, substrate degradation in the reaction mixture was confirmed by SDS-PAGE 
(12.5% or 15% concentration of acrylamide). As a control reaction, incubation was also 
performed without ΔN54SppATk in the reaction mixture. 
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SppATk is structurally categorized in the S49 family of serine proteases, a 

prokaryotic family of proteases of which still little is understood. There are no 

three-dimensional structures available, and moreover, the catalytic mechanism of SPPs 

and the residues involved have not yet been experimentally determined. Information on 

the enzymatic properties of previously identified SPPs is also limited. The specific 

activity of SppAEc has been measured in several studies and ranges between 0.733 μmol 

mg-1 min-1 at 25˚C against Z-valine p-nitrophenyl ester (14) and 13.6 μmol mg-1 min-1 at 

37˚C against Z-valine β-naphthyl ester (15). The specific activity of the archaeal 

SppATk was 2.59 μmol mg-1 min-1 at 40˚C with Ala-Ala-Phe-MCA as the substrate. 

Residues preferred at the cleavage site have also been examined for SppAEc 

with both synthetic substrates and signal peptides. The former revealed a preference of 

cleavage at the carboxy-terminal side of Ala, Leu, Val, Gly, and Phe (14), while the 

latter indicated a preference for Val, Leu, Ile, Gly, Thr, and Ala (17). As in the case of 

the specific activity described above, the substrates used and the conditions applied in 

these experiments vary greatly, making it difficult to accurately compare the two 

enzymes. One point that is worthy of note is that many residues (Ala, Val, Thr, and Gly) 

are commonly preferred at the P-1 site by both SppAEc and SppATk. 

By performing a BLAST search against the genome sequences of archaea, the 

author was able to identify SppA homologs in most strains of Euryarchaeota (Fig. 2). 

As exceptions, the author could not identify highly similar homologs on the A. fulgidus 

and Methanopyrus kandleri genomes. Interestingly, most members of the 

Crenarchaeota do not seem to utilize structurally related SPPs. The two protein 

sequences from Pyrobaculum aerophilum, the only SppA homologs from 

Crenarchaeota, contained exceptionally long extensions in their carboxy-terminal 
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domains. Residues that are highly conserved among bacterial and archaeal SppA 

sequences are indicated in Fig. 1 and may be involved in catalysis and/or substrate 

specificity. In particular, Ser162 in SppATk is conserved in all SppA sequences and is 

also conserved in the functionally and structurally related B. subtilis TepA protease (19). 

Although this serine residue of TepA has not been experimentally analyzed, it is 

included in a region which displays similarity to the region containing the active site 

serine of E. coli ClpP, raising the possibilities that this residue is the nucleophile in all 

of these proteins. However, the His and Asp/Glu residues that constitute the 

conventional catalytic triad found in ClpP are not conserved among the archaeal 

proteins and are not even present in the SppA proteins from E. coli and B. subtilis. In 

order to accurately determine the active-site residues of SppA proteins, including the 

nucleophilic serine, site-directed mutagenesis studies (described in Chapter 2) will be 

necessary. 

Using the FRETS peptide library, the author has been able to clarify some of 

the preferences of ΔN54SppATk towards residues at the P-1, P-2, P-3, and P-4 sites. A 

relatively small side chain seems to be preferred at the P-1 position. The specificity at 

the P-2 position can be regarded as broad. Hydrophobic and/or aromatic residues are 

recognized most at the P-3 site, while the positively charged Arg enhances the activity 

of ΔN54SppATk when present at the P-4 position. The results also indicate that the 

presence of acidic residues at any one of the sites from P-2 to P-4 has a negative effect 

on the substrate recognition of ΔN54SppATk. With the MCA substrates, a direct 

comparison among substrates to determine the residue preference of ΔN54SppATk was 

difficult, as multiple factors differ even between two given substrates. One point that 

can be noted is that a negative charge at the P-4 position has a large negative effect on 
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substrate recognition (Ala-Ala-Phe-MCA > Glt-Ala-Ala-Phe-MCA). 

Taking into account the specificity of ΔN54SppATk, the author examined a vast 

number of putative signal sequences that were identified on the T. kodakaraensis 

genome using the SOSUI program. Some representative signal sequences, those from 

four proteins that have been experimentally proven to be secreted from T. 

kodakaraensis ((31-34); unpublished data), are shown in Fig. 8. As in the case of most 

putative signal sequences on the T. kodakaraensis genome, acidic residues are not found, 

consistent with the fact that ΔN54SppATk does not cleave peptides with acidic residues 

in the P-2 to P-4 sites. Further, the author found a number of candidate sequences in 

each signal sequence that can be presumed to be efficiently recognized and cleaved by 

ΔN54SppATk. 

Although future gene disruption studies will be necessary to confirm the 

physiological role of SppATk, the enzymatic properties of the enzyme are in good 

agreement with the assumption that SppATk functions as an SPP in T. kodakaraensis. 

 

 

 

 

 

 

 

 

 

 
 
 
Fig. 8. Predicted signal sequences of four T. kodakaraensis proteins that have been biochemically 
characterized. Prediction was carried out with the SOSUI program. The signal sequence of α-amylase 
has been confirmed experimentally. Scissors indicate sites that can be presumed to be cleaved by 
SppATk when its substrate specificity is taken into account. 
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SUMMARY 

The author has performed the first biochemical characterization of a putative 

archaeal signal peptide peptidase (SppATk) from the hyperthermophilic archaeon 

Thermococcus kodakaraensis KOD1. SppATk, comprised of 334 residues, was much 

smaller than its counterpart from Escherichia coli (618 residues) and harbored a single 

predicted transmembrane domain near its amino-terminus. A truncated mutant protein 

without the amino-terminal 54 amino acid residues (ΔN54SppATk) was found to be 

stable against autoproteolysis and was further examined. ΔN54SppATk exhibited 

peptidase activity towards fluorogenic peptide substrates and was found to be highly 

thermostable. Moreover, the enzyme displayed a remarkable stability and preference for 

alkaline pH, with optimal activity detected at pH 10.0. The substrate specificity of the 

enzyme was examined in detail with a FRETS peptide library. By analyzing the 

cleavage products with liquid chromatography-mass spectrometry, ΔN54SppATk was 

found to efficiently cleave peptides with a relatively small side chain at the P-1 position 

and a hydrophobic or aromatic residue at the P-3 position. The positively charged Arg 

residue was preferred at the P-4 position, while substrates with negatively charged 

residues at the P-2, P-3, or P-4 position were not cleaved. When predicted signal 

sequences from the T. kodakaraensis genome sequence were examined, the author 

found that the substrate specificity of ΔN54SppATk was in good agreement with its 

presumed role as a signal peptide peptidase in this archaeon. 
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CHAPTER 2 

 

Identification of the amino acid residues essential for proteolytic activity  

in an archaeal signal peptide peptidase 

 

INTRODUCTION 

As described in the GENERAL INTRODUCTION, secretion proteins and 

membrane proteins in many cases harbor signal sequences at their extreme 

amino-termini that are cleaved during translocation by signal peptidases (SPs) (1). The 

released signal peptides are subsequently cleaved into smaller fragments by signal 

peptide peptidases (SPPs) (2). In bacteria, SPP was first identified in Escherichia coli. 

A previously identified cytoplasmic membrane protein, protease IV (3), was found to 

exhibit SPP activity toward the signal peptide of the outer membrane lipoprotein (2). It 

is now presumed that in E. coli, this protein (SppAEc) initiates the degradation by 

introducing endoproteolytic cuts into the signal peptide, whereas other cytoplasmic 

proteases, such as oligopeptidase A, are responsible for complete degradation of the 

smaller fragments into free amino acids (4). SPP has also been identified and 

genetically characterized in the Gram-positive Bacillus subtilis. The enzyme, along with 

a cytoplasmic peptidase TepA, has been found to play an important role in signal 

peptide degradation in this organism (5). 

In the Archaea, much remains to be understood on the mechanisms of protein 

secretion (6-8) and the fate of the signal peptide after its release from the precursor 

protein. In terms of SPs, the type I SP from Methanococcus voltae has been 

characterized, and a catalytic triad comprised from Ser52, His122, and Asp148 has been 
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determined to be critical for its peptidase activity (9, 10). FlaK, an aspartic protease 

essential for preflagellin signal cleavage has also been studied from this organism (11). 

In the Crenarchaeota, the homolog of bacterial type IV prepilin peptidases from 

Sulfolobus solfataricus (PibD) has been characterized, and residues on the substrate that 

are important for recognition by PibD have been examined (12). 

As for archaeal SPPs, the author has carried out the first examination of an 

archaeal SPP (SppATk) from the hyperthermophilic archaeon, Thermococcus 

kodakaraensis (Chapter 1). SppATk (334 residues) was much smaller in size compared 

with its bacterial counterpart SppAEc (618 residues). A single, putative 

membrane-spanning domain was present in the amino-terminal region of the protein. It 

was found that ΔN54SppATk, a truncated protein without the amino-terminal 54 

residues, was a soluble protein exhibiting peptidase activity and stable against 

autoproteolysis. The substrate specificity of ΔN54SppATk examined with a FRETS 

peptide library was consistent with its presumed role as an SPP in T. kodakaraensis. 

From the primary structures, archaeal and bacterial homologs of SppATk and 

SppAEc are all members of the S49 family of peptidases included in the Clan SK 

(MEROPS, the peptidase database, http://merops.sanger.ac.uk/) (13). Although the 

eukaryotic SPPs have been determined to be aspartic proteases (14, 15), the effects of 

various inhibitors on SppATk (Chapter 1) and SppAEc (3) strongly suggest that the 

enzymes are serine proteases. Although sequence comparisons among SppA homologs 

reveal the presence of several conserved serine residues, experimental evidence 

identifying the nucleophilic serine has not yet been obtained. Moreover, even with the 

sequence comparisons, it is still difficult to estimate what other residues might be 

involved in the catalytic mechanism of SPPs. In particular, His and Asp/Glu residues 
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that comprise the well known catalytic triad of serine proteases are not clearly 

conserved among the bacterial and archaeal SppA sequences. 

To gain insight on the residues involved in the catalytic mechanism of 

prokaryotic SPPs, in this chapter the author has performed a detailed site-directed 

mutagenesis study on ΔN54SppATk. Through the analyses of various mutant proteins, 

the author has been able to determine multiple residues that are essential or important 

for the activity of this protein. The results strongly suggest that ΔN54SppATk and other 

SppA homologs from the Archaea utilize a Ser-Lys dyad mechanism in peptide 

cleavage. 

 

MATERIALS AND METHODS 

Strains, media, and plasmids 

As described in Chapter 1, E. coli BL21-CodonPlus(DE3)-RIL and the plasmid 

pET21a(+) were used for gene expression. E. coli JM109 (dam+) was used in order to 

obtain methylated plasmid DNA sensitive to DpnI digestion. E. coli strains were 

cultivated in LB medium as described in Chapter 1. 

 

DNA manipulation, sequence analysis, and site-directed mutagenesis 

Isolation, purification and DNA sequencing of plasmid DNA were performed 

as described in Chapter 1. Sequence comparisons and alignments were performed with 

the ClustalW program provided by the DNA Data Bank of Japan. The expression 

plasmid used for production of recombinant ΔN54SppATk (Chapter 1) was amplified in 

E. coli JM109 (dam+) so that the plasmid would be methylated. The methylated plasmid 

was used as a template for site-directed mutagenesis with the QuikChange XL 
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site-directed kit (Stratagene). The primers used to incorporate each mutation are shown 

in Table 1. After sequence confirmation, the plasmids were introduced into E. coli 

BL21-CodonPlus(DE3)-RIL cells. 

 
Table 1. Primers used in this study. 

 

Mutation Primer sequences 
S128A 

 
 

G130A 
 
 

G131A 
 
 

K150A 
 
 

S162A 
 
 

Y165A 
 
 

S184A 
 
 

H191A 
 
 

K209A 
 
 

K214A 
 
 

D215A 
 
 

R221A 
 
 

E226A 
 
 

E227A 
 
 

R250A 
 
 

D277A 
 
 

5’-GTTCTCCTCTGGATTGAAGCCCCCGGTGGCGTAGTTGGG-3’ 
5’-CCCAACTACGCCACCGGGGGCTTCAATCCAGAGGAGAAC-3’ 
 
5’-CTCTGGATTGAAAGTCCCGCCGGCGTAGTTGGGCCTGTT-3’ 
5’-AACAGGCCCAACTACGCCGGCGGGACTTTCAATCCAGAG-3’ 
 
5’-TGGATTGAAAGTCCCGGTGCCGTAGTTGGGCCTGTTATT-3’ 
5’-AATAACAGGCCCAACTACGGCACCGGGACTTTCAATCCA-3’ 
 
5’-AAAAAGTTGTCTTTAGTTGCCCCAGTCGTCGCTTACAGC-3’ 
5’-GCTGTAAGCGACGACTGGGGCAACTAAAGACAACTTTTT-3’ 
 
5’-AGCGGGGATATCATAGCAGCCGGGGGATACTACATAGCA-3’ 
5’-TGCTATGTAGTATCCCCCGGCTGCTATGATATCCCCGCT-3’ 
 
5’-ATCATAGCATCAGGGGGAGCCTACATAGCAGTTGGGGCT-3’ 
5’-AGCCCCAACTGCTATGTAGGCTCCCCCTGATGCTATGAT-3’ 
 
5’-CCGCTGGCTGAGGTCGGAGCCATCGGAGTTATCTACGTT-3’ 
5’-AACGTAGATAACTCCGATGGCTCCGACCTCAGCCAGCGG-3’ 
 
5’-ATCGGAGTTATCTACGTTGCCTACGACCTGGAGAAGAAC-3’ 
5’-GTTCTTCTCCAGGTCGTAGGCAACGTAGATAACTCCGAT-3’ 
 
5’-ATAAAGGTAAATGTATTCGCCACTGGTAAACACAAGGAC-3’ 
5’-GTCCTTGTGTTTACCAGTGGCGAATACATTTACCTTTAT-3’ 
 
5’-TTCAAAACTGGTAAACACGCCGACATGGGGGCCGAGTGG-3’ 
5’-CCACTCGGCCCCCATGTCGGCGTGTTTACCAGTTTTGAA-3’ 
 
5’-AAAACTGGTAAACACAAGGCCATGGGGGCCGAGTGGAGA-3’ 
5’-TCTCCACTCGGCCCCCATGGCCTTGTGTTTACCAGTTTT-3’ 
 
5'-GACATGGGGGCCGAGTGGGCCGATTTAACGCCAGAAGAA-3' 
5'-TTCTTCTGGCGTTAAATCGGCCCACTCGGCCCCCATGTC-3' 
 
5’-TGGAGAGATTTAACGCCAGCCGAACGCGAGAAGATAACG-3’ 
5’-CGTTATCTTCTCGCGTTCGGCTGGCGTTAAATCTCTCCA-3’ 
 
5’-AGAGATTTAACGCCAGAAGCCCGCGAGAAGATAACGGAG-3’ 
5’-CTCCGTTATCTTCTCGCGGGCTTCTGGCGTTAAATCTCT-3’ 
 
5’-AGCGCAGTGAGCGAGGGGGCCAACATGACCATTGATGAA-3’ 
5’-TTCATCAATGGTCATGTTGGCCCCCTCGCTCACTGCGCT-3’ 
 
5’-GTTACTGGAGCCCTCGTCGCCGAGCTTGGGGGTATGGAC-3’ 
5’-GTCCATACCCCCAAGCTCGGCGACGAGGGCTCCAGTAAC-3’ 
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Expression and purification of wild-type and mutant ΔN54SppATk proteins 

The recombinant E. coli cells were grown in LB medium, and gene expression 

was induced with 0.1 mM isopropyl-β-D-thiogalactopyranoside at the mid- to late 

exponential growth phase. After 6 h, the cells were collected, washed with 50 mM 

Tris-HCl (pH 8.0), and resuspended in the same buffer. Methods for cell disruption and 

protein purification were performed in the same manner as those used for the wild-type 

protein described in Chapter 1. The protein concentration was determined with a protein 

assay kit (Bio-Rad) using bovine serum albumin as a standard. 

 

Enzyme activity measurements 

Standard activity measurements using the substrate Ala-Ala-Phe-MCA are 

described in the previous chapter. Kinetic parameters were calculated with IGOR Pro 

version 5.0 (WaveMetrics, Lake Oswego, OR, USA). 

 

Circular dichroism spectroscopy of wild-type and mutant enzymes 

Each protein sample was prepared in 25 mM Tris-HCl (pH 8.0), 75 mM NaCl 

at a protein concentration of 0.1 mg ml-1. A J-820 spectropolarimeter (Jasco, Tokyo, 

Japan) was used to measure ellipticity as a function of wavelength from 250 to 200 nm 

in 0.2-nm increments using a 0.1-cm cylindrical quartz cuvette. The samples were 

scanned one hundred times and averaged. The mean molar ellipticity [θ] (deg cm2 

dmol-1) was calculated from the equation [θ]=θ /10 nCl, where θ is the measured 

ellipticity in millidegrees, C is the molar concentration of enzyme subunits, l is the path 

length in centimeters, and n is the number of residues per subunit. 
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Examination of the substrate preference of wild-type and mutant enzymes 

The substrate preferences of the wild-type, S128A, and Y165A proteins were 

examined with the FRETS peptide library as described in Chapter 1. 

 

RESULTS 

Highly conserved amino acid residues among the signal peptide peptidases from 

archaea and bacteria 

To determine which residues should be selected for site-directed mutagenesis 

and subsequent biochemical analyses, the author aligned all SppA homologs found in 

the archaeal genomes, along with the biochemically and/or genetically characterized 

bacterial SppA from E. coli and B. subtilis. Among the 21 archaeal genomes that have 

been sequenced, the author could identify 19 SppA homologs in 16 organisms (see 

legend of Fig. 1). Although a number of other open reading frames have been annotated 

as putative SPPs, they displayed significantly lower degrees of similarity with SppATk 

and SppAEc and were therefore not selected for further examination. The sequence 

comparison indicated that SppA homologs were not present in Aeropyrum pernix, S. 

solfataricus, and Sulfolobus tokodaii from the Crenarchaeota and Methanopyrus 

kandleri and Archaeoglobus fulgidus from the Euryarchaeota. A region corresponding 

to residues between Met115 and Lys291 in SppATk was fairly conserved among all 

sequences and presumably includes the catalytic core regions of these enzymes. An 

alignment of the sequences spanning this region, along with the mutations introduced in 

this study, is shown in Fig. 1. Although the eukaryotic SppA has been demonstrated to 

be an aspartate peptidase (14), inhibitor studies on the bacterial SppAEc (3) and the 

archaeal SppATk (Chapter 1) have indicated that both of these enzymes are serine 
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peptidases. The author therefore initially focused on the presence of conserved serine 

residues. Ser128, Ser162, and Ser184 of SppATk were completely conserved in all 

sequences, with the only exceptions being a replacement of the first Ser to Thr in one of 

the three homologs from Haloarcula marismortui and a replacement of the third Ser to 

His in another homolog from this strain. In terms of the His residue in the well known 

Ser-His-Asp catalytic triad, only three His residues were found in this region of SppATk 

and were not highly conserved among the SppA sequences. His140 and His213 were 

not conserved even in the closely related Pyrococcus spp., whereas His191, although 

shared by SppATk and the three Pyrococcus enzymes, was not found in the other SppA 

sequences. As an alternative, the author found that the basic residue Arg250 was highly 

conserved among the SppA proteins. As for the Asp residue, Asp277 was the only 

acidic residue that was present without exception in all sequences (Fig. 1). 

 

Production and purification of mutant SppATk proteins via site-directed 

mutagenesis 

Based on the sequence alignment described above, the author first constructed 

the following six mutants; S128A, S162A, S184A, H191A, R250A, and D277A. The 

primers used to incorporate the mutations are shown in Table 1. The mutations were 

incorporated into the expression vector for ΔN54SppATk, a truncated protein without the 

amino-terminal 54 residues of SppATk (Chapter 1). Sequence analysis confirmed that 

only the intended mutations were introduced into the genes. Recombinant mutant 

proteins were produced in E. coli BL21-CodonPlus(DE3)-RIL cells and purified from 

the cell-free extracts by heat treatment at 85˚C for 15 min, followed by ammonium 

sulfate fractionation, anion exchange chromatography, and gel filtration 
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Fig. 1. An amino acid sequence alignment of the core regions of archaeal and bacterial homologs of 
SppATk and SppAEc. Nineteen archaeal SppA sequences were aligned along with the sequences of 
SppA from Escherichia coli and Bacillus subtilis. The conserved residues selected for site-directed 
mutagenesis are indicated with arrowheads and numbered. Residues identical with those of SppATk are 
indicated in red. The abbreviations of the proteins (italicized) and accession numbers of all sequences 
used for the alignment are as follows: B. subtilis SppA (CAB14931, Bsu), E. coli (BAA15557, Eco), 
H. marismortui (I, AAV45638, Hm1; II, AAV46904, Hm2; III, AAV47811, Hm3), Halobacterium sp. 
NRC-1 (AAG19125, Hba), Methanocaldococcus jannaschii (AAB98642, Mja), Methanococcus 
maripaludis (CAF30625, Mmr), Methanosarcina acetivorans (AAM07395, Mac), Methanosarcina 
mazei (AAM30562, Mma), Methanothermobacter thermautotrophicus (AAB85306, Mth), 
Nanoarchaeum equitans (AAR39164, Neq), Picrophilus torridus (AAT42796, Pto), Pyrobaculum 
aerophilum (I, AAL65089, Pa1; II, AAL64441, Pa2), Pyrococcus abyssi (CAB49512, Pab), 
Pyrococcus furiosus (AAL81707, Pfu), Pyrococcus horikoshii (BAA30681, Pho), T. kodakaraensis 
(BAD85353, Tko), Thermoplasma acidophilum (CAC11222, Tac), and Thermoplasma volcanium 
(BAB59171, Tvo). The division of the sequences into two groups is described under “DISCUSSION.” 
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chromatography. Although the author was able to obtain each mutant protein in a 

soluble form, the amount of protein produced in the E. coli cells varied with each 

mutant. As described in the previous chapter, the recombinant ΔN54SppATk was 

obtained in an octameric or hexadecameric form. The author also observed various 

quaternary structures in the mutant proteins, but only the fraction corresponding to the 

octameric form of the protein was used for further analysis. The apparent homogeneity 

of each protein after the purification procedure was examined by SDS-PAGE (Fig. 2). 

 

 

 

 

 

 

 

 

 

 

 

Peptidase activity of the wild-type and mutant ΔN54SppATk proteins 

As described in the previous chapter, the synthetic peptide Ala-Ala-Phe-MCA 

is a good substrate for the wild-type ΔN54SppATk. The activity levels of each mutant 

protein were measured at 60˚C in the presence of a fixed concentration of this substrate 

(200 μM) and compared with that of the wild-type enzyme (Fig. 3). The author found 

that the mutation of Ser162 had the most detrimental effect. No activity could be  

 
 
Fig. 2. SDS-PAGE of the wild-type and mutant proteins. The wild-type (WT) ΔN54SppATk and 16 
mutant proteins with single amino acid replacements were subjected to SDS-PAGE after the 
purification procedures described under “MATERIALS AND METHODS.” Mobility of molecular 
mass markers is indicated on the left side of each gel. 
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observed with the standard assay procedures. The author could estimate that the activity 

of the protein was only 0.004% of that of the wild-type enzyme by using a 100-fold 

higher protein concentration. The S184A and H191A mutations also brought about a 

decrease in enzyme activity, but significant levels of activity, 24 and 45% of that of the 

wild-type enzyme, respectively, were still observed in each mutant protein. Interestingly, 

the S128A, R250A, and D277A mutations did not have any negative effect but rather 

led to an unexpected increase in peptidase activity. It has been shown that mutations in 

the catalytic residues of serine proteases with a catalytic triad result in 104–106-fold 

reduction in activity (16). The results clearly indicate that Ser162 is essential for the 

peptidase activity of SppATk and is most likely the nucleophilic serine of the enzyme. 

The results also reveal that Arg250 and Asp277, two highly conserved residues in both 

archaeal and bacterial SPPs, have little, if any, role in the peptide hydrolyzing 

mechanism of SppATk. 

 
 
Fig. 3. Relative activity level of each mutant protein toward Ala-Ala-Phe-MCA. Substrate 
concentration was fixed at 200 μM, and the reaction temperature was 60˚C. The activity level of 
the wild-type (WT) ΔN54SppATk was designated as 100%. The error bars indicate standard 
deviation. 
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Mutations to identify the general base residue of SppATk 

The absence of conserved histidine residues among SppA proteins and the fact 

that His191 was not essential for the catalytic activity suggested that SppATk was not 

dependent on the well known Ser-His-Asp catalytic triad. The author therefore searched 

for other basic and acidic residues as targets for site-directed mutagenesis. Intriguingly, 

there were no other charged residues that were completely conserved in all of the 

sequences. The author therefore chose those that were the most highly conserved among 

the sequences, Lys150, Lys209, Lys214, Asp215, Arg221, Glu226, and Glu227. Each 

residue was replaced by Ala with appropriate primers (Table 1). Expression and 

purification were carried out as described for the initial mutant proteins, and the 

apparent homogeneity of each mutant protein is displayed in Fig. 2. The K150A and 

E226A mutations did not have a negative effect on the activity of the enzyme. All other 

residue replacements led to mutant proteins with lower levels of activity than that of the 

wild-type enzyme. Moderate effects were observed in K209A (59% activity retained), 

E227A (35%), and D215A (20%), whereas the effect of the R221A (4%) was much 

more significant. The K214A mutation had the most dramatic effect, and as in the case 

of the S162A mutation, activity could not be detected under standard procedures. By 

applying increased protein concentration, activity of K214A was estimated at 0.01% of 

that of the wild-type protein. The results indicate that Lys214 is essential for activity of 

SppATk and that the protein most likely utilizes a Ser-Lys catalytic dyad for peptide 

cleavage. The results also indicate that Arg221, although not essential, plays an 

important role in the peptidase activity of SppATk. 
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Effects of mutations on other highly conserved residues 

The author next focused on conserved, noncharged residues. Several glycine 

residues were highly conserved among the homologs, and in particular, a consecutive 

Gly-Gly sequence was conserved in all SppA proteins. In some lipases and esterases, a 

consecutive glycine sequence provides the main chain amino group(s) that stabilize the 

oxyanion intermediate that is formed after the nucleophilic attack on the carbonyl group 

by serine (17). The author therefore constructed the mutant proteins G130A and G131A. 

The author also selected a Tyr residue in the near vicinity of the nucleophilic Ser162 

that is completely conserved among Spp proteins and introduced a Y165A mutation. As 

a result, the author observed a moderately positive effect with the G130A mutation and 

a surprisingly high increase in activity in the Y165A mutant protein. The G131A 

mutation had a drastic effect on activity, and the protein exhibited only 2% of the 

activity levels of the wild-type enzyme, indicating an important role for this glycine 

residue in the peptidase activity of SppATk. 

 

Circular dichroism spectra of wild-type and mutant ΔN54SppATk proteins 

To examine whether the single-residue replacements had unintended broad 

effects on the protein structure, the author analyzed the CD spectrum of each mutant 

protein. In all mutant proteins, including the two that hardly exhibited activity (S162A 

and K214A), the CD spectra were indistinguishable from that of the wild-type protein 

(Fig. 4). The author would like to note that in the case of G130A and G131A, the author 

observed a slight increase in ellipticity between 225 and 230 nm. Overall, the results 

indicate that the single-residue replacements introduced in this study did not lead to 

significant changes in the secondary structures of the proteins. This allows the author to 
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interpret the changes in activity as direct consequences brought about by residue 

exchange. 

 

 

 

 

 

 

 

 

 

 

 

Kinetic analysis of the mutant proteins 

The author next performed kinetic analyses on the wild-type ΔN54SppATk and 

all mutant proteins that exhibited sufficient levels of activity. Most mutant proteins were 

analyzed by standard procedures with various concentrations of Ala-Ala-Phe-MCA. 

The S162A and K214A mutant proteins could not be examined because of their 

extremely low levels of activity. Analyses of the G131A and R221A proteins were 

carried out with 20- and 10-fold higher amounts of enzyme, respectively. A decrease in 

activity levels was observed for all proteins at high substrate concentrations, indicating 

the occurrence of substrate inhibition. By considering several equations, the author 

found that the data fit very well (R2 > 99.4) to one of the typical substrate inhibition 

models, expressed as v = Vmax[S]/(Ks1 + [S] + 1/Ks2 [S]2), where v is initial velocity, Vmax 

 
 
Fig. 4. Circular dichroism spectra of wild-type (WT), S162A and 
K214A proteins. 
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is maximum velocity, [S] is substrate concentration, Ks1 is the dissociation constant 

between enzyme and the first substrate, and Ks2 is the dissociation constant between the 

enzyme-substrate complex and the second, inhibitory substrate. Representative [S]-v 

plots with the respective curves are shown for the wild-type and K150A, Y165A, and 

H191A mutant proteins in Fig. 5. The kinetic parameters of each protein are indicated in 

Table 2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
Fig. 5. Substrate concentration-initial velocity plots for wild-type (WT) 
ΔN54SppATk and its proteins K150A, Y165A, and H191A. The 
measurements were performed at 60˚C. The data for each protein were fitted 
with the equation v=Vmax[S]/(Ks1+ [S]+1/Ks2 [S]2). 
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Table 2. Kinetic parameters for wild-type and mutant proteins. 
 

Vmax kcat Ks1 kcat/Ks1(x100) Ks2 
Protein 

(mmol mg-1 min-1) (s-1) (μM) (s-1 μM-1) (μM) 

Wild-type 31.1 ± 2.4 16 325 ± 36 4.9 587 

S128A 215 ± 23 110 1430 ± 192 7.6 897 

G130Aa – – >104 – – 

G131Aa – – >106 – – 

K150A 45.9 ± 2.4 23 293 ± 22 8.0 609 

Y165A 72.1 ± 5.0 37 346 ± 35 11 710 

S184A 7.78 ±1.06 4.0 366 ± 69 1.1 476 

H191A 16.9 ± 1.5 8.6 373 ± 45 2.3 594 

K209A 18.0 ± 1.4 9.1 307 ± 34 3.0 709 

D215A 17.4 ± 3.8 8.8 1190 ± 305 0.74 411 

R221A 3.99 ±1.74 2.0 1760 ± 858 0.12 228 

E226A 42.1 ± 3.2 21 326 ± 36 6.6 555 

E227A 31.8 ± 7.0 16 1420 ± 359 1.1 359 

R250A 45.4 ± 3.8 23 278 ± 34 8.3 581 

D277A 49.5 ± 4.2 25 440 ± 49 5.7 438 
 

aAccurate estimations of the kinetic parameters were not possible due to reasons described in the 
RESULTS section.  

 

When compared with the wild-type protein, a number of mutant proteins 

exhibited similar Ks1 values, indicating that these residue replacements did not greatly 

alter the affinity of the enzyme toward the substrate Ala-Ala-Phe-MCA. Significant 

increases in the Ks1 values were observed for S128A, G130A, G131A, D215A, R221A, 

and E227A. Because these mutations, other than G130A and G131A, result in a 

decrease in the size of the side chain, the increase in Ks1 values may be due to the 
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abolishment of favorable interactions between the binding pocket and substrate. The 

increase may also be due to the hydrophobic property of the Ala residue, which may 

lead to a repulsive effect on a hydrophilic region of the substrate. As for G131A, initial 

velocity continued to increase with increases in substrate concentration up to at least 

3,000 μM, and therefore reliable curve fitting could not be performed. Fitting the 

equation with the limited data indicated that the Ks1 value was higher than 106 μM. The 

G130A mutant also displayed Ks1 values>104 μM, and reliable values for the kinetic 

parameters could not be obtained. In these two proteins, the additional methyl group 

may directly hinder the binding between enzyme and substrate. On the other hand, the 

glycine residues may be important in maintaining the optimized structure of the protein, 

because consecutive glycine residues would allow dramatic bends in the main chain 

backbone. As mentioned above, the author did observe subtle changes in the CD spectra 

of these two glycine mutant proteins. On the SDS-PAGE gels, the author also noticed a 

slight difference in the mobility of G130A along with the appearance of a high 

molecular weight band in the case of G131A, both of which are most likely due to 

incomplete denaturation or dissociation of the oligomeric protein (Fig. 2). Although the 

CD spectra rule out drastic changes in protein conformation, mutations of these two 

residues may result in subtle changes in the enzyme conformation. A rather unexpected 

result was the relatively large number of mutations that led to increases in the Vmax or 

kcat/Ks1 values compared with the wild-type enzyme. Significant increases in the Vmax 

value were observed in S128A (690%), K150A (148%), Y165A (232%), E226A 

(135%), R250A (146%), and D277A (159%). Even in the kcat/Ks1 values, which should 

better represent the functional capacity of the enzyme in the cell, notable increases were 

observed in S128A (155%), K150A (163%), Y165A (222%), E226A (135%), and 
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R250A (169%). The fact that these conserved residues seem to suppress the activity 

levels of SppATk may be important for the proper function of the enzyme in vivo (see 

DISCUSSION). 

 

Examination of the activity of S128A and Y165A toward various substrates 

Two mutant enzymes, S128A and Y165A, which displayed particularly large 

increases in both Vmax and kcat/Ks1 values, were selected for examination of their 

activities against a FRETS peptide library as described in Chapter 1. The previous 

examination on the wild-type enzyme against these substrates revealed higher cleavage 

rates toward peptides with small amino acid residues at the Xaa position, corresponding 

to the P-1 position. Activity toward substrates with charged residues or aromatic 

residues at the Xaa position was low. When the same activity measurements were 

performed once again with the wild-type enzyme along with the S128A and Y165A 

mutant proteins, a significant increase in activity levels was observed in the mutant 

proteins for substrates with positively charged His, Arg, or Lys residues at the Xaa 

position (Fig. 6). An increase in activity levels against substrates with the aromatic 

residues Phe and Tyr was also observed. Even when normalizing the activity levels of 

each protein by designating their activities against the glycine substrate as 100, the 

author observed a nearly 3-fold increase in preference toward the Lys substrate in the 

S128A protein and a more than 2-fold increase in preference toward the Arg substrate in 

Y165A. Preferences toward the Tyr and Phe substrates also increased 3-fold in both 

enzymes. The results clearly indicate that in addition to limiting the activity levels of 

SppATk, Ser128 and Tyr165 also play a role in restricting the substrate preference of the 

enzyme toward peptide substrates. 
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DISCUSSION 

In this chapter, the author has performed a detailed site-directed mutagenesis 

study on an archaeal SPP from T. kodakaraensis. The results have revealed multiple 

residues that are critical for the peptidase activity of SppATk and provide the first insight 

into the catalytic mechanism of prokaryotic SPPs. The analyses strongly indicate that 

the catalytic center of SppATk is comprised of a Ser-Lys dyad and not the Ser-His-Asp 

catalytic triad that is present in the majority of serine proteases. 

The nucleophilic serine residue of SppATk has been clarified to be Ser162. 

Along with the inhibitor studies that indicated the protein was a serine peptidase 

(Chapter 1), activity was completely abolished in the S162A protein, whereas mutations 

in the other well conserved serine residues (S128A and S184A) had relatively smaller or 

no effects on the peptidase activity. Because Ser162 is completely conserved in all of 

the archaeal SppA homologs as well as in the SppA from E. coli and B. subtilis, this 

 
 
Fig. 6. Peptidase activity of wild-type ΔN54SppATk and its mutants S128A and Y165A 
toward various substrates from a FRETS peptide library. Amino acid residues at the Xaa 
position are indicated with single-letter abbreviations. Each substrate was examined at a 
concentration of 30 μM. The activity of the wild-type (WT) protein toward the Xaa=Gly 
substrate was designated as 100%. 
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serine residue most likely serves as the nucleophile in all prokaryotic SPPs. Besides the 

three residues examined, no other Ser residue is conserved in the core region of the 

enzyme, even among the closely related proteins from Thermococcales. The results also 

indicate that the residue acting as the general base in SppATk is Lys214. This residue is 

clearly conserved in the archaeal enzymes from Pyrococcus spp., the methanogens, 

Thermoplasma spp., Picrophilus, and one homolog from Haloarcula. The residues 

surrounding the Lys residues are also highly conserved among these proteins, and the 

sequences can be clearly aligned without any gaps from the nucleophilic Ser162 to a 

conserved Glu227. Although to a lower extent, the enzyme from Nanoarchaeum 

equitans also displays similarity and harbors most of these residues. It can therefore be 

presumed that the residue acting as the general base in these enzymes (Fig. 1, upper 

group of sequences), corresponds to the Lys214 in SppATk. Although a lysine residue is 

found in some of the remaining homologs from the halophiles and the Crenarchaeon 

Pyrobaculum (Fig. 1, lower group of sequences), the relatively lower sequence 

similarity makes it difficult to estimate the general base in these enzymes. Interestingly, 

the bacterial SppA from B. subtilis also harbors the basic Lys residue, and surrounding 

sequences are particularly well conserved between the enzyme and SppATk, including 

the charged residues Lys209, Lys214, Asp215, Arg221, Glu226, and Glu227. This 

strongly suggests that the bacterial SppA from B. subtilis also utilizes Lys214 as the 

general base. On the other hand, Lys214 is not conserved in SppAEc, and Lys residues 

are not found in the near vicinity. This indicates that the enzyme from E. coli utilizes 

distinct residues for catalysis. 

Besides Ser162 and Lys214, which were essential for activity, the author found 

that the S184A, H191A, K209A, D215A, and R221A mutations led to decreases in Vmax 
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or kcat values. The results suggest that these residues, although not essential for activity, 

may also play a role in the catalytic mechanism. In particular, the mutation of Arg221 

had severe effects. Because our results have clearly indicated the presence of a Ser-Lys 

catalytic dyad in SppATk, one important question to be solved would be how the lysine 

residue is maintained in a deprotonated state, which would be necessary to increase the 

nucleophilicity of the serine side chain Oγ. The pK’ value of the lysine side chain is 

10.8, and the microenvironment surrounding the catalytic center would have to be 

extremely alkaline. One feasible explanation taking the results into consideration would 

be that the side chain of Arg221 is positioned in the very near vicinity of the Lys214 

side chain. Because the pK’ value of an arginine side chain is much higher (12.5), 

Arg221 may act to sequester protons that would otherwise tend to protonate Lys214. 

The positive charge of the protonated Arg side chain may also act to repulse other 

protons from approaching the Lys214 ε-amino group. Another possibility would be that 

Lys214 is surrounded by a neutral or hydrophobic environment, which would also result 

in an apparent decrease in the pK’ value of the ε-amino group, as reported in LexA (18) 

and the SP from E. coli (16, 19). 

The S184A mutation also had significant effects on the activity of SppATk. 

From a comparison of the three-dimensional structures of the bacterial type I SP (19), 

Lon protease (20), LexA (18), UmuD’ (21), and the γ repressor carboxy-terminal 

domain (22), which are all Ser-Lys proteases, possibilities of a third residue interacting 

with the Ser-Lys dyad have been raised (20). The residue is conserved as either a serine 

or threonine residue, with the side chain Oγ forming a hydrogen bond with the catalytic 

Lys ε-amino group. Because no other serine or threonine residues are conserved among 

the SPPs and because the S128A mutation led to an increase in activity, Ser184 may 
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represent the corresponding residue in SppATk. Future studies on the three-dimensional 

structure of the protein should clarify the roles of Ser184 and Arg221. 

As mentioned in the RESULTS section, it is intriguing that the replacements of 

so many highly conserved residues, usually presumed to contribute in maintaining 

enzyme function, actually lead to increases in peptidase activity. One possibility is that 

the substrate or the reaction conditions the author has applied in the activity 

measurements differ so much from the actual environment of the enzyme that the results 

do not reflect at all the actual signal peptide degrading activity of the individual proteins. 

However, another tempting possibility is that these residues are deliberately present to 

limit the functional capacity of SppATk. In bacteria, SppAEc is presumed to be anchored 

to the cell membrane with its catalytic core facing the cytoplasm. Although peptidase 

activity is necessary for the breakdown of free signal peptides, it should also be 

important for the cell that the enzyme does not cleave other proteins, whether they are 

soluble proteins in the cytoplasm or proteins integrated or anchored to the cell 

membrane. This can be achieved by a variety of strategies on the protein itself or toward 

its environment. A strict confinement of the substrate specificity of the enzyme would 

surely lead to a decrease in SPP acting on proteins other than free signal peptides. 

Limiting the activity levels of the enzyme would also contribute to prevent unintended 

protein degradation. Preventing the access of SPPs to proteins other than signal peptides 

would be another practical strategy. Because the author has found that the conserved 

Ser128 and Tyr165 not only place a limitation on activity levels but also act to restrict 

the substrate specificity of SppATk, the presence of these residues may well be to 

suppress activity of the enzyme toward unintended substrates. 

Although still a minority among the serine proteases, the number of enzymes 
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known to utilize the Ser-Lys catalytic dyad is steadily increasing. In addition to the 

bacterial type I SP, Lon protease, LexA, UmuD’, and the λ repressor carboxy-terminal 

domain mentioned above, other examples include the archaeal Lon protease from 

Methanocaldococcus jannaschii (23), PH1510 from Pyrococcus horikoshii (24), the 

periplasmic tail-specific protease from E. coli (25), and the carboxy-terminal 

endoprotease from cyanobacteria (26). This study has revealed that the SPPs from 

Euryarchaeota are also members of this enzyme family. There are still no indications 

for a reason why certain serine proteases utilize the Ser-His-Asp catalytic triad, whereas 

others use the Ser-Lys dyad. Although presumed to execute identical functions, the SP 

from the archaeon M. voltae utilizes a catalytic triad (9), whereas the SP from E. coli 

harbors a dyad (19). The results in this study also raise the possibility that the SPPs 

from E. coli and T. kodakaraensis function through distinct catalytic mechanisms. 

Discovery of novel peptidases/proteases that utilize the Ser-Lys dyad and further 

structure-function studies on both families of enzymes will be necessary for an 

understanding of this intriguing distinction in catalytic mechanisms. 

 

SUMMARY 

Signal peptide peptidases (SPPs) are enzymes involved in the initial 

degradation of signal peptides after they are released from the precursor proteins by 

signal peptidases. In contrast to the eukaryotic enzymes that are aspartate peptidases, 

the catalytic mechanisms of prokaryotic SPPs had not been known. In this study on the 

SPP from the hyperthermophilic archaeon Thermococcus kodakaraensis (SppATk), the 

author has identified amino acid residues that are essential for the peptidase activity of 

the enzyme. ΔN54SppATk, a truncated protein without the amino-terminal 54 residues 
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and putative transmembrane domain, exhibits high peptidase activity, and was used as 

the wild-type protein. Sixteen residues, highly conserved among archaeal SPP homolog 

sequences, were selected and replaced by alanine residues. The mutations S162A and 

K214A were found to abolish peptidase activity of the protein, whereas all other mutant 

proteins displayed activity to various extents. The results indicated the function of 

Ser162 as the nucleophilic serine and that of Lys214 as the general base, comprising a 

Ser-Lys catalytic dyad in SppATk. Kinetic analyses indicated that Ser184, His191, 

Lys209, Asp215, and Arg221 supported peptidase activity. Intriguingly, a large number 

of mutations led to an increase in activity levels of the enzyme. In particular, mutations 

in Ser128 and Tyr165 not only increased activity levels but also broadened the substrate 

specificity of SppATk, suggesting that these residues may be present to prevent the 

enzyme from cleaving unintended peptide/protein substrates in the cell. A detailed 

alignment of prokaryotic SPP sequences strongly suggested that the majority of archaeal 

enzymes, along with the bacterial enzyme from Bacillus subtilis, adopt the same 

catalytic mechanism for peptide hydrolysis. 
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CHAPTER 3 

 

Biochemical properties of a novel membrane-bound peptidase  

from Thermococcus kodakaraensis 

 

INTRODUCTION 

 As described in Chapters 1 and 2, archaeal genomes do not harbor highly 

similar bacterial or eukaryotic signal peptide peptidase (SPP) homologs. However, the 

author noticed an open reading frame on the genome of Thermococcus kodakaraensis 

that, although much smaller in size (334 residues), encoded a protein (SppATk) that was 

27% identical to the SPP from Escherichia coli (SppAEc, 618 residues). The author 

examined SppATk and found that the peptidase utilized a Ser-Lys catalytic dyad for 

hydrolytic activity, and recognized amino acid sequences with a small side chain at the 

P-1 position and hydrophobic residues at the P-3 position. SppATk did not at all cleave 

peptide chains with an acidic residue in the vicinity of the cleavage site. These 

biochemical characteristics, together with the absence of highly similar bacterial or 

eukaryotic SPP homologs on the archaeal genomes, suggested that SppATk represents 

the archaeal SPP. 

 In bacteria, several other proteases/peptidases that are involved in signal 

peptide degradation have been identified. In E. coli, it has been found that the 

membrane fraction, where SPP resides, is responsible only for the initial fragmentation 

of signal peptides (1-3). Complete degradation to free amino acids was found to occur 

in the cytoplasm, and a peptidase (oligopeptidase A) involved in this process was 

identified and characterized (4, 5). SPP has also been studied in the gram-positive 
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Bacillus subtilis. This organism also harbors an additional cytosolic peptidase (TepA) 

whose structure is related to both bacterial SPP and ClpP. A genetic examination of 

TepA has shown that the protein actively participates in the degradation of signal 

peptides in B. subtilis (6). 

 In this Chapter, the author examined the presence of other peptidases that may 

be involved in signal peptide degradation in T. kodakaraensis. A BLAST search using 

the bacterial oligopeptidase A and TepA sequences against the T. kodakaraensis 

genome database revealed that there were no open reading frames with notable 

similarity to the bacterial sequences. However, the author identified an open reading 

frame (TK0130) that encoded a protein with slight similarity to SppATk. As in the case 

of SppATk, the TK0130 protein product also harbored a membrane-spanning domain in 

its amino terminus followed by a putative peptidase domain. In order to gain insight on 

the involvement of this protein (SppBTk) towards signal peptide degradation, the author 

examined the biochemical properties of SppBTk and compared them with those of 

SppATk. 

 

MATERIALS AND METHODS 

Strains, media, and plasmids 

Unless otherwise mentioned, T. kodakaraensis KOD1 was cultivated in 

ASW-YT medium supplemented with elemental sulfur as described in Chapter 1. E. 

coli strains and plasmids used for DNA manipulation and gene expression are described 

in Chapter 1. E. coli strains were cultivated in LB medium with 100 μg ml-1 ampicillin 

at 37˚C. 
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DNA manipulation and sequence analysis 

All enzymes, reagents and apparatus used for DNA purification, plasmid 

construction and sequence confirmation are described in the MATERIALS AND 

METHODS section of Chapter 1.  

 

Expression of the sppBTk gene in E. coli 

The sppBTk gene initiating with a Met residue replacing Phe28, omitting the 

transmembrane domain, was amplified from the genomic DNA of T. kodakaraensis 

using the primer set sppBN and sppBC (sppBN, 5’-CAGCTCCATATGAGGGC 

CCTTCAGGCGGCCAG-3’; sppBC, 5’-TAAGAATTCATGAAAGGTCACTTCTT-3’). 

After confirming the sequence of the amplified DNA fragment, it was inserted into 

pET21a(+) at the NdeI and EcoRI sites. After introduction into E. coli 

BL21-CodonPlus(DE3)-RIL cells (Stratagene), gene expression was induced with 0.1 

mM isopropyl-β-D-thiogalactopyranoside at the late-exponential growth phase with 

further incubation for 4 h at 37˚C. The protein product was designated ΔN28SppBTk. 

 

Purification of recombinant ΔN28SppBTk 

After inducing gene expression, cells were washed with 50 mM Tris-HCl (pH 

8.0) and resuspended in the same buffer. Cells were sonicated on ice, and the 

supernatant after centrifugation (20,000 x g, 30 min at 4˚C) was applied to heat 

treatment at 80˚C for 10 min, immediately cooled on ice, and then centrifuged (20,000 x 

g, 30 min at 4˚C). The soluble protein sample was brought to 40-70% saturation with 

(NH4)2SO4 and the precipitate, which included ΔN28SppBTk, was dissolved in 50 mM 

Tris-HCl (pH 8.0). After desalting with a HiPrep26/10 column (GE Healthcare), the 
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sample was brought to 1.5 M (NH4)2SO4 and applied to hydrophobic chromatography 

(ResourcePHE, GE Healthcare) equilibrated with 50 mM Tris-HCl (pH 8.0), 1.5 M 

(NH4)2SO4, and proteins were eluted with a linear gradient (1.5 to 0 M) of (NH4)2SO4. 

After desalting with a HiPrep26/10 column (GE Healthcare), the sample was applied to 

anion exchange chromatography (ResourceQ, GE Healthcare) equilibrated with 50 mM 

Tris-HCl (pH 8.0), 0.15 M NaCl, and proteins were eluted with a linear gradient (0.15 

to 0.5 M) of NaCl. The sample was applied to gel filtration chromatography (Superdex 

200 HR 10/30, GE Healthcare) equilibrated with 50 mM Tris-HCl (pH 8.0), 0.15 M 

NaCl, and the fractions obtained were used for enzyme analysis. 

 

Protein analysis of purified recombinant ΔN28SppBTk 

The molecular mass of the purified protein was examined by gel-filtration 

chromatography using Superdex 200 HR 10/30 in 50 mM Tris-HCl (pH 8.0), 0.15 M 

NaCl. The retention time was calibrated with those of the standard proteins ferritin (440 

kDa), aldolase (158 kDa), conalbumin (75 kDa), ovalbumin (43 kDa), carbonic 

anhydrase (29 kDa), ribonuclease A (13.7 kDa) and aprotinin (6.5 kDa). Protein 

concentration was determined with the protein assay kit (Bio-Rad) using bovine serum 

albumin as a standard. 

 

Western blot analysis 

 T. kodakaraensis KOD1 was cultivated in ASW-YT medium supplemented 

with 1% sodium pyruvate. Cells grown at 85˚C for 12 h were harvested, washed with 

0.1 M potassium phosphate buffer (pH 7.0) containing 0.4 M NaCl, and then disrupted 

by French press (96 MPa). The resulting cell extract was ultracentrifuged (110,000 x g, 
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2 h at 4˚C) to separate the cytosol and membrane fractions. Each fraction (32 μg of 

protein) was subjected to SDS-PAGE and followed by Western blot analyses with 

specific antisera against the purified ΔN28SppBTk, glutamate dehydrogenase (7) and 

Lon protease (8) of T. kodakaraensis, respectively. A protein A-peroxidase conjugate 

was used for visualization together with 4-chloro-1-naphthol and hydrogen peroxide. 

 

Enzyme activity measurements 

Most activity measurements were performed with peptidyl-MCA substrates 

[peptidyl–α-(4-methylcoumaryl-7-amide) substrates] available from Peptide Institute. 

Release of 7-amino-4-methylcoumarin was monitored consecutively with a 

fluorescence spectrophotometer capable of maintaining the cuvette at desired 

temperatures between 30 and 100˚C. Excitation and emission wavelengths were 380 nm 

and 460 nm, respectively. Standard activity measurements were performed at 50˚C in a 

final volume of 1 ml with 0.5 μg of purified protein and Z-Val-Lys-Met-MCA (50 μM) 

in 50 mM CHES (pH 10.0). The final concentration of dimethyl sulfoxide used to 

dissolve the substrate was constant at 10% of the reaction mixture. 

 

Effects of temperature and pH on enzyme activity 

All buffers were prepared so that they would reflect accurate values at the 

applied temperatures. In examining the effect of temperature, the standard assay method 

was applied at each temperature. The effect of pH was examined in the presence of 50 

mM of MES-NaOH (pH 6.0 to 7.0), HEPES-NaOH (pH 7.0 to 8.0), Bicine-NaOH (pH 

8.0 to 9.0), CHES-NaOH (pH 9.0 to 10.0), and CAPS-NaOH (pH 10.0 to 12.0), 

respectively. Thermostability of the protein was analyzed by measuring the residual 
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activity of the protein after incubation at various temperatures in 50 mM CHES-NaOH 

(pH 10.0). The initial activity of the enzyme incubated at each respective temperature 

was designated as 100%. Alkaline stability was analyzed by measuring the residual 

activity of the protein after incubation at various pH in 50 mM CAPS-NaOH at 50˚C. 

The initial activity of the enzyme incubated in each buffer was designated as 100%. In 

measuring thermostability and alkaline stability, the protein concentration during 

incubation was 1 μg ml-1. Residual activities were measured with the standard assay 

method described above. 

 

Kinetic analysis 

 Kinetic analysis of the ΔN28SppBTk reaction was carried out with 

Z-Val-Lys-Met-MCA in 50 mM MES-NaOH (pH 7.0) at 50˚C. Regardless of the 

substrate concentration, the final concentration of dimethyl sulfoxide used to dissolve 

the substrate was constant at 10% of the reaction mixture. 

 

Effect of protease inhibitors 

The effects of various protease inhibitors at concentrations of 2 μM, 20 μM, 

200 μM, 1 mM, 5 mM or 10 mM were examined at 50˚C and pH 10.0. The substrate 

Z-Val-Lys-Met-MCA was present at a concentration of 50 μM. Activity in the absence 

of inhibitors was defined as 100%. 

 

Determination of substrate specificity 

Substrate specificity was examined with a FRETS peptide library (25Xaa series, 

Peptide Institute) (9) as described in Chapter 1. In the initial assay to examine the 
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preference for residues at the P-1 position, 0.4 μg of purified enzyme was added to the 

reaction mixture with a final volume of 1 ml containing 30 μM substrate in 50 mM 

CHES (pH 10.0). The final concentration of dimethyl sulfoxide used to dissolve the 

substrate was constant at 3% of the reaction mixture. A second assay to identify the 

cleavage sites and the preference towards residues at the P-2 to P-4 positions was 

performed on selected substrates. Aliquots (100 μl) from the cleavage reactions were 

taken at various time intervals that corresponded to 15 to 25% cleavage of the substrates, 

and subjected to liquid chromatography (LC)-mass spectrometry analysis. An ODS 

A-302 column (YMC) was used for separation with 0.05% trifluoroacetic acid in H2O 

as eluant A and 0.05% trifluoroacetic acid in CH3CN as eluant B. The gradient was 

5–40% of eluant B in A at a flow rate of 1.0 ml min-1 over a time span of 55 min. 

Aliquots taken from the cleavage reactions were injected and the cleaved products were 

monitored with absorbance at 220 nm, as well as fluorescence intensity in order to 

identify the amino-terminal segments. The structures of the cleaved products were 

deduced from the theoretical molecular weights. 

 

RESULTS 

A homolog search for bacterial signal peptide degrading peptidases on the T. 

kodakaraensis genome 

Oligopeptidase A and TepA are the cytosolic peptidases involved in signal 

peptide degradation in E. coli and B. subtilis, respectively. The two enzymes have been 

suggested to contribute in the complete breakdown of signal peptides to free amino 

acids (4-6). The substrate specificity of SppATk suggested that the enzyme is involved 

only in the partial degradation of signal peptides into smaller peptide fragments 
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(Chapter 1). One would thus expect the presence of other peptidases that exhibit 

complementary substrate specificities or exoproteolytic activity in order to achieve 

complete breakdown. Using the primary structure of the oligopeptidase A of E. coli and 

TepA of B. subtilis, the author performed a BLAST search against the protein sequences 

of T. kodakaraensis. Intriguingly, no open reading frames with notable similarity to 

either of the proteins were found. The author then performed a BLAST search on the T. 

kodakaraensis genome with the primary structure of SppATk. This led to the 

identification of an open reading frame (TK0130) that encoded a protein with a putative 

membrane-spanning domain, followed by a putative peptidase domain, similar to the 

architecture of SppATk (Fig. 1). The protein, designated here as SppBTk, was 280 

residues in length with a deduced molecular mass of 31,519 Da and was 18% identical 

to SppATk. Due to its low similarity with the SPP sequence of E. coli, the protein cannot 

be identified in a BLAST search using the primary structure of SppAEc.  

A BLAST search against the complete genome sequences of various archaeal 

and bacterial strains was performed with the SppBTk sequence. As in the case of SppATk, 

highly related homologs of SppBTk were present on a number of archaeal genomes, 

including those of the three Pyrococcus strains, Archaeoglobus fulgidus, 

Methanocaldococcus jannaschii and many other methanogens. Although homologs 

were absent in most Crenarchaeota genomes, one was present on the genome of 

Aeropyrum pernix. Moreover, SppBTk homologs with high similarity were present on 

the genomes of a range of bacteria, from the (hyper)thermophilic Aquifex aeolicus, 

Thermotoga maritima, and Thermus thermophilus to the green-nonsulfur Chloroflexus, 

the α-proteobacterium Bradyrhizobium and cyanobacteria, such as Synechococcus and 
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Fig. 1. Structural comparison among SppAEc, SppATk and SppBTk. (A) A diagram illustrating 
the basic structural features and sizes of the three proteins. Transmembrane regions and 
peptidase regions are indicated with pink and blue boxes, respectively. (B) A sequence 
alignment between SppATk and SppBTk. Identical residues are indicated with colons. The 
letters M in red indicate the positions at which an artificial methionine residue was 
incorporated to produce ΔN54SppATk and ΔN28SppBTk. Red arrowheads above the SppATk 
sequence indicate the catalytic residues of the enzyme elucidated in Chapter 2. 
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Nostoc species. In the MEROPS database (the peptidase database, http:// 

merops.sanger.ac.uk/) (10), the SppBTk homologs are classified as the unassigned 

peptidases of the S49 family. 

 

Expression of the sppBTk gene in E. coli and purification of the recombinant 

protein 

The putative membrane-spanning domain of SppBTk corresponds to residues 

Ser5 to Gln27 (Fig. 1B). As in the case of SppATk, the author omitted the 

membrane-spanning region when constructing the expression vector. An artificial Met 

residue was incorporated in the place of Phe28, and the gene was expressed in E. coli. A 

soluble protein, designated as ΔN28SppBTk, which was resistant to heat treatment at 

80˚C for 10 min, was obtained. The author found that the thermostable protein exhibited 

peptidase activity toward the peptide substrate Z-Val-Lys-Met-MCA (see below). The 

recombinant protein was purified with ammonium sulfate fractionation, hydrophobic 

chromatography, anion exchange chromatography, and gel filtration chromatography. 

SDS-PAGE analysis of the sample after gel 

filtration chromatography indicated that the 

recombinant ΔN28SppBTk was purified to 

apparent homogeneity. The molecular mass 

of the purified protein estimated by 

SDS-PAGE was in good agreement with 

the calculated value of the amino acid 

sequence (Fig. 2). 

 
 
Fig. 2. SDS-PAGE analysis of 
purified ΔN28SppBTk. The gel 
was stained with Coomassie 
Brilliant Blue. 
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Oligomeric form of ΔN28SppBTk 

The molecular mass of the purified ΔN28SppBTk was estimated by gel 

filtration chromatography. This indicated a molecular mass of 350 kDa. The molecular 

mass of a single subunit of ΔN28SppBTk is 28,205 Da, suggesting that the protein 

formed a dodecamer. In contrast to SppATk, no other peaks corresponding to other 

oligomeric states could be observed. 

 

Intracellular localization of SppBTk 

As the author was able to purify the recombinant enzyme, polyclonal 

antibodies were raised against the protein and used to examine the subcellular 

localization of SppBTk. Wild-type T. kodakaraensis cells were disrupted by French press, 

and extracts were separated by ultracentrifugation into the soluble fraction (cytosolic 

fraction) and pellet (membrane fraction). Proper separation was confirmed by  

performing Western blot analyses (Fig. 3) 

with antibodies against glutamate 

dehydrogenase (cytosolic localization) 

and Lon protease (membrane-bound) (8). 

Analysis with the SppBTk antibodies 

revealed signal ratios similar to Lon 

protease, confirming that SppBTk, most 

likely by means of its amino-terminal 

membrane-spanning domain, is physically 

associated with the cytoplasmic 

membrane of T. kodakaraensis. 

 
 
Fig. 3. Western blot analyses of glutamate 
dehydrogenase (GDH), Lon protease 
(Lon) and SppBTk (SppB) with the cytosol 
(Cyt.) and membrane (Mem.) fractions of 
T. kodakaraensis cells.  
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Proteolytic activity towards various MCA substrates 

 The author could not detect peptidase activity of ΔN28SppBTk towards 

Ala-Ala-Phe-MCA, a substrate that served as a good substrate for SppATk. The author 

examined a large number of MCA substrates, listed in Table 1, for their potential to be 

recognized as substrates of ΔN28SppBTk. As a result, the author found that 

Z-Val-Lys-Met-MCA was the substrate which led to the highest levels of proteolytic 

activity. Z-Leu-Leu-Leu-MCA was also well recognized by ΔN28SppBTk, with a 

relative activity of 61%. All other substrates were cleaved at very low levels compared 

to Z-Val-Lys-Met-MCA and Z-Leu-Leu-Leu-MCA. As the latter substrate had a 

tendency to aggregate, Z-Val-Lys-Met-MCA was used for standard activity 

measurements in all further experiments.  

 

Table 1. MCA substrates examined in this study. 

Substrate Relative activity (%) 

Z-Val-Lys-Met-MCA 100 
Z-Leu-Leu-Leu-MCA 61 
Z-Leu-Leu-Glu-MCA 1.36 
Suc-Ala-Ala-Ala-MCA 0.53 
Z-Ala-Ala-Asn-MCA 0.31 
Z-Leu-Arg-Gly-Gly-MCA 0.21 
Ala-Ala-Phe-MCA 0.13 
Z-Val-Val-Arg-MCA n.d. 
Suc-Ile-Ile-Trp-MCA n.d. 
Suc(OMe)-Ala-Ala-Pro-Val-MCA n.d. 
Suc-Ala-Ala-Pro-Phe-MCA n.d. 
Suc-Arg-Pro-Phe-His-Leu-Leu-Val-Tyr-MCA n.d. 
Boc-Arg-Val-Arg-Arg-MCA n.d. 
Boc-Val-Leu-Lys-MCA n.d. 
Ac-Val-Asp-Val-Ala-Asp-MCA n.d. 
Ac-Ile-Glu-Thr-Asp-MCA n.d. 
Activities were examined with a substrate concentration of 50 μM in 50 mM MES-NaOH 
(pH 7.0) at 50˚C. 
n.d., activity not detected. 
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Optimal pH and temperature 

The effects of pH and temperature on the activity of ΔN28SppBTk were 

examined with Z-Val-Lys-Met-MCA. As shown in Fig. 4A, the protein exhibited 

maximal activity at pH 10.0. High levels of activity were maintained at even higher pH 

values of 10.5 (80%), 11.0 (70%) and 11.5 (52%). The effects of temperature on activity 

were analyzed with the same substrate at pH 10.0. Maximum activity under the 

conditions examined was observed at approximately 75˚C (Fig. 4B). The Arrhenius plot 

gave two constant slopes from 30˚C to 55˚C, and from 60˚C to 75˚C, corresponding to 

activation energies of 79.7 kJ mol-1, and 14.8 kJ mol-1, respectively (Fig. 4C). This 

indicates that the enzyme takes an optimal catalytic structure at temperatures between 

60˚C and 75˚C. The thermostability of the enzyme was examined for 2 h at pH 10.0 

(Fig. 4D), and alkaline stability was measured at 50˚C for 4 h (Fig. 4E). The enzyme 

retained 26% activity after 2 h incubation at 70˚C and pH 10.0. The stability against 

temperature and alkaline pH were much lower than those observed for SppATk.  

 

Kinetic analysis of ΔN28SppBTk 

 The author performed a kinetic analysis of ΔN28SppBTk using the substrate 

Z-Val-Lys-Met-MCA. Although optimal reaction conditions (70˚C, pH 10.0) were 

preferred, aggregation/precipitation of the substrate was observed at high substrate 

concentrations. By examining several reaction conditions, the author found that 

substrate solubility was sufficient for kinetic analysis at 50˚C, pH 7.0. Under these 

conditions, the author obtained a substrate concentration [S]-initial velocity (v) plot as 

shown in Fig. 5A. The kinetics did not at all follow Michaelis-Menten kinetics, and 

negative cooperativity with respect to substrate binding was apparent. A Hill plot of the  
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kinetic data revealed linear relationships between log[S] and log{v/(Vmax-v)} (Vmax, 

maximum velocity of the enzyme) with different slopes (apparent Hill constants, nH) 

depending on the substrate concentration range (Fig. 5B). As expected, the apparent Hill 

constant was near 1 (nH=1.1) at low substrate concentrations (10–50 μM), suggesting 

that only one active site of the enzyme is occupied by a substrate. In contrast, at 

concentrations between 100 and 170 μM, nH was dramatically higher at 5.7, indicating 

that the enzyme possesses at least 6 substrate binding sites with strong cooperativity. As 

Fig. 4. (A) Effect of pH on the activity of ΔN28SppBTk. Measurements were performed at 50˚C 
in the following buffers at a concentration of 50 mM: MES-NaOH (open triangles), 
HEPES-NaOH (solid squares), Bicine-NaOH (open squares), CHES-NaOH (solid circles), and 
CAPS-NaOH (open circles). (B) Effect of temperature on the activity of ΔN28SppBTk. 
Reactions were carried out in 50 mM CHES-NaOH (pH 10.0). (C) Arrhenius plot of B, 
indicating the activation energy of substrate hydrolysis catalyzed by ΔN28SppBTk. (D) 
Thermostability of ΔN28SppBTk at various temperatures. Incubation of the enzyme was carried 
out in 50 mM CHES-NaOH (pH 10.0). Symbols: 60˚C, circles; 70˚C, squares; 80˚C, triangles; 
90˚C, diamonds. (E) Stability of ΔN28SppBTk at various pHs. Enzyme incubation was carried 
out at 60˚C in 50 mM CAPS-NaOH (pH 8.0, circles; pH 9.0, squares, pH 10.0, triangles, pH 
11.0, diamonds). All activity measurements (A to E) were carried out with 50 μM 
Z-Val-Lys-Met-MCA. 
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gel filtration of ΔN28SppBTk suggested a dodecameric oligomerization, the enzyme 

may well exhibit its allosteric properties via the interaction within hexameric units. The 

Vmax value of the reaction was 593 μmole min-1 mg-1, and the [S]0.5 value calculated 

from the Hill plot was 88 μM. 

 

 

 

 

 

 

 

 

 

 

 

 

Effects of various inhibitors 

The effects of various protease inhibitors were examined at 50˚C and pH 10.0 

(Fig. 6). Interestingly, many of the conventional protease inhibitors did not have notable 

effects on ΔN28SppBTk activity. Chymostatin and pepstatin A exhibited relatively 

moderate levels of inhibition. Intriguingly, we found that (Z-Leu-Leu-NH-CH2)2-CO, 

an inhibitor specific to the eukaryotic SPP, displayed strong inhibition (11-13). Activity 

decreased 99% in the presence of 20 μM inhibitor, while an 84% decrease was observed 

at 2 μM. 

Fig. 5. (A) Substrate concentration-initial velocity plots for ΔN28SppBTk using substrate 
Z-Val-Lys-Met-MCA. (B) A Hill plot of the kinetic data. Lines are fitted to the three ranges in 
substrate concentration in which log [S] and log {v/(Vmax-v)} displayed a linear correlation. 

A B
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Fig. 6. Effects of various protease inhibitors on the activity of ΔN28SppBTk. 
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Examining the substrate preference of ΔN28SppBTk with a FRETS peptide library 

The author next evaluated the peptidase activity of ΔN28SppBTk against a 

FRETS peptide library, which was applied in the analysis of SppATk. An initial analysis 

was carried out with 19 substrates corresponding to all amino acids at the Xaa site with 

the exception of cysteine (Fig. 7A). The author detected a preference of ΔN28SppBTk 

for substrates with neutral or hydrophobic residues (Ala, Met, Thr, Ser, Leu, Val and 

Ile) at the Xaa position (Fig. 7B). However, compared to the results obtained with 

SppATk, the differences in activity towards the 19 substrates seemed to be much smaller, 

suggesting a broader substrate specificity. The author next performed LC-mass 

spectrometry analysis on the cleaved products of ten selected substrates (Xaa = Ala, 

Met, Thr, Ser, Leu, Val, Ile, Phe, Lys and Gly). In order to identify products generated 

from the initial cleavage reaction of the substrate, reactions were stopped at various 

intervals corresponding to 15 to 25% substrate cleavage. The most abundant cleavage 

products for each of the ten substrates are shown in Fig. 7C. The results were striking; 

in almost all cases, the most preferred mode of cleavage was with a basic residue at the 

P-2 position. When Arg (Zaa) was positioned at the P-2 position, the P-1 position was 

occupied exclusively by Ile (Yaa), indicating that Pro/Tyr/Lys/Asp were not preferred. 

The degradation products of Xaa=Lys confirm that Lys is not accepted at the P-1 

position. The results of Xaa=Phe, along with the fact that Tyr is not preferred at the P-1 

position suggest that ΔN28SppBTk does not cleave peptides with an aromatic residue at 

the P-1 position. Degradation products with Glu or Asp at any one of the sites from P-2 

to P-4 were not observed, and considering that the Xaa=Glu/Asp substrates were the 

least cleaved, the results indicate that ΔN28SppBTk does not recognize sequences with 

acidic residues. In summary, ΔN28SppBTk strongly prefers substrates with a basic 
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residue at the P-2 position, and to a lesser extent, aromatic residues. At the P-1 position, 

hydrophobic, but not aromatic residues, are favored. The enzyme does not cleave 

substrates with acidic residues. 
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Fig. 7. (A) Structure of the peptide substrates from a FRETS peptide library 
utilized in B and C. (B) Peptidase activity towards various substrates from the 
FRETS peptide library. Amino acid residues at the Xaa position are indicated. 
Each substrate was examined at a concentration of 30 μM. (C) The major cleaved 
products of ten substrates (Xaa = Ala, Ser, Thr, Met, Leu, Ile, Val, Lys, Phe and 
Gly) were detected by LC-mass spectrometry. Relative quantities are indicated to 
the right of the sequences. 
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DISCUSSION 

 In this chapter, the author has identified and characterized the catalytic domain 

of a second membrane-bound peptidase, SppBTk, from the hyperthermophilic archaeon 

T. kodakaraensis. Closely related homologs are present on the genomes of a range of 

archaea and bacteria. However, the distribution of the SppBTk homologs does not 

provide strong clues as to the function of the protein. One reasonable assumption is that 

as the SppBTk homologs are present in a number of the chemoautotrophic methanogens 

and in the photoautotrophic cyanobacteria, it is not likely that they play a major role in 

the breakdown and metabolism of extracellular peptides for amino acid assimilation. 

They can thus be expected to act on proteins/peptides that are generated within the cell. 

C 

 



 104

In order to gain insight on the function of SppBTk, the author has focused on 

the substrate specificity of the enzyme and compared its properties with those of 

SppATk. Presuming that the substrate specificities of the recombinant ΔN54SppATk and 

ΔN28SppBTk reflect those of the native SppATk and SppBTk, respectively, the results of 

Chapter 1 and this Chapter indicate that the two peptidases exhibit distinct preferences 

in substrate recognition. Although both peptidases do not cleave sequences in the near 

vicinity of acidic residues, SppATk prefers hydrophobic/aromatic residues at the P-3 site 

and residues with relatively small side chains at the P-1 site. SppBTk prefers basic (and 

hydrophobic/aromatic) residues at the P-2 site and aliphatic hydrophobic residues at the 

P-1 site. As shown for SppATk in Chapter 1, the author examined whether SppBTk was 

able to cleave substrates longer than the MCA and FRETS substrates used for activity 

analyses. As shown in Fig. 8, incubation of ΔN28SppBTk with various protein substrates 

revealed that the enzyme harbored hydrolytic activity towards protein substrates. 

The archaeal signal peptide shares a common architecture to those found in 

bacteria and eukaryotes, with an n-region, h-region and c-region (14, 15). As described 

in Chapter 1, the substrate specificity of SppATk suggests that the cleavage sites of this 

enzyme mostly reside in the h-region, the core region of the signal peptide abundant in 

hydrophobic residues. In contrast, if SppBTk were to function in signal peptide 

degradation, the enzyme would be responsible for cleavage of the n-region, which 

harbors positively charged residues. As SppBTk also recognizes hydrophobic/aromatic 

residues at the P-2 site, the enzyme may also play a role in assisting SppATk in the 

cleavage of the h-region. Although further genetic and in vivo studies will be necessary 

to identify the actual substrates of these peptidases and verify their physiological roles, 

the substrate specificities of the two membrane-bound peptidases can be expected to 
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Fig. 8. Incubation was performed at 60˚C in a final volume of 1 ml with 1 μg of ΔN28SppBTk 
and protein substrate (1 μg or 3 μg) in 50 mM CHES-NaOH (pH 10.0). After incubation, 
substrate degradation in the reaction mixture was confirmed by SDS-PAGE (12.5% or 15% 
concentration of acrylamide). As a control reaction, incubation was also performed without 
ΔN28SppBTk in the reaction mixture. 
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efficiently complement one another in the initial breakdown of signal peptides at the 

cytoplasmic membrane (Fig. 9). 

 

 

 

 

 

 

 

 

 

 

 

 

SUMMARY 

In Chapters 1 and 2, the author identified and characterized a strong candidate 

for the signal peptide peptidase in the Archaea (SppATk) from the hyperthermophilic 

archaeon, Thermococcus kodakaraensis. In a search for additional enzymes involved in 

signal peptide degradation, the author realized that enzymes structurally related to the 

cytosolic peptidases functioning in signal peptide degradation in the Bacteria were not 

present in the Archaea. Instead, a gene encoding a putative membrane-bound peptidase 

with limited similarity to SppATk was found on the T. kodakaraensis genome. As in the 

case of SppATk, the protein (SppBTk) harbored a putative membrane-spanning domain in 

its amino-terminal region. The catalytic domain of SppBTk without its 

 
 
 
 
Fig. 9. A schematic diagram illustrating the proposed cleavage sites of SppATk and 
SppBTk on the released signal peptide. 
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membrane-spanning domain (ΔN28SppBTk) was produced in Escherichia coli and 

purified. The protein displayed a dodecameric oligomerization, and exhibited peptidase 

activity towards the substrate Z-Val-Lys-Met-MCA and Z-Leu-Leu-Leu-MCA. Western 

blot analysis using antisera raised against the purified recombinant protein confirmed 

that SppBTk is associated with the cytoplasmic membrane in T. kodakaraensis. Analyses 

with a FRETS peptide library revealed that ΔN28SppBTk displays a strong preference 

towards basic amino acids at the P-2 site and hydrophobic (but not aromatic) residues at 

the P-1 position. This is in contrast to ΔN54SppATk, which preferred hydrophobic 

residues at the P-3 position and residues with relatively small side chains at the P-1 

position. As in the case of ΔN54SppATk, ΔN28SppBTk was capable of cleaving proteins, 

indicating that its activity was not limited to oligopeptide degradation. As archaeal 

signal peptides are comprised from an n-domain (with basic residues) and an h-domain 

(with hydrophobic residues), the substrate specificities of SppATk and SppBTk can be 

expected to efficiently complement one another in the initial breakdown of signal 

peptides at the cytoplasmic membrane. 
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CHAPTER 4 

 

Identification of the amino acid residues essential for proteolytic activity of the 

membrane-bound peptidase SppBTk from Thermococcus kodakaraensis 

 

INTRODUCTION 

 As described in Chapter 3, the author identified a novel membrane-bound 

peptidase in Thermococcus kodakaraensis distinct to the previously characterized 

SppATk. The structural and biochemical properties of SppATk supported a role of the 

protein as a signal peptide peptidase (SPP) in T. kodakaraensis, initiating the 

degradation of signal peptides after their release from the precursor form of proteins to 

be translocated to the cell surface or extracellular matrix. As in the case of SppATk, 

SppBTk also harbors a membrane-spanning domain, followed by a putative peptidase 

domain, which was biochemically shown to exhibit peptidase activity in the previous 

chapter. The substrate specificity of SppBTk raised the possibilities that the protein 

cooperates with SppATk in the signal peptide degradation process in which the former 

recognizes sequences near the positively charged n-region of signal peptides, whereas 

the latter mainly cleaves the hydrophobic h-region (Chapter 3, Fig. 9). 

 The author has mentioned in Chapter 3 that SppBTk homologs are classified as 

unassigned serine peptidases of the S49 family. Although they are found in a large 

number of both archaea and bacteria, none of the proteins besides SppBTk has been 

characterized. Moreover, the SppBTk homologs display a remarkably high similarity 

with one another; the homolog from the cyanobacterium Synechococcus sp. 

JA-2-3B’a(2-13) is 55.7% identical in primary structure with SppBTk. The residues that 



 111

constitute the catalytic center of these enzymes have not been determined. An alignment 

with representative SppATk and SppBTk homologs indicates that the nucleophilic serine 

of SppATk (Ser162) aligns with a serine residue of SppBTk (Ser130) that is conserved 

among SppBTk homologs (Fig. 1). However, the counterpart of the catalytic base 

(Lys214) in SppATk cannot be found or predicted in SppBTk. In this chapter, the author 

carried out a detailed site-directed mutagenesis study in order to determine the amino 

acid residues that take part in the catalysis of SppBTk and its homologs, which comprise 

a large family of archaeal/bacterial peptidases.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
Fig. 1. An alignment of SppATk and SppBTk homolog sequences of the 
Thermococcales. Residues conserved among the eight sequences are indicated with 
asterisks. The two residues essential for activity of SppATk (Chapter 2) are indicated 
with arrowheads. Sequences aligned are those of the SppATk and SppBTk from T. 
kodakaraensis (ATko, BTko), homologs from Pyrococcus horikoshii (APho, BPho), 
Pyrococcus abyssi (APab, BPab), and Pyrococcus furiosus (APfu, BPfu). 
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MATERIALS AND METHODS 

Strains, media, and plasmids 

Escherichia coli strains used for plasmid construction, amplification and gene 

expression are described in Chapter 2. In order to obtain plasmid DNA sensitive to DpnI 

digestion, E. coli JM109 was used. E. coli strains were cultivated in LB medium as 

described in Chapter 1. 

 

DNA manipulation, sequence analysis, and site-directed mutagenesis 

Procedures for the isolation and purification of plasmid DNA, as well as DNA 

sequencing, are described in Chapter 1. Sequence comparisons and alignments were 

performed with the ClustalW program provided by the DNA Data Bank of Japan. 

Site-directed mutagenesis was carried out using a QuikChange XL site-directed kit as 

described in Chapter 2. The template used was an expression plasmid constructed for 

wild-type ΔN28SppBTk, a protein with an amino-terminal truncation of 27 amino acid 

residues. An artificial Met residue was inserted in the position of the native Phe28 

(Chapter 3). The primers used to incorporate each mutation are shown in Table 1. After 

sequence confirmation, the plasmids were introduced into E. coli 

BL21-CodonPlus(DE3)-RIL cells for gene expression. 

 

Expression and purification of wild-type and mutant ΔN28SppBTk proteins 

The recombinant E. coli cells harboring expression plasmids for wild-type and 

mutant ΔN28SppBTk proteins were grown in LB medium supplemented with 0.01% 

glucose, and gene expression was induced with 0.1 mM isopropyl-β-D-thiogalacto- 

pyranoside at the late exponential growth phase. After a further 4 h incubation, 
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Table 1. Primers used for site-directed mutagenesis. 
 

Mutation    Primer sequences 

H55A  5’-ACTGTAATAGCAATGATCGCCAGGCAGGAGAGCATAGGA-3’ 

5’-TCCTATGCTCTCCTGCCTGGCGATCATTGCTATTACAGT-3’ 
R56A  5’-GTAATAGCAATGATCCACGCCCAGGAGAGCATAGGACTC-3’ 

5’-GAGTCCTATGCTCTCCTGGGCGTGGATCATTGCTATTAC-3’ 
E58A  5’-GCAATGATCCACAGGCAGGCCAGCATAGGACTCTTTGGG-3’ 

5’-CCCAAAGCGTCCTATGCTGGCCTGCCTGTGGATCATTGC-3’ 
D75A  5’-AAGTTCATAAGCATCGAGGCCAGCGAGGAAGTGCTCAGA-3’ 

5’-TCTGAGCACTTCCTCGCTGGCCTCGATGCTTATGAACTT-3’ 
E77A  5’-ATAAGCATCGAGGACAGCGCCGAAGTGCTCAGAGCAATC-3’ 

5’-GATTGCTCTGAGCACTTCGGCGCTGTCCTCGATGCTTAT-3’ 
R81A  5’-GACAGCGAGGAAGTGCTCGCCGCAATCAGGAGCGCACCA-3’ 

5’-TGGTGCGCTCCTGATTGCGGCGAGCACTTCCTCGCTGTC-3’ 
H97A  5’-CCGATAGACCTGATCATCGCCACGCCTGGTGGACTAGTT-3’ 

5’-AACTAGTCCACCAGGCGTGGCGATGATCAGGTCTATCGG-3’ 
H116A  5’-GCGAGGGCGCTCAAGGAGGCCCCGGCTGAGACGCGCGTC-3’ 

5’-GACGCGCGTCTCAGCCGGGGCCTCCTTGAGCGCCCTCGC-3’ 
S130A  5’-GTCCCACACTACGCCATGGCCGGCGGCACACTCATAGCA-3’ 

5’-TGCTATGAGTGTGCCGCCGGCCATGGCGTAGTGTGGGAC-3’ 
T133A  5’-TACGCCATGAGCGGCGGCGCCCTCATAGCACTCGCCGCT-3’ 

5’-AGCGGCGAGTGCTATGAGGGCGCCGCCGCTCATGGCGTA-3’ 
D140A  5’-CTCATAGCACTCGCCGCTGCCAAGATTATCATGGATCCA-3’ 

5’-TGGATCCATGATAATCTTGGCAGCGGCGAGTGCTATGAG-3’ 
D145A  5’-GCTGACAAGATTATCATGGCCCCAAACGCAGTCCTCGGC-3’ 

5’-GCCGAGGACTGCGTTTGGGGCCATGATAATCTTGTCAGC-3’ 
D154A  5’-GCAGTCCTCGGCCCAGTTGCCCCACAGCTTGGTCAGTAC-3’ 

5’-GTACTGACCAAGCTGTGGGGCAACTGGGCCGAGGACTGC-3’ 
S164A  5’-GGTCAGTACCCAGCTCCGGCCATACTAAGGGCTGTCGAG-3’ 

5’-CTCGACAGCCCTTAGTATGGCCGGAGCTGGGTACTGACC-3’ 
D179A  5’-GGCCCGGAGAAGGTTGACGCCCAGACCTTAATCCTGGCC-3’ 

5’-GGCCAGGATTAAGGTCTGGGCGTCAACCTTCTCCGGGCC-3’ 
D186A  5’-CAGACCTTAATCCTGGCCGCCGTTGCTGAAAAGGCCATA-3’ 

5’-TATGGCCTTTTCAGCAACGGCGGCCAGGATTAAGGTCTG-3’ 
T225A  5’-CTCACGGAGGGCAGATGGGCCCACGACTACCCGATAACC-3’ 

5’-GGTTATCGGGTAGTCGTGGGCCCATCTGCCCTCCGTGAG-3’ 
H226A  5’-TGGACGGCCGACTACCCGATAACCGTTGACCACGCCAGG-3’ 

5’-CCTGGCGTGGTCAACGGTTATCGGGTAGTCGGCCGTCCA-3’ 
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cells were collected and washed with 50 mM Tris-HCl (pH 8.0), and resuspended in the 

same buffer. Methods for cell disruption and protein purification are the same as those 

described for the wild-type ΔN28SppBTk protein in Chapter 3.  

 

Enzyme activity measurements 

Standard activity measurements were performed at 50˚C in 1 ml of 50 mM 

CHES (pH 10.0) with 0.5 μg of purified protein and 50 μM Z-Val-Lys-Met-MCA as 

described in Chapter 3. The final concentration of dimethyl sulfoxide used to dissolve 

the substrate was constant at 10% of the reaction mixture. 

 

Circular dichroism spectroscopy of wild-type and mutant enzymes 

Each protein sample was prepared in 25 mM Tris-HCl (pH 8.0), 75 mM NaCl 

at a protein concentration of 0.1 mg ml-1. A J-820 spectropolarimeter (Jasco) was used 

to measure ellipticity as a function of wavelength from 250 to 200 nm in 0.2-nm 

increments using a 0.1-cm cylindrical quartz cuvette. The samples were scanned fifty 

times and averaged. The mean molar ellipticity [θ] (deg cm2 dmol-1) was calculated 

from the equation [θ] = θ / 10 nCl, where θ is the measured ellipticity in millidegrees, C 

is the molar concentration of enzyme subunits, l is the path length in centimeters, and n 

is the number of residues per subunit. 

 

RESULTS 

Distribution of SppBTk homologs in the Archaea and Bacteria 

In order to determine which residues should be selected for site-directed 

mutagenesis and subsequent biochemical analyses, the author aligned all archaeal and 
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bacterial SppBTk homologs found in the National Center for Biotechnology Information 

(NCBI) database. In the Archaea, highly related homologs were found in 24 of the 53 

genomes. Among the Crenarchaeota, only Aeropyrum pernix and Hyperthermus 

butyricus, both members of the Desulfurococcales, harbored an SppBTk homolog. Many 

members of the Euryarchaeota harbored SppBTk homologs, but were absent on the 

genomes of the Thermoplasmatales and haloarchaea. In addition, closely related 

homologs were present on a variety of bacterial genomes. A phylogenetic analysis of all 

archaeal and bacterial SppBTk homolog sequences is shown in Fig. 2, indicating that the 

archaeal and bacterial sequences, with only a few exceptions, can be phylogenetically 

distinguished. 

 

Sequence alignment of archaeal and bacterial SppBTk homologs 

The sequences of the archaeal and bacterial SppBTk homologs were aligned, 

and the result is shown in Fig. 3. Reflecting their high structural relationship, a 

remarkable number of residues (>25) were conserved among the 53 sequences. As was 

indicated in Fig. 1, sequences in the vicinity of the catalytic Ser162 of SppATk aligned 

well with the sequence near Ser130 of SppBTk. Ser130 was one of the amino acid 

residues that was completely conserved among all SppBTk homologs (Fig. 3), making it 

an attractive candidate for the nucleophile that initiates peptide bond hydrolysis. In 

addition to this residue, a second serine residue (Ser164) was also conserved among all 

homologs, and was thus also selected as a target of site-directed mutagenesis. 

Completely conserved residues that were candidates for the general base were His55, 

Arg56, His97, Lys190 and His226. Conserved acidic residues that are components of 

the Ser-His-Asp(Glu) catalytic triad of many serine proteases are Glu58, Asp75, 
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Asp154 and Asp179. These nine residues were also selected for site-directed 

mutagenesis. Plasmids were designed and constructed to express the eleven mutant 

proteins with each selected residue individually replaced with an alanine residue. 

Although the possibilities were considered low, the author presumed that the activity 

levels of the mutant proteins of the latter nine residues would also provide valuable 

information regarding the catalytic mechanism of SppBTk even if the enzyme were not a 

serine protease. The selected residues would cover the essential residues of aspartic 

proteases (Asp/Glu) and also amino acid residues commonly found in the 

metalloproteases (His/Glu). In addition to the eleven residues, the author constructed a 

number of proteins with mutations in other highly, but not completely, conserved 

residues such as Glu77, Arg81, His116, Thr133, Asp140, Asp145, Asp186, and Thr225. 

In all cases, single amino acids were replaced with an alanine residue. 

 

Production and purification of mutant SppBTk proteins via site-directed 

mutagenesis 

The mutations described above were incorporated into the expression vector 

for ΔN28SppBTk. Sequence analysis confirmed that only the intended mutations were 

introduced into the genes. Recombinant mutant proteins were produced in E. coli and 

purified from the cell-free extracts by heat treatment at 80˚C for 10 min, followed by 

ammonium sulfate fractionation, hydrophobic interaction chromatography, anion 

exchange chromatography, and gel filtration chromatography. Although the author was 

able to obtain each mutant protein in a soluble form, the amount of protein produced in 

the E. coli cells varied with each mutant. The apparent homogeneity of each protein 

after the purification procedure was examined by SDS-PAGE. 
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Fig. 2. A phylogenetic analysis of archaeal and bacterial SppBTk homolog sequences. 
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Fig. 3 (1/4) 
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Fig. 3 (3/4) 
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Fig. 3 (4/4) 
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Peptidase activity of the wild-type and mutant ΔN28SppBTk proteins 

The author used the synthetic peptide Z-Val-Lys-Met-MCA as the substrate for 

examining activity levels of the purified proteins. The activity levels of each mutant 

protein were measured at 50˚C in the presence of a fixed concentration of this substrate 

(50 μM) and compared with that of the wild-type enzyme (Fig. 4). The author found 

that the mutation of Ser130 led to complete abolishment of peptidase activity under 

these conditions. The H226A mutant also exhibited no activity. Although to various 

extents, the author was able to observe peptidase activity in all other mutant proteins. 

The results strongly indicate that ΔN28SppBTk utilizes a Ser-His-Asp(Glu) catalytic 

Fig. 3. An alignment of all archaeal and bacterial SppBTk homolog sequences used to construct the 
phylogenetic tree in Fig. 2. Residues completely conserved in all 53 sequences are indicated with 
asterisks. Residues highly conserved in the sequences are indicated with # symbols. Residues 
subjected to site-directed mutagenesis are indicated with arrowheads. Abbreviations are as follows. 
Aperni, Aeropyrum pernix, Hbutyl, Hyperthermus butylicus, Ihospi, Ignicoccus hospitalis, Cmaqui, 
Caldivirga maquilingensis, Pfurio, Pyrococcus furiosus, Pabyss, Pyrococcus abyssi, Phorik, 
Pyrococcus horikoshii, Mjann1, Methanocaldococcus jannaschii, Afulgi, Archaeoglobus fulgidus, 
Msathe, Methanosaeta thermophila, Uncult, uncultured methanogenic archaeon RC-1, Mmarp1, 
Methanococcus maripaludis C5, Mmarp2, Methanococcus maripaludis C7, Mmarp3, 
Methanococcus maripaludis C6, Mmarp4, Methanococcus maripaludis S2, Mvanni, 
Methanococcus vannielii, Maeoli, Methanococcus aeolicus, Mvolta, Methanococcus voltae, 
Mjann2, Methanocaldococcus jannaschii, Aaeoli, Aquifex aeolicus, HydrSp, Hydrogenobaculum 
sp. Y04AAS1, Tcarbo, Thermosinus carboxydivorans, Chydro, Carboxydothermus 
hydrogenoformans, Ptherm, Pelotomaculum thermopropionicum, Horen1, Halothermothrix orenii, 
Moothe, Moorella thermoacetica, Horen2, Halothermothrix orenii, Tmarit, Thermotoga maritima, 
Tpetro, Thermotoga petrophila, Caggre, Chloroflexus aggregans, Cauran, Chloroflexus 
aurantiacus, Rcaste, Roseiflexus castenholzii, RosfSp, Roseiflexus sp. RS-1, Tther1, Thermus 
thermophilus HB8, Tther2, Thermus thermophilus HB27, SynSp1, Synechococcus sp. 
JA-2-3B’a(2-13), SynSp2, Synechococcus sp. JA-3-3Ab, Avaria, Anabaena variabilis, NostSp, 
Nostoc sp. PCC 7120, Npunct, Nostoc punctiforme, LyngSp, Lyngbya sp. PCC 8106, Mmaris, 
Methanoculleus marisnigri, AnaeSp, Anaeromyxobacter sp. Fw109-5, BradSp, Bradyrhizobium sp. 
BTAi1, Pbermu, Parvularcula bermudensis, RosbSp, Roseobacter sp. AzwK-3b, RosvSp, 
Roseovarius sp. 217, Rxylan, Rubrobacter xylanophilus, LeptSp, Leptospirillum sp. Group II UBA, 
Mbarke, Methanosarcina barkeri, Maceti, Methanosarcina acetivorans, Mmazei, Methanosarcina 
mazei, Tkodak, Thermococcus kodakaraensis. 
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triad for its peptidase activity. Among the mutants with replacements in completely 

conserved acidic residues, the D154A protein displayed the lowest levels in activity 

(only 1.7% activity retained compared to the wild-type protein), suggesting that this 

residue is the third residue in the catalytic triad. The only other completely conserved 

residue whose mutation led to over a 90% decrease in activity was His55 (2.4% activity 

compared to the wild-type protein). Among the highly (but not completely) conserved 

residues, the replacements of Glu77 (5.2%) and Asp186 (4.8%) had the largest effects. 

In particular, the residue variation of Asp186 in the SppBTk homologs is limited to Glu 

(Fig. 3). It can thus be presumed that a negatively charged residue in this position plays 

an important role in the catalytic activity of SppBTk homologs. 

To examine whether the single-residue replacements had unintended broad 

effects on the protein structure, the author analyzed the CD spectrum of each mutant 

protein. In all mutant proteins, including the three that exhibited least activity under 

standard conditions (S130A, H226A and D154A), the CD spectra were 

indistinguishable from that of the wild-type protein (Fig. 5). The results confirm that the 

single-residue replacements did not lead to significant changes in the secondary 

structures of the proteins, indicating that the changes in activity levels in the mutant 

proteins were direct consequences brought about by single-residue exchange. 

 

DISCUSSION 

From the activity levels of the 19 mutant proteins, the author can conclude that 

ΔN28SppBTk is a serine peptidase, utilizing Ser130 as the nucleophilic serine. The 

results also strongly suggest that His226 is the general base that acts in increasing the 

nucleophilicity of Ser130. The determination of the remaining acidic residue is less  
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Fig. 5. Circular dichroism spectra of wild-type (WT), S130A, H226A and D154A proteins. 

Fig. 4. Activity levels of the wild-type SppBTk and 19 mutant proteins. The mutant proteins are 
indicated below the histogram and display the single residues replaced with alanine. The activity of 
the wild-type SppBTk is designated as 100(%). Substrate concentration was fixed at 50 μM. 
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clear, as all mutant proteins other than S130A and H226A, although to various extents, 

exhibited peptidase activity. This is not surprising, as the serine and histidine residues 

are the most important residues in the Ser-His-Asp catalytic triad. It has been reported 

that replacing the serine or histidine residue in subtilisin or trypsin, both dependent on 

the catalytic triad, results in a 106-fold decrease in activity, whereas mutations in the 

Asp residue result in only a 104-fold decrease (1-4). There are also enzymes (5) and 

catalytic antibodies (6) that do not harbor an apparent Asp(Glu) residue, but display 

activity with only a Ser-His catalytic center. Judging solely from the activity levels of 

the mutant proteins with replacements in acidic residues, the third residue of the 

catalytic triad in SppBTk is most likely Asp154. The mutations of these three residues, 

Ser130, His226 and Asp154, had the largest effects on activity, and the residues are 

completely conserved without exception in all SppBTk homologs. The catalytic center of 

SppBTk is thus distinct to that of SppATk, which is dependent on a Ser-Lys catalytic 

dyad (Chapter 2). 

The author noticed that an abundant number of His, Asp and Glu residues were 

important for activity. Besides the three residues proposed to form the catalytic triad, 

mutations in His55, Arg56, Asp75, Glu77, His97, Asp179 and Asp186 all led to 

proteins with over 80% decrease in activity. Multiple acidic residues may be interacting 

with the general base His226. The catalytic center of SppBTk may be slightly distinct to 

those found in previously characterized serine proteases. This is supported by the fact 

that almost all conventional serine protease inhibitors such as phenylmethanesulfonate 

fluoride, diisopropyl fluorophosphate had no apparent effect on SppBTk activity 

(Chapter 3). There are examples of serine proteases that harbor atypical catalytic centers 

composed of serine and histidine residues. The cytomegalovirus protease is dependent 
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on of a Ser-His-His or Ser-His-His-Asp active center for catalysis (7-9). In this structure 

(Ser132-His63-His157-Asp65), Ser132 is the nucleophile and His63 (Nε) is the general 

base that increases the nucleophilicity of Ser132. Instead of forming a hydrogen bond 

with an Asp/Glu side chain, Nδ of His63 forms a hydrogen bond with Nε of His157. 

There is also a further possibility that Nδ of His157 forms a hydrogen bond with Asp65, 

comprising a catalytic tetrad (8). A role similar to that of His157 would explain the 

importance of residues such as His55 and His97 in SppBTk, as their presence is 

important for activity but in no way can complement the function of His226. As no 

similarity can be observed between the primary structures of SppBTk and 

cytomegalovirus protease, clarification of the roles of the individual residues will have 

to await the elucidation of the three-dimensional structure of SppBTk. 

 

SUMMARY 

In Chapter 3, the author examined the biochemical properties of a 

membrane-bound peptidase (SppBTk) from the hyperthermophilic archaeon, 

Thermococcus kodakaraensis. The substrate specificity of SppBTk was distinct to that of 

SppATk (examined in Chapters 1 and 2), and raised the possibilities that the two 

peptidases efficiently complement one another in the initial breakdown of signal 

peptides at the cytoplasmic membrane of T. kodakaraensis. In this chapter, the author 

carried out a detailed site-directed mutagenesis study on the catalytic domain of SppBTk 

(ΔN28SppBTk), and determined the amino acid residues that contributed to the peptidase 

activity of the enzyme. Fifteen residues that were completely or highly conserved 

among the 53 SppBTk homologs found in various archaeal and bacterial genome 

sequences were selected as targets for mutagenesis, focusing on amino acid residues 
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that have been shown to be involved in the catalysis of previously characterized 

peptidases/proteases. Although the replacement of a number of residues to alanine led to 

dramatic decreases in activity, mutation of Ser130 and His226 resulted in complete 

abolishment in activity. Among the acidic residues that were examined, Asp154 

apparently contributed most to ΔN28SppBTk activity. Circular dichroism studies on 

S130A, H226A and D154A confirmed that the mutations did not trigger broad structural 

changes in the respective mutant proteins. The results of this chapter indicate that the 

peptidase activity of SppBTk is dependent on a Ser-His-Asp catalytic triad, distinct to 

the Ser-Lys catalytic dyad that is repsonsible for the activity of SppATk. 
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CHAPTER 5 

 

Disruption of a sugar transporter gene cluster in a hyperthermophilic archaeon  

using a host-marker system based on antibiotic resistance 

 

INTRODUCTION 

As described in the GENERAL INTRODUCTION, hyperthermophiles have 

attracted much attention from an evolutionary viewpoint as they occupy the deepest 

lineages within the phylogenies of both Archaea and Bacteria based on ribosomal RNA 

sequences (1, 2). Hyperthermophiles are also focused upon as a source of 

(thermo)stable enzymes that have the potential for application in a broad range of 

technologies (3, 4). There are now 26 complete genome sequences and many more in 

progress, providing a wealth of primary structural data from which we can estimate the 

presence or absence of various metabolic and regulatory mechanisms. However, 

although biochemical and structural analyses of hyperthermophile proteins are 

proceeding at a rapid pace, genetic studies to examine gene function in vivo are still 

limited in number. 

In contrast to the hyperthermophilic archaea, a wealth of gene disruption and 

shuttle vector systems has been developed for the mesophilic archaea. In the halophilic 

archaea, stable shuttle vectors have been developed (5, 6), and homologous 

recombination has been demonstrated (7, 8). In the methanogenic archaea, shuttle 

vectors and/or gene disruption systems have been developed in Methanococcus 

maripaludis (9), Methanococcus voltae (10), various Methanosarcina species (11) and 

Methanobacterium thermoautotrophicum (now Methanothermobacter 
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thermautotrophicus) (12). In the hyperthermophilic archaea, however, only two systems 

have been reported so far: one for Thermococcus kodakaraensis (13, 14) from the 

Euryarchaeota and the other for Sulfolbus solfataricus from the Crenarchaeota (15). 

Both systems rely on homologous recombination. The former system utilizes various 

host strains with amino acid/nucleotide auxotrophy and corresponding marker genes 

that complement the auxotrophy. The latter utilizes a lacS-deficient host strain and a 

modified but active lacS marker gene with selection based on lactose-dependent growth. 

The two systems have proved to be powerful tools in examining gene function in the 

respective strains (16-19) and can be expected to provide further genetic evidence that 

will help in understanding the physiological roles of genes in these and closely related 

organisms. In this study, the author aimed to develop a gene disruption system in 

hyperthermophiles using antibiotics and a marker gene that would confer resistance to 

transformant cells. This would relieve the necessity to prepare auxotrophic host cells 

and also allow selection of transformants in a nutrient-rich medium. Thus, the 

methodology should not only provide a convenient alternative for gene disruption in T. 

kodakaraensis but also be helpful in establishing gene disruption systems in other 

hyperthermophilic archaea. The author examined the possibilities of utilizing the 

mevinolin system established in the halophilic archaea (7, 20). Mevinolin, along with its 

analog simvastatin, is a specific inhibitor of 3-hydroxy-3-methylglutaryl coenzyme A 

(HMG-CoA) reductase, an enzyme essential for archaeal membrane lipid biosynthesis 

(21). HMG-CoA reductases have been extensively examined from a number of archaeal 

species (22, 23). An over-expression construct of the HMG-CoA reductase gene can be 

expected to be applicable as a marker gene. Additionally, as the gene is originally 

present in the hyperthermophile, there is no need for concern about the thermostability 
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of the marker gene product. As all archaeal strains are presumed to require the function 

of HMG-CoA reductase for lipid and membrane generation, the system described in this 

study has the potential for application in all hyperthermophilic archaea. 

 

MATERIALS AND METHODS 

Strains, media, and plasmids 

T. kodakaraensis KOD1 and the mutant strains were cultivated under anaerobic 

conditions at 85˚C in a nutrient-rich medium, ASW-YT (Chapter 1), supplemented with 

various organic substrates or elemental sulfur when appropriate. In the case of plate 

culture, instead of elemental sulfur and Na2S·9H2O, 2 ml of a polysulfide solution (10 g 

of Na2S·9H2O and 3 g of sulfur flowers in 15 ml of H2O) per liter and Gelrite (10 g 

liter-1) were added to solidify the medium. When simvastatin was added to the medium, 

simvastatin was dissolved in ethanol, and the amount of the solution added was adjusted 

so that the ethanol concentration in the medium was constant at 0.1% (vol/vol). 

 

DNA manipulation and sequence analysis 

Escherichia coli strain DH5α and pUC18/pUC19 were used for DNA 

manipulation and sequencing. E. coli strains were cultivated in LB medium as described 

in Chapter 1. All enzymes, reagents and apparatus used for DNA purification, plasmid 

construction and sequence confirmation are described in the MATERIALS AND 

METHODS section of Chapter 1.  

 

Construction of the gene disruption vectors 

Two disruption vectors, pUDapu and pUDmal, were constructed for the 
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targeted disruption of the T. kodakaraensis amylopullulanase gene apu (apuTk) and the 

sugar transporter gene cluster including apuTk, respectively, via double-crossover 

homologous recombination. Over-expression cassettes for the HMG-CoA reductase 

gene from T. kodakaraensis (hmgTk) were constructed by replacing the native promoter 

with a putative promoter region (-554 to -4) of the glutamate dehydrogenase gene (24). 

The region -3 to -1 was replaced by 5’-CAT-3’ in order to incorporate an NdeI site for 

fusion of the promoter to the coding region of hmgTk. Cassettes were designed so that 

one had SmaI sites at both ends, while another had an XbaI site upstream of the 

promoter and a BamHI site downstream of hmgTk. The two cassettes were inserted into 

pUC18 and sequenced. For construction of the apuTk disruption plasmid, a DNA 

fragment including apuTk along with its flanking regions (about 1,000 bp) was amplified 

from the genomic DNA of T. kodakaraensis KOD1 with the primer set APU-F1 and 

APU-TRANS-R1 (5’-AATTCAGAACGGCAAGCTCTACGTAACAGACGGCA-3’ 

and 5’-GCGTCGTAGATGTCCTCGGGCCTTATGCCGAAGAT-3’, respectively) and 

inserted into pUC18 at the HincII site. An inverse PCR was then carried out to amplify 

the flanking regions and pUC18, thereby removing the coding region of gene. The 

primers used were APU-R2 and APU-F2 (5’-CTTATCACCTCACTCTTTAAGG 

CCTCCAACAGTGA-3’ and 5’-AGAGGGTGGCGGAATCTGCGGCCCGGCGTT 

CCTCG-3’, respectively). The DNA fragment was ligated with the hmgTk 

over-expression cassette excised with SmaI and designated pUDapu. For disruption of 

the sugar transporter gene cluster, DNA fragments of the 5’- and 3’- flanking regions 

(about 1,000-bp) of the gene cluster were amplified with the primer pair TRANS-F1 

and TRANS-R2 (5’-AGTTCTCAAATCGGACCTTCCGCCGATGGAAAAGT-3’ and 

5’-TGTTTATCACCTAGTTATCTCGTTGCATTTGAGTA-3’, respectively) and the 
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pair TRANS-F2 and APU-TRANS-R1 (TRANS-F2, 5’-TCCCCAGGATCCGGCGGT 

GGTGAAGAGGGTGGCGG- 3’). The 5’-flanking region was inserted into pUC19 at 

the HincII site, followed by insertion of the over-expression cassette in the XbaI and 

BamHI sites. The 3’- flanking region was then inserted in the BamHI and SmaI sites, 

resulting in the plasmid pUDmal. 

 

Transformation of T. kodakaraensis KOD1 

Transformation procedures were performed as described previously (13, 14), 

but the host strain used in this study was the wild-type T. kodakaraensis KOD1. After 

transformation, cells were cultivated in ASW-YT liquid medium supplemented with 

0.2% (wt/vol) elemental sulfur (ASW-YT-S0) in the presence of 4 μM simvastatin at 

85˚C for 12 h. The cells were further grown in ASW-YT-S0 liquid medium with 8 μM 

simvastatin at 85˚C and spread on ASW-YT (polysulfide) plate medium containing 4 

μM simvastatin and incubated at 85˚C. Genomic DNA was isolated from the 

transformants and analyzed by PCR and Southern blot analysis. 

 

Southern blot analysis 

A digoxigenin-DNA labeling and detection kit (Roche Diagnostics, Basel, 

Switzerland) was used according to the manufacturer’s instructions. The probes within 

the coding regions of hmgTk and apuTk were amplified, respectively, with the primer pair 

HMG-F and HMG-R (5’-TGAGAACATCGGGCACTACTCAATAGATCCCAACC-3’ 

and 5’-ACCAACGAGGTTCTTGCGGTAGTTCACCTCGGCTA-3’, respectively) and 

the pair APU-F and APU-R (5’-CTCAACGACAAGACCCTTGAAATCCTAG 

CGGAGAA-3’ and 5’-GGCTCATCTTATCTTTGTTTTCCATGAGGGCCTTT-3’, 
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respectively). The probe within the coding region of the malE gene of T. kodakaraensis 

(malETk) was amplified with the primers MalE-F and MalE-R 

(5’-CACTTCCCCGACCGAGACCACTACTACCTCACCCA-3’ and 5’-CTGCTGG 

GTGTTGTAGTCGGCAGTCGGGGCCATGT-3’, respectively). The probe within the 

hmg gene from Pyrococcus furiosus (hmgPf) was amplified with the primers PfHMG-F 

and PfHMG-R (5’-AAAGCACATTGGCCACTACTCAATTGATCCAAACG-3’ and 

5’-ACCCACTAAGTTCTTTAGGTAGTTTACTTCAGCGA-3’, respectively), and the 

probe corresponding to the promoter region of the glutamate dehydrogenase gene was 

amplified with the primers GDHp-F and GDHp-R (5’-ATATCCCACCTC 

CGATTCCGTTGGTATTTAATCGG-3’ and 5’-TACCACCTCATTTCGGTAATC 

TGCGAGGTTAACTT-3’, respectively). Genomic DNA from the wild-type and gene 

disruption mutant strains was digested with PvuII. 

 

Growth properties of T. kodakaraensis KOD1 and mutant strains 

T. kodakaraensis KOD1 and the mutant strains were grown in ASW-YT-S0 

medium at 85˚C for 12 h and inoculated into 15 ml of ASW-YT-S0 or ASW-YT 

medium supplemented with 0.5% (wt/vol) sodium pyruvate, a 0.5% (wt/vol) 

concentration of a specific maltooligosaccharide (3, 4, 5, 6, or 7 glucose units), 0.5% 

(wt/vol) amylose (polysaccharide consisting of glucose connected solely by 

α-1,4-glycosidic bonds), or 0.5% (wt/vol) pullulan (polysaccharide consisting of 

maltotriose units connected by α-1,6-glycosidic bonds). Cell densities (optical density 

at 660 nm) were measured at appropriate intervals with a UV spectrometer mini photo 

518R (Taitec, Koshigaya, Japan). In order to estimate resistance toward simvastatin, 

cells were cultivated in 15 ml of ASW-YT-S0 supplemented with 1, 5, 10, or 20 μM 
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simvastatin. 

 

Measurements of HMG-CoA reductase activity 

 Activity measurements were performed at 60˚C in a final volume of 1 ml 

containing cell extracts, 200 μM NADPH, and 0.5 mM HMG-CoA (Sigma, St. Louis, 

MO, USA) in 50 mM potassium phosphate buffer (pH 7.0). The consumption of 

NADPH was monitored at 340 nm by a UV-visible light spectrophotometer 

(UV-1600PC; Shimadzu, Kyoto, Japan). Cell extracts were prepared as follows. T. 

kodakaraensis KOD1 and the disruptants were cultivated in ASW-YT-S0 medium at 

85˚C for approximately 8 h. Cells were collected and sonicated on ice, and the 

supernatant after centrifugation (20,000 x g for 30 min at 4˚C) was used as the cell 

extract. Protein concentrations were determined with a protein assay kit (Bio-Rad) using 

bovine serum albumin as a standard. 

 

RESULTS 

Effect of various concentrations of simvastatin on the growth of T. kodakaraensis 

KOD1 

As isopentenyl diphosphate is the major precursor for archaeal lipid 

membranes, the author supposed that inhibition of HMG-CoA reductase would have 

severe effects on the growth of T. kodakaraensis KOD1 (Fig. 1). The main concerns 

were whether the uptake and inhibitory effects of simvastatin were sufficient to allow 

use of the antibiotic at realistic concentrations and whether the compound was stable 

enough at temperatures of >80˚C to inhibit growth for several days, which is necessary 

for the formation of colonies. 
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Fig. 1. The mevalonate pathway for isoprenoid lipid biosynthesis in the Archaea. The 
reaction catalyzed by HMG-CoA reductase is shaded in pink. Simvastatin is shaded in 
yellow. It should be noted that the two reactions converting mevalonate phosphate to 
isopentenyl diphosphate are distinct from the reactions in the classical mevalonate 
pathway (25). 
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The author examined the growth of T. kodakaraensis KOD1 in the presence of 

various concentrations of simvastatin in the nutrient-rich medium ASW-YT-S0. 

Simvastatin was dissolved in ethanol, and the amount of ethanol added to the medium 

was constant at 0.1% (vol/vol). In ASW-YT-S0 medium, T. kodakaraensis KOD1 cells 

reach the stationary phase within 24 h. No effect on growth was observed with the 

addition of ethanol alone. In the presence of 1 or 2 μM simvastatin, growth was 

observed only after 24 h, while 48 h was necessary for growth with 3 μM simvastatin. 

At concentrations of 4 or 5 μM simvastatin, growth was not observed for at least 5 days, 

indicating that these concentrations would be suitable for selecting transformants with 

resistance against simvastatin. The author also confirmed that these concentrations were 

sufficient to prevent colony formation of T. kodakaraensis KOD1 on nutrient-rich plate 

medium. 

 

A cassette for the over-expression of the HMG-CoA reductase gene 

As simvastatin is a competitive inhibitor of HMG-CoA reductase, the author 

expected that over-expression of its gene from T. kodakaraensis (hmgTk) would reduce 

the inhibitory effects of simvastatin on cell growth. Previous studies have indicated that 

the enzyme glutamate dehydrogenase is abundant in T. kodakaraensis cells grown in 

various media (49), suggesting that the gene (gdhTk) is under the control of a strong 

promoter. The author therefore utilized a 551-bp intergenic region between the coding 

regions of gdhTk (TK1431) and the adjacent gene TK1432 and fused the region 

upstream of hmgTk (see MATERIALS AND METHODS). This over-expression cassette 

(Pgdh-hmg) was used as the marker gene for construction of disruption plasmids (Fig. 

2A). 
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Design and construction of the gene disruption plasmids 

The genes disrupted in this study were a putative amylopullulanase gene (apuTk, 

or TK1774) and a gene cluster including apuTk and three additional genes encoding the 

components of a sugar transporter (TK1771 to TK1773) of T. kodakaraensis (24) (Fig. 

2B). In the latter stages of this study, the author discovered an error in the original 

genome sequence of TK1774 (an excess A at position 1,581,978 of the genome). The 

correct sequence leads to a protein with a change and elongation in sequence in the 

carboxy-terminal region from residue Asn1070 (see DISCUSSION). In this chapter the 

author will refer to the corrected apuTk gene as TK1774* and, for simplicity, to the 

four-gene cluster (TK1771 to TK1774*) as malTk. 

Amylopullulanases, or type II pullulanases, exhibit both α-amylase and 

pullulanase activities and can therefore cleave both α-1,4- and α-1,6-glucosidic bonds 

(20). There are a number of other homologs on the genome (24), some with putative 

signal sequences for secretion, expected to harbor the ability to degrade α-linked 

polysaccharides. In particular, the TK1884 protein has been experimentally confirmed 

to exhibit α-amylase activity (26). On the other hand, in contrast to the two sugar 

transporters present in P. furiosus (Mal-I, PF1739 to PF1744, and Mal-II, PF1933 to 

PF1938) (27), only one putative gene cluster is found on the T. kodakaraensis genome 

(TK1771 to TK1775) (28). Based on primary structure similarity, the transporter from T. 

kodakaraensis corresponds to Mal-II, suggesting that it is specific to 

maltooligosaccharides with three or more glucose units. By disrupting apuTk, the author 

expected to gain insight into the actual degree of influence apuTk has, among the 

multiple amylase homologs of T. kodakaraensis, on the degradation of various 

extracellular polysaccharides. Growth characteristics of the malTk disruptant were 
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expected to clarify the presence or absence of other sugar transporters as well as to 

provide information on the substrate specificity of the MalTk transporter in vivo. 

Similar to the design of gene disruption plasmids in a previously described 

system using pyrF or trpE as selectable markers (14), Pgdh-hmg was inserted between 

the 5’- and 3’- flanking regions (1,000 bp) of the target gene(s) (Fig. 2C). The plasmids 

pUDapu and pUDmal were used to transform wild-type T. kodakaraensis KOD1, and 

transformants were selected based on their resistance toward simvastatin. 
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Fig. 2. (A) Design of the hmgTk over-expression cassette using the 5’-upstream flanking region of 
gdhTk. (B) Gene organization of the putative maltooligosaccharide transporter of T. kodakaraensis. 
TK1774* represents the correct sequence of the apuTk gene (see RESULTS section). Red arrows 
indicate the gene(s) disrupted in this study. (C) The two plasmids constructed for the disruption of 
the apuTk and malTk loci via double-crossover recombination. 
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Isolation of the gene disruption strains ΔapuTk and ΔmalTk 

After transformation, cells were grown in ASW-YT-S0 liquid medium in the 

presence of 4 μM simvastatin. Growth was observed with cells transformed with 

pUDapu and pUDmal but not for cells treated without plasmid. Cells were further 

inoculated in the same liquid medium with 8 μM simvastatin and then spread on plate 

medium with 4 μM simvastatin. Five colonies were selected for each gene disruption 

and grown in ASW-YT-S0 medium. The author examined the apuTk and malTk loci by 

PCR (Fig. 3). As expected, the author observed shorter amplified fragments from the 

transformants than from the wild-type strain, corresponding to the decrease in length 

brought about by the replacement of apuTk and malTk by Pgdh-hmg. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. Disruption of the apuTk and malTk loci of T. kodakaraensis. PCR analyses of the apuTk 
and malTk loci confirming gene disruption are shown. Primers were designed in the 5’- and 
3’-flanking regions of the gene(s) to be disrupted. DNA size markers were run in lane M, 
and their sizes (bp) are indicated to the left of the gels. The results of PCR with wild-type T. 
kodakaraensis KOD1 and five individual transformants are indicated in lane W and lanes 1 
to 5, respectively. The arrowheads to the right of the gels indicate the amplified fragments 
expected before and after recombination. The decreases in lengths of the amplified 
fragments reflect the differences in length between apuTk (~3,500 bp) and Pgdh-hmg (~2,000 
bp) and between malTk (~7,000 bp) and Pgdh-hmg. Nonspecific amplifications of DNA 
fragments observed for the wild-type malTk locus were due to the prolonged reaction time 
necessary to amplify the entire locus. 
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Extent of simvastatin resistance of the transformants 

As the transformants harbored Pgdh-hmg on their genomes, the author examined 

their resistance against various concentrations of simvastatin (Fig. 4). One ΔapuTk and 

one ΔmalTk transformant were grown in the presence of 1, 5, 10, and 20 μM simvastatin, 

and their growth characteristics were compared with those observed in medium without 

simvastatin. Although the wild-type strain could not grow at all with 5 μM simvastatin, 

specific growth rates and cell yields of the transformants were still comparable to those 

in the absence of simvastatin. The degree of inhibition became prominent at higher 

concentrations, but the author found that concentrations over 20 μM were necessary to 

completely inhibit growth of the transformants. The author further examined the levels 

of HMG-CoA reductase activity in the wild-type and transformant cells. Specific 

activity in the cell extracts of wild-type cells was approximately 25 nmol min-1 mg-1. In 

contrast, the level observed in the extracts of the ΔapuTk strain was 760 nmol min-1 mg-1,  

 

 

 

 

 

 

 

 

 

 

 
 
Fig. 4. Growth of wild-type T. kodakaraensis KOD1 and ΔapuTk and ΔmalTk mutant strains in 
the presence of various concentrations of simvastatin. Open circles, wild-type strain; solid 
squares, ΔapuTk strain; solid triangles, ΔmalTk strain; OD, optical density. 
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indicating an increase in activity of over 30-fold. The resistance against simvastatin and 

the increase in HMG-CoA reductase activity in the transformants are consistent with the 

presumption that simvastatin inhibits growth of T. kodakaraensis KOD1 by specifically 

inhibiting the activity of HMG-CoA reductase. 

 

Phenotype analyses of the gene disruption strains 

The author examined the growth characteristics of the ΔapuTk and ΔmalTk 

strains in various media and compared them with those of the wild-type strain (Fig. 5). 

No change in phenotype was observed when the three strains were grown on amino 

acids (ASW-YT-S0) or amino acids and pyruvate (ASW-YT-pyruvate) as carbon 

sources. However, disruption of apuTk and malTk brought about dramatic changes in 

phenotype when the strains were grown on various sugars. Disruption of the malTk 

transporter abolished growth on all sugars examined. Although the ΔapuTk strain 

displayed growth on a number of maltooligosaccharides, the strain could not grow on 

pullulan (Fig. 5I). Interestingly, while several α-amylase homologs (including TK1884) 

are present on the genome, the author found that disruption of apuTk led to a significant 

decrease in growth rates when strains were grown on amylose, a maltopolysaccharide 

consisting of only α-1,4-linkages (Fig. 5H). Another intriguing finding was that the 

disruption of apuTk had a greater detrimental effect on growth with shorter 

maltooligosaccharides, which was rather surprising as amylopullulanases are presumed 

to function in the breakdown of poly- or oligosaccharides. In contrast to the wild-type 

strain, no growth was observed for ΔapuTk in the medium supplemented with 

maltotriose (Fig. 5C). 
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Fig. 5. Growth of wild-type T. kodakaraensis KOD1 and ΔapuTk and ΔmalTk mutant strains on 
various carbon sources. The carbon sources examined are indicated above each panel. Glucose 
and maltose were not examined, as the wild-type strain cannot utilize these sugars. Open 
circles, wild-type strain; solid squares, ΔapuTk strain; solid triangles, ΔmalTk strain; OD, optical 
density. 
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Recombination at the hmgTk locus 

As the plasmid used in this study harbors the endogenous hmgTk and Pgdh, there 

will always be a possibility of these regions recombining with the corresponding native 

loci present on the genome. This property has actually been applied in developing a 

single-crossover insertion/pop-out recombination system using the pyrF gene as a 

selective marker (14). The author therefore examined whether recombination events had 

occurred at the hmgTk and/or Pgdh glutamate dehydrogenase locus. The author observed 

that in some strains the native hmgTk locus had been disturbed (data not shown). As the 

locus of the target gene is stable in a disrupted form via double-crossover recombination, 

the recombination at the hmgTk locus does not directly pose a problem. Nevertheless, the 

author examined possibilities to prevent or decrease the frequencies of unintended 

recombination. Linearizing the plasmids prior to introducing them into the cells would 

prevent single-crossover recombination. Utilizing an hmg gene from a heterologous host 

would also decrease the possibilities of single-crossover recombination as well as 

further recombination due to the presence of two identical regions on the genome. The 

author found that both methods could be used for gene disruption. In examining the 

latter possibility, the author used the hmg gene from the closely related P. furiosus and 

constructed plasmids to disrupt the apuTk gene. In five randomly chosen transformants 

with resistance against simvastatin, the author clearly observed that double-crossover 

recombination had occurred at the apuTk locus (Fig. 6A and B) along with the 

appearance of a single copy of the hmgPf gene (Fig. 6C) and an additional copy of the 

gdh promoter (Fig. 6E), whereas neither the native hmgTk locus nor the gdh promoter 

regions were disturbed (Fig. 6D and E). The author further confirmed that the strains 

obtained using hmgPf as a marker gene (i) were able to grow in the presence of 20 μM 
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simvastatin, (ii) exhibited significant HMG-CoA reductase activities in the cell extracts 

(720 nmol min-1 mg-1), and (iii) displayed the same growth characteristics toward 

various carbon sources as those shown in Fig. 5 (data not shown). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

DISCUSSION 

In this chapter, the author has developed a gene disruption system in T. 

kodakaraensis KOD1 based on resistance against antibiotics using simvastatin and an 

 
 
 
Fig. 6. Southern blot analyses on ΔapuTk strains obtained with the hmgPf gene as a selectable marker. 
Genomic DNA from five selected ΔapuTk strains and from wild-type T. kodakaraensis KOD1 (W) 
were subjected to Southern blot analyses using probes within the regions indicated below each 
membrane. 
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over-expression cassette of hmgTk. The system has many advantages for initiating gene 

disruption studies in hyperthermophilic archaea. First, one does not need to construct a 

host strain with a particular defect or auxotrophy toward an amino acid. There is also no 

need for selection to be carried out in minimal medium. Positive selection of mutant 

strains is possible in nutrient-rich medium. If the genome sequence is available, the 

possibilities to disrupt genes with this system can be examined immediately. It should 

be noted that the author has not examined the stability of simvastatin under acidic 

conditions, which should be examined prior to application of the method on strains such 

as Sulfolobus. When the genome sequence is not available, it may be possible to use the 

genes of a closely related strain whose genome has been sequenced. As demonstrated in 

this study, the heterologous hmgPf gene was applicable for gene disruption in T. 

kodakaraensis. In order to avoid initial single-crossover recombination and possible 

recombination events afterwards due to the presence of two identical regions on the 

same chromosome, a heterologous marker may be more advantageous than an 

endogenous marker. The author hopes this methodology will promote gene disruption 

studies in a broader range of hyperthermophilic archaea. 

The phenotypes of the ΔapuTk and ΔmalTk strains in various media not only 

provide valuable information on the physiological roles of the disrupted genes 

themselves but also allow us to estimate the contribution of other genes on the genome. 

The growth characteristics of the ΔmalTk strain indicated that it is the only transporter in 

T. kodakaraensis involved in the uptake of the poly- and oligosaccharides examined in 

this study. As the ΔapuTk strain could not grow at all on pullulan, it is most likely that 

ApuTk is the only relevant enzyme responsible for the extracellular hydrolysis of 

pullulan, in spite of the fact that another gene (TK0977), annotated as a type II pullulan 
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hydrolase, is present. From the results shown in Fig. 4H, the author also found that 

ApuTk plays a much greater role than expected in the cleavage of α-1,4-glycosidic 

linkages, suggesting that the experimentally verified α-amylase TK1884 protein (26) 

may not be the major amylose-degrading enzyme in T. kodakaraensis. This agrees well 

with the results of a transcriptome analysis of P. furiosus grown on starch, which 

revealed that PF1935*, the homolog of TK1774*, is the protein most up-regulated in the 

presence of starch (29). 

An intriguing change in phenotype was observed in the ΔapuTk strain grown on 

maltooligosaccharides. As the amylopullulanase was presumed to function in the 

degradation of poly- or oligosaccharides, the effects brought about by disrupting apuTk 

were expected to be greater with longer substrates. However, the results obtained with 

ΔapuTk were just the opposite. This may be the result of polar effects brought about by 

insertion of the hmgTk over-expression cassette. With the disruption strategy taken in 

this study, the downstream genes, in particular, malKTk (TK1775), would be under the 

control of the gdh promoter and would thereby disturb the stoichiometric expression of 

the transporter subunits. Another possibility is that ApuTk itself is also a component of 

the sugar transporter complex, resulting in a decrease in stability or efficiency of the 

complex when ApuTk is absent. This is consistent with the fact that the apuTk gene is 

clustered within the subunit genes of the transporter itself. The possibility that 

amylopullulanase resides on the cell surface has been proposed in closely related 

hyperthermophilic archaea (30-32). The enzyme from Thermococcus hydrothermalis 

harbors a carboxy-terminal extension with three domains in addition to the central 

catalytic domain (31). One of the domains contains motifs with similarity to the S-layer 

homology signature (33), found in several bacterial proteins anchored to the cell surface 
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(33-36). The second region is extremely rich in threonine residues and is followed by 

the third, putative transmembrane domain. This architecture resembles the 

carboxy-terminal regions of S-layer proteins of the haloarchaea, in which the Thr-rich 

regions are targets for O-linked glycosylation and the transmembrane domain serves as 

a cell surface anchor (37, 38). The two regions are found in a number of 

Thermococcales proteins annotated as periplasmic components of ABC-type dipeptide 

transport systems, further supporting the involvement of these domains in cell surface 

attachment (30) (Fig. 7). As amylopullulanases from P. furiosus, P. abyssi, and T. 

kodakaraensis also harbor these domains, it can be presumed that the amylopullulanases 

from the Thermococcales are attached to the cell surface. Further biochemical 

examination will be necessary to clarify whether these amylopullulanases have any 

additional function besides their roles in poly- and oligosaccharide hydrolysis. 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
Fig. 7. Carboxy-terminal regions of various amylopullulanase proteins from the Thermococcales, 
along with the corresponding regions of periplasmic components of two putative ABC-type 
dipeptide transport systems of T. kodakaraensis. All of these proteins harbor a threonine (or 
serine)-rich region, followed by a putative transmembrane domain and a stretch of basic residues 
(indicated by circles) at the extreme carboxy-terminus. The subscripts of the amylopullulanase 
proteins identify the source organism as follows (accession number): ApuTl, Thermococcus litoralis 
(BAC10983); ApuTh, Thermococcus hydrothermalis (AAD28552); ApuPf, Pyrococcus furiosus 
(ABA33719); ApuPa, Pyrococcus abyssi (CAB49104). Accession numbers for TK1760 and TK1804 
are BAD85949 and BAD85993, respectively. 
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SUMMARY 

The author has developed a gene disruption system in the hyperthermophilic 

archaeon Thermococcus kodakaraensis using the antibiotic simvastatin and a fusion 

gene designed to over-express the 3-hydroxy-3-methylglutaryl coenzyme A 

(HMG-CoA) reductase gene (hmgTk) with the glutamate dehydrogenase promoter. With 

this system, the author disrupted the T. kodakaraensis amylopullulanase gene (apuTk) or 

a gene cluster which includes apuTk and genes encoding components of a putative sugar 

transporter. Disruption plasmids were introduced into wild-type T. kodakaraensis 

KOD1 cells, and transformants exhibiting resistance to 4 μM simvastatin were isolated. 

The transformants exhibited growth in the presence of 20 μM simvastatin, and the 

author observed a 30-fold increase in intracellular HMG-CoA reductase activity. The 

expected gene disruption via double-crossover recombination occurred at the target 

locus, but the author also observed recombination events at the hmgTk locus when the 

endogenous hmgTk gene was used. This could be avoided by using the corresponding 

gene from Pyrococcus furiosus (hmgPf) or by linearizing the plasmid prior to 

transformation. While both gene disruption strains displayed normal growth on amino 

acids or pyruvate, cells without the sugar transporter genes could not grow on 

maltooligosaccharides or polysaccharides, indicating that the gene cluster encodes the 

only sugar transporter involved in the uptake of these compounds. The ΔapuTk strain 

could not grow on pullulan and displayed only low levels of growth on amylose, 

suggesting that ApuTk is a major polysaccharide-degrading enzyme in T. kodakaraensis. 
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GENERAL CONCLUSIONS 

 

In this study, the author has performed biochemical analyses on two 

membrane-anchored peptidases and genetic analyses on a sugar transporter in the 

hyperthermophilic archaeon, Thermococcus kodakaraensis. 

Part I deals with the membrane-anchored peptidases of T. kodakaraensis. The 

author initiated the study in order to gain insight on how signal peptides are degraded in 

the Archaea after their release from the precursor secretion proteins. In bacteria, the 

enzymes responsible for the initial cleavage of signal peptides (signal peptide peptidase), 

and further degradation (oligopeptidase A and TepA) have been identified and 

characterized. Although closely related homologs were not present on the archaeal 

genomes, the author identified two genes on the T. kodakaraensis genome that encoded 

putative membrane-anchored peptidases (SppATk and SppBTk). Biochemical 

characterization of the catalytic domains of SppATk and SppBTk revealed that these 

proteins indeed exhibited peptidase activity. Examinations on their substrate 

specificities revealed that both proteins do not recognize peptides with acidic residues, a 

feature that coincides with the fact that signal peptides do not harbor acidic residues. 

Furthermore, SppATk and SppBTk displayed differences in substrate specificities that 

suggest the two enzymes complement one another in signal peptide fragmentation; 

SppATk prefers hydrophobic/aromatic residues at the P-3 position and residues with 

relatively small side chains at the P-1 position, whereas SppBTk exhibited a strong 

preference for basic amino acid residues at the P-2 position and hydrophobic residues at 

the P-1 site. This suggests that SppATk is mainly involved in the cleavage of the 

h-domain of signal peptides rich in hydrophobic residues, while SppBTk is mainly 
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responsible for the cleavage of the n-region, which contains basic and hydrophobic 

amino acid residues. 

 Although a large number of SppATk and SppBTk homologs are present on the 

archaeal and bacterial genomes, no information had been available on their catalytic 

mechanisms. Through detailed site-directed mutagenesis studies, the author was able to 

determine the residues essential for proteolytic activity in both proteins. SppATk was 

found to exhibit activity through a Ser-Lys catalytic dyad comprised from Ser162 and 

Lys214. SppBTk was dependent on a catalytic triad comprised from Ser130, His226 and 

Asp154. The results have clarified the catalytic mechanism of two relatively large 

groups of serine proteases.  

 In Part II, the author has performed a genetic study on a putative sugar 

transporter from T. kodakaraensis. Gene disruption of a gene cluster (TK1771-TK1774) 

and phenotype analysis of the disruptant strain revealed that the putative sugar 

transporter is the only transporter in T. kodakaraensis involved in the uptake of 

maltooligosaccharides. Gene disruption in this study was not performed with the 

previously developed system in T. kodakaraensis using auxotrophic mutant strains, but 

was based on a novel system utilizing antibiotic resistance. 

As conventional antibiotics and antibiotic resistance marker genes cannot be 

used in hyperthermophiles due to their lack of thermostability, a strategy based on 

inhibition of a particular endogenous protein by an antibiotic and relieving the 

inhibition by over-expressing the protein was applied. The author found that gene 

disruption was possible using simvastatin, a specific inhibitor of 

3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase, which is essential for 

archaeal membrane synthesis. An over-expression cassette of the HMG-CoA reductase 
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gene was used as the marker gene. As this system allows gene disruption and selection 

in nutrient-rich media, the author expects the system to be a valuable tool in future 

genetic studies on genes that are difficult to disrupt in minimal media. Furthermore, as 

the initial preparation of auxotrophic host strains is not necessary, this methodology 

should be helpful in developing gene disruption systems in other hyperthermophilic 

archaea. 
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