0000000000 |
1481 0 2006 0 134-140 134

ASYMPTOTIC SOLUTIONS OF HAMILTON-JACOBI EQUATIONS
IN THE WHOLE EUCLIDEAN SPACE

Hitoshi Ishii *
(BHCF BMEKXE EW - REFFEFWE)

Abstract. In this note we describe some of results on the large-time behavior of
solutions of a class of Hamilton-Jacobi equations in the whole space R", which have
been obtained in a joint work with Y. Fujita and P. Loreti [FIL2].

1. Introduction and main results

Recently there has been a great interest on the asymptotic behavior of viscosity solu-
tions of the Cauchy problem for Hamilton-Jacobi equations or viscous Hamilton-Jacobi
equations. Among others Fathi [F2] has first established a fairly general convergence
result for the Hamilton-Jacobi equation

(1) u(z,t) + H(z, Du(z,t)) =0

on a compact manifold M with smooth strictly convex Hamiltonian H. Associated
with this problem is the additive eigenvalue problem for the Hamiltonian H (or the
Hamilton-Jacobi equation H(z, Du) = 0)

(2) c+H(z,Dv)=0 inM,

where the unknown is the pair of a constant ¢ € R and a solution v of (2). Here and
in what follows we adapt the notion of viscosity solution to that of weak solution for
first order PDE. It is known (see [LPV]) that a constant ¢ for which (2) has a viscosity
solution v is uniquely determined. The result obtained in [F2] is loosely stated as
follows: for any viscosity solution u of (1) there is a viscosity solution v of (2) such that
u(z,t) — ct — v(z) uniformly on M as t — oo. His approach to this asymptotic problem
is based on the weak KAM theorem [F1] and especially on Aubry-Mather sets. A PDE
approach to the same asymptotic problem has been developed by Barles and Souganidis
[BS]. Fathi’s approach has been developed by Roquejoffre [R] and Davini-Siconolfi [DS].
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In [FIL1], jointly with Y. Fujita and P. Loreit, the auhtor has recently investigated
the asymptotic problem for viscous Hamilton-Jacobi equations in R™ with Ornstein-
Uhlenbeck operator and have established a convergence result similar to the one stated
above. The equations treated in [FIL1] have the form

(3) ut — Au + oz - Du+ H(Du) = f(z).

In [FIL2], we have studied the Cauchy problem

(4) ug+az - Du+ H(Du) = f(z) in R"™ x (0,00),
and
(8) ult=0 = @.

In this note we describe the main results obtained in [FIL2]. To be precise, here u rep-

‘resents the real-valued unknown function on R™ x [0, 00), « is a given positive constant,

H, f, ¢ are given real-valued functions on R", u; and Du denote the t-derivative and

z-gradient of u, respectively, and z -y denotes the Euclidean inner product of z,y € R™.
We assume the following conditions on H, f, ¢ throughout this note:

(Al) H, f, ¢ € C(R").
(A2) H is convex on R".

. H(p) _

PDE (4) can be seen as the dynamic programming equation of the control system
in which the state equation is given by

X(t)+aX(t)=£(t) forte(0,T), X(0)=r,

where 0 < T < o0, z € R", and £ € L(0,T) is a control, and in which the value
function u is given by

T
©) u(a, T) = {[ roxen+r-gomar +oxan},

inf
¢eL(0,T)
where L denotes the convex conjugate H* of H, i.e.,
L) :==H"(§) =sup{{-p—H(p) |[peR"} for{€R".
As is well-known, the function L is continuous on R™ and satisfies

L) _
oo 1€l
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We assume furthermore that there is a convex function ! : R — R having the
properties:

(Ad) lim (L(z) — l(z)) = oo.
|z|—o0
(A5) inf{f(z) +!(~az) |z € R"} > —00.
(A6) inf{p(z) + %l(—-am) |z € R"} > —c0.
' The role of the function ! to describe the class of solutions, which we treat in this
note, as (A6) gives a lower bound of the initial data ¢ through the function 1.

In view of (A4) and (A5), we see that the function z — f(z) + L(—azr) attains a
minimum over R"”, and we set

(7Y  c=min{f(z)+ L(—az) |z €R"} and f.(z)=f(z)-c forzeR".
We observe as well that
(8) Z:={zeR"| f(z)+ L(—azx) = c}

is a compact subset of R™.

This set Z corresponds to the projected Aubry set although we will not introduce
the projected Aubry set for (4) in this note. Our approach in this note is based on the
fact that the projected Aubry Z for (4) comprises only equilibrium points.

A typical case where (A1)-(A6) are satisfied is: let H, f, and ¢ satisfy (A1)—(A3).
Assume furthermore that there is a constant Cy > 0 such that

f(x) > =Co(|z| +1), ¢(z) 2 —Co(lz|+1) forze R".

In this situation, if we take [ to be the function given by I(z) = (a+ 1)Co(|z| +1), then
conditions (A4)—(A6) hold.

For (z,y,T) € R" x R" x (0,00) let C(z,T) and C(z,y,T) denote the spaces of
absolutely continuous functions X : [0,T] — R" satisfying, respectively, X(0) = =
and (X(0),X(T)) = (z,y). Define the functions d : R® x R® — R U {—o00} and
% :R" - RU {—o0} by

T
© do,p) =int{ [ 1£0X(®) + L(-aX() - X@)et | T>0,X eCanD},
and | |

T | ]
(10) (o) = inf{ [ [£(X(@) + L(-aX () - X()]
+¢(X(T)) | T >0, X €C(=,T)},



respectively.
Define the function v : R® — R U {—o0c} by

(11) v(z) = inf (d(x,y) + P(¥))-
yeZ
‘We remark that this function v can be written also as
v(z) = inf{d(z,y) + d(y,2) + ¢(2) |y € Z, 2 € R"}.

Proposition 1. The functions d, v, and v are real-valued continuous functions on
R™ x R"*, R", and R", respectively.

Henceforth B(z, R) denotes the closed ball of R™ with center at x and radius R > 0.

Theorem 2. There is a unique viscosity solution u € C(R™ X [0,00)) of (4) and (5)
which satisfies for any 0 < T < o0,

(12)  lim inf{u(e,t) + %L(—ax) | (z,£) € (R \ B(0,r)) x [0, T)} = oo.

The main result in this note is the following.
Theorem 3. Let u € C(R™ x [0,00)) be the unique viscosity solution of (4) and (5)
satisfying (12). Then
(13) tl_l_gxo xerg?g’cm lu(z,t) = (ct +v(z))]=0 for R>0.

We remark that formula (11) for the asymptotic solution v has been shown in [DS]

for a fairly general Hamilton-Jacobi equation in the periodic setting. The function v is
a viscosity solution of

(14) c+az-Dv+ H(Dv) = f(z) inR".

For instance, this follows from Theorem 3 and the stability of viscosity solutions of (4)
under locally uniform convergence.

2. Outline of proof of the convergence result

This section will be devoted to proving Theorem 3. The approach explained here
is different from that of [FIL2]. We will not prove the formula (11) for the asymptotic
solution in this note. We may assume by replacing f by f. = f — c if necessary that
c=0.

The following two lemmas give basic estimates on the solution u of (4) and (5) given
by the formula (6). We omit giving a proof of these lemmas and refer to [FIL2] for a
proof.
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Lemma 4. We have
u(z,t) > —-é—l(—ax) —C  for all (z,t) € R™ x [0,00),

where C is a constant depending only on ¢ and l.

Lemma 5. For each R > 0 the function u is bounded, uniformly continuous on
B(0, R) x [0,00).
We set
G(z,p)=ox-p+ H(p) — f(z) for (z,p) € R" x R".

Observe that for z € Z,
G(z,p) = gelg((aw +£)-p— L(§) - f(z))

= pax(¢-p - L(¢ - oz) - f(z)) 2 ~L(~0z) - f(z) =0.

From this, it is easily seen that for each z € Z, the function ¢ — u(z,t) is a viscosity
subsolution of u; = 0 in (0, 00), which implies that the function ¢ — u(z,t) is nonin-
creasing on [0, co) for any z € Z. Hence, in view of Lemma 4 or 5, we see that the limit
lim; o0 u(z, t) exists for all z € Z. Using Dini’s Lemma, we infer that the convergence
of u(z,t), as t — 00, is uniform for z € Z.

We introduce the half relaxed limits of u as t — oo as follows:

vt(z) = limsupu(z,t) = lim sup{u(y,s) |ly—z| <r, 8> 1/r},
t—o00 r—0+ '
v (z) = litrggrgfu(x,t) = rlir& inf{u(y,s) | ly —z| <r, 8> 1/r}.
As is well-known, we have in the viscosity sense

G(z,Dv*(z)) <0 inR",
G(z,Dv—(z)) >0 inR"

The uniform convergence of u on the set Z, which has been shown above, can be
stated just as

(15) Jim u(z,t) = vt(z)=v"(z) forallze Z.
By the definition, we have |
v~ (z) L vt(z) forall z € R™.

Indeed, in order to conclude that the function u(x,t) converges to a function v uniformly
on bounded sets as t — o0, it is enough to show that v+(z) < v—(z) for all z € R™.
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Therefore, it remains to prove that
(16) vi(z) <v (z) forallzeR"\Z.

To this end, we fix any € > 0 and, in view of (15) and Lemma 5, choose a compact
neighborhood K of Z so that

vt(z)<v (z)+¢e forallze K.

We set ¥(z) = —1L(~az) for € R". For any point  of differentiability of the
function 3, we have
Dy(z) = DL(—ax),

and hence the function £ — £ - Dyy(z) — L(€ — ax) attains a maximum at £ =0, i.e,,
G(z, Dy(z)) = —L(—az) — f(z).

Noting that p — G(z,p) and L are convex for any z € R", we see that 1 is a viscosity
solution of
G(z,Dy¥(z)) = —L(—az) — f(z) in R".
By (A4) and (A5) and by the definition of Z, there is a constant § > 0 such that in the
viscosity sense
G(z,Dy(z)) < -6 inR"\K.

We fix any A € (0,1) and A > 0 and set

wy,a(z) = min{(1 — \v+(z) + Mp(z),¥(z) + A} for z € R™.

Observe by the convexity of the Hamiltonian G that w) 4 is a viscosity solution of
G(z,Dwy a(z)) <-A inR"\K.
By virtue of Lemma 4, we have
vi(z) > v (z) > —--clzl(—am) —C forallzeR"™
From this and (A4j, we find that for some R > 0 and all z € R™ \ B(0, R),
wr,4(2) = ¥(2) + A < v ().

We apply a standard comparison theorem to v~ and w 4 in the domain int B(0, R)\ K,
to obtain
wra <v7(z)+e forall z € B(O,R)\ K,
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which guarantees that
wya(z)<v7(z)+e foralze R"\ K.
Sending A — 0 and A — oo yields
vY(z) <v (z)+eforallz € R™\ K.
This together with the choice of K, we have
vH(z)<v (z)+¢e forallz € R

This is enough to conclude that v*(z) < v~(z) for all z € R™. This completes the
proof. '
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