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ABSTRACT

Nonlinear waves in one-dimensional dispersive systems and related evolution equations are
studied from the view points of soliton physics.

First, nonlinear waves in a lattice with (2n, n) Lennard-Jones potential are investigated
in small-amplitude and long-wavelength approximations. Equations derived are classified into
three types according to the value of the force-range parameter n. For n = 2 and = 4, we
get the Benjamin-Ono equation and Korteweg-de Vries equation, respectively. Furthermore, an
exact solution describing a multiple collision of periodic waves is obtained for the B-O equation.
It is shown that the solution reduces to the algebraic multi-soliton solution in a long wave limit.

Secondly, discreteness effects on dynamics of a Sine-Gordon kink in a lattice system are
studied with use of a perturbation formalism due to MaLaughlin and Scott. It is shown from
the zeroth order condition that a kink moves in a periodic (Peierls) potential field which causes
wobbling or pinning of the kink. The first order correction for the kink consists of two parts,
that is, a dressing part and a radiation one. The dressed kink is steeper in shape than the
continuum S-G kink and the amplitude of the backward radiation is larger than that of the
forward radiation. These results are in accord with a existing numerical work.

Thirdly, relationship among some schemes of the inverse scattering transform are discussed.
It is shown that two inverse scattering formalisms by Ablowitz, Kaup, Newell and Segur and by
Wdati, Konno and Ichikawa are connected through a gauge transformation and a transformation
of the space and time coordinates depending on a dependent variable. One-soliton solutions
associated with the W-K-I scheme are also examined.

Finally, an integrable spin model on the one-dimensional lattice is obtained from the differential-
difference nonlinear Schrödinger equation by introducing the concept of gauge equivalence. The
spin model is the differential-difference analogue of the continuous isotropic Heisenberg spin
chain. The inverse scattering method associated with it is discussed and the canonical action
angle variables are constructed.
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CHAPTER I

INTRODUCTION
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The study of wave motion is one of the most important subjects in physics.
In general, waves having small amplitudes are described by linear wave equation. Such

linear waves are resolved into independent components, normal modes, and various physical
problems associated with them can be easily solved. As the mathematical tool to treat it, the
Fourier transform method is usually used.

For nonlinear waves with finite amplitudes, the situation is quite different. It is hardly
possible to treat the effects of nonlinearity except to take them as a perturbation into the
basis solutions of the linearized theory. However, in recent years, the nonlinear wave theory
has been developed considerably outside the framework of perturbation theory and a large
number of exactly solvable nonlinear wave systems have been found. In these systems, the
concept of ”solitons” played an important role and gave the viewpoint that nonlinearity can
result in qualitatively new phenomena which cannot be constructed via perturbation theory
from linearized equations1),2). Soliton theory has been applied to various problems in the fields
such as hydrodynamics, plasma physics, solid state physics, nonlinear optics and field theory.
In this article, some problems associated with the soliton theory are studied.

Before mentioning the contents of the article, we explain the meaning of the name ”soliton”.
This name was coined by Zabusky and Kruskal3) in 1965, who carried out computer experiments
for the Korteweg-de Vries (K-dV) equation

∂tu − 6u∂xu + ∂3
xu = 0, (1.1.1)

where ∂t and ∂x denote partial defferentiation with respect to time t and space-coordinate x,
respectively. At that time it had been already known that the K-dV equation has a special
solution with a pulselike shape, a solitary wave solution. Z-K showed how solitary waves
would scatter upon collision. The result indicated that in spite of their nonlinear interaction,
solitary waves would emerge from the collision having the same shapes and velocities with
which they entered. To indicate this remarkable property, Z-K named the solitary wave of the
K-dV equation ”soliton” which means a solitary wave particle. The character of solitons which
preserve their identities gave a suggestion that solitons are a kind of normal modes. This was
supported by the inverse scattering method discovered by Gardner, Green, Kruskal and Miura
(G-G-K-M)4) in 1967. They showed that the inverse scattering method enables us to solve the
initial value problem for the K-dV equation through a succession of linear computations and
that any solution can be resolved into independent components called scattering data which are
composed of solitons and continuous radiation. The work by Zakharov and Faddeev5) in 1971
revealed more clearly that solitons are normal modes. They showed that the inverse scattering
method for the K-dV equation may be considered as a canonical transformation connecting

the canonical variables (q = u, p =

∫ x

udx) and the new ones (Q,P ) constructed from the

scattering data. The Hamiltonian for the K-dV equation written by the variables (Q, P ) takes
the form

H = 8

∫ ∞

−∞
k3P (k)dk − 16

5

N∑
n=1

P
5
2

n , (1.1.2)

where the first and second terms represent continuous radiation and solitons, respectively. It
is interesting to see that the continuous part of the Hamiltonian is essentially the same as the
Hamiltonian for the linearized K-dV equation. Since this Hamiltonian is only a function of the
canonical momentum, the variables (Q,P ) are of the action-angle type and the equations of
motion can be easily integrated, that is, the K-dV equation is a completely integrable Hamil-
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tonian system. We note here that in (Q, P ) space solitons have no interaction between them
but in the original (q, p) space they do interaction which causes only a phase shift.

Subjects in the soliton theory are to find the solvable models, to develope methods which
present the exact solutions of nonlinear wave equations, the research on mathematical structures
of the solvable models, applications to physical problems (for example calculation of physical
functions such as the partition and correlation functions, reduction of real systems to solvable
ones and construction of a perturbation theory based on solvable nonlinear wave equations),
the extention of the concept of solitons, and so on. The treatment in this article is confined to
problems concerned with one-dimensional and classical systems.

In chapter II, we investigate the propagation of nonlinear waves in a continuum model
of a lattice. In general, if we consider the nearest-neighbor interacting monoatomic lattice,
the nonlinear waves with small but finite amplitude in a continuum model of it are described
by the K-dV equation whatever types of the interatomic potentials are.6) In some systems
such as metals, however, the interatomic forces are long range ones, and the interaction from
far-neighboring atoms may affect the nonlinear wave propagation considerably. To study this
problem, we take the (2n, n) Lennard-Jones potential as interatomic potential and consider fully
effects of the long-range interactions. We obtain the Benjamin-Ono (B-O) equation7) for n = 2
and the K-dV equation for n = 4. As mentioned before, the K-dV equation is the equation
which caused the discovery of solitons and its mathematical properties have been investigated
in detail. Though for the B-O equation some problems have been left unsolved, the exact
N -soliton solution (a solution describing a multiple collision of N solitons) has been obtained
by various methods. We obtain the exact N -soliton solution of the B-O equation through the
so-called Hirota’s method2). The key point of the method is that through a dependent variable
transformation an original nonlinear wave equation can be rewritten in a bilinear form. For
example, the K-dV equation (1.1.1) is transformed into the bilinear form

Dx(Dt + D3
x)f · f = 0, (1.1.3)

through the transformation
u = −2∂2

x log f, (1.1.4)

where Dx and Dt are defined by

Dm
x Dn

t f · f = (∂x − ∂x′)m(∂t − ∂t′)
nf(x, t)f(x′, t′)|x=x′,t=t′ . (1.1.5)

We can solve eq.(1.1.3) exactly using a kind of perturbational approach and obtain the N -soliton
solutions. The context of chapter II is taken from published papers 8) and 9).

In chapter III, we study the effects of discreteness on the soliton (or kink) in the Sine-Gordon
(S-G) system10). The S-G equation has almost become ubiquitous in the theory of condensed
matter, since it is a simple wave equation in a periodic medium. In many cases, the equation
is derived from a lattice system by a continuum approximation. The aim of our study is to
clarify the dynamical behavior of S-G soliton in a discrete media. For this purpose, we treat the
effects of discreteness as a perturbation. Construction of a perturbation theory based on the
integrable nonlinear wave equations has been done by many authors. Here we use the Green’s
function approach developed by McLaughlin and Scott11) because its formalism is suitable for
our problem. The context of chapter III is taken from a published paper 12).

In chapter IV, we discuss relationships among some schemes of the inverse scattering trans-
form. The inverse scattering method is one of the most important discovery in the soliton
theory. After the work4) of G-G-K-M for the K-dV equation, Lax13) formulated the method
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in an elegant and general form, that greatly influenced subsequent developments. Several au-
thors showed that this method is applicable to other equations, for example, the nonlinear
Schrödinger equation by Zakharov and Shabat14), the modified K-dV equation by Wadati15)

and Tanaka16), and the S-G equation by Ablowitz, Kaup, Newell and Segur (A-K-N-S)17). Es-
pecially, A-K-N-S set up a general framework of the inverse scattering method including these
examples18). Afterward there has been a continuous rise in research to the inverse scattering
method, and at present the number of nonlinear wave equations solvable by the method has
reached two figures2).

Here we explain the framework of the inverse scattering method. In the method, we solve
the initial value problem for a nonlinear wave equation by considering the auxiliary equatons:

∂µΦ(x, t; λ) = Qµ(x, t; λ)Φ(x, t; λ), (µ = x, t), (1.1.6)

where in general Φ is a n-component vector and Qµ are n×n matrices which depend on the wave
variable u(x, t) and the eigenvalue λ. By appropriate choice of the matrices Qµ, we interpret
the original nonlinear wave equation as the compatibility condition of eq.(1.1.6), which gives

∂νQµ − ∂µQν + QµQν − QνQµ = 0. (1.1.7)

For example, with the particular choice

Qx =

[
−iλ u
1 iλ

]
, (1.1.8a)

Qt =

[
−4iλ3 − 2iuλ + (∂xu) 4uλ2 + 2i(∂xu)λ + 2u2 − (∂2

xu)
4λ2 + 2u 4iλ3 + 2iuλ − (∂xu)

]
, (1.1.8b)

then eq.(1.1.7) becomes the K-dV equation (1.1.1). If we think of the spatial component of
eq.(1.1.6) as a time independent scattering problem, the wave variable u(x) plays the role of a
scattering potential, and eq.(1.1.6) gives a connection between the variable u(x) at a fixed time
t and the scattering data associated with the linear eigenvalue problem. It is also shown that
the scattering data a(λ), b(λ) have a trivial time dependence

a(λ, t) = a(λ, 0), (1.1.9a)

b(λ, t) = eiω(λ)tb(λ, 0). (1.1.9b)

The initial value problem is solved much like Fourier transform method. The direct transform
maps u(x) → a(λ), b(λ) at time t = 0. The time evolution of a and b from t = 0 to some
later time t is given by eq.(1.1.9). At time t we must perform an inverse transform which maps
a(λ, t), b(λ, t) back into u(x, t). This last step is accomplished by the so-called Gel’fand-Levitan
equation.

Our discussion in this chapter concerns with the choice of the matrices Qµ. We focus our
attention on Qµ presented by A-K-N-S and similar matrices by other authors, and clarify the
relationships among them. It is shown that some nonlinear wave equations are equivalent. The
context of chapter IV is taken from published papers 19) and 20).

In chapter V, we present an integrable spin system on the one-dimensional lattice. The
details of the inverse scattering approach to this spin model are given and canonical action-
angle variables are constructed. We note here that in chapter IV and V the concept of gauge
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equivalence plays an important role. It is based on the property that eqs.(1.1.6) and (1.1.7) are
form-invariant under the gauge transformation21)

Φ′ = g−1Φ, (1.1.10a)

Q′
µ = g−1Qµg − g−1∂µg, (1.1.10b)

where g is an arbitrary matrix. A part of contents of chapter V was published in a paper 22).
Finally, in chapter VI, we state concluding remarks and mention the future problems of our

studies.
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CHAPTER II

SOLITONS IN A ONE-DIMENSIONAL

LENNARD-JONES LATTICE
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2.1 Introduction

Since the discovery of solitons by Zabusky and Kruskal1), many studies have been made on
the nonlinear wave propagation in one-dimensional anharmonic lattices2). Equations important
in this problem are the Zabusky equation (or the Boussinesq equation), the Korteweg-de Vries
(K-dV) equation, the modified K-dV equation, the nonlinear Schrödinger equation, the Sine-
Gordon equation, the Toda lattice equation and so on2),3). They all have been investigated in
detail both numerically and analytically and are known to have N -soliton solutions3). In these
lattices, solitons play an important role for the physical properties such as heat conduction4).

The equations mentioned above are derived for a lattice with the nearest-neighbor interac-
tion. In some lattices such as metals5), however, interatomic forces may extend further than
to nearest neighbors. A lattice with the long-range interaction has, as is well known, the dis-
persion relation different from that of a lattice with the nearest-neighbor interaction, and may
have soliton solutions not observed before.

In this chapter, we investigate this problem. As a model of the nonlinear lattice, we take a
one-dimensional lattice with (2n, n) Lennard-Jones (L-J) potential expressed as

U(r) = 4U0

[(σ

r

)2n

−
(σ

r

)n
]

, (2.1.1)

where U0 is the potential depth, 2σ the diameter of constituent particle and n is a positive
integer. The smaller the value of parameter n, the longer is the range of force. Under the
nearest-neighbor approximation, formerly Visscher et al.6) studied the (12,6) L-J lattice in con-
nection with thermal conductivity in the nonlinear lattice and recently Yoshida and Sakuma7)

presented the Boussinesq-like equation for the (2,1) L-J lattice. We shall investigate the general
(2n, n) L-J lattice with effects of the long-range interactions fully taken into account.

The plan of this chapter is as follows. In section 2.2, we present the general equations of
motion for small vibration. In section 2.3, introducing the continuum approximation, we derive
three types of nonlinear wave equations according to the value of the parameter n. For n = 2
and = 4, we get the Benjamin-Ono (B-O) equation and the Korteweg-de Vries (K-dV) equation,
respectively. In section 2.4, N -soliton solution of the B-O equation is examined. Concluding
remarks are given in section 2.5.

2.2 Equations of motion for small vibration

We consider a lattice consisting of an infinite number of equally spaced identical particles of
mass M , lying along a straight line. Let the equilibrium spacing between the particles be a and
the longitudinal displacement of the pth particle from its equilibrium position be up (Fig.2.1).
Then the total potential energy of the lattice, V , is given by

V =
∑

p

∑
m>0

U(xp+m − xp), (2.2.1)

where xp is the position of the pth particle and given by

xp = pa + up. (2.2.2)

7



Fig.2.1. One-dimensional L-J lattice.
( )positions of particles when in equilibrium.
( )positions of particles when displaced as for a longitudinal wave.

We assume that the particle displacement is very small compared to the interparticle distance.
Expanding U(xp+m − xp) in the displacement up and neglecting terms higher than O(u3

p), we
obtain from eqs.(2.2.1) and (2.2.2)

V = V0 +
1

2

∑
p

∑
m>0

U ′′(ma)(up+m − up)
2 +

1

6

∑
p

∑
m>0

U ′′′(ma)(up+m − up)
3, (2.2.3)

where V0 is the potential energy of the lattice corresponding to the equilibrium configuration,

V0 =
∑

p

∑
m>0

U(ma). (2.2.4)

We have also used the fact that the terms linear in up vanish because the lattice is in equilibrium
when up = 0 for all p. Requiring that V0 be a minimum with respect to variations in the lattice
spacing a 5), we have from eqs.(2.1.1) and (2.2.4)

a =

[
2ζ(2n)

ζ(n)

] 1
n

σ, (2.2.5)

where ζ(n) is the Riemann zeta function. We observe that for n = 1 the lattice spacing is zero.
From now on we will assume n = 2.

Let Fp denote the total force acting on the pth particle. Then it is given by − ∂V

∂up

, so that

the equation of motion of the pth particle is

M
d2up

dt2
= Fp, (2.2.6)

with

Fp =
∑
m>0

U ′′(ma)(up+m + up−m − 2up) +
1

2

∑
m>0

U ′′′(ma)[(up+m − up)
2 − (up−m − up)

2]. (2.2.7)

If interactions only among nearest-neighbors are taken into account, then eq.(2.2.6) with
eq.(2.2.7) reduces to

M
d2up

dt2
= U ′′(ma)(up+1 + up−1 − 2up) +

1

2
U ′′′(ma)[(up+1 − up)

2 − (up−1 − up)
2]. (2.2.8)
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As is well known, a continuum limit of this equation yields the Boussinesq or the K-dV equation
which has sech2-type soliton solution2).

2.3 Nonlinear waves with long-wavelengths

In this section we study the nonlinear waves described by eq.(2.2.6) with eq.(2.2.7) which
includes long-range force components. For the (2n, n) L-J potential, this equation is rather
complicated to study analytically. Here we consider smooth waves with wavelengths long
compared with the lattice spacing, so that we adopt a continuum approximation.

For this purpose, it is convenient to introduce the Fourier expansion for up,

up =
∑

k

Qk exp(ikx), (2.3.1)

with
|k| <

π

a
, (2.3.2)

where x is the equilibrium position of the pth particle, x = pa. Because up is real, we have
Q−k = Q∗

k. With use of eq.(2.3.1), the expression for Fp is written as

Fp =
∑

k

[−2I(k)]Qke
ikx +

∑
k

∑
k′

[iJ(k + k′) − 2iJ(k)]QkQk′ei(k+k′)x, (2.3.3)

where

I(k) =
∞∑

m=1

U ′′(ma)[1 − cos(mka)], (2.3.4)

and

J(k) =
∞∑

m=1

U ′′′(ma) sin(mka). (2.3.5)

For the (2n, n) L-J potential (2.1.1), I(k) and J(k) are given by

I(k) =
2nζ(n)U0

ζ(2n)a2

[
(2n + 1)ζ(n)

ζ(2n)
A2n+2(ka) − (n + 1)An+2(ka)

]
, (2.3.6)

and

J(k) =
2n(n + 1)ζ(n)U0

ζ(2n)a3

[
−(4n + 2)ζ(n)

ζ(2n)
B2n+3(ka) + (n + 2)Bn+3(ka)

]
, (2.3.7)

where An(ka) and Bn(ka) are defined by eqs.(2.A.1) and (2.A.2) in Appendix 2.1. We note
that the exact dispersion relation of the linear wave is expressed from the linearized version of
eq.(2.3.3) as

ω2
k =

2

M
I(k), (2.3.8)

where ωk is the frequency of the wave with wavevector k.
Let us take a continuum limit of eqs.(2.3.3), (2.3.6) and (2.3.7). Assuming that |ka| << 1,

keeping the leading terms of An(ka) and Bn(ka) and neglecting the higher order terms i ka, we
find that Fp has three types of expressions for n = 2, 3, · · · (see Appendix 2.1):

Fp = M
∑

k

(−ω2
k)Qke

ikx − 3(n + 1)Mc2
∑

k

∑
k′

(ik)(ik′)QkQk′ei(k+k′)x, (2.3.9)
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where c is the sound speed given by

c2 =
2n2[ζ(n)]2U0

ζ(2n)M
, (2.3.10)

and ω2
k is written as

ω2
k = c2(k2 + δ|k|3)

δ =
πa

4ζ(2)

 for n = 2, (2.3.11)

ω2
k = c2(k2 − δk4 log |ka|)

δ =
a2

9ζ(3)

 for n = 3, (2.3.12)

and
ω2

k = c2(k2 − δk4)

δ =
a2

12n

[
(2n + 1)

ζ(2n − 2)

ζ(2n)
− (n + 1)

ζ(n − 2)

ζ(n)

]
 for n = 4. (2.3.13)

Three equations show that the value of the force-range parameter n mainly contributes to the
form of the dispersion relation.

We will derive from these expressions the equations govering up = u(x, t) and study solitary
wave solutions of them.

Case n = 2. Substituting eq.(2.3.1) into eqs.(2.3.9) and (2.3.11), we have from eq.(2.2.6)

∂2
t u = c2[∂2

xu − ∂3
xδH(u) − 9(∂xu)(∂2

xu)], (2.3.14)

where H is the Hilbert transform operator defined by

H[f(x)] =
1

π
P

∫ ∞

−∞

f(x′)

x′ − x
dx′. (2.3.15)

We have also used the identity
H(eikx) = i(sgnk)eikx. (2.3.16)

A solitary wave solution of eq.(2.3.14) is written as

u =
4

9
δ tan−1

(
x − λt

∆

)
, (2.3.17a)

λ2 = c2

(
1 − δ

∆

)
, (2.3.17b)

∆ > δ, (2.3.17c)

where we have used the identity

H
(

1

x2 + ∆2

)
=

−x

∆(x2 + ∆2)
. (2.3.18)

10



It is well known that a solitary wave solution of the Zabusky equaiotn which is derived as a
continuum limit of eq.(2.2.8) is compressive and supersonic. However, in the above solution,
the propagation speed is smaller than the sound speed and the lattice is expanded around a
solitary wave. Equation (2.3.14) can be reduced to the equation which describes the waves
moving in one direction in the rest frame, by using the reductive perturbation method8),9). Let
us introduce the stretched coordinates

ξ = ε(x − ct), (2.3.19a)

τ = ε2t, (2.3.19b)

and expand ∂xu as
∂xu = εv + ε2w + · · · . (2.3.20)

Substituting eqs.(2.3.19) and (2.3.20) into eq.(2.3.14) and collecting terms of order ε3, we obtain

∂τv − δc

2
∂2

ξH(v) − 9c

2
v∂ξv = 0. (2.3.21)

This equation is equivalent to the B-O equation which describes internal waves in stratified
fluids of great depth10),11). A soliton solution of eq.(2.3.21) is

v =
A

1 +
(ξ − λτ)2

∆2

, (2.3.22a)

A = − 4δ

9|∆|
, (2.3.22b)

λ = − cδ

2|∆|
, (2.3.22c)

which has the Lorentzian profile vanishing algebraically as |x| → ∞.
Case n = 3. Substituting eq.(2.3.1) into eqs.(2.3.9) and (2.3.12), we have from eq.(2.2.6)

∂2
t u = c2[∂2

xu − δ∂5
xT (u) − 12(∂xu)(∂2

xu)], (2.3.23)

where T is the integral transform operator defined by

T [f(x)] =
1

π

∫ ∞

−∞
sgn(x′ − x)

(
log

∣∣∣∣x′ − x

a

∣∣∣∣ + γ

)
f(x′)dx′, (2.3.24)

and γ is Euler’s constant. We have also used the identity

T (eikx) =
log |ak|

ik
eikx. (2.3.25)

At present, analytic solutions of eq.(2.3.23) have not been found.
Case n = 4. Substituting eq.(2.3.1) into eqs.(2.3.9) and (2.3.13), we get from eq.(2.2.6)

∂2
t u = c2[∂2

xu + δ∂4
xu − 3(n + 1)(∂xu)(∂2

xu)], (2.3.26)

11



which is essentially the same as a long-wave equation of nearest-neighbor system (2.2.8), namely
the Zabusky equation. A solitary wave solution of eq.(2.3.26) is expressed as

u = − 4δ

(n + 1)∆
tanh

(
x − λt

∆

)
, (2.3.27a)

λ2 = c2

(
1 +

4δ

∆2

)
, (2.3.27b)

where ∆ is an arbitrary constant. Unlike the case n = 2, this solution describes a compressed
wave with supersonic speed. If instead of eq.(2.3.19) we introduce the sttetched coordinates

ξ = ε
1
2 (x − ct), (2.3.28a)

τ = ε
3
2 t, (2.3.28b)

then we can reduce eq.(2.3.26) to the K-dV equation. It follows that

∂τv +
δc

2
∂3

ξv − 3(n + 1)c

2
v∂ξv = 0. (2.3.29)

A soliton solution of eq.(2.3.29) is

v = Asech2

(
ξ − λτ

∆

)
, (2.3.30a)

A = − 4δ

(n + 1)∆2
, (2.3.30b)

λ =
2δc

∆2
, (2.3.30c)

where ∆ is an arbitrary constant.
We note here that the total compression by a K-dV soliton takes various values depending

on the amplitude of the soliton but the total expansion by a B-O soliton is determined only by
δ which depends on the lattice constant a and the potential parameter n.

2.4 N-perodic wave and N-soliton solutions of the Benjamin-

Ono equation

In the preceding section, we have derived the B-O equation for the (4,2) L-J lattice. For
the equation, Benjamin10) and later Ono11 presented a periodic wave solution and a one-soliton
solution. Recently, Joseph found an exact solution which describes a collision of two solitons12).
Motivated by the work of Joseph, Chen et al13) and, independently Case14), obtained a solution
describing a multiple collision of N solitons (N -soliton solution), applying a pole expansion
method. Matsuno obtained the N -soliton solution in a matrix form applying Hirota’s method15).
He also discussed the initial value problem16),17). The inverse scattering method for the B-O
equation was developed by Kodama et al.18),19).

Ablowitz and Satsuma studied a relationship between soliton and algebraic solutions of a
certain class of nonlinear wave equations and developed a method to get algebraic solutions by

12



taking a long wave limit on soliton solutions20). As for the B-O equation, Benjamin has already
suggested that the Lorentzian pulse (algebraic one-soliton solution) is obtained as a long wave
limit of a periodic wave solution. Thus it is likely that the equation admits a series of periodic
wave solution, each of which has the corresponding algebraic soliton solutions as the limit.

In this section, we shall show that a solution describing a multiple collision of periodic waves
with different periods (N -periodic wave solution) is obtained for the B-O equation by Hirota’s
method and that the solution is reduced to the algebraic N -soliton solution as the long wave
limit. In subsection 2.4.1, we transform the equation into a bilinear form and discuss about
one-periodic wave solution and algebraic one-soliton solution. In subsection 2.4.2, we study the
case of two-periodic wave solution. Finally, in sebsection 2.4.3, we extend the results in 2.4.1
and 2.4.2 to a general N -periodic wave solution.

2.4.1 One-periodic wave solution

We rewrite eq.(2.3.21) as
∂tu + 2u∂xu + ∂2

xH(u) = 0, (2.4.1)

rescaling v, ξ and τ . We introduce a dependent variable transformation

u(x, t) = i∂x log
f ′(x, t)

f(x, t)
, (2.4.2)

and assume that f (f ′) can be written as an infinite or finite product of x − zn (x − z′n) for
zn (z′n) in the upper (lower)-half complex plane (the zeroes of f , f ′ should not necessarily be
simple). It is then easy to see that

H
(

i∂x log
f ′

f

)
= −∂x log(ff ′). (2.4.3)

Substituting eq.(2.4.2) into eq.(2.4.1), using eq.(2.4.3) and integrating once with respect to x,
we have a bilinear form of the B-O equation,

(iDt − D2
x)f

′ · f = 0, (2.4.4)

where we have taken the integration constant to be zero and Dt and D2
x are defined by eq.(1.1.5)

(see for example ref. 21 as for the properties of these operators).
We can construct some special solutions of eq.(2.4.1) by applying a kind of perturbational

technique on eq.(2.4.4)21). The simplest solution of eq.(2.4.4) is written as

f = 1 + exp(iξ1 + φ1), (2.4.5a)

f ′ = 1 + exp(iξ1 − φ1), (2.4.5b)

where
ξ1 = k1(x − c1t) + ξ

(0)
1 , (2.4.6)

c1 = k1 coth φ1, (2.4.7)

and k1, φ1 are real parameters and ξ
(0)
1 is an arbitrary phase constant. We see from eqs.(2.4.5)

that for real ξ
(0)
1 the zeroes of f (f ′) are in the upper (lower)-half complex plane if

φ1

k1

> 0. In

13



this case, the assumption for deriving eq.(2.4.3) is satisfied and substitution of eq.(2.4.5) into
eq.(2.4.2) yields

u = k1
tanh φ1

1 + sechφ1 cos ξ1

. (2.4.8)

This solution is essentially the same as the periodic wave solution presented by Benjamin10)

and Ono11). As they have already mentioned, a Lorentzian pulse is obtained by taking a long
wave limit on eq.(2.4.8): We consider k1 << 1 and c1 = O(1). Then choosing ξ

(0)
1 = π and

using

tanh φ1 =
k1

c1

, (2.4.9)

sechφ1 = 1 − k2
1

2c2
1

+ O(k4
1), (2.4.10)

cos ξ1 = −
[
1 − k2

1θ
2
1

2
+ O(k4

1)

]
, (2.4.11)

we have from eq.(2.4.8)

u =

2

c1

θ2
1 +

1

c2
1

+ O(k2
1), (2.4.12)

where
θ1 = x − c1t, (2.4.13)

(we may add an arbitrary phase constant to θ1). Thus we recover the algebraic one-soliton
solution

u =
2c1

c2
1θ

2
1 + 1

, (2.4.14)

as the limit, k1 → 0, of eq.(2.4.8). Compared with the one-soliton solution of the K-dV equation,
the periodic wave solution, eq.(2.4.8), has an additional arbitrary parameter and so it yields
the algebraic solution with one parameter.

2.4.2 Two-periodic wave solution

A two-periodic wave solution is obtained by choosing

f = 1 + exp(iξ1 + φ1) + exp(iξ2 + φ2) + exp(iξ1 + iξ2 + φ1 + φ2 + A12), (2.4.15a)

f ′ = 1 + exp(iξ1 − φ1) + exp(iξ2 − φ2) + exp(iξ1 + iξ2 − φ1 − φ2 + A12), (2.4.15a)

where
ξj = kj(x − cjt) + ξ

(0)
j , (2.4.16)

cj = kj coth φj, (2.4.17)

and kj, φj are real parameters satisfying

φj

kj

> 0, (2.4.18)
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and ξ
(0)
j are arbitrary phase constants. Substituting eq.(2.4.15) into eq.(2.4.4), we find the

solution satisfies eq.(2.4.4) if

exp A12 =
(c1 − c2)

2 − (k1 − k2)
2

(c1 − c2)2 − (k1 + k2)2
. (2.4.19)

Generally, eq.(2.4.15) gives a complex u. But, if we choose the arbitrary phase constants

adequately, we can get a real solution: Taking the imaginary part of ξ
(0)
j equal to be

A12

2
, we

have

f = 1 + exp

(
iξ1 + φ1 −

A12

2

)
+ exp

(
iξ2 + φ2 −

A12

2

)
+ exp(iξ1 + iξ2 + φ1 + φ2), (2.4.20a)

f ′ = exp(iξ1 + iξ2 − φ1 − φ2) · f∗,
(2.4.20b)

where asterisk denotes complex conjugate. Substituting eq.(2.4.20) into eq.(2.4.2), we obtain

u = −(k1 + k2) + i∂x log
f∗

f
, (2.4.21)

which is a real solution.
We show that the solution, eq.(2.4.20), satisfies the assumption necessary for deriving

eq.(2.4.3). For k1 >> k2 or k2 >> k1, we have from eq.(2.4.19) exp(A12) → 1 and eq.(2.4.20a)
may be written as

f = [1 + exp(iξ1 + φ1)][1 + exp(iξ2 + φ2)], (2.4.22)

which has zeroes only in the upper-half plane under the condition (2.4.18). Then, for arbitrary
k1 and k2, the zeroes always remain in the upper-half plane unless they cross the real axis, i.e.,
eq.(2.4.20) vanish for real ξ1 and ξ2. We now prove that eq.(2.4.20) do not become zero under
the condition

(c1 − c2)
2 > (|k1| + |k2|)2. (2.4.23)

If f would vanish for real ξ1 and ξ2, we have from eq.(2.4.20a)[
cos

ξ1

2
cosh

φ1 + φ2

2
+ exp

(
−A12

2

)
cos

ξ1

2
cosh

φ1 − φ2

2

]
cos

ξ2

2

+

[
− sin

ξ1

2
cosh

φ1 + φ2

2
+ exp

(
−A12

2

)
sin

ξ1

2
cosh

φ1 − φ2

2

]
sin

ξ2

2
= 0,

(2.4.24a)

[
sin

ξ1

2
sinh

φ1 + φ2

2
+ exp

(
−A12

2

)
sin

ξ1

2
sinh

φ1 − φ2

2

]
cos

ξ2

2

+

[
cos

ξ1

2
sinh

φ1 + φ2

2
− exp

(
−A12

2

)
cos

ξ1

2
sinh

φ1 − φ2

2

]
sin

ξ2

2
= 0.

(2.4.24b)

The determinant of the coefficients of eq.(2.4.24) is given by

1

2
[sinh(φ1 + φ2) − exp(−A12) sinh(φ1 − φ2) + exp

(
−A12

2

)
sinh φ2 cos ξ1]

=
1

2
[sinh φ1 cosh φ2{1 − exp(−A12)}

+ sinh φ2{cosh φ1 + exp(−A12) cosh φ1 + exp

(
−A12

2

)
cos ξ1}],
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which does not vanish supposing φ1φ2A12 > 0. Then f has no zero on the real axis. This
condition is consistent with eq.(2.4.18) if eq.(2.4.23) holds. The similar argument is possible
f’. Hence we have verified that the solution (2.4.20) satisfies eq.(2.4.3) under the conditions
(2.4.18) and (2.4.23). This result also guarantees that u does not become singular. Substituting
eq.(2.4.20) into eq.(2.4.2), we have the explicit form of two-periodic wave solution,

u =
U1

U2

, (2.4.25a)

where

U1 = exp

(
A12

2

)
(k1 + k2) sinh(φ1 + φ2)

+ exp

(
−A12

2

)
(k1 − k2) sinh(φ1 − φ2)

+2(k1 sinh φ1 cos ξ2 + k2 sinh φ2 cos ξ1),

(2.4.25b)

U2 = exp

(
A12

2

)
[cosh(φ1 + φ2) + cos(ξ1 + ξ2)]

+ exp

(
−A12

2

)
[cosh(φ1 − φ2) + cos(ξ1 − ξ2)]

+2(cosh φ2 cos ξ1 + cosh φ1 cos ξ2).

(2.4.25c)

In principle we can get an algebraic solution as a long wave limit of eq.2.4.25). It is easier,
however, to study the f and f ′ themselves. Choosing the real part of phase constants in
eq.(2.4.20a) equal to be π, we have

f = 1 − exp

(
ik1θ1 + φ1 −

A12

2

)
− exp

(
ik2θ2 + φ2 −

A12

2

)
+ exp(ik1θ1 + ik2θ2 + φ1 + φ2),

(2.4.26)

where
θj = x − cjt. (2.4.27)

We consider k1, k2 << 1 and c1, c2 = O(1) with
k1

k2

= O(1). Then using

exp(ikjθj + φj) = 1 + kj

(
iθj +

1

cj

)
+ O(k2

j ), (2.4.28)

exp(Aij) = 1 +
4kikj

(ci − cj)2
+ O(k4), (2.4.29)

we find

f = k1k2

[(
iθ1 +

1

c1

)(
iθ2 +

1

c2

)
+

4

(c1 − c2)2
+ O(k)

]
. (2.4.30)
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Similarly we have from eq.(2.4.20b)

f ′ = k1k2

[(
iθ1 −

1

c1

)(
iθ2 −

1

c2

)
+

4

(c1 − c2)2
+ O(k)

]
. (2.4.31)

Thus, in the limit of k1, k2 → 0, we obtain

u = i∂x log

(
iθ1 −

1

c1

)(
iθ2 −

1

c2

)
+

4

(c1 − c2)2(
iθ1 +

1

c1

)(
iθ2 +

1

c2

)
+

4

(c1 − c2)2

=

2c1c2

[
c1θ

2
1 + c2θ

2
2 +

(c1 + c2)
3

c1c2(c1 − c2)2

]
[
c1c2θ1θ2 −

(c1 + c2)
2

(c1 − c2)2

]2

+ (c1θ1 + c2θ2)
2

.

(2.4.32)

This solution describes a collision of two algebraic solitons.

2.4.3 N-periodic wave solution

The form of two-periodic wave solution suggests that of N -periodic wave solution. We can
prove by mathematical induction that the following solution satisfies eq.(2.4.4) (see Appendix
2.2);

f =
∑
µ=0,1

exp

 N∑
j=1

µj(iξj + φj) +

(N)∑
i<j

µiµjAij

 , (2.4.33a)

f ′ =
∑
µ=0,1

exp

 N∑
j=1

µj(iξj − φj) +

(N)∑
i<j

µiµjAij

 , (2.4.33b)

where
ξj = kj(x − cjt) + ξ

(0)
j , (2.4.34)

cj = kj coth φj, (2.4.35)

φj

kj

> 0, (2.4.36)

exp Aij =
(ci − cj)

2 − (ki − kj)
2

(ci − cj)2 − (ki + kj)2
, (2.4.37)

and the notation
∑
µ=0,1

indicates the summation over all possible combinations of µ1 = 0, 1, µ2 =

0, 1, · · · , µN = 0, 1 and

(N)∑
i<j

the summation over all possible combinations of the N elements

with the specific condition i < j.

17



In order to get a real u, we should choose the phase constants in eq.(2.4.33) correctly. we
have from eq.(2.4.33b)

f ′ = exp

 N∑
j=1

(iξj − φj) +

(N)∑
i<j

Aij



×
∑
µ=0,1

exp

 N∑
j=1

(µj − 1)(iξj − φj) +

(N)∑
i<j

(µiµj − 1)Aij



= exp

 N∑
j=1

(iξj − φj) +

(N)∑
i<j

Aij



×
∑
ν=0,1

exp

 N∑
j=1

νj

(
−iξj + φj −

N∑
i6=j

Aij

)
+

(N)∑
i<j

νiνjAij

.

(2.4.38)

Thus, if we choose the imaginary part of ξ
(0)
j as

N∑
i6=j

Aij

2
for j = 1, 2, · · · , N , we obtain

f ′ = exp

 N∑
j=1

(iξj − φj) +

(N)∑
i<j

Aij

 · f∗. (2.4.39)

In the same manner as the two-periodic wave solution, we can show that, in the case of N = 3,
the zeroes of f(f ′) remain in the upper (lower)-half plane for the choice of the imaginary part

of phase constants and under the conditions,
φj

kj

> 0 and (ci − cj)
2 > (|ki|+ |kj|)2 for arbitrary

i, j. It may be possible to show the above result for N = 4, 5, · · · , though we have not gotten
the regorous proof. However, we can say that at least for Aij ≈ 0 (i, j are arbitrary) the zeroes
of f and f ′ do not cross the real axis. Then eq.(2.4.33) satisfies the assumption necessary to
derive eq.(2.4.3) and we have from eq.(2.4.2) a real and non-singular solution,

u = −
N∑

j=1

kj + i∂x log
f∗

f
. (2.4.40)

We now show that the N -periodic wave solution is reduced to an algebraic N -soliton solution
in a long wave limit. Choosing the phase constants as

ξ
(0)
j = π + i

N∑
i6=j

Aij

2
, (2.4.41)

for j = 1, 2, · · · , N , eq.(2.4.33) is written by

f =
∑
µ=0,1

exp

 N∑
j=1

µj(ikjθj + iπ + φj) +

(N)∑
i<j

(
µiµj −

µi + µj

2

)
Aij

 , (2.4.42)
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where thetaj is defined by eq.(2.4.27). If we take km = 0 in eq.(2.4.42), then φm = Amj = 0 and

f vanishes, which indicates that f is factorized by
N∏

j=1

kj. Therefore, if we expand f in terms

of kj, the leading terms of eq.(2.4.42) are in the order of
N∏

j=1

kj. We consider kj → 0 with the

same asymptotic order and cj = O(1) for j = 1, 2, · · · , N . Then, using eqs(2.4.28) and (2.4.29),
we obtain

f ≈
∑
µ=0,1

N∏
j=1

(−1)µj

[
1 + µjkj

(
iθj +

1

cj

)] (N)∏
i<j

[
1 +

(
µiµj −

µi + µj

2

)
kikjBij

]
, (2.4.43)

where

Bij =
4

(ci − cj)2
. (2.4.44)

The leading terms of eq.(2.4.43) are given by those in the order of
N∏

j=1

kj of

N∏
j=1

[
1 + kj

(
iθj +

1

cj

)] (N)∏
i<j

(1 + kikjBij).

Thus as the limit kj → 0 of the N -periodic wave solution, we obtain an algebraic solution in
the following from;

u = i∂x log
f∗

f
, (2.4.45)

where

f =
N∏

j=1

(
iθj +

1

cj

)
+

1

2

N∑
i,j

Bij

N∏
l 6=,j

(
iθl +

1

cl

)
+ · · ·

+
1

M !2M

(N)∑
i,j,··· ,m,n

BijBkl · · ·Bmn︸ ︷︷ ︸
M

N∏
p 6=i,j,··· ,m,n

(
iθp +

1

cp

)
+ · · ·.

(2.4.46)

The notation

(N)∑
i,j,··· ,m,n

means the summation over all possible combinations of i, j, · · · ,m, n

which are taken from 1, 2, · · · , N and all different. For N = 1, 2, 3, eq.(2.4.46) is written as

f |N=1 = iθ1 +
1

c1

, (2.4.47a)

f |N=2 =

(
iθ1 +

1

c1

)(
iθ2 +

1

c2

)
, (2.4.47b)

f |N=3 =
(
iθ1 + 1

c1

)(
iθ2 + 1

c2

)(
iθ3 + 1

c3

)
+B12

(
iθ3 +

1

c3

)
+ B23

(
iθ1 +

1

c1

)
+ B31

(
iθ2 +

1

c2

)
.

(2.4.47c)
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We may express eq.(2.4.46) in a determinant form,

f =

∣∣∣∣∣∣∣∣∣∣∣∣∣

iθ1 +
1

c1

√
B12 · · ·

√
B1N

−
√

B12 iθ1 +
1

c1

· · ·
√

B2N

...
...

...

−
√

B1N −
√

B2N · · · iθN +
1

cN

∣∣∣∣∣∣∣∣∣∣∣∣∣
, (2.4.48)

which is essentially the same as the algebraic N -soliton solution presented by Matsuno15).
Finally, we study the asymptotic behavior of algebraic N -soliton solution. Without loss of

generality, we may assume in the limit t → ∞,

θ1, θ2, · · · , θM−1 = ∞,

θM = finite,

θM+1, θM+2, · · · , θN = −∞.

Then it is easily seen from from eqs.(2.4.45) and (2.4.46) that u has the following asymptotic
form,

u =
2cM

c2
Mθ2

M + 1
, (2.4.49)

which is an algebraic solution with phase θM . Similarly we obtain the same asymptotic form
of u for t → −∞. Hence we find that the B-O solitons have no phase shift after the collisions
of them unlike those which take place between K-dV solitons.

2.5 Concluding remarks

In this chapter, we have investigated nonlinear wave propagations in the one-dimensional
lattice with the (2n, n) L-J potential. Introducing the approximations of small amplitude and
long wavelength, we have obtained eq.(2.3.14) or the B-O equation for n = 2, eq.(2.3.23) for
n = 3 and the Zabusky equation or the K-dV equation for n = 4. The results show that the
value of the force-range parameter n contributes not to the nonlinear terms but to the dispersion
terms of the equations. It is well known that both the B-O and K-dV equations have soliton
solutions formed by balancing of the nonlinearity and dispersion effects of the systems. The
reason why the B-O soliton is algebraic is that the B-O equation is more dispersive than the
K-dV equation. It is interesting to study whether eq.(2.3.23) having an intermediate dispersion
term between the B-O and the K-dV equations gives soliton solutions or not, though the
problem is still open.

Appendix 2.1 Formulas of Fourier series

We give some formulas of the Fourier series which are used in the text.
We define the functions An(ka) and Bn(ka) as

An(ka) =
∞∑
l=1

1

ln
[1 − cos(lka)], (2.A.1)
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Bn(ka) =
∞∑
l=1

1

ln
sin(lka), (2.A.2)

where n = 2. Then, for |ka| 5 π, we have the recurrence formulas for them:

A2(ka) =
π

2
|ka| − 1

4
(ka)2, (2.A.3)

A3(ka) = −1

2
log 2 · (ka)2 +

∫ |ka|

0

(t1 − |ka|) log

(
sin

t1
2

)
dt1

= −1

2
(ka)2 log |ka| + 3

4
(ka)2 +

1

288
(ka)4 + · · ·,

(2.A.4)

An+2(ka) =
1

2
ζ(n)(ka)2 −

∫ ka

0

∫ t2

0

An(t1)dt1dt2, (2.A.5)

Bn(ka) = A′
n+1(ka). (2.A.6)

From these equations we find that if |ka| << 1 we obtain

A4 =
1

2
ζ(2)(ka)2 − π

12
|ka|3 + O[(ka)4], (2.A.7)

A5 =
1

2
ζ(3)(ka)2 +

1

24
(ka)4 log |ka| + O[(ka)4], (2.A.8)

A6 =
1

2
ζ(4)(ka)2 − 1

24
ζ(2)(ka)4 + O[(ka)5], (2.A.9)

A7 =
1

2
ζ(5)(ka)2 − 1

24
ζ(3)(ka)4 + O[(ka)6 log |ka|], (2.A.10)

B5 = ζ(4)(ka) − 1

6
ζ(2)(ka)3 + O[(ka)4], (2.A.11)

B6 = ζ(5)(ka) − 1

6
ζ(3)(ka)3 + O[(ka)5 log |ka|], (2.A.12)

and for n = 8

An =
1

2
ζ(n − 2)(ka)2 − 1

24
ζ(n − 4)(ka)4 + O[(ka)6], (2.A.13)

Bn = ζ(n − 2)(ka) − 1

6
ζ(n − 4)(ka)3 + O[(ka)5]. (2.A.14)

Substitution of these equations into eqs.(2.3.3), (2.3.6) and (2.3.7) gives eqs.(2.3.9-13).

Appendix 2.2 N-periodic wave solution of the B-O
equation

We show that eq.(2.4.33) satisfies eq.(2.4.4). Substituting eq.(2.4.33) into eq.(2.4.4), we
have ∑

µ=0,1

∑
ν=0,1

 N∑
j=1

(µj − νj)kjcj +

{
N∑

j=1

(µj − νj)kj

}2


× exp

 N∑
j=1

i(µj + νj)ξj −
N∑

j=1

(µj − νj)φj +

(N)∑
i<j

(µiµj + νiνj)Aij

 = 0.

(2.B.1)
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Let the coefficients of the terms exp

(
n∑

j=1

iξj +
m∑

j=n+1

2iξj

)
in the left hand side of eq.(2.B.1)

be F (1, 2, · · · , n; n + 1, n + 2, · · · ,m). F may be expressed as

F =
∑
µ=0,1

∑
ν=0,1

cond.(µ, ν)

 N∑
j=1

(µj − νj)kjcj +

{
N∑

j=1

(µj − νj)kj

}2


× exp

− N∑
j=1

(µj − νj)φj +

(N)∑
i<j

(µiµj + νiνj)Aij

 ,

(2.B.2)

where cond.(µ, ν) implies the summation over µ and ν are performed under the conditions

µj + νj = 1 for j = 1, 2, · · · , n,

µj = νj = 1 for j = n + 1, n + 2, · · · ,m,

µj = νj = 0 for j = m + 1,m + 2, · · · , N.

Introducing notations σj = µj − νj for j = 1, 2, · · · , n and using

exp

[
(1 + σiσj)

Aij

2

]
=

(ci − cj)
2 − (σiki − σjkj)

2

(ci − cj)2 − (ki + kj)2
, (2.B.3)

exp[(1 − σj)φj] =
cj − σjkj

cj − kj

, (2.B.4)

eq.(2.B.2) is reduced to

F = const.F̂ (σ1k1, σ2k2, · · · , σnkn; c1, c2, · · · , cn), (2.B.5)

where

F̂ =
∑
σ=±1

 N∑
j=1

cjσjkj +

(
n∑

j=1

σjkj

)2
 n∏

j=1

(cj − σjkj)

(n)∏
i<j

[(ci − cj)
2 − (σiki − σjkj)

2], (2.B.6)

and the constant does not depend on σj. Thus if

F̂ (σ1k1, σ2k2, · · · , σnkn; c1, c2, · · · , cn) = 0, (2.B.7)

holds for n = 1, 2, · · · , N , eq.(2.4.33) satisfies eq.(2.4.4).
Equation (2.B.7) can be proved by mathematical induction. It is easily verified that

22



eq.(2.B.7) holds for n = 1, 2. F̂ has the following properties;

A) F̂ (σ1k1, σ2k2, · · · , σnkn; c1, c2, · · · , cn)|k1=0

= c1

n∏
j=2

[(c1 − cj)
2 − k2

j ]F̂ (σ2k2, σ3k3, · · · , σnkn; c2, c3, · · · , cn).

B) F̂ (σ1k1, σ2k2, · · · , σnkn; c1, c2, · · · , cn)|k1=k2,c1=c2

= −8(c2
1 + k2

1)k
2
1

n∏
j=3

[(c1 − cj)
2 − (k1 − kj)

2][(c1 − cj)
2 − (k1 + kj)

2]

× F̂ (σ3k3, σ4k4, · · · , σnkn; c3, c4, · · · , cn).

C) F̂ is unchanged by the replacement ki and ci with kj and cj for arbitrary i, j.

D) F̂ is an even function of k1, k2, · · · , kn.

The properties A), C), and D) imply F̂ is factorized by
n∏

j=1

k2
j , and B), C), and D) show that

F̂ is written as

F̂ =

(n)∏
i<j

(ci − cj)
2G1 +

(n)∏
i<j

′
(ci − cj)

2(c1 − c2)(k
2
1 − k2

2)G2 + · · · +
(n)∏
i<j

(k2
i − k2

j )
2GM ,

where G1, G2, · · · , GM are certain polynomials of k2
1, k2

2, · · · , k2
n, c1, c2, · · · , cn and the prime

attached to

(n)∏
i<j

denotes product over all i, j except i = 1 and j = 2. The above argument

shows that the degree of F̂ with respect to k1, k2, · · · , kn, c1, c2, · · · , cn is at least n2 + n, if
F̂ would not be identically zero. On the other hand, eq.(2.B.6) implies F̂ is at most of degree

n2 + 2. Therefore F̂ must be zero for n > 2 and eq.(2.B.7) is proved.
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3.1 Introduction

Recently there has been growing interest in condensed matter systems capable of supporting
”soliton” excitations. Among them is the Sine-Gordon (S-G) chain which models dislocations1),
twin boundaries2),3), charge-density waves4), superionic conductors5) and so on6). Most of the
previous studies on the S-G system are concerned with its continuum limit, that is, the S-G
equation, (3.2.10).

In physical applications, however, there occurs a minimum distance scale, e.g. a lattice
constant and discreteness of the system gives rise to the Peierls barrier2),3) which prohibits a
dislocation (a kink) from moving freely without any external stresses. Similar effect is known
in crystal growth for which a finite potential (free energy) gap is necessary between a crystal
and a gas phase7). The discreteness plays an important role also in dynamical problems such
as kink propagation in a discrete media. Numerical simulation by Currie et al8) shows that an
initial travelling kink (the time t = 0 configuration of the exact one-kink solution of the S-G
equation), in the course of time, changes its shape a little by shrinking and radiates phonons
resulting in spontaneous damping of kink motion. All of these phenomena are lost under the
continuum approximation.

So far as we know there has been no systematic studies on discreteness effects in the S-G
chain except for static ones to calculate the Peierls force2),3). As a suitable first step we apply a
perturbational formalism due to McLaughlin and Scott9) (M-S) to investigation of discreteness
effects. The smallness parameter is the ratio h of the lattice constant to the kink width.

As the zeroth order approximation the formalism gives equation of motion for the center of
a kink. A kink is shown to propagate wobbling or to be pinned in the Peierls field. The first
order approximation consists of dressing of the ”bare” kink and radiation.

In section 3.2, we present our system, a discrete S-G chain and rewrite equation of motion
in such a form suitable for the application of M-S formalism9). In section 3.3, we discuss
the zeroth order approximation and the first order one is treated in section 3.4. Section 3.5
containes summary of this chapter. In Appendix 3.1, we summarize M-S formalism in order to
achieve more transparency in sections 3.2-4.

3.2 Discrete Sine-Gordon system

We consider the S-G system which is described by the following Hamiltonian

H =
m

2

∑
n

ẋ2
n +

k

2

∑
n

(xn+1 − xn)2 + A0

∑
n

(
1 − cos

2πxn

a

)
, (3.2.1)

where xn (ẋn) is the displacement (velocity) of the nth particle with mass m, k the elastic
constanst and a the lattice constant. 2A0 denotes the height of the substrate potential. Using

characteristic velocity c0 and frequency ω0 defined by c2
0 =

ka2

m
and ω2

0 =
(2π)2A0

ma2
, we define a

dimensionless parameter

h =
aω0

c0

, (3.2.2)

which gives a measure of discreteness because the width of a kink is of order
c0

ω0

6). Putting

φ(nh) =
2πxn

a
, t̃ = ω0t, x̃ =

xh

a
and H̃ =

hH

A0

(hereafter we omit the tilder on x, t, H) and
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using the Poisson sum formula

∞∑
n=−∞

f(nh)h =

∫ ∞

−∞
dxf(x)

(
1 + 2

∞∑
s=1

cos
2πsx

h

)
, (3.2.3)

we rewrite eq.(3.2.1) as
H = H0 + εH1, (3.2.4)

with

H0 =

∫ ∞

−∞
dx

[
1

2
(∂tφ)2 +

1

2
(∂xφ)2 + (1 − cos φ)

]
, (3.2.5a)

εH1 =

∫ ∞

−∞
dx

[
1

2
(∂tφ)2 +

1

2
(∂xφ)2 + (1 − cos φ)

](
2

∞∑
s=1

cos
2πsx

h

)

+

∫ ∞

−∞
dx

[
1

2h2

∑
m,n

∗ hm+1

m!n!
(∂m

x φ)(∂n
xφ)

](
1 + 2

∞∑
s=1

cos
2πsx

h

)
,

(3.2.5b)

where the asterisk on
∑

means that we omit the term (m, n) = (1, 1) in the summation.

Hamiltonian εH1, which vanishes in the continuum limit, h → 0, represents effects of dis-
creteness. Equation of motion for φ(x, t) is obtained from the Lagrangian density as Euler’s
equation. It follows that (see Appendix 3.2)

∂2
t φ − ∂2

xφ + sin φ = εf(φ), (3.2.6)

εf(φ) = −(∂2
t φ − ∂2

xφ + sin φ)

(
2

∞∑
s=1

cos
2πsx

h

)

+
2

h2

∞∑
n=2

h2n

(2n)!
(∂2n

x φ)

(
1 + 2

∞∑
s=1

cos
2πsx

h

)
.

(3.2.7)

It is readily seen from the identity

∞∑
n=−∞

δ(x − nh) =
1

h

(
1 + 2

∞∑
s=1

cos
2πsx

h

)
, (3.2.8)

that eqs.(3.2.6) and (3.2.7) can be transformed to

∞∑
n=−∞

δ(x − nh)

[
∂2

t φ − φ(x + h, t) + φ(x − h, t) − 2φ(x, t)

h2
+ sin φ

]
= 0, (3.2.9)

which is equivalent to the discrete equation of motion derivable from Hamiltonian (3.2.1) and
shows that the lattice points exist at x = nh.

In the continuum limit, Hamiltonian (3.2.4) reduces to eq.(3.2.5a) which generates the S-G
equation given by

∂2
t φ0 − ∂2

xφ0 + sin φ0 = 0. (3.2.10)

The one-kink solution of this equation6) is written as

φ0 = 4 tan−1 exp θ, (3.2.11a)
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θ =
x − ut − x0√

1 − u2
, (3.2.11b)

and its energy is given by

H0 =
8√

1 − u2
. (3.2.12)

The width of the kink D0 is π
√

1 − u2 if the kink is approximated by the tangent at its center,
hence Hamiltonian εH1 must not be neglected unless h is much smaller than D0. In later
sections, we study dynamical properties of the system, (3.2.4) or (3.2.6) by treating εH1 or
εf(φ) as perturbation.

3.3 Modulation of the kink parameters

In this section, we consider the zeroth order solution
−→
φ 0 as given by eqs.(3.A.6) and (3.A.7).

Temporal evolution of the parameters u and x0 under the structural perturbation is calculated
by eqs.(3.A.16) and (3.A.17). In our case, the generic term εf(φ0) is given by

εf(φ0) =
2

h2

∞∑
n=2

h2n

(2n)!
(∂2n

x φ0)

(
1 + 2

∞∑
s=1

cos
2πsx

h

)
. (3.3.1)

Since ∂2n
x φ0 is an odd function of θ, eqs.(3.A.16) and (3.A.17) reduce to

du

dt
=

1

h2
(1 − u2)

3
2

∞∑
s=1

∞∑
n=2

In(s) sin
2πsX

h
, (3.3.2)

dx0

dt
= − u

2h2
(1 − u2)

∞∑
n=2

Jn(0) − u

h2
(1 − u2)

∞∑
s=1

∞∑
n=2

Jn(s) cos
2πsX

h
, (3.3.3)

where

In(s) =
h2n

(2n)!(1 − u2)n

∫ ∞

−∞
(∂2n

θ φ0)sechθ sin
2πs

√
1 − u2θ

h
dθ, (3.3.4a)

Jn(s) =
h2n

(2n)!(1 − u2)n

∫ ∞

−∞
(∂2n

θ φ0)θsechθ cos
2πs

√
1 − u2θ

h
dθ, (3.3.4b)

and

X =

∫ t

0

u(t′)dt′ + x0(t), (3.3.5)

which is the position of the kink center. Noticing that

∂θφ0 = 2sechθ = 2
∞∑

n=0

[
i(−1)n

θ + i(n + 1
2
)π

− i(−1)n

θ − i(n + 1
2
)π

]
, (3.3.6)

and using the residue theorem10), we can calculate the integrals (3.3.4a) and (3.3.4b). Then

the leading contribution (We neglect terms of order exp
(
− s

h

)
, s = 2, retaining terms of order

exp

(
−1

h

)
) of eqs.(3.3.2) and (3.3.3) are obtained as

du

dt
=

α0

h2
(1 − u2)

3
2 exp

(
−π2

√
1 − u2

h

)
sin

2πX

h
, (3.3.7)
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dx0

dt
= − h2u

24(1 − u2)
+

α0π

2h2
u(1 − u2) exp

(
−π2

√
1 − u2

h

)
cos

2πX

h
, (3.3.8)

with

α0 = 4π
∞∑

n=2

(−1)n(2π)2n

(2n)(2n)!
= 4π[π2 + Ci(2π) − γ − log(2π)] ; 30π, (3.3.9)

where Ci(x) is the cosine integral11) and γ the Euler constant. Here it is to be noted that every
term with higher order derivatives with respect to θ in eq.(3.3.4) with s = 1 gives contribution

of order
1

h2
exp

(
−1

h

)
. From eqs.(3.3.3) and (3.3.5), we have

U =
dX

dt
= u

[
1 − h2

24(1 − u2)
+

α0π

2h2
(1 − u2) exp

(
−π2

√
1 − u2

h

)
cos

2πX

h

]
. (3.3.10)

Fig.3.1. The locus (u, X) of the kink parameter obtained from
eq.(3.3.11) for case h = 1. It is not difficult to see that the locus

(u, X) which passes (up, X =
h

2
) runs through (u = 0, X = 0)

and (u = 0, X = h). This critical locus is shown by a dashed curve.

Integrating of eqs.(3.3.7) and (3.3.10) can be easily performed to obtain

8√
1 − u2

[
1 − h2

72(1 − u2)

]
+

4α0

h
exp

(
−π2

√
1 − u2

h

)
cos

2πX

h
= const., (3.3.11)

which gives kink trajectories in the (u, X) phase plane and shows that the kink behaves as
a single particle moving in an effective sinusoidal periodic potential (Peierls potential). The
trajectory in case h = 1 is shown in Fig.3.1. From Fig.3.1, we see that the kink is pinned between
two adjacent lattice points for u 5 up, the critical pinning velocity and excutes wobbling motion
of frequency

ωw =
2πu

h
, (3.3.12)

for u > up. When h is small, up is also small and it is given by

up =

√
2α0

πh
exp

(
−π2

2h

)
. (3.3.13)

For h = 1, we get from eq.(3.3.13) up ≈ 0.056 and this agrees well with up (≈ 0.053) obtained
from numerical calculation of eq.(3.3.11) (see Fig.3.1). Numerical simulation8) reports that a
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kink is pinned for u(t = 0) = 0.5 in case h = 2. Although h = 2 seems to be too large to
apply our perturbational results, (3.3.11), a tentative estimate of up for case h = 2 based on
eq.(3.3.11) gives up = 0.51, thus the simulation result conforming to our pinning condition. A
pinning frequency with which a pinned kink oscillates near the bottom of the Peierls potential
can be estimated, based on eqs.(3.3.7) and (3.3.10) under the approximation that the Peierls
potential is harmonic near the bottom of the potential, to be

ωp =

√
2πα0

h3
exp

(
−π2

2h

)
. (3.3.14)

For h = 2, the ωp obtained by simulation8) is 0.77 and from eq.(3.3.14) we get ωp = 0.73.
From the definition of U , eqs.(3.3.5) and (3.3.10), we see that the velocity of the modified

kink is not u but U . The (time) averaged velocity Um of the kink can be read off from Fig.3
of ref.8 for cases (h = 0.25, u(t = 0) = 0.5) and (h = 0.5, u(t = 0) = 0.5) to be 0.4988 and
0.491, respectively. From eq.(3.3.10), we get Um = 0.4983 and 0.493 for each case. Thus our
perturbational approach achieves rather good agreement with simulation data8). Now we turn

to the first order approximation ε
−→
φ 1.

3.4 First order corrections

In calculating the first order correction ε
−→
φ 1, we will make use of the Green’s function given

explicitly in the Appendix 3.1. In our case, ε
−→
φ 1, eq.(3.A.19) consists of two components, the

dressing component φd and the radiation one φr. From eqs.(3.3.1) and (3.A.19), we have

φd =

∫ t

0

dt′
∫ ∞

−∞
dx′gc(x, t|x′, t′)

2

h2

∞∑
n=2

h2n

(2n)!
∂2n

x′ φ0(x
′, t′), (3.4.1)

φr =

∫ t

0

dt′
∫ ∞

−∞
dx′gc(x, t|x′, t′)

4

h2

∞∑
s=1

∞∑
n=2

h2n

(2n)!
cos

2πsx′

h
∂2n

x′ φ0(x
′, t′), (3.4.2)

where gc(x, t|x′, t′) is given by eq.(3.A.14a). In eqs.(3.4.1) and (3.4.2) we use eq.(3.2.11) for
φ0(x, t) neglecting time dependence of u and x0 since it gives higher order corrections to φd and
φr. Here we will consider the steady state behavior of these equations9). Let t → ∞, then

φd =
∑

ω

1

4π

∫ ∞

−∞
dk

e−ik(x−X)

(ω − uk)3ω
(k − ωu − i

√
1 − u2 tanh θ)

2
√

1 − u2

h2

×

[
∞∑

n=2

h2n

(2n)!(1 − u2)n

∫ ∞

−∞
dθ′eik

√
1−u2θ′(k − ωu + i

√
1 − u2 tanh θ′)∂2n

θ′ φ0(θ
′)

]
,

(3.4.3)

φr =
∑

ω

∞∑
s=−∞
(6=0)

1

4π

∫ ∞

−∞
dk

e−i(kx−kx0−ωt− 2πsx0
h )

s2ω2
wiω

×(k − ωu − i
√

1 − u2 tanh θ)πδ(ω − ku − sωw)
2
√

1 − u2

h2

×

[
∞∑

n=2

h2n

(2n)!(1 − u2)n

∫ ∞

−∞
dθ′e

i
√

1−u2ωθ′
u (k − ωu + i

√
1 − u2 tanh θ′)∂2n

θ′ φ0(θ
′)

]
,

(3.4.4)
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where we have integrated out over t′ and δ(x) is the Dirac delta function. The wobbling
frequency ωw is given by eq.(3.3.12). It is easily verified that the leading contribution to φd is
of order h2 and written as

φd =
h2

12(1 − u2)2
(3 tanh θ − θ)sechθ. (3.4.5)

Since the frequency sωw ± uk is of order
1

h
, we can calculate the leading contribution to φr

from the integral over θ′ in a similar way to the previous section. After some algebra it follows
that

φr = R+ cos(k+x − ω+t + γ+) − R+ cos(k−x + ω−t + γ−), (3.4.6)

with

R± =
8πe−

√
1−u2ω±

u

h2ω2
w

√
ω2

w − 1 + u2

∞∑
n=2

(−1)n

(2n)!

(
hω±

u

)2n [
u(k± ∓ uω±)

ω± ∓ 1 − u2

2n

]
, (3.4.7a)

γ± = ∓ω±x0

u
+ tan−1

√
1 − u2 tanh θ√
ω2

w − 1 + u2
, (3.4.7b)

k± =

√
ω2

w − 1 + u2 ± uωw

1 − u2
, (3.4.7c)

ω± = ωw ± uk±, (3.4.7d)

under the condition ωw >
√

1 − u2.
As is mentioned by M-S9). eqs.(3.4.5) and (3.4.6) express the phonon dressing of the kink

and radiation with Doppler-Shifted wobbling frequencies ωw ± uk, respectively. This dressing
makes the shape of the kink steeper, modifying the width of the kink D0 to

D ≈ D0

[
1 − h2

12(1 − u2)
3
2

]
. (3.4.8)

This contraction was observed by Currie et al.8). For case (h = 0.5, u(t = 0) = 0.5, D0 = 2.72),
D from simulation is 2.55, while our result, eq.(3.4.8) gives D = 2.62. The loss of energy of
a kink due to radiation φr, eq.(3.4.6), can be estimated as follows: Since the emitted energy

propagates at the group velocity
dω

dk
=

k±

ω± and the phonon energy density Hp is given by

1

2

[
(∂tφr)

2 + (∂xφr)
2 + φ2

r

]
from eq.(3.2.5a), we see that the radiation power Pr is given by

Pr =
1

2
(ω+k+R+2 + ω−k−R−2), (3.4.9)

where the facter
1

2
results from time average. From eqs.(3.4.7a) and (3.4.7d) we see that

radiation to the backward direction is dominant. This explains the report that phonon are
generated mainly in the wake of the kink8).
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3.5 Summary

In this chapter, we have studied effects on kink dynamics of discreteness in the S-G system.
In deriving the Hamiltonian (3.2.4), (3.2.5) and (3.2.6), we borrowed an idea due to Cahn7)

who studied discreteness effects in crystal growth. All our results stem from the perturbation
method based on a Green’s function formalism9). We showed that a kink behaves as if it were
put in a periodic potential field (3.3.7) and as to the pinning we gave two formulas (3.3.13) and
(3.3.14) for the critical pinning velocity and the pinning frequency, respectively. As the first
order corrections, the dressing part φd, eq.(3.4.5), and the radiation part φr, eq.(3.4.6), were
obtained. The change in shape of a kink and the radiation power loss are explicitly given by
eqs.(3.4.8) and (3.4.9), respectively.

Appendix 3.1 Summary of the perturbation scheme for
one-kink

Here we consider the structurally perturbed S-G equation

∂2
t φ − ∂2

xφ + sin φ = εf(φ). (3.A.1)

Following M-S we write eq.(3.A.1) as[
∂t −1

−∂2
x + sin(·) ∂t

]
−→
φ = ε

−→
f (φ), (3.A.2)

with
−→
φ =

[
φ

φ

]
,

−→
f (φ) =

[
0

f(φ)

]
, (3.A.3)

and expand
−→
φ as follows: −→

φ =
−→
φ 0 + ε

−→
φ 1 + · · · , (3.A.4)

where [
∂t −1

−∂2
x + sin(·) ∂t

]
−→
φ 0 = 0. (3.A.5)

The parameters in
−→
φ 0, the velocity u and the initial phase x0, are considered to be time-

dependent and
−→
φ 0 is expressed as

−→
φ 0 =

 4 tan−1 exp θ
−2u(t)√
1 − u(t)2

sechθ

 , (3.A.6)

θ =

x −
∫ t

0

u(t′)dt′ − x0(t)√
1 − u(t)2

. (3.A.7)

Then eq.(3.A.5) is satisfied to order ε0 and ε
−→
φ 1 is governed by the linear equation9)

Lε
−→
φ 1 =

[
∂t −1

−∂2
x + cos φ0 ∂t

]
ε
−→
φ 1 = ε

−→
F (φ0), (3.A.8a)
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−→
φ 1(t = 0) =

−→
0 , (3.A.8b)

where
ε
−→
F (φ0) = ε

−→
f (φ0) − ẋ0∂x0

−→
φ 0 − u̇∂u

−→
φ 0, (3.A.9)

and the time derivatives, ẋ0 and u̇, are considered to be of order ε. The first order correction

ε
−→
φ 1 can be calculated with use of the Green’s function G(x, t|x′, t′) as

ε
−→
φ 1 =

∫ t

0

dt′
∫ ∞

−∞
dx′G(x, t|x′, t′)ε

−→
F (x′, t′), (3.A.10)

where the matrix kernel G(x, t|x′, t′) is defined by

L(x, t)G(x, t|x′, t′) = 0 for t > t′ = 0, lim
t→t′

G(x, t|x′, t′) =

[
1 0
0 1

]
δ(x − x′). (3.A.11)

The Green’s function consists of two parts,

G(x, t|x′, t′) = Gd(x, t|x′, t′) + Gc(x, t|x′, t′), (3.A.12)

where

Gc =

[
−∂t′gc gc

−∂t′∂tgc ∂tgc

]
, Gd =

[
−∂t′gd gd

−∂t′∂tgd ∂tgd

]
, (3.A.13)

and

gc =
∑

ω

1

4π

∫ ∞

−∞

dk

(ω − uk)2iω
exp[−ik(x − x′) + iω(t − t′)]

×(k − uω − i
√

1 − u2 tanh θ)(k − uω + i
√

1 − u2 tanh θ′),

(3.A.14a)

gd =
1

2
√

1 − u2
[(t − t′) − u(x − x′)]sechθsechθ′. (3.A.14b)

The notation
∑

ω

indicates the summation over two branches, ω = ±
√

1 + k2. We note that

when we use eq.(3.A.10) to calculate the first order correction ε
−→
φ 1, we can neglect time-

dependence of u and x0 since it gives higher order corrections. Thus in eq.(3.A.14) we use θ
as given in eq.(3.2.11). Similarly θ′ is given by eq.(3.2.11) with t and x replaced by t′ and x′,

respectively. As stressed by M-S9), ε
−→
φ 1 will exhibit linear temporal growth unless∫ ∞

−∞
dx′Gd(x, t|x′, t′)

−→
F (x′, t′) = 0. (3.A.15)

The non-secularity condition (3.A.15) together with eqs.(3.A.9), (3.A.13) and (3.A.14b) leads
to equations of motion for u(t) and x0(t),

du

dt
= −1

4
(1 − u2)

∫ ∞

−∞
εf(φ0)sechθdx, (3.A.16)

dx0

dt
= −u

4

√
1 − u2

∫ ∞

−∞
εf(φ0)θsechθdx. (3.A.17)
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On the other hand, from eqs.(3.A.10) and (3.A.15) and also from the identity∫ ∞

−∞
Gc(x, t|x′, t′)[ẋ0∂x0

−→
φ 0(x

′, t′) + u̇∂u

−→
φ 0(x

′, t′)] = 0, (3.A.18)

ε
−→
φ 1 is expressed simply as

ε
−→
φ 1 =

∫ t

0

dt′
∫ ∞

−∞
dx′Gc(x, t|x′, t′)ε

−→
f (φ0(x

′, t′)). (3.A.19)

Equation (3.A.18) is an important property of the continuum part of G, Gc which was not
explicitly noted by M-S9). This follows from the orthogonality of the eigenfunction of the
operator L, (3.A.8).

Appendix 3.2 Derivation of eqs.(3.2.6) and (3.2.7)

A Lagrangian density L for eqs(3.2.4) and (3.2.5) is

L =

[
1

2
(∂tφ)2 − (1 − cos φ) − 1

2h2

∞∑
m,n=1

hm+n

m!n!
(∂m

x φ)(∂n
xφ)

]
∞∑

s=−∞

ei 2πsx
h . (3.B.1)

The corresponding Euler’s equation

∂t

[
∂L

∂(∂tφ)

]
− ∂L

∂φ
−

∞∑
l=1

(−1)l∂l
x

[
∂L

∂(∂l
xφ)

]
= 0, (3.B.2)

gives

(∂2
t φ + sin φ)

(
∞∑

s=−∞

ei 2πsx
h

)
+

1

h2

∞∑
s=−∞

∞∑
l=1

(−1)l∂l
x

[
∞∑

n=1

hl+n

l!n!
(∂n

xφ)ei 2πsx
h

]
= 0. (3.B.3)

Noticing

∞∑
l=1

(−1)l∂l
x

[
∞∑

n=1

hl+n

l!n!
(∂n

xφ)ei 2πsx
h

]

=
∞∑

m=1

 m∑
n=1

∞∑
l=m−n

(−1)l h
l+n

l!n!

l!

(m − n)!(l − m + n)!

(
i2πs

h

)l−m+n

− hm

m!

 (∂m
x φ)ei 2πsx

h

=
∞∑

m=1

[
m∑

n=1

(−1)m−n hm−n

n!(m − n)!

∞∑
p=0

(−i2πs)p

p!
− hm

m!

]
(∂m

x φ)ei 2πsx
h

=
∞∑

m=1

−[(−1)m + 1]
hm

m!
(∂m

x φ)ei 2πsx
h ,

(3.B.4)
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we have [
∂2

t φ + sin φ − 2

h2

∞∑
n=1

h2n

(2n)!
(∂2n

x φ)

](
∞∑

s=−∞

ei 2πsx
h

)
= 0. (3.B.5)
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4.1 Introduction

In the last decade or so, a number of nonlinear wave equations which can be integrated
by the inverse scattering method have been found1),2). The equations are expressed as the
consistency condition

∂tU − ∂xV + [U, V ] = 0, (4.1.1)

for a system of linear equations
∂xΦ = U(x, t; λ)Φ, (4.1.2a)

∂tΦ = V (x, t; λ)Φ, (4.1.2b)

where Φ is a N component vector and U and V are N × N matrices that are usually rational
functions of the spectral parameter λ2). In the simplest applications, U and V are 2×2 matrices.
It is known that typical 2 × 2 matrices, U and V , presented by Ablowitz, Kaup, Newell and
Segur (A-K-N-S)3) lead to a wide class of nonlinear wave equations. In order to cover more
integrable systems, Wadati, Konno and Ichikawa (W-K-I)4) proposed a generalization of the
inverse scattering formalism, especially U (note that U is 2× 2 matrix), and found a new series
of integrable nonlinear wave equations5).

As is well known, U and V are not unique for given nonlinear equation because eqs.(4.1.1)
and (4.1.2) are form-invariant under the gauge transformation

Φ̃ = g−1Φ, (4.1.3a)

Ũ = g−1Ug − g−1∂xg, (4.1.3b)

Ṽ = g−1Ug − g−1∂tg, (4.1.3b)

where g is an arbitrary matrix function of x and t. For instance, with use of this property,
Zakharov and Takhtadzhyan (Z-T) showed that the nonlinear Schrödinger equation and the
equation of a Heisenberg ferromagnet are equivalent10). Also, Orfanidis developed a systematic
method of constructing the σ-model associated with any given nonlinear equation solvable by
the inverse scattering method11).

In this chapter, we investigate a connection between two inverse scattering formalisms by
A-K-N-S and by W-K-I, and show that in addition to the gauge transformation there is a
coordinate-transformation under which eqs.(4.1.1) and (4.1.2) are form-invariant. The trans-
formation depends on a dependent variable.

First, in section 4.2, we present a inverse scattering transform which is gauge equivalent to
the A-K-N-S scheme. Second, applying a coordinate-transformation to this inverse scattering
transform, we obtain the W-K-I scheme in section 4.3. Thus, through two transformations,
the A-K-N-S and W-K-I schemes are connected to each other. In section 4.5, we consider the
loop soliton which is a solution of a new equation presented by W-K-I and present a physical
interpretation of the coordinate-transformation. Concluding remarks are given in section 4.6.

4.2 Gauge transformation

An example of U and V given by A-K-N-S3) is

U = −i

[
1 0
0 −1

]
λ +

[
0 u
v 0

]
, (4.2.1a)
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V = −4αi

[
1 0
0 −1

]
λ3 + 4α

[
0 u
v 0

]
λ2 − 2βi

[
1 0
0 −1

]
λ2 − 2αi

[
uv −∂xu
∂xv −uv

]
λ,

+2β

[
0 u
v 0

]
λ + α

[
v∂xu − u∂xv 2u2v − ∂2

xu
2uv2 − ∂2

xv u∂xv − v∂xu

]
− βi

[
uv −∂xu
∂xv −uv

]
,

(4.2.1b)

where α and β are real constants. Equation (4.1.1) for these U and V yields the set of nonlinear
wave equations

∂tu + α(∂3
xu − 6uv∂xu) − βi(∂2

xu − 2u2v) = 0, (4.2.2a)

∂tv + α(∂3
xv − 6uv∂xv) + βi(∂2

xv − 2uv2) = 0. (4.2.2b)

If we take v = ∓u∗, these equations are reduced to

∂tu + α(∂3
xu ± 6|u|2∂xu) − βi(∂2

xu ± 2|u|2u) = 0, (4.2.3)

which is the generalized nonlinear equation presented by Hirota12).
Following Z-T, we define g as a solution of eq.(4.1.2) with eq.(4.2.1) for λ = 0, that is,

∂xg =

[
0 u
v 0

]
g, (4.2.4a)

∂tg = α

[
v∂xu − u∂xv 2u2v − ∂2

xu
2uv2 − ∂2

xv u∂xv − v∂xu

]
g − βi

[
uv −∂xu
∂xv −uv

]
g. (4.2.4b)

Then it is easy to verify that if we let

S = g−1

[
1 0
0 −1

]
g, (4.2.5)

we have

S∂xS = 2g−1

[
0 u
v 0

]
g, (4.2.6a)

∂2
xS = 2g−1

[
2uv −∂xu
−∂xv −2uv

]
g, (4.2.6b)

S(∂2
xS)S = 2g−1

[
2uv −∂xu
∂xv −2uv

]
g. (4.2.6c)

Thus, from eqs.(4.1.3) and (4.2.1), we obtain a gauge equivalent scheme to the A-K-N-S one:

∂xφ̃ = ŨΦ̃, (4.2.7a)

∂tφ̃ = Ṽ Φ̃, (4.2.7b)

with

Ũ = −iSλ, (4.2.8a)

Ṽ = −4αiSλ3 + (2αS∂xS − 2βiS)λ2 +

[
1

4
αi(∂2

xS − 3S(∂2
xS)S) + βS∂xS

]
λ. (4.2.8b)
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Because of eq.(4.2.5), we may take

S =

[
a b
c −a

]
, a2 + bc = 1. (4.2.9)

We note here that when v = −u∗, g−1 = g† and S† = S.
The compatibility equation for eq.(4.2.7) with eq.(4.2.8) is

∂tS + α

[
∂3

xS +
3

2
∂x{(∂xS)2S}

]
− i

2
β[S, ∂2

xS] = 0. (4.2.10)

If α = 1 and β = 0, eq.(4.2.10) gives a spin chain reducible to the K-dV or modified K-
dV equation, which was presented by Orfanidis11) (From what he refers, a general spin chain
reducible to the Hirota equation was given by N.Papanicolau). In this case, the choice

a = cos θ, b = −c = i sin θ, (4.2.11)

or
a = cosh φ, b = c = i sinh φ, (4.2.12)

yields the modified K-dV equation

∂tθ +
1

2
(∂xθ)

3 + ∂3
xθ = 0, (4.2.13)

or

∂tφ − 1

2
(∂xφ)3 + ∂3

xφ = 0, (4.2.14)

respectively. In addition to eq.(4.2.12), by choosing

a = eφ, b = i(e−φ − eφ), c = −ieφ, (4.2.15)

we have eq.(4.2.14) again. For α = 0 and β = 1, taking

a = S3, b = i(S1 + iS2), c = −i(S1 − iS2), (4.2.16a)

−→
S = (S1, S2, S3), S2

1 + S2
2 + S2

3 = 1, (4.2.16b)

we get from eq.(4.2.10)

∂t
−→
S =

−→
S × (∂2

x

−→
S ), (4.2.17)

which is the Heisenberg ferromagnet equation14),15). Also letting

a = T3, b = i(T1 + iT2), c = i(T1 − iT2), (4.2.18a)

−→
T = (T1, T2, T3), T 2

3 − T 2
1 − T 2

2 = 1, (4.2.18b)

we obtain

∂t

−→
T =

[−→
T × (∂2

x

−→
T )

]
, J =

1 0 0
0 1 0
0 0 −1

 , (4.2.19)

which expresses a pseudo spin chain.
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4.3 Transformation of the space and time coordinates

Now we transform the space and time coordinates into new ones,

ξ =

∫ x

a(x, t)dx, (4.3.1a)

τ = t, (4.3.1b)

under the boundary condition ξ → x as x → ∞. Then, with the use of eq.(4.2.10), especially

∂ta = −α∂x

[
∂2

xa +
3

2
{(∂xa)2 + (∂xb)(∂xc)}a

]
+

i

2
β∂x(b∂xc − c∂xb), (4.3.2)

we have from eq.(4.3.1)

∂x = a∂ξ, (4.3.3a)

∂t = ∂τ +

(
−α

[
∂2

xa +
3

2
{(∂xa)2 + (∂xb)(∂xc)}a

]
+

i

2
β(b∂xc − c∂xb)

)
∂ξ. (4.3.3b)

Substituting eq.(4.3.3) into eq.(4.2.7), we obtain

∂ξφ̃ = U ′Φ̃, (4.3.4a)

∂τ φ̃ = V ′Φ̃, (4.3.4b)

with

U ′ = −i

1
b

ac

a
−1

 λ, (4.3.5a)

V ′ = −4αi

[
a b
c −a

]
λ3 + 2α

[
a2∂ξa + ab∂ξc a2∂ξb − ab∂ξa
ac∂ξa − a2∂ξc a2∂ξa + ac∂ξb

]
λ2 − 2βi

[
a b
c −a

]
λ2

+αi

[
0 ∂ξ{a(a∂ξb − b∂ξa)}

∂ξ{a(a∂ξc − c∂ξa)} 0

]
λ + β

[
0 ∂ξb

−∂ξc 0

]
λ.

(4.3.5b)

This system is equivalent to the W-K-I scheme. Putting

iq =
b

a
, ir =

c

a
,

1√
1 − rq

= a, (4.3.6)

we have the same U ′ and V ′ as ones presented by W-K-I5):

U ′ = −i

[
1 iq
ir −1

]
λ, (4.3.7a)

V ′ =

[
A B
C −A

]
, (4.3.7b)
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where

A =
−4αi√
1 − rq

λ3 +
α(r∂ξq − q∂ξr)

(1 − rq)
3
2

λ2 − 2βi√
1 − rq

λ2, (4.3.8a)

B =
4αq√
1 − rq

λ3 +
2αi∂ξq

(1 − rq)
3
2

λ2 +
2βq√
1 − rq

λ2 − ∂ξ

[
α∂ξq

(1 − rq)
3
2

]
λ + ∂ξ

[
βiq√
1 − rq

]
λ, (4.3.8b)

C =
4αr√
1 − rq

λ3 +
2αi∂ξr

(1 − rq)
3
2

λ2 +
2βr√
1 − rq

λ2 + ∂ξ

[
α∂ξr

(1 − rq)
3
2

]
λ − ∂ξ

[
βir√
1 − rq

]
λ. (4.3.8c)

The compatibility condition for these system gives the set of nonlinear wave equations,

∂τq + α∂2
ξ

[
∂ξq

(1 − rq)
3
2

]
− βi∂2

ξ

[
q√

1 − rq

]
= 0, (4.3.9a)

∂τr + α∂2
ξ

[
∂ξr

(1 − rq)
3
2

]
+ βi∂2

ξ

[
r√

1 − rq

]
= 0. (4.3.9b)

If we take α = 1 and β = 0, the set of eq.(4.3.9) is reduced to

∂τq + ∂2
ξ

[
∂ξq

(1 + q2)
3
2

]
= 0 for r = −q, (4.3.10)

∂τq + ∂2
ξ

[
∂ξq

(1 − q2)
3
2

]
= 0 for r = q, (4.3.11)

and
∂τp = 2∂3

ξp
− 1

2 for r = −1 and q = p − 1. (4.3.12)

Equation (4.3.10) describes the nonlinear oscillation of elastic beams under tension as shown
by W-K-I6). Also eq.(4.3.12) is Harry-Dym (H-D) equation15). If we let α = 0 and β = 1,
eq.(4.3.9) is reduced to

i∂τq + ∂2
ξ

[
q√

1 + |q|2

]
= 0 for r = −q∗, (4.3.13)

i∂τq + ∂2
ξ

[
q√

1 − |q|2

]
= 0 for r = q∗. (4.3.14)

4.4 One-soliton solutions

Wadati et al. obtained one-soliton solutions of eqs.(4.3.10)7), (4.3.12)8) and (4.3.13)9) with
use of the inverse scattering method for system (4.3.7) and observed that the solutions can
not be expressed in a closed form unlike the usual soliton solutions. Here, with help of known
one-soliton solutions of eq.(4.2.13), (4.2.14), (4.2.17) and (4.2.19) which are directly connected
to eqs.(4.3.10-14) by eqs.(4.3.1) and (4.3.6), we construct solutions of eqs.(4.3.10-14).
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A one-soliton solution of eq.(4.2.13)16) is given by

θ = 4 tan−1 exp δ, (4.4.1a)

δ = k(x − k2t) + δ0, (4.4.1b)

where k is a real parameter and δ0 is an arbitrary phase constant. Since eq.(4.2.13) is trans-
formed into eq.(4.3.10) through

ξ =

∫ x

cos θ dx, τ = t, (4.4.2a)

q = tan θ, (4.4.2b)

the one-soliton solution of eq.(4.3.13) is written as

q =
2sechδ · tanh δ

2sech2δ − 1
, (4.4.3a)

k(ξ − k2τ) + δ0 = δ − 2 tanh δ + 2. (4.4.3b)

Because of eq.(4.3.6), we have the condition that cos θ = 1 − 2sech2δ = 0. Hence this solution
is a discrete solitary wave. As shown by W-K-I7), however, if this condition is removed, the
solution becomes meaningful as a physical solution (see the following section).

A one-soliton solution of eq.(4.2.14) is given by

φ = ± log tanh2 δ

2
, (4.4.4a)

δ = k(x − k2t) + δ0. (4.4.4b)

Since eqs.(4.3.11) and (4.3.12) are derived from eq.(4.2.14) through the transformations

ξ =

∫ x

cosh φ dx, τ = t, (4.4.5a)

q = tanh φ, (4.4.5b)

and

ξ =

∫ x

exp φ dx, τ = t, (4.4.6a)

q = exp(−2φ), (4.4.6b)

respectively, the one-soliton solutions of them are written as

q = ∓2cosechδ · coth δ

1 + 2cosech2δ
, (4.4.7a)

k(ξ − k2τ) + δ0 = δ − 2 coth δ + 2, (4.4.7b)

and

p = tanh∓4 δ

2
, (4.4.8a)

k(ξ − k2τ) + δ0 = δ − 2 tanh±1 δ

2
+ 2, (4.4.8b)
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respectively. Equation (4.4.8) with the upper sign is the same as the cusp soliton presented by
Wadati et al.8). It is interesting to note that H-D equation, eq.(4.3.12), have both divergent
and nondivergent soliton solutions like the K-dV equation.

In the same way that we got the one-soliton solutions of eqs.(4.3.10-12), we obtain one-
soliton solutions of eqs.(4.3.13) and (4.3.14). It follows that

q =
− 2P

P 2 + k2
sech∆(P tanh ∆ + ik)

1 − 2P 2

P 2 + k2
sech2∆

e−iδ

ξ = x − P

P 2 + k2
(tanh ∆ − 1)


for eq.(4.3.13), (4.4.9)

and

q =
− 2P

P 2 + k2
cosech∆(P coth ∆ + ik)

1 +
2P 2

P 2 + k2
cosech2∆

e−iδ

ξ = x − P

P 2 + k2
(coth ∆ − 1)


for eq.(4.3.14), (4.4.10)

with
∆ = 2Px + 8kPt + ∆0, (4.4.11a)

δ = 2kx + 4(k2 − P 2)t + δ0, (4.4.11b)

where P and k are real parameters and ∆0 and δ0 are arbitrary phase constants. We have also
used the one-soliton solutions of eqs.(4.2.17)14) and (4.2.19),

S1 + iS2 = − 2P 2

P 2 + k2
sech∆(P tanh ∆ + ik)e−iδ, (4.4.12a)

S3 = 1 − 2P 2

P 2 + k2
sech2∆, (4.4.12b)

and

T1 + iT2 = − 2P 2

P 2 + k2
cosech∆(P coth ∆ + ik)e−iδ, (4.4.13a)

T3 = 1 +
2P 2

P 2 + k2
cosech2∆, (4.4.13b)

and the transformations,

ξ =

∫ x

S3 dx, τ = t, (4.4.14a)

q =
S1 + iS2

S3

, (4.4.14b)

and

ξ =

∫ x

T3 dx, τ = t, (4.4.15a)

q =
T1 + iT2

T3

. (4.4.15b)
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Equation (4.4.9) is the same as the solution presented by Shimizu and Wdati9).

4.5 The loop soliton

The one-soliton solution of the modified K-dV equation, eq.(4.4.1), gives

|θ(x = ∞) − θ(x = −∞)| = 2π, (4.5.1)

for any value of k. This property is analogous to that of the Sine-Gordon (S-G) equation
of a mechanical model17) in which θ describes an angle of rotation of the pendula. Hence
similar topological properties to the S-G equation17),18) may be expected in the modified K-dV
equation. In this section, we show that this is true, using the results in the previous section.

The modified K-dV equation, eq.(4.2.13), is expressed in the (ξ, τ) space as

∂τθ + cos2 θ∂3
ξ sin θ = 0, (4.5.2)

where we have used eq.(4.4.2a) and removed the condition cos θ = 0. This equation is the same
as the equation derived by W-K-I, which describes waves propagating along a stretched rope
if we let yξ = tan θ in eq.(5) of ref.7. The variable θ is a tangential angle along the stretched
rope. W-K-I obtained the one-soliton solution of eq.(4,5,2),

y =
2

k
sechδ, (4.5.3a)

k(ξ − k2τ) + δ0 = δ − 2 tanh δ + 2, (4.5.3b)

which has a shape of loop7). This solution can be derived from eq.(4.4.1) with eq.(4.4.2).

Fig.4.1. The curve of the one-soliton solution
for k > 0 in the x space.

Fig.4.2. The curve of the one-soliton solution
for k > 0 in the ξ space (loop soliton).
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In Figs.4.1 and 4.2, we have sketched the one-soliton solution of the modified K-dV equation
in the (x, t) space and the (ξ, τ) space, respectively. Since we have from eq.(4.4.2a)

dξ

dx
= cos θ, (4.5.4)

dx is an increment of the length of arc on the stretched rope (see Fig.4.2). 2π in eq.(4.5.1)
corresponds to the total increment of the tangential angle along the stretched rope, from x =
−∞ to x = ∞. Thus we see that the modified K-dV soliton is essentially the same as the
loop soliton. Therefore, from the fact that the difference between the number of loop solitons
with k > 0 and of loop solitons with k < 0 is conserved, the difference between the numbers of
solitons and of antisolitons for the modified K-dV equation must be conserved in any collision.
The situation is similar to that of the S-G equation18).

4.6 Concluding remarks

In this chapter, we have shown that the A-K-N-S and W-K-I schemes of the inverse scattering
transform are connected through the gauge transformation and the transformation of the space
and time coordinates. The common property which each scheme has is that a nonlinear wave
equation generated by it has the same linear dispersion relation. Recently, Wdati and Sogo19)

found that a scheme by Kaup and Newell (K-N)20) is also gauge equivalent to the A-K-N-S one.
The matrix U in K-N scheme is written as

U = −i

[
1 0
0 −1

]
λ +

[
0 q
r 0

]√
λ. (4.6.1)

K-N scheme generates the derivative nonlinear Schrödinger equation,

i∂tu + ∂2
xu + i∂x(|u|2u) = 0, (4.6.2)

whose linear dispersion relation is the same as that of the nonlinear Schrödinger equation
(eq.(4.2.3) with α = 0). The gauge transformation is done by g defined as

g =

 f 0
irf

2
√

λ

f−1

2
√

λ

 , (4.6.3a)

f = exp

(
i

2

∫ x

rq dx

)
, (4.6.3b)

u =
qf−2

2
, v =

(
−i∂xr +

r2q

2

)
f2. (4.6.3c)

It is to be noted that this gauge transformation depends on the spectral parameter λ. In
Fig.4.3, we have shown the interrelation among the various schemes of the inverse scattering
transform. Those results suggest that all nonlinear equations having the same linear dispersion
relation, which are integrable by the inverse scattreing method, are equivalent.

45



Fig.4.3. Relationships among some schemes of the inverse scattering transform
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CHAPTER V

A COMPLETELY INTEGRABLE

CLASSICAL SPIN CHAIN
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5.1 Introduction

In recent years, it has been found that some classical spin chains, for example, the continuous
isotropic Heisenberg spin chain1),2) and the general spin chain described by the Landau-Lifshitz
equation3), belong to the class of completely integrable Hamiltonian systems4). These systems
can be integrated by the inverse scattering method and their excitations are completely com-
posed of the continuum (magnons) and discrete (solitons) modes. Apart from the quantum

spin chain such as spin
1

2
Heisenberg XYZ model5), the examples of the completely integrable

classical spin chains are so far limited to the case of the continuum models.
As mentioned in the previous chapter, the continuous isotropic Heisenberg spin chain is

equivalent to the nonlinear Schrödinger equation and the schemes of the inverse scattering
transform for them are connected to each other through the gauge transformation6). For
the nonlinear Schrödinger equation, Ablowitz and Ladik have presented its lattice model (the
differential-difference nonlinear Schrödinger equation)7),8). These facts imply that by consid-
ering a differential-difference analogue of the continuous gauge transformation an integrable
classical spin model on the one-dimensional lattice is obtained from the differential-difference
nonlinear Schrödinger equation.

In this chapter, we realize the above idea and present a lattice spin model whose Hamiltonian
is given by

H = −2
∑

n

log

[
1

2

(
1 +

−→
S n · −→S n+1

)]
− h

∑
n

(Sz
n − 1), (5.1.1)

where the magnitude of spins
−→
S n = (Sx

n, Sy
n, Sz

n) is assumed to be unity and h is a con-
stant. Details of the inverse scattering approach to this spin model is also studied. Although
our spin model (5.1.1) is only a mathematical one, for low-energy excitations, the results
we obtain seem to be available for the Heisenberg spin chain because the approximate ex-
pression for eq.(5.1.1) when all the angles between the nearest-neighbor spins are small is

H = −
∑

n

(−→
S n · −→S n+1 − 1

)
− h

∑
n

(Sz
n − 1), which is the Heisenberg Hamiltonian9). In our

discussion, we impose fixed boundary conditions at infinity for
−→
S n, i.e.,

−→
S n → (0, 0, 1) for n → ±∞. (5.1.2)

This chapter is organized as follows. In section 5.2, our model (5.1.1) is derived from the
differential-difference nonlinear Schrödinger equation. In section 5.3, the inverse scattering
method associated with it is discussed. We study the problems of direct and inverse scattering
and derive the Gel’fand-Levitan equation. A special example of the initial value problem is
also examined. The procedure follows essentially the same line as one for known discrete
systems7),8). In section 5.4, we construct canonical action angle variables10) to show that our
spin model belongs to the class of completely integrable Hamiltonian systems. Then these
variables are related to an infinite set of constants of motion.

5.2 Model

In this section, we apply the concept of gauge equivalence to the differential-difference
nonlinear Schrödinger equation and construct an integrable spin model.
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As is well known, the nonlinear differential-difference equations integrable by the inverse
scattering method are expressed as the compatibility condition

L̇n(z) = Mn+1(z)Ln(z) − Ln(z)Mn(z), (5.2.1)

for a set of two equations
Φn+1 = Ln(z)Φn, (5.2.2a)

Φ̇n = Mn(z)Φn, (5.2.2b)

where Ln, Mn and Φn are N × N matrices. If we take

Ln(z) =

[
z qnz

−1

−q∗nz z−1

]
, (5.2.3a)

Mn(z) = i

[
1 − z2 − qnq

∗
n−1 −qn + qn−1z

−2

−q∗n + q∗n−1z
2 −1 + z−2 + q∗nqn−1

]
, (5.2.3b)

then the compatibility condition (5.2.1) gives the differential-difference nonlinear Schrödinger
equation,

iq̇n = qn+1 + qn−1 − 2qn + |qn|2(qn+1 + qn−1). (5.2.4)

We note here that the eigenvalues z are assumed to be invariant (ż = 0). The form of the
matrices Ln(z) and Mn(z), eq.(5.2.3), is different from that presented Ablowitz and Ladik7),8).
But if we let L′

n(z) = g−1Ln(z)g, M ′
n(z) = g−1Mn(z)g with

g =

[
z−

1
2 0

0 z
1
2

]
,

the matrices L′
n(z) and M ′

n(z) coincide with ones of Ablowitz and Ladik.
The gauge transformation for the differential-difference equations (5.2.1) and (5.2.2) is

Φ̃n = g−1
n Φn, (5.2.5a)

L̃n(z) = g−1
n+1Ln(z)gn, (5.2.5b)

M̃n(z) = g−1
n Mn(z)gn − g−1

n ġn, (5.2.5c)

where gn is an arbitrary matrix. Here we define gn as a solution of eq.(5.2.2) with eq.(5.2.3)
for z = 1, that is,

gn+1 =

[
1 qn

−q∗n 1

]
gn, (5.2.6a)

ġn = i

[
−qnq

∗
n−1 −qn + qn−1

−q∗n + q∗n−1 q∗nqn−1

]
gn. (5.2.6b)

Then it is easy to verify that

g−1
n+1Ln(z)gn =

z + z−1

2
I +

z − z−1

2
Sn, (5.2.7a)

g−1
n Mn(z)gn − g−1

n ġn = i

(
1 − z2 + z−2

2

)
g−1

n−1gnSn − i
z2 − z−2

2
g−1

n−1gn, (5.2.7b)
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where

Sn = g−1
n σzgn, S2

n = I =

[
1 0
0 1

]
, (5.2.8a)

σx =

[
0 1
1 0

]
, σy =

[
0 −i
i 0

]
, σz =

[
1 0
0 −1

]
. (5.2.8b)

Since the Hermitian conjugate of eq.(5.2.6) yields (see Appendix 5.1)

Sn =
∞∏

j=n

(
1 + |qj|2

)
g†

nσ
zgn, S†

n = Sn, (5.2.9)

we may take

Sn =

[
Sz

n Sx
n − iSy

n

Sx
n + iSy

n −Sz
n

]
, (Sx

n)2 + (Sy
n)2 + (Sz

n)2 = 1. (5.2.10)

From eqs.(5.2.6a), (5.2.8a) and (5.2.10), we have

g−1
n−1gn = 2Sn−1(Sn + Sn−1)

−1 =
Sn−1(Sn + Sn−1)

1 +
−→
S n · −→S n−1

, (5.2.11a)

−→
S n = (Sx

n, Sy
n, Sz

n). (5.2.11b)

The new matrices Ln(z) and Mn(z) (we omit the tilder on them) now read

Ln(z) =
z + z−1

2
I +

z − z−1

2
Sn, (5.2.12a)

Mn(z) = i

(
1 − z2 + z−2

2

)
Sn + Sn−1

1 +
−→
S n · −→S n−1

− i
z2 − z−2

2

I + Sn−1Sn

1 +
−→
S n · −→S n−1

. (5.2.12b)

The compatibility condition for these matrices gives (see Appendix 5.1)

−̇→
S n =

2

1 +
−→
S n · −→S n+1

−→
S n ×−→

S n+1 +
2

1 +
−→
S n · −→S n−1

−→
S n ×−→

S n−1. (5.2.13)

This is the integrable spin model which is the differential-difference analogue of the continuous
isotropic Heisenberg spin chain (recently Date et al. presented a difference-difference analogue
of the continuous isotropic Heisenberg spin chain using a general method of discretizing soliton

equations11)). Using eqs.(5.2.6) and (5.2.11), we can find the relation between qn and
−→
S n (see

Appendix 5.1). It follows that

1 + |qn|2 =
2

1 +
−→
S n · −→S n+1

, (5.2.14a)

i(qnq
∗
n−1 − q∗nqn−1) =

2
−→
S n · (−→S n+1 +

−→
S n−1)

(1 +
−→
S n · −→S n+1)(1 +

−→
S n · −→S n−1)

. (5.2.14b)

If the spins
−→
S n satisfy the following classical equations

−̇→
S n = {−→S n, H}, (5.2.15)
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with the Poisson bracket {A, B} defined by9)

{A, B} = εαβγ

∑
n

∂A

∂Sα
n

∂B

∂Sβ
n

Sγ
n, (5.2.16)

then the Hamiltonian H which generates eq.(5.2.13) is written as

H = −2
∑

n

log(1 +
−→
S n · −→S n+1) + const.. (5.2.17)

Unlike the Heisenberg Hamiltonian, eq.(5.2.17) is singular when the nearest-neighbor spins are
antiparallel (Fig.5.1).

Fig.5.1. The dashed and solid curves represent the energy of interaction Hn between

two spins
−→
S n and

−→
S n+1 for the Heisenberg model (Hn = −(

−→
S n · −→S n+1 − 1)) and our

model (Hn = −2 log{(1 +
−→
S n · −→S n+1)/2}), respectively.

The Hamiltonian (5.2.17) does not have the second term in eq.(5.1.1). But this term is not

essential because the transformation S̃x
n + iS̃y

n = (Sx
n + iSy

n)eiht enables us to eliminate the third
term in the equation of motion

−̇→
S n =

2

1 +
−→
S n · −→S n+1

−→
S n ×−→

S n+1 +
2

1 +
−→
S n · −→S n−1

−→
S n ×−→

S n−1 +
−→
S n ×

−→
h , (5.2.18a)

−→
h = (0, 0, h), (5.2.18b)
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which is derived from the Hamiltonian (5.1.1). For eq.(5.2.18), the matrix Mn(z) must be take
the form

Mn(z) = i

(
1 − z2 + z−2

2

)
Sn + Sn−1

1 +
−→
S n · −→S n−1

− i
z2 − z−2

2

I + Sn−1Sn

1 +
−→
S n · −→S n−1

+ i
h

2
σz. (5.2.19)

In the following sections, we consider eq.(5.2.18).

5.3 Inverse scattering method

In this section, we study the inverse scattering method for the system (5.2.2) with eqs(5.2.12a)
and (5.2.19). By the method, the initial value problem for our spin model is solved. Schemati-
cally, we can illustrate this approach by means of a diagram (Fig.5.2).

Fig.5.2. Diagram of the inverse scattering method.

Here the dashed line indicates the direct but in general intractable route to the solution. As
shown in Fig.5.2, the inverse scattering method consists of the following procedure:

1) Map the initial data {−→S n(t = 0)} into certain scattering data

Σ{b(z, t = 0)/a(z, t = 0), zj(t = 0), cj(t = 0); j = 1, · · · ,M}.

2) Calculate the time evolution of the scattering data

Σ{b(z, t)/a(z, t), zj(t), cj(t); j = 1, · · · ,M}.

3) Construct
−→
S n(t) from the time-dependent scattering data Σ(t)

through the Gel’fand-Levitan equation.

These steps are discussed in the following subsections.

5.3.1 Scattering problem

From the boundary condition (5.1.2), we have

Ln(z) → E(z)

Mn(z) → iΩ(z)

 for n → ±∞, (5.3.1)
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where

E(z) =

[
z 0
0 z−1

]
, (5.3.2a)

Ω(z) = σz

[
I − E2(z) +

h

2
I

]
. (5.3.2b)

In order to study the problems of direct and inverse scattering, we introduce the eigenfunctions
φ(n, z) defined by

Φn = φ(n, z) exp[iΩ(z)t]. (5.3.3)

Then, eqs.(5.2.2) become

φ(n + 1, z) = Ln(z)φ(n, z), (5.3.4)

φ̇(n, z) = Mn(z)φ(n, z) − iφ(n, z)Ω(z). (5.3.5)

Since φ(n + 1, z) = E(z)φ(n, z) for n → ±∞, the solutions of eq.(5.3.4) for n → ±∞ have the
form φ(n, z) = En(z)φ0, where φ0 is a matrix which does not depend on n. Here we introduce
the following Jost functions φ(n, z) and ψ(n, z) with boundary conditions:

φ(n, z) → En(z) as n → −∞, (5.3.6)

ψ(n, z) → En(z) as n → +∞, (5.3.7)

which are consistent with eq.(5.3.5). From eqs.(5.3.4), (5.3.6) and (5.3.7), these Jost functions
are written as

φ(n, z) = lim
N→∞

Ln−1(z)Ln−2(z) · · ·L−NE−N(z), (5.3.8)

ψ(n, z) = lim
N→∞

L−1
n (z)L−1

n+1(z) · · ·L−1
N EN+1(z), (5.3.9)

where

L−1
n (z) =

z + z−1

2
I − z − z−1

2
Sn, (5.3.10)

and the transition matrix T (z) defined by

φ(n, z) = ψ(n, z)T (z), (5.3.11a)

T (z) =

[
a(z) −b̄(z)
b(z) ā(z)

]
, (5.3.11b)

is expressed as
T (z) = lim

N→∞
E−N−1(z)TN(z)E−N(z), (5.3.12a)

TN(z) = LN(z)LN−1(z) · · ·L−N(z). (5.3.12b)

Since detE(z) =detLn(z) = 1, we have

detT (z) = a(z)ā(z) + b(z)b̄(z) = 1. (5.3.13)

We note that T (z) depends parametrically on time through the Sn. The explicit dependence
on time is found from eq.(5.3.5) for n → ±∞ as

Ṫ (z) = i[Ω(z), T (z)], (5.3.14)
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where [Ω(z), T (z)] = Ω(z)T (z) − T (z)Ω(z). In terms of the matrix elements, we have

ȧ(z) = ˙̄a(z) = 0, (5.3.15a)

ḃ(z) = iω(z)b(z), ˙̄b = −iω(z)b̄(z), (5.3.15b)

ω(z) = z2 + z−2 − 2 − h. (5.3.15c)

Finally, we study the analytic properties of a(z), ā(z) and the Jost functions. The results we
obtain help to derive the Gel’fand-Levitan equation in the next subsection.

From eq.(5.3.8), the columns of φ(n, z) are written as[
φ11

φ21

]
z−n = lim

N→∞

(
I + Sn−1

2
+

I − Sn−1

2
z−2

)(
I + Sn−2

2
+

I − Sn−2

2
z−2

)

· · ·
(

I + S−N

2
+

I − S−N

2
z−2

)[
1
0

]
,

(5.3.16a)

[
φ12

φ22

]
zn = lim

N→∞

(
I − Sn−1

2
+

I + Sn−1

2
z2

)(
I − Sn−2

2
+

I + Sn−2

2
z2

)

· · ·
(

I − S−N

2
+

I + S−N

2
z2

)[
0
1

]
.

(5.3.16b)

These equations show that for the Sn−σz decaying sufficiently rapidly as n → ±∞, the columns
(φ11, φ21)z

−n and (φ12, φ22)z
n are analytic for |z| > 1 and |z| < 1, respectively. Similar analysis

is possible for ψ(n, z), that is, the column (ψ12, ψ22)z
n is analytic for |z| > 1 and the column

(ψ11, ψ21)z
−n is analytic for |z| < 1. In terms of the Jost functions, a(z) and ā(z) are expressed

as
a(z) = (φ11z

−n)(ψ22z
n) − (φ21z

−n)(ψ12z
n), (5.3.17a)

ā(z) = (φ22z
n)(ψ11z

−n) − (φ12z
n)(ψ21z

−n), (5.3.17b)

and we infer from the analytic properties of φ(n, z) and ψ(n, z) that a(z) and ā(z) are analytic
for |z| > 1 and |z| < 1, respectively.

5.3.2 Gel’fand-Levitan equation

In this subsection, we derive the Del’fand-Levitan equation for our system.
For ψ(n, z), from eq.(5.3.9), the following triangular representation is suggested:

ψ(n, z) = En(z) +
∞∑

n′=n

K(n, n′)En′
(z)[I − E2(z)], (5.3.18)

where the matrix kernel K(n, n′) depends functionally on the Sn but is independent of the
eigenvalue z. By virtue of the above representation one can derive the linear summation
equation (i.e. a discrete analogue of the Gel’fand-Levitan equation). For this purpose, it is
convenient to rewrite eq.(5.3.11) as

1

a(z)

[
φ11

φ21

]
=

[
ψ11

ψ21

]
+

b(z)

a(z)

[
ψ12

ψ22

]
, (5.3.19a)
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1

ā(z)

[
φ12

φ22

]
= − b̄(z)

ā(z)

[
ψ11

ψ21

]
+

[
ψ12

ψ22

]
. (5.3.19b)

Substitute eq.(5.3.18) into eq.(5.3.19a) and operate with

1

2πi

∮
|z|=1+ε

dz
z−m−3

1 − z−2
(m = n), (5.3.20)

to find
1

2πi

∮
|z|=1+ε

dz
z−n

a(z)

[
φ11(n, z)
φ21(n, z)

]
zn−m−3

1 − z−2

= −
[
K11(n,m)
K21(n,m)

]
+

[
0
1

]
1

2πi

∮
|z|=1+ε

dz
b(z)

a(z)

z−n−m−3

1 − z−2

+
∞∑

n′=n

[
K12(n, n′)
K22(n, n′)

]
1

2πi

∮
|z|=1+ε

dz
b(z)

a(z)
z−n′−m−3.

(5.3.21)

Here we have used the identities

1

2πi

∮
|z|=1+ε

dz zn′−m−1 = δn′m, (5.3.22a)

1

2πi

∮
|z|=1+ε

dz
z−n−m−3

1 − z2
= 0 for m = n, (5.3.22b)

where

∮
|z|=1+ε

is the contour integral on the circle |z| = 1+ε (ε → +0) and δn′m is the Kronecker

delta function. We now evaluate the left hand side of eq.(5.3.21). Since the column (φ11, φ21)z
−n

and a(z) are analytic in the region |z| > 1, this integral is decomposed into the contour integral
on the circle |z| = ∞ and the residues at poles of 1/a(z) (zeroes of a(z)) (Fig.5.3).

Fig.5.3. Path of the integrations. Γ1 and Γ2 denote the circles
|z| = 1 + ε and |z| = ∞, respectively. zj are zeroes of a(z).

Noticing that

1

2πi

∮
|z|=∞

dz
z−n

a(z)

[
φ11(n, z)
φ21(n, z)

]
zn−m−3

1 − z−2
= δnm+2 lim

z→∞

z−n

a(z)

[
φ11(n, z)
φ21(n, z)

]
= 0, (5.3.23)
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and assuming a(z) has 2M simple zeroes, a(zj) = 0, we have

L.H.S. of eq.(5.3.21) = −
2M∑
j=1

1

a′(zj)

[
φ11(n, zj)
φ21(n, zj)

]
z−m−3

j

1 − z−2
j

= −
[
0
1

] 2M∑
j=1

cj

z−n−m−3
j

1 − z−2
j

−
∞∑

n′=n

[
K12(n, n′)
K22(n, n′)

] 2M∑
j=1

cjz
−n′−m−3
j ,

(5.3.24)

where prime on a(z) indicates the differentiation with respect to z and cj is given by

cj =
b(zj)

a′(zj)
. (5.3.25)

Equation (5.3.21) now reads[
K11(n,m)
K21(n,m)

]
−

[
0
1

]
f(n + m) −

∞∑
n′=n

[
K12(n, n′)
K22(n, n′)

]
g(n′ + m) = 0, (5.3.26)

where

f(n + m) =
1

2πi

∮
|z|=1+ε

dz
b(z)

a(z)

z−n−m−3

1 − z−2
+

2M∑
j=1

cj

z−n−m−3
j

1 − z−2
j

, (5.3.27a)

g(n′ + m) =
1

2πi

∮
|z|=1+ε

dz
b(z)

a(z)
z−n′−m−3 +

2M∑
j=1

cjz
−n′−m−3
j . (5.3.27b)

In a similar manner, another set of summation equations can be derived from eq.(5.3.19b).
Thus, we obtain the Gel’fand-Levitan equation for the matrix kernel K(n,m),

K(n,m) + F (n + m) +
∞∑

n′=n

K(n, n′)G(n′ + m) = 0, (5.3.28)

where F (n + m) and G(n′ + m) are given by

F (n + m) =

[
0 f̄(n + m)

−f(n + m) 0

]
, (5.3.29a)

G(n′ + m) =

[
0 ḡ(n′ + m)

−g(n′ + m) 0

]
, (5.3.29b)

with

f̄(n + m) =
1

2πi

∮
|z|=1−ε

dz
b̄(z)

ā(z)

zn+m+1

1 − z2
−

2M∑
j=1

c̄j

z̄n+m+1
j

1 − z̄2
j

, (5.3.30a)

ḡ(n′ + m) =
1

2πi

∮
|z|=1−ε

dz
b̄(z)

ā(z)
zn′+m+1 −

2M∑
j=1

c̄j z̄
n′+m+1
j , (5.3.30b)

c̄j =
b̄(z̄j)

ā′(z̄j)
, ā(z̄j) = 0. (5.3.30c)
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We must notice that eqs.(5.3.9) and (5.3.12) give the symmetry properties as

ψ(n, z) = σyψ∗(n, z∗−1)σy, (5.3.31a)

T (z) = σyT ∗(z∗−1)σy, (5.3.31b)

from which we have relations

ā(z) = a∗(z∗−1), b̄(z) = b∗(z∗−1), (5.3.32a)

z̄j = z∗−1
j , c̄j = −z∗−2

j c∗j , (5.3.32b)

f̄(n) = f ∗ (n), ḡ(n) = g∗(n), (5.3.32c)

and
K12(n,m) = −K∗

21(n,m), K21(n,m) = K∗
11(n,m). (5.3.32d)

Furthermore, since eq.(5.3.10) show that a(z) and b(z) are even in z, the zeroes of a(z) comes in
± pairs (z+

j and z−j ), and cj(z
+
j ) = −cj(z

−
j ). Considering these properties, the Gel’fand-Levitan

equation is rewritten as

K11(n,m) + 2
∞∑

n′=n

K∗
21(n, n′)g̃(n′ + m) = 0, (5.3.33a)

K21(n,m) − 2f̃(n + m) − 2
∞∑

n′=n

K∗
11(n, n′)g̃(n′ + m) = 0, (5.3.33b)

with

f̃(n + m) =
1

2πi

∫
C̃

dz
b(z)

a(z)

z−n−m−3

1 − z−2
+

M∑
j=1

cj

z−n−m−3
j

1 − z−2
j

, (5.3.34a)

g̃(n′ + m) =
1

2πi

∫
C̃

dz
b(z)

a(z)
z−n′−m−3 +

M∑
j=1

cjz
−n′−m−3
j , (5.3.34b)

m = n + 2s, n′ = n + 2s′, (5.3.34c)

s = 0, 1, 2, · · · , s′ = 0, 1, 2, · · · , (5.3.34d)

where C̃ is the contour along the upper half of the circle |z| = 1 + ε and Imzj > 0.
To close the subsection, we relate K(n,m) to Sn. Substituting eq.(5.3.18) into the eigenvalue

problem (5.3.4) and comparing the coefficients of En(z), one finds that the kernel K(n,m)
satisfies a partial difference equation

[K(n,m) + K(n,m + 2) − 2K(n + 1, m + 1)]σz

+Sn[K(n,m) − K(n,m + 2)] = 0 for m = n,
(5.3.35)

with the boundary condition

Sn = [I + K(n, n)]σz[I + K(n, n)]−1. (5.3.36)
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In terms of matrix elements, eq.(5.3.36) is expressed as

Sz
n =

|1 + K11(n, n)|2 − |K21(n, n)|2

|1 + K11(n, n)|2 + |K21(n, n)|2
, (5.3.37a)

Sx
n + iSy

n =
2K21(n, n)[1 + K∗

11(n, n)

|1 + K11(n, n)|2 + |K21(n, n)|2
, (5.3.37b)

which is the stereographic transformation.

5.3.3 Initial value problem

Now we are in a position to perform the procedure in Fig.5.2. Steps 1)-3) are carried out
with use of the following equations;

1) Equation (5.3.12) and a(zj) = 0.

2) Equation (5.3.15) and ż = 0.

3) Equation (5.3.33) with eqs.(5.3.34) and (5.3.25) and eq.(5.3.37).

Particularly, when b(z, t) = 0 for |z| = 1 + ε, the Gel’fand-Levitan equation is reduced to
a system of linear algebraic equations and can be solved explicitly. With use of this property,
we can construct the multi-soliton solution which is an exact solution of eq.(5.2.18). Here we
consider the case that a(z) has only one simple zero z1 = eα+iβ with 0 < α and 0 < β < π.
Then, eq.(5.3.34) becomes

f̃(n + m) =
c1z

−n−m−3
1

1 − z−2
1

, (5.3.38a)

g̃(n′ + m) = c1z
−n′−m−3
1 , (5.3.38b)

and the Gel’fand-Levitan equation (5.3.33) reduces to

K11(n,m) + 2c1

∞∑
n′=n

K∗
21(n, n′)z−n′−m−3

1 = 0, (5.3.39a)

K21(n,m) − 2c1z
−n−m−3
1

1 − z−2
1

− 2c1

∞∑
n′=n

K∗
11(n, n′)z−n′−m−3

1 = 0, (5.3.39b)

where from eqs.(5.3.15) and (5.3.25), c1 is given by

c1 = c1(t = 0) exp[−(2 sinh 2α sin 2β)t − 2i(1 − cosh 2α cos 2β + h)t]. (5.3.40)

It is easy to find that

K11(n, n) = − 1 − e−4α

2(1 − e−2α−2iβ)
sechξne

−ξn , (5.3.41a)

K21(n, n) =
1 − e−4α

2(1 − e−2α−2iβ)
sechξne

−iηn , (5.3.41b)

where
ξn = 2αn + 2(sinh 2α sin 2β)t + ξ(0), (5.3.42a)

ηn = 2βn + 2(1 − cosh 2α cos 2β + h)t + η(0), (5.3.42b)
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ξ(0) = α + log
sinh 2α

|c1(t = 0)|
, (5.3.42c)

η(0) = 3β + arg c∗1(t = 0). (5.3.42d)

Substituting eq.(5.3.41) into eq.(5.3.37), we obtain a one-soliton solution

Sz
n = 1 − sinh2 2α

cosh 2α − cos 2β
sechξn+1sechξn, (5.3.43a)

Sx
n + iSy

n =
sinh 2α

cosh 2α − cos 2β
sechξn+1(cosh 2α − e−2iβ + sinh 2α tanh ξn)e−iηn . (5.3.43b)

From eqs.(5.1.1) and (5.3.43), the energy of a soliton is given by

Es = 8α + h
2 sinh 2α

cosh 2α − cos 2β
. (5.3.44)

As an example of the initial data, we consider the special case

−→
S n(t = 0) =

 (sin θ cos δ, sin θ sin δ, cos θ) for n = 0

0 for n 6= 0,
, (5.3.45)

with 0 < θ < π and 0 5 δ < 2π. The transition matrix (5.3.12) at time t = 0 is immediately
obtained as E−1(z)L0(z), namely

a(z) =
1

2
[1 − cos θ + (1 + cos θ)z2], (5.3.46a)

b(z) =
1

2
sin θeiδ(1 − z−2). (5.3.46b)

The zero of a(z) is calculated from eq.(5.3.46a) as

z1 = ±i tan
θ

2
. (5.3.47)

From the conditions |z1| > 1 and Im z1 > 0, we see that a single soliton emerges from such

initial data when
π

2
< θ < π.

5.4 Canonical action angle variables

In this section, we show that the inverse scattering transform can be interpreted as a canon-
ical transformation from the spin variable to the scattering data. Our procedure follows closely
that of Fogedby2) for the continuous isotropic Heisenberg spin chain.

5.4.1 Poisson bracket relations

The canonical variables (qn, pn) for our spin model are given by

qn = tan−1 Sy
n

Sx
n

, (5.4.1a)
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pn = Sz
n, (5.4.1b)

because qn and pn satisfy the Poisson bracket

{qn, pm} = δnm, (5.4.2a)

{qn, qm} = {pn, pm} = 0. (5.4.2b)

In order to present new canonical variables constructed by the scattering data, we must derive
the Poisson brackets for the scattering data. First we show that the following Poisson brackets
for the elements of transition matrix are expressed as eq.(4.5.8):

{Tij(z), Tkl(z
′)} = εαβγ

∑
n

∂Tij(z)

∂Sα
n

∂Tkl(z
′)

∂Sβ
n

Sγ
n. (5.4.3)

The definition of the transition matrix T (z) yields

δT (z)

δSα
n

= ψ−1(n′, z)
δφ(n′, z)

δSα
n

− ψ−1(n′, z)
δψ(n′, z)

δSα
n

T (z). (5.4.4)

Since we have from eqs.(5.3.4) and (5.3.9)

δψ(n + 1, z)

δSα
n

= 0, (5.4.5a)

δφ(n + 1, z)

δSα
n

=
z − z−1

2
σαφ(n, z), (5.4.5b)

the choice n′ = n + 1 reduces eq.(5.4.4) to

δT (z)

δSα
n

=
z − z−1

2
ψ−1(n + 1, z)σαφ(n, z). (5.4.6)

Using eq.(5.3.4) and [σα, σβ] = 2iεαβγσ
γ, we can derive the identity∑

α

[ψ−1(n + 1, z)σαφ(n + 1, z)]ij[ψ
−1(n + 1, z′)σαφ(n + 1, z′)]kl

−
∑

α

[ψ−1(n, z)σαφ(n, z)]ij[ψ
−1(n, z′)σαφ(n, z′)]kl

= i(zz′−1 − z−1z′)

×εαβγ[ψ
−1(n + 1, z)σαφ(n, z)]ij[ψ

−1(n + 1, z′)σβφ(n, z′)]klS
γ
n.

(5.4.7)

From eqs.(5.4.6) and (5.4.7), the Poisson bracket (5.4.3) is written as

{Tij(z), Tkl(z
′)} =

(z − z−1)(z′ − z′−1)

4(zz′−1 − z−1z′

× lim
N→∞

∑
α

(
[E−N(z)σαEN(z)T (z)]ij[E

−N(z′)σαEN(z′)T (z′)]kl

− [T (z)EN(z)σαE−N(z)]ij[T (z′)EN(z′)σαE−N(z′)]kl

)
,

(5.4.8)
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where we have used the boundary conditions for Jost functions and the definition of the tran-
sition matrix.

If we take z = eε+ik with 0 < k < π, the non-vanishing Poisson brackets for the matrix
elements a(eik) and b(eik) are given by

{a(eik), b(eik′
)} = − sin k sin k′a(eik)b(eik′

)

[
P 1

sin(k − k′)
+ iπδ(k − k′)

]
, (5.4.9a)

{a(eik), b∗(eik′
)} = sin k sin k′a(eik)b∗(eik′

)

[
P 1

sin(k − k′)
+ iπδ(k − k′)

]
, (5.4.9b)

{b(eik), b∗(eik′
)} = −2iπ(sin k)2|a(eik)|2δ(k − k′), (5.4.9c)

where we have used the identities

1

sin(k − k′ − iε)
= P 1

sin(k − k′)
+ iπδ(k − k′), (5.4.10a)

lim
N→∞

sin[N(k − k′)]

sin(k − k′)
= πδ(k − k′). (5.4.10b)

To compute differentiation for the eigenvalue zj, we make use of the implicit equation a(zj(Sn), Sn) =
0. By differentiation with respect to Sα

n we obtain

δzj

δSα
n

= − 1

a′(zj)

(
δa(z)

δSα
n

)
z=zj

. (5.4.11)

Noticing that

δb(zj)

δSα
n

=
δzj

δSα
n

b′(zj) +

(
δb(z)

δSα
n

)
z=zj

= − b′(zj)

a′(zj)

(
δa(z)

δSα
n

)
z=zj

+

(
δb(z)

δSα
n

)
z=zj

, (5.4.12)

we have

{zi, b(zj)} = − 1

a′(zi)
{a(z), b(z′)}z=zi,z′=zj

+
b′(zj)

a′(zi)a′(zj)
{a(z), a(z′)}z=zi,z′=zj

. (5.4.13)

Substitution eq.(5.4.8) into eq.(5.4.13) gives

{zi, b(zj)} = − i

4
(zi − z−1

i )2zib(zi)δij. (5.4.14)

In the same manner, it is verified that the Poisson brackets for other pairs vanish.
Now we are in a position to construct new canonical variables for our spin chain. The

variables associated with the continuous scattering data are given by

Q(k) = −arg b(eik), (5.4.15a)

P (k) = − 1

π sin2 k
log |a(eik)|, (5.4.15b)

and satisfy the Poisson brackets

{Q(k), P (k′)} = δ(k − k′), (5.4.16a)
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{Q(k), Q(k′)} = {P (k), P (k′)} = 0. (5.4.16b)

For the discrete variables, we define the following relations:

Qj = −i log b(zj), (5.4.17a)

Pj =
zj + z−1

j

zj − z−1
j

, (5.4.17b)

which obey the Poisson brackets

{Qi, Pj} = δij, (5.4.18a)

{Qi, Qj} = {Pi, Pj} = 0. (5.4.18b)

Note that Qj and Pj are complex variables. The transformation (qn, pn) → (Q(k), P (k); Qj, Pj)
is a canonical transformation because it has the property of preserving the Poisson brackets.

The time dependence of the new canonical variables are determined from eq.(5.3.15). The
result is

Q̇(k) = 2(1 − cos 2k) + h, (5.4.19a)

Q̇j = − 4

P 2
j − 1

+ h, (5.4.19b)

Ṗ (k) = Ṗj = 0. (5.4.19c)

Thus, the canonical variables Q(k), P (k), Qj and Pj are of the action angle type10), and
our spin model is the completely integrable Hamiltonian system. The real Hamiltonian which
generates eq.(5.4.19) is given by

H =

∫ π

0

ω(k)P (k)dk +
M∑

j=1

4 log

∣∣∣∣Pj + 1

Pj − 1

∣∣∣∣ + h
M∑

j=1

(Pj + P ∗
j ), (5.4.20)

where
ω(k) = 2(1 − cos 2k) + h. (5.4.21)

In the next subsection, we demonstrate that the Hamiltonian (5.4.20) coincides with the original
Hamiltonian (5.1.1).

We finally comment on the discrete (soliton) part of the Hamiltonian (5.4.20), denoted by
Hs. Taking zj = eαj+iβj , we have from eqs.(5.4.17b) and (5.4.20)

Hs =
M∑

j=1

(
8αj + h

2 sinh 2αj

cosh 2αj − cos 2βj

)
. (5.4.22)

When h = 0, the energy depends only on αj, and it is possible to excite the different soliton
modes (different βj) having the same energy (same αj). Thus we may say that for the soliton
modes a kind of degeneracy occurs. However, if an external field h is applied, the different
modes have different energies and the degeneracy is resolved.

5.4.2 Conservation laws

As well known, the nonlinear wave equations solvable by the inverse scattering method
have an infinite number of constants of motion. These quantities are derived from asymptotic
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expansions of diagonal elements of the transition matrix. In our case, this technique is applied
to ā(z) defined by eq.(5.3.11).

We consider the asymptotic expansions of log ā in powers of z2 when z → 0 and in powers
of z2 − 1 when z → 1, that is,

log ā(z) =



∞∑
j=0

Cjz
2j for z → 0,

∞∑
j=0

Dj(z
2 − 1)j for z → 1.

(5.4.23)

Since ā(z) is time independent, the {Cj} and {Dj} are constants of motion. They are expressed
in terms of both the spin variables and action angle variables.

We begin by deriving the following identity:

log ā(z) = iarg ā(0) +

∫ π

0

sin2 kP (k)
z2 + e2ik

z2 − e2ik
dk

+
M∑

j=1

log

∣∣∣∣Pj + 1

Pj − 1

∣∣∣∣ +
M∑

j=1

log

z2 −
P ∗

j − 1

P ∗
j + 1

z2 − Pj + 1

Pj − 1

,

(5.4.24)

which holds for |z| < 1. From the analytic properties of ā(z), the function

log

[
ā(z)

M∏
j=1

|z̄j|4
(

z2 − z̄∗−2
j

z2 − z̄2
j

)]
, (5.4.25)

is analytic for |z| < 1. With use of Poisson integral formula we have from eq.(5.4.25)

log ā(z) = iarg ā(0) +
1

2π

∫ 2π

0

log |ā(eik)|e
ik + z

eik − z
dk +

M∑
j=1

log

[
1

|z̄j|2

(
z2 − z̄2

j

z2 − z̄∗−2
j

)]
. (5.4.26)

By means of the definition of the canonical variables, eqs.(5.4.15) and (5.4.17), we obtain
eq.(5.4.24). From the asymptotic expansion of eq.(5.4.24), we can easily find the {Cj} and
{Dj}. The first two Cj are

C0 = −
∫ π

0

sin2 kP (k)dk −
M∑

j=1

log

∣∣∣∣Pj + 1

Pj − 1

∣∣∣∣ + iarg ā(0), (5.4.27a)

C1 = −2

∫ π

0

sin2 ke−2ikP (k)dk +
M∑

j=1

(
Pj − 1

Pj + 1
−

P ∗
j + 1

P ∗
j − 1

)
, (5.4.27b)

and the first three Dj are

D0 = i

∫ π

0

sin k cos kP (k)dk + i
M∑

j=1

arg
1 − Pj

1 + P ∗
j

+ iarg ā(0), (5.4.28a)
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D1 =
1

2

∫ π

0

P (k)dk +
1

2

M∑
j=1

(Pj + P ∗
j ), (5.4.28b)

D2 = − i

4

∫ π

0

cot kP (k)dk +
1

8

M∑
j=1

(P 2
j − P ∗2

j ) − 1

2
D1. (5.4.28c)

The unknown constant ā(0) can be determined by the fact that from eq.(5.3.12) we have
ā(z = 1) = 1, i.e. log ā(z = 1) = D0 = 0. The result is

ā(0) = −
∫ π

0

sin k cos kP (k)dk −
M∑

j=1

arg
1 − Pj

1 + P ∗
j

. (5.4.29)

In order to relate log ā(z) to spin variables, we adopt recursive techniques. There are two
methods to determine the {Cj} and {Dj}, one of which is useful for {Cj}, the other for the
{Dj}. We first calculate the {Cj}. From eqs.(5.3.7) and (5.3.15b), we have a relation

log ā(z) = lim
n→∞

log znφ22(n, z). (5.4.30)

The eigenvalue problem (5.3.4) reduces to a difference equation for the expression znφ22(n, z),
which is

2S−
n [zn+2φ22(n + 2, z)]

−[(S−
n + S−

n+1)(z
2 + 1) + (S−

n+1S
z
n − S−

n Sz
n+1)(z

2 − 1)][zn+1φ22(n + 1, z)]

+2z2S−
n+1[z

nφ22(n, z)] = 0,

(5.4.31)

where S−
n = Sx

n − iSy
n. Define

znφ22(n, z) =
n∏

l=−∞

fl, (5.4.32)

to rewrite eq.(5.4.31) as

2S−
n fn+2fn+1 − [(S−

n + S−
n+1)(z

2 + 1) + (S−
n+1S

z
n − S−

n Sz
n+1)(z

2 − 1)fn+1

+2z2S−
n+1fn = 0.

(5.4.33)

With help of a recursive manner, we verify that fn has the expansion

fn = f (0)
n + z2f (1)

n + · · · , (5.4.34a)

f (0)
n =

S−
n−1 + S−

n−2 + Sz
n−1S

−
n−2 − S−

n−1S
z
n−2

2S−
n−2

, (5.4.34b)

f (1)
n =

S−
n−1 + S−

n−2 + Sz
n−2S

−
n−1 − S−

n−2S
z
n−1

2S−
n−2

−
S−

n−3 + S−
n−4 + Sz

n−3S
−
n−4 − S−

n−3S
z
n−4

S−
n−3 + S−

n−2 + S−
n−3S

z
n−2 − S−

n−2S
z
n−3

. (5.4.34c)
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From eqs.(5.4.30), (5.4.32) and (5.4.34), C0 and C1 are given by C0 =
∞∑

n=−∞

log f (0)
n and C1 =

∞∑
n=−∞

f
(1)
n

f
(0)
n

, respectively. Particularly, Re C0 is written as

Re C0 =
1

2

∞∑
n=−∞

log
1 +

−→
S n · −→S n+1

2
. (5.4.35)

Comparing eq.(5.4.35) with eq.(5.4.27a), we obtain

4

∫ π

0

sin2 kP (k)dk + 4
M∑

j=1

log

∣∣∣∣Pj + 1

Pj − 1

∣∣∣∣ = −2
∞∑

n=−∞

log
1 +

−→
S n · −→S n+1

2
. (5.4.36)

We next calculate the {Dj}. The boundary condition (5.3.6) gives

log ā(z) =
∞∑

n=−∞

log
φ22(n + 1, z)z

φ22(n, z)
. (5.4.37)

By introducing

u(n, z) =
φ12(n, z)

φ22(n, z)
, (5.4.38)

eq.(5.3.4) is written as

(z2 + 1)[u(n + 1, z) − u(n, z)]

+(z2 − 1)[S−
n u(n + 1, z)u(n, z) − Sz

n{u(n + 1, z) + u(n, z)} − S−∗
n ] = 0,

(5.4.39)

and eq.(5.4.37) becomes

log ā(z) =
∞∑

n=−∞

log

[
1 +

1

2
(z2 − 1){1 − Sz

n + S−
n u(n, z)}

]
. (5.4.40)

From eq.(5.4.39), the expansion for u(n, z) in powers of (z2 − 1) is

u(n, z) = (z2 − 1)g(1)
n + (z2 − 1)2g(2)

n + · · · , (5.4.41a)

g(1)
n =

1

2

n−1∑
l=−∞

(Sx
l + iSy

l ). (5.4.41b)

Therefore, D1 and D2 are found to be

D1 =
1

2

∞∑
n=−∞

(1 − Sz
n), (5.4.42a)

D2 =
1

8

∞∑
n=−∞

S−
n

n∑
l=−∞

S−∗
l − 1

2
D1, (5.4.42b)
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where −2D1 is the total spin. Comparing eq.(5.4.42a) with eq.(5.4.28a), we have a relation∫ π

0

P (k)dk +
M∑

j=1

(Pj + P ∗
j ) = −

∞∑
n=−∞

(Sz
n − 1). (5.4.43)

From eqs.(5.4.36) and (5.4.43), we see that the Hamiltonian (5.4.20) coincides with the Hamil-
tonian (5.1.1).

Appendix 5.1 Derivation of equations (5.2.9), (5.2.13) and
(5.2.14)

First we derive eq.(5.2.9). We assume

g−1
n = αng

†
n. (5.A.1)

From eq.(5.2.6a), we have

g−1
n+1 = g−1

n

[
1 −qn

q∗n 1

]
1

1 + |qn|2
, (5.A.2)

g†
n+1 = g†

n

[
1 −qn

q∗n 1

]
. (5.A.3)

These equations suggest

αn =
∞∏

j=n

(1 + |qj|2). (5.A.4)

On the other hand, from eq.(5.2.6b) we have

d

dt
g−1

n = −ig−1
n

[
−qnq

∗
n−1 −qn + qn−1

−q∗n + q∗n−1 q∗nqn−1

]
, (5.A.5)

d

dt
g†

n = −ig†
n

[
−q∗nqn−1 −qn + qn−1

−q∗n + q∗n−1 qnq
∗
n−1

]
, (5.A.6)

which yield
α̇n = iαn(qnq

∗
n−1 − q∗nqn−1). (5.A.7)

This equation is consistent with eq.(5.A.4), that is,

i
d

dt
log αn = i

∞∑
j=n

q̇∗j qj + q∗j q̇j

1 + |qj|2

=
∞∑

j=n

[{−q∗j+1 − q∗j−1 + 2q∗j − |qj|2(q∗j+1 + q∗j−1)}qj − c.c.]
1

1 + |qj|2

=
∞∑

j=n

[q∗j (qj+1 + qj−1) − (q∗j+1 + q∗j−1)qj] = q∗nqn−1 − qnq
∗
n−1.

(5.A.8)

Hence we obtain eq.(5.2.9).
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We next derive eq.(5.2.13). Substitute eq.(5.2.12) into eq.(5.2.1) to find

z − z−1

2
Ṡn

= −i[(z − z−1)2(Sn + Sn+1)
−1 + (z2 − z−2)Sn(Sn + Sn+1)

−1]

×
(

z + z−1

2
I +

z − z−1

2
Sn

)

+i

(
z + z−1

2
I +

z − z−1

2
Sn

)
×[(z − z−1)2(Sn + Sn−1)

−1 + (z2 − z−2)Sn−1(Sn + Sn−1)
−1]

= −i
(z − z−1)3

2
[(Sn + Sn+1)

−1Sn + Sn(Sn + Sn+1)
−1

−Sn−1(Sn + Sn−1)
−1 − Sn(Sn + Sn−1)

−1]

−i
(z − z−1)2(z + z−1)

2
[(Sn + Sn+1)

−1 + Sn(Sn + Sn+1)
−1Sn

−(Sn + Sn−1)
−1 − SnSn−1(Sn + Sn−1)

−1]

−2i(z − z−1)[Sn(Sn + Sn+1)
−1 − Sn−1(Sn + Sn−1)

−1].

(5.A.9)

Noticing that
(Sn + Sn+1)

−1Sn = Sn+1(Sn + Sn+1)
−1, (5.A.10)

we obtain
iṠn = 2[Sn, (Sn + Sn−1)

−1 + (Sn + Sn+1)
−1]

=
1

1 +
−→
S n · −→S n+1

[Sn, Sn+1] +
1

1 +
−→
S n · −→S n−1

[Sn, Sn−1],
(5.A.11)

which is equivalent to eq.(5.2.13).
We finally derive eq.(5.2.14). From eqs.(5.2.6a) and (5.2.11a), we have

g−1
n

[
1 −qn−1

q∗n−1 1

]
gn = 2Sn−1(Sn + Sn−1)

−1. (5.A.12)

Determinant of eq.(5.A.12) gives

1 + |qn|2 =
2

1 +
−→
S n · −→S n+1

, (5.A.13)
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which is eq.(5.2.14a). Equation (5.2.14b) is derived from eqs.(5.A.8) and (5.A.11), that is,

i(qnq
∗
n−1 − q∗nqn−1) =

d

dt

∞∑
j=n

log(1 + |qj|2)

= − d

dt

∞∑
j=n

log(1 +
−→
S j ·

−→
S j+1) = −

∞∑
j=n

−̇→
S j ·

−→
S j+1 +

−→
S j ·

−̇→
S j+1

1 +
−→
S j ·

−→
S j+1

=
∞∑

j=n

[
2
−→
S j−1 · (

−→
S j ×

−→
S j+1)

(1 +
−→
S j ·

−→
S j−1)(1 +

−→
S j ·

−→
S j+1)

− 2
−→
S j · (

−→
S j+1 ×

−→
S j+2)

(1 +
−→
S j+1 ·

−→
S j)(1 +

−→
S j+1 ·

−→
S j+2)

]

=
2
−→
S n−1 · (

−→
S n ×−→

S n+1)

(1 +
−→
S n · −→S n−1)(1 +

−→
S n · −→S n+1)

.
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CHAPTER VI

CONCLUDING REMARKS
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Here we summarize the results obtained in the preceding chapters and give some remarks.
In chapter II, introducing the small amplitude and long-wavelength approximations, we

have derive the equations describing the nonlinear waves in the (2n, n) Lennard-Jones lattice
and examined the soliton solutions of them. To see effects of the long-range interactions, we
have not used the nearest-neighbor approximation. For n = 4 we have obtained the Korteweg-
de Vries equation, and found that the lattice is essentially the same as the system with the
nearest-neighbor interaction. For n = 2 we have gotten the Benjamin-Ono equation which is
more dispersive than the K-dV equation and whose soliton solution is algebraic. Although we
have considered the L-J lattice, the typical example of a lattice with long-range interaction is
a Coulomb system. To treat the system, we must study a diatomic lattice because of charge
neutrality. It may be worth-while to study a Coulomb system.

In chapter III, we have investigated the discreteness effects on the Sine-Gordon kink with
use of the perturbation theory developed by McLaughlin and Scott. We have seen that the
propagation of the S-G kink in the discrete medium is very different from that in the continuum
medium, that is, the kink is pinned between two adjacent lattice points when the kink velocity
u is smaller than the critical pinning velocity up and excutes wobbling motion with radiation
loss when u > up. We have not discussed multi-soliton and breather dynamics which contain
important problems such as the creation or annihilation of kink-antikink pairs. This is the
subject for future study.

In chapter IV, equivalence of the nonlinear wave equations generated by the A-K-N-S and
W-K-I schemes of the inverse scattering method was shown by introducing the gauge trans-
formation (namely the transformation of wave variables) and the transformation of space and
time coordinates. Our discussions were confined to the case that the dispersion relation of the
linearized equations is ω = αk3 +βk2. The results indicate a possibility that all nonlinear wave
equations having the same dispersion relation, which are integrable by the inverse scattering
method, are equivalent.

In chapter V, we have constructed the classical spin model which is differential-difference
analogue of the continuous isotropic Heisenberg spin chain. As is well known, the classical

spin is derived in the case s >> 1 where s is the magnitude of a spin operator
−→
S , namely

−→
S 2 = s(s+1). As mentioned in the section 5.1, for s =

1

2
the Heisenberg model is the solvable

spin model. These facts suggest that a solvable spin model with arbitrary spin exists. We hope
that the problem will be solved in the near future.
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