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ABSTRACT

Nonlinear waves in one-dimensional dispersive systems and related evolution equations are
studied from the view points of soliton physics.

First, nonlinear waves in a lattice with (2n,n) Lennard-Jones potential are investigated
in small-amplitude and long-wavelength approximations. Equations derived are classified into
three types according to the value of the force-range parameter n. For n = 2 and = 4, we
get the Benjamin-Ono equation and Korteweg-de Vries equation, respectively. Furthermore, an
exact solution describing a multiple collision of periodic waves is obtained for the B-O equation.
It is shown that the solution reduces to the algebraic multi-soliton solution in a long wave limit.

Secondly, discreteness effects on dynamics of a Sine-Gordon kink in a lattice system are
studied with use of a perturbation formalism due to MaLaughlin and Scott. It is shown from
the zeroth order condition that a kink moves in a periodic (Peierls) potential field which causes
wobbling or pinning of the kink. The first order correction for the kink consists of two parts,
that is, a dressing part and a radiation one. The dressed kink is steeper in shape than the
continuum S-G kink and the amplitude of the backward radiation is larger than that of the
forward radiation. These results are in accord with a existing numerical work.

Thirdly, relationship among some schemes of the inverse scattering transform are discussed.
It is shown that two inverse scattering formalisms by Ablowitz, Kaup, Newell and Segur and by
Wdati, Konno and Ichikawa are connected through a gauge transformation and a transformation
of the space and time coordinates depending on a dependent variable. One-soliton solutions
associated with the W-K-I scheme are also examined.

Finally, an integrable spin model on the one-dimensional lattice is obtained from the differential-
difference nonlinear Schrodinger equation by introducing the concept of gauge equivalence. The
spin model is the differential-difference analogue of the continuous isotropic Heisenberg spin
chain. The inverse scattering method associated with it is discussed and the canonical action
angle variables are constructed.
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CHAPTER 1

INTRODUCTION



The study of wave motion is one of the most important subjects in physics.

In general, waves having small amplitudes are described by linear wave equation. Such
linear waves are resolved into independent components, normal modes, and various physical
problems associated with them can be easily solved. As the mathematical tool to treat it, the
Fourier transform method is usually used.

For nonlinear waves with finite amplitudes, the situation is quite different. It is hardly
possible to treat the effects of nonlinearity except to take them as a perturbation into the
basis solutions of the linearized theory. However, in recent years, the nonlinear wave theory
has been developed considerably outside the framework of perturbation theory and a large
number of exactly solvable nonlinear wave systems have been found. In these systems, the
concept of ”solitons” played an important role and gave the viewpoint that nonlinearity can
result in qualitatively new phenomena which cannot be constructed via perturbation theory
from linearized equations??. Soliton theory has been applied to various problems in the fields
such as hydrodynamics, plasma physics, solid state physics, nonlinear optics and field theory.
In this article, some problems associated with the soliton theory are studied.

Before mentioning the contents of the article, we explain the meaning of the name ”soliton”.
This name was coined by Zabusky and Kruskal®) in 1965, who carried out computer experiments
for the Korteweg-de Vries (K-dV) equation

O — 6ud,u + 02u = 0, (1.1.1)

where 0, and 0, denote partial defferentiation with respect to time ¢ and space-coordinate z,
respectively. At that time it had been already known that the K-dV equation has a special
solution with a pulselike shape, a solitary wave solution. Z-K showed how solitary waves
would scatter upon collision. The result indicated that in spite of their nonlinear interaction,
solitary waves would emerge from the collision having the same shapes and velocities with
which they entered. To indicate this remarkable property, Z-K named the solitary wave of the
K-dV equation ”soliton” which means a solitary wave particle. The character of solitons which
preserve their identities gave a suggestion that solitons are a kind of normal modes. This was
supported by the inverse scattering method discovered by Gardner, Green, Kruskal and Miura
(G-G-K-M)¥ in 1967. They showed that the inverse scattering method enables us to solve the
initial value problem for the K-dV equation through a succession of linear computations and
that any solution can be resolved into independent components called scattering data which are
composed of solitons and continuous radiation. The work by Zakharov and Faddeev® in 1971
revealed more clearly that solitons are normal modes. They showed that the inverse scattering
method for the K-dV equation may bme considered as a canonical transformation connecting

the canonical variables (¢ = u,p = udz) and the new ones (@, P) constructed from the

scattering data. The Hamiltonian for the K-dV equation written by the variables (Q, P) takes
the form
>0 16 o 3
H=38 EBP(k)dk— — Y P2, 1.1.2

|- > (1.1.2)
where the first and second terms represent continuous radiation and solitons, respectively. It
is interesting to see that the continuous part of the Hamiltonian is essentially the same as the
Hamiltonian for the linearized K-dV equation. Since this Hamiltonian is only a function of the
canonical momentum, the variables (@, P) are of the action-angle type and the equations of
motion can be easily integrated, that is, the K-dV equation is a completely integrable Hamil-



tonian system. We note here that in (@, P) space solitons have no interaction between them
but in the original (g, p) space they do interaction which causes only a phase shift.

Subjects in the soliton theory are to find the solvable models, to develope methods which
present the exact solutions of nonlinear wave equations, the research on mathematical structures
of the solvable models, applications to physical problems (for example calculation of physical
functions such as the partition and correlation functions, reduction of real systems to solvable
ones and construction of a perturbation theory based on solvable nonlinear wave equations),
the extention of the concept of solitons, and so on. The treatment in this article is confined to
problems concerned with one-dimensional and classical systems.

In chapter II, we investigate the propagation of nonlinear waves in a continuum model
of a lattice. In general, if we consider the nearest-neighbor interacting monoatomic lattice,
the nonlinear waves with small but finite amplitude in a continuum model of it are described
by the K-dV equation whatever types of the interatomic potentials are.®) In some systems
such as metals, however, the interatomic forces are long range ones, and the interaction from
far-neighboring atoms may affect the nonlinear wave propagation considerably. To study this
problem, we take the (2n,n) Lennard-Jones potential as interatomic potential and consider fully
effects of the long-range interactions. We obtain the Benjamin-Ono (B-O) equation” for n = 2
and the K-dV equation for n = 4. As mentioned before, the K-dV equation is the equation
which caused the discovery of solitons and its mathematical properties have been investigated
in detail. Though for the B-O equation some problems have been left unsolved, the exact
N-soliton solution (a solution describing a multiple collision of N solitons) has been obtained
by various methods. We obtain the exact N-soliton solution of the B-O equation through the
so-called Hirota’s method®. The key point of the method is that through a dependent variable
transformation an original nonlinear wave equation can be rewritten in a bilinear form. For
example, the K-dV equation (1.1.1) is transformed into the bilinear form

Dy(Di+Dy)f - f =0, (1.1.3)

through the transformation
u = —202log f, (1.1.4)

where D, and D; are defined by
DyDYf - f = (0p — 0u)™ (0 — Op)" (2, 1) f (2, 1) [a=ar 4=t (1.1.5)

We can solve eq.(1.1.3) exactly using a kind of perturbational approach and obtain the N-soliton
solutions. The context of chapter II is taken from published papers 8) and 9).

In chapter 111, we study the effects of discreteness on the soliton (or kink) in the Sine-Gordon
(S-G) system!?). The S-G equation has almost become ubiquitous in the theory of condensed
matter, since it is a simple wave equation in a periodic medium. In many cases, the equation
is derived from a lattice system by a continuum approximation. The aim of our study is to
clarify the dynamical behavior of S-G soliton in a discrete media. For this purpose, we treat the
effects of discreteness as a perturbation. Construction of a perturbation theory based on the
integrable nonlinear wave equations has been done by many authors. Here we use the Green’s
function approach developed by McLaughlin and Scott'?) because its formalism is suitable for
our problem. The context of chapter III is taken from a published paper 12).

In chapter IV, we discuss relationships among some schemes of the inverse scattering trans-
form. The inverse scattering method is one of the most important discovery in the soliton
theory. After the work? of G-G-K-M for the K-dV equation, Lax'® formulated the method



in an elegant and general form, that greatly influenced subsequent developments. Several au-
thors showed that this method is applicable to other equations, for example, the nonlinear
Schrodinger equation by Zakharov and Shabat'¥), the modified K-dV equation by Wadati'®)
and Tanaka'®), and the S-G equation by Ablowitz, Kaup, Newell and Segur (A-K-N-S)'7). Es-
pecially, A-K-N-S set up a general framework of the inverse scattering method including these
examples'®. Afterward there has been a continuous rise in research to the inverse scattering
method, and at present the number of nonlinear wave equations solvable by the method has
reached two figures?.

Here we explain the framework of the inverse scattering method. In the method, we solve

the initial value problem for a nonlinear wave equation by considering the auxiliary equatons:
0@z, t;A) = Qulz, LN R(2, 8 A), (b =w=,1), (1.1.6)

where in general ® is a n-component vector and (), are n x n matrices which depend on the wave
variable u(x,t) and the eigenvalue X\. By appropriate choice of the matrices @), we interpret
the original nonlinear wave equation as the compatibility condition of eq.(1.1.6), which gives

auQu - aqu/ + QMQV - QuQu = 0. (117)

For example, with the particular choice

—iA u
0, { 1 M} | (1.1.8a)
O, — [4X* = 20u) + (Do) AU’ + 2i(O,u)A + 207 — (J}u) (1.1.8b)
6= N2 4 2u 40X + 2iud — () ’ h

then eq.(1.1.7) becomes the K-dV equation (1.1.1). If we think of the spatial component of
eq.(1.1.6) as a time independent scattering problem, the wave variable u(x) plays the role of a
scattering potential, and eq.(1.1.6) gives a connection between the variable u(x) at a fixed time
t and the scattering data associated with the linear eigenvalue problem. It is also shown that
the scattering data a()),b(\) have a trivial time dependence

a(\t) = a(A,0), (1.1.9a)

b(\, 1) = Ny, 0). (1.1.90)

The initial value problem is solved much like Fourier transform method. The direct transform
maps u(z) — a(A),b(\) at time ¢ = 0. The time evolution of a and b from ¢ = 0 to some
later time ¢ is given by eq.(1.1.9). At time ¢ we must perform an inverse transform which maps
a(A,t),b(A,t) back into u(x,t). This last step is accomplished by the so-called Gel’fand-Levitan
equation.

Our discussion in this chapter concerns with the choice of the matrices @},,. We focus our
attention on @), presented by A-K-N-S and similar matrices by other authors, and clarify the
relationships among them. It is shown that some nonlinear wave equations are equivalent. The
context of chapter IV is taken from published papers 19) and 20).

In chapter V, we present an integrable spin system on the one-dimensional lattice. The
details of the inverse scattering approach to this spin model are given and canonical action-
angle variables are constructed. We note here that in chapter IV and V the concept of gauge



equivalence plays an important role. It is based on the property that eqs.(1.1.6) and (1.1.7) are
form-invariant under the gauge transformation®"

P =g, (1.1.10a)

Q,=9'Qug — 9" g, (1.1.100)
where ¢ is an arbitrary matrix. A part of contents of chapter V was published in a paper 22).

Finally, in chapter VI, we state concluding remarks and mention the future problems of our
studies.
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CHAPTER 11

SOLITONS IN A ONE-DIMENSIONAL
LENNARD-JONES LATTICE



2.1 Introduction

Since the discovery of solitons by Zabusky and Kruskal?, many studies have been made on
the nonlinear wave propagation in one-dimensional anharmonic lattices? . Equations important
in this problem are the Zabusky equation (or the Boussinesq equation), the Korteweg-de Vries
(K-dV) equation, the modified K-dV equation, the nonlinear Schrédinger equation, the Sine-
Gordon equation, the Toda lattice equation and so on?®). They all have been investigated in
detail both numerically and analytically and are known to have N-soliton solutions®. In these
lattices, solitons play an important role for the physical properties such as heat conduction®.

The equations mentioned above are derived for a lattice with the nearest-neighbor interac-
tion. In some lattices such as metals®, however, interatomic forces may extend further than
to nearest neighbors. A lattice with the long-range interaction has, as is well known, the dis-
persion relation different from that of a lattice with the nearest-neighbor interaction, and may
have soliton solutions not observed before.

In this chapter, we investigate this problem. As a model of the nonlinear lattice, we take a
one-dimensional lattice with (2n,n) Lennard-Jones (L-J) potential expressed as

U(r) = 40, {(9% - (gﬂ , (2.1.1)

r

where Uj is the potential depth, 20 the diameter of constituent particle and n is a positive
integer. The smaller the value of parameter n, the longer is the range of force. Under the
nearest-neighbor approximation, formerly Visscher et al.%) studied the (12,6) L-J lattice in con-
nection with thermal conductivity in the nonlinear lattice and recently Yoshida and Sakuma”
presented the Boussinesq-like equation for the (2,1) L-J lattice. We shall investigate the general
(2n,n) L-J lattice with effects of the long-range interactions fully taken into account.

The plan of this chapter is as follows. In section 2.2, we present the general equations of
motion for small vibration. In section 2.3, introducing the continuum approximation, we derive
three types of nonlinear wave equations according to the value of the parameter n. For n = 2
and = 4, we get the Benjamin-Ono (B-O) equation and the Korteweg-de Vries (K-dV) equation,
respectively. In section 2.4, N-soliton solution of the B-O equation is examined. Concluding
remarks are given in section 2.5.

2.2 Equations of motion for small vibration

We consider a lattice consisting of an infinite number of equally spaced identical particles of
mass M, lying along a straight line. Let the equilibrium spacing between the particles be a and
the longitudinal displacement of the pth particle from its equilibrium position be u, (Fig.2.1).
Then the total potential energy of the lattice, V', is given by

V=" Ulwpim — ), (2.2.1)

p m>0

where x), is the position of the pth particle and given by

Tp = pa + u,. (2.2.2)
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Fig.2.1. One-dimensional L-J lattice.
()positions of particles when in equilibrium.
(@)positions of particles when displaced as for a longitudinal wave.

We assume that the particle displacement is very small compared to the interparticle distance.
Expanding U(zp1m — 2,) in the displacement u, and neglecting terms higher than O(u), we
obtain from eqs.(2.2.1) and (2.2.2)

1 1
V=Vot 5D D> U ma)(upem = w)* + 2> > U (ma)(uppm —u,)*,  (223)
p m>0 p m>0
where V) is the potential energy of the lattice corresponding to the equilibrium configuration,
Vo=)Y_> U(ma). (2.2.4)
p m>0

We have also used the fact that the terms linear in u, vanish because the lattice is in equilibrium
when u, = 0 for all p. Requiring that 1, be a minimum with respect to variations in the lattice
spacing a ), we have from egs.(2.1.1) and (2.2.4)

a= {22%‘)} ' 7, (2.2.5)

where ((n) is the Riemann zeta function. We observe that for n = 1 the lattice spacing is zero.
From now on we will assume n = 2.

ov
Let F, denote the total force acting on the pth particle. Then it is given by e so that
Up
the equation of motion of the pth particle is

d*u, _

M dt? P

(2.2.6)

with
1
F, = Z U"(ma)(tpym + Up—m — 2u,) + 5 Z U" (ma)|[(Uprm — tp)?® — (Up_m — up)*]. (2.2.7)
m>0 m>0

If interactions only among nearest-neighbors are taken into account, then eq.(2.2.6) with
eq.(2.2.7) reduces to

d?u,,
dt?

4 1 n
M = U"(ma)(tp1 + up-1 — 2up) + §U (ma)[(ups1 — up)* = (up-1 — up)?). (2:2.8)



As is well known, a continuum limit of this equation yields the Boussinesq or the K-dV equation
which has sech?-type soliton solution?.

2.3 Nonlinear waves with long-wavelengths

In this section we study the nonlinear waves described by eq.(2.2.6) with eq.(2.2.7) which
includes long-range force components. For the (2n,n) L-J potential, this equation is rather
complicated to study analytically. Here we consider smooth waves with wavelengths long
compared with the lattice spacing, so that we adopt a continuum approximation.

For this purpose, it is convenient to introduce the Fourier expansion for u,,

up = Z Qr exp(ikx), (2.3.1)
2
with -
k<=, (2.3.2)

where z is the equilibrium position of the pth particle, z = pa. Because u, is real, we have
Q_r = Q;. With use of eq.(2.3.1), the expression for F}, is written as

F,= Z —21(k)]|Qre™™ + Z Z [iJ(k + k') — 20 (k)] QrQu e+, (2.3.3)
where .
I(k) =Y U"(ma)[l — cos(mka)], (2.3.4)
and ) .
J(k) = Z U" (ma) sin(mka). (2.3.5)

For the (2n,n) L-J potential (2.1.1), I(k) and J(k) are given by

2n¢(n)Uo {(2n+1)é(n)
¢(2n)a? ¢(2n)

I(k) = Agnya(ka) — (n + 1)An+2(kza)} , (2.3.6)

and

J(k) =

2n(n+1)¢(n)Us | (4n +2)((n)
¢(2n)a? ¢(2n)
where A, (ka) and B, (ka) are defined by eqgs.(2.A.1) and (2.A.2) in Appendix 2.1. We note

that the exact dispersion relation of the linear wave is expressed from the linearized version of
eq.(2.3.3) as

Bonss(ka) + (n + Q)Bn+3(ka)] , (2.3.7)

2
W} = (k). (2.3.8)
where wy, is the frequency of the wave with wavevector k.
Let us take a continuum limit of eqs.(2.3.3), (2.3.6) and (2.3.7). Assuming that |ka| << 1,
keeping the leading terms of A, (ka) and B, (ka) and neglecting the higher order terms i ka, we

find that F), has three types of expressions for n = 2,3,--- (see Appendix 2.1):
F, = MZ —w)Qre™ —3(n +1) MCQZZ (ik) (k") QpQpe'FHF)z (2.3.9)



where c is the sound speed given by
=" (2.3.10)

and w? is written as
wi = A(k? 4 ]k|?)

Ta for n=2, (2.3.11)
5=
4¢(2)

w? = A(k* — 0k*log |kal)

22 for n=3, (2.3.12)
5 —
9¢(3)
and
wi = A(k* — 0k*)
for n24. (2.3.13)
o a? ¢(2n —2) C(n—2)

Three equations show that the value of the force-range parameter n mainly contributes to the
form of the dispersion relation.

We will derive from these expressions the equations govering u, = u(x,t) and study solitary
wave solutions of them.

Case n = 2. Substituting eq.(2.3.1) into egs.(2.3.9) and (2.3.11), we have from eq.(2.2.6)

02u = [0%u — O26H (u) — 9(0pu) (0%u)], (2.3.14)

where H is the Hilbert transform operator defined by

R P ey (GO
We have also used the identity A .
H(e™) = i(sgnk)e’*™. (2.3.16)

A solitary wave solution of eq.(2.3.14) is written as

4 — At

u=gotan”! (m < ) , (2.3.17a)

M\ = 1—£ (2.3.170)

NE 3.
A >0, (2.3.17¢)
where we have used the identity
1 —
= . 2.3.1
m (mQ—i—AQ) A(x? 4+ A?) (2:3.18)



It is well known that a solitary wave solution of the Zabusky equaiotn which is derived as a
continuum limit of eq.(2.2.8) is compressive and supersonic. However, in the above solution,
the propagation speed is smaller than the sound speed and the lattice is expanded around a
solitary wave. Equation (2.3.14) can be reduced to the equation which describes the waves
moving in one direction in the rest frame, by using the reductive perturbation method®»). Let
us introduce the stretched coordinates

§=¢(x—ct), (2.3.19a)
T =€, (2.3.190)

and expand J,u as
Ot = €v + €W+ -+ - . (2.3.20)

Substituting eqgs.(2.3.19) and (2.3.20) into eq.(2.3.14) and collecting terms of order €*, we obtain

0.v — %827‘((2}) — %U&gv = 0. (2.3.21)

This equation is equivalent to the B-O equation which describes internal waves in stratified
fluids of great depth!®'Y. A soliton solution of eq.(2.3.21) is

A
v = RS (2.3.22a)
1+
AQ
4
A= _WZI’ (2.3.22b)
A= —%, (2.3.22¢)

which has the Lorentzian profile vanishing algebraically as |z| — oo.
Case n = 3. Substituting eq.(2.3.1) into eqgs.(2.3.9) and (2.3.12), we have from eq.(2.2.6)

O*u = 2[0%u — 00°T (u) — 12(0,u) (0%u)], (2.3.23)

where 7 is the integral transform operator defined by

¥ —x

Y@=+ [ s’ —a) (1og

o0

‘ + 7) f(a")d, (2.3.24)

and v is Euler’s constant. We have also used the identity

log |ak|
= — ¢

T ikx
(™) T

the (2.3.25)

At present, analytic solutions of eq.(2.3.23) have not been found.
Case n 2 4. Substituting eq.(2.3.1) into eqgs.(2.3.9) and (2.3.13), we get from eq.(2.2.6)

O*u = AA[0%u + 50%u — 3(n 4+ 1)(0,u) (0%u)], (2.3.26)

11



which is essentially the same as a long-wave equation of nearest-neighbor system (2.2.8), namely
the Zabusky equation. A solitary wave solution of eq.(2.3.26) is expressed as

40 r— M
40
N = <1 + F) : (2.3.27b)

where A is an arbitrary constant. Unlike the case n = 2, this solution describes a compressed
wave with supersonic speed. If instead of eq.(2.3.19) we introduce the sttetched coordinates

¢ =e2(zx—ct), (2.3.28q)

T =€t (2.3.28)
then we can reduce eq.(2.3.26) to the K-dV equation. It follows that

J 3(n+1

0-v + Ecag’v - yvﬁgv =0. (2.3.29)
A soliton solution of eq.(2.3.29) is
- A

v = Asech? (§—7—> : (2.3.30a)

A

40
A= _ _ 2.3.30b
20c

where A is an arbitrary constant.

We note here that the total compression by a K-dV soliton takes various values depending
on the amplitude of the soliton but the total expansion by a B-O soliton is determined only by
0 which depends on the lattice constant a and the potential parameter n.

2.4 N-perodic wave and N-soliton solutions of the Benjamin-

Ono equation

In the preceding section, we have derived the B-O equation for the (4,2) L-J lattice. For
the equation, Benjamin'® and later Ono'! presented a periodic wave solution and a one-soliton
solution. Recently, Joseph found an exact solution which describes a collision of two solitons'?.
Motivated by the work of Joseph, Chen et al'® and, independently Case'¥), obtained a solution
describing a multiple collision of N solitons (N-soliton solution), applying a pole expansion
method. Matsuno obtained the N-soliton solution in a matrix form applying Hirota’s method™®).
He also discussed the initial value problem'®'7). The inverse scattering method for the B-O
equation was developed by Kodama et al.'®)19).

Ablowitz and Satsuma studied a relationship between soliton and algebraic solutions of a

certain class of nonlinear wave equations and developed a method to get algebraic solutions by

12



taking a long wave limit on soliton solutions??. As for the B-O equation, Benjamin has already
suggested that the Lorentzian pulse (algebraic one-soliton solution) is obtained as a long wave
limit of a periodic wave solution. Thus it is likely that the equation admits a series of periodic
wave solution, each of which has the corresponding algebraic soliton solutions as the limit.

In this section, we shall show that a solution describing a multiple collision of periodic waves
with different periods (N-periodic wave solution) is obtained for the B-O equation by Hirota’s
method and that the solution is reduced to the algebraic N-soliton solution as the long wave
limit. In subsection 2.4.1, we transform the equation into a bilinear form and discuss about
one-periodic wave solution and algebraic one-soliton solution. In subsection 2.4.2, we study the
case of two-periodic wave solution. Finally, in sebsection 2.4.3, we extend the results in 2.4.1
and 2.4.2 to a general N-periodic wave solution.

2.4.1 One-periodic wave solution

We rewrite eq.(2.3.21) as
dyu + 2udyu + OFH(u) = 0, (2.4.1)

rescaling v, ¢ and 7. We introduce a dependent variable transformation

f'(x,t)
fz, 1)
and assume that f (f’) can be written as an infinite or finite product of z — z, (x — 2},) for

zn (20) in the upper (lower)-half complex plane (the zeroes of f, f’ should not necessarily be
simple). It is then easy to see that

u(x,t) =10, log (2.4.2)

H <i8x log f7’) = —, log(ff"). (2.4.3)

Substituting eq.(2.4.2) into eq.(2.4.1), using eq.(2.4.3) and integrating once with respect to x,
we have a bilinear form of the B-O equation,

(iD= D) f"- f=0, (2.4.4)

where we have taken the integration constant to be zero and D; and D? are defined by eq.(1.1.5)
(see for example ref. 21 as for the properties of these operators).

We can construct some special solutions of eq.(2.4.1) by applying a kind of perturbational
technique on eq.(2.4.4)?Y. The simplest solution of eq.(2.4.4) is written as

f=1+exp(i& + ¢1), (2.4.5a)
f=1+exp(i& — 1), (2.4.5b)
where
& = ki(z — ert) + €7, (2.4.6)
CcC1 = kl coth ¢1, (247)

and kq, ¢; are real parameters and 5;0) is an arbitrary phase constant. We see from eqs.(2.4.5)

that for real 550) the zeroes of f (f’) are in the upper (lower)-half complex plane if % > 0. In
1

13



this case, the assumption for deriving eq.(2.4.3) is satisfied and substitution of eq.(2.4.5) into
eq.(2.4.2) yields
tanh ¢

_ _ 2.4.8
' + sech¢y cos & ( )

u
This solution is essentially the same as the periodic wave solution presented by Benjamin'®
and Ono'Y. As they have already mentioned, a Lorentzian pulse is obtained by taking a long
wave limit on eq.(2.4.8): We consider k; << 1 and ¢; = O(1). Then choosing §§0) = 7 and
using

ki

tanh ¢ = —, (2.4.9)
C1
K 4
sech¢y =1 — — + O(k), (2.4.10)
2c]
ko7 4
cos =— |1 — —5 Tt O(ky) |, (2.4.11)
we have from eq.(2.4.8)
2
u=—L7+0(k), (2.4.12)
9% + =
“
where
91 =T — Clt, (2413)

(we may add an arbitrary phase constant to 6;). Thus we recover the algebraic one-soliton

solution
2C1

RS
as the limit, k&; — 0, of eq.(2.4.8). Compared with the one-soliton solution of the K-dV equation,

the periodic wave solution, eq.(2.4.8), has an additional arbitrary parameter and so it yields
the algebraic solution with one parameter.

(2.4.14)

2.4.2 Two-periodic wave solution

A two-periodic wave solution is obtained by choosing

[ =14 exp(i&i + ¢1) + exp(i&s + ¢2) + exp(i&1 + & + ¢1 + ¢2 + A1), (2.4.15a)
' =14 exp(i& — ¢1) + exp(i&s — ¢2) + exp(i& + s — ¢1 — ¢ + Ara), (2.4.15a)
where
& = kj(x —cjt) + €, (2.4.16)
C; = k’j coth ¢j7 (2417)

and k;, ¢; are real parameters satisfying

% 0, (2.4.18)
k;

14



and §§0) are arbitrary phase constants. Substituting eq.(2.4.15) into eq.(2.4.4), we find the
solution satisfies eq.(2.4.4) if

(c1 —2)? = (k1 — ko)
(1 —2)? — (k1 + k2)2‘

Generally, eq.(2.4.15) gives a complex u. But, if we choose the arbitrary phase constants

adequately, we can get a real solution: Taking the imaginary part of fj(-o) equal to be %, we

exp A12 = (2419)

have

12

A A
f =1+ exp (261 + ¢1 - %) + exp (ng + ¢2 - 7) -+ exp(ifl + Z€2 + le + gbg), (2420@)
fr=exp(i&1 +1i& — ¢1 — ¢2) - 7,
(2.4.200)
where asterisk denotes complex conjugate. Substituting eq.(2.4.20) into eq.(2.4.2), we obtain

*

u = —(ky + k2) + 10, log f77 (2.4.21)
which is a real solution.

We show that the solution, eq.(2.4.20), satisfies the assumption necessary for deriving
eq.(2.4.3). For ky >> ky or ky >> ki, we have from eq.(2.4.19) exp(A12) — 1 and eq.(2.4.20a)
may be written as

f =114 exp(i& + ¢1)][1 + exp(i& + ¢2)], (2.4.22)

which has zeroes only in the upper-half plane under the condition (2.4.18). Then, for arbitrary
k1 and ko, the zeroes always remain in the upper-half plane unless they cross the real axis, i.e.,
eq.(2.4.20) vanish for real £ and &. We now prove that eq.(2.4.20) do not become zero under
the condition

(61 — 02)2 > (lk’1| + |]€2|)2 (2423)
If f would vanish for real & and &, we have from eq.(2.4.20a)

&1 P14+ @2 Aip &1 ¢1 — P2 &2
cos — cosh ———— + exp | ——— | cos = cosh cos —
2 2 2 2 2 2
(2.4.24a)
& ¢1 + 0o Ap\ . & o1 — 2| . &
+ { sin 5 cosh 5 + exp 5 sin 5 cosh 5 sin 5 = 0,
sin é sinh M + exp —@ sin é sinh 01— 02 coS 5—2
2 2 2 2 2 2
(2.4.24b)

A _
+ |cos é sinh 01+ 92 — exp —22) cos é sinh 01— 92 sin é =0.
2 2 2 2 2 2

The determinant of the coefficients of eq.(2.4.24) is given by

A
%[Sinh<¢1 + ¢2) — exp(—Ayz) sinh(¢1 — ¢2) + exp (—$> sinh ¢, cos & ]

= %[sinh ¢1 cosh pp{1 — exp(—Ai2)}

+ sinh ¢o{cosh ¢; + exp(—Ajs) cosh @1 + exp (—%) cos &1},
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which does not vanish supposing ¢1¢p,A15 > 0. Then f has no zero on the real axis. This
condition is consistent with eq.(2.4.18) if eq.(2.4.23) holds. The similar argument is possible
f’. Hence we have verified that the solution (2.4.20) satisfies eq.(2.4.3) under the conditions
(2.4.18) and (2.4.23). This result also guarantees that u does not become singular. Substituting
eq.(2.4.20) into eq.(2.4.2), we have the explicit form of two-periodic wave solution,

I (2.4.25a)

where

U, — exp (%) (ky + ko) sinh(é1 + 62)

+exp <—%) (ky — ko) sinh(¢y — 62) (2:4.250)

+2(ky sinh ¢, cos & + ko sinh ¢y cos €1),

U = exp (52 ) foosh(6n + 62) + cos( + &)
(2.4.25¢)

+exp (-%) [cosh(¢1 — ¢a) + cos(& — &)

+2(cosh ¢ cos &1 + cosh ¢y cos &s).

In principle we can get an algebraic solution as a long wave limit of eq.2.4.25). It is easier,
however, to study the f and f’ themselves. Choosing the real part of phase constants in
eq.(2.4.20a) equal to be 7, we have

A A
f=1—exp (ik191 + ¢ — £> — exp (ik292 + g — —12)

2 2 (2.4.26)
+ exp(ik191 + ik‘gez -+ ¢1 + ¢2),
where
0, =z —cjt. (2.4.27)
k
We consider ky, ko << 1 and ¢;, ¢ = O(1) with k—l = O(1). Then using
2
1
J
4k;k;
Ay =1+ —2_ E* 2.4.2
exp( ]) + (Ci . Cj)g + O( )7 ( 9)

we find

=ik, {(wl N l) (Z'92 N l) N % + O(k)} | (2.4.30)

C1 Co C1 — CQ)
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Similarly we have from eq.(2.4.20Db)

f'=kaky [(z’fh - i) <z’02 — i) + (L + O(k:)] : (2.4.31)

¢ 2 c1 — ¢)?

Thus, in the limit of k;, ky — 0, we obtain

) 1 ) 1 4
(291 _ C_1> <ZQ2 _ 0_2) i (c1 —c2)?

u = 10, log i i 1
(i91 + —) <z92 + —) +——
C1 C2 (Cl - 02)

(c1 + )3
0102(01 — 02)2

+ )17 '
%} + (6101 + C292)2
1 — &2

This solution describes a collision of two algebraic solitons.

(2.4.32)
20102 [019% + 0203 +

|:0162(9192 —

2.4.3 N-periodic wave solution

The form of two-periodic wave solution suggests that of N-periodic wave solution. We can
prove by mathematical induction that the following solution satisfies eq.(2.4.4) (see Appendix
2.2);

N (N)
F=>oxp | D mli+ )+ minAis | (2.4.33a)
p=0,1 j=1 i<j
N (N)
Fr=>0 e | D mlig = 65) + > Ay | (2.4.330)
p=0,1 j=1 i<j
where
é.j = I{/’J(ZL’ — Cjt) + fj(-o), (2434)
¢; = k; coth ¢;, (2.4.35)
% -, (2.4.36)
k;
o2 (B )2
exp Ay = (e = )" = (ki — k) (2.4.37)

(ci = ¢)* = (ki + ky)*’

and the notation Z indicates the summation over all possible combinations of yy = 0,1, puy =

n=0,1
(N)
0,1,---,unx = 0,1 and Z the summation over all possible combinations of the N elements
i<j

with the specific condition i < j.
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In order to get a real u, we should choose the phase constants in eq.(2.4.33) correctly. we
have from eq.(2.4.33b)

N (N)
—exp | > (i§— ;) + > Ay

7=1 1<J
N (N)
X exp Z ij ¢] +Z Hitty — Aij
n=0,1 7j=1 1<J
(2.4.38)
N (N)
= exp | D (i — &) + ) Ay
7=1 1<J

N N (N)
j=1

v=0,1 i#] i<j

N
Ayl
Thus, if we choose the imaginary part of fj(»o) as Z 7] for j=1,2,--- , N, we obtain

i
N (N)
fl=exp | (16— )+ ) Ay| - (2.4.39)
=1 i<j

In the same manner as the two-periodic wave solution, we can show that, in the case of N = 3,
the zeroes of f(f’) remain in the upper (lower)-half plane for the choice of the imaginary part

of phase constants and under the conditions, % > 0 and (¢; — ¢;)* > (|ki| +|k;|)? for arbitrary
J

t,7. It may be possible to show the above result for N = 4,5, ---, though we have not gotten

the regorous proof. However, we can say that at least for A;; ~ 0 (¢, j are arbitrary) the zeroes

of f and f’ do not cross the real axis. Then eq.(2.4.33) satisfies the assumption necessary to

derive eq.(2.4.3) and we have from eq.(2.4.2) a real and non-singular solution,

N Iz
== kj+i0,log 7 (2.4.40)

=1

We now show that the N-periodic wave solution is reduced to an algebraic /N-soliton solution
in a long wave limit. Choosing the phase constants as

|
0) _ . ij
&Y =+ ZZ > (2.4.41)
i#£]
for j=1,2,---, N, eq.(2.4.33) is written by
f = exp Zuj(zkﬂj + LT + ¢]) -+ Z (Mzﬂ] - = 9 ]> Aij s (2442)
$=0,1 =1 i<j

18



where theta; is defined by eq.(2.4.27). If we take k,,, = 0 in eq.(2.4.42), then ¢, = A,,; = 0 and
N

f vanishes, which indicates that f is factorized by ij. Therefore, if we expand f in terms

j=1
N
of k;, the leading terms of eq.(2.4.42) are in the order of H k;. We consider k; — 0 with the
j=1
same asymptotic order and ¢; = O(1) for j =1,2,--- , N. Then, using eqs(2.4.28) and (2.4.29),
we obtain

N (N)
' ; 1 Hi + [
f~ II-n» [Hujkj (29j+ C—)} 11 {1+ (uiuj - f) kiijij} . (2.4.43)
p=0,1 j=1 i/ 152
where A
Bj=— . (2.4.44)
T (6 —¢)?
N
The leading terms of eq.(2.4.43) are given by those in the order of H k; of
j=1
N 1 (N)
11 [1 + k; (z'ej + —)] [+ kik; Bij).
. Cj -
Jj=1 1<J

Thus as the limit k; — 0 of the N-periodic wave solution, we obtain an algebraic solution in
the following from;
f*

u =10, log I (2.4.45)
where
N 1 1 N N 1
J=1 i,] I,
(2.4.46)
R al 1
g > Bt B [ (0 5)
% IRTEN N ) M PFi, g, ,myn p
(N)
The notation Z means the summation over all possible combinations of 7,7,--- ,m,n
2,0, ymm

which are taken from 1,2,--- N and all different. For N = 1,2, 3, eq.(2.4.46) is written as

1
fln=1 =10, + o (2.4.47a)
1
_ 1 , 1
f‘N:Q = <291 + —) (2(92 + —> y (2447[))
C1 Co

flves = (ity+ 1) (102+ 1) (i0+ )

1 1 1
+Blg <293 + —) + ng (291 + —) + Bgl (292 + —> .
C3 C1 Co

19
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We may express eq.(2.4.46) in a determinant form,

. 1
Z@l—i‘c— \/Blg VBlN
1

1
—V/Biy i +— -+ /B
= 2o N (2.4.48)
4 1
—vBin —vBan - 29N+C—
N

which is essentially the same as the algebraic N-soliton solution presented by Matsuno'®.

Finally, we study the asymptotic behavior of algebraic N-soliton solution. Without loss of
generality, we may assume in the limit ¢ — oo,

91) 027'” ) QM—I = 00,
0 = finite,
9]\/[.,.1, 9]\/[_,.2,"' s QN = —OQ.

Then it is easily seen from from eqgs.(2.4.45) and (2.4.46) that u has the following asymptotic

form,
QCM

U= ——>—-°,
202 +1
which is an algebraic solution with phase #,,;. Similarly we obtain the same asymptotic form

of u for t — —oo. Hence we find that the B-O solitons have no phase shift after the collisions
of them unlike those which take place between K-dV solitons.

(2.4.49)

2.5 Concluding remarks

In this chapter, we have investigated nonlinear wave propagations in the one-dimensional
lattice with the (2n, n) L-J potential. Introducing the approximations of small amplitude and
long wavelength, we have obtained eq.(2.3.14) or the B-O equation for n = 2, eq.(2.3.23) for
n = 3 and the Zabusky equation or the K-dV equation for n = 4. The results show that the
value of the force-range parameter n contributes not to the nonlinear terms but to the dispersion
terms of the equations. It is well known that both the B-O and K-dV equations have soliton
solutions formed by balancing of the nonlinearity and dispersion effects of the systems. The
reason why the B-O soliton is algebraic is that the B-O equation is more dispersive than the
K-dV equation. It is interesting to study whether eq.(2.3.23) having an intermediate dispersion
term between the B-O and the K-dV equations gives soliton solutions or not, though the
problem is still open.

Appendix 2.1 Formulas of Fourier series

We give some formulas of the Fourier series which are used in the text.
We define the functions A, (ka) and B, (ka) as

io:lln 1 — cos(lka)l, (2.A.1)

=1
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o

1
B, (ka) = — sin(lka),
(ka) = 3 g sin(tko)
where n 2 2. Then, for |ka| < 7, we have the recurrence formulas for them:

As(ka) = TJkal - 5 (ha)”
1 ) |kal
As(ka) = —3 log2 - (ka) —i—/ (t1 — |kal)log (sm —) dtq
0
—l(ka)2lo |ka| + 3( ka)? —i——(ka)
2 & 288 K

ka to
Apio(ka) = —C )(ka)® / n(t1)dtydts,
o (

By (ka) =
From these equations we find that if |ka| << 1 we obtam

TL

Av = SC@)(ka)? — TSkl + Of(ka)")
+ 5 (ka)*log al + Ol(ka)’),
As = 5C) (k) = 5C(2)(ha)* + Ol(ka)’,
Ar = 503 (ha)? = 2¢(3)(ka)* + Ol(ka) log [kl ,
By = C(4)(ka) ~ 5C(2)(ka)® + Of(ka)]

By = C(5)(ha) = C(3)(ha)* + O[(ka)* log [al,

1 2
As = 54(3) (ka)

and for n = 8

Ay = 560 = 2 (ka)? ~ S2C(n — D(ka)! + O[(ka),

BnIC(H—Q)(ka)—gC(n— 4)(ka)® + O[(ka)°].

(2.A.2)

(2.A.3)

(2.A.4)

(2.A.5)
(2.A.6)

(2.A.7)

(2.A.8)
(2.A.9)
(2.A.10)
(2.A.11)

(2.A.12)

(2.A.13)

(2.A.14)

Substitution of these equations into eqgs.(2.3.3), (2.3.6) and (2.3.7) gives eqs.(2.3.9-13).

Appendix 2.2 N-periodic wave solution of the B-O

equation

We show that eq.(2.4.33) satisfies eq.(2.4.4). Substituting eq.(2.4.33) into eq.(2.4.4), we

have

> [Z(M — v;)kje; + {Z(MJ‘ - Vj)k’j} ]

p=0,1v=0,1 | j=1

j=1 j=1 i<j

N N (N)
X exp [Zl /vbj + l/J Z(MJ — Vj)¢j + Z(MZM] + ViVj)Az‘j] = 0.

21
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n

Let the coefficients of the terms exp ( i&; + Z 22’@-) in the left hand side of eq.(2.B.1)
J=1 Jj=n+1
be F(1,2,--- ,myn+1,n+2,--- ;m). F may be expressed as

F = Z Z cond.(pu, V) Z i)kjcj + {Z(Hj - Vj)kj}

1=0,1 v=0,1 j=1 j=1
(2.B.2)
N (N)
Xexp | — Z(Mj —v;)o; + Z(ﬂiﬂj +vivy) Aij |
=1 i<j

where cond.(p, v) implies the summation over p and v are performed under the conditions

i +v;=1 forj=12--- n,
pj=v;=1 forj=n+1n+2,--- m,
pj=v;=0 foryj=m+1,m+2--- N.

Introducing notations o; = p; — v; for j = 1,2,--- ,n and using
Aij (c; — ¢;)? — (oik; — 0jk;)?
14 0i05)—2| = —~—— AL Al 2.B.3
— ojk;
expl(1 — oy)0;] = L0 (2.B.4)
’ Cj —kj
eq.(2.B.2) is reduced to
F= const.ﬁ(alkl, Ooka, -+ Opkn; 1, Coy et Cp), (2.B.5)

where
2l n (n)
Do) SERURN O ST | (CRTE) ) (CE R COR L
o==%1 | j=1 j=1 1<jg
and the constant does not depend on o;. Thus if

ﬁ(O'lkl, O'ng, s ,O'nkn; C1,Coy """ ,Cn> = O, <2B7)

holds for n =1,2,--- | N, eq.(2.4.33) satisfies eq.(2.4.4).
Equation (2.B.7) can be proved by mathematical induction. It is easily verified that
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eq.(2.B.7) holds for n =1, 2. F has the following properties;

A) F(Ulkl> ogka, -, onkp;cr,Co, 7Cn)‘k1:0

n

= H[(Cl - Cj)2 - l{}?]ﬁ(()’zkz, 03k37 e 7ankn; C2,C3," " 7cn)'

=2

B) F(oiky,00ka, -+, 0nkn;cry 2, Cn)|kymke.cr—cs

n

= —8(c; + kDR [ [(er — )7 = (b = k)] [(ex — ;)7 = (k + ;)]

j=3
X ﬁ(USk’& Oaky, - onkni ez can s Cn).
C) Fis unchanged by the replacement k; and ¢; with k; and ¢; for arbitrary 7, j.

D) F is an even function of kv, ko kp.

The properties A), C), and D) imply F is factorized by H k‘?, and B), C), and D) show that
j=1
F is written as
o () ()
F = H(Cz — Cj)2G1 + H (Ci - Cj)2(01 — Cg)(k% - k’;)GQ + -+ H(/{ZE - ]C?)2GM,

i<j i<j i<y
where Gy, Gy, -+, Gy are certain polynomials of k%, k3,--- k2 ¢1, ¢a,-+ -, ¢, and the prime
(n)
attached to H denotes product over all i, 7 except ¢ = 1 and 7 = 2. The above argument
i<j
shows that the degree of F' with respect to ki, kg, -+, kn, c1, c2,-++, ¢, is at least n? +n, if
F would not be identically zero. On the other hand, eq.(2.B.6) implies F' is at most of degree
n? + 2. Therefore F must be zero for n > 2 and eq.(2.B.7) is proved.
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CHAPTER III

KINK DYNAMICS IN THE
DISCRETE SINE-GORDON SYSTEM

A PERTURBATIONAL APPROACH

25



3.1 Introduction

Recently there has been growing interest in condensed matter systems capable of supporting
"soliton” excitations. Among them is the Sine-Gordon (S-G) chain which models dislocations®),
twin boundaries??), charge-density waves), superionic conductors® and so on®. Most of the
previous studies on the S-G system are concerned with its continuum limit, that is, the S-G
equation, (3.2.10).

In physical applications, however, there occurs a minimum distance scale, e.g. a lattice
constant and discreteness of the system gives rise to the Peierls barrier?® which prohibits a
dislocation (a kink) from moving freely without any external stresses. Similar effect is known
in crystal growth for which a finite potential (free energy) gap is necessary between a crystal
and a gas phase”. The discreteness plays an important role also in dynamical problems such
as kink propagation in a discrete media. Numerical simulation by Currie et al® shows that an
initial travelling kink (the time ¢ = 0 configuration of the exact one-kink solution of the S-G
equation), in the course of time, changes its shape a little by shrinking and radiates phonons
resulting in spontaneous damping of kink motion. All of these phenomena are lost under the
continuum approximation.

So far as we know there has been no systematic studies on discreteness effects in the S-G
chain except for static ones to calculate the Peierls force?®). As a suitable first step we apply a
perturbational formalism due to McLaughlin and Scott? (M-S) to investigation of discreteness
effects. The smallness parameter is the ratio h of the lattice constant to the kink width.

As the zeroth order approximation the formalism gives equation of motion for the center of
a kink. A kink is shown to propagate wobbling or to be pinned in the Peierls field. The first
order approximation consists of dressing of the "bare” kink and radiation.

In section 3.2, we present our system, a discrete S-G chain and rewrite equation of motion
in such a form suitable for the application of M-S formalism?. In section 3.3, we discuss
the zeroth order approximation and the first order one is treated in section 3.4. Section 3.5
containes summary of this chapter. In Appendix 3.1, we summarize M-S formalism in order to
achieve more transparency in sections 3.2-4.

3.2 Discrete Sine-Gordon system

We consider the S-G system which is described by the following Hamiltonian

_m o K 2 2T X,
H—E;$n+§;($n+1—xn) +AOZ(1—COS , ), (3.2.1)

n

where z,, (&) is the displacement (velocity) of the nth particle with mass m, k the elastic

constanst and a the lattice constant. 24, denotes the height of the substrate potential. Using

R . 2 k:a2 9 (27T)2A0
characteristic velocity ¢ and frequency wy defined by ¢j = — and wy = ~———, we define a
m ma
dimensionless parameter
aw
h=—2 (3.2.2)

Co

c
which gives a measure of discreteness because the width of a kink is of order 26

Wo

. Putting

2re, ~ ~ h ~ hH . :
p(nh) = e , t=wot, T = T and H = o (hereafter we omit the tilder on z, ¢, H) and
a a 0
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using the Poisson sum formula

N fnh)h = /Oo dz f(z) (1 +2 cos %hsx) : (3.2.3)

n=-—oo -

we rewrite eq.(3.2.1) as
H = H() —I— EHl, (324)

with - . .
Hy = / dx {5(6@)2 + 5(890@5)2 + (1 — cos gb)} , (3.2.5a)

o0

o0

¢H, = /oo dx [%(8@)2 + %(03;(?)2 + (1 — cos qﬁ)} (QZCOS 27;;%)
- s=1

= 2
(1 + 2 E cos W;x> ,
s=1

where the asterisk on Z means that we omit the term (m, n) = (1,1) in the summation.
Hamiltonian eH;, which vanishes in the continuum limit, h — 0, represents effects of dis-
creteness. Equation of motion for ¢(z,t) is obtained from the Lagrangian density as FEuler’s
equation. It follows that (see Appendix 3.2)

(3.2.5b)

e 1 * hm+1
* / e [ﬁ > T 0r9)(09)

m,n

2 — 02 +sing = cf(¢), (3.2.6)
ef(¢) = ~(9Fd — 026 +sing) <2 > cos 2”;95)
- (3.2.7)
2 o B, = 2msz
+ﬁ;(2n)!(a” o) (1+2821COS - ) .

It is readily seen from the identity

s 1 - 2msx
Z 5(x—nh)—ﬁ (1—1—2;008 : ), (3.2.8)

n=—oo

that egs.(3.2.6) and (3.2.7) can be transformed to

fj 5(x — nh) [a§¢ _ Pt ht) +élw—hit) - 20(x,t)

= + sin gb] =0, (3.2.9)

n=—oo

which is equivalent to the discrete equation of motion derivable from Hamiltonian (3.2.1) and
shows that the lattice points exist at © = nh.
In the continuum limit, Hamiltonian (3.2.4) reduces to eq.(3.2.5a) which generates the S-G
equation given by
OF o — 02y + sin g = 0. (3.2.10)

The one-kink solution of this equation® is written as

$o = 4tan ' expb, (3.2.11a)
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g="—"2 3.2.11b
T3 ( )
and its energy is given by
8
Hy = (3.2.12)

The width of the kink Dy is mv/1 — u? if the kink is approximated by the tangent at its center,
hence Hamiltonian eH; must not be neglected unless A is much smaller than Djy. In later
sections, we study dynamical properties of the system, (3.2.4) or (3.2.6) by treating eH; or
ef(¢) as perturbation.

3.3 Modulation of the kink parameters

In this section, we consider the zeroth order solution EO as given by eqs.(3.A.6) and (3.A.7).
Temporal evolution of the parameters u and xy under the structural perturbation is calculated
by eqgs.(3.A.16) and (3.A.17). In our case, the generic term €f(¢g) is given by

o0

o0 2n
ef(¢o) = hzz h 6’2"¢0 (1 + QZCOS 27TS$> . (3.3.1)

Since 02" ¢y is an odd function of 0, eqs.(3.A.16) and (3.A.17) reduce to

du 1 5 e . 2msX
i ﬁ(l —u?)? ZZI”(S) sin ——, (3.3.2)
s=1 n=2
dx u = U - 2ms X
d—t“ =551 u?) > 7, (0) - (11— u?) Y > " Ja(s) cos P (3.3.3)
n=2 s=1 n=2
where )
h=" > . 2msv 1 —u?6
I,(s) = (1= u)r / (05" po)sechf sin #dﬁ (3.3.4a)
h*" o 2syv/ 1 — u?6
Jn(s) = i1 = a2 / (07" ¢o)Bsechd cos fdﬁ, (3.3.4b)
and
X = / £t + wo(t), (3.3.5)

which is the position of the kink center. Noticing that

(=" i(=1)"
89¢0—2560h0—22[9+2<n+ e _e—i(n+§)n]’ (3.3.6)

and using the residue theorem!?), we can calculate the integrals (3.3.4a) and (3.3.4b). Then

s
the leading contribution (We neglect terms of order exp (_E>’ s 2 2, retaining terms of order

1
exp <_E)) of eqs.(3.3.2) and (3.3.3) are obtained as

du_(lf() 2

21 —u? 2 X
2 exp (—u) sin 2° (3.3.7)

h h '
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dxo hu aoT ) m2/1 — u2 o X
o _ 1— I 3.
B o i) e h ST (3:38)
with
= (—1)"(2m)™ > .
Qp — 4’71' nXZ; W = 47'('[71' + C’z(27r) - — 10g(27T)] = 307T, (339)

where C;(z) is the cosine integral'V and + the Euler constant. Here it is to be noted that every

term with higher order derivatives with respect to 6 in eq.(3.3.4) with s = 1 gives contribution

1 1
of order 73 &XP <_E) From egs.(3.3.3) and (3.3.5), we have

dX
U:

2 2/T—w?\ 27X
h Oéoﬁ(l —u?) exp (—u> cos = } : (3.3.10)

= —ul1=
dt “{ A1 —w2) w2 h h

u @ :LATTICE POINT

Fig.3.1. The locus (u, X) of the kink parameter obtained from

eq.(3.3.11) for case h = 1. It is not difficult to see that the locus
h

(u, X) which passes (u,, X = 5) runs through (v = 0, X = 0)

and (u = 0,X = h). This critical locus is shown by a dashed curve.

Integrating of eqs.(3.3.7) and (3.3.10) can be easily performed to obtain

8 h? day 72y/1 — u? 2 X
— |1 - - = = t. 311
N { 0 —u2)] + . exp( ; >cos . const., (3.3.11)

which gives kink trajectories in the (u, X) phase plane and shows that the kink behaves as
a single particle moving in an effective sinusoidal periodic potential (Peierls potential). The
trajectory in case h = 1is shown in Fiig.3.1. From Fig.3.1, we see that the kink is pinned between
two adjacent lattice points for u < w,, the critical pinning velocity and excutes wobbling motion
of frequency

2mu
w = T 3.3.12
= (33.12)
for w > u,. When h is small, u, is also small and it is given by
20 2

For h = 1, we get from eq.(3.3.13) u, =~ 0.056 and this agrees well with u, (= 0.053) obtained
from numerical calculation of eq.(3.3.11) (see Fig.3.1). Numerical simulation® reports that a
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kink is pinned for u(t = 0) = 0.5 in case h = 2. Although h = 2 seems to be too large to
apply our perturbational results, (3.3.11), a tentative estimate of u, for case h = 2 based on
eq.(3.3.11) gives u, = 0.51, thus the simulation result conforming to our pinning condition. A
pinning frequency with which a pinned kink oscillates near the bottom of the Peierls potential
can be estimated, based on eqs.(3.3.7) and (3.3.10) under the approximation that the Peierls
potential is harmonic near the bottom of the potential, to be

2Ta 2
wp =1/ 73 % exp (_ﬁ) . (3.3.14)

For h = 2, the w, obtained by simulation® is 0.77 and from eq.(3.3.14) we get wp = 0.73.
From the definition of U, eqs.(3.3.5) and (3.3.10), we see that the velocity of the modified
kink is not « but U. The (time) averaged velocity U,, of the kink can be read off from Fig.3
of ref.8 for cases (h = 0.25, u(t = 0) = 0.5) and (h = 0.5, u(t = 0) = 0.5) to be 0.4988 and
0.491, respectively. From eq.(3.3.10), we get U,, = 0.4983 and 0.493 for each case. Thus our
perturbational approach achieves r_a)ther good agreement with simulation data®. Now we turn

to the first order approximation € ¢ ;.

3.4 First order corrections

H
In calculating the first order correction € ¢ 1, we will make use of the Green’s function given
explicitly in the Appendix 3.1. In our case, € ¢ 1, eq.(3.A.19) consists of two components, the
dressing component ¢4 and the radiation one ¢,. From eqgs.(3.3.1) and (3.A.19), we have

e hQn

t [o%e)
by = / i / da:’gc(x,t|x’,t’)%z (e 1), (3.4.1)
0 > n=2

/dt/ dx'ge(x, |2, 1) hZZZ

where g.(z,t|2’,t") is given by eq.(3.A.14a). In eqs.(3.4.1) and (3.4.2) we use eq.(3.2.11) for
¢o(x,t) neglecting time dependence of u and xq since it gives higher order corrections to ¢4 and
¢,. Here we will consider the steady state behavior of these equations?. Let t — oo, then

Gq = Z / G — (k- wu—zvl—u%anh@) il

w—uk;3w h?

27TS$

0 do(a’, 1), (3.4.2)

(3.4.3)

- h?n * 1 ik 1—u26’ . P N\ 92n /
X [Z G = a?) /_OO df'e (k — wu+ V1 —u?tanh 0')9)" po(0") |,

n=2

2mwszq
7z k:): kxro—wt— T)

Z Z 47?/ k- s2w2 iw

w 84——00

2vT — u? (3.4.4)

X(k —wu—1iv1 —u?tanh 0)md(w — ku — sw,,) 3

> 2n Vi1-ufw !
X LZ ] h . /_OO 405 (k= wu+ iV — @2 tanh )32 60 (¢) |
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where we have integrated out over t' and d0(z) is the Dirac delta function. The wobbling
frequency w,, is given by eq.(3.3.12). It is easily verified that the leading contribution to ¢, is
of order h? and written as

h2

ba =

1
Since the frequency sw,, + uk is of order 7 we can calculate the leading contribution to ¢,

from the integral over ¢’ in a similar way to the previous section. After some algebra it follows
that

¢r = R cos(kTex —w t+~") — R cos(k"z +w™t+7v7), (3.4.6)
with
/7u +
+_ e

(* Fuw®) 1-u
T 1+u2z ( > { T F | (3.4.7a)

=+ 1 — u2 h
v :qu:vo 4 tan 1 V1 —u?tanhd (3.4.75)

/w2 — 1 + U2
:_ Vw2 —1+u?+ uww
k Ty (3.4.7¢)

wt = w, £ uk®, (3.4.7d)

under the condition w,, > v1 — u2.

As is mentioned by M-S. eqs.(3.4.5) and (3.4.6) express the phonon dressing of the kink
and radiation with Doppler-Shifted wobbling frequencies w,, £+ uk, respectively. This dressing
makes the shape of the kink steeper, modifying the width of the kink Dj to

h2

D~Dy|l——" |, (3.4.8)
12(1 — u?)2

This contraction was observed by Currie et al.¥). For case (h = 0.5, u(t = 0) = 0.5, Dy = 2.72),

D from simulation is 2.55, while our result, eq.(3.4.8) gives D = 2.62. The loss of energy of

a kink due to radiation ¢, eq.(3.4.6), can be estimated as follows: Since the emitted energy
-

propagates at the group velocity — = — and the phonon energy density H, is given by
W

dk
5 [(at@)? + (00, )* + ¢ﬂ from eq.(3.2.5a), we see that the radiation power P, is given by

1
P, = §(w+k+R+2 +w kTR, (3.4.9)

1
where the facter - results from time average. From eqs.(3.4.7a) and (3.4.7d) we see that

radiation to the backward direction is dominant. This explains the report that phonon are
generated mainly in the wake of the kink®.
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3.5 Summary

In this chapter, we have studied effects on kink dynamics of discreteness in the S-G system.
In deriving the Hamiltonian (3.2.4), (3.2.5) and (3.2.6), we borrowed an idea due to Cahn”
who studied discreteness effects in crystal growth. All our results stem from the perturbation
method based on a Green’s function formalism?. We showed that a kink behaves as if it were
put in a periodic potential field (3.3.7) and as to the pinning we gave two formulas (3.3.13) and
(3.3.14) for the critical pinning velocity and the pinning frequency, respectively. As the first
order corrections, the dressing part ¢g, eq.(3.4.5), and the radiation part ¢,, eq.(3.4.6), were
obtained. The change in shape of a kink and the radiation power loss are explicitly given by
eqs.(3.4.8) and (3.4.9), respectively.

Appendix 3.1 Summary of the perturbation scheme for
one-kink
Here we consider the structurally perturbed S-G equation
02— 02 +sing = ef (¢). (3.A.1)

Following M-S we write eq.(3.A.1) as

Lot alF=T0 52
with ;
— _|? — _ 0
7= [ ¢] — [f(¢)] | (3.A3)
and expand E as follows: o .
¢ =¢otedi+-, (3.A.4)
where ) 1
[—82 +tsin(-) ?9,51 ¢0=0. (3.A.5)

—
The parameters in ¢ g, the velocity u and the initial phase zy, are considered to be time-
—
dependent and ¢ ( is expressed as

4tantexp 6
bo=|_ —2ult) (3.A.6)
o= | =Y hol A.

1 — u(t)?

T — /Ot u(t")dt' — zo(t)

0= (3.A.7)
1 —u(t)?
Then eq.(3.A.5) is satisfied to order ¢® and ezl is governed by the linear equation?
- Oy 1| — =
Le ¢ 1= |i_a§ + cos ¢0 at :| € (b 1= EF((bo), (3A8a)
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H

p1(t=0)= 0, (3.A.8b)
where

— — ) — =
EF(gbo) = € f (¢0> — xoazo QZS 0o — u@u ¢0, (3A9)
and the time derivatives, &y and u, are considered to be of order ¢. The first order correction
ﬁ

€ ¢ 1 can be calculated with use of the Green’s function G(z,t|2’,t') as

— t 0 —
€p :/ dt’/ dx'G(z, tlx’, e F (2, 1), (3.A.10)
0 —00
where the matrix kernel G(z,t|2’,t") is defined by

L(z,t)G(z,t|a’;t') =0 fort >t =0, }111;1/ Gz, t|2', t") = {(1) (1)} d(x — ). (3.A.11)

The Green’s function consists of two parts,

Gz, t|2' t") = Ga(z, t|2', t') + G.(z, t|a', '), (3.A.12)
where 5 5
G.=| Jrde O } Ga= { ovdd - 9d } 3.A.13
[—ayatgc dge)” G |~ 0vdiga Brga (3-A.13)
and

Lo dk | N
gczzw:E/_Oomexp[—zk(:c—x)—i—zw(t—t)}

(3.A.14a)
X (k —uw —ivV1 —u? tanh 0)(k — uw + iV 1 — u? tanh '),
! [(t —t') — u(z — 2')]sechfsechd)’. (3.A.14b)

N

The notation Z indicates the summation over two branches, w = ++/1 + k2. We note that

when we use eq.(3.A.10) to calculate the first order correction egl, we can neglect time-
dependence of u and xg since it gives higher order corrections. Thus in eq.(3.A.14) we use 0
as given in eq.(3.2.11). Similarly ¢ is given by eq.(3.2.11) with ¢ and x replaced by ¢’ and 2,
respectively. As stressed by M-S?, € ¢ ; will exhibit linear temporal growth unless

/ dx'Gd(x,ﬂx',t')?(x',t') =0. (3.A.15)

o0

The non-secularity condition (3.A.15) together with eqs.(3.A.9), (3.A.13) and (3.A.14Db) leads
to equations of motion for u(t) and xq(t),

du Ly _ uz)/ e f (6o )sechfdz, (3.A.16)
dt 4 e

dz u o

= _Z\/l — u2/ ef(¢o)Bsechfdzx. (3.A.17)



On the other hand, from eqs.(3.A.10) and (3.A.15) and also from the identity
e — —
/ Gl ], ) [00n Bole,¥) + iy Do, )] = 0, (3.A.18)
—
€ ¢ 1 is expressed simply as

/dt’/ 42 Gz, 1|2 #) T (602, ). (3.A.19)

Equation (3.A.18) is an important property of the continuum part of G, G, which was not
explicitly noted by M-S?. This follows from the orthogonality of the eigenfunction of the
operator L, (3.A.8).

Appendix 3.2 Derivation of eqgs.(3.2.6) and (3.2.7)

A Lagrangian density £ for eqs(3.2.4) and (3.2.5) is

1 2 ]_ ad hm—{—n n 2msx
L= 5(@(?) — (1 —cos¢) — ﬁmg_l m'n' ) (05 ¢ ] 5_22006 Th (3.B.1)
The corresponding Euler’s equation
oL - oL
O 1o { ] =0, 3.B.2
{@A 75~ 27V | g (38.2)

gives

o0

(07¢ + sin ) ( > e> L =Y > (-1 [Z }sz T(aw) ] =0. (3B.3)

§=—00 S—fool 1
Noticing

o 1Al hl—l—n %SI
AN T (0r0)e
=1 n=1

S G ! 2rs T jnse
— _ l _h .
_mz:l ;l;( D ['n! (m—n)!(l—m+n)!< h ) m!] (07 ¢)e'

i ) (3.B.4)

o [ m - hpm—n 0 —i27s)P hm . .
=3 | Sy S R o)

m=1 [n=1 n(m TL) p=0 b:

- h™ m j2zmse
=D -1+ (@ e)e
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we have

gyt o
D2 + sin p — % > m(agw)] ( > ezh) =0. (3.B.5)

n=1 §=—00
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4.1 Introduction

In the last decade or so, a number of nonlinear wave equations which can be integrated
by the inverse scattering method have been found"?. The equations are expressed as the
consistency condition

oU — 0,V +[U, V] =0, (4.1.1)

for a system of linear equations
0, =U(z,t; \)P, (4.1.2a)
0P =V(x,t;\)®, (4.1.2b)

where ® is a N component vector and U and V' are N x N matrices that are usually rational
functions of the spectral parameter A?. In the simplest applications, U and V are 2x 2 matrices.
It is known that typical 2 x 2 matrices, U and V', presented by Ablowitz, Kaup, Newell and
Segur (A-K-N-S)? lead to a wide class of nonlinear wave equations. In order to cover more
integrable systems, Wadati, Konno and Ichikawa (W-K-I)¥) proposed a generalization of the
inverse scattering formalism, especially U (note that U is 2 x 2 matrix), and found a new series
of integrable nonlinear wave equations®.

As is well known, U and V' are not unique for given nonlinear equation because eqs.(4.1.1)

and (4.1.2) are form-invariant under the gauge transformation

o =g, (4.1.3a)
U= ¢ 'Ug — g7 10,9, (4.1.3b)
V= ¢ 'Ug— g0y, (4.1.3b)

where ¢ is an arbitrary matrix function of x and ¢. For instance, with use of this property,
Zakharov and Takhtadzhyan (Z-T) showed that the nonlinear Schrédinger equation and the
equation of a Heisenberg ferromagnet are equivalent'?). Also, Orfanidis developed a systematic
method of constructing the o-model associated with any given nonlinear equation solvable by
the inverse scattering method'V.

In this chapter, we investigate a connection between two inverse scattering formalisms by
A-K-N-S and by W-K-I, and show that in addition to the gauge transformation there is a
coordinate-transformation under which eqs.(4.1.1) and (4.1.2) are form-invariant. The trans-
formation depends on a dependent variable.

First, in section 4.2, we present a inverse scattering transform which is gauge equivalent to
the A-K-N-S scheme. Second, applying a coordinate-transformation to this inverse scattering
transform, we obtain the W-K-I scheme in section 4.3. Thus, through two transformations,
the A-K-N-S and W-K-I schemes are connected to each other. In section 4.5, we consider the
loop soliton which is a solution of a new equation presented by W-K-I and present a physical
interpretation of the coordinate-transformation. Concluding remarks are given in section 4.6.

4.2 Gauge transformation

An example of U and V given by A-K-N-S? is

U=—i l(l) _01] A+ [2 g] , (4.2.1a)

37



- A1 0| 5 0 ul o 5o (1 0]y0 o Juw —0u
V =—4w [0 _1})\ + 4o [v 0})\ 201 [0 _1})\ 2ai [&v . A,

+28 {2 z(ﬂ Ao [U&Eu —udyv  2utv — 8§u] _ B {uv —&m] 7

2uv? — v ud,v — vou 0, —uw

(4.2.1b)

where a and (3 are real constants. Equation (4.1.1) for these U and V' yields the set of nonlinear

wave equations
O+ a(02u — 6uvd,u) — Bi(0*u — 2uv) = 0, (4.2.2a)

v + a(dv — 6uvd,w) + Bi(02v — 2uv?) = 0. (4.2.20)

If we take v = Fu*, these equations are reduced to

O+ a(03u £ 6|u*0,u) — Bi(0*u % 2|ul*u) = 0, (4.2.3)

which is the generalized nonlinear equation presented by Hirota!?).

Following Z-T, we define g as a solution of eq.(4.1.2) with eq.(4.2.1) for A = 0, that is,

0 u
0rg = [U o] 9 (4.2.4a)
vOu — udv  2utv — u Nuwv —0,u
g =« [ 2uv? — 0?0 ud,v — v@mu] g— i L‘?zv —uv} g (4.2.4b)
Then it is easy to verify that if we let
410
we have
. 1 0 wu
50,8 =2g [v 0] g, (4.2.6a)
25a o 1] 2uv  —0yu
0.5 =2¢g [—8952) —oup| ¥ (4.2.6b)
9 1 | 2uv —0,u
S(0:8)S =2 [3,;1) _21“}} (4.2.6¢)

Thus, from eqs.(4.1.3) and (4.2.1), we obtain a gauge equivalent scheme to the A-K-N-S one:

0,0 = U, (4.2.7a)
O =V0, (4.2.7b)

with
U = —iS\, (4.2.80)

- 1
V = —4aiSN* + (2050,S — 2BiS)\* + Zon'(ajs —35(029)8) + 350,5| \. (4.2.8D)
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Because of eq.(4.2.5), we may take

c —a

S:{a b], a® +be = 1. (4.2.9)

We note here that when v = —u*, g7! = ¢ and ST = S.
The compatibility equation for eq.(4.2.7) with eq.(4.2.8) is

0,5 + a {aﬁs + ;am{(axS)QS}} - %ﬁ[s, 925] = 0. (4.2.10)

If « =1and g = 0, eq.(4.2.10) gives a spin chain reducible to the K-dV or modified K-
dV equation, which was presented by Orfanidis'” (From what he refers, a general spin chain
reducible to the Hirota equation was given by N.Papanicolau). In this case, the choice

a=cos, b=—c=isind, (4.2.11)

or
a =cosh¢, b=c=isinho, (4.2.12)

yields the modified K-dV equation
1
0,0 + 5(awe)3 + 920 =0, (4.2.13)

or

1
respectively. In addition to eq.(4.2.12), by choosing
a=¢e, b=ile?—e?), c=—ie?, (4.2.15)

we have eq.(4.2.14) again. For « = 0 and § = 1, taking

a = Sg, b= ’L(Sl + iSQ), Cc = —7,(51 - iSQ), (4216@)
S = (51,55, 85), S2+S24+S2=1, (4.2.16b)
we get from eq.(4.2.10)
— — —
0SS =8 x(029), (4.2.17)

which is the Heisenberg ferromagnet equation'®-1%). Also letting

a = Tg, b= Z(Tl + iTg), c = Z(Tl — iTg), (4218@)
= _ 2 2 2 _
T =(T",1,Ts), T;—-1T7 Ty =1, (4.2.18b)
we obtain
10 0
— — —
aT = [T x (8§T)} L, J=101 o], (4.2.19)
0 0 —1

which expresses a pseudo spin chain.
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4.3 Transformation of the space and time coordinates

Now we transform the space and time coordinates into new ones,

£ = /x a(z,t)dr, (4.3.1a)
T=1t

=t, (4.3.1b)

under the boundary condition £ — z as * — oo. Then, with the use of eq.(4.2.10), especially
3 .
Oia = —a0, {8§a + 5{(895@)2 + (axb)((‘?xc)}a} + %ﬁ@x(baxc — c0,b), (4.3.2)

we have from eq.(4.3.1)

0y = alk, (4.3.3a)
3 .
Oy =0, + (—a {85@ + 5{(&5@)2 + (@b)(&gc)}a] + %ﬂ(b@mc - c@xb)) Ok. (4.3.30)
Substituting eq.(4.3.3) into eq.(4.2.7), we obtain
Bep = U'D, (4.3.4a)
0,0 =V'®, (4.3.4b)
with
P
U=—i|,. |\ (4.3.5a)
S o1
a
b e b s a?0:a+ abdec a0 — abdea) (o . [a b ],
V= —dad [c —a} AT 2a [acaga— a*dcc a*Oca + acdeb| AT =200 | A
(4.3.5b)
. 0 65{a(a8§b — b@ga)} [ 0 agb
o {8§{a(af)§c —coea)} 0 AtH |—0cc 0 A
This system is equivalent to the W-K-I scheme. Putting
. b c 1
1q = a, 1 = a, \/ﬁ =a, (436)
we have the same U’ and V' as ones presented by W-K-I%:
U= —i| L (4.3.7a)
S PR I 3.7a
, |A B
Vi= [C Al (4.3.7b)
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where

—4ai a(rdeq — qOgr) 2031
A= 2N+ : e e L) 4.3.8a
\/1—7”q (1—7’(])5 \/1—7“(] ( )

daqg 5 2000:q 28q adeq [ Biq }
B = A\ AN N\ =0 | ————5 | A+ 0 | —| \, (4.3.8D
VI—rq (1-rq)> vi—rq é_(l—Wﬁ_ “lvT=rq ( )
dar 20010¢T 20r [ ader Bir
C = 34 C N N+ | ——|A-9 {—} A (4.3.8¢
Vv1—rq (1—rq)% VvV1—rq ¢ _(l—rq)%_ ¢ VvV1—rq ( )

The compatibility condition for these system gives the set of nonlinear wave equations,

0q | o[ a4 ]
0,q + ad? | —— | — Bid? —0 4.3.9
q+a€ (l—rq)% 625_\/1_77"(1_ ) ( CL)
drr + ad _L_ + Bi0? _r |- 0. (4.3.90)
T ¢ _(1—7“(])%_ ¢ _\/1—7"(]_
If we take a = 1 and 8 = 0, the set of eq.(4.3.9) is reduced to
9)
d,q + 02 ﬁ =0 forr=—q, (4.3.10)
2 9eq
0rq + O W =0 forr=gq, (4.3.11)
— ¢?)3
and .
Op=20%p 2 forr=-1 andg=p—1. (4.3.12)

Equation (4.3.10) describes the nonlinear oscillation of elastic beams under tension as shown
by W-K-I9. Also eq.(4.3.12) is Harry-Dym (H-D) equation'®. If we let = 0 and 3 = 1,
eq.(4.3.9) is reduced to

. q )

i0,q+ OF TW] =0 forr=—¢", (4.3.13)
. q )

i0.q + 07 T’C]P] =0 forr=q". (4.3.14)

4.4 One-soliton solutions

Wadati et al. obtained one-soliton solutions of eqs.(4.3.10)7, (4.3.12)®) and (4.3.13) with
use of the inverse scattering method for system (4.3.7) and observed that the solutions can
not be expressed in a closed form unlike the usual soliton solutions. Here, with help of known
one-soliton solutions of eq.(4.2.13), (4.2.14), (4.2.17) and (4.2.19) which are directly connected
to eqs.(4.3.10-14) by egs.(4.3.1) and (4.3.6), we construct solutions of egs.(4.3.10-14).
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A one-soliton solution of eq.(4.2.13)'%) is given by
6 =4tan "' exp, (4.4.1a)

6 = k(x — k*t) + by, (4.4.1b)

where k is a real parameter and g is an arbitrary phase constant. Since eq.(4.2.13) is trans-
formed into eq.(4.3.10) through

§= / cosf dx, T=t, (4.4.2a)

q =tan, (4.4.20)

the one-soliton solution of eq.(4.3.13) is written as

2sechd - tanh §
_ 4.4.3
1 2sech?s — 1 ' ( @)

k(€ —K°T) + 8y =6 — 2tanh § + 2. (4.4.3D)

Because of eq.(4.3.6), we have the condition that cosf = 1 — 2sech®§ > 0. Hence this solution
is a discrete solitary wave. As shown by W-K-I7), however, if this condition is removed, the
solution becomes meaningful as a physical solution (see the following section).

A one-soliton solution of eq.(4.2.14) is given by

)
¢ = =+ log tanh? 3 (4.4.4a)
§ = k(z — k*t) + . (4.4.4b)
Since eqs.(4.3.11) and (4.3.12) are derived from eq.(4.2.14) through the transformations
£ = / cosho de, T=t, (4.4.5a)
q = tanh ¢, (4.4.5b)
and N
&= / expo dr, T =t, (4.4.6a)
q = exp(—29¢), (4.4.6b)

respectively, the one-soliton solutions of them are written as

2cosechd - coth

= 4.4.7
1= 1 + 2cosech?s ( a)
k(€ —k*1) 4+ 6o = — 2cothd + 2, (4.4.70)
and 5
p = tanh™* 2 (4.4.8a)
k(€ — K*T) + 6y = 6 — 2tanh™ g + 2, (4.4.8D)
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respectively. Equation (4.4.8) with the upper sign is the same as the cusp soliton presented by
Wadati et al.®). It is interesting to note that H-D equation, eq.(4.3.12), have both divergent
and nondivergent soliton solutions like the K-dV equation.

In the same way that we got the one-soliton solutions of egs.(4.3.10-12), we obtain one-
soliton solutions of eqs.(4.3.13) and (4.3.14). It follows that

)

2P
B —P2—+k2$echA(P tanh A + ik) »
q - 2 e
P 2
~ P pteha for eq.(4.3.13), (4.4.9)
P
f:x—PQ—W(taDhA—l) )
and
2P hA(P coth A + ik) \
—————cosec co i
_ P24 R? i
q= e
2P? 9
1+ P2 4 |2 cosech™A for eq.(4.3.14), (4.4.10)
P
fzx—PQ—W(COthA—l) )
with
A =2Px 4 8kPt + Ay, (4.4.11a)
§ = 2kx + 4(k* — P*)t + 6, (4.4.11b)

where P and k are real parameters and Ag and J, are arbitrary phase constants. We have also
used the one-soliton solutions of eqs.(4.2.17)') and (4.2.19),

2P? .
S1 415y = _PQ—WseChA<P tanh A + ik)e ™, (4.4.12a)
S3 =1- P)Q——}-l{jQSGCh A, (4412b)
and
T, +iT, = 2P hA(P coth A + ik)e™ (4.4.13a)
14T = P2+kzcosec co ik)e ™, 4.13a
2P?
T3 =1+ PQ—Wcosecth, (4.4.13b)
and the transformations,
£ = / Sy dr, T=t, (4.4.14a)
g= T (4.4.14b)
S3
and N
£ = / Ty dv, T =t, (4.4.15a)
T, +iT:
g= -1t (4.4.15b)
T3
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Equation (4.4.9) is the same as the solution presented by Shimizu and Wdati®.

4.5 The loop soliton

The one-soliton solution of the modified K-dV equation, eq.(4.4.1), gives
|0(z = 00) — 0(z = —o0)| = 27, (4.5.1)

for any value of k. This property is analogous to that of the Sine-Gordon (S-G) equation

of a mechanical model'” in which 6 describes an angle of rotation of the pendula. Hence

similar topological properties to the S-G equation'”'® may be expected in the modified K-dV

equation. In this section, we show that this is true, using the results in the previous section.
The modified K-dV equation, eq.(4.2.13), is expressed in the (£, 7) space as

0.0 + cos® H02 sinf = 0, 4.5.2
13

where we have used eq.(4.4.2a) and removed the condition cos# = 0. This equation is the same
as the equation derived by W-K-I, which describes waves propagating along a stretched rope
if we let ye = tané in eq.(5) of ref.7. The variable 6 is a tangential angle along the stretched
rope. W-K-I obtained the one-soliton solution of eq.(4,5,2),

Y= %seché, (4.5.3a)
k(& — k*7) 4+ 6o =6 — 2tanh § + 2, (4.5.3b)
which has a shape of loop”. This solution can be derived from eq.(4.4.1) with eq.(4.4.2).
oA
5 { RO
=

Fig.4.1. The curve of the one-soliton solution
for k > 0 in the x space.

%A

g

Fig.4.2. The curve of the one-soliton solution
for k > 0 in the & space (loop soliton).
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In Figs.4.1 and 4.2, we have sketched the one-soliton solution of the modified K-dV equation
in the (z, t) space and the (£, 7) space, respectively. Since we have from eq.(4.4.2a)

% = cos /), (4.5.4)
dz is an increment of the length of arc on the stretched rope (see Fig.4.2). 27 in eq.(4.5.1)
corresponds to the total increment of the tangential angle along the stretched rope, from x =
—o0 to x = oo. Thus we see that the modified K-dV soliton is essentially the same as the
loop soliton. Therefore, from the fact that the difference between the number of loop solitons
with k£ > 0 and of loop solitons with £ < 0 is conserved, the difference between the numbers of
solitons and of antisolitons for the modified K-dV equation must be conserved in any collision.
The situation is similar to that of the S-G equation'®.

4.6 Concluding remarks

In this chapter, we have shown that the A-K-N-S and W-K-I schemes of the inverse scattering
transform are connected through the gauge transformation and the transformation of the space
and time coordinates. The common property which each scheme has is that a nonlinear wave
equation generated by it has the same linear dispersion relation. Recently, Wdati and Sogo'®
found that a scheme by Kaup and Newell (K-N)?? is also gauge equivalent to the A-K-N-S one.
The matrix U in K-N scheme is written as

U=—i [(1) _01] A+ {S g} V. (4.6.1)

K-N scheme generates the derivative nonlinear Schrodinger equation,
i0pu + 02u + 10, (|u|*u) = 0, (4.6.2)

whose linear dispersion relation is the same as that of the nonlinear Schrodinger equation
(eq.(4.2.3) with @ = 0). The gauge transformation is done by g defined as

fo0
9= Z:/f_ f\/l_ : (4.6.3a)
2V 2v/\

f=exp (% /90 rq dx) , (4.6.3b)

-2 2
w=Y <—iamr + ﬂ) 2. (4.6.3¢)

2 2

It is to be noted that this gauge transformation depends on the spectral parameter A. In
Fig.4.3, we have shown the interrelation among the various schemes of the inverse scattering
transform. Those results suggest that all nonlinear equations having the same linear dispersion
relation, which are integrable by the inverse scattreing method, are equivalent.
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KN ‘ A-independent ) s
A-K-N-5 SCHEME gauge transformation SPIN MODEL

| |

k A-dependent ) ( transformation of)

gauge transformation space and time
i coordiniﬁes

K-N SCHEME W-K-I SCHEME

Fig.4.3. Relationships among some schemes of the inverse scattering transform
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CHAPTER V

A COMPLETELY INTEGRABLE
CLASSICAL SPIN CHAIN
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5.1 Introduction

In recent years, it has been found that some classical spin chains, for example, the continuous
isotropic Heisenberg spin chain'?) and the general spin chain described by the Landau-Lifshitz
equation® , belong to the class of completely integrable Hamiltonian systems®. These systems
can be integrated by the inverse scattering method and their excitations are completely com-
posed of the continuum (magnons) and discrete (solitons) modes. Apart from the quantum

spin chain such as spin 3 Heisenberg XYZ model®, the examples of the completely integrable

classical spin chains are so far limited to the case of the continuum models.

As mentioned in the previous chapter, the continuous isotropic Heisenberg spin chain is
equivalent to the nonlinear Schrodinger equation and the schemes of the inverse scattering
transform for them are connected to each other through the gauge transformation®. For
the nonlinear Schrédinger equation, Ablowitz and Ladik have presented its lattice model (the
differential-difference nonlinear Schrodinger equation)™®. These facts imply that by consid-
ering a differential-difference analogue of the continuous gauge transformation an integrable
classical spin model on the one-dimensional lattice is obtained from the differential-difference
nonlinear Schrodinger equation.

In this chapter, we realize the above idea and present a lattice spin model whose Hamiltonian

is given by
H=-2%log B (HEE?M)} ~h > (55— 1), (5.1.1)

where the magnitude of spins ?n = (SF,85Y,5%) is assumed to be unity and h is a con-
stant. Details of the inverse scattering approach to this spin model is also studied. Although
our spin model (5.1.1) is only a mathematical one, for low-energy excitations, the results
we obtain seem to be available for the Heisenberg spin chain because the approximate ex-
pression for eq.(5.1.1) when all the angles between the nearest-neighbor spins are small is
H= - Z (?n . ?nﬂ — 1) — hZ(SfL — 1), which is the Heisenberg Hamiltonian?. In our

discussion, we impose fixed boundary conditions at infinity for ?n, ie.,
ﬁ
S, —(0,0,1) forn — +oo. (5.1.2)

This chapter is organized as follows. In section 5.2, our model (5.1.1) is derived from the
differential-difference nonlinear Schrodinger equation. In section 5.3, the inverse scattering
method associated with it is discussed. We study the problems of direct and inverse scattering
and derive the Gel'fand-Levitan equation. A special example of the initial value problem is
also examined. The procedure follows essentially the same line as one for known discrete
systems”®). In section 5.4, we construct canonical action angle variables!?) to show that our
spin model belongs to the class of completely integrable Hamiltonian systems. Then these
variables are related to an infinite set of constants of motion.

5.2 Model

In this section, we apply the concept of gauge equivalence to the differential-difference
nonlinear Schrodinger equation and construct an integrable spin model.
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As is well known, the nonlinear differential-difference equations integrable by the inverse
scattering method are expressed as the compatibility condition

Ln(z) = M, 1(2) Ly (2) — Lp(2) M, (2), (5.2.1)
for a set of two equations
O, = Ln(2)P,, (5.2.2a)
dn = M, (2)d,,, (5.2.20)
where L,,, M, and ®,, are N x N matrices. If we take
L) =| % ©*) (5.2.30)
"Z_—q:‘lz 1| 2.3a
M) =i |V T T W 0t gaa (5.2.3)
"’ g+ a2t 1+ 2 g’ -

then the compatibility condition (5.2.1) gives the differential-difference nonlinear Schrédinger
equation,

iQn = Qn+1 + Qn—1 — QQn + |qn’2(Qn+1 + anl)' (5'2‘4)
We note here that the eigenvalues z are assumed to be invariant (2 = 0). The form of the
matrices L, (z) and M, (z), eq.(5.2.3), is different from that presented Ablowitz and Ladik”-®).
But if we let L! (2) = g7 'L,(2)g, M/ (2) = g~ M,(2)g with

_ 272 0
9 0 a5l
the matrices L (z) and M/ (z) coincide with ones of Ablowitz and Ladik.
The gauge transformation for the differential-difference equations (5.2.1) and (5.2.2) is

NI

dn =g, '®,, (5.2.5a)
Lo(2) = gpt1 Ln(2)gn, (5.2.5b)
Mn(Z) = ngan(Z)gn - gvjlgna (5256)

where g, is an arbitrary matrix. Here we define g, as a solution of eq.(5.2.2) with eq.(5.2.3)
for z = 1, that is,

I g
I l—q;i ﬂ ns (5.2.6a)
. . _qnq;;,l —Qn + Qn-1
g |:_Qn + qnfl qnqn—l :| g ( )
Then it is easy to verify that
1 z+271 z—z71
G Ln(2)gn = —5—1+ ———"5, (5.2.7a)
_ R 24272\ 22—z
9o My (2)gn — G ' G = i (1 - T) 9190 Sn — i————g1 "1 G, (5.2.7b)

2
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where

S, =g log., S2=1= {1 0} ,

. [o1
=11 ol

, o —i . 1o
=1 o0l 7 T o 1|

Since the Hermitian conjugate of eq.(5.2.6) yields (see Appendix 5.1)
H 1 + |QJ Uzgna Sjl = Sna
j=n

we may take
SZ Sﬁ - ZS% z\2 Y\2 Z\2 __

From eqs.(5.2.6a), (5.2.8&) and (5.2.10), we have

- _ Sp—1(Sn + Sh—
gnfllgn = 2Sn71(Sn + Snfl) I = IL — 1) s
I+ Sn ' Snfl

ﬁ
Sn= (55 S5 57)-
The new matrices L,(z) and M, (z) (we omit the tilder on them) now read

24271 72—zt
L.(z) = i I+ 5 Shs

M,(z)=1i|1-

@=i(1-=5

The compatibility condition for these matrices gives (see Appendix 5.1)
2 2 —

— — — —
Sn: - = SnXSn+1+ - = Snxsn—l-
1+Sn'sn+1 1+SnSn—1

22 +z_2> S, +S,_1 22—22 I+S,.15,
= = = = .
1+Sn'sn—1 2 1+Sn5n—1

(5.2.8a)

(5.2.8b)

(5.2.9)

(5.2.10)

(5.2.11a)

(5.2.11b)

(5.2.12a)

(5.2.12b)

(5.2.13)

This is the integrable spin model which is the differential-difference analogue of the continuous
isotropic Heisenberg spin chain (recently Date et al. presented a difference-difference analogue
of the continuous isotropic Heisenberg spin chain using a general method of discretizing soliton

equations'?)). Using eqs.(5.2.6) and (5.2.11), we can find the relation between ¢, and E)n (see

Appendix 5.1). It follows that
2

1+‘Qn|2: — )
1+ Sn Sn+1
— — —
. * * QSn(Sn—H_‘_Sn 1)
Z(ann_l - anIn—l) = — = =
(1+Sn5n+l>( Sn Sn—l)

If the spins ?n satisfy the following classical equations
é
Sn=A{Sn H},
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with the Poisson bracket {A, B} defined by”

0A OB
A BY=e, g2 92 5 5.2.16
{7 } Eﬂ'YnaSgaSgn ( )
then the Hamiltonian H which generates eq.(5.2.13) is written as
H = —2210g(1 + ?n . ?nﬂ) + const.. (5.2.17)

Unlike the Heisenberg Hamiltonian, eq.(5.2.17) is singular when the nearest-neighbor spins are
antiparallel (Fig.5.1).

0 Lz Y
P I B~
Cm ( Sm' S'nﬂ)
Fig.5.1. The dashed and solid curves represent the energy of interaction H, between
— — — =
two spins S, and S, 11 for the Heisenberg model (H,, = —(S,, - S,+1 — 1)) and our
— =
model (H, = —2log{(1+ S, - Snt1)/2}), respectively.

The Hamiltonian (5.2.17) does not have the second term in eq.(5.1.1). But this term is not
essential because the transformation S? +iS¥ = (52 +iS5¥)e™ enables us to eliminate the third
term in the equation of motion

2 — — 2
Sn>< Sn+l+ —

LN
Sn: e — —
1+Sn'5n+1 1+SnSn—1

7 = (0,0, h), (5.2.18D)
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which is derived from the Hamiltonian (5.1.1). For eq.(5.2.18), the matrix M,(z) must be take
the form

2 -2 Sp+ Sn_ 222 I+S5,.48, h
My (2) = i (1 _rre ) nFon G E TR Tonon e (5.2.19)
2 1_‘_Sn'Sn—l 2 1_‘_SnSn—l

In the following sections, we consider eq.(5.2.18).

5.3 Inverse scattering method

In this section, we study the inverse scattering method for the system (5.2.2) with eqs(5.2.12a)
and (5.2.19). By the method, the initial value problem for our spin model is solved. Schemati-
cally, we can illustrate this approach by means of a diagram (Fig.5.2).

3 (1) 3) inverse scattering data
n scattering problem (t)
N
I
|
[
! 2) time evolution of
I the scattering data
I
l
|
g (0) 1) direct scattering data
n scattering problem £(0)

Fig.5.2. Diagram of the inverse scattering method.

Here the dashed line indicates the direct but in general intractable route to the solution. As
shown in Fig.5.2, the inverse scattering method consists of the following procedure:

1) Map the initial data {?n(t = 0)} into certain scattering data
¥{b(z,t =0)/a(z,t=0),2;(t =0),¢;(t=0);5=1,--- | M}.
2) Calculate the time evolution of the scattering data
Y{b(z,t)/a(z,t), z(t),ci(t); 7 =1,--- , M}.
3) Construct ?n(t) from the time-dependent scattering data Y(t)
through the Gel’fand-Levitan equation.
These steps are discussed in the following subsections.
5.3.1 Scattering problem

From the boundary condition (5.1.2), we have

Ln(z) = E(2)
for n — +o0, (5.3.1)
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e B(z) = {g Z‘fl} , (5.3.2a)
Qz) =0° [I - E?(2) + gl] : (5.3.2b)

In order to study the problems of direct and inverse scattering, we introduce the eigenfunctions
¢(n, z) defined by

®,, = ¢(n, z) exp[i2(2)t]. (5.3.3)

Then, egs.(5.2.2) become
d(n+1,2) = L,(2)p(n, 2), (5.3.4)
d(n, z) = M, (2)p(n, z) — id(n, 2)Q2). (5.3.5)

Since ¢(n + 1,2) = E(z)¢(n, z) for n — Fo0, the solutions of eq.(5.3.4) for n — £oo have the
form ¢(n, z) = E"(2)¢g, where ¢q is a matrix which does not depend on n. Here we introduce
the following Jost functions ¢(n, z) and ¢ (n, z) with boundary conditions:

o(n,z) — E"(z) asn — —o0, (5.3.6)

P(n,z) — E"(2) asn — 400, (5.3.7)

which are consistent with eq.(5.3.5). From eqgs.(5.3.4), (5.3.6) and (5.3.7), these Jost functions
are written as

(n,z) = lim Ly_y(2)Lna(2) - L xnEN(2), (5.3.8)
Y(n,z) = lim L (2) L3 (2) -+ Ly BV (2), (5.3.9)

where . .
Li(z) =2 +2’Z -2 s, (5.3.10)

and the transition matrix 7'(z) defined by

o(n, z) = (n, 2)T(z), (5.3.11a)
T(z) = [Z((j)) _azz(z";)] : (5.3.11b)
is expressed as
T(z) = lim EN Y )Tn(2) BN (2), (5.3.12a)
TN(Z> = LN<Z)LN,1(Z) s L,N(Z). (5312b)

Since detE(z) =detL,(z) = 1, we have
detT'(2) = a(z)a(z) + b(2)b(z) = 1. (5.3.13)

We note that T'(z) depends parametrically on time through the S,,. The explicit dependence
on time is found from eq.(5.3.5) for n — +oo as

T(z) = i[Q(z),T(2)], (5.3.14)



where [Q(z2),T(2)] = Q2)T(z) — T(2)2(z). In terms of the matrix elements, we have

a(z) = a(z) =0, (5.3.15a)
b(z) = iw(z)b(2), b= —iw(z)b(z), (5.3.15b)
w(iz)=22+22-2—h. (5.3.15¢)

Finally, we study the analytic properties of a(z), a(z) and the Jost functions. The results we
obtain help to derive the Gel’fand-Levitan equation in the next subsection.
From eq.(5.3.8), the columns of ¢(n, z) are written as

V”} 2™ = lim ([ R B S”‘le) (I R B S”‘QZQ)

$21 N—oo 2 2 2 2
(5.3.16a)
() o)
¢12 n __ . _[ - S?’L—l I + Sn_l 2 I - Sn_Q ] + Sn_Q 2
me}z_zvhfio( > T2 ° > T2 ¢
(5.3.16b)

I—S.n I+5S_x )]0
(e )

These equations show that for the S, —o* decaying sufficiently rapidly as n — 400, the columns
(11, P21)2~™ and (@19, P22)2™ are analytic for |z| > 1 and |z| < 1, respectively. Similar analysis
is possible for ¢(n, z), that is, the column (112, ¢92)2" is analytic for |z| > 1 and the column
(¢11,191)2" is analytic for |z| < 1. In terms of the Jost functions, a(z) and a(z) are expressed
as

a(z) = (¢1127") (P222") — (P2127 ") (¥122"), (5.3.17a)
a(z) = (222" ) (P1127") = (122") (P2127"), (5.3.17b)

and we infer from the analytic properties of ¢(n, z) and ¥ (n, z) that a(z) and a(z) are analytic
for |z] > 1 and |z] < 1, respectively.

5.3.2 Gel’fand-Levitan equation

In this subsection, we derive the Del’fand-Levitan equation for our system.
For ¢(n, z), from eq.(5.3.9), the following triangular representation is suggested:

Y(n,2) = E"(z) + ¥ K(n,n)E" (2)[I — E*(2)], (5.3.18)

n'=n

where the matrix kernel K(n,n’) depends functionally on the S, but is independent of the
eigenvalue z. By virtue of the above representation one can derive the linear summation
equation (i.e. a discrete analogue of the Gel'fand-Levitan equation). For this purpose, it is
convenient to rewrite eq.(5.3.11) as

et e = A (53.190)
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1 |:¢12:| _ _E(_Z) {%11 [@/)12}
a(z) |p2 a(z) |¥Y= Pa2|
Substitute eq.(5.3.18) into eq.(5.3.19a) and operate with
1 Z—m—3
i >
270 J e dey 7= (m2n)

to find
L dz |:¢11(
21 |z|=14¢ (Z) ¢21<

o 2

)| 1—272

R ET I e

K
+
> [t
Here we have used the 1dent1tles
1 /

] ! ]{ dzMz_”’_m_3.
27 Jiperge alz)

n'—m—1
T dz z = 5n’m7
Uy |z|=1+e€
1 Z—n—m—?)
— dz———— =0 form = n,
211 |z]=1+¢ 1—2

(5.3.19b)

(5.3.20)

(5.3.21)

(5.3.22a)

(5.3.22b)

where ]{ is the contour integral on the circle |z| = 14+¢€ (¢ — +0) and d,,,, is the Kronecker
|z|=1+e€

delta function. We now evaluate the left hand side of eq.(5.3.21). Since the column (¢11, ¢a1)2~
and a(z) are analytic in the region |z| > 1, this integral is decomposed into the contour integral

on the circle |z| =

.
>

oZ_l

oo and the residues at poles of 1/a(z) (zeroes of a(z)) (Fig.5.3).

Z—'Hm

(N

v

Fig.5.3. Path of the integratio
|z| =1+ € and |z|

Noticing that

1 pri(n,z)] 2" °
% |z|=00 dz@ |fb21(m 2)} 1— 22

ns. I'1 and I'y denote the circles

= 00, respectively. z; are zeroes of a(z).

_ 2" on(n, )| _
= nmi2 L, a(z) Lﬁzl(naz)} =0
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and assuming a(z) has 2M simple zeroes, a(z;) = 0, we have

2M —m—3
1 KEe
LHS. of eq.(53.21) = — Y {%W@q%
j=1

a'(z) [$21(n, 25)] 1 — 2;2
(5.3.24)
2M —n—m—3 00
. O Zj K12 mn,n —m—3
_L}Z;c]l—zjd_Z{Kmnn}z%J ’
J= n’'=n
where prime on a(z) indicates the differentiation with respect to z and ¢; is given by
b(z:
q:f@. (5.3.25)
a'(z;)
Equation (5.3.21) now reads
Kll(n,m) 0 . > K12<n7n/> ’ o
|:K21(’I'L, m)| |1 f(n+m) 2 Kos(n. ) g(n'+m) =0, (5.3.26)
where .
1 b(z) z7m3 z; 3
= — dz———— L 5.3.27
fn+m) 27 J | mrpe Za(z) 1— 272 i JZI 99 zj_2 ’ ( @
g(n'+m) = 1 dz—b<z) ZTmS Z ez M (5.3.27b)
2mi Jispmge a(2) — ' -

In a similar manner, another set of summation equations can be derived from eq.(5.3.19b).
Thus, we obtain the Gel’fand-Levitan equation for the matrix kernel K (n,m),

K(n,m)+ F(n+m)+ i K(n,n")G(n'+m) =0, (5.3.28)

n'=n

where F(n 4+ m) and G(n' +m) are given by

F(n+m) = {—f(no—k m) f(n O+ m)] : (5.3.29a)
mﬂ+my:Lﬁ£+m)“”qu, (5.3.290)
with i ] (Z) ntm-+1 2M ) 2?+m+1
f(n + m) = % ﬁl_g dz (Z) - ; le——ng.j (5330&)
1 b(2) <l
g(n'+m) = 5 j|§z| . dzﬁznurmJrl - JZI iz il (5.3.300)
¢j = b(zj? . a(z;) =0. (5.3.30¢)
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We must notice that eqs.(5.3.9) and (5.3.12) give the symmetry properties as
Y(n, z) = a¥*(n, 2 Ho?, (5.3.31a)

T(z) = o¥T*(z* MoV, (5.3.31b)

from which we have relations

a(z) =a*(z* 1Y), b(z) =b* ("), (5.3.32a)
Zi =2, G =—z c, (5.3.320)
fn)=f=(n), g(n)=g"(n), (5.3.32¢)
and
Kio(n,m) = =K (n,m), Ko(n,m)= Kj;(n,m). (5.3.32d)

Furthermore, since eq.(5.3.10) show that a(z) and b(z) are even in z, the zeroes of a(z) comes in
+ pairs (z; and z; ), and ¢;(2]") = —¢;(2;7). Considering these properties, the Gel'fand-Levitan
equation is rewritten as

Kii(n,m) + 2 Z K3 (n,n")g(n" +m) =0, (5.3.33a)
Ky (n,m) = 2f(n+m) =2 Kj (n,n)g(n' +m) =0, (5.3.33b)
with
- 1 b(z) zm 3 s
= — [ dz 5.3.34
fnm) 27m'/ (Z 1—2 +ZCJ 1-— _2 ’ ( 2
g(n' +m) = i/dzb( 2 m3+Zc —nemes, (5.3.34b)
21 Jo  a(z) 3% o
m=n+2s, n =n+ 25, (5.3.34¢)
=012, §=01,2-, (5.3.34d)

where C is the contour along the upper half of the circle |z| =1+ € and Imz; > 0.

To close the subsection, we relate K (n,m) to S,,. Substituting eq.(5.3.18) into the eigenvalue
problem (5.3.4) and comparing the coefficients of E"(z), one finds that the kernel K(n,m)
satisfies a partial difference equation

[K(n,m)+ K(n,m+2)—2K(n+1,m+1)]c*
(5.3.35)
+S,[K(n,m) — K(n,m+2)] =0 form =n,

with the boundary condition

S, = [I + K(n,n)]|o*[I + K(n,n)]"". (5.3.36)
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In terms of matrix elements, eq.(5.3.36) is expressed as

2

’1 + Kll(n,n)lz - |K21(n7n>’
o 5.3.37
"1+ Ku(n,n) 2+ Ko (n,n)|? | "
2Ko1(n,n)[1 + K7 (n,n)
ST 4 iSY = 5.3.37b
" 14 Ku(n,n) 2+ [Ka(n,n)|? ( )

which is the stereographic transformation.
5.3.3 Initial value problem

Now we are in a position to perform the procedure in Fig.5.2. Steps 1)-3) are carried out
with use of the following equations;

1) Equation (5.3.12) and a(z;) = 0.
2) Equation (5.3.15) and 2z = 0.
3) Equation (5.3.33) with egs.(5.3.34) and (5.3.25) and eq.(5.3.37).

Particularly, when b(z,t) = 0 for |2| = 1 + ¢, the Gel'fand-Levitan equation is reduced to
a system of linear algebraic equations and can be solved explicitly. With use of this property,
we can construct the multi-soliton solution which is an exact solution of eq.(5.2.18). Here we
consider the case that a(z) has only one simple zero z; = " with 0 < o and 0 < 8 < 7.
Then, eq.(5.3.34) becomes

B C Z;n m—3
gn' +m) =27 3 (5.3.380)
and the Gel’fand-Levitan equation (5.3.33) reduces to
Kii(n,m) + 2¢ Z K3 (n,n)z7™ ~m 3 =0, (5.3.39a)
Ko (n,m) — zclzlnmg 2 ZK -m=3 _ () (5.3.390)
n,m —2c n,n’) =0, 3.
21 e 1n,_n 11
where from eqgs.(5.3.15) and (5.3.25), ¢ is given by
¢1 = ¢1(t = 0) exp[—(2sinh 2asin 23)t — 2i(1 — cosh 2a cos 23 + h)t]. (5.3.40)
It is easy to find that
1 —e 4o
— —&n
Kii(n,n) = Ty 6_2a_2w)sech§ne : (5.3.41a)
Ko (n,n) = 2= e—Qa—2iﬁ)SeCh§"6 : (5.3.41b)
where
£, = 2am + 2(sinh 2asin 28)t + €@, (5.3.420)
N = 260 + 2(1 — cosh 2accos 23 + h)t +n'?, (5.3.420)
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sinh 2«

© = o + log ————, 5.3.42¢
n® =38 +arg ¢;(t = 0). (5.3.42d)
Substituting eq.(5.3.41) into eq.(5.3.37), we obtain a one-soliton solution
sinh? 2av

SF—=1-— hé,. sech,, 5.3.43

" cosh 2ar — cos 2ﬁsec Enasechl ( @)
- . sinh 2« —2i83 . —q

Sy 4+1SY = sech,,+1(cosh 2a0 — e™“"” 4 sinh 2a tanh &, )e """ (5.3.43b)

cosh 2a — cos 23
From eqs.(5.1.1) and (5.3.43), the energy of a soliton is given by

2 sinh 2«
E, =38 h . 5.3.44
@t cosh 2a0 — cos 23 ( )
As an example of the initial data, we consider the special case
- (sinf cos 4, sin fsin d, cosf) for n =0
Sat=0)= , (5.3.45)

0 for n # 0,

with 0 < 0 < m and 0 £ § < 27. The transition matrix (5.3.12) at time ¢ = 0 is immediately
obtained as E~1(2)Ly(z), namely
a(z) = =[1 — cos® + (1 + cos#)z?], (5.3.46a)

b(z) = = sinfe®(1 — z72). (5.3.46b)

N N

The zero of a(z) is calculated from eq.(5.3.46a) as
.0
21 = titan 7 (5.3.47)

From the conditions |z;] > 1 and Im 2z; > 0, we see that a single soliton emerges from such

T
initial data when 5 <0 <m.

5.4 Canonical action angle variables

In this section, we show that the inverse scattering transform can be interpreted as a canon-
ical transformation from the spin variable to the scattering data. Our procedure follows closely
that of Fogedby? for the continuous isotropic Heisenberg spin chain.

5.4.1 Poisson bracket relations

The canonical variables (g,, p,) for our spin model are given by

¢n = tan! (5.4.1a)

Yy
-_n

z)
Sn
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Pn = SZ)
because ¢, and p,, satisfy the Poisson bracket
{Qnapm} = 5nma

{@n: @m} = {PnsPm} = 0.

(5.4.1b)

(5.4.2a)
(5.4.2b)

In order to present new canonical variables constructed by the scattering data, we must derive
the Poisson brackets for the scattering data. First we show that the following Poisson brackets

for the elements of transition matrix are expressed as eq.(4.5.8):

OT3;(z) 0T (%)

Tij(2), Tu(2")} = €a Sh-
{ J(Z) kl(Z)} €apy - 853 asg n
The definition of the transition matrix 7'(z) yields
(ST(Z) _ -1 ! 5¢(n/72) -1/, ./ 6¢(n/7z)
oo ¢ (n %)W —¢(n JﬂWT(Z)-
Since we have from egs.(5.3.4) and (5.3.9)
op(n+1,2) 0
58
dp(n+1,2) z—271
S !
the choice n’ = n + 1 reduces eq.(5.4.4) to
0T(z) z—2z7t

550 = Y n+1,2)0%(n, 2).

Using eq.(5.3.4) and [0, 0”] = 2ie,3,07, we can derive the identity

Y W 4 1,2)0%(n + 1, 2)]y[0 (n+ 1, 2)0%(n + 1,2

«

- ZW—I(T% Z)O‘agb(n, Z)]ZJ W)_l(n> z')oagb(n, Z/)]kl

=i(zz'7 =272

Xe€apy [ (n+ 1, 2)0%B(n, 2)];;[0 " (n 4+ 1,2)0%d(n, 2')]uS;.-
From eqs.(5.4.6) and (5.4.7), the Poisson bracket (5.4.3) is written as

(Z _ Z—l)(zl _ Z,_l)

A(zz'71 — 2712

{Tij(2), Tu()} =

x lim 3" (B (2)o" BN ()T ()] ()0 BY ()T ()

— [T(2)EN(2)0*E~N ()] [T(Z)EN (2)o " E~N (2)]w)

60

(5.4.3)

(5.4.4)

(5.4.5a)

(5.4.5b)

(5.4.6)
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where we have used the boundary conditions for Jost functions and the definition of the tran-
sition matrix.

If we take z = e“™* with 0 < k < =, the non-vanishing Poisson brackets for the matrix
elements a(e?*) and b(e™*) are given by

ik BNV i ety 1y (RN D (K 1 : Y
{a(e™),b(e™)} = —sinksink'a(e™)b(e™) [Psin(k ) +imd(k — k') |, (5.4.9a)

ik 7 _1k' o . / ik\ 1 ik’ . o
{a(e™),b" (™)} = sinksin k'a(e™)b* (™) {P—sin(k =) +imd(k — k )} : (5.4.9b)
{b(e™®), b* (e} = —2im(sin k)?[a(e™) |0 (k — k'), (5.4.9¢)

where we have used the identities
1 1
= o (k — K 4.1

sin(k — k' — i¢) 7Dsin(k‘ — k) +imd( ) (5-4.10a)
tim SRV =K sy, (5.4.100)

N—oo Sin(k‘ — k’)

To compute differentiation for the eigenvalue z;, we make use of the implicit equation a(z;(S,), S,) =
0. By differentiation with respect to S we obtain

0z 1 da(z)
= — . 411
o=t (55 o4y

J

Noticing that

0b(z) _ 0%, 0b() __V(z) (da(z) 5b(2)
552 _(ss,fgb(zﬂ)+ 0S¢ ) .o al(z) \ 0Sg z:zj+ 655 ) .. (5.4.12)
we have
b'(%)

{Zi, b(Zj)} = — {CL(Z), b(Z/)}z:Zi’z’:zj + /

a'(z;)d'(z;)

a'(2)
Substitution eq.(5.4.8) into eq.(5.4.13) gives

i

{z,b(zj)} = —Z(zz — 27 1) 22ib(2) 04 (5.4.14)

In the same manner, it is verified that the Poisson brackets for other pairs vanish.
Now we are in a position to construct new canonical variables for our spin chain. The
variables associated with the continuous scattering data are given by

Q(k) = —arg b(e™), (5.4.15a)
P(k) =— ,1 -— log |a(e™)], (5.4.15b)
msin® k

and satisfy the Poisson brackets

{Q(k), P(K')} = 0(k — k), (5.4.16a)
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{Q(k), Q(K)} = {P(k), P(K')} = 0. (5.4.16b)

For the discrete variables, we define the following relations:

Q; = —ilogb(z), (5.4.17a)
. -1
p=20 (5.4.17b)
Zj — Zj
which obey the Poisson brackets
{Qi, Pj} = dij, (5.4.18a)
{Qi,Q;} ={P, P} =0. (5.4.18b)

Note that @; and P; are complex variables. The transformation (g,, p,) — (Q(k), P(k); Q;, P})
is a canonical transformation because it has the property of preserving the Poisson brackets.

The time dependence of the new canonical variables are determined from eq.(5.3.15). The
result is

Q(k) = 2(1 — cos 2k) + h, (5.4.19a)
- 4

Q; = TP +h, (5.4.19b)
P(k)=P;=0. (5.4.19¢)

Thus, the canonical variables Q(k), P(k), Q; and P; are of the action angle type'®, and
our spin model is the completely integrable Hamiltonian system. The real Hamiltonian which
generates eq.(5.4.19) is given by

" M Pi+1 =z
— J *
H= /0 w(k)P(k)dk + ;_1 Hlog | 1‘ +h ]Elj(Pj +P), (5.4.20)
where
w(k) =2(1 — cos 2k) + h. (5.4.21)

In the next subsection, we demonstrate that the Hamiltonian (5.4.20) coincides with the original
Hamiltonian (5.1.1).

We finally comment on the discrete (soliton) part of the Hamiltonian (5.4.20), denoted by
H,. Taking z; = e® % we have from eqs.(5.4.17b) and (5.4.20)

M 2 sinh 2,
H,=)_ <8aj +h ! ) : (5.4.22)

= cosh 2a;; — cos 23;

When h = 0, the energy depends only on «;, and it is possible to excite the different soliton
modes (different [3;) having the same energy (same «;). Thus we may say that for the soliton
modes a kind of degeneracy occurs. However, if an external field h is applied, the different
modes have different energies and the degeneracy is resolved.

5.4.2 Conservation laws

As well known, the nonlinear wave equations solvable by the inverse scattering method
have an infinite number of constants of motion. These quantities are derived from asymptotic
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expansions of diagonal elements of the transition matrix. In our case, this technique is applied
to a(z) defined by eq.(5.3.11).

We consider the asymptotic expansions of log @ in powers of 2? when z — 0 and in powers
of 22 — 1 when z — 1, that is,

Z C;z% for z — 0,
loga(z) = (5.4.23)
ZDj(z —1) forz—1
\ J=0

Since a(z) is time independent, the {C;} and {D;} are constants of motion. They are expressed
in terms of both the spin variables and action angle variables.
We begin by deriving the following identity:

loga(z) = iarg a(0) + /0 sin kP(k)mko
y PR (5.4.24)
Pr+1
—l—;log ‘ Zlog . P+1’
" P—1

which holds for |z| < 1. From the analytic properties of a(z), the function

M Z2 o Z»f—Q
lOg C_l(Z) H |Zj|4 T;Q s (5425)
=1 J

is analytic for |z| < 1. With use of Poisson integral formula we have from eq.(5.4.25)

) _ ) 1 /2 o ek 4+ M 1 22_5]2
loga(z) = iarg a(0) + %/0 log |a(e™)| ST de + ;log selz—2 )| (5.4.26)

By means of the definition of the canonical variables, eqs.(5.4.15) and (5.4.17), we obtain
eq.(5.4.24). From the asymptotic expansion of eq.(5.4.24), we can easily find the {C;} and
{D,}. The first two C; are

Co=— /7r sin? kP (k)dk — ilog ? —_i_ 1‘ +darg a(0), (5.4.27a)
0 = j
Cy=-2 /OW sin? ke 2% P(k)dk +]§; (];j 1 1 - g: J_r D : (5.4.27b)
and the first three D; are
w M D
Dy = z'/o sin k cos kP(k)dk + i ; arg T P} + iarg a(0), (5.4.28a)
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M

1 /" 1
Dy =z [ P(k)dk+=> (P +P; 5.4.28b
! 2 /0 ( ) i 2 j:l( ’ " ’ )’ ( )
i " 1 < 1
_ 2 *2
D, = _Z/o cot kP(k)dk + ;:1:(13]. - P~ 5D (5.4.28¢)

The unknown constant a(0) can be determined by the fact that from eq.(5.3.12) we have
a(z=1) =1, ie. loga(z = 1) = Dy = 0. The result is

-5
1+ P

(5.4.29)

. M
a(0) = — / sin k cos kP(k)dk — Z arg
0 ey

In order to relate loga(z) to spin variables, we adopt recursive techniques. There are two
methods to determine the {C;} and {D;}, one of which is useful for {C;}, the other for the
{D,}. We first calculate the {C;}. From eqs.(5.3.7) and (5.3.15b), we have a relation

loga(z) = lim log 2" ¢aa(n, 2). (5.4.30)

The eigenvalue problem (5.3.4) reduces to a difference equation for the expression z"¢as(n, 2),
which is

28 [2" P2 pga(n + 2, 2)]
(S5 Sr) (22 4 D) (5705: — Sy S5 ) (@~ D) m(n +1,2)] (5.4.31)
+2228, 4 [2"pa2(n, 2)] = 0,
where S, = S —i5Y. Define i
Som(n,z) = [] £ (5.4.32)

l=—00

to rewrite eq.(5.4.31) as

QS;fn—&-?fn-i-l - [(S; + S;-«—l)(ZQ + 1) + (ST:-FISTZL - 877554-1)(22 - 1)fn+1

(5.4.33)
With help of a recursive manner, we verify that f,, has the expansion
fo= PO+ 20+ (5.4.34a)
2Sn72
f0) _ Sat Sua 4 SiaSis = Sy Sua b Siat SiaSea = SiaSin (5400
25n72 Sn73 + Sn—? + Sn—3SrZL—2 - Sn—2s7i—3
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From eqs.(5.4.30), (5.4.32) and (5.4.34), Cy and C) are given by Cy = Z log f© and €, =

n=—oo

o (1)
Z %, respectively. Particularly, Re Cy is written as

n=—oo J M

il

)

n+1

1 & 1 "
ReC’0:§Zlog + 5

n=—oo

Comparing eq.(5.4.35) with eq.(5.4.27a), we obtain

‘7 n=—oo

l

Cﬁl

n+1

4/ sin? kP(k) dk+4Zlog
0
We next calculate the {D;}. The boundary condition (5.3.6) gives

1
loga(z Zl —¢22n+ Z)

n=—oo ¢22 n, Z)
By introducing
$12(n, 2)
u<n7 ) ¢22(n )

eq.(5.3.4) is written as
(22 4+ Du(n +1,2) — u(n, 2)]
+(22 = 1)[S;uln + 1, 2)u(n, z) — SZ{u(n + 1,2) + u(n, 2)} — S, *| =0,

and eq.(5.4.37) becomes

[e.e]

loga(z) = Z log [1 + %(22 —1){1 -5+ S, uln,z)}|.

From eq.(5.4.39), the expansion for u(n, z) in powers of (2% — 1) is

u(n, z) = (2% — 1)97(11) - 1)297(12) e

n—1

g =2 > (57 +is)).

l=—00

Therefore, D, and D5 are found to be

Dl - §n:700<1 - Sn)7
1 Z“’ _ Z” L1
D2 - g n=—00 Sn l=—00 Sl B 2D17

(5.4.35)

(5.4.36)

(5.4.37)

(5.4.38)

(5.4.39)

(5.4.40)

(5.4.41a)

(5.4.41b)

(5.4.42a)

(5.4.42b)



where —2D; is the total spin. Comparing eq.(5.4.42a) with eq.(5.4.28a), we have a relation

oo

/ﬂ P(k)dk + i(Pj P =— 3 (8- 1). (5.4.43)

0 7=1 n=-—00

From eqgs.(5.4.36) and (5.4.43), we see that the Hamiltonian (5.4.20) coincides with the Hamil-
tonian (5.1.1).

Appendix 5.1 Derivation of equations (5.2.9), (5.2.13) and
(5.2.14)

First we derive eq.(5.2.9). We assume

' = angl. (5.A.1)
From eq.(5.2.6a), we have
4|1 —q 1
1 n
. —_ 5.A.2
gn+1 In Lln 1 } 1+ |gn]? ( )
These equations suggest
an = [J+ 1) (5.A.4)
j=n
On the other hand, from eq.(5.2.6b) we have
LS '1{—4161*1 —q +q—1}
= —1 L no ) 5.A.5
dt gn _qn + qn—l ann—l ( )
d — @ —Qn + G
B dpGn—1 Qn T 4n 1} 5A6
a0 {—qz o G | (54.8)

which yield
Oy = ian(QnQZ—l - QZanl)- (5A7)
This equation is consistent with eq.(5.A.4), that is,

o q]q]+q]q]
z—logan ZZ T+ 1P

1
1+ |g;]?

Mg

{=qj1 — @51 + 265 — |g;1*(qf1 + 45-1) s — cc] (5.A.8)

.
Il
3

Mg

47 (gj+1 + gj-1) — (@741 + G-1) 0] = @ndn—1 — dnd1-

T
3

Hence we obtain eq.(5.2.9).
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We next derive eq.(5.2.13). Substitute eq.(5.2.12) into eq.(5.2.1) to find

= —il(z = 27H)(Sn + Surt) T+ (22 = 2780 (S0 + Sppa) 7]

I+

1 1
X(z—l—z z 2z Sn)

2

. z+z*1 z
+1 5 I+

=~ [(Sp A+ Sni1) T Sn + S (Sp A+ Sppr)

_Sn—l(Sn + Sn—l)_l - Sn(Sn + Sn—l)_l]

(z—2z)(z+ 271

—1

2

—2i(z — 27 ) [Su(Sn + Spyp1) Tt —

Noticing that

(Sn + Sn—i—l)_lsn = Sn—i—l(sn + Sn—i—l)_la

we obtain

ZSn = Q[Srm (Sn + Sn—l)_1 + (Sn + Sn+1)_1]

1

_<Sn + Sn—l)_l - SnSn—l(Sn + Sn—l)_l]

= —
1+ 5,-
which is equivalent to eq.(5.2.13).

ﬁ
Sn+1

[Sm Sn-i-l] +

1

—

—

n—1

[(Sn + SnJrl)il =+ Sn(Sn + SnJrl)ilSn

Snfl (Sn + Sn71>71] .

[Sru Sn—l]a

We finally derive eq.(5.2.14). From egs.(5.2.6a) and (5.2.11a), we have

gﬁll !

Determinant of eq.(5.A.12) gives

—Qn-1
Tt 1 } In

25, 1(S, + Sp_1) "

1+|g.° =
1
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n+1

(5.A.9)

(5.A.10)

(5.A.11)

(5.A.12)

(5.A.13)



which is eq.(5.2.14a). Equation (5.2.14b) is derived from eqgs.(5.A.8) and (5.A.11), that is,

(GG — Cqn) = = Y log(1+|g]?)
dt 2

j=n j=n
_ i 25,1 (85 % §i4) B 25+ (811 % S 40)
= = = = = = = = =
o LA+ S8 0)(A+ Sy Si) (T4 S-S+ Sj- Sjre)

— — —
_ 2 n—1 (SnXSn+1)
(1+ ?n ?n_l)(l + ?n . ?nH)
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CHAPTER VI

CONCLUDING REMARKS

69



Here we summarize the results obtained in the preceding chapters and give some remarks.

In chapter II, introducing the small amplitude and long-wavelength approximations, we
have derive the equations describing the nonlinear waves in the (2n,n) Lennard-Jones lattice
and examined the soliton solutions of them. To see effects of the long-range interactions, we
have not used the nearest-neighbor approximation. For n = 4 we have obtained the Korteweg-
de Vries equation, and found that the lattice is essentially the same as the system with the
nearest-neighbor interaction. For n = 2 we have gotten the Benjamin-Ono equation which is
more dispersive than the K-dV equation and whose soliton solution is algebraic. Although we
have considered the L-J lattice, the typical example of a lattice with long-range interaction is
a Coulomb system. To treat the system, we must study a diatomic lattice because of charge
neutrality. It may be worth-while to study a Coulomb system.

In chapter III, we have investigated the discreteness effects on the Sine-Gordon kink with
use of the perturbation theory developed by McLaughlin and Scott. We have seen that the
propagation of the S-G kink in the discrete medium is very different from that in the continuum
medium, that is, the kink is pinned between two adjacent lattice points when the kink velocity
u is smaller than the critical pinning velocity u, and excutes wobbling motion with radiation
loss when u > u,. We have not discussed multi-soliton and breather dynamics which contain
important problems such as the creation or annihilation of kink-antikink pairs. This is the
subject for future study.

In chapter IV, equivalence of the nonlinear wave equations generated by the A-K-N-S and
W-K-I schemes of the inverse scattering method was shown by introducing the gauge trans-
formation (namely the transformation of wave variables) and the transformation of space and
time coordinates. Our discussions were confined to the case that the dispersion relation of the
linearized equations is w = ak?® + Bk%. The results indicate a possibility that all nonlinear wave
equations having the same dispersion relation, which are integrable by the inverse scattering
method, are equivalent.

In chapter V, we have constructed the classical spin model which is differential-difference
analogue of the continuous isotropic Heisenberg spin chain. As is well known, the classical

ﬁ
spin is derived in the case s >> 1 where s is the magnitude of a spin operator S, namely

52 = s(s+1). As mentioned in the section 5.1, for s = 5 the Heisenberg model is the solvable

spin model. These facts suggest that a solvable spin model with arbitrary spin exists. We hope
that the problem will be solved in the near future.
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