oooooooogon
902 0 19950 26-48

A Fully Abstract Denotational Model for
Communicating Processes with Label-Passing

Eiichi Horita (YH 3%—), Fer-Jan de Vries (7=4-%¥ Fy 7J—2)

NTT Communication Science Laboratories
2-2, Hikaridai, Seika-Cho, Soraku-Gun, Kyoto 619-02, Japan
E-mail: horita@progn.kecl.ntt.jp, ferjan@progn.kecl.ntt.jp

Abstract: This paper investigates the full abstractness problem for a CCS-like language, CCS++,
with a label-passing mechanism. (Here labels are used as the names of communication channels through
which interactions between processes take place.) This language is essentially the same as the one
proposed by Astesiano et al.; it is an extension of full CCS of Milner and contains label-passing—
an important feature of m-calculus of Milner et al.— in addition to the traditional CCS constructs:
inputs, outputs, parallel composition, nondeterministic choice, action restriction, and recursion. First
an operational model O, called the weak maximal linear semantics, is defined in terms of a Plotkin-
style transition system; O serves as a behavioral criterion for assessing semantic models for CCS++.
Then a denotational model D is constructed on the basis of a complete partial order (cpo) and it is
shown that D is fully abstract with respect to O in the sense that D is the most abstract of those
models which are less abstract than ¢ and compositional. The full abstractness result means that D
is the most desirable (or optimal) semantic model from the practical viewpoint embodied by O.

1 Introduction

Full abstractness concerns the relationship between two semantic models, say D and O, for a given
language £. We say that the model D is fully abstract with respect to the model O if the following
holds for any two programs sg, s; in L:

D[so] = D[s1] iff O[C]s0]] = O[C][s1]] for all contexts C[-] of L. (1)

Typically O is an operational sema.ntlcs describing the behavior of processes in terms a Plotkin-style
transition system.

The full abstractness problem for programming languages was first raised by Milner [26] In general,
a fully abstract model for a given language with respect to a given operational semantics O is the
most abstract, and hence, the most desirable (or optimal) of those models which are less abstract
than @ and compositional. (Here we say a model D is less abstract than another model Dy iff
every two programs having the same meaning under D; have the same meaning under D;.) The
model D can be considered the optimal model in the following sense: The operational semantics
O may be considered to describe the most interesting characteristic of each process; such a model,
however, need not be compositional (see Sect.1.2 of [27]). (This fact is also exhibited in the setting
of this paper; see Example1.) Compositionality, in turn, is an essential property to fit the semantic
model into an axiomatic framework based on equational logic; it is also necessary for the modular
definition of program meanings (i.e., in order to define the meaning of a composite statement in terms
of the meanings of its components). Thus some extra information needs to be involved to construct a
compositional model; it is desirable, however, for the extra information to be minimum so as not to
bring about inessential details. The fully abstract model D meets these requirements (see Fig.1 for
an illustration of the optimality of D).

In this paper, we investigate the full abstractness problem for a CCS—hke language, CCS++, with
a label-passing mechanism. (Here labels are used as the names of communication channels through
which interactions between processes take place.) This language is essentially the same as the one
proposed in [1]; it is an extension of full CCS [27] and contains label-passing—an important feature of
w-calculus [29]— in addition to the traditional CCS constructs: inputs, outputs, parallel composition,
nondeterministic choice, action restriction, and recursion.

27

High abstractness The one-point model

s

Models
@ O

— The fully abstract
model D w.rt. O
Compositions
models less abstract

than O

Compositional
Models

AN The trivial term model

Low abstractness

Figure 1: The hierarchy of semantic models

First an operational model O, called the weak maximal linear semantics, is defined in terms of a
Plotkin-style transition system. The model O is linear and mazimal in that the meaning O[s] of each
program s is the set of mazimal sequences of actions the program may perform, and it is weak in that
the action sequences are obtained by abstracting from (finite sequences of) internal moves.! From
a certain practical viewpoint, O can be considered to represent the most interesting characteristic of
each (software or hardware) system; O serves as a behavioral criterion for assessing semantic models
for CCS++. Then a denotational model D is constructed on the basis of a complete partial order (cpo)
and it is shown that D is fully abstract with respect to ©. The full abstractness result means that D
is the most desirable (or optimal) semantic model from the practical viewpoint embodied by ©.

The cpo P underlying D is called the Smyth powerdomain of failures. This domain consists of
failure-divergence sets first introduced in [7]; P is not only a cpo but also a compete metric space (cms)
with an appropriate metric defined as in [3], and this twofold structure of P is conveniently used for
establishing the full abstractness of D with respect to @, as described in the next subsection. The
model D is a natural extension of the improved failures model of [7, 15] to the language with label-
passing (see the remark at the end of Sect.1.3); thus the construction of D gives a counterexample
to Hennessy’s conjecture that the improved failures model is inadequate for modeling communicating
processes with value-passing when the set of passed-values is infinite (see [14, Pp- 234-235]).

1.1 Outline of the Full Abstractness Proof

There are two frameworks for denotational semantics: the cpo framework [37] and the metric
framework [3], and each of the two has its own advantages and disadvantages (see Remark 1 below);
the full abstractness result of this paper is established by combining the respective advantages of the
two frameworks.

Remark 1 (i) The cpo framework provides a basis for a wide range of semantic models including
weak and strong models, but it does not provide much support for establishing eqmvalence
between a denotational and operational models.

(ii) The metric framework provides a powerful and uniform method (by means of Banach’s fixed-point
theorem) for establishing equivalence between a denotational and operational models (see [23]
for a general account of this method, and see [3, 2, 8, 18, 20, 34] for applications of the method
to various languages). Furthermore, a metric model can be automatically derived, under certain
conditions, from the transition rules by which operational models are defined (see [17, 19, 35]).

. This method, however, is applicable only to strong models. |

1On the other hand, we call a semantic model strong when the model does abstract from internal moves.

Strong Models Weak Models

(’i" H c complete O
it B

D,-— H D fully abstract

Figure 2: The scheme for establishing full abstractness results

By combining the respective advantages of the cpo and metric frameworks for denotational semantics,
we obtain the following general scheme (i)—(iii) for establishing full abstractness results. (The scheme

is illustrated by Fig. 2, where the expression C; M, ¢ denotes that H o Cr = C.) This scheme has
been applied in [18, Sect. 6] to a simple language for pure processes. (By “pure processes” we mean
processes which can only communicate by simultaneously performing synchronization actions; see [14]
for this terminology.) The full abstractness result reported in this paper is established by applying
the scheme to a more complex language CCS++ with label-passing.

(i) Given alanguage £ and an operational model O which serves as a behavioral criterion for assessing
semantic models for' £, it may be possible to define a strong operational model C; and a hiding
function H and to show, by an operational analysis of program behaviors, that the model C
defined by C = H o C- is less abstract than O and complete with respect to © in the sense that
the congruence induced by O is finer than the equivalence induced by C. Thus it is sufficient
to construct a denotational model D which is equivalent to C, since the equivalence and the
congruence induced by a denotational model coincide with each other. Such a denotational
model D may be constructed as follows.

(ii) The metric framework can be conveniently used to construct a cms-based denotational model
M and to establish the equivalence between M, and C,, when these models are strong (see
Remark 1(ii)).

(iii) When the semantic domain underlying M is both a cpo and a cms, we can construct a strong
order-theoretic model D, which is equivalent to M, ; furthermore when H is a continuous ho-
momorphism from the underlying algebra of D, to the weak version of the algebra, we can
also construct a weak order-theoretic model D such that D = H o D,; thus we can obtain the
equivalence between C and D, thereby establishing the full abstractness of D with respect to O.

1.2 Comparison with Other Approaches to Full Abstractness Proofs

To establish the full abstractness of a denotational D with respect to a given operational model O,
we have to establish detailed connections between D and . However, it is in general very difficult
to establish such connections directly, because the denotational method by which D is defined is very
different from the operational (or transitional) method by which © is defined. '

The following approach is taken to overcome this difficulty in this paper as well as in the other
papers (such as {12, 14, 30]) treating the full abstractness problem in the context weak semantic
models for concurrent languages. First, another operational model C, called an intermediate model,
is introduced, and it is shown to be equivalent to D; then close connections between C and O are
established by operational analysis of program behaviors, and thereby the desired connections between
D and O are obtained.

Thus, the difficulty is reduced to the problem of establishing the equivalence between C and D.
Our approach to establishing the equivalence is different from those taken in the other papers (such as

28

29

[12, 14, 30]): We establish the equivalence by constructing an strong denotational D, and operational
one C; such that D = H oD, and C = H o C; and by showning that both D, and C, are the fixed-
point of the same higher-order contraction (which has a unique fixed-point by Banach’s fixed-point
theorem). In the other papers (such as [12, 14, 30]), on the other hand, this equivalence is established
by a detailed operational analysis of the intermediate model C, typically by showing that the preorder
induced by C is algebraic (see [12, Sect.4.5]). Roughly, our approach is denotational, whereas the
other approaches are operational. .

We believe our approach is more easily applicable to various languages, since there is a general
method, which is insensitive to language constructs under a certain general condition, to construct the
auxiliary models D, and C, and to establish their equivalence (see [17, 19]), whereas the operational
analyses (of C) needed in the other approaches are ad hoc and are sensitive to language constructs
treated. Moreover, such operational analyses may involve crucial errors, which are difficult to detect
in the absence of general methods (see Remark 3 for such an error found in [30]).

1.3 Connections with Other Full Abstractness Results

A similar full abstractness result has been established by Bergstra, Klop, and Olderog for a language
without recursion or internal moves [5]. Moreover, Rutten investigated the semantics of a concurrent
language for pure processes in the framework of cms’s, and showed that the failures model is fully
abstract with respect to a strong linear semantics O, [33]. The full abstractness of D with respect
to O, expressed by (1) above, is an extension of the result of Bergstra et al. to a language with
recursion, internal moves, and label-passing. Also it is an extension of Rutten’s result to the case of
weak semantics (from strong semantics) and to a language with label-passing. The result reported in
this paper is an extension of the result of [18, Chap. 6], where a similar full abstractness result has
been given for a concurrent language for pure processes. (Similar full abstractness results have also
been given in [16], but there all the models are constructed in a purely operational framework.)

In [14], Hennessy and Ingéfsdéttir proposed a denotational model for a minor variant of full CCS,
which is slightly simpler than CCS++ because full CCS features value-passing but does not feature
label-passing. Their model is closely related to our model D, but the machinery used for constructing
their model is quite different from that used in this paper: The semantic domain in [14] is abstractly
constructed, along the lines of [32], as a solution of a system of reflexive domain equations (which
are rather complex with a powerdomain constructor appearing in a recursive way), while we use the
* simple failures domain'defined in elementary set theory. And the behavioral criterion employed in [14]
is based on the concept of testing and different from the one employed in this paper—we use the weak
linear semantics as the behavioral criterion.

The model D is a natural extension of the improved failures model of [7, 15] to the language
with label-passing, although we use the Smyth order [36] instead of the reverse set inclusion used in
[7, 18], for the convenience in relating operational and denotational semantics.2 (Note that in [7, 15],
the improved failure model is given in a purely denotational framework, with no comparisons with
operational models.)

2 Language CCS*+

In this section, we define the language a CCS-like language, CCS++, with a label-passing mechanism.
(Here labels are used as the names of communication channels through which interactions between
processes take place.) This language is essentially the same as the one proposed in [1]; it is an extension
of full CCS [27] and contains label-passing—an important feature of w-calculus [29]— in addition to
the CCS constructs: inputs, outputs, parallel composition with value-passing, nondeterministic choice,
action restriction, and recursion.

We define the language in the framework of typed A-calculus with p-notation as the version of
PCL given in [11]; we take the types V (of values), B (of Booleans), and P (of process) as ground

?The original failures model [6] also use the reverse set inclusion as the ordering between failure sets.

types, and we restrict the composite types to B = (V — B) (the type of predicates or parameterized
Booleans with one parameter of type V) and PD = (V — B) (the type of parameterized processes
with one parameter of type V)3

As a preliminary to the definition of the language CCS++, we define several basic sets.

Definition 1 (1) It is assumed that a common domain V of values and labels is given. (Here labels
serve as the names of communication channels through which values are passed.) Let (b €)
B = {true, false} be the domain of Booleans.

(2) Weput V! = {v!|ve V} and V?={v?|veE V}. The set (c €) Out of output actions is defined
by Out = VI x V = {(v!,7)| v,v' € V}. Likewise, we define the set (c €) In of input actions
by In=V? x V = {(v?,v')| v,9' € V}. From these, the set (c €) C of communication actions
is defined by C = Out UIn. We define the set (a €) C of actions by C, = cu{r}.

(3) Let Vary be the set of variables of type V, (X €) Varp the set of variables of type P, and (£ €)

Varg) the set of variables of type P(1). We put Varp = Varp U Varp, and define the set. (Z €)
“Var of variables by Var = Vary U Varp.

(4) We assume that a set (E €) € of values ezpressions and a set (G €) G of Boolean exzpressions
are given. Here it is not necessary to specify the syntax for £ and G; we only postulate the
following conditions (i)—(iii) concerning £ and G, for convenience in defining semantic models
in later sections: (i) Vary C &, VC &, and B C G. (ii) For Eg,E, € &, “(Bo = E))” € 6.
(iii) For Go,G1 € G, “~(Go)”, “(Go A G1)” € G.

We define the set G(1) of parameterized Boolean ezpressions by

(H €) ¢V = {“(\z. G)"| z € Vary A G€G}. 1
In term of the basic sets given above, the language CCS** is defined by:
Definition 2 (Lé.nguage CCS++)

(1) First, we define a set (S €) L of terms of type P, simultaneously with the set of terms (T e) £V
of type P, by the following BNF grammar:

S = 0|out(Ey, By, S) | in(E, H,T)|(Soll $1) | (So+51) |
ac(S) |if(G, S0, $1) | ap(T, B) | X | (uX.),

T = (z. 5) | €| (€. T),

where X (resp. £) ranges over Varp (resp. Var.(Pl)), E ranges over £, G ranges over G, H ranges
over G, and C ranges over p(C).

Below we give a brief description of each of the constructs:

(i) The constant 0 resprests inaction in the sense of CCS.

(ii) The construct out(Ey, E1, S). represents output the value B through the channel Ejp; this
is a natural extension of the CCS construct “¢Ej. S” of CCS with the label ¢ corresponding
to Eg.

(iii) The construct in(Ey, (Az. G),T') represents selective input through the channel Ej of those
values satisfying the predicate (Az. G). This is an analogue of the LOTOS construct for
value-acceptance with a selection predicate (see [10] or [38, Sect.3.5.2]). For a motivation
for this combinator, see Remark 2(2) below.

3We can easily extend the language so as to include such processes as take several values as their parameters, without
any nontrivial changes of the definition of semantics in later sections; it is only for simplicity that we treat only processes
with zero or one parameter. However, it will cause a fundamental change in the definition of the semantics, if we include
higher-order processes, such processes as take processes as their parameters.

30

31

(iv) The combinator || represents is parallel composition of CCS.

(v) The combinator + represents ezternal choice (or general choice) of CSP (see Sect.3.3 of
[15]). The transition rules for this combinator is slightly different from those for the choice
combinator of CCS (see rule (iv) in Definition 9(1)). For a motivation for this combinator,
see Remark 2(1) below.

(vi) The construct 8¢ (S) represents the restriction of those actions of S which are contained in
C; The transition rule for this construct is slightly different from those for the restriction
construct “S \ C” of CCS (see rule (vii) in Definition9(1)). For a motivation for thls
construct, see Remark 2(3) below.

(vii) The construct if(B, Sp, S1) is the same as the conditional construct of CCS.

(viii) The construct ap(T, E) is the application of the parameterized process T to the actual
parameter . We sometimes write T'(E) instead of ap(T, E).

(ix) The p-notation (uX. S) represents a recursively defined process whose body is S.

(x) Likewise, the p-notation (ué. T') represents a recursively defined parameterized process
whose body is T'.

We will say that a variable X € Varp is guarded in an expression S’ € L, when each occurrence
of X occurs in a subexpression of the form out(E, E’,S") or in(E, (Az. G),T). Likewise we
say that a variable £ € Varg,1) is guarded in an expression T' € £(1), when each occurrence of ¢
occurs in a subexpression of the form out(E, E’,S") or in(E, (Az. G),T).

The set (S €) £ of statements of the language CCS++ is deﬁned to be the set of S € L satlsfymg
the following guardedness condition:

For each subezpression (uX. S') (resp. (u€. T)) of S, the variable X

(resp. £) is guarded in S' (resp. inT). @

Likewise we define the set (T' €) L1 of parameterized statements of the language CCS++ to be
the set of T € L(V satisfying the above guardedness condition (2)

Let us put (U €) £*=LU LD,

(2) The constructs “(Az. ---)”, “(pX. ---)", and “(u€. ---)” have the usual binding property. For
U € L*, let FV(U) be the set of elements of Var which have a free occurrence in U.

For Y C p(Var), let us define L£[Y] and LD[Y] by L[Y] = {S € £| FV(S) C Y} and by
LOY] = {T € LD| FV(T) C V}., respectively. Then L[B] (resp. LV[0]) is the set of closed
statements (resp. the set of of closed parameterized statements). Let us use s (resp. t) as a
variable ranging over L[0] (resp. L(V[0]). Let us put (u €) £*[0] = LU LD, For Z € Var, we
write L[Z] instead of L[{Z}].

Further we put (e €) &[0] = {F € &| FV(E) = 0}, (9 €) G[0] = {G € G| FV(G) = 0}, and
(h€) GV = {H € V| FV(H) = 0}.§

Remark 2 (1) We can adopt the choice combinator of CCC instead of “4” (namely we can remove
“+” and introduce another binary combinator with the same transition rules as those for the
choice combinator of CCC) and preserve the full abstractness result, by slightly modifying the
definition of the semantic domain along the lines of [4, 16], [16, Chapter 6]; it is only for simplicity
that we adopt the combinator “+” for external choice instead of the-choice combinator of CCC.

(2) Clearly we obtain richer expressive power by adopting the construct in(Ey, (Az. G),T) for se-
lective input instead of a natural extension (which would be represented by in(Fp,T) without

~ the selection predicate) the CCS construct “cz.S” for unselective input. Such richer expressive
power -is convenient for describing communication systems (see [38, Sect.3.5.2]). By using this

rich expressive power, we can establish the full abstractness of the denotational model D given
in Sect. 5;-it is not known whether or not the full abstractness can be established if we replace
the construct in(Ep, (Az. G), T) for selective input by the simper construct in(Ep,T’) for unse-
lective input. (Note that there is no difficulty in constructing a denotational model by slightly
simplifying D, for a language which has in(Ey,T) instead of in(Ey, (Az. &),T).)

(8) The restriction construct S\ C of CCS represents the restriction of those actions of S which are
contained either-in C or its complement C; In this sense the restriction construct of CCS is
more unselective than our restriction construct. By using this type restriction, we can establish
the full abstractness of the denotational model D; again it is not known whether or not the
full abstractness can be established if we replace the construct 8¢(S) by the more unselective
restriction construct of CCS. (Note that there is no difficulty in constructing a denotational
model by slightly modifying D, for a language which has the CCS construct S \ C instead of

9c(S).)

(4) The grammar given in Definition2 is sufficient to construct a parser of the language, except
for the construct 8¢(S); in order to construct a parser, it is necessary to introduce some
syntax for specifying the suffix C in 8¢(S). A possible way is to introduce two constructs
“0l(E, (Az. B),S)” and “97(E, (Az. B),S)” which correspond to 8{(|[E]]. v)|[[B[v/a:]I|—true}(S)
and a{(m?)[Blv/=ll=true}(S)”, respectnrely, where [E] (resp. [Blv/z]]) is the evaluation of
the expression [E] (resp. [B[v/z]]) (see the beginning of Sect.4 for more explanation of the
evaluation mechanism [-]). I

We can characterize £* as a subset of the set of terms generated by a many-sorted signature Fun
(given in Definition 3 below) together with A-notation and p-notation. Thus, along the usual lines of
denotational semantics, we can define a denotational model by giving a cpo as an underling domain
and by giving interpretations of the elements of Fun as continuous functions on the cpo (see [11]); in
Sect 5 we will define the denotational model D for CCS*+ in this way.

Deﬁmtlon 3 Let Fun be the set of constants and combinators of L, and for (i,4,k,£,m) € w’, let
Funy; ; ;. s m) be the set of elements with arity Vi.Bi-(BW)k.pt.(plym. Namely, we define Fung; ;s ¢.m)
as follows:

(i) Fungg0,00) = {“0"}, (ii) Fun(2,o,o,1,0) = {“out”}, (iii) Fun(1,0, = {“in"},

(iv) Fun(mo’o’l’()) = {“ac”l Ce C}’ (v) Fun(070,0,1,0) ={“I”, “+7},

(vi) Fung1 050y = {“if”}, (vii) Fungg00,1)={“ap’},

(viii) Fung ; k. o.m) = { for the other indexes (2,7,k,2,m). 1

3 Preliminary Definitions

In this section we fix basic mathematical notation and introduce several notions concerning domains
of sequences.

Definition 4 Let A and B be sets.

(1) The set of natural numbers is denoted by w, and each number n € w is identified with the set
- {i. € w| 0 < i< n}. The powerset of A (resp the collection of finite subsets of A) is denoted by

p(A) (resp. by pg, (4))-

(2) The set of functions from A to B is denoted by (A — B) or by BA. The domain and range of a
function f are denoted by dom(f) and ran(f), respectively. For a variable z and an expression
E(z), the \-expression (\z € A. E(z)) is used to denote the function which maps z € A to
E(z). We sometimes write (E(z))zca or (E(z)| z € A) for (A\z € A. E(z)).

32

33

(3) The empty sequence is denoted by e. The sequence conmstmg of ag,---,an—1 € A is denoted
" by (ag,"*+,an—1).* The set of finite sequences of elements of A is denoted by A<“ and At =
AW\ {e} The set of finite or infinite sequences of elements of A is denoted by A<“’. Each
sequence w € A< is regarded as a function whose domain is a member of w U {w}. Thus, the
length of w is dom(w), which we refer to as lgt(w). (We have w = (w(3))ieigt(w) by definition.)

(4) For w; € A<, wo € AS¥| let w; - wo denote the concatenation of wy and wo. And for pp C A
and po C ASY let p; - py = {w1 - wa| w1 € p1 A wa € p2}. For p C A= and w € A<¥, let
plw] = {@ € A<“’| w - W € p}. The prefir order < and the strict prefiz order < are defined as
usual: For wi,wy € A, wy < wo iff wy = wzrdom(wl), and w; < wo iff w; <X wo A w1 # wo.

(5) We define the set A> B of finite or infinite sequences of elements of A ending with an element of
B (when finite) by A> B = (A<¥. B)U A“.

(6) Let X be a topological space. The closure of a subset ¥ C X is denoted by Y. The collection of
closed subsets of X is denoted by p,(X), and the the set of nonempty subsets of X is denoted
by pn(X).

Hereafter, we use the convention that p..(X) denotes the set of all subsets (of X) having the

property (or properties) indicated by the suffix - - -. Thus, for example, #nc1(X) denotes the set
of all nonempty and closed subsets of X.

Definition 5 Let A and B disjoint nonempty sets not containing L. We put B, = BU {1}.

(1) A function strip(-) : (A> By) — AS“ is defined as follows: For ¢ € (A > By), let strip(q) =
ql‘(lgt(q) —1) if 1gt(¢) < w, and otherwise let strip(g) = g. The stream order C on (A> B,) is
defined as follows: For ¢1,92 € (A> By), let q1 T g3 if either ¢; = g or (g1 € A<¥ - {{1)} and
strip(q1) =< strip(ga2)). For each n € w, the n-th projection function ()" : (AbB,) — A<¥-B, is

defined as follows: For g € (A>B)), let ¢i™ = ¢ if Igt(¢) < n, and otherwise let gi*l = (ql‘n) {1).
And for p € p(A> By), let pl”) = {¢I"l] g € p}.

(2) A distance function d on (A> By) is defined in terms of the projection functions as follows: For
91,92 € (A> By), let d(q1,¢2) = inf{(1/2)"| n € w A (@) = ()"}

Likewise, a distance function d on p(A> By) is defined as follows:3 For p;,pe € p(A> B)), let
d(p1,p2) =inf{(1/2)"| n € w A (p1)" = (o)™} 3

Definition 6 Let A and B be disjoint nonempty sets not containing L, and let d and d be defined
as in Definition 5.

(1) A binary relation Cs, the Smyth order on p(A> B), is defined as follows: For p1,ps € p(A> B)),
let py G p2 if Vg2 € po,3g1 €Ep1[1 E g2 |

(2) We will say that p € p(A> B,) is flat if Vq,d € p[¢ C ¢ = ¢=¢']. We put
pi(A>B,) ={p € p(A> B))| p is flat}.

(8) We define pg,(A> By) and p, ¢ (A > B.), according to the convention in Definition 4(6).

(4) Let peo(A>By) = {p € p(A> B)| p is compact}, where the notion of compactness is induced
by the metric d. We define p;,(A> B.), p, ¢, (A> B), and p, ¢ (A>B)) as in part (3).

(5) Let X € p(A>B,) and g € X. We will say that g is minimal in X when -3¢’ € X[¢' CTqAq' #4q].
Let Min(X) = {q € X| ¢ is minimal in X}.

*We do not abuse notation by writing ao to refer to {ao), because it will be confusing when we treat sequences
consisting of sequences in later sections (cf. [15, Sect. 1.5] for similar strict notation).

5Tt is easily checked that d coincides with the Hausdorff distance induced by d (for the definition of Hausdorff distance
see [9]).

(6) The limit of a converging sequence (Pp)new in (pci(A> BL), d) is denoted by limp,.

Notation 1 Let (X,C, 1), (Y,C, L') be cpo’s.

(1) For a chain (Tn)new in X, the lub of {zn}new, in X is denoted by I_Ja:n. Let [X — Y] denote the
set of continuous functions from X to Y. "

(2) Let (X,C, L) be a cpo, m € w, and (Zp)nzm € ({n € w| n > m} — X). We say that (Zn)n>m 8
a chain to mean that (Tmyn)new is a chain; when (Z,)n>m is a chain, we write I_l pr to denote

n>m

L_lpm+n-]
Definition 7 For p € p(C-b p(C),) and w € (C,)<¥, let plw] = {g € (C;>p(C)1)| w-q € p}. We
put act(p) = {a € C,| p[(a)] # 0}.1

Definition 8 Let (X,d) and (Y, d’) be metric spaces and ¢ be a nonnegative real number. We write
(X —¢ Y) to denote the set {f € (X = Y)| Vz,z' € X[d'(f(z), f(z')) < € d(z,2’)]}. In particular,
we write (X —!Y) to denote the set of nonezpansive mappings from X to Y. i

4 The Operational Model O

In this section, the operational model © is defined in terms of a transition system in the style of
Plotkin [31].

To define the transition system, we assume that some evaluation mechanism [-] mapping e € E[0] -

(resp. g € B[0]) to [e] € V (resp. to [g] € B) is given. For h = (Az. G) € G[@], we define the
evaluation [R] by [r] = (\v € V. [G[v/z]]).

4.1 Transition System
Definition 9 (Transition Relations)

(1) The transition relations 5C (L[0]))? (a € C,) are defined as the smallest relations satisfying the

following rules:

(i) out(eg, €1, 9) (Ie_"]"’lfl]]_), s.

(i) in(e, Oz G),8) I, ap(t,0), ifv eV A [Glo/a]] = true.

c ! T /!
sss 81 —* 8 . 81 —* 81
(iii) . (ceC). (iv .
(81 + 82) —:—* s} (tv) (51 + s2) — (s} + s2)
(s2+ 1) — s} (s2+81) = (s2+51)
(vlo') (')

51— &} sh, sg—— sh

@€eC,). (vi) 2 (w,v' € V).

(s1T152) > (5 152 (51 T152) = (5 I[53)

(s2lls1) = (521l 51) (s21l 1) = (s 1l s1)
s s

—— (agC).

dc(s) = dc(s") @89

a a
s1— (s s9 — |s
- (a) , if [g] =true. (ix) - (a) ,
lf(g,SI,Sg) — (S) ‘ f(ga 31a32) - (S)
(x) The following rule is called the pre-evaluation rule:

(vii)

(viii) if [¢] = false.

ap(wled) =5 o ey,

ap(u,e) = &

(xi) The following rule is called the A-rule:

34

35

S/z] — &'
ap((\z. §),v) - &'

(veV).

(xii) The following rule is called the recursion rule:

S[(pX. S)/X] —a->s"
(pX.8) ¢

(xiii) The following rule is called the parameterized recursion rule:

ap(T[(u€. T)/€l,0) = o
ap((1£- T),0) = &

(veV).

(2) For s € L[0], we put act(s) = {a € C,| 3s' € L[][s AN |

The transition system is image-finite in the following sense:
Proposition 1 For every s € L[f] and a € C,, the image-set {s' € L[0]| s = '} is finite. B
Proof. By induction on the structure of s using the guardedness condition (2). W

For a € C;, let us define the channel of a, written chan(a), by

v if a= (v!,7),
chan(a) = { v? if a = (v?,v'), ' _ ®)
T otherwise.

Then, the transition system is bounded with respect to channels in the following sense:

Proposition 2 For every s € L[], the set chan[a.cf(s)] of channels is finite. |}

4.2 The Operational Model O

In this subsection, we define the operational model O in terms of the transition relations (= |a€Cy).
As a preliminary to the definition, we introduce three other notions of transitions (as in [28]):

Definition 10 (1) For w = (ag,...,an-1) € (C+)<¥, and s, s'L[], we write s 2 5’ to mean that
there exist sq,...,8, € L[0] such that

s,Esoﬂ»slﬂ-usn_lfl'—‘—»snEs’.
(2) For w € C<* and s,s’ € L[0], we write s == s’ to mean that
o€ (c;)<°?[o Awe @\7)],
where (w \7') den;)te the result of erasing 7’s in w.

(3) For w € (C,)* and s € L[0], we write s — to mean that

Hsnnew € (LI 50=5 A Vn € wl 50 > 5001 1.0
By using the above definition, the operational model O is defined by:
Definition 11 (The Operational Model O)

(1) The flattening function Min(-) on p(C, > {4, L}) is defined as in Definition 6(6).

(2)‘ First, we define an auxiliary model O : L[0] —» p(Crv{6,L}) as follows: For s € L[] and
p € (C, 1 {6,1}), we put p € O[s], if one of the following three conditions (i)-(iii) is satisfied:

36

Lemma 4.1 Let ¢, be knowledge propositions including only disjunction and conjunction symbols.
Then

[V ¥+ ot = el + ¢ N Y]+ 4
[¢A¢]+pu = [‘P]TP“U['(/)]-—pﬂ

Each agent infers from previous message and determines its next action and its next message to send.
We provide a property which guarantees that agents reasonably infer proposition from some messages.

Definition 4.1 Let s € Q and let ¢ be a knowledge proposition and I' = 1 A --- A ¥ be a conjunctive
knowledge propositions. We say that agent i knows ¢ from the condition set I' at s if and only if

s8N+ 4! C [g]

As mentioned in the previous section, the quotient relation is the greatest relation « satisfing the com-

*
m*:/ X
0

P

mutative diagram:

Lemma 4.2 Let s € Q. Assume that i knows ¢ from T at s. For every state t such that (t,5) € p , if
t = K;p then s |E K;p.

Proof : Suppose that for every state ¢ € Q such that ¢ C sp!, t C [¢] + 6;, that is
sp C o)k + 6

As p and §; are commutative,

s C (pl+&)+p
s C [el+p'4
s C [¢]+6ip
s T (pl+A)+6
s6 C [¢]+p

From assumption it holds that
s6; N [¢] = p' C [¥]
Then we have sé; C [¢]. O

Remark 4.1: If the transition relation p is reflexive, then it holds that [¢] + p C [¢] for any knowledge
proposition ¢. O

Theorem 4.1 Let the transition relation p be reflezive, and [I'] C [¢] where T' is a conjunctive knowledge
proposition and ¢ is a knowledge proposition. For any transition (t,s) € p, if t |= KiT' then s |= K;op.

Proof : Assume that t C [['] = §; for every t C sp!, that is,

sp' C [T] + 6.

37

BEM

As p and §; are commutative, we have
s6;p! = sp'6; C [T
so that sé; C [I'] + p!. From assumption

s6; = s&N[M+p
C 6N [p]+ ot
[

therefore s6; C [¢], hence s C [p] + §;. O

Corollary 4.1 (In the same condition of theorem.) For every transition (t,8) € p, ift = Kip then
s = Kip then s |= K.

Proof : By theorem in the case of I' = . O

Proposition 4.1 Let p be reflezive. For every transition (t,5) € p, ift |= Kip and t |= Kiyp then i
knows o V 9 from ¢ A .

Proof : By assumption we have
spt T [Kig] N [Kiy]

([+ 8:) N ([¥] + 6:)
([l N [4]) + é;.

As p and §; commutes

s6 C ([pln[y])+pt
o Ay]+pt
C [pvyl+p
C

[VY]

from assumption. Hence we have s§; N ([p A¥] +p') C[p V). O

&5 ik
[CM86] K. M. Chandy and J. Misra. How processes learn. Distributed Computing, 1:40-52, 1986.

[FH88] R. Fagin and J. Y. Halpern. I'm ok if you’re ok: On the notion of trusting communication.
Journal of Philosophical Logic, 17:329-354, 1988.

[HM89] J.Y.Halpern and Y. Moses. Modelling knowledge and action in distributed systems. Distributed
Computing, 3:159-177, 1989.

[HM90] J.Y. Halpern and Y. Moses. Knowledge and common knowledge in a distributed environment.
Journal of the Association for Computing Machinery, 37(3):549-587, 1990.

[Hoa85] C.A.R. Hoare. Communicating Sequential Processes. Prentice Hall, 1985.

38

P2 EN

[HZ89]) J.Y. Halpern and L. D. Zuck. A little knowledge goes a long way: Simple knowledge-based
derivation and correctness proofs for a family for protocols. Technical Report RJ 5857, IBM
Research Division, 1989. '

[Kaw90] Y. Kawahara. Pushout—complements and basic concepts of grammers in toposes. Theoretical
Computer Science, 77:267-289, 1990.

[Kaw94] Y. Kawahara. Relational formalization of knowledge dynamics. draft, 1994.

[KM92] Y. Kawahara and Y. Mizoguchi. Categorical assertion semantics in topoi. Advances in Software
and Technology, 4:137-150, 1992.

[LL90] L. Lamport and N. Lynch. Distributed computing: Models and methods. In van Leeuwen J.,
editor, Handbook of theoretical computer science, pages 1157-1199. Elsevier Science Publishers
B.V., 1990.

[Milg9] R. Milner. Communication and Concurrency. Prentice Hall, 1989.

[SS85] G. Schmidt and T. Strohlein. Relation algebras: Concept of points and represetntability. Dis-
crete Mathematics, 54:83-92, 1985.

[Tar41] A. Tarski. On the calculus of relations. THE JOURNAL OF SYMBOLIC LOGIC, 6(3), 1941.

39

(1) The function (Ap € P. out(v,v’, p)) isa nonezpanswe and continuous unary operation on P, i. e,

one has (\p € P. out(v,v',p)) € (P - P)N [P — P].
(2) The function (\p € P. out(v,v',p)) is contractive in the sense that
vaapl € P[J(out(’u,v',po),out(v, vlapl)) < (1/2) : J(pOapl)] | (6)
Definition 15 We define in: V x B x P — P11 (Cr > p(C) 1) as follows: For v € V, 5 € B, and
e P,

m(v,7,7) = {(C)| C € p(C) A CN({v?} x I) =0} U |J ({(w}, ")) - 7(+/)). (™
v'el
where I = {v/ € V| n(v') = true}. |
As for out(v,v’,p), we have the following useful property of in(v,n, h).
Proposition 6 Let vV and n € (V — B).

(1) The function Az € PO, m(v 7,%)) is a nonempanswe and continuous function from P(1) to P,
i.e., one has (Ar € PM. in(w,n, 7)) € PW -1 P)n [PD - Pl

(2) The function (Ax € P, in(v,n, 7)) is contractive in the sense that
Vmo, 71 € P(l)[J(E(U,TI’WO),&(%%WI)) < (1/2) : (2;(7!'0,7!'1)] | (8)

5.3.2 Parallel Composition

The definitions of the semantic operations corresponding to parallel composition, action restriction,
and external choice is more involved than the definitions in Sect.5.3.1. First we need a preliminary
definition.

Definition 16 For pg,p; € P, let ﬂi(po,pl) = {{L)}N(poUp1), and

lls(o,p1) = { {C)] C € p(C) A 3Cy,C: € p(C)[(Co) € po A (C1) € p1 A 9
CCCynNCi A (C\Co)n(C\Cl)=@.}l

We will define a binary operation ﬂ on P so that the following proposition holds:
Proposition 7 For pg,p; € P, one has

120, p1) = ll.L(wo, 1) Ofls (o, p1) O [L(po, p1) O L(p1,p0) O [(p0,21) O (01, 20), (10)
where ')
Lwo,p)= U (a)-liwol(a)],p1), and (11)
a€act(po) o
(o, p1) = UL () - I wol{ (@t v'))], 1 (w?, v)])| (12)

v,v' € VA (v,v") € act(pg) A (v?,v') € act(p1)}. 11

Informally, we may suppose that ﬂ is defined by the above proposition, where the valuej (po,p1) is
characterized in terms of ||(po[wo), p1[w1]) with wo,w; € (C,)<“. Formally, the operation || is defined
as the unique fixed-point of a higher-order mapping ®|| defined by:

‘Definition 17 We define @) : (P2 - P) — (P? - p(C, > p(C)_)) as follows: For F € (P? — P)
and (po,p1) € P2, let

(F)(po, 1) | o (13)
= [lL(®o,p1) Ols(po, p1) O @ (F)(po,p1) Oy (F)(p1,p0) O @ |(po,p1) O&|(p1,po), Where
2 (F)(po,p1) =" |J ((@)- F(pol(a)],p1)), and : (14)

a€act(po)

‘I’[(F)(Po,m) = U{ () - Flpol{(@!, v")], m[{(v?, U'))DI ' (15)
v,9' €V A (v),9') € act(po) A (v?,v") € act(p1)}. 1

The ma.pping @), is a monotonic contraction from (P2 — P) to itself, and preserves nonexpansiveness
and (order-theoretical) continuity. (see Sect.5.3.2 of [21] for the proof of this fact). We formally define
il to be fix(<I>||), the unique fixed-point of ®. By Corollary 1, we have = fix(®)) = hmn((<I>")"(J_)) =

|_|n((<I>”)"(J_)), where 1 = (A7’ € P2. {(1)}). Thus || is nonexpansive and (order-theoretically) contin-
uous (i.e,]] € (P2 -! P) N [P2 —! P)), because the limit of nonexpansive functions is nonexpansive
and the lub of continuous functions is continuous.

5.3.3 Action Restriction and External Choice

For every C € p(C), we define a unary operation dc e (P -1 P)N [P — P] corresponding to the
combinator dc; the formal definition of d¢ is similar to that of || but more simple (see Sect.5.3.3 of
[21] for the definition).

The binary operation + :€ (P2 —! P) N [P2 — P] corresponding to the combinator ‘+’ can be
defined directly without using a higher-order mapping (see Sect. 5.3.4 of [21] for the definition).

5.3.4 Conditionals and Function Application

The definitions of the semantic operations corresponding to the construct if(-, -, -) for conditionals and
the construct ap(-,-) for function application are intuitively natural.

Definition 18 (1) We define if(b) : B x P2 — P as follows: For b € B and pg,p; € P, let

~ - _Jpo if b = true, ‘ |
if (b, po,p1) = {m if b = false. "

(2) We define Taf)i :PM x V — P as follows: For 7 € P(!) and v € V, let ;\pgi(ﬂ','u) =7(v). §

5.4 The Denotational Model D

On the basis of the cpo (P, C;), we define the denotational model D in terms of weak versions &p of
the semantic operations op defined in the previous subsection. The weak operations op are defined as
the compositions of the original operations op and a hiding function H. First we define H.

5.4.1 The Hiding Function H

The hiding function H is defined by:

Definition 19 (1) A function h: (C, > p(C)J_)'—-» (Cr > p(C).) is defined as follows: For ¢ = w-(z)
with (w, z) € (C;)<¥ x p(C) 1, let h(g) = (w\ 7) - (2}, and for ¢ € (Cr)*, let

h@={@Aﬂ%U if 30w =3 (hiew |

h(g) = (w\ 7) otherwise.
(2) The hiding function H : p(C. b p(C)L) — ©(Crp p(C))) is defined as follows: For p €
p(Cr> (C).), let H(p) = Min(k[p). I
The monotonicity of H immediately follows from this definition:
Proposition 8 The hiding function H is monotonic with respect to Cs. i
Moreover, we have the following lemma.:
Lemma 2 The hiding function H is a continuous function from p(Cr > p(C) L) to itself. I

This lemma follows from the continuity of h on p(C, > p(C),) by applying (a localized version of)
the lifting method proposed by Meyer and de Vink (see Theorem 4.6 of [24]). See Lemma 3 of [21] for
the proof

40

41

5.4.2 Weak Versions of Semantic Operations

Definition 20 For (3, 7, k,£,m) € w® and op € Funy), let 5p : V- BJ . (BW)k . pt. (pM)m _, p
be defined as follows For FeVibeBi fe (BWY 5e Pt and # € (PD)™ let
B(@-5-B-5-®) =HEB@-b-F-5-7).1

5.4.3 Definition of the Denbtational Model D

Having defined the semantic operations op, the definition of the denotational model D is straiéhtfor—
ward. In order to formulate the definition, it is convenient to introduce the set Valt of valuations.

Definition 21" Let (¢ €) Valt be the set of those elements of (Var — (V UP*)) which preserve types
in the following sense:
(Z € Vary = ((Z) € V) A (Z € Varp = ((Z) €P) A (Z € Vard) = (2) € P(l)).
Elements of Valt are called valuations.
We fix a valuation {(€ Valt in the rest of this paper for notational convenience in defining
denotational models. |

We define the model D as the least fixed-point model based on the domain P and the semantic
operations 8p. That is, we define D as the unique function D € L* — ([Valt — P]U [Valt — PO))
. satisfying conditions (17)—(22) listed in the next definition.

Definition 22 The mapping D : £* — ([Valt — P]U [Valt — P()]) preserves types. in the sense

that .
VS € L[D[S] € [Valt — P]] A VT € LV] D[S] € [Valt - PD]], (17
and satisfies the following conditions: ‘
(i) VZ € Var,¥¢ € Valt] D[Z](¢) =¢(2)]. (18)
(ii) V(z,y,k £ m) € w® Vop € Fun; ; k,tim)s (19)

VEe & VG e ¢, VH € (GO)* vs e)z:f VT e (c(l))m ¥¢ € Valt[
Dlop(E- G- H - §- D) = s([E]- [G1- [H] - PISIC) - PITIC) .
(iii) Yz € Vary,VS € £,V(€ Valt][D[(Az. S)|(¢) = (W e V. DISIv/=D) - (20)
(iv) VX € Varp,VS € L] (uX. S) e L = (21)
V¢ € Valt[(Ap € P. D[S](([p/X])) € [P— P]
AD[(pX. $)](C) =Y (Ap € P. DIS]([p/ X))]I.
(v) V€ € Vary), VT € £LO[(ut. T) € LD = (22)
V¢ € Valt[(Ar € PO, DIT]([x/€))) € [PD — PD)]
AD[(p¢. T)IC) = Y(Ar € PO, DIT](¢[x/¢))) 110
For every closed statement s € L[f)], the value D[s]({) does not depend on (.
Proposition 9 Vs € L[0],V({o,(1 € Valt| D[s}(¢o) = D[s](¢1) |- N
Notation 2 In the rest of this paper, we simply write D[s] for s € L[] to denote the value D[s](¢) €

P; thus the notation D[[s] denote either an element of (Valt — P) or an element of P depending on the
context. We will write D[s](-) to explicitly denote an element of (Valt — P) when it is necessary. JJ

The model D is compositional in the sense that for any two statements sg and sg with the same
meaning in D, sg in an arbitrary context can be replaced by s; without changing the overall meaning.
Namely, we have the following proposition.

Proposition 10
VX € Varp,VX € L[X],Vsg,s1 € LB][D[so] = D[s1] = D[S[se/X]] = D[S[s1/X]]] (23)
Proof. We can prove that the following holds for every S € £[X] by induction on the structure of S:
V¢ € Valt, Vs € L[f]] D[S[s/X]] = D[S]([D[s]/X])). , (24)
From this the claim (23) immediately follows. i

5.5 Auxiliary Denotational Models D, and M,

In order to relate the denotational model D and the operational model O, we introduce two auxiliary
denotational models D, and M,. The models D, and M, are strong denotational models based on
the cpo (P,C;) and the cms (P, d), respectively.

5.5.1 The Strong Order-Theoretic Model D-

_ The strong order-theoretic model D; is defined just as D on the basis of the cpo (P, Cs), but in terms
of the original semantic operations op instead of the weak versions. That is, D, is defined as the
unique function D, € £* — ([Valt — P]U [Valt — P()]) satisfying conditions (17)—(22) with D
and op replaced by D.- op, respectively.

The model D, has the following property corresponding to Proposition 9 for D.
Proposition 11 Vs € L[], V{o,¢1 € Valt] D, [s](¢o) = D-[s](¢1) |- N

We will use the notational convention in Notation2 for D,. as well as for D.

5.5.2 The Metric Model M,
We define the metric model M on the basis of the cms (P, d) and in terms of the semantic operations
op (op € Fun). More precisely, M; is defined as the unique function
M, : L* = ((Valt -! P) U (Valt —! P1))
satisfying conditions (25)—(30) listed in the next definition.

Definition 23 The mapping M; 2 L£* — ((Valt —1 P) U (Valt —! P()) preserves types in the
'sense that -

VS € L] M[S] € (Valt —! P) | A VT € L] M[S] € (Valt —»<1> Py, (25)
and satisfies the following conditions:

(i) YZ € Var,¥(¢ € Valt[M [Z](¢) =¢(2)]. (26)

(i) V4, k,¢4,m) € wd ,¥op € Fung; ;1 o.m), 27)

VE e &VG e g] VH e (g<1))’° VS e LLVT € (c(l))m V¢ € Valt]
M:[op(E - G- H - §-T)](C) = 5p([E] - [[G]] [4]- MT[[S]](g) MTETJI(C))_]-

(ili) Vz € Vary,VS € L£,V(€ Valt| (28)
M- [(Az. S)I(C) = (M € V. M [S]([v/=])) |-
(iv) VX € Varp,VS € L[(uX. S) e L = (29)

V¢ € Valt] (\p € P. M [S](¢lp/X]) € (P —1/2P)
AM[(uX. 8)I(C) = fix(\p € P. M[S](C[p/XD))]I
(v) V¢ € Varl) VT € LO[(€. T) € LD = (30)
¥ € Valt[(O € PO M [T](¢[n/€]) € (PO 172 p(D))
AM[(pg. TYJ(Q) = fix(Ar € PO MTIC[x/€D) 111
The model M has the following property corresponding to Proposition9 for D.
Proposition 12 Vs € L[0)],V(o,(1 € Valt] M, [s](¢o) = M-[s]({1)). B

In the rest of this paper, we simply write M,[s] for s € L[B] to denote the value Mfl[s] (¢) € P; We
will use the notational convention in Notation2 for M. as well as for D and D,.

6 Full Abstractness of D with respe:ct to O

In this section, we investigate the relationship between the denotational model D and the operational
model O, and thereby establish the full abstractness of D with respect to O. For relating the two
models D and O, we introduce two auxiliary models C, and C; these models are defined operationally
and called the intermediate models. ‘

42

43

6.1 Intermediate Models C, and C

In this subsection, we define two intermediate models C, and C; the former is strong and the latter is
weak. First, we define the strong intermediate model C, by:

Definition 24 (Strong Operational Model C;) We define C; : L[#] — p(C, > p(C).) as follows: For
s € L[0] and g € (C, > p(C)1), we put g € C,[s], if either of the following two conditions (i) and (ii)
is satisfied: ‘

(i) w e (C,),3C e p(C)g=w-(C) AT’ € L] s == s’ Aact(sN(C U {r}) =0]].

(i) g€ (Cr)* A g—= .1

For convenience in relating C, with M in Sect. 6.3, we give an alternative characterization of C,
as the unique fixed-point of a higher-order contraction ¥ defined by:

Definition 25 Let M = (£[@] — P). Clearly M is a cms with the pointwise metric induced by d.
The mapping ¥ : M — M is defined as follows: For every F € M, ¥(F) is the mapping defined by

¥(F)(s) = {{C)| C € p(C) A (CU{7})Nact(s) = B} 31)
UU{(a) - F(s")|a € C, A s' € L[B] A s 5'},

where s ranges over L[0]. I

It is easy to check that ¥ is a contraction from M to M. From the definition of C, it follows that
Cr is a fixed-point of ¥, i.e., that Yu € L*[0][¥(C,)(u) = C,Ju]]. Thus we have:

Proposition 13 (Alternative Characterization of C;) One has C; = fix(¥). That is, for every s €
£[0], ‘

C:[s] = {{C)| C € p(C) A (CU{r}) Nact(s) = 0} : (32)
‘ UU{(a) - C;[s]] a € C+ A 5" € L[B] A s = 5'}. &
From C;, the weak intermediate model C is defined by applying the hiding function H:
Definition 26 We define C : L[] — P as follows: For s € L[0], let C[s] = H(C-[s]).11

6.2 Completeness of C with respect to O

- In this subsection, we investigate the relationship between the intermediate model C and the oper-
ational model O, and thereby establish a relationship called the completeness of C with respect to
0.

First, we need a few preliminary definitions. .
Definition 27 For p € p(C v p(C)1), let To(p) = pN ((C-)< - {{L)}), Zu(p) = p N (C,)*, and
F(p) =pN (€< - (C)). |
Definition 28 We define an abstraction function A : p(Cr>p(C)1) — p(C, > {6, L}) as follows:
For p € p(Cr>p(C) 1), let Alp) = T1(p) U Ti(p) U{w- ()] w-(C) € p}. I

We immediately obtain the following connection between O and C, from the definitions of O, C,
and A:

Proposition 14 Vs € L[0][Os] = AC[s])]- 1
Moreover, the model C is complete with respect to O in the following sense:
Lemma 3 Let V is infinite. Then for every so,s1 € L[0], one has
Clso] # Cls1] = 35 € L[O][Ofsoll5] # Ofs1l15] - W ' (33)

Proof. Suppose V is infinite. And let sp and s; be programs such that Cfsg] # C[s1]. We fix
X € Varp. It suffices to show that

35 € £{X][O[Slso/X]] # OlS[so/X]] I . (34
Since C[[so] # C[s1], one of the three conditions (35)(i), (85)(ii), or (35)(iii) holds:

44

@) Zo(Clso]) # T1(Cls1D)s () Za(Clso]) # Zo(Claad), (i) F(Clsol) # F(Clsa))- (35)
When (35)(i) or (35)(ii) holds, we immediately obtains (34) by putting S = X. Let us consider the
remaining case that (35)(iii) holds.

We can assume without loss of generality that there exist w € C<*¥ and C E p(C) such that

(i) w-(C) € Csol, (ii) w-(C) & C[s1]. ' (36)
Let us put w = (co, s C).
_ If there exists v’ < w such that w'- (1) € T(C[s1]), then we have w’- (L) & T3 (C[s0]) A w’-{L) €
71 (C[[s0]), and therefore this case is reduced to the case that (35)(i) holds. Thus it suffices to consider
the case that

~3w' 2w[w'- (L) € TL(Cla1])). (37)
Then, we can construct a set C € p(C) and a program 5 such that
(i) (8) € O[6s(s0ll3)], (i) (6) € O[ds(s1lI5)] ' (38)
as follows. First, we put C = |J (A(s0,w") U A(s1, ")) \C where we define §(3,%), for 5 € L[0]
w'<w

and @ € C<¥, by
S(5,w) = {chan(c)] c€ C A I[5=2> 5" A c € act(s')]}.

We fix an elément v € V arbitrarily, and let) be an element of V such that
ate (VI\ U U(SG:w')uSGw)).

w'<w i€2

(The nonemptiness of the right-hand set of the above formula follows from (36)(i) and (37); see
Proposition 22 of [21] for the proof.) We inductively define Sy, ..., 5, by the following clauses:

(i) o= 0; (ii) fori € {1,...,k}, let 3; = out (31,7, 0) + f(T=, 3i-1),
where we define f(c, 5), for ¢ € C and 5 € L[], by

o _ | out(v,v',3) - Cif e= (v, 0'),
fle,8) = { in(v,v(/\z.s:v =7),(Az. 3)) if c= (v?,v').

And we put § = 5;. Then, we can prove (38) by an operational analysis of the behaviors of the two
programs 9;(s0||5) and 9(s1/|5). See Lemma 7 of [21] for details. W

6.3 Equivalence of D,, M., and C,
For Z € (Varp)<“ and Ue (L)<, we say Z and U agree in types if lgt(Z) = lgt(¥') and
Vi e1gt(2)[(Z() € Varp = () € £) A (£() € Vard) = a() € D)].
In order to relate C; and M, we extend the domain of C; from L[0] to E*[@] as follows.
Definition 29 For ¢t € L[], we define C.[t] by C,[t] = (\v € V. C-[ap(t,)]). 1
The model C is a homomorphism from L*[B] to P* in the following sense:
Lemma 4 For (i,,k,£,m) € w5 and op € Fung ; x 0m), one has
Ve € (E[0))',v4 € (9[0)), Vh € (9(1)[@])’c V&€ (L) ¥ e (CO@D™
Crlop(@-§-h-5-D)] =op([¢- §- h]- C[5-7]) |- W

This lemma follows from the definition of the operations. op by applying the general method described
in-[17, 19]. See Lemma 8 of [21] for the proof.

(39)

The two models C; and M are equivalent in the following sense:

Lemma 5 For every U € L* with FV(U) C Var}, one has

45

vZ e (Varp)<¥ Vi e (ﬁ*[@])“"[FV(U) C ra.n(Z’)*/\ Zand agree in types
= V(€ Valt[C-[U[i/Z]] = M. [U](C[C-[2]/2))]]-0

Proof. The claim (40) can be proved by induction on the structure of U € £*, usmg Lemma4 and
properties (25)-(30) of M. See Lemma 9 of [21] for the proof.

From Lemma 5, we immediately obtain the next corollary.
Corollary 2 Vs € L[0][C[s] = M,[s]].1 :

Although the respective underlying structures of M, and D, are different, the meaning of each
program under M is equal to its meaning under D,.
Lemma 6 YU € £*,V(€ Valt[M.[U]({) =D-[U]()]- 1

Proof. This can be proved by induction on the structure of U € L£*, using properties (25)—(30) of
M and the corresponding properties of D.. i

(40)

From Lemma 6, we immediately obtain the following corollary.
Corollary 3 Vs € L[0]] M [s] =D-[s]].8

From Corollary 4, Lemma 6, and Corollary 3, we obtain the following proposition.
Proposition 15 Vs € L[0][C[s] = D[s] |- §

6.4 Relationship between D and D,

The denotational model D can be represented as the composition of D, and the hiding function #;
this is the claim of Lemma 7 below. Since the two models D and D, are defined independently, this
relation does not follow immediately, and we need a few preliminaries.

6.4.1 Hiding as a Homomorphism

We extend the domain of H to (V UB® UP®) as follows:
Definition 30 For z € (VUB*UP®™), let
z ifz€ VUB®,
H(z) = ¢ H(z) ifzeP,
Hoz=(MweV.H(z(v) ifze P,
Forn € w and Z € (VUB® uPM)r, we write H(Z) to denote (’H(i‘(i))‘),-e,,.]
The hiding function H is a homomorphism in the following sense:
Lemma 7 For (i,5,k,£,m) € w> and op € Fung; jx.sm), one has
Vi e Vi,vb e B, VG € (BW) vie PLVR e (PW)m|
H(Sp(T-b- -5 %) = p(H(T-5- B -5 %) .
Proof. It is easy to check that (41) holds, except for the recursively defined operations ﬂ and dc.

For these operations, we first prove (41) for finite processes by induction on their length, and thereby
prove (41) for infinite processes (see Propositions6.16 and 6.19 of [18, Chapter6]). W

(41)

6.4.2 Relationship between D, and D

The two models D, and D are related by means of the hiding function H as follows.
Lemma 8 For every U € L*, one has ¥(€ Valt] H(D,[U]({)) = D[U]J(H<¢)]. I

Proof. This lemma can be established by induction on the structure of U € £*, using the continuity
of H and the fact that H is a homomorphism (Lemma 7). See Lemma 6 of [21] for details. |

The next corollary immediately follows from Lemma 8:
Corollary 4 Vs € £[D[s] = H(D-[s])]. B

6.5 Full Abstractness of D with respect to O

By combining the result established in the previous section, we can now prove the main result of our
paper, the full abstractness of D with respect to O.

Theorem 1 Let V is infinite. Then for every sg,s1 € L[], one has
D[so] = D[s1] & VX € Varp,VS € LIX][O[S[so/X]] = O[S[s1/X11 |- K (42)
Proof. Let sg,s1 € L[0]. We will prove (42).
(=) Suppose that (¥): D[se] = D[so]. Let X € Varp and S € L[X]. We have
O[S[s0/S]] = A(C[S[s0/S]l) (by Proposition14) = A(D[S[s0/S]]) (by Proposition15)
= A(D[S[s1/S]]) (by (*) and Proposition10) = A(C[S[s1/S]]) = O[S[s1/S]]-
Thus we obtain the =>-pa,rt of (42).
(<=) To prove the <=-part of (42), it suffices to prove its contrapositive:

D[so] # D[s1] = 31X € Varp,3S € LIX][O[S[so/X]] # O[S[s1/X]]]- (43)

Suppose that D[sg] # D[s1]- Then, by Proposition 15, we have C[so] # C[s1]. Thus, by Lemma3,
there exists 5 € L[0] such that O[so||5] # O[s15]. Therefore, by putting S = (X||3) with X being an
arbitrary variable, we have O[S[so/X]] # O[S[s1/X]]. Thus we obtain (43), and therefore the <=-part
of (42). W

7 Concluding Remarks

There are two directions for future research.
First, it remains for future study to investigate what we can do with CCS*+, e.g., to investigate
the following questions: '

e Is it possible to code in CCS*+ a concurrent object-oriented model? (Example 3 of [21] suggests
that such a coding will be possible to some extent, by giving a description of a typical client-server
system in CCS++.)

e Are any (efficient) implementations of CCS++ possible? (Note that, unlike LOTOS [22], CCS++
is a programming language in nature with all the features intended to be implementable in
some sense; the former is a specification language with several features not intended to be
implemented.)

Another direction for future research is to apply the general scheme described in Sect. 1.1 in order to
establish full abstractness results for more complex languages such as the ones treated in [2, 8, 20, 34]
(these languages include Ada-style rendezvous, real-time features, shared variables, and/or object-
orientation). Particularly interesting target is w-calculus [29]. In [13], Hennessy provided a kind of
term model for a version of m-calculus, which model is shown to be fully abstract with respect to a
certain behavioral criterion based on testing. But the behavioral criterion in [13] is different from ours
based on the weak linear semantics, and domain-theoretic construction of good denotational models
for w-calculus remains for future research.

A Appendix

Remark 3 In the proof of a semantic equivalence result, Theorem 13.3, of [30], the following proposition (44)
is claimed to hold and .is used as a crucial intermediate step of the proof (see the end of the second paragraph
of [30, page 61]).

VL € w,¥n > £+ 1,YRy, Ry| Ry, R; are closed statements = P"(R;) 2, P"(R;)], (44)

46

47

where P is a mapping which maps each statement R to P[R/ﬁ] (with P being an arbitrary statement such
that FV(P) C {¢}), and 2 is such a modification of Milner’s £-nested observation equivalence [27)] as takes the
notion of divergence into account (see [30, Sect.12]). (We have Ry = R, iff (B; 1< R; 1), where 1 denotes
the possibility of divergence at €. And 2%, is defined from 2, just as Milner’s (£ + 1)-nested observation
equivalence is defined from the f-nested observation eqmvalence) However, (44) does not hold as is shown
below. Let P = c- (§ \ ¢), and P be the syntactic mapping which maps each statement R to P[R/¢]. Then

P(div) = ¢+ (div\ ¢) = (div \ ¢) 1, and therefore, P?(div) = ¢- (P(div) \ c¢) 5 (P(div) \ ¢) 5 (div \¢) 1. Thus,
we have P?(div) = (div \c) 1. If (44) holds for £ = 1, n = 2, R, = div, and R, = stop, then there must exist a
statement Rj such that P2(stop) = R} 1, but this is clearly impossible. J

References

{1] E. Astesiano and E. Zucca (1984), Parametric channels via label expressions in CCS, in Theoretical Computer
Science, Vol. 33, pp. 45-63.

[2] J.W. de Bakker and E.P. de Vink (1993), Rendez-vous with metric semantics, New Generation Computing,
Vol. 12, No. 1, pp. 53-90.

[3] J.W. de Bakker and J.I. Zucker (1982), Processes and the denotational semantics of concurrency, Information
and Control, Vol. 54, pp. 70-120. '

[4] J.A. Bergstra, J.W. Klop, and E.-R. Olderog (1987), Failures without chaos: a new process process semantics
for fair abstraction, in Proceedings of IFIP Conference on Formal Description of Programming Concepts III,
Ebberup 1986 (M. Wirsing, ed.), North-Holland, pp. 1134-1177.

[5] J.A. Bergstra, J.W. Klop, and E.-R. Olderog (1988), Readies and failures in the algebra of communicating
processes, SIAM J. of Computing Vol. 17, No. 6, pp.1134~1177.

[6] S.D. Brookes, C.A.R. Hoare, and A.W. Roscoe (1985), A theory of communicating sequential processes,
Journal of the Association for Computing Machinery, Vol. 31, pp. 560-599.

[7] S.D. Brookes and A.W. Roscoe (1984), An improved failures model for communicating processes, in Lecture
Notes in Computer Science, Vol. 197, pp. 281-305, Springer, Berlin.

[8] F. van Breugél (1991), Comparative semantics for a real-time programming languages with integration, In
Proceeding of TAPSOF/CAAP’91, Lecture Notes in Computer Science, Vol. 493 (S. Abramsky and T.S.E.
Maibaum, eds.), pp. 397-411, Springer, Berlin.

[9] J. Dugundji (1966), Topology, Allyn and Bacon, Boston.

[10] M.H. Goldsmith, A.W. Roscoe, and B.G.O. Scott (1993), Denotational Semantics for occam 2, Technical
Monograph PRG-108, Oxford University Computing Laboratory.

[11] C.A. Gunter (1993), Semantics of Programming Languages: Structures and Techniques, MIT Press.
[12] M. Hennessy (1988), Algebraic Theory of Processes, MIT Press.

[13] M. Hennessy (1992), A Model for the'w-Calculus, University of Sussex (obtained by anonymous ftp from
<ftp.cogs.sussex.ac.uk>).

[14] M. Hennessy and A. Ingéfsdéttir (1993), A theory of communicating processes with value passing, Infor-
mation and Computation Vol107, pp. 202-236.

[15] C.A.R. Hoare (1985), Communicating Sequential Processes, Prentice Hall.

[16] E. Horita (1992), Fully abstract models for communicating processes with respect to weak linear semantics
with divergence, IEICE Transactions on Information and Systems, Vol. E75-D, No. 1, pp. 64-7T.

[17] E. Horita (1992), Deriving denotational models fro nonuniform concurrency from structured operational
semantics, IPSJ Technical Report, Vol. 92, No. 67, 92-PRG-8, pp. 1-8.

(18] E. Horita (1993), Fully Abstract Models for Concurrent Languages, Ph.D. the31s, the Free University of
Amsterdam (also appeared as ECL Technical Report, No. 8939).

[19] E. Horita (1994), Deriving failures models for nonuniform concurrency from Structured Operational Se-
mantics, to appear in New Generation Computing.

[20] E. Horita, J.W. de Bakker, and J.J.M.M. Rutten (1990), Fully Abstract Denotational Models for Nonuni-
form Concurrent Languages, CWI Report CS-R9027, Amsterdam. (To appear in Information and Computa-
tion.)

[21] E. Horita and F.-J. de Vries (1994), A fully absiract denotational model for communicating processes with
label-passing, to appear as an ECL Technical Report (a preliminary version was distributed at Workshop on
Concurrency Theory and Its Application, Research Institute of Mathematical Science, Kyoto, July 25-27,
1994).

[22] ISO (1989), Iriformtition Processing Systems - Open Systems Interconnection — LOTOS - A Formal De-
scription Technique based on the Temporal Ordering of Observational Behaviour, International Standa.rd 1SO
8807.

[23] J.N. Kok and J.J.M.M. Rutten (1990), Contractions in compa.rmg concurrency semantics, in Theoretical
Computer Science, Vol. 76, pp. 179-222.

[24] J.-J.Ch. Meyer and E.P. de Vink (1990), Application of compactness in the Smyth powerdomain of streams,
Theoretical Computer Science, Vol. 57, pp.251-282.

[25} J.-J.Ch. Meyer and E.-R. Olderog (1990), Hiding in stream semantics of uniform concurrency, Acta Infor-
matica, Vol. 27, pp. 381-397.

[26] R. Milner (1975), Processes: a mathematical model of computing agents, in Proceedmgs of Logic Colloquium
73 (H.E. Rose, J.C. Shepherdson, eds.), pp- 157-173, North-Holland, Amsterdam.

[27] R. Milner (1980), A Calculus of Communicating Systems, Lecture Notes in Computer Science Vol. 92,
Springer, Berlin.
[28] R. Milner (1989), Communication and Concurrency, Prentice Hall International.

[29] R. Milner, J. Parrow, and D. Walker (1992), A calculus of mobile processes, I and II, Information and
Computation,- Vol. 100, pp. 1-40 and pp. 41-77.

[30] E.-R. Olderog and C.A.R. Hoare (1986), Specification-oriented semantics for commumcatmg processes,
Acta Informatica, Vol. 23, pp. 9-66.

[31] Plotkin, G.D. (1981), A Structural Approach to Operational Semantics, Report DAIMI FN-19, Comp. Sci.
Dept., Aarhus Univ.

[32] Plotkin, G.D. (1981), Post-Graduate Lecture Notes in Advanced Domain Theory, Department of Computer
Science, University of Edinburgh.

[33] J.J.M.M. Rutten (1989), Correctness and full abstraction of metri¢ semantics for concurrency, in Linear
Time, Branching Time and Partial Order in Logics and Models for Concurrency (J.W. de Bakker, W.P.
de Roever, G. Rozenberg, eds.), Lecture Notes in Computer Science Vol. 354, pp. 628-658, Springer, Berlin.

[34] J.J.M.M. Rutten (1990), Semantic correctness for a parallel object-oriented language, SIAM J. of Com-
puting Vol. 19, No. 2, pp. 341-383.

[35] Rutten, J.J.M.M. (1990), Deriving denotational models for bisimulation from Structured Operational Se-
mantics, in Proceedings of IFIP TC2 Workmg Conference on Pragrammmg Concepts and Methods (M. Broy,
C.B. Jones, eds.).

[36] M.B. Smyth (1987), Powerdomains, Journal of Computer and System Sciences, Vol. 16, pp. 23-26.

[37] J. Stoy (1977), Denotational Semantics: The Scott-Strachey Approach to Programming Language Theory,
MIT Press.

[38] K.J. Turner (1993), Using Formal Description Techniques: An Introduction to ESTELLE, LOTOS and
SDL, John Wiley & Sons.

48

