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Abstract

This research is motivated by the Circuit Value Problem; this problem is well known to be
inherently sequential. We consider Boolean circuits with descriptions length $d$ that consist of
gates with a fixed fan-in $f$ and a constant number of inputs. Assuming uniform distribution of
descriptions, we show that such a circuit has expected depth $O(\log d)$ . This improves on the best
known result. More precisely, we prove for circuits of size $n$ their depth is asymptotically $ef\ln n$

with extremely high probability. Our proof uses the coupling technique to bound circuit depth
from above and below by those of two alternative discrete-time processes. We are able to establish
the result by embedding the processes in suitable continuous-time branching processes. As a simple
consequence of our result we obtain that monotone CVP is in the class average $\mathrm{N}\mathrm{C}$ .

Key Words: random circuits, depth, recursive trees, domination by coupling, continuous Poisson
process.

1 The Problem and Motivation

A circuit is a directed acyclic graph whose nodes are labeled from a given set: the nodes with in-degree
$0$ are called inputs and all the remaining nodes are gates. Circuits are a widely used model for both

sequential and parallel computations by giving appropriate labels to nodes. For parallel computations,
the size of a circuit–the number of its gates-corresponds to the cost of the structure, while its depth

-the length of a longest path–corresponds to its computation time. Furthermore, circuits consist
an excellent model for computation of Boolean functions, namely, if inputs are labeled by Boolean
variables and gates by Boolean functions, then Boolean circuits are obtained (see e.g., [BDG95, page
106]).

Our model of circuit comes from the Circuit Value $\mathrm{P}\mathrm{r}\mathrm{o}\dot{\mathrm{b}}$lem (CVP) in which the instance of the
problem is a description $(\alpha_{1}, \ldots, \alpha_{a}, \alpha_{a+1}, \ldots, \alpha_{a}+n)$ where $\alpha_{1},$

$\ldots,$
$\alpha_{a}$ are inputs and each $\alpha_{i}$ with

$i>a$ is a gate $\alpha_{i}=(\alpha_{j_{1},\ldots,j_{f}}\alpha)$ with $j_{k}<i,$ $1\leq k\leq f$ . A simple parallel algorithm to decide
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the output value of the circuit is: compute the gates level by level, where all the gates of one level

are computed in parallel. Thus, the parallel time depends on the depth of the circuit. We assume

uniform distribution of descriptions and show that the depth of size $n$ circuits (with a constant number

of inputs) converges to $ef\ln n$ in probability, i.e., for any $\sigma>0$ , the probability that it is between

$(ef-\epsilon)\ln n$ and $(ef+\epsilon)\ln n$ tends to 1 as $narrow\infty$ . For simplicity we will consider Boolean circuits

with binary gates $(f=2)$ ; the result can be easily extended to the general case.

D\’iaz et al. $[\mathrm{D}\mathrm{S}\mathrm{S}^{+}94]$ study the average NC complexity1 of monotone CVP. They use the following

incremental process to generate at random a circuit $C_{a,n}$ beginning with $a$ inputs. Generally, $C_{a,n}$ is a

circuit on the set of $n+a$ nodes 1, . . . , $n+a$ . $C_{a,0}$ consists simply of $a$ input nodes, labeled by 1, . . . , $a$ .
To obtain $C_{a,n+1}$ from $C_{a,n}$ , the gate $n+1$ is joined by edges to two nodes chosen from $\{1, \ldots, n\}$

uniformly at random with replacement. We refer to t.hese circuits as random recursive circuits. In
$1\mathrm{D}\mathrm{s}\mathrm{s}+_{94]}$ , the authors gave two upper bounds for the depth of $C_{a,n}$ . The first one is $O(\log^{3}n)$ and

is easy to understand while the second one shows a more tight bound $4e\ln n$ . Both of these bounds

were proved by straightforward methods. They also presented a lower bound $e\ln n$ , which was derived

easily by a result of [Pit94] on recursive trees. As a simple consequence of our result for $f=2$ , we are

able to decide the constant, i.e., the depth of $C_{a,n}$ converges to $2e\ln n$ in probability. Thus, in terms of

parallel time computation, we have that the expected time to decide the output of a monotone CVP

is $2e\ln n$ , asymptotically.

Another interesting related work in this line is that of Codenotti et al. [CGS95], where strong

lower bounds on the expected paraIlel time to compute Boolean functions by circuits are given. They

consider self-time circuits–a model in which gates compute their output as soon as it is determined

(possibly by a subset of the inputs $\mathrm{t}.0$ the gate).

2 Proof Outline, Definitions and Notations

Instead of handling a random recursive circuit $C_{1,n}$ , we consider alternative incremental processes $B_{n}$

and $D_{n}^{(k)}$ which are easier to analyze, and such that their depths bound that of $C_{1,n}$ from above and

below (we only consider the case $a=1$ since similar arguments hold also for general $C_{a,n}$ with a

fixed $a.$ ) We then prove that their depths converge to $2e\ln n$ , in probability. Following, we give an

alternative notation for circuits and then a more precise sketch of the proof. For a circuit $C,$ $depth(i)$

denotes the depth of the node $i$ , i.e., the length of a longest path from an input to it. Since we

concern the depth, we may look a circuit $C$ on the set of nodes $\{1, \ldots, n\}$ as a string of non-negative

integers depth(1) $depth(2)\cdots depth(n)$ . Thus, a recursive circuit is an incremental string, whose tail

component takes a random value according to the inherent distribution. When dealing with strings,

we use subscripts and superscripts to denote different components and strings, respectively. Thus, $s_{i}^{j}$

is the $i\mathrm{t}\mathrm{h}$ component (or its value) of string $s^{j}$ . For convention, we give a total order to the components

of a string $s$ by taking $s_{i}+(i-1)/n$ , and denote by $s(i)$ the value of the $i\mathrm{t}\mathrm{h}$ smallest component of

$s$ . For example, if $s–0121$ then $s(1)=0,$ $s(2)=s(3)=1$ and $s(4)=2$ (by convention the second

1The average NC is the class of the problems that admit parallel algorithms with polylog expected running time and

use a polynomial number of processors.
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smallest component is $s_{2}$ while the third smallest one is $s_{4}.$ )
An incremental string $X_{n}$ with a transition distribution $\{P_{ni}\},$ $P_{n1}+P_{n2}+\cdots+P_{nn}=1$ for any

$n=1,2,$ $\ldots$ , is the output of a discrete-time Markov process at time $t=n$: the process starts from
$X_{1}=0$ . Generally, the length of $X_{n}$ is $n$ . At time $t=n$, it gives to the $n\mathrm{t}\mathrm{h}$ component the value
$x_{n-1(i)}+1$ , where $i$ is randomly chosen from $\{1, \ldots, n-1\}$ according to the distribution $\mathrm{P}\mathrm{r}[i=x]=$

$P_{nx}$ . Since a recursive circuit $C_{n}:=C_{1,n-1}$ decides its $n\mathrm{t}\mathrm{h}$ component as $\max\{c_{n-1}(i), cn-1(j)\}+1$ ,
where $i,j$ are chosen from $\{$ 1, $\ldots$ , $n\}$ uniformly at random with replacement, it is an incremental string
with transition distribution $M_{ni}=(2i-1)/n^{2}$ .

Note that the depth of $C_{n}$ is $\max(C_{n}):=\max {}_{i}C_{n}(i)$ . More generally, for any incremental string
of integers $X_{n}$ , we consider the depth of $X_{n}$ the maximum of any integer in $X_{n}$ . In order to establish an
upper bound for the depth of $C_{n}$ , we propose an alternative incremental string $B_{n}$ such that $\max(B_{n})$

stochastically dominates $\max(C_{n})$ , i.e.,

$\mathrm{P}\mathrm{r}[\max(B_{n})\geq i]\geq \mathrm{P}\mathrm{r}[\max(Cn)\geq i]$ for any $i$ (1)

The transition distribution of $B_{n}$ is given by $L:L_{ni}=2/n$ if $n/2\leq i\leq n$ and $0$ otherwise. So, the
$n\mathrm{t}\mathrm{h}$ component of $B_{n}$ is $B_{n-1}(i)+1$ , where $i$ is chosen uniformly from the half largest components of
$B_{n}$ . Clearly, $L$ dominates $M$ , i.e.,

$\sum_{i\leq x\leq n}L_{nx}\geq\sum_{i\leq x\leq n}M_{nx}$
for any $n$ and $i$ (2)

Therefore, intuitively, the intensity of growth of $\max(C_{n})$ is smaller than or equal to that of
$\max(B_{n})$ for each discrete-time $t=n$ . Moreover, since both processes start from the same state $0$ ,
$\max(B_{n})$ may dominate $\max(C_{n})$ at any time. This intuition is formally proved due to the existence
theorem of a coupling for a pair of general Markov chains (see, e.g., [Lin92, pp 127-131]). We will give,
however, an elementary proof of this theorem for incremental strings. First, for the completeness of the
paper; secondly, our simple case may illuminate the general theorem (i.e., Strassen’s theorem [Str65])
with a short proof; and finally, we actually exhibit an algorithm which inputs a pair of transition
distributions and outputs a coupling of them.

To show a lower bound on $\max(C_{n})$ , we consider the incremental string $D_{n}^{(k)}$ , with a parameter
$k=1,2,$ $\ldots$ , whose transition distribution is the following $k$-step staircase distribution $N^{(k)}$ : $N_{ni}^{(k)}=$

$2(x+0.5)/kn$ if $xn/k<i\leq(x+1)n/k$ . Then, for any $k,$ $M$ dominates $N^{(k)}$ , hence $\max(C_{n})$ dominates
$\max(D_{n}^{(k)})$ .

We prove, for any $\epsilon>0$ , with probability one, that $(2e+\epsilon)\ln n$ and $(2e-\epsilon)\ln n$ are upper
and lower bound for $B_{n}$ and $D_{n}^{(k)}$ (for sufficiently large $k$ ), respectively. These bounds imply that
$\max(C_{n})arrow 2e\ln n$ , in probability. To show this, we follow Pittel’s proof for the height of random
recursive trees. A size $n$ recursive tree has $n$ nodes labeled by 1, . . . , $n$ . The root is 1, and the
labels increase along every path leading away from 1. Several measures of (uniformly distributed)
random recursive trees are well understood, including depth of nodes [Szy90, Mah91], the distribution
of leaves in a rooted subtree [MS91], and the height [Pit94], which we use in our proof. (We suggest to
the reader the survey by Smythe and Mahmoud [SM95].) Pittel proves this strong law for $\max(R_{n})$ :
$\max(R_{n})arrow e\ln n$ in probability. He considers a continuous-time birth process $R_{t}$ . The initial ancestor
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is born at time $t=0$ , producing its children according to a Poisson process with rate 1 (a pure birth

process with independent $Exp(1)$ inter-birth times); each child mimics its parents, producing their

children independently according to the (time shifted) Poisson process. Consider the chronological

sequence of birth times $t_{1}<t_{2}<\cdots$ so that $t_{n}$ is the moment when the $n\mathrm{t}\mathrm{h}$ child is born $(t_{1}:=0)$ . A

remarkable thing is that, for each $n,$ $R_{t_{n}}$ has the same distribution as $R_{n}$ , and therefore Kingman’s

theorem [Kin75] is applicable to $R_{n}$ .
An (continuous-time) incremental string $X_{t}$ with a transition rate $\{P_{ni}\}$ is the output of a

continuous-time Markov process; the process begins at time $t=t_{1}:=0$ with $X_{t_{1}}=0$ . Immedi-

ately after the moment $t=t_{n}$ when the $n\mathrm{t}\mathrm{h}$ component decides its value, the $n$ components of $X_{t_{n}}$

raise their hands independently at random and the fastest component wins to decide the $(n+1)\mathrm{t}\mathrm{h}$

component of $X_{t}$ as one more than its value, where the $i\mathrm{t}\mathrm{h}$ smallest component of $X_{t_{n}}$ raises his hand

according to a Poisson process with rate $P_{ni}$ . We sometimes say that the $i\mathrm{t}\mathrm{h}$ smallest component pro-

duces the $(n+1)\mathrm{t}\mathrm{h}$ component if it is the winner to decide the value of the component. Notice that we

can ignore the possibility that plural components raise their hands at the same moment. Therefore, as

a string of depths, $R_{t}$ is an incremental string with the transition rate $P_{ni}=1$ (which does not depend

on $n$ nor on i). Moreover, any discrete-time incremental string $X_{n}$ can be embedded in a continuous-

time process $X_{t}$ by letting the transition rate of $X_{t}$ be proportional to the transition distribution of
$X_{n}$ . Thus, $B_{n}$ and $D_{n}^{(k)}$ can be embedded in continuous-time processes as continuously increasing

strings $B_{t}$ and $D_{t}^{(k)}$ by appropriately deciding their transition rates $J$ and $K^{(k)}$ , respectively: $J_{ni}=1$

if $n/2.\leq i\leq n$ and $0$ otherwise; $K_{ni}^{(k)}=(x+0.5)/(k-0.5)$ if $xn/k<i\leq.(x+1)n/k$ .
Neither $B_{t}$ nor $D_{t}^{(k)}$ is a pure birth process (as opposed to $R_{t}$ ), since their transition rates depend

on both population and position ($n$ and $i$ ) $.$ . We have, however, a natural coupling of each of them

with the recursive tree $R_{t’}$ for some $t’>t$ . More generally, let $X_{t}$ be an incremental string with

the transition rate $P$ such that $P_{ni}\leq 1$ for all $n,$
$i$ . Then we observe that $X_{t}$ and a substring of

$R_{t}$ generated by the following process, referred to as $(X, R)_{t}$ , are equally distributed. We basically

simulate $R_{t}$ , namely producing components with the transition rate 1, but some components are killed

and the alive components at time $t$ form the substring $(X, R)_{t}$ . Only the surviving components give

birth to new alive components. The initial $\mathrm{c}\mathrm{o}..\mathrm{m}$ponent is not killed (alive). At the moment when the
$n\mathrm{t}\mathrm{h}$ alive component is produced, say from the $i\mathrm{t}\mathrm{h}$ smaliest alive component, we flip the coin and

decide with probability $1-P_{ni}$ to kill it.

Now, for the upper bound case, we can work with $(B, R)_{t}$ instead of $B_{t}$ , since they have the same

distrituiton, and we let $t_{n}’$ be the moment when the $n\mathrm{t}\mathrm{h}$ component is produced in $(B, R)_{t}$ . Due to the

coupling $(B, R)_{t}$ , we have that $\max(B_{t_{n}’})$ is stochastically dominated by $\max(R_{t_{n}}’)$ . Then we apply

Pittel’s limit theorem for the height of a random recursive tree, which derives $\max(R_{t_{n}’})arrow 2e\ln n$ in

probability. However, in order to obtain the upper bound we still need to prove that both $B_{t_{n}’}$ and $B_{n}$

have the same distribution. This also holds and is proved in Lemma 2. The proof for the lower bound

uses the coupling $(D^{(k)}, R)t$ , as well as Szymatki’s result [Szy90] about the probability distribution of

depths of the nodes in a random recursive tree. The proof for the lower bound is the most nontrivial

part of the paper.
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3 Domination by Coupling

In this section we prove the dominations for $B_{n},\dot{C}_{n}$ and $D_{n}^{(k)}$ .

Theorem 1 $\max(B_{n})$ dominates $\max(C_{n})$ , and $\max(C_{n})$ dominates $\max(D_{n}^{(k)})$ .

In fact, this theorem is a corollary of the next proposition.

Proposition 1 Let $X_{n}$ and $\mathrm{Y}_{n}$ be two random strings of integers with transition distributions $P$ and
$Q$ , respectively. If $Q$ dominates $P$, then $\max(\mathrm{Y}_{n})$ dominates $\max(X_{n})$ for each $n$ .

.

Proof. It is sufficient to construct, for each $n$ , a finite set of triples $(p_{i}, s^{i}, u^{i})$ , where $p_{i}\in[0,1]$ and
$s^{i},$ $u^{i}$ are stri.ngs.of length $n$ , such that

(a) $\sum_{i}p_{i}=1$ ,

(b) $\mathrm{p}\mathrm{r}[X_{n}=i]=\sum\{s\mathrm{j}(n)=i\}^{p_{j}}$
’

(c) $\mathrm{P}\mathrm{r}[\mathrm{Y}_{n}=i]=\sum\{u^{j}(n)=i\}^{p_{j}}$
’

(d) $\max(s^{i})\leq\max(u^{i})$ .

To prove it, we use the Strassen’s theorem for $\mathrm{r}\mathrm{a}\mathrm{n}_{i}\mathrm{d}_{\mathrm{o}\mathrm{m}}$ variables taking a finite number of values.
In the general setting, $\mathrm{s}\mathrm{t}\mathrm{r}\mathrm{a}\mathrm{s}\mathrm{s}\mathrm{e}\mathrm{n}\mathrm{S}$

;
theorem is quite complicated, but in our case, however, we can prove

it easily. We sate it in Lemma 1 (the proofs of Proposition 1 and Lemma 1 are omitted).

Lemma 1 Let $X$ and $\mathrm{Y}$ be two random variables, taking $value\mathit{8}$ in $\{$ 1, $\ldots$ , $n\}.$ If $\mathrm{Y}dominate\mathit{8}X$,
$i.e.,$ $\mathrm{P}\mathrm{r}[\mathrm{Y}\geq i]\geq \mathrm{P}\mathrm{r}[X\geq i]$ for any $i$ , then there is a coupling of $X$ and $\mathrm{Y}$ with respect to the standard
order of integers.

4 The Depth of Circuits

In this section we establish the main result of the paper, namely a probability convergence for the
depth of randomly generated circuits.

Theorem 2 The depth of random recursive circuits $sati_{\mathit{8}}fies$

$\frac{\max(C_{n})}{\ln n}arrow 2e$ in probability. (3)

This is shown by proving an upper and lower bound for $\max(B_{n})$ and $\max(D_{n}^{(k)})$ , respectively, by em-
bedding them into continuous-time branching processes. Here we give justification of our embeddings.

Lemma 2 Let $X_{n}$ be a discrete-time incremental string with a transition distribution $\{P_{ni}\}$ , and let
$X_{t}$ be a continuous time incremental string with transition rate $\{Q_{ni}\}$ . If $Q$ is proportional to $P$,
namely there $i_{\mathit{8}}$ a positive constant $c$ such that $Q_{ni}=cP_{ni}$ for all $i$ , then $X_{t_{n}}$ has the same distribution
as $X_{n}$ , where $t_{n}$ is the moment of time when the $nth$ component of $X_{t}$ is decided.
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4.1 Upper Bound

The following lemma gives the proof for the upper bound.

Lemma 3 For any $\epsilon>0_{\text{ノ}}$

$\max(B_{n})\leq(2e+\epsilon)\ln n$ with probability-one. (4)

Proof. We work on continuous-time branching processes $R_{t}$ and $(B, R)_{t}$ . Recall that $t_{n}’$ is the moment

when the $n\mathrm{t}\mathrm{h}$ component is produced in $(B, R)_{t}$ , and $(B, R)_{t_{n}’}$ is distributed as $B_{t_{n}’}$ , hence as $B_{n}$ by

Lemma 2. We know that $\max(R_{t})$ dominates $\max((B, R)_{t})$ , so it suffices to prove the upper bound

for $H_{n}:= \max(R_{t_{n}’})$ , i.e., for the depth of $R_{t_{n}’}$ .
We first compute $t_{n}’$ . The birth rate of $(B, R)_{t}$ is given by $J$ . Therefore, its transition rate at any

time, when the length of a string is $n$ , equals

$\sum_{i=1}^{n}J_{ni}=\lceil n/2\rceil$ (5)

At this point, we follow Pittel’s proof for the height of a random recursive tree to derive

$\frac{t_{n}’}{\ln n}arrow 2$ in probability. (6)

Indeed, note that the transition rate of $(B, R)_{t}$ depends only on $n$ . Then,

$t_{n}’= \sum_{k=1}^{n-}\tau_{k}1$ , (7)

where $\mathcal{T}_{1},$

$\ldots,$
$\mathcal{T}_{n-1}$ are independent and $\tau_{k}\sim \mathrm{E}\mathrm{x}\mathrm{p}(\lambda_{k}),$ $\lambda_{k}=\lceil k/2\rceil$ . Therefore, the mean and the

variance of $t_{n}$ are calculated as

$E(t_{n}’)=n- \sum_{k=1}^{1}1/\lambda_{k}=(1+o(1))..2\mathrm{l}..\mathrm{n}n$ , (8)

$\mathrm{a}$.nd $-$

$\mathrm{v}\mathrm{a}\mathrm{r}(t_{n}^{;})=n-\sum_{k=1}^{1}(1/\lambda_{k})2=O(1)$ . (9)

Thus, Chebysheff’s inequality as well as Borel-Cantelli lemma deduce

$\lim_{narrow\infty}t_{n}’/E(t’)n=1$ , almost surely , (10)

deriving (6). Now we compute $H_{n}$ . Let $T(k)$ be the moment when the first member of the $k\mathrm{t}\mathrm{h}$

generation is produced in the recursive tree $R_{t}$ . Pittel proves that

$\frac{T(k)}{k}arrow\frac{1}{e}$ in probability , (11)

by using Kingman’s theorem [Kin75]. Since $T(H_{n})$ and $T(H_{n}+1)$ are the first moments when the

depth of $R_{\mathrm{t}}$ becomes equal to $H_{n}$ and $H_{n}+1$ , we have

$T(H_{n})\leq t_{n}’\leq T(H_{n}+1)$ (12)
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Th.erefore, dividing by $H_{n}$ and letting $narrow\infty$ implies, due to (11),

$\frac{H_{n}}{t_{n}’}arrow e$ , in probability. (13)

By combining with (6) we conclude

$\frac{H_{n}}{\ln n}arrow 2e$ , in probability,

and this proves the lemma. $\square$

4.2 Lower Bound

The proof for the lower bound uses the coupling $(D^{(k)}, R)t$ , as well as Szymatki’s result [Szy90] about
the probability distribution of depths of the nodes in a random recursive tree. The result is stated
and proved in the following lemma.

$\mathrm{L}\mathrm{e}.\mathrm{m}$ ma 4 For any $\epsilon>0$ , there $i_{\mathit{8}}$ an integer $k$ such that

$\max(D_{n}(k))\geq(2e-\xi)\ln n$ , with probability one. (14)

Proof. Omitted.

5 Krther Research

It would be interesting to study the expected number of gates in a level of the circuit. This would give
us an estimation for the (expected) number of processors needed to compute the circuit in parallel.
Another interesting problem is that of finding the distribution of gates in levels. This is related
somehow to the shape of the circuit.
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