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Chapter 1

Introduction

1.1 Background in Nonlinear Oscillations

Many phenomena associated with nonlinear oscillations, such as synchronizations, bifurcation

phenomena, almost periodic oscillations, and chaotic oscillations, occur in nonlinear systems. In

order to analyze the phenomena, we model the systems that exhibit the oscillations by nonlin-

ear equations. One of the most studied nonlinear systems is the system described by ordinary

differential equations, such as Duffing equation [1] and van der Pol equation [2–4] which are

typical models of damped oscillators. Despite the simplicity of the models, these equations show

complex behaviors, and are difficult to solve analytically in general.

In order to solve the nonlinear equations, we can use computational simulations, e.g., Runge-

Kutta method which provides numerical solutions. However, to understand the nonlinear phe-

nomena, it is essential not only to obtain solutions but also to analyze qualitative behavior of the

actual nonlinear systems. For the qualitative analysis, various approximations, such as perturba-

tion method which is the most classical technique and harmonic balance (HB) method which is

well-known principle in frequency domain [5–8], have been widely applied. With the develop-

ment of computer technology, those approximations are vital tools in the qualitative analysis of

nonlinear oscillations based on numerical approaches. In particular, the HB method clarifies the

bifurcation diagram, which represents qualitative behavior corresponding to different values of

system parameters, in a global parameter space [9–12].

When we calculate a solution of a nonlinear equation using numerical approaches, we must

fix parameters of the nonlinear equation because numerical computation manipulates only nu-

merical values. Thus, if we obtain the bifurcation diagram in the global parameter space by the

1



2 CHAPTER 1. INTRODUCTION

numerical approaches, then we have to solve the nonlinear equation for all specified parameters

one by one, and the repeated calculation requires a large amount of computational cost. Because

the bifurcation diagram is given only by a set of numerical values, we cannot clarify intrinsic

algebraic relations between oscillations and parameters by the numerical approaches although

the bifurcation diagram constructed by the HB method is represented by algebraic curves.

Because the bifurcation diagram by the approximations has the approximation error, a guar-

anteed bifurcation diagram is required in some cases. In the HB method, we can guarantee

an approximated solution by error bound, which is a boundary of the region containing both

the approximated solution and the exact solution [13–15]. If we need to calculate guaranteed

bifurcation diagrams evaluated by the error bound of the HB method, we have to express the

high dimensional error bound using a set of numerical values. Thus, its computational cost is

tremendously large.

In order to overcome the difficulties of the numerical approaches, computer algebra has re-

cently been recognized as an important field. Because the computer algebra manipulates vari-

ables and parameters in symbolic form, we can analyze the algebraic structures of equations

without fixing the values of parameters and easily represent the high-dimensional objects. In this

thesis, we propose algebraic approaches to the analysis of the nonlinear oscillations using the

computer algebra.

1.2 Background in Computer Algebra

In the computer algebra, Gröbner base is a very useful tool to deal with polynomials in several

variables. Gröbner base was introduced by Hironaka as “standard basis” [16,17] and invented in-

dependently by Buchberger [18–20]. The essential observation for applying Gröbner techniques

is the fact that solutions of polynomial equations depend not only on the original polynomial

equations but on an infinite set of polynomial equations which have the same solutions of the

original equations. The infinite set of polynomials is called ideal generated by the original poly-

nomials, and Gröbner base is the base of the ideal [18–22]. A method for calculating Gröbner

base is known as Buchberger’s algorithm which is implemented in many computer algebra sys-

tems, e.g., Mathematica, Maple, Risa/Asir, SINGULAR, Macaulay2, and so on. The properties

and applications of Gröbner base are shown as follows;

Elimination: Buchberger’s algorithm is based on the elimination of variables in polynomial
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equations. We can apply the elimination of variables to the transformation of variables.

Triangular form: The elimination of variables gives us the triangular form corresponding to

algebraic solutions of the polynomial equations. Thus, Gröbner base provides a method

for solving polynomial equations.

Factorization: The triangular form contains a polynomial with only one variable. Factorizing

the polynomial, we can decompose the polynomial systems.

Ideal membership: Because Gröbner base is the standard base of an ideal, it gives a method

checking whether a polynomial equation is in the ideal. Using this method, we can classify

polynomial equations.

Due to the above properties, there are widespread applications of Gröbner base in various

fields. Many applications are based on the triangular form of Gröbner base. That is, the triangular

form is applied to the problems such as controls of robots [20,21,23], designs of wavelet [24–26],

and calculation of accurate bifurcation points [27]. Even though Gröbner base has many alge-

braic properties, those applications use Gröbner base only for solving polynomial equations.

Meanwhile, some researchers have proposed approaches which utilize the algebraic properties

efficiently. For instance, using the “ideal membership,” we can classify local bifurcations [28–30]

and nonlinear circuits [31], automatically. Moreover, the algorithm for deciding the ideal mem-

bership gives optimized solutions in integer programming [32–34]. Using the “factorization,”

we can decompose bifurcation diagrams in global parameter spaces [35, 36]. Further, some

approaches for designing systems are based on the “elimination of variables” [37–40]. Other

applications based on the concept of Buchberger’s algorithm are algebraic statistics [41, 42] and

decoding of algebraic geometric codes [43–45].

Although Gröbner base is applied to many fields as stated above, we do not yet have any

applications for the analysis of nonlinear oscillations except for a few examples such as [31].

Moreover, though there are some applications for bifurcations, many of them are analyses of

local bifurcations [28–30,35,36]. Meanwhile, the bifurcation analysis in global parameter spaces

is realized by a few applications of Gröbner base [35,36]. In this thesis, we propose a method to

clarify the bifurcations of the nonlinear oscillations in the global parameter spaces by extending

the method in [35, 36].

However, because Buchberger’s algorithm requires high computational cost for the analysis

of the nonlinear oscillations, the computational cost significantly limits its practical applications.
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In fact, the direct method of [35, 36] can decompose only the bifurcation diagrams of simple

maps, but not oscillations due to the computational cost. In order to reduce the computational

cost of Buchberger’s algorithm, some methods are now being developed. For example, Faugère

proposed the algorithms F4 and F5 which are efficient methods for calculating Gröbner base in

many cases [46, 47]. Moreover, Gröbner walk is a known algorithm for following how Gröbner

base changes as we change the monomial order [48, 49]. This technique is helpful to obtain the

triangular form. Further, other methods such as optimizations of orders [50] and homogenization

of ideals are being proposed. Although those methods are effective, it is not enough to deal with

large-scale applications. Even by the above methods, the computational cost of Gröbner base

limits its practical applications for the analysis of the nonlinear oscillations. Thus, we propose

alternative efficient methods for the analysis of the nonlinear oscillations using features of the

nonlinear systems.

1.3 Objectives

The first objective of this thesis is to clarify bifurcations of periodic oscillations in a global

parameter space by the computer algebra. That is, we propose an algebraic representation of

a bifurcation diagram using Gröbner base. It further includes the mode decomposition of the

bifurcation diagram based on the “factorization.”

The second objective is the reduction of the bifurcation diagram by invariants. In order

to realize the reduction, we use the transformation of variables based on the “elimination of

variables.” The reduction makes it possible to find out amplitude equations which represents the

relation of each frequency component of oscillations. Further, the amplitude relations enable to

determine design parameters for electric oscillators.

The third objective is to give a guaranteed bifurcation diagram by an algebraic representa-

tion of the high-dimensional error bound. The representation is obtained by the “elimination of

variables.”

1.4 Overview of the Thesis

This thesis is organized as follows;

In Chapter 2, for the discussion in subsequent chapters, we describe our system which ex-

hibits periodic oscillations. In order to use Gröbner techniques, we apply the HB method to the
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system which have polynomial-type nonlinearity, and derive determining equations called HB

equations. Then, we introduce the ideal generated by the HB equation and review the computa-

tion of the bifurcation diagram constructed by the HB method using Gröbner base.

In Chapter 3, we propose the algebraic representation of the bifurcation diagram of the HB

equation, and clarify the decomposition of the bifurcation diagram. Because the previous method

for the decomposition using the“factorization” requires a huge computational cost [35, 36], we

propose an efficient method to decompose the bifurcation diagram using the ideal quotient based

on the symmetry of the system. Then, we confirm the efficiency of the proposed method and

clarify the relation between the bifurcation points and the decomposed bifurcation diagrams.

Moreover, we propose a systematic procedure to decompose the bifurcation diagram using ho-

mogeneous HB equation.

In Chapter 4, we propose an algebraic approach to reduce the bifurcation diagram of the HB

equation. The proposed method focuses on invariants with respect to the symmetry of the system.

Because the invariants enable to transform different but equivalent solutions into a unique solu-

tion, we propose a method to reduce the HB equation using a transformation of variables based

on the “elimination of variables” with respect to the invariants. We show that the bifurcation

diagram of the reduced HB equation is simpler than the original bifurcation diagram, and that its

computational cost is considerably reduced. Further, we obtain the relations among the ampli-

tudes at each frequency component using the invariants. Additionally, we propose a method for

determining circuit parameters using those relations.

In order to obtain the guaranteed bifurcation diagram, Chapter 5 gives the algebraic represen-

tation of the high-dimensional error bound of the HB method. We propose an efficient method

to obtain the representation using the “elimination of variables.” Using the representation, we

propose a method for very fast computation of a quadratic approximation of the error bound.

In addition, we propose a method to obtain accurate break points of the error bound using the

singular points of the algebraic representation.

Finally, Chapter 6 concludes this thesis by summarizing major results obtained by the re-

search.



Chapter 2

Fundamental Formulation of Periodic
Oscillation

2.1 Introduction

This chapter derives polynomial determining equations of periodic oscillations by harmonic bal-

ance (HB) method and describes fundamental application of the ideal and Gröbner base to bifur-

cation analysis in global parameter spaces.

The HB method is well known principle for analyzing periodic oscillations on nonlinear

networks and systems which are described by a set of nonlinear differential equations [5–8].

From these equations, in sinusoidal steady states, we obtain a simultaneous algebraic equations

called the HB equations due to a periodic solution approximated by a truncated Fourier series

with several harmonics. Although the HB method is an approximated one in frequency-domain,

it is conceptually simpler than the time-domain techniques, and clarifies the essential relations

among the system parameters for bifurcations [9–12].

In order to obtain the bifurcation diagram of the HB equation, we introduce the ideal gener-

ated by the HB equation. This extension enables to transform the HB equation to a triangular

form by elimination ideal. Further, we review the relation between the ideal and the bifurca-

tion diagram, and present a fundamental approach to the mode decomposition of the bifurcation

diagram reported in [35, 36].

6
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2.2 State Equation with Sinusoidal Inputs

We consider the following system described by n ordinary differential equations of the first order

which are forced only by sinusoidal functions of period 2π/ωs;

du(t)
dt
= h(u; λ) + s(t), (2.1)

u(t) = (u1, . . . , un)T ∈ Rn A vector of state variables,
λ = (λ1, . . . , λl) ∈ Rl A set of system parameters,

h(u; λ) = (h1, . . . , hn)T ∈ Rn A vector of nonlinear functions of u1, . . . , un

with coefficients in function of λ1, . . . , λl,
s(t) = (s1, . . . , sn)T ∈ Rn A vector of sinusoidal forcing functions

with the period 2π/ωs,

where h : Rn×Rl → Rn, (·)T denotes the transposition, andR is the set of real numbers. In order

to derive polynomial HB equations, we restrict the function h to polynomial-type nonlinearity

of u1, · · · un with coefficients in a rational function field Q(λ) of λ1, . . . , λl. When we consider

autonomous systems, we fix s(t) = 0.

Let us consider the periodic solution u(t) with period 2π/ω of Eq.(2.1) as follows;

u(t) =
∞∑

k=0

<
[
Xkejkωt

]
, (2.2)

where Xk = (Xk1, . . . , Xkn)T ∈ Cn, and<[·] denotes the real part. Now, we assume that ω satisfies

mω = ωs where m is a positive integer. The forced periodic oscillations are divided into three

sorts; subharmonic, fundamental harmonic and higher harmonic oscillations. That is, in the case

m = 1, the periodic solution u(t) consists of fundamental and higher harmonic oscillations. In

the case m = 2, 3, . . ., when the kωs/m frequency components become dominant in the periodic

solution, we call the oscillations k/m subharmonic oscillations for k = 1, 2, . . .. Thus, if we

consider the fundamental and the higher harmonic oscillations, we set m = 1. If we consider the

k/M subharmonic oscillations, we set m = M.

2.3 HB Equation

In order to derive the HB equations, we define a projection operator K∗ that expresses the trun-

cation of the Fourier series with p + 1 frequency components with p ≥ m. The operator K∗
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approximates the periodic solution u in (2.2) by

u∗(t) = (u∗1, . . . , u
∗
n)T = K∗u(t) =

p∑
k=0

<
[
Xkejkωt

]
. (2.3)

Substituting the approximated solutions u∗ into Eq.(2.1) and applying the operator K∗ to Eq.(2.1),

we obtain
p∑

k=0

<
[{−jkωXk + Yk(X) + Ek

}
ejkωt

]
= 0, (2.4)

where

K∗h(u∗; λ) =
p∑

k=0

Yk(X)ejkωt,

Yk(X) ≡ (Yk1(X), . . . , Ykn(X))T ∈ Cn,

X ≡


X0
...

Xp

 ∈ Cn(p+1),

K∗s(t) =
p∑

k=0

Ekejkωt,

Ek ≡ (Ek1, . . . , Ekn)T ∈ Cn,

E ≡


E0
...

Ep

 ∈ Cn(p+1).

Because the sinusoidal forcing functions have only the frequency components of ωs = mω, the

vector of the forcing terms E satisfies{
Ek = 0 for k = 0, . . . , p, k , m (for periodically forcing system)
E = 0 (for autonomous system) . (2.5)

Equating the coefficients of Eq.(2.4) to zero, we obtain the following simultaneous equation.

F(X) ≡ F(X;ω, λ, E) ≡


F0
...

Fp

 = 0, (2.6)

Fk ≡ (Fk1, . . . , Fkn)T ∈ Cn

≡ −jkωXk + Yk(X) + Ek,

k = 0, . . . , p.

We call Eq.(2.6) complex HB equation.

In order to consider the real polynomial equation, we transform the variables X, E ∈ Cn(p+1)

into x, e ∈ RN with N = n(2p + 1) using the relations

Xki = xrki + jxski, X0i = xr0i, (2.7)

Eki = erki + jeski, E0i = er0i, (2.8)
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x ≡


x0
...

xp

 ,
x0 ≡ (xr01, . . . , xr0n)T ∈ Rn,
xk ≡ (xrk1, xsk1, . . . , xrkn, xskn)T ∈ R2n,

e ≡


e0
...

ep

 ,
e0 ≡ (er01, . . . , er0n)T ∈ Rn,
ek ≡ (erk1, esk1, . . . , erkn, eskn)T ∈ R2n,

k = 1, . . . , p.

From Eq.(2.5), the real forcing terms e satisfies{
ek = 0 for k = 0, . . . , p, k , m (for periodically forcing system)
e = 0 (for autonomous system) . (2.9)

Using the real variables x and e, we define the HB equation expressed as real polynomial equa-

tions

f (x) ≡ f (x;ω, λ, e) ≡


f 0
...
f p

 = 0 ∈ RN , (2.10)

f 0 ≡ ( fr01, . . . , fr0n)T

≡ (<[F01], . . . ,<[F0n]
)T ∈ Rn,

f k ≡ ( frk1, fsk1, . . . , frkn, fskn)T

≡ (<[Fk1],=[Fk1], . . . ,<[Fkn],=[Fkn]
)T ∈ R2n,

k = 1, . . . , p,

where =[·] denotes the imaginary part. The HB equation is polynomial equations with the coef-

ficients in a rational function fieldQ(ω, λ, e) of ω, λ, and e.

The HB equation (2.10) has the symmetry derived by the symmetry of the system equation

(2.1). We will show the detail of the symmetry in Chapter 3 because this property is a key relation

for the decomposition of bifurcation diagrams.

2.4 Example – Duffing Equation

2.4.1 Circuit Equation

We consider the RLC nonlinear circuit shown in Figure 2.1 because the system exhibits bifurca-

tion phenomena despite the simplicity. Now, we assume that the magnetizing characteristics of
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ϕ i = c3ϕ
3

C R
e = E0 sinω0t

Figure 2.1: Periodically Forced Circuit.

the nonlinear inductor is approximated by cubic-polynomial, i.e., the current i satisfies i = c3ϕ
3,

where ϕ is a magnetic flux. The scaled differential equation of ϕ is

d2u(t)
dt2 + µ

du(t)
dt
+ u(t)3 = E cosωst, (2.11)

where

u =
ϕ

Φn
, ωst = mωt = ω0t − tan−1 µ

m
, µ =

1
ω0RC

, E =
E0

ω0Φn

√
µ2 + m2,

and Φn is a value for the normalized magnetic flux determined by Φn =

√
ω2

0C
c3

. This equation is

well known as Duffing equation [1]. We transform Eq.(2.11) into the formulation of Eq.(2.1);

d
dt

[
u1

u2

]
=

[
u2

−µu2 − u1
3

]
+

[
0

E cosωst

]
, (2.12)

u1 = u, u2 =
du
dt
.

2.4.2 HB Equation

Let us consider the case of m = 1, i.e., fundamental harmonic oscillations. We apply the HB

method with p = 3 to Eq.(2.12). For simplicity, we assume that the direct current components

equal zero, i.e., X01 = X02 = 0, since the HB equation is complicated by the direct current even

though it is not important in the bifurcation analysis. Thus, we approximate the u1(t) and u2(t)

by

u∗1(t) = <
[
X11ejωt + X21ej2ωt + X31ej3ωt

]
= <

[
(xr11 + jxs11)ejωt + (xr21 + jxs21)ej2ωt + (xr31 + jxs31)ej3ωt

]
, (2.13)
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u∗2(t) = <
[
X12ejωt + X22ej2ωt + X32ej3ωt

]
= <

[
(xr12 + jxs12)ejωt + (xr22 + jxs22)ej2ωt + (xr32 + jxs32)ej3ωt

]
. (2.14)

Then, the HB equation is described by

f (x) = f (x;ω, µ, E)

=

 f 1
f 2
f 3

 = 0, (2.15)

f k ≡ ( frk1, fsk1, frk2, fsk2)T ,

x =

 x1

x2

x3

 ,
xk ≡ (xrk1, xsk1, xrk2, xsk2)T ,

k = 1, 2, 3.

Though the derivation of the HB equation is complicated for many frequency components, the

HB equation can be automatically calculated using symbolic computation. In fact, the calculated

polynomials are as follows;

fr11 = ωxs11 − xr12,

fs11 = −xs12 − ωxr11,

fr12 = xr11

(
3x2

s31

2
+

3x2
s21

2
+

3x2
r31

2
+

3x2
r21

2

)
+

3xr21xs21xs31

2
+

3xr11xs11xs31

2
−

3xr31x2
s21

4

+ωxs12 +

(
3xr11

4
− 3xr31

4

)
x2

s11 +
3x2

r21xr31

4
+

3x2
r11xr31

4
+ µxr12 +

3x3
r11

4
− E,

fs12 = xs11

(
3x2

s31

2
+

3x2
s21

2
+

3x2
r31

2
− 3xr11xr31

2
+

3x2
r21

2
+

3x2
r11

4

)
+

(
3x2

s21

4
−

3x2
r21

4

)
xs31

−
3x2

s11xs31

4
+

3x2
r11xs31

4
+

3xr21xr31xs21

2
+ µxs12 +

3x3
s11

4
− ωxr12,

fr21 = 2ωxs21 − xr22,

fs21 = −xs22 − 2ωxr21,

fr22 =
3xr21x2

s31

2
+ xr11

(
3xs21xs31

2
+

3xr21xr31

2

)
+ xs11

(
3xr31xs21

2
− 3xr21xs31

2

)
+2ωxs22 + xr21

(
3x2

s21

4
+

3x2
r31

2

)
+

3xr21x2
s11

2
+ µxr22 +

3x3
r21

4
+

3x2
r11xr21

2
,
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fs22 =
3xs21x2

s31

2
+ xs11

(
3xs21xs31

2
+

3xr21xr31

2

)
+ xr11

(
3xr21xs31

2
− 3xr31xs21

2

)
+µxs22 +

3x3
s21

4
+

3x2
s11xs21

2
+

3x2
r31xs21

2
+

3x2
r21xs21

4
+

3x2
r11xs21

2
− 2ωxr22,

fr31 = 3ωxs31 − xr32,

fs31 = −xs32 − 3ωxr31,

fr32 = 3ωxs32 +
3xr31x2

s31

4
+

3xr31x2
s21

2
+ xr11

(
3x2

r21

4
−

3x2
s21

4

)
+

3xr21xs11xs21

2

+

(
3xr31

2
− 3xr11

4

)
x2

s11 + µxr32 +
3x3

r31

4
+

3x2
r21xr31

2
+

3x2
r11xr31

2
+

x3
r11

4
,

fs32 = µxs32 +
3x3

s31

4
+

(
3x2

s21

2
+

3x2
r31

4
+

3x2
r21

2

)
xs31 +

3x2
s11xs31

2
+

3x2
r11xs31

2

+xs11

(
3x2

s21

4
−

3x2
r21

4
+

3x2
r11

4

)
+

3xr11xr21xs21

2
−

x3
s11

4
− 3ωxr32.

We can confirm that the forcing term E is contained only in fr12.

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

 0  1  2  3  4  5

x r
11

E

S2

S3

S0

S1

P1

P0

Figure 2.2: Bifurcation diagram (E - xr11), the parameter E versus the real part of the fundamental oscillation xr11
(m = 1, ω = 1, µ = 0.01).
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2.4.3 Bifurcation Diagram

In numerical approaches, we calculate the bifurcation diagram by solving the HB equation (2.15)

for all specified parameters one by one. Namely, the bifurcation diagram is represented by a set

of numerical solutions of the HB equation. The bifurcation diagram calculated by the numerical

approach is shown in Figure 2.2 which represents the relation between the parameter E and the

real part of the fundamental oscillation xr11 with ω = 1 and µ = 0.01. Now, we denotes the

relation between E and xr11 by (E - xr11). In this figure, S 0, S 1, S 2, S 3, P0, and P1 denote bifurca-

tion points defined by the Jacobian of f (x). Namely, if the Jacobian
∂ f (x)
∂x

∣∣∣∣∣
x=x0,E=E0

has a zero

eigenvalue for a point (x; E) = (x0; E0), then (x0; E0) is a bifurcation point, and can be classified

by Lyapunov-Schmidt decomposition [51, 52]. In fact, as Figure 2.2 shows, S 0, S 1, S 2, and S 3

are called saddle node bifurcation points corresponding to turning points in the bifurcation dia-

gram. Moreover, P0 and P1 are branch points called pitchfork bifurcation points due to symmetry

breaking. Thus, we can find out the local bifurcations using only the numerical approach.

Nevertheless, it is important to view the bifurcations from algebraic aspects. Since the HB

equation is described as polynomial equations such as Eq.(2.15), the bifurcation diagram of

the HB equation is expected to be represented by algebraic curves described by an algebraic

equation of xr11 and E. Then, what kind of singularity are the pitchfork bifurcation points? It

is, however, difficult to clarify such algebraic structure of the bifurcation diagram only by the

numerical approaches. In order to calculate the bifurcation diagram algebraically, we have to

introduce the concept of the ideal generated by the HB equation.

2.5 Fundamental Approach by Ideal

2.5.1 Ideal Generated by HB Equation

In order to introduce the concept of the ideal generated by the HB equation, we recall a universal

definition of ideals [21, 22].

Definition 1 (Ideal). LetQ(λ)[x] be a polynomial ring with coefficients in rational function field

Q(λ). A subset I ⊂ Q(λ)[x] is an ideal if it satisfies;

(i) 0 ∈ I.

(ii) If f , g ∈ I, then f + g ∈ I.
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(iii) If f ∈ I and a ∈ Q(λ)[x], then a f ∈ I.

The definition indicates that the ideal I is an infinite set of polynomials. In addition, if a set of

polynomials f1, · · · , fs ∈ Q(λ)[x] is given, the following set satisfies the conditions of the ideal;

〈 f1, . . . , fs〉 = {a1 f1 + · · · + as fs | a1, . . . , as ∈ Q(λ)[x]} . (2.16)

We call it the ideal generated by f1, · · · fs, which is denoted by 〈 f1, . . . , fs〉. Similarly, the ideal

generated by the polynomial HB equation f (x) = 0 is defined by

〈 f (x)〉 ≡ 〈 f 0, . . . , f p〉

≡
 n∑

i=1

ar0i fr0i +

p∑
k=1

n∑
i=1

(arki frki + aski fski) ar0i, arki, aski ∈ Q(ω, λ, e)[x] for k = 1, . . . , p, i = 1, . . . , n
}
. (2.17)

It is noted that we use also the notation I[ f (x)] ≡ 〈 f (x)〉 for the ideal generated by f (x) in

contrast to the variety introduced in the next section.

2.5.2 Variety Generated by HB Equation

In order to clarify the meaning of the ideal, we introduce the concept of variety. The real variety

V generated by the polynomial HB equation f (x) = 0 is defined by

V[ f (x)] ≡
{
x ∈ RN | f (x) = 0

}
. (2.18)

The definition indicates that the real variety V[ f (x)] is a set of solutions of f (x) = 0. That is, the

real variety V[ f (x)] corresponds to the bifurcation diagram of f (x) = 0.

The essential reason why the ideal is introduced is that the bifurcation diagram V[ f (x)] is

not determined only by the equation f (x) = 0 but by the ideal I[ f (x)] generated by the equation

because the ideal 〈 f (x)〉 is an infinite set of polynomial equations which have the same solutions

of f (x) = 0. Hence we may take instead of f (x) another generating set (an ideal base), say a

Gröbner base. For example, Gröbner base with respect to the lexicographic order gives triangular

form of the HB equation [21, 22].
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2.5.3 Algebraic Representation of Bifurcation Diagram
Using Gröbner Base

If a monomial order is given, Buchberger’s algorithm provides corresponding Gröbner base by

the cancellation of leading terms [18–22]. For example, if we give a lexicographic order xr01 �lex

xr02 �lex · · · �lex xsp(n−1) �lex xrpn �lex xspn to the HB equation f (x) = 0, corresponding Gröbner

base, which is called an elimination ideal, is represented by the triangular form;

g(x) =


g1(xr01, xr02, . . . , xrpn, xspn;ω, λ, e)

g2(xr02, . . . , xrpn, xspn;ω, λ, e)
...

gN−1(xrpn, xspn;ω, λ, e)
gN(xspn;ω, λ, e)


. (2.19)

The first polynomial g1 has all variables xr01, xr02, · · · , xspn, the second polynomial g2 has variables

xr02, · · · xspn, and the last polynomial gN(xspn;ω, λ, e) has only one variable xspn. Thus, Gröbner

base with respect to the lexicographic order provides the bifurcation diagram represented by

unique algebraic equation

gN(xspn;ω, λ, e) = 0. (2.20)

2.5.4 Decomposition of Bifurcation Diagram

The algebraic representation of the bifurcation diagram (2.20) indicates an easy way to decom-

pose it. That is, because Eq.(2.20) has only one variable, we can easily factorize the equation.

The factorization corresponds to the mode decomposition of the diagram [35, 36].

The concept of the above factorization leads to ideal decomposition [21,22]. Let us consider

the decomposition of the bifurcation diagram based on the ideal decomposition. If the ideal I is

decomposed as I1, . . . , Ir;

I = I1 ∩ I2 ∩ · · · ∩ Ir, (2.21)

the corresponding variety V(I) is described as

V(I) = V(I1) ∪ V(I2) ∪ · · · ∪ V(Ir), (2.22)

due to the ideal-variety correspondence shown in Appendix A. The equation (2.22) shows that

the bifurcation diagram is algebraically decomposed by the ideal decomposition.
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2.5.5 Decomposition Based on Symmetry

We consider the reason why the bifurcation diagram is decomposed. As one example of the

ideal decompositions, when polynomial equations has a symmetry, the ideal generated by the

equations can be decomposed [35, 36]. We show the decomposition of the bifurcation diagram

based on the symmetry. Let θ(γ) ∈ RN×N be a linear representation of a finite group Γ with γ ∈ Γ.
If the equation f (x) has symmetry which corresponds to Γ, then f (x) satisfies

f (θ(γ)x) = θ(γ) f (x), (2.23)

for all γ ∈ Γ [53]. If x is a solution of f (x) = 0, then θ(γ)x is also a solution. Let us consider the

symmetric solutions, which satisfy

x = θ(γ)x for all γ ∈ Γ. (2.24)

The ideal which corresponds to the constraint of the symmetry is written by the sum of the ideal∑
γ∈Γ
〈x − θ(γ)x〉 ≡

∑
γ∈Γ

fγ
 fγ ∈ 〈x − θ(γ)x〉

 . (2.25)

Since the symmetric solutions are determined by both the original equation f (x) = 0 and the

constraint of the symmetry x − θ(γ)x = 0, the ideal 〈 f Γ(x)〉 which corresponds to the symmetric

solutions of f (x) = 0 is described by the sum of ideals

〈 f Γ(x)〉 ≡ 〈 f (x)〉 +
∑
γ∈Γ
〈x − θ(γ)x〉. (2.26)

Because the ideal relation 〈 f Γ(x)〉 ⊃ 〈 f (x)〉 is held, the ideal quotient (cf.Appendix.A.4)

provides the ideal 〈 f Γ(x)〉 which corresponds to the asymmetric solutions as follows;

〈 f Γ(x)〉 ≡ 〈 f (x)〉 : 〈 f Γ(x)〉. (2.27)

Now, if 〈 f (x)〉 is a radical ideal (cf.Appendix.A.4), then the ideal 〈 f (x)〉 is decomposed into two

ideals corresponding to the symmetric and asymmetric solutions as follows;

〈 f (x)〉 = 〈 f Γ(x)〉 ∩ 〈 f Γ(x)〉. (2.28)

This relation of the ideal derives the decomposition of the bifurcation diagram into sub-diagrams;

V[ f (x)] = V[ f Γ(x)] ∪ V[ f Γ(x)]. (2.29)
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Thus, the symmetry leads to the decomposition of the bifurcation diagram.

In fact, because the pitchfork bifurcation is characterized by the breaking of the symmetry,

P0, P1 in Figure 2.2 correspond to intersection points of the sub-diagrams V[ f Γ(x)] and V[ f Γ(x)]

as is shown in Chapter 3. Although this algebraic approach gives a novel aspect of the local

pitchfork bifurcation, this simple approach by Gröbner base with respect to the lexicographic

order requires tremendously huge computational cost and we cannot apply the method to the

analysis of periodic oscillations.

2.6 Concluding Remarks

We derived determining polynomial equation of periodic oscillations using the HB method and

presented an example of bifurcation diagrams. Then, in order to introduce an algebraic approach,

we presented fundamentals of the ideal and the variety. Further, we reviewed a simple algebraic

approach to the bifurcation diagram and revealed an algebraic aspect of the pitchfork bifurcation

based on the decomposition of the bifurcation diagrams.



Chapter 3

Decomposition of Bifurcation Diagram

3.1 Introduction

This chapter proposes an algebraic approach to decompose a bifurcation diagram of periodic

oscillations in a global parameter space. The proposed method is based on the research presented

in the previous chapter [35, 36]. Although the decomposition of the bifurcation diagram in [35,

36] is very powerful to clarify the bifurcations in the global parameter space based on Gröbner

base, the computational cost of calculating Gröbner base prevents its practical applications such

as the bifurcation of the periodic oscillations.

In order to overcome the difficulty, we propose an efficient method to decompose the bifur-

cation diagram using the ideal quotient based on the symmetry of the HB equation. Further, this

chapter reveals the symmetry of the homogeneous HB equation that has no terms corresponding

to sinusoidal forcing functions. The homogeneous HB equation has the highest symmetries and

the nonhomogeneous HB equations are generated by the break of the symmetries. We demon-

strate that this property enables a systematic analysis of the HB equations using the ideal quotient.

3.2 Ideal Decomposition by Ideal Quotient

Although the bifurcation diagram can be decomposed when the HB equation has a symmetry

such as the previous chapter, the previous method in [35, 36] based on the factorization of the

lexicographic order Gröbner base requires a high computational cost. To overcome the difficulty

of this problem, we obtain the decomposition of the bifurcation diagram for the HB equation

using the ideal quotient. If the ideal I is represented by I = J ∩ K and if J is coprime to K, then

18
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the ideal K is calculated by the ideal quotient

K = I : J. (3.1)

The computational cost of the ideal quotient is considerably less than that of the lexicographic or-

der Gröbner base. In order to find out the ideal J, we use a symmetry of the HB equation (2.10)

since the ideals corresponding to the symmetric and asymmetric solutions are obviously co-

prime. Namely, we obtain the ideal 〈 f Γ(x)〉 which corresponds to the symmetric solutions given

by Eq.(2.26) using the symmetry in advance. Then, we calculate the ideal 〈 f Γ(x)〉 which corre-

sponds to the asymmetric solutions by the ideal quotient 〈 f (x)〉 : 〈 f Γ(x)〉 shown in Eq.(2.27).

3.3 Symmetry of HB Equation

For the decomposition of the bifurcation diagram, we begin with finding the symmetry of the HB

equation derived by the symmetry of the system. Let us rewrite the system equation (2.1) to

H[u(t); λ, s(t)] ≡ −du
dt
+ h(u; λ) + s(t) ≡ −du

dt
+ L[u] + N[u] + s(t) = 0, (3.2)

where h is divided into a linear part L and a nonlinear part N. We assume that the N has an odd

symmetry; N[−u] = −N[u].

We consider the symmetry of the HB equation from the symmetry of the equation

H[u(t); λ, s(t)] = 0, and lead to the constraints (2.24) of the symmetric solutions.

3.3.1 Periodically Forced System

First, we consider the symmetry of a periodically forced system. The system has the odd sym-

metry N[−u] = −N[u] and the symmetry based on the time shift 2π/ωs which is the period of

the fundamental oscillations, i.e., s(t + 2π/ωs) = s(t).

Odd Symmetry

Let us consider π/ω time shift based on the odd symmetry; N[−u] = −N[u]. We define an

operator Todd

Toddu(t) = −u(t + π/ω). (3.3)
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Now, we assume that the forcing functions have the odd symmetry Todds(t) = −s(t+π/ω) = s(t),

that is, m is odd number. H satisfies the relation as follows;

H[Toddu(t); λ, s(t)] =
du(t + π/ω)

dt
+ L[−u(t + π/ω)] + N[−u(t + π/ω)] + s(t)

= −
{
−du(t + π/ω)

dt
+ L[u(t + π/ω)] + N[u(t + π/ω)] + s(t + π/ω)

}
= ToddH[u(t); λ, s(t)]. (3.4)

In particular, if u(t) is a solution of H[u(t); λ, s(t)] = 0, then −u(t + π/ω) is also a solution. The

same relations are satisfied also by the truncated solutions;

K∗H[Toddu∗(t); λ, e(t)] =
p∑

k=0

<
[
jkωXkejkω(t+π/ω)

]
+

p∑
k=0

<
[
Yk(−X)ejkω(t+π/ω)

]
+

p∑
k=0

<
[
Ekejkωt

]
= −

p∑
k=0

<
[{−jkωXk + Yk(X) + Ek

}
ejkω(t+π/ω)

]
= ToddK∗H[u∗(t); λ, e(t)], (3.5)

where we use Yk(−X) = −Yk(X) for k = 0, . . . , p and Ek = 0 for k = 0 mod 2 corresponding to

s(t) = −s(t + π/ω).

Based on the symmetry of Eq.(3.5) and the relation Todd[ejkωt] = (−1)k+1ejkωt, the complex

HB equation F(X) = 0 satisfies the following relation;

F(Θ i
oddX) = Θ i

oddF(X) for i = 1, 2, (3.6)

where

Θodd =


−In 0

In
. . .

0 (−1)p+1In

 ,
and In denotes an identity matrix of n × n. From this symmetry, if X is a solution of F(X) = 0,

then Θ i
oddX is also a solution for i = 1, 2. The symmetry (3.6) of the complex HB equation is

transformed to the following symmetry of the real HB equation f (x) = 0;

f (θ i
oddx) = θ i

odd f (x) for i = 1, 2, (3.7)
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where

θodd =


−In 0

I2n
. . .

0 (−1)p+1I2n

 ∈ R
N×N .

From this symmetry, if x is a solution of f (x) = 0, then θ i
oddx is also a solution for i = 1, 2. Here

we denote the odd symmetry by Γodd.

Thus, the symmetric solutions with respect to Γodd satisfy the constraint

x = θ i
oddx for i = 1, 2, (3.8)

which corresponds to Eq.(2.24).

Symmetry Based on 2π/ωs Time Shift

We assume that Eq.(3.2) has the solutions which contain 1/m subharmonic oscillations with the

period 2π/ω. We consider the time shift of the fundamental oscillation period 2π/ωs due to

s(t + 2π/ωs) = s(t). We define the 2π/ωs time shift operator T2π/ωs

T2π/ωsu(t) = u(t + 2π/ωs). (3.9)

H satisfies the relation as follows;

H[T2π/ωsu(t); λ, s(t)] = −du(t + 2π/ωs)
dt

+ h(u(t + 2π/ωs) ; λ) + s(t)

= −du(t + 2π/ωs)
dt

+ h(u(t + 2π/ωs) ; λ) + s(t + 2π/ωs)

= T2π/ωs H[u(t); λ, s(t)]. (3.10)

In particular, if u(t) is a solution of H[u(t); λ, s(t)] = 0, then u(t + 2π/ωs) is also a solution. The

same relations are satisfied also by the truncated solutions;

K∗H[T2π/ωsu
∗(t); λ, e(t)] =

p∑
k=0

<
[{−jkωXk + Yk(X)

}
ejkω(t+2π/ωs)

]
+

p∑
k=0

<
[
Ekejkωt

]
=

p∑
k=0

<
[{−jkωXk + Yk(X) + Ek

}
ejkω(t+2π/ωs)

]
= T2π/ωs K

∗H[u∗(t); λ, e(t)], (3.11)
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where we use Ek = 0 for k , m in Eq.(2.5).

Based on the symmetry of Eq.(3.11) and the relation T2π/ωs[e
jkωt] = ej 2πk

m ejkωt, the complex

HB equation F(X) = 0 satisfies the following relation;

F(Θ i
2π/mX) = Θ i

2π/mF(X) for i = 1, . . . ,m, (3.12)

where

Θ2π/m =


In 0

Inej 2π
m

. . .

0 Inej 2πp
m

 .
From this symmetry, if X is a solution of F(X) = 0, then Θ i

2π/mX is also a solution for i =

1, . . . ,m. The symmetry (3.12) of the complex HB equation is transformed to the following

symmetry of the real HB equation f (x) = 0;

f (θ i
2π/mx) = θ i

2π/m f (x) for i = 1, . . . ,m, (3.13)

where

θ2π/m =


In 0
θ2π/m,1

. . .

0 θ2π/m,p

 ∈ R
N×N ,

θ2π/m,k =



cos 2πk
m sin 2πk

m 0− sin 2πk
m cos 2πk

m
. . .

cos 2πk
m sin 2πk

m0 − sin 2πk
m cos 2πk

m


∈ R2n×2n,

k = 1, . . . , p. (3.14)

From this symmetry, if x is a solution of f (x) = 0, then θ i
2π/mx is also a solution for i = 1, . . . ,m.

Here we denote the symmetry based on 2π/ωs time shift by Γ2π/m.

Thus, the symmetric solutions with respect to Γ2π/m satisfy the constraint

x = θ i
2π/mx for i = 1, . . . ,m, (3.15)

which corresponds to Eq.(2.24).
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3.3.2 Autonomous System

Although the bifurcation diagram of an autonomous system cannot be decomposed by its sym-

metry, we consider the symmetry since it will be used in Chapter 4. Namely, we set s(t) = 0, and

describe Eq.(3.2) as H[u(t); λ, 0] = 0. The autonomous system has the odd symmetry, which is

considered in the previous subsection, and the symmetry based on an arbitrary time shift.

Arbitrary Time Shift

The equation H[u(t); λ, 0] = 0 has the arbitrary time φ/ω shift symmetry. Now, a shift operator

Tarbitrary which represents the arbitrary time φ/ω shift is defined by

Tarbitraryu(t) = u(t + φ/ω). (3.16)

H satisfies the relation as follows;

H[Tarbitraryu(t); λ, 0] = −du(t + φ/ω)
dt

+ h(u(t + φ/ω) ; λ) = TarbitraryH[u(t); λ, 0]. (3.17)

In particular, if u(t) is a solution of H[u(t); λ, 0] = 0, then u(t+φ/ω) is also a solution. The same

relations are satisfied also by the truncated solutions;

K∗H[Tarbitraryu∗(t); λ, 0] =
p∑

k=0

<
[{−jkωXk + Yk(X)

}
ejkω(t+φ/ω)

]
= TarbitraryK∗H[u∗(t); λ, 0].

(3.18)

Based on the symmetry of Eq.(3.18) and the relation Tarbitrary[ejkωt] = ejkφejkωt, the complex

HB equation F(X) = 0 satisfies the following relation;

F(Θarbitrary(φ)X) = Θarbitrary(φ)F(X), (3.19)

where

Θarbitrary(φ) =


In 0

Inejφ

. . .

0 Inejpφ

 .
From this symmetry, if X is a solution of F(X) = 0, then Θarbitrary(φ)X is also a solution for all φ.

The symmetry (3.19) of the complex HB equation is transformed to the following symmetry of

the real HB equation f (x) = 0;

f (θarbitrary(φ)x) = θarbitrary(φ) f (x), (3.20)
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where

θarbitrary(φ) =


In 0
θarbitrary,1

. . .

0 θarbitrary,p

 ∈ R
N×N ,

θarbitrary,k =



cos kφ sin kφ 0− sin kφ cos kφ
. . .

cos kφ sin kφ
0 − sin kφ cos kφ


∈ R2n×2n,

k = 1, . . . , p.

From this symmetry, if x is a solution of f (x) = 0, then θarbitrary(φ)x is also a solution for all φ.

Here we denote the symmetry based on the φ/ω time shift by Γarbitrary.

Thus, the symmetric solutions with respect to Γφ satisfy the constraint

x = θarbitrary(φ)x for all φ ∈ R. (3.21)

3.4 Ideal Decomposition of HB Equation

The HB equation has the symmetry derived by the symmetry of the original system such as

described in the previous section. Thus, the decomposition of bifurcation diagrams based on the

symmetry of the HB equation corresponds to the mode decomposition of the system. In this

section, we consider the ideal decompositions based on the symmetries Γodd, Γ2π/m, and Γarbitrary

of the HB equation.

3.4.1 Decomposition by Ideal Quotient

In the previous section, we derived the constraints (3.8) and (3.15) with respect to the symmetries

Γodd, Γ2π/m, and Γarbitrary respectively. In order to obtain the ideal quotient using the constraints,

let us consider the linear representations θodd, θ2π/m, and θarbitrary in detail.

In the case of Γodd, because the matrix θodd is diagonal, the symmetric solutions can be ob-

tained by the set of equations

(1 + 1)xr0i = 0,
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([
1 0
0 1

]
−

[
(−1)k+1 0

0 (−1)k+1

]) [
xrki

xski

]
=

[
0
0

]
,

k = 1, . . . , p,
i = 1, . . . , n. (3.22)

The solution xrki = xski = 0 is obtained when k are odd numbers. That is, the symmetric solutions

satisfy

xk = 0 for k = 0 mod 2. (3.23)

In the case of Γ2π/m, because the matrix θ2π/m is block diagonal, the symmetric solutions

satisfies the set of equations

(1 − 1)xr0i = 0,([
1 0
0 1

]
−

[
cos 2πk

m sin 2πk
m

− sin 2πk
m cos 2πk

m

]) [
xrki

xski

]
=

[
0
0

]
,

k = 1, . . . , p,
i = 1, . . . , n. (3.24)

Specifically, the solution xrki = xski = 0 is obtained when 2πk
m , 2π, 4π, . . .. That is, the symmetric

solutions satisfy

xk = 0 for k , 0 mod m. (3.25)

In the case of Γarbitrary, because the matrix θarbitrary is block diagonal, the symmetric solutions

satisfies the set of equations

(1 − 1)xr0i = 0,([
1 0
0 1

]
−

[
cos kφ sin kφ
− sin kφ cos kφ

]) [
xrki

xski

]
=

[
0
0

]
,

k = 1, . . . , p,
i = 1, . . . , n. (3.26)

Specifically, the solution xrki = xski = 0 is obtained when kφ , 2π, 4π, . . .. That is, the symmetric

solutions satisfy

xk = 0 for k , 0. (3.27)

Because the symmetric solutions with respect to the infinite group Γarbitrary have no oscillations

due to Eq.(3.27), we can not decompose the bifurcation diagram of the autonomous system

using the symmetry Γarbitrary. Note that the symmetry with respect to Γarbitrary leads to invariants

in Chapter 4.

Let us consider only the periodically forced system in this chapter. When the periodically

forced system has the symmetries Γodd and Γ2π/m the ideal 〈 f Γ〉 in Eq.(2.26) which corresponds

to the symmetric solutions is represented by

〈 f Γ(x)〉 = 〈 f (x)〉 +
∑
k∈κ
〈xk〉, (3.28)
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where κ is defined by

κ ∈ {
κodd, κ2π/m

}
, (3.29)

κodd ≡ {k ∈ Z≥0 | 0 ≤ k ≤ p, k = 0 mod 2} (Symmetry Γodd)
κ2π/m ≡ {k ∈ Z≥0 | 0 ≤ k ≤ p, k , 0 mod m} (Symmetry Γ2π/m) .

Thus, if solutions of the HB equation are symmetric solutions, the oscillations do not have fre-

quency components in the κ. The number m is not included in the set κodd because the m is odd

number when the system has the symmetry Γodd. As a result, the number m does not belong to

the set κ. Namely, the forcing term ek in f (x) equals 0 for k ∈ κ due to Eq.(2.9). This property is

used in the systematic procedure for decomposition on Section 3.6.

Using this ideal 〈 f Γ〉, we can calculate the ideal 〈 f Γ〉 in Eq.(2.27) which corresponds to the

asymmetric solutions by

〈 f Γ(x)〉 = 〈 f (x)〉 :

〈 f (x)〉 +
∑
k∈κ
〈xk〉

 . (3.30)

Because the multiplicity of the bifurcation diagram of the HB equation f (x) = 0 is one, the ideal

〈 f (x)〉 is a radical ideal. Thus, the ideal decomposition (2.28) is obtained by

〈 f (x)〉 = 〈 f Γ(x)〉 ∩ 〈 f Γ(x)〉

=

〈 f (x)〉 +
∑
k∈κ
〈xk〉

 ∩
〈 f (x)〉 :

〈 f (x)〉 +
∑
k∈κ
〈xk〉


 . (3.31)

However, the computation of this ideal decomposition still requires more than 15 GiB of memory.

3.4.2 Efficient Methods for Ideal Quotient

Using two propositions of the quotient operation shown in Appendix A.5, we propose an efficient

method to calculate the ideal quotient (3.31). First, if we assume that an ideal J is represented

by J =
∑s

i=1 Ji, the ideal quotient I : J is provided by

I : J = I :

 s∑
i=1

Ji

 = s∩
i=1

(I : Ji) . (3.32)

Using this relation (3.32) and 〈 f (x)〉 : 〈 f (x)〉 = 〈1〉, we can represent Eq.(3.30) by

〈 f Γ(x)〉 = 〈 f (x)〉 :
∑
k∈κ
〈xk〉. (3.33)
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Secondary, when the ideal I is represented by I =
∑r

i=1 Ii and J is coprime to Ii for i = 1, . . . , r,

the ideal quotient I : J is represented by

I : J =

 r∑
i=1

Ii

 : J =
r∑

i=1

(Ii : J) . (3.34)

This relation indicates that the computation of the ideal quotient I : J is equivalent to the sum of

the partial ideal quotients Ii : J.

We can apply Eq.(3.34) to Eq.(3.33) because the ideals which correspond to symmetric and

asymmetric solutions are obviously coprime. Thus, we obtain the ideal 〈 f Γ(x)〉 by

〈 f Γ(x)〉 =
∑

k∈κ
〈 f k(x)〉 :

∑
k∈κ
〈xk〉

 +
∑

k<κ

〈 f k(x)〉 :
∑
k∈κ
〈xk〉

 , (3.35)

where we use the relation 〈 f (x)〉 = ∑
k∈κ 〈 f k〉 +

∑
k<κ 〈 f k〉. Namely, the ideal quotient is divided

into the ideals generated by the polynomials corresponding symmetric solutions and asymmetric

solutions.

By the relation
∑

k<κ 〈 f k〉 1
∑

k∈κ 〈xk〉 shown in Appendix B, the ideal 〈 f Γ(x)〉 in Eq.(3.35) is

represented by

〈 f Γ(x)〉 =
∑

k∈κ
〈 f k(x)〉 :

∑
k∈κ
〈xk〉

 +∑
k<κ

〈 f k(x)〉. (3.36)

Namely, it is calculated only by the ideal quotient corresponding to frequency components in κ∑
k∈κ
〈 f k(x)〉 :

∑
k∈κ
〈xk〉. (3.37)

We call the ideal quotient (3.37) as the partial ideal quotient. Thus, the partial ideal quotient

(3.37) enables to calculate the ideal quotient (3.30) using only the components in κ. Moreover,

using the relation
∑

k∈κ 〈 f k〉 ⊂
∑

k∈κ 〈xk〉 shown in Appendix B, we rewrite the ideal 〈 f Γ(x)〉 in

Eq.(3.28) to

〈 f Γ(x)〉 =
∑
k<κ

〈 f k(x)〉 +
∑
k∈κ
〈xk〉. (3.38)

Thus, we can obtain the decomposition of the ideal 〈 f (x)〉 = 〈 f Γ(x)〉 ∩ 〈 f Γ(x)〉 by Eqs.(3.38) and

(3.36).

The algorithm to decompose the bifurcation diagram using the partial ideal quotient is de-

scribed as follows;
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S1. We obtain the HB equation f (x) = 0 from the system equation (2.1).

S2. The κ in Eq.(3.29) is determined by a symmetry Γ of f (x).

S3. Using the partial ideal quotient (3.37), we can obtain the 〈 f Γ(x)〉 cor-
responding to asymmetric solutions. Further, Eq.(3.38) gives 〈 f Γ(x)〉
corresponding to the symmetric solutions.

3.4.3 Partial Ideal Decomposition

Because the term
∑

k<κ 〈 f k(x)〉 in Eqs.(3.36) and (3.38) can be collected, the ideal decomposition

(3.31) is rewritten by

〈 f (x)〉 = 〈 f Γ(x)〉 ∩ 〈 f Γ(x)〉

=

∑
k∈κ
〈xk〉

 ∩ ∑
k∈κ
〈 f k(x)〉 :

∑
k∈κ
〈xk〉

 +∑
k<κ

〈 f k(x)〉. (3.39)

Now, we look at the following decomposition in Eq.(3.39)∑
k∈κ
〈 f k(x)〉 =

∑
k∈κ
〈xk〉

 ∩ ∑
k∈κ
〈 f k(x)〉 :

∑
k∈κ
〈xk〉

 . (3.40)

We call the decomposition a partial ideal decomposition. The decomposition of the ideal 〈 f (x)〉
is caused only by this partial ideal decomposition. Because the number m does not belong to the

set κ, this partial ideal decomposition does not depend on values of the forcing functions. The

ideal decomposition (3.39) is realized by adding the partial ideal decomposition to the ideals 〈 f k〉
containing the forcing term for k < κ.

Later we will use this partial ideal decomposition for the systematic procedure to decompose

the bifurcation diagram.

3.5 Example

We apply the proposed method to the example in Section 2.4. Namely, we consider the funda-

mental oscillations (m = 1), and apply the HB method with 3 frequency components (p = 3) to

the system shown in Figure 2.1. Now, we use the computer algebra system Risa/Asir in order to

obtain the algebraic representation of the bifurcation diagram. In this example, we cannot cal-

culate the decomposition of the bifurcation diagram by using the method in [35, 36] because the

computation of Gröbner base of the lexicographic order requires more than 15 GiB of memory.
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Let us consider the symmetry of the HB equation f (x) = 0. The system has only the symme-

try Γodd on the target oscillations, and the linear representation θodd is written by

θodd =


I4 0
−I4

0 I4

 . (3.41)

Because the symmetric solutions satisfy x = θoddx, i.e., x2 = 0, the representation θodd gives the

κodd = {2} in Eq.(3.29). Thus, using the symmetry with respect to Γodd, we can decompose the

ideal I ≡ 〈 f (x)〉 generated by the HB equation f (x) = 0 as follows;

I = I13 ∩ I123 = 〈 f Γodd
(x)〉 ∩ 〈 f Γodd

(x)〉, (3.42)

where I13 = 〈 f Γodd
〉 corresponds to the solutions which contain only the fundamental and the

3rd harmonic oscillations, i.e., the symmetric solutions with respect to Γodd, and I123 = 〈 f Γodd
〉

corresponds to the solutions which contain the 2nd harmonic oscillations, that is, the asymmetric

solutions with respect to Γodd.

Using the partial ideal quotient (3.37), we can obtain the ideal I123;

I123 = 〈 f Γodd
〉 = 〈 f 2〉 : 〈x2〉 + 〈 f 1, f 3〉. (3.43)

Its computational time is 1.112 sec and the required memory is 9.16MB. Thus, the partial ideal

quotient reduces the computational cost of dramatically. By Eq.(3.38), the ideal I13 for the sym-

metric solutions is obtained by

I13 = 〈 f Γodd
〉 = 〈x2〉 + 〈 f 1, f 3〉. (3.44)

Thus, we can decompose the bifurcation diagram as V(I) = V(I13) ∪ V(I123) based on the ideal

decomposition (3.42).

In order to obtain the algebraic representation of the bifurcation diagram, we use Gröbner

base of the block order which eliminates target variables efficiently (cf. Appendix.C). Namely,

using Gröbner base of the block order (xs11, xr12, . . . , xs32) �block xr11, we eliminate xs11, xr12, . . . ,

xs32, and show the bifurcation diagram (E - xr11) which represents the relation between the pa-

rameter E and the real part of the fundamental oscillation xr11 in Figure 3.1 where ω = 1 and

µ = 0.01. The blue line corresponds to the ideal I123 and the red line corresponds to the ideal

I13. We confirm that the pitchfork bifurcation points correspond to the intersection points of the

sub-diagrams V(I13) and V(I123) such as Figure 3.1.
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Figure 3.1: Bifurcation diagram (E - xr11) in the case of m = 1 (The ideal I13 corresponds to the solutions which
contain only fundamental and 3rd harmonic oscillations, the ideal I123 corresponds to the solutions which contain
2nd harmonic oscillations with ω = 1 and µ = 0.01).
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3.6 Systematic Procedure for Decomposition Using Homoge-
neous HB Equation

Although the proposed method enables to decompose the bifurcation diagram of the HB equa-

tion, we have to obtain the symmetry of the HB equation in advance. In order to find out the

symmetry without omission, we consider a homogeneous HB equation which is obtained by

removing the forcing term from a nonhomogeneous HB equation because the equation has the

highest symmetry. Using the symmetry of the homogeneous HB equation, we propose a sys-

tematic procedure for the decomposition of corresponding nonhomogeneous HB equations. The

symmetry of the nonhomogeneous HB equation are generated by the break of the symmetry of

the homogeneous HB equation. Thus, the partial ideal decomposition (3.40) of the homoge-

neous HB equation enables the systematic procedure to decompose the bifurcation diagrams of

the nonhomogeneous HB equation.

3.6.1 Homogeneous HB Equation

Let us consider the following homogeneous HB equation f̂ (x) = 0 is defined by

f̂ (x) ≡ f̂ (x;ω, λ) ≡


f̂ 0
...

f̂ p

 = 0 ∈ RN , (3.45)

f̂ 0 ≡ ( fr01, . . . , fr0n)T

≡ (<[Y01], . . . ,<[Y0n]
)T ∈ Rn,

f̂ k ≡ ( frk1, fsk1, . . . , frkn, fskn)T

≡ (<[−jkωXk1 + Yk1],=[−jkωXk1 + Yk1],

. . . ,<[−jkωXkn + Ykn],=[−jkωXkn + Ykn]
)T ∈ R2n,

k = 1, . . . , p.

Because the HB equation (2.10) can be written by f (x;ω, λ, e) = f̂ (x;ω, λ) + e = 0, we can

describe the HB equation as{
f m(x) = f̂ m(x) + em

f k(x) = f̂ k(x) for k , m
, (3.46)

from Eq.(2.9).
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3.6.2 Symmetry of Homogeneous HB Equation

In order to decompose the bifurcation diagram systematically, let us consider the symmetry of

the homogeneous HB equation f̂ (x) = 0. Because the homogeneous HB equation f̂ (x;ω, λ) = 0
equals the HB equation f (x;ω, λ, 0) = 0 for the autonomous system, the equation f̂ (x;ω, λ) = 0
has the arbitrary time φ/ω shift symmetry;

f̂ (θarbitrary(φ)x) = θarbitrary(φ) f̂ (x) for all φ. (3.47)

Thus, the symmetric solutions corresponding to Γarbitrary satisfy the constraint

x = θarbitrary(φ)x. (3.48)

The homogeneous HB equation has infinite asymmetric solutions with respect to Γarbitrary since φ

is arbitrary.

Now, our target is a set of the nonhomogeneous HB equations which correspond to an iden-

tical homogeneous HB equation f̂ (x) = 0 when we fix the number p of the specific frequency

components. Because the nonhomogeneous HB equations with the forcing functions of the pe-

riod 2π/ωs = 2π/mω have the symmetry Γ2π/m, which corresponds to φ = 2π/m in the symmetry

Γarbitrary, we can obtain the symmetry of the nonhomogeneous HB equation from the symmetry

of the homogeneous HB equation when we set m. That is, we can say that the homogeneous

HB equation has the highest symmetry in the corresponding nonhomogeneous HB equations

for m ≤ p when we fix p. In order to decompose the bifurcation diagrams of the nonho-

mogeneous HB equations based on the symmetry, it is enough to consider only the cases of

φ = 2π/i, i = 1, . . . , p. Namely, we consider θ2π/1, . . . , θ2π/p corresponding to the symmetries

Γ2π/1, . . . , Γ2π/p

θ2π/q =


In 0
θ2π/q,1

. . .

0 θ2π/q,p

 ∈ R
N×N , (3.49)

θ2π/q,k =



cos 2πk
q sin 2πk

q 0
− sin 2πk

q cos 2πk
q
. . .

cos 2πk
q sin 2πk

q0 − sin 2πk
q cos 2πk

q


∈ R2n×2n,

k = 1, . . . , p, q = 1, . . . , p.
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Further, the homogeneous HB equation has the odd symmetry Γodd.

The symmetry of the nonhomogeneous HB equation is generated by a part of the symmetry

of the homogeneous HB equation when we set m. Namely, the forcing function breaks the

symmetry of the homogeneous HB equation.

3.6.3 Ideal Decomposition of Nonhomogeneous HB Equation

In order to realize the systematic procedure for the decomposition of the nonhomogeneous HB

equation, we propose a method based on the break of the symmetry of the homogeneous HB

equation. We consider the following set of the partial ideal decompositions of the homogeneous

HB equation. ∑
k∈κ̂
〈 f̂ k(x)〉 =

∑
k∈κ̂
〈xk〉

 ∩ ∑
k∈κ̂
〈 f̂ k(x)〉 :

∑
k∈κ̂
〈xk〉

 , (3.50)

where

κ̂ ∈
{
κ2π/q, κodd

}
, (3.51)

κ2π/q ≡ {k ∈ Z≥0 | 0 ≤ k ≤ p, k , 0 mod q} (Symmetry Γ2π/q)
κodd ≡ {k ∈ Z≥0 | 0 ≤ k ≤ p, k = 0 mod 2} (Symmetry Γodd) ,

q = 1, . . . , p,

which corresponds to the partial ideal decomposition (3.40) of the nonhomogeneous HB equa-

tion. Let us compare Eq.(3.50) with Eq.(3.40). Because the difference between f̂ (x) and f (x) is

only f m , f̂ m due to Eq.(3.46), the set κ is a subset of κ̂ which does not contain m. Namely, the

addition of the forcing term breaks the symmetry of the homogeneous HB equation. Then, the

partial ideal decomposition (3.40) is expressed as a subset of the decompositions which are not

broken in the partial ideal decompositions (3.50).

Since the ideal decomposition of the nonhomogeneous HB equation is obtained by the partial

ideal decomposition (3.40) and the ideal containing the forcing term, we can use the subset of

the partial ideal decompositions (3.50) for the decomposition as follows;

〈 f (x)〉 = 〈 f Γ(x)〉 ∩ 〈 f Γ(x)〉

=

∑
k∈κ
〈xk〉

 ∩ ∑
k∈κ
〈 f̂ k(x)〉 :

∑
k∈κ
〈xk〉

 +∑
k<κ

〈 f̂ k(x) + ek〉, (3.52)

κ ∈
{
κ2π/q, κodd | m < κ2π/q, m < κodd, q = 1, . . . , p

}
,



34 CHAPTER 3. DECOMPOSITION OF BIFURCATION DIAGRAM

The algorithm for the systematic procedure to decompose the bifurcation diagram using the

set of the partial ideal decomposition is written as follows;

S1. We set the homogeneous HB equation f̂ (x) = 0.

S2. We consider the symmetries Γ2π/1, . . . , Γ2π/p and Γodd, and obtain the set
κ̂ which provides the partial ideal decompositions (3.50).

S3. We set the nonhomogeneous HB equation f (x) = f̂ (x) + e = 0. And
we obtain a set κ by selecting the subset of κ̂ which does not contain m.

S4. Using the set κ and Eq.(3.52), we obtain the decomposition of the ideal
〈 f (x)〉.

S5. We can simultaneously obtain decompositions of other nonhomoge-
neous HB equations which correspond to the identical homogeneous
HB equation.

Thus, the set of the partial ideal decompositions of the homogeneous HB equation enables to

decompose the bifurcation diagram of the corresponding nonhomogeneous HB equations sys-

tematically.

3.6.4 Example

We consider the homogeneous HB equation with 3 frequency components (p = 3) on the RLC

circuit shown in Figure 2.1. We assume that the direct current components are equal to zero,

similar to Section 2.4. In this case, the symmetries Γ2π/1,Γ2π/2,Γ2π/3 and Γodd of the homogeneous

HB equation can be written by

θ2π/1 = I12, (3.53)

θ2π/2 =


−I4 0

I4

0 −I4

 , (3.54)

θ2π/3 =


θ2π/3,1 0

θ2π/3,2

0 I4

 , (3.55)

θ2π/3,1 =


1
2

√
3

2 0
−
√

3
2

1
2

1
2

√
3

2

0 −
√

3
2

1
2

 , θ2π/3,2 =


1
2 −

√
3

2 0√
3

2
1
2

1
2 −

√
3

2

0 √
3

2
1
2

 ,



3.6. SYSTEMATIC PROCEDURE FOR DECOMPOSITION 35

θodd =


I4 0
−I4

0 I4

 . (3.56)

All the solutions of the nonhomogeneous HB equation have symmetry Γ2π/1 because the θ2π/1

is an identity matrix. Thus, we cannot decompose the ideal using the symmetry Γ2π/1. By the

partial ideal quotient based on the other symmetries Γ2π/2, Γ2π/3, and Γodd, the partial ideal de-

compositions (3.50) are represented by

Γ2π/2; κ2π/2 = {1, 3}, 〈 f̂ 1, f̂ 3〉 = 〈x1, x3〉 ∩ (〈 f̂ 1, f̂ 3〉 : 〈x1, x3〉),
Γ2π/3; κ2π/3 = {1, 2}, 〈 f̂ 1, f̂ 2〉 = 〈x1, x2〉 ∩ (〈 f̂ 1, f̂ 2〉 : 〈x1, x2〉),
Γodd; κodd = {2}, 〈 f̂ 2〉 = 〈x2〉 ∩ (〈 f̂ 2〉 : 〈x2〉).

(3.57)

Using the relation (3.57), we can decompose the nonhomogeneous HB equations which are iden-

tical except for the forcing term systematically.

For example, we consider the nonhomogeneous HB equations with the forcing function of

m = 1, 2 and 3 in Eq.(2.11). The HB equations of m = 1, 2 and 3 correspond to fundamental

oscillation, 1/2-subharmonic oscillation and 1/3-subharmonic oscillation, respectively. The each

nonhomogeneous HB equation f (x) = 0 of m = 1, 2 and 3 is represented as

[m = 1] f (x) =


f̂ 1 + e1

f̂ 2

f̂ 3

 = 0, (3.58)

[m = 2] f (x) =


f̂ 1

f̂ 2 + e2

f̂ 3

 = 0, (3.59)

[m = 3] f (x) =


f̂ 1

f̂ 2

f̂ 3 + e3

 = 0. (3.60)

The parameter E of frequency component m effects only the constant term of corresponding

frequencies.

In the case of m = 1 which corresponds to the example in Section 3.5, the symmetries Γ2π/2

and Γ2π/3 are broken because m = 1 belongs to κ2π/2 and κ2π/3. As a result, the HB equation has

only the symmetry Γodd and κ = κodd. Thus, the ideal decomposition of I = 〈 f (x)〉 is obtained by

I = I13 ∩ I123 = 〈 f Γodd
〉 ∩ 〈 f Γodd

〉, (3.61)

I13 = 〈 f Γodd
〉 = 〈x2〉 + 〈 f̂ 1, f̂ 3 + e3〉, (3.62)

I123 = 〈 f Γodd
〉 = 〈 f̂ 2〉 : 〈x2〉 + 〈 f̂ 1 + e1, f̂ 3〉. (3.63)
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This decomposition agrees with the decomposition in Section 3.5.

In the case of m = 2, the symmetries Γ2π/3 and Γodd are broken because m = 2 belongs to κ2π/3
and κodd. As a result, the HB equation has only the symmetry Γ2π/2 and κ = κ2π/2. Thus, the ideal

decomposition is obtained by

I = I2 ∩ I123 = 〈 f Γ2π/2
〉 ∩ 〈 f Γ2π/2

〉, (3.64)

I2 = 〈 f Γ2π/2
〉 = 〈x1, x3〉 + 〈 f̂ 2 + e2〉, (3.65)

I123 = 〈 f Γ2π/2
〉 = 〈 f̂ 1, f̂ 3〉 : 〈x1, x3〉 + 〈 f̂ 2 + e2〉. (3.66)

The ideal I2 corresponds to the solutions which contain only fundamental oscillations, and I123

corresponds to the solutions which contain 1/2 subharmonic oscillations. We can decompose

the bifurcation diagram V(I2) ∪ V(I123). The decomposition of the bifurcation diagram is shown

in Figure 3.2 which represents the relation between the parameter E and the real part of the

fundamental oscillation xr21 with ω = 1 and µ = 0.01. The green line corresponds to the ideal

I123 and the red line corresponds to the ideal I2.

In the case of m = 3, only the symmetry Γ2π/2 is broken because m = 3 belongs to only κ2π/3.

As a result, the HB equation has both the symmetry Γ2π/3 and Γodd, i.e., κ = {κ2π/3, κodd}. Thus,

the ideal decomposition is obtained by

I = I3 ∩ I13 ∩ I123 = 〈 f Γodd
〉 ∩ 〈 f Γodd

〉
=

(
〈 f Γ2π/3

〉 ∩ 〈 f Γ2π/3
〉
)
∩ 〈 f Γodd

〉, (3.67)

I3 = 〈 f Γ2π/3
〉 = 〈x1, x2〉 + 〈 f̂ 3 + e3〉, (3.68)

I13 = 〈 f Γodd
〉 : 〈 f Γ2π/3

〉 = 〈 f̂ 1〉 : 〈x1〉 + 〈x2〉 + 〈 f̂ 3 + e3〉, (3.69)

I123 = 〈 f Γodd
〉 = 〈 f̂ 2〉 : 〈x2〉 + 〈 f̂ 1, f̂ 3 + e3〉. (3.70)

The ideal I3, I13 and I123 correspond to the solutions which contain fundamental, 1/3 subhar-

monic and 2/3 subharmonic oscillations, respectively. We can decompose the bifurcation dia-

gram V(I3) ∪ V(I13) ∪ V(I123). The decomposition of the bifurcation diagram is shown in Figure

3.3 which represents the relation between the parameter E and the real part of the fundamental

oscillation xr31 with ω = 1 and µ = 0.01. The orange line corresponds to the ideal I123, the green

line corresponds to the ideal I13 and the red line corresponds to the ideal I3.

We show the summary of these ideal decomposition in Table.3.1. Thus, the ideal decomposi-

tion of the each nonhomogeneous HB equation can be systematically obtained using the partial
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ideal decomposition of the homogeneous HB equation. Further, the symmetries of the each non-

homogeneous HB equation are clarified by the break of the symmetries of the homogeneous HB

equation.

3.7 Concluding Remarks

We proposed a method to decompose bifurcation diagrams of periodic oscillations described by

the HB equation based on the ideal decomposition using the symmetry of the system. In order

to realize the ideal decomposition, we proposed an efficient decomposition using a partial ideal

quotient. Moreover, we clarified the symmetry of nonhomogeneous HB equations by the break

of the symmetry of the corresponding homogeneous HB equation. Finally, we decomposed the

bifurcation diagrams of HB equations which are identical except for the forcing terms by using

the symmetry of the homogeneous HB equation systematically.
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Figure 3.2: Bifurcation diagram (E - xr21) in the case of m = 2, the parameter E versus the real part of the
fundamental oscillation xr21 (The ideal I2 corresponds to the solutions which contain only fundamental harmonic
oscillations, and the ideal I123 corresponds to the solutions which contain 1/2 subharmonic oscillations with ω = 1
and µ = 0.01).

Table 3.1: Ideal decomposition of nonhomogeneous HB equations using partial ideal decomposition of homoge-
neous HB equation

Symmetry m = 1 m = 2 m = 3
Γ2π/2 - I2 ∩ I123 -
Γ2π/3 - - I3 ∩ I13

Γodd I13 ∩ I123 - I123 ∩ I123

I123 is represented by I3 ∩ I13.
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Figure 3.3: Bifurcation diagram (E - xr31) in the case of m = 3, the parameter E versus the real part of the
fundamental oscillation xr31 (The ideal I3, I13 and I123 correspond to the solutions which contain fundamental, 1/3
subharmonic and 2/3 subharmonic oscillations, respectively, ω = 1 and µ = 0.01).
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Figure 3.4: Bifurcation diagram (enlargement of Figure 3.3).



Chapter 4

Invariants with Respect to Symmetry and
its Applications

4.1 Introduction

As shown in Chapter 3, the bifurcation diagram of the periodic oscillation is calculated by

Gröbner base. However, the computational cost of Gröbner base is highly dependent on the

complexity of the HB equation, and increases exponentially according to the expansion of con-

sidered frequency components. Further, when the system has symmetry, the HB equation has

different but equivalent solutions which make the degree of the polynomials in the HB equation

high. Hence, the computational cost of obtaining the bifurcation diagram becomes very large by

the different but equivalent solutions based on the symmetry.

In order to resolve this problem, we propose a method to reduce the degree of the HB equa-

tion using invariants which transform the different but equivalent solutions into a unique solution.

Since the degree of the HB equation is reduced by using the invariants, the bifurcation diagram

of the reduced HB equation is simpler than the original bifurcation diagram. Additionally, we

present that the relations among the amplitudes at each frequency component are easily calcu-

lated by the invariants since the information of phases is removed. Further, we propose a method

for finding the design parameters of oscillators using the relations among the amplitudes.

40
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4.2 Invariants with Respect to Symmetry

In this chapter, we focus on invariants with respect to the symmetry of the HB equation. The

invariants enable to transform different but equivalent solutions based on the symmetry, i.e.,

asymmetric solutions, into a unique solution. Thus, using the invariants, we can remove the

redundancy based on the symmetry. This section describe the number of the different but equiva-

lent solutions with respect to the symmetries of the HB equation shown in Section 3.3, and leads

to the invariants with respect to the symmetries.

4.2.1 Asymmetric Solutions of HB Equation
Odd Symmetry

From Eq.(3.8), the symmetric solutions with respect to Γodd satisfy x = θ i
oddx for i = 1, 2, whereas

the asymmetric solutions do not satisfy the relation and have different but equivalent solutions x
and θoddx. The number of the different but equivalent solutions with respect to Γodd is 2.

Symmetry Based on 2π/ωs Time Shift

From Eq.(3.15), the symmetric solutions with respect to Γ2π/m satisfy x = θ i
2π/mx for i = 1, . . . ,m,

whereas the asymmetric solutions do not satisfy the relation and have different but equivalent

solutions θ i
2π/mx, i = 1, . . . ,m. The number of the different but equivalent solutions with respect

to Γ2π/m is m.

Thus, in the case of the periodically forced system, the oscillation which is asymmetric with

respect to Γodd and Γ2π/m has 2m different but equivalent solutions when m is odd number. Those

equivalent solutions of the HB equation on the periodically forced system make the degree of the

polynomials in the HB equation high.

Symmetry Based on Arbitrary Time Shift

From Eq.(3.21), the symmetric solutions with respect to Γarbitrary satisfy x = θarbitrary(φ)x for all

arbitrary, whereas the asymmetric solutions do not satisfy the relation and have infinite different

but equivalent solutions θarbitrary(φ)x. A set of the equivalent solutions θarbitrary(φ)x forms a circle

on the complex plane.

In case of the autonomous system, the oscillation which is asymmetric with respect to Γodd

and Γarbitrary has the infinite different but equivalent solutions.
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4.2.2 Fundamental Invariants with Respect to Symmetry

Let us consider invariants which enable to transform a set of different but equivalent solutions

into a unique solution. The invariants g(x) with respect to the symmetries Γodd, Γ2π/m, and Γarbitrary

are respectively defined by polynomials which satisfy the following relations;

g(x) = g(θ i
oddx) for i = 1, 2 (Symmetry Γodd),

g(x) = g(θ i
2π/mx) for i = 1, . . . ,m (Symmetry Γ2π/m),

g(x) = g(θarbitrary(φ)x) for all φ (Symmetry Γarbitrary).
(4.1)

From the relations, these invariants transform the equivalent solutions into a unique solution.

That is, if we represent the different but equivalent solutions by the invariants g(x) instead of

x, we can remove the redundancy generated by the symmetries. In order to treat the invariants

systematically, we consider the sets of the invariants as follows;

Q(λ)[x]Γodd ≡
{
g ∈ Q(λ)[x] | g(x) = g(θ i

oddx), for i = 1, 2
}
,

Q(λ)[x]Γ2π/m ≡
{
g ∈ Q(λ)[x] | g(x) = g(θ i

2π/mx), for i = 1, . . . ,m
}
,

Q(λ)[x]Γarbitrary ≡
{
g ∈ Q(λ)[x] | g(x) = g(θarbitrary(φ)x), ∀φ

}
.

(4.2)

Because these sets are closed under addition and multiplication, these are sub-rings of Q(λ)[x].

TheQ(λ)[x]Γodd ,Q(λ)[x]Γ2π/m , andQ(λ)[x]Γarbitrary are called the invariant sub-rings with respect to

Γodd, Γ2π/m, and Γarbitrary, respectively. An arbitrary invariant g ∈ Q(λ)[x]Γ with Γ = {Γodd,Γ2π/m,

Γarbitrary} can be generated by finite invariants which is called fundamental invariants [54]. The

fundamental invariants are calculated by Reynolds operator [21, 22], and are represented by

gF(x) = (gF1(x), . . . , gFs(x))T, (4.3)

where s denotes the number of the fundamental invariants. A tool for finding the fundamen-

tal invariants is provided in SINGULAR [55]. Thus, we can express the all invariants with

respect to the symmetry Γ by the addition and multiplication of the fundamental invariants

gF1(x), . . . , gFs(x).

4.2.3 Squared Amplitudes Associated with Invariants

Let us consider special invariants with respect to Γodd, Γ2π/m, and Γarbitrary. Because the linear

representations θodd, θ2π/m, and θarbitrary are rotation matrices, the amplitudes at each frequency

component of the oscillations are obviously invariants with respect to the symmetries. Thus, we
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consider the following polynomials which are correspond to the amplitudes at each frequency

component;

gA(x) ≡


gA0(x)
...

gAp(x)

 , (4.4)

gA0(x) = (gA01(x), . . . , gA0n(x))T

= (xr01
2, . . . , xr0n

2)T,

gAk(x) = (gAk1(x), . . . , gAkn(x))T

= (xrk1
2+xsk1

2, . . . , xrkn
2+xskn

2)T,

k = 1, . . . , p.

In order to consider the behavior of this invariant gA(x) instead of x, we define the invariant

as a new variable A;

A ≡


A0
...

Ap

 ≡ gA(x), (4.5)

Ak = (Ak1, . . . , Akn)T,

k = 0, . . . , p.

We call this variable A the squared amplitude. Namely,
√

Aki correspond to the amplitudes of

the k/m th frequency components for k = 1, . . . , p, i = 1, . . . , n.

4.3 Reduction of Bifurcation Diagram Using Invariants

The algebraic representation of the bifurcation diagram is obtained using Gröbner base such as

Chapter 3. However, if the HB equation has different but equivalent solutions, the complexity of

the bifurcation diagram increases, and its computation is generally time and memory consuming.

In order to overcome the difficulty, we propose to reduce the degree of the bifurcation diagram

using the invariants such as the squared amplitude A = gA(x) which enable to transform the

different but equivalent solutions into a unique solution.
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4.3.1 Bifurcation Diagram of Squared Amplitude

Let us consider to obtain the bifurcation diagram with respect to the squared amplitude A =
gA(x), which we call bifurcation diagram of squared amplitude. In order to calculate the bifurca-

tion diagram of the squared amplitude, first we eliminate x from the ideal 〈 f (x)〉 + 〈A − gA(x)〉
using Gröbner base of the block order x �block A. This order Gröbner base transposes[

f (x;ω, λ, e)
A − gA(x)

]
= 0 to

[
f xA(x, A;ω, λ, e)

f A(A;ω, λ, e)

]
= 0.

Thus, we obtain the equation f A(A;ω, λ, e) = 0 which contains only A as variables. Next, using

Gröbner base of the ideal 〈 f A(A;ω, λ, e)〉, we calculate the bifurcation diagram of the squared

amplitude. The procedure for calculating the bifurcation diagram of the squared amplitude are

summarized as follows;

S1. We give the squared amplitude A = gA(x) which is the invariant gener-
ated by gF(x).

S2. We obtain f A(A;ω, λ, e) = 0 which contains only A by eliminating x
from the ideal 〈 f (x)〉 + 〈A − gA(x)〉 using Gröbner base of the block
order x �block A.

S3. If we consider the decomposition of the bifurcation diagram, we apply
the proposed method in Chapter 3 to the ideal 〈 f A(A;ω, λ, e)〉.

S4. We calculate the bifurcation diagram of the squared amplitude using
Gröbner base.

The degree of the bifurcation diagram is reduced by the proposed method. The computational

time and memory of Gröbner base is also reduced.

In the case of the autonomous system, the solutions of the HB equation are expressed as a

circle on the complex plane. However, if we represent the bifurcation diagram by the squared

amplitude, we can express the solutions as a unique solution.

4.3.2 Example

HB Equation

Let us consider the RLC circuit shown in Section 2.4. We apply the HB method with 3 frequency

components, i.e., p = 3. Further, we assume that the direct current components equal zero, i.e.,
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X01 = X02 = 0, similar to Section 2.4. Thus, the u1(t) and u2(t) are respectively approximated by

u∗1(t) = <
[
X11ejωt + X21ej2ωt + X31ej3ωt

]
, (4.6)

u∗2(t) = <
[
X12ejωt + X22ej2ωt + X32ej3ωt

]
. (4.7)

In order to simplify the HB equation, we eliminate X12, X22, and X32 by the relations jωX11 =

X12, j2ωX21 = X22, and j3ωX31 = X32. Further, we transform the variables X11, X21, and X31 into

xr1, xs1, xr2, xs2, xr3, and xs3 based on the relations

X11 = xr1 + jxs1,

X21 = xr2 + jxs2, (4.8)

X31 = xr3 + jxs3.

We consider the case of m = 3 with ωs = mω , i.e., the target oscillation is the 1/3 sub-harmonic

oscillation. The HB equation is written by

f (x) = f (x;ω, λ, E)

= ( fr1, fs1, fr2, fs2, fr3, fs3)T = 0, (4.9)

where x ≡ (xr1, xs1, xr2, xs2, xr3, xs3)T.

Symmetry of System

In order to obtain the fundamental invariants, let us consider the symmetry. The HB equation

f (x) = 0 has the symmetries Γodd and Γ2π/3. The corresponding linear representations θodd and

θ2π/3 are

θodd =



1 01
−1
−1

10 1


, (4.10)

θ2π/3 =



− 1
2

√
3

2 0
−
√

3
2 −1

2

− 1
2 −

√
3

2√
3

2 −1
2

10 1


. (4.11)



46 CHAPTER 4. INVARIANTS WITH RESPECT TO SYMMETRY

The numbers of the different but equivalent solutions with respect to Γodd and Γ2π/3 are 2 and 3,

respectively. Thus, the number of the different but equivalent solutions with respect to both Γodd

and Γ2π/3 is 6.

Invariants with Respect to Symmetry

Using θ2π/3 and θodd, the fundamental invariants with respect to the symmetries Γ2π/3 and Γodd are

gF(x) =



gF1

gF2

gF3

gF4

gF5

gF6

gF7

gF8

gF9

gF10

gF11

gF12

gF13

gF14



=



xr3

xs3

x2
r2 + x2

s2
x2

r1 + x2
s1

3x2
r1xs1 − x3

s1
x3

r1 − 3xr1x2
s1

3x5
r2xs2 − 10x3

r2x3
s2 + 3xr2x5

s2
9x6

r2 + 45x4
r2x2

s2 + 15x2
r2x4

s2 + 11x6
s2

xs1x2
r2 − 2xr1xr2xs2 − xs1x2

s2
xr1x2

r2 + 2xs1xr2xs2 − xr1x2
s2

xr1xs1x2
r2 + x2

r1xr2xs2 − x2
s1xr2xs2 − xr1xs1x2

s2
x2

r1x2
r2 − x2

s1x2
r2 − 4xr1xs1xr2xs2 − x2

r1x2
s2 + x2

s1x2
s2

3xs1x4
r2 − 6xs1x2

r2x2
s2 − 8xr1xr2x3

s2 − xs1x4
s2

3xr1x4
r2 − 6xr1x2

r2x2
s2 + 8xs1xr2x3

s2 − xr1x4
s2



. (4.12)

The fundamental invariants generate the all invariants which enable to transform the equivalent

6 solutions with respect to Γodd and Γ2π/3 into a unique solution. The gF4(x) and gF3(x) is the

squared amplitudes of 1/3 and 2/3 subharmonic frequency components, respectively.

We write the squared amplitude A = gA(x) which is generated by gF(x) as follows:

A ≡

 A1

A2

A3

 ≡
 xr1

2 + xs1
2

xr2
2 + xs2

2

xr3
2 + xs3

2

 =
 gF4(x)

gF3(x)
g2

F1(x) + g2
F2(x)

 ≡ gA(x). (4.13)

The
√

A1,
√

A2, and
√

A3 corresponds to the amplitude of each frequency component, respec-

tively.

Bifurcation Diagram of Squared Amplitude

Let us calculate the bifurcation diagram of the squared amplitude. First, we obtain f A(A;ω, µ, E) =

0 by using Gröbner base of the block order x �block A to the ideal 〈 f (x)〉 + 〈A − gA(x)〉. Next,

we obtain the bifurcation diagram of the squared amplitude A3 from the ideal 〈 f A(A;ω, µ, E)〉
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Figure 4.1: Bifurcation diagram of squared amplitude (E - A3), the parameter E versus the squared amplitude A3
(ω = 1, µ = 0.01, I3 corresponds to asymmetric solutions, I13 corresponds to solutions based on symmetry Γodd, and
I123 corresponds to solutions based on symmetries Γ2π/3 and Γodd).
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Figure 4.2: Bifurcation diagram (enlargement of Figure 4.1).
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Table 4.1: Complexity of bifurcation diagrams (ω = 1, µ = 0.01)
Method Max degree Number of terms

Original method 18 64
Proposed method 6 12

Calculated by a PC with Xeon 3.06GHz CPU.

Table 4.2: Computational cost of obtaining bifurcation diagrams (ω = 1)
µ; symbolically µ = 0.01

Method Computational Required Computational Required
time [s] memory[MB] time [s] memory [MB]

Original method 50643.5 533.8 612.4 133.5
Proposed method 0.112 2.9 0.099 1.8

Calculated by a PC with Xeon 3.06GHz CPU.

using Gröbner base of the block order (A1, A3) �block A3. The bifurcation diagram of the squared

amplitude consists of three sub-diagrams which correspond to asymmetric solutions V(I3), sym-

metric solutions V(I13) with respect to Γodd and symmetric solutions V(I123) with respect to both

Γodd and Γ2π/3 as shown in Figures 4.1 and 4.2. Namely, the bifurcation diagram can be also

decomposed by the ideal decomposition, like Figures 3.3 and 3.4.

Computational Efficiency

In order to confirm the reduction of the bifurcation diagram by the squared amplitude, we con-

sider a simpler problem. Namely, we set xr2 = xs2 = 0, i.e., we consider the HB method with

2 frequency components; 1/3 subharmonic and fundamental harmonic components. In this case,

the number of the different but equivalent solutions with respect to Γ2π/3 is 3. Then we obtain the

bifurcation diagram which corresponds to the asymmetric solutions with respect to Γ2π/3 using

the ideal decomposition in Chapter 3. The bifurcation diagrams (E - xr1) and (E - A1) are calcu-

lated with the original method in Chapter 3 and the proposed method, respectively. As a result,

we obtain the equations of the bifurcation diagrams shown in Appendix D. We show the bifur-

cation diagrams in Figure 4.3, and show its complexity in Table 4.1. Finally, the computational

costs are shown in Table 4.2.

In Table 4.1, the number of the solutions of Eq.(D.1) is 18 in the original method, whereas the
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(a) E - xr1

(b) E - A1

Figure 4.3: Comparison of bifurcation diagrams (E - xr1) and (E - A1) (ω = 1, µ = 0.01).
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number of the solutions of Eq.(D.2) is 6 in the proposed method. We can confirm that the squared

amplitude A1 transforms the equivalent 3 solutions into a unique solution. It is also confirmed

by Figure 4.3, i.e., the number of the set of solutions xr1 in (a) is 3, and the number of the set of

solutions A1 in (b) is 1. Thus, the bifurcation diagram is reduced by the invariants.

By Table 4.2, the number of the terms in the proposed method is considerably smaller than

the number of the terms in the original method. Further, the computational costs of obtaining the

bifurcation diagram are reduced dramatically by invariants. Thus, we can confirm the efficiency

of the proposed method.

4.4 Derivation of Intrinsic Algebraic Relations Using Invari-
ants

4.4.1 Amplitude Relations Based on Squared Amplitude

Using the invariants such as the squared amplitude A, we can reduce the degree of the HB

equation. The reduction makes it possible to find out intrinsic algebraic relations. In particular,

the invariant A gives the relations among the squared amplitudes at each frequency component

by eliminating the phase information from the HB equation. We call the relations the amplitude

relations. In particular, we can obtain the amplitude relations of the periodically forced system

only by the polynomials which do not contain the forcing terms in HB equation. Moreover,

the computational cost for obtaining the amplitude relations of the periodically forced system is

remarkably less than that for bifurcation diagram of the squared amplitude.

Autonomous System

In the case of the autonomous system, we can obtain the amplitude relations because the phase

information are removed by A. The algorithm is as follows;

S1. We give invariants A = gA(x).

S2. We obtain the amplitude relations a(A;ω, λ) = 0 by eliminating x from
the ideal 〈 f (x)〉 + 〈A − gA(x)〉 using Gröbner base of the block order
x �block A.
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Periodically Forced System

The HB equation of the system periodically forced by the frequencyω = ωs/m contains the terms

corresponding to the sinusoidal forcing functions only in f m. The other equations f 0, . . . , f m−1,

f m+1, . . . , f p do not contain the terms corresponding to the sinusoidal forcing functions. That is,

the following HB equation Km f (x) = 0 is identical with the HB equation of the autonomous sys-

tem which is generated by removing the terms corresponding to the sinusoidal forcing functions

from the original Eq.(2.1);

Km f (x) ≡



f 0
...

f m−1
f m+1
...
f p


= 0, (4.14)

where Km is an operator which removes the mth frequency f m. Because Km f (x) = 0 does

not contain the terms corresponding to the sinusoidal forcing functions, Km f (x) = 0 has the

symmetry Γarbitrary and has infinite equivalent solutions based on Γarbitrary. We can obtain the

amplitude relation a(A;ω, λ) = 0 by eliminating x from the ideal 〈Km f (x)〉 + 〈A − gA(x)〉 using

Gröbner base of the block order x �block A.

It is noted that the obtained amplitude relations do not depend on the sinusoidal forcing

function because the amplitude relations are calculated by the HB equation Km f (x) = 0 which

does not depend on the terms corresponding to the sinusoidal forcing functions.

4.4.2 Example

In order to obtain the amplitude relations, we consider the example in previous section. The HB

equation K3 f (x) = 0 is represented by

K3 f (x) = ( fr1, fs1, fr2, fs2)T . (4.15)

Then, we write the squared amplitude A = gA(x);

A ≡

 A1

A2

A3

 ≡
 xr1

2 + xs1
2

xr2
2 + xs2

2

xr3
2 + xs3

2

 ≡ gA(x). (4.16)
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Figure 4.4: Amplitude relations (ω = 1, µ = 0.01).
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We obtain the amplitude relations a(A;ω, λ) = 0 by eliminating x from the ideal 〈K3 f (x)〉 +
〈A − g(x)〉 using Gröbner base of the block order x �block A. Then, we obtain the amplitude

relations (A3 - A1), (A3 - A2) and (A1 - A2) shown in Figure 4.4 by Gröbner base of the block

order A2 �block (A3, A1), A1 �block (A3, A2), and A3 �block (A1, A2), respectively. It is noted that the

relation does not depend on the value of the sinusoidal forcing functions. Although the Figure

4.4 is not the bifurcation diagram, the amplitude relations give some information of bifurcations.

In order to confirm the efficiency of the method, we compare the computational cost of ob-

taining the bifurcation diagram of the squared amplitude and the amplitude relations for f (x) =

( fr1, fs1, fr2, fs2, fr3, fs3)T. The result is shown in Table 4.3. Thus, computational cost of obtaining

the amplitude relations is considerably less than that of the bifurcation diagram of the invariant.

Table 4.3: Computational cost of obtaining bifurcation diagram of squared amplitude and amplitude relations (ω = 1
and µ = 0.01)

Computational time [s] Required memory [MB]
Bifurcation diagrams of the invariant

E - A1 4598.23 304.0
E - A2 3768.17 363.2
E - A3 4548.63 256.7

Amplitude relations
A3 - A1 17.83 12.1
A3 - A2 17.52 12.1
A1 - A2 17.40 12.1

Calculated by a PC with Xeon 3.06GHz CPU.

4.5 Method for Determining Design Parameters Using Ampli-
tude Relations

4.5.1 Algorithm for Determining Design Parameters

The amplitude relations obtained in the previous section contain the squared amplitude A and the

circuit parameters explicitly. In the amplitude relations a(A;ω, λ), let us view the amplitudes as

parameters and view the parameters as variables, i.e., we consider a(ω, λ; A) = 0. That is, if we

give the amplitudes, we can obtain the corresponding parameters. In this case, we put ω together

in the amplitudes, i.e., a(λ; A, ω).
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Giving the amplitudes A and the frequency ω in the amplitude relations a(λ; A, ω), we pro-

pose a method for determining the design parameters in which oscillations with the required A
and ω are generated. The algorithm is as follows:

S1. We give the squared amplitude A = gA(x).

S2. We obtain the amplitude relations a(A;ω, λ) = 0.

S3. We give A and ω in the amplitude relations a(λ; A, ω) = 0.

S4. The relation among the parameters p(λ) = 0 is obtained from the ideal
〈a(λ; A, ω)〉 by Gröbner base of the lexicographic order λ1 �lex · · · �lex

λl.

4.5.2 Example
Circuit Equation and HB Equation

We consider the oscillator with Esaki diode [57] shown in Figure 4.5 because the system is a

damped simple oscillator. The circuit equation is written by

C
d2v
dt2 +

{
1
R
+ f ′(v + E0)

}
dv
dt
+

1
L

v = 0, (4.17)

f ′(V) = −1
ρ

{
1 − (V − E0)2

K2

}
, (4.18)

where f (V) = V−E0
ρ

{
−1 + (V−E0)2

3K2

}
+ I0 is characteristics of the Esaki diode, E0 and I0 are the

operating voltage and current of the Esaki diode, f ′(V) denotes the derivative of f (V) with respect

to V , and ρ denotes a negative resistance. We can obtain the scaled circuit equation as follows;

d2v
dt2 − α

{
1 − βv2

} dv
dt
+ εv = 0, (4.19)

C RL E0

E.D

i

v

Figure 4.5: Oscillator with Esaki diode.
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where

α =
1
C

{
1
ρ
− 1

R

}
, β =

R2

(R − ρ)K2 , ε =
1

LC
.

It is well known that the scaled circuit equation (4.19) is called van der Pol equation [2–4].

The Eq.(4.19) is represented by

d
dt

[
u1

u2

]
=

[
u2

α
{
1 − βu1

2
}

u2 − εu1

]
, (4.20)

u1 = v, u2 =
dv
dt
.

We apply the HB method with 2 frequency components, i.e., the u1(t) and u2(t) are respec-

tively approximated by

u∗1(t) = <
[
X11ejωt + X31ej3ωt

]
, (4.21)

u∗2(t) = <
[
X12ejωt + X32ej3ωt

]
. (4.22)

In order to simplify the HB equation, we eliminate X12 and X32 by the relation jωX11 = X12 and

j3ωX31 = X32. Further, we transform the variables X11 and X31 into xr1, xs1, xr3, and xs3 based on

the relations

X11 = xr1 + jxs1,
X31 = xr3 + jxs3.

(4.23)

The HB equation is written by f (x, ω; δ) ≡ ( fr1, fs1, fr3, fs3)T = 0, where x ≡ (xr1, xs1, xr3, xs3)T

and δ ≡ (α, β, γ).

Amplitude Relation

In order to obtain the amplitude relations, let us consider the symmetry Γarbitrary. The correspond-

ing linear representation θarbitrary(φ) is written by

θarbitrary(φ) =


cos φ sin φ 0− sin φ cos φ

cos 3φ sin 3φ
0 − sin 3φ cos 3φ

 . (4.24)

Thus, the squared amplitude A = gA(x) is written by

A ≡
[

A1

A3

]
≡

[
xr1

2 + xs1
2

xr3
2 + xs3

2

]
≡ gA(x). (4.25)
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The
√

A1 and
√

A3 correspond to the amplitudes of the fundamental and the 3rd harmonic oscil-

lation, respectively. The amplitude relations aδ(A;ω, δ) = 0 is obtained by eliminating x from

the ideal 〈 f (x)〉 + 〈A − g(x)〉 using Gröbner base of the block order x �block A.

Determining Design Parameters

Because the aδ(A;ω, δ) is represented by the scaled parameters δ = (α, β, γ), let us transpose

aδ(A;ω, δ) = 0 to equation with real circuit parameters. We define polynomial l of the real

circuit parameters as follows;

l(λ, δ) =

 αCRρ − (R − ρ)
β(R − ρ)K2 − R
γLC − 1

 = 0, (4.26)

where λ = (R, L,C,K, ρ).

We can obtain the amplitude relations aλ(A;ω, λ) = 0 with the real circuit parameters by

eliminating δ from the ideal 〈aδ(A;ω, δ)〉+〈l(λ, δ)〉 using Gröbner base of the block order δ �block

λ. Then, we fix the squared amplitude A1 and frequency ω of the fundamental oscillation. For

example, let us fix A1 = 1 and ω = 2π. The relation p(λ; A3) = 0 among the circuit parameters

λ can be obtained from the ideal 〈aλ(λ; A3)〉 using Gröbner base. The relations among the circuit

parameters are shown in Figure 4.6, where K = 0.6218 and ρ = 0.3448 are determined by the

characteristics of the Esaki diode [57]. Further, the relations between A3 and R, L,C are shown

in Figure 4.7. If we fix A3 = 0.01, we can obtain the circuit parameters R = 0.957, L = 0.0654

and C = 0.359 by the relation p(λ; A3) = 0.

Figure 4.8 shows the voltage waveform and spectrum calculated by Runge-Kutta method on

the above condition. The squared amplitude of the fundamental and 3rd harmonic oscillation, and

frequency of the fundamental oscillation are A1 = 1.04, A3 = 0.0095, and ω ' 2π, respectively.

Thus, we can confirm that the amplitudes and frequency of the generated oscillation are close to

the given values A1 = 1, A3 = 0.01, and ω = 2π.

Although we use the simple system in this section, we can extend the proposed method to

more complex system because the amplitude relations is obtained relatively easily such as the

previous section.
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4.6 Concluding Remarks

We proposed the reduction of the HB equation using invariants based on the symmetry of the sys-

tem. The invariants enable to reduce the degree of the bifurcation diagram because the different

but equivalent solutions are transformed into a unique solution. We confirmed that the proposed

method dramatically reduces the computational cost by the bifurcation diagram represented by

the invariant. Next we proposed a method to obtain relations of amplitudes at each frequency

component by eliminating the information of phase. Further, we proposed a method for deter-

mining the design parameters of oscillators using the relations of the amplitudes, and confirmed

the efficiency by an example with van der Pol oscillator.
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Figure 4.6: Relations between the circuit parameters R, L, and C of the van der Pol oscillator (A1 = 1, ω = 2π, ρ =
0.3448, K = 0.6218).
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Figure 4.7: Relations between the invariant A3 and the circuit parameters R, L, and C of the van der Pol oscillator
(A1 = 1, ω = 2π, ρ = 0.3448, K = 0.6218).
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0.957, L = 0.0654 and C = 0.359).



Chapter 5

Algebraic Representation of Error Bound

5.1 Introduction

Because the HB method has a truncation error, an approximated periodic solution have been

guaranteed by the error bound, which is a region containing the approximated solution and the

exact solution [13–15]. In particular, Swern presented a method to obtain the error bound for a

feedback system with a polynomial-type nonlinear element [15]. However, if we need to obtain

guaranteed bifurcation diagrams evaluated by the error bound, the numerical computation is very

time-consuming because we must express the error bound as a set of numerical values. In order

to overcome the limitation of the numerical approaches, in this chapter, we propose an algebraic

representation of the error bound using Gröbner base. The representation is described by a

single algebraic equation with system parameters. The proposed method does not depend on the

number of specific frequency components. Further, linear elements of the system are contained

as parameters. Thus, when we fix the nonlinear elements, the algebraic representation can be

uniquely obtained.

In order to visualize the error bound, we project the error bound to a complex plane of a

target frequency component using the algebraic representation. However, the computation of

its projection is time-consuming. Thus, we propose an approximated error bound using the

algebraic representation. The approximation of the error bound decreases the computational cost

of the projection considerably.

When we set the values of the system parameters close to bifurcation values, there exist mul-

tiple error bounds in the neighborhood. In such cases, the error bounds are broken by a collision

of them. Hence, we cannot guarantee the solutions near the bifurcation point. We present a

61
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method to obtain the accurate break point of the error bound using the algebraic representation

of the error bound.

5.2 Redefinition of HB Equation and Error Bound

5.2.1 Redefinition of HB Method

G2(D; λ)

u(t)
G1(D; λ)

s(t)

N

Figure 5.1: Nonlinear feedback system.

Because the proposed method in this chapter is based on the method reported by Swern [15],

let us consider transformation of the system in Chapter 2 into the nonlinear feedback system

which consists of one scalar state variable and one scalar input shown in Figure 5.1. The system

equation is described by

u(t) = G1(D; λ) {s(t) −G2(D; λ)N[u(t)]} , (5.1)

where D = d/dt, u(t) is the scalar state variable, s(t) is the scalar input function with the period

2π/ωs, λ = (λ1, . . . , λl) is a set of system parameters, G1(D; λ), G2(D; λ) denote linear operators,

and N[u] is a polynomial-type nonlinear element. Now, we assume that N[u] is represented by

N[u] =
q∑

i=0

c2i+1u2i+1, c2i+1 ≥ 0, i = 0, . . . q, (5.2)

and G1(D; λ), G2(D; λ) must satisfy the following condition;

sup
0<k<∞

∣∣∣kG1(jkω; λ)
∣∣∣ < ∞, sup

0<k<∞

∣∣∣kG1(jkω; λ)G2(jkω; λ)
∣∣∣ < ∞. (5.3)

Let us apply the HB method to the equation (5.1). We assume that Eq.(5.1) has a periodic

solution with the period 2π/ω with ωs = mω. Thus, the solution u(t) is given by

u(t) ≡
∞∑

k=0

<
[
Xkejkωt

]
=

∞∑
k=0

<
[
(xrk + jxsk)ejkωt

]
, (5.4)



5.2. REDEFINITION OF HB EQUATION AND ERROR BOUND 63

where Xk ∈ C and xs0 = 0. Now, assuming that a projection operator KL corresponds to the

operator K∗ in Chapter 2, the above solution is approximated by

uL(t) ≡ KLu(t) ≡
p∑

k=0

<
[
Xkejkωt

]
=

p∑
k=0

<
[
(xrk + jxsk)ejkωt

]
. (5.5)

Using the operator KL and approximated solution (5.5), we can rewrite Eq.(5.1) to
p∑

k=0

<
[(

Xk −G1(jωk; λ)
{
Ek −G2(jωk; λ)Yk

})
ejkωt

]
= 0, (5.6)

due to Dnejωt = (jωk)nejωt, where

KLs(t) =
p∑

k=0

Ekejkωt, Ek ∈ C,

KLN[uL(t)] =
p∑

k=0

Ykejkωt, Yk ∈ C.

By this relation, HB equation is redefined by

f (x) = f (x;ω, λ, e)

≡
(

fr0, fr1, fs1, . . . , frp, fsp

)T
= 0 ∈ RN , (5.7)

fr0 ≡ < [X0 −G1(0; λ) {E0 −G2(0; λ)Y0}] ,
fs0 = 0,

frk ≡ <
[
Xk −G1(jωk; λ)

{
Ek −G2(jωk; λ)Yk

}]
,

fsk ≡ =
[
Xk −G1(jωk; λ)

{
Ek −G2(jωk; λ)Yk

}]
,

x ≡ (xr0, xr1, xs1, . . . , xrp, xsp)T ∈ RN ,

e ≡ (er0, er1, es1, . . . , erp, esp)T ∈ RN ,

Ek = erk + jesk, E0 = er0,

k = 1, . . . , p,

and N = 2p + 1 is the number of unknowns of the HB equation f (x) = 0.

5.2.2 Error Bound for HB Method

Because the HB method has a truncation error, we consider the error bound which gives a

bounded region in which the solution of the HB equation and the exact solution exist. In or-

der to find the error bound of the HB equation f (x) = 0, we extend the method reported in [15]
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to the periodically forced system (cf. Appendix.E). Although the error bound is determined by

Eqs.(E.26) and (E.35), its numerical computation is very time-consuming compared with solving

the HB equation because the error bound is N − 1 dimensional surface in N dimensional space.

5.3 Algebraic Representation of Error Bound

5.3.1 Error Bound by Gröbner Base

To overcome the difficulty of the numerical method, we try to represent the error bound alge-

braically using Gröbner base. In order to apply Gröbner techniques, we transform Eqs.(E.26)

and (E.35) into polynomial equations. Multiplying the both sides of Eq.(E.26) by i(1− ξη)2q, we

rewrite Eq.(E.26) to the following polynomial equation of the variable ξ;

fEB1(ξ, x; λ, e) ≡ ξ(1 − ξη)2q −
q∑

i=0

(2i + 1)c2i+1(1 − ξη)2(q−i)

 p∑
k=0

√
x2

kr + x2
ks

2i

= 0, (5.8)

where

η(λ) ≡ sup
|k|>p

∣∣∣G(jωk; λ)
∣∣∣ ∈ R, (5.9)

‖F‖∞ ≡ ξη,
G(D; λ) = G1(D; λ)G2(D; λ).

Moreover, multiplying the both sides of Eq.(E.35) by (1 − ξη) and squaring it, we obtain

fEB2(ξ, x;ω, λ, e) ≡ ξ4η2
p∑

k=0

(
x2

rk + x2
sk

)
− (1 − ξη)2

p∑
k=0

(
f 2
rk + f 2

sk

)
= 0. (5.10)

The equation (5.10) is the polynomial equation with respect to ξ. Thus, the error bound is given

by removing the variable ξ from the Eqs.(5.8) and (5.10).

Because Gröbner base of the block order ξ �block x enables to eliminate ξ from Eqs.(5.8) and

(5.10), we can obtain the following algebraic representation of the error bound;

gEB(x;ω, λ, e) = 0. (5.11)

However, the computational cost of Gröbner base is highly dependent on the complexity of

Eqs.(5.8) and (5.10). In particular, the computational cost increases exponentially according to

the expansion of the number p because we have to deal with N + 1 variables. Thus, the algebraic

representation (5.11) can not be calculated by the naive method if we consider more than 2

frequency components.



5.3. ALGEBRAIC REPRESENTATION OF ERROR BOUND 65

5.3.2 Efficient Method to Obtain Algebraic Representation

In order to resolve the problem of Gröbner base, we propose an efficient method to obtain the

algebraic representation of the error bound using transformations of variables. Because the num-

ber p of the specific frequency components complicates only the norms in Eqs.(5.8) and (5.10),

we transform the norms into new variables;

z1(x) ≡ ‖uL(t)‖1 =
p∑

k=0

√
x2

rk + x2
sk, (5.12)

z2(x) ≡ ‖uL(t)‖22 =

p∑
k=0

(
x2

rk + x2
rk

)
, (5.13)

z3(x;ω, λ, e) ≡ ‖FH(uL)‖22 =

p∑
k=0

(
f 2
rk(x;ω, λ, e) + f 2

sk(x;ω, λ, e)
)
, (5.14)

z ≡ (z1, z2, z3)T. (5.15)

Thus, using the transformation of the variable x into z, we rewrite Eqs.(5.8) and (5.10) by

fEB1(ξ, z1; η) = ξ(1 − ξη)2q −
q∑

i=0

(2i + 1)c2i+1 (1 − ξη)2(q−i) z1
2i = 0, (5.16)

fEB2(ξ, z2, z3; η) = ξ4η2z2 − (1 − ξη)2z3 = 0. (5.17)

Because the representations (5.16) and (5.17) have only 4 variables ξ, z1, z2, z3 instead of N + 1

variables in Eqs.(5.8) and (5.10), the difficulty of Gröbner base can be removed.

Then, gEB(z; η) is obtained by the elimination of ξ using Gröbner base from Eqs.(5.16) and

(5.17). Since the expression of Eqs.(5.16) and (5.17) are far simpler than those of Eqs.(5.8) and

(5.10), the computational cost of obtaining gEB(z; η) is remarkably less than the cost of Eq.(5.11)

by the naive method. After we calculate gEB(z; η), the algebraic representation (5.11) is obtained

by the substitutions of z, η into gEB(z; η). Thus, the algorithm is given by

S1. We give the polynomial equations fEB1(ξ, z1; η) = 0 and
fEB2(ξ, z2, z3; η) = 0.

S2. We obtain gEB(z; η) by the elimination of ξ using Gröbner base of order
ξ �block z from fEB1 and fEB2.

S3. We obtain the algebraic representation (5.11) of the error bound by the
substitution of z and η into the gEB(z; η).
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As is easily seen from this algorithm, we can obtain the algebraic representation (5.11) of

the error bound even if we consider many frequency components. Moreover, the representation

gEB(z; η) is uniquely determined only by the nonlinear element N[u] because the linear operators

G1 and G2 are contained only in the variable z and the parameter η in gEB(z; η) symbolically.

5.3.3 Example

We apply the proposed method to the fundamental harmonic oscillations (m = 1) in Duffing

equation [1];

d2u(t)
dt2 + µ

du(t)
dt
+ u3 = E cosωt, (5.18)

which corresponds to Eq.(2.11). This equation can be rewritten as Eq.(5.19);

u(t) = G1(D; µ) {s(t) −G2(D; µ)N[u(t)]} , (5.19)

s(t) = E cosωt, N[u(t)] = u3,

G1(D; µ) =
1

D2 + µD
, G2 = 1, G = G1.

The equations fEB1 and fEB2 is written by

fEB1(ξ, z1; η) = ξ(1 − ξη)2 − 3z1
2 = 0, (5.20)

fEB2(ξ, z2, z3; η) = ξ4η2z2 − (1 − ξη)2z3 = 0. (5.21)

Thus, we obtain the following algebraic representation gEB(z; η) of the error bound by the elimi-

nation of ξ using Gröbner base of the block order ξ �block z;

gEB(z; η) = 9z1
4η6z3

3 − 135z1
4z2η

4z3
2 − 6z1

2z2η
3z3

2 − 270z1
6z2

2η3z3

+225z1
4z2

2η2z3 − 30z1
2z2

2ηz3 + z2
2z3 − 81z1

8z2
3η2 = 0. (5.22)

Let us compare the proposed method using Gröbner base of the block order ξ �block z with

the naive method of the block order ξ �block x. The computational cost of both methods is shown

in Table 5.1 where p = 1. From this table, we can confirm the efficiency of the proposed method.

Further, Eq.(5.22) does not contain the linear operator G(D; µ) and the number of the spe-

cific frequency components explicitly. Thus, when we fix the nonlinear element N[u], we can

obtain the algebraic representation (5.11) from gEB(z; η) even if we consider many frequency

components.
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Table 5.1: Comparison of computational cost between proposed method and naive method (p = 1)
Order of Computation Required

Method variables time [s] memory [MB]
Naive method ξ �block x 7425 956

Proposed method ξ �block z 0.007 1.09
Calculated by a PC with Xeon 3.06GHz CPU.

5.4 Fast Computation of Approximated Error Bound

5.4.1 Quadratic Approximation of Error Bound

In this section, we propose an application of the algebraic representation of the error bound. If

we need to obtain a guaranteed bifurcation diagram of the HB equation by the error bound, its

numerical computation is huge time-consuming because we must calculate the projection of the

error bound to a target frequency component for all specified parameters one by one. In order

to reduce the computational cost of the projection, we propose an approximated error bound

using the algebraic representation of the error bound. Although we cannot guarantee solutions

of the HB equation by the proposed error bound, the computational cost of the projection is

dramatically reduced. The proposed approximation utilizes the fact that the error bound is in the

neighborhood of the solution of the HB equation, and resembles an ellipsoidal body in general.

Namely, we approximate the error bound to the quadratic form using variations of the solution.

Let us consider the projection of the error bound to a complex plane (xrl, xsl) for l ∈ 1, . . . , p.

Then we rewrite the vector of the variable

x = (xrl, xsl, xr0, . . . , xrl−1, xsl−1xrl+1, xsl+1 . . . , xrp, xsp)T

≡ (x1, x2, . . . , xN)T. (5.23)

Further, we consider that the variable x is described by

x = x̃ + ∆x, (5.24)

where, x̃ ≡ (x̃1, . . . , x̃N)T is a vector of the solution of the HB equation and ∆x ≡ (∆x1, . . . ,∆xN)T

is a vector of its variations.
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Using ∆x and Taylor expansion, we obtain the quadratic approximation g∆EB(∆x;ω, λ, e) of

the error bound as follows;

gEB(x;ω, λ, e) ≈ g∆EB(∆x;ω, λ, e)

=

N∑
i=1

aii∆x2
i + 2

N∑
i=1

N∑
j=i+1

ai j∆xi∆x j + 2
N∑

i=1

a0i∆xi + a00. (5.25)

Then, the approximated error bound is rewritten by

g∆EB(∆x;ω, λ, e) = (1,∆xT)A
[

1
∆x

]
= 0, (5.26)

where

A ≡ A(x̃, ω, λ, e) ≡


a00 a01 · · · a0N

a01 a11 · · · a1N
...

...
. . .

...
a0N a1N · · · aNN

 ∈ R(N+1)×(N+1).

In order to obtain the projection of the approximated error bound g∆EB(∆x;ω, λ, e), we de-

compose A(x̃, ω, λ, e) and ∆x into

A ≡
[

A1 A2

AT
2 A3

]
,

[
1
∆x

]
≡

[
∆x1

∆x2

]
, ∆x1 =

 1
∆x1

∆x2

 , ∆x2 =


∆x3
...
∆xN

 ,
(5.27)

where partial matrices of A denote A1 ∈ R3×3, A2 ∈ R(N−2)×3 and A3 ∈ R(N−2)×(N−2), respectively.

Now let

∇g∆EB =

(
∂g∆EB

∂∆x1
, . . .
∂g∆EB

∂∆xN

)T

∈ RN (5.28)

be a gradient vector of g∆EB. Then, the boundary of the projected error bound to (x1, x2) plane

satisfies that ∇g∆EB is orthogonal to the following unit vectors which are parallel to the x3, . . . , xN

axes.

(0, 0, 0, 1, 0, . . . , 0)T,
(0, 0, 0, 0, 1, . . . , 0)T,

...
(0, 0, 0, 0, 0, . . . , 1)T.

(5.29)
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Namely, the projection of g∆EB(∆x) satisfies

∂g∆EB(∆x)
∂∆xk

= 0, k = 3, . . . ,N. (5.30)

Thus, applying this relation to Eq.(5.26), we obtain a constraint for the projection;

AT
2∆x1 + A3∆x2 = 0. (5.31)

As a result, the projection of the approximated error bound is represented by

(1,∆xT)A
[

1
∆x

]
=

(
∆xT

1 ,∆xT
2

) [ A1∆x1 + A2∆x2

0

]
= ∆xT

1 A1∆x1 + ∆xT
1 A2∆x2

= ∆xT
1

(
A1 − A2 A−1

3 AT
2

)
∆x1 = 0. (5.32)

Finally, the substitution of ∆x1 = x1 − x̃1, ∆x2 = x2 − x̃2 into Eq.(5.32) gives the projection of

the approximated error bound.

The quadratic approximation algorithm is written by

S1. We calculate the algebraic representation (5.11) of the error bound us-
ing Gröbner base.

S2. We set the target complex plane (x1, x2) and other variables x3, . . . , xN .

S3. We obtain algebraic representations of the elements
ai j(x̃, ω, λ, e), (i, j = 0, . . . ,N, i ≤ j) of the matrix A with the
solution x̃ of the HB equation and the system parameters ω, λ, e.

S4. We determine ai j by the substitution of the given solution x̃ and param-
eters ω, λ, e into ai j(x̃, ω, λ, e), (i, j = 0, . . . ,N, i ≤ j).

S5. We obtain the projection of the approximated error bound by A1 −
A2 A−1

3 AT
2 and the substitution of ∆x1 = x1 − x̃1, ∆x2 = x2 − x̃2 into

Eq.(5.32).

Using this algorithm, the projection of the error bound can be plotted easily on a two-

dimensional space. Thus, we can reduce the computational cost of the guaranteed bifurcation

diagram of the HB equation using the approximated error bound though the proposed method

approximately guarantees solutions of the HB equation,
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5.4.2 Example

We apply the quadratic approximation of the error bound to Duffing equation (5.18), where we

assume that zero frequency component is zero for simplicity because it complicates the projection

of the error bound. We consider the approximated projection to fundamental frequency compo-

nent, namely, x1 = xr1, x2 = xs1, x3 = xr2, . . . , xN−1 = xrp, xN = xsp, and f1 = fr1, f2 = fs1, f3 =

fr2, . . . , fN−1 = frp, fN = fsp, where N = 2p. Let a solution of the HB equation f (x;ω, µ, E) = 0
be x̃ = (x̃1, . . . , x̃N)T. Then the matrix A of the approximated error bound is represented by the

elements

a00 = −81η2z̃8
1z̃2, (5.33)

a0i = −81η2z̃8
1 x̃i + 4z̃7

1z̃1,iz̃2, (5.34)

aii = −81η2z̃6
1(16z̃1z̃1,i x̃i + 8z̃1z̃1,iiz̃2 + 28z̃2

1,iz̃2 + z̃2
1),

(225z̃4
1η

2 − 30z̃4
1η − 270z̃6

1η
3 + 1)

N∑
k=1

(
∂ fk(x̃;ω, µ, E)

∂x̃i

)2

(5.35)

ai j = −81η2z̃6
1(8z̃1z̃1,i x̃ j + 8z̃1z̃1, j x̃i + 28z̃1,iz̃1, jz̃2 + 4z̃1z̃1,i jz̃2)

+(225z̃4
1η

2 − 30z̃4
1η − 270z̃6

1η
3 + 1)

N∑
k=1

(
∂ fk(x̃;ω, µ, E)

∂x̃ j

∂ fk(x̃;ω, µ, E)
∂x̃i

)
, (5.36)

where

z̃1 =

p∑
k=1

√
x̃2

2k + x̃2
2k+1, z̃1,i =

x̃i

∆z̃,i
, z̃1,i j =



x̃i

2∆z̃,i
−

x̃2
i

2∆3
z̃,i

i = j

−
x̃i x̃ j

2∆z̃,i
|i − j| = 1

0 |i − j| , 1

,

∆z̃,i =


√

x̃2
i + x̃2

i+1 i = 1 mod 2√
x̃2

i−1 + x̃2
i i = 0 mod 2

,

z̃2 =

N∑
k=1

x̃2
k ,

i = 1, . . . ,N, j = 1, . . . ,N,

η =
1

(p + 1)
√

(p + 1)2 + µ2
.

In order to confirm the validity of the approximation, the projections by the proposed method

and the method in [15] are shown in Figure 5.2 where ω = 1, µ = 0.1, E = 0.35, p = 4, 6, 8.
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We can see that the projection of the approximated error bound is very close to the projection

in [15].

Moreover, the projection of the approximated error bound with the parameter E varying from

0.1 to 0.4 is shown in Figure5.3 where ω = 1, µ = 0.1 and p = 4. Because the elements (5.33),

(5.34), (5.35) and (5.36) contain the system parameters symbolically, the approximated error

bound can be easily obtained even if we change the system parameters as shown in Figure 5.3.

Further, the computational time of the proposed method and the method in [15] for p =

4, 6, 8, 20 is shown in Table 5.2 when we vary the parameters µ from 0.1 to 1.0, E from 0.1 to

0.4. Additionally, we also show the solving time of the HB equation in Table 5.2. Although

the proposed method in Table 5.2 does not contain the computational cost of gEB(x;ω, µ, E),

gEB(x;ω, µ, E) is calculated only once and the computational cost is very low as shown in Table

5.1. Thus, we can confirm that the proposed method reduces the computational cost of the error

bound dramatically. Although the conventional method is very time-consuming compared with

solving the HB equation, the proposed method approximately guarantees the solutions as fast as

solving the HB equation.

Table 5.2: Computational time of obtaining projection of error bound [s] (µ varied from 0.1 to 1.0 and E varied
from 0.1 to 0.4, using Newton method with 90 × 300 × 32 points)

Method p = 4 p = 6 p = 8 p = 20
HB method 1.50 2.23 3.47 16.63

Method in [15] 237.02 303.73 390.45 1172.47
Proposed method 7.52 8.70 10.29 26.22

Calculated by a PC with Xeon 3.06GHz CPU.
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Figure 5.2: Projections of error bound for HB method on the (xr1, xs1) plane (ω = 1, µ = 0.1, E = 0.35 and
p = 4, 6, 8).



5.4. FAST COMPUTATION OF APPROXIMATED ERROR BOUND 73

Figure 5.3: Projection of approximated error bound with parameter E varying from 0.1 to 0.4 (ω = 1, µ = 0.1 and
p = 4).
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5.5 Break Point of Error Bound

5.5.1 Break Point and Singular Point of Error Bound

In this section, we propose another application of the algebraic representation of the error bound.

When we set the system parameters close to bifurcation values, there exist two solutions of the

HB equation in the neighborhood. In such cases, we can not guarantee these solutions by the

error bound because the error bound containing only a single solution of the HB equation can

guarantee the solution (cf.Appendix.E). Namely, two error bounds containing the solutions of

the HB equation are broken by a collision of each other near the bifurcation point. We call

this collision point a break point of the error bound. Although the break point is important for

the guaranteed bifurcation diagram by the error bound, it is difficult to obtain the break point

using numerical computations. We propose a method to obtain the accurate break point using

the algebraic representation of the error bound. We assume that the approximated bifurcation

diagram has already calculated.

Because a gradient vector of singular points equals zero in general [21, 22], the break point

of the error bound satisfies the following relations based on the algebraic representation (5.11){
gEB(x;ω, λ, e) = 0
∇gEB(x;ω, λ, e) = 0 , (5.37)

where a gradient vector ∇gEB(x;ω, λ, e) is written by

∇gEB =

(
∂gEB

∂xr0
,
∂gEB

∂xr1
,
∂gEB

∂xs1
, . . .
∂gEB

∂xrp
,
∂gEB

∂xsp

)T

∈ RN . (5.38)

Thus, if we view one system parameter ε ∈ {ω, λ, e} as the variable, the simultaneous equation

(5.37) gives the break point (x, ε). We obtain the break point of the error bound by numerical

method using an initial point ((x̃1 + x̃2)/2, ε̃), where ε̃ is the parameter value close to the bifurca-

tion parameters, and x̃1, x̃2 denote two close numerical solutions of the HB equation f (x; ε̃) = 0.

The algorithm to obtain the break point of the error bound is described by

S1. We calculate the algebraic representation (5.11) of the error bound us-
ing Gröbner base.

S2. We select the parameter ε in the system parameters ω, λ, e.

S3. Using the initial value ((x̃1 + x̃2)/2, ε̃), we obtain the break point of the
error bound by solving Eq.(5.37).
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5.5.2 Example

We obtain the break points of the error bound for Duffing equation (5.18), where we assume that

zero frequency component is neglected for simplicity. Let us select the parameter ε = E and

let ω = 1, µ = 0.1, p = 30. Then the bifurcation diagram (E - xr1) is shown in Figure 5.4.

Additionally, we also show the guaranteed bifurcation diagram by the approximated error bound

in Figure 5.4. Namely, we can guarantee the solutions of the HB equation in a orange region.

Thus, the bifurcation points in Figure 5.4 lie close to E = 0.45 and E = 0.12.

Using the proposed method, we can calculate the parameters EB1 = 0.445168 and EB2 =

0.135366 of the break points. We show the projection of the error bound at EB1 and EB2 in

Figure 5.5 and Figure 5.6, respectively. The Solution A, B, C and D in Figure 5.5 and Figure 5.6

correspond to the Solution A, B, C and D in Figure 5.4. Thus, we can confirm that the proposed

method enables to obtain the accurate break points of the error bound by the collisions, and

that the calculation of the break points and the approximated error bound clarify the guaranteed

bifurcation diagram.

5.6 Concluding Remarks

In this chapter, we proposed an algebraic representation of an error bound for HB method using

Gröbner base. Further, we proposed the efficient method to calculate the algebraic representation

using transformations of variables. The proposed method does not depend on linear elements of

the system and the number of specific frequency components. Next, we proposed a fast computa-

tional method of an approximated error bound by a quadratic approximation using the algebraic

representation. We confirmed that the quadratic approximation guarantees approximately the so-

lutions as fast as solving the HB equation. Moreover, we proposed a method to obtain accurate

break points of the error bound near bifurcation points. In this way, the algebraic approach is

very powerful for high dimensional varieties such as error bounds.
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Figure 5.4: Guaranteed bifurcation diagram of the HB method by the approximated error bound and break points
(ω = 1, µ = 0.1 and p = 30).
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Figure 5.5: Projection (xr1, xs1) of the error bound at the parameter EB1 of the break point (EB1 = 0.445168,
ω = 1, µ = 0.1 and p = 30).

Figure 5.6: Projection (xr1, xs1) of the error bound at the parameter EB2 of the break point (EB2 = 0.135366,
ω = 1, µ = 0.1 and p = 30).



Chapter 6

Conclusions

This thesis propose algebraic approaches to the analysis of periodic oscillations in nonlinear

systems using computer algebra including Gröbner base. In order to overcome the difficulty of

numerical approaches to the analysis in global parameter spaces, we introduced Gröbner base to

decompositions of bifurcation diagrams, reductions of the system and determination of design

parameters based on invariants, and an algebraic representation of error bounds for the harmonic

balance (HB) method.

Chapter 2 serves as a preparation for the subsequent chapters. We formulated the polynomial

determining equation of periodic oscillations using the HB method. Then, introducing the funda-

mentals of the ideal and Gröbner base, we reviewed an application of Gröbner base to bifurcation

analysis in the global parameter spaces.

In Chapter 3, we proposed an algebraic approach to decompose bifurcation diagrams of pe-

riodic oscillations. In order to realize the decomposition, we proposed an efficient method using

partial ideal quotient based on symmetries of the system. We confirmed that the bifurcation di-

agram of the HB equation is decomposed into sub-diagrams efficiently and that the pitchfork

bifurcation points of the bifurcation diagram are expressed as intersection points of the sub-

diagrams. This decomposition revealed algebraic aspects of local bifurcations. Further, we clar-

ified the symmetries of nonhomogeneous HB equations based on the break of the symmetries of

the corresponding homogeneous HB equation. Using the symmetries, we proposed a systematic

procedure to decompose the bifurcation diagrams of the nonhomogeneous HB equations.

In Chapter 4, we proposed an algebraic approach to reduce the degree of the HB equation

using the invariants which enable to transform a set of different but equivalent solutions into a

unique solution. Using the fact that squared amplitude of each frequency component is invariant,
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we confirmed that the computational cost of obtaining the bifurcation diagram of the squared

amplitude is reduced dramatically. Moreover, using the property of the amplitudes, we proposed

an efficient algorithm to obtain amplitude relation which represents the relation of each frequency

component of oscillations. Further, using the amplitude relations, we presented a method for

determining the design parameters of electric oscillators, and confirmed the efficiency by an

example with van der Pol oscillator.

In Chapter 5, we proposed the algebraic representation of the error bound for the HB method

and its efficient computational method. Further, we also proposed two applications of the alge-

braic representation of the error bound. First, we proposed a fast computational method of the

approximated error bound using a quadratic approximation. We confirmed that proposed method

guarantees the solutions as fast as solving the HB equation. Secondly, we presented a method to

obtain accurate break points of the error bound near bifurcation points and showed the validity

of the proposed method.

As noted above, this thesis proposed the algebraic approaches for the analysis of periodic

oscillations in global parameter spaces. The proposed methods enable to clarify the algebraic

structures of oscillations which is not given only by the numerical approaches. Because computer

algebra will be further improved with the development of the computer technology, we can expect

that the algebraic approaches such as the proposed methods based on the computer algebra will

become widely used to advance the field of nonlinear oscillation.
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ear Dynamics in Electronic Systems (NDES98), pp.267–270, July 1998.

[32] P. Conti and C. Traverso, “Buchberger algorithm and integer programming,” Lecture Notes

in Computer Science 539, pp.130–139, Springer-Verlag, New York, 1991.

[33] B. Sturmfels and R.R. Thomas, “Variation of cost functions in integer programming,” Math-

ematical Programming, vol.77, no.3, pp.357–387, June 1997.

[34] R.R. Thomas, “A geometric Buchberger algorithm for integer programming,” Mathematics

of Operations Research, vol.20, no.4, pp.864–884, Nov. 1995.

[35] T. Hisakado and K. Okumura, “Mode decomposition of global bifurcation diagram with
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zeros (F5),” Proc. the 2002 International Symposium on Symbolic and Algebraic Compu-

tation, ACM, pp.75–83, New York, 2002.

[48] S. Collart, M. Kalkbrener, and D. Mall, “Converting bases with the Gröbner walk,” J. Symb.
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Appendix A

Ideal Operations and Correspondence to
Variety

We review ideal operations and correspondences between ideals and varieties [21, 22].

A.1 Sums of Ideals

Definition 2 (Sums of ideals). Let I, J be ideals in Q(λ)[x]. Then the sum of I and J, defined

I + J, is the set

I + J = { f + g | f ∈ I, g ∈ J} . (A.1)

If I = 〈 f (x)〉 = 〈 f1, . . . , fs〉 and J = 〈g(x)〉 = 〈g1, . . . , gr〉 are ideals in Q(λ)[x] where

f (x) = ( f1, . . . , fs)T and g(x) = (g1, . . . , gr)T, then I+ J = 〈 f (x), g(x)〉 = 〈 f1, . . . , fs, g1, . . . , gr〉 is

held. Thus, the sum of ideals I + J corresponds geometrically to taking intersections of varieties

as follows;

V(I + J) = V(I) ∩ V(J). (A.2)

A.2 Products of Ideals

Definition 3 (Products of Ideals). Let I, J be two ideals in Q(λ)[x]. Then their product I · J is

defined to be the ideal generated by all polynomials f · g where f ∈ I and g ∈ J.

Thus, the product I · J is the set

I · J = { f1g1 + · · · + fsgs | f1, . . . , fs ∈ I, g1, . . . , gs ∈ J, s ∈ Z>0} . (A.3)
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Then the product of ideals I · J corresponds geometrically to the operation of taking the union

of varieties as follows;

V(I · J) = V(I) ∪ V(J). (A.4)

A.3 Intersections of Ideals

Definition 4 (Intersections of Ideals). The intersection I ∩ J of two ideals I and J in Q(λ)[x] is

the set of polynomials which belong to both I and J.

We always have I · J ⊂ I ∩ J since elements of I · J are sums of polynomials of the form f · g
with f ∈ I and g ∈ J. Note that I · J = I ∩ J if I and J are coprime [21,22,56]. Now, we describe

the definition of coprime ideals;

Definition 5 (Coprime Ideals). Let I and J be ideals inQ(λ)[x]. The ideal I and J are said to be

coprime if I + J = Q(λ)[x].

Then intersection of ideals I ∩ J corresponds geometrically to

V(I ∩ J) = V(I) ∪ V(J). (A.5)

Thus, the intersection of two ideals corresponds to the same variety as the product.

A.4 Ideal Quotient

Definition 6 (Ideal Quoitent). Let I, J be ideals inQ(λ)[x]. Then, I : J is the set

I : J = { f ∈ Q(λ)[x] | f g ∈ I, ∀g ∈ J} , (A.6)

and is called the ideal quotient of I by J.

The ideal quotient is indeed the algebraic analogue of the Zariski closure of a difference of

varieties. Namely,

V(I : J) ⊃ V(I) − V(J). (A.7)

In particular, if I is a radical ideal, then

V(I : J) = V(I) − V(J). (A.8)
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The relation V(I) − V(J) denotes the remove of V(J) from V(I).

Now, we describe the definition of the radical ideal;

Definition 7 (Radical Ideal). Let I be an ideal inQ(λ)[x]. The radical of I is defined by the set

√
I = { f ∈ Q(λ)[x] | f a ∈ I for some a ≥ 1} . (A.9)

An ideal I is said to be a radical ideal if
√

I = I.

Using the radical ideal, we prove the following proposition.

Proposition 1. Let I, J, and K be ideals in Q(λ)[x], and let K be K = I : J. If I is a radical

ideal, and has the relation I ⊂ J, then I = J ∩ K is satisfied.

Proof. If let f be a polynomial in I, then f ∈ J due to the assumption. Because the relation

I ⊆ I : J = K is satisfied, we have f ∈ K. Thus, f ∈ J ∩ K gives I ⊆ J ∩ K.

Conversely, if let f be a polynomial in J ∩ K, then f ∈ J and f ∈ K are satisfied. Because

the relation K = I : J gives f ∈ I : J, we have f 2 ∈ I. Since I is the radical ideal, the polynomial

f belongs to I. That is, we get I ⊇ J ∩ K. Thus, I = J ∩ K holds. �

A.5 Propositions for Ideal Quotient

We write propositions of ideal quotient used in Section 3.4.2.

Proposition 2. Let I and Ji be ideals inQ(λ)[x] for i = 1, . . . , s. Then;

I :

 s∑
i=1

Ji

 = s∩
i=1

(I : Ji) . (A.10)

Proof. If let f be a polynomial in I : (
∑s

i=1 Ji) and let gi be a polynomial in Ji for i = 1, . . . , s,

then f (g1 + · · · + gs) ∈ I is satisfied. Since we have f · gi ∈ I, the polynomial f belongs to I : Ji

for i = 1, . . . , s. Thus, f ∈ ∩s
i=1(I : Ji) gives I : (

∑s
i=1 Ji) ⊆ ∩s

i=1(I : Ji).

Conversely, let f be a polynomial in ∩s
i=1(I : Ji) and let gi be a polynomial in Ji for i =

1, . . . , s. Since f ∈ I : Ji is satisfied, we have f · gi ∈ I. The relations f · g1 + · · · + f · gs ∈ I and

g1 + · · · + gs ∈
∑s

i=1 Ji give I : (
∑s

i=1 Ji) ⊇ ∩s
i=1(I : Ji). Thus, the proposition (A.10) holds. �
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Proposition 3. Let J, Ii, and Ki = Ii : J be ideals in Q(λ)[x] for i = 1, . . . , r. If let I =
∑r

i=1 Ii

and Ii be radical ideals which satisfy I, Ii ⊂ J, and if let J be coprime to Ki for i = 1, . . . , r, then r∑
i=1

Ii

 : J =
r∑

i=1

(Ii : J) . (A.11)

Proof. Because Ii is the radical ideal where Ii ⊂ J, we have Ii = Ki ∩ J due to Ki = Ii : J.

Moreover Ii = Ki · J is satisfied since J is coprime to Ki. Now, if we define K =
∑r

i=1 Ki, then K

is coprime to J. Thus,
∑r

i=1 Ii =
∑r

i=1(Ki · J) = K · J gives K = (
∑r

i=1 Ii) : J. Thus, the proposition

(A.11) holds. �

A.6 Summary

Table A.1 summarizes the results of the correspondences between ideals and varieties. In this

table, it is supposed that all ideals are radical.

Table A.1: Correspondences between ideal and affine variety
Algebra Geometry

ideals varieties
I → V(I)

addition of ideals intersection of varieties
I + J → V(I) ∩ V(J)

product of ideals union of varieties
I · J → V(I) ∪ V(J)

intersection of ideals union of varieties
I ∩ J → V(I) ∪ V(J)

quotient of ideals difference of varieties
I : J → V(I) − V(J)



Appendix B

HB Equation Containing Symmetric
Solutions

In this appendix, let us demonstrate the following relations used in Section 3.4.2;∑
k∈κ
〈 f k(x)〉 ⊂

∑
k∈κ
〈xk〉, (B.1)∑

k<κ

〈 f k(x)〉 1
∑
k∈κ
〈xk〉. (B.2)

If the HB equation has a symmetry Γ ∈ {Γodd, Γ2π/m}, namely, f (θx) = θ f (x) is satisfied where

θ ∈ {θodd, θ2π/m}, symmetric solutions with respect to Γ satisfy x = θx. Using κ determined by

Eq.(3.29), we rewrite x = θx to

xk = 0 for k ∈ κ. (B.3)

Thus, the ideal
∑

k∈κ 〈xk〉 corresponds to the symmetric solutions.

When we consider the symmetric solutions x = θx, the HB equation have the following

relation;

f (x) = θ f (x). (B.4)

According to the discussion of Eq.(B.3), we can obtain

f k(x) = 0 for k ∈ κ, (B.5)

when xk = 0 for k ∈ κ. That is, the equation tells that the symmetric solutions xk = 0 are solutions

of f k(x) for k ∈ κ. Thus, the relation (B.1) is held.

94



95

By same reason, the relation ∑
k<κ

〈 f k(x)〉 ⊂
∑
k∈κ
〈xk〉 (B.6)

is held if the polynomial equation in the HB equation

f k(x) = 0 (B.7)

is satisfied for all k < κ when xi = 0, ∀x j, i ∈ κ, j < κ. However, the set κ in Eq.(3.29) does not

contain m, that is, the set of f k(x) for k < κ contains f m(x) which has the forcing terms. Because

the forcing terms in f m are constant terms, the HB equation dose not satisfy the relation (B.7)

when xk = 0. Thus, we get the relation (B.2).



Appendix C

Elimination Theorem and Gröbner Base

In this appendix, we review the elimination theorem based on Gröbner base and elimination order

of Gröbner base [21, 22].

C.1 Elimination Theorem Based on Gröbner Base

In order to recall the elimination theorem, we define the elimination ideal as follows;

Definition 8 (Elimination Ideal). Let X = {x1, . . . , xN}, and let I = 〈 f1, . . . , fs〉 be an ideal in

Q(λ)[X]. If

IY = I ∩Q(λ)[Y], Y ⊂ X, (C.1)

then we call IY an elimination ideal of I.

The elimination ideal IY is generated by the elimination of the variables not in Y from the

polynomial equations f1 = · · · = fs = 0, and is calculated by Gröbner base of the following

elimination order.

Definition 9 (Elimination Order). Let X = {x1, . . . , xN}, Y ⊂ X. and let t1, t2 ∈ Q(λ)[X] be

monomials. If a monomial order t1 � t2 is satisfied

t1 < Q(λ)[Y], t2 ∈ Q(λ)[Y], (C.2)

we say an elimination order with respect to (X,Y).
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Theorem 1 (Elimination Theorem). Let X = {x1, . . . , xN}, Y ⊂ X, and let I = 〈 f1, . . . , fs〉 ∈
Q(λ)[X] be an ideal, If let G be a Gröbner base of the elimination order with respect to (X,Y) of

I, then

GY = G ∩Q(λ)[Y]. (C.3)

is the Gröbner base of the elimination ideal IY = I ∩Q(λ)[Y]. Then IY = 〈GY〉 is satisfied.

C.2 Lexicographic Order and Block Order

We consider the elimination order which is used in this thesis. First, let us review lexicographic

order.

Definition 10 (Lexicographic Order). Let xα1
1 xα2

2 · · · x
αN
N and xβ1

1 xβ2
2 · · · x

βN
N be monomials. If a

monomial order xα1
1 xα2

2 · · · x
αN
N � xβ1

1 xβ2
2 · · · x

βN
N satisfies

αl = βl, αk > βk, k < l ≤ N, ∃k, (C.4)

we say a lexicographic order �lex.

If we consider the ideal I = 〈 f1, . . . , fN〉 ⊂ Q(λ)[x1, . . . , xN], then the elimination ideal with

respect to the lexicographic order x1 �lex · · · �lex xN gives the triangular form. Namely, the

lexicographic order x1,�lex · · · �lex xN denotes the elimination order with respect to

({x1, . . . , xN}, {xi+1, . . . , xN}) for some i.

Next, we review Gröbner base of block order.

Definition 11 (Block Order). Let X = {x1, . . . , xN}, and let Y ⊂ X. Then let X be divided into

X = (X\Y) ∩ Y. and let t1, s1 ∈ Q(λ)[X\Y], t2, s2 ∈ Q(λ)[Y] be monomials. If

t1t2 � s1s2 ⇔ t1 � s1 or (t1 = s1 and t2 � s2), (C.5)

is satisfied, then we say that this order is a block order �block with respect to X.

The block order is the elimination order with respect to (X, Y). Using the block order, we can

only eliminate target variables in polynomials. Hence, the computational cost of Gröbner base of

the block order is less than Gröbner base of the lexicographic order in general. Thus, we usually

use the block order of Gröbner base for the elimination of variables in this thesis.



Appendix D

Equations of Bifurcation Diagram Using
Invariants

We show the equations of bifurcation diagrams (E - xr1) and (E - A1) in Section 4.3.2. The

equation of the bifurcation diagrams (E - xr1) is obtained by

−369363860947265625000000000000000000000000E6x18
r1

+7598342282343750000000000000000000000000000E6x16
r1

+(79149398774414062500000000000000000000000E7

+2412172153125000000000000000000000000000E5)x15
r1

−66214184399977482421875000000000000000000000E6x14
r1

+(1424689177939453125000000000000000000000000E7

−37353624164098889062500000000000000000000E5)x13
r1

+(−490443595977172851562500000000000000000000E8

+300607128966070643554687500000000000000000000E6

−33215737108506289991718750000000000000000E4)x12
r1

+(−11436665077442852050781250000000000000000000E7

+209743797590710375781250000000000000000000E5)x11
r1

+(3704676450798339843750000000000000000000000E8

−800200752353241776916503906250000000000000000E6

+402371987433471658653750000000000000000000E4)x10
r1

+(−30555975377197265625000000000000000000000E9
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+28786161210951421142578125000000000000000000E7

−581895173153688400393242187500000000000000E5

+112539758620823012241000000000000000000E3)x9
r1

+(−11317638238599825439453125000000000000000000E8

+1306942632230741001894726562500000000000000000E6

−1354690378389486460474974937500000000000000E4)x8
r1

+(38074783666992187500000000000000000000000E9

−25944583220469947640673828125000000000000000E7

+785723500760658665679140625000000000000000E5

−490002452066820476546639100000000000000E3)x7
r1

+(−20306551289062500000000000000000000000000E10

+18271644039740878417968750000000000000000000E8

−1301587923138904337039865285644531250000000000E6

+1906607989807035844391959640625000000000000E4

−781428576310537137561392696527500000000E2)x6
r1

+(148756798545868652343750000000000000000000E9

−6076830841945336019531250000000000000000000E7

−532050775650879169647777363281250000000000E5

+795017784175582957602129562500000000000E3)x5
r1

+(67644550722656250000000000000000000000000E10

−16972750918008278164160156250000000000000000E8

+742299211938570863657111718750000000000000000E6

−1359175794611418474158272942617187500000000E4

+1743351799327742532575051784900000000000E2)x4
r1

+(−659303613281250000000000000000000000000E11

−346082219684701171875000000000000000000000E9

+20232422554352415807521030273437500000000000E7

+254731583646853440851582472656250000000000E5
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−660735784274514723269413214630625000000E3

−101515285653063691695883910544000000E)x3
r1

+(−90418947017765625000000000000000000000000E10

+8710839060033686723437500000000000000000000E8

−209827073384413599773753145878906250000000000E6

+632418490334159083103337114046875000000000E4

−1281683263765410014125410876264187500000E2)x2
r1

+(−2260469531250000000000000000000000000000E11

+217721336969822175000000000000000000000000E9

−5240923510494603934284257812500000000000000E7

−98453633247761367967107921225000000000000E5

+230228998353593045101564556692500000000E3

−582930624345297674504673413910510000E)xr1

+(−200930625000000000000000000000000000000E12

+29033829464062500000000000000000000000000E10

−1398549455061466369130156250000000000000000E8

+22461695986020306707058969656250000000000000E6

−189084675369731572160342555121135000000000E4

+281453814626203613543486441687110500000E2

−702668122867126361247584569543738321) = 0, (D.1)

where ω = 1, µ = 0.01.

On the other hand, the equation of the bifurcation diagrams (E - A1) is obtained by

844101562500A6
1 − 23152500000000A5

1 + 269010238875000A4
1

+(2136093750000E2 − 1618216692750000)A3
1

+(−32602500000000E2 + 5056637137100900)A2
1

+(123750507000000E2 − 6936243489452800)A1

+1440000000000E4 − 138723312000000E2 + 3341259637044449 = 0, (D.2)

where ω = 1, µ = 0.01.



Appendix E

Error Bound of HB Method for Periodic
Input

In this appendix, we extend the method in [15] to the periodically forced system.

E.1 Definition for Error Bound

Let a projection operator KH be

uH(t) = KHu(t) =
∞∑

k=p+1

<
[
(xrk + jxsk)ejkωt

]
, (E.1)

u(t) = uL(t) + uH(t),

I = KL + KH,

where I is an identity operator. We define norms as follows;

l 1norm : ‖u(t)‖1 ≡
∞∑

k=0

|Xk| =
∞∑

k=0

√
x2

rk + x2
sk, (E.2)

l 2norm : ‖u(t)‖2 ≡

√√ ∞∑
k=0

|Xk|2 =

√√ ∞∑
k=0

(
x2

rk + x2
sk

)
, (E.3)

L∞norm : ‖u(t)‖∞ ≡ sup
t∈[0,2π/ω)

|u(t)|. (E.4)

The norms satisfy the following relations;

‖u(t)‖22 =
ω

π

∫ 2π/ω

0
|u(t)|2 dt, (E.5)
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‖u(t)‖2 ≤ ‖u(t)‖1, (E.6)

‖u(t)‖∞ ≤ ‖u(t)‖1. (E.7)

E.2 Estimation of High Frequency Components

In order to obtain the error bound, we consider the estimation of the high frequency components.

Suppose that a periodic solution of Eq.(5.1) exists and ‖u‖1 < ∞. To see this, let ξ be any positive

number satisfying

ξ ≥
∥∥∥∥∥dN[u]

du

∥∥∥∥∥∞ . (E.8)

Using the mean-value theorem, we find

ω

π

∫ 2π/ω

0
N[u(t)]2dt ≤ ω

π
ξ2

∫ 2π/ω

0
|u(t)|2dt = ξ2‖u‖22. (E.9)

Because solutions with convergent Fourier series satisfy ‖u‖2 < ∞, ‖N[u]‖2 < ∞ is satisfied.

Now we set

s(t) =
∞∑

k=0

Ekejkωt, Ek ∈ C, (E.10)

N[u(t)] =
∞∑

k=0

Ykejkωt, Yk ∈ C. (E.11)

From Eq.(5.1), we obtain

u(t) =
∞∑

k=0

<
[
Xkejkωt

]
=

∞∑
k=0

<
[
G1(jkω; λ)

{
Ek −G2(jkω; λ)Yk

}
ejkωt

]
. (E.12)

Observe that
∞∑

k=0

|Xk| =
∞∑

k=0

∣∣∣G1(jkω; λ)
{
Ek −G2(jkω; λ)Yk

}∣∣∣ , (E.13)

and, applying the Cauchy-Schwartz inequality, we obtain
∞∑

k=0

|Xk| ≤
∞∑

k=0

∣∣∣G1(jkω; λ)Ek

∣∣∣ + ∞∑
k=0

∣∣∣G(jkω; λ)Yk

∣∣∣ ,
≤

√√ ∞∑
k=0

∣∣∣G1(jkω; λ)
∣∣∣2 √√ ∞∑

k=0

|Ek|2 +

√√ ∞∑
k=0

∣∣∣G(jkω; λ)
∣∣∣2 √√ ∞∑

k=0

|Yk|2, (E.14)
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where G(D; λ) = G1(D; λ)G2(D; λ). It follows from Eq.(5.3) that√√ ∞∑
k=0

∣∣∣G1(jkω; λ)
∣∣∣2 < ∞,

√√ ∞∑
k=0

|Ek|2 < ∞,

√√ ∞∑
k=0

∣∣∣G(jkω; λ)
∣∣∣2 < ∞. (E.15)

Hence ‖u‖1 < ∞. We write ‖u‖1 ≤ υ with a certain υ.

Applying the operator KH to Eq.(5.1), we can obtain the following relation;

uH(t) = −KHG(D; λ)N[uL(t) + uH(t)]. (E.16)

In order to prove the existence of a unique uH, we consider two points u′H and u′′H with
∥∥∥u′H − u′′H

∥∥∥
2
.

Using Eq.(E.16) and the mean-value theorem, we obtain∥∥∥KHG(D; λ)N[uL + u′H] − KHG(D; λ)N[uL + u′′H]
∥∥∥

2

≤ sup
k>p

∣∣∣G(jkω; λ)
∣∣∣ √ω
π

∫ 2π/ω

0

∣∣∣∣KH

{
N[uL + u′H] − N[uL + u′′H]

}∣∣∣∣2 dt

≤ sup
k>p

∣∣∣G(jkω; λ)
∣∣∣ ξ

√
ω

π

∫ 2π/ω

0

∣∣∣u′H − u′′H
∣∣∣2 dt

= ‖F‖∞
∥∥∥u′H − u′′H

∥∥∥
2
, (E.17)

where

‖F‖∞ ≡ ξ sup
k>p

∣∣∣G(jkω; λ)
∣∣∣ . (E.18)

Thus, by the contraction mapping theorem, there exists a unique uH when ‖F‖∞ < 1.

Now, if let uH0 be an arbitrary value, then

‖uH − uH0‖2 = ‖−KHG(D; λ)N[uL + uH] − uH0‖2
≤ ‖−KHG(D; λ)N[uL + uH] + KHG(D; λ)N[uL + uH0]‖2

+ ‖−KHG(D; λ)N[uL + uH0] − uH0‖2
≤ ‖F‖∞‖uH − uH0‖2 + ‖−KHG(D; λ)N[uL + uH0] − uH0‖2 . (E.19)

Thus, we obtain the following relation;

‖uH − uH0‖2 ≤
1

1 − ‖F‖∞
‖−KHG(D; λ)N[uL + uH0] − uH0‖2 . (E.20)
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Substituting uH0 = 0 into Eq.(E.20), we estimate the high frequency components uH by the low

frequency components uL for l2 norm as follows;

‖uH‖2 ≤
1

1 − ‖F‖∞
‖KHG(D; λ)N[uL]‖2

≤ ‖F‖∞
1 − ‖F‖∞

‖uL‖2 . (E.21)

From Eq.(E.16), we obtain

‖uH‖1 = ‖KLG(D; λ)N[uL + uH]‖1
≤ sup

k>p

∣∣∣G(jkω; λ)
∣∣∣ ‖N[uL + uH]‖1

≤ sup
k>p

∣∣∣G(jkω; λ)
∣∣∣ ξ ‖uL + uH‖1

≤ ‖F‖∞‖uL‖1 + ‖F‖∞‖uH‖1. (E.22)

Thus, we can obtain the following inequality;

‖uH‖1 ≤
‖F‖∞

1 − ‖F‖∞
‖uL‖1. (E.23)

This inequality estimates the high frequency components for l1 norm.

E.3 Determination of ξ

When we set υ as follows;

‖u‖1 ≤ ‖uL‖1 + ‖uH‖1 ≤
(
1 +

‖F‖∞
1 − ‖F‖∞

)
‖uL‖1 ≡ υ, (E.24)

the inequality∥∥∥∥∥dN[u]
du

∥∥∥∥∥∞ ≤
∥∥∥∥∥dN[u]

du

∥∥∥∥∥
1
≤

q∑
i=0

(2i + 1)c2i+1υ
2i

=

q∑
i=0

(2i + 1)c2i+1

(
1 +

‖F‖∞
1 − ‖F‖∞

)2i

‖uL‖12i (E.25)

is satisfied because c2i+1 ≥ 0 for i = 0, . . . , q. Thus, if we determine the variable ξ as

ξ =

q∑
i=0

(2i + 1)c2i+1

(
1 +

‖F‖∞
1 − ‖F‖∞

)2i

‖uL‖12i. (E.26)

then ξ satisfies Eq.(E.8).
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E.4 Error Bound by Homotopy Invariance

Applying the operator KL to Eq.(5.1), we obtain

FT(uL) ≡ G−1(D; λ)uL − {G−1
2 (D; λ)s(t) − KLN[uL + uH]} = 0. (E.27)

The equation (E.27) corresponds to the low frequency components of Eq.(5.1), and uL in Eq.(E.27)

is the exact solution of Eq.(5.1). Now, if we set uH = 0 in Eq.(E.27), we obtain

FH(uL) ≡ G−1(D; λ)uL − {G−1
2 (D; λ)s(t) − KLN[uL]} = 0 (E.28)

which corresponds to the HB equation (5.7). That is, uL in Eq.(E.28) is an approximated solution

by the HB equation (5.7).

In order to obtain the error bound from Eqs.(E.27) and (E.28), we use the following lemma

of homotopy invariance theorem [58–60].

Theorem 2 (Homotopy Invariance Theorem). Let Ω be an open bounded set in Rn and H :

Ω × [0, 1] → Rn be a continuous map where Ω denotes the closure of the set Ω. Suppose that

y ∈ Rn satisfies H(z, t) , y for all (z, t) ∈ ∂Ω × [0, 1] where ∂Ω is the boundary of the set Ω.

Then deg(H(·, t),Ω, y) is constant for t ∈ [0, 1] where we denote by deg(H(·, t),Ω, y) the degree

of H(·, t) with respect to Ω at y.

Lemma 1. Let Ω be an open bounded set in Rn and let f , g:Ω → Rn be two continuous maps.

Let y ∈ Rn be a certain vector. Suppose further that α satisfies

0 < α = min {‖ f (z) − y‖ | z ∈ ∂Ω} . (E.29)

If

‖ f (z) − g(z)‖ < α ∀z ∈ ∂Ω, (E.30)

then

deg( f ,Ω, y) = deg(g,Ω, y). (E.31)

Proof. Define H : Ω × [0, 1]→ Rn by

H(z, t) = (1 − t) f (z) + tg(z) for (z, t) ∈ Ω × [0, 1].

By hypothesis, it is easy to see that H(z, t) , y for all (z, t) ∈ ∂Ω × [0, 1]. By the homotopy

invariance theorem, the result follows. �
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If we set f (z) = FH, g(z) = FT, z = x, y = 0 in Eq.(E.30), then deg(FH(uL),Ω, 0) =

deg(FT(uL),Ω, 0) is satisfied. Namely, if there exists a region Ω containing a single solution of

Eq.(E.28) on whose boundary

‖FT(uL) − FH(uL)‖ < ‖FH(uL)‖ (E.32)

holds, then a solution of Eq.(E.27) exists belonging to Ω.

Using the mean-value theorem and the estimation of the high frequency components, we

obtain the following relation from Eq.(E.32);

‖FT(uL) − FH(uL)‖2 = ‖KLN[uL(t)] − KLN[uL(t) + uH(t)]‖2
≤ ξ‖uH(t)‖2
≤ ξ‖F‖∞

1 − ‖F‖∞
‖uL(t)‖2. (E.33)

Because an inequality
ξ‖F‖∞

1 − ‖F‖∞
‖uL‖2 < ‖FH(uL)‖2 (E.34)

satisfies Eq.(E.32), we can define the error bound for the HB method by

ξ‖F‖∞
1 − ‖F‖∞

‖uL‖2 = ‖FH(uL)‖2. (E.35)


