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Abstract

In order to elect a leader on anonymous networks by
a randomized distributed algorithm, how additional
information should be given to the vertices on the
networks?

In this paper, by using the notion of “initial con‐
dition”’ introduced by [3, 4], we study the property
of the set of the initial condtions with which a ran‐

domized algorithm can elect a leader on anonymous
networks.

We express that an initial condition A is in  p(N) ‐
complete set if a randomized distributed algorithm
can elect a leader on any anonymous synchronous
networks given  A with probability at leaset  p(N) .
By our results,  p(N) ‐complete set can be classified
into four types by  p(N) as follows:

1. if  p(N)  = 1, for any initial conditions of
1‐complete, there exists a deterministic dis‐
tributed algorithm to be able to get the number
of the vertices on any anonymous networks with
the initial information.

2. if the infimum of  p(N) is greater than  0 , for any
intial conditions, there exists a deterministic dis‐
tributed algorithm to be able to get a value that
bounds the size of the network on any anony‐
mous networks with the initial information.

3. if  p(N) converges to  0 by increasing  N and
 \log p(N)=\omega(-N) , there exists an initial condi‐
tion of  p(N) ‐complete that can’t be transformed
from and to  \mathcal{U}\mathcal{P}\mathcal{P}\mathcal{E}\mathcal{R}\mathcal{B}O\mathcal{U}
\mathcal{N}\mathcal{D} by any determin‐
istic distributed algorithms.

4. if logp (N)=O(-N) , all initial conditions are
 p(N) ‐complete.

Moreover, if  p(N) converges to  0 , the relationship
among  p(N) ‐complete sets has an infinite hierarchy
according to grades of decreasing of  p(N) .

1 Introduction

One of the most important problem on distributed
algorithms on anonymous networks is the leader elec‐
tion problem. This is the problem to make only one
computer be a special state by giving the same pro‐
gram to each computer on the network without giv‐
ing any information like an address.

With respect to this problem, there exists no al‐
gorithm solving the leader election problem without
assuming any condition. In [2], assuming that each
vertex is given the number of the vertices on the
network, they showed that there exists a random‐
ized distributed algorithm to give a unique number
to each vertex with some probability. On the other
hand, in [1, 6], they discussed the class of the graphs
where there exist distributed algorithm solving the
leader election problem by assuming several condi‐
tions.

These results remind the author that an essen‐

tial information to elect a leader by randomized dis‐
tributed algorithms might be concerned with the
number of the vertices. The notion of view, the set
of all paths from a vertex, defined in [6], reminds us
to be able to denote the information that determines

the behavior of distributed algorithms as the infor‐
mation on the infinite tree. This implies that it is
important for designing distributed algorithms cal‐
culating in finite time to obtain another additional
information to calculate the necessary depth of the
view, because each algorithm must finish calculating
by using the information of the finite depth of the
view. This paper follows that any initial information
solving the leader election problem by randomized
algorithms contain some information concerned with
the size of networks.

For initial condition  A and  B , If there exists a dis‐
tributed algorithm such that on any networks satis‐
fying  A , the algorithm yields outputs to each vertex
satisfying  B , then we write the distributed algorithm
can transform  A to  B . We write  A\geq B if there exists

a distributed algorithm transforming  A to  B . Then,
 \geq induces a lattice. In [3, 4], the author showed that
there exist infinite initial conditions differed from one

another in the sense of  \geq , among the initial condition
having a leader(we denote this initial condition by
 \mathcal{L}\mathcal{E}\mathcal{A}\mathcal{D}\mathcal{E}\mathcal{R}) , the initial condition having the number
of the vertices(we denote this by  S\mathcal{I}Z\mathcal{E} ) and the ini‐
tial condition having an upper‐bound of the number
of the vertices(we denote this by  \mathcal{U}\mathcal{P}\mathcal{P}\mathcal{E}\mathcal{R}\mathcal{B}O\mathcal{U}
\mathcal{N}D ).
On the other hand, he also showed that for any initial
condition  A , there exists a deterministic distributed
algorithm transforming  \mathcal{L}\mathcal{E}A\mathcal{D}\mathcal{E}\mathcal{R} to  A.

We investigate the property of initial conditions
solving the leader election problem by randomized
distributed algorithms with respect to deterministic
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Abstract 

In order to elect a leader on anonymous networks by 
a randomized distributed algorithm, how additional 
information should be given to the vertices on the 
networks? 

In this paper, by using the notion of "initial con
dition" introduced by (3, 4], we study the property 
of the set of the initial condtions with which a ran
domized algorithm can elect a leader on anonymous 
networks. 

We express that an initial condition A is in p(N)
complete set if a randomized distributed algorithm 
can elect a leader on any anonymous synchronous 
networks given A with probability at leaset p(N). 
By our results, p(N)-complete set can be classified 
into four types by p(N) as follows: 

1. if p(N) = 1, for any initial conditions of 
1-complete, there exists a deterministic dis
tributed algorithm to be able to get the number 
of the vertices on any anonymous networks with 
the initial information. 

2. if the infimum of p(N) is greater than 0, for any 
intial conditions, there exists a deterministic dis
tributed algorithm to be able to get a value that 
bounds the size of the network on any anony
mous networks with the initial information. 

3. if p(N) converges to O by increasing N and 
logp(N) = w(-N), there exists an initial condi
tion of p(N)-complete that can't be transformed 
from and to UPPERBOUNV by any determin
istic distributed algorithms. 

4. if logp(N) = 0(-N), all initial conditions are 
p( N)-complete. 

Moreover, if p(N) converges to 0, the relationship 
among p(N)-complete sets has an infinite hierarchy 
according to grades of decreasing of p(N). 

1 Introduction 

One of the most important problem on distributed 
algorithms on anonymous networks is the leader elec
tion problem. This is the problem to make only one 
computer be a special state by giving the same pro
gram to each computer on the network without giv
ing any information like an address. 

With respect to this problem, there exists no al
gorithm solving the leader election problem without 
assuming any condition. In [2], assuming that each 
vertex is given the number of the vertices on the 
network, they showed that there exists a random
ized distributed algorithm to give a unique number 
to each vertex with some probability. On the other 
hand, in (1, 6], they discussed the class of the graphs 
where there exist distributed algorithm solving the 
leader election problem by assuming several condi
tions. 

These results remind the author that an essen
tial information to elect a leader by randomized dis
tributed algorithms might be concerned with the 
number of the vertices. The notion of view, the set 
of all paths from a vertex, defined in [6], reminds us 
to be able to denote the information that determines 
the behavior of distributed algorithms as the infor
mation on the infinite tree. This implies that it is 
important for designing distributed algorithms cal
culating in finite time to obtain another additional 
information to calculate the necessary depth of the 
view, because each algorithm must finish calculating 
by using the information of the finite depth of the 
view. This paper follows that any initial information 
solving the leader election problem by randomized 
algorithms contain some information concerned with 
the size of networks. 

For initial condition A and B, If there exists a dis
tributed algorithm such that on any networks satis
fying A, the algorithm yields outputs to each vertex 
satisfying B, then we write the distributed algorithm 
can transform A to B. We write A 2 B if there exists 
a distributed algorithm transforming A to B. Then, 
:2: induces a lattice. In (3, 4], the author showed that 
there exist infinite initial conditions differed from one 
another in the sense of 2, among the initial condition 
having a leader(we denote this initial condition by 
££AVER), the initial condition having the number 
of the vertices(we denote this by SIZE) and the ini
tial condition having an upper-bound of the number 
of the vertices(we denote this by UPPERBOUNV). 
On the other hand, he also showed that for any initial 
condition A, there exists a deterministic distributed 
algorithm transforming ££AVER to A. 

We investigate the property of initial conditions 
solving the leader election problem by randomized 
distributed algorithms with respect to deterministic 



distributed algorithms. We write that a initial condi‐
tion  A is  p(N) ‐complete if there exists a randomized
distributed algorithm transforming  A to  \mathcal{L}\mathcal{E}A\mathcal{D}\mathcal{E}\mathcal{R}

with probability  p(N) where  N is the size of networks
where the algorithm is executed. This is because
once a randomized distributed algorithm can trans‐
form  A to  \mathcal{L}\mathcal{E}\mathcal{A}\mathcal{D}\mathcal{E}\mathcal{R} with probability  p(N) , then
for any initial condition  B , there exists a random‐
ized distributed algorithm transforming  A to  B with
probability  p(N) according to the above results. We
show there are four cases of the property dependent
on  p(N) as the following:

1. if  p(N)=1 :

for any 1‐complete initial condition  A , we can
design a deterministic distributed algorithm to
obtain the number of the vertices from  A.

2. if  p(N) doesn’t converge to  0 by increasing  N :
for any  p(N) ‐complete initial condition  A , we
can design a deterministic distributed algorithm
to obtain the upper‐bound of the number of the
vertices from  A.

3. if  p(N) converges to  0 by increasing  N :
the following results hold for sufficiently large
 N.

 e if  \log p(N)=w(-N) :

there exists an initial condition  A such
that  A is  p(N) ‐complete but isn’t  q(N) ‐
complete where  \log q(N)=\omega(\log p(N)) .

 e if  \log p(N)=O(-N) :

all initial condition are  p(N) ‐complete.

Consider the lattice induced by  \underline{\supset} over the set
of  p(N) ‐complete initial conditions. Then, its mini‐
mum is  S\mathcal{I}Z\mathcal{E} if  p(N)=1 . On the other hand, its
minimum is  \mathcal{U}\mathcal{P}\mathcal{P}\mathcal{E}\mathcal{R}\mathcal{B}O\mathcal{U}
\mathcal{N}\mathcal{D} if  p(N) doesn’t con‐

verge to  0 . If  p(N) converges to  0 , the structure
of the lattice of initial conditions depends on the
function of the success probability, moreover there
is a case where there exists items incomparable with
 \mathcal{U}\mathcal{P}\mathcal{P}\mathcal{E}\mathcal{R}\mathcal{B}O\mathcal{U}
\mathcal{N}\mathcal{D}.

In Section 2, we define the basic notations. in Sec‐
tion 3, we show the property of the lattice for each
success probability. In Section 4, we conclude these.

2 Preliminaries

A network is specified by a graph  G=(V, E, a) with
a port number, where  V is a finite set,  E\subseteq V\cross V,
and  \sigma[v](v\in V) is a function that assigns a value
from 1 to  \deg(v) uniquely to each edge that is con‐
nected with  v . The size of  G denotes the number of
elements of  V . Each vertex represents a processor,

and each edge represents a bidirectonal link between
the processors of the both ends. A processor  v is
equipped with  \deg(v)input/output ports, and  can_{-}

access to an edge  e connected with  v by a port num‐
ber  \sigma[v](e) .

For a pair of vertices  u and  v , path from  u to  v

denotes the row of the vertices  v_{0}v_{1}  v_{n} such that
 v_{0} is  u,  v_{n} is  v , and each  v_{i} and  v_{i+1} are adjacent for
each  i=0,  n-1 . The length of this path is  n.

Let the distance of vertices  u and  v be the length of
the shortest path from  u to  v . Let the diameter of
a network be the maximum length of the distance of
all pairs of the vertices in the network.

A distributed algorithm is an algorithm given to
each vertex (i.e., processor) of a network. We as‐
sume that each vertex is given the same algorithm.
A network is anonymous if each processor  v is given
no extra information initially except for its local con‐
nection, i.e., the number of ports. Below we will in‐
troduce a way to give additional information as an
initial assignment.

If the port  j of  v is connected with an adjacent
vertex  u , then by the instruction “send message  m

via port  j the message  m is sent to  u . On the
other hand, when  v receives some message  m , it is
also informed the port number  j through which  m

comes from.

An execution of a distributed algorithm  M is to
run  M on each vertex. To focus the probabilistic
events to only generating random numbers in the
process of executing algorithm on each vertex, we
discuss about only synchronous networks. That is,
we assume that every messages arrives the adjacent
vertex in next step.

We investigate the situation where algorithms on
a network are given some additional initial informa‐
tion that we call initial assignment, or assignment
for short. An assignment is a function from vertices
to natural numbers. For a graph  G and any assign‐
ment  a , the graph  G with some value on each of its
vertices specified by the assignment  a is called an as‐
signed graph, and it is denoted as  G^{a} . We assume
that a distributed algorithm on each vertex on an
assigned graph  G^{a} is given the assigned valued of its
own vertex.

An initial condition is the condition for initial as‐

signments. If a graph is fixed, a set of assignments
allowed by a initial condition, is also fixed. Thus,
a initial condition is considered as a function from

a graph to this set of admissible assignments. In
this paper, we assume that the set of admissible as‐
signments for each graph is recursive. Such initial
conditions are called recursive conditions. Below, we

often simply specify an initial condition by giving a
way to assign a value to each vertex.

Let .us see some examples of initial conditions
and initial assignments for a graph of five vertices
 G=(\{0,1,2,3,4\}, E, \sigma) . For the first example, con‐
sider an initial condition that require assignments to

give the number of the vertices to all vertices. For
our graph  G , only one initial assignment satisfies this
condition; the assignment  a that gives five to all ver‐
tices of  G , i.e.,  a(0)=a(1)=a(2)=a(3)=a(4)=5.

Let  A be an initial condition that requires assign‐

ments to give 1 to one vertex and  0 to the others.
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distributed algorithms. We write that a initial condi

tion A is p(N)-complete if there exists a randomized 

distributed algorithm transforming A to £[ADER 
with probability p(N) where N is the size of networks 

where the algorithm is executed. This is because 

once a randomized distributed algorithm can trans

form A to £[ADER with probability p(N), then 

for any initial condition B, there exists a random

ized distributed algorithm transforming A to B with 

probability p(N) according to the above results. We 

show there are four cases of the property dependent 

on p(N) as the following: 

1. if p(N) = 1: 
for any I-complete initial condition A, we can 

design a deterministic distributed algorithm to 

obtain the number of the vertices from A. 

2. if p(N) doesn't converge to Oby increasing N: 

for any p(N)-complete initial condition A, we 
can design a deterministic distributed algorithm 

to obtain the upper-bound of the number of the 

vertices from A. 

3. if p(N) converges to Oby increasing N: 
the following results hold for sufficiently large 

N. 

• if logp(N) = w(-N): 
there exists an initial condition A such 

that A is p(N)-complete but isn't q(N)
complete where log q(N) = w(log p(N)). 

• if logp(N) = O(-N): 
all initial condition are p(N)-complete. 

Consider the lattice induced by 2: over the set 

of p(N)-complete initial conditions. Then, its mini

mum is SIZE if p(N) = l. On the other hand, its 

minimum is UPP[RBOUND if p(N) doesn't con

verge to 0. If p(N) converges to 0, the structure 

of the lattice of initial conditions depends on the 

function of the success probability, moreover there 

is a case where there exists items incomparable with 

UPPERBOUND. 
In Section 2, we define the basic notations. in Sec

tion 3, we show the property of the lattice for each 

success probability. In Section 4, we conclude these. 

2 Preliminaries 

A network is specified by a graph C = (V, E, er) with 

a port number, where Vis a finite set, E c;;: V x V, 

and er[v] (v E V) is a function that assigns a value 

from 1 to deg( v) uniquely to each edge that is con

nected with v. The size of C denotes the number of 

elements of V. Each vertex represents a processor, 

and each edge represents a bidirectonal link between 

the processors of the both ends. A processor v is 

equipped with deg(v) input/output ports, and can 

access to an edge e connected with v by a port num

ber er[v](e). 

For a pair of vertices u and v, path from u to v 

denotes the row of the vertices Vo v1 · · · Vn such that 

vo is u, Vn is v, and each Vi and Vi+i are adjacent for 

each i = 0, ... n - l. The length of this path is n. 

Let the distance of vertices u and v be the length of 

the shortest path from u to v. Let the diameter of 

a network be the maximum length of the distance of 

all pairs of the vertices in the network. 

A distributed algorithm is an algorithm given to 

each vertex (i.e., processor) of a network. We as

sume that each vertex is given the same algorithm. 

A network is anonymous if each processor v is given 

no extra information initially except for its local con

nection, i.e., the number of ports. Below we will in

troduce a way to give additional information as an 

initial assignment. 
If the port j of v is connected with an adjacent 

vertex u, then by the instruction "send message m 

via port j", the message m is sent to u. On the 

other hand, when v receives some message m, it is 

also informed the port number j through which m 

comes from. 
An execution of a distributed algorithm M is to 

run M on each vertex. To focus the probabilistic 

events to only generating random numbers in the 

process of executing algorithm on each vertex, we 

discuss about only synchronous networks. That is, 

we assume that every messages arrives the adjacent 

vertex in next step. 
We investigate the situation where algorithms on 

a network are given some additional initial informa

tion that we call initial assignment, or assignment 

for short. An assignment is a function from vertices 

to natural numbers. For a graph C and any assign

ment a, the graph C with some value on each of its 

vertices specified by the assignment a is called an as

signed graph, and it is denoted as ca. We assume 

that a distributed algorithm on each vertex on an 

assigned graph ca is given the assigned valued of its 

own vertex. 
An initial condition is the condition for initial as

signments. If a graph is fixed, a set of assignments 

allowed by a initial condition, is also fixed. Thus, 

a initial condition is considered as a function from 

a graph to this set of admissible assignments. In 
this paper, we assume that the set of admissible as

signments for each graph is recursive. Such initial 

conditions are called recursive conditions. Below, we 

often simply specify an initial condition by giving a 

way to assign a value to each vertex. 
Let us see some examples of initial conditions 

and initial assignments for a graph of five vertices 

C = ( {0, 1, 2, 3, 4}, E, er). For the first example, con

sider an initial condition that require assignments to 

give the number of the vertices to all vertices. For 

our graph C, only one initial assignment satisfies this 

condition; the assignment a that gives five to all ver

tices ofG, i.e., a(0) = a(l) = a(2) = a(3) = a(4) = 5. 

Let A be an initial condition that requires assign

ments to give 1 to one vertex and 0 to the others. 



Then for the graph  G , the following five initial as‐
signments satisfies  A . In other words,  A(G) is the
set of the following five assignments.

Consider an initial condition  B that requires as‐
signments to give a number that upper‐bounds the
number of vertices to each vertex. Then  B(G) is an

infinite set because every assignment that gives value
larger than five to each vertex satisfies this condition.

While we can consider an initial condition as a

function in the above way, we can also consider it
as a set of assigned graphs. We write   G^{a}\in  A if
 a\in A(G) for initial condition  A.

In this paper, we consider the following initial con‐
ditions, which covers almost all initial conditions ap‐
peared in the literature.

Definition 2.1

 \bullet  \mathcal{L}\mathcal{E}\mathcal{A}\mathcal{D}\mathcal{E}\mathcal{R} : For graph  G,  a\in \mathcal{L}\mathcal{E}\mathcal{A}\mathcal{D}\mathcal{E}\mathcal{R}(G) as‐
signs 1 to one vertex and  0 to the others.

 eS\mathcal{I}\mathcal{Z}\mathcal{E} : For graph  G,  a\in S\mathcal{I}\mathcal{Z}\mathcal{E}(G) assigns the
number of the vertices of  G to all vertices.

 e\mathcal{U}\mathcal{P}\mathcal{P}\mathcal{E}\mathcal{R}\mathcal{B}O\mathcal{U}
\mathcal{N}\mathcal{D} : For graph  G,
 a\in \mathcal{U}\mathcal{P}\mathcal{P}\mathcal{E}\mathcal{R}\mathcal{B}
O\mathcal{U}\mathcal{N}\mathcal{D}(G) assigns a number that
bounds the number of vertices of  G to all ver‐

tices.

 \bullet  \mathcal{Z}\mathcal{E}\mathcal{R}0 : For graph  G,  a\in Z\mathcal{E}\mathcal{R}O(G) assigns  0

to all vertices.

For initial condition  A and  B , we express that a
distributed algorithm transforms  A to  B if on any
assigned graphs satisfying  A , the algorithm yields an
assignment satisfying B.  A\geq dB denotes that there
exists a deterministic distributed algorithm trans‐
forming  A to  B . It has been shown that  \geq d is a par‐
tial order so that it yields a lattice over the equivalent
class of the recursive conditions in [3, 4]. Moreover,
it also has been shown that  \mathcal{L}\mathcal{E}\mathcal{A}\mathcal{D}\mathcal{E}\mathcal{R} is a maximum

and  \mathcal{Z}\mathcal{E}\mathcal{R}\mathcal{O} is a minimum in the lattice, and the lat‐
tice contains a infinite sequence of equivalent classes,
and a infinite equivalence classes such that each pair
of them are incomparable each other.

Let  p(N) be a function such that on the number  N

of the vertices it assigns a real number between  0 and
1. If there exists a randomized distributed algorithm
transforming  A to  \mathcal{L}\mathcal{E}\mathcal{A}\mathcal{D}\mathcal{E}\mathcal{R} with probability  p(N) ,
we write that  A is  p(N) ‐complete. This is because
once a leader is obtained in a network, there exists a
deterministic distributed algorithm solving arbitrary
initial condition  B . Thus we can see that there ex‐

ists a randomized distributed algorithm such that on
any assigned graph satisfying  A its output satisfies
 B with probability  p(N) .

Proposition 2.2 If an initial assignment  A is
 p(N) ‐complete, for any initial assignment  B , there
exists a randomized distributed algorithm such that
on any assigned graph satisfying  A its output satis‐
fies  B with probability  p(N) .

We can easily see the following proposition holds ac‐
cording to [2] and [3, 4].

Proposition 2.3  S\mathcal{I}Z\mathcal{E} is  l ‐complete. For any
function  p(N) such that  0  \leq  p(N)  < 1,
 \mathcal{U}\mathcal{P}\mathcal{P}\mathcal{E}\mathcal{R}\mathcal{B}\mathcal{O}
\mathcal{U}\mathcal{N}D is  p(N) ‐complete.

Let  p(N) ‐complete set be the set of  p(N) ‐complete
initial conditions.

Yamashita and  Kameda[5] have introduced the no‐

tion of “view“, which has been important for show‐
ing the relation  \geq_{d} not to hold. For any assigned
graph  G^{a} and any vertex  v of  G , the view  T is a in‐
finite labeled rooted tree that is recursively defined
as follows. Its root  x , which is labeled as  a(v) , cor‐
responds to  v . It has children  x_{1},  x_{\deg(v)} that
correspond to the vertices  v_{1},  v_{\deg(v)} that are
adjacent to  v . An edge between  x and  x_{i} is labeled
as  \sigma[v](v, v_{i}),  \sigma[v_{i}](v, v_{i}) . Then each  x_{i} is a root of

the view  T.

For a view  T , the subtree of  T from the root  x up
to depth  i is called a finite view, it is denoted as  T^{i}.

Now, we show the following basic property. (The
proof is immediate from the definition of view, and
it is omitted here.)

Lemma 2.4 Let  G and  G' be any networks, and let
 a and  a' be their assignments. If both  vofG and  v' of
 G' has the same finite view in depth  n in  G^{a} and  G^{\prime a'},
then the execution of any deterministic algorithms
enters the same state up to  n steps.

Lemma 2.5 Let  G and  G' be any networks, and let
 a and  a' be their assignments. If both  v of  G and  v'

of  G' has the same finite view in depth  n in  G^{a} and
 G^{\prime a^{l}} , then the probability that the execution of any
randomized algorithms enters the same state up to  n

steps is greater than  0.

3 Results

3.1 In the case where the infimum of

the success probability isn’t equal
to  0 :

In this section, we show the property of  p(N) ‐
complete set where the infimum of  p(N) is greater
than  0 . By designing algorithms actually, we show
that for any  p(N) ‐complete initial condition  A , there
exists a deterministic distributed algorithm trans‐
forming  A to  \mathcal{U}\mathcal{P}\mathcal{P}\mathcal{E}\mathcal{R}\mathcal{B}\mathcal{O}
\mathcal{U}\mathcal{N}\mathcal{D} , especially there ex‐
ists the one transforming  A to  S\mathcal{I}Z\mathcal{E}_{-} if  A is 1‐
complete. First, we define the value  \tau_{q} dependent on
a assigned graph  G^{a} , a randomized distributed algo‐
rithm  M and a constant  q where  0\leq q<\cdot 1 . Then,
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Then for the graph C, the following five initial as-
signments satisfies A. In other words, A(C) is the 
set of the following five assignments. 

vertex 0 1 2 3 4 

ao 1 0 0 0 0 
a1 0 1 0 0 0 
a2 0 0 1 0 0 
a3 0 0 0 1 0 
a4 0 0 0 0 1 

Consider an initial condition B that requires as
signments to give a number that upper-bounds the 
number of vertices to each vertex. Then B(C) is an 
infinite set because every assignment that gives value 
larger than five to each vertex satisfies this condition. 

While we can consider an initial condition as a 
function in the above way, we can also consider it 
as a set of assigned graphs. We write ca E A if 
a E A(C) for initial condition A. 

In this paper, we consider the following initial con
ditions, which covers almost all initial conditions ap
peared in the literature. 

Definition 2.1 

• £EADER: For graph C, a E £EADER(C) as
signs 1 to one vertex and 0 to the others. 

• SIZE: For graph C, a E SIZE(C) assigns the 
number of the vertices of C to all vertices. 

• UPPERBOUND: For graph C, 
a E UPPERBOUND(C) assigns a number that 
bounds the number of vertices of C to all ver
tices. 

• ZERO: For graph C, a E ZERO(C) assigns 0 
to all vertices. 

For initial condition A and B, we express that a 
distributed algorithm transforms A to B if on any 
assigned graphs satisfying A, the algorithm yields an 
assignment satisfying B. A 2'.d B denotes that there 
exists a deterministic distributed algorithm trans
forming A to B. It has been shown that 2:d is a par
tial order so that it yields a lattice over the equivalent 
class of the recursive conditions in [3, 4]. Moreover, 
it also has been shown that £EADER is a maximum 
and ZERO is a minimum in the lattice, and the lat
tice contains a infinite sequence of equivalent classes, 
and a infinite equivalence classes such that each pair 
of them are incomparable each other. 

Let p(N) be a function such that on the number N 
of the vertices it assigns a real number between 0 and 
1. If there exists a randomized distributed algorithm 
transforming A to £EADER with probability p(N), 
we write that A is p(N)-complete. This is because 
once a leader is obtained in a network, there exists a 
deterministic distributed algorithm solving arbitrary 
initial condition B. Thus we can see that there ex
ists a randomized distributed algorithm such that on 
any assigned graph satisfying A its output satisfies 
B with probability p(N). 

Proposition 2.2 If an initial assignment A is 
p( N)-complete, for any initial assignment B, there 
exists a randomized distributed algorithm such that 
on any assigned graph satisfying A its output satis
fies B with probability p(N). 

We can easily see the following proposition holds ac
cording to [2] and [3, 4]. 

Proposition 2.3 SIZE is I-complete. For any 
function p(N) such that O ::; p(N) < I, 
UPPERBOUND is p(N)-complete. 

Let p(N)-complete set be the set of p(N)-complete 
initial conditions. 

Yamashita and Kameda[5] have introduced the no
tion of "view", which has been important for show
ing the relation 2:d not to hold. For any assigned 
graph ca and any vertex v of C, the view Tis a in
finite labeled rooted tree that is recursively defined 
as follows. Its root x, which is labeled as a(v), cor
responds to v. It has children x1, ... , Xdeg(v) that 
correspond to the vertices v1, ... , vdeg(v) that are 
adjacent to v. An edge between x and x; is labeled 
as o-[v](v,v;),o-[v;](v,v;). Then each x; is a root of 
the view T. 

For a view T, the subtree of T from the root x up 
to depth i is called a finite view, it is denoted as Ti. 

Now, we show the following basic property. (The 
proof is immediate from the definition of view, and 
it is omitted here.) 

Lemma 2.4 Let C and C' be any networks, and let 
a and a' be their assignments. If both v of C and v' of 
C' has the same finite view in depth n in ca and c1a', 
then the execution of any deterministic algorithms 
enters the same state up to n steps. 

Lemma 2.5 Let C and C' be any networks, and let 
a and a' be their assignments. If both v of C and v' 
of C' has the same finite view in depth n in ca and 
G'a', then the probability that the execution of any 
randomized algorithms enters the same state up to n 
steps is greater than 0. 

3 Results 

3.1 In the case where the infimum of 
the success probability isn't equal 
to 0: 

In this section, we show the property of p(N)
complete set where the infimum of p(N) is greater 
than 0. By designing algorithms actually, we show 
that for any p(N)-complete initial condition A, there 
exists a deterministic distributed algorithm trans
forming A to UPPERBOUND, especially there ex
ists the one transforming A to SIZE if A is !
complete. First, we define the value Tq dependent on 
a assigned graph ca, a randomized distributed algo
rithm M and a constant q where 0 ::; q < I. Then, 



we show the value that bounds this value is com‐

putable. Finally, we design deterministic distributed
algorithm to obtain the number of the vertices by
using this value.

Let  G^{a} be an assigned graph,  M be a randomized
distributed algorithm,  q be a constant where  0\leq q<
 1 , and  v be a vertex of  G . Let  T be the view of  v,

and  T^{t} be the finite view up to depth  t . Let  S_{t} be
the set of assigned graphs whose diameter is larger
than  t and in which there exists a vertex having the
finite view  T^{t}.

Suppose  M outputs some value  x on the vertex  v

on  G^{a} in  z steps with some probability. Let  pr(H^{b})
be the probability that there exists a vertex on which
 M yields output  x in  z steps on  H^{b} . Let  \pi_{t} be the
infimum of this probability for the assigned graphs
of  S_{t} . Let  \tau_{q} be the greater value between  z and the
minimum of  t so that  \pi_{t}>q.

First, we show the property in case of  q=0 by the
following lemma.

Lemma 3.1 If  q=0 , then there exists a determin‐
istic  al_{9}orithm such that on every input  G^{a} and  M,
it outputs value  \tau_{0}^{*} where  \tau_{0}^{*}\geq\tau_{0}.

Note that this lemma also shows that  \tau_{0} is always
finite.

Proof. Suppose that when  M is executed on  G^{a},  a

vertex  v outputs  x in  z steps with some probability.
Then, we consider the finite view  T^{z} with depth  z of
vertex  v . According to Lemma 2.5, if there exists a
vertex  w that have also  T^{z} on another assigned graph
 H^{b} , the probability that  w outputs  x in  z steps isn’t
equal to  0 when  M is executed on  H^{b} . By applying
the similar argument to each assigned graph in  S_{z},
we obtain  \pi_{z}>0 . Thus  \tau_{0}\leq z . Therefore it satisfies

the lemma to compute and output  z as follows.

1. Let  n be  |G| . Let  i be 1.

2. For every set of  n rows  r_{1},  r_{2} , ,  r_{n} consisting
of  i bits of  0 and 1, repeat the following steps.

(a) For each  v_{1},  v_{2},  v_{n} of  G^{a} , give  r_{i} to  v_{i}

respectively as random bits, then simulate
 M on  G^{a} for  i steps.

(b) if there exists a vertex that outputs some
value and halts, output  i as the value of  z.

3. Increment  i by 1, then go back to Step 2.

It is easy to see that this algorithm always out‐
puts some value and terminates in finite steps if the
probability that there exists a vertex that outputs
some value in finite steps isn’t equal to  0 when  M is
executed on  G^{a}.  \square 

In the definition of  \tau_{0} , we considered only the as‐
signed graphs whose diameter is greater than  \tau_{0} . But
according to Lemma 2.5, we can also prove that for
every assigned graph  H^{b} on which there exists a ver‐
tex having the finite view  T^{\tau_{0}} that is the same finite

view as the one on  v of assigned graph  G^{a} , the prob‐
ability is greater than  0 where  M is executed for  7_{0}^{-}

steps on  H^{b}.

Now, by using the property in case where  q=0,
we also show the similar property in case where  q>0
holds.

Lemma 3.2 There exists a deterministic algorithm
such that on every input  G^{a},  M and  q , it outputs
value  \tau_{q}^{*} where  \tau_{q}^{*}\geq\tau_{q}.

To prove this lemma, we need the following lemma
showing the relation between the diameter and the
size of assigned graphs.

Lemma 3.3 Let  \rho(t, n) be  (n-1)((n-2)^{t}-1)/(n-
3)  +1 . Let  n be the number of the vertices of  G^{a},
and  T^{t} be the finite view of depth  t of some vertex of
 G^{a} . If there exists a vertex that has the finite view
 T^{t} on an assigned graph  H^{b} where its size is greater
than  p(t, n) , the diameter of  H^{b} is greater than  t.

The proof of Lemma 3.3 is omitted. Lemma 3.2
can be proved by Lemma 3.1 and Lemma 3.3. And
its proof is also omitted.

Next, we design the deterministic algorithms that
compute the information concerning the size on
 p(N) ‐complete initial conditions by  \tau_{q}^{*}.\cdot

Theorem 3.4 If  A is 1‐complete,  A\geq {}_{d}S\mathcal{I}Z\mathcal{E}.

Sketch of proof. Let  M be a randomized dis‐
tributed algorithm transforming  A to  S\mathcal{I}\mathcal{Z}\mathcal{E} with
probability 1.

Let  H^{b}(\in A) be an assigned graph where  M is
being executed. For a vertex  v on  H^{b} , we consider
the computation of  M on  v . First, for an integer  i,
 M computes the finite view  T^{i} of  v itself.

Suppose that there exists an assigned graph  G^{a}

satisfying  A and containing a vertex having  T^{i} . If  \tau_{0}^{*}
for  G^{a} and  M is smaller than  i , the probability that
there is a vertex on  H^{b} that outputs the same value as
an vertex on  G^{a} outputs is not equal to  0 . Moreover,
the size of  H must be equal to the number of the
vertices of  G by assumption of  A and  M . Then, in
this case,  M may output  |G| as the size of  H^{b}.

Then, we obtain the size by the following deter‐
ministic distributed algorithm:

1. Let  i be 1.

2. Obtain the information of the vertices up to dis‐
tance  i from  v by communicating with other ver‐
tices, then compute the finite view  T^{i} of  v by the
obtained information.

3. Obtain an assigned graph  G^{a} whose size is
smaller or equal to  i+1 and that containing
a vertex having  T^{i} , if such an assigned graph
exists in  A . Otherwise, increment  i by 1, then
go back to Step 2.

4. Compute  \tau_{0}^{*} for  M and obtained  G^{a}.
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we show the value that bounds this value is com

putable. Finally, we design deterministic distributed 

algorithm to obtain the number of the vertices by 
using this value. 

Let ca be an assigned graph, M be a randomized 

distributed algorithm, q be a constant where O ::; q < 
1, and v be a vertex of G. Let T be the view of v, 
and yt be the finite view up to depth t. Let St be 
the set of assigned graphs whose diameter is larger 

than t and in which there exists a vertex having the 
finite view yt. 

Suppose M outputs some value x on the vertex v 
on ca in z steps with some probability. Let pr(Hb) 
be the probability that there exists a vertex on which 

M yields output x in z steps on Hb. Let 1r t be the 
infimum of this probability for the assigned graphs 
of St. Let Tq be the greater value between z and the 

minimum of t so that 7rt > q. 
First, we show the property in case of q = 0 by the 

following lemma. 

Lemma 3.1 If q = 0, then there exists a determin
istic algorithm such that on every input ca and M, 

it outputs value To where To ~ To. 

Note that this lemma also shows that To is always 
finite. 
Proof. Suppose that when M is executed on ca, a 

vertex v outputs x in z steps with some probability. 
Then, we consider the finite view yz with depth z of 
vertex v. According to Lemma 2.5, if there exists a 
vertex w that have also yz on another assigned graph 
Hb, the probability that w outputs x in z steps isn't 
equal to O when M is executed on Hb. By applying 

the similar argument to each assigned graph in Sz, 
we obtain 7rz > 0. Thus To ::; z. Therefore it satisfies 
the lemma to compute and output z as follows. 

1. Let n be IGI. Let i be 1. 

2. For every set of n rows r1, r2, ... , rn consisting 
of i bits of O and 1, repeat the following steps. 

(a) For each V1, V2, .. • , Vn of ca, giver; to V; 

respectively as random bits, then simulate 
M on ca for i steps. 

(b) if there exists a vertex that outputs some 
value and halts, output i as the value of z. 

3. Increment i by 1, then go back to Step 2. 

It is easy to see that this algorithm always out
puts some value and terminates in finite steps if the 

probability that there exists a vertex that outputs 
some value in finite steps isn't equal to O when M is 

executed on ca. □ 

In the definition of To, we considered only the as

signed graphs whose diameter is greater than To. But 

according to Lemma 2.5, we can also prove that for 

every assigned graph Hb on which there exists a ver
tex having the finite view TT0 that is the same finite 

view as the one on v of assigned graph ca, the prob

ability is greater than O where M is executed for To 

steps on Hb_ 
Now, by using the property in case where q = 0, 

we also show the similar property in case where q > 0 

holds. 

Lemma 3.2 There exists a deterministic algorithm 
such that on every input ca, M and q, it outputs 

value T; where T; ~ Tq. 

To prove this lemma, we need the following lemma 

showing the relation between the diameter and the 
size of assigned graphs. 

Lemma 3.3 Let p(t,n) be (n-l)((n-2)t- 1)/(n-
3) + 1. Let n be the number of the vertices of ca, 
and yt be the finite view of depth t of some vertex of 
ca. If there exists a vertex that has the finite view 
yt on an assigned graph Hb where its size is greater 

than p(t,n), the diameter of Hb is greater than t. 

The proof of Lemma 3.3 is omitted. Lemma 3.2 
can be proved by Lemma 3.1 and Lemma 3.3. And 
its proof is also omitted. 

Next, we design the deterministic algorithms that 
compute the information concerning the size on 
p(N)-complete initial conditions by T;. 
Theorem 3.4 If A is I-complete, A ~cl SIZE. 

Sketch of proof. Let M be a randomized dis
tributed algorithm transforming A to SIZE with 
probability 1. 

Let Hb ( E A) be an assigned graph where M is 
being executed. For a vertex v on Hb, we consider 

the computation of M on v. First, for an integer i, 
M computes the finite view Ti of v itself. 

Suppose that there exists an assigned graph ca 
satisfying A and containing a vertex having Ti. If To 

for ca and M is smaller than i, the probability that 

there is a vertex on Hb that outputs the same value as 
an vertex on ca outputs is not equal to 0. Moreover, 
the size of H must be equal to the number of the 

vertices of G by assumption of A and M. Then, in 
this case, M may output IGI as the size of Hb. 

Then, we obtain the size by the following deter
ministic distributed algorithm: 

1. Let i be 1. 

2. Obtain the information of the vertices up to dis
tance i from v by communicating with other ver
tices, then compute the finite view Ti of v by the 

obtained information. 

3. Obtain an assigned graph ca whose size is 

smaller or equal to i + 1 and that containing 
a vertex having Ti, if such an assigned graph 

exists in A. Otherwise, increment i by 1, then 

go back to Step 2. 

4. Compute To for M and obtained ca. 



5. If  i\geq\tau_{0}^{*} holds, output  |G| and halts. Otherwise,
let  iarrow\tau_{0}^{*} and go back to Step2.

It is easy to see that this algorithm outputs the size
correctly if each step works well.

It can be proved that each step can be computed
by a deterministic distributed algorithm.  \square 

Theorem 3.5 For a constant  q(0<q<1) , con‐
sider a function  p(N) such that  p(N)>1-q for all
N. If  A is  p(N) ‐complete,  A\geq d\mathcal{U}\mathcal{P}\mathcal{P}\mathcal{E}\mathcal{R}\mathcal{B}
O\mathcal{U}\mathcal{N}D.

By the similar way to Theorem 3.4, this theorem
can be proved by using  \tau_{q} of Lemma 3.2 and  \rho(t, n)
of Lemma 3.3. But this proof is omitted.

3.2 In the case where the success

probability converges to  0 :

In this section, we assume that a function  p(N) of the
success probability is monotone and   \lim_{Narrow\infty}p(N)=
 0 holds. On the other hand, we discuss the following
for all but finite  N , even though we have discussed
the theorems holding for all  N in the previous sec‐
tion.

That is, in this section, we write that a distributed
algorithm transforms  A to  B if on all but finite as‐
signed graphs satisfying  A , it yields an assignment
satisfying  B , thus,  A\leq dB denotes that there exists
a deterministic distributed algorithm transforming  A

to  B in this sense. Hence it follows that  A\not\leq_{d}B
denotes that for all deterministic distributed algo‐
rithms, on infinitely many assigned graphs satisfying
 A , the algorithm yields no assignment satisfying  B.

Theorem 3.6 For arbitrary constant  c such that
 0<c<1 , there exists a distributed algorithm to
be able to elect a leader with probability  c^{N} for all
but finite  N.

Proof. Consider the simple algorithm such that
it outputs 1 with probability  1-c and outputs  0

with probability  c . If this algorithm is executed
on the graph whose size is  N , the probability that
there is only one vertex outputting 1 is equal to
 N(1-c)c^{N-1}=N(1-c)/c\cdot c^{N} . This theorem holds

whenever  N(1-c)/c\geq 1 holds.  \square 

Corollary 3.7 For arbitrary constant  c such that
 0<c<1,  atl initial conditions are  c^{N} ‐complete for
all but finite  N.

Definition 3.8 Let  k(N)-\mathcal{L}\mathcal{E}\mathcal{A}\mathcal{D}\mathcal{E}\mathcal{R} be the initial

condition such that it assigns 1 to  k(N) vertices and
 0 to the others for the graphs whose size is  N where
 1\leq k(N)\leq N-1.

Theorem 3.9 For any  k(N) where  k(N) diverges
to the infinity by increasing  N,  k(N)-\mathcal{L}\mathcal{E}\mathcal{A}\mathcal{D}\mathcal{E}\mathcal{R} and

 \mathcal{U}\mathcal{P}\mathcal{P}\mathcal{E}RB\mathcal{O}\mathcal{U}\mathcal{N}
D are incomparable under  \leq d.

The proof is omitted.

Theorem 3.10 If  p(N) converges to  0 , there exists
an initial

condition in  p(N) ‐complete that is incomparable with
 \mathcal{U}\mathcal{P}\mathcal{P}\mathcal{E}\mathcal{R}\mathcal{B}O\mathcal{U}
\mathcal{N}\mathcal{D} under  \leq d.

Sketch of proof. For a constant  c such that
 0<c<1 , we consider  k(N) satisfying the following
inequation:

 k(N)(1-c)c^{k(N)-1}\geq p(N) .

Then it can be proved that  k(N)-\mathcal{L}\mathcal{E}\mathcal{A}\mathcal{D}\mathcal{E}\mathcal{R} is in
 p(N) ‐complete and incomparable with
 \mathcal{U}\mathcal{P}\mathcal{P}\mathcal{E}\mathcal{R}\mathcal{B}O\mathcal{U}
\mathcal{N}\mathcal{D}under  \leq d.  \square 

Theorem 3.11 If both  p(N) and  p'(N) con‐
verge to  0 by increasing  N where  \log p(N)  =

 \omega(\log p'(N)) holds, then there exists an initial con‐
dition  k(N)-\mathcal{L}\mathcal{E}\mathcal{A}\mathcal{D}\mathcal{E}\mathcal{R} such that there exists a ran‐

domized distributed algorithm that can transforming
 k(N)-\mathcal{L}\mathcal{E}\mathcal{A}\mathcal{D}\mathcal{E}\mathcal{R} to  \mathcal{L}\mathcal{E}\mathcal{A}D\mathcal{E}\mathcal{R} with probability  p'(N)
but there exists no algorithm that can transform it to

 \mathcal{L}\mathcal{E}\mathcal{A}\mathcal{D}\mathcal{E}\mathcal{R} with probability  p(N) .

Sketch of proof. We consider a monotone increas‐
ing function  k(N) satisfying that

 p'(N)=k(N)(1-c)c^{k(N)-1}.

Then it can be proved that  k(N)-\mathcal{L}\mathcal{E}A\mathcal{D}\mathcal{E}\mathcal{R} is in

 p'(N) ‐complete but is not  p(N) ‐complete.
口

 p(N)  =  N^{-(\log N)^{i-1}}We can see the following1emmaandp '(N)=byadoptinN^{-(10,N)^{i-}}\S
where  i\geq 2 for Theorem 3.11 where logp (N)=
 \omega(\log p'(N)) .

Corollary 3.12 If  i  \geq 2, for there exists
a randomized distributed algorithm transforming
 (\log N)^{i}-\mathcal{L}\mathcal{E}\mathcal{A}\mathcal{D}\mathcal{E}\mathcal{R} to

 \mathcal{L}\mathcal{E}\mathcal{A}\mathcal{D}\mathcal{E}\mathcal{R} with probability  N^{-(\log N)^{i-1}} , but there ex‐
ists no randomized distributed algorithm transform‐
ing  (\log N)^{i}-\mathcal{L}\mathcal{E}\mathcal{A}\mathcal{D}\mathcal{E}\mathcal{R} to  \mathcal{L}\mathcal{E}\mathcal{A}\mathcal{D}\mathcal{E}\mathcal{R} with probability
 N^{-(\log N)^{i-2}}

4 Conclusion

We can summarize what we have discussed as follows:

1.  S\mathcal{I}Z\mathcal{E} is a minimum of the lattice of 1‐complete.

2. For any  p(N) where the infimum of  p(N) is
greater than  0,  \mathcal{U}\mathcal{P}\mathcal{P}\mathcal{E}\mathcal{R}\mathcal{B}ou\mathcal{N}
\mathcal{D} is a minimum
of the lattice of  p(N) ‐complete.

3. For any  p(N) where  p(N) converges to  0 by in‐
creasing  N,
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5. If i 2 To holds, output IGI and halts. Otherwise, 
let i +-- To and go back to Step2. 

It is easy to see that this algorithm outputs the size 
correctly if each step works well. 

It can be proved that each step can be computed 
by a deterministic distributed algorithm. D 

Theorem 3.5 For a constant q {O < q < 1), con
sider a function p(N) such that p(N) > 1 - q for all 
N. If A is p(N)-complete, A 2<l UPPERBOUND. 

By the similar way to Theorem 3.4, this theorem 
can be proved by using Tq of Lemma 3.2 and p(t, n) 
of Lemma 3.3. But this proof is omitted. 

3.2 In the case where the success 
probability converges to 0: 

In this section, we assume that a function p(N) of the 
success probability is monotone and limN ---+= p( N) = 
0 holds. On the other hand, we discuss the following 
for all but finite N, even though we have discussed 
the theorems holding for all N in the previous sec
tion. 

That is, in this section, we write that a distributed 
algorithm transforms A to B if on all but finite as
signed graphs satisfying A, it yields an assignment 
satisfying B, thus, A S<l B denotes that there exists 
a deterministic distributed algorithm transforming A 
to B in this sense. Hence it follows that A id B 
denotes that for all deterministic distributed algo
rithms, on infinitely many assigned graphs satisfying 
A, the algorithm yields no assignment satisfying B. 

Theorem 3.6 For arbitrary constant c such that 
0 < c < 1, there exists a distributed algorithm to 
be able to elect a leader with probability cN for all 
but finite N. 

Proof- Consider the simple algorithm such that 
it outputs 1 with probability 1 - c and outputs 0 
with probability c. If this algorithm is executed 
on the graph whose size is N, the probability that 
there is only one vertex outputting 1 is equal to 
N(l - c)cN-l = N(l - c)/c -cN. This theorem holds 
whenever N(l - c)/c 2: 1 holds. D 

Corollary 3.7 For arbitrary constant c such that 
0 < c < 1, all initial conditions are cN -complete for 
all but finite N. 

Definition 3.8 Let k(N)-£EADER be the initial 
condition such that it assigns 1 to k(N) vertices and 
0 to the others for the graphs whose size is N where 
1 S k(N) S N - 1. 

Theorem 3.9 For any k(N) where k(N) diverges 
to the infinity by increasing N, k(N)-£EADER and 
UPP[RBOUNV are incomparable under S<l-

The proof is omitted. 

Theorem 3.10 If p(N) converges to 0, there exists 
an initial 
condition in p(N)-complete that is incomparable with 
UPPERBOUND under S<l-

Sketch of proof- For a constant c such that 
0 < c < 1, we consider k(N) satisfying the following 
inequation: 

k(N)(l - c)ck(N)-l 2 p(N). 

Then it can be proved that k(N)-£EADER is in 
p(N)-complete and incomparable with 
UPPERBOUNDunder S<l- o 

Theorem 3.11 If both p(N) and p'(N) con
verge to O by increasing N where logp(N) = 
w(Iogp' (N)) holds, then there exists an initial con
dition k(N)-£EADER such that there exists a ran
domized distributed algorithm that can transforming 
k(N)-££ADER to ££ADER with probability p'(N) 
but there exists no algorithm that can transform it to 
£EADER with probability p(N). 

Sketch of proof- We consider a monotone increas-
ing function k(N) satisfying that 

p'(N) = k(N)(l - c)ck(N)-l. 

Then it can be proved that k(N)-£EADER is m 
p'(N)-complete but is not p(N)-complete. 

D 

We can see the following lemma by adoptin9 
p(N) = N-(logN)'-' and p'(N) = N-(logN)'-

where i 2 2 for Theorem 3.11 where logp(N) = 
w(logp'(N)). 

Corollary 3.12 If i 2 2, for there exists 
a randomized distributed algorithm transforming 
(logN)i-££ADER to 

£EADER with probability N-(log N)'-', but there ex
ists no randomized distributed algorithm transform
ing (1ogN)i-£EADER to £EADER with probability 
N-(log N)'- 2 • 

4 Conclusion 

We can summarize what we have discussed as follows: 

1. SIZE is a minimum of the lattice of I-complete. 

2. For any p(N) where the infimum of p(N) is 
greater than 0, UPPERBOUND is a minimum 
of the lattice of p(N)-complete. 

3. For any p(N) where p(N) converges to O by in
creasing N, 



(a) if logp(N)  =  \omega(-N) holds, for any
 q(N) where  \log p(N)  =  \omega(\log q(N)) ,
there exists an initial condition such that

it is  q(N) ‐complete, but is not  p(N) ‐
complete. However, this initial condition
is not a minimum of the lattice of  q(N) ‐

complete, because it is incomparable with
 \mathcal{U}\mathcal{P}\mathcal{F})\mathcal{E}\mathcal{R}\mathcal{B}\mathcal{O}
\mathcal{U}\mathcal{N}\mathcal{D}.

Particularly,  (\log N)^{i}-\mathcal{L}\mathcal{E}\mathcal{A}\mathcal{D}\mathcal{E}\mathcal{R} is
 N^{-(\log N)^{i-1}} ‐complete, but is not
 N^{-(\log N)^{:-2}} ‐complete.

(b) if logp (N)=O(-N) holds, all initial con‐
ditions are  p(N) ‐complete.

The problem of the existence of a minimum of the
lattice of  p(N) ‐complete and the problem what is a
necessary and sufficient condition for  p(N) ‐complete
and  q(N) ‐complete to differ, if both  p(N) and  q(N)
converge to  0 are still open.
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(a) if logp(N) = w(-N) holds, for any 
q(N) where logp(N) w(logq(N)), 
there exists an initial condition such that 
it is q(N)-complete, but is not p(N)
complete. However, this initial condition 
is not a minimum of the lattice of q(N)
complete, because it is incomparable with 
UPPERBOUNV. 
Particularly, (log N)i-££AV£R is 
N-(log N)'-' -complete, but is not 
N-(log N)'-2 -complete. 

(b) if log p( N) = 0 ( - N) holds, all initial con
ditions are p(N)-complete. 

The problem of the existence of a minimum of the 
lattice of p(N)-complete and the problem what is a 
necessary and sufficient condition for p(N)-complete 
and q(N)-complete to differ, if both p(N) and q(N) 
converge to O are still open. 
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