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Abstract

Following the so-called inversion principle of Gentzen-Prawitz, we demonstrate
that multiple-conclusion system of classical logic can be naturally regarded as a com-
munication calculus. For the motivation, we first introduce a hierarchical structure
for representing an abstract structure of classical proofs. The hierarchical structure
describes that classical proofs consist of intuitionistic proofs as the components and
the structural connections between those elements. We next provide proof term
assignment rules based on the the hierarchical structure. The resulting term calcu-
lus is a natural extension of A-calculus and can be considered as a communication
calculus. It is found that the hierarchical structure can be regarded as a network
structure for the communication, based on which a term can be passed on to dis-
tributed terms. We also show the fundamental properties of the communication
terms.

1 Introduction

On the basis of the Curry-Howard-de Bruijn isomorphism [14],'pr00f reductions can be
regarded as computational rules. The computational meaning of proofs has been investi-
gated by numerous researchers, not only in intuitionistic logic but also in classical logic and
modal logic [15]. In the area of classical logic, there have been a number of noteworthy in-
vestigations including those of Griffin [10], Murthy [18], Parigot [22], Barbanera&Berardi
[1], Rehof&Sgrensen [25], de Groote [11], Ong [21], and Hofmann&Streicher [13]. A clas-
sical logic can be obtained from intuitionistic logic by adding an intrinsically classical
theorem [12], such as the excluded middle or the double negation elimination rule. Griffin
[10] has discovered that the double negation elimination can be interpretated computa-
tionally as a control operator.

This paper demonstrates a communication-like computational property of proofs of
classical logic. We introduce a classical system not by adding a classical theorem to
intuitionistic logic but by allowing multiple-conclusion; “classicality” depends on multiple-
conclusion. Although there already exist multiple-conclusion systems such as [5], [6], [26],

*A preliminary version of this article in part was presented at the second Discrete Mathematics and
Theoretical Computer Science conference (DMTCS’99& CATS’99) poster session, Auckland, New Zealand,
18--21 January 1999.
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[22], and [8], our approach is essentially different from the existing ones in the following
sense:

1. From the viewpoint of the inversion principle, a communication-like interpretation
is given to multiple-conclusion system.

2. The hierarchical structure is introduced to represent abstract structures of proofs
in classical logic.

3. Communication-terms as a natural extension of A-terms are directly assigned to
classical proofs based on the hierarchical structure.

In multiple-conclusion system, we will investigate the traditional idea of Gentzen-Prawitz
[9, 23], the so-called inversion principle. Following the principle, it will be found that
a classical proof of A — B in multiple-conclusion system can be interpreted as a send-
ing (multicast) operator among multiple-conclusion. This result naturally extends the
functional interpretation of intuitionistic proofs via A-terms to a communication-like in-
terpretation of classical proofs.

For this motivation, we first introduce a new structure for classical proofs, called a
hierarchical structure for classical proofs. The concept of the hierarchical structure comes
from the observation that classical proofs can be obtained from a certain combination
of intuitionistic proofs by means of the right structural rules. In other words, classical
proofs can be separated into intuitionistic components and the structural connections in
the sense of the right structural rules, between those elements. The hierarchical structure
for classical proofs are defined as ordered trees labeled with sets of intuitionistically valid
formulae. This set of intuitionistic provable formulae is treated as a world, and the binary
relations between worlds constitute an abstract form of the right structural rules. We
will prove that there exists a classical proof if and only if there exists a finite hierarchical
structure. The hierarchical structure can be regarded as a certain model of classical proofs
in terms of intuitionistic provability and the right structural rules.

On the basis of this hierarchical structure, we next introduce a proof term assignment
to establish “multiple-conclusion system as communication calculus”. We discuss the
dynamic aspect of the hierarchical structure from the viewpoint of a communication-like
interpretation among worlds. Here, the hierarchical structure is regarded as the network
structure within which the communication takes place. On the basis of this structure,
roughly speaking, A-terms are passed from one world to other worlds.

2 Outline of the Idea

In this section, we observe the distinction of “meaning” of the implications (—) between
intuitionistic system and classical system. Following Genzten [9] and Prawitz [23, 24],
the introduction rules represent the definition of the logical constants concerned, and
the elimination rules are justified by the meaning of the logical constants given by the
introduction rules. This reinterpretation gives the constructive meaning of the logical
constants. In the case of intuitionistic logic, the introduction rule for — is given by

T,z:AF;, M:B = T M\x.M:A— B

Then the elimination rule is justified by the meaning of A — B, that is, a function Az.A/
which to each proof of A gives a proof of B. On the other hand, in classical system with
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multiple-conclusion, assume that we have proof terms assigned to each conclusion. Then
the introduction rule for classical — can be defined as follows:

F,CEIA’_.Z\ll ZBI,]\423B2,"',AJH:B”
= F}-)\*.I'.MlZA-)Bl,]\JQIBQ,"',A/[nZBn

Here, not only with B; but also with B; (2 < ¢ < n), one can derive \*x.M; : A — B;, even
if the assumption z: A is not actually used for deducing M;: B;, that is, z € FV(M;) for
some j # i. (Although Nakano [19, 20] proposed an intuitionistic system with multiple-
conclusion, the intuitionistic system has a side condition for —-introduction such as = ¢
FV(M;) for all j # i.) Now the elimination rule can be justified by considering \*z.M; as
a certain function that communicates each proof of A to proofs of every B; in {By, - -+, B, }
whose element actually depends on the proof of A. This meaning is a natural extension
on the case of a single conclusion. Following the natural observation, a- classical proof
of A — B can be reinterpreted as a multicast (broadcast) operator among multiple-
conclusion, and proof terms assigned to conclusions serve as a communication entity,
where the whole deduction tree is regarded as a network structure for the communication.

In order to demonstrate this observation, we first illustrate the idea of a hierarchical
structure for classical proofs by using an example. On the basis of this hierarchical struc-
ture, proof term assignment rules will be defined to realize “multiple-conclusion system
as communication calculus”. In a natural deduction system with multiple conclusions,
one can prove Peirce’s law as follows:

E]A ()
[(A— B)— A? AS B, A
A A
22 ()

2

(A—-B)—> A) = A

Here, we consider that the above proof consists of the following three intuitionistic proofs,
and that these intuitionistic proofs are combined by means of the right contraction or the
right weakening rulcs: '

o] LA
YR()
: B* 1
(A—>B)—»A> A—DB |
9] z
} R(a, B)

(A=DB)—>A)—> A4 |

ol

Here, the names [}, [(], and [y] are given to cach intuitionistic proofs, and the formulae
A* and B* arc introduced by the right contraction and the right weakening, respectively.
We can now regard the names as names of worlds wherein intuitionistic proofs are carried
out, and the formulae A* and B* are induced from the name-indexed relations between
worlds (see Fig. 1).
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In the minimal world [a], we execute intuitionistic proofs under the assumption A.
There is a relation RB( ) without names between the minimal [o] and the second minimal
[8]. The relation means that we use an arbitrary formula as an assumption in the world
(6], e.g., B*. Then in the second minimal world [3], we carry out intuitionistic proofs
under the assumptions (A — B) — A and B*. We have the relation R(a, §) between the
second minimal world [g] and the greatest world [y]. This relation means that we use a
formula X as an assumption in the top world [vy], such that the formula X is the common
conclusion in both [a] and [j], e.g., A*.

[ o  Ta={4}

R()

6] ¢ Ts={(A—B)— A}
R(a, )

M o Iy={} Fig. 1

The above hierarchical structure for proofs represents an abstract structure for clas-
sical proofs, and this structure contains more information than that of the proof term
for Peirce’s formula, since the existence of intuitionistic proofs is herein abstracted as a
world. Here, we regard the above Kripke-like structure as follows: The minimal world [o]
denotes a set of formulae X such that X is provable from I'y, in intuitionistic logic; strictly
speaking, in minimal logic. The second minimal world [5] represents a set of formulae X
such that I's -y X is intuitionistically admissible from ', I-; Y for an arbitrary Y. The
greatest world [y] denotes a set of formulae X such that I', -; X is intuitionistically ad-
missible from [ F; Y for some Y € inf{[a], [8]}, where inf{[a], [§]} denotes the greatest
lower ‘bound of the two denotations [a] and [f], i.e., [a] N [F].

3 Informal Meaning of Proof Terms as Communica-
tion Terms

In this section, we give some examples and informal meaning of proof terms as commu-
nication terms.

The proof term of the form O(ay, ..., ay) is a distributing operator in the sense that
the term distributes its argument to a term in every world [o;] (1 < i < n). Here, the
communication channels are a set of pairs of names {(a, a1),...,{(, a,)}. In terms of the
right structural rules of sequent calculi, d(ay, ..., a,) codes the application of the right
weakening rule if n = 0, the right exchange if n = 1, and the right contraction if n > 2.
0O( ) is simply denoted by O.

The term of the form A\*(z®1(™) . gen(ma)) Af is a multicast (broadcast) operator
which sends its argument to m;-occurrences x in each world [o;] where 1 < i < n.
Here, the communication channels consist of {{a, a;),..., {a, a,)} where o denotes the
name of the world of the multicast operator. In the case of a single channel, a term
(A*(z*™).M)N in the world [f], denoted by (A*(z*™).M)N € [3] where o # (3, maby
be roughly represented as (3, @) N.M in terms of higher-order m-calculus. Then some term
M, € [a] would be read as (8, a)(z).M;. The operator A\* plays both roles of a classical
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and an intuitionistic codes for —, ie., (\*(z*™).M)N € [A] where o # f is a proof
code for classical —, and (A*(z*™).M)N € [a], simply written by Az.M, is a proof code
for intuitionistic —. Hence, this computation is a natural extension of the S-reduction;
the induced substitution is applied not only to M but also to distributed terms in other
worlds.

The first example is a proof Peirce’s law. From the following structure together with
proof terms (Fig. 2):

________________

________________

; 0:Bef)|a:Acal ?
PO (A B) s Aelfl MEW).O:A>Befl|z:Aclo]

y(A\ (zW).0): A€ [f] | z: A€ [a]

_________________________________________________________________________________

O(e, B) : A € o] | y(\ (z*M).0): A €[] | 2: A € [o]
M(PW).0(e, B):((A— B) = A) = A e [y] | y\(z*M).0): A€ 8] | z: A€o

_________________________________________________________________________________

the term assignment can be obtained such that

z € [o] | y(\*(z*™).0) € [8] | **(y*M).0(e, 8) € [1]

The subterm \*(z "(1 )).0 is a communication n operator along channel (3, a). In terms of
m-calculus, (A*(z*1)).0)N can be read as (8,a)N.0, and z € [a] as (8,a)(z).z. The
term /\*(y[j Y).0(e, B) € [7] is a communication operator along channel (v, 3), and the
subterm O(a, ) € [7] is a distributing operator along two channels {(v, a), (-, 5)}.

To give a simple and small example, assume that the following recursive program G
computes the product of all integers in an integer list I:

fun G | = A\k.let fun f nil =1
| f (hd ::tl) = if hd=0 then (k 0) else mult hd (f tl)
in f [ end '

Then, applying the proof of Peirce’s law (see Fig. 2), we obtain the following computation:

€ [o] [ y(A\*(z*W).0) € [8] | (A*(y° )D(O@ﬁ))(G [1,2,0,4]) € [7]
> Te[a]|()\/€mu1t1(mU1t2(k0))( “(@2M).0) € [8] | O(a, B) € 1]
> 2 € [o] [mult 1 (mult 2 (A*(2°W).0) 0) € [4] | O(a, §) € [7]
> 0€ o] |multl (mult 2 0)€[F] ] O(a,B) € [v]

where the continuation with O is preserved in the world [3], and this continuation is
obtained at the time when the answer 0 is communicated to z in [a] without executing

the multiplications any more.

The second example is the law of excluded middle; EAf : AV —A. We define AV B =
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-A — —=B, and inl(M) = AfAv.fM and inr(M) = M. Af.fM. Then from the
following structure: : .

>
8
2
J
A

__________________________

__________________________

we obtain the proof term EM of AV —A as follows:

EM = Muv.fz € [an] | Wwf.f(A*z"".0) € [ag] | O(e, aa) € [es)

The elimination rule:

Y- A z:-A
EM:AV-A N :C N,:C
C
can be here interpreted in the following:
 N:Celfl ) Na:iCel] |
v o

em:AV-A My .0:-A4 N2 .0:--A §
em(A*y”.0)(A\*2".0) : L € [ay] |

where em = O(ay, as).
Let !, M € |a] denote n-occurrences of M € [a] where lgM € [a] = O € [a]. Now the
composition of the proof terms gives the following computation:

Mou.fx € [oq] | A f. f(A*z™.0) € [ay] | (O(v, a2))(A*y" D) (X*2”.0) € [os]
|]g1€[5]|N2€[7] | ’
> (Afu.fz)(My .0)(A\2".0) € [aq] | Mof.f(A 2™ .0)) Ay .0)(A*2".0) € [ay]
| O(en, ap) € [as] | 12Ny € [B] [ 12V2 € [1]
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where N, and N, are copied because of copies of (\*y”.0)(A\*2".0) which is derived
from N, € [§] and N, € [].

> (A .O)z € [og] | (A*2".0)(A\*2™.0) € |]

| B(ar, o) € [as] | N e [B] | D e[f] | Naer]| D€

where one occurrence of N; becomes O as well as N, becomes, because of the use of
B-reductions by vacuous discharge.

Let Ny contain #z-occurrences of the variable z. Then one comes to

L Ny == z] € [8] | Nofz := A*2”.0] € [4]
via communications, under a structural congruence relation such that O € [o4] | O(a, a2) €
[a3] = O(az) € [as] and that O € [a] | M € [f] = M € [$] where M has no occurrences
of O(a). Roughly speaking, O € [a] is an identity among multiple-conclusions.

On the basis of this result, a proof of - A is waiting for a proof of A. If one has a proof
of A, then it is passed on to z in [§] from N, in [y], and moreover N, involving O (i.e.,
the remainder of the computation, called continuation) is still preserved in the world [v].

4 Concluding Remarks

In this article, we described only outline of the idea and informal meaning of proof terms
as communication terms by using simple examples. For the following subjects:

e Soundness and completeness of hierarchical structures
e Deterministic and non-deterministic communications
e Strong normalization property

e Church-Rosser property for the deterministic version

forthcoming papers are in preparation, and see also Electronic Notes in Theoretical Com-
puter Science Vol. 31, No. 1, pp. 167-182 (2000), Computing: The Australasian Theory
Symposium (CATS 2000), http://wuw.elsevier.nl/locate/entcs/volume31.html.

Following Gentzen-Parwitz [9, 23], we have demonstrated that a proof code for clas-
sical implications can be naturally reinterpreted as a sending communication operator
among multiple-conclusion. The sending operator is obtained as a natural extension of A- -
terms, and this higher-order communication can be regarded as a computational content
of classical proofs.

A-terms can be interpreted as processes, as in Milner [17], and hence processes can
be indirectly assigned to classical proofs as CPS-translated codes. On one hand, the
computational behaviour of classical proofs has been interpreted as a process based on
an analysis of the non-confluence of classical proofs in [3]. With respect to a hierarchical
structure, on the other hand, intuitionistic proofs are still interpreted as A-terms, and
a communication-like interpretation is given only to classical part of proofs. From the
viewpoint of classical terms-as-processes, the finite tree of the hierarchical structure can
be regarded as the network structure of the communication, in which a term is passed
on to terms distributed in other worlds. The theorem of soundness and completeness of
hierarchical structures gives a basis to a translation from Ap-terms to the communication-
terms of a hierarchical structure, in other words, a program translation from a sequential
style to a distributed style representation. Although we observed the connection between
Ap-calculus and the hierarchical structure, the distinction between a sequential style and
a distributed style is important in the sense that the first example in Section 3 results in
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mult 1 (mult 2 (u0.[a]0)) by the use of call-by-name Au-calculus [22]. The distributed
style makes it possible to separate the answer from the result in the sequential style.

Since classical logic has both the weakening and the contraction rules, the non-linear
property makes the computation (communication) rules complex and interesting, involv-
ing a copy operator !,,. The hierarchical structure can also be defined for proofs of classical
substructural logics [7]. For instance, in the case of BCI-logic plus the double negation
elimination, the proof terms are in the form of \*(z*")). A/ and O(8), and we need no !,
because of n = 1.

It is worth pursuing the following problems as further directions: In this paper, we
defined computation rules for well-typed communication-terms based on the hierarchical
structure. It is also possible to define a type-free version of the communication-terms. A
finite tree was used to define the heirarchic structure. The hierarchical structure could
be defined with an infinite tree, and then the validity relation is given by the use of
bisimulation relation [16].
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