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Abstracts:

In usual computer, there exists a restriction of computational speed because
of irreversibility of logical gate. In order to avoid this demerit, Fredkin and
Toffoli [3] proposed a conservative logical gate. Based on their work, Milburn
[4] introduced a physical model of reversible quantum logical gate using beam
splittings and a Kerr medium. This model is called FTM (Fredkin ‐Toffoli
‐ Milburn gate). FTM gate was described by the quantum channel and the
efficiency of information transmission of the FTM gate was discussed in [10].
FTM gate is using a photon number state as an input state for control gate.
The photon number state might be difficult to realize physically. In this paper,
we introduced a new unitary operator related to the Kerr device on symmetric
Fock space in order to avoid this difficulty.
Key words: quantum logical gate, channels, beam splittings, FTM gate, Fock
space

1. Quantum channels

Let (B(\mathcal{H}_{1}), \mathfrak{S}(\mathcal{H}_{1})) and  (B(\mathcal{H}_{2}), \mathfrak{S}(\mathcal{H}_{2})) be input and output systems, respec‐
tively, where  B(\mathcal{H}_{k}) is the set of all bounded linear operators on a separa‐
ble Hilbert space  \mathcal{H}_{k} and  \mathfrak{S}(\mathcal{H}_{k}) is the set of all density operators on  \mathcal{H}_{k}

 (k=1,2) . Quantum channel  \Lambda^{*} is a mapping from  \mathfrak{S}(\mathcal{H}_{1}) to  \mathfrak{S}(\mathcal{H}_{2}) .  \Lambda^{*} is linear
if  \Lambda^{*}(\lambda\rho_{1}+(1-\lambda)\rho_{2})=\lambda\Lambda^{*}(\rho_{1})+
(1-\lambda)\Lambda^{*}(\rho_{2}) holds for any  \rho_{1},  \rho_{2}\in \mathfrak{S}(\mathcal{H}_{1})
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1. Quantum channels 

Let (B（凡），6(1-l1))and (B（凡），e（凡）） beinput and output systems, respec-

tively, where B(1-lk) is the set of all bounded linear operators on a separa-

ble Hilbert space 1-lk and 6(1-lk) is the set of all density operators on 1-lk 

(k = 1, 2). Quantum channel A* is a mapping from 6（凡） to6(1-l2). A* is linear 

if A*（入P1+ (1 —入）P2) ＝入A* （叫＋ （1 -入）A＊（ん） holdsfor any p1, p2 E 6（凡）



and any  \lambda\in[0,1] .  \Lambda^{*} is completely positive  (C.P.) if  \Lambda^{*} is linear and its dual
 \Lambda :  B(\mathcal{H}_{2})arrow B(\mathcal{H}_{1}) satisfies

  \sum_{i,j=1,\sim}^{n}A_{i}^{*}\Lambda(\overline{A}_{i}^{*}\overline{A}_{j})
A_{j}\underline{>}0
for any  n\in N , any  \{\overline{A}_{i}\cdot\}\subset B.(.\mathcal{H}_{2}) ‘and any  \{A_{i}\}\subset. B.  (\mathcal{H}_{I})\prime” where the dual map \Lambda of  \Lambda^{*} is defined by

 tr\Lambda^{*}(\rho)B=tr\rho\Lambda(B) ,  \forall\rho\in \mathfrak{S}(\mathcal{H}_{1}) ,  \forall B\in B(\mathcal{H}_{2}) . (1.1)
 t

Almost all physical transformation can be described by the CP channel [5],
[7], [8]

Let  \mathcal{K}_{1} and  \mathcal{K}_{2} be two Hilbert spaces expressing noise and loss systems,
respectively. Quantum communication process including the influence of noise
and loss is denoted by the following scheme [6]: Let  \rho be an input state in
 e(\mathcal{H}_{1}),  \xi be a noise state in  \mathfrak{S}(\mathcal{K}_{1}) .

 \mathfrak{S}(\mathcal{H}_{1})  arrow\Lambda^{*}  \mathfrak{S}(\mathcal{H}_{2})
 \gamma^{*}\downarrow  \uparrow a^{*}

 \mathfrak{S}(\mathcal{H}_{1}\otimes \mathcal{K}_{1})  rightarrow\backslash \Pi^{*}  \mathfrak{S}(\mathcal{H}_{2}\otimes \mathcal{K}_{2})
 \backslash 1

The above maps  \gamma^{*},  a^{*} are given as

 \gamma^{*}(\rho)  =  \rho\otimes\xi ,  \rho\in \mathfrak{S}(\mathcal{H}_{1}) , (1.2)
 a^{*}(\sigma)  =   tr_{\mathcal{K}_{2}}\sigma ,  \sigma\in \mathfrak{S}(\mathcal{H}_{2}\otimes \mathcal{K}_{2}) . (1.3)

The map  \Pi^{*} is a channel from  \mathfrak{S}(\mathcal{H}_{1}\otimes \mathcal{K}_{1})to\mathfrak{S}(\mathcal{H}_
{2}\otimes \mathcal{K}_{2}) determined by physical
properties of the device transmitting information. Hence the channel for the
above process is given by

 \Lambda^{*}(\rho)\equiv tr_{\mathcal{K}_{2}}\Pi^{*}(\rho\otimes\xi)=(a^{*}\circ
\Pi^{*}0\gamma^{*})(\rho) (1.4)

for any  \rho\in \mathfrak{S}(\mathcal{H}_{1}) . Based on this scheme, the noisy quantum channel [9] are
constructed as follows:

Noisy quantum channel  \Lambda^{*} with a noise state  \xi is defined by

 \Lambda^{*}(\rho)\overline{=}tr_{\mathcal{K}_{2}}\Pi^{*}(\rho\otimes\xi)=
tr_{\mathcal{K}_{2}}V(\rho\otimes\xi)V^{*} , (1.5)
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and a,ny入E.[0,1]. A*is completely positive (C.P.) ifA*is linear and its.dual 
A:B（祐） →B("H1) satisfies 

n 

区A;A（司元）Aj2: O 
i,j=l 

for any n EN, any｛元｝ CB（凡） andany {Ai} CB（柘）， wherethe dual map 
A of A* is defined by 

trA*(p)B = trpA(B), ・ Vp E 6ぽ1),VB EB（祐）．（1.1)

Almost all physical transformation can,be described by the CP channel [5], 
[7], [8] 

Let応 and応 betwo Hilbert spaces expressing noise and loss systems, 
respectively. Quantum communication process including the influence of noise 
and loss is denoted by the following scheme [6]: Let p be an input state in 
6( 柘），~ be a noise'state in 6（応）．

6 (1i1) 
7＊↓ 
e（柘R応）

The above maps "(*, a*• are given as 

A* ） e（凡）
↑a* 

） 

II* e（祐R応）

'Y* (p) = P 0 t p E 6（柘），

a* (<7) = tr/C2<7, <7 E 6 (1t嚢応）．

(1.2) 

(1.3) 

The map II". is a channel from 6 ('H澤応）to6 ('H嚢応） determinedby physical 
properties of the device transmitting information. Hence the channel for the 
above process is given by 

A* (p)三 tr1C2Il*(p 0 ~) = (a*。II*o'Y*) (p) (1.4) 

for any p E 6（柘）． Basedon this scheme, the noisy quantum channel [9] are 
constructed as follows: 

Noisy quantum channel A* with a noise state ~ is defined by 

A*(p)三 tr1C2II*(p0 () = tr1C2 V (p 0 () V*, (1.5) 



where  \xi=|m_{1}\rangle\langle  m_{1}| is the  m_{1} photon number state in  \mathfrak{S}(\mathcal{K}_{1}) and  V is a mapping
from  \mathcal{H}_{1}\otimes \mathcal{K}_{1} to  \mathcal{H}_{2}\otimes \mathcal{K}_{2} denoted by

  V(|n_{1} \rangle\otimes|m_{1}\rangle)=\sum_{j}^{n_{1}+m_{1}}C_{j}^{n_{1},m_{1}
}|j\rangle\otimes|n_{1}+m_{1}-j\rangle ,

 C_{j}^{n_{1},m_{1}}= \sum_{r=L}^{K}(-1)^{n_{1}+j-r}\frac{\sqrt{n_{1}!m_{1}
!j!(n_{1}+m_{1}-j)!}}{r!(n_{1}-j)!(j-r)!(m_{1}-j+r)!}\alpha^{m_{1}-j+2r}(-
\overline{\beta})^{n_{1}+j-2r}
 K and  L are constants given by  K= \min\{n_{1}, j\},  L= \max\{m_{1}-j, 0\}.In(16)
particular for the coherent input state  \rho=|\theta\rangle  \langle\theta|\otimes|\kappa\rangle\langle\kappa|\in \mathfrak{S}(\mathcal{H}
_{1}\otimes \mathcal{K}_{1}) , we
obtain the output state of  \Pi^{*} by

 \Pi^{*}(|\theta\rangle\langle\theta|\otimes|\kappa\rangle\langle\kappa|)=
|\alpha\theta+\beta\kappa\rangle\langle\alpha\theta+\beta\kappa|\otimes|-
\overline{\beta}\theta+\alpha\kappa\rangle\langle-\overline{\beta}\theta+
\alpha\kappa| ,

where  \Pi^{*} is called a generalized beam splitting. When the noise  \xi_{0}=|0\rangle\langle  0| is
given by the vacuum state,  \Lambda_{0}^{*} is called an attenuation channel [5] and  \mathcal{E}_{0}^{*} (or
 \Pi_{0}^{*}) is called a beam splitting. Based on liftings, the beam splitting was studied
by Accardi‐ Ohya [1] and Fichtner‐Freudenberg‐Libsher [2].

2. Quantum logical gate on symmetric Fock space

Recently, we reformulate a quantum channel for the FTM gate and we rigorously
study the conservation of information for FTM gate [10]. However, it might be
difficult to realize the photon number state  |n\rangle\langle  n| for the input of the Kerr
medium physically.

In this section, we reformulate beam splittings on symmetric Fock space
and we introduce a new operator on this space instead of the Kerr medium. We
discuss the mathematical formulation of quantum logical gate by means of beam
splittings and the new operator.

Let  G be a complete separable metric space and  \mathcal{G} be a Borel  \sigma‐algebra of
G.  v is called a locally finite diffuse measure on the measurable space  (G, \mathcal{G}) if
 v satisfies the conditions (1)   v(K)<\infty for bounded  K\in \mathcal{G} and (2)  v(\{x\})=0
for any  x\in G . We denote the set of all finite integer‐ valued measures  \varphi on
 (G, \mathcal{G}) by  M . For a set  K\in \mathcal{G} and a nutural number  n\in \mathbb{N} , we put the set of  \varphi

satisfying  \varphi(K)=n as

 M_{K,n}\equiv\{\varphi\in M;\varphi(K)=n\} .
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where (=Imり〈m叶isthe m1 photon number state in 6（応） andV is a mapping 
from凡R応 to凡R応 denotedby 

n1+m1 

V(ln1〉RImり） ＝z: c;1,m1u〉Rln1 +m1 -j〉,
j 

K 

c;i,m1 =区（一1r1+j-r 凸！m廿j!（m+m1 -j)！加—j+2r (-
J 

a 
r!(n1 -j)!(j -r)!(m1 -j + r)! 

(-/3)釘十j-2r

r=L 

(1.6) 
K and L are constants given by K = min{n1,j}, L = max{m1 -j, O}. In 

particular for the coherent input state p = l0〉〈0|R |k〉〈K,IE 6(7-l羹 /C1),we 
obtain the output state of TI* by 

TI* (10〉〈O|R |K〉〈"'I)= 1a0 + /3"'〉〈a0+f3"'1RI-M+a"'〉〈一M+a"'I,

where TI* is called a generalized beam splitting.'When the noise ~。= |0〉〈OIis 

given by the vacuum state, A0 is called an attenuation channel [5] and £~ (or 
TI0) is called a beam splitting. Based on linings, the beam splitting was studied 

by Accardi -Ohya [1] and Fichtner -Freudenberg -Libsher [2]. 

2. Quantum logical gate on symmetric Fock space 

Recently, we reformulate a quantum channel for the FTM gate and we rigorously 

study the conservation of information for FTM gate [10]. However, it might be 

difficult to realize the photon number state In〉〈nlfor the input of the Kerr 
medium physically. 

In this section, we reformulate beam splittings on symmetric Fock space 

and we introduce a new operator on this space instead of the Kerr medium. We 

discuss the mathematical formulation of quantum logical gate by means of beam 

splittings and the new operator. 

Let G be a complete separable metric space and g be a Borel(l-algebra of 

G. v is called a locally finite diffuse measure on the measurable space (G, 9) if 
v satisfies the conditions (1) v (K) < oo for bounded KE  g and (2) v ({x}) = 0 

for any x E G. We denote the set of all finite integer -valued measures 1P on 

(G, 9) by M. For a set KE  g and a nutural number n EN, we put the set of 1P 
satisfying 1P (K) = n as 

Mk,n三{ifJ E M; ifJ (K) = n}. 



Let  \mathfrak{M} be a  \sigma‐algebra generated by  M_{K,n} .  F is the  \sigma‐finite measure on  (M, \mathfrak{M})
defined by

 F( Y)\equiv 1_{Y}(\varphi_{0})+\sum_{n=1}\frac{1}{n!}\int_{M}1_{Y}(\sum_{j=1}
^{n}\delta_{x_{j}})v^{n}(dx_{1}\cdots dx_{n}) ,

where  1_{Y} is the characteristic function of a set  Y,  \varphi_{0} is an empty configulation
in  M and  \delta_{x_{j}} is a Dirac measure in  x_{j} .  \mathcal{M}\equiv L^{2}(M, \mathfrak{M},F) is called a (symmetric)
Fock space. We define an exponetal vector  \exp_{g} :  Marrow \mathbb{C} generated by a given
function  g:Garrow \mathbb{C} such that

 \exp_{g}(\varphi)\equiv\{
1  (\varphi=\varphi_{0}) ,

  \prod_{x\in\varphi}g(x)  (\varphi\neq\varphi_{0}) ,
 (\varphi\in M) .

2.1. Generalized beam splittings on Fock space

Let  \alpha,  \beta be measurable mappings from  G to  \mathbb{C} satisfying  \overline{\alpha}

 |\alpha(x)|^{2}+|\beta(x)|^{2}=1 ,  x\in G .

We intoduce an unitary operator  V_{\alpha,\beta} :  \mathcal{M}\otimes \mathcal{M}arrow \mathcal{M}\otimes \mathcal{M} defined  b

 (V_{\alpha,\beta}\Phi)(\varphi_{1}, \varphi_{2})  \equiv   \sum_{\hat{\varphi}_{1}\leq\varphi_{1}}\sum_{\hat{\varphi}_{2}\leq\varphi_{2}}
\exp_{\alpha}(\hat{\varphi}_{1})\exp_{\beta}(\varphi_{1}-\hat{\varphi}_{1})\exp_
{-\overline{\beta}}(\hat{\varphi}_{2})\exp_{\overline{\alpha}}(\varphi_{2}-\hat{
\varphi}_{2})
 \cross\Phi(\hat{\varphi}_{1}+\hat{\varphi}_{2}, \varphi_{1}+\varphi_{2}-
\hat{\varphi}_{1}-\hat{\varphi}_{2})

for  \Phi\in \mathcal{M}\otimes \mathcal{M} and  \varphi_{1},  \varphi_{2}\in M . Let  A\equiv B(\mathcal{H}) be the set of all bounded opera‐
tors on  \mathcal{M} and  \mathfrak{S}(A) be the set of all normal states on A.  \mathcal{E}_{\alpha,\beta} :  A\otimes Aarrow A\otimes A

defined by
 \mathcal{E}_{\alpha,\beta}(C)\equiv V_{\alpha}^{*},{}_{\beta}CV_{\alpha,\beta} ,  \forall C\in A\otimes A

is the lifting in the sense of Accardi and Ohya [1] and the dual map  \mathcal{E}_{\alpha,\beta}^{*} of  \mathcal{E}_{\alpha,\beta}
given by

 \mathcal{E}_{\alpha,\beta}^{*}(\omega)(\bullet)\equiv\omega(\mathcal{E}
_{\alpha,\beta}(\bullet)) ,  \forall\omega\in \mathfrak{S}(A\otimes A)

is the CP channel from  \mathfrak{S}(A\otimes A) to  \mathfrak{S}(A\otimes A) . Using the exponetial vectors,
one can denote a coherent state  \theta^{f}i3by

 \theta^{f}(A)\equiv\langle  \exp_{f}, A  \exp_{f}\rangle  e^{-||f||^{2}} ,  \forall f\in L^{2}(G, \nu),  \forall A\in A .

122

Let珈 bea び—algebra generated by MK,n・ F is the CT-finite measure on (M飢）
defined by 

1 
n 

F(Y)三 1心）＋こiい（口）研(dx,---dx.),

where ly is the characteristic function of a set Y, cp。isan empty configulation 
in Mand鯰 isa Dirac measure in Xj, M 三ザ (M，蚊，F)is called a (symmetric) 
Fock space. We define an exponetal vector exp9 : M → <C generated by a given 
function g : G→ <C such that 

1 (cp=cpo), 
exp,（'I')三{II g(x) （¢ヂやo)，

XE<p 

(cp EM). 

2.1. Generalized beam splittings on Fock space 

Let a, {3 be measurable mappings from G to (C satisfying a 

la(x)l2+1{3（x)ド＝ 1, x E G. 

We intoduce an unitary operator Va,/3 : M R M → M R M defined b 

(Va,/3<I>)（五四）三 LL exp°' 伯） exp/3 屈— 01) exp_13出）exp°'(cp2―妬）
釘'.::'.'P1(p斧 'P2

X<I>（約＋幻団＋ 'P2―妬ー妬）

for <I> E M R M and cpいcp2EM. Let A三屈 (H)be the set of all bounded opera— 

tors on Mand 6 (A) be the set of all normal states on A. Ea,/3 : A R  A→ ARA 
defined by 

Ea,/3(C)三 VふCVa,/3， VGE ARA 

is the lifting in the sense of Accardi and Ohya [1] and the dual map t::,/3 of Ea,/3 
given by 

Eら (w) （●）三山 (Ea,13(•)), ¥:/w E e(ARA) 

is the CP channel from 6 (AR A) to 6 (AR A). Using the exponetial vectors, 
one can denote a coherent state 01 Bby 

of (A)三〈exp1,Aexp介e―||1112, VJEL2(G,v), VAEA. 



In particular, for the input coherent states  \eta_{0}\otimes\omega_{0}=\theta^{f}\otimes\theta^{g} , two output states
 \omega_{1}(\bullet)\equiv\eta_{0}\otimes\omega_{0}(\mathcal{E}_{\alpha,\beta}((
\bullet)\otimes I)) and  \eta_{1}(\bullet)\equiv\eta_{0}\otimes\omega_{0}(\mathcal{E}_{\alpha,\beta}
(I\otimes(\bullet))) are obtained

by
 \omega_{1}=\theta^{\alpha f+\beta g} ,  \eta_{1}=\dot{\theta}^{-\overline{\beta}f+\overline{\alpha}g} .

 \mathcal{E}_{\alpha,\beta}^{*} is called a generalized beam splitting on Fock space because it also hold the
same properties satisfied by the generated beam splitting  \Pi^{*}in Section 1.

Now we introduce a self‐adjoint unitary operator  \tilde{U} , which denotes a new
device instead of the Kerr medium, defined by

 \tilde{U}(\Phi)(\varphi_{1}, \varphi_{2})\equiv(-1)^{|\varphi_{1}||\varphi_{2}
|}\Phi(\varphi_{1}, \varphi_{2})

for  \Phi\in \mathcal{M}\otimes \mathcal{M} and  \varphi_{1},  \varphi_{2}\in G , where  |\varphi_{k}|\equiv\varphi_{k}(G)  (k=1,2) . For the input
state   \omega_{1}\otimes\kappa\equiv\theta^{f}\otimes\frac{1}{||\psi||^{2}}
\langle\psi, \bullet\psi\rangle , the output state  \omega_{2} of new device is

  \omega_{2}(A)\equiv\omega_{1}\otimes\kappa(\tilde{U}(A\otimes I)\tilde{U})=
\frac{1}{||\psi||^{2}}\int_{M}F(d\varphi)|\psi(\varphi)|^{2}\theta^{(-1)^{\}
\varphi 1^{2}f}}(A)
for any  A\in A,  \psi\in \mathcal{M}(\psi\neq 0) and  f\in L^{2}(G, \nu) . If  \kappa is given by the vacuum
state  \theta^{0} , then the output state  \omega_{2} is equals to  \omega_{1} and if  \kappa is given by one particle
state, that is,   \kappa=\frac{1}{||\psi||^{2}}\langle\psi, \bullet\psi\rangle with  \psi r_{M_{1}^{c}} (where  M_{1} is the set of one‐particle

states), then  \omega_{2} is obtained by  \theta^{-f} . Let  M_{o} (resp.  M_{e} ) be the set of  \varphi\in M
which satisfies that  |\varphi| is odd (resp. even) and  M be the union of  M_{o} and  M_{e} .
The output states  \omega_{2} of the new device is written by

 \omega_{2}(A)=\lambda_{1}\theta^{-f}(A)+\lambda_{2}\theta^{f}(A)  \forall A\in A ,

where  \lambda_{1} and  \lambda_{2} are given by

 \{   \lambda_{1}=\frac{1}{||\psi||^{2}}\int_{M_{o}}F(d\varphi)|\psi(\varphi)|^{2} ,

  \lambda_{2}=\frac{1}{||\psi||^{2}}\int_{M_{e}}F(d\varphi)|\psi(\varphi)|^{2}
Two output states  \omega_{3}(\bullet)\equiv\omega_{2}\otimes\eta_{2}(\mathcal{E}_{\alpha_{2},
\beta_{2}}((\bullet)\otimes I)) and  \eta_{3}(\bullet)\equiv\omega_{2}\otimes\eta_{2}(\mathcal{E}_{\alpha_{2},\beta_
{2}}(I\otimes(\bullet)))
of the total logical gate including two beam splittings  \mathcal{E}_{\alpha_{k},\beta_{k}}^{*} with  (|\alpha_{k}|^{2}+|\beta_{k}|^{2}=1)
 (k=1.2) and the new device instead of Kerr medium are obtained by

 \omega_{3}  =  \lambda_{1}\theta^{\alpha_{2}(-(\alpha_{1}f+\beta_{1}g))+\beta_{2}(-
\overline{\beta}_{1}f\overline{\alpha}_{1}g}+)_{+\lambda_{2}\theta^{\alpha_{2}
(\alpha_{1}f+\beta_{1}g)+\beta_{2}(_{-\overline{\beta}_{1}f+\overline{\alpha}
_{1}g})}} ,

 \eta_{3}  =  \lambda_{1}\theta^{-\beta_{2}(-(\alpha_{1}f+\beta_{19}))+\overline{\alpha}2(-
\overline{\beta}_{1}f)_{+\lambda_{2}\theta^{-\overline{\beta}_{2}(\alpha_{1}f+
\beta_{1}g)+\overline{\alpha}_{2}(-\overline{\beta}_{1}f+\overline{\alpha}_{19}}
}}+\overline{\alpha}_{19}) ,
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In particular, for the input coherent states'f/o 0 Wo = 0偽 0丸twooutput states 

W1(•) 三 n。 ®Wo(Ea,g ((•) RI)） and n1 (•) ＝ n。0Wo (£ a,fi (I 0 (•))) are obtained 
by 

叫＝ 0af+(39, 1J1=0―Bf+ag. 

£匂 iscalled a generalized beam splitting on Fock space because it also hold the 

same properties satisfied by the generated beam splitti~g II*in Section 1. 
Now we introduce a self-adjoint unitary operator U, which denotes a new 

device instead of the Kerr medium, defined by 

U(O)（約五）三（一1）l'P1I|四 I<I>（切五）

for <I> EM  @Mand切五 EG, where lcp叶三 cpk(G) (k = 1, 2). For the input 

state W1 R k = 0f R 11か〈ゆ，●心〉， the output state w2 of new device is 

1 叫A) 三 W心 (u(A@I)U) ＝~ JM F(dcp) I心(cp)l20(-1)1"'12, (A) 

for any A EA,ゆEM（ゆ=/-0) and f Eび (G,v).If/'i,i /'i, is given by the vacuum 

state 0°, then the output state w2 is equals to w1 and if /'i, is given by one particle 

state, that is, /'i, = TIゅ1||2位●心〉 with心「Mf(whereM1 is the set of one-particle 

states), then四 isobtained by e-1. Let M.。(resp. Me) be the set of cp E M 

which satisfies that jcpl is odd (resp. even) and M be the union of M.。andMe. 

The output states w2 of the new device is written by 

四 (A)=入o-f（A)＋入糾 (A) VA EA, 

whereふandふaregiven by 

｛入＝ 1|ふJM。F(dゃ） 1心(¢)|29 

ふ＝ IIゆ~f Me F (dcp) I心(cp)l2.

Two output states W3 (•) = W20rJ2 (£~2,132 ((•) 0 I)) and ry3(•) 三 W20rJ2 (£a2,[32 (I 0 (•))) 
2 

of the total logical gate including two beam splittings £,ら，/3kwith (lakl2 + I.Bkl2 = 1) 
(k = 1.2) and the new device instead of Kerr medium are obtained by 

叫＝ふ0吋ー（叫＋疇）＋あ(-叩＋a19)＋入20叫1f＋叩）＋凰—幻＋ふg)

％ ＝入10—あ(-(aif＋知））＋知(-叩＋虹） ＋ふ0丸（叫＋9lg)＋必(-叩＋mg)



where  \omega_{2}=\lambda_{1}\theta^{-(\alpha_{1}f+\beta_{1}g)}+\lambda_{2}
\theta^{\alpha_{1}f+\beta_{1}g} and  \eta_{2}=\eta_{1}=\theta^{-\overline{\beta}_{1}f+\overline{\alpha}_{1}g} .

Based on the  a\acute{b}ove settings, we could show that new logical gate performs
the complete truth table. The furtherdevelopment of our study will be appear
in [11].
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where吟＝入lo-（alf＋叩） ＋ふ0叩 ＋ 和1and % ＝ nl = 0-M＋伍g．
Based on the above settings, we could show that new logical gate performs 

the complete truth table. The furtherdevelopment of our study will be appear 
in [11]. 
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