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Abstract

Automatic recognition of conversational speech involves comprehensive studies of pat-
tern recognition, knowledge representation and search algorithms. It is significant for
intelligent and friendly human-machine interfaces. In a spoken language understanding
system or a dialogue system, it is essential to cope with a variety of speakers and natural

continuous utterances including ill-formed ones.

In order to realize highly accurate and robust recognition of conversational speech,
in this thesis, we present discriminative statistical models for the phone recognizer, and
address heuristic search strategies to combine the acoustic model and the language model.
We adopt the following approaches. At first, discriminant analysis is incorporated to Hid-
den Markov Model (HMM) to improve both discriminative ability and robustness. Next,
admissible and efficient search algorithms are explored with simple linguistic knowledge as
heuristics. In the framework of A* search, statistical knowledge sources such as syllable or
word bigram and symbolic knowledge sources such as syntax and semantics are integrated
into a single evaluation function, of which heuristic score is computed by the statistical
ones. Moreover, we propose a model of interaction between the speech recognizer and the
natural language analyzer that are conventionally cascaded. The models and the algo-
rithms are implemented for both parsing and spotting. The parsing approach searches for
an optimal word sequence under a grammatical constraint on complete sentences, while
the spotting approach extracts keywords or key-phrases necessary for understanding, skip-

ping the unrecognizable parts.

In Chapter 3, we present discriminative statistical models for the acoustic model,
which is the basis of the whole recognition system.

We propose a new model named Pair-Wise Discriminant HMM (PWD-HMM) that
couples discriminant analysis and HMM. In the conventional algorithms, phone HMMs

are constructed and trained independently using in-class data only, and no considerations
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are taken for separating different classes. In our approach, for every pair of the classes
(observation symbols / HMM states), optimal feature extraction is performed based on
discriminant analysis to construct a Bayes classifier. Each classifier ranks the two classes
and computes a relative value of the probabilities. In continuous HMM, output probabil-
ities of the states are obtained by combining and normalizing the results of the pair-wise
classifications. In discrete HMM, the frame-wise symbols are determined by combining
the pair-wise results.

We first apply pair-wise discrimination method to recognition of static segments of
speech. Then, discrete HMM and continuous HMM based on pair-wise discriminant
analyses are implemented and compared. They achieved a phoneme recognition rate of
86.3%, and a 653 word recognition rate of 86.0%, which are higher by 10% than the
conventional HMMs.

In Chapter 4, we discuss heuristic search strategies for continuous speech parsing with
the phone HMMs front-end.

We first address A* search algorithms for an LR (context-free) parsing. The widely-
used beam search evaluates the hypotheses based on the searched part, and may prune the
optimal one on its way. Here, we realize A* search that evaluates each sentence hypothesis
with the matching score plus the heuristic score of the unsearched part. For heuristics
computation, we propose to use word-pair constraint, which satisfies A*-admissibility and
approximates the grammar well with economical complexity. Compared with beam search,
the algorithm achieved a better sentence recognition rate (63.0%) with less computation.

In this framework, we integrate various linguistic and pragmatic knowledge sources.
First, both the grammar and the heuristic constraint are modified to reflect statistics. A
probabilistic LR grammar and word bigram take the place of the deterministic grammar
and the word-pair, respectively. Next, the dialogue-level knowledge source is incorporated
to predict the possible syntax of user utterances and reduce its perplexity. Then, we make
an interaction of the speech parser and the semantic analyzer, which realizes incremental
semantic analysis and interactive semantic verification of the partial sentence hypotheses.
By integrating all the available knowledge sources, the semantic accuracy was improved

by 5~10% and reached 75.5% in the best case.

In Chapter 5, we address word and phrase spotting algorithms using a heuristic lan-

guage model.
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The conventional spotting methods based on length-free bottom-up matching are sen-
sitive to the local noise or similarity and generate a lot of unnatural false alarms. We
propose an evaluation function that reflects not only the matching score of the word itself
but also the plausibility of the rest part as a sentence. For the heuristic evaluation for
the latter, several language models such as syllable bigram or word-concatenation are
compared. The algorithm obtained a much higher detection rate at the 219 vocabulary
spotting experiment.

We further propose to adopt a phrase as the spotting unit. Since its syntax is rarely
violated and it makes a semantic case, the unit of a phrase is suitable for robust under-
standing of ill-formed utterances. By choosing the heuristic language constraint so as to
be subset of the phrase syntax, the phrase spotting algorithm can be implemented as A*
search. It improved the detection rate, compared with the normal word spotting. We also
discuss the search strategies for sentence understanding based on the phrase spotting.
With an optimal search to find the best hypothesis that satisfies both the phrase syntax
and the inter-phrase semantic constraint, the spotting-based approach was comparable
to the continuous speech parsing for grammatical utterances, and superior for ill-formed

ones.

The components mentioned above are combined into a speech recognition system. It
first applies a simple statistical language model, which roughly decodes the input speech
and will provide heuristics for the following processing. The efficient parsing is performed
to find an optimal sentence hypothesis supposing a grammatical utterance. If it fails, then
the spotting approach is taken to cope with ill-formedness. Thus, the system works well
for both grammatical and ill-formed utterances. It is integrated with a natural language

processor and a task manager into a spoken dialogue system.
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Chapter 1

Introduction

Spoken language is one of the most natural way of communication for us. It was used
even before the characters were invented, and babies learn to speak before reading and
writing. Even in today’s modern society, telephone and television are more popular media

than postal mails and books.

However, present communication through or with computers is mainly based on writ-
ten language. This constraint on media makes it difficult to automate a lot of transactions
such as information retrieval, guidance and booking. Furthermore, it also hampers real-
ization of user-friendly interfaces just like human-human communication. Therefore, it is

desirable to incorporate spoken language as medium for human-machine interfaces.

Studies on automatic speech recognition (ASR) started about several decades ago[1],[2],
and have been active, involving signal processing, pattern processing, language processing

and knowledge processing along with statistics, phonetics, psychology and medicine.

The most fruitful achievements in the 1970s were speech analysis based on linear
predictive coding (LPC)[3] and pattern matching with dynamic programming (DP)[4].
As a result, recognition of dozens of words became practical, and several spoken language
recognition systems were built[5],[6],[7],[8]. However, all of them were speaker-dependent
systems that must be trained for every speaker. They required a user to utter several
hundreds of speech samples beforehand. Moreover, most of the systems assumed that
every word be isolated, which means they required a user to put a pause between words.
These constraints hamper user-friendliness greatly and are not realistic in the practical
stage.

In the 1980s, speaker-independent continuous speech recognition has been vigorously

studied. Among several approaches, the most successful and still promising is the stochas-
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tic approach. As an acoustic model, hidden Markov model (HMM) was introduced[9] and
demonstrated as powerful in capturing variation and time-warping of speech[10],[11]. As
a language model, stochastic models like bigram or trigram (N-gram) got widely used
because of its simple and all-embedding structure[12]. These models together have been
shown as effective and contributed to speaker-independent speech recognition systems[13].

As continuous speech recognition was put into an experimental stage, it got widely
recognized that extracting the meanings of utterances is more significant than transform-
ing them into sentences. Namely, the goal should be understanding, rather than dictating.
It is quite natural when we consider the applications of speech technology. One of the
ultimate human-machine interfaces is a realization of dialogue with a user. In this case,
the system has to deal with natural conversational speech, which demands robustness as
well as high accuracy. The conventional modelings mentioned above are insufficient and
lack robustness for this purpose.

The problems arise from the following reasons.

e As acoustic modeling, HMM lacks viewpoint of discriminating confusing classes,

which is the basis of pattern recognition.

e The conventional language models or parsing approach cannot cope with ill-formed

utterances that often happen in real dialogue.

e To deal with tasks of large perplexity and ill-formedness, tight integration of a
speech recognizer and a natural language analyzer is necessary. This demands an

efficient search strategy that combines various knowledge sources.

In this thesis, we present solutions to the above problems, which will provide a new
framework of speech recognition suitable for spoken language systems and dialogue sys-

tems.

1.1 What is Necessary

In order to realize an intelligent and user-friendly spoken language system or dialogue

system, the following factors are significant.
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Speaker-independent natural speech

Speaker-independence is essential because spoken language systems must be available to
any users. Some applications such as guidance or booking should be open to the general
public. Even if training with a new speaker is permissible, the baseline system has to be
powerful enough to minimize the necessary training samples.

Conversational speech spoken to a dialogue system is different from inputs to a dic-
tation machine or voice typewriter. A user tries to communicate his or her intention by
putting stress on keywords or changing speeds, which causes unclear words on the other
hand.

To meet these needs, the acoustic model that is the base of the whole system must
have high discriminating power. It also has to be robust against both the inter-speaker

variation and the poor articulations.

Continuous utterance with sufficient perplexity

Accepting continuous utterances is also vital factor in spoken language systems. It is
unnatural and even painful for a user to cut conversational speech into words. It is
a heavy burden especially on speakers of Japanese, as the concept and the boundary
of words are not explicit. When a system does not know the word boundary a priori
by allowing continuous utterances, it has to assume the word boundary at every frame.
Thus, the number of sentence hypotheses that the system deals with increases drastically.

Moreover, in real applications, a variety of utterances must be accepted and the per-
plexity of tasks gets large. This is another factor that causes the number of hypotheses
to explode.

These factors require a search algorithm that can find the optimal hypothesis with

high accuracy and less computation.

Robust understanding of ill-formed utterances

Unlike read speech to a dictation system, there are inevitably various ill-formedness in
spontaneous speech that a spoken dialogue system has to deal with. Hesitations and filled
pauses such as ‘uh’ are often inserted, and even violation of the orthodox grammar such as
an incorrect use of functional words occurs. The conventional natural language analyzers

hardly cope with them.
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New words unknown to the system are also often used. They upset the conventional
recognizers that presume a prepared vocabulary. Even with a large vocabulary system,
names of cities and persons are not predicted completely.

Robustness against these sorts of ill-formed utterances is significant to make the system
practical in real situations. In this case, the system only has to understand utterances,

and complete transcriptions of them are not necessary.

1.2 Approach

To address the above issues, the following approaches are adopted in the thesis.

1.2.1 Discriminative and Robust Acoustic Modeling

At first, the acoustic model must be improved to be discriminative and robust since it is
the basis of the overall system.

Discriminative ability means to what extent the recognizer can classify the given sam-
ples that are provided for training. Robustness means to what extent the recognizer can
cope with open samples that are different from training samples.

Discriminative ability and robustness can be in a trade-off relation generally. For
example, in the connectionist approach, one big problem is overlearning, where a neural
network adapts too much to training samples and does not work on open samples such as
those of different speakers[14]. Model complexity is another related issue. As the number
of model parameters increases, potential capacity of complex classification increases. But
it gets hard to estimate the parameters accurately and hard to construct a general and
robust model[15].

As acoustic modeling, HMM is most promising. It models intra-speaker and inter-
speaker variation with probabilistic output distributions and realizes dynamic time-warping
with probabilistic state transitions. It can be regarded as a generalization of DP match-
ing. Although HMM provides a comprehensive framework, its implementation gives rise
to some significant problems. As for the probability evaluation problem and the state se-
quence decoding problem, Forward algorithm and Viterbi algorithm give optimal solutions
respectively. However, the model construction problem, including a front-end quantizer in
discrete model, and the training problem remain. The orthodox HMM formulation lacks

the concept of discriminating competing classes, since it only constructs and estimates a
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phone model independently, using the samples that belong to the phone category.

In this thesis, we study how to improve HMM for both discriminative ability and
robustness. The approach we adopt is discriminant analysis which reduces the parameters
and improves the separability between the classes. Reducing the number of parameters
makes their estimation accurate with a reasonable number of samples, and also improves
robustness. Furthermore, we present a more sophisticated model that is based on pair-
wise discriminant analyses, since distinctive features vary for different phones and different
discriminant functions should be made for different competing classes.

First, we apply this approach to discrete distribution HMM by making the set of
observation symbols best separated, and then to continuous distribution HMM by best

separating the states of the different phone models.

1.2.2 Admissible and Efficient Search Algorithm

The search algorithm generates and evaluates plausible sentence hypotheses to get the
optimal result among a vast number of possible hypotheses. There are two points which
must be taken into account: admissibility and efficiency.

Admissibility means that a search algorithm is guaranteed to find the optimal hypoth-
esis whose score is best under given constraints. Efficiency is measured by the number
of hypotheses that an algorithm generates and extends. Both requirements may be in
trade-off relation. Pursuing efficiency often forces us to give up admissibility.

We first put priority on admissibility, because we cannot seek and evaluate efficient
algorithms unless we know the upper bound of the accuracy. But this does not mean
that we study unrealistic search algorithms that cannot be implemented with currently
available computing resources.

Incorporating good heuristics into a search is effective to satisfy both admissibility
and efficiency. If the heuristics is A*-admissible, the search finds optimal hypothesis. If
the heuristics is powerful enough, it guides the search to the solution efficiently. Good
heuristics is the key, considering its dedicated computation besides the search itself.

In this thesis, we focus on realization of this kind of heuristic search. Once we realize
a heuristic search that is admissible, then it is possible to extend it for further efficiency
by adding such techniques as beam pruning.

First, we present an A*-admissible LR parsing algorithm for continuous speech recog-

nition. Then, for more robust recognition of spontaneous speech, we study word spotting
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and phrase spotting algorithms based on the framework of heuristic search.

1.2.3 Integration of Statistical and Symbolic Knowledge

Language modeling is another component of speech recognition. Its function is to provide
the speech recognizer with predictive or verifying information to limit the hypotheses,
namely to constrain the search space.

When the goal of recognition is dictation, the knowledge source which is directly
related to recovering the surface word sequences is preferable. In spoken dialogue systems,
however, a different viewpoint on language modeling is necessary. As the goal of spoken
dialogue system is to understand user utterances, it needs a natural language processing
system to get the most plausible interpretation, using linguistic and pragmatic knowledge
according to the context and the situation. It is desirable for a front-end speech recognizer
to be linked with the understanding process.

There are two sorts of knowledge representations: statistical and symbolic.

A statistical language model N-gram has been widely used since it implicitly embeds
syntactic, semantic and pragmatic information. It is hard to describe general knowledge
explicitly. The simplicity of N-gram is also advantageous in the computational aspect.
But there exists a certain limitation of the model due to the absence of the concept of
understanding.

As a symbolic knowledge representation, grammar-based approach has also been stud-
ied. It uses a simple grammar dependent on the task domain. It can incorporate longer
distance constraint than bigram or trigram that concerns only one or two preceding words,
although it is less robust. Above all, a grammar can extract the structure of utterances
which is directly mapped to a semantic representation.

Our approach is integrating these two. In order to decode an input to a word sequence,
a statistical language model is more effective and robust. To lead higher-level understand-
ing of the speech, a grammar of structural and symbolic knowledge is incorporated.

The integration is realized in the framework of heuristic search described in the pre-
vious subsection. It is formulated as follows. A partial sentence or phrase hypothesis n is

evaluated by the sum of the score given by the both language models.

f(n) = g(n) + h(n) (1.1)

g(n) : score of the parts parsed by a grammar
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h(n) : score of the rests constrained by a statistical model
Here, the heuristics given by a statistical language model h(n) provides perspective of the
hypothesis, which guides the symbolic parser.
The mechanism is realized as a progressive search, which first applies a statistical
language model, and then performs symbolic parsing using the result of the first pass as

heuristics.

1.2.4 Cooperation of Speech Recognizer and Natural Language
Analyzer

In the conventional spoken language understanding systems, a speech processor and a
natural language processor are combined in cascade. They are fundamentally separated
and the speech recognizer passes its output such as sentence hypotheses to the language
analyzer. This simple mechanism keeps the modularity of the two processors with little
interface, which enables easy development and maintenance. This paradigm is called the
N-best paradigm, which first applies simple constraints and then examines the output
sentence candidates with complex language processing.

However, when the two modules are separated, higher-level linguistic knowledge sources
such as semantic and dialogue-level ones cannot be applied at the speech recognizer. So
the errors at the recognition stage cannot always be corrected. Concretely, the N-best
sentence candidates obtained with loose constraints tend to be quite similar, having the
same syntactic and semantic structure with one or two words replacements[16]. Thus, the
linguistic analysis following it cannot recover the structural recognition errors.

On the other hand, a tight integration of the two processors is not easy, since the
characteristics and the purpose of the knowledge sources are fundamentally different.
The speech recognizer uses knowledge of lexicon and syntax to constrain the surface
word sequence, while the natural language understanding process needs conceptual-level
knowledge sources such as semantics and pragmatics. These different knowledge sources
are not easily transformable.

We propose, therefore, not direct integration but interaction of the knowledge sources,
that is cooperation of the speech recognizer and the natural language analyzer. While
keeping the modularity, the speech recognizer and the language processor interact with
each other to exchange constraints.

The model is illustrated in Figure 1.1. The speech recognizer performs a tree search
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Figure 1.1: Cooperative speech understanding model

driven by a grammar, which generates a corresponding HMM trellis. The search finds the
optimal word sequence mainly with lexical and syntactic knowledge sources. The natural
language processor searches for the most plausible semantic representation, using lexical
and semantic knowledge sources. All the knowledge sources the both processors use are
affected by dialogue-level knowledge. For example, the syntactic type of the current ut-
terance reflects its intention in a stream of the dialogue, and the vocabulary is constrained
by the current topics and focus. Moreover, the two processors interact with each other
to constrain the counterpart search. Concretely, the intermediate results of the word
tree search fires the semantic-level search. In turn, the semantic analyzer interactively

constrains the word tree. As a result, all the knowledge sources are exchanged.

There are two ways to realize this cooperative understanding model of the speech
recognizer and the semantic analyzer. Although the both proceed interactively, one of
them takes initiative to construct sentence hypotheses. When we adopt a stack decoder
for overall control, the master processor directly accesses the stack, predicting the pos-
sible hypotheses. The other or slave processor works as a verifier. Normally, the speech
recognizer is master and constructs the sentence hypotheses, which are verified by the
semantic analyzer incrementally. But it is also possible for the semantic analyzer to be
master. In that case, sentence hypotheses are predicted by the semantics and evaluated

by the speech recognizer.
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1.2.5 Parsing versus Spotting

As the linguistic analysis for spoken language understanding, there exist two approaches:
parsing and spotting. Parsing approach models the whole part of the utterance and
describes as many phenomena as possible. It tries to analyze the whole given input.
Spotting approach focuses on keywords or key-phrases that significantly contribute to
sentence understanding. It extracts such parts and skips the rest of the input.

In the conventional spoken language understanding systems, parsing approach is pop-
ular. The constraint given by a language model is applied to the whole utterance and
the result is obtained after the global optimization. But this approach cannot cope with
what is not modeled or described, though it tries to parse the whole input. Moreover,
the constraint of a lexicon and a grammar, which is very powerful in recognition, puts
a burden on users by restricting the vocabulary and the patterns of sentences. And it
would be very hard and possibly endless to describe a grammar that covers various flexible
utterances without increasing perplexity.

As for robustness against ill-formed utterances, spotting approach is attractive. It
extracts only recognizable parts and skips the rests that cannot be not modeled. Actually,
in our daily life, especially in a limited situation, we can mostly make senses of utterances
by putting attention to keywords and discarding the rest detailed parts. However, the
spotting basically performs length-free matching with weak constraint, which involves
substantially large perplexity. It might be critical to make recognition without linguistic
knowledge.

In this thesis, we study the both approaches, seeking to improve them respectively.

Finally, they are compared with regard to accuracy and robustness.

1.3 Outline of the thesis

In Chapter 2, we make an overview of speech recognition. The design of the spoken
dialogue system of our group and the role of speech recognition in the system are presented.
Then, the recognition processes including signal processing, acoustic model, and language
model are briefly examined. Their basic concept, the conventional algorithms and their
defects are explained. The task and the database used in the thesis are also described.
In Chapter 3, we discuss the discriminative statistical model for the acoustic model

that is the basis of the whole recognition system. Both discriminative ability and robust-
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ness are explored.

In Chapter 4, we present admissible and efficient heuristic search algorithms for con-
tinuous speech parsing. The integration of the multiple knowledge sources and the coop-
eration of the speech recognizer and the natural language analyzer are also discussed.

In Chapter 5, we present word and phrase spotting algorithms with heuristic language
models. Here also, statistical knowledge and symbolic knowledge are integrated. Then,
the spotting approach is compared with the parsing approach.

Chapter 6 concludes the thesis.



Chapter 2

Overview of Speech Recognition

2.1 OQOutline of Dialogue System

2.1.1 System Design

As an intelligent and user-friendly human-machine interface, we (Prof. Doshita’s Lab.)
are designing and implementing a spoken dialogue system. Its platform is a personal desk-
top workstation. It features a new interactive mode to the computer, using a microphone
and a speaker. The system understands user utterances and makes responses to them
appropriately. By continuing a dialogue, it responds to the user’s demand.

We have set a task domain of personal schedule management. Its concept is a ‘com-
puter secretary’, which checks the user’s schedule and makes liaison with others via com-
puter networks. Present design is just a schedule database management, which includes
registration, modification and query of schedule data. It is regarded as a kind of intelli-
gent database access with spoken language. So the goal of the system is to interpret the
user’s demand through a dialogue into a command of the database interface.

This system is to accept continuous utterances by any speakers. However, we now
impose several constraints. At one dialogue session, just one demand which corresponds
to a database access command can be realized, though it may branch to another sub-
demand on its way. One utterance must be composed of single sentence, though it may
be broken to some extent.

The spoken dialogue system is an integration of speech processing and natural language
processing as well as knowledge processing. Figure 2.1 shows its lowchart. The uppermost
part is a user, who makes utterances to and gets responses from the system.

The left part surrounded by a broken line corresponds to speech understanding process.

11
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It inputs user utterances and extracts their meanings, considering the context of the
dialogue. If it succeeds to generate a database access command, it calls the database
interface program. The dotted area is a speech recognition system, on which the thesis
studies mainly. Other area in the understanding process is called a natural language
understanding system.

The right part is responding process. A dialogue manager controls generation of re-
sponding utterances, which are output to the user through speech synthesizer. Responses

to the user are also done through the graphic user interface if appropriate.

2.1.2 Flow of Understanding Process

In order to understand user utterances, we have adopted two different approaches that
are introduced in Chapter 1. The two paths between the phone matcher and the semantic

analyzer in Figure 2.1 corresponds to these approaches respectively.

Parsing Approach

This approach performs parsing on the whole inputs with some grammar and obtains the
N-best sentence candidates, which, by turns, are passed to semantic analyzer to construct
a semantic representation. It requires a user to utter strictly grammatical sentences, which
is strong constraint but expected to improve recognition accuracy. The function of each

process is explained in order.

1. Phone matcher

The phone matcher is a front-end processor that inputs user utterances and performs
phoneme recognition. However, it does not work alone, as phoneme recognition
without any linguistic constraints is almost impossible. It is driven by the syntactic
analyzer. Namely, the parser predicts some word, which is expanded to a phone
sequence, and asks the phone matcher to evaluate it. So the output of the matcher

is a score of the predicted phone sequences.

2. Syntactic analyzer

The syntactic analyzer is the core in parsing approach. It constructs sentence hy-
potheses for an input utterance. It predicts possible partial sentences, calls the

phone matcher, and extends the plausible ones based on the matching results, until



14 CHAPTER 2. OVERVIEW OF SPEECH RECOGNITION

a complete sentence is obtained. By continuing this process, finally, the N-best

sentences are output to the semantic analyzer.

3. Semantic analyzer

The semantic analyzer constructs semantic representations for given user utterances.
In parsing approach, it analyzes syntactically complete sentences in turn from the
best candidate, until a correct semantic representation is obtained. Therefore, con-

ventional parsers for written language can be used with minor modifications.

4. Dialogue manager

The dialogue manager plays important roles in understanding utterances. It fills
and even modifies some slots of a semantic representation according to the context
of the dialogue. It also provides predictive information to the semantic analyzer and
the syntactic analyzer. Use of this information in the syntactic level is discussed

later.

Spotting Approach

This approach performs word or phrase spotting and obtains a set of word/phrase can-
didates with their scores. If they are time-aligned at this stage, the set is called a
word /phrase lattice. They are passed to the semantic analyzer. In this case, the semantic
analyzer must parse a set of words/phrases, not complete sentences. This approach allows

more flexible utterances that do not have to follow grammars. It proceeds as follows.

1. Phone matcher

Same as in parsing approach, except that it is driven by the word /phrase spotter.

2. Word /phrase spotter

The word/phrase spotter is a pre-processor of the approach. It recognizes words
or phrases with their scores and time-alignment information. It calls the phone
matcher and extends the plausible word/phrase candidates. A set of candidates

whose scores exceed some threshold is output.

3. Semantic analyzer
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The role of the semantic analyzer is fundamentally same as that in parsing ap-
proach. In spotting approach, however, it constructs sentence hypotheses from a set
of words/phrases. It predicts possible combinations of words/phrases and evaluates
their scores and the coverage of the input speech. Then plausible ones are extended,

until a semantic representation covering reasonable parts of the speech is obtained.

4. Dialogue manager

Same as in parsing approach.

2.2 Components of Speech Recognition

Next we clarify how speech recognition, the thesis’s theme shown as dotted area in Fig-
ure 2.1, is carried out. Figure 2.2 shows the more detailed flow of speech recognition.
The upper part is the phone matcher and the lower is the syntactic analyzer and the
word /phrase spotter.

A user utterance is input to the signal processing part, which extracts useful features
for recognition. The obtained sequence of pattern vectors is passed to the pattern process-
ing part, which is based on acoustic modeling. The phone matcher is tightly integrated
with language modeling, which describes linguistic knowledge and provides predictive
information. A search algorithm is the key to combine acoustic modeling and language
modeling. It constructs hypotheses based on the predictive information from the language
model and matches them with the acoustic models for scoring. Then it extends plausi-
ble hypotheses by continuing this process. The required output is sentence candidates
or a set of words or phrases. Although algorithms are different for these purposes, the
fundamental concept of searching is same.

The basic approaches and methods of each component that are adopted in the study

are explained.

2.2.1 Signal Processing

Speech analysis with digital signal processing is performed in order to extract features
that are speaker-independent and distinctive of phones. Typically, a power spectrum or
its equivalent such as a cepstrum is obtained as a pattern vector, which is input to the

following recognition process.
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As the quality of the pattern affects the whole recognition, a lot of studies on speech
analysis have been undertaken. The most successful methods so far are based on linear
predictive coding (LPC).

In our experiments, a speech sample is sampled at 16 kHz and quantized to linear 16
bit. The speech waveform is then segmented into frames. The frame length is 25 ms.
The frame shift or the interval of analysis is 10 ms. Hamming window is applied to each
frame. For each windowed frame, LPC analysis of 26th order is performed. We compute
from the coefficients a smoothed power spectrum of 28 channels that correspond to the
critical band-widths. Beside this, we compute a power parameter with the residue of LPC
analysis.

In recognition, it is pointed out that the dynamic feature is significant such as delta-
cepstrum[17]. Here, we adjoin 8 frames of above variables into a pattern vector[18]. Since
its dimension gets quite large, discriminant analysis described later is performed to select

effective variables and eliminate redundant ones.

2.2.2 Acoustic Modeling

An input speech pattern, through the analysis, is matched with acoustic models. The or-
thodox pattern recognition methodology consists of formation of templates to be matched
and definition of a distance to evaluate the input. The most trivial case is combination
of the means of the training samples and Euclid distance.

In speech recognition, there arises the problem of dynamic time-warping of the match-
ing, as the length of the pattern is not fixed and it is far from linear warping. Therefore,
dynamic programming (DP) is widely used to find the best matching sequences. An-
other problem is treatment of speaker variation. Conventional way is to have multiple
templates. But this approach needs not a few number of parameters.

The more sophisticated approach is stochastic one. It models speaker variation with
a statistical distribution and realizes dynamic time-warping with a probabilistic process.
This model is called hidden Markov model (HMM), as its underlying states that have
statistical distributions transit in a Markov process. It is also regarded as a probabilistic
non-deterministic automaton, which generates or accepts a speech parameter sequence
with some probability. Though it models the speech generation process, in recognition,
it works as an acceptor of input sequences. It is illustrated in Figure 2.3. As generation

of speech is not reversible process, it is usually modeled with left-to-right model. In
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3383

Figure 2.3: Structure of left-to-right HMM

some cases, transitions skipping some state are used, but they need extra computation
with little effect. There is a type of automaton, where an output distribution is attached
to the state transition instead of the state itself. It needs more parameters and it gets
equivalent to Moore type by tying the distribution of the same states. Notice also that
HMM is equivalent to a DP template by allotting the same states as the template’s time-
slots and making the same state transitions with even probabilities.

This sort of model is constructed and trained for each recognition unit such as a
phoneme. For a given input X, we recognize it into the model m (or concatenation of
models in word/sentence recognition), such that probability p(X|m) that X is generated
by m is highest.

Forward Algorithm for Recognition

To compute the probability p(X|m), the following forward algorithm is performed.

For a model m of n states that starts at s; and ends at s,, and an input pattern

sequence X = (Xy,...,Xr), we perform an iterative computation.
a;(l) = p(xyls1), au(i) =0 (2<i<n) (2.1)
arli) = o) plsils)}-plxils)  (1Sism2<t<T)  (22)
J
p(X|m) = ar(n) (2.3)

Here p(s;|s;) is a state transition probability from s; to s;. It has to satisfy the following

relation.

> p(sils;) =1 (2.4)

And p(x;|s;) is an output probability that a pattern x; comes from state s;. In the contin-
uous distribution model, we usually assume Gaussian distribution, which is characterized
with a mean p and a covariance Y. More elaborate model adopts a weighted combination

of multiple distributions that correspond to multiple templates.

p(xe]si) = C' - exp{—(xs — pus)" - B - (30 — i) /2} (2.5)
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Figure 2.4: HMM trellis

C = (2m) 2. |3, 12 (2.6)

In the discrete distribution model, we firstly quantize a pattern x; into a code or
symbol o;, and the output probability is defined for each code. In this case, probability

computation is realized as a table look-up.

p(xe|si) = p(o]s;) (2.7)

If we assume a simple left-to-right model without skipping transitions, equation (2.2)

becomes:
ay(i) = {an-1(d) - p(silsi) + aw-1(2 — 1) - p(silsi-1)} x p(xu]si) (2.8)
With this assumption, the algorithm is realized as a simple trellis computation shown in

Figure 2.4.

Viterbi Algorithm for Recognition and Decoding

As an approximating method, Viterbi algorithm replaces the iteration with following.

ay(2) = max{oy_1(3) - p(sis:), au—1(i — 1) - p(silsi-1)} X p(xulss) (2.9)

By making oy(7) logarithm scaled, this computation becomes the efficient dynamic
programming without multiplication.
log a(i) = max {log a; 1(7) + log p(s;|s;),

logay 1(i — 1) + log p(si|s; 1)} (2.10)
+log p(x4s:)
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To estimate the most likely state sequence Z = (zy,...,2,), namely to decode the
input with the HMM states, we simply have to remember the pointer ¢;(i) that gives

maximum at every frame and trace back from the endpoint.

(i) = { z:_ . :lts;l(i) -p(silsi) > ar—1(i — 1) - p(si|si-1) (2.11)
2r = n (2.12)
n o= dilm) (T —13t>1) (2.13)

Forward-Backward Algorithm for Training

In order to train the model, namely to estimate the HMM parameters, we introduce a

backward probability.

Br(n) = 1, Br(i) =0 (1<i<n —1) (2.14)
Buli) = S{p(sils) - plxentls)) - Bua(i)}  (1isn,T—12121)  (2.15)
j
The state transition probability p(s;|s;) is updated as follows.
Zt:aH(i) - p(sj]si) - p(xels;) - Bi(5)
Zt:at(i) - Ba(d)
The output probability for each code entry in discrete model is also updated.
Zkat(i) - P(2)
ploy = k|si) = t"’i;at G (2.17)
In the continuous distribution model, both means and covariances are updated.
;at(i) - Ba(2) - X
U a6
S eu() - Aui) - (e = 1) - = )’
) Sau(i) - Auli)

We continue these reestimations until they converge. This kind of iteration is known

B(sjlsi) = (2.16)

(2.18)

A

X (2.19)

as EM (Expectation-Maximization) algorithm and guaranteed to converge into a local

optimal solution.
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Several Approaches to Improve Modeling and Training

There are several approaches to improve the orthodox HMM that is formulated above.

(1) Refining the phonetic unit to context-dependent

The approach divides the phonetic unit into several clusters, considering its neigh-
boring phonetic contexts[19],[20]. As the context-dependent clusters tend to have respec-
tive small distributions, overall separability between different phones is expected to be
improved. This approach creates so many models and drastically increases the model
parameters, which faces the model complexity problem. It tries to solve by using enor-
mous number of training samples. The increase of the number of models also makes the

linguistic parser complex, generating so many grammar nodes.

(2) Elaborating the model structure

The approach makes the model to describe more in detail. One way is to increase
the number of states, adding complex state transitions[21]. Another way is to refine the
output probability distribution, that is to increase the codebook entries in the discrete
distribution model, and to increase the number of mixtures in the continuous distribution

model. This approach also increases the model parameters on the other hand.

(3) Discriminant analysis of feature vectors

The approach is to modify the pattern space of the input feature vectors so that the
transformed space is better separated. Techniques such as discriminant analysis and sub-
space projection are used for transforming the pattern vectors to improve the separability
between the symbols of the discrete model or the HMM states of the continuous model.

This approach does not increase the model parameters, rather reduces them.

(4) Discriminative training

The approach focuses on learning and discrimination scheme. While the conventional
Forward-Backward algorithm estimates the parameters of a model using in-class samples
only, this approach use the samples of all classes totally to improve separability of them.
Alternative criteria have been proposed such as maximum mutual information[22], general
probabilistic descent[23] and corrective training[24] These sorts of supervised training are
very effective in improving discriminating ability. But they may fall in the overlearning

problem, and lack of robustness against the open samples
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Figure 2.5: Concatenating HMMs to represent a word/sentence

Although all of the above will be useful and they can be combined each other, we
focus on the discriminant analysis of feature vectors as it will realize the most substantial

improvement without losing robustness, with a reasonable number of training samples.

2.2.3 Language Modeling

With an acoustic model, we obtain the best word/sentence candidate W based on prob-
ability p(X|W). The probability is computed by concatenating phone HMMs into a big
model to represent the hypothesis as shown in Figure 2.5.

A language model plays two roles in speech recognition. The first one is to predict valid
phone sequences and eliminate those which are not accepted by linguistic and pragmatic
constraints. It reduces the number of candidates W to be matched with the phone model.
Without this constraint, the number of hypotheses increases in the exponential order. The
second role is to give preference to the candidates. It causes more plausible candidate to
be chosen even if its matching score is lower. This mechanism is formulated by Bayesian
rule to get a posteriori probability.

_ p(W) - p(X|W)
p(X)

Here p(WW) is a priori probability given by a language model. When we remove p(X), which

p(W|X)

(2.20)

does not affect the recognizing decision, and take logarithm as in Viterbi computation,
the equation becomes a summation of the score by the acoustic model and that by the
language model. The probability given by the language model is based on either statistics
or specific situation.

log p(W|X) = log p(W) + log p(X|W) (2.21)

There are two approaches to language modeling. One is thoroughly statistical and the

other is knowledge-based.



2.2. COMPONENTS OF SPEECH RECOGNITION 23

B88B8YE

Kyoto

H8BRBY

to

visit
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Statistical Language Modeling

The statistical approach models language with Markov models of words or morphological
elements. With simple bigram, a priori probability for word sequence W = (wy, ..., w)
is:

p(W) = p(wi| )p(walwi). . .p(Jwr) = J] p(wiss|w:) (2:22)

Word trigram can be also used as a higher-level constraint.

In Japanese, the concept and the boundary of words is not explicit and words are not
separated in normal texts. Therefore, it is not easy work to estimate the word bigram.
Automatic estimation with large corpora needs a morphological analyzer, which is not
perfect so far. Therefore, syllable bigram can be alternative. Japanese syllable that
consists of a vowel preceded by a consonant corresponds to an elementary character called
kana.

The statistical language modeling reflects all linguistic and pragmatic constraints spe-
cific to the task domain. When the purpose of the language model is decoding the original
word sequence from the inputs such as dictation or translation, it is quite effective. The
word bigram model, as shown in Figure 2.6, is also advantageous from the computational
aspect since it is fundamentally of the same order of the vocabulary size.

However, it is almost impossible to extract higher-level information such as the mean-
ing of utterances with this model, thus it does not contribute to the language understand-
ing process. Therefore, we basically use it for heuristics for parsing and spotting that is

combined with the knowledge-based language model.
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Knowledge-based Language Modeling

In order to form a knowledge-based language model, then, we examine available knowl-
edge sources. In the conventional linguistics, lexical, syntactic, semantic and pragmatic
knowledge sources are used. In a dialogue system, the dialogue-level constraint can be
also used. Furthermore, we suppose task domain-specific constraint which is reflected in

all levels mentioned above.

Lexical knowledge is most fundamental and computationally cheapest. It is repre-

sented as a dictionary that transcripts phonetic sequences of words.

Syntactic knowledge is significant in sentence recognition. Several classes and types
of grammars are conventionally used. The simplest one is a word-pair grammar that de-
scribes which words can follow some word. It is a special case of the word bigram. An
automaton grammar or a network grammar is widely used as it is straightly expanded to
HMM state sequences. But it is highly troublesome to construct this kind of representa-
tion, especially in a large task. As for a context-free grammar, which is based on syntactic
rewriting rule sets, several parsers have been studied. Early’s algorithm[25] is well known
as a top-down parser, and CYK chart-based algorithm|[26] is a famous bottom-up parser.
Both of them are simple and powerful, but generates all the possible hypotheses, many of
which are in vain. Therefore, it is difficult to apply them to a large grammar. The most
efficient parser so far is LR parser such as Tomita’s algorithm|[27]. It transforms the rule
sets into state tables. As a word is input, it transits the states using a stack to save and

restore the status. Predicted words at the state are specified in the table.

Since a context-free class grammar is desirable and convenient to describe normal
conversational language, we use LR parser. But we do not commit to concrete implemen-
tation of the parser. It is just required, for a given input, to check if it is accepted as a
complete sentence and to predict next word candidates. Furthermore, we use lower-level

knowledge sources as heuristics to guide the context-free parser.

With rules only, possible but less likely sentence hypotheses are generated as equally as
frequent sentence patterns. In order to reflect statistics, probability is introduced to rank
the rules so that more likely sentence hypotheses are adopted. This probabilistic grammar
gives a score of the language model in equation (2.21). The probability is attached to
each rewriting rule, so that the sum of those that have a same left non-terminal symbol

becomes 1. Its example is shown in Figure 2.7.
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(prob.)
PERIOD PP — DAY_N “kan” 0.2
PERIOD PP — TIME_N “kan” 0.7
PERIOD PP — TIME_N “kan” “han” 0.1

Figure 2.7: An example of probabilistic grammar rules

Semantics, pragmatics and the dialogue-level knowledge source are mainly utilized
in natural language analyzer. However, semantics and pragmatics are actually embedded
more or less to the grammar used in speech recognition since it is useful for disambiguation
and reducing perplexity. Use of the dialogue-level knowledge source in the speech parser
is also discussed later. But the basic concept of our model is that these knowledge sources

are indirectly accessed by interaction with the semantic analyzer.

2.2.4 Search Algorithm

Given an acoustic model and a language model, the number of hypotheses becomes enor-
mous in continuous speech recognition. For example, when the average number of pre-
dicted words in each extension is 10 and the possible length of a sentence is 7, then total

number of generated sentences can be more than 10 million.

When the number of grammar states is small such as word-pair, Viterbi search is
possible. It performs Viterbi algorithm on the model that concatenates phone HMMs
to represent the grammar, thus finds the optimal hypothesis by counting only path that

gives a maximum score at every frame. It realizes full search.

As a grammar becomes complex containing so many states, it costs too much to
compute the scores for all states. In context-free grammar, which has recursive nodes,
it is theoretically impossible to compute all. In this case, phone models are dynamically

concatenated as a hypothesis grows, and the trellis is generated accordingly.

For a large grammar, therefore, some pruning or ordering technique is essential. In
search algorithm, there are several issues to be considered: the order of hypothesis gen-

eration, the evaluation function, and the direction of search.
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Best-first vs. Beam

With regard to the order of hypothesis generation, best-first search and beam search are
mainly used in speech recognition.

Best-first search extends the hypothesis whose score is highest. However, the search
possibly falls into a breadth-first state, which generates so many hypotheses but does not
proceeds. To avoid this, stack decoding[28] is used to limit the number of hypotheses.
Stack is an efficient mechanism to push generated hypotheses and to pop the currently
best hypothesis.

Beam search has both features of breadth-first and best-first search. It proceeds
breadth-first, namely extends all the current hypotheses, but eliminates those of lower
scores in order to limit the number of hypotheses within a certain beam width. In other
words, it extends N-best (for large N) hypotheses at every step.

Beam search can be implemented as both time synchronous and asynchronous, while
best-first search proceeds asynchronously. However, stack decoding may fall into the much
same state as beam search, if the evaluation function highly depends on the time length of
the hypothesis. This implementation problem makes beam search more popular, though
stack decoding has attractive features. Therefore, the evaluation function is examined to

realize an effective best-first search.

Blind vs. Heuristic

As for the evaluation function or scoring, the simplest and currently most popular method
is based on Viterbi score for the generated hypothesis. It assumes time-synchronous
search, otherwise the score of longer hypothesis gets lower. It implies that the search is
blind, where all the hypotheses are extended without estimating how probably they will
bring out the optimal path in the end.

On the other hand, there is an approach to incorporate heuristic score into the eval-
uation function. Heuristic search estimates the score of the remaining unsearched part
and adds it to the current score. Its evaluation function for a hypothesis n is formulated

as follows.
f(n) = g(n) + h(n) (2.23)

Here g(n) is a matching score from the beginning of the input speech to the searched

point, and lAz(n), called heuristic function, is an estimate of the best scoring extension to
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the end of the input. The search is A*-admissible, namely guaranteed to find the optimal
path, if the estimate is an upper bound of the actual scoring extension of the hypothesis
to the end, that is h(n)>h(n).

When ﬁ(n) = 0, then the search is blind. However, it is not easy to evaluate the
heuristic score accurately. If it is too optimistic, the search falls into blind. Therefore,
several approaches underestimate the score to proceed search effectively. But this inval-
idates the admissibility and may lose the optimal path. Our study concentrates on this
issue in Chapter 4.1.

There are several other techniques to improve the search. When the vocabulary size
gets large, fast match that tests small fragments is effective to choose the word to extend

the hypothesis.

Island-Driven vs. Left-to-Right

As for the direction that a search proceeds, one-directional search is popular. Especially,
left-to-right search is suitable for real-time processing. Island-driven search has also been
studied. It starts with reliable words and extends hypotheses to the both directions,
skipping noisy parts. It is not so popular because its implementation gets complex and
the number of generated hypotheses gets larger. Moreover, when the optimal hypothesis
is obtained with admissible heuristics, the advantage of island-driven search seems no
longer relevant.

However, notice that the optimal solution makes sense only if the input satisfies the
constraint that is provided by the language model. In ill-formed utterances that have
filled pauses and unknown words, the constraint is violated and searching for an optimal
solution is meaningless. When we consider robust understanding of ill-formed utterances,
island-driven search is still attractive. This issue is much the same as the comparison of

parsing and spotting.

N-best vs. Hypotheses Merging

In continuous speech recognition, some word can be contained in different hypotheses. It
is efficient to merge them and avoid redundant matching computation, but it sacrifices
the optimality.

Several algorithms merge syntactically or semantically same hypotheses to make full



28

CHAPTER 2. OVERVIEW OF SPEECH RECOGNITION

Table 2.1: List of phone categories

phone | syllables containing | phone | syllables containing

category | the phone category | the phone
p pa,pu,po m ma,mi,mu,mo
Py pPja,pi,pju,pe,pjo my mja,mju,me,mjo
t ta,to n na,nu,ne,no
ty ti,te ny nja,ni,nju,njo
k ka,ku ko h ha,he,ho
ky kja,ki,kju,ke kjo hy hja,hi,hju,hjo
b ba,bu,bo f fu
by bja,bi,bju,be,bjo s sa,su,se,so
d da,du,do sh sja,si,sju,sjo
dy di,de z 7a,7u,7%€,70
g ga,gu,go zy zja,z1,7ju,zjo
gy gja,gi,gju,ge,gjo ch cja,ci,cju,cjo
T ra,ru,re,ro ts cu
ry rja,ri,rju,rjo
a ? ?a,?1,7u,%e,70
i w wa
u ya ja
e yu ju
o yo jo

use of beam width or stack size. But this makes it impossible to output the correct N-
best hypotheses[29]. The N-best candidates are necessary when the detailed linguistic
post-processing can correct or re-order them. To perform a correct N-best search, we

must save the N-best candidates at every step of the search without merging them.

2.3 Task and Database

In order to evaluate the recognition methods, we set up several tasks and databases.

2.3.1 Phone Categories

As the acoustic model, we set up 37 phone categories: 27 for consonants, 5 for vowels and
5 for semi-vowels and such. Consonants are classified according to the following vowel
contexts. For example, /p/ is classified into 2 categories p and py, and /pi/ and /pe/
are put into the latter. This classification is done with a clustering technique. Table 2.1

shows the list of the phonemes.
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Table 2.2: Specification of databases

‘ task H training ‘ phoneme ‘ word ‘ sentence ‘ ill-formed ‘
speakers 48 48 48 8 8
samples 3119 1317 1317 400 200
utterance word word word sentence sentence
class — 27 consonants | 653 words 50 kinds 25 kinds
length 4.7 ph./wd. | 6.2 wd./sent. | 6.2 wd./sent.

2.3.2 Speech Databases

For training and testing acoustic models, phonetically balanced word database is used.
Its vocabulary size is 653, and the set contains all the vowel-consonant-vowel (VCV tuple)
patterns in Japanese. The VCV patterns in the word utterances are hand-labeled as to its
starting point, its end point and the center of the consonant. The phone models are trained
using this VCV patterns, because the transitional parts are important for recognition. The
word utterances were made by 48 male speakers. Among all the samples, training samples
are chosen so that enough number of samples are provided for each phone. Besides them,

testing samples are picked up to evaluate the model.

For the evaluation of the acoustic model itself, phoneme recognition and word recog-
nition is performed. Both are done with the same data mentioned above. Phoneme

recognition is on hand-segmented VCV parts. Word recognition is done with vocabulary

of 653.

For continuously uttered sentence recognition, we prepared 50 kinds of sample sen-
tences on the ‘computer secretary’ task domain. They were uttered by 8 male speakers,

different from those for word database. We often refer this set to grammatical utterances.

For spotting and robust sentence understanding, we also prepared 25 kinds of ill-
formed sentences on the same task domain. These ill-formed sentences have filled pauses
or incorrect uses of functional words. They were also uttered by independent 8 male

speakers.

Table 2.2 shows the database used for training the phone model and recognition of

phonemes, words, and sentences.
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Table 2.3: Specification of LR grammars

| | G1]| GO]
vocabulary size 225 | 210
number of non-terminals 67 52
number of rules 330 | 317
word perplexity 17.2 | 37.7

Table 2.4: Specification of syllable bigram

number of syllables in the model 110
size of corpus (in syllables) 119350
number of bigrams that appear in corpus 3671
syllable perplexity with bigram 21.6
syllable perplexity with unigram 46.3

2.3.3 Baseline Language Models

As a baseline language model for continuous speech recognition, we described 2 kinds
of LR grammars. Both grammars accept all the grammatical sample sentences but are
different in terms of coverage and perplexity. Grammar GO allows a user more flexible
utterances than grammar G1. In grammar G1, the order of phrases such as time and
places is fixed, though Japanese expression is relatively flexible. Table 2.3 shows the
specification of the grammars. None of the ill-formed sentences are accepted by the both

grammars. But by removing filled pauses, many of them could be accepted.

Word-pair grammars are automatically derived from these grammars by checking the
possibilities of word connections. The word perplexities of the grammars are about 40 to
50. Word bigram is also derived from the probabilistic version of the LR grammar as a

probabilistic word-pair grammar.

In order to estimate syllable (kana) bigram, we used dialogue text database of the
Acoustic Society of Japan (ASJ)[30]. It is completely independent from our task domain.
The syllable perplexity with bigram gets 21.6. Here we performed back-off smoothing
on the bigram of the syllable pairs that do not appear in the corpus frequently[31]. The
specification of the bigram is listed in Table 2.4.
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Definition of Perplexity

To measure difficulty of recognition task or effect of language modeling, word perplexity
is commonly used.

The concept of perplexity is how many choices a recognizer must deal with in each
step. When the leaf terminal of the language model is word, word perplexity is defined as
how many word candidates can follow the current partial sentence hypothesis on average.

Its formal definition is based on information theory. If a language model is formulated
with finite states, entropy at each state is defined using probability p(w|j) that word w
appears at state j[32].

H(wlj) = Zp (wl7) logy p(wlj) (2.24)

When we take the average on all the state, the entropy of language model H(L) is defined.
Z p(j)H(wl|j) (2.25)

The word perplexity is obtained by taking a power of 2.
Q(L) = 2™ (2.26)

With a language model L, where only the lexical constraint is available and no gram-

mar is assumed, the word perplexity clearly becomes same as its vocabulary size V.
Q(L,) =2V =V (2.27)

With a word-pair grammar L., where no probabilities are introduced, the word per-

plexity is as much as the average number of pairs W P(w) per word.
Q(Luyp) = 2251108 WP )}V (2.28)

In a language model such as context-free grammar which cannot be specified with
finite states, the entropy or the perplexity is computed by counting the number of possible
sentences W = (wy, ..., wy,).

The entropy of the sequence is:

HW) =-=> P(W)log P(W) (2.29)
The entropy per word is:
iH(W) = —Tll > P(W)log, P(W) (2.30)
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Then, the entropy of the language defined by the context-free grammar is defined as the
limit of the per-word entropy as the length of word sequences gets very large[33].

H(L.y) = — lim — ZP ) log, P(W) (2.31)

n—oo n,

Here, we assume a sequence of sentences delimited with a period. When we assume
the equal probability of all possible sequences, the above equation is rewritten with the
number of possible sequences.

N,

.1 1
H(Legg) = [lim %~ log, N, (2.32)
1
= lim —log, N, (2.33)

n—o0 n,

N,, : number of sentences of length n

Actually, we perform the above count by increasing the length n until the value H(L.f,)
converges. The word perplexity Q(L.s,) is computed by equation (2.26). As for the
perplexity of a word-pair grammar Q(L,y,), we adopt the same computation so that it
can be directly compared with that of a context-free grammar.

When a more complex language model is incorporated, where it is impossible to count
the number of generated sentences, the perplexity has to be estimated with test samples
available. This estimated perplexity is referred to test-set perplexity. For a given input
word sequence W = (start, wy, ..., w,, end), it is formulated as follows.

1 1 1

X X ... X
p(wi|start)  p(we|start, wq) p(end|start,ws,...,w,

Yo (2.34)

Q(testset) = {

If the number of words predicted by the language model for a partial sequence (start, wy, Wy,—1)

is ¢, then the test-set perplexity is computed as follows.
Q(testset) = (cy-cy1-co- - -cn)("JlrU (2.35)

The measure is also used for evaluation of context-free grammars for direct comparison.



Chapter 3
Hidden Markov Models (HMM)

with Discriminant Analysis

For an improved acoustic model that is the basis of speech recognition, we present dis-
criminative statistical models. Our baseline tools are HMM (Hidden Markov Models) and
discriminant analysis. HMM is not only a stochastic model of time-dimensional speech
but also a statistical model of the variation of observation patterns. Discriminant anal-
ysis is also a statistical method for feature extraction which reduces the parameters and
improves the separability between the classes.

Our basic concept is to use discriminant analysis as front-end feature extraction for
HMM. We propose a more discriminative model that is based on pair-wise discriminant
analyses, since distinctive features vary for different phones and different discriminant
functions should be made for different competing classes.

In Section 3.1, we present a classifier based on pair-wise discriminant analyses. In
Section 3.2, the classifier is incorporated as a front-end processor of discrete density HMM.
In Section 3.3, the pair-wise discriminant analyses are applied to continuous density HMM.

In Section 3.4, we compare the discrete model and the continuous model.

3.1 Classifier based on Pair-Wise Discriminant Anal-
yses

3.1.1 Introduction

As the first step of speech recognition, we discuss static pattern recognition. Though
speech is a time-dimensional and dynamic pattern, the basis of its recognition is classi-

fication or scoring of its local segments frame by frame. It corresponds to the front-end

33
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process of HMM, that is conventionally vector quantization or Gaussian distribution mod-
eling of every frame pattern.

We adopt statistical approach, which is general and robust. Linear discriminant anal-
ysis or Bayes classifier is effective for extracting valid features of patterns implicitly and
for recognizing with stochastic scores. When the number of classes to be discriminated
is large, however, it gets difficult to distinguish between close classes due to the use of
common variables and a single covariance matrix for all the classes. Therefore the dis-
crimination performance drastically decreases. To overcome this defect, we propose a
classifier that is based on pair-wise discriminant analyses, thus we call pair-wise discrim-
ination method. At first, discriminant analyses are performed on the pairs of the classes.
Then, by combining the results of these Bayes classifications, the final class is decided.

As the number of classes n increases, there arises a problem that the number of the
pairs increases in the order of n?, which consequently costs too much amount of storage
and computation. We also present a method to select pairs that contribute to overall

discrimination.

3.1.2 Pair-Wise Discrimination Method
Linear Discriminant Analysis

Firstly, we formulate the conventional discriminant analysis in a short form[34].

The input to a classifier is a d-dimensional pattern vector x = [zy, Z5.., 24]. Suppose
the population of class ¢; is normally distributed with mean u; and covariance ¥;, and
suppose further covariance matrices ¥;(i = 1, ..,n) are equal to X. The probability density

function that a given pattern x belongs to class ¢; is as follows.

p(x|c;) = C-exp{—D?(X)/Q} (3.1)
DAx) = (x— )t B (x - ) (32)
C = (2m)” 2. |3|7V? (3.3)

Here D?(x) is called Mahalanobis distance between a given pattern x and mean u; of
class ¢;, When a priori probability of every class is unknown or equal, a pattern x is
classified into the class whose probability density function p(x|c;) is maximum, namely the
class to which Mahalanobis distance D?(x) is minimum. This classification mechanism is

called Bayes classier. The discriminant function f; gets linear when we assume covariance
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matrices of the classes to be equal[15].

1 -
w2, (3.4)

filx) = Xt'z_l'ﬂi—§ i

d
= Zak '.T,'k—+‘a0 (35)
k=1

In discriminant analysis to construct a classifier, all the input variables z; are not
necessarily relevant to discrimination. Some variables may be useless or some can be
substituted by others. Therefore variables that separate the classes, namely those which
maximize Mahalanobis distance, should be selected. This variable selection uses F-value,
a measure for improvement of Mahalanobis distance by adding or removing a variable. It
is performed step-wise until no addition nor removal of a variable occurs[35]. As a result,
the dimension of x is reduced.

In two-class pattern discrimination, optimal variables to separate them are selected.
As the number of classes increases, however, it is difficult to select variables to maximize
Mahalanobis distance among all the classes. Every variable is effective to separate some
classes, but it may be useless or even harmful to separation of others. For example, it is
evident that the effective features to distinguish phoneme /b/ and /m/ is different from
those for /b/ and /d/. In the conventional one-stage discriminant analysis, variables
that contribute to overall discrimination on the average are selected. Consequently the
variables that feature a class are not selected if they have no discriminating power for
other classes. Therefore, different discriminant function should be adopted for different

classes.

Combining Pair-Wise Classifications

To overcome the defect described above, we have proposed pair-wise discrimination method[36],
that combines Bayes classifiers of the pairs of the classes. This method is based on the
property that, in two-class discrimination, an optimal discriminant function is constructed
to separate them.

At first, a set of pairs of the classes is constructed. The number of the pairs can
be its possible combination ,,Cy at most, where n is the number of the classes, but we
select the pairs that are effective for overall discrimination. Details of how to select pairs
are discussed later. Next, for each pair of the classes, statistical variable selection is

performed to make a discriminant space that maximizes Mahalanobis distance between
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Figure 3.1: Pair-wise discrimination method

the two. Here, we estimate a specific covariance matrix for each pair, which reduces the
deviation compared with the discriminant analysis using a common covariance matrix for
all the classes, while maintaining linear discriminant function.

For a given pattern, the two-class discriminations are done with the dedicated Bayes
classifiers. Then, by combining the results of the pair-wise classifications, the evaluation
score for each class is obtained, by which the pattern is classified finally. These steps are

illustrated in Fig 3.1.

3.1.3 Combining Pair-Wise Classifications

We present two methods to combine the pair-wise classifications: minimax method and

majority method.

(1) Minimax method
The method uses a posteriori probability p;_;(c;|x) that is obtained on the pair classi-
fier for ¢; and class ¢; by the following Bayesian rule, assuming even a priori probabilities.

p(x|ci)
xle) + p(xle;) (36)

pi—j(cilx) = o

Even though pattern x belongs to neither class ¢; nor class ¢;, either p;, ;(c;|x) or

pi—j(cj|x) will be more than 0.5. Therefore, we cannot say the pattern x comes from class
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¢; if p;_j(ci|x) is large. We just conclude that it does not if p; ;(c;|x) is small.
The evaluation function f;(x) for class ¢; is defined as the minimum of a posteriori

probabilities on the pairs that include class c;.
fi(x) = mjin pi—j(ci|x) (3.7)

This parameter reflects to what extent the class is not denied by pair-wise classifica-
tions. A given pattern is classified where the evaluation score is the largest, namely the
class that is not denied by most pairs.

Actually, a posteriori probability can be computed quite fast with the two-class linear
discriminant function. The ratio of the probability density is computed with the linear

discriminant function g; ’.

pose) _ Coexp{-hx—pm)' S (x— ) 5)
pi-j(%l¢;) Cexp{—3(x — )" - 7 (x — py)} '
_ exp{—3x'T'x + x' T — T ) (3.9)
exp{— xS Ix + X'y — Lp; 51} '
_exp{—3x'S7Ix} - exp{x'T 7 — X i} (3.10)

exp{—ix!T1x} - exp{x!T1p; — Tp; 5 1p;}
_ exple "0} (3.11)
exp{g;’ (x)}

A posteriori probability is obtained with this ratio, consequently in the linear order.

pij(x|ci)
pi_j(ci|x) (3.12)
’ pi—j(x|ci) + pi—j(x]c))
S (3.13)
o pi—j(xle;) )
L4 e

(2) Majority method
The method uses a binary value ¢;_;(¢;|x) that is obtained with the linear discriminant

function g./ (x).

oo g ®) > g (%)
%i-ilalx) = { 0  otherwise (3.14)

It is nothing but transforming a posteriori probability p;_;(c;|x) into a binary value.
gi—j(cilx) = 1 & pi_j(ci[x) > 0.5

Using this value further saves the amount of computation by obtaining the differential

discriminant function {g! 7 (x) — g;'fj (x)} beforehand.
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Figure 3.2: Examples of minimax method and majority method

The evaluation function f;(x) for class ¢; is obtained by taking the average of the

binary values on the pairs that include class c;.
fi(x) = average g; ;(c;[x) (3.15)

This parameter reflects the ratio of the pairs supporting the class. A given pattern
is classified where the evaluation score is the largest, namely the class that is supported
by most pairs. Majority method is equivalent to minimax method if and only if just one

class is supported by all the associated pairs.

Examples of these methods applied to three-class {A, B, C} discrimination are shown

in Fig. 3.2

3.1.4 Selecting Effective Pairs

Pair-wise discrimination method needs much computation and storage if we use all the
possible pairs since the number of the pairs increases in the order of n? (n: number of
classes). We, therefore, present an algorithm to select pairs that are effective for overall
discrimination.

To find out effective pairs, we introduce some measures to indicate to what extent

each pair contributes to overall discrimination.

(1) Occurrence of pair [¢; — ¢;] as the first and the second candidate: o;_;
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For all the samples, we count the occurrence of the first candidate and the second
candidate pairs since these pairs are likely to be confused and are essential in pair-wise
discrimination method. In other words, without this pair, pair-wise discrimination method

would fail for the sample.

(2) Change of the accuracy according to addition / removal of pair [¢; — ¢;]: Bi_;
This is a direct measure for the performance of discrimination. We define two mea-

sures: one corresponds to addition and the other to removal.

Bi ;= max {(accuracy of class ¢, with present pairs including [¢; — ¢;])

—(accuracy of class ¢y if the pair removed)}

+

ij = max {(accuracy of class ¢}, with present pairs excluding [¢; — ¢;])

—(accuracy of class ¢y, if the pair added)}

Use of the measure (;_; needs much computation because all the samples must be
tested to obtain each 3;_; and calculation is repeated until the set of pairs converges.
Therefore, measure o;_;, which needs only one test for all the samples, is preferable. But
only with this measure, we may overlook some important pairs because it does not directly
reflect the recognition performance. So we use measure a;_; as the primary and measure
Bi—; as the complementary.

Based on the those measures, an algorithm to select effective pairs is realized. The
basic strategy is to eliminate unnecessary pairs by using measure o;_; and recover the
pairs that are once eliminated but are necessary by using measure 3;~ ;- However, there
may be pairs that can be substituted by others even if they remain after the first step.
Such pairs are found out among those whose «; ; are low by using measure ;_; and

eliminated in the second step. The algorithm is as follows.

1. With all the possible pairs, pair-wise discrimination method is performed for all the

samples and «;_; for each pair is obtained.
If a;_; = 0, then remove pair [¢; — ¢;].

2. For those pairs whose a;_; are lower than 6,, 3,_; are calculated.

1—j

If 3,_; < 041, then remove pair [¢; — ¢;].
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Table 3.1: Result of static phoneme segment recognition

| method | accuracy (%) |

‘ conventional one-stage discriminant analysis 78.3
pair-wise discrimination method (minimax) 93.1
pair-wise discrimination method (majority) 92.2

3. For those pairs which are removed and whose confusions increase by 6, compared

with the case with all the possible pairs, 3;" ; are calculated.

If ﬁf_] > O3, then add pair [¢; — ¢;].

3.1.5 Experimental Evaluation

We have evaluated pair-wise discrimination method and the algorithm to select effective
pairs on the phoneme recognition. The phonemes to be discriminated are all the Japanese
consonants except fin Table 2.1. The number of the classes is 26. The way of experiments
here is somewhat different from those in other sections. First, the central frames of the
consonants in all the samples are segmented manually. The input of classification is
the static pattern of 8 frames around the central frame (preceding 2 and following 5
frames). Second, all the 3696 samples are used for both training and test data. In
order to realize open recognition experiments, we perform Jack-Knife discrimination[37]
which, in recognizing a given sample, uses discriminant function calculated by the samples
excluding that one.

At first, we applied the conventional one-stage discriminant analysis pair-wise dis-
crimination method that uses all the possible pairs of the phones. The results are shown
in Table 3.1. The conventional multiple-class discriminant analysis is not effective for a
large number of classes (26 in this case). There was a lot of confusion between similar
phonemes, for example, [ty-ky] and [s-ts]. Pair-wise discrimination method reduced recog-
nition errors to half of those by the conventional method. Majority method got a bit
worse recognition rate than minimax method. It shows the use of binary results of the
pair-wise classifications sacrifices the accuracy to some extent. But the accuracy decrease
is negligible compared with the conventional Bayes classifiers.

Then, we tried to reduce the pairs using the selection algorithm. The thresholds 6,,,
01, Opo, and 63 are set to 30, 0.1%, 0.1%, 0.1%, respectively. As for minimax method,

the number of the remaining pairs and the recognition rate at each step of the algorithm
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Table 3.2: Reduction of pairs by selection algorithm

| | number of pairs | accuracy (%) |

initial 325 94.8
step 1 121 94.6
step 2 77 93.9
step 3 79 94.2
articulation
point
articulation bi | abi al al veol ar
mode
st op bz——d
\\\x/ -
. - - \\\
-~ ~
nasal m——————n

selected pair

— —=—=redundant pair

Figure 3.3: An example of redundant pairs

are shown in Table 3.2. We could reduce the pairs to 79, which is about one fourth of
all the possible pairs, with only 0.6% accuracy decrease. This means that there is much
redundancy in the set of pair-wise classifiers. The rates shown here are based on closed
experiments, and the rate of an open experiment with 79 pairs was 92.5%.

Now we discuss where the redundancy comes from. From the viewpoint of pattern
recognition, pair-wise discrimination method needs only pairs of the classes that are closely
located in the pattern space and the results of the classifications of the eliminated pairs
can be inferred from the results of the remainders. It is proved by the fact that most of
the pairs are eliminated in the first step, namely by measure o;_;. From the viewpoint of
phonetics, these closely located pairs of phonemes have the same manners of articulation
or the same points of articulation. An example is shown in Figure 3.3.

Another experiment showed that majority method needed 115 pairs, which were more
than those for minimax method and comparable to the number at step 1 of Table 3.1.
Minimax method uses a probabilistic measure to determine which class is more probable
and can eliminate some pairs of the closely located classes by using measure 3,_;. But
this is not possible for majority method. Table 3.3 shows, in majority method, how many

classes are not denied by any classifiers. When more than two classes are supported by all
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Table 3.3: Content of discrimination by majority method

(with 115 pairs)

number of classes
not denied by any pairs || correct | error

more than 2 0.0% | 0.4%
1 93.3% | 4.6%
0 0.7% | 1.0%

the associated pairs, discrimination clearly fails. With 115 pairs, these cases seldom occur.
The ratio of the cases where no classes were supported by all the associated pairs was also
small. This fact shows that, in most cases, the classifier of some pair, which is consequently
of the first candidate and the second candidate, directly affects overall discrimination.
Therefore, pair-wise discrimination method that uses optimal two-class classifiers does

not lower the recognition performance even if the number of classes increases.

3.1.6 Conclusion

We have pointed out the defect of the conventional one-stage multiple-class discriminant
analysis and proposed pair-wise discrimination method that combines optimal Bayes clas-
sifiers of the pairs of the classes. We have further proposed an algorithm to select effective
pairs to reduce necessary computation and storage. Experimental results show that pair-
wise discrimination method is much more effective and it is realized with only the pairs

of the closely located classes.

3.2 Discrete HMM with Classifier Front-End

3.2.1 Introduction

As the basis of a whole speech recognition system, we discuss the acoustic model. It is
based on the classification of its local segments combined with dynamic time-warping.
HMM (Hidden Markov Model) is a powerful method to perform dynamic time-warping
of speech and is easily extended to recognize larger units such as words or sentences. It,
however, does not have enough power to discriminate competing classes as it is trained
with in-class data only. Moreover, VQ (Vector Quantization)[38] that is conventionally

used for discrete HMM just performs quantization of input patterns, not its discrimination.
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Our approach is classifier-based HMM, which is HMM with a classifier as a front-end
processor instead of VQ. The classifier is trained to separate input patterns of different
phones so that HMM can easily distinguish them.

We apply pair-wise discrimination method for the classifier. Since it is based on
statistical discriminant analysis, it is straightforward to combine it with HMM that is
also a stochastic modeling. Furthermore, we combine the score of the classifier on the
local features and the score of HMM on the global features to get a recognition result.

How to combine those two scores is also discussed.

3.2.2 Pair-Wise Discriminant Discrete HMM (PWD-D-HMM)

HMM realizes dynamic time-warping with its probabilistic transition of the states and
copes with the variation of observation sequences with its probabilistic distributions.

In conventional discrete HMM][10], an input sequence consists of codes determined
by VQ. VQ reduces the amount of computation and storage, but quantization error is
inevitable. This error is the loss of information contained in the pattern vectors and
hampers recognition performance.

Furthermore, the training algorithm commonly used lacks a concept of maximizing
the distance between the classes. Typically, a phone HMM is trained with samples that
belongs to the class independently. Every model is optimal for the samples, but it is not
trained to discriminate from other classes.

For those reasons, discriminating power of HMM is not sufficient especially to distin-
guish acoustically similar phones.

On the other hand, discriminant analysis is effective to analyze local patterns of phones
such as a burst or a friction, though it does not perform dynamic time-warping. It extracts
effective features to separate competing classes statistically.

In Table 3.4 the two stochastic methods described above are compared. As we can
see, discriminant analysis and HMM are different in feature extraction, and they can
complement or cooperate each other. Here we propose a combined method.

In order to improve the discriminating ability of discrete HMM, it is significant to
separate observation symbol sequences of the different phones so that HMM can easily
distinguish them. Therefore, a phonetic element classifier based on discriminant analysis
is constructed. Each phonetic element belongs to one phone and represents a local pattern

of the phone, for example, a burst or a friction. Some phonetic elements such as a murmur
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Table 3.4: Comparison between discriminant analysis and HMM

‘ H discriminant analysis ‘ HMM ’
input several frames dozens of frames
vector Markov sequence
feature local global
extraction combinatorial dynamic
merit discriminating power time-warping

= = = = - = / / / pattern vector

classifier

phonetic el ement
bl  t1 d2 b2 g2 p3 b3 b3 g3 synbol

b2: 2nd symbol of
‘ phone b

b 8_,8_,8_,‘ HMM

Figure 3.4: Frame labeling for discrete HMM with classifier front-end

part are common to multiple phones. Those phonetic element parts are initially specified
by human observation and input to discriminant analysis to construct a Bayes classifier.

Then, HMM with the phonetic element classifier front-end is constructed. The clas-
sifier scans an input speech and outputs a phonetic element symbol sequence, which is
processed by HMM. This procedure is illustrated in Figure 3.4. Here, adjacent frames are
used to make frame labeling to reflect dynamic features. It is nothing but a replacement of
VQ on conventional discrete HMM with the classifier. The difference is that the symbols
here explicitly belong to some phone and the classifier is trained to discriminate them.

Since the classifier extracts optimal features to separate the phonetic elements, the
obtained symbol sequence for each phone gets easily distinguishable. As a consequence,
separability of phone HMMs will be improved. From the other viewpoint, when we regard
HMM as a post-processor, HMM performs dynamic time-warping on the results of the
classifier.

Classification of the local phonetic elements is done by pair-wise discrimination method,
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Figure 3.5: Pair-wise Bayes classifiers for frame labeling

a combination of Bayes classifiers. Its discriminant function for class o; is formulated in
the previous section as follows, though the classifier here discriminates phonetic element
symbols, of which phones consist. It is illustrated in Figure 3.5, where b1 represents the

first phonetic element of phone b.
fi = min py_;)(oix) (3.16)

pri—j(0i|x) : probability of o; by o; — o; classification
Thus, we call the whole recognition mechanism Pair-Wise Discriminant Discrete HMM
(PWD-D-HMM). As similar approaches, LVQ-HMM][39], TDNN-HMM][40] and so on have
been proposed. We use a statistical method as front-end, thus it gets possible to combine

the score of the classifier with HMM both theoretically and practically.

Combining Scores

In the prototypical method, a sequence of the most probable symbols at the frames of
speech is obtained by the statistical classifier, and Forward or Viterbi score is computed
for each phone HMM to make recognition. We further propose to combine the scores of

the two stochastic methods. The score of Bayes classifier reflects the local features of
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phones and that of HMM reflects the global features. By combining them, therefore, we
expect more precise recognition that reflects the merits of both methods.

Three methods to combine these scores are presented.

(1) Fuzzy Frame Labeling

The deterministic frame labeling would be harmful because the frame-wise discrimina-
tion is not free from classification errors. To solve the problem, we can use fuzzy labeling
that passes multiple candidates at each frame to HMM. This is analogous to fuzzy vec-
tor quantization (FVQ)[41], but the weight p(o(;)|x) to the symbol output probability
p(0(;)|si) is defined formally as the probability computed by the classifier. Actually, it is
similar to semi-continuous HMM[42] or tied-mixture continuous HMM[43] when we use
p(x|o(;)) instead of p(oj|x). The symbol output probability for HMM state s; is modified

as follows.
plo|si) = >_p(og)[x) - ploy)lsi) (3.17)
j

o¢): j-th best candidate symbol at the time-frame

X: pattern vector at the time-frame

(2) Precise Classification after Viterbi Segmentation

The method is to incorporate the score of Bayes classifier after Viterbi alignment. The
scores of the phonetic element classifier are averaged for each phone which the phonetic
elements belong to, where the phone segment is aligned by Viterbi algorithm. Finally, it
is combined with the HMM score. The similar method is HMM/LVQ[44].

For a given input pattern sequence X = (X1,...,Xr) and its classified symbol sequence

O = (o4, ...,0r), the score of phone model m is computed as follows.

1. Perform Viterbi algorithm to get the score of HMM p(O|m).
2. Perform Viterbi segmentation of the input by back-tracing the most probable states.

3. Compute the average score of Bayes classifier for the aligned phone segments.

pD(m|X) = %Zotem p(0t|xt>

4. Combine the HMM score and the classifier score.

pu (Olm) x pp(m|X) (3.18)
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(3) Frame-Level Combination

The method is to combine the score of Bayes classifier with the score of HMM at the
speech frame level, namely to integrate the score of the classifier into forward probability
computation of HMM.

This is done by modifying the output probability p(o(;)|s;) of phone HMM m so that

the scores of phonetic elements of m are reflected.

plo|si) = plog]s:) * 2 p(of"[x) (3.19)
j
oq) : the best candidate symbol at the time-frame
oj": j-th phonetic element symbol belonging to phone m
The factor p(o}”|x) is the probability by Bayes classifier that the frame pattern repre-

sents the local feature of the phone m.

3.2.3 Experimental Evaluation

We have evaluated discrete HMM based on pair-wise discriminant analyses (PWD-D-
HMM). The task here is to recognize 27 phonemes (consonant) in word utterances. We
define 127 phonetic elements to represent a variety of local patterns. The number of HMM
states is 3 or 4.

We have realized prototypical PWD-D-HMM, then three methods to combine the
score of the classifier. We have also performed VQ-based HMM for comparison. As for
VQ-HMM, we have tested two types. One uses single codebook of size 256, and the other
uses separate codebooks for spectrum and power[11], with 256 and 64 entries respectively.

The recognition results are listed in Table 3.5. PWD-D-HMM achieves higher accu-
racy than conventional VQ-HMM. Although VQ-HMM with multiple codebook gets a
comparable recognition rate for closed samples, it lowers the accuracy for open data. It
fails to cope with the variation of input speech of many speakers. Actually, with VQ-
HMM, there was a lot of confusion between acoustically similar phones, for example, p—¢
and m—n. PWD-D-HMM succeeds in extracting features independent of speakers and
contexts.

Combining the scores had some effect but not so much. There was no difference
between the score combination methods. But careful analysis is necessary by performing

word or sentence recognition.
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Table 3.5: Phoneme recognition result with discrete HMM

‘ recognition method H closed ‘ open ‘
PWD-D-HMM (normal) 93.1 | 824
PWD-D-HMM (fuzzy frame labeling) 89.5 | 83.6
PWD-D-HMM (Viterbi/classification) 92.6 | 83.9
PWD-D-HMM (frame-level combination)f 93.4 | 84.0
VQ-HMM (single codebook) 81.1 | 61.7
VQ-HMM (multiple codebook) 89.4 | 67.7

T used samples are slightly different

3.2.4 Conclusion

We have proposed a new discriminative acoustic model named PWD-D-HMM based on
two stochastic methods: discriminant analysis and HMM. Pair-wise Bayes classifiers pre-
cisely discriminate the local patterns of phones called phonetic elements. HMM grasps the
global patterns and performs dynamic time-warping. Experimental results show that our
combined method is more effective than conventional VQ-HMM. We have also proposed

to combine the scores of the two methods and confirmed its effectiveness.

3.3 Continuous HMM with Pair-Wise Discriminant
Analyses

3.3.1 Introduction

We have studied the acoustic model to improve its discriminant ability by incorporating
a classifier front-end. Another requirement is that real value output of the acoustic model
is desirable. Moreover, the output value should be really stochastic to realize flexible
interface with the natural language processing unit. Although most of the discrimina-
tive training strategies have achieved high performance in phoneme recognition, their
scores are almost digitized and inadequate for recognizing larger units, such as words or

sentences[45].

In this section, we propose a new architecture of continuous density HMM which is
based on pair-wise discriminant analyses to realize both discriminant ability and stochastic

scoring.
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Figure 3.6: Computing output probabilities of HMM states with classifier

3.3.2 Pair-Wise Discriminant Continuous HMM (PWD-C-HMM)

As a more elaborate model that avoids deterministic frame labeling or quantization, con-
tinuous distribution HMM][46] have been studied. In order to make continuous HMM to
be more discriminative, it is significant to improve separability of the states of the models.
Thus, the problem is reduced to constructing an optimal classifier that discriminates the
HMM states, when we regard the HMM states as classes. Output probabilities of the
HMM states are computed by the classifier as its scores. In other words, we incorporate
a classifier into continuous HMM to compute output probabilities through discriminat-
ing mechanism instead of simple Gaussian distribution. This procedure is illustrated in
Figure 3.6. Here, adjacent frames are used to make frame-wise scoring to reflect dynamic
features.

The classifier we adopt is Bayes classifier. Another implementation is to use emissions
of a neural network as output probabilities[47],[48]. Since Bayes classifier is based on
statistical decision theory, it can be naturally integrated with HMM, and guarantees the
stochastic distribution of the output values. The correspondence between Bayes classifier
and HMM is listed in Table 3.6.

As a statistical method, use of simple discriminant analysis or subspace projection that

improves separability between in-class data and out-of-class data is proposed[21],[49],[50].



50 CHAPTER 3. HMM WITH DISCRIMINANT ANALYSIS

Table 3.6: Correspondence between Bayes classifier and HMM

‘ Bayes classifier ‘ HMM ’
class state
multiple template mixture density
average average
covariance covariance
— state transition probability

They perform a uniform vector transformation for all the competing states of all the
models. However, discriminant features vary for different states or different models. For
example, effective features to distinguish phoneme /p/ and /t/ completely differ from
those to separate /p/ and /m/. Therefore, different feature extraction should be made
for each of them.

Here we propose to construct a classifier with optimal vector transformation for every
pair of the states, and compute the output probabilities of the HMM states through the
set of pair-wise Bayes classifiers. For example, a classifier for s and s7 (s i-th state of
model m) sets an optimal pattern space to separate s* and sj. Since each classifier has
a different pattern space, it just computes a relative value of the probabilities of the two
states, and actual output probabilities are computed by combining and normalizing the
relative values. Training of the classifiers are iterated and interacted with that of HMM,

so that the classifiers and HMM are fully integrated and totally optimized. We name this
recognition mechanism Pair-Wise Discriminant Continuous HMM (PWD-C-HMM).

3.3.3 Recognition and Training Algorithm
Recognition Algorithm

Recognition algorithm of PWD-C-HMM is the same as that of conventional continuous
density HMM, except that output probabilities p(x|s*) (si™:state, x:pattern vector) are
computed by the following steps. These steps are illustrated in Figure 3.7.

1. Pair-wise classifiers are applied on a given pattern x. For every pair of the states
s7'-s%(m#n), a classifier ranks the two states, and computes a relative value of
the probabilities {pjmi—nj)(X|s]") : Pimi—nj)(X|5})}, using the dedicated discriminant

space for [s]"-s7] classification. The probabilities are transformed to a priori form.
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Figure 3.7: Pair-wise Bayes classifiers for output probability computation
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2. The most probable class s(1) is picked up by combining the results of the pair-wise
classifications. We adopt minimax method, as exemplified in Figure 3.2, which
chooses the class winning the highest value of the following discriminant function
(see the upper part of Figure 3.7).

fimi)(X) = min ppni—nj(si"]%) (3.20)

n’]

3. Output probabilities of the HMM states are computed by normalizing the relative
values of the pair-wise classifications. We first calculate a probability for the previ-
ously chosen first candidate p(x|s(1)) under a canonical Gaussian distribution, then
calculate probabilities for the other states p(x|si") as its relative values (see the
lower part of Figure 3.7).

o Pry—mi (X]s7")
Pi(1)-mi] (%[5 (1))

p(x[s() (3.21)

In the example of Figure 3.7, state b7 is chosen as its minimum of a posterior probabil-
ities on associated pairs is maximum, and its probability 0.3 is computed with a canonical
distribution, then the probabilities of other states are computed as the relative values
against that of state b1.

In practice, all the possible pairs of the states are not necessary. We only have to set
up those pairs which are likely to be confused[51]. For a state whose pair with the first
candidate is omitted, a small constant ¢ is assigned to its output probability. We also set
a floor of lower probabilities to the value e.

Both the relative value of probabilities and a posteriori probability are computed in the
linear order when we use a linear discriminant function for each pair-wise classification,
as proven in Section 3.1. The canonical distribution as in conventional continuous HMM

is used to normalize the probabilities at different frames.

Training Algorithm
HMM is usually trained by Forward-Backward algorithm. In PWD-C-HMM, training of

the pair-wise classifiers are integrated with it, as an iteration of the following steps.

1. For every HMM, state transition probabilities are estimated by Forward-Backward

algorithm.
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2. For all the training samples, Viterbi alignment is performed to assign each frame

pattern vector to some state of HMM.

3. For every pair of the states, feature extraction based on discriminant analysis is
performed to construct a Bayes classifier, using the pattern vectors assigned in the

previous step.

In Forward-Backward and Viterbi computation, output probabilities of the HMM
states are calculated through pair-wise classifiers. At the initial step, however, we can use
conventional computation.

In Step 2, we perform Viterbi alignment to get pattern vectors explicitly. As a more
sophisticated model, it is possible to directly use the results of Forward-Backward compu-
tation of Step 1 for discriminant analysis of Step 3. To be more concrete, the means and
the covariances computed by Forward-Backward algorithm, which is formulated in equa-
tion (2.18) and (2.19), can be provided for discriminant analysis as they are, by omitting
Step 2.

Probability Normalization

As the form of the output probability, the followings are compared.

(1) probability density
A value of probability density function of Gaussian distribution is normally used in

continuous HMM.

p(x|s?) = C-exp(~D2/2) (3.22)
D2 = (X pmi) - Z7 (X — )

[bmi : ean, 3 : covariance

(2) a posteriori probability

This is a normalization of probability density by its sum over all the classes. In our
method, it is computed in the linear order without probability density calculation. Neural
networks theoretically output this form.

p(st") - p(x[s}")
> P(87) - p(x[s})

p(si"|x) = (3.23)
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Table 3.7: Training of pair-wise discriminant continuous HMM

iteration of training

0 ‘ 1st ‘ 2nd
PWD-C-HMM (prob. density) || 79.9 | 82.7 | 82.8
83.1 | 88.0 | 88.7
PWD-C-HMM (a-post. prob.) | 80.3 | 83.1 | 83.1
84.0 | 88.7 | 89.3
PWD-C-HMM (binary digit) 80.8 | 84.3 | 82.8
84.4 | 89.0 | 88.2

upper row: open, lower row: closed

(3) binary digit

Here, 1 is assigned to the first candidate, and a small constant € to others. This is a
special case of a posteriori probability. Outputs of neural networks using sigmoid function
often become this form practically.

p(slx) = 1 if s7* = s
{ p(si*|x) = € otherwise (3.24)

3.3.4 Experimental Evaluation

We have evaluated continuous HMM based on pair-wise discriminant analyses (PWD-C-
HMM) on 27 phoneme (consonant) recognition. The number of the states is 3 or 4. The
net number of the states or the classes including the vowel parts becomes 90. The number
of the pair-wise classifiers was reduced to 970 by eliminating less confusing pairs.

We have evaluated the three forms of probabilities of PWD-C-HMM. Training was
iterated three times, until the recognition score for testing samples converged. The recog-
nition performance at each iteration is listed in Table 3.7. Actually, it converged at the
first iteration as the classifiers were constructed initially using hand labeled data. The
improvement at the first iteration comes from the correction of the hand labeling and the
use of all segments of the speech samples.

It is compared with the conventional continuous HMM. Two types of HMM are tested.
One uses single Gaussian distribution with a full covariance matrix, and the other uses 4-
mixture distribution with diagonal covariances. Simple discriminant analysis is performed
for them to reduce the dimension of input patterns. The phoneme recognition results
are shown in Table 3.8. For open samples, PWD-C-HMM achieves about 13% higher

recognition rate than the conventional continuous HMM gets. It should be noticed that
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Table 3.8: Phoneme recognition result with continuous HMM

‘ recognition method H closed ‘ open ‘
PWD-C-HMM (prob. density) 88.7 | 82.8
PWD-C-HMM (a posteriori prob.) 89.3 | 83.1
PWD-C-HMM (binary digit) 88.2 | 82.8
continuous HMM (single full covariance) 88.4 | 70.2
continuous HMM (4-mix. diag. covariance) 80.4 | 69.5

the recognition rates are much the same in closed experiments. It shows that pair-wise
classifiers succeed in separating confusing classes as far as possible and realize a robust
recognition system.

There is little difference between the three forms of probability normalization. This
suggests that, in recognizing roughly segmented phonemes, ranking is more significant
than scoring or values of output probabilities. However, the significance of stochastic
scoring will be proved in word or sentence recognition.

From the computational viewpoint, PWD-C-HMM is not expensive although so many
classifiers are set up. We can reduce the number of the pair-wise classifiers by eliminating
less confusing pairs of the states. And in two-class discriminant analysis, the dimension
of the vector gets smaller than that for many classes. Furthermore, we use linear Bayes
classifier, which makes it possible to compute relative values of the probabilities without
covariance matrices.

In our experiments, the average dimension of the vectors for pair-wise classifiers is
20, while the conventional HMM needs 62 variables. When we compare the amount of
necessary computation for output probabilities, PWD-C-HMM needs 970 (pairs) x 2
(classes) x (20+1) (variables+constant) = 40740, while the conventional HMM with full
covariances needs 90 (states) x 62 (variables) x 62 (variables) = 345960. Actually, our

method takes less CPU time than the conventional HMM with full covariances.

3.3.5 Conclusion

We have proposed a new discriminative acoustic model named PWD-C-HMM that incor-
porates of simple and robust Bayes classifiers. It realizes discriminative recognition by
fully separating competing pairs of the HMM states, and keeps stochastic scoring mech-
anism on the basis of statistical Bayesian decision. Experimental results show that our

method is more effective than conventional continuous HMM.
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3.4 Comparison of Discrete and Continuous Models

3.4.1 Introduction

We have studied the strategy to improve discriminating ability of both discrete and contin-
uous HMM. It incorporates a classifier as front-end of HMM, instead of VQ or just passing
directly that is the case for conventional continuous HMM. The classifier is trained to sep-
arate local patterns of the different phones, thus improves the separability of HMM. In
this section, we make a comparison of its discrete distribution version and its continuous
version, from the viewpoints oriented to classifier-based HMM. We also make experimen-
tal evaluation of the two models on various recognition tasks, using the same classifier

but changing its characteristics.

3.4.2 Theoretical Comparison

In conventional HMM, the front-end processor just performs coding or feature extraction.
In classifier-based HMM, large part of the recognition process is done by the classifier.
Main role of HMM is dynamic time warping and post-processing of the classification.
Therefore, comparison of discrete and continuous models must be done from the view-
points different from those for conventional HMM.

We make a comparative review of the two versions in Table 3.9. The class or the
target for the classifier in discrete model is the symbol that represents a local pattern
of some phone, while the classifier in continuous model directly discriminates the HMM
state that also represents a local pattern. The definition or the meaning of the output
probability is different, too. In discrete model, the output probability shows the frequency
of the symbol occurrence as in conventional HMM. However, the probability matrix is
much more biased than that of VQ-based HMM, because each model has their belonging
symbols explicitly and the probabilities of their occurrence become much higher. The
symbol output probability matrix can be regarded as a confusion matrix of the classifier.
Thus, even the tendency of the classification errors is learned by HMM. In continuous
model, the output probability means the reliability of the classification. So the distribution
of the probabilities depends on the characteristics of the classifier. It will be stochastic
if the classifier is stochastic. In general, the classifier in discrete model is fundamentally
independent from HMM, while the classifier in continuous model is tightly integrated with

HMM.
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Table 3.9: Comparison of discrete and continuous models

discrete model continuous model
(PWD-D-HMM) (PWD-C-HMM)
class symbol HMM state
meaning of probability frequency of symbol reliability of
occurrence classification
distribution of probability || biased depends on classifier
training of classifier independent from HMM | integrated with HMM

3.4.3 Experimental Comparison

Next, we made experimental evaluation of the two models. In order to make a fair
comparison, we use the same classifier as well as the speech samples and the acoustic

analysis method.

Training of Classifier and HMMs

Training of the classifier is iterated and interacted with that of HMM, so that the classifier
and HMMs are fully integrated and totally optimized. Training algorithm is an iteration
of the following steps. The flowchart is in Figure 3.8.

1. For every (continuous) HMM, state transition probabilities are estimated by Forward-

Backward algorithm.

2. For all the training samples, Viterbi alignment is performed to assign each frame

pattern vector to some state of the HMM.

3. For every pair of the states, feature extraction based on discriminant analysis is
performed to construct a Bayes classifier, using the pattern vectors assigned in the

previous step.

The parameters of continuous HMM are completely obtained by the above steps. For
discrete HMM, we regard each HMM state as a symbol representing the local part of the
phone. For example, we define phonetic element symbol b7 for representing the first state

of phone b. Then, the following steps are performed to get the HMM parameters.

1. For all the training samples, every frame is labeled by the classifier.
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Figure 3.8: Training of classifier and HMMs

2. For every (discrete) HMM, symbol output probabilities and state transition proba-

bilities are estimated by Forward-Backward algorithm.

Experimental Condition

We set up 38 phone models: 28 for consonants and 10 for vowels and semi-vowels. The
number of the states is 3 or 4 for consonants and 1 for vowels. The net number of the states
or the phonetic element symbols becomes 97. The number of the pair-wise classifiers was
reduced to 1116 by eliminating less confusing pairs.

We have performed recognition of phonemes, words and sentences. Since HMMs are
constructed just for phonemes, word or sentence recognition is done by concatenating
the phone HMMs according to the lexical and the syntactic transcription. For phoneme
recognition and word recognition, we use the same data set, which is divided into training
samples and testing ones. Those experiments are done in multiple speaker mode, but the

speakers for sentence recognition are independent.
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Table 3.10: Phoneme recognition result for acoustic model evaluation

iteration of training

0| Ist| 2nd

PWD-D-HMM (normal) 82.4 | 85.1 | 86.3
93.1 ] 95.2 | 94.5

PWD-D-HMM (fuzzy) 83.6 | 85.5 | 86.3

89.5 | 91.1 | 91.7
PWD-C-HMM (prob. density) || 79.9 | 82.7 | 82.8
83.1 | 88.0 | 88.7
PWD-C-HMM (a-post. prob.) || 80.3 | 83.1 | 83.1
84.0 | 88.7 | 89.3
PWD-C-HMM (binary digit) || 80.8 | 84.3 | 82.8
84.4 | 89.0 | 88.2

VQ-based discrete HMM 61.7
(single codebook) 81.1
VQ-based discrete HMM 67.7
(multiple codebook) 89.4
normal continuous HMM 70.2
(single full covariance) 88.4
normal continuous HMM 69.5
(4-mix. diag. covariance) 80.4

upper row: open, lower row: closed

Phoneme Recognition

Phoneme recognition task here is to recognize the consonant of 27 kinds contained in the
VCV pattern. We have applied VQ-based discrete HMM and conventional continuous
HMM as well as classifier-based discrete and continuous HMM. As for VQ-based HMM,
we have tested two types. One uses single codebook of size 256, and the other uses
separate codebooks for spectrum and power[11], with 256 and 64 entries respectively. We
have also tested two types of conventional continuous HMM. One uses single GGaussian
distribution with a full covariance matrix, and the other uses 4-mixture distribution with

diagonal covariances.

The recognition results are listed in Table 3.10. Notation ‘PWD-D-HMM’ stands for
pair-wise discriminant discrete model and ‘PWD-C-HMM’ for continuous one. As for
classifier-based HMM, recognition rates at each training iteration are presented. They
converged after the first iteration because the classifier was available initially. For open

samples, classifier-based HMM achieves much higher recognition rates than conventional
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Table 3.11: Word recognition result for acoustic model evaluation

iteration of training

0| Ist| 2nd
PWD-D-HMM (normal) 80.4 | 81.0 | 80.4
PWD-D-HMM (fuzzy) 84.4 | 83.8 | 85.0
PWD-C-HMM (prob. density) || 78.0 | 83.6 | 84.7
PWD-C-HMM (a-post. prob.) | 79.3 | 84.0 | 84.8
PWD-C-HMM (binary digit) 72.7 1 79.2 1 789

normal continuous HMM 72.5
(single full covariance)

discrete and continuous HMM get. It should be noticed that the recognition rates are
much the same in closed experiments. It shows that the pair-wise classifiers succeed in
separating confusing classes as far as possible and realize a robust recognition system,
while conventional HMM does not explicitly try to separate different classes.

Among classifier-based models, discrete version generally gets higher rates than contin-
uous version regardless of the output forms. In recognizing roughly segmented phonemes,
ranking of the classes is more significant than scoring or values of the output probabil-
ity. Therefore, discrete version that learns symbol patterns including the tendency of the

classification errors gets superior.

Word Recognition

Word recognition experiments are performed on 653 vocabulary size. The average number
of the phonemes in a word is 4.69.

The results are listed in Table 3.11. The recognition rates converged after the first
iteration of training of the phone HMMs. Classifier-based HMM is more effective than
conventional continuous HMM in any cases.

This time, however, there is much difference among the output types of the classifier.
In discrete version, fuzzy labeling is more effective than normal deterministic labeling. In
continuous version, using binary digit is harmful. These suggest that stochastic outputting
or real-value scoring is significant. In word recognition, the number and the locations of
the phonemes are unknown, thus digital outputs make it difficult to deal with the time
alignment problem. In this case, discrete model with fuzzy labeling is comparable to

continuous model with normal probabilities.
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Table 3.12: Sentence recognition result for acoustic model evaluation

‘ H rec. ‘ com. ‘ word ‘

PWD-D-HMM (normal) 37.3 | 55.0 | 77.2
67.0 | 79.0 | 87.8
PWD-D-HMM (fuzzy) 46.5 | 64.8 | 84.5

75.5 | 83.5| 93.0
PWD-C-HMM (prob. density) || 44.0 | 57.3 | 79.7
71.0 | 79.3 | 89.2
PWD-C-HMM (a-post. prob.) | 51.3 | 63.7 | 84.0
75.5 | 82.0| 92.8
PWD-C-HMM (binary digit) | 41.5| 56.0 | 76.2
66.5 | 74.3 | 85.0
upper row: top-1, lower row: top-10

Sentence Recognition

For sentence recognition, we set up a task named “personal schedule management at
workstation”. The word perplexity is 37.7 and the average number of the words in a
sample sentence is 6.2. Recognition is performed by A* search that is controlled by a

context free grammar described for the task[52].

The results are listed in Table 3.12. Here we use three evaluation measures. The
sentence recognition rate (rec.) is a ratio of the samples whose word sequences are com-
pletely matched. In the sentence comprehension rate (com.), we count as correct if all
the keywords that constitute the meaning for the task are completely recognized. We
also investigate the recognition rate of such keywords in the sentences (word). 10-best

algorithm is performed to make careful evaluation.

We find much the same tendency as that in word recognition. The methods which
perform stochastic outputting are more effective than those which do not. In most evalu-
ation measures, continuous model with a posteriori probability is comparable to discrete
one with fuzzy labeling, and continuous model with binary digit is comparable to normal
discrete one. By the top-1 sentence recognition rate, however, we see a clear ranking of
the five methods: a posteriori probability, fuzzy discrete, probability density, binary digit,

normal discrete.
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Table 3.13: Summary of recognition results for acoustic model evaluation

‘ task H phoneme ‘ word ‘ sentence ’
PWD-D-HMM (normal) 86.3 80.4 37.3
PWD-D-HMM (fuzzy) 86.3 85.0 46.5
PWD-C-HMM (prob. density) 82.8 84.7 44.0
PWD-C-HMM (a-post. prob.) 83.1 84.8 51.3
PWD-C-HMM (binary digit) 82.8 78.9 41.5

open experiments at final iteration of training

Discussion

Table 3.13 shows the summary of the experiments. It is noticeable that the tendency
of phoneme recognition is different from those of word and sentence recognition. To
improve discriminating ability on phoneme recognition does not necessarily lead to a high
performance on word or sentence recognition.

In continuous speech recognition, stochastic outputting is so important as, or even
more important than, to improve the discriminating ability too much. Even in continuous
model, it is harmful to use probabilities that are substantially binary. And in discrete

model, we can realize a high recognition rate simply by passing multiple candidates.

3.4.4 Conclusion

We have compared discrete and continuous versions of classifier-based HMM. They have
different meanings of the output probability since the target of the classifier is different.
However, experimental results show that the difference of the two models is not so sig-
nificant as the difference of the classifier’s output characteristics. It is confirmed that, in
continuous speech recognition, really stochastic distribution of the outputs is the most

important.



Chapter 4

Continuous Speech Parsing based
on Heuristic Search

Continuous speech recognition is regarded as searching for the most plausible phone or
word sequence that satisfies the linguistic and the pragmatic constraints.

As the constraint, several knowledge sources such as lexicon, syntax, semantics and
pragmatics are available. It is natural that use of more constraints will bring better
accuracy. It is desirable that multiple-level knowledge sources are jointly utilized as an
integrated processing, which is illustrated in Figure 4.1.

Although simple uniform integration of multiple-level knowledge sources[53] is idealis-
tic, it causes computational explosion, since the number of possible sentences is enormous,
and so is the possible combination of the constraints. Thus, the modularity of the knowl-

edge sources is also significant for practical computation and easy maintenance.

We adopt a heuristic search strategy, which maintains the modularity of the knowledge
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Figure 4.1: Framework of search integrating multiple knowledge sources
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Figure 4.2: Heuristic search strategy integrating multiple knowledge sources

sources and guarantees the admissibility to find the optimal hypothesis. Its outline is
shown in Figure 4.2. It first performs rough decoding with a simple constraint such as
word bigram, and then applies higher-level linguistic constraints using the result of the
first pass as A*-admissible heuristics. We basically use syntactic knowledge to generate
hypotheses at the speech recognizer and semantic knowledge to verify them at the semantic
analyzer. The both knowledge sources are constrained by dialogue-level knowledge.

The search strategy makes it possible to obtain the optimal hypothesis that satisfies
all the constraints. The key is to choose a good constraint which provides admissible and
powerful heuristics.

In Section 4.1, we present search algorithms with syntax only. In Section 4.2, dialogue-

level knowledge is incorporated. In Section 4.3, use of semantic knowledge is discussed.

4.1 A* Algorithm for LR Parsing with HMM Front-
End

4.1.1 Introduction

In spoken language understanding, an efficient search algorithm is indispensable, since
the number of possible sentences is enormous, given a restricted grammar. In the search
algorithm, it is significant both not to lose the optimal hypothesis and to extend least
hypotheses. Beam search, which is conventionally used, makes evaluation based on the
score to the searched point, and may prune the optimal hypothesis due to the local

mismatch. It must deal with as many hypotheses as the beam width that is proportional
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to the task perplexity.

In this section, we discuss heuristic search algorithms that incorporates estimate score
of the unsearched parts, especially on A* algorithm that is guaranteed to get the optimal
hypothesis. The key to realize A* search is an effective heuristic function. Therefore, we
examine requirements on the heuristics, then propose lexical constraint, especially word-
pair constraint as heuristics. We also discuss incorporating heuristics into beam search
and examine the effects of heuristic power on the search methods, from the viewpoints of
both the accuracy and the efficiency.

As the constraint for the search, here, we use a lexicon and an LR (context-free)
grammar. LR parsing is necessary for the conversational utterances. We also extend it

to the stochastic version.

4.1.2 A* Search in Continuous Speech Recognition
Continuous Speech Recognition as Search Problem

In order to make direct use of linguistic constraints, the search space should be the pattern
space which the phone model deals with. When we use HMM as a phone model, it is
an HMM trellis. This time-state space, as shown in Figure 4.3, is an expansion of HMM
states to the time-dimension according to the permissible state transitions. Each state at
each time has an output probability that the input speech belongs to the phonetic element
state at that time, and a state transition probability is assigned to each connection.

For a finite state automaton grammar, it is possible to prepare a dedicated trellis where
all the states are expanded. For a context-free grammar, however, a trellis is generated for
each hypothesis by concatenating phone HMMs according to the lexical and the syntactic
transcription.

The evaluation function for a sentence hypothesis is computed by Viterbi algorithm
that realizes score maximization over the trellis paths representing the sentence. The
score is a summation of the output probabilities and the transition probabilities on loga-
rithm scale. It is a negative value. In addition to the bottom-up score, it is possible to
incorporate a top-down score computed by a stochastic language model.

Thus, we formulate the search problem that finds the most plausible sentence hypoth-
esis on the trellis space under given linguistic constraints.

As for the direction of the search, left-to-right search is considered. In this case,
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Figure 4.3: Trellis generated by HMM

Figure 4.4: Word tree for sentence hypotheses

sentence hypotheses are represented as paths on the word tree that is expanded to the
time-dimension, as shown in Figure 4.4. Actually, we perform a tree search, using Viterbi

computation on HMM trellises that correspond to the tree paths.

Heuristic Search

A* search is a kind of best-first search. It proceeds by extending the hypothesis whose
current evaluation score is the largest. It is significant to incorporate estimate of the
unsearched part. Thus, the evaluation function for a sentence hypothesis n is defined as
the sum of the matching score of the extended part g(n) and the heuristics A(n). The

search procedure is illustrated in Figure 4.5.

In order to guarantee the search A*-admissible, or to get the optimal hypothesis, heuristics

h(n) must be an estimate of the best scoring extension to the end of the input speech.
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Figure 4.5: Scoring of A* search

Namely, the estimate has to be more optimistic than actual[54].

Now we compare A* search with beam search. Beam search is a complex of breadth-
first search and best-first search. It extends all the hypotheses step by step, while putting
away those with lower scores in order to limit the number of the nodes to a certain beam
width. Frame-synchronous search proceeds along with the time-frame of the inputs, while

frame-asynchronous search directly traverses a word tree or a phone tree.

Therefore, the globally optimal hypothesis can be abandoned if its score gets lower
locally. In order to avoid such cases, the beam width should be large enough according
to the task perplexity. But enlarging the beam width implies that the search must deal
with so many hypotheses from the beginning to the end.

A* search extends less hypotheses if it is guided by an adequate heuristics. However,
if heuristics is so weak, the search gets breadth-first and fails to complete any hypotheses.
To manage the search within realistic computation, stack decoding[28] is used to limit
the number of hypotheses. Combined with a weak heuristics, however, it may lose the
optimal hypothesis. When heuristics is extremely weak, it results in much the same as
beam search. In short, realization of A* search depends on its heuristics. This issue is

discussed later.

It is also possible to incorporate heuristics into beam search. It uses the same evalu-
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ation function, but proceeds breadth-first within a beam width. Heuristics will guide the
globally optimal hypothesis and protects it from pruning. Thus, the search will succeed
with a smaller beam width. Namely, adequate heuristics makes beam search effective,

too.

Related Works

A* search for continuous speech recognition was studied by W.A.Woods[55] and others
about a decade ago. Their strategies assumed that the search space is a word lattice,
where the appearances and the positions of words are given, and the number of possible
sentence hypotheses is small enough. Their heuristics computation also made use of word
recognition results. Therefore, they are not applicable to parsing on HMM trellis, which
generates far larger number of sentence hypotheses.

Recently several studies on A* search on HMM trellis is appearing. D.B.Paul’s
stack decoder[56] first assumed no language modeling on heuristic function, thus very
weak for searching. Incorporating a simple stochastic language model does not satisfy
admissibility[57]. F.K.Soong’s strategy[58| assumes a finite state grammar, and is effec-
tive for finding N-best hypotheses, not the first candidate itself. However, context-free
parsing is necessary at the task which is not so simple, and it is highly troublesome to
describe an automaton grammar.

The similar forward-backward search algorithm is proposed by S.Austin[59]. It is
fundamentally beam search that uses the result of the first pass for pruning and heuristic
scoring. It is not admissible.

Here, we focus on A* algorithm for LR parsing that directly drives phone models
to compute evaluation function, and deals with all the possible hypotheses without any

intermediate representations.

4.1.3 Word-Pair Constraint as Heuristics

Requirements for Heuristics

Here we examine the requirements for the heuristic function iL(TL) to realize successful A*

search.

o Admissibility
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In order to guarantee the search to find the optimal solution, the estimate must be

more optimistic than the actual score, namely |h(n)|>|h(n)|.

e Search efficiency

In order to reach the optimal solution with least node expansions, the estimate

should be as accurate as possible, namely }Az(n)zh(n)

e Heuristics computation

The estimation should be computationally cheap, because the overall efficiency is

evaluated by the search efficiency itself plus the heuristics computation.

Useful Constraints for Heuristics

Considering the above requirements, then we examine which constraints are appropriate
for the heuristics computation. When using a context-free grammar, every sentence hy-
pothesis must be tested if it satisfies the constraint one by one using dedicated stack.
But the verification is impractical for the heuristics estimation. A finite state grammar
makes it possible to process all the hypotheses with a single automaton model. However,
a large-scale grammar needs much computation, too. Lexical constraint is common to all
the hypotheses.

Therefore, we use, as heuristics, word-pair constraint that reflects lexical constraint
and simple syntactic constraint. It is represented by a parallel concatenation of word
models, where syntactically admissible pairs of the words are connected. We call this
word-pair HMM. It is exemplified in Figure 4.6. The regular grammar that decides which
words can follow which words is derived so that it accepts a superset of the language
generated by the original context-free grammar. This guarantees the A*-admissibility
condition. Moreover, the word-pair constraint, which is a first-order approximation of the

grammar, is expected to be powerful heuristics for the search.

Search (Parsing) Algorithm

In order to compute the heuristic scores for all the possible partial sentence hypotheses,
overall procedure consists of heuristic computation and the search itself. These two passes

are performed in different directions. When we take left-to-right search, we compute
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heuristics right-to-left beforehand. Actually, the reverse direction is more practical as we
can compute heuristics left-to-right in real time.

The word-pair model is applied from the end of the input speech to the beginning, and
a backward trellis is generated. The heuristic score from any word node (S,,,t){S,,:state,
t:time} to the end of the speech is computed and stored. The scores are commonly used
for all the partial sentence hypotheses.

In searching, a forward trellis is generated for each sentence hypothesis by concate-
nating HMMs according to the transcription. Suppose the last word of partial sentence
hypothesis n and its first HMM state are a and S respectively, and the first HMM state
of word a in the word-pair model is S, then the evaluation function f (n) is defined by

the recognition score a,,(S%,t) computed on the forward trellis and the heuristic score

Bw(SY,t) on the backward trellis.

f(TL) = max (an(527t) + QW(S;UJ))

1<t<T

T : number of time points in whole trellis

Here a,(S2,t) and (,(SY,t), computed by Viterbi algorithm, represent g(n) and iL(TL)
respectively. The above evaluation performs concatenation of the forward trellis and the
backward trellis, which is shown in Figure 4.7. In the example of the left upper-most in
Figure 4.7, a hypothesis “visit to” is generated, where the trellis of the last word “to” and
the following heuristics come from the common backward trellis shown right-hand. This
evaluation is computationally cheap, and the actual trellis computation for the last word

a is performed only when the hypothesis is popped from the stack.
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In the forward search, the whole linguistic constraints are used to limit the search
space, namely to eliminate vain hypotheses at an early stage. In this section, LR grammar
is used to predict the words that can extend the present partial sentence, and to check if
the sentence is completed and accepted at the end. Since heuristics is admissible, the first
hypothesis that is accepted by the grammar and reaches the end of the input speech (on
that case, T' gives the maximum in the above formula) is guaranteed to be the optimal
solution.

The search algorithm is described below.

1. A backward trellis is generated to compute the heuristic scores with the word-pair

model.

2. Words that can appear at the beginning of sentences are picked up. For each of
them, a new sentence hypothesis is generated and pushed to the stack with its

evaluation score.
3. The hypothesis n with the largest score is popped from the stack.

4. If the hypothesis n reaches the end of the input speech and is accepted by the given

LR grammar, then it is the optimal solution. Finish the search.
5. The trellis for the last word of the hypothesis n is extended.

6. Words that can extend the hypothesis n are predicted. For each of them, a new sen-
tence hypothesis replacing n is generated and pushed to the stack with its evaluation

score. Go to Step 3.

This is easily extended to an N-best algorithm. If we continue the search after finding

the optimal solution, we can obtain the N-best candidates correctly.

Extension to Stochastic LR Parsing

In the above algorithm, the syntactic constraint is used only to limit the search space.
To realize more plausible understanding, we introduce a stochastic LR grammar. The
combination of the linguistic statistics and the acoustic score is formulated by Bayesian
rule.

Each rewriting rule » of the grammar has a priori probability p(r) that indicates how

often it is applied. The probabilities are normalized so that the sum of those having an
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identical left non-terminal symbol becomes 1. In recognition, every time some rule is
applied, its a priori probability is added to the HMM score on logarithm scale. Thus, a

priori probability for word sequence W is
log p(W) = > _log p(r:(W)) (4.1)

where 7;(W) is the i-th rule that is applied for W.

To apply this grammar to A* search, the heuristics computation is modified so that
its constraint is subset of, but close to the original LR grammar. We incorporate the word
transition probability to the word-pair grammar. The conventional word bigram that is
computed independently of linguistic knowledge may be powerful, but does not satisfy
admissibility. Therefore, we derive the probability from the original stochastic grammar.

The word transition probability from word a to word b is defined by a priori probability
of the rewriting rule that is reduced when b is input after a. Since the stack state after
reading word a is not unique in LR grammar, we take the maximum of the probabilities
for all the possible reduction paths.

This transition probability provides an estimate of logp(1/). Thus, we obtain word

bigram, to be exact probabilistic word-pair, as A*-admissible heuristics.

4.1.4 Experimental Evaluation

The parsing algorithm is evaluated on speaker-independent continuous speech recogni-
tion. The task domain is “personal schedule management at workstation”. The sentence
utterances are concerning registration, modification and query on the schedule database.
They are uttered continuously without explicit pauses between words. We picked up 50
kinds of sample sentences, each of which was uttered by 8 male speakers who are not
among those for training the phone models. Phone models are based on discrete HMM
with pair-wise symbol classifiers.

Here, we used 2 kinds of LR grammars, which are different in terms of perplexity and
coverage. Grammar GO0 allows a user more flexible utterances than grammar G1. For each
of them, word-pair grammar is derived as heuristic constraint. The word perplexity of
each constraint is listed in Table 4.1. It shows that the word-pair grammar approximates
well the original LR grammar and will work as a powerful heuristic constraint. Especially
for phrase recursive grammar GO, the perplexity of word-pair is very close to that of the

LR grammar.
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Table 4.1: Word perplexity with syntactic and heuristic constraint

| | G1] GO]
LR grammar 172 | 37.7
word-pair 32.7 | 395
no grammar (word) | 223.0 | 208.0

In the experiment, we limited the stack size to 160 and the total number of the hy-
pothesis extension to 300 to leave off the hopeless search. However, there was no case
in the experiment where a hypothesis once at the bottom of the stack is popped down.
The search is continued until the 10 best candidates are found. For comparison, we
also performed beam search, both frame-synchronous and frame-asynchronous. Frame-
asynchronous search is word-synchronous, namely proceeds word by word using the eval-
uation score normalized by the frame length. They are performed with several variety of
beam widths (stack sizes).

The recognition results are listed in Table 4.2. Here we use three evaluation mea-
sures. The sentence recognition rate is a ratio of the samples whose word sequences are
completely matched. In the sentence comprehension rate, we count as correct if all the
keywords which constitute the meaning for the task are completely recognized. We also
investigated the recognition rate of such keywords in the sentences.

In any cases, A* search achieved higher performance than beam search did. Beam
search got better accuracy as the beam width is larger. But it lost 5~10% of optimal hy-
potheses in the best cases. Though strong grammar G1 brought the better accuracy than
grammar GO, the same tendency is confirmed with respect to the search methods. The
recognition or comprehension errors were more likely to occur in rather longer sentences,
quite naturally. A large part of the recognition errors were concerning digit words as they
are free from the contexts and acoustically confusing.

In order to make computational evaluation of the search algorithms, we investigated
the number of generated nodes (gene.), pushed nodes (push), and poped nodes (pop).
Averages per an input sample are listed in Table 4.2. For each algorithm, the relation
between these numbers and computational amount is different. Since the most expensive
process is HMM trellis computation, we compare the number of nodes whose correspond-

ing trellises are extended.

In A* search or heuristic search, heuristics computation needs extra trellis computa-
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Table 4.2: Comparison of search algorithms in continuous speech parsing

search method || rec. | com. | word | gene. | push | pop

(%) | (%) | (%) | node | node | node
A* 63.0 | 68.0 | 81.4| 4256 927 | 110
(160) 42.5 | 56.5 | 80.5 | 5160 851 60
asynchro-beam || 55.0 | 61.8 | 81.9 | 6003 635 | 302
(40-30) 33.3 | 47.5 | T4.6 | 20492 801 | 327
asynchro-beam || 58.3 | 65.5 | 84.1 | 10534 | 1355 | 617
(80-60) 37.8 | 51.5 | 77.4|39092 | 1830 | 676
synchro-beam || 52.5 | 57.3 | 77.2 | 8138 | 7528 | 263
(160-60) 33.8 | 46.5 | 75.4 | 11974 | 11391 | 175
synchro-beam | 59.8 | 65.0 | 84.1 | 17639 | 16403 | 499
(320-120) 37.8 | 52.5 | T78.7 | 28623 | 27561 | 298
synchro-beam || 60.3 | 65.8 | 84.7 | 27105 | 25150 | 722
(480-180) 39.3 | 54.0 | 79.7 | 46856 | 45291 | 410

upper row: G1, lower row: GO
search method : (global stack size - local beam width)

tion. Approximately, it is defined by the vocabulary size and the number of words in an
input. Their product in this case gets 1400 (=225x6.27). This amount has to be counted.
In the forward search, however, the trellis for the very last word of a hypothesis is given

by the heuristics and is not generated until poped from the stack again.

On the other hand, the conventional blind search without heuristics extends the trel-
lises as it generates hypotheses. Therefore, in frame-asynchronous beam search, the overall
computation is proportional to the number of generated hypotheses. In frame-synchronous
search, completely extended hypotheses are poped ones, while partially extended hypothe-
ses may be pruned. Thus, the computation is proportional to a midst of the pushed and

poped hypotheses.

Even when considering heuristics computation, A* search needed least trellis genera-
tion. Actually, the CPU time of the A* search is less than half of the frame-synchronous
beam search. Beam search deals with as many hypotheses as the beam width, thus
the number of hypotheses and CPU time is proportional to the beam width. Frame-
asynchronous search needs smaller beam width, but more trellis computation. From the

computational point, phone-synchronous search would be better.

Next, we investigate the effects of heuristics itself. We incorporated heuristics into

beam search. We also performed best-first search without heuristics. In this case, the
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Table 4.3: Effect of heuristics in continuous speech parsing

search method | constraint (g+h) |G| | |H]| | rec. | com. | word | pop

(%) | (%) | (%) | node
A* (160) G1 + word-pair 17.2 | 32.7| 63.5| 68.5| 81.9| 110
A* (160) GO + word-pair 37.7 | 39.5 | 42.5| 56.5 | 80.5 60
beam (10) G1 + word-pair | 17.2 | 32.7| 62.8 | 67.8 | 82.2 79
beam (10) GO + word-pair | 37.7 | 39.5 | 42.8 | 57.0 | 81.1 47
beam (20) G1 + word-pair 17.2 | 32.7| 63.0 | 68.0 | 84.4 | 167
beam (20) GO + word-pair 37.7| 39.5 | 42.5| 56.5 | 81.0| 171
A* (160) GI + word 17.2 | 223.0 | 625 | 67.0 | 77.0 | 254
A* (160) GO + word 37.7 | 208.0 || 42.3 | 55.5 | 74.3| 178
beam (20) G1 + word 17.2 | 223.0 || 61.8 | 66.0 | 79.7 | 181
beam (20) GO + word 37.7 | 208.0 | 41.8 | 55.8 | 80.2 | 182
beam (30) G1 + word 17.2 1 223.0 || 61.8 | 66.8 | 81.7 | 271
beam (30) GO + word 37.7 1 208.0 || 42.0 | 56.0 | 80.5 | 277
beam (80) G1 + (none) 17.2 583 655 | 84.1| 617
beam (80) GO + (none) 37.7 - 37.8| 51.5| 774 | 676
best-first (160) | G1 + (none) 17.2 - | 45.8 | 58.0 | 74.8 | 155
best-first (160) | GO + (none) 37.7 1 29.0 | 448 63.9| 133

|G|: perplexity with gramamr, |H|: perplexity with heuristics h

evaluation score is defined by the forward score normalized by the frame length. In heuris-
tic search, whether best-first or beam, the computation depends on the number of poped
hypotheses. In blind search without heuristics, it depends on the number of generated
hypotheses. Furthermore, we also examined the heuristic power. Besides word-pair con-
straint, we tested simple word-concatenation constraint where any word connections are
allowed.

The recognition results are listed in Table 4.3. Since the constraint can be measured
by the word perplexity, the values are shown for both original grammar |g| and heuristic
constraint |iL| The heuristic power can be defined by the ratio or difference of the two

values.

In beam search, too, incorporating heuristics protects optimal hypotheses from pruning
with much smaller beam width. On the other hand, best-first search without heuristics
is the worst as it cannot recover the errors at the beginning part of the speech. These

results show heuristics improves both the accuracy and the efficiency, regardless of the
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Table 4.4: Effect of stochastic grammar in A* search

rec. | com. | word
(%) | (%) | (%)
normal grammar 65.0 | 70.5 | 86.2
42.5 | 56.5 | 80.5
probabilistic grammar | 67.0 | 73.5 | 88.2
46.5 | 61.0 | 82.6
upper row: G1, lower row: GO

search methods.

A* search with weak heuristics such as word-concatenation sometimes failed to com-
plete any hypotheses, generating too many hypotheses. Such cases are more likely to
occur in noisy samples that are not correctly recognized in any ways. Therefore, the sen-
tence recognition rate is much the same as the best case, but the word recognition rate
gets worse. Beam search avoids this problem by suppressing the number of generated
hypotheses to a certain width.

With powerful heuristics such as word-pair, the search almost always obtained the
optimal hypothesis. In this case, A* search is superior as it generates less vain hypotheses.

When we compare the two grammars G0 and G1, more constrained grammar G1 have
smaller search space and needed smaller hypothesis expansions in the conventional search
without heuristics. However, in heuristic search, where the heuristic constraint is much
the same for the both grammar, the heuristic power gets relatively weak for grammar G1.
Thus, more hypotheses are generated with grammar G1.

In the sentence parsing, it is assumed that weaker heuristics than word constraint is
hopeless especially for A* search, as the search sometimes fails with this heuristics.

Finally, we implemented parsing with a stochastic LR grammar. Ideally the proba-
bilities should be estimated using a large corpus, but there were no appropriate corpora
available. Therefore, we assigned completely a priori value, namely from our insight. The
results are listed in Table 4.4. Using stochastic LR grammar, even with completely a

priori values, improved recognition accuracy.

4.1.5 Conclusion

We have presented an A* search algorithm for context-free parsing of continuous sentence

speech. This best-first search evaluates each sentence hypothesis with the matching score
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plus the heuristic score of the unsearched part. Heuristics computation is based on lexical
constraint that is common to all the hypotheses. Word-pair constraint, which is not
computationally expensive, satisfies A*-admissibility and provides powerful heuristics.
The algorithm is guaranteed to get the optimal hypothesis and does not expand vain
hypotheses so much. Compared with various kinds of beam search without heuristics,

therefore, it achieved better accuracy with less computation.

We have also examined effects of heuristic power. Heuristics turned out effective for
beam search, too. With weaker heuristics, A* search sometimes fails and beam search is
safer. With strong heuristics such as word-pair, A* search is superior with respect to the

efficiency.

In this section, we explained our algorithm in left-to-right search. However, it is quite
straightforward to implement it in right-to-left search. Right-to-left search is advantageous

in its speed, as it can compute heuristics left-to-right almost in real time.

4.2 Using Dialogue-level Knowledge for Speech Pars-
ing

4.2.1 Introduction

In spoken dialogue systems, it is significant to make use of dialogue-level knowledge for
understanding user utterances. A goal-oriented dialogue between a user and the system,
as in spoken dialogue system, proceeds in several typical patterns, which are modeled
with scripts or plans and so on. Therefore, it is possible to constrain what the user utters

next from the previous sequence of the utterances.

Moreover, it is desirable to apply dialogue-level constraint in speech recognition phase,
not to the result of the speech recognition. Namely, it should be used to predict next user
utterances and reduce its perplexity, not to post-process the recognized candidates. In
this paper, we focus on predicting the syntactic type of a next user utterance, as it is

more directly related with grammar-based speech parsing phase.

We propose a method to utilize the dialogue-level constraint for reducing syntactic

perplexity of the user utterances and show its experimental evaluation.
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4.2.2 Syntactic Prediction with Dialogue-level Knowledge

There have been several works to use dialogue-level knowledge sources to improve speech
understanding[60],[61]. However, most approaches apply the dialogue-level constraint
to sentence or phrase level that is the results of the speech recognition units. There is
limitation in such strategy as it just chooses a plausible hypothesis among given candidates
and cannot recover if the correct one is not in candidates. It does not contribute to the
speech recognition by limiting the search space and eliminating the invalid hypotheses.

Hauptman et al. proposed to use script-based dialogue-level knowledge sources to
predict concepts of next user utterances which are dynamically transformed to a semantic
grammar network (RTN)[62]. He demonstrated to improve speech recognition accuracy
with dialogue-level knowledge. However, the mechanism is too elaborate to implement by
human or automatically, namely to derive complex structures and describe scripts and so
on. It is desirable to build prediction mechanism easily and even automatically, given a
large corpus. Furthermore, the predicted network grammar is completely task-dependent
and allows only fixed patterns of sentences. At least a grammar of context-free class is
necessary to describe conversational speech.

Here we propose to predict grammar rules for LR parser, which is currently one of the
most popular analyzers, using a simple state transition dialogue model, which is easily
derived from a dialogue corpus.

The concept is to limit the grammar rules according to the current dialogue state.
The syntactic types of the next user utterance is constrained by the previous sequence
of the syntactic types of the utterances. Therefore, it is possible to guide the parser to
use grammar rules which are associated with the predicted syntactic types. It directly

reduces the syntactic perplexity for the parser and improves both accuracy and efficiency.

4.2.3 Automaton Dialogue Model

Dialogue is modeled with a set of automata, state transition models. Each automaton
corresponds to a goal supposed in the task. We set a task domain of personal schedule
management, and make automata for registration, modification/cancelling, and query of
data. Here, some automata can be called by others to realize sub-goals in main stream of
a dialogue. For example, registration dialogue calls the automaton for query, by pushing

the current state to the stack, and returns when the query is done.
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Each automaton represents a dialogue structure with state transitions, which depend
only upon the syntactic types of the user utterances such as correction and confirmation.
The state transition is non-deterministic so that multiple types can be allowed.

The structure of automaton is acquired by analyzing real dialogue data labeled with
syntactic types. In this experiment, this process is done by human analysis. However,
it is easily done automatically by introducing a probabilistic model similar to HMM or
N-gram[63]. The obtained automata for the present task domain are shown in Figure 4.8.

Then, for each state of the dialogue automaton, we analyze the acceptable user ut-
terances and describe its syntactic rules. More specifically, each rewriting rule of the
grammar is indexed with the state or syntactic type number. Therefore, every time a
user utterance is made, its syntactic prediction is provided as a set of grammar rules
based on the current state of the dialogue model. Speech parser uses the limited rules,
which is expected to have less syntactic perplexity than the whole grammar covering all
utterances. Concretely, a dedicated LR parser runs for each dialogue state.

Thus, the overall procedure to construct the dialogue model and the prediction mech-

anism is as follows:

1. For a training corpus, label the dialogues with their goals and label the utterances

with their syntactic types.

2. For each goal, construct a automaton which accepts the sequences of the syntactic

types of the utterances.

3. For each state of the automaton, specify the grammar rules which accept the utter-

ances of the possible syntactic types.

As recognition of a utterance is performed with the grammar rules given by the current

dialogue state, its syntactic type is identified and a new state of the automaton is specified.

4.2.4 Experimental Evaluation

We have evaluated this method on speaker-independent continuous speech recognition for
a spoken dialogue system, named ‘secretary system’. The used speech samples are 50
kinds of sentences, all of which are uttered by 8 male speakers. As in Figure 4.8, we set
3 automata and the net number of their states is 12. Among them, 9 states are for user

utterances.
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Table 4.5: Effect of dialogue-level prediction for speech parsing (grammar GO)

(Grammar GO)

word | sent. | sent. | hypo. | hypo
perplex. | rec. | com. | gene. | pop
st.1 state 35.4 | 37.9 | 55.8 | 4299 51
common 37.7| 34.4 | 50.4 | 4893 55
st.2 state 28.2 | 68.8 | 75.0 | 1575 27
common 37.7 | 50.0 | 56.3 | 2205 26
st.3,6 | state 21.7 | 82.5| 8.0 | 1126 26
common 377 7715 | 775 | 1892 22
st.4,7 | state 30.9 | 50.0 | 55.0 | 2473 42
common 37.7 | 43.8 | 51.3 | 3529 39
st.5 state 33.3 | 50.0 | 83.3 | 2256 29
common 37.7 | 41.7 | 83.3 | 2597 30
st.8 state 28.8 - - - -
common 37.7 - - - -
st.9 state 25.7 | 62.5 | 75.0 | 1270 23
common 37.7| 43.8 | 56.3 | 1734 23
aver. | state 32.3 | 47.8 | 61.8 | 3264 43
common 37.7| 42.0 | 55.8 | 3948 44

upper row: state-dependent grammar (with dialogue-level knowl-

edge)

lower row: common grammar (without dialogue-level knowledge)

We first described a common grammar which accepts all the utterances through the
dialogue, and then assign state numbers to each rewriting rule to make state-dependent
grammars. Here, we used 2 kinds of grammars, which are different in terms of perplexity
and coverage. Grammar GO allows a user more flexible utterances than grammar G1.
The word perplexities of GO and G1 are 37.7 and 17.2 respectively.

Speech recognition is done with pair-wise discriminant discrete HMM. LR parsing is
based on A* trellis search with word-pair constraint as heuristics, which gets the 10-best
sentence hypotheses.

At first, we evaluated syntactic perplexity of the dialogue state-dependent grammar.
The second column of Table 4.5,4.6 lists the word perplexity of the grammar at each
dialogue state. The state numbers are referred in Figure 4.8. For state 1, the initial state,
dialogue-level prediction does not work. And state 4, 7 and 5 may branch to automaton
of query, thus prediction is not effective. As for other states, the perplexity gets half to
two third.
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Table 4.6: Effect of dialogue-level prediction for speech parsing (grammar G1)

(Grammar G1)

word | sent. | sent. | hypo | hypo
perplex. | rec. | com. | gene. | pop
st.1 state 144 | 65.2 | 70.1 | 3188 110
common 172 | 62.5 | 67.0 | 3756 115
st.2 state 11.9 | 81.3 | 81.3 440 31
common 17.2 ] 62.5 | 62.5 | 2156 48
st.3,6 | state 13.7 | 82.5 | 85.0 843 44
common 17.2 | 85.0 | 87.5 | 3241 88
st.4,7 | state 16.9 | 66.3 | 68.8 | 1881 68
common 17.2 | 66.3 | 68.8 | 3338 72
st.5 state 13.8 | 58.3 | 91.7 | 2190 96
common 17.2 | 50.0 | 83.3 | 2968 85
st.8 state 13.1 - - - -
common 17.2 - - - -
st.9 state 13.3 | 68.8 | 75.0 684 22
common 17.2 | 68.8 | 75.0 | 1841 42
aver. | state 14.7 | 67.5 | 73.3 | 2422 88
common 17.2 | 65.0 | 70.5 | 3433 96

upper row: state-dependent grammar (with dialogue-level knowl-

edge)

lower row: common grammar (without dialogue-level knowledge)

Then, we made recognition experiments. Here we assumed for each sentence that
the past utterances in the dialogue are correctly understood and the proper dialogue
state is given. However, in most cases, recognition errors cause to remain at the current
state, which demands the user a re-utterance, and do not transit to improper states.
The third and the fourth columns in Table 4.5,4.6 show sentence recognition rates and
sentence comprehension rates, respectively. The sentence recognition rate is a ratio of the
samples whose word sequences are completely matched. In the sentence comprehension
rate, we count as correct if all the keywords which constitute the meaning for the task are
completely recognized. The upper row of each slot shows a rate with the state-dependent
grammar, and the lower row shows a rate with the common grammar, GO or G1 itself.
The accuracy improves at the states whose perplexities get smaller. It is confirmed that
dialogue-level prediction works effectively. However, it is because more than half samples
belong to the initial state, namely the first utterance of dialogues, that the average rate

for all the samples did not improve so much.
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We also investigated the amount of computation with the number of hypotheses tested
by the speech parser. The fifth and the sixth columns in Table 4.5,4.6 show the number
of generated hypotheses and the number of popped hypotheses, respectively. As dialogue-
level constraint limits the search space for the speech parser, the number of hypotheses is
reduced. Especially for grammar G1, the dialogue-level knowledge is effective to compu-

tation more than to accuracy as its baseline perplexity is smaller.

4.2.5 Conclusion

We have proposed to incorporate dialogue-level knowledge to speech parsing stage. To
realize this, a simple state transition model is adopted, which can be easily constructed
with a dialogue corpus. The automaton states are directly associated with the grammar
rules, which are used by LR parser. This mechanism is straight-forward and needs no
overhead computation to make prediction. The dedicated grammar for each state reduced
the word perplexity, thus improved the recognition rates and reduced the number of
generated hypotheses.

In this paper, we focus on the use of syntactic types characterized by the dialogue
structures. We are planning to model more but simple knowledge sources on topics
and focus of the dialogue. We are also studying methods to train the dialogue model

automatically given a corpus.

4.3 Cooperating with Semantic Analyzer

4.3.1 Introduction

For spoken language understanding or dialogue understanding, a speech recognizer works
with a natural language analyzer. It is desirable that they are tightly integrated to share
the knowledge sources and limit the search space.

In the conventional model, the recognizer works as a filter for the following language
processor, with its own knowledge sources or constraints such as a syntax or a stochastic
model. If the filter is loose, its output result may be non-sense sentences. Even if N-best
candidates are passed, they all tend to be syntactically or semantically same with one or
two words replacements[16], thus structural errors are not always corrected. Therefore,
integrating semantic or conceptual-level knowledge sources into the speech recognition

stage is significant. Even when we adopt N-best strategy, N-best candidates are to be
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filtered or merged with semantic-level.

On the other hand, if we try to tune up the syntactic filter of the recognizer to embed
all knowledge including semantics and pragmatics, it would be highly hard work and lose

robustness against a variety of spontaneous utterances.

A speech understanding system has to accept ill-formed but semantically correct sen-
tences. But when we concentrate on the recognizer of surface word sequences, it will
accept either only well-formed or non-sense. We propose, therefore, not direct transplan-
tation of the semantic knowledge into the grammar of the speech parser, but exchanging

the knowledge between the speech parser and the semantic parser.

The key to realize this model is the mechanism of incremental semantic analysis and

interactive semantic validation. We realize the semantic analyzer with a semantic network.

4.3.2 Incremental Semantic Analysis with Semantic Network

Semantic Network

To realize flexible and robust parsing, we adopt network representation for the semantic
analyzer. Unification-type grammar is powerful with strict constraints, but it is hard to
relax constraints for noisy inputs. Thus it is not adequate for speech understanding due
to the lack of robustness. Template[64] or semantic case-frame[65],[66] based approach
is more robust as it can construct semantic representations with fragments of sentences.
Therefore, it can be applied to ill-formed utterances. However, it is not easy to manually
enumerate possible templates which will drastically increase according to the task size.
A semantic network represents the relation of words and their concepts, quite compactly.

Taking the paths of arbitrary nodes, a semantic representation is obtained.

The semantic network we adopt is layer structured and loop-free. The lower level
represents the lexical knowledge, and the terminals or leaf nodes correspond to keywords
that construct the meaning of sentences. The upper level represents the semantic and
the pragmatic knowledge, and the top nodes are cores of the semantic types of sentences.
The arcs between nodes have several types of attributes such as ¢s_a and instance_of. A

part of the network is shown in Figure 4.9.
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Figure 4.9: A part of semantic network

Incremental Semantic Analysis

The basic strategy to network parsing is classified into two types: marker passing[67]
and analogue spreading activation[68]. Here we adopt the former strategy as analogue
activation is difficult to formulate and estimate parameters[69],[70].

The semantic representation for a given input is constructed by traversing the paths
between activated nodes. When a word is recognized or spotted, the corresponding node
of the network is activated. An arbitrary path between two nodes makes a partial semantic
representation.

For example, when we recognize ‘tomorrow’ and ‘meeting’, then following two paths

are found in the network shown in Figure 4.9.

(a) tomorrow — day — time — start_time — sentence
+ object < event < present < meeting

(b) tomorrow — day — time <+ event < present < meeting

They are transformed to the following semantic representations, respectively.

(a) [assert, [start_time, [time,tomorrow]], [event, [present,meeting]]]
(b) [assert, [event, [time,tomorrow], [present,meeting]]]
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If necessary, syntactic dependency is checked by referring functional words.

As following words are obtained, new paths with neighboring words are generated and
semantic representations are extended. Here semantic consistency is verified and contra-
dictory hypotheses are not extended. A sentence is completed if a semantic representation
is fulfilled and the whole input is parsed. Words are picked up so that they cover the
whole parts.

The parsing algorithm is described below.

1. Get a word. If it completes a sentence, then finish.

2. Get another word.

3. Traverse paths with neighboring words, and extend semantic representations.
4. If it completes a sentence, then finish. Otherwise go to step 2.

This mechanism realizes robust parsing against minor recognition errors or ill-formed
utterances.

Notice that the semantic representation is constructed incrementally as every word
is obtained. This incremental semantic analysis is the key to interact with the speech

recognizer.

4.3.3 Interactive Semantic Verification Algorithm

Then, we formulate an algorithm of interactive semantic verification. Here, the semantic
analyzer works to verify the hypotheses that are generated based on syntactic prediction
by the speech recognizer.

For this purpose, we add the semantic checking nodes to the semantic network. It
supervises the semantic consistency and alarms on contradictions in various attributes
such as place and time. For example, 'traveling’ implies going to a distant place unlike
home or office, thus ’the destination of the travel is my lab.” is inconsistent. This kind
of nodes are made and connected to the related nodes for each attribute. An example of
semantic checking nodes is shown in Figure 4.10. When some leaf node is activated, the
attribute markers are passed to the semantic checking nodes. If a semantic checking node
detects any contradiction, the hypothesis is invalidated and abandoned immediately.

Namely, the semantic verification is featured to the incremental semantic parsing al-

gorithm. The step 3 is modified as follows.
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attrib

Figure 4.10: An example of semantic checking nodes

3-a Traverse paths with neighboring words, and extend semantic representations.
3-b Pass the attribute markers to the semantic checking nodes.

3-c If a semantic checking node detects any contradiction, invalidate the hypothesis.

This incremental semantic verification reduces perplexity at the recognition stage as
a result. We can evaluate this effect with the test-set perplexity measure.

However, it would be computationally expensive to call the semantic analyzer for all
the hypothesis extensions. In our implementation, the semantic analyzer is called every
time a hypotheses is popped from the hypothesis stack, in order to verify it. Namely, sen-
tence hypotheses are generated based on syntax, but one is passed to semantic verification
only when it gets to the stack-top or best at a time. So this interaction mechanism works
well with a stack decoder rather than beam search. The mechanism can be implemented
to stack decoding search by storing the status of the network, concretely activated nodes,

for each hypothesis as well as its LR parsing state.

4.3.4 Experimental Evaluation

We evaluated how interactive semantic analysis contributes to speech recognition based
on LR parser. We incorporate interactive semantic verification into A* search based on
stack decoder.

The results are shown in Table 4.7. As well as the word and the sentence recognition

rates, the semantic accuracy is also evaluated. The semantic accuracy is the ratio of the
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Table 4.7: Effect of interactive semantic verification

word sent. semantic
(top-10) | (top-10)

GO 80.4 42.0 60.5
(92.3) (71.5)

GO + semantic 80.9 45.3 63.5
(91.7) (74.3)

prob-GO 82.6 46.5 65.5
(93.8) (76.5)

prob-G0 + semantic 83.7 50.3 69.0
(93.8) (78.8)

G1 86.2 65.0 71.3
(93.9) (89.3)

G1 + semantic 86.0 65.8 72.3
(93.3) (90.3)

prob-G1 88.2 67.0 73.5
(95.2) (90.0)

prob-G1 + semantic 88.1 67.8 74.5
(94.7) (90.8)

samples whose semantic representations are correctly obtained. The second column (word)
and the third column (sent.) list the word and the sentence recognition rate, respectively.
The last column (semantic) shows the semantic accuracy. We compared with normal LR
parsing. In this case, we first applied LR parser to get 10-best sentence candidates, and

performed semantic analysis in turn, until a complete semantic representation is obtained.

In any cases, interaction with semantic analyzer improves the accuracy. Notice that
the same semantic knowledge source is applied even to the grammar-only case to get
semantic representations. The difference is timing and the way of applying them. This

means that interacting with semantic analyzer at the recognition stage is effective.

However, the improvement gets smaller as the baseline recognition rate gets higher.
This is because a stronger grammar such as G1 embeds the semantic knowledge to large
extent. But it is still hard to embed all the semantic constraint such as attributes of words
in the LR grammar. Even if possible, such a fixed grammar is not adequate for dealing
with a variety of sentences. The coupling of a loose grammar GO and the interactive
semantic verification accepts more flexible utterances. In other words, it realizes more

robust understanding.
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4.3.5 Overall Evaluation of Knowledge Sources

Finally, we make evaluation of all the knowledge sources described so far. They are
probabilistic LR grammar, dialogue-level prediction and interactive semantic verification.
They are incorporated in the framework of A* search whose heuristics is word-pair or
word bigram. It is illustrated in Figure 4.1. The baseline is LR parsing that contains the

syntactic and lexical knowledge, as discussed in Section 4.1.

In order to see the effect of each knowledge source, we incorporated one by one. Ta-
ble 4.8 and Table 4.9 show the results for grammar GO and G1 respectively, with the word
recognition rate (word), the sentence recognition rate (sent.) and the semantic accuracy

(semantic). The strength of each constraint is measured with the test-set perplexity.

It is clearly seen that integrating more constraints brings better accuracy. Notice
again that, for all experiments including the grammar-only case, the same semantic and
dialogue-level constraints are applied to extract the meaning of the utterances. The
difference is that they are applied after getting the N(= 10)-best sentence candidates.
This means that incorporating higher-level knowledge sources into speech parsing stage is
significant. The semantic and dialogue-level knowledge sources work quite independently.
Namely, the improvement of the accuracy by the both constraints is almost the sum of

those by the respective ones.

The full integration of knowledge sources improved the sentence accuracy by 10%
with respect to grammar GO. This coupling of a loose grammar and the semantic and
dialogue-level constraints accepts ill-formed sentences while filtering out non-sense ones.
As for grammar G1, the improvement is not so significant, as the semantic knowledge is

partly embedded in the grammar itself.

From the computational viewpoint, this strategy turned out not so expensive. The
language processing time is much less than HMM trellis computation. Moreover, the
semantic analyzer eliminates vain hypotheses at an early stage, and the dialogue-level
constraint is applied to limit the grammar of the parser before whole sentence recognition.
Actually, the extra CPU time of the full integration was 8~11% of that of the baseline

parsing.
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Table 4.8: Effect of integrating linguistic knowledge into grammar GO

test-set word sent. semantic
perplex. | (top-10) | (top-10)
GO 33.7 80.4 42.0 60.5
(92.3) (71.5)
GO + semantic 31.5 80.9 45.3 63.5
(91.7) (74.3)
GO + dialogue 28.5 83.6 47.8 64.8
(93.9) (76.0)
GO + semantic + dialogue 26.5 84.5 51.5 67.3
(93.2) (77.5)
prob-GO 28.0 82.6 46.5 65.5
(93.8) (76.5)
prob-GO + semantic 26.6 83.7 50.3 69.0
(93.8) (78.8)
prob-GO + dialogue 25.0 84.8 51.0 67.8
(94.5) (79.0)
prob-GO + semantic + dialogue 23.6 85.7 54.0 70.3
(94.1) (80.8)

Table 4.9: Effect of integrating linguistic knowledge into grammar G1

test-set word sent. semantic
perplex. | (top-10) | (top-10)
G1 17.4 86.2 65.0 71.3
(93.9) (89.3)
G1 + semantic 16.7 86.0 65.8 72.3
(93.3) (90.3)
G1 + dialogue 16.7 87.9 67.5 72.8
(95.1) (90.3)
G1 + semantic + dialogue 16.0 88.2 68.5 74.0
(95.0) (91.5)
prob-G1 16.5 88.2 67.0 73.5
(95.2) (90.0)
prob-G1 + semantic 15.9 88.1 67.8 74.5
(94.7) (90.8)
prob-G1 4+ dialogue 16.2 89.3 68.5 73.0
(96.3) (90.8)
prob-G1 + semantic + dialogue 15.5 89.3 69.0 75.5
(96.0) (91.5)
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4.3.6 Conclusion

We have presented an interactive semantic analysis method to verify partial sentence
hypotheses. Incremental semantic analysis is implemented with a semantic network. It
concurrently works using the same stack decoder with the LR parser. It is shown that
the mechanism improves the accuracy.

Finally, all the available linguistic knowledge sources are integrated and evaluated
in the framework of the single A* search with word-pair or word bigram as heuristics.
It is shown that integrating the semantic and dialogue-level knowledge into the speech
recognition stage achieves better accuracy than the conventional N-best strategy that

applies them after getting the N-best sentence candidates.



Chapter 5

Word and Phrase Spotting with
Heuristic Language Model

In a spoken language system or a spoken dialogue system, it is significant to deal with
natural spontaneous speech including ill-formed sentences. The ill-formedness such as
fillers, hesitations and unknown words is of variety, and it is hard to model and describe
all the obstructing phenomena.

When the task domain is rather limited, we can mostly make senses of utterances
by putting attention to keywords and discarding the rest detailed parts. In a spoken
dialogue system, it is also possible to make clear the unrecognized parts through the
following dialogue. Therefore, spotting-based approach that extracts only recognizable
parts and skips the rests is attractive[71].

The basis of this approach and the key to its success is keyword spotting. Although
it has been studied a lot, the spotting strategy has not succeeded so well especially at
a large-vocabulary task. The reason is spotting itself fails to obtain enough detection
accuracy, and causes too many false alarms to deal with in the following processing.

To be more specific, we contend the following issues in the conventional spotting

approaches.

1. No use of language models at the spotting stage
2. Use of words as the spotting unit

3. Deterministic segmentation at the spotting stage

To overcome the above defects, we adopt heuristic and progressive search strategy. It

applies multiple-level constraints sequentially in the order of their strength.
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1. Simple language model such as word/syllable bigram for the whole utterance.
2. Local phrase syntax at the spotting stage

3. Inter-phrase semantic constraint for sentence understanding

The concept is fundamentally same as that presented in Chapter 4 which is illustrated
in Figure 4.2.

The important point is we store the intermediate results of HMM trellises at each
step except the last one. It is provided to the following step as the heuristics which
realizes admissible and efficient search, except that the first pass is Viterbi search. The
strategy progressively limits the search space and performs efficient search, obtaining good
heuristics. By retaining the intermediate HMM trellises, it gets possible to compute the
globally optimal Viterbi score. By choosing such constraint at every step as subset of
that for the next step, the obtained heuristics gets A*-admissible, which guarantees the
next search to find the optimal hypothesis.

In the following sections, we discuss each issue in the above order: the heuristic lan-
guage model for spotting in Section 5.1, the phrase syntax as a spotting unit in Section

5.2, and the inter-phrase semantic constraint in Section 5.3.

5.1 Word Spotting with Heuristic Language Model

5.1.1 Introduction

Word spotting algorithms have been studied a lot. However, almost all of them focus
on acoustic modeling of the spotted words themselves. In this section, we propose to
incorporate a low-level language model to sentences in which keywords are contained, and
to spot keywords which satisfy the constraint with high probabilities. In this formalism,
we define the word spotting problem as finding the most probable (sentence) hypothesis
for a whole utterance which contains the word.

The most important issue for this approach is to construct a language model which
will be effective constraint but does not hamper the flexibility of user utterances. We

examine several language models and present experimental evaluations.
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5.1.2 Heuristic Word Spotting

Our goal here is to spot all the significant words which contribute to sentence understand-
ing in a given task domain. In this kind of multiple word spotting in a sentence utterance,
we can assume that an input contains some word to be spotted as well as other words.
Namely, an input is a sequence of spotted words, other (unknown) words, filled and silent
pauses. This task is rather different from word spotting in continuously recorded material
or noisy environment. Here, we know the input is a sort of language though it is very ill-
formed. Therefore, it is desirable to model the language and incorporate this knowledge
into the spotting phase.

The conventional study on word spotting mainly focuses on how to construct the
acoustic model for spotted words and does not care the rest parts. In the spotting strategy,
the word model is matched assuming that every time-frame be a starting point or an end
point of the word. But it is difficult to compare Viterbi scores that are different in
length (scoring problem). It is also hard to precisely identify starting points and end
points that give the maximum score (segmentation problem), without investigating the
neighboring parts. This sort of bottom-up matching is always annoyed with the local
noise or similarity, which will cause unnatural false alarms.

Here we propose to put linguistic constraint on the whole input, and evaluate a hypoth-
esis that contains the target word and satisfies the constraint. The evaluation function
for a hypothesis that the input contains word w in time t;~t5 is defined as the sum of the
score g(w,t1,ts) for the word itself and the score h(w, t1,t2) for the rest part (1~ty,to~T).
The spotting model is illustrated in Figure 5.1.

f(w7t17t2) = 9(w7t17t2) + h’(w7t17t2) (5]‘)

The heuristic score h(w,t;,t2) that the remaining part makes a plausible sentence in
a task is ignored as zero in conventional strategies. Since we incorporate the heuristic
knowledge on language, we call this strategy heuristic word spotting. The word spotting is
formulated as finding the N-best hypotheses based on this evaluation function f(w,t1,ts).
The heuristic score is divided into the preceding part (1~t;) and the following part

(to~T') of the word.
h(w, t1,t2) = hy(w, 1,t1) + hp(w, 2, T) (5.2)

We call them left-context heuristics h;(w, 1,t;) and right-context heuristics h,(w,ts,T),

respectively.



96 CHAPTER 5. WORD AND PHRASE SPOTTING

heuristic heuristic
language language
model
word model
h(w,1,t1) g(W,t1,t2) h(w,t2,T)

Figure 5.1: Spotting model with a heuristic language model

This formulation solves the problems of scoring and segmentation which arise in length-
free matching, as it judges after scanning the whole input. A similar approach is based on
the use of a garbage model[72]. The garbage model represents unknown words and filled
pauses. It is usually trained with the whole part of speech samples. The garbage model,
a complete wild card, will accepts any inputs. However, it does not work as constraint
for inputs, since it is not based on linguistic knowledge. The linguistic constraint must be
embedded with other forms such as automaton-type grammar[73],[74],[75] which performs
parsing, not spotting. Furthermore, the garbage model is completely a black box. Its
training is unstable and its scoring is not unreliable, which is confirmed only after trials
and errors.

Our strategy uses a language model that is not a strict grammar but constrains inputs
to be plausible sentences in a task. It will substantially reduce the perplexity of inputs and
suppress unnatural false alarms. Moreover, since the heuristic model is constructed with
the phone model that is also used for the word models, it will provide consistent scores
with the word scores. It is also possible to set the threshold for spotting dynamically with

the heuristic score.

5.1.3 Spotting Algorithm

Heuristic spotting algorithm consists of two phases: heuristics computation and spotting
itself.

First of all, the heuristic model is applied to the whole part of an input speech.
Although the same model is used to approximate the left part and the right part of the
spotted word, Viterbi scores for the two must be independently computed. Therefore, we

apply the model both left-to-right and right-to-left, and stores the respective generated
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input speech

1 7! t T
left-context :
heuristic model

left-to-right h(W,l,t )

word model W

|eft-to-right
(or right-to-left)

right-context
heuristic model

right-to-left

Figure 5.2: Trellis concatenation of word model and heuristic language model

trellises. The evaluation function f(w,t;,t5) is obtained by concatenating three trellises
as shown in Figure 5.2. This evaluation is performed for each word w at each time-frame
t, and those candidates that exceeds a threshold are output as spotted candidates. The

algorithm is formulated as follows.

1. The heuristic model is applied left-to-right, and the left-context heuristic trellis
hi(ws, i, T) is computed for every word w, at every time-frame t,, with Viterbi

algorithm.

2. The heuristic model is applied right-to-left, and the right-context heuristic trellis
hy(w, ts,T) is computed for every word w, at every time-frame t,, with Viterbi

algorithm.

3. For each word to be spotted w, its model is evaluated. Perform the following for

each time-frame t.

(a) The initial state is connected to the left-context heuristic model. Namely, the
self-loop of the initial state is compared with the transition from the end of the

heuristic model. This incorporates the left-context heuristics h;(w, 1,1)

(b) For the following states of the word model, Viterbi computation is performed.
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(c) The final state is followed by the right-context heuristic model. Namely, the
the score of the right-context heuristic trellis h,(w,t,T') is added to compute

the evaluation function f(w,t,,t).

(d) If its value is over the threshold, then the word w is output as a candidate.
The end point is ¢, and its corresponding starting point ¢, is back-traced from
t. If this candidate overrides the previously output one that is the same word

in the overlapped segment, the best one is chosen and the rest is deleted.

The last step generates, for each time-frame ¢, a hypothesis that word w ends at t.
Actually, starting time-frame ¢, of the word is identified by Viterbi alignment only after
the word is spotted. The left-context heuristic score hj(w,1,t;) is embedded as the word
trellis is generated, while the right-context heuristic score h,(w,ts,T) is explicitly added
to complete the evaluation function.

When we use a heuristic language model that includes the words to be spotted such
as word-concatenation model, the score of the word part is obtained in heuristics compu-
tation. Thus, we can omit either step 3-(a)~(b), or step 3-(b)~(c).

Fundamentally, the overall procedure becomes three pass algorithm on the input in-
cluding the spotting phase itself. However, it is possible to perform the two heuristics
computations (step 1 and 2) in parallel. Or, when we perform step 3 in the right-to-left
direction, it is possible to perform step 2 and step 3 in parallel and frame-synchronous.
This is most efficient as step 1 can be processed in real time.

We can seek more efficient search algorithm based on this formula such as best-first
search. But here we realize a full Viterbi search, as the word hypothesis extension is small

enough.

Threshold for Spotting

The threshold for spotting can be set dynamically based on the score of the optimal path
with the heuristic language model P,,,, = h(w.,1,T). Generally, an acoustic score such
as Viterbi score is affected by input conditions, and it is hard to decide the threshold
based on the absolute value. Since the score P, is optimal for the whole utterance, it
gives the upper bound of the evaluation function f(w,t1,%2). Thus, we can normalize the

acoustic scores by choosing a relative value of the heuristic score as the threshold.
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Scoring of Candidates

The evaluation function f(w,tq,ts) reflects the whole input. Its intuitive meaning is
spotting cannot be done without considering neighboring contexts. However, it might be
inadequate to use this evaluation function for scoring the word itself, since it is the score
of a hypothesis that the word exists.

From this viewpoint, the score of the word itself can be modified as g(w, t1,t2) only. It
is computed with Viterbi alingment for the word part after the word spotting hypothesis
is adopted. In this case, some normalization on its length is necessary. Here, we just

divide logarithm scaled Viterbi score g with the length (t; —¢; + 1).

5.1.4 Language Modeling for Heuristics

The key of the spotting strategy is language modeling for heuristics that will be effective

constraint and robust against a variety of user utterances. Several models are examined.

Syllable-Concatenation Model

This model represents just a parallel concatenation of the possible syllables. It is self-
looping of syllable models that are possible in the language. In Japanese, there are about
100 CV (Consonant-Vowel) syllables. Thus, this model can accept any Japanese sentences.
But it is the loosest constraint without lexical knowledge. A part of the model is shown
in Figure 5.3.

It is desirable to use syllable bigram since it characterizes the general language better.
Bigram or a transition probability of the syllables is assigned to each concatenation. It
is known that bigram reduces perplexity of the language[76]. It is estimated with a large

corpus.

Word-Concatenation Model

This model approximates an input utterance with a sequence of known words using large
vocabulary lexical knowledge[77],[75]. It is a parallel combination of all the possible word
models. In addition to the keywords to be spotted, functional words are added to the
lexicon. An example of the model is shown in Figure 5.4.

Since it limits the vocabulary as in conventional parsers, the score for an input includ-

ing unknown words or filled pauses is not guaranteed as correct. To cope with spontaneous
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kol

Figure 5.3: Syllable-concatenation model

utterances, models of filled pauses can also be added.

Word-Pair Model

In addition to the lexical knowledge, this model constrains the connections of the words.
Only the syntactically admissible pairs of the words are connected. An example of the
model is shown in Figure 5.5.

This constraint will improve the spotting accuracy, especially concerning short words
whose phone sequences are similar to other words locally, for example, ‘kyou (today)’
and ‘Tokyo’. But syntactic constraint on the word connections is also often violated in
Japanese conversational speech.

In this model, too, filled pauses can be incorporated.

Word-Syllable Hybrid Model

Generally, more constraint will improve the spotting accuracy but loses robustness. The
ideal mechanism applies strong constraint for an input that satisfies it, and relaxes con-

straints when an input violates it. Here, we propose a hybrid model of words and syllables.
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?888888

word model 3

Figure 5.4: Word-concatenation model

BA0000

word model 1

word model 2

word model 3

Figure 5.5: Word-pair model

It is a combination of syllable-concatenation and word-concatenation, as shown in Fig-
ure 5.6. The part of an input that makes some known word is expected to pass the
corresponding word model, and the unexpected part such as unknown words and filled

pauses will pass the syllable models.

As both syllable models and word models consist of the same phone model, the prob-
ability of passing the syllable models must be lowered relatively, lest the whole input pass

the syllable models. It is regarded as a penalty for violation of the lexical constraint.

In this model, too, syllable bigram can be incorporated to the syllable-concatenations

in order to improve the model.
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word model 1
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QI
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Figure 5.6: Word-syllable hybrid model

5.1.5 Experimental Evaluation

Heuristic language models are constructed as follows.

Syllable-concatenation model consists of 110 Japanese CV (Consonant-Vowel) sylla-
bles. In order to estimate syllable bigram, we used dialogue text database of the Acoustic
Society of Japan (ASJ)[30]. It is completely independent from our task domain. It has
about 120 thousands of syllables. The syllable perplexity with bigram gets 21.6. Here we
performed back-off smoothing on the bigram of the syllable pairs that do not appear in
the corpus frequently[31].

Word-concatenation model consists of 230 words, including functional words as well
as the words to be spotted. Moreover, we construct another word-concatenation model
that also includes 6 filled pauses. Word-pair model constrains above word-concatenation
models. Word-pair is derived by LR grammar described for continuous speech parsing.
The word perplexity with the word-pair is 46.5 without fillers and 52.9. with fillers.

The threshold for spotting is set based on the optimal score with a heuristic language

model P,,,,. After the preliminary experiments, we set it to P,,4, X 1.05 on the logarithm
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scaled Viterbi score, so that enough candidates are obtained. We limit the appearance of
one word in a utterance to 5 at maximum.

In order to evaluate if the spotted candidate is correctly located, we performed the
Viterbi alignment on the inputs with the correct models beforehand. Correctness of
the segmentation is judged by comparing with this alignment. We count as correctly
segmented if the midst point of the spotted candidate exists between the starting point
and the end point of the correct alignment.

The overall spotting accuracy is evaluated with the number of correct words (A)
and incorrect words (F A: False Alarm) in a certain candidates. The ratio of detecting
correct words (A) to the number of words to be spotted in the sample (W) is defined
as detection rate (A/W). The number of false alarm (F# A) is normalized by the product
of the vocabulary size of keywords (KW) and total time of the samples (in hour: H),
both of which it depends on. We notate this FA/KW /H (=False Alarm per KeyWord
per Hour). In our experiment, the total time of 400 samples of grammatical sentences is
1260 sec., namely 0.350 hours, and that of 200 samples of ill-formed sentences is 806 sec.,
that is 0.224 hours.

When most of the vocabulary are keywords and large part of an utterance is recognized,
the word recognition rate can be computed in much the same way as in continuous speech
parsing. Here, we investigate the detection accuracy (A/W) in the same candidates as
the number of words to be spotted (W), which we notate A/1W. In the large vocabulary
word spotting, which is designed for robust speech understanding, we basically use this
evaluation measure.

When the set of keywords are limited, only small part of an utterance is to be spotted.
Naturally, the detection rate improves when we allow more false alarms. In this case,
we have to investigate the detection rate at various FA/KW/H values. The graph of
the spotting rate A/W versus the false alarm rate FA/KW/H is called ROC (Receiver-
Operating-Characteristic) curve. As a compact measure for the spotting performance,
a Figure of Merit (FOM) score is defined as the average detection rate from 0 to 10
FA/KW/H. In the small vocabulary word spotting, we use this measure.

Evaluation with Large Vocabulary

In order to evaluate our methods, we performed large vocabulary word spotting exper-

iments. The words to be spotted are all the noun, verbs, and several functional words



104 CHAPTER 5. WORD AND PHRASE SPOTTING

Table 5.1: Result of 219 vocabulary spotting

language model grammatical ill-formed
A/IW | FA/KW/H | A/1W | FA/KW/H
no heuristics 31.7 15.33 28.4 13.19
garbage 42.6 12.85 35.7 11.84
syllable-conc. 36.6 14.10 42.0 10.68
syllable-bigram 42.4 12.92 48.7 9.46
word-conc. 60.5 8.86 53.0 8.66
word-conc. (fillers) 59.4 9.11 55.8 8.15
word-+syllable-conc. 60.2 8.92 55.6 8.17
word+syllable-bigram 60.0 8.98 55.6 8.17
word-pair 74.5 5.71 58.0 8.15
word-pair (fillers) 73.5 5.94 67.0 7.75

to determine the cases of phrases. The vocabulary size is 219. The average number of
phonemes per word is 7.83. Phone models are based on discrete HMM with pair-wise

symbol classifiers.

As well as the proposed methods, we also applied the conventional spotting algorithm
based on length-free matching, which only uses word models and does not assume any
language models. If a local peak of the Viterbi score normalized by the frame length
exceeds a threshold, then the word is spotted. Moreover, we implemented a garbage
model as the background model for reference. It is constructed by taking the average

distribution of all the phone models.

The results for grammatical sentences and ill-formed ones are shown in Table 5.1.
The table lists the word detection rate (A/1W) and the false alarm rate (FA/KW/H) in
the W-best candidates. The relation between the detection rate (A/W) and the number
of candidates is shown in Figure 5.7 for grammatical utterances and in Figure 5.8 for

ill-formed ones, respectively. The number of candidates is measured as a ratio to W.

These results show that spotting with a heuristic language model is more effective than
the conventional matching. The conventional length-free matching spots words based on
the local score, thus tends to generate false alarms in such parts that is locally similar to
the words to be spotted.

However, syllable-concatenation model does not work well, since it does not give any
constraints on language. It just works as syllable alignment of the whole input. Incor-

porating bigram of the syllables improves the spotting accuracy. It succeeds to model
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Figure 5.7: Result of 219 vocabulary spotting (grammatical utterances)
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Figure 5.8: Result of 219 vocabulary spotting (ill-formed utterances)
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Table 5.2: Comparison of scoring of spotted candidates

language model grammatical ill-formed
f g f g
A/IW | A/IW | A/IW | A/1W
syllable-bigram 42.4 32.7 48.7 29.4
word-conc. (fillers) 59.4 36.6 55.8 28.4
word-pair (fillers) 73.5| 46.6 67.0 36.7

general spoken language even if its training text has nothing to do with the task domain.

The garbage model is more effective than the length-free matching, but it gives as
weak constraint as the syllable-level models do.

Word-concatenation model works quite effectively. It brought about better accuracy
than any syllable-level models. In grammatical utterances where no fillers exist, using
fillers in the heuristic model had only bad effect, as it increases perplexity of the model. In
ill-formed utterances, the model with fillers was effective, but only a little. In other words,
word-concatenation model without fillers works quite well even in ill-formed utterances
that violate the lexicon. It is because fillers can be approximated by several short (one-
syllable) words such as functional words.

Word-syllable hybrid model also works well, but it got much the same accuracy as
word-concatenation model only. Incorporating bigram of the syllables had no effect in
this case. It means that word-level constraint is so powerful and robust that syllable-level
knowledge makes little sense.

Word-pair model got the best spotting accuracy in the experiments. While syllable-
concatenation model allows any sequences, word-pair model does not approximate the
rest part of a mis-placed word and prevents it from being spotted. But in ill-formed
utterances, the model without fillers is less effective. It means word-pair is not robust
against spontaneous utterances where the constraint is not satisfied.

Comparing the results for grammatical sentences and ill-formed sentences, as the
heuristic model gets powerful, it works less effectively for ill-formed sentences than for
grammatical ones.

Next, we examined evaluation function for the spotted candidates. In the above exper-
iments, we used f(w,t1,t2) for scoring. For comparison, then, we used g(w,t;,t2) which
reflects only the part of the word w. The spotting algorithm is the same, namely based

on the evaluation function f(w,t;,t2) using a heuristic language model. The difference is
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Table 5.3: Result of 26 vocabulary spotting

language model grammatical ill-formed
FOM | A/IW | FOM | A/1W
no heuristics 17.8 48.3 | 26.5 49.3
garbage 50.9 73.8 | 36.9 64.0
syllable-conc. 14.0 379 | 56.0 77.2
syllable-bigram 20.1 49.2 | 57.5 78.7
word-conc. 54.4 78.8 | 69.9 86.8
word-conc. (fillers) 50.7 | 76.2| 714 88.2
word+syllable-conc. 63.0 76.2 | 73.0 88.2
word+syllable-bigram || 62.5 76.7 | 73.1 88.2
word-pair 73.6 90.0 | 62.0 86.0
word-pair (fillers) 74.1 89.6 | 68.7 89.7

scoring or ranking of the spotted candidates. The results are shown in Table 5.2. In all
the cases f(w,t,ts) brings about much better accuracy. It is significant to use heuristics
for scoring as well as for spotting itself. Especially, the score g(w,t1,t3) is not reliable for

the unnatural matching such as staying at one HMM state too long.

Evaluation with Small Vocabulary

For a reference, we performed a spotting experiment with rather small vocabulary. We
chose 26 keywords, all of which are concerning the scheduled events in our task domain,
for example, meeting, lecture and conference. The average number of phonemes per word
is 10.3. The results are shown in Table 5.3. Here, we compute a Figure of Merit (FOM)
that is the average detection rate (A /W) at various (0~10) false alarm rates (FA/KW /H),
as well as A/1W in the W-best candidates.

Naturally, the absolute performance gets much better than 219 word spotting, as the
vocabulary size drastically decreases. However, much the same tendency is seen with
respect to the comparison of the heuristic language models. In this case, word-pair model
without fillers is inferior to any word-level models. It makes clear the lack of robustness
of word-pair constraint.

Only difference is that syllable-level models for grammatical sentences were so worse.
Investigating the erroneous samples, we found many cases that a word wj is mis-spotted
at the part of word utterance w; that has wy as prefix or suffix, for example ‘meeting

(wy)’ spotted in ‘joint-meeting (w;)’. As the syllable model approximates the rest part
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well or even better than longer correct word wy, the score of w, gets higher than that of
wi. The samples of grammatical sentences has many such cases as for this vocabulary

set.

5.1.6 Conclusion

We have proposed a new word spotting strategy, which incorporates a language model as
heuristics. It judges the word existence based on the evaluation function which reflects
not only the matching score of the word itself but also the plausibility of the rest part as
a sentence.

Experimental results show this heuristic word spotting strategy is more effective than
the conventional bottom-up matching-based method.

We have also examined which language model is appropriate with respect to the ac-
curacy and robustness, and come to several conclusions. (1) syllable-level knowledge is
not sufficient. (2) word-level constraint is very effective and robust against spontaneous

speech. (3) word-pair constraint is most powerful but not robust.

5.2 A*-admissible Phrase Spotting Algorithm

5.2.1 Introduction

For robust spoken language understanding, we have studied a word spotting algorithm,
especially on the use of a heuristic language model on whole utterances. Though it
constrains inputs and suppresses unnatural false alarms, the overall word accuracy is
still inferior to that of the continuous speech parsing approach. It is because the word
connections are not constrained with syntactic knowledge at all in the spotting approach.

In this section, we propose to use phrase-level syntax at the spotting stage. Since
a phrase is uttered at one moment, its syntax is rarely violated even in spontaneous
utterances. It will reduce the task perplexity and improve the spotting accuracy. Thus, it

is a hybrid of the parsing approach and the spotting approach, whose merits are reflected.

5.2.2 Heuristic Phrase Spotting

In the spotting-based approach, keyword has been commonly used as the unit or target of
the spotting. However, word spotting that uses small templates is still annoyed with the

local noise or similarity. Using a longer unit is advantageous because it can incorporate
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more distinguishing information, that is linguistic knowledge. Here we propose to use
phrase as the spotting unit.

A phrase consists of a few keywords and functional words, for example, ‘from Tokyo’,
or ‘at three o’clock in the afternoon’. Even in spontaneous speech, a phrase is uttered
at a moment without break, and its syntactic structure is rarely violated. Namely, local
syntax is maintained even in ill-formed utterances. Moreover, since a phrase makes a
semantic case and is directly mapped into a semantic representation, it will lead to robust
understanding.

In the previous section, we proposed a two-pass word spotting strategy which incor-
porates a simple language model into the non-keyword alternate model as heuristics. It
judges the existence of a word w at t;~ts by evaluating the whole input f(w), not only the
target word part g(w). The heuristic language model h(w) constrains the word existence

and suppresses false alarms.

f(w7t1’t2) = hl(wa 1at1) + g(w’tl’tQ) + hT(w’t%T) (53)
= g(w,ty,t2) + h(w, 1y, 12) (5.4)

Unlike word spotting, it is unrealistic to evaluate all the possible phrases whose number
is combinatorial of the vocabulary size. Therefore, some search technique is essential.
When we consider sentence understanding, it is significant to spot the N-best candidates
correctly. Especially for a large number N, so as to get sufficient candidates, it is hard
to obtain the correct N-best candidates with beam search. Thus, we adopt best-first
search which outputs the candidates in the order of their scores. This property enables
us to choose as many candidates as necessary by adjusting the spotting threshold. This
property is also desirable to realize an interaction with an island-driven semantic analyzer.

When we need only the best segmented candidate of a phrase w = (wq, ws,...,w;),
we can apply Viterbi algorithm that computes the score of the optimal path. It is easily

extended to N-best algorithm, if we must consider multiple occurrences of the same

phrase.
flw) = _max_ f(w,ti,t2) (5.5)
For a partial phrase hypothesis w' = (wy,...,w,), an evaluation function f (w') is

defined as an estimate that it completes a phrase.

F(w') = g(w') + h(w') (5.6)
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Here, B(W’ ) represents not only the score of the alternate model as in the previous sections
but also the prospect for the incompleted part of the phrase.

In other words, iz(n) combines the estimate score of the incompleted part of the phrase
and the score of the rest parts that are not covered by the phrase. The background model
is used for constraining the whole utterances. The syntactic and structural analysis is
performed on only those parts that are recognizable with the available knowledge. The
unrecognizable parts including ill-formed parts are left approximated with the background
model only.

If iL(W’ ) gives the upper bound of the actual best extension of the phrase, that is, if
the linguistic constraint for il(Wl) is subset of that for the phrase syntax, the search is A*-
admissible and guaranteed to find the optimal phrase candidate. In obtaining the N-best
candidates as in spotting, the search outputs the hypotheses correctly in the order of their
scores. The syllable-concatenation model satisfies this condition, though syllable-bigram
does not. The word-concatenation model satisfies it if it covers all of the word entries in
the phrase syntax.

Generally, some penalty has to be added to syllable models lest the whole input
is matched to the syllables instead of words and phrases. This invalidates the A*-
admissibility. However, word-syllable hybrid model still satisfies the admissibility, as

it provides the upper bound of scores of possible phrases.

5.2.3 Spotting Algorithm

The spotting algorithm is much the same as word spotting, except that the search proceeds
by extending the most plausible phrase hypothesis. To realize best-first search, we use a
stack decoder.

The phrase syntax is represented by finite state automaton grammar or LR grammar,
by which next possible words can be predicted given the current partial phrase hypothesis.
The heuristic language model is incorporated to both left-context and right-context of the
hypotheses, as shown in Figure 5.9.

First of all, the heuristic model is applied to the whole part of an input speech.
Although the same model is used to approximate the left part and the right part of the
spotted phrase, Viterbi scores for the two must be independently computed. Therefore,
we apply the model both left-to-right and right-to-left, and stores the respective generated

trellises. The third pass is best-first search with a stack decoder that extends plausible
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Figure 5.9: Phrase spotting with a heuristic language model

phrase hypotheses. The evaluation function f (w') is obtained by concatenating the phrase

part and both heuristics. The algorithm is formulated as follows.

Here, hij(w, 1,t) is the left-context heuristics ending with word w at ¢, and h,.(w,t,T) is

the right-context heuristics starting with word w at time ¢. The forward score a(w’, 1,1)

and a(w,1,t) is for a partial phrase hypothesis w' and for a word w, respectively. We

notate a phrase hypothesis of n words as w',, = (w1, ..., w,).

1.

The heuristic model is applied left-to-right, and the left-context heuristic trellis
hi(wy, 1,t.) is computed with Viterbi algorithm.

The heuristic model is applied right-to-left, and the right-context heuristic trellis
hy(w., ts,T) is computed with Viterbi algorithm.

Words that can appear at the beginning of phrases are predicted. For each w
of them, a new hypothesis w'; is generated, evaluated with the following Viterbi

computation and pushed to the stack.

fow'y) = max {hn(we, 1,8) + hy(w,1,T)} (5.7)
t1 = arglréltas)f(p{hl(w*,l,t)+hr(w,t,T)} (5.8)

. The hypothesis w',, (of n words) with the largest score is popped from the stack.

If the hypothesis w',, completes some phrase that is accepted by the phrase grammar,

then output it. If enough candidates are obtained, finish the search.

The trellis for the last word of the hypothesis w’,, is extended.

max {a(W'n_1,1,t0) + a(wn, to,t)} ifn>1

! —
(Wi, 1,1) = { max {h;(wx, 1,t0) + a(wn, to,t)} if n =1 (5:9)
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7. Words that can extend the hypothesis w',, are predicted. For each w of them, a new
hypothesis w',, ;1 is generated, evaluated with the following Viterbi computation

and pushed to the stack. Go to Step 4.

A

’ _ /

f(Wat1) = tnglgaing{a(W ny 1,t) + hp(w,t,T)} (5.10)
— !

t, = argt"f?ggcsT{a(wn,l,t) + h(w,t,T)} (5.11)

The above algorithm assumes that the heuristic model incorporates lexical knowledge,
or all the word entries are included in the heuristic model. In this case, the word scores are
obtained in the heuristics computation, and the evaluation of the hypotheses (equation
(5.7), (5.10)) is computationally economical. Trellis computation for a hypothesis is done
only when it is further extended (equation (5.9)).

When we use syllable-level model without lexical knowledge as heuristics, it is neces-
sary to perform word trellis computation at the hypothesis generation. Thus, Step 6 is
included in Step 3 and 7. In other words, we have to make computationally expensive
evaluation by saving heuristics computation.

As for the terminating condition in Step 5, it is possible to limit the candidates by both
the number of the them and their scores. Since the candidates are obtained in the order
of their scores with A* search, we can terminate at the desired number of candidates.
But it is hard to set the rational number of candidates. Here, we use the score of the
candidates as a threshold as in word spotting. The value of the threshold is dynamically

set according to the optimal score of the heuristic language model.

5.2.4 Experimental Evaluation

The spotting algorithm is evaluated with speaker-independent continuous speech. The
recognition is performed with pair-wise discriminant discrete HMM.

As the phrase grammar, we describe two kinds of grammars. PG1 is normal and fixed,
and PG2 allows the ellipses of the functional words, which often occur in conversational
Japanese. The word perplexity of PG1 and PG2 is 56.1 and 211.0, respectively.

As the heuristic language model, we use syllable-concatenation model and word-
syllable hybrid concatenation model. In both cases, some penalty has to be added to
syllable models. Word-pair model turned out not robust in word spotting, thus we do not

use it at this time.
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Table 5.4: Result of phrase spotting (219 keyword)

language model grammatical ill-formed

(spotting unit) 4 (heuristics) | A/W | FA/KW/H | A/W [ FA/KW/H
phrase (PG1) 4+ word-syllable 67.6 7.23 62.5 6.91
phrase (PG2) 4+ word-syllable 62.2 8.48 56.7 7.97
phrase (PG1) + syllable 47.3 11.45 52.1 8.72
word + word-syllable 61.4 8.66 56.6 7.99
word + syllable 37.6 13.88 42.6 6.77

The spotting accuracy is measured with the detection rate versus the false alarm
rate. For consistency with word spotting, we investigate the word detection rate though
spotting is done on phrases. The word detection is concerning 219 keywords at the task
domain that are used for word spotting. We present the word recognition rate (A/W)
and the false alarm rate (FA/KW/H) in the W-best candidates, where W is the number
of the words to be spotted in the used samples.

The results for grammatical sentences and ill-formed sentences are shown in Table 5.4.
The results of the word spotting are also presented for reference. The detection rates are
slightly different from those in the previous section as the occurrence of one word is limited
to only once here. The relation between the detection rate (A/W) versus the number of
candidates is shown in Figure 5.10 for grammatical utterances and in Figure 5.11 for
ill-formed utterances respectively. The number of candidates is measured as a ratio to W.

As the heuristic language model, word-syllable hybrid model brings much better ac-
curacy than syllable-only model. It is confirmed that lexical-level knowledge is significant
in the background model for phrase spotting, too.

As for the phrase grammar, grammar PG2 that generates too many phrases gets worse
accuracy than normal grammar PG1. Though the decline of the word accuracy is only
small, the phrase recognition rate gets almost half. Its phrase recognition rate is even
worse than that of grammar PG1 with syllable heuristics.

Compared with simple word spotting, it is clear that the phrase-level syntax is ef-
fective. Especially, grammar PG1 improves the detection rate by about 10% with the
same heuristics. Actually, the accuracy with word-syllable heuristics is higher than that
of word spotting with word-pair constraint. On the other hand, ill-formed grammar PG2
turns out to provide as weak constraint as simple word spotting.

Next, we examine the threshold for spotting. The threshold is set based on the score
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Figure 5.10: Result of phrase spotting (219 keyword; grammatical utterances)
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Table 5.5: Comparison of thresholds for phrase spotting

spotting threshold grammatical ill-formed
A/P |FA/P | A/P [FA/P

fixed threshold 91.3| 25.1 || 83.4| 28.9

length-dependent threshold | 94.9 | 26.3 | 84.7 | 19.6

phrase (PG1) + word-syllable

with a heuristic language model P,,,,. In those experiments, we set it to P4, Xa (a=1.05)
on the logarithm scaled Viterbi score, as in word spotting. However, the threshold must
be dependent on the length of the input. In the longer input utterances, the part of
the heuristic score gets larger and the ratio of the hypothesis score to P,,,, gets smaller.

Therefore, we make the weight a variable on the length 7' as follows.

a=c/T+1.0 c : constant

Here, we set c=16.0 where 7' is the number of 10-ms frames.

The comparison of the thresholds are shown in Table 5.5. Here, we present the phrase
recognition rate (A/P) and the false alarm rate (FA/P) in all spotted candidates with
respect to the number of the correct phrases P, not words. The overall quality of the
phrase candidates is improved with the threshold dependent on the input length. Espe-
cially, the number of false alarms in ill-formed utterances is significantly reduced, with
much the same detection rate. It means the reduction of the search space of the following

sentence understanding process.

5.2.5 Conclusion

We have proposed a phrase spotting strategy for robust recognition of spontaneous speech.
It uses a word or syllable model as heuristics which is robust against ill-formed utterances.
As the heuristic constraint is subset of the phrase syntax, A* search is realized which
outputs the spotted candidates in the order of their scores. This best-first property is

significant in getting appropriate phrase candidates without generating vain hypotheses.

Experimental results show that the phrase-level syntax improves the word detection

rate significantly compared with simple word spotting.
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5.3 Search Strategy for Spotting-based Understand-
ing

5.3.1 Introduction

For robust spoken language understanding, we have studied word and phrase spotting
algorithms. In order to realize actual understanding, we need a mechanism to combine
the results of the spotting and construct sentence hypotheses.

In this section, we explore the search strategy for sentence parsing based on the results
of the spotting. By retaining the intermediate results of the spotting, it is possible to
realize A* search that obtains the optimal sentence candidate with correct Viterbi score.

The search algorithms are studied with respect to the direction of the search. Then,

knowledge sources to drive the search are also examined.

5.3.2 Heuristic Search based on Phrase Spotting

In the conventional spotting-based recognition, deterministic segmentation is performed
on the spotted candidates[71],[78]. They are represented with their starting points, end
points and scores. Thus, the set of candidates is called a word/phrase lattice that is
ordered on the time dimension.

This compact representation is advantageous to save computation of the following
processing that combines the candidates. However, it gets impossible to compute correct
Viterbi score of the combination of the candidates. Viterbi computation performs maxi-
mization over possible concatenations of the segments to get the globally optimal score.
The omission of the optimization may be critical for overall recognition, though it may
be overlooked.

Therefore, we keep trace of the intermediate result of the spotting that contains suf-
ficient information to perform Viterbi computation. Concretely, we retain the trellises of
the initial or the final state of the candidates. In combining the spotted candidates, the
trellises are merged over the time dimension to get the maximum score. This manipu-
lation is expected to be equivalent to the continuous speech parsing that computes the
globally optimal Viterbi score.

Moreover, it can be implemented with A*-admissible search in the same way as the
phrase spotting, which uses the same heuristics consequently. Together with phrase spot-

ting, overall recognition is formulated as a progressive search, which first applies heuristic
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Figure 5.12: Sentence hypothesis model based on phrase spotting

language level, then the intra-phrase syntax, and finally the inter-phrase constraint.
Compared with continuous speech parsing, the components of hypotheses are limited
to the spotted candidates. This might be also the loss of information. However, con-
tinuous speech parsing often causes hypothesis explosion for utterances with unknown
words or out-of-syntax expressions. Thus, spotting-based approach that skips them are

advantageous.

5.3.3 Search Algorithms

A sentence hypothesis consists of several spotted phrases and unrecognized parts such as
fillers. The skipped parts are approximated with syllable-concatenation model. Thus, the
sentence hypothesis is modeled as shown in Figure 5.12. Here, some penalty for skipping
has to be added to the syllable models lest the whole input is matched to the syllables
instead of words and phrases, as in the phrase spotting stage.

As heuristics for the search, we use word-syllable hybrid model that is also used for
the phrase spotting. It is admissible since it provides the upper bound of the score for
both the phrase model and the syllable models with the same penalty.

The search algorithm is fundamentally A* search that extends the currently best

hypothesis. It is formulated as follows.

1. For each phrase candidate, an initial sentence hypothesis is generated and pushed

to the stack with its evaluation score.
2. The hypothesis with the largest score n is popped from the stack.
3. If the hypothesis n has an end flag, then output it. Finish the search.

4. If the hypothesis n complete a sentence, Viterbi score of the sentence model is

computed and pushed to the stack with an end flag.
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5. Phrases that can extend the hypothesis n are predicted. For each of them, a new
sentence hypothesis is generated and pushed to the stack with its evaluation score.

Go to Step 2.

Here, a hypothesis completes a sentence if it satisfies the semantic constraint for a
sentence, for example, it is accepted by a grammar. Notice that the coverage of the
input speech is not counted as the terminating condition. In the search stage, the score
normalization is done with the heuristic score for the uncovered part that is embedded
in the phrase score. However, its evaluation score does not necessarily correspond to the
model shown in Figure 5.12 that covers the whole input without heuristics. Therefore, the
strict Viterbi computation is performed for a complete hypothesis in Step 4. If it is still
best among the hypotheses with admissible heuristics, then it is certainly the optimal
solution to be output. If sufficient number of hypotheses are spotted, the algorithm
combined with the phrase spotting gives the globally optimal solution.

Then, we describe concrete algorithms for hypothesis evaluation with respect to the

direction of search: right-to-left and island-driven.

Right-to-Left Search

First, we consider simple one-directional search that proceeds on the time dimension.
The direction of the search must be reverse of that of the phrase spotting for evaluation
described below. Here we perform right-to-left search after left-to-right phrase spotting.
Its search space is a tree of the spotted phrases, thus the evaluation and management of
the hypotheses get simple.

A partial sentence hypothesis is modeled as shown in Figure 5.13 and evaluated with
the heuristic model. The score for this model is computationally economical.

Suppose that the currently poped hypothesis is n, and a new hypothesis is generated
by concatenating a phrase A. The evaluation function for the new hypothesis is computed
by the following trellis computation, that is a concatenation of the backward trellis of the
hypothesis including the syllable model 3,(t), and the forward trellis of the spotted phrase
A together with heuristic language model a4(t).

~

f(n+A) = mtax{aA(t) + 6.(t)} (5.12)

Here, the trellis for the phrase A is not generated and the result of the phrase spotting
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Figure 5.14: Island-driven search based on phrase spotting

is utilized instead in Step 5. The trellis for the hypothesis is extended as (3,,(t) only when
it is popped from the stack.
Though the search mechanism is simple, right-to-left search does not necessarily pro-

ceed on the good paths that will overcome the ill-formedness.

Island-Driven Search

Next, we consider island-driven search that starts with the most plausible part and pro-
ceeds by concatenating better phrases in order. It proceeds rather on the score dimension
and is independent from the time dimension. A new phrase can be inserted between the
phrases of a hypothesis. This property implies that the same hypothesis can be gener-
ated from different ones. For example, both hypothesis {A, B} and hypothesis {A,C}
can generate hypothesis {4, B, C'}. Namely, the search space is a graph of the spotted
phrases, not a tree. Moreover, the search tends to generate so many hypotheses. Thus,
the mechanism to manage hypotheses gets complex.

A partial sentence hypothesis is modeled as shown in Figure 5.14. Here, the heuristic

model represents both the unsearched phrases and the skipped parts.
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In this case, it is impossible to get Viterbi score of this model with the currently best
hypothesis and a spotted phrase. Therefore, we introduce an approximate evaluation
function. Suppose that the currently poped hypothesis is n = {A,C}, and a new hy-
pothesis is generated by concatenating a phrase B between the phrase A and the phrase
C. For every time-frame ¢ of the trellis ay (t) of every spotted phrase W, its starting
time-frame sty (t) is back-traced and stored at the spotting stage. Then, the score for

the phrase B is approximated with the following.

fp(B) - end 4 <st£1%ta)?(t<startc aB (t) (5 13)
endB - A8 endy <stg(1tg)“,xt<startc B (t) (5 14)
startg = stp(endp) (5.15)

The evaluation function for the new hypothesis {4, B,C'} is computed as an offset

from the optimal heuristic score for the whole input il().

A

f(ABC) = ho— (ho = f,(A)) = (ho = f,(C)) = (ho — fu(B)) (5.16)
= f(AC) = (ho — f,(B)) (5.17)

It is initialized as below.

Flnull) = f,(null) = by, endpuy =0, startpy =T

This algorithm is based on the same concept as the shortfall method[55]. Every time
a new phrase is added, its offset from the optimal heuristic score is subtracted. Strictly
speaking, the algorithm is not admissible due to the Viterbi segmentation. But it gives a
reasonable evaluation.

Here we perform Viterbi segmentation at every step of the hypothesis extension, which
deviates the correct score. At the very last step when the hypothesis complete a sentence,
the correct score is computed with the model over the whole input at Step 4. The actual
trellis computation is done only in this step. Thus, the overall amount of computation
depends on how many sentence candidates are completed until one of them is output, and

how precise the above evaluation function is.

5.3.4 Knowledge Sources

Next we examine the knowledge sources that drive the search. They are required to
predict possible phrase candidates to extend a current partial sentence hypothesis and to

accept a completed sentence.
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Inter-Phrase LR grammar

An inter-phrase grammar describes the possible sentence patterns with rewriting rules
whose terminals are phrases. It is more abstract than grammars for continuous speech
recognition, and represents semantics and pragmatics rather than syntax.

The search algorithm is much the same way as in normal LR parsing, except that the
possible terminal symbols are limited to the spotted phrases. But it is very troublesome
to implement island-driven search that needs bi-directional prediction. One-directional
search such as right-to-left search is regarded as a simple robust parsing by skipping

unrecognizable parts.

Semantic Network

A semantic network that is introduced in Section 4.3 represents the relationship between
concepts and words. Unlike an LR grammar, it basically does not constrain the order of
surface words or phrases. Therefore, it realizes genuinely semantic-driven understanding.
Island-driven search is possible as well as left-to-right search.

In Section 4.3, we discussed cooperation of the speech recognizer and the semantic
analyzer, where sentence hypotheses are generated by the speech recognizer and interac-
tively verified by the semantic network. Here, the semantic network takes the initiative
and constructs sentence hypotheses.

The semantic network must have ability to predict the following hypotheses given a
current partial sentence. In sentence understanding with marker passing, the semantic
markers are passed upward from word nodes to concept nodes. In prediction, the markers
are then passed downward from the currently activated concept nodes to word nodes, and
consistent word nodes are picked up. There are two kinds of prediction. One is the proper
set that must appear to complete the sentence hypothesis. The other is the permissible
set that is not essential but may appear. In island-driven search, the proper set of phrases
can be extended with priority, while one-directional search has to consider all the possible

phrases.

5.3.5 Experimental Evaluation

We have evaluated above search algorithms and knowledge representations with contin-

uous speech understanding. The experiments are done using the results of the phrase
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Table 5.6: Comparison of several approaches for sentence understanding

grammatical ill-formed
approach word ‘ sent. ‘ semantic | word ‘ sent. ‘ semantic

phrase spot. + grammar 81.5 | 60.5 66.8 72.7 | 17.5 43.0
(w/o syllable)
phrase spot. 4+ grammar 81.1 | 49.0 59.8 75.0 | 24.0 45.5
(with syllable)

word-pair 82.9 | 50.3 53.3 72.3 | 10.0 23.5
word-pair (+syllable) 78.3 | 40.3 43.5 67.4 | 11.5 20.5
sentence parser 86.2 | 65.0 68.3 59.9 | 13.5 36.5
sentence parser (+syllable) || 82.3 | 56.0 60.5 61.3 | 22.0 37.0

’ word spot. H ‘ ‘ 44.0 H ‘ ‘ 27.5 ‘

spotting with word-syllable hybrid model as heuristics. Its performance was best at the
experiments and listed in Table 5.5. Here, the number of phrases per utterance is limited

to 150 at maximum.

At first, we implemented simple right-to-left search with an inter-phrase grammar as
the knowledge source. The stack size of this A* search is set to 100 and the number of
generated hypotheses is limited to 500. The inter-phrase grammar was described based
on LR grammar G1 for continuous speech recognition. The obtained sentence candidates

are processed by the semantic network module to get a semantic representation.

This spotting-based approach is compared with word-pair and sentence-level LR parser
and word spotting, using the same semantic module. Here, we use LR grammar G1 that
describes the syntax of the whole sentences. Its word perplexity is 17.2 and it can cope
with silent pauses and some sorts of filled pauses. A word-pair grammar is also derived
from the LR grammar. Its word perplexity is 32.7. Word spotting is based on word-pair

heuristics.

Syllable-concatenation model is incorporated to the sentence-level LR parser and the
word-pair to model fillers between phrases. But we also performed recognition without
the syllable model to see its effect. In this case, only silent pauses can be filled between

phrases.

The word recognition rate (word), the sentence recognition rate (sent.), and the se-
mantic accuracy (semantic) are shown in Table 5.6. The semantic accuracy is the ratio

of the samples whose semantic representations are correctly obtained.
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For the grammatical utterances, the sentence-level LR parser that uses the most con-
straining syntax and performs global optimization outperforms the others. The phrase
spotting-based approach decreases the recognition rate by about 5%, due to limiting the
intermediate candidates. Use of the syllable model lowers the accuracy much, because it
substantially increases the perplexity of the task. Moreover, these samples are covered
with the registered words and syntax. The word-pair grammar, which provides only local
constraint, gets the worst sentence rate though its word accuracy is comparable.

For the ill-formed utterances, however, the phrase spotting-based approach gets the
best accuracy. The sentence-level LR parser cannot cope with some of the ill-formedness
at all and the search often fails to output any candidates. Thus, it gets the worst word
rate. Use of the syllable model has little effect. It actually works as a filler but matches
with non-fillers on the other hand. The simple word-pair constraint gets a good word
recognition rate, but it does not lead to robust sentence-level understanding.

The word spotting-based approach that also uses word-pair constraint only and per-
forms deterministic segmentation of words cannot achieve good accuracy.

In the experiments, the inter-phrase grammar combined with the intra-phrase gram-
mar gives much the same constraint as that by the sentence-level LR grammar. As the
search strategy, however, a different approach is appropriate according to the utterance
characteristics. For the grammatical utterances, continuous sentence parsing with global
optimization is effective. For the ill-formed utterances, the spotting-based approach is

robust, as it does not cause hypothesis explosion

Knowledge Source

Next, we examine the knowledge sources to combine the spotted phrases. In addition to
the inter-phrase grammar, we also implemented the search driven by a semantic network.
We also performed recognition without any knowledge sources, where any phrases can be
combined. This is possible because the number of the phrases is so limited.

They are realized with right-to-left search. The experiments are done both with and
without the syllable model. The results are shown in Table 5.7.

The inter-phrase grammar is more effective than the semantic network. The constraint
provided by the semantic network is weak, especially in one-directional search. Actually,

it gets much the same accuracy as that without any knowledge sources.
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Table 5.7: Comparison of knowledge sources for phrase spotting-based approach

right-to-left search
grammatical ill-formed
knowledge source word ‘ sent. ‘ semantic || word ‘ sent. ‘ semantic

inter-phrase grammar | 81.5 | 60.5 66.8 72.7 | 17.5 43.0
81.1 | 49.0 59.8 75.0 | 24.0 45.5

semantic network 77.8 | 46.8 54.3 61.1 | 16.0 30.5
74.1 | 40.0 48.0 67.3 | 19.0 31.5
none 74.2 | 42.0 53.3 61.5 | 14.5 28.0

73.0 | 34.3 47.0 63.3 | 15.5 27.5
upper row: without syllable model
lower row: with syllable model

Table 5.8: Comparison of search direction for phrase spotting-based approach

semantic network with syllable model

grammatical ill-formed
direction of search || word ‘ sent. ‘ semantic || word ‘ sent. ‘ semantic
right-to-left 74.1 | 40.0 48.0 67.3 | 19.0 31.5
island-driven 56.9 | 38.5 44.0 43.0 | 16.0 27.0

Direction of Search

Then, we realize island-driven search that will be suitable for the semantic network. The
comparison with right-to-left search is done in Table 5.8. The syllable model is used in

the both cases.

Island-driven search fails to output any candidates more often than right-to-left search.
It generates sentence hypotheses in both directions, and the number of the hypotheses
explodes. Therefore, the word recognition rate gets worse, though the sentence accuracy
is much the same. The prediction mechanism of the semantic network has much room to

be improved.

From the computational aspect, the number of extended partial sentence hypothe-
ses in right-to-left search is 122, while island-driven search makes 80 complete sentence
hypotheses for the ill-formed utterances. Since a sentence consists of 3 phrases on the av-
erage, the trellis computation of island-driven search is about twice of that of right-to-left

search.
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5.3.6 Conclusion

We have discussed the search strategy to combine the spotted phrases to get the most
plausible sentence hypothesis. The spotted phrases are represented with its trellis scores
so as to get correct Viterbi score of the combined sentence hypothesis. This mechanism
is essential in order to get performance comparable to continuous speech recognition. It
also realize A* search with the same heuristics as in the phrase spotting.

The search algorithms are formulated both one-directional and island-driven. One-
directional search is realized in the same manner as the phrase spotting itself. For island-
driven search, an efficient evaluation function is introduced. As for the knowledge sources
to drive the search, an inter-phrase grammar and a semantic network are used. Use of
semantic network realizes a thorough semantic-driven search.

Experimental results of speech understanding shows that the phrase spotting-based
approach is more effective for the ill-formed utterances than continuous speech recognition
with a sentence-level grammar or a word-pair grammar. It extracts only recognizable parts

and directly leads to robust sentence understanding.



128 CHAPTER 5. WORD AND PHRASE SPOTTING



Chapter 6

Conclusion

We have studied various issues for speech recognition and understanding.

As for acoustic modeling, we have proposed an approach that realizes both discrimina-
tive ability and robustness. Pair-wise discriminant analyses are embedded as the front-end
of HMM to fully separate competing classes. It is implemented both as discrete HMM
and continuous HMM, and demonstrated to outperform the conventional HMMs. We
have also shown the significance of stochastic scoring of the phone model for continuous

speech recognition.

The proposed model needs much computation. However, it is getting possible to
process in real-time with a recent powerful workstation. The most important property
is that it is a combination of simple classifiers. Though the total number of parameters
is large, the same training samples are used to estimate different discriminant functions.

Therefore, the recognizer can be constructed with quite a small number of samples.

With respect to the search strategy that integrates the acoustic model and the lan-
guage model, we have addressed admissible and efficient algorithms for both continuous
speech parsing and word/phrase spotting. They incorporate low-level language models
as heuristics, which guides the following search pass. With lexical-level heuristics such as
word-pair constraint, the progressive search finds the optimal candidates quite efficiently

in the order of their scores.

The algorithms are realized at the expense of virtual real-timeness. However, the
recent computing power enables it to work in quick turn-around time. The intensive
computation is in the first pass that can be processed in real-time. Especially, continuous
speech parsing algorithm can obtain the results with the simple constraint at the first pass,

for the utterances that are clear both acoustically and linguistically. Actually, about 80%
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of the optimal candidates with sentence LR parsing are the best sequences at the first pass.
In a sense, the following search can be regarded as backtracking the input by applying

higher linguistic knowledge.

In this formulation of the search strategy, multiple knowledge sources are integrated.
They are not used uniformly, but for different appropriate purposes, maintaining their
modularity. In principle, we use statistical knowledge sources such as syllable or word
bigram for decoding input phone or word sequences. The intermediate results are used as
heuristics to guide the following process of structuring and understanding the utterances.
At this process, we have proposed an interaction between the syntactic knowledge sources
such as an LR grammar and the conceptual knowledge sources such as a semantic network.
Although the modularity is maintained, the progressive and cooperative search does not
allow any loss of information, thus realizes a genuine integration. Concretely, we have
pointed out the significance of integrating knowledge sources and the harmfulness of a
deterministic intermediate representation such as a segmented word lattice.

We have discussed the two approaches for speech understanding: parsing and spotting.
The parsing approach is adequate for processing grammatical sentences with high accu-
racy and efficiency, while the spotting approach is for dealing with ill-formed utterances.
An optimal approach should be taken, according to the expected ratio of grammatical
utterances and ill-formed ones. When we can generally predict and cover the patterns
of utterances as in a rather restricted task, use of a sentence-level grammar will be the
best. If we allow variety of utterances that cannot be expected beforehand, the spotting
strategy is desirable. The conditions are significantly affected by the task design and the
interface of the application.

In general, the strategy to switch them is desirable[79],[80]. Since not a few part of
the utterances are well-formed, parsing should be performed at first. And if it fails, then
spotting should be applied. Since the basis of the two approaches are common in our
methods, namely the common heuristics can be shared by the both, it is easy to switch
them without overhead computation. The strategy is illustrated in Figure 6.1. In our
experiments, when we take this hybrid strategy, we can get the semantic accuracy of
40.5% for ill-formed utterances, while keeping 69.0% for grammatical ones.

Thus, we have realized a speaker-independent continuous speech recognition system.
It is integrated with a natural language processor and a task manager into a spoken

dialogue system.
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Figure 6.1: Search strategy that switches from parsing to spotting

It is needless to point out the necessity of the further improvement of its baseline
performance. In addition, the robustness is the vital factor. Though our study is oriented
for it, the robustness is an open problem in nature, and it is endless to evaluate it.

Especially, in a spoken dialogue system, it is hard to predict the knowledge and the
intentions of the users, thus their utterances themselves. The dialogue modeling and
control is significant in order to lead them to correspond with the knowledge and the
capability of the system. The system we have built will be useful for the further analysis
and improvement.

Automatic learning and adaptation of the system is also significant. The speaker adap-
tation technique of the speech recognizer has been studied and demonstrated. However,
construction of the language models, especially concerning the task knowledge, needs
much human effort and time. Automatic adaptation and semi-automatic initial construc-

tion of the module is desirable.
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Appendix

I: List of 653 Words used for Phone Model Evaluation

pari
papa
walpaa
rupal
depaato
popai
talpa
pya
ipya
upya

boNpyaku

tai
kata
ita
uta
geta
botalN
iNtai

kazi
aka
ika
ukai
ekaki
oka
salka

kyarameru
kaikyaku

okyaku

kaNkyaku

piza
papirusu
taipil
karupisu
sepia
kopii
salpi

tii
ratisu
sitii
butikku
betii
kotii
aNtiiku

kiri
aki
iki
uki
eki
oki
kiNki

puro
napukilN
paipu
supull
epuroN
popura
oNpu
pyuuma
rapyuta
epyu
koNpyuuta

kuma
aku
iku
uku
ekubo
oku
moNku
kyuusyuu
tsuikyuu
mukyuu
relkyu
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peN
kapera
taipei
boorupelN
hudepeN
opera
moNpe

te
tate
mite
utelN
ete
kote
altei

ke
take
ike
ukeru
sekel
oke
kalNkei

poozu
aporo
paipo
rupo
repooto
toporozii
silpo
pyootoru
ipyo
opyo
kalpyo

to
ato
ito
utoi
eto
oto
seNto

koi
kako
ikoi
ukoN
neko
soko
halNko
kyouto
dakyou
ekyou
kalNkyo



150

basu
kaba
ibara
uba
deba
oba
alNba
byakuya
kaibyaku
obya
sabyaku

damu
ada
idai
udaru
eda
odate
haNda

gaka
taga
iga
sugata
kega
ogamu
iNga
gyaku
kagyaku
zigyaku
haNgyaku

ral
sara
irai
ura
era
sora
koNralN
ryaku
sakuryaku
geryaku
seNryaku

machi

bilN
tabi
ibiki
rubii
ebi
obi
tolNbi

disuku
dadii
kidii
audii
edi
bodii
haNdii

gisi
hagi
igi
mugi
negi
nogiku
elgi

rika
ari
kiri
uri
eri
ori
kalNri

mizu

buka
abu
ibu
ubu
ebumi
kobu
kaNbu
byuuroo
iNtabyuu
rebyuu
saNbyuu

gull
kagu
kigu
hugu
eguru
kogu
telNgu
gyuuniku
nikugyuu
regyuraa
keNgyuu

rusu
aru
iru
uru
eru
oru
siNrui
ryuuki
karyuu
kiryuu
daNryuu

musi

beso boki

kabe saboru
kibeN ibo
sube zuboN
meberi ebosi
nobe obolN
hulbetsu tolbo
byou
ibyo

hatsubyou

kaNbyou

demo doki
tade kado
ideN ido
ude udo
edel edo
odeN odori
hoNdeN kaNdo
geki gomi
age ago
hige igo

kuge tsugou
kegel ego
toge ogori
maNgetsu koNgo
gyouzi

igyou

gyogyou

niNgyou
rei roze
kare aroe
nire iro
mure huro
tere tero
kore doro
selNrei selNro
ryokou

iryou

yoryoku

siNryou

me mori
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ama
ima
uma
ema
goma
salma
myaku
kimyaku
doumyaku
bulNmyaku

nasi
ana
ina
huna
senaka
kona
oNna
nya
inya
rounyaku
halnya

hako
haha
ihai
uha
nehal
ohagi
zelNhalN
hyaku
nihyaku
gohyaku
seNhyaku

faamu
rifarensu
arufaa
saNfalN

saka
asa
isamu
usagi
esa

ami
imi
umi
emi
tomi
chilNmi

nizi
ani
hinichi
uni
zeni
oni
kiNniku

hima
mahi
ihiN
buhilN
zehi
gohiki
neNhitsu

fiiriNgu
pasifikku
ofisu
saNfiito

sio
asi
isi
usi
desi

amu
imu
umu
nemuru
nomu
kiNmu
myulNheN
kamyu
emyureeto
salmyuuzikku

numa
kanuu
inu
kunugi
tenuki
konu
seNnuki
nyuuka
kanyuu
inyuu
haNnyuu

husi
ahure
ihu
ruhu
ehu
sohu
siNhuzeN
hyuuga
nakahyuuga
kamihyuuga
bizeNhyutte

suna
asu
isu
usu

mesu

ame
hime
ume
seme
kome
moNme

netsu
ane
ine
une
kenelN
one
kaNneN

heta
ahelN
iheN
uhelN
tehelN
hohei
siNheiki

feezu
kafe
efekuto
aNfea

semi
ase
ise
useru
zesei

kamo
imo
kumo
memo
momo
hiNmoku
myou
kimyou
zZyumyou
siNmyou

nori
kano
mino
nuno
enoki
ono
teNnou
nyozitsu
tounyou
senyooru
fuNnyou

hosi
aho
mihoN
muhoN
ehoN
toho
kiNhoNi
hyouka
zuhyou
sehyou
saNhyou

foomu
pafoomansu
kariforunia
siNfonii

soto
aso
iso
uso

heso
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osa
siNsa
syazai
musya
esyaku
kalNsya

zaru
aza
hiza
muzall
gezall
goza
neNza
zyama
suizyaku
hakuzyaku
siNzya

chairo
akacha
mecha

balNcha
hachi
tsume
atsui

atama

wa
kawa

ya
kaya
iya
tsuya
heya
oya
aNyaku

naate
iatsu
suasi
teate
doa

tosi
kiNsi

ziko
azi
izi
uzi
eziki
0zi
halNzi

chiri

oNchi
ichi
itsu

isiki

iwa

ai
suii
ui
ei
oi

osu
taNsu
syuwa
yasyu
bisyu

gelNsyu

zuga
kazu
izu
uzu
ezu
mozu
aNzu
zyuu
yazyuu
gezyulN
seNzyutsu

chuuwa
kaichuu
zyochuu
kaNchuu
uchi

utsu

udoN

suwa

yu
ayu
chiyu
tsuyu
neyuki
oyu
kaNyu

au
siuchi
suu
keu
ou

osel
meNsetsu
syea
bodiisyeepu
kakusyerutaa
salsyeido

zemi
aze
izeN
huzei
zeze
oze
meNzei
zyettoki
negurizye
aruzyeria
eNzyeru

cheel
karuche
imechelN
saNcheelN
echigo

tetsu

esi

kewasii

ae
ie
ue

maee
oe

0soi
olNso
syori
tsumesyo
gosyo
gallsyo

zou
nazo
mizo
buzoku
ezo
hozo
maNzoku
zyosi
gezyo
zZyozyou
gelNzyou

chouwa
syachou
gichou
keNcho
bochi

otsu

ochiba

owari

yo
tayori
iyo
uyoku
seyo
oyogu
kaNyo

ao
siori
uo
neoki
anooka
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palitsu

kaNwa

aN
iN
ul
eN
olN
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daNatsu keNi iNutsu uNei keNo
maazi siizulN suupu peesu tooki
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II: List of 50 Sample Grammatical Sentences

Note: English translation is for reference.

1. asu no niji kara saNji made nikeN de oNsee keNkyuukai o hiraki tai

(I want to hold a speech group meeting at room No. 2 from 2 to 3 o’clock tomorrow.)

2. hai
(0.K.)

3. juugatsu saNjuunichi ni jiNkoochinoogakai no gelNkoo no shimekiri ga
arimasu

(Oct. 30th is the deadline of the paper for Society of Artificial Intelligence.)

4. kekoo desu
(No, thank you.)

5. hatsuka kara nijuusaNnichi made joohooshorigakai de nagoya ni shuchoo
shimasu
(I will make a business trip to Nagoya from the 20th to the 23rd for a conference of

Information Processing Society.)

6. asate no gozelN juuji kara juuniji made seminaashitsu de uchiawase o
okonau
(I will have a meeting at the seminar room from 10 to 12 A.M. on the day after

tomorrow.)

7. iie juuniji made desu

(No, until 12 o’clock.)

8. soodesu

(That’s right.)

9. asu no kuji kara kaigi o okonau

(I will have a meeting at 9 o’clock tomorrow.)

10. juuichiji made desu

(Until 11 o’clock.)
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11. daikaigishitsu desu

(At the large meeting room.)

12. juunananichi ni kyuuka o tori tai

(I want to take a holiday on 17th.)

13. jaa yame masu

(Then, I'll cancel the request.)

14. nijuugonichi no juusaNji kara juurokuji made ichikeN de yosaNkaigi o
hiraki tai

(I want to have a budget meeting at room No. 1 from 13 to 16 o’clock on the 25th.)

15. juugoji made nara daijoobudesuka

(Can you attend if it is until 15 o’clock.)

16. raishuu no kayoobi no juuyoji kara ichiji kaN saNkoo de teeseesuirol
keNkyuukai o okonai tai
(I want to have a qualitative reasoning group meeting for an hour from 14 o’clock

next Tuesday.)

17. juurokuji ikoo no sukejuuru wa doonateimasuka

(What is the schedule after 16 o’clock ?)

18. dewa juurokuji kara ni shimasu

(Then, I will start it at 16 o’clock.)

19. juusalnichi wa haNdai deno shizeNgeNgoshori keNkyuukai ni shuseki suru

(On the 13th, I will attend the natural language group meeting at Osaka Univ.)

20. juuji ikoo nara aiteimasuka

(Are you free after 10 o’clock ?)

21. dewa juuji kara dekake masu

(Then, I will go out at 10 o’clock.)

22. asu no buNkakai o gogo salNji kara ni heNkoo suru

(Change the time of tomorrow’s sub-committee meeting to 3 P.M.)
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23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

APPENDIX

juuhachinichi no kaigi no basho o dainieNshuushitsu ni heNkoo suru

(Change the place of the meeting on the 18th to seminar room No. 2.)

iie dainieNshuushitsu desu

(No, at seminar room No. 2.)

asu no olNsee keNkyuukai o chuushi suru

(Cancel tomorrow’s speech group meeting.)

aa asate deshita

(Oh, it is the day after tomorrow.)

juugonichi no tokubetsukooeN wa chuushi ni narimashita

(The special lecture on the 15th is canceled.)

tokubetsukooeN wa itsu desuka

(When will the special lecture be held ?)

sore ga chuushi ni narimashita

(It is canceled.)

asate no kaigi o juurokuji kara ni heNkoo suru

(Change the time of the meeting on the day after tomorrow to 16 o’clock.)

dewa juugoji kara ni shimasu

(Then, change it to 15 o’clock.)

kiNyoobi no yosaNkaigi no basho o shookaigishitsu ni helNkoo shitai
(I want to change the place of the budget meeting next Friday to the small meeting

room.)

dewa sonomama de iidesu

(Then, leave it as it is.)

nijuusalNnichi no oNsee keNkyuukai o kuji kara ni heNkoo shitai

(Change the time of the speech group meeting on the 23rd to 9 o’clock.)

juuichiji ikoo no yotee wa naniga arimasuka

(What are the plans after 11 o’clock ?)
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36.

37.

38.

39.

40.

41.

42,

43.

44,

45.

46.

47 .

48.

dewa juusaNji kara juugoji made ni heNkoo shimasu

(Then, make it 13 to 15 o’clock.)

kyoo no seminaa wa naNji kara desuka

(What time does today’s seminar start ?)

juugonichi no beNkyookai wa naNji kara desuka

(What time will the seminar on the 15th start ?)

naNji made desuka

(What time will it end ?)

pari shuchoo wa nalNnichi kara naNnichi made desuka

(On which days is your business trip to Paris scheduled ?)

shizeNgeNgoshori keNkyuukai no geNkoo no shimekiri wa itsu desuka

(What day is the deadline of the paper for the natural language group ?)

asate no kaigi wa dokode arimasuka

(Where will the meeting on the day after tomorrow be held ?)

kyoo no yotee wa naniga arimasuka

(What are today’s plans ?)

juurokunichi no gogo no yotee wa doonateimasuka

(What are the plans for the afternoon of the 16th ?)

asu no keNkyuukai wa dokode

(Where will the group meeting be held tomorrow ?)

juurokunichi no hapyookai wa naNji kara

(What time will the presentation on the 16th start ?)

aa juunananichi deshita

(Oh, it is on the 17th.)

itsuka no teeseesuirolN keNkyuukai wa naNji kara

(What time will the qualitative reasoning group meeting on the 5th start ?)
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49.

50.

jaa kalNchigai deshita

(Then, I was wrong.)

kyoo no gogo wa aiteimasuka

(Are you free this afternoon ?)
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III: List of 25 Sample Ill-formed Sentences

Note:  {..} represents a hesitation. English translation is well-formed.

10.

11.

. {etto} raishuu no {.. etto} kayoobi kara {..} mokuyoobi made {..}

nagoya ni shuchoo shimasu

(I will make a business trip to Nagoya from Tuesday to Thursday next week.)

. {ee..} koNshuu no kiNyoobi ni kyuuka o tori tailNdesuga

(I would like to take a holiday this Friday.)

. jaa {..} yame masu

(Then, I'll cancel the request.)

. kayoobi no {..} gogo yoji kara {...} kougi o {..} ire tai

(I have a lecture at 4 P.M. on Tuesday.)

. {eeto ..} raishuu no getsuyoobi {.. ee} gozeN hachiji kara {... ee}

seminaa o {..} tooroku shitekudasai

(Please input the seminar at 8 A.M. next Monday.)

. kiNyoobi {..} no gogo yoji kara {..} tenisu o shimasu

(I will play tennis from 4 P.M. next Friday.)

. konoeguraulldo de {...} onegaishimasu

(At Konoe ground, please.)

. {e} getsuyoobi no belNkyookai o {..} gogo niji kara ni {..} helNkoo

shitekudasai

(Please change the time of the next Monday’s seminar to 2 P.M.)

. raishuu no {...} shuchoo o {..} torikeshimasu

(Cancel the business trip next week.)

raishuu no kayoobi no {..} tenisu {..} no jikaN o heNkoo shimasu

(Change the time for playing tennis next Tuesday.)

{e ..} ichiji kara ni heNkoo shitekudasai

(Please change it to 1 o’clock.)
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12. {anoo ..} asu no kaigi no basho o heNkoo shimasu
(Change the place of tomorrow’s meeting.)

13. {ee} daikaigishitsu de okonai masu

(At the large meeting room.)

14. {anoo ..} saNjuunichi no kaigi wa dokode

(Where will the meeting on the 30th be held ?)

15. {e ..} tenisu no yotee wa itsu deshitaka

(On which day is tennis scheduled ?)

16. {to ..} sono tenisu {..} no yotee o chuushi shitekudasai

(Please cancel the tennis.)

17. {ee} getsuyoobi no {..} kougi o {..} kyuukoo ni shimasu
(Cancel the next Monday’s lecture.)

18. kiNyoobi niwa naniga {..} yotee ga haite imashitaka

(What are the plans for next Friday ?)

19. asate no seminaa {..} goji kara deshitaka

(Will the seminar on the day after tomorrow start at 5 o’clock ?)

20. {ee} nalNji kara nara aiteimasuka

(What time are you free ?)

21. juuji {..} kara desu
(After 10 o’clock.)

22. {ee ...} naNji made desuka
(Until what time ?)

23. yoka no kougi o {ee} chuushi shimasu

(Cancel the lecture on 4th.)

24. {e} raishuu no kayoobi no tenisu o {.. ee} kaigi ni heNkoo shimasu

(Cancel next Tuesday’s tennis, and have a meeting instead.)
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25. gozeN kuji kara {..} juuniji made

(From 9 to 12 in the morning.)



