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e p. 27, the 3rd line of Footnote 26:
Eq.(1.99) — a linear combination of Egs. (1.99) and (1.101)
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e p. 628, Reference [110]:
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e p.639, the 3rd line in Reference [262]:
gs — gas

Supplementary Notes

In the present supplementary notes, the letter M is attached to the labels of
sections, equations, etc. in the book Molecular Gas Dynamics and the letter K
is attached to those in Y. Sone, Kinetic Theory and Fluid Dynamis (Birkhauser,
Boston, 2002) to avoid confusion.

1 Chapter M-1

1.1 Supplement to Footnote M-9 in Section M-1.3

We will explicitly show the process of derivation of the conservation equations
(M-1.12)—(M-1.14) by taking into account the discontinuity of the velocity dis-
tribution function f(X,&,t) for a typical case.

Let S(X) be a continuous and sectionally smooth function of X, and let the
surface in the X space consisting of the points X that satisfy S(X() = 0 be
indicated by Sp.! The surface Sy may be an infinite surface or a bounded surface
separating the space X into two regions. The velocity distribution function f at
time tq is assumed to be discontinuous across the surface Sy and to be smooth
except on Sy. The discontinuity propagates along the characteristics of the
Boltzmann equation (M-1.5), i.e., X; — &(t — tg) = Xo, for each £.2 Take a
point (X, t) in the space and time, where ¢ > ¢y. At this point or at (X,t), the
discontinuity of f lies on the surface S(¢)(X,t) in the & space that consists of
the points £, satisfying

S(Xi —&pi(t —t0)) =0, or X; —&Epi(t —to) = Xos- (1)

The point &, is determined by X, ¢, and Xy, i.e., £5(X,t; Xo). Let the side
of the domain in the & space that satisfies S(X; — &;(t — to)) > 0 be indicated
by V., and the other side of the domain by V_; let the outward unit normal to
the surface S(€)(X,t) with respect to V. be indicated by np;(&€p; X,t). Then,

_ O8(X —&(t —10)) /08 _ 95(Y)/0Y;
0S(X — €(t —10))/ 08l e, 10S(Y)/0Y]])’

nDi(€D§X7t): (2)

where |a;| = (a?)'/? and the subscript D to 9S(Y)/0Y; indicates Y = X —
&p(t —tp). The variations of &€, with respect to X or ¢ for a given Xy, i.e.,

Tt is assumed that (8S/0X;)% # 0 on Sp. The normal to the surface Sp is defined except
at special points.
2For simplicity of explanation, we consider the case where F; = 0 here.



0€/0X; and O&,/0t, are determined from Eq. (1) as

0¢p; os(Y O¢p;
D<5ij— aé:;:(t_tO))_Ov 8;]) D( g?](t—t0)+£D])_O

aS(Y)
oY,

Thus, with the aid of Eq. (2),

O¢p; np; 9%p; _ npilp; 3)

"Ditgx, T i—ty. P o t—ty

The integral of such a discontinuous function with respect to & over its whole
space is split into two parts as

[ v rae- /V RO /V () fde,

where () is a smooth function of & Then, the integrand is smooth in each
of V4 and V_. According to Lemma in page M-492, the following derivatives of
integrals over the domain V, are transformed as®

0 [ v@rae= [ we U ae + / 0(€)1 %P0, 0%,
Vi

ot
, 9¢p; A2
[ o€ GRinn, e,

Eb(E) fdE = / Eab(€)
Vi Vi

where the integral over the surface S of the second term on the right-hand
side of each equation is due to the variation of the domain V, with ¢ or Xj.
Summing the above two derivatives and noting Eq. (3), we have

of
0X;

dg,

_ of |
. o, |, Go@rae= [ v Tacs [ v

where the surface integrals over S&) are cancelled. Similarly,

5 | v g [ ev@rae= [ v Gaer [ ave e

Thus, we have
ox [ev@rae= [vioTae+ [eue

It may be noted that the interchange of differentiation and integration is pos-
sible only for the above combination of the integrals. With this formula, the
conservation equations are derived by choosing 1, &;, and &2 as ().

815 (4)

3The correspondence of the variables here and those in the lemma is as follows: &€ + X, t
or X;& 9, np; < Ny, d€ < dX, d2¢ « 42X, Vi < D), S© - aD().



When the surface Sy, ie., S(X) = 0, is a finite surface or semi-infinite
surface which does not divide the £ space into V; and V_, we can take it as a
special case where some part of Sy joins to its other part and V_ degenerates
empty. When there is a body in a gas, the discontinuity as shown in Section
M-3.1.6 generally exists. The analysis can be carried out in a similar way; that
is, determine the position of the discontinuity in the & space first, carry out the
differentiations in each region where the velocity distribution function is smooth
with the aid of the lemma in page M-492, and sum up the results.

(Section 1.1: Version 6-00)

1.2 Note on the equality condition of Eq. (M-1.38)

The statement of the equality condition of Eq. (M-1.38), i.e., “The equality in
Eq. (1.38) holds when and only when f is the Maxwellian that satisfies the
boundary condition (1.26)... ", needs supplementary explanation. Some condi-
tion is required of the scattering kernel Kp in the boundary condition (M-1.26)
for f to be limited to the Maxwellian. For some Kpg, the equality holds in
Eq. (M-1.38) for f other than the Maxwellian. See Section 6.4.1 for more de-
tailed discussion.

(Section 1.2: Version 5-00)

1.3 Supplement to Footnote M-26 in Chapter M-1

Footnote M-26 is supplemented with more explicit mathematical expressions for
the process given there. Take the non-dimensional form of the equation for the
H function, i.e., Eq. (M-1.72):

OH 0H;, 1 .
il =—-G, 5
of " om K ®)

Sh

where

ﬁ(xi,f):/fln(f/éo)dc, Hi(zi,f):/gfln(f/éo)dc,
(6)

[ iim (ffﬂ) Banag,d¢ <o,
e
with ¢o = co(2RTp)3/?/po. The perturbed form of the velocity distribution func-
tion f is defined by R
f=EQ1+9), (7)
where )
=R exp(—¢?).

Let € be a small quantity. Here, we take the case in which ¢ is of the order of
e, and examine the terms of the order of 2 of Eq. (5). The perturbed function
¢ is expressed as

¢ =pre+ oe” + - . (8)



Corresponding to the expansion, the macroscopic variables, i.e., w, u;, P, etc.,
H, H;, and G are also expressed as

h=hie+hpe® +---, (9a)
ﬁ:ﬁo+ﬁ15+ﬁ252+“-, (9b)
H;y = Hio+ Hie + Hpe? + -+, (9¢)
G=Go+Gre+Goe®+- -, (9d)

where h represents the perturbed macroscopic variables, w, u;, P, etc., and the
quantities ¢, hy, f[m ﬁin, and G,, are of the order of unity. Then, with the
aid of the expanded forms of Eqs. (M-1.78a)—(M-1.78f), H,. H;,, and G,, are
expressed as

5 3
Hy=—-5~In m3/2¢, (10a)

H =(1 —ln7r3/2éo)/E¢1dC - /<2E¢1d¢
= (1 —1In 7r3/260)w1 - gpl, (10b)
Hy,=(1 flnws/zéo)/EngdC - /<2E¢2dc+ %/Ecﬁdc

3 1
= (1 —In72¢)wy — (2P2 + u§1> +3 /Eqs%dg, (10c)

Hip =0, (11a)

H;; =(1 —IHWS/Zéo)/CiECﬁldC - /CiC2E¢1dC

. 5
=(1- lnﬂs/QCO)uil - (Qil + 2161'1) , (11b)

o = (- r*%) [ GEod¢ — [ GCBoac+ 5 [ GBtac

R 5 3
= (1 —In7®%&) (uig + wrug) — <Qi2 + Sui2 +uj1 Py + 2Ui1P1)

2
1
+5 [apotac (11¢)
Go =0, (12a)
Gy =0, (12b)
Go= 1 / EE.(6) + 6, — 61 — 6.,)? BAQdC,dC < 0. (12¢)



With the aid of these expressions, the € and e2-order expressions of Eq (5) are
given as

6ﬁ1 8ﬁzl 3/9 Owq auil
4 2 =(1—In7x%? Ly TR
Sh 5 + oz, ( nw/“¢y) <Sh 5 + 5$i>
3., 0P a0 (5
- [23187? + o <2Ui1 +Qi1)] ) (13a)
Oty  OHip _ (1 ey (q0we O +wriuin)
05 Ty, - I ) (S
9 (3 ) 5 3
- Sha <2 2+ Uz21) ~ P (Qm + guiz + uj Py + 2uuP1)
+ E Slg/EqﬁQdC—l— i/C»E¢2d<; (13b)
2\ ot U Oy ) T )

Substituting the series expansion (9a) into the conservation equation (M-1.87),
we have

80)1 6’&1'1

o om0 (14a)
80.)2 8(11,12 + wluﬂ)
S—+ ————=0. 14b
Similarly, from the conservation equation (M-1.89), we have
3., 0P 0 (5
e e i+ Qu ) =0, 1

o (3 a (5 3
Slgf <2 2+ U%l) + 6l‘i (21%2 + QiQ + ujlpijl + 2U,’1P1> =0. (15b)

With the aid of the expanded forms (14a)—(15b) of the conservation equations
(M-1.87) and (M-1.89), Egs. (13a) and (13b) are reduced to, for the solution of
the Boltzmann equation (M-1.47) or (M-1.75a),

O,  0H;
OH, OHy 1[0 ) 9 / )
22 4 O 2(&&/ #dc+ o [ apotac (16b)

Thus, the o(¢?) terms being neglected in Eq. (5), it is reduced to
0 0
— [ E¢ld¢+ ~— [ (;E¢id
we [ Edtac+ 5 [ potac
1 ~
=~ [ BB+ 6l — 01— o1 Baac.dc <0. (11

This expression does not contain ¢s.
(Section 1.3: Version 4-00)



2 Chapter M-2

2.1 Section M-2.5
2.1.1 Section M-2.5.1

The following form:

o=—2 | Em, (X, €1)AEd0(l),
T Jo<g<oo, lini<0
is more appropriate as Eq.(M-2.39b) than the one in the book. Then, the
explanation of dQ2(1), i.e.,
dQ(1) is the solid-angle element in the direction of I,
has to be inserted between ‘where’ and ‘T, just after Eq. (M-2.39c).
(Section 2.1.1: Version 6-00)

3 Chapter M-3

3.1 Processes of solution of the systems in Section M-3.7.2
(July 2007)

The processes of solutions of the fluid-dynamic-type equations derived in Section
M-3.7.1 are straightforward and may not need explanation. For the equations
in Section M-3.7.2, some explanation may be better to be given. The discussion
will be made on the basis of the boundary conditions in Section M-3.7.3 for a
simple boundary where the shape of the boundary is invariant and its velocity
component normal to it is zero.

3.1.1 “Incompressible Navier—Stokes set”

Consider the initial and boundary-value problem of Eqs. (M-3.265)—(M-3.268),
ie.,

0Ps;

=0 18
8:@ ’ ( )
Ouist
=0 19
6xi ’ ( a)
Ouisy Ouist 10Psy v 0%uist
ST, _ ! m 19b
ot T UjS51 oz 2 Oz, + 2 ax? ’ (19b)
5 87’51 6P51 5 67’51 5’)/2 (927'51
EAAEL LT R =22 19
200 oi 2" an; T 4 oa? (19¢)



Ouis2 Ows1  Owsiuist

or;  of 0w, (20a)
Ouisz  Ouisa T Ouisi
ot N gy, T2 g,
_ 1 (0Pss OPsa\ m O (Ouisy  Oujsz 20usa,
T2\ Oz 51 8:51- 2 8% O ox; 3 Oz
~ nws 82 uisy Ouisy 8uj51 3 0 P (20b)
2 8:5? o ox; 3 Ox; Ox 2 ’

30Pss L3 3 0Pgs B B
2 ot 25 By Oz O0x; ot Oz

3

43

2
:5723 TS2 575 0 < 87’51) " (5%‘31 3ujs1>2
2 )

.7
( Psiujsa  Owsa  O(wsaujst +ws1ug52)>

) 20
4 (‘h? 4 8% oz 0x; (20c)
where
Ps1 = ws1 +7s1, Ps2 = ws2 +ws17s1 + Ts2- (21)
From Eq. (18), Ps; is a function of £, i.e.,
Ps1 = f1(1). (22)

In an unbounded-domain problem where the pressure at infinity is specified (or
the pressure is specified at some point), Ps; = f1(f) is known, but in a bounded-
domain problem of a simple boundary, f;(#) is unknown at this moment and is
determined later. Let u;5; and 751 as well as f1(f) be given at time  in such a
way that u;s1 satisfies Eq. (19a). Taking the divergence of Eq. (19b) and using
Eq. (19a), we have

0*Pss Oujs1 Ouisi

G = 2 o, (23)

7

On a simple boundary, the derivative of Pss normal to it is found to be expressed
with u;g1 and its space derivatives by multiplying Eq. (19b) by the normal vector
to the boundary.* In the unbounded-domain problem, where fi(#) is known, Py
is determined by Eq. (23). In the bounded-domain problem, Pss is determined
by Eq. (23) except for an additive function of ¢ [say, f2(#)]. Anyway, OPss/0x;
is independent of this ambiguity. From Eq. (19b), Qu;s1/0t at t is determined,
irrespective of f(f), in such a way that 9(du;s1/0x;)/0t = 0 for the above
choice of Pgy. Thus, the solution u;s1 of Egs. (19a) and (19b) is determined
by Eq. (19b) with the supplementary condition (23) instead of Eq. (19a). From
Eq. (19¢), (5/2)07s1/0t — OPs1/0t or (5/2)01s1/0t—df1(f)/dt is determined,
ie.,

(5/2)07s1/0t — dfi(F)/dE = G(xi,1), (24)
where

~ 5 87'5'1 5’}/2 827'51
Gz, 1) = —ou; 2 .
(@i, 2) QUJS1 Ox; + 4 63:?

(25)

4The time-derivative term vanishes owing to the boundary condition mentioned in the first
paragraph of Section 3.1.



Thus, 751 is determined in the unbounded-domain problem, but 75; has ambigu-
ity owing to f1(f) in the bounded-domain problem. The undetermined function
f1(t) is determined in the following way.

In the bounded-domain problem whose boundary is a simple boundary, the
mass of the gas in the domain is invariant with respect to . The condition at
the leading order is

d
> /V wgrde (26)
where V indicates the domain (or its volume in the later). With the aid of
Eq. (21), we have
dfi(f) d /
—V - — dx = 0. 27
di az J, e (27)
On the other hand, from Eq. (24),
dfi(t 5d -
- f1E )V—l—f—N/ TSldCL‘:/ G(z;,t)de. (28)
dt 2dt Jy v

From Eqs. (27) and (28), we obtain df(f)/df and d [, Ts1de/di as

dfit) 2 -
g - W/‘/G(xi,t)dw,

d 2 )
L reda = 2 [ G(ai, da.
dt/vTS1 “ B/V (w0, t)de

That is, fi() in the bounded-domain problem [and thus the solution Tg; of
Eq. (19¢)] is determined.

The analysis of the higher-order equations is similar; for example, from
Egs. (20a2)—-(20c), uis2, T2, and Pss are determined in the unbounded-domain
problem, but f»(#), u;s2, Ts2, and Pssz, except for an additive function of £ in
Ps3, are determined in the bounded-domain problem.® Let u;s2, Ts2, and fo(%)
be given at  in such a way that Eq. (20a) is satisfied.® Taking the divergence of
Eq. (20b) and using Eq. (20a) and the results obtained above, we find that Pg3
is governed by the Poisson equation

(29)

02 Pgs
Ox?

K2

= Inhomogeneous term, (30)

where the inhomogeneous term consists of u;g2, Pg2, and the functions deter-
mined in the preceding analysis. On a simple boundary, the derivative of Pgs
normal to it being known,” Pgs is determined by this equation, except for an
additive function of ¢ [say, f3(f)] in the bounded-domain problem. Then, from

5Note that, with the aid of Eq.(21), the time-derivative term %BPSQ/Bf— gaws2/a£ in
Eq. (20c) is transformed into %82'52/85— OPgo /0t + 289517—5{/85;

6The time derivative dwg /Ot is known from 971 /0%, df1(f)/di, and Eq. (21).

7Shift the discussion of the boundary condition for Pgy to the next order.

10



Eq. (20b), Ouis2/0t at t is determined irrespective of f3(f). From Eq.(20c),
O(3Psy — 5wga) /0t [or O(57s2 — 2Ps2)/0t] at t is determined. Thus, u;se and
Ts2 (except for the additive function 2f5/5 in the bounded-domain problem)
[thus, wga (except for the additive function 3f5/5)] are determined. In the
bounded-domain problem, where the boundary is a simple boundary, the con-
dition of invariance of the mass of the gas in the domain at the corresponding

order is® 1
1%

With the aid of Eq. (21), dfy(f)/df at ¢ is determined as df(#)/df is done.

To summarize, the solution (u;s1, Ps1,7s1, Ps2) of the initial and boundary-
value problem of Eqs. (18)—(19c¢) is determined, with an additive arbitrary func-
tion fy(t) in Pgy in a bounded-domain problem of a simple boundary, when the
initial data of w;s1, Ps1, Ts1, and Pgs satisfy Egs. (19a) and (23). The additive
function f»(f) does not affect the other variables. The function fy(#) is deter-
mined in the next-order analysis. In other words, the solution (u;s1, Ps1,7s1)
of Eqgs. (18)—(19c) is determined consistently by Egs. (18), (19b), and (19c) with
the supplementary condition (23), instead of Eq. (19a), when the initial data of
u;s1, Ps1, and 7g1 satisfy Eq.(19a). Naturally, the initial Pgy is required to

satisfy Eq. (23). This process is natural for numerical computation.

3.1.2  Ghost-effect equations (M-3.275)—(M-3.278b):
Consider the initial and boundary-value problem of Egs. (M-3.275)—(M-3.278b),
i.e.,
pspo = Po(t), (32)
psp1 = p(t), (33)

dpsBo n pspovisp1

=0, (34a)

O0pspotisB1 . OPpspo¥jsp1Uispi

8t~ 8xj
10p%p, 1 0 A Obisgr O0jsp1 2 Olspi
- = = 2 ru(t _= ’
20 T 20m, | T Ton t Ton T3 0w OV
. . . 2
1 0 - 0Tspo OTspy 1 [ OTspo
— « I'7(T: - = Oii , 34b
2]50 al'j 7( SBO) 6‘%2 axj 3 axk J ( )
3 0pspolspo | 50pspodiserilsse 5 O . 9Tspo
2 (91? + 2 6Z‘Z n 4 8$i F2(TSBO) i ’ (340)

8The contribution of the Knudsen-layer correction to the mass in the domain is of a higher
order, though it is required to wgo.

11



where py and p; depend only on £, and

Pspo = pseolspo, Pse1 = pse1TsBo + psrolspi,

A . A (35)
Dsp2 = psp2Lspo + psp1lsp1 + pspolsp2,
X X 2 9 . 9Tspo
o = —— | I'3(T . 36
Dsp2 = Psp2 + 3o OTr < 3(Tspo) B (36)

Let p, 0;, and T (thus, p = [)T) at time ¢ be given; thus, pspo, diss1, 10
(Pspo), etc., including pspa, are given. Then 0pgpo/0t, dpspovispi/Ot, and
(‘ﬂigB()/at~ at t are given by Eqgs. (34a)—(34c); thus, the future psgo, 0isp1, and
Tspo (also pspo) are determined. However, the future pspo, as well as pspo
at £, is required to be independent of z; owing to Eq. (32). Taking this point
into account, we discuss how the solution is determined. For convenience of the
discussion, transform Eq. (34c) in the form

9psBo

where

P =— 3bsBo

Sy OVispr 5 0 . 9Tspo

First, consider the case where p (thus, pspo, psp1, etc.) is specified at some
point, e.g., at infinity. Then, from Eq. (32), po(f) is a given function of £, and
pspo is determined. The initial value of pgpo is uniform, i.e., psgo = Po(0).
On the other hand, from Eq. (37), the variation of 9pspo /0t is also determined
by the data of pgpo, TSBO7 0;sp1, and their space derivatives at ¢. This must
coincide with the corresponding data given by Eq. (32), i.e., Opspo/0t =dpy/dL.
Substituting this relation into Eq. (37), we have

T2 (T'spo) 8TSBO> _ 3 dpg

5 or, | 5di’ (38)

K PO
oz, PsBoVisSB1

which requires a relation among psgo, TSBO, and 9,451 for all £, since dpg /dt~ is
given. This condition is equivalently replaced by the following two conditions:
The initial data of psgo, Tspo, and d;s51 are required to satisfy Eq. (38), and
the time derivative of Eq. (38) has to be satisfied for all Z, i.e.,

T'5(Tspo) OT: d%p
2(Tspo) 0Tspo | _ 3 d7po. (39)
2 8371 ) dt2

82

(13530731'331 -

With the aid of Eqgs. (34a)—(34c) and (37), the left-hand side of Eq. (39) is ex-
pressed in the form without the time-derivative terms, i.e., dpspo/dt, 0T spo/0t,
and 09;sp1/0t, as follows:

82 W@TSBO) . 1, 0 ( 1 aﬁ§B2>+ fnh

pso 0x;

b annds _ —__ i
(pSBO iSB1 D) o, 2pSBO oz,

12



where fn; is a given function of pgpo, visB1, TSBO, and their space derivatives.
Thus, the condition (39) is reduced to an equation for pig,, i.e.,

0 1 8;3§BQ>
— === | = Fn, 40
Ox; (pSB() O0x; ( )
where )
2 3 d%po
po < ! 5 dt2 )

The boundary condition for p§y, in Eq. (40) on a simple boundary is derived
by multiplying Eq. (34b) by the normal n; to the boundary. In this process, the
contribution of its time-derivative terms vanishes.” Thus, pkg, (or psp2) is
determined in the present case, where p (thus, psp2) is specified at some point.
The solution pgy, of Eq. (40) being substituted into Eq. (34b), Eqgs. (34a)—(34c)
with the first relation in Eq. (35) are reduced to the equations for pgpo, TSBO, and
disp1 which naturally determine dpspo/0t, T sp0 /Ot, and 0v;5p1/0t. Further,
if the initial data of pgpo, TSBO, and ¥;551 being chosen in such a way that
ﬁSBOTSBO(: Pspo) = po and that Eq. (38) is satisfied, the variation 0pspo/0t
of Pspo(= ﬁSBoTSBo) given by these equations is consistent with Eq. (32), since
Eq. (40) or (39) with the condition (38) at the initial state guarantees Eq. (38),
i.e., Opspo/Ot = dpy/dt, for all .

Equations (32) and (34a)—(34c) with Egs. (35) and (36) determine pgpo,
Tspo, PsBo, Visp1, and pgps consistently for appropriately chosen initial data.
However, these equations are the leading-order set of equations derived by the
asymptotic analysis of the Boltzmann equation. In the above system, pspo is
determined. On the other hand, the variation 0psp2/0f is determined indepen-
dently by the counterpart of Eq. (37) at the order after next. The situation is
similar to that at the leading order, where Egs. (32), with a given pg, and (37)
determine pgpo independently. The analysis can be carried out in a similar
way. Let pspo determined by Eq. (40) be indicated by (psp2)o and the equation
for Opsp2/0t, or the counterpart of Eq. (37) at the order after next, be put in
the form

52 _ p,, (41)

where Py is a given function of psgm, VisBm+1 Tsgm (m < 2), and their space
derivatives. For the consistency, d(psp2)o/0t is substituted for dpgpa/0t in
Eq. (41), i.e.,
9(PsB2)o
ot
where 0(psp2)o/Ot is known. This requires a relation among pspm, VisBmi1
TsBm (m < 2), and their space derivatives. This condition is equivalently re-
placed by the following two conditions: Equation (42) is applied only for the
initial state, and the time derivative of Eq. (42), i.e.,

Py _ 0*(PsB2)o

ot o’

9The discussion is similar to that in Footnote 4.

Po = (42)
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has to be satisfied for all . The 0psgm/Ot, OVisBm+1/0t, aTSBm/aE (m <2)in
0P, /0t being replaced by the counterparts of Egs. (34a)—(34c) and (37) at the
corresponding order, an equation for pgpy for all £ is derived.'® The conclusion
is that an additional initial condition and the condition for psp4 are introduced
and, instead, that the condition (40) for pgps is required only for the initial
data. The higher-order consideration does not affect the determination of the
solution pggo, TSBO7 and 7;5B1 (thus also ﬁSBO)-

In this way, the solution of Egs. (32), (34a)—(36) is determined consistently
by Egs. (34a)—(36) with the aid of the supplementary condition (40), instead of
Eq. (32), when the initial data of pgpgo, Tspo, and 9;5p1 satisfy Egs. (32) and
(38), where p(f) is a known function of ¢ from the boundary condition.

Secondly, consider a bounded-domain problem of a simple boundary. In
contrast to the first case, dpy/df is unknown because no condition is imposed
on pspo on a simple boundary. However, in a bounded-domain problem of a
simple boundary, the mass of the gas in the domain is invariant with respect to
t, i.e., at the leading order,

d/ pspodx
~V______ -, (43)
dt

where V' indicates the domain under consideration. Using the first relation of
Eq. (35), i.e., pso = po/Tspo, in Eq. (43), we have

dp~0/ Al dzx :ﬁo/ Al aTS?Od:B. (44)
dt Vv TSBO \%4 TgBO at

Using Eq. (34c) for QTSBO /Ot in Eq. (44), we find that the variation dpg/dt is
expressed with pg, Tspo, and ;551 as follows:
djo

7= P(), (45)

dx

- 1 5 0 . dTspo 5, Tspo
Pi) = / L (T 2
(t) = o v T2, | 69580 0z; ( 2(Ts0) Oz 3 B o,

x ( /V T:Bodas) o (46)

With this expression of dpy/d#, we can carry out the analysis in a similar way
to that in the first case.

The variation dpo/df or dpspo/0t is also determined by Eq. (37). The two
Opspo/Ot’s given by Eq. (45) with Eq. (46) and Eq. (37) have to be consistent.

10T he conditions on the odd-order PSB2n+1’s are derived by the analysis starting from the
condition (33) that pgpi is independent of ;.

14



Thus, substituting Eq. (45) with Eq. (46) into dpspo/0t in Eq. (37), we have

Ty(Tspo) 0Tspo \ 3, -
5 0z )— = P(), (47)

A (PO
oz, PsBoVisSB1

where P(t) is given by Eq. (46). This must hold for all  for consistency. This
condition is equivalently replaced by the following two conditions: The initial
data of pgpo, TSBO, 0;sp1 are required to satisfy Eq. (47), and the time derivative
of Eq. (47) has to be satisfied for all £, i.e.,

o2 (. Ty (Tspo) dTspo 3dP(i)
c S =28\ 48
oo, <p SBOViSB1 2 o, 5 di (48)

Using Eqgs. (34a), (34b), and (37) for the time derivatives dpspo/0t, disp1/0L,
and 0pgpo/0t in Eq. (48), we find that piy, at ¢ is determined by the equation

9 1 Opspy P52
— L —=2%| =Fn, 49
o, (ﬁSBo o, ) TE o, (49)
where Fn is a given functional of pgpo, 0;581, TSBO, and their space derivatives,
and L£(9p%p,/0x;) is a given linear functional of dp%y,/0x;, i.e.,

C (3A§;32> _ _i Al 0TsBo 8]3232(13: </ Al dm>1
Ox; Po Jv Tspo Oxi  Oxs v Tspo

On a simple boundary, the derivative of p§z, normal to the boundary is
specified. Thus, pgg, is determined except for an additive function of t. The
solution pip, of Eq. (49) being substituted into Eq. (34b), the result is indepen-
dent of the additive function. Thus, Eqs. (34a)—(34c) with the first relation in
Eq. (35) and the above pfy, substituted are reduced to those for pgspo, TSBO,
and 9;sp1, which naturally determine dpsgo/0t, 0T spo /Ot, and 00,5, /Ot. Fur-
ther, if the initial data of psgo, TSBO, and ;51 being chosen in such a way that
ﬁSBOTSBO(: Pspo) = po and that Eq. (47) is satisfied, the variation 0pspo/0t
of Pspo(= ﬁSBoTSBo) given by these equations is consistent with Eq. (32), since
Eq. (49) or (48) with the condition (47) at the initial state guarantees Eq. (47),
i.e., Opspo/Ot = dpy/dt, for all .

Equations (32) and (34a)—(34c) with Eqgs.(35) and (49) determine pgspo,
TsBo, Pspo, Visp1, and pgpa, except for an additive function of ¢ in pgpa, con-
sistently for appropriately chosen initial data. However, these equations are the
leading-order set of equations derived by the asymptotic analysis of the Boltz-
mann equation. The analysis of the higher-order equations not shown here is
carried out in a similar way. First, the undetermined additive function in pggs
is determined by the condition of invariance of the mass of the gas in the domain
at the order after next as dpo/df is determined.!! The Opspa/0t or pspo deter-
mined in this way is indicated by 9(psp2)o/0t or (psp2)o. On the other hand, the

"' The Knudsen-layer correction to psp1, already determined (see Footnote 10), contributes
to the mass at this order.
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variation 9pspo/0t is determined independently by Eq. (41) or the counterpart
of Eq. (37) at the order after next. The two results must coincide. The discus-
sion from here is the same as that given from the sentence starting from Eq. (41)
to the end of the paragraph. The results are that an additional initial condition
and the condition for pgp, are introduced, and that the condition (49) for pspa
is required only for the initial data. The higher-order consideration does not
affect the determination of the solution pgpg, Tspo, and 9,551 (thus also pspo).

In this way, the solution of Egs. (32), (34a)—(34c) is determined consistently
by Egs. (34a)—(34c) with the aid of the supplementary condition (49), instead
of Eq. (32), when the initial data of pgpo, Tspo, and ;551 satisfy Eqs. (32) and
(47).

3.2 Notes on basic equations in classical fluid dynamics
3.2.1 Euler and Navier—Stokes sets

For the convenience of discussions, the basic equations in the classical fluid
dynamics are summarized here.

The mass, momentum, and energy-conservation equations of fluid flow are
given by

0 0

5 Ty (v =0, (50)
0 0

E('Ovi) + ain(PUin +pij) =0, (51)

9] 1, 0 1, o
& |:p <€+ 2UZ):| + 87)(] |:p7}j (€+ 27)1) +Uzng +qJ:| - 07 (52)

where p is the density, v; is the flow velocity, e is the internal energy per unit
mass, p;;, which is symmetric with respect to ¢ and j, is the stress tenor, and g;
is the heat-flow vector. The pressure p and the internal energy e are given by
the equations of state as functions of T" and p, i.e.,

p=p(T,p), e=e(T,p). (53)
Especially, for a perfect gas,
p=RpT, e=e(T). (54)
Equations (51) and (52) are rewritten with the aid of Eq. (50) in the form

%+ v_avi +apij
Pot TP%8x; T ax,

0 1, 0 Lo 9 _
p& (eJr 21},-) +m}]87Xj (GJF 211,') + TXJ.(’UszJ + QJ) =0. (56)

=0, (55)
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The operator /0t +v;0/0x;, which expresses the time variation along the fluid
particle, is denoted by D/Dt, i.e.,

D_o._ 0
Dt ot ToX;’
Multiplying Eq. (55) by v; we obtain the equation for the variation of kinetic
energy as
D 1 2\ apij
PDe <2vi> = —v; e (57)
Another form of Eq. (52), where Eq. (57) is subtracted from Eq. (56), is given as

De ov;  Ogj
— = —pij - . 58
Ppe ~ Pigx; T ax, (58)
Noting the thermodynamic relation
D D D
Y et (59)

Dt Dt  p?Dt’
where s is the entropy per unit mass, and Eq. (50), Eq. (58) is rewritten as

Ds 1 8'Ui aqj

Ppr = " |Pis =P g)anwLan

(60)

Equation (60) expresses the variation of the entropy of a fluid particle.
Equations (50)—(53) contain more variables than the number of equations.
Thus, in the classical fluid dynamics, the stress tensor p;; and the heat-flow
vector ¢; are assumed in some ways. The Navier—Stokes set of equations (or the
Navier—Stokes equations) is Eqs. (50)—(53) where p;; and ¢; are given by

. 61}1- ij 2 a’l)k aﬂk
po =~ (G + 5 sat) hegds O
or
qi = _)\87)(1»’ (62)

where p, pup, and A\ are, respectively, called the viscosity, bulk viscosity, and
thermal conductivity of the fluid. They are functions of T'" and p. The FEuler
set of equations (or the Euler equations) is Eqs. (50)—(53) where p;; and ¢; are
given by

pij = Poij, G =0, (63)

or the Navier-Stokes equations with = pup = A =0.
For the Navier-Stokes equations, in view of the relations (61) and (62), the
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entropy variation is expressed in the form'?

pof v v 20w . Y ou ¥ 0 (0T
2<axj+axi sax,07) T \ax, ) Tax, Mox,

Ds_l

Poe =T

(64)
For the Euler equations, for which p;; and ¢, are given by Eq(63), the entropy

of a fluid particle is invariant, i.e.,

Ds
D5 . 65
PDy (65)
For an incompressible fluid, the first relation of Eq. (53) is replaced by!?
Dp Jdp op
ﬁ—o or a‘FU]aXJ—O (66)
Thus, from Egs. (50) and (66),
ov;
L =0. 67
X, (67)

Equation (61) for the Navier—Stokes-stress tensor reduces to

ov; ov;

The first term on the right-hand side of Eq. (58) reduces to

L Ou e (Ou 0v\] O
pljan_ Poij — 1 ax, | 9X, X,

_ k[ O . 0v; ¥
C2\0X; 0X;)°
Thus, Eq. (58) reduces to

De p (Ov; = Ov; . 0 oT
th2<8Xj +axi) Tox, \Max;, ) (69)

I2Note the following transformation:
Ov; (81}1- Ov; 2 vy, 6--)
0X;

9X; 90X, 30Xy "

1/ Ov; Ov; 2 vy, 2 vy v, Ov; 2 Ovy
- 8 §ii _z 5ii
( * / * 30X,
_ 4 B 18’[}1 (8’[}2 a’Uj _gavk
aX,;  9X; 30Xy "’ 30x; " &

T2\ox; T ax; 30X, 77T 30X, 0X; | 0X,
1 8’Ui 81)]' 2 3’Uk 2
= = [ + (Sij .
2 0X; 0X; 30X
The second term in the last expression is easily seen to vanish.
13The density is invariant along fluid-particle paths. If p is of uniform value pq initially, it

is a constant, i.e.,
P = Po-

In a time-independent (or steady) problem, the density is constant along streamlines.
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To summarize, the Navier—Stokes equations for incompressible fluid are

(9’01'

X, ~ 0, (70a)
b, o op 0 [ (0w oy

Par TPiox, T Tax, T ox, [“ (axj + axiﬂ ’ (700)
de de _p (v oY 0 oT

Poi TPiax, T 2 (an + 8X1-) T oK, (Aaxj)’ (70c)

with the incompressible condition (66) being supplemented, i.e.,

ap ap

3.2.2 Boundary condition for the Euler set

In Section M-3.5, we discussed the asymptotic behavior for small Knudsen num-
bers of a gas around its condensed phase where evaporation or condensation with
a finite Mach number is taking place, and derived the Euler equations and their
boundary conditions that describe the overall behavior of the gas in the limit
that the Knudsen number tends to zero. The number of boundary conditions
on the evaporating condensed phase is different from that on the condensing
one. We will try to understand the structure of the Euler equations giving the
non-symmetric feature of the boundary conditions by a simple but nontrivial
case.

Consider, as a simple case, the two-dimensional boundary-value problem
of the time-independent Euler equations in a bounded domain for an incom-
pressible ideal fluid of uniform density. The mass and momentum-conservation
equations of the Euler set are

ou  Ov
%—i_@iy =0, (72)
u%—i—v@:—l@7 (73)

U Vo — = ————, (74)

where p is the density, which is uniform, (u,v) is the flow velocity, and p is the
pressure. Owing to Eq. (72), the stream function ¥ can be introduced as

_ov o

= 87y, v = . (75)

“ Oz
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Eliminating p from Egs. (73) and (74), we have'?

where € is the vorticity, i.e.,

du Ov 020 9
—Fy—%—w“r@. (77)

From Egs. (75) and (76),
ovon  ovon 0

IEOE TR 78
dy 0xr Oz Oy (78)

This equation shows that ) is a function of ¥,15 i.e.,
Q= F(V). (79)

14The following equation is formed from them:

0Eq.(73)/0y — OEq. (74)/0z = 0.

15This can be seen with the aid of theorems on implicit functions (see References M-[47, 48,
267]). The proof is outlined here. The Q and ¥ are functions of z and y :

Q=0Q(,y), ¥="U(,y). (*)
Solving the second equation with respect to x, we have
z=z(V,y). ()
With this relation into Eq. (),
Q= Q@@(¥,y),y) = AV, y), (#a)
U= U(E(V,y),y) = ¥(T,y). (tb)

That is, Q is expressed as a function of ¥ and y. From Egs. (fa) and (fb),
oV, y) _ OUE(Y,y),y) _ 0z,y) 02(V,y) 4 9=,y)

y dy o dy dy

Wéw) _o. (tb)
Y

(4a)

On the other hand,
OV (V,y) _ OT(2(T,y),y) _ 0¥(z,y) 92(V,y) n oV(z,y)

oy dy ox oy Jy

Thus,

0U(x,y) 02(V,y) | O¥(z,y) _
o Jy oy
From Eqgs. (78), (fita) and (1), we have

0. ®

IV, y)

oy =0, or Q=Q¥).
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This functional relation between Q and ¥ is a local relation, and therefore F
may be a multivalued function of ¥. From Egs. (77) and (79),

v 9%v
922 + a7 F(D). (80)

Consider a boundary-value problem in a simply-connected bounded domain,
where U is given on the boundary (¥ = ¥ ). Introduce a coordinate s (0 < s <
S) along the boundary in the direction encircling the domain counterclockwise.
Then, the fluid flows into the domain on the boundary where 0¥ 5/0s < 0, and
the fluid flows out from the domain on the boundary where 0¥ 5/0s > 0. When
F' is given, the problem is a standard boundary-value problem. In the present
problem, we have a freedom to choose F' on the part where 0¥ g/ds < 0 or
0¥ p/0s > 0. For example, take the case where 0¥p/Jds < 0 for 0 < s < S,
and 0¥ p/ds > 0 for S, < s < S, and choose the distribution Qz(s) of Q along
the boundary for the part 0 < s < Sy,. By the choice of 2, the function F(¥)
is determined in the following way. Inverting the relation ¥ = Ug(s) between
¥ and s on the part 0 < s < S, i.e., s(¥), and noting the relation (79), we
find that F' is given by

F(¥) = Qp(s(V)). (81)
Then, the boundary-value problem is fixed. That is, Eq. (80) is fixed as'6
0’ 9w
—+—=0 v 2
O (s, )

and the boundary condition is given as ¥ = Wg(s). This system is a standard
from the point of counting of the number of boundary conditions. Obviously,
from Eq. (77), the solution of the above system automatically satisfies condi-
tion Q@ = Qp(s) along the boundary for 0 < s < S,,,. We cannot choose the
distribution of  on the boundary for S, < s < S.

The energy-conservation equation of the incompressible Euler set is given by
Eq. (69) with u =X =0, i.e.,

Oe Oe oV Je IV Oe

'U/% +,U87y207 or 87y£_6787y207 (83)

where e is the internal energy. Thus, e is a function of ¥, i.e.,
e = F1 (7). (84)

In the above boundary-value problem, therefore, e can be specified on the the
part (0 < s < Sy,) of the boundary, but no condition can be specified on other
part (S, < s < S) and vice versa.'”

16There is still some ambiguity. The case where there is a region with closed stream lines
W(x,y) =const inside the domain is not excluded.

7From the second relation on e of Eq. (53) and the uniform-density condition, the condition
on e can be replaced by the condition on the temperature 7.
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To summarize, we can specify three conditions for ¥, 2, and e on the part
0V p/0s < 0 (0¥p/ds > 0) of boundary but one condition for ¥ on the other
part 0¥p/ds > 0 (0¥p/ds < 0). The number of the boundary conditions is
not symmetric and consistent with that derived by the asymptotic theory.

3.2.3 Ambiguity of pressure in the incompressible Navier—Stokes
system

It may be better to note ambiguity of the solution of the initial and boundary-
value problem of the incompressible Navier—Stokes equations in a bounded do-
main of simple boundaries.

Consider the Navier—Stokes equations for an incompressible fluid, i.e.,

gzz =0, (85a)
Paa? + pvj g;); = *gfl + a(zj,u (g;); + g;j) , (85h)
ng-l-ﬂvj(fg(ej:g(g;g +g§é>2+a§(j<%8)€)’ (85¢)
%“rvig; —0, (85d)

where e, y, and A are functions of 7" and p.

Consider the initial and boundary-value problem of Egs. (85a)—(85d) in a
bounded domain D on the boundary 0D of which v; and T are specified as
v; = vy and T = T, (vy; and Ty, are, respectively, the surface velocity and
temperature of the boundary satisfying f@D Vin;dS = 0, n; : the unit nor-
mal vector to the boundary) and no condition is imposed on p and p. Let
(vgs),p(s),T(s),p(s)) be a solution of the initial and boundary-value problem.
Let P(®) be an arbitrary function of ¢, independent of x;, that vanishes at initial
time t = 0, i.e., P® = f(¢) with f(0) = 0. Put

(vi7p7 Tap) = (UES)ap(S)7T(S)7p(S) + P(a))

Then, e, u, and A corresponding to the new (v;, p, T, p) are equal to e 1) and
A) respectively, because they are determined by p and T. The new (vi, p, T, D)
satisfy the equations (85a)—(85d) and the initial and boundary conditions.

3.2.4 Equations derived from the compressible Navier—Stokes set
when the Mach number and the temperature variation are
small

It is widely said that the set of equations derived from the compressible Navier—
Stokes set when the Mach number and the temperature variation are small is
the incompressible Navier—Stokes set. This statement should be made precise.
The difference is briefly explained in the book “Molecular Gas Dynamics” in
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connection with the equations derived by the S expansion from the Boltzmann
equation in Sections M-3.2.4 and M-3.7.2. Here, we explicitly show the process of
analysis from the compressible Navier—Stokes set. The resulting set of equations
no longer has ambiguity of pressure in contrast to the incompressible Navier—
Stokes set. Take a monatomic perfect gas, for which the internal energy per unit
mass is 3RT'/2. The corresponding Navier—Stokes set of equations is written in
the nondimensional variables introduced by Eq. (M-1.74) in Section M-1.10 as
follows:

ow 01+ w)u;

(1 + w)u; 0 1 B
SIT + aiwj <(1 + (.L))Uz'll/] + 5 Z]> = 0, (87)

Sh% [(1 + w) (‘;’(1 +7)+ UQH

+ aij [(1 + w)u; (‘;’(1 +7)+ uf) + ui (055 + Pij) + QJ} =0.  (88)

The nondimensional stress tensor Pj;, and heat-flow vector (); are expressed

as!®
wo(2RTy)/? _fOu;  Ou;  20uy
P.= P§.. — 200/ g e A N
o /\oT() - 0T
Qi=— oo 2RT)1? (1+X) Bor (89b)

Here, i and X are, respectively, the nondimensional perturbed viscosity and
thermal conductivity defined by

p=po(l+p), A= (14 N),

where po and \g are, respectively, the values of the viscosity p and the thermal
conductivity A at the reference state. The i and A are functions of 7 and w.
The first relation of the equation of state [Eq. (54)] is expressed as

P=w+T1+wr. (90)

Take a small parameter ¢, and consider the case where

u; =0(€), w=0(), T=0(), Sh=0(), (91a)
po(2RTp)'/? MoTo 5
— —_— = - ].
poL NS Tpo(RI)Z 4% (91b)

thus,
P=0(), p=0(), X=O0().

18For a monatomic gas, the bulk viscosity vanishes, i.e., ug = 0.
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According to the definition of w; in Eq. (M-1.74), € is of the order of the Mach
number. In view of this and the definition of the Prandtl number Pr= 5Ru/2\
(see Section M-3.1.9), 11 and 72 are, respectively, of the orders of 1/Re and
1/PrRe (Re:the Reynolds number). According to Eq. (M-1.48a), the condition
Sh = O(e) in Eq. (91a) means that the time scale g of the variation of variables
is of the order of L/(2RTy)"/?¢, which is of the order of time scale of viscous
diffusion. Thus, we are considering the case where the Mach number is small,
the Reynolds and Prandtl numbers are of the order of unity, and the time scale
of variation of the system is of the order of the time scale of viscous diffusion.
We can take to = L/(2RTy)"/?¢ without loss of generality. Then,

S =e. (92)

Corresponding to the above situation, u;, w, P, and 7 are expanded in power
series of ¢, i.e.,

Ui = € + Ujpe? + - - -, (93a)
W=wie + woeZ + -+, (93b)
P=Pe+ P+, (93c)
T=TiE+Toe% + -, (93d)
[i = e + fise” + -+, (93¢)
X=X e+ X2 -1, (93f)
Pij = PiSije + Pijoe® + -+ -, (93g)
Qi =Qire” + -+ . (93h)

Substituting Eqgs. (93a)—(93h) with Eqgs. (91b) and (92) into Egs. (86)—(88) with
Eqgs. (89a) and (89b), and arranging the same-order terms of e, we have

Uit _ 1_ Uil

al’i o 8xi_ ’ aﬂfz

:O’

Owy  Owiug n Ouio
ot Ox; Ox;
auil + 8ui1uj1 18P2 ge! 8 (8“11 au]l gaU,kﬂé > = 0)

=0,

6£ a:ﬂj 2 8% B ?8.%3 8xj 8% B 3 8$k “
§% + i ?u + ?P Uil — § % —
2 9F om, \2"2 Tt TR, ) T

and so on. At the leading order, the equations derived from Egs. (86) and (88)
degenerate into the same equation du,;/0z; = 0. Owing to this degeneracy, in
order to solve the variables from the lowest order successively, the equations
should be rearranged by combination of equations of staggered orders. Thus,
we rearrange the equations as follows:

oP,
8xi o

0, (94)
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5‘ui1

o = 0, (95a)
8ui1 811,1'1 o 1 8P2 71 82’&11
ot +us or; 20z | 2 8x§ ’ (95b)

587’1 6P1 5 87'1 - § 827'1

29 o + 5“1187% 4727830? ) (95¢)
Ouig  Owp  Owiug
or;  of  Ox; (962)
6ui2 6ui2 Buil
ot T Ox; g Oz
- _1 8P3 —w 8P2 ﬂi (‘3ui2 (9Uj2 . 28u;€26
T2\ 9z L ox; 2 Ox; \ Ox; Oxr; 3 0xp 7
ywr Oup 7 0 [ (Oua | Oujr
2 023 2 Oz; [ ! (8%- * ox; )|’ (96b)
80P, (3. 0Py 5 (), Oupy  Ows Ol +wauy)
2 81? 2 jlo”m:j 2 ! 8.13j alf 8xj
- 5’}/2 0 87‘2 < 67’1 Y1 8ui1 8Uj1 .
where
P1:w1 +T1, PQIWQ+T2+(U1T1. (97)

These equations are very similar to Eqgs. (M-3.265)—(M-3.268) [or Eqs. (18)—
(21)] obtained by the S expansion of the Boltzmann equation in Section M-3.7.2
(or Section 3.1.1). The solution is determined in the same way as the solution
of the S-expansion system is done in Section 3.1.1. What should be noted is the
determination of Py, P», - - - in a bounded-domain problem. They are determined
by the condition of invariance of the mass of the gas in the domain with the aid
of higher-order equations in the same way as Pgy, Pgo,- - in the S-expansion
system (see Section 3.1.1).

In order to compare Egs. (95a)—(95¢) and (97) with the incompressible Navier—
Stokes equations (85a)—(85d), we will rewrite the latter equations for the sit-
uation where the former equations are derived. The starting equations are
Eqgs. (86)—(89b)! and the nondimensional form of Eq. (66), i.e.,

ow ow
Sh— i
ot o Ox;

=0, (98)

instead of Eq.(90).2° The analysis is carried out in a similar way and the

19As the internal energy e, 3RT/2 [= 3RTy(1 + 7)/2] is chosen for consistency.
20From Egs. (86) and (98), we have du;/dz; = 0.
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equations corresponding to Egs. (95a)—(95¢) are?!

8’ui1

o =0 (99a)

Ou;i Oupg  10P, D%

ot T Or; 20w 2 0a3’ (99)
2

§87’1 3 57’1 75 (97'1 (990)

2 9t + it ox; e 81‘? '

Equations (99a) and (99b) are, respectively, of the same form as Egs. (95a)
and (95b). Equation (95c) is rewritten with the aid of Eqs. (94) and (97) as

3 (97'1 3 (97'1 6&)1 8w1 5 627'1
-——= —Uil — — | —= il | = ~Y2—=5- 1
2 ot + 2" ' ox; < ot i 89@) 172 3:10? (100)

The difference of Eq. (95¢) or (100) from Eq. (99c¢) is

8(4.}1 + 80.}1

ot ! 0x;
which vanishes for an incompressible fluid. The work W done per unit time on
unit volume of fluid by pressure, given by —po(2RT)/2L~10(1 + P)u;/0x;, is
transformed with the aid of Egs. (94), (95a), and (96a) in the following way:

w _ 9+ Py
P@RT) LT~ o,
= —aaq“;jjs— (H%l;: —ng]; + ag;f) g2 4.
:_‘981;1':52+...
= (%?+u¢12§1)52+~"-

The work vanishes up to the order considered here for an incompressible fluid,
because du;/0z; = 0 and OP;1/9x; = 0 (see Footnotes 20 and 21). That is,
Eq. (95¢) differs from Eq. (99c) by the amount of the work done by pressure.
Thus, naturally, the temperature 7; fields in the two cases are different owing
to this difference.

To summarize, the mass and momentum-conservation equations (95a) and
(95b) of the set derived from the compressible Navier—Stokes set [Egs. (86)-
(89b) and (90)] under the situation given by Egs. (91a) and (91b) with small €
are of the same form as those equations (99a) and (99b) of the corresponding set
derived from the incompressible Navier—Stokes set [Eqgs. (86)—(89b) and (98)],
but the energy-conservation equations (95¢) and (99¢) of the two sets differ by

21We also obtain 9Py /dz; = 0.
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the work done by pressure.?> The density w; obtained from Egs. (94)—(95¢)
with the first relation of Eq. (97) does not generally satisfy the incompressible
condition (98) with w = wy and u; = u;;.2%> Both the density and temperature
fields (w1, 71) are different in the two sets. The variation of the density w; along
a particle path is due to the first relation of Eq. (97). Even if the temperature 7
varies according to Eq. (99c), the density w; determined by the first relation of
Eq. (97) does not generally satisfy the incompressible condition. Incidentally, in
a bounded domain problem with simple boundaries, the pressure has ambiguity
of an additive function of time for the incompressible set in contrast to the
pressure for a compressible set [see Section 3.2.3 and the paragraph just after
Eq. (97)].

Finally, it may be noted that under the situation (91a), the solenoidal condi-
tion for w1, i.e., Eq. (95a) or (99a), is derived only from the mass conservation
equation (86) without the help of the incompressible condition (98).

4 Chapter M-4

4.1 Gas over a plane interface: Supplement to M-4.4

Here, the discussion of the half-space problem under the boundary condition
(M-1.26) for a simple boundary in Section M-4.4 is extended to that under the
boundary condition (M-1.30) or (166) for an interface of a gas and its condensed
phase. That is, a plane simple boundary is replaced by a plane condensed phase
of the gas, and the possible solution including the possible state at infinity is
discussed in the situation when no evaporation or condensation is taking place
on the condensed phase. This is the problem first discussed by Golse under the
complete condensation condition (Reference M-29), which is a special case of the
boundary condition (M-1.30). The analysis goes parallel to that in Section M-
4.4, The full explanation is given with the difference being shown in Footnotes,
though it may be redundant.

Consider a semi-infinite expanse of a gas (X; > 0) bounded by its stationary
plane condensed phase with a uniform temperature T,, at X; = 0. There is no
external force acting on the gas. The state of the gas is time-independent and
uniform with respect to Xy and X3, ie., f = f(X1,£), and it approaches an

22When the density p is uniform initially, for which p is a constant for an incompressible
fluid, the viscosity and thermal conductivity are constants, and heat production by viscosity is
neglected, Eqgs. (99a)—-(99c) can be compared directly with Eqs. (95a)—(95¢) and (97), without
carrying expansion, and the same results are obtained.

231t is easily seen that the velocity w;; vanishes, the pressure P; is a constant, and the
temperature 71 (thus, the density wi) varies with time in initial-value problems where the
velocity is zero and the temperature is nonuniform (strictly, non-harmonic) initially, and the
pressure is time-independent at infinity. Thus, the incompressible condition is not satisfied.
See also the example given in Section K-4.10.3, where the velocity vanishes and the density
varies with time, and further, the temperature field is quite different from the incompressible
case owing to the time-dependent boundary condition on Pgq, corresponding to P; here.
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equilibrium state as X; — oo, i.e.,

Poo & — Vioo)?
f— R RT.72 exp (—( SRT. ) ) as Xy — 0o, (101)

where poo, Vo, and Ty, are bounded. The boundary condition on the interface
is given by Eq. (166) with the conditions (167a)-(167c) and (170), i.e.,

£0,6) = g1 + / Ki(6,6,)£(0,€.)dE. (& > 0). (102)

£1.<0

Here, we are interested in the case where no evaporation or condensation is

taking place on the condensed phase,?* i.e.,

puv1 = /flfdg =0 at X;=0. (103)
We will show that the solution of the Boltzmann equation (M-1.5), i.e.,

of

&5 =00, (104

describing the above situation exists only when
Vico = 0, pPoo = pw, Too = Tw,

where p,, is the saturation gas density at temperature T, and that the solution
is uniquely given by the Maxwellian

fo v (-8 (105)
= @rRT, )2 P\ TaRT, )

From the integral of the Boltzmann equation (104) over the whole space of
& [or the conservation equation (M-1.12)], i.e.,

d
ax. ([arag) =0

and Eq. (103), we find that the mass flux vanishes for X; > 0, i.e.,

/Elfdé =0 (0<X; <o0). (106)

With this result in the condition (101) at infinity, we have

/ £162fdE =0 at infinity. (107)

24No mass flux across the boundary irrespective of a situation is the definition of a simple
boundary.
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The integral of the Boltzmann equation (104) multiplied by f? over the whole
space of & [or the conservation equation (M-1.14)] gives

d
i ( / 51£§fd£) =0. (108)

Thus, from Egs. (107) and (108), we have

/ SEFAE=0 (0< X, < o0). (100)

For the boundary condition (166) with the conditions (167a)—(167c) and
(170), the following inequality holds at X; = 0 [Eq. (189) with pv; =0, vy =0,
n; = (1,0,0)]:%°

/ €1/ In(f/ fu)dE <0, (110)

where f,, is the Maxwellian with the temperature T, and velocity v,,; (= 0) of
the condensed phase and the saturation gas density p,, at temperature Ty,, i.e.,

P I (111)
YT 2nRT.)32 P\ 2RT, )

With the aid of Eqgs. (106) and (109),

/ & fIn(f /eo)de < / &1 F 0 fu/co)dE

— o [ @g€rde=0 axi=o, (12

" 2RT,
where ¢ is a constant to make the argument of the logarithmic function dimen-
sionless, whose choice does not influence the result.
On the other hand, from the H theorem, i.e., Eq.(M-1.36), in a time-
independent, one-dimensional case,

—/ﬁlfln(f/CO)dE =/OOOGdX1 <0, (113)

+ / & fIn(f feo)d€
X1=0 X1=00

where . T
6= (- 11w (LE

*

) BdQde, d¢ < 0.

From Egs. (101), (106), and (107), the second term on the left-hand side of
Eq. (113) vanishes, that is,

- / € FIn(f /co)dé

:/ GdX; <0. (114)
X1=0 0

25The same equality holds for a simple boundary except that py, in f, is a free parameter
for this case (see Section M-4.4).
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Combining the two inequalities (112) and (114), we have

o<~ [arm(jmag = [TGax <o
X1=0 0
Therefore, we have
/ GdX; =0, thus, G=0, (115)
0
and
/ flfln(f/comg’ o,
X1=0

From Eq. (115), f is Maxwellian in 0 < X; < oo, and Eq. (104) is reduced to
£10f/0X; = 0. That is, f is a uniform Maxwellian. From the condition (101)
at infinity and Eq. (106), the solution is to be in the form

Poo exp _gf + (62 - v2oo)2 + (63 - v3oo)2
(27 RT5)3/2 2RTs,

f= > (0 < X; < ).
(116)

From the uniqueness condition of Eq. (167c), the Maxwellian that satisfies the

boundary condition (167c) is given by Eq.(111). Thus, the parameters in

Eq. (116) have to be*¢
V200 = U300 = 0, poo = pu, Too = T,

and the solution is given by Eq. (105).

The same statement holds for the linearized Boltzmann equation with the
corresponding general boundary condition (M-1.112) on an interface of the gas
and its condensed phase. The temperature T, of the condensed phase and the
saturation gas density p,, at temperature T, are, respectively, taken here as the
reference temperature T, or 7, = 0 and the reference density pg or w,, = 0.27
The linearized Boltzmann equation is given in the form

o¢
G = £(8) (0<n< ). (117)
n
The boundary condition on the interface is given by Eq.(M-1.112) with the
supplementary conditions (i), (ii-a), and (ii-b) as

E(Q)é(n.¢) = /C Rin(€.C)60.CBCIAC, (G >0) atn=0. (118)
15 <
The condition at infinity is

601.) > w2+ (= 3 ) e wsmvoo (119

26Tor a simple boundary, we can choose pso at our disposal, because p in Eq. (M-1.27¢c) is
arbitrary.

2TWe take the reference density p,, in contrast with the case of a simple boundary. This is
only for convenience of explanation. For this choice, wy, term disappears in Eq. (118) but weo
term appears in Eq. (119)
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where weo, Ui and 7o, are some constants and 7 = 1 /k (= 2X1/v/7y). Then,
the solution of the boundary-value problem (117)—(119) exists when and only
when

Woo =0, Ujso =0, Too =0, (120)

and the unique solution is given by
¢=0. (121)

The proof can be given in the same way as the preceding proof for the
nonlinear case. From the conservation equation (M-1.99), i.e., duy/0n = 0, and

the condition of absence of evaporation or condensation on the condensed phase
(u1 = [CG1¢Ed¢ = 0 at n = 0?8), we have

up = /quSEdC =0 (0<n<o0). (122)

Thus,
Ujoo = 0. (123)

From Egs. (119) and (123),
/ C¢*Ed¢ =0 at infinity. (124)

According to the second part of Section M-A.10,%°

/C1¢2Edc <0 atn=0. (125)

The linearized-Boltzmann-equation version of the equation for the H function
given by Eq. (M-1.115) is expressed as

a% / (1¢*Ed¢ = LG, (126)

where )
LG=—1 / BE.(¢' + ¢, — ¢ — ¢,)2Bd0d¢,d¢ < 0. (127)

From Egs. (124), (125), and (126) with Eq. (127), we find that LG is to be zero
and that ¢ is a summational invariant or the linearized form of a Maxwellian,
ie.,

¢ = w + 2(Couz + (3usz) + (QQ - 2) T,

28The boundary where this equality holds irrespective of a situation is the definition of a
simple boundary.

29This is the linearized-Boltzmann-equation version of the inequality (189) and valid for
both types of boundaries, a simple boundary and an interface. For the case of an interface,
an additional condition (M-A.271), which corresponds to Eq.(170) in the nonlinear case, is
imposed on the kernel Krq (see also Footnote 45 in Section 6.4.2).
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where Eq. (122) is used. Then, Eq. (117) reduces to (10¢/0n = 0, and therefore,
w, ug, uz, and 7 are constant. In view of Eq. (119), the constants w, us, us, 7,
and ¢ are given as

W= Woo, U2 = U200, U3 = U0y T = Too)
3
= Woo + 2(CoU200 + (3U300) + (CZQ - 2) Too-

Owing to the supplementary condition (ii-b) to the boundary condition (M-
1.112) together with Eq. (123), we have3°

Woo :Oa uloo:()a UQOO:O) UBOOZOa Too:()a
$»=0.
(Section 4.1: Version 5-00)

5 Chapter M-9

5.1 Processes of solution of the equations with the ghost
effect of infinitesimal curvature (July 2007)

The way in which Eqs. (M-9.33)—(M-9.39b) or Egs. (M-9.49a)—-(M-9.50¢), includ-
ing the time-dependent case with the additional time-derivative terms given
by Eq.(M-9.42) or the mathematical expressions next to Eq.(M-9.59), con-
tain the pressure terms, (Pso,pe2) or (Po1, Poz2, Pao), is different from the way
in which the Navier-Stokes equations (M-3.265)—(M-3.266c) do the pressure
terms, (Psi1, Ps2). In Section M-9.4, we consider the time-independent solu-
tion of Eqgs. (M-9.49a)-(M-9.50e) [Egs. (M-9.56)—(M-9.57d)] that is uniform with
respect to . Here, it may be better to explain how a solution of Eqgs. (M-9.33)—
(M-9.39b) or Egs. (M-9.49a)—(M-9.50e) in a general case or a time-dependent
solution that depends on x or x is obtained. Incidentally, the boundary con-
ditions for the time-dependent case are derived in the same way as in Section
M-3.7.3. Naturally from the derivation of the equations, the domain of a gas
is in a straight pipe or channel of infinite length whose axis is in the x or x
direction.

5.1.1 Equations (M-9.33)—(M-9.39b):

Take Eqgs. (M-9.33)-(M-9.39b) with the additional time-derivative terms given
by Eq. (M-9.42), i.e.,!

Ipso _ Obeo
y 0z

300wing to the difference of the supplementary condition (ii-b) of Eq.(M-1.112) [or
Eq.(118)] for an interface from the condition (iii) of Eq.(M-1.107) for a simple boundary,
w is determined for an interface. For a simple boundary, we can be chosen at our disposal.
31Equation (M-9.33) is replaced by its equivalent form (128).

=0, (128)
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0z

8/660@3;6 1
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9pso
ot
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ot

=0, (129)
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and the subsidiary relations

peo(x. 1) = psoTso, (134a)
oT, (00 i 00 T |(0TeoN [ 0Teo )
.. 2Ty (Dizs0 Uye1 V.51 7 &0 &0
P2 =Pe2 + 3 (8x * dy + 3z>+3ﬁ60 <3y>+<8z>
2 [o Tso 0 Tso
TrEse ) 2 (r
+3]560 [8y< >y >+8z< 3702 >

My | (Otwso [ Otweo )
— 134
3Pe0 [( dy ) * ( 0z ) ’ (1340)

where T'y, T'y, I's, 'z, I's, and 'y are short forms of the functions I'y(To),
FQ(TGO), . ,FQ(TGO) of Teo defined in Section M-A.2.9.

Consider the solution of the initial and boundary-value problem of Egs. (128)-
(134b).

Let j, 9, and T (thus, p = pT) at time # be given; thus, o, Vzs0, Vye1,
v.e1, Teo (pso) etc., including peo, are given. Then 0pso/0t, Dvpeso/0t,
Diye1/0t, Dv,e1/0t, and dTeo /0t at { are given by Egs. (129)-(134b); thus,
the future pso, Uz0, Uys1, U261, and Tso (also peo) are determined. However,
the future peo is required to be independent of y and z, as well as peo at t,
owing to Eq. (128). Taking this into account, we will discuss how the solution
is obtained by this system consistently.

First, transform Eq. (133) with the aid of Eqgs. (129) and (134a) in the fol-
lowing form:

0pso
50 _ p, 135
o7 (135)
where
_ 5. [(Olzs0 | Obyes1  OU.e1\ .  Obso
P= 3p6°( ox oy T 32) VS0
500 (. 0Tso\ 0 (. 0Tso 2 dizso N [ O0es0
21T By Pl ) o .
+6 8y<28y>+8z<28z> +31[( 5y>+< 82)
(136)

For pes to be independent of y and z [see Eq. (128)], P as well as the initial data
of peg is required to be independent of y and z. Noting that pe( is independent
of y and z, and taking the average of Eq. (136) over the cross section S of the
pipe or channel,?? we have another expression 3 of P, explicitly uniform with

32(i) In a channel, where the gas extends from z = —oco to z = oo, the integral fs Adydz per
unit length in z, per a period in z, etc. should be considered. Otherwise, it can be infinite.
(ii) Note that dys1ny + 9.51n- = 0 on a simple boundary where n; = (0,ny,n;) is the
normal to the boundary.

34



respect to y and z, i.e.,

5 8%@;0 R 3;060 5| 0 8T@;0 0 6T60
¥ 3 ox Peo ~ bzeo ax 6[ ( 8y>+82<28z>
2 aerO aerO
+ gfl [( By ] (137)
where

A—/Adydz// dydz.
s s

The expression (137) is noted to be independent of Uye1 and U,s1. The two
expressions (136) and (137) must give the same result, i.e.,

P =

or

5. o 0ys o . Op
— Zheo < xS0 + y61 + z61> — Dpe0 P&o

3 195% dy 0z ox

500 (. 0Tso\ 0 (.. 0Teo 2 dize0Y [ Odpso }
%lay(“ 0y >+6z<r az) *3“[( ) (%)
_ (138)

when Eq. (128) holds, and vice versa. The condition (138) for all £ is equivalently
replaced by the two conditions that the initial data of pgo, TG(), U260, Uy&1,
and 0,g1 satisfy Eqgs. (128) and (138) and that the time derivative of Eq. (138)
holds for all ¢, i.e.,

oP 0P

ot ot
Using Eqgs. (129)—(132) and (135) for 0peo/0t, Ovpe0/0t, Odys1/0t, 0i.e1/0t,
and 9peo/0t (pso0le0/dt = dpso/dt — Teodpeo/0t) in P/t derived from
Eq. (136), we find that 0P /0t is expressed with peo, Vzs0, Uye1, U261, Pso, and
P&o in the form

P 5. [0 (1 5]962) o ( 1 apg2>]
9 + 9 (L +Fn,, 140
of 6P {811 (pso dy 9z \ peo 02 ' (140)

(139)

where Fn; is a given function of o, Uzs0, Uys1, U261, Deo, and their space
derivatives. The expression (137) of P being independent of vys1 and ¥.s1,
its time derivative /0t does not contain 99,e1/0f and 99,e1/0t. Therefore,
with the aid of Eqs. (129), (130), and (133), & /0t is expressed with peo, V0,
Uye1, V261, Peo, and their space derivatives, i.e.,

P
ot

= Fns(ps0, Vze0, Uye1, U261, Pso, and their space derivatives),  (141)

35



where Fny is a given functional of its arguments. From Eqgs. (139), (140), and
(141), we have

0 (1 326%2) 9 ( 1 513%2)
(- + 2 (- = Fn, 142
oy (peo dy 0z \ pso 0z (142)

where Fn = 6(Fns— Fn;)/5pso, and therefore, Fn is a given functional of pep,
U260, Uye1, U261, Peo, and their space derivatives. This is the equation for pg,
over a cross section of the pipe or channel.

The boundary condition for pg, on a simple boundary is obtained by mul-
tiplying Egs. (130)—(132) by the normal n; = (0,n,,n;) to the boundary; In
this process, the contribution of their time-derivative terms vanishes because
Uye1My + U.1n: = 0; Then, the ny0p%,/0y + n.0p%,/0% is imposed as the
boundary condition. Thus, pg, is determined by Eq. (142) except for an addi-
tive function of # and y. With this p%, substituted into Egs. (131) and (132),
0pso/0t, Obyeso/0t, 3%61/65, D0.s1/0t, and O0peo/0t are determined by
Egs. (129)—(134b) independently of the additive function in pg, in such a way
that d(0peso2/0y) /0t = 0(0ps0/0z) /0t = 0 and (P /dy) /0t = D(OP/dz) /ot =
0. That is, the solution (p&0, V20, Uys1, U261, T@o) of Egs. (128)—(134b) is deter-
mined by Egs. (129)—(134b) with the aid of the supplementary condition (142),
instead of Eq. (128), when the initial condition for peo, Uss0, Oys1, U261, and
Teo is given in such a way that peo (= ﬁ@oT@o) and P are independent of y
and z.

Equations (128)—(134b) are the leading-order set of equations derived by
the asymptotic analysis of the Boltzmann equation. The analysis of the higher-
order equations not shown here is carried out in a similar way. The equation for
Opes2 /0L, corresponding to Eq. (135), is derived at the order after next. However,
owing to the consistency of pgo, Pee2 is already determined by Eq. (142) except
for an additive function of x and #. The situation is similar to that at the
leading order. That is, pgo and pes are, respectively, determined by Egs. (128)
and (142), each with an additive function of x and # and also by Eqs. (135)
and the counterpart of Eq. (135) at the order after next. Thus, the higher-order
analysis can be carried out in a similar way. The results are that an additional
initial condition and an equation for pe,, the counter part of Eq.(142), are
introduced and that the condition (142) is required only for the initial data.
The higher-order consideration does not affect the determination of the solution
ps0, Te0, Vzs0, Vys1, and 0,e1 (thus also peo).

To summarize, the solution (p&0, Vzs0, Uys1, V261, Tgo) of Egs. (128)—(134b)
is determined by Eqs. (129)—(134b) with the aid of the supplementary condition
(142), instead of Eq. (128), when the initial data of ps0, Uzs0, Oys1, U261, and
Teo are given in such a way that peo (= ﬁgofgo) and P are independent of y
and 2.> The results are not affected by the higher-order analysis.

331f P is independent of y and z, P =P by definition.
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5.1.2 Equations (M-9.49a)—(M-9.50e):

Take Egs. (M-9.49a)—(M-9.50e) with the additional time-derivative terms given
in the first mathematical expressions after Eq. (M-9.59), i.e

8P01 N (9P01 _ 8P01

o By P 0, Ppp=w+r, (143a)
9y P : (143b)
Ou, Ouy Ou, _0, (144a)

% oy oz

8;’C+ 86“_”” +uy%%+uzaaiﬂ”:_;8£2+721(8;;2z+6;:;>’ (144b)

(144c)
aauz+ 8;_2+ yaauz+ 88“;: ;6;;20 721(8;; a;:;), (144d)
% ?85:14_ g+ngT+ung=?<g;+gZ>. (144e)

The qualitative difference of this set of equations from the set (128)-(134b) is the
absence of the time-derivative term in Eq. (144a) that corresponds to Eq. (129).

Consider the solution of the initial and boundary-value problem of Eqgs. (143a)—
(144e). Let ug, uy, u,, and 7 at  be given in such a way that Eq. (144a) is
satisfied. Integrating Eq.(144a) over the cross section of the channel or pipe
[/ Eq. (144a)dydz] , we find that [, u,dydz depends only on 3 ie.,

/(8u£/8)_<)dydz =0, (145)
S

where S indicates the cross section. Applying Eqs. (143b), (144a), and (145) to
the equation 9 [Eq. (144b)dydz /0¥, we have 92 Py /0X? as

2 2 2 2
0 P()2 0 |:_2(9’U,z + (8 Uy 0 um,)]’

o ox| “ox a2 02

—/Adydz// dydz.
S S

Thus, OPy2 /09X and Pys are determined if they are specified at a point in the gas.
Here, we consider this case.®> Using Eq. (144a) in the sum of 9[Eq. (144b)]/dy,

(146)

where

34See Footnote 32, with 9ys1 and 9,51 being replaced by uy and us.
35(i) Imagine the case of the Poiseuille flow.
(ii) Here, P (thus, Po1) is specified at some point. Then, Py; is a given function of ¢.
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O[Eq. (144¢)] /0y, and OJ[Eq. (144d)]/0z, we obtain the equation for Psg in the
form
0?Pyy  0%Py
0y? 022

= Fn(ug, uy, u;, and their space derivatives), (147)

where Fn is a given functional of the variables in the parentheses, and the time
derivatives are absent owing to Eq. (144a). Thus, the right-hand side of Eq. (147)
is known. This equation is the Poisson equation for Pyg over the cross section
S. Its boundary condition is obtained in a way similar to how the condition
for p&, in Eq. (142) is derived. Thus, P over each cross section is determined
except for an additive function of ¢ and y. This ambiguity does not influence
8P20/8y and 8P20/82

With Py and Py prepared above into Eqgs. (144b)—(144e), the time deriva-
tives Ou,/0t, Ou,/0t, Ou,/0t, and 07 /0t are determined in such a way that
(Ouy JOX + Ouy /0y + Ou./0z)/0t = 0 owing to the above choice of Py.3¢
Thus, the solution (ug,uy,u,,T) of Eqs.(143b), (144a)—(144e) is determined
by Egs. (144b)—(144e) with the aid of the supplementary conditions (146) and
(147) for Py and Py, instead of Eqgs. (143b) and (144a). This process is nat-
ural for numerical computation. The undetermined additive function of x and
t in Py, which does not affect the solution (u,,wu,,u,,7), is determined by the
higher-order equation derived from that for d9,e2/0t (see Section 5.1.1), in a
way similar to that in which Py is determined by Eq.(144b). In the higher-
order equation, Py plays the same role as Py in Eq. (144b); Equation (147)
corresponds to Eq. (143b), and Py and Pyy are determined by these equations,
each with an additive function of y and .

6 Appendix M-A

6.1 Note on the loss term of the collision integral [From
Eq. (M-A.18) to Eq. (M-A.21)]

Consider the following collision term of the Boltzmann equation (M-A.18):37
dp,
2m all e, all £,

(6. — &) - ell£(€) (&) — F(&)f(€.)]dQ(e)dE,, (148)

where
g=E+o (€ —8la, & =€ —[o (& &) (149)
The change (M-A.20) of the variable of integration from e to a, i.e.,

(€.~ €) - eld0(e) = = BdO(a) (150)

36Note that Pp; is known (Footnote 35).

37The factor d2,/2m can be rewritten as nd2,/2p, where n is the number of molecules in
unit volume. The numerator nd2, is of the order of the inverse of the mean free path (Section
M-1.5). Note Footnote M-4 in Section M-A.1.
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is introduced instead of expressing o in Eq. (149) in terms of e. The part of the
integral of Eq. (148)

d2

2m Jan e, all &,

(€. — &) - el £(§)f(£.)d2(e)dE,,

which comes from I_ in Eq.(M-A.8) and corresponds to the loss term (see
Section M-1.2) of the collision integral of the Boltzmann equation (M-1.5) or
(M-A.21), does not contain «, and the change (150) of the variable of integration
is not required.®® Thus, the result is determined uniquely irrespective of the
relation between « and e, that is, the loss term of the collision integral is
independent of the intermolecular potential when d,, is of a finite value. That
is, the loss term of the collision integral is determined only by d2,/2m and f(§&),
and is the same as that for the hard-sphere molecule with the same d,,.
(Section 6.1: Version 6-00)

6.2 Note on the loss term of the kernel representation of
the linearized collision integral [Section M-A.2.10]

In Section M-A.2.10, we discussed the kernel representation of the linearized
collision integral £(¢) introduced in Section M-1.10, and gave its explicit form
for a hard-sphere molecule. From the discussion in Section 6.1, the kernel rep-
resentation of the loss term of the linearized collision integral for a hard-sphere
molecule applies to any intermolecular potential with a finite d,,.

In Section M-A.2.10, the linearized collision integral L£(¢) is expressed by
Eqgs. (M-137a)-(M-A.139c) as

(o) = / B¢+ 6, — 6 — 6.)BdQ(a)dc,

= L9(9) — L(¢) —v({)9, (151)
where
£9(0) = [ B0/ + 6B, (152a)
£5%(9) = [ B.o.Ban(edc,
— [ K20 dc. (152D)
vp(¢) = / E.BdQ(a)d(,. (152¢)

The loss term is the sum of Eqgs. (152b) and (152c¢) multiplied by ¢, i.e., LX2(¢)+

38 Transformation (M-A.20) or (150) is carried out to make the variable of integration to be
the same. Thus, it is simply one of the changes of variable e of integration to some variable.
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v1(¢)$.2° The kernel Ko(¢,¢,) and the function vz (¢) for a hard-sphere molecule
are given by Eqgs. (M-A.149b) and (M-A.149c) as

KQ(CaC*) = g*\/;’]fl €xXp (_CE) ) (1533)
1 9 1\ [¢ )
6) = s [expl(~¢) + (x ; g) [ ewt-chac| . asw
where
c=Ll

These formulas apply to any potential with a finite d,, as well as to a hard-sphere
molecule.
(Section 6.2: Version 6-00)

6.3 Parity of the collision integral: Supplement to Section
M-A.2.7

In Section M-A.2.7, we discussed the parity of the linearized collision integral.
It may be better to explain a similar property of the collision integral defined
by Eq. (M-1.9), i.e.,

N |

J(F.g) = / (F'd, + J' — fon — F.9)BdRa) dC,., (154)
B =B(leV|/|V],[V]),
= F(&), o= F(G) = F(CD), Tl = F(C),

and a similar notation for §, §., §’, and g,
G =G+ Vi, G, =G —a;Vjai, Ciw=Vi+ G

~

Here, we discuss the relation of the parity of j(f, §) with respect to a com-
ponent ({1, (2, or (3) of the variable ¢ to that of f and §. Put the integral (154)
in the sum

j(f,g):%(IV+III—II—I), (155)

390nly the term vr,(¢)¢ is often called the loss term, and the rest, i.e., LG (¢) — LL2(¢),
is called the gain term by misunderstanding. This is probably because the loss term of the
original collision integral (148) is often written in the form v.f, where v, is the collision
frequency defined by Eq. (M-1.18) as

ve=m"" f(€,)BAQ(e)dE, = (d7,/2m) 1§ — &) - el f(£,)d2(e)d,.
all o, all €, all e, all £,

Not to mention, £LL2(¢) is derived from v f.
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where

I= | f.gBdQ(a)dV, (156a)
I= [ f3,BdQ(a)dV, (156b)
oI = / /¢’ BdQ(a)dV, (156¢)
IV = / f'¢.BdQ(a)dV, (156d)

and discuss each term separately.’’ In Eqs. (156a)—(156d), the variable of inte-
gration is changed from ¢, to V (= ¢, — ¢). The following change of the variables

Vi=-Vi, Vi=V,, @G1=-01, Go=a, (s=2,3) (157)
is performed in the integrals I, II, III, and IV. Noting that
G =Vit G, [Vil=IVil,  &Vi=aiV, (158)

we can transform the integrals I, II, III, and IV in the following way, where the
subscript s indicates s = 2 and 3:

(G, ¢) = / FVi + G Va4 623G ) B (JasVil Vil Vi d ) AV

= [T 6T+ a6 6) B(aTITIL T)a0(@) av,
(159a)
Interchanging the arguments of f and ¢ in I, we have

11(1,¢s) = /f(Cl,Cs)ﬁ(—Vl + ¢ Ve + ¢) B (& Vil/|Vil, Vi) dQ(&) AV
(159b)

I (G, Cs) =/ (Vi + G = a;V;a)g (G + a;Viau) B (JasVil/|Vil, [Vil)dQ(e) dV

/ ‘71+<1 +a]‘/_]a17v +<5 62_]‘7]625)

X §(C1 — &;V;an, G + &;V;a,) B (|aiVil/|Vil, Vi) (@) AV

(159c¢)
Interchanging the arguments of f and g in III, we have
W6 = [ £ - &V + a,a)
X J(=Vi+ G+ & V;an, Ve + G — @ V;d)
x B (& Vil /|Vil, |Vi))dQ(&) av. (159d)

40The separation is made only for convenience of explanation.
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Now we examine the parity of the integrals I, I, III, and IV with respect to
¢1 on the basis of Eqgs. (159a)—(159d). Here, we introduce the notation: (i) the
parity off (or ) is indicated by the subscript attached to it, i.e., the subscript
E is attached when it is even and the subscript O when it is odd; (ii) the first
subscript of I, II, III, and IV indicates the parity of f in them and the second
indicates the parity of §. First, when f and § are even functions of (3.

ep(61.6) = [ Fol=Fu+ G ¥+ G)ae(ca G
x B (|&Vil/|Vil, [Vi])d(e) aV
— [ FeVi - 61V 4 G)am(-16)
x B ([a:V;]/|Vil, |Vi)d(&) dV
= Ipp(=1, ), (160a)

where the last relation holds owing to the first relation of Eq.(159a); Inter-
changing the arguments of fg and g in Igg, we have

IgE(6,¢) = Oprp(—(1,C); (160b)

Mew(Cr, C) = /fE(—V1 b+ aVan V4 G — a, Vi)
x g (G — &;V;a1, G + &;V;a.) B(|a: Vil /|Vil, [Vi))dQ(e) dV
= /fE(‘Z — (1 — a;Vian, Ve + (o — a;V;as)
X g5(—C1 + 6V, G+ & V;aa) B(|a: Vil / [Vl [ Vi) dQ(&) dV
= lgp(—(1,(s); (160c)

Interchanging the arguments of fE and ¢g in Illgg, we have

Veg(1,¢s) = Ver(—(1,(s)- (160d)

When both f and ¢ are odd with respect to (y,
Too(C1.G) = /fo(—ffl 6T+ oG ) BTV T )d@) dv
= / fo(Vi = 1, Vi + C)go(—Ci, &) B(laiVil/[Vil, [Vi))dQ(&) aV
= Ioo(—C1,Cs); (161a)

Interchanging the arguments of fo and go in Ilpp, we have

Hoo(C1,¢s) = Hoo(—C1,Cs); (161b)
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oo(G1,Cs) = /fo(_f/l + G 4 @5V, Ve + G — a;Vias)
x go (G — @V, G + @, Vi)
x B(|&;Vi|/ Vi, |Vi])dQ(&) aV
= /fo(ffl — G — & VA, Ve + G — 6, V;a,)
X §o(—C1 + a;Vian, G + & V;as) B(|&Vi|/|Vil, Vi) dQ (&) aV
= loo(—C1,Cs); (161c)

Interchanging the arguments of f and § in IIlpo, we have

NVoo(C1,¢) = Voo (—C1,Cs)- (161d)
When f is even and ¢ is odd with respect to (3,
Tso (G, Gs) = /fE(—Vl + G, Ve + 6o (G, G)B(@Vil /il Vil dQ(@) dV

= / Fe(Vi = C1, Vi + C)do (=1, C) B([@Vil /| Vi, [Vi])dQ (&) dV
= —T5o(—C1,G); (162a)

5o (61,¢s) = /fE(Cqu)Qo(—‘N/l + G, Ve + G)B(@Vil/|Vil, Vi) d(@) aV

=- /fE<—<1,<s>go<Vl — G Vs + G)B(|&@ Vil /[Vi), | Vil)d (&) aV
= —Igo(—C1,Cs); (162b)

Mpo(61.6) = [ Fe(-Vh +G+ a7 o+ 6 - ,7a)
% §o(C1 — @;Vian, G + a;Vyas) B(laVil /| Vil, [Vil)d(&) dV

= */fE(f/l — ¢ — & Viar, Vi + ¢ — a;V;a,)
% Go(—C1 + a&;Vian, G + &;V;as) B(1& Vil /[Vil, Vil d@)dV
= —IlIgo(—C1,Cs); (162c)
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VEo(C1,¢s) = /fE(Cl - &jf/jalvcs +&j‘7j&s)
X QO(—‘Z + G+ &j‘z&la V. + (s — &ji}j&s)
x B(|a;Vi|/|Vil, |Vi])dQ(a) dV
=— / fe(=C + a;V;an, ¢ + a;V;ds)
X go(f/l - — &jvj&hi}s + (s — &ji}jas)
x B(|a;Vi|/|Vi|, |Vi])dQ(a) dV
= —IVgo(—(1,(s)- (162d)

For Ipg, o, lllog, and IVog, interchanging the role of f and g, respectively,
in IIEo, IEO7 IVEo, and IIIEo, we have

Iog(C1,¢s) = —Iop(C1,Cs), (163a)
Lo (6, ¢s) = —1lor(C1, Cs), (163b)
HIoE(C1,¢s) = —Ilor(C1,(s), (163c)
NVog(Gi,6) = —IVor(Cr, G). (163d)

The parity is common to I, II, III, and IV. Therefore, the parity of J ( f ,4)
is the same as I, i.e.,

J(fe.98)(C1,¢) = I (fE, ) (—C1, G), (164a)
T(f0,90)(C1,¢5) = I (fo,50)(—C1, G),s (164D)
J(f2,80)(C1,¢) = = I (Fr:90) (=1, Cs), (164c)
T(fo,38)(C1,¢) = =T (fo, 1) (=15 Co). (164d)

Obviously, the same parity holds for the other components, i.e., (2, (3, of ¢.
(Section 6.3: Version 4-00)

6.4 Supplement to Section M-A.10
6.4.1 On the equality condition of Eq. (M-A.266)

Here we will discuss the equality condition in the Darrozes—Guiraud inequality in
Section M-A.10 in more detail. The equality in the Jensen inequality (M-A.265)
is proved to hold when and only when ¢ is independent of £ (see, e.g., Reference
M-129). It should be noted that the uniqueness condition of the equality applies
only to the region of & where ¢ > 0 and that no condition is required of ¢ where
1 = 0. Choose a £ in (§ — vyi)n; > 0, and consider the condition for equality
in Eq. (M-A.266). According to the above note, the equality holds only when
f(&,)/fo(E,) is a constant (say, ¢;) in the region Dy of &,, joint or disjoint,
where Kp(&,&,) > 0. If we choose another &, Kg(€,€,) > 0 in a different range
Dy of &,, and f(&,)/fo(€,) = ca (c2 : const) is required in Dy. The constants
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c1 and ¢ may be different if D; and D, are disjoint. The two constants are
required to be the same (¢; = ¢g), if D1 and Dy overlap for some range of &,
(their intersection is neither empty nor measure zero).*! From the condition
(M-1.27b), there is a region of & where K > 0 for any &, in (. — vyi)n; < 0.
Thus, the collection of the regions of €, where Kp(&€,€,) > 0 with respect to
all € in (& — vywi)ni > 0 covers (& — vyi)n; < 0. If K is such a kernel that the
series of the ranges &, of different & constituting the above collection overlap
with nonzero measure at the intersecting points, the constant is unique over
(v — Vwi)n; < 0, ie., f(E,) = cofo(€,) (co : a constant) in (£ — vyi)n; < 0
(see Fig. 1).*2 Then, from the condition (M-1.27c),

f(&) =cofo(§) forall & (165)

Incidentally, the kernel K g that is positive almost everywhere (Footnote M-5 in
Section M-1.2) is classified as positive, and Eq. (165) holds almost everywhere of
&. When the overlap-covering condition is not satisfied, the above Maxwellian
is not necessarily required for the equality.*?

The equality condition of Eq.(M-A.267) is seen to be the same as that of
Eq. (M-A.266) in the following way. Obviously, B = A & [, a(€)[B(€) —
A(€)]de = 0if A(€) < B(€) and a(€) > 0. Taking

L f© B Kn(e.€)f0(€.) [ F(E.)
A<£)_F(fo(€)>’ B(@‘/@_WKO 7 F(fo(ﬁ*))dg*’

and (& — vwi)n; > 0 as the domain V' of integration, and comparing Eq. (M-
A.266) and its next equation without number, we find the equivalence of the
equality conditions of Eqs.(M-A.266) and (M-A.267). The above discussion
being common for a strictly convex function F, the equality condition applies
to the Darrozes—Guiraud inequality (M-A.262) and Eq. (M-A.268).

(Section 6.4.1: Version 5-00)

6.4.2 Extension of the Darrozes—Guiraud inequality to an interface

Darrozes—Guiraud inequality (M-A.262) or (M-A.267) is proved for a function
f satisfying the boundary condition (M-1.26) on a simple boundary (Reference
M-70). Here, we discuss its extension to f that satisfies the boundary condition
(M-1.30) on an interface of a gas and its condensed phase.

41(i) In the common region, f(€,)/fo(£.) cannot take two values. On a set with measure
zero, whether f(&,)/fo(€,) is determined or not can be ignored. (See Footnote M-5 in Section
M-1.2 for the set with measure zero.)

(ii) If the intersection is empty or measure zero, the integrations with respect to &, at
different &’s, are not influenced by the f(€,)/fo(€,) determined by the other &.

(iii) The equality only on a set of & with measure zero is ignored. Thus, the above set of
&, where f(&,)/fo(&,) is constant is required to have some extent with measure nonzero with
respect to £ including the intersections.

42The collection has to have some extent mentioned in Footnote 41 (iii).

431n fact, Takata (private communication) constructed a kernel K g, which is zero in [(&; —
i) — Cl[(€ix — vwi)ni + Cx] > 0 (C and Ci: some positive constants) and satisfies the
conditions (M-1.27a)—(M-1.27c), for which the equality holds for another function.
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Ex

Figure 1: Kernel Kg(§,€,) that requires f(&) = ¢ofo(€) for all £&. The quarter
in the figure is the range (&« — vui)n; < 0 and (& — vwi)n; > 0 in the space
(€x,&). Let K > 0 in the regions A, B, C, and D at least, and their ranges of
£, cover (& — vyi)n; < 0. Then, f(£,)/fo(€,) is constant in each of A, B, C,
and D (say, ¢ in A, b in B, cin C, and d in D). Some ranges in A and B being
on a common & having some extent, a = b. In view of the intersection of the
ranges of £, of B and C and that of B and D, ¢ = b(= a), and d = b (= a).
Thus, f(£,)/fo(€,) = a in (&« — vwi)n; < 0. It may be noted that the regions
of &, of A and C are required to be only in contact with each other because the
intersection of the ranges of £, of C and B is not measure zero.
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The boundary condition on the interface is given as**

FO=0@+ [ K6 EISEIE. (& vuni >0} (166)

where g; and K are independent of f. Further, g; and K7 satisfy the following
conditions [see Eqgs. (M-1.31a)—(M-1.31¢)]:
(i) Nonnegativity of gy

91(§) 2 0 [(& — vwi)ni > 0]. (167a)
(ii) Nonnegativity of K
KI(S,S*) Z 0 [(57 - vwi)ni > 0, (51* - Uu}i)ni < O] (167b)

(iii) Condition of establishment of the equilibrium state

Ful€) = g1(6) + /( KGN, (6~ vn > 0], (1679

where f,, is the Maxwellian determined by the temperature T, and velocity v,,;
of the interface and the saturation gas density p,, at temperature T}, i.e.,

P (& — vwi)®
fuw(§) = (27 RT, )32 exp <_2RTw) . (168)

It is also required here that if f(€,) for (& — vyi)n; < 0 is the corresponding
part of another Maxwellian [say, f.(£)], it does not give f.(€) for (§;—vwi)n; > 0,
which will be called the uniqueness condition of Eq. (167c) for shortness.

In the following discussion, we impose another condition in addition to Eqs. (167a)
—(167c¢), i.e., putting

_ (& — vwi)ni oy \n
o) = _/(ﬁi—vm)n,;>0 mKI(§7E*)d£ [(&5% = vw;)n; < 0], (169)

we assume?® that

0<al,)<1 [(§ix — vwi)ni <0]. (170)

44The variables X and ¢ are not shown here because they are not important in the present
discussion [see Footnote M-10 (ii) in Section M-1.5].

45(i) This condition corresponds to Eq. (M-1.27h) for a simple boundary. The simple bound-
ary consists of molecules of different kinds from the gas molecules, and they stay there forever.
The gas molecules impinging on the boundary are reflected without time delay (in the time
scale of our interest), and there is no net mass flux to the boundary in this process. The
condition (M-1.27b) is derived from this situation, as explained in Footnote M-13 in Section
M-1.6.1. In the case of an interface, the condition (170) is derived similarly, if we consider
that some of the molecules impinging on the interface do not reflect and stay there. However,
the interface is the condensed phase of the gas and consists of the same kind of molecules as
the gas. On the interface, molecules leave it depending on the condition of the interface even
if there is no impinging molecules; this is the g; part in Eq. (166). When a molecule impinges
on the interface, it interacts with molecules of the interface, and some molecules leave the
interface. Whether the impinging molecule is reflected or kicks out another molecule has no
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Incidentally, from Egs. (167a)—(167c¢),

fuw(8) —g1(€) = 0. (171)

We will show that the inequality (M-A.267) with fy being replaced by f.,
i.e.,

/ G e OF L€/l €)dE <0 (172)

holds when F(x) is such a strictly convex function (see Footnote M-52 in Section
M-A.10) that
F(z) > 0and F(1) =0.

The equality of the relation (172) holds when f(&) = f.,,(£), and this relation
is required except for some boundary conditions shown later. The inequality is
proved with the aid of the Jensen inequality [see Eq.(M-A.265) or References
M-110, M-129, M-158, or M-171]

F(/wds//wds) s/wF(@dﬁ//wds =0,  (173)

where F(z) is a strictly convex function, and ¢ and @ (¢ > 0) are arbitrary
functions of €. The equality sign holds when ¢ is independent of &; it is also
required where ¢» > 0 for the equality.
Let F'(z) be a nonnegative strictly convex function that takes value zero at
z=1%1ie.,
F(z) >0, F(1)=0. (174)

Consider the function F(f(&)/fw(€)), where f,,(§) is given by Eq. (168). The
function F(f(&€)/fw(€)) for (& — vyi)n; > 0 is bounded by an integral of f(£)

difference. Further, depending on the condition (e.g., speed or direction) of the impinging
molecule and that of the interface, more than one molecule may be kicked out or no molecule
may be kicked out or reflected. Thus, it is not clear that the condition (170) holds or not.
However, it is sure that the size of the kernel K is limited owing to the conditions (167a)—
(167¢), e.g., K1 = 0 if g = fw (the complete condensation). See also Footnote 48 in Section
6.4.2.

(ii-a) The case a(€,) =1 for (£« — vw;)n; < 0 is excluded by the uniqueness condition of
Eq. (167c). In fact, multiplying Eq. (166) by (§; — vwj)n; and integrating with respect to &
over (& — vy )n; >0, we obtain g7 (§) = 0. Thus, C fu (C : a constant) also satisfies Eq. (166).

(ii-b) When «a(€,) = 0 for (§+ — vuj)n; < 0, the kernel K;(&,€,) degenerates, i.e.,
Ki(€,&,) =0 for (§§ — vy;)n;>0. This is the case of the complete condensation.

46Note that = = 1 is the unique zero point of F(x).
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for (& — vyi)n; < 0 with the aid of Eq. (166) in the following way:

F&) N _ pof 918 K1(6,€.)
F<fw(£)> - F(‘fw(g) +/(€i*—vwi)’fbi<0 ) f(g*)d€*>

Ful€
C[a® (el Ki(E.6)/u(E)  f(E)
_F[fw(€)+(1 fw(£)>/[ ~016) [ ©)fu(®) | >d€}

(€
o o Ki(€€)fuE)  FE)
waF(”*(l fw>F</[ 01 Tu@)1fu(® T <>d§)
N Ki(€.e)fu€)  f(E)
- (0 ME))F(/@ o L= 91 Ful€)1u(€) T <*>d£*>
[(51 — vwi)ni > 0]

(175)

Here, we, for a moment, consider the point of & [(§; — vu;)n; > 0] where

fuw(§) — g1(§) >0,
for which

/ Ki(&€)fu(§)
(&ix—vwi)ni <0 [1—91(8)/fuw(&)]fuw(€)

because of Eq. (167c); in the second and third lines, the simple < sign of the
subscript of the integral sign [ indicates (&;x — vui)n; < 0; the convex property
of F(x) is used from the second line to the third, and F(1) = 0 is used from the
third to the fourth.

Now, we apply the Jensen inequality (173) to the function F on the fourth
line in Eq. (175). Here, we choose ¢(€,) and ¥(€,) as

dé* =1 [(67, - vwi)ni > 0]7

~ f(&)
PE)= e
Y(€,) = Ki(€,£.)/u(&.) >0 [(& = vwi)ni >0, (&ix — vwi)ns < 0]

[1791(£>/fw( )} w( )

It should be noted that ¢(&,) is defined for the whole range of £, and that ¢(&,)
depends also on & and satisfies the relation, irrespective of &,

/(5 IR B CR
Then, F(f(&)/fw(&)) for (& — vyi)n; > 0 is bounded as
7€) a K€ €)0u(e)  f(E)
A7) <0-7) F</ vz 11— 91(©) Ful )] ful®) 1 <e*>d§*>

Ki(&,€,)fw(€,) [ f(E) o
= /(5‘ — Vi )5 <0 fw(S) F(fﬂ)(& )) dg, [(51 wz) > 0].
(176)
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Up to this point, we limited our discussion to the point of & [(&; —vyi)n; > 0]
where

fuw(8) = 91(€) > 0.
If it vanishes at some &€ 4 [(§ia4 — vwi)n; > 0], L.e.,

fuw(&a) —91(€4) =0, (177)

the integral f(gi* Ki(€,¢,) fw(€,)dE, vanishes there, i.e.,

— Vi )N <0
/ Ki(€4.€,) fu(€,)dE, =0,
(&in—Vwi)ni <0

because of the condition (167c). The function f,(£€,) being positive for all &,,
the kernel Kr(&4,&,) must vanish for (£, — vyi)n; <0, ie.,

K1(€4.6.) =0 [(§ix — vwi)ni < 0]. (178)
Thus, from the boundary condition (166),
f(&a) = 91(84) = fuw(€4)-
Therefore, the function F(f(€4)/fw(€4)) vanishes, i.e.,

F(f(€a)/fu(€4)) = F(1) = 0. (179)

From Egs. (178) and (179), the equality holds between the left-most side and
the right-most of Eq. (176) at € = £ 4. In conclusion, the inequality

F< fw(g)) : /(fi*—vm)m<0 fw(€) F( fw(g*)> dé. (& wi )i T 0]7)
180

holds without the assumption of f,,(&) — g;(&€) > 0.

When f(&)/fw(§) = 1 for all &, F(f(&)/fw(&)) vanishes in Eq. (180), and
the equality holds there. We look for the other possibilities of the equality. The

first inequality in Eq. (176) comes from that of Eq. (175), for which the equality

holds at & = £ 4 when (i) g1(§4)/fw(€a) =0 or (ii) g1(§4)/fw(§4) =1, or (iii)
the arguments of two F’s on the third line of Eq. (175) are equal, i.e.,

KI(SA?&*)fw(E*) f(g*) o
fe s Farle T Ry 6 =10 18D

for some f(&,). In the third case, the equality relation being imposed between
the first and the second line on the right-hand side of Eq. (176) under the con-
dition (181), we find that

f(&.) = fu(&,) inBa(&,),
where B 4(€,) is the region of £, in which K (£,4,€,) > 0.
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If g1 (&)/ fu(€) = 0 for (& —vwi)n; > 0, the boundary condition (166) reduces
to

f(&) = / K1(6,€,)f(€.)dE.. (182)
(&ix—Vwi)ni<0

Then, the Maxwellian agf,(€) (ap : a constant) also satisfies the boundary
condition (166), which is not allowed by the uniqueness condition of Eq. (167c¢).
Thus, this case is excluded. If g;(&)/f, (&) = 1 for (§; — vwi)n; > 0, the kernel
K (€, &,) vanishes for (§;—vy;)n; > 0 and (£ —vyi)n; < 0 from the discussion in
the preceding paragraph. That is, (&) = f, (&) in (§;—vw;)n; > 0 irrespective of
(&) in (& —vyi)n; < 0 (this is the case of the complete condensation condition).
For this case the equality holds in Eq. (180). If the third condition holds for
(& — vwi)n; > 0, we have

P@O=0@+ [ KEEISEIE. (6 v >0 (1)

From the discussion of the preceding paragraph,

f(&.) = fw(&,) in B(£,), (184)

where B(&, ) is the region of £, in which K;(&,&,) > 0 for some £. This condition
is paraphrased as

(&) = fuw(€,) exceptin the region a(€,) = 0. (185)
Whether f(&,) = fu(€,) or a(€,) =0in (§x — vyi)n; <0,

(&) = fw(&) [(§& — vwi)ni > 0].

Let us consider the case where the three situations (i), (ii), and (iii) listed
just before Eq. (181) take place for different &, say, (i) for € in Ay, (ii) for £ in
Ao, and (iii) for € in Az. The A, part does not contribute to the restriction on
f(€,). When A; is empty, the condition is the same as for the case of Eq. (183),
i.e., Eq.(184) or (185). When A; is not empty, from the discussion for £ in
As, f(€,) = fw(€,) in the region of &, where K (£,€,) > 0 for some &€ in As
[say, B3(&,)], and the condition for the remaining £, is determined only by the
behavior of K for £ in Ay, that is, the region f(&,)/fw(€,) = const [say, B1(€,)]
is looked for in the range (£;« — vy;i)n; < 0 in the same way as in Section 6.4.1
and if B; has a common region with Bs, f(&€,) = f,(€,) in B;. In the region
of the remaining &, [say, R(&,)], f(&,) other than f,(€,) can exist. The region
a(€,) =1in R(€,) is denoted by R,—1 for the convenience in the later citation.

When Aj is empty, the boundary condition (166) is expressed as

GE ( 1) )+ /@”_vm_@( s )f €aE. En )
(186)
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where

KienE) .
/(fm—vw,-)m<0 fw(&) dE* =1 [(61 ’Uun)nz >0 and & Al]

The boundary condition (186) obviously satisfies the conditions (167a)—(167c).4”
In this case, the restriction on f(&,) is determined by K in A;. Substituting
f(&,) = Cpfuw(&,) [(&ix — vwi)ny < 0, Cp : independent of £,], which is the
strongest restriction on f(&,), into Eq. (186), we have f(&) = Cp f,(€) [in Aq]
and f(&) = fu(€) [in Ag] for (& — vwi)n; > 0. For this f(&), the equality
holds in Eq. (180). Thus, for the boundary condition (186) as well as the com-
plete condensation condition, the equality in Eq. (180) holds for f(£) other than
F(€) = Fu(€) [F(€.) = Cp ful€.) for (& — vus)n; < O for Eq. (186), and f(€,)
is arbitrary for (£« — vyi)n; < 0 for the complete condensation]. This is an
example of f(&,) that satisfies the equality in Eq. (180).
With the aid of the inequality (180) and Eq. (169), we have

/(éi—vm)n,:>0(£i - Uwi)nifw(ﬁ)F<JZi((££)) d¢

- zqmgam@nF<ﬂ@>)d(i
Sérwmw@ %mwugéw%mm)h@) S8 ) ag.ae

f(€.) )
= w(& ) i — vwi)ni K1 (€, €, )dEdE,
/(qu*vwi)m<0f (é ) <fw(£*) /(Eivwi)ni>0(§ ! )n I(€ £ ) £dg

- o f@9>
B /(Ei*vwi)ni<0 O‘(S*)(gz* Uwz) sz(g*)F<fw(£*) dé*, (187)

where 0 < a(€,) <1 [the assumption (170)]. Thus, we obtain the extension of
Eq. (M-A.267) to the case of an interface as follows:

< / [1 - a(é*)}(fz* - Uwi)nifw(é*)F<
(&ix—Vwi)ni <O

f(€.)
fu(&.)

)ae. <o
(188)
Obviously, the equal sign holds in the two inequalities of Eq. (188) when f(§) =

fuw(&). Conversely, it is required for the equal sign to hold in the inequalities
that f(€) = fu(&) for all £ when R,—; is empty.*® It should be noted that

47To confirm the uniqueness condition of Eq. (167c¢) is simple. Note f(&) [(& — vuwi)n; > 0]
for € in As.

48(1) The integration of a nonnegative function multiplied by a positive function does not
change the equality condition. Thus, the equality condition of the inequality of Eq.(187) is
the same as that of Eq.(180) [B = A & [a(§)[B(&) — A(€)]d¢ = 0 if A(¢) < B(€) and
a(€) > 0]. Thus, the range where f(€,) = fw(&,) is required is outside R. For the equality
of the Darrozes—Guiraud inequality, we have to examine the equality of the second inequality
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F(z) is required to satisfy that F(z) > 0 and F(1) = 0 in addition to convexity.
Here, we take
F(z) =z(lnx — 1) + 1,

which is strictly convex, nonnegative, and zero at x = 1. Then,

i — Vi )T n f(€) —
/all e(& wilt {f(g) (l fuw(§) 1> " fw(ﬁ)} de=0
" R A .
/aug(& Vot F(E)1 fw(ﬁ)d£ < plos = vui)ns (189)

This is the extension of Eq. (M-A.262) for a simple boundary to an interface.
We try to express the inequality (189) in terms of macroscopic variables. It
is simply transformed in the following form:

/ (& — vwi)ni f(§) In f(é)dé'
all ¢ Co
< / (& — vwi)ni f(&) In fL(g)dﬁ + p(vi — Vi)

all € Co

1 5 1
=" h7. |:an7 + (v = Vwj)Pijni + p(vi — Vwi)n <2RT + 5(%‘ - vu;j)Q):|
P
s v (1 e 1),

where ¢ is a constant to make the argument of the logarithmic function dimen-
sionless, and

Dij = Pij — POij, (190)
The p;; is the part of stress tensor with the pressure contribution subtracted.
Only the tangential component of the stress p;;n; contributes to (v; — vy,;)Dijni

in Eq.(188). The second equal sign holds only when F(f(£,)/fw(€,)) = 0 in R outside
Ra=1 because f,(€,) > 0and 1 —«a(€,) > 0 there. Thus, f(£,)/fw(€,) =1 outside Ro=1 in
(&ix —vwi)n; < 0 (see Footnote 46 in Section 6.4.2). When Rq—1 is empty, the integral fa11§ on
the left-most side reduces to f(&i—vwi)nqz>0' This vanishes only when F(f(&)/fw(€)) =0, i.e.,
(&) = fw(&) for (& — vwi)n; > 0. Thus, f(§) = fuw(€) for all £ when Ra=1 is empty. It may
be noted that when Az is empty [or for the boundary condition (186)], Ra=1 is the range of
&, where a(€,) = 1in (&4 —vwi)ns < 0. Incidentally, g7 (€) that is positive almost everywhere
(Footnote M-5 in Section M-1.2) is classified positive, for which A1 in the paragraph following
to that of Eq. (185) is empty and Eq. (185) holds (that is, Rq=1 is empty), and therefore the
equal signs hold in Eq. (188) only when f(&) = fw (&) for all &.

(i) If «(&,) exceeds unity for some range of &, in (£« — vwi)ns < 0 and the assumption
(170) is violated, but the integral

e e fe)
/@wwi)mo“ (€] (Ein — Vi) wa(s*)F(fw@*))d&*

is nonpositive, the inequality holds.
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when no flow to the boundary. Further, In p,, /(27 RT,,)?/?co is related to the H
function H,, for f(&) = f. (&) as

— =In— — —| 191
pe L (2nRTw)2cy 2 (191)
which is independent of v,,;. That is,
fulé . e
t, = [ pe@u@a— [ pogunlEae
all ¢ Co all € Co
where (e 2
(W)= Pv _ i T Vi)
1™ (&) = Grpryer P ( 9RT, ) '

Ou the other hand, by definition (see Section M-1.7),
[ 6 v € L7 €)/c]d€ = (71, Hun
Therefore,
(H; — Huyi)n;
[gimi + (vj — vu;)Pijni]

% - RiTw <2R(T —T,)+ %(vj - ij)2>} - (192)

1
< -
-~ RT,

+ p('UZ — vwi)ni |:

When f = f,, both sides of the inequality vanish and the equal sign holds.
Conversely, for the kernel K; with R,—, empty, e.g., g; that is positive almost
everywhere, the equal sign holds only when f = f,,.
Finally, we consider the variation of the integral H of H over the domain D.
According to Eq. (M-1.36),
dH
— = [ (H; — Hvywi)n, +/ GdX,
dt oD D
where
H= / HdX.
D
With the aid of Eq. (192), the variation is bounded as
dH 1 .
T < "R [gini + (vj — Vwj)Digni]
H, 1 /5 1

+ p(v; — Vi) [ 5

because [, GdX <0 [see Eq. (M-1.34b)]|.
(Section 6.4.2: Version 5-00)
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