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Errata

• p. 9, the 7th line:

specular condition → specular re�ection

• p. 27, the 3rd line of Footnote 26:

Eq. (1.99) → a linear combination of Eqs. (1.99) and (1.101)

• p. 27, the 6th line of Footnote 26:

except for a common constant factor → except for a common constant

factor and additive functions

(say, fa in Ĥ and fbi in Ĥi in

their second order) satisfying

Sh∂fa/∂t̂+ ∂fbi/∂xi = 0

• p. 48, the 21st line, p. 49, the 3rd line from below, and p. 488, the 4th line:

solid angle element → solid-angle element

• p. 81, the 4th line in Footnote 7:

uiGm → uiGm − ujGmnjni
or φeGm → of φeGm

• p. 83, the �rst line in Footnote 14:

uiGm → uiGm − ujGmnjni
• p. 503, the 13th line from below:

solid angle elements → solid-angle elements

• p. 504, the �rst line in Footnote 24:

damin → domain

• p. 505, Eq. (A.60):∣∣∣∣ 1

sin θc

∂ sin2 θe
∂θc

∣∣∣∣ → ∣∣∣∣ 1

sin θc

d sin2 θe
dθc

∣∣∣∣∣∣∣∣ 1

sin θc

∂b2

∂θc

∣∣∣∣ →
∣∣∣∣ 1

sin θc

db2

dθc

∣∣∣∣
• p. 506, the 13th line [The line next to Eq. (M-A.63)]:

with respect to θc → with respect to θα

• p. 617, the right-hand side of Eq. (C.2b):

In order to avoid misunderstanding, 2(n+1)!
βn+2 π is better expressed as

2π(n+ 1)!

βn+2
.

• p. 628, Reference [110]:
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Reference [110] should be placed after Reference [112].

• p. 639, the 3rd line in Reference [262]:

gs → gas

Supplementary Notes

In the present supplementary notes, the letter M is attached to the labels of
sections, equations, etc. in the book Molecular Gas Dynamics and the letter K
is attached to those in Y. Sone, Kinetic Theory and Fluid Dynamis (Birkhäuser,
Boston, 2002) to avoid confusion.

1 Chapter M-1

1.1 Supplement to Footnote M-9 in Section M-1.3

We will explicitly show the process of derivation of the conservation equations
(M-1.12)�(M-1.14) by taking into account the discontinuity of the velocity dis-
tribution function f(X, ξ, t) for a typical case.

Let S(X) be a continuous and sectionally smooth function ofX, and let the
surface in the X space consisting of the points X0 that satisfy S(X0) = 0 be
indicated by S0.

1 The surface S0 may be an in�nite surface or a bounded surface
separating the spaceX into two regions. The velocity distribution function f at
time t0 is assumed to be discontinuous across the surface S0 and to be smooth
except on S0. The discontinuity propagates along the characteristics of the
Boltzmann equation (M-1.5), i.e., Xi − ξi(t − t0) = X0i, for each ξ.

2 Take a
point (X, t) in the space and time, where t > t0. At this point or at (X, t), the
discontinuity of f lies on the surface S(ξ)(X, t) in the ξ space that consists of
the points ξD satisfying

S(Xi − ξDi(t− t0)) = 0, or Xi − ξDi(t− t0) = X0i. (1)

The point ξD is determined by X, t, and X0, i.e., ξD(X, t;X0). Let the side
of the domain in the ξ space that satis�es S(Xi − ξi(t − t0)) > 0 be indicated
by V+, and the other side of the domain by V−; let the outward unit normal to
the surface S(ξ)(X, t) with respect to V+ be indicated by nDi(ξD;X, t). Then,

nDi(ξD;X, t) = − ∂S(X − ξ(t− t0))/∂ξi
|∂S(X − ξ(t− t0))/∂ξj |

∣∣∣∣
ξ=ξD

=
∂S(Y )/∂Yi
|∂S(Y )/∂Yj |

∣∣∣∣
D

, (2)

where |ai| = (a2i )
1/2 and the subscript D to ∂S(Y )/∂Yj indicates Y = X −

ξD(t − t0). The variations of ξD with respect to X or t for a given X0, i.e.,

1It is assumed that (∂S/∂Xi)
2 6= 0 on S0. The normal to the surface S0 is de�ned except

at special points.
2For simplicity of explanation, we consider the case where Fi = 0 here.
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∂ξD/∂Xi and ∂ξD/∂t, are determined from Eq. (1) as

∂S(Y )

∂Yj

∣∣∣∣
D

(
δij −

∂ξDj
∂Xi

(t− t0)

)
= 0,

∂S(Y )

∂Yj

∣∣∣∣
D

(
∂ξDj
∂t

(t− t0) + ξDj

)
= 0.

Thus, with the aid of Eq. (2),

nDj
∂ξDj
∂Xi

=
nDi
t− t0

, nDj
∂ξDj
∂t

= −nDjξDj
t− t0

. (3)

The integral of such a discontinuous function with respect to ξ over its whole
space is split into two parts as∫

ψ(ξ)fdξ =

∫
V+

ψ(ξ)fdξ +

∫
V−

ψ(ξ)fdξ,

where ψ(ξ) is a smooth function of ξ. Then, the integrand is smooth in each
of V+ and V−. According to Lemma in page M-492, the following derivatives of
integrals over the domain V+ are transformed as3

∂

∂t

∫
V+

ψ(ξ)fdξ =

∫
V+

ψ(ξ)
∂f

∂t
dξ +

∫
S(ξ)

ψ(ξ)f
∂ξDj
∂t

nDjd
2ξ,

∂

∂Xi

∫
V+

ξiψ(ξ)fdξ =

∫
V+

ξiψ(ξ)
∂f

∂Xi
dξ +

∫
S(ξ)

ξiψ(ξ)f
∂ξDj
∂Xi

nDjd
2ξ,

where the integral over the surface S(ξ) of the second term on the right-hand
side of each equation is due to the variation of the domain V+ with t or Xi.
Summing the above two derivatives and noting Eq. (3), we have

∂

∂t

∫
V+

ψ(ξ)fdξ +
∂

∂Xi

∫
V+

ξiψ(ξ)fdξ =

∫
V+

ψ(ξ)
∂f

∂t
dξ +

∫
V+

ξiψ(ξ)
∂f

∂Xi
dξ,

where the surface integrals over S(ξ) are cancelled. Similarly,

∂

∂t

∫
V−

ψ(ξ)fdξ +
∂

∂Xi

∫
V−

ξiψ(ξ)fdξ =

∫
V−

ψ(ξ)
∂f

∂t
dξ +

∫
V−

ξiψ(ξ)
∂f

∂Xi
dξ.

Thus, we have

∂

∂t

∫
ψ(ξ)fdξ +

∂

∂Xi

∫
ξiψ(ξ)fdξ =

∫
ψ(ξ)

∂f

∂t
dξ +

∫
ξiψ(ξ)

∂f

∂Xi
dξ. (4)

It may be noted that the interchange of di�erentiation and integration is pos-
sible only for the above combination of the integrals. With this formula, the
conservation equations are derived by choosing 1, ξi, and ξ

2
i as ψ(ξ).

3The correspondence of the variables here and those in the lemma is as follows: ξ↔X, t
or Xi↔ ϑ, nDi ↔ nw, dξ↔ dX, d2ξ↔ d2X, V+ ↔ D(ϑ), S(ξ) ↔ ∂D(ϑ).
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When the surface S0, i.e., S(X) = 0, is a �nite surface or semi-in�nite
surface which does not divide the ξ space into V+ and V−, we can take it as a
special case where some part of S0 joins to its other part and V− degenerates
empty. When there is a body in a gas, the discontinuity as shown in Section
M-3.1.6 generally exists. The analysis can be carried out in a similar way; that
is, determine the position of the discontinuity in the ξ space �rst, carry out the
di�erentiations in each region where the velocity distribution function is smooth
with the aid of the lemma in page M-492, and sum up the results.

(Section 1.1: Version 6-00)

1.2 Note on the equality condition of Eq. (M-1.38)

The statement of the equality condition of Eq. (M-1.38), i.e., �The equality in
Eq. (1.38) holds when and only when f is the Maxwellian that satis�es the
boundary condition (1.26). . . �, needs supplementary explanation. Some condi-
tion is required of the scattering kernel KB in the boundary condition (M-1.26)
for f to be limited to the Maxwellian. For some KB , the equality holds in
Eq. (M-1.38) for f other than the Maxwellian. See Section 6.4.1 for more de-
tailed discussion.

(Section 1.2: Version 5-00)

1.3 Supplement to Footnote M-26 in Chapter M-1

Footnote M-26 is supplemented with more explicit mathematical expressions for
the process given there. Take the non-dimensional form of the equation for the
H function, i.e., Eq. (M-1.72):

Sh
∂Ĥ

∂t̂
+
∂Ĥi

∂xi
=

1

k
Ĝ, (5)

where

Ĥ(xi, t̂) =

∫
f̂ ln(f̂/ĉ0)dζ, Ĥi(xi, t̂) =

∫
ζif̂ ln(f̂/ĉ0)dζ,

Ĝ = −1

4

∫
(f̂ ′f̂ ′∗ − f̂ f̂∗) ln

(
f̂ ′f̂ ′∗

f̂ f̂∗

)
B̂dΩdζ∗dζ ≤ 0,

 (6)

with ĉ0 = c0(2RT0)3/2/ρ0. The perturbed form of the velocity distribution func-

tion f̂ is de�ned by
f̂ = E(1 + φ), (7)

where

E =
1

π3/2
exp(−ζ2).

Let ε be a small quantity. Here, we take the case in which φ is of the order of
ε, and examine the terms of the order of ε2 of Eq. (5). The perturbed function
φ is expressed as

φ = φ1ε+ φ2ε
2 + · · · . (8)
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Corresponding to the expansion, the macroscopic variables, i.e., ω, ui, P, etc.,
Ĥ, Ĥi, and Ĝ are also expressed as

h = h1ε+ h2ε
2 + · · · , (9a)

Ĥ = Ĥ0 + Ĥ1ε+ Ĥ2ε
2 + · · · , (9b)

Ĥi = Ĥi0 + Ĥi1ε+ Ĥi2ε
2 + · · · , (9c)

Ĝ = Ĝ0 + Ĝ1ε+ Ĝ2ε
2 + · · · , (9d)

where h represents the perturbed macroscopic variables, ω, ui, P, etc., and the
quantities φn, hn, Ĥn, Ĥin, and Ĝn are of the order of unity. Then, with the
aid of the expanded forms of Eqs. (M-1.78a)�(M-1.78f), Ĥn, Ĥin, and Ĝn are
expressed as

Ĥ0 = −3

2
− lnπ3/2ĉ0, (10a)

Ĥ1 = (1− lnπ3/2ĉ0)

∫
Eφ1dζ −

∫
ζ2Eφ1dζ

= (1− lnπ3/2ĉ0)ω1 −
3

2
P1, (10b)

Ĥ2 = (1− lnπ3/2ĉ0)

∫
Eφ2dζ −

∫
ζ2Eφ2dζ +

1

2

∫
Eφ21dζ

= (1− lnπ3/2ĉ0)ω2 −
(

3

2
P2 + u2i1

)
+

1

2

∫
Eφ21dζ, (10c)

Ĥi0 = 0, (11a)

Ĥi1 = (1− lnπ3/2ĉ0)

∫
ζiEφ1dζ −

∫
ζiζ

2Eφ1dζ

= (1− lnπ3/2ĉ0)ui1 −
(
Qi1 +

5

2
ui1

)
, (11b)

Ĥi2 = (1− lnπ3/2ĉ0)

∫
ζiEφ2dζ −

∫
ζiζ

2Eφ2dζ +
1

2

∫
ζiEφ

2
1dζ

= (1− lnπ3/2ĉ0)(ui2 + ω1ui1)−
(
Qi2 +

5

2
ui2 + uj1Pij1 +

3

2
ui1P1

)
+

1

2

∫
ζiEφ

2
1dζ, (11c)

Ĝ0 = 0, (12a)

Ĝ1 = 0, (12b)

Ĝ2 = −1

4

∫
EE∗(φ

′
1 + φ′1∗ − φ1 − φ∗1)2B̂dΩdζ∗dζ ≤ 0. (12c)
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With the aid of these expressions, the ε and ε2-order expressions of Eq (5) are
given as

Sh
∂Ĥ1

∂t̂
+
∂Ĥi1

∂xi
= (1− lnπ3/2ĉ0)

(
Sh
∂ω1

∂t̂
+
∂ui1
∂xi

)
−
[

3

2
Sh
∂P1

∂t̂
+

∂

∂xi

(
5

2
ui1 +Qi1

)]
, (13a)

Sh
∂Ĥ2

∂t̂
+
∂Ĥi2

∂xi
= (1− lnπ3/2ĉ0)

(
Sh
∂ω2

∂t̂
+
∂(ui2 + ω1ui1)

∂xi

)
− Sh

∂

∂t̂

(
3

2
P2 + u2i1

)
− ∂

∂xi

(
Qi2 +

5

2
ui2 + uj1Pij1 +

3

2
ui1P1

)
+

1

2

(
Sh
∂

∂t̂

∫
Eφ21dζ +

∂

∂xi

∫
ζiEφ

2
1dζ

)
. (13b)

Substituting the series expansion (9a) into the conservation equation (M-1.87),
we have

Sh
∂ω1

∂t̂
+
∂ui1
∂xi

= 0, (14a)

Sh
∂ω2

∂t̂
+
∂(ui2 + ω1ui1)

∂xi
= 0. (14b)

Similarly, from the conservation equation (M-1.89), we have

3

2
Sh
∂P1

∂t̂
+

∂

∂xi

(
5

2
ui1 +Qi1

)
= 0, (15a)

Sh
∂

∂t̂

(
3

2
P2 + u2i1

)
+

∂

∂xi

(
5

2
ui2 +Qi2 + uj1Pij1 +

3

2
ui1P1

)
= 0. (15b)

With the aid of the expanded forms (14a)�(15b) of the conservation equations
(M-1.87) and (M-1.89), Eqs. (13a) and (13b) are reduced to, for the solution of
the Boltzmann equation (M-1.47) or (M-1.75a),

Sh
∂Ĥ1

∂t̂
+
∂Ĥi1

∂xi
= 0, (16a)

Sh
∂Ĥ2

∂t̂
+
∂Ĥi2

∂xi
=

1

2

(
Sh
∂

∂t̂

∫
Eφ21dζ +

∂

∂xi

∫
ζiEφ

2
1dζ

)
. (16b)

Thus, the o(ε2) terms being neglected in Eq. (5), it is reduced to

Sh
∂

∂t̂

∫
Eφ21dζ +

∂

∂xi

∫
ζiEφ

2
1dζ

= − 1

2k

∫
EE∗(φ

′
1 + φ′1∗ − φ1 − φ1∗)2B̂dΩdζ∗dζ ≤ 0. (17)

This expression does not contain φ2.
(Section 1.3: Version 4-00)
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2 Chapter M-2

2.1 Section M-2.5

2.1.1 Section M-2.5.1

The following form:

σ = − 2

π

∫
0<ξ<∞, lini<0

ξ3ljnjf(X, ξl)dξdΩ(l),

is more appropriate as Eq. (M-2.39b) than the one in the book. Then, the
explanation of dΩ(l), i.e.,

dΩ(l) is the solid-angle element in the direction of l,
has to be inserted between `where ' and `Tw' just after Eq. (M-2.39c).

(Section 2.1.1: Version 6-00)

3 Chapter M-3

3.1 Processes of solution of the systems in Section M-3.7.2
(July 2007)

The processes of solutions of the �uid-dynamic-type equations derived in Section
M-3.7.1 are straightforward and may not need explanation. For the equations
in Section M-3.7.2, some explanation may be better to be given. The discussion
will be made on the basis of the boundary conditions in Section M-3.7.3 for a
simple boundary where the shape of the boundary is invariant and its velocity
component normal to it is zero.

3.1.1 �Incompressible Navier�Stokes set�

Consider the initial and boundary-value problem of Eqs. (M-3.265)�(M-3.268),
i.e.,

∂PS1
∂xi

= 0, (18)

∂uiS1
∂xi

= 0, (19a)

∂uiS1

∂t̃
+ ujS1

∂uiS1
∂xj

= −1

2

∂PS2
∂xi

+
γ1
2

∂2uiS1
∂x2j

, (19b)

5

2

∂τS1

∂t̃
− ∂PS1

∂t̃
+

5

2
ujS1

∂τS1
∂xj

=
5γ2
4

∂2τS1
∂x2j

, (19c)
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∂uiS2
∂xi

= −∂ωS1
∂t̃
− ∂ωS1uiS1

∂xi
, (20a)

∂uiS2

∂t̃
+ ujS1

∂uiS2
∂xj

+ ujS2
∂uiS1
∂xj

= −1

2

(
∂PS3
∂xi

− ωS1
∂PS2
∂xi

)
+
γ1
2

∂

∂xj

(
∂uiS2
∂xj

+
∂ujS2
∂xi

− 2

3

∂ukS2
∂xk

δij

)
− γ1ωS1

2

∂2uiS1
∂x2j

+
γ4
2

∂

∂xj

[
τS1

(
∂uiS1
∂xj

+
∂ujS1
∂xi

)]
− γ3

3

∂

∂xi

∂2τS1
∂x2j

, (20b)

3

2

∂PS2

∂t̃
+

3

2
ujS1

∂PS2
∂xj

+
5

2

(
∂PS1ujS2
∂xj

− ∂ωS2

∂t̃
− ∂(ωS2ujS1 + ωS1ujS2)

∂xj

)
=

5γ2
4

∂2τS2
∂x2j

+
5γ5
4

∂

∂xj

(
τS1

∂τS1
∂xj

)
+
γ1
2

(
∂uiS1
∂xj

+
∂ujS1
∂xi

)2
, (20c)

where
PS1 = ωS1 + τS1, PS2 = ωS2 + ωS1τS1 + τS2. (21)

From Eq. (18), PS1 is a function of t̃, i.e.,

PS1 = f1(t̃). (22)

In an unbounded-domain problem where the pressure at in�nity is speci�ed (or
the pressure is speci�ed at some point), PS1 = f1(t̃) is known, but in a bounded-
domain problem of a simple boundary, f1(t̃) is unknown at this moment and is
determined later. Let uiS1 and τS1 as well as f1(t̃) be given at time t̃ in such a
way that uiS1 satis�es Eq. (19a). Taking the divergence of Eq. (19b) and using
Eq. (19a), we have

∂2PS2
∂x2i

= −2
∂ujS1
∂xi

∂uiS1
∂xj

. (23)

On a simple boundary, the derivative of PS2 normal to it is found to be expressed
with uiS1 and its space derivatives by multiplying Eq. (19b) by the normal vector
to the boundary.4 In the unbounded-domain problem, where f1(t̃) is known, PS2
is determined by Eq. (23). In the bounded-domain problem, PS2 is determined
by Eq. (23) except for an additive function of t̃ [say, f2(t̃)]. Anyway, ∂PS2/∂xi
is independent of this ambiguity. From Eq. (19b), ∂uiS1/∂t̃ at t̃ is determined,
irrespective of f2(t̃), in such a way that ∂(∂uiS1/∂xi)/∂t̃ = 0 for the above
choice of PS2. Thus, the solution uiS1 of Eqs. (19a) and (19b) is determined
by Eq. (19b) with the supplementary condition (23) instead of Eq. (19a). From
Eq. (19c), (5/2)∂τS1/∂t̃ − ∂PS1/∂t̃ or (5/2)∂τS1/∂t̃−df1(t̃)/dt̃ is determined,
i.e.,

(5/2)∂τS1/∂t̃− df1(t̃)/dt̃ = G(xi, t̃), (24)

where

G(xi, t̃) = −5

2
ujS1

∂τS1
∂xj

+
5γ2
4

∂2τS1
∂x2j

. (25)

4The time-derivative term vanishes owing to the boundary condition mentioned in the �rst
paragraph of Section 3.1.

9



Thus, τS1 is determined in the unbounded-domain problem, but τS1 has ambigu-
ity owing to f1(t̃) in the bounded-domain problem. The undetermined function
f1(t̃) is determined in the following way.

In the bounded-domain problem whose boundary is a simple boundary, the
mass of the gas in the domain is invariant with respect to t̃. The condition at
the leading order is

d

dt̃

∫
V

ωS1dx = 0, (26)

where V indicates the domain (or its volume in the later). With the aid of
Eq. (21), we have

df1(t̃)

dt̃
V − d

dt̃

∫
V

τS1dx = 0. (27)

On the other hand, from Eq. (24),

−df1(t̃)

dt̃
V +

5

2

d

dt̃

∫
V

τS1dx =

∫
V

G(xi, t̃)dx. (28)

From Eqs. (27) and (28), we obtain df1(t̃)/dt̃ and d
∫
V
τS1dx/dt̃ as

df1(t̃)

dt̃
=

2

3V

∫
V

G(xi, t̃)dx,

d

dt̃

∫
V

τS1dx =
2

3

∫
V

G(xi, t̃)dx.

 (29)

That is, f1(t̃) in the bounded-domain problem [and thus the solution τS1 of
Eq. (19c)] is determined.

The analysis of the higher-order equations is similar; for example, from
Eqs. (20a)�(20c), uiS2, τS2, and PS3 are determined in the unbounded-domain
problem, but f2(t̃), uiS2, τS2, and PS3, except for an additive function of t̃ in
PS3, are determined in the bounded-domain problem.5 Let uiS2, τS2, and f2(t̃)
be given at t̃ in such a way that Eq. (20a) is satis�ed.6 Taking the divergence of
Eq. (20b) and using Eq. (20a) and the results obtained above, we �nd that PS3
is governed by the Poisson equation

∂2PS3
∂x2i

= Inhomogeneous term, (30)

where the inhomogeneous term consists of uiS2, PS2, and the functions deter-
mined in the preceding analysis. On a simple boundary, the derivative of PS3
normal to it being known,7 PS3 is determined by this equation, except for an
additive function of t̃ [say, f3(t̃)] in the bounded-domain problem. Then, from

5Note that, with the aid of Eq. (21), the time-derivative term 3
2
∂PS2/∂t̃ − 5

2
∂ωS2/∂t̃ in

Eq. (20c) is transformed into 5
2
∂τS2/∂t̃− ∂PS2/∂t̃+ 5

2
∂ωS1τS1/∂t̃.

6The time derivative ∂ωS1/∂t̃ is known from ∂τS1/∂t̃, df1(t̃)/dt̃, and Eq. (21).
7Shift the discussion of the boundary condition for PS2 to the next order.
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Eq. (20b), ∂uiS2/∂t̃ at t̃ is determined irrespective of f3(t̃). From Eq. (20c),
∂(3PS2 − 5ωS2)/∂t̃ [or ∂(5τS2 − 2PS2)/∂t̃] at t̃ is determined. Thus, uiS2 and
τS2 (except for the additive function 2f2/5 in the bounded-domain problem)
[thus, ωS2 (except for the additive function 3f2/5)] are determined. In the
bounded-domain problem, where the boundary is a simple boundary, the con-
dition of invariance of the mass of the gas in the domain at the corresponding
order is8

d

dt̃

∫
V

ωS2dx = 0. (31)

With the aid of Eq. (21), df2(t̃)/dt̃ at t̃ is determined as df1(t̃)/dt̃ is done.
To summarize, the solution (uiS1, PS1, τS1, PS2) of the initial and boundary-

value problem of Eqs. (18)�(19c) is determined, with an additive arbitrary func-
tion f2(t̃) in PS2 in a bounded-domain problem of a simple boundary, when the
initial data of uiS1, PS1, τS1, and PS2 satisfy Eqs. (19a) and (23). The additive
function f2(t̃) does not a�ect the other variables. The function f2(t̃) is deter-
mined in the next-order analysis. In other words, the solution (uiS1, PS1, τS1)
of Eqs. (18)�(19c) is determined consistently by Eqs. (18), (19b), and (19c) with
the supplementary condition (23), instead of Eq. (19a), when the initial data of
uiS1, PS1, and τS1 satisfy Eq. (19a). Naturally, the initial PS2 is required to
satisfy Eq. (23). This process is natural for numerical computation.

3.1.2 Ghost-e�ect equations (M-3.275)�(M-3.278b):

Consider the initial and boundary-value problem of Eqs. (M-3.275)�(M-3.278b),
i.e.,

p̂SB0 = p̂0(t̃), (32)

p̂SB1 = p̂1(t̃), (33)

∂ρ̂SB0

∂t̃
+
∂ρ̂SB0v̂iSB1

∂xi
= 0, (34a)

∂ρ̂SB0v̂iSB1

∂t̃
+
∂ρ̂SB0v̂jSB1v̂iSB1

∂xj

= −1

2

∂p̂∗SB2

∂xi
+

1

2

∂

∂xj

[
Γ1(T̂SB0)

(
∂v̂iSB1

∂xj
+
∂v̂jSB1

∂xi
− 2

3

∂v̂kSB1

∂xk
δij

)]

+
1

2p̂0

∂

∂xj

Γ7(T̂SB0)

∂T̂SB0

∂xi

∂T̂SB0

∂xj
− 1

3

(
∂T̂SB0

∂xk

)2
δij

 , (34b)

3

2

∂ρ̂SB0T̂SB0

∂t̃
+

5

2

∂ρ̂SB0v̂iSB1T̂SB0

∂xi
=

5

4

∂

∂xi

(
Γ2(T̂SB0)

∂T̂SB0

∂xi

)
, (34c)

8The contribution of the Knudsen-layer correction to the mass in the domain is of a higher
order, though it is required to ωS2.
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where p̂0 and p̂1 depend only on t̃, and

p̂SB0 = ρ̂SB0T̂SB0, p̂SB1 = ρ̂SB1T̂SB0 + ρ̂SB0T̂SB1,

p̂SB2 = ρ̂SB2T̂SB0 + ρ̂SB1T̂SB1 + ρ̂SB0T̂SB2,

 (35)

p̂∗SB2 = p̂SB2 +
2

3p̂0

∂

∂xk

(
Γ3(T̂SB0)

∂T̂SB0

∂xk

)
. (36)

Let ρ̂, v̂i, and T̂ (thus, p̂ = ρ̂T̂ ) at time t̃ be given; thus, ρ̂SB0, v̂iSB1, T̂SB0

(p̂SB0), etc., including p̂SB2, are given. Then ∂ρ̂SB0/∂t̃, ∂ρ̂SB0v̂iSB1/∂t̃, and
∂T̂SB0/∂t̃ at t̃ are given by Eqs. (34a)�(34c); thus, the future ρ̂SB0, v̂iSB1, and
T̂SB0 (also p̂SB0) are determined. However, the future p̂SB0, as well as p̂SB0

at t̃, is required to be independent of xi owing to Eq. (32). Taking this point
into account, we discuss how the solution is determined. For convenience of the
discussion, transform Eq. (34c) in the form

∂p̂SB0

∂t̃
= P, (37)

where

P =− 5

3
p̂SB0

∂v̂iSB1

∂xi
+

5

6

∂

∂xi

(
Γ2(T̂SB0)

∂T̂SB0

∂xi

)
.

First, consider the case where p̂ (thus, p̂SB0, p̂SB1, etc.) is speci�ed at some
point, e.g., at in�nity. Then, from Eq. (32), p̂0(t̃) is a given function of t̃, and
p̂SB0 is determined. The initial value of p̂SB0 is uniform, i.e., p̂SB0 = p̂0(0).
On the other hand, from Eq. (37), the variation of ∂p̂SB0/∂t̃ is also determined
by the data of p̂SB0, T̂SB0, v̂iSB1, and their space derivatives at t̃. This must
coincide with the corresponding data given by Eq. (32), i.e., ∂p̂SB0/∂t̃ =dp̂0/dt̃.
Substituting this relation into Eq. (37), we have

∂

∂xi

(
p̂SB0v̂iSB1 −

Γ2(T̂SB0)

2

∂T̂SB0

∂xi

)
= −3

5

dp̂0

dt̃
, (38)

which requires a relation among p̂SB0, T̂SB0, and v̂iSB1 for all t̃, since dp̂0/dt̃ is
given. This condition is equivalently replaced by the following two conditions:
The initial data of p̂SB0, T̂SB0, and v̂iSB1 are required to satisfy Eq. (38), and
the time derivative of Eq. (38) has to be satis�ed for all t̃, i.e.,

∂2

∂t̃∂xi

(
p̂SB0v̂iSB1 −

Γ2(T̂SB0)

2

∂T̂SB0

∂xi

)
= −3

5

d2p̂0

dt̃2
. (39)

With the aid of Eqs. (34a)�(34c) and (37), the left-hand side of Eq. (39) is ex-
pressed in the form without the time-derivative terms, i.e., ∂p̂SB0/∂t̃, ∂T̂SB0/∂t̃,
and ∂v̂iSB1/∂t̃, as follows:

∂2

∂t̃∂xi

(
p̂SB0v̂iSB1 −

Γ2(T̂SB0)

2

∂T̂SB0

∂xi

)
= −1

2
p̂SB0

∂

∂xi

(
1

ρ̂SB0

∂p̂∗SB2

∂xi

)
+ fn1,

12



where fn1 is a given function of ρ̂SB0, v̂iSB1, T̂SB0, and their space derivatives.
Thus, the condition (39) is reduced to an equation for p̂∗SB2, i.e.,

∂

∂xi

(
1

ρ̂SB0

∂p̂∗SB2

∂xi

)
= Fn, (40)

where

Fn =
2

p̂0

(
fn1 +

3

5

d2p̂0

dt̃2

)
.

The boundary condition for p̂∗SB2 in Eq. (40) on a simple boundary is derived
by multiplying Eq. (34b) by the normal ni to the boundary. In this process, the
contribution of its time-derivative terms vanishes.9 Thus, p̂∗SB2 (or p̂SB2) is
determined in the present case, where p̂ (thus, p̂SB2) is speci�ed at some point.
The solution p̂∗SB2 of Eq. (40) being substituted into Eq. (34b), Eqs. (34a)�(34c)

with the �rst relation in Eq. (35) are reduced to the equations for ρ̂SB0, T̂SB0, and
v̂iSB1 which naturally determine ∂ρ̂SB0/∂t̃, ∂T̂SB0/∂t̃, and ∂v̂iSB1/∂t̃. Further,
if the initial data of ρ̂SB0, T̂SB0, and v̂iSB1 being chosen in such a way that
ρ̂SB0T̂SB0(= p̂SB0) = p̂0 and that Eq. (38) is satis�ed, the variation ∂p̂SB0/∂t̃
of p̂SB0(= ρ̂SB0T̂SB0) given by these equations is consistent with Eq. (32), since
Eq. (40) or (39) with the condition (38) at the initial state guarantees Eq. (38),
i.e., ∂p̂SB0/∂t̃ = dp̂0/dt̃, for all t̃.

Equations (32) and (34a)�(34c) with Eqs. (35) and (36) determine ρ̂SB0,
T̂SB0, p̂SB0, v̂iSB1, and p̂SB2 consistently for appropriately chosen initial data.
However, these equations are the leading-order set of equations derived by the
asymptotic analysis of the Boltzmann equation. In the above system, p̂SB2 is
determined. On the other hand, the variation ∂p̂SB2/∂t̃ is determined indepen-
dently by the counterpart of Eq. (37) at the order after next. The situation is
similar to that at the leading order, where Eqs. (32), with a given p̂0, and (37)
determine p̂SB0 independently. The analysis can be carried out in a similar
way. Let p̂SB2 determined by Eq. (40) be indicated by (p̂SB2)0 and the equation
for ∂p̂SB2/∂t̃, or the counterpart of Eq. (37) at the order after next, be put in
the form

∂p̂SB2

∂t̃
= P2, (41)

where P2 is a given function of ρ̂SBm, v̂iSBm+1 T̂SBm (m ≤ 2), and their space
derivatives. For the consistency, ∂(p̂SB2)0/∂t̃ is substituted for ∂p̂SB2/∂t̃ in
Eq. (41), i.e.,

P2 =
∂(p̂SB2)0

∂t̃
, (42)

where ∂(p̂SB2)0/∂t̃ is known. This requires a relation among ρ̂SBm, v̂iSBm+1

T̂SBm (m ≤ 2), and their space derivatives. This condition is equivalently re-
placed by the following two conditions: Equation (42) is applied only for the
initial state, and the time derivative of Eq. (42), i.e.,

∂P2

∂t̃
=
∂2(p̂SB2)0

∂t̃2
,

9The discussion is similar to that in Footnote 4.
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has to be satis�ed for all t̃. The ∂ρ̂SBm/∂t̃, ∂v̂iSBm+1/∂t̃, ∂T̂SBm/∂t̃ (m ≤ 2) in
∂P2/∂t̃ being replaced by the counterparts of Eqs. (34a)�(34c) and (37) at the
corresponding order, an equation for p̂SB4 for all t̃ is derived.10 The conclusion
is that an additional initial condition and the condition for p̂SB4 are introduced
and, instead, that the condition (40) for p̂SB2 is required only for the initial
data. The higher-order consideration does not a�ect the determination of the
solution ρ̂SB0, T̂SB0, and v̂iSB1 (thus also p̂SB0).

In this way, the solution of Eqs. (32), (34a)�(36) is determined consistently
by Eqs. (34a)�(36) with the aid of the supplementary condition (40), instead of
Eq. (32), when the initial data of ρ̂SB0, T̂SB0, and v̂iSB1 satisfy Eqs. (32) and
(38), where p̂0(t̃) is a known function of t̃ from the boundary condition.

Secondly, consider a bounded-domain problem of a simple boundary. In
contrast to the �rst case, dp̂0/dt̃ is unknown because no condition is imposed
on p̂SB0 on a simple boundary. However, in a bounded-domain problem of a
simple boundary, the mass of the gas in the domain is invariant with respect to
t̃, i.e., at the leading order,

d

∫
V

ρ̂SB0dx

dt̃
= 0, (43)

where V indicates the domain under consideration. Using the �rst relation of
Eq. (35), i.e., ρ̂SB0 = p̂0/T̂SB0, in Eq. (43), we have

dp̂0

dt̃

∫
V

1

T̂SB0

dx = p̂0

∫
V

1

T̂ 2
SB0

∂T̂SB0

∂t̃
dx. (44)

Using Eq. (34c) for ∂T̂SB0/∂t̃ in Eq. (44), we �nd that the variation dp̂0/dt̃ is
expressed with p̂0, T̂SB0, and v̂iSB1 as follows:

dp̂0

dt̃
= P (t̃), (45)

where

P (t̃) = p̂0

∫
V

1

T̂ 2
SB0

[
5

6ρ̂SB0

∂

∂xi

(
Γ2(T̂SB0)

∂T̂SB0

∂xi

)
− 5

3
v̂iSB1

∂T̂SB0

∂xi

]
dx

×
(∫

V

1

T̂SB0

dx

)−1
. (46)

With this expression of dp̂0/dt̃, we can carry out the analysis in a similar way
to that in the �rst case.

The variation dp̂0/dt̃ or ∂p̂SB0/∂t̃ is also determined by Eq. (37). The two
∂p̂SB0/∂t̃ 's given by Eq. (45) with Eq. (46) and Eq. (37) have to be consistent.

10The conditions on the odd-order p̂SB2n+1's are derived by the analysis starting from the
condition (33) that p̂SB1 is independent of xi.
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Thus, substituting Eq. (45) with Eq. (46) into ∂p̂SB0/∂t̃ in Eq. (37), we have

∂

∂xi

(
p̂SB0v̂iSB1 −

Γ2(T̂SB0)

2

∂T̂SB0

∂xi

)
= −3

5
P (t̃), (47)

where P (t̃) is given by Eq. (46). This must hold for all t̃ for consistency. This
condition is equivalently replaced by the following two conditions: The initial
data of p̂SB0, T̂SB0, v̂iSB1 are required to satisfy Eq. (47), and the time derivative
of Eq. (47) has to be satis�ed for all t̃, i.e.,

∂2

∂t̃∂xi

(
p̂SB0v̂iSB1 −

Γ2(T̂SB0)

2

∂T̂SB0

∂xi

)
= −3

5

dP (t̃)

dt̃
. (48)

Using Eqs. (34a), (34b), and (37) for the time derivatives ∂ρ̂SB0/∂t̃, ∂v̂iSB1/∂t̃,
and ∂p̂SB0/∂t̃ in Eq. (48), we �nd that p̂∗SB2 at t̃ is determined by the equation

∂

∂xi

(
1

ρ̂SB0

∂p̂∗SB2

∂xi

)
+ L

(
∂p̂∗SB2

∂xi

)
= Fn, (49)

where Fn is a given functional of ρ̂SB0, v̂iSB1, T̂SB0, and their space derivatives,
and L(∂p̂∗SB2/∂xi) is a given linear functional of ∂p̂∗SB2/∂xi, i.e.,

L
(
∂p̂∗SB2

∂xi

)
= − 1

p̂0

∫
V

1

T̂SB0

∂T̂SB0

∂xi

∂p̂∗SB2

∂xi
dx

(∫
V

1

T̂SB0

dx

)−1
.

On a simple boundary, the derivative of p̂∗SB2 normal to the boundary is
speci�ed. Thus, p̂∗SB2 is determined except for an additive function of t̃. The
solution p̂∗SB2 of Eq. (49) being substituted into Eq. (34b), the result is indepen-
dent of the additive function. Thus, Eqs. (34a)�(34c) with the �rst relation in
Eq. (35) and the above p̂∗SB2 substituted are reduced to those for ρ̂SB0, T̂SB0,

and v̂iSB1, which naturally determine ∂ρ̂SB0/∂t̃, ∂T̂SB0/∂t̃, and ∂v̂iSB1/∂t̃. Fur-
ther, if the initial data of ρ̂SB0, T̂SB0, and v̂iSB1 being chosen in such a way that
ρ̂SB0T̂SB0(= p̂SB0) = p̂0 and that Eq. (47) is satis�ed, the variation ∂p̂SB0/∂t̃
of p̂SB0(= ρ̂SB0T̂SB0) given by these equations is consistent with Eq. (32), since
Eq. (49) or (48) with the condition (47) at the initial state guarantees Eq. (47),
i.e., ∂p̂SB0/∂t̃ = dp̂0/dt̃, for all t̃.

Equations (32) and (34a)�(34c) with Eqs. (35) and (49) determine ρ̂SB0,
T̂SB0, p̂SB0, v̂iSB1, and p̂SB2, except for an additive function of t̃ in p̂SB2, con-
sistently for appropriately chosen initial data. However, these equations are the
leading-order set of equations derived by the asymptotic analysis of the Boltz-
mann equation. The analysis of the higher-order equations not shown here is
carried out in a similar way. First, the undetermined additive function in p̂SB2

is determined by the condition of invariance of the mass of the gas in the domain
at the order after next as dp̂0/dt̃ is determined.11 The ∂p̂SB2/∂t̃ or p̂SB2 deter-
mined in this way is indicated by ∂(p̂SB2)0/∂t̃ or (p̂SB2)0. On the other hand, the

11The Knudsen-layer correction to ρ̂SB1, already determined (see Footnote 10), contributes
to the mass at this order.
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variation ∂p̂SB2/∂t̃ is determined independently by Eq. (41) or the counterpart
of Eq. (37) at the order after next. The two results must coincide. The discus-
sion from here is the same as that given from the sentence starting from Eq. (41)
to the end of the paragraph. The results are that an additional initial condition
and the condition for p̂SB4 are introduced, and that the condition (49) for p̂SB2

is required only for the initial data. The higher-order consideration does not
a�ect the determination of the solution ρ̂SB0, T̂SB0, and v̂iSB1 (thus also p̂SB0).

In this way, the solution of Eqs. (32), (34a)�(34c) is determined consistently
by Eqs. (34a)�(34c) with the aid of the supplementary condition (49), instead
of Eq. (32), when the initial data of ρ̂SB0, T̂SB0, and v̂iSB1 satisfy Eqs. (32) and
(47).

3.2 Notes on basic equations in classical �uid dynamics

3.2.1 Euler and Navier�Stokes sets

For the convenience of discussions, the basic equations in the classical �uid
dynamics are summarized here.

The mass, momentum, and energy-conservation equations of �uid �ow are
given by

∂ρ

∂t
+

∂

∂Xi
(ρvi) = 0, (50)

∂

∂t
(ρvi) +

∂

∂Xj
(ρvivj + pij) = 0, (51)

∂

∂t

[
ρ

(
e+

1

2
v2i

)]
+

∂

∂Xj

[
ρvj

(
e+

1

2
v2i

)
+ vipij + qj

]
= 0, (52)

where ρ is the density, vi is the �ow velocity, e is the internal energy per unit
mass, pij , which is symmetric with respect to i and j, is the stress tenor, and qi
is the heat-�ow vector. The pressure p and the internal energy e are given by
the equations of state as functions of T and ρ, i.e.,

p = p(T, ρ), e = e(T, ρ). (53)

Especially, for a perfect gas,

p = RρT, e = e(T ). (54)

Equations (51) and (52) are rewritten with the aid of Eq. (50) in the form

ρ
∂vi
∂t

+ ρvj
∂vi
∂Xj

+
∂pij
∂Xj

= 0, (55)

ρ
∂

∂t

(
e+

1

2
v2i

)
+ ρvj

∂

∂Xj

(
e+

1

2
v2i

)
+

∂

∂Xj
(vipij + qj) = 0. (56)
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The operator ∂/∂t+vj∂/∂xj , which expresses the time variation along the �uid
particle, is denoted by D/Dt, i.e.,

D

Dt
=

∂

∂t
+ vj

∂

∂Xj
.

Multiplying Eq. (55) by vi we obtain the equation for the variation of kinetic
energy as

ρ
D

Dt

(
1

2
v2i

)
= −vi

∂pij
∂Xj

. (57)

Another form of Eq. (52), where Eq. (57) is subtracted from Eq. (56), is given as

ρ
De

Dt
= −pij

∂vi
∂Xj

− ∂qj
∂Xj

. (58)

Noting the thermodynamic relation

De

Dt
= T

Ds

Dt
+

p

ρ2
Dρ

Dt
, (59)

where s is the entropy per unit mass, and Eq. (50), Eq. (58) is rewritten as

ρ
Ds

Dt
= − 1

T

[
(pij − pδij)

∂vi
∂Xj

+
∂qj
∂Xj

]
. (60)

Equation (60) expresses the variation of the entropy of a �uid particle.
Equations (50)�(53) contain more variables than the number of equations.

Thus, in the classical �uid dynamics, the stress tensor pij and the heat-�ow
vector qi are assumed in some ways. The Navier�Stokes set of equations (or the
Navier�Stokes equations) is Eqs. (50)�(53) where pij and qi are given by

pij = pδij − µ
(
∂vi
∂Xj

+
∂vj
∂Xi

− 2

3

∂vk
∂Xk

δij

)
− µB

∂vk
∂Xk

δij , (61)

qi = −λ ∂T
∂Xi

, (62)

where µ, µB , and λ are, respectively, called the viscosity, bulk viscosity, and
thermal conductivity of the �uid. They are functions of T and ρ. The Euler

set of equations (or the Euler equations) is Eqs. (50)�(53) where pij and qi are
given by

pij = pδij , qi = 0, (63)

or the Navier�Stokes equations with µ = µB = λ = 0.
For the Navier�Stokes equations, in view of the relations (61) and (62), the
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entropy variation is expressed in the form12

ρ
Ds

Dt
=

1

T

[
µ

2

(
∂vi
∂Xj

+
∂vj
∂Xi

− 2

3

∂vk
∂Xk

δij

)2
+ µB

(
∂vk
∂Xk

)2
+

∂

∂Xi

(
λ
∂T

∂Xi

)]
.

(64)
For the Euler equations, for which pij and qi are given by Eq.(63), the entropy
of a �uid particle is invariant, i.e.,

ρ
Ds

Dt
= 0. (65)

For an incompressible �uid, the �rst relation of Eq. (53) is replaced by13

Dρ

Dt
= 0 or

∂ρ

∂t
+ vj

∂ρ

∂Xj
= 0. (66)

Thus, from Eqs. (50) and (66),

∂vi
∂Xi

= 0. (67)

Equation (61) for the Navier�Stokes-stress tensor reduces to

pij = pδij − µ
(
∂vi
∂Xj

+
∂vj
∂Xi

)
. (68)

The �rst term on the right-hand side of Eq. (58) reduces to

−pij
∂vi
∂Xj

= −
[
pδij − µ

(
∂vi
∂Xj

+
∂vj
∂Xi

)]
∂vi
∂Xj

=
µ

2

(
∂vi
∂Xj

+
∂vj
∂Xi

)2
.

Thus, Eq. (58) reduces to

ρ
De

Dt
=
µ

2

(
∂vi
∂Xj

+
∂vj
∂Xi

)2
+

∂

∂Xj

(
λ
∂T

∂Xj

)
. (69)

12Note the following transformation:

∂vi

∂Xj

(
∂vi

∂Xj
+
∂vj

∂Xi
−

2

3

∂vk

∂Xk
δij

)
=

1

2

(
∂vi

∂Xj
+
∂vj

∂Xi
−

2

3

∂vk

∂Xk
δij +

2

3

∂vk

∂Xk
δij

)(
∂vi

∂Xj
+
∂vj

∂Xi
−

2

3

∂vk

∂Xk
δij

)
=

1

2

(
∂vi

∂Xj
+
∂vj

∂Xi
−

2

3

∂vk

∂Xk
δij

)2
+

1

3

∂vl

∂Xl
δij

(
∂vi

∂Xj
+
∂vj

∂Xi
−

2

3

∂vk

∂Xk
δij

)
.

The second term in the last expression is easily seen to vanish.
13The density is invariant along �uid-particle paths. If ρ is of uniform value ρ0 initially, it

is a constant, i.e.,
ρ = ρ0.

In a time-independent (or steady) problem, the density is constant along streamlines.
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To summarize, the Navier�Stokes equations for incompressible �uid are

∂vi
∂Xi

= 0, (70a)

ρ
∂vi
∂t

+ ρvj
∂vi
∂Xj

= − ∂p

∂Xi
+

∂

∂Xj

[
µ

(
∂vi
∂Xj

+
∂vj
∂Xi

)]
, (70b)

ρ
∂e

∂t
+ ρvj

∂e

∂Xj
=
µ

2

(
∂vi
∂Xj

+
∂vj
∂Xi

)2
+

∂

∂Xj

(
λ
∂T

∂Xj

)
, (70c)

with the incompressible condition (66) being supplemented, i.e.,

∂ρ

∂t
+ vj

∂ρ

∂Xj
= 0. (71)

3.2.2 Boundary condition for the Euler set

In Section M-3.5, we discussed the asymptotic behavior for small Knudsen num-
bers of a gas around its condensed phase where evaporation or condensation with
a �nite Mach number is taking place, and derived the Euler equations and their
boundary conditions that describe the overall behavior of the gas in the limit
that the Knudsen number tends to zero. The number of boundary conditions
on the evaporating condensed phase is di�erent from that on the condensing
one. We will try to understand the structure of the Euler equations giving the
non-symmetric feature of the boundary conditions by a simple but nontrivial
case.

Consider, as a simple case, the two-dimensional boundary-value problem
of the time-independent Euler equations in a bounded domain for an incom-
pressible ideal �uid of uniform density. The mass and momentum-conservation
equations of the Euler set are

∂u

∂x
+
∂v

∂y
= 0, (72)

u
∂u

∂x
+ v

∂u

∂y
= −1

ρ

∂p

∂x
, (73)

u
∂v

∂x
+ v

∂v

∂y
= −1

ρ

∂p

∂y
, (74)

where ρ is the density, which is uniform, (u, v) is the �ow velocity, and p is the
pressure. Owing to Eq. (72), the stream function Ψ can be introduced as

u =
∂Ψ

∂y
, v = −∂Ψ

∂x
. (75)
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Eliminating p from Eqs. (73) and (74), we have14

u
∂Ω

∂x
+ v

∂Ω

∂y
= 0, (76)

where Ω is the vorticity, i.e.,

Ω =
∂u

∂y
− ∂v

∂x
=
∂2Ψ

∂x2
+
∂2Ψ

∂y2
. (77)

From Eqs. (75) and (76),

∂Ψ

∂y

∂Ω

∂x
− ∂Ψ

∂x

∂Ω

∂y
= 0. (78)

This equation shows that Ω is a function of Ψ,15 i.e.,

Ω = F (Ψ). (79)

14The following equation is formed from them:

∂Eq. (73)/∂y − ∂Eq. (74)/∂x = 0.

15This can be seen with the aid of theorems on implicit functions (see References M-[47, 48,
267]). The proof is outlined here. The Ω and Ψ are functions of x and y :

Ω = Ω(x, y), Ψ = Ψ(x, y). (∗)

Solving the second equation with respect to x, we have

x = x̂(Ψ, y). (∗∗)

With this relation into Eq. (∗),

Ω = Ω(x̂(Ψ, y), y) = Ω̂(Ψ, y), (]a)

Ψ = Ψ(x̂(Ψ, y), y) = Ψ̂(Ψ, y). (]b)

That is, Ω is expressed as a function of Ψ and y. From Eqs. (]a) and (]b),

∂Ω̂(Ψ, y)

∂y
=
∂Ω(x̂(Ψ, y), y)

∂y
=
∂Ω(x, y)

∂x

∂x̂(Ψ, y)

∂y
+
∂Ω(x, y)

∂y
, (]]a)

∂Ψ̂(Ψ, y)

∂y
= 0. (]]b)

On the other hand,

∂Ψ̂(Ψ, y)

∂y
=
∂Ψ(x̂(Ψ, y), y)

∂y
=
∂Ψ(x, y)

∂x

∂x̂(Ψ, y)

∂y
+
∂Ψ(x, y)

∂y
.

Thus,
∂Ψ(x, y)

∂x

∂x̂(Ψ, y)

∂y
+
∂Ψ(x, y)

∂y
= 0. (‡)

From Eqs. (78), (]]a) and (‡), we have

∂Ω̂(Ψ, y)

∂y
= 0, or Ω = Ω̂(Ψ).
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This functional relation between Ω and Ψ is a local relation, and therefore F
may be a multivalued function of Ψ. From Eqs. (77) and (79),

∂2Ψ

∂x2
+
∂2Ψ

∂y2
= F (Ψ). (80)

Consider a boundary-value problem in a simply-connected bounded domain,
where Ψ is given on the boundary (Ψ = ΨB). Introduce a coordinate s (0 ≤ s <
S) along the boundary in the direction encircling the domain counterclockwise.
Then, the �uid �ows into the domain on the boundary where ∂ΨB/∂s < 0, and
the �uid �ows out from the domain on the boundary where ∂ΨB/∂s > 0.When
F is given, the problem is a standard boundary-value problem. In the present
problem, we have a freedom to choose F on the part where ∂ΨB/∂s < 0 or
∂ΨB/∂s > 0. For example, take the case where ∂ΨB/∂s < 0 for 0 < s < Sm
and ∂ΨB/∂s > 0 for Sm < s < S, and choose the distribution ΩB(s) of Ω along
the boundary for the part 0 < s < Sm. By the choice of ΩB , the function F (Ψ)
is determined in the following way. Inverting the relation Ψ = ΨB(s) between
Ψ and s on the part 0 < s < Sm, i.e., s(Ψ), and noting the relation (79), we
�nd that F is given by

F (Ψ) = ΩB(s(Ψ)). (81)

Then, the boundary-value problem is �xed. That is, Eq. (80) is �xed as16

∂2Ψ

∂x2
+
∂2Ψ

∂y2
= ΩB(s(Ψ)), (82)

and the boundary condition is given as Ψ = ΨB(s). This system is a standard
from the point of counting of the number of boundary conditions. Obviously,
from Eq. (77), the solution of the above system automatically satis�es condi-
tion Ω = ΩB(s) along the boundary for 0 < s < Sm. We cannot choose the
distribution of Ω on the boundary for Sm < s < S.

The energy-conservation equation of the incompressible Euler set is given by
Eq. (69) with µ = λ = 0, i.e.,

u
∂e

∂x
+ v

∂e

∂y
= 0, or

∂Ψ

∂y

∂e

∂x
− ∂Ψ

∂x

∂e

∂y
= 0, (83)

where e is the internal energy. Thus, e is a function of Ψ, i.e.,

e = F1(Ψ). (84)

In the above boundary-value problem, therefore, e can be speci�ed on the the
part (0 < s < Sm) of the boundary, but no condition can be speci�ed on other
part (Sm < s < S) and vice versa.17

16There is still some ambiguity. The case where there is a region with closed stream lines
Ψ(x, y) = const inside the domain is not excluded.

17From the second relation on e of Eq. (53) and the uniform-density condition, the condition
on e can be replaced by the condition on the temperature T.
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To summarize, we can specify three conditions for Ψ, Ω, and e on the part
∂ΨB/∂s < 0 (∂ΨB/∂s > 0) of boundary but one condition for Ψ on the other
part ∂ΨB/∂s > 0 (∂ΨB/∂s < 0). The number of the boundary conditions is
not symmetric and consistent with that derived by the asymptotic theory.

3.2.3 Ambiguity of pressure in the incompressible Navier�Stokes
system

It may be better to note ambiguity of the solution of the initial and boundary-
value problem of the incompressible Navier�Stokes equations in a bounded do-
main of simple boundaries.

Consider the Navier�Stokes equations for an incompressible �uid, i.e.,

∂vi
∂xi

= 0, (85a)

ρ
∂vi
∂t

+ ρvj
∂vi
∂xj

= − ∂p

∂xi
+

∂

∂xj
µ

(
∂vi
∂xj

+
∂vj
∂xi

)
, (85b)

ρ
∂e

∂t
+ ρvj

∂e

∂Xj
=
µ

2

(
∂vi
∂Xj

+
∂vj
∂Xi

)2
+

∂

∂Xj

(
λ
∂T

∂Xj

)
, (85c)

∂ρ

∂t
+ vi

∂ρ

∂xi
= 0, (85d)

where e, µ, and λ are functions of T and ρ.
Consider the initial and boundary-value problem of Eqs. (85a)�(85d) in a

bounded domain D on the boundary ∂D of which vi and T are speci�ed as
vi = vwi and T = Tw (vwi and Tw are, respectively, the surface velocity and
temperature of the boundary satisfying

∫
∂D

vwinidS = 0, ni : the unit nor-
mal vector to the boundary) and no condition is imposed on ρ and p. Let

(v
(s)
i , ρ(s), T (s), p(s)) be a solution of the initial and boundary-value problem.

Let P (a) be an arbitrary function of t, independent of xi, that vanishes at initial
time t = 0, i.e., P (a) = f(t) with f(0) = 0. Put

(vi, ρ, T, p) = (v
(s)
i , ρ(s), T (s), p(s) + P (a)).

Then, e, µ, and λ corresponding to the new (vi, ρ, T, p) are equal to e
(s), µ(s), and

λ(s) respectively, because they are determined by ρ and T. The new (vi, ρ, T, p)
satisfy the equations (85a)�(85d) and the initial and boundary conditions.

3.2.4 Equations derived from the compressible Navier�Stokes set
when the Mach number and the temperature variation are
small

It is widely said that the set of equations derived from the compressible Navier�
Stokes set when the Mach number and the temperature variation are small is
the incompressible Navier�Stokes set. This statement should be made precise.
The di�erence is brie�y explained in the book �Molecular Gas Dynamics� in
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connection with the equations derived by the S expansion from the Boltzmann
equation in Sections M-3.2.4 and M-3.7.2. Here, we explicitly show the process of
analysis from the compressible Navier�Stokes set. The resulting set of equations
no longer has ambiguity of pressure in contrast to the incompressible Navier�
Stokes set. Take a monatomic perfect gas, for which the internal energy per unit
mass is 3RT/2. The corresponding Navier�Stokes set of equations is written in
the nondimensional variables introduced by Eq. (M-1.74) in Section M-1.10 as
follows:

Sh
∂ω

∂t̂
+
∂(1 + ω)ui

∂xi
= 0, (86)

Sh
∂(1 + ω)ui

∂t̂
+

∂

∂xj

(
(1 + ω)uiuj +

1

2
Pij

)
= 0, (87)

Sh
∂

∂t̂

[
(1 + ω)

(
3

2
(1 + τ) + u2i

)]
+

∂

∂xj

[
(1 + ω)uj

(
3

2
(1 + τ) + u2i

)
+ ui(δij + Pij) +Qj

]
= 0. (88)

The nondimensional stress tensor Pij , and heat-�ow vector Qi are expressed
as18

Pij = Pδij −
µ0(2RT0)1/2

p0L
(1 + µ̄)

(
∂ui
∂xj

+
∂uj
∂xi
− 2

3

∂uk
∂xk

δij

)
, (89a)

Qi = − λ0T0
Lp0(2RT0)1/2

(1 + λ̄)
∂τ

∂xi
. (89b)

Here, µ̄ and λ̄ are, respectively, the nondimensional perturbed viscosity and
thermal conductivity de�ned by

µ = µ0(1 + µ̄), λ = λ0(1 + λ̄),

where µ0 and λ0 are, respectively, the values of the viscosity µ and the thermal
conductivity λ at the reference state. The µ̄ and λ̄ are functions of τ and ω.
The �rst relation of the equation of state [Eq. (54)] is expressed as

P = ω + τ + ωτ. (90)

Take a small parameter ε, and consider the case where

ui = O(ε), ω = O(ε), τ = O(ε), Sh = O(ε), (91a)

µ0(2RT0)1/2

p0L
= γ1ε,

λ0T0
Lp0(2RT0)1/2

=
5

4
γ2ε, (91b)

thus,
P = O(ε), µ̄ = O(ε), λ̄ = O(ε).

18For a monatomic gas, the bulk viscosity vanishes, i.e., µB = 0.
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According to the de�nition of ui in Eq. (M-1.74), ε is of the order of the Mach
number. In view of this and the de�nition of the Prandtl number Pr= 5Rµ/2λ
(see Section M-3.1.9), γ1 and γ2 are, respectively, of the orders of 1/Re and
1/PrRe (Re : the Reynolds number). According to Eq. (M-1.48a), the condition
Sh= O(ε) in Eq. (91a) means that the time scale t0 of the variation of variables
is of the order of L/(2RT0)1/2ε, which is of the order of time scale of viscous
di�usion. Thus, we are considering the case where the Mach number is small,
the Reynolds and Prandtl numbers are of the order of unity, and the time scale
of variation of the system is of the order of the time scale of viscous di�usion.
We can take t0 = L/(2RT0)1/2ε without loss of generality. Then,

Sh = ε. (92)

Corresponding to the above situation, ui, ω, P, and τ are expanded in power
series of ε, i.e.,

ui = ui1ε+ ui2ε
2 + · · · , (93a)

ω = ω1ε+ ω2ε
2 + · · · , (93b)

P = P1ε+ P2ε
2 + · · · , (93c)

τ = τ1ε+ τ2ε
2 + · · · , (93d)

µ̄ = µ̄1ε+ µ̄2ε
2 + · · · , (93e)

λ̄ = λ̄1ε+ λ̄2ε
2 + · · · , (93f)

Pij = P1δijε+ Pij2ε
2 + · · · , (93g)

Qi = Qi2ε
2 + · · · . (93h)

Substituting Eqs. (93a)�(93h) with Eqs. (91b) and (92) into Eqs. (86)�(88) with
Eqs. (89a) and (89b), and arranging the same-order terms of ε, we have

∂ui1
∂xi

= 0,
∂P1

∂xi
= 0,

∂ui1
∂xi

= 0,

∂ω1

∂t̂
+
∂ω1ui1
∂xi

+
∂ui2
∂xi

= 0,

∂ui1

∂t̂
+
∂ui1uj1
∂xj

+
1

2

∂P2

∂xi
− γ1

2

∂

∂xj

(
∂ui1
∂xj

+
∂uj1
∂xi

− 2

3

∂uk1
∂xk

δij

)
= 0,

3

2

∂P1

∂t̂
+

∂

∂xj

(
5

2
uj2 +

5

2
P1uj1 −

5

4
γ2
∂τ1
∂xj

)
= 0,

and so on. At the leading order, the equations derived from Eqs. (86) and (88)
degenerate into the same equation ∂ui1/∂xi = 0. Owing to this degeneracy, in
order to solve the variables from the lowest order successively, the equations
should be rearranged by combination of equations of staggered orders. Thus,
we rearrange the equations as follows:

∂P1

∂xi
= 0, (94)
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∂ui1
∂xi

= 0, (95a)

∂ui1

∂t̂
+ uj1

∂ui1
∂xj

= −1

2

∂P2

∂xi
+
γ1
2

∂2ui1
∂x2j

, (95b)

5

2

∂τ1

∂t̂
− ∂P1

∂t̂
+

5

2
ui1

∂τ1
∂xi

=
5

4
γ2
∂2τ1
∂x2j

, (95c)

∂ui2
∂xi

= −∂ω1

∂t̂
− ∂ω1ui1

∂xi
, (96a)

∂ui2

∂t̂
+ uj1

∂ui2
∂xj

+ uj2
∂ui1
∂xj

= −1

2

(
∂P3

∂xi
− ω1

∂P2

∂xi

)
+
γ1
2

∂

∂xj

(
∂ui2
∂xj

+
∂uj2
∂xi

− 2

3

∂uk2
∂xk

δij

)
− γ1ω1

2

∂2ui1
∂x2j

+
γ1
2

∂

∂xj

[
µ̄1

(
∂ui1
∂xj

+
∂uj1
∂xi

)]
, (96b)

3

2

∂P2

∂t̂
+

3

2
uj1

∂P2

∂xj
+

5

2

(
P1
∂uj2
∂xj

− ∂ω2

∂t̂
− ∂(ω1uj2 + ω2uj1)

∂xj

)
=

5γ2
4

∂

∂xi

(
∂τ2
∂xi

+ λ̄1
∂τ1
∂xi

)
+
γ1
2

(
∂ui1
∂xj

+
∂uj1
∂xi

)2
, (96c)

where
P1 = ω1 + τ1, P2 = ω2 + τ2 + ω1τ1. (97)

These equations are very similar to Eqs. (M-3.265)�(M-3.268) [or Eqs. (18)�
(21)] obtained by the S expansion of the Boltzmann equation in Section M-3.7.2
(or Section 3.1.1). The solution is determined in the same way as the solution
of the S-expansion system is done in Section 3.1.1. What should be noted is the
determination of P1, P2, · · · in a bounded-domain problem. They are determined
by the condition of invariance of the mass of the gas in the domain with the aid
of higher-order equations in the same way as PS1, PS2, · · · in the S-expansion
system (see Section 3.1.1).

In order to compare Eqs. (95a)�(95c) and (97) with the incompressible Navier�
Stokes equations (85a)�(85d), we will rewrite the latter equations for the sit-
uation where the former equations are derived. The starting equations are
Eqs. (86)�(89b)19 and the nondimensional form of Eq. (66), i.e.,

Sh
∂ω

∂t̂
+ ui

∂ω

∂xi
= 0, (98)

instead of Eq. (90).20 The analysis is carried out in a similar way and the

19As the internal energy e, 3RT/2 [= 3RT0(1 + τ)/2] is chosen for consistency.
20From Eqs. (86) and (98), we have ∂ui/∂xi = 0.
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equations corresponding to Eqs. (95a)�(95c) are21

∂ui1
∂xi

= 0, (99a)

∂ui1

∂t̂
+ uj1

∂ui1
∂xj

= −1

2

∂P2

∂xi
+
γ1
2

∂2ui1
∂x2j

, (99b)

3

2

∂τ1

∂t̂
+

3

2
ui1

∂τ1
∂xi

=
5

4
γ2
∂2τ1
∂x2j

. (99c)

Equations (99a) and (99b) are, respectively, of the same form as Eqs. (95a)
and (95b). Equation (95c) is rewritten with the aid of Eqs. (94) and (97) as

3

2

∂τ1

∂t̂
+

3

2
ui1

∂τ1
∂xi
−
(
∂ω1

∂t̂
+ ui1

∂ω1

∂xi

)
=

5

4
γ2
∂2τ1
∂x2j

. (100)

The di�erence of Eq. (95c) or (100) from Eq. (99c) is

∂ω1

∂t̂
+ ui1

∂ω1

∂xi
,

which vanishes for an incompressible �uid. The work W done per unit time on
unit volume of �uid by pressure, given by −p0(2RT0)1/2L−1∂(1 + P )ui/∂xi, is
transformed with the aid of Eqs. (94), (95a), and (96a) in the following way:

W

p0(2RT0)1/2L−1
= −∂(1 + P )ui

∂xi

= −∂ui1
∂xi

ε−
(
P1
∂ui1
∂xi

+ ui1
∂P1

∂xi
+
∂ui2
∂xi

)
ε2 + · · ·

= −∂ui2
∂xi

ε2 + · · ·

=

(
∂ω1

∂t̂
+ ui1

∂ω1

∂xi

)
ε2 + · · · .

The work vanishes up to the order considered here for an incompressible �uid,
because ∂ui/∂xi = 0 and ∂P1/∂xi = 0 (see Footnotes 20 and 21). That is,
Eq. (95c) di�ers from Eq. (99c) by the amount of the work done by pressure.
Thus, naturally, the temperature τ1 �elds in the two cases are di�erent owing
to this di�erence.

To summarize, the mass and momentum-conservation equations (95a) and
(95b) of the set derived from the compressible Navier�Stokes set [Eqs. (86)�
(89b) and (90)] under the situation given by Eqs. (91a) and (91b) with small ε
are of the same form as those equations (99a) and (99b) of the corresponding set
derived from the incompressible Navier�Stokes set [Eqs. (86)�(89b) and (98)],
but the energy-conservation equations (95c) and (99c) of the two sets di�er by

21We also obtain ∂P1/∂xi = 0.
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the work done by pressure.22 The density ω1 obtained from Eqs. (94)�(95c)
with the �rst relation of Eq. (97) does not generally satisfy the incompressible
condition (98) with ω = ω1 and ui = ui1.

23 Both the density and temperature
�elds (ω1, τ1) are di�erent in the two sets. The variation of the density ω1 along
a particle path is due to the �rst relation of Eq. (97). Even if the temperature τ1
varies according to Eq. (99c), the density ω1 determined by the �rst relation of
Eq. (97) does not generally satisfy the incompressible condition. Incidentally, in
a bounded domain problem with simple boundaries, the pressure has ambiguity
of an additive function of time for the incompressible set in contrast to the
pressure for a compressible set [see Section 3.2.3 and the paragraph just after
Eq. (97)].

Finally, it may be noted that under the situation (91a), the solenoidal condi-
tion for ui1, i.e., Eq. (95a) or (99a), is derived only from the mass conservation
equation (86) without the help of the incompressible condition (98).

4 Chapter M-4

4.1 Gas over a plane interface: Supplement to M-4.4

Here, the discussion of the half-space problem under the boundary condition
(M-1.26) for a simple boundary in Section M-4.4 is extended to that under the
boundary condition (M-1.30) or (166) for an interface of a gas and its condensed
phase. That is, a plane simple boundary is replaced by a plane condensed phase
of the gas, and the possible solution including the possible state at in�nity is
discussed in the situation when no evaporation or condensation is taking place
on the condensed phase. This is the problem �rst discussed by Golse under the
complete condensation condition (Reference M-29), which is a special case of the
boundary condition (M-1.30). The analysis goes parallel to that in Section M-
4.4. The full explanation is given with the di�erence being shown in Footnotes,
though it may be redundant.

Consider a semi-in�nite expanse of a gas (X1 > 0) bounded by its stationary
plane condensed phase with a uniform temperature Tw at X1 = 0. There is no
external force acting on the gas. The state of the gas is time-independent and
uniform with respect to X2 and X3, i.e., f = f(X1, ξ), and it approaches an

22When the density ρ is uniform initially, for which ρ is a constant for an incompressible
�uid, the viscosity and thermal conductivity are constants, and heat production by viscosity is
neglected, Eqs. (99a)�(99c) can be compared directly with Eqs. (95a)�(95c) and (97), without
carrying expansion, and the same results are obtained.

23It is easily seen that the velocity ui1 vanishes, the pressure P1 is a constant, and the
temperature τ1 (thus, the density ω1) varies with time in initial-value problems where the
velocity is zero and the temperature is nonuniform (strictly, non-harmonic) initially, and the
pressure is time-independent at in�nity. Thus, the incompressible condition is not satis�ed.
See also the example given in Section K-4.10.3, where the velocity vanishes and the density
varies with time, and further, the temperature �eld is quite di�erent from the incompressible
case owing to the time-dependent boundary condition on PS1, corresponding to P1 here.
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equilibrium state as X1 →∞, i.e.,

f → ρ∞
(2πRT∞)3/2

exp

(
− (ξi − vi∞)2

2RT∞

)
as X1 →∞, (101)

where ρ∞, vi∞, and T∞ are bounded. The boundary condition on the interface
is given by Eq. (166) with the conditions (167a)�(167c) and (170), i.e.,

f(0, ξ) = gI +

∫
ξ1∗<0

KI(ξ, ξ∗)f(0, ξ∗)dξ∗ (ξ1 > 0). (102)

Here, we are interested in the case where no evaporation or condensation is
taking place on the condensed phase,24 i.e.,

ρv1 =

∫
ξ1fdξ = 0 at X1 = 0. (103)

We will show that the solution of the Boltzmann equation (M-1.5), i.e.,

ξ1
∂f

∂X1
= J(f, f), (104)

describing the above situation exists only when

vi∞ = 0, ρ∞ = ρw, T∞ = Tw,

where ρw is the saturation gas density at temperature Tw, and that the solution
is uniquely given by the Maxwellian

f =
ρw

(2πRTw)3/2
exp

(
− ξ2i

2RTw

)
. (105)

From the integral of the Boltzmann equation (104) over the whole space of
ξ [or the conservation equation (M-1.12)], i.e.,

d

dX1

(∫
ξ1fdξ

)
= 0,

and Eq. (103), we �nd that the mass �ux vanishes for X1 ≥ 0, i.e.,∫
ξ1fdξ = 0 (0 ≤ X1 <∞). (106)

With this result in the condition (101) at in�nity, we have∫
ξ1ξ

2
i fdξ = 0 at in�nity. (107)

24No mass �ux across the boundary irrespective of a situation is the de�nition of a simple
boundary.
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The integral of the Boltzmann equation (104) multiplied by ξ2j over the whole
space of ξ [or the conservation equation (M-1.14)] gives

d

dX1

(∫
ξ1ξ

2
j fdξ

)
= 0. (108)

Thus, from Eqs. (107) and (108), we have∫
ξ1ξ

2
j fdξ = 0 (0 ≤ X1 <∞). (109)

For the boundary condition (166) with the conditions (167a)�(167c) and
(170), the following inequality holds at X1 = 0 [Eq. (189) with ρv1 = 0, vwi = 0,
ni = (1, 0, 0)]:25 ∫

ξ1f ln(f/fw)dξ ≤ 0, (110)

where fw is the Maxwellian with the temperature Tw and velocity vwi (= 0) of
the condensed phase and the saturation gas density ρw at temperature Tw, i.e.,

fw =
ρw

(2πRTw)3/2
exp

(
− ξ2i

2RTw

)
. (111)

With the aid of Eqs. (106) and (109),∫
ξ1f ln(f/c0)dξ ≤

∫
ξ1f ln(fw/c0)dξ

= − 1

2RTw

∫
ξ1ξ

2
i fdξ = 0 at X1 = 0, (112)

where c0 is a constant to make the argument of the logarithmic function dimen-
sionless, whose choice does not in�uence the result.

On the other hand, from the H theorem, i.e., Eq. (M-1.36), in a time-
independent one-dimensional case,

−
∫
ξ1f ln(f/c0)dξ

∣∣∣∣
X1=0

+

∫
ξ1f ln(f/c0)dξ

∣∣∣∣
X1=∞

=

∫ ∞
0

GdX1 ≤ 0, (113)

where

G = − 1

4m

∫
(f ′f ′∗ − ff∗) ln

(
f ′f ′∗
ff∗

)
BdΩdξ∗dξ ≤ 0.

From Eqs. (101), (106), and (107), the second term on the left-hand side of
Eq. (113) vanishes, that is,

−
∫
ξ1f ln(f/c0)dξ

∣∣∣∣
X1=0

=

∫ ∞
0

GdX1 ≤ 0. (114)

25The same equality holds for a simple boundary except that ρw in fw is a free parameter
for this case (see Section M-4.4).
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Combining the two inequalities (112) and (114), we have

0 ≤ −
∫
ξ1f ln(f/c0)dξ

∣∣∣∣
X1=0

=

∫ ∞
0

GdX1 ≤ 0.

Therefore, we have ∫ ∞
0

GdX1 = 0, thus, G = 0, (115)

and ∫
ξ1f ln(f/c0)dξ

∣∣∣∣
X1=0

= 0.

From Eq. (115), f is Maxwellian in 0 < X1 <∞, and Eq. (104) is reduced to
ξ1∂f/∂X1 = 0. That is, f is a uniform Maxwellian. From the condition (101)
at in�nity and Eq. (106), the solution is to be in the form

f =
ρ∞

(2πRT∞)3/2
exp

(
−ξ

2
1 + (ξ2 − v2∞)2 + (ξ3 − v3∞)2

2RT∞

)
(0 < X1 <∞).

(116)
From the uniqueness condition of Eq. (167c), the Maxwellian that satis�es the
boundary condition (167c) is given by Eq. (111). Thus, the parameters in
Eq. (116) have to be26

v2∞ = v3∞ = 0, ρ∞ = ρw, T∞ = Tw,

and the solution is given by Eq. (105).
The same statement holds for the linearized Boltzmann equation with the

corresponding general boundary condition (M-1.112) on an interface of the gas
and its condensed phase. The temperature Tw of the condensed phase and the
saturation gas density ρw at temperature Tw are, respectively, taken here as the
reference temperature T0 or τw = 0 and the reference density ρ0 or ωw = 0.27

The linearized Boltzmann equation is given in the form

ζ1
∂φ

∂η
= L(φ) (0 < η <∞). (117)

The boundary condition on the interface is given by Eq. (M-1.112) with the
supplementary conditions (i), (ii-a), and (ii-b) as

E(ζ)φ(η, ζ) =

∫
ζ1∗<0

K̂I0(ζ, ζ∗)φ(η, ζ∗)E(ζ∗)dζ∗ (ζ1 > 0) at η = 0. (118)

The condition at in�nity is

φ(η, ζ)→ ω∞ + 2ζiui∞ +

(
ζ2i −

3

2

)
τ∞ as η →∞, (119)

26For a simple boundary, we can choose ρ∞ at our disposal, because ρ in Eq. (M-1.27c) is
arbitrary.

27We take the reference density ρw in contrast with the case of a simple boundary. This is
only for convenience of explanation. For this choice, ωw term disappears in Eq. (118) but ω∞
term appears in Eq. (119)
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where ω∞, ui∞ and τ∞ are some constants and η = x1/k (= 2X1/
√
π`0). Then,

the solution of the boundary-value problem (117)�(119) exists when and only
when

ω∞ = 0, ui∞ = 0, τ∞ = 0, (120)

and the unique solution is given by

φ = 0. (121)

The proof can be given in the same way as the preceding proof for the
nonlinear case. From the conservation equation (M-1.99), i.e., ∂u1/∂η = 0, and
the condition of absence of evaporation or condensation on the condensed phase
(u1 =

∫
ζ1φEdζ = 0 at η = 028), we have

u1 =

∫
ζ1φEdζ = 0 (0 ≤ η <∞). (122)

Thus,
ui∞ = 0. (123)

From Eqs. (119) and (123),∫
ζ1φ

2Edζ = 0 at in�nity. (124)

According to the second part of Section M-A.10,29∫
ζ1φ

2Edζ ≤ 0 at η = 0. (125)

The linearized-Boltzmann-equation version of the equation for the H function
given by Eq. (M-1.115) is expressed as

∂

∂η

∫
ζ1φ

2Edζ = LG, (126)

where

LG = −1

2

∫
EE∗(φ

′ + φ′∗ − φ− φ∗)2B̂dΩdζ∗dζ ≤ 0. (127)

From Eqs. (124), (125), and (126) with Eq. (127), we �nd that LG is to be zero
and that φ is a summational invariant or the linearized form of a Maxwellian,
i.e.,

φ = ω + 2(ζ2u2 + ζ3u3) +

(
ζ2i −

3

2

)
τ,

28The boundary where this equality holds irrespective of a situation is the de�nition of a
simple boundary.

29This is the linearized-Boltzmann-equation version of the inequality (189) and valid for
both types of boundaries, a simple boundary and an interface. For the case of an interface,
an additional condition (M-A.271), which corresponds to Eq. (170) in the nonlinear case, is

imposed on the kernel K̂I0 (see also Footnote 45 in Section 6.4.2).
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where Eq. (122) is used. Then, Eq. (117) reduces to ζ1∂φ/∂η = 0, and therefore,
ω, u2, u3, and τ are constant. In view of Eq. (119), the constants ω, u2, u3, τ,
and φ are given as

ω = ω∞, u2 = u2∞, u3 = u3∞, τ = τ∞,

φ = ω∞ + 2(ζ2u2∞ + ζ3u3∞) +

(
ζ2i −

3

2

)
τ∞.

Owing to the supplementary condition (ii-b) to the boundary condition (M-
1.112) together with Eq. (123), we have30

ω∞ = 0, u1∞ = 0, u2∞ = 0, u3∞ = 0, τ∞ = 0,

φ = 0.

(Section 4.1: Version 5-00)

5 Chapter M-9

5.1 Processes of solution of the equations with the ghost
e�ect of in�nitesimal curvature (July 2007)

The way in which Eqs. (M-9.33)�(M-9.39b) or Eqs. (M-9.49a)�(M-9.50e), includ-
ing the time-dependent case with the additional time-derivative terms given
by Eq. (M-9.42) or the mathematical expressions next to Eq. (M-9.59), con-
tain the pressure terms, (p̂S0,p̂S2) or (P01, P02, P20), is di�erent from the way
in which the Navier�Stokes equations (M-3.265)�(M-3.266c) do the pressure
terms, (PS1, PS2). In Section M-9.4, we consider the time-independent solu-
tion of Eqs. (M-9.49a)�(M-9.50e) [Eqs. (M-9.56)�(M-9.57d)] that is uniform with
respect to χ̄. Here, it may be better to explain how a solution of Eqs. (M-9.33)�
(M-9.39b) or Eqs. (M-9.49a)�(M-9.50e) in a general case or a time-dependent
solution that depends on χ or χ̄ is obtained. Incidentally, the boundary con-
ditions for the time-dependent case are derived in the same way as in Section
M-3.7.3. Naturally from the derivation of the equations, the domain of a gas
is in a straight pipe or channel of in�nite length whose axis is in the x or χ
direction.

5.1.1 Equations (M-9.33)�(M-9.39b):

Take Eqs. (M-9.33)�(M-9.39b) with the additional time-derivative terms given
by Eq. (M-9.42), i.e.,31

∂p̂S0

∂y
=
∂p̂S0

∂z
= 0, (128)

30Owing to the di�erence of the supplementary condition (ii-b) of Eq. (M-1.112) [or
Eq. (118)] for an interface from the condition (iii) of Eq. (M-1.107) for a simple boundary,
ω is determined for an interface. For a simple boundary, ω∞ can be chosen at our disposal.

31Equation (M-9.33) is replaced by its equivalent form (128).
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∂ρ̂S0

∂t̂
+
∂ρ̂S0v̂xS0

∂χ
+
∂ρ̂S0v̂yS1

∂y
+
∂ρ̂S0v̂zS1

∂z
= 0, (129)

ρ̂S0
∂v̂xS0

∂t̂
+ ρ̂S0

(
v̂xS0

∂v̂xS0

∂χ
+ v̂yS1

∂v̂xS0

∂y
+ v̂zS1

∂v̂xS0

∂z

)
= −1

2

∂p̂S0

∂χ
+

1

2

∂

∂y

(
Γ1
∂v̂xS0

∂y

)
+

1

2

∂

∂z

(
Γ1
∂v̂xS0

∂z

)
, (130)

ρ̂S0
∂v̂yS1

∂t̂
+ ρ̂S0

(
v̂xS0

∂v̂yS1

∂χ
+ v̂yS1

∂v̂yS1

∂y
+ v̂zS1

∂v̂yS1

∂z
− 1

c2
v̂2xS0

)
= −1

2

∂p̂cS2

∂y
+

1

2

∂

∂χ

(
Γ1
∂v̂xS0

∂y

)
+

∂

∂y

(
Γ1
∂v̂yS1

∂y

)
+

1

2

∂

∂z

[
Γ1

(
∂v̂yS1

∂z
+
∂v̂zS1

∂y

)]

+
1

2p̂S0

 ∂

∂y

Γ7

(
∂T̂S0

∂y

)2+
∂

∂z

(
Γ7
∂T̂S0

∂y

∂T̂S0

∂z

)
+

1

p̂S0

{
∂

∂y

[
Γ8

(
∂v̂xS0

∂y

)2]
+

∂

∂z

(
Γ8
∂v̂xS0

∂y

∂v̂xS0

∂z

)}
, (131)

ρ̂S0
∂v̂zS1

∂t̂
+ ρ̂S0

(
v̂xS0

∂v̂zS1

∂χ
+ v̂yS1

∂v̂zS1

∂y
+ v̂zS1

∂v̂zS1

∂z

)
= −1

2

∂p̂cS2

∂z
+

1

2

∂

∂χ

(
Γ1
∂v̂xS0

∂z

)
+

1

2

∂

∂y

[
Γ1

(
∂v̂yS1

∂z
+
∂v̂zS1

∂y

)]
+

∂

∂z

(
Γ1
∂v̂zS1

∂z

)

+
1

2p̂S0

 ∂

∂y

(
Γ7
∂T̂S0

∂y

∂T̂S0

∂z

)
+

∂

∂z

Γ7

(
∂T̂S0

∂z

)2
+

1

p̂S0

{
∂

∂y

(
Γ8
∂v̂xS0

∂y

∂v̂xS0

∂z

)
+

∂

∂z

[
Γ8

(
∂v̂xS0

∂z

)2]}
, (132)

5ρ̂S0

2

∂T̂S0

∂t̂
+

5

2
ρ̂S0

(
v̂xS0

∂T̂S0

∂χ
+ v̂yS1

∂T̂S0

∂y
+ v̂zS1

∂T̂S0

∂z

)

− ∂p̂S0

∂t̂
− v̂xS0

∂p̂S0

∂χ

=
5

4

∂

∂y

(
Γ2
∂T̂S0

∂y

)
+

5

4

∂

∂z

(
Γ2
∂T̂S0

∂z

)
+ Γ1

[(
∂v̂xS0

∂y

)2
+

(
∂v̂xS0

∂z

)2]
,

(133)
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and the subsidiary relations

p̂S0(χ, t̂) = ρ̂S0T̂S0, (134a)

p̂cS2 = p̂S2 +
2Γ1

3

(
∂v̂xS0

∂χ
+
∂v̂yS1

∂y
+
∂v̂zS1

∂z

)
+

Γ7

3p̂S0

(∂T̂S0

∂y

)2
+

(
∂T̂S0

∂z

)2
+

2

3p̂S0

[
∂

∂y

(
Γ3
∂T̂S0

∂y

)
+

∂

∂z

(
Γ3
∂T̂S0

∂z

)]

− 2Γ9

3p̂S0

[(
∂v̂xS0

∂y

)2
+

(
∂v̂xS0

∂z

)2]
, (134b)

where Γ1, Γ2, Γ3, Γ7, Γ8, and Γ9 are short forms of the functions Γ1(T̂S0),
Γ2(T̂S0), . . . ,Γ9(T̂S0) of T̂S0 de�ned in Section M-A.2.9.

Consider the solution of the initial and boundary-value problem of Eqs. (128)�
(134b).

Let ρ̂, v̂i, and T̂ (thus, p̂ = ρ̂T̂ ) at time t̂ be given; thus, ρ̂S0, v̂xS0, v̂yS1,

v̂zS1, T̂S0 (p̂S0) etc., including p̂S2, are given. Then ∂ρ̂S0/∂t̂, ∂v̂xS0/∂t̂,
∂v̂yS1/∂t̂, ∂v̂zS1/∂t̂, and ∂T̂S0/∂t̂ at t̂ are given by Eqs. (129)�(134b); thus,

the future ρ̂S0, v̂xS0, v̂yS1, v̂zS1, and T̂S0 (also p̂S0) are determined. However,
the future p̂S0 is required to be independent of y and z, as well as p̂S0 at t̂,
owing to Eq. (128). Taking this into account, we will discuss how the solution
is obtained by this system consistently.

First, transform Eq. (133) with the aid of Eqs. (129) and (134a) in the fol-
lowing form:

∂p̂S0

∂t̂
= P, (135)

where

P = −5

3
p̂S0

(
∂v̂xS0

∂χ
+
∂v̂yS1

∂y
+
∂v̂zS1

∂z

)
− v̂xS0

∂p̂S0

∂χ

+
5

6

[
∂

∂y

(
Γ2
∂T̂S0

∂y

)
+

∂

∂z

(
Γ2
∂T̂S0

∂z

)]
+

2

3
Γ1

[(
∂v̂xS0

∂y

)2
+

(
∂v̂xS0

∂z

)2]
.

(136)

For p̂S0 to be independent of y and z [see Eq. (128)], P as well as the initial data
of p̂S0 is required to be independent of y and z. Noting that p̂S0 is independent
of y and z, and taking the average of Eq. (136) over the cross section S of the
pipe or channel,32 we have another expression P of P, explicitly uniform with

32(i) In a channel, where the gas extends from z = −∞ to z =∞, the integral
∫
S Adydz per

unit length in z, per a period in z, etc. should be considered. Otherwise, it can be in�nite.
(ii) Note that v̂yS1ny + v̂zS1nz = 0 on a simple boundary where ni = (0, ny , nz) is the

normal to the boundary.
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respect to y and z, i.e.,

P = −5

3

∂v̂xS0

∂χ
p̂S0 − v̂xS0

∂p̂S0

∂χ
+

5

6

[
∂

∂y

(
Γ2
∂T̂S0

∂y

)
+

∂

∂z

(
Γ2
∂T̂S0

∂z

)]

+
2

3
Γ1

[(
∂v̂xS0

∂y

)2
+

(
∂v̂xS0

∂z

)2]
, (137)

where

A =

∫
S

Adydz

/∫
S

dydz.

The expression (137) is noted to be independent of v̂yS1 and v̂zS1. The two
expressions (136) and (137) must give the same result, i.e.,

P = P,

or

− 5

3
p̂S0

(
∂v̂xS0

∂χ
+
∂v̂yS1

∂y
+
∂v̂zS1

∂z

)
− v̂xS0

∂p̂S0

∂χ

+
5

6

[
∂

∂y

(
Γ2
∂T̂S0

∂y

)
+

∂

∂z

(
Γ2
∂T̂S0

∂z

)]
+

2

3
Γ1

[(
∂v̂xS0

∂y

)2
+

(
∂v̂xS0

∂z

)2]
= P, (138)

when Eq. (128) holds, and vice versa. The condition (138) for all t̂ is equivalently
replaced by the two conditions that the initial data of p̂S0, T̂S0, v̂xS0, v̂yS1,
and v̂zS1 satisfy Eqs. (128) and (138) and that the time derivative of Eq. (138)
holds for all t̂, i.e.,

∂P
∂t̂

=
∂P

∂t̂
. (139)

Using Eqs. (129)�(132) and (135) for ∂ρ̂S0/∂t̂, ∂v̂xS0/∂t̂, ∂v̂yS1/∂t̂, ∂v̂zS1/∂t̂,

and ∂p̂S0/∂t̂ (ρ̂S0∂T̂S0/∂t̂ = ∂p̂S0/∂t̂ − T̂S0∂ρ̂S0/∂t̂) in ∂P/∂t̂ derived from
Eq. (136), we �nd that ∂P/∂t̂ is expressed with ρ̂S0, v̂xS0, v̂yS1, v̂zS1, p̂S0, and
p̂cS2 in the form

∂P
∂t̂

=
5

6
p̂S0

[
∂

∂y

(
1

ρ̂S0

∂p̂cS2

∂y

)
+

∂

∂z

(
1

ρ̂S0

∂p̂cS2

∂z

)]
+ Fn1, (140)

where Fn1 is a given function of ρ̂S0, v̂xS0, v̂yS1, v̂zS1, p̂S0, and their space
derivatives. The expression (137) of P being independent of v̂yS1 and v̂zS1,
its time derivative ∂P/∂t̂ does not contain ∂v̂yS1/∂t̂ and ∂v̂zS1/∂t̂. Therefore,
with the aid of Eqs. (129), (130), and (133), ∂P/∂t̂ is expressed with ρ̂S0, v̂xS0,
v̂yS1, v̂zS1, p̂S0, and their space derivatives, i.e.,

∂P

∂t̂
= Fn2(ρ̂S0, v̂xS0, v̂yS1, v̂zS1, p̂S0, and their space derivatives), (141)
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where Fn2 is a given functional of its arguments. From Eqs. (139), (140), and
(141), we have

∂

∂y

(
1

ρ̂S0

∂p̂cS2

∂y

)
+

∂

∂z

(
1

ρ̂S0

∂p̂cS2

∂z

)
= Fn, (142)

where Fn = 6(Fn2− Fn1)/5p̂S0, and therefore, Fn is a given functional of ρ̂S0,
v̂xS0, v̂yS1, v̂zS1, p̂S0, and their space derivatives. This is the equation for p̂cS2

over a cross section of the pipe or channel.
The boundary condition for p̂cS2 on a simple boundary is obtained by mul-

tiplying Eqs. (130)�(132) by the normal ni = (0, ny, nz) to the boundary; In
this process, the contribution of their time-derivative terms vanishes because
v̂yS1ny + v̂zS1nz = 0; Then, the ny∂p̂

c
S2/∂y + nz∂p̂

c
S2/∂z is imposed as the

boundary condition. Thus, p̂cS2 is determined by Eq. (142) except for an addi-
tive function of t̂ and χ. With this p̂cS2 substituted into Eqs. (131) and (132),
∂ρ̂S0/∂t̂, ∂v̂xS0/∂t̂, ∂v̂yS1/∂t̂, ∂v̂zS1/∂t̂, and ∂p̂S0/∂t̂ are determined by
Eqs. (129)�(134b) independently of the additive function in p̂cS2 in such a way
that ∂(∂p̂S02/∂y)/∂t̂ = ∂(∂p̂S0/∂z)/∂t̂ = 0 and ∂(∂P/∂y)/∂t̂ = ∂(∂P/∂z)/∂t̂ =
0. That is, the solution (ρ̂S0, v̂xS0, v̂yS1, v̂zS1, T̂S0) of Eqs. (128)�(134b) is deter-
mined by Eqs. (129)�(134b) with the aid of the supplementary condition (142),
instead of Eq. (128), when the initial condition for ρ̂S0, v̂xS0, v̂yS1, v̂zS1, and

T̂S0 is given in such a way that p̂S0 (= ρ̂S0T̂S0) and P are independent of y
and z.

Equations (128)�(134b) are the leading-order set of equations derived by
the asymptotic analysis of the Boltzmann equation. The analysis of the higher-
order equations not shown here is carried out in a similar way. The equation for
∂p̂S2/∂t̂, corresponding to Eq. (135), is derived at the order after next. However,
owing to the consistency of p̂S0, p̂S2 is already determined by Eq. (142) except
for an additive function of χ and t̂. The situation is similar to that at the
leading order. That is, p̂S0 and p̂S2 are, respectively, determined by Eqs. (128)
and (142), each with an additive function of χ and t̂ and also by Eqs. (135)
and the counterpart of Eq. (135) at the order after next. Thus, the higher-order
analysis can be carried out in a similar way. The results are that an additional
initial condition and an equation for p̂S4, the counter part of Eq. (142), are
introduced and that the condition (142) is required only for the initial data.
The higher-order consideration does not a�ect the determination of the solution
ρ̂S0, T̂S0, v̂xS0, v̂yS1, and v̂zS1 (thus also p̂S0).

To summarize, the solution (ρ̂S0, v̂xS0, v̂yS1, v̂zS1, T̂S0) of Eqs. (128)�(134b)
is determined by Eqs. (129)�(134b) with the aid of the supplementary condition
(142), instead of Eq. (128), when the initial data of ρ̂S0, v̂xS0, v̂yS1, v̂zS1, and

T̂S0 are given in such a way that p̂S0 (= ρ̂S0T̂S0) and P are independent of y
and z.33 The results are not a�ected by the higher-order analysis.

33If P is independent of y and z, P = P by de�nition.
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5.1.2 Equations (M-9.49a)�(M-9.50e):

Take Eqs. (M-9.49a)�(M-9.50e) with the additional time-derivative terms given
in the �rst mathematical expressions after Eq. (M-9.59), i.e.,

∂P01

∂χ̄
=
∂P01

∂y
=
∂P01

∂z
= 0, P01 = ω + τ, (143a)

∂P02

∂y
=
∂P02

∂z
= 0, (143b)

∂ux
∂χ̄

+
∂uy
∂y

+
∂uz
∂z

= 0, (144a)

∂ux

∂t̂
+ ux

∂ux
∂χ̄

+ uy
∂ux
∂y

+ uz
∂ux
∂z

= −1

2

∂P02

∂χ̄
+
γ1
2

(
∂2ux
∂y2

+
∂2ux
∂z2

)
, (144b)

∂uy

∂t̂
+ ux

∂uy
∂χ̄

+ uy
∂uy
∂y

+ uz
∂uy
∂z
− u2x
C2

= −1

2

∂P20

∂y
+
γ1
2

(
∂2uy
∂y2

+
∂2uy
∂z2

)
,

(144c)

∂uz

∂t̂
+ ux

∂uz
∂χ̄

+ uy
∂uz
∂y

+ uz
∂uz
∂z

= −1

2

∂P20

∂z
+
γ1
2

(
∂2uz
∂y2

+
∂2uz
∂z2

)
, (144d)

∂τ

∂t̂
− 2

5

∂P01

∂t̂
+ ux

∂τ

∂χ̄
+ uy

∂τ

∂y
+ uz

∂τ

∂z
=
γ2
2

(
∂2τ

∂y2
+
∂2τ

∂z2

)
. (144e)

The qualitative di�erence of this set of equations from the set (128)�(134b) is the
absence of the time-derivative term in Eq. (144a) that corresponds to Eq. (129).

Consider the solution of the initial and boundary-value problem of Eqs. (143a)�
(144e). Let ux, uy, uz, and τ at t̂ be given in such a way that Eq. (144a) is
satis�ed. Integrating Eq. (144a) over the cross section of the channel or pipe[∫
S
Eq. (144a)dydz

]
, we �nd that

∫
S
uxdydz depends only on t̂,34 i.e.,∫

S

(∂ux/∂χ̄)dydz = 0, (145)

where S indicates the cross section. Applying Eqs. (143b), (144a), and (145) to
the equation ∂

∫
Eq. (144b)dydz/∂χ̄, we have ∂2P02/∂χ̄

2 as

∂2P02

∂χ̄2
=

∂

∂χ̄

[
−2

∂u2x
∂χ̄

+ γ1

(
∂2ux
∂y2

+
∂2ux
∂z2

)]
, (146)

where

A =

∫
S

Adydz

/∫
S

dydz.

Thus, ∂P02/∂χ̄ and P02 are determined if they are speci�ed at a point in the gas.
Here, we consider this case.35 Using Eq. (144a) in the sum of ∂[Eq. (144b)]/∂χ̄,

34See Footnote 32, with v̂yS1 and v̂zS1 being replaced by uy and uz .
35(i) Imagine the case of the Poiseuille �ow.
(ii) Here, P (thus, P01) is speci�ed at some point. Then, P01 is a given function of t̂.
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∂[Eq. (144c)]/∂y, and ∂[Eq. (144d)]/∂z, we obtain the equation for P20 in the
form

∂2P20

∂y2
+
∂2P20

∂z2
= Fn(ux, uy, uz, and their space derivatives), (147)

where Fn is a given functional of the variables in the parentheses, and the time
derivatives are absent owing to Eq. (144a). Thus, the right-hand side of Eq. (147)
is known. This equation is the Poisson equation for P20 over the cross section
S. Its boundary condition is obtained in a way similar to how the condition
for p̂cS2 in Eq. (142) is derived. Thus, P20 over each cross section is determined
except for an additive function of t̂ and χ̄. This ambiguity does not in�uence
∂P20/∂y and ∂P20/∂z.

With P02 and P20 prepared above into Eqs. (144b)�(144e), the time deriva-
tives ∂ux/∂t̂, ∂uy/∂t̂, ∂uz/∂t̂, and ∂τ/∂t̂ are determined in such a way that
∂(∂ux/∂χ̄ + ∂uy/∂y + ∂uz/∂z)/∂t̂ = 0 owing to the above choice of P20.

36

Thus, the solution (ux, uy, uz, τ) of Eqs. (143b), (144a)�(144e) is determined
by Eqs. (144b)�(144e) with the aid of the supplementary conditions (146) and
(147) for P02 and P20, instead of Eqs. (143b) and (144a). This process is nat-
ural for numerical computation. The undetermined additive function of χ̄ and
t̂ in P20, which does not a�ect the solution (ux, uy, uz, τ), is determined by the
higher-order equation derived from that for ∂v̂xS2/∂t̂ (see Section 5.1.1), in a
way similar to that in which P02 is determined by Eq. (144b). In the higher-
order equation, P20 plays the same role as P02 in Eq. (144b); Equation (147)
corresponds to Eq. (143b), and P20 and P02 are determined by these equations,
each with an additive function of χ̄ and t̂.

6 Appendix M-A

6.1 Note on the loss term of the collision integral [From
Eq. (M-A.18) to Eq. (M-A.21)]

Consider the following collision term of the Boltzmann equation (M-A.18):37

d2m
2m

∫
all e, all ξ∗

|(ξ∗ − ξ) · e|[f(ξ′)f(ξ′∗)− f(ξ)f(ξ∗)]dΩ(e)dξ∗, (148)

where
ξ′ = ξ + [α · (ξ∗ − ξ)]α, ξ′∗ = ξ∗ − [α · (ξ∗ − ξ)]α. (149)

The change (M-A.20) of the variable of integration from e to α, i.e.,

|(ξ∗ − ξ) · e|dΩ(e) =
2

d2m
BdΩ(α), (150)

36Note that P01 is known (Footnote 35).
37The factor d2m/2m can be rewritten as nd2m/2ρ, where n is the number of molecules in

unit volume. The numerator nd2m is of the order of the inverse of the mean free path (Section
M-1.5). Note Footnote M-4 in Section M-A.1.
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is introduced instead of expressing α in Eq. (149) in terms of e. The part of the
integral of Eq. (148)

d2m
2m

∫
all e, all ξ∗

|(ξ∗ − ξ) · e|f(ξ)f(ξ∗)dΩ(e)dξ∗,

which comes from I− in Eq. (M-A.8) and corresponds to the loss term (see
Section M-1.2) of the collision integral of the Boltzmann equation (M-1.5) or
(M-A.21), does not contain α, and the change (150) of the variable of integration
is not required.38 Thus, the result is determined uniquely irrespective of the
relation between α and e, that is, the loss term of the collision integral is
independent of the intermolecular potential when dm is of a �nite value. That
is, the loss term of the collision integral is determined only by d2m/2m and f(ξ),
and is the same as that for the hard-sphere molecule with the same dm.

(Section 6.1: Version 6-00)

6.2 Note on the loss term of the kernel representation of
the linearized collision integral [Section M-A.2.10]

In Section M-A.2.10, we discussed the kernel representation of the linearized
collision integral L(φ) introduced in Section M-1.10, and gave its explicit form
for a hard-sphere molecule. From the discussion in Section 6.1, the kernel rep-
resentation of the loss term of the linearized collision integral for a hard-sphere
molecule applies to any intermolecular potential with a �nite dm.

In Section M-A.2.10, the linearized collision integral L(φ) is expressed by
Eqs. (M-137a)�(M-A.139c) as

L(φ) =

∫
E∗(φ

′ + φ′∗ − φ− φ∗)B̂ dΩ(α)dζ∗

= LG(φ)− LL2(φ)− νL(ζ)φ, (151)

where

LG(φ) =

∫
E∗(φ

′ + φ′∗)B̂ dΩ(α)dζ∗, (152a)

LL2(φ) =

∫
E∗φ∗B̂ dΩ(α)dζ∗

=

∫
K2(ζ, ζ∗)φ(ζ∗)dζ∗, (152b)

νL(ζ) =

∫
E∗B̂ dΩ(α)dζ∗. (152c)

The loss term is the sum of Eqs. (152b) and (152c) multiplied by φ, i.e., LL2(φ)+

38Transformation (M-A.20) or (150) is carried out to make the variable of integration to be
the same. Thus, it is simply one of the changes of variable e of integration to some variable.
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νL(ζ)φ.39 The kernelK2(ζ, ζ∗) and the function νL(ζ) for a hard-sphere molecule
are given by Eqs. (M-A.149b) and (M-A.149c) as

K2(ζ, ζ∗) =
|ζ∗ − ζ|
2
√

2π
exp

(
−ζ2∗

)
, (153a)

νL(ζ) =
1

2
√

2

[
exp(−ζ2) +

(
2ζ +

1

ζ

)∫ ζ

0

exp(−ζ2∗)dζ∗

]
, (153b)

where
ζ = |ζ|.

These formulas apply to any potential with a �nite dm as well as to a hard-sphere
molecule.

(Section 6.2: Version 6-00)

6.3 Parity of the collision integral: Supplement to Section
M-A.2.7

In Section M-A.2.7, we discussed the parity of the linearized collision integral.
It may be better to explain a similar property of the collision integral de�ned
by Eq. (M-1.9), i.e.,

Ĵ(f̂ , ĝ) =
1

2

∫
(f̂ ′ĝ′∗ + f̂ ′∗ĝ

′ − f̂ ĝ∗ − f̂∗ĝ)B̂ dΩ(α)dζ∗, (154)

B̂ = B̂(|α·V |/|V |, |V |),

f̂ = f̂(ζi), f̂∗ = f̂(ζi∗), f̂
′ = f̂(ζ ′i), f̂

′
∗ = f̂(ζ ′i∗),

and a similar notation for ĝ, ĝ∗, ĝ
′, and ĝ′∗,

ζ ′i = ζi + αjVjαi, ζ
′
i∗ = ζi∗ − αjVjαi, ζi∗ = Vi + ζi.

Here, we discuss the relation of the parity of Ĵ(f̂ , ĝ) with respect to a com-

ponent (ζ1, ζ2, or ζ3) of the variable ζ to that of f̂ and ĝ. Put the integral (154)
in the sum

Ĵ(f̂ , ĝ) =
1

2
(IV + III − II − I) , (155)

39Only the term νL(ζ)φ is often called the loss term, and the rest, i.e., LG(φ) − LL2(φ),
is called the gain term by misunderstanding. This is probably because the loss term of the
original collision integral (148) is often written in the form νcf , where νc is the collision
frequency de�ned by Eq. (M-1.18) as

νc = m−1

∫
all α, all ξ∗

f(ξ∗)BdΩ(α)dξ∗ = (d2m/2m)

∫
all e, all ξ∗

|(ξ∗ − ξ) · e|f(ξ∗)dΩ(e)dξ∗.

Not to mention, LL2(φ) is derived from νcf .
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where

I =

∫
f̂∗ĝB̂ dΩ(α)dV , (156a)

II =

∫
f̂ ĝ∗B̂ dΩ(α)dV , (156b)

III =

∫
f̂ ′∗ĝ
′B̂ dΩ(α)dV , (156c)

IV =

∫
f̂ ′ĝ′∗B̂ dΩ(α)dV , (156d)

and discuss each term separately.40 In Eqs. (156a)�(156d), the variable of inte-
gration is changed from ζ∗ to V (= ζ∗− ζ). The following change of the variables

Ṽ1 = −V1, Ṽs = Vs, α̃1 = −α1, α̃s = αs (s = 2, 3) (157)

is performed in the integrals I, II, III, and IV. Noting that

ζi∗ = Vi + ζi, |Ṽi| = |Vi|, α̃iṼi = αiVi, (158)

we can transform the integrals I, II, III, and IV in the following way, where the
subscript s indicates s = 2 and 3:

I(ζ1, ζs) =

∫
f̂(V1 + ζ1, Vs + ζs)ĝ(ζ1, ζs)B̂ (|αiVi|/|Vi|, |Vi|)dΩ(α)dV

=

∫
f̂(−Ṽ1 + ζ1, Ṽs + ζs)ĝ(ζ1, ζs) B̂ (|α̃iṼi|/|Ṽi|, |Ṽi|)dΩ(α̃)dṼ ;

(159a)

Interchanging the arguments of f̂ and ĝ in I, we have

II(ζ1, ζs) =

∫
f̂(ζ1, ζs)ĝ(−Ṽ1 + ζ1, Ṽs + ζs) B̂ (|α̃iṼi|/|Ṽi|, |Ṽi|)dΩ(α̃)dṼ ;

(159b)

III(ζ1, ζs) =

∫
f̂(Vi + ζi − αjVjαi)ĝ(ζi + αjVjαi)B̂ (|αiVi|/|Vi|, |Vi|)dΩ(α)dV

=

∫
f̂(−Ṽ1 + ζ1 + α̃j Ṽjα̃1, Ṽs + ζs − α̃j Ṽjα̃s)

× ĝ(ζ1 − α̃j Ṽjα̃1, ζs + α̃j Ṽjα̃s)B̂ (|α̃iṼi|/|Ṽi|, |Ṽi|)dΩ(α̃)dṼ ;
(159c)

Interchanging the arguments of f̂ and ĝ in III, we have

IV (ζ1, ζs) =

∫
f̂(ζ1 − α̃j Ṽjα̃1, ζs + α̃j Ṽjα̃s)

× ĝ(−Ṽ1 + ζ1 + α̃j Ṽjα̃1, Ṽs + ζs − α̃j Ṽjα̃s)

× B̂ (|α̃iṼi|/|Ṽi|, |Ṽi|)dΩ(α̃)dṼ . (159d)

40The separation is made only for convenience of explanation.
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Now we examine the parity of the integrals I, II, III, and IV with respect to
ζ1 on the basis of Eqs. (159a)�(159d). Here, we introduce the notation: (i) the

parity of f̂ (or ĝ) is indicated by the subscript attached to it, i.e., the subscript
E is attached when it is even and the subscript O when it is odd; (ii) the �rst

subscript of I, II, III, and IV indicates the parity of f̂ in them and the second
indicates the parity of ĝ. First, when f̂ and ĝ are even functions of ζ1.

IEE(ζ1, ζs) =

∫
f̂E(−Ṽ1 + ζ1, Ṽs + ζs)ĝE(ζ1, ζs)

× B̂ (|α̃iṼi|/|Ṽi|, |Ṽi|)dΩ(α̃)dṼ

=

∫
f̂E(Ṽ1 − ζ1, Ṽs + ζs)ĝE(−ζ1, ζs)

× B̂ (|α̃iṼi|/|Ṽi|, |Ṽi|)dΩ(α̃)dṼ

= IEE(−ζ1, ζs), (160a)

where the last relation holds owing to the �rst relation of Eq. (159a); Inter-

changing the arguments of f̂E and ĝE in IEE , we have

IIEE(ζ1, ζs) = IIEE(−ζ1, ζs); (160b)

IIIEE(ζ1, ζs) =

∫
f̂E(−Ṽ1 + ζ1 + α̃j Ṽjα̃1, Ṽs + ζs − α̃j Ṽjα̃s)

× ĝE(ζ1 − α̃j Ṽjα̃1, ζs + α̃j Ṽjα̃s)B̂(|α̃iṼi|/|Ṽi|, |Ṽi|)dΩ(α̃)dṼ

=

∫
f̂E(Ṽ1 − ζ1 − α̃j Ṽjα̃1, Ṽs + ζs − α̃j Ṽjα̃s)

× ĝE(−ζ1 + α̃j Ṽjα̃1, ζs + α̃j Ṽjα̃s)B̂(|α̃iṼi|/|Ṽi|, |Ṽi|)dΩ(α̃)dṼ

= IIIEE(−ζ1, ζs); (160c)

Interchanging the arguments of f̂E and ĝE in IIIEE , we have

IVEE(ζ1, ζs) = IVEE(−ζ1, ζs). (160d)

When both f̂ and ĝ are odd with respect to ζ1,

IOO(ζ1, ζs) =

∫
f̂O(−Ṽ1 + ζ1, Ṽs + ζs)ĝO(ζ1, ζs) B̂(|α̃iṼi|/|Ṽi|, |Ṽi|)dΩ(α̃)dṼ

=

∫
f̂O(Ṽ1 − ζ1, Ṽs + ζs)ĝO(−ζ1, ζs) B̂(|α̃iṼi|/|Ṽi|, |Ṽi|)dΩ(α̃)dṼ

= IOO(−ζ1, ζs); (161a)

Interchanging the arguments of f̂O and ĝO in IIOO, we have

IIOO(ζ1, ζs) = IIOO(−ζ1, ζs); (161b)
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IIIOO(ζ1, ζs) =

∫
f̂O(−Ṽ1 + ζ1 + α̃j Ṽjα̃1, Ṽs + ζs − α̃j Ṽjα̃s)

× ĝO(ζ1 − α̃j Ṽjα̃1, ζs + α̃j Ṽjα̃s)

× B̂(|α̃iṼi|/|Ṽi|, |Ṽi|)dΩ(α̃)dṼ

=

∫
f̂O(Ṽ1 − ζ1 − α̃j Ṽjα̃1, Ṽs + ζs − α̃j Ṽjα̃s)

× ĝO(−ζ1 + α̃j Ṽjα̃1, ζs + α̃j Ṽjα̃s)B̂(|α̃iṼi|/|Ṽi|, |Ṽi|)dΩ(α̃)dṼ

= IIIOO(−ζ1, ζs); (161c)

Interchanging the arguments of f̂ and ĝ in IIIOO, we have

IVOO(ζ1, ζs) = IVOO(−ζ1, ζs). (161d)

When f̂ is even and ĝ is odd with respect to ζ1,

IEO(ζ1, ζs) =

∫
f̂E(−Ṽ1 + ζ1, Ṽs + ζs)ĝO(ζ1, ζs)B̂(|α̃iṼi|/|Ṽi|, |Ṽi|)dΩ(α̃)dṼ

= −
∫
f̂E(Ṽ1 − ζ1, Ṽs + ζs)ĝO(−ζ1, ζs)B̂(|α̃iṼi|/|Ṽi|, |Ṽi|)dΩ(α̃)dṼ

= −IEO(−ζ1, ζs); (162a)

IIEO(ζ1, ζs) =

∫
f̂E(ζ1, ζs)ĝO(−Ṽ1 + ζ1, Ṽs + ζs)B̂(|α̃iṼi|/|Ṽi|, |Ṽi|)dΩ(α̃)dṼ

= −
∫
f̂E(−ζ1, ζs)ĝO(Ṽ1 − ζ1, Ṽs + ζs)B̂(|α̃iṼi|/|Ṽi|, |Ṽi|)dΩ(α̃)dṼ

= −IIEO(−ζ1, ζs); (162b)

IIIEO(ζ1, ζs) =

∫
f̂E(−Ṽ1 + ζ1 + α̃j Ṽjα̃1, Ṽs + ζs − α̃j Ṽjα̃s)

× ĝO(ζ1 − α̃j Ṽjα̃1, ζs + α̃j Ṽjα̃s)B̂(|α̃iṼi|/|Ṽi|, |Ṽi|)dΩ(α̃)dṼ

= −
∫
f̂E(Ṽ1 − ζ1 − α̃j Ṽjα̃1, Ṽs + ζs − α̃j Ṽjα̃s)

× ĝO(−ζ1 + α̃j Ṽjα̃1, ζs + α̃j Ṽjα̃s)B̂(|α̃iṼi|/|Ṽi|, |Ṽi|)dΩ(α̃)dṼ

= −IIIEO(−ζ1, ζs); (162c)
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IVEO(ζ1, ζs) =

∫
f̂E(ζ1 − α̃j Ṽjα̃1, ζs + α̃j Ṽjα̃s)

× ĝO(−Ṽ1 + ζ1 + α̃j Ṽjα̃1, Ṽs + ζs − α̃j Ṽjα̃s)

× B̂(|α̃iṼi|/|Ṽi|, |Ṽi|)dΩ(α̃)dṼ

= −
∫
f̂E(−ζ1 + α̃j Ṽjα̃1, ζs + α̃j Ṽjα̃s)

× ĝO(Ṽ1 − ζ1 − α̃j Ṽjα̃1, Ṽs + ζs − α̃j Ṽjα̃s)

× B̂(|α̃iṼi|/|Ṽi|, |Ṽi|)dΩ(α̃)dṼ

= −IVEO(−ζ1, ζs). (162d)

For IOE , IIOE , IIIOE , and IVOE , interchanging the role of f̂ and ĝ, respectively,
in IIEO, IEO, IVEO, and IIIEO, we have

IOE(ζ1, ζs) = −IOE(ζ1, ζs), (163a)

IIOE(ζ1, ζs) = −IIOE(ζ1, ζs), (163b)

IIIOE(ζ1, ζs) = −IIIOE(ζ1, ζs), (163c)

IVOE(ζ1, ζs) = −IVOE(ζ1, ζs). (163d)

The parity is common to I, II, III, and IV. Therefore, the parity of Ĵ(f̂ , ĝ)
is the same as I, i.e.,

Ĵ(f̂E , ĝE)(ζ1, ζs) = Ĵ(f̂E , ĝE)(−ζ1, ζs), (164a)

Ĵ(f̂O, ĝO)(ζ1, ζs) = Ĵ(f̂O, ĝO)(−ζ1, ζs), (164b)

Ĵ(f̂E , ĝO)(ζ1, ζs) = −Ĵ(f̂E , ĝO)(−ζ1, ζs), (164c)

Ĵ(f̂O, ĝE)(ζ1, ζs) = −Ĵ(f̂O, ĝE)(−ζ1, ζs). (164d)

Obviously, the same parity holds for the other components, i.e., ζ2, ζ3, of ζ.
(Section 6.3: Version 4-00)

6.4 Supplement to Section M-A.10

6.4.1 On the equality condition of Eq. (M-A.266)

Here we will discuss the equality condition in the Darrozes�Guiraud inequality in
Section M-A.10 in more detail. The equality in the Jensen inequality (M-A.265)
is proved to hold when and only when φ is independent of ξ (see, e.g., Reference
M-129). It should be noted that the uniqueness condition of the equality applies
only to the region of ξ where ψ > 0 and that no condition is required of φ where
ψ = 0. Choose a ξ in (ξi − vwi)ni > 0, and consider the condition for equality
in Eq. (M-A.266). According to the above note, the equality holds only when
f(ξ∗)/f0(ξ∗) is a constant (say, c1) in the region D1 of ξ∗, joint or disjoint,
where KB(ξ, ξ∗) > 0. If we choose another ξ, KB(ξ, ξ∗) > 0 in a di�erent range
D2 of ξ∗, and f(ξ∗)/f0(ξ∗) = c2 (c2 : const) is required in D2. The constants
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c1 and c2 may be di�erent if D1 and D2 are disjoint. The two constants are
required to be the same (c1 = c2), if D1 and D2 overlap for some range of ξ∗
(their intersection is neither empty nor measure zero).41 From the condition
(M-1.27b), there is a region of ξ where KB > 0 for any ξ∗ in (ξi∗ − vwi)ni < 0.
Thus, the collection of the regions of ξ∗ where KB(ξ, ξ∗) > 0 with respect to
all ξ in (ξi− vwi)ni > 0 covers (ξi∗− vwi)ni < 0. If KB is such a kernel that the
series of the ranges ξ∗ of di�erent ξ constituting the above collection overlap
with nonzero measure at the intersecting points, the constant is unique over
(ξi∗ − vwi)ni < 0, i.e., f(ξ∗) = c0f0(ξ∗) (c0 : a constant) in (ξi∗ − vwi)ni < 0
(see Fig. 1).42 Then, from the condition (M-1.27c),

f(ξ) = c0f0(ξ) for all ξ. (165)

Incidentally, the kernel KB that is positive almost everywhere (Footnote M-5 in
Section M-1.2) is classi�ed as positive, and Eq. (165) holds almost everywhere of
ξ. When the overlap-covering condition is not satis�ed, the above Maxwellian
is not necessarily required for the equality.43

The equality condition of Eq. (M-A.267) is seen to be the same as that of
Eq. (M-A.266) in the following way. Obviously, B = A ⇔

∫
V
a(ξ)[B(ξ) −

A(ξ)]dξ = 0 if A(ξ) ≤ B(ξ) and a(ξ) > 0. Taking

A(ξ) = F

(
f(ξ)

f0(ξ)

)
, B(ξ) =

∫
(ξi∗−vwi)ni<0

KB(ξ, ξ∗)f0(ξ∗)

f0(ξ)
F

(
f(ξ∗)

f0(ξ∗)

)
dξ∗,

and (ξi − vwi)ni > 0 as the domain V of integration, and comparing Eq. (M-
A.266) and its next equation without number, we �nd the equivalence of the
equality conditions of Eqs. (M-A.266) and (M-A.267). The above discussion
being common for a strictly convex function F , the equality condition applies
to the Darrozes�Guiraud inequality (M-A.262) and Eq. (M-A.268).

(Section 6.4.1: Version 5-00)

6.4.2 Extension of the Darrozes�Guiraud inequality to an interface

Darrozes�Guiraud inequality (M-A.262) or (M-A.267) is proved for a function
f satisfying the boundary condition (M-1.26) on a simple boundary (Reference
M-70). Here, we discuss its extension to f that satis�es the boundary condition
(M-1.30) on an interface of a gas and its condensed phase.

41(i) In the common region, f(ξ∗)/f0(ξ∗) cannot take two values. On a set with measure
zero, whether f(ξ∗)/f0(ξ∗) is determined or not can be ignored. (See Footnote M-5 in Section
M-1.2 for the set with measure zero.)

(ii) If the intersection is empty or measure zero, the integrations with respect to ξ∗ at
di�erent ξ's, are not in�uenced by the f(ξ∗)/f0(ξ∗) determined by the other ξ.

(iii) The equality only on a set of ξ with measure zero is ignored. Thus, the above set of
ξ∗ where f(ξ∗)/f0(ξ∗) is constant is required to have some extent with measure nonzero with
respect to ξ including the intersections.

42The collection has to have some extent mentioned in Footnote 41 (iii).
43In fact, Takata (private communication) constructed a kernel KB , which is zero in [(ξi −

vwi)ni − C][(ξi∗ − vwi)ni + C∗] > 0 (C and C∗: some positive constants) and satis�es the
conditions (M-1.27a)�(M-1.27c), for which the equality holds for another function.
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Figure 1: Kernel KB(ξ, ξ∗) that requires f(ξ) = c0f0(ξ) for all ξ. The quarter
in the �gure is the range (ξi∗ − vwi)ni < 0 and (ξi − vwi)ni > 0 in the space
(ξ∗, ξ). Let KB > 0 in the regions A, B, C, and D at least, and their ranges of
ξ∗ cover (ξi∗ − vwi)ni < 0. Then, f(ξ∗)/f0(ξ∗) is constant in each of A, B, C,
and D (say, a in A, b in B, c in C, and d in D). Some ranges in A and B being
on a common ξ having some extent, a = b. In view of the intersection of the
ranges of ξ∗ of B and C and that of B and D, c = b (= a), and d = b (= a).
Thus, f(ξ∗)/f0(ξ∗) = a in (ξi∗ − vwi)ni < 0. It may be noted that the regions
of ξ∗ of A and C are required to be only in contact with each other because the
intersection of the ranges of ξ∗ of C and B is not measure zero.
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The boundary condition on the interface is given as44

f(ξ) = gI(ξ) +

∫
(ξi∗−vwi)ni<0

KI(ξ, ξ∗)f(ξ∗)dξ∗ [(ξi − vwi)ni > 0], (166)

where gI and KI are independent of f. Further, gI and KI satisfy the following
conditions [see Eqs. (M-1.31a)�(M-1.31c)]:
(i) Nonnegativity of gI

gI(ξ) ≥ 0 [(ξi − vwi)ni > 0]. (167a)

(ii) Nonnegativity of KI

KI(ξ, ξ∗) ≥ 0 [(ξi − vwi)ni > 0, (ξi∗ − vwi)ni < 0]. (167b)

(iii) Condition of establishment of the equilibrium state

fw(ξ) = gI(ξ) +

∫
(ξi∗−vwi)ni<0

KI(ξ, ξ∗)fw(ξ∗)dξ∗ [(ξi − vwi)ni > 0], (167c)

where fw is the Maxwellian determined by the temperature Tw and velocity vwi
of the interface and the saturation gas density ρw at temperature Tw i.e.,

fw(ξ) =
ρw

(2πRTw)3/2
exp

(
− (ξi − vwi)2

2RTw

)
. (168)

It is also required here that if f(ξ∗) for (ξi∗ − vwi)ni < 0 is the corresponding
part of another Maxwellian [say, fe(ξ)], it does not give fe(ξ) for (ξi−vwi)ni > 0,
which will be called the uniqueness condition of Eq. (167c) for shortness.
In the following discussion, we impose another condition in addition to Eqs. (167a)
�(167c), i.e., putting

α(ξ∗) = −
∫
(ξi−vwi)ni>0

(ξi − vwi)ni
(ξj∗ − vwj)nj

KI(ξ, ξ∗)dξ [(ξj∗ − vwj)nj < 0], (169)

we assume45 that

0 ≤ α(ξ∗) ≤ 1 [(ξi∗ − vwi)ni < 0]. (170)

44The variables X and t are not shown here because they are not important in the present
discussion [see Footnote M-10 (ii) in Section M-1.5].

45(i) This condition corresponds to Eq. (M-1.27b) for a simple boundary. The simple bound-
ary consists of molecules of di�erent kinds from the gas molecules, and they stay there forever.
The gas molecules impinging on the boundary are re�ected without time delay (in the time
scale of our interest), and there is no net mass �ux to the boundary in this process. The
condition (M-1.27b) is derived from this situation, as explained in Footnote M-13 in Section
M-1.6.1. In the case of an interface, the condition (170) is derived similarly, if we consider
that some of the molecules impinging on the interface do not re�ect and stay there. However,
the interface is the condensed phase of the gas and consists of the same kind of molecules as
the gas. On the interface, molecules leave it depending on the condition of the interface even
if there is no impinging molecules; this is the gI part in Eq. (166). When a molecule impinges
on the interface, it interacts with molecules of the interface, and some molecules leave the
interface. Whether the impinging molecule is re�ected or kicks out another molecule has no
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Incidentally, from Eqs. (167a)�(167c),

fw(ξ)− gI(ξ) ≥ 0. (171)

We will show that the inequality (M-A.267) with f0 being replaced by fw,
i.e., ∫

all ξ

(ξi − vwi)nifw(ξ)F [f(ξ)/fw(ξ)]dξ ≤ 0, (172)

holds when F (x) is such a strictly convex function (see Footnote M-52 in Section
M-A.10) that

F (x) ≥ 0 and F (1) = 0.

The equality of the relation (172) holds when f(ξ) = fw(ξ), and this relation
is required except for some boundary conditions shown later. The inequality is
proved with the aid of the Jensen inequality [see Eq. (M-A.265) or References
M-110, M-129, M-158, or M-171]

F

(∫
φψdξ

/∫
ψdξ

)
≤
∫
ψF (φ)dξ

/∫
ψdξ (ψ ≥ 0), (173)

where F (x) is a strictly convex function, and φ and ψ (ψ ≥ 0) are arbitrary
functions of ξ. The equality sign holds when φ is independent of ξ; it is also
required where ψ > 0 for the equality.

Let F (x) be a nonnegative strictly convex function that takes value zero at
x = 1,46 i.e.,

F (x) ≥ 0, F (1) = 0. (174)

Consider the function F (f(ξ)/fw(ξ)), where fw(ξ) is given by Eq. (168). The
function F (f(ξ)/fw(ξ)) for (ξi − vwi)ni > 0 is bounded by an integral of f(ξ)

di�erence. Further, depending on the condition (e.g., speed or direction) of the impinging
molecule and that of the interface, more than one molecule may be kicked out or no molecule
may be kicked out or re�ected. Thus, it is not clear that the condition (170) holds or not.
However, it is sure that the size of the kernel KI is limited owing to the conditions (167a)�
(167c), e.g., KI = 0 if gI = fw (the complete condensation). See also Footnote 48 in Section
6.4.2.
(ii-a) The case α(ξ∗) = 1 for (ξj∗ − vwj)nj < 0 is excluded by the uniqueness condition of

Eq. (167c). In fact, multiplying Eq. (166) by (ξj − vwj)nj and integrating with respect to ξ
over (ξj−vwj)nj>0, we obtain gI(ξ) = 0. Thus, Cfw (C : a constant) also satis�es Eq. (166).
(ii-b) When α(ξ∗) = 0 for (ξj∗ − vwj)nj < 0, the kernel KI(ξ, ξ∗) degenerates, i.e.,

KI(ξ, ξ∗) = 0 for (ξj − vwj)nj>0. This is the case of the complete condensation.
46Note that x = 1 is the unique zero point of F (x).
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for (ξi − vwi)ni < 0 with the aid of Eq. (166) in the following way:

F

(
f(ξ)

fw(ξ)

)
= F

(
gI(ξ)

fw(ξ)
+

∫
(ξi∗−vwi)ni<0

KI(ξ, ξ∗)

fw(ξ)
f(ξ∗)dξ∗

)

= F

[
gI(ξ)

fw(ξ)
+

(
1− gI(ξ)

fw(ξ)

)∫
<0

KI(ξ, ξ∗)fw(ξ∗)

[1− gI(ξ)/fw(ξ)]fw(ξ)

f(ξ∗)

fw(ξ∗)
dξ∗

]
≤ gI
fw
F (1) +

(
1− gI

fw

)
F

(∫
<0

KI(ξ, ξ∗)fw(ξ∗)

[1− gI(ξ)/fw(ξ)]fw(ξ)

f(ξ∗)

fw(ξ∗)
dξ∗

)
=

(
1− gI(ξ)

fw(ξ)

)
F

(∫
(ξi∗−vwi)ni<0

KI(ξ, ξ∗)fw(ξ∗)

[1− gI(ξ)/fw(ξ)]fw(ξ)

f(ξ∗)

fw(ξ∗)
dξ∗

)
[(ξi − vwi)ni > 0].

(175)

Here, we, for a moment, consider the point of ξ [(ξi − vwi)ni > 0] where

fw(ξ)− gI(ξ) > 0,

for which∫
(ξi∗−vwi)ni<0

KI(ξ, ξ∗)fw(ξ∗)

[1− gI(ξ)/fw(ξ)]fw(ξ)
dξ∗ = 1 [(ξi − vwi)ni > 0],

because of Eq. (167c); in the second and third lines, the simple < sign of the
subscript of the integral sign

∫
indicates (ξi∗ − vwi)ni < 0; the convex property

of F (x) is used from the second line to the third, and F (1) = 0 is used from the
third to the fourth.

Now, we apply the Jensen inequality (173) to the function F on the fourth
line in Eq. (175). Here, we choose φ(ξ∗) and ψ(ξ∗) as

φ(ξ∗) =
f(ξ∗)

fw(ξ∗)
,

ψ(ξ∗) =
KI(ξ, ξ∗)fw(ξ∗)

[1− gI(ξ)/fw(ξ)]fw(ξ)
≥ 0 [(ξi − vwi)ni > 0, (ξi∗ − vwi)ni < 0].

It should be noted that φ(ξ∗) is de�ned for the whole range of ξ∗ and that ψ(ξ∗)
depends also on ξ and satis�es the relation, irrespective of ξ,∫

(ξi∗−vwi)ni<0

ψ(ξ∗)dξ∗ = 1 [(ξi − vwi)ni > 0].

Then, F (f(ξ)/fw(ξ)) for (ξi − vwi)ni > 0 is bounded as

F

(
f(ξ)

fw(ξ)

)
≤
(

1− gI
fw

)
F

(∫
(ξi∗−vwi)ni<0

KI(ξ, ξ∗)fw(ξ∗)

[1− gI(ξ)/fw(ξ)]fw(ξ)

f(ξ∗)

fw(ξ∗)
dξ∗

)

≤
∫
(ξi∗−vwi)ni<0

KI(ξ, ξ∗)fw(ξ∗)

fw(ξ)
F

(
f(ξ∗)

fw(ξ∗)

)
dξ∗ [(ξi − vwi)ni > 0].

(176)
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Up to this point, we limited our discussion to the point of ξ [(ξi−vwi)ni > 0]
where

fw(ξ)− gI(ξ) > 0.

If it vanishes at some ξA [(ξiA − vwi)ni > 0], i.e.,

fw(ξA)− gI(ξA) = 0, (177)

the integral
∫
(ξi∗−vwi)ni<0

KI(ξ, ξ∗)fw(ξ∗)dξ∗ vanishes there, i.e.,∫
(ξi∗−vwi)ni<0

KI(ξA, ξ∗)fw(ξ∗)dξ∗ = 0,

because of the condition (167c). The function fw(ξ∗) being positive for all ξ∗,
the kernel KI(ξA, ξ∗) must vanish for (ξi∗ − vwi)ni < 0, i.e.,

KI(ξA, ξ∗) = 0 [(ξi∗ − vwi)ni < 0]. (178)

Thus, from the boundary condition (166),

f(ξA) = gI(ξA) = fw(ξA).

Therefore, the function F (f(ξA)/fw(ξA)) vanishes, i.e.,

F (f(ξA)/fw(ξA)) = F (1) = 0. (179)

From Eqs. (178) and (179), the equality holds between the left-most side and
the right-most of Eq. (176) at ξ = ξA. In conclusion, the inequality

F

(
f(ξ)

fw(ξ)

)
≤
∫
(ξi∗−vwi)ni<0

KI(ξ, ξ∗)fw(ξ∗)

fw(ξ)
F

(
f(ξ∗)

fw(ξ∗)

)
dξ∗ [(ξi − vwi)ni > 0],

(180)
holds without the assumption of fw(ξ)− gI(ξ) > 0.

When f(ξ)/fw(ξ) = 1 for all ξ, F (f(ξ)/fw(ξ)) vanishes in Eq. (180), and
the equality holds there. We look for the other possibilities of the equality. The
�rst inequality in Eq. (176) comes from that of Eq. (175), for which the equality
holds at ξ = ξA when (i) gI(ξA)/fw(ξA) = 0 or (ii) gI(ξA)/fw(ξA) = 1, or (iii)
the arguments of two F 's on the third line of Eq. (175) are equal, i.e.,∫

(ξi∗−vwi)ni<0

KI(ξA, ξ∗)fw(ξ∗)

[1− gI(ξA)/fw(ξA)]fw(ξA)

f(ξ∗)

fw(ξ∗)
dξ∗ = 1, (181)

for some f(ξ∗). In the third case, the equality relation being imposed between
the �rst and the second line on the right-hand side of Eq. (176) under the con-
dition (181), we �nd that

f(ξ∗) = fw(ξ∗) in BA(ξ∗),

where BA(ξ∗) is the region of ξ∗ in which KI(ξA, ξ∗) > 0.
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If gI(ξ)/fw(ξ) = 0 for (ξi−vwi)ni > 0, the boundary condition (166) reduces
to

f(ξ) =

∫
(ξi∗−vwi)ni<0

KI(ξ, ξ∗)f(ξ∗)dξ∗. (182)

Then, the Maxwellian a0fw(ξ) (a0 : a constant) also satis�es the boundary
condition (166), which is not allowed by the uniqueness condition of Eq. (167c).
Thus, this case is excluded. If gI(ξ)/fw(ξ) = 1 for (ξi − vwi)ni > 0, the kernel
KI(ξ, ξ∗) vanishes for (ξi−vwi)ni > 0 and (ξi∗−vwi)ni < 0 from the discussion in
the preceding paragraph. That is, f(ξ) = fw(ξ) in (ξi−vwi)ni > 0 irrespective of
f(ξ) in (ξi−vwi)ni < 0 (this is the case of the complete condensation condition).
For this case the equality holds in Eq. (180). If the third condition holds for
(ξi − vwi)ni > 0, we have

fw(ξ) = gI(ξ) +

∫
(ξi∗−vwi)ni<0

KI(ξ, ξ∗)f(ξ∗)dξ∗ [(ξi − vwi)ni > 0]. (183)

From the discussion of the preceding paragraph,

f(ξ∗) = fw(ξ∗) in B(ξ∗), (184)

where B(ξ∗) is the region of ξ∗ in whichKI(ξ, ξ∗) > 0 for some ξ. This condition
is paraphrased as

f (ξ∗) = fw (ξ∗) except in the region α(ξ∗) = 0. (185)

Whether f (ξ∗) = fw (ξ∗) or α(ξ∗) = 0 in (ξi∗ − vwi)ni < 0,

f(ξ) = fw(ξ) [(ξi − vwi)ni > 0].

Let us consider the case where the three situations (i), (ii), and (iii) listed
just before Eq. (181) take place for di�erent ξ, say, (i) for ξ in A1, (ii) for ξ in
A2, and (iii) for ξ in A3. The A2 part does not contribute to the restriction on
f(ξ∗). When A1 is empty, the condition is the same as for the case of Eq. (183),
i.e., Eq. (184) or (185). When A1 is not empty, from the discussion for ξ in
A3, f (ξ∗) = fw (ξ∗) in the region of ξ∗ where KI(ξ, ξ∗) > 0 for some ξ in A3

[say, B3(ξ∗)], and the condition for the remaining ξ∗ is determined only by the
behavior of KI for ξ in A1, that is, the region f (ξ∗)/fw (ξ∗) = const [say, B1(ξ∗)]
is looked for in the range (ξi∗ − vwi)ni < 0 in the same way as in Section 6.4.1
and if B1 has a common region with B3, f (ξ∗) = fw (ξ∗) in B1. In the region
of the remaining ξ∗ [say, R(ξ∗)], f (ξ∗) other than fw (ξ∗) can exist. The region
α(ξ∗) = 1 in R(ξ∗) is denoted by Rα=1 for the convenience in the later citation.

When A3 is empty, the boundary condition (166) is expressed as

f(ξ) =

(
0

fw(ξ)

)
+

∫
(ξi∗−vwi)ni<0

(
KI(ξ, ξ∗)

0

)
f(ξ∗)dξ∗

[ξ in A1]
[ξ in A2]

,

(186)
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where∫
(ξi∗−vwi)ni<0

KI(ξ, ξ∗)fw(ξ∗)

fw(ξ)
dξ∗ = 1 [(ξi − vwi)ni > 0 and ξ in A1].

The boundary condition (186) obviously satis�es the conditions (167a)�(167c).47

In this case, the restriction on f(ξ∗) is determined by KI in A1. Substituting
f(ξ∗) = CDfw(ξ∗) [(ξi∗ − vwi)ni < 0, CD : independent of ξ∗], which is the
strongest restriction on f(ξ∗), into Eq. (186), we have f(ξ) = CDfw(ξ) [in A1]
and f(ξ) = fw(ξ) [in A2] for (ξi − vwi)ni > 0. For this f(ξ), the equality
holds in Eq. (180). Thus, for the boundary condition (186) as well as the com-
plete condensation condition, the equality in Eq. (180) holds for f(ξ) other than
f(ξ) = fw(ξ) [f(ξ∗) = CDfw(ξ∗) for (ξi∗ − vwi)ni < 0 for Eq. (186), and f(ξ∗)
is arbitrary for (ξi∗ − vwi)ni < 0 for the complete condensation]. This is an
example of f(ξ∗) that satis�es the equality in Eq. (180).

With the aid of the inequality (180) and Eq. (169), we have∫
(ξi−vwi)ni>0

(ξi − vwi)nifw(ξ)F

(
f(ξ)

fw(ξ)

)
dξ

≤
∫
(ξi−vwi)ni>0

(ξi − vwi)nifw(ξ)

∫
(ξi∗−vwi)ni<0

KI(ξ, ξ∗)fw(ξ∗)

fw(ξ)
F

(
f(ξ∗)

fw(ξ∗)

)
dξ∗dξ

=

∫
(ξi∗−vwi)ni<0

fw(ξ∗)F

(
f(ξ∗)

fw(ξ∗)

)∫
(ξi−vwi)ni>0

(ξi − vwi)niKI(ξ, ξ∗)dξdξ∗

= −
∫
(ξi∗−vwi)ni<0

α(ξ∗)(ξi∗ − vwi)nifw(ξ∗)F

(
f(ξ∗)

fw(ξ∗)

)
dξ∗, (187)

where 0 ≤ α(ξ∗) ≤ 1 [the assumption (170)]. Thus, we obtain the extension of
Eq. (M-A.267) to the case of an interface as follows:∫

all ξ

(ξi − vwi)nifw(ξ)F

(
f(ξ)

fw(ξ)

)
dξ

≤
∫
(ξi∗−vwi)ni<0

[1− α(ξ∗)](ξi∗ − vwi)nifw(ξ∗)F

(
f(ξ∗)

fw(ξ∗)

)
dξ∗ ≤ 0.

(188)

Obviously, the equal sign holds in the two inequalities of Eq. (188) when f(ξ) =
fw(ξ). Conversely, it is required for the equal sign to hold in the inequalities
that f(ξ) = fw(ξ) for all ξ when Rα=1 is empty.48 It should be noted that

47To con�rm the uniqueness condition of Eq. (167c) is simple. Note f(ξ) [(ξi − vwi)ni > 0]
for ξ in A2.

48(i) The integration of a nonnegative function multiplied by a positive function does not
change the equality condition. Thus, the equality condition of the inequality of Eq. (187) is
the same as that of Eq. (180) [B = A ⇔

∫
a(ξ)[B(ξ) − A(ξ)]dξ = 0 if A(ξ) ≤ B(ξ) and

a(ξ) > 0]. Thus, the range where f(ξ∗) = fw(ξ∗) is required is outside R. For the equality
of the Darrozes�Guiraud inequality, we have to examine the equality of the second inequality
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F (x) is required to satisfy that F (x) ≥ 0 and F (1) = 0 in addition to convexity.
Here, we take

F (x) = x(lnx− 1) + 1,

which is strictly convex, nonnegative, and zero at x = 1. Then,∫
all ξ

(ξi − vwi)ni
[
f(ξ)

(
ln

f(ξ)

fw(ξ)
− 1

)
+ fw(ξ)

]
dξ ≤ 0,

or ∫
all ξ

(ξi − vwi)nif(ξ) ln
f(ξ)

fw(ξ)
dξ ≤ ρ(vi − vwi)ni. (189)

This is the extension of Eq. (M-A.262) for a simple boundary to an interface.
We try to express the inequality (189) in terms of macroscopic variables. It

is simply transformed in the following form:∫
all ξ

(ξi − vwi)nif(ξ) ln
f(ξ)

c0
dξ

≤
∫
all ξ

(ξi − vwi)nif(ξ) ln
fw(ξ)

c0
dξ + ρ(vi − vwi)ni

= − 1

RTw

[
qini + (vj − vwj)p̃ijni + ρ(vi − vwi)ni

(
5

2
RT +

1

2
(vj − vwj)2

)]
+ ρ(vi − vwi)ni

(
ln

ρw
(2πRTw)3/2c0

+ 1

)
,

where c0 is a constant to make the argument of the logarithmic function dimen-
sionless, and

p̃ij = pij − pδij , (190)

The p̃ij is the part of stress tensor with the pressure contribution subtracted.
Only the tangential component of the stress p̃ijni contributes to (vj −vwj)p̃ijni
in Eq. (188). The second equal sign holds only when F (f(ξ∗)/fw(ξ∗)) = 0 in R outside
Rα=1 because fw(ξ∗) > 0 and 1−α(ξ∗) > 0 there. Thus, f(ξ∗)/fw(ξ∗) = 1 outside Rα=1 in
(ξi∗−vwi)ni < 0 (see Footnote 46 in Section 6.4.2). When Rα=1 is empty, the integral

∫
all ξ on

the left-most side reduces to
∫
(ξi−vwi)ni>0. This vanishes only when F (f(ξ)/fw(ξ)) = 0, i.e.,

f(ξ) = fw(ξ) for (ξi − vwi)ni > 0. Thus, f(ξ) = fw(ξ) for all ξ when Rα=1 is empty. It may
be noted that when A3 is empty [or for the boundary condition (186)], Rα=1 is the range of
ξ∗ where α(ξ∗) = 1 in (ξi∗−vwi)ni < 0. Incidentally, gI(ξ) that is positive almost everywhere
(Footnote M-5 in Section M-1.2) is classi�ed positive, for which A1 in the paragraph following
to that of Eq. (185) is empty and Eq. (185) holds (that is, Rα=1 is empty), and therefore the
equal signs hold in Eq. (188) only when f(ξ) = fw(ξ) for all ξ.
(ii) If α(ξ∗) exceeds unity for some range of ξ∗ in (ξi∗ − vwi)ni < 0 and the assumption

(170) is violated, but the integral∫
(ξi∗−vwi)ni<0

[1− α(ξ∗)](ξi∗ − vwi)nifw(ξ∗)F

(
f(ξ∗)

fw(ξ∗)

)
dξ∗

is nonpositive, the inequality holds.
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when no �ow to the boundary. Further, ln ρw/(2πRTw)3/2c0 is related to the H
function Hw for f(ξ) = fw(ξ) as

Hw

ρw
= ln

ρw
(2πRTw)3/2c0

− 3

2
, (191)

which is independent of vwi. That is,

Hw =

∫
all ξ

fw(ξ) ln
fw(ξ)

c0
dξ =

∫
all ξ

f (v)w (ξ) ln
f
(v)
w (ξ)

c0
dξ,

where

f (v)w (ξ) =
ρw

(2πRTw)3/2
exp

(
− (ξi − vi)2

2RTw

)
.

On the other hand, by de�nition (see Section M-1.7),∫
all ξ

(ξi − vwi)nif(ξ) ln[f(ξ)/c0]dξ = (Hi −Hvwi)ni.

Therefore,

(Hi −Hvwi)ni

≤ − 1

RTw
[qini + (vj − vwj)p̃ijni]

+ ρ(vi − vwi)ni
[
Hw

ρw
− 1

RTw

(
5

2
R(T − Tw) +

1

2
(vj − vwj)2

)]
. (192)

When f = fw, both sides of the inequality vanish and the equal sign holds.
Conversely, for the kernel KI with Rα=1 empty, e.g., gI that is positive almost
everywhere, the equal sign holds only when f = fw.

Finally, we consider the variation of the integral H of H over the domain D.
According to Eq. (M-1.36),

dH

dt
=

∫
∂D

(Hi −Hvwi)ni +

∫
D

GdX,

where

H =

∫
D

HdX.

With the aid of Eq. (192), the variation is bounded as

dH

dt
≤ − 1

RTw
[qini + (vj − vwj)p̃ijni]

+ ρ(vi − vwi)ni
[
Hw

ρw
− 1

RTw

(
5

2
R(T − Tw) +

1

2
(vj − vwj)2

)]
, (193)

because
∫
D
GdX ≤ 0 [see Eq. (M-1.34b)].

(Section 6.4.2: Version 5-00)
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