
Supplement to

Kinetic Theory and Fluid

Dynamics

Yoshio Sone

(Birkhäuser, Boston, 2002)

Yoshio Sone

Version 3-01 (10 September 2010)

Kyoto University Research Information Repository

http://hdl.handle.net/2433/66099

Bibliography

Update of bibliography

• [161] Sone, Y., M. Handa, and H. Sugimoto [2002]:
(to be published) → 299�332

• p. 151, the eighth line from the bottom:
Sone, Handa & Doi [unpublished] → Sone, Handa & Doi [2003]
The following reference is to be added to Bibliography:

Sone, Y., M. Handa, and T. Doi (2003), Ghost e�ect and bifurcation in a gas
between coaxial circular cylinder with di�erent temperatures, Phys. Fluids 15,
2903�2915.
• p. 159, the sixth line

Sone & Doi [unpublished] → Sone & Doi [2003]
The following reference is to be added to Bibliography:

Sone, Y. and T. Doi (2003), Bifurcation of and ghost e�ect on temperature
�eld in the Bénard problem of a gas in the continuum limit, Phys. Fluids 15,
1405�1423.

Errata

• p. 11, the 10th line
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specular condition → specular re�ection

• p. 33, the �rst line in Eq. (3.31c):

∂SijG0

∂xi
→ ∂SijG0

∂xj

• p. 33, the �rst line in Eq. (3.31d):

∂SijG1

∂xi
→ ∂SijG1

∂xj

• p. 36, Footnote 7:
Footnote 7 should be replaced by the following statement:

In some cases, the boundary data uwi, τw, or ωw (thus, Pw) are unknown
beforehand and may depend on the Knudsen number, for example, the surface
temperature of a particle set freely in a gas. To include the case, the data
uwi, τw, ωw, and Pw also are expanded in power series of k in the following
discussion. Even when they are independent of k, the φw depends on k because
φw generally depends on φ (ζini < 0).

• p. 104, the second line in Footnote 18:

only Ω8 and Θ8 → (Ω8,Θ8), (Ω9,Θ9), and (Ω10,Θ10)

• p. 146, the �fth line:

Ŷ1(η̃) = Ŷ1(η̃) → Ŷ1(η̃) = Y1(η̃)

• p. 177, Eq. (6.53):
The following note should be made to Eq. (6.53):

Equation (6.54), which is derived from Eqs. (6.50), (6.52), and v̂wini = 0,
is used in the derivation of Eq. (6.53) from the solvability condition. See the
second paragraph in page 130 of Y. Sone, Molecular Gas Dynamics (Birkhäuser,
Boston, 2007).

To improve the inde�nite expression, the third paragraph on p. 177, which
starts from its 9th line from the bottom and ends at the second line on p. 178,
should be replaced by the following paragraph:1

Now return to the discussion of f̂Vm. The �rst relation of the solvability
condition (6.48) with m = 1, where

Ih1 = ζini(∂f̂V 0/∂y), (6.51)

reduces to

∂(ρ̂V 0v̂iV 0ni)

∂y
= 0, (6.52)

from which with the aid of Eqs. (6.50) and v̂wini = 0, we have

v̂iV 0ni = 0. (6.54)

1In the new paragraph, the numbering (6.54) comes earlier than (6.53) to avoid the cor-
rection of the quotations in the rest of the book.
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With the use of Eq. (6.54), the scalar product of the second relation of Eq. (6.48)
and ni reduces to

∂p̂V 0/∂y = 0. (6.53)

Thus, p̂V 0 is a function of χ1 and χ2 only, i.e.,

p̂V 0 = p̂V 0(χ1, χ2). (6.55)

The remaining three relations [or the remaining two of the second relation of
Eq. (6.48) and its third relation] reduce to identities with the aid of Eq. (6.54).

• p.215, the third line in Footnote 6:

Mn → −Mn

• p. 220, the �fth line:

Fs → −MnFs

Fb → −MnFb

Supplementary Notes

In the present supplementary notes, the letter K is attached to the labels of
equations and sections, etc. in the book Kinetic Theory and Fluid Dynamics

and the letter M is attached to those in Y. Sone, Molecular Gas Dynamics

(Birkhäuser, Boston, 2007) to avoid confusion. The two books, Kinetic Theory
and Fluid Dynamis and Molecular Gas Dynamics, themselves are, respectively,
referred to as KF and MGD.

1 Chapter K-2

1.1 Bulk viscosity

The assumptions (K-2.14) and (K-2.15) for the stress tensor and heat-�ow vector
in classical gas dynamics are what is to be studied by kinetic theory (see KF).
For a monatomic gas, consisting of identical molecules whose intermolecular
potential is spherically symmetric, which is discussed in KF, the bulk viscosity
is easily seen to vanish. From Eqs. (K-2.2d) and (K-2.2f),2

pii = 3p. (1)

2For molecules with internal degree of freedom (e.g., rotational and vibrational freedoms),
this freedom contributes to the integrands of Eqs. (K-2.2c)�(K-2.2g). Thus, Eq. (1) does not
generally hold. (More precisely, the velocity distribution function f depends also on the
variables of the internal degree of freedom of a molecule. The integration with respect to
these variables in Eqs. (K-2.2a)�(K-2.2g) has to be carried out. The angular momentum due
to the rotation of molecules of in�nitesimal size per unit mass is negligible even when the
energy of rotation is not negligible.) The density ρ and the speci�c internal energy e can be
clearly de�ned whether the gas is in an equilibrium state or not. The speci�c internal energy
e/if per unit freedom of a molecule is taken as RT/2, i.e., e = ifRT/2, where if is the degree
of freedom of a molecule; thus, the relation between e and T is independent of the state of

3



On the other hand, the trace of the �rst relation of Eq. (K-2.15) is

pii = 3p− 3µB
∂vi
∂Xi

.

Thus, from the two relations, we have

µB = 0. (2)

(Section 1.1: Version 3-00)

2 Chapter K-4

2.1 Notes on basic equations in classical �uid dynamics

2.1.1 Euler and Navier�Stokes sets

For the convenience of discussions, the basic equations in the classical �uid
dynamics are summarized here.

The mass, momentum, and energy-conservation equations of �uid �ow are
given by

∂ρ

∂t
+

∂

∂Xi
(ρvi) = 0, (3)

∂

∂t
(ρvi) +

∂

∂Xj
(ρvivj + pij) = 0, (4)

∂

∂t

[
ρ

(
e+

1

2
v2i

)]
+

∂

∂Xj

[
ρvj

(
e+

1

2
v2i

)
+ vipij + qj

]
= 0, (5)

where ρ is the density, vi is the �ow velocity, e is the internal energy per unit
mass, pij , which is symmetric with respect to i and j, is the stress tenor, and qi
is the heat-�ow vector. The pressure p and the internal energy e are given by
the equations of state as functions of T and ρ, i.e.,

p = p(T, ρ), e = e(T, ρ). (6)

Especially, for a perfect gas,

p = RρT, e = e(T ). (7)

Equations (4) and (5) are rewritten with the aid of Eq. (3) in the form

ρ
∂vi
∂t

+ ρvj
∂vi
∂Xj

+
∂pij
∂Xj

= 0, (8)

ρ
∂

∂t

(
e+

1

2
v2i

)
+ ρvj

∂

∂Xj

(
e+

1

2
v2i

)
+

∂

∂Xj
(vipij + qj) = 0. (9)

the gas (equilibrium or nonequilibrium). The pressure is de�ned by the equation of state,
i.e., the perfect gas relation p = ρRT ; thus, except for a monatomic gas without internal
degree of freedom, the pressure di�ers generally from the isotropic part of stress tensor in a
nonequilibrium state.
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The operator ∂/∂t+vj∂/∂xj , which expresses the time variation along the �uid
particle, is denoted by D/Dt, i.e.,

D

Dt
=

∂

∂t
+ vj

∂

∂Xj
.

Multiplying Eq. (8) by vi we obtain the equation for the variation of kinetic
energy as

ρ
D

Dt

(
1

2
v2i

)
= −vi

∂pij
∂Xj

. (10)

Another form of Eq. (5), where Eq. (10) is subtracted from Eq. (9), is given as

ρ
De

Dt
= −pij

∂vi
∂Xj

− ∂qj
∂Xj

. (11)

Noting the thermodynamic relation

De

Dt
= T

Ds

Dt
+

p

ρ2
Dρ

Dt
, (12)

where s is the entropy per unit mass, and Eq. (3), Eq. (11) is rewritten as

ρ
Ds

Dt
= − 1

T

[
(pij − pδij)

∂vi
∂Xj

+
∂qj
∂Xj

]
. (13)

Equation (13) expresses the variation of the entropy of a �uid particle.
Equations (3)�(6) contain more variables than the number of equations.

Thus, in the classical �uid dynamics, the stress tensor pij and the heat-�ow
vector qi are assumed in some ways. The Navier�Stokes set of equations (or the
Navier�Stokes equations) is Eqs. (3)�(6) where pij and qi are given by

pij = pδij − µ
(
∂vi
∂Xj

+
∂vj
∂Xi

− 2

3

∂vk
∂Xk

δij

)
− µB

∂vk
∂Xk

δij , (14)

qi = −λ ∂T
∂Xi

, (15)

where µ, µB , and λ are, respectively, called the viscosity, bulk viscosity, and
thermal conductivity of the �uid. They are functions of T and ρ. The Euler set
of equations (or the Euler equations) is Eqs. (3)�(6) where pij and qi are given
by

pij = pδij , qi = 0, (16)

or the Navier�Stokes equations with µ = µB = λ = 0.
For the Navier�Stokes equations, in view of the relations (14) and (15), the
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entropy variation is expressed in the form3

ρ
Ds

Dt
=

1

T

[
µ

2

(
∂vi
∂Xj

+
∂vj
∂Xi

− 2

3

∂vk
∂Xk

δij

)2
+ µB

(
∂vk
∂Xk

)2
+

∂

∂Xi

(
λ
∂T

∂Xi

)]
.

(17)
For the Euler equations, for which pij and qi are given by Eq.(16), the entropy
of a �uid particle is invariant, i.e.,

ρ
Ds

Dt
= 0. (18)

For an incompressible �uid, the �rst relation of Eq. (6) is replaced by4

Dρ

Dt
= 0 or

∂ρ

∂t
+ vj

∂ρ

∂Xj
= 0. (19)

Thus, from Eqs. (3) and (19),
∂vi
∂Xi

= 0. (20)

Equation (14) for the Navier�Stokes-stress tensor reduces to

pij = pδij − µ
(
∂vi
∂Xj

+
∂vj
∂Xi

)
. (21)

The �rst term on the right-hand side of Eq. (11) reduces to

−pij
∂vi
∂Xj

= −
[
pδij − µ

(
∂vi
∂Xj

+
∂vj
∂Xi

)]
∂vi
∂Xj

=
µ

2

(
∂vi
∂Xj

+
∂vj
∂Xi

)2
.

Thus, Eq. (11) reduces to

ρ
De

Dt
=
µ

2

(
∂vi
∂Xj

+
∂vj
∂Xi

)2
+

∂

∂Xj

(
λ
∂T

∂Xj

)
. (22)

3Note the following transformation:

∂vi

∂Xj

(
∂vi

∂Xj
+
∂vj

∂Xi
−

2

3

∂vk

∂Xk
δij

)
=

1

2

(
∂vi

∂Xj
+
∂vj

∂Xi
−

2

3

∂vk

∂Xk
δij +

2

3

∂vk

∂Xk
δij

)(
∂vi

∂Xj
+
∂vj

∂Xi
−

2

3

∂vk

∂Xk
δij

)
=

1

2

(
∂vi

∂Xj
+
∂vj

∂Xi
−

2

3

∂vk

∂Xk
δij

)2
+

1

3

∂vl

∂Xl
δij

(
∂vi

∂Xj
+
∂vj

∂Xi
−

2

3

∂vk

∂Xk
δij

)
.

The second term in the last expression is easily seen to vanish.
4The density is invariant along �uid-particle paths. If ρ is of uniform value ρ0 initially, it

is a constant, i.e.,
ρ = ρ0.

In a time-independent (or steady) problem, the density is constant along streamlines.
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To summarize, the Navier�Stokes equations for incompressible �uid are

∂vi
∂Xi

= 0, (23a)

ρ
∂vi
∂t

+ ρvj
∂vi
∂Xj

= − ∂p

∂Xi
+

∂

∂Xj

[
µ

(
∂vi
∂Xj

+
∂vj
∂Xi

)]
, (23b)

ρ
∂e

∂t
+ ρvj

∂e

∂Xj
=
µ

2

(
∂vi
∂Xj

+
∂vj
∂Xi

)2
+

∂

∂Xj

(
λ
∂T

∂Xj

)
, (23c)

with the incompressible condition (19) being supplemented, i.e.,

∂ρ

∂t
+ vj

∂ρ

∂Xj
= 0. (24)

.

2.1.2 Boundary condition for the Euler set

In Chapter K-7, we discussed the asymptotic behavior for small Knudsen num-
bers of a gas around its condensed phase where evaporation or condensation
with a �nite Mach number is taking place, and derived the Euler equations
and their boundary conditions that describe the overall behavior of the gas in
the limit that the Knudsen number tends to zero. The number of boundary
conditions on the evaporating condensed phase is di�erent from that on the
condensing one. We will try to understand the structure of the Euler equations
giving the non-symmetric feature of the boundary conditions by a simple but
nontrivial case.

Consider, as a simple case, the two-dimensional boundary-value problem
of the time-independent Euler equations in a bounded domain for an incom-
pressible ideal �uid of uniform density. The mass and momentum-conservation
equations of the Euler set are

∂u

∂x
+
∂v

∂y
= 0, (25)

u
∂u

∂x
+ v

∂u

∂y
= −1

ρ

∂p

∂x
, (26)

u
∂v

∂x
+ v

∂v

∂y
= −1

ρ

∂p

∂y
, (27)

where ρ is the density, which is uniform, (u, v) is the �ow velocity, and p is the
pressure. Owing to Eq. (25), the stream function Ψ can be introduced as

u =
∂Ψ

∂y
, v = −∂Ψ

∂x
. (28)
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Eliminating p from Eqs. (26) and (27), we have5

u
∂Ω

∂x
+ v

∂Ω

∂y
= 0, (29)

where Ω is the vorticity, i.e.,

Ω =
∂u

∂y
− ∂v

∂x
=
∂2Ψ

∂x2
+
∂2Ψ

∂y2
. (30)

From Eqs. (28) and (29),

∂Ψ

∂y

∂Ω

∂x
− ∂Ψ

∂x

∂Ω

∂y
= 0. (31)

This equation shows that Ω is a function of Ψ,6 i.e.,

Ω = F (Ψ). (32)

5The following equation is formed from them:

∂Eq. (26)/∂y − ∂Eq. (27)/∂x = 0.

6This can be seen with the aid of theorems on implicit functions (see Bronshtein & Se-
mendyayev [1997], Buck [1965], Takagi [1961]):

Ω = Ω(x, y), Ψ = Ψ(x, y). (∗)

Solving the second equation with respect to x, we have

x = x̂(Ψ, y). (∗∗)

With this relation into Eq. (∗),

Ω = Ω(x̂(Ψ, y), y) = Ω̂(Ψ, y), (]a)

Ψ = Ψ(x̂(Ψ, y), y) = Ψ̂(Ψ, y). (]b)

That is, Ω is expressed as a function of Ψ and y. From Eqs. (]a) and (]b),

∂Ω̂(Ψ, y)

∂y
=
∂Ω(x̂(Ψ, y), y)

∂y
=
∂Ω(x, y)

∂x

∂x̂(Ψ, y)

∂y
+
∂Ω(x, y)

∂y
, (]]a)

∂Ψ̂(Ψ, y)

∂y
= 0. (]]b)

On the other hand,

∂Ψ̂(Ψ, y)

∂y
=
∂Ψ(x̂(Ψ, y), y)

∂y
=
∂Ψ(x, y)

∂x

∂x̂(Ψ, y)

∂y
+
∂Ψ(x, y)

∂y
.

Thus,
∂Ψ(x, y)

∂x

∂x̂(Ψ, y)

∂y
+
∂Ψ(x, y)

∂y
= 0. (‡)

From Eqs. (31), (]]a) and (‡), we have

∂Ω̂(Ψ, y)

∂y
= 0, or Ω = Ω̂(Ψ).
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This functional relation between Ω and Ψ is a local relation, and therefore F
may be a multivalued function of Ψ. From Eqs. (30) and (32),

∂2Ψ

∂x2
+
∂2Ψ

∂y2
= F (Ψ). (33)

Consider a boundary-value problem in a simply-connected bounded domain,
where Ψ is given on the boundary (Ψ = ΨB). Introduce a coordinate s (0 ≤ s <
S) along the boundary in the direction encircling the domain counterclockwise.
Then, the �uid �ows into the domain on the boundary where ∂ΨB/∂s < 0, and
the �uid �ows out from the domain on the boundary where ∂ΨB/∂s > 0.When
F is given, the problem is a standard boundary-value problem. In the present
problem, we have a freedom to choose F on the part where ∂ΨB/∂s < 0 or
∂ΨB/∂s > 0. For example, take the case where ∂ΨB/∂s < 0 for 0 < s < Sm

and ∂ΨB/∂s > 0 for Sm < s < S, and choose the distribution ΩB(s) of Ω along
the boundary for the part 0 < s < Sm. By the choice of ΩB , the function F (Ψ)
is determined in the following way. Inverting the relation Ψ = ΨB(s) between
Ψ and s on the part 0 < s < Sm, i.e., s(Ψ), and noting the relation (32), we
�nd that F is given by

F (Ψ) = ΩB(s(Ψ)). (34)

Then, the boundary-value problem is �xed. That is, Eq. (33) is �xed as7

∂2Ψ

∂x2
+
∂2Ψ

∂y2
= ΩB(s(Ψ)), (35)

and the boundary condition is given as Ψ = ΨB(s). This system is a standard
from the point of counting of the number of boundary conditions. Obviously,
from Eq. (30), the solution of the above system automatically satis�es condi-
tion Ω = ΩB(s) along the boundary for 0 < s < Sm. We cannot choose the
distribution of Ω on the boundary for Sm < s < S.

The energy-conservation equation of the incompressible Euler set is given by
Eq. (22) with µ = λ = 0, i.e.,

u
∂e

∂x
+ v

∂e

∂y
= 0, or

∂Ψ

∂y

∂e

∂x
− ∂Ψ

∂x

∂e

∂y
= 0, (36)

where e is the internal energy. Thus, e is a function of Ψ, i.e.,

e = F1(Ψ). (37)

In the above boundary-value problem, therefore, e can be speci�ed on the the
part (0 < s < Sm) of the boundary, but no condition can be speci�ed on other
part (Sm < s < S) and vice versa.8

7There is still some ambiguity. The case where there is a region with closed stream lines
Ψ(x, y) = const inside the domain is not excluded.

8From the second relation on e of Eq. (6) and the uniform-density condition, the condition
on e can be replaced by the condition on the temperature T.
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To summarize, we can specify three conditions for Ψ, Ω, and e on the part
∂ΨB/∂s < 0 (∂ΨB/∂s > 0) of boundary but one condition for Ψ on the other
part ∂ΨB/∂s > 0 (∂ΨB/∂s < 0). The number of the boundary conditions is
not symmetric and consistent with that derived by the asymptotic theory.

2.1.3 Equations derived from the compressible Navier�Stokes set

when the Mach number and the temperature variation are

small

It is widely said that the set of equations derived from the compressible Navier�
Stokes set when the Mach number and the temperature variation are small is the
incompressible Navier�Stokes set. This statement should be made precise. The
di�erence is brie�y explained in the book �Kinetic Theory and Fluid Dynamics�
in connection with the equations derived by the S expansion from the Boltzmann
equation in Section K-4.3. Here, we explicitly show the process of analysis from
the compressible Navier�Stokes set. In Section K-4.3, the time-independent
case is discussed. Here, we discuss the problem without this restriction. The
following discussion is applied to the former case simply by eliminating the
time-derivative terms.

Take a monatomic perfect gas, for which the internal energy per unit mass
is 3RT/2. The corresponding Navier�Stokes set of equations is written in the
nondimensional variables introduced by Eq. (K-2.57) in Section K-2.10 as fol-
lows:

Sh
∂ω

∂t̂
+
∂(1 + ω)ui

∂xi
= 0, (38)

Sh
∂(1 + ω)ui

∂t̂
+

∂

∂xj

(
(1 + ω)uiuj +

1

2
Pij

)
= 0, (39)

Sh
∂

∂t̂

[
(1 + ω)

(
3

2
(1 + τ) + u2i

)]
+

∂

∂xj

[
(1 + ω)uj

(
3

2
(1 + τ) + u2i

)
+ ui(δij + Pij) +Qj

]
= 0. (40)

The nondimensional stress tensor Pij , and heat-�ow vector Qi are expressed as9

Pij = Pδij −
µ0(2RT0)1/2

p0L
(1 + µ̄)

(
∂ui
∂xj

+
∂uj
∂xi
− 2

3

∂uk
∂xk

δij

)
, (41a)

Qi = − λ0T0
Lp0(2RT0)1/2

(1 + λ̄)
∂τ

∂xi
. (41b)

Here, µ̄ and λ̄ are, respectively, the nondimensional perturbed viscosity and
thermal conductivity de�ned by

µ = µ0(1 + µ̄), λ = λ0(1 + λ̄),

9For a monatomic gas, the bulk viscosity vanishes, i.e., µB = 0 (see Section 1.1).
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where µ0 and λ0 are, respectively, the values of the viscosity µ and the thermal
conductivity λ at the reference state. The µ̄ and λ̄ are functions of τ and ω.
The �rst relation of the equation of state [Eq. (7)] is expressed as

P = ω + τ + ωτ. (42)

Take a small parameter ε, and consider the case where

ui = O(ε), ω = O(ε), τ = O(ε), Sh = O(ε), (43a)

µ0(2RT0)1/2

p0L
= γ1ε,

λ0T0
Lp0(2RT0)1/2

=
5

4
γ2ε, (43b)

thus,
P = O(ε), µ̄ = O(ε), λ̄ = O(ε).

According to the de�nition of ui in Eq. (K-2.57), ε is of the order of the Mach
number. In view of this and the de�nition of the Prandtl number Pr= 5Rµ/2λ
(see Section K-3.9), γ1 and γ2 are, respectively, of the orders of 1/Re and 1/PrRe
(Re : the Reynolds number). According to Eq. (K-2.41a), the condition Sh= O(ε)
in Eq. (43a) means that the time scale t0 of the variation of variables is of the
order of L/(2RT0)1/2ε, which is of the order of time scale of viscous di�usion.
Thus, we are considering the case where the Mach number is small, the Reynolds
and Prandtl numbers are of the order of unity, and the time scale of variation
of the system is of the order of the time scale of viscous di�usion. We can take
t0 = L/(2RT0)1/2ε without loss of generality. Then,

Sh = ε. (44)

Corresponding to the above situation, ui, ω, P, and τ are expanded in power
series of ε, i.e.,

ui = ui1ε+ ui2ε
2 + · · · , (45a)

ω = ω1ε+ ω2ε
2 + · · · , (45b)

P = P1ε+ P2ε
2 + · · · , (45c)

τ = τ1ε+ τ2ε
2 + · · · , (45d)

µ̄ = µ̄1ε+ µ̄2ε
2 + · · · , (45e)

λ̄ = λ̄1ε+ λ̄2ε
2 + · · · , (45f)

Pij = P1δijε+ Pij2ε
2 + · · · , (45g)

Qi = Qi2ε
2 + · · · . (45h)

Substituting Eqs. (45a)�(45h) with Eqs. (43b) and (44) into Eqs. (38)�(40) with
Eqs. (41a) and (41b), and arranging the same order terms of ε, we have

∂ui1
∂xi

= 0,
∂P1

∂xi
= 0,

∂ui1
∂xi

= 0,
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∂ω1

∂t̂
+
∂ω1ui1
∂xi

+
∂ui2
∂xi

= 0,

∂ui1

∂t̂
+
∂ui1uj1
∂xj

+
1

2

∂P2

∂xi
− γ1

2

∂

∂xj

(
∂ui1
∂xj

+
∂uj1
∂xi

− 2

3

∂uk1
∂xk

δij

)
= 0,

3

2

∂P1

∂t̂
+

∂

∂xj

(
5

2
uj2 +

5

2
P1uj1 −

5

4
γ2
∂τ1
∂xj

)
= 0,

and so on. At the leading order, the equations derived from Eqs. (38) and (40)
degenerate into the same equation ∂ui1/∂xi = 0. Owing to this degeneracy, in
order to solve the variables from the lowest order successively, the equations
should be rearranged by combination of equations of staggered orders. Thus,
we rearrange the equations as follows:

∂P1

∂xi
= 0, (46)

∂ui1
∂xi

= 0, (47a)

∂ui1

∂t̂
+ uj1

∂ui1
∂xj

= −1

2

∂P2

∂xi
+
γ1
2

∂2ui1
∂x2j

, (47b)

5

2

∂τ1

∂t̂
− ∂P1

∂t̂
+

5

2
ui1

∂τ1
∂xi

=
5

4
γ2
∂2τ1
∂x2j

, (47c)

∂ui2
∂xi

= −∂ω1

∂t̂
− ∂ω1ui1

∂xi
, (48a)

∂ui2

∂t̂
+ uj1

∂ui2
∂xj

+ uj2
∂ui1
∂xj

= −1

2

(
∂P3

∂xi
− ω1

∂P2

∂xi

)
+
γ1
2

∂

∂xj

(
∂ui2
∂xj

+
∂uj2
∂xi

− 2

3

∂uk2
∂xk

δij

)
− γ1ω1

2

∂2ui1
∂x2j

+
γ1
2

∂

∂xj

[
µ̄1

(
∂ui1
∂xj

+
∂uj1
∂xi

)]
, (48b)

3

2

∂P2

∂t̂
+

3

2
uj1

∂P2

∂xj
+

5

2

(
P1
∂uj2
∂xj

− ∂ω2

∂t̂
− ∂(ω1uj2 + ω2uj1)

∂xj

)
=

5γ2
4

∂

∂xi

(
∂τ2
∂xi

+ λ̄1
∂τ1
∂xi

)
+
γ1
2

(
∂ui1
∂xj

+
∂uj1
∂xi

)2
, (48c)

where
P1 = ω1 + τ1, P2 = ω2 + τ2 + ω1τ1. (49)

These equations are very similar to Eqs. (M-3.265)�(M-3.268) [or Eqs. (K-
3.87)�(K-3.90) for the time-independent case] obtained by the S expansion of
the Boltzmann equation in Section M-3.7.2 (or Section K-3.2.2 for the time
independent case).
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In order to compare Eqs. (47a)�(47c) and (49) with the incompressible Navier�
Stokes equations (23a)�(24), we will rewrite the latter equations for the situation
where the former equations are derived. The starting equations are Eqs. (38)�
(41b)10 and the nondimensional form of Eq. (19), i.e.,

Sh
∂ω

∂t̂
+ ui

∂ω

∂xi
= 0, (50)

instead of Eq. (42).11 The analysis is carried out in a similar way and the
equations corresponding to Eqs. (47a)�(47c) are12

∂ui1
∂xi

= 0, (51a)

∂ui1

∂t̂
+ uj1

∂ui1
∂xj

= −1

2

∂P2

∂xi
+
γ1
2

∂2ui1
∂x2j

, (51b)

3

2

∂τ1

∂t̂
+

3

2
ui1

∂τ1
∂xi

=
5

4
γ2
∂2τ1
∂x2j

. (51c)

Equations (51a) and (51b) are, respectively, of the same form as Eqs. (47a)
and (47b). Equation (47c) is rewritten with the aid of Eqs. (46) and (49) as

3

2

∂τ1

∂t̂
+

3

2
ui1

∂τ1
∂xi
−
(
∂ω1

∂t̂
+ ui1

∂ω1

∂xi

)
=

5

4
γ2
∂2τ1
∂x2j

. (52)

The di�erence of Eq. (47c) or (52) from Eq. (51c) is

∂ω1

∂t̂
+ ui1

∂ω1

∂xi
,

which vanishes for an incompressible �uid. The work W done per unit time on
unit volume of �uid by pressure, given by −p0(2RT0)1/2L−1∂(1 + P )ui/∂xi, is
transformed with the aid of Eqs. (46), (47a), and (48a) in the following way:

W

p0(2RT0)1/2L−1
= −∂(1 + P )ui

∂xi

= −∂ui1
∂xi

ε−
(
P1
∂ui1
∂xi

+ ui1
∂P1

∂xi
+
∂ui2
∂xi

)
ε2 + · · ·

= −∂ui2
∂xi

ε2 + · · ·

=

(
∂ω1

∂t̂
+ ui1

∂ω1

∂xi

)
ε2 + · · · .

The work vanishes up to the order considered here for an incompressible �uid,
because ∂ui/∂xi = 0 and ∂P1/∂xi = 0 (see Footnotes 11 and 12). That is,

10As the internal energy e, 3RT/2 [= 3RT0(1 + τ)/2] is chosen for consistency.
11From Eqs. (38) and (50), we have ∂ui/∂xi = 0.
12We also obtain ∂P1/∂xi = 0.

13



Eq. (47c) di�ers from Eq. (51c) by the amount of the work done by pressure.
Thus, naturally, the temperature τ1 �elds in the two cases are di�erent owing
to this di�erence.

To summarize, the mass and momentum-conservation equations (47a) and
(47b) of the set derived from the compressible Navier�Stokes set [Eqs. (38)�
(41b) and (42)] under the situation given by Eqs. (43a) and (43b) with small ε
are of the same form as those equations (51a) and (51b) of the corresponding set
derived from the incompressible Navier�Stokes set [Eqs. (38)�(41b) and (50)],
but the energy-conservation equations (47c) and (51c) of the two sets di�er by
the work done by pressure.13 The density ω1 obtained from Eqs. (46)�(47c)
with the �rst relation of Eq. (49) does not generally satisfy the incompressible
condition (50) with ω = ω1 and ui = ui1.

14 Both the density and temperature
�elds (ω1, τ1) are di�erent in the two sets. The variation of the density ω1 along
a particle path is due to the �rst relation of Eq. (49). Even if the temerature τ1
varies according to Eq. (51c), the density ω1 determined by the �rst relation of
Eq. (49) does not generally satisfy the incompressible condition.

Finally, it may be noted that under the situation (43a), the solenoidal condi-
tion for ui1, i.e., Eq. (47a) or (51a), is derived only from the mass conservation
equation (38) without the help of the incompressible condition (50).

3 Appendix K-A

3.1 Boundary condition for Euler equations

In Appendix K-A.10, we discussed the boundary condition for the linearized
Euler equations for simple examples. Related discussion is given in Section
2.1.2 in this notes.

4 Appendix K-C

4.1 Numerical procedure for discrete ξi and η (Supplement
to Sections K-C.2 and K-C.3)

In Appendix K-C, a numerical method of solution of conservation equations, e.g.,
�uid-dynamic equations, by a kinetic equation is discussed. As noted there, the

13When the density ρ is uniform initially, for which ρ is a constant for an incompressible
�uid, the viscosity and thermal conductivity are constants, and heat production by viscosity is
neglected, Eqs. (51a)�(51c) can be compared directly with Eqs. (47a)�(47c) and (49), without
carrying expansion, and the same results are obtained.

14It is easily seen that the velocity ui1 vanishes, the pressure P1 is a constant, and the
temperature τ1 (thus, the density ω1) varies with time in initial-value problems where the
velocity is zero and the temperature is nonuniform (strictly, non-harmonic) initially, and the
pressure is time-independent at in�nity. Thus, the incompressible condition is not satis�ed.
See also the example given in Section K-4.10.3, where the velocity vanishes and the density
varies with time, and further, the temperature �eld is quite di�erent from the incompressible
case owing to the time-dependent boundary condition on PS1, corresponding to P1 here.

14



range of the variables ξi and η may be a set of discrete points. Obviously, the
integrals with respect to ξi and η in the discussion in Section K-C.2 are taken
to be the summation over the discrete points because the velocity distribution
function f is the collection of delta functions of ξi and η with their center at
the discrete points. To solve the conservation equations by kinetic-equation
approach, a �nite number of discrete ξi's and η's are su�cient. The number
depends on the size of the conservation equations. Here, we will describe the
procedure of solution of conservation equations by a kinetic equation with the
formulas expressed in discrete ξi and η.

The Navier�Stokes equations (K-C.34a)�(K-C.34c) are taken as an example.
In this case, r = 0, 1, . . . , 4, i or j = 1, 2, 3, and γr's are chosen as

γ0 = 1, γi = ξi, γ4 = ξ2i + (α− 3)η2, (53)

where α ≥ 3 is a constant.15 From the Navier�Stokes equations (K-C.34a)�(K-
C.34c), we can identify ρr and Ĥr

i as follows:

ρ0 = ρ, (54a)

ρi = ρui, (54b)

ρ4 = ρ(u2j + 2e), (54c)

Ĥ0
i = ρui, (55a)

Ĥj
i = ρuiuj + pij , (55b)

Ĥ4
i = ρui(u

2
j + 2e) + 2ujpij + 2qi, (55c)

where

e =
αRT

2
, (56a)

p = ρRT, (56b)

pij = pδij − µ
(
∂ui
∂xj

+
∂uj
∂xi
− 2

3

∂uk
∂xk

δij

)
− µB

∂uk
∂xk

δij , (56c)

qi = −λ ∂T
∂xi

. (56d)

The velocity distribution function f (m,n) of Chapman�Enskog type that gives
a given set (ρr, Ĥ

r
i ) is obtained by the following simultaneous linear algebraic

15The constant α is the freedom of a molecule of the gas under consideration. For a
monatomic gas without internal degree of freedom, α = 3.
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equations, which correspond to Eqs. (K-C.1) and (K�C.5):16∑
m,n

f (m,n) = ρ0, (57a)

∑
m,n

ξ
(m)
i f (m,n) = ρi, (57b)

∑
m,n

[(ξ
(m)
i )2 + (α− 3)(η(n))2]f (m,n) = ρ4, (57c)

∑
m,n

ξ
(m)
i ξ

(m)
j f (m,n) = Ĥj

i (j ≤ i), (57d)

∑
m,n

ξ
(m)
i [(ξ

(m)
j )2 + (α− 3)(η(n))2]f (m,n) = Ĥ4

i . (57e)

The set of points (ξ
(m)
i , η(n))'s has to be chosen in the way that the determinant

formed with the coe�cients of f (m,n) does not vanish and that the number of
the points is 14 [5 for ρr, 6 for Ĥj

i (j ≤ i), and 3 for Ĥ4
i ] in the present case.17

If one chooses more points for one's convenience, one should impose some extra
conditions to make f (m,n) unique.18

Once the way to determine the velocity distribution function f (m,n) of the
Chapman�Enskog type is �xed, we can proceed to the next procedure described
in Section K-C.3. That is, (i) for given initial data ρr, ui and T , compute Ĥr

i by
Eqs. (55b)�(56d); (ii) construct the corresponding velocity distribution function
f (m,n) of Chapman�Enskog type by Eqs. (57a)�(57e); (iii) determine the solution
of the free-molecular equation (K-C.35) at the next time step with the velocity
distribution function constructed in the step (ii) as the initial condition; (iv)
compute ρr from the resulting velocity distribution function by Eqs (57a)�(57c);
(v) return to the step (i) and repeat the process. Then, we can obtain the
solution of the Navier�Stokes equations (K-C.34a)�(K-C.34c).

To determine the solution of the free-molecular equation in the step (iii)
of the preceding paragraph, we need the boundary condition compatible with
the solution of Chapman�Enskog type. For the Navier�Stokes equations, ui
and T are generally speci�ed on the boundary of bodies, but ρ is not speci�ed.
The boundary value of ρ is determined with ρ and ui at the previous time
step by Eq. (K-C.34a). Then, we know the boundary data ρr. Together with
the ρ, ui, and T inside gas obtained by the free-molecular solution starting
at the preceding time step, we can determine the boundary data of Ĥr

i by

16Note that the relation between ρi and f (m,n) and that between Ĥ0
i and f (m,n) are the

same. That is, these relations are commonly expressed by Eq. (57b).
17i) When the determinant vanishes, we cannot obtain the solution for arbitrary data on

the right-hand side.
ii) In the case of α = 3 (monatomic gas), the left-hand side of Eq. (57c) is derived from

Eq. (57d) with i = j. The right-hand side of Eq. (57c) is obtained in the same way because
the bulk viscosity vanishes (µB = 0) for a monatomic gas. Thus, Eq. (57c) is unnecessary in
the analysis.

18Sometimes, it is convenient to choose more (ξ(m), η(n)) than required to avoid awkward
distribution f (m,n).
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Eqs. (55b)�(56d). Then, the boundary data f (m,n) compatible with the solution
of Chapman�Enskog type are determined by Eqs. (57a)�(57e).

In the process of solution of the free-molecular equation (K-C.35) by a �nite
di�erence method, one can make use of a simplifying process introduced in
the lattice-Boltzmann-equation approach. Then, the step (iii) in the above
procedure is simpli�ed. Let X be a lattice point in xi space, and let ∆t be the
time step of computation. We arrange the lattice points

∑
X ′s and ξ(m)′s in

such a way thatX+ξ(m)∆t is also some lattice point in xi. Then, f
(m,n) at t+∆t

is obtained by shifting f (m,n) at t among the lattice points X's. For example,
take rectangular lattices for xi, where the lattice points X's are expressed as
X = (m1,m2,m3)∆x with mi being an integer (0,±1, 2, · · · ). Then, we choose
ξ(m) = (k1, k2, k3)∆x/∆t , where ki is, for example, ki = 0,±1. Then,

f(mi∆x, kiξ, t+ ∆t) = f((mi − ki)∆x, kiξ, t),

where ξ =∆x/∆t.19 With the above choice of ξ(m), (mi − ki)∆x is a lattice
point of xi or X. Other examples of the lattice point system are found, for
example, in Qian, Succi & Orszag [1995], and Kataoka [submitted].

In Section K-C.3, we discussed the process and validity of solving the con-
servation equations, or the validity of the procedure of solution given in this
section, by making use of the free molecule equation on the basis of the discus-
sion in Section K-C.2. In this discussion, we implicitly assumed the stability
of solution of Eq. (K-C.6) with Eq. (K-C.7). Further, it is also assumed that
|Ĥr

i (ρr,∇ρr)−Ĥr
i (ρcr,∇ρcr)| = O((∆t)2) for Ĥr

i at the step (i) after step (iv) (or
at time t+∆t) when |ρr−ρcr| = O((∆t)2) [Eq. (K-C.40)] for the present Navier�
Stokes equations.20 More rigorously, the condition about the size used in the
discussions in Section K-C.3 should be uniformly bounded in some neighbor-
hood of the solution of Eq. (K-C.6). The conditions are mainly determined by
the property of solution of the Navier�Stokes equations [generally, Eqs (K-C.12)
and (K-C.13)]. Some examples of the numerical computation of the Navier�
Stokes equations by the present method are carried out by Kataoka [submitted].

(Section 4.1: Version 3-00)
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