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Abstract

Several research efforts have been directed toward the development of

models for response prediction of flexible risers. The main difficulties

arise from the fact that the dynamic response of flexible risers involves

a highly nonlinear behavior and a self-regulated process. This thesis

presents a quasi-steady approach for response prediction of oscillating

flexible risers. Amplitude-dependent lift coefficients and an increased

mean drag coefficient model during synchronization events are con-

sidered. Experimental validation of the proposed model is carried

out using a 20-meter and a 35-meter riser models. Large variations

in hydrodynamic force coefficients, a low mass-ratio value and syn-

chronization events are the main features of the models presented in

this thesis. Numerical results are compared with experimental data

showing good agreement in amplitude response. In the second part of

this thesis, a statistical pattern recognition technique based on time

series analysis of vibration data is presented. Structural damage is as-

sociated with fatigue damage. Therefore, hinge connections are used

to represent several damage scenarios. Then, the statistical pattern

recognition technique is employed to identify and locate structural

damage using vibration data collected from sensors strategically lo-

cated. A modal-based damage detection approach is also numerically

implemented and its results are compared with the ones obtained from

the statistical pattern recognition technique. Similar comparisons are

conducted using a nonlinear principal component algorithm for fault

detection. The comparative study shows that the statistical pattern

recognition technique performed the best and that damage in oscil-

lating flexible risers can be assessed using the presented statistical

pattern recognition technique.
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Chapter 1

Introduction

1.1 Motivation

The increase in demand for oil has recently motivated the oil industry to actively

invest in deepwater oil projects. One of the most critical components is the slender

flexible pipe (riser) employed to transport oil from the seabed to the offshore

facilities. However, at water depths of more than 2000 m, the use of composite

materials shifts the response of a riser into a dangerous region in which there is

a large interaction between the riser and its surrounding fluid due to the reduced

weight of this type of riser. Several experimental and numerical studies have

pointed out that the main difficulties related to the use of reduced weight for risers

are associated to the increase of the cross-flow displacements, a wider regime of

the lock-in region controlled by the reduced velocity, the inclusion of an additional

branch of response and a rapid rise of the lift (transverse) coefficients in the lock-

in region. In addition, the frequency, at which lock-in occurs, varies depending

on the value of the mass-ratio (calculated as the mass of the cylinder divided

by the mass of the fluid displaced). At low values of mass and damping, the

classical definition of lock-in stated as the matching of the natural and response

frequencies is not appropriate and therefore, as previous studies recommended, a

more convenient definition of the frequency during lock-in events can be stated

as the matching of the periodic wake vortex mode with the response frequency.

Existing riser models mainly rely on large databases of experimentally de-

rived hydrodynamic force coefficients obtained under different modeling consid-

1



1.1 Motivation

erations. As a result, the quality of a semi-empirical model strongly depends

on the force coefficients provided by the aforementioned databases. The main

limitation of this approach is associated with the high cost of the experimental

facilities needed to obtain these force coefficients. On the other hand, turbulence

remains poorly understood making Computational Fluid Dynamics (CFD)-based

approaches restricted for industrial design. Most of the progress that has been

recently achieved in numerical prediction of Vortex-Induced Vibration (VIV) is

mainly restricted to low-Reynolds number regime. Current semi-empirical pre-

diction programs used large databases of experimentally determined coefficients

to predict VIV. Although these programs are widely used for practical applica-

tions, different models for the prediction of VIV can give different results among

these programs. Several experiments have also been conducted recently to better

understand the VIV response of risers. Some of these experiments were car-

ried out to measure the hydrodynamic input coefficients for the aforementioned

semi-empirical prediction programs to validate analytically derived models of ris-

ers. The main conclusion that can be drawn from these experiments is that VIV

response is an inherently nonlinear, self-regulated, multi-dof phenomenon. There-

fore, in order to meet the demands of developing deepwater oil fields, there is an

ongoing research targeting the accurate prediction of deepwater risers.

On the other hand, current inspection techniques for riser systems are expen-

sive and based on the practical experience of the engineers who carry out these

inspections. The development of maintenance procedures must accompany the

newly developed dynamic response prediction models for risers in order to reduce

the overall cost of deepwater oil projects. An innovative approach to assess the

current health state of civil engineering structures is the use of structural dynamic

properties to detect damaged sites; the main idea behind this approach is that

considerable changes in the modal properties such as natural frequencies, mode

shapes and damping ratios provide quantitative information about the health

condition of a structure. Nevertheless, in offshore structures due to variation of

mass or marine growth the measured modal parameters show large variability.

Therefore, the research community has been recently exploring the use of pattern

recognition techniques to tackle the problem of reliable damage detection.
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1.2 Objetives

1.2 Objetives

The overall objective of the research reported here is to propose a response pre-

diction model for oscillating flexible risers and a damage assessment methodology

using acceleration records collected from sensors located along the riser. Accord-

ing to the above summary of all considerations in the process of the development

of a prediction model and a damage assessment methodology for flexible risers,

the specific objectives of the research reported in this thesis are as follows:

1. To numerically implement a newly developed prediction model for flexible

risers.

2. To experimentally validate the proposed prediction model using long flexible

riser models tested under different conditions.

3. To numerically implement vibration-based damage detection methodologies

in flexible risers including the widely used modal-based approach.

4. To study the efficiency of the damage assessment methodology using the

previously developed response prediction model for flexible risers.

1.3 Overview

In this thesis a response prediction model and a damage assessment methodology

for flexible risers are proposed. Long flexible risers models are used to experimen-

tally validate the proposed response prediction model. The damage assessment

methodology uses acceleration records collected from the sensors using simulated

data from the proposed response prediction model.

In the second chapter of this thesis the classification of riser systems is dis-

cussed based on the advantages and limitations of each system. The main con-

cepts related to the behavior of a stationary cylinder in uniform and oscillatory

flow are provided. The key factors that influence the response of bluff bodies are

also discussed. Special emphasis is given to the effects of cylinder motion on wake.

The chapter finishes with the description of fluid-structure interaction pointing

out the current limitation in the understanding of this important phenomenon.

3



1.3 Overview

The third chapter discusses the development of the proposed response predic-

tion model for flexible risers. A discussion of the challenges in modeling these

types of structures is provided. Experimental models are then used to validate

the proposed response prediction models considering a wide range of experimental

validation. An additional hanging model is used for validation purposes.

Chapter four presents the implementation of three vibration-based damage

detection methods using the previously developed prediction model. Here, dif-

ferent damage scenarios are studied. A modal-based damage detection approach

is also considered. The chapter finishes with the numerical implementation of a

statistical pattern recognition technique in a long flexible riser model.

A summary and conclusions of the presented work are given in chapter five. A

section describing the pros and cons of the proposed methodology is provided in

this chapter. Conclusions regarding the implementation of the damage assessment

methodology to riser systems are also discussed. Finally, some possibilities for

future research in the area of response prediction and damage assessment for

flexible risers are provided.
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Chapter 2

Flexible Risers

2.1 Riser Systems

A flexible riser is a structure whose natural bending frequencies are located in

the range of expected vortex shedding frequencies when placed in a flow stream.

Therefore, a flexible riser vibrates in flexure due to vortex shedding. This results

in a very complex phenomenon commonly referred to as fluid-structure inter-

action [Pantazopoulos (1994)]. Chakrabarti (2002) reported that as part as the

Norwegian deepwater project, the Reynolds number range for two-months records

of the Helland-Hansen drilling riser was from about 0.9×105 to 6×105. There are

basically two existing riser systems, namely the Steel Catenary Riser (SCR) and

the Hybrid Riser Tower (HRT). The former system consists of individual hang-

ing off risers and the second one consists of bundled risers arranged in a vertical

tower. Saint-Marcoux (2004) compared these two systems in terms of their suit-

ability for deep water field developments. According to Saint-Marcoux (2004),

the HRT system is more suitable for ultra-deep water field developments beyond

2000 m. SCR systems are still widely used, mostly in the Gulf of Mexico and

Campos Basin (Brazil) as well as newly field developments in Nigeria. However,

construction and installation experience of HRTs to date has been good providing

a very in-sensitive interface with both the seabed and the floating support unit

[Sworn (2005)]. Based on the above-mentioned, in the following sections some

characteristics of these two systems are provided.
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2.1.1 Steel Catenary Riser SCR

A SCR system is based on the concept of a steel flowline that is connected from the

seabed to the floating production facility using pipelay technology with offshore

welding. Therefore, the main concept related to this system is a flexible pipe

suspended from its support facility in a catenary shape and laying down to the

seabed and therefore continuing into a horizontal flowline or simply connected to

an existing horizontal flowline as shown in Fig. 2.11. The main concern for this

system is therefore the Touch-Down Point (TDP), where the interaction between

the seabed and the SCR creates a very fatigue sensitive region. Therefore, SCR

is a fatigue dominated structure [Saint-Marcoux (2004)].

There are several nonlinearities involved in the global analysis of SCR systems.

Hydrodynamic forces and contact forces between the seabed and the SCR account

for most of those nonlinearities leading to the use of dynamic simulation in time

domain to predict its dynamic response [Campos & Martins (2001)]. A flex or

taper joint is commonly used as the connection mechanism between the SCR and

the floating production facility, this mechanism absorbs the dynamic moment

variations generated by the motions of the floating production facility. On the

other hand, at the TDP, an anchor system is sometimes used in order to stabilize

the SCR axially and eliminate undesired motions [Saint-Marcoux (2004)].

2.1.2 Hybrid Riser Tower HRT

A HRT system is defined as a free-standing vertical riser composed of steel lines

and flexible composite lines within the same configuration. A near surface cylin-

drical buoyancy tank is commonly employed in order to apply a tension force

to the HRT. The connection of the HRT at the seabed is achieved by using an

anchor base in which the riser is connected to a mechanical device that acts as a

flex or taper joint. A HRT system is depicted in Fig. 2.22.

The global analysis of a HRT system is dominated by buoyancy forces rather

than gravity forces and it is usually compared to an upside down pendulum.

Therefore, buoyancy forces dominate the dynamic response of a HRT system

12H Offshore c©
2Acergy c©
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2.1 Riser Systems

Figure 2.1: Steel Catenary Riser

Figure 2.2: Hybrid Riser Tower
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2.1 Riser Systems

leading to instability of the HRT system when loss of a critical level of buoyancy

is produced [Sworn (2005)]. Blevins et al. (2006), highlighted some advantages of

the HRT system when compared with the SCR system. Basically, large diameter

risers can be accommodated, field layout is simplified allowing future expansion,

demanding flow assurance requirements can be met, riser loads on the floating

production facility are reduced and in place riser fatigue is low.

2.1.3 Riser System Selection

Based on the fact that the number of components of the SCR system are less than

the HRT system, at first glance seems easier to manage compared to the HRT.

However, SCRs are fatigue-prone structures. Most of the fatigue damage in the

SCR system is concentrated in the connection region with the floating production

unit as well as the TDP. On the other hand, the HRT system is subject to little

fatigue damage when in operation.

The seabed interface requires special consideration in both SCR and HRT

systems. In the HRT systems more components are needed. However, the inter-

face between the HRT system and seabed is considered to be an engineering issue

and it is therefore related to the technology employed in the construction of the

interface. On the other hand, the interface between the SCR system and seabed

is associated to technical issues and lack of sufficient understanding of the TDP

mechanism leading to the use of anchors to secure the long term stability of the

SCR system [Saint-Marcoux (2004)].

The interface with the floating support unit represents one of the major ad-

vantages of the HRT system due to the lower loads transmitted to the floating

support system. Therefore, the top tension transferred to the floating support

unit can be reduced by several thousand tons. On the other hand, the SCR

system is sensitive to dynamic motion of the floating support unit leading to a

design issue related to hang-off balcony that must remain as close as possible to

the centre of gravity of the floating structure [Saint-Marcoux (2004)].

Inspection, maintenance and repair play a vital role in the selection of the riser

system. As previously mentioned, the SCR system is a fatigue-prone structure.

However, the HRT system has more components potentially subject to failure.
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In this respect, both systems are affected by several uncertainties and therefore

maintenance-based riser system selection is case dependent. However, the inspec-

tion activities for the HRT system can be carried out more efficiently than the

SCR system due to its free-standing vertical configuration.

Finally, the HRT system tends to be a more expensive solution in water depths

of at least 1000 m. On the other hand, the use of the SCR system in field

developments beyond 2000 m causes the overall cost to significantly increase due

to large top tensions and therefore the need of expensive installation vessels.

2.1.4 Composite Risers

Deep water drilling currently reaches water depths down to more than 2000 m.

However, riser weight and riser control are still considered as critical conditions.

Therefore, composite materials, especially glass-epoxy and carbon-epoxy com-

posites, have been investigated as an alternative to save weight in riser systems

[Ohtsubo & Sumi (2000)]. High strength and stiffness commonly associated to

composite materials as well as low specific weight, high corrosion resistance and

fatigue characteristics make them potentially valuable for use in riser systems.

In the past, the needs of aeronautical engineers led to the development of com-

posite materials as structural materials as well as mass production of composites.

A metal-composite riser is considered to be suitable for riser systems due to

leakproofness provided by its inner layer. The main objective of the inner layer is

to resist corrosion and abrasion. By using composite materials, the riser weight

and the expenses for tensioners can become much lower [Beyle et al. (1997)].

The fluid force on a composite riser is the same as the homogeneous riser when

the risers are stationary. Forcing response is related to the geometry of the riser.

Therefore, even if the cross section of the riser is made of steel or a composite

material it renders the same fluid force when no vibration exits. When the riser

vibrates, the fluid force is influenced by the riser motion. As a result, Vortex-

Induced Vibration (VIV) will modify the fluid force for risers of two different

materials. Finally, a composite riser has a different structural damping behavior

[Rakshit et al. (2008)].
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One of the main concerns related to the use of composite risers for ultra-deep

water field developments is that the reduced weight of a composite riser shifts

the dynamic response of the riser into a range where fluid-structure interaction

problems increase. The main difficulties related to the use of reduced weight

for risers are associated to the increase of the cross-flow displacements, a wider

regime of synchronization between the frequency of the riser and vortex shedding

frequencies, a more complex dynamic response and a rapid rise of the cross-flow

force during synchronization events.

2.1.5 Internal Flow

With increasing operating depths, the thermal behavior of the fluid transported

in a riser must be increasingly taken into account. According to Williams et al.

(2005), ultra-deep water field developments are typically from shallow reservoirs

with oil well temperatures in the region of 60 ◦C - 100 ◦C. Low temperatures

imply greater difficulties with heat conservation making ultra-deep water field

developments sensitive to the problems of wax and hydrate formation. In ad-

dition, petroleum reservoirs located in deep waters tend to be low-energy hav-

ing relatively low pressures compared to conventional reservoirs. Therefore, the

lower pressures available invariably mean that pressure maintenance is required

through injection of one sort of another and an artificial lift may be needed such

as gaslift injection, electrosubmersible or hydraulic submersible pumps or subsea

multiphase booster pumps [Pickering et al. (2001)].

Even though several studies target the development of response prediction for

risers, the modeling of a riser with the inclusion of internal flow inside the pipe

has rarely been considered. The traveling fluid inside a deflected riser experiences

coriolis accelerations due to the curvature of the riser itself and the relative motion

of the fluid with respect to the time-dependent riser motion. Therefore, the

dynamic response of the riser is affected causing additional vibrations. Guo &

Lou (2008) developed an experimental set-up for a riser model considering internal

fluid flow and external current. Basically, it was found that in still water the

internal fluid flow reduced the natural frequency of the riser model. On the other

hand, when the riser model was placed in current, the amplitude of the strain in
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2.2 Vortex-Induced Vibration VIV

in-line and cross-flow vibrations increased. Finally, the effect of internal flow is

more dominant with higher relative internal flow speed.

2.2 Vortex-Induced Vibration VIV

Consider a cylinder held in a fixed position without any external forces other

than the fluid flow passing it. In this case, if a fluid particle that is moving in

the direction of the fluid velocity is traced, then, the resulting line is called a

streamline. As a result, it is obtained a family of curves that are instantaneously

tangent to the velocity vector of the flow and if the computed streamlines do not

vary with time the flow is defined as steady. However, if those streamlines vary

with time the flow is defined as unsteady. Ideal fluids are based on the potential

theory that considers the fluid to be incompressible and inviscid. Fig. 2.3 shows

experimentally obtained streamlines1.

However, a real fluid such as water is viscous and therefore internal friction

exists, which causes the particle in contact with the cylinder to remain at rest.

Therefore, a boundary layer is created due to the rapid change in velocity that

exists between the particles at rest attached to the cylinder and the nearby par-

ticles moving at the mean stream velocity. This variation of velocity is produced

in a very short distance. For laminar flow problems, this boundary layer is very

narrow and therefore can be approximately neglected.

Gradual increment of the mean stream velocity causes the flow to separate

from the cylinder. The two boundary layers, located in each side of the stagna-

tion point (point located in the upstream face of the cylinder where mean stream

velocity is zero), remain attached to the cylinder. However, as the mean stream

velocity increases, these boundary layers separate from the cylinder at the down-

stream face causing the flow to curls up since two shear layers are created after

separation of the particles of the boundary layers. The region located between

these two shear layers experiences reduced flow activity, dominated by low pres-

sure and therefore is defined as wake, which is a low-pressure region compared to

the pressure on the upstream side.

1Armfield Engineering Education c©
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2.2 Vortex-Induced Vibration VIV

Figure 2.3: Potential Flow Over a Cylinder (A.E.E.)

In the wake the flow becomes turbulent in contrast to other regions away from

the cylinder where the flow remains laminar. The upward roll of the shear layer

introduces discrete swirling vortices, which form alternately on either side aft of

the cylinder and the separation of these vortices from the cylinder, referred as

shedding, is associated with frequencies with which the vortices are shed. These

frequencies are widely known as vortex shedding frequencies. Finally, an asymmet-

ric pressure distribution is created due to a regular pattern of vortices originated

behind (downstream) the cylinder. The resulting effect is the introduction of a

drag force and a fluctuating lift force [Chakrabarti (2002)].

2.2.1 Drag Force

As previously mentioned, the wake is associated to a low pressure region. The

difference in pressure between the wake and the upstream region originates a drag

force. The force experienced by the cylinder is found to vary with the square of

the mean flow velocity, U, as shown in Eq. (2.1)

Fdrag =
1

2
ρCDmeanSU

2 (2.1)
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2.2 Vortex-Induced Vibration VIV

where S is the frontal area of the body measured orthogonal to streamwise and

ρ is the fluid density. Although CDmean is a constant parameter which mainly

depends on Re, other parameters such as the shape of the body and roughness

of the surface are also important. For the case of a circular cylinder across the

flow Re can be expressed as:

Re =
UD

ν
(2.2)

where D is the cylinder’s diameter and ν is the kinematic viscosity of the fluid.

According to Henderson (1995), when Re is less than 50 the flow is steady and

symmetric about the centerline of the wake. At Re ≈ 50 this configuration be-

comes unstable leading to the initiation of the vortex shedding, which results in

the widely know Kármán vortex street. Basically, the contributions to the value

of the drag coefficient can be divided into viscous drag coefficient and pressure

drag coefficient. Henderson (1995) highlighted the fact that experimental val-

ues of drag coefficients are difficult to obtain, especially at Re ≤ 1000, and the

available data show considerable scatter. Henderson (1995) presented computed

values of CDmean obtained from high-resolution computer simulations, which cor-

respond to the challenging region of Re < 1000 as shown in Fig. 2.4.

Blevins (1990) stated that the Re number range 300 < Re < 1.5×105 is called

subcritical and it is mainly characterized by strong periodic vortex shedding. In

the transitional range, 1.5 × 105 < Re < 3.5 × 106, the cylinder boundary layers

become turbulent leading to a drag coefficient drop to 0.3. In the supercritical

range, Re > 3.5× 106, regular vortex shedding is re-established with a turbulent

cylinder boundary layer. The above-mentioned process was graphically described

by Lienhard (1966) as shown in Fig. 2.5.

2.2.2 Lift Force

As previously mentioned, the wake formed behind the cylinder and its associated

vortex shedding cause an asymmetric pressure distribution. In addition, it has

been experimentally found that the shedding of vortices alternates on the two

sides and does not take place at the same time. Therefore, an additional force is
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Figure 2.4: Pressure and Viscous Drag Coefficients Versus Re Number

generated transverse to the flow, which is widely known as fluctuating lift force

and is written in a form similar to the inline drag force as:

Flift =
1

2
ρCLSU

2 (2.3)

According to Chakrabarti (2002), the formation of vortices and the associ-

ated wake field are irregular with respect to time. According to Norberg (2003),

despite the vast amount of experiments there has not been real consensus on

CL(Re), especially for Re < 6 × 103. The range from about Re = 190 (the ap-

proximate onset of intrinsic three-dimensional flow) to Re ≈ 6 × 103 has been

greatly overlooked on the past. Therefore, this fact reflects several difficulties

recently encountered in experimental and numerical studies. Therefore, Flift is

irregular and CL is not well defined. The Strouhal number (St) is the dimension-

less proportionality constant between the predominant frequency of the vortex

shedding and the mean uniform flow velocity divided by the cylinder width as

shown in Eq. (2.4)
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Figure 2.5: Regimes of Fluid Flow Across Smooth Circular Cylinders [Lienhard

(1966)]
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2.3 Oscillatory Flow Past a Stationary Cylinder

fS =
StU

D
(2.4)

Norberg (2003) presented a compilation of St(Re) from selected experiments

and 2-dimensional numerical simulations and developed an empirical formulation

for St(Re), which is shown in Fig. 2.6.
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Figure 2.6: St Number Versus Re Number

According to Norberg (2003), a vast amount of quantitative data have been

reported and numerous compilation graphs on the variation of CL(Re) have been

presented. Norberg (2003) based on several experimental and numerical studies,

employed the r.m.s. (root-mean-square) lift coefficient, C
′

L, to present a formula-

tion of C
′

L versus Re as shown in Fig. 2.7.

2.3 Oscillatory Flow Past a Stationary Cylinder

According to Chakrabarti (2002), it can be demonstrated that the case of an

oscillating structure in calm fluid is equivalent and kinematically identical to

oscillating fluid flowing past a stationary structure. Taking the length of the
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cylinder as unity, the inline force experienced by a cylinder in oscillatory flow is

similar to Eq. (2.1) as shown in Eq. (2.5), but using the absolute sign to take

into account the changing direction of the force and the instantaneous velocity,

U1.

Fdrag =
1

2
ρCDmeanD |U1|U1 (2.5)

For a stationary cylinder excited by oscillatory flow the inertia force can be

written using the inertia coefficient, Cm, as shown in Eq. (2.6)

Finertia = ρCm
π

4
D2U̇1 (2.6)

Combining the two force components related to Cm and the mean drag coeffi-

cient, CDmean, the total force per unit length experienced by a stationary cylinder

under oscillatory flow, Fosc, is obtained and corresponds to the widely known

Morison’s equation [Morison et al. (1950)], which is described by the following

equation:
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2.3 Oscillatory Flow Past a Stationary Cylinder

Fosc = ρCm
π

4
D2U̇1 +

1

2
ρCDmeanD |U1|U1 (2.7)

It has been proved that Cm and CDmean are functions of Re and Keulegan-

Carpenter (KC) numbers. In the case of oscillatory flow past a stationary cylinder

Re and KC are expressed in terms of the amplitude of the oscillatory motion, U0,

and the period of the oscillatory motion, Tf , as shown in the following equations:

Re =
U0D

ν
; KC =

U0Tf

D
(2.8)

Sarpkaya (1977a) introduced a viscous-frequency parameter β, which is shown

in the following equation:

β =
D2

νTf
=
D2f

ν
=

Re

KC
(2.9)

2.3.1 Determination of Cm and CDmean

Cm and CDmean are either obtained from experiment or from numerical solution

of the Navier-Stokes equations. However, at sufficiently low KC, which is char-

acterized by laminar and two-dimensional causing the flow to remain attached to

the cylinder, Wu (1981) derived the following analytical forms for Cm and CDmean

(Valid for KC << 1, Re×KC << 1 and β >> 1):

Cm = 2 + 4 (πβ)−
1

2 + (πβ)−
3

2 (2.10)

CDmean =
3π3

2KC

[

(πβ)−
1

2 + (πβ)−1 − 1

4
(πβ)−

3

2

]

(2.11)

Basically, the Morison’s equation (2.7) is commonly used to obtain Cm and

CDmean through standard Fourier averaging process applied to computed time

histories of the in-line force. The variation of Cm and CDmean from cycle to cycle

at low values of KC number is small but at larger KC, where there is shedding

of strong vortices, the variations can become large [Lin et al. (1996)].

According to Zhou & Graham (2000), the magnitude of KC indicates the

relative importance of drag and inertia forces. When KC ≤ 5, inertia regime,
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2.3 Oscillatory Flow Past a Stationary Cylinder

the cylinder is mainly subject to inertia force. However, Zhou & Graham (2000)

pointed out that due to the existing relationship between drag force and hydro-

dynamic damping, for certain types of problems the contribution of drag force is

relevant. When 5 ≤ KC ≤ 25, inertia/drag regime, the drag and inertia force

are both important. Finally, beyond KC ≥ 25, drag regime, the drag force be-

comes dominant, but changes in the inertia force may sometimes be significant

in affecting natural frequencies of the cylinder.

Zhou & Graham (2000) also classified the flow around a circular cylinder into

four regimes according to the variation of Cm and CDmean with respect to KC.

In the first regime, KC < KCr, as KC increases CDmean decreases while Cm is

independent of KC, this regime is defined as inertia regime. In the second regime,

KCr < KC < KCmd, CDmean decreases reaching its minimum value at KCmd

where the flow has just separated and turbulence occurs successively, Cm keeps

nearly constant. In the third regime, KCmd < KC < KC∗, CDmean increases

and Cm decreases as KC increases and reach maximum and minimum values,

respectively, at KC∗. Finally, in the fourth regime, CDmean decreases and Cm

increases as KC increases further.

2.3.2 Patterns of the Vortex Shedding

The magnitude of KC also indicates different flow modes. Several authors have

described the flow regimes observed in oscillatory flow past a stationary cylinder.

Among many others descriptions, the ones provided by Bearman et al. (1981) and

Williamson (1985) are cited most frequently. According to Lin et al. (1996), at low

values of KC, 1 < KC < 2, depending on β, the flow is symmetrical and remains

attached to the cylinder. At KC ≈ 4, the flow separates but remains symmetrical

as concentrations of vorticity are swept back over the cylinder when the flow

reverses. Then, the asymmetric shedding of a pair of opposite sign vortices is

observed in each half cycle for 4 < KC < 7. Obasaju et al. (1988) stated that

above KC=7 a new regime is achieved as KC is increased in increments of about

8 leading to one more full vortex to be shed per half cycle of flow oscillation. At

7 < KC < 15 most of the vortex shedding activity is concentrated on one side

of the cylinder. At 15 < KC < 24 the flow enters the diagonal shedding mode
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consisting of a pair of oppositely signed vortices that convects away at about 45◦

to the main flow in one half cycle and another pair of vortices that convects in a

diametrically opposite direction in the next half cycle. At 24 < KC < 32 three

full vortices are shed during each half cycle and three vortex pairs convect away

from the cylinder for a complete cycle. This trend is maintained as KC increases

with more and more vortex pairs being formed and shed per flow cycle. Blevins

(1990) provided an approximate formulation to predict the value of the vortex

shedding frequency, fS, based on KC as shown in the following relationship:

fS

f
= 2, 3, 4, 5, ... = an integer ≈ 0.2KC (assuming St = 0.2) (2.12)

Based on the previous relationship (2.12), Blevins (1990) presented the fol-

lowing classification for fs(KC)

Table 2.1: Patterns of Vortex Shedding

KC Number Regime fS

f

4 < KC < 8 Asymmetric 2

8 < KC < 15 Transverse 2

15 < KC < 22 Diagonal 3

22 < KC < 30 Third Vortex 4

KC > 30 Quasi-steady ≈ 0.2KC(2.12)

2.4 Fluid-Structure Interaction

The cases of an stationary circular cylinder excited by shear and oscillatory flows

were presented in previous sections. Hydrodynamic forces on a oscillating cylinder

are much more complex than the resulting hydrodynamic forces from a stationary

cylinder. In-line hydrodynamic forces can be represented by including in the

Morison’s equation (2.7) the contribution of the structure to the total force as

shown in Eq. (2.13).
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Foscl = −müx + ρCm
π

4
D2U̇1 − ρCi

π

4
D2üx +

1

2
ρCDmeanD |U1 − u̇x| (U1 − u̇x)

(2.13)

where ux is the instantaneous in-line displacement of the oscillating body.

Three force parameters are included in Eq. (2.13), the mean drag coefficient

CDmean , the inertia coefficient Cm and the added-mass coefficient Ci, with

Cm = Ci + 1.0 (2.14)

According to Dutsch et al. (1998), the added value of 1.0 in Eq. (2.14) is

the result of the uniform pressure gradient occurring in a globally accelerated

flow. Hydrodynamic force on an oscillating cylinder includes added mass and

damping forces in addition to lift. Furthermore, in the case of an oscillating

cylinder the lift force may be substantially different from that measured on an

equivalent stationary cylinder [Pantazopoulos (1994)]. Sarpkaya (1995) made a

clear distinction between vortex-shedding excitation and attenuating damping.

The latter is associated to an oscillating body in a fluid otherwise at rest and

implies a decrease of the amplitude of the externally imparted oscillation by

forces in anti-phase with velocity. It is clear that the unseparated flow about the

oscillating body does not give rise to oscillatory forces in any direction and, thus, it

cannot excite the body. Sarpkaya (1995) highlighted that hydrodynamic damping

is still used to lump into one parameter the existing inability to predict the

dynamic response of fluid-structure interactions. Pantazopoulos (1994) pointed

out that added mass and hydrodynamic damping are important in water but

insignificant in air. Added mass in air is very small in comparison with the mass

of the cylinder for typical engineering structures and therefore contributes little

to the overall response of the system. Lift forces at resonance are equilibrated by

hydrodynamic damping, this signifies that damping force generated on a cylinder

in water is of the same magnitude as lift force. On the other hand, damping

force generated in air is related to the damping provided by the supports or

material, aerodynamic damping is generally very small [Pantazopoulos (1994)].

Hartlen & Currie (1970) and Sarpkaya (1977b) assumed a harmonic function

for the hydrodynamic force and decomposed it into one in phase with cylinder
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velocity and a second one out of phase (180◦) with cylinder acceleration. The

former related to hydrodynamic damping adds or subtracts energy to the vibrating

cylinder, while the latter related to added mass performs no net work over one

cycle.

As reported by Dowell & Hall (2001), in order to model fluid-structure inter-

action it is neccesary to model both the structure and the fluid. On one hand, in

the analysis of complex structures the Finite Element Method (FEM) has been

widely and successfully used. On the other hand, when using a Computational

Fluid Dynamics (CFD) approach it is possible to consider not only the potential-

flow models of irrotational flow, but also the inviscid rotational models of the

Euler equations and indeed the viscous models of the Navier-Stokes equations.

However, the computational resources needed to solve the Navier-Stokes equa-

tions are even today beyond existing capabilities. Therefore, several empirical

models of turbulence have been developed in order to make the Navier-Stokes

equations computationally tractable. Despite of these efforts, the use of CFD

remains computationally prohibited for the solution of fluid-structure interaction

problems encountered in most engineering applications.

2.4.1 Effect of Cylinder Motion on Wake

Effects on lift force resulting from the cylinder motion on the wake include changes

in the lift force magnitude, frequency and correlation length. Cross-flow vibra-

tion with frequency at or near fS organizes the wake. Vibration increases the

correlation of the vortex shedding along the cylinder axis. The correlation is a

measure of the three-dimensionality of the flow in the cylinder wake. Therefore, a

correlation of 1.0 implies two-dimensional flow [Blevins (1990)]. When the cylin-

der oscillation frequency deviates from fS, correlation length drops off quickly

toward the values of stationary cylinders [Pantazopoulos (1994)].

Cylinder vibration with frequencies near fS influences the pattern and phasing

of the vortices. As the cylinder vibration passes through fS, there is an remark-

ably clear and rather abrupt 180◦ phase shift. Zdravkovich (1982) found before

the phase shift, shedding of vortices takes place at maximum cylinder amplitude

from the cylinder edge (farthest from the wake centerline). After the phase shift,
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shedding of vortices takes place at maximum cylinder amplitude from the inside

cylinder edge. An increment in transverse amplitude to values of approximately

1.5D leads to break up of the symmetric pattern of alternate vortices. As a re-

sult, it is observed that an amplitude of 1.0D, three vortices are formed per cycle

of vibration instead of the stable pattern of two per cycle at lower amplitudes.

Therefore, this break up implies that the vortex sheeding forces applied to the

cylinder are a function of cylinder amplitude and may be self-limiting at large

vibration amplitudes [Blevins (1990)].

2.4.2 Synchronization or Lock-in

According to Gabbai & Benaroya (2005), at low flow speeds, fS is the same as

that obtained from a stationary cylinder following the Strouhal relationship. As

the flow speed is increased, fS approaches the vibration frequency of the cylinder

fV . In this regime of flow speeds, fS no longer follows the Strouhal relationship.

Instead, fS becomes locked-in or synchronized to fV (fV ≈ fS). If fS is close to

the natural frequency of the cylinder fN , large body motions are observed and

the cylinder undergoes near-resonance vibration. Therefore, the motion of the

cylinder organizes the wake and causes fS to suddenly change from its nominal

value to fN .

Synchronization or lock-in is frequency-dependent, and will occur for certain

periodic motions of the cylinder at or near fS indicated for a stationary cylinder.

Therefore, a dimensionless parameter called reduced velocity Ur, is defined as the

path length per cycle over the model width (cylinder=D) as shown in Eq. (2.15).

Ur =
U1

foscD
(2.15)

The reduced velocity is widely used to define the lock-in region. fosc is defined

as the actual vibration frequency. Therefore, as fS approaches to fN the following

relationship can be obtained:

fN ≈ fS =
StU1

D
or

U1

fND
≈ U1

fSD
=

1

St
≈ 5 (2.16)
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Blevins (1990) stated that the fundamental cross-flow vibrations ordinarily

occur over the reduced velocity range 4 < Ur < 8 leading to locked-in resonant

oscillations characterized by large-amplitude vibrations. Then, lock-in region can

be approximately defined as contained in the aforementioned limits. According to

Pantazopoulos (1994), in the lock-in region, lift, added mass, and damping forces

cannot be distinguished, and only amplitude and phase of the total hydrodynamic

force can be determined. At frequencies far above the lock-in region, added mass

is equal to its nominal value of unity. At frequencies above the lock-in region,

added mass increases near 2.0, which is similar to the case of a oscillatory flow

past a stationary cylinder taking its length as unity. At frequencies below the

lock-in region, the cross-flow added mass coefficient, Cit, becomes negative. This

variation tends to change the natural frequency of the cylinder toward the lock-in

region. As a result, Cit is generally frequency-dependent, but relatively insensitive

to amplitude and there is a tendency for the negative added mass values to

increase as the cross-flow amplitude Ay increases [Pantazopoulos (1994)].

The damping coefficient is strongly dependent on Ay and somewhat less sen-

sitive to frequency outside the lock-in region. This dependence is much stronger

at frequencies above the lock-in region than frequencies below the lock-in region.

At frequencies above and below the lock-in region, the damping coefficient is con-

sistent with typical drag coefficient data. Within the lock-in region, it is not

possible to separate damping from lift as previously mentioned and therefore the

resulting force term proportional to cylinder velocity is frequency and amplitude

dependent [Pantazopoulos (1994)].

2.4.3 Increased Mean Drag Coefficient

Blevins (1990) showed that the average (steady) drag on a cylinder vibrating at

or near fS is a strong function of Ay. Substantial increases in drag can occur

for a cylinder vibrating in resonance with vortex shedding. CDmean is known

to increase two or three times (even four times in some experiments) over the

value for stationary cylinder as a result of lock-in [Kim & Perkins (2003)]. Mean

drag amplification was first discovered by Bishop & Hassan (1964). Since then

empirical formulas for increased drag, valid for the lock-in region, have been

24
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proposed by several investigators [Vandivier (1983), Skop et al. (1977), Sarpkaya

(1978)]. Most of these expressions give similar values (within 15%).

Vandivier (1983) proposed an empirical relation for the prediction of drag

coefficients under lock-in conditions at Re numbers up to 22000. Vandivier (1983)

used data from field experiments and concluded that drag coefficients in excess

of 3.0 are possible under lock-in conditions. The empirical relation for increased

mean drag coefficient, CDinc, proposed by Vandivier (1983) using the root mean

square antinode amplitude, Yrms, is shown in Eq. (2.17).

CDinc

CDmean
= 1 + 1.043

(

2Yrms

D

)0.65

(2.17)

Chaplin et al. (2005b) more recently showed the validity of Eq. (2.17) using

experimental data obtained from a riser model in stepped flow. The experimental

model was pinned at its bottom end and had a length of 13.12 m, a diameter

of 0.028 m and a mass ratio of 3 (calculated as the mass of the riser divided

by the mass of the fluid displaced). The stepped current effect was achieved by

mounting the riser model on a towing carriage with the upper 55% of the model

in still water condition while the lower 45% was exposed to current.

Kim & Perkins (2003) presented a methodology to compute CDinc, based on

the empirical formula derived by Skop et al. (1977) that was developed in order

to consider lock-in events using the peak-to-peak amplitude, 2Υ, in the cross-flow

direction as shown in the following equations:

CDinc

CDmean
= 1 if wr < 1 otherwise 1 + 1.16 (wr − 1)0.65 (2.18)

wr =

(

1 +
2Υ

D

)

(UrSt)
−1.0 (2.19)

Khalak & Williamson (1999) conducted an experimental work involving the

transverse oscillations of a mounted rigid cylinder. Measurements of drag and

lift showed large amplification of maximum mean and fluctuating forces on the

cylinder. Khalak & Williamson (1999) compared the experimental values of CDinc

with the values computed from the empirical formula developed by Sarpkaya
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(1978). Good agreement was found in these comparisons. The empirical formula

developed by Sarpkaya (1978) is shown in Eq. (2.20).

CDinc

CDmean

= 1 + 2

(

Ay

D

)

(2.20)

2.4.4 Concluding Remarks

There is still a limitation in the appropriate understanding of the main parame-

ters related to fluid-structure interaction. In this chapter, the fundamental theory

related to the cases of a stationary cylinder under uniform flow and oscillatory

flow as well as an oscillating body in calm water was presented. The concepts pre-

sented in this chapter will be used in the following chapter to develop a response

prediction model for oscillating flexible risers.
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Chapter 3

Response Prediction of Flexible

Risers

A great deal of attention has been given in recent years to meet the industry

demands of providing riser systems for profitable oil extraction at water depths of

1000 m or more. In addition, there is an ongoing interest in the use of riser systems

for carbon dioxide injection in deep sea. As a result, the research community is

actively working on developing response prediction models for risers in order to

comply with the aforementioned demands. However, the self-regulated nature

of the Vortex-Induced Vibration (VIV) process, caused by vortices shed from a

riser, is highly nonlinear and therefore its accurate prediction is still not possible.

Numerical methods have been extensively used to solve the coupled problem

of VIV of risers. There are basically three methods, namely 1)the direct numer-

ical simulation, 2)the vortex method and 3)the Finite Element Method (FEM)

[Gabbai & Benaroya (2005)]. Numerical-based approaches have many limitations

considering the large number of variables that must be included in the analysis;

in addition, modal response in sheared current, in which the velocity varies along

the riser’s axis, is still not well understood. The fluid motion and the motion of

the riser must be coupled in order to obtain a good prediction model; especially in

the lock-in region, where the vortex shedding frequency matches or collapses onto

the natural frequency. It is still challenging to numerically predict the dynamic

behavior of this coupled system. Most of the numerical simulations are restricted

to the lower end of the Re number spectrum.
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There are basically two approaches for predicting the dynamic response of a

flexible riser. The main difference between these two approaches is related to the

procedure employed to calculate hydrodynamic forces. A CFD-based procedure

to solve the Navier-Stokes equations is employed for the first approach in order to

compute two-dimensional flow around the riser for each of the horizontal planes

in which the riser is divided along its length. According to Sarpkaya (2004), there

currently exist several issues to be understood related to the complex nature of

the coupling mechanism between the dynamics of the near-wake and that of the

riser. Most of the existing implementations of Navier-Stokes solvers for response

prediction of flexible risers have been developed for the case in which the riser is

excited by steady current. However, a marine riser is also affected by oscillatory

flow due to waves and oscillating forces at its top connection. Moreover, an

oscillating riser exhibits a more complex response because the shedding frequency

can be locked to a natural frequency of the riser several times in contrast to a

riser under the action of steady current.

Basically, Direct Numerical Simulation (DNS) and Large Eddy Simulation

(LES) are capable of providing better representation of the wake-boundary-layer

mechanism as compared to two-dimensional unsteady Reynolds-Averaged Navier-

Stokes (RANS) simulations [Sarpkaya (2004)]. However, as noted by Al-Jamal &

Dalton (2005), neither 2-D nor 3-D LES simulation is capable of calculating the

full flow past stationary cylinder, much less an oscillating one. On the other hand,

DNS simulations are extremely computational demanding to be used in practical

applications. Finally, turbulence remains poorly understood making CFD-based

approach restricted for industrial design as reported by Sarpkaya (2004).

The second approach is referred to as semi-empirical. In this approach, a

flexible riser is usually modeled as a beam with low flexural stiffness making

use of hydrodynamic force coefficients derived from experiments to calculate the

hydrodynamic forces acting on the riser. Therefore, accurate response predic-

tion is strongly related to the availability of reliable experimental data for the

modeling conditions involved in a simulation. Chaplin et al. (2005a) presented

a comprehensive study on response prediction of risers using experimental data

obtained from a riser model excited in stepped current and blind predictions from

9 different response prediction models. Chaplin et al. (2005a) showed that the
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3.1 Response Prediction Model for Flexible Risers in Sheared Flow

semi-empirical approach is more successful at predicting the cross-flow response

of a flexible riser than the CFD-based approach.

The quasi-steady assumption states that the dynamic response of an oscillat-

ing flexible riser can be approximated by using hydrodynamic force coefficients

derived from experiments performed in fixed cylinders. Therefore, it is commonly

accepted the use of force coefficients experimentally derived from oscillatory flow

acting on a fixed cylinder to obtain the dynamic response of oscillating flexible

risers. Furthermore, Obasaju et al. (1988) stated that even though many different

vortex patterns are exhibited in oscillatory flow, the basic mechanism that governs

the rate at which vortices develop may be the same as in steady flow.

VIV can occur in both steady currents and oscillating flow. In steady cur-

rents, during lock-in events, the VIV process may also induce large oscillating

amplitudes in the riser as the reduced velocity is increased, but when the cross-

flow amplitude reaches a certain value, the vortex shedding changes and then the

cross-flow amplitude decreases. The oscillating flow case exhibits more complex

behavior because the lock-in conditions can be achieved several times. As a result,

the later case must be the core of the development of a dynamic response scheme

for deep-water risers, which combines steady currents with oscillating flow.

3.1 Response Prediction Model for Flexible Ris-

ers in Sheared Flow

The VIV process in a flexible riser causes large-amplitude vibrations as the shed-

ding frequency fS approaches to one of the natural frequencies of the riser. fS

increases proportionally to the in-line fluid velocity and St. The surface roughness

and the Re number are commonly used to describe the variation of St and it is

widely recognized that in the subcritical range, 300 < Re < 1.5 × 105, St ≈ 0.2.

On the other hand, the natural frequencies of a flexible riser obtained in still water

are also a function of Cm and the mass ratio, m∗. As previously mentioned, dur-

ing a lock-in event, fS usually locks onto a natural frequency of the riser leading

to large cross-flow displacements and an increased mean drag coefficient.
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A numerical scheme to simulate the VIV response of risers in sheared flow

is presented in this section. The Finite Element Method (FEM) is employed in

conjunction with the harmonic model to predict the transverse response of the

riser during lock-out and lock-in events using experimentally derived transverse

lift coefficients from previous research works. The increased mean drag coefficient

model presented in Eq. (2.17) is also embedded in the proposed prediction model.

The static and dynamic response of a structure excited by a fluid flow can be

represented by the governing differential equation presented in Eq. (3.1).

müx + 2mξωu̇x + kx1ux = ρCm
π

4
D2U̇1 − ρCi

π

4
D2üx

+
1

2
ρCDmeanD |U1 − u̇x| (U1 − u̇x) (3.1)

where ω is the natural frequency of the structure without fluid surrounding it and

kx1 is the stiffness parameter related to the combination of the physical constants

of the structure such as Young’s modulus and Poisson’s ratio and its moments

of the inertia. The numerical representation of the transverse (lift) force FL is

incorporated into the numerical model using the time-harmonic model presented

by Norberg (2003). This model assumes that regular shedding of vortices pro-

duces a sinusoidal force (transverse lift force), which is proportional to the square

of U1 at a given time, t, as shown in Eq. (3.2).

FLs =
1

2
ρU2D

√
2C

′

L sin 2πtfS (3.2)

Norberg (2003) provided a thorough review of investigations concerning lift

forces acting on a stationary circular cylinder in cross-flow and based on those

investigations developed empirical functions for the Reynolds number dependence

of St and C
′

L. The empirical formulation proposed by Norberg (2003) is used

herein to calculate the lift force, FL, acting on a riser in the lock-out region.

Under lock-in events C
′

L is calculated based on experimental data provided by

Khalak & Williamson (1999) using experimental models tested at low m∗ and

ξ. The increased mean drag coefficient model selected in the proposed model

corresponds to the one developed by Vandivier (1983) as shown in Eq. (2.17).
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3.1.1 Numerical Implementation

The commercial software ABAQUS (2007) is used to assemble the FE model of

the riser and an in-house FORTRAN subroutine developed by the author is used

to input the hydrodynamic forces to the riser. Due to the inherently nonlinear

behavior of a flexible riser response, a nonlinear time-domain method is selected.

The Hilber-Huges-Taylor operator is used to solve the resulting nonlinear equi-

librium equations at each time increment using Newton’s method. A static stress

analysis is performed in order to apply the self-weight of the riser. As a result,

geometric nonlinearity is included during this step, which is related to large de-

formations as compared to the original dimensions of the riser. The dynamic

response of the riser is then computed using the direct-integration method. The

FE model is assembled using 2-node cubic Euler-Bernoulli elements. A total

number of 16 elements are used to numerically represent the experimental model

presented by Chaplin et al. (2005a). A time increment of 0.1 sec. is used during

the dynamic step. The FE model initially excited during 20 sec. in order to

achieve the steady state without considering the increased mean drag coefficient

model, during this stage the in-house FORTRAN subroutine computes the dis-

placements in the cross-flow direction at all nodes in order to calculate the Yrms

value. Finally, the dynamic response of the riser including the increased mean

drag coefficient model is computed for an equivalent time of ten vortex-shedding

cycles. A total number of 16 elements are used to numerically represent the ex-

perimental model presented by Chaplin et al. (2005a). A time increment of 0.1

sec. is used during the dynamic step. The FE model initially excited during

20 sec. in order to achieve the steady state without considering the increased

mean drag coefficient model, during this stage the in-house FORTRAN subrou-

tine computes the displacements in the cross-flow direction at all nodes in order

to calculate the Yrms value . Finally, the dynamic response of the riser including

the increased mean drag coefficient model is computed for an equivalent time of

ten vortex-shedding cycles.
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3.1.2 Experimental Model

The experimental model used for the validation of the proposed prediction model

was developed by Chaplin et al. (2005a). They compared experimental data

obtained from a riser model in sheared flow with blind predictions using 9 different

numerical models. The experimental model is pinned at its bottom end and has

a length of 13.12 m, a diameter of 0.028 m and a mass ratio of 3. The stepped

current effect was achieved by mounting the riser model on a towing carriage

with the upper 55% of the model in still water condition while the lower 45%

was exposed to current. Further details can be found in Chaplin et al. (2005a).

Blind predictions were carried out using 9 different models mainly divided into

two groups. In the first group, CFD approach is used to compute hydrodynamic

forces in two-dimensional planes and then input to a model of the riser, four

codes are used in the first group as follows: NorskHydro [Herfjord & Kvamsdal

(1999)], USP [Yamamoto et al. (2004)], DeepFlow [Etienne (1999)] and VIVIC

[Willden & Graham (2004)]. The second group is composed of the following five

semi-empirical prediction codes: VIVA [Triantafyllou (2003)], VIVANA [Larsen

(2000)], VICoMo [Moe et al. (2001)], SHEAR7 [Vandivier (2003)] and ABAVIV

[Lambrakos & Maher (1999)]. Finally, the test conditions for the nine cases

presented by Chaplin et al. (2005a), as shown in Table 3.1, are used to validate

the proposed prediction model.

Table 3.1: Test Conditions for Blind Predictions Chaplin et al. (2005a)

Case Speed (m/s) Top Tension (N)

1 0.16 405

2 0.21 407

3 0.31 457

4 0.40 506

5 0.54 598

6 0.60 670

7 0.70 743

8 0.85 923

9 0.95 1002
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Figure 3.1: Group No.1 Ux0 Figure 3.2: Group No.2 Ux0

3.1.3 Simulation Results

The value of CDmean used in the simulations was 0.7 and the value of Ci was 1.0

[Chaplin et al. (2005a)]. During lock-in events the values of the maximum and

minimum C
′

L used in the simulations were 1.25, which corresponds to a Ur = 5,

and 0.5 at Ur = 6, respectively [Khalak & Williamson (1999)]. The natural fre-

quencies of the riser were computed in still water using an eigenvalue extraction

procedure prior to the dynamic analysis and during lock-in events, the computed

shedding frequency was locked to the nearest lower natural frequency as previ-

ously explained. The simulation results obtained with the proposed prediction

model are shown in Figs. 3.1 and 3.2. The maximum in-line and cross-flow

displacements are represented by xmax and ymax, respectively.

3.1.4 Concluding Remarks

In this section, a dynamic prediction model for risers in sheared flow was pre-

sented. Experimental data obtained from a flexible riser model were compared
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with the simulation results obtained from the proposed numerical scheme. Addi-

tional comparisons were made using simulations results obtained from 9 numerical

models. Good agreement is observed in both in-line and cross-flow response. The

increased mean drag coefficient model accurately represents the increment of the

in-line forces during lock-in events leading to an increment of the in-line velocity

and lift forces.

Although the calculation of the natural frequencies of a riser is based in several

assumptions and may deviate from its real values, the methodology proposed in

this section captures most of the VIV process during lock-in events. It is still

challenging the numerical representation of the lock-in process, when a riser is

excited under lock-in events the shedding frequency is expected to lock onto the

nearest lower natural frequency. However, a flexible structure such as a riser,

usually has several natural frequencies having values lower than the oscillating

frequency of the riser. Therefore, the selection of the lock-in frequency may

involve errors in its selected value.

Another important issue to be considered for further studies is the influence

of the mass ratio in the maximum displacement that can be achieve by the riser

under lock-in events. It is widely accepted that for low mass-damping values the

expected maximum cross-flow displacement is lower than 1.2 diameters. The ex-

perimental and simulation results presented by Chaplin et al. (2005a) are located

in this region as well as the results obtained from the proposed prediction model.

Several issues need further study. The values of the lift coefficients during lock-in

events may considerably deviate from the values obtained under lock-out events.

In addition, the Strouhal law may not be followed by the shedding frequency

when is approaching to a natural frequency of a riser leading to inaccuracies in

the lock-in numerical models. Finally, at resonance the hydrodynamic damping

plays an important role in limiting the maximum cross-flow displacements.
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3.2 Response Prediction Model for Short Flex-

ible Risers

A response prediction model for short flexible risers without considering lock-

in events is presented in this section. In-line motion is numerically represented

using Eq. (3.1). The analytical representation of FLo is incorporated into the

numerical scheme by using the quasi-steady procedure presented by Obasaju

et al. (1988). This model is used in conjunction with the left-hand side of the Eq.

(3.1) to represent the cross-flow response of the structure using the corresponding

stiffness parameter and the relative displacement of the structure in the cross-flow

direction. Therefore, FLo can be represented as shown in Eq. (3.3), where the

phase angle, φ, is considered.

FLo =
1

2
ρU2

0DCLmax sin (2πtfL + φ) (3.3)

3.2.1 In-line Response Validation

The numerical scheme is implemented in free-end riser models, these models are

sinusoidal excited at their top end and free supported at their bottom end. Hong

& Koterayama (2004) developed a new analytical scheme for dynamic response of

flexible risers under controlled environmental conditions and compared the results

obtained from their analytical scheme with experimental data. Transverse force

was not considered in the numerical scheme [Hong & Koterayama (2004)]. The

experimental model has a length of 6.5 m, Young’s modulus of 8.847 MPa, outer

diameter of 0.0225 m, inner diameter of 0.0127 m and density of 1476 kg/m3.

A bottom weight is added to the model in order to keep it straight during the

dynamic tests. This bottom weight has a diameter of 0.034 m, a total length of

0.093 m and a weight in water of 3.489 N.

The experimental riser model presented by Hong & Koterayama (2004) is

simply supported at its top end and free supported at its bottom end. The riser

model is excited at its top end by a sinusoidal forced oscillation motion in the

in-line direction with amplitude of 0.1 m and forced oscillation periods of 2 sec., 6

sec. and 10 sec. The FE model is assembled using 20 pipe elements; one circular
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element is used for the bottom weight. At the water level there is no horizontal

velocity component and geometric non-linear procedure is used to load the riser

by its self-weight and the bottom weight during the static step. Then, drag and

inertia loads are applied to the riser during the dynamic step.

The experimental model presented in this section is sinusoidally excited at Re

numbers up to 2000 and KC numbers up to 28. This regime is named the third

vortex 22 < KC < 30 by Obasaju et al. (1988). In this regime three full vor-

tices are formed during each half cycle and three vortex pairs convect away from

the cylinder during a complete cycle. Experimental studies had shown that the

dominant frequency is 4 times the in-line oscillating frequency. In this numerical

implementation, the in-line maximum velocities for each of the 20 pipe elements

are used to compute the dominant frequencies fL. Another important parameter

to be considered in the quasi-steady model is β, because several experimental

studies have shown that hydrodynamic force coefficients depend on β at low KC

numbers (KC < 15), but in the third vortex region can be assumed without loss

of accuracy that hydrodynamic force coefficients only depend on the KC number

at low Re numbers (Re < 14200) as reported by Senga & Koterayama (2005).

The FE model is initially excited without considering FLo, during this stage

the in-house FORTRAN subroutine computes the maximum displacements and

velocities at all nodes. A time increment of 0.1 sec. is used during the dy-

namic step. The KC numbers and CLmax for all sections are calculated using

the maximum displacements and velocities computed in the previous stage. The

procedure to calculate the φ is based on the time difference between the time

required for each section of the FE model to achieve its maximum displacement

and the required time at the top end to achieve the same condition. The in-

house FORTRAN subroutine computes and applies FLo to each element of the

FE model using Eq. (3.3).

The time-history responses of the riser at the selected positions are calculated

for an excitation period of 2 sec. The simulation and experimental results ob-

tained by Hong & Koterayama (2004) are presented in Figs. 3.3 and. 3.5. The

simulation results obtained from the proposed numerical scheme are shown in

Figs. 3.4 and. 3.6.
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Figure 3.3: ux0 Hong & Koterayama

(2004) Figure 3.4: ux0 Proposed Model

Figure 3.5: ux(t) Hong & Koterayama

(2004) Figure 3.6: ux(t) Proposed Model
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3.2 Response Prediction Model for Short Flexible Risers

Figure 3.7: uy(z = −4.31, t) Senga &

Koterayama (2005)
Figure 3.8: uy(z = −4.31, t) Proposed

Model

3.2.2 Cross-Flow Response Validation

Senga & Koterayama (2005) improved the previous analytical scheme, [Hong &

Koterayama (2004)], by including the transverse (lift) force, which was repre-

sented by a sinusoidal equation using the instant vortex shedding frequency and

the instant in-line velocity. A second riser model, having the same material and

geometric properties from the model previously presented, is used to carry out

the transverse response validation. The boundary condition at the top-end is

simply supported. The experimental riser model is excited by a sinusoidal forced

oscillation motion with amplitude of 0.1 m and forced oscillation period of 8

sec. According to Senga & Koterayama (2005) the oscillation parameters avoid

the lock-in condition, because the oscillating frequency is located in between the

nearest natural frequencies of the model. The riser model developed by Senga &

Koterayama (2005) has fundamental periods of 11 sec., 4.8 sec., 3.1 sec. and 2.3

sec. The simulation and experimental results obtained by Senga & Koterayama

(2005), using the transverse response of the riser model at a depth of 4.31 m, are

shown in Fig. 3.7. The simulation results obtained from the proposed numerical

scheme are shown in Fig. 3.8. In the proposed numerical scheme the hydrody-

namic coefficients were obtained from experiments conducted by Koterayama &

Nakamura (1988), and the maximum lift coefficients were obtained from Bearman

et al. (1984).
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3.2.3 Concluding Remarks

Experimental data obtained from a flexible riser model were compared with the

simulation results obtained from the proposed response prediction model. Good

agreement is observed between simulation and experimental results. Two free-end

riser models were used to validate the in-line and the transverse response. The in-

line response is accurately represented by the proposed response prediction model

and the transverse response also shows good agreement. The lock-in condition,

when the vortex shedding frequency approaches to a natural frequency of the riser

is not achieved. Therefore, an amplification model for CDmean was not included in

the proposed response prediction model. The experimental and analytical results

presented by Hong & Koterayama (2004) and Senga & Koterayama (2005) are

successfully simulated by the proposed response prediction model.

3.3 Response Prediction Model for Tensioned

Flexible Risers

The Euler-Bernoulli beam equation is used herein to model a riser idealized as

a beam with low flexural stiffness following the procedure proposed by Huera-

Huarte et al. (2006) as shown in Eq. (3.4). A Cartesian reference is defined in

the x-axis by the direction of the flow velocity in the case of a stationary body

or the in-line motion in the case of an oscillating body, the z-axis is defined in

the direction of the riser’s axis and the y-axis is perpendicular to both Fig. 3.9.

Where AX0 is used to define the amplitude of the in-line motion, ux,y is the

deflection, m is the mass of the riser per unit length, ξ is the damping coefficient,

EI is the flexural stiffness, Tt is the tension applied at the top end of the riser, L

is the length of the riser and w is the submerged weight.

EI
∂4ux,y (z, t)

∂z4
− ∂

∂z

[

(Tt − w (L− z))
∂ux,y (z, t)

∂z

]

+

ξ
∂ux,y (z, t)

∂t
+m

∂2ux,y (z, t)

∂t2
= FTx,y (z, t) (3.4)
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Figure 3.9: Riser Motion and Coordinate System

The analytical representation of in-line forces acting on a riser presented by

Carberry et al. (2005) is used herein to model the external fluid force acting in

the x-axis as shown in Eq. (3.5).

FTx(z, t) = ρCm
π

4
D2U̇1 − ρCi

π

4
D2üx +

1

2
ρD |U1 − u̇x| (U1 − u̇x) [CDmean + CD sin (2 (2πtfL + φdrag))] (3.5)

where fL is defined as the most dominant frequency in the y-axis or cross-flow

direction based on the fact that transverse response in flexible risers is a multi-

frequency phenomena. φdrag is the phase of the drag with respect to the cylinder’s

displacement in the cross-flow direction. It is widely recognized that the dominant

frequency of the drag force is two times the dominant frequency in the cross-

flow direction (2fL). Therefore, φdrag is used to relate the phase of the drag to

the displacement of the riser in the cross-flow direction and it is experimentally

derived from drag traces whose correlation coefficient with a sinusoidal signal

is greater than 0.6 as proposed by Carberry et al. (2005). fL is related to the

cross-flow motion and is used to calculate the transverse force as shown in Eq.

(3.6).

FTy(z, t) =
1

2
ρU2

0
DCL sin (2πtfL + φlift + θ (z)) (3.6)
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θ (z) is related to an initial phase angle that is used to couple in-line and

cross-flow motions allowing the correct application of a particular section of the

riser and considering the existing difference in the values of phase angle of the

traveling wave originated at the top end of the riser and the remaining regions

in the case of a riser excited at its top end, which is the case considered in

this section. Detailed explanation related to the numerical calculation of this

parameter is provided in Section 3.3.2. fL mainly depends on the KC number

and St. Obasaju et al. (1988) showed that the vortex patterns around a circular

cylinder in oscillating flow can be approximately divided into five regimes, namely

the asymmetric (4 < KC < 8), the transverse (8 < KC < 15), the diagonal

(15 < KC < 22), the third vortex (22 < KC < 30), and the quasi-steady

(KC > 30). Each of these regimes is characterized by an approximate fL.

Sarpkaya (1995) decomposed the instantaneous cross-flow force using a two-

coefficient model into inertia and drag components in order to study its depen-

dency on the cross-flow amplitude Ay. Three representative values of Ay/D ( =

0.25, 0.50 and 0.75) were used to experimentally proved that the drag compo-

nent of the instantaneous cross-flow force becomes negative in the vicinity of the

synchronization region defined as the matching of the shedding frequency and

the natural frequency of the cylinder in the cross-flow direction. This negative

component of the drag force is commonly defined as negative damping and there-

fore produces amplification of the oscillations. It was found by Sarpkaya (1995)

that the maximum negative amplitude of the drag component of the cross-flow

force is achieved around Ay/D = 0.5 and then decreases. The oscillations become

self-limiting for Ay/D larger than about unity. As noted by Sarpkaya (2004), the

larger the amplitude of VIV oscillations, the more nonlinear is the dependence

of the lift forces on Ay/D. Blevins (1990) proposed an empirical formulation

to represent the variation of the lift coefficient with respect to the amplitude of

the cross-flow motion Ay. The three-term polynomial derived by Blevins (1990),

presented in Eq. (3.7), is used in this section to calculate the lift coefficients

required for the numerical implementation of Eq. (3.6). Basically, the empiri-

cal formulation presented by Blevins (1990) assumes that as Ay approaches to

1.0D, a breakdown of regular vortex street is produced and the value of the lift

coefficient decreases.
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CL = 0.35 + 0.6

(

Ay

D

)

− 0.93

(

Ay

D

)2

(3.7)

Sarpkaya (2004) defined synchronization or lock-in as a phase transformer due

to the fact that synchronization produces a rapid inertial force decrement and a

rapid increment of the absolute value of the drag force. Sarpkaya (2004) stated

that synchronization is achieved when the reduced velocity, Ur, reaches a value

between 4 and 8. Sarpkaya (2004) found an increase of 3.5 times in the mean

drag coefficient of an oscillating cylinder involving simultaneous oscillations in

the in-line and the cross-flow directions when is compared with the case of static

cylinder. Park et al. (2003) using a rubber pipe (length of 6 m and diameter of

0.02 m) with its upper end fixed to a towing carriage and setting its bottom end

to be free concluded that it was only possible to achieve good agreement between

experiments and numerical simulation if enhanced drag coefficients due to vortex

induced vibrations are considered. The increased mean drag coefficient used in

this section corresponds to Eq. (2.20).

Khalak & Williamson (1999) highlighted the importance of appropriately

defining the oscillation frequency and based on their experimental study found

that the classical definition of synchronization as frequency matching between

the oscillating frequency and the natural frequency of an oscillating body is not

appropriate for the low mass-damping (m∗ξ) case, where m∗ is the mass ratio

calculated as the mass of a body divided by the mass of the fluid displaced and

ξ is defined as the ratio of ((structural damping)/(critical damping)). Khalak &

Williamson (1999) concluded that a more appropriate definition of synchroniza-

tion can be stated as the matching of the frequency of the periodic wake vortex

mode with the body oscillation frequency. This statement is adopted in the re-

sponse prediction model presented in this section. Based on the aforementioned

fact, it is important to note that the dynamic response of a flexible riser with a

value of m∗ lower than 3.3 is more complex due to the existence of 3 modes of

response, in contrast with the 2 modes of response found in risers with values of

m∗ larger than 10. On the other hand, the damping force acting on a flexible riser

is due to structural damping and fluid damping. In water structural damping will

often be relatively small compared to fluid damping, and may therefore be of a
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secondary influence. Therefore, the mass-damping parameter plays a crucial role

in the type of response achieved by a flexible riser. Moreover, the peak ampli-

tude in the cross-flow direction is strongly related to this parameter. Khalak &

Williamson (1999) collected experimental and simulation data in order to estab-

lish a confident range for this peak value. Some differences were found when the

flow acting on a cylinder corresponds to low Reynolds numbers. A peak value of

0.6D was found by Khalak & Williamson (1999) for low Re numbers and 1.2D for

high Re numbers. A more recent study presented by Willden & Graham (2006)

at Re numbers between 50 and 400 stated that for the low-Re region, the peak

amplitude in the cross-flow direction is independent of the mass-ratio parameter

showing a peak value of 0.5D.

3.3.1 Experimental Validation

In recent years, several experiments have been conducted in order to validate

response prediction models for risers. Chaplin et al. (2005a) conducted a series of

experiments using a riser model (13.12 m long and 0.028 m diameter) in stepped

current. The Re numbers achieved in the experiments conducted by Chaplin et al.

(2005a) ranged from 4480 to 26600 and by comparing the experimental data with

11 different numerical models it was found that the in-line and cross-flow displace-

ments were underpredicted by 20% to 40% and by 10% and 30%, respectively.

On the other hand, risers are usually subjected to a combined loading of waves

and currents. Therefore, some of the riser models have been tested under os-

cillatory flow or oscillating body conditions as previously explained. Duggal &

Niedzwecki (1995) conducted a large-scale experimental study to investigate the

dynamic response of a riser model constructed from ABS plastic tubing having

a length of 17.18 m, a diameter of 0.032 m and pinned at its both ends. The

model was excited at KC numbers ranging from 10.6 to 52.7 and based on the

analysis of the experimental data Duggal & Niedzwecki (1995) concluded that

the cross-flow response show similarities with previous research work using oscil-

latory flow in rigid cylinders. More recently, Jung et al. (2005) tested a highly

flexible free hanging pipe in calm water. The pipe was 6 m long, 0.02 m diameter

and was excited by top-end oscillations. Comparisons between experiments and
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numerical results using the model developed by Jung et al. (2005) showed that

in-line displacements were well predicted at the upper part of the model, but

some differences were found in the lower part due to large interaction between

in-line motion and vortex-induced transverse motion.

In this section, large-scale experiments are conducted to validate the proposed

prediction model. A 20-meter riser model, pinned at its both ends, is sinusoidally

excited at its top end using a wide range of KC numbers in accordance with the

regimes proposed by Obasaju et al. (1988). The forced oscillation experiments

are carried out in the deep-sea basin of the Integrated Laboratory for Marine

Environmental Protection located in the National Maritime Research Institute

(NMRI). This deep-sea basin is depicted in Fig. 3.10 and consists of a circular

basin (depth: 5 m, effective diameter: 14 m) and a deep pit (depth: 30 m,

effective diameter: 6 m). The underwater 3-dimensional measurement equipment

is composed of 20 high-resolution digital cameras (2 units/set x 10 sets).

The properties of the model are presented in Table 3.2. Fig. 3.11 shows the

experimental model placed in its initial position before being excited. Its coordi-

nate system is defined in the x-axis by the in-line motion, the y-axis corresponds

to the transverse motion and the z-axis is defined in the direction of the riser’s

axis as illustrated in Fig. 3.9. The model is sinusoidally excited in still water

along the x-axis. Steel bars are added to the riser model in order to increase its

self-weight. The total weight of the riser, including the steel bars, is 68.14 N. The

tension force applied at the top end of the model in the z-axis corresponds to a

value of 63.5 N. The experimental validation of the proposed response model is

carried out for different values of amplitudes and periods regarding the oscillation

force at its top end as shown in Table 3.3. Depending on the value of KC the

cases presented in Table 3.3 can be classified into either three1 or six2 regimes.

3.3.2 Numerical Implementation

The Finite Element Method (FEM) is used herein to numerically solve the dif-

ferential equation governing the static and dynamic response of a flexible riser

1Zhou & Graham (2000)
2Obasaju et al. (1988)
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Figure 3.10: Deep-sea Basin (NMRI)

Figure 3.11: Experimental Riser Model (NMRI)
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Table 3.2: Properties of the Riser Model

Material Polyoxymethylene

Model length (m) 20

Outer diameter D (m) 0.016

Inner diameter (m) 0.0108

Density (Kg/m3) 1410

Young’s modulus E (MPa) 2.937

Table 3.3: Excitation Cases of the Riser Model

Case Amp. (m) T (sec.) Re KC Regime1 Regime2

1 0.010 2 499 3.9 inertia symmetric

2 0.020 2 1011 7.9 inertia/drag asymmetric

3 0.027 3 904 10.6 inertia/drag transverse

4 0.040 4 1005 15.7 inertia/drag diagonal

5 0.060 2 3021 23.6 inertia/drag third vortex

6 0.080 2 4091 31.4 drag quasi-steady

presented in Eq. (3.4). The commercial software ABAQUS (2007) is selected to

carry out this numerical implementation. The riser is modeled as an assembly of

40 cubic pipe elements. Therefore, the actual shape function of a nonlinear beam

is more closely fit due to the element cubic shape functions employed in this pro-

cedure. Geometric nonlinearity is considered by using a nonlinear time-domain

method during the application of the riser’s self-weight. The dynamic response of

the riser is then computed employing the direct-integration method. An in-house

FORTRAN subroutine (developed by the author) computes displacements, ve-

locities and accelerations at each time step in order to generate the data needed

for the numerical implementation of the amplitude-dependent lift and increased

mean drag coefficient models. The developed subroutine compares current and

previous results. Therefore, representative peak values can be found at each stage

of the simulation.

Carberry et al. (2005) experimentally proved that the wake states for forced

oscillations are remarkable similar to the response branches of elastically mounted
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cylinders. Khalak & Williamson (1999) found an intermittent switching between

the upper and the lower branch amplitudes and phase angles in the cross-flow

direction. On the other hand, there is a hysteretic response from the initial to the

upper branch. Both of the mode transitions are related to jumps in amplitude and

frequency and a 180◦ jump occurs only when the flow moves between the upper

and the lower branches. This complex hysteretic behavior adds uncertainties in

the numerical implementation of Eq. (3.5). The identification of the exact value

at which an increment of Ur produces a jump to a new branch cannot be assessed

with good accuracy considering the length of the riser model presented in this

section. Therefore, φlift=0◦ is assumed for this numerical implementation. The

value of the phase angle, φdrag, is obtained from Carberry et al. (2005). They

found that the nature of the in-line motion tends to be less sinusoidal than the

cross-flow motion showing a jump of approximately 240◦ in the transition between

the lower and initial branches. The variability of φdrag is markedly larger than

φlift , but when the shedding frequency matches the oscillating frequency its value

tends to be zero. CD=0.3 is selected according to Carberry et al. (2005).

The KC numbers achieved by the riser model presented in this section cor-

respond to the symmetric, asymmetric, transverse, diagonal, third vortex and

quasi-steady regimes providing a wide range of experimental validation. It is

important to highlight that Lin et al. (1996) identified the existence of a region

located around KC=10 where there is a rapid rise of CDmean and decrease of

Cm. The mean drag coefficient rises approximately from 1.5 at KC=6 to 2.1

at KC=10. According to Lin et al. (1996), two-dimensional simulation around

KC=10 fails to predict this peak due to three-dimensional flow features. On the

other hand, there is a rapid decrease of Cm in the same region (6 < KC < 10).

Obasaju et al. (1988) presented a comprehensive study of a circular cylinder in

planar oscillatory flow at KC numbers ranging from about 4 to 55. It was ex-

perimentally proved that there is a range of the β parameter in which CDmean is

not sensitive to changing β. It was also identified that the upper boundary of

this range lies between β = 964 and 1204. The maximum value of the β param-

eter achieved by the riser model is 128. Therefore, CDmean and Cm coefficients

experimentally computed by Obasaju et al. (1988) at β = 196 are used for the
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Figure 3.12: Values of CDmean
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Figure 3.13: Values of Ci

numerical implementation of the proposed prediction model. The simulation re-

sults presented by Lin et al. (1996) are used for KC < 4. Figs. 3.12 and 3.13

show the values of CDmean and Ci used in the numerical implementation. Finally,

large-amplitude vibrations due to synchronization events and a low m∗ value are

the main characteristics of the long flexible riser model presented in this section.

Therefore, a value of ξ of 0.3% was included in the prediction model using as a

reference the value of ξ presented by Huera-Huarte et al. (2006).

It is also important to highlight that during synchronization, the riser vi-

bration is only limited by its structural damping. However, once the amplitude

reaches about 1.0D, its vibration becomes self-limiting. Blevins (1990) stated

that in-line VIV usually occurs with twice of the shedding frequency in the range

2.7 < Ur < 3.8. The occurrence of both in-line and cross-flow synchronization

events is carried out by computing Ur at each time step and if its value is be-

tween 2.7 and 3.8, the fluctuating drag force part of Eq. (3.5) is included in the

calculation. On the other hand, if Ur is located in between 4 and 8, the increased

mean drag coefficient model is used to compute the magnitude of the drag force.

In the numerical implementation of the proposed prediction model, hydrody-

namic forces are first applied using fixed values of drag and added-mass coeffi-

cients. These forces are applied during 14 cycles. Then, at the end of the first

stage, in-lines amplitudes are calculated and used to update the drag coefficients

based on KC values, at the same time the cross-flow forces are applied during
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6 additional cycles. Synchronization events in both in-line and cross-flow are

included in the third stage when the values of CDmean, Ci and CL are updated.

This stage lasts 48 additional cycles. This procedure is summarized in Table 3.4.

The computation of the in-line and cross-flow forces is carried out by the in-house

FORTRAN subroutine and then input to the FE model of the riser at each time

step. fL mainly depends on the KC number and St. Therefore, St is numerically

calculated based on the empirical formulation proposed by Norberg (2003).

Table 3.4: Subroutine Procedure

First Stage Second Stage Third Stage

14 cycles 6 cycles 48 cycles

fixed Ci and CDmean updated Ci and CDmean updated Ci and CDmean

fixed CL updated CL

in-line force in-line and cross-flow forces consideration of lock-in

The numerical implementation of Eq. (3.6) requires the correct calculation of

θ (z). However, the initial riser’s response is transient due to a time-varying load.

It takes approximately 4 seconds for the wave originated at the top end of the

riser to completely excite its bottom end. Then, the steady response is achieved

and all sections of the model are excited at different frequencies, amplitudes and

phase angles. Therefore, an algorithm is used to approximately compute θ (z) by

using the difference between the time required for each section of the model to

achieve its maximum in-line displacement and the time at the top end of the riser

to achieve the same condition. Therefore, θ (z) allows the correct application of

FTy(z, t) at the end of the first stage. The main consideration behind the use

of this parameter is that it considers the existing differences in the in-line phase

angles for all the sections in which the riser is divided. As a result, FTy(z, t) is

correctly applied at the beginning of the second stage. Otherwise, wrong in-line

amplitudes obtained during the transient response may under-estimate the phase

angle and lead to out-of-phase response between the in-line and the cross-flow

motions of the riser. In the following sections the simulation results are provided

using as a reference the three regimes previously proposed by Zhou & Graham

(2000).
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Figure 3.14: Computational Domain

3.3.3 Inertia Regime

As previously mentioned, existing semi-empirical models for response prediction

of risers highly depend on the experimentally derived values of hydrodynamic

force coefficients. Therefore, most of those models rely on large databases of

force coefficients. On the other hand, the quasi-steady approach assumes that

hydrodynamic force coefficients can be used for oscillating flexible risers. As a

result, static fluid forces due to oscillatory flow can be used to predict hydrody-

namic forces acting on an oscillating body.

A more straightforward approach is the modeling of the sinusoidal movement

of the cylinder in the in-line direction while computing the cross-flow forces due

to shed of vortices. The cylinder is therefore allowed to freely move in the cross-

flow direction. At low amplitudes it is expected similar simulation results for

the cases of oscillatory flow acting on a fixed cylinder and an oscillating cylinder

in otherwise calm water. In this section, a CFD-based model for prediction of

in-line hydrodynamic force coefficients is developed using the commercial finite

volume CFD code, named FLUENT (2007). Its validation is carried out using

experimental and simulation results from previous studies in fixed cylinders. Fig.

3.14 depicts the computational domain assembled in GAMBIT (2007). A blockage

ratio (D/B) of 10% is selected in this section based on the simulation results

presented by Anagnostopoulos & Minear (2004), who performed a parametric

study using blockage ratios ranging from 10% to 50% and found that the blockage

effect is almost negligible for blockage ratios lower than 20%.
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The final grid is composed of 17494 nodes. The cylinder is placed in the

center of a circular domain composed of triangular cells. The remaining regions

of the computational domain are composed of quadrilateral cells. The solution

is time-dependent (time step of 0.01 sec.). Therefore, an unsteady solver is used

herein allowing the modeling of the oscillatory flow condition. The experimental

model presented in this section is sinusoidally excited at Re numbers up to 600

and KC numbers up to 5, which correspond to a β parameter of 120.

Based on the Re numbers achieved by the riser, a laminar viscous model is

selected. The proposed model is first validated for steady flow at Re=100. Zhou

& Graham (2000), using a vortex-based method to simulate flow around a cir-

cular cylinder, found a value of CDmean of 1.37. They compared this value with

15 experimental and numerical results and found good agreement in their com-

parisons. The model proposed in this section is therefore implemented for the

same simulation conditions presented by Zhou & Graham (2000). The CDmean

value computed from the proposed model is remarkably similar to the one pre-

sented by Zhou & Graham (2000) having a value of 1.38. Fig. 3.15 shows the

CDmean values computed from the proposed model. It is possible to observe good

agreement between the computed values and the experimental values presented

by Anderson (1991).
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Figure 3.15: Computed CDmean vs Experimental Values
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Figure 3.16: CDmean Oscillatory Flow

Oscillatory flow with amplitudes ranging from 0.0025 m to 0.0125 m and

period of 2 sec. is simulated using a user defined function (UDF) developed by the

author. CDmean and Cm are then calculated through least squares fit of the force

time series. As previously mentioned, Obasaju et al. (1988) experimentally found

that there is a range of β in which CDmean is not sensitive to changing β. It was

identified that the upper boundary of the range lies between β = 964 and 1204.

Therefore, the simulation results obtained from the proposed model are compared

with the ones found by Anagnostopoulos & Minear (2004) at β=50, Obasaju et al.

(1988) at β=196, Lin et al. (1996) at β=70 and Bearman et al. (1985) at β=200

as shown in Figs. 3.16 and 3.17. Finally, the proposed CFD-based model is

numerically implemented for the oscillating body case. The moving/deforming

mesh capability provided by FLUENT (2007) is used herein to sinusoidally move

the cylinder in the in-line direction while applying pressure forces in the cross-

flow direction based on the explicit Euler formulation presented in Eq. (3.8) .

The main idea of this procedure is to use the computed velocities at which the

cylinder is excited in both in-line and cross-flow directions and then allows the

cylinder to move in accordance with these velocities. In order to improve the

simulation results, a time step ∆t of 0.001 sec. is selected in Eq. (3.8).
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vt = vt−∆t +
Fp

m
∆t (3.8)

where vt is the velocity of the cylinder in the cross-flow direction and Fp is

the pressure force in the same direction at a given value of time t. The cylinder is

then allowed to sinusoidally move in the in-line direction with amplitudes ranging

from 0.0025 m to 0.0125 m and period of 2 sec. In the cross-flow direction, the

computed pressure forces are used to move the cylinder based on the cross-flow

velocity computed from Eq. (3.8). The aforementioned procedure is repeated

at each time step. The simulation results for the oscillating body case are also

presented in Figs. 3.16 and 3.17. The oscillatory flow and oscillating body results

are related to a fixed cylinder excited by oscillatory flow and an oscillating body

in otherwise calm water, respectively.

It can be seen from Fig. 3.16 that the values of the CDmean computed from

the oscillatory flow and oscillating body cases are in good agreement with the

experimental and simulation data provided by previous studies. The simulation

results presented in this section also support the statement given by Obasaju

et al. (1988) as previously mentioned. The simulation results presented in Fig.

3.17 show that it is important to consider the value of β in the calculation of

Cm. It is also important to highlight that for the oscillating body case Ci is
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obtained through least squares fit of the force time series and it is assumed that

Cm=Ci+1.0. Finally, it is observed that there is no significant variation of Cm

for the KC numbers presented in this section. The computed values of Cm show

lower values than the ones obtained from the oscillatory flow case showing the

importance of fluid-structure interaction, which is expected to be significant at

large amplitudes.

Time series response during 20 seconds obtained from the proposed prediction

model and experimental data are shown in Figs. 3.18, 3.19 and 3.20. In-line and

transverse responses were computed at depths of 5 m, 7 m, 9 m, 10 m, 12 m

and 15 m. The experimental data were passed through a 6th order high-pass

Butterworth filter with a 0.1 Hz cutoff. The in-line phase angles were corrected

in order to improve the quality of the graphical results. Variations in the phase

angles were found when the experimental results were compared with simulation

results. These variations may be caused in part by the initial unsteady response

of the riser.

20 22 24 26 28 30 32 34 36 38 40

-10

0

10

x
[
m
m
]
 
z
=
-
5
m

20 22 24 26 28 30 32 34 36 38 40

-10

0

10

y
[
m
m
]
 
z
=
-
5
m

20 22 24 26 28 30 32 34 36 38 40

-10

0

10

x
[
m
m
]
 
z
=
-
7
m

20 22 24 26 28 30 32 34 36 38 40

-10

0

10

time [sec.]

y
[
m
m
]
 
z
=
-
7
m

Figure 3.18: Time History Response Case 1 at z = -5 m and -7 m −−Simulation
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The in-line response is relatively well predicted in both amplitude and fre-

quency content. It can be observed that although the experimental model is

sinusoidally excited at its top end, the experimental data show that there is a

variation in the amplitude involving a nonlinear phenomenon almost impossible

to model using numerical simulation. It is also observed a variation in the fre-

quency content. As previously mentioned, the classical lock-in condition is not

considered in this section and although it is widely recognized that the Strouhal

law is not followed and the frequency of the motion in the cross-flow direction does

not coincide with the shedding frequency during synchronization events, it can

be seen from the experimental data that the cross-flow frequencies significantly

deviate from the cross-flow frequencies of the simulated time series responses.

The CFD analysis previously presented showed that there exist two dominant

frequencies for the model tested in the inertia regime. Nevertheless, the shedding

frequency is proportional to the in-line velocity at a given section and therefore is

expected that at low KC numbers the cross-flow frequency decreases. According

to the Strouhal law, the experimental model presented in this section achieves a

maximum value of fS of approximately 0.4 Hz. It is clear that there are signif-

icant deviations in the cross-flow frequencies. However, these deviations can be

partially explained by the unpredicted nature of the phase angle in the cross-flow

direction. The phase angle is related to the energy transfer from the fluid to

the body. According to Morse & Williamson (2006), for very low-mass damping,

the energy dissipated is very low, and thus the phase is close to 0◦ or close to

180◦. It seems that a more powerful scheme using an appropriate model for the

calculation of the phase angle can somehow account for this deviation. The main

difficulty is that the development of such model involves challenges such as the

exact location of a jump in the phase angle for a specific reduced velocity.

The accurate prediction of the cross-flow response in flexible risers is still

challenging due to its highly nonlinear nature. In addition, the assumption that

only one frequency dominates the cross-flow response may introduce considerable

deviations in its numerical calculation. Using the experimental data at z=-5 m

and z=-15 m, it is possible to observe that the KC numbers achieved by the

sections of the riser in these regions have similar values, as shown in Figs. 3.18

and 3.20. The values of the KC numbers obtained from the numerical simulation
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Figure 3.21: Fourier Spectrum Case 1

Cross-Flow at z = -5 m
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Figure 3.22: Fourier Spectrum Case 1

Cross-Flow at z = -15 m

at z=-5 m and z=-15 m are 4.55 and 4.39, respectively. However, the transverse

response at z=-5 m is considerable different to the one achieved at z=-15 m, as

shown in Figs. 3.21 and 3.22. When Fourier analysis of the experimental data

in the cross-flow direction at z=-5 m and z=-15 m is carried out, the differences

become more evident in both amplitude and frequency content as shown in Figs.

3.21 and 3.22. Furthermore, there is no clear distinction of the fL that must be

used at z=-5 m.

A CFD-based approach for response prediction of oscillating flexible risers at

low values of β parameter was presented. Experimental data obtained from a 20-

meter riser model, sinusoidally excited at its top end with amplitude of 0.01 m and

period of 2 sec., were used to validate the proposed response prediction model.

The selection of the amplitude of the force oscillation was based on the fact that

the quasi-steady assumption is still valid at low amplitudes. The clear definition

of the range in which quasi-steady models can be used to predict the dynamic

response of oscillating flexible risers is still a topic of active research. Therefore,

a CFD-based model was developed in this section in order to compute hydrody-

namic force coefficients using oscillatory flow. The simulation results were then

compared with experimental data and simulation results collected from previous

studies performed for steady and oscillatory flows. Good agreement was observed

in these comparisons. The CFD-based model was then used to model the case

of an oscillating cylinder. The main idea of this procedure is to develop a model
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completely independent of the quasi-steady assumption allowing fluid-structure

interaction to be considered in the CFD-derived hydrodynamic force coefficients.

At low amplitudes it is expected good agreement between the simulation results

obtained from the oscillatory flow case and the oscillating body case. Therefore,

the validation of the proposed CFD-based model for oscillating cylinders is carried

out using the simulation results obtained from the oscillatory flow case. Good

agreement was observed in the computed drag coefficients and a tendency of the

oscillatory flow case to over-predict inertia coefficients when those coefficients are

used to predict hydrodynamic forces on an oscillating cylinder highlighting the

importance of considering fluid-structure interaction. Finally, maximum ampli-

tudes in both in-line and cross-flow directions for the experimental and simulation

results are presented in Table 3.5.

Table 3.5: Maximum Amplitudes Case 1

Depth(m) In-line(exp) In-line(sim) Cross-flow(exp) Cross-flow(num)

5.0 12.93 10.23 7.63 4.34

7.0 11.39 7.31 6.85 5.16

9.0 8.24 4.51 4.45 5.68

10.0 9.89 9.13 6.00 5.55

12.0 12.00 9.10 6.15 5.54

15.0 13.93 10.26 3.35 3.91

3.3.4 Inertia/Drag Regime

The experimental validation of the proposed prediction model is conducted at 4

different regimes based on the classification provided by Obasaju et al. (1988).

As shown in Table 3.3, the amplitudes and periods of the harmonic excitation

force provide experimental validation on a wide range. In addition, the region

around KC=10 where there exist a large variation in the values of hydrodynamic

force coefficients is included in this study.

In-line and cross-flow responses are computed at depths of 5 m, 7.5 m, 9 m,

10 m, 12.5 m and 15m for cases 2, 3, 4 and 5 according to Table 3.3. Figs.
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3.23, 3.24 and 3.25 show the time history response of the riser during 14 sec. for

case 2, Figs. 3.26, 3.27 and 3.28 for case 3, Figs. 3.29, 3.30 and 3.31 for case 4

and Figs. 3.32, 3.33 and 3.34 for case 5. It can be observed that the proposed

model predicts in-line response relatively well in both amplitude and frequency

content. It is also possible to observe some differences in amplitude response

for cases 2 and 3. Especially, those regions of the riser excited at KC values

close to 10. As previously explained, there is a large variation in both drag and

added-mass coefficients in this region. It can partially explain these differences.

In-line response in other regions is well predicted by the proposed model. It

is also important to highlight that inertial force affects more significantly the

dynamic response of the riser at low KC values. Therefore, the different values

of β parameter used in the experimental data provided by Obasaju et al. (1988)

and the riser model may cause some deviations in the response prediction. On the

other hand, it is observed that in cases 4 and 5, which correspond to larger KC

values, in-line amplitudes are well predicted. Due to the fact that in the diagonal

and third vortex regimes drag forces are more dominant. Finally, an inflection

point may also have some implications in the response prediction model due to

a variation of in-line amplitudes. The experimental data for case 2 show the

location of an inflection point around z=-10 m. Finally, it is also possible to

observe some variations in in-line amplitude due to nonlinear effects that cannot

be accounted by numerical simulation.

Although cross-flow response prediction shows some differences in frequency

content, its amplitude is relatively well predicted. It is important to note that

outside synchronization regions the force experienced by the riser will contain

both the Strouhal and body oscillations [Sarpkaya (2004)]. On the other hand,

synchronization causes the matching of the vortex shedding and oscillation fre-

quencies leading to an increase in the spanwise correlation of the vortex shedding

and a substantial amplification of the cylinder’s vibrational response [Willden &

Graham (2006)]. Another important factor to be considered is the low mass-

damping parameter of the riser model presented in this section. According to

Willden & Graham (2006), at low values of mass ratio, the fluid is dominant over

the structure leading to a joint response dominated by the fluid and therefore their

joint response frequency (riser and its surrounding fluid) will be controlled by the
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Figure 3.23: Time History Response Case 2 at z = -5 m and -7.5 m −−Simulation

-Experiment
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Figure 3.25: Time History Response Case 2 at z = -12.5 m and -15 m

−−Simulation -Experiment
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Figure 3.26: Time History Response Case 3 at z = -5 m and -7.5 m −−Simulation
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Figure 3.27: Time History Response Case 3 at z = -9 m and -10 m −−Simulation

-Experiment
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Figure 3.28: Time History Response Case 3 at z = -12.5 m and -15 m

−−Simulation -Experiment
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Figure 3.29: Time History Response Case 4 at z = -5 m and -7.5 m −−Simulation

-Experiment
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Figure 3.30: Time History Response Case 4 at z = -9 m and -10 m −−Simulation

-Experiment
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Figure 3.31: Time History Response Case 4 at z = -12.5 m and -15 m

−−Simulation -Experiment

2 4 6 8 10 12 14
-50

0

50

x
[
m
m
]
 
z
=
-
5
m

2 4 6 8 10 12 14
-20

0

20

y
[
m
m
]
 
z
=
-
5
m

2 4 6 8 10 12 14
-50

0

50

x
[
m
m
]
 
z
=
-
7
.
5
m

2 4 6 8 10 12 14
-20

0

20

time [sec.]

y
[
m
m
]
 
z
=
-
7
.
5
m

Figure 3.32: Time History Response Case 5 at z = -5 m and -7.5 m −−Simulation

-Experiment
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Figure 3.33: Time History Response Case 5 at z = -9 m and -10 m −−Simulation

-Experiment
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Figure 3.34: Time History Response Case 5 at z = -12.5 m and -15 m

−−Simulation -Experiment
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Strouhal frequency. Actually, the accurate prediction of the cross-flow response

in flexible risers is still challenging due to its highly nonlinear nature. In addi-

tion, the assumption that only one frequency dominates the cross-flow response

may introduce considerable deviations in its numerical calculation. Finally, for

low mass-damping, a small variation of the phase angle can cause the system to

change from positive to negative excitation [Morse & Williamson (2006)].

The range of experimental validation provided in this section considers the

asymmetric, transverse, diagonal and third vortex regimes. Good agreement in

amplitude response was found for both in-line and cross-flow displacements. Some

differences were found in the predicted response in the in-line direction for the

model tested in the asymmetric and transverse regimes. This is partially caused

by the large variation of the hydrodynamic force coefficients in these regions

that cannot be accurately accounted by the proposed prediction model. In the

transverse, diagonal and vortex regimes, the proposed model accurately predicts

in-line response. Finally, maximum amplitudes in both in-line and cross-flow

directions for the experimental and simulation results are presented in Tables

3.6, 3.7, 3.8 and 3.9.

Table 3.6: Maximum Amplitudes Case 2

Depth(m) In-line(exp) In-line(sim) Cross-flow(exp) Cross-flow(num)

5.0 14.26 15.78 9.19 6.25

7.5 8.52 12.10 2.58 7.08

9.0 7.96 9.42 6.16 5.99

10.0 8.60 7.59 6.27 4.84

12.5 12.69 8.97 3.76 2.78

15.0 12.01 13.35 5.66 6.33

3.3.5 Drag Regime

In-line and cross-flow responses are computed at depths of 3.5 m, 6.5 m, 9 m, 12

m, 14.5 m and 17 m. Figs. 3.35, 3.36 and 3.37 show the time history response of

the riser during 14 sec. In-line response in both amplitude and frequency content
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Table 3.7: Maximum Amplitudes Case 3

Depth(m) In-line(exp) In-line(sim) Cross-flow(exp) Cross-flow(num)

5.0 16.51 19.23 9.57 6.94

7.5 18.27 17.58 7.63 8.82

9.0 18.19 17.36 5.12 8.87

10.0 17.17 17.54 4.81 8.46

12.5 14.33 17.83 8.47 6.33

15.0 10.89 15.04 9.78 9.24

Table 3.8: Maximum Amplitudes Case 4

Depth(m) In-line(exp) In-line(sim) Cross-flow(exp) Cross-flow(num)

5.0 19.46 22.91 8.54 8.39

7.5 12.70 16.37 6.05 9.03

9.0 12.40 13.18 10.36 7.44

10.0 11.63 12.20 12.12 5.76

12.5 13.10 12.33 10.39 4.91

15.0 14.80 14.97 5.51 6.39

is well predicted. The response prediction model correctly accounts for drag

force amplification during synchronization events. On the other hand, although

experimental data show some nonlinearities in the in-line response, the simulation

results follow the main trend of the riser’s response.

Cross-flow response is also relatively well predicted for the cases presented in

Figs. 3.35, 3.36 and 3.37. It can be observed that the sinusoidal approximation

widely used to describe the cross-flow response based on the dominant frequency

is not applicable for practical applications. Even though transverse force is cal-

culated based on Eq. (3.6), the experimental data show large fluid-structure

interaction leading to non-sinusoidal cross flow response as shown in Figs. 3.35,

3.36 and 3.37. As previously mentioned, the initial riser’s response is unsteady

due to time varying load. Therefore, when comparisons between experimental

data and simulation results were conducted, it was necessary to modify in-line

phase angles in order to improve the quality of the graphical results presented in
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Figure 3.35: Time History Response Case 6 at z = -3.5 m and -6.5 m

−−Simulation -Experiment
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Figure 3.36: Time History Response Case 6 at z = -9 m and -12 m −−Simulation

-Experiment
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3.3 Response Prediction Model for Tensioned Flexible Risers

Table 3.9: Maximum Amplitudes Case 5

Depth(m) In-line(exp) In-line(sim) Cross-flow(exp) Cross-flow(num)

5.0 42.05 43.05 10.12 16.64

7.5 37.08 38.45 9.49 9.69

9.0 34.55 36.25 8.22 9.09

10.0 33.65 34.74 8.77 11.66

12.5 28.59 30.44 10.16 17.84

15.0 21.62 24.45 13.56 9.32

Figs. 3.35, 3.36 and 3.37.

According to Blevins (1990), the dominant frequency in the quasi-steady

regime can be approximately calculated as 6 times the value of its corresponding

in-line frequency. However, the experimental data show high variation in both

amplitude and frequency content in the cross-flow response. Based on the afore-

mentioned, the response prediction model accounts for the main features of the

riser response and achieves good agreement in both amplitude and frequency con-

tent. This is basically a current limitation in the theory related to main factors

that influence the response of oscillating flexible risers. Finally, maximum ampli-

tudes in both in-line and cross-flow directions for the experimental and simulation

results are presented in Table 3.10.

Table 3.10: Maximum Amplitudes Case 6

Depth(m) In-line(exp) In-line(sim) Cross-flow(exp) Cross-flow(num)

3.5 44.33 45.03 10.37 9.19

6.5 32.88 28.45 9.13 9.45

9.0 25.33 20.21 9.37 10.39

12.0 22.82 16.36 8.63 12.26

14.5 24.10 16.48 6.64 9.81

17.0 15.82 12.92 10.32 9.51
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Figure 3.37: Time History Response Case 6 at z = -14.5 m and -17 m

−−Simulation -Experiment

3.4 Response Prediction Model for Hanging Flex-

ible Risers

3.4.1 Experimental Model

In this section a flexible riser hanging from its top end support is used to ex-

perimentally validate the proposed prediction model employing a 35-meter riser

model. The experimental model presented in this section is sinusoidally excited

at Re numbers up to 1900 and KC numbers up to 8. The riser’s response is

mainly located in the asymmetric region [Obasaju et al. (1988)]. According to

Blevins (1990), in this region the dominant frequency is approximately twice the

frequency of the oscillating frequency in the in-line direction (fS/f = 2) as shown

in Table 2.1. The main features of the experimental riser model are presented in

Table 3.2. The only parameter that changes in Table 3.2 is the length of the riser

model. This parameter changes from 20 m to 35 m.

The riser model has a fixed connection with the oscillator at its top end and
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is excited along the x-axis is sinusoidally excited at its top end with amplitude

of 0.02 m and periods ranging from 1.06 sec. to 1.56 sec. The oscillator and the

top end of the riser move together as previously mentioned. Steel bars are added

to the riser model in order to increase its self-weight. The total weight of the

riser, including the steel bars, is 119.25 N. Fig. 3.38 depicts the details of the

bottom support of the riser model. Two rigid connectors and two additional cable

connectors are used to represent a fixed connection. In the simulation procedure

it is assumed a gap of 2 mm in the negative direction of the z-axis in order to

consider the gap between the lower support and connector B.

Figure 3.38: Bottom Connection of the 35-meter Riser Model

3.4.2 Numerical Implementation

The FE model of the 35-meter riser is assembled using 138 Euler-Bernoulli ele-

ments. Its self-weight is applied during the static step and hydrodynamic forces

during the dynamic step as previously described. The model is fixed at its top end

and the boundary condition at its bottom end, as shown in Fig. 3.38, is numer-

ically represented by a system of linear springs, which constrain displacements

and moments in x- and y-axis, an additional linear spring constrains the z-axis

moment. A nonlinear spring is additionally used to allow vertical displacements

up to a maximum of 2 mm in the downward direction; in the upward direction this

nonlinear spring restrains axial displacements. The fixed boundary condition for

this type of riser model, without tension forces acting at its top end, is selected

herein due to the fact that the use of nonlinear springs in the z-axis partially
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avoids the formation of gravity sag of the riser caused by a concentration of its

self-weight in the vicinity of its bottom end.

The proposed prediction model first applies the drag forces during 25 cycles

using a fix value of CDmean of 1.5. Then, at the end of the first stage, the in-lines

amplitudes are calculated and used to update hydrodynamic coefficients based on

KC values, at the same time the cross-flow forces are applied during 10 additional

cycles. The lock-in condition in both in-line and cross-flow is included in the third

stage when drag and lift coefficients are updated. This stage lasts 55 additional

cycles. The computation of the in-line and cross-flow forces is carried out by the

in-house FORTRAN subroutine and then input to the FE model of the riser at

each time step.

3.4.3 Simulation Results

Figs. 3.39, 3.40 and 3.41 show the time history response of the riser during 20

seconds exited at a period of 1.06 sec. and Figs. 3.42, 3.43 and 3.44 at a period

of 1.56 sec. In-line and transverse responses were computed at depths of 5 m,

10.5 m, 15 m, 20 m, 25 m and 27.5 m. The experimental data were passed

through a 6th order high-pass Butterworth filter with a 0.1 Hz cutoff. The in-

line phase angles were corrected in order to improve the quality of the graphical

results. Large displacements at the bottom end may be less dominant in the

real boundary condition. In addition, a local damping mechanism is likely to

be acting at the bottom end and its numerical simulation may involve a highly

nonlinear behavior. Although nonlinear springs are used to avoid gravity sag

at the bottom end due to the riser’s self-weight, it is impossible to completely

eliminate this effect during the simulation.

It can be seen from Figs. 3.39 and 3.40 that the in-line force magnitude is over-

predicted. This tendency is also observed in Figs. 3.42 and 3.43. As previously

mentioned, Lin et al. (1996) identified the existence of a region located around

KC=8 where there is a rapid rise of CDmean and decrease of Cm. CDmean rises

approximately from 1.6 at KC=7 to 2.0 at KC=8. This phenomenon can par-

tially explain the over-prediction of the drag forces; because the sections located

near the top of the riser have values of KC numbers close to 8. In addition, an
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Figure 3.39: Time History Response 35-meter Riser Model (T=1.06 sec.) at z =

-5 m and -10.5 m −−Simulation -Experiment
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Figure 3.40: Time History Response 35-meter Riser Model (T=1.06 sec.) at z =

-15 m and -20 m −−Simulation -Experiment
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Figure 3.41: Time History Response 35-meter Riser Model (T=1.06 sec.) at z =

25 m and -27.5 m −−Simulation -Experiment
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Figure 3.42: Time History Response 35-meter Riser Model (T=1.56 sec.) at z =

-5 m and -10.5 m −−Simulation -Experiment
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Figure 3.43: Time History Response 35-meter Riser Model (T=1.56 sec.) at z =

-15 m and -20 m −−Simulation -Experiment
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Figure 3.44: Time History Response 35-meter Riser Model (T=1.56 sec.) at z =

25 m and -27.5 m −−Simulation -Experiment
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error in the calculation of Cm is included in the simulation due to fluid-structure

interaction neglect.

The period of excitation (T=1.06 seconds) induces a dynamic response hav-

ing 36 elements of the FE model moving under lock-in considerations. On the

other hand, when the period of excitation is increased to T=1.56 seconds, the

number of FE elements under lock-in considerations is 62. When the number of

sections under lock-in considerations is increased, the simulation results deviate

from the experimental data. Lock-in affects both in-line and cross-flow response.

Therefore, the quality of the transverse response prediction is relatively better

for the low-period case. On the other hand, for the high-period case, there are

significant differences in both in-line and cross-flow responses.

The in-line response is well represented by the proposed response model.

There is a large region of the riser model located in the asymmetric region (mid

section of the riser), where the lock-in condition is not achieved. In this region

CDmean is approximately 1.5 according to Lin et al. (1996). Large amplitudes are

observed for sections near the bottom end of the riser for the two cases presented

in this section. If the magnitude of the displacements achieved by the riser model

is taken into account, even a small displacement in the fixed connection can lead

to a significant reduction in the cross-flow amplitudes. In addition, during the

dynamic step due to the inherently nonlinear nature of the riser model it is pos-

sible to have additional vertical displacements that are not included in the initial

deformed shape of the riser. In addition, a highly damping mechanism is likely

to be acting at the bottom end of the riser.

3.4.4 Concluding Remarks

Some differences are found in the in-line amplitude response for the sections of

the riser located near the upper end and it is assumed to be partially caused by

underestimation of the drag coefficients or fluid-structure interaction neglect. The

amplitude of the cross-flow response is relatively well predicted by the proposed

response model. It was found that the numerical model of the boundary condition

at the bottom end caused some errors in the dynamic response of the riser in

regions located near the bottom end of the riser. The accurate modeling of a
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boundary condition is still one of the major challenges in the structural mechanics

field. In this section a system of linear and nonlinear springs was used to model

the boundary at the bottom end. New modeling strategies must be considered in

order to improve the quality of the dynamic response of the riser near the bottom

end. The long flexible model due to its complex nonlinear behavior involves many

challenges; the proposed prediction model using a numerical representation of the

increased drag coefficient was able to represent the main features of the dynamic

response of the riser model. An important issue to be considered in order to

improve the response model presented in this section is the correct calculation of

the hydrodynamic coefficients in the asymmetric region for this particular study.

Although the values of these coefficients were taken from the best research work

in that field, there are some modeling considerations that must be included in

the numerical scheme, especially the segment of the 35-meter riser model located

in the lock-out region. The main challenge is that the response from one region

can dominate the total response of a flexible riser by disrupting the excitation

process in other regions.
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Chapter 4

Damage Assessment of Flexible

Risers

The oil production industry is gradually moving into deeper waters demanding

accurate and reliable damage detection tools for offshore structures. One of the

most important structural components needed for oil extraction in deep waters

is the riser system. Therefore, flexible risers are currently receiving considerable

attention by the research community due to its complex dynamic response and its

economical impact when large structural degradation mainly caused by Vortex-

Induced Vibrations (VIV) affects its structural integrity.

Valdes & Ortega-Ramirez (2000) cited the case of inspection of marine fa-

cilities installed in the Gulf of Mexico, which are inspected thoroughly every

five years. Long-term inspection program consists on five short-term programs

(annual); during these, 20% of the long-term program must be covered. It was

stressed that at the end of each short-term program, results must be analyzed in

order to define possible modifications in subsequent inspection programs. They

recommended the establishment of permanent monitoring systems of the me-

teorological, oceanographical, and seismc conditions and record systems of the

structural response due to waves and earthquakes. According to Ohtsubo &

Sumi (2000), monitoring, inspection, maintenance and repair of deep water risers

are very costly activities. Advanced Systems and special equipment must be de-

veloped to reduce the cost and enhance the reliability of riser systems. Moreover,
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difficulties may be encountered when marine growth becomes too thick. There-

fore, the associated cost with the use of remotely operated vehicles equipped with

video cameras and other instruments, widely used for visual inspection in deep

water, become prohibited. On the other hand, autonomous underwater vehi-

cles offer an attractive alternative to conventional pipeline inspection methods.

However, no actual performance information is presently available in the open

literature for such kind of vehicles.

An unhealthy marine structure is not reliable and demands more frequent

inspection. In addition, during extraordinary events (hurricanes, conflagrations,

accidents, etc.) an unhealthy marine structure is prone to collapse. Current in-

spection techniques for marine structures are either visual or local experimental

methods such as ultrasonic or acoustic methods, magnetic field methods, radio-

graphs, eddy current methods and thermal field methods. The major drawbacks

of these local experimental methods are that the location of damage must be

known a priori and that there is a relatively high level of dependency on the

practical skills of the engineers who carry out structural inspections. Visual in-

spection methods might not be the best solution for marine structures when the

accessibility conditions represent potential danger to the inspectors.

4.1 Vibration-Based Damage Detection

Inman et al. (2005) pointed out the importance of damage diagnosis among the

engineering community. In addition, there are great economic incentives moti-

vating this topic’s development. Damage identification is an inverse problem, so,

it is in principle an unsolvable problem. This type of problem is well know in the

mathematical community. Therefore, according to Inman et al. (2005), the chal-

lenge is to define some methods better adapted to predicting structural damage.

On the other hand, recent advances in sensing technology are making possible

the use of sensing systems to assess the current health state of civil structures;

the main idea behind this approach is that measured modal parameters can be

used to detect structural damage.

According to Rytter (1993), a robust vibration-based damage detection sys-

tem is divided into four levels: identification of damage that has occurred at a very
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early stage (Level I), localization of damage (Level II), quantification of damage

(Level III) and prediction of the remaining useful life of the structure (Level IV).

Although damage monitoring of civil structures has generated a lot of research

over the past years, there is still a debate whether the measured deviations are

significant enough to be a good indicator of structural degradation. It is widely

recognized from sensitivity studies using FE models and from in-situ tests of ar-

tificially damaged structures that the decrease of frequencies is often relatively

low. Furthermore, although the local stiffness drop at a local damage site may

be high, the global stiffness results in relatively small frequency changes, which

can only be detected with precise measurement and identification procedures.

Vibration-based damage detection methods, which are able to locate and

quantify structural damage, are based on the premise that the mass of a structure

does not change appreciably as a result of structural damage. This assumption

may not be true for offshore structures due to variation of structural mass or ma-

rine growth, which can cause uncertainty in the measured modal parameters. In

addition, when an offshore structure is used to support tanks, the fluid in tanks

can also vary its mass. Many studies have been conducted in this area show-

ing that damage-induced frequency shifts are difficult to distinguish from shifts

resulting from increased mass. Furthermore, structural damage usually causes

changes in the order of the mode shapes; highlighting the importance of identi-

fying a mode shape as well as its corresponding resonant frequency to accurately

track its changes, which is not easy considering the adverse marine conditions

commonly affecting offshore structures. An innovative approach to assess the

current health state of a structure is the statistical analysis of its measured vi-

bration data. This approach offers several advantages over existing modal-based

damage detection methods. Modeling errors and modal identification limitations

are avoided in this approach making it more attractive and affordable for the

development of a vibration-based damage detection framework for flexible risers.

4.1.1 Modal-Based Damage Detection Approach

There are essentially two types of vibration test. The first one is defined as ambi-

ent vibration test, where the responses are measured under normal operation of
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the structure. The second is defined as force vibration test, where the structure

is excited with a known input. Note that although the excitation is unknown

for an ambient test, the ambient vibration test is more suitable for continuous

health monitoring. In addition, to obtain the correct scaling of the mode shapes,

the applied force has to be known and for very large structures or structures

affected by a combination of several ambient loads, it becomes very difficult to

apply sufficient artificial excitation to surpass the vibration levels from the am-

bient excitation which is always present. Therefore, if the purpose of the test is

continuous monitoring only ambient excitation can be used.

The modal-based damage detection approach proposed in this section consists

of three steps; in the first step, ambient excitation sources are employed to extract

the free response behavior of a riser (impulse response synthesis from ambient

measurements). Once time domain impulse response functions are obtained, The

Eigensystem Realization Algorithm (ERA) is employed for identifying the modal

parameters. In ERA, the Hankel matrix is formed using the response vector

obtained from synthesized free-response, this step is defined as system identifica-

tion. Finally, by comparing the obtained modal parameters of the healthy and

damaged states of the riser, a deterministic damage detection algorithm locates

damaged sites. These methods are described in the following sections.

4.1.1.1 Impulse Response Synthesis from Ambient Measurements

Farrar & James (1997) found that if an unknown excitation is a white-noise ran-

dom process, the cross-correlation function between two response measurements

would have the same form as the free response of the structure. This method is

known as the Natural Excitation Technique (NExT) and it is very important due

to physical limitations to calculate the magnitude of the exciting forces during an

ambient excitation test. This statement, therefore, allows us to use fluid forces

to excite a flexible riser and obtain its free response.

4.1.1.2 System Identification

The use of accurate modal information for system identification will lead to re-

liable damage detection results. The most commonly used system identification
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methods are the extended Kalman filters [Toshiba & Saito (1984)], the polyrefer-

ence time domain method [Zhang et al. (1985)], the multivariate Auto-Regressive

and Moving Average (ARMA) model [Phan et al. (1990)], the Q-Markov cover

algorithm [Lin & Skeleton (1993)], and the Eigensystem Realization Algorithm

(ERA) [Juang & Pappa (1985)]. In this section, ERA is selected for system iden-

tification. This algorithm has been successfully used during the last two decades

for several researchers showing good performance due to its ability to handle

measurement data corrupted by noise and indicators that allow quantification of

the obtained modal parameters.

The ERA was originally developed to identify a state space representation of

a system from frequency response functions. The use of ERA with free response

data is presented indicating that the state space matrices can be obtained from

free response records. Modal parameters of a structure can be identified from

these two matrices as explained in the following paragraphs. The mathematical

formulation of the ERA uses the Hankel matrix, which is formed using the re-

sponse vector obtained from synthesized free-response. The generalized Hankel

matrix consisting of Markov’s parameters is constructed as shown in Eq. (4.1).

[H (k − 1)] =











[Y (k)] · · · [Y (k + s− 1)]
[Y (k + 1)] · · · [Y (k + s)]

...
. . .

...
[Y (k + r − 1)] · · · [Y (k + r + s− 2)]











(4.1)

where [Y(k)] is the Markov’s parameter obtained from structural impulse re-

sponse at kth time step. The number of columns and rows are represented by r

and s, respectively. The Hankel matrix is then evaluated for the [H(0)], and a

singular value decomposition technique is performed as shown in Eq. (4.2).

[H (0)] = [P ]
[

\C\

]

[Q]T (4.2)

The diagonal matrix
[

\C\

]

contains singular values that correspond to struc-

tural modes. However, small singular values are likely to appear in the diagonal

values of the matrix
[

\C\

]

. Therefore, this diagonal matrix is condensed in order

to retain the largest N singular values and then minimize the effect of computa-

tional modes. The matrices P and Q are square and unitary. The matrices CN ,
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PN , and QN are obtained without considering computational modes. The basic

ERA’s theorem states that, if the dimension of any minimal realization is N, then

the triplet shown in Eq. (4.3) is the minimum realization.

[R] = [Ep]
T [PN ] [CN ]1/2

[F ] = [DN ]−1/2 [PN ]T [H(1)] [CN ]−1/2 (4.3)

[G] = [CN ]1/2 [QN ]T [Eq]

where Ep is defined as [ [I] [0] · · · [0]T ], and Eq is defined similarly. The un-

known matrix A contains the eigenvalues and modal damping values of the struc-

ture and the matrix R is used for the transformation of the corrupted eigenvectors,

in the state space matrix, to the physical states model.

4.1.1.3 Deterministic Damage Detection

The Damage Index (DI) method [Stubbs et al. (1995)] is adopted here for damage

detection. This method has been extensively used in previous damage detection

studies showing its best performance over other existing damage detection meth-

ods [Farrar & Jauregui (1996) and Barroso & Rodriguez (2004)]. The selection

criteria for this method are based on previous research work that can be summa-

rized as follows: Tang & Leu (1991) showed that changes in the mode shapes of

the structure were more sensitive indicators of damage than natural frequencies.

Pandey et al. (1991) demonstrated the use of changes in the curvature of the mode

shapes to detect and locate damage. They also found that both the Modal Assur-

ance Criterion (MAC) and the Coordinate Modal Assurance Criterion (COMAC)

were not sensitive enough to detect damage in its earlier stages. Chance et al.

(1994) found that measuring curvature directly using strain measurements gives

very improved results than those of the curvature calculated from the displace-

ments. Also, Chen & Swamidas (1994) found that strain mode shapes facilitated

the location of a crack in a cantilever plate using finite element method simula-

tion. Yam et al. (1996) have found that the strain mode shape is more sensitive

to structural local changes than the displacement mode shape. Quan & Weiguo

(1998) showed that for the steel deck of a bridge, the curvature mode shapes
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4.1 Vibration-Based Damage Detection

are the best among three damage recognition indices based on mode shapes (the

COMAC, the flexibility, and the curvature mode shape).

The DI method was developed by Stubbs et al. (1995) to detect the existence

and location of damage in a structure and is based on the assumption that strain

energy stored in damaged regions will decrease after the occurrence of damage.

The damage index, γij , is estimated by the change of the curvature of a particular

mode shape, which is related to mode strain energy changes at location j. γij is

then defined in Eq. (4.4).

γij =

(

∫ b

a
[ψ̈∗

i (x)]
2dx+

∫ Le

0
[ψ̈∗

i (x)]
2dx

)

∫ Le

0
[ψ̈i(x)]

2dx
(

∫ b

a
[ψ̈i(x)]2dx+

∫ Le

0
[ψ̈i(x)]2dx

)

∫ Le

0
[ψ̈∗

i (x)]
2dx

(4.4)

where ψ̈i and ψ̈∗
i are the second derivatives of the ith mode shape before and after

the occurrence of damage, respectively. Le is the length of the beam element

in which damage is being evaluated, and a and b are the limits of this beam

element. It is important to clarify that it is assumed that the whole model is

divided into several sections. Therefore, the limits previously defined correspond

to each section. The damage index for the selected mode shapes is obtained by

adding the individual contribution of the damage index of each of the selected

mode shapes.

The damage index procedure can be summarized as follows: (1) calculate the

mode shapes amplitudes for the nodes where sensors are located; (2) estimate

the amplitudes of the mode shapes for the nodes where no sensors are located by

interpolating the instrumented nodes using cubic-spline functions; and, (3) take

a second derivative of the interpolation function at each node. Finally, treating

γij as a realization of a normally distributed random variable γ, a normalized

damage index is computed as shown in Eq. (4.5).

Zj =
γj − γ

σγ
(4.5)

where γ and σγ are the mean and standard deviation of the damage index, re-

spectively. The jth substructure is defined as damaged when Zj > 2, which

corresponds to a hypothesis testing with 95% confidence level. The DI method
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is implemented in this section using the graphical user interface DIAMOND de-

veloped at Los Alamos National Laboratory [Doebling et al. (1997)].

4.1.2 Nonlinear Principal Component Analysis NLPCA

Principal Component Analysis (PCA) is a procedure to identify patterns in data

allowing identification of their similarities and differences. One of the major ad-

vantages of this procedure is the significant reduction of the number of dimensions

without much loss of information. PCA has been recently applied to the field of

fault detection. However, PCA can only map linear correlations among the vari-

ables. NLPCA accounts for nonlinear correlations presented in the data making

it more attractive for fault detection implementations. Therefore, a kernel-based

algorithm for NLPCA is selected in this section. This algorithm was developed by

Scholkopf et al. (1998) and states that the following steps must be followed in or-

der to perform a kernel-based PCA. First, compute the matrix Kij = (k(yi, yj))ij

given a set of centered observations, yk = 1, · · · , yk ∈ RN ,
∑M

k=1
yk = 0, then

solve the equation Mης = Kς by diagonalizing K and normalize the eigenvector

expansion coefficients ςn by requiring η(ςn • ςn)=1. Finally, extract the principal

components (corresponding to the kernel k) of a test point y by computing the

projections on the eigenvectors as shown in Eq. (4.6) allowing the calculation of

the nonlinear principal components corresponding to Φ. The complete derivation

procedure of this algorithm can be found in Scholkopf et al. (1998).

(Vn • Φ(y)) =
M

∑

i=1

ςnk(yi, y) (4.6)

As reported by Scholkopf et al. (1998), this procedure corresponds to a stan-

dard PCA in some high-dimensional feature space, but avoiding expensive com-

putations in that space. For fault detection, the kernel-based PCA is first im-

plemented using the signals obtained from the healthy state and during normal

operational conditions. The main assumption is that when structural damage

occurs, the structure may show large deviations in the values of the principal

components. Therefore, the Mahalanobis squared distance between the two con-

ditions is used to find significant differences related to structural damage.
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4.1.3 Statistical Pattern Recognition Technique

Sohn et al. (2003a) presented a comprehensive report providing an overview of

existing damage detection methods. The main conclusion that can be drawn from

this report is that modal-based damage detection methods usually require large

amount of high-quality data and considerable number of sensors strategically

located, requirements that are almost impossible to meet in the field. Therefore,

the research community has been recently exploring the use of pattern recognition

approaches to tackle the problem of reliable damage detection when vibration

data are measured at limited locations.

Sohn et al. (2001) developed an AR-ARX prediction model, which is solely

based on signal analysis of measured vibration data. This model has been suc-

cessfully implemented in various damage detection problems as reported by Sohn

et al. (2001). The mathematical derivation of the model begins by using stan-

dardized time signals as shown in Eq. (4.7).

x(t) =
xi(t) − µxi

σxi

(4.7)

where x(t) is the standardized signal of the initial signal xi(t) at the time step

t and and are the mean and standard deviation of xi(t), respectively. The next

step consists on the construction of AR(p) models for each sensor channel. One

of the damage identification features that is proposed in this section involves the

use of the coefficients of the AR(p) models. Therefore, a computationally efficient

stepwise least squares algorithm for the estimation of AR(p) parameters is used

herein in conjunction with the AR-ARX model proposed by Sohn et al. (2001).

An AR model using the Yule-Walker method as proposed by Sohn et al.

(2001) is then replaced by the ARfit algorithm proposed by Neumaier & Schneider

(2001). This algorithm computes the model order, popt, that optimizes the order

selection criteria using a QR factorization of a data matrix to evaluate, for a

sequence of successive orders, the model order and to compute the parameters of

the AR(popt) model. Then, the AR(popt) model can be represented as shown in

Eq. (4.8).
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4.1 Vibration-Based Damage Detection

x(t) =

popt
∑

j=1

ϕxjx(t− j) + ex(t) (4.8)

Once the AR(popt) model has been constructed, the residual error of the model,

ex(t), is computed by subtracting the data obtained from the AR(popt) model

from the standardized signal, x(t). The AR(popt) coefficients, will later be used

to locate damaged sites. Finally, the residual error, ex(t), is employed in the

construction of the ARX model as shown in Eq. (4.9) by assuming that this

residual error, defined by the difference between the measured and the predicted

values obtained from the AR model, is mainly caused by an unknown external

input.

x(t) =

c
∑

i=1

νix(t− i) +

d
∑

j=1

τjex(t− j) + Ex(t) (4.9)

where Ex is the residual error after subtracting the ARX(c,d) model from the

standardized signal, x(t). Similar results are obtained for different values of c

and d as long as the sum of c and d is kept smaller than popt as reported by Sohn

et al. (2001). The residual errors from the healthy state are defined as Ex and

the residual errors after the occurrence of structural damage are defined as Ey.

Finally, using the standard deviations of Ex and Ey, the ratio, σ(Ey)/σ(Ex) , is

then defined as the first damage sensitivity feature. A threshold value for this

ratio must be computed using measured vibration data obtained from different

operational conditions. Therefore, a value of this ratio larger than the computed

threshold value indicates the occurrence of damage (Level I). The standard devia-

tion of the Mahalanobis squared distance between healthy and damaged AR(popt)

coefficients is then used to locate structural damaged sites as shown in Eq. (4.10).

χ = σ((ϕd
xj − ϕh

xj)
T s−1(ϕd

xj − ϕh
xj)) (4.10)

where ϕd
xj are the AR(popt) coefficients from the damaged state, ϕh

xj are the mean

values from the healthy state and s is the covariance matrix of ϕh
xj. The Maha-

lanobis squared distance is independent of the scale of the AR(popt) coefficients.

Therefore, vibration data collected at the sensor channel closest to the location
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Figure 4.1: Riser Geometry and Sensor Locations

of the structural damage would have the largest values of χ. The proposed AR-

ARX prediction model uses two damage sensitivity features, σ(Ey)/σ(Ex) and χ,

to identify and locate structural damage, respectively.

4.2 Comparative Study of Damage Detection in

Flexible Risers

The experimental model presented by Senga & Koterayama (2005) is used herein.

The properties of the model are provided in 3.2.1. Ten CCD cameras were used

to measure the motion of the riser model; each pair of cameras is arranged at

the same level in the x-y direction. For the numerical implementation of the

vibration-based damage detection approaches, sensors are located where CCD

cameras are placed. Two additional sensors were located at points 3 and 5 as

shown in Fig. 4.1. Acceleration records are collected at sensor locations in x-axis

and y-axis.
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4.2 Comparative Study of Damage Detection in Flexible Risers

One of the main economical constraints for deep-water oil production is related

to the design of risers for large safety factors on fatigue damage, which has been

found to occur indiscriminately, and with the same magnitude, along the in-line

and cross-flow directions as reported by Trim et al. (2005). Therefore, in this

section structural damage is associated with fatigue damage. Hinge connections

are used initially to represent six damage scenarios and are inflicted node-by-node

for each of the instrumented locations as shown in Fig. 4.1. The mechanism of

the hinge connection is numerically represented by a zero-moment node. Thus,

the rotational degree-of-freedoms are released allowing the elements that limit

the hinge connection to rotate freely relatively to the zero-moment node. Only

intermediate locations are considered. Therefore, hinge connections at sensor

locations 2, 3, 4, 5, 6, 7 are used. Table 4.1 shows the proposed damage scenarios

and corresponding locations of the hinge connections.

Table 4.1: Damage Scenarios Short Flexible Riser

Damage Scenario DS1 DS2 DS3 DS4 DS5 DS6

Location of Hinge 2 3 4 5 6 7

The acceleration records of the riser in its healthy state (HS) are collected

only at instrumented locations as shown in Fig. 4.1. A time step of 0.01 sec. and

a total duration of 24 sec. are used for all the signals in the healthy and damaged

states of the riser. Under normal operational conditions the healthy state char-

acterization of the dynamic response of a flexible riser may show deviations that

must be considered in order to build the baseline condition of the flexible riser.

Because of the inherently limitations of any numerical simulation approach, in

this section the baseline condition is defined invariant and is constructed using

the experimentally validated response previously presented [3.2.1].

Although acceleration records are collected in the in-line and cross-flow direc-

tions, only in-line response is considered in this section for the implementation

of the vibration-based damage detection approaches. The main reason is that

the VIV process is still not well understood and is extremely complex exhibit-

ing rapid and unpredictable shifts when its response is stationary. Furthermore,
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although the sheared flow generating the VIV process can be considered steady,

the cross-flow response is mainly non-stationary.

4.2.1 Simulation Results

To evaluate the performance of the three proposed vibration-based damage de-

tection approaches, numerical simulations are performed using a limited number

of structural responses to simulate the use of measurements from sensors. The

acceleration records at these locations, obtained during the steady state response

of the flexible riser, are used for the analysis. The simulation results obtained

from the two proposed approaches are presented in the following sections.

4.2.1.1 Modal-Based Damage Detection Results

The first step in the implementation of the proposed modal-based damage detec-

tion approach is the calculation of free vibration records from the loading exci-

tation process. NExT is used to estimate impulse response functions from the

acceleration records. The reference channel used to calculate the cross-correlation

corresponds to sensor 3.

Table 4.2: Identified Modal Parameters

HS DS1 DS2 DS3 DS4 DS5 DS6

Freq. (Hz) 0.1038 0.1179 0.1108 0.1196 0.1062 0.1084 0.1120

Sensor 1 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Sensor 2 0.9604 0.9667 0.9601 0.9646 0.9585 0.9613 0.9582

Sensor 3 0.7872 0.8147 0.7904 0.8117 0.7875 0.7943 0.7880

Sensor 4 0.5289 0.5933 0.5467 0.5920 0.5464 0.5555 0.5503

Sensor 5 0.2407 0.3346 0.2841 0.3338 0.2505 0.2667 0.2864

Sensor 6 -0.0041 0.1028 0.0425 0.1060 -0.0036 0.0291 0.0433

Sensor 7 -0.2092 -0.0923 -0.1532 -0.0962 -0.1843 -0.1843 -0.1634

Sensor 8 -0.3216 -0.2120 -0.2745 -0.2158 -0.3213 -0.3213 -0.2989

Free vibration records calculated from NExT are then used for system identifi-

cation using ERA. As previously mentioned in section 3.2.2, Senga & Koterayama
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(2005) found that their riser model has fundamental periods of 11 sec., 4.8 sec.,

3.1 sec. and 2.3 sec. Therefore, only one mode can be identified considering the

value of the forced oscillation period defined by Senga & Koterayama (2005) as 8

sec., which is identifiable for a Nyquist frequency equals to a half of the sampling

frequency (50 Hz). 40 columns and 200 rows were used to compute the Hankel

matrix. Table 4.2 shows the identified modal parameters for the healthy state

(HS) and the six damage scenarios.

Table 4.3: Damage Detection Results (Damage Index Method)

Depth (m) DS1 DS2 DS3 DS4 DS5 DS6

6.5 - 6.0 1.86 0.35 0.24 0.03 0.36 0.33

6.0 - 5.5 0.77 0.85 -0.72 -0.12 0.02 -0.41

5.5 - 5.0 -1.07 1.22 -1.88 -0.29 -0.46 -0.35

5.0 - 4.5 0.01 0.11 -0.33 0.35 0.46 -0.37

4.5 - 4.0 1.38 -0.54 1.35 1.02 1.47 -0.25

4.0 - 3.5 0.26 -0.13 0.29 0.22 0.25 -0.08

3.5 - 3.0 -1.02 -1.05 -0.39 -0.04 0.68 -1.65

3.0 - 2.5 -0.51 -0.68 -0.45 0.67 1.04 -1.09

2.5 - 2.0 0.26 0.83 -0.42 1.36 0.42 0.88

2.0 - 1.5 0.44 1.33 -0.50 0.93 0.06 1.81

1.5 - 1.0 0.05 0.61 -0.17 -0.32 -0.57 1.65

1.0 - 0.5 -0.85 -0.84 0.97 -1.59 -1.56 0.69

0.5 - 0.0 -1.60 -2.07 2.03 -2.21 -2.18 -0.50

Finally, the DI method is used to locate damage. For the implementation of

the DI method the riser is divided into 13 segments; the length of each segment

is approximately 0.5 m. Table 4.3 shows the damage detection results for the six

damage scenarios. Bold numbers indicate the location of the hinge for each of the

damage scenarios and therefore it is expected that the damage index, presented

in Eq. (4.5), shows the existence of structural damage for these locations. It can

be seen from Table 4.3 that none of the damage scenarios is correctly identified.

The required confidence level of 95% is not achieved, but there is a clear tendency

in DS1, DS2, DS3 and DS6 to identify the location of the hinge with a lower
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confidence level. In the case of DS4 and DS5 the DI method failed to locate

damage.

There is only one inflection point located in between sensors 5 and 6. At

these locations the hinge connection does not considerably affect the dynamic

response of the riser after damage. It can partly explain why the DI method

failed to identify cases DS4 and DS5. It can also be observed from Table 4.2

that the location of the inflection point moves to a different location as a result

of structural damage. The simulation results show that for all damage scenarios

the variations of the identified mode shapes, as a result of damage, are not large

enough to be detected by the DI method. Although structural damping was

not included in the numerical simulations, the hydrodynamic damping induces a

non-proportional damping to the riser model. One of the main limitations of any

modal-based damage detection approach is that progressive structural damage

is a non-stationary phenomena. Furthermore, measured vibration data are also

influenced by a non-stationary effect related to the unavoidable variations during

normal operational conditions.

Lucor et al. (2006) performed full-scale experiments for riser modal identifi-

cation. A main feature of riser modes, as described by Lucor et al. (2006), is that

they are complex showing variations in amplitude and phase along the length of

the riser and are mainly a mixture of traveling and standing waves. According to

Lucor et al. (2006), the amount of energy input to a specific region of a riser is a

function of the local Strouhal frequency. This amount of energy is then carried

away to be dissipated to a different region of the riser, where the local Strouhal

frequency is different and the fluid force resists the traveling wave, providing a

damping force.

The frequency content of the in-line response is usually lower than the cross-

flow response. Higher modes may produce better damage detection results, but

considering the cross-flow response, which has a frequency content approximately

four times higher that the in-line response in the riser model presented in this

section, its results may not be realistic for damage detection, because in sheared

flows local response from one region may dominate the total response of a flexible

riser by disrupting the excitation process in other regions [Lucor et al. (2006)].
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4.2.1.2 NLPCA Results

The acceleration records at the specified locations, obtained during the steady

state response of the flexible riser, are used for the analysis. The simulation

results obtained from the implementation of the NLPCA are presented in Table

4.4. The simulation results show that the kernel-based PCA failed to locate five

damage scenarios.

4.2.1.3 AR-ARX Prediction Model Results

The acceleration records are standardized according to Eq. (4.7). Then, the AR-

ARX model is implemented for all the signals obtained from the previous step at

each sensor channel. The first damage sensitivity feature, σ(Ey)/σ(Ex), is then

used to identify the occurrence of damage (Level I). The threshold value selected

for this study is 1.0.

It is important to highlight that it is necessary to define a threshold value for

each sensor channel under normal operational conditions, because some regions

of the riser are more sensitive to structural damage than the others. Therefore,

when new measured vibration data, in the damage state, are collected, one or

more sensor channels may indicate significant deviations due to an abnormal

structural condition while other sensor channels may indicate that the riser has

not suffered structural damage. The results of the first damage sensitivity feature,

σ(Ey)/σ(Ex), for the six damage scenarios, are presented in Table 4.5.

In Table 4.5, sensor 4 shows the largest deviations in the calculation of the

first damage sensitivity features for four damage scenarios. Sensor 3 and 5 are

also sensitive to damage scenarios DS5 and DS4, respectively. On the other hand,

sensor 6 is almost insensitive to any damage scenario due to its proximity to the

inflection point, but locations of the inflection points are extremely important in

the area of structural health monitoring due to the fact that an abnormal response

in this region may be automatically related to structural damage. Furthermore,

these regions are almost insensitive to environmental conditions, which, in some

cases, induce large variations in the measured vibration data and therefore false

identification of structural damage.
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Table 4.4: Kernel-Based PCA Results

DS1 DS2 DS3 DS4 DS5 DS6

Sensor 1 6.223 6.779 6.355 6.584 6.235 6.782

Sensor 2 6.350 6.938 6.558 6.832 6.468 7.022

Sensor 3 6.015 6.712 6.039 6.302 5.823 6.575

Sensor 4 5.930 6.821 5.918 6.224 5.783 6.612

Sensor 5 5.970 6.775 5.983 6.196 5.806 5.538

Sensor 6 6.027 6.722 6.005 6.225 6.720 6.514

Sensor 7 6.061 6.469 6.045 6.209 5.789 6.329

Sensor 8 6.146 6.194 6.166 6.150 6.077 6.172

Table 4.5: First Damage Sensitivity Feature Results (Short Flexible Riser)

DS1 DS2 DS3 DS4 DS5 DS6

Sensor 1 1.000 0.992 0.983 1.001 0.981 1.000

Sensor 2 0.952 1.083 1.440 1.004 1.289 1.041

Sensor 3 1.105 1.302 1.489 1.028 1.508 1.215

Sensor 4 1.298 1.369 1.846 1.248 1.484 1.247

Sensor 5 1.189 1.071 1.329 1.346 1.019 1.003

Sensor 6 0.903 0.940 0.905 0.960 1.088 0.910

Sensor 7 1.014 0.983 1.154 0.973 1.157 1.170

Sensor 8 0.981 0.870 0.988 1.029 1.058 0.911

The second step in the proposed AR-ARX prediction model is the calculation

of the second sensitivity feature, χ, which is related to the location of structural

damage (Level II). The order of the AR model using the ARfit algorithm was 104

and a ARX(10,10) model was selected for all damage scenarios. In Table 4.6, the

calculation of the second sensitivity features for all damage scenarios is presented.

It can be seen from Table 4.6 that structural damage is correctly located for five

damage scenarios, only the case DS3 is not located properly. Nevertheless, the

value of the second sensitivity feature for the real location of damage in DS3

shows a small deviation from the maximum values obtained from sensor channels

5, 6 and 7.
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Table 4.6: Second Damage Sensitivity Feature Results (Short Flexible Riser)

DS1 DS2 DS3 DS4 DS5 DS6

Sensor 1 3.286 3.264 1.669 3.822 1.664 3.825

Sensor 2 7.507 5.933 4.726 6.494 5.180 5.943

Sensor 3 6.774 6.689 3.873 5.765 4.735 5.402

Sensor 4 5.692 4.609 4.992 5.722 4.717 5.088

Sensor 5 5.499 4.850 4.998 7.441 4.394 5.341

Sensor 6 5.933 5.433 5.007 5.961 5.837 6.054

Sensor 7 5.410 5.149 5.288 5.535 5.410 6.706

Sensor 8 5.717 5.231 4.381 6.480 5.011 6.097

The numerical results presented in Tables 4.5 and 4.6 show that structural

damage was identified and located using the proposed damage sensitivity features.

In order to study the sensitivity of the presented AR-ARX prediction model to

identify and locate structural damage, when the hinge connection due to fatigue is

created in nodes where sensors are not located, three additional damage scenarios

are defined using Fig. 4.1. The proposed damage scenarios are DS7, DS8 and

DS9 having hinge connections at depths of 3.5 m, 2.5 m and 1.5 m, respectively.

The numerical results for the three additional damage scenarios are presented in

Table 4.7.

The numerical results presented in Table 4.7 show that the first damage sensi-

tivity feature indicates the occurrence of damage especially at locations of sensors

4, 5 and 6. The location of damage in these damage scenarios is not related to a

single sensor location, the inflicted damage may affect a region of the riser, which

in some cases can not be measured by only one sensor channel highlighting the

importance of having a dense array of sensors for continuous damage monitoring

implementations. Finally, a comparative study is presented in this section using

the previously defined six damage scenarios, but instead of using hinge connec-

tions, structural damage is modeled as a 10% stiffness reduction of elements at

locations defined in Table 4.8. The node locations of the damaged elements are

expressed in meters. Then, the reduction of stiffness in an element length of 0.217

m represents the formation of the hinge connection at its initial stage.
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Table 4.7: Damage Detection Results (Cases DS7, DS8 and DS9)

σ(Ey)/σ(Ex) χ

DS7 DS8 DS9 DS7 DS8 DS9

Sensor 1 3.286 3.264 1.669 3.822 1.664 3.825

Sensor 2 7.507 5.933 4.726 6.494 5.180 5.943

Sensor 3 6.774 6.689 3.873 5.765 4.735 5.402

Sensor 4 5.692 4.609 4.992 5.722 4.717 5.088

Sensor 5 5.499 4.850 4.998 7.441 4.394 5.341

Sensor 6 5.933 5.433 5.007 5.961 5.837 6.054

Sensor 7 5.410 5.149 5.288 5.535 5.410 6.706

Sensor 8 5.717 5.231 4.381 6.480 5.011 6.097

Table 4.8: Damage Scenarios Short Flexible Riser

Damage Scenario DSA DSB DSC DSD DSE DSF

Upper node of damaged element 6.5 5.5 4.5 3.5 2.5 1.5

Lower node of damaged element 6.283 5.283 4.283 3.283 2.283 1.283

Table 4.8 shows the distances, measured from the top end of the riser, cor-

responding to the upper and the lower nodes that limit the damaged elements.

The damage detection results from the damage scenarios at their initial stages

are presented in Tables 4.9 and 4.10. It can be seen from Table 4.9 that the first

sensitivity feature has values closer to the previously defined threshold value.

Sensors 4, 5 and 6 do not clearly indicate the occurrence of damage in contrast

to the numerical results considering hinge connections. There is a large deviation

in the presented values of DSA, which may be caused due to its proximity to

the top end of the riser model. In Table 4.10, only the damage scenario DSA is

correctly located showing that the occurrence of damage presented in Table 4.9,

shows large deviation in its values, is correctly linked to the second sensitivity

feature. The damage results presented in Table 4.10 show that the remaining

damage scenarios are not correctly identified.

The modal-based damage detection approach suffers from limitations related

to the correct identification of the mode shapes as previously explained. The
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Table 4.9: First Damage Sensitivity Feature Results (Initial Stage)

DS1 DS2 DS3 DS4 DS5 DS6

Sensor 1 0.998 0.983 0.999 1.000 0.995 0.982

Sensor 2 1.206 1.200 1.224 1.148 1.018 1.018

Sensor 3 1.244 1.229 1.218 1.084 1.033 1.031

Sensor 4 1.431 1.363 1.201 1.011 1.086 1.116

Sensor 5 1.316 1.218 1.064 1.064 1.045 1.080

Sensor 6 1.011 1.148 1.103 1.147 1.063 1.096

Sensor 7 1.068 1.147 1.048 0.998 1.037 1.043

Sensor 8 0.982 1.043 1.001 1.094 1.027 1.043

Table 4.10: Second Damage Sensitivity Feature Results (Initial Stage)

DS1 DS2 DS3 DS4 DS5 DS6

Sensor 1 3.820 1.661 3.820 3.824 3.805 1.663

Sensor 2 6.820 5.261 6.827 6.802 6.593 5.016

Sensor 3 6.031 4.558 6.131 5.951 5.691 4.172

Sensor 4 5.998 5.178 6.404 6.237 5.967 4.734

Sensor 5 6.353 4.447 6.297 6.270 6.141 4.080

Sensor 6 6.147 4.471 6.087 6.323 5.889 4.096

Sensor 7 6.746 5.666 6.409 6.374 5.938 4.901

Sensor 8 6.026 4.467 6.533 6.809 6.190 4.524

simulation results presented in this section show that the proposed modal-based

approach could not identify with acceptable level of confidence the existence

of structural damage as shown in Table 4.3. Similar results were obtain for

NLPCA as shown in Table 4.4. On the other hand, the presented AR-ARX

prediction model is independent of the aforementioned problems related to modal

identification in risers and therefore is solely based on measured vibration data.

The simulation results presented in Table 4.5 show that it is possible to have at

least one sensor channel sensitive enough to identify the occurrence of structural

damage. Table 4.6 shows that additional information related to the location of

damage, which is extremely useful for work site inspection prioritization, can be

97



4.2 Comparative Study of Damage Detection in Flexible Risers

obtained from the presented AR-ARX model.

Finally, the undesirable non-stationary effect related to progressive damage

is avoided by the AR-ARX prediction model as shown in Tables 4.9 and 4.10,

where the structural damage at its initial stage is not reported for most of the

damage scenarios. Therefore, false damage identification, which is also of concern

for its economical implications, is therefore partially avoided. A threshold value

obtained from measured data at different operating conditions can tell the owner

when a significant deviation of the measured vibration data collected in real

time significantly deviate from normal operational conditions, which is extremely

useful for health integrity of riser’s systems.

4.2.2 Concluding Remarks

The numerical implementation of three vibration-based damage detection ap-

proaches on a flexible riser model was presented. A numerical scheme for dy-

namic response of flexible risers developed by the author was used to obtain the

dynamic response of the flexible riser model under different structural conditions.

The healthy condition of the flexible riser model was experimentally validated.

The modal-based damage detection approach presented in this section consists

of three widely recognized methodologies namely NExT, ERA and the Damage

Index method. The main objective of this implementation was to show the limi-

tations of the modal approach when is used in flexible risers. The main difficulties

arise from variation of the structural mass, non-stationary response in the cross-

flow direction and hydrodynamic damping.

The Damage Index method could locate the damage scenarios presented in

this section with a low confidence level. However, it was impossible to locate

structural damage when it was inflicted near the inflection point. The use of the

higher modes was avoided in order to present more realistic results, because the

VIV process is still not well-understood involving non-stationary response and a

self-regulated process. The numerical results of the NLPCA show a similar trend.

A statistical pattern recognition method based on time series analysis was

used to show a more attractive approach for flexible risers. Acceleration records

were collected at location of sensors and analyzed in order to obtain the two
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damage sensitivity features presented in this section. Six damage scenarios were

studied, the first damage sensitivity feature was able to indicate the occurrence

of damage and the location of five damage scenarios was correctly identified for

the second sensitivity feature.

Three additional damage scenarios were used to show the ability of the pro-

posed statistical-based approach. The occurrence of damage was identified. How-

ever, the location of damage was spread into a larger identified region. Finally,

the initial stages of the proposed damage scenarios were simulated by reducing

the stiffness of short elements located in sensor regions. Although damage was

not clearly identified, the stability of the proposed statistical-based approach was

demonstrated.

A flexible riser involves many challenges due to its complex nonlinear behavior.

The numerical scheme for dynamic response of flexible risers presented in this

section was developed in order to be used in damage detection studies. Other

approaches may be extremely computationally demanding when several damage

scenarios have to be simulated as in the study case presented in this section,

mainly those approaches involving the calculation of the fluid forces using CFD.

4.3 Damage Detection in Long Flexible Risers

4.3.1 Optimum Sensor Placement

Several researchers have made remarkable contributions to the development of

methodologies for optimum sensor placement. One of these methodologies is the

effective independence method developed by Kammer (1991). This method is

based on the concept that sensors must be placed in order to obtain mode shapes

linearly independent of each other as possible. In the formulation of this method,

Kammer (1991) used the Fisher Information Matrix (FIM) defined in Eq. (4.11).

[G]m×m = [ψ]Tm×N [ψ]m×N =

N
∑

i=1

([ψ]Ti [ψ]i) (4.11)

where [ψ]i = [ψi1, ψi2, · · · , ψim] is a row vector of the mode shapes corresponding

to the ith DOF, N is the number of DOF, and m is the number of the selected
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mode shapes, which must be mass-normalized. G is symmetric and positive

definite and its eigensolution is determined as shown in Eq. (4.12).

([G] − [λ]i[I])[Ψ]i = 0 (4.12)

where λi and Ψi are the ith eigenvalue and corresponding eigenvector of G, re-

spectively. [Ψ]i = [Ψi1,Ψi2, · · · ,Ψim] is a row vector of eigenvectors of G cor-

responding to ith DOF. The product ψΨ is a matrix of values containing the

projection of the mode shapes into the m-dimensional space spanned by the vec-

tors contained in the matrix Ψ. Squaring each element in the matrix ψΨ results

in a matrix in which each element represents the contribution of each DOF to

each mode. If weighted by the inverse of the corresponding natural frequency

of the mode, each element in this matrix has equal importance. The effective

independence vector distribution vector, Ed, represents the contribution of each

DOF to the selected mode shapes and is obtained by the summation of all terms

corresponding to each DOF. The DOF corresponding to the largest element of Ed

is the DOF that contributes most to the rank of G, and thus should be retained.

By repeating the process of removing the DOF with the smallest contribution to

the rank of G until the desired number of sensors is achieved, the sensor locations

can be determined.

4.3.2 Numerical Implementation

The first step in the numerical implementation of the statistical pattern recogni-

tion technique is the optimum location of sensors using the effective independence

method. It is important to note that the selected mode shapes are relevant in the

calculation of the optimum sensor locations. Basically, the range of frequencies in

which a flexible riser is excited may determine the mode shapes involved in any

optimum sensor placement procedure. In this section, the selection of the mode

shapes for optimum sensor placement is based on the value of the frequency of

the exciting force at the top end of the riser. Therefore, the first two modes in

the x-axis are selected. These modes correspond to values of frequencies lower

than 0.5 cycles/sec. The optimum distribution of sensors is depicted in Fig. 4.2.

Accelerations records are then recorded at sensor locations in x-axis and y-axis.
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Figure 4.2: Sensor Locations and Damage Scenarios
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4.3 Damage Detection in Long Flexible Risers

As previously mentioned, structural damage is associated with fatigue dam-

age. Therefore, hinge connections are used to represent twelve damage scenarios.

The first six cases are coincident with sensor locations. The locations of the

hinges for the other six cases correspond to non-instrumented regions as shown

in Fig. 4.2. Tables 4.11 and 4.12 show the proposed damage scenarios and corre-

sponding locations of the hinge connections. The acceleration records of the riser

in its healthy state are collected only at instrumented locations as shown in Fig.

4.2. A time step of 0.01 sec. and a total duration of 30 sec. are used for all the

signals in the healthy and damaged states of the riser.

Table 4.11: Damage Scenarios (Case I)

Damage Scenario DS1 DS2 DS3 DS4 DS5 DS6

Location of Hinge 6 7 9 10 11 12

Table 4.12: Damage Scenarios (Case II)

Damage Scenario DSA DSB DSC DSD DSE DSF

Location of Hinge A B C D E F

4.3.3 Simulation Results

To evaluate the performance of the presented statistical pattern recognition tech-

nique, damage is inflicted to the nodes where hinges are placed and acceleration

records are collected at sensor locations in order to simulate the use of measure-

ments at limited locations. Vibration data are collected during the steady state.

The acceleration records are standardized according to Eq. (4.7). Then, the AR-

ARX model is implemented for all signals. The first damage sensitivity feature,

σ(Ey)/σ(Ex), is then used to identify the occurrence of damage (Level I). Accord-

ing to Sohn et al. (2003b), if σ(Ey) ≥ 1.4σ(Ex), the riser is considered to have

reached the damaged condition. On the other hand, if σ(Ey) ≤ 1.2σ(Ex), the riser

is considered to be undamaged. However, if 1.2σ(Ex) ≤ σ(Ey) ≤ 1.4σ(Ex) , the

condition of the riser cannot be assessed and it is necessary to collect additional

measurements in order to identify a possible abnormal condition.
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The simulation results for the first damage sensitivity feature are presented in

Table 4.13. It can be seen from Table 4.13 that all damage scenarios are correctly

identified. The values found for the first damage sensitivity feature are located in

the damaged region having values larger than 1.4 as previously explained. The

second step in the presented statistical pattern recognition technique accounts

for the calculation of the second sensitivity feature, χ, which is related to the

location of structural damage. Table 4.14 presents the results obtained for the

second damage sensitivity feature.

Table 4.13: First Damage Sensitivity Feature Results (Case I)

DS1 DS2 DS3 DS4 DS5 DS6

Sensor 1 1.002 1.000 0.999 0.998 1.003 1.004

Sensor 2 1.019 1.008 1.022 1.029 1.027 1.047

Sensor 3 1.038 1.024 1.085 1.092 1.107 1.123

Sensor 4 1.046 1.013 1.068 1.086 1.094 1.107

Sensor 5 1.056 0.994 1.091 1.113 1.126 1.150

Sensor 6 1.467 1.020 1.161 1.158 1.162 1.193

Sensor 7 1.544 1.540 1.066 1.157 1.164 1.155

Sensor 8 0.982 1.224 1.522 1.512 1.455 1.227

Sensor 9 0.944 1.108 1.371 1.056 1.189 1.233

Sensor 10 1.052 1.076 1.083 1.617 1.161 1.159

Sensor 11 0.985 1.013 1.011 0.996 1.385 1.061

Sensor 12 1.044 1.058 1.068 1.078 1.097 1.503

The numerical results presented in Table 4.14 show that two damage scenarios

are correctly located. It can also be observed that sensor 5 is sensitive to the

second damage sensitivity feature. In the part of the riser where sensor 5 is

located there is a change in the curvature of the second mode shape. This fact

can partially explain this sensitiveness. The results from the second damage

sensitivity feature can be used to provide additional information related to the

occurrence of damage. Although the second damage sensitivity feature results

are less accurate than the first damage sensitivity feature results, when structural
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Table 4.14: Second Damage Sensitivity Feature Results (Case I)

DS1 DS2 DS3 DS4 DS5 DS6

Sensor 1 6.35 6.72 6.39 5.65 6.30 5.81

Sensor 2 6.35 4.74 6.47 5.00 5.23 5.39

Sensor 3 3.11 5.26 3.06 3.25 1.95 1.79

Sensor 4 5.70 5.38 6.41 6.72 7.86 9.92

Sensor 5 9.53 4.57 9.52 13.84 14.97 14.70

Sensor 6 10.92 5.62 8.50 7.69 9.74 10.51

Sensor 7 5.02 13.44 6.80 8.12 6.44 11.07

Sensor 8 4.03 6.34 6.37 4.69 5.56 5.46

Sensor 9 4.36 6.03 2.95 2.01 2.74 2.96

Sensor 10 4.34 5.76 5.95 10.24 6.80 6.45

Sensor 11 5.71 9.19 6.29 6.98 12.48 6.43

Sensor 12 3.01 2.82 6.84 6.31 4.92 13.38

damage is evident, the information of the second sensitivity feature can be used

to prioritize the regions of the riser to be inspected.

The simulation results presented in Table 4.14 show a tendency of large val-

ues at sites where damage is inflicted. Only the case DS3 does not show this

tendency having small differences among the computed values. In order to study

the sensitivity of the presented statistical pattern recognition technique to iden-

tify structural damage when a hinge connection, related to fatigue damage, is

created in nodes where sensors are not located, six additional damage scenarios

are simulated as shown in Table 4.12. The simulation results for the first dam-

age sensitivity feature obtained from the six additional cases, where hinges are

located at non-instrumented nodes, are presented in Table 4.15.

The simulation results presented in Table 4.15 show that only the damage sce-

narios DSB and DSF are not correctly identified. The location of damage in the

damage scenarios presented in Table 4.15 is not related to a single sensor location,

the inflicted damage may affect a region of the riser, which in some cases cannot

be detected by only one sensor channel highlighting the importance of having a

dense array of sensors for continuous damage monitoring implementations. Due
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Table 4.15: First Damage Sensitivity Feature Results (Case II)

DSA DSB DSC DSD DSE DSF

Sensor 1 1.002 1.002 0.999 0.998 1.002 0.999

Sensor 2 1.037 1.041 1.032 1.031 1.063 1.030

Sensor 3 1.099 1.115 1.108 1.097 1.155 1.087

Sensor 4 1.087 1.087 1.105 1.078 1.150 1.053

Sensor 5 1.095 1.127 1.132 1.122 1.172 1.095

Sensor 6 1.164 1.174 1.158 1.171 1.202 1.156

Sensor 7 1.094 1.139 1.137 1.216 1.813 1.132

Sensor 8 1.527 1.145 1.548 1.654 1.454 0.994

Sensor 9 1.056 0.990 1.082 1.037 1.263 1.075

Sensor 10 1.102 1.125 1.139 1.125 1.175 1.108

Sensor 11 1.017 1.022 1.029 1.015 1.076 0.994

Sensor 12 1.079 1.095 1.090 1.069 1.159 1.061

to the proximity of the damage scenario DSF to the bottom end of the riser

it is expected low amplitude responses at nearby sensor channels and therefore

limitations in finding significant differences during a time series analysis. In the

in-line response there is only one inflection point located at B in the second mode

shape, which corresponds to the case DSB. At this location the hinge connection

does not considerably affect the dynamic response of the riser after damage. It

can partially explain why the statistical pattern recognition technique failed to

identify correctly case DSB. However, the instrumentation of inflection points is

extremely important in the area of structural health monitoring due to the fact

that an abnormal response in this region may be automatically related to struc-

tural damage. Furthermore, these regions are almost insensitive to environmental

conditions as previously mentioned. The second damage sensitivity feature re-

sults for case II are presented in Table 4.16. The same tendency presented in

Table 4.14 is also observed for the simulation results presented in Table 4.16, but

it is important to note that damage is not related to a single damage location

for case II. Finally, three additional sensors are used to study the cases in which

damage was not identified. New sensors locations at -6 m, -9 m -16m are obtained
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Table 4.16: Second Damage Sensitivity Feature Results (Case II)

DSA DSB DSC DSD DSE DSF

Sensor 1 6.28 6.22 5.97 6.11 5.59 6.20

Sensor 2 6.09 5.89 5.70 4.37 4.86 8.52

Sensor 3 2.28 2.59 2.44 3.47 2.34 2.67

Sensor 4 7.49 7.28 8.57 7.38 9.67 6.56

Sensor 5 12.91 9.14 18.37 14.13 16.33 10.14

Sensor 6 10.37 9.64 7.46 9.82 11.21 5.81

Sensor 7 7.25 7.75 10.35 6.46 14.59 8.22

Sensor 8 5.28 5.28 5.84 11.44 6.30 5.80

Sensor 9 2.56 2.89 2.18 2.29 4.40 2.14

Sensor 10 6.78 6.48 8.10 5.96 7.62 5.42

Sensor 11 8.67 11.04 7.69 6.26 6.37 6.39

Sensor 12 5.22 7.40 6.53 5.28 7.91 4.78

from the effective independence method. The damage detection results are shown

in Table 4.17.

4.3.4 Concluding Remarks

In this section, the numerical implementation of a statistical pattern recognition

technique for vibration-based damage detection in flexible risers was presented.

The proposed semi-empirical prediction model for oscillating flexible risers was

used to perform the damage detection study. The healthy state of the riser was

experimental validated. Good agreement in amplitude response was observed

between experimental data and simulation results as previously mentioned. The

statistical pattern recognition technique used in this section was selected based

on previous research work that proves the best performance of this technique over

other existing vibration-based methods, especially modal-based approaches. Ac-

celeration records were collected at optimal sensor locations and analyzed in order

to obtain two damage sensitivity features related to identification and location

of structural damage. The numerical results show that the presented statistical

pattern recognition technique was able to identify the occurrence of damage with

106



4.3 Damage Detection in Long Flexible Risers

Table 4.17: Damage Detection Results (Cases DSB and DSF)

σ(Ey)/σ(Ex) χ

DSB DSF DSB DSF

Sensor 1 0.999 0.999 5.57 5.76

Sensor 2 1.040 1.030 7.73 9.22

Sensor 3 1.116 1.087 4.71 3.51

Sensor 4 1.088 1.054 7.91 8.10

Sensor 5 1.127 1.095 6.40 3.42

Sensor 6 1.175 1.157 8.88 7.63

Sensor 13 1.178 1.104 11.00 9.41

Sensor 14 1.335 1.113 7.48 7.20

Sensor 7 1.138 1.133 14.29 6.24

Sensor 8 1.145 0.995 6.47 6.93

Sensor 9 0.994 1.080 4.44 3.65

Sensor 10 1.130 1.112 6.89 5.75

Sensor 11 1.022 0.994 13.44 9.78

Sensor 12 1.095 1.061 4.77 3.77

Sensor 15 1.075 1.031 5.30 11.58

relatively good resolution. The second sensitivity feature locate the structural

damage with a lower resolution that the first sensitivity feature, so it can be

used to provide additional information of the regions of the riser that must be

inspected.

Vandivier (1998) presented a comprehensive analysis of the main challenges

related to instrumented marine risers. Basically, the use of accelerometers intro-

duces a gravitational error component into the signals. On the other hand, other

alternatives such as strain gages are expensive and difficult to install and cali-

brate. The optimum sensor placement method presented in this thesis may also

have a practical limitation for deep-water riser’s implementations due to the large

number of excited modes. Therefore, in order to provide a practical methodology

for sensor placement, it is necessary to identify the riser’s structural modes that

are likely to be excited during normal operating conditions. The AR-ARX pre-
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diction model can be easily incorporated in full-scale instrumentation projects if

a reliable baseline condition of the flexible riser is provided. The statistical treat-

ment of the proposed damage sensitivity features must be considered in order to

improve the presented statistical-based damage detection approach. The numeri-

cal implementation presented in this section showed that it is possible to partially

solve the problem of structural deterioration using s vibration-based approach,

which indeed optimize the use of visual inspection and Non-Destructive Eval-

uation (NDE) techniques. The envisioned Structural Health Monitoring (SHM)

approach for marine risers must integrate global SHM and local NDE Techniques.
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Conclusions

A response prediction model for flexible risers was presented in this thesis. Exper-

imental data obtained from a 20-meter and a 35-meter riser models, sinusoidally

excited at their top end, were used to validate the proposed prediction model. A

quasi-steady model was used to predict the cross-flow response using amplitude-

dependent lift coefficients. It was also employed an increased mean drag coeffi-

cient model in order to consider drag amplification during synchronization events.

Good agreement in amplitude response was found for both in-line and cross-flow

displacements. Some differences were found in the predicted response in the in-

line direction for the model tested in the asymmetric and transverse regimes. It

is important to highlight that in this thesis it is assumed amplitude-dependent

lift coefficients. Therefore, cross-flow response is more accurately predicted when

Ay/D < 0.5. As previously mentioned, VIV oscillations become more nonlin-

ear when Ay/D > 0.5. Most of the cross-flow displacements achieved by the

experimental models are located beyond the aforementioned limit.

The response prediction of an oscillating flexible riser involves several chal-

lenges due to the nonlinear and self-regulated nature of the VIV process. It has

been sufficiently proved that synchronization events cause an increase of cross-

flow displacements leading to a sudden increase in the drag force and therefore

affect the whole in-line response of the riser. Furthermore, the dynamic response

of a flexible riser having a value of mass ratio lower than 3.3 is more complex due

to the existence of 3 modes of response in contrast with the 2 modes of response

found in risers having values of mass ratio larger than 10. Although VIV can
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occur in both steady currents and oscillatory flow, only the oscillatory flow case

was presented in this thesis. In steady currents, in the lock-in region, the VIV

process may also induce large oscillating amplitudes in the riser as the reduced

velocity is increased to a critical value, but when the cross-flow amplitude reaches

a certain value, the vortex shedding changes and then the cross-flow amplitude

decreases. The oscillatory flow case exhibits more complex behavior because the

lock-in conditions can be achieved several times. Considering the nonlinear and

self-regulated nature of the VIV process, especially during synchronization events

that leads to large displacements and sudden changes in the phase angle of the

lift force, this thesis presents a practical methodology for response prediction of

oscillation flexible risers.

In the second part of this thesis, the numerical implementation of a statistical

pattern recognition technique for fault detection in flexible risers was presented.

One of the main economical constraints for deep-water oil production is related

to the design of risers for large safety factors on fatigue damage, which has been

found to occur indiscriminately, and with the same magnitude, along the in-line

and cross-flow directions. Therefore, in this thesis structural damage is associated

with fatigue damage. Hinge connections were used to represent damage scenarios

at different locations. One important issue to be considered for future implemen-

tations is the use of wireless monitoring systems for SMH systems as proposed

by Lynch (2002). Therefore, high level research must be conducted in the area

of sensing technology in order to accompany the experimental implementation

on riser systems. The sensor unit developed by Lynch (2002), having embedded

software, is one of the best available sensing technologies for SHM systems. It is

expected that the cost of such sensing units will be gradually reduced make them

more affordable for large-scale implementations. Considering current accessibil-

ity limitations and the danger associated to labor inspections in riser’s systems,

this study shows a practical statistical-based approach for damage monitoring

of flexible risers. The riser’s health condition obtained from this approach can

improve the procedure currently employed in inspection works.
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