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Summary 
 

 The interpretative mathematical model (consistent with postulates of Quantum 

Mechanics and valid for exact wavefunctions) of chemical bond should rely on observable 

quantities. The geometrical representation of bonding in real space is intimate and 

advantageous to our perception or world. Therefore theoretical description of Lewis ideas in 

geometrical space should arise from density distribution, since objects like molecular orbitals 

or valence bond structures (without physical significance) appear as intermediates upon 

solving the Schrödinger equation. The first Hohenberg-Kohn theorem binds electron density 

distribution with corresponding number of electrons N and external potential (i.e. distribution 

of nuclei), for a given ground state, providing complete chemical information about the 

system. The essential in chemistry a chemical bond concept by Lewis, despite its simplicity, 

urges one to search between atomic centers for a localized electron pairs and, following 

Pauling, to explore associated forces that lead to stabilization of an aggregate. This thesis 

attempts to bridge practical chemistry and quantum mechanics and seek for physical 

explanation for chemical bonding in terms of energy density and electronic stress tensor 

analysis.  

 The chapters introduce new non-classical bond orders based on electronic properties of 

stationary point of electron density, so called Lagrange point. The relations between forces 

acting on electron distribution, through electronic stress tensor and corresponding energy 

density are explained. The reactivity and stability is discussed in terms of local electronic 

chemical potential and interaction energy density. The stress tensor and local dielectric 

properties as well as hybrid variational-perturbational interaction energy decomposition 

scheme or Natural Bonding Orbitals theory are applied to unravel and discuss the chemical 

bonding nature. The simple chemical systems of homonuclear diatomic molecules, small 

organic molecules as well as larger systems like metal clusters and enzyme active sites are 

subjects of study.  

How the mode of bonding affects stability and reactivity of molecule on the frame of 

nonrelativistic limit of the rigged quantum electrodynamics using new indices for description 

of bond properties related to bond orders have been characterized here. These indices are in 

close relation with tensorial interpretation of bond that among others allows discriminating 

covalent bonds using spindle structure concept. The real three-dimensional space 

representation of new interaction energy density utilized in this study contribute to better 
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understanding of interaction phenomena between atoms and molecules. The differences in 

reactivity and stabilities of molecules are expressed in the redistribution of interaction energy 

density. 

The stress tensors are used widely for description of internal forces of matter. For 

some time it is also applied in quantum theory in studies of molecular properties in chemical 

systems. Electronic stress tensors measure effects caused by internal forces acting on 

electrons in molecules and particularly those between bonded atoms. Utilized here stress 

tensor originated bond orders express bond strengths in terms of these internal forces. The 

unique concept of energy density and electronic chemical potential based bond orders gives 

natural evaluation of interaction strength comparing with classical definition, considering 

delocalized nature of electrons. The relation to electronic energy causes that among others it 

may be used to predict relative stabilities of geometrical isomers or even conformers. 

The local reactivity of hydrogenated Pt-clusters has been studied using Regional DFT 

method. We observed that antibond orbitals constitute the preferable binding site for H2. 

Those sites are characterized by lowered electronic chemical potential, strong directionality 

and exhibit electrophilic nature. The Pt—H2 sigma-complexes were formed only by 

occupation of the lowest chemical potential sites associated with σPtH* antibonds in saturated 

platinum clusters. The formation of sigma-complex caused mutual stabilization with trans 

Pt—H bond. Such activated H2 molecules on Pt-clusters in a sense resemble heme-O2 

complex with interaction strength greater than phsisorbtion or hydrogen-bonding, however 

below chemisorption strength. 

The origin of enzyme catalytic activity may be effectively explored within non-

empirical theory of intermolecular interactions. The knowledge of electrostatic, exchange, 

delocalization and correlation components of the transition state and substrates stabilization 

energy arising from each enzyme active site residue allows to examine the most essential 

physical effects involved in enzymatic catalysis. Consequently, one can build approximate 

models of the catalytic activity in a systematic and legitimate manner. Whenever the 

dominant role of electrostatic interactions is recognized or assumed, the properties of an 

optimal catalytic environment could be simply generalized and visualized by means of 

catalytic fields that, in turn, aids the design of new catalysts. Differential transition state 

stabilization (DTSS) methodology has been applied herein to the phosphoryl transfer reaction 

catalyzed by cAMP-dependent protein kinase (PKA). The MP2 results correlate well with the 

available experimental data and theoretical findings indicating that Lys72, Asp166, and the 

two magnesium ions contribute -22.7, -13.3, -32.4 and -15.2 kcal/mol to differential transition 
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state stabilization, respectively. Although all interaction energy components except of 

electron correlation contribution are meaningful, the first order electrostatic term correlates 

perfectly with MP2 catalytic activity. Catalytic field technique was also employed to visualize 

crucial electrostatic features of an ideal catalyst and to compare the latter with the 

environment provided by PKA active site. The map of regional electronic chemical potential 

was used to analyze the unfavorable catalytic effect of Lys168. It was found that locally 

induced polarization on TS atoms thermodynamically destabilizes electrons pulling them to 

regions displaying higher electronic chemical potential. 

[NiFe] hydrogenase has recently received attention as an enzyme for catalyzing 

hydrogen production. We review the theoretical investigations of the catalysis mechanism. 

The hydrogen production reaction occurs at the active site of the hydrogenase and the active 

site has several paramagnetic and several EPR-silent states, the structures of which are still 

controversial. Moreover, different catalysis mechanisms have been proposed. We review the 

proposed mechanisms focusing on the reaction paths. 

Density functional calculations were performed for lanthanum-oxide clusters in order 

to study the local dielectric properties of such clusters using the dielectric constant defined at 

local points. An increase in coordination number brings about an increase in electron 

population on the central lanthanum atom, leading to an increase in the local dielectric 

constant. 
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CHAPTER 1 
 

Introduction. 

 
 

 

 

The course of chemical processes depends on reactants environment, which is most 

often dominated by the influence of catalyst (general acid or base, transition metal species, 

biocatalysts etc.). Even though the reaction may be not catalyzed, the reactants might affect 

each other through intermolecular or intramolecular interaction that leads to conversion into a 

product or to display of particular properties. Such effects, either catalytic or not, might 

involve interatomic interactions of different nature and strength, like electron pairing, 

polarization, induction, charge transfer or simple electrostatic effects. All of these effects have 

common origin in electric field associated with charge density redistribution and fluctuations 

in molecules and quantum effects associated with electron wavefunctions. The theoretical 

knowledge on how electron distributions mutually affect interaction between atoms of 

different molecules (intermolecular) or within one molecule (intramolecular), based on ab 

initio methods provides fundamental information necessary/expedient for engineering of 

molecular processes and materials. The regional DFT rigged QED electronic stress tensor 

analysis of distribution of electrons in atoms and molecules is innovative tool aiding 

understanding of chemical bonding and giving new prospective. On first sight this concept 

might seem “strange”, however a deeper reflection will bring one to conclusion that it is 

natural to explore the electronic structure of chemical bonding in terms of internal forces 

acting on electrons. The stress tensor subsumes such local indicators of “electron pairing” 

based on local kinetic energy density like electron localization function [1], local temperature 

of “nighness” functional [2], local entropy measures [3] or localized orbital locator [4]. The 

Bader’s Atoms-In-Molecules theory [5] show some analogies with theory presented here. 

However the fundamental difference between these two methods is the means in which 

electrons are treated: topological analysis of charge density by Bader and dynamical approach 

which takes into account quantum mechanical forces acting on electron distribution.   
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The first section of this book (chapters 2 and 3) introduce new, non-classical bond 

order indices based on local electronic energy density and local chemical potential derived 

from electronic stress tensor. The idea and role of stationary point of charge density, defined 

by dynamical forces acting on electrons in molecules, in bonding region, so called “Lagrange 

point” is explained. In Chapter 2 systematic analysis of bond orders of simple diatomic, 

homonuclear molecules, the properties associated with Lagrange point, was made. Along with 

new bond orders, changes in the energy density due to interaction between bonding atoms are 

locally pictured in real tri-dimentional space representation and confronted against 

corresponding deformation of charge density. Next chapter provides extended discussion of 

bonding in terms of stress tensor and new bond orders using simple organic molecules as an 

example. Different aspects of bonding are considered like different multiplicity of bonds 

(different number of electron pairs in corresponding Lewis structure), conjugation and 

hyperconjugation effects as well as the stability of isomers and conformers, substitution 

effects and the dependency of electronic properties on electronegativity of bonded atoms. The 

correlation of new indices with interatomic distance and with commonly used overlap or 

population based bond orders was made. The stability of the method against different theory 

levels is discussed as well. Author in these chapters introduce and methodize new ideas in 

order to make a survey (benchmark) for further studies.  

 The tensorial analysis of interactions in molecules has been extended to transition 

metal species in Chapter 4, where hydrogenated Pt-clusters are analyzed. The study focuses 

on platinum catalytic properties associated with hydrogen chemistry in context of hydrogen 

storage materials. The reactive regions on molecular surface represented by interface surface 

of kinetic energy density (defining turning point for electrons) are characterized by displayed 

chemical potential. The author examined how presence of reactive regions affects HOMO-

LUMO gap in clusters. The Pt—H interactions were characterized using energy density and 

chemical potential bond orders and natural bonding orbitals (NBO) analysis. The correlation 

between bond strengths determined by energy density bond order and the donor acceptor 

interactions estimated from NBO second-order perturbation theory stabilization has been 

found. Additionally interaction of dihydrogen species with Pt atoms was studied by hybrid 

variational-perturbational interaction energy decomposition of MP2 interaction energy and by 

real space visualization of Rigged QED interaction energy density. 

In Chapter 5 the phosphoryl transfer reaction catalyzed by protein kinase A has been 

analyzed in terms of the ability of individual active site components to preferentially stabilize 

the transition state. Further decomposition of DTSS energy has allowed for elucidation of the 
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major interaction energy components influencing the catalytic activity of PKA. Finally, 

catalytic fields have been derived and compared to the catalytic surroundings provided by 

PKA. The knowledge of electrostatic, exchange, delocalization and correlation components of 

the transition state and substrates stabilization energy arising from each enzyme active site 

residue allows to examine the most essential physical effects involved in enzymatic catalysis. 

Consequently, one can build approximate models of the catalytic activity in a systematic and 

legitimate manner. Whenever the dominant role of electrostatic interactions is recognized or 

assumed, the properties of an optimal catalytic environment could be simply generalized and 

visualized by means of catalytic fields that, in turn, aids the design of new catalysts. 

Differential transition state stabilization (DTSS) methodology has been applied herein to the 

phosphoryl transfer reaction catalyzed by cAMPdependent protein kinase (PKA). The map of 

regional electronic chemical potential on kinetic energy density interface surface around 

transition state was used to analyze the unfavorable catalytic effect of Lys168 residue. 

Next, the theoretical studies of catalytic mechanism of [NiFe] hydrogenase have been 

reviewed comparing proposed mechanisms and focusing on transition states. Several groups 

have investigated the catalytic system of [NiFe] hydrogenase and their findings are not yet 

consistent. Analysis of the transition states, which can not be studied experimentally because 

they are extremely short lived, was given and the activation energy barrier were determined. 

The reaction cycles in QM and QM/MM models of Desulfovibro gigas and Desulfovibro 

Miazaki F enzymes were considered and H2 production cycle was proposed. The electron 

transfer during catalytic process was considered with anionic and dianionic complexes. The 

H2 molecule is very small reactant that immediately binds to metal centre and dissociate, thus 

for all reaction steps hydrogen atoms seemed to be strongly bonded to the active site and do 

not interact directly with surrounding residues. The electronic interaction in the H2 production 

process was expressed in terms of the quantum energy densities based on the regional DFT. 

The low spin and high spin models were confronted and the chemical interactions within 

active site for reaction steps of hydrogen production were discussed by means of kinetic 

energy density, electronic stress tensor and energetic barriers. 

 The final chapter presents quantum chemical calculations performed for several small 

cluster models of lanthanoid monoxide and several tetrahydroxides using regional DFT 

method. The calculations of small clusters shed a light on chemical bonding characteristic 

between oxygen and metal atoms. Furthermore a large-scale model has been studied using 

combined quantum mechanics/molecular mechanics (QM/MM) method. Using electron 

wavefunctions the local electronic properties such as electronic stress tensor density and local 
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dielectric constant were calculated. The local dielectric properties are related to the 

polarization of the system induced by the electric displacement of the external field. The 

relation between local dielectric constant and chemical bonding properties were determined 

based on the same electron wavefunction.  
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CHAPTER 2 

 
The field theoretical study of chemical interaction in terms of the Rigged 

QED: new reactivity indices. 
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Introduction 

 
Recently developed novel field theory of regional energy density decomposition in 

real space [1] (an infinitely small regional energy decomposition scheme) [2] allows one to 

recognize how the electronic energy density is associated with the electron density and 

visualization of the chemical interaction in real space is now possible. Using the electronic 

energy density, one can pick up any point in a chemical reaction system and find how the 

electronic energy E is assigned to that point. The integration of the electronic energy density 

in a small region gives the regional electronic energy contribution to the global electronic 

energy E. If the integration spans the whole space, then the integral gives the total E of 

system. The new energy density partitioning scheme that utilizes the Rigged Quantum 

Electrodynamics (QED) has been developed recently [1]. One obtains the energy densities as 

follows: 

)()()()( rnrnrnrn WVTE
rrrr

++=    (1.1a) 

ˆ ˆ ˆ ˆ( ) ( ) , ( ) ( ) , ( ) ( ) , ( ) ( )E T V Wn r H r n r T r n r V r n r W r= = = =
r r r r r r r r  (1.1b) 

the kinetic energy density )(rnT
r , the external potential energy density )(rnV

r , and the 

interelectron potential energy density )(rnW
r . The all components are derived from the same 

density matrix and related to each other following the sum rule that leads to the total energy 

density )(rnE
r . 

The kinetic energy density obtained in this scheme provides a new outlook at the 

chemical bond by partitioning of space into mutually disjoint regions by using a concept of 

the electronic drop (RD) and atmosphere (RA) regions separated by the interface S [3]. The 

infinitely large positive electric potential of the bare nucleus influences the electron (in terms 

of classical and quantum mechanics as well) that has constant energy and can acquire 

infinitely large positive kinetic energy )(rnT
r  at positions very near to nucleus (because the 

intramolecular electric field )(rE ntrai
r  produced by the other electrons can not exceed that of 

the bare nucleus) [2]. Nevertheless the nucleus is surrounded by the surface of zero kinetic 

energy density ( 0)( =rnT
r ), within which the kinetic energy density is positive ( 0)( >rnT

r ), 

where the electron density is simply accumulated and classically allowed motion of electron 

is guaranteed. This region is called the electronic drop and denoted by RD, while the 

complementary region is the region of the electronic atmosphere denoted by RA, being 

separated by the electronic interface S: 
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In the RA the electron density is dried up and the motion of electrons is classically forbidden. 

The boundary S in between RD and RA gives a clear image of the intrinsic shape of the reactant 

atoms and molecules along the course of the chemical reaction coordinate. The kinetic energy 

density is a molecular property as a functional of electron density [1a,4]. While expectation 

values in the whole space of both conventional (regular DFT) and the Rigged QED kinetic 

energy density operators are the same, the density itself is different from each other [1b]. The 

interface surface S, that appears for the Rigged QED )(rnT
r , is very important in chemical 

reaction systems as it allows specifying the turning point for electron [5].  

The dynamical treatment, in the form of incorporation of the kinetic energy density of 

atomic nuclei (treated as external static source of force for electrons - Schrödinger field [6]), 

play important role in the Rigged QED in the chemical reaction systems since the local stress 

tensor density )(rS rtτ , represented as force acting on a pair of electronic drop regions of 

reactants [3,7], have been applied to study the chemical reactivity [8]: 
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The eigenvalue is the principal stress and the eigenvector is the principal axis: 
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This new kind of force which acts on electrons is discriminated with the force on the nuclei. 

The covalent bond formation is characterized by a concept of the spindle structure, which is a 

geometrical object of a region where principal electronic tensile stress is positive along the 

line of principal axis of the electronic stress, that connects a pair of the RD‘s of atoms or 

molecules (with predominant compressive stress inside) [7].  
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The stress is the surface force characterized by the dimension of force per area. The 

eigenvector of the stress tensor density dictates the local tensorial chemical force. 

The eigenvalue of the stress tensor density gives a measure of the kinetic energy. If the 

local principal stress is positive, it is called the tensile stress, while if it is negative - 

compressive [7]. The compressive stress gives a positive contribution to the kinetic energy 

density, while the tensile stress provides a negative contribution because of negative 

eigenvalues (-1, -1, -1) of metric tensor gij [5]. Combination of the stress tensor and the 

spindle structure reveals new concept of tensorial chemical interaction energy density that 

includes the electronic spin angular momentum in the underling physics. The atomic electron 

density exhibits positive kinetic energy density, which leads to the formation of the electronic 

drop region RD [3] and to the compressive stress [7]. This tendency should of course be intact 

in between ionic species interactions. The situation would change dramatically for covalent 

bond formation, where a pair of electrons should be bounded tightly and thereby creating 

tensile stress. Many systems show such generic feature, which is called spindle structure of 

covalent bond [6]. 

On the basis of the concept of the force density and the stress density (established in 

the quantum mechanics and QED), the force density operator )(ˆ rF S
r

, aside form the Lorentz 

force density operator )(ˆ rLS rr
, is composed of the tension density operator )(ˆ rS rrτ given as the 

divergence of the stress tensor density operator )(ˆ rS rtτ : 

)(ˆ)(ˆ rr Skl
l

Sk rr ττ ∂=        (1.5) 

)(ˆ)(ˆ)(ˆ rLrrF SSS rrrrr
+= τ       (1.6) 

Tension density operator represents purely quantum mechanical effects, for example, of 

electrons diffusing from an atomic nucleus. The Lorentz force density operator is of the usual 

classical form plus quantum mechanical exchange effects, for example, of electrons pulled 

back by the atomic nucleus. For the stationary state of charged particles the local force can 

vanish, when the equation of motions is equivalent to the local equilibrium condition and 

where the tension density (the tension of the field) exactly cancels the Lorentz force density 

(the Lorentz force exerted on the particle) at every point of space [3,5,7,9a]: 

0)(ˆ)(ˆ =+ rLr SS rrrrτ       (1.7) 

The tension is integrable, and leads to the stress tensor, which itself has the dimension of the 

energy density:  
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[ ] [ ]force energystress energy density
area volume

= = =    (1.8) 

 

Regional energy density 

 
1. Bond line and Lagrange point 

In the stress tensor analysis, one can visualize the propagation of local force in real 

space by tracing the congruence of the principal axes, leading to the bond line as the 

envelope, as shown in Figure 1a. The spindle structure accommodates a bundle of bond lines 

carrying tensile stress region in between a pair of compressive ones on the edges with a shape 

of bond if they connect a pair of RD’s. 

In Bader’s analysis topologically defined bond paths, bond critical points and electron 

cloud enclosed regions serve as regions of space carrying the information about bonding 

interaction and atomic regions [10]. The Rigged QED analysis at stationary point provides the 

chemical interaction characteristic with the Lagrange point Lagrangerr  at which the tension (and 

also the Lorentz force) vanishes for electron to take a rest in course of the chemical bond, as 

shown in Figure1b. We suggest that Lagrangerr  carries heavy load of interaction information, 

however it may be not complete. The Lagrangerr  are common for all molecules and easy to 

identify. In contrast to Bader’s AIM analysis [10] the Rigged QED characteristic point is 

determined by dynamical forces acting on electrons thus has mechanical origin instead of 

being a topological parameter. 

Concluding, one obtains: i) a realization of boundaries of atoms or other electronic 

structural fragments as the RD - drop regions of kinetic energy density separated with RA , ii) a 

dynamical bond line dictating the local tensorial chemical force, and iii) a dynamical point 

Lagrangerr  characterizing an interaction, where repulsive electronic tension cancels in space (in 

stationary state)[6]. The kinetic energy density can draw a shell structure of atoms. The 

tangential point of two atoms or molecules is called Lagrange point Lagrangerr  and it is situated 

on the bond line that connects two RD centers.  

 

2. Non-relativistic limit of energy density 

 Tensorial analysis of bonding interactions has already been proved to be useful in 

determination of covalence and molecular shape [3]. Because the stress tensor has a 

dimension of the energy density, a completely new realization of the tensorial chemical 
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interaction energy density was obtained. The trace of the stress tensor density becomes [6] 

equivalent to two times the kinetic energy density in the non-relativistic limit. The integral of 

the trace of the stress tensor density gives a local picture of two times the kinetic energy 

density [6]. 

3 3 2ˆ ˆˆ ˆ( ) ( ) ( ) ( )Rigged QED Rigged QED eE d r H r d r m c r r T rα
α

ψ ψ= = −∑∫ ∫
r r r r r r  (2.1) 

3 31 ˆˆ ( ) ( )
2

S k
non relativistic non relativistic k

Rigged QED Rigged QED

E d r H r d r rατ− −= = − ∑∫ ∫
r r r t r    (2.2) 

The quantity calculated in this way corresponds to the total electronic energy E (when 

integration spans the whole space). Its local redistribution in space (ε - total energy density) 

can be drawn by using regional integration for infinitively small region of space [1]: 

 )(
2
1)(),(3 rrrrdE kkSSS rrrr τεε ττ == ∫      (2.3) 

 

3. Lagrange point vs. regional energy density 

The total energy density in local picture reaches peak along the principal axis (bond 

line) in the Lagrangerr  and for perpendicular axis leading through this point goes through the 

minima. It is not necessary condition that electron density would go through the extremum at 

Lagrangerr  too, especially in many-atomic or heteroatomic systems. The εb  value of ratios of 

energy densities at this point, calculated from equation below, where )( Lagrange
S
AB rrτε is the 

regional energy density at Lagrangerr  for bond between A and B, and )( Lagrange
S
HH rrτε is regional 

energy density at Lagrangerr  for σ bond in hydrogen molecule, is linked to bond order (defined 

in diatomic molecule as b = ½ ( n - n* )) or more precisely to normalized interatomic strain 

(which may be compared to vacuum pressure) that glues atoms together, stabilizing given 

bonding interaction with respect to the properties of model pure single σ bond of hydrogen 

molecule.  

)(
)(

Lagrange
S
HH

Lagrange
S
AB

r
r

b r

r

τ

τ
ε ε

ε
=        (2.4) 

Table 1 shows results for Lagrange points of carbon-carbon bond of C2Hx molecules 

and model single bond of H2 molecule, all calculated at MP2/6-311++G** level of theory 

using Gaussian03 [11] and MRDFT program [12]. The largest eigenvalue of stress is positive 

for all cases except etyn, for which it is slightly negative - this is due to the effect of large 

stabilization in the directions perpendicular to the bond line that cause the covering up of 
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tensile stress in the principal axis. The positive stress is delocalized from the Lagrangerr  into the 

ring shaped region around bond axis. The two minor eigenvalues of stress tensor are negative 

and represent the compressive stress acting on bonding electrons in directions perpendicular 

to C—C line. The negativity of these eigenvalues is connected with atomic like stabilization, 

while positive stress is associated with electronic destabilization (or stabilization in sense of 

tight covalent bonding of valence electrons). The electron density at Lagrangerr  correlates with 

increasing εb . The values of εb  are in good agreement with bond orders in these molecules. 

The results for other C—C bonds in hydrocarbons i.e.: s-trans-1,3-buten ( 274.1=εb  and 

1.897 for single and double respectively ) or Lagrangerr  between C atoms in benzene molecule 

( 557.1=εb ) also assume reasonable values that correlate with bond orders. It should be noted 

that negativity of the largest eigenvalue of stress at Lagrangerr  does not necessary negate the 

covalence and spindle structure existence. Largest eigenvalue of stress tensor is negative for 

non-covalent interactions (metallic bonds, van der Waals complexes) or sometimes for very 

strong covalent bonds where short interatomic distance causes that positive principal stress is 

dominated by compressive stresses of atomic cores. The value for etyn molecule turns out to 

be negative as the total result of superimposed effects. The negativity of principal stress in 

this case might mean fluidity of electron density and potential to conduct (see next paragraph 

for more information). It is possible however to find the spindle structure when electronic 

“noise” in shape of all occupied orbitals except HOMO will be omitted [5].  

 

4. Homonuclear diatomic molecules 

 The homonuclear diatomic molecules in ground states of main group elements, from 

first to fourth period, have been analyzed here with respect to the Lagrange point. The results 

are shown in Table 2. The calculations have been performed at HF/6-311++G** level of 

theory using Gaussian03 [11] and MRDFT program [12]. The regional total energy density as 

well as εb  reflect periodicity of atomic properties and correlate with bond length and 

electron density at Lagrange points. Among the elements of first two groups one can notice 

that from Na2 to Ca2 the degeneracy of the largest eigenvalue occurs in contrast to the 

degeneracy of two minor eigenvalues of stress in other cases. There also appears another clear 

tendency, that among all metals and metalloids bonds the largest eigenvalue of stress in 

Lagrange point becomes negative. This indicates a kind of fluidity of bonding/valance 

electron density between species. There might be connection between such feature and band 

properties of metals and semiconductors however not studied yet.  
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The εb  index does not give commonly used bond orders any more. While it still 

evaluates the bond strength and order, the magnitude for some bonds is either largely 

overestimated or underestimated comparing to results by Mayer’s [13a-d] or Molecular 

Orbital theory [13e-h]. One can obtain more adequate results by taking dependency of 

electron redistribution into consideration since the electronic energy is associated with 

electron density [9]. The modified index takes also the interaction of electronic clouds of 

bonding species into account. In chemical reaction systems, the redistribution of electrons 

directly redefines the electronic energy as a unique functional of the electron density [3]. New 

parameter is calculated from equation below, where )( LagrangeAB rn r  indicates electron density 

at Lagrangerr  for given bond. 
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rr
ττε

µ

εε
 (2.5) 

The ε/n ratio reflects energy that is attributed to one electron at given point in space. 

For particular interaction between two RD’s the Lagrangerr  describes exclusively only that 

particular phenomenon (especially if one investigates bonding in composed, many-atomic 

system). One can easily compare normalized energy density (first, bond order related 

parameter) or such energy per one electron at atomic (or molecular) interfaces expressed by 

any interacting subsystem.  

 

5. Linear response of regional chemical potential density 

The regional energy decomposition scheme has been extended to infinitely small 

regional energy decomposition scheme thus leading to local electronic energy density )(rnE
r  

in real space as a unique functional of electron density )(rn r  [1a-b,9,14]. In this sense 

)(rS
AB

r
τε  constitutes very small, partial contribution ( E∂ ) to total electronic energy, likewise 

)(rnAB
r makes small portion ( N∂ ) of total electron number N, for given region of space of 

bond between A and B: 

)(,)( 33 rnrdNrrdE ABAB
S
ABAB

rrrr
∫∫ == τε     (2.6) 

However the ratio of energy density per electron density has a much deeper meaning and 

broader importance for chemical description of system at single point of space. The 

( ) / ( )S
AB ABr n rτε

r r  in Eq. (2.5) may be regarded as derivative versus number of electrons that 

exhibits the property of regional chemical potential (µR) [1a] at least under linear response 

approximation: 
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The original Onsager’s local equilibrium hypothesis that does not includes quantum 

mechanical effects across region interfaces [15] has been modified, and the quantum 

mechanical nature of electron was taken into account by use of density functional theory [1a]. 

Introduction of quantum mechanical coherency of electrons that can tunnel from region R to 

the neighboring regions allow replacing all Hamiltonians (originally for each region) by one 

density functional theory Hamiltonian that covers the system as a whole. In the irreversible 

thermodynamic of Onsager, there is a gradient of chemical potentials and there is an 

inequality of regional chemical potentials between complementary regions. The introduced 

quantum mechanical interference effect, working through the interfaces that divide the 

regions, survives even in the limit of global chemical equilibrium [1a]. Arising chemical 

potential inequality principle predicts inequality in between either: i) the Gibbs chemical 

potential µG for electronic subsystem as a whole and the regional chemical potentials µR, or ii) 

the regional chemical potentials µR themselves [1a].  

'
'( )

G R R R
R R

µ µ α
≠

= + ∑        (2.8) 
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The µR refers to regional contribution to the µG. The sum of RR 'α  over the complementary 

regions R’ to R expresses intrinsic Volta electric potential Rφ . For a pair of regions R’ and R 

Volta contact potential difference is identified with the difference in the regional work 

function proved by Herring and Nichols [16]. 

RRRR Φ−Φ=− ''φφ        (2.11) 

The RΦ  denotes the intrinsic Herring-Nichols work function. In between a pair of regions in 

contact with each other, the Gibbs chemical potential is constant as a consequence of the 

chemical equilibrium. This leads to Herring-Nichols work function RΦ  defined as regional 

chemical potential. 

' 'G R R R Re e e eµ φ φ= − Φ − = − Φ −      (2.12) 

'
'( )

R R R
R R

eφ α
≠

− = ∑        (2.13) 
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R Re µ− Φ =         (2.14) 

The thermodynamic extension of electronic energy density )(rnE
r  gives observables in 

electrochemistry in shape of Rφ  and RΦ . Likewise in crystals where these quantities are 

dependent on surface morphologies or crystallographic orientations but have constant value of 

µG, same regional chemical potential inequality in space for atoms and molecules is a valuable 

source of chemical interaction information. 

According to Ilya Prigogine an open system at stationary state organizes itself in a way 

to minimize total entropy production. The thermodynamic forces represented by gradients of 

intensive variables drive fluxes of the associated extensive quantities [1a]. The Gµ  turns out 

to be electrochemical potential composed of ordinary chemical potential arising from short 

range interactions and the macroscopic scalar electric potential field φ  representing long 

range electromagnetic interactions [17]. The two parts of the electrochemical potential play a 

different role in thermodynamics [17]. 

 Figure 2 compares εb  and µb  indices with the molecular orbital theory bond orders 

[13e-h]. The modified index µb  describes the actual bond orders more accurately. However 

this new index, due to underestimation, is now not applicable to the carbon-carbon bonds in 

hydrocarbons (Table 1). This is due to the effect caused by bonding to more then one atomic 

center, when electron density may redistribute over the whole, much larger molecular orbital 

that spans all the nuclei. In diatomic molecules, where available orbital space is limited 

comparing to polyatomic molecules, electron density accumulated around one particular 

bond, although may not exceed that for similar bond in polyatomic system, has more 

favorable energy (due to lower number of available/occupied MOs; i.e. carbon-carbon bond in 

C2 and hydrocarbons) thus this causes change in local chemical potential at Lagrangerr  and 

related µb  index. 

 

6. Method and basis set dependency 

 The calculations of energy density data are based on the eigenvectors obtained from 

any ab initio method implemented in commercially available programs for quantum 

mechanical calculations and the same basis sets are used. The dependency on method and 

basis set have been checked by HF, MP2 and B3LYP calculations with STO-3G, 6-31G, 6-

311G basis sets (with polarization and diffusion functions added or removed) using Gaussian 

03 [11] and MRQED program [12]. The very small method and small basis set dependency 

have been observed. The results for Li2 case have been summarized in Table 3. In case of 
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εb

constant interatomic distance all methods give very similar results and the regional total 

energy density at HF and B3LYP levels correlate very well (1.000 and 0.995 respectively) 

with MP2 results for H2 molecule.  

 

7. Interaction energy density 

The combination of supermolecular approach and non-relativistic limit of energy 

density leads to the formulation of new molecular interaction energy density of the chemical 

species (corrected for the basis set superposition error (BSSE) by using the dimer centered 

basis set for monomers [18]). This new energy density is divided into the regions where 

attractive or repulsive interaction terms are dominating, that in case of bonding interaction 

might be regarded as stabilization or destabilization in bonding regions respectively, as the 

effect of electron density rearrangement upon bond formation.  

)( BAABAB EEEE +−=∆       (2.15) 

The corresponding value of local molecular interaction energy density is defined as follows:  

( )( ) ( ) ( ) ( )S S S S
AB AB A Br r r rτ τ τ τε ε ε ε∆ = − +

r r r r     (2.16) 

This approach has been applied recently to study hydrogen bond interactions for visualization 

of intermolecular effects between donor and acceptor pair [to be published]. 

 Similarly to the regional total energy density and  index it is possible to define 

ratio of molecular interaction energy densities.  
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ε∆

∆
=
∆

r

r        (2.17) 

The  represents the relative stability of given A—B bond comparing to single σ bond 

of hydrogen molecule. In other words the character (passive - quite stable, or aggressive – 

quite unstable) of interaction and tendency to undergo transformation from given stationary 

state is characterized. The change of this index with respect to the standard bond energies is 

presented in Figure 3. One can notice from data in Table 2 that the lowest value of ε∆b  is 

attached to bond in Kr2 molecule which is very weakly bonded. In contrast the most inert 

among molecules in Table 2 the N2 has the highest value. This index describes how much the 

given bond is stabilized comparing to single H—H bond, in other words the effect of 

localization of bonding electrons in space in between nuclei is evaluated. For example Li2 and 

Be2 molecules have less stable but energetically favorable interaction at Lagrangerr . The 

interaction in N2 is estimated to be much stronger then in H2 and electronic type interaction is 

exclusively localized in between nitrogen atoms. The negativity of this index would mean 

ε∆b
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destabilizing effects present at Lagrangerr  (thus high reactivity) or indicate delocalization of 

bonding (attractive, electronic) interactions to the regions outside interatomic axis. In this case 

three-dimensional view is needed to fully illustrate bonding interaction character. 

 

8. Energy density in real space 

 The electronic stress, kinetic energy density and interaction energy density may be 

represented in real space providing more detailed and prospective view that complements the 

information obtained from Lagrange point. In case of interaction energy density real space 

data is especially valuable showing the source of stability or weakness of molecules. 

Figure 4 shows redistribution of interaction energy density in space while the electron 

density change in space is shown in Figure 5. The metal atoms from first group constitute 

bonds with wide stabilization regions (represented by blue isosurfaces) in between atoms and 

wide destabilization regions outside. The region of negative interaction energy density that 

stabilizes bond is in overlap with increased electron density regions (represented by red 

isosurfaces in Figure 5). The second group elements have bonds very similar to H2 bond, 

where both atoms are buried in stabilization region that spreads around the whole molecule. 

However in case of these elements the negative interaction energy density region is 

redistributed over the much larger space and energetically unfavorable regions are limited 

only to doughnut structures surrounding the bond. One can notice that electron density 

increase between atoms is limited to small σ-like region while outside interatomic region it is 

widely redistributed. On the other hand the hydrogen molecule is closed in shell structure in 

which the center is formed by stabilized core of increased electron density. The N2 and P2 

molecules show stability in “σ*” shaped region surrounded by stabilization ring. The As2 

molecule, in contrast to former ones, innermost has σ like stabilization region submerged in 

bulk of destabilization. The negative interaction energy density regions usually cover the 

electron density increase regions. However this is not exactly the case for H2 and N2 

molecules for which regions of favorable interaction also appear in place where electron 

density is decreased. This may have connection with greater stability (and lower reactivity, 

see ε∆b parameter in Table 2) of these molecules comparing to the other species from given 

group in periodic table. 

In Figure 6 and Figure 7 is presented visualization of interaction energy density and 

electron density change for noble gases. The magnitude of interaction energy density is very 

small (almost in error limit) however one can notice for interatomic region that the 

stabilization effect occurs due to decrease of electron density in this region (in contrast to 
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other molecules where attractive interaction energy density comes in pair with increase of 

electron density). Among all noble gases species the Ne2 is characterized by strongest 

interaction (greatest bi indices). The source of such stability might be explained by following 

issues. The Ne2 has the shortest optimized interatomic distance of all presented noble-gases, 

very close to that in Na2. Although the electron density at Lagrange point has been decreased 

about two orders more then for other noble-gases, still it’s value is an order greater then 

others. The strong accumulation of electron density on atomic cores is also observed with 

very small and diffused destabilization in those regions.  

 

Conclusions and discussion 

 
The supermolecular approach when applied to diatomic molecules need to take into 

account the possible electronic configurations and orbitals orientations for atomic monomers. 

In case of diatomic species of 3rd, 4th, 6th and 7th group elements it is required more careful 

and detailed analysis which has not been applied on this stage yet. Some difficulties are 

originated from single determinant wave function, utilization of which causes not reasonable 

orientations of atomic orbitals of monomers in some atoms that do not correspond to ones in 

dissociation limit (configuration of maximum overlap in molecule). We need to revise our 

definition of atomic monomer in some cases. Nevertheless the method for obtaining the three-

dimensional interaction energy density in present state is fully applicable to intermolecular 

interactions, in generic circumstances. 

Lagrange point is the characteristic point of bond line that may represent bond 

properties using energy density data. The total energy density (calculated as the trace of stress 

tensor) is in close association with electronic and chemical properties of molecules. It is 

possible to characterize interactions and to evaluate their strengths and energy based bond 

orders using the energy density related indices. However we need more detailed study to find 

the source of difference between values of bond orders calculated in our method with 

commonly used ones. The correspondence of bε, bµ and b∆ε indices describing reactivity with 

standard bond energies was found and only small basis set and immaterial method 

dependency of these indices have been inferred. However single point is not enough for full 

characterization of bonding interactions. The three-dimensional insight is much more 

informative. The differences in the redistribution of interaction energy densities are in close 

relation with activity of given molecule. Furthermore it may provide details on orbital 

interaction, spin state and stability of given compound.  
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It may seem strange that the values of the µb  index calculated for noble-gas diatomic 

molecules are surprisingly large in some cases (the He2, Ne2, Ar2, Kr2 values are larger than 

Li2, Na2, K2), while the εb  index gives practically zeros. In fact all noble gases dimers have 

very low εb  indices (except Ne2 for which it is comparable to that of Na2 or K2), which 

indicates very weak bonding. However the greater µb  index is associated with greater 

absolute value of local chemical potential of bonded atoms that is the potential of electrons to 

undergo physical or chemical change in the system. The similar points (competition between 

stabilization energy and chemical potential) may also apply to other species i.e. of fifth group 

(N2, P2, As2) explaining it’s reactivity and the deviation of εb  from commonly used bond 

orders. In addition in presented set of molecules only noble gases have negative kinetic 

energy density at Lagrange point. The atoms and interatomic region of bonded molecules are 

embedded in positive kinetic energy density region. The noble gases atoms (positive kinetic 

energy density) are separated and surrounded by negative kinetic energy density without any 

connection in shape of positive region, which reflects a leading role of long range field 

(electrostatic or quantum in nature) effects for interaction between noble gases. Although we 

have found very little method dependency, the HF level is not suitable for noble gases 

calculations. The noble gases have one of the lowest bond order indices. The use of more 

sophisticated method and inclusion of higher dispersion and correlation effects should lead to 

more accurate results in this case.  

Another unusual result is that the P2 molecule shows substantially different figure of 

bond order from MO-based bond order. The Table 4 compares molecular orbitals energy 

densities in Lagrange point of three "triple bonded" molecules. The N2 has the lowest energy 

in Lagrange Point for all highest occupied molecular orbitals, filled by valance electrons 

(except *σ ) and the lowest sum of energies of MO-s of core electrons. Second is carbon-

carbon bond in C2H2 and P2 at the end. Our bond orders give the same order of decreasing 

bond order. The interatomic distances are: 1.07[Å], 1.18[Å] and 1.85[Å] respectively. The 

electron density decreases with increasing distance. One should notice that our indices are 

deeply related to electron density accumulated in meta-stable position at Lagrange point and 

its energy not only in the total effect. 

There are many discussions in literature about bonding itself and some researches even 

claim that there is no such thing as a chemical bond at all. The new indices, although reflect 

traditional bond orders, are carrying different information about interactions on the interfaces 

of quantum chemical subsystems. Thus we can not judge and recommend one of our new 
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indices as representative method to estimate bond order. Our indices satisfy the earlier 

definition of bond order (by IUPAC) as “index of the degree of bonding between two atoms 

relative to that of a single bond”. The bond order is provided by energy density associated 

with localized electron density, as the combined effect of all occupied molecular orbitals 

(which in some part corresponds also to molecular-orbital bond order definition). Since 

electronic energy density includes the electronic spin angular momentum in the underling 

physics, so does the energy density based bond order. However depending on the specific 

information one may use either one or all new indices to characterize molecules and chemical 

interactions. 
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Table 1.  The Lagrange point characteristics of C-C bonds - eigenvalues of stress tensor, 

electron density and regional total energy density (in atomic units). The εb  

ratio correlates with the bond orders of C-C bonds while modified index 

µb does not work for multiple bonds. 

Molecule The eigenvalues of stress tensor Electron 
density 

Total energy 
density εb

 µb
 

H2 
C2H6 
C2H4 
C2H2 

1.719E-01 
6.020E-02 
4.053E-02 
-9.811E-03 

-2.242E-01 
-1.641E-01 
-2.695E-01 
-4.106E-01 

-2.242E-01 
-1.641E-01 
-3.082E-01 
-4.106E-01 

2.643E-01 
2.506E-01 
3.458E-01 
3.969E-01 

-1.383E-01 
-1.340E-01 
-2.686E-01 
-4.155E-01 

1.00 
0.97 
1.94 
3.01 

1.00 
1.02 
1.48 
2.00 

 

 

 

Table 2.  Periodicity of the stress tensor and energy density related parameters at 

Lagrange point. Data in atomic units unless marked otherwise.  
 H2 He2 

3rd eigenvalue of stress tensor 

2nd eigenvalue of stress tensor 

1st eigenvalue of stress tensor 

Electron density 

Regional total energy density 

bε 

bµ 

Electron density difference 

Interaction energy density 

b∆ε 

Interatomic distance [Å] 

0.1738 

-0.2269 

-0.2269 

0.2660 

-0.1400 

1 

1 

0.1080 

-0.0664 

1 

0.74 

 

-0.000019 

-0.000028 

-0.000028 

0.000123 

-0.000032 

0.00027 

0.579 

-2.60E-07 

-4.36E-07 

6.57E-06 

3.68 

    

 Li2 Be2 B2 C2 N2 O2 F2 Ne2 

3rd eigenvalue of stress tensor 

2nd eigenvalue of stress tensor 

1st eigenvalue of stress tensor 

Electron density 

Regional total energy density 

bε 

bµ 

Electron density difference 

Interaction energy density 

b∆ε 

Interatomic distance [Å] 

-0.0008 

-0.001 

-0.001 

0.0129 

-0.0014 

0.010 

0.214 

0.0070 

-0.0018 

0.027 

2.78 

-0.0149 

-0.0159 

-0.0159 

0.0725 

-0.0234 

0.167 

0.613 

0.0326 

-0.0271 

0.408 

1.81 

-0.0045 

-0.0571 

-0.0571 

0.111 

-0.0594 

0.424 

1.015 

-0.0446 

- 

- 

1.64 

0.0057 

-0.2011 

-0.2011 

0.2008 

-0.1983 

1.416 

1.876 

-0.0814 

- 

- 

1.36 

0.0908 

-1.09 

-1.09 

0.7321 

-1.0446 

7.462 

2.711 

0.1855 

-0.7044 

10.615 

1.07 

0.3861 

-0.9308 

-0.9308 

0.629 

-0.7378 

5.270 

2.228 

-0.1010 

- 

- 

1.16 

0.308 

-0.4539 

-0.4539 

0.3563 

-0.2999 

2.142 

1.599 

-0.0787 

- 

- 

1.33 

-0.000130 

-0.000407 

-0.000407 

0.001051 

-0.000473 

0.00338 

0.854 

-1.14E-05 

-2.15E-05 

0.000325 

3.27 
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Table 2.  Continued. 
 Na2 Mg2 Al2 Si2 P2 S2 Cl2 Ar2 

3rd eigenvalue of stress tensor 

2nd eigenvalue of stress tensor 

1st eigenvalue of stress tensor 

Electron density 

Regional total energy density 

bε 

bµ 

Electron density difference 

Interaction energy density 

b∆ε 

Interatomic distance [Å] 

-0.0005 

-0.0005 

-0.0007 

0.0084 

-0.0009 

0.006 

0.196 

0.0038 

-0.0008 

0.013 

3.20 

-0.0033 

-0.0033 

-0.0064 

0.0273 

-0.0065 

0.046 

0.452 

0.0076 

-0.0060 

0.090 

2.53 

-0.0111 

-0.0136 

-0.0136 

0.0459 

-0.0192 

0.137 

0.792 

-0.0168 

- 

- 

2.25 

-0.0138 

-0.0335 

-0.0335 

0.0664 

-0.0405 

0.289 

1.156 

-0.0285 

- 

- 

2.05 

-0.0449 

-0.1076 

-0.1076 

0.194 

-0.1301 

0.929 

1.274 

0.0565 

-0.1140 

1.717 

1.85 

0.007 

-0.1229 

-0.1229 

0.2013 

-0.1194 

0.853 

1.127 

-0.0137 

- 

- 

1.88 

0.043 

-0.0924 

-0.0924 

0.157 

-0.0709 

0.506 

0.857 

-0.0138 

- 

- 

2.00 

-0.000016 

-0.000034 

-0.000034 

0.000202 

-0.000042 

0.00030 

0.392 

0 

0.0022 

--- 

5.03 

         

 K2 Ca2 Ga2 Ge2 As2 Se2 Br2 Kr2 

3rd eigenvalue of stress tensor 

2nd eigenvalue of stress tensor 

1st eigenvalue of stress tensor 

Electron density 

Regional total energy density 

bε 

bµ 

Electron density difference 

Interaction energy density 

b∆ε 

Interatomic distance [Å] 

-0.0002 

-0.0002 

-0.0003 

0.0044 

-0.0004 

0.002 

0.145 

0.0019 

-0.0003 

0.004 

4.20 

-0.0015 

-0.0015 

-0.0019 

0.0144 

-0.0033 

0.017 

0.322 

0.0043 

-0.0020 

0.030 

3.35 

-0.0071 

-0.0128 

-0.0154 

0.0518 

-0.0096 

0.126 

0.648 

-0.0038 

- 

- 

2.54 

-0.0139 

-0.0334 

-0.0334 

0.0596 

-0.0202 

0.288 

1.287 

-0.0329 

- 

- 

2.18 

-0.0334 

-0.0681 

-0.0681 

0.141 

-0.0650 

0.606 

1.143 

0.0263 

-0.0442 

0.666 

2.06 

-0.0083 

-0.0626 

-0.0626 

0.1339 

-0.0597 

0.477 

0.947 

-0.0216 

- 

- 

2.15 

0.0122 

-0.0508 

-0.0508 

0.1128 

-0.0354 

0.319 

0.752 

-0.0081 

- 

- 

2.29 

-0.000010 

-0.000021 

-0.000021 

0.000154 

-0.000021 

0.00019 

0.324 

-6.40E-07 

-4.90E-07 

7.38E-06 

5.58 

 

 

Table 3.  The method and basis set dependency of εb  and µb  for Li2. 
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 R [Å] 

B3LYP 

HF 

MP2 

2.6888 

2.6964 

2.6994 

2.7325 

2.8155 

2.8109 

2.7334 

2.8218 

2.8154 

2.7230 

2.8069 

2.7821 

2.7254 

2.8145 

2.7872 

2.7055 

2.7846 

2.7698 

2.7056 

2.7847 

2.7687 

2.7048 

2.7844 

2.7485 

2.7050 

2.7846 

2.7479 

 εb
 

B3LYP 

HF 

MP2 

0.017 

0.016 

0.017 

0.010 

0.008 

0.008 

0.010 

0.008 

0.008 

0.009 

0.008 

0.008 

0.009 

0.007 

0.008 

0.013 

0.011 

0.011 

0.013 

0.011 

0.011 

0.013 

0.010 

0.011 

0.013 

0.010 

0.011 

 µb
 

B3LYP 

HF 

MP2 

0.252 

0.278 

0.268 

0.168 

0.193 

0.173 

0.170 

0.195 

0.176 

0.170 

0.191 

0.173 

0.167 

0.190 

0.172 

0.220 

0.248 

0.227 

0.220 

0.248 

0.228 

0.214 

0.244 

0.223 

0.214 

0.244 

0.224 
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Table 4.  The energy densities [au·bohr-3] at Lagrange point Lagrangerr  for highest 

occupied Molecular Orbitals. The core means sum of energy densities at 

Lagrangerr  of core MO's. The valance electrons orbitals: σ - is sigma bonding 

MO, σ* - sigma antibonding MO, π – degenerated pi bonding MO. 
MO N2 C2H2 P2 

π (HOMO) -0.3174 -0.1440 -0.0320 

π (HOMO) -0.3174 -0.1440 -0.0320 

 σ -0.5567 -0.2632 -0.0955 

 σ* -0.0022 -0.0013 -0.0061 

 σ -0.8912 -0.3849 -0.0929 

core -0.0050 -0.0038 -0.0017 

 

Figure 1.  The bond lines and Lagrange point Lagrangerr ; a) the eigenvectors of principal 

stress constitute the bond lines, b) the cancellation of tension defines Lagrange 

point (situated on a bond line), c) the eigenvectors of principal stress tensor 

arranged in bond lines in H2 molecule, and d) tension cancellation in between 

atoms. 
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Figure 2.  Comparison of MO theory bond orders (b=(n-n*)/2) – doted line. with εb  

(circles) and µb  (squares). The molecules are ordered according to the 

increasing largest eigenvalue of stress tensor at Lagrange point. 

 
 

Figure 3.  Correlation of εb  (squares) and ε∆b  (strokes) with standard bond energies 

[kJ·mol-1] taken from literature [19] (doted line). The ε∆b  has been 

normalized to level of H2 standard bond energy. The molecules are ordered 

according to the increasing largest eigenvalue of stress tensor at Lagrange point 

(from left to right). 
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Figure 4.  Interaction energy density. Black isosurfaces correspond to zero value of 

interaction energy density. The blue regions mark out the negative interaction 

energy density space ( ) 0S
AB rτε∆ <

r ; in the complement space 0)( >∆ rS
AB

r
τε . 

The diameter of cube is 20 bohr. The atoms represented by green CPKs. [20] 
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Figure 5.  Electron density redistribution change calculated as difference of molecule and 

atoms electron densities. Black isosurfaces correspond to zero value. The red 

regions mark out the regions of increased electron density ( ) 0ABn r∆ >
r ; in the 

complement space 0)( <∆ rnAB
r . The diameter of cube is 20 bohr. The atoms 

represented by green CPKs. [20] 
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Figure 6.  Interaction energy density - noble gases: the blue dots represent the negative 

interaction energy density space; the red dots – positive. The size of dots 

corresponds to the magnitude of energy density. The diameter of cube is 20 

bohr. The atoms represented by black spheres. [19] 

 
Figure 7.  Electron density redistribution change (noble gases) calculated as difference of 

molecule and atoms electron densities. The red dots show increased electron 

density; the blue dots apply to decreased electron density. The size of dots 

corresponds to the magnitude of electron density change. The diameter of cube 

is 20 bohr. The atoms represented by black spheres. [19] 
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CHAPTER 3 

 
Electronic Stress Tensor Description of Chemical Bonds Using Non-classical 

Bond Order Concept.  
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Introduction 

 
Recently an examination of bond order gains much attention regarding studies of multiple 

bonded atoms (especially metals). One has in choice various definitions expressing classical bond 

order concept by quantum mechanical methods usually in terms of density [1,2] and overlap 

matrices [3] or natural resonance theory [4]. The bond order concepts have been reviewed 

recently by Mayer [5]. The original idea traces back to Lewis’s shared electrons and assigning it 

to bonding, nonbonding or antibonding orbitals. However, due to disagreement between the 

experimental and theoretical results with simple Lewis-type structures for multiply bonded metal 

atoms [6,7], the use of non-classically oriented approaches is advised [8]. The delocalized nature 

of electron wavefunctions smeared over molecular orbitals makes the assignment of electron 

pairs to particular bond quite challenging. Besides, these pairs might feel different about different 

elements, thus a bonding pair between two atoms may not be equivalent to a pair between other 

two. New formulation of bond order concept [8] presented here refers to the electronic energy 

rather than to electrons them selves, thus it is more suitable for evaluation of bond strength. Bond 

order was introduced as an indicator of bond stability and essentially refers to bond strength 

relative to single bonds, thus new concept of bond order expressed in terms of electronic energy 

density is formally and naturally better to fulfill this role. Moreover this new indices allow one to 

have a closer look on redistribution of energy over the molecule and its partition between 

particular bonds. 

 

1.1. Theory 

  The Regional DFT (RDFT) method [9-15] has been used for energy density calculations. 

The method allows assigning the electronic energy density associated with the electron density at 

discrete points of real space [16-19]. The sum of regional contributions gives global electronic 

energy E and integration over whole space leads to total energy. The kinetic energy density 

)(rnT
r obtained from energy density partitioning scheme within RDFT [9,20-23] divides space 

into the electronic drop RD and atmosphere RA regions separated by the interface S [10]. In the 

electronic drop region, where 0)( >rnT
r , the electron density is simply accumulated and classical 

motion of electrons is allowed. Contrary, the electron density is dried up and the motion of 
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electron is classically forbidden in the complementary region ( 0)( <rnT
r ) of the electronic 

atmosphere. The boundary S in between RD and RA encloses the molecular region of reactant 

atoms and molecules along the course of the chemical reaction coordinate. The kinetic energy 

density is defined as (Eq.1): 
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where m is mass of electron, )(ri
rψ  is natural orbital and νi is occupation number of )(ri

rψ . The 

kinetic energy density is not positive definite in contrast to conventional positive-semidefinite 

representation [24-29]. The calculations [20-23] have not emphased which representation of 

kinetic energy density is appropriate. The expectation values integrated over whole space are the 

same [20]. However densities are different and the relevant differences are crucial for study of 

chemical systems. The 0)( =rnT
r  defines boundary, within which the intramolecular electric field 

produced by the other electrons does not exceed that of bare nucleus [10], thus the boundary 

defines the turning point for electron. 

The stress tensors are used to describe the internal forces of matter. In molecules it 

characterizes internal distortion of electron density. The local stresses, represented as the force 

acting on a pair of electronic drop regions [10,14] of reactants, have been applied to study the 

chemical reactivity [13]. The electronic stress tensor is derived according to Eq.3: 
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with indices k,l=1,2,3. The electronic stress tensor is second rank tensor given by 3x3 matrix 

(Eq.4) with components defined by Eq.3. 
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)()()( 332211 rrr SSS rrr
ααα τττ ≤≤    (5) 

 

The eigenvalues of the stress tensor compose a set of invariant quantities that are the principal 

stresses. Their direction vectors (eigenvectors) are the principal directions. For surfaces normal to 

principal axes, the stress correspond to pushes (negative) or pulls (positive) perpendicular to the 

surfaces. The very low negative stress regions are associated with atomic core regions, where 

electron density is highly compressed. The covalent bond formation is characterized by a concept 

of spindle structure [14]. It is anticipated when the region, where principal electronic stress is 

positive (tensile stress), along the line of principal axis connecting a pair of the RDs of atoms or 

molecules (with predominant compressive stress). The electronic energy is given by first 

invariant of stress tensor. The half of trace over eigenvalues of stress tensor gives local 

contribution ( )(rrτε ) to potential energy density of electrons (Eq.6).  

)(,)()( 3
2
1 rrdErr S

k

SkkS rrrr
τατ ετε ∫∑ ==     (6) 

It was shown in Ref. 15 that from the viral theorem follows (Eq. 7):  
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which in non-relativistic limit becomes (Eq. 8): 
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thus the integral over the trace of stress tensor density is equal to two times the kinetic energy 

density. The performance of other stress tensors [29-34] was not studied in context of this work 

(but were used to derive electronic pressure) so we can not advocate for any definition. However 

formulation of stress tensor directly translates into body forces that might represent different 

effects associated with charge distribution in molecules. 

The total electronic force density operator is given by Eq.9: 

)(ˆ)(ˆ)(ˆ rLrrF SSS rrrrr
ααα τ +=      (9) 

where )(ˆ rLS rr
α is the Lorentz force density operator and )(ˆ rS rr

ατ is the tension density operator.  

Lorentz force density operator consist the classical form and quantum mechanical exchange 

effects. The tension density operator represents purely quantum mechanical effects. In the 
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stationary state of charged particles the local force vanish, since the tension density (the tension 

of the field) exactly cancels the Lorentz force density (the Lorentz force exerted on the particle) 

at every point of space (Eq.10) [10,12,14,35]. 

0)(ˆ)(ˆ =+ rLr SS rrrr
αατ      (10) 

The Lorentz force density operator is given by Eq. 11, 
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where )(ˆ rLe
rr

 is the electronic Lorentz force density operator and )(ˆ rLa
rr

 is the Lorentz force 

density operator of atomic nucleus a [15]. The tension is given as the divergence of the stress 

tensor density operator (Eq.14): 
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In stationary state between chemically bonded atoms, within electronic drop region, one can 

localize peculiar point (the Lagrange point Lagrangerr ) at which repulsive electronic tension (and 

also the Lorentz force) cancels itself in space thus local tension density is zero. [8] 

 

1.2. Calculation method 

The molecules were optimized at HF/6-311++G** level of theory using Gaussian 03 

program package (G03) [36] unless specified different. The corresponding wave functions were 

used as input for RDFT code for electronic stress tensor and energy density calculations [37]. The 

NBO bond orders were calculated using G03 and Mayer’s bond orders using APOST and 

BORDER programs [38,39]. 
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1.3. The Nature of the Lagrange Point 

Fig.1a shows absolute value of tension force density along interatomic axis in H2 

molecule and in hydrogen atom and Fig.1b shows tension density in the cross-section plane of 

H2. The origin corresponds to the Lagrange point ( Lagrangerr ) of H2 molecule. Lagrange point exists 

in the molecule, between bonded hydrogen atoms, where bond lines (eigenvectors of stress) form 

an envelope connecting atomic centers [8].  It does not appear for single hydrogen atom or 

outside interatomic region of hydrogen molecule. Internal quantum forces are the greater the 

faster probability density is changing in space. At Lagrangerr  internal quantum forces disappear (for 

stationary state). The Lagrange point is an attractor for fluxes, and is observed where density 

builds up (it is observed also at the atomic nuclei position) and the interference pattern forms 

( Lagrangerr  results from intense interference). At Lagrange point net force is zero thus this point 

does not produce any acceleration/deceleration of electrons. It also implies zero energy density 

difference (no electronic “pressure” change) or zero momentum transfer. This is stationary point 

of charge density in interatomic region between bonded atoms.  

Saddle point of electron density distribution does not have to indicate stationary point for 

electrons, since force exerted on particles might be non zero. The Lagrangerr  has mechanical origin 

and is determined by dynamical forces acting on electrons in contrast to bond critical point (BCP) 

of AIM theory [29], which is a topological parameter. Sometimes these two points are equal (for 

bonds in very symmetric molecules), but it is not a rule. In particular cases, when bond critical 

point exists, the Lagrange point was not found, because “body” forces were not balanced (no 

stationary point), like between two hydrogen atoms in the bay region in phenanthrene [40]. 

The RQED Lagrange points in molecules are like Lagrange points in astrophysics (i.e. 

trojan asteroids, or Kordylewski clouds). However instead of gravitation, they are born from 

electromagnetic forces between atomic nuclei and much lighter electrons. The electromagnetic 

fields of two nuclei and electrons combined with orbital angular momentum (corresponding to 

centrifugal force in classical physics) are balanced at Lagrange points, allowing electron density 

to be stationary with respect to atomic nuclei. The reason for existence of Lagrange points in 

molecules is wavefunction interference and interelectron resonance. These features make 

Lagrange point a specific connector between two chemically bonded atoms. The molecular 

properties at this point provide reliable description of bond nature character.  
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Recently introduced bond order indices related to electronic stress tensor [8] are based on 

quantities calculated at Lagrangerr , namely electronic energy density and electronic chemical 

potential [8]. The quantities for particular bond in a molecule are normalized by corresponding 

ones in H2 molecule (as model, single, two-electron bond between two protons), calculated at the 

same level of theory (including method and basis set). The hydrogen molecule was chosen 

because it has no core electrons thus constitutes simplest chemical bond. The bε is the energy 

density bond order (Eq.15): 
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and bµ is the electronic chemical potential bond order (Eq.16): 
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where )(rrε  to )(rn r ratio (of fractions of total electronic energy and total number of electrons) 

gives linear approximation to chemical potential [8] (local version of Parr’s result [41]) at given 

point in space according to Eq.17 and Eq.18. 
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1.4. Atomic stabilization 

The positiveness of the largest eigenvalue of stress is an indicator of covalent interaction 

between atoms when the spindle structure is formed [14]. The largest eigenvalue is resultant of 

effects along interatomic (principal) axis, while two minor eigenvalues measure effects through 

perpendicular plane. The electron pair sharing cause electron withdrawing effect along 
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interatomic axis, which results in positive stress. However a triple carbon-carbon bond in 

acetylene molecule, without doubt covalent, shows only negative eigenvalues in the interatomic 

region. Such feature might be attributed to atomic stabilization effect. The atomic cores are 

characterized by very low negative (compressive) stresses. At long interatomic distances, such as 

single covalent bond equilibrium distance, the separation of negative core regions is sufficient 

enough and perturbation in the bonding region is meaningless. As two atoms come closer the 

core regions may affect bonding region in significant manner (semi-united atom), finally 

covering up the positive stress coming from covalent interaction, like it has place in case of 

acetylene.  

The two lower eigenvalues (degenerate for single and triple bonds and split for double 

and aromatic bonds) decrease in close to linear manner from single, through double to triple bond 

(Fig.2a). The two lower eigenvalues of double bond are not degenerate due to π symmetry plane. 

The degeneracy of two minor eigenvalues of electronic stress tensor show similar information 

like bond ellipticity defined in AIM theory [29]. Table 1 compares the largest eigenvalue of stress 

at Lagrange point of single, double and triple carbon-carbon bonds for a group of hydrocarbons. 

The largest eigenvalue would change linearly from about +0.06 in single bond to about +0.0 for 

triple bond, if there was no atomic stabilization, because there was no reason for which such 

significant deviation from linear behavior could occur. However the largest eigenvalue of stress 

is negative by about -0.033 which accounts for atomic stabilization. 

The orbital-wise analysis of stress in carbon-carbon single to triple bonds indicates that 

the 3rd molecular orbital (first valence MO) and the 3rd HOMO are responsible for about 70-80% 

of total electronic stress at Lagrange point of carbon-carbon bond in C2Hn=2,4,6 molecules. 

Moreover these two MOs do not change wavefunction phase (no nodal planes) in the interatomic 

region between carbon atoms. The MOs for valence electrons are shown in Fig.3. The largest 

eigenvalues of stress of corresponding orbitals are compared in Fig.2b. The 3rd HOMO 

eigenvalue show almost linear dependence, with small deviation for double bond (due to π 

symmetry), while 3rd MO eigenvalue significantly breaks linearity for triple bonds. The atomic 

stabilization, manifested by negative stress of triple covalent bond, might be attributed to low 

lying valence MOs, in case of C2Hn=2,4,6 molecules the first valence MO. Intuitively one might 

expect that low lying orbitals having strong likeness to core levels should be involved in such 

effects.  
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Results and Discussion 

 
To illustrate how new bond order indices perform, a group of simple organic compounds 

with most common functional groups had been tested. The derivatives of ethane, ethene and 

ethyne had been analyzed and the results compared with Mayer’s [42] and NBO [43-45] bond 

orders. 

Fig.4 (see also Fig. S1 in supporting data) shows correlation of bond orders with bond 

length of C-C bonds. The bε and bµ bond orders correlate very well with bond lengths for single, 

double, triple and aromatic bonds while others have much worse coefficients (Tab.2). In general, 

when all bonds (single to triple) are considered together, the bε and bµ indices again show very 

good correlation, with very similar coefficients, and the Wiberg index (bW) and atom-atom 

overlap NAO bond order (bNAO) coefficients are alike. The Mayer’s and NLMO (bMO) indices do 

not correlate with bond length, and assume negative values in certain cases. Some trends could be 

observed between energy density and NBO bond orders. The bε coincides with the Wiberg index 

and bµ is always lower like atom-atom overlap NAO bond order values (Fig.4). The stress tensor 

rooted indices are usually higher then corresponding NBO bond orders. 

Table 3 compares bond orders of several bonds from C2H5A molecules. In most cases bµ 

assume values similar or very close to NBO or Mayer’s bond orders and to classical values, 

indicating that electron chemical potential of particular bond is proportional to electron density or 

overlap in interatomic region. In few cases (C—F, C—O, N—H, N=O and O—H) the bµ index 

breaks above trend. It suggests that these electron pairs have extra increased or decreased energy 

chemical potential. This index is related to electron chemical potential but also represents relative 

energy per electron at Lagrange point, thus ratio of chemical potentials corresponds to relative 

energy of electron associated with particular bond. The bε values significantly differ from other 

bond orders in many cases. This is because bonding electrons, recognized as electron pairs by 

classically oriented bond orders, bind two atoms with different strength, depending on the 

electronic energy. This index gives a measure of corresponding electronic energy and bond 

strength. The average trend of electron density might be described as increasing with decreasing 

energy. It means that the heavier is bε index the greater is also associated electron density, thus 
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(in correspondence with density or overlap based bond orders) stronger bond or in other words an 

energetically more favorable one.  

Figures S2 and S3 (supporting data) plot new bond order indicators vs. NBO and Mayer’s 

bond orders of various bonds. The Fig S2 (bε vs. bµ) show decent resolution allowing to group 

bonds in classes (depending on bonding elements and effects of neighboring bonds, i.e. bonds in 

ethane derivatives have lower indices than ethane or ethyne). Figures S3 (a) and (b) (bε or bµ vs. 

NBO and Mayer’s) show poor resolution for most bond types, allowing only for rough 

classification. Moreover Mayer’s and NLMO indices seem to introduce a lot of “noise” with 

largely dispersed values. The bµ makes better correlation with all other indices than bε. Both 

indices correlate well with Wiberg and overlap-weighted NAO bond indices. 

 

2.1. Does basis set affect bond orders? 

The dependence of bond order indices against different basis sets implemented in 

Gaussian [36] had been tested. This comparison consists STO-3G minimal basis set, X-YZg, X-

YZWg various split-valence, Pople basis sets, Dunning/Huzinaga valence (D95V) and full 

double-zeta (D95) [46] and Dunning's double- (cc-pVDZ) and triple-zeta (cc-pVTZ) correlation 

consistent basis sets [47,48]. The tested systems as well as reference H2 molecules were 

optimized using particular basis set.  

The bε index of covalent O—H bonds in [H2O]2 complex varies between 2.0 and 2.6 (Fig.5), 

however the range is much narrower (2.35~2.5) for most basis sets and only Dunning/Huzinaga 

D95, D95V and Dunning's correlation consistent double-zeta basis sets contribute to lower limit 

of index. The relevant bond order differences are in some part connected with different 

geometries obtained within particular basis set. One should note that these bond order indices 

correlate well with bond lengths and are sensitive to geometrical parameters of the system and in 

certain cases electronic properties, like atomic charges or spin densities, predicted at particular 

level of theory. However, despite foregoing differences in bond orders, the particular trends 

regarding bond orders i.e. of covalent O—H bonds of hydrogen bond donor and acceptor water 

molecules is well reproduced in all (except STO-3G) basis sets. Fig.5 and Fig.6 show significant 

deviations of results for basis sets having polarization functions only on heavy atoms. The diffuse 

functions do not cause similar problems and its effect is hardly noticeable in this case. Similar 
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trends and tendencies might be observed also for second - chemical potential weighted bond 

order index bµ, however the values for corresponding bonds show much smaller dispersion. 

The bε, bµ and Mayer’s indices show similar stability against different basis sets as shown 

in Tab.4. However, comparing with Mayer’s bond orders of carbon-carbon bonds in C2Hn=2,4,6 

molecules, the bε (and also bµ) is advantageous preserving the ratio of 1:2:3 for single, double and 

triple bonds in all basis sets (Fig.6), which turns out to be weakly conserved by Mayer’s method 

especially in larger basis sets [49]. The NBO bond orders show almost no dependency on applied 

basis set. The Wiberg index and NAO bond order show remarkable stability and preserve very 

similar values within all considered basis sets, the ratio of bond orders is also conserved.  

Concluding, utilization of double-zeta basis sets results in lower bond orders. Although 

there are differences between indices obtained with different basis sets, the trends within 

particular basis set are preserved and the ratios of indices between different multiple bonds are 

conserved. 

 

2.2. Are bε and bµ reproducing horizontal and vertical trends in Periodic Table? 

The Fig.7a-c show bond orders of C—A bond in single substituted ethane, ethene and 

ethyne derivatives, where A was chosen from: CH3, SiH3, GeH3, NH2, PH2, AsH2, OH, SH, SeH, 

F, Cl and Br. For C—A bonds bε index is increasing with group number and decreasing with 

periods. A small exception is made by GeH3 group in ethylgermane of which C—A bε index is 

greater then of bonds to elements from following groups of 4th period, placing its value near that 

of ethylsilane. The difference in bond orders of carbon bonds to elements of the same group but 

successive periods, namely difference in bε of 2nd and 3rd periods is much greater then between 3rd 

and 4th periods. The corresponding trend is stronger in following groups. The bµ index follows 

similar patterns, with exception that bµ bond orders of C—Ge bonds of germane species are 

higher than indices of C—Si bonds in corresponding silanes. This trend is more prominent 

among species with double and triple C to C bonds. This index reflects electronegativities of 

bounded partners (according to revised Pauling scale [50,51]). Such behavior is not surprising 

since electronegativity χ might be defined as the negative of electronic chemical potential (Eq.19) 

[52,53]: 

vN
E







∂
∂

−=−= µχ      (19) 
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It was shown that bond orders express nature of bonded partners and bµ is related to elements 

electronegativities.   

 

2.3. Conjugation and hyperconjugation effects in bond orders representation 

The Tab.5 summarizes trends in bonding between carbon atoms when conjugation or 

hyperconjugation effects are present. One should notice that bε bond orders of single bonds in 

C4Hn species, except terminal single bond in butyne, are higher than in ethane molecule, while 

double and triple bonds indices are lower than in ethene or ethyne molecules respectively. 

Moreover bond orders of multiple bonds in butadiene, butadiyne and vinylacetylene are also 

lower then the values of corresponding bonds in butene or butyne. In the series of hydrocarbons 

the predicted strength of carbon-carbon bonds (carbon-carbon bonds Tab.5) indicated by bε 

decreases in order:  

a) triple bonds:   

leneVinylacetyButadiyneButyneEthyne >>−> 1     (20) 

b) double bonds: 

ButadieneleneVinylacetyButeneEtheneAllene −>>−>> 3,11   (21) 

c) single bonds (middle): 

aneButtwistedEthane
anetBunButeneButyneButadieneleneVinylacetyButadiyne

>
>−>−>−>−>> 113,1

 (22) 

Furthermore the carbon-carbon single bond in s-trans-1,3-butadiene is stronger than in s-cis 

isomer. The above series indicate that conjugative πa→πb* or hyperconjugative πa→σb* donor-

acceptor interactions lead to partial bond equalization strengthening adjacent single bond and 

weakening double and triple bonds, which is consistent with resonance picture and experiment. 

Although bε index (Tab.5) show no significant difference in strengths of double bonds of 1,3-

butadiene isomers, the bµ index (Tab.5) of s-cis isomer is higher then of s-trans. This behavior is 

consistent with natural resonance theory (NRT) bond orders trend for these molecules, which 

indicates 1.939 and 1.950 for double bonds in s-trans and s-cis species respectively [54]. 

Additionally associated conjugative stabilization (s-trans of -15.0 versus s-cis of -12.8 kcal/mol) 

[54], in these molecules correlates with single carbon-carbon bond strength indicated by bε bond 

order. The bε, bµ (Tab.5) and NRT bond orders show good corelation also for allene molecule 

(with NRT bond order of C=C: 1.991) [54]. Greater bond orders of double bonds in allene then in 
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1,3-butadiene molecules does not indicate greater stability of the former molecule, which is the 

matter of reactivity dependent on many factors besides of electronic energy, and comes from 

interatomic contributions of all bonds in molecule, due to delocalized nature of electrons, as well 

as from atomic core regions. Table 6 shows sums of bε indices of 1,3-butadiene isomers, allene 

and propylene molecules. The “total” bond order is greater in more stable species. This is true for 

all bonds taken into account, likewise if only carbon-carbon bonds are summed, indicating the 

carbon chain as main source of stability.  

The energy density and chemical potential derived bond orders are able to distinguish 

relative stability of different geometrical isomers or even conformers. For instance using bµ 

index one can tell which of butane conformers is more stable. The ∆bµ for conformational 

change (Eq.23) is found to be -0.007, which implies that twisted butane molecule is less stable. 

The ∆bµ might be projected to enthalpy change (for reactions and processes with relatively small 

entropy contribution) thus interchange into “twisted” state is predicted to be slightly endothermic. 

007.0104104 """"
−=∆→

− µbHCHC
normaltwistedlikecis

    (23) 

To estimate conjugation in diene and diyne we applied Kistiakowsky [55-58] method 

evaluating poliene stability by stepwise hydrogenation. The numbers over the arrows in reaction 

equations indicate a difference between bµ bond orders of all bonds being broken (reactants) and 

bond orders of bonds being formed (products). 

aneButHButeneHButadienetranss  →+− →+−−− −− 688.0
2

656.0
2 13,1  (24) 

aneButHButyneHButadiyne  →+− →+− −− 236.1
2

182.1
2 2123,1    (25) 

According to the difference of ∆bµ of first and second hydrogenation step, the conjugation 

stabilization should be proportional to 0.032 and 0.054 (or -0.096 if corrected for atomic 

stabilization) for diene and diyne molecules respectively. As can be seen atomic stabilization 

accounts for strengthen of butadiyne bonding by 0.150. However interatomic regions by 

themselves point lack of conjugative stabilization or even destabilization in butadiyne.  

These conclusions might be derived also from series, (Eq.20, 21 and 22) where stronger 

triple bonds of butadiyne than vinylacetylene or stronger double bonds of vinylacetylene than 

1,3-butadiene indicate less partial bond equalization in former molecule and more in the latter, 

thus weaker and stronger conjugation, respectively. However the adjacent single C—C bonds are 

strengthen in contrasting manner suggesting stronger conjugation in butadiyne molecule, yet this 
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is misleading. The very presence of π bonds affects neighboring σ bonds by increasing their 

strengths. One may compare peripheral C—H bonds (and others) in the vincity of carbon-carbon 

σ and π bonds (Fig.8-10). Moreover the π bonds in 1,3-butadiene and vinylacetylene molecules 

are involved in hyperconjugative stabilization with C—H bonds around single C—C bond which 

is competitive to conjugation effects on the latter. 

Similar reasoning can not follow from Mayer’s bond order index, which yields 

unreasonable results of C4 hydrocarbons, like negative bond order of triple bond of 

vinylacetylene (Tab.5). Negative values are attributed to presence of diffuse functions [39], 

which in contrast have no noticeable adverse effect on bε and bµ. 

 

2.4. Orbital-wise contributions 

The molecular orbitals involved in conjugation or hyperconjugation effects were 

recognized by orbital-wise analysis. Table 7 presents orbital-wise contributions to total bond 

orders of carbon-carbon bonds for selected C4 hydrocarbns. The greatest contribution to total 

bond order in s-trans-1,3-butadiene comes from 11th and 13th MOs for C=C and C–C bonds 

respectively. However the 5th and 14th MOs show significant contributions to all three carbon-

carbon bonds and minor contribution to other bonds in molecule. These orbitals span all carbon 

atoms, thus associated electrons should have primary meaning for conjugation stabilization in s-

trans-1,3-butadiene. In the s-cis isomer 10th and 13th MOs have the greatest impact on double and 

single bonds total bond orders, but the 5th and 14th are the ones that play the same role as in s-

trans isomer. The vinylacetylene double, single and triple bonds have highest contributions from 

10th, 7th and 6th MOs respectively. The 5th MO is the only one significantly contributing to all C 

to C bonds. The 12th MO could also be involved in conjugation effect. However its contribution 

to double bond is slightly below average which might mean not too favorable interaction between 

π orbitals (due to greater overlap of π* orbitals). 

 

Conclusions 

 
The current study is an extension to electronic stress tensor representation and analysis 

[8,14,15] of chemical interaction by means of Regional DFT. The stress tensors used to describe 

the internal forces of matter when applied to nano-scale systems, at quantum mechanical level, 



 43

can characterize effects related to internal distortion of electron density in molecules. The half of 

trace over eigenvalues of stress tensor gives local contribution to potential energy density of 

electrons. The very low negative stress regions associated with atomic cores may invoke 

significant perturbation in the bonding region at short interatomic distances. This atomic 

stabilization results from low lying valence MOs having strong likeness to atomic core levels. In 

contrast to similar analysis presented by other researchers [29], based on topological parameters, 

the RDFT defines dynamical point in chemical systems at stationary state. Internal quantum 

forces are the greater the steeper are the electron density changes in space. However at Lagrange 

point internal quantum forces disappear (for stationary state).This point, being an attractor for 

fluxes, is observed where density builds up and the interference pattern forms. The features of 

this stationary point of charge density in interatomic region make it a specific connector between 

two chemically bonded atoms.  

Bond orders presented here refer to bond strength relative to bonds with order of one, and 

are expressed in terms of electronic energy density, thus have natural ability to fulfill this role. 

Moreover this new indices show the redistribution of energy over the molecule and its partition 

between particular bonds. The electrons, recognized as electron pairs by classically oriented bond 

orders, bind two atoms with different strength, depending on the electronic energy. A greater bε 

index, which is measure of this energy, is usually associated with higher electron density, thus (in 

correspondence with density or overlap based bond orders) stronger bond. The bµ index reflects 

very well the electronegativities of bounded partners. The stress tensor rooted bond orders show 

very good correlation with bond lengths. Although stress tensor rooted indices are usually higher 

then corresponding NBO bond orders, it is found that bε bond order correlates with bW while bµ is 

related to bNAO. The indices show small basis set dependence manifesting in differences between 

indices obtained in different basis sets, however the trends within particular basis set are 

preserved. These new measures allow for recognizing relative stabilities of geometrical isomers 

and even conformers. One can obtain reliable and informative description of interaction using 

molecular properties probed at Lagrange point.  

The methods based on local kinetic energy density like AIM [29], ELF [59-62], LOL 

[63,64], analyze the electron density redistribution using )(2 rρ∇ . Despite it has proved to be 

important analytic tool, it is difficult to understand in simple physical terms (see Bader’s 

explanation [29]). The other related methods (temperature of nighness [65], covariance methods 
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[66]) measure local correlation between electrons, thus local probability of electron pairing is 

given. The Pauling described chemical bond between two atoms as result of forces acting 

between them leading to formation of aggregate with sufficient stability [67]. The RQED studies 

the force exerted on electrons, as the intense variable coupled with energy, in terms of stress 

tensor. The methods [59-66] allow recognizing shell structures of atoms, and so is the RQED 

kinetic energy density, on very fundamental level, separating core from valence electron regions. 

The local temperature of nighness [65] is measure of kinetic energy and the stress tensor alike 

gives a measure of kinetic energy density with positive contribution from compressive stress and 

negative contribution of tensile stress, due to negative eigenvalues of metric tensor gij. Most of 

the mentioned methods need suitable reference system to define regions where electrons are 

especially localized. The stress tensor analysis provides such information explicitly from systems 

wavefunction, using tensile stress characterizing covalent interaction or Lagrange point - meta-

stationary point of electron density, without relating to reference systems. 
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Table 1.  Largest eigenvalue of stress at Lagrange point for single, double and triple bonds 

in a group of hydrocarbons. 

 
 Single Double Triple 

Ethane 0.060  ― 
Ethene ― 0.034 ― 
Ethyne ― ― -0.034 
Propane 0.060 ― ― 
Propene 0.061 0.034 ― 
Propyne 0.059 ― -0.033 
s-cis-Butadiene 0.060 0.035 ― 
s-trans-Butadiene 0.059 0.035 ― 
Vinylacetylene 0.058 0.035 -0.032 
1-Buten 0.060 0.034 ― 
 0.061 ― ― 
1-Butyn 0.060 ― -0.032 
 0.059 ― ― 
n-Butan 0.060 ― ― 
Butadiyn 0.054 ― -0.033 

 

Table 2.  The bond order versus bond length correlation coefficients of single, double, triple 

(of C2HnA, where n=1,3,5 and A are different functional groups) and aromatic (of 

phenyl group of C8Hn=6,8,10) C to C bonds. Aberrations: bε, bµ, bNAO, bNLMO, bM, bW 

– energy density, chemical potential, atom-atom overlap weighted NAO, natural 

localized orbital, Mayer’s bond orders and Wiberg’s index respectively. 

 

 
bε bµ bW bNAO bNLMO bM 

C–C -0.9884 -0.9931 -0.0099 -0.6456 -0.2049 -0.6352 

C=C -0.9870 -0.9916 -0.0067 -0.4478  0.0673 -0.4172 

C≡C -0.9103 -0.9699 -0.1342 -0.1040  0.1443 -0.0238 

C- -C -0.9913 -0.9881 -0.9660 -0.8653 -0.1635 -0.0608 

       

In general* -0.9821 -0.9823 -0.9738 -0.9820 -0.8702 -0.6569 
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Table 3.  Stress tensor originated, NBO and Mayer’s bond orders of different bonds in 

C2H5R molecules. The “av” subscript means arithmetical average over 

corresponding bonds of phenyl group. The number in superscript means 

successive hydrogen atom attached to particular heavy atom. The bε, bµ, bNAO, 

bNLMO, bM, bW are energy density, chemical potential, atom-atom overlap weighted 

NAO, natural localized molecular orbital NLMO, Mayer’s bond orders and 

Wiberg’s index respectively. 

Bond  bε bµ bW bNAO bNLMO bM 

As–H1  0.595 0.944 0.973 0.734 0.883 0.987 

As–H2  0.597 0.944 0.975 0.734 1.732 1.003 

C–As  0.442 0.805 0.930 0.744 0.092 1.075 

C–Br  0.457 0.818 0.993 0.721 -1.124 0.846 

C–C (H3C-CH3) 0.964 1.020 1.039 0.873 -0.712 0.815 

C–C (av) (-C6H5) 1.612 1.326 1.426 1.165 0.488 1.555 

C–Cl  0.636 0.922 0.992 0.729 -1.091 0.903 

C–F  1.711 1.523 0.809 0.644 0.602 0.939 

C–Ge  0.457 0.853 0.846 0.749 0.231 1.018 

C–H C2H6 1.180 1.106 0.958 0.809 -0.029 0.994 

C–H (av) (-C6H5) 1.220 1.107 0.937 0.809 0.686 0.900 

C≡N (-CN) 4.879 2.378 2.918 1.985 0.736 2.689 

C–N (C2H5-NH2) 1.316 1.192 1.002 0.841 0.460 0.943 

C–N (C2H5-NO2) 1.216 1.142 0.870 0.739 -0.341 0.673 

C=O (-CHO) 4.075 2.099 1.847 1.355 1.856 2.015 

C=O (-COOH) 4.115 2.102 1.729 1.378 0.424 1.979 

C–O (C2H5-OH) 1.670 1.393 0.916 0.763 0.436 0.969 

C–O (-COOH) 2.297 1.594 1.001 0.906 0.832 1.146 

C–P  0.566 0.850 0.948 0.769 0.324 0.521 

C–S  0.603 0.873 1.010 0.782 -1.075 0.555 

C–Se  0.449 0.802 0.992 0.750 0.133 1.001 

C–Si  0.520 0.847 0.820 0.773 0.259 0.839 

Ge–H1  0.536 0.950 0.936 0.769 0.778 0.952 
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Table 3. Continued. 

Bond  bε bµ bW bNAO bNLMO bM 

Ge–H2  0.536 0.950 0.936 0.769 -0.511 0.952 

Ge–H3  0.537 0.950 0.939 0.769 1.616 0.961 

N–H (-NH2) 1.843 1.346 0.876 0.755 0.557 0.972 

N–O1 (-NO2) 4.516 2.107 1.543 1.176 0.822 1.783 

N–O2 (-NO2) 4.533 2.109 1.556 1.179 -1.002 1.875 

O–H (-OH) 2.706 1.631 0.784 0.698 1.501 0.931 

O–H (-COOH) 2.628 1.601 0.748 0.660 1.368 0.899 

P–H1  0.712 0.953 0.977 0.740 0.810 0.986 

P–H2  0.714 0.954 0.979 0.741 1.744 0.947 

Se–H  0.699 0.985 0.989 0.736 1.593 0.970 

S–H  0.895 1.034 0.982 0.753 0.367 0.941 

Si–H1  0.564 0.898 0.927 0.768 0.724 0.960 

Si–H2  0.564 0.898 0.927 0.768 -0.488 0.960 

Si–H3  0.565 0.899 0.930 0.770 1.653 0.958 

 

Table 4.  Comparison of bond orders variation in STO-3G, 6-31G # and 6-311G # basis sets 

( # with diffuse and polarization functions added or removed):  

 Average Maximum Difference  

 bM bε bµ bM bε bµ 

C≡C 3.843 4.358 2.785 1.544 1.422 0.708 

C=C 2.181 2.662 1.998 0.299 0.926 0.566 

C–C 0.933 1.229 1.330 0.310 0.423 0.432 
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Table 5.  The stress tensor rooted bond orders bε, bµ and Mayer’s bond order bM of C—C 

bonds of C2Hm and C4Hn species (m = 2, 4,6 and n = 2,4,6,8,10). 

 bε   bµ   bM  
Molecule 

C1-C2 C2-C3 C3-C4 C1-C2 C2-C3 C3-C4 C1-C2 C2-C3 C3-C4

CH3–CH3 0.962 ― ― 1.020 ― ― 0.815 ― ― 

CH2=CH2 2.066 ― ― 1.530 ― ― 1.968 ― ― 

HC≡CH 3.362 ― ― 2.110 ― ― 3.798 ― ― 

CH2=C=CH2 2.203 2.203 ― 1.608 1.608 ― 1.805 1.805 ― 

CH3–CH2–CH2–CH3 0.965 0.967 0.965 1.018 1.016 1.018 0.714 0.892 0.714 

CH3–CH2–CH=CH2 0.971 1.015 2.065 1.020 1.035 1.530 0.739 0.716 1.854 

CH3–CH2–C≡CH 0.953 1.127 3.321 1.013 1.101 2.105 0.718 1.396 -1.168

CH2=CH–CH=CH2  

(s-cis) 
2.036 1.129 2.036 1.517 1.089 1.517 2.000 1.104 2.000 

CH2=CH–CH=CH2  

(s-trans) 
2.036 1.188 2.036 1.515 1.116 1.515 1.744 1.148 1.744 

CH2=CH–C≡CH 2.044 1.254 3.311 1.520 1.156 2.098 1.493 1.627 -1.644

HC≡C–C≡CH 3.317 1.456 3.317 2.099 1.255 2.100 2.837 1.526 2.837 

 

Table 6.  The total bε bond order of hydrocarbon isomers. 

Molecule 
∑bε 

(all bonds) 

∑bε 

(C-C bonds)

s-cis-1,3-butadiene 12.490 5.201 

s-trans-1,3-butadiene 12.515 5.260 

allene 9.188 4.407 

propyne 9.283 4.462 
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Table 7.  Orbital-wise contributions to bε bond order. 

MO s-cis-1,3-butadien  s-trans-1,3-butadien  vinylacetylene 

 C=C C-C C=C  C=C C-C C=C  C=C C-C C≡C 

1st 0.000 -0.002 0.000  0.000 -0.003 0.000  0.001 0.001 0.000 

2nd 0.000 0.003 0.000  0.000 0.004 0.000  0.003 0.000 0.000 

3rd 0.002 0.000 0.002  0.002 0.000 0.002  0.000 0.001 -0.009 

4th 0.002 0.000 0.002  0.002 0.000 0.002  0.000 0.000 0.023 

5th 0.232 0.130 0.232  0.223 0.147 0.223  0.347 0.170 0.252 

6th 0.335 0.003 0.335  0.342 0.009 0.342  0.209 0.003 1.074 

7th 0.032 0.219 0.032  0.027 0.236 0.027  0.030 0.335 0.140 

8th 0.080 0.005 0.080  0.043 0.026 0.043  0.060 0.040 0.227 

9th 0.093 0.139 0.093  0.323 0.050 0.323  0.110 0.217 0.415 

10th 0.452 0.139 0.452  0.127 0.165 0.127  0.880 0.157 0.110 

11th 0.235 0.001 0.235  0.551 0.075 0.551  0.014 0.187 0.076 

12th 0.221 0.004 0.221  0.069 0.020 0.069  0.135 0.117 0.245 

13th 0.030 0.386 0.030  0.003 0.352 0.003  0.060 0.025 0.499 

14th 0.147 0.102 0.147  0.146 0.108 0.146  0.194 0.001 0.259 

15th 0.178 0.000 0.178  0.177 0.000 0.177  — — — 

            

∑ 2.036 1.129 2.036  2.036 1.188 2.036  2.044 1.254 3.311 

Average 0.136 0.075 0.136  0.136 0.079 0.136  0.146 0.090 0.236 

 

 

 

 

 

 

 

 

 

 



 52

Figure 1.  Tension density [Hatree/bohr3]. The origin corresponds to Lagrange point position 

in H2 molecule; distance in [Å]:  

a) tension density in H2 molecule and in H atom along interatomic axis (z-axis), 

and for perpendicular directions (y-axis) going through Lagrange point ( Lagranger ) 

and through points at R1 and R2 outside interatomic region of H2 at distance of 

half of the H—H bond length (y-axis*), 

 
b) tension density in H2 molecule, the cross-section plane through hydrogen 

atoms.   
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Figure 2.  The eigenvalues of stress: 

a) change of eigenvalues of stress with bond order, 

 
b) Largest eigenvalue of stress for two valence molecular orbitals. 
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Figure 3.  The valence electrons molecular orbitals of ethane (A1-E1), ethane (A2-E2) and 

ethyne (A3-E3). The “A” is the 3rd MO (first valence MO) and “E” is HOMO. The 

“A” and “C” MOs give 70-80% of total stress of carbon-carbon bond Lagrange 

point. The E3 and D3 MOs have the same symmetry and are perpendicular to each 

other.  
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Figure 4.  The correlation of carbon-carbon bond order indices with bond length for group of 

organic compounds (C2HnA - with different functional groups). The stress rooted 

bond orders bε and bµ are blue and pink dots, NBO bond orders: Wiberg's indexes 

(yellow dot), atom-atom overlap NAO bond order (blue ring) and NLMO bond 

orders (brown ring), and Mayer’s bond order is represented by green rings. 
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Figure 5.  Basis set dependence of bε and bµ bond orders of the O—H bonds for two water 

molecules connected by hydrogen bond.  
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Figure 6.  Basis set dependence of bε, bµ and Mayer’s bond orders, the C to C bonds of 

C2Hn=2,4,6.  

a) single bond 

 
b) double bond 

 
c) triple bond. 
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Figure 7.  The periodic trends of bond orders for C—A bonds in C2HnAHm (where n=1,3,5, 

and A is chosen from: C to F, Si to Cl, Ge to Br atoms, with m=3,2,1,0 

respectively). 

a) ethane substitutions, b) ethene substitutions,  

c) ethyne substitutions.  
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Figure 8.  The electronic stress tensor rooted bond orders of bonds in C2H5A molecules (A is 

H, CH3, CHO, COOH, CN, C6H5, SiH3, GeH3, NH2, NO2, PH2, AsH2, OH, SH, 

SeH, F, Cl, Br). 

a) energy density based bond order bε, Wiberg index in parenthesis, 
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b) electronic chemical potential based bond order bµ, overlap-weighted NAO bond 

order in parenthesis. 
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Figure 9.  The electronic stress tensor rooted bond orders of bonds in C2H3A molecules (A is 

H, CH3, CHO, COOH, CN, C6H5, SiH3, GeH3, NH2, NO2, PH2, AsH2, OH, SH, 

SeH, F, Cl, Br). 

a) energy density based bond order bε, Wiberg index in parenthesis, 
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b) electronic chemical potential based bond order bµ, overlap-weighted NAO bond 

order in parenthesis. 
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Figure 10.  The electronic stress tensor rooted bond orders of bonds in C2HA molecules (A is 

H, CH3, CHO, COOH, CN, C6H5, SiH3, GeH3, NH2, NO2, PH2, AsH2, OH, SH, 

SeH, F, Cl, Br). 

a) energy density based bond order bε, Wiberg index in parenthesis, 
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b) electronic chemical potential based bond order bµ, overlap-weighted NAO bond 

order in parenthesis. 
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CHAPTER 4 

 
 On reversible bonding of H2 molecules on Pt-clusters. 
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Introduction 

 
The hydrogen is expected to substitute the fossil fuel and to be cost-effective, 

renewable, and clean alternative energy source. Yet the mass production and storage of 

hydrogen turn out to be essential problem. The technical targets of these tasks were specified 

by the U.S. Department of Energy (DOE) [1]. Thus far utilized methods and materials can not 

sufficiently fulfill the expectations [1-4]. The classes of new materials are studied [4-10] 

however their properties, although promising, are still not in the target zone. The 

characterization of nature and strength of hydrogen interaction with promising materials is 

fundamental for successful development of satisfactory novel applicable technologies. 

 Among variety of tested materials metal clusters attract particular attention. The 

hydrides are long known as one of the stabilizing ligands of metal clusters. Some features of 

these “macro atoms”, like: high surface area to volume ratio, their electronic structures, high 

density of edges, corners and other reactive centers, leading to the greatly improved catalytic 

activity and aggressive chemical reactivity, makes them potentially important in hydrogen 

economy. 

 The simple way of understanding the properties of solid matter, especially concerning 

the irregularities of structure, is to study the clusters containing increasing number of atoms. 

These nano-dimensional materials are intermediate state between molecules and a bulk solid 

and they may share properties of both resulting in very peculiar physical and chemical 

properties compared to macro-scale. The dominant role is played by effects related to the 

quantization of energy for the electrons in solids with great reductions in particle size. 

 The properties of transition metals, particularly platinum possessing high resistance to 

chemical attack, excellent high-temperature characteristics, and stable electrical properties 

makes it desirable in industrial applications. Moreover the platinum is important catalyst in 

hydrogenation and dehydrogenation reactions. However its application in fuel cell implies 

additional restrictions regarding the amount of platinum required (and thus cost). Even though 

the study of Pt-materials is important, providing understanding of hydrogen chemistry, thus 

will contribute to development of cheaper, yet effective materials. 

 

 

 

 



 67

Theory 

 
The energy density at macroscopic level can be used to express energy stored in 

capacitor (for electric field) or energy stored in inductor (for magnetic fields). The field 

energy (energy density) in chemical systems at atomic or molecular level is related to 

electromagnetic waves. The electromagnetic waves are associated with both the electric and 

magnetic fields that play a role in the transport of energy. The corresponding energy density, 

of the electromagnetic field, might be obtained within Regional DFT (RDFT) method [11-17] 

as the invariance of electronic stress tensor due to non-relativistic limit of RQED energy 

density [12,15].  

 The electronic stress tensor (Eq.1, k,l=1,2,3) [12,16] that reflects internal distortion of 

electron density and the intensity of total internal forces within a molecule (which results in 

relevant flow of electric charge through particular region), in local picture allows to study the 

chemical reactivity [15,18]. The electronic stress tensor, as second rank tensor is given by 3x3 

matrix (Eq.1). 
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The principal stresses characterize compressive (negative) and tensile (positive) tendencies of 

charge density in space. The atomic core regions are associated with highly compressive 

stresses while tensile stress, present in a form of “spindle structure” [16] of interatomic region, 

indicates covalent bond. The local contribution to electronic energy ( )(rrτε  , Eq.4) is given by 

half of the trace over the eigenvalues of electronic stress tensor [14]. 
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 The energy density partitioning scheme [11,19-22] utilized in RDFT leads to three 

related energy components, derived from the same density matrix. The total energy density is 

decomposed into the external potential and the interelectron potential energy densities and the 

kinetic energy density. The former plays particularly important role in the characterization of 

space of chemical systems. The relevant kinetic energy density ( )(rnT
r

, Eq.5, m is mass of 

electron, )(ri
rψ  is natural orbital and νi is occupation number of )(ri

rψ ) is non-positively 

defined, and sub-sections the real space of chemical moieties into electronic drop (RD:   

0)( >rnT
r

) and atmosphere (RA:   0)( <rnT
r

) regions separated by interface surface (S:   

0)( =rnT
r

) [12]. 
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The S surface of  )(rnT
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 (defining the turning point for electrons) encloses the molecular 

regions of reactants and defines the boundaries of separate chemical species, since in the RA 

region the classical movement of electrons is denied. 

 Under the linear approximation the ratio of local energy density and corresponding 

electron density (understood as very small regional contributions to total values ( NE ∂∂ / )) 

gives the electronic chemical potential at particular point in space [23].  
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The electronic chemical potential represents the effective potential experienced by associated 

electron density. The chemical potential also measures the tendency of particles to diffuse (a 

function of spatial location). Particles diffuse from regions with high chemical potential to 

regions with low chemical potential. This makes the gradient of chemical potential en 

effective electric field. The electron density is stationary where gradient of chemical potential 

is zero (all forces are balanced).  

 The total electronic force (Eq.8), defined within RDFT, is composed of Lorentz force 

and tension force [12,14,16,24]. For stationary state of charged particles total force becomes 

zero, thus tension is balanced by Lorentz force at every point in space. The eigenvalue of 

tension force density operator, given as the divergence of the stress tensor density operator 
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(Eq.9), at stationary state, between chemically bonded atoms, can locally vanish at the 

Lagrange point [23]. 
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This peculiar stationary point of charge density in interatomic region provides reliable 

characteristics of bond properties 18,23. The non-classical bond order measures 23 were 

based on electronic properties calculated at Lagrange point. The bε - the energy density bond 

order (Eq.10), and bµ – chemical potential bond order (Eq.11) were introduced: 
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which are the respective quantities at Lagrange point of particular bond relatively to H2 

molecule as reference value calculated at the same level of theory. 

 The hybrid variational-perturbational interaction energy decomposition scheme [25] 

with counterpoise correction [26] was applied to obtain the MP2 interaction energy 

components (Eq.12), where )1(
ELE∆  is electrostatic  energy,  )1(

EXE∆  stays for exchange energy 

arising from overlap of charge distributions and Pauli exclusion principle, )(R
DELE∆  is 

delocalization component associated with relaxation of electronic clouds upon interaction and    

CORRE∆  is the second-order correlation energy.  The sum of successive components gives 

interaction energy at gradually increasing levels of theory. 
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 The two-body interaction energy density [23] calculated as a difference of energy 

densities of dimmer (AB) and monomers (A and B, without relaxation) in dimmer centered 

basis set (Eq.13): 

))()(()()( rrrr BAABAB
rrrr εεεε +−=∆      (13) 

shows regions where electronic energy becomes lower due to interaction, thus attractive and 

repulsive trends of charge density between atoms of considered system are visualized. 

 

Calculation Methods 

 
Recently reported hydrogenated Pt-clusters [27] were further studied here using RDFT 

method [11-17]. The structures were reoptimized by Gaussian03 [28] calculations employing 

the generalized gradient approximation of exchange-correlation energy with Wang and 

Perdew [29] (PW91PW91) parameterization in standard 6-31G** basis set for hydrogen 

atoms and LanL2DZ [30] 18-electron effective core potential for Pt atoms. Although the 

double precision numerical (DNP) basis set corresponds to Gaussian 6-31G** basis set [31-

34] obtained structures were essentially different in particular cases. The RMS of atoms 

positions of initial [27] and G03 reoptimized structures are shown in Table 1. These 

differences in geometries (predominantly related to H atoms) result from the presence of 

polarization functions on H atoms, since optimalization using D95/LanL2DZ or                      

6-31G/LanL2DZ (H/Pt atoms respectively) lead to almost identical geometry like initial 

structures [27]. The 6-31G** basis set was employed, due to the inclusion of polarization 

functions in basis sets is important for calculating the equilibrium geometries [35] particularly 

when studying processes involving hypervalent molecules, 3c/2e interactions, σ-complexes 

and agostic interactions [36-38]. Moreover the difference in geometries might be related to 

small energetical barriers between local minima structures owning to very low activation 

energies for H2 chemisorption [28]. The vibrational frequencies were calculated to confirm 

obtaining of true minimum structures. The energy density calculations were done with RDFT 

program package [39] using electron wavefunctions from Gaussian calculations. The 

visualizations of molecular structures and energy density isosurfaces were done using PyMol 

[40] and VMD [41] programs. 
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Results and Discussion 

 
The electronic properties of Pt-clusters under full saturation are now discussed. We 

will focus on G03 structures since all properties (except presence of σ-bonded dihydrogen 

species) are shared also by initial structures [27]. 

 

Bond Order Analysis 

 The RQED bond orders show redistribution/dissipation of energy in a molecule and 

indicate bond strength in terms of energy density associated with stationary point of electron 

density between atoms. The relevant point is the highest energy density tangential point 

between atoms, since starting from Lagrange point, the energy density gets lower while 

moving through ward a nucleus. Figure 1 (and Fig. S1) shows relation between bond orders 

and bond lengths. The bonds in range about 1.5~2.5Å correspond to Pt—H bonds, while those 

above this range to Pt—Pt bonds and those around 0.8Å to H—H bonds. The bond types can 

be easily recognized from bε(r) or bµ(r) dependency. Moreover bµ allows to distinguish 

between terminal two-center (2c) bonds and multicentre (>2c, like 3c/2e), electron deficient 

Pt—H bonds. The smooth trend changes around R=1.9Å because gradient of bµ for 

multicentre bonds is greater than for two-center bonds.  The terminal Pt—H bonds have the 

greatest average strength and the most effective electric potential (measured by bµ). The bε and 

bµ bond orders correlate very well with interatomic distance. The coefficients for bε and bµ 

bond orders are similar or better than those of Wiberg index (bW) and NAO overlap weighted 

bond orders (bNAO), for Pt—H (bε: -0.96, bµ: -0.98, bW: -0.93, bNAO: -0.96) and Pt—Pt (bε: -

0.98, bµ: -0.97, bW: -0.55, bNAO: -0.64) bonds. 

 Figure 2 presents average bond orders dependency on cluster size. The Pt—Pt bonds 

average strength is decreasing with increasing cluster size and hydrogen loading. In general, 

bigger clusters also have weaker terminal Pt—H bonds, however the bε bond   order exhibits a 

slightly   increasing tendency in clusters Pt5 to Pt9. The Pt—H 3c/2e bonds are stronger in 

larger clusters. The bond order indices of adsorbed H2 molecules in Pt2H10, Pt2H12 and Pt5H20 

clusters are lower than in isolated H2 molecule (by definition 1.0), thus corresponding bond 

strength as well as associated chemical potential are weaker. Figure 3 shows optimized 

structures, bonding pattern and bond orders in Pt-clusters. The tables listing all bonds bond 

orders, as well as structures with atoms numbering can be found in supplementary data (Tab. 

S1 and Fig. S2). 
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 The bridge, tri-fold and four-fold bonding of hydrogen atoms might be explained in 

terms of bond orders and NBO analysis [42,43]. The structure, bε bond orders and atoms 

identifiers of Pt3H12 cluster are shown on Fig.4. According to NBO analysis the 3c/2e 

bridging H atom is bonded via donor-acceptor interaction between hydrogen’s (H(11))           

s-orbital and σPtH* antibonds (of terminal Pt(2)—H(7) and Pt(3)—H(4) bonds, with sH→σPtH* 

95.5 kcal•mol-1 and 134.4 kcal•mol-1 of NBO second-order perturbation theory stabilization 

respectively). Simultaneously the backward interaction comes from σPtH orbitals with leading 

stabilizations, from σPtH backdonation to s-orbital of bridging hydrogen, of 15.2 kcal·mol-1 

and 24.6 kcal·mol-1 respectively. In accord with estimated stabilizations the Pt(3)—H(11) bond 

strength (measured by bε) is higher than that of Pt(2)—H(11) and Pt(3)—H(4) strength is lower 

than  of Pt(2)—H(7) bond. Similarly the tri-fold bonded hydrogen atoms are stabilized by two 

way (sH→σPtH* and σPtH→sH) interactions, where H(6) is stabilized by 72.8 (Pt(1)—H(8)), 59.3 

(Pt(3)—H(10)) and 49.3 (Pt(2)—H(5)) kcal•mol-1 through sH→σPtH* donation, and 14.6 (Pt(3)—

H(10)), 13.8 (Pt(1)—H(8)) and 9.0 (Pt(2)—H(5)) kcal•mol-1 through σPtH→sH backdonation, 

while  H(15)  is  stabilized  by  79.7  (Pt(1)—H(9)),  73.8  (Pt(3)—H(14)) and 24.8 (Pt(2)—

H(12)) kcal•mol-1 through sH→σPtH*, and 16.5 (Pt(3)—H(14)), 14.7 (Pt(1)—H(9)) and 3.6 

(Pt(2)—H(12)) kcal•mol-1 through σPtH→sH interaction. Relevant stabilizations are reflected by 

bε that shows the lowest  strengths for Pt(2)—H(6) and Pt(2)—H(15) bonds and the highest of 

Pt(2)—H(5) and Pt(2)—H(12). It was previously shown that hydrogen is capable to form 

multicentre bonds in solids [44-48]. In Pt8H30 cluster an atypical “four-fold” bonded H atom 

(four Largange points related to the Pt—H bonds) has been found. Such high coordination 

numbers for hydrogen are rare but have been reported for clusters [48]. The similar sH→σPtH* 

stabilizing interactions were determined (with major stabilizations [kcal·mol-1]: 75.5 

Pt(4)H(37), 60.7 Pt(8)H(25), 21.9 Pt(5)H(20) and almost equivalent contributions of 8.8 

Pt(1)H(26) and 8.0 Pt(1)H(17) antibonds). However major back donations occurred from σPtH 

bonds (62.6 kcal·mol-1 Pt(4)H(37), 39.1 kcal·mol-1 Pt(8)H(25)), but also from Pt lone pairs 

(21.4 kcal·mol-1 Pt(5), 15.5 kcal·mol-1 Pt(1)). The bε shows strongest bonding through Pt(4)—

H(38)—Pt(8) centers associated donor-acceptor cooperative interactions, indicating that 

involvement of σPtH* and σPtH  orbitals (for retrodative stabilization) results in stronger 

bonding of H atom than engaging σPtH* and Pt lone pair. Recently it was shown that the 

antibonding orbitals on metal centers are sensed by hydrogen atom as they were non-bonding 
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[49]. The calculated stretching frequencies of Pt—H(38) bonds (994.9 cm-1 ~ 1306.7 cm-1) are 

lower than those of two centre Pt—H bonds (~2100 cm-1). 

 

The RQED Energy Density and MO analysis 

Figure 5 presents chemical potential (µ) mapped on interface surface of kinetic energy 

density around Pt-clusters. The regions of higher chemical potential around hydrogen atoms 

are associated with reduced electron density. However there also appear electron density 

deficient regions with lower chemical potential near surface exposed Pt atoms. These regions 

occur only in small clusters (up to five Pt atoms) and were not found on the interface surface 

of larger clusters. 

 The Pt—H bonds are characterized by presence of spindle structure, which indicates 

covalent interaction (the largest eigenvalue of stress is shown in Fig. S3, the corresponding 

eigenvector has been omitted for sake of clarity).  The regions of lower electronic chemical 

potential on interface surface in proximity of Pt atoms coincide with non-spindle structure 

arisen tensile stress regions, as result of strong electric potential of poorly shielded Pt nucleus 

(marking strengthen acceptor properties of σPtH* of trans Pt—H bond and lone pair donating  

property). The electronic chemical potential is the effective potential experienced by electrons. 

The low µ means poor shielding and strong electric potential of nucleus. Therefore regions of 

low electronic chemical potential are “electrophilic” centres (where the electronic energy is 

very favourable). Contrary regions of higher chemical potential can be recognized as 

“nucleophilic”, relatively to other parts of the molecule that will favour deflection of electron 

density to neighbouring regions with lower µ.  

 We had looked closer to these spots, of lower chemical potential, in Pt2Hn=8,10,12 

clusters and found that these are reactive regions, able to stabilize H2 molecule ligands via 

synergistic, σ-bond interactions. However, due to its nature (as discussed below), these also 

can be the electrophilic centres responsible for poisoning of Pt that can be corroded by 

cyanides, halogens, sulphur, and caustic alkalis. Under low saturation a H2 coordination leads 

to H—H bond breaking and formation of H—Pt—H hydrides, which is in tact with one of the 

possible reaction pathways of H2 side-on cleavage on Pt [27,50]. Supported further by 

chemical potential redistribution on bare Pt-clusters, where on-top binding sites on Pt show 

moderate lower chemical potential (figures in supporting data, Fig.S4) associated with low 

electron density and tensile stress resulting from withdrawing of electronic charge from lone 

pairs. However upon high saturation, H2 molecules symmetrically bind to Pt-clusters and 

remain dimmerized. Figure 6 compares properties of Pt2Hn=8,10,12 clusters. The H2 
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coordination or insertion depends on the relative strengths of Pt—H and H—H bonds. The 

dihydrogen ligand bε bond order is higher than any geminal or vicinal Pt—H bond, while bµ 

index is similar to that of 3c/2e Pt—H—Pt bridging bonds. After H2 coordination on Pt the 

non-spindle structure tensile stress diminishes and only residual positive stresses remain 

between Pt and dihydrogen’s H atoms (a pro-spindle structure). Simultaneously electronic 

chemical potential on interface surface around Pt—H2 becomes high. Due to similarity of 

chemical potentials of electrons the concerning Pt—Pt bonds are likely to be inserted with 

bridging hydrogen. 

 The H—H ligand bond lengths ( ~0.81Å ) are found to be slightly elongated relative to 

“free” H2. Pt—H2 distances are long (~1.92 Å) relative to Pt—H terminal (~1.58 Å) and 

bridging (~1.86 Å) bonds, however are in typical range (1.8 - 2.3 Å) for a σ-complex 

interactions [45,46]. The calculated interaction energy (Table 2) also agrees with estimated 

usual stabilization of 10-20 kcal•mol-1 [51,53-55]. The HOMO-LUMO separation energies, 

listed in Table 3, show that from Pt2H8 to Pt2H12 reactivity of the cluster is decreasing as H2 

occupies low µ sites and the relevant MO energy gap increases.  

 The orbital-wise analysis provided information on the MOs with the greatest 

contribution to bε bond order of H—H bond. The shapes of these orbitals are presented in 

Figure 7, they indicate interaction of d-type orbitals of Pt and σ-bond of H2. In all cases 

relatively low energy valence electrons molecular orbitals are involved in coordination of H2 

ligand. The natural bond order analysis of Pt2H12 showed lowered occupancy (1.84696e) of 

H2 σ-bond and synergistic donation into the in-plane Pt—H σ* antibond orbital (yielding 52.4 

kcal·mol-1 of stabilization estimated from NBO second-order perturbation theory). The 

delocalization results in slight elongation of Pt—H bond trans to dihydrogen (1.53Å vs. 

1.51Å in Pt2H8).  Back donation occurs from d Pt lone pair to σHH* antibond (8.4 kcal·mol-1 

stabilization). The bε bond order shows that relevant Pt—H bond has significantly decreased 

strength comparing to corresponding bond in Pt2H8 (or to “free” trans Pt—H bond on second 

Pt atom in Pt2H10). However binding H2 at both sites strengthens the Pt—H as well as H—H 

bonds, associated with limited σ-donation and backdonation. The calculated interaction 

energy density (Fig. 8) shows lowering of energy (stabilization due to compression) in Pt—H2 

and trans Pt—H bonding regions and raise (destabilization due to expansion) in Pt lone pair 

orbital, connected with migration of electron density to electron deficient, but higher µ region 

in the process of backdonation. The differences in interaction energies (Tab.2) of H2 ligand 

with Pt-cluster illustrate the important role of backdonation in σ-complex stabilization, where 

reduced backdonation results in less favourable interaction energy. The decomposition of 
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MP2 interaction energy unravelled the exchange energy as leading term being about twice 

time greater than electrostatic or delocalization terms, there is also significant contribution 

from correlation component, which might be attributed to the rearrangements of charge 

density on Pt atoms. It is evident that both H—H bond breaking and stabilization of σ-bond 

complex requires sharing electrons with vacant orbital associated with Pt centre as well as at 

least small backbonding [51].  

 In case of Pt2H12 (but applies also to other clusters) molecular-H2 complex of metal 

hydride and Pt2H8(H2)2 notation seems to be more proper. Besides Pt2H8(H2)n=1,2 the 

Pt4H16(H2) and Pt5H18(H2)n=1,2 clusters were obtained (data not included), where (H2) denotes 

σ-bond complex of dihydrogen ligand. These σ-complexes were formed at sites on Pt atoms 

with Pt—H bond in trans position to H2 ligand and exhibiting the lowest chemical potential. 

The H2 molecules at sites with trans Pt—Pt bond, with a little higher µ were found to be 

physisorbed. The synergistic (cooperative) H2 coordination described here shows remarkable 

similar principles to Dewar-Chatt-Duncanson model for olefin coordination [51]. The 

calculated lowering of H—H vibrational frequencies (3484~3570 cm-1 vs. 4386 cm-1 in 

isolated H2) correlate with experimental [56] and theoretical findings [57] for such complexes. 

The intramolecular H—H stretching frequencies are smaller than those of physisorbed H2 

(~4200 cm-1 in Pt4H20 or Pt5H24). Such sigma-bonded Pt—H2 complexes (or Kubas 

interactions [51]), are desirable for fast kinetics, due to intermediate binding energies between 

physisorption and chemisorption. 

 

Conclusions 

 
 Reversible bonding of H2 molecules in similar fashion like O2 to heme group is 

desirable for hydrogen storing/operating materials. The primary advantage of such interaction 

is that each species can exist stable independently thus association and dissociation energy 

barriers are quite low [27]. The σ-electron pair binds H2 ligand to Pt by dative occupation of 

vacant metal orbital [51]. The σ-complex has to be stabilized by backdonation, which results 

in stronger interaction than physisorbtion or hydrogen bonding. The H2 is found to be strong 

π-acceptor, thus σ-complex might easily transform into hydride. Shearing only σ-electron pair 

can not cause breaking of H—H bond, it is the accompanying overpopulation of dihydride σ* 

orbital that leads to cleavage of hydrogen molecule [51] due to the strengthening of the Pt—H 

interaction. The unique feature of H2 is that it has just one σ-bonding electron pair, thus σ-
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bond complex strongly activates dihydrogen, which binds symmetrically, always side-on to 

the metal. The trans ligand has great influence on Pt—H2 binding nature and strength, 

particularly a hydride ligand weakness the interaction comparing to Pt specie in trans ligand 

position. 

 The corresponding interactions are well known and described in literature [38,51] 

particularly as a part of catalytic hydrogenation cycle. We were able to visualize the reactive 

regions of Pt-clusters using electronic chemical potential calculated by RDFT method. 

Regions of low electronic chemical potential were recognized as “electrophilic” centers 

characterized by electron withdrawing tensile stress. Through screen of chemical potential of 

other materials it is possible to quickly determine species able to reversible binding of 

molecular hydrogen with moderate strengths. Covalent binding of H atoms to Pt significantly 

lowered electronic chemical potential in trans position to Pt—H bond. The relevant regions 

appeared only in small clusters. The σ-bonding of H2 stabilizes both Pt—H2 and trans-Pt—H 

bond. In large clusters surface Pt atoms do not expose to the molecular surface a vacant 

orbitals with sufficiently low chemical potential to constitute stable σ-bond complex with H2 

due to Pt atom occupies trans ligand position. We anticipate that bulk Pt materials are not able 

to stabilize the σ-complex. Additionally bε and bµ bond orders picture energetical 

characteristic of bonding electrons. The Pt—Pt bonds average strength decrease with 

increasing cluster size and occupancy with hydrogen, the bigger clusters also have weaker 

terminal Pt—H bonds and stronger 3c/2e interactions. The dihydrogen ligand H—H bond bε 

bond order was higher than any geminal or vicinal Pt—H bond, while bµ index was similar to 

that of 3c/2e Pt—H—Pt bridge bonds. The similarity of µ for Pt—Pt and H—H bonds 

encourage H atoms to occupy the bridging position. Involvement of σPtH* and σPtH orbitals in 

donor-acceptor interactions lead to stronger bonding than engaging σPtH* and Pt lone pair. 

 

Electronic Supplementary Information available: Fig.S1. Change of energy density (bε) 

and chemical potential (bµ) bond orders with bond length. The NBO bond orders are also 

shown for reference. The structures of (a) were optimized in Gaussian03 and of (b) in Dmol3 

[27] program packages (details in text).; Fig.S2. Structures, atoms numbering and bonding 

pattern in Pt-clusters.; Fig.S3. The largest eigenvalue of electronic stress tensor.; Fig.S4. 

Chemical potential on interface surface of bare Pt-clusters.; Fig.S5. The valence molecular 

orbitals of Pt2H8, Pt2H10 and Pt2H12 clusters.; Table S1. Lagrange point data (Gaussina03: 

PW91PW91/6-31G**,LanL2DZ optimized structures). 
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Table 1.  The RMS of atoms positions of Dmol3 [27] and Gaussian03 optimized 

hydrogenated platinum clusters. 

Cluster Pt atoms 
RMS 

H atoms 
RMS 

All atoms 
RMS 

Pt2H10 0.024 0.628 0.584 
Pt3H12 0.010 0.098 0.089 
Pt4H16 0.020 0.095 0.086 
Pt5H20 0.041 0.258 0.236 
Pt7H28 0.120 0.245 0.226 
Pt8H30 0.039 0.076 0.071 
Pt9H34 0.097 0.193 0.178 

 

Table 2.  The PW91 interaction energy (∆E) of Pt2Hn-2 with synergistically interacting 

H2 molecule. 

Cluster ∆E [kcal/mol] ∆Ecc [kcal/mol] a

Pt2H10 -15.49 -14.36 
Pt2H12 -13.81 -12.58 

a the counterpoise corrected interaction energy [26] 

 

Table 3.  The HOMO-LUMO orbital energies and energy gap of hydrogenated platinum 

clusters. 

Cluster HOMOE   
[eV] 

LUMOE   
[eV] 

LUMOHOMO−∆
[eV] 

Pt2H 8 -7.2899 -4.1797 3.1103 
Pt2H10 -7.2382 -3.5973 3.6382 
Pt2H12 -7.1430 -3.0069 4.1361 
Pt3H12 -7.3906 -4.3321 3.0586 
Pt4H16 -7.1321 -4.8246 2.3075 
Pt5H20 -6.7131 -3.9565 2.7565 
Pt7H28 -6.7457 -4.5987 2.1470 
Pt8H30 -5.8069 -4.2504 1.5538 
Pt9H34 -6.2396 -4.4599 1.7769 
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Figure 1.  Change of energy density (bε) and chemical potential (bµ) bond orders with 

bond length. The NBO bond orders are also shown for reference. 

 
Figure 2.  The average bond orders of (a) Pt—Pt bonds (bε and bµ) and (b) Pt—H bonds 

(bε only) with increasing cluster size. In case of 3c/2e bridging Pt(1)—H—

Pt(2) bonds the bε indices of Pt(1)—H and Pt(2)—H bonds were first summed 

and the average of “total” is shown; similarly for tri-fold bonding hydrogen the 

average of sum of bond orders of the three Pt—H bonds is presented. 
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Figure 3.  The bond orders (bε – left and bµ – right) of bonds with Lagrange point. The 

color of bond corresponds to the bond order according to scale. Pt atoms are 

represented as grey spheres and H atoms are in white. 

 
 

Figure 4.  The bε bond order and atoms numbering in Pt3H12 cluster. 
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Figure 5.  Electronic chemical potential mapped on zero kinetic energy density isosurface. 

 
 

Figure 6.  Electronic properties of Pt2Hn=8,10,12 clusters. Electronic chemical potential, 

stress tensor and bε and bµ bond orders. 
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Figure 7.  Molecular orbitals with the greatest contribution to H—H bond order. The 

orbital number and energy is followed by percentage contribution to  H—H bε. 

First row show MOs from Pt2H10, second row - Pt2H12, last row - Pt5H20 (all the 

valence MOs available in supporting data). 
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Figure 8.  The interaction energy density of Pt2H8 and H2 in Pt2H10 cluster (Pt2H8(H2)), 

Pt2H10 and H2 in Pt2H12 cluster (Pt2H10(H2)) and Pt2H8 and two H2 in Pt2H12 

cluster (Pt2H8(H2)2). 
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CHAPTER 5 

 
The physical nature of intermolecular interactions within cAMP-dependent 

protein kinase active site: differential transition state stabilization in 

phosphoryl transfer reaction. 
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Introduction 

 
The remarkable enhancement of reaction rates resulting from enzymes action has been 

a matter of the utmost interest for over a century. Both fundamental and practical importance 

of unraveling the principal driving force in enzymatic catalysis has fuelled a long-standing 

debate about the origin of enzyme proficiency [1].  While several proposals have been 

recently put forward including desolvation, ground-state destabilization and dynamic effects 

[2], it has been argued that what really contributes to the activation barrier lowering is the 

preferential transition state binding relative to reactants [3,4].  In other words, the impact of 

an enzyme environment consists in its improved complementarity toward the transition state 

which is bound more tightly than the substrates. Therefore, understanding of the catalytic 

abilities of enzymes could be accomplished by careful examination of the forces exerted by an 

enzyme active site on the species appearing along a reaction coordinate. Determination of 

active site residues playing crucial role in a particular reaction provides a useful insight into 

the molecular mechanism of catalysis. The latter could finally be complemented by detailed 

analysis of the actual physical nature of noncovalent interactions present in the active site. 

This can be accomplished within Differential Transition State Stabilization, (DTSS) [5-7] 

approach using variation-perturbation partitioning of the intermolecular interaction energies 

[8] based on first principles of quantum mechanics. 

Since the electronic and structural changes observed along a reaction path between 

reactants and the transition state specify the corresponding differential stabilization required 

for a given reaction, the knowledge of the former should in principle allow for the design of a 

complementary environment enhancing catalytic activity. Whenever the electrostatic effects 

are dominant, activation barrier lowering could be approximated by the sum of products of 

differential electrostatic potential exhibited by transition state compared to reactants and 

fractional charges of molecular environment. [5] In other words, considering exclusively the 

aforementioned differential electrostatic characteristics of a transition state/reactants system 

allows for the straightforward prediction of an influence of a unit charge occupying a specific 

position on the height of an activation energy barrier. These so called catalytic fields [5-7] 

have already proven to be a useful tool for the qualitative analysis of an active site (in terms 

of its evolution-driven complementarity) with a potential to be employed in a catalyst design. 

Recent spectacular advances in computational de novo design of enzymes [9] reflect urgent 

need for effective and reliable methods of rational design of biocatalysts employing critical 
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information contained solely in transition state structures. Possibly, such techniques could be 

augmented by catalytic fields approach [5-7]. 

Due to their participation in protein phosphorylation and the resulting involvement in 

cell signaling as well as metabolic regulation, protein kinases have received much attention 

from the scientific community [10]. Among the most extensively studied is cAMP-dependent 

protein kinase (PKA) with its catalytic subunit structure and mechanism serving as a 

prototype for the entire family of eukaryotic protein kinases [11]. PKA-catalyzed process 

encompasses the transfer of γ-phosphate from ATP to the specific serine residue located on 

the substrate peptide. Despite numerous experimental [12] and theoretical [13-22] studies, no 

agreement has been reached regarding all details of PKA catalytic machinery. In particular, 

the involvement of several highly conserved active site residues (e.g., Asp166, Lys168) along 

with the functional relevance of magnesium ions has remained unclear. While divalent metal 

ions are generally thought of as facilitating the phosphorylation processes [23], the 

mechanism of their participation appears to be complex and, possibly, varying between 

different metal sites.  

X-ray crystallographic data display the presence of two magnesium ions within PKA 

active site. It has been known, that at least one magnesium ion is essential for PKA action. 

This metal ion occupies a high affinity metal binding site and chelates the β-, γ-phosphates of 

ATP as well as Asp184 residues. At high magnesium concentration also the low affinity site 

is filled with the second Mg2+ bridging α-, γ-phosphates and Asp184, Asn171 residues. As 

shown experimentally, PKA activity decreases with an increasing occupation of the secondary 

metal site [24]. Accordingly, this particular magnesium ion is termed inhibitory. However, at 

the limited ATP concentration, the reaction rate is actually accelerated owing to increased 

ATP binding affinity [10].  

Another unresolved issue is the PKA phosphorylation mechanism itself, i.e. the 

presence and identity of a residue serving as a catalytic base. While many studies suggest that 

no general-base catalyst is required for the phosphoryl transfer process [13-15,17] other 

contradict this hypothesis proposing the involvement of Asp166 residue in deprotonation of a 

hydroxyl group of serine residue prior to its phosphorylation [18,19,25,26]. Moreover, direct 

Asp166 participation in the general-base catalysis has been supported by the latest high-level 

computational results [20-22], while the earlier proposals neglecting Asp166 involvement 

have been put forward based on semiempirical QM (or QM/MM) models [13-15]. Whether 

this particular residue contributes any more effects to PKA catalytic rate enhancement has yet 

to be determined.  
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Since the function of the remaining conserved residues has not been unequivocally 

ascertained, this work aims at revealing the actual role of PKA active site components in the 

observed catalytic activity. In particular, the activation barrier lowering resulting from the 

presence of a given residue will be investigated based on the PKA mechanism and structures 

demonstrated in Ref. 20. As suggested by classical calculation of the interactions occurring in 

enzyme-substrate and enzyme-transition state complexes, PKA active site provides 

stabilization of the transition state [20]. In what follows, these preliminary results will be 

extended by non-empirical decomposition of interaction energy providing a comprehensive 

evaluation of the physical nature of catalysis along with the possible involvement of 

individual active site residues. The overall picture of an enzyme catalytic mechanism could 

aid prediction of the impact of enzyme mutations on the enzymatic activity. 

 

Computational methods 

 
Sequence and structure alignment 

The search for similar protein structures was conducted with FATCAT [27] database 

searching method based on flexible alignment model. The reactant state of QM/MM-

optimized PKA structure [20] was used as a query against SCOP (version 1.73, 90% non-

redundant set of 14155 structures) and PDB (June 2007, 90% non-redundant set of 16500 

structures) structural databases. Multiple structures of the same protein (if sharing the same 

source organism) as well as mutant enzymes were excluded from comparison. The structures 

with statistically meaningful (P-value < 4.5·10-8) structural similarity between spatially 

superimposed active site residues were selected. The aligned sequences were manually 

corrected according to spatial correspondence of individual residues. The final set of protein 

structures was refitted to obtain the best superimposition of active site residues. Visualization 

of sequence alignments and structural superimposition was performed by means of ClustalW 

[28] and PyMOL [29], respectively. 

 

DTSS components and catalytic fields 

Activation energy lowering ∆ representing catalytic activity of a molecular 

environment could be alternatively expressed as the difference of transition state ∆ETS.C and 

substrate ∆ESC.C interaction energies with active site constituents, C [5-7]: 

CSCCTS EE .. ∆−∆=∆           (1) 
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Differential Transition State Stabilization (DTSS) ∆ could be further partitioned into 

electrostatic ∆EL, exchange ∆EX, delocalization ∆DEL and correlation ∆CORR components 

defined within hybrid  variation-perturbation interaction energy decomposition [8]: 
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Results of the analysis of the physical nature of catalytic activity for chorismate 

mutase [6] and 4-methyl-5-β-hydroxyethylthiazole kinase [7] as well as other model systems 

indicate dominant role of electrostatic term ∆EL, which could be further approximated by the 

sum of products of differential molecular electrostatic potentials Vi
TS – Vi

SC and atomic 

charges qi, representing a molecular environment. This allows to derive static catalytic field 

∆s i.e. general characteristics of the optimal catalytic environment by mapping ∆s  = - (Vi
TS – 

Vi
SC) values on electronic isodensity surface. Extremal values of catalytic field determined 

solely as the difference of molecular electrostatic potentials of superimposed transition state 

and substrates coincided with the locations of conserved aminoacid residues in aminoacyl t-

RNA synthetases [30] and chorismate mutases [6] confirming assumed enzyme reaction 

mechanism. 

 

 Regional DFT electronic chemical potential  

The boundaries of chemical species within Regional Density Functional Theory (R-

DFT) [31] are represented by the electrons turning point region recognized as isosurface of 

zero kinetic energy density [32]. The R-DFT kinetic energy density ( )(rnT
r ) divides the 

reactants space into the electronic drop region (RD, 0)( >rnT
r ) limited by interface surface (S, 

0)( =rnT
r ), where electron density is accumulated, and the electronic atmosphere region (RA, 

0)( <rnT
r ), where classical movement of electrons is not allowed [32]. Within the linear 
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approximation [33] the regional electronic chemical potential is defined for non-relativistic 

limit of RQED energy density as: 
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where   is electron density and   is the corresponding local energy density at particular point of 

space. The details of relevant method are described elsewhere [31-33]. 

 

Details of calculation  

The structures of PKA-bound substrate and transition state were extracted from 

previous density functional theory QM/MM simulation [20]. The model complexes used for 

interaction energy calculation were then simplified to include PKA residues in a close vicinity 

of the reaction site (Figure 1). As the adenosine part of ATP does not change its position and 

geometry throughout the phosphoryl transfer, ATP molecule was represented by methyl 

triphosphate only. Similarly, the substrate peptide was limited to serine residue. Whenever 

justified by significant distance to the substrate/transition state complex, the backbone of 

selected residues was also removed leaving the respective side chains capped with Cα atoms. 

Such a treatment was applied to Val44, Lys72, Gln84, Glu91, Lys168, Asn171, and Phe187 

residues. All dangling bonds were saturated with hydrogen atoms optimized at HF/6-31G(d) 

level of theory. The positively charged lysine and negatively charged aspartate and glutamate 

residues were considered. The model included also several conserved water molecules [34] 

(Wat410, Wat412, Wat447, Wat459, Wat476, Wat477, Wat597, Wat635) as observed in 

1ATP PDB structure, and two water molecules from QM/MM calculation [20] (WatSOL1 and 

WatSOL2) without any crystallographic counterparts. The first crystallographic information 

about coordination of the two Mg2+ ions has been provided by Zheng et al. [35]. The crystal 

structures showed metal ions octahedrally coordinated by six oxygen atoms [35,36]. 

Magnesium ion occupying the high-affinity Mg1 site is surrounded by β- and γ-phosphates of 

ATP, two oxygen atoms from Asp184 carboxylate group, and two water molecules (WAT447, 

WAT477). Magnesium ion from the secondary metal site, Mg2, is coordinated by the α- and 

γ-phosphates, the bridging oxygen located between β- and γ-phosphates, one oxygen atom of 

Asp184, the side chain carbonyl oxygen of Asn171, and water molecule WAT635. Binding 

energy was determined in a pairwise fashion encompassing two-body interactions occurring 
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in dimers composed of substrate/transition state and an individual component of PKA active 

site. Interaction energy decomposition was performed with 6-31G(d) basis set using a 

modified version of GAMESS code [37]  The MP2/6-31G(d) electron density and 

electrostatic potentials required for catalytic fields were obtained with Gaussian03 package 

[38]. All graphics presented herein was prepared by means of PyMOL [29] and VMD [40] 

software. 

 

Results and Discussion 

 
Sequence and structure alignment 

The flexible structure alignment [27] (Figure 2) and the corresponding sequence 

alignment of serine/threonine and tyrosine kinases (Figure 3) was employed to emphasize the 

agreement between conserved active site residues and the most catalytically active residues as 

indicated by DTSS and catalytic fields. Noticeably, all the highly conserved active site 

residues are charged or at least polar species. Lys72 and Asp166 (according to PKA 

enumeration) are absolutely conserved in both sequence motifs (Figure 3) and rotamers 

(Figure 2) in all presented kinases. Although also highly conserved, Lys168 and Asn171 have 

no fixed sequence position or residue type, i.e. Lys168 is often replaced with arginine (Figure 

2b) that in case of some members of tyrosine kinases family might be present even two 

positions further along the sequence (Figure 3). 

 

Catalytic activity of active site components 

In order to determine the possible catalytic role of key active site residues, DTSS 

energy was calculated for particular residues interacting with transition state/substrate 

complex and further decomposed to reveal the physical nature of DTSS effects. The catalytic 

contribution of a given residue can be expressed as its ability to lower the activation energy 

barrier by stronger interaction with transition state in comparison to reactants, i.e. differential 

transition state stabilization. Accordingly, the presence of such a catalytically active residue 

results in the reaction rate enhancement and promotes catalysis. Considering partitioning of 

the system into transition state/substrates and a remaining environment, magnesium ions were 

arbitrarily assigned to the latter. 

Table 1 and Figure 4 provide the catalytic activity of individual active site components 

in terms of their DTSS energy values calculated at different levels of theory. The residues are 
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arranged according to decreasing contribution to activation barrier lowering as indicated by 

the increasing values of DTSS energy. Noticeably, the entire PKA active site provides as 

much as -51.39 kcal/mol of total differential transition state stabilization (Table 1). 

Apart from magnesium ions, the most pronounced catalytic effects seem to be 

exhibited by absolutely conserved Lys72 and Asp166 residues (∆MP2=-22.71 and –13.26 

kcal/mol, respectively; see Table 1). Lys72 interacting with α- and β-phosphates (Figure 1) 

has been postulated to facilitate the phosphorylation process without affecting the binding of 

ATP [10]. Owing to 844-fold decrease in kcat and essentially retained ATP binding properties, 

alanine-substituted mutants seem to be deficient in ATP transition state binding [41]. In 

excellent agreement with these experimental results, Lys72 appears to participate in a 

catalytic step by outstanding preferential stabilization of the transition state (Figure 4). 

Another strictly conserved active site residue, Glu91, is located behind Lys72 (relative to 

ATP-serine complex). Instead of being involved in direct contact with any of the substrates, it 

forms a conserved salt-bridge with Lys72 residue (Figure 1). According to DTSS results, the 

presence of Glu91 results in a moderate transition state destabilization characterized by 

∆MP2=4.96 kcal/mol (Table 1). Presumably, the function of Glu91 consists in a proper 

positioning of the flexible Lys72 side chain to maximize its favorable interaction with ATP 

phosphate tail. Relatively large catalytic advantage resulting from the presence of Lys72 

cancels destabilizing influence of Glu91 residue. 

As confirmed by the results presented in Ref. 20, Asp166 residue serves as a catalytic 

base that accepts substrate peptide proton during the phosphorylation process. However, the 

proton transfer step occurs after the transition state which still encompasses deprotonated 

Asp166 carboxylate and neutral hydroxyl moiety of substrate serine. Therefore, to reveal its 

possible role in DTSS effects, this particular residue was treated as a part of a catalytic 

environment. Significant negative value of Asp166 DTSS energy (∆MP2=-13.26 kcal/mol, 

Table 1) indicates, that its additional function might indeed consist in preferential stabilization 

of the transition state. 

Both magnesium ions are among the most catalytically effective components of PKA 

active site (Figure 4). Their contribution to DTSS effects is equal to –32.36 (Mg2) and –15.15 

kcal/mol (Mg1; Table 1). Interestingly, magnesium ion occupying the so called inhibitory site, 

i.e. Mg2, is capable of a greater transition state stabilization than Mg1 located at a high 

affinity metal binding site. Nonetheless, these results are consistent with preliminary 

interaction energy analysis from Ref. 20,  as well as the results obtained for thiazole kinase 

[7]. In contrast to magnesium ions themselves, their ligands appear to contribute little if any to 
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overall transition state stabilization. The most pronounced inhibitory effects result from the 

presence of Asp184 and Wat447 belonging to Mg1 coordination sphere. These particular 

residues destabilize the transition state by 3.06 and 2.21 kcal/mol (Table 1). Noteworthily, 

mutagenesis results show that Asp184 residue is essential for the catalytic function of PKA as 

yeast cells with Asp184Ala mutation are inviable [41]. Presumably, Asp184 role encompasses 

the chelation of Mg1 and the lack of the latter is the main reason for impaired PKA action. 

Considering the overall impact of individual magnesium-ligands complexes, the sum of DTSS 

energy values associated with a given magnesium ion and its coordination sphere (i.e. Asp184, 

Wat447, and Wat477 or Asn171, and Wat635 for Mg1 and Mg2, respectively) indicates 

similar influence in terms of transition state stabilization to that exhibited by magnesium ions 

treated separately. In particular, DTSS energy of Mg1 and Mg2 ions in complexes with their 

ligands is equal to –10.98 and –33.09 kcal/mol, respectively. It seems that catalytic benefits 

resulting from the presence of magnesium ions make it worthwhile to employ residues that 

anchor a magnesium ion even if they exhibit moderate inhibitory effects. 

The glycine-rich loop encompassing residues 47-57 constitutes a highly conserved 

motif within a kinase catalytic core. Owing to its extended “U” shape spatially aligned with 

ATP triphosphate tail, glycine-rich loop is capable of tightly enfolding the nucleotide by 

means of both hydrogen bonding and hydrophobic interactions. Accordingly, its primary 

function appears to involve the positioning of γ-phosphate of ATP for subsequent phosphoryl 

transfer step [12]. Since mutagenesis studies have revealed no major changes in PKA catalytic 

competency upon the mutation within this particular region [42,43],   it is not clear whether 

PKA benefits any transition state stabilization due to the presence of glycine-rich loop. Out of 

the six glycine-rich loop residues present in our model (see Figure 1), only Ser53 exhibits a 

certain degree of transition state destabilization (∆MP2=4.72 kcal/mol). This particular residue 

interacts via its backbone amide hydrogen with γ-phosphate. As shown experimentally [43],  

it is the presence of a backbone interaction that matters most: side chain modifications do not 

significantly alter the catalytic features of PKA. Presumably, the role of Ser53 is essentially 

structural as it involves the optimal positioning of a terminal phosphate group. The catalytic 

activity of the remaining glycine-rich loop residues is moderate with the most prominent 

transition state stabilization coming from Gly55 residue (∆MP2=-4.09 kcal/mol). It is 

noteworthy, however, that the collective influence of Thr51, Gly52, Ser53, Phe54, Gly55, and 

Val57 residues encompasses ∆MP2 of –6.20 kcal/mol, indicating relatively large contribution 

to the lowering of activation energy barrier. 
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Lys168 residue being an important component of a catalytic loop has been suggested 

to support both the phosphoryl transfer process and peptide binding [10]. Apparently, this 

residue is not directly involved in the phosphorylation reaction [20], yet the presence of 

hydrogen bonding interactions between its side chain and both the γ-phosphate as well as the 

hydroxyl group from substrate serine implies its possible contribution to the catalytic process. 

Surprisingly enough, the most obvious role consisting in transition state stabilization provided 

by Lys168 side chain charged oppositely to the reactants is not an issue here, as Lys168 has 

been found to strongly destabilize the transition state (Table 1 and Figure 4). This result is 

consistent with interaction energy analysis presented in Ref. 20 and further supports the 

conclusion stated therein (based on the results of molecular dynamics simulation) that the 

primary role of Lys168 is to keep the reactants in geometry of the catalytically competent 

complex. Further discussion of the possible role of Lys168 is given in the next subsection. 

The remaining components of PKA active site do not seem to provide an appreciable 

degree of transition state stabilization or destabilization. Except of water molecule designated 

as WatSOL1 and Thr201 residue, the absolute contribution of the other residues to the 

lowering of activation energy barrier does not exceed 1 kcal/mol. WatSOL1 molecule located 

in the proximity of Lys72 is hydrogen-bonded to α-phosphate. Similarly to Lys72 residue, 

WatSOL1 seems to promote catalysis providing ∆MP2=-1.81 kcal/mol of transition state 

stabilization. Since no counterpart of WatSOL1 has been found in PKA X-ray structure, this 

result should probably be considered as a suggestion that the presence of a water molecule in 

this particular position would be favorable for catalysis. Thr201 anchors both Asp166 and 

Lys168 via hydrogen bonds to their side chains. While it has been suggested that such a 

location of Thr201 residue might imply its involvement in a proton shuttle between Asp166 

and Lys168 [12], it has not yet been confirmed. According to DTSS analysis, Thr201 role 

encompasses additional activation barrier lowering of -1.13 kcal/mol. 

In addition to total DTSS contributions to PKA catalytic activity, this analysis aimed 

at determination of the physical nature of active site interactions. Therefore, binding energy 

was partitioned into the components with clear physical sense as defined within the 

variational-perturbational decomposition scheme [8]. Noticeably, such a description of the 

interactions provides also a convenient way to assess the most suitable level of theory. Since 

subsequent constituents of interaction energy define a hierarchy of theoretical models 

differing in both accuracy and computational cost, rational design and validation of 

approximate models of catalytic activity can be accomplished. The overall quality of 

consecutive levels of theory applied in analysis of the interactions can be assessed by their 
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comparison to the most accurate description provided by MP2 calculations. The results of 

such a comparison encompassing the respective correlation coefficients are presented in Table 

1. Only minor decrease in correlation accompanies neglect of subsequent interaction energy 

corrections. In particular, electron correlation effects appear to be insignificant as the 

correlation coefficient of SCF results is still equal to 1. Similarly, correlation coefficients of 

0.98 and 0.99 indicate minor contribution of delocalization and exchange components. As it 

can be seen from Figure 4, these two terms tend to cancel each other resulting in a relatively 

correct description provided by electrostatic energy. Apparently, electrostatic effects play a 

dominant role in the system under study supporting the general hypothesis about electrostatic 

origin of enzymatic catalysis [44]. 

 

Predicting of the optimal catalytic environment 

The fact that PKA active site interactions are mainly electrostatic in nature supports 

further approximation encompassing the study of differential electrostatic potential generated 

by transition state relative to reactants. Since the characteristic of a catalyst is inherently 

related to the reaction subjected to catalysis, it is appealing to derive the optimal catalytic 

environment entirely from the knowledge of transition and reactant state structures. 

Implementation of this idea in the form of catalytic fields allows for de novo prediction of the 

molecular environment that would be the most catalytically active. Alternatively, the 

comparison of catalytic fields with known catalyst (e.g., enzyme) might aid its redesign 

toward novel substrate and/or reaction type. Noticeably, catalytic fields-based prediction of 

the effect of a particular amino acid substitution proved to be successful in case of thiazole 

kinase [7]. 

Catalytic fields for PKA-catalyzed phosphoryl transfer reaction are presented in Figure 

5. In an excellent agreement with the predicted optimal arrangement of charged moieties are 

the Asp166 and Lys72 residues as well as both magnesium ions. Similarly to the DTSS results, 

Lys168 seems to disfavor catalysis as it is present in a region, where the negative charge is 

expected to be optimal.  Nevertheless, Lys168 (or its equivalent arginine) is a highly 

conserved residue indicating that catalytic machinery of kinases employs its flexible, 

positively charged side chain. The possible structural role of Lys168 [20] has already been 

discussed. Another inconsistency between catalytic field predictions and the electrostatic 

characteristics of PKA active site appears to involve Asp184 residue. Since this particular 

residue anchors the mandatory magnesium ion, it does not probably affect the catalytic 

activity as the negative charge of its side chain is screened by the magnesium ion.  
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Figure 6 shows map of regional electronic chemical potential on the interface surface 

of isolated TS structure. The regions of lower (red) and higher (blue) chemical potential 

represent the individual local escaping tendency of charge density around TS atoms. Electrons 

migrate from regions with higher µ to regions with lower µ. The positive charge of Lys168 

attracts electron density of hydrogen bonded γ-phosphate and substrate serine hydroxyl 

oxygen atoms to less favorable regions with higher chemical potential. Apparently, the 

unfavorable influence of positive charge of Lys168 as indicated by catalytic fields and DTSS 

analysis arises from the fact that electrostatic interaction acts against the gradient of specific 

local electronic chemical potential displayed by isolated TS. The interaction of other active 

site residues with TS might induce such polarization of charge density on phosphate oxygen 

atoms which will drain electrons into the regions with lower chemical potential providing 

thermodynamical stabilization. The binding sites (on phosphate tail) for Mg2+ ions display 

lower chemical potential towards metal atoms position and the same observation can be made 

regarding the interaction between alpha-phosphate oxygen atom and Lys72 residue. The 

relatively high µ around serine hydroxyl group proton is associated with significantly electron 

deficient region thus electrostatic interaction with Asp168 is physically and 

thermodynamically favorable. It should be noted that in contrast to phosphorus and hydrogen, 

oxygen atoms display high electron density on the interface surface. The usual trend of 

electronic energy density is to decrease with increasing electron density. However phosphate 

oxygen atoms show high µ in electron rich regions which indicates unfavorable electronic 

energy in that region. All active site residues, except for Lys168, seem to help to rearrange 

electron distribution in TS so it flows to lower µ regions.  

Despite of adverse catalytic effect of Lys168 residue, it plays significant role in 

binding of the reactants and keeping them in close contact conformation. The positioning of a 

gamma-phosphate is critical for catalysis. Lys168 is the catalytic loop residue that interacts 

directly with one of the gamma-phosphate oxygen atoms before and after the phosphoryl 

transfer [45-49] and is located in a close proximity of hydroxyl group of substrate serine 

(Figure 1). Mutagenesis studies show the complete loss of catalytic activity of K168A mutant 

[47] and molecular dynamics simulations performed on wild type and K168A mutant [20] 

have suggest structural role in the catalytic mechanism. However Lys168 is a major source of 

TS destabilization in the active site. When considering the local chemical potential on TS, it is 

not surprising that presence of magnesium cations on phosphate tail can suppress that 

unfavorable effect by 10 kcal·mol-1. It has been proposed that Lys168 makes nucleophilic 
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attack easier by neutralization of the negative charges developing in the course of catalysis 

and mainly orients the transferred phosphate [47], which is consistent with our findings.  

 

Conclusions 

 
The phosphoryl transfer reaction catalyzed by protein kinase A has been analyzed in 

terms of the ability of individual active site components to preferentially stabilize the 

transition state. Further decomposition of DTSS energy has allowed for elucidation of the 

major interaction energy components influencing the catalytic activity of PKA. Finally, 

catalytic fields have been derived and compared to the catalytic surroundings provided by 

PKA. The main findings can be summarized as follows: 

- The overall differential transition state stabilization exhibited by PKA active site model 

exceeds -50 kcal/mol as calculated at MP2 level of theory. 

- Identity of PKA residues exhibiting outstanding catalytic or inhibitory effects matches their 

sequence and structure conservation. Destabilization of the transition state resulting from the 

presence of a particular residue suggests a structural role of the latter. Another likely 

explanation involves the pairwise fashion of interaction energy calculation that entirely 

neglects any possible many-body contributions. 

- PKA active site components with the most significant contribution to differential transition 

state stabilization include both magnesium ions as well as Lys72 and Asp166 residues. While 

several magnesium ligands have been found to destabilize the transition state, the total 

influence of individual complexes involving a magnesium ion along with its coordination 

sphere is always stabilizing. 

- Despite moderate inhibitory effects due to the presence of Ser53 residue, the total DTSS 

energy of residues building the glycine-rich loop is negative confirming its involvement in 

transition state stabilization. 

- While Lys168 residue appears to provide a certain degree of transition state destabilization, 

its function probably involves an optimal spatial alignment of the reactants. 

- Due to the minor role of electron correlation and mutual cancellation of delocalization and 

exchange effects, interaction energy within PKA active site is mainly electrostatic in nature. 

- The comparison between spatial arrangement of PKA active site components and the 

catalytic fields representing the electrostatic characteristics of an ideal catalyst provides a 



 98

qualitative measure of complementarity of both charge distributions achieved in an 

evolutionary way. 
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Table 1.  Differential transition state stabilization (DTSS) energy (kcal/mol) at various 

levels of theory. 

Active-Site 
Residue ∆EL ∆HL ∆SCF ∆MP2 

Mg2 -28.57 -29.42 -37.20 -32.36 
Lys72 -21.83 -16.38 -22.50 -22.71 
Mg1 -13.88 -13.12 -16.70 -15.15 
Asp166 -19.80 -11.01 -16.02 -13.26 
Gly55 -3.64 -1.62 -4.16 -4.07 
Thr51 -2.14 -1.82 -2.72 -2.42 
Gly52 -1.05 -0.19 -2.66 -2.21 
WatSOL1 -2.42 -0.39 -1.95 -1.81 
Phe54 -0.91 1.80 -2.1 -1.68 
Asn171 -0.69 0.92 -0.58 -1.35 
Thr201 -1.82 -2.20 -1.22 -1.13 
Wat477 -1.34 -0.36 -1.02 -1.09 
Val57 -0.08 0.22 -0.53 -0.51 
Gln84 -0.02 -0.02 -0.04 -0.02 
Wat412 0.17 0.17 0.14 0.11 
Gly200 -0.32 -0.62 -0.24 0.16 
Wat410 0.25 0.25 0.29 0.27 
Wat476 0.46 0.47 0.52 0.49 
Wat635 2.63 0.93 0.87 0.63 
Cys199 0.69 0.68 0.87 0.70 
WatSOL2 1.11 0.40 0.92 0.73 
Wat597 1.03 1.15 0.87 0.78 
Wat459 1.09 0.98 1.05 0.81 
Phe187 0.61 0.30 1.08 0.97 
Wat447 1.54 2.83 2.66 2.20 
Asp184 7.04 6.98 4.24 3.06 
Ser53 5.17 2.56 4.56 4.72 
Glu91 5.90 5.90 5.48 4.96 
Lys168 28.21 21.03 27.74 27.83 
Sum -42.60 -29.57 -58.34 -51.39 
R 0.985 0.984 0.9969 1 
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Figure 1.  Structure of the PKA active site in complex with substrates (drawn in 

grayscale). Except of substrates and water molecules, only heavy atoms are 

shown. The coloring scheme applied to active site components reflects their 

contribution to differential transition state stabilization (according to the energy 

scale in a right bottom part of the figure).  
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Figure 2.  The flexible structure alignment of active site residues highly conserved within 

protein kinases family. PKA Mg-ATP complex is given in green CPK 

representation, whereas stick representation is used to show the superimposed 

amino acid residues extracted from structures with the PDB codes listed below. 

Thick sticks correspond to PKA residues. 

a) Serine/threonine kinases: 1o6l, u5r, 1uu3, 1vyw, 1phk, 1csn, 1jks, 1wmk, 

2i0e, 1vjy, 2cn8, 2iwi, 2hw6, 1ig1, 2j90, 2br1, 1na7, 1xws, 2j51, 2a19, 1m2r, 

1mru, 2buj. Tyrosine kinases: 1x8b, 2dq7, 1qpc. 

b) Tyrosine kinases: 1yvj, 1gag, 1u46, 1xba, 2ivs. The conservative Lys168 

residue (distinguished by thicker stick representation) is substituted by arginine 

residue located two amino acid positions further along the sequence.  

 
 

 

 

 

Figure 3. Multiple sequence alignment of highly conserved sequence regions of 

representative protein kinases. The first sequence belongs to mouse PKA 

studied herein. Absolutely conserved residues are marked with asterisks in the 

header row. Background coloring refers to geometrically overlapping residues 

and indicates their charge (red and pink correspond to positively and negatively 

charged amino acids, respectively). Histogram in the bottom part of figure 

indicates quality of the alignment for each residue column. A height of bars 

represents conservation score associated with each position (high score values 

indicate a well-conserved position).  
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Figure 4.  The components of differential transition state stabilization (DTSS) energy 

(kcal/mol). For each residue, the transition state stabilization energy (relative to 

substrates) is given at subsequent levels of theory. Vertical arrows show the 

mutual cancellation of correlation, delocalization, and exchange corrections to 

the MP2 interaction energy.  
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Figure 5.  Catalytic fields for the PKA-catalyzed phosphorylation reaction. The color of 

electronic isodensity surface represents differential electrostatic potential 

around transition state/substrates with red and blue regions corresponding to 

negative and positive charges, respectively. The sign of differential potential is 

inverted to show electrostatic properties of an optimal catalytic environment. 

Superimposed with the latter is the actual arrangement of the most proximate 

PKA residues.  

 
 

Figure 6.  Electronic chemical potential on the zero isosurface of RDFT kinetic energy 

density around isolated TS structure. The regions of high and low chemical 

potential are mapped using color scale. Selected active site residues are shown 

in grayscale. 
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CHAPTER 6 

 
Theoretical studies of the transition states along the reaction coordinates of 

[NiFe] hydrogenaze.  
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1. Introduction 
 

With the growing need to develop alternative energy resources, hydrogen has attracted 

attention as a candidate fuel and the manufacturing and application technologies of low-cost 

hydrogen have been developed for the commercialization of fuel cells. Hydrogenases are 

considered to be a useful material in this application. [1–9] Hydrogenases are enzymes that 

catalyze under anaerobic conditions by the reaction 

2H2e2H ←
→+ −+  . (1) 

  The hydrogenases, [NiFe] hydrogenase, [NiFeSe] hydrogenase and [Fe] hydrogenase, 

have been studied. [NiFe] hydrogenase has Ni and Fe atoms at its active site, which play a 

central role in the catalytic reaction. It is found in anaerobic bacteria, such as Desulfovibrio 

gigas (Dg) and Desulfovibrio vulgaris Miyazaki F (DvMF). The structure of [NiFe] 

hydrogenase from Dg has been investigated by several groups [10–14] and that from DvMF 

by Higuchi et al. [15–17] Groups [18–20] have investigated [NiFe] hydrogenase from other 

bacteria by X-ray crystallography and EPR spectroscopy. [NiFeSe] hydrogenase (with a 

selencysteine in the place of a cysteine residue at the active site) from Desulfomicrobium 

baculatum [21] and [Fe] hydrogenase (with a [Fe4S4] cluster and a [2Fe] cluster at the active 

site, very similar to the active site of [NiFe] hydrogenase) from Clostridium pasteurianum 

[22] and Desulfovibrio desulfuricans [23] have also been crystallized and investigated by X-

ray crystallography.  

We have focused our study on [NiFe] hydrogenase from Dg and DvMF. Figure 1-1 

shows the entire structure of [NiFe] hydrogenase from Dg. The active site is shown in the 

magnified part of Figure 1-1 and its structure is shown in Figure 1-2. These figures show the 

three diatomic ligands L1, L2, and L3 coordinated to the Fe atom and a bridging atom X 

between the Ni and Fe atoms. The ligand X in Dg is assigned to µ-O and in DvMF to µ-S. 

[11–17] The diatomic ligands L1, L2 and L3 are also different between Dg and DvMF; two of 

the ligands have been identified as CN and one as CO for Dg, [11–14,24–26] while it has 

been proposed that L1 can be identified as SO, CO, or CN and L2 and L3 as CN or CO for 

DvMF. [15–17] The bacteria Allochromatium vinosum has a similar active center and same 

ligand pattern as Dg. [27] The SO ligand in DvMF is considered an important factor in 

characterizing the properties of DvMF as it causes a peculiar function of the enzyme. 

Studies of synthetic active sites of [NiFe] hydrogenase and [Fe] hydrogenase have 

been conducted [28–35] and breakthroughs are expected for the mass production of hydrogen 
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molecules. For this purpose, a more basic study of real hydrogenases in bacteria is required. 

Theoretical studies have been taken place for investigating the catalytic mechanism inside 

these large proteins by DFT, semi empirical study, QM/MM study and so on. Unfortunately, 

we can only compute the small part of the entire protein by DFT since the current computers 

do not have the adequate ability. Therefore, we have to determine the model system which has 

been calculated by DFT. We usually define the active site of the [NiFe] hydrogenase as the 

model system. For [NiFe] hydrogenases, many mechanisms of the catalytic reaction have 

been suggested. [36,37] One of these schemes is shown in Figure 1-3. [37,38] One of these 

schemes is shown in Figure 1-3. [37,38] The oxidized system (Ni-A and Ni-B) is reduced 

under an atmosphere of H2 and switches to a reduced system. This scheme has four 

paramagnetic states: Ni-A, Ni-B, Ni-C and Ni-L and three EPR-silent states: Ni-SU, Ni-SI 

and Ni-R. Volbeda et al. have found that Ni-SI has the two different states, denoted by Ni-SII 

and Ni-SIII. [10,11] The Ni-A and Ni-B states have been obtained under aerobic conditions. 

The oxidized system is considered to be catalytically inactive and the reduced system is 

considered to be active. Ni-A can be activated slowly while Ni-B can be activated rapidly and 

these forms are called the unready and ready forms, respectively. [39,40] [NiFe] hydrogenase 

in the reduced system catalyzes the H2 production process effectively. Ni-C has a central role 

in the catalyzation and is changed into Ni-L under illumination at low temperature (<100 K). 

Competing with H2 production, CO inhibits the activation process to give a Ni-CO state. [41-

45] Researchers are divided in their views of the structures of the EPR-silent states, such as 

Ni-SU, Ni-SI and Ni-R. [36,37] Volbeda et al. propose that there are two different states in 

NI-SI [10–12] and that these EPR-silent states are one part of the catalytic cycle. Lately, 

DvMF in the oxidized system has been activated by H2S elimination under an atmosphere of 

H2. [15,16] We have found that the reverse cycle of the activation process can be a H2 

production process itself. That is, [NiFe] hydrogenase has two H2 production processes: one is 

the normal process in the reduced system as mentioned above and the other is the reverse 

reaction of the initial stage of H2S elimination in the oxidized system. This novel mechanism 

will be discussed in detail in section 2-2. 

Several groups have investigated the catalytic system of [NiFe] hydrogenase and their 

findings are not yet consistent. Some light has been shed on this complicated puzzle by 

excellent review articles focusing on experimental investigations, [34,46–50] synthetic studies 

of hydrogenase [34,46] and theoretical studies. [37,51,52] In this paper we review the 

published studies, comparing the characteristics of the proposed catalytic mechanisms, 

focusing especially on the transition states. Identification of the transition state and the 
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activation energy barrier is critical to determining which reaction coordinate plays a crucial 

role. However, none of the reviews have focused on transition states in relation to the catalytic 

reaction coordinates.  

 

2. Theoretical Investigations of [NiFe] hydrogenase 

 
2.1 Active site of DG 

Dg has been investigated by several groups and the structure of the active site 

determined by experimental investigations is consistent among these groups. In this section 

we review the mechanisms proposed by these groups. In section 2.1.1 we summarize the 

computational details of each of the studies. In section 2.1.2 we review the optimized 

structure of each state, the paramagnetic states, Ni-A, Ni-B, Ni-C, and Ni-L, as shown in 

Figure 2-1, and the EPR-silent states, Ni-SU, Ni-SI and Ni-R, as shown in Figure 2-2. In the 

section 2.1.3 we show each group’s reaction mechanism. 

 

2.1.1 Computational details 

We detail here the functional and basis set of each groups’ density functional calculations.  

(i) Pavlov et al. [53–55] performed B3LYP [56,57] energy calculations with the large 6-

311+G-(2d, 2p) basis set. They used the LANL2DZ [58-60] set in the B3LYP [56,57] 

geometry optimizations in Gaussian94. [61] 

(ii) Hall et al. [62–64] optimized the geometries with the B3LYP [56,57] functional and the 

double-ζ basis set. They used the modified version of the Hay and Wadt effective core 

potentials (ECPs) [65] in Gaussian98. [61] 

(iii) Gioia et al. [66,67] optimized the geometries with the BLYP [56,68] functional and the 

double- ζ basis set (D95) [69] on the first-row atoms and Los Alamos ECPs [58-60] on the S, 

Fe and Ni atoms in Gaussian94. [61] 

(iv) We optimized the geometries with the B3LYP [56,57] functional. We used the LanL2DZ 

basis set [56–60] with the Huzinaga polarization function [70] for Fe, Ni and S and with the 

Dunning [69] function for the other atoms. In the QM/MM study, [71–75] we used the same 

functional and basis set for the QM region and used the UFF method for the MM region. We 

used the ONIOM method [76–79] in Gaussian03. [61] 

(v) Stein et al. in ref. 80 used the BLYP [56,68] functional and the DZVP basis set in 

DGauss4.0. [81] 
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(vi) Stein et al. in ref. 82 optimized the geometries with the BP86 [68,83–85] functional and 

the non-relativistic Slater-type DZP basis set and used a g- and hyperfine-tensor study with 

the relativistic Slater-type DZP basis set and TZP basis set. In refs. 38, 52, 82, and 86 Stein et 

al. used the Amsterdam Density Functional package (ADF). [87,88] 

(vii) Stein et al. in refs. 38 and 86 optimized the geometries with the BP86 [68,83–85] 

functional and the double-ζ Slater-type basis set and examined a g- and hyperfine-tensor study 

by the zero-order regular approximation (ZORA) [89-92] implemented in ADF [87,88] with 

the same basis set as in ref. 80. 

(viii) Amara et al. [93] performed QM/MM [71–75] calculations. They used the B3LYP 

[56,57] functional with the double-ζ basis set for the QM region. They used the Hay and Wadt 

ECPs for the non-metal atoms [58–60] and the Dunning ECPs for the Ni and Fe atoms. [69] 

For the MM region, they used the potential energy due to covalent interactions accounting for 

the bonds, bond angles, proper and improper dihedral angles, and the potential energy due to 

the nonbonding interactions (Coulomb and Lennard-Jones). This calculation was performed 

using the quantum mechanical CADPAC program. [94] 

 

2.1.2 The structure of each state 

Several groups have proposed structures of each state from theoretical analysis based 

on experimental studies. There is good agreement for the structures of the paramagnetic states 

Ni-A, Ni-B, Ni-C and Ni-L, while the proposed structures of the EPR-silent states do not 

agree. In contrast to the other groups, Pavlov et al. and Hall et al. have proposed that H2 

attacks the Fe atom in the first step of the mechanism. Hence we show their paramagnetic 

states in Figure 2-1(a) and their EPR-silent states in Figure 2-2(a). The paramagnetic and 

EPR-silent states of the other groups are shown in Figure 2-1(b) and Figure 2-2(b), 

respectively. 

Ni-A is more stable than Ni-B, and Ni-A is reduced slowly into the activated state Ni-

SU. Ni-A has been considered to have O2− as the bridging ligand X. Hall et al. [51,62–64] 

compared the optimized structure of each candidate for the structure of Ni-A and determined 

that X is OH−, as shown in Figure 2-1(a). Ni-B is reduced faster than Ni-A and is activated 

into Ni-SI. With theoretical and experimental data for Ni-B, Gioia et al. proposed that there is 

no bridging ligand X in the structure of Ni-B. [66,67] However, Stein et al. concluded that the 

ligand X for Ni-B is OH− by comparing the experimental structure by X-ray crystallography 

with the optimized structure of DFT. [52,80,82] They also calculated the structural and 

spectroscopic data of the Ni-B state by the relativistic DFT study with the ZORA and 
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compared them with the experimental data of the hyperfine- and g-tensors, [38,86] and thus 

confirmed that X is OH−. Other groups have also investigated Ni-A and Ni-B with ZORA. 

[95,96]  

The paramagnetic Ni-C state is a part of the catalytic cycle and has the redox state 

Ni(III)Fe(II). Hall et al. proposed that the ligand X in Ni-C is an H atom and one of the 

cysteine residues is protonated, based on a comparison between their DFT study and 

experimental data. [51,62–64] Other groups have come to the same conclusion. [51,52,55] 

Recently, however, Stein et al. have stated a slightly different opinion. Based on g- and 

hyperfine-tensor experimental data and their relativistic DFT calculations, Stein et al. 

conclude that Ni-C has no protonated cysteine residue. [38] In addition, Pavlov and Siegbahn 

et al. propose that one of the bridging cysteine ligands is liberated from the Ni atom, 

accompanying a H atom. [53–55] Ni-L has not been examined much because it is not 

important to the catalytic cycle. Stein et al. consider that Ni-L has a vacancy at X and has no 

protonated ligand. [38,52,80,82,86] 

We next review the EPR-silent states Ni-SU, Ni-SI, and Ni-R. The proposed structures 

of these states by each group are shown in Figure 2-2. The determination of the structures of 

EPR-silent complexes is harder than for those of the paramagnetic complexes and hence the 

structures are still controversial. Ni-SU is produced by the reduction of Ni-A. Ni-SI is 

produced by the reduction of Ni-B or Ni-SU. As mentioned above, Ni-B is reduced and 

transformed into Ni-SI faster than Ni-A into Ni-SI. Ni-SU and Ni-SI have the same redox 

state Ni(II)Fe(II), resulting in their EPR-silent properties. Stein has investigated the structure 

of Ni-SI and proposed that the Fe atom of Ni-SI is coordinated by H2O. [38,52,80,82,86] 

Gioia et al. and Hall et al. propose that there is no atom at the position of the ligand X in Ni-SI. 

[51,62-64,66,67] Hall et al. suggest structures for two Ni-SI states, based on the experimental 

data by Volbeda et al., [10,11] called Ni-SIa and Ni-SIb. They state that Ni-SIa is transformed 

into NI-SIb by protonation at the S atom of a cysteine residue. [51] Amara et al. suggest a 

rather unique structure by QM/MM study [93] and called the two Ni-SI states Ni-SI1 and Ni-

SI2, again based on Volbeda et al. [10,11] They suggest that NI-SI1 and Ni-SI2 have a H 

atom as the bridge ligand X. The structure of NI-SI2 with a H atom added is in surprisingly 

good agreement with the experimental structure. [93] 

Ni-R is also an EPR-silent state and has the redox state Ni(II)Fe(II). Hall et al. have 

shown that Ni-R has H2 bound to the Fe atom by DFT calculations and considering the 

electronic states. [51,62–64] Gioia et al. and Stein et al. propose similar structures. [66,67] 

Both groups state that the bridging ligand X is a H atom and Ni-R has another coordinated H 
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atom. Gioia et al. propose that the H atom coordinates to one of the cysteine residues bound to 

the Ni atom and Stein proposes that it coordinates to the Ni atom directly. 

We have to admit subtlety for the local spin state of Ni. Hall et al. suggest that Ni-SIa 

and Ni-R are high-spin Ni(II) states based on L-edge XAS data [98] and on this assumption 

they optimized the structures, giving a distorted tetrahedral coordination of the Ni atom. They 

found that high-spin structures were in better agreement with the experimental structure than 

the low-spin structures, confirming their prediction that Ni-SIa and Ni-R are high-spin 

complexes. However, other groups consider Ni-SIa and Ni-R to be low-spin Ni(II) complexes. 

[37,98] The low-spin states have square planar coordination. Further theoretical studies are 

clearly required on this point. Stein et al. and Gioia et al. have recently investigated the Ni-S4 

complexes as a model of the [NiFe] hydrogenase active site together to lead the conclusion 

that the Ni-SIa and Ni-R is spin-crossover state and the density functional BP86 is the most 

suited functional to describe the structural features and Ni-SI and Ni-R are spin crossover 

states. [99] They suggested that high-spin states with B3LYP have too stable energy, 

compared with the calculations with BP86 or B3LYP*. [100-102] 

Recently we calculated the energy of Ni-SIa by QM/MM calculations. We considered 

the active site as a QM region, the atoms within 7.0 Å of the active site as an MM-free region 

and the other atoms within 13.0 Å of the active site as an MM-fixed region, as shown in 

Figure 2-3. Atoms in the MM-free region can move during the optimization process, while 

atoms in the MM-fixed region cannot move. The total energy of the low-spin state was 1.5 

kcal/mol less than that of the high-spin state. The QM region of the low-spin state was 10.2 

kcal/lmol less stable than the high-spin state, while the energy of the MM region was 11.7 

kcal/mol more stable than the high-spin state. Based on this calculation, we conclude that Ni-

SI is a low-spin complex. This difference of 1.5 kcal/mol is small and hence we did not 

attempt to make a more accurate calculation. A similar calculation for Ni-R is currently 

underway. 

 

2.1.3 Catalytic mechanism of hydrogen production 

Several groups have proposed catalytic cycles, [38,42,53,54,62,66,67,80] each 

characterized by the atom that coordinates to the Ni atom, Fe atom or cysteine residues and 

each cycling through the paramagnetic state Ni-C and the EPR-silent states Ni-SIa and Ni-R. 

The first of these proposed cycles, by Pavlov et al., simulated the catalytic mechanism with a 

relatively small model of the active site. Figure 2-4(a) [53] shows the mechanism of Pavlov et 

al. The transition states are also calculated and the activation energy is found to be 7.9 cal/mol, 
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as shown in Figure 2-5(a). [53] The mechanism is unique compared with the results of the 

other groups in that the bond between the bridging cysteine residue and Ni atom is cut and the 

bimetallic CN ligand of the Fe atom moves toward the vacant position between the Fe and Ni 

atoms. Pavlov et al. later slightly modified the mechanism, as shown in Figure 2-4(b). [54] 

Again the transition states are calculated and the activation energy is found to be 3.1 kcal/mol, 

as shown in Figure 2-5(b). [54] Including the solvent effect, the energy is 6.4 kcal/mol. As in 

the unmodified mechanism, [53] the bond between the bridging cysteine residue and Ni atom 

is cut. However, it has been commented that this result is achieved because the model is too 

small. Amara et al. claim that the small size of the model allows the bridging cysteine ligands 

to move too much; [93] the ligands are bonded to amino acid chains and cannot move freely.  

  The proposed catalytic mechanism of Hall et al. is shown in Figure 2-6. [51,62–64] 

They calculated the transition states using the same model as Pavlov et al. The activation 

energy is 14.2 kcal/mol when the model of the active site has a neutral charge and is 12.4 

kcal/mol when the model has a minus charge, as shown in Figure 2-7. [63] 

The proposed mechanism of Dole et al. is shown in Figure 2-8 [42] and has been 

confirmed by Gioia et al. [66,67] They calculated the optimized structure by DFT and 

performed frontier orbital analysis. From their analysis, they proposed that H2 reacts with the 

Ni atom to give two seperate H atoms. Recently we have simulated this mechanism and have 

found the transition state in the low-spin state. The energy diagram and the structure of the 

calculation model are shown in Figure 2-9. The Mulliken atomic charge densities of the Fe, 

Ni, three S atoms and two H atoms are shown in Table 2-1. The three S atoms and two H 

atoms are identified by suffixes in Figure 2-8. The Mulliken atomic charge is known to be 

unreliable for the transition metals and hence we pay careful attention to it. At the first step, 

H2 is bonded to the Ni atom or S3 atom. Next, H1 is trapped between the Fe and Ni atoms, 

which is indicated by the Mulliken atomic charge of H1 and H2.  

Finally, the charge is absorbed by the Fe atom. The electron density on the S1 atom 

also increases between the transition state and Ni-R, which is consistent with the findings of 

Gioia et al., [67] and hence it has an active role in the H2 cleavage. The activation energy is 

29.3 kcal/mol, while the reverse reaction, that is, the hydrogen production, requires only 10.4 

kcal/mol. 

The suggested catalytic mechanism of Stein et al. is shown in Figure 2-10. [38,52,86] 

This mechanism is more complicated than the others. In this reaction, the solvent H2O has an 

important role in the heterolytic cleavage of H2. One of the H atoms of H2 is attracted to the O 

atom of H2O, forming an H3O+ ion. This results in the bridging ligand X being a H atom. 
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These considerations are based on relativistic DFT research with ZORA and the experimental 

g- and hyperfine-tensors. [38,86] 

  Amara et al. suggested a rather unique mechanism, as shown in Figure 2-11. NI-SI2 of 

this mechanism has a µ-H−, based on a QM/MM study. The structure of NI-SI2 with µ-H− is 

in good agreement with the experimental structure. [93] 

To conclude, several controversial mechanisms have been proposed based on 

theoretical investigations. To characterize a mechanism it is necessary to calculate the 

reaction path including the transition states. The transition states and activation energies will 

then specify the catalytic mechanism. 

 

2.2 Active site of DVMF 

Unlike Dg, the structure of the active site of DvMF is still controversial. Higuchi et al. 

have investigated the structure by X-ray crystallography [15–17] and Tüker et al. have 

performed semi-empirical calculations. [103,104] Stein et al. investigated the structure of 

[NiFe] hydrogenase from DvMF by DFT calculations and g- and hyperfine-tensor 

calculations as well as for Dg. [38,80] The active site of DvMF is shown in Figure 1-2. It has 

been proposed that the L1 ligand is SO, CO or CN and the L2 and L3 ligands are CN or CO, 

but the exact nature of the ligands has not been determined. The widely accepted ligand 

pattern is SO for L1, CN for L2 and CO for L3. We have made a theoretical investigation of 

the pattern: CO for L1, CN for L2 and CO for L3. We assumed that there exists a mechanism 

holding the bridge ligand X during the catalytic reaction. Amara et al. [93] suggested a fixed 

bridge ligand of a H atom during the reaction. We considered a bridge ligand S atom fixed 

during the catalytic cycle, as shown in Figure 2-12, because it is experimentally found to be 

the most probable bridge ligand in DvMF. [15,16] We introduce our preliminary results in 

this section. Other patterns are being studied, incorporating possible ligands of bridging and 

nonbridging characters with various redox and spin states under the influence of the 

environment. 

 

2.2.1 The optimized structure of the DvMF model 

We have devised a DvMF model by substituting a methyl group for cysteine (Cys) in 

the structural formula shown in Figure 2-12, where S1 is the bridging atom between the Fe 

atom and Ni atom, S2 is one of the bridging S atoms of the cysteine amino acids and S3 is one 

of the S atoms of the cysteine amino acids coordinated to the Ni atom only. We then 

optimized the structure. The optimized atomic distances and angles of the DvMF model in the 
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low-spin and high-spin oxidized states (1a and 1b, where the suffixes a and b denote the low-

spin state and the high-spin state, respectively) are tabulated in Table 2-2.  

Model 1b is less stable by 19.46 kcal/mol than 1a, but 1b closely resembles the 

structure derived from X-ray crystallography; [15,16] the optimized structural parameters of 

1b agree with the X-ray structural parameters, except for the Ni-Fe distance. On the other 

hand, the distance between the Ni atom and S2 atom of 1a is 3.25 Å while the distance 

measured in the X-ray structure is 2.37 Å. The Ni-Fe distances of both calculated spin states 

do not agree with the X-ray measured distance; the Ni-Fe distance of the X-ray structure is 

2.55 Å while that of 1a is 3.41 Å and that of 1b is 2.92 Å. The differences are too large to be 

regarded as uncertainties in the calculation. The same differences were reported by Stein et al. 

[80] The differences are due to deviations of the bond angles of S1-Ni-S2 and Si-Fe-S2. In 

fact, there is not much interaction between the Fe and Ni atoms. Therefore, the differences 

hardly affect the reaction mechanism.  

 

2.2.2 Transition states of the activation process in the oxidized system 

We examined the reaction mechanism of the activation process in the oxidized system 

and performed a more detailed investigated of DvMF [17] (which has a S atom at the bridging 

ligand of the active site). We defined the following mechanism (shown in Eq. (2)) based on 

the work of Higuchi et al. [15–17] As already mentioned, an oxidized system of DvMF can be 

activated by H2S elimination under an atmosphere of H2. The origin of the S atom in H2S is 

not yet known, however, Higuchi et al. have assumed that it is a bridging S atom. [15,16] In 

the initial stage of H2S elimination, DvMF model 1, which is called the Ni-A state in general, 

makes a complex with H2 (complex 2). Then, the intermediary 3, with one of the hydrogen 

atoms abstracted by the S1 atom, is obtained through the transition states TS as follows: 

(q),](q)[(q)H  (q)
(d);](d)[(d)H  (d)

2

2

3bTSb2b1b
3aTSa2a1a

→→→+
→→→+

   (2) 

where d and q in the parentheses denote doublet and quartet states respectively. Each low-spin 

state is more stable than the corresponding high-spin state. The activation energy in the low-

spin states is 34.33kcal/mol. That of the high-spin states is 21.39kcal/mol. Therefore, the 

activation process such as the H2S elimination is not easy to take place to some extent in the 

low-spin state, but the reaction become easier to happen after the low-spin state is excited and 

transferred to the high-spin state. 

It is important to also consider the reverse cycle of the reaction shown in Eq. (2). This 

reverse cycle can generate H2 with very low activation energy. We describe this reverse cycle 
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in detail, presenting the structures, electron states and energy diagrams of the complexes and 

transition states in the reaction of Eq. (2) in the next section, section 2.2.3. 

 

2.2.3 H2 production in the oxidized system 

Here, we consider the reaction cycle of the H2 production process in the oxidized 

system based on the reverse reaction of that given in Eq. (2), as shown in Figure 2-12, 

,H  (q)](q)[(q)
H)(t)(2H  (q)

;H  (d)(d)](d)[(d)
H(s))(2H  (d)

2

 2

+→→→→
+→+

+→→→→
+→+

1b2bTSb3b
4b'4b1b

1a2aTSa3a
4a'4a1a

(q)

  (3) 

 In the reaction of Eq. (3), protons and electrons are added to the system from outside 

the hydrogenase or from ferredoxins along the transport chain of the amino acids. This has 

been discussed by Pavlov et al. [53–55] The optimized species in the low- and high-spin 

states are shown in Figure 2-13(a) and (b), respectively. The DvMF models 1a and 1b can 

capture H radicals easily. After one H radical is adsorbed on S1 (4a and 4b), S3 (4a’, 4b’) or 

Ni (4b”) atoms, the complex 2 is formed by capturing another H radical through the complex 

3 and TS by the counterclockwise cycle in Figure 2-12. Energy diagrams for the reaction of 

Eq. (3) are shown in Figure 2-14. The reaction can generate H2 with a very low activation 

energy; the activation energy is 6.74 kcal/mol for the reverse cycle in the high-spin states (3b 

→ TSb → 2b) and is 16.94 kcal/mol in the low-spin states (3a → TSa → 2a).  

For all models, the configuration of the ligands coordinated to the Ni atom is 

tetrahedral in the high-spin state and square planar in the low-spin state. The Mulliken atomic 

spin densities and charges of each state are shown in Table 2-3. In the high-spin state, the S1, 

S3 and Ni atoms have 0.5–0.8 spin densities, while the S1 and Ni atoms in 1a have hardly any 

spin. In addition, each of the S1, S3 and Ni atoms in 4b, 4b’, and 4b” have 0.4–0.9 spin 

densities except the atoms abstracting the first H radical. The second H radical is captured 

easily on atoms with large spin density. 

 

2.2.4 String model of the catalytic mechanism 

In [NiFe] hydrogenase, catalyzation does not necessarily occur in the neutral state of 

the active site. Therefore we have to consider electron transfer during catalyzation. Hence, we 

calculated the energy of the anion and dianion complexes in the catalytic reaction, where the 

structures of each state are assumed to be optimized structures and transition states of the 

neutral state. This is the starting point in the analysis of the string model. [105–107] The 
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energy diagram is shown in Figure 2-15. From this diagram, we can see that the reaction 

occurs easily in the anion and dianion states. In the anion state, especially, the activation 

energy of the low-spin state is lower than the high-spin state and the complex 3a– is the most 

stable of the other complexes. In the dianion states the energy of TSb2- is lower than that of 

3b2-, which indicates that the catalytic mechanism proceeds with no potential barrier if 3b and 

3b– get two or one electron respectively. Therefore, we suggest two catalytic mechanisms of 

the reduced system of DvMF: 

,][ −→→ 2aTSa3a --      (4) 

.][ −−+ →→→
−

2bTSb3b3b
--e-22e-    (5) 

These mechanisms need to be optimized for each electric state and the activation energies 

need to be calculated. The mechanisms proceed more readily than the mechanism of Eq. (3) in 

the neutral state. 

 

2.2.5 Other patterns of ligands at Fe atom 

We have investigated other patterns of ligands, such as L1=CN, L2=CO, L3=CN. This 

is identical to the active site of Dg with an S atom as the bridge ligand X. Figure 2-16 shows 

the energy diagram. The low-spin state of this model has a similar catalytic mechanism and 

energy diagram; the high-spin state is currently under investigation. We are also currently 

calculating other ligand patterns, such as the most probable pattern, L1=SO, L2=CN, L3=CO. 

 

2.2.6 Quantum energy density 

The electronic interaction in the H2 production process in section 2.2.3 can be 

expressed in terms of the quantum energy densities [108–113] based on the regional DFT. 

[108–114] The electronic kinetic energy density )(rnT
r  is defined as 

∑ 

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2

**
2 rhrrrhr ψψψψν   (6) 

where m is the mass of an electron, )(ri
rψ  is the natural orbital and νi is the occupation number 

of  )(ri
rψ . [108–111]  )(rnT

r  is important to the discussion on bond formation because the sign 

of )(rnT
r  has a physical meaning with respect to electronic interaction; in the region 0)( >rnT

r  

(electronic drop region, RD) electrons can move freely in a classical fashion, whereas 

electrons cannot enter the region 0)( <rnT
r  (electronic atmosphere region, RA) in a classical 

sense. [108–111] The total electronic force density )(rF S rr  is given by 



 119

)()()( rXrrF SSS rrrrrr
+= τ     (7) 

where )(rS rrτ  and )(rX S rr  denote the electronic tension density and electronic external force 

density, respectively. [108–111] )(rS rrτ  has a quantum mechanical origin and is given by  
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for k = 1, 2, 3. In the stationary state, )(rS rrτ  balances )(rE rr , the electric field acting on an 

electron. [108–111] The detail of each bond can be expressed in terms of the stress tensor 

density, which is given by a 3×3 matrix ( ) ( ( ))S Sklr rτ τ=
t r r  with  
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for k, l = 1, 2, 3.  )(rnT
r , )(rS rrτ , the largest eigenvalues of )(rS rtτ  and their eigenvectors in the 

formation and cleavage of chemical bonds in the TS can be calculated using the MR DFT 

program, [115] as shown in Figure 2-16. 

As shown in Figure 2-17(a), in the low-spin state, the RD due to the Ni atom is not 

directly connected to the RD due to H atoms in TSa. This means that electrons cannot transfer 

classically between the Ni atom and H atoms. The area between S3 and the H atoms is filled 

with continuous RD, but the compressive stress, for which the largest eigenvalue of )(rS rtτ  is 

negative, [112,113] is distributed widely in the S3-H area, as shown in Figure 2-17(b), that is, 

the chemical-bond interaction in the S3-H area has been lost in TSa. On the other hand, in the 

high-spin state, not only is classical electron transfer allowed between the Ni and H atoms in 

TSb in terms of the continuous RD, as shown in Figure 2-17(c), but Figure 2-17(d) also shows 

that the eigenvectors of the tensile stress, where the largest eigenvalue of )(rS rtτ  is positive, 

[112,113] in the Ni-H area have a “spindle structure.” [112,113] Such a spindle structure is 

observed in typical covalent bonds, [112,113] and therefore it is considered that the character 

of the Ni-H covalent bond seen in 3b remains strong even in TSb and that the height of the 

energy barrier from 3b to TSb is greatly suppressed due to the large covalent-bond-like 

interaction in TSb. 

 

3. Conclusion 
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[NiFe] hydrogenase has received much attention as a material for use in hydrogen 

production. However, the catalytic mechanism is still controversial and the structures of some 

states have not yet been determined. Therefore further experimental and theoretical 

investigations are required. It is certain that the active site receives or gives electrons to other 

parts of the hydrogenase and the environment. There is also no consensus among research 

groups on a value of the activation energy of hydrogen cleavage. Catalytic mechanisms for 

Dg have been proposed, shown in Figures 2-4, 2-6, 2-8, 2-10 and 2-11, with activation 

energies of 3.1–29.3 kcal/mol. [NiFe] hydrogenase of DvMF has catalytic mechanisms in 

both the oxidized state and the reduced state. Further theoretical investigations are required 

because this reaction might occur more readily by electron transfer under the well-ordered 

control of the redox states. 
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Table 2-1.  Mulliken atomic charge densities in all states in Fig. 2-7. The positions of the 

three S atoms and two H atoms are shown in Fig. 2-6, distinguished by the 

suffixes. 

 Fe Ni S1 S2 S3 H1 H2 

Ni-SI + 

H2 
-0.44  -0.01  -0.05  -0.28  -0.28  -0.07  0.09  

TS -0.86  0.02  0.02  -0.31  -0.18  0.00  0.27  

Ni-R -0.89  0.04  -0.19  -0.09  -0.31  0.14  0.19  

 

Table 2-2.  Atomic distances and angles in 1a and 1b. 

distance (Å) 1a 1b exp.[15,16] 

Ni-Fe 3.409 2.919 2.55 

Ni-S1 2.288 2.263 2.16 

Ni-S2 3.252 2.432 2.37 

Fe-S1 2.418 2.284 2.22 

Fe-S2 2.363 2.387 2.37 

angle (deg) 1a 1b exp.[15,16] 

S1-Ni-S2 41.0 88.0 91.1 

S1-Fe-S2 53.1 88.6 89.7 
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Table 2-3.  Mulliken atomic spin densities and charge densities in all complexes. 

spin 

densities 

Ni Fe S1 S2 S3 H1 H2 

1a -0.04  0.01  0.01  0.00  0.49    

1b 0.67  0.28  0.80  0.35  0.48    

2a -0.04  0.01  0.01  0.00  0.49  0.00  0.00  

2b 0.67  0.29  0.80  0.35  0.48  0.00  0.00  

3a -0.03  0.00  0.04  0.00  0.48  0.00  0.00  

3b 0.67  0.82  0.26  0.07  0.53  -0.08  -0.01  

4a 0.00  0.00  0.00  0.00  0.00  0.00   

4a’ 0.00  0.00  0.00  0.00  0.00  0.00   

4b 0.75  -0.02 0.05  0.34  0.44  0.00   

4b’ 0.93  0.28  0.80  0.29  0.04  0.00   

4b’’ -0.11  0.04  0.85  0.21  0.49  0.01   

TSa -0.05  -0.01 0.00  0.22  0.16  0.06  -0.04  

TSb 0.61  0.45  0.86  0.06  0.43  -0.03  0.22  

charge 

densities 

Ni Fe S1 S2 S3 H1 H2 

1a 0.09  -0.57 -0.06 0.12  -0.03   

1b 0.16  -0.88 0.00  0.05  -0.02   

2a 0.07  -0.57 -0.06 0.12  -0.03 0.00  0.02  

2b 0.14  -0.89 0.00  0.05  -0.02 0.03  -0.01  

3a -0.33  -0.80 -0.10 0.01  0.04  0.23  0.20  

3b -0.06  -0.95 -0.16 0.05  -0.03 0.18  0.22  

4a 0.20  -0.79 -0.34 0.01  0.07  0.19   

4a’ 0.08  -0.54 -0.11 0.12  -0.08 0.25   

4b 0.15  -0.81 -0.17 0.03  -0.03 0.20   

4b’ 0.18  -0.86 -0.06 0.06  -0.10 0.22   

4b’’ -0.34  -0.80 0.08  0.04  0.05  0.24   

TSa 0.08  -0.65 -0.13 0.05  -0.03 0.04  0.08  

TSb -0.02  -0.81 -0.08 0.05  0.01  0.11  0.01  

 

 

 



 127

Table 2-4.  ulliken atomic spin densities and charge densities in anion complexes (2a-, 2b-, 

3a-, 3b-, TSa-, TSb-) and dianion complexes (2a2-, 2b2-, 3a2-, 3b2-, TSa2-, TSb2-). 

spin 

densities 

Ni Fe S1 S2 S3 H1 H2 

2a- 0.00  0.00  0.00  0.00  0.00  0.00  0.00  

2b- 0.66  -0.02  0.10  0.27  0.51  0.00  0.00  

3a- 0.00  0.00  0.00  0.00  0.00  0.00  0.00  

3b- 0.62  -0.01  0.11  0.00  0.62  0.00  -0.10  

TSa- 0.00  0.00  0.00  0.00  0.00  0.00  0.00  

TSb- 0.37  0.04  0.28  0.09  0.46  -0.07  0.30  

2a2- 0.01  0.75  0.12  0.13  -0.01  0.00  0.00  

2b2- 1.31  0.02  0.08  0.04  0.61  0.21  0.00  

3a2- 0.60  -0.01  0.06  0.00  0.18  0.00  -0.11  

3b2- 1.21  0.05  0.10  0.05  0.59  0.00  0.20  

TSa2- 0.74  0.02  0.06  0.00  0.06  0.00  0.00  

TSb2- 1.22  0.01  0.14  0.13  0.60  -0.02  0.17  

charge 

densities 

Ni Fe S1 S2 S3 H1 H2 

2a- -0.07  -0.64  -0.06  0.10  -0.18  -0.04  0.06  

2b- 0.08  -0.91  -0.21  -0.02  -0.07  0.07  -0.05  

3a- -0.31  -0.80  -0.18  -0.04  -0.12  0.18  0.21  

3b- -0.29  -0.87  -0.20  -0.02  -0.08  0.17  0.21  

TSa- 0.00  -0.71  -0.14  -0.01  -0.06  -0.01  0.07  

TSb- -0.08  -0.84  -0.34  0.00  -0.04  0.09  0.02  

2a2- -0.13  -0.66  -0.17  0.02  -0.22  -0.06  0.00  

2b2- -0.19  -1.04  -0.33  -0.08  -0.10  0.01  0.17  

3a2- -0.38  -0.87  -0.24  -0.06  -0.23  0.17  0.18  

3b2- -0.41  -0.98  -0.22  -0.07  -0.11  0.14  0.06  

TSa2- -0.14  -0.79  -0.19  -0.04  -0.12  -0.04  0.06  

TSb2- -0.08  -0.91  -0.45  -0.07  -0.13  0.12  -0.05  
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Figure 1-1.  Structure of the [NiFe] hydrogenase of Desulfovibrio gigas, showing an 

enlargement of its active site. 

 
 

Figure 1-2.  Computational model of the active site. 
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Figure 1-3.  Reduction scheme showing the relation of each state. [37,38] 
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Figure 2-1. a) Structure of the paramagnetic states, such as Ni-A, Ni-B and Ni-C of 

Pavlov et al. and Hall et al. from the theoretical investigations. 
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 b) Structure of the paramagnetic states, such as Ni-A, Ni-B, Ni-C, and 

Ni-L of Gioia et al., Stein et al. and Amara et al. from the theoretical 

investigations. 
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Figure 2-2. a) Structure of the EPR-silent states, such as Ni-SU, Ni-SI, and Ni-R of Pavlov 

et al. and Hall et al. from theoretical investigations. Note that Hall et al. suggest 

the existence of two Ni-SI states, Ni-SIa and Ni-SIb. 
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b) Structure of the EPR-silent states, such as Ni-SU, Ni-SI, and Ni-R of Gioia 

et al., Stein et al. and Amara et al. by theoretical investigations. 
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Figure 2-3.  Scheme of the QM, MM-free, and MM-fixed regions. 

 
 

Figure 2-4. a) Catalytic mechanism of Pavlov et al. All of the states are calculated as 

quartet states. [53] 
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Figure 2-4. b) Modified catalytic mechanism of Pavlov et al. All of the states were 

calculated as quartet states. [54,55] 
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Figure 2-5. a) Energy diagram corresponding to the catalytic mechanism of Pavlov et al. 

shown in Fig. 2-4(a). [53] The unit of energy is kcal/mol. 
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Figure2-5. b) Energy diagram corresponding to the modified catalytic mechanism of 

Pavlov et al. shown in Fig. 2-4(b). Here 2’, TS’ and Ni-C’ include solvent 

effect. [54] The unit of energy is kcal/mol. 
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Figure 2-6.  Catalytic mechanism of Hall et al. The states are calculated as low-spin states. 

There are two catalytic cycle. One cycles through the neutral states including 

the transition state, while the other includes only the anion states during the 

cycle. [51,62-64] The Ni-R state is denoted by 1- , which releases one electron 

to become 10.  State 20 is an intermediate complex and receives one electron to 

become 2-. 
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Figure 2-7.  Energy diagram of Hall et al, shown in Fig. 2-6. [63] Each state corresponds to 

a state in Fig. 2-6. The unit of energy is kcal/mol. 
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Figure 2-8.  Mechanism of Dole et al. and Gioia et al. Our transition state is inserted into it. 

All the states are were calculated as low-spin states. [42,66,67] 
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Figure 2-9.  Our energy diagram based on the mechanism shown in Fig. 2-8. This diagram 

is only for the low-spin states. The unit of energy is kcal/mol. 
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Figure 2-10.  Catalytic mechanism of Stein et al. characterized by the mediation of H2O. 

[38,52,80,82,86] All the complexes are calculated as the low-spin states. [80] 
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Figure 2-11.  Mechanism of Amara et al. All the states are calculated as low- and high-spin 

states. [93] 
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Figure 2-12.  Reaction of Eq. (2) (clockwise) and reverse reaction, Eq. (3) 

(counterclockwise). 
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Figure 2-13. a) Optimized species in the low spin state. 

 
 

b) Optimized species in the high spin state. 
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Figure 2-14.  Energy diagram of the catalytic cycle. The unit of energy is kcal/mol. 

where s and t in the parentheses respectively denote singlet and triplet states.  
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Figure 2-15.  String model of the catalytic mechanism in the oxidized system of DvMF. The 

unit of energy is kcal/mol. The energies in this diagram do not include the zero-

point energy. 

30.46

14.67

34.48

41.28

19.81

0.15 0.00
1a+H2

1b+H2

3b
TSa

TSb

3a 2b

2a

19.71

TSb-

TSb2-

 
 

Figure 2-16.   Energy diagram of the catalytic cycle for L1=CN, L2=CO, and L3=CN. The 

mechanism is the same as that in Fig. 2-12 and the diagram shows only about 

low spin states. The unit of energy is kcal/mol. 
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Figure 2-17.  Maps of the quantum energy densities: a) )(rnT
r  (background shading), )(rS rrτ  

(arrows), b) The largest eigenvalues of )(rS rtτ  (background shading) and their 

eigenvectors (short lines) in TSa; The cross section of TSa is displayed above 

(a) and (b), with the centers of the Ni atom and two H atoms are included. c) 

)(rnT
r  (background shading), )(rS rrτ  (arrows), d) The largest eigenvalues of 

)(rS rtτ  (background shading) and their eigenvectors (short lines) in TSb. The 

cross section of TSb is displayed above (c) and (d), with the centers of the Ni 

atom and two H atoms are included. The gray areas in (a) and (c) denote RD 

regions and those in (b) and (d) denote the tensile stresses. The contours in (b) 

and (d) denote the values of -0.01, 0.0, and 0.01. 
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CHAPTER 7 

 
Electronic Structure Study of Local Dielectric Properties of Lanthanoid Oxide 

Clusters. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 142

Introduction 

 
Significant improvements of electronic devices have been supported by rapid progress in 

ultralarge-scale integrated (ULSI) circuits. Many studies of complementary metal-oxide-

semiconductor (CMOS) gate insulators have been performed in academic and industrial fields of 

material research. The dielectric breakdown of insulators, however, is a serious problem in 

reliability of advanced electric devices. Recently, the search for advanced materials superior to 

SiO2 and the renewal of MOS structures have attracted much attention because the pursuit of 

device performance, which requires the downsizing of the gate insulators, leads to the loss of 

device reliability.[1] These problems require urgent solutions for the generation of new CMOS. 

Many candidate substitutes for SiO2, that shows desirable dielectric properties has been proposed. 

Some oxides and silicates, e.g., CeO2, [2] Pr2O3, [3] Al2O3, [4] and Zr and Hf silicates, [5-8] are 

known to maintain thermodynamical and chemical stabilities on Si substrates. In recent years, 

lanthanoid-oxide dielectrics have been considered to be good gate insulators because of their high 

dielectric constants and wide band gaps. La2O3, for example, showed a dielectric constant of 27 

[9] and a band gap of 5.5 eV. [10] Furthermore, some lanthanoid (Ln) elements, e.g., Ce and Sm, 

have been reported to work as catalysts in the oxidation of Si substrates. [11–14]  

In order to obtain computational results consistent with experimental results of Ln 

compounds, careful treatment of valence electrons of Ln elements is required for electronic 

structure calculations. [15–17] In the calculation of cerium oxide, for example, Ce 4f in Ce2O3 is 

treated as part of the inner core, but that in CeO2 should be treated as a valence electron. [15] 

Moreover, the composition of lanthanoid oxide films on Si substrates is very complicated and so 

are their electronic structures. [11–14,18,19] Transition layers composed of an oxide layer, a 

silicate layer, and an interfacial layer are observed between the oxide surface and the substrate. 

Ln atoms are stable as mixed states in the transition layer, and the complicated structure of the 

oxide layer procuces a complex electronic structure. [11–14] The characteristics of lanthanoid 

oxides are further reviewed in ref. 10.  

In this work, we focus on some oxides, such as La2O3, Ce2O3, Gd2O3, HfO2, and SiO2, 

and calculate their electronic structures and local dielectric properties using the densityfunctional 

molecular-orbital (MO) method. In our previous calculation, we emphasized the importance of 

the treatment of the valence electrons of Gd. [20] We reported that electrons in the 5s2, 5p6, 4f7, 
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6s2, and 5d1 states should be treated as valence electrons. We follow this treatment in this work. 

This is because we want to get more precise and detailed dielectric response of valence electrons 

than the conventional Clausius–Mossotti (CM) relation. [21] The analysis is based on the Rigged 

QED theory described elsewhere. [22–28] 

 

Computational Methods 

 
2.1 Electronic structure calculation 

We have performed quantum chemical calculations for several small cluster models of 

lanthanoid monoxides (i.e., LaO, CeO, and GdO) and several tetrahydroxides, such as La(OH)4, 

Hf(OH)4, and Si(OH)4 using the density functional theory [29] with the Molecular Regional DFT 

(MRDFT) program package. [30] The calculations for small clusters can clarify details of the 

chemical-bonding characteristics of metallic species and O atoms. However, these calculations 

are not sufficient to understand the electronic structures of the condensed phase. Therefore, the 

electronic structure of a large-scale model has also been treated in this work using a combined 

quantum mechanics/molecular mechanics (QM/MM) method. Following our previous results, 

[20] the electronic configurations of La, Ce, and Gd have been taken as 5s25p65d16s2, 

4f15s25p65d16s2, and 4f75s25p65d16s2 for valence electrons with 46 core electrons, respectively. 

On the other hand, the 4f, 5s, and 5p states of Hf are located at levels so deep that these states do 

not contribute to bonding interactions and can be treated as core states. The core electrons are 

substituted by effective core potentials (ECPs) using the CEP-31G basis set of Stevens et al. 

[31,32] Additionally, the f-type polarization function of La is optimized. The exponent of the f 

function that minimizes the total energy of LaO is determined to be 0.525. The contribution of 

the f orbital to the interaction between Ln and O has also been studied by many researchers, [11-

17] employing the 6-31G* basis set for O and Si, and the 6-31G** set for H. In DFT calculations, 

the Lee–Yang–Parr (LYP) [33] gradient-corrected functionals for correlation interaction are 

employed, and Becke’s hybrid three parameters [34] for generalized-gradient-approximation 

(GGA) exchange-correlation functionals (B3LYP) are adopted. This condition provided accurate 

results for gadolinium oxide clusters in our previous work. [20] In this work, geometric 

optimizations and electronic structure calculations for each cluster model are carried out using the 

GAUSSIAN 03 program package. [35] 
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2.2 Electron energy density and local dielectric constant 

Using electron wave functions, local electronic properties such as the electronic stress 

tensor density and local dielectric constant are calculated. According to the Rigged QED theory, 

[22-28] the electronic stress tensor density )(rSτt  is given by a 3x3 matrix described as 
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where {k,l}={1, 2, 3}, m is the electron mass, νi is the occupation number of the ith state, and 

)(riψ  is the electron wave function. [27,28] The dielectric constant density )(rε
t is locally 

defined as a 3x3 matrix described as 
1))(41()( −−= rr απε

tt    (2.2) 

where )(rα
t

is the local polarizability tensor density that satisfies 

)()()( rDrrP α
t

=    (2.3) 

In eq. (2.3), D(r) is the electric displacement of the external environment filled with medium M, 

and P(r) is the polarization of system A embedded in medium M. [28] The local dielectric 

properties are related to the polarization of the system induced by the electric displacement of the 

external medium. The polarization P(r) is represented as 

)(
4
1)( 0 rAgradrP

Aπ
=   (2.4) 

sr
ssdrA

AA −
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)()( 3
0

ρ   (2.5) 

where 
A

A0  is the gauge potential at r, obtained by integrating the charge density in system A. The 

response of electrons against the external electric field D(r) is calculated by the self-consistent-

.eld method. In this work, electronic structure calculations are carried out under the condition of 

homogeneous D(r) such as D(r)=De composed of the  magnitude D and the unit vector e. 

Electronic polarization is calculated using eqs. (2.4) and (2.5), and then the local dielectric 

constant is derived from eqs. (2.2) and (2.3). As a result of these calculations, the relationship 

between chemical bonding properties and local dielectric constants are determied because these 

quantities are derived from the same electron wave functions. [28] The electronic stress tensor 

density and the local dielectric constant are calculated using the MRDFT program package. [30] 
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Results and Discussion 

 
3.1 Electronic structures of LnO 

The optimized bond lengths of LaO, CeO, and GdO are shown in Table I. The calculated bond 

lengths of CeO and GdO show good agreement with the experimental data. [36,37] The 

calculated bond length of LaO was improved with the basis set that contains the f-type 

polarization function. According to the increase in atomic number, the radius of lanthanoid atoms 

ends to decrease because the addition of electrons to the 4f orbitals does not shield the atomic 

nucleus. This is known as lanthanoid contraction. In the case of the lanthanum oxide, the 

unoccupied f function is considered in the electronic structure calculations as the polarization 

function, and the overlap between La 4f and O 2p stabilizes the chemical bond. Thus, hereafter, 

the electronic structures of lanthanum oxide are obtained using the CEP-31G plus f-type 

polarization function. The MO interaction diagrams of LaO, CeO, and GdO are shown in Fig. 1. 

The 5p and 5d orbitals are delocalized and contribute to the interaction between Ln and O. On the 

other hand, the 4f and 5s orbitals remain intact in the Ln atom. In the case of LaO, the MO levels 

are divided into two bands, with each band showing a different property. In the lower energy 

band, the interaction between La 5p and O 2s generates bonding and antibonding MOs because of 

the close energy levels of these two atomic orbitals (AOs), -0.881 (-23.968) and -0.897 a.u. (-

24.419 eV), respectively, and their nonzero overlap interaction. In the higherenergy band, MO 

levels composed of La 5p,5d and O 2p are in.uenced by the bonding interaction of La 5d–O 2p 

and the antibonding interaction of La 5p–O 2p. In the cases of CeO and GdO, the orbital 

interactions are explained as in the case of LaO. 

 

3.2 Electronic structures of La(OH)4, Hf(OH)4, and Si(OH)4 

Next, the electronic structures of La(OH)4, Hf(OH)4, and Si(OH)4 are calculated in order to 

analyze the bonding states between metallic species and O atoms in oxygen ligand systems. This 

discussion is motivated by the interest for the many folded Ln–O interactions. In the calculations, 

all molecules were fixed in tetragonal symmetry (Td). In the ground state, the bond lengths of La–

O, Hf–O, and Si–O were optimized at 2.24, 1.92, and 1.60Å, respectively. The angles <M–O–H 

(M = La, Hf, and Si) were fixed at 180º. Figure 2 shows MO interaction diagrams of La(OH)4, 

Hf(OH)4, and Si(OH)4. In the cases of La(OH)4, La 6s and O 2s,2p interact and generate a 
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bonding orbital. The singly occupied molecular orbital (SOMO) is a nonbonding O 2p orbital. 

The bonding state of La–O, however, shows almost the same characteristics as those of LaO. It is 

interesting to understand the similarities and differences between La2O3 and HfO2 because HfO2 

is known as a good candidate gate insulator, so that HfO2 has reference properties as an advanced 

insulator. In HfO2, the interactions between Hf 5p and O 2s, 2p are considered to be weak 

because the calculated Hf 5p level of -1.408 a.u. (-38.327 eV) is deeper than O 2s at -0.897 a.u. (-

24.419 eV). The differences in bonding properties between La–O and Hf–O clearly shown in Fig. 

2. In Hf(OH)4, the O 2s level is weakly influenced by Hf 5p. The bonding orbital generated from 

Hf 5d–O 2p is more stable than that generated from La 5d–O 2p in La(OH)4 because of the weak 

contribution of the antibonding element caused by the Hf 5p orbital. On the other hand, in the 

case of Si(OH)4, the bond between Si and O is caused by the interactions of Si 3s–O 2s and Si 

3s,3p–O 2p, as observed in the SiO2 bulk system. 

 

3.3 Stress tensor density 

The stress tensor density represented by eq. (2.1) explains local electronic stresses and bonding 

characteristics. Figures 3(a) and 3(b) show maps of the stress tensor density for La(OH)4 and 

Hf(OH)4, respectively. In these figures, one Hf or La atom and two O atoms are located on the 

same cross section, and the third principal eigenvalues and eigenvectors of the diagonalized stress 

tensor density are plotted at each point. The positive or negative quantities around the La, Hf, and 

O atoms explain the tensile and compressive stresses of the electron density, respectively. The 

tensile stress observed between the La or Hf and O atoms connected to each other is called the 

‘‘spindle structure’’. [27] The stress tensor density is calculated from the derivatives of the 

electron wave functions, and the chemical bonding properties contained in the wave functions are 

clarified on the basis of the stress tensor density as the dimension of energy density. In particular, 

in covalent bonds, electron density experiences tensile stress because of the attractive interactions 

between atoms. In this work, only the third principal axis, which corresponds to the largest 

eigenvalue, is only focused on because the characteristics of chemical bonds are clarified best on 

this axis. More details and some examples of the stress tensor density are shown elsewhere. [27] 

The difference shown in Hf–O and La–O is caused by the interaction between La or Hf and O 

atoms, as described above using MO interaction diagrams. The electron density between Hf and 

O atoms in Hf(OH)4 experiences more compressive stress than that between La and O in La(OH)4. 
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This is because the chemical bond Hf–O is mainly composed of bonding orbitals formed by Hf 

5d–O 2p and Hf 6s–O 2p, and in this case, the contribution of Hf 5p is very weak. On the other 

hand, in La(OH)4, La 5p interacts with O 2s, 2p and causes antibonding components. Therefore, 

the electron density that contributes to the Hf–O bond shows a more compressive property. The 

MO diagram is spatially visualized using the stress tensor density. In Si(OH)4, as shown in Fig. 

3(c), the electron density between Si and O atoms experiences tensile stress in the regions 

represented by positive quantities. The bonding character of Si–O in Si(OH)4 shows different 

images from those of La(OH)4 and Hf(OH)4. One of the reasons for this difference is the 

difference in the number of electrons that contribute to the bonds. Mulliken atomic charges [38] 

in these molecules are shown in Table II. As a result, the charge transfer between metallic species 

and an O atom is the greatest in Hf(OH)4 and least in Si(OH)4, so that electrons are exchanged 

most prominently between Hf and O atoms and that the chemical bonds between them become 

stronger. 

 

3.4 Local dielectric constant 

The local properties of dielectric constants are calculated using eqs. (2.2)–(2.5) and the results are 

shown in Fig. 4. The local dielectric constant depends on the electronic polarization P(r) defined 

by eq. (2.3), and the responses of such polarization to the external electric fields D(r) are 

attributed to the polarizability )(rα
t

. Therefore, the local dielectric tensor represented by eq. (2.2) 

is calculated from the polarizability at each point. In this work, polarizability was calculated from 

numerical finite differences. The response of electrons to the external electric field calculated 

using the Schrödinger equation shows quantum mechanical perspectives. The electron density 

derived from the Schrödinger equation is drawn using continuous wave functions and not discrete 

values, so that the dielectric constant that depends on electronic polarization is defined at each 

point in a function space. The absolute largest eigenvalues and eigenvectors of the diagonalized 

dielectric constants are shown on the same cross sections in Fig. 3. In this discussion, the largest 

dielectric constants are only focused on because the distribution of the largest eigenvalues clearly 

describes the relationship between electrodynamics and chemical bonding properties.  

The distributions of the dielectric constants clearly differ between La(OH)4, Hf(OH)4, and 

Si(OH)4. High dielectric constants were obtained between Hf and O atoms in Hf(OH)4, as shown 

in Fig. 4(b). On the other hand, no such result was obtained in La(OH)4 [Fig. 4(a)]. In the case of 
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Si(OH)4, as shown in Fig. 4(c), large values were observed between O atoms, not between Si and 

O atoms. The dielectric constant originates from the response of electrons to the external electric 

field D(r), so that the inner electric field E(r) changes as a function of D(r). In the regions where 

the dielectric constant is larger than 1.0, it is concluded that polarization caused by electron 

displacements is easily induced by D(r). In Hf(OH)4, in particular, electrons that contribute to the 

bond between Hf and O atoms responded to D(r), generated polarization, and caused a high 

dielectric constant.  

Furthermore, Fig. 4(d) shows the result of an anionic state La(OH)4¯. In an ideal ionic 

crystal of La2O3, La, and O are considered to be ionized as La3+ and O2-, respectively. Therefore, 

anionic lanthanum tetrahydroxide, LaO4H4¯, was calculated in order to realize the valence 

charges in its solid state. In this case, the length between La and O atoms was optimized at 2.26Å. 

The distribution of the dielectric constants of La(OH)4¯ showed the same tendency as that of 

Hf(OH)4. An added electron responded to D(r)  and the polarization appeared around a center La 

atom. As shown in Table II, the calculated Mulliken atomic charges of La and O atoms in 

La(OH)4¯ are 1.164 and -0.793, respectively, which proves that the added electron occupied 

atomic orbitals of La and O and contributed to the La–O bond similarly to the Hf–O bond in 

Hf(OH)4.  

In order to confirm the results presented above, the local dielectric constant was 

calculated for a large-cluster model of lanthanum silicate. The electronic structure of this large 

cluster was calculated using the QM/MM method. In the QM region, electron wave functions 

were expanded by the same basis set as those in LaO and La(OH)4. However, in the MM region, 

atomic force fields were represented by the universal force field (UFF). The silicate model was 

composed of 234 Si and 394 O atoms in the MM region and 7 Si and 8 O atoms in the QM region. 

As a result, in the optimized structure, the coordination number was 8, and 8 O atoms existed 

within 3.0Å from a La atom. Several cross sections in which one La atom and two O atoms were 

located showed the distribution of the dielectric constant in the disordered condensed phase. As 

shown in Fig. 5, high dielectric constants were observed between La and O atoms. These 

distributions explain a tendency similar to that in the anionic state such as La(OH)4¯, so that 

charges from the environment are accepted in the interactions between La and O atoms, thereby 

causing high dielectric constants. 
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It is concluded that La atoms in silicate or interfacial layers where charge transfer is easily 

result in high dielectric constants, which neutral 4-coordinated lanthanum oxides do not show. 

 

Conclusion 
In this work, we investigated the local properties of dielectric constants, focusing on La, 

Hf, and Si oxides. Local dielectric constant is defined as a field quantity. The differences in 

bonding characteristics between La–O, Hf–O, and Si–O were visualized using the stress tensor 

density, and the origin of high dielectric constants was revealed. Electrons that contribute to La–

O bonds in La(OH)4 were found to be not sensitive to the external electric field, so that no high 

dielectric constant was observed in La(OH)4. The local properties of a lanthanum silicate were 

investigated using a QM/MM method, in which charge transfer from the environment to La–O 

bonds resulted in high dielectric constants, as observed in La(OH)4¯ and Hf(OH)4. 

In our future work, the dielectric constant will be calculated taking into account the 

molecular vibrational effect. Ionic polarizations will also be calculated to obtain accurate 

dielectric properties. 
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Table I.  Bond lengths of lanthanoid monoxides: LaO with f and LaO without f mean the 

calculations performed with and without f-type polarization function, respectively. 

The calculations were performed with a CEP-31G basis set and a LanL2DZ basis 

set. 

 

 Bond length (Å) 
 LaO without f LaO with f CeO GdO 

CEP-31G 1.947 1.903 1.828 1.844 
LanL2DZ 1.965 1.914 — — 
Exp. 1.826 1.820 1.812 

 

 

Table II.  Mulliken atomic charges in La(OH)4, La(OH)4¯, Hf(OH)4, and Si(OH)4. 

 

 La(OH)4 La(OH)4¯ Hf(OH)4 Si(OH)4 
M (= La, Hf or Si) 1.467 1.164 1.721 1.099 
O -0.683 -0.797 -0.767 -0.599 
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Figure 1.  MO interaction diagrams of (a) LaO, (b) CeO, (c) GdO at B3LYP/(CEP-31G,      

6-31G**) level. Closed circles represent the occupied levels and dashed lines 

indicate atomic-orbital contributions to the MOs. Values are written in atomic unit. 
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Figure 2.  MO interaction diagrams of (a) La(OH)4, (b) Hf(OH)4, and (c) Si(OH)4. Values are 

written in atomic unit. 
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Figure 3.  Maps of the electronic stress tensor density for (a) La(OH)4, (b) Hf(OH)4, and (c) 

Si(OH)4. One metallic atom (La, Hf, or Si) and two O atoms are located on the 

cross sections. The short lines denote the eigenvectors of the third principal axis 

corresponding to the largest eigenvalue of the stress tensor density. Contours 

denote the values of -0.05, -0.01, 0.0, 0.01, and 0.05. 
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Figure 4.  Maps of the dielectric constant for (a) La(OH)4, (b) Hf(OH)4, (c) Si(OH)4, and (d) 

La(OH)4¯. The cross sections are the same as those in Fig. 3. The inverse of 

dielectric constant is plotted. 
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Figure 5.  Maps of the dielectric constant for large-cluster model of lanthanum silicate. There 

are eight O atoms within 3.0Å from a La atom. One La atom and two O atoms are 

located on the cross sections. The inverse of dielectric constant is plotted. 
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CHAPTER 8 

 
Conclusions. 

 
 

 

 The molecular properties that affect stability and reactivity of molecules on the frame 

of nonrelativistic limit of rigged quantum electrodynamics have been characterized. The 

different elements of theory: kinetic energy density distribution, regional electronic stress 

tensor, local chemical potential, bond indices and local dielectric properties allow extracting 

plenty essential information about chemical system. The nonpositive-definite kinetic energy 

density defines shape of molecules in the course of reaction and separates core electron 

regions from valence electrons in molecules. The electronic stress tensor provides information 

on the system that is the most valuable to chemist – about the bonding nature. The effective 

electric potential of a set of nuclei is described by regional electronic chemical potential and 

the electron screening effects are visualized by local dielectric constant and local 

polaryzability. The new bond orders express bond strengths using body forces acting on 

electrons in interatomic region. The new bond orders, despite its simplicity, show remarkable 

performance. The method can provide both qualitative and quantitative description of 

physical-chemical properties of molecules. The method benefits from ability for real three-

dimensional space representation of all properties.   

Additionally, which is not a part of this thesis yet gives important insight on the 

subject, author was able to approximate (with good accuracy) combustion heats of large group 

of organic molecules using chemical potential bond order indices of isolated “standard” 

reactants and products species, optimized at the same level of theory. It is worth noting that 

the new bond order, in a sense, satisfies the Hess low, since commonly used indices do not, 

but instead they follow the rule, which might be called “bond order conservation rule” [1]. 

However the results require further study to estimate entropic contribution, which is 

substantial for correct prediction of reaction heats for chemical processes with significant 

entropic factor. Moreover, based on similar assumptions as former, the dissociation constants 



 158

of hydroxyl group proton in alcohols, phenols, carboxylic and inorganic acids, from gas phase 

calculations were obtained. However, also in this case the estimation of entropic contribution, 

in certain cases is necessary in order to produce more accurate results. This information were 

brought to emphasize that the electronic properties exhibited by stationary charge density at 

Lagrange point express the representative features that characterize interatomic interactions in 

molecules, and might be translated into more general (thermodynamic/macroscopic) 

properties.  
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