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Abstract

The Cu(001) surface covered with submonolayer coverages of In and Sn undergoes
phase transitions at around 350-400 K. The transition is associated with the surface
electronic structure change between low-temperature gapped and high-temperature
ungapped ones. The energy gap positions in the k space coincide with the surface
Brillouine zone boundaries of the low-temperature phases. These observations imply
that the phase transitions are classified into the Peierls-type charge density wave
(CDW) phase transition. The CDW ground states are characterized by large over-
all CDW gaps and long CDW correlation lengths. Structural studies show that the
transitions are associated with order–disorder processes. This suggests that these
are in strong-coupling regime. However, the associated gapped-ungapped change
suggests that the electronic terms play significant role, in contradiction with the
strong-coupling scenario. Based on the results of recent works on precise tempera-
ture dependence of the CDW gap and critical X-ray scattering, the origin of this
dual nature and the detailed mechanism of the phase transition is discussed. It is
suggested that the electronic entropy of the CDW ground state is not governed by
the overall energy gap but by the gap between the upper band minimum and the
Fermi level of the whole system. The dual nature of the surface Peierls transition
on Cu(001) originates, on one hand, from the existence at metal surfaces of the two
characteristic energy gaps: the overall gap, which determines the CDW stabiliza-
tion energy, and the upper gap, which governs the electronic entropy. On the other
hand, the CDW correlation length is suggested to play another significant role in
determining the nature of the Peierls transition. The classification of the Peierls
transisions according to the CDW correlation length and the gap size is discussed.
It is suggested that the surface Peierls transition on metal-covered Cu(001) cov-
ered with heavier p-block metallic elements are qualitatively different from both
the weak-coupling CDW transition, with long CDW correlation length and small
gaps, and the strong-coupling CDW transitions, with short correlation lengths and
large gaps, and should be classified into the third class, which is characterized by
long coherence and strong coupling.
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1 Introduction

The Peierls transition is driven by electron–phonon interaction in metallic
materials with the Fermi surfaces of particular, anisotropic topology. Upon
cooling down, the normal metal state at high temperatures undergoes a tran-
sition to a ground state which is characterized by periodic lattice distortion
(PLD) and charge-density waves (CDWs) with the same periodicity. The tran-
sition is often called the (Peierls-type) CDW transition. The Peierls transition
is, in principle, associated with the changes in transport properties, and hence
the technological trends toward electronic devices with nanometer dimensions
has been stimulating a growing interest in the Peierls transitions in ultrathin
films and wires.

As solid surfaces and interfaces provide quasi-two-dimensional electron sys-
tems, efforts have long been paid to find Peierls transitions, which fruited in
the last decade in the discovery of intriguing surface phase transitions which
were suggested to be the Peierls, or CDW, phase transition [1–4].

The transition on the Ge(111) surface covered with 1/3 monolayers of heavier
p-block metallic elements 1 such as Pb and Sn [1,2] has been most intensively
studied. (For reviews on this surface from various aspects, see Refs. [5–7].)
While the Peierls-like scenario was first suggested and supported by several
experimental evidences, an objection was made based on the experiments such
as core-level photoemission [8–10], which indicated the order–disorder nature
of the phase transition. This contradicts with the displacive mechanism ex-
pected in the mean-field theory. It should be noted, however, that one cannot
say that the phase transition is not a CDW one only because it is associ-
ated with an order–disorder process, since it is well established that the real
CDW transitions can be associated with order–disorder processes, in particu-
lar, when the electron–phonon coupling is strong [11–14] . Within the frame-
work of the existing theory for the strong-coupling CDW, it is characterized by
a large energy gap (larger than 100 meV) and an order–disorder process tak-
ing place at a temperature lower than the transition temperature expected by
the mean-field theory, which is followed by a gapped–degapped transition at
higher temperature. An essential difference between the mean-field, or, weak-
coupling CDW senario and the strong-coupling one may be whether or not
the intermediate disordered, insulating phase exists. As will be discussed in
this article, the detailed mechanism of the transition varies according not only
to the electron–phonon coupling strength but also to the CDW correlation
length.

Email address: aruga@kuchem.kyoto-u.ac.jp (Tetsuya Aruga).
1 The heavier p-block metallic elements belong to Group 13–16 in the periodic table
of elements and arise from filling of the np subshells.
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The phase transitions observed on the other surfaces such as In/Si(111) [3],
In/Cu(001) [4,15,16], and Sn/Cu(001) [17] have also been suggested as due
to the Peierls mechanism. Among these transitions, those on Cu(001) covered
with In and Sn exhibit quite similar characteristics such as ground-state struc-
tures commensurate with the substrates, high-temperature Fermi surfaces
slightly displaced from the low-temperature surface-Brillouine-zone bound-
aries, and large energy gaps in the ground states, which are considered as
characteristic to strong-coupling CDW phase transitions. On the other hand,
these phase transitions are associated with the gapped–degapped transition
in the electronic structure, which may indicate weak-coupling nature.

The problems that should be discussed are, firstly, whether or not these tran-
sitions can be understood by the existing theories for CDW phase transitions,
and secondly, whether there are any specificities of the surface phase tran-
sitions as compared with those in bulk materials. In order to address these
questions, it is desirable to examine the dynamics of the phase transitions;
detailed temperature dependence of the quantities such as the energy gap,
diffraction profile, and vibrational spectra would serve as keys.

Most recently, experiments have been carried out along this line on the phase
transition at ∼400 K on Cu(001) covered with 0.63-ML In [18,19]. The tem-
perature dependence of the energy gap associated with the CDW formation
and the diffraction profile from the CDW phase was precisely measured. The
results indicate that the phase transition is composed of two processes which
occur successively in a small temperature interval. While the result appears to
be qualitatively consistent with the strong-coupling theory at the first glance,
the experimental results, the characteristic temperature dependence of the
CDW gap in particular, suggest that one has to take into account, firstly, the
interplay of the surface resonance band with the electronic system of the sub-
strate, and secondly, the long correlation length of this system, as opposed to
the short correlation length supposed in the strong-coupling theory.

In this review article, after the classification of the CDW phase transitions ac-
cording to the strength of the electron–phonon coupling is briefed in Chapter
2, recent studies on the atomic and electronic structure of a variety of phases
and phase transitions on Cu(001) covered with heavier p-block metallic ele-
ments are reviewed in Chapter 3. After the mechanism of the phase transitions
is discussed based on the recent results in Chapter 4, a general view on the
Peierls transition on metals is given in Chapter 5.
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Fig. 1. Fermi surfaces of 1D, 2D and 3D free-electron gases and corresponding
Lindhard response functions at T = 0.

2 Peierls-type charge-density-wave transition

In this section, the energetics and the mechanism of the Peierls-type CDW
phase transition are briefly summarized. For details of the theory and experi-
ments for the bulk materials, see references [20,21]

In the literature, there has often been confusion in terminology regarding
CDW states and phase transitions. The term “CDW transition” is used in the
literature to imply several different but closely related phenomena. This in turn
indicates that the CDW transitions can be classified into several categories,
which would help ones avoid the confusion. One of the categories refers to a
CDW state possibly stabilized at very low temperatures in low-dimensional
free-electron gas without interacting with the lattice of ions. The other one
postulates the coupling of electrons with the lattice of ion cores, as done
by Peierls[22]. Usually the latter one is further classified into subcategories
according to the strength of electron–phonon coupling

2.1 Spontaneous charge ordering in free-electron gas

While the Peierls-type CDW state is, as described below, stabilized by elec-
trons and the lattice of ion cores acting each other concertedly, there is a
possibility of spontaneous ordering in charge density driven solely by an elec-
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Fig. 2. Two-dimensional Fermi surfaces for (a) “poorly-nested” and (b)
“well-nested” cases.

tronic mechanism.

In Fig. 1 is depicted the Lindhard electron response function,

χ(q) =
∑
k

f(Ek) − f(Ek+q)

Ek − Ek+q

, (1)

for free-electron gas at T = 0, where f(E) denotes the Fermi distribution func-
tion and Ek the electronic energy at wavevector k. Suppose that an electron
gas in dimensions d = 1, 2, 3 is exposed to a potential V (q). Then the induced
charge density in the electron gas can be written as

ρind(q) = χ(q)V (q).

For d = 3, χ(q) decreases monotonically with q but the slope diverges at q =
2kF, where kF denotes the Fermi wavevector. For d = 2, the singularity is more
pronounced. The most pronounced singularity is observed for d = 1, where the
response function χ(q) diverges logarithmically at q = 2kF. This suggests that
one-dimensional electron gas is unstable and spontaneously forms a charge-
ordered state.

In real three-dimensional materials, the Fermi surface is not necessarily a
sphere expected for a free-electron gas. χ(q) for the Fermi surfaces of real ma-
terials can have a singularity, or a peak, at 2kF and its magnitude depends on
the shape of the Fermi surfaces as schematically shown for a two-dimensional
case in Fig. 2. The particular situation where the Fermi surface has a shape
that facilitates large χ(q = 2kF) is called the “Fermi surface nesting.”

The charge-ordered states in low-dimensional electron gases are stabilized
solely by an electronic mechanism. However, it should be emphasized that
this type of charge-ordered states is stable only at very low temperatures,
since the singularity at q = 2kF in χ(q) is damped steeply with increasing
temperature. In other words, electronic condensation energy for such charge-
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Fig. 3. Schematics of Peierls transition in one dimension. Atomic structure for a lon-
gitudinal lattice distortion mode, displacement of i-th atom ∆Ri, electronic charge
density ρ(x), and band structure are shown.

ordered states is easily exceeded by electronic entropy at finite temperatures.
Realization of charge-density waves at moderate temperatures requires the
coupling of electrons with collective modes of ion cores.

2.2 CDW ground states stabilized by electron–phonon coupling

As discussed above, the spontaneous charge redistribution in an electron sys-
tem is thermally destroyed at moderate temperatures. For the real materials,
the electron system is exposed to the periodic potential formed by the lattice
of ion cores. While the periodicity of ion cores at equilibrium positions does
not necessarily coincide with π/kF, phonons with a wavevector of 2kF can
couple with the electron system. This means that phonon spectrum of metals
should exhibit anomaly at q = 2kF induced by the singularity of χ(q) via the
screened ion-ion interaction. Actually, a tiny kink is observed at q = 2kF in
the phonon dispersion curves ω(q), which is called the Kohn anomaly [23,24].

For the metals with nested Fermi surfaces, the above effect is much more
pronounced, resulting in considerable phonon softening at q = 2kF (giant Kohn
anomaly) [25,26]. This leads to a great depression at q = 2kF in the phonon
dispersion curve, which sometimes is so drastic that ω(2kF) becomes zero, thus
making the phonon mode with q = 2kF be frozen to a static lattice distortion.
The phase transition is defined by the temperature at which ω(2kF) = 0. The
frozen phonon, or PLD, gives rise to a lattice potential with a period π/kF,
which then produces band gaps at k = ±kF.

Figure 3 shows schematically the PLD, CDW and band structure of the one-
dimensional CDW ground state. The stabilization of the CDW state with
respect to the metallic state is achieved by the electronic energy lowering
near EF. Note that, while a longitudinal phonon mode is shown in Fig. 3,
transverse phonon modes can also couple with the electron system to yield
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transverse lattice distortion [27,28]. For surface systems, it is expected in gen-
eral that transverse modes are readily coupled with CDW, because vertical
displacement of adatoms is not restricted to the vacuum side and is associated
with adatom-substrate charge transfer. On the other hand, starting from the
CDW ground state, elevating the temperature enhances the electronic exci-
tation across the CDW band gap, which lowers the energetic stability of the
CDW state, and eventually the system undergoes a phase transition to the
undistorted metallic state.

The enthalpy of the CDW state is lower than that of the metallic phase
(HCDW < Hmetal), and the entropy of the metallic phase is larger than that
of the CDW phase (SCDW < Smetal) as there is no band gap across EF in the
metallic phase. The free energy (H−TS) of the CDW phase is therefore lower
than that of the metallic phase at low temperatures, making the CDW state
the ground state. Upon elevating temperature, however, the metallic phase
tends to have a lower free energy due to the contribution of the entropy term,
which is the essential mechanism of the CDW phase transition.

2.3 Classification according to the strength of the electron–phonon coupling

The qualitative description for the CDW transition summarized in the pre-
vious subsection is based on the mean-field theory and hence should not be
considered to be accurate always. The CDW transitions are usually classified
according to the strength of the electron–phonon coupling. At the limit of
weak electron–phonon coupling, the CDW band gap, 2∆, is very small (. 100
meV). This facilitates thermal excitation of electrons across the CDW gap at
moderate temperatures. In such a case, the mean-field approximation gives a
fairly good description of the transition. In the low-temperature CDW phase,
the mean-field theory suggests that the CDW gap varies according to the
equation

1

λ
=

∫ ϵ0

0
tanh

(
ϵk

2kBT

)
dϵk

(ϵ2
k + ∆2)1/2

, (2)

where ϵ0 denotes a cutoff energy and λ the dimensionless electron–phonon
coupling constant [20]. (The equation is formally the same as that describes
the temperature dependence of the superconducting gap within the framework
of the BCS theory [29]. The equation for CDW is, however, obtained only
within the mean-field approximation and may probably be deviated from the
behavior in real materials.) Close to the CDW transition temperature, TMF

c ,
Eq. (2) can be approximated by
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∆(T )

∆(0)
= 1.74

(
1 − T

TMF
c

)1/2

. (3)

While the direct measurement of the temperature dependence of the gap ∆(T )
for bulk or surface CDW phases has not been done until very recently [18],
the temperature dependence of the PLD amplitude coupled to CDW has been
measured. Note that the PLD amplitude is proportional to the order parameter
∆(T ) within the mean-field theory. The lattice distortion amplitudes for some
bulk compounds appear to be in reasonable agreement with the temperature
dependence of ∆ as expected from Eq. (2) [20,30], although the experimental
temperature dependence is steeper at temperatures close to the transition
temperature, which may be explained as due to the effect of critical fluctuation.
The distortion amplitudes of PLD in bulk CDW materials, such as K0.3MoO3,
K2[Pt(CN)4]Br0.3· 3.2H2O and (TaSe4)2I, are < 0.1 Å.

The Gibbs free energy for the CDW transition as a function of the order
parameter ∆

G =
∫

dV
(
A(∇∆)2 + a∆2 + b∆4

)
(4)

is schematically shown in Fig. 4. For the weak-coupling case, the mean-field ap-
proximation may be valid. This suggests that the first term of Eq. (4), which
describes the spatial fluctuation of the order parameter, can be neglected.
Therefore the transition scenario for the weak-coupling CDW can be schema-
tized as shown in Fig. 4(a): The free energy G has a single minimum at ∆ = 0
in the high-temperature normal-metal state and changes at low temperatures
to a double-minima shape, resulting in a broken-symmetry CDW phase. When
the temperature approaches the mean-field transition temperature TMF

c from
below, the ∆(T ) curve in the CDW phase gradually changes to that for the
metallic phase.

Microscopically, the weak-coupling CDW transition is driven predominantly
by electronic entropy. At low temperatures, the system is in the CDW ground
state, which is stabler than the normal-metal state by an energy proportional
to ∆2. With increasing temperature, the electrons in the lower band are grad-
ually excited across the band gap, which leads to the increase in electronic
entropy. At the transition temperature the entropy term for the metallic phase
surpasses the energy cost associated with degapping.

For the strong-coupling case, the ground state is also the CDW state which is
essentially the same as that in the weak-coupling case. An important difference
lies in the magnitude of the energy gap, which is considerably larger than that
in the weak-coupling case. This is associated with larger amplitudes of lattice
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Fig. 4. Temperature-dependent change of Gibbs free energy G(∆) for (a) weak–
coupling and (b) strong-coupling CDW transitions. Schematic lattice structure and
diffraction patterns are also shown. At the weak-coupling limit (a), the ground state
has a small lattice distortion amplitude and is transformed to normal-metal state
at T = TMF

c . For the strong-coupling case, the intermediate phase is formed. This
phase has a distorted lattice and short-range CDW, but the spatial phase is fluctu-
ating. The broken lines in the lattice drawing indicate antiphase boundaries. This
phase gives rise to diffuse superstructure diffraction spots, which often are too weak
and diffuse and hence may be overlooked.

distortion. The high temperature phase is a normal-metal phase the same as
that in the weak-coupling case. A consequence of the large ∆(0) is that the
mean-field transition temperature TMF

c is shifted to a very high temperature.
For instance, putting the CDW energy gap of 2∆(0) = 500 meV into the
mean-field equation for one-dimensional case,

2∆(0) = 3.52kBTMF
c , (5)
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results in the transition temperature TMF
c = 1650 K! In real materials, the

lattice degrees of freedom of the CDW phase would not be maintained up
to such a high temperature, but the phase fluctuation of the order parame-
ter sets in at T < TMF

c . To describe such a phase fluctuation, it is required
that the order parameter is expressed as complex. The change of G for the
strong-coupling CDW transition as a function of temperature is shown in Fig.
4(b). There is an intermediate phase between the CDW ground state and the
normal metal state. In the intermediate phase, the order parameter amplitude
|∆| is maintained finite and hence the system is insulating. The phase of the
order parameter rotates in the bottom of the potential well of G(∆), which
corresponds in real space to patches of the CDW phase separated by dislo-
cations, or antiphase boundaries. Consequently, the long-range translational
order of periodic lattice distortion is destroyed in the intermediate phase.
In diffraction experiment, therefore, the superstructure spots associated with
the CDW phase are not observed except for diffuse features (blurred spots,
streakes, etc.), due to the short-range order, which ara often overlooked. Thus
the diffraction spots observed in the intermediate state are apparently the
same as those for the normal-metal state.

Within the weak-coupling theory, the electron–phonon coupling is assumed
to be independent of q. This, however, is not the case in the strong-coupling
regime. An important consequence of the q dependence of the electron–phonon
coupling is that the periodicity of CDW tends to be shifted from 2kF or the
peak positions of the Lindhard response function which is determined solely by
the topology of the Fermi surface. This sometimes results in the CDW period-
icity commensurate with the original undistorted lattice. In such a case, the q
vector of CDW coincides with the commensurate q position which is preferred
by the lattice potential near the peak of the Lindhard response function. This
effect should be particularly significant for surface CDWs, because they are
subjected to the lattice potential of underlying substrates.

As to the spacial coherence, the weak- and strong-coupling CDW states are
usually assumed to have long and short coherence, respectively. The charac-
terization of the CDW ground states and phase transitions will be discussed
later in Sections 4 and 5.

Thus the strong-coupling CDW transition consists of two processes, which
takes place at T = Tcl and Tce (Tcl < Tce). At T = Tcl < TMF

c , an order–
disorder transition of the lattice takes place, in which the change of the long-
range translational symmetry, as observed by diffraction methods, is the same
as the weak-coupling CDW transition but the energy gap is maintained. At
a very high temperature T = Tce, which is usually assumed to be Tce =
TMF

c , the insulator–metal transition takes place. In materials with very large
∆(0) (larger than several tenths of eV), the transition at T = Tce is difficult
to observe experimentally and hence only the low-temperature transition is
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Fig. 5. Models for W(001) and Mo(001) surfaces.

observed. In such cases, the observable “strong-coupling CDW transition” is
an order–disorder, insulator–insulator one, and hence is considered to be in
contrast with weak-coupling transitions, which are displacive, metal–insulator
ones. It is noted that the former is driven by the lattice entropy while the
latter by the electronic entropy.

The lack of electronic-structure change during the transition may be a major
reason why strong-coupling CDW transitions have not extensively been stud-
ied in bulk materials. However, as shown below, it has recently been suggested
that surface CDW transitions cannot be categorized simply according to the
strength of electron–phonon coupling as in bulk materials. The scenario for
the surface CDW transition may be qualitatively different from that in bulk
materials.

2.4 Strong-coupling-CDW picture for the phase transitions on W(001) and
Mo(001)

The phase transitions on clean W(001) and Mo(001) surfaces were intensively
studied for more than two decades since the first observation in 1970’s [31–33].
The main focus of interest was placed at whether or not the transition is under-
stood as a surface example of the Peierls-type CDW transition [32–34]. While
the studies of these surfaces have been reviewed in several articles [14,35,36],
let us briefly describe the characteristics of the phase transition as it is quite
instructive within the scope of this article. For further details, see Ref. [14].

The low-temperature structures of W(001) and Mo(001) were determined by
many different methods [37–50] and are shown schematically in Fig. 5. The top
layer atoms are displaced from ideal (1× 1) positions in the [11̄0] direction to
form zig-zag chains. The displacement pattern can be described qualitatively
by the frozen-in surface phonon mode M̄5 with −→q = (π/a)(1,−1) for W(001)
and −→q = (π/a)(6/7,−6/7) for Mo(001).

Upon heating, the surfaces undergo transition to (1×1) at ∼220 K on W(001)
[51] and ∼150 K on Mo(001) [52]. At around 300 K, however, the surface
atoms are displaced laterally from ideal (1×1) positions [40,44,51,53–57]. The
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surface atoms are disordered at 300 K, giving rise to a (1×1) low-energy
electron diffraction (LEED) pattern. It, however, is difficult to verify exper-
imentally whether the surfaces transforms to undisplaced (1×1) structure at
higher temperatures. The only experiment up to 600 K by high-energy ion
scattering was interpreted to indicate displaced character at 600 K [54], which
was later claimed to be consistent with undisplaced structure [58].

Direct observation of the phonon softening at T > Tc was done by means of
inelastic He scattering [58–61]. The longitudinal surface phonon mode showed
well-defined dispersion at T > 450 K, but exhibited considerable softening at
∼ 0.8M̄ upon approaching Tc, in qualitative agreement with the CDW sce-
nario. Theoretical simulations of vibrational properties were performed [62–
66], which succeeded in reproducing the softening. The simulation [65] showed
that the probability distribution of the mean square displacement of surface
atoms shows a peak at non-zero displacement in the high-temperature phase,
which was in accordance with the displaced character of this surface deter-
mined experimentally. While the peak was gradually shifted to smaller dis-
placement with increasing temperature, it remained at a non-zero value even
at T = 5Tc, suggesting that the surface have a disordered character even at
∼1000 K.

Electronic driving mechanism of the phase transition was studied theoretically.
Early tight-binding calculation [67,68] already showed that the transition is
driven by the instability of d bands with high density of states at EF. The
electronic structure calculation of W(001) by linearized augmented plane wave
(LAPW) method indicated that a metallic surface resonance band along Γ̄M̄
for ideal (1×1) surface forms a band gap of ∼1.8 eV at EF when reconstructed
to the (

√
2 ×

√
2)R45◦ structure [69]. The gap extended over > 60% of Γ̄M̄ ,

which indicates that the interaction involved is spatially very localized. The
CDW correlation length 2π/δk . 7 Å corresponds to only a few unit cell.

The reconstruction on W(001) and Mo(001) are well understood by the local
d-state chemical bonding and, at the same time, the atomic structure, the
electronic bands, and the phonon dynamics can be consistently described by
the theory of strong-coupling CDW phase transition.

12



3 Phases and transition on Cu(001) covered with heavier p-block
metallic elements

3.1 Properties of heavier p-block metallic elements

Surfaces such as Ge(111), Si(111), and Cu(001) covered with monolayers of
heavier p-block metallic elements such as In, Tl, Sn, and Pb often exhibit
reversible phase transitions with respect to temperature change. These phase
transitions have been interpreted as the surface Peierls transition. The present
author does not believe that it is merely accidental that the surfaces covered
with these elements undergo similar phase transitions. In this subsection, a
brief account is given for the properties of these elements.

In bulk solids, some of these heavier p-block metallic elements exhibit crys-
talline structure which can be considered as distorted from high-symmetry
structures such as face-centered and body-centerd cubic. Let me first summa-
rize below the structural properties of these elements.

Among Group 13 elements, metallicity of the elemental solids varies consider-
ably. Boron crystalizes in non-metallic rhombohedral or tetragonal structures.
Aluminum is a typical metal forming a face-centered cubic (fcc) structure. Gal-
lium has three crystalline structures, among which α-Ga forms orthorhombic
(quasi-tetragonal) structure with a = 4.519 Å, b = 4.526 Å and c = 7.657 Å.
Each gallium atom is coordinated by seven neighboring gallium atoms, among
which the nearest-neighbor atom is located much closer (d = 2.48 Å) than
the rests (d & 2.7 Å) resulting in the Ga2 dimer structure. This may indicate
considerable covalency. Indium crystalizes in body-centered tetragonal struc-
ture with a = 3.253 Å and c = 4.946 Å. This structure can be regarded as
distorted fcc. The c/a ratio for indium is 1.520, which is 7.5% larger than the
corresponding value for fcc. Due to this distortion, twelve nearest-neighbor
atoms in ideal fcc are subgrouped into four nearest neighbors at 3.25 Å and
eight next nearest neighbors at 3.38 Å. Thallium crystallizes at room tem-
perature in hexagonal close-packed (hcp) structure with a = 3.456 Å and
c = 5.522 Å. The c/a = 1.598 is only 2.1% smaller than the ideal hcp value.
The structural characteristics suggest that, among the heavier three elements,
the covalency is most significant in the bonding among Ga and the metallicity
increases in the series of Ga, In, and Tl.

Group 13 elements have valence electron configuration of ns2np1. For alu-
minum the three valence electrons contribute to metallic bonding. However,
for heavier elements, the ns state is shifted to larger binding energies and
hence becomes less important in the bonding, which is known as the inert
pair effect. The effect is significant in indium and thallium.
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Table 1
Electrical resistivity (µΩ cm)

Ga In Tl β-Sn Pb As Sb Bi Cu K

8.20–55.3a 8.37 18 11 20 33.3 41.7 120 1.673 7.39
a Electrical resistivity of Ga depends on the crystallographic direction.

Among Group 14 elements, the solids of lighter elements, carbon, silicon and
germanium, are insulators with larger band gaps for lighter elements; 5.5 eV for
diamond, 1.1 eV for Si, and 0.7 eV for Ge. Tin exhibits structural transforma-
tion near room temperature. White tin (β-Sn) is stable at room temperature
and has a tetragonal lattice, in which each tin atom is coordinated by four
nearest neighbors at 3.016 Å and six next nearest neighbors at 3.18 Å. Upon
cooling down, it undergoes a transition to gray tin (α-Sn) which has a dia-
mond structure with a = 6.489 Å corresponding to nearest neighbor distance
of 2.81 Å. While high-temperature β-Sn is metallic, low-temperature α-Sn is
a semiconductor with a band gap of 80 meV. Lead, the sixth-row element in
Group 14, has a fcc structure with a = 4.951 Å and is metallic.

Among Group 15 elements, arsenic, antimony and bismuth crystallize in the
same rhombohedral structure. This structure can be considered as puckered
sheets of atoms stacked in layers. Each atom has three nearest neighbors and
the bond angle is close to 90◦. The next-nearest-neighbor distances are 11%
(Bi) to 25% (As) larger than the nearest-neighbor distances. The coordination
number and the bond angle is consistent with the predominantly covalent
bonding between np3 hybridized atoms, as ns2 electrons form inert pairs. The
bonding characters results in very small density of states near EF, making the
solid of these elements semimetals.

In Table 1, the electrical resistivity of these elements is compared with that of
good metals such as Cu and K. Ga, As, Sb, and Bi exhibit particularly large
resistivity. It is also known that the electrical conductivity of these half metals
are lower in solid than in liquid. The ratios of conductivity in solid to that in
liquid at melting points are ∼0.6 (Ga), 0.67 (Sb), and 0.43 (Bi), which are to
be compared with the values of 1.4–1.7 (alkali metals) and ∼2 (Cu, Ag, Au).

It is considered that In, Tl, Sn, and Pb also have a tendency toward local-
ized covalent bonding, while these elements form metallic solids. The covalent
character in the bonding suggests strong electron–phonon coupling in the crys-
tals of these elements, which is an important factor in the formation of CDW
state as described in the previous section. Actually, in his “Quantum Theory
of Solids”, R. E. Peierls suggested that the three-dimensional crystalline struc-
ture of As, Sb, and Bi can be understood as stabilized by the CDW formation
mechanism [22]. On the other hand, strong electron–phonon coupling leads to
superconductivity [20]. Heavier p-block elements are known to have relatively
high superconducting transition temperature: Ga (1.08 K), In (3.41 K), Tl
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Fig. 6. Phase diagram for In/Cu(001) [70]. The c(3
√

2 ×
√

2)R45◦ and
(5
√

2×5
√

2)R45◦ phases are metastable and is formed only when In is deposited be-
low 200 K. These phases transform irreversibly to stable phases with corresponding
coverages at ∼220 K.

(2.38 K), Sn (3.72 K), and Pb (7.2 K).

All in all, the bonding in heavier p-block elements in Group 13 to 15 can be
located between metallic and covalent bonding, resulting in particular charac-
teristics such as distorted crystalline structure and poor electrical conductivity.
Note that the degree of covalency varies among these elements: In, Tl, β-Sn,
and Pb are relatively closer to the normal metals. It is the monolayers of these
four elements that exhibit phase transitions in different surface systems such
as In, Tl, and Sn on Cu(001), In on Si(111), and Sn and Pb on Ge(111).

3.2 Structure of heavier p-block metallic element monolayers on Cu(001)

For In/Cu(001), the phases formed upon deposition at room temperature and
at T < 200K were studied by LEED, scanning tunneling microscopy (STM)
and Auger electron spectroscopy (AES) [4,16,70]. The results are summarized
in Fig. 6. Upon deposition at room temperature, three ordered phases are
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observed: (9
√

2 × 2
√

2)R45◦ at θ = 0.5, 2 (2
√

2 × 2
√

2)R45◦, or c(4 × 4), at
θ = 0.63, and (

√
20 ×

√
20)R26.6◦ at θ = 0.85.

Upon heating, the (9
√

2 × 2
√

2)R45◦ phase undergoes a phase transition at
∼350 K to (

√
2 ×

√
2)R45◦, or c(2 × 2). Similarly, the (2

√
2 × 2

√
2)R45◦

and (
√

20 ×
√

20)R26.6◦ phases are transformed to (2 × 2) at ∼400 K. These
transitions are reversible with respect to temperature change.

The STM image and LEED pattern for the (9
√

2×2
√

2)R45◦ phase is shown in
Fig. 7. The surface is composed of parallel stripes of distorted (

√
2×

√
2)R45◦

domains with a width of ∼ 2a√
2, where a√

2 denotes the lattice constant of

(
√

2×
√

2)R45◦. Neighboring (
√

2×
√

2)R45◦ stripes are in anti-phase relation.
Between the (

√
2 ×

√
2)R45◦ stripes, individual atoms are not well resolved

but atomic rows running alternatively along [110] and [11̄0] are observed. Thus
the surface is highly anisotropic. The LEED pattern shown in Fig. 7(b) is
complicated but is consistent with the (9

√
2× 2

√
2)R45◦ structure. While the

intensity of each spot depends on the atomic arrangement in the unit cell, the
fact that the (1/2 1/2) spot is always missing is consistent with the existence of
a glide line along [100]. Fig. 7(c) shows the Fourier transform of the wide-area
STM image for the (9

√
2 × 2

√
2)R45◦ structure, which is in good agreement

with the LEED pattern that is a superposition of the contributions from two
equiprobable domains rotated by 90◦ from each other. It is worthwhile to
note that the weak fluctuation in spatial phase is observed. The distorted
(
√

2×
√

2)R45◦ stripes are not uniform along [010] but are wandering slightly
as seen in the STM image shown in Fig. 7.

On the other hand, the room-temperature structures at higher coverages,
(2
√

2×2
√

2)R45◦ and (
√

20×
√

20)R26.6◦, exhibit isotropic STM images with
four-fold symmetry as shown in Fig. 8. In the STM image for (2

√
2×2

√
2)R45◦,

five protrusions are observed in a unit cell, which agrees with the In cover-
age of 0.63 determined separately [70]. Structure analyses by LEED [71] and
surface X-ray diffraction [72] indicate that an In overlayer with coverage of
5/8 is formed on Cu(001) and that four In atoms out of five per unit cell
occupy the site slightly shifted from four-fold hollow sites, while the other
In atom occupies a four-fold hollow site. The structure can be understood as
a (1 × 1) structure with a dense array of line vacancies as shown in Fig. 8.
(Alternatively, it is also possible to consider this structure as (

√
2×

√
2)R45◦

with interstitial In atoms.) The (
√

20 ×
√

20)R26.6◦ structure has a complex
atomic arrangement, in which all the In atoms are on the (2 × 2) mesh, as
shown by the dotted line in Fig. 8(c). The density of protrusions observed by
STM amounts to only 0.6. It was suggested that the second layer is composed
of an In1/4Cu3/4 alloy with (2 × 2) periodicity [16].

2 The In coverage for (9
√

2 × 2
√

2)R45◦ was first reported as 1.0, but was later
determined to be 0.5 [70].
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(10)

(01)(a) (b)

(c)

2 a
√2

Fig. 7. (a) STM image for the (9
√

2×2
√

2)R45◦ surface. A small square and a large
rectangle indicate the unit cells of (1×1) and (9

√
2 × 2

√
2)R45◦, respectively. (b)

LEED pattern for the same surface [4]. (c) 2D Fourier transform of the STM image.

(a) (c)

 In Cu

(b)

Fig. 8. (a) STM image for the (2
√

2×2
√

2)R45◦ surface. (b) Line-dislocation model
for (2

√
2 × 2

√
2)R45◦. Solid lines indicate the unit cell. White broken lines indi-

cate the line vacancies formed in the (1 × 1) lattice of In. Note that the actual
In atom positions are shifted from four-fold hollow sites. (c) STM image for the
(
√

20×
√

20)R26.6◦ surface [70]. Solid lines indicate the unit cells. The dotted lines
indicate the (2 × 2) mesh.

The above three surfaces undergo phase transitions upon heating. The trans-
lational symmetries of the STM images of the high-temperature phases agree
with those observed by LEED. For the transition between (9

√
2 × 2

√
2)R45◦

and (
√

2 ×
√

2)R45◦, the coverage is maintained at 0.5. Since the (9
√

2 ×
2
√

2)R45◦ structure consists of striped domains of distorted (
√

2 ×
√

2)R45◦,
a displacive mechanism may be probable. Note, however, that the image of
(
√

2 ×
√

2)R45◦ is associated with considerable noise [4] due possibly to the
thermal motion of atoms faster than the scanning, which may suggest disor-
dered nature of the high-temperature phase. The STM data does not serve a
decisive information to determine the trasition mechanism.

For the phase transition at θIn = 0.63, STM showed that the high-temperature
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surface is covered uniformly by the (2×2) structure, which is in agreement with
the translational symmetry observed by LEED. However, individual atoms
were not resolved but smeared out to give rise to a (2× 2) mesh pattern [15].
On the other hand, the coverage determined for the low temperature (2

√
2 ×

2
√

2)R45◦ phase is 5/8, which is incompatible with the long-range (2 × 2)
symmetry: The number of In atoms per unit cell should be an integer! This
indicates that there is a kind of structural disorder in the high temperature
phase; the (2×2) symmetry observed by LEED and STM should be temporal
average of the fluctuating surface structure. In order to quantitatively analyse
the disordered structures, precise experiments are necessary. We will discuss
the mechanism of this phase transition in the following section.

For tin adsorption on Cu(001), four ordered structures are formed within sub-
monolayer coverages upon deposition at room temperature [73]. For the first
structure, which exhibits a complex LEED pattern, a structure model was
proposed which consists of (2 × 2) patches separated by anti-phase domain
boundaries [74]. This is similar to the Cu(001)-(9

√
2× 2

√
2)R45◦-In structure

which is understood as distorted (
√

2 ×
√

2)R45◦ with antiphase line disloca-
tions oriented along [110]. In this case, however, antiphase domain boundaries
are assumed to run along [110] as well as along [11̄0] forming a two-dimensional
network. Further deposition results in (6 × 2), (3

√
2 ×

√
2)R45◦, and (2

√
2 ×

2
√

2)R45◦ structures. Among these ordered structures, the (3
√

2 ×
√

2)R45◦

structure was analysed by dynamical LEED, which yielded a structural model
shown in Fig. 9 with a Pendry reliability factor RP = 0.26 [75]. The model cor-
responds to a nominal Sn coverage of 1/2. With this value as a reference, the
coverages for the complex, (6×2), and (2

√
2×2

√
2)R45◦ phases were estimated

to be 0.21–0.25, 0.37–0.42, and 0.63–0.7 [73,74]. A study by RBS/channelling
indicated the alloying at submonolayer coverages [76].

The structure model for the Cu(001)-(3
√

2 ×
√

2)R45◦-Sn surface consists of
a Cu1/3Sn1/2 alloy layer on top of Cu(001). This can be understood that the

stripes of (
√

2 ×
√

2)R45◦-CuSn is separated by line defects, which actually
are Cu vacancies running along [010].

Upon annealing, the (3
√

2 ×
√

2)R45◦ phase undergoes a phase transition at
∼360 K to (

√
2 ×

√
2)R45◦ [17]. The transition is reversible with respect to

temperature change. The structural analysis of the high temperature phase
has not yet been reported. The toplayer composition of the low-temperature
phase, Cu1/3Sn1/2, is not consistent with the apparent translational symmetry
of the high-temperature phase. This suggests either (a) that the transition is
associated with long-range mass transfer (e.g., of Cu atoms between terraces
and steps) or (b) that the high-temperature phase has a disordered structure
with the (

√
2×

√
2)R45◦ LEED pattern being temporal and/or spacial average.

For thallium deposition on Cu(001) at room temperature [77–79], the (2
√

2×
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1st-layer Sn

1st-layer Cu

2nd-layer Cu

[100]

[010]

Fig. 9. Top view of the structure model for Cu(001)-(3
√

2×
√

2)R45◦-Sn [75]. Rect-
angle shows the unit cell.

2
√

2)R45◦ phase is first formed, whose LEED intensity becomes maximum at
θ = 0.25 3 and disappears over a small range of coverage [79]. While no ordered
structures are observed, the AES signal intensity as a function of deposition
time shows a kink at θ ∼ 0.38 indicating a quick decrease of thallium uptake
rate. Further increase of thallium coverage leads to the appearance of another

ordered structure, designated as

4 0

2 7

 at θ ∼ 0.52. This is then followed by

a

4 0

2 6

 phase at θ ∼ 0.52 which is the saturation coverage. It was assumed

that the

4 0

2 6

 phase is composed of a dense quasi-hexagonal monolayer of

thallium atoms with the metallic radius. The coverage for each phase was then
estimated based on the AES result. It was assumed that the kink in the uptake
curve corresponded to the change in the growth mode from one-dimensional
linear-chain to two-dimensional dense-monolayer growth.

In the coverage range between the disappearance of (2
√

2 × 2
√

2)R45◦ and
the kink in the uptake curve, cooling the surface to 100 K resulted in a set of
new LEED patterns each existing over a narrow coverage range [79]. Among
the structures, a (2

√
2×2

√
2)R45◦ phase was assumed to have an undistorted

parallel linear-chain structure, and a (6
√

2 × 2
√

2)R45◦ phase a more dense,
distorted linear-chain structure. Note that structure analysis has not yet been
carried out for these phases on Tl/Cu(001) and that no LEED experiments at
elevated temperatures has been reported.

The structure of Pb/Cu(001) has also been studied. Lead depostion on Cu(001)
at room temperature results in the formation of (2

√
2 × 2

√
2)R45◦ at a sub-

monolayer coverage and c(5
√

2 ×
√

2)R45◦ at the completion of a monolayer

3 In the original publications [77–79], the coverages are given as ratios to that of
a hexagonal-closed-packed thallium monolayer, it is given here as fractions of the
number density of a Cu(001) plane.

19



Table 2
Nearest neighbor distance in elemental solids (Å)

In Tl Sn Pb Bi Cu

3.24 (1.27) 3.41 (1.33) 3.02 (1.18) 3.50 (1.37) 3.06 (1.20) 2.56 (1.00)
Figures in parantheses are relative values.

[73,80–84]. The latter structure was assumed to be a quasi-hexagonal close-
packed monolayer. Further deposition leads to the growth of three-dimensional
islands of lead. No structural transitions were observed by cooling the sub-
strate down to 77 K [80]. The possibility of phase transitions at high temper-
atures has not yet been examined.

It is also noted that a variety of ordered structures are formed by bismuth
adsorption on Cu(001) [85,86], among which the c(9

√
2 ×

√
2)R45◦ seems to

have atomic arrangement similar to that of the (9
√

2 × 2
√

2)R45◦ phase on
In/Cu(001). Phase transition at high temperatures, however, has not yet been
examined.

To summarize, many structures are observed for submonolayer coverages of
In, Tl, Sn, Pb, and Bi on Cu(001). Because the size of adsorbate atoms is
significantly larger than that of Cu (see Table 2), adsorbate atoms cannot
occupy the nearest-neighbor four-fold hollow sites. It is therefore expected that
the adsorbate atoms tend to occupy next-nearest-neighbor sites at a distance of
a√

2 = 3.615 Å. This should result in a (
√

2×
√

2)R45◦ overlayer in the simplest
case. Most of the actual structures indeed have local building blocks similar to
(
√

2×
√

2)R45◦, but in a long range they are modulated differently, yielding a
variety of periodicities. These structures can be understood by combinations
of line dislocations exerted onto the (

√
2×

√
2)R45◦ lattice. For In and Sn on

Cu(001), the complex room temperature structures undergo phase transitions
upon heating to simple (

√
2 ×

√
2)R45◦ or (2 × 2) structures. On the other

hand, as far as the present anthor is aware of, no results have been reported for
the structural changes upon heating the Tl, Pb and Bi structures on Cu(001).

3.3 Electronic structure and its relevance to the phase transitions

The evolution of the valence electronic structure of In/Cu(001) as a function
of In coverage has been studied thoroughly by angle-resolved photoelectron
spectroscopy (ARPES) [70,87]. The valence electronic structure of the Cu sub-
strate is composed of d bands, whose maximum is located at ∼2 eV below EF,
and nearly-free-electron-like sp bands. The In adsorption induces the forma-
tion of two-dimensional surface resonance bands with nearly-free-electron-like
dispersion.

The overall dispersion of the In-induced surface resonance band is schemati-
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Fig. 10. (a) A schematic of the surface resonance band, for a quadrant of (1×1) sur-
face Brillouine zone, in the high-temperature normal-metal state of In/Cu(001). 2D
Fermi surface is shown on the bottom plane. (b) Dispersion of the surface resonance
band for the high temperature (

√
2 ×

√
2)R45◦ phase (θIn = 0.5) along high-sym-

metry lines. The shaded area indicates the Cu bulk bands projected onto the (001)
plane. (c,d) Surface resonance bands mapped at θIn = 0.63 along [110] (c) and [100]
(d).

cally shown in Fig. 10 [70,87]. With increasing In coverage, the surface reso-
nance band denoted as S1 in Fig. 10 is first observed at θIn ∼0.25 split from
the edge of the projected bulk Cu sp band. The S1 resonance is shifted grad-
ually to lower energies with increasing coverage [70]. The resonance band is
nearly parabolic around the Γ̄nm points and exhibits hybridization gaps along
the (1×1) surface Brillouine zone boundaries. While the upper band S2 is not
very clearly observed in the experiment with photons of hν = 21.22 eV due
to the broadening induced by the coupling with substrate electrons, the ex-
periment with 80-eV photons indicated more clearly the upper band as shown
in Fig. 10 (c) [15]. The dispersion along high-symmetry directions are shown
in Fig. 10 (b) along with the Cu bulk bands projected onto the (001) plane.
Note that the projected bulk bands shown are for the (1 × 1) symmetry and
that most of the projected band gaps disappear on the surface covered with
In superstructures, making the In-induced states resonances.

Fermi surface mapping experiments were also done for coverages from 0.5 to
0.85, in which the photoemission intensity was mapped out with the analyzer
energy window maintained at EF while scanning the electron energy analyzer
in azimuthal and polar angles [15,87]. This showed a nearly circular Fermi
surface as shown in Fig. 11(a). The overall shape of the Fermi surface is
unchanged with increasing coverage. The radius is increased gradually as the
surface resonance band is shifted to lower energies with increasing coverage,
but the increase is very small (∼ 2% between θIn = 0.5 and 0.85). The Fermi
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Fig. 11. (a) Fermi surface mapped for Cu(001)-(2
√

2 ×
√

2)R45◦-In [87]. A circular
feature with an approximate radius of 1.4 Å is the Fermi surface constituted by the
In-induced surface resonance bands. Strong features inside the circle are due to the
bulk Cu bands. The arrow indicates the path along which the band mappings were
measured. ARPES band mappings taken at (b) 460 and (c) 300 K for In/Cu(001)
of θIn = 0.63 [15].

surface constituted by the In-induced surface resonance band was reproduced
by a theoretical calculation, which showed that the surface resonance has a p
character [88].

Upon the phase transition from the high- to low-temperature phase, a band
gap at EF is formed. The observation was first reported for the phase transi-
tion between high-temperature (

√
2 ×

√
2)R45◦ and low-temperature (9

√
2 ×

2
√

2)R45◦ at θIn = 0.5 [4], and later for the phase transition between the
high-temperature (2×2) and low-temperature (2

√
2×2

√
2)R45◦ at θIn = 0.63

[15]. Typical ARPES data for the latter case is shown in Fig. 11. The data
was obtained at the k space region where the Fermi surface crosses the surface
Brillouine zone of the low-temperature (2

√
2 × 2

√
2)R45◦ phase. While the

band is metallic at high temperatures, it is folded back at a binding energy of
∼ 0.6 eV at room temperature, resulting in a band gap at EF. The band gap
at EF was observed at the k-space region where the (2

√
2× 2

√
2)R45◦ surface

Brillouine zone and the high-temperature Fermi surface are separated within
∼ 0.1Å. The back-folding points in the k space are aligned on the surface
Brillouine zone of (2

√
2 × 2

√
2)R45◦, indicating that the band gap formation

is due to the lattice potential of the low-temperature superstructure.

At the k region where the Fermi surface is located by > 0.1 Å away from
the (2

√
2 × 2

√
2)R45◦-In Brillouine zone boudary (for example, along the Γ̄-

M̄ direction), no gap is formed at EF but a very small (< 0.1 eV) band
gap is formed below EF on the surface Brillouine zone boundary. Since the
k dependence of the gap size ∆(k) is determined by the real-space lattice
potential U(r) associated with the periodic lattice distortion, the above result
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may be rephrased that the atomic arrangement in the low-temperature phase
takes place so that the energy gain associated with the gap formation at EF

is maximized.

A very similar observation was reported for the phase transition between
(3
√

2 ×
√

2)R45◦ and (
√

2 ×
√

2)R45◦ on Sn/Cu(001) [17]. The Fermi sur-
face for the high-temperature (

√
2 ×

√
2)R45◦-Sn phase has a circular shape

as those of In/Cu(001) with similar size: The Fermi wavevector along Γ̄ − M̄
for (

√
2 ×

√
2)R45◦-Sn is kF = 1.46 Å−1, while that for In/Cu(001) changes

from 1.42 Å−1 at θIn = 0.5 to 1.45 Å−1 at θIn = 0.63 and remains unchanged
upon further increase of the In coverage up to 0.85. The Fermi surfaces on
In/Cu(001) and Sn/Cu(001) have very similar shape and size, which may be
surprising considering that the numbers of valence electrons of In and Sn are
different. As in the cases of In/Cu(001), the phase transition on Sn/Cu(001) is
also associated with the formation and disappearance of an electronic energy
gap across EF along the surface Brillouine zone boundary of the low tempera-
ture phase. The size of the energy gap was comparable to those for In/Cu(001).
The Fermi surface nesting in this case is also imperfect: The CDW energy gap
was observed at k within 0.04 Å−1 from the surface Brillouine zone boundary
of the low-temperature (3

√
2 ×

√
2)R45◦ structure.

These observations indicate that the low-temperature phases have lower elec-
tronic energies and lower electronic entropies than those of the corresponding
high-temperature phases. While the band gap is formed only partially, its
magnitude is large enough to acount for the transition temperatures of 350–
400 K (see Eq. (5)) and thus the low-temperature structures are understood
as the Peierls-type CDW phases stabilized by the Fermi surface nesting and
electron–phonon coupling.

Different parts of the Fermi surfaces are responsible for the gap opening in each
superstructure. In all cases, the resultant CDW phases are commensurate with
the substrate lattice and large (∼ 1 eV) band gaps are formed at k positions
slightly deviated from kF in the high temperature phases. These characteristics
are in accordance with the strong electron–phonon coupling and its strong q
dependence. The mechanism that yields much different superstructures from
similar Fermi surfaces should involve firstly the strong q dependence of the
electron–phonon coupling. In and Sn are metallic but have tendencies toward
covalent and directional bonding, which would result in different structures
depending on small differences in coverage, kF, and so on.

The second factor that may govern the formation of different superstruc-
tures from very similar Fermi surfaces is the contribution of the bulk elec-
tronic states. In a surface system like In/Cu(001), a semi-infinite metallic
substrate is in contact with an overlayer and hence the bulk electronic system
is, in principle, affected by the lattice potential formed by the surface super-

23



S1 at EF on XM S2 at EF on XM

In

Cu-1

Cu-2

Cu-3

Cu-4

Cu-5

Cu-6

Cu-7

Cu-8

Cu-9

Cu-10

Cu-11

Cu-12

Cu-13

(a) (b)

Fig. 12. Wavefunctions for the (a) S1 and (b) S2 surface resonance band at the k
points where the band crosses EF along X̄M̄ .

structure. For instance, this effect seems to be significant in the formation of
(9
√

2 × 2
√

2)R45◦ superstructure, for which the nesting condition is not sim-
ple. The 9

√
2 period is not associated with 2kF but corresponds to 2

3
kF. In an

isolated one-dimensional system with only one conduction band, the nesting
condition is simply expressed as q∥ = 2kF [89]. On the other hand, in surface
systems, substrate metallic bands coexist with the surface one that undergoes
the nesting. In such a multi-band system, the ground state may differ from
the one characterized by q∥ = 2kF. The relative stability of the states with
different q∥n (q∥n = 2

n
kF) depends on the gap size and density of states of the

substrate bands at k∥ = q∥n and E = EF. It is speculated that the nesting at a
fraction of 2kF is due to the energetic contribution of the substrate electronic
system.

Based on the fact that the Fermi surface constituted by the adsorbate-induced
surface resonance band is insensitive to the difference between In and Sn,
Mart́ınez-Blanco et al. [17] suggested that the substrate plays a main role and
noted “that the Cu(100) surface is prone to an instability, which is triggered
by an adsorbate layer.” This idea is interesting. Besides the similarity between
In- and Sn-covered Cu(001) surfaces, the change of Fermi surface with increas-
ing In coverage on Cu(001) does not correspond to the increase of the number
of electrons per unit cell. The surface resonance band, denoted above as S1,

24



should not be considered as the band formed by In atomic orbitals. In order
to examine this hypothesis, we studied the surface electronic structure of the
In/Cu(001) surface by first-principles electronic structure calculation based
on the “augmented plane wave + local orbitals (APW+lo)” method [90]. The
surface was modeled by a 25-layer Cu(001) slab with (

√
2 ×

√
2)R45◦-In lay-

ers on both sides. The bands corresponding to S1 and S2 were reproduced.
Remarkably, the wavefunction of the S1 band is not localized near the sur-
face but is spread over the entire slab. In Fig. 12(a), the wave function of the
S1 band at the k point where the band crosses the Fermi level along X̄M̄ is
shown. Since we have two In-covered surfaces on both sides of the slab, the S1

states on both sides, Ψa and Ψb, interact with each other and form bonding
(∼ Ψa + Ψb) and anti-bonding (∼ Ψa − Ψb) states. In Fig. 12(a) is shown
wavefunction of the anti-bonding state, which has a nodal plane at the center
of the slab (corresponding to the Cu-13 layer) and hence the amplitude near
the central plane is overdamped as compared with the real substrate that is
much thicker. We therefore understand that the S1 state penetrates into at
least 10-20 layer depth. In contrast, the wavefunction of the S2 band at the k
point where it crosses EF shows strong localization at the surface as shown in
Fig. 12(b). This is because this state lies in the projected bulk band gap. The
photoemission intensity of the S1 band is maximum at the completion of an In
monolayer [70], which is in agreement with that the S1 state is not originating
from the overlayer but is induced by the adsorption in the Cu(001) substrate
at and below the interface.

Some readers may inquire how the difference in the number of electrons for
In and Sn should then manifest itself in the electronic structure. Because the
system is metallic, valence electrons of In or Sn are well merged into the con-
tinuum valence band of the substrate and hence cannot be distinguished. It is
only those surface resonance bands split from the edge of the projected bulk
band, as mentioned above, that have a relatively high amplitude at the surface.
Note that, for semiconductors, such as Si, Ge and GaAs, and insulators such
as metal oxides, it is possible to assume that discrete building blocks (a single
atom for Si, a pair of Na and Cl atoms for NaCl for instance) are formally
associated with definite numbers of electrons, and hence the electron count-
ing rule can be formulated for surface systems [91–93]. For metals, however,
electrons are mostly delocalized over the real as well as reciprocal space and
hence one cannot argue, for instance, that a (

√
2 ×

√
2)-In layer is associated

with how many valence electrons.

Note that, since the electronic band involved in the gapped–degapped tran-
sition seems to be delocalized into deep bulk, it is possible to assume that
the underlying substrate lattice also undergoes structural transition between
distorted and undistorted structures, which however has not yet been demon-
strated. The existing diffraction studies on In- and Sn-covered Cu(001) do not
show such instability in the substrate lattice. To determine the presumably

25



small displacements of the substrate atoms based on diffraction data that is
largely dominated by the surface atoms would require exceptionally careful
experiment and analysis.

4 Mechanism of the phase transitions on Cu(001) covered with
heavier p-block metallic elements

In the previous subsection, the change of the atomic and electronic struc-
ture during the phase transitions was summarized for In- and Sn-covered
Cu(001). The phase transitions appear to take place at 350–400 K. The high-
temperature phase in each phase transition is characterized by high transla-
tional symmetry and metallic surface resonance band, and the low-temperature
phase by reduced symmetry and partial energy gap formation at EF along the
surface Brillouine zone boundary of the low-temperature phase. The changes
are observed in a small temperature interval: The energy gap is not observed
slightly above the temperature at which the superstructure LEED spots from
the low-temperature structure disappears. According to the conventional pic-
ture for the CDW transitions as summarized in Fig. 4, the phase transitions
may be interpreted as the weak-coupling CDW transition. On the other hand,
the large energy gaps (∼1 eV), partial nesting, and commensurate structures
in the low-temperature phases imply that the phase transitions are of strong-
coupling nature.

This apparent contradiction was first pointed out for In/Cu(001) in Ref. [15]
and later discussed also for Sn/Cu(001) [17]. In order to reveal the driving
mechanism of the surface phase transitions, it was desirable to study the criti-
cal behavior. For weak-coupling CDW that can be described by the mean-field
theory, the energy gap size and the lattice distortion amplitude are proportonal
to each other and hence serve as a unique order parameter of the phase transi-
tion. On the other hand, according to the conventional strong-coupling CDW
scenario, the structural change occurs in two steps: At a low temperature, an
order–disorder process takes place with the periodic lattice distortion associ-
ated with CDW maintained locally, and at a higher temperature a displacive
change associated with a gapped–degapped transition takes place. Thus it is
very important to study the precise temperature dependence of both atomic
and electronic structure during the phase transition. In this section, the results
of such studies for the phase transition on In/Cu(001) at θIn = 0.63 [18,19]
are summarized and the mechanism of the phase transition is discussed.
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4.1 Temperature dependence of the electronic structure

Precise temperature dependence of the CDW energy gap during the phase
transition is important because it serves as an order parameter for the weak-
coupling transition. It, however, is usually difficult to determine the absolute
energy gap experimentally [3,17,94–98], because photoemission is sensitive
only to occupied electronic states and angle-resolved inverse photoemission
lacks energy resolution sufficient for the precise determination of energy gaps.
The CDW ground states in the surface systems have superstructures com-
mensurate to the substrate lattice. Hence the lattice modulation wavevector
does not necessarily agree with 2kF but are deviated slightly. It is sometimes
assumed that the energy difference between the lower band maximum and EF

serves as an order parameter. This, however, is not justified in the commen-
surate CDW cases, in which the reference energy at which the upper and the
lower bands encounter with each other at T = Tc does not agree with EF.

For the (2
√

2× 2
√

2)R45◦ − (2× 2) transition on In/Cu(001), both the lower-
band minimum and the upper-band maximum were observed directly by ARPES.
The experimental geometry is shown in Fig. 13 (a). For the high-temperature
(2 × 2) surface, the Fermi surface crosses the (2

√
2 × 2

√
2)R45◦ surface Bril-

louine zone boundary at ky ∼ 0.6 Å−1. Hence, at ky slightly smaller than 0.6
Å−1, the energy gap will open with respect to the reference energy, δE, lower
than EF as shown in Fig. 13 (b). The upper band minimum will then come
down below EF at temperatures close enough to Tc.

Figure 13(c) shows the ARPES data taken along kx at ky = 0.51 Å−1 with
increasing temperature [18]. At T = 305 K, only the lower band is observed,
which is folded back at 0.59 eV below EF. The kx point at which the band
is folded back coincides with the (2

√
2 × 2

√
2)R45◦ surface Brillouine zone

boundary. At T = 374 K, the lower-band maximum is shifted to ∼0.50 eV
below EF and another feature is observed near EF. Note that the photoemis-
sion intensity is normalized to the Fermi distribution function convoluted with
the instrumental resolution function. This enables one to recognize features
up to ∼0.2 eV above EF. Note that spectra obtained with photon sources of
poor spectral purity, such as a He I resonance lamp containing both Iα and Iβ
lines and synchrotron radiation containing higher-order lines, are sometimes
associated with a spurious features above EF when normalized to the Fermi
distribution function. However, since a He discharge lamp in combination with
a toroidal mirror monochromator was used in this experiment, the observed
feature is ascribed to the intrinsic electronic states above EF. At 460 K, at
which LEED shows only (2 × 2) diffraction spots, the two bands are merged
into a single metallic band.

The ARPES spectra were measured between T = 120 and 410 K. The spectra
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Fig. 13. (a) Relation between 2D Fermi surface for high-temperature (2 × 2)-In
and surface Brillouine zone for (2

√
2 × 2

√
2)R45◦-In on Cu(001). (b) Schamatic

band structure at ky < 0.60 Å−1. The metallic band (broken line) crosses the
surface Brillouine zone boundary at δE below EF. The CDW gap is opened with
respect to this energy, which enables one to observe the upper band minimum by
photoemission. (c) Surface resonance band maps measured along ky = 0.51 Å−1 at
T = 305, 374 and 460 K [18]. (d) ARPES spectra at the backfolding point during
the phase transition. The spectra except for the bottom two are normalized to the
Fermi distribution function.

at kx = 1.30 Å−1, corresponding to the backfolding point, are shown in Fig.
13(d). The tick marks indicate the peak positions determined by fitting two
components to each spectrum. The lower-band maximum shows a shift over
the entire temperature range measured. The shift by 50 meV between 120 and
305 K is in agreement with the other experiment carried out for this surface by
using a different sample and a different instrument [15]. Above 300 K, the shift
becomes more and more pronounced. Although the upper band is observed
only above ∼370 K, one can determine that the upper-band minimum and
the lower-band maximum encounter with each other at ∼300 meV below EF

at ∼410 K to be merged into a single metallic band.

The positions of the lower-band maximum and the upper-band minimum are
plotted as a function of temperature in Fig. 14. As far as the present author
is aware of, direct observation of the gap temperature dependence for CDW
transitions has not been reported. Hence it would be interesting to compare
the data with the temperature dependence of the order parameter predicted
by the mean-field theory. The solid curves in Fig. 14 shows the temperature
dependence of the weak-coupling order parameter as described by Eq. (2). The
binding energy at lower-band maximum was fitted with δE + ∆l(T ) and the

28



400350300250200150100

0.1

0.2

0.3

0.4

0.5

0.6

-0.1

EF

T (K)

B
in

d
in

g
 e

n
er

g
y

 (
eV

)

0=

Tcl

Fig. 14. Temperature dependence of the lower-band maximum and the upper-band
minimum for the CDW energy gap for the (2

√
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√
2)R45◦ − (2 × 2) phase tran-

sition [18]. Tcl indicates the transition temperature for the lattice order–disorder
transition.

upper-band minimum with δE−∆u(T ). ∆l and ∆u were assumed to behave ac-
cording to Eq. (2) with different limiting values, ∆l(0) and ∆u(0), respectively.
While there is some discrepancy at 350–380 K, the curves are seemingly in
reasonable agreement with the experimental data. The zero-temperature gap
is estimated to be ∆l(0) + ∆u(0) = 860 ± 180 meV.

Temperature dependence of the energy gap was also measured for Sn/Cu(001)
[17]. In this case, however, the upper band was not observed, possibly because
of the existence of the metallic band at EF from the perpendicularly-oriented
domains. The binding energy of the lower-band maximum was studied as a
function of temperature, which showed a steep decrease near Tc. It is not clear
at the moment if the band gap also shows the steep decrease. As the high-
temperature Fermi surface is a little outside of the (3

√
2×

√
2)R45◦ Brilloune

zone boundary, the reference energy, δE, should be located below EF, which
suggests that the decrease of the band gap may be more moderate.

The electronic system on In/Cu(001) show apparently weak-coupling-CDW-
like behavior. This may indicate that a process which is governed by electronic
system takes place at Tce = 405 K. However, it is not evident whether or not
the process that should be described by the weak-coupling theory takes place
on this surface. Before discussing further, let us study the behavior of the
lattice system.

4.2 Critical behavior of the lattice

The result shown in the above subsection shows how the electrons behave
during the phase transition. We then have to examine quantitatively how the
lattice structure changes in the same temperature range. Hatta et al. measured

29



0.100.00-0.100.010.00-0.01

C
o
u

n
ts

 (
s-

1
)

H (rec. latt. units) H (rec. latt. units)

300 K

325 K

335 K

340 K

345 K

349 K

354 K

359 K

359 K

365 K

374 K

382 K

388 K

395 K

404 K

415 K

10×

1×103

F
W

H
M

 (
re

c.
 l

at
t.

 u
n

it
s)

P
ea

k
 h

ei
g

h
t 

(a
rb

. 
u

n
it

s)

460420380340300

T (K)

1×102
10 -2

10 -3

(a) (b)
(c)

(d)

10 -1

Fig. 15. (a,b) Profile of a quarter-order spot, corresponding to (0 3/2 0.3) in X-ray
diffraction notation [19]. (c) Temperature dependence of full width at half max-
imum for interger- (¤), half- (△) and quarter-order (⃝) spots. (d) Temperature
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the critical scattering of X-rays from In/Cu(001) with θIn = 0.63 near the phase
transition [19] by using an ultrahigh vacuum X-ray diffractometer at BL13XU
of SPring-8 [99]. The use of X-ray diffraction is essential in the measurement
of critical scattering because it has the ultrahigh k resolution that is necessary
to reveal the behavior close to the critical point, and because it is free from
multiple diffraction, which may affect the diffraction profile of LEED.

The X-ray diffraction for integer-, half- and quarter-order spots at constant
reciprocal lattice vector perpendicular to the surface were measured at a close
temperature interval between 300 and 460 K. The diffraction profiles below
∼340 K were very sharp (full width at half maxima< 6 × 10−4Å−1), which
corresponded to the transfer width of ∼1600 Å. This is an order of magni-
tude larger than achievable in usual LEED experiments and is essential to
observe the behavior close to the transition temperature. Note also that the
low-temperature width was in agreement with the estimated instrumental res-
olution limited by the X-ray slit width, suggesting that the natural correlation
length was even larger.

Figure 15 shows the diffraction profile of quarter-order spot. While the width
does not change up to ∼340 K, it gradually increases above ∼350 K. Along
with the broadening, the peak intensity decreases with increasing coverage.
The changes of the width and peak intensity are shown in Fig. 15(c) and (d),
which also show that interger- and half-order spots exhibit no anomaly up to
460 K.
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The profile S(q, T ) consists of the Bragg diffraction due to the long-range
order and the diffuse scattering due to the critical fluctuation as

S(q, T ) = Ilong(T )F (q) + FSRO(q, T ) + Ibg, (6)

where Ilong(T ) denotes the Bragg diffraction, F (q) the instrumental resolution
function, FSRO the profile due to the critical scattering convoluted with F (q),
and Ibg the uniform background. By analyzing the profile at low temperatures,
the shape of F (q) was found to be approximated well by a Lorentzian with
a constant width. The shape of FSRO was assumed to have also a Lorentzian
form

FSRO(q, T ) =
χ(T )

1 + 4q2ξ2
l (T )

, (7)

where χ denotes the “susceptibility”, in analogy to the magnetic susceptibility,
1/ξl the full width at half maximum of the Lorentzian, and ξl the lattice
correlation length of the short-range order. Equation (6) was fitted to the
measured profile for the quarter-order spot, which resulted in a set of Ilong(T ),
χ(T ), and ξl(T ). In the vicinity of the transition temperature, these three
parameters are scaled to powers of the reduced temperature t = (T −Tcl)/Tcl,
where Tcl denotes the transition temperature of the lattice, as Ilong ∝ (−t)2β,
χ ∝ t−γ and ξl ∝ t−ν . The critical exponents, β, γ, and ν, are determined
by the universal nature of the phase transition irrespective of the microscopic
mechanism.

Figure 16 shows the temperature dependence of the deduced parameters. 4

The fitting of the power functions resulted in Tcl = 345 K and the critical
exponents, β = 0.15 ± 0.19, γ = 1.36 ± 0.62 and ν = 1.14 ± 0.27, which are
in agreement with those theoretically expected for the two-dimensional Ising
universality class: β = 1/8, γ = 7/4 and ν = 1. In Fig. 16, the solid lines are
shown for these theoretical values. In Fig. 16(c), 1/ξl is also plotted, which
increases linearly with increasing t. It is evident that the data cannot be fitted
with the mean-field model, which predicts β = 1/2, γ = 1 and ν = 1/2.

The two-dimensional Ising model corresponds to the systems that are de-
scribed by two-dimensional lattice with its lattice points occupied by either of
up (σi = 1) or down (σi = −1) spins. A Hamiltonian of the form

H = −
∑
i,j

Jijσiσj

describes the interaction energy and is often simplified by setting Jij = 0
except for Jij = J for nearest-neighbor pairs. At low enough temperatures
the “spins” have a long-range order which may be ferromagnetic, antiferro-
magnetic, etc. depending on the signs and relative magnitudes of the interac-

4 In ref.[19], the values of ξl (1/ξl) were scaled larger (smaller) by a factor of
√

2
(1/

√
2).
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tions Jij. At a finite temperature, the two-dimensional Ising model exhibits
an order–disorder transition, for which the critical exponents above are deter-
mined. Approaching the transition temperature from below, the system be-
haves as follows: At low enough temperature, the long-range order is developed
well and the lattice correlation length is, ideally, infinite. Upon approaching
Tcl, isolated defects are thermally generated which causes the decrease of the
long-range-order intensity (Ilong) below Tcl. At T = Tcl, phase defects are gen-
erated and the system is divided into patches in antiphase relation with each
other, which destroys the long-range order. With further increasing tempera-
ture, the density of phase defects, or antiphase boundaries, increases. The size
of the patches is statistically distributed, and the average distance between
the antiphase boundaries determines the lattice correlation length. The criti-
cal exponent ν = 1 for the two-dimensional Ising class may suggest that the
density of antiphase boundaries increases in proportion to the temperature
rise.

While the correspondence of the actual atomic structure to the two-dimensional
Ising model is not so straightforward as for the transition between c(4×2) and
(2×1) on Si(001) [100–102], it is possible to map the (2

√
2×2

√
2)R45◦−(2×2)

transition onto the Ising model as shown in Fig. 17. At low temperatures, the
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Fig. 17. A possible Ising-model representation of the order–disorder
((2

√
2 × 2

√
2)R45◦ – (2 × 2)) transition on In/Cu(001). Overlayed square

lattice is for (2
√

2 × 2
√

2)R45◦. Broken lines indicate anti-phase boundary.

(2
√

2×2
√

2)R45◦ domain is well developed over the surface with a correlation
length of > 1600 Å, corresponding to a “ferromagnetic” order. At T = Tcl,
antiphase boundaries are created, which destroys the long-range order. Two
types of domains separated by antiphase boundaries give rise to sharp (2× 2)
diffraction spots and diffuse (2

√
2 × 2

√
2)R45◦ spots. With increasing den-

sity of the antiphase boundary, diffuse (2
√

2 × 2
√

2)R45◦ spots are further
broadened and weakened.

4.3 Mechanism of the phase transition

Now let us discuss the mechanism of the phase transition, which should explain
both the results of ARPES and critical X-ray scattering.

First of all, it should be stated that the overall phenomena cannot be ex-
plained by the weak-coupling theory which predicts the BCS-like behavior for
both the structural and electronic order parameter with the same Tc. The
experiments show that the electronic gapped–degapped transition takes place
at 60 K higher than the lattice transition. Interestingly, the Sn/Cu(001) also
exhibits a gapped–degapped transition at ∼40 K higher than the structural
transition, which may suggest that a common mechanism operates in the two
cases.

We then should examine how the lattice and electrons behave at each temper-
ature range. Let us start with the temperature range T < Tcl. In this tempera-
ture range, the long-range order is maintained with a lattice correlation length
as long as ∼2000 Å. On the other hand, the lower-band maximum at the CDW
gap is shifted upward by 50 meV, which corresponds to the decrease of the to-
tal CDW gap of ∼140 meV (16% of the total gap 860 meV), between 120 and
300 K. The lower-band maximum is further shifted by 30 meV between 300
and 345 K. The decrease of the band gap with increasing temperature may
be induced by thermal lattice expansion, which decreases the gap by band
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narrowing, and thermal vibration of the lattice [103]. These effect, however,
seems to be not large enough to account for the observed shift. We should
then consider the effect of thermal exciation of electrons into the upper band
in a mechanism described below, which screens the electron–phonon coupling
and hence decreases the CDW gap.

At T > Tcl, the band gap decreases steeply and goes to zero at Tce = 405 K.
The overall behavior of the gap is apparently in agreement with the mean-field
theory, which suggests the substantial contribution of the surface electronic
entropy. One may argue against this explanation that, because of the large
CDW gap, 860±180 meV at T = 0, thermal excitation across the gap is
negligible at temperatures studied. There, however, is an important point,
peculiar to metal surfaces, that should be emphasized. The surface resonance
band that forms the CDW gap in the low-temperature phase coexists in the
same k space with the metallic bands of the bulk Cu (Fig. 18). As the wave
functions of the surface resonance band penetrates well into the substrate,
excitation of electrons from bulk states at EF to the upper surface resonance
band takes place easily. The energy separation of the upper-band minimum
from EF is small, δu =230±150 meV, at the k point of Fig. 13. While the total
band gap 2∆ defines the condensation energy of CDW and determines the
stability of the CDW ground state as in the CDW states in bulk materials, it
is δu that governs the electronic entropy of the CDW states on metal surfaces.

The change in the electronic structure as described above should be associated
with the displacive structural change. Crystal truncation rods (CTRs) mea-
sured at 25 and 455 K were mostly unchanged, which suggested that the local
structure within a (2 × 2) unit cell is similar for low- and high-temperature
phases [19]. However, CTRs showed a slight but reproducible change depend-
ing on the temperature, which may be due to the displacive structural change.
Most recently, a grazing incidence X-ray diffraction experiment was carried out
for the low-temperature (2

√
2×2

√
2)R45◦ phase [104]. This indicates that the

surface has a p2mm symmetry rather than a p4mm symmetry assumed in the
previous works [71,72]. The quantitative structural analysis above Tce, in par-
ticular, the examination of whether the surface maintains the p2mm distortion
or transforms to p4mm, should be a key to solve the problem.

On the other hand, we should also examine the effect of the critical fluctuation
on the energy gap, as the steep decrease of the gap takes place at temperature
range corresponding to the enhanced critical fluctuation of the lattice order–
disorder transition. Since the CDW gap is formed by the (2

√
2 × 2

√
2)R45◦

lattice potential, the destruction of the (2
√

2× 2
√

2)R45◦ long-range order at
T = Tcl and the decrease of the lattice correlation length at T > Tcl can, in
principle, have an influence on the gap.

In order to discuss this effect semiquantitatively, we define the CDW corre-
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lation length ξCDW . As shown in Figs. 11 and 13, the CDW energy gap is
developed in a finite k-space width of δk ≈0.10 Å−1 about the surface Bril-
louine zone boundary. Summing up the electron wavefunctions among this k
interval would form a wavepacket of a size ξCDW = 2π/δk ≈ 60 Å, which is
defined as the CDW correlation length. 5 This does not necessarily mean that
the surface is separated into patches of an average size of ξCDW in the CDW
phase. In the ground state, the CDW “wavepackets” are coherently ordered
to give rise to much longer lattice correlation length ξl.

The meaning of ξCDW is more clearly explained by stating that the formation
of the CDW gap extending for δk in the k space requires that the lattice is
coherently ordered in a length scale at least for ξCDW . It is therefore argued
that, (1) when the lattice correlation length ξl is larger than ξCDW , the CDW
gap is well developed, (2) when ξl decreases and becomes comparable to ξCDW ,
the spatial distribution of the CDW wavefunction starts to be limited by
ξl rather than ξCDW , and (3) when ξl < ξCDW , the CDW gap should be
decreased because of the destruction of CDW wavepackets. On the other hand,
the decrease of the gap due to the shortening of ξl causes the increase of the
electronic energy and entropy which corresponds to the displacive transition
at a temperature much lower than anticipated by the mean-field description
of the gap size.

The result of X-ray scattering (Fig.16) shows that ξl decreases from ∼1600
Å at T = Tcl to ∼130 Å at T = 380 K, where the steep decrease of the
CDW gap starts, and ∼80 Å at T = Tce. While ξl is still larger than ξCDW at
these temperatures, they are on the same order. This suggests that the lattice
fluctuation effect may have some contribution to the decrease of the CDW
gap. The ARPES spectrum at 374 K shown in Fig. 13(c) exhibits weak but
significant photoemission intensity between the lower-band maximum and the
upper-band minimum, which may be due to the contribution from patches
with sizes smaller than the average at that temperature.
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Fig. 18. Schematic of the surface resonance (SR) bands and bulk metallic bands.
2∆ denotes the CDW gap formed in the surface resonance bands, and δ denotes the
energy separation of the upper-band minimum from EF.

5 Summary – Surface Peierls transition

The Peierls-type CDW transition on metal surfaces is different from that in
bulk materials with low-dimensional electronic structure. While the CDW gap
in the latter case is a true energy gap of the system, the “CDW gap” in the
former case, i.e., the energy difference between the maximum of the lower
surface-resonance band and the minimum of the upper surface-resonance band,
does not represent the energy gap of the whole system (which is metallic
and has no true energy gap across EF!). In the case of ideal low-dimensional
systems, the stabilization energy of the CDW ground state as well as the
electronic entropy of the metallic state are governed by the CDW energy gap.
For the metal surface systems (Fig. 18), the ground-state stabilization energy
is indeed determined by the CDW gap of the surface resonance bands but the
electronic entropy is dominated by the energy difference between the upper
band minimum and EF of the whole system. This characteristics of the metal
surface systems results in much lower Tce than expected from the CDW gap.

We now have two typical examples of the surface Peierls transition on metals:
One on surfaces of W(001) and Mo(001) as reviewed in section 2.4 and the
other on Cu(001) covered with heavier p-block metallic elements. The CDW
ground states have a CDW gap of 2∆ ∼2 eV in the former case and 0.5–1 eV in
the latter case, indicating the large stabilization energy of these ground states
as compared with the weak-coupling CDWs. The difference that separates
these two cases from each other is, firstly, that of the energy separation between

5 In ref.[19], the CDW correlation length was estimated by ~vF/π∆ [20,105], which
has an essentially the same meaning as described above, to be ∼8 Å. This should be
multiplied by 2π to be compared with the lattice correlation length ξl because of the
difference in the unit of k in the nomenclature of X-ray diffraction and electronic
structure theories. The correction due to electron effective mass requres that the
value should be further multiplied by ∼1.3, which eventually results in ξCDW = 60
Å.
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EF and the upper CDW band minimum: δu ∼ 1 eV for W(001) [69] and
δu ∼ 0.2 eV for In/Cu(001). The relatively small gap on Cu(001) suggests
that the electronic excitation to the upper band is significant at around room
temperature, which may induces weak-coupling-like displacive process. This
can explain the shift of the lower-band maximum below 300 K on In/Cu(001)
as well as the large difference of Tce: > 1000 K for W(001) (see section 2.4)
and ∼ 400 K for In/Cu(001) and Sn/Cu(001).

The second, equally important factor that separates the two cases is the differ-
ence in the CDW correlation length ξCDW , which is estimated to be .7 Å for
W(001)-(

√
2×

√
2)R45◦ and ∼60 Å for Cu(001)-(2

√
2×2

√
2)R45◦-In. The dif-

ference in ξCDW reflects the character of the surface electronic states involved
in the Fermi surface nesting. In the case of Cu(001) covered by In and Sn, it
is a highly dispersed p band that forms the Fermi surface, while it is a much
localized d band in the case of W(001) and Mo(001). While order–disorder
transitions take place in both cases, it is only at very high temperature that
the lattice correlation length ξl for W(001) becomes comparable with the very
small ξCDW , thus making the conventional strong-coupling scenario a good
description of the transition. On Cu(001) covered with In and Sn, because
of the long CDW correlation length, the temperature at which ξl ∼ ξCDW is
only a little (50–100 K) higher than the order–disorder transition temperature,
which defines the upper limit of Tce.

For a CDW system with long spacial coherence, the decrease of ξl due to
the disordering with increasing temperature results in the degapping at a
temperature corresponding to ξl ∼ ξCDW , which then lowers the stabilization
energy of the CDW state. It thus turns out that the disordering enhances
the displacive process. In other word, the lattice entropy drives the electronic
gapped–degapped process. This process is different in mechanism from that
driven by electronic excitation across the gap. On Cu(001) covered with In
and Sn, both the mechanism may be responsible to the gapped–degapped
transition.

As a summary of this article, the author suggests that the CDW transitions are
classified according to the gap size and the CDW correlation length (Fig. 19).
For the case with a small gap and a long CDW correlation lenght (top left
corner), the CDW stabilization energy is scaled to ∆2 and a weak-coupling
transition driven by electronic entropy is expected. The mean-field theory pre-
dicts for such a case a displacive transition in which the CDW gap and the
lattice distortion change simultaneously. For the opposite case, i.e., that with
a large gap and a short CDW correlation length (bottom right corner), the gap
extends for a wide k region and hence the stabilization energy is scaled to ∆.
The system is expected to behave according to the strong-coupling scenario:
a lattice-entropy-driven order–disorder process takes place at a temperature
much lower than that expected from the large gap for a weak-coupling tran-
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Fig. 19. Classification of the CDW transition according to the gap size, δu in the
case of metal surfaces or 2∆ in the case of quasi-low-dimensional metals, and the
CDW correlation length, ξCDW . One-dimensional band structure for each case is
schematically shown.

sition, and the lattice distortion is maintained up to a very high temperature
because of the short CDW correlation length (which means that the inter-
action is quite localized). The transition on W(001) and Mo(001) should be
located here. In the case of a large gap and a long CDW correlation length
(top right corner), the CDW stabilization energy is scaled to ∆2 because the
gap is restricted in a narrow k region. The CDW transition in this case pro-
ceeds in two steps as in the strong-coupling cases, but the displacive (gapped–
degapped) process takes place at temperature only a little above that for the
order–disorder transition. The displacive process in this case is driven pre-
dominantly by lattice entropy, while electronic entropy can contribute when
the gap is relatively small.

The long CDW correlation length of the ground state on Cu(001) covered
with In and Sn might have located the transition on this surface in the weak-
coupling regime if the energy gap was a little smaller. In reality, the transition
on this surface is classified into the third category. The relatively small value of
δu suggests that electronic entropy contribute to the gapped–degapped tran-
sition as well.

Petersen et al. [5] suggested that the phase transition between (
√

3×
√

3)R30◦

and (3×3) phases on α-Sn/Ge(111) can also be understood within the frame-
work of the strong-coupling CDW scenario. In the low-temperature (3 × 3)
phase, one Sn atom per unit cell is displaced upwards while the other two
Sn atoms are displaced downwards. The band structure for the hypothetical
in-plane (

√
3×

√
3)R30◦ structure indicates that the surface bands are degen-

erated almost over the entire surface Brillouine zone when folded back into the
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(3×3) surface Brillouine zone. The (3×3) structure is stabilized by Jahn-Teller-
type rehybridization, resulting in one fully occupied surface band due to the
more s-like dangling bond on the Sn atom displaced upwards and two metallic
bands due to the dangling bond of the other two Sn atoms [5,6,106,107]. The
comparison of the band structures for (

√
3 ×

√
3)R30◦ and (3 × 3) suggests

that the band due to the Sn atom displaced upwards is shifted uniformly by
∼0.2 eV to higher binding energy over the entire surface Brillouine zone. This
implies that the interaction involved is quite localized and does not neces-
sarily need the k-space description. If one describes the system in terms of
strong-coupling CDW, the “CDW correlation length” in this case is smaller
than the unit cell size. This is in accordance with the fact that the transition
at ∼220 K is an order–disorder one and the surface is disordered well above
the transition temperature [8–10,108–110].
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