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Preface

Recently, ITS (Intelligent Transport System) has attracted great attention. It is hoped

that developing technologies for ITS will lead to an intelligent automobile which can drive

itself autonomously. They require techniques of environment measurement, Moreover,
it is supposed that rescue robots in the future will be able to go into places in which

people cannot go because of a hostile environment. Such robots require techniques of

3-dimensional imaging for locationing. Above-mentioned applications require accurate
and reliable mbasurement method because they affect human's life. Radars utilizing

ultra-wide-band (UWB) pulses are attractive as an environment measurement rnethod

for various applications including the examples described above. Pulse radars have an

advantage that they can be used even in critical situations where optical techniques cannot

be used. Additionally, they can be used even in dense smoke, fog, vegetations and so on.

Pulse radars are used as ground penetrating radars (GPRs) also, which is important for

detecting pipes in built-up areas, as well as for archaeological inspection.

   Estimating target shapes using waveform data, which we obtain by scanning an omm-
directional antenna, is known as one of ill-posed inverse problems. Parametric methods

such as the model-fitting method have problems concerning calculation time and stability.

We propose fast and stable non-parametric algorithms for high-resolution estimation of

target shapes in order to solve the problems of parametric algorithms. First, we inves-

tigate accurate estimation of point targets by estimating target locations and scattered

waveforms, simultaneously. Suitable filtering is essential for accurate ranging, which re-

quires an accurate waveform estimation. We present a high-resolution estimation algo-

rithm IHCT (Iterative Hyperbolic Coherent Transform) which estimates target location

and scattered waveforms, whose accuracies are interdependent. This technique relies on

iterative improvements of estimated waveforms. The performance of the algorithm is con-

trasted with conventional ones and statistical bounds. Next, we clarify the problem of

applying IHCT to multiple targets. Coherently integrated signals for multiple targets can

not be used as an estimated waveform because of interference waves from other targets･

We propose an interference suppression algorithm based on a neural network, and show

an application example of the algorithm.

   Next, we propose a fast imaging algorithm, SEABED, which can estimate target shapes

accurately. We clarify the existence of a reversible transform between target shapes and

delay time, which we call BST (Boundary Scattering Transform). SEABED is based on
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the BST which enables quick and accurate estimation. We show application examples of

SEABED algorithm with numerical simulations. The performance of SEABED algorithm

for inhomogeneous media is also studied.

   High-resolution imaging algorithms including SEABED algorithm utilize the carrier

phase of received signals. However, their estimation accuracy suffers degradation due to

phase rotation of the received signal because the phase depends on the shape of the target.

We propose a phase compensation algorithm for high-resolution pulse radar systems. This

algorithm improves the estimation accuracy without sacrificing the resolution using the

proposed algorithm.

   Pulse radars are promising candidates for 3-dimensional environment measurement

also, which is required for autonomous robots. Estimating 3-dimensional target shapes

by scanning an omni-directional antenna is a more dificult task than estimation of 2-

dimensional shapes. We have clarified the existence of a reversible transform between

received data and target shapes for 3-dimensional systems as well as in 2-dimensional

systems, The calculation time can be remarkably reduced by applying this transform

because the transform directly estimates target shapes. We propose a new algorithm 3-

D SEABED, based on the transform and show an application example using numerical

simulations.
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Chapter 1

General Introduction

1.1 Introduction

Over IOO milli6n anti-personnel mines are embedded in over 70 countries, About 24000

people are killed or injured every year by these anti-personnel mines. It is desirable

to detect and recognize all anti-personnel mines and get rid of them. Over 8000 and

40000 people are killed by trafic accidents per year in Japan and the United States,

respectively. It is expected to realize an intelligent automobile which can drive itself

autonomously and safely in the near future. It is hoped that rescue robots will work

instead of humans in hazardous areas to save people, However, they have not been
realized yet because of the diMculties of developing this technology. One of the difficulties

is related to environment recognition, which requires imaging techniques. Radar imaging

is one of the most interesting topics because they have a great deal of possibility for

many applications including the above-mentioned ones. We study the UWB pulse radar

technique as a promising candidate for these purposes in the present study. We develop

efficient algorithms to realize an innovative technology,

1.2 Locationing for Robots

In robotics, it is indispensable to recognize 3-dimensional objects. This recognition pro-

cess requires high spatial resolution and a longer range, especially for robotics problems,

Various kinds of sensing techniques for robots have been studied already, as reviewed in

[ll, Widely used types of sensing in robotics are the following:

   e Active triangulation

   e Laser range finders

   e Passive optical imaging
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   e Ultrasonic sensing

   e Radars

The requirements of sensing techniques for robotics are the following:

   e Speed (Data acquisition speed should be high.)

   e Integration (Physical packaging should be small.)

   e Robustness (Sensors should work in difficult environment conditions.)

Robustness of the sensors in Iow-light, dust, fog, etc. is important especially for rescue

robots and autonomous driving cars.

1.2.1 Active Thriangulation

Historically, the active triangulation technique is the first one which was applied to the

range imaging for robotics. A laser is projected onto the scene, and a camera observes

the scene. The depth z to the point is calculated as

                                     B
                             2= xo/f+tan a' (1'1)

where B is the baseline separation of the laser and the camera optical centers, f is the

focal length of the camera lens, xo is the laser spot location, and a is the projection

angle of the laser. This technique has an advantage of simplicity in its implementation.

However, it also has some critical problems as follows: 1) The illumination condition

ihould be adjusted. 2) The frame rate of the scanners is restricted.

1.2.2 Laser Range Finders

rhe laser range finder is a powerful tool to obtain the range data. The laser range finder

.s mainly used indoors with mapping and localization techniques. Modulated laser beams

}re transmitted and their echoes are received, which is very similar to radar systems. We

trave to scan the laser beams to observe a wide range of targets because laser beams are

iighly directional. Laser range finders utilize mechanical motion for this scanning. As

ror signals, AM (Amplitude Modulation) lasers and FM-CW (Ficequency Modulated Con-

]inuous Wave) lasers use an amplitude modulation and frequency modulation to measure

;he range, respectively. FM-CW lasers require complex design although their ranging is

nore accurate than that of AM lasers. AM lasers perfbrm at a range of only tens of

neters at most because they are sensitive to ambient natural light, Laser range finders

iave problems as follows, 1) Output power is Iimited for eye safety. 2) Their sizes are

]omparatively large and heavy.

                                    2
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Figure 1.1: Extraction of corresponding points in multiple images.

   One of the disadvantages of the scanning laser range finders, is the long data acquisition

time due to the mechanical scanning mechanism. Several concepts have been proposed

for non-mechanical scanning, one of which is AO (Acoustico-optical) devices for beam

steering. AOs are crystals placed in the path of the laser beam, with which electric

scanning is realized, This technique has disadvantages as fo11ows: 1) Loss of power by

AO device. 2) Complex optical effects affecting focusing and diffraction of the beam,

1.2.3 Passive Optical Imaging Tbchniques

Passive stereo vision is one of the oldest research topics in the computer vision commu-

nity. Some kinds of techniques of 3-dimensional shape reconstruction with passive stereo

cameras have been studied. Among them, the volumetric intersection method and stereo

method are often used for this purpose [2]. The volumetric intersection method is based

upon silhouettes constraint. The silhouettes constraint requires that the volume obtained

by projecting the 2-dimensional image should contain the 3-dimensional target. The

imaging accuracy of this technique is not sufficient although it requires relatively short

calculation time. Nobuhara et al. [2] improved the accuracy of the 3-dimensional imag-

ing by modifying the reconstructed image by the volumetric intersection method. They

utilized a parametric deformable mesh model and updated the parameters to reduce the

inconsistency of the image and observed data.

   On the other hand, a stereo method needs to extract corresponding points among
multiple images by searching through the image by comparing local neighborhoods [3].

The first step of the algorithm is to detect pairs of corresponding points in the multiple

images as in Fig. 1,1. Next, the location of the points are expressed with some parameters

which are solved using some algorithms such as a least-mean-square method. Many
optimization algorithms have been studied for this purpose, which is reviewed by Sakaue

et al. [4] . This can be translated as applying a triangulation technique, which enables us to

estimate the range of the points. This technique has a limitation due to the triangulation

geometry. It is dificult to select a suitably long baseline because of the trade-off between

high resolution and reduced ambiguity in matching. Jeong et al. [5] proposed a fast

3



stereo matching technique, They utilized MAP (Maximum A Posteriori) estimation for

the matching problem, and reduced this procedure to an unconstrained optimization

problem. A variety of algorithms for passive stereo are reviewed by Dhond et al. [6].

Other passive optical imaging techniques with a camera images are reviewed in [7] . Depth

estimation with only one image is also studied, which includes shape estimation using

shading, texture, contour and focus/defocus.

   Another optical locationing system utilizes curved mirrors with camera, It was re-

ported to be effective for robot navigation to utilize omni-directional optical images by

using mirrors [8]. Many kinds of shapes are proposed for the mirror, these being, a conical

mirror, a spherical mirror, a hyperboloidal mirror and a paraboloidal mirror. Joochim et

al. [91 proposed an imaging algorithm for robot navigation based on a polar coordinate

transform from an omni-directional image obtained by a hyperbo!oidal mirror. They have

shown the optical technique with a hyperboloidal mirror is effective for robots to avoid

the obstacles.

   Ukida et al. IIO] proposed a unique optical imaging technique with 3 colored lights

and an optical scanner, They proposed a 3D shape reconstruction system using three
Iight sources which are red, green and blue. The target is illuminated by using these three

lights from different places. Then, the image is obtained by an ordinary image scanner.

Their system can accurately reconstruct the 3D shape of targets using experimental data.

However, the accuracy of their method depends on the color of the target itself, which

can be a serious problem.

   Optical imaging techniques have an advantage that the cost of CCD (Charge-Coupled
Device) cameras are getting cheaper, Passive stereo techniques have a remarkable advan-

tage in size reduction, which makes it easy to implement them inside small robots. Ozawa

Ill] studied the feasibility of driving assistance with optical image signal processing. Fbr

example, the passive stereo techniques have been applied to the rovers Spirit and Oppor-

tunity in the Mars pathfinder project and the prototype robot Qrio made by Sony Inc.

In this way, passive optical techniques are attractive imaging tools. However, they have

some critical problems. First, the multiple cameras should be placed apart from each

other to ensure the difference of the images obtained. The distance between the cameras

depends on the distance to the target. Additionally, the algorithms have instability for

some targets. For example, they cannot estimate the situation if the camera is placed

in front of a monotone large object because corresponding points and silhouettes cannot

be extracted from the observed image. Finally, they do not work in dense smoke or fog,

which makes the optical technique unreliable, especially for rescue robots or autonomous

driving car systems. The idea of sensor fusion with optical and radar techniques can be

effective for robust observation, which enable us to solve the problems in both techniques.
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1.2.4 Ultrasonic Techniques

Ultrasonic techniques are utilized for imaging especially for medical examination. Ultra­
sonic waves can penetrate human bodies, which makes it possible to reconstruct the image
of invisible regions within our bodies. Ultrasonic can be also used for imaging of targets
in the air. However, their application is restricted by the absorbing effect.

Ylitalo et al. [12] applied the near-field SAR (Synthetic Aperture Radar) algorithm
to the experimental data for a monostatic system with 3.5MHz of ultrasonic signals.The
cysts in a tissue-mimicking background were clearly reconstructed by their study. Ya­
gle et al. [13] studied the feasibility of inverse problem algorithms for acoustic media.
They defined a discrete Schrodinger equation and proposed algorithms for the inverse
problems based on it. Lockwood et al. [14] studied a linear sensor array system for 3­
dimensional imaging. They proposed a sparse array to reduce the number of transducers,
which is also critical for real-time operation. Bronstein et al. [15] proposed a diffraction
tomography algorithm for ultrasound imaging. They utilized NUFFT (NonUniform Fast
Fourier Transform) to calculate the signal in the wave-number domain instead of using
interpolation and extrapolation.

Compared to ultrasonic techniques, radar systems have advantages as follows: 1)
Radiowaves can propagate further than ultrasonics, which have a significant loss in the
air. 2) Polarimetric information can be used. On the other hand, ultrasonic systems can
utilize comparatively slow sampling rate and signal processing, which is an advantage in
regard to the cost and the power consumption. It is promising to develop sensor fusion
techniques with sonar and radar systems because their performance can compensate the
other's weak-points.

1.3 Ground Penetrating Radars

Many studies have also been done in developing radar techniques to detect and image
underground targets. One of the objectives is mine detection, which is a serious problem.
For example, Bosnia-Herzegovina has six million land mines buried throughout previous
battle field sites. High-resolution imaging is required to safely remove all the land mines.
Moreover, many pipes for gas and water; cables for communications and power supply; and
other various objects are buried underground in most cities, which can lead to a critical
accident when excavating tunnels and holes for construction. GPR (Ground Penetrating
Radar) systems are promising to solve these social issues.

However, imaging algorithms for GPR have to solve problems of inhomogeneity be­
cause the relative permittivity and conductivity of the soil largely depend on the water
content. If the media is able to be modeled by layered media, it can be dealt with by
expressing them by some parameters. Catapano [16] proposed an imaging algorithm for
homogeneous targets in stratified media. The attenuation characteristic of soil needs suit­
able selection of the signal frequency, which means that there is a trade-off between the
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detectable range and the resolution. Most of the GPRs utilize baseband pulses which

satisfy UWB conditions due to this trade-off. Nonplanar air-ground interface can also

be a problem when the antenna is scanned apart from the interface. Walker et al. [17]

proposed a non-iterative technique for compensating this effect by the PPB (Plane-to-

Plane Backpropagation) method, which was derived by reformulating the time-domain

SAR (Synthetic Aperture Radar) algorithm with Snell's law.

   For the same purpose, seismic probing is also used, which utilizes the frequencies of 1-

100Hz. Seismic probing can be applied to detection of buried pipes underground although

it is used especially for geological investigations of natural resources. For seismic probing,

migration algorithms are mainly used for imaging, which we describe in detail later.

1.4 Radar Signal Processing

1.4.1 Radar Systems for Robots

Fig. 1.2 shows a schematic block diagram of the radar system for robots. This system is

almost the same as conventional bistatic radar systems. Note that the monostatic radar

systems utilize one antenna as both, a transmit antenna and a receive antenna as shown

in this figure. Multistatic radar systems utilize multiple receive antennas instead of one

antenna in this figure. The signal processor is the place where imaging algorithm is im-

plemented, whose output is the image of the environment of the robot, The image data is

input into the actuators to move the robot itself, which changes the environment situation

including the target directions. Therefore, real･-time observation should be realized for the

application to robots, which is the most important requirement for the imaging algorithm

for robotics.

   We assume two types of antenna placement in the present work, One is a multistatic

radar system, which is used in Chapter 2. The other is a monostatic radar system,
which is used in Chapter 3-5. Multistatic radar systems utilize multiple antennas for

observation, which has an advantage that antenna scanning is not required. On the other

hand, monostatic radar systems utilize only one antenna, which has advantages of the cost

and size. Figs. 1.3 and 1.4 show the antenna placements for multistatic and monostatic

radar systems, respectively.

1.4.2 RadiowaveandLightwave
Both of radiowaves and lightwaves belong to the electromagnetic waves. Radiowaves and

lightwaves are defined as the electromagnetic waves with lower frequency and higher fre-

quency, respectively. In general, the boundary of the frequency which divides them is

around 3THz (the wavelength of 100pam). Optical techniques, including the laser range

finders and the passive optical techniques, assume roughness of the target surfaces. Most

of the objects around us in a daily life, which are walls, desks, floors and so on, can be
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assumed to be rough surface for the wavelength of lightwaves. As for the laser range

finders, this feature enables us to observe the distance to a target without scanning the

laser source. On the other hand, for the wavelength of radiowaves, the target surfaces

are often smooth just like mirrors for lightwaves. Therefore, we can observe the echoes

only from the points with the stationary phase and non-continuous boundaries. Fig. 1.5

shows a raypathes of laser lightwaves and radiowaves for certain objects. Fig. 1.6 shows

a schematic table of the visible regions of a rectangular by using radiowaves and light-

waves. Radiowaves can observe the reflection echo and the diffraction echoes from the

non-continuous boundaries,

  The laser range finders and the passive optical techniques can estimate the shape

of the surface directly, although passive techniques may require some textures on the

surface. To the contrary, radars cannot estimate the target surface directly except for

the point of stationary phase. Radars can estimate target shapes by estimating the edge

points instead of estimating the surface, which means that the target are modeled as a

set of point targets. Radar cannot utilize sharp beams like the laser beams, and thus

requires effective radar imaging algorithms. We deal with the locationing algorithm for

7



Target

//tINI>x,

Receive Reoeive Transmit Receive Receive

        & Receive

Figure 1.3: Antenna placement for multistatic radar systems.

Target

// Transmit & Receive

t=tl

Target

tg

.li,,

Figure 1,4: Antenna placement for monostatic radar systems.

point targets in the present study.

reflection and the diffraction echoes,

imaging of continuous bodies.

Furthermore, we also utilize the characteristic of the

to develop a reversible transform for fast and accurate

1.4.3 UltraWidebandSignals

FCC (Federal Communications Commission) has set a standard for UWB (Ultra Wide
Band) technologies in 2002. Ultra wide band is defined by the FCC in Part 15 regulations,

Part 15 regulations of the FCC contain all updates and changes made by the Commission

as of May 30, 2002. A UWB signal is defined in Part 15 regulations as follows:

  o Bandwidth. For the purpose of this subpart, the bandwidth is the frequency band

    bounded by the points that are 10 dB below the highest radiated emission, as based

    on the complete transmission system including the antenna. The upper boundary

    is designated fu and the lower boundary is designated fL. The frequency at which

    the highest radiated emission occurs is designated fM.

  e Center frequency. The center frequency, fc, equals (fu + fL)/2.

  o Fractional bandwidth. The fractional bandwidth equals 2(fu - fL)/(fH + fL)･
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Figure 1.6: The visible region of a rectangular with radiowaves and lightwaves.

   o Ultra wideband transmitter. An intentional radiator that, at any point in time, has

    a fractional bandwidth equal to or greater than O.20 or has a bandwidth equal to

    or greater than 500 MHz, regardless of the fractional bandwidth.

Fig. 1.7 shows the limitation of the EIRP (Equivalent Isotropically Radiated Power)

for the UWB signals. This definition is different from the definition by DARPA (Defense

Advanced Research Projects Agency) in military technology communities, which is shown

in Table. 1.1. It is a characteristic of UWB that any licenses are not required only if the

output power is restricted within a certain limit. The output power density is limited to

smaller than -41.3dBm/MHz for 3,IGHz to 10.6GHz in order to avoid the interference with

the conventional wireless communication systems such as satellite communications and

IEEE802.11a. UWB technologies are supposed .to be applied to high-speed communication

systems and high-resolution radar systems. Cramer et al, [18] studied the characteristics

of UWB propagation for communication use.
   The fundamental patent for a UWB technology was taken by Ross in 1973 [19]. The

studies on UWB technologies have been done mainly for military use by 1990. However,
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Table 1.1: Definitions of UWB.

FCC Military
Bandwidth 500MHz 1.5GHz

FractionalBandwidth 20% 25%

the situation has changed suddenly after the FCC report on this technology, which opened

a new possibilities of development for public welfare. UWB radars have a variety of

applications including rescue robots and autonomously driving cars.

1.4.4 Matched Filter and Wiener Filter

Matched filters are often used for pulse radar systems, which maximize the S/N of the

output signal. The matched filter M(w) is expressed as

                              M(w) == G"(w), (1.2)
where G(w) is the Fburier transform of the desired received waveform, and * denotes the

complex conjugate of the variable. The matched filter can be regarded as a special case

of the Wiener filter, which is expressed as

                                     G'(w)
                         W(w) =                                                                     (1.3)
                                (1 - n) + nlG(w)12 '

where n is a controlling parameter. If n is suitably selected, the output waveform of the

Wiener filter becomes close to the Dirac's delta function in the criterion of least mean
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square. The Wiener filter shrinks to the matched filter if the n is set to O, which is

effective for the signals with low S/N. We should note that both of the matched filter and

the Wiener filter require the accurate waveform of the desired signal.

1.4.5 FDTD Method and Simulation Model
We utilize FDTD (Finite Difference Time Domain) method to calculate the received sig-

nal in numerical simulations. FDTD method is one of effective calculation algorithms for

analysis of electromagnetic field [201. Among many approaches to electromagnetic com-

putation, including method of moments, finite element, geometric theory of diffraction,

and physical optics, the FDTD technique is applicable to the widest range of problems.

   The principle of FDTD method is following. Maxwell's equations are given as

                             vxE=-aolll, (i,4)

                                       OD

where E, B, H, J, D and t are electric field, magnetic fiux density, magnetic field,

current density, electric flux density and time, respectively. We can denote B = paH and

D =: eE, where pa and 6 are permittivity and permeability, in an isotropic medium. By

utilizing these expressions, we can rewrite Maxwell's equations as

                                       0H
                                          , (1,6)                            V×E =-pa                                        Ot
                                        0E

                          V×H =J+e ot. (1.7)
   The FDTD method discretizes time and space, where electric field and magnetic field

are placed on the grids called Yee cell as shown in Fig. 1.8. We define F"(i,j',k) as the

field F at a point (x,y,z) = (iAs,j'As,kAs) and time t = nAt, where As and At are
the space interval and the time interval, respectively. For example, the x component of

Eq. (1.6) can be discretized as

                          , E."(i,o'+1,k) E.n(i,j･,k)
      nt'S (i, o' + S, k) - ut-S (i, 3' + i, k) pa (i, ]' + 1, k) - pa (i, o3 k)

                    At - As
                             E,n (z,j + i, k+ i) E," (z,o + i, k- S)

                                 pa(i,2',-k) pa(i,o',k-1)
                           ' As ' (1'8)
In the similar way, other components of the electromagnetic fields are updated at each

time interval.
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Figure 1.8: The Yee cell for FDTD method.

   In the present study, we model a transmitting and receiving antenna as a grid with a

forced current and a simple uniform grid, respectively. Mono-cycle pulses are often used

as an impulse signal, which satisfy the condition of UWB signal. In order to generate a

mono-cycle pulse, we set the waveform of the forced current .IL(t) as

.T],(t) == -(1 + cos(kt)) sin(kt), (1,9)

for -T S kt :E{ T and ,J2(t) = O otherwise. The waveform of ,J2(t) is shown in Fig. 1.9. The

electric filed in far-field can be calculated as in Fig. 1.10, which can be used to determine

the matched filter, The electric field E. in the far-field satisfies

E.(t) oc jwtlL(t), (1.10)

where w is the angular frequency of the signal. The term jw can be interpreted as a

differential operator in this equation. Fig. 1.11 shows the waveform of the electric field

observed at a point apart from the forced current by 4 wavelengthes at the center frequency

of the pulse. The fractional bandwidth of this waveform is 96.3%, which satisfies the

condition of UWB. We see that the third peak appears in this waveform, which does not

exist in the current waveform. This is caused by the low-frequency-suppression effect of

the radiation.
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1.4.6 Polarimetryforlmaging

electromagnetic waves have an advantage in its polarimetry, Utilizing polarization for

imaging is helpful to discriminate and identify the shape of targets. Polarization property

of a target is expressed by the scattering matrix (S-matrix) as

                      (E.x;,)=(gx.x g:;)(k), (iii)

where (Eza, EZ)T is the incident field, and (Eg, Ee)T is the scattered field. For example, the

S-matrix of a pipe with the direction of x has a characteristic Sle. > Syy and S.y fy Sy.

[21]. As for the S-matrix of a plate, S.. ct Syy and S.y > Sy. or S.y < Sy. may be

observed, although these characteristics depend on the direction of the plate. Suwa et

al. [22] developed a frequency extrapolation using polarization characteristics. Frequency

extrapolation is one of high-resolution techniques for band-limited systems,
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1.5 Inverse Problem and Algorithms

1.5.1 InverseProblem

Estimating target shapes using signals obtained by a scanned omni-directional antenna

is known as one of ill-posed inverse problems. Inverse problems are called so because it

is the opposite concept of forward problems. Many physical problems are described with

an integral equation such as

                          1'f(T)h(t,7)dT=g(t), (l･12)

where f(T) is the system, h(t,T) is the input and g(t) is the output. Eq. (1.12) is called

a Fredholm integral equation of the first kind. We have to solve this equation using a

numerical approach because no analytical solution is known.

   It is defined as a forward problem to estimate the output g(t) when the system h(T) and

the input f(t,T) are given as in Fig. 1.12. For example, estimation of electric field can be

done by many algorithms such as FDTD or moment method, which are forward problems.

It is comparatively easy to estimate the electric field if the media and the targets are given

although it may take a long calculation time depending on the algorithm. Moreover, the

solution is accurate and stable to some extent.

   To the contrary, estimating target shapes using the signals received at some places is

called an inverse problem. This can be translated as estimating the system f(T) when the

input h(t,T) and the output g(t) are given. If the number of the input is too small, it is

diMcult to estimate the system accurately. Here, the number of the input is equivalent to

a condition number, which is the number of the discretized variable t. In general, inverse

problems are dificult because the obtained information is not suficient for estimation,

which requires some a priori information about the situation. On the other hand, if the
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condition number is too Iarge, the solution can be unstable because we have to utilize a

discrete algorithm instead of a continuous one as in Fig. 1.13. It is challenging to develop

algorithms to solve inverse problems. Fig. 1.14 shows the concept of the ill-posed inverse

problem in the field of radar imaging.

1.5.2 Target Models and Algorithms

First, we briefly explain the model types of imaging algorithms for radar systems. Every

imaging algorithm needs a model to describe the target shape. Fig. 1.15 shows examples

of target model. The left-hand side model in this figure is a grid model in which each

grid has a permittivity (plus permeability and conductivity, if needed). The simplest

kind of this model was proposed by Otto et al. [23], which was named LSF (LocaJ Shape

Function). They may be tensors if they are anisotropic materials. Anyway, the number of

parameters to express the target are enormous depending on the required resolution and

the dimension. Especially, it is dificult to express 3-dimensional target shape using this

grid model. Instead, we can also use the boundary model with points in the right-hand side

figure. In this model, we can reduce the number of parameters using a priori information

that the targets have clear boundaries. It is obvious that this model can be used for

limited range of targets and media. Ferraye et al. [24] proposed a completely different

model called contour deformation with a level set method, about which we explain later,
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Next, we have to determine the parameters of the model using the received signals and
a priori information. The simplest technique is "parametric algorithms", which is based
on optimization algorithms. This kind of algorithms update the parameters iteratively to
minimize (or maximize) a certain evaluation function. The optimization process is done
by conventional algorithms such as quasi-Newton method, Levenberg-Marquardt method,
conjugate gradient method and its extensions. In spite of the simpleness of the basic
idea of the parametric algorithms, the enormous calculation time is often unacceptable.
Especially, even the boundary model may not be used in realtime in a 3-dimensional
system. In order to avoid this difficulties, we should adopt another approach, which we
call "nonparametric algorithms". This thesis proposes some nonparametric algorithms
for quick imaging for UWB pulse radar systems.
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1.6 Imaging Algorithms for Radar Systems

1.6.1 Direction Finding and Point Locationing

Imaging of point targets is equal to estimating the target locations and their permittivity.

The target location can be divided into two values: direction and range. In general,

ranging is easier than estimation of the direction for UWB pulse radars because of its wide

bandwidth. As for estimation of direction of arrival (DOA), a relatively large number of

studies have been done, most of which assume far field and narrow bandwidth. They

include MUSIC algorithm and ESPRIT algorithm, which are based on the idea of signal

subspace. However, it is important for our purpose to deal with the DOA estimation

problem within the near field and with a wide band. Hung et al. [25] and Sivanand et

al. [26] proposed estimation methods of DOA with focussing matrices. Focussing matrices

are used to make a valid covariance matrix for wide-band signals, in which we can obtain

                                                                   ,a coherent covariance matrices of difference frequency by multiplying a certain matrices.

A similar technique was proposed by Gelli et al. [27]. They also utilized a new method

to obtain a coherent combination of different frequencies. Their algorithm deals with

wide-band signals. However, they assume independent sources and plane waves, which

are not valid for our purpose.

   Instead, some studies tried to estimate the location of a point target. It can be applied

to locationing of pipes in 2-dimensional imaging. Schmidt proposed a point source local-
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ization algorithm based on the idea of signal subspace, which is used for MUSIC algorithm

[28]. Okada et al. I29] utilized the LoG (Laplacian of Gaussian) filtering algorithms known

in the field of image processing for locationing of a circular target. They applied Laplacian

of Gaussian filter to the actual data image and showed an application example to extract

an underground pipe. Bermani et al. [30] proposed a detection method of cylindrical ob-

jects by means of neural networks. They also estimated the location, permittivity and the

conductivity of the cylinder with a neural network by using the data obtained by receivers

surrounding the target cylinder. Chen et al. [31] proposed a source localization algorithm

based on maximum-likelihood criterion. Their algorithm assumed near-field targets and

wide-band signals, Nagamune et al. [32] developed an imaging algorithm for embedded

pipes based on a fuzzy expert system. Miwa et al. [33, 34] applied MUSIC algorithm

to a borehole radar system for localization of cylindrical targets and point targets.They

modified MUSIC algorithm to deal with a target near transmitting and receiving anten-

nas. Liu et al. [35] also studied imaging technique for borehole radar systems. Quinquis

[36] applied Fourier imaging technique, ESPRIT algorithm and MUSIC algorithm to get

an image of complex-shaped target based on the idea that the target can be represented

by some point targets, They utilized two receivers for one transmitter, which enable us

to cancel the antenna characteristic by calculating the ratio of the two signals if the two

receiver have the same property, Although the locationing algorithm of point sources is

not suficient for comprehensive imaging, their ideas are important.

1.6.2 Synthetic Aperture Radar

Synthetic aperture radar (SAR) systems are utilized for imaging of geography with air-

planes and satellites [37]. Recently, the SAR techniques with polarimetry and interfer-

ometry have become an attractive topic for remote sensing fields [38, 39]. The techniques

enable us to make a precise maps and the distribution of vegetation. This technique
can be used for near-field imaging with UWB pulse radars. Bond et al, [40] applied this

technique for a UWB pulse radar system for early detection of breast cancer.

   In general, a small antenna has a wide beam, which restrict the minimum antenna
size to achieve high-resolution imaging for conventional radar systems. SAR systems co-

herently integrate signals observed at various places, which reaiize an equivalent wide

antenna aperture, or a sharp beam, Narayanan et al. [411 studied a SAR imaging al-

gorithm for UWB radar systems, which is followed by their experimental application

examples. Their experiment includes through-wall imaging, in which targets behind a

wall was reconstructed although they are not clear. SAR techniques have been also ap-

plied to GPR systems, which realizes high horizontal resolution and improvement of S/N

[211. Fig. 1.16 shows the antenna and target locations in x - y plane. We define the re-

ceived signal s(X,Y), where (X,O) is the antenna Iocation and Y is the time normalized

by signal prominent period. x, y and X all are normalized by the wavelength at the center

frequency of the pulse. The SAR imaging algorithm for GPR systems can be expressed
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                    S(x,y)=10.e.s(X, (X-x)2+y2)dX. (1.13)

Fig. 1.17 and 1.18 show the target shape and the permittivity of'the media for the appli-

cation example of GPR SAR algorithm in Eq. (1.13). These figures are the same situation

in Section 4, which enable us to contrast the results. Fig. 1.19 shows the reconstructed

image by GPR SAR algorithm. We see many undesired response around the real target

in this figure. These false images are caused by the interference between unrelated sig-

nals, which is an inherent problem of GPR SAR algorithm. Additionally, the cailculation

time for GPR SAR algorithm takes 9 minutes with a Xeon 2.8GHz processor, which is
unacceptable for quick examination before excavation for construction. Therefore, a fast

and accurate imaging algorithm is required to be developed also for GPR systems･

   ISAR (Inverse Synthetic Aperture Radar) is another imaging algorithm which utilize

the motion of targets, especially its rotation, instead of the scan of antennas. In general,

ISAR can be applied to a variety of fields, obtaining a high-resolution images. The main

concept of ISAR is fundamentaiIy same as that of SAR algorithm. When the antenna is in

the far-field zone of the object, the processing reduces to an interpolation plus a 3-D inverse

discrete Fourier transform [421, However, if the antenna is in the near-field, the planar

wavefront approximation is not valid and the direct Fburier inversion cannot be used for

imaging. Some studies tried and overcame these difficulties [43, 44]. Fortuny [43] proposed

a new 3-D near-field ISAR algorithm which utilizes an azimuth convolution between a

near-field focusing function and the frequency domain backscattered fields. Broquetas et

al. [44] proposed an inverse synthetic aperture-radar algorithm which estimates the RCS

image instead of the target reflectivity itself, which can work even in near-field. In spite

of their successfu1 results, some limitations exist. They assume the motion of the targets

is known, which is dificult to achieve our purpose. Moreover, the calculation time cannot
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be acceptable, which is caused by the fundamental concept of SAR and ISAR algorithm.

1.6.3 Domain Integral Equation

Imaging algorithms based on domain integral equation is one of parametric approaches.
In their algorithm, targets and media were modeled as grids of permittivity. The domain
integral equation is expressed as

E(r) = Einc(r) +Jk5C (r')E(r')G(r, r')dr', (1.14)

where G is the Green's function between two points. C(r) = c(r) - Cb is the contrast of
the target, where Cb is the relative permittivity of the background. E(r) and Einc(r) are
the total electric field and the incident electric field, respectively. The second term of this
equation on the right-hand side indicates the scattered electric field. This equation means
that the scattered electric field is caused by the total electric field multiplied by the green
function. Franchois et al. [45] solved the domain integral equation with a regularizing
term to get a stable solution.It is required to stabilize the solution because the domain
integral equation is one of ill-posed inverse problems. Abubakar et al. [46] proposed a 3­
dimensional imaging algorithm to solve the nonlinear integral equation in Eq. (1.14). The
both of E(r) and C(r) are unknown in the equation. They defined W(r) = C(r)E(r),
which is seen just like one variable. By using this expression, they divided Eq. (1.14)
to two equations. They optimized the evaluation function which includes two factors to
satisfy the two equations.

Eq. (1.14) is a nonlinear integral equation because the total electric field E(r) cannot
be expressed by a linear function of C(r). It is generally difficult to solve Eq. (1.14)
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Figure 1.18: Permittivity 6, of random media.

/

;

because of its nonlinearity. To simplify the nonlinear problem, the first-order Born ap-

proximation has been widely used which is va[lid for weak scatterers. The first-order

Born approximation is also simply called Born approximation, which is equivalent to the

first-order Rytov approximation [47]. Born approximation is formulated as

                E(r) = Ei..(r) +f kgC(r')Ein.(r')G(r, r')dr', (1,15)

which is a linear integral equation. It is obvious that the E inside the integral in Eq. (1.14)

is simply replaced by Ei.. in Eq. (1.15). This is the simplest approximation to solve the

domain integral equation, which can be applied only if scattering is weak enough not

to disturb the incident electromagnetic waves, Eq. (1.15) can be solved by diffraction

tomography [48,･ 49, 501 or Tikhonov regularization technique. Diffraction tomography is

described in the later section. Tikhonov regularization can be applied to Eq. (1,15) as

                                                   2   minimizec E(r) - Ein. (r) - f k,2C(r')Ei.. (r' )G(r, r')dr' + a lL{C}1 , (1.16)

where L is some differential operator, and a(> O) is the parameter of the compromise

between minimizing the main error and the regularization constraint. If a is zero, the

optimization problem can be unstable because Eq. (1.!5) is an inverse problem even after

the linearization. Budko et al, [51] proposed a hybrid imaging of solution of the integral

equation with Born approximation with synthetic aperture imaging. They pointed out

that the estimation with Born approximation can accurately extract the boundary, On
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Figure 1,19: Reconstructed image by GPR SAR algorithm.

the other hand, the estimation accuracy of the permittivity is not suficient. They utilized

the synthetic aperture algorithm to obtain the accurate estimation of the permittivity.

  A quasi-linear approximation is better than the first-order Born approximation fbr

strong scatterers I52, 53]. The first-order quasi-linear approximation supposes

                       E(r, rt)=x(r)Ei..(r, rt), (1･17)

where x(r) is the ratio of the total electric field to the incident electric field, Here, this

approximation assume x(r) does not depend on the position of the transmitting antenna.

Therefore, the nonlinear integral equation is linearized as

               E(r) = Ei.. (r) +f k,2 Cb (r')Ei.. (r')G(r, r')dr', (1.18)

where Cb(r) is a new object function

                          Co(r)=x(r)C(r). (1.19)
We see that Eq. (1.18) can be easily solved because Eq, (1.15) and Eq. (1.18) have the

same fbrm. We can get C(r) using Eq. (1.19) and

                     x(r) =1+ k2fG(r, r')Cb (r')dr', (1.20)

where x is the sum of the contribution from each point.
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   Cui et al. [54] proposed a high-order quasi-linear approximation as an extension of
the first-order quasi linear approximation, They utilize a high-order coeflicient x(M)(r)

instead of x(r). Here, x(M)(r) is calculated as

                           x(M+i)(r) == 1+A(M+i)(r)x(M), (1.21)

                A(M'i) (r) = k2 fG(r, r')Co (r')/x(M) (r')dr', (1.22)

where we define x(O)(r) = x(r). The term Co(r')/x(M)(r') is the estimated C(r') in the

m-th iteration, They have shown that the second order approximation generated clear

image compared to the first-order and zeroth-order approximation, where the zeroth-order

quasi-linear approximation is equivalent to the first-order Born approximation.

   Chew et al, [55] proposed another extended linearized domain integral equation, which

was named distorted Born approximation. This method updates the target image in order

to cancel the residual of the evaluation function considering Green's function for two-times

scattering neglecting multiple scattering more than two-times. This method is also known

to be equivalerit to Newton-Kantorovich method, which modifies an image to cancel the

residual of the evaluation function by updating the total field instead of Green's function

[56, 57]. The difference between the quasi linear approximation and the distorted Born

approximation is schematically shown in Fig. 1.20. In this figure, the quasi linear approx-

imation expresses the total field with the direct wave multiplied by the contributions from

other targets and the direct wave. Distorted Born approximation expresses the total field

with the direct wave and diffracted wave from other targets, The distorted Born approx-

imation has been applied to experimental data by Lobel et al. [58, 591. They showed that

metallic cylinder and metallic strip were clearly reconstructed by the approximation and

conjugate-gradient method. It is also effective to apply Tikhonov regularization algorithm

to the distorted Born approximation, However, the effect of smoothing of the regulariza-

tion can degrade some kinds of target shapes. Lobel et al, [60] applied an edge-preserving

regularization to an imaging using the distorted Born approximation. They dealt with a

reconstruction problem of microwave tomography with receivers around a target. Dour-

the et al. [61] applied the same regularization term to GPR (Ground Penetrating Radar)

data and confirmed its effectiveness by a numerical simulation,

   Born iterative method was proposed by Moghaddam et al. [62], which first calculates

the total electric field by assuming the first-order Born approximation. Next, the domain

integral equation is solved with the calculated total electric field, and then the total electric

field is updated. This procedure is repeated iteratively in the alLgorithm. Chaturvedi et

al. I631 introduced a regularization term for the Bom iterative method. They calculated

Green's function for each antenna position and each target pixel position and stored them

in a table to refer to calculate the scattered field. Yu et al. [64] extended the Born iterative

method to deal with a target embedded in a lossy half-space. They analytically derived

Green's function for a lossy ha-space.

   The algorithm based on the domain integral equation assumes that antenna scans
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around target, which is not realistic for implementation into robots. Most of the papers

utilizing the domain integral equations assume many receivers or many observation points

in order to stabilize the solution. This assumption is not valid for our purpose because

we assume that the antenna scanRing should be done only from one side.

1.6.4 DiffractionTomography

Diffraction tomography is known as one of algorithms for radar imaging [48, 49, 65, 66].

X-ray CT (Computed Tomography) algorithms mainly for medical use was extended to

the diffraction tomography for radio waves to deal with the diffracted waves which are

neglectible for X-ray systems. Here, we discuss the diffraction tomography algorithm

only for 2-dimensional case for simplicity. The diffraction tomography algorithm is based

on the first-order Born approximation as in the previous section. This approximation

can linearize the problem, which can be easily dealt with in the frequency domain. The

fundamental equation of the diffraction tomography is expressed as

    E(rt, rr) = E.. (rt, r,) - lgl, ff C(r)H6i)(klrt - rl)H6')(klr, - rl)dr, (1.23)

where rt and rr are the positions of the transmit antenna and the receive antenna, re-
spectively. H6i)(･) is the O-th order Hankel function of the first kind. Eq. (1.23) holds
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under the assumption of the first-order Born approximation. This equation shows that

the scattered field can be expressed as the convolution of the target image and the Hankel

functions. We can estimate 7(r) by deconvolution processing, which can be realized in

the frequency domain. The diffraction tomography is performed in 4 steps as follows.

   e Interpolating the missing data for FFT (Fast Fburier Transform).

   e Applying FFT to the interpolated data. ･
   e Applying the inverse filtering for deconvolution.

   e Applying IFFT to get the final image.

The interpolation is sometimes difiiicult because sampled points are limited by how to

scan antennas. Nahamoo et al. [50] proposed an interpolation-free algorithm for diffraction

tomography, which requires to rotate the target by 90 degrees and to observe the echo two

times. They have shown the high-resolution image of their algorithm. The image obtained

by the diffracLion tornography degrades if the length of scanning is not sufficient, which

is quantitatively discussed by Cui et al. [67].

   In spite of these efforts, the resolution of diffraction tomography is not sufficient es-

pecially for large and conductive scatterers. Moreover, it is required for high-resolution

imaging to scan the antenna around the target, which is somewhat similar to observa-

tion of forward scattering in X-ray tomography. These conditions restrict the application

range of the diffraction tomography techniques.

1.6.5 ModelFittingMethod
Model fitting method is one of parametric imaging algorithms which utilize the evaluation

function and optimization algorithms [68, 69]. In model fitting method, target shapes are

expressed as a group of point targets. The location of the set of point targets are expressed

as some parameters. The parameters are updated iteratively to minimize the difference

between the observed data and the estimated data. The estimated data is calculated in

the algorithm, which is a simple forward problem. The evaluation function to minimize

is expressed as

                       F=2iE(t,･,ri)-E.b.(t,･,rt)12, (1.24)
                           j't
where E(t,r) and Eob.(t,r) is the estimated electric field and the observed data at the

position r and time t, respectively. This equation assumes the least-mean-square criteria

for estimation. This algorithm is easy to understand because the difficulties in the inverse

problem are included only in the evaluation function.

   Otto et al. [231 utilized above-described LSF model, which has a large number of

parameters to optimize. In order to solve this problem, they linearized the problem and

solved for the grid-modeled target shapes by using conjugate gradient method. Harada et
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al, [70] applied conjugate gradient method to optimize the evaluation function which is the

Li-norm of the difference between the received signal and the calculated signal based on

the assumed targets. Sato et al. [711 utilized the expression with Green's function to get

the estimated signal. For example, the Green's functions in 2-dimensional electromagnetic
x/S,"eiE2g,i:,Sl'(--k'3,7,,vi,b(-k℃.),,',,#'SIP,(5iig',Ps,06;h,,?rd.e.r."g,"}.ekg,E.gfi%O,",fi2`3,2.fi.r,S`,E.ln,g),

which are the solutions of the Helmholz equation in polar coordinates, Instead of using

Green's function, Sato et al. [72] proposed an extended ray tracing algorithm, which can

deal with the effect of diffraction. In their study, simple techniques with Green's function

cannot be used because their algorithm was for inhomogeneous media. They adopted the

modified Marquardt method as an optimization algorithm, whichs require a good initial

guess.
   Rekanos et al. [73] used the finite-element method to calculate the forward problem and

Polak-Ribiere nonlinear conjugate gradient optimization algorithm. This algorithm is one

of extensions of the conjugate gradient algorithm, and has the best performance compared

to other algorithms such as Fletcher-Reeves algorithm or Hestenes-Stiefel algorithm, Chiu

et al. [74, 75] added a regularization term to the evaluation function to stabilize the

solution. By the regularization, high-resolution images were obtained stably. FBTS

(Forward-Backward Time-Stepping) Method is another imaging'algorithm based on the

concept of model fitting method [76]. They assume 4 transmitters and 8 receivers around

the target and obtain the received data. First, they calculate the received signal by FDTD

method with a rough guess of the target shape. The field radiated from an 'equivalent

impressed current' of the difference between the measured fields and the calculated fields,

is propagated back into the object region, which is also calculated by FDTD method. They

update the target shape and physical constants to minimize the difference between the

real signal and the estimated signal considering the back-propagated equivalent current

and regularization conditions. The algorithm can estimate the target shape and constants

even if it is an anisotropic object.

   Chiu et al. [74, 75] also dealt with a similar algorithm based on the Green's function.

In order to avoid the local optimum point, they used the genetic algorithm (GA), which

enable us to get the global optimum solution. However, they assumed 32 receivers around

the target, which is difficult to realize. Moreover, GA takes a long calculation time in

general, which is not suitable for realtime implementation. Qing et al. [77, 78] attempted

to improve the convergence of GA for electromagnetic inverse scattering. They proposed

a hybrid algorithm of GA and Newton-Kantorovitch method for speed-up of the imaging.

Qing also proposed imaging algorithm with an evolution strategy (DES) [79] and DES with

individuals in groups (GDES) instead of GA [80] . In GDES algorithms, all populations are

organized into different groups. Individuals in the same group have the same number of

targets because the number of targets is unknown. The proposed model of target shape is

expressed by the closed cubic B-splines local shape functions, which is effective for stable

imaging. Ferraye et al. [24] proposed an imaging algorithm based on contour deformations
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with a level set method. In this algorithm, the target boundaries are expressed as the zero

level sets of a certain function. This function has a negative value inside the target and a

positive value outside the target, which leads to a natural regularization. The estimated

boundaries move to the normal direction by the update procedures to minimize a cost

function. This technique enables us to estimate the shape of multiple complex-shaped

objects.
   Discrete model fitting methods work well even in inhomogeneous media and layered

media as described above. However, it has been pointed out that the solution depends

on the initial value because the non--linearity of the evaluation function is quite high. It

can be unstable if the suitable initial value is not given. Moreover, the calculation of

forward problem takes long time especially for estimation of 3-dimensional shapes. This

is because the number of parameters increases exponentially depending on the dimension

of the problem.

1.6.6 MigrationAlgorithms

Migration for Seismic Prospecting

Migration is a well-known imaging technique especially for seismic prospecting [81]. Mi-

gration is the process that repositions reflected energy from its common-midpoint position

to its true subsurface location. Migration estimates the image as a set of grids step by

step iteratively. Migration algorithm has a high performance for geophysical prospecting.

Additionally, migration algorithms are applicable for general media and targets. However,

their resolutions are limited to the order of the signal wavelength. Moreover, iterative pro-

cessing leads to the problem that migration algorithm requires a long calculation time,

which is not acceptable for the realtime implementation of our purpose.

Migration for Electromagnetic Wave

The migration algorithm explained in the previous section was intended to be applied to

seismic wave which is a scalar wave. On the other hand, electromagnetic wave is a vector

wave, for which the traditional migration algorithm cannot be applied directly. However,

some studies have applied the seismic migration to electromagnetic wave, which works to

some extent. Leuschen et al. [82] developed a migration algorithm for vector wave with

an idea of matched-filter, which is unique and interesting. The assumed coordinates is

depicted in Fig. 1.21. They reconstruct the image S(r') as

                 s(r')= lli lf SS H(r"',r',r.;w)U},(r.;w)dca (1.25)

                        n=1 Jt m=1

in the frequency domain, where IV transmitters and M receivers are assumed, and H

represents the matched filter and U;, represents the received data for the n-th transmitter.
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 Matched filters maximize the output power at t = O if the complex conjugate of the

 matched filter is equal to the received signal.

   The scattered electric field E,..(r) is expressed as

                 E,..(r) = -fa(r, r')[k2(r') - kg (r')]E(r')dr', (1.26)

where G(r, r') is the background dyadic Green's function, and k and kb are the ordinary

wavenumber and the Born-approximated wavenumber, respectively. If the scatterer is

small enough, the next equation approximately holds,

                       E,ca(r) 2t -w2paot7(r, r')Ei..(r'), (1.27)

where Ei.. indicates the incident field. By using this approximation, the matched filter

H can be written as

               H(r, r', r") = u,H {-w2paoa(r, r')jwpaoa(r', r")Tut}, (1,28)

where u, and ut are the effective length of the receive antenna and the transmit antenna,

respectively, which contains the information of polarization. The final image is expressed

as
               S(r') = {jwpao(:i(r',r)[-jwRu,]'}{jwpaoa(r',r")Tut}, (1,29)

where R and T are the received waveform and transmitted waveform, both of which are

known after the observation. Eq. (1.29) is divided into two values on the right-hand

side. The first term is the electric field generated by a current source [-jwRu.]", which

can be interpreted as dR(-t)/dt in the time domain. This electric field corresponds to

the back projection of the migration algorithm. The second term is simply the incident

field Ei.. with the Bom approximation. Eq. (1.29) can be physically interpreted as the

intersection of the backpropageted field with the incident field. FDTD method is used

to calculate the electric filed in Eq. (1,29). The performance of this algorithm has been

confirmed by numerical simulations and experiments l82]. This algorithm can clearly

estimate conducting spheres, which are placed nearby although the calculation time is

unacceptable because of the utilization of FDTD method.

   Kruk et al. [83] also proposed a new migration algorithm for electromagnetic wave for

ground penetrating bistatic radar systems. They formulate the electromagnetic field con-

sidering polarization of transmitters and receivers. They compared the obtained image to

those of other conventional techniques, SAR and Gatzdag algorithm. Gatzdag algirithm,

which is similar to SAR, utilizes the method of stationary phase which assumes that the

most dominant component in integration should be the point where the phase rotation

has a small change.

   Migration algorithms are ones of nonparametric algorithms, which is not based on

minimizing cost functions. However, ai1 the grid points require iterative calculation, which

leads to enormous calculation time. It is required to develop nonparametric algorithm

without iterative procedures in order to achieve a fast imaging,
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1.7 Scope and Contribution ofthe Present Work

In the present study, we propose non-parametric imaging algorithms, which accomplishes

fast and accurate estimation of target shapes under some constraints. First, we propose an

algorithm for estimation of target location and waveforms simultaneously. This algorithm

can estimate the location of point targets accurately, which is close to the theoretical

limit. Next, we propose a novel non-parametric imaging algorithm for the target in a

homogeneous media. This algorithm can estimate target shapes quickly and accurately,

which is achieved by utilizing a reversible transform between target shapes and delay

time. We also examine the performance of this algorithm in inhomogeneous media. We

propose a phase compensation algorithm to enhance the accuracy of the proposed imaging

algorithm. Finally, we extend this imaging algorithm to the 3-dimensional case. The

performance of the proposed algorithms are confirmed by numerical simulations.

   In Chapter 2, we propose an algorithm which estimates target location and scattered

waveforms simultaneously, In section 2.2, we introduce the signal image by normalizing

distance and time. We explain the concept of Wiener filter and its limitation in section

2.3. Next, Cramer-Rao lower bound, which is the theoretical limit in general estimation

problems, is explained in section 2.4. In section 2.5, we introduce HCT (Hyperbolic

Coherent Transform) and IHCT (Iterative HCT) which includes the proposed algorithm.

In section 2.6, we show the performance of IHCT comparing with those of conventional

algorithm and theoretical limit. In section 2.7, we clarify the problem of IHCT for multiple

targets, and propose the interference suppression algorithm using neural networks･

   In Chapter 3, we propose a non-parametric imaging algorithm based on a reversible

transform. In section 3.3, we show the existence of the reversible transform BST (Bound-

ary Scattering Transform), and also show that BST can deal with scattered waves. In

section 3.4, we define quasi wavefronts and propose the extraction of quasi wavefronts

from the received signals. In section 3.5, we propose a false image reduction algorithm,

where the false image is caused by multiple scattering. Additionally, we propose an edge

detection algorithm. The whole process is named SEABED (Shape Estimation Algorithm
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base on BST and Extraction of Directly scattered waves) algorithm. We also show the

application example of the SEABED algorithm with numerical simulations, and clarify

the limitation of the SEABED algorithm. In section 3.6, we investigate the performance

of the SEABED algorithm against noisy environment.

   In Chapter 4, we show an application example of the SEABED algorithm to inhomo-

geneous media. In section 4.3, we first examine the algorithm for homogeneous media.

In section 4.4 and 4.5, we show application examples of the algorithm for random media

and layered media, respectively.

   In Chapter 5, we propose a phase compensation algorithm for high-resolution pulse
radars. In section 5.3, we explain the phase shift effect at an caustic using GO (Geometric

Optics) theory, and show an example of the data obtained by FDTD. In section 5.4, we

show an application example of the SEABED algorithm, and point out the offset error

caused by the phase shift phenomenon. In section 5.5, we propose a phase compensation

algorithm based on an analytical process. We put a stress on that the phase shift phe-

nomenon can be naturally expressed with quasi wavefronts. In section 5.6, we show an

application example of the proposed phase compensation algorithm. In section 5.7, we

investigate the performance of the proposed algorithm in a noisy environment.

   In Chapter 6, we propose a 3-dimensional imaging algorithm by extending the SEABED

algorithm. In section 6.3, we introduce 3-D BST and 3-D IBST by extending BST and

IBST. In section 6.4, we propose a 3-D SEABED by utilizing 3-D IBST, which is natural

extension of the SEABED algorithm. In section 6.5, we show the application example of

the 3-D SEABED algorithm.
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Chapter 2

An Estimation Algorithm of Target
Location and Scattered Waveforms

2.1 Introduction

In this chapter, we deal with locationing algorithms for point targets. Radiowave scatter-

ing is occurred at edges of targets, which enables us to estimate the target shape without

directly estimating the surfaces of the targets. We propose an algorithm for estimation

of target location and waveforms simultaneously. A UWB pulse radar is attractive as an

environment measurement method for various applications including household robots.

However, the accuracy of a UWB pulse radar is not suflicient without a suitable filtering,

which is a critical issue. Watreform estimation is very important for pulse radar systems

because it improves locationing accuracies. WEweforms of scattered pulses are unknown

without estimating target shape because scattered waveforms depend on the shape of

the target. The difference between the scattered waveforms and the assumed waveforms

degrades the estimation accuracy. Our objective is to develop a non--parametric high-

resolution target locationing algorithm by improving the ranging accuracy iteratively,

Therefore, it is required to estimate target locations and scattered waveforms simultane-

ously. Furthermore, the algorithm should be applicable for a general situation including

a near field and a far field.

   We propose a high-resolution estimation algorithm of target locations and scattered

waveforms for UWB pulse radar systems. First, we explain the algorithm and formulate

the procedure. We then examine the performance of our algorithm by contrasting it
with conventional methods and statistical bounds using numerical simulations. Next, we

clarify the problem of applying the proposed algorithm to multiple targets. We propose

an algorithm of suppressing the interference based on a neural network algorithm. Finally,

we show an application example of the proposed interference suppression algorithm.
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Figure 2.1: The location of the sensor array,

2.2 System Model

We assume an M-element linear sensor array with intervals of half-wavelength at the

center frequency of the pulse, and one point target located within its near field. This is

because it is more general and difficult to deal with a target in a near field rather than

in a far field. We assume that each sensor is omni-directional and the effect of mutual

coupling can be neglected. In the situation where these assumptions are not satisfied, we

should compensate for the effects as discussed in Sec. 2.6. We transmit the pulse with

the center sensor of the array, and receive the scattered signal with all the sensors. The

received data with each sensor is input into an A/D converter, and stored into a memory.

We define T = [7la, 7lo] as the real target location. Fig. 2.1 shows the location of the sensor

array and the coordinates, where A is the center wavelength of the transmitted signals.

The transmitted pulse is a mono-cycle pulse, which is suitable for radar systems because

it has no DC power. The used pulse has a relative bandwidth of 96.3%, which satisfies

the condition of UWB determined by FCC (Federal Communications Commission) that
UWB has a relative bandwidth of more than 20% of the carrier frequency, or an absolute

bandwidth larger than 500 MHz. The scattered wave is a spherical wave because the target

is within the near field. Therefore, the signal delay draws a hyperbola as a function of

the location of the sensors. We assume that the observer has no information of scattered

waveforms.

   We deal with a 2-dimensional problem in this chapter We also define a signal image

s(x,y) as

                     s((m- (M+1)/2) d/A, ct/A) i sh(t), (2.1)
where sh(t) is the received signal with the m-th sensor, c is speed of the light, and

a :A/2. This definition of a signal image is advantageous because space x and time y

are normalized by wavelength. Our algorithm estimates the target location T using the

signal image s(x, y). Table 1 shows the simulation parameters.
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Table 2.1: Simulation Parameters.
SensorArray M=11
SensorInterval O.5A

IHCTIteration 40times

ObservationDuration 24A

Sampling 83samples/A

2.3 Waveform and Filtering

In this section, we explain the importaRce of estimating waveforms in the proposed algo-

rithm. Wiener filter is often used for estimation of the turn-around-time because it is an

effective denoising filter. Wiener filter for signal G(w) is expressed as

           - W(`")=(i.,,fiii(lil)G(,.)I2) (2･2)

where n = 1/(1 + (S/N)-i). W(w) works as an inverse filter for large S/N (n tt 1). On

the other hand, it works as a matched filter for small S/N (n ty O). Here, we define the

signal power S : max Is(x,y)l2. W(w) is the optimal filter, in the sense that it minimizes

the mean square error between the output signal and the impulse function. However, we

can not directly apply Wiener filter to our purpose, because W(w) requires the scattered

waveform G(w). This is the reason why our proposed method is important.

2.4 Theoretical Limit of Locationing Accuracy

In this section we derive the theoretical limit for our problem, The derived theoretical limit

is based on Cramer-Rao lower bound (CRLB) i84]. We define RT-T, as the covariance
matrix of the estimation error of the target location, and Ti = (xi, yi) as the estimated

target Iocation for i-th iteration. The original expression of CRLB is

                            RT-T,)J-i(T), (2.3)
                                 t
where J(T) is Fisher information rnatrix expressed as

                 J(T),,, .. -hE(yllt 02 1ooiliiilis(iililT)d.dy), (2.4)

where p(slT) is the conditional probability density function of s(x,y) and ik E {x,y}.

We define E{} as an expectation, which means an ensemble average. We can not directly

use Eq. (2.3) because the estimation error is expressed as ei : IT- Til. We thus define
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q(AT) as the probability density function of AT = T - T., where T. is the theoretical

best estimation. We assume q(AT) as

               q(AT) ,. (detJ2(.T))'12 exp [-;ATJ(T)AT']. (2･s)

Assuming Eq. (2.5) gives

                     ei )ecRLB= ,Lf llATIq(AT)dAT. (2.6)

ecRLB is the theoretical limit for the estimation of target location. We calculate ecRLB

for each S/N in order to contrast with the simulation results. We call ecRLB as CRLB for

simplicity in the following sections,

2.5 The Proposed Method for Locationing

In this section, we explain the proposed algorithm. We define Hyperbolic Coherent Trans-

form (HCT) as
                  H(w, T,) ! ,111(-O.O. s(x, y) clW[i((X.'illli)ii)Y] dxdy, (2 7)

where we define

                     u(x,Ti)iiiITil+ (x-xi)2+y?･. (2,8)
HCT works as the Fourier transform for y. u(x,Ti) is a delay time compensation for x.

 u(x, Ti) is required in order to improve S/N of HCT, which we explain in the appendix.

HCT estimates F(w), which is the Fourier transform of the scattered waveform, using

coherent integration of the received signals. We can describe the algorithm of target

location estimation as

                  maximizeT,., .111RIL Hi EW6T+t'opil:iiilllli)Iidw2, (2.g)

where R(tu) is the waveform used for constructing Wiener filter. Eq. (2.9) means to

maximize the power of the filtered signal at t = O, which is calculated in the frequency

domain, This is based on the fact that substituting t = O for exp(jwt), the integral

kernel of the inverse Fourier transform, the integral kernel shrinks to 1. Eq. (2.9) includes

all algorithms which depends on the definition of R(w). We set the initial waveform

H(w,To) as the Fourier transform of the transmitted waveform, We optimize Eq. (2.9)

using Quasi-Newton method, where we set the initial value of Ti to the optimized Ti-i.

We determine the initial value of Ti using a simple grid search.
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  We set R(w) to
                   Pt(w) :(H(w,Ti)*sinc(tow))1.F}-i(w)l (2.10)

for the proposed algorithm. We call the proposed algorithm IHCT (Iterative HCT) be-

cause it is based on an iterative improvement of estimation. Eq. (2.10) works as extraction

of dominant-frequency waveform. The final form of R(w) is a narrow-band filter, which

is apparently inferior to the ideal matched filter as a single filter for signal detection.

However, the major problem of a narrow bandwidth is the ambiguity in finding the peak

location, which is solved by the wide-band filter at earlier stages. A better resolution

is obtained by accurately determining the phase of the dominant-frequency component.

Convolution of sinc(tow) is a simple windowing, which prevents the waveform from hav-

ing an extremely narrow band. We set to to the pulse duration of the transmitted signal.

Fig, 2.2 shows the outline of IHCT. We also define IHCTW (IHCT Without waveform es-
timation) which is a conventional method. We set Pt (w) for IHCTW as R(w) = H(w, To),

which is the transmitted wayeform. Moreover, we investigate IHCTK (IHCT with Known

scattered waveform) which represents the ideal situation. Wk) set a(w) for IHCTK as

R(w) = F(w), which is the true scattered waveform. IHCTK is not realistic because

F(w) is unknown in an actual case. Table 2 shows R(w) for each method.

2.6 PerformanceEvaluationofIHCTAIgorithm
In this section we investigate the performance of the proposed method by contrasting with

the conventional method and the theoretical limit. We assume the received waveform is
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Table 2.2: F}(w) (Denoised HCT) for each method.

IHCT (H(w,Ti)*sinc(tow))IPi-i(w)l
IHCTW H(w,To)

IHCTK .l7(w)

the lst order differential of the transmitted waveform. Fig. 2.3 illustrates the waveform

of R(w) fori = 1,5 and 10. The bandwidth of the waveform becomes narrower as
the iteration proceeds. Fig. 2.4 shows the evaluation function to maximize in Eq. (2.9),

where we assume S/N == oo. Here, we use the IHCTK which assumes that the scattered

waveform is precisely known. The true target location is (2.0,2.0), where we see the

evaluation function has the peak value. Fig. 2.5 shows the evaluation function without

the waveform estimation. This assumption corresponds to IHCTW, which utilize the
filter for the transmitted waveform. In this figure, we see that the peak is apart from

the true location although two peaks exist around the true location. Fig, 2,6 shows the

evaluation function with the proposed algorithm IHCT. There are many peaks in this

figure, which is caused by the narrow-band effect of the IHCT algorithm. However, one

of the peaks is located at the true Iocation, which enable us to accurately estimate the

target location. We also see that a good initial guess is required to optimize this evaluation

function because some of peaks can be local optimum points. We can easily get rid of this

ambiguity because IHCT algorithm is based on the iterative improvement, which utilizes

the solution of the previous step. Furthermore, the initial guess is easily obtained by using

UWB pulse radars with a linear search.

   Fig. 2.7 shows the locationing accuracy of each algorithm compared to CRLB. Here,

we set the target iocation to T = (2A, 2A). The relationship between the estimation error

eL and the peak S/N is illustrated in the figure. IHCT, IHCTW and IHCTK have poor

performance for S/N < 11dB due to invalid initial guess of Ti, which is caused by the

poor S/N. IHCTK achieves CRLB for S/N 2 11dB, which means the optimiza.tion in
Eq. (2.9) can achieve the theoretical limit only if we know the scattered waveform F(w).

IHCTW has a floor of estimation error for S/N ) 11dB, which is caused by biases due

to the fixed reference waveforms. The difference between the transmitted waveform and

the scattered waveform causes this error. On the other hand, the performance of IHCT

is close to CRLB. The ratio of the estimation accuracy of IHCT to that of CRLB is 1/4

at most. The estimation error of IHCT has no fioor for S/N S 40dB. The estimation

accuracy of IHCT is 140 times better than that of IHCTW. Moreover IHCT achieves an
accuracy of 10-3A for S/N > 34dB, which is sufliciently high for practical use.

   Fig. 2.8 shows the estimation error of target location using IHCT for various target

locations for S/N = 40dB. From the figure, we see that the order of estimation error is

10-3A for al1 target location except for the two areas on both sides of the array, The poor

36



TrLf2 tg!21S9E!.Y)<9¥9t9:P Nv

ScatteredWaveform Unk own)

Received Waveform

Estimated Dominant-Frequency Waveform 1 st

-'---.'
NAIII/'v.v....-ti-;.;;;1Oth

Figure 2.3: Estimated dominant-frequency waveforms.

performance of IHCT in the two areas is caused by the ambiguity of the signal with target

locations.

   In actual case, the effect of mutual coupling may not be neglected. In such a case,

it is possible to compensate for the pattern of mutual coupling because IHCT is based

on iterative improvement, The compensation factor can be calculated using the target

location estimated at each iteration. We have confirmed the validity of the compensation

algorithm of mutual coupling implemented in the IHCT algorithm for a case where the

gain varies by ldB.

   We have proposed a Iocationing algorithm for UWB pulses, If it is applied to narrow-

band signals, the resolution degrades because it is dificult to determine the initial value

because of the ambiguity due to periodicity of narrow-band signals. We have shown the

application example of the algorithm for a target in a near field. However, the proposed

algorithm can be applied for a far field as well. As for computational time, the proposed

algorithm with iteration of 40 times takes about 50 sec with Xeon 2.8GHz processor.

2.7 Interference Suppression Algorithm for HCT of
       Multiple Targets

An accurate locationing of targets requires an' accurate waveform estimation as described

in the previous sections. HCT for a single target can be used as an estimation of the

waveform although the noise reduction algorithm is needed. On the other hand, HCT
for multiple targets can not be used as a waveform estimation due to the problem of
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Figure 2.4: Evaluation function with the true filter.

interference. The waveform scattered by a certain target is integrated coherently, and

the waveforms scattered by other targets are summed with random delays, which causes

cancellation of waves. However, the cancellation of interference waves is not suficient

because the number of antennas is limited, and the signal power is localized. Interference

waves can not be neglected especialIy if the number of targets is large. This residual

interference wave is one of the most critical problems when HCT is applied to multiple

targets, In this section, we propose an interference suppression algorithm for HCT. We

also show the application example of the proposed algorithm using a numerical simulation.

  Firstly, we show an example of interference waves. We assume that 5 point targets are

located as symbols in Fig. 2.9. Each waveform of the target is the lst order differential

of the transmitted waveform. We assume that we do not have any information about the

scattered waveform. We define h(y, T) as the IFT (Inverse Fourier Transform) of H(w, T),

and we deaJ with HCT in the time domain. In Fig. 2.10, the broken line indicates the true

scattered waveform, and the solid line indicates h(y,T) for T = (2A,2A). In the figure,

we see that undesirable interference waves exist in HCT.

   We define a(y) as a standard deviation of waveforms, which is expressed as

                        a(y) == A. ,111;s(x,y)2dx, (2.11)

where we set A. to satisfy max a(y) = 1. We also define e(y) as the instantaneous envelope

[85] of HCT. e(y) can be expressed as

                    e(y)=A. h(y,T)+tYL:IL hiV±:)dv , (2.i2)
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where we set A. to satisfy maxe(y) = 1. The integration in Eq. (2,12) means Hilbert

Transform of h(y,T). Fig. 2.11 shows a(y) and e(y) for the observed data, In the

figure, we see that a(y) is small compared to e(y) where the true wave exists. We pro-

pose an interference suppression algorithm by utilizing this characteristic. We define an
interference-suppressed waAreform n(y,T) as

                       h(y,T)=C(a(y),e(y))h(y,T), (2.13)

where C(a, e) is a weight function. We select C(a, e) to satisfy

                    minimize eJlllll {h(y,T)-f(y)}2dy, (2.14)

where f(y) is the IFT of F(w), which is the true scattered waveform. We utilize a neural

network in order to optimize e(a, e) because 6(a, e) should be dealt with as a nonlinear

function in general. We utilize a 3-layered neural network shown in Fig. 2.12. The ellipse

symbols in the figure indicate sigmoid functions. We define xm,n and ym,n as the n-th

values in the m-th 1ayer. y.,. are calculated as

                       Ym,n == U(Xm,n) (2･15)
                            = 1/{1+exp(-x.,.)}, (2.16)

where u(x) is called a sigmoid function, x.,. are calculated as

                               L
                      Xm,n = 2Wm,l,nYrn-1,l+i6rrv,n, (2･17)
                              l= 1

                                  39
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method (10 iterations).

of the proposed

where, we set L = 2. Fig. 2.13 shows the procedure of suppressing interference in the

proposed algorithm, assuming the parameters in the neural network is already optimized.

In order to obtain the solution of the minimization problem in Eq. (2,14), it is required to

know the true scattered waveform f(y), Here, it is impossible to know f(y) prior to the

waveform estimation. Therefore, in the proposed algorithm, we utilize the transmitted

waveform h(y, To) instead of the true scattered waveform f(y). We assume that we know

approximate locations of the targets.

  The proposed algorithm for an interference suppression is as follows. Firstly, we gen-

erate an estimated received signal se(x, y) assuming all the signals from targets are equal

to h(y,To). Then, we calculate e(y) and a(y) from s.(x,y), In this case, we can solve

the minimization problem in Eq. (2,14) because we know the true waveform h(y, To). We

determine the function e(a,e) by solving the optimization problem with e(y), a(y) and

h(y,To) for s.(x,y). Fig. 2.14 shows the outline of learning procedure with the neural

network in the proposed algorithm. The sum of the error in the figure is minimized for

s.(x,y). We utilize Levengerg-Marquardt-Morrison method for this optimization. Next,

we calculate e(y) and a(y) for s(x,y). Then we calculate an interfe!ence-suppressed

waveform for s(x,y) as in Fig, 2.13. In this way, we obtain waveform h(y,T) after the

interference suppression.

  Wt) show an application example of the proposed aJgorithm. In Fig. 2.15, the broken

line and the solid line indicate h(y,To) and h(y,T) for s.(x,y), respectively. The inter-

ference waveform in the figure is completely different from that of s(x,y) in Fig. 2.10.

Fig. 2,16 shows e(y) and a(y) calculated for s.(x,y). We solve the optimization problem
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in Eq. (2.14) and determine the function C(a,e). .Then, we obtain h"'(y,T) for s.(x,y).

The solid line and broken line in Fig, 2.17 show h'(y,T) and h(y,To) respectively. We

see that C(a, e) can suppress the interference waves to s.(x,y). Next, we multiply h(y,T)

by C(a,e) in order to suppress the interference of s(x,y). I.n Fig. 2.18, the solid line and

the broken line show the interference-suppressed waveform h(y, T) and the true waveform

f(y) for s(x, y) respectively. In the figure, we see that the proposed algorithm successfully

suppresses the interference for s(x, y),

   As a result, we clarified that the proposed algorithm has a sufficient performance in

suppressing interference waves. Accurate estimations can be accomplished not only for

s.(x, y) but also for s(x, y). Although the function C(a, e) is optimized for s.(x, y), it works

well for s(x,y). The leaming procedure of the neural network in the proposed algorithm

can be accomplished without the true waveforms, because C(a, e) depends only on the

amplitude distributions of e(y) and a(y) and the true waveform. It should be noted that

the proposed algorithm selects strong signals regardless of whether they are from desired

or undesired targets. We thus assume that the interference waves have comparatively

small power because the signals with large power are chosen firstly,

2.8 Conclusion

UWB pulse radar systems are promising candidates for environment measurement. Firstly,

we proposed a high-resolution locationing algorithm for point targets without information

of scattered waveforms. The proposed method simultaneously estimates target locations

and scattered waveforms for UWB pulse radar systems. The proposed method estimates
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dominant-frequency waveforms of scattered waveform iteratively. We also examined the

performance of our method by contrasting them with conventional methods and statistical

bounds. We evaluated the performance in terms of the estimation accuracy of target lo-

cations utilizing numerical simulations. We showed that the performance of the proposed

method is close to the theoretical limit, We clarified that the estimation accuracy of the

proposed method is 140 times better than that of the conventional method. We also made

it clear that the proposed method achieves an accuracy of 10-3A for S/N > 34dB.

   Next, we proposed an interference suppression algorithm for HCT. Interference wewes

in HCT can not be neglected especially if the number of targets is large. This residual

interference wave is one of the most critical problems when HCT is applied to multiple

targets. The proposed algorithm optimizes a weight function, whose variables are the

instantaneous envelope of HCT and the standard deviation of waveforms, The proposed

algorithm optimizes the weight function by utilizing the transmitted waveform instead of

the scattered waveform. We showed an application example of the proposed algorithm,

and clarified that the proposed algorithm has a suficient perfbrmance in suppressing in-

terference wayes, Further studies are needed in order to apply the interference suppression

algorithm to IHCT, which leads to a high-resolution locationing algorithm for multiple

targets.

   In this chapter, we have investigated the performance of the proposed algorithm only

with numerical simulations. An experimental confirmation of the performance of the
algorithm will be an important future task.
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Chapter 3

2-Dimensional Shape Estimation
Algorithm Based on Boundary
Scattering Transform

3.1 Introduction

In the previous chapter, we proposed locationing algorithms for point targets, which can

be applied to edges of targets. In this chapter, we deal with an algorithm to estimate the

target surface itself. The reflection wave comes from the points of stationary phase on the

target surfaces. We propose a fast itnaging algorithm for pulse radar systesms based on

this characteristic. We show the existence of a reversible transform between delay time

and target shape. We call the transform IBST (Inverse Boundary Scattering Transform).

We propose a non-parametric high-resolution shape estimation algorithm based on IBST.

The proposed algorithm using IBST has an advantage that it can uniquely and directly

estimate target boundary shapes as lines, although IBST requires targets surrounded by

smooth boundaries , uniform media and directly scattered waves.

   Firstly, we prove the existence of a reversible transform between delay time and target

shape in this chapter. Next, we clarify problems in applying IBST to real data. We pro-

pose a selection algorithm and a false image reduction algorithm to solve the problems.

Moreover, we propose an edge detection algorithm using IBST. Finally, we show applica-

tion examples of IBST using a numerical experiment, and investigate the performance of

the proposed algorithm.

3.2 SystemModel
We assume a mono-static radar system in this chapter. An omni-directional antenna is

scanned along a straight line. UWB pulses are transmitted at a fixed interval and received
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by the antenna. The received data is input into A/D converter, and stored into a memory.

We estimate target shapes using the data.

   We deal with a 2-dimensional problem, and TE-mode wave. Targets and the antenna

are located on a plane. We define r-space as the real space, where targets and the antenna

are located. Ifaset is expressed in r-space, we call it the expression in r-domain. We

express r-space with the parameter (x, y). Both x and y are normalized by A, which is the

center wavelength of the transmitted pulse in a vacuum. We assume y > O for simplicity.

The antenna is scanned along x-axis in r-space. We define s'(X, Y) as the received electric

field at the antenna location (x,y) = (X,O), where we define Y with time t and speed of

the light c as Y = ct/(2A). We set t == O to the time which maximizes the instantaneous

envelope of electric field at the location of the antenna. We apply a matched filter of

transmitted waveform to s'(X,Y). We define s(X,Y) as the output of the fiIter. We

define d-space as the space expressed by (X,Y). Ifa set is expressed in d-space, we call

it an expression in d-domain. We normalize X and Y by A and the center period of

transmitted waveform, respectively.

   We propose a non-parametric high-resolution estimation algorithm of target shape

using the data s(X, Y). Firstly, we extract quasi wavefronts, which is delay times of direct

scattered waves, Next, we obtain approximate estimation of target shapes by applying

IBST to the extracted quasi wavefronts. We then apply a selection algorithm and a false

image reduction algorithm to the data by using evaluation value of target boundary based

on the locations and shapes of targets. Finally, we estimate the target shapes and the

edge-point locations. Fig. 3.1 illustrates the outline of the algorithm we propose in this

chapter.

3.3 Boundary Scattering T)7ansform and its Inverse

Transform

3.3.1 Boundary Scattering Tlrransform

We prove the existence of a reversible transform between quasi wayefronts and target

boundary surfaces in this section. Although we deal with a 2-dimensional problem, the

algorithm can be easily extended to a 3-dimensional one. Additionally, we assume scan-

ning of the antenna along a straight line, but it can be easily extended to scans along any

curves.
   We assume that each target has a uniform complex permittivity, and surrounded by

a smooth boundary. The target complex permittivity of the target 6(x, y) satisfies

                       IVs(x, y)l2 =£a,6(y-g,(x)), (3.1)
                                  gEH

where 6 is Dirac's delta function, and gg(x) is a differentiable single-valued function. We
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define

                      q={(x, y)ly = g, (x),xE .Jh}EH, (3.2)

where ,Jb is the domain of gq(x), ag is a positive real constant which depends on q E H,

and H is the set of all q. We define target boundary surfaces as elements of H. Fig. 3.2

illustrates the coordinates and an example of a target complex permittivity 6(x,y) in

r-space. The assumption of the target model in Eq. (3.1) is general because it includes

the case where the target complex permittivity is divided into some areas as in Fig. 3.2.

   Next, we define several sets in order to explain Boundary scattering transform. We

define P, which is a subset of d-space, as

              P={(X, Y) IOs(X, Y)/aY =O, ls(X, Y)i ;)i 71,}, (3.3)

where 7k is a threshold to prevent picking up noise values.

   Next, we connect the points close to each other in P. We obtain lines from P in this

way. We express each line as p, which we call a quasi wavefront. We define G as the set

of all pE P.

   Here, we assume that the medium of direct path is vacuum, but the following argument

is valid for any uniform media only if the propagation speed of the wave is known. We

assume p corresponds to the direct scattered wave of q. By utilizing the relationship

between the antenna location and the length of perpendicular line to q from the antenna

location, the point (X,Y) on p is expressed as

                           i:,Xi.Y(ddY,//ddX.),, (,.,)                         (

where (x,y) is a point on q, and we assume y > O and Y > O. We define the transform in

Eq. (3.4) as Boundary Scattering Transform (BST).

   Fig. 3.3 shows an example of BST. The upper figure shows the target boundary surface

in r-domain, and the lower figure is the corresponding quasi wavefront in d-domain, which

is the BST of the upper figure. In general, some quasi wavefronts are generated from one

target boundary surface by BST as in the figure.

3.3.2 Inverse Boundary Scattering Thransform

If an inverse transform of BST exists, we can estimate target shapes using the transform.

In this subsection, we prove the existence of the inverse transform of BST.

   IBST is based on a back projection process. When there is a reflection at (X, Y) in

d-space, the target is on a circle C(x,y; X, Y) of its center (X, O) and its radius of Y in

r-space. If a refiection forms a curve p, point (X, Y)'s on p produce a group of circles in

r-space. The envelope of the group of circles must draw its target shape. This process is
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formulated as follows. Firstly, we express the circle for given (X, Y) using a point (x., y.)

on it. We define a group of circles C(x., y,;X,Y) as

                  C(x,, y.; X, Y)

                   = {( cc, yc) ly, > O, -Flpf( vc, yc; X, Y) =O}, (3.5)

where Fb(x., y.; X, Y) is expressed as

                   Fb(xc,yc;X,Y)= (xc-X)2+y2,'Y2, (3.6)

  Next, we express the envelope of the group of circles C(x.,y,;X,Y) using a point

(x,,y.) on it. We define Ec as the envelope of the group of circles C(x.,y,;X,Y). Ec

satisfies

                 Ec (Xe, gyel X, Y)

                   = {(Xe,Ye)IYe > O, Fb(xe,ye;X,Y) == O,

                               O"Ftr(Xe,YeiX,Y)/0X :O}･ (3･7)

Here, the partial derivative means the derivative independent only of x. and y., not of Y.

Here, we should note that Y is uniquely determined by X with a certain function. The

equation of Ec is expressed as

                                                  '                        Xe = X-YdY/dX                      (
                                                                   (3.8)
                        Ye = Y 1-(dY/dX)2.

We have to check if Eq. (3.8) works as an inverse transform of BST expressed in Eq. (3.4).

Substituting Eq. (3.4) to Eq. (3.8), we obtain

                y.2 -y2+(xe 'x)2-2(xe -X)YdY/dX == O･ (3'9)

Eq. (3.9) holds for any function gq(x), for any x. Therefore, we conclude that x == x.,y =

y.. This means that Eq, (3.8) satisfies the condition of an inverse transform of BST. As

a result, we conclude that the inverse transform of BST is given by

                      (;:yXi--Y(ddyY//ddxX),. (3.io)

We define the transform in Eq. (3.10) as Inverse Boundary Scattering Transform (IBST).

The existence of the inverse transform is very meaningful because it can be used for a

direct and unique estimation of target boundary shapes. The estimated target boundaries

are expressed as not an image but lines. This is the advantage and the characteristic of

our algorithm.
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   The condition of existence of IBST is differentiability of the quasi wavefront and

                               ldY/dXIS!. (3.11)
This inequality in Eq, (3.11) is required because if it is not satisfied, the value of y obtained

using IBST in Eq. (3.le) is not a real number, which is not rational. In a situation of

Fig. 3.2, a target perpendicular to x-axis produces a straight line of its inclination of 45

degrees in d-space. We assume that we can receive the directly scattered waves from the

target boundary. However, if this condition is not satisfied, the estimation accuracies are

degraded. Plural quasi wavefronts are generated from one target boundary surface by

BST in general. However, if we find out al1 quasi wavefronts from the received data, it

is possible to reconstruct the target boundary surfaces using IBST. Therefore, the plural

quasi wavefronts generation has no problem in our algorithm.

3.3.3 Edge Refraction Waves and Boundary Scattering [hrans-
        form

We have shown that the relationship between quasi wavefronts and target boundary sur-

faces is expressed as BST and IBST if the complex permittivity satisfies the condition

in Eq. (3.1). If IBST is applicable not only for reflection but also for refraction, we see

that IBST has a great deal of application range. In this subsection, we investigate the

relationship between edge refraction waves and IBST.

   If an edge point of a target is located at (ctr,fi), the delay time of received signal is

expressed as a hyperbola as

                            Y: (X-a)2+52. (3.12)
The IBST of Eq. (3.12) is lx,y]T = [a,6]T, where T means transpose. BST of the edge

point is not defined because the differentiability condition is not satisfied in this case.

However, it is possible to estimate the edge point location using IBST. Substituting the

hyperbola in Eq. (3.12) to BST in Eq. (3.4), we obtain the differential equation expressed

as

                        dy/dx =(y2-x2-62)/2xy, (3.13)
where we assume a = O because a works only as a parallel translation of x. If the solution

of Eq. (3.13) draws a certain curve, it brings a trouble in applying IBST, because it means

that a target boundary surface exists which has the same quasi wavefront of an edge point,

Therefore, it is important to investigate a differential equation of Eq. (3.13), which is one

of Bernoulli-Riccati differential equations. Considering y 2 O, the general solution of the

equation is expressed as

                            y= fi2-x2-Cx, (3.14)
where C is an integral constant. The BST of Eq. (3.14) is expressed as

                      [x,y]'., [-c/2, c2/4+fi2]'. (3.is)
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The solution of the differential equation expresses a circle with a radius 52 + C2/4, and

center [-C/2, O]T. The BST of Eq, (3.15) shrinks to a point on the hyperbola in Eq. (3.12).

The differential of a point is not defined, therefore it has no problem in applying IBST to

data.

  Consequently, IBST is applicable to both of refiection waves and refraction waves.

IBST precisely estimates target boundary surfaces and edge point locations if an antenna

can receive the directly scattered waves from the target boundary. We propose the al-

gorithm using IBST in this chapter, and show an example of application of IBST in the

following sections.

3.4 Quasi Wavefront Extraction from Received Data

3.4.1 Extraction of Quasi Wavefront

In this section,.we describe the method of extraction of quasi wavefronts. We have already

defined the set P. The procedure of extraction of P is easy because all we should do is to

check the derivative of given data. Next, we go on to the procedure of extracting p E G

from P. In an actual procedure, we sequentially connect the points in P which satisfy

a required condition. p c P are connected closed sets. The i-th set pi is determined

as follows. The first element of pi is an arbitrary element of P which is not included in

pi,p2, ･ ･･ ,pi-i. The domain 4 for pi is set to X of the first element. The second element

of pi is chosen from P which satisfies ldY/dXl S 1 in Eq. (3.11). Here, Y should have

only one value for the same X. Then, domain 4 is updated according to the newly chosen

element. In this way, we expand the set pi until there is no other element which can be

included into pi. Finally, the extracted pi has a characteristic as

                  pi = {(X,Y)IY==fi(X),

                               Idfi(X)/dXISI,XE4}, (3.16)
where A(X) is a single-valued function whose domain is k. Eq. (3.16) means that a

unique Y has to exist satisfying (X, Y) E pi for any X E Ile. The algorithm described in

the next subsection removes the undesirable links generated in this procedure.

3.4.2 Evaluation ofQuasi Wavefront

As mentioned in the previous section, p E G denote quasi wavefronts which correspond

to direct scattered waves from targets. Simply extracted quasi wavefronts include false

quasi wavefronts generated by noises, ringing of waveforms, and multiple scattering. It is

important to remove these false quasi wavefronts.

  We define an evaluation value wi for pi E G as

                       Wz= ,4,,,, s(X,A(X))dX 2･ (3.i7)
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wi becomes large when both of the amplitude of the signal along the quasi wavefront,

and the width of the domain of fi(X) are large. If both of positive and negative points

exist in a quasi wavefront, the evaluation value becomes small, This characteristic is valid

because quasi wavefront should be constructed by connecting points with same phases.

Fig. 3.4 illustrates the reason why we adopt the integration of the signal amplitude as an

evaluation value. If we adopt the integration of the signal power as an evaluation value,

undesirable quasi wavefronts are extracted as shown in the right panel of Fig. 3.4.

   We can remove faise quasi wavefronts caused by noises and ringing of waveforms by

utilizing the evaluation value wi for most cases. However, the evaluation value for a

false quasi wavefront becomes large when the false quasi wavefront is close to real quasi

wavefronts. In this case, the evaluation value in Eq. (3.17) is not sufficient, In order to

solve this problem, we propose the following algorithm which allows us to subdivide the

regions. The procedure described in Sec. 2.4,1 does not exclude situations that pi np2 7!

ip(nullset) for pi,p2 E G, pi 7! p2 as shown in Fig. 3.5. In such a case we subdivide the

quasi wavefront so that the two sets contain only one element in common. In the figure,

pi = {a,b,e,f,g} and p2 = {a,b,c,d}. In this case, we divide the quasi wavefront as

pi -> pl i'fwp, S wp,. Note that pl has lower evaluation value than pi. If wp, ) wp,

holds, we divide p2 as p2 - pS. Here, pl Up2 = pi UpS = pi Up2, pl fi p2 = pi np5 and

lpl n p21 == lpi np'2l= 1 are satisfied, where Ipl represents the number of elements of the

set p. In Fig. 3.5, pl n p2 = pi n p'2 = {b}. After this subdivision, we can remove regions

with small zvi by recalculatiRg wi.

3.4.3 An Example of Application of Quasi Wavefronts Extrac-
        tion

We show an example of application of the extraction algorithm of quasi wavefront, which

we explained in the previous subsection. Fig. 3.6 shows an example of target boundary

surface. The upper domain in the figure is fi11ed with perfect electric conductor, and the

lower domain is fi11ed with air. The symbols located at the bottom of the figure show the

locations of the antenna, where we receive signals. Fig. 3.7 shows the BST of the target

in Fig. 3.6. We calculate refraction waves from the edge points in another way, because

we can not derive it using BST. In the figure, plural quasi wavefronts are generated.

Extraction of these true quasi wayefronts enable us to estimate the target shape using

IBST.
   Fig. 3.8 shows the received data from the target shown in Fig. 3.6, which we obtain

by utilizing FDTD (Finite Difference Time Domain) method. We receive the signal at

the 40 locations illustrated in Fig, 3.6, whose intervals are O.125A. Here, we assume a

noiseless case. There is a false quasi wavefront caused by multiple scattering in the figure.

Except for it, other quasi wavefronts are approximately same in Fig. 3.7. Fig. 3.9 shows

a set P extracted from the signal in Fig. 3.8. We select the points in d-domain where the

differential of the waveform is equal to zero, Here, we remove points with small power
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by a ranking algorithm. Numerous undesired points exist in P due to the ringing of the

waveform. Fig. 3.10 shows UpEGp, which is the set of all quasi wavefronts p extracted from

the received signal. As mentioned above, quasi wavefronts p E P satisfies ldY/dXl S 1,

which is the condition of existence of IBST.

   Our algorithm extract quasi wayefronts at large, and they include a part of edge

refraction wave shown in Fig, 3.7, because we utilize a ranking algorithm in extraction

of P. On the other hand, undesired quasi wavefronts and multiple scattering waves
also appear. We apply the quasi wavefront division algorithm to p E G based on the

evaluation values as explained in the previous subsection, and then we recalculate the

evaluation values for updated quasi wavefronts. Next, we select the quasi wavefront whose

evaluation value is greater than -ndB of the maximum evaluation value. Fig. 3.11 shows

the updated and selected quasi wavefronts, where an empirically chosen value of n = 10 is

used. The proposed algorithm above extracts 4 quasi wavefronts from the received signal,

These are approximately equal to the real quasi wavefronts in Fig. 3.7 except for the

false quasi wavefront caused by the multiple scattering. Although the proposed algorithm

extract only a"part of the edge refraction quasi wavefronts, it is suMcient for locationing

of edge points.

3.5 False Image Reduction for Multiple Scattering
       and Edge Point Locationing

3.5.1 An Example of Application of IBST

Here, we show an example of the application of IBST. We apply IBST to the quasi
wavefronts in Fig. 3.11. We utilize a smoothing algorithm with B-spline function in order

to obtain the differential of a quasi wavefront. Fig. 3.12 shows a result of IBST application.

The solid line and the broken line in the figure are the real target boundary surface and

the estimated target boundary surface respectively. The target shape is estimated by

IBST in the figure. However, a false image appears above the real target. This is caused

by the multiple scattering, and it is difficult to remove the false image in the algorithm

of quasi wavefront extraction as described above.

3.5.2 False Image Reduction Algorithm for Multiple Scattering

In this subsection, we propose an algorithm which removes the false image caused by

multiple scattering. We see that the false image is behind the true target boundary from

the antenna position. We can remove the false image by using this nature. Firstly, we

assume a segment between a point of an estimated target boundary and the antenna po-

sition where we receive the directly scattered waveform from the point. If other estimated

target boundaries exist near the segment, the reliability of the estimated target boundary
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is reduced because the received power from the point is reduced by the obstacle target

between the target and the antenna. Therefore, we reduce the evaluation value for the

target boundary in that case. We also utilize the evaluation value of the obstacle targets

for the penalty value. We formulate this process as follows.

   We define a domain F}, using X satisfying (X, Y) E p and x, y satisfying (x, y) E Bm'[p]

as

               4 == {(xo, yo) (x - xo )2 + (y - yo )2

                  + (X-xo)2+y,2- (x-X)2+y2<1/2}, (3.18)

which is known as the lst Fresnel zone, Here, we define B as the BST operator. We

propose an algorithm which update the evaluation value wi to the new evaluation value

Wle as

                         VV}=wi- 2 w,,R,,,,, (3.19)
                                  pj7SpiEG
where R.,p means the ratio of the length of a quasi wavefront r whose BST is within 4, to

the total length of r. The 2nd term of the right hand side of Eq, (3.19) means the penaky

value for the evaluation value. The evaluation value I>Vle becomes small when other targets

are in its lst Fresnel zone. We utilize not a segment but lst IJlrresnel zone for the algorithm

because any other objects in the lst Fresnel zone may significantly reduce the power of

the received signal. Fig, 3.13 shows the estimated target boundary surfaces using the new

evaluation value ;2Vl. The solid line and the broken lines are the real target boundary

surface and the estimated target boundary surfaces, respectively. Here, we select the

target boundary surface whose evaluation value is larger than -ndB of the maximum

evaluation value. Here we use an empirically chosen value of n = 10. The proposed

algorithm successfully removes the false image of the boundary surface. The degradation

of the estimation accuracy on the concave surface compared to the straight surface is

caused by the difference between the observed waveform and the reference waveform for

the matched filter, The target shape estimation accuracy is approximately O.15 A at most.

3.5.3 Edge Point Locationing AIgorithm

We obtain the target boundary surface sampled at non-equi-intervals if we apply IBST

to the quasi wavefronts sampled at equi-interval of X in d-domain. Fig. 3.14 shows an

example of the target boundary surface sampled at non-equi-interval. The solid line is the

real target boundary surface, and the cross symbols are the target boundary surfaces. It

is possible to detect edge points using IBST because IBST concentrates a quasi wavefront

from an edge point to a single point. We propose an edge point locationing algorithm as

follows,

   Firstly, we count the number of the points within the circle with a radius d and the

center which is equal to each point of an estimated boundary. We call the number of the
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points the evaluation value for the point. Then, we search the point which maximizes the

evaluation value. The found point is considered as an edge point, Next, we search the

same way on the condition that the search area is limited to the field which is not within

the circles with a radius d and the center which is equal to the found edges so far. This

procedure is repeated. We adopt the detected edge points whose evaluation values are

larger than -ndB of the maximum evaluation value.

   We apply the algorithm for edge points detection mentioned above. Here we use an

empirically chosen parameters ofd = O.2A, and n == 10. The two circle symbols in Fig. 3.14

show the detected edge points. The both edge locations are estimated accurately.

3.5.4 TheApplicationLimitationofIBST
In this subsection, we examine the application limitation of IBST. Firstly, we consider

a case that we do not obtain a directly scattered wave from a part of target. We show

an application example of IBST for a curved target with a cylinder in its foreground. In

Fig. 3.15 the solid line and the broken line show the true boundary and the estimated

boundary, respectively. We see in the figure that IBST cannot reconstruct the part of

the target behind the other object. Additionally, the upper part of the cylinder is not

estiinated either. In this way, the part of targets without directly scattered wave cannot

be estimated by our algorithm.

   Next, we explain another limitation of IBST. If the target is a circle whose center is on

the scanning line of the antenna, the directly scattered waves shrink to only one point in

d-space, which we mentioned in section 3. In this case, we can not estimate the boundary

with the extraction algorithm of quasi wavefronts. We may deal with this problem by

searching an isolated point with large power. In this case, we should distinguish the peaks

caused by circle-shaped surfaces from peaks caused by noises. In anywa(y, further studies

are required to solve the problem.
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Figure 3.l5:
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A raw signal s'(X,Y) for S/N = 3dB.
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Figure 3.17:
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A received signal s(X, Y) for S/N = 3dB.
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Extraction of set P from data s(X,Y) for S/N = 3dB.
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Figure 3.19: Extraction of quasi wavefront p E G from data s(X, Y) for S/N = 3dB.
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Figure 3.20: Selection of quasi wavefironts using evaluation values for S/N = 3dB.

3.6 Performance against Noise

We investigate the performance of the proposed algorithm in a noisy environment. Fig. 3.16

shows the raw received signal s'(X, Y) for S/N = 3dB. Fig. 3.17 shows s(X,Y), which is

the output signal of a matched filter for the raw signal in Fig. 3.16. The signal power is

not uniquely defined because the signal is not stationary, Here, we define S as

                  S= x... ! x.. ./lllil rn,."'C M.ax ls(X, Y)l2 dX･ (3.2o)

This definition utilizes the average of a maximum instantaneous power for each antenna

location as the signal power.

   Fig. 3.18 shows the extracted set P firom s(X,Y) in Fig. 3.17 using the proposed

algorithm. Many undesired points appear in the figure compared to that in Fig. 3.9.

Fig. 3.19 shows UpEGp, which is the set of all quasi wavefronts. Most of undesired points

in Fig. 3.18 disappear because they do not satisfy the condition ldY/dXl S 1. Therefore,
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Figure 3.21: The estimated target shape for S/N = 3dB.

meaningful quasi wavefronts are extracted by our algorithm. However, some residual

undesired quasi wayefronts remain in the figure. Next, we apply our selection algorithm

using evaluation value in Eq. (3.17) to p E G in Fig. 3.19. Fig. 3.20 shows the selected

quasi wavefronts by our selection algorithm. The extracted quasi wavefronts in the figure

are slightly different from those in Fig, 3.11. They are distorted by noise, and a part

of the quasi wavefront from the concave surface disappears in the figure. However, all

desired quasi wavefronts are correctly extracted by the proposed algorithm.

   Fig. 3.21 shows the estimated target shape by applying IBST and multiple scattering

reduction algorithm to the extracted quasi wavefronts in Fig. 3.20. Although the estimated

target shape in Fig. 3.21 is inferior to Fig. A.8, the outline of the target shape is estimated

successfully, Consequently, the proposed algorithm has a robustness even for a poor S/N

such as 3dB.

3.7 Conclusion

We proposed a non-parametric algorithm of estimating target shapes for UWB pulse radar

systems. We clarified the existence of a reversible transform between a target shape and
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a delay time image, which we call BST and IBST, The proposed algorithm makes use of

the transform and achieves a high resolution imaging.

   Firstly, we extracted quasi wavefronts from a received signal. We proposed quasi

wavefront extraction, division, and selection algorithms using an evaluation value, which

remove undesirable quasi wavefronts caused by noise and ringings, Next, we applied

IBST to the data to estimate the target shapes. The target shape estimation using

IBST has a remarkable performance. Moreover, we proposed a false image reduction
algorithm caused by multiple scattering. We have shown that the algorithm removed the

false images completely. In addition, we proposed an edge locationing algorithm using

IBST, and showed an application example. We clarified that the estimation accuracy

is about O.15 wavelength in the worst case. This error can be suppressed by the phase

compensation algorithm proposed in Sec. 5. We also investigated the performance of

the proposed algorithm in a noisy environment. The proposed algorithm has a good
performance for S/N=3dB. The achieved accuracy is suflicient for most of applications.
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Chapter 4

The Performance of SEABED
AIgorithm for Inhomogeneous Media

4.1 Introduction

Mine detection is an important social issue, for which ground penetrating radars are

promising candidates. It is required to develop an eficient algorithm for ground pene-

trating radars. Some imaging algorithms which we described in the previous chapters

may be applied to inhomogeneous media. The conventional algorithms in general have

problems of long calculation time and instability even for inhomogeneous media. It is

required to develop a fast and stable algorithm for radar imaging for mine detection in

inhomogeneous media. The proposed SEABED algorithm has a characteristic that it can

quickly and directly estimate a target shape as a line, which is a remarkable advantages

compared to conventional ones. We have confirmed the high performance of SEABED
algorithm for homogeneous media in the previous chapter. Inhomogeneity of underground

is one of the most difficult problem to overcome for mine detection. In this chapter, we

examine the performance of SEABED algorithm for inhomogeneous media by numerical

simulations.

4.2 Shape Estimation in Homogeneous Media

We assume a mono-static radar system, which is same as the assumption of the previous

section. An omni-directional antenna is scanned along a straight line. UWB pulses are

transmitted at a fixed interval and received by the antenna. The received data is A/D

converted and stored in a memory. We estimate target shapes using the data.

  We first show an application example of SEABED algorithm for a cylindrical target

in homogeneous media, which is meaningful to compare the result for inhomogeneous

media, We assume a cylindrical perfect conductor with radius of IA as an example target.
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Figure 4.1: Target shape example.

Fig. 4.1 shows an example of target boundary surface. The inner domain is filled with

perfect electric conductor, and the outer domain'is fi11ed with air. The symbols on the

bottom in this figure are the points where the data is obtained. Fig. 4.2 shows the received

data s(X,Y) which is calculated with FDTD (Finite Difference Time Domain) method.

The antenna receives the signal at 39 locations with intervals of O.125A. We assume

S/N = oo for simplicity.

   Fig. 4.3 shows the extracted quasi wavefronts from the received data. By applying

IBST to the quasi wavefront, we obtain the estimated target shape as in Fig. 4.4. In this

figure, the solid line and broken line are the true shape and estimated shape, respectively.

The lower side of the target boundary is accurately estimated by SEABED algorithm.

The upper side of the target is not estimated because SEABED requires the directly

scattered signal. As a result, we can conclude that SEABED algorithm works well for

shape estimation of a target in homogeneous media.
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Figure 4.3: Extracted quasi wavefronts in homogeneous media.

4.3 Shape Estimation in Inhomogeneous Media

4.3.1 Performance for Random Media

In this section, we investigate the estimation performance of SEABED algorithm for in-

homogeneous media. The target shape is a cylindrical perfect conductor with radius of

IA which is the same one as shown in Fig. 4.1. The media around the target has highly

inhomogeneous dielectric, whose relative permittivity 6, is shown in Fig. 4.5. This per-

mittivity is obtained by applying a two-dimensional spatial LPF (Low Pass Filter) with

the cut-off of the half-wavelength to a random image with a normal distribution. The

distribution of the relative permittivity has the mean of 1, and the standard deviation of

O.5. We assume this mean is known as a priori information. The central round region

with relative permittivity of 1 corresponds to the region of the target. Fig. 4.6 shows the

received signal for the target in this random media. We see many undesirable compo-

nents in this figure compared to the the signal in homogeneous media. Fig. 4.7 shows the
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extracted quasi wavefronts from the signal in Fig. 4,6. We see many undesirable quasi

wavefronts together with a desirable one, However, most of the undesirable quasi wave-

fronts are not connected smoothly with each other, which makes their evaluation value

small, which enables to eliminate the undesirable components. We apply IBST to the

quasi wavefronts whose evaluatin value greater than -5dB of the maximum evaluation

value. We utilize the mean of the permittivity when applying IBST. Fig. 4.8 shows the

estimated target shape by IBST. The solid line and broken line are the true target shape

and the estimated target shape, respectively. We see that the target shape is correctly es-

timated to some extent although the estimation is less accurate than in the homogeneous

media. Additionaly, we see that the undesirable components are removed because their

evaluation value become smaller than that of the desirable one. If we set the threshould of

evaluation value to -10dB, the estimation image contains undesirable components caused

by the random media, which show the importance of the selection of the threshould.
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4.3.2 PerformancefbrLayeredMedia
Next, we investigate the performance of SEABED algorithm for layerd media. The tar-

get shape is a cylindrical perfect conductor which is the same one used in the previous

chapter. We obtain this permittivity by applying LPF fbr y-direction with a cut-off of

halfwavelength to a random image, The mean of the relative permittivity is 1, which we

assume to be a priori information. Fig, 4.10 shows the received signa[t in the layered media.

We can observe many scattered wave from the layers close to the antenna. The scattered

wave from the target is smooth compared to those in the random media, Fig. 4.11 shows

the extracted wavefronts in the layered media, We see the desired component and unde-

sirable components caused by the layers. We apply IBST to the quasi wavefronts whose

evaluatin value greater than -5dB of the maximum evaluation value. Fig. 4.12 shows the

estimated target shape in the 1ayered media. The solid line and broken line are the true

target shape and estimated target shape, respectively. We see that SEABED algorithm

also works well for layered media as in this figure. However, we can observe the offset

error caused by the layered media between the antenna and the target.

   The imaging took 40 msec with Xeon 2.8GHz processor, which is considerably fast.

The calculation time is independent of the media and the shape of targets because

SEABED algorithm utilize the reversible transform, We haye confirmed the eficiency

of SEABED algorithm even in inhomogeneous media.
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4.4 Conclusion

We investigated the performance of SEABED algorithm, which we proposed in the pre-

vious section, for inhomogeneous media. The simulation result shows that SEABED

algorithm works well even in inhomogeneous media on some conditions as follows:

   e The mean of random permittivity should be known.

   e The threshould for evaluation value of quasi wavefronts should be suitably selected.

Further studies are needed to overcome these difficulties. As for calculation time, the

imaging took 40 msec with Xeon 2.8GHz processor. The calculation time of SEABED
algorithm is sufficiently short, which enables a realtime operation with this algorithm.
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Chapter 5

Phase Compensation Algorithm for
High-Resolution Pulse Radars

5.1 Introduction

High-resolution algorithms utilize not only the envelope of the received signal but also

the phase of carrier signal. However, it should be noted that the received carrier phase

depends on the shape of targets. Especially, T/2 phase rotation caused by concave is

well-known in the field of electric-magnetic wave theory. The effect has not been regarded

as a serious problem so far for pulse radar systems, because conventional systems having

a narrow bandwidth do not deal with the accuracy. However, in the near future, the

problem will become a bottleneck in improving the accuracy of radar systems using UWB

pulses. In this chapter, we propose an algorithm to compensate the phase rotation caused

by the concave and show an application example. The algorithm is presented firstly, which

is followed by numerical simulations for validation of the algorithm.

5.2 SystemModel
We assume a mono-static radar system in this chapter, which is same as in the previous

section. An omni-directional antenna is scanned along a straight line. UWB pulses are

transmitted at a fixed interval and received by the antenna. The received data is A/D

converted and stored in a memory. We estimate target shapes using the data, We deal

with a 2-dimensional problem, and TE-mode wave. Targets and the antenna are located

on a plane.
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5.3 Phase Rotation and High-resolution Imaging

5.3.1 Phase Rotation and Boundary Shape

In this section, we explain the T/2 phase rotation caused by concaves. A wave changes

its phase after it passes through a caustic [86, 871. Here, physically singular points are

called caustics. The similar effect is also known in the field of optics, which is called Guoy

phase [88].

   First, we introduce geometric optics in order to explain this effect. By using Luneburg-

Kline expansion, an electric field can be expressed as

                                   co
                     E(r) ctt e-jk¢(r) 2(-jk)mME.(r), (5.1)
                                  m=O

where k is the wave number, E(r) is the electric field at the position vector r and ¢(r)
is called eikonal. Constant values of the eikonal represent surfaces of constant phase.

Therefore, V¢a represents the direction of the propagation,
   The reflected waye comes from the part of target boundary which is orthogonal to

V¢ as in Fig. 5.1. This means that the electromagnetic wave pf constant phase along
the target boundary is re-emitted toward the antenna. In the figure, Eo is the O-th factor

of the refiected electric field in Eq. (5.1). Therefore, Eo(ai) in Fig. 5.1 can be expressed

with Eb(ao) using GO (Geometric Optics) theory as

                         Eo(ai)=vi5i7iiEo(ao). (s.2)

In the same way, we obtain Eb(-a2) using GO theory as

                        Eo(-a2): --ao/a2Eo(ao). (5.3)

Note that the inside of the square root in Eq. (5.3) becomes negative in this case because

ao,a2 > O holds. We can interpret the negative value in square root as an imaginary

number, which means the phase of Eo(a2) is advanced compared to Eb(ao) by T/2. This

explanation helps us to develop a phase compensation algorithm because it is obvious

what is the main factor of the phase rotation.

5.3.2 AnExampleofPhaseRotation
In this subsection, we show an example of phase rotation explained in the previous subsec-

tion. Fig. 5.2 shows a received waveform for each antenna position. Here, the antenna is

omni-directional and used as a monostatic radar. The target is a round perfect conductor

with a concave at the bottom side. Note that the antenna"a" is inside the concave and

the antenna "b" is outside the concave, The received waveform ideally corresponds to an

auto-correlation function of the original waveform only if the received signal suffers no
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phase rotation because the received waveforms are the output of a matched filter. The

waveform "a" has a peak at the center because it has not passed through a caustic. On

the other hand, the waveform "b" has a peak shifted by A/4. We have also confirmed the

difference of peak positions between "a" and "b" is precisely A/4, which means the phase

rotation of r/2. All we have to do is to detect the waves which passed through caustics

and to compensate for the phase rotation.

5.4 SEABEDAIgorithm

5.4.1 OutlineofSEABEDAIgorithm
We propose a phase compensation algorithm in this chapter. As an example, we utilize

SEABED algorithm because it has an advantage that the detection of caustic is easy

compared to other methods. Here, we briefiy explain the SEABED algorithm first.

  We have already described a non-parametric shape estimation algorithm based on

BST (Boundary Scattering Transform). We call the algorithm SEABED. The algorithm

utilizes the existence of a reversible transform BST between target shapes and pulse

dela(ys. However, phase rotations of scattered waves caused by concave surfaces cause a
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great deal of degradation in estimating accuracies. We have proposed an algorithm which

simultaneously estimates target locations and scattered waveforms in Chapter 2. The

algorithm works well, but it is applicable only for point targets. Therefore, it is required

to develop a phase compensation algorithm which can estimate the shape of more general

targets.

5.4.2 Boundary Scattering Thransform

The SEABED utilizes the existence of a reversible transform between quasi wavefronts and

target boundary surfaces. We assume that each target has a uniform complex permittivity,

and surrounded by a smooth boundary. We also assume that the propagation speed is

known. Here, we assume the medium of direct path is vacuum for simplicity.

   Boundary Scattering Transform (BST) is expressed as

                         X= x+ydy/dx, (5.4)
                          Y=y 1+ (dy/dx)2, (5.5)
where (X, Y) is a point on a quasi wavefront. (x,y) is a point on target boundary, and

we assume y > O and Y > O. We have clarified that the inverse transform of BST is given

by

                         x= X- YdY/dX, (5.6)
                         y= Y 1- (dY/dX )2, (5.7)
where we assume ldY/dXl S 1. We call the transform in Eq. (5.6) and (5.7) Inverse

Boundary Scattering Transform (IBST).
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5.4.3 SEABEDProcedure
First, we extract a quasi wavefront from s(X, Y) in SEABED. Quasi wavefronts have to

satisfy the condition ds(X,Y)/dY = O and ldYldXl S 1. The latter condition ensures Y

in Eq. (5.7) to be a real number. Furthermore, we adopt a condition

                        ls(Xi,X)/s(Xi+i,X+i)I<71, (5.8)

to prevent an interference, where (Xi, X) and (Xi+i, X+i) are points on a quasi wavefront

and next to each other. This condition is based on that large changes of amplitude in the

same quasi wavefront is not rational. We sequentially extract the set of points (X,Y).

Next, we select quasi wavefronts with large power and eliminate undesirable components.

Finally, we apply IBST to the extracted quasi wavefront and estimate the target shape.

5.4.4 AnApplicationExampleofSEABED
We show an example of application of SEABED algorithm. Fig. 5.3 shows an example
of target boundary surface. The inner domain in the figure is fi11ed with perfect electric

conductor, and the outer domain is fi11ed with air. Estimation of this target shape is

one of the most dificult cases because it includes convex surfaces, a concave surface and

edge points. In most of actual situations, estimation of a target shape is easier than this

example.

   Fig. 5.4 shows the received data from the assumed target. We assume S/N = oo in this

section for simplicity. We obtain this signal by utilizing FDTD (Finite Difference Time

Domain) method. We receive the signal at the 39 locations whose intervals are O.125A.

Next, we extract quasi wavefronts using the conditions mentioned in the previous subsec-

tion. We adopt an empirically chosen value 7T == 1.11. The extracted quasi wavefronts are

shown in Fig. 5.5. Five quasi wavefronts are extracted in the figure. Finally, we obtain

the estimated target boundaries by applying IBST to the extracted wavefronts. Fig. 5.6

shows the estimated target boundary surfaces using the SEABED. The symbols located

at the bottom of the figure show the locations of the antenna, where we receive signals.

The broken line and the solid lines are the real target boundary surface and the estimated

target boundary surfaces, respectively. The estimation accuracy on the concave surface

suffers degradation compared to the straight surface. This is caused by the phase rotation

occurred at the caustic to the echoes from the concave surface.

5.5 Phase Compensation for IBST

5.5.1 Phase Compensation Algorithm for IBST

In the previous section, we described that the SEABED has an estimation error caused

by the phase rotation. The phase rotation depends on the shape of target. It is possible

84



+

5

4

3

A

2

1

o

£= £o

-e-sm--1-1--a---n---a-I-e)

                    -2 -1 O 1 2
                                   x

                        Figure 5.3: Target model,

to compensate for the phase rotation if the condition of phase rotation can be expressed

using the extracted quasi wavefronts. We define the IBST vector viBsT as

                      viBsT == [y ]i¥d(}t7yd/lliir), ]･ (s.g)

Eq. (5.6) and Eq. (5.7) are expressed as

                         [Z]-[ ili ]=VIBsT･ (5.10)

  The caustic curve of a target boundary is given as

               '                   x, == .-dg;lg:,.{(dy/d.)2+1}, (s.n)

                    Yf = Y+d2yld.,{(dy/dx)2+1}. (s.12)
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Substituting Eq. (5.7) for Eq. (5.5) and solving for dy/dx, we obtain

                        dy/dx== dYldX . (s･13)
                                1 - (dWdX)2

Similarly, we obtain d2yldx2 as

                                 d2Y
               ddx2g = {i - (+t)2}3/2 {dii (+t)2-ygi2Iiy} (5 i4)

It is remarkable that the lst- and 2nd-order derivatives of the target boundary is expressed

using the quasi wavefront and its lst- and 2nd-order derivatives. It is thus possible to

express the right-hand side of Eq. (5,11) and Eq. (5.12) using the quasi wavefront and its

lst- and 2nd-order derivatives. We obtain

                       [Iii ]-[i] == tan q6VIBsT, (5.15)

where ¢ is defined as
                       ip=tan-i(iii,dyYllddxX,)2), (s･i6)

We see that a caustic is on the line which connects the antenna and the boundary. ip

is the parameter which shows the relative position of the caustic for the antenna. As
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we mentioned in the previous section, we observe the phase rotation of T/2 in received

signals if the antenna is located in the outer part of caustic for a concave boundary. This

condition can be expressed using the quasi wavefront as

                             O< ip<T/4. (5.17)
The relationship between ip and target shapes is shown in Table. 5,1. Fig. 5.7 illustrates

the angle ip and the target shape, Fig. 5.8 explains the meaning of ip using viBsT and vc,

where we define v. =: [xf, yf]T - [X, o]T,

  In order to compensate for the phase rotation, we modify IBST as

                    x = X- {Y+f(ip)} dY/dX, (5.18)
                    y : {Y+f(ip)} 1-(dY/dX)2, (5.19)

where f(ip) is defined as

                    f(ip)-(i/g Eg,f,9.1,,T)(`) (s.2o)
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Figure 5.6: Estimated target shape using SEABED.

Table 5.1: ip and the relative location of caustic for the antenna.

-T/2 plane

I insideofconcave

o oncausticofconcave

i outsideofconcave

T/4 dpomttarget

l convex
r/2 plane

Note that the compensation of A/8 is required because the phase rotation A/4 corresponds

to a round-trip delay. We can directly detect a caustic and antenna position with quasi

wavefronts utilizing ip.

5.6 An Application Example of the Phase Compen-
       sation Algorithm

In this section, we show an application example of the phase compensation algorithm.

We assume S/N =: (×) in this section for simplicity. Fig. 5.9 shows a calculated ¢ for
each quasi wavefront. The calculated ip is plotted with X in the figure. Calculated ip are

located in the correct region for quasi wavefronts"2" and"5". On the other hand, edge

diffraction "3" and "4" have ip around 7/4, which means it is close to a point target. As

for quasi wavefront "1", calculated ip is about T/8 at the center, but the both ends has
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Figure 5.8: Locations of antenna, caustic and target.

wrong ip in the convex region.

   We show an application example of the modified IBST using the calculated ip above.

Fig. 5,10 shows the estimated target shapes using the modified IBST. Most of the errors at

the caustic in Fig. A.8 are improved in this case. However, the both ends of " 1" still have

error because they are regarded as convex by the algorithm. Furthermore, the estimation

of edge points have error in this case because part of them are regarded as concave and

undesirable phase compensation was made.
   In order to prevent the problems of phase compensation, we propose another algorithm

for phase compensation. First, we calculate the average ¢ fbr each quasi wavefront. Next,
we determine phase compensation using the averaged ip. We set margin for the threshold

to make the algorithm stable. We adopt empirically chosen condition 5e < ip < 400 fbr

phase compensation. Averaged ip for each quasi wavefront is shown in Table. 5.2. Fig. 5.11

shows the estimated target shape using averaged di. We see the estimation accuracy is

improved without sacrificing the resolution.
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5.7 Limitation of the Proposed Algorithm

In this section, we explain the limitation of the proposed algorithm. First, we investigate

the performance of the proposed algorithm in a noisy environment. Fig. 5.12 shows the

simulation result of the shape estimation for S/N= 20dB, The proposed algorithm works

well to some extent in this case even with noise. However, one of the edge points ("3" in

Fig. 5.11) is not estimated because the power of the diffracted wave is smaller than that

of the reflected waves. Fig. 5.13 shows the simulation result of the shape estimation for

S/N=10dB. In this figure, we see that the concave surface ("1" in Fig. 5.11) is erroneously

divided into two parts ("1." and "lb" in Fig. 5.13) in the extraction procedure of quasi

wavefronts in SEABED algorithm. Furthermore, the phase compensation algorithm does

not work for one of them although it works properly for the other. This is because

the phase compensation algorithm requires the 2nd-order derivatives of quasi wavefronts,

which can be unstable in noisy situation. Additiona[tly, neither of the edge points are

detected because of the same reason as in the case of 20dB. This result shows that the

proposed algorithm requires a relatively high S/N, which is usually satisfied for the indoor

applications considered in this paper, The estimation accuracy degrades for low S/N

although the averaging procedure of ip contribute to the stability of the algorithm to some

extent. Further studies are required to make this algorithm applicabie to situations with
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 Figure 5.10: Phase compensated estimation.

Table 5.2: Average ip and shape determination,

Quasiwavefront ip [degree] Estimatedshape

#1 28.1 concave
#2 64.3 convex
#3 42.4 concave
#4 42.7 concave

#5 66.9 convex

low S/N such as GPR (Ground Penetrating Radar) systems.

   Wb have shown an application example of the proposed algorithm only for a target

in Fig. 4.1, However, we have confirmed that the proposed algorithm is applicable for

targets with any size of concave or convex structures as far as the refiected waves from

such structures can be identified in the received signals. In addition, it is also applicable

for an edge point because SEABED can deal with a diffraction wave. However, it is
dificult to apply the proposed algorithm to targets which cause severe interference. This

is because the proposed algorithm needs directly scattered wave including a reflection

wave and diffraction wave from the target.

5.8 Conclusion

High-resolution shape estimation algorithms utilize the information of carrier phase. The

estimation accuracy degrades on a certain condition because the carrier phase depends

on the target shape. We proposed a phase compensation algorithm for SEABED algo-
rithm. SEABED is a non-parametric algorithm of estimating target shapes for pulse radar
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Figure 5.12: Estimated target shape for S/N =20dB.

systems. SEABED first extracts quasi wavefronts, which is suitable for phase compensa-

tion. We have clarified that phase compensation can be possible using a value ip which

is calculated using a quasi wayefront and its lst- and 2nd-order derivatives. We have

modified IBST to compensate for phase rotation using ip. The modified IBST has a prob-

lem of instability of ¢. We should note that ip suffers instability of 2nd-order derivative.
We also modified the phase compensation algorithm to improve stability using averaged

ip. The proposed phase compensation algorithm works well and estimated target surface

accurately including its edge points.
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Chapter 6

Non-Parametric 3-Dimensional
 'Imaging Algorithm

6.1 Introduction

3-dimensional environment measurement is important issue for various applications in-

cluding rescue robots. The imaging should be reliable if the algorithm affects a person's

life, Pulse radar systems have an advantage that they work even in critical situations

where optical measurement is not available. Estimating target shapes using data received

by a scanned omni-directional antenna is known as one of ill-posed inverse problems. Con-

ventional algorithms to solve this problem are not sufficient because their calculation time

cannot be accepted. This problem is partly caused by the increase of the number of pa-

rameters in these algorithms. The 3-dimensional imaging requires even more parameters

compared to the 2-dimensional imaging, which is a substantially serious problem.

   We proposed a high-speed imaging algorithm for 2-dimensional systems in Chapter 3.

The algorithm is based on Boundary scattering transform (BST), which is a reversible

transform and can be used for direct estimation of target shapes. This transform can

be easily extended from 2-dimension to 3-dimension. The calculation time can be con-

siderably reduced compared to conventional algorithms. In this chapter, we propose a

fast 3-dimensional imaging algorithm based on BST. Moreover, we show an application

example of this algorithm to check the feasibility of the algorithm.

6.2 SystemModel
Most of the assumptions are the same as in the 2-dimensional problem. We assume a

monostatic radar system in this chapter, We assume that each target has a uniform com-

plex permittivity, and surrounded by a smooth boundary. An omni-directional antenna is

scanned on a plane as in Fig. 6.1. Pulses are transmitted at a fixed interval and received
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Antenna

Figure 6.1: System model and antenna scanning.

by the same antenna. The received data is A/D converted and stored in a memory. We

estimate target shapes using the data. The transmitted pulse is a mono-cycle pulse. We

deal ･with 3-dimensional problems, and linear polarization.

   We define r-space as the real space, where targets and the antenna are located. We

express r-space with the parameter (x, y, z). All of x, y and z are normalized by A, which is

the center wavelength of the transmitted pulse in vacuum. We assume z > O for simplicity,

The antenna is scanned on the plane spanned with x-axis and y-axis in r-space. We define

s' (X,X Z) as the received electric field at the antenna location (x, y, z) = (X, MO), where

we define Z with time t and speed of the Iight c as Z = ct/(2A). We apply a matched filter

of transmitted waveform to s'(X,YZ). We define s(X, }1 Z) as the output of the filter,

We define d-space as the space expressed by (X, Yl Z). We normalize X and Y by A and

Z by the center period of transmitted waveform, respectively. It should be noted that the

received data is expressed with (X, M Z) in d-space and target shapes are expressed with

(x,y,z) in r-space. Transform from (X,Y] Z) to (x,y,z) corresponds to the imaging we

deal with in this chapter.

6.3 Boundary Scattering Transfbrm

We define q as the boundary surface which is expressed as a differentiable single-valued

function. This assumption includes the case where the target complex permittivity is

divided into multiple areas. This assumption is valid for most of artificial targets in

the environment for household or rescue robo' ts. We define several sets in order to ex-

plain Boundary scattering transform. We define P, which is a subset of d-space, as

P = {(X, Yl Z) ISs(X,YZ)/OZ = O, ls(X, Yl Z)1 ) 7k}, where 7k is a threshold to pre-

vent picking up noise values. Next, we connect the points close to each other in P. We
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Applying Matched Filter

Quasi Wavefront          -Extractlon

Inverse Boundary Scattering 1?ransform

Figure 6.2: The outline of the proposed algorithm.

express each surface as p, which we call a quasi wavefront. We define G as the set of all

p E P. Here, we assume that the medium of direct path is vacuum, but the following

argument is valid for any uniform media only if the propagation speed of the wave is

known. We assume p corresponds to the direct scattered wave of q. By utilizing the

relationship between the antenna location and the length of perpendicular line to q from

the antenna location, the point (X, }1 Z) on p is expressed as

                    X= x+zOz/0x
                    Y= y+ zOz /0y (6.1)
                    Z = z 1+(0z/0x)2+(oz/ay)2,

where (x,y, z) is a point on q, aBd we assume z > O and Z > O. We define the transform

in Eq. (6.1) as Boundary Scattering Transform (BST).

  The inverse transform of BST is given by

                  x= x-zaz/ox
                  y== Y-ZOZ/OY (6.2)
                  z == z i- (oz/ax )2 - (oz/oy )2,

which is obtained in the similar way as the 2-dimensional case. The existence of the inverse

transform is very meaningful because it can be used for a direct and unique estimation of

target boundary shapes. The estimated target boundaries are expressed not as an image

but surfaces. This is the advantage and the characteristic of our algorithm. The condition
of existence of IBST is differentiability of the quasi wavefront and (aZ/aX)2+(OZ/Oy)2 f{

1. This inequality is required because if it is not satisfied, the estimated z using IBST

becomes an imaginary number, which is not rational.

6.4 3-DimensionalSEABEDAIgorithm
In this section, we propose a 3-dimensional imaging algorithm based on BST and IBST.

We have already defined the set P. The procedure of extraction of P is easy because all
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we should do is to check the derivative of given data. Next, we go on to the procedure

of extracting p from P. In an actual procedure, we sequentially connect the points in

P which satisfy a required condition. The i-th set pi is determined as follows. The first

element of pi is an arbitrary element of P which is not included in pi,p2,･･･,pi-i. The

domain Ii for pi is set to (X, Y) of the first element. The second element of pi is chosen

from P which satisfies (OZ/0X)2 + (OZ/0Y)2 S 1. Here, Z should have only one value

for the same (X, Y). Then, domain 4 is updated according to the newly chosen element.

In this way, we expand the set pi until there is no other element which can be included

into pi. Next, we calculate OZ/0X and OZ/OY for an extracted quasi wavefront using

a 2-dimensional B-spline smoothing algorithm. Finally, we apply IBST in Eq. (6.2) to

the data and obtain an estimated target surface. Fig. 6.2 illustrates the outline of the

algorithm we propose in this chapter.

6.5 ApplicationExample

We show an application example of the proposed algorithm. The antenna transmits

pulses at 51 × 51 positions with intervals of A/4. The assumed target is shown in Fig. 6.3.

The inner part of the surface is filled with perfect electric conductor. The scanning

plane is z = 3, which means the plane is IA apart from the nearest target surface. We

obtain the received data s(X, Yl Z) using a ray-tracing method, which cannot deal with

the polarization and the phase rotation at caustics. First, we extract a quasi wavefront

p from s(X,MZ) as in Fig. 6.4. Next, we calculate 0Z/OX and OZ/0Y in order to
apply IBST to the data. The estimated target surface is shown in Fig. 6.5. As for the

calculation time, the proposed algorithm with 51 × 51 positions takes O.1 sec with a single
Xeon 2.8GHz processor for the entire reconstruction. This procedure does not include the

smoothing process with B-spline functions. Therefore, it is difficlt to directly compare

the result with that of 2-dimensional SEABED algorithm.

6e6 Conclusion

In this chapter, we have proposed a new 3-dimensional imaging algorithm based on BST

for pulse radar systems. BST is known as a reversible transform between target sur-

faces and received wave delay for 2-dimensional systems. We have extended BST to
3-dimensional systems and apply it for 3-dimensional imaging. First, we have shown the

extended transform and its inverse transform. Secondly, we have proposed a 3-dimensional

imaging algorithm based on BST. Finally, we have shown an application example of the

proposed algorithm. We have clarified that the proposed algorithm's calculation time is

considerably short compared to conventional algorithms, so that the proposed algorithm

can be readily implemented to realtime applications. Additionally, the estimated target
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shape is accurate enough on the condition that the directly scattered waveform can be

obtained. In this chapter, we have shown an application example without noise.

   The echoes in 3-dimensional problems can suffer from phase rotation at caustics, which

should be compensate for. However, in this chapter, we utilized ray-tracing method to

obtain the simulated data, which does not include this effect. It is important to ap-

ply the phase compensation algorithm proposed in the previous chapter to 3-dimensional

SEABED algorithm. Furthermore, investigating the performance of the proposed algo-

rithm under noisy conditions will be an important future task.
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Chapter 7

Concluding Remarks

In the present study, we have developed fast and accurate imaging algorithms for pulse

radar systems. The IHCT algorithm and the SEABED (Shape Estimation Algorithm
based on Boundary scattering transform and Extraction of Directly scattered waves)

algorithm have been proposed and confirmed to have an efficient performance by numer-

ical simulations. The IHCT algorithm simultaneously estimates the target !ocation and

scattered waveforms, whose accuracies are interdependent. The scattered waveforms are

estimated using the coherent integration because the scattered waveforms depend on the

target properties. The SEABED algorithm utilizes the existence of a pair of reversible

transforms which connect the real space and the data space. The SEABED algorithm
requires the condition as fo11ows:

e Each target should have a uniform permittivity with a clear boundary.

e The propagation velocity should be known or at least estimated prior to its appli-

  catlon.

These conditions are almost always satisfied for rescue robots and other applications which

require shape estimation in the air. The SEABED algorithm can achieve a high-resolution

shape estimation for 2-dimensional and 3-dimensional problems. Furthermore, we have

improved the algorithm to avoid the problem of the phase shift caused by the concave

scatterers. These problems were dealt with using analytic methods, which has led to

'concise closed-form numerical solutions.

   In Chapter 2, the IHCT algorithm has been proposed to estimate target locations

accurately. This algorithm is based on the iterative improvement which eliminates the

inconsistency of target locations and scattered waveforms. Additionally, the algorithm im-

plicitly extracts the narrow-band dominant frequency components which have high S/N

compared to others. The estimation accuracy was compared with that of conventional

methods and the theoretical lower bound CRLB (Cramer-Rao Lower Bound). The accu-
racy of the proposed algorithm was shown to be close to the CRLB, which indicates the
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algorithm is the sub-optimal solution for the problem. Next, we clarified that some modi-

fications for the IHCT algorithm are required to estimate multiple point targets although

it has a remarkable performance for estimation of only one point target. This perfor-

mance degradation of the IHCT algorithm is caused by the interference waves from other

targets, which causes the erroneous estimation of the scattered waveforms. We proposed

the interference suppression algorithm based on the neural networks, and confirmed its

performance by numerical simulations.

   In Chapter 3, the SEABED algorithm has been proposed for 2-dimensional fast and

accurate imaging. First, we have shown that the reversible transform exists between a

target shape and a delay time, which is named BST (Boundary Scattering Transform).

The SEABED algorithm utilizes this transform for the estimation of target boundaries.

This algorithm extracts quasi-wavefronts from the observed data, and IBST is applied to

them. We have clarified that the SEABED has an advantage of direct estimation of target

boundaries using the inverse transform, which is a mathematically complete solution for

the inverse problem. The algorithm has a remarkable performance in estimating target

shapes, which has been confirmed by numerical simulations. In addition, the performance

of the SEABED algorithm against noisy environment has been investigated.

   In Chapter 4, the performance of the SEABED algorithm for inhomogeneous media

was shown. The performance of the SEABED algorithm for inhomogeneous media has
not been touched in Chapter 3 because the SEABED algorithm was proposed with the
assumption of homogeneity of the media. The inhomogeneity of the media is the typical

model of soil, which is often dealt with in the field of GPRs (Ground Penetrating Radars).

The performance was checked by applying the SEABED algorithm to random and layered

media with a cylindrical perfect conductor.

   In Chapter 5, the phase compensation algorithm for high-resolution imaging radar

systems was proposed. The result of numerical simulation in Chapter 3 shows that there

are offset errors at concave estimation, which is caused by the phase shift phenomenon.

This phase shift phenomenon is well-known in the field of electromagnetic field theory,

which has not been considered as a problem for a radar signal processing because the

conventional radar systems do not discuss the accuracy of the order of its carrier wave-

length. This problem is typical for UWB pulse radar systems because the UWB pulse

has a relative bandwidth close to 100%. The phase shift was analytically studied and

expressed with quasi-wavefronts, which enables us to modify the BST to compensate for

the phase shift. The performance of the algorithm is clarified by numerical simulations,

which shows it works well in a relatively high S/N environment.

   In Chapter 6, the SEABED algorithm has been extended to 3-dimensional imaging,

which we cal1 the 3-D SEABED. The BST was also extended to deal with 3-dimensional

imaging problems, which was used in the 3･-D SEABED algorithm. The algorithm was
proposed first, which was followed by the numerical simulations. We have clarified that

the 3-dimensional imaging was accomplished quickly and accurately. The calculation time

to obtain the entire image is O.1 sec with a Xeon 2.8GHz processor.
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  In Chapter 6, we neglect the effect of the phase rotation at a caustic for simplicity.

However, we have to apply the phase compensation algorithm to the 3-D SEABED by

extending the phase compensation algorithm to a 3-dimensional one in future study.

Some fast and accurate imaging algorithms have been proposed in this study, whose

performances were confirmed only with numerical simulations. Further studies are needed

to investigate the performance of the algorithms for experimenta} data. Additionally,

polarimetry, which is one of the most important properties of the electromagnetic field,

has not been used for imaging in this study, Combining the information of the polarization

with the wavefronts can be a tremendous breakthrough for radar imaging techniques.
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Appendix

Coherent
Signal Processing
Integrations

for

A.1 Optimum Signal Processing for Coherent Inte-
      grations

We define data vector X(w) as

                            S(w) + Ni (w)

                    x(.)= S(w)±Nl2(w) , (A.1)

                           S(cv) + Aiha(w)

where S(w) is a signal, and Alle(w) are white Gaussian noises independent of one another.

  We define W(w) as a Wiener filter which output the Dirac delta function 6(t). We also

define S.b as the covariance matrices between a and b, where a and b are given matrices,

For example, S.b = E{aT(w)b(cv)}. We can express W(w) as

                W(w) == S.6(w)S.-.i(w) (A.2)
                          E {1(s(w) + Ari (w))'}

Here, we define

A

v

  E {1(S(co) + AXI2 (w))'}

 E {1(S(w) + NM (w))'}

Snd (w).

= diag{a,2,a,2,

= [S(w) ･･･
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Then, we can express W(w) as

                               1
                               1
                W(w) = S'(cv) .
                               i

                         (A+ls(.)I2[11 11 ]l-i (A 6)

                               1
                      = s'(w) l {A+vv"}" (A.7)
                               i

  By applying the following formula for matrix inversion

                                   A'ivvHA-i                   (A+vvH)-i =A-i.                                                            (A.8)
                                   1 + vHA-iv
to Eq. (A.7), we obtain

                 W(ev) = ,2"=,ia,-2is(w)i2i'((,l)III,a,-2)-i

                           -2                          al
                           -2                          02                       .. (A.9)                            :
                        '                          aM2

And thus, we see the optimum signal processing require a weight in proportion to each

signal power. This is the reason why we need a term 1/ u(x,T,) in Eq. (2.7).

A.2 Derivation of Eq. (5.2) and (5.3)

We show the derivation of Eq. (5.2) and (5.3) based on the reference papers [86, 87].

Helmholtz equation is given as

                         v2E+k2E=e. (A.10)
Eq. (5.1) can be expressed as

                               co
                   E(r) cr e-jk¢(r) 2(-jk)-ME.(r) (A.11)
                              m=O
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using the vector E(r) of electric field. Substituting the asymptotic expression Eq. (A.11)

into Eq. (A.10), we obtain the O-th order transport equation as

                       (v¢･v)Eo+i(v2¢)Eo=o. (A.12)

The general solution of Eq. (A.12) is

                        E, (a) = E, (a, )e-S JI5V2 ¢da, (A,13)

where a is the length along a lay path. V2tp is expressed as

                               v2¢=1 (A.i4)
                                      a
with a in the coordinates in Fig. 5.1. Finally, substituting Eq. (A.14) into Eq. (A.13), we

obtain
                          Eo(a)=Eo(ao)v/E;672;･ (A･is)
Eq. (A.15) can easily lead to Eq. (5.2) and (5.3). Here, we should note that 2-dimensional

TE-mode wave'has only one component which can be expressed using a scalar variable.

A.3 Derivation of Eq. (5.11) and (5.12)

We show the derivation of Eq. (5.11) and (5.12) in this section. First, let us define vf as

                           Vf ==[Zi]-[Z] (A.i6)

vf should satisfy the conditions such as

                             lvfl = r.,and (A.17)
                              vf ll vn, (A.18)
where r. and v. are the radius of curvature and the normal vector of a target boundary

surface, respectively, The radius of curvature of a target boundary surface is given as

                              {1 + (dy/dx)2}312

                                            . (A.19)                         rc =                                 ld2y/dx21

The normal vector of a target boundary surface is given as

                 "" = id,y/d.212Yld+X2(dy/d.), [ -dYi/dX ]･ (A.2o)

                                                           '
Therefore, we can conclude that vf can be expressed as

                      vf == i 'd,(,d/Yd/.d,X)2 [ 'dYi/d" ] (A.2o

Finally, the caustic curve [xf, yf] is expressed as in Eq. (5.11) and (5.12),
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A.4 Derivation of Eq. (5.14)

Differentiating the both sides of Eq. (5.13) with regard to x, we obtain

(A.22)

In order to obtain dXjdx in the right hand side of Eq. (A.22), we have to differentiate
the both sides of Eq. (5.4) with regard to x. We utilize a chain rule to get a derivative as

dX ax ax dy ax d2y
-=-+--+ -.
dx ax ay dx a(dyjdx) dx2

Substituting Eq. (5.4) into Eq. (A.23), we obtain

dXjdx = 1 + (dyjdx)2 + yd2yjdx2.

Next, substituting Eq. (A.24) into Eq. (A.22), we obtain

d2y d2Y{1+(~)2+ya}

dx
2

= dX2 {I _(~i)2r/2

Solving Eq. (A.25) for d2yjdx2, we obtain

d2y ~ {I + (~)2}

dx2- {I _ (dy)2}3/2 _ d2y
dX YdX2

Finally, substituting Eq. (5.7) and (5.13) into Eq. (A.26), we obtain Eq. (5.14).
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