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Abstract

This thesis explores the problem of modeling dynamic events and structures

based on a novel computational model, named an "interval-based hybrid dy-

namical system". The model integrates two types of systems that have different

concepts of time: dynamical systems, which are suitable for describing physical

phenomena (consider time as physical metric entity), and discrete-event systems,

which are suitable for describing human subjective or intellectual activities (con-

sider time as ordinal state transition).

   Firstly we assume that a complex dynamic event such as human behavior

consists of dynamic primitives (such as "open'', "close", and ''remain closed'' in lip

motions). Once the set of dynamic primitives is determined, a complex behavior

can be partitioned into "temporal intervals" based on the primitives. Secondly

we assume that not only temporal orders but the duration lengths or temporal

differences among beginning artd ending time points of the temporal intervals,

which we refer to as "timing structures", have crucial information to understand

dynamic events appear in human communication.

   Based on the assumptions above, we propose an interval-based hybrid dy-

namical system, which has a two-layer architecture that consists of a finite state

automaton and a set of linear dynamical systems. In this architecture, each dy-

namica} system represents a dynamic primitive that corresponds to a discrete

state of the automaton; meanwhile the automaton controls the activation timing

of the dynamical systems. Thus, the overall system can generate, analyze, and

describe complex dynamic events based on the structures of temporal intervals.

   In spite of the fiexibility of the systems, the learning process has a difficulty

due to its paradoxical nature; that is, it requires us to solve temporal segmenta-

tion and system identification problems simultaneously We therefore propose

a two-step learning method. The first step of the method estimates the number

of linear dynamical systems and its parameters based on the hierarchical cluster-

ing of dynamical systems, and the second step refines overall system parameters.



Experiments on simulated and real image data show that the proposed method

successfully solves segmentation and system identification problems from input

time-varying signals.
Applying the proposed model to describe structured dynamic events that

consists of multipart primitives, we can extract and analyze dynamic features

based on the timing structures extracted from temporal intervals. We examined

the effectiveness of using the timing structures to analyze and discriminate fine­

grained facial expression categories such as intentional and spontaneous smiles

of which existing methods had difficulty to represent the difference.

Finally, we propose a "timing structure model" that directly represents tim­

ing structures in multimedia signals, such as synchronization and mutual depen­

dency with organized temporal differences among temporal patterns of media

signals. Experiments on simultaneously captured audio and video data show that

time-varying signals of one media signal can be generated from another related

media signal by using the trained timing structure model.
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Chapter 1

Introduction

1.1 Modeling Dynamic Events

:

Understanding dynamic situations and performing appropriate behaviors in the

situations is indispensable mechanisms for biological systems to survive in the

real world. The mechanisms are also crucial for artificial information systems

to realize intellectual functions, such as recognizing dynamic scenes, predicting

events in the scene, controlling themselves to be desirable states, and providing

useful information to users.

  Tb understand dynamic situations in the real world, systems measure multi-

ple time-varying sigrials from multiple sensors. The sensors can be a set of cam-

eras, microphones, and tactile sensors. From the acquired multimodal signals,

the system first recognizes '`where" and "what objects" exist in the scene (object

recognition), and then recognizes '`when" and "what kind of / how" dynamic

events have occurred or are occurring (event recognition).

  In general case, these two processes of object and event recognition can be

done in parallel. Biological motion in human perception analyzed by moving

light displays [Joh731, or its interpretation systems [Ras80, CS94] are typical ex-

amples where motion itself plays an important role to determine objects (e.g.,

arms and legs). Howeve- to concentrate on temporal aspect of event recognition,

we here assume that object recognition is done beforehand.

   Similar to event recognition, systems determine "when" and "what kind of

/ how" dynamic events should be generated in response to recognized events

from dynamic situations to perform appropriate behaviors. For instance, one of

the most important issues iR robotics is the method to determine the activation

patterns of actuators in the situations in which the robot body contacts with envi-

t
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1. Introduction

time

Time-varying signals

observed from an object

Feature Extraction

( signal processing, etc.)

Dynamic Feature Sequence of Static or Dynamic Feature

Static Pattern Recognition

(Nearest Neighbor, etc.)
Trajectory Matching

(DP matching method, etc.)
Model-Based Similarity

Caiculation (HMM, etc.)

Figure 1.1: Flow of Event Recognition.

ronment and interacts with human.

   As for the concrete metlrtods of event recognition and generation, there exist

many studies in wide variety of areas that cope with real-world problems; for ex-

ample, computer vision, speech, and robotics [AC99, Gav99, NakOO]. Especially

the methods of event recognition, which we mainly handle in this thesis, can be

categorized into several cases based on the fiow of information processing shown

in Figure 1.1:

e The use of static pattern recognition methods with dynamic features.

e The use of trajectory-based temporal pattern match ing･

e The use of state-space models for similarity calculation.

In the following, we briefly describe each of the cases above. As we will intro-

duce there, the model proposed in this thesis can be categorized as one of the

state models (or state-transition models). Since we will discuss state models in

details as it becomes relevant (in Section 1.2), in this section, we give only a con-

cise comparison among the event recognition technigues.

                                   2



･1, 1.1. Modeling Dynamic Events

static Patter Recognition Methods with Dynamic Features

The event recognition methods that utilize static patterns of dynamic features

have been introduced since the dawn of gesture and activity recognition studies.

Once a set of time-varying signals is given as an observation of the object (e.g., a

set of pixels from each of captured images), these methods extract dynamic fea-

tures based on signal processing; for example, spectrum of signals, optical flow

fields of visual features, and temporal integral of signals (e.g., motion-energy or

motion-history images) can be dynamic features. The methods then exploit ex-

tracted dynamic features with classical static pattern recogrtition techniques, such

as nearest neighbor methods and template matching, and classify the category of

the input signals [PN94, NA94, EP9Z BD97, ZMIOII.

   Since these approaches utilize dynamic features that become interfaces be-

tween time-varying sigrtals and static pattern recognition techniques, the user

can select variety of pattern recognition methods once the dynamic features are

extracted. Howeveg the approaches are sometimes sensitive to spatio-temporal

fluctuation of input signals because most of the methods are difficult to repre-

sent the variance of signals (e.g., time warping). In addition, these methods often

require problem-specific signals, such as periodic signals in gait motion, and re-

stricted to use in a narrow domain.

Trajectory-Based Tlemporal Pattern Matching

Straightforward methods to recognize events from the input time-varying signals

or temporal sequences of features, which we refer to as observations or observed

sequences, are the use of dynamic programming (DP) matching methods. In these

methods, a prototypical (or reference) temporal pattern (trajectory) is selected for

each of the event categories in advance of recognition. In the recognition phase,

similarity between an observed sequence and each of the prototypical patterns in

every category is calculated based on DP matching. The DP matching methods

have been used in speech recogrtition and gesture recognition systems [DP93,

TSK094, NMN97, KP981.

   Although these methods enable us to use sequences of static features on behalf

of dynamic features, and to search simple temporal patterns with inexpensive

computatioRal cost, we often fail to model the tmer-class variation of patterns.

This is because the prototypical pattern does not have expressive power to rep-

resent distribution of patterns. The expression of inner-class variation is often

3



1. Introduction

essential to realize speaker independent speech or gesture recognition systems.

As a result, state-space models described in successive paragraphs are widely

used in the current recognition systems that require expressing inner-class varia-

tion. In fact, some of DP matching methods can be deduced as a special case of

the state-space models.

Model-Based Dynamic Event Recognition and Generation

State models represent temporal structure of events based on the change of

the states apart from observation space (i.e., feature space or original sigrial

space). Hidden Markov models (HMMs) and differential equation systems are

well-known models widely used in speech and visual motion recogrtition fields.

Thanks to the states, the models can represent variation of patterns in the observa-

tion space by defining mapping functions between states and observations. In the

recognition phase, one of the states is activated by the combination of observed

data and the previous state. Since state-space models maintain memory as the

activation of the states, they can successfully track an observation sequence, and

classify the sequence into one of the event categories. We can also use the model

to generate time-varying signals if the model is a generative model.

   The model we propose in this thesis is categorized as one of the state models.

The state and its transition are however designed by the integration of two differ-

ent system concepts: dynamical systems, which is suitable for describing physical

phenomena (consider time as physical metric entity), and discrete-event systems,

which is suitable for describing human subjective or intellectual activities (con-

sider time as ordinal state transition).

   In the remaining of this chapteL we first describe two different "concepts of

time" in Section 1.2, and show the two kinds of systems, each of which represents

'`events" based on different concept of time. ln Section 1.3, we describe an intu-

itive concept of integrating the two systems, and introduce some existing studies

about the methods of the integration. The main idea of our proposed system is

described in Section 1.4, where we introduce the use of "temporal intervals" to

integrate the two different concepts of time, and show the target situation of the

proposed system where we focus in this thesis. Finally we show the overview of

this thesis in Section 1.5.

4
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1.2. Subjective Time and Physical [ime

1.2

1.2.1

Subjective Time and Physical Time

Definition of Events and Time

Before describing two different system concepts in state models, we first define

the terms and notions of event and time, which are significant to differentiate

between the two system concepts.

Discrete Events and Dynamic Events

The term event, which we used in the previous section, has two different notions,

each of which has been used in different ways. One is considered to occur at an in-

stantaneous point in time (e.g., "switch the coffee maker on") ITKT+OO, KCB95],

and the other is considered to occur in a temporal region and have a duration

length (e.g., "travel from A to B") IAI183]. Tb be precise, the former event does not

necessarily occur at a single instant in time, howeveg the duration of the occur-

rence is negligible or nonessential. On the other hand, the continually-changing

patterns of objects are essential in the latter event.

   in this thesis, we therefore use the following terms to distinguish the notions

of event:

Discrete events. Discrete events are the occurrence of something that are inde-

    pendent of temporal metric; the discrete events take discrete values (i.e.,

    elements in a finite set). In this thesis, we assume that the discrete events

    occur instantaneously in time similar to delta functions.

Dynamic events. Dynamic events are the occurrence of something that is de-

    scribed by time-varying signals and has physical energy in the real world;

    thus, dynamic events have duration lengths. The sensors can convert dy-

    namic events as trajectories of observable signals in the space that have

    spatio-temporal metric based on the exchange of the energy (e.g., optical-

    electrical conversion).

   Comparing the above definitions with the existing studies in artificial in-

telligence, discrete events correspond to the actions used in situation calcu-

lus [MMM69], which represents a temporal (causal) relation between an action

of an agent at one situation and the result of the action at the next situation in

time. Whereas the situation calculus works well when there exists a single agent

i'
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1. Introduction

performing instantaneous or discrete actions, it fails to represent duration of ac-

tions or temporal structures among actions of multiple agents, which can be over-

lapped with each other.

   Alternative formalisms to represent these temporal structures are known as

event calculus [KS86I, Allen's inteTval-based temporal logic [Al183, Al184], and so on.

These approaches assume that events have duration lengths in time; therefore,

those events used in the approaches correspond to dynamic events defined here.

Subjective Time and Physical Time

In ancient Greek, there were two different concepts of time described by two

words: kairos and chronos, which are the names of Greek gods originally Kairos

is the moment or occasion of making meaning; kairotic time is measured by dis-

crete events. For example, a marriage and childbirth is a kairotic time (moment).

Chronos, on the other hand, is the time that flows 1inearly; chronological time is a

concept of time that describes the continual change of dynamic events, which are

measurable by clocks (e.g., Newton's laws of motion).

   Generalizing the notions of kairos and chronos, we define the following two

kinds of time.

SubjectiveTime (Kairos): temporal order among recognized discrete events.

    Let Ts be a countable set that has no mathematical structures, such as dis-

    tances and relations, among the elements. The set (Ts, g) becomes a subjec-

    tive time axis, where g denotes an ordered relation between elements in the

    underlying set Ts. We often use a set of linearly ordered natural numbers N

    for Ts･

Physical or Objective Time (Chronos): metric entity that linearly progresses.

    Let Tp be a set that has no mathematical structures. The set (Tp, S,d) be-

    comes a physical time axis, where d denotes a distance function between

    two elements in the underlying set Tp (e.g., a(ti,t2) = lti - t21, where

    ti,t2 E Tp). We often use set R+ = {tlt }ir O,t E R} for Tp, where R is

    a set of real numbers.

Note that the most significant difference of physical time from subjective time lies

in the existence of metric property

6
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1.2. Subjective Time and Physical Time

'
i

1.2.2 Discrete-EventSystemsandDynamicalSystems

Based on the two concepts of time described in the previous subsection, we can

categorize existing state models, which are used for event recognition and gener-

ation, into following systems:

e Discrete-event systems

   e Dynamical systems

As we will describe in this subsection, each of discrete-event systems and dy-

namical systems defines its state transition based on subjective time and physical

time, respectively

   The integrated system of these two systems is referred to as hyhrid dynamicaZ

systems, as we will describe in Section 1.3.

Discrete-Event Systems

A discrete-event system has a set of discTete states, which is represented by a fi-

nite set, and it does not change the discrete state before an input discrete event

occurred. Therefore, the state transition is described based on the subjective time.

The simple case of the state transition becomes the following function, which is

used in finite state automata:

:

M(statenow, eventinput) = statenext (M:Q×A-Q), (1.1)

/

i
'

･
1

i
i

where A and Q is a set of discrete events and discrete states, respectively

   The representative model of discrete-event systems is the Turing machine,

which initially models "a man in the process of computing a rea! number" based

on the finite number of discrete states (configurations) ITur36, Tur50]. Finite

state automata [KCB95, BW97, WBC97, MM98b, WMOOI, HMMs [Rab89, HAJ90,

NakOO, YOI92, SP95, BOP97], and Petri nets [DAJ95I are examples of discrete-

event systems that are widely used for modeling structure of discrete events.

   Discrete-event systems have the advantage of being able to model long-

term contexts, relations of temporal order, overlaps, and inclusion among

events [PMB97], and other discrete structures such as coupling between action

and perception [KCB95]. Howeveg discrete-event systems have signal-to-symbol

problems; that is, it requires us to define an event set in advance. Moreovez

human-designed states depend on our recognizable event scales. Therefore, the

7
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1. Introduction

continual changes produced by smooth dynamics are difficult for discrete-event

systems to describe.

Dynamical Systems

In contrast to discrete-event systems, dynamical systems define the state transi-

tion based on the physical time using the formulation of differential or difference

equations. The simple case of the differential equation becomes:

d state(t)

dt
= F(state(t)) (F : Rn - Rn), (1.2)

where t E R+ and n is the dimensionality of the internal (continuous) state space,

where internal states are defined. Note that the system changes the state even if

there are no input signals.

   Cybernetics, which had been advanced by Norbert Wiener since 1940s, is the

study of "teleological mechanisms" involving regulatory feedback in animals (liv-

ing organisms) and machines [Wie61]. Cybernetics influenced wide area of au-

tomatic systems including dynamical systems in control theory [AM79]. Gaus-

sian and non-Gaussian linear dynamical systems [Rao97, IB98, RB99, BCMSOI,

DCWS03, DD05] are often used for modeling dynamic events that have physical

dynamics. As for nonlinear dynamics, recurrent neural networks [FH88, Rob94,

Dor96, Mor96, UTOO, HWKOI] and other nonlinear dynamical systems ldFNG98,

GR99, OTN02] are used for modeling complex events such as robot motion.

   Dynamical systems have the advantage of modeling continually-changing dy-

namic events such as human motion and utterance. Howeveg the systems are not

suitable to represent complex structures of signals, such as duration lengths of dy-

namic events, patterns of the duration lengths, and other temporal relations exist

in multiple dynamic events that occur concurrently

1.3 Hybrid Dynamical Systems

Hybrid dynamical systems (hybrid systems) that integrate dynamical systems

and discrete-event systems are introduced to overcome the disadvantages of the

two systems in a complementary manner.

  In the following subsections, we first give a basic idea of hybrid dynamical

systems to see how the disadvantages can be solved by the interaction between

8



1.3. Hybrid Dynamical Systems
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Figure 1.2: The concept of hybrid dynamical systems.

discrete-event systems artd dynamical systems that constitute the overall system

(Subsection 1.3.1). We then introduce some existing approaches that integrate

discrete-event systems and dynamical systems, and discuss the idea of the inte-

gration in most of the approaches are different from integrating the two different

concepts of time (Subsection 1.3.2).

1.3.1 Interaction in a Hyb rid Dyn amical System

Figure 1.2 shows the concept of hybrid dynamical systems. In a hybrid system,

a discrete-event system decides the activation timing of multiple dynamical sys-

tems. The discrete-event system provides a solution to represent a discrete struc-

ture of primitives; meanwhile, the dynamical systems represent detailed dynam-

ics in each primitive and also provide metric properties among the primitives. A

typical interaction among the discrete-event system and the dynamical systems

in a hybrid dynamical system is as follows:

1. Dynamic events in the real world, such as speech utterance,

  human (robot) motion, are measured as multimedia signals.

lip motion, and

2. At the boundary of the hybrid dynamical systems and the real world, dy-

  namic primitives are represented by various attractors in the internal state

  space based on differential equations. Each dynamical system, therefore,

9



1. Introduction

changes the internal state in the physical-time domain based on observed

time-varying signals. This process can be regarded as the "resonance" of

dynamical systems with observed signals, and the signals are partitioned

into temporal intervals, where each partitioned interval corresponds to the

dynamical system that resonated the most with the observed signal.

3. The segmentation result of the observed sigrtal determines the macro-

  transition of the discrete states, which can be considered as the flow of sub-

  jective time in the discrete-event system. If the probability of each state

  transition is given in advance, the discrete-event system affects the activa-

  tion order and timing of constituting dynamical systems.

4. Hence, the interaction between top-down and bottom･-up information oc-

  curs simultaneously at the two boundaries; that is, the boundary between

  the real world and the constituent dynamical systems (see 2), and the

  boundary between the dynamical systems and the discrete-event system

  (see 3).

   Due to the interaction above, each of disadvantages in discrete-event systems

and dynamical systems can be solved as follows:

e The dynamical systems provide interfaces between signals in the real world

  and discrete states (symbolic entities) in the discrete-event system; this ar-

  chitecture resolves the sigrtal-to-symbol problem of discrete-event systems.

e The discrete-event system represents the structures of discrete events that

  are produced by the constituent dynamical systems; thus, complex temporal

  relation among dynamics are described in this architecture.

1.3.2 ExistingApproaches

Because of the high capability of modeling nonlinear and complicated events, hy-

brid dynamical systems are currently attracting great attention in various fields

including controls, robotics, computer vision, graphics, neural networks, and

other computer science fields. In the following paragraphs, we introduce some of

the existing hybrid dynamical systems in these fields. Mathematical analysis of

hybrid dynamical systems can be found in [GV89, MMdB+91, ACH+95, ZM95].

   As we will see in the remaining of this subsection, the notion of "hybrid" dif-

fers among the studies. Note that most of the existing hybrid dynamical system

!

l
li'
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1.3. Hybrid Dynamical Systems

focus on integrating discrete states, represented by symbols, and internal states,

represented by continuous values, rather than integrating the two different con-

cepts of time (i.e., subjective and physical time) described in Subsection 1.2.1.

l
'

l
.

I
i
'
I
I

I
I

Piecewise ARX Models

j
'
j

l

l
,
,
l

l

Piecewise AutoRegressive eXogenous (AR)() models are the AR)( models that use

piecewise linear (PWL) or piecewise affine (PWA) maps as the regression func-

tion [FMLM03, RBL04, KHS+04]. A PWL map constructs a nonlinear function

f(x) by partitioning the domain ,V c R" into several regions M,...,,lijv with

polyhedral boundaries, which are referred to as guaTdlines. In each region, a linear

mapping function is defined individually and they are switched by the condition

of x E X. As a result, the mapping function becomes nonlinear as a whole.

   Piecewise AR)( models are a class of hybrid systems for which the switching

law between the affine submodels is specified by the shape of the guardlines;

thus, the model represents nonlinear signals due to the switching. The condi-

tions of discrete-state transition in the model, howeveg can be regarded as static

because they are determined beforehand based on the design of guardlines.

Switching Dynamical Systems

l Bregler et al. [Bre97] proposed a multilevel modeling method of human gate

motion based on an architecture of a hybrid dynamical system. The model

comprises multiple linear dynamical systems as its subsystems, and an HMM

that switches the constituent subsystems. As a similar approach to the Bre-

gler's model, a switching 1inear dynamical system (SLDS), which switches lin-

ear dynamical systems based on the state transition of the HMM, have be-

come a common approach for modeling complex dynamics such as human mo-

tion [GH96, PRCM99, PRMOO] (see [Mur98] for the survey of similar models).

The stochastic linear hybrid systems [LWS02, BHJT041 are also the extension of

Breglar's model.

   In these approaches, the discrete and internal states are integrated. However,

the macro-transition between constituent subsystems (i.e., linear dynamical sys-

tems) is modeled in the same time axis as the internal-state transition of each

subsystem (i.e., physical time axis). AssumiRg that the system consists of a set of

SUbsystems 2 == {qi, ..., qN}, then the SLDS models the transition from subsystem

qi to qj as a conditional probability P(st = qilst-i = qi), where t is synchronized

11
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to the internal-state transition in each subsystem. Some other method use parti-

cle filters on behalf of 1inear dynamical systems (Kalman filters) IBIROO], however

the method also use the physical time to model the state transition in the HMM.

i
t

l

Segment Models

Segment models [ODK96] have been proposed in speech recognition fields as

the unified model of segmental HMMs [Lev86, HAJ90] and other segment-based

models [Mur02]. In contrast to SLDSs, segment models use segments as descrip-

tors. Each of the segrnents represents a temporal region in which one of the dis-

crete states is activated. Since a discrete state corresponds to a dynamic event

such as phonemes and subwords, each of which is represented by a subsystem,

the discrete-state transition of the segment model represents temporal order of

dynamic events apart from the physical-time domain. Thus, the conditional prob-

ability of the state transition becomes P(sk = qjlsk-i = qi), where k represents the

temporai order of the subsystem activation. Motion texture [LWS02], which is

proposed for motion generation purpose, can be also categorized as one of the

segment models.

   Since the transition between the subsystems is modeled independently from

the physical-time domain, the model handles one aspect of integrating the con-

cepts of physical time and subjective time. Howeveg because this model is pro-

posed as a unified framework of segmental HMMs, it focuses on modeling only

state duration rather than complex temporal structures among discrete events.

We will discuss the details of this point in the next section.

1.4 Interval-BasedHybridDynamicalSystem

In this thesis, we propose a novel hybrid dynamical system that integrates the

concepts of subjective and physical time by exploiting temporal intervaZs (inter-

vals, in short) defined in this secV'on. We refer to the system as an interval-hased

hybrid dynamical system (interval system, in short). Interval systems are similar to

segment models in respect that the both models are able to describe the temporal

order of dynamic events, each of which is represented by a subsystem, apart from

the physical-time domain. Howevell the concept of interval systems are different

from the segment models because we concentrate on modeling temporal structure

among multiple discrete events extracted by constituent subsystems (i.e., tempo-

                                 12
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1.4. Interval-Based Hybrid Dynamical System

rally dividing points of complex dynamic events) rather than only modeling the

duration lengths of dynamic events (i.e., temporally divided parts of complex

dynamic events).

   For the above reason, we use the term "intervals" instead of "segments".

In other words, our motivation is bringing Allen's interval-based temporal

logic [Al183, Al184], which exploits 13 topological relations between two inter-

vals (e.g., meets, during, starts with, etc.), into the class of hybrid systems. Once

the intervals are explicitly defined, we can fabricate flexible models to represent

complex structures among multiple types of dynamics, which can be appeared

concurrently in human behavior and interaction (e.g., tempo and rhythms of ut-

terance, synchronization/delay mechanism of speech and lip motion, and action

timing generation in response to input events in interactive systems).

   In the following subsections, we first define the Rotion of an "interval" (Sub-

section 1.4.1), and show how the temporal structures that have vital information

for human can be described by the intervals (Subsection 1.4.2). We then give a

concept of an interval-based hybrid dynamical systems (Subsection 1.4.3), and

finally we discuss the expressive power and the limitations (Subsection 1.4.4).

1.4.1 Definitionoflntervals

The definition of "dynamic events" in Subsection 1.2.1 is independent of cogni-

tive processes, howeveL significant dynamic events are perceptible units for some

"cogrtitive subjects". We therefore define an "interval" as a temporal difference

between the beginning and ending points of the dynamic event that is perceived

by some cognitive processes of humans or artificial systems. The length of the in-

terval corresponds to the duration of the perceived dynamic event in the physical-

time domain (see Figure 1.3).

   Regarding human cognition, those perceptible units are not restricted to the

dynamic events recognized consciously. While humans are not able to be aware

of some events, the unconsciously perceived events are often processed with-

out awareness, and exploited to provide appropriate decision and action. For

instance, as we learn techniques in football, the learner can be aware of primitive

motions (dynamic events) constituting an overall kicking action, such as pulling

the leg back and moving it forward. Howeve- once the learner has acquired the

skill of the action, he or she can provide the action without awareness of each

primitive motions.
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Subjective time
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Figure 1.3: Definition of a temporal interval.

   Whether the humans are aware of the units or not, the beginning and ending

points of perceptible dynamic events are essential to understand the temporal

property of situations. We consider these instantaneous points in time as dis-

crete events as shown in Figure 1.3; thus, a set of the discrete events constitutes

subjective time, and temporal ordering relations among the discrete events be-

come important for the situations incorporated by discrete-event systems as we

described in Subsection 1.2.1. In the next subsection, we see how the significant

temporal structures are described by the intervals.

1.4.2 DynamicStructuresExploitedbyHumans

Tlemporal relations among discrete events (i.e., beginning and ending time points

of perceptible dynamic events) have significant information for humans and ar-

tificial information systems to describe the situations of environments, to under-

stand the mearting of object behaviors, and to generate actions in appropriate

occaslon.

   Allen proposed an interval-based temporal logic to describe temporal relation

among mu!tiple actions that occur simultaneously and have many interact with

each other [Al183, Al184]. The logic represents the relationships between tempo-

ral intervals based on temporal ordering relations of discrete events (beginning

                                 14
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Subjective time
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                                      :/

Figure 1.4: 13 temporal relations between two intervals b and b used in Allen's

         interval-based temporal logic, which exploits temporal ordering rela-

         tions among discrete events (beginning and ending points of intervals)

         in the subjective time.

and ending time points) obtained from two intervals (Figure 1.4). As a result, it

successfully represents temporal relations between multiple intervals in a hierar-

chical mar[ner using constraint propagation techniques.

   While temporal ordering relations among discrete events are indispensable to

realize intelligent functions, we humans exploit not only temporal orders but also

metric properties such as temporal differences among discrete events. ln particu-

la; these metric properties have crucial information for understanding temporal

features appeared in the real world such as in verbal and nonverbal human com-

munication, artd for performing appropriate behaviors in complex environment.

   In subsequent paragraphs, we see some examples of metric properties that we

humans exploit.

Duration lengths of dynamic events. As we described in the previous sub-

section, each interval has a duration length as its metric property: Some psycho-

logtcal experiments suggest that duration lengths of facial actions play important

roles for human judgments of basic facial-expression categories [KBM+Ol, KK05].

In addition, the duration lengths of stationary gaze often used to estimate his or

her interest to the objects [WYH05].
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femporal patterns of duration lengths

:

:

:

:

:

:

:

:

Physica] time

Sub dynamic events

Figure 1.5: Rhythm of dynamic events observed in a single signal.

Rhythms of dynamic events. Because the term "rhythn" is often used am-

biguously we need a definition of the term. Once an action is partitioned into

subactions, we obtain a sequence of sub dynamic events. For a simple definition,

we here refer to patterns of duration lengths appeared in the sequence of subac-

tions as rhythns (Figure 1.5). We humans are sensitive to the rhythms of not only

music performances but also general events in various situations; for example,

human gait motion (easy to detect an irp'ury of others), swinging arm motion in

communication (phasic gestures [WBC97]), and sports (feint motion in ball games

to foil the others rhythrnic prediction).

Synchronization among dynamic events. Intervals can be obtained from not

only a single media signal but' multiple media signals captured from multipart

motion, multiple sensor modalities, and other situations; the intervals of con-

current dynamic events therefore can be overlapped each other. In these case,

temporal differences between beginning points or between ending points among

dynamic events often become significant in some situations (e.g,. synchroniza-

tion/delay mechanisms among dynamic events) (Figure 1.6). For example, it is

well-known fact that the simultaneity between auditory and visual patterns in-

fluences human perception (e.g., the McGurk effect [MM76]). Synchronized mo-

tion or sound generation among performers are also indispensable for music and

dance performances [Mat96].

Action timing generation in response to perceived events. Timing genera-

tion mechanisms of actions exploits the metric properties as well. One can con-

trol the beginning timing of utterances based on the other's speech signals (Fig-

ure 1.7). This pause and overlap lengths often convey rich information of one's

intention or affective states [OKYI96, NDKN02]. Timing generation is also essen--
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tial to perform articulated motions; hirmans and animals optimize control timing

(e.g., insertion of torque power) of each different parts to realize effective body

action [KOT+04, YKM06]. The timing between body parts are also essential; for

example, multi-part motion appeared in human body often described by timing

of motions as we see in dance notation (e.g., Labanotation [NakOl]).

   The objective of this thesis is to provide a computational model that represents

dynamic structures described in the preceding paragraphs:

   e Duration lengths and their patterns of dynamic events in a single signal

   e Temporal metric relation of multiple dynamic events observed in multiple

     parts, objects, and different media signals, which can be overlapped each

     other

   e Tlemporal metric relations of perceived and generating events

In this thesis, we use the term timing structures for these metric relations described

by the distances amQng discrete events. In the next subsection, we exploit re-

lations of temporal intervals and introduce a concrete system for modeling the

timing structures.

                                  17
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1.4.3 Interval-BasedHybridDynamicalSystem

An interval-based hybrid dynamical system (interval system) is the integration

of a discrete-event system and multiple dynamical systems similar to existing

hybrid dynamical systems described in Section 1.3. Howeveg the rationale of the

integration in an interval system is different from the existing studies. That is,

we use a set of dynamical systems as cognitive processes, which we described in

Subsection 1.4.1, for determining i'temporal intervals".

   Due to the intervals, the discrete--event system is able to describe a complex

structure of dynamic events based on the relations of discrete events that are ob-

tainable from the intervals as their beginning and ending time points. As a re-

sult, the intervals work as interfaces between the discrete-event systems, which

represent the structure of discrete events in the subjective-tirne domain, and the

dynamical systems, which represent continually-changing dynamic events in the

physical-time domain.

   Let us consider a human kicking motion as a dynamic event for example. If

we observe the motion, we recognize that the leg moves based on several types of

dynamics, such as two types of dynamics in bending backward and kicking for-

ward if we assume bi-phasic motion, and we see that each of dynamics appears as

temporal intervals in the physical time. Because the motions of other parts (e.g.,

arms) are essential for the kicking motion to take balance of the overall body we

also observe that several arm motions are closely related to the leg motions. Thus,

primitive motions appear in multiple parts during a single motion execution can

be represented by a structured multiple dynamics. This process can be general-

ized as the following conception; the observable signals (Figure 1.8 bottom) are

produced by the orchestration ofdynamics (Figure 1.8 top) that determines the acti-

vation timing of dynamics in the internal state spaces (Figure 1.8 middle).

   What we want to do here is describing these structures that have significant

temporal relations among multiple intervals each of which represented by a dy-

namical system. In addition, we demand the model to be learned from training

data observed as input multivariate signals or extracted feature sequences from

the signals. These objectives require two essential issues to be considered:

1. How to determine the concrete model of the dynamical system that rep-

  resents each of dynamic events (primitives); the type of dynamic events

  should be considered because the model of dynamics affects the discrete

  events and their structures represented by the overall system.

18
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2. How to model the temporal relations among discrete events (i.e., beginning

  and ending points of intervals) with their metric properties; the comp!exity

  of the model is too high to be trained if we take all the relations among

  discrete events into account, some simplification is therefore required.

1. TYpes of the Dynamics for Modeling Dynamic Events

In this thesis, we focus on modeling human behaviors observed in communi-

cation. Therefore, it is plausible to use linear dynamical systems as a type of

dynamics for modeling dynamic events, such as visual motion, because most of

dynamics produced by humans is the effect of muscular action.

  Another option for modeling dynamics is the use of nonlinear dynamical

systems; for example, recurrent neural networks [MM98al, polynomial sys-

tems [OTN02], and other systems that use nonlinear mapping functions in their

state transition or observation (e.g., extended Kalman filtering [SHSTOO]). Non-

1inear dynamical systems might be important for modeling such as consonant

sounds in speech; we however assume that most types of dynamics are repre-

sented by linear dynamical systems because of the following reasons.

e Nonlinearity in the signal can be reduced to some degree (1) if we assume

  enough order for the Markov process, and (2) if we select appropriate static

  or dynamic features in the feature extraction phase.

e Nonlinear signals or nonlinear feature sequences can be represented by

  piecewise-1inear systems if we choose appropriate units of primitives.
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   ln particula- we exploit the second points; that is, we assume a complex

dynamic event comprising a set of sub dynamic events. Those sub dynamic

events are often referred to as motion primitives [NNYI04], movemes [Bre97],

visemes {NLP+02], motion textons [LWS021, modes [NKHM05], and so on.

   Then, we assume the observed signals or feature sequences that are describ-

ing each of the temporal regions of sub dynamic events is represented by a linear

dynamical system. For example, a cyclic lip motion can be described by a set

of simple lip motions such as "open", "close", and "remain closed" (Figure 1.9).

Once the set of sub dynamic events is determined, a complex action can be parti-

tioned by temporal intervals that have labels of the linear dynamical systems and

their duration lengths.

l
!

1
1

i
l
I
i
･
i

v
･

19



1. Introduction

     Orchestrated Dynamics

Shared resource A (e.g., left arm)

(dynamics 'is represented in

 internal state space A)

ll ,.:y:a:.bcsdgQn ,7y(r'E]llXilll:,l

i .pgna.m.i.cs.ft.ii, )W,k l

l (.D.gn.,a,m.i,:?,"i,, ',i!Slk,. i'

i ,.3,¥Rai,M,i98.Bg,, t)}","Sr"')Xl

l e.gPbYe"nadMbiCaScktard '! i(N/tk i':

: tl
:

  Physical (objective) time

t2 ,t3           t

Shared resource B (e.g., right leg)

(dynamics is represented in

internal state space B)

     ll

     ii

l
il
i

   i

   i

   ll

   l

   I
   l
   1

     l
     i
     i

     ii

     il

     l

     ll

     Ii

     i
     i
     '

     i

     ll

     i
     l
     ,

         i

         i
         lt
         ,

sstew

l
i
l
:

i
l

i
:

f
{
t
l
i
l
:

                                 Af                                vv
Example of dynamics
at time point tl , t2, and t3

                        ･:':::il't2(.I*llv.N',1]･i7･:･:::[111"･ki.tl.',,',,,.'""'"lj.I･Iti':"

  lnternal state space A

                                  ---l                                                  !nyt
                               ts                               -- --  tnternaistatespaceB '"`;･I,I.IIJ;"":iS･..,'.'i)1･>'""'i,I'1"tr''s',,f'`c;l)iilll'>

                          t d-r - ---                           -t'--i-ji tt-------

        Producing instance of internal-state sequences t

  Jntemal-state sequence
in space A

lnternal-state sequence

in space B

     to the observation space

kNi'

        j-  ":::Illll'esllljil'tt;llri,>`i.',1]i'j':"

        -----
';･:･i;,llSEi£,',,'Itik)"{Ii...'.'il]i>

     l-iir

Mapping each intemal-state sequence t

                    Observation in each resource A and B

          Figure 1.8: Orchestration of dynamics.

                          20

physical

time

physical

time



F

1.4. interval-Based Hybrid Dynamical Systern

Sub dynamic events

closed   open close

Ets/  't･,-lj･  ,.'. sc,.,- '･ pt.su/.'} .,t,.i... ' i,11S t. .:.t, tt' '"

closed

.- ･-･- :･,-fza"rg.;
/"//'/,iie-m-:;.;'/e?'s.'r'l,11/.ll.lt9ff,..

' tt "' -'/" ''  /'l.'t' 't 't-{,

     '.tttttt. t

              ICS

time

Figure 1.9: An example of dynamic events that consist of sub dynamic events.

2. Simplification for Modeling Dynamic Structures

As we see in Figure 1.8, the orchestrated dynamics have complex structures

among multiple intervals. Whereas our final goal is to describe this kind of gen-

eral structures, the complexity of the model describing the structure is not negli-

gible because we require the model to be learned from training data; the stability

and computational cost of the learning depend on the complexity of the model.

   Tb reduce the complexity as simple as the model is trainable from real data, we

set some assumptions for constraints of the model to describe a subset of general

structures:

e A set of features or parameters that represent configurations of a single re-

  source (e.g., a body part, an object, and a type of media) form a single mul-

  tivariate sigrial.

e A signals of a single resource can be partitioned into intervals by multiple

  linear dynamical systems that share a single internal state space; each of the

  intervals is represented by a linear dynamical system.

e The intervals represented by linear dynamical systems of a single resource

  have no gaps or overlaps each other in the physical time; thus, the dynamics

  in a single resource switches from one to another, and the beginning points

  of one interval corresponds to the ending points of the next interval.

e The metric relation between intervals in different resources can be described

  by the temporal differences of beginning and ending points of the intervals

  (another assumption is introduced in Chapter 5 to specify the interval pairs).
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1.4. Interval-Based Hybrid Dynamical System

   Based on the third assumption, the discrete events of one resource are linearly

(totally) ordered. Note that each discrete event has a type of dynamics that is

finished by the event. Therefore, we use simple automaton to model the order

of the types of dynamics finished by each of discrete events in a single resource.

Especially} we consider one--to-one correspondence between discrete states of the

automaton and the type of linear dynamics (see Chapter 2 for details). In this the-

sis, we use the term "an interval-based hybrid dynamical system" (or an interval

system) to refer the system that represents a single resource.

   Consequently a general structure of orchestrated dynamics, such as shown in

the top of Figure 1.10, is simplified to the architecture comprises two interval sys-

tems as shown in the bottom of the figure. We see that only one type of dynamics

can be activated at a single time point in one resource, and each automaton mod-

els the activation order of the multiple dynamics of the resource. The transition of

dynamics provides complex dynamics as a whole, and determines the behavior

of a produced instance of an internal-state sequence.

   We view the interval system proposed in this thesis as an initial step toward

understanding human-human interaction and realizing human-machine interac-

tion systems. Therefore, as evaluating the interval system, we concentrate on

verifying how the interval systems are suitable for modeling dynamic events pro-

duced by humans, such as facial motion, body motion, utterances, and behaviors,

based on the assumptions above.

1.4.4 ExpressivePowerandLimitations

Expressive Power

Modeling duration length of a dynamic events. It is well known fact that the

HMMs represent only the exponential distributions of state duration if we use the

model with observations that occur in fix-length intervals [ODK96]. This situa-

tion is quite common in speech and gesture recognition systems that use sampled

signals as input data. Let us consider a HMM that has more than two discrete

states, and assume that the observations occur based on a fixed-length sampling

rate. Let aii be a transition probability that the HMM preserves state qi at an oc-

currence of an observation. Then the probability that the HMM sustains state

qi during time length t - and changes the state after the duration - becomes

ali(1 - aii). Thus, the HMMs are restricted to represent the exponential distribu-

tions of discrete-state duration. On the other hand, the interval system is able
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' to utilize general functions for the interval length distribution similar to segment

models. Moreovepthe interval system explicitly models the relation among inter-

val lengths of multiple dynamic events, and provides the expressive power that

we describe in the next paragraph.

Modeling patterns of duration lengths of dynamic events in a single signal.

As for the expressive power of the interval-based hybrid dynamical system for

modeling patterns of duration lengths, we compare the system with several ex-

isting models in the language theory Let us consider the situation of modeling

a dynamic event E that comprises two types of dynamics a and b, each of which

represents a sub dynamic event constitutes E. Let us assume that each of dynam-

icsa andh appears only once in this ordeg and that each dynamics continues the

same length. Tb describe this situation, we can use a sequence {atbt 1t E N} to

denote the change of dynamics in the physical time, where we assume t repre-

sents the length of the dynamics described in a discrete time, which sampled by a

fixed-length rate. Whereas an automaton can not represent these patterns because

it is in the class of context-free grammar (CFG), the interval system can describe

these relations; for example, we can explicitly set the adjacent interval to be the

same duration lengths.

   This result can be extended to the relation among three types of dynamics. Let

us consider the situation that a dynamic event comprises three types of dynamics

a, h, and c, and assume they appear in this order with the same length. We can

use a sequence {atbtctlt E N} similar to the previous example. Although the

sequence is represented by a context-sensitive grammar rather than a CFG in this

case, we are able to describe this situation if we explicitly model the relation of

the duration between dynamics pairs (a, h) and (b, c). Consequently the interval

system is more expressive than CFG in some aspect of modeling the patterns of

duration lengths.
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Modeling temporal differences among discrete events in multiple signals.

Early integration [CR98] is one of common methods to model the relation be-

tween multimodal signals. This method combines two feature vectors observed

from different modalities at a single frame, and forms a single vector. In other

words, the early integration utilizes a frame-based integration. The method how-

ever have disadvantage of modeling metric structures of discrete events, such as

lengths of temporal gaps (pauses) and overlaps in two intervals. Tb describe these
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1.4. Interval-Based Hybrid Dynamical System

structures, the method can not avoid increasing the Markov order of the model.

For instance, if the maximum length of the temporal gaps between discrete events

is l.,., the Markov order in the model is required to be greater or equal to l...

because the relation between one discrete event at time t and the other event at

t + l... have to be preserved in the model. The size of l... is however not small

in general case. As a result, the computational cost and memory size of the frame-

based models easily increases. In the proposed framework in this thesis, on the

other hand, models these temporal gaps explicitly based on temporal differences

among discrete events. Thus, the number of the model parameters becomes small

enough to train and apply in real problems.

Limitations

Chaotic dynamics. Nonlinear systems often have important temporal or geo-

metric features, and able to describe complex behavior without modeling stochas-

tic processes [AIYKOO]. For example, some dynamics have positive Lyapunov

exponents, which determine how fast the system becomes unpredictable in time.

These dynamical systems, which are referred to as chaotic systems, can represent a

wide variety of signals in spite of using only small degree of freedom.

   On the other hand, some dynamical systems have non-integer fractal dimen-

sion, and they generate strange attractors that have recursive structures in their

internal state space. The systems therefore generate complex signals that have

Iayered dynamics even if we use only a single dynamical system.

   Despite of the capabilities of those nonlinear dynamics described above, in

this thesis, we use only linear dynamical systems because nonlinear systems are

sometimes hard to identify from real data, and difficult to predict their macro

behaviors. The limitation that we use only linear dynamics becomes significant if

the behavior of signals is inherently chaotic or have recursive strange attractors.

We however anticipate that most of signals observed in human behaviors, such

as motion and utterance, can be represented by a combination of 1inear dynamics,

as we described in the previous subsection.

Layered structures among discrete events. There exist layered structures of

dynamic events in space and time; for example, a ruming motion can be decom-

posed into several body motions such as arm motions, and the arm motion some-

times comprises different types of dynamics. HoweveL as shown in the previous

subsection, we focus on modeling two-layer structure; that is, relation between

25
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1. Introduction

ll
-

i

a dynamic events and its sub dynamic events. This limitation becomes signifi-

cant if the dynamic events have grammatical structures (e.g., sign languages). In

Chapter 6, we provide detailed discussion of extending the framework proposed

in this thesis to deal with discrete events that have complex layered structures.

i
[
･

I

1.5 Overview of the Thesis

In this section, we present the organization of the subsequent chapters in

thesis. Figure 1.11 depicts the overview of this thesis.

this

Modeling Structures of a Single Signal (Chapter 2)

In this thesis, we first concentrate on modeling a single signal from a single source

for the simplest case, and describe the relation of adjacent intervals based on

the correlation of their duration lengths. Duration-length relation of the adja-

cent intervals corresponds directly to our cognitive sense of time such as tempo

and rhythns, which are crucial information to represent features of the dynamic

events.

   Another advantage of explicitly modeling interval relations is that it enhances

robustness against outliers during temporal partitioning process; in other words,

the top-down knowledge works as a constraint to the lower-level process. For

instance, if the duration distributions of the subsystems are biased toward a long

length, the system will not change the subsystem before the activation of the sub-

system sustains enough length. As a result, the system improves the robustness of

representing temporal structures that can be partitioned into temporal intervals.

   Chapter 2 describes a detailed model structure and an inference algorithm that

searches the optimal interval sequence that provides the highest probability for

the given observation. Then, we verify the inference algorithn using simulated

data.

Learning Method of an Interval-Based Hybrid Dynamical System (Chapter 3)

In spite of the flexibility of hybrid dynamical systems, especially for modeling

human behaviors such as gestures and facial expressions, few applications have

exploited the system to handle real-world signals. The reason is largely due to the

paradoxical nature of the learning process: temporal segmentation and system

identification problems need to be solved simultaneously.

26



1.s. Overview of the Thesis

   chapter 3 proposes a two-step learning method to identify the interval sys-

tem. In particula; we propose a novel clustering algorithm as the first step of the

learning method; the algorithm extracts a set of dynamical systems from observed

sequences, and is applicable to general hybrid dynamical systems. We evaluate

the effectiveness of the proposed learning method using simulated and real data.

Analysis of Timing Structures in Multiple Signals (Chapter 4)

As we described in Subsection 1.4.2, temporal metric relations among multiple

objects or rnultimodal signals often have sigrtificant structures to identify dy-

namic events. Applying the interval-based hybrid dynamical systems to describe

structured dynamic events, we can analyze dynamic features based on the timing

structures extracted from temporal intervals.

   Chapter 4 shows how the interval system can be applied to describe and an-

alyze temporal relation between multiple objects. We apply the system to rep-

resent complex motion appeared in each facial part independently and examine

the effectiveness of using the timing structures to analyze and discriminate fine-

grained facial expression categories such as intentional and spontaneous smiles

of which existing methods had difficulty to represent the difference.

Modeling Timing Structures in Multiple Signals for Timing Genefation (Chap-

ter 5)

Timing structures are also essential to provide appropriate behaviors at appro-

priate timing in response to the perception of dynamic events occurred in the

situations. Tb realize the function of timing generation, we model temporal struc-

tures among different kind of media signals from multiple sensors by extending

the analysis in Chapter 4.

   Chapter 5 shows a general framework for modeling and utilizing mutual de-

pendency among media signals based on the temporal relations among intervals.

In this chapte- we provide a novel algorithm that generates timing of dynamic

events in one media signals (e.g., lip motions in a visual signal) from another

related input signal (e.g., an audio signal).

   Finally Chapter 6 summarizes the investigation in this thesis, and concludes

with a discussion of open issues.
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Figure 1.11 : Overview of the thesis.
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Chapter 2

Interval-Based Hybrid Dynamical

System

In this chapteg we introduce an interval-based hybrid dynamical system (inter-

val system). The system consists of a finite state automaton and a set of multiple

linear dynamical systems as we described in the previous chapter. Each linear

dynamical system represents a dynamic primitive that corresponds to a discrete

state of the automaton; meanwhile the automaton controls the activation tim-

ing of the dynamical systems. Thus, the interval system can generate and ana-

lyze complex multivariate sequences that consist of temporal regimes of dynamic

primitives (see Figure 1.9 for the example).

2.1 System Architecture

An interval system has a two-layer architecture (Figure 2.1). The first layer (the

top dashed box in Figure 2.1) has a finite state automaton as a discrete-event sys-

tem that models stochastic transitions between discrete events. The second layer

(the second-top dashed box in Figure 2.1) consists of a set of 1inear dynamical sys-

tems 1) = {Di, ..., DN}. Tb integrate these two layers, we introduce inteTvals (the

middle of Figure 2.1); each interval is described by < qi,T >, where qi denotes

a discrete state in the automaton and T denotes the physical temporal duration

length of the interval.

   As we described in Subsection 1.4.3, the ending points of the intervals can be

considered to be the discrete events that the automaton models. While the au-

tomaton models only the order of discrete events without physical-time metric,
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2. Interval-Based Hybrid Dynamical System
i

1
l

:

the intervals provides physical-time grounding for the automaton due to the du-

ration length T.

   We assume that a dynamical system Di characterizes the type of dynamics in

the interval < qi,T >. Therefore, each state in the automaton corresponds to a

unique 1inear dynamical system in the second layer; that is, qi denotes the label

of the corresponding linear dynamical system as well as a state in the automa--

ton. Note that multiple different intervals can correspond to the same state in

the automaton (i.e., their dynamics are described by the same linear dynamical

system).

:
:

Signal Generation and Segmentation

An interval system is a stochastic generative model. Once the interval system

has been constructed by learning as will be described in Chapter 3, it can gen-

erate a multivariate sigrtal sequence by activating the automaton. The activated

automaton first generates a sequence of intervals (the middle of Figure 2.1), each

of which then generates a signal sequence based on its corresponding 1inear dy-

namical system (the second bottom of Figure 2.1). Note that the activation timing

and period of the linear dynamical system are controlled by the duration length

of the interval.

   When a temporal sequence of observed signal data (multivariate sequence) is

given, the system finds the activation timing and period of the linear dynamical

systems based on the likelihood calculation. That is, the observed sequence is

partitioned into a group of sub-seguences so that the dynamic signal variation

in each sub-sequence can be described by a linear dynamical system, which is

denoted by the discrete-state label of the interval covering that sub-sequence (see

Section 2.4 for details). As a result, the observation sequence is transformed into

a sequence of internal states that is partitioned by an interval sequence.
i

Notations

We define some terms and notations for later discussions. Firstly we simply use

the term "dynamical systems" to denote linear dynamical systems.

l
/

Internal state. All the constituent dynamical systems are assumed to share an

     n-dimensional internal state space. Each activated dynamical system can

     generate sequences of real valued internal state vector x c R", which can be

30
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 [nterval-based hybrid dynamical system

-- Finite state automaton----------------------------------------s,

                                              i

    P(<q2, T2>1<ql, ttl>) 1
                //'----"-' q, gy,"e.m."ic,a,i I

                                              :                     P(<ql, Tl>1<q2, T2>) ;
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                          xvp

                                     X3                                   / xSx4     lnternal state sequence
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                        Observation (multivariate sequence)

Figure 2.1: Interval-based hybrid dynarnical system and the generation of a mul-

         tlvarlate sequence.
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2. Interval-Based Hybrid Dynamical System

i
'

i
'

I
    mapped onto the observation space by a 1inear function. We assume such

    linear transformation furtction is also shared by all the dynamical systems.

Observation. An observation sequence is described by a multivariate vector y E

    RM sequence in a m-dimensional observation space.

E
i
l
l
･
[
i

Discrete state. The finite state automaton has a discrete state set Q = {qi, ..., qN}.

    Each state qi E 2 corresponds to the dynamical system Di, respectively

Duration lengths of intervals. The duration length that an interval continues

    described by a positive integer because we assume the interval system as

    a discrete time model. Tb reduce parameter size, we set a minimum dura-

    tion length lmi. and a maximum duration length l.ax; we define a duration

    length as T E 7i 4 {lmin,oe･, lmax}-

Interval. An interval generated by the automaton is defined as a combination of

    a discrete state and a duration length. We use notation < oji, T >E 2 × 7- to

    represent the interval that has state qi and duration T.

2.2 Linear Dynamical Systems

2.2.1 Formulation

The state transition of dynamical system Di i'n the internal state space, and the

mapping from the internal state space to the observation space is modeled as the

following linear equations:

                     xt = F(i)xt-i+g(i)+co5i) (2.1)

                     yt = Hxt+vt,

where F(i) is a transition matrix and g(i) is a bias vector. H is an observation ma-

trix that defines linear projection from the internal state space to the observation

space. tu(i) and v is the process noise and the observation noise. Note that each

dynamical system has F(i), g(i), and caSi) individually We assume each of noise

term ca(i) and v has Gaussian distribution Al c, (O, Q(i) ) and A/li, (O, R), respectively

Here, we use the notation YVc(a,B) to denote a Gaussian distribution that has
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2.2. Linear Dynamical Systems

average vector a and covariance matrix B in the space of variable x:

                                       l. }･        YV,(a,B) = (2n)'n/21BI-'/2 exp {--(x - a)TB-'(x -a)
(2.2)

where n is a dimension of vector x.

   We assumed that all the dynamical systems share a single internal state space.

The main reason is that we want to reduce parameters in the interval system; it

is, howevell possible to design the system with an individual internal state space

for each dynamical system. In such cases, observation parameters H(i) and R(i)

are required for each dynamical system. Although they provide more flexibility

in models, a large parameter space causes problems such as over-fitting and high

computational costs.

Probability Density Distributions

Using the formulation and notation mentioned above, we can consider probabil-

ity density distribution as follows:

                 p(xtlxt-i,st == oji) = A!c,(F(i)xtq,Q(i))
                                                                (2.3)
                 p(yt[xt,st=qi) = YVII,,(Hxt,R),

where the probability variable st is an activated discrete state at time t (i.e., dy-

namical system Di i's activated). The second equation is independent of the prob-

ability variable st because of the assumption in the previous paragraph. In this

thesis, we use p to denote probability density function and P for probability.

   Since the state distribution is recursively calculated by the density distribu-

tions above, we define the initial state distribution as follows:

p(xiI,si -= qi) - YV c,(xf.i)･t, VIS)t)･

2.2.2 ClassofLinearDynamicalSystems

(2.4)

The class of linear dynamical systems can be categorized by the eigenvalues of

the transition matrix, which determine the zero-input response of the system. In

other word, these eigenvalues determine the behavior of generable time-varying

patterns (trajectories) in the state space.
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2. Interval-Based Hybrid Dynamical System

Without Bias T;erm

'Ib concentrate on the temporal evolution of the state in the dynamical system, let

us assume the bias and the process noise term is zero in Equation (2.1). Using the

eigenvalue decomposition of the transition matrix:

              F == EAE'i = [ei,...e.]diag(Ai,...An)[ei,...en]-i,

we can solve the state at time t with initial condition xo:

                                                  n
             xt == Ftxo == (EAE-1)txo = EAtE-lxo = £ crpepAtp, (2.5)
                                                 p==1

where ep and Ap is a corresponding eigenvalue and eigenvector pair. We omit the

indices i for simplification. A weight value ap is determined from the initial state

xo by calculating [ai,..., ec.]T = E-ixo.

   Hence, the generable patterns from the system can be categorized by the po-

sition of the eigenvalues (poles) Ai, ...,An on the complex plane. Especially) the

arguments (angle) of eigenvalues in a complex plain determine the state will os-

cillate or not:

   e At least one negative or complex eigenvalue exists - oscillating.

   e All the eigenvalues have real number - non-oscillating.

0n the other hand, the absolute values of eigenvalues determine the state will

converge or not:

   e At least one absolute value of eigenvalue exceeds one - diverging.

   e All the absolute values of eigenvalues are smaller than one --> converging.

Figure 2.2 shows examples of state trajectories when the dimensionality of the

state is two.

   For instance, the system can generate time-varying patterns that converge to

zero if and only if IApl < 1 for all1 S p g n (using the term in control theory

we can say that the system is stable); meanwhile, the system can generate non-

monotonic or cyclic patterns if the imaginary parts of eigenvalues have nonzero

values.
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2.2. Linear Dyrtamical Systems

M and X2 is
positive real

number

IM1<1 and iX21 <1 [Xl1 > 1 and IX21 > 1

M and X2 is

complex number

IMl>1 and IX21 <1

Figure 2.2: Examples of dynamics class when the dimensionality of the state is

         two.

With Bias 'ferm

We first consider the dynamical system has converging behavior. In case that the

system equation has bias vector g as shown in Equation (2.1), the state converges

to a certain position xconv in the state space. We can calculate state xconv using a

similar method to linear type recurrence equations.

   Let us assume that the process is not stochastic but deterministic (i.e., noise

term is zero) same as the previous paragraph. Substituting xconv for xt and xt-i

in Equation (2.1), we get the following equation:

                           Xconv=FXconv+g･ (2･6)

From the equation above, the convergence point becomes:

                           xconv == (I'F)-lg･ (2.7)

Calculating subtraction of each term between original Equation (2.1) and Equa-
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2. Interval-Based Hybrid Dynamical System

tion (2.6), we get the following equation:

                    Xt - Xconv == F(Xt-1 - Xconv)

                              = Ft(xo'xconv) (2･8)

Here, the Equation (2.8) determine the temporal evolution of the state when the

state converges to xconv. From Equation (2.7) and Equation (2.8), we get

              xt = Ftxo+(I-F")(I-F)H'g (2.9)
                 = EAtE-ixo + E(I - A) -i (I - A`)E-ig.

   In general case (i.e., the state might diverge), we can recursively apply the

Equation (2.1) and get the following equation:

                  xt : Fxt-i+g==F(Fxtm2+g)+g
                              t-1
                     == F`xo+(2 F")g (2.10)
                              u=1

Substituting Z]S:ii F" = (I - Ft)(I - F)-i for the second term of the equation

above, we get the same equation as Equation (2.9). Thus, the Equation (2.9) is a

general (i.e., independent of eigenvalues) equation for the temporal evolution of

the state. We can easily deduce Equation (2.7) from Equation (2.9) as a special

case when limtrm.oo Ft = O (i.e., all the eigenvalues are smaller than one).

2.2.3 ProbabilisticStatelnference

In this section, we show the probabilistic inference of the internal state in linear

dynamical systems. Let us assume that the internal state has a Gaussian distri-

bution at each time points. Then, the transition of the internal state becomes a

Gauss-Markov process, which is inferable in the same manner as Kalman filter-

ing [AM79].

   The inference consists of the following two steps:

  1. Prediction step

  2. 0bservation (Collection) step

In the next two paragraphs, we describe each of the steps.
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2.2. Linear Dynamical Systems

Prediction Step

Because we assumed that the probability density of the internal state is a Gaussian

distribution, the state distribution of time t - 1 under the condition of observation

from 1 to t - 1 is represented by the following equation:

          p(xt-ily'i-i =: 0i-',st-i = qi) = -!V;c,-i(x9i)iLt-i, Vl(t)ilt-i)r (2･11)

where x5-i)iit.i is a mean vector and g(t)ilt-i is a covariance matrix, and 9i-i =

9i,...,9t-i is an observation sequence from 1 to t - 1.

  Using Equation (2.3) and (2.11), we can calculate the predicted state distribu-

tion under the condition of observations from 1 to t - 1 as follows:

p(xtlyi-i = gi-',st = qi) == L,-, p(xtixt-i,st = oji)p(xt-ilyl-' = 0i-',st-i = oji)

                      = ,11,-, A! tt (F(i) Xt-i, Q(i) )YV ct-i (X; .i)i Et-ir g(t)i ],-i)

                      - yvl,(x5tl?-,,vlilJ)-,), (2.i2)

                         t cS[i,)., == F(i) cSL),i,.,

               where                         i Vlil)-, - F(t)Vlg'),1,.,F(t)T + Q(i)

We can also calculate the predicted observation distribution using the predicted

state distribution and Equation (2.3):

         p(ytlyi-',st=oji) = ylll,p(ytlsrt,st=qt)p(xtlyiH',st == t7t)

                         = .ll,Ailft(Hxt･R)v'Vc,(x5ii,'-,,VIE;"-,)

                        =: Nl,,(y5'[?-,,M5il?m,), (2.i3)

                  where (t'(til?-r2-i,==".X,Siti2(J/)l,HT+R

Observation Step

After the prediction step in the previous paragraph, the state distribution at time t

can be calculated once the observation data yt becomes available. Using Bayesian

rule with Equation (2.3), (2.12), and (2.13), we can update the state distribution at
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2. Interval-Based Hybrid Dynamical System

time t under the condition of observations from time 1 to t as follows:

2.2.4 Likelihood Calculation of the Linear Dynamical System

H h (i) (i) . . (i) (i)
ence, t e mean vectors Xt/t-l,Xtlt'Y and covanance matnces ~It-l'Vtlt are

updated every sampled time t using the prediction and observation steps by

turns.

(2.14)

where

Now, we show how to calculate the likelihood of a linear dynamical system with

respect to the observation sequence in an interval.

Suppose that the dynamical system D i represents an observation sequence

yLT+l t::. Yt-T+l, ...,Yt in the interval < qi,T >, which has a duration length T.

Then, the likelihood score of the system D i with respect to the observation se­

quence yLT+l is calculated by the following equation:

(2.15)

where we assume Gaussian distribution N(x~t,V~t) for the initial state

distribution in the interval as we described in Subsection 2.2.1 (see Equa­

tion (2.4)); that is, we substitute p(Yt' = yt' IY~~;+l = yL;+l'St' = qj) with

NYi(Hx~t, H~~{tHT+ R) when t' = t - T + 1. On the other hand, 'Ym is a

volume size of observations in the observation space to convert probability den­

sity values to probabilities. m is the dimensionality of observation vectors. 'Y is
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2.3. Interval-Based State Tlrransitions of the Automaton

assumed to be provided manually based on the size of the observation space (the

range of each element in observation vectors). This likelihood score is used in Sec-

tion 2.4 to evaluate the fitting of linear dynamical system to the given multivariate

sequences.

  Substituting Equation (2.13) into Equation (2.15), we finally get the likelihood

of linear dynamical system Di under the assumption of the Gauss-Markov pro-

cess:

                 t    dXZ.+i,,]- n ')'MNIIf,,(yS,ii),･-i･M5iR,,-i)ly,r-o,,

              t'=t-T+1
 = (2,',}',)Mm/2 ,,=III.!.., 1ME'iL)t'-il-'12 e'`P (-ll (!7t' ' yEtZRtt-i)TMS,il)tr--ii (9t' - yE4)tt.i)}

  = exp (Tm iog IJilli i m l ,,=t9.., (iog IMEtti)tr-i1 +e;, MSiii)t,--iiett) ) r

    whe re et, == 9tt -yS,i )L t, .i. (2.16)

Note that we use yE,il)tt-i == Hxf.i,)･t and MS,iE)t,.i = Hiix'iK)tHT +R for the initial

distribution parameters at t' == t - T + 1.

2.3 Interval-Based State Tifansitions of the Automa-

ton

2.3.1 Interval-BasedStateTransition

In this section, we define transition of discrete states in the automaton that gen-

erate interval sequences. Here, we assume the first-order Markov property for

the generated intervals. The difference from conventional state transition mod-

els, such as hidden Markov models, is that the automaton models not only the

transition of discrete states but also the correlation between the adjacent interval

duration lengths.

  Let Zr == Ii,...,IK be an interval sequence generated by the automaton. Tb

simply the model, we assume that the adjacent intervals have no temporal gaps or

overlaps. Here, the interval Ik depends on only the previous interval lt-i because

of the Markov property assumption. Then, the Markov process of intervals can
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2. interval-Based HYbrid Dynamical System

Duration-length distribution

Discrete-state transition probability

:,.

l

  P(sk=qjlsk"=qi) ii
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       sl
       tl
        1        s" P(<qj, T>l<qi, Tp>) ""`-

   ..--.------,,N

     tt     i
     l
     I
     i
     l
     i
  ------{
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     i
     l
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     {s

P(lk=T, Ik-1=Tp l Sk=qj, Sk-1=qi)
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       Gaussian distribution
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<qi, Tp> <ql, T>

   OO -----
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l
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i
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l
i
i
i
i
 i/

]
1
JV

Figure 2.3: First-order Mar kov property is assumed for a sequence of intervals.

be modeled by the following conditional probability:

                   P(Ik =< qj,T > IIk-i =< oji, Tlr, >),

where it denotes that the interval < qi,T > occurs after the interval < qi,'vp >

(see Figure 2.3).

   The probability P(Ik =< qj,T > llt-i =:< qi, zp >) requires a large parameter

set, which cause not only computational costs but also the problem of over-fitting

during a training phase. We therefore use a parametric model for the duration-

length distribution:

               h(ii')(lk, Zk-i) A P(lk, lk-ilsk = ql, sk-i = oji), (2.17)

where the two-dimensional distribution models a joint probability density func-

tion of duration lengths in adjacent interval pairs that has state qi and qj i'n this

order. sk and lk is a probability variable of the discrete state and the duration

length in the interval Ik, respectively

   We can assume an arbitrary density function as h(il')(lk,lk-i). For conve-

nience, we use a two-dimensional Gaussian distribution normalized in the range

of [lnain, lmax], as shown in the top right in Figure 2.3; thus, the parameter set of the

function h(ii)(lk, lk-i) becomes {hut'),hSi),hEii)}, where hut') and hSi) denotes mean

and variance of duration lengths in discrete state qi, and hSil') denotes covariance

between the adjacent duration lengths in discrete-state sequences ojiqj (i l 1').
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2.3. Interval--Based State Ilr ansitions of the Automaton

  Using the above notations and assuming that the current discrete state is in-

dependent on the duration of the previous interval, we can calculate the interval

transition probability as follows:

 P(Ik =< t7j,T> IIk-i =< t7i, 'lv >) = P(lk == T'[sk == qj,skffi =: c7i,lk-i = 'gv)

                                   xP(sk = qilsk-i == qi)

                                 = A(iJ')(T,'vz,)Aii, (2.18)

where n(il') (lk, lk-i) is a one-dimensional Gaussian distribution:

               n(ii) (lk, lk-i) A P(lk lsk = qi･, sk-i = qi, lk-i)

                                h(iJ') (lk, lk-i)

                           - Z]l,-, h(il') (lk, lk-1 ) '

and Ai]･ is a discrete-state transition prohability:

                       AiiJ4P(sk=qjlsk-i =qi), (2.19)

where i ; i

   Note that, in the conventional discrete state models such as HMMs and SLDSs,

the diagonal elements of the matrix [AilJ] define the probabilities of the self loops.

In the interval system, on the other hand, the diagonal elements are separated

from the matrix and defined as duration-length distributions. As a result, the

balance between diagonal and non-diagonal elements varies due to the current

state duration.

2.3.2 ProbabilisticInferenceoftheIntervals

Now} we describe how to inference the intervals (i.e., states and duration Iengths)

based on the interval-based state transition. Unlike conventional (i.e., frame-wise)

discrete state inference, we have to consider two different temporal representa-

tion: the order of intervals k and time t at the same time. As shown in the follow-

ing paragraphs, the probabilistic inference becomes recursive calculation based

on time t.

   Let us consider how to calculate all the probabilities of every possible inter-

val when the parameters of the automaton are given. Because we assumed the

first-order Markov property) the probability of the interval < qj,T > can be cal-
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2. Interval-Based Hybrid Dynamical System
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culated using all the possible intervals that have occurred just before the interval

< qj,T >:

        P(Ik ==< qj,T >)

     = Z P(I)e =< qi,T> IIk-i ==< qi, 't)7 >)P(Ik-i =< oji, T)7 >),

        <qi,T?,>E9×T

                                                              (2.20)

where the summation for < qi,b > does not include qf (i.e., there are no self

loops such as qj - ojj).

   Although this eguation gives us general idea of the inference algorithm, this

recursion is based on the temporal order of intervals k, and we need to map all

the intervals to the physical time line. Here, we introduce a variable fi that takes

one of the binary values {O, 1}. If ft = 1, it denotes the interval "finishes" at

time t, which follows Murphy's notation that is used in a research note about

segment models [Mur02]. Using this notation, we can rewrite Equation (2.20) as

the following time-based equation:

          P(st == qj,lt == T,ft = 1)

       = £ £{P(st = qi,lt =: T', ft = 11st-T == oji, lt-T = 'tb,]C}-T = 1)

          i(ilj) T),

                  XP(st-T = qi, lt-T = T),, ft-. = 1)}, (2.21)

where

              P(st == qi,lt = T',ft = 11st-T = oji,lt-T == Tp,ft-T = 1)

           = P(Ik -< oj1,T>II)t-i =< oji, T),, >). (2.22)

If we assumea finite length for the generated sequence, let the length be T, the

probability Zij £. P(st = qj, lt = T, ft = 1) == P(f} = 1) becomes 1 at the final time

point t = T.

i
i

i
I
,
f

l
i
l
i

Approximation (assuming the independence of the previous duration length)

If we can approximate that the interval probability is independent of the duration

length of the previous interval, we can use the following equation as substitute
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2.3. Interval-Based State Tlrransitions of the Automaton

for Equation (2.22):

   P(st == qi,ft = 1) = £P(st = ojj, lt = T, f} = 1)

                    T
= £ £ P(st = qj,lt =: T',ft = 11st-T = ojiift-T = 1)P(st-T = ojirft-T = 1)･

   T i(ili)

                                                             (2.23)

Example (Interval lattice)

Figure 2.4 shows an intuitive example of this recursive calculation when the total

sequence length is four. In this example, the number of states is two (e.g., oji and

q2), we can therefore omit state transition probability Ai2 == A2i = 1. The initial

state is qi or q2, and the succeeding intervals are labeled by these two states by

turns. Tb simplify the example, we assume the following duration-length distri-

bution (not a Gaussian):

             A(il')(lk = 1,lk-i) == 1/2, A(iJ')(lk == 2,lk-i) == 1/4r

             n(ii)(lk = 3, lkevi) == 1/8, n(il')(lk == 4, lk-i) == 1/8,

where the distribution is independent of lk-i. Therefore, this is an example of

Equation (2.23).

   The arrow that has beginning point at (time t, length T) represents the state qi

(or g2) continues or finishes at time t with duration length T. Four circle nodes

at the bottom (except the leftmost node) represent P(ft = 1) = £i=i £4.=i P(st =

qj,lt = T,fi == 1)(t == 1,2,3,4), and one of the path from the leftmost circle to

the rightmost circle determines an interval sequence (partitioned sequence). For

example, the bottom path represents that all the comprising intervals have length

1, and the indices of the intervals therefore correspond to time points (i.e., k == t).

   Each node has multiple input from other nodes, which corresponds to the

summation over duration length T in Equation (2.23). We see that P(.Li = 1) takes

1because all the possible interval sequences finish at the final time pointt = 4.
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2. Interval-Based Hybrid Dynamical System

A=to
e
=-a=
o

Nl
.i!ll

g

4

3

2

1

>=--
b'
.Eg

9
a
1/2 1/4 1/8 1/8

li2 34 il ,l.    I.  "i :
Iength

Probability of

finished at t=1

1 EZof

r----- --N---li
i..1.l?.:･?.fi.i'

ttt'- x
a512,
Nx...ttt

    ,"ilil>li

    """ K

      t.'{"t-2".ighR[Q{l(

      ,,-"g]b'"x

<sl/2)sl.-.2.-.L3-l, "･., ..fsJS))e}xlt.:]'

  Probability of

  interval transition

(ll<(iis.

  '}5<(

     at×

l
1
1
1
,

i

;

   continue

       finish

      o@

1

1/2

pa

." i."/z:kletz;'

1

P(fl=1)

1    2

Time

3

P(f3=1)

4

P(f4=1)

Examples

lnterval sequence that corresponds to the bottom path
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Figure 2.4: Interval lattice and examples of the generated interval sequences
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2.4. Inference of the Interval-Based Hybrid Dynamical System

2e4 Inference of the Interval-Based Hybrid Dynami-

cal System

This section describes a probabilistic inference method that searches the optimal

interval sequence to represents an input multivariate sequence. The method as-

sumes that the interval system have been trained beforehand.

   As we will see in the following paragraphs, the inference method recursively

finds the intervals that provide the highest likelihood score with respect to the

input. This is done by generating all the possible intervals and by selecting the

optimal interval sets at every time t based on a dynamic programming technique.

As a result, the input sequence is partitioned and labeled by discrete states that

determine the most likely dynamical system to represent a multivariate sequence

in each interval. In other words, the inference is a model fitting process that fits

intervals to the given multivariate sequences.

   The likelihood of the trained model with respect to the input sequence is ob-

tained simultaneously as the score of the fitting precision. This inference process

is required in the EM algorithm of the interval system identification as we will

see in Section 3.4.

2.4.1 ForwardAlgorithm

The most naive method for the interval-sequence search is that first calculates the

likelihood scores of the model from all the possible interval sequences indepen-

dently and then finds the best interval sequence that provides the largest like-

lihood. Howeve- the computational cost becomes order of O(NT) in this case.

Tb avoid unnecessary calculation, we exploit a recursive calculation similar to

HMMs.

   Let us first consider the forward algoritkm of the interval system. Suppose

that input multivariate data y have been observed from time 1 to t, and the in-

terval Ik =< qf,T > ends at time t. Considering all the possible intervals that

have occurred just before the interval Ik, we can decompose the joint probability
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2. Interval-Based Hybrid Dynamical System

 P(Ik ==< qi, T >,yi) as the following recursive equation:

    P(Ik ==< ojj,T >,ye,k)

    == P(yS:N,+" I)t :< qj, T >)

    × .q,,,),1 i,ilQ.7- {P(ik =< qi,T > li)t-i ==< qi, T), >)p(ik-i =< oji, T), >,ysk-i)}

where ek and ek-i are the ending points of interval lt and lt-i, respectively and

ek = t.

   As we described in Subsection 2.3.2, this recursion is based on the interval

ordell and is difficult to cope with observation data that comes every time point t.

We therefore rewrite this equation as the following time-based recursion, which

is similar to Equation (2.22) rewritten from Equation (2.22):

         P(st == qi,lt == T,flt == 1,yi)

      = P(yl-.+ilst = qi,lt = "r,ft = 1)

         × £ £{P(st == qj,lt == 'r,.f} =llst-T == oji,lt-T = Tp,ft-T = 1)

           i(i7Ej) 'i))

             × P(st-T = t7i, lt-Ti = e,, f}.T- = 1, y:-T)} (2.24)

   Tb initialize the forward algorithm, we have to calculate the probability of the

interval that appears at the first time in each interval sequence.

                 P(st =: qj, lt = T, f} = 1, .fl-i = O, yi)

              == P(yilst = qj, lt = t)P(st = qj)P(lt = tlst == qi) (2.25)

The duration length probability P(ltlst = oji) can be calculated by the following

      n(j)(lt) Ap(lt =Tlst = ojj) = Z)£P(lt,lk-ilsk == qj,sk-i == qi)

                                 i lkTl

                             = ££h(ii')(lk,lk-i). (2.26)
                                 i lk-1

  Here, we show the overall forward algoritlum in Algorithm 1, where we use

the following notation:

                  at(i,T) A P(st = qi,lt == T,ft == 1,yi).
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2.4. Inference of the Interval-Based Hybrid Dynamical System

We also use the notation dfil-.+i,t] for P(yi-.+i[st = qi,lt = 'r,ft = 1), which we

defined in Equation (2.15). As we have shown in Section 2.2, dfl'1.+i,tl denotes the

likelihood of the 1inear dynamical system Di with respect to the observation from

t - T + 1 to t, and can be calculated by using parameters of dynamical system

Di. On the other hand, the interval transition probability P(st = qj,lt = T,ft =

11st-T = qi, lt-T = Tp, ft.T = 1) can be calculated by Equation (2.18) in Section 2.3.

Algorithm 1 Forward Algorithm

for t e 1 to l.i. -1 do

  Fill at(i, T) by O

end for

for t e l.i. to T do

  Tlriax <-' Min(lmax, t - lmin)

  fori e 1 to N do
   for T - lmin tO TInax dO

     T7]max <--- Min(lmax,t - T)

     "t(i T) `-m dfl'1T+i,t] Z)i Z)121lllSli,i'. A`i'A(i")(T' T)')cr`"T(i' Tir)

   end for
   ift fi{ lmax then
     att(1', t) e afl ),,l 7t (1')n(j) (t) # Initialization (Eq. (2.25))

   end if
  end for

end for

# Eq. (2.24)

c

Approximated Forward Algorithm

Assuming that the duration-length distribution is independent of the duration

length of the previous interval, we can use the following recursive equation,

which is deduced from Equation (2.23), on instead of Equation (2.24):

             P(st - qj,f} == 1,yi)

          = Z)P(yi-.+ilst == qj,lt = T,ft - 1)

              T
          × £ {P(st = qj,lt = T,.ft = 11st-T = qi,ft-T == 1,yiMT)

             i(i#j)

                   XP(St-. == t7i,ft-,i == 1,yi-T)} (2.27)

   In precise, the above equation calculates P(st = qj,fi = 1,yi), where one of fi

to f}-i is 1. Therefore, we also require the probability of the interval that appears
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:

at the first time in each interval seguence: P(st = qi,ft = 1,.('i = O,yS)･ Then,

we have to add to this probability to Equation (2.27), when t is not grater than the

maximum interval length lmax･

   Here, we can use the following relation:
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         P(st = ojj,ft = 1,A-i = O,yi) = P(st == ojj,ft = 1,lt = t,yi),

because lt = t implicitly denotes that the interval does not finish from time 1 to

t - 1. Therefore, the initialization becomes exactly the same equation as Equa-

tion (2.25).

   The overall forward algorithm becomes Algorithm 2, where we use the fol-

lowing notation:

                      at(i) A P(st == qi,f} == 1,yi)･

Algorithm 2 Forward Algorithm (assuming the independence of previous dur.)

for t- 1 to lmi. -1 do
  Fill at(i) by O

end for

for t e l.i. to T do

  Tinax `m- Min(lmax, t - lmin)

  forj - 1 to N do

    at(1') - £.Tlr-i-alx.. dflZ..,,,] £i Aijn(j)(T)crt-.(i)

    ift f{ lmax then
      at(j) e at(j)+dii,),] 7T(f)A(j)(t)

    end if

  end for

end for

# Equation (2.27)

i
:

l
j
i

i
!

[
,

l
[
'

l

l
l

2.4.2 ViterbiAlgorithm

The forward algorithm often causes numerical underflow when the length of the

input becomes longer. That is, at each step of the recursion in Equation (2.24), the

probability such as crt(iT) becomes smaller than the previous probability and

finally the probabilities get below the machine epsilon.

   In the following paragraphs, we describe the Viterbi algorithm in which we

can take logarithm of the formulation to avoid the numerical underflow prob-

lem. Although this algorithm returns only the most likely interval sequence, it
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2.4. Inference of the Interval-Based Hybrid Dynamical System

is enough information for some applications. For instance, we use this Viterbi

algorithm to train the interval system, as we see in Chapter 3.

   This algorithrn is based on a dynamic programming method similar to the

Viterbi algorithm of HMMs without that it requires the consideration of duration

lengths. Suppose that the algorithm have found the optimum interval sequence

from time 1 to t - T - T?, that maximizeprobability P(st-T == qi,lt-T = Tl],ft-T =

1,yi-T). Let use the following notation for this maximized probability:

    (St-T(i, "tir) 4 ,l,Ig.a-xlr, P(si-T'-TP,st-T = c7i, lt-. = Tlr,,]1,-T = 1,yi-T). (2.2s)

   Then, we can calculate probability it(]`,T) based on the following equation,

which can be deduced from Equation (2.24).

     (St(i 'v) = g}i"a.xP(si-T,st = qi,lt = T, ft = 1,yi)

  == P(ylH･,+i[st = t7f,lt = Tt,ft = 1)

     × ,(l.I,,}i.3)lf.,p{P(St == qj,it = "r,f} - ilst-T = qi,it-. = 'tp,ft-. == i)6t-.(i, T),)}.

                                                               (2.29)

   Since this recursive calculation gives us the maximum probabilities of all the

time points with possible states and duration lengths, we can get the most likely

interval sequence using traceback of arguments (i.e., states and duration lengths)

that gives the maximized probabilities at each recursion step. We therefore need

to record the following arguments together with 6t(i,T) at the maximization of

Equation (2.29):

     (st* (i 'r), lt* (j, T) )

 = argi(I.I}li.3)l{.,,{P(St = `7j,lt =: T,ft = 1ISt-er == t7i,lt-Ti =: T)i,ft-T = 1)(St-T-(i, Tp)}.

Tiraceback

Now} we describe a traceback algorithm for searching the most likely interval

sequence. Using Equation (2.29) recursively we get the maximized probability at

final time point (t = T)

             veg.xP(sl-T,sT == ojj, IT == T', fr = 1,yi) = 6T(i T'). (2.3o)

             Sl
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2. interval-Based Hybrid Dynamical System

Here, we can find the state and duration length of the most likely interval se-

quence by finding the maximum probability of 6T (i T) :

                      (csK, clK) == arg rr)ax 6T (i T). (2.31)
                                   1,T

Then, we the most likely interval sequence by calculating the following recursion:

               CSk-1 = Sc'ek (CSk, Clk), Clk-1 = lc*ek (CSk, Clk)

               cek.1 = cek-clk,

where cek is the ending point of interval k, which is initialized by ceK =: T, csk

and clk is the state and duration length of interval k. Finally> we get intervals

< csk,clk > (k S K) that comprise the most likelihood interval sequence. Note

that the total number of intervals (K) is known. In the actual algorithn, we there-

fore use very large integer for K, or use increment of the indices on behalf decre-

menting index k.

   laking logarithm of all the equations, we get the overall algorithm shown in

Algorithm 3.

Approximated Viterbi Algorithm

Assuming that the duration-length distribution is independent of the duration

length of the previous interval, we can use the following recursive equation,

which is deduced from Equation (2.27), instead of Equation (2.29):

  6t (j) A il}g,x P(si-i, st - qi, .f} == 1, yi)

           Sl
       == M.aX [P (Yl-.+ilst = -, lt = T, .ft = 1)

          × tl},E,a,,X.){P(st = qi, lt =: T', ft = 11st-T == qi, ]F}-T = 1) .m,,-g-x, 6t-.(i)}]

The overall algorithm is shown in Algorithn 4. As we described in the previous

paragraph, the most likely interval sequence is given by the final traceback step.

The difference from Algorithm 3 is that this approximated model does not require

to recording maximized probabilities for the previous duration length.
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2.4. Inference of the Interval-Based Hybrid Dynamical System

Algorithm 3 Viterbi Algorithm

for t e 1 to l.in -1 do

 Fill log6t(i,T) by -oo
end for

for t e l.i. to T do

 Tiria)c +-"M Min(lmax, t m lmin)

 for 10 - 1 to N do

   for T - Zmin to "linax do

     Tl) max e" min(lmax,t - T)

     log5t(1', T) "-- logdil-) .+i,,] +max,,･,p [logA,i + }ogA(ii')(T, Tp) + log6t-.(i, 'vp)]

     (s;(7', T),l,* (f, T)) - arg maxi,,), [logAif + logA(iJ')(T, 't),) + log6t-.(i, 't),)]

     # i E {1, ..., N}, T), E {lmin, ･･･, Tlr, max}

   end for
   ift f{ lmax then
     log6t(j,t) --- logdil),1 + log rt(f) + logn(i)(t)

     (sX(i, t), l; (j, t)) -f-- (O, O)

   end if
  end for

end for
# Ticaceback

ceK +- T
(csK, clK) - arg maxi,. Iog6T(j, T)

while csk > O do
  CSk-1 e Sc*ek (CSk, Clk), Clk-1 e lc*ek (CSk, Clk)

  cekmi ---- cek - clk

 k-k-1
end while
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2. Interval-Based Hybrid Dynamical System

Algorithm 4 Viterbi Algorithm (assuming the independence of previous dur.)

for t e 1 to Zmin -1 do

 Fill log6t(i) by -oo
end for

for t - l.i. to T do

  Tlria)( <- Min(lmax, t m lmin)

 forj fe 1 to N do
   6t(1')-maxT [iogdfl'l .+u] { g ii                         + maxi lo A･･ + log fi (j) (T) + 5t-T (i) }]

   lt' (1') <---- argmaxi {logAij + logn(j)(T) + 6tff.(i)}

   st* (1`) - arg maxT [log dV'l .+i,t] { g ii                            + maxi lo A･･ + log n(i) (T) + 5t-T (i) }]

   # i = (1, ･o･, N),T == (lmin, ･･･, 'Zinax)

   ift f{ lmax then
     61(j) ･e-- logdfl),] + log rr(j) + logn(i)(t)

     if it(j) < 61(j) then

       6, (i) - il (j), sS*) (j) <-- O,

     end if '
   end if
  end for

end for

# [raceback

ceK --- T

csK - arg maxi log 6T (j)

k-K
while csk > O do
  Clk `-" lc"ek(CSk), CSk-1 "m Sc*ek(CSk)

  cek-i <-- cek - clk

  kek-1
end while

IS') (j) e t
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2.5. Verification of the Inference Algorithns

2.4.3 CalculationCost

The forward and Viterbi algorithns require searching all the possible intervals

for all the current intervals at every sampled time t. Therefore, the computational

cost becomes O((NL)2T) (L = lmax - lmin + 1), which requires a greater cost com-

pared to HMMs, which requires only O(N2T). Howeveg the cost can be reduced

drastically in the case that the range L is small.

   Approximated forward and Viterbi algorithms, which assume the indepen-

dence of the previous interval duration length, requires computational cost

O(N2LT).

   In addition, if we calculate likelihood of dynamical systems (i.e., Equa-

tion (2.15)) before the recursive calculation, the actual cost can be also reduced.

2.5 VerificationoftheInferenceAlgorithms

In this section, we verify the capability of the interval system and the validity of

the proposed inference algorithns (i.e., the forward and Viterbi algorithms).

   First, the parameters of an interval system were given manually and interval

sequences were generated by the system for test data. Then, the data was used as

input of the forward and Viterbi algorithms.

   Tb concentrate on the interval-based state transition in the interval system,

we set the observation matrix H == I (unit matrix) and the observation noise

covariance R == O (zero matrix). The number of discrete states was N = 3 and

the dimensionality of the internal state space was n = 3. The range of the interval

duration was [lmin = 1, lmax = 30]. We set the probability matrix of the discrete-

state transition as Ai2 = A23 = A3i = 1 and O for all the other elements to

generate loops such as qi . q2 --> q3 - qi. The initial distribution of the discrete

state waS 1 for qi and O for the remaining states q2 and q3.

   The two dimensional distribution of the duration length h(ii)(lk,lk-i) had

{mean (hS')), variance (h8i) )} of {6, 5}, {12, 30} and {16, 50} for qi, oj2, and q3, respec-

tively; The covariance (hSii)) between the pairs of {qi,q2},{q2,q3} and {q3,gi}

was 12, 35 and 15, respectively. These covariances were designed to generate in-

terval sequences that the duration lengths of the intervals were monotonically

increased in the sequence of qi,q2, and q3･

   The transition matrices, bias vectors, and initial mean vectors of the dynamical
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2. Interval-Based Hybrid Dynamical System

systems were as follows:

,(i) =- [-O,'9,
-,O,i ],g(i'- [8Z]･xfa?t = [1,O,]

              F(2) ,. [gg gg] ,,(2) = [ff,O,7],xth2?, - [9i]

            F(3) = [-oosi g!] ,g(3) = [-oo66],.£i,II), = [-oioo]

The process noise covariance matrices Q(i) (i -- 1,2,3) and the covariance matri-

ces Vig,)t (i = 1,2,3) of the initial state distribution were set to zero in･the gener-

ation step, and was set to O.OOII (where I is a unit matrix) in the fitting step of

intervals.

   Figure 2.5(a) shows a generated interval sequence from the finite state automa-

ton. The length of the sequence was T == 100. We see that the duration of the

intervals increases monotonically in the sequence of qi, q2, and q3 because we set

positive correlation between the adjacent intervals (i.e., qi to q2 and q2 to oj3)･

   ln parallel of this discrete-state transition, each dynamical system･was acti-

vated by the discrete state, and generates a sequence of signal. Figure 2.5(b)

shows a generated observation sequence. In this experiment, this sequence corre-

sponds to the generated internal state sequence as a result of observation param-

eters H = I and R = O. We see that the time-varying pattern of the observation

changes based on the transition of the intervals.

   Tb verify the algorithms of forward and Viterbi inference, we input a gen-

erated sequence shown in Figure 2.5(b) to the original interval system (i.e., the

system that generated the input sequence). Figure 2.5 (c) shows the result of the

forward irtference. Each 1ine denotes the following probabilities of the discrete

states under the condition of observations from tirne 1 to t:

p(st - qjlyi) =
£. P(It =< 9f, T' >,Yi)

p(yS)

Figure 2.5 (d) shows the result of backtracked intervals after the Viterbi algorithm.

We see that both of the forward and Viterbi inferences have found optimal inter-

val sequences that are consistent with the original interval sequence in Figure 2.5

(a).
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(d) Traced-back interval sequence after the viterbi inference

Figure 2.5 : Verification of the forward and Viterbi algorithms. (a) A generated

 interval sequence by a finite state automaton. (b) A generated obser-

 vation sequence by three dynamical systems using interval sequence

 of (a). The solid lme denotes the first element; the dashed line denotes

 the second element. (c) The result of the forward inference using (b) as

 input. Each line represents probability P(st = qjlyi) (1' = 1,2,3). (d)

 The result of the backtracked interval sequence after the Viterbi infer-

 ence using (b) as input. We can see that the original interval sequence

 is obtained correctly
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2. Interval-Based Hybrid Dynamical System

   Tb see the influence of parameters in the duration-length distributions, we

generated interval sequences with zero covariance between adjacent intervals.

Figure 2.6 shows an example of the generated sequence. We see that the first

state sequence of oji, q2, and oj3 has non-monotonic changes of duration (i.e., q3 is

shorter than q2, while oj2 is longer than qi), which implies that the each discrete

state duration is decided independently Consequently the correlation modeling

with covariances between the adjacent intervals is necessary to represent rhythms

and tempo as patterns of duration lengths.

2.6 Discussion

In this chapteL we proposed a computational model, which we refer to as the

interval-based hybrid dynamical system, that comprises a finite state automa-

ton (discrete-event system) and multiple linear dynamical systems. Each linear

dynamical system represents a dynamic primitive that corresponds to a discrete

state of the automaton.

   The key idea of integrating two systems is the use of temporal intervals in

which each constituting linear dynamical system is activated. As a result, the

temporal order of discrete state is mapped to the physical-time domain based on

the duration lengths of intervals. Due to the duration-length modeling of dis-

crete states, we successfully represent temporal patterns of discrete event such as

rhythms based on the correlation of adjacent interval lengths.

   ln this chapte; we assumed that all the parameters of the interval system are

given. We, howeveL require all the parameters to be estimated from training data

in most of real problems. In Chapter 3, we introduce a learning method for the

interval system.

   Modeling relations among concurrent multiple streams (e.g., temporal rela-

tions of motions among facial parts) and relations among multimodal data (e.g.,

lip motion and speech data) is one of the important objectives for the interval-

based representation. We try to analyze temporal structures among motion of fa-

cial parts in Chapter 4. A general mbdeling method of such a temporal structures,

which we refer to as "timing structures", will be required to represent concurrent

events. We will introduce a timing structure model in Chapter 5 using relation

between intervals.
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2.6. Discussion
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Figure 2.6: A generated interval sequence using zero covariance duration-length

        distributions (shown in (a)) for comparison to the interval sequence

        generated by using non-zero covariance disuibutions (shown in (b),

        which corresponds to Figure 2.5 (a)).
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Chapter 3

Learning Method
Interval-Based

for the

Hybrid Dynamical

System

In this chapte; we propose a two-step learning method for the interval-based hy-

brid dynamical system (interval system). The method consists of (1) an agglom-

erative clustering process of dynamics, which estimates approximate parameters

of each dynamical system, and (2) a refinement process of overall system param-

eters, which include parameters of the constituting finite state automaton and

dynamical systems, based on the approximated expectation-maximization (EM)

algorithm.

3.1 Difficulties in Identification of Hybrid Dynamical

Systems

'c Let us assume that only a large amount of multivariate sequences is given as train-

ing data. Then, in the most of hybrid systems, the system identification process

that estimates all the system parameters becomes difficult because of its para-

doxical nature. That is, the identification of the subsystems requires partitioned

and labeled training data; meanwhile, the segmentation and labeling processes

of training data require an identified set of subsystems. Moreoveg the number of

the subsystems is also unknown in general. Therefore, the parameter estimation

problem requires us to simultaneously estimate temporal partitioning of training

data (i.e., segmentation and labeling) and the set of subsystems (i.e., the number
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3. Learning Method for the Interval-Based Hybrid Dynamical System

of the subsystems and their parameters). This problem also lies in the learning

process of the interval system proposed in the previous chapter.

   In the following paragraphs, we introduce relevant work as for the identifi-

cation methods for various hybrid systems. We distinguish two cases when the

number of subsystems is known or unknown.

i
/

i
'I
/
I
[

3.1.1 In Case the Numb er of Sub systems is Known

l

ltl

The EM algorithm [DLR77] is one of the most common approaches to solve this

kind of paradoxical problems when the number of subsystems is given. The al-

gorithrn estimates parameters based on the iterative calculation. In each step, the

algorithrn conducts model fitting to the training data using the model parameters

that were updated in the previous step. Then, the parameters are updated based

on the result of the current model fitting process.

   Many of the hybrid system identification methods exploit the EM algorithm;

for example, segmental models [ODK96], motion textures [LWS02], stochastic

linear hybrid systems [BHJT04] (which follows the method in [LWS02]), and

SLDSs [GH96, PRCM99, PRMOO] applied this algorithm. A well-known identifi-

cation technique for piecewise linear (PWL) models is introduced as k-mean like

clustering [FMLM03]. This clustering technique can be regarded as an approxi-

mation (i.e., hard clustering version) of the EM algorithm, which is often referred

to as soft clustering [DHSOO].

   Although the convergence of the EM algorithm is guaranteed, it strongly de-

pends on the selection of initial parameters and often converges to a locally op-

timal solution, especially if the model has a large parameter space to search. As

the alternative approach, an identification problem of PWL models can be re-

casted as a mixed integer programming (MIP), which find the globally optimal

solution [RBL04, KHS+041. We can apply the method when the logical switch-

ing conditions between subsystems can be transformed into a set of inequali-

ties; howeveg it is difficult to transform the dynamic switching conditions, which

are modeled by an automaton. Another disadvantage of MIP lies in its com-

putational complexity "Ihe problem is well known to be NP-hard in the worst

case [FMLM03, RBL04]. For these reasons, we exploit the EM algorithm rather

than the MIP-based methods to identify the interval system.
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3.2. TWo-Step Learning Method for the Hybrid Dynamical Systems

3.1.2 In Case the Number of Subsystems is Unknown

Most of previous works in hybrid system identification assumed that the number

of subsystems is given because the number often corresponds to that of manually

defined operative conditions in the controlled object. In contrast, a set of dy-

namic primitives in human motion (e.g., primitive motion appeared in facial ex-

pressions) is undefined in most of cases. Whereas some heuristic sets of dynamic

primitives are defined by human observation, they do not guarantee that the set

is appropriate for man-machine interaction systems (e.g., automatic recognition

of facial motion patterns). Hence, we should estimate the number of the subsys-

tems (primitives) from a given training data set. The problem is often referred to

as the cluster validation problem [DHSOO] (see Subsection 3.3.5 for details).

   In stochastic linear hybrid systems [LWS02, BHJT04], an online clustering

based on a greedy algorithn is applied to determine the number of subsystems

(i.e., linear dynamical systems) and initialize the EM algorithm [LWS02, BHJT04].

The drawback is that it depends on the order of data presentation, and is also

sensitive to outliers in training data. Moreovez the algorithm requires deciding

appropriate thresholds beforehand. As a result, the algorithn tends to return too

many subsystems.

i
'

3.2 Two-Step Learning Method for the Hybrid Dy-

namical Systems

3.2.1 Parameters

The goal of the interval system identification is to estimate the parameters the

following parameters from a large number of multivariate sequences:

  e N : the number of dynamical systems (which corresponds to the number of

    discrete states)

e H, R : an observation matrix and an observation noise covariance matrix

e F(i),g(i),Q(i) (i = 1,...,N) : transition matrices, bias vectors, and process

 noise covariance matrices for each 1inear dynamical system

e xS.i)･t, ZX')t (i -- 1, ..., N) : initial mean state vectors and initial state covariance

  matrices for each linear dynamical system
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3. Learning Method for the Interval-Based Hybrid Dynamical System

   e Aii (i, 1' = 1, ..., N, i l j) : a discrete-state transition matrix

   e fti (i = 1, ..., N) : an initial state distribution

   e hfi'),hSi),hSilj) (i,i = 1, ..., N, i l 7') : parameters for two-dimensional dura-

    tion distribution h(ili) (lk, lk-i) in adjacent intervals

We use the following notation to denote the set of parameters for convenience:

The parameter set of the overall system:

                @ = {ei,Aii, ni,hS'),h£i),hSiJ')1i, le = 1, ..., N, i l j}

The parameter set of constituting dynamical system Di(i = 1, ..., N):

                        e, = {F(i),g(i),Q('),x5.i)i,, Vig,),}

   We assume that the observation matrix H and noise covariance matrix R are

given. In case that the matrices are unknown, the subspace system identifica-

tion techniques such as [OM95] can be applied by assuming a single transition

matrix. Although the subspace identification technique has large sensitivity to

noise, some research results show that this technique successfully identifies an

observation matrix especially from visual feature sequences [DCWS03].

3.2.2 Two-StepLearningMethod

As we described in Section 3.1, the EM algorithm-based parameter estimation

method requires to solving two problems:

  1. Initialization of the EM algorithn

  2. Estimation of the number of subsystems

[[b overcome the problems, we propose a two-step learning method (see also Fig-

ure 3.1), which we describe in the following sections, that estimates parameters

0 of the interval system.

   The key idea of the learning method is that we divide the estimation pro-

cess into two steps: a clustering process of dynamical systems to estimate a set

of required dynamical systems and a parameter refinement of the estimated dy-

namical systems. The parameters of automaton are also estimated in the second

step.
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3.3. Hierarchical Clustering of Dynamical Systems

Step 1 Clustering of Dynamical Systems: The first step is a clustering process

that finds a set of dynamical systems: the number of the systems and their

parameters. This step employs a set of typical sequences (i.e., a subset of

the given training data set), and the sequences have been already mapped

to the internal state space. Then, we apply an agglomerative hierarchical

clustering technique, which we propose in this thesis, to the training data.

This clustering technique estimate a set of dynamical systems (see Sub--

section 3.3 for details). After this process, we get the estimated number of

dynamical systems N and approximate parameters of dynamical systems

ei(i -- 1,...N).

Step 2 Refinement of the Parameters: The second step is a refinement process of

the system parameters based on the EM algorithm. The process is applied

to all the given training data, whereas the clustering process is applied

to a selected typical training set. Although the EM algorithrn strongly

depends on its initial parameters, the previous clustering step provides

an initial parameter set that is relatively close to the optimum compared

to a randomly selected parameter set. This algorithm also estimates the

parameters of automaton such as a discrete-state transition probabilities

and duration-length distributions associated with the state transition (see

Subsection 3.4 for details). Finally we get the estimated parameter set 0

of the overall interval system.

3.3 Hierarchical Clustering of Dynamical Systems

3.3.1 OverviewoftheClusteringAlgorithm

Let us assume that a multivariate sequence yl 4 yi,...,yT is given as a typical

training data. We can consider a single training data without loss of generality

because we do not estimate the order of transition of dynamical systems (i.e.,

discrete-state transition probabilities) in this clustering step. Then we simulta-

neously estimate a set of 1inear dynamical systems D (i.e., the number of linear

dynamical system N and their parameters ei, ..., eN) with an interval set Z (i.e.,

segmentation and labeling of the sequence), from the training sample yT. The

number of intervals K is also unknown.

   We formulate the problem as the search of the linear dynamical system set D
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and the interval set Z that maximizes the overall likelihood with respect to the

training data: L A P(yiTllr, 1)). Because the likelihood monotonically increases

with an increase in the number of dynamical systems, we need to determine the

right balance between the likelihood and the number N. A hierarchical cluster-

ing approach provides us an interface such as the history of model fitting errors

in each merging steps to decide the number of dynamical systems (see Subsec-

tion 3.3.5 for details).

   As we described in Subsection 3.2.1, we assume that the observation matrix

H is given. That is, using the subspace system identification techniques such

as [OM95] before the clustering step, we can simultaneously estimate observation

matrix H and the corresponding internal state sequence xiT 'A xi,...,xT that can

be mapped to the given observation sequence yiT by matrix H. In the following

sections, we therefore focus on estimating parameters ei and the number of linear

dynamical systems N from the given state sequence xiT.
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The Hierarchical Clustering Algorithm of Dynamical Systems

The intuitive explanation of the hierarchical clustering algorithm is as follows:

  1. Partition the training sequence into a group of very short sub-sequences and

     estimate a dynamical system that can model each sub-sequence respectively

  2. Compute the distance between each pair of estimated dynamical systems.

                                  64
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3.3. Hierarchical Clustering of Dynamical Systems

  3. Merge the closest pair of dynamical systems; compute parameters of the

    merged dynamical system based on such sub-sequences that were modeled

    by the pair of dynamical systems to be merged.

  4. Iterate the above agglomerating process until the closest distance between a

    pair of dynamical systems becomes greater than a pre-specified value.

After this process, we get the number of required dynamical systems N and ap-

proximate parameters of the dynamical systems. Note that the pre-specified value

(i.e., threshold) required in step 4 determines the number of the estimated dynam-

ical systems. It is however difficult to specify the value beforehand. Therefore,

we first proceed with the algorithm until all the dynamical systems are agglomer-

ated to a single dynanrtical system, and then estimate the number of the dynamical

systems by evaluating the model fitting scores at each of the iteration steps.

   Algorithm 5 shows the details of the clustering process. This algorithm re-

quires initial partitioning of the training sequence, which we refer to as an initial

interval set Zlnit. We will discuss about the initialization in Subsection 3.3.2.

Algorithm 5 Agglomerative Hierarchical Clustering of Dynamical Systems.

for Ii in Zlnit do

  Di e ldentify (Ii)

  insert Di to Z)

end for
for all pair(Di, Dj) where Di, Di E 1) do

  Dist (i, 1') "- CalcDistance (Di, Dj)

end for

while N > 2 do
  (i*, 1'*) e arg min(i, j) Dist (i, 1')

  Zl* e Mergelntervals (Zl*, 21*)

  Di* e ldentify (Z}*)

  erase Df from D
        1
  NeN-1
  for all pair(Di･ , Dj) where Di E Z) do

    Dist(i', 1') - CalcDistance (Di*, Di)

  end for

end while

   In the first step of the algorithm, dynamical systems are identified (which is

denoted by ldentify in Algorithm 5) from each interval in the initial interval set Znit

individually based on the identification method proposed in Subsection 3.3.3. Z

is the interval set that comprises intervals labeled by Di.
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Figure 3.2: Hierarchical clustering of dynamical systems.
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3.3. Hierarchical Clustering of Dynamical Systems

   Then, we calculate the distances (denoted by CalcDistance) for all the dynam-

ical system pairs based on the distance definition described in Subsection 3.3.4.

After the distance calculation, the nearest dynamical systems are merged (which

is denoted by Mergelntervals), and the parameter set of the merged system is esti-

mated again. Here, two interval sets that belong to the nearest dynamical system

pair are also merged in parallel. Figure 3.2 shows an example of the step in which

the dynamical system D2 and D4 are merged.

   Repeating the merging process in the previous paragraph, we get a single dy-

namical system in which all the dynamical systems are agglomerated.

3.3.2 InitializationoftheClusteringAlgorithm

The clustering algorithm proposed in the previous subsection iteratively merges

intervals in the initial interval set Zlnit. The final result of the clustering process

is therefore affected by the estimation of set Z.it. In this section, we give some

examples to determine ZEnit･

Fixed-Length Segmentation

The simplest partitioning method of Zi.it is to divide the given training sequence

into fixed length small intervals. Howeveg this naive method is undesirable for

real world problem such as signals from cameras and microphones because of its

high computational cost. Let IZInitl be the number of initial intervals. Then, the

actual computational cost of Algoritlr[rn 5 is proportional to O(IZI.it12), which is

due to the first distance calculation in the second block of Algorithm 5.

Zero-Velocity-Based Segmentation:

Now> we consider how to get the initial interval set that is appropriate for finding

motion dynamics in human behavior. Tb reduce the computational cost, we first

require IZnitl to be relatively smaller than the length of the training sequence.

Second, we require that the initial intervals divide stationary pose from motion

in the training sequence. This is useful for describing human motion based on

simple primitives. Third, we require the intervals Ii E Zmit to be simple in the

sense that the patterns in the initial intervals appear frequently in the training

sequence.
   "Ib satisfy the conditions abpve, we exploit zero velocity of the signal. Let drt

be the velocity vector of given signal xt (t = 1, ..., T). If the Euclidean norm llabt1]
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becomes nearly zero (i.e., under the given threshold), we divide the signal at that

temporal point. Then, if Hdrtl I2 becomes greater than the given threshold again,

we also divide the signal at that point. Repeating this process, we get the initial

intervals in which motion states and stationary states appear by turns.

   Because xt is a discrete-time signal, we use the following equation to calculate

the norm of velocity abt:

         R
11)ltH = £ "xt+r - ut+r-il12

         r==1

(t = 1, ･･vT" R),

where R is a smoothing parameter of velocity calculation.

(3.1)

3.3.3 ConstrainedSystemIdentificationBasedonEigenvalues

Tb identify the system parameters from only a small amount of training data,

we have to use constraints for estimating desirable dynamics. In this chapteL

we concentrate on extracting human motion primitives observed in such as facial

motion, gaits, and gestures. Most of these motions are generated by the combi-

nation of intermittent muscle controls; therefore, constraints based on stability of

dynamics might be suitable to find motion that converges to a certain state from

an initial pose.

   The key idea of estimating stable dynamics is to give constrains on the eigen-

values. As we see in Section 2.2.2, the dynamical system changes the state in a

stable manner if all the eigenvalues are smaller than one. In the following para-

graphs, we propose a novel system identification method that constrains all the

eigenvalues of the system to be smaller than one. The method corresponds to

ldentify in Algorithm 5.
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System Identification without Constraints

If the temporal range [h, el is represented by linear dynamical system Di. Then,

we can estimate the transition matrix F(i) and bias vector g(i) from the internal

state sequence x£i),..,x5i) in the range [b,e]. This parameter estimation problem

becomes a minimization problem of prediction errors.

   If we have already estimated F(i) and g(i), we can predict a state vector at time

68

,l

i

･-

E
･

'i

l



i

l

l
･l

l

 
･
:
･
l
･
'
/
l
'
i
,

i"'`'i'

g)

ee･g"

'l''

tt.

i
l
l
l
i
i
'l
l
l
-
･
.

'li:'

f

tt

･1/･-

yt -' ,
l,f,/,11 ･

'
I
･
i
i
･
i
.

l
.
l
.
'
,

l
･

l
･

/
1
/

ll･

l'

'

i

3.3. Hierarchical Clustering of Dynamical Systems

t from xfhi)i using Equation (2.1). We then get the prediction error vector:

                      et=xSi)-(F(i) cE-i),+g(i)). (32)

Thus, the summation for the squared norms of all the error vectors in the range

[b, e] becomes

                ee               2 lletl12== Z llxSi)-(F(i)xS-i),+g(i))112. (3.3)

              t=h+1 t=b+1

Finally we can estimate optimal F(i) and g(i) by solving the following least

squares problem:

                                       e                   F('i),g('i) = arg F{},}) ,ign(,) ,.l,Ill+"leA 12･ (3･4)

In the next paragraph, we show only the result of this estimation. As for details,

refer to Appendix B.

  Using notations

                  51I8i) = [xii) - m8i)･ e･･･ xEl)i ' m8i)]r

                  l51ii) -= [xii.') , - mii), ..., xSi) - mii)],

we can calculate the estimated transition matrix and bias vector as follows:
                                                                '

                       F(i)* = xii)x8i)t, (3.s)
                       g(i)* = ml-F(i)*mo, (3･6)

where, mo and mi are mean vectors of columns in X8i) and Xii), respectively:

               m8i)xl,iE.,ixEi), mii)xl,,.. .l,xSi)･ (3･7)

x8i)t is a Moore-penrose generalized inverse (pseudo inverse) of x8i). Inverse

matrix Xt can be defined as:

          Xt = 3i-Mo XT(XXT + i2I)'i = ti1,i-mo(XTX + 52I)-iXT. (3.8)

See also [Alb72, Koh891 for details.
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3･ Learning Method for the Interval-Based Hybrid Dynamical System

System Identification with an Eigenvalue Constraint

We now show the method to constrain the eigenvalues of transition matrix F(i).

Using Equation (3.5) and Equation (3.8), we can get the following equation:

               F(')* = ,1,i-M,l9ii)26i)T(>l8i)28i)'+62I)-i

                    = 3,i.m--,,Xii)51I8')'(X8i)518)T+52I)-i, (3.g)

where I is the unit matrix and 6 is a nonzero real value. Here, we used 2ii) 28i)T =

xii)X8i)T (see Appendix B).

   For the constraint on the eigenvalues, we stop the limit in the Equation (3.9)

before 518i)T(R8i)518)T + 62J)-i converges to its generalized inverse matrix. In

other word, we use

                                            '                   IIIS) == xii)>li8i)T(518i)28i)T+i2I)-i (3.lo)

for the constrained transition matrix.

   As we will see in the following paragraphs, we can determine the upper

bound of eigenvalues in the given matrix from its elements based on Gershgorin's

theorem (Appendix C). We can therefore make a constraint that all the eigenval-

ues to be smaller than one if we chose an appropriate nonzero value for 6, which

controls the scale of elements in the matrix F(i)*.

   Moreove- this constraint method have the advantage of calculating the gen-
eralized inverse matrix in Equation (3.s) successfully even if the matrix >l8i)R8i)T

have zero eigenvalues (the matrix becomes singular), as we will see in the rest of

this subsection.

Numerical Calculation for Searching i

We now describe how to calculate 6 that constrains the upper bound of eigenval-

ues. Here we omit the index i, which denotes the label of dynamical systems, to

simplify the notation.

  First, we decompose the matrix 2o based on the singular value decomposition

(SVD) to facilitate the calculation of 6:

                           lgllo == U'SV', (3.11)
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3.3. Hierarchical Clustering of Dynamical Systems

where U is n × r and V is (l - 1) × r matrix; here r = min(n, l - 1) . These matrices

are column orthogonal; that is UTU = Ir and VTV = Ir. The middle matrix

S = diag[si, ..., sTl is a r × r diagonal matrix; we assume that the diagonal elements

(singular values) are sorted by descending order (i.e., si ) s2 2 ･･･ ) sr). In

addition, if n S Z - 1, then r == n and U becomes an orthogonal square matrix

that satisfies LITLI == UUT == I.; on the other hand, ifn }l l- 1, thenr =l-1

and V becomes an orthogonal square matrix that satisfies VTV = VVT == Il-i. If

the rank of matrix 2o becomes smaller than r, let the rank be r', the smallest r - r'

singular values become zero.

  Using this decomposition, we can rewrite Equation (3.10) as

              I ls2 = Xi VS uT ((us vT)(vs uT ) + i2 I) H'

                  =: (XiV)SUTU(s2+62I)-iuT

                  = zs(s2 + 62I) -i uT

                  = tF.,ofks2zkukT･ (3n)

where we assumed all the singular values are nonzero, and replaced XiV with

Z = [zi,...zn] (zi E Rr).

   Suppose fic is an element in row r and colunm c of the transition matrix F.

The upper bound of the eigenvalues B can be determined by the corollary of the

Gershgorin's theorem (see Appendix C):

                                  n
                          B== m,ax Z] 1ficl･ (3･13)
                                 c=1

   Here, we search the 6 that satisfies B = 1. Substituting Equation (3.12) into

Equation (3.13) and set B = 1, we obtain

                     m,axte.,tl.Ii,.l{i6,w£ck)-it (3i4)

where zkukT = W(k) = [w5ck)]. Solving this equation via an iterative numerical

calculation, we can find the value of 6 that constrains the eigenvalues to be smaller

than one.

   Since we need to take absolute values in the Equation (3.14), it is difficult to

solve this equation using straight forward numerical analysis. We therefore use
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the following relation to divide the optimization into two stages:

 n

£
c=1

 n
£
k=1

t[JTk

of +6

where p,k =- Z)Y=i Iw5,k)l.

  (k)
2 Wrc
  nn
s££
  c= 1 k=1

q
of + 62

       n
lw55'I - £

       k=1
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CTkPrk

(zg + 62,
(3e15)

Stagel. In the first stage, we solve the following Equation (3.16) with respect

to i2 based on Newton's method. For the initial value of 6, the smallest singular

value seems to work well in most cases.

        nB;(62) A 2

       k==1

akPrk

of + i2

･.x

= 1 (r = 1, ... n). (3.16)

Stage2. The result of 62 from the first stage becomes larger than the solution of

the following equation:

i
/
l
i

        nBr(62) !> Z]

       c=1

 n
£
k==1

CT)t

of+6
  (k)
2 Wrc == 1 (r = 1, ... n). (3.17)

In the second stage, we therefore search the solution of the above equation based

on a naive search; that is, we make 62 smaller than the previous step at each

iteration step until one of Br(i2)(r == 1, ...,n) exceeds 1. For the initialization, we

use the maximum of 62, arg max62 B; (62), in the first stage.

   Despite that we need to calculate Br(62) for all the row of Fls2, in our exper-

iments, we select only one row in the beginning of search algorithm (before the

first stage) using a criterion such as arg maxr pro. This criterion work well empir-

ically and reduce the computational cost drastically More appropriate criterion

might be to use arg maxr B; based on the result of the first stage.

t
t

I

i
4
,

Advantage of Constrained Identification in Singular Case

From Equation (3.12), the decomposition of unconstrained transition matrix in

Equation (3.5) becomes

F*= 61,i-mo42=ZS-iUT=
te.iizkukT
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1

  1i We see that if one of the singular values becomes close to zero, every element

! of the estimated transition matrix get a large number (oo if one of the singular

., ' value is zero). On the other hand, if we use the proposed constrained identifi-

     cation method, the function 1/uk is replaced by ak/(al + 62). Figure 3.3 shows
i

     the comparison of functions 1/ak and ok/(qe + i2). We see that ak/(of + 62) is

  r     constrained to be in the desired range, which can be controlled by the value of 52;

  / moreoveg the value of ak/(of + 62) becomes zero when uk = O . Thus, we can

     successfully estimate the transition matrix even if some singular values become

  i zero.
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3.3.4 DistanceDefinitionbetweenDynamicalSystems
/

1

f

1
,
1
1

l

1

In order to determine a pseudo distance between two linear dynamical systems,

we first compare the following three approaches: (a) direct comparison of model

parameters, fo) decreased likelihood of the overall system after the merging of

two models [Bra95], and (c) distance measure of distributions (e.g., KL diver-

gence [JR85]).

   Approach (a) is not desirable particularly with regards to our bottom-up ap-

proach because a 1irtear dynamical system has a large parameter set that often

causes over-fitting. Hence, the distance in the parameter space does not always

represent the dissimilarity among dynamical systems.
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3. Learning Method for the Interval-Based Hybrid Dynamical System

   Approach (b), which is often exploited with stepwise-optimal cluster-

ing [DHSOO], performs well in the ideal condition, but it requires the computa-

tional cost of likelihood scores for all the combination of the linear dynamical

system pairs.

   From our preliminary experiments, we observed that (c) provides stable dis-

similarity measure for the hierarchical clustering algorithm with a realistic com-

putational cost. Therefore, we define the distance between linear dynamical sys-

tem Di and Dj as an average of two asymmetric divergences:

                              KL(Di H Dj) + KL(Dj 1lDi)
                Dist(Di, Dj) =: 2 '

where each of the divergences is calculated as an approximation of KL divergence

normalized by the interval length:

                                                  i
         KL(DtliDi) = ,,£.qP(ltIDi)log(i((yYeibi,klDDii)Pi

                    'V 1};l,,£.q{10gP(Yebk,ID,)-logP(ye,k,IDi)}, (3lg)

where ybk, ...,yek is an observation sequence partitioned by interval Ik. IZIl is the

summation of interval length in the interval set Z that is labeled by a linear dy-

namical system Di. Similarly lca = ek - hk +1 is the length of interval Ik. We

here approximated conditional probability of lt to be P(lt 1 Di) rv l Ik1 / IZ} I. We can

use Equation (2.15) to calculate the likelihoods in Equation (3.19).

3.3.5 TheClusterValidationProblem

In real applications, it is an important problem to determine the appropriate num-

ber of dynamical systems (the number of clusters). The problem is often referred

to as the cluster validation problem, which remains essentially unsolved. There

are, howeveL several well-known criteria, which can be categorized into two

types, to decide the number of clusters.

   One of the types is defined based on the change of model fitting scores, such as

log-likelihood scores and prediction errors (approximation of the log-likelihood

scores), during the merging steps. If the score decreased rapidly then the merging

process is stopped [PH951. In other words, it finds knee of the log-likelihood curve.
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3.4. Parameter Refinement via the Expectation-Maximization Algorithn

The other type is defined based on information theories, such as minimum de-

scription length and Akaike's information criterion. The information-theoretical

criteria define the evaluation functions that consist of two terms: log-likelihood

scores and the number of free parameters.

   Although information-theoretical criteria work well in simple models, they

tend to fail in evaluating right balance between the two terms, especially if the

model becomes complex and has a large number of free parameters [LMZ98]. Be-

cause this problem also arises in our case, we use model fitting scores directly

First, we extract candidates for the numbers of the dynamical systems by finding

peaks in the difference of model fitting errors between current and the previous

steps. If the value exceeds a predefined threshold, then the number of dynamical

systems in that step is added to the candidates. We consider that user should fi-

nally decide the appropriate number of the dynamical systems from the extracted

candidates.

3.4 Parameter Refinement  .vla the Expectation-

Maximization Algorithm

This subsection describes a refinement process of the overall system parameter

set 0 including the parameters of the automaton by exploiting the result of the

clustering process. In the refinement process, the number of dynamica! systems

N is fixed (see Figure 3.1).

3.4.1 OverviewoftheExpectation-MaximizationAlgorithm

;

In order to refine the parameters, we apply an iterative estimation based on the

EM algorithm. This algorithm starts from a given initial parameter set 0init, and

repeats two steps: E (expectation) step and M (maximization) step. The E step

fits the model to the given training samples based on the current model parame-

ters, and calculates the expectation of log･-likelihood with respect to all the given

samples and to all the possible fitting instances. The M step updates the parame-

ters to maximize the expectation of log-likelihood using the result of the statistics

in the E step. After the iteration steps, the algorithm converges to the optimal

parameters, and finds the result of the model fitting simultaneously

   Although the EM algorithm has been proved to converge, the obtained solu-

tions are often trapped by local optima. This problem becomes sigrtificant espe-
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3. Learning Method for the Interval-Based Hybrid Dynamical System

cially if the size of the parameters increases. For a large parameter models, the

algorithm therefore requires a parameter set that is relatively close to the opti-

mum for the mitialization.

   The two-step learning method proposed in this chapter overcomes the initial-

ization problem by exploiting the result of the clustering process applied for a

typical training data set. From the viewpoint of the likelihood maximization, the

clustering process estimates approximate parameters for the dynamical systems.

Tb initialize remaining parameters such as the interval transition matrix [Ail･] and

interval duration distributions h(ii)(lk, lk-i), we exploit Viterbi algorithm, which

is introduced in Subsection 2.4.2 with some modification･ that is we set all the
                             r1                                                          ,
transition probabilities to be egual: Aii = 1/(N - 1), and we also assume the in-

terval duration A(il') (lk, lk-i) to be uniform distributions in the range of [lmin, lmax],

where i,i = 1,...,N(i S j). As a result, Equation (2.29) of the Viterbi algorithm

becomes

5t (1', T') = P(yl-.+ilst = q, lt = 'v,ft = 1) ,(I.Ill,a.)lf.,b{6t-T(i, T?p)}e

   After the initialization above, parameter refinement iterations are applied to

all the training data Y S {yl',...,yiT?"f}, where M is the number of the training

sequences and Z, ..., Tlevi are the lengths of each sequence. Here, we approximate

the EM algorithm because the original EM algorithm requires forward/backward

inferences that often cause numerical underflow. We do not calculate the statistics

for all the possible hidden variables (possible interval sequences), but use only a

single interval sequence that gives the highest log-likelihood in each step. Thus,

the total refinement process is described as follows:

1. Initialize@ = 0init･

2. Repeat the following steps while the total likelihood changes greater than a

  given threshold e:

E step: search an optimal interval sequence, which is labeled by the dis-

    crete states, for all the training sequences based on the current param-

    eter set (D:

                      Z* = arg mfax logP(Y, Z10),

    where Z' is the set of the searched interval sequences for all the training

    sequences.
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3.4. Parameter Refinement via the Expectation-Maximization Algorithm

    M step: update the parameters based on the searched interval sequences

         in the E step:

                          0 = arg max log P(Y, Z* l0')･
                                  0,

   This algorithm is easily extended to use multiple interval sequences that give

relatively high likelihood score rather than to use only an optimal interval se-

quence.

3.4.2 ParameterEstimationoftheAutomaton

The M step of the EM algorithm requires the estimation method of all the parame-

ters in interval system 0 (see Subsection 3.2.1 for the details of the notation). Here,

we show how to estimate the transition probabilities of discrete state, and the

parameters of duration-length distributions. The parameter estimation of 1inear

dynamical systems is similar to the method that we described in Subsection 3.3.3.

Discrete-State Ihransition Prebabilities

Let q, ..., Z}tf be the searched interval sequences for each training data yiT', ...,yiTM

in the E step. Let sk be the discrete state of interval Ik' E 2ig (m = 1,...,M). The

discrete-state transition probabilities Aii (i, i = 1, ..., N, i 7C f) are defined by Equa-

tion (2.19), we therefore estimate the probabilities by counting the frequency that

the discrete state appears.

   We first define some interval-label sets each of which specifies the subset in

the interval set Zl ,. Let 7<]S') be the label set of intervals in which the discrete state

is qi; that is,

                   )C£1')-{klsk =- qi, Ik* E Zli,k }lr 1}. (3.20)

Similarly let rc(i'i) be the label set of intervals in which the discrete state is qj and

the discrete state of the previous interval is qj; that is,

               7<ill'1'i) = {klsk = ojj,sk-i = qi, Ii E Z; ,,k l}l 2}. (3.21)

Then, we can estimate the transition probability Ai]t by the following equation:

               P(sk = qilsk-, = q,) -= C(Skc-f,,q-1',St--'oj,l qZ), (3 22)

where C(sk -- qi,sk-i = qi) == Z]M=i 1rcfi"j)l is the frequency that states qi and qj
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3. Learning Method for the Interval-Based Hybrid Dynamical System

appears in the adjacent intervals in this order. C(sk-i = qi) = £.M=ilrcfi')l is the

freguency that state oji appeared in the interval sequence Z*.

Initial Discrete-State Probabilities

The initial discrete-state probability ni can be calculated by the similar method:

                                  C(si = qi)
                       P(Si=oji)= M , (3.23)

where C(si == qi) is the frequency that state qi appears in the first interval of the

searched interval sequences Zr, ..., ZM.

Parameters of Duration-Length Distributions

Let lk be the duration length of interval 4 E Z;ll (m = 1,...,M). As we described

in Subsection 2.3.1, we assume two-dimensional Gaussian functions for duration-

length distributions (see also Equation (2.17)):

           p(ik, ik-i lsk - oji, sk-i - qi) - N (h S'), [ hh,i,il) hhclll'･l) ]) (3.24)

   We can estimate the parameters of the Gaussian distribution in Equation (3.24)

by the following equations:

  hfi') = z)ce,.ircs,)1.£M.,,,,2.)£,,lk (i=1･ ･N)

  hSi) = £os=ircfi,)l.ZM)=,,i£,,(lk-hfi'))2 (i-1, ,N)

 hS`") == £."=,l rc fi'7) l .ZM)=i ,,Iii]ri,,, (lk - hS')) (lk-' - hS')) (i' 1' = 1" "' N' i f 1')

3.5 Experiments

']]o evaluate the proposed parameter estimation methods, we first used simulated

sequences for training data because it provides the ground truth of the estimated

parameters. The first experiments shown in the Subsection 3.5.1 is for the veri-

fication of the clustering algorithm including the determination criterion of the
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3.5. Experiments

number of clusters (linear dynamical systems), and the second experiments in

Subsection 3.5.2 is for the evaluation of the overall two-step learning method. In

Subsection 3.5.3, we see how the proposed method is applicable to handle real

data.

3.5.1 Evaluation of the Clustering Algorithm Using Simulated

       Data

A multivariate sequence with length T = 100 was generated from the system that

had the same parameters as the system in Section 2.5. In this sequence, three dy-

namic primitives were appeared in the temporal order of Di -> D2 --> D3, which

repeats three cycles. The duration lengths of the discrete state are generated ran-

domly based on the parameters of the duration-length distribution. Figure 3.4

(a) and (b) shows an example of the generated interval sequence and the two-

dimensional observation sequence, respectively

   The hierarchical clustering algorithm proposed in Section 3.3 was applied to

the sequence. Figure 3.4 (c) shows the overall model fitting errors between the

original sequence Y and generated sequences Yge"(N) by the extracted N dy-

namical systems. The error in each merge iteration step was calculated by the

Euclidean norm: Err(N) = 1IY- Ygen(N)1l = Z)Z=, 1lyt - ygen(N)t1I2, which is

the approximation of the overall log-likelihood score. The segmentation result of

each merging step is shown in Figure 3.5. We see that the segmentation results

from N = 6 to N = 2 have interval patterns that repeats three times, which corre-

spond to the cycle of transition between the linear dynamical systems. Especially

the segmentation result of N == 3 exactly corresponds to the interval sequence in

Figure 3.4 (a), which was used to generate the input sequence in Figure 3.4 (b).

   As we discussed in Subsection 3.3.5, we use the model fitting errors directly to

extract candidates for the number of the dynamical systems. Figure 3.4 (d) shows

the difference of the overall prediction error between current and previous steps

Err(N - 1) - Err(N). We can find two peaks in N = 6 and N == 3 from this figure,

where N == 3 is the ground truth and N = 6 is the largest number of dynamical

systems in which the segmentation result has a cyclic pattern.
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3. Learning Method for the Interval-Based Hybrid Dynamical System

3.5.2 Evaluation of the Refinement Process Using Simulated

       Data

[Stepl] Clustering

Ten multivariate sequences were generated from the system. The parameters

were same as the system in the previous experiments, except that the state transi-

tion probability A3i was set to zero to generate non-cyclic sequences.

   ln the sequences, three dynamic primitives were appeared in the temporal

order of Di - D2 - D3, and only the length of the duration varied. Figure 3.6

(a) and (b) shows an example of the generated interval sequence and the two-

dimensional observation sequence, respectively

   The proposed clustering process was evaluated by the sequence in Figure 3.6

(b). First, the initial interval set was determined by zero-crossing points of the

first-order difference as we described in Subsection 3.3.2. Then, the initial dy-

namical systems were identified from the interval set. The number of the initial

dynamical systems was N = 6. Figure 3.6 (c) shows the obtained interval se-

quences during the clustering process. The number of the dynamical systems

was reduced from N == 6 to N = 2 by the iterative merging process of nearest

dynamical system pairs. In each iteration step, two interval sets that belong to

the nearest two dynamical systems were also merged.

   The following parameters are the result of the clustering algoritlmi:

F(i) - [-OoOlo -oO,io`],g(') - [g:] ,xf,'.), - [-i,Oo]

F(2)

F(3)

-
[

-
[

.O,88, mO,3g,],,(2) .. [-,O,gO],.k2?, = [g5,;

-O,`?, 89:],g(3' - [-O,i:,],x}.3', - [-,O,83

[Step2] EM AIgorithm

For the evaluation of the refinement process, we used the extracted dynamical

systems in the clustering process. We manually selected N == 3 for the number of

dynamical systems, which corresponds to the number of the original system that

generated the typical sequence. Additional nine sequences were generated for
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3.5. Experiments

the training data, and all the generated sequences including the typical sequence

were used for the input of the EM algorithm.

   The algoritkm was initialized by the parameters found in the clustering pro-

cess. Figure 3.7 (a) shows the searched interval sequences in the E step of each

iteration step. We see that the partitioning of the intervals gradually converges to

almost the same partitions as the original interval sequence shown in Figure 3.6

(a). The solid line in Figure 3.7 (b) shows the change of the overall log-likelihood

of the system. We see that the algorithm almost converged at the ninth iteration.

The dashed line in Figure 3.7 (b) shows the change of the overall log-likelihood

when the duration distribution function A(ii') was set to be uniform and the ad-

jacent intervals was modeled to have no correlation. We see that the algorithm

converges to a local optimum in this case.

   The following parameters are the refined result via EM algorithms:

F(i) = [ -o,6g, -,o,6o] ,,(i) = [g gg] ,.f.il = [ kos,]

F(2) - [O.32 O.02

    - LO.06 O.s2

,(3)=
[-o,4?, sgg

],g(2) .. [

] ,g(3) = [

-O.68

O.07

O.60

-O.60

]
･
]
･

xth'`1

xfiji[i

-
[-[

o.2s 1

1.00 ]

-O,'

,
]

I
'
[
'

   Consequently the results of the clustering process become inaccurate if inap--

propriate sequences are selected for the typical training data. In spite of the inac-

curate parameter estimation in the clustering process, the evaluation shows that

the refinement process applied to all the training data recovers from the initial

error. Especially the meta-level features, such as modeling of duration lengths

of interva}s and relations between intervals, seem to work as constraints to the

partitioning process in the EM algorithm.

3.5.3 EvaluationonRealData

l
l
l

Tb evaluate the capability of the proposed method for real applications, we

applied the clustering method to captured video data. A frontal facial im-

age sequence was captured by 60fps camera during a subject was smiling four

times. Facial feature points were tracked by the active appearance model [CET98,

SEL03], and eight feature points around the right eye were extracted. The length
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        nearest dynamical system pairs in each iteration steps.
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3. Learning Method for the Interval-Based Hybrid Dynamical System

of the seguence was T = 1000.

   We applied the clustering method to the obtained 16-dimensional vector se-

quence that comprised x- and y-coordinates of the feature points (both coordinate

coefficients were plotted together in Figure 3.8(a)). Figure 3.8(b) shows the over-

all model fitting errors between the original sequence Y and generated sequences

Yge"(N) by the extracted N dynamical systems. The candidates of the number of

the dynamical systems were determined as N = 3 and N = 6 by extracting the

steps in which the difference Err(N - 1) - Err(N) exceeded given threshold (we

used O.Ol in this experiment). The difference ErT(N - 1) - Err(N) is shown in

Figure 3.8(c).

   Figure 3.9(a) shows the intervals extracted from the clustering process when

the number of dynamical systems was N = 6. Figure 3.9(b) shows the geAer-

ated sequence from the extracted six dynamical systems, where each dynamical

system was activated based on the partitioned intervals in Figure 3.9(a). The dom-

inant dynamical systems D3 and D4 correspond to the intervals in which the eye

had been remain closed and open, respectively The other dynamical systems

such as Ds correspond to the eye blink motion.

   Consequently the history of model fitting errors during the clustering process

helps us to decide the appropriate number of dynamical systems.

3.6 Discussion

In this chapter, we proposed a two-step learning algorithm to identify the

interval-based hybrid dynamical system, which we introduced in the previous

chapter. Especially the hierarchical clustering of dynamical systems provides

stable estimation technique of the number of dynamical systems and their pa-

rameters. This method can be regarded as one of model-based clustering meth-

ods [ZG03], howeveg the models are 1inear dynamical systems, which have a

number of free parameters. We therefore proposed the constrained identification

method of linear dynamical systems based on eigenvalues, which estimates stable

dynamics from a small sample set' of time-varying sigrtals.

   The experimental results on the simulated and real data show that the pro-

posed parameter estimation method successfully finds a set of dynamical systems

that is embedded in the training data and the transition probabilities between the

dynamics with a modeling of adjacent interval duration lengths.
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Chapter 4

Analysis of Timin

Multipart Motion

Ex         .presslon

g Structures

of Facial

e

In this chapteg we see how the interval-based hybrid dynamical system (interval

system) can be applied to describe and analyze structured dynamic events. As we

have shown in the preceding chapters, the interval system has the ability to de-

scribe dynamic events based on interval-based representation. We now apply the

system to represent complex motion appeared in each facial part independently

and to analyze the dynamic structures of facial expression based on the temporal

differences among beginning and ending time points of prirrtitive motion.

ii
l

I
I
I

･
l

4.1 Timing Structures in Facial Expression

4.1.1 Introduction

Facial expression plays an important role in our communication; for instance, it

can nonverbally express emotions and intentions to others. Much progress has

been made to build computer systems that recognize facial expression for human

interfaces. Howevell these systems have problems that they don't use enough dy-

namic information in recognition, and the classification of facial expression relies

on a fundamental category based on emotions (happiness, surprise, feag ange;

disgust, and sadness) [EP97].

   Many systems developed so far describe facial expression based on "action

units" (AUs) of the Facial Action Coding System (IACS) proposed by Ekman and

                                89
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4. Analysis of Timing Structures in Multipart Motion of Facial Expression

Friesen [EF75, TKCOI]. An AU is defined as the smallest unit of facial movement

that is anatomically independent and visually distinctive. FACS is a method for

describing facial expression on the basis of the combination of AUs. FACS, how-

eveg has a major weakness: there is no time component of the description IEP97I.

Moreoveg there may be facial motion that AUs cannot express because AUs are

heuristic motion patterns classified by human. It is also important to decide what

categories of facial expression are appropriate as the outputs of facial recogrii-

tion. Most previous systems categorize facial expression into one of six basic

categorles.

   In human communication, howevez facial expression is classified into one of

the more fine-grained categories by subtle dynamic changes that are observed

in facial components: the variety of changes and the timing of changes. This is

because human facial expression is made of two mechanisms: (1) emotional ex-

pression produced by spontaneous muscular action, and (2) intentional display

to convey some intention to others. Tb recognize the details of human emotion

and intention, we believe that the analysis of the dynamic structure in facial ex--

pression is indispensable.

   Tb realize such systems, we first assume the following points:

e Dynamic movement of each facial component (facial part) yields changes of

  facial expression.

e Movement of facial parts is expressed based on temporal intervals.

Based on the assumptions above, we define each interval as a temporal range

that is expressed by a simple motion, where the intervals have beginning times,

ending times, and labels of motion patterns, modes, as attributes.

   We then provide a framework for recogrtizing facial expression in detail based

on timing structures, which are defined as temporal relations among the begin-

ning and ending times of multiple intervals. Tb extract the timing structures, we

propose a novel facial expression representation, which we call afacial score. The

score is similar to a musical score, which describes the timing of notes in music.

Using the score, we can describe facial expressions as spatio-temporal combina-

tion of the intervals.

   Whereas AUs are suitable motion units to distinguish emotional facial expres-

sion, they sometimes do not preserve sufficient dynamic information (e.g., time-

varying patterns) of facial actions. Here, we take another approach; that is, we de-

termine a set of modes from statistical analysis and describe facial actions based
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4.1. Timing Structures in Facial Expression

on generative models. This approach extracts modes that have enough dynamic

information from the viewpoint of pattern generation, and provides a unified

framework that can be used not only for facial expression analysis but for facial

expression generation.

   As for the generative models, we utilize the interval systems proposed in

Chapter 2. As for the mode determination, we exploit a bottom-up learning

method that we proposed in Chapter 3. In this method, each mode is modeled by

a linear dynamical system that has an ability to generate simple patterns, and the

modes are extracted from clustering analysis that we described in Section 3.3 (see

Subsection 4.2.3 for details).

   In summary the facial score is that it enables us to

   e Describe timing structures in faces based on temporal intervals;

   e Use motion primitives (i.e., modes) extracted from training data in a bottom-

     up manner.

Facial Expression Generation and Recognition Using the Facial Scores

Figure 4.1 depicts the overall fiow of facial expression generation and recognition

using the facial score (the top right of Figure 4.1).

Facial action generation. Once a facial score is obtained, we can activate inter-

val systems to generate facial expression video just like as playing music accord-

ing to a musical sore (down arrow at the right column in Figure 4.1).
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Facial expression recognition. The flow of the facial expression recognition is

as follows:

  1. We first extract a series of feature vectors that characterize facial expression

     from a sequence of facial images (right arrow at the bottom in Figure 4.1).

  2. We then partition the series of feature vectors and extract the modes simul-

     taneously to obtain a facial score using interval systems and their learning

     method (up arrow at the right column in Figure 4.1).

  3. Finaly we extract timing structures, which contribute to recogrtition of the

     facial expression, from the facial score (left arrow at the top in Figure 4.1).
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4. Analysis of Timing Structures in Multipart Motion of Facial Expression
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Figure 4.1: Flow of facial expression generation and recognition using the facial

         score.

   The automation of the above process provides applications of learning, gen-

erating, and recognizing facial expression in detail using computers. The goal in

this thesis is to propose a method for automatically obtaining the facial score and

to evaluate the effectiveness of the facial score for facial expression recognition.

We compare the timing structure of intentional smiles with that of spontaneous

smiles for the evaluation; in human communication it makes sense to make a

distinction between the two smiles, but most previous computer systems have

classified these smiles into the same category.

   ln the next subsection, we describe some related work that studies dynamic

properties of facial expression. In Section"4.2, we introduce facial scores as a.

description of timing structures in faces, and describe a method to obtain facial

score. in Section 4.3, we describe a method to represent and extract timing struc-

tures from a facial score. In Section 4.4, we evaluate the effectiveness of the facial

scores. Irt this evaluation, we first obtain facial scores automatically from cap-

tured real data including two expression categories: intentional and spontaneous

smiles. Then, we examine the effectiveness of timing structure to separate these

two categories of smiles. Finally in Section 4.5 we discuss the advarttage and

d.jsadvantage of the proposed representation.
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4.2. Facial Scores

i

4.1.2 Related Work

In psychological experiments, evaluation by playing back facial expressions on

videotape to subjects has suggested the following knowledge of dynamic aspects

of facial movement. Bassili video-recorded the face that was covered with black

makeup and numerous white spots, and found that it is possible to distinguish

facial expression to a certain degree of accuracy merely from motion of the white

spots by playing back the video IBas78].

   As a study concentrating on a more specific part of facial motion, Koyama, et

al. created CG animations with the temporal relations between eye and mouth

movement controlled, and showed laughter can be classified into pleasant, un-

pleasant, and sociable types based on the temporal difference [NKN98]. As a

study of analyzing solitary and social smiles, Schnidt, et al. indicated temporally

consistent lip movement patterns based on the evaluation of the relationship be-

tween maximum velocity and amplitude [SCT03]. Hence, the importance of dy-

namic aspect in facial expression has been emphasized by many studies. How-

eve; an appropriate representation that maintains spatio-temporal structures in

facial actions is still under study
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4.2

4.2.1

Facial Scores

Definition of Facial Scores

A facial score is a representation that describes motion patterns of each facial

component and temporal relations between the movements. In this chapter we

define the following notations:

L
v

'

Facial parts and facial-part sets. Facial parts represent isolable facial compo-

     nents. We define facial part sets as P = {Pi, ..., I?Np } where Np is the number

     of facial parts described by facial scores. For instance, elements of facial-part

     sets include mouths, right eyes, left eyes, right eyebrows, and left eyebrows.

Modes and mode sets. Modes represent simple motions of facial parts. We de-
     fine mode sets as M(a) = {Mi"), ..., MM')} where IVh is the number of modes

     of a facial part IIi(a E {1,..., Np}). For instance, elements of mode sets of

     a mouth part include "opening", "remain open", "closing", and "remain

     closed".
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4. Analysis of Timing Structures in Multipart Motion of Facial Expression

part{
P,

M,(l) ._-===-__
Mi')

MJ'1t-----~

Ti me Transition between modes

Figure 4.2: Facial scores. The vertical axis represents modes of facial parts, and the
horizontal axis represents time. The transition of the motion of each
facial part is described based on intervals along the temporal axis.

Intervals and interval sets. Intervals represent temporal ranges of modes. We

define interval sets as y(a) = {Iia
), ..., It)} where Ka is the number of inter­

vals into which time series data of a facial part Fa is segmented. Intervals

I~a) (k E {I, ..., Ka}) have beginning times bka) E {I, ..., TL ending times

eka) E {I, ..., T}, and labels of modes representing the events mka) E M(a) as

attributes where T is the length of time series data of a facial part Fa.

Facial scores. We define a facial score as a set that comprises all the interval sets

of each facial parts {y(l), ...,y(Np)}. Figure 4.2 shows a conceptual figure of

a facial score. The vertical axis represents modes of facial parts, and the hor­

izontal axis represents time. The transition of the motion of each facial part

is described based on intervals along the temporal axis. For each facial part,

intervals with the same mode are depicted by the same color and aligned

at the same row. Thus, the facial score describes timing structures among

motions of the facial parts.

4.2.2 Facial Parts in Facial Scores

To recognize facial expression based on timing structures, we need to treat multi­

ple facial areas where their movements are able to occur independently. Because

the facial motion is produced by muscular action, a straight forward definition

is to choose each muscle as a different part. However, some facial skin can be

moved by multiple muscle action; moreover, some muscles are hard to control

independently. We therefore use appearance-based definition.
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4.2. Facial Scores

   Ekman, et al. have revealed that the difference in the facial appearance of basic

emotions (happiness, surprise, feag angell disgust, and sadness) results from the

combination of the three facial areas (around the eyebrows, eyes, and mouth)

where their movements can be observed individually in appearance [EF75]. We

basically follow the Ekman's definition; that is, we use the three areas; in addition,

we treat areas around the eyebrows and eyes on the left and right as different

facial parts. This is because the asymmetric movements of each eyebrow and eye

can be observed in real facial expression.

   It is important to select useful features that can express subtle changes of

movements in the five facial areas. Here we defines feature vectors as coordinates
                                  '
of feature points shown in Figure 5 (a), which can extract information of rnove-

ment directly We consider that transient features such as furrows also provide

effective information in recognition of subtle facial expression, and that changes

of the feature points can represent them indirectly; for instance, movement of

feature points on the nose implies nasolabial furrows.

   Therefore, we define elements of facial part sets 7> as right eyebrow} left eye-

brow} right eye, left eye, nose, and mouth. A feature vector z(") of a facial part Ri

is represented by the following 2na-dimensional colunm vector:

x(a) == (z.i"), zyi"),...z.£a,), zy£a,))T, (4.1)

where na is the number of feature points of a facial part Ili, and let (zxY), zySa))

be coordinates of a feature point number p C {1, ･･･, na}･

4.2.3 ModesinFacialScores

As we defined in Subsection 4.2.1, each complex movement of a facial part is

composed of simple motion categories, which we refer to as modes. Therefore, a

movement can be partitioned into a sequence of temporal intervals by modes.

   Modes are classified into two large categories by the velocity of feature vec-

tors: stationary poses and dynamic movements. For the modes with movement,

we use motions that have stable dynamics as the lowest-level representation,

whereas humans sometimes classify a cyclic motion as one category Therefore,

our facial score represents a cyclic motion as a sequence of monotonic motions.

For example, the open and close action of the mouth is represented as the follow-

ing sequence of four modes: "opening", `'remain open", "closing", and "remain

closed".
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4. Analysis of Timing Structures in Multipart Motion of Facial Expression

   AUs used in FACS are the most common units to describe facial movements.

Although AUs are suitable to distinguish emotional facial expressions by their

combinations, we do not use AUs as the modes in our facial scores for two rea-

sons. First, a method of AU tracking is still a challenging research topic for com-

puter vision. Second, AUs sometimes do not maintain sufficient dynamic infor-

mation in facial actions. As a result, AU-based CG animation systems sometimes

generate unnatural facial actions.

   ln contrast, our approach takes a bottom-up learning method to find modes

rather than using predefined motion categories, as we described in Subsec-

tion 4.1.1. That is, all the modes are extracted by the clustering of dynamics from

captured real data.

   For a generative model of simple dynamics in each mode, we exploit the in-
terval systems introduced in Chapter 2. The dynamics of the mode M5.a)(i E

{1, ..., Nh }) in a facial part 4 is therefore modeled by the following linear dynam-

ical system:

                    cSa) = F(ai i)xS-a )1 +g(ai i) +coEa･ i), (4.2)

where x5") is a internal state vector in a feature space at time t, F("i i) is a transition

matrix, which differs from other modes' matrices, g("i i) is a bias term, ca(a/ i) is a

process noise of the system that has a multivariate Gaussian distribution with

mean vector O and covariance matrix Q("r i).

   As a result, complex motion in each facial part is described based on the tran

sition of 1inear dynamical systems, such as a hybrid dynamica! system that we

described in Chapter 2. Therefore, the proposed model can be considered as a

concurrent process of multiple hybrid dynamical systems, where each hybrid dy-

namical system is applied to model dynamics in each part.

   The extraction of mode is based on the clustering technique that we proposed

in Section 3.3 in the previous chapter. We will briefly review the method here.

Given a sequence of feature vectors, we first find a initial segmentation based

on the velocity We then merge the nearest dynamical system pairs iteratively

based on agglomerative hierarchical clustering. A linear dynamical system, in

general, can generate not only stable motions, which start from an initial shape

and converge to a specific shape, but cyclic or oscillating motions. Tb extract only

the stable motions, we proposed a method to provide a constraint on eigenvalues

of the transition matrices.
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4.3. Timing Structures in Facial Scores

4.3 Timing Structures in Facial Scores

Using facial scores defined in the previous sections, we can represent temporal

relations among motions in facial parts; we refer to the relations as timing struc-

tures of the face. In this section, we describe a method to represent and extract

timing structures from a facial score.
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4.3.1 DefinitionofTimingStructures

We first concentrate on modeling timing structure between two parts a and h.

Let I(i) be an interval Ik that has mode Mi c M in part 4 (i.e.,mk = Mi), and

let b(i),e(i) be its beginning and ending time points, respectively (We omit in-

dex k, which denotes the order of the interval.) SimilarlM let I(p) be an interval

that has mode Mfo E M' in the range [h2p),elp)] of part I'b. The temporal rela-

tion of two modes becomes the quaternary relation of the four temporal points

R(h(i),e(i),h(,),e(,))･

   Here we break up the quaternary relation R(b(i), e(i), b(p), e(p) ) into the follow-

ing four binary relations:

Rbb(h(i),b(p)),

Reb (e(i), hlp) ),

Rhe(b(i),e(p)),

Ree(e(i),e(p))･

Let us define timing structure as the relation R that can be determined by a com-

bination of these four binary relations above with respect to all the mode pairs

(Mi,Mfo) E M × M,.

   Considering temporal ordering relations R<, R=, R>, which are often used in

temporal logic [Al183, Al184, PMB97, PB97, Mas981, for these binary relations, we

get 34 relations for R, Because of b(i) sl e(i) and b2p) :f{ e(p), it can be reduced

to 13 relations as shown in Figure 4.3(a). Although these categories enable us to

represent temporal structures among multiple events, such as overlaps between

two intervals, they are insufficient for us to describe the difference of timing struc-

tures in facial expressions; that is, it is often important to analyze two motions in

different facial parts are synchronized or not. We therefore utilize not only tem-

poral order of events but metric information (i.e., scales and degree of temporal

differences) among beginning and ending times of multiple intervals.

   Tb extend the 13 categories using metric information, we use the temporal

difference of two time points as the relation RD, which can be represented by
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4. Analysis of Timing Structures in Multipart Motion of Facial Expression

metric D E R. Using this metric relation, we can define the first-order timing

structure such as

                  Dbb = b(i) - b(p) Dbe = h(i) - elp)

                  Deh =: e(i) - b(p) Dee == e(i) -e(p)

for Rbb, Rbe, Reb, and Ree, respectively.

   We can also define the second-order timing structure as the combination of

two relations above. For example, the relation of Rhb and Ree is represented by a

point (Dbb, Dee) C R2 in a two-dimensional space if we use temporal difference

h(i) - h(p) and e(i) - e(p) for the metric of Rbb and Ree, respectively Figure 4.3(b)

shows the two-dimensional space, where the horizontal and vertical axes repre-

sent the difference between the beginning times and the difference between the

ending times, respectively The interval pairs in the figure denote the typical tem-

poral relations in each area of the two-dimensional space.

   Note that, if we use the third-order timing structure that is defined by combi-

nation of three relations above, then all the temporal relations between the two

intervals can be defined including the duration length.

4.3.2 DistributionsofTimingStructures

Using temporal differences between beginning and ending times, we can

represent the distribution of first-order timing structure as four distribu-

tions H(h(i) - h(p)),H(e(i) - e(p)),H(h(i) - e(p)) and H(e(i) - b(p)), where

H(D) is a one-dimensional distribution of variable D. We can also repre-

sent the second-order timing structure as six two-dimensional distributions

H(h(i) - h(p),e(i) - e(p)), H(b(i) - h(p), h(i) - e(p)), H(b(i) - b(p),e(i) - h(p)), H(e(i) -

e(p),h(i) - e(p)),H(e(i) - e(p),e(i) - b(p)) and H(h(i) - e(p),e(i) - b(p)), where

H(Di, D2) is a two-dimensional distribution of variables Di, D2 E R. Repre-

sentations of the third-order timing structures become three-dimensional distri-

butions in the same manner.

4.4 Experiments

In this section, we evaluate the effectiveness of our representation by examin-

ing the separability between intentional smiles and spontaneous smiles using ob-

tained facial scores from captured data.

                                98

･g

en,

i
i
l
l
e
'

-
i
l
e
e

,,l



r

4.4. Experiments
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          ning and ending time provides 13 relations of the two intervals. (b)
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          e(i) - elp), respectively
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4. Analysis of Timing Structures in Multipart Motion of Facial Expression

4.4.1 ConfigurationoftheExperiments

Intentional and spontaneous smiles of six subjects (we use ID A to F to distinguish

them) were captured in 480 × 640 at 60 fps as the input image sequences. Then,

we downsampled the images to 240 × 320 resolution. We used a camera system

that was composed ofahelmet anda camera fixed in front of the helmet to con-

centrate on the analysis of front faces. The camera system enabled us to capture

front face images without self-occlusion even if large head motion occurred.

   The subjects were instructed to begin with a neutral expression, make a smile,

and return to a neutral expression again. Intentional smiles were captured by

instructing the subjects to force a smile during they were watching disgusting

movie that have been standardized by Gross [GL951. Spontaneous smiles were

captured during they were watching Japanese-standup comedy (Manzai). Fig-

ure 4.4 (b) shows part ofa captured face image sequence. The number of inten-

tional smiles was 50 for all the subjects. The number of spontaneous smiles was

different among the subjects: subject A, B, C, D, E, and F made 37, 39, 30, 38, 31,

and 29 expressions, respectively.

4.4.2 FacialFeaturellracking

We tracked feature points in facial image sequences using the active appearance

model (AAM) ICET98]. The AAM contains a statistical model of correlations be-

tween shape and grey-level appearance variation. The AAM-based feature point

tracking consists of two stages. We first build an AAM model using a training set

of face images and its feature points given manually. Then, we can use the model

to extract facial feature points in novel images. Due to the trained model, AAM

can search the feature points rapidly and robustly (see Appendix D for details).

   Figure 4.4 shows an example of tracked feature points i. The number of fea-

ture points used in the AAM was set to 5 on each eyebrow> 8 on each eye, 11 on

the nose, 8 on the mouth, and 13 on the jaw line (refer to Figure 4.4 (a)). Although

the jaw line was not represented as one of the facial parts, it was used for im-

proving tracking accuracy. Therefore, the dimensionality of feature vectors in the

eyebrows (left/right), the eye (left/right), the nose, and the mouth were 10, 16,

22, and 16, respectively

   Figure 4.4 (c) shows part of a face image seguence with tracked feature points;

  iFeature points were tracked using the AAM--API that Stegmam (Tlechnical University of Den-

mark) developed ISG02].
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(c) Tracked feature points using active appearance model

Figure 4.4: (a) A training image to build active appearance models. (b) Part of a

          captured face image sequence. (c) Part of a face image sequence with

          tracked feature points.

the frames correspond to the images shown in Figure 4.4 (b). Comparison of the

corresponding images demonstrates precise detection of feature points in changes

of facial expression.

4.4.3 Automatic Acquisition of Facial Scores

As we described in Subsection 4.2.3, the obtained feature vectors of each facial

part were segmented into modes using the clustering of linear dynamical sys-

tems that we proposed in Section 3.3. Figure 4.5 is an example of the segmen-

tation result of the mouth part. The vertical axes of the top, the middle and the

bottom subfigures represent x-coordinates of feature points, y--coordinates of fea-

ture points and the transition of modes respectively. The horizontal axis of each

subfigure represents time.

   Figure 4.6 shows an example of the facial score that describes dynamic charac-

teristics of all facial parts during intentional smiles. This figure suggests that the

movement of each smile can be segmented into the following four modes: two

stationary modes ("neutral" and "smiling") and two dynamic modes ("onset"

and "offset" of smiling).

   Figure 4.7 and Figure 4.8 shows the facial score of an intentional smile and a

natural smile, respectively We see that the begir[ning and ending timing of the in-
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Figure 4.5: The correspondence of the mouth part of an obtained facial score from

         spontaneous smiles with the feature vector series. The vertical axes of
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         represent labels of feature points in Figure 4.4 (a). For example, the
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Frame# 280 ･300 320 41O 430 460

Figure 4.6: An example of obtained facial scores from intentional smiles (left and

          right eyebrows are' omitted).

/

tervals are different in these expressions. Especially the motions of the intentional

smile are synchronized compared to the natural smile. In the next subsection, we

evaluate the differences of these two smiles based on the comparison of timing

structures.

   Because of the 1tmitation of the movie length artd the capacity of the capturing

system, we obtained facial expressions using several sessions. Then, we acquired

facial scores from each of the sessions automatically We however manually found

the correspondence of modes among these sessions. ln addition, we merged mul-

tiple intervals based on human observation in case that one mode was divided

into multiple modes.

   Despite that we could replace this manual operation with an automatic train-

ing method such as the expectation-maximization algorithn of the interval sys-

tem described in Section 3.4, we chose to check and modify the segmentation re-

sults manually because we wanted to verify the effectiveness of timing structures

rather than to evaluate the precision of the EM algorithm. Tb distinguish these

two problems and to concentrate on verifying the effectiveness of timing struc-

tures, we postulated that the clustering algorithm provided a set of candidates

for the segmentation, and we selected one of the candidates manually
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  Figure 4.8: The facial score of a spontaneous smile.
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4.4.4 ComparisonofTimingStructuresbetweenIntentionaland

       Spontaneous Smiles

Modes of Smile Onset and Offset

Tb evaluate the separability of intentional and spontaneous smiles using extracted

facial scores, we defined the following two modes which is selected from auto-

matically extracted modes:

Mb: onset motion of smiles (from neutral to smiling)

Me: offset motion of smiles (from smiling to neutral)

Tb simplify the evaluation, we used a facial score that consists of three facial parts:

left eye, nose, and mouth. In addition, since the duration lengths of stationary

modes such as "neutral" and "smiling" closely depend on the context of the ex-

pression, we concentrate on analyzing timing structures among dynamic modes

Mh and Me (see Figure 4.9).

   Let hleye and eieye be the beginning and ending tme points of the left eye

motion in its facial score. Similarly let hnose and enose be those of the nose mo-

tion, and h..uth and e...th be those of the mouth motion, respectively. Then

we extract temporal differences between such time points; for example, we use

Mb (bnose - hmouth), which denote the temporal difference between the beginning

of nose motion and that of mouth motion during the onset of a smile.
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Analysis of Timing Structures

Tb analyze the intentional and natural facial expression, we exploited the repre-

sentation of timing structure described in Section 4.3. We first used the first-order

timing structure analysis using one-dimensional distributions as preliminary ex-

periments. Since this preliminary experiments showed that any single temporal

difference cannot discriminate the two smile categories (i.e., intentional and spon-

taneous), we employed a pair of temporal differences (i.e., the second-order tim--

ing structure) as a distinguishing feature. That is, a feature to characterize each

shot of smile is represented by a point in the two-dimensional space whose axes

denote a selected pair of temporal differences. Since there are many possibilities

for the combination of temporal differences, for each pair of temporal differences,

we calculated the Maharanobis generalized distance between a pair of distribu-

tions of two smile categories, and selected such pair of temporal differences that

the two distributions took the largest distance. Note that since smiling actions

may differ from person to person, we extracted a distinguishing feature for each

subject person.

   Figure 4.10 shows the experimental results for six persons. Each subfigure

shows the selected two-dimensional space and the distributions of intentional

and natural smile categories for each subject. Each point denotes a single expres-

sion. From this figure, we observe that we can discriminate the distributions of

two smile categories using their dynamic features.

   Tb evaluate the effectiveness of timing structure for discriminating intentional

and natural smiles, we calculated recognition rate of each smile for each subject

based on leave-on-out method [DHSOO]. First, we trained a linear discriminate

boundary plane using support vector machines IBur98]; we then discriminated

the test data. The result is shown in fable 4.1. We see that a!1 the recognition

rates for all the subjects are in the ranges from 79.4% to 100%. Hence, the timing

structure provides an enough feature for distinguishing intentional and natural

smile categories.
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Differences among the Subjects

From Figure 4.10, we see that the extracted axes are different among the six sub-

jects. Especially] the axes that correspond to duration lengths of onset or off-

set motions (e.g., Mb (bnose - e...th)) were extracted from five subjects excluding

subject C.
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4. Analysis of Timing Structures in Multipart Motion of Facial Expression

[lable4.1:Accuracy of discrimination between intentional and spontaneous
        smiles based on timing structures in Figure 4.10.

Subject Intentional(%) Spontaneous(%)

A
B
C
D
E
F

100

100

82.4

85.1

85.3

96.6

83.8

79.4

96.4

79.7

903
93.1

   For subject A and C, the axis that denotes the difference of the beginning

points between the left eye and mouth parts in the onset motion (i.et, Mb (bieye -

hmouth)) were extracted. This feature corresponds to the feature that is used in

the psychological experiments conducted by Nishio, et al. [NKN98]. Therefore,

intentional smiles of subject A and C might be easily discriminated from natural

smiles by human.

   Consequently the personality of facial expression becomes significant espe-

cially for discriminating intentional and spontaneous expression compared to

emotion recognition in which most of the existing work attempts to find common

factor of facial expression.

4.5 Discussion

In this chaptell we proposed a facial score as a novel facial expression represen-

tation. The score describes timing structures in faces by assuming that dynamic

movement of each facial part yields changes of facial expression. Using the score,

we provided a framework for recognizing fine-grained facial expression cate-

gories. In our evaluation, the scores were acquired from captured real image

sequences including intentional and spontaneous smiles automatically and we

confirmed that movement of facial parts was expressed based on temporal inter-

vals each of which is characterized by linear dynamical system, and the effective-

ness of the timing structure for discriminating the two smile categories.

   'Ib emphasize the characteristics of the proposed representation, we focused

on using only timing structures. Howeveg other features of movement such as

scale, speed and duration, which provide further information on recognizing fa-
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4.5. Discussion

cial expression, should be taken into account in practical systems. We also need to

discuss specificity ahd generality of timing structures: some structures may exist

as general features determined by physical muscle constraints, and the other may

exist as subject-specific features produced by personal habits. Directions for fu-

ture work are to tackle these problems and to evaluate the effectiveness of timing

structure using a large number of captured sequences.
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Chapter 5

Modeling Timin

Multimedia
g Structures

Signals

.

In this chapter, we propose a model to represent timing structures in multimedia

signals, and exploit the model to generate a media signal from another related

signal. The difference from the previous chapter is that we here show a general

framework for modeling and utilizing mutual dependency among media signals

based on the temporal relations among hybrid dynamical systems rather than

only apply the system to each media signal and analyze the temporal structures

among dynamic events.

5.1 Timing Structures in Multimedia Signals

Measuring dynamic human actions such as speech and musical performance with

multiple sensors, we obtain multiple media signals across different modalities.

We human usually sense and feel cross-modal dynamic features fabricated by

multimedia sigrtals such as synchronization and delay For example, it is well-

known fact that the simultaneity between auditory and visual patterns influences

human perception (e.g., the McGurk effect [MM76]), and we can find some psy-

chological studies about the audio-visual simultaneity (e.g., [FSKN04]).

  On the other hand, modeling cross-modal structures is also important to re-

alize multimedia systems (Figure 5.1); for example, human computer interfaces

such as audio-visual speech recognition systems [NLP+02] and computer graphic

techniques such as generating a media signal from another related signal (e.g., lip

motion generation from input audio signals [Bra99]). Articulated motion model-
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5. Modeling Timing Structures in Multimedia Signals

Recognition based on multimedia integration (ex.) Audio visual speech recognition

ISpeechI~~ f:::) I Integration Ic::>! Classification I
'-------v" IVideo, Motion-'~

Media signal generation from another related signal (ex.) Lip sync.

IAudio I c::) I Media Conversion I c::) IVideo, Motion I

Figure 5.1: Applications of modeling cross-modal structures.

ing can also exploit this kind of temporal structures because motion timing among

each different part plays an important role to realize natural motion generation.

Dynamic Bayesian networks, such as coupled hidden Markov models

(HMMs) [BOP9?], are one of the most well-known methods to integrate multi­

ple media signals [NLP+02]. These models describe relations between concurrent

(co-occurred) or adjacent states of different media data (Figure 5.2(a) and 5.2(b)).

A coupled HMM can be categorized into a frame-wise method because it models

the frequency of state pairs that occur in adjacent frames. Although this frame­

wise representation enables us to model short term relations or interaction among

multiple processes, they are not well-suited to describe systematic and long-term

cross-media relations. For example, an opening lip motion is strongly synchro­

nized with an explosive sound /p/, while the lip motion is loosely synchronized

with a vowel sound / e/; in addition, the motion always precedes the sound (Fig­

ure 5.3 left). We can see such an organized temporal difference in music perfor­

mances also; performers often make preceding motion before the actual sound

(Figure 5.3 right).

In this chapter, we propose a novel model that directly represents this im­

portant aspect of temporal relations, what we refer to as timing structure, such

as synchronization and mutual dependency with organized temporal difference

among multiple media signals (Figure 5.2(c)).

First, we assume that each media signal is described by a finite set of "modes"

(i.e., primitive temporal patterns) similar to the previous chapter; we apply an

interval-based hybrid dynamical system (interval system) to represent signal pat­

terns in each media based on the modes. Then, we introduce a timing structure

model, which is a stochastic model for describing temporal structure among in-
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                                Time
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                 (c) Timing based modelirLg

Figure 5.2: r]]emporal structure representation in multimedia sigrials.
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Synchronization mechanisms Long term relation Time

Arm motion swing down

Time

Utterance I silence /pal I silence J /a/ I
If

Lip motionI closed open I close I open I
strictly synchronized loosely synchronized

Piano sound silence on

Figure 5.3: Open issues of existing multimedia co-occurrence models.

tervals in different media signals. The model explicitly represents temporal dif­

ference among beginning and ending points of intervals, it therefore provides a

framework of integrating multiple interval systems across modalities as we will

see in the following sections. Consequently, we can exploit the timing structure

model to wide area of multimedia systems including human machine interaction

systems in which media synchronization plays an important role. In the experi­

ments, we verified the effectiveness of the method by applying it to media signal

conversion that generates a media signal from another media signal.

As we described in Chapter I, segment models [ODK96] can also be candi­

date models. Despite we use interval systems for experiments in this chapter,

the timing structure model, which is proposed in this chapter, can be applicable

for every model that provides an interval-based representation of media signals,

where each interval is a temporal region labeled by one of the modes.

5.2 Modeling Timing Structures in Multimedia Sig­

nals

5.2.1 Temporal Interval Representation of Media Signals

To define timing structure, we assume that each media signal is represented by a

single interval system, and the parameters of the interval system are estimated in

advance (see [ODK96, LWS02], for example). Then, each media signal is described

by an interval sequence. In the following paragraphs, we introduce some terms

and notations for the structure and the model definition.
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s.2. Modeling Timing Structures in Multimedia Signals

Media signals. Multimedia signals are obtained by measuring dynamic event

    with Nk sensors simultaneously. Let Sc be a single media signal. Then, mul-

    timedia signals become S = {Si,･ - ･ ,Sivk}. We assume that Sc is a discrete

    signal that is sampled by rate ATb.

Modes and Mode sets. Mode M5･C) is the property of temporal variation oc-

    curred in signal Sc (e.g., "opening mouth" and "closing mouth" in a fa-

    cial video sigrtal). We define a mode set of S, as a finite set: M(C) ==

     {MiC),･ ･ ･ ,MM')}. Each mode is represented by a sub model of the inter-

    val system (i.e., 1inear dynamical systems).

Intervals. Interval I£C) is a temporal region that a single mode represents. Index

    k denotes a temporal order that the interval appeared in signal Sc. Interval

     IEC) has properties of beginning and ending time h£C),e£C) E N (the natural

    number set), and mode label m£C) E M(C). Note that we simply refer to the

     indices of sampled order as fitime". We assume signal Sc is partitioned into

     interval sequence Z(C) = {liC),..., IftC,)} by the interval system, where the

     intervals have no gaps or (i.e., h£C+)i = e£C) + 1 and m£C) 4 m£C+)i).

Intervalrepresentationofmediasignals. Interval representation of multime-

     dia signals is a set of interval sequences: {Z(i), ...,z(Ng)}.
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5.2.2 DefinitionofTimingStructureinMultimediaSignals

In this chapteg we concentrate on modeling timing structure between two media

signals S and S'. (We use the mark " ' " to discriminate between the two signals.)

   Let us use notation I(i) for an interval Ik that has mode Mi E M in signal S

(i.e.,mk = Mi), and let h(i),e(i) be its begtming and ending time points, respec-

tively. (We omit index k, which denotes the order of the interval.) Similarly let

I(p) be an interval that has mode Mfo E M' in the range [b(p),elp)] of signal S'.

Then, the terrtporal relation of two modes becomes the quaternary relation of the

four temporal points R(h(i), e(i), h(p), elp)). If signal S and S' has different sampling

rate, let the cycles be AT and AT' , we have to consider the relation of continuous

time such as h(i)AT and h(i)AT' on behalf of b(i) and h(i) . In this subsection, we

just use b(i) E R(the real number set) for both continuous time and the indices of

discrete time to simplify the notation.

   Similar to Subsection 4.3.1 in the previous chapteL we can define timing struc-

ture as the relation R that can be determined by the combination of four binary
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mitb~ ~dbY

Figure 5.4: Overlapped interval relations (Subset of Figure 4.3(a».

Overlapped interval pair

- -
Interval sequence A I

~======~~~Interval sequence B • --'

b(i) ¢?

b(p) ? I(p)

10) q e(i)

pe(p)

b(i) - b(p) e(i) - e(p)
Difference of beginning points Difference of ending points

Overlapped interval pairs

~ Y'-,--...-L--_
~ Diff. of end.

~oog
~ Diff. of end. """

tu~,g
\.. ~

Diff. of end.

~~
Diff. of end.

~oo
Figure 5.5: Examples of the metric relations. Four points represent temporal rela­

tionsof two modes that appeared in overlapped intervals.
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5.2. Modeling Timing Structures in Multimedia Signals

relations: Rhb(h(i),b(p)), Rb,(b(i),e(p)), R,b(e(i),b(p)), Ree(e(i),e2p)). ln the follow-

ing, we specify the four binary relations that is suitable for modeling temporal

structure in media signals (e.g., temporal difference between sound and motion).

   We first introduce metric relations for Rbb and Ree by assuming that Rbe and

Reb is Rg and R), respectively (i.e., the two modes have overlaps), as shown in

Figure 5.4. This assumption is natural when the influence of one mode to the

other modes with long temporal distance can be ignored. For the metric of Rhh

and Ree, we use temporal difference h(i) - b(p) and e(i) - e(p), respectively; the

relation is represented by a point (Db, De) E R2 (see also Figure 4.3(b)).

   Figure 5.5 shows some examples of the relations. There are three modes in in-

terval sequence A, and two modes in interval sequence B. The four figures below

represent the relations of mode pairs that appear in the overlapped interval pairs.

   ln the next subsection, we model this type of temporal metric relation using

two-dimensional distributions. As a result, the model provides framework to

represent synchronization and co-occurrence.

52.3 ModelingTimingStructures

Tbmperal Difference Distribution of Mode Pairs

Tb model the metric relations that described in the previous subsection, we intro-

duce the following distribution for every mode pair (Mi, Mfo) E M × M':

P(hk - hfa = Db,ek - ek, =: D,lmk = Mi,mftt = M',, [bk, ek] n Ih2t,ek,] l ¢). (5.1)

We refer to this distribution as a tempoTal dtfil7rence distrihution of the mode pair.

As we described in Subsection 5.2.2, the domain of the distribution is R2.

   Because the distribution explicitly represent the frequency of the metric rela-

tion between two modes (i.e., temporal difference between beginning points and

the difference between ending points), it provides significant temporal structures

for two media signals. For example, if the peak of the distribution comes to the

origin, the two modes tend to be synchronized each other at the beginning and

ending points, while if hk - bk, has large variance, the two modes loosely synchro-

nized at their onset timing.

   'Ib estimate the distribution, we collect all pairs of overlapping intervals that

have the same mode pairs (Figure 5.6). Since training data is usually finite when
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Figure 5.6: Learning of a timing structure model.

we use the model in real applications

or its mixture models to the samples.

, we fit a density function such as Gaussian

Co-occurrence Distribution of Mode Pairs

As we see in Equation (5.1), the temporal difference distribution is a probability

distribution under the condition of the given mode pair. Tb represent frequency

that each mode pair appears in the overlapped interval pairs, we introduce the

following distribution:

              P(mk - Mi, mk, - MS 1 [bk, ek] n [h2,,e2,] f¢). (52)

We refer to this distribution as co-occurrence distTihution of mode pairs. The distri'

bution can be easily estimated by calculating a mode pair histogram from everY

overlapped interval pairs.
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5.3. Media Signal Conversion Based on Timing Structures

fransition Probability of Modes

Using Equation (5.1) and (5.2), we can represent timing structure that is defined

in Subsection 5.2.2. Although timing structure models temporal metric relations

between media signals, temporal relation in each media signal is also important.

Therefore, similar to previously introduced interval systems, we use the follow-

ing transition probability of adjacent modes in each signal:

                 P(mk-Mjlmk-i == Mi) (Mi, Mj EM). (5.3)

Media Signal Conversion Based on Timing Struc-

tures

i
l

5.3

Once we estimated the timing structure model that introduced in Section 5.2 from

simu}taneously captured rrtultimedia data, we can exploit the model for generat-

ing one media signal from another related signal. We refer to the process as media

signal conversion, and introduce the algorithm in this section.

  The overall flow of media sigrial conversion from sigrial S' to S is as follows

(see also Figure 5.7):

1. A reference (input) media signal S' is partitioned into an interval sequence

  Z, - {i{,..., Ik,}.

2. A media interval sequence Z == {Ii,..., IK} is generated from a reference

  interval sequence Z' based on the trained timing structure model. (K and K'

  is the number of intervals in Z and Z', and K f K' in general.)

3. Signal S is generated from Z.

l

I
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l
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ttt

l /

  The key process of this media conversion lies in step 2. Since the methods of

step 1 and 3 have been a}ready introduced in Chapter 2, we here propose a novel

method for step 2: a method that generates one media interval sequence from

another related media interval sequence based on the timing structure model. In

the following subsections, we assume that the two media signals S,S' have the

same sampling rate to simplify the algorithm.
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Input Media

Input media signal

1. Signal Segmentation

Reference Interval sequence

2. Timing Generation

Generated Interval sequence

3. Signal Generation

Output media signal

Output Media

Figure 5.7: The flow of media conversion.

5.3.1 Formulation of Media Signal Conversion Problem

Let <l> be the timing structure model that is learned in advance (Le., all the param­

eters described in Subsection 5.2.3 is estimated). Then, the problem of generating

an interval sequence I from a reference interval sequence I' can be formulated

by the following optimization:

t = argmax P(III', <l».
I

(5.4)

In the equation above, we have to determine the number of intervals K and

their properties, which can be descrihed by triples (bkt ekt mk) (k = I, ..., K), where

bk,ek E [I, T] and mk E M. Here, T is the length of signalS', and M is the mode

set, which is estimated simultaneously with the signal segmentation. If we search

for all the possible interval sequences {I}, the computational cost would increase

exponentially as T becomes longer. We therefore use a dynamic programming

method to solve Equation (5.4), where we assume that generated intervals have

no gaps or overlaps; thus, pairs < ekt mk > (k = I, ..., K) are required to be esti­

mated under this assumption (see Subsection 5.3.2 for details).

We currently do not consider online media signal conversion because it re-
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5.3. Media Signal Conversion Based on Timing Structures

quires a trace back step that finds partitioning points of intervals from the final

to the first frame of the input signal. If online processing is necessary one of the

simplest method is dividing input stream comparatively longer range than the

sampling rate and apply the following method to each of the divided range.

5.3.2 IntervalSequenceGenerationviaDynamicProgramming

'fo simplify the notation, we omit the model parameter variable ¢ in the following

equations. Let us use notation fi = 1 that denotes the interval "finishes" at time

t, which is similar to the notation that we introduced in Subsection 2.3.2. Then,

P(mt == Mj,fi = 11Z'), which is the probability when an interval finishes at time t

and the mode of time t becomes Mj in the condition of the given interval sequence

Z', can be calculated by the following recursive equation:

         P(mt = Mj,ft = 1[Z')

      = ;,,z,:,,( P(Mt= Mi･f} = '･it =.,TIM.t,IT.:M.t;ftftIT. == ii;Il 1, (s s)

where lt is a duration length of an interval (i.e., it continues lt at time t) and mt

is a mode label at time t. The lattice in Figure 5.8 depicts the path of the above

recursive calculation. Each pair of arrows from each circle denotes whether the

interval "continues" or "finishes", and every bottom circle sums up all the finish-

ing interval probabilities.

  The following dynamic programming algorithm is deduced directly from the

recursive equation (5.5):

 Et (j) = m.ax l. p( laix) P(mt == Mlf, .ft == 1, lt = Ti mt.T = Mi, .ft-T = 1, Z")Et-.(i),

           where Et (i) A l:;vy P(mi'i, mt = Mj, fi = 11Z'). (s.6)

Et(1') denotes the maximum probability when the interval of mode Mj finishes

at time t, and is optimized for the mode sequence from time1 tot-1 under the

condition of given Z'. The probability with underline denotes that interval Ik with

a triple (hk = t-T+ 1,ek = t,mk == Mi) occurs just after the interval Ikmi that

has mode mk.i = Mi and ends at ek-i = t - T. We refer to this probability as an

interval transition pTohahility.

   We recursively calculate the maximum probability for every mode that fin-
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Figure 5.8: Lattice to search optimal interval sequence (

         assume that £j P(mT = Mj,fr = 1llZ') = 1

num. of mode =2). We

ishes at time t(t = 1, ..., T) using Equation (5.6). After the recursive calculation,

we find the mode index 1'* == arg maxj ET(j). Then, we can get the duration length

of the interval that finishes at time T with mode label Mj., if we preserve T that

gives the maximum value at each recursion of Equation (5.6). Repeating this trace

back, we finally obtain the optimized interval sequence and the number of inter-

vals.

   The remaining problem for the algorithn is the method of calculating the in-

terval transition probability; As we see in the next subsection, this probability can

be estimated from a trained tirning structure model.
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5.3.3 Calculation of Interval Tiransition Probability

As we described in previous subsection, the interval transition probability ap-

peared Equation (5.6) is the transition from interval Ik-i to Ik. "Ib simplify

the notation, we here replace t-T+1 with Bk. Let emin = Bk and emax =

min(T, Bk + lmax - 1) be the mmimum and maximum values of ek, where lmax

is the maximum length of the intervals. Let Iik,, ..., Itk,+R E Zt be reference inter'
1
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Figure 5.9: An interval probability calculation from the trained timing structure

         model.

vals that are possible to overlap with Ik. Assuming that the reference intervals are

independent of each other (this assumption empirically works well), the interval

transition probability can be calculated by the following equation:

       P(mt = Mi, .ft = 1, lt = TImt-T = Mi, .f}-T = 1, Z')

    = P(mk = At((),ek,ek E [emin,emax]lmk-1 == Mi,bk = Bk,I'kir･･･,I'k,+R)

       R
    = n {Rect(ek, ek E [emin, b'k, +r - 1] )

       r=O
         +KrP(mk = Axl(i,ek,ek E [h'kt+,, emax]lmk-i = Mi,bk = Bk,I'k,+r)} , (5･7)

where Rect(e,e E [a,h]) = 1 in the range [a,b]; else O. Since the domain of ek is

[emin,emax], Rect is out of range when r = O, and btk, = e.in. K is a normalizing

factor: K, = 1 (r = O) and

  Kr =P(mk = Axli,ek,ek E [hk,+,,emax]lhk = Bk,mk-i = Mi)-i (r = 1,...,R).

  In the expertments, we assume Kr is uniform for (mk, ek); thus, Kr == N(emax -
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emin + 1) (N is the number of modes).

   Using some assumptions that we will describe lateg we can decompose the

probability in Equation (5.7) as follows:

   P(mk = Axli,ek, ek E [b2,+,, emax] l mk-i = Mi,bk

== P(ek 1 ek E [bii+r, emaxl,Mk = A4f,hk == Bk, I(,+r)

   ×P(mk = M)lek E [hkt+,,emax],Mk-1 = Mi,hk =:

   XP(ek E [bi,+r,emax] l Mk-i = Mi,bk = Bk)

= Bk, I2,+r)

Bk, 4'+r)

   The first term is the probability of ek under the condition that Ik overlaps with

4t+,. We assume that it conditionally independent of mk-i. This probability can

be calculated from Equation (5.1). Here, we omit the details of the deduction,

and just make an intuitive explanation using Figure 5.9. First, an overlapped

mode pair in lt and 4,+, provides a relative distribution of (hk - b2t+,, ek - eft,+,)･

Since Ii,+, is given, the relative distribution is mapped to the absolute time do-

main (the upper triangle region). Normalizing the distribution of (hk,ek) for

ek E [hl,+,,emax], we obtain the probability of the first term. The second term

can be calculated using Equation (5.2) and (5.3). For the third term, we assume

that the probability of ek 2 h2,+, is independent of Ik+,. Then, this term can

be calculated by modeling temporal duration length lt. In the experiments, we

assumed uniform distribution of ek and used (emax - hi,+,)/(emax - emin + 1)･

              '   The computational cost of interval transition probabilities strongly depends

on the maximum interval length lmax. If we successfu11y estimate the modes, lmax

becomes comparatively small (i.e., balanced among modes) than the total input

length. Thus, the cost becomes reasonable.
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1 5.4 Experiments

Tb evaluate the descriptive power of the proposed timing structure model and the

performance of the media conversion method, we first used simulated data for

the verification of the interval generation algorithm described in Subsection 5.4.1.

We then conducted the experiment that examines the overall media conversion

flow shown in Figure 5.7 using audio and video data, and evaluated the precision

of lip video generation from an input audio signal in Subsection 5.4.2.
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5.4. Experiments

5.4.1 EvaluationofIntervalSequenceGenerationAlgorithmUs-

       ing Simulated Data

rlb verify the interval generation algorithm described in Subsection 5.3.2, we input

an interval sequence that comprised two modes M' = {Ml, M5} and attempted

to generate another related interval sequence that comprised M = {Mi, M2, M3}

based on manually given temporal difference distributions.

   Each of the temporal difference distribution was assumed to be a Gaussian

function. Let /i,p be a mean vector of the temporal difference distribution of mode

pair (Mi,Mfo) where Mi E M (i.e., mode set for generating interval sequences)

and Mfo E M' (i.e., mode set for input interval sequences). Mean vectors pai,p (i =

1,2, 3, p = 1,2) were manually decided as follows:

ptu = ("5, '5), pa2,i == (10,5), pa3,i : notavailable,

lti,2 = (10,10), li2,2 = (-5,-10), jtt3,2 - (5, -5),
(5.8)

where mode pair (M3,Ml) was assumed to have no overlap. All the variances

were set to be 4 and all the covariances were assumed to be zero. Figure 5.10 (a)

shows the assumed temporal difference distributions.

   As for co-occurrence distribution defined in Equation (5.2), uniform distribu-

tion was assumed. That is, the probabilities were set to be O.2 for all the mode

pairs except pair (M3, Ml). As for mode transition probabilities, transition prob-

abilities from Mi to M2, M2 to M3, and M3 to Mi were set to be one, and the

remaining were set to be zero for generating cyclic transition of modes.

   Then, the interval sequence shown in Figure 5.10 (b) (upper) was used as input

of the interval generation algorithm described in Subsection 5.3.2. Figure 5.10 (b)

(bottom) shows the generated interval sequence using the algoritlmt. We see that

the temporal differences between beginning and ending points correspond to the

elements of mean vectors pi,p of Gaussian distributions. For example, we see that

the mode M2 always begins ten frames after the begirurting point of Ml begins,

and finishes five frames after the ending point of Ml .

   We also examined other simulated data using different conditions such as the

number of input modes is larger than that of generating modes. In those several

experiments, we checked that the proposed algorithm always generated inter-

val sequences in which each temporal interval of modes was determined so as

to maximize the probability in Equation (5.4) with respect to given parameters.

Consequently the proposed timing structure model, especially temporal differ-
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Generating

Input

(a) Manually given temporal difference distributions (Gaussian).

#90#1 Frame III
:~~--====---======-~

10 ~ 5 ~

Frame .:: .:

gH~-=~-"-=~-"_-:'­
111

Input
interval seq.

Generated
interval seq.

(b) The input and .generated interval sequences.

Figure 5.10: Verification of interval sequence generation from another related in­
terval sequence described in Subsection 5.3.2 using manually given
timing distributions.
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5.4. Experiments

ence distributions, successfully determines the temporal relation among modes

appeared in input and generated interval sequences.

5.4.2 Evaluation of Image Sequence Generation from an Audio

       Signal

We applied the media conversion method described in Section 5.3 to the applica-

tion that generates image sequences from an audio signal.

Feature Extraction

A continuous utterance of five vowels /a/,/i/,/u/,/e/,/o/ (in this order) was

captured using mutually synchronized camera and microphone. This utterance

was repeated nine times (18 sec.). The resolution of the video data was 720×480

and the frame rate was 60 fps. The sampling rate of the audio signal was 48 kHz

(downsampled to 16 kHz in the analysis). Then, we applied short-term Fourier

transform to the audio data with the window step of 1/60msec; thus, the frame

rate corresponds to the video data.

   Filter bank analysis was used for the audio feature extraction. We obtained

1134 frames of audio feature vectors each of which had dimensionality of 25,

which corresponded to the number of filter banks. As for the video feature, a

lip region in each video image was extracted by the active appearance model

(AAM) ICET98] described in Section 4.4 (see also Appendix D for details). Then,

the lip regions were downsampled to 32 ×32 pixels and the principal component

analysis (PCA) was applied to the downsampled lip image sequence. Finally we

obtained 1134 frames of video feature vectors each of which had dimensionality

of 2Z which corresponded to the number of used principal components.

Learning the Timing Structure Model

Using the extracted audio and visual feature vector sequences as signal S' and S,

we estimated the number of modes, parameters of each mode, and the temporal

partitioning of each signal. We used linear dynamical systems for the models of

modes. Tb estimate the parameters, we exploited hierarchical clustering of the

dynamical systems described in Section 3.3. The estimated number of modes was

13 and 8 for audio and visual modes, respectively. The segmentation results are
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Figure 5.11: Scattering plots of temporal difference between overlapped audio

           and visual modes. Visual mode #1, #5, and #7 corresponds to lip

           motion /o/ - /a/, /e/ - /o/, and /a/ - /i/, respectively
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shown in Figure 5.12 (the first and second rows). Because of the noise, some

vowels were divided into several different audio modes.

   Temporal difference distributions of Equation (5.1), co-occurrence distribu-

tions of Equation (5.2), and mode transition probabilities of Equation (5.3) were

estimated from the two interval sequences obtained in the segmentation process.

Figure 5.11 shows the scattered plots of the samples that are temporal difference

between beginning points and ending points of the overlapped modes appeared

in the two interval sequences. Each chart shows samples of one visual mode to

typical (two or three) audio modes. We see that the beginning motion from /a/

to /i/ synchronized with the actual sound (right chart) compared to the motion

from /o/ to /a/ (left) and from /e/ to /o/ (middle). Applying Gaussian mixture

models to these distributions, we esttmated the temporal difference distributions.

The numbers of the mixtures were manually determined.

･
1
1

1

/

/

Evaluation of Timing Generation

Based on the estimated cross-media timing-structure, we applied the media con- 1･i

version method in Section 5.3. We used an audio signal interval sequence in-

cluded in the training data of the interval system as an input (reference) media /'

data (top row in Figure 5.12) and converted it into a video signal interval sequence ,,

(third row in Figure 5.12).

   Ilrten, to verify the performance of the media conversion method, we first com"

pared the converted interval sequence with the original one, which was generated ,
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5.4. Experiments

Training pair of interval sequences

----- --- - --- ---- .--- ----

Audio interval sequence

Visual interval se uence--- -- -- - --
Generated visual interval sequence from audio interval sequence

.--- .--- .--- ---- ---- ---- -

Frame #140 #250

Figure 5.12: Generated visual interval sequence and an image sequence from the
audio signal.

from the video data measured simultaneously with the input audio data (second

row in Figure 5.12). Moreover, we also compared the pair of video data: one gen­

erated from the converted interval sequence (third bottom row in Figure 5.12) and

the originally captured one (second bottom row in Figure 5.12), where images

from frame #140 to #250 were shown in Figure 5.12. As for step 3, these image

sequences were decoded from the visual feature vectors by the linear combina­

tion of principal axes (eigenvectors of PCA) and feature vectors (principal com­

ponents). We also see the visual motion precedes the actual sound by comparing

to the wave data (in the bottom row). From these data, the media conversion

method seemed to work very well.

To quantitatively compare our method with others, we generated feature vec-
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5. Modeling Timing Structures in Multimedia Signals

tor sequences based on several regression models. Seven regression models were

constructed; each of the models estimated visual feature vector yt from 2a + 1

frames of audio feature vectors yt-a, yt-,+i, ..., yt, ..., yt+a, where a = 1, 2, ..., 7. Fig-

ure 5.13 (a) shows the error norm of each frame in the range of fraMe # 140 to #250.

We see that the generated sequence based on the learned timing structure model

has small error values compared to other regression models except the range of

frame #150 to #160, #170 to #180, and some other regions. One of the reasons the

error of the timing-based method was larger than regression models is that these

regions corresponded to such as vowel /i/, so the sound and visual motion might

be synchronized well. Figure 5.13 (b) shows the average error norm per frame of

each model. All the generated frames were used to calculate the average values.

We see that the timing-based model provide the smallest error compared to the

regression models.

5.5 Discussion

We proposed a timing structure model that explicitly represents dynamic features

in multimedia signals using temporal metric relations among intervals. The ex-

periment shows that the model can be applied to one media signal from another

sigrtal across the modalities.

   Although this is a preliminary result of evaluating the proposed timing mod-

els, its basic ability for representing temporal synchronization is expected to be

useful for wide variety of areas. For example, human machine interaction systems

including speaker tracking and audio-visual speech recognition, computer graph-

ics such as generating motion from another related audio signals, and robotics

such as calculating motion of each joint based on input events. Wk) will discuss

these points in Chapter 6 as feature work.
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timing structure model
regression from 1 frame
regression from 7 frames
regression from 13 frames
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(a) Error norm of each frame in the range of frame #140 to #250.
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Figure 5.13: Error norm of each frame and its average per frame between gener­
ated sequences and original sequence.
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In this thesis, we proposed a novel computational model, named an interval-

based hybrid dynamical system, to model dynamic events and structures. As

we described in Chapter 2, we exploited temporal intervals as an interface be-

tween dynamical systems, which is suitable for describing physical phenomena

(consider time as physical metric entity), and discrete-event systems, which is

suitable for describing human subjective or intellectual activities (consider time

as ordinal state transition).

   'Ib overcome the paradoxical nature of the learning process, which requires

to solve temporal segmentation and system identification problems simultane--

ously we proposed a two-step learning method in Chapter 3. Due to the proposed

method, we can extract linear dynamical systems that model primitive dynamics

of the event from the given temporal signals.

   In Chapter 4, we applied the proposed model to describe structured dynamic

events that consists of multipart primitives. We showed that the systems can an-

alyze dynamic features based on the timing structures extracted from temporal

intervals. We examined the effectiveness of the timing structure analysis to dis-

criminate fine-grained facial expression categories such as intentional and sponta-

neous smiles of which existing methods had difficulty to represent the difference.

   In Chapter 5 we proposed a "timing structure model" that directly repre-

sents timing structures in multimedia signals, such as synchronization and mu-

tual dependency with organized temporal differences among temporal patterns

of media signals. Experiments on simultaneously captured audio and video data

showed that time-varying signals of one media signal can be generated from an-
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6. Conclusion

other related media sigrtal using the trained timing structure model.

   In the next section, we show some open issues that we were not able to cope

with in this thesis, which can be divided into two aspects: (1) the extension of

the proposed computational model, and (2) the situations that the model can be

applicable including multiparty interaction.

6.2 Future Work
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6.2.1 ExtensionoftheInterval-BasedHybridDynamicalSystem

In this subsection, we show some directions that the proposed interval-based hy-

brid dynamical system should be extended for future work.

(a) Non-linear Dynamical Systems

The selection of appropriate dynamical models depends on the nature of signa!s

and the design policies of users. We chose to use linear dynamical systems be-

cause most of the continuously changing human motions can be approximated by

linear dynamics. This is because the motions are generated by the expansion and

contraction of muscles, and are controlled to be stable (e.g. no oscillation). How-

eve; nonlinear dynamical systems sometimes can be more reasonable choice for

modeling time-varying patterns such as consonants in human speech. One of the

straight forward methods to extend our model is the use of "kernel methods",

which are major approach for the nonlinear data analysis. The kernel methods

convert nonlinear algorithrns in the original data space into linear algorithms in

higher (or infinite) dimensional feature space. For example, kernel principal com-

ponent analyses utilize inner products in the higher dimensional space [HTFOII.

We need further discussion to give a guideline to select models.

   Some motion generation researches in robotics design the overall system as a

nonlinear dynamical system rather than a hybrid dynamical system. For example,

Okada represented the motion of robots as a cyclic attractor in the configuration

space [Oka95], and modeled the switching process between cyclic attractors in the

configuration space based on continuous dynamics [ONN031. Recurrent neural

networks (RNN) also utilize its nonlinear dynamics to represent complex motion.

Ogata et al. use the RNN with parametric bias (RNNPB) to extracting [OOK+05],

which change its internal dynamics based on the additional input to the network

(parametric bias). Morita et al. proposed RNN with non-monotonous function
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6.2. Future Wbrk

for modeling temporal pattern recognition [MMM021 and extended the model to

represent symbolic contexts of patterns using selective desensitization of some of

elements [MMM02, MMMS04].

(b) Modeling 'Iiransition Process between Dynamical Systems in adjacent In-

tervals

The state in the internal state space often changes discontinuously when the au-

tomaton changes the dynamical systems. Tb model co-articulated dynamics such

as phonemes in speech data and to generate smooth motion, we need transitional

process modeling between two dynamical systems (e.g., the modulation of dy-

namics by the preceding dynamics). A straightforward method is to model the

interpolation of two dynamics in adjacent intervals. Although the interpolation

provides low-cost method to smoothing two dynamics, it sometimes generates

unnatural motion at the joint of the two intervals. Li et al. proposed to set the end

constraints of a synthesized segments [LWS02]. They deduced a block-banded

system of linear equation from the constrains, and realized smooth motion texton

synthesis by solving the equation.

(c) Modeling Tbmporal Structures among More Than Three Signals

While we concentrated on a timing structure model in two media signals in Chap-

ter 5, we can apply the model to represent the structures among more than three

media signals by defining pairs of signals and constructing timing structure mod-

els for each of the pairs similar to coupled HMMs [B0971. 0n the other hand, we

will be required to introduce other timing structure models if we consider a prob-

lem specific causality between signals. For example, we can introduce a unob-

servable interval sequence that controls a generation timing of observable media

patterns. This model might be applied to a large area of human (animal) behavior

because many of muscular motions are controlled by unobservable spike signals

from a brain with physical delay [Pop85].

(d) Modeling Complex Structures of Dynamic Events

We exploited a simple finite state automaton as a discrete-event model in order to

concentrate on modeling human body actions and motions, which have relatively

simple grammatical structures (represented by a regular grammar) compared to

natural languages. Tb model languages (e.g., human speech and signs) and other
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6. Conclusion

complex situations (e.g., human communication and strategies), more complex

grammatical structures such as N･-gram models and contextfree grammars will

be required together with its parameter estimation method.

   There are several aspects of structures to extend our model. In the follow--

ing, we show some of the existing approaches in machine learning and computer

vision to represent complex structures.

Context-free grammars. A stochastic context-free grammar (SCFG), which de-

    fines probabilities of each of productions in a context-free grammaL is used

    for modeling grammatical structures among primitive events. Ivanov and

    Bobick use the SCFG model to recognize dynamic situations of parking area

    and human gestures EIBOO]. Moore and Essa extended the model to detect

    errors and to recover the detected errors, and applied for modeling behavior

    of players involved in card game situation [ME02].

Layeredstructures. A hierarchical HMM (HHMM) was proposed by Fine,

    Singer and Tishby in machine learning community} and some computer vi-

    sion applications were realized based on the model [NBVW03, BPV04]. The

    model is the extension of HMMs that each of states is capable to have not

    only output probability but a child HMM. As a result, the model can repre-

    sent layered structure of events based on the recursive definition of HMMs.

    The HHMM is the simplified model of SCFG, therefore, the computation

    cost of probabilistic inference in HHMM is lower than that of SCFG.

Higher-orderMarkovmodels. Variable-length N-gram model was also pro-

     posed by Ron and Tishby [RST96]. They used a prediction suffix tree to

     represent and construct a variable-length N-gram model from an input sym-

     bol sequence. The model can be converted to a finite state automaton in

     which each state corresponds to a seguence of symbols. Galata et al. applied

     the model to represent long-term context of human behavior and provided

     some preliminary results IGJHOI].

   A key issue when we introduce layered structures of discrete states into the

interval-based hybrid dynamical system is how to determine the layer in which

temporal intervals and temporal relations among the intervals are defined. As we

assumed in this thesis, a set of modes (dynamic primitives) corresponds directly

to a set of discrete states, and the modes mapped one-to-one to the discrete-states.

An intuitive extension is to consider a sequence of modes (linear dynamical sys-

tems) as a single discrete state based on the variable-length N-gram model. In a
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6.2. Future Wbrk

sense, the sequence of modes constitute a "phrase" of dynamic primitives, and the

discrete-state transition determines the sequence of the phrases. In this case, we

can regard duration of phrase as an interval, and can introduce duration lengths

of phrases. We can use a prediction suffix tree to train this model after the set of

modes are determined by the clustering method proposed in Chapter 3.

6.2.2 ModelingMultipartylnteraction

In this thesis, we concentrated on applying the interval-based hybrid dynami-

cal system to model a single human behavior rather than multiparty interaction,

because our first concern is to see the effectiveness of the proposed model for

modeling and learning dynamic events and structures from multimodal signals

(see Figure 6.1 left). Extending the proposed scheme to model multiparty interac-

tion and to realize human-machine interaction systems, we have to aim at finding

key features of interaction dynamics or protocols in human-human communica-

tion, and exploiting the found features for natural and smooth human-machine

communication (Figure 6.1 right).

   We discuss how the proposed framework of the system can be applicable for

modeling multiparty interaction and what are insufficient for our current system

in the following paragraphs.

Timing Structures in Speech Conversation

In human conversation, there exist many lexical, prosodic and syntactic elements

that help create the dialog structure [Shi05]. Especially utterance timing (such

as transition interval in Figure 6.1 upper-right) and speaking tempo can help to

add a smooth, tense, Iively or relaxing tone to the dialog. It is with this tone that

dialog can evoke feelings of pride, sorrow} feall and erp'oyment. Since we humans

are exposed to a large amount of timing structures in speech dialog during their

development, in other words, we are professional to recognize and generate tim-

ings; the users are sensitive to unnatural utterance timing and speaking tempo of

speech dialog systems.

   As for the analysis of the timing structures and their effects in human speech

dialogs, Ichikawa and Sato showed that many of backchannel utterances occur

within about O.4 second after the keyword appears in the speech of the oth-

ers [IS94]. Nagaoka et al. analyzed dialog of operators and customers in a tele-

phone shopping situation, and showed that utterance timings are one of the es-
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6.2. Future Wbrk

sential cues for determining an impression about the speaker [NDKN02]. As for

dialog systems that control utterance timing, Okato proposed the use of pitch pat-

terns in utterances to estimate the timing of backchannel responses. Kitaoka et al.

developed a response timing generator for speech dialog systems based on the

use of pitch and power patterns, powe; utterance lengths, and some lexical in-

formation [KTNN05]. Fujie developed a robot that makes backchannel feedbacks

with overlaps based on the use of pitch and power patterns [FFK05].

   Although the existing approaches generate timing of backchannel utterances,

non-backchannel utterances also have significant features in its generation tim-

ings. We have to use more fine categories of utterances based on the furtc-

tions or purpose of the speech in order to realize dialog systems that com-

municate purpose, attitude and feeling of the spoken word. The use of di-

alog acts (e.g. "question", "statement", '`opinion", etc.), which correspond

to illocutionary acts in speech acts ISea86], will help to analyze and catego-

rize backchannel and non-backchannel utterances based on the functions of

them [JSFC98, SRC+OO, DBCS04]. Once the categories of dialog acts are defined,

we can learn the timing structure model for each of the dialog acts, and can apply

the timing generation algorithm described in Chapter 5.

Timing Structures in Multimedia Interaction

Another disadvantage of existing timing generation applications is that the sys-

tems have no unified framework to integrate multimodal information captured

as different media signals. For example, human utterance timings are defined by

not only audio information but visual features such as facial expressions and lip

motions of others. We can also see that the facial expression of one person affects

the others expressions in our daily communication.

   As we described in this thesis, the interval-based hybrid dynamical system

has a capability of modeling the mutual dependency among multiple signals. We

can therefore exploit this system to realize human-machine interaction systems

by extending the system to model timing structures among more than three sig-

nals (see Subsection 6.2.1 (c)). The use of nonlinear dynamical systems and more

complex structures should be considered to represent these general interaction

patterns (see Subsection 6.2.1 (a) and (d)).

   In addition, a timing structure model is useful to estimate internal state of

humans considering the result of the facial expressions analysis in Chapter 4. Es-

timation of human internal states including intensions, interests, emotions, and
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6. Conclusion

other unobservable mental events are essential for providing appropriate infor-

mation to others. Because these mental events often affect our body via a neural

system deliberately or involuntary we can observe distinctive dynamic features

of signals from multiple modalities that is sufficient for estimating internal states

of others. Especially we remark the following points for taking advantage of

timing structure models for the internal state estimation:

e Internal states affects the timing structure (e.g., pause, tempo, and rhytkms)

  of pitch and power in speech, gestures, eye gaze, gait motion, and other

  observable media sigrtals from human activities.

e The timing of human reaction is affected by his or her internal states; for

  example, we can see some time lag of the response when the person con-

  centrated on other things.

From the timing structures above, information systems will understand user's

aims and situations, and will provide kind and timely guidance, which are the

most important functions for realizing human-centered communication.

   Consequently the extension of the interval-based hybrid dynamical systems

can be a imdamental basis of interaction systems that share a sense of time with

humans based on the integration of physical and subjective time as we described

in Chapter 1.

6.2.3 HybridComputinginRobotics

In this subsection, we show how the proposed concept of the interval-based hy-

brid dynamical system can be applicable to the area of robotics, especially the

degree of freedom (DOF) of robots becomes very high (e.g., humanoids).

   The existing methods to realize robots that control the body motion can be

categorized into model-based approaches and behavior-based approaches. A

model-based approach calculates and plans body motions and actions at the in-

side of computers based on the kpowledge of the real world and robot bodies

of robots (e.g., reasoning agents [RN02, PS99] and inverse-dynamics based con-

trols [KYHH05]). A behavior-based approach exploits the interaction between

robot bodies and the environment to emerge robot actions without modeling the

real world or body (e.g., subsumption architectures IBro86, Bro911 and a passive

walk ICRTW05]). The integration methods of two approaches, which use dif-

ferent computing resources, are under the investigation [YK02]. This stream is

140



6.2. Future Work

Behavior-Based
Approach

Passive Walk

Subsumption
Arch itecture

Reasoning
Agent

Model-Based
Approach

Inverse Dynamics

ro
c:
o
~ Hybrid Computing
:J
c.
E
oo

co
().- E
E Q)
co~
c: en
>.>.
Om

Computers Environment
~r---;::----:-:----=----~
~ Computing Resources r---r

Figure 6.2: A Map of Robotics Approaches.

regarded as an integration of the horizontal direction in Figure 6.2.

On the other hand, these approaches can be divided based on different aspect

depicted by the vertical direction in Figure 6.2: dynamical systems and informa­

tion systems. For example, both the inverse-dynamics-based control and agent

reasoning can be regarded as model-based approaches, which utilize the knowl­

edge of the world including body of robots, the representation of the system is

however completely different. That is, the inverse-dynamics-based control ex­

ploits dynamical systems and the agent reasoning uses information systems.

There exist some methods to integrate these two systems. The characteris­

tics of these methods are that they first define some action primitives such as

"move left hand up" and "move right leg forward", and then integrates these ac­

tion primitives based on information systems such as finite state machines; mean­

while, each of primitives are realized by calculation of torque based on dynamical

systems. The methods however have disadvantages that the primitives become

too coarse and abstract to generate smooth motion. This is because the primitives

are defined manually, and the temporal scale of each primitive cannot become

smaller than human recognizable scales (Problem A). It is also difficult to define

enough number of primitives when the DOF of robots becomes very high such

as in humanoids (Problem B). Moreover, appropriate energy input timings are

important to realize dynamic motion similar to human [KOT+04] (Problem C).

As we described in Chapter 3, the interval-based hybrid dynamics system pro-
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6. Conclusion

posed in this thesis has a capability of learning a set of dynamic primitives from

the given time-varying signals, it has therefore a potential to solve Problem A

and B. The size of learned primitives can be controlled to be smaller than our in-

tentional segmentation units. On the other hand, the timing generation method

described in Chapter 5 can be the basis of modeling timing structure between the

primitives (e.g., motion timing among body parts) and of determining activation

timing of each primitives in response to the input or recognized events, which

leads to the solution of the Problem C.

   Consequently the extension of the interval-based hybrid dynamical system is

expected to realize a series of smooth behavior of robots, including humanoids,

in dynamic situations where a robot contacts with objects and humans.

6.2.4 RelationtoHumanConsciousness

In this subsection, we consider the relation of the concepts in the interval-based

hybrid dynamical system to "human consciousness"i. We do not intend to dis-

cuss what consciousness is and where the consciousness exists in our human

body; consciousness comprises many aspects, and the definition of conscious-

ness often differs from person to person. Our motivation here is focusing on one

important aspect of human consciousness, the function of "temporal coordina-

tion", to bring some crucial issues as extending interval-based hybrid dynamical

systems.

   Why we human enjoy rhythns? The reason that the ability to enjoy rhythmic

patterns has acquired during the process of evolution may not be only for play-

ing music. We human are required to control and coordinate the timing of a series

of actions in response to perceived events. Therefore, the sensitivity to dynamic

structures among various events, which we described in Subsection 1.4.2, are in-

dispensable for humans to survive in the real world. Especially the temporal

coordination with consciousness among dynamic events must be advantageous

to humans under selection pressure compared to coordination in subconscious.

  iThe discussion in this subsection may also be applicable to arLimal consciousness. It is inter-

esting to consider the difference of consciousness between humans and animals [Ecc89]; howeveg

this topic is beyond the scope here.
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6.2. Future Wbrk

Essential Features of Ttrmporal Coordination with Consciousness

We first consider the essential features that constitute temporal coordination with

consciousness. A necessary condition for the function is to handle events (e.g.,

perceived input and generating actions) apart from the physical-time domain.

Howeve; this feature can also be used in subconscious temporal coordination.

For example, human sometimes use a clutch of a manual--transmission car with-

out awareness of the operation, which requires dynamic structure among multi-

ple events. We here concentrate on more crucial features of the temporal coordi-

natlon:

e A single time axis is used in mind for coordinating among multiple events

  (e.g., action and utterance). While multiple processes can be unconsciously

  activated in parallel [Lib04] (e.g., control of multiple body parts), the unified

  time in mind work as coordinator to maintain the consistency among the

  processes.

e Crucial time points that exist in various abstraction levels are dynamically

  selected, logically combined, and coordinated. While multiple time points

  of discrete events are recognizable, some points are crucial to achieve an

  overall action (e.g., "knacks" of robot action [KOT+04]). We pay atten-

  tion to those crucial time points as the occasion demands. Once the crucial

  time points are coordinated, the dynamic structure among discrete events

  in lower abstraction levels is also coordinated unconsciously

Hence, we can handle dynamic structures that have non-fixed patterns by exploit-

ing these features.

Learning of Structure among Discrete Events in Multiple Abstraction Levels

As for learning of a novel action such as a gymnastic exercise, crucial points are

also variable. We human first find the temporal ordering relations among sensory

information (e.g., visual input) and muscular activation. We then search the tim-

ing among perceived and generating events to realize the best performance of the

actlon.

   Once the action is acquired, we can orchestrate the control of multiple body

parts in response to perceived input without awareness if the structure among

events is fixed or simple enough; meanwhile, the learning phase requires aware-

ness of fine-grained events that determine the performance of the action. In other
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6. Conclusion

words, dynamic structures of acquired actions are push down to subconscious

domain for concentrating on obtaining and realizing more complex or composi-

tional actions that have structures in higher abstraction levels.

Direction to Extend the Interval-Based Hybrid Dynamical System

Compared to the temporal coordination with human consciousness described

above, the interval-based hybrid dynamical system proposed in this thesis is quite

restricted. As we discussed in Subsection 6.2.1, the interval system finds tempo-

ral points of discrete events based on linear dynamics and it controls only a single

level of dynamic structure among those time points. As a more important issue,

the timing generation method proposed in Chapter 5 is only able to control the

temporal position of discrete events that have simple static distributions. In a

sense, the system handles the subconscious coordination of events.

   Considering temporal coordination in human, we anticipate the following fea-

tures are essential to design information systems that fulfi11 the enough functions

of human-machine interaction (Subsection 6.2.2) and robotics (Subsection 6.2.3):

e The mechanism that dynamically finds the crucial points in

  straction levels based on the context and situation

multiple ab-

e rfemporal coordination function that rnaintains consistency of lower abstrac-

  tion levels

   e Learning method that reuses the dynamic structures obtained in the past

     learning to construct more complex structures

   The function of temporal coordination in human consciousness also affects

the number of events of which human is aware, and may influence the length of

cognitive time in the experience, which attract many scientists' interest [ lsu87].

We believe the design of the computational model that has satisfactory functions

to continue and survive in the real situations is necessary not only for engineering

purpose but also for understanding the mechanisms of mind process, such as

cognitive sense of time, in humans and animals. We hope the concept of the

interval-based hybrid dynamical system serve as the first step of these objectives.
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Appendix A

Matrix Formulas

A.1 Basics

l
"

Let A, B, and C be arbitrary matrices, and suppose that the number of rows and

columns are chosen appropriately. Then we can use the following relations:

A(B+C) = AB+AC,
(A+B)T = AT+BT,
  (AB)T = BTAT,

 (A-i)T ., (AT)-i.

(A.1)

(A.2)

(A.3)

(A.4)

  Let Ai, ..An be the eigenvalues of matrix A that are sorted by descending order.

We can use the following re}ations as for the determinant 1A[:

  IABI - IA.11Bl,

         1  IA-il = ntl･

             iIBAB-il - IBIIAIntl=IAI･

   IAI - IIIA,,

  IATI - IAI,

  IaAI = a"IAI,

 1-Al - (-1)nlAl.
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(A.5)

(A.6)

(A.7)

(A.8)

(A.9)

(A.10)

(A.11)
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A. Matrix Formulas

As for the trace tr(A), we can use

               tr(A+B) = tr(A)+tr(B), (A.12)

                  tr(A) =- £Ai, (A.13)
                           i
                tr(ABC) == tr(BCA)=tr(CAB). (A.14)
                                            '
As for the rank and condition number of matrix A, there exist the following rela-

tions:

                  rank(A) = rank(ATA)=rank(AAT), (A.15)

         conditionnumber(A) = Vfilll (A･i6)

A.2 DifferentialFormulasofMatrices

Suppose x == [xi,...,x.]T E R" and X = [xilt] is n×m matrix. We define the

following notations to denote partial differential of each vector (matrix) element.

                             !t
                       Of Oli

                       Ox '                             of
                             Oxn

                         of of
                   Df OIii OX.i.

                   DX ･ ･                         of                                 of
                         DXnl bXnm

A.2.1 Formulas

                 iStTtr(XTA) ==A (A.i7)

                61tlTtr(x'Ax) == (A+A')x (A.is)

               i:StTtr(XTAXB) = AXB+ATxBT (A.lg)

                  SltT ioglxl = (xT)" (A.2o)

                     51tllTlxl = (xT)-ilxl (A.21)
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A.2. Differential Formulas of Matrices

A.2.2 Examples

Differential Formulas of Vectors

From Equation (A.17) and Equation (A.18), we obtain the following vector for-

mulas:

            bT              a=a           EiTtx
          illltT xTAx = (A + AT)x = 2Ax

Useful Formulas

   illltlTliAX+Bi12 - SItlTtr((Ax+B)T(A.x+B)) (A.22)

           = EStTtr(XTATAX+xTATB+BTAx+BTB) (A.23)

           = 2ATAx+2ATB (A.24)

         iiStTtr(ATXX'A) = SltlTtr(xTAA'x) (A.2s)

                 == 2AATX (A.26)

I
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Estimation of the

and Bias Vectors

Systems

Transition Matrices

of Linear Dynamical

In this appendix, we show how to estimate the transition matrix F*(i) and bias

vector g*(i) from the internal state sequence x£i),..,xEi) in temporal range [b,el,

which is represented by linear dynamical system Di. The results described here

corresponds to Equation (3.5) and Equation (3.6).

As we introduced in Subsection 3.3.3, we use the following notations:

where l

x8i)

m8i)

mii)

= e-h+ 1.

i.IXII'i･siii,]･..5-ii',!",IX,[tA'Ll･iif.Ei']

A ll1 ,= .l , xSt) = lllxit) [1 ,i Ti 1 T,

(B.1)

(B.2)

(B.3)

Using the notations above, we can rewrite Equation (3.3) as
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B. Estimation of the Tlrransition Matrices and Bias Vectors of Linear Dynamical Systems

the following:

       e     ,=lill.l,[letl12 = 1IX5i) - (F(i)X8`) + g(i) [1 ,iyi.!-,i])H2 (Bo4)

  - tr (xii) - (F(i) x6i) + g(i) [1, ..., 1] )) T (xii) - (F(`) x8i) + g(i) [1, ..., 1] ))

  =- tr(xii)Txii)) + tr ((F(i) x8) + g(i) [1, ... 1] )T (F(i) x8i) + g(i) [1, ... 1] ))

       -tr (xi')'(F(') x8`) + g(i) [1,..., 1])) - tr ((F(`)x6i) + g(i) [1, ... 1])'xii))

Using Equation (B.2) and Equation (B.3) with tr(ABC) = tr(BCA) = tr(CAB)

and (AB)T = BTAT (see Appendix A), we obtain

   £ Il6tll2 == tr(xii)Txii))+tr(F(i)x8i)x8i)TF(')T)+(l-1)tr(g(i)Tg(i))

  t= b+1
                +(l - 1)tr(F(i)Tg(i)m8i)T) + (l - 1)tr(m8i)g(i)'F(i))

                -tr(F(i) x8i) xii)') - (l - 1)tr(g(i)mii)')

                -tr(Xii) x8i)TF(i)T) - (l - 1)tr(g(i)'mii)).

  If l-1 >== n (i.e., the number of samples is equal to or greater than the

dimensionality of state vectors), we can estimate transition matrix F'(i) and bias

vector g*(i) by solving the least squares problem of Equation (3.4). Tb solve this

minimization problem, we first differentiate £f=b+i 1 1et 1 12 with respect to each of

F(i) and g(i):

    DFO( i) ,= ., 1 let l 12 = 2 {F(i) X8) x8)T + (l - 1)g(i) m8)T - xii) x8i)T} , .

    DgO(i) ,=lil.l , 1l6t l 12 = 2(l - 1) {g(i) + F(i)m8i) - miZ) }

Then, we set zero for all the differentiated elements and obtain the following

equations:

          F*(i) x8i) x8i)' + (l - 1)g"(i)m8i)' - xii) x8i)' - o, (B.s)

                             g*(i) +F'(i)m8`) -mii) = o, (B.6)
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From Equation (B.6), we obtain

                    g*(i) == mii)-F*(')m8i). (B.7)

Substituting this equation into Equation (B.5), we obtain

      F*(i) x8') x8)' + (l - 1)(mii) - F*(')m8i))m8i)T - xii) x8i)' - o. (B.s)

Using Equation (B.2) and Equation (B.3) again, Equation (B.8) can be replaced by

  F'(i) x8') x8i)' + (xii) [1, ... 1]T - F*(i) x8i) [1, ..., 1]T)m8i)T - xii) x8)T - o.

Let R8i) be centerized x8i):

         X8i) Il> x8i) -m8i)[1,...,1] - lxii) -m8i),...,xEtl), -m8i)],

then we obtain
                   F*(i)x8i)x8i)T .. xii) g8i)T.

Here, we can replace x8)>l8i)T as X8)X8i)T using Equation (B.2):

       51I8i) X8i)' - (x8i) - m8i) [1, ..., 1] ) :il8i)T

               =- x8i) X6i)' - m8i) [1, ..., 1] (x8i) - m8i) [1, ..., ll)T

               == x8i) l516i)T - (l - 1) m8i)m8i)T + (l - 1)m8i)m8i)T

               == x8i)x6i)T

Similarly

       xSi) 28)T - (xii) - mii) [1, ... 1] ) sl8i)

               - xi') >ill8') - mii) [1, ..., 1] (x8i) - m8i) [1, ..., 1])T

               == xii) liil6')T - (l - 1)mii)m8i)T + (l - 1)mii)m8i)T

               - xii);gl8i)T

Thus, we finally get

              F*(i)28i)x8i)T .. Iillii)sll8i)T,

               .･. F*(i) .,. lillii)ll98i)T(:ill8i):ill8i)T)-i
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(B.10)

(B.11)
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B. Estimation of the Iiransition Matrices and Bias Vectors of Linear Dynamical Systems

   On the other hand, if l - 1 < n (i.e., the number of samples is smaller than the

dimensionality of state vectors), the solution of the minimization problem does

not fix. From Equation (B.4), the special solution of the minimization problem

becomes

        F*(i) .. xii)(x8i)Tx8i))-ix8i)T

             - xii) (I - A)((I m A) x8i)Tx8i) (I - A))-i (I - A) x6i)T

             = x"ii)(x8i)Txr8i))-ilsl8i)T, (B.12)

        g*(i) == mii)-F*(i)m8`), (B.13)

where A == [1, ..., 1]T[1, ..., 1]/(l - 1). The total prediction error becomes zero, if

we use the above solution.

   Note that both Equation (B.11) and (B.12) satisfy Equation (3.5), which is de-

scribed by Moore-Penrose generalized inverse.
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Appendix C

Gershgorin's Theorem

The Gershgorin's theorem is a well known method to describe a region in the

complex plane {z1z E C} that contains all the eigenvalues ofa complex square

matrix [Iri031.

Theorem: Let A = [ail･] be an arbitrary n × n complex square matrix, and define

    ri as:
                            n
                      ri 'A 2 laiJJI (i = 1, 2, e･. n)･

                          IJ-1,1'li

    Then, all the eigenvalues of matrix A exist in the union of circles U:･=iCi,

    where
                       Ci -- {z lz E C, lz-aii1 sl ri}･

Corollary: Let A = [ail･] be an arbitrary n × n complex square matrix, and let

    Ai (i = 1,...,n) be the eigenvalues of matrix A. The maximum absolute

    value (spectral radius) of these eigenvalues satisfies the following relation:

                                       n
                         mqx lAilSmax£laiiJl. (C.1)                           t i l'.,1
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Appendix D
i
'

I

Active Appearance Model

l
'

The AAM-based feature point tracking consists of two stages. Wk) first build an

AAM model using a training set of face images and its feature points given man-

ually Then, we use the model to extract facial feature points in novel images.

   Tb AAM build the model, we require a training set of images marked with

feature points. Figure 4.4 (a) shows an example of a face image Iabeled with 58

feature points. Let s be a shape vector that represents the coordinate value of fea-i

ture points. Let g be a grey-level vector that represents the intensity information

from the shape-normalized image over the region covered with the mean shape.

In the first step, the method applies principal component analysis (PCA) to the

data. Any example image can then be approximated using:

s= si+ Llbcs , g=g+ Ugcg, (Del)

I

!
i

where s- and g are the corresponding sample mean vectors, Us and LIII are matrices

of column eigenvectors of the shape and grey-level, and cs and cg are vectors of

shape and grey-level parameters, respectively In the second step, because there

may be correlations between the shape and grey-level variation, the method con-

catenates the vectors cs and cg, applies PCA, and obtains a model of the form

                      [i!llEgCs] =c= [El]d :vd, (D 2)

where Wg is a diagonal matrix of weights for each shape parameteg allowing for

the difference in units between the shape and grey-level models, V is a matrix of

column eigenvectors, and d is a vector of appearance parameters controlling both

the shape and grey-levels of the model.
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D. Active Appearance Model

   Note that the 1inear nature of the model allows us to express the shape vector

s and grey-level vector g directly as functions of d:

s = s+ u, wb-i%d , g == g+ Lk mp･ (D.3)

An example image can be synthesized for a given d by generating the shape-free

grey-level image from the vector g and warping it using the feature points de-

scribed by s. During a training phase we learn the relationship between model

parameter displacements and the residual errors induced between a training im-

age and a synthesized image.

   The matching process for tracking the feature points is provided as an opti-

mization problem in which we minimize the difference between a target image

and an image synthesized by the model.
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