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                            Synopsis 

   The experimetal data of neutron cross sections available at the present 

time do not always meet the requirements from the research and development 

of nuclear-energy applications. There are requirements for the unmeasured 

cross sections, while another kind of requirements is the settlement of the 

discrepancies between the experimental data. The discrepancies come from 

the improper estimate of experimental errors. For the settlement, it is 

highly expected to develop a new experimental technique which has an 

inherent point of excellence for precise measurements. 

   The present study is the application of filtered neutrons to the precise 

neutron-cross-section measurements. The filtered neutrons are a monoener-

getic beam which is obtained by filtering neutrons of continuous energy 

spectrum with a thick material having a narrow energy band of small total 

cross section called as "window". The beam is very clean and reduces a 

perplexing problem in the subtraction procedure of background which usually 

introduces a considerable part of experimental errors. The employment of 

the time-of-flight technique along with the filtered  beam almost solves the 

background problem. The data obtained in the experiment with filtered 

neutrons are limited to a few energy points; however, they are of high 

precision and effectively used to normalize a cross section curve obtained 

in a usual time-of-flight experiment. 

   The results of the present study are briefly itemized as follows: 

1) The total cross sections of commonly-used filter materials, Sc and Si, 

have been measured near the windows, since the experimental data were 

scarce for the design of these filters. These materials were also used for 

notch-filters as well as for the samples in the measurement in order to 

obtain the neutrons of the energies relevant to the measurement. This tech-

nique is an example of the filtered-neutron applications. The results have 

provided high-quality data and they differ markedly from the previously-

reported experiments. A new window has been found for Si at 53.5 keV. 

2) By employing the combination of the accelerator-based filtered-beam and 
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time-of-flight techniques, the capability in achieving high precision has 

been studied for the total- and capture-cross-section  measurements using 

Fe-filtered 24-keV neutrons. As for the total cross section, a precision 

of about 0.1 % was achieved. The precision is considerably better than a 

typical value of about 1 % in this energy range and comparable to that 

achieved in precise thermal-neutron cross-section measurements. For the 

capture cross section, the precision achieved was about 5 %, which is 

better than the descrepancies between the presently-available data in the 

keV range. 

3) The accelerator-based Fe-filtered neutrons were applied for the total-

cross-section measurements of H, Be, C and 0. For capture cross sections, 

measurements were made for Nb, In, Ho, I, Ta and 238U. These samples were 

selected from materials mainly of technological importance. The data 

obtained are compared with other experiments and so-called evaluated 

values. 

4) Reactor-based Si-filtered neutrons have been applied to the inelastic-

scattering cross-section measurement of Th at 144 keV. The result first 

provided an experimental data below 250 keV and shows the nessecity of the 

inclusion of the direct exitation prosess in the theoretical interpretation 

of the cross section. 

5) Reactor-based Fe-filtered neutrons have been applied to an experimental 

verification of a relationship, which is theoretically predicted by Bee, 

between the Doppler and the self-shielding effects in the effective average 

total cross section. Thorium samples were used in two different kinds of 

chemical forms, metal and dioxide. The result satisfactorily verified the 

theoretical prediction. 

6) Using the experience obtained in the above-mentioned studies, a few 

recommendations are given for the future application of filtered neutrons.
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Chapter 1  Introduction(1) 

1.1 Necessity of Accurate Neutron-Cross-Section Data and Purpose 

     of Present Study 

   Neutron cross section, which is a physical quantity expressing the neu-

tron interaction with nuclei, has been an extensive subject(2,3) in fun-

damental research and applied fields, since the neutron is used not only in 

experimental investigations of nuclei but also in harnessing processes of 

nuclear energy. With regard to the nuclear-energy applications, the 

requirement(4)of the data of neutron cross sections is increasing in var-

ious fields, particularly in the research and development of fission reac-

tors ana of the neutronic problems in fusion-reactor technology. Although 

a considerable number of cross-section data for most important materials in 

nuclear-energy applications have been obtained, these data are not always 

accurate to fully meet the technological requirements.(5) Between the 

data, there are often inconsistencies much larger than the appended experi-

mental errors. Most of the explanations of the inconsistencies may be in 

the under-estimation and the unconsciousness of experimental errors. A 

user and a so-called evaluator of cross-section values are perplexed with 

facing to the inconsistency. Under such a situation, it is highly expected 

to develop a new experimental technique which has an inherent point of 

excellence for accurate measurements. The purpose of the present study is 

to propose the application of the filtered neutrons introduced in the next 

section to the accurate measurements, contributing towards the research 

activities to meet the above-mentioned requirements of reliable cross-

section data.

1.2 Earlier Works using Filtered Neutrons 

      Monoenergetic neutrons in keV range can be obtained with placing a 

thick filtering material in the flight path of the neutrons leaking out 

from neutron sources having a continuous energy spectrum such as reactors 

and accelerators.(6'7) Some materials have sharp resonance minima in the 

total cross section of neutrons which are called as the windows of cross
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section. The minima come from the interference effect between potential 

and compound-nucleus scatterings. The neutrons at the window pass through 

the material with little amount of extinction, while other neutrons and 

gamma-rays can be almost scattered-out from the beam. The neutrons thus 

obtained and the materials used are called simply as "filtered  neutrons' 

and "filters", respectively. These simple names are used in this paper as 

well as a recent review paper by Block and Brugger.(6) The same expres-

sions are often employed in the case of crystalline filters used to obtain 

cold neutrons; however, there may be no confusion as the neutron energies 

concerned are different. 

    Simpson and Miller(8) obtained the filtered neutrons of 2 keV by in-

stalling a Sc-filter at a beam-port of the MTR in 1968. Since then, many 

filtered-neutron facilities(9-17)have been built world-widely at research 

reactors by also using other kinds of filters - e.g. Fe, Si, 0 - to obtain 

monoenergetic neutrons from keV to MeV energy range. Filtered neutrons 

have been used mainly in the gamma-ray spectroscopy of neutron capture, in 

neutron tomography and as a standard neutron source for the calibration of 

neutron detectors. However, there are few applications in cross-section 

measurements of neutrons. This study extends the application of filtered 

neutrons to precise measurements of neutron cross sections. 

      More details of the filtered neutrons will be given in Chapter 2. 

1.3 Capability of Filtered Neutrons for Precise Measurements 

    Filtered neutrons are intense and clean; they are monochromatized with 

little loss of source neutrons and the contamination of background neutrons 

and gamma-rays is very low. The main part of the experiments in this 

study were carried out by employing a photoneutron source with an electron 

linear accelerator. The accelerator-based filtered neutrons has another 

excellent characteristic, if it is a pulsed neutron source: The filtered 

neutrons can be seperated by their flight time from background neutrons and 

gamma-rays. The background can be reduced to an extremely low level and is 

reliably estimated in the amount. This is one of the main reasons for the 

accelerater-based filtered neutrons to be applied to precise measurements. 

The precise values of cross section obtained with the filtered-neutron
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technique are effectively used to normalize the cross-section curves ob-

tained in a wide energy range with such experiment as the  time-of-flight. 

In this meaning, the value obtained with filtered neutrons is sometimes 

called as " a point cross section ". 

   With the inherent capabilities for precise measurements, the technique 

of filtered neutrons may be also used to measure a very small, but still 

important, change of cross sections such as the self-shielding and Doppler 

effects in the energy range of unresolved resonances. 

    Although the filtered neutrons are monoenergetic, they have an energy 

spread in the order of 10 % of the average energy. They can not be used, 

therefore, for a high-resolution measurement but can be successfully used 

for a cross section whose variation in the energy spread is small or can 

be treated with the statistical considerations. 

1.4 Composition of This Study 

    The measurements in this study are seperated into two categories. The 

first consists of precise measurements of the total cross sections of 

filter material themselves for the neutron energies near their windows, 

since a reliable value of the cross section near the minimum is essential 

for the optimal design of a filter. In spite of the importance of the re-

liable value, there still remain marked discrepancies between experimental 

data even for the most popular filter materials such as Sc and Si. One may 

find the explanation for the discrepancies in the following reasons: (i) 

Total-cross-section measurements have been mostly carried out at the ener-

gies of resonance peak with an intension to determine resonance parameters. 

(ii) A material of a small cross section is highly transparent to neutrons 

and there are inherent difficulties in the transmission measurement for 

such a transparent sample. (iii) Even a small amount of impurities intro-

duces a serious error in the result of experiment. 

   The measurements have been performed by making careful considerations in 

the above-mentioned items (ii) and (iii) for the following cross sections: 

    (1) Total cross section of Sc near the 2-keV minimum. 

    (2) Total cross sections of Si near the cross-section minima. 
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   The measurements of the second category are the following applications 

of the filtered neutrons to several important cross sections: 

   (3) Total cross sections of Be, C, and 0 for  24-keV neutrons. 

   (4) The n-p total cross section for 24-keV neutrons. 

   (5) Capture cross sections of93Nb,115In,165Ho,181Ta and 
238U for 24 keV neutrons . 

   (6) Inelastic-scattering cross section of Th for 144-keV neutrons. 

   (7) Doppler and self-shielding effects of Th and Th02 for 24-keV 

          neutrons. 

In the measurement (3), the capability of precise measurements by accelera-

tor-based Fe-filtered neutrons is studied in detail and the neutrons are 

successfully applied for the total cross sections of Be-, C- and 0-samples. 

The n-p total cross section in the measurement (4) is important in funda-

mental physics and neutron-detection techniques. The samples in the capture 

-cross-section measurement of (5) are taken considering the technological 

importance from a fertile material U, a structural material Nb, and materi-

als in the atomic-mass-number region of fission products In, Ho and Ta. In 

(6) and (7), reactor-based filtered neutrons are applied for cross sections 

of Th - a possible alternative fertile material to 238U. The inelastic 

scattering in (6) is one of the processes in forming the energy spectra of 

neutrons in a Th-loaded assembly. The Doppler and self-shielding effects 

in (6) are important in various subjects in reactor physics such as the 

criticality, safety and control of a reactor. 

    This paper is composed as follows: In Chapter 2, a general description 

is given for the filtered neutrons; in Chapter 3, the experimental appara-

tuses used in this study are described for their common part so as to avoid 

the overlap of description in the following chapters; in Chapters from 4 to 

10, the experiments mentioned above from (1) to (7) are given in the se-

quence of number, and each chapter individually consists of the purpose of 

the measurement, experimental method, results and discussions: in Chapter 

11, concluding remarks are given for the present study.
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Chapter 2 Filtered  Neutrons 

2.1 General Features 

    Neutrons obtained from usual sources have energies in MeV range and are 

called as fast neutrons. Neutrons in keV range are obtained by moderating 

the fast neutrons, and are in most cases contaminated, therefore, with fast 

neutrons and usually with gamma-rays. The keV neutrons are also obtained 

directly by a photo reaction using a gamma-ray source with beryllium or 

deuterium, ana by an endothermic (p,n) reaction using an electrostatic ac-

celerator. however, the sources obtained with these reactions are usually 

of low yield. The photo-neutron source is moreover associated with trou-

blesome intense gamma-rays and the neutrons are usually applied for cross-

section measurements where the gamma-ray is not a disturbing radiation, 

such as the shell-transmission and the activation techniques. 

    Some materials have a sharp minimum in total cross section of neutrons 

in the resonance-energy range. The energy for the minimum is called as a 

window. Filtered neutrons are obtained by placing such a material in the 

beam of neutrons having a continuous energy-spectrum. The neutrons of the 

energy at the window pass through the filter, while other neutrons and 

gamma-rays are almost scattered out from the beam. In Fig.2-1 is illustra-

tively shown the relation of the energy spectrum of the source neutrons, 

that of the filtered neutrons and the total cross section of the filter 

material. Typical arrangements are shown in Fig.2-2 (a) and (b) for a 

reactor-based and an accelerator-based facilities respectively. Energy 

spectrum of filtered neutrons is estimated by a calculation as 

               F(E) = S(E)•exp1- Ni4l(E)1(2.1) 

where F(E) is the energy spectrum of filtered neutrons; S(E)is the energy 

spectrum of source neutrons; N
iis the number of nuclei of i-th material 

in the unit cross-sectional area of the filter; at(E) is the total cross 

section of i-th filter material at a neutron energy E. 

Monoergetic neutrons thus obtained are very clean in the sense that the
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contamination with background neutrons and gamma-rays is very low. There 

are usually plural minima in a single filter-material. In this case, 

auxiliary materials are needed to remove the neutrons at other minima than 

the interested, obtaining purely monoenergetic neutrons. The auxiliary 

materials are not always necessary if filtered neutrons are used in experi-

ments with the time-of-flight technique, since the neutrons at different 

minima are seperated by their flight time. In this kind of experiment, the 

neutrons at different minima may be used, if required, to make simultaneous 

measurements at several energies of the minima. 

  A reliable value of the cross section near the minimum is important for 

an optimal design of a filter. For the design, a compromise is needed 

between the maximization of the intensity of filtered neutrons, the minimi-

zation of background and the avairable quantity of filter materials. 

    Expected advantages  of filtered neutrons for cross section measurements 

are itemized as follows: 

(i) Backgrounds of neutrons and gamma-rays are very low, leading to 

       precise measurements of the cross sections. 

(ii) Filter materials are available in the energy range where the methods 

       of neutron production are scarce. 

(iii) The energy spread of the neutrons is relatively large and the neutron 

      is accordingly intense. 

(iv) The facility is simple and the beam is steady and reproducible in 

      quality and quantity. 

(v) In the time-of-flight experiment, the background is measured during 

      the experiment and it is reliably estimated from the time-of-flight 

       spectrum. 

  A set of cross-section data is usually needed in a wide energy range. In 

this pespect, the information obtained by a filtered-neutron experiment is 

limited to one or a few energy points. However, the precise cross sections 

at the limited energy points are effectively used to normalize an energy 

dependent cross-section curve which is measured in a usual time-of-flight 

experiment.
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2.2 Filter Materials 

   Neutron interactions with nuclei in  keV range are mostly the scattering 

and the radiative capture. The sharp minimum in the cross section is the 

consequence of the interference between the potential and compound-nucleus 

scatterings. The scattering cross section of an isolated resonance is 

analytically expressed using a single-level Breit-Wigner cross-section 

formula. By neglecting.the contributions of higher partial waves and the 

spin of the target nucleus, the formula is expressed as 

                                                       2 
             rn  

as = 2 sin(ka) exp (ika) +(2 .2) 
     k2(En - Er) + irn/2, 

where as is the scattering cross section; En is the energy of neutrons; 

kis the wave number of neutrons; a is the scattering radius; Er is the res-

onance energy; rn is the neutron width. 

The first term in the symbol of the absolute value in eq. (2.2) means the 

amplitude of the potential scattering and the second means that of compound 

-nucleus scattering. It is shown that the cross section in eq.(2.2) becomes 

zero at energy En , if 

rn//2 
         tan(ka) _ -----------------(2

.3)                                E
r - En 

This equation shows the interference minimum occures usually in the lower 

energy-side of the resonance peak.As an extreme case, the interference 

occures just on the resonance energy, if En = Er and ka = 7/2 

simultaneously. An example of the extreme case is that of oxygen at 2.35 

at 2.35 MeV. 

   As shown in the above discussion, the cross section completely diminish-

es in the ideal case. In actual cases, however, it has a considerable 

amount of value at the window because of the following reasons: 

    (a) There are small amount of contributions of higher partial waves and 

         capture cross sections. 

    (b) The target spin is not always zero.

( 8 )



   (c) The target material is not always composed of a single isotope. 

   From the practical stand-point of material selection, a material can be 

used for a filter if the cross section at a minimum is less than about one 

-tenth of the values at other energies. 

   Explanations as filter materials are given in the rest of this paragraph 

for Sc, Fe, and Si which are most popular and are used in this study. 

   Significant features are shown in Table 2-1 for widely-used filter mate-

rials. 

 (i) Scandium 

   Scandium is one of rare-earth elements and a mono-isotope of atomic mass 

number 45. The spin number of the ground state is 7/2, and the discussion 

above-mentioned for a target of spin-zero can not directly be applied to 

this case. There are two kinds of s-wave interactions, spin-parallel and 

spin-antiparallel interactions, for a target nuclei of non-zero spin. The 

quantum numbers of the angular momentum of the compound-nucleus of Sc are 4 

and 3 for the parallel and antiparallel interactions respectively. For Sc, 

sharp minima in the cross sections for two kinds of interactions coinside 

each other near 2 keV. The superposed value of the cross sections, each of 

which is written with a similar expression as eq.(2.2), still has a sharp 

minimum near the energy. The experimental data for the minimum cross 

section obtained in the earlier measurements show remarkable discrepancies 

between them.(1-3) More details of the discrepancies are given in 

Chapter 4. It is, therefore, one of the purposes of this study to make 

another measurement of the value by making a few effective experimental 

improvements. 

(ii) Iron 

    Iron is a common structural material and most widely used as a filter. 

The main part of the isotopic composition is 56Fe by 91.8 %. The other 

part is composed of 54Fe,57Fe and 58Fe. There is a sharp minimum near 

24 keV. The 56Fe is an even-even nucleus and the occurence of the mini-

                           ( 9 )



mum can be physically explained by the afore-mentioned discussion of the 

interference minimum of a spin-zero nucleus. The values of cross section 

at the minium show a considerably good agreement between the existing 

experimental  data.(4) Therefore, this study was made for the application 

only of the Fe-filtered neutrons to several experiments using both of the 

reactor-based and accelerator-based facilities. It is shown during the 

course of this study that the contamination of other neutrons can be 

reduced to less than 1 % of the main beam of relevant enegy, even in 

the the case of the reactor-based neutrons, by using Al and S for auxiliary 

filters. 

    The seperated isotope of 56Fe has a very low value of cross section at 

the minimum.(5) A filter of high performance can be built if the pure 

isotope of 56Fe is available in a necessary amount. 

(iii) Silicon 

     The dominating isotope in natural Si is an even-even nucleus28Si by 

92.23 % composition. The other part is composed of29Siand30Si. There 

are two significant sharp windows at 146 and 53.5 keV. The experimental 

data of cross section at the windows are very scarce(6). More details of 

the situation of the data are given in Chapter 5. One part of the study 

for Si is a refined measurement of the cross section minima. The window 

at 53.5 keV has been firstly found in this experiment. The other part of 

the study for Si is an application of the filtered neutrons to a measure-

ment of the inelastic-scatteing cross section of Th. 

     Two kinds of monoenergetic, 144 and 53.5 keV in the average energies, 

neutrons are obtained using Ti and S for auxiliary filters, respectively. 

An adequate filter such as 10B is needed to suppress thermal neutrons 

since a Si-sample of single crystal has a very low value of total cross 

section for thermal neutrons. 
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Table 2-1  Commonly—used filter materials

Filter

Materials

Main Isotope in

Natural Element

 (Z  )

Spin

Parity

Average

Energy

(keV)

Energy
r

Spread

(keV)

Auxiliary

Filter

Materials

Adoption in this study

U
238U : 99 .27 0+ 0.186 0.00145 Se, Mn, Ge

None

Sc
45S

c: 100 7/2 2.0 0.8 Ti 60Ni,64Zn
Measurement of the cross

section minimum

Fe
56Fe: 91 .66 0+ 24 2 Al, S

Application as a filter

material

Si
28Si

: 92.21 0+ 144

54

24

1

Ti

S

Measurement of the cross

section minima and appli-

cation as a filter material

0
160 

: 99.759 0+ 2350 100 8i
None

* The numbers 
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Chapter 3 Installations Used in Experiments 

   In this chapter is given a general description of the installations com-

monly used in the experiments in this study. The experiments in Chapters 

from 4 to 8 have been carried out using a time-of-flight spectrometer at an 

electron-linear-accelerator facility of the Research Reactor Institute of 

Kyoto University ( KURRI-LINAC ) and the other experiments in Chapters from 

9 to 10 using the versatile filtered-neutron beams at the Research Reactor 

Facility of the University of Missouri (  MTTRR ). 

    The KURRI-LINAC is a L-band two-section machine with the maximum elec-

tron energy of 46 MeV and the average beam power of 10 kW. Four neutron 

flight tubes are installed for experiments in neutron- and reactor-physics. 

Two of these, 12 and 22 m long, were used in this study. A description of 

the installations is given in the first half of this chapter as for the 

neutron source, the time-of-flight spectrometer, and the detector and data-

acquisition system. 

  It was needed at the INRR, in advance to the utilization of the facility, 

to experimentally study the beam quality and to remove the other neutrons 

intruded to the filtered beam of interest. This preliminary study was very 

important for precise measurements of cross sections, and the results of 

the study are presented in the second half of this chapter along with the 

description of the versatile beam facility. 

3.1 Installations Used in Measurements with Accelerator-Based Filtered 

     Neutrons at KURRI-LINAC 

3.1.1 Neutron Source 

    Photoneutrons were produced by bombarding a water-cooled Ta-target with 

high energy electrons. The neutrons have energies of MeV, and were moder-

ated down to keV range by a polyethylene moderator placed adjacent to the 

 the target. The energy spectrum of the neutrons directed to the spectro-

meter from the target assembly is shown in Fig. 3-1. In filtered-neutron 

 experiments, the width of the electrom beam could, in general, be taken 

 longer than in a usual time-of-flight experiments of high energy resolution 
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so as to obtain more intense neutrons, since the energy resolution of neu-

trons depends only on the shape of the cross section and the thickness of 

the filter material used. The intense gamma-flash coming from the target 

were  largely reduced by the use of a thick filter and a shadow cone of Pb 

which intercepted the gamma-flash directed to a neutron detector placed at 

the end of the flight path. 

3.1.2 Time-of-Flight Spectrometer 

   A typical arrangement of the transmission measurements is shown in Fig. 

3-2. The nominal length of the flight path is 22 m. A transmission sample 

was placed near the middle position of the flight path. Neutrons were 

collimated with Pb- and B4C-collimators, having diameters of 5 cm at the 

sample position and of 10 cm at both ends of the flight path. The filter 

material was placed between the target and the transmission sample. Main 

part of the material was positioned near the target to roughly remove other 

neutrons and gamma-rays first and to prevent their coming out from the 

target room. The other part of the material was placed outside the target 

room in order to complete the filtering. 

   Filtered portions of neutrons obtained by a calculation are also shown 

in Fig.3-1 for Sc-, Fe- and Si-filters, of 33, 30 and 75 cm in respective 

thicknesses. The numbers of the filtered neutrons reaching the detector 

under the conditions of the production rate of 1 x 1012 n/sec and of the 

above-mentioned aperture in the collimation were about 200, 380 and 1350 

n/sec for the Sc( 33 cm )-, the Fe( 30 cm )- and the Si( 75 cm )-filters, 

respectively. The intensity of 53.5 keV neutrons in the case of the Si-

filter is about 160 n/sec. 

   A capture-cross-section measurement in Chapter 8 was carried out at a 12 

m-long flight path so as to obtain more neutrons and improve the counting 

statistics. Diameters of the collimation of the flight path were 15 cm 

near the target and 5 cm at the sample position. 

3.1.3 Neutron Detector and Data Acquisition System 

     Transmitted neutrons were detected with a 6Li scintillation detector 
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of 1.27 cm in thickness and 12.7 cm in diameter, of type NE-908 of Nuclear 

Enterprise, Ltd., or an  NaI(Tl)-detector of 5.08 cm in thickness and 12.7 

cm in diameter. The NaI(T1)-detector counted keV neutrons via the I(n,y ) 

reaction. The high efficiency of the detector for the capture gamma-rays 

lead to a high neutron efficiency. Complete removal of other energy neu-

trons with the filter made the detector free from the activation of Na. 

    A pair of C6F6 scintillators, 10 cm in diameter, 4 cm in thickness, 

of type NE-226 of Nuclear Enterprise, Ltd., were used for prompt gamma-ray 

detection in the capture-cross-section measurement. The use of the scin-

tillator as a total-energy detector is described in Chapter 8. 

    Neutron production rate was monitored with proportinal counters of BF3 

and 3He for each run during the experiment. The BF3 counter was placed 

in the target room to count thermal neutrons which were proportional to the 

production rate of fast neutrons at the target. The 3He counter was in-

serted in the flight tube without intercepting the collimated neutrons but 

with glancing at the target in order to monitor the keV neutrons directed 

from the target to the flight path. These monitors were used in transmis-

sion measurements for long samples for which a sample changer could not be 

used. These two systems showed a consistent result of neutron monitoring. 

For the samples of ordinary thickness, a sample changer of rotation or 

push-pull type was used to minimize the drift effect of the experimental 

system. 

     Neutron signals from the transmission detector and the monitor system 

were analyzed in the time-of-flight mode with a crystal-oscillator-based 

time analyzer, and then were stored in a computer memory. In experiments 

where the sample changer was used, the memory was separated into four re-

gions and each region was stored with the signals for one of the runs of 

different sample thicknesses during a preset-time period of data acquisi-

tion. The sequence of measurement was controlled by an automatic sample-

changer and time-analyzer controller.
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3.2 Versatile Filtered-Neutron Facility at  MURR and Improvement of Beam 

     Quality 

3.2.1 Versatile Filtered-Neutron Facility(1) 

   A versatile filtered-neutron facility is provided at a beam port of the 

10 MW MURK. A cross-sectional plan view around the core of the reactor is 

shown in Fig.3-3. The installation of the filtered-neutron facility at the 

beam-port F is shown in Fig.3-4. The reactor is loaded with the MTR-type 

fuel of highly-enriched U. The core is built in a pressurized tube of 30 

cm in diameter, and moderated and cooled with light-water coolant in the 

tube. The tube is concentrically surrounded with reflectors of Be metal in 

the inner part and graphite in the outer part. Neutrons are extracted from 

the outer surface of the pressure tube. The beam tube is 10.16 cm in diam-

eter. Another tube of Al, 3 cm in diameter and 380 cm in length, and 

installed inside with filter materials, is inserted from the outside of a 

biological shield into the beam tube. There are several kinds of replac-

able filters at the facility and each filter has a standard composition of 

main and auxiliary materials. The Si- and Fe-filters of them were used in 

this study. 

3.2.2 Silicon-Filtered Neutrons 

   The standard Si-filter is 208 cm in length and 2.54 cm in diameter. A 1-

mm-thick plate of 10B was added to the filter to surpress thermal neu-

trons. The beam led to the outside of the biological shield had a diameter 

of 3 cm ( FWHM ) and there were negligible amount of dispersed neutrons 

outside of a 5-cm circle. The beam quality was studied with a spherical 

H2-gas counter of 3 atm. in pressure and 4 cm in diameter. The energy 

spectrum for the filtered beam is shown in Fig.3-5. The neutron flux of 

144-keV neutrons was estimated from the counts of the H2-gas counter to 

be approximately 6 x 104 n/cm2/sec. There were negligible amount of 

neutrons in the higher energy region than 144 keV. The neutrons of 54 keV , 
however, were intruded by about 8 %. This fraction of 54 keV neutrons was 

close to the value obtained by calculation using the cross-section data 
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measured in the experiment in Chapter 5. It was experimentally shown, for 

the sake of future studies, that a  monoenergetic beam of 53.5-keV neutrons 

can be obtained by adding some S as an auxiliary filter to the Si, since 

the S-filter scatters the 144-keV neutrons out from the beam and passes the 

53.5-keV neutrons only. The effects in the pulse height spectra, with 

varying the amount of added S, measured with the H2-gas counter and their 

unfolded spectra are shown in Figs. 3-6 and 3-7, respectively. 

An unfolding code of the above-mentioned pulse-height spectrum was pre-

pared by revising the MATXUF code(2) which was written basing upon the 

derivative method and for the use with the online and realtime unfolding. 

As is seen in Fig.3-5, the energy spread of the unfolded spectrum is larger 

than the reliable calculation of the energy spread. The difference is at-

tributed to the resolution of the detector system. 

3.2.3 Iron-Filtered Neutrons 

    The standard Fe-filter consists of 50.8 cm in Fe, 20.3 cm in Al, 5.1 cm 

in S and 0.1 cm in 10B. The 24-keV neutrons were obtained by the order 

of 104 n/cm2/sec in intensity and 2.54 cm in beam diameter. The energy 

spectrum of the beam measured with the afore-mentioned H2-gas counter 

showed that the beam still contained the intruded neutrons in the energy 

range from 100 to 600 keV by 18-% amount. The energy spectrum of the beam 

is shown in Fig. 3-7. An addition of auxiliary filters, 28 g/cm2 of S 

and 21.5 cm of Al, reduced the contamination down to about 0.6 %. After 

installing the auxiliary filters, a few trial transmission measurements 

were carried out using a long-counter for neutron detection and using poly-

ethylene samples of neutron-transparencies down to 0.01. The total cross 

sections obtained were reasonable and showed no inclination to decrease or 

increase with the thickness of the sample. This result indirectly assured 

that the contamination was satisfactorily removed. The trial measurements 

were also carried out with Fe-samples of thicknesses up to 10 cm. The 

result showed there was very little contamination of neutrons other than at 

the 24-keV window, especially for thermal neutrons. The neutron long-

counter was used, after the above-mentioned studies, for the transmission 

measurement of 24-keV neutrons.
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Chapter 4 Measurements of Total Cross Section of Sc 

   Near 2-keV  Minimum(1)

4.1 Introduction

     Scandium has a deep minimum near 2 keV in the neutron total cross sec-

tion and is used as a transmission filter to provide monoenergetic 2-keV 

neutrons at reactor beam facilities.(2-7) A reliable value of the cross 

section near the minimum is important for an optimal design of the filter. 

Nevertheless, there still remain marked discrepancies between experiments. 

In 1975, Magurno et al.(8) showed about 0.085 barn for the minimum by 

evaluating the experimental data available at that time. Two experiments 

were reported thereafter: one is 0.71 + 0.03 barn measured by Liou et 

al.(9)        ( this reference is refered as LIOU hereafter ) using the standard 

time-of-flight method at an electron linear accelerator and at a reactor 

beam facility, and the other is 0.27 + 0.07 barn measured by Razbudey et 

al.(10) using monoenergetic 2-keV neutrons prepared by filtering reactor 

neutrons with Sc itself. 

    There are two big s-wave resonances in the total cross section of Sc at 

3.295 and 4.330 keV.(9) The former is a spin-antiparallel ( the quantum 

number of total angular momentum of the compound state, J = 3 ), and the 

latter is a spin-parallel interaction (J = 4). The scatterings with these 

resonances independently interfere with the potential scattering and show 

respective interference minima. The superposition of these scatterings 

which take the main part of the total cross section still shows a marked 

minimum because the energies of the minima are close each other in this 

case of Sc. Thermal-neutron scattering is also the superposition of spin-

parallel and spin-antiparallel interactions. A fitting to the measured 

total cross section with the Breit-Wigner multi-level formula in the energy 

range of these resonances down to thermal-neutron energies requires to 

posturate a few negative-energy resonances which correspond to the bound 

energy levels in the compound nucleus. 

   A reliable measurement near the minimum is also interested to understand 

the properties of the thermal-neutron interaction of Sc. According to the 

discussion in LIOU, their higher value ( 0.71 barn ) at the minimum reason-
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ably explains the dominant contribution of the spin-antiparallel interac-

tion in thermal-neutron energies, which is consistent with the results of 

other kinds of experiments such as a spin precession experiment(11) of 

neutrons and a neutron capture gamma-ray  spectroscopy(12). Magurno et 

al.(8) showed, on the contrary, the above-mentioned lower value ( 0.085 

barn ) at the minimum which means the dominant contribution of the spin-

parallel interaction. Razbudey et al.'s value(10) ( 0.27 barn ) just 

mediates between these two values. 

  The measurement reported here of the total cross section near the minimum 

was performed with the standard time-of-flight technique using an electron 

linear accelerator as a neutron source. In order to obtain a reliable 

value of the small cross section near the minimum, the impurities in the 

sample material were carefully examined and the transmission samples were 

prepared to be as thick as possible so to attain an adequate transmission 

ratio. 

4.2 Experimental Method 

4.2.1 Apparatus 

    Measurements were carried out by using a time-of-flight spectrometer at 

the KURkI-LINAC. Experimental arrangements and the outline of measurement 

have been described in Chapter 3. 

  Scandium of about 5 g/cm2 and a 1-mm-thick Co were inserted in the neu-

tron beam as notch filters in order to determine the background levels in a 

time-of-flight spectrum. In a measurement of a cross-section minimum , the 
sample material may be also used as a notch filter since the material has a 

big resonance peak near the minimum. The time-width of the electron beam 

and the channel width of the time analyzer used were 33 and 125 nsec , re-
spectively. The energy resolution of the experiment was estimated about 

0.5 % near 2 keV. This resolution was enough for the present purpose to 

make a measurement in the broad interference minimum. Any typical p-wave 

resonance, however, could not be clearly resolved.
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4.2.2 Scandium Sample 

    The trasmission samples were prepared using Sc-metal of 2 kg in total 

weight by the procedure explained below by taking care of the contamination 

with machining oil or with the oxidation. 

   The Sc-lumps were first rolled into plates of about 1 to 2 mm thickness 

with a mill under the room-temperature, and then the plates were cut into 

flakes of about 1-cm2 area with pincers. The flakes thus obtained were 

packed in Al pipes of 5 cm in inner diameters and 20, 20 and 30 cm in 

respective lengths, and having lids of Al-plates of 1-mm thickness at both 

ends. 

     The number of Sc-nuclei in a unit cross-sectional area of each sample 

was needed to deduce the cross section from a transmission factor. It was 

simply determined by dividing the weight of the packed Sc by the cross-

sectional area of the pipe. The volumes occupied by packing the same 

amount of Sc in the pipes of two different inner diameters, 5 and 7 cm, 

agreed within about 2 %. Then, the error in the number of nuclei in a unit 

cross-sectional area was considered to be about 2 %. 

     The Sc-samples packed in the Al-pipes were dried at 200°C in a vacuum 

vessel during 4 h, and then were sealed after being filled with dry  N2 

gas; it was presumed that the Sc was free from adsorption of any moisture. 

    The Sc-metal was of USSR-origin and a quality certificate of the USSR-

standard was attached to the lumps of the Sc-distillate. The information 

of the impurities quoted from the certificate is shown in Table 4-1. 

    After the Sc was cut into flakes, a qualitative inspection of purities 

was carried out at the Research Center of Mitsubishi Metal Industry Ltd. 

with the X-ray fluorescence analysis and no impurity other than Cu was 

recognized within the detective limit of the analysis. The result of the 

analysis qualitatively agreed with the quality certificate. 

    Copper was the most significant in the amount and moreover it has .a big 

resonance in the total cross section near 2 keV; it was the only impurity 

which affected the measured cross-section value of Sc near 2 keV. There-

fore, the content of Cu was specially analyzed using the activation and 

chemical titration methods. In the activation method, a chip of about 1 g 

taken from the Sc-flakes was irradiated with the bremstrahlung from the
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linac. After the irradiation, the decay of  0.51-NeV gamma-ray was followed 

with an NaI(T1)-scintillation-detector for several days. By analyzing the 

decay curve, the activity of 64Cu was obtained after subtracting those of 
44S

c and 44mSc, and the absolute value of Cu content was determined by 

normalizing to the activity of a reference chip of Cu which was simultane-

ously irradiated with the Sc-chip. In the titration analysis, a few pieces 

of the flakes were disolved in hydrochloric acid and Cu was titrated by the 

iodostarch reaction. The results obtained were 0.13 + 0.06 and 0.18 

+ 0.02 w/o, for the activation and titration methods, respectively. The 

weighted average 0.175 + 0.02 w/o was used to correct the measured cross 

section for impurity. 

    Physical parameters of the transmission samples are shown in Table 4-2. 

In the measurement, four combinations of the samples were used : (A) 20 cm 

only , (B) 20 cm + 20 cm , (C) 20 cm + 20 cm + 30 an , and (D) 2.4 cm. 

4.3 Experimental Results 

   The measurement was carried out for about 15 h and the transmission sam-

ples were repeatealy changed every 1 h to minimize the drift-effect of the 

measurement. Two examples of time-of-flight spectra obtained are shown in 

Fig.4-1 for Open- and Sample(C)-runs. In all runs, Sc and Co, and a thin 

sheet of Cd were placed in the neutron beam for notch filters and an over-

lap filter, respectively. The background in each spectrum in Fig.4-1 was 

estimated by linearly interpolating between the counts at about 4.33 keV 

( 190-th channel ) and at about 132 eV ( 1100-th channel ), corresponding 

to the resonance energies of Sc and Co, respectively. 

   Five kinds of spectra, one of the open-run and the others of different 

sample thicknesses, were corrected for the counting loss and for the back-

ground, and normalized with monitor counts. These spectra were then used 

to deduce the cross section of Sc by applying the least-square method for 

each time-of-flight channel between 3 keV and 250 eV. The energy for each 

channel was calculated using the length of flight path and the flight time. 

The result of cross-section values obtained is shown in Fig.4-2. The 

fluctuation of experimental points in the figure is considered to be the 

counting statistics except for a small peak at 1.06 keV, which may be a 
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p-wave resonance appeared at 1060.4 eV in LIOU measurement. The counting 

statistics are typically shown for a few data points in the figure. The 

solid curve  is a least-square fitting with a polynomial function of sixth 

degree to the experiment. The polynomial is given as follows : 

        a(E) = 18.00 - 44.51 E + 56.81 E2 - 44.351 E3 + 20.674 E4 

              - 5.2389 E5 + 0.5572 E6 ( 0.2 < E <3.0 ) , 

where a(E) is the total cross section of Sc in barn, and E is the neutron 

energy in keV. 

  The data points in Fig.4-2 are corrected for the impurity of Cu which is 

the most significant impurity and has a big resonance of 43 + 1.5 eV 

width at 2.038 + 0.003 keV.(13) The total cross section of Cu for the 

correction is calculated using the single-level Breit-Wigner resonance for-

mula and above mentioned parameters. The data points before the impurity 

correction are also shown in the figure with open circles around the reso-

nance. 

    In order to confirm the consistency of measurements among those of dif-

ferent sample-thicknesses, the numbers of counts accumulated in 1.8 to 2.2 

keV channels and subtracted with the background counts in corresponding 

channels are plotted in Fig.4-3 by relative units in a semi-logarithmic 

scale as a function of sample-thicknesses. The accumulation of counts is 

only for the purpose of obtaining adequate counting statistics for the con-

firmation. Standard deviation due to counting statistics is shown for each 

point in the figure. The plots are expected to linearly decrease with the 

increase of the sample-thickness,if the transmission measurements are prop-

erly carried out. The deduced chi-square of the fitting with a straight 

line is 3.5. This value shows that the fitting is reasonable and there is 

not any implicit error which is much larger than the standard deviations of 

counting statistics. 

   The value of energy at the cross-section minimum can not be definitely 

determined from Fig.4-2: the first glance of the figure shows, however, the 

energy is near 2 keV and very probably between 1.9 and 2.1 keV. The nomi-

nal energy of 2 keV usually attributed to the filtered beam is very close 
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to the average energy calculated using the present data. The  cross-section 

value at the minimum is 0.21 + 0.02 barn obtained by averaging the data 

points between 1.9 and 2.1 keV, and estimating the error by the dispersion 

of the data points. The error caused in the estimation of impurity should 

be added to the above-mentioned error. The average value between 1.9 and 

2.1 keV before the correction to impurity is 0.33 barn ; the cross section 

is decreased by 0.12 barn with the correction for the afore-mentioned 

content of Cu. One-fifth of the amount of correction is presumed to be the 

error in the correction procedure. Then, the cross section finally obtained 

is 0.21 + 0.03 barn at the minimum. 

4.4 Discussion 

   The cross section obtained in this measurement is 0.21 + 0.03 barn at 

the 2-keV minimum, which is close to 0.27 + 0.07 barn of Razbudey et 

al.(10) and much different from 0.085 barn of Magurno's evaluation(8) 

and 0.71 + 0.03 barn of LIOU. A graphical comparison with the data in 

LIOU is made in Fig.4-4, where the data is represented with a solid curve 

(A) instead of the data pounts. The curve is a fitting to the data with 

the Breit-Wigner formula. Two experiments differ markedly in the small-

cross-section region and gradually come to a better agreement as the cross 

section comes to a larger value. LIOU obtained almost the same results 

in both of the measurements using time-of-flight spectrometers , for common 
transmission samples, at an electron linear accelerator and at a reactor 

beam facility. This means the transmission measurement in LIOU is consid-

ered to have been properly carried out. The measurement in this study was 

also carried out properly as already explained . The explanation of the 

disagreement is considered , therefore, to be in the estimation of impuri-

ties in the sample used but not in unconscious problems in the transmission 

measurements. 

    The value obtained here is approximately one third of LIOU . This means 

that a thicker filter by three times can be used with the same amount of 

sacrifice of 2-keV neutrons. A thicker filter is favorable for reducing 

background neutrons and gamma-rays leaking out from the neutron source . 
    It is needed to discuss whether the small value obtained in this exper -
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ment is consistent with the dominant contribution of the spin-antiparallel 

interaction in thermal-neutron energies. The dominant contribution of the 

spin-antiparallel interaction, as discussed in LIOU and as  afore-mentioned 

here, is consistent with a higher value of cross section near the minimum 

and with the results of different kinds of experiments such as a spin-pre-

cession experiment(11) of neutrons and a neutron-capture-gamma-ray spec-

troscopy(12)       (12) 

    A trial of fitting to this experiment with the Breit-Wigner multi-level 

formula has been carried out following the procedure as described in LIOU. 

A few minor effects on the cross-section value, of p-wave resonances, of 

Doppler broadening , and of the energy dependence of scattering radii have 

been neglected for simplicity as the present analysis is of qualitative 

nature. The trial is carried out by modifying the resonance parameters 

for two negative-energy levels, one for spin-parallel and the other for 

spin-antiparallel interactions, and the scattering radii by keeping the 

resonance parameters for the positive energy levels same as those in LIOU, 

and by admitting some modifications in the thermal-neutron scattering 

parameters within an allowable limit of experimental accuracy. 

     A fitting is shown in Fig.4-4 with a curve (B). The curve is not the 

best fit but one of reasonable fittings obtained with the try and error 

method. The parameters modified are shown in the upper half of Table 4-3 , 

and thermal neutron scattering parameters accordingly modified are shown 

in the lower half of the table. It is found in the trial that the scatter-

ing radii R'+ should be decreased to around 2.5 fm in order to explain 

the dominant contribution of spin-antiparallel interaction ( a_ >> a+ ) 
and the lower value of 0.21 barn obtained in this experiment at the cross 

section minimum. The scattering radius of 2.5 fm is approximately half of 

the nuclear radius of Sc. The value is not so small, however, as to be 

rejected as unreasonable, if one considers that some experiments of scat-

tering radii and an optical-model calculation also show(14,15) consider-

ably small scattering radii compared to the nuclear radii for the nuclei 

near the nuclear-mass-number of Sc. The comparison is shown in Fig.4-5. 

    A new measurement of the cross section was recently reported by Harvey 

et al.(16) Their result is 0.36 + 0.03 barn, which is much closer to 

the present measurement than to the value of LIOU.
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4.5 Conclusion 

     For an optimal design of a Sc-filter, the neutron total cross section 

has been measured near the 2-keV cross-section minimum using the standard 

time-of-flight method. The minimum value of cross section obtained is 

0.21 + 0.03 barn. The value markedly differs from 0.71  + 0.03 barn 

which was measured in Liou et al.'s  experiment(9) of similar method, ana 

is close to 0.27 + 0.07 barn of Razbudey et al.(10) measured by a dif-

ferent kind of experiment carried out using reactor-based monoenergetic 

neutrons of 2 keV. 

    The lower value obtained here indicates that one may use a much-thicker 

filter in a filtered-beam facility. This is favorable to reduce background 

neutrons and gamma rays, leading to obtain a clean filtered neutron beam. 

      A trial of fitting the experiment with the Breit-Wigner multi-level 

formula shows that the lower value at the minimum near 2 keV is still con-

sistent with the dominant contribution of the spin-antiparallel interaction 

for thermal neutrons. 
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Table 4-1 Impurities in Sc-sample ( w/o )

0.05 001 0.004 0.004 0.01 005 0.01

Table 4-2 Physical parameters of Sc-sample

Sample 
  No.

Diameter 
 (cm)

Length 
(cm)

20 

20 

30 
2

Number 
of atoms 

per barn

265 

252 

356 
040
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Table 4-3 Parameters used in 

using the data of

 Liou 

this

's fitting and 

experiment

modified parameters

Name of parameter
Liou's

parameter
odified using
isthis experiment

Scattering radius for spin-parallel interaction  R;. (fm) 3.74 2.50

Scattering radius for spin-antiparallel interaction R! (fm) 3.74 2.50

Negative energy level for spin-antiparallel interaction (J=3) (eV)
E=-500
rn=4.o

E= —500
rn=4.o

Negative energy level for spin-parallel interaction (1=4) (eV)
E=-220
rn=0.67

E=-1,000
rn=4.0

Scattering cross section a, (b) 24 23.9

Coherent scattering cross section a, (b) 19.2 19.6

Scattering length for spin-antiparallel interaction a_ (fm) 19.39 19.1

Scattering length for spin-parallel interaction a., (fm) 6.88 7.35
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Chapter 5 Measurement of Neutron Total Cross Section of Si 

             at 146- and 53.5-keV  Windovs(1) 

5.1 Introduction 

   Silicon has a marked minimum in the total cross section of neutrons at 

146 keV, and is used as a filter material providing monoenergetic neutrons 

of about 144 keV in the effective energy. At the time when Si was used in 

an accelerator-based filtered-neutron experiment with a time-of-flight 

spectrometer at the KURRI-LINAC, it was found that the beam characteristics 

of filtered neutrons were much different from the calculations based on the 

cross sections found in BNL-325.(2) This motivated an experimental exami-

nation of the cross section using the spectrometer.(3) The result of the 

examination showed a very small value, one third of the evaluation of BNL-

325(2) for the 146 keV window, and the existence of another marked inter-

ference-minimum near 53.5 keV. In that experiment, however, a large cor-

rection was imposed on the values by the amount up to 25 h in order to 

deduce the raw profile of the sharp variation of the cross-section curve 

which was dispersed due to the rather poor energy resolution. The correc-

tion reduced the reliability of the data and another refined experiment is 

needed to provide more precise data by improving the energy resolution. 

   There was an experiment with a very high energy resolution between 5 eV 

and 730 keV performed by Larson et al.(4) using the Oak Ridge National 

Laboratory Electron Linear Accelerator. However , the data at the windows 

were poor in statistics because the Si-sample was rather thin for the mini-

mum measurement. 

   The experiment reported in this chapter is a refined measurement for the 

53.5- and 146-keV minima by not only using thicker Si-samples , but also 
making several improvements of experimental conditions and apparatuses. 

5.2 Experimental Method 

   The experiment was carried out with the 22-m TOF spectrometer at the 

KURRI-LINAC, which is described in Chapter 3. The improvements from the 

previous measurement(3) are itemized as follows:
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 (1) A higher energy resolution by more than three times was employed 

using 15 and 10 nsec for the widths of the linac-beam and the channel of a 

time-analyzer respectively. 

 (2) Higher counts were taken by more than ten times to reduce statistical 

errors. 

 (3) As a new neutron monitor, a 1-mm-thick 6Li glass-scintillator was 

installed in the flight path instead of a BF3 counter placed in the tar-

get room in the previous measurement. 

 (4) The Si-samples were 10.7, 27.2, 52.1 and 77.7 cm in thickness. The 

selection was better for  the,  minimum measurements to reduce experimental 

errors compared to the previous samples of 20.0 and 43.0 cm. 

 (5) The energy scale was more carefully determined and caliblated within 

a 0.4 %-precision my making a transmission measurement with an Al-sample at 

resonance energies of 5.9035 + 0.0015 keV and 119.75 + 0.04 keV(4). 

   A 6Li glass-scintillaor of 12.7 cm in diameter and 1.27 cm in thick-

ness was used as the transmission detector. As a notch filter, a pile of 

Si-blocks of about 10 cm in effective thickness was placed at the entrance 

of the flight path in the target room. As is in the case of the Sc-

experiment in Chapter 4, Si was a convenient material for the notch filter 

in this measurement. The background in the time-of-flight spectrum was 

determined with the counts in the regions blocked by the notch filter. The 

Si-samples were cylindrical single crystals of 6.2 cm diameter. They are 

the products of Komatsu Silocon Industries Ltd. and the impurity was in the 

order of seven-nine. 

5.3 Results and Discussion 

    The total cross section is deduced from the five time-of-flight spectra 

for the open- and four sample-in runs after subtracting the background and 

correcting for the dead time. The results are shown in Figs.5-1 and 5-2 

near the 146- and 53.5-keV windows respectively. The error-bars of counting 

statistics are typically shown for a few data points in the figures. The 

statistics takes the main of the error near the minimum value of cross sec-

tion. In order to check the consistency of experiment between four samples 
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of different thicknesses, semi-logarithmic plots of the counts of the 6Li 

detector are shown in Fig.5-3 as varying the sample thicknesses. The plots 

show the consistency of experiment between different thickneses. 

   The data points of open circles in Figs. 5-1 and 5-2 are the experiment-

al results obtained by Larson et  al.(4). Their experiment was of high 

energy resolution and of excellent counting statistics. However, the sam-

ple used was only about 1.5 cm thick, resulting in a poor counting statis-

tics near the windows, because the transmission of neutrons through the 

sample were higher than about 98 %. 

    In Fig.5-1, are also shown an experiment of Fields et al.(6) and a 

curve evaluated in JENDL-2(7) The data points of Fields et al. are 

higher than the other data in the window. The discrepancy may be attributed 

to the poorer energy resolution in the Fields et al.'s experiment. The 

JENDL-2 curve, which is based on the data of Fields et al., is considerably 

higher than both of the present and Larson et al.'s experiments. The mimi-

mum value near 146 keV of the present experiment, 0.187 + 0.006 barn, 

agrees with 0.17 + 0.05 barn of Larson et al.'s. However, there is a 

systematic descrepancy in the other energies between two experiments. 

In Fig.5-2, the JENDL-2 curve is shown near 53.5 keV, but no minimum can be 

seen in this evaluation. The results of these two experiments agree within 

the errors. The minimum value of the present data is 0.265 + 0.008 barn, 

while that of Larson et al.'s is 0.2 + 0.08 barn. 

     The sum of potential-scattering cross sections of the other isotopes 

than 28Si in natural Si is estimated 0.16 + 0.016 barns at the energies 

of the windows. The values of effective scattering-radius used for the 

estimation, 4.0 + 0.2 fm for 29Si and 4.3 + 0.2 fm for 30Si, are 

taken from the reference (5). Another estimation of the formaly-remaining 

cross section is given by Koester et al.(8) using the result of their 

scattering-length measurement to be 0.208 + 0.007 barn. These comparisons 

show that the main part of minimum cross sections at the windows may be 

attributed to the potential scattering of other isotopes than 28Si and 

the cross section of 28Si is considered to be very small as is expected 

with Eq.(2.2) in Chapter 2, i.e. the Brett-Wigner cross-section formula for 

an even-even nucleus. 

    The energies 146 and 53.5 keV can be attributed to the minima with the 
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experimental error of 0.4 %. The effective energies of the filtered 

neutrons differ from these values depending on experimental conditions such 

as the length  of a filter, the energy spectrum of source neutrons and 

the secondary filter used. For an example, the effective energies are 143 

and 53.3 keV for neutrons obtained by filtering a 1/E source with a 2-m-

long Si. 

5.4 Conclusion 

    The study in this chapter has shown by making a refined experiment that 

the :4iiiolum value of the Si-cross section near 146 keV is much lower, about 

50 %, than the JENDL-2 value, and that there is another marked window near 

53.5 keV which can not be seen in the evaluation. The minimum values 

obtained at the windows indicate that the cross section of the isotope 
28Si i s very small as is expected from the Breit-Wigner cross-section 

formula for an even-even nucleus. 
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Chapter 6 Measurements of Total Cross Sections of Be, C and 0 

             for 24-keV Fe-Filtered  Neutrons(1) 

6.1 Introduction 

    Prior to the application of the Fe-filtered neutrons, the applicability 

of the accelerator-based filtered-beam technique for precise measurements 

of neutron cross sections was studied using the 22-m time-of-flight spec-

trometer of the KURRI-LINAC. One of the essential points to achieve high 

precision is to attain a high signal-to-background ratio preserving the 

intensity of the filtered neutrons and reliably estimate the amount of the 

background. By installing an Fe-filter in the flight path of the above-

mentioned spectrometer, time-of-flight transmission measurements were 

carried out for Be, C and 0. These samples were selected since they are 

important elements in nuclear-energy applications, and the variations of 

cross section are very small in the energy spread of the neutrons. In 

this chapter are described the results of the applicability study and the 

applications to Be, C and 0. 

6.2 Experimental Method 

    The experimental installation is described in Chapter 3. For the im-

provement of beam quality, many trials were carried out to make a compro-

mization between the minimum sacrifice of 24-keV neutrons, the improvement 

in signal-to-background ratio and the reduction of gamma-flash disturbance 

to the detector, by varying the thickness and installed position of the 

filter and by adding a few auxiliary filters such as Al, S and Pb. After 

these trials, a 30-cm filter of single material was employed for experi-

ment. The time-of-flight spectrum of neutrons using the filter is shown in 

Fig.6-1. The portion C in the figure is the counts of the 24-keV filtered 

neutrons. The interpolation between A and B gives the background counts at 

the energy region of the 24-keV neutrons. The peak to valley ratio is 

about 700 : 1, or the background content is about 0.14 % of the foreground. 

In a usual time-of-flight experiment, the content is, roughly said, a few 

percent in a better case and often becomes worse than ten percent. 
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6.2.1 Samples 

     Considerable care had to be taken to prepare the transmission samples 

and determine their thicknesses. The C-samples were machined from graphite 

blocks of reactor-grade containing total impurity less than 30 ppm. These 

samples were dried under the vacuum at 120°C to remove water, and were then 

sealed under the vacuum in sample cells having 0.5-mm thick  A1-windows. 

Measurements of thicknesses and weights of the samples were made over the 

region where the neutron beam had passed. The results, however, indicated 

no density variation in the whole sample within the error of + 0.05 %. 

   The Be-samples were formed by stacking plates of approximately 10 cm x 

10 cm x 0.5 cm. The plates were machined from reactor-grade metal and had 

sharp 90 degree corners. They showed no evidence of voids near the surface. 

      Two 0-compounds, Al203 and SiO2' were used for this measurements, 

and also samples of Al and Si to determine the cross section of these ele-

ments. The cross section of 0 was given as the difference of values be-

tween the compound and elemental materials. The Al203-samples consisted 

of layers of ceramic sheets, each sheet being 1-cm thick and 7 cm x 7 cm 

square. A measurement using a micrometer showed that the thickness was 

very uniform and the faces were quite flat. In addition, the surface of 

the samples showed no visible evidence of voids, so it was presumed that 

the sample thickness in the region of the 5-cm-diameter neutron beam was 

the same as the average thickness over the 7 cm x 7 cm area. The SiO
2- 

samples consited of a stack of highly polished disk of high-purity fused 

SiO2. The purities of Al-and Si-samples were better than 99.9 %. Cross 

sections of Al and Si are considerably smaller than that of 0. Therefore , 
only a small amount of the error in taking the above-mentioned differences 

was propagated to the value of 0. 

     The samples used in the experiments, along with their thickness and 

thickness uncertainties ( in standard deviations ) , are listed in Table 
6-1. 

6.2.2 Data Processing 

   As for this experiment, the effective transmission T through a sample is 
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determined from 

/an equation,          T =JEexp j-N  a(E) - Na taaa(E)}• F (E) dE / J.EF (E) dE , ( 6.1 ) El1E1 

where N is the sample-thickness ( in molecules per unit area ) ; a(E) the 

neutron total cross section of the sample at energy E ; Na the atomic 

density of air; to the thickness of the air displaced by the sample;6a(E) 

the neutron total cross section of air; and F(E) the product of neutron 

flux and the detector efficiency at the energy E. 

   The F(E) was obtained in an additional experiment with an energy resolu-

tion eight-times higher than that used for the transmission measurements, 

and are listed in Table 6-2. The limits for integration El, Eu were 

taken as 17.5 and 26.3 keV respectively. 

   For the sample materials used in this experiment, the energy dependences 

of o(E) and that for the air are very small over the energy spread of the 

beam, and then T can be reduced approximately to 

             T = exp { - N a (Eav) - Nataaa(Eav) },( 6.2 ) 

where Eav is the average energy of the beam weighted with the spectrum 

F(E). The Nam is equal to 23.5 keV, and accordingly all cross sections 

shall hereafter in this chapter be refered to this energy. 

6.3 Results and Discussion 

    The time-of-flight spectrum of the filtered beam is shown in Fig.6-1. 

The spectrum contains the information of the foreground and the background 

simultaneously. The background at the 24 keV band, the region C, is deter-

mined by linearly interpolating between two blacked-out regions A and B. 

It is necessary to consider how accurate this assumption is to estimate the 

precision attained in the measurement. 

   The background in the spectrum is composed of a steady-state component 

due to cosmic-rays and radioactivity in the vicinity of the detector, and 

of a time-dependent component which varies with time-of-flight. It is the 

latter which causes the variation of background between A and B regions.
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The attenuation of the backgrounds at A and B with transmitting through the 

graphite-sample indicated that the  major part of this background is caused 

by gamma-rays, rather than by neutrons. It is difficult to conceive that 

a gamma-ray background would fluctuate rapidly in the time interval between 

A and B. As for the smaller neutron component, background neutrons are 

those transmitted through the higher-energy minima of Fe and then scattered 

by collimators. These neutrons, however, will have a slowly-varing depend-

ence in time-of-flight. The only component which could have a significant 

time dependence near 24 keV is the neutrons transmitted through the filter 

and scattered at a small angle with collimators. The neutrons lose little 

energy and must be considered as a part of the signal. 

    With the above discussions, it has been shown that the background has a 

simple, smooth time dependence. The linear interpolation between A and B 

is a reasonable procedure determining the background at the region C. If, 

for example, the decrease of background from A to B is ignored, then the 

cross section of the ( N = 1 ) samples is increased by 0.1 %, and that 

for the ( N = 2 ) samples by 0.06 %. A reasonable upper limit of 20 

can be placed on the error produced by the linear relation assumed in the 

difference in the background between regions A and B, and thus the result-
ing uncertainty in the cross section is 0.05 %. 

   The detection-efficiency shift caused by a gamma-flash for the NaI(T1) 

transmission-detector which is described in Chapter 3 was studied by a 

method of Hockenbury et al.(2) using a 137Cs source . The result showed 

the shift produced a cross-section uncertainty of 0 .06 % for the ( N = 1 ) 

samples and 0.03 % for the ( N = 2 ) samples. 

    The uncertainty due to the dead-time correction is small because the 

dead time ( 1.4 - 1.7 psec ) is longer than the time spread of the filtered 

beam. The overall uncertainty in the dead-time correction is estimated to 

produce a cross-section uncertainty of 0.05 7.. 

   By combining three kinds of the above-metioned uncertainties ,it has been 
shown that this Fe-filtered beam method is intrinsically capable of yield-

ing an accuracy of 0.1 %, which is comparable to that achieved in precise 

measurements of thermal neutron cross sections. 

    The results of this experiments are presented in Tables 6-3 and 6-4 . 
The cross section for air at 23.5 keV - as in Eq.(6-2) - was quoted from
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a  literature(3). 

   In Table 6-3, the counting statistic is presented for each seperate run. 

Final results are presented in Table 6-4 for the cross sections and the un-

certainties. In Table 6-5, the results are compared with the evaluated 

values in ENDF/B-III, ENDF/B-V , JENDL-2 and a recent measurement by Aizawa 

et al.4 performed using reactor-based Fe-filtered neutrons.(The ENDF/B-

III was the latest version at the time of present experiment.) The present 

value of Be agrees, within 0.4 %, with the result of Aizawa et al. and the 

ENDF/B-V. However, it is 4.5 % larger than the JENDL-2 value. As for C, 

the present result is larger than the others by about 0.7 to 1.2 %. 

6.4 Conclusion 

   The applicability study of the accelerator-based Fe-filterd beam tech-

nique has shown that the technique is intrinsically capable of yielding an 

accuracy of 0.1 7, which is considerably better than a typical value of 

about 1 % in this energy range and comparable to that achieved in presise 

measurements of thermal-neutron cross sections. 

    Along with the applicability study, the technique has been applied to 

the neutron total cross sections of Be, C and 0 , giving the data with an 

accuracy of approximately 0.2 %. The result for Be agrees with the ENDF/B-

V value by 0.4 %, and 4.5 % larger than the JENDL-2 value. For C, the 

present result is larger than the evaluations by 0.7 to 1.2 %. 

References: 

 (1) Block, R.C. et al.: J. Nucl. Sci. Techol., 12(1), 1 (1975). 

 (2) Hockenbury, R.W. et al.: Rensselaer Polytechnic Linear Accelerator 

     Report RPI-328-266, p.44 (1971). 

 (3) BNL-325, ( 2nd. Ed. ), Suppl. No. 2, Vol. 1, (1964). 

 (4) Aizawa, 0. et al.: J. Nucl. Sci. Technol., 20(4), 354 (1983). 

 (5) Ozer, 0., Garber, D. : ENDF/B summary documentation, BNL-17541 

     (ENDF-201) (1973). 

 (6) ENDF/B-V data file for Be ( MAT=1289 ) evaluated by Howerton, R.J. et 

     al. (1979).
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Table 6-2 The 

Et is the energy 
flight channel i. 
to 100.

F(E) vs. neutron energy E 

 of the upper edge of time•of-
EFt(E) is arbitrarily normalized

 (keV)

26. 326 

25. 854 

25.395 

24.948 

24.513 

24.089 

23.676 

23.274 

22.882 

22.499 

22.126 

21.763 

21.408

F,(E)

0.43 

2.71 

8. 13 

13.53 

15.91 

14.29 

11.58 

8.28 

6.22 

4.65 

3.20 

2. 17 

1.64

(keV)

21.062 

20.724 

20.394 

20.072 

19.757 

19.450 

19. 150 

18.857 

18.571 

18.291 

18.017 

17.750 

17.488

Ft(E)

1.22 

1.08 

0.90 

0.75 

0.73 

0.65 

0.43 

0.43 

0.32 

0.28 

0.25 

0.22

( 50 )

Table 6-1 Transmission samples

Sample Composition Thickness 2 Na(mol
./10cm)

Be

0.1840+0. 0003 1. 1

Metallic plates 0.3089±0.0005 ml.8

0.3714+0.0006 m2.2

C Reactor grade 0.2483±0.0003 ml..2
graphite0. 5077 ± 0 .0003 ._; 2.4

Al2O, Ceramic plates0.08624+0.0001rs1.1
0.1293±0.0002 =1.6

Al Metal 0. 60262+0. 00003 =O. 3

SiO1 Fused and 0.08624+0.00008 =O. 8
polished disks O. 1377+0.0001 .= 1.3

Si Single crystal 0. 2720±0. 0009 0. 5

Table 6-3  Neutron 

for each

total cross section 

seperate—sample run

Sample Run

 Sample Cross 'Counting
thickness section statistics

(No)(b) error (%)

C

1
1.24.689 0.47

2.44.680 0.29

2
1.24.673 0.42

2.44.688 0.27

Be

1
1.15.873 0.47

2.25.895 0.30

2 1.15.899 0.42

2.25.924 0.27

3
1. 1 5.891 0.43

2. 2 5.903 0.28

4 1.85.905 0.27

Al2O,

1 1.6 12.264 0.32

2 1.6 12.249 0.25

3 1.1 12.284 0.40

Al

1 0.30.540 1.60

2 0.30.535 1.30

SiO2 1
1.39.235 0.25

0.89.301 0.38

Si I-

0.51.769 3.02

2 0.51.791 3.06



Table 6-4 Final  results for neutron total cross section of Be, C and 0

Total

 cross

section

(b)

Total error Partial errors (%)

(b) (io)

Sample Detection Dead-timeAirteCo
untingthickness efficiency correction

correctionring dation.statistics uncer- shift un- uncer-o
taintytaintyncer-ucer-tainty certainty taintytaintyainty

,Be 5.903 0.011 0.181 0.14 0.09 <0.05 <0.05 <0.10 <0.05

,C 4.684 0.009 0.201 0.18 0.05 <0.05 <0.05 — <0.05
,Ot 3.736 0.007 0.19 0.16 0.08 <0.05 <0.04 <0.03 <0.04

A.120,-2Al
3.735 0.009 0.23 0.18 0.12 <0.05 <0.05 <0.05 <0.05

3

SiO2-Si 3.738 10.012 0.32 0.30 0.08 <0.05 <0.05 <0.02 <0.05
2

t  Cross section of a0 is the weighted average of (Al203-2A1)/3 and (Si 02—Si)/2.

Table 6-5 Comparison 

JENDL-2 and

of the present results 

 another experiment

 of cross 

barn )

sections with ENDF/B,

Element  Present result ENDF/B-III ENDF/B-V JENDL-2 Aizawa et al.

Be

C

0

5.903 + 0.011

4.684 + 0.009

3.736 + 0.007

5.93 (a)

4.65 (a)

3.68 (a)

5.93 (b)

4.65 (c)

5.65 (d)

4.63 (e)

5.88 + 0.02 (f)

4.65 + 0.01 (f)

*) The evaluated values are the interpolated between the points near 24  keV.

(a) ref .5, (b) ref.6, (c) ref .7 , (d) ref.8, (e) ref .9 , (f) ref .4.

( 51 )



Chapter 7 Measurement of the Neutron-Proton Total Cross Section 

            Using 24-keV Fe-Filtered  Neutrons(1) 

7.1 Introduction 

   The n-p scattering cross section has been a subject of intensive experi-

mental(2) and theoretical studies. From the theoretical view point, the 

cross section is fundamentally important for the comparison of the n-p and 

p-p singlet interactions. It also serves as a standard cross section when 

it is used in recoil-proton detectors for the determination of a neutron 

flux. 

   The n-p scattering cross section is described in the energy region up to 

10-20 MeV by the well-known effective-range formula(3)which are described 

with four empirical parameters: the effective ranges and scattering lengths 

for both siglet and triplet interactions. Experimental data used in the 

determination of these parameters are the binding energy of deuteron, the 

n-p coherent-scattering length and the energy dependent n-p scattering 

cross sections. As discussed by Houk(4), the need for precise measure-

ments of the n-p scattering cross section still remains for the purpose of 

deducing the uncertainty of the parameters. For the "zero-energy' scatter-

ing cross section between a neutron and a free proton, which is particular-

ly important for the above-mentioned purpose, Houk(4) measured 20.436 + 

0.023 barns in 1971, larger than Melkonian's value(5) of 20.36 + 0.023 

barns measured in 1949. Recently, Dilg(6)obtained an even higher value 

of 20.491 + 0.014 barns by extrapolating from a measurement performed at 

132 eV. The value near 24 keV, measured in this experiment, with a compa-

rable accuracy to the above-mentioned values in the lower energy region, 

will contribute predominantly toward a determination of the zero-energy 

cross section. 

    A similar experimental technique described in Chapters from 4 to 6 was 

used for the present measurement. The areal atomic-density of transmission 

samples was carefully determined and the cross-section value was obtained 

with an overall accuracy of 0.13 %.
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7.2 Experimental Method 

7.2.1 Transmission Sample 

    Precise determination of the areal atomic-density of the transmission 

samples has been one of the most important problems in all of the n-p total 

cross section transmission measurements. In this experiment, a technique to 

replace a water-sample with an optically-flat Si02-plate was employed. 

An Al-case filled with pure water as is shown in  Fig.7-1 was placed in the 

flight path. The Si02-sample in the water was moved into and out of the 

neutron beam for " Sample -In and -Out " runs, respectively. The counting 

ratio of these runs determined the difference between the transmission of 

the water layer removed by the Si02-plate and the plates itself. The 

SiO2 was employed with the following reasons: (i) thickness and flatness 

of the plate can be determined with a sufficient accuracy by optical 

instruments, (ii) SiO2 is stable in water, (iii) the thermal-expansion 

coefficient is small, and (iv) the neutron cross section is also small. 

     The Si02-plate was aligned perpendicular to the neutron beam by using 

a laser beam reflected from the surface of the plate. The temperature of 

the water was monitored with a thermocouple and the result of the cross 

section was corrected for the variation of water density. 

7.2.2 Data Deduction 

    The n-p cross section varies with neutron energy within the window of 

the filtered beam and the precise determination of the energy scale is as 

important as the cross section value. The absolute energy scale was deter-

mined by the flight length and flight time, and the error was estimated to 

be about 0.27 %. The effective neutron energy attached to this measurement 

is defined by a relation, 

exp{-Ew(Ee)d + Esi(Ee)d 
                                                             ( 7.1 ) 

                Eluexp{-Ew(E)d + Esi(E)d}F(E)dE /1 F(E)dE 

where F(E) is the energy spectrum shown in Fig.7-2; Eu and El are the upper

( 53 )



and lower energy limits used in data processing;  Ew(E) and Esi(E) are the 

macroscopic total cross sections of the displaced water and the Si02-

plate, respectively; d is the thickness of the Si02-plate. The value of Ee 

depends on sample thickness and its error is estimated to be about 0.29 %. 

   The n-p cross section is deduced from Eq.(7-1) to 
-1 

                             E- t 1 Ns1 1IEi~(Iz- IBz)1all G " G IVW -- G Nw L J'Lu ( Oi O)]                                                         BI 

where ail is the n-p total cross section;00 and asi are the total cross 

sections of 0 and SiO2' respectively; Nw is the areal density of the 

water molecules in the volume replaced by the Si02 plate; Nsi is the areal 

density of Si02 in the plate; I"i and Oi are the dead-time-corrected 

counts for sample-in and out-runs respectively; IBi and OBi are 

the background counts for Sample-In and Out-runs respectively ; in and it 

are the channel numbers which correspond to Eu and El respectively.

7.3 Error Analysis and Corrections

   Experimental errors are devided into several groups. Some of them are 

similar to those in the experiment in chapter 6. Only the results of the 

error analysis are, therefore, simply shown in Table 7-1. 

    The thickness of the SiO2-plate was determined with a higher accuracy 

than 10-5, and the overall error introduced to the cross section by the 

error of the areal atomic-density is estimated to be 0.017 % after the 

correction of the temperature variation of water density. 

   The 0.29 % error in Ee is equivalent to 0.038 % error in the cross sec-

tion. 

   Corrections were made for deuterium in water, the Doppler effect and the 

capture cross section. They were found, however, to be lower than 0.01 

correction.

7.4 Results and Discussion

The n-p total cross section obtained are 17.767 + 0.046 barns ( Ee =
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23.638 keV ) and 17.732  + 0.025 barns (  Ee = 23.645 keV ) for the thin 

and thick samples respectively. The former value is corrected for the 

effective energy of the latter by using the effective-range formula and 

found to be 17.736 barns. By taking the weighted average, the final result 

obtained is 17.740 + 0.023 barns for 23.645 kV neutrons. 

    The result is compared with the theoretical values calculated with the 

parameter-sets tabulated by Lomon and Wilson(7) and Dilg(6), and using 

the effective-range formula. The main difference between the parameter-

sets is that the former employs Houk's value and the later Dilg's value for 

the scattering cross section of zero-energy neutrons. The bindng energy 

of deuteron and the coherent scattering length(8) are commonly used for 

both parameter-sets. The parameters are listed in Table 7-2. 

    The calculated n-p scattering cross sections near 24 keV using the pa-

rameters are shown in Fig.7-3 , along with the result of this experiment. 

The experiment is very close to the calculation based on the Houk's value 

and lower than the Dilg's by 1.5 standard deviations of this experiment . 

It can be concluded that the parameter-set of Lomon and Wilson represents 

the n-p cross section quite acculately and do not see the need to go to the 

larger cross section resulting from the Dilg's parameters . 

    The evaluated value for the cross section in JENDL-2(9) is 17 .56 barns 

at 23.6 keV, which is obtained by the interpolation between the evaluated 

points. This evaluation is about 1 % lower than the present result. 

7.5 Conclusion 

    The accelerator-based Fe-filtered beam , which was shown in Chapter 6 to 
be capable of transmission measurements of a 0 .1-% intrinsical accuracy, 

has been applied to the cross section of the n-p interaction . The result 
is 17.740 + 0.023 barns at the effective energy of 23 .645 + 0.068 keV 

and provides a precise value in the keV region with an accracy comparable 

to that of the most precise experiments in other energy range . The value 
was used to discuss the empirical parameters used in the effective-range 

formula of the n-p interaction.
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Fig. 7-1 Cross-sectional view of the sample changer. 

                                          Fig

C 

a a 
P 

C 
O 
M 

U 
m 
N 

a 
W 
0 

U U 

C C 

H 
.4 
L 

a 
u

17.85

17.80

102

101

100

• 

• 

•

        •

17.75

17.70 
   23.0

. 7-2

350 400450 

  Number of time-of-flight channels 

Time-of-flight spectrum of the filtered 

neutrons counted by the NaI(T1) detector.

Fig. 7-3 The n-p

Calculated 

Wilson's(7) 

Calculated 

parameters

experiment

 235

scattering

with Lomon 

parameters 

with Dilg's

Neutron energy 

cross section

and 

(6)

24.0

keV ) 

near 24 keV.

( 57 )



Table 7-1  Neutron-proton total cross section and its errors

Neutron-proton total cross section at.the effective energy 23. 

        17.740 + 0.023 b 

PartiaZ errors (B) :0.13 

 Counting statistics0.096 

  Sample thickness uncertainty0.017 

  Detection efficiency shift uncertainty 0.04 

  Dead time correction uncertainty0.05 

  Background determination uncertainty 0.05 

Effective energy uncertainty0.038

645 + 0.068 keV:

Table 7-2 Effective-range parameters (fm)

Parameters Lomon•and Wilson values(7) Dilg value(6)

Triplet 

Singlet 

Triplet 

Singlet

scattering 

scattering 

effective 

effective

 length 

 length 

range 

range

at 

as 

rt 

rs

 5.414 ( + 0.005 ) 

-23.719 ( + 0.013 ) 

 1.750 ( + 0.005 ) 

  2.76 .( + 0.005 )

 5 

-23 

 1 

 2

• 

•

423 

749 

760 

81

( 

( 

(

0 

0 

0 

0

• 

• 

•

004 

009 

005 

005

Effective-range formula : 0
3T

1/at )2

n

k2 + (zk2rt k2 + ( k2r
s

1/a3 ) 2
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 Chapter 8 Measurement of Capture Cross Sections of  93Nb,1151n,127I, 
165Ho

,181Ta and 238U for 24-keV Fe-Filtered Neutrons(1) 

  8.1 Introduction 

     Neutron capture cross section plays an important role in various aspects 

  of reactor engineering; for instance, neutron economy, fuel breeding, reac-

  tor control, material activation, radiation shielding etc.. The accuracy 

  of the presently-available data of capture cross sections can not meet in 

  most cases the need of reactor engineering. To obtain more reliable exper-

  imental data, several kinds of improvement are needed in the technique of 

  measurement. The study in this chapter extends an application of the accel-

  erator-based filtered neutrons to the capture-cross-section measurement. 

  Filtered neutrons are obtained by installing a thick Fe-filter in the 

  flight path of a time-of-flight spectrometer. The advantage of filtered 

  neutrons for this kind of experiment is reliable subtraction of the back-

  ground in the measurement. The background is low in level and is simulta-

  neously determined in the measurement. This leads to an accurate measure-

  ment of cross sections. The result, a point cross section, can be used to 

  normalize an energy-dependent cross section obtained in a usual time-of-

  flight measurement. 

     The pulse-height-weighting technique is needed to obtain a capture cross 

  section. The outline of the technique employed in the present measurement 

  is as follows. Capture events are counted by detecting the prompt capture 

  gamma-rays with a pair of C6F6-liquid-scintillation detectors. The 

  pulse-height response of the detectors is analyzed by a multi-channel pulse 
-height analyzer . The counts of all channels are summed up with imposing 

  appropriate respective weights. The sum gives the number of capture events 

  irrespective of the prompt gamma-ray spectrum emitted. The number of 

  neutrons impinging on the sample is measured with the same detectors by 

  detecting the 480-keV gamma-ray following the reaction of 10B(n ,a7 ). In 
  other words, the cross section of 10B(n ,a y) is used as the standard. 

      The samples selected for measurements are a fertile material 23811, a 
  structural material 93Nb, and several nuclei of atomic-mass-number near 

  those of fission products 115In, 127I, 165Ho and 181Ta.
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8.2 Experimental Method 

8.2.1 Experimental Layout 

   The experiment was carried  out at the 11.7-m time-of-flight spectrometer 

at the KURRI-LINAC. The arrangement is shown in Fig.8-1. Neutrons fil-

tered with a 15-cm-thick Fe were collimated within a 46-mm diameter onto a 

sample. Two C6F6-scintillation detectors, of type NE-226 of Nuclear 

Enterprise Ltd., 10 cm in diameter and 4 cm in thickness, mounted on EMI-

9818 photo-multipliers, were placed on both sides of the sample. The detec-

tors were shielded with a 5-cm-thick wall of Pb-bricks. The pulse signals 

from the detectors were stored in an analyzer by the two-parameter mode of 

32 x 32 channels - i.e. time-of-flight of neutrons and pulse-height of 

capture gamma-rays. 

   A preliminary study of the energy profile of the filtered neutrons was 

carried out with a combination of the C6F6-detectors and a thick 10B-

sample of about 5 g/cm2. The profile obtained is shown in Fig.8-2, where 

the straight base-line means the background level. The peak of the spectrum 

is 24.3 keV; the width is about 2 keV; the effetive energy is 23.7 keV, 

which is attributed to this experiment. The resonance-shaped dips in the 

spectrum are caused by the resonances in the Mn-impurity in the Fe-filter. 

8.2.2 Pulse-height-Weighting Technique(2,3) 

     Capture cross section measurements by detecting prompt capture gamma-

rays are based on an equation, 

C= (I)Yn(8.1) 

where C is the count rate of the gamma-ray detector; is the neutron flux 

incident upon a sample; Y is the probability of capture of the incident 

neutrons; ri is the detection probability of a capture event. It is 

essential to prepare a value of n which is irrespective of the cascade mode 

of the decay of the compound nucleus produced by neutron capture from an 

exited to the ground level. The pulse height weighting technique is one of 
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the methods to assure such a characteristic to  n  . 

  Let a pulse-height response of a gamma-ray detector, i.e. the probability 

of count in a channel of a pulse-height analyzer, to a photon of the energy 

U under a certain experimental arrangement be denoted by R(i,w), where i 

( =1,2,..,m ) is the channel number. A weighting function W is defined as a 

set of weights W(i) ( i= 1,2,..,m ) which satisfies the following relation: 

              W(i) R(i,w) = k w(8.2) 

i=1 

where k is a proportional constant independent of the photon energy w. 

    The pulse-height response R(i,w) can be obtained by a computer calcula-

tion for an arbitrary W and the validity of the calculation can be exper-

imentally checkd.(3) The weighting function W is deduced regarding 

Eq.(8.2) as a matrix equation and can be used to assure the afore-mentioned 

characteristic to n as explained below. 

    Let a set of energies of the gamma-rays emitted by a neutron capture be 

given by Wl,w2,W3•••.,wn; then the response C(i) ( i=1,2,...,m ) of the 

detector to the gamma-rays can be written as 

               C(i) = Lj R(i,wj)(8 .3) 
j=1 

for the count in the i-th channel of the pulse-height analyzer . 

  The gamma-ray spectrum differs from cature event to event; however
, there 

is a restriction for the sum of the gamma-ray energies as 

Zwj = (SE) + En 
j=1(8.4) 

where ( SE )is the neutron seperation energy from the compo und nucleus and 
En is the kinetic energy of the captured neutron . 

    If one takes a sum of C(i)s over all channels by weighting with W(i)
, 

the sum <CW> is given as 

<CW> = W(i) C(i)(8 .5) 
                                       i=1
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By using  Eqs.(8.3), (8.2) and (8.4) the <CW> is rewritten as follows: 

     m nn m 

<CW> =11 W(i) R(i,wj) =E W(i)R(i,wj),(8.6) 
i=1 j=1 j=li=1 

           <CW> = Ekwj=k( SE ) +En}(8.7) 
                        j=1 

Eq.(8.7) shows that the sum <CW> is proportional to the number of capture 

events irrespective of the cascade mode of the compound nucleus and may be 

used as the count rate C in Eq.(8.1). 

   The value of Y in Eq.(8.1) which is closely related to the cross section 

of the relevant sample can be obtained by determining the flux 0 and the 

proportional constant k in Eq.(8.7). For the determination of these two 

values, the cross section of 10B(n, a7) reaction was used as the standard 

and an Ag-sample was used as a so-called saturated-resonance sample at 5.2 

eV. The 10B(n, a7 ) reaction emits only one 480-keV gamma-ray and the 

weighting is not needed in this case. Four measurements mentioned below 

were carried out to obtain a capture cross section of the relevant sample 

at 24 keV: 

Cg = 0(5.2) Yg ngfor the B-sample at the resonance, (8.8) 

<CW>Ag0(5.2) YAgk 1(SE)Ag+5.2} for the Ag-sample at the resonance,(8.9) 

C24k 0(24k)yB4knB4kfor the B-sample at 24 keV, (8.10) 

<CW>S4k=0(24k) YS4k k{(SE)S+24k} for the relevant sample at 24 keV.(8.11) 

By manipulating Egs.(8.8)-(8.11) and taking nE = rek and Yg = YAg = 1 into 
consideration, one may obtain 

<CW>4k C)(SE)Ag+ 5.2 } 24k 
          Y24k     =1YB(8.12) 

                <CW>AgCB4k1(SE) +24k} 

From the value Y thus obtained by Eq.(8.12), the capture cross section 

was deduced after correcting for the attenuation of capture gamma-rays and 

the multiple scattering of neutrons in the sample. 
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8.2.3 Samples 

     The 10B-sample  was in the powder-form and packed in an Al-capsule by 

0.9 g/cm2in weight. The powder was chemically analyzed for the content 

of B and isotopically analyzed for 10B. The portion of B was 93.23 w/o 

of the powder and that of 10B was 93.93 w/o of B. The sample of I was 

prepared by PbI2-powder packea in an Al-capsule. The other samples were 

metallic plates. 

      The standard cross section of 10B was taken from an evaluation by 

Sowerby et al.(3). 

   For the correction of the multiple scattering, an analytical method(5) 

was employed since the thicknesses of the samples were relatively thin and 

only an approximate correction was needed. In Table 8-1 are summerized the 

sample thicknesses and the calculated multiple-scattering correction fac-

tors. 

8.2.4 Processing of Spectra 

    In Fig.8-4 are typically shown the time-of-flight spectra of the prompt 

gamma-rays for the samples of 127I and238U. One part of the background 

ground in the time-of-flight spectra was caused by the 24-keV neutrons 

scattered with the sample. This background was determined by a measurement 

for a graphite sample which had practically no capture cross section and 

had the thickness to scatter the same number of neutrons as the relevant 

sample. The other part of background was irrespective of the scattered 

neutrons and determined by linearly-interpolating between the counts in the 

lower- and the higher-energy regions in the time-of-flight spectra . The 

counts between the vertical lines in Fig.8-4 are summed up after the sub-

traction of background giving the respective pulse-height spectra in Fig . 

8-5. The spectra weighted with W are also shown in Fig . 8-5. The <'W> 

needed in Eq.(8.12) for each sample is obtained by integrating the weighted 

spectrum in Fig.8-5. As is seen in Eq.(8.12) , the weighted sum for the 
Ag-sample which was used for a reference in the saturated-resonance tech-

nique was needed only for the measurement at 5.2 eV. For the B-sample
, 

measurements were needed for 24 keV and 5.2 eV , not for the spectrum but 
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for the counts above a discrimination level. 

8.2.5 Uncertainty of Data 

    The statistical errors estimated from the numbers of counts appeared in 

Eq.(8.12) were between 2.5 and 6  Y. for the values of Y. These errors are 

shown in Table 8-1 for each sample material. 

    As for the systematic errors, there are several kinds of sources. The 

inherent uncertainty in the weighting function, or the uncertainty in Ti , 

was experimentally studied(3) using the capture gamma-rays of Au, Ta and 

Ag at the neutron energies of respective resonances in the eV-region. 

The result showed the uncertainty in Ti was about 2 %. The uncertainties 

come from that of10B(n,ay) cross section(4) and that of the multiple 

scattering correction, were also about 2 %. Thus the overall systematic 

error was estimated to be about 4 %. 

     Since natural element of In contains 113In by 4.28 % whose cross sec-

 tion at 24 keV is not well known, the cross section of 113In was assumed 

 to be same as that of In in the subtraction procedure. Due to the assump-

 tion, a 2-% error was imposed on the cross section of 115In. 

8.3 Results and Discussion 

    The results of the 24-keV capture cross sections are shown in Table 8-2 

along with the evaluated values in ENDF/B-IV(6). The experimental errors 

are about 5 % ( between 4 and 7 % depending on samples ) except for 238U. 

For 238U, the error is about 8 % because of poor counting statistics. 

    There have been several measurements for the elements used in this study 

which were carried out with different kinds of experimental techniques. 

The data of these measurements are also shown in Table 8-2. Chaubey and 

Sehgal(7) made an activation-cross-sections measurement using an Sb-Be 

photo-neutron source. The standard cross section in their experiment 

was the 820 mbarns of 127I(n,y ). Belanova et al.(8) made a shell-

 transmission measurement with an Sn-Be source , which was an absolute meas-

urement of an absorption cross section. The experiment of Rimawi and 

Chrien(9) was an activation measurement with the reactor-based Fe-filter-
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ed neutrons, where the  10B(n,a7) cross section was used as the standard. 

   Although the present value of the115In cross section agrees with other 

experiments, those of 93Nb,165Ho and 238U differ from the values both 

of Chaubey et al.(7) and Belanova et al.(8). A Monte-Carlo interpreta-

tion of the 238U-experiment of Belanova et al.(8) was carried out by 

Miller and Poenitz(LO) resulting in the capture cross section of 495 

+ 40 mbarns at 24 key. This revised value satisfactorily agrees with 

the other data in Table 8-2. The present value of 127I agrees with the 

data of Rimawi and Chrien.(9)' 

   As for the comparison to ENDF/B-IV values, the present data show good 

agreements for 127I, 181Ta and 238U, but show large discrepancies for 
93Nb 

and 165Ho. 

   There are three high resolution measurements(11,12,13) for 238U. In 

Table 8-3 are shown the values of these measurements averaged over the 

energy interval between 20 and 30 keV, comparing with the experiments with 

monoenergetic neutrons. Spencer & Kaeppeler(14) measured the shape of 

the 238U-capture cross section and showed an intermediate structure below 

100 keV. If de Saussure at al.'s cross section(11) is folded with the 

energy spectrum of the present measurement, 575 mbarns is obtained. It is 

important to take into consideration of the effect of the intermediate 

structure in comparing the data between the point cross section and the 

cross-section curve. However, there still remain larger descrepancies 

between the cross-section curves than the effect of the intermediate 

structure. Therefore, the point-cross-section experiment is effectively 

used for the normalization of a cross-section curve. The values obtained 

in the present experiment have already been used for the normalization of 

the cross-section curves between 3.2 and 80 keV obtained at the KURRI-

LINAC.(15)

8.4 Conclusion

   The accelerator-based Fe-filtered beam has been applied to 

cross section measurements. The accuracy attained is about 5 

siderably better than the descrepancies which exist between 

avairable experimental data. This technique can be used

point capture 

  and is con-

the presently 

as one of the
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effective techniques to settle the problem of the descrepancies between the 

existing data. The sample materials taken up for the measurements are a 

fertile material 238U, a structural material 93Nb, and four nuclei of 

atomic-mass-numbers near those of fission products  115In, 1271, 165Ho 

and 181Ta. 
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Table 8-1 Samples and the factors in the analysis of experimental data

Target

93Nb 

 1151 

127I
n 

165H
o 

181T
a 

2380

Sample thickness 

(10 3atoms/barn)

26 

64 

96 

63 

52 

30

Multiple-scattering 

correction factor 
(% )

0 

5 

2 

6 

8 

8

Statistical 

of capture

3 

4 

2 

2 

4 

6

 error 

pribability 
% )

Table 8-2 Capture cross sections for  24-keV neutrons

Cross sections ( mbarn )

Target nucleus
Present Chaubey & 

SehgaI(7)

Belanova 

et al.(8)

Rimawi 

Chrien

& ENDF/B-IV(6) 
(9)

93Nb 

 115I
n 

1271 

165H
o 

181T
a 

238U

340 + 17 

770 + 50 

780 + 40 

1280 + 60 

880 + 50 

520 + 40

990 + 70

270 

776

15 

66

412 + 18
***

583 + 

767 +

32 

50

500 + 38

780 

1450 

910 

490

  *) The sum of 580 + 40 mbarn for the transition to the isomeric states 115In(n ,7)116m1,m2In 

    and 220 + 30 mbarn for the transition to the ground state 115In(n,y)116In. 

**) The cross section of 115In(n
,y)116mi'm2In. 

***) The Monte Carlo interpretation for the Belanova at al .'s experiment carried out by Miller 

    and Poenitz(10)showed 495 + 40 mbarn for 238U capture cross section. 

     Table 8-3 Comparison of experimental results for 238U for capture cross sections near 24

Energy 

( keV

24 

24 

23

*)The values are quoted

551 

462 

476 

499 

500 

520

from

30 

30 

30 

15 

38 

40

 Table VI of de

de Saussure et al. 

Moxon(12) 

Friesenhahn et al. 

Quan et al.(16) 

Rimawi & Chrien(9) 

Present experiment

Saussure et al.'s

(13)

paper(11).

keV
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Chapter 9 Measurement of Nuclear Inelastic-Scattering Cross Section 

             of Th for 144-keV Si-Filtered  Neutrons(1) 

9.1 Introduction 

     In recent years, there have been several measurements(2) and several 

theoretical evaluations(3-5) of the neutron cross sections of 232Th. 

These investigations have been motivated by the need to assess Th as an 

alternative nuclear fuel. For the inelastic scattering, however, which 

is the prime interaction for the slowing down of neutrons in the higher 

energy region, neither the quality nor the quantity of the experimental 

information is satisfactory to guide the evaluations even when theory is 

used to extend the data. Experimental data are quite limited above 2 MeV 

while there seem to be no measurements below 250 keV. 

    The inelastic scattering cross section can be measured by detecting the 

inelastically-scattered neutrons(6-9) or by detecting the associated 

gamma-rays emitted from the excited residual nucleus(10). Accelerator-

produced neutrons are commonly used for such measurements by applying the 

time-of-flight technique. The Si-filtered 144-keV neutrons are intense and 

clean, and were successfully utilized at the MURR for a precise point- 

cross-section measurement of the inelastic scattering of238U(11). The 

scattered neutrons were detected by a spherical hydrogen-gas counter. In 

the measurements reported in this chapter, the same technique with improve-

ments in counting statistics has been applied at the MURR to measure the 

cross sections of 232Th. 

     Thorium-232 is an even-even nucleus and has a simple structure in the 

low excited levels. These are the collective rotational states in a deform-

ed nucleus. The first level is at 49.5 keV(3) and the second at 162.5 

keV(3). Thus, concerning the inelastic scattering, the 144-keV neutrons 

cause only the scattering for the first level. The inelestic scattering 

consists of two different mechanisms. One is the compound nucleus forma-

tion and the other is the direct interaction. The experimental information 

obtained from the present measurements is analyzed in terms of the coupled-

channel calculation combined with the statistical-model calculation. 

     The angular distribution of the elastically-scattered neutrons at 144
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keV was also obtained in the measurement. The distribution is compared with 

the calculations which are mentioned in the discussion of the inelastic 

cross section. 

9.2 Experimental Method 

9.2.1 Facility 

    A versatile filtered-neutron beam facility has been installed at a beam 

port of the 10 MW  MURR(12). A Si filter, 208 cm in length and 2.54 cm in 

diameter, was used in these measurements. A 1 mm-thick plate of 10B acted 

as a thermal-neutron suppressor. Prior to the measurement, the beam char-

acteristics of the filtered neutrons were experimentally studied with a 

spherical hydrogen-gas counter of 3 atm. pressure and 4 cm diameter which 

was used in the measurement of the present scattering cross sections. The 

beam had a diameter of 3 cm (FWHM) and there was a negligible amount of 

neutrons outside a 5 cm circle. The neutron flux of the beam was approxi-

mately 6 x 104 n/cm2sec. Very little contamination of other energy 

neutrons was detected at energies higher than 144 keV. On the lower energy 

side, the contamination of 54-keV neutrons was about 8 % of the-144 keV 

neutrons. However, the 54-keV neutrons caused almost no problem in this 

measurement, as this energy is much lower than the 95 keV of inelastically-

scattered neutrons. 

9.2.2 Scattering Measurement 

   The scattering sample of Th was two metallic plates each 5.08 x 5.08 x 

0.318 cm3. Oxygen is the significant impurity in the metal by about 0 .15 

w/o. The sample and the spherical detector mentioned above were installed 

on a goniometer as shown in Fig.9-1. The filtered neutrons were collimated 

with a lead pre-collimator of 2.5 cm in diameter. The goniometer was moved 

around the axis as is indicated in the figure. The detector was fixed on 

the goniometer keeping its anode-wire parallel to the axis of the gonio-

meter to maintain the axial symmetry of the counting efficiency for scat-

tered neutrons. The sample was fixed on the axis at an angle of 60 degree 
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between the sample surface and the incident beam. Measurements were carried 

out at nine scattering angles from 30 to 150 degrees by a 15 degree incre-

ment. 

    With the arrangement  in Fig.9-1, the angular-dependent scattering cross 

sections were measured by unfolding the measured pulse-height spectrum. 

However, in order to reduce the time drift effect, the elastic and the 

inelastic cross sections were obtained from two series of separate runs, 

respectively. For elastically scattered neutrons, the distance was set 

at 15 cm so as to take adequate counts in a few hours at each scattering 

angle. For the inelastic-cross-section measurements, the distance was re-

duced to 9 cm to obtain adequate counts within 40 hours for each scattering 

angle. 

9.2.3 Background 

   The background counts in these measurements originated mainly from the 

air-scattered neutrons and from gamma-rays. The gamma-rays came both from 

the reactor and from the daughter nuclides of Th in the scattering sample. 

These introduced, however, only minor problems in subtraction of background 

as the pulse height of the gamma-rays was lower than that of neutrons in 

the energy region of interest. The background in the elastic-cross-section 

measurement was determined by a run with the Th sample removed. In the 

inelastic-cross-section measurement, elastically-scattered neutrons were,in 

a sense, one of the background components. This was simulated by replacing 

the Th-sample with a Pb-plate which has no inelastic scattering for 144-keV 

neutrons. 

9.2.4 Data Processing 

      The unfolding of the pulse-height spectrum to an energy spectrum was 

performed with a FORTRAN program written for use with a mini-computer. 

The formalism in the program is based on an unfolding program developed by 

Miller(13). The statistical error for the unfolded spectrum was estima-

ted by calculating for a typical case the statistical dispersion of many 

unfolded values for a train of short-time runs.
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    The multiple-scattering correction was performed with an analytical 

method developed for a thin plate sample assuming that i) collisions occur 

spatially uniformly inside the sample,ii) the flight direction is isotropic 

for the neutrons colliding two or more times, and iii) inelastic scattering 

is isotropic. 

9.3 Experimental Results 

9.3.1 Incident Neutrons 

   The energy spectrum of incident neutrons obtained by the unfolding pro-

cedure is shown with a solid line in Fig.9-2, where one may see two groups 

of monoenergetic neutrons. The energy scale for the hydrogen-gas counter 

was calibrated at the neutron energies of 144  + 0.5 and 54  +  0.5 keV 

which are the average energies of the calculated energy spectra using the 

total-cross-section data available in a time-of-flight transmission meas-

urement(14). The dotted line in the figure shows the spectrum calculated 

using the total cross section of Si and assuming the so-called " 1/E spec-

trum " for the source neutrons. The FWHM of the 144-keV neutrons is approx-

imately 15 keV. 

     The neutron cross sections of Th and the counting efficiency of the 

neutron detector vary with the neutron energy in the profile of the 144-keV 

neutrons. The effective energies for several experimental situations were 

calculated and, since these differed by no more than 1 keV, the 144 keV was 

employed as the quoted energy for this experiment. 

9.3.2 Inelastically-Scattered Neutrons 

     In Fig.9-3 are shown typical pulse-height spectra of the hydrogen-gas 

counter for the scattered neutrons at a scattering angle of 60 degree. The 

difference in the spectra of Th and Pb is more clearly shown in the central 

part of the figure by using a linear vertical scale. The difference between 

the shapes of these spectra comes from the inelastic scattering of Th. 

These spectra were unfolded and the results are shown in Fig.9-4, where the 

spectra are normalized at 144 keV. The thickness of the Pb-sample was 
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chosen to scatter approximately the same number of neutrons as the Th-

sample in order to make the experimental situation similar between Th and 

Pb. Subtracting the Pb-spectrum from that of Th gives the portion of the 

inelastically-scattered neutrons from Th. More precisely stated, the sub-

tracting spectrum is prepared as a superposition of two kinds of spectra: 

one is the Th-spectrum for  144-keV neutrons extrapolated down to lower 

energies and the other is the Th-spectrum for 54-keV neutrons extrapolated 

up to higher energies, along with the respective shapes of the Pb-spectra 

for 144- and 54-keV neutrons. The subtracting spectrum is shown as a dot-

dash-line in Fig.9-4. The gamma-ray and neutron background taken without 

the sample is also shown in the figure. Both the Th- and Pb-spectra contain 

the background and cancel each other in the subtracting procedure. 

   The inelastically-scattered portion of the spectrum is shown as a dotted 

line in Fig.9-4. The ratio of intensities between the elastically- and 

inelastically-scattered neutrons is obtained as the ratio of these respec-

tive spectra. 

9.3.3 Angular Distributions 

   The measurements at the nine scattering angles were repeated a few times 

in order to minimize the long-time drift effects caused by the impinging 

neutrons, the amplifier gain, so forth. The background was determined by a 

measurement without any sample. 

   Relative intensities of scattered neutrons at the nine scattering angles 

both before and after the multiple-scattering correction, are listed in 

the upper halves of the second and fourth columns in Table 9-1. 

    The lower halves of the second and the fourth columns in the table were 

obtained by combining the ratios of intensities between the elastically-

and inelastically-scattered neutrons and the angular dependence of the 

elastically-scattered neutrons. 

9.3.4 Normalization of the Cross Section 

    The sum of the elastic and inelastic cross sections were normalized to 

the total cross section minus the capture cross section in order to obtain
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the absolute value of the scattering cross sections. The value used for 

the total cross section was 11.8  + 0.1 barns which was obtained in this 

experiment by making a good-geometry transmission measurement. The total 

capture cross section is 0.18  + 0.017 barn adopted from reference(15) 

and the sum of the scattering cross sections are normalized to 11.62 + 

0.1 barns. The cross sections obtained are shown in the last column of 

Table 9-1 and in Fig.9-5. The angle-integrated inelastic cross section is 

0.74 + 0.05 barn. The uncertainty of this value is estimated in the next 

paragraph. 

9.3.5 Estimation of Uncertainties 

  The numbers in the parentheses in the second column of Table 9-1 are the 

uncertainties in the meaning of the standard deviations which consist main-

ly of the counting statistics, the reproducibility of measurements and the 

arbitrariness in the backgrounds. The uncertainties are statistical and 

are not correlated between those different scattering angles. 

    Another factor that causes uncertainties in the cross section values is 

in the multiple scattering correction procedure. For the inelastic cross 

section, this correction is approximately 25 %. An uncertainty of 5 % is 

imposed, without any rigorous estimation, on the inelastic cross section at 

each scattering angle. The uncertainties of the 5 % are thought to be 

fully correlated between scattering angles. The uncertainty which comes 

from the correction procedure for the impurities in the sample is so small 

that it may be neglected. 

   As for the systematic error in the unfolding procedure, the estimation 

of uncertainty is generally a difficult problem. There are fortunate fac-

tors, however, in this experiment. The response functions of the elas-

tically- and inelastically-scattered neutrons are similar each other . 

Moreover the response of 144-keV neutrons is given in the Pb-measurement . 

By considering these fortunate factors, the systematic error in the unfold-

ing can be neglected for the ratio between the numbers of the elastically-

and inelastically-scattered neutrons, which is the essential quantity to be 

measured in this experiment. 

     The spreads in scattering angles are about 10 and 16 degree for the
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elastic and inelastic scatterings respectively. These were estimated by 

taking into account the finite sizes of the detector and the neutron beam. 

   The uncertainty in the angle-integrated inelastic cross section is esti-

mated, by including the above-mentioned considerations, to be approximately 

7 %. 

9.4 Discussion 

    The angle-integrated inelastic-scattering cross section is compared in 

Fig.9-6 with other experimental data below 1 MeV. Also shown are three 

cross-section curves in the figure. The dotted curve is a calculated 

 result(5) using a combination of the optical model of a spherical nucleus 

and the Hauser-Feshbach statistical model(16) modified according to 

Moldauer(17) for the level-width fluctuations and resonance interference 

effects. The parameters used are found in reference (5). The calculation 

treats the inelastic scattering as a compound-nucleus-formation process 

only. In order to prepare the recommended values for the cross section in 

JENDL-2, Ohsawa(5), therefore, included the contribution of the direct-

scattering process by multipling the above-mentioned calculated values for 

the lowest three excited levels by respective correction factors. These 

correction factors ( 1.4 for the first level ) were determined by utilizing 

the experiment of McMurray(10). The evaluation is shown as a solid curve 

in Fig.6 and shows good agreement with the present measurement. The dot-

dash-line in the figure is the evaluated curve in INDC(RUM)-10(3), which 

was estimated as the difference between the evaluated total cross section 

and the other components in the evaluation. This evaluation is lower than 

the present measurement. 

     Figure 9-5 shows the present results of the angular-dependent elastic 

and inelastic cross sections, along with three kinds of calcuations. The 

group A curves in the figure are the evaluation of JENDL-2(5). The curve 

D stands for the statistical ( Moldauer ) model, and corresponds to the 

dotted curve in Fig.9-6. Evidently the calculation underestimates the 

inelastic scattering. Better fits to the data could not be obtained simply 

by varying the potential parameters of the spherical-optical-model within a 

reasonable range. Thus, calculations have been made to include the direct
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inelastic-scattering process by employing the coupled-channel  theory(18). 

Computer codes, JUPITOR-1(19) as rewritten at the Japan Atomic Energy 

Research Institute and ELIESE-3(20), were used in the calculation. The 

results are shown in Fig.9-5 with the curves labeled with B and C. The 

parameters used are from Lagrange(21) for group B, and from Haouat et 

al.(22) for group C. The experimental errors prevent the detailed dis-

cussion of the angular dependence of inelastic scattering. The angle 

integrated value of C agrees with the experiment, while that of B is lower. 

For the elastic scattering, A and C almost agree with the measurement, 

while B shows slight enhancement in the forward direction. 

    The present measurement shows that the experimental data of inelastic 

scattering at 144 keV can be reasonably explained by taking into account 

the direct interaction effect, and that the present elastic and inelastic 

data can be interpreted with the potential parameter set of Haouat et 

al.(22) which was obtained from analysis at higher energies ( 0.6 - 3.4 

MeV ) . 

9.5 Conclusion 

   The 144-keV Si-filtered beam at the 10-MW MURR has been used to measure 

the inelastic-scattering cross section of 232Th. The result is 0.74 + 

0.05 barn and first provided an experimental data below 250 keV . This 

value is in good agreement with the evaluation JENDL-2 and with a coupled-

channel calculation where the inelastic scattering through the direct-

exitation process of the collective rotational motion of a deformed nucleus 

is included as well as that through the compound-nucleus-formation process. 

 References: 

 1) Fujita, Y. et al.: To be published in J. Nucl. Sci . Technol. 

2) CINDA 82, IAEA, Vienna (1982). 

3) Vasiliu, G. et al.: INDC(RUM)-10, Nuclear Data Evaluation for Th-232 , 

   (1980). 

4) Meadows, J. et al.: ANL/NDM-35, (1978). 

5) Ohsawa, T., Ohta, M.: J. of Nucl. Sci. Technol., 18(6), 408 (1981) . 

                          ( 77 )



6) 

7)

8) 

9) 

10)

11) 

12) 

13) 

14) 

15) 

16) 

17) 

18) 

19) 

20) 

21) 

22)

Smith, A.B.: Phys. Rev., 126, 2, 718 (1962). 

 Glazkov. N.P.: At. Energy(USSR), 14, 900(1963); Soy. At. Energy, 

14, 405 (1964). 

Holmberg, M. et al.: Nucl. Phys., Al27, 149 (1969). 

Batchelor, R. et al.: ibid., 65, 236 (1965). 

McMurray, W.R. et al.: Proc. Int. Conf. Interactions of Neutrons with 

Nuclei, Lowell, p.1329 (1976). 

Tsang, F.Y., Brugger, R.M.: Nucl. Sci. Eng., 65, 70 (1978). 

idem: Nucl. Instr. Methods, 134, 441 (1976). 

Miller, W.H.: Nucl. Instr. Methods., 153, 535 (1978). 

Kobayashi, K. et al.: Annals of Nucl. Energy 4, 449 (1977). 

Kobayashi, K. et al.: J. of Nucl. Sci. Technol.,18(11), 823 (1981). 

Hauser, W., Feshbach, H.: Phys. Rev., 87, 2, 366 (1952). 

Moldauer, P.A.: Phys. Rev., 135, B622 (1964). 

Tamura, T.: Rev. Mod. Phys., 37, 679 (1965). 

Wakai, M. et al.: JAERI-memo-3833 (1969). 

Igarasi, S.: JAERI-1224 (1972). 

Lagrange, Ch.: JAERI-M-5984, p.58 (1975). 

Haouat, G. et al.: Nucl. Sci. Eng., 81, 491 (1982).

( 78 )



Collimated 

Si—filtered 
neutrons

 Goniometer

Scattering 

sample

e
Spherical 

counter

 Hz-gas

Fig. 9-1 Experimental arrangement for the scattering measurement.

L 
+i 
C 
7 

T 
H 
7 
H 
L 
rl 
.7 H 

m 

T 
co 
H 
m 
C 
N 

H 
N 
C. 

x 
7 
.-1 
w 

c 
0 H 

L 
7 
N 

Z

10

1

0.1
50

with a 

d with

Neutron

H2-gas 

 oross

100 

energy keV )

150

Fig. 9-2 Energy spectrum of the Si-filtered neutrons.

( 79 )



 II 
 0 

C m t 

u 

N 
N 
0. 

N 

C 7 

0 U

 4 

10

 3 
10

 2 

10

Fig.

 60

9-3

154 keV            Th 

           Pb

100

Responces 

neutrons

Magnified

   140 180 

Pulse height ( channel ) 

 of the hydrogen-gas 

scattered with the Th

220

counter 

and Pb

for 

samples.

Fig.

a 

,. 10 H 

m 
H 

A a 

a 

ao 

0 a m 

o. 

x 1 
C 

F 
0 

C 
m z

9-4

0.1
 50100 

               Neutron energy 

Unfolded energy spectra 

with Th(Th), Pb(Pb) and 

The dotted curve is the 

neutrons.

         150  

(  keV  ) 

of scattered neutrons 

without samples (NS). 

inelastically-scattered

( 80 )



 m 

 m 
H 
v 
L 
N 

la 

vd 
t.

4 U 
Ul 
N 

N 
N 
O 
1+ 
U

1.5

1.0

0.08 

0.07 

0.06 

0.05 

0.04 

0.03
 0

 i \,ss
,Iv

Inelastic

 45 

Scattering

90 

angle

   135 

( deg, lab )

180

Fig. 9-5 

Angular dependences 

cross section of232

of 

Th.

the scattering

A.: Ohsawa 81 ( JENDL-2 )5) 

B : Coupled-channel calculation with 

    parameters of Lagrange.21) 

C : Coupled-channel calculation with 

    parameters of Haouat et al.22) 
D : Statistical-model calculation.5)

c 

0 
O 

U 
N 
N 

N 
C 
0 

U

10

0.1

 ----Ohsawa  81 (JENDL-2)5) 

----- Ohsawa 81 (OM+Moldauer 

---INDC (RUM)-L0 803)

// 

/

 100 

Neutron

• 

0

/y

cal

ti

Smith 626) 

Glazkov 637) 

McMurray 7610) 

Present 
experiment

energy ( keV )

1000

Fig. 9-6 

Inelastic 

of 232Th

 scattering 

below 1 MeV.

cross section

( 81 )



Table 9-1 Experimental 

sections with

results of the elastic and the inelastic cross 

 the multiple—scattering correction factors.

Scattering Intensity  Multiple Multiple Cross sections

angle in of scattered scattering scattering obtained
lab. system neutrons correction .corrected (. barn/sterad )

(relative unit) factor intensity

Elastic scattering

30 269 (7) 1 .02 2714 1.211 (0.032)
145 260 (6) 1 .01 263 1.162 (0.027)
60 233 (5) 1 .01 235 1.038 (0.022)
75 204 (12) 1 .02 208 0.919 (0.054)
90 180 (11) 1 .06 191 0.844 (0.052)

105 176 (6) 0 .98 172 0.760 (0.026)
120 167 (5) 0 .94 157 0.6914 (0.021)
135 162 (7) 0 .91 1147 0.649 (0.028)
150 149 (7) 0 .89 133 0.588 (0.028)

Inelastic scattering

30 18.0 (1.8) 0 .73 13.1 0.0579 (0.006)
45 20.7 (2.1) 0 .74 15.3 0.0676 (0.007)
6o 16.9 (1.7) 0 .714 12.5 0.0552 (0.006)
75 17.0 (1.7) 0 .76 12.9 0.0570 (0.006)
90 17.9 (1.8) 0 .81 14.5 0.0641 (0.006)

105 17.4 (1.7) 0 .76 13.2 0.0583 (0.006)
120 18.2 (1.8) 0 .74 13.5 0.0596 (0.006)
135 17.3 (1.7) 0 .74 12.8 0.0566 (0.006)
150 16.2 (1.6) 0 .73 11.8 0.0521 (0.005)

 i) The cross sections in the last column are obtained by normalyzing 

    the angle-integrated scattering cross section to 11.62 barn. 

ii) Numbers in the parentheses are the estimated uncertainties, the 

    standard deviation, mainly consisting of the counting statistics, 

    the reproducibility of measurement, and the arbitrariness 

    in the subtraction of background.
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Chapter 10 Measurement of a Relationship between Doppler and Self-

             Shielding Effects in Th by 24-keV Fe-Filtered  Neutrons(1) 

10.1 Introduction 

    The Doppler effect in neutron cross sections is the broadening of the 

resonance shape of the cross section. The broadening is caused by the 

thermal motion of the target nuclei, depending on the relative velosities 

between the incoming neutrons and the target nuclei. Unless the target is 

infinitely thin, the neutrons penetrating into the inner part of the target 

are shielded by the outer part of the target itself, resulting in the 

change of the number and energy-spectrum of the neutrons. This effect is 

called as the self-shielding. In another view point, the change is taken 

as a change of the effective cross section with the target thickness. 

These two effects are mutually related if the resonance appears in the 

energy spread of the incoming neutrons, and play a significant role in 

reactor safety and control. The treatment of these effects is one of the 

fundamental problems in reactor physics. The knowledge of the structure of 

the cross sections and the thermal motion of nuclei is needed for the com-

putation of these factors. For neutronic computations, the cross sections 

in the unresolved energy range are often synthesized using an appropriate 

cross section formula, and a set of average resonance parameters and their 

statistical properties. For the thermal motion , the free-gas model is 
usually employed. Atomic binding effects are taken into consideration by 

adopting an effective temperature proposed by Lamb(2). 

   The apparent value of the total cross section depends on the thickness 

of the target, if it is measured with neutrons of energy spread wider than 

the resonance structure. The value is often called as " Effective Average 

Total Cross Section" and is abbreviated hereafter as EATCS or< (Jeff . 

The EATCS depends on the physical states of the target such as the tempera-

ture and the chemical form, since the resonance width is broadened by the 

thermal motion of the target nuclei. Bee(3) has proposed a scaling law 

between the Doppler and the self-shielding effects , which will be intro-
duced in the next section. Qualitatively Bee shows that EATCS decreases 

with increasing sample thickness, and increases with increasing sample 
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temperature. The scaling law predicts that there is a relationship between 

the thickness-  and temperature-dependences in EATCS under the condition of 

high temperature limit. He compared the prediction with the available 

experimental data in 238U. Not all the data satisfactorily agree with 

the prediction. 

  Tsang and Brugger installed an Fe-filtered-neutron facility at the 10 MW-

MURR(4), and used the neutrons for the EATCS measurements of Sn(5) and 
238U(6) i n order to study the chemical-form dependence of the Doppler 

effect. The filtered beam is intense and clean, and is effectively used 

for the precise measurement of EATCS in the good geometry transmission 

experiment. 

    The purpose of the present measurement is to first provide experimental 

data of the temperature dependence of EATCS for 232Th and more precisely 

verify the scaling law. The measurements were carried out using 24-keV 

Fe-filtered neutrons provided at the above-mentioned facility, varying the 

thickness, the temperature, and the chemical form of the sample. Thorium-

dioxide was used as a sample of a different chemical form. 

    Prior to the measurement, the beam quality of the Fe-filtered neutrons 

was carefully studied and improved by adding more S and Al as auxiliary 

filters. The study is described in Chapter 3. 

10.2 Scaling Law between Doppler and Self-Shielding Effects 

    For the discussions of the present study given in a following section, 

the scaling law expressed in terms of the temperature and thickness of a 

transmission sample is briefly introduced here following the paper of 

Bee(3). The resonance structure of a total cross section is described by 

the Breit-Wigner multi-level formula. If the conditions, ( level spacing ) 

>> ( Doppler width ) >> ( total width ), are fulfilled, the formula is ade-

quately approximated as 

                              Q           6
t-6t ,(10.1) 

2 Qt = (22, + 1) sin2 4)Qk2+6o/ exp (-Xr2,/ Rr)+ ar—F (Xr/sr) }(10.2) 
      rr71
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Here the total cross section is written as a sum of conponents with orbital 

angular momentum  k and resonance identifier r . The three terms in the 

right-hand side of Eq.(10.2) are the potential, resonance and interference 

cross sections, respectively. The notations in the equations are commonly 

used ones, some of which are as follows: 

4ff ao =---g J.Prn/rr- cos209, , the peak height of unbroadened resonance, 
      where 4 is the potential scattering phase shift; 

Xr = (2/I'r) x (E - Er) , where E is the neutron energy and Er is the 

      the resonance energy; 

Sr = 2A/ rr, where A is the Doppler width ( = ,J4 k 9 E m/M) 
and() is the effective temperature; 

ar = tan( 202 ), the coefficient of interference term, for which a more 

      detailed expression is given if the inclusion of the multi-level 

      effect are needed; 

F(2)= exp(-z2)Jzexp(t2)dt , Dawson's integral. 

The condition, ( Doppler width ) >> ( total width ), means the high temper-

ature limit and is practically fulfilled for Th above the room temperature. 

    The EATCS is defined as an apparent total cross section obtained from a 

transmission factor <T> averaged over the region of energy width W. The 

brackets mean the averaged value. The value <T> is written as follows: 

           <T> = < exp(- Nat) > = exp(-Nac) < exp(-N E ar)> • (10.3) 

Here N is the number of nuclei of target material in a unit area; a
c is 

the potential scattering cross section including the effect of distant 

levels; or is the resonance part of the cross section; the summation over r 

is performed for the resonances in the width W. 

    If the Doppler width is much less than the level spacing, the averaged 

transmission <T> is approximated as 

              <T> = exp( - Nag) x [ 1 -(1/W)E AE 1,(10 .4) 

where AE is the standard transmission area function, which is given by 
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                                         00 

                 AE=f{1-  exp(-Nar)} OE , (10.5)                                          00 

  rcoN aTT1 AE - A[1 - exp-{ ---------2rr(exp(-C2) + ar2F(0)1]dC • (10.6) 
 0oTr 

As Am VET , AE/N depends only on the variable vie in the high temperature 
limit, and then 

<T> = exp(-Na) i 1 - Nx f(N// )} . (10.7) 

As far as N xf is small, Eq.(10.7) can be replaced by 

<T> = exp { - N (Qc + f (N/,')) I(10.8) 

and the effective average total cross section or EATCS is simply 

                 <at > = 6
a + f(N// ).(10.9) 

If the resonances within the width W follow the Porter-Thomas distribution 

of neutron width, the EATCS is expressed as, 

eff'rr _ N Ornl <at >=+~26o prG(---------2A),(10.10) 

            fr ------------------------------- Iiwhere G()=Try4[1 - l/,/1 + 2VA{exp(-E2)+(2d/l/F)F()}(10.11)  CO 

and ao = 4 Tr g J / k2 , 

where p is the level density and rn is the average neutron width. 

Eqs.(10.9) and (10.10) show that the EATCS depends on a parameter N/76- 

and there is a scaling law between the sample thickness Nand the effective 

absolute temperature(). The EATCS expressed by Eq.(10.9) has no restriction 

on the number of resonances in taking the average. The value of EATCS 

fluctuates if the number is small, as a case of a Th-sample for Fe-filtered 

neutrons in this measurement, while the law holds irrespective of the fluc-

tuation. 
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10.3 Experimental Method 

     The experiments were carried out at a versatile filtered-neutron beam 

facility installed at the 10 MW MURR. The experimental arrangement is shown 

in Fig.10-1. 

10.3.1 Filtered Neutrons 

   The standard  Fe/Al filter used at the MURR consisted of 50.8 cm of Fe, 

20.3 an of Al and 5.1 cm of S, and a 1-mm thick 10B which suppressed the 

thermal neutrons. The study of the beam quality and the improvement are 

described in Chapter 3. 

    It is shown by a calculation using the total cross section data of the 

filter materials that the average energy of the beam is 24.0 + 0.1 keV 

and the width in energy is 1.2 keV (FWHM). 

10.3.2 Transmission Samples 

    Several metallic plates of 5.08 on square with two kinds of thickness, 

0.318 and 1.27 cm, were used for the Th samples. Samples from 0.318 to 

3.81 cm thickness obtained by piling up these plates were adopted for the 

self-shielding measurements at room temperature. Three of them, 1.27, 2.54 

and 3.81 cm, were used for the measurements of the temperature-dependence. 

The impurities which have the significant effect in the total cross section 

at 24 keV are 0, C and H whose contents are less than 3000, 1000, and 20 

ppm in weight, respectively. 

    For Th02,two discoid samples made of sintered dioxide were used. These 

were 5.08 cm in diameters, and 1.49 and 3.18 cm in thicknesses. The meas-

urements at room temperature were made for 1.49-, 3.18-, and 4.67-cm-thick 

samples, and for 3.18- and 4.67-cm-thick samples at the elevated tempera-

ture. The atomic ratio 0/Th was 2.00 + 0.01. 

10.3.3 Electric Furnace 

    The transmission sample was heated from room-temperature up to about 

                           ( 87 )



1170 K in an evacuated pipe of Inconel installed in an electric furnace. A 

thermo-couple of Chromel-Almel was used for the temperature measurement 

making contact with the sample. The temperature was raised and lowered 

very slowly,i.e. quasi-statically, imposing more than 10 h and by manual 

adjustment of the input electric power. The temperature showed a steady 

value within a few minutes of the counting period. It may be said that 

the thermo-couple indicated the correct sample temperature, even if the 

contact was imperfect, since consistent results were obtained between meas-

urements taken under the raising and lowering processes. 

10.3.4 Neutron and Gamma-Ray Counters 

     The incoming neutrons were monitored by a Cd-covered 3He proportional 

counter placed in the beam, and the transmitted neutrons were measured by a 

long-counter, i.e. a bundle of three BF3 counters installed in a paraffin 

moderator as shown in  Fig.10-1. 

   The change of the atomic density of the sample in a unit cross sectional 

area caused by the thermal expansion should be corrected using data(7) of 

linear thermal expansion coefficients. Reliability of the data was con-

firmed by a transmission measurement of the reactor gamma-rays by using 

two NaI (T1) detectors for the incident gamma-ray monitor and the gamma-ray 

transmission detector. Linear thermal expansion coefficients obtained are 

almost independent of temperature. They are 1.22 x 10-5(+2 %)/K and 

0.9 x 10-5(+5 %)/K for Th and Th02 respectively, and are satisfacto-

rily consitent with the data in Ref.(7). 

    Four pulse signals from the above mentioned detectors were accumulated 

in a multi-channel pulse height analyzer operating in the live-time mode; 

the correction was made automatically for counting-loss due to the dead 

time. 

10.4 Experimental Results 

10.4.1 EATCS at Room Temperature 

    Raw experimental data were normalized with the monitor counts and back-
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grounds were subtracted. The neutron and gamma-ray backgrounds were  meas-

ured by placing a thick polyethylene plate and a thick lead block in the 

neutron beam, respectively. The deduction of EATCS at room temperature was 

straight forward. The value of the total cross section of 0 was subtracted 

from the result for Th02 by adopting the value 3.736 + 0.02 barns(8) 

obtained by the study in Chater 6. The results for EATCS at room tempera-

ture are shown in Fig.10-2. 

   There are two kinas of uncertainty in EATCS of Th metal. The first one 

is of statistical nature - the reproducibility of the transmission measure-

ment including the statistics of counts and the error in the areal atomic 

density of the sample. The reproducibility is estimated to be about 0.15 

and the error in the areal density is about 0.3 to 0.4 %. The uncertainties 

in EATCS originated from these are about 0.4 to 0.5 % for overall samples 

with different thicknesses except 1.2 % for the thinest. The second kinds 

of uncertainties is one that comes from the correction procedure for the 

impurities, having the values from 0.9 to 1.3 %. Then the overall uncer-

tainty for EATCS is from 1.0 to 1.8 %, as shown as the experimental errors 

in Fig.10-2. These uncertainties are highly correlated between the data 

points since the latter type of uncertainty dominates. The dotted error 

bars in Fig.10-2 are the total errors, and the solid bars are those of the 

first type uncertainties. 

   For Th02 at room temperature, the uncertainties estimated in the simi-

lar way are in the range from 0.4 to 0.5 %. The value of the 0 cross sec-

tion should be subtracted from the EATCS of Th02 to obtain the EATCS of 

Th bound in Th02. The uncertainies of the 0 cross section and of the 

atomic ratio 0/Th increase the uncertainty of EATCS. The overall uncertain-

ty for the EATCS of Th bound in Th02 is about 0.9 %. 

10.4.2 Temperature Dependence of EATCS 

    In order to deduce the temperature dependence of EATCS, we use a rela-

tion between this quantity and percent changes of neutron and gamma-ray 

transmissions. The relation is derived in the following. 

    Transmissions of neutrons Pn(N,T) and gamma-rays p
g(N,T) at tempera-

ture T and thickness N(T) are written as follows: 
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 Pn(N,T) = exp( - N( a + A a ox) ),(10.12) 

Pg(N,T) = exp( - N( u + A u ox) ),,(10.13) 

where a and u are the Th cross sections of neutrons and photons respective-

ly; the suffix ox means the values for 0; the parameter A is zero for the 

metal and 2 for the oxide. 

        By taking into account that the values 0ox, u, Pox and A do not 

depend on temperature, the temperature dependence of EATCS for Th is ex-

pressed using Eqs. (10.12) and (10.13) as 

     ( du1 {(a + A a ) dPdP1
} 

               \dT 
                /a1 a`x) dT/l/Pg(dTn)lPn1 (10.14)                              (u + A µ 

                                                   ox 

   The percent change Aa(T,T 0)/ a(To) in a , caused by a temperature change 
from a reference temperature To to an elevated temperature T, is expressed 

from Eq.(10.14) using APn/Pn(To) and APg/Pg(To) - percent changes of trans-

missions for neutron and gamma-rays respectively - as 

                        1 ( a + Aa) 
1a(T,To) / 0(T0)=

asox  (+ Au)~/Pg                                          g(To)APn/Pn(T0)1 (10.15) 

N 

                                                      ox 

where N and a are quantities at room temperature, and APg is considered to 

be proportional to N. 

     The results of temperature dependence of EATCS are shown in Figs.10-3 

and 4 for Th and Th02 respectively. As for the experimental errors in 

the figures, almost all of systematic errors cancelled each other between 

room and elevated temperatures since the measurements were made relative to 

the room temperature. The dispersion of experimental points in the figures 

may be of a statistical nature, and roughly estimated systematic errors are 

shown in the figures as typical examples.

10.5 Discussion

   The first discussion is given for a comparison between EATCS obtained at 

room temperature, a theoretically calculated EATCS and two evaluated values 
(9,10) of the total cross section. The second one is given for the rela-
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tionship between the thickness and temperature dependences of EATCS: the 

verification of the scaling law which is the main purpose of this study. 

    For the first discussion, a typical set of average resonance parameters 

of Th is adopted from an evaluation work(11) and is shown in Table 10-1. 

The EATCS at room temperature is calculated using this parameter set and 

 Eq.(10.11) for the resonances having the Porter-Thomas distribution. The 

calculated EATCS is shown with the dotted curve in Fig.10-2. In the calcu-

lation, the effective temperature is taken to be equal to the real tempera-

ture T, since they are very close to each other in the case of Th metal 

above room temperature. Two evaluated total cross sections(9,10) corre-

sponding to an infinitely thin sample are also shown in Fig.10-2. The solid 

curve in Fig.10-2 is a fitting to the experiment of Th with a parabolic 

function of thickness. 

    An estimation is needed for the statistical fluctuation of EATCS in a 

limited energy band to make the above mentioned comparison. The expected 

number n of resonances in an energy band W is W/<D>; the ratio of W to the 

average level spacing <D>. Two formulas of the statistical properties of 

resonance parameters - Wigner and Porter-Thomas distributions - give that 

the sampling fluctuation of n isVO-727T7 and that of the accumulated reduced 

neutron width is 2/n, respectively. Then, the sampling fluctuation of the 

strength function is approximately /2.27/n.. The fluctuation mainly comes 

from that of the accumulated reduced neutron width. The width W is about 

1.2 keV (FWHM) in this experiment. The estimation of the fluctuation using 

the parameters in Table 10-1 and taking s-and p-waves into consideration 

shows that the averaged resonance cross section is 3.4 + 0.5 (14 %) barns 

for an infinitely thin sample. By increasing and decreasing the strength 

function by 14 %, two dot-dash-curves (A) and (B) of EATCS in Fig.10-2 are 

calclated by the same way as for the dotted curve in the figure . For large 
N( > 4 x 10-2 atoms per barn ), the experiment and the calculation ( the 

dotted curve ) differ by about two times of the fluctuation . For small N 

( < 2 x 10-2 atoms per barn ), the experiment mediates between the evalu-

ated total cross sections. However, a precise comparison is largely limited 

because of the fluctuation. There was an experiment(12) of EATCS of Th at 

room temperature. The data in the experiment is considerably larger than 

the present result. The author studied about the inconsistency and found
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no other explanation than the neglection of the correction of impurities in 

the sample used in the previous experiment. 

  Proceeding to the second discussion, it is stated again that the scaling 

law holds irrespective of the distribution of resonance widths. By using 

the  parameterN/T,the thickness dependence in Fig.10-2 and the temperature 

dependence in Figs.10-3 and 4 are compared in Fig.10-5. The solid curve in 

the Fig.10-5 is the same as in Fig.10-2. Experimental points in Figs.10-3 

and 4 are converted to the points in Fig.10-5 taking a reference tempera-

ture at 296 K. Fig.10-5 shows clearly the scaling law holds in the case of 

Th metal (upper). For the oxide (lower), the measured EATCS seems to be 

slightly less sensitive to the temperature change. The close comparison 

should not be made, since the solid curve is characteristic of the metal 

and not of the oxide. 

   A more precise comparison may be made by showing the predicted curves of 

the changes of EATCS with temperature in Figs.10-3 and 4. The temperature 

dependence is predicted using one of the curves in Fig.10-2, if one admits 

the scaling law. The predicted curves are shown in Figs.10-3 and 4. For 

the metal in Fig.10-3, the curves - the solid curve from the experiment and 

the dotted curve from the calculation - are close to the experimental data. 

    The effective temperature is introduced at this stage of discussion. 

The temperature 0 is expressed(13) by using the Debye temperature Odas 

             0 = T ( 1 + 0.050d/ T2 - ...).(10.17) 

The 0 d for Th metal is 163 K(14). For such a small Debye temperature, 

the difference of curves in Fig.10-3 is very small between adoptions of T 

and for the effective temperature. For the oxide, Od of 393 K(15)is 

adopted though the meaning of the Debye theory may not be so clear for a 

diatomic substance. The upper dotted curves in Fig.10-4 are the predicted 

temperature dependence adopting T, and the lower ones adopting 0 for the 

effective temperature respectively. The difference between two kinds of 

predictions is small at least above room temperature. The upper curves, 

considering the agreement between the experiment and the prediction for the 

metal shown in Fig.10-3, are close to the temperature dependences for metal 

samples having the same thicknesses of the respective oxide samples. Figure
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10-4 indicates, therefore, that the difference of the temperature depend-

ence between the metal and oxide is within the experimental confidence band 

of this  measurement. This experiment did not show any marked difference 

between Th and Th02 in both of the thickness and temperature dependences 

of EATCS, as seen in Figs. 10-2 and 10-4 respectively, though one experi-

ment(6) showed marked differences between U and U308. 

10.6 Conclusion 

• 

   The present study experimentally verified using Th-samples the theoreti-

cal prediction that the temperature and thickness dependences of EATCS are 

scaled by one parameter NfiTT in the high temperature limit , N being the 

thickness and 6 the effective temperature. The difference of EATCS between 

Th-metal and Th02 is small and within the error of this experiment at 

least above room temperature, though some dependence on atomic binding was 

expected. 
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Table 10-1 Evaluated values of the

for 232Th (11)
unresolved  resonance parameters

Quantity Evaluated Value

a (  fm ) 

<D(0,1/2)> 

<D(1,1/2)> 

<D(1,3/2)> 

<rg(1/2)> 

< rk1/2)> 

< rn(3/2)> 

< ry > 

So 

Si

( eV ) 

( eV ) 

( eV ) 

( meV ) 

( meV ) 

( meV ) 

( meV )

9. 

16 

16 

8. 

1. 

2. 

1. 

21 

0. 

1.

72 + 0.3 

.57 + 0.9 

.57 + 0.9 

285 

419 + 0.08 

4855 

24275 

. + 0.77 

8559 + 0.09 

5+0.4

x 

x

10 

10

-4 

-4

( 99 )



Chapter 11 Concluding Remarks 

   In order to meet the requirements of reliable neutron-cross-section data 

for the research and development of nuclear energy, this study has extended 

the application of filtered neutrons to precise measurements of neutron 

cross sections by making effective use of excellent characteristics - clean 

and intense - of the neutrons. The experiments in the main part were car-

ried out by employing a photo-neutron source with an electron linear accel-

erator. The other experiments were carried out using the reactor-based 

filtered neutrons. The  'subjects of the application were taken up with a 

view to show the capabilities of filtered neutrons for precise measurements 

and simultaneously to provide refined experimental data for several materi-

als mainly of technological importance. The conclusions obtained in the 

applications are summarized in the following items: 

(1) In order to provide relaible data for an optimal design of a Sc-filter, 

the neutron total cross section has been measured near the 2-keV cross-

section minimum using the time-of-flight method and the neutrons filtered 

with Sc itself. The minimum value of the cross section obtained is 0.21 

+ 0.03 barn, which is only one third of a recent measurement with the 

similar technique. The lower value of this study indicates that one may 

use a much thicker filter in a filtered-beam facility to reduce further the 

background in experiments. A trial of fitting the present result with the 

Breit-Wigner multi-level formula shows that the lower value is consistent 

with the dominant contribution of the spin-antiparallel interaction for 

thermal neutrons. 

(2) Silicon is another filter material whose cross section values near the 

minima are scarce. A similar measurement to that of Sc has been carried 

out for Si near the minima. The cross section near the 146-keV minimum is 

0.187 + 0.006 barn, which is much lower than - approximately 50 % of - 

the JENDL-2 evaluation. The measurement newly found another marked window 

near 53.5 keV which was not considered in the evaluation. The value is 

0.265 + 0.008 barn and this minimum should be also taken into considera-

tion in a filter design. 
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(3) An applicability study of the accelerator-based Fe-filtered beam tech-

nique has been carried out in a transmission measurement and has shown that 

the technique is intrinsically capable of yielding an accuracy of 0.1 %, 

which is considerably better than a typical value of about 1  % in this 

energy range and comparable to that achieved in precise measurements of 

thermal-neutron cross sections. Along with the feasibility study, the 

technique has been applied to the total cross sections of Be, C and 0, giv-

ing the data with an accuracy of approximately 0.2 %. The result for Be, 

5.903 + 0.011 barns, agrees with the ENDF/B-V value by 0.4 %, and 4.5 

larger than the JENDL-2 value. For C, the result obtained, 4.684  + 0.009 

barns, is larger than the evaluations by 0.7 to 1.2 %. For 0, the result, 

3.736 + 0.007 barns, is 1.6 % larger than the ENDF/B-III. 

(4) The accelerator-based Fe-filtered beam, which was shown to be capable 

of transmission measurements of a 0.1-% intrinsical accuracy, has been 

applied to the total cross section of the n-p interaction. The result is 

17.740 + 0.023 barns at the effective energy of 23.645 + 0.068 keV and 

provides a precise value in the keV region with an accracy comparable to 

that of the most precise experiments in other energy ranges. The value was 

used to discuss the empirical parameters used in the effective-range formu-

la of the n-p interaction. 

(5) The accelerator-based Fe-filtered beam has been applied to point cap-

ture cross-section measurements. The accuracy attained is about 5 % and 

is considerably better than the discrepancies which exist between the pre-

sently-available experimental data. It has been shown that this technique 

may be used as one of the effective techniques to settle the problem of the 

discrepancies between the existing data. The sample materials taken up for 

measurements are a fertile material 238U, a structural material 93Nb, 

and four nuclei of atomic-mass-numbers near those of fission products 
115In

, 127I, 165Ho and 181Ta. 

(6) The 144-keV Si-filtered beam at the 10-MW MURR has been used to measure 

the inelastic-scattering cross section of 232Th. The result is 0.74 +
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0.05 barn and first provided an experimental data below 250 keV. This 

value is in good agreement with the  evaluation JENDL-2 and with a coupled-

channel calculation where the inelastic scattering through the direct-

exitation process of the collective rotational motion of a deformed nucleus 

is included as well as that through the compound-nucleus-formation process. 

(7) The 24-keV Fe-filtered beam at the reactor has been applied to an ex-

perimental study of a relationship between the Doppler and self-shielding 

effects by measuring the effective average total cross sections of the Th-

metal and Th02. The present study experimentally verified the Bee's the-

oretical prediction that the temperature and thickness dependences of the 

EATCS are scaled by one parameterN/I inthe high temperature limit.Nbeing 

the thickness and 0 the effective temperature. The difference of EATCS 

between Th and Th02 is small and within the error of this experiment at 

least above room temperature, though some dependence on atomic binding was 

expected.

     General conclusions of this study and a few 

future applications of the filtered neutrons for 

measurements are summarized as follows:

recommendations for the 

 precise cross-section

(1) The study has shown that the filtered neutrons are capable of precise 

measurements of neutron cross sections in the keV range, where the means of 

neutron production are scarce, with precisions as high as those of the most 

precise measurements in other energy ranges. The experimental techniques 

applying filtered neutrons may be used to meet the technological require-

ments on more precise cross-section data. 

(2) The accelerator-based filtered neutrons with employing the time-of-

flight technique have been found to almost completely remove perplexing 

problems of the background in experiments. This leads to obtain a precise 

cross section. It is recommended to apply the filtered-neutron technique in 

parallel with the measurements of cross-section curves in order to normali-

ze the curves and improve the reliability of the absolute values. The 

technique is especially suited to the experiment with an electron linear

( 102 )



accelerator since the thick filter also reduces the gamma-flash disturbance 

to the detector system. The beam width is not necessarily short as the 

energy resolution is determined by the filter material. 

(3) Reactor-based filtered neutrons are intense and steady. However, much 

care is necessary in the removal and the subtraction of background since 

the time-of-flight technique can not be usually applied at reactors. The 

filtered neutrons at reactors are suited to measurements of a small change 

of cross sections such as. the temperature dependence, and to measurements 

where the intensity and steadiness of the neutrons are needed. 

(4) There are several possibilities of other filter materials than those 

used in this study. Applications of these materials are recommended for 

precise measurements at different energies. Seperated isotopes of an even-

even nucleus may have marked interference minima and the cross-section 

measurements of these materials are expected to extend the variety of fil-

ter materials. These filteres may be expensive; however, they also have 

other fields of application such as in a medical facility of the neutron 

therapy.
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