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                    Abstract 

    The effects of topography and subsurface irregularities in a two-dimensional 

elastic half-space for various types of incident seismic waves are investigated. For 

this purpose the author proposes the discrete wavenumber boundary element method, 

in which the direct boundary element method is combined with the discrete wave-

number Green functions. The validity of the method is successfully tested with 

the previous results. The method is then applied to the actual topography and 

subsurface irregularities where severe damage concentration was observed during 

the recent major earthquakes in order to scrutinize possible explanations for the 

damage concentration. 

    First the proposed method is fully described for both direct boundary element 

method and the discrete wavenumber Green functions. Analytical evaluation of 

the element integration is presented. As a result of these combination, efficiency 

in computation, flexibility for boundary configurations, and the accuracy and the 

stability of the solution are achieved. It is easy to extend the method to the three-

dimensional wave field. An economical technique of the Green function evaluation 

is also briefly mentioned. 

    Next the effects of surface irregularities in a two-dimensional half-space are 

studied for plane SH, SV, and P waves and a Rayleigh wave. The shapes of irreg-

ularities studied are cylindrical canyons and a ridge. The validity of the method is 

confirmed by comparing its results with published ones in frequency domain . The 

time histories of the surface motion are then calculated to understand the wave 

scattering phenomena for different types of incident waves. It is worth to note that 

in in-plane wave field Rayleigh waves carry significant portion of energy along the 

free-surface, but that in anti-plane wave field the direct and reflected waves play 

a major role. Also the author points out the importance of time-domain solution 

which provide us a complete picture of complicated physical process of wave scat-

tering. 

    Then the DWBEM is applied to the actual ground problem in which heavy 

damage concentration was observed during the Whittier Narrows , California  earth-
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quake of 1987. It is intended to show the possibility that this anomalous damage 
concentration is due to the amplification by the topographic irregularity when SV 

waves are near-critical incidence. The author calculates the response of a two-

dimensional hill with the height 0.3 km and the width 2.4 km to i) a plane SV wave 

with a nearly critical angle of incidence, ii) a horizontal line force, iii) a Haskell-

type 2D dislocation source, and iv) a Bouchon-type 2D multiple crack source. The 

results show that the amplification due to the  hill relative to the fiat surface is 

more than 1.5 for all four sources. Since this amplification is nearly independent 

of the source type and spectrum, it is concluded that the combined effect of the 

topographic irregularity and critically incident SV waves might be responsible for 

the concentration of damage observed during the Whittier Narrows earthquake. 

    Finally responses of soft basins are studied to understand the cause of very 

long duration observed in Mexico City during Michoacan, Mexico earthquake of 

1985. First the author shows that the normal amplification effect of soft surface 

layers cannot explain the large spectral amplification observed in Mexico City and 

that such large amplification is due to the later part of the observed seismogram 

which is very difficult to simulate. To see the effects of a deep basin structure two 

types of soft basin models that reflect the underground structure of Mexico City are 

considered. In either cases it is found that Love waves in anti-plane field or Rayleigh 

waves in in-plane field are generated at the edges of the basin and propagate back 

and forth inside the basin. Special amplification phenomena is observed in case 

of SV wave incidence with the critical angle. These deep basin models can create 

a later part of 20 seconds at most, whose amplitude is monotonically decreasing. 

The author tries further to prolong the duration by introducing another softer layer 

inside the basin. As a result of interaction between the deep basin and the soft 

surface layer, we have a later part of more than 80 seconds with large amplitude well 

separated from the main part. The author discusses the capability and limitations 

of the proposed model as a candidate that might cause the severe damage in Mexico 

City. 

    As a conclusion it is proved that the proposed method is powerful enough 

to solve various kinds of seismic wave scattering problems with topography and 

subsurface irregularities for various kinds of incident waves. From the results of
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simulation analyses it is found that the geological settings around or underneath 

the sites might be responsible for the observed damage concentration. It should 

be emphasized that topographic or subsurface irregularities affect the responses in 

such a way that they not only amplify the response at certain frequencies but also 

prolong its duration. The latter effects cannot be overemphasized because of its im-

portance to the nonlinear response of structures and hence to the structural damage 

in future earthquakes. It is concluded that the precise information on the geological 

structures of ground is crucial for the quantitative simulation of observed records 

and the definitive prediction for design-basis strong ground motions. Therefore the 

author recommends not only to proceed further the current programs of observation 

network scattered throughout the soft basin but also to gather information further 

on the geological structures of ground underneath as wide and deep as possible for 

the seismic hazard mitigation in future.
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Chapter 1

 Introduction

1.1 Objectives and scope

    The correlation between the local geological characteristics and the severity 

of damage has been clearly observed in most of the earthquakes in the past. Re-

searchers have been trying to establish quantitative relationship between certain 

geological parameters such as soil types or shear wave velocity of the surface layer 

and strength of the ground motion such as amplification factor or response spectra 

by which we can predict the expected input motion to the structure at a certain 

site and hence we can estimate potential damages for future earthquakes. However, 

their attempt has been mostly limited to the flat layer assumption. It usually works 

as far as the predominant frequency of the input motion is a primary concern. But 

it fails to capture the real physical process of seismic wave propagation generated 

by the laterally varying geological structures in the ground, in which complex wave 

reflection, refraction and diffraction are taking place. The effect of such surface and 

subsurface irregularities on the seismic response have been recognized recently from 

the observation of damage concentrated areas in several earthquakes. 

    One extreme example appeared in Mexico City during the Michoacan, Mexico 

earthquake 1985: in the soft-soil zone more than five hundreds of buildings collapsed 

while in the hill zone no buildings were damaged. It is of no doubt that the soft, 

lacstrine layers which covers the whole city except for the hill zone amplified the 

seismic waves considerably so that the maximum acceleration and velocity exceeded 

the limit of the structural resistance capacity. However, the strong motion record 

obtained during the earthquake showed another extraordinary feature. The dura-

tion of one station was more than three minutes and others on the lacstrine layers 

were also significantly longer than those on the hill. This long duration might also 

contribute the severe damages in the soft-soil zone since nonlinear deformation of
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structures would be accumulated more and more as the input ground motion lasts 

longer. Several researchers have tried to explain what caused this long duration, 

but no one seems to succeed so far. As described in the next section, the previous 

methods of analysis may not be sufficient to study this long duration time of records 

observed in Mexico City because they lack the capability to calculate a very long 

time history with sufficient accuracy for arbitrary shape of irregularity. 

    Another example was obtained by the Whittier Narrow earthquake occurred 

on October 1, 1987 in Whittier, California. In this earthquake the damaged build-

ings and houses were concentrated to the small areas located several kilometers 

away from the epicenter. The most curious observation is that only the hillside area 

in Whittier was suffered from severe damages. This is extraordinary since usually 

hillside area is considered as the place where the level of the ground motion is lower 

than hilltop area or flat part with soft sediments. The difficulty of simulation in 

this Whittier case is not due to the long duration but the short predominant period 

of strong motion observed in the epicentral area. 

    Major purpose of this thesis is first to provide the method powerful enough 

to analyze various types of irregular structures in the ground for various types of 

incident waves both in time and frequency domain and then to study the wave 

scattering phenomena due to surface topography and lateral inhomogeneities of the 

ground by using the proposed method in order to scrutinize the possible causes of 
the extraordinary feature observed in the actual destructive earthquakes. 

1.2 Review 

    In recent years, the effect of topography and subsurface inhomogeneities on the 

seismic response have been recognized widely as an important factor and extensive 

theoretical and experimental works have been carried out on the subject. So far, 
however, the clear delineation of such effects on the observed records have not been 

demonstrated, and theoretical works still occupy a main portion of these studies. 
    A pioneering work of such theoretical studies was done by Aki and  Larner 

(1970), who proposed a practical method using discrete wavenumber representation 
of wave field under the so-called Rayleigh assumption. Trifunac (1971) presented the
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exact solution for a semicircular alluvial valley subject to incident SH waves by using 

a Hankel function expansion. Both of these methods found wide applicability as 

evidenced by follow-up works carried out since then (e.g., for the Aki-Larner method, 

Bouchon, 1973; Bard and Bouchon, 1980a, 1980b; Bard, 1982; Bard and Bouchon, 

1985; Kohketsu, 1987; and for the eigenfunction expansion method, Trifunac, 1973; 

Wong and Trifunac, 1974; Lee, 1982). However, these methods have well-known 

limitations, namely the Rayleigh ansatz error for the former and the restricted 

geometry of eigenfunctions for the latter. 
    Numerical techniques such as finite difference or finite element can represent 

unrestricted boundary configurations (e.g., Boore, 1970; Boore et al., 1971; Boore, 

1972; Drake, 1972;  Ilan, 1977; Fuyuki and Matsumoto, 1980; Boore et al., 1981; 

Ohtsuki and Harumi, 1983). However, one of the shortcomings of these methods is 

the bounded region of analysis. In order to avoid the influence of reflected waves 

at the artificial boundary, it becomes necessary to model a large region of the 

ground around an irregular part. This is expensive in terms of computational time, 
especially for the analysis of a large irregularity over a wide range of frequency and 

duration time. 

    Another method to solve the problem of surface or subsurface irregularities is 

the so-called ray method. A very simple example is the study on a dipping layer 

with fixed slope done by Ishii and Ellis (1970) who neglected the diffracted waves. 

After the development of more rigorous techniques such as the glorified optics or the 

Gaussian beam, their applications to the irregular ground have emerged (e.g., Hong 

and Helmberger, 1978; Nowack and Aki, 1984; Moczo et al., 1987). Although these 

methods use approximations valid only in high frequency range, surprisingly good 

agreement with the results obtained by other method in relatively low frequency 

input is reported. Recently Benites and Aki (1989) developed a new method which 

uses the Gaussian beam in a different fashion, that is, to calculate the Green function 

in the boundary integral equation method. Since the numbers of multi-reflected rays 

grow explosively in the usual ray methods as time goes by, their approach may be 
advantageous in such a case. 

    To describe outgoing waves through an infinite body correctly, the Boundary 

Integral Equation Method (BIEM) is more suitable because it satisfies the radiation
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condition implicitly. The first application of BIEM to the irregular ground analysis 

was done by Wong and Jennings (1975), who used the formulation proposed by Ba-

naugh and Goldsmith (1963) to obtain the response of a canyon with an arbitrary 

shape. Since then a number of authors have investigated the effects of irregularities 

by using different types of integral equations and their numerical treatments (e.g., 

Kobori and Shinozaki, 1978;  Sanchez-Sesma, 1978; Wong, 1979; Sanchez-Sesma and 

Esquivel, 1979; Dravinski, 1982; Wong, 1982; Sanchez-Sesma et al., 1985; Dravin-

ski and Mossessian, 1987). The author also applied the direct Boundary Element 

Method (BEM) to the subsurface inhomogeneity problems (Kawase et al., 1982; 

Kawase et al., 1985; Fukushima and Kawase, 1986; Kawase, 1987). The advantage 

of the direct BEM over the indirect BIEM is its excellent applicability and reliability 

without much precautions, since it expresses the boundary values directly through 

the Green function. 

    The biggest disadvantage of BIEM and BEM is the time-consuming effort to 

evaluate the Green function for a half-space since it cannot be expressed in a simple 

form except for the anti-plane case. The easiest way to overcome this difficulty 

is to use the Green function of an unbounded medium and to express the free-

surface condition by using additional boundary elements. The problem with this 

alternative lies in the reliability of its results without pre-study, because the required 
size of the surface to simulate a half-space depends upon the frequency, the shape of 

irregularity, and the type of incident wave. This problem requires careful scrutiny. 
    The Green function for a half-space in frequency domain can be expressed in 

the form of an infinite integral with respect to the horizontal wavenumber. Most 

previous researchers who analyzed in-plane problems used this type of formulation 

(e.g., Wong, 1979, 1982; Dravinski 1982; Dravinski and Mossessian, 1987). How-
ever, in the process of the simulation for synthetic seismograms, Bouchon and Aki 
(1977) have shown that such infinite integrals can be transformed into infinite sums 
over discrete wavenumbers under the assumption of periodicity . As a result of this 

transformation, the evaluation of the Green function becomes much easier . The 

effect of adjacent fictitious sources can be eliminated using complex frequency and 

the corresponding time window correction as described in their paper . 

    In this thesis the author proposes the Discrete Wavenumber Boundary El-
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ement Method (DWBEM) in which the direct BEM is combined with the dis-

crete wavenumber Green function evaluated as infinite sums. The advantage of 

this method is its efficiency in computation and flexibility for boundary configura-

tions. Moreover exact term-by-term evaluation is used for the element integrations 

which may contain singularity in the integrand. As a result, both the accuracy 

and the stability of the solution, especially in high frequency range, are assured. 

Because of its computational efficiency, accuracy, and stability for wide frequency 

range it becomes possible to calculate synthetic seismograms on the surface of to-

pography or sediment-filled valley for very high frequency input-motions or for very 
long duration, as proved later in Chapters 3 to 5. 

    As one of the applications of the discrete wavenumber method, Bouchon (1985) 

and Campillo and Bouchon (1985) have proposed a method which can be considered 

as a kind of BIEM and looks very efficient. However, their method cannot treat steep 

boundaries without losing efficiency as shown by Bouchon (1985) for a semicircular 

canyon, because it discretizes the boundary in the horizontal direction with equal-

sized elements, not along the boundary itself with variable-sized elements as in the 

DWBEM. The DWBEM allows us to discretize the boundaries of arbitrary shapes 

by the elements of arbitrary sizes as far as our computer resource permits. 

    As for the simulation analyses where a comparison of the calculated ground 

motions with the observed data is made, we only have several papers so far. Among 

them successful examples are rare. 

    Recently, Geli et al. (1988) made a review on the effect of ridges comparing 

observed data obtained by Davis and West (1973), Griffith and Bollinger (1979), 

and Tucker et al. (1984) with theoretical results calculated by Boore (1972), Smith 

(1975), Sills (1978), Bard (1982), and Zahradnik and Urban (1984). They found that 
the large amplification observed at some ridge crests is too large to be attributed 

to the simple topography effect considered in the simulation. As a possible cause 

of the discrepancy Bard and Tucker (1985) and Geli et al. (1988) suggested the 

combined effects of the topography with the low velocity layers and adjacent ridges, 

however, the simulation results in which these effects were taken into account still 

showed smaller amplification than the observed. 

    On the effect of a sediment-filled valley, Bard and Tucker (1987) made a corn-
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parison of theory and observation for the Chusal Valley, Garm, USSR. The trans-
verse component of the velocity seismograms observed along the line perpendicular 

to the major axis of the valley showed in-phase motion and maximum amplitude at 

the valley center, which can be simulated by the theory. Another example of good 

agreement between observed and calculated motions was obtained by Ohtsuki et  al. 

(1984) and Fukuwa et al. (1985) for the same very low velocity sediment-filled valley 
developed as a riverbed in Fujisawa City, Japan. The agreement is quite satisfactory 

both for time-histories and spectra of acceleration or displacement. However, both 

these two good examples are the case of a small-size valley whose lateral extent is 

the order of 100 meters. Also the velocity contrast between soft surface layers and 

the bedrock is relatively large. As a result the coherent motion inside the valley will 

be well developed (Bard and Bouchon, 1985), which makes the simulation easier. 

    For larger basin problems the quantitative simulation becomes much more 

difficult because

1. 

2.

3. 

4. 

5.

the observation network should be of large scale, 

the geological structure beneath the surface should be collected in the large 

scale, 

the incident wave type should be identified, 

the incident wave motion should be defined correctly, 

and the effects of source and path should be taken into account if the basin is 

in the near-field.

Recently, in consequence of the development of powerful computers , the simulation 

of large basin responses have been tried by a couple of researchers . Remarkably 

successful result is presented by Vidale and Helmberger (1988) who used a 2D finite 

difference method combined with the decomposed 3D point source to obtain the 

responses of the San Fernando Valley and Los Angeles Basin for the 1971 San 

Fernando earthquake. One important fact that should be noted to evaluate their 

results is that they used the deconvoluted source-time function and amplitude using 

one observation point at Santa Monica Mountains as a control point . 

    Another simulation using 2D finite difference method is done by Yamanaka et 

al. (1989) who calculate the displacement at Tokyo JMA station for the 1984 western
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Nagano earthquake by the velocity model determined by the seismic refraction 

survey. Also Sato (1989) shows satisfactory result for the Osaka basin by using the 

thin layer element method. The above two papers compare the observed records 

at only one station in the basin so that it is still a question to answer whether 

the surface waves were developed and propagated inside the basin as those in the 

synthetics.

1.3 Organization 

    The main body of this study is organized in four chapters. Figure 1.1 shows 

conceptual flow of the study. The method proposed here, the DWBEM, is efficient 

in computation and accurate even at very high frequency so that the application 

becomes possible to the actual ground with the surface or subsurface irregularities 

where heavy damage concentration was observed during major earthquakes. 

    In Chapter 2, the method of analysis is fully described for both two and 

three dimensional wave field, though the numerical results presented in this thesis 

are limited to the two dimensional one. The analytical evaluation of the element 

integration is also described. The economical way to calculate the Green function 

by using the idea of the Hilbert transform is briefly shown. 

    In Chapter 3, first the validity of the proposed method is presented. Then 

the responses of canyons and a ridge in time domain are shown to understand the 

fundamental feature of the scattering phenomena by the topographic irregularities. 

The assumed incident waves are plane SH, SV, and P waves and a Rayleigh wave. 

The shape of irregularities considered here is very simple, however, we can learn 

a great deal from comparing the time domain responses due to different incident 

waves. A statement of caution on the interpretation of the spectral amplitude 

distribution often discussed in the literature is given. 

    In Chapter 4, the method is applied to the actual ground topography in or-

der to explain the extraordinary damage concentration along the Puente Hills in 

Whittier during the Whittier Narrows, California earthquake of 1987. First the 

observed records are examined to find how we can use them. The nearest station to 

downtown Whittier where heaviest damage was concentrated is the station at 7215
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Bright Ave. in Whittier. To find out the influence of a ten-story reinforced concrete 

building on the basement response, the system function analysis is made. Then 

the principal directions of observed records at twelve stations are compared with 

those of synthetics  calculated by a simple fault model. A remarkable agreement 

between theory and observation suggests a relatively simple fault process. It also 

supports the hypothesis of SV wave dominance in Whittier. Next the response of a 

small hill whose geometry is taken from the actual geometry of Puente Hills which 

lies in the north of downtown Whittier. The sources assumed here are a plane SV 

wave, a horizontal line force, a Haskell-type fault, and a Bouchon-type fault. The 

time-domain responses as well as the peak amplitude distributions are shown for 

four different sources. A discussion on the other possible explanations is made at 

the end. 

    In Chapter 5, the method is applied to the large scale sediment-filled valley 

to explain the very long duration observed in Mexico City during the Michoacan, 

Mexico earthquake of 1985. First the incapability of 1D models to reproduce the 

later phases observed at the stations on the soft surface layer is presented. Then a 

deep basin structure is modeled whose material property is determined from avail-

able information on the Mexico City sediment. Since the size of irregularity is large 

and the duration of motion is long, the improved version of the DWBEM is used for 

more efficient computation. The incident wave considered here is plane SH, SV, and 

P waves and a Rayleigh wave with the shape of a Ricker wavelet for several different 

characteristic frequencies. A statement of caution on the length of the periodicity in 

the in-plane analysis is made. Finally a deep basin structure with a shallow surface 

layer is constructed to generate longer duration with larger amplitude. A discussion 

on the capability and the limitations of the proposed structure is made at the end . 

    In Chapter 6, the author summarizes the entire work and then makes his 

conclusion including the suggestion on the direction for further study on the subject .
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Theory
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    Study a small hill in the near-field (Ch. 4)

Application to the 1985 Michoacan, Mexico earthquake 

 Study a sediment-filled basin in the far-field (Ch. 5)

Figure 1.1: Conceptual flow of the study 
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Chapter 2 

Method of Analysis 

2.1 Description of the problem 

    Consider a general three-dimensional homogeneous isotropic elastic medium 

subject to a harmonic excitation of an incident wave. The coordinates used in this 

thesis are shown in Figure 2.1. 

    In this chapter the author introduces the Discrete Wavenumber Boundary 

Element Method (DWBEM) in which the direct BEM is combined with the discrete 

wavenumber Green function (Kawase, 1988). The advantage of this method is its 

efficiency in computation and flexibility for boundary configurations. 

    First the fundamental equations of BEM will be shown using the representa-

tion theorem. Then the Green function for full- and half-spaces in two and three 

dimensional wave fields by the discrete wavenumber method will be summarized. 

Most of the procedure to find the Green function follows the work done by Bouchon 

and Aki (1977). Analytical evaluation scheme of the element integration is also 

presented. 

2.2 Direct boundary element method 

    First the fundamental equations of direct boundary element method will be 

shown using a representation theorem (Aki and Richards, 1980). Although these 

formulations can be found in earlier studies (e.g., Brebbia, 1978; Kawase et  al., 

1982), they are shown for a complete description of the method used here. 

    The representation theorem for a general three-dimensional medium with the 

implicit time dependence eiwt (i = and w a circular frequency) is, 

u'(x*)    G''(x;x*)' fi(x)dV
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X2  X1

X3

Fig ure 2.1 : The system coordinates used in the analysis.

+ Jj{G(x  ;x) • t(x,n) - Hixn;x*) u(x)} dS. (2.1) 
                   where, ui(x*) is i-th component of displacement at an arbitrary point x*, fi(x) 

is j-th component of a body-force at x, u3(x) and t3(x, n) are j-th component of 

displacement and traction on the boundary S, Gii(x ; x*) and IIji(x, n ; x*) are the 

j-th components of the displacement and traction at x due to a point force in the 
i-th direction at x*, and n is a unit outward normal of the boundary S. Neglecting a 

body-force term equation (2.1) yields the fundamental equation of boundary integral 

representation as 

Jj{ci(x u(x*) =;x*) t3(x, n) — H3i(x,n;x*) •u3(x)}dS. (2.2) 
    In the direct BEM formulation, we need the expression in which a point x* 

lies on the boundary S. This can be obtained by considering the limit x* -+ x as 

    C • ui(x*) = JJ {G1(x ; x*) • t3(x, n) — H3i(x,n;x*) • ui(x)} dS, (2.3) 
where, C is a constant determined by the boundary shape around x* and equal to 

1/2 in case of a smooth boundary. This equation shows that the boundary values are

11



directly related to each other through the Green function. Note that the integration 

contains a singularity in  Gii(x ; x*) . 

    To solve this equation for arbitrary boundary shape and conditions, the dis-

cretization of both boundary shape and boundary values uj(x) and tj(x, n) should 

be introduced in the same manner as the finite element method (Brebbia, 1978). 

The simplest boundary element is a constant-value element with fixed slope, which 

allows to express the integral equation by means of 

M _M_ 
    C•ui(Xn) = EGji(m;xn) • tj(Xm) — EHji(m;xn) • uj(Xm).(2.4) 

    m=1m=1 

In this equation M is the total number of elements, xn is the center of the n-

th element, and Gji(m;x,) and Hji(m;xn) are the element integrations over the 

surface of the m-th element Sm expressed as 
Gji(m;xn) = JjGi(x;xn)dsm(2.5) 
                     rr               Hji(m;x,i) = JJ Hji(x,n;xn)dsm.(2.6) 

                                    Sm 

By combining equations for different n we obtain the final simultaneous linear equa-

tion to be solved for the unknown boundary values. Then displacements at any point 

in the medium can be calculated by the discretized form of equation (2.2). 

    Consider next the problem with an incident wave (Figure 2.2a). Denoting the 

incoming wave field as uin and the wave field scattered by the irregularity S as us`, 

total wave field u is 

u=u'n-f-us°•(2.7) 

In case of a half-space problem the incoming wave field uin means the incident wave 

field plus the reflected wave field at the free-surface. In case of a full-space problem 

or a surface-wave incidence, the incoming wave field means simply the incident wave 

field. 

    Since equation (2.3) can be applied to the wave field use in the region outside 

of the boundary S (Figure 2.2b), we have 

   C uisc(x*) = Jj{Gj1(x ; x*) • tjsc(x, n) — Hji(x, n ; x*) • ulc(x)} dS . (2.8)
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 u  ' xl 

                                                                Scattered waves 

              An incident wave x3 A reflected wave 

                         (a) A boundary value problem with an incoming wave 

I I 
                                                    / xl 

use 
                                                                Scattered waves 

x3 

                          (b) Scattered wave field due to boundary conditions 

/ — — .• // 
            \ / 

              An incident wavex3A reflected wave 

(C) An incoming wave field 

Figure 2.2: The conceptual schemes for an incident wave analysis. The 
boundary value problem with an incoming wave (a) can be considered as 

scattered wave field (b) and an incoming wave field (c). A problem of 

half-space is taken as an example. 
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On the other hand, the incoming wave field should satisfy the equation 

 C(-).uttn(x*) = Jj{G3i(x ; x) .t](x, n(—)) — H32(x, ; x) .u(x)} dS, (2.9) 
because it should satisfy the equation of motion and therefore the boundary values 

u m(x) and t i"(x, n(—)) should satisfy the boundary integral equation for the area 

enclosed by the boundary S (Figure 2.2c). Since the outward normal of this en-

closed area n(—) is opposite to the original n, traction components in the integrand 

tit"(x, n(—)) and HHi(x, n(—) ; x*) should be —tai"(x, n) and —Hji(x, n ; x*). For the 

same reason a constant C(—) should be (1 — C). 

    From these two equations and equation (2.7) we obtain the BEM equation for 

an incident wave analysis in the following simple form 
     C •ni(X*) = Jj{G(x ; x*) • ti(x, n) — H;i(x,n;x*) uj(x)} dS 

~- uit"(x*) .(2.10) 

This equation shows that the displacement distribution along the boundary uit"(x*) 

is enough to solve any kind of incident wave problems. After obtaining all the 

unknown boundary values, however, we also need the traction distribution along 

the boundary tit"(x*, n) to calculate the response at an arbitrary point because the 

integral equation for the scattering wave field should be used: 

                     ui(x*) = [G;i(X; x*) • {tj(x, n) - tit"(x, n)} 

-H;i(x, n; x*) • {ui(x) - uit"(x)}] dS 

+ uit"(X*) .(2.11) 

    If other regions exist whose material properties are different from the exterior 

region, as is the case of a sediment-filled valley, the problem can be solved by 

combining the boundary integral equation for the exterior region with those for 

interior regions using the continuity condition of displacements and tractions. For 

example, in case that two homogeneous media are fully welded together along the 

whole boundary S as shown in Figure 2.3, we have the following BEM equation for 

the interior region (medium 1) 

CH • ut(1)(x*) Jj{G1)(x ; xt) • t3(1)(x, ne)) — Hi2.(1)(x, n" ; x*) • u3.(1)(x)} dS , 
                                                  (2.12) 
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 D^adiunul
m

=

Medium2

 X1

   An incoming wave fieldx3 

Figure 2.3: A problem of two coupled regions with an incident wave. The interior region 

1 enclosed by the boundary S has different material properties from the exterior region 2 

surrounding the boundary S. 

and for the surrounding region (medium 2) 

  C • u:(2)(x*) = Jj{Gj2)(x ; x) • tj(~)(x,n) — H.(2)(x,n;x*) • u~2)(x)} dS 
+ u2mn(x*) ,(2.13) 

where, the superscript (m) (m = 1, 2) denotes the medium number. Equations (2.12) 

and (2.13) are combined using the continuity conditions 

                   [uj(1)(x) =u3(2)(X)             tj(1)(x, n(-))[=—tj(1'(X, n)J=—tj(2'(x, n)(2.14) 
along the boundary S. 

2.3 The 2D discrete wavenumber Green function 

    Here the two-dimensional Green function for full- and half-spaces formulated 

by the discrete wavenumber method will be summarized. Most of the procedure to 

find the solutions follows the work done by Bouchon and Aki (1977). As stated by 

them, the solutions described here are the discrete version of those obtained first 

by Lamb (1904) for a surface line force. 
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    In the in-plane (plane-strain) field it is convenient to express the wave field in 

terms of the compressional and rotational potentials  q5 and with which displace-

ments can be obtained as follows: 

                   ac5a~ 
u1=- 

                           ex'Ox3 

U3 = a- + aw(2.15)                               a
x3 axl 

The potentials due to a line source Qie'"t at a point (xi*, x3) in an unbounded 

medium are, 

            = 4Q1 r°°ve-Ivix3-x3Ie-'k(~'-21•)dk                2N f °° 

           = 4Q12 r~-sgn(x3 - x3)e-'l'Ix3-x3I e-ik(xl-xi)dk, (2.16) J-°° 

for x1-direction loading and 

            =Q3 Jsgn(x3 -x3)e-ivlx3-x31e-ik(x1-xi)dk 
       47rk2µ 

         7,b3  =Q3 r°° _e—i71x3—r3.Ie—'k(x'—xl•)dk,(2.17) 
                 47rk02µJ-cc'y 

for x3-direction loading. In these equations k is the horizontal wavenumber, it is 

the shear modulus, and 

                  v = (ka2 - k2)1/2 Im v < 0 

,y= (kR2-k2)1/2 Im y< 0 

                  kc, = w/a kR = 4/3, (2.18) 

where a and /3 are the P and S wave velocities, respectively. The time factor e'"t is 

omitted there and thereafter. Discretizing the wave fields under the assumption of 

periodicity of line sourcesin x1-direction, the equations (2.16) and (2.17) become 

       Q1k'n•                                     e—Ivnlx3—xi1 e—ikn(xi—x1')     =2Ld 
                2LkRµn =-00

co 
       t/~l =2                  Q12

1.1                              -sgn(x3— x3 )e—iln1'3—x31 e—ikn(x~—xl•)(2.19)                         Rn=—oo
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for  x1-direction loading and 

                                    co 

03 = Q3  E sgn(x3 - x3 )e-ivnlx3-x3 I e-Ikn(xi-xi•) 
2LkQ2µ n=-oo 

        'Y3 =Q3kne-1Ynlx3-x3Ie-Ikn(x~-xl•)(2.20) 
                  2Lk2µ n= -00 yn 

for x3-direction loading, where L is an interval of periodicity and 

vn = (k2 - kn2)1/2 Im vn < 0 

yn = (k 02 - kn2)1/2 Im yn < 0. 

km = (2ir/L)n .(2.21) 

The discrete wavenumber method is called after these discrete wavenumbers, among 

which the horizontal discrete wavenumber km defines the rest in our case. 

    From the above results the Green functions of an unbounded medium G;jF, 

that is, the displacements due to periodic line sources are 

      F*1 00 _kn2F-Fl         Gll(X;X) =
2Lk2EvEvnynE~rnfEkn 

             Qµn=—con1 
00 

G31F(X' x*) 2Lk 2E Sx3 {—knEvn+knEryF} Ekn 
                                      µ n=-oo 

G13 (X;X*) = G31F(X;X*) 
       002 G33(X ; X*) =2Lk2E -vnEvn-kn7n} Ekn,(2.22) 

                 Qµn=-oo„in 

    while the Green functions HZ
3 F, that is, the tractions due to periodic line 

sources are 

                                           00  1111F(X' n'x*) 2Lk-------E[{Un(2vn2- k02)Evn- 2knynE,,,n}nl 
         02A  n=-oon111 

              -Sx3 {2kn'2EvF + (2y2 - kQ2)Eyn} n3] Ekn 
 H3iF(X, n ; X*) = ------1E [ — Sx3 {2kn2Evn(27n2._ kQ2)EnF}nl                     2Lk µ n=-00 

                {k-n (2kn2 - kQ2)Evn + 2knynE'Yn J n3JEkn Un
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 co H13F(X' n, x*) 2Lk2------E [s3 {(2vn2 - kQ2)Evn+ 2kn2Eyn} n1 
         r,0µn=—oo11                 +{— 2knvnE~n+kn(2ryn2 - kp2)E,yn}n31Ekn   { J 

 H33F(x, n , x*)2Lk2µ>[{- 2knvnE„n +yn(2yn2 - ka2)Eryn} nl                       Qn=—oo 

+Sx3 {(2kn2 — k132)E„n - 2kn2E.in } n31Ekn. (2.23) 
In these equations following abbreviations are used 

Sx3 = sgn(x3 — x;) 

Ekn = e-1kn(xl—x1*) 

                            E F = e—iiinlx3—x3 I l'n 

E F = e-11'n1x3—x3 I.(2.24) 

r As shown later in Section 5.3, we also have analytical form of the Green function for a 

full-space. We can use whichever we want according to our purpose and conditions, 

however, analytical evaluation of the element integration shown in section 2.5 is 

possible only for the discrete wavenumber solution. 

    In case of a half-space we need not only source potentials described above but 

also potentials which express the reflected P and S waves at the surface. The source 

potentials for si-direction loading are the same as equation (2.16). In addition to 
this we should introduce the reflected wave potentials ¢i and 4 with unknown 
coefficient A' and B' of the form 

Q1 J°°'ei3e-i1-i)dk          =A
4irk2p                                                   o0 

                    Q1 f.e-i       '/'
1 =B 

                                         -yx3 e-ik(x1-x1')dk . (2.25) 4
irk0J 

By applying the stress free boundary conditions at the surface for the sum of these 

two sets of potentials, we have the following relationship 

    -2kv -(2k2 - ka2) A'

713'                                    _-2k2e-i,.x3 +(2k2 - ko2)e-11'x3   -(2k2 - kz)2k-k(2kz _k2e+—i~x3                              v02k)e-iryx3        e) 
                                               (2.26)
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Solve this equation to get the unknown coefficients in the form 

 A' _Q(k)rvr(k)e-ivx3•  _-+4ky(2k2 - kp2)e-'1'x3 

B' _ - o(k) { - 4k2(2k2 - kp2)e-i"3" - r(k)e-i1x3 } , (2.27) 
where, 

0(k) = +(2k2 - kp2)2 + 4k2v-y(2.28) 

r(k) = —(2k2 — kp2)2 + 4k2v7.(2.29) 

The function 0(k) is known as the Rayleigh function since the equation o(k) = 

0 gives the propagation velocity of Rayleigh waves. Substituting the result into 

equation (2.25), we have the final potentials which satisfy the boundary condition 

along the free-surface as, 

                 Q/~                   1 r1rkr(k)e-1v(x3+x3 ) 
             41rkp2µJ°°0(k)jlv 

-4k7(2k2 - k2)e-i(vx3+ryx3*)} e-ik(x,-xi )dk 
            - Q1 A(1k) {4k2(2k2 - kp2)e-'(ryx3+vx3 ) 

+r(k)e-17(x3+x3*) } -ik(ri _x1*)dk . (2.30) 
    Similarly, through the equation for unknown coefficients in case of a line source 

in x3-direction 

     -2kv -(2k2 - kp2) A' +2kve-ivx; + k (2k2 - k 2)e-i yx3 
_7Q   -(2k2 - k02) 2kry B' -(2k2 - kp2)e—i"3. + 2k2e-i1x3 

                                               (2.31) 
we can obtain the reflected wave potentials and 03 as 

        453 — ---------roo1 F(k)e-i“x3+x3)             4~rk02pJ_°°0(k){ 
                 -4k2(2k2 - kp2)e—i(vx3+-rx3*)1 e—ik(x,—x,*)dk 

03 = 4Q2µJ~(k)S4kv(2k2 - kp2)e-'evx3+vx3*) 
          +~I(k)e-iti+                         (x3x3*)le-ik(x,-xl*)dk.(2.32) 
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    Applying the same discretization for wavenumber k, those equations will pro-

vide the discrete wavenumber Green functions in a homogeneous half-space  G./' 
as shown below: 

       _iook2 FF     GlH(X' X*)2Lk2------E -yEv n —7nE7n 
                  pp.n_-0n 

kn2F(kn) E H 
+ 4kn27n(2kn2 — ko2) E                 vn0(kn) vnvnA(kn)Yn vn                  4kn27n(2kn2 — k02)H 7nI'(kn) H 1 

  +----------------- A(kn)Evnryn+A(kn) EYYn Ekn 

G31H(x; x*)—2
LSx3{—knEvn+knE7n} 2LkQE.c n=-0 

                  knF(kn)EH 4kn(2kn2 — kt32)H 
                    ~(kn)EvnvnA(kn)EYnvn 

                +4knvn7Q(kn)—kQ2)Ev,nkA(kk))EryHn~Ekn 
i °O G13 (X' X*)— 2Lk------2E Sx3 {—knEvF + k7E'Yn } 

                               µn=—oo 

                    knr(kn) H _4knvn7n(2kn2 — k,32)E    EH               +A(k
n)vn vn0(kn)In vn 

                4kn(
0(kn)k32)EvHn +k(k))EryHnEkn 

i k2     Gj(X,X*)2Lk a------E - vnEvn—nErn 
            µn=—co7n 

                  +vnl'(kn)EHn+4kn2vn(2kn2 — kp2)       vEH              A(kn),A(kn)'Yn vn 

                  +4kn2vn(2kn2 — kp2)EvHnkn2r(kn)E7HnEkn, (2.33)                  A(kn)7nA(kn ) 

where following abbreviations for a half-space are used 

                             L'
v Hn _ e—ivn(x3+x3 ) 

                           EYn_ e—i(ryn x3+vn x3)                               Hnv 

                         EH_e—i(vnx3+'Ynx3) 
                                       vnYn 

              E H_ e—i"Yn(x3+x3) (2.34)                                           Yn'Yn 
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The Green functions of traction for a half-space can also be obtained from the 

resultant potentials but are omitted here. 

    The Green function for an anti-plane problem can be expressed in the same 

manner as described above using the discrete wavenumber method 

      G22(x ;  x*) =2L------2E[ka2E~,nJ Ekn (2.35) 

                      a 

                 Nn—ooL7n 
                                  k2   HQ(FH 

       G22(X;x*) =-—Ern+Elnifyn)Ekn(2.36) 
                 2Lk                           i32 µ n=-00 yn 

for a full-space and a half-space, respectively. However, the original integral can be 

evaluated analytically to yield

G22 (X;X*) = --i1/0(2)(kor)(2.37) 

                        µ 

         G22(x;x*) = —4µ{Ho~1(k Or) +Ho2)(kar*)} ,(2.38) 
where, H $2)(.) is the Hankel function of the second kind and mth order, and 

                   r = J(x1—xl*)2-(x3—x3)2 
r* = ^(xi — xl*)2 + (x3 + x3 )2 .(2.39) 

These analytical solutions are much easier to calculate so that the discrete wave-

number form of the Green functions in equation (2.36) will not be used unless one 

actually intends to solve a problem with periodic structures. Needless to say, cou-

pling terms between xl-direction and x2-direction and x2-direction and x3-direction 

are all zero in the two-dimensional wave field.

2.4 The 3D discrete wavenumber Green function 

    Next the three-dimensional Green functions for a homogeneous full- and half-

spaces formulated by the discrete wavenumber method will be summarized. Lamb 

(1904) presented the integral form of such solutions for a surface point force for the 
first time. The notation used here to derive the Green function follows that by Aki 

and Richards (1980).
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    In the three-dimensional field it is convenient to express the wave field in terms 

of the Helmholtz potentials  4 and 'P with which displacements can be obtained as 

follows: 

u=V•4)+VxW(2.40) 

The potentials due to a point source Q1e 'at a point (xi*, x2*, x3) in an unbounded 

medium are then (the time factor is again omitted), 

              Qi vle_ivlx3-x3 I     41"1 = 
87re-S2*)-ik2(x2-x~ )                               "tdkidk2 

411[1] = 0
ifX1[2] _8Q12µf~Jx3e-1YIx3-x3'Ie-ik1(xl-xl)-Ik2(x2-x2)dkidk2 

Qco 

[3]= Q1 gmk2e-irylx3-x3*I e-ik1(x1-xi)-ik2(x2-x2)dkidk2 
187r2k

02µoo 7 
                                                 (2.41) 

for x1-direction loading, 

4)2 =  Q2  
JJ-oo°O k2e-ivlx3-x3*Ie-ikl (xi -xi)-ik2(x2-x2•)dkidk2            87r2k02µ v 

    [1] =  Q2  flw  Sx3e-i'Ylx3-x3*1 e-ikl(xi-xl•)ik(x2)dkidk2 28
7r2k2p o0 

22] = 0 
[3] _ Q2 i                               _kie-i-rlx3-x3I e-1k1 (xi -x1•)-ik2(x2_x2*)dkidk2 

              7rzko2oo 

                                                 (2.42) 

for x2-direction loading, and 

4)3 = 8Q32µ ifc° Sx3e-ivlx3-x3I e-ik1(x1-xi)-ik2(x2-x2')dkidk2 
                /~0f         [1]

Jaoo2e-171x3-x3e-ikl (xi -xl*)-ik2(x2-x2)dkidk2    387rQa2µ7 
     irf [2] =  Q3 0o k1e-irylx3-x3Ie-ikl (xi -xi)-ik2(x2-x2*)dkidk2 

           87r2k02µJJ00 7 
      33] = 0. 

                                               (2.43) 
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for x3-direction loading, where k1 and k2 are the horizontal wavenumbers in x1- and 

x2-directions and 

 v  = (ka2 - k12 - k22)1/2 Im v < 0 

7= (k02-k12-k22)1/2Imy< 0. (2.44) 

    Discretizing the wave field in x1- and x2-directions, we can transform these 

integrals into double infinite summations as 

      =Q1 E Ekn              ~1H
iL2kQ2µn=_gym=-~vE"nmEknk"`                                             nm 

              1[1] = o
0000 

     [2]=E         W]2L
1 2k2µ—Sx3ErmEknkm                                Q n=-oo m=-oo 

X1[3] 8ir~12E EkmErymEknkm(2.45)                                   Q{~ n=-oo m=-oo 7nm 

for x1-direction loading, 

          = Q2 E EkmE vnF                 4.22L
1L2kQ2µn _—oom_-oo vnm.nEknkm 

X2[1] —  Q1 2`Sx3EryFEk nk+n                2L
1L2kQµL~ n=-00 m=-oo 

           412[2] = 0

QiF          4123] = 2Lk2E E—knE7 mEknkm(2.46)                           1 2Q µ n=—co m=_00ynm 

for x2-direction loading, and 

                  Q 3         _[)oo00             (D3
2L~SX3 EvnmEknkm                   2L1L2k

Q n=-co m=-co 

         [1] - Q3 r000okmF               ~
32L

1 L2kQ2µn=-oO m=_,0'YnmE"nmEknkm 

32] _  Q3 2 EL_knE7'mEknkm 
                          2L1 L2k0N' 

n=-oo in=_oo7nm 

X33]=0.(2.47)
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for x3-direction loading, where L1 and L2 are intervals of periodicity  in  x1 and x2 

directions, and 

vnm = (ka2 - kn2 - km2)1/2 Im vnm < 0 

               7nm = (k2 - kn2 - km )1/2 Im 7nm < 0 

kn =(2ir/L1)n 

            km =(2ir/L2)m 

                 Eknkm= e—ikn(x1_xl•)—Ikm(x2—x2) 

E F =e—ivnm lx3 —x3 I U/n m 

         EYnF=e-1'Ynmlx3—x3•l. (2.48) 

                m 

    From these discretized potentials the Green functions of an unbounded me-

dium GziF, that is, the displacements due to unit periodic point forces can be 

expressed as:

GF(  llx 

G21F(x 

G31F(x 

G12F(x 

G22F(x 

G32F (x 

G13F(x 

G23F(x 

G33F(x

sion

x*) 

x*) 

x*) 

x*) 

x*) 

x*) 

x*) 

x*) 

x*)

   00 

•
2L1L2kQ21.1 n--a 

                     00 

•
2L1L2k2µ 

n=—co 

                     co 

•
2L1L2kQ2/2 n=—co 

= G2iF(x i x*) 
                     00 

= 
L1L2kf2µ n=.-co 

00 

    E 

  2L2k13-----------n=oo 

= G31F(x;x*) 

= G32 (x; x*) 
            00 

                 •
L1L2k,,2µn= —oO _n

 0ok
n2F7nm---------+ km2F L{--E ~/nmEYnm}Eknkm 

 M=-00 

    C>0 

vnm7nm 

Eknkm F_knk'm F      {-------E'ynm7
nmEvnm}Eknkm m=-00vnm 

    00 

ESx3{—kn E„m +knE-ynm}Eknkm 
777=-00

0o k
mF 7nm+kn2 F 

E{—EVnm-El'nm}Eknkm 
n=_~vnm7nm 

    Sx3{—kmEVnm+kmE'Ynm}Eknkm
                          771=-00

  oo 

     {—vnm E„nm—kn2+-----------k"`E"YF 
__007nm

} Eknkm • 

   (2.49)

 In case of a half-space we need reflected-wave potentials as in the two dimen-

al case. By applying the stress free boundary conditions at the surface we have
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the following final form of the reflected-wave potentials:

00 

     _ 

 Qi  [~[~ 1 knH   ~12L 1L2k02p,,nEm=—ooA(kn,km){vnmr(kn'km)EvnmVnm 
—4kOnm(k132 — 27n2m)EvnmInm} Eknkm 

41[1] = 0 
21  w1[]=2L1Qk02µnm=\-400 0(kn, km) {4(kn2 + km)(k02 — 27nm)Elmvnm 

         +r(kn, km)E7m-Inm } Eknkm 

~1[]00 001    s= Q12{4k,,,7nm(k02 — 27nm)Eymunm 
         2L1L2k0µ —o                        n=om=—oo 0(kn,km) 

      .4______kA(kn,km)E} Eknkm ,(2.50)                              YmYnm 

for x1-direction loading, 

  __ Q2 r1  kmH   e22L 1L2k021.1n=_oo m=—oo A(kn, km) { vnmr(kn, km)j%vnmunm 
—4k7n7nm(k32 — 27nm)EVm1'nm } Eknkm 

100001 ,~[]= ----------- O----------{-4(kn2+ km)(k02— 27n2m)E'ymi/nm          2Lk1 2 0Q2µn
~+c—oomc—oo(kn,km)          —1~+(kn, km)Lf, nm } Eknkm 

T 2 E2] = o 

    Qip
22Lk[3]21-------------k m) {-4kn7nm(k02 — 27nm)Elmunm              1 2Q!2 n=—oom=—oo0(kn, 

      —7A(kn, km)E7nm'fnm } Eknkm ,(2.51) 
for x2-direction loading, and 

Q3 c\-.2, 001 
     k(----------------)()mVnm 
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2LL12Q2µ n=—oomoo0kn,kmrkn' kmEv 
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                            y 

 7m r(kn,km)E,Ym'Ynm 1 Eknkm 

v[2]_ Q300 1   3 2L1L2k2µnEmo A(kn, km){-4knvnm(k.t2— 27nm)E1mYnm 
+ kn F(kn, km)EY m"Ynm 1 Eknkm 

7nm 

43[3] = O(2.52) 

for x3-direction loading, where, 

A(kn, km) = +(k,32 — 27n2m)2 + 4vnm7nm(kn2 + km2) 

F(kn, km) = —(ki — 27n2m)2 + 4vnm7nm(kn2 + km2) 

A(kn, km) = +(k02 — 27n2m )2 + 4vnm7nm (k02 + 7nm ) 

E H = e—Ivnm(x3+x3 ) 
vn,n //rim 

              EH= e—j('Ynmx3+1/nmx3*)                       'Ynm vnm 

             E H= e—i(vn.nx3+1'nmx3) vnm'Ynm 

      EH= e—irynm(x3+x3)(2.53)                         'Ynm'Ynm 

    Adding these reflected-wave potentials with the source potentials, we have 

the solution for a half-space which will provide the discrete wavenumber Green 

functions in a three-dimensional homogeneous half-space G.jH and H;H as in the 

two dimensional case. 

    The above Green functions use the expression of the double Fourier transform 

over k1 and k2, which is similar to that of the so-called Dynamical Ground Compli-

ance first obtained by Thomson and Kobori (1963). It is a natural consequence of 

the Cartesian coordinates we use. The three-dimensional Green functions in most 

of the previous studies (e.g., Apsel and Luco, 1983; Frazer and Gettrust, 1984) are 

expressed as the Hankel transform over the radial wavenumber k,. with the Bessel 

function by using the cylindrical coordinates. However, the Green functions ex-

pressed in the Cartesian coordinates are easier to evaluate the element integration 
analytically. 

    It should be noted that the Green functions in two-dimensional wave field 

can be easily obtained just by assuming L2 = 1 and summing up terms for only
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one wavenumber  kn. The solution is the Green function for a line source with 

common x2-direction dependency a-1kmx2 which can be used for the analysis of a 

two-dimensional irregularity subject to an incident plane wave with azimuthal angle 

(whose x2-direction dependency should be the same). The two-dimensional Green 
function presented in the foregoing section is the special case where m = 0.

2.5 Element integration 

    In the direct BEM the element integrations in equations (2.5) and (2.6) are 

necessary. For the two-dimensional case these integrations become simply, 

1/2 
Gi;(m;x,) =Gji(x;xn)dsm(2.54) 

                                     -t/2 
rt/2 

H,(m;xn) =J(x,n;xn)dsm,(2.55) 
                              t/2 

where 1 and sm are the length and the local coordinate of the m-th element, re-

spectively. A line force is located at the center of the n-th element as illustrated 

in Figure 2.4. Since the discrete wavenumber Green function has separated depen-

dency with respect to x1 and x3 coordinates, it is rather easy to evaluate these 

integrations analytically. 

    We shall consider two different cases depending on whether the integrand 

contains the absolute value term I x3 - x3 I. First we consider the case that the 

integrand contains no absolute value term. Referring to equations (2.22), (2.23), 

and (2.33), we can write such an integration for the wavenumber kn as a generic 

form 

                          rt/2-i"n~x3fxikn~x1-x.            In = .f(kn)Je3)e-1> ds7n , (2.56) 
                       t/2 

where Tin represents either vn or yn. This stands for all the surface terms and the 

source terms if the source location in depth is outside of the range defined by the 

both ends of the element. 

    The global coordinates (xi,x3) are expressed by the local.coordinate S,n as 

xi = x1c + n3 S7n 

x3 = x3 - n1 S,n(2.57)
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          S = 2
S0\`(x*,x3 ) 

   m nN-th ELEMENT 
          (Xi, X3)(SOURCE) 

                                S=-1- 

.M-th ELEMENT 
X3 (RECEIVER) 

Figure 2.4: The local coordinate sm used in the element integration. n and 1 are the 

outward normal and the length of the m-th element, respectively. 

where (xl`, x3) is the center of the element. Substituting these into equation (2.56) 

we have 

!/2 
In = .f (kn)e-If/n(x3-n13m±X3 ) e-1kn(xi +n3s,n-x1 ) ds,n 

                   —1/2 

 {l/2         =J(kn)e-Iiin(233±X3)e-ikn(21`-r1•) r ei(nn'n1—kn'n3)sm dsm 
                                   1/2 

= .f(kn)e-17~n(23cf23*)e-lkn(xl`-xi.)--------------------                                    2 sin (-rini.+knn3)i-rini+knn32• 

                                               (2.58) 

    Second is the case that the absolute value term with respect to x3 coordinate 

I x3 - x3 I exists. It appears in the source terms only if the source location in 
depth is within the range of the element. In such a case x3 dependency becomes 

(assuming n1 > 0) 

x3 - x3 I-               +x3- n1Sm - x3if - 1/2 < Sm,< (x3- x3)Ini(2.59) 
-x3 + n1Sm + x3 if (x3 - x3 )I ni < S.m < 1/2 . 
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After several calculations we have the element integration of the form 

 In= —i f(kn)e—ikn(x1c_°1*)rI 1  1 1e-1kcnf/                                                                                      r3`-23*) 
         JL(I l  knn3 rinnl + knn3 

                                       1  
e-1onn1-knn3)l/2 e-inn(x3c-x3*) 

r/nnl - knn3 
                                        1  

e-1(7/nnl+knn3)l/2 e-4-inn(x3C—x3 ) 
7]nnl + knn3JJ

n3 /'ni

• 

(2.60)

    The above analytical evaluation of the element integration is one of the advan-

tages of the DWBEM because it eliminates difficulties associated with a singularity 

of the Green functions in case that the element includes the force (i.e., n = m). 

Also, this integration guarantees convergence with respect to the horizontal wave-

number due to the additional term of order kn 1. However, careful treatment may 

be necessary in the calculation process because each term in f (kn) has a tendency to 

increase with the wavenumber kn although their sum will converge. A similar pro-

cedure appears in the response calculation for moving dislocation sources (Bouchon, 

1978; Kawase and Aki, 1990). 

    The truncation of the infinite summation is decided by double thresholds, 

that is, an absolute value and a relative value. Each time the partial sum for the 

pre-defined number of wavenumbers (typically 16) is calculated, the absolute value 
of this partial sum as well as the relative value with respect to the total sum up to 

that time is checked. Calculation will continue until both of these values are smaller 

than the pre-defined value (typically 10-5). Usually numbers of terms necessary to 

satisfy these conditions may range from 32 up to a few thousands. 

    As a final note on the discrete wavenumber Green function, an essential differ-

ence of the discrete wavenumber scheme from the approximated integration schemes 

should be mentioned. In the past many numerical integration schemes suitable for 

automatic computing were proposed (e.g., Press et al., 1986). On the surface the 

discrete wavenumber sum looks just the same as a simple trapezoidal rule of integra-

tion provided that the integration will be continued until the integrand converges to 

zero. However, there exists an essential difference between them. In any numerical 

integration schemes we need to check the convergence in terms of the sampling rate. 

Too few sampling points result in an inaccurate value. Since it is impossible to know
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the sufficient sampling rate in advance, we have to evaluate the integration at least 

twice to see the convergence. The more accuracy we demand, the more numbers of 

iteration we need. On the other hand, the discrete wavenumber Green function has 

its own physical meaning, that is, the response due to periodically-existing, infinite 

numbers of sources. The discrete wavenumber sum is, therefore, exact in terms of 

the sampling rate and so we need not to check the convergence as far as the period-

icity length L is large enough to have all the arrivals from fictitious sources outside 

the time window (we need to check the convergence with respect to the summation, 

of course). Or we can use the discrete wavenumber boundary element method for 

problems with periodic structures. It is not necessary to eliminate the effects of 
fictitous structures in such cases. From mathematical point of view the periodicity 

of sources is interpreted as the result of aliasing (Bouchon and Aki, 1977). 

    In case of a three-dimensional problem, the same procedure described above 

can be applied to the double integrals for any triangular sub-elements.

2.6 Economical evaluation of the Green function

    Even though the discrete wavenumber method is more efficient than conven-

tional techniques, the convergence of the Green functions with respect to the hori-

zontal wavenumber is still slow when vertical distance between the source and the 

receiver is small. Especially in three-dimension, the double infinite summation over 

two horizontal wavenumbers requires a heavy computational power. It is possible, 

however, to evaluate it more economically by just taking its imaginary part and 

reproducing the real part using the causality condition, because the convergence 

of the imaginary part is much faster than those of the real part (Kawase and Aki, 

1989a). First the fundamental relationship between the real and imaginary parts in 

frequency domain that holds for any functions causal in time domain is presented. 

    Let  F(w) be the Fourier transform of a real time function f(t), that is, 

       F(w) = f(t)e-'' dt ,(2.61) 

f(t) = 2aIF(w)eiwtdw .(2.62) 
Denoting FR(w) and FI(w) as the real and imaginary parts of F(w), we have the
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Table 2.1: Maximum wavenumbers to get convergence

 zR (depth) 0.0 0.001 0.01 0.1

Real part 16.0 7.6 10.5 2.1

Imaginary part 1.9 1.9 1.8 1.7

         The parameters used here is the same as those for Figure 2.5 (com-

          plex frequency) except for the receiver depth zR. The values are 
          normalized by kp. Convergence is checked for every 0.1 increment 

          from 1.0 . 

symmetricity relations FR(w) = FR(—w) and FI(w) = —FI(—w). Substituting these 

to equation (2.62) yields the following expression of the inverse Fourier transform 

f(t) = —1{jFR(w) cos wtdw—j~FI(w) sin wt dw}. (2.63) 
Assuming that the time functionf (t) is zero for t < 0, we haveJJJ 

          jFR(w)coswtdw ~   = IFI()sinwtdw; t <0. (2.64) 
 Then the following equation holds for t > 0 

          JFR(w) cos wt dw = — J FI(w) sin wt dw ; t > 0. (2.65) 00 

Substituting this into equation (2.63), we finally obtain the time function for t > 0 

expressed by only the real part 

f(t) = -1 i_: FR(w)e;wtdw ,(2.66) 
or the imaginary part 

f(t) = _FI(w)ei"tdw.(2.67) 

z 

    These are the specific expressions of the causality which leads to the well-

known relationship between real and imaginary part as the Hilbert transform (Pa-

poulis, 1962; Aki and Richards, 1980; Izumi et al., 1988; Hayashi and Katsukura, 

1990). 
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Figure 2.5: An example of a surface term of the Green function for a two-dimensional 

homogeneous half-space. S and P wave velocities of 1.0/sec and 2.0/sec are assumed. Fre-

quency is set to be 5 Hz. a shows the real part and b shows the imaginary part of the 

integrand without eiks term. The abscissa is the normalized wavenumber. Solid lines rep-

resent functions without the imaginary part in frequency, whereas broken lines represent 

those with the imaginary part of 1% in frequency.
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    Considering the FFT version of equation (2.66) and equation (2.67), we re-

alize that synthetic seismograms can be obtained from either the real part or the 

imaginary part for only the first half of the total duration (0  < t < T/2). The later 

halves of the real and imaginary part synthetics (T/2 < t < T) are just the mirror 

image of the first half and that with the opposite sign, respectively. Mathematically 

the response in the later half corresponds to the that for —T/2 < t < 0 but appears 

there because of the periodicity of FFT synthetics. If we have arrivals that appear 

in the later half, they will also appear in the first half of the real or imaginary part 

synthetics as contaminations because of this symmetricity. Therefore, T/2 should 

be long enough to include all the major arrivals. 

    If one needs the real part when he calculates only the imaginary part, or vice 

versa, he can get the other by using inverse FFT-forward FFT procedure. First the 

real part synthetics is obtained by just changing the sign in the later half of the 

imaginary part synthetics calculated by the FFT from the imaginary part. Taking 

the FFT of this new real part synthetics, then, he can get the real part of the Green 

function. Through this procedure we are essentially taking the Hilbert transform 

by FFT. 

    If the calculation time of the real part is the same as that of the imaginary 

part, the above procedure is of no practical importance. However, in the discrete 
wavenumber method, the imaginary part is much easier to evaluate than the real 

part, thanks to the fundamental nature of the Green function. Figure 2.5 shows 
an example of the surface term of the two-dimensional half-space Green function 

(Kawase and Aki, 1989b). If no damping is assumed, the function becomes pure real 
after the horizontal wavenumber k becomes larger than kp, as shown in Figure 2.5. 
This means that the imaginary part can be evaluated as the principal value up 

to k,e plus the contribution from a Rayleigh pole, and therefore the wavenumber 
integration becomes finite. If damping is introduced or complex frequency is used, 
the function will not be pure real even for k > kp and sharp peaks appear because 

of a Rayleigh pole that reside just off the real k axis. However, the imaginary part 
converges much faster than the real part, as can be seen in Figure 2.5. 

    In general the wavenumber at which the real or imaginary parts would con-

verge is a function of frequency, material constants, the source-receiver location, and
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the desired accuracy. Table 2.1 shows an example of the maximum wavenumbers 

(normalized by  kp) to get the same relative error of 1.0 x 10-4 for the real and imag-
inary parts as a function of the receiver depth. The difference of convergence speed 

between the real and imaginary parts is significant as long as the receiver depth is 

small. From the parametric study it is found that it is enough to integrate up to 

twice of kp to get convergence in the imaginary part. Of source, more sophisticated 

methods such as asymptotic expansion, polynomial extrapolation, or generalized 

Filon's method (e.g., Apsel and Luco, 1983; Frazer and Gettrust, 1984; Chapman 

and Orcutt, 1985) can be combined to further accelerate the convergence.

2.7 Summary of the proposed method

    In this chapter the author presents the fundamental formulation of the pro-

posed discrete wavenumber boundary element method. In essence the DWBEM is 

the combination of the direct BEM and the discrete wavenumber Green function. 

The author first shows the basic equations of the direct BEM using the representa-

tion theorem. The equations for an incident-wave problem and for an plural-region 

problem are also shown. Then the author summarizes the Green functions for full-

and half-spaces in two and three dimensional wave fields by the discrete wavenumber 

method. Although the principles to derive these Green functions can be found in 

the literature, their complete forms that are necessary for the DWBEM is unknown 

to the author. Next exact term-by-term evaluation is presented for the element 

integrations. It is one of the advantages of the DWBEM because this element inte-

gration eliminates difficulties associated with a singularity of the Green functions if 

a force is applied on the element. Besides this integration guarantees convergence 

with respect to the horizontal wavenumber due to the additional term of order k7,-1. 

Finally the author briefly describes a technique to evaluate the Green function more 

economically. By taking the imaginary part and reproducing the real part using the 

causality condition with FFT, the Green function can be calculated faster because 

the convergence of the imaginary part is faster than that of the real part. 

    The advantage of the DWBEM is its efficiency in computation and flexibility 

for boundary configurations, thanks to the fundamental nature of the discrete wave-
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number Green functions and the direct BEM. Thus the DWBEM can model complex 

inhomogeneities of arbitrary numbers of regions by discretizing their boundaries of 

arbitrary shapes with variable-sized elements as far as our computer resource per-

mits. At the same time, the accuracy and the stability of the solution, especially in 

high frequency range, are achieved without much precautions, thanks to the exact 

element integration and direct constraint for boundary conditions. The applications 

that prove these advantages of the DWBEM will follow. 

    As a final note, the advantage of periodic nature of the DWBEM should be 

mentioned. Problems of simple irregularities or inhomogeneities such as a cylindrical 

canyon in a half-space need to eliminate the effect of the adjacent fictitious structures 

by using the large periodicity length L and the complex frequency. However, the 

problems of periodic irregularities or inhomogeneities such as a mountain range or 

randomly distributed inclusions and cracks require the periodicity of structures so 

that the DWBEM is more suitable than the normal BEM or FEM solutions in which 

only finite part of such structures can be modeled.
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Chapter 3

Theoretical Responses of 2D Irregularities

3.1 Description of the problem

    Consider a two-dimensional homogeneous isotropic elastic medium subject to 

a harmonic excitation of an incident wave. Figure 3.1 shows the problem configura-

tion and the incident waves considered here. In two-dimensional wave field in-plane 

motions  ul and u3 are decoupled with an anti-plane motion u2. 

    There are two kinds of topographic irregularities considered here: a canyon 

and a ridge. Another topographic irregularity that often appears in the literature 

is a cliff. Since canyons and ridges are considered as two combined cliffs, it may be 

sufficient to study these two shapes in order to grasp the fundamental characteristics 

of wave scattering phenomena taking place around the surface irregularities. 

    As mentioned in the Chapter 1, the effects of topography and subsurface ir-

regularities on the seismic response have been recognized widely as an important 

factor since Aki and Lamer (1970) and Trifunac (1971) studied the effect of sub-

surface irregularities as a pioneering work. Since then extensive theoretical and 

experimental works have been carried out on the subject. However, wave scattering 

phenomena taking place around topographic irregularities due to various types of 
incident waves are still not well understood.

3.2 Validation

    The frequency responses of a two-dimensional semicircular canyon are shown 

for comparison between the present results and published ones. Following Bouchon 

and Aki (1977), we introduce the imaginary part of the frequency that sufficiently 

suppresses the early arrivals of the waves generated by fictitious structures. Since 

this artificial damping affects the frequency response considerably, the effect should
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Figure 3.2: The model configuration and the element distribution of a 
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for calculation.
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Figure 3.3: Frequency responses due to SH waves with the inci 
30° (b). The solid lines represent the results obtained by the 
solid circles represent the exact solution (Trifunac 1973). The 

fo (=wa/270) is set to 1.0 .

dence angles of 0° (a) and 

conventional BEM, while 

non dimensional frequency

be eliminated in the end using the following procedure. First we calculate the 

frequency response by using the complex frequency. Then the time-histories at ob-

servation points due to a proper input waveform are obtained by the inverse Fourier 

transform of the frequency responses followed by the exponentially increasing time 

window, which compensates the effect of the imaginary part. Finally, frequency 

transfer functions can be evaluated through the Fourier transform of these corrected 

time-histories and the input waveform. 

    To show the validity of the above procedure and to confirm the accuracy of 

the direct BEM itself, the responses due to incident SH waves calculated by the con-
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Figure 3.4: Frequency responses due to SV waves with the incidence angles of 0° (a) 
and 30° (b). The solid and broken lines are the amplitude for the horizontal and vertical 
components obtained by the DWBEM, while solid and open circles are the results by Wong 

(1982). Poisson's ratio is 1/3 and fo = 1.0.

ventional BEM (Kawase et al., 1982; Kawase et al., 1985) are compared with those 
obtained by the eigenfunction expansion method (Trifunac 1973). The same amount 
of imaginary part of the frequency is used as in the DWBEM. The distribution of 
the boundary elements along the canyon surface are shown in Figure 3.2 

    Figure 3.3 shows our results on the amplitude response distribution along the 

surface in and around the canyon by the solid line together with the results by 

Trifunac (1973) using solid circles. Only the cases for the nondimensional frequency 

Jo = wa/27r0 = 1.0 are shown hereafter, in which the S-wavelength is equal to the 
radius of the canyon a. This frequency corresponds to the characteristic frequency
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Figure 3.5: Frequency responses due to P waves with the incidence angles of 0° (a) and 
30° (b). The meaning of the figure and parameters used are the same as in Figure 3.4. 

of an incident wavelet used in the time-domain calculation. Note that fo is one half 
of the nondimensional frequency i in Trifunac's paper. The horizontal axis repre-
sents the nondimensional coordinate xi/a along the xi-axis. Vertical axis means 

the amplitude of the frequency response relative to the incident wave amplitude. 

Figures 3.3a and 3.3b correspond to the cases for incidence angles of 0° and 30°, 

measured clockwise from the vertical line as shown in Figure 3.1. The agreement of 

the results obtained by the conventional BEM and the procedure described above 

with the exact solutions is excellent in both incidence angles. 

    Next the validity of the DWBEM is shown by comparing the results with those 

by Wong (1979, 1982). In low frequency range, Wong's results have been verified 

by Sanchez-Sesma et al. (1985) and Dravinski and Mossessian (1987). No analytical
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solution is available for a canyon in in-plane wave field. Poisson's ratio is assumed 

to be 1/3 and periodicity length L to be 20a which is large enough to prevent 

contaminations from adjacent fictitious canyons. Figure 3.4 shows the results for 

SV wave incidence with two different angles 0° and 30°. Both horizontal and vertical 

amplitudes are shown by solid and broken lines together with the Wong's results 

by symbols. The agreement of the results obtained by the DWBEM with Wong's 

is excellent in both horizontal and vertical components inside the canyon. 

    However, small discrepancies are observed along the surface outside the can-

yon. This seems to indicate the difficulty of the indirect BIEM to express the wave 
field outside the canyon correctly in higher frequency range as shown by Wong 

(1979) for SH wave incidence. Since the sources are located away from the canyon 
surface (i.e., near the center), the unknown source strength is less constrained by 

the boundary condition and thus the wave field expressed by these sources will be-

come unreliable as the observation point goes away from the canyon. Increasing the 

numbers of sources will not improve the accuracy but will make the system equation 

unstable. On the other hand, in the DWBEM the boundary condition is imposed 

directly on the canyon surface where sources are located so that the solution is well 

constrained. Also the exact evaluation of the element integration for both displace-

ments and tractions helps to give the stability of the solution. Thus we can get the 

causal and physically explainable time-histories as shown in the following sections 

by calculating the responses for nondimensional frequencies as high as 4.0. 

    Figure 3.5 shows the comparison for P wave incidence with the same angles of 

incidence. Also the case of a Rayleigh wave incidence is shown in Figure 3.6. Again 

the agreement is excellent in most cases. The results for lower frequencies, which 

are omitted here, are in excellent agreement both inside and outside the canyon.

3.3 Response of canyons 

    The evaluation of the frequency response by using the conventional BIEM 

or BEM requires considerable computational effort in case of in-plane wave field. 

This might be the reason why one can hardly find studies on the time response 

of a semicircular canyon due to incident P, SV or Rayleigh waves. Even for a SH
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parameters used are the same as in Figure 3.4.

 12 
      x1/a 

The meaning of the figure and

wave incidence such a study is rare so far. Although the shape is too simple for 

a realistic canyon, it is worth to study the nature of the reflected and diffracted 

waves due to the topographical irregularities in time domain as well as in frequency 

domain. Here the author investigates the time-domain responses of the surface along 

a semicircular canyon subject to incident SH, SV, and P waves with two different 

angles of incidence and a Rayleigh wave. 

    In all the cases shown hereafter the shape of an incident wave is a Ricker 

wavelet defined as (Ricker, 1977) 

u(r) _ (27r2 fc 272 — 1) exp(—ir2fc 2r2) ,(3.1) 

where fc is the characteristic frequency of a wavelet and r is the nondimensional time 

t,Q/a (t :real time). fc is set to 1.0, the frequency used in Figures 3.3 through 3.6. 

Its shape and frequency spectrum are shown in Figure 3.7. The above expression 

of a Ricker wavelet, which is symmetric with respect to r = 0, will be modified to 

have appropriate amount of time shift. Calculated frequencies are 65 in total ranging 

from 0.0 to 4.0. Observation points are distributed at nearly equal interval measured 

along the surface both inside and outside the canyon, as shown in Figure 3.2.
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Figure 3.7: The shape and spectrum of a Ricker wavelet with the characteristic frequency 

ic of 1.0. The nondimensional time axis is shifted by 5.0. The amplitude is normalized to 
1 in both figures. 

3.3.1 SH wave incidence 

     Figures 3.8 and 3.9 show the horizontal (anti-plane) responses of a canyon 

calculated by the conventional BEM due to incident SH waves with the angle of 0° 

and 30°, respectively. 

     In the case of a vertical incidence the direct waves keep the same amplitude 

along the surface of the canyon except near the edges, where the destructive interfer-

ence occurs. In the case of an inclined incidence the amplitudes of the direct waves 

inside the canyon decrease toward the rear-side edge, which refers to the right edge 

in Figure 3.2. At the horizontal surface near the front-side edge, the left edge in 

 Figure 3.2, the peak amplitude becomes larger due to the constructive interference 

between the direct wave and the wave reflected at the canyon. Those amplitude 

 characteristics in time domain are, in general, consistent with the amplitude distri-

bution in frequency domain. 

     On the other hand, the propagation of reflected and diffracted waves can be 

much more clearly seen in time domain than in frequency domain. 

     Outside the canyon later arrivals are mainly due to the wave reflection at the
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Figure 3.8: Time responses along the surface in and around a semicircular canyon due to 

a vertically incident SH wave. The characteristic frequency of a Ricker wavelet is 1.0. The 

horizontal axis is the nondimensional time r = tQ/a which is shifted properly. Numbers 

inside are the nondimensional positions xi/a. Dots indicate the time of maximum for each 

time-history. Small arrows plotted outside the canyon indicate the arrival time of the peak 

calculated for the S waves reflected at the canyon surface. 

upper part of the canyon surface. This can be confirmed by plotting the arrival 

time of the reflected waves in Figures 3.8 and 3.9 with small arrows. However, these 

later arrivals seem to contain some contribution of the diffracted waves since the 

amplitude changes very slowly. The amplitude of the reflected wave itself should 

decrease rapidly as the observation point goes away from the edges. In the case of 

an inclined incidence, these later arrivals can be clearly seen only in the front side. 

Again the arrival times of the reflected waves correspond very well to the peaks. 

    To further confirm the contribution of the reflected and diffracted waves, the 

responses of a trapezoidal canyon in Figure 3.10 are plotted in Figures 3.11 and 3.12. 

In this case the side slopes are flat so that the reflected waves only illuminate the
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limited zone of the horizontal surface. Arrows in Figure 3.11 are placed only on the 

time-histories where the reflected waves will appear. The points without an arrow 

have only the diffracted wave contribution. It is found that the amplitude outside 

the canyon is decreasing slowly and that no noticeable difference between zones 

illuminated and not illuminated by the reflected waves. This clearly illustrates 

the important role of the diffracted wave to fill the gap, i.e., the displacement 

discontinuity, in the wave field. 

    Inside the semicircular canyon the diffracted waves, which seem to originate 

at the edges of the canyon, clearly propagate along the canyon surface with the 

apparent S wave velocity. These diffracted waves propagating along the smooth 

curvature may be called the creeping waves in elastodynamics, the term used for 

the first time by Franz (1954) in electromagnetism. It is difficult to predict the 

existence of this type of wave from the amplitude distribution in Figure 3.3 alone. 

The similar diffracted waves can be seen on the surface of the trapezoidal canyon. 

3.3.2 SV wave incidence 

    Figures 3.13a and 3.13b show time histories due to a vertically incident SV 

wave for the horizontal (in-plane) and the vertical motions, respectively. The cal-

culation conditions are the same as in the SH wave case. 

    With respect to the direct wave appearing on the horizontal component, fea-

tures similar to the SH wave case can be observed inside and outside the canyon 

except near the edges, where more complicated interference occurs. The vertical 

component generated by the impact and subsequent reflection of incident wave at 

the canyon surface grows as the wave propagates upward and reaches its maximum 

at the edges. 

    Inside the canyon the diffracted waves have more complicated features than 

those for the SH wave case, especially in the horizontal component. Although it is 

difficult to distinguish clearly, the earlier part of the diffracted waves seems to be 

the creeping P waves, while the later part seems to be the creeping SV waves from 

their apparent velocities. 

    Outside the canyon later arrivals can be observed similarly to those for a 

SH wave incidence. However, they appear to become Rayleigh waves soon after
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the departure from the edges judging from their particle motions and apparent 

velocities. Neither the reflected P nor SV waves can be seen clearly. As is natural 

for Rayleigh waves in two-dimensional field without material damping, those waves 

keep the same shape and amplitude as they propagate. 

    The apparent fluctuation of the response amplitude for a particular frequency 

seen outside the canyon does not accurately express the real physical phenomena, 

because the phase information is disregarded. This clearly illustrates the importance 

of the time-domain solutions over the frequency-domain amplitude. 

    Next an obliquely incident SV wave is considered with the incident angle 

of 30°. The results are plotted in Figure 3.14. Many different features arise as 

compared with the SH wave case. 

    Even the amplitudes of the direct waves on the horizontal component, which 

should equal to 3.46 in case of a homogeneous half-space, change strongly along the 

surface. This is mainly due to the geometrical effect of incident and reflected SV 

waves. Another significant difference between SV and SH wave incidence is that 

the wave arrivals with very large amplitude appear inside the canyon soon after the 

direct waves. These may be due to the horizontally propagating (inhomogeneous) 

P wave created by the critical incidence. Also the creeping P and SV waves can 

clearly be seen inside the canyon. 

    Differently from the vertical incidence, the P waves reflected at the canyon 

surface can be observed in front of the canyon, and so the Rayleigh wave amplitude 

is relatively small. The reflected SV waves are still not clear.

3.3.3 P wave incidence 

    Comparing a P wave incidence with a SV wave incidence, everything becomes 

simpler. Figure 3.15 shows the responses due to a vertically incident P wave . The 

amplitudes of the direct waves on the vertical component are almost the same 

along the surface except near the edges, and the amplitudes of the diffracted waves 

inside the valley and the those of Rayleigh waves outside the valley are relatively 

small. These reflect the fact that the P-wavelength here is twice as large as the 

S-wavelength and so the interaction between the incident wave field and the surface 

irregularity becomes smaller. The reflected P waves can be observed outside the
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canyon as pointed by arrival-time arrows. 

    Figure 3.16 shows the responses due to an obliquely incident P wave with 

the angle of  30°. The direct waves on the vertical component mostly keep the same 

amplitude except near the rear-side edge, which is in the shadow zone. The creeping 

P and SV waves generated at the front-side edge are clearly seen propagating toward 

the rear-side edge. Clear arrivals of the reflected P wave are again observed in front 

of the canyon.

3.3.4 Rayleigh wave incidence 

    Finally the case of a Rayleigh wave incidence is examined. Figure 3.17 shows 

the responses of a canyon subject to a Rayleigh wave. The amplitude of an incident 

Rayleigh wave is normalized by its horizontal component, which gives the vertical 

amplitude of 1.56. 

    As was pointed out by Wong (1979, 1982) and shown in Figure 3.6, blocking 

effect of the canyon to the Rayleigh wave with relatively short wavelength is signif-

icant: less than 10% of incident wave amplitude can transmit through the canyon. 

Large amplification is observed just in front of the canyon due to the reflection of 

the incident Rayleigh wave, while the amplitude is reduced drastically as the wave 

propagates inside the canyon. It should be noted that the main part of the waves 
inside the canyon seems to be the diffracted waves similar to those for body wave 

incidence, rather than a horizontally propagating Rayleigh wave. 

    The amplitude in time domain is consistent with that in frequency domain 

in general, however, the horizontal surface in front of the canyon is an exception. 

The amplitude in frequency domain fluctuates strongly as can be seen in Figure 3.6, 

although the maximum amplitude in time domain does not change unless the point 

reaches close to the edge. This fluctuation in frequency domain is again due to the 

arrival-time difference between the direct and reflected waves.

3.4 Response of a ridge 

    As we have seen in the foregoing section even a simple semicircular canyon can 

exhibit very interesting scattering phenomena. In case of a ridge we see different
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Figure 3.17: Time responses along the surface in and around a semicircular canyon due to 

a Rayleigh wave. The horizontal and vertical free-field amplitudes for a homogeneous half-

space are 1.00 and 1.56, respectively. The other conditions are the same as in Figure 3.15.
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Figure 3.18: The model configuration and the element distribution of a ridge. Observation 

points on the horizontal surface are also shown. Totally 41 elements are placed along the 

surface of a ridge and 34 elements along the auxiliary boundary.

types of scattering phenomena that are also very interesting. The theoretical re-

sponses of ridges and mountains in a two-dimensional wave field have been studied 

by numerous authors (e.g., Boore, 1972; Bouchon, 1973; Smith, 1975; Sills, 1978; 

Bard, 1982; Geli, 1988), however, detailed investigation of reflected and diffracted 

waves created by a ridge in time-domain response have not been completed yet. 

    In this section a simple model of a ridge as shown in Figure 3.18 is analyzed 

for SH, SV, P, and Rayleigh wave incidence. Since the half-space Green function 

in equation (2.33) satisfies the stress free condition everywhere on the horizontal 

surface, we need to first excavate the half-space and then fill the cavity with soil 

whose surface is elevated. Thus we need to use equations (2.12) and (2.13) for the 

same material that connected with each other at the auxiliary boundary within a 

half-space. The broken line in Figure 3.18 represents this boundary. The shape of a 

ridge is assumed to be a circular arc of radius 2.5h where h is the height of a ridge. 

It gives the half-width of a ridge 2h. Calculated frequencies are 41 in total ranging 

from 0.0 to 4.0. Totally 61 observation points are distributed at nearly equal interval
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Figure 3.19: Time responses along the surface of a ridge due to a vertically incident 
SH wave. The characteristic frequency of a Ricker wavelet is 1.0. The horizontal axis 
is the nondimensional time r - tj3/h which is shifted properly. Numbers inside are the 
nondimensional positions xi/h. 

measured along the surface of the ridge and the surrounding half-space. 

3.4.1 SH wave incidence 

    Figures 3.19 and 3.20 show the horizontal (anti-plane) responses of a ridge 

calculated by the DWBEM due to incident SH waves with the angle of 0° and 30°, 

respectively. 

    In the case of a vertical incidence the direct waves keep almost the same am-

plitude along the surface of the ridge. Very small amplification in the middle of 
the side slopes and very small deamplification near the edges are observed. The 

diffracted waves generated at the edges are propagating along the convex surface to 

the opposite side edges. It is very interesting that the amplitude of these diffracted 

waves are increasing as they propagate. This phenomenon is opposite to that ob-
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Figure 3.20: Time responses along the surface of a ridge due to an incident SH wave with 

the angle of  30°. The other conditions are the same as in Figure 3.19.

served for a canyon in which the creeping wave along the concave surface is losing its 

energy quickly (See Figure 3.8). We can interpret this as a result of energy concen-

tration by successive multiple reflections along the convex curvature, a "whispering 

gallary"-like phenomenon. A careful observation reveals that the small amplification 
in the middle of the side slopes seems to be due to the diffracted waves. 

    In the case of an inclined incidence the direct wave amplitude are varying 

along the surface. Near the front-side edge only 65% of the half-space amplitude is 

observed, while near the hilltop about 120% amplification. The latter again may 

be due to the constructive interference of the direct wave with the diffracted wave 

propagating from the front-side edge to the rear-side edge. The diffracted wave 

propagating backward has rather small amplitude.
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3.4.2 SV wave incidence 

    Figures 3.21a and 3.21b show time histories due to a vertically incident SV 

wave for the horizontal (in-plane) and the vertical motions, respectively. The cal-

culation conditions are the same as in the SH wave case. 

    As for the direct wave appearing on the horizontal component, much larger 

amplification reaching 150% of an incident amplitude is observed at the hilltop. 

On the surface of the ridge diffracted waves have more complicated features than 

those for the  SH wave case. The earlier part of diffracted waves seems to be the 

creeping P waves, while the later part seems to be the creeping Rayleigh waves from 

their apparent velocities and the amplitude ratios between horizontal and vertical 

components. A normal Rayleigh wave is associated with a flat surface; however, the 

latest but largest arrival of the diffracted wave seen in Figure 3.21 has doubtlessly 

slower propagation speed than the S wave velocity so that it is called here the 

creeping Rayleigh waves, meaning successive generation of Rayleigh waves along 

the curved surface. The creeping SV waves are barely observed in the vertical 

component just before the arrivals of the creeping Rayleigh waves. 

    Outside the ridge diffracted waves generated by the direct wave and the creep-

ing P, SV, and Rayleigh waves are all observed. They appear to become Rayleigh 

waves soon after the departure from the edges as in the case of a canyon (Fig-

ure 3.13). 

    Next an obliquely incident SV wave is considered with the incident angle 

of 30°. The results are plotted in Figure 3.22. Many different features arise as 

compared with the SH wave case. 

    Even the amplitude of the earlier part on the horizontal component changes 

strongly along the surface. The amplitude, which starts from 3.46 on the horizontal 

surface, greatly decreases as the wavefront moves into the ridge and keeps almost 

15% level of the half-space amplitude until it reaches at the rear-side edge where it 

recovers up to about 70% level. If we compare Figure 3.22 with Figure 3.20 for the 
SH wave incidence, we found that the earliest arrival at the ridge surface does not 

seem to be the direct SV wave, which should have a curved distribution of arrival 

time as in the SH case. Rather, it may be the inhomogeneous P wave, which should 
have vertical wavefront and therefore should have a constant apparent velocity even 
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Figure 3.21: Time responses along the surface of a ridge due to a vertically incident SV 

wave. a and b correspond to the horizontal and vertical components. Poisson's ratio is 1/3. 
The other conditions are the same as in Figure 3.19.
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Figure 3.22: Time responses along the surface of a ridge due to an incident SV wave with 

the angle of 30°, which corresponds to the critical angle. The other conditions are the same 

as in Figure 3.21.
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at the ridge surface. 

    The amplitude of the direct SV wave for the horizontal component increases 

toward the rear-side slope and reaches its maximum 2.4 at  xi/h= 1.1. The ampli-

tude of the vertical component, which is zero at the horizontal surface, first increases 

till xilh = —1.2, then decreases near the hilltop, then again increases to reach 2.3 at 

xi/h= 1.0. Large amplification in the front-side slope may be due to the diffracted 

waves. The later arrivals consist of the creeping P, SV, and Rayleigh waves as in 

the vertical incidence, although it is difficult to distinguish clearly. Thus the deam-

plification phenomenon first reported by Bard (1982) for a ridge with the critical 
incidence of SV wave is found to be caused by the energy splitting to different types 

of waves and components as described here. The creeping P and Rayleigh waves 

propagating backward can be seen on the ridge surface. 

3.4.3 P wave incidence 

    In case of a P wave incidence everything becomes simpler as in the case of 

a canyon. Figure 3.23 shows the responses due to a vertically incident P wave. 

The amplitudes of the direct waves on the vertical component are almost the same 

along the surface, and the amplitudes of the diffracted waves on the ridge slope 

are relatively small. These reflect again the weak interaction between the incident 

P wave and the surface topography. The creeping P and Rayleigh waves can be 

observed clearly, while the creeping SV wave is barely observed as in the case of a 

SV wave incidence. 

    Figure 3.24 shows the responses due to an obliquely incident P wave with the 

angle of 30°. The direct waves on the vertical component mostly keep the same 

amplitude except near the edges. The creeping P and Rayleigh waves generated 

at the front-side edge are clearly seen propagating toward the rear-side edge. Back 

scattered P and Rayleigh waves are also observed. 

3.4.4 Rayleigh wave incidence 

    Figure 3.25 shows the responses of a ridge subject to a Rayleigh wave. A very 

interesting phenomenon can be seen in the figure.
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Time responses along the surface of a ridge due to an incident P wave with the 

The horizontal and vertical free-field amplitudes for a homogeneous half-space 

1.74, respectively. The other conditions are the same as in Figure 3.23.
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    Once the incident Rayleigh wave reaches at the front-side edge, its phase 

is shifted and its amplitude is reduced. Then it propagates along the surface of 

the ridge, keeping almost the same amplitude (small energy conversion between 

horizontal and vertical components can be seen, though). When it approaches to 

the rear-side edge, the earlier arrival eventually appears. Finally, on the horizontal 

surface at the back of the ridge, they become two clear wave-trains with equal 

amplitude. Although it is dangerous to judge from this figure alone, the earlier one 

might be the wave that propagates horizontally without being interfered very much 

by the ridge. The diffracted waves at the edges have negligibly small amplitude.

3.5 Summary of the results

    To calculate the response in in-plane wave field more efficiently, the Discrete 

Wavenumber Boundary Element Method (DWBEM) for the two-dimensional wave 

field is developed, in which the direct boundary element method is combined with 

the Green function calculated by the discrete wavenumber method. The method 

has a strong applicability to various types of irregularities and incident waves for 

wide frequency range. 

    Since the conventional BIEM or BEM requires considerable computational 

effort for in-plane problems, one can hardly find results expressed in time domain 

for even simple topography so far. In addition conventional techniques tend to 

lose their stability and give inaccurate results in higher frequency range, which also 

prevents us from calculating the time-domain response because even small amount 
of error in frequency domain will result in the violation of causality in time domain. 

On the other hand the DWBEM is efficient in computation, owing to the discrete 

wavenumber Green functions, and accurate and stable even in high frequency range, 

owing to exact evaluation of the element integration and direct constraint for the 

given boundary condition. Thus the causal and physically explainable time-histories 
as shown here were obtained by calculating the responses for 65 different frequencies 

from zero up to the frequency where the wavelength corresponds to 1/4 of the canyon 

radius. 

    First the accuracy of the proposed method was successfully tested against
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published results obtained in frequency domain. Then time-domain responses of 
canyons and a ridge subject to vertically or obliquely incident SH, SV, and P waves 

and a Rayleigh wave with a  Ricker wavelet shape are studied. Although the shapes 

of the irregularities adopted in this chapter are very simple, we learned a great 

deal from comparing the time-domain responses of topographic irregularities due to 

different types of incident waves. 

    In all cases of incident waves impinging to a canyon, the diffracted waves 

originated at the edges of the canyon are observed propagating along the canyon 

surface with the apparent velocity of S or P waves. These waves may be called 

the creeping waves in elastodynamics, the term which has been used in electro-

magnetism. In most cases of inclined incidence of body waves, larger amplitude of 

reflected and diffracted waves is generated in front of the canyon, while the shadow 

zone phenomenon is observed at the back of it. The result for a Rayleigh wave 

with relatively short wavelength confirms the strong blocking effect by the canyon 

as reported in previous studies. 

    In case of a ridge the diffracted waves originated at the edges are again ob-

served propagating along the ridge surface with constant apparent velocities. How-

ever, differently from the canyon, their amplitudes are increasing as they propagate. 

    The biggest difference between SH and SV wave incidence found is that the 

geometrical ray contribution (the direct and reflected waves) is dominant in the 
former, while the generated Rayleigh waves carry significant portion of energy in 

the latter. This suggests that the ray approximation will give satisfactory results 

for the anti-plane case as proved by Hong and Helmberger (1978), Nowack and Aki 

(1984), and Moczo et al. (1987), but that it cannot be expected to work as well in 
in-plane problems. It is worthy to note that among the diffracted waves generated 

by the ridge for in-plane problems the creeping Rayleigh wave, which is not seen on 

the canyon, has the largest amplitude. 

    It should be noted that the inhomogeneous P wave plays an important role in 

case of a critical incidence of SV wave. At the canyon surface the largest amplitude 

is due to the inhomogeneous P wave. At the ridge surface it becomes the earliest 

arrival, although its amplitude is small. Because of this energy splitting and other 

complex diffractions and mode conversions, the maximum amplitude in time domain
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becomes smaller than the original (half-space) amplitude in case of a ridge. 

    Although the results shown here are limited to the cases of a Ricker wavelet 

incidence with a fixed characteristic frequency, the following should be noted from 

the comparison between the responses in time and frequency domain. The fluctua-

tion of the amplitude along the surface in frequency domain does not always mean 

the fluctuation of the amplitude in time domain because the arrival-time difference 

of different types of waves results in the fluctuation in frequency domain even if each 

wave propagates with the same shape and amplitude. The time-domain response 

contains both amplitude and phase spectral information, and therefore expresses 

more complete physical picture of the wave propagation phenomena which will help 

to understand earthquake damages.
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Chapter 4 

Application to the Whittier Narrows Earthquake of 

1987

4.1 Description of the problem 

    The Whittier Narrows, California earthquake of October 1, 1987  (ML = 5.9) 

occurred at about 15 km east of downtown Los Angeles (34° 3.0'N, 118° 4.8'W; 

Jones and Hauksson, 1988) and caused the damage to approximately 10,000 build-

ings (Tierney, 1988; Jones and Nicolaides, 1988). The heaviest damage area was 

the northern part of the city of Whittier. According to Tierney (1988), about a 

dozen commercial buildings have been demolished and another twenty have been 

declared unsafe in the downtown shopping area, called Uptown or Whittier Village. 

The damage to residential houses was also heaviest there, especially just south of 

Puente Hills. The intensity VIII area in Figure 4.1, which shows the preliminary 

seismic intensity isoseismals based mainly on the field study (Leyendecker et al., 

1988), clearly reflects this. 

    The author and K. Aki at University of Southern California visited the area 

shortly after the earthquake, and was puzzled by the concentration of damage along 

the slope of the hill. A strong concentration of damage at the hilltop rather than on 

the slope is expected based on the theoretical and observational studies in the past 

(Aki, 1988). They observed that chimneys of houses on the hilltop were all intact, 
while there were many houses on the slope with toppled chimneys. Figure 4.2 shows 

the distribution of the heavily damaged buildings and houses in Whittier identified 

by the author, K. Aki, and his colleagues at University of Southern California, 

together with the distribution of the damaged water pipes (Schiff, 1988). The 

seismic intensity isoseismals in the area are also shown. This figure clearly shows 

the damage concentration along the southern slope of Puente Hills. K. Aki reminded 

the author of his lecture in "Introduction to Seismology" given a few weeks earlier
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Figure 4.1: Preliminary regional Modified Mercalli intensity isoseismals in the Los Angeles 

area for the Whittier Narrows earthquake of October 1, 1987. The solid circle is the epicenter 

of the main shock. [From Leyendecker el al., 1988; copyrighted by both the authors and 

the Earthquake Engineering Research Institute.]
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identified by the author, K. Aki, and his colleagues at University of Southern California, 
while open circles represent the water pipeline damage shown in  Schiff (1988). The triangle 

represents the approximate position of the USGS station at 7215 Bright Ave., Whittier. 

Thick lines show the isoseismals in Figure 4.1.
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on the well-known sharp amplification effect of free-surface on an incident plane SV 

wave near the critical angle (i.e., the angle  O„ at which sin 9c,. is equal to the ratio of 

S wave velocity to P wave velocity). Realizing that the incident angle for the heavily 

damaged area in Whittier (8 to 10 km from the epicenter) roughly corresponds to the 

critical angle for the realistic Poisson's ratio and the reported focal depth (14±1 km; 

Jones and Hauksson, 1988), he suggested that the critically incident SV waves might 

have caused the sharply localized damage pattern in Whittier. It was soon realized 

that the sharp amplification for a plane SV wave incidence at the critical angle 

disappears if the source of an incident wave is replaced by more realistic localized 

sources with band-limited spectra (Aki, 1988). A possibility remained, however, 

that a combination of the topographic irregularity with a critically incident SV 

wave source may cause a sharply localized amplification. Although the amplification 

effects due to topographic irregularities has been studied by Boore (1972), Bouchon 

(1973), Bard (1982) and Tucker et al. (1984) among others, the possible anomalous 
effect by the near-critical incidence of SV waves in the epicentral region has so far 

escaped their attention. 

    The purpose of this chapter is to estimate the amplification factor due to a 

topographic irregularity for various types of incident SV waves with a near-critical 

angle to explain the anomalous damage pattern observed during the Whittier Nar-

rows earthquake. First the observed strong motion records are examined to find if 

SV waves are indeed the main part of the ground motion in Whittier. Then the 

time-domain responses along the hill surface are calculated by using the discrete 

wavenumber boundary element method and the fast Fourier transform (FFT) al-

gorithm. The method, fully described in Chapter 2, is again proved to be efficient 
and accurate enough to calculate the response of a hill due to various sources of 

incident wave field for frequencies as high as 10 Hz. The analysis is limited to the 

two-dimensional in-plane wave field.

4.2 Observed records examination 

    More than 250 strong-motion accelerograph stations were triggered by the 

main shock of the Whittier Narrows earthquake (Brady et al., 1988a) and records ob-
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Table 4.1: Peak Values at the Station 7215 Bright Ave., Whittier

NS-direction EW-direction UD- direction

Acceleration

(cm/sec2)

10th floor —417.9 514.0 549.4

5th floor —539 .5 —600.9 345.0

Basement —381 .9 —606 .7 245.5

Velocity

 (cm/sec)

10th floor 43.7 —33 .4 —11 .4

5th floor 35.3 —24 .2 10.3

Basement 26.6 —27.7 — 7 .6

Displacement

(cm)

10th floor 7.3 3.9 1.0

5th floor 5.8 —3 .1 — 1 .0

Basement 3.9 —2.5 0.8

served at twelve stations by the California Division of Mines and Geology (CDMG) 

and seven stations by the U.S. Geological Survey (USGS) have already been re-

leased as digitized data (Shakal et al., 1987; Brady et al., 1988b). First the records 

obtained at the nearest station to downtown Whittier shall be examined to see how 

much the records at the basement were affected by the building vibration. 

    The nearest station to downtown Whittier is the USGS station No.4 in Brady 

et  al. (1988a), a ten-story reinforced concrete building at 7215 Bright Ave., Whit-

tier. It is located 8.0 km south and 4.1 km east of the epicenter. The triangle in 

Figure 4.2 represents the approximate position of the station. Figure 4.3 shows the 

accelerograms recorded at the basement, 5th, and 10th floors of the building. Peak 

acceleration, velocity and displacement are summarized in Table 4.1. No ground 

level records were provided at this station. The accelerograms have a common pre-

dominant frequency of about 4 Hz in the EW direction or 2 Hz in the NS direction. 

These predominant frequencies higher than expected for the fundamental mode of 

a ten-story building and the peak accelerations at the 5th floor larger than those at 

the 10th floor suggest that the second mode of the building vibration dominates. 

    To confirm this we calculate the system functions H(w) of the upper two levels
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to the basement by the following formula: 

                          =Sbu(w)              H(w)
Sbb(w)(4.1) 

where,  Sbb(w) is the power spectrum of the basement acceleration and Sbu(w) is 

the cross spectrum between the upper level and the basement. The Parzen window 

of 0.2 Hz is used. Figure 4.4 shows the absolute value of the system functions 

for the NS and EW components together with the power spectra at the basement . 

Considering that the system function represents the dynamic characteristics of the 

structure with a fixed base, we conclude: 

    i) The natural frequencies of the structure are 0.67 Hz and 2.0 Hz in the 

    NS direction and 1.4 Hz and 4.1 Hz in the EW direction. 

    ii) The peak amplitudes are increasing with level in the first mode, while 

     they are decreasing in the second mode. 

    iii) The NS-direction power spectrum at the basement has only one 

    prominent peak at 2.4 Hz, while the EW-direction power spectrum has 
    two peaks at 2.4 Hz and 3.7 Hz. 

    It is well known that the basement response has troughs at the natural fre-

quencies of the structure itself but has peaks at the natural frequencies of the total 
soil-structure system, which are always lower than the former (e.g., Trifunac, 1972; 

Wolf, 1985). Since the second peak frequency 3.7 Hz in the EW-direction power 

spectrum is a little lower than the second natural frequency of the structure 4.1 

Hz and it appears only in the EW direction, it must be due to the effect of the 

structure, rather than the property of the input ground motion. Particle motions 

for band-pass filtered basement accelerograms in Figure 4.5 show that the major 

axes of motion lie between NW and NNW direction for the most frequency ranges 

except for the range from 2.5 Hz to 5.0 Hz where EW motion dominates. Thus 

we conclude that the basement accelerograms of the nearest station to downtown 

Whittier are strongly modified by the structural response, and we cannot use them 

for our purpose. 

    Other stations in the epicentral area, however, may be used to find if SV waves 

are the main part of the strong ground motion. We selected twelve stations of the
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grams with respect to the basement accelerogram observed at 7215 Bright Ave., Whittier. 

Power spectra of the basement accelerograms are plotted in the bottom. a: NS component; 

b: EW component. A Parzen window with the bandwidth of 0.25 Hz is used. Down arrows 

and up arrows in the figure indicate the inferred natural frequencies of the structure itself 
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Table 4.2: Station Locations and Directions of Principal Axis

Station Name

 Coordinate 

North & East 

  (km)

Epicentral 

distance 

 (km)

Principal axis 

from north* 

 Obs./Cal.

ALTA: 

Eaton

Altadena, 

Canyon Park
( 14.2, —1.4) 14.3 4°/3°

SANM: San Marino, 

Southwestern Academy
 ( 7.3, —4.5) 8.6 358°/359°

FREM 

900 S.

 

:  Alhambra, 

Fremont Blvd.
( 4.5, —6.4) 7.8 343°/352°

FRES: Alhambra, 

Fremont School
( 2.3, —6.4) 6.8 331°/343°

GARV: Garvey 

Abutment Bldg.

Reservoir,
( 0.1, —2.7) 2.7 348°/345°

OBRE: Los Angeles, 

Obregon Park
( —1.3, —8.9) 9.0 322°/308°

DAMU: Whittier 

Dam, Upstream

N arrows
( —2.1, 2.9) 3.6 45°/19°

VERN: Vernon, 

4814 Loma Vista Ave.
( —5.5, —11.0) 12.3 45°/74°

BELL: Bell, 

L.A. Bulk Mail Center
( —6.6, —7.3) 9.8 106°/50°

BRIG: 

7215 B

Whittier, 

right Ave.
( —8.0, 4.1) 9.0 317°/340°

DOWN: 

County

Downey, 

Maintenance Bldg.
( —13.9, —7.9) 16.0 28°/13°

NORW: Norwalk, 

12400 Imperial Highway
( —14.3, 1.0) 14.3 340°/359°

The principal axis, measured clock 

has +1800 ambiguity.

wise from the north,
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CDMG and USGS which meet the condition that the epicentral distance < 20 km 

and the peak acceleration  > 0.2 g. The station names and location coordinates 

relative to the epicenter are listed in Table 4.2. All stations are on the ground or 

on the basement of a small building except for the stations BRIG: Whittier-7215 

Bright Ave. and FREM: Alhambra-900 South Fremont Blvd. We then determine 

the directional distribution of energy in the horizontal plane by using the following 

formula (Takizawa, 1982). First we calculate the total power and cross spectra of 

the two orthogonal components n (referring to north) and e (referring to east) in 

the frequency range of interest: 

          [E]  =rW2ReSnn(W),Sne(w)du;, (4.2)                     Jwl Sen(W), See(W) 

where, Snn(w) is a power spectrum of the n direction velocity and Sne(W) is a cross 

spectrum between the n and e direction velocities, and so on. Then the energy in 

the direction 0 measured clockwise from the n-axis can be obtained as 

               Eck = {cos 0, sin 0} [ E]cos(4.3) 
sin 0 

This energy distribution will be two elliptic lobes in line with the principal axis if 

the ground motion is unidirectional, while it will become a single circle if the ground 

motion is not directional at all. Figure 4.6 shows the energy distributions for the 

records observed at twelve stations. Note that the unidirectional motion is clearer 

in the northern and southern stations. 

    In Figure 4.7 the same energy distributions are plotted for the theoretical 

ground motions calculated by the Haskell-type fault with uniform slip distribution 
in a three-dimensional unbounded medium, whose P and S wave velocities are as-

sumed to be 4.2 km/sec and 2.4 km/sec. The assumed fault parameters are chosen 

referring to Hauksson et al. (1988) and summarized in Table 4.3. The fault strike is 

east-west and slip direction north-south. The calculated principal directions show a 

remarkable agreement with those observed. At all stations except BELL: Bell—L.A. 

Bulk Mail Center the difference between the observed and calculated principal axes 

is less than 30° as shown in Table 4.2. This good agreement may indicate the effec-

tiveness of a relatively simple source model as the results of Wald et al. (1988) and
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Figure 4.6: Energy distributions in the horizontal plane for the records observed at twelve 

stations within 20 km from the epicenter. The solid circle is the  epicenter of the main shock. 

The station names and location coordinates are listed in Table 4.2. The distribution will 

be two elliptic lobes in line with the major axis if the ground motion is unidirectional, or a 

single circle if the ground motion is not directional at all.
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Figure 4.7: Energy distributions in the horizontal plane for the synthetics calculated 

the same stations in Figure 4.6. Fault parameters of the 3D Haskell model used here 

 summarized in Table 4.3. The assumed rupture area is shown by the broken line.

at 

are
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Table 4.3: Fault parameters used for a 3D Haskell model

Rupture Depth of Fault size Dip Rupture Rise Final Seismic 

pattern hypocenter L x W angle speed time slip moment 

        (km) (km)(km/sec) (sec) (m)  (dyne-cm)

radial 12.0 6.0x6.0 30° 2.0 0.25 1.0 0.5x 1025

Vidale (1989) have also suggested. The reason why the station BELL is exceptional 

may be because it lies close to the nodal plane so that the principal direction of 

motion could be affected strongly by other factors such as source complexity. 

    From the study of the principal axis it is found that the radial component 

is dominant in the southern stations. To confirm that the incident wave is mainly 

composed of SV waves at those stations, it is helpful to compare the correlation of 

the radial and vertical components with that of the transverse and vertical compo-

nents. As an example we show the particle motions of the filtered velocity records 

observed at NORW: Norwalk-12400 Imperial Highway in Figure 4.8. Good correla-

tion can be seen in the radial-plane projection as elliptic patterns represent , while 
random motion patterns are observed in the transverse-plane projection. Other 

stations such as DAMU: Whittier Narrows Dam, Upstream or DOWN: Downey— 

County Maintenance Bldg. show the same patterns as in Figure 4.8. This fact and 

the arrival time suggest that the major portion of the ground motion is mainly 

composed of SV waves. Since the difference of the azimuthal angle between these 

stations and BRIG is small and the waveforms of the theoretical synthetics are very 

similar to each other, we conclude that the assumption of the SV wave dominance 

in downtown Whittier seems quite reasonable. Dominant direction of motion at 

BRIG shown in Figure 4.5 also supports the assumption except for the frequency 

range of 2.5-5.0 Hz.
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Figure 4.9: Model of a shallow hill used in the analysis. The dashed line shows the interface 

between the irregular region and the surrounding half-space. Responses at the surface of 

the hill and the surrounding soil within ±2.4km are calculated.

4.3 Models of source and medium

    The method for calculating synthetic seismograms is the discrete wavenumber 

boundary element method described in the previous chapter. As in the section 3.4 

we divide the medium into two regions, an irregular region and a surrounding one. 

For the irregular region we use Green function for a homogeneous unbounded me-

dium. This region is enclosed by the boundary elements, including the free-surface 

with non-flat topography. For the surrounding region, we use Green function for 

a homogeneous half-space calculated by the discrete wavenumber method. These 

two regions are connected by the boundary elements on the interface which can be 

placed arbitrarily as shown in Figure 4.9. 

    The topography of the hill in our model has the height 0.3 km and the width 

2.4 km, approximating the actual geometry of Puente Hills shown in Figure 4.2. 

The shape of the hill is assumed to be a circular arc of radius 2.55 km. The P and
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S wave velocities are assumed to be 4.2 km/sec and 2.4 km/sec, respectively. The 

following four types of sources for incident wave field are considered: 

    (a) a plane SV wave at near-critical incidence, 

    (b) a horizontal line force located at the assumed hypocenter (-8 km, 
    12 km), and 

    (c) two-dimensional dip-slip faults of 

 (cl) Haskell-type with a uniform slip distribution (Haskell, 1964), 
    and 

       (c2) Bouchon-type with multiple cracks (Bouchon, 1978). 

They are shown schematically in Figure 4.10. The fault parameters used for the 

cases (cl) and (c2) are listed in Table 4.4. The theoretical expressions for these 

kinematic fault models are summarized in Appendix. For the case (a) the inci-

dence angle is set to be 33.7°, which corresponds to the direction from the assumed 

hypocenter (-8 km, 12 km) to the hill center. Hereafter we call the left-hand side 

of the hill as near-side and the right-hand side as far-side relative to the hypocenter. 

Figure 4.11 shows the slip distributions and the rupture propagation patterns for 

both Haskell-type and Bouchon-type fault models. 

4.4 Synthetic seismograms 

    The synthetic seismograms along the surface of the hill and the surrounding 

half-space within +2.4 km will be shown for the above four types of incident wave 

field. In cases of a plane SV wave and a line force we assume the source time 

function of a Ricker wavelet defined as 

U(t)_(27r2f~2t2-1) exp(—r2f~2 t2) ,(4.4) 

where fc is the characteristic frequency. The shape and spectra are shown in Fig-

ure 3.7.
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(b) A horizontal line force (c)  2D kinematic faults

Figure 4.10: Four types of sources for the incident wave field are considered and compared, 
that is, (a) a plane SV wave with nearly critical angle of incidence 33.7°, which corresponds 

to the direction from the assumed hypocenter to the hill center, (b) a horizontal line force 
located at the hypocenter (-8 km, 12 km), and (c) 2D kinematic faults, whose rupture 

patterns are of Haskell-type with a uniform slip distribution (c1), or, Bouchon-type with 
multiple cracks (c2). See Table 4.4 for the fault parameters used in the cases (c).

Table 4.4: Fault parameters used for 2D fault models

Fault type Depth of 

hypocenter 

 (km)

Fault length Dip 

Upper Lower angle 

(km) (km)

Rupture 

 speed 

(km/sec)

Rise 

time 

(sec)

Maximum 

  slip 

 (m)

Haskell 12.0 3.0 3.0 30° 2.0 0.25 1.00

Bouchon 12.0 3.0 3.0 30° 2.0
*

1.27

* Source time function is determined by the pattern of crack 

 growth. Each crack freezes in 0.25 sec:
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Slip
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 (c1) Haskell model 

        Slip

3 km

 -3  km03km 

                            (c2) Bouchon model 

Figure 4.11: Slip distributions and rupture propagation patterns for (cl) the Haskell-type 
fault and (c2) the Bouchon-type fault. See Appendix for formulation. 

4.4.1 Plane SV wave incidence 

    Figure 4.12 shows the synthetic seismograms for a plane SV wave with the 

angle of incidence 33.7°. Synthetics for a duration of 10 sec with a time delay of 4 

sec are plotted. The characteristic frequency L is set to be 4 Hz. The uppermost 

seismogram shows the response at x1 = —2.4 km. The seismograms at locations 

from —1.2 km to +1.2 km correspond to the hill surface. The lower side of the figure 

shows the responses of the far-side of the hill, with the lowermost one corresponding 

to x1 = +2.4 km. 

    The amplification along the far-side slope of the hill is observed. The max-

imum amplitude increases as the observation point moves from the hilltop to the 

far-side edge. Along the near-side slope deamplification is clearly seen. The flat 

surface of the surrounding half-space seems little affected by the topography. These 

amplitude characteristics are stable with respect to the spectral content of the source 

time function as shown in Figure 4.13, where we plot the peak amplitude distribu-

tions along the surface for different characteristic frequencies L = 2 Hz, 3 Hz, and 4 

Hz. The amplification factor reaches about 1.6 near the far-side edge, which seems
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Figure 4.12: Synthetic seismograms along the surface of the hill and the surrounding soil 

for a plane incident SV wave with a Ricker wavelet of the characteristic frequency h=4 

Hz. a: horizontal component; b: vertical component. The horizontal coordinate x1 is 

shown in the right-hand side. The separation distance between two successive traces is 

approximately 60 m. Frequency spectra are calculated for every 0.05 Hz interval from 0 

Hz to 10 Hz, and then transformed into time-histories by FFT. Amplitude is normalized to 

that of the incident wave.

88



 2.0

1.5

O +r U 

f0 

C 0 

1.0 
0 
.Q 

E Q

0.5

0.0  L--
   -2 .5 -2.0 -1 .5

\N  \\_Jj 
     \,

-1 .0 -0 .5 0.0 0.5

/

1.0

^ 

L=2.0 Hz 

\ 
             L=3.0 Hz

L=4.0 Hz

1.5 2.0 2.5 
 x,-coordinate (km)

Figure 4.13: Maximum amplitude distribution along the surface of the 

rounding soil for plane SV waves with characteristic frequencies h of 2 Hz 

Amplitude is normalized to that of a half-space, 2.06.

hill and the sur-

, 3 Hz, and 4 Hz.

89



surprisingly large for the effect of a 0.3 km hill. Its position seems also unusual 

because the largest amplification at or near the hilltop is observed if not critical 

SV-wave incidence (Bouchon, 1973; Bard, 1982). For an exactly critical SV wave 

incidence Bard (1982) has reported a deamplification near the hilltop relative to the 

flat surface response. The author has already discussed in Chapter 3 the mechanism 

that causes this deamplification. 

4.4.2 Horizontal line force 

    To see the effect of cylindrical wave field in comparison to plane SV wave 

field, displacement due to a horizontal line force are shown in Figure 4.14 in the 

same manner as  in Figure 4.12. Synthetics for a duration of 10 sec starting with 

the origin time are plotted. The similar amplification along the far-side slope can 

be seen. The peak amplitude distributions along the surface in Figure 4.15 also 

have very similar characteristics to those in Figure 4.13 for a plane SV wave. The 

maximum amplification factor reaches 1.9 for h = 3 Hz. As mentioned earlier, 

the critical incidence effect on a flat surface disappears in this frequency range if 

the plane wave is replaced by a line force (Aki, 1988). It is noticeable, therefore, 

for a line force to give similar amplification characteristics to those for the plane 

wave on an elevated surface. This stability to the incident wave field as well as the 

source spectrum encourages us to attribute the observed damage concentration to 

the surface topography coupled with the near-critical incidence. 

4.4.3 Haskell-type fault 

    In order to see if these characteristics are also observed for more realistic 

earthquake sources, first we calculate the response for a Haskell-type kinematic 

fault with a uniform slip distribution. Rupture starts at the center of the 6 km 

fault and propagates bilaterally with a constant velocity of 2.0 km/sec. The rise 
time (Aki and Richards, 1980) is assumed to be 0.25 sec. Since damage of structures 

represented by the ductility factor is well correlated with the input energy, hence 
with the maximum ground velocity (Newmark and Rosenblueth, 1971), we plot 
velocity seismograms along the surface in Figure 4.16. Synthetics for a duration of 

15 sec starting with the earthquake origin time are shown. 
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Figure 4.16: Synthetic velocity seismograms along the surface of the hill and the sur-

rounding soil for the  Haskell-type fault model with a uniform slip distribution. Amplitude 

is not normalized (cm/sec). The other conditions are the same as Figure 4.12. The radia-
tion pattern and the directivity effect are recognized when we compare the uppermost and 

lowermost seismograms.
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    Note that the maximum amplitude is larger and pulse width is smaller in the 

lowermost seismogram than in the uppermost one because of the directivity effect. 

At the hilltop the S-wave stopping phase from the topmost fault tip arrives only 

0.66 sec after the arrival of the starting phase from the hypocenter so that all the 

S-wave energy from the upper segment is concentrated within this short duration. 

The shape of the intensity VII isoseismal in Figure 4.1 as well as the maximum 

acceleration contours obtained by Trifunac (1988) seems to reflect this directivity 

effect in addition to the radiation pattern. The calculated duration of the S wave is 

about 3.5 sec, about 1.5 sec shorter than the observed (Brady et  al., 1988a; Shakal 

et al., 1988). The difference is expected because both three-dimensional effect of 

rupture propagation and soil layers are neglected. The effect of the topography is 

again very similar to the previous cases: the far-side slope of the hill amplifies and 

the near-side slope deamplifies the surface response.

4.4.4 Bouchon-type fault 

    Finally a Bouchon-type multiple crack model is considered. Each crack sim-

ulates self-similar rupture growth with an elliptical slip distribution along the fault 

surface (Das and Aki, 1977). The size of each crack is 0.5 km and totally 12 cracks 

are placed as shown in Figure 4.11. Since the rupture velocity is assumed to be 2 

km/sec, each crack completes slip and freezes in 0.25 sec. The total seismic moment 

is equal to that of the Haskell-type model considered above. 

    The velocity seismograms in this case are plotted in Figure 4.17. As expected 

from Bouchon's work (1978), multiple cracks on the upper segment produce major 

peaks similar to those by the Haskell-type fault since all the observers are located in 

the direction of rupture propagation. On the other hand, we can see the distinctly 

separated arrivals from the cracks on the lower segment which propagate away from 

the observers. These arrivals make the waveform more realistic than that by the 

Haskell-type fault. 

    The effect of topography appears again in the same manner as before, but the 

amplitude fluctuation is larger than that for the Haskell-type fault. The peak am-

plitude distributions in Figure 4.18 show the difference more clearly. The maximum 

amplification factor for the Bouchon-type fault reaches 1.8 near the far-side edge.
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Figure 4.17: Synthetic velocity seismograms along the surface of the hill and the surround-
ing soil for the Bouchon-type fault model with 12 cracks. Amplitude is not normalized 

(cm/sec). The other conditions are the same as Figure 4.12. The cracks on the lower seg-
ment make periodic fluctuations in the later phase, while cracks on the upper segment give 

similar peak responses to those by the Haskell-type fault.
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4.5 Summary of the results and discussions

    The seemingly localized damage pattern due to the Whittier Narrows earth-

quake of October 1, 1987 showing most severely damaged buildings and water pipes 
located 8 to 10 km from the epicenter (corresponding to the critical incidence for 

SV waves) and near topographic irregularities motivated us to conduct a theoret-

ical simulation of ground motion using a 2D model of topographic irregularity for 

various sources of incident wave. 

    First we examined the accelerograms obtained at the USGS station (7215 

Bright Ave.) nearest to downtown Whittier and conclude that the dominantly 

east-west motion observed at the station is due to the influence of the building 

in which accelerograms were recorded. Therefore they are not adequate source of 

information to describe the ground motion there. We then demonstrate that strong 

ground motions recorded by 12 stations in the epicentral area show a polarization 
direction pattern, primarily SV-type, consistent with a simple thrust fault located 

at the hypocenter. 

    Then we calculated the response of a two-dimensional hill with the height 0.3 

km and the width 2.4 km to i) a plane SV wave with a nearly critical angle of in-

cidence, ii) a horizontal line force, iii) a Haskell-type 2D dislocation source, and iv) 

a Bouchon-type 2D multiple crack source. The results show that the amplification 

due to the hill relative to the flat surface is more than 1.5 for all the source models. 

Since this amplification is nearly independent of the source type and spectrum, we 

conclude that the combined effect of the topographic irregularity and critically in-

cident SV waves might be responsible for the concentrated damage observed during 

the Whittier Narrows earthquake. 

    The maximum amplification factor for the Bouchon-type fault reaches 1.8 

near the far-side edge. Since the maximum velocity was 14 cm/sec at the Whittier 

Narrows Dam, Upstream (Brady et al., 1988b), which is located on a relatively flat 

surface, the maximum velocity in downtown Whittier might have reached 25 cm/sec. 

Since the maximum amplification factor in the acceleration response also reaches 

1.8 and the acceleration at the Whittier Narrows Dam was 0.30 g, the maximum 

acceleration in downtown Whittier might have reached 0.54 g. These facts suggest
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that the damage concentration in downtown Whittier might be caused by the severe 

ground motion due to a combined effect of the topography, near-critical incidence, 

and the directivity of the source. 

    We cannot deny that the damage concentration in downtown Whittier might 

be caused by other factors such as rupture focusing, a deep basin structure, soft 

surface layers, or property of the structures there. However, these solutions seem 

to have their own shortcomings. For example, rupture focusing or the deep basin 

structure may create the energy concentration comparable to the size of the fault or 

the deep structure and therefore they are the candidates of the heavy damage area 

of the order of tens of km2, which is significantly larger than the heavy damage area 

in Whittier. In addition, the results by Wald et al. (1988) and Vidale (1989) as well 

as the authors suggest that a relatively simple model can explain the fundamental 

characteristics of the observed strong motion, such as response spectra, a radiation 

pattern, or polarization directions. 
    On the other hand, soft surface layers can create very localized area of strong 

shaking. In this case, however, we need a relatively thick soft layer since the shear 

wave velocity of a typical surface layer in the Los Angeles area is not very low. If, for 

example, the topmost layer had the average shear wave velocity of 350 m/sec, then 

its thickness should be 36.5 m to have the fundamental S-wave resonant frequency 

of 2.4 Hz as observed at BRIG (Figure 4.4). Because the damage concentration 

appeared along the slope of the hill, it is unlikely to have such a thick layer under-

neath. 

    Another possible reason for the damage concentration in downtown Whittier 

is the property of the structures there, such as the age or type of construction. 

The detailed surveys on the damaged buildings in Whittier and other areas are 

not yet completed (Leyendecker et al., 1988; Hart et al., 1988). At present we just 

emphasize that the damaged building and houses in Whittier are of broad types 

and that the damaged water pipes showed a similar distribution (Figure 4.2). 
    A major weakness of the hypothesis here is the assumption of a homogeneous 

half-space. Even at the hard rock site there exist a layered structure underneath . 
Its vertical velocity gradient might be small at Puente Hills so that it could not be 

significant to the effect of the topography. However, it will make the distance larger
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from the epicenter to the position at which SV wave is critically incident. Since the 

effect of small deviation of the incident angle from the critical one have not clarified 

yet, it should be studied more rigorously in the near future.
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Chapter 5 

Application to the Mexico Earthquake of 1985 

5.1 Description of the problem 

    The effects of soft surface layers on strong ground motions have been recog-

nized in Japan from as early as the 1930's (Sezawa, 1930; Ishimoto, 1932). Since 

then they have been studied by many researchers and their importance on the seis-

mic hazard reduction has been demonstrated. An extensive recent review on the 

effects of surface geology can be found in Aki (1988). 

    The attempts to correlate the distribution of damage caused by the strong 

ground motion to some properties of soil such as geologic age, shear wave velocity, 

or predominant period have been made after many damaging earthquakes (e.g., 

Zeevaert, 1964; Idriss and Seed, 1968; Seed et al., 1972; Tezcan et  al., 1977; Kita-

gawa and Matsushima, 1982). In these studies it is implicitly assumed that the 
local structure affecting the ground motion is laterally homogeneous. Actual soft 

surface layers, however, are not infinitely flat but laterally confined often in the 

form of a sediment-filled valley or basin. This finiteness of surface layers creates 

another type of wave, that is, the surface wave which propagates horizontally inside 

the basin. It sometimes induces a very complicated damage pattern and makes 

it difficult to correlate the damage pattern simply to any particular soil property. 

For example, Poceski (1969) attributes the damage concentration caused by the 

Skopje, Yugoslavia earthquake of 1963 to the lateral heterogeneity of the surface 

layer. During the Miyagiken-Oki, Japan earthquake of 1978 the damage was mainly 

concentrated in the transition zone from the mountain area to the alluvial valley 

(Kubo and Isoyama, 1980). 
    The destructive Michoacan, Mexico earthquake of 1985 seems to be another 

example in which the lateral finiteness of the surface layers played an important 

role. Researchers in Mexico knew before the earthquake that the ground motions
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in the Mexico City valley would be strongly amplified by its soft lacustrine layers 

(Rosenblueth et al., 1960; Zeevaert, 1964). In fact, it has been shown that the 
heavily damaged area correlates with the thickness (Institute de Ingenieria, UNAM, 

1985) or the predominant period (Kobayashi et al., 1986) of the soft layers. The 

accelerograms recorded on the soft soil during the Michoacan earthquake, however, 

show a feature which is not easily explained by a simple amplification effect. That 

feature is the unusually long duration of ground motion in which the later part has 

a comparable amplitude to the earlier, major part (Quaas et al., 1985; Anderson et 

al., 1986). 

    Although it is possible to simulate the response spectra of the observed records 

by assuming one-dimensional shear wave propagation as done by Romo and Seed 

(1986), Seed et al. (1988), and Romo et al. (1988), it is difficult to simulate their 
time-domain characteristics by a one-dimensional model as Kawase (1987) and 

 Sanchez-Sesma et al. (1988) have shown by using the observed record on a hard 

rock as an input motion. In other words, a large impedance contrast between the 

soft layer and the bedrock gives a large time-domain amplitude, but not a long du-

ration. Therefore a simple one-dimensional model will fail to generate a prominent 

later part of the time history recorded in the lake-bed zone. An example of such a 

failure will be shown in the next section, together with a supporting evidence from 

Singh et al. (1988). 

    The purpose of this chapter is to study the responses of a soft basin subject to 

various types of incident waves in the time domain, through which we can examine 

the possible cause of the long duration observed in Mexico City. Since Kawase 

(1987) and Bard et al. (1988) have already shown that even a strong irregularity of 
a soft, shallow surface layer contributes little to the prolongation of the response, 

it is appropriate to start with a deep basin structure whose size is relatively large. 

Although geotechnical investigations have been in progress after the Michoacan, 

Mexico earthquake of 1985 (Ovando-Shelley et al., 1988; Romo et al., 1988; Jaime 

and Romo, 1988), structures and properties of the soil deposits in and around the 

Mexico City valley, especially those below the soft surface layers, remain uncertain. 

Thus, the approach here cannot be truly quantitative, but only tries to find a 

plausible explanation of the observed long duration using possible model structures.
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    To calculate the response of such a deep basin structure, various methods have 

been proposed. Among others, a very thorough study of the dependence of vibration 

mode on structural parameters of the basin and incident wave types was made by 

Bard and Bouchon (1980a, 1980b) who calculated time-domain responses by the 

Aki-Larner method (Aki and  Larner, 1970) with the Fast Fourier Transform (FFT). 

Although the Aki-Larner method is efficient in computation, it is limited by two 

shortcomings: it cannot treat very steep boundaries, and it cannot solve problems of 

surface wave incidence. The DWBEM overcomes these difficulties (Kawase, 1988). 

A modified version of the DWBEM is used in this chapter because additional speed 

in computation is necessary to calculate the response of soft basins (Kawase and 

Aki, 1989b).

5.2 Observation and 1D analysis 

    The Mexico City valley is a large sedimentary basin covered by soft lacustrine 

deposits. Figure 5.1 displays the zoning of the uppermost stratigraphy of the Mexico 

City valley. The lake-bed zone consists of very soft clays and sand lenses, while the 

hill zone consists of alluvial and glacial deposits and lava flows. The accelerometer 

stations SCT and CDAO are located in the lake-bed zone and TACY in the hill 

zone as shown in Figure 5.1. 

    The depth profiles of the shear wave velocity, which play a dominant role on 

the amplification characteristics of the surface layers, have been investigated before 

and after the Michoacan, Mexico earthquake (Muris, 1978; Sanchez-Sesma et al., 

1988; Jaime and Romo, 1988). Profiles for the stations SCT and CDAO interpreted 

by Seed et al. (1988) from the direct borehole measurements are shown in Figure 5.2a 

together with the calculated amplification characteristics under one-dimensional S 

wave excitation. The Fourier spectral ratios of the observed accelerograms at SCT 

and CDAO with respect to TACY are also shown in the figure. The calculated am-

plification factors are considerably smaller and the predominant periods are shorter 
than those observed. To improve the fit Seed et al. (1988) proposed another soil 

profile for each site based on the predominant period of the earthquake records. 

The amplification characteristics of these soil models are shown in Figure 5.2b. Al-
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Figure 5.2: Amplification factors calculated by one-dimensional models of soft surface 
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though the discrepancy is slightly reduced, the calculated amplification factors are 

still much smaller than the observed spectral ratios. It should be mentioned that the 

discrepancy in the response spectra between the recorded and computed motions 

shown by Seed et al. (1988) is much smaller than the discrepancy in the spectral ra-

tio shown here because damped response spectra saturate easily and so they cannot 

reflect the difference in duration (Lin, 1976;  Sanchez-Sesma et al., 1988). Therefore 

it is dangerous to discuss the characteristics of the observed records or calculated 

synthetics just by response spectra. 

    The data obtained by Singh et al. (1988) from the extensive network of strong 

motion stations scattered over Mexico City show that this spectral deficiency for a 

one-dimensional model is common to most sites. Figure 5.3 reproduces the peak 

spectral ratios obtained by Singh et al. (1988) from observed accelerograms at 30 

stations in the lake-bed zone relative to the station CU in the hill zone. It is found 

that the average spectral ratio for the period range of 3 to 5 seconds is about 60% 

larger than that for 1 to 3 seconds as shown by the horizontal lines. Solid curves 

indicate the amplification for seven subsurface structures identical to the CDAO 

structure shown in Figure 5.2b except that the total thickness of the two layers 

is chosen as 26m, 36m, 46m, 56m, 66m, 76m, and 86m with the same proportion 

of the two layer thicknesses. As is well known, one-dimensional models with the 

same impedance contrast give the same peak amplification irrespective of the layer 

thickness. Note that the calculated peak amplification nearly corresponds to the 

minimum level of the observed ratios. The comparison between observation and 

one-dimensional theory reveals that the additional amplification by 30% to 100% is 

necessary on the average. If the observed larger amplification is due to the longer 

duration as observed at SCT or CDAO, the dependence of the peak value on the 

period suggests that the source structure of the longer duration should have the 

peak (resonant) period around 3.5 seconds. 
    In order to further convince the reader about the deficiency of the one-

dimensional model a time-domain comparison is shown in Figure 5.4. The top 

and bottom traces are the observed accelerograms at SCT and CDAO, respectively. 
The seven time-histories between them are the accelerograms calculated by using 

the one-dimensional theoretical responses shown in Figure 5.3 and the observed ac-
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Singh et al. (1988). Symbols + denote the observed values at 30 different points scattered 
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one standard deviation for two period ranges: from 1 to 3 seconds and from 3 to 5 seconds. 

The solid curves represent the amplification characteristics of the fundamental mode of S 
wave excitation calculated by seven one-dimensional structures which are identical to the 

CDAO structure in Figure 5.2b, except that the total thickness of the two layers is modified 
to 26m, 36m, 46m, 56m, 66m, 76m, and 86m.
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Figure 5.4: Calculated accelerograms by one-dimensional models whose amplification char-
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at the bedrock. The observed accelerograms at SCT and CDAO are also plotted at the 

top and the bottom of the figure. The left and right columns correspond to SN and WE 

components, respectively.
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celerogram at TACY as an input. Note that all of them show deficiency in later 

phases after 70 to 75 seconds as compared to the observed records at SCT and 

CDAO. 

    From these results it is concluded that the observed large spectral ratios must 

be due to the long duration, which one-dimensional models fail to simulate. In the 

following sections the effect of two-dimensional structures is studied as a possible 

cause of the long duration by using the modified DWBEM.

5.3 Method of analysis

    Since the DWBEM has been fully described in Chapter 2, only the modi-

fied part for the analysis of a basin is presented. Most time-consuming work in 

the DWBEM is to calculate the functions  G3i(x;x*) and Hii(x,n;x*), which are 

expressed as infinite sums over the discrete wavenumbers in case of an in-plane 

problem. The computation becomes longer if the size of a basin is larger and the 
calculated duration is longer. The worst convergence is achieved when both a source 

and a receiver are near the free-surface. To improve the efficiency of this compu-

tation, the author uses a hybrid scheme, that is, evaluation partially by the exact 

formula and partially by the discrete-wavenumber summation. 

    The Green function for a full-space (a homogeneous unbounded medium), 

G -F(x ; x*), can be expressed by the following formula 

G3iF(x;x*) =4µ [_o.HO(2)(kI3r)+1{I/1(2(1w)—aH1(2)(kr)1 
ar ar (            (2)2l as C7xiH2~~(kpr) —a2H2~2'(kar)JJJ}(5.1) 

for the in-plane problem (i = 1,3 ; j = 1, 3), where p is a shear modulus, a and /3 
are P and S wave velocities, H12)(.) is the Hankel functions of the second kind and 
mth order, and

ka 

kp 

 r

w/a, 

w/Q,

(x1 — x1*)2 + (x3 - x3 )2 .

(5.2) 

(5.3) 

(5.4)
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    Since the in-plane Green function for a half-space consists of the Green func-

tion for a full-space and the surface term (Chapter 2), we can replace the former 

with the expression of equation (5.1). We can also separate the surface term into 

two parts, one of which corresponds to the image-source solution. We replace this 

image-source part with the same exact formula to get the following advantages. 

First, the remaining discrete-wavenumber term becomes simpler, which makes the 

calculation for each wavenumber faster. Second, while the original surface term will 

be singular if x1 =  xl* and x3 = x3 = 0, the remaining discrete-wavenumber term 

is not singular anymore. This makes the wavenumber summation converge faster. 

As mentioned in Chapter 2, the anti-plane Green function for a half-space needs no 

discrete-wavenumber term. 

    The final expression of the Green function for a half-space is 

GuH(x;x*) = G1i (x;x*)+G11F(x;X*) 
°O 1  

+ 2Lk--------2
11, E A(kn)                                                       n=—co 

             rkn2(2k512k~2)2EH+4kn2yn(2kn2- ka2)EyHnn 

 n

  H G31 (x;

G/3//(x;

X*)

x*)

+4kn27n(2kn2 — ka2)Ev1,111,n + 8kn2vn7n 

= G31 (x;x*)+G31 (x;x*) 

i °°1  
+ 2Lk--------2A(k

n) 

  [2k(2k2 — kQ2)2E„Hn — 4kn3(2kn2 —

2E 
'Yn'Y

n
Ekn

k2EH Q) Yn vn

+4knun7n(2kn2 — kQ2)EvHn — 8kn3vn7nE1Hn 

= G13 (x;x*)+G13 (x;x*) 
i\--.(>91 

+ 2Lk 20(k-------
n) 

   [8k3VOnEvnilvn 0 n=—oo — 4knvn7n(2kn2 — ko2)EryHn

J Ekn

(5.5)

(5.6)
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               +4kn3(2kn2  — ko2)E„Hn  —2kn(2kn2— k, 2)2En Ekn (5.7) 

G33 (x i x*) = G33 (x + X*) + G33 (x ± x* ) 
i o0 1  

         + 2Lk------2
µE A(kn) 

            {8k2vfl2yflE! + 4k2v(2k2—k0)EH 2k2(2k2—k22 
               +4kn2vn(2kn2 —kR2)E„Hn + 'YnQ) E'Yn7nEkn 

                                                (5.8) 

where, 

X = x1 , —x3*) 

kn = (2ir/L)n 

vn = (ka2 — kn2)1/2Im vn < 0 

7n = (k02 — kn2)1/2Im 7'n < 0 
A(kn) = (2kn2 — ko2)2 + 4kn2vnyn .(5.9) 

The same abbreviations as in equations (2.24) and (2.34) are used in the above 
equations. 

    A disadvantage of this hybrid scheme is that it is no longer possible to eval-

uate analytically the element integration for the full-space and image-source Green 

functions. We use the Gauss-Legendre quadrature for these terms. If x = x`, the 

singular integral is evaluated by the method of Banaugh and Goldsmith (1963). 

The discrete-wavenumber terms are always integrated analytically. The accuracy 

of this hybrid scheme is successfully tested with the ordinary discrete-wavenumber 

Green function. In short, this hybrid scheme makes the DWBEM possible to im-

prove its computational efficiency at the expense of its accuracy and stability in 

high frequency range. This expense is minimal because our main concern here is 

the source of the observed long duration in the relatively long period range, namely, 

2 to 4 seconds.
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5.4 A deep basin structure 

    It seems appropriate to start with a deep basin structure whose size is rel-

atively large, since a soft, shallow surface layer alone could not prolong the input 

motion so much. First the model of a deep basin structure underneath Mexico City 

is described, then the responses of the surface of the basin due to incident SIT, SV, 

P, and Rayleigh waves are shown.

5.4.1 A model 

    Figure 5.5 shows the model configuration for a deep basin structure called 

type 1. This basin has a trapezoidal shape with 1 km depth and 10 km width at the 

surface. The slope at the edges is 1:2 so that the transition zone is 2 km long along 

the  surface. This model is similar to the type 2 valley used by Bard and Bouchon 

(1980a, 1980b), which has cosine-shaped side slopes. 
    It is known that the maximum depth of the Tertiary sediment in Mexico 

City may reach 2 km (Muris, 1978). From the seismic exploration survey near the 

southwest end of Texcoco Lake, major discontinuities in P wave velocity were found 

at depths of 0.5 km and 1.3 km (Marsal and Graue, 1969). Recently Sanchez-

Sesma et al. (1988) reported the maximum depth of 700m for the deeper deposit 

(pre-Chichinautzin basin). Therefore the 1 km depth may be appropriate as a 
representative value of the deeper Mexico City valley sediment. The width of the 

basin is somewhat greater than 10 km, but this value is chosen for the computational 

economy. A more quantitative simulation may be justified when more accurate 

information of the deeper structure underneath Mexico City becomes available. 

    It is assumed that the shear wave velocities of the layer Qi and the half-space 

132 are 1.0 km/sec and 2.5 km/sec, respectively. These values are obtained from the 
observed P wave velocity data (Marsal and Graue, 1969) assuming Poisson's ratio 

of 1/3. Although the upper part seems to have a smaller shear wave velocity such 

as 0.4 km/sec or 0.55 km/sec as shown in Figure 5.2a, it must increase with depth . 
Therefore 1.0 km/sec is a reasonable estimate for the average shear wave velocity 

of the layer. No material damping and no density contrast are assumed since these 

values would be small and have a negligible effect.
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    Again the time dependence of the input signal is a Ricker wavelet defined as 

 u(t) = (2ir2L2 t2 - 1) exp(-71.2/c2 t2) , (5.10) 

where L is the characteristic frequency of a wavelet. The shape and spectra are 

shown in Figure 3.7. The Ricker wavelet is best suited for our aim because we can ex-

amine the wave propagation phenomena easily for different frequency ranges. First 

the response of a basin is obtained in the frequency domain, then it is transformed 

into the time domain as a convolution with this Ricker wavelet using the FFT algo-

rithm. The calculated amplitude is normalized to the amplitude of an incident wave, 

except for Rayleigh wave incidence in which it is normalized to the amplitude of the 

horizontal free-field motion. Most of the results are for the characteristic frequency 

L of 0.25 Hz (4 seconds in period), which corresponds to the fundamental resonant 
frequency of the plane layer for normally incident S waves. This also corresponds 

to the predominant frequency observed at CDAO (0.25-0.28 Hz). Several examples 

for higher or lower characteristic frequency input are also shown for comparison. 

The frequencies selected in the DWBEM calculation are equally distributed from 

0.0 Hz up to 2.0 Hz with 0.025 Hz interval. The periodicity length L is set to 100 

km in all in-plane problems.

5.4.2 SH wave incidence 

    The time domain responses of a soft basin for SH wave incidence were studied 

thoroughly by Bard and Bouchon (1980a). Our results are simpler mainly due to 

the simpler shape and the lower impedance contrast of our model as compared to 

theirs. 

    The responses (anti-plane component) at the surface of the type 1 basin by 

a vertically incident SH wave are plotted in Figure 5.6. The distances from the 

left edge are shown inside the figure. The characteristic frequency ff is 0.25 Hz (4 

seconds). This figure shows the horizontally propagating waves generated by the 

edges of the basin, which are the fundamental mode of Love waves as pointed out 

by Bard and Bouchon (1980a). The amplitude of Love waves is smaller than that 

of the direct wave. Although these Love waves make the total duration longer, the
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time interval between the direct wave arrival and the Love wave arrival is less than 

10 seconds near the edges. Each arrival of reflected Love waves is well separated. 

    Figure 5.7 shows the responses for a  Ricker wavelet of ff=0.5 Hz (2 seconds). 

Very similar phenomena to that shown in Figure 5.6 can be seen, but the amplitude 

of the Love wave is larger in this case. For frequencies higher than 0.5 Hz, the 

maximum amplitude of the Love wave decreases because energy splits into the fun-

damental mode and the first higher mode, as the dispersion curves in Figure 5.10a 

suggest. 

    On the other hand, if L is as low as 0.167 Hz (6 seconds), the interaction 

between incident wave and the valley becomes very weak as shown in Figure 5.8. 

    From the theoretical point of view it is interesting to see how the shape of the 

transition zone affects the response. As an extreme example the author calculates 

the response of a rectangular basin, called here the type 1' basin, whose depth and 

material properties are the same as the type 1 basin. The width of the basin is 

set to be 8 km. Since the side slopes are vertical, it is not possible for the Aki-

Lamer method (Aki and Lamer, 1970), the ray method (Hong and Helmberger, 

1978; Nowack and Aki, 1984; Moczo et al., 1987), nor the discrete wavenumber 

boundary integral equation method (Bouchon, 1985; Campillo and Bouchon; 1985) 

to solve this type of irregularity. 

    Figure 5.9 shows the response of the type 1' basin by a vertically incident SH 

wave with fc=0.25 Hz. The main features are remarkably similar to those for the 

type 1 basin, and only a slight increase of the Love wave amplitude is observed. 

This means that diffracted wave generated by the displacement discontinuity at 

the vertical boundary can be transformed into Love waves efficiently. At the same 

time it suggests that ray approaches may be valid only for basins with smooth and 

slowly-varying boundaries where strong diffraction never happens. 

    The reflection coefficient of Love wave at the vertical boundary is larger than 

that at the slant boundary, which is quite natural. As a result, the type 1' basin 

can sustain Love wave amplitude longer than the type 1 basin.
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8 Figure 5.5: A deep basin model used in the analysis. This type 1 basin has a trapezoidal 

shape with 10 km width and 1 km depth. The shear wave velocities for a basin and a 
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Figure 5.6: Time histories of the responses (anti-plane component) along the surface of the 

type 1 basin for a vertically incident SH wave. The characteristic frequency of the Ricker 
wavelet is 0.25 Hz (4 seconds). The distances from the left-side edge are shown inside the 

figure. The separation distance between two successive traces is 0.25 km. The amplitude is 
normalized to that of the incident wave.
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Figure 5.8: The responses of the type 1 basin for a Ricker wavelet of 0.167 Hz (6 seconds). 
The other conditions are the same as in Figure 5.6.
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Figure 5.9: The responses of the type 1' basin for a vertically incident SH wave. The other 

conditions are the same as in Figure 5.6. 

5.4.3 SV wave incidence 

    Now let us consider the cases of incident plane SV waves. Both horizontal 

(in-plane) component and vertical component are plotted in the same way as in 
Figure 5.6. 

    Figure 5.11 shows the responses of the type 1 basin to a vertically incident 

SV wave with fc=0.25 Hz (4 seconds). The X-shaped pattern of the surface wave 

arrivals seen in Figure 5.6 is not present in this figure. Instead, successive wave 

trains appear in the transition zone (horizontal component) and in the flat part 

(vertical component). This difference between SH and SV wave incidence is mainly 
due to the fact that the phase and group velocities of the fundamental mode of 

Rayleigh waves are considerably higher than those of Love waves in the frequency 

concerned, as shown in Figure 5.10. The Rayleigh wave generated at the edge needs 

only 5 seconds to reach the opposite-side edge. So even two folds of back-and-forth 

propagation inside the basin create only 20 seconds of coda, which is significantly 
shorter than the observed duration at CDAO shown in Figure 5.4. 

    Higher frequency input (fc=0.5 Hz) yields the response shown in Figure 5.12. 

Unlike the SH wave case in Figure 5.7, two distinctive Rayleigh waves can be seen.
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Figure 5.10: Dispersion curves of Love wave (a) and Rayleigh wave (b) for a laterally 
homogeneous layer overlying a half-space whose material properties correspond to those of 

a deep basin in Figure 5.5. Solid and broken lines represent the phase and group velocities 
of the fundamental and several higher modes.
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Figure 5.11: Time histories of horizontal (in-plane) component (a) and vertical component 

(b) of the type 1 basin for a vertically incident SV wave. The characteristic frequency of 
the  Ricker wavelet is 0.25 Hz (4 seconds). The amplitude of the Rayleigh wave is smaller 

than that of the Love wave shown in Figure 5.6.
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One is the fundamental mode whose phase velocity is about 0.9 km/sec with dom-

inant vertical motion. The other is the first higher mode whose phase velocity is 

about 1.8 km/sec with dominant horizontal motion. Due to these two modes of 

Rayleigh waves the response becomes complex, but still the duration is less than 

about 20 seconds. 

    Lower frequency input  (h=0.167 Hz, i.e., 6 seconds) gives again very weak 

interaction between incident wave and the valley, as shown in Figure 5.13. 

    It is found that a considerable difference exists between our results and those 

of Bard and Bouchon (1980b). In Figure 6 of their paper no clear Rayleigh waves 

can be seen in either horizontal or vertical components. It seems strange because the 

fundamental and first higher modes of Rayleigh waves are clearly seen in Figure 1 

of their paper for P wave incidence. As shown later, the fundamental mode of 

Rayleigh waves for P wave incidence calculated here appears similarly to that for 

SV wave incidence. After checking carefully both our results and theirs, it is found 

that the responses for SV wave incidence obtained by Bard and Bouchon (1980b) 

are severely contaminated by scattered waves from neighboring fictitious structures 

because of their choice of insufficient periodicity length L. 

    In principle, the periodicity length L should be large enough so that the 

scattered waves from fictitious structures appear outside the time-window. This 

requires that L > T • v, where T is the time-window size (i.e., calculated duration) 

and v is the velocity of the scattered wave. Since scattered P waves decay quickly 

and therefore affect the response negligibly, L=100 km is used which is large enough 

to prevent contamination by scattered S and Rayleigh waves in the 40 seconds time-

window. Bard and Bouchon (1980b) used the periodicity length L of 12.8 km for 

the type 2 valley. This means that Rayleigh waves radiated from the edges of the 

neighboring fictitious structures arrive at the basin of interest within one second. 

The responses of the type 2 valley in their paper were calculated using the same 

parameters but with two different L, 12.8 km and 112.8 km. The comparison 
revealed that the responses of the L=12.8 km case are indeed contaminated by the 

scattered waves from fictitious structures. 

    Figure 5.14 shows the responses of the type 1 basin for an incident SV wave 

with the angle of 30°, which exactly corresponds to the critical angle for the half-
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space. The peak amplitude of the direct wave, which is equal to —3.46 at the 

horizontal surface, looks almost the same throughout the basin. However, the second 

peak, which starts from about 2, gradually grows as the wave propagates toward 
the rear-side edge, and finally reaches its maximum of about 8. This large second 

peak may be due to the constructive interference of i) a Rayleigh wave whose phase 
velocity is 2.0 km/sec, ii) an inhomogeneous P wave whose apparent velocity is 

also 2,0 km/sec, and iii) refracted and reverberated SV waves. It is found that the 

inhomogeneous P wave must play an important role since this large amplification 

occurs only at or just over the critical incidence. The wave that arrives at about 

30 seconds in the top trace of Figure 5.14 is the  inhomogeneous P wave radiated 

from the adjacent basin. This fictitious arrival offers another evidence of the strong 

involvement of the inhomogeneous P wave. 

    The response of the type 1' basin, shown in Figure 5.15, is again similar to 

those for the type 1 basin.

5.4.4 P wave incidence 

    It is of little practical importance to study the responses for P wave incidence, 

however, it is worth while from a theoretical point of view. Time-histories of the 

first 20 seconds for the type 1 basin due to a vertically incident P wave are plotted in 

Figures 5.16 and 5.17. As mentioned earlier, later arrivals in the vertical component 

are very similar to those for SV wave incidence.

5.4.5 Rayleigh wave incidence 

    The responses of the type 1 basin to a Rayleigh wave incoming from the left 

were also investigated. Figures 5.18 and 5.19 show the surface responses due to an 

incident Rayleigh wave with the characteristic frequency L of 0.25 Hz (4 seconds) 

and 0.5 Hz (2 seconds), respectively. 

    At h=0.25 Hz, the second peak becomes about 8 times larger than the incident 

amplitude. The dispersion generates successive peaks and yields the maximum 

duration of about 20 seconds near the right edge. In case of a higher frequency 

input, the response becomes more complex, mainly due to the existence of two
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Figure 5.16: Time histories of horizontal (in-plane) component (a) and vertical component 

(b) of the type 1 basin for a vertically incident P wave. The characteristic frequency of 
a Ricker wavelet is 0.25 Hz (4 seconds). Only the first 20 seconds are shown since the 

amplitude of the later part is small.
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Figure 5.17: The responses of the type 1 basin for a Ricker wavelet of 0.5 

The other conditions are the same as in Figure 5.16.
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Rayleigh wave modes. The very late arrivals in Figure 5.18b may be due to the 

numerical inaccuracy at higher frequencies.

5.5 A deep basin structure with a soft layer 

    Through the detailed study of the response of a deep basin structure, it is 

found that although surface waves travel large distances, their effect on the duration 

is expected to be 20 seconds at most for the assumed model parameters. Another 

important difference between the theoretical and observed results is in the pattern 

of amplitude decay. While the calculated records show monotonically decreasing 

coda, the observed records at CDAO show two distinctive phases before and after 

about 75 seconds whose maximum amplitudes are almost the same (Figure 5.4). 

    It has been shown that the lateral variation of the soft surface layer in Mexico 

City cannot generate a ground motion with a very long duration (Kawase, 1987; 

Bard et al., 1988). The response will converge rapidly to that of a plane horizontal 

layer as the distance between an observation point and the irregularity increases. 

Thus we cannot attribute the possible cause of the observed long duration solely 

to the irregularity of the surface layer. However, if the irregularity of the surface 

layer is coupled with the irregularity in the deeper structure, the results may be 

different. Because the surface waves generated by the deeper structure may be 

amplified and their propagation speeds may be slowed down when they encounter a 

shallower surface layer, they may appear with large amplitude at a much later time 

from the direct waves. This may be the case in Mexico City since its sedimentary 

basin consists of many layers (Marsal  and Graue, 1969; Muris, 1978). To study 

the validity of this hypothesis, a deep basin structure with a soft surface layer is 

assumed.

5.5.1 A model 

    The assumed model is shown in Figure 5.20 as the type 2 basin. The shear 

wave velocity and the thickness of the soft layer are set to 0.25 km/sec and 0.25 

km. The soft layer covers half of the basin. Although the shear wave velocity of 

the uppermost clay layer of the Mexico City valley is considered to be less than

126



 -1 
 -2

2 

0 

-2

2 

 0 

-2

 0 4 8 12 16 20 24 28 32 36 40 
                                                        Time (sec.) 

Figure 5.18: Time histories of horizontal (in-plane) component (a) and vertical component 

(b) of the type 1 basin for an incident Rayleigh wave. The characteristic frequency of 
a Ricker wavelet is 0.25  IIz (4 seconds). The response is normalized by the horizontal 
amplitude of an incident Rayleigh wave.
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Figure 5.19: The responses of the type 1 basin for a Ricker wavelet of 0.5  A 
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shear wave velocity is 0.25 km/sec. The other conditions are the same as the type 1 basin. 

0.1 km/sec as shown in Figure 5.2, 0.25 km/sec is a practical limit imposed by 

the computer time needed to apply our method. The frequency increment in the 

DWBEM is decreased to 0.0125 Hz to accommodate the expected long duration. 

The rest of the parameters are the same as before. 

5.5.2 SH wave incidence 

    First the response by a vertically incident SH wave is examined. Figure 5.21 

shows the surface response of the type 2 basin for a Ricker wavelet of fc=0.25 Hz 

(4 seconds). The surface waves that hit the left edge of the soft layer are clearly 

propagating back and forth in the similar manner to those in Figure 5.6, but with 

much lower apparent velocity and larger amplitude. It should be noted, however, 

that the amplitude, the predominant period, and the group velocity of the surface 

waves propagating from left to right are quite different from those propagating from 

right to left. This shows the importance of the deeper structure beneath the soft 

surface layer and the boundary configuration at the edges. 

    The calculated duration is comparable to those observed in Mexico City even 

though a Ricker wavelet is used as an input motion. Note that two distinctive 

phases exist, namely, the reverberated SH waves which last for less than 20 seconds
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Figure 5.21: The responses of the type 2 basin for a vertically incident SH wave with the 

characteristic frequency of 0.25 Hz (4 seconds). The amplitude scale is expanded from ±2 

to ±10 to focus on the wave propagation in the soft-layered zone. The Love wave appears 25 

seconds after the first motion near the right edge of the basin. Note that the characteristics 

of the Love waves generated at the left and right edges are apparently different.
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and the surface waves which appear 25 seconds after the first arrival near the edges 

and last for more than 50 seconds. The amplitude of the surface waves comparable 

to or even greater than that of the reverberated SH waves makes the synthetic 

time-histories similar to those observed at CDAO. 

5.5.3 SV wave incidence 

    Next the case for a vertically incident SV wave is shown in Figure 5.22. The 

apparent velocity of the Rayleigh wave is much higher than that of the Love wave 

shown in Figure 5.21. The amplitude of the Rayleigh wave is somewhat smaller 

than that of the Love wave so that the propagation of the Rayleigh wave is not 

as clear as that of the Love wave. Despite these differences, the duration and the 

amplitude of the later arrivals relative to the first arrival show similar characteristics 

to those for the SH wave case, and to those observed in Mexico City. Note that the 

amplitude of the Rayleigh wave propagating from left to right is much larger than 

that propagating from right to left. 

    It should be mentioned that responses shown in Figure 5.22 are contaminated 

after about 50 seconds by the Rayleigh wave arrivals from adjacent fictitious struc-

tures since the periodicity length L (=100 km) is chosen for a time-window of 40 

seconds, not 80 seconds. Although the contamination seems insignificant judging 

from the amplitude outside the soft layered zone, the waveforms after 50 seconds 

are unreliable.

5.6 Summary of the results and discussions 

    The responses of two types of soft basins for incident SH, SV, P, and Rayleigh 

waves in a two-dimensional elastic half-space are investigated with special reference 

to the long duration of strong motions observed in Mexico City during the Mi-

choacan, Mexico earthquake of 1985. First the difficulty for simple one-dimensional 

models to reproduce the later part of the accelerogram observed in Mexico City is 

shown. Then the effect of a two-dimensional deep basin structure of a relatively 

large scale (10 km wide and 1 km deep)  and a moderate impedance ratio (2.5) is 

studied. The results show that surface waves generated at the edges of the basin
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Figure 5.22: The responses of the type 2 basin 
characteristic frequency of 0.25 Hz (4 seconds). 
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are clearly propagating inside the basin back and forth.  lIowever, the increase in 

duration by these surface waves is 20 seconds at most. Introducing another much 

softer layer inside the basin it is found that the calculated durations and envelope 

shapes become very similar to those observed because of the slowness of surface wave 

propagation. These theoretical studies suggest that the exceptionally long duration 

observed in Mexico City might be caused by a strong, constructive interaction of 

soft surface layers with a deep basin structure beneath the city. 

    The primary purpose of this chapter is to examine the possible cause of the ex-

traordinary characteristics of strong ground motion observed at SCT and CDAO in 

Mexico City during the Michoacan, Mexico earthquake of 1985. It has been shown 

that one-dimensional S wave resonance of the soft surface layers yields smaller spec-

tral values and shorter durations than those observed. It has also been shown that a 

deep basin structure generates surface waves which can lengthen the total duration 

up to 20 seconds, but that it fails to generate the observed duration with two dis-

tinctive phases. It is unlikely for the soft surface layer alone to cause the observed 

long duration even if the unrealistic variation of the thickness is assumed (Kawase, 

1987; Bard et al., 1988). However, the combination of a deep basin structure and 

a soft surface layer, as represented by the type 2 basin, reproduces successfully the 

extraordinary duration characteristics of the ground motion observed at CDAO. We 

found: 

  1. The duration calculated by the type 2 basin is comparable to the observed 

    duration even though a Ricker wavelet was used as an input. 

  2. The time-histories near the left edge for SH wave incidence show two dis-

    tinctive phases: the first one is due to the reverberated SH waves and the 

    second one is due to Love waves. The observed records at CDAO also have 

    two distinctive phases. 

  3. The amplitude of the later phase is comparable to or greater than that of the 

    earlier phase, which is difficult to simulate by other models proposed so far. 

    The actual combined effect of a deep basin and soft shallow layers in Mexico 

City may be even stronger than that calculated by the type 2 basin, because the
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number of actual layers and their shear wave velocity contrast may be greater than 

those assumed in the model. 

    The proposed model has the following limitations: 

  1. The type of an incident wave is oversimplified. Incident wave field may be 

    more complex than the vertically incident plane S waves as assumed here. 

  2. The waveform of an input motion is oversimplified. The observed ground 

    motions in the hill zone such as TACY have at least 40 seconds of duration. 

  3. The damping is neglected. If significant damping exists, surface waves cannot 

    propagate over a large distance so that the calculated duration will decrease. 

  4. The long duration appears prominently on the record at CDAO, while the 

    record at CDAF (Central de Abastos, Frigorffico), which is located about 1.3 

    km southeast of CDAO, does not share the same feature. If the hypothesis is 

    true, we have to explain why these differences exist. 

  5. The actual ground may behave as a three-dimensional structure, rather than 

     a two-dimensional one as assumed here. 

    Some of the above limitations are, however, probably not very serious. As for 

the type of incident wave, it has been shown that the general response characteristics 

of the type 2 basin are roughly the same for either SH or SV wave incidence. It is 

also true for inclined S wave and Rayleigh wave incidence, which was omitted here. 

These facts suggest that the type of an incident wave may be insignificant in our 

case. A similar statement was made by Campillo et al. (1988) for SH and  Lg wave 

incidence. The simplicity of the input waveform is not a real limitation, because 

the effect of longer duration of an input motion is easily predictable as long as the 

response is linear. 

    The effect of the damping could be significant, especially if the shear wave 

velocity of the surface layer is very low. However, a relatively high shear wave 

velocity is assumed for the soft surface layer and the amplification and the duration 

are probably underestimated. Thus the effect of damping may be cancelled by the 

effect of softer surface layers. Furthermore, recent laboratory measurements reveal
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that the soil of the soft surface layer in Mexico City shows very small damping 

coefficient of about 1% to 2% in the strain range up to 0.1% (Romo et al., 1988). 

    The fourth point is more difficult to address at this time. However, it should 

be noted that the depths of the surface layer and the deeper layer are decreasing 

rapidly along the line from CDAO to CDAF  (Sanchez-Sesma et al., 1988). We 

believe that it may be possible to suppress the amplitude of later arrivals by a 

local variation of the layer thickness because later arrivals are restricted in a narrow 

frequency band and are vulnerable to scattering loss caused by a sudden thickness 

change. An example of such suppressing phenomena can be found in Baba et al. 

(1988). 
    Finally, the three-dimensional effects have not been fully investigated yet and 

should be done in near future. Even though our models are two dimensional, it is 

not feasible for current computers to perform a realistic simulation using detailed 

information of the Mexico City valley sediments because the lateral extent of the 

basin is too large (-10 km to —50 km) and the shear wave velocity contrast is too 

high (-0.04 km/sec to —2.5 km/sec). 

    A very important remark that the simulation in this chapter reveals is that the 

interaction between a soft surface layer with a deep basin structure is very strong if 

both of them share the predominant periods and therefore it is almost impossible 

to separate the effects of soft surface layers from those of deep basin structures. It 

should be noted that the information of the geological structure for very wide area, 

vertically and laterally, is needed for the quantitative simulation of strong ground 

motion in the sediment-filled valley on which large cities are resting, such as Tokyo, 

Osaka, Nagoya and most of major cities in Japan, San Francisco, Los Angeles, and 

capitals in Central and South America, not jsut Mexico City.
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Chapter 6

Summary and Conclusions

    The discrete wavenumber boundary element method (DWBEM) that com-

bines the Green function calculated by the discrete wavenumber summation with 

the direct boundary element technique has been presented. The proposed method 

is proved to be efficient in computation and accurate and stable for wide frequency 

range. After solving simple topographic irregularities to understand the fundamen-

tal feature of the wave scattering phenomena, the author applies the method to 

the actual ground in order to scrutinize the possible cause of the extraordinary fea-

tures observed during the recent major earthquakes. The work done in the previous 

chapters can be summarized as follows. 

    In Chapter 2, the DWBEM is fully described for both two- and three-dimensional 

wave field. Analytical evaluation of the element integration is formulated. A eco-

nomical technique of the Green function evaluation that makes full use of the Hilbert 

transform relationship between real part and imaginary part of the Green function 

is briefly mentioned. As a result of a combination of the direct BEM and the 

discrete wavenumber Green function, many advantages, namely, efficiency in com-

putation, flexibility for boundary configurations, and the accuracy and the stability 
of the solution even in high frequency range, are achieved. The applications in the 

following three chapters prove these advantages of the DWBEM. It is mentioned 

that the DWBEM is best suited for analyses of periodic structures or randomly 

inhomogeneous media. 

    In Chapter 3, time-domain responses of canyons and a ridge subject to inci-

dent SH, SV, P and Rayleigh waves with a Ricker wavelet shape are studied. The 

DWBEM is proved to have a strong applicability to various types of irregularities 

and incident waves for wide frequency range. Since the conventional BIEM or BEM 

requires considerable computational effort for in-plane problems, one can hardly 

find results expressed in time domain for even simple topography so far. In addi-
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tion conventional techniques tend to lose their stability and give inaccurate results 

in higher frequency range, which also prevents us from calculating the time-domain 

response because even small amount of error in frequency domain will result in the 

violation of causality in time domain. On the other hand the DWBEM is efficient 

in computation, thanks to the discrete wavenumber Green functions, and accurate 

and stable even in high frequency range, thanks to the exact element integration 

and direct constraint for boundary conditions. Thus it gives us the causal and phys-

ically explainable time-histories as shown here. We can learn a great deal from such 

time-histories on the fundamental characteristics of wave scattering by topographic 

irregularities. 

    In case of a canyon, the diffracted waves originated at the edges of the canyon 

are observed propagating along the canyon surface with the apparent velocity of 

S or P waves, which may be called the creeping waves. For SV wave incidence 

Rayleigh waves generated at the edges of the canyon carry significant portion of 

energy outward, while for SH wave incidence the direct and reflected waves play a 

major role. In case of a ridge, the diffracted waves are increasing their amplitude 

as they propagate along the ridge surface owing to the convex shape of the ridge 

surface. For in-plane problems the creeping Rayleigh wave dominates over other 

types of creeping waves on the ridge surface. It is pointed out that the amplitude 

fluctuation in frequency domain does not always mean that in time domain because 

different arrival time of wavelets results in the fluctuation in spectral amplitude even 

if each wavelet propagates with the same shape and amplitude. The time-domain 

response contains both amplitude and phase spectral information, and therefore 

expresses more complete physical picture of the wave propagation phenomena. 

    In Chapter 4, the DWBEM is applied to the actual ground problem in which 

heavy damage concentration was observed during the Whittier Narrows, Califor-

nia earthquake of 1987. It is intended to show the possibility that this anomalous 

damage concentration is due to the amplification by the topographic irregularity 

when SV waves are  near-critical incidence. First the author examined the accelero-

grams obtained at the USGS station nearest to downtown Whittier and conclude 

that the dominantly east-west motion observed at the station is due to the influ-

ence of the building in which accelerograms were recorded. We next demonstrate
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that strong ground motions recorded by 12 stations in the epicentral area show a 

polarization direction pattern that is primarily SV-type, which is consistent with a 
simple thrust fault located at the hypocenter. Then we calculated the response of 

a two-dimensional hill with the height 0.3 km and the width 2.4 km to i) a plane 

SV wave with a nearly critical angle of incidence, ii) a horizontal line force, iii) 

a Haskell-type 2D dislocation source, and iv) a Bouchon-type 2D multiple crack 

source. The results show that the amplification due to the hill relative to the  flat 

surface is more than 1.5 for all the source models. Since this amplification is nearly 

independent of the source type and spectrum, it is concluded that the combined 

effect of the topographic irregularity and critically incident SV waves might be re-

sponsible for the concentration of damage observed during the Whittier Narrows 

earthquake. 

    In Chapter 5, the responses of two types of soft basins for incident SH, SV, 

P, and Rayleigh waves in a two-dimensional elastic half-space are investigated with 

special reference to the long duration of strong motions observed in Mexico City 

during the Michoacan, Mexico earthquake of 1985. First the difficulty for simple 

one-dimensional models to reproduce the later part of the accelerogram observed in 

Mexico City is shown. Then the effect of a two-dimensional deep basin structure 

of a relatively large scale (10 km wide and 1 km deep) and a moderate impedance 

ratio (2.5) is studied. The results show that surface waves generated at the edges 

of the basin are clearly propagating inside the basin back and forth. However, the 

increase in duration is 20 seconds at most. Introducing another much softer layer 

inside the basin it is found that the calculated durations and envelope shapes become 

very similar to those observed because of the slowness of surface wave propagation. 

These theoretical studies suggest that the exceptionally long duration observed in 

Mexico City might be caused by a strong, constructive interaction of soft surface 

layers with a deep basin structure beneath the city. 

    The results presented in this study shows additional evidences that the effects 

of the surface and subsurface irregularities are substantially large and that it is 

difficult to predict the damage pattern without considering their effects. At the 

same time, it is found that the precise information on the geological properties and 

structures is crucial for the quantitative simulation of observed records and hence
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the definitive prediction for design-basis strong ground motions. One important 

remark that this study reveals is that the interaction between soft surface layers 

with deep basin structures is stronger than previously thought so that the attempt 

to separate the effect of soft surface layers from deep basin structures may lead us 

to a completely different type of phenomena from the observation. 

    Since the advent of supercomputers it has become feasible to calculate the 

response of a soft basin with large scale for wide frequency range. Recently, even 

the analyses of three-dimensional soft basin structures have been attempted (e.g., 

Jiang and Kuribayashi, 1988; Etgen and Yomogida, 1988; Sato, 1989; Eshraghi 

and Dravinski, 1989; Mossessian and Dravinski, 1989). On one hand of the study 

we should develop more efficient computational technique which can represent the 

complicated irregularity of the earth and can produce accurate results without much 

precautions. It is desirable to include the effects of source and path as well since the 
separation of these effects from those of local site geology is not always possible (e.g., 

Hisada et al., 1988; Sato, 1989). On the other hand of the study we should proceed 

further the current programs of the observation network scattered throughout the 

soft basin in the population concentrated area. In such programs it is recommended 

that the measurement should be done by seismometers which have wide frequency 

range and good amplitude and phase linearity. The correct absolute-time recording 

system is also necessary for the travel-time information. Finally, we should gather 

information further on the geological structures underneath the target city as wide 

and deep as possible without which we cannot predict design-basis strong ground 

motions. Both of them are crucial for the seismic hazard mitigation for future 

earthquakes.
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Appendix A 

Wave Field by Fault Models in Chapter 4

    In Chapter 4 the author uses four different types of sources for the analysis of 

the topography near downtown Whittier. The incident and reflected wave field by a 

plane SV wave incidence can be found in any textbooks for the elastic wave theory. 
The displacement field due to a horizontal line force has already been described in 

equation (2.33). The theoretical expressions for two kinematic fault models, the 

Haskell-type uniform slip model and the Bouchon-type multiple crack model, are 

summarized here for readers' quick reference. The complete procedures for deriving 

the following equations can be found in Haskell (1964) and Bouchon and Aki (1977) 

for the former and Bouchon (1978) for the latter. 

    Consider an in-plane shear dislocation in a two-dimensional half-space where 

rupture starts at  (xi, x3) and propagates over a plane surface of length L1 as shown 

in Figure A.1. The displacement at (x1,0) due to such a dislocation source can be 

expressed by using the discrete wavenumber method as

0. 

ut 
n=

       2 
e—Iknx1 R n e-i         li( ) 

1=1

(kn xl'-71nx3S)
L~

D(,w)e-1BnedS (A.1)

where,

R11(n) 

R13(n) 

R21(n) 

R23(n)

= {sin 20(2k:— k,) — cos 29knvn}2kn7n  
                     LA(kn) 

                           —(2k,1—k2 = {sin 29(2k,2 — k«) — cos 29knvn}Q) 
LO(kn) 
                           (2k2—k2 = {2 sin 29knvn + cos 20(2krz — k2)}n) 
LO(kn) 

= {2 sin 29kn7n + cos 29(2k,2— kp)} 2knvn , 
LO(kn) (A.2)
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Observation point

(x1, 0)

(xis,

Lf

 x3s

A unilateral fault
 X3

x1

Figure A.1: Dimensions of the assumed 2D fault characterized by its length Lf, the dip 

angle 0, and the hypocenter (xis, x33). Only one unilateral fault is assumed here since a 

bilateral fault or any multiple-segment faults can be represented as the sum of two or more 

unilateral faults.

Un 
11n = 

7n

if l=1 

if 1=2,
(A.3)

Bn = kn cos 9+rin sin 9.(A.4) 

The definition of wavenumbers such as ka or Ion and the Rayleigh function A(kn) 

can be found in equation (2.18), equation (2.21), and equation (A). The last integral 

term in equation (A.1) is the so-called dynamic source factor Sn(w) which is the 

function of the rupture propagation pattern along the fault surface. 

    The rupture process in the Haskell-type fault with the ramp function can be 

expressed in time-domain as

D(e, t) =

0 

 Doo

for 

for 

for

0 < t < c 

~
r/C t < /C + Trise S/C+Trise < t,

(A.5)
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in which c denotes the rupture velocity,  Dec, the final slip, and Trise the rise time. 

Taking the Fourier transform of the above D(e, t) and performing the integration 

along the fault surface analytically, we obtain the dynamic source factor for the 2D 

Haskell-model as follows:

       Sn(w) =                                 Bnc — iwD~(1 — e—IwTr;se) c fe(Bnc—lw)cit.— 1~ . (A.6)           w2Trise 

    The rupture process in the Bouchon-type fault can be represented as a semi-

elliptic crack that grows linearly with time until the rupture stops. The slip function 

in time-domain is then

D(, t) =

where  Doo(center) denotes 

evaluation of the Fourier transform and the subsequent i 

expression is not so easy that 

into M arcs and replaces each arc by the linear segment. 

dynamic source factor for a single crack can be express&

0for 0<t< c 

D (center) 
VS/[(Ct —)for e/C < t < L f/c(A.7) L 

Doo(center) /(L 
f e) for L f/c < t, 

,es the final slip at the center Lf ~/                         of the crack. The direct 

transform and the subsequent integration from the above 

hat Bouchon (1978) divides the contour of the semi-ellipse 

each arc by the linear segment. The resulting form of the 

a single crack can be d as follows:

Sn(W) =
IwL f

f
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eBnmOLfCI 
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iWBn B 
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w2+iw Bnc (A.8)

where,

am =

bm =

Doo(m) — D,,(m — 1)
AL f 

mD,,o(m — 1) — (m — 1)Dco(m)
Lf
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 dm = 

 e.m, = 

ALf =

bm+i — brn 

M/m 

Lf/M. (A.9)

In these equations Doo(m) represents the final slip at the end tip of the m-th 

segment. 

    The numbers of total segments M should be a function of the maximum 

frequency considered and the accuracy required. It is found that 20 segments are 

enough for the purpose of the study here. The response by the multiple cracks used 

in Chapter 4 can be obtained as the superposition of contribution from each crack. 

It should be noted that the final solution in Bouchon (1978), which is presented as 

equation (11) in his paper, contains zero-value terms such as fm and g,,,, that are 
omitted from equation (A.8).
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