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Abstract 

With the recent advances of semiconductor technologies, larger and larger 

and more and more sophisticated digital systems can be realized as hard-

ware, which in turn makes it difficult to achieve design verification of 

hardware. In this thesis three major topics in logic design verification 

and hardware description languages are discussed. One is on acceler-

ation of logic simulation speed. The increase in computation cost for 

logic simulation has been and will be the primary problems in design 

verification. As a solution to this problem, fast simulation methods uti-

lizing vector supercomputers are proposed. Another topic is on accuracy 

of logic simulation. In verification of circuits which depends on subtle 

timing relations, trade-offs between accuracy and computation cost of 

simulation becomes an important issue. Discussions are created on this 

issue both from theoretical and practical point of view. The last topic 

is on hardware description languages. A new model of hardware which 

can be a base of formal semantics of hardware description languages is 

presented. 

  As for acceleration of logic simulation speed, fast logic simulation tech-

niques utilizing vector supercomputers are proposed. Vector supercom-

puters are computers which have special facilities to execute operations 

on vectors extremely fast. In chapter 3 and chapter 4, new algorithms of 

logic simulation and fault simulation, respectively, are presented which 

efficiently bring out the potential of vector super computers. 
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 ii Abstract

  In chapter 3, three types of simulation algorithms are proposed which 

are dedicated for 1) zero-delay simulation of combinational circuits, 2) 

zero-delay simulation of synchronous sequential circuits, and 3) simula-

tion with delay consideration. The first two are based on the compiler-

driven method. High vectorization ratio is achieved by processing many 

input patterns or simulating many gates at a time. Combinational use 

of the vectorization algorithms and the bit oriented vector logical opera-

tions makes it possible to achieve 7.7 x 109 gate-evaluations per second 

for combinational circuit simulation and 1.4 x 109 gate-evaluations per 

second for sequential circuit simulation on the supercomputer FACOM 

VP-200. The acceleration ratio through vectorization is more than 15. 

The third algorithm for timing simulation is an extension of the con-

ventional event-driven simulation algorithm. Vectorization is achieved 

by processing all the events together which are scheduled to occur at 

the same time period. A simulator implemented based on the algorithm 

marked 230 x 103 events per second on the supercomputer HITAC S-

810/20. These performance figures are comparable to those of hardware 
simulation engines. 

  In chapter 4, a vector supercomputer oriented fault simulation algo-

rithm, named a dynamic 2-dimensional parallel fault simulation is pro-

posed which is dedicated for zero-delay two-valued fault simulation of 

gate-level combinational circuits with single stuck-at faults. The bit-

parallel simulation technique which is one of the basic algorithms of fault 

simulation is extended to two-dimensional parallel simulation technique. 

In this technique many faults for many patterns are processed at a time 

by vector bitwise logical operations. Although high vectorization ratio 

is achieved in this method, it does not necessarily lead to efficient fault 

simulation if we try to combine it with the fault dropping which is an 

indispensable technique for reducing the computation cost. In order to 

counter this problem, dynamic adjustment of the two parallelism factors
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is introduced. Experimental results on coverage estimation of random 

patterns are shown, in which the fault simulator implemented on the FA-

COM VP-200 supercomputer achieved acceleration ratio of 15 through 

vectorization and succeeded in simulating 500,000 random patterns on a 

circuit of 3,000 gates within 30 seconds. 

  As alternatives to logic simulators on general purpose computers, spe-

cial purpose hardware for logic simulation and fault simulation have been 

developed, which achieves very high performance by parallel computa-

tion scheme. However, there are trade-offs between simulation speed 

and flexibility, or affinity for existing CAD systems on general purpose 

computers. The new approach of developing logic simulators and fault 

simulators on general purpose vector supercomputer is expected to be the 

one that fills the gap between software solutions on conventional scalar 

computers and hardware solutions. 

  As for accuracy of logic simulation, discussions are created focusing on 

a delay model under which delay values are not definite and are specified 

with their minimum and maximum values. At first the difficulty of logic 

simulation problem under the delay model is theoretically clarified, and 

then efficient algorithms to solve the problems are proposed. 

  Chapter 5 is dedicated for the theoretical consideration on modeling 

of delay and computational difficulty of a hazard detection problem. Re-

lation among models of delay and time, accuracy of verification results 

and computation cost for the verification is discussed taking the hazard 

detection problem as an example. We also discuss the difference of a 

discrete time model and a continuous time model. It is shown that the 

problem of detecting hazards on combinational circuits under uncertain 

delay assumption is computationally intractable (NP-hard) and that it is 

hence difficult to solve the problem by a simple extension of the  min/max 

delay simulation technique. It is also shown that there is an essential dif-

ference in the verification results obtained based on the discrete time
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model and the continuous time model. The verification result can be 

more optimistic in the discrete time model than in the continuous time 

model. Further discussions are created on the relation between the con-

tinuous time model and the discrete time model, in which a lower bound 

of the width between ticks that make the discrete time model equivalent 

to the continuous time model. 

  In chapter 6, a new simulation technique named time-symbolic simula-

tion is presented which enables accurate simulation under the uncertainty 

delay model. The conventional  min/max delay simulation techniques 
have been suffering from pessimistic results brought about by reconver-

gent fanouts. In time-symbolic simulation the uncertain delay value is 

expressed by a variable, which makes it possible to avoid the pessimism 

at reconvergent gates. Time-symbolic simulation also enables us to get 

conditions where the circuit under test behaves as expected, which is of 

good use for error analysis and for design improvements. 

  It is difficult to adapt conventional simulation algorithms to time-

symbolic simulation. In this chapter, two efficient simulation algorithms 

for time-symbolic simulation are proposed. One is dedicated for combina-

tional circuits and processes the algebraic formulas representing time by 

means of the linear programming. The other algorithm, which is named 

coded time-symbolic simulation (CTSS), can handle any kind of gate-level 

logic circuits. In the CTSS an uncertain delay value is represented us-

ing a set of Boolean variables based on binary coding which encodes all 

the cases of delay values. Simulation is executed by means of Boolean 

function manipulation. Both of the simulators are shown to run within 

a feasible time for small scale circuits up to 100 gates. In this chapter, 

various techniques are also proposed for verification of asynchronous cir-

cuits based on time-symbolic simulation and for analysis of simulation 

results. 

  The importance of the symbolic approach in this chapter lies in that we
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can analyze the simulation result so as to get useful information on error 

correction and design improvements, as well as in that we can get accurate 

simulation results. Symbolic simulation, including time-symbolic and 

value-symbolic approaches, will be one of the most important techniques 

for logic design verification along with conventional logic simulation. 

  The last part of this thesis is dedicated for the discussion on formal 

semantics of hardware description languages. In the trend of standard-

ization, definition of formal semantics of practical hardware description 

languages is an important issue. In order to define formal semantics of 

hardware description languages which can support various applications 

such as logic synthesis and formal verification as well as logic simulation, 

a model of hardware is indispensable which can express uncertain behav-

ior of hardware in a strict since. In this thesis, a new behavior model of 

hardware named NES (Nondeterministic Event Sequence) is proposed. 

The NES can express the uncertainty of hardware behavior by means 

of nondeterminism. The behavior of hardware is modeled by nondeter-

ministic abstract machines and is dealt with as a set of all the possible 

behaviors. In chapter 7, the formal definition of the NES model, and a 

modeling method of a hardware module and connected hardware mod-

ules are presented. Also as an application of the NES model, definition 

of the semantics of a hardware description language UDL/I is described. 

  The applications of hardware description languages will be wider and 

wider. The nondeterministic semantics, which plays an indispensable role 

in expressing the relations between behavior of circuits in different de-

sign levels, is considered to be an essential factor of hardware description 

languages of the next generation, which can be a basis of variety of appli-

cations such as logic synthesis, formal verification, symbolic simulation, 

and so on.
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Chapter 1

Introduct ion

1.1 Backgrounds

Recent advances of semiconductor technologies have made it possible 

to realize large and sophisticated hardware as integrated circuits, which 

have brought digital systems to wide variety of applications. On the 

other hand, the size and the complexity of the hardware have made the 

design processes more and more difficult. It is almost impossible to design 

hardware of required scale and complexity without the help of computer-

aided design (CAD) systems. 

  Among many steps of designing hardware, design verification is one 

of the most laborious ones. The most effective and the most widely used 

means of verifying correctness of design is logic simulation, that is to 

simulate the behavior of circuit under test on computers. 

  Computation time required for logic simulation is roughly proportional 
to the size of a circuit under test and to the length of test pattern se-

quence. The increase in circuit size, together with the incidental increase 
in test pattern size, has resulted in rapid growth of the computation time 

for the simulation. It is reported that about 1800 hours of IBM 370/168 
CPU time were required to verify the logic design of 1/4 of a medium-

range System 370 CPU  [Den83]. It is one of the most important subject 

in the area of CAD of digital systems to develop high-speed logic sim-

                              1



2 1. Introduction

ulation techniques. A number of research efforts have been carried out 

in recent years in order to reduce computation time for logic simulation, 

which include improvements in modeling of logic circuits, development 

of efficient simulation algorithms [Bre76, U1r83,  Ish84], improvements in 
techniques in coding level [Ulr80b, Kro81], and development of special 

purpose hardware (hardware simulation engines) [Den83, Sas83, Bla84, 
Nak86, Hir87, Nag86]. Among them the special purpose hardware ap-

proach has become a center of attention because of the high performance 

achieved by parallel computation schemes. However, the performance is 

obtained at the sacrifice of flexibility and affinity for existing CAD sys-

tems on general purpose computers. It is pointed out that it often takes 

much longer time to compile and to transmit data than to execute sim-

ulation on hardware simulation engines. High cost by reason of special 

purpose hardware is also a demerit of the hardware simulation engines. 

On the other hand, software simulators on general purpose computers 

are still attractive for their latest device technologies, economical merits 

and flexibility. General purpose supercomputers and parallel computers 

can be new solutions that fill the gap between the two approaches.

  Along with the computation time for logic simulation, that of fault 

simulation is another big problem in the field of CAD of digital circuits. 

Fault simulation is in a way a variation of logic simulation, although it is 

used for different purposes from logic simulation. While a logic simulator 

computes behavior of fault-free logic circuits, a fault simulator computes 

behavior of logic circuits which have faults in them. It is used for analysis 

of the behavior of faulty circuits, test set generation or quality evaluation 

of test sets for logic circuits. Fault simulation requires much more com-

putation cost than logic simulation, because simulation must be carried 

out for each of the faults derived from a certain fault model. Under the 

single stuck-at fault assumption, the computation time in the worst case 

is proportional to the square of circuit size [Har87]. Various research
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projects have been carried out in order to accelerate fault simulation by 
improving algorithms [Arm72,  Ulr80a, Wai85, Nis85, Ant87], or to de-
velop alternative techniques to fault simulation [Abr83, Jai84, Brg85]. In 

spite of these efforts, there are still pressing requirements for faster fault 

simulation. 

  The large computation cost due to the large circuit size has been and 

will be one of the primary problems in design verification. On the other 

hand, accuracy of simulation is also an important issue. Especially in 

design verification of asynchronous circuits which operate based on sub-

tle timing relations, much more laborious modeling of delay and time 

and also much more computation cost are required than in that of syn-

chronous circuits. In the verification concerned with timing there are 

close relations among models of delay and time, accuracy of verifica-

tion results and required computation cost. In a simple modeling which 

require smaller computation cost, design errors may be overlooked or 

possibilities of design errors may be indicated even for correct designs. 

One example is the handling of delay whose actual value is unknown and 

is specified with minimum and maximum values. In logic simulation the 

min/max delay model is employed to handle such uncertainty. The model 

allows relatively fast verification but it is well known that the verification 

results are often too pessimistic due to reconvergent fanouts [Bre76]. It 

has, therefore, come to be an important research theme to find efficient 

methods to overcome this problem [Yon89, Cer89]. Although there are 

many attempts to solve the problems, few discussions have been made 

on what is the essence of the difficulty and how difficult or how much 

computation cost is required to solve the problem completely. Another 

important issue is modeling of time. Many of the existing verification sys-

tems are based on a discrete time model [Cer89, Hir89, Nak87, Kim88]. 
There are also few discussions on the point if the discrete time model 

provides accurate result as compared with a continuous time model or if
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there is a difference in the computation cost of the verification between 

the two models. In order to develop efficient and yet reliable verifica-

tion system, it is considered to be important to clarify the theoretical 

backgrounds on modeling and accuracy of verification. 

  Modeling and accuracy of verification are also one of the central is-

sues in the field of hardware description languages  (HDL  's). Hardware 

description languages are kernels of CAD systems for integrated circuits 

which work as inputs to various CAD tools, design documents and ve-

hicles for design interchange among different CAD systems. Although a 
lot of research projects have been carried out on hardware description 

languages, we are now confronted with a big turning point due to two 

trends; standardization and extension of the applications of HDL's. 

  Standardization of a hardware description language (HDL) has an in-
estimable impact on the development of hardware design, including CAD 

tool development and design education. There are several activities for 

standardization in the U. S., Europe, and Japan [Kar89, Pi183, Coe89, 

Har86]. Since a standard HDL is used by many users, including IC man-

ufactures and tool developers working in various kinds of design culture, 

we should provide them with a method of sharing a detailed idea on the 

HDL. It is therefore essential to define rigid syntax and semantics of the 

language. Although almost all the HDL's are designed on the basis of 

the formal definition of syntax by a meta language like BNF, there are 

very few HDL's, especially among the practical ones, which has clear 

definition of semantics. Although there have been a lot of researches 

on definition of formal semantics in the area of programming languages 

[Bjo78]. There have been, however, few studies in the area of HDL's 
other than [Pi183]. Especially there have been no established models 

which explain the behavior of the hardware described in HDL's . In view 

of the trend of standardization, it is considered to be an urgent research 

theme to develop good behavior models for HDL's and to establish formal
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methods for defining semantics of HDL's. 

  Extension of the applications of HDL's is also changing the situation. 

For many years logic simulation has been the most important application 

of HDL's. In practical situations semantics of an HDL is defined by means 

of the simulator for the HDL. However, recent researches in the area of 

CAD for integrated circuits have brought about outstanding development 

of techniques for various design support by computers. Especially logic 

synthesis and formal verification come to become a practical technique 

and there are strong demands for HDL's to support these applications. 

However, the simulation based semantics often causes inconsistencies in 

handling don't cares and uncertain behavior of hardware. In logic syn-

thesis and formal verification, we assume all the possibilities for don't 

cares and uncertain hardware specifications. On the other hand, in logic 

simulation, they are dealt with using unknown values. This is inevitable 

if we consider efficiency of simulation execution but it often brings about 

unnatural results. It is considered to be an essential challenge to develop 

a formal model which can explain the don't cares and uncertain behavior 

of hardware in order to design hardware description languages of the next 

generation which are provided with rigid semantics and can be basis of 
various CAD applications.

1.2 Outline of the Thesis

In this thesis three major topics in logic design verification and hard-

ware description languages are discussed; acceleration of logic simulation 

speed, accuracy of timing verification, and modeling of hardware behav-

ior for formal semantics of hardware description languages.
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(1) Algorithms for high-speed logic simulation 

As a new approach to accelerating execution speed of logic simulation, 

a use of vector supercomputers are proposed. Vector supercomputers 

are the computers that have special facilities to execute operations on 

vectors extremely fast. As is discussed in 1.1, there are trade-offs between 

speed performance and flexibility of high-end simulators. Logic and fault 

simulators on supercomputers are considered to be new a solution that 

fall between hardware logic simulators and software simulators on general 

purpose computers. In order to bring out the performance of vector 

supercomputers, vector processor oriented algorithms for logic and fault 

simulation are proposed in chapter 3 and chapter 4, respectively. 

  In chapter 3, three types of simulation algorithms are proposed which 

are dedicated for 1) zero-delay simulation of combinational circuits, 2) 

zero-delay simulation of synchronous sequential circuits, and 3) simula-

tion with delay consideration. The first two are based on the compiler-

driven method. High vectorization ratio is achieved by simulating many 

input patterns or processing many gates at a time. Combinational use 

of the vectorization algorithms and the bit oriented vector logical oper-

ations made it possible to achieve 7.7 x  109 gate-evaluations per second 

for combinational circuit simulation and 1.4 x 109 gate-evaluations per 

second for sequential circuit simulation on the supercomputer FACOM 

VP-200, which are faster by a factor of more than 15 as compared with 

conventional scalar processors. The third algorithm for timing simulation 

is an extension of the conventional event-driven simulation algorithm . 

Vectorization is achieved by processing all the events together which are 

scheduled to occur at the same time period. A simulator implemented 

based on the algorithm marked 230 x 103 events per second on the super-

computer HITAC S-810/20. These performance figures are comparable 
to those of hardware simulation engines. 

  In chapter 4, a vector supercomputer oriented fault simulation algo-
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rithm, named dynamic 2-dimensional parallel fault simulation is proposed 

which is dedicated for the zero-delay two-valued fault simulation of gate-

level combinational circuits with single stuck-at faults. The bit-parallel 

simulation technique which is one of the basic algorithms of fault sim-

ulation is extended to two-dimensional parallel simulation technique, in 

which many faults for many patterns are processed at a time by vector 

bitwise logical operations. Although high vectorization ratio is achieved 

in this method, it does not necessarily lead to efficient fault simulation 

if we try to combine it with the fault dropping which is an indispensable 

technique for reducing the computation cost. In order to counter this 

problem, dynamic adjustment of the two parallelism factors is combined 
with the two-dimensional parallel simulation technique. Experimental 

results on coverage estimation of random patterns are shown, in which 

the fault simulator implemented on the FACOM VP-200 supercomputer 

achieved acceleration ratio of 15 through vectorization and succeeded in 

simulating 500,000 random patterns on a circuit of 3,000 gates within 30 

seconds.

(2) Accuracy of logic simulation 

Accuracy of logic simulation is discussed both from theoretical and prac-

tical point of view, focusing on a delay model in which actual delay values 

are not definite and are specified with their minimum and maximum val-

ues. At first the difficulty of the problems is theoretically clarified, and 

then efficient algorithms to solve the problems are proposed. 

  Chapter 5 is dedicated for the theoretical consideration on modeling 

of delay and computational difficulty of a hazard detection problem. Re-

lation among models of delay and time, accuracy of verification results 

and computation cost for the verification is discussed taking the hazard 

detection problem as an example. We also discuss the difference of a 

discrete time model and a continuous time model. It is shown that the
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problem of detecting hazards on combinational circuits under uncertain 

delay assumption is computationally intractable (NP-hard) and that it is 
hence difficult to solve the problem by a simple extension of the  min/max 

delay simulation technique. It is also shown that there is an essential dif-

ference in the verification results obtained based on the discrete time 

model and the continuous time model. The verification result can be 

more optimistic in the discrete time model than in the continuous time 

model. Further discussions are created on the relation between the con-

tinuous time model and the discrete time model, in which a lower bound 

of the width between ticks that make the discrete time model equivalent 

to the continuous time model. 

  In chapter 6, a new simulation technique named time-symbolic simula-

tion is presented which enables accurate simulation under the uncertainty 

delay model. In time-symbolic simulation the uncertain delay value is ex-

pressed by a variable, which makes it possible to avoid the pessimism at 

reconvergent gates. Time-symbolic simulation also enables us to get con-

ditions where the circuit under test behaves as expected which is of good 

use for error analysis and for design improvements. 

  It is difficult to adapt conventional simulation algorithms for time-

symbolic simulation. In this chapter, two efficient simulation algorithms 

for time-symbolic simulation are proposed. One is dedicated for combina-

tional circuits and processes the algebraic formulas representing time by 

means of the linear programming. The other algorithm , which is named 

coded time-symbolic simulation (CTSS), can handle any kind of gate-level 
logic circuits. In the CTSS a uncertain delay value is represented using 

a set of Boolean variables based on binary coding which encodes the all 

the cases of delay values. Simulation is executed by means of Boolean 

function manipulation. Both of the simulators are shown to rim within a 
feasible time for small scale circuits up to 100 gates . In this chapter, var-

ious techniques are also proposed for verification of asynchronous circuits
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based on time-symbolic simulation and for analyzing simulation results 

and extracting delay conditions where the circuit under test behaves cor-

rectly.

(3) Modeling and description of logic circuit for HDL's 

In order to define formal semantics of hardware description languages 

which can support various application such as logic synthesis and formal 

verification as well as logic simulation, a model of hardware is indispens-

able which can express uncertain behavior of hardware in a strict sense. 

In the last part of the thesis, a new behavior model of hardware named 

NES (Nondeterministic Event Sequence) is proposed. The NES can ex-

press the uncertainty of hardware behavior by means of nondeterminism. 

The behavior of hardware is modeled by nondeterministic abstract ma-

chines and we can deal the behavior of hardware as a set of all the possible 

 behaviors. 

  In chapter 7, the formal definition of the NES model, and a model-

ing method of a hardware module and connected hardware modules are 

presented. Also as an application of the NES model, definition of the 

semantics of a hardware description language UDL/I is described.



10 1. Introduction



Chapter 2 

Logic Simulation

2.1 Modeling of Logic Circuits for Logic Simulation 

2.1.1 Modeling of Structure of Logic Circuits 

In this thesis we mainly discuss gate-level logic circuits. Structure of 

a logic circuit is modeled by a directed graph. The nodes in the graph 

represent the primary inputs, the primary outputs and the gates of the 

circuit, and the edges represent connections among them. A primary 

input is represented by a nodes whose in-degree and out-degree is 0 and 

1, respectively, while a primary output by a node whose in-degree and 

out-degree is 1 and 0, respectively. A node that represents a gate has n 

incoming edges and 1 outgoing edge. A  function and delay are defined 

for a gate. We do not define them formally here, because it depends on 

the modeling of signal values, time and delay. We will refer to a circuit 

corresponding to an acyclic graph as a combinational circuit. 

2.1.2 Modeling of Signal Values 

In gate-level modeling of logic circuits, at least two signal values 0 and 1 

are necessary so as to represent logical zero and logical one, respectively. 

The model of signal values which deals with the two values is called ,-

valued logic model and logic simulation based on the 2-valued logic model 

                            11
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  (a) 2-valued.NOT 1 0 X NOT 1 0 X 0                     (b) 3-valued. 
                                        (c) 4-valued. 

      Fig. 2.1 Operation tables of AND and NOT operations. 

is called 2-valued logic simulation. Fig. 2.1 (a) is the operation tables of 

AND and NOT operations in the 2-valued logic. 

  Although the 2-valued logic model may be sufficient for dealing with 

ideal logic circuits, we introduce in the practical logic simulation the 

following signal values for the purpose of modeling phenomena which are 

difficult to explain based on the 2-valued logic model or for the purpose 

of accelerating simulation execution. For the details, refer to [Bre76]. 

Unknown value: It is introduced in order to represent signal values which 

   are not definite and usually denoted as `X' or `U' . The unknown 
   values are used in the following situations , for example. 

    1) Signal values on uninitialized signal lines (especially outputs of 

      uninitialized flip-flops). 

    2) Output values of gates in response to illegal combinations of 

       input values. 

    3) Output values of gates in response to don't care input values. 

    4) Signal values which are not logical 0 nor logical 1; in transi -
      tion from one to the other, or in other states which can not be 

      interpreted as logical 0 nor logical 1.

AND  0 11  0 0 0

1II0 1 X 1

X 11 0 X X X

Z 110 1 X 1
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5) Signal values 

  of gates. 

6) Signal values 

 rors.

which

which

can be 0 and 1 depending on

can be indefinite because

delay

of the

values

design er-

   The model which deals with 0, 1, and unknown value is referred to 

   as a 3-valued logic model. Fig. 2.1 (b) is the operation tables for the 

   3-valued logic model. Although the unknown values provide many 

   conveniences, they sometimes cause undesirable results. One of the 

   problems is that the unknown values are used in so many contexts 

   that they lead to unexpected simulation results. There should have 

   been a clear distinction between the signal values which are not 

   logical values and the ones which are indefinite but are logical values. 

   It is pointed out that simulation results tend to be pessimistic in the 

   current simulation techniques based on the 3-valued logic model, 

   because it is based on the calculus in which X + X comes to X 

   instead of 1. We will discuss the modeling of indefinite signal values 

   in detail in chapter 7. 

High-impedance value: It is introduced to express the output of tristate 

   gates and usually denoted as Z'. The signal value system consisting 

   of 0, 1, X(unknown) and Z is used in many logic simulators and is 

   called a 4-valued logic model. The definition of the operation results 

   associated with Z is dependent on the technologies that realize logic 

   gates. Fig. 2.1 (c) is an example of the operation results. 

Transient values: They are introduced to distinguish rising and falling 

   signals from erroneous states. They are denoted by `R' and `F', 

   respectively, and often used in combination with the min/max delay 

   model mentioned in the next subsection.

In a ddition, many kin ds of signal values w hich indicate the possibilities
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of undesirable signals which may caused by various design errors, such 

as hazards, signal conflict and so on. 

  On the other hand, as new attempts to extend logic simulation to 

formal verification, signal values represented by sets [Kim88, Ish90y] or 

Boolean functions [Car79, Cor81] have been proposed. Logic simulation 
based on the signal values represented by Boolean functions is called 

symbolic simulation.

2.1.3 Modeling of Time 

In gate-level logic simulation, we usually model time by a totally ordered 

set T. If T = 3 (the set of integers) the time model is called discrete 
time model and if T = R. (the set of real numbers) the model is called 

continuous time model. Most of the simulation algorithms and most of 

the existing logic simulators assume the discrete time model . A time 

period ticked by an integer is called a unit time. 

  On the other hand, there are approaches in which time is modeled by a 

partially ordered set[Sta85, Tes87]. This model is suitable for representing 
causality relationship or before-after relationship among events occurring 

in a circuit and suitable for modeling higher level design . 

2.1.4 Modeling of Delay 

Most of the existing delay models are based on the discrete time model . 

Followings are the classification of the delay models which are relevant 

to the discussions in this thesis. 

Zero delay model: It is a model in which all the delay values of the gates 

   are zero. Here delay of zero means that the delay time is less than one 

   if measured by the unit time but that there is causality relationship . 

   This model is used when we are not interested in the timing issues 

   on the circuit. It will cause difficulties in simulating logic circuits
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   with feedback loops. Actually delay whose value is zero often causes 

   undesirable situations. We will discuss the issue in chapter 7. 

Unit delay model: It is a model in which all the delay values of the gates 

    are one. 

Assignable delay model: It is a model in which arbitrary delay values can 

   be defined for each gate. it is further classified according to what 

   type of delays are assigned. 

   Nominal delay model: A single delay value is assigned to a gate. 

   Rise/fall delay model: Two delay values are defined to a gate, which 

       represent delay values for 0  —> 1 transitions and for 1 —* 0 

       transitions. 

Min/max delay model: In actual logic circuits, delay values of gates 

       vary depending on the difference of process conditions or usage 

       conditions. In order to express this uncertainty the delay value 

       is specified by its minimum and maximum values drain and dmax, 

       respectively. When a signal change occurs at time t, the out-

      put signal value at time between t + dman and t + dm" becomes 

       X (unknown) or transient signal values, as shown in Fig. 2.2. 

      Although this model is based on the very realistic assumption, 

      it has been pointed out that this model has serious shortcom-

      ings such that simulation results are often too pessimistic due 

       to reconvergent fanouts [Bre76]. For example, in Fig. 2.2, the 

      unknown states on the output of D indicate the possibility of a 

       static hazard, which never occurs in an actual circuit. We will 

       discuss this issue in detail in chapter 5 and chapter 6. 

  In actual circuits realized as integrated circuits, delay values of con-

nections among gates are much large than those of gates. In this thesis,
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 (a) An example circuit.

D

(b) Result of the simulation.

             Fig. 2.2  Min/max delay simulation. 

however, we assume delay only on gates because the delay of a connection 

can be expressed by inserting a buffer gate with the delay.

2.1.5 Logic Simulation 

Logic simulation is to compute the signal value sequences on the primary 

outputs for given descriptions of a logic circuit and signal value sequences 

on the primary inputs. Formal definition of logic simulation depends on 

models of signal value, time and delay. We show a definition of the case 

of the 2-valued logic, discrete time and assignable nominal delay model, 

as an example. 

  A sequence of signal values on node ni, which represents a primary 

input, a primary output or a gate, is modeled as mapping vi : P -* B, 

where P is the set of the non-negative integers and B = {0,1}. Let n8 , 
na , • • •, rein'' be nodes which are the direct predecessor of node ni and vi, 
v?, • • , vm' be the signal value sequences on ni, n?, • • •, nm', respectively. 
Function fi and delay value di are defined for node ni, where fi : l37- --f 23 
and di E P. As for nodes representing primary outputs, assume the
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identity function as  fi. Then the following relation holds for each node 

ni. 

vi(t — di) = fi(vi (t), vi (t), ... , yr' (t)).(2.1) 

Logic simulation is to compute vi for each of the primary output ni for 

given sequences of signal values on the primary outputs.

2.2 Basic Algorithms for Logic Simulation

2.2.1 Compiler-Driven Simulation and Event-Driven Simula-

      tion 

We can classify the algorithms of logic simulation into compiler-driven 

methods and event-driven methods. The compiler-driven method is a 

simple algorithm in which logic simulation is executed by computing at 

each time the formula (2.1) for each node. We refer to the computation 

of the Boolean function of a gate to an evaluation of the gate. We have 

to pay attention to the order of gate evaluation. In the case of combina-

tional circuits, the order of gate evaluation is usually determined before 

simulation execution (the details are described in subsection 2.2.4). If a 

given circuit has feedback loops, it happens that the correct signal value 

of a node at a certain time is not properly computed by simply evaluate 

each gate once. In such cases, we usually continue computation until 

the signal values are stable. If the computation does not stop because of 

oscillations, simulator detects this and outputs error messages. 

  Although the compiler-driven simulation algorithm is simple and easy 

to implement, we are forced to evaluate gates whose input values are 

the same as the previous values. Signal values do not change so often; 

the ratio of the signal change is 1,,,10% or less than that. The event-

driven simulation algorithm attempts to reduce the computation cost by 

evaluating only the gates whose input values are different from those at
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the previous time period. A change of a signal value is called an event. 

Although extra cost is required to manage events, event-driven simulation 

is more efficient than compiler-driven simulation especially in handling 

assignable delay models. 

  Simulation speed is measured in terms of gate evaluations per sec-

ond in compiler-driven simulation and events per second in event-driven 

simulation.

2.2.2 S-Algorithm and T-Algorithm 

We can classify algorithms of logic simulation also from the standpoint 

if they are based on space first evaluation or time first evaluation [Ish84, 
Ish85yy]. The space first evaluation is a strategy in which time is ad-

vanced after finishing all the necessary evaluation of gates at a time 

frame, while time first evaluation is a strategy in which all the possible 

computation on a gate is performed in time direction for each gate (see 
Fig. 2.3). We abbreviate an algorithm based on the space first evaluation 

to S-algorithm and on time first evaluation to T-algorithm. We can con-

sider four types of algorithms for the combinations of the two strategies 

in the previous subsection (compiler-driven and event-driven) and the 

two strategies in this section (S-algorithms and T-algorithms) .

(1) Compiler-driven simulation based on the S-algorithm 

We assume that the order of gate evaluation is determined before simu-

lation by a method described in 2.2.4. We also assume that time begins 

with 0 and the final time at which we stop simulation is given . 

 1) Repeat 2) for each time from 0 to the final time . 

 2) Repeat 3) until signal values of all nodes become stable . 

 3) Evaluate gates in the predetermined order .
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Fig. 2.3 S-algorithm and T-algorithm.
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  Note that in the case of combinational circuit, the signal values become 

stable by the first execution of 3) if gates are evaluated in the order 
described in 2.2.4. 

(2) Event-driven simulation based on the S-algorithm 

Events whose occurrences are known are maintained in set  S. 

 1) Repeat 2) for each time t from 0 to the final time. 

 2) Take out events whose occurrence time is t and perform 3) for each 

     event. 

 3) Evaluate the gates which are affected by the event. If there are signal 

    changes, generate new events and include them in S. 

  In order to maintain events, we use a data structure called time wheel , 

which consists of linear lists of events and an array of headers to the 

linear lists. Each list consists of the events which are know to occur at the 

same time frame. This data structure is suitable for efficient extraction 

of events in 2) and registration of events in 3). 

(3) Compiler-driven simulation based on the T-algorithm 

We assume that the order of gate evaluation is predetermined . 

 1) Repeat 2) until all the signal values become stable . 

 2) Repeat 3) for each gate in the predetermined order . 

 3) Perform gate evaluation for all the possible time frames . 

  Note that in the case of combinational circuit, the signal values become 

stable by the first execution of 2).
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(4) Event-driven simulation based on the T-algorithm 

In this algorithm  [Ish84, Ish85yy], a sequence of signal values are repre-

sented by a linear list of events, where an event is a tuple of time and a 

signal value. 

 1) Execute 2) for each gate in the predetermined order. 

 2) Repeat 3) ti 4) until there is no processed event at input lines. 

 3) Among the events which may occur next at input lines, select an 

   event whose occurrence time is the smallest, and compute the effect 

    of the event. 

 4) If the output value of the gate changes as a result of 4), add an event 

   to the output line whose occurrence time is a sum of occurrence time 

   of the input event and the delay of the gate. 

  Most of the existing simulators are based on S-algorithms because 
it is difficult to deal with circuits with feedback loops in T-algorithms. 

However, T-algorithms are attractive in dealing with combinational cir-

cuits because they are simple and much more efficient than S-algorithms 
in simulating combinational circuits. Espacially, it was discovered in-

dependently by [Bar87, Koe86, Ish87] that combination of T-algorithm 
based compiler-driven simulation and bit-parallel gate evaluation tech-

nique [Bre76] is a very efficient simulation technique for combinational 

circuit. It is also shown that event-driven simulator based on the T-

algorithm is 7 N 8 times faster than that on the S-algorithm [Ish84, 

Ish85yy] . 

2.2.3 Code Generation Method and Table-Driven Method 

The following two methods are know as ones for implementing logic sim-

ulators.
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Code-generation method: Generate a code (for computers) to realize 

   gate evaluation and perform simulation by executing the code. 

Table-driven method: Generate tables containing information neces-

   sary for simulation such as an order of gate evaluation, the kind of 

   each gate and connections among the gates. Perform simulation by 

   referring the table. In the compiler-driven simulation, this method 

   can be regarded as an interpreter-driven method.

  Generally the code-generation method enables faster simulation exe-

cution than table-driven method. The compiler-driven method has good 

affinity for code generation method. Actually, the compiler-driven simu-

lators in the early times were implemented by this method which is the 

origin of the name compiler-driven method. On the other hand, it is 

considered to be difficult to implement event-driven simulators based on 

the code-generation method.

2.2.4 Ordering of Gate Evaluations 

In compiler-driven simulation and T-algorithms, an order of gate evalu-

ation is important because we can dispense with futile gate evaluation 

if we choose a good order. Furthermore it causes a big difference in the 

storage requirement for simulation as is discussed in chapter 3. 

  The most popular method of ordering is the one called level sorting 

 [Bre76]. In this method gates are ordered according to level numbers of 
gates. The level number l(ni) of gate n, is defined as follows based on 
the notation in the previous section. 

                                    if ni is a primary input l(ni) = 
1+ max{l(n'), l(n?), • • • , l(n7' )} otherwise. 

  For example, in Fig. 2.4, AB CD E F G and B — C — 

A — E — D — F — G are obtained in this ordering.
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             Fig. 2.4 Ordering of gate evaluation. 

  As a generalization of level sorting, we consider data flow sorting (DF-

sorting) [Ish87, Ish86] . An available gate is a gate whose all input values 

have already been computed. Let S be the set of available gates. Then 

the order of gate evaluation is determined by the following procedure. 

 1) At the beginning, include the gates with its all inputs connected to 
   the primary inputs in S. 

 2) Repeat 3) and 4) until S becomes empty. 

 3) Get gate g out of S and evaluate g. 

 4) After the evaluation of g, if any gates become newly available, add 

   them to S. 

By DF-sorting we can get any of the all orders that yield correct simula-

tion result. In Fig. 2.4, A DBCEF G and B — C — E — 

G — A — D — F are the examples of order obtained by DF-sorting but not 

by level sorting. The DF-sorting provides us a higher degree of freedom 

to allow wide choice in determining the gate evaluation order than level 

sorting. We will use this freedom for reducing the storage requirement 

for simulation in chapter 3 and chapter 4.
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Chapter 3

Fast Logic Simulat 

Super Computers

ion Using Vector

3.1 Introduction

Computation time required for logic simulation is roughly proportional 
to the size of a circuit under test and to the length of test patterns. The 
increase in the circuit size, together with the incidental increase in the 

test pattern size, has resulted in the rapid growth of the computation 

time for the simulation. It is one of the most important subjects in the 

area of Computer-Aided Design (CAD) for Very Large Scale Integration 

(VLSI) to develop high-speed logic simulation techniques. In this chapter, 
we propose logic simulation techniques using vector processors, as a new 

approach to accelerating simulation speed. 

  In order to reduce simulation time, a number of research efforts have 

been carried out in recent years. These approaches can be roughly clas-

sified into the following kinds.

1) Contrivance on the circuit modeling: The function level modeling 

  and the function level simulation, for example,  bring forth the dras-

  tic reduction in computation time and in storage requirements (in 
  exchange for a precision, however). 

                          25
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2) Improvements in simulation algorithms: The concurrent simulation 

  technique  [U1r83], clock suppression [U1r83] and time first evaluation 
  algorithm (T-algorithm) [Ish84, Ish85yy] are such examples. 

3) Techniques in coding: Zoom table look-up [Ulr80b] is one of the most 

  popular coding techniques. The vector coding technique for a scalar 

  processor by Krohn [Kro81], though it is in some way analogous to 
  our approach, also falls under this category. 

4) Development of special purpose hardware (hardware simulation en-

  gines): Several types of hardware simulation engines have been de-
  signed and some of them (YSE by IBM [Den83], HAL by NEC 

[Sas83], and Logic Evaluator by ZYCAD [Bla84], VELVET by Hi-
  tachi [Nag86], SP by Fujitsu [Hir87], for example) have actually been 

  implemented and are in practical use.

  Using parallel computation schemes, the hardware approach has demon-

strated the potential to improve performance by a factor of 1000 over 

current software solutions. However, software simulators may be as fast 

as hardware simulators, if the power of the fastest computers, or super 

computers, can be efficiently harnessed. Furthermore, software is gen-

erally more flexible and portable than hardware. From an engineering 

standpoint, there are many benefits to developing a software simulation 

method with performance comparable to that of current hardware solu-

tions. 

  A vector processor is a supercomputer which has the facility to execute 

operations on vectors extremely fast. Several vector processors have been 

developed in recent years [Lub85], which are capable of executing sev-

eral hundred MFLOPS (Million FLoating-point Operations Per Second). 

Vector processors are developed with a view to accelerating the numerical 

computation for problems that require enormous computation power. In 

addition to the powerful facilities for floating-point operations, they have
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vector operations so versatile that we can use their computation power 

in many applications. 

  We must note that all programs cannot enjoy the benefit of vector 

processors. High vectorization ratio, and yet long vector length are es-
sential for efficient computation. We must tune up our coding schemes 

or basic algorithms to be suitable for vector processing. 

  In this chapter, we propose new high-speed logic simulation tech-

niques which efficiently utilize the computation power of vector proces-

sors [Ish85ykv, Ish85yki, Ish86, Ish871. We have developed 3 types of 
simulation techniques which are dedicated for: 

 1) zero-delay simulation of combinational circuits, 

 2) zero-delay simulation of synchronous sequential circuits, and 

 3) simulation with delay consideration. 

  The first two are based on the compiler-driven method and the last 

on the event-driven method. 

  For the simulation of combinational circuits, we propose vector-parallel 

simulation technique (VP-technique), which is based on the time first 

evaluation algorithm (T-algorithm) [Ish84, Ish85yy]. A sequence of states 
on a signal line is treated as a vector (a pattern vector) and the gate eval-

uation is performed by vector logical operations on pattern vectors. For 

the simulation of synchronous sequential circuits, the simulation proce-

dure is vectorized by a gate grouping technique (GG-technique), which 

is based on the space first evaluation algorithm (S-algorithm). In this 

case, we increase the vectorization ratio by grouping gates of the same 

kind and evaluating them together in a vectorized manner. 

  In order to carry out the timing simulation with sophisticated delay 

models, we have also developed a vectorization technique for event-driven 

simulation. The algorithm we adopted is basically the conventional event-

driven method with a time mapping technique. The procedures for event
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fetch, event propagation, gate evaluation and event registration are vec-

torized by processing all the events together which are scheduled to occur 

at the same period. Data structures and the operations on events are 

modified to be suitable for vector processing. 

  We have implemented logic simulators based on the above simulation 

techniques on the FACOM  VP-100 and VP-200 (266 MFLOPS and 533 

MFLOPS, respectively) at Kyoto University and the HITAC S-810/20 

(630 MFLOPS) at the University of Tokyo. The maximum performance 
is about 7.7 x 109 gate-evaluations per second for combinational circuit 

simulation, 1.4 x 109 gate-evaluations per second for sequential circuit 

simulation (by the VP-200) and 230 x 103 events per second for event-

driven simulation (by the S-810/20). This performance is comparable 
to that of hardware simulation engines. Moreover, our techniques are so 

straightforward that we can implement them on most of the recent vector 

processors without serious modifications. 

  In the next section, we provide an overview of some important fea-

tures of vector processors The two sections that follow are devoted to an 

explanation and consideration of the simulation techniques based on the 

compiler- driven method. Section 3.3 deals with the simulation of combi-

national circuits and Section 3.4 with the simulation of synchronous se-

quential circuits. A vector processor oriented technique for event-driven 

simulation is stated in Section 3.5. The last section concludes this chapter 

with some comments.

3.2 Vector Supercomputers

Vector processors are supercomputers which have been developed to meet 

the requirements for large scale computation in such area as hydrodynam-

ics, numerical weather prediction, and nuclear energy research. Compu-

tation speed is increased by executing the uniform operations on array
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structured data using functional pipeline units. Main storage has a large 

capacity of several hundred mega bytes and is designed to afford enough 

access speed to balance the high throughput of the functional pipeline 

units. The maximum performance of recent vector processors reaches sev-

eral MFLOPS (Million FLoating-point Operations Per Second)  [Lub85], 

ten to hundred times faster than the largest general purpose computers. 

  Although the maximum performance of vector processors is very high, 

this performance is available only when almost all the operations in a 

program are executed by vector instructions. The execution speed will 

degenerate in accordance with the decrease of vectorization ratio, which 

is defined as the rate of the operations executed by vector instructions 

to all the operations. Let us define vector execution of a program as ex-

ecuting possible operations by vector instructions, scalar execution of a 

program as executing all the operations by scalar instructions and accel-
eration ratio of a program as the ratio of the execution speed by vector 

execution to that by scalar execution. When the vectorization ratio is 

50 percent, acceleration ratio can not exceed 2.0 no matter how efficient 

the vector instructions are. Acceleration ratio increases markedly when 

vectorization ratio goes by 90 percent. 

  Another important factor to be considered is vectorlength. Since the 

overhead for setting up a vector instruction is considerably large, enough 

efficiency is not available if the operand vectors are short. (Sometimes 

vector instruction becomes less efficient than scalar instruction). More-

over, the execution speed is also swayed by such factors as the type of 

memory accesses, the type of instructions and the number of pipelines 

which can operate in parallel. With due regard to the above factors, we 

have not only to tune up the coding schemes but also to choose, modify 

or newly design basic algorithms so that the programs will be suitable 

for vector processing. 

  Table 3.1 summarizes the specification of the FACOM VP-100, VP-
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Table 3.1 Specification of vector supercomputers.

FACOM  VP-100 FACOM VP-200 HITAC S-810/20

Instruction
82-vector
195 scalar

82 vector
195 scalar

83 vector
195 scalar

Functional
Pipelines

add/logical
multiply
divide
mask
load/store X 2

add/logical
multiply
divide
mask
load/store X 2

add/logical
multiply + add
multiply/divide + add
mask
load X 2
store

Pipeline cycle 7.5ns 7.5ns 15ns

Vector Register 32KB 64KB 64KB

Maximum
Capacity of
Main Memory

128MB 256MB 256MB

Peak CPU
Speed

266MFLOPS 533MFLOPS 630MFLOPS

Vectorizing
Facilities

Fortran77/VP
Compilers
with Interactive
Vectorizer

Fortran77/VP
Compilers
with Interactive
Vectorizer

Fortran77 HAP
Compilers
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200 and the HITAC S-810/20, new vector processors on which we have 

developed our logic simulators. They have many advanced features mak-

ing it versatile for a wide range of applications. The functional pipeline 

units can afford not only floating point operations but also  fixed-point op-

erations and bit-wise logical operations. The load/store pipeline, which 
transfers data between the main storage unit and vector registers, can 

afford three types of vector accesses:

 a) contiguous vector access, 

 b) constant stridden vector access, and 

 c) indirectly addressed vector access. 

  As for the access speed, (a) is the fastest and (c) is the slowest. The 
indirectly addressed vector access allows an operation coded in the fol-

lowing FORTRAN statements to be vectorized and executed efficiently.

  DO 10 I=1,N 

10 A(I)=B(L(I))

Where the array L is an array of integers. This facility is particularly 

appropriate to the vectorization of table look-ups in the logic simulation. 

  In addition, these vector processors are capable of handling DO loops 

containing the conditional statements.

  DO 20 I=1,N 

20 IF (A(I).GT.O. 0) B(I)=B(I)+C(I)

  Another powerful vector function is a vector compress function, which 

gathers the elements of a vector whose corresponding subscripts satisfy 
certain conditions. We can use this function by the following coding.
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   K=0 

  DO 30 I=1,N 

    IF (A(I).GT.0.0) THEN 

K=K+1 

    C(K)=B(I) 

  ENDIF 

30 CONTINUE

  This function plays a very important part in the event-driven simula-

tion to be discussed in Section 5. 

  As well as the above powerful vector processing facilities, these vector 

processor have very large main storage. The maximum capacity of the 

main storage is 256M bytes (VP-200 and S-810/20) and 128M bytes (VP-
100).

3.3 Vectorization of Combinational Circuit Simula-

tion

3.3.1 Vector-Parallel Simulation Technique 

For the simulation of combinational circuits, we propose vector-parallel 

simulation technique (VP-technique) which vectorizes the simulation pro-

cedure. This approach is based on a combination of the compiler-driven 

method, the T-algorithm and the parallel simulation technique . A se-

quence of states on a signal line is expressed with a vector of logical type 

(we call it a pattern vector). The evaluation of a gate is performed by 
a vector logical operation (or combination of operations) corresponding 

to a logical function of the gate. The order of gate evaluation is just the 

same as the conventional compiler-driven method. First, the pattern vec-
tors on the primary inputs are given. Then gates are evaluated according 

to the order determined by level sorting or DF-sorting, and finally the
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pattern vectors on the primary outputs are computed. If these vector log-

ical operations are bit-wise, we can use the parallel simulation technique 

in combination. Since one bit is enough to express a state of each signal 

line in the two-valued logic simulation, we can express w states with a 

word of w bits. By bit-wise logical operations, a result of gate evaluation 

for w patterns is computed simultaneously. In our vector-parallel simu-

lation, we express a pattern of length p with a vector of length  [p/w, 
where [xi is the smallest integer not smaller than x. If p is so large that 

vector length is not allowable because of storage limitations, we divide 

the pattern into patterns of adequate length and perform simulation by 

installments.

3.3.2 Reduction of Storage Requirements Based on DF-Sorting

In order to bring out the performance of vector processors, the length 

of pattern vectors are set to be very long, that is, many patterns are 

processed at a time. Since the storage space required to store these 

vectors increases with the length of pattern vectors and with the circuit 

size, the storage requirements for a large scale simulation will be quite 

large. 

  Fortunately, we need not store the pattern vectors for all signal lines 

in the circuit throughout the entire simulation. At the beginning of the 

simulation, only the vectors associated with the primary inputs must be 

stored. As a result of gate evaluation, some new pattern vectors are 

created and must be stored. On the other hand, there will be some 

vectors which will no longer be referred to. Since they are not necessary 

for the simulation after that point, we can use the memory area occupied 

by the vectors for storing newly generated vectors. By this strategy, the 

number of pattern vector areas required for simulation is usually expected 

to be much less than the total number of signal lines in the circuit. We 

will show some experimental results later.
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orders of gate evaluation.

  Let Mr be the number of pattern vector areas required to simulate 

a circuit by an order of gate evaluation. Mr varies with the change of 

the gate evaluation order for a circuit. Fig. 3.1 shows an example, in 

which Mr is 6 for the order E-F-G-H, while Mt, is 5 for the order G-E-

F-H. If we employ DF-sorting, we can get more candidates for the order 

than level sorting and can expect to have better order. Since the DF-

sorting can deliver all the orders that allow correct simulation, it would 

be possible to choose the order that minimizes the storage requirements. 

But this optimization problem is very hard to solve completely (this 

problem can be shown to be NP-hard by the transformation from the 

register sufficiency problem [Gar79]). In order to find a near optimum 

solution by a brief computation, we introduce the following heuristics 

into DF-sorting. 

  We use NDV (the Number of Disposable Vectors) as a measure of 

choice. The NDV of an available gate at a certain simulation step is 

defined as the number of pattern vectors that will no longer be referred
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Not Available

 Available  Available Evaluated 

NDV(E) = 2 
                                     NDV(F) = 1 

B C 

                     Evaluated 
         EvaluatedEvaluated 

      Fig. 3.2 NDV: the measure for choosing the next gate. 

to after evaluation of the gate. In Fig. 3.2, gates A, B, C, D and G are 

already evaluated, E and F are available and H is not available. If we 

evaluate F in this situation, we can release the area for the output of 

gate D, but we must not release that of gate C because it will be referred 

to in the evaluation of gate E. Thus the NDV of F is 1, and similarly 

the NDV of E is 2. As shown in Fig. 3.3, the number of pattern vectors 

to be stored is equal to the number of primary inputs at the beginning 

and becomes 0 at the end. (We assume that result pattern vectors are 

stored into files as soon as they are computed). It is then clear that the 
maximum number of pattern vector areas required for simulation may 

be reduced when the gates with large NDV values are processed prior to 

those with small NDV values (see Fig. 3.3). 

  Table 3.2 shows a typical example of Mr's for the order obtained by 

our heuristic algorithm based on the DF-sorting and by the conventional 

level sorting. We can see: 

 1) M„ is much less than the number of total signal lines (number of 

   gates in a circuit). 

 2) Compared with the level sorting, our heuristics reduce the My by
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Number of Pattern Vector areas

Fig.

 D' V Ldrye rvvv 1-iii. - . 
Number. 
     of 

   Primary 
    Inputs 

                                Simulation Step 

3.3 Storage requirement for the strategies of gate ordering.

Small  NDV First

/.-4 Large NDV First

A .

Table 3.2 Comparison of  M,

Number of
Gates

(Depth)

Level
Sorting

DF-Sorting  Ratio[%]

85 (13) 19 14 73.6

168 (25) 31 22 70.9

270 (22) 38 26 68.4

346 (48) 55 38 69.0

1240 (48) 142 63 44.3

5296 (76) 542 119 22.0
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 20%N70%. 

  Since this order is determined statically from the circuit structure 

in the preprocessing stage, no overhead is brought about in simulation 

execution.

3.3.3 Multi-Valued Logic Simulation 

As is the case with the conventional scalar processors, our vector pro-

cessors support only two-valued logic operations. In order to handle 

multi-valued logic [Bre76], we must make up a mechanism to perform 
multi-valued logic operations. One of the most popular ways to realize 

multi-valued logic operation is a table look-up technique, such as zoom 

table look-up [Ulr80b]. Although the procedures for such a table look-up 

technique may be vectorizable, the simulation speed will be much slower 

than in two-valued logic simulation by the VP-technique for the following 

reasons. 

 1) Since one word is used to represent a logic value, we can not combine 
    the parallel-simulation technique. 

 2) The array accesses for table look-ups are vectorized by indirectly 

    addressed vector accesses, which are several times slower than vector 

    logic operations. 

  As an alternative way, we propose the following vector bit coding tech-

nique which allows a simulation speed near to that of two-valued logic 

simulation. 

 1) Encode a vector of multi-valued logic with multiple vectors of two-

    valued logic. 

 2) Carry out multi-valued logic operations by combination of vector 
    logic operations for the two-valued vectors.



38 3. Fast Logic Simulation Using Vector Supercomputers

y1  =  ((aL 
y2  =  a2

a  a, a2

0 0 0

1 0 1

Z 1 1

X 1 0

(a)

a

b

 Y a 1 z x

0 0 0 0 0

1 0 1 1 X

Z 0 1 1 X

X 0 X X X

(b)

4-Valued

 a1a2

+ a2)-(b1 + b2))®y2 

2 

  (d)

 b,b,

Y,Y2 00 01 11 10

00 00 00 00 00

01 00 01 01 10

11 00 01 01 10

10 00 10 10 10

a

b

 0011  XXX••••

011ZX10••••

y = a•b

a, 

a2 

b, 

b2

(c)

2-Valued

 0000111--

0011000-•••

0001100•-••

0111010••••

 0011XX0•••-

y1 = ((a 
y2 = a2•i

y Y1 

Y2 

(e)

+ a2)•(b1 + b2))ey2 

2

            Fig. 3.4 Four valued logic simulation. 

(a) Coding. (b) Table for four-valued AND operation. (c) Decomposition 
into two-valued logic. (d) Example of realization. (e) Logical operation 

on vectors.
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  Fig. 3.4 shows an example for four-valued logic simulation. The values 

0 , 1, X and Z are used for representing logical zero, logical one, unknown 

and high-impedance, respectively. If we use a coding {0 =  (0,  0),  1 = 

(0,1), X = (1, 0), Z = (1,1)} shown in Fig. 3.4 (a), the four-valued sc 
and operation defined by the table Fig. 3.4 (b) are decomposed into two 

two-valued logic function expressed with the Karnaugh map in Fig. 3.4 

Fig. 3.4 (c), which can be realized by the five two-valued logic operations 
like those in Fig. 3.4 (d). Here only NOT, AND, OR and EXCLUSIVE-OR are 

allowed as two-valued logic operations, because only the corresponding 

vector logic operations are available on our vector processors. As shown 

in Fig. 3.4 (e), the vector y, the result of four-valued AND between the 

vector a and b, is computed by encoding a and b with (al, a2) and (b1, b2), 

respectively, and executing the logic operations shown in Fig. 3.4 (d). 
  As is seen from the above discussion, the computation time required 

for the gate evaluation is proportional to the number of two-valued logic 

operations to realize the multi-valued logic operations. In order to reduce 

the simulation time, it is essential to realize the multi-valued logic opera-

tions with the minimum number of two-valued operations. The problems 

to be considered are:

 1) How to find the best coding? 

 2) How to find the way to realize the objective functions with the min-
   imum number of two-valued operations? 

  If the coding and the operation table for the multi-valued operation are 

given, the objective functions will be fixed uniquely. Then the problem 
2) is the minimum logic design problem [Mur72]. 

  The choice of the coding must be closely related to the kind of the 

gates making up the circuit to be simulated. For example, in the case 

where the circuits are assumed to be designed only with ECL gates of 

NOR-OR function, it is preferable to choose the coding which minimizes
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Table 3.3 Number of 2-value d logical operations for 3-valued logic.

Coding

not and  or
ex-

or

n-
and

nor
Ave-

400 01 10 11

0 1 X
- 1 0 X 0 2 2 6 2 2 2.5

0 X 1
- x 0 1 1 4 5 4 5 5 3.5

1 x o
- X 1 0 .

1 5 4 4 5 5 3.5

0 - 1 X
0 1 - X

2 3 5 3 5 6 3.3

o - x 1
0 X - 1

2 2 2 6 4 4 3.0

0 1 X -
0 X 1 -

2 5 4 4 6 5 3.8

1 - 0 X
1 0 - X

2 5 3 4 6 5 3.5

1 - X 0
1 X - 0

2 2 2 7 4 4 3.3

1 0 X -
1 X 0 -

2 4 5 4 5 6 3.8

X - 0 1
X o - 1

1 5 3 3 5 4 3.0

X - 1 o
X 1 - 0

1 3 5 4 4 5 3.3

X 0 1 -
X 1 0 -

0 2 2 6 2 2 2.5

the number of two-valued operations to realize NOT, OR and NOR (of 

four-valued logic). Moreover we may be able to change the coding for 
every circuit so as to minimize the total number of two-valued operations 

required for simulating the circuit. 

  We have solved the minimum logic design problem mentioned above 

for the NOT, AND, OR, EXCLUSIVE-OR, NAND and NOR of three-valued 

and four-valued logic for every possible coding, and have realized the 

operations with two-valued logic operation and the number of opera-

tions required. The branch-and-bound algorithm is employed to solve 

the minimum logic design problem. The results are shown in Table 3.3
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Table 3.4 Number of 2-valued logical operations for 4-valued logic.

Coding

not and or
ex-

or

 n-
and

nor
Ave-

400 01 10 11

0 1 X Z
0 X 1 Z

3 5 4 8 6 5 5.0

0 1 Z X
O Z 1 X

3 7 6 7 8 6 5.8

0 X Z 1
0 Z X 1

3 4 3 8 6 5 4.5

1 0 X Z
1 x 0 z

3 7 6 8 8 6 6.0

1 0 Z X
1 Z 0 X

3 7 3 6 7 5 4.8

1 X Z 0
1 Z X 0

3 4 3 9 6 5 4.8

X 0 1 Z
X 1 0 Z

2 6 4 6 6 4 4.5

X 0 Z 1
X Z 0 1

2 7 3 5 7 4 4.3

X 1 Z 0
X Z 1 0

2 7 6 8 7 5 5.8

Z 0 1 X
Z 1 0 X

2 6 4 7 6 4 4.8

Z O X 1
Z X 0 1

3 8 7 8 8 6 6.5

Z 1 X 0
Z X 1 0

3 6 4 8 6 5 5.3
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Table 3.5 Number of 2-valued logical operations.

Ciruit 2-Valued 3-Valued 4-Valued

32-bit Adder
 nand  X 384

768
(1.00)

768
(1.00)

2304
(3.00)

32-bit Adder
nand X 128, and X 496
exorX 64

352
(1.00)

704
(2.00)

1344
(3.82)

16-bit Multiplier
nand X 2880, and X 256

6016
(1.00)

6272
(1.04)

18304
(3.04)

16-bit Multiplier
nand X 960, and X 496
exor X 480

2896
(1.00)

5792
(2.00)

11584
(4.00)

and Table 3.4. From the limitation of the computation time, we have 

got only approximate solutions for some of them. "Ave-4" in the tables, 

which gives the average for NOT, AND, OR and EXCLUSIVE-OR, shows 

that there exist codings that enable three-valued and four-valued logic 

simulation with a computation time on the average 2.5 times and 4 .2 

times greater, respectively, than in two-valued logic simulation . If we 

choose the best coding for each circuit, computation time will be further 

reduced, as shown in Table 3.5.

3.3.4 Implementation and Experiments 

We implemented a gate-level (two-valued) zero-delay simulator based on 

the above simulation technique. As for the simulation control method
, 

the code generation method is adopted. Fig. 3.5 shows the system con -

figuration. First of all, the circuit description is written in SHDL (Struc -
tured Hardware Design Language) [Sak82]. A translator reads this de-
scription and generates a FORTRAN program which will realize vector -

parallel simulation of the circuit (Fig. 3.6). The order of the gate evalu-
ation is determined in this phase. The gate evaluation is coded using the 

built-in logic functions of FORTRAN  (IAND, IOR in Fig. 3.6). The FOR-
TRAN program is compiled into an object code for the vector proces sors
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Fig. 3.5 System configuration of the combinational circuit simulator.

000001 

000002 

000003 

000004 

000005 

000006 
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000008 

000009 

000010 

000011 

000012 

000013 

000014 

000015 

000016 

000017 

000018 

000019 

000020 

000021 

000022

DO  10  J  = 1,LEN 
BUFF(J,4) = NOT(BUFF(J,1)) 
BUFF(J,5) = NOT(BUFF(J,3)) 
BUFF(J,6)= NOT(BUFF(1,2)) 
BUFF(J,7) = IAND(BUFF(J,1),BUFF(J,2)) 
BUFF(J,7)= IAND(BUFF(J,5),BUFF(1,7)) 
BUFF(J,8)= IAND(BUFF(J,2),BUFF(J,3)) 
BUFF(J,8)= IAND(BUFF(J,4),BUFF(J,8)) 
BUFF(J,9)= IAND(BUFF(1,4),BUFF(J,5)) 
BUFF(J,9)= IAND(BUFF(J,6),BUFF(J,9)) 
BUFF(J,1)= IAND(BUFF(J,1),BUFF(J,3)) 
BUFF(J,1)= IAND(BUFF(J,1),BUFF(J,6)) 
BUFF(J,7) = IOR(BUFF(J,7),BUFF(J,8)) 
BUFF(J,9)= IOR(BUFF(J,9),BUFF(J,1)) 
BUFF(1,10) = IOR(BUFF(1,7),BUFF(J,9)) 
BUFF(J,10) = NOT(BUFF(J,10)) 
BUFF(1,1) = IAND(BUFF(J,4),BUFF(J,5)) 
BUFF(1,3)= IAND(BUFF(J,5),BUFF(J,6)) 
BUFF(J,7) = IAND(BUFF(J,4),BUFF(J,6)) 
BUFF(J,1) = IOR(BUFF(J,1),BUFF(J,3)) 
BUFF(J,1) = IOR(BUFF(J,1),BUFF(J,7))

10 BUFF(J,1) = NOT(BUFF(J,1))

Fig. 3.6 A generated Fortran program.
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Table 3.6 Summary of the speed performance. 

   (the  combinational circuit simulator)

Computer

Execution Speed
 [ X 106 gate / sec] Vector

Scalar

Scalar Vector

VP-100 3865

VP-200 322 7698 23.9

S-810 93 4204 45.2

by the FORTRAN77/VP compiler (FACOM) or the FORTRAN77HAP 
compiler (HITAC), and is executed with pattern data on vector proces-
sors. 

  Since the logic functions are compiled into vector logic operations in 

a straightforward manner, almost all the operations in the program are 

processed by vector instructions. All the vector accesses are contiguous 

accesses and the simulation speed is extremely fast. The vector length is 

 [p/321 (where p is a pattern length to be processed at a time) by the 32-
bit parallel simulation technique. Simulation speed then depends on the 

pattern length but not on the circuit size or circuit structure. Fig. 3.7 

shows the relation between simulation speed and vector length. The 

simulated circuit is a full-adder of 19 gates. The simulation speed grows 

with the vector length but the nearly maximum speed is available at 

vector length 128 N 512. Table 3.6 shows the maximum speed obtained 

by the scalar execution and the vector execution on the machines. An 

execution speed of 7.7 x 109 gate-evaluations per second is obtained on 

the FACOM VP-200. This speed is 20 N 40 times faster than that by 

the scalar execution. 

  The capacity of the simulator (the maximum number of gates that can 

be simulated) is bounded by the storage size. In the VP-technique with
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code-generation method, the storage is used for the simulation code and 

for the pattern vector areas. It is difficult to estimate the precise size of 

the simulation code, because it depends on the optimization strategies 

of the FORTRAN compilers. We can say that the code size is roughly 

proportional to the sum of the number of gates and the number of in-

put/output lines of the gates. In the case of two-input gates, about 24 
bytes are required per gate. As for the pattern vector areas, the storage 

required is proportional to the length of pattern vectors and to the  My 

discussed in 3.3. It is difficult to get the  M„ of a circuit only from its size 

because M„ also depends on the structure of the circuit. With reference 

to the result of Table 3.2, it is estimated that we can simulate more than 

6M gates using the main storage of maximum size 256M bytes. 

  As an effective application of the VP-technique, we consider the Boolean 

comparison of two given combinational circuits. We prove the logical 

equivalence of the circuits by applying all possible patterns to the cir-

cuits and testing the consistency of the outputs of the two circuits. The 

consistency is tested by simulating the circuit shown in Fig. 3.8 and 

checking whether the state on V is always 0. 

  Let m, n, N1, N2 be the number of the primary inputs, the primary 

outputs, the gates of circuit-1, the gates of circuits-2, respectively. Then 

the number of the gate evaluation necessary for proving equivalence is 

2771 x (Ni +N2-{-2n-1). 

  In the case where m = n = 32 and N1= N2 = 2000 (approximately as 

same as 16-bit multipliers), the computation time required for simulation 

is about 40 minutes using FACOM VP-200. Although the computation 

times for pattern generation and result testing must be added (they are 
also vectorizable), one hour will be enough to prove the equivalence of 

the circuits. 

  Recent researches on Boolean comparison using binary decision dia-

grams [Fuj88, Min90] have made it possible to verify Boolean equivalence
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 All Possible patterns 

Fig. 3.8 The circuit for Boolean comparison.
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within feasible storage and time for many practical functions. However, 

there are still many functions which are hard to handle by binary deci-

sion diagrams [Bry86,  Bry90, Ish90y]. Multiplication is one of the typical 
examples. For such complex functions the use of our logic simulator on 

vector supercomputers is currently the most effective way of Boolean 

comparison.

3.3.5 Considerations for Further Acceleration

In the present system, we assign one FORTRAN statement for each gate. 

Load and store operations will be executed for each gate evaluation but 

some of them are not necessary if vector resistors are efficiently used. We 

can reduce this redundant load and store operations by programming 

in assembler or in machine code, but unfortunately FORTRAN is the 

only available language for programming on our vector processors. We 

can expect the similar effect by collecting several neighboring gates and 

expressing them in a single FORTRAN statement as shown in Fig. 3.9. 

By simple experiments with a circuit of ten and several gates, about 20 

percent improvements in the simulation speed is observed.

3.4 Vectorization of Sequential Circuit Simulation

3.4.1 Gate Grouping Technique 

A synchronous sequential circuit is generally composed of a combinational 

circuit part and registers or memories. For simplicity, we will consider 

a sequential circuit of the type shown in Fig. 3.10. Since loops in the 

circuit contain registers, simulation of a synchronous circuit is performed 

by evaluating the combinational circuit part at every clock period . Un-

fortunately, time first evaluation is impossible because evaluation of the 

combinational circuit part at a certain clock period requires the result of
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Fig. 3.10 A model of synchronous sequential circuits.
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              Fig. 3.11 Grouping of gates (1). 

the previous clock period. Although it is possible to achieve vectoriza-

tion by simulating many cases at a time, it will not be feasible for the 

following reasons. 

 1) In order to bring out the effect of the vector processing, we must 
   simulate thousands of cases at a time. 

 2) When a circuit contains a large memory, we have to store the con-

   tents of the memory corresponding to all the cases. 

  We have developed alternative techniques based on the conventional 

space first evaluation algorithm. We increase the vectorization ratio by 

the gate grouping technique (GG-technique). Gates of the same type 

are grouped and are evaluated together in a vectorized manner. The 

grouping must be done with careful consideration so that the order of 

the gate evaluation will be correct. Fig. 3.11 shows an example of the 

grouping. The groups of gates are processed in the order of their numbers
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V: states of lines

           Fig. 3.12 Vectorization of gate evaluation. 

in the figure. Registers are treated as simple buffers and are evaluated 

at the end of the clock period. 

  Fig. 3.12 illustrates how the gate evaluation procedures are vectorized. 

The vector V holds the states of the signal lines, and the vector  XI gives 

the correspondence of the input lines of gates and the signal lines. The 

evaluation of gates in a group is performed as follows. 

 1) Input states for the gates are fetched from the vector V using the in-
   formation of XI. This operation is vectorized by indirectly addressed 

    vector accesses. 

 2) The logical operations for gates are performed. Since all the func-

    tions of the gates in a group are the same, this operation can be 

    processed by vector logical operations. 

 3) The result of the logical operations is stored into the vector V. This 

    is vectorized using contiguous vector access.
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  In the vector V, one word is assigned for a signal line in order to allow 

access V by the word. We can use the parallel simulation technique in 

combination by stuffing b states in a word (where b is the word length). 

Multi-valued logic simulation is also possible by the vector bit coding 

technique outlined in Section 4.3. 

  From the standpoint of efficient vector processing, it is desirable to 

make the average group size large, or to make the total number of groups 

small. In our approach, the average group size becomes large when (1) 

the circuit size is large and (2) the logical depth of the circuit is small. 
In large scale logic design, there is a tendency to increase the number 

of registers and reduce the depth of combinational circuits in order to 

improve testability or throughput  [Seg83]. Thus we can conclude that 
our approach is suitable for the simulation of the latest large scale digital 

systems.

3.4.2 Grouping Algorithms Based on DF-Sorting 

In this section we discuss the problem of gate grouping. The grouping 

shown in Fig. 3.11 is determined based on level sorting. That is, the gates 

which have the same functions in the same level are grouped together. 

They are evaluated in the order of the level number. 

  There exist other grouping methods which also guarantee correct sim-

ulation. Fig. 3.13 shows such a grouping on the same circuit as the 

previous example which yields larger average group size. This grouping 

is determined based on the DF-sorting mentioned in Chapter 2 . The 

details of the grouping algorithm are as follows.

S1) At the beginning, gates with all inputs connected to primary inputs 

   or register outputs are included in set S. 

S2) Repeat S3) and S4) until S becomes empty.
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              Fig. 3.13 Grouping of gates (2). 

S3) Choose one gate type. Get gates of that type out of  S, and construct 

   a new group with them. 

S4) If available gates are newly produced as a result of evaluation of the 

   group determined in the previous step, include them in S. 

S5) Group all the registers. 

  The average group size depends on the choice in S3). It is a very 

difficult (NP-hard) problem to make the optimum choice. In order to 

find a near optimum solution by a brief computation, we have developed 

the following three heuristic algorithms. 

 1) Greedy Strategy 

   Count the number of available gates for each gate type. Choose the 

   gate type which has the largest number. This heuristic gives results 

    as good as level sorting.
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 2)  Level+  Greedy Strategy 

   Compute the smallest level number of available gates for each gate 

   type. Choose the gate type which gives the minimum level number. 

   If there are multiple candidates, apply the greedy strategy. Although 

   this heuristic seems similar to the grouping based on level sorting 

   there is a difference in that the gates which belong to the different 

   levels can be grouped together only if they are available. Clearly 

   this heuristic guarantees a solution no worse than the level sorting. 

 3) Individual-Inverse-Level+ Greedy Strategy 

   The Individual-Inverse-Level number of a gate g (denoted by IIL(g)) 

   is defined as follows. Here, for consistency, we treat a primary output 

   as a gate with a single input and no output. 

   for a primary output o: 

   IIL(o) = 1, 

   for a gate g: 

    IIL(g) = maxh{ IIL(h) + 1 (if g and h are of the same function), 

         IIL(h) (otherwise)}, 

   where gate h is the fan-out destination of the gate g. In this heuristic, 

   the gate type which gives the maximum IIL for available gates is cho-

   sen. This heuristic gives a still better solution than the Level+Greedy 

    Strategy. 

  Table 3.7 shows the comparison of the solution obtained by the group-

ing algorithms stated here. The circuit (arithmetic circuit to compute 

sum of products) consists of about 7,000 gates of four types and of depth 

is 125. 

  Another way to enlarge the group size is to do logic conversion . By 

converting the original circuit to a circuit which consists of fewer types of 

gates, the average group size will be larger than in the original circuits. If
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Table 3.7 Comparison of the grouping algorithms.

Algorithm
Number of

Groups
Average

Group Size
CPU Time

[sec]

Level Sorting 355  21.1 0.75

Heuristic (1) 366 20.5 0.60

Heuristic (2) 304 24.6 1.13

Heuristic (3) 235 31.9 2.10

we choose a gate which is functionally complete, such as NAND and NOR, 

it is possible to convert any circuit to the one which consists of gates of 

a type. Then the average group size is equal to the averaging number of 

gates in each level. Although the number of operations for gate evaluation 

may increase, the total simulation time will be reduced if the effect of the 

improvement in the vector length is large. This conversion technique is 

considered to be effective when a circuit consists of many types of gates or 

when the vector length is short. Although the magnitude of the average 

group size is not typical because the depth is extremely large, we can see 

that the average group size is enlarged by a factor of about 1.5 by our 

heuristics. The results in Section 4.4.3 are obtained by the  IIL+Greedy 

strategy.

3.4.3 Implementation and Performance Evaluation 

We also implemented a sequential circuit simulator on the vector pro-

cessors. Although it is possible to adopt the code-generation method as 

well as in the combinational circuit simulator, we took the table-driven 

method in order to investigate the difference in execution efficiency and 

preprocessing efficiency brought about by the different simulation con-

trol methods. Fig. 3.14 shows the system configuration. From a circuit 

description, the gate evaluation scheduling is determined and gates are 

divided into groups. Gates are renumbered so that the gates of each
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group have contiguous numbers. 

  Tables generated by the translator contain two kinds of information. 

One is to give the connections and it corresponds to the vector  XI men-

tioned in Section 4.4.1. The other table, called a group table, describes 

the function, number of gates, the index to the XI table and the index 

to the V table. Since entries of group table are ordered according to the 

gate evaluation scheduling, simulation proceeds by interpreting the group 

table from top to bottom. Gate evaluations are performed by executing 

a routine corresponding to the function of the group. 

  The average vector length, which is equal to the average group size, 

depends on the circuit size and circuit structure as discussed in Section 

4.4.1. Fig. 3.15 shows the relation between vector length and execution 

speed of the simulator. From the figure we can see that the simulation 

speed saturates at a larger vector length than in the combinational circuit
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Table 3.8 Summary of the speed performance. 

     (the sequential circuit simulator)

Computer

Execution Speed
 [ X 106 gate / sec] Vector

c~ alar

Scalar Vector

VP-100 902

VP-200 92 1390 15.1

S-810 97 1386 14.3

simulator. This is because the overhead for table look-ups is dominant 

when the vector length is small. Table 3.8 summarizes the maximum 

performance of the simulator. By the vector execution, both the VP-200 

and the S-810 yield the simulation speed of 1.4 x  109 gate-evaluations 

per second, which is over ten times faster than by the scalar execution. 

Compared with the combinational circuit simulator, it is several times 

slower because the sequential circuit simulator executes input fetches 

for the gate evaluation by indirectly addressed vector access, while the 

combinational circuit simulator does this by contiguous vector access . 

  In the case of the practical circuit referred to in Table 3.7, simulation 

speed of 122.6 x 106 gate-evaluation per second is observed on the VP-

200 (average vector length is 31.9, see Table 3.7). This result is slower 

than that shown in Table 3.8. But the efficiency in gate evaluation turns 

to be higher if we consider that about 1.8 times as many operations are 

necessary for evaluating a gate, on an average, through the use of gates 

with three inputs and negative gates. This is because of the similar effects 

of the load/store optimization technique mentioned in Section 4.3.5. 

  The storage space is used for storing the group table , the connection 

information vector XI and the state vector V . Let the total number 

of input lines be i and the number of signal lines 1. Then the size of
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the  XI and V are 4i bytes and 4l bytes, respectively. As for the group 

table, 20 bytes are required for a group but it will be negligible when 

the vector length is large enough. It follows that in the case of 2-input 

gates the maximum capacity is more than 20M gates using the storage 

of 256M bytes. This capacity is larger than that of the combinational 

circuit simulator because we do not need to store many patterns for a 

signal line.

3.4.4 Code-Generation Method vs. Table-Driven Method 

As for the simulation control method, we adopted the code-generation 

method for the combinational circuit simulator and the table-driven method 

for the sequential circuit simulator, and we examined the difference in 

execution efficiency and preprocessing efficiency. The code-generation 

method has the following advantage over the table-driven method in ex-

ecution efficiency. 

M1) In the code generation step, we can apply the load/store optimiza-
    tion technique mentioned in Section 4.3.5. 

M2) There is no overhead for interpreting the table (Compare Fig. 3.7 

   with Fig. 3.15). 

  On the other hand, the code generation method has some disadvan-

tages in the preprocessing efficiency: 

Dl) It takes a lot of computation time to generate FORTRAN programs 

    because of the needs to process character strings. 

D2) It also takes a lot of computation time to compile FORTRAN pro-

   grams because the FORTRAN77/VP compiler and FORTRAN77 
    HAP compiler perform vectorization and other special optimiza-

     tions.
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  In the simulation of small scale circuits, the effect of  D1) and D2) are 

negligible, but the preprocessing overhead will increase significantly in 

accordance with the increase in circuit size. Moreover, the overhead for 

interpreting the table will be negligible when a long enough vector length 

is available. We think that the table driven method is better for large 

scale simulation. 

  The above discussion is based on the situation where FORTRAN is the 

only available language for the programming on our vector processors. 

If we can program in assembler or machine code, the code-generation 

method will be more advantageous.

3.4.5 Modeling of Circuits 

Although we have discussed only the simple sequential circuit model 

shown in Fig. 3.10, our simulation techniques can also treat more compli-

cated ones, such as clock distribution logic and registers with reset/preset. 

This is done by adding proper logic to a buffer representing a register. 

The buffers, which we have used to represent registers, can also be re-

garded as unit delays. By adding buffers to every logic gate, unit delay 
simulation is also possible; thus we can handle asynchronous circuits. In 

this case we can easily obtain very large vector length because the depth 

of the combinational circuit part is always just 1. With these capabilities 

this simulation technique is considered to be flexible and can be put to 

practical use.

3.5 Vectorization of Event-Driven Simulation 

3.5.1 Vectorization of Event Processing 

In Section 4.4.3 and 4.4.4, we have discussed the simulation techniques 

based on the compiler-driven method. We now consider the vectorization
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of logic simulation based on the event-driven method. The basic algo-

rithm that we adopted is the conventional event-driven method with the 

time mapping technique  [Bre76]. An event is defined as a change of the 

output state of a gate (for simplicity, we assume that a gate has a single 

output). Events whose occurrence is definite are maintained using the 

data structure called a time wheel. It consists of linear lists chained to 

a circular list of headers each of which is associated with a time period. 

Simulation is performed by advancing the time by a certain unit and 

carrying out the following steps at each time period. Here, the time that 

we are concerned with is referred to as current time. 

El) Event fetch: Get current events, the events scheduled to occur at 

    the current time, out of the time wheel. 

E2) Event propagation: Retrieve gates affected by the current events. 

E3) Gate evaluation: Compute new output states of the gates obtained 
   in E2). 

E4) Event registration: If there are changes in the output states, register 

    this information into the time wheel as new events. 

  As a method to avoid the duplication in evaluation and registration 

for multiple input changes at a gate, the one-pass strategy and the two-

pass strategy are known [U1r69]. Although the one-pass strategy is, in 
general, slightly more efficient in the gate-level simulation, we adopted 

two-pass strategy because of restrictions of vector processing. 

  The procedures for the above four steps are vectorized by processing 

all the events together which are scheduled in the same time period. 

No serious modifications are made to the algorithm itself, but the data 

structures and the operations on events are redesigned to be suitable for 

vector processing.
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Fig. 3.16 An array structured time wheel.

3.5.2 Event Fetch

Since the original structure of a time wheel does not have good affinity for 

vector processing, we do not chain events one by one but collect certain 

numbers of events together (128 events in our current system) and treat 
them as a list of arrays (see Fig. 3.16). We call this data structure an 

array structured time wheel. In this step, events are first fetched from the 

time wheel and a current event vector is produced so as to vectorize the 

subsequent event processing (see Fig. 3.17). This operation is a simple 

duplication of arrays of events owing to the adoption of array structured 

time wheel, and is easily vectorized. The information of an event consists 

of a gate index, a new state and a validity flag. A validity flag indicates 
whether the event are canceled or not (in the sophisticated delay mode 

simulation) and we must exclude the events with `canceled' flags from 

the event processing. We make this exclusion in the event propagation 

step for reasons of efficiency, and here simply copy the events. 

  Next, external events, the events for the primary inputs or the events 

to change the state of the gate from outside, are given by an external
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event vector shown in Fig. 3.18. These events are taken out and are 

appended to a current event vector at the point where the simulation 

proceeds to the specified time. In the case where there is an event with 

the same gate index as fetched from the time wheel, we cancel the one 

from a time wheel. 

  We next update the output states of gates according to the information 

in the current event vector. This is done by storing new output states for 

the gates in the current event vector. This is vectorized straightforwardly 

using indirectly addressed vector access. At the same time, we must 

record the events, as a result of simulation, for the gates that are specified 

to be traced. This is carried out by the following operations: 

 1) Test whether the gates, on which current events are occurring, are 

   specified to be traced. 

 2) Test whether the output states of the gates change. This is necessary 

    because there are some cases where the states are not changed by 

    events on account of the cancellation of events, 

 3) Gather events which satisfy 1) and 2).
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  Operations 1) and 2) are processed by table look-ups and are vectoriz-

able using indirectly addressed vector access. Operation 3) is vectorized 

by vector compress function.

3.5.3 Event Propagation 

We call a gate an active gate if it is affected by current events. In the 

event propagation step, we make an active gate vector from the current 

event vector. As shown in Fig. 3.19, an element of the active gate vector 

consists of indexes of a gate and input position, which are affected by 

a current event, and a new state. First of all, the events whose flag 

indicates `canceled' are dropped (by vector compress operation). Next 
fan-out destinations are retrieved for all the gates in the current event 

vector to get gate indexes for the active gate vector. If an output line 

of a gate has large number of fan-out destinations (for example, a gate 

to supply output to a clock line or a reset line), enough vector length 

is available in searching the fan-out table. But since most signal lines 

have a few fan-out destinations, maybe 1 to 4, the average vector length 

will be very short if we search the table in the fan-out direction for each 

line. We propose to search the table not in the fan-out direction but in 

the gate index direction. First, we get gate indexes (and input position) 

of the first fan-out destinations of all the current events. Next we get 

gate indexes of the second fan-out destinations of current events which 

have not less than two fan-out destination. Then the third, the fourth 

and etc. Finally we have a new active gate vector. The operation to 

gather current events, whose gates have i or more fan-out destinations,
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            Fig. 3.20 Search of fan-out destinations. 

are vectorizable using the vector compress function. 

  There remains, however, the problem that the vector length will de-

crease as we come to a large fan-out number. We have the following ideas 

as countermeasure for this problem:

1) As shown in Fig. 3.20, search the table in the fan-out direction for 

  lines with large fan-out number and in the gate index direction for 

  lines with small fan-out number.

2) If there are gates with many fan-out destinations, divide them into 

  the lots with the adequate size. 

3) Combine 1) and 2). Namely search table in the fan-out direction for 

  gates with many fan-out destinations and divide fan-out destinations 

  for gates with the medium number of fan-out destinations.

  In the current system only 1) is adopted. It is remained for future 

research to examine which strategy is effective and at what vector length 

the way of searching should be changed.
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3.5.4 Gate Evaluation

In this step we perform gate evaluation using the information of an active 

gate vector and make a new event vector shown in Fig. 3.21, whose 

element consists of a index of gate, a new state and a propagation delay. 

  Among gate evaluation techniques devised for efficient logic simula-

tion, we consider zoom table look-up [U1r80b] is one of the most suitable 
techniques for vector processing, because the output states of gates are 

computed by uniform table look-up operations regardless of the func-
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tions or the fan-in numbers of the gates. (In this case the bit vector 
coding technique discussed in 3.3 is not so effective because parallel sim-

ulation technique is inherently impossible in the event-driven simulation.) 

Fig. 3.22 illustrates an example of the data structure for gate evaluation. 

The information necessary for gate evaluation, such as input states and 

the types of gates, is described in a zoom record vector. Two bits are 

used to express an input or output state so as to handle four-valued logic. 

In this case, the maximum inputs for a gate, which is restricted by the 

size of the zoom table, is 4. The previous output states are recorded in 

a zoom record vector as well as (the current) input states in order to get 

the delay values and presence of output state changes (in case of rise/fall 
delay model) together with new output states. Using a zoom record vec-

tor as an index vector, a zoom table is looked up by indirectly addressed 

vector access. The information of presence of an output state change, a 

new output state and a delay value are stuffed into a word to reduce the 

size of the table and the number of table look-ups. They are separated 

using vector logical operations and vector shift operations.

  Prior to the zoom table look-up, we must update input states in the 

zoom record vector from the information of the active gate vector. (This 

operation is also vectorized by logical and shift operations). Here, the 

handling of multiple changes on gate inputs is somewhat troublesome. As 

shown in Fig. 3.23, if the both inputs of the gate 7 change, the element of 

a zoom record vector concerning with gate 7 must be updated from the 

information of two elements of an active gate vector. In the case of scalar 

processing no problem occurs because a state of the first and the second 

input states are updated separately. But in the case of vector processing, 

(which means that if we vectorize this procedure by compulsion), the re-
sult on the zoom record of gate 7 can be erroneous because of the conflict 

of the store operations. Moreover, the check and the cancellation of such 

duplicated events are very difficult. In order to avoid these problems, we



68 3. Fast  Logic Simulation  Using Vector Supercomputers

Active Gate Vector

,
,

 :::=]

7  I7 2

Gate
In-State

1

Mutual Updating ,1
•

 7

I----------------------------------------------------------------I  II I I I i  ___L]
                              Zoom Record Vector 

Fig. 3.23 A write conflict for simultaneous input changes.

update the zoom records for each input position. Namely, zoom records 

are first updated only with the information of active gates whose input 

position is 1. Subsequently the same operations are carried out for input 

position 2, 3 and 4. By this dividing strategy, we can avoid the conflict 

and vectorize the procedure. In addition, we can exclude the duplica-

tion of events by checking whether there has been updating for the same 

gates, at every updating associated with input position 2, 3 and 4. One 

demerit of this strategy is that vector length becomes shorter than that 

of an active even vector.

3.5.5 Event Registration 

In the event registration step we register events, whose occurrences are 

newly known in current time, into a time wheel mentioned in 5 .2. Gate 

indexes and new states in the new event vector are written into a list 

of arrays corresponding to the occurrence time. If the positions for new 

events to be inserted are determined, they can be written into by in-
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Fig. 3.24 Counting of the same delay values.

directly addressed vector access. The operation required to determine 

the position is, in essence, to number the elements of a new event vec-

tor for each delay value (see Fig. 3.24). Unfortunately, this operation is 

unvectorizable in the current architecture of our vector processors and 

is carried out by scalar execution. But in the case of zero-delay and 

unit-delay simulation, it can be vectorized in quite a simple manner. 

  When we use the sophisticated delay models such as rise/fall delay, 

inertia delay and minimum/maximum delay, the operation of event can-

cellation is necessary. This operation is to cancel all the events associated 

with a certain gate which are already registered and maintained in the 

time wheel. Let  dr and c/1  be the rise-delay and fall-delay, respectively, 

of a gate. Assume c/1  < dr for example. Let el be an input event which 

occurs at time t1 and causes a signal rise on the output, and let e2 be an 

input event which occurs at time t2 (t1 < t2) and causes a signal fall on 

the output. Then event of the signal rise scheduled at time t1 + dr must 

be canceled at time t2 if

t2 + df <t1+dr.
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Table 3.9 Summary of the speed performance. 

(the event-driven simulator)

Delay
Model

Scalar Coding Vector Coding

Scalar
Exec. (A)

Vector
Exec. (B)

Scalar
Exec. (C)

Vector
Exec. (D)

Zero
106

89
83
92

44
34

277
335

Unit
87
77

85
90

38
29

 296 ,
342

Rise/Fall 65
61

75
78

36
28

206
229

 

[  X 103 event/sec] 
                                         Upper: VP-200 
                                         Lower: S-810/20 

Recording the occurrence time of the previous events for every gate and 

checking the condition denoted as the above expression, we can easily 

judge whether to cancel the previous event or not. We can also cancel 
the events by chaining all the events associated with a gate and write 
`canceled' into the flag of the events . These operations are vectorizable 

using indirectly addressed vector access, vector add and vector compare 

operation.

3.5.6 Implementation and Performance Evaluation 

Based on the above consideration, we implemented a gate-level (four-

inputs and a single output gates) four-valued simulator with three delay 

modes (zero-delay, unit-delay and assignable rise/fall delay) . In order 
to evaluate the effect of the vector coding , we also prepared a simula-

tor of conventional scalar coding. Table 3.9 shows the simulation speed 

obtained by experiments. The circuit simulated is a 16-bit multiplier 

(combinational circuit) of 1700 gates. The average length of current event 
vectors was 108, 221 and 206 for zero-delay, unit-delay and rise/fall delay 

simulation respectively. (A) and (C) in the table indicate the execution
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speed of the scalar execution, and (B) and (D) of the vector execution. 

Maximum performance (by the vector execution of our vector coding) of 

rise/fall delay simulation is about 230 x  103 event per second, or 440 x 103 

active gate evaluation per second on the HITAC S-810/20. This is slower 
than that in zero-delay or unit-delay simulation mode because the proce-

dures for event registration are not vectorized. In the case of our vector 

coding, simulation speed is accelerated by 8 to 11 times by vector execu-

tion (compare (C) with (D)), while very little improvements are observed 

in the case of conventional scalar coding (compare (A) with (B)). But 
the overhead for the vectorization is large (compare (A) with (C)), total 

performance improvements are no more than 4 times (compare (D) with 

(A)).

3.5.7 Compiler-Driven Method vs. Event-Driven Method 

As stated in Chapter 2, the event-driven method has the merits over the 

compiler-driven method that the gate evaluation count is fewer because 

only active gates are evaluated. Owing to this merit, event-driven method 

has a possibility to be advantageous also in the case of zero-delay or unit-

delay simulation mode. But our experiments tell us: 

 1) The overhead of event scheduling and event propagation is compar-

   atively large and the procedures are not easy to be vectorized. 

 2) On the other hand, the gate evaluation procedures in the compiler-
   driven simulation have very good affinity for the vector processing. 

  Since our event-driven simulator is primarily designed for assignable 

delay simulation, it employs only time mapping technique. If we tune it 

up for zero-delay simulation and combines level mapping technique, the 

performance may be improved. But the compiler-driven method is still 

considered to be advantageous in the zero-delay or unit-delay simulation, 

so long as the ratio of event occurrences is not so low.
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3.6 Remarks and Discussions

High-speed logic simulation techniques suitable for vector processors have 

been proposed. They are vector parallel simulation technique, gate group-

ing technique and vectorized event processing technique. As well as the 

algorithms for simulation, the algorithms for preprocessing are also very 

important for efficient simulation. In order to reduce the storage require-

ments or to extend the vector length , we have proposed some heuristic 

algorithms based on the data flow sorting. We have achieved very high 

performance through vectorization especially in the compiler-driven sim-

ulation of combinational and sequential circuits . The performance of our 

simulators is comparable to that of hardware simulation engines such 

as YSE [Den83]. As for the event-driven simulation it was difficult to 

achieve as much acceleration ratio as the compiler-driven simulation
, the 

final performance of the simulators are significantly high . The reason for 

that is that the event-driven simulation algorithms is originally not suit -

able for vector processing. As shown in the experimental results
, simple 

vector coding [Kro81] results in almost no acceleration . There are opera-
tions which are essentially unvectorizable or which are vectorizable onl

y 
at the cost of large increase in computation cost . Addition of new vector 

instruction for logic simulation, which is employed in VELVET [Nag86], 
may be a good solution for this problem . 

  Presently, logic simulators on general purpose scalar compute
rs are 

still prevalent. In the gate-level simulation
, it seems to be difficult to 

achieve significant acceleration in simulation speed through th
e improve-

ments of the algorithms . Considering the increase in the size of the circuit 

(and the size of test patterns) to be simulated, soon it will be indispens -
able to enlist the aids of hardware simulation engine or parallel 

or vector 
computers. In view of the CAD/DA system configuration

, logic simu-
lators on a vector processor will be more attractive by the re

adiness of
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interconnecting with other CAD/DA tools and the economical efficiency 

brought about when we share the vector processor with other tools such 

as a device simulator.
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Chapter 4

Fast Fault Simulation Using Vector 

Super Computers

4.1 Introduction

Fault simulation is to simulate the behavior of a logic circuit which has 

a fault in it. While logic simulation is used for logic design verification, 

fault simulation is used for analysis of the behavior of faulty circuits, test 

set generation or quality evaluation of test sets for logic circuits. Fault 

simulation requires much more computation cost than logic simulation, 

because simulation must be carried out for each of the faults derived from 

a certain fault model. For example, the computation cost of fault simula-

tion for a given test vector under single stuck-at fault model, which is the 

most commonly used one, is 0(n2), where n is the number of the gates 

constructing the circuit  [Har87]  . In the practical field of testing, there is 

a growing interest in extensive use of random patterns and in a built-in 

self test approach [Wai89] which cover faults that can not be modeled 

by the single stuck-at fault model and exempt us from the high compu-

tation cost for algorithmic test generation [Fuj85]. This leads, in turn, 
to very high computation costs for fault simulation to evaluate the qual-

ity of the random patterns. Various research projects have been carried 

out in order to accelerate fault simulation by improving the algorithms 

                            75
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[Arm72,  Ulr80a, Wai85, Nis85, Ant87, and etc.], or to develop alterna-
tive techniques to fault simulation [Abr83, Jai84, Brg85, and etc.]. There 

have been also researches to develop special purpose hardware which ac-

celerates fault simulation [Cha86] including whole the test generation 

process [Hir88], or to develop test generation system on parallel comput-
ers [Mot86]. In this chapter, we propose a new technique to accelerate 

fault simulation using vector supercomputers [Ish90i]. 

  We discuss the zero-delay two-valued fault simulation of gate-level 

combinational circuits. Parallel, deductive, and concurrent fault simula-

tion are known as the typical methods of fault simulation [Fuj85]. Al-
though many of the recent fault simulators employ the concurrent simula-

tion technique which is an extension of the event-driven logic simulation 

technique to fault simulation, we considered it advantageous to base our 

vector algorithm on the parallel simulation technique because of its suit-

ability for vector processing. We propose a dynamic two-dimensional 

parallel fault simulation technique as a vector processor oriented fault 
simulation technique. 

  Parallel simulation utilizes bit-oriented logic operations to perform a 

lot of gate evaluations simultaneously . We can classify parallel simulation 

into fault-parallel simulation and pattern-parallel simulation according to 

the parallelism factors. In each method , by simply extending the unit of 

gate evaluation from a word to a vector consisting of multiple words , as 
is in the case of logic simulation , we can execute fault simulation very 
much efficiently using vector instructions when the vector length obtained 

is large enough. However we cannot obtain enough vector length or the 

computation cost increases if we attempt to get enough vector length
, 

because fault dropping is performed when we use fault simulation for 

test quality evaluation in practice . 

  In order to meet this problem , we combine a two-dimensional parallel 
fault simulation technique and a technique of dynamic adjustment of the
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parallelism factors. In our method, 

 1) we obtain large vector length by utilizing both fault and pattern 

   parallelism, and 

 2) efficiently achieve fault dropping by adjusting the two parallelism 
   factors complementarily form pass to pass. 

We further reduce the computation time by combining this technique 

with selective tracing under the notion of multiple fault propagation. We 

implemented a fault simulator based on our new technique on the Fujitsu 

FACOM VP-200 vector processor and made some experiments. The sim-

ulation speed is accelerated by  10-15 times through vectorization. It is 

particularly efficient in simulating large circuits with many patterns. 

  After we show the notion of the dynamic two-dimensional parallel 

simulation technique in section 4.2, we describe implementation methods 

of selective tracing under the notion of the multiple fault propagation in 

section 4.3. In section 4.4, we examine the performance of our simulator 

under the experimental results. The last section concludes this chapter 

with some comments.

4.2 Dynamic Two-Dimensional Parallel Simulation 

    Technique 

4.2.1 Fault Simulation 

A fault simulator computes an output pattern of a logic circuit for each 

given input pattern under each given fault occurrence. We will use a 
word pattern instead of vector in order to avoid confusion between a test 

vector and an operand vector for a vector processor. Fault simulators are 

used for 

 1) distinguishing faults as detectable (or undetectable) by given input 

patterns,
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 2) computing the percentage of fault coverage of given input patterns, 

 3) generating a test set by selecting effective patterns from given input 

    patterns, and 

 4) generating a fault dictionary, etc. 

In this paper, we focus on gate-level combinational circuits and zero-

delay two-valued simulation, and assume a single stuck-at fault model 

 [Bre76]. We are interested in using fault simulation to perform 1)s.3) for 

given enormous patterns such as random patterns. If we only intend to 
determine if a fault is detected or not by given patterns , we can delete 
faults from the undetected fault list as soon as they are detected by some 

patterns, and we can dispense with simulation for other patterns. This 
technique which drastically reduces the computation cost is called fault 

dropping. 

  As for fault simulation techniques , parallel, deductive and concurrent 
fault simulation are well known [Bre76, Arm72, Ulr80a] . Among them, 
we considered it advantageous to base our technique on the parallel sim -

ulation technique for the following reasons: 

 1) Parallel simulators have been proved to be as efficient as concurrent 

   simulators by the modifications such as the parallel-pattern single 

   fault propagation (PPSFP) [Wai85]. We considered that there is 
   much more room for further improvement in the computation effi -

   ciency of parallel simulation. 

 2) Simplicity in the data structure and the operations of a parallel 

   simulator is considered to have good affinity for vector processing
. 
   Also in logic simulation , it is shown that the acceleration ratio from 

   vectorization in the event-driven technique is larger than that in the 

   compiler-driven techniques [Ish87].
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one  word=b bits

I I
w words = v bits= wx b bits

fault 1---b fault b+ 1---2b fault v— b--v

(a) Extended fault-parallel simulation

pattern 1—b pattern b + 1-2b pattern v—b--v

               (b) Extended pattern-parallel simulation 

     Fig. 4.1 Data structure for extended parallel simulation. 

As a vector processor oriented fault simulation technique, we propose 

a dynamic two-dimensional parallel fault simulation technique, which is 

based on parallel simulation technique.

4.2.2 Two-Dimensional Parallel Simulation 

Parallel simulation attempts to reduce the computation time by utilizing 

bit-oriented logical operations of the computer, and if one word of the 

computer consists of w bits, w gate evaluations can be performed at a 

time. Parallel simulation is classified into fault-parallel simulation and 

pattern-parallel simulation. The former simulates w fault cases for one 

pattern at a time by assigning each fault case to one bit. The latter, on 
the other hand, simulates w patterns for one fault at a time assigning 

each pattern case to one bit. 

  In either of the two, we can simulate w x v fault or pattern cases 

simultaneously by simply extending the simulation unit from a word to 

a vector consisting of v words. This simulation technique is referred to 

as the extended fault-parallel simulation or the extended pattern-parallel 

simulation. Fig. 4.1 shows the data structure for extended parallel simula-
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   Fig. 4.2 Acceleration ratio in the extended parallel simulation. 

tion. Vectorization of the simulation procedure brings about considerable 

improvement in simulation speed even on a scalar processor [Kro81]. On 
a vector processor, into the bargain, we can achieve much larger acceler-

ation through the use of vector instructions. Fig. 4.2 shows the relation 

between vector length and acceleration ratio through vectorization on the 

Fujitsu FACOM VP-200 in extended pattern-parallel simulation. Simu-

lation speed is accelerated by over 20 times provided that a large vector 

length (more than 700 words) is obtained. 

  Let w be the number of bits in a word, and f and p, respectively 

referred to as the fault-parallelism factor and the pattern-parallelism fac-

tor, be the number of faults and patterns simulated at a time. Since the 
vector length in extended pattern-parallel simulation is Iplwl (where (xl 
is the smallest integer not smaller than x), we can change it arbitrary by 
changing p. However, we must store p fault-free values for all internal 

lines and the value p is limited by the storage size if we perform selec-

tive tracing which will be described in the next section, . In extended 

fault-parallel simulation, on the other hand, the vector length [ f /w] is 

restricted by the number of undetected faults. (We assume that the states 
for the good machine is stored separately.) The number of undetected 

faults decreases as simulation proceeds, which shorten the vector length.



4.2 Dynamic Two-Dimensional Parallel Simulation Technique 81

 fault  1 fault 2fault f 

`pattern 1—p ( pattern 1—p I      `pattern 1—p I 

  Fig. 4.3 Data Structure for two-dimensional parallel simulation. 

Since the desirable vector length is considerably large, neither extended 

fault- nor pattern-parallel simulation may not be capable of achieving 

large acceleration. In such a case, we further enlarge the vector length 

by utilizing both fault- and pattern-parallelism. Namely, we simulate 

multiple faults for multiple patterns at a time. We call this technique 

two-dimensional parallel simulation. In this technique, the vector length 

is (f x p/wl , which is much larger than that in simple extended parallel 

simulation. Fig. 4.3 shows the data structure of two-dimensional parallel 

simulation. We refer [p/wi words of p patterns as a packet. A signal 
value vector of each line contains f packets corresponding to f faults.

4.2.3 Dynamic Adjustment of the Parallelism Factors 

Though fault simulation can be accelerated 20 times faster by extended 

or two-dimensional parallel simulation, these are the results in the case 

where a large vector length is obtained. In applying fault simulation 

to test generation and coverage estimation in practice, we must con-
sider fault dropping. Fault dropping drastically reduces the computation 

time, but it limits the fault-parallelism factor f and pattern-parallelism 

factor p (i.e. the vector length) in two-dimensional parallel simulation. 
Fig. 4.4 shows the relation between the number of undetected faults and 

the number of simulated patterns. The area of each box represents the 

vector length, or the computation cost in each pass (where a pass is a 

process of performing good simulation on p patterns and fault simula-

tion for f faults on the p patterns). As is shown in Fig. 4.4 (a), a lot 

of undetected faults exist in the early passes, and large vector length is
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obtainable. However because the number of undetected faults decreases 

as simulation proceeds, the fault-parallelism factor f becomes extremely 

small in the later passes, and enough vector length may not be obtained. 

However, if we attempt to simulate with a large pattern-parallelism fac-

tor p in order to get a large vector length in the later passes, as shown in 

Fig. 4.4 (b), we are obliged to perform wasteful simulation in the early 

passes for the faults which might have been dropped if simulated with a 
smaller p. 

  Therefore, it is very hard to reduce the computation time by sim-

ple two-dimensional parallel simulation when we take account of fault 
dropping, because enough vector length cannot be obtained, or the com-

putation cost increases if we intend to get a large vector length. As a 
solution for these problems, we propose a dynamic adjustment of the two 

parallelism factors f and p instead of  fixing their values. We change the 
two parallelism factors complementarily from pass to pass according to 

the following strategies (as shown in Fig. 4.4 (c)).

1) We set the pattern-parallelism factor small and the fault-parallelism 

  factor large in the early passes. This is possible because there are 

  many undetected faults in the early passes.

2) We set the pattern-parallelism factor large and the fault-parallelism 

  factor small in the later passes.

We call this technique the dynamic two-dimensional parallel fault simula-

tion technique. In this technique, we can efficiently handle fault dropping 

and yet keep large vector length.
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                Fig. 4.5 Simulation procedure. 

4.3 Multiple Fault Propagation 

4.3.1 Selective Tracing 

Selective tracing is a well-known technique to reduce the computation 

time of logic and fault simulation  [Bre76]  . There are several ways of 
combining parallel fault simulation with selective tracing. Among them 

we choose the following strategy which is similar to PPSFP [Wai85]. 

 1) Simulate the fault-free circuit (good simulation) and store the values 

   of all the signal lines. 

 2) Compute the effect of the faults by propagating the faulty values 
   from the fault sources to primary outputs. Since the fault-free values 

   of all the lines have been computed at step 1, we can avoid the waste 

   of simulating the gates whose faulty input values are the same as the 

    fault-free ones. 

  In PPSFP, faults are processed one by one at step 2 (single fault 

propagation) by pattern-parallel simulation. In our approach, we pro-
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cess multiple faults at a time (multiple faults doesn't mean simultaneous 

multiple faults but multiple single faults). We call this method multiple 

fault propagation by the analogy of single fault propagation. The details 
of the simulation procedure are shown in Fig. 4.5. At step 5, we perform 

good simulation for p patterns by the extended pattern-parallel simula-
tion technique, and store the values of all the signal lines. At step 7, the 

effect of the f faults selected at step 6 for the p patterns are propagated 
by the dynamic two-dimensional parallel fault simulation technique.

4.3.2 Implementation of Selective Tracing 

Our selective tracing consists of the following two concepts: 

LIM: limit the gates for fault simulation to the gates in the fault effect 

    cones, and 

 DISC: discontinue fault propagation when the effect of faults disappear. 

A fault effect cone of a fault is defined as a set of gates on the paths 

from the faulty line to primary outputs. It is determined by connectivity 

information only. The shaded region in Fig. 4.6 (a) shows the union of 
the fault effect cones of some faults. All we have to simulate are only 

the gates in this region. On the other hand, DISC attempts to reduce 

the computation cost using the dynamic information of faulty values. 

The disappearance of the effect of faults can not be found before the 

simulation. In Fig. 4.6 (b), since faults do not effect on a set of gates in 

the region A, we avoid wasteful simulation on them.

Implementation of LIM 

LIM is easily realized by adopting the event-driven simulation with level 

mapping technique (we assume the gates in the circuit are levelized in 

the preprocessing stage). We prepare a evaluation gate list for each level
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(a) LIM.

Fig.

 (b) DISC. 

4.6 Selective tracing.
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of the circuit, which is initially empty. Fault propagation is performed 

by the following procedure. 

 1) Register the gates that have faults on their input or output lines to 

   a evaluation gate list of the corresponding level. 

 2) Repeat  3)N5) until all the evaluation gate lists become empty. 

 3) Take a gate g out of a evaluation gate list in the ascending order of 

    the level number. 

 4) Evaluate the faulty value of g. 

 5) Register the successor gates of g to evaluation gate lists of their 

   corresponding levels. If the successor gate is a primary output, we 

    don't register it. 

  In the multiple fault propagation, we have to take care of the overlap of 

fault effect cones (the shaded region of Fig. 4.6 (a)). When all fault effect 

cones of all faults are equivalent, the gate evaluation count is equal to that 

in the single fault propagation. However we are forced to evaluate more 

gates wastefully when the intersection of all cones is small. Therefore, 
it is desirable to select f faults whose effect cones overlap each other 

at step 6 in Fig. 4.5. In order to avoid overhead during simulation, we 

simply take f faults successively out of the undetected fault list. Instead, 

we place the neighboring faults close in the undetected fault list at the 

preprocessing stage. It is considered to be effective to group faults in 
a fanout-free region in this preprocessing stage. However, currently, we 

have not implemented the idea but we simply order faults by traversing 

signal lines in depth first manner starting from primary inputs.

Implementation of DISC 

In the case of single fault propagation, DISC means to discontinue the 

fault propagation when signal values of a particular line in the assumed
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             Fig. 4.7 DISCpATH and DISCFAULT• 

fault case are identical to those in the fault-free case for all patterns. In 

multiple fault propagation, this notion is further divided into the follow-

ing two. 

DISCpATH: We discontinue the fault propagation for a path when signal 

   values of a particular line for all the fault cases are identical to those 

   for the fault-free case for all patterns. This discontinuance is called 

   the discontinuance of propagation for a path. 

DISCFAULT: We discontinue the fault propagation for a fault when signal 

   values of all propagation paths for a particular fault case are identical 

   to those for the fault-free case for all patterns. This discontinuance 

   is called the discontinuance of propagation for a fault. 

Fig. 4.7 shows an example. Fault-free values are enclosed in doubly lined 

boxes and faulty values in single lined boxes. Each box represents a 

packet. The values in the first box of faulty values are the faulty values 

caused by a fault f1, the second f2, and the third f3 . At line A, since all 

faulty packets are the same as the correct packet, we do not have to sim-

ulate the successors of line A. This type of discontinuance is DISCpATH .
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Fig. 4.8 Realization of DISCFAULT.

On the other hand, since the effects of fault f2 disappear at both line A 

and B, if f2 does not affect the other lines, we can conclude that all the 

effects of f2disappear. Therefore, we do not have to propagate the effect 

of f2 any more. This type of discontinuance is DISCFAULT. 

DISCPATH can be easily realized by avoiding the registration of the suc-

cessor gates to the evaluation gate list when the gate output values for all 

fault cases are identical to those in the fault-free case. Implementation 

of DISCFAULT is somewhat complicated. In order to find the disappear-

ance of all the effects of a fault on all its propagation paths, we store the 

largest level number on which the fault affects, and compare the number 

and the current level number. If the number is less than the current level 

number, we can find the disappearance of the fault effects. When the 

all effects of a fault disappeared, we eliminate the packet which corre-

spond to the fault from all signal vectors. This elimination is performed 

as shown in Fig. 4.8. In Fig. 4.8, shaded packets still have the effects 

of faults and the information is shown by flag. We can vectorize the 

elimination by vector compress operation and can perform it extremely 

fast. However assume that 100 faults are simulated currently, and the
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            Fig. 4.9 Complimentary Vectorization. 

effects of only one of them have disappeared. Then we are obliged to 

make copies of 99 packets for each signal vector. Since this manipulation 

can be an overhead, we eliminate the packets only when the effects of 

over 30% of the faults under simulation have disappeared. 

Complementary Vectorization 

In order to realize DISCPATH and DISCFAULT, we have to compare the 

fault-free signal values with the faulty signal values at each signal line 

and have to set the flag in Fig. 4.8 if they are different. The process of 

the comparison can be vectorized in the following two ways according to 

vectorization parameters.

 T.....

+ +
0011-•- 11000••• I1011••• 11111••• 11011-•• 11001--•
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pattern-oriented vectorization: We compare the packet of fault-free 
   values with each of the f packets of faulty values, one faulty packet 

   at a time, as shown in Fig. 4.9 (a). The comparison is a vector 

   operation with vector length [pl w] and is repeated f times. Since 

   the vector length depends on the number of patterns p, this method 

   is called pattern-oriented vectorization. 

fault-oriented vectorization: We compare each of the [p/w] words in 
   the packet of fault-free values with the f corresponding words from 

   all the faulty packets, one word at a time, as shown in Fig. 4.9 

   (b). The comparison is a vector operation with vector length f 
   and is repeated [pl w] times. Since the vector length depends on the 

    number of faults f , this method is called fault-oriented vectorization. 

Since the maximum vector length [ f x pl w] is limited by the available 
storage, if f is large, p should be small, and vice versa. Therefore, the 

two methods described above have a complementary relation, that is, if 

one is effective, the other is not. We choose the more effective of the two 
methods according to the values of f and p at that time. 

  Also in the elimination of packets in DISCFAULT,similar two comple- 

mentary methods can be considered, and we choose the more effective 
one according to f and p.

4.3.3 Determination of Parallelism Factors 

It is a very important process in the dynamic two-dimensional parallel 

fault simulation to determine the parallelism factors f and p at each pass 

(step 3 in Fig. 4.5). We must take the following facts into consideration. 

 1) Small p makes the effects of fault dropping large. 

 2) Small p saves the memory area to store p fault-free values of all the 

    signal lines.
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 3) Small p makes the condition of discontinuance of propagation easy 

   to satisfy. 

 4) Large p makes the good simulation efficient since the vector length 

   is p. 

 5) Small f reduces the wasteful simulation when we limit the gates for 

   fault simulation to the gates in the fault effect cones. 

Although it is desirable to determine the optimum f and p taking all 

these conditions into account, it is difficult to measure these conditions 

completely. We, therefore, measure the decreasing ratio d of the number 

of undetected faults at the previous path, and determine p as double, 

same, or a half of Pprev according to d, where pprev is the pattern paral-

lelism factor in the previous pass. Namely, 

   d _the number of undetected faults after the previous pass 
       the number of undetected faults before the previous pass

and

p=

min(2  X  Pprev, b x maxp) if d2 < d 

Pprevif d1 < d < dz 

max(pprev/2, 1)if d < d1

f =wx max fp/p, 

where w is the number of bits in a word, maxp and max f p are constants 

determined by the available storage size. d1 and d2 in the above formulas 
are 

z 
  rPprev    d

1 = preyand d2 = r-, where r = 0.1. 
       r•Pprev2wr • Pprev + w 

These bounds are obtained by minimizing P = C x T , where C is the 

total count of operations for fault simulation at the next pass under the 

assumption that the number of faults will decrease by d times for every 

Pprev patterns, and T is the computation time per operation on the vector 

processor, approximated by
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 T  = a(plw)+10, 

p where a and 13 are constants characterizing the performance of the pipeline. 

  We briefly show the derivation of the d2. If we increase the parallelism 

factor to 2pp7ev, the total count of operations C2, computation time per 

operation T2i and the total computation time P2 at the next pass are 

computed as follows. 

    C2 = 2Pprev • d, 

   7,a(2pprev/w) + Q      2_ 2P
prev 

   P2 = C2 X T2 = d(2apprevl w + 0). 

On the other hand, if we do not change the parallelism factor, the total 

computation time P1 at the next 2 passes becomes as follows. 

   C1 = pprev(d + d2), 

    7,_a(pprevl w) + a  1, 
                   pprev 

Pi = C1 x Ti = d(apprev/w + j3)• 

By solving P2 < P1, we have 

apprev/ w  
< d. 

apprev/ w + a 

By replacing al / 3 by r, we get 
r • pprev  

< d. 
r'Pprev+W 

The bound d1 is derived in the same way. As for the value 1.0 of r, we 

decided it by experiments.

4.4 Implementation and Experiments 

4.4.1 Simulation Speed 

We have implemented a fault simulator based on the dynamic two-dimensional 

parallel simulation technique on the Fujitsu FACOM VP-200 vector pro-



94 4. Fast Fault Simulation Using Vector Supercomputers

Table 4.1 Versions of the selective trancing and execution mode.

Vector Vector+  Vector+  + Scalar+ +

LIM 0 0 0

DISC ^ 0 0

Execution

mode

vector

execution

vector

execution

vector

execution

scalar

execution

cessor in Fortran77 to create some experiments for its performance eval-

uation. We simulated the ten benchmark circuits  [Brg85f] and measured 

the CPU time required for simulating 512K (16K words) random pat-
terns. Almost all of the main loops of our simulator were vectorized. 

Henceforth we refer to this vectorized version as Vector++. In order to 

evaluate the effect of vectorization, we also performed simulation with-

out vector instructions. We call this execution mode scalar execution and 

denote it by Scalar++. Also for the purpose of evaluating the effect of 

selective tracing, we also performed simulation with no selective tracing 

and simulation only with LIM. The former is denoted by Vector, and the 

latter is denoted by Vector+. The versions of selective tracing and the 

execution modes are summarized in Table 4.1. 

  Table 4.2 shows the results. The maximum vector length max f p is a 

parameter which the user gives and was set to 1024 in every mode in our 
experiments. The maximum pattern-parallelism factor maxp is another 

parameter and was set to 256 except for Vector. Since selective tracing 

is not performed in Vector, we can get a larger maxp with the same 

storage size, and maxp was set to 1024. Table 4.2 gives the following 

conclusions. 

 1) The comparison between Scalar and Vector++ tells us the effect of 
    vectorization. From this comparison, we can see that the simulation 

   speed is accelerated by 10 to 15 times through vectorization. We can
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Table 4.2 Results of the simulation on 512K random patterns.

Circuit
Number

of

gates

Number
of

faults

Final
coverage

 1%I

Number of
undetected

faults

Simulation CPU [sec]

Vector Vector+ Vector Scalar++

C432 203 524 99.24 4 .176 .280 .275 2.560

C499 275 758 98.94 8 .461 .791 .571 6.236

C880 469 942 100.0 0 .179* .462 .490 4.651

C1355 619 1574 99.49 8 .930 1.355 .871 10.979

C1908 938 1879 99.52 9 1.930 1.381 1.387 16.026

C2670 1566 2447 91.37 237 57.695 10.318 8.330 99.474

C3540 1741 3428 96.00 137 19.037 15.440 3.935 48.463

C5315 2608 5350 98.89 59 17.864 6.962 3.489 41.818

C6288 2480 7744 99.56 34 15.605 22.388 2.604 38.194

C7552 3827 7550 96.89 235 114.868 19.939 11.518 154.885

*Simulation was stopped as soon as all the faults are detected.

conclude that the performance of the vector processor is thoroughly 

brought out in large scale simulation.

2) The comparison between  Vector and Vector+ tells us the effect of 

  LIM. Also the comparison between Vector+ and Vector++ tells us 

  the effect of DISC. From these comparisons, we can conclude that 

  the two techniques have a complementary effect, i. e. when one has 

  little effect, the other has large effect, and vice versa.

3) The comparison between Vector and Vector++ tells us the effect of 

  selective tracing. Although the speed is slowed down a little in some 

  small circuits, the speed is accelerated about 10 times, in circuits 

  conventionally requiring large computation cost.

  Compared with the result in [Wai85], in which PPSFP is implemented 

on the IBM 3081, our simulator is 7 to 19 times faster. Furthermore, our 

simulator is portable since it is implemented using only the basic facilities 

of recent vector processors. The simulator implemented on the VP-200 is 

executable also on the Hitachi HITAC S-810/20 vector processor without
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modifying the program. The Hitachi HITAC S-810/20 has about the 

same potential performance and our simulator achieved almost the same 

performance as on the VP-200.

4.4.2 Required Storage Size 

The storage requirements are mainly for the vectors containing fault-free 

and faulty values of internal lines. They increase with the vector length 

at step 5 and step 7 in Fig. 4.5. At step 5, p fault-free values of all gates 

must be stored in order to perform selective tracing at step 7. Let n be 

the number of gates in a circuit, then required storage size is n  x maxp 

[word]. Since we simulate f faults on p patterns at step 7, we need a 
vector of  max  f  p [word] per gate. However because we don't have to 

store vectors of all gates at step 7, we can reduce the required storage 
by reusing storages for the vectors. The required storage is M„ x max f p 

[word], where M„ is the maximum number of signal vectors which we 
must store at some time in fault propagation and where M„ is much 

smaller than n. The above experiment required 10 MB for the largest 

circuit C7552.

4.5 Remarks and Discussions 

As a vector processor oriented fault simulation algorithm, we proposed 

a dynamic two-dimensional parallel simulation technique. We succeeded 

in obtaining a large vector length without reducing the computation effi-

ciency by introducing a selective tracing method based on multiple fault 

propagation. Experimental results tell us that fault simulation is accel-

erated by 10,15 times through vectorization and that our simulator is 

extremely fast in simulating large circuits on many patterns . Since the 

critical path tracing for fanout-free region is also vectorizable, we can 

combine our simulation method with the concept in [Ant87] so as to
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further enhance the performance. When we use our fault simulator in 

combination with algorithmic test generation, we can not expect large 

acceleration because the pattern parallelism is limited. However, we can 

make the most of our simulator in test generation using random patterns, 

coverage estimation of a large set of random patterns or a built-in self 

test design, where large pattern parallelism is available. 

  Vector processors seem to have great potential for not only numerical 

computation but also for combinational problems in the area of CAD for 

digital systems. There will be  a  lot of earnest researches to develop vector 

processor oriented algorithms for variety of combinational problems. In 

converse, it is also important to improve architecture of vector processors 

suitable to process combinational problems.
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Chapter 5

Computational Complexity of Logic 

Simulation Problems

5.1 Introduction

Design verification is one of the most laborious processes in hardware 

development. As is discussed in the preceding chapters the computation 

cost due to the size of the circuit under  verification has been and will be 

one of the primary problems in design verification. On the other hand, 

accuracy of the simulation is also an important issue. Especially in design 

verification of asynchronous circuits which operate based on subtle timing 

relations, much more laborious modeling of delay and time and also much 

more computation cost are required than in that of synchronous circuits. 

  In the verification concerned with timing there are close relations 

among models of delay and time, accuracy of verification results and 

required computation cost. In a simple modeling which require smaller 

computation cost, design errors may be overlooked or possibilities of de-

sign errors may be indicated even for correct designs. One example is 

the handling of delay whose actual value is unknown and is specified with 

minimum and maximum values. In logic simulation the min/max delay 
model is employed to handle such uncertainty. The model allows rela-

tively fast verification but it is well known that the verification results 

                            99
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are often too pessimistic [Bre76]. Although there are a lot of attempts to 

overcome this problems, few discussions have been made on what is the 

essence of the difficulty and how difficult or how much computation cost 

is required to solve the problem completely. Another important issue is 

modeling of time. Many of the existing verification systems are based 

on a discrete time model [Cer89, Hir89, Nak87, Kim88]. There are also 

few discussions on the point if the discrete time model provides accurate 

result as compared with a continuous time model or if there is a difference 

in the computation cost for verification between the two models . 

  In this chapter we take hazard detection problems as an example so 

as to discuss the relation among models of delay and time , accuracy of 

verification result and computation cost for the verification [Ish88]. Es-
pecially we focus on delay model in which the actual delay values are 

uncertain and are specified with their minimum and maximum values . 

We also discuss the difference of a discrete time model and a continuous 

time model. We show that the problem of detecting hazards on com -

binational circuits under uncertain delay assumption is computationally 

intractable (NP-hard) and hence that it is difficult to solve the problem 

by a simple extension of the min/max delay simulation technique [Bre76]. 
We also show that there is an essential difference in the verification re -

sults obtained based on the discrete time model and the continuous time 

model. The verification result can be more optimistic in the discrete time 

model than in the continuous time model . However we prove that the 

discrete time model will provides the same accuracy of the continuous 

time model with respect to the hazard detection problem by making the 

time unit small . We clarify to what extent we must make the unit time 

small. We further discuss the computation cost that we have to pay in 

order to make the two models equivalent . 

  In section 5.2 we define models of delay and time and formalize the 

hazard detection problems. In section 5 .3 we discuss computational com-
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plexity of the problem of the uncertain delay and discrete time model. 

We examine the relation between the discrete time model and the contin-

uous time model in section 5.4 and discuss the computational complexity 

of the continuous time model.

5.2 Hazard Detection Problem and Modeling of De-

lay and Time

5.2.1 Hazard Detection Problem

In this chapter we discuss hazard detection problems for combinational 

circuits. In the following discussions, we refer to a combinational circuit 

simply as a circuit. The number of fan-in's and fan-out's in circuit C is 

bounded by a constant which is independent of the number of gates in 

C. Let  ex and vy be input assignments to C. A hazard is an occurrence 

of more than one change of signal values on some of the primary outputs 

of C for the change of input assignment ex —> vy. 

Def 5.1 A Hazard detection problem for a specific input change is defined 

as follows. 

Instance: Circuit C and two input assignments ex and vy. 

Question: Are there possibilities of hazards for a change of input assign-

 ment ex —> vy?U

  In discussing the specific input change, we can assume input without 

loss of generality that a circuit has only one primary. We also assume, 

for simplicity, that a circuit has only one primary output, which does not 

affect the results in this chapter. Thus we denote the set of gates which 

construct circuit C as Gc = {go, gl, • • , gn} where go is the primary input 
1 and g

n is the gate whose output is connected with the primary output. 

1 We treat the primary input as a gate with no inputs and a single output , for simplicity
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5.2.2 Modeling of Delay and Time 

Modeling of Uncertainty of Delay 

In actual logic circuits, delay values of gates vary depending on the dif-

ference of process conditions or usage conditions. In order to express 

this uncertainty we describe the delay value of gi by its minimum and 

maximum values dmini and dmaxi, respectively, where dmini and dmaxi are 

non-negative integers which satisfies dmini < dm" i. We do not allow real 

numbers for the delay bounds because it is impossible to describe them 

within finite length. We define the following three delay models according 

to the constraints on dmini and dm" i. 

Exact delay model : For each gate gi, dmini = dmaxi holds . Namely this 

   is an ideal model where each gate takes the exact delay values as 

    specified. 

Uncertain delay model : Each gate takes an arbitrary delay value di 

    which satisfies dmini < di < dmaxi. There are no constraints on 

dmini and dm" i. 

Restricted uncertain delay model : This is an uncertain delay model where 

dmini and dmaxi satisfies the following constraints for non-negative 

    constants cmin and cmax. 

dmax  — dmax 
      cmin <  2t < Cmax              — dmax + dmax — 

   This inequality expresses that the ratio of width of delay uncertainty 

   to the magnitude of the delay value is not extremely large nor small
, 
   which is a more realistic assumption than the simple uncertain delay 

    model. 

  One important assumption in this chapter is that the variation of delay 

values is static. Namely the delay value of each gate may be uncertain
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but the value is constant and do not change with the progress of time . 

We do not consider inertia delay either in this chapter. 

(2) Modeling of Time 

We discuss the following two models of time. 

Discrete time model : We assume that the domain of the time is the set 

   of integers. Namely, the delay value of each gate  di is an integer 

   within the bounds dmini and dm"i. 

Continuous time model : We assume that the domain of the time is the 

   set of real numbers. The delay value of each gate di can be a real 

    number. 

  In the exact delay model there is no difference between the two time 

models because the bounds dmini and dm"i (namely the delay value di) 

are specified as integers. On the other hand in the bounded delay models 

there can be differences because there are infinite time points between 

dmini and dm' i in the continuous time model while there are only finite 

time points in the discrete time model. 

(3) Modeling of Magnitude of Delay Values 

We discuss the following two models as for the magnitude of delay values. 

Constant delay model : For each gate gi, dmini and dmaxi are specified by 

   binary integers of c bits, where c is a constant which is independent 

   of the number of the gates in the given circuit. Namely dmaxi = 0(1). 

Exponential delay model : For each gate gi, dmini and dmaxi are specified 

   by p(n) bit binary integers, where p(n) is an arbitrary polynomial 
   of n, the number of the gates in the given circuit. Namely dmaxi 

O(2P(n)).



104  5. Computational Complexity of Logic Simulation Problems

  The delay values of gates in actual integrated circuits are proportional 

to CR in the first order approximation where capacitance C and resis-

tance R are approximately proportional to the area on the chip. There-

fore it is not appropriate to discuss the extremely large delay value as 

in the exponential delay model. However we introduce the delay model 

as a mathematical model, which is necessary in discussing the difference 

between the discrete time model and the continuous time model.

5.2.3 Notation 

We can consider hazard detection problems for the twelve models which 

are the combinations of the two time models, the tree uncertainty models 

and the two magnitude models. In the following discussion we abbreviate 

the name of the problems as follows:

     Cnst SHD 

     Exp

Exct 

 Unc 

Rst

 Dscr Cont  1 '
where, 

Cnst/Exp are the abbreviations of the constant time model and the ex-

   ponential time model, respectively, 

Exct/Unc/Rst are the abbreviations of the exact delay model, the uncer-
   tain delay model and the restricted uncertain delay model , respec-

   tively, and 

Dscr/Cont are the abbreviations of the discrete time model and the con-

   tinuous time model.

For example SHDCnstUncDscr means the hazard detection 

the constant and uncertain delay and discrete time model .

problem of
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5.3 Hazard Detection Problems of the Discrete Time 

Model

In this section we discuss the computational complexity of the hazard 

detection problems for the constant delay model and discrete time model . 

We consider the variation of delay uncertainty under this assumption . It 

is shown that the problems for the exact delay model  (SHDCnstExctDscr) 
can be solved within feasible time but the problems for the uncertain 

delay model and the restricted uncertain delay model (SHDCnst UncDscr, 
SHDCnstRstDscr) are NP-complete. 

Th 5.1 SHDCnstExctDscr belongs to P (deterministic polynomial time). 

[Proof] Execute logic simulation and examine the signal changes on the 
output. Let dmax the largest one of dm" l, dmax2, , , dmaxn Then the 

signal value on the primary output will be stable in n x dmax unit times 

after the input change, where n is the number of gates in the circuit. Since 

simulation for a unit time is carried out in 0(n) time, total computation 

time is 0(n2).^ 

  Logic simulation using 5-valued logic [Bre76] is used for timing veri-

fication taking the delay uncertainty into account. However it is known 

that accurate result is not obtained by this simulation algorithm as will 

be discussed in detail in the next chapter. We first show an upper bound 

of the computation time to obtain accurate result and then show a lower 

bound. Even if the delay values have uncertainty, we can get an accurate 

result by simulating all the possible combinations of delay values. In the 

discrete time model this is possible because we can enumerate all the 

delay values of gates. 

Lem 5.1 SHDCnst UncDscr, SHDCnstRstDscr are in NP (nondetermin-
istic polynomial time).
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             Fig. 5.1 The circuit for SAT of F. 

               (The uncertain delay model) 

[Proof] Guess a combination of delay values which causes a hazard on 
the primary output and verify the existence of hazards. Since the haz-

ard detection problems for exact delay values are solvable in polynomial 

time, the problems are solvable in polynomial time by a nondeterministic 

Turing machine.^

  As for a lower bound we have obtained the result that the problems 

are computationally difficult.

Lem 5.2 SHDCnst UncDscr and  SHDCnstRstDscr are NP-hard. 

[Proof] We first show the proof for the uncertain delay model. We show 
that satisfiability problem of Boolean formulas in conjunctive normal 

form (CNF-SAT) is reducible into SHDCnst UncDscr. Namely, for a given 

CNF formula F, we construct a circuit which has a delay combination 

to cause hazard if and only if F is satisfiable. The circuit is shown in 

Fig. 5.1. On line Xo, X1i • • • , Xn_1 all the combinations in {0,1}n can be 

generated at the time when the input changes from 0 to 1. The output Z 

stays 0 if F is not satisfiable. On the other hand, there is a possibility of 

1-hazard on Z if F is satisfiable. Also note that the circuit is constructed
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         (a) Circuit configuration. (c) The pulse generator . 

               Fig. 5.2 The circuit for SAT of F. 

              (The restricted uncertain delay model) 

 from F in polynomial time. 

    We take the same approach as for the restricted uncertain delay model. 

 We construct the circuit shown in Fig. 5.2. The circuit consists of an 

 input generation part and a formula computation part. The input gener-

 ation part consists of n pulse generators. The both outputs of the pulse 

 generators are 0 in stable state. When the input changes from 0 to 1, 

 a 1-pulse can be generated on either of the two outputs; a 1-pulse can 

 be generated on X if the delay of g1 is smaller than a and on X if the 

 delay of g1 is larger than a. The formula computation part is a monotone 

 combinational circuit which computes the 2n input logic function f' that 

 satisfies 

f'(x0, xl, ... , xn-1, x(i, Xi, ... , xn-1) = f (x0, xi, ... xn-1), 

 where f is the logic function expressed by Boolean formula F. The com-

 binational circuit for f' is easily obtained by replacing literal xa with the

 [b:b  +1]
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(n  -{- i + 1)-th variable of f'. We assume that the combinational circuit is 
constructed only with AND and OR gates only and that its inside is ap-

propriately synchronized; that is, the pulses given on inputs at the same 

time reach the same level of the gates in the circuit. In the stable state 

the output of the circuit is 0 in the stable state. Suppose f is satisfiable. 

Then a hazard occurs on the output when the pulses corresponding to an 

assignment that satisfies f are generated. On the other hand, the output 

of the circuit stays 0 if f is not satisfiable. Thus the satisfiability problem 

of F is reduced into the hazard detection problem of the circuit. Also 

note that this circuit can be constructed from F in polynomial time . ^ 

  From Lem 5.1 and Lem 5.2 we can lead the following theorem . 

Th 5.2 SHDCnstUncDscr and SHDCnstRstDscr are NP-complete .^ 

5.4 Relation between the Continuous Time Model 

    and the Discrete Time Model 

In order to clarify the computational complexity of hazard detection 

problems for the continuous time model, we discuss relation between 

the continuous time model and discrete time model in this section . 

5.4.1 Difference between the Continuous Time Model and the 

      Discrete Time Model 

In the exact delay model there is no difference between the continuous 

and discrete time models because the delay bounds (namely the delay 

values) are specified by integers . However, in the uncertain delay models 
there can be differences. As for the lower bounds , we can obtain the same 

results as in the discrete time model by the same proof as in Lem 5 .2. 

Lem 5.3 SHDCnstUncCont and SHDCnstRstCont are NP-hard . ^
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  On the other hand, as for upper bounds, we can not apply the same 

proof as in Lem 5.1 because there are infinite time points between the 

bounds in the continuous time model and it is impossible to enumerate 

the possible of delay values directly. Another problem is that more than 

0(2n) signal changes can occur on a single line in the continuous time 

model while only dm" x n signal changes can occur on a single line in 

the discrete time model. 

  The first problem can be solved by enumerating the possible inequality 

relations among the linear combinations of the delay values, instead of 

making vain attempt to enumerate the delay values. However, due to the 

second problem, it takes more than 0(2n) computation time to examine 
each cases, even if we can enumerate the possible cases. This leads to 

the following proposition on a upper bound of the computation time of 

hazard detection problems of the continuous time model, which will be 

improved in the later section. 

Prop 5.4 SHDCnstUncCont and SHDCnstRst Cont are in nondetermin-

istic exponential time.^ 

  Then a question is if there is actually difference between the discrete 

time model and the continuous time model. The answer to the question 

is yes. Fig. 5.3 shows such an example. In this example, a hazard can 

occur in the continuous time model while a hazard never occurs in the 

discrete time model. 

  Note that the hazard can occur in the discrete time model if we set the 

minimum unit time as half of that in the example. Thus the discrete time 

model is considered to have the same ability of that of the continuous 

time model if we make the unit time fine enough. Namely the discrete 

time model can be regarded as an approximation of the continuous time 

model. From the standpoint of the trade-offs between computation cost 

and accuracy of timing verification, it is an important issue to clarify
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Fig. 5.3 Difference between the discrete and continuous time models. 

the computational complexity of the hazard detection problems of the 

continuous time model. In this chapter we try to clarify relation between 

the two models by investigating to what extent we must make the unit 

time fine in order to make the two time models equivalent. 

  In the example in Fig. 5.3, we can observe the same hazard by mak-

ing the magnitude of delay values the twice with keeping the unit time 

unchanged, instead of making the unit time the half. Namely, to make 

the unit time fine has the same effect as to make the magnitude of delay 

large with keeping the unit time unchanged. This is the reason why we 

introduced the exponential delay model. In this section we show the fol-

lowing two are equivalent and thus we can reduce the hazard detection 

problems of the continuous delay model into those of the discrete time 

model. 

 1) A hazard can occur on a circuit in the continuous time model. 

 2) For some integer m, a hazard can occur on the circuit in the discrete 

   time model whose all delay bounds are multiplied by m, and m is 

   not more than 2nn . 

For this purpose we first show that the feasibility problem of a certain 

linear inequality system is equivalent to a hazard detection problem of 

the uncertain delay models.

 I

 [0,1] Q A

[0,1] B k)
[0,1] D Q  A
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5.4.2 The Linear Inequality System Equivalent to a Hazard 

      Detection Problem

Def 5.2 Let  x1i x2, • • • , xn be variables which represent the delay value 

of gates g1, g2, • • • , gn, respectively, and let x = (x1i x2, • • , xn). Each 

xi takes integer value in the case of the discrete time model and a real 

value in the case of the continuous time model. The variables satisfy the 

following constraints R. 

   R = / \ ((dmin < xi) A (xi < dmazi)). 
          i=1

Def 5.3 We define sets of linear combinations of the n variables, T and 

T', whose coefficients are in {0,1} and in {0, +1}, respectively. We also 

define D as set of constants. 

   T = {blxl + b2x2 + • • + bnxn I bi E {0,1}}, 

T' = {n1x1+12x2+•••+mnxn I ii E {0,+1}}, 

    D = {±drain, +dmax I i = 1,2,• • ,n}. 

  If we assume the input change occurs at time 0, the time of an event 

which occur in the circuit is represented by the sum gate delays. Then 

all the expressions which represent time of events are in set T. Obviously 

T C T'. T' is also definable as T' = {M. — tY2 I yl, Y2 E T}. Now we 

show that the necessary and sufficient condition for the delay variables 

to make a hazard on the output. The proof is given in the appendix of 

this chapter. 

Lem 5.5 The necessary and sufficient condition where hazards occur on 

the output of a circuit is expressed by a linear inequality system of the
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following form. 

 RA  (  

 (//ttt 

           (t1,1 A1,2A ... AStt1)V             (52,1 A2,2A ... AS2,P2) v 

(G,1 A G,2 A • .. A ek,Pk ) 

where 

Si,j E {t < O, t < O t E T'} and pi, p2, • • • , pk < 3n 

                                                   0 

  The lemma tells that the condition is expressed by a sum of products 

of linear inequalities whose coefficients are in {0,*1} and the constants 
are in0dmindax„draindmax      {~lim1~ ~ ~n~ n}. 

Cor 5.6 The necessary and sufficient condition where the hazard occur 

on the output of a circuit is expressed by an linear inequality system of 

the following form. 

   (A1xil)V(A2x4b2)V•••V (AO db3),(5.1) 

where Ai is the (n,pi)-matrix whose elements are in {O,±1}, bi is a vector 
in Dn, and d represents that < or < relation holds for each row of the 

vectors.^ 

  Consequently, hazards can occur in the discrete time model if and only 

if (5.1) has an integer solution and hazards can occur in the continuous 

time model if and only if the inequality system has a real number solution.
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5.4.3 Reduction of Continuous Time Model into Discrete Time 

     Model 

 Def 4.3 We define sets of absolute values of determinants of (n, n)-matrix 
as follows. 

    M = { det(A)I I A is a (n, n)-matrix whose elements are 

         in {0, ±1}}, 

   M2 = {xxyIx,yEMl, 

   2M2 = {2x I x E M2}. 

  Now we prove an important lemma. 

Lem 5.7 The following 1) and 2) are equivalent. 

 1) A Hazard can occur on circuit C in the continuous time model. 

 2) For a proper m where m E 2M2, a hazard can occur in the discrete 

   time model on circuit C', which is obtained by multiplying each 

   delay bounds by m. 

[Proof] From Cor 5.6 we only have to prove that the following 1') and 
2') are equivalent. 

 1') Linear inequality system (5.1) has a real number solution. 

2') Linear inequality system (5.1) obtained by multiplying vector bi by 

   m has an integer solution. 

[Proof of 1')-->2')] If the linear inequality system in 2') has an integer 
solution v, then (1/m)i is a solution of (1). 

[Proof of 2')--4')] Let Aix d bi be a subsystem of (1) which has a real 
number solution. The set of solutions of the subsystem conforms the
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region which consists of the inside and a part of the surface of an n-
dimensional convex polyhedron. Let  vl and v2 be two of the vertices of 

the polyhedron. Then the middle point v of v1 and v2 is located inside of 
the polyhedron, and hence is a solution of the subsystem. Let us consider 

the magnitude of m which makes my an integer vector. 

vl and v2 are the solution of Elx = ql and E2x = 6, respectively. 
Note that E1 and E2, 6 and 6 are obtained by choosing n rows from 

matrix Ai, bi, respectively. Therefore all the elements of E1 and E2 are 

in {0, +1}. Let 

   Ol = det(E1), t 2 = det(E2). 

Then the solution of the equations vi and v2 are expressed as follows 
according to the Cramer's formula. 

v1 = (1/A1)(vi ,i, v1,2, ... , vl, n), v2 = (1/A2)(v2,1, v2,2, ... v2, n), 

where vi,i is an integer. The middle point of vi v2 is expressed as 

    = (1/2)(vi + v2) 

_ (1/20102)(A2v1 ,1 + 01v2,1, A2v1,2 + O1v2,2, ... , 02v1 + 01v2,n) 

If we set m = 21L\1A21, all the elements of my are integers because Ai , 
A2 and vi,j are integers. It follows that Aix < mbi has an integer solution. 
Since 1011, IA2I E M, m/2 E M2.^ 

Cor 5.8 Let u be the least common multiple of M and m = 2,u2 . Then 

the following two are equivalent. 

 1) A hazard can occur on circuit C in the continuous time model . 

 2) A hazard can occur in the discrete time model on circuit C' , which 
   is obtained by multiplying each delay bounds by m .^

Lem 5.9 m < nn holds for m E M2.
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[Proof] The absolute value of the determinant of a matrix is less than or 
equal to the product of the norms of the column vectors of the matrix. 

If all the elements in a matrix are in  {0,+1}, the norms of the column 
vectors are less than or equal to n1/2. Then the absolute value of the 

determinant of the matrix is less than or equal to (n1/2 )n = nn/2. Hence 

m < 2(nn/2)2 = 2nn.^ 

Th 5.3 The following two are equivalent. 

 1) A hazard can occur on circuit C in the continuous time model. 

 2) A hazard can occur in the discrete time model on circuit C', which 

   is obtained by multiplying each delay bounds by a proper constant 

 m, where m < 2nn.^

5.5 Hazard Detection Problems of the Continuous 

    Time Model 

We have shown so far that the hazard detection problems of the con-

tinuous time model are reducible into those of the discrete time model 

by multiplying the magnitude of delay bounds by integer m which is 

bounded by 20. The reduced problems belong to what we defined as 

hazard detection problems of the exponential delay model. In this chapter 

we clarify the computational complexity of the problems of the contin-

uous time model by discussing that of the problems of the exponential 

delay model. 

5.5.1 Exponential Delay and Discrete Time Model 

We begin with the exact delay model (SHDExpExctDscr). In the case 

of the constant delay model, we can solve the problem in deterministic 

polynomial time by means of logic simulation as is stated in. In the case
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cost increases markedly even in the exact delay model as shown in the 

following lemma. 

Lem 5.10 SHDExpExctDscr is PSPACE-hard . 

[Proof] We show the satisfiability problem of quantified Boolean formulas 
(QBF-SAT) is reducible into SHDExpExctDscr.

-. pattern -'-- formula ---`- quantifi - •-' 

 genera- computa- cation 
 taion tion check 

 part part part 

  Fig. 5.4 The circuit for QBF-SAT. 

Ltial delay model, however, we can not solve the problem 

time by the same method because it may take 0(2P(n)) 

;he output signal to be stable. Actually the computational 

markedly even in the exact delay model as shown in the
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 Let a given QBF be 

(qoxo)(qixi) • • • (q, _1xn-1)F(x0, xl, . • • 

where qi is a universal quantifier (V) or a existential quantifier (3). We 
construct a circuit shown in Fig. 5.4 for this QBF, whose hazard detec-

tion problem is equivalent to the satisfiability problem of the QBF. The 

circuit consists of a pattern generation part, a formula computation part, 

a quantification check part and an output synchronization part. The pat-
tern generation part generates all the patterns in {0,1}n on signal lines 

X0, Xi, • • • , Xn_1 using delay gates and EXOR gates. Each pattern has 

a duration of 1 unit time. They are generated in the descending order 

of the magnitude when they regarded as binary numbers. The formula 

computation part computes the value of F(xo, xl, • • , x, _l) for the gen-
erated patterns. The circuit to compute F is the direct implementation 

of F. The output of the formula computation part is a sequence of the 

result values of F for all the possible input patterns. The quantification 

check part receives the sequence and checks quantification for each vari-

able beginning with xn_1 using a delay gate and an AND or an OR gate. 

Since the result values of F are aligned in the descending order of the 

magnitude of input patterns as they regarded as binary numbers, we can 

compute the satisfiability of universal (existential) quantification for xi 
by computing AND (oR, respectively) of pairs of values whose distance 

is 2n-i-1. In the final step, the value at the time frame which contains 

the final result of the quantification check is taken out at the output syn-

chronization part. The output of the whole circuit is 0 in the stable state 

and becomes 1 transiently if and only if the QBF is satisfiable. Thus 

satisfiability of the QBF is reduce into the hazard detection problem of 

this circuit. The computation time required for the transformation from 

a QBF to the circuit is bounded by a polynomial of the formula size. 0.

Since the exact delay model is a special case of the uncertain delay
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model, the same lower bound applies for the uncertain delay model. 

Lem 5.11  SHDExp  UncDscr is PSPACE-hard.0 

  As for the bounded uncertain delay model, we have not obtained the 

lower bound, which is not important for the discussions in the rest of this 

chapter. 

  On the other hand, as for an upper bound, we have obtained the 

following results that the hazard detection problems of the exponential 

time and the discrete time model are all solvable using polynomial space. 

Lem 5.12 SHDExpExctDscr is in PSAPCE. 

[Proof] We use backward logic simulation, in which we investigate exis-
tence of a hazard by checking the signal value backwards starting from 

the primary output, instead of the usual logic simulation. We assume 

that the input pattern changes from vx to vy at time 0. We denote the 

output value of the circuit for input pattern v as f(v). We show an al-
ternating algorithm (an algorithm executable on an alternating Turing 

machine). We separately consider the two cases where a static hazard 
can occur and where a dynamic hazard can occur. In the both cases , we 

use the recursive function checkVal(g, t, v) which examines if the output 

of gate g is v at time t.

Static hazard: In this case f (vx) = f (vy) holds. We examine if the output 
   value becomes f (vx) of not due to the input change. Guess a path 

   from the primary input to the primary output . Let dp be the delay 

   of the path (the sum of the delay values of the gates on the path) . 
   Examine if the output value (namely the output of gate gn,) is f (vx) 

   at time dp by calling checkVal(gn, dp, f (vx)). A static hazard occurs 
   if the answer is yes. Otherwise a static hazard does not occur for 

   the guess.
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Dynamic hazard: In this case f (vs) f (vy) holds. We examine if the 
   output value changes as f (vx) —> f (vx) --> f (vx) —* f (vx). Guess 

   two paths from the input to the output. Let dp1 and dp2 be the de-

   lay of the paths (assume dp1 < dp2 ). Examine if the output value 

   of the circuit is f (vx) at time dp1 and f (vx) at time dp2 by calling 
checkVal(gn, dp1, f (vx)) and cheekVal(gn, f (v,)). A dynamic haz-

    ard occurs if the both answers are yes. Otherwise a dynamic hazard 

    does not occur for the guess. 

function checkVal(g, t, v) 

   Trivial case: If g = go (the primary input of the circuit) then return 

       the following answer; if t < 0 A v = vx or t > 0 A v = vv then 

        return yes, otherwise return no. 

    Recursive case: If g go then guess a Boolean vector (v1, v2, • • • , vm) 
       for the inputs of gate g which makes the output of the gate v. 

       For each input of g, examine if the value becomes vi at time t — d, 

       where d is the delay of gate g, by calling checkVal(ga, t — d, v1), 
       where gz is the gate which feeds the i-th input of gate g. If all 

        the answers are yes then return yes. Otherwise return no. 

  Since the depth of the circuit is at most n, so is the number of calls of 

check Val. We can judge existence of a hazard in polynomial time on an 

alternating Turing machine and the problem belongs to PSPACE.^ 

   Upper bounds for the uncertain delay models are immediately derived 

from this lemma. 

Lem 5.13 SHDExp UncDscr and SHDExpRstDscr are in PSPACE. 

[Proof] We can reduce the problem of the uncertain delay models by 
guessing the combination of the delay values which causes a hazard. Since
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the delay combinations can be coded using polynomial space, the prob-

lems belong to  PSPACE.^ 

  The following theorem concludes this subsection. 

Th 5.4 SHDExpExctDscr and SHDExpUnbDscr are both PSPACE-

complete.^ 

5.5.2 An Upper Bound of the Computational Complexity of 

      Hazard Detection Problem of the Continuous Time Model 

From the discussion so far, we can improve the upper bound of the prob-

lem of the constant magnitude, uncertain delay and continuous time 

model in Prop 5.4. 

Th 5.5 SHDCnstUnc Cont and SHDCnstRst Cont are in PSPACE. 

[Proof] Guess a number from {2, 3, • • • , 2nn} as m in Th 5.3 and solve the 
problem obtained by multiplying the delay bounds by m in the discrete 

time model. The problems are of the exponential magnitude and the 

discrete time model (SHDExpExctDscr and SHDExpUnbDscr) and from 

Lem 5.13 they are in PSPACE.^ 

5.6 Remarks and Discussions 

We have discussed the computational complexity of the hazard detection 

problem of the various delay and time models. Table 5.1 summarizes the 
result. 

  We have shown that the problem of detecting hazards on combina-

tional circuits under uncertain delay assumption is computationally in-

tractable (NP-hard). This follows that it is difficult to solve the problem 

by a simple extension of the min/max delay simulation technique and



5.6 Remarks and Discussions 121

      Table 5.1 Summary of the results. 

(a) Results for the constant magnitude delay model.
Exact

(Exct)

Uncertain

(Unc)

Restricted

(Rst)

Discrete time 

  (Dscr)

 in  P NP-complete NP-complete

Continuous time 

   (Cont)

NP-hard & 

in PSPACE

NP-hard & 

in PSPACE

(b) Results for the exponential magnitude delay model.
Exact 

(Exct)

Uncertain 

 (Unc)

Restricted 

 (Rst)

Discrete time

(Dscr)

PSPACE-

complete

PSPACE-

complete

NP-hard  &

in PSPACE
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that we must develop different algorithms to achieve accurate timing 

verification, which will require big computation cost. 

  We have also discussed the relation between the continuous time model 

and discrete time model. The verification result can be optimistic in the 

discrete time model. We showed an concrete example for this. We also 

showed that the discrete time model will have the same ability of the 

continuous time model by making the time unit small with respect to 

the hazard detection problem, and clarify to what extent we must make 

the unit time small. 

  In Table 5.1 there still remains a gap between the lower bound and 

upper bound of the computation cost of the problem of the bounded delay 

and continuous time model (NP-hard and in PSPACE). It is considered to 

be an important research theme to clarify the computational complexity 

of this model, because it is closely related to the essential difference of 

the ability between the continuous time model and discrete time model . 

  The high computational complexity of the continuous time model or of 

the exponential delay model is due to the existence of signal lines which 

have more than  O(2n) times of signal changes. In the actual circuit , 
however, we can not observe such a phenomenon because of inertia delay . 

It is also an important research issue to define feasible model for the 

inertia delay and to discuss the hazard detection problem based on the 

model.

5.A Appendix: Proof of Lem 5.5

Def 5.4 We call triple (g, t, v) where g E G, t E T and v E {0,1, d}} 
(signal value d is a don't care), a time-value requirement for a gate g. We 
call a set a obtained by the following 1) N 3) a time-value requirement 
for a circuit.
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1) Initially a consists of time-value requirements of gate  gn, namely the 

  primary output of the circuit. 

2) If (gi, t, v) e a and v d then include (gil, t — x27 v1), (g22, t — xi, v2), 
• • • , (gig"', t — xi, vm) which satisfy v = fi(vl, v2, • • • , vm), where gib is 

  the gate which feeds the j-th input of gate gi. 

3) If (g, t, 0), (g, t,1) and (g, t, d) are in a simultaneously (for the same 

  g and t), a is not a time-value assignment.^

Intuitively (g, t, v) represents that the output of gate g is v at time t. a 

consists of the consistent tuples. 

Def 5.5 Let a be a time-value requirement of a circuit. Let ao = 
{(go,t,v) (go,t,v) E a} = {(go, ti, v1), (go, t2, v2), ... , (go, tk, vk)}. Let 
vx —} vy be the given input signal change. Then we define the realization 

condition of a, denoted as Sa, as follows.

    SA - alncr2A• •AOk, 

vj - (ti < 0) if vi = vx, 

(ti > 0) if vi = vy. 

                                                   0 

  Intuitively, Sa represents the condition where time-value requirement 

a takes place. We can express the condition where static or dynamic 

hazards occurs. 

Lem 5.14 The necessary and sufficient condition where a static hazard 

occur (in the case of f (vx) = f (vy)) is 

RA V Sa 
aEA
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where 

    A = {a 1 a is a time-value requirement of circuit C, 

(g„, t, f (vx)) E a, t E T'}. 

[Proof] a E A expresses a time-value requirement where the output of 
the circuit becomes f (vs), namely a static hazard occurs. ^ 

Lem 5.15 The necessary and sufficient condition where a dynamic hazard 

occur (in the case of f (vs) � f (vy)) is 

R A V (So, A (t,1 < ta2)), 
          aEA 

where 

   A = {a 1 a is a time-value requirement of circuit C, 

            (gn,ta1,f(vx)) E a, 

            (gn, ta27 f (vx)) E a, 
tat E T', tae E T'}. 

[Proof] a E A expresses a time-value requirement where the output of 
the circuit changes its value as f (vx) —p f (vx) —+ f (vs) —* f (vs), namely 
a dynamic hazard occurs.^ 

Now we show the proof of the Lem 5.5 . 

[Proof of Lem 5.5] All the inequalities in Sa have the form of t < 0 or 
t < 0 where t E T'. ta t < ta2 in Lem 3.14 can be transformed into the 

form of t < 0 where t C T' because ta
i — ta2 E T'. All the inequalities in 

R have the form of t < d where t E T' and d E D . Thus if we expand 

the condition in Lem 3.10 or Lem 3 .11 into the sum-of-product form, we 

have the condition expressed in the form of the lemma .^



Chapter 6

Time-Symbolic Simulation for 

Accurate Timing Verification

6.1 Introduction 

In design of asynchronous circuits, timing becomes the most important 

issue. We must examine designs so that they do not fall into erroneous 

behavior caused by critical races, hazards and oscillations. When the 

behavior of a circuit depends on subtle timing relations, we must con-

sider the change of delay values which may be caused by variations of 

process conditions and differences of usage environments. In logic simu-

lation, which is currently one of the most effective methods of dynamic 

timing analysis, we treat the uncertainty of the delay value by using the 

 min/max delay model [Bre76]. Although the model enables relatively 
fast simulation, it has been pointed out that simulation results are often 

too pessimistic if the circuit contains reconvergent fanouts [Bre76]. The 

simulation results contain so many unknown signal values or report so 

many possibilities of timing errors that it is very difficult to know if the 

circuit under test really has design errors. It has, therefore, come to be 

an important research theme to find effective methods for timing veri-

fication taking the delay uncertainty into account and many researches 

are undertaken on this issue [Yon89, Cer89]. In this chapter we propose 

                            125
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a new approach based on symbolic execution of logic simulation. 

  In the conventional symbolic simulation [Car79, Cor81], they introduce 

variables to represent signal values and execute simulation treating signal 

values as Boolean expressions. In our approach we execute simulation by 

representing a gate delay or time of input change by a variable. This idea 

of time-symbolic simulation makes it possible to compute the accurate 

effect of the uncertainty of actual delays. It also enables us to get useful 

information for identifying the error location and for finding the way to 

correct design errors by analyzing the symbolic results. One difficulty in 

time-symbolic simulation is in the algorithm to carry out simulation. The 

conventional algorithms are not straightforwardly applicable because the 

times are not constants any more. In this chapter we show two efficient 

algorithms for time-symbolic simulation and discuss their application to 

design verification of asynchronous circuits. 

  The first algorithm is based on the T-algorithm [Ish84, Ish85yy] and 
is dedicated for combinational circuits. Symbolic manipulation of time 

is relatively easy in T-algorithm because the time is advanced indepen-

dently at each gate in a circuit. Since the simulation result depends on 

relations among occurrence times of events, we represent the signal his-

tory on each signal line using a data structure named an event tree instead 

of a linear list. It is necessary to simplify algebraic expressions and to 

judge the feasibility of inequalities during the simulation . We solve these 

problems by reducing them into linear programming. Although this time-

symbolic simulator can directly deal with combinational circuits only , it 
is possible to verify the behavior of asynchronous sequential circuits by 

examining the behavior of their combinational parts . Time-symbolic sim-
ulation also enables us to obtain conditions for correct behavior of the 

circuit, which is of good use for design error correction and design im -

provements. Since it requires good skill to obtain the conditions from a 
result of time-symbolic simulation by hand , we also developed a result
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analysis system for time-symbolic simulation. 

  In this chapter we propose another algorithm for time-symbolic sim-

ulation which can directly deal with circuits containing feedback loops . 

In this algorithm we assume time to be discrete. A key point of this al-

gorithm is that we can reduce time-symbolic simulation into usual value-

symbolic simulation by encoding the time variables. Namely, instead 

of using time variables, we encode the cases of possible delay values of 

an uncertain delay unit and represent the delay variation by Boolean 

variables. Then the time-symbolic simulation is reduced into usual sym-

bolic simulation and we can simulate all kinds of logic circuits based on 

the conventional S-algorithm. We refer to this new technique as coded 

time-symbolic simulation (CTSS). In the CTSS all the computational dif-
ficulties are condensed into Boolean function manipulation. We use an 

efficient Boolean function manipulator using shared binary decision di-

agrams (SBDD's) [Min90, Min91] as internal representation of Boolean 
functions. The use of SBDD's in the CTSS drastically reduces storage 

requirements and enables efficient simulation execution. It is also impor-

tant to provide aids for analyzing simulation results, for the simulation 

results of the CTSS are given in the form of Boolean expressions with 

coded time variables. In this chapter we propose a novel technique of 

comparing simulation results obtained by the CTSS with desirable be-

havior based on symbolic simulation of automata. 

  In the following section we discuss the modeling of delay uncertainty 

using time variables. In section 6.3 we show an algorithm for time-

symbolic simulation based on T-algorithm and in section 6.4 discuss 

applications of time-symbolic simulation to timing verification of logic 

circuits. In section 6.5 and 6.6, we describe an idea, an efficient algo-

rithm and applications of the coded time-symbolic simulation. Some 

further discussions will be made in section 6.7.
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6.2 Problems of Conventional  Min/Max Delay 

ulation

Sim-

An actual delay value of a logic gate is affected by process conditions or 

usage conditions. In logic simulation we treat the uncertainty by using 

the min/max (ambiguity) delay model [Bre76]. It has been pointed out , 
however, that this model has serious shortcomings such that simulation 

results are often too pessimistic due to reconvergent fanouts [Bre76] . For 
example, a timing chart in Fig. 6.1 (b) is the result of the min/max delay 

simulation for a circuit in Fig. 6.1 (a). The unknown states on the output 

of D indicate the possibility of a static hazard, which never occurs in an 

actual circuit because the rising edge on the output of C never precedes 

the falling edge on the output ofB. The overpessimism comes from loss 

of information that the uncertainty in the time of the rising edge on the 

output of C is partly due to that of the falling edge on the output of 

B. We are actually simulating the circuit shown in Fig . 6.1 (c) instead 
of that in Fig. 6.1 (a). Since the unknown states produced in this way 

propagate around the circuit polluting correct signal states,it becomes 
impossible to judge if the circuit really has design errors . 

  There are some simulators which detect reconvergences and avoid the 

overpessimism to some extent. However , as is shown in chapter 5, the 
hazard detection problem of a combinational circuit under the uncertain 

delay model is NP-hard and it is therefore considered to be impossi -
ble to compute an accurate simulation result by a simple extension of 

the min/max delay simulation algorithm . Fig. 6.2 shows some difficult 
examplesl. Two circuits and expected accurate waveforms for the circuits 

are illustrated. Although the circuits are very small
, the twofold recon-

vergence make the accurate simulation difficult . Especially it is difficult 

to predict the absence of hazards at (3). In this chapter, we attempt 

  1These examples are devised by Mr
. Hiroaki KANEHARA at Kyoto University .
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A
B [0:3]

Fig.

C [1:4] D [0:0] 

(a) A circuit with a reconvergence. 
                                               I. 

AI I------------------------- 

B %7/ ..... 

• D1 I 1 1 

(b) Min/max delay simulation. 

A _B [0:3]

 B'[0:3] C [1:4] D [0:0] 

     (c) The circuit actually simulated. 

6.1 Overpessimism in min/max delay simulation.
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[1:4] 

 [1:4]

 [1:4]

    A -1----- 

Ey_ Y ' L~ 
    [0:0] (1) possibly (2) always 

                 hazard hazard 

(a) Circuit Kanehara-A. 

A -1 

      Y

   Fig. 6.2 Difficult examples fc 

to solve this problem by expressii 

which can take an arbitrary value

    — [0
:0] [2

:2] (3) no (4) possibly                   h
azard hazard 

    (b) Circuit Kanehara-O. 

examples for the min/max delay simulation. 

by expressing delay variation using time varia 

)itrary value within the bounds.

bles

6.3 Time-Symbolic Simulation Based on T-Algorithm 

6.3.1 Modeling of Uncertain Delay Using Time Variables 

The overpessimism of the min/max delay simulation at reconvergent 

gates is due to the loss of the information that the uncertainty of time of 

signal changes propagated through different paths has a common source. 

In our approach we identify the common source of the uncertainty by 

expressing each uncertain delay value by a variable over the real number 

domain. We refer to the variable as a time variable. Minimum and maxi-

mum delay values may be specified for an uncertain delay unit. In such a 

case, we express them by a set of inequalities such as {3 < d, d < 5}. We 
call the set of inequalities variable constraints. We assume the inequal-

ities in a variable constraints are linear inequalities in general forms. It 

is therefor possible to express the relation between delay values such as 

{d1 < 2d2}. We can model the various kinds of uncertainty of a delay
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value using the time variables. In this section, we consider the following 

three models. 

Static nominal delay model We assign one time variable to one delay 

    unit. Namely, we assume the delay value is uncertain but constant. 

Static rise/fall delay model We assign two time variables which rep-
   resent rise delay and fall delay of the delay unit. 

Dynamic delay model We assign a time variable for each signal change. 

   Namely, we assume the delay value can be different at each signal 

    change.

6.3.2 Algorithm Based on S-Algorithm 

It is possible to adapt the conventional S-algorithm to the time-symbolic 

simulation, if efficiency of execution is not critical. The following is the  al-

gorithm, in which events scheduled to occur in the future are maintained 
in set Q. 

 1) Repeat 2)r.4) until Q becomes empty. 

 2) Get an event e out of Q whose occurrence time is judged to be the 
   smallest. When there are more than one candidate, investigate all 

   the possibilities by branching. 

 3) Compute the effect of e. 

 4) If there are new events as the result of 3) put them into Q. 

In step 3), we do not have to investigate all the possibilities if the order 

of occurrences of events does not affect the entire behavior of the circuit. 

However, we are forced to investigate almost all the possibilities as long 

as we are not allowed to cancel and recompute the simulation results, 

because it is almost impossible to know the possibility of inconsistency
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event node

1

condition node

ti ++,.l<+

 ti + d2 0 0
                       \`.. -----~{1 

     - 00 0 t1  t2 

   initial event node 'I t2 + d1 + d3 1 1 I—fI final event node 
                         (a) An event tree 

t1t2 A t1+d1--t3: _ItiIti+d2 
t1;st2 A t1+d1>t3:It1 
t1>t2:It2+di+d3 

               (b) Waveforms represented by the event tree 

                   Fig. 6.3 An event tree. 

in advance. As a result, the simulation speed becomes so slow that 

we can not simulate even a small circuit within feasible time. One of 

the breakthroughs to this problem is an optimistic strategy such as in 

[Yon89], which in turn makes the simulation control complicated. 
  On the other hand, symbolic manipulation of time is relatively easy 

in the T-algorithm because the time is advanced independently at each 

gate in a circuit. We propose in this section an efficient algorithm of 

time-symbolic simulation dedicated for combinational circuits based on 

the T-algorithm. 

6.3.3 Representation of a Signal History by an Event Tree 

In the case of usual simulation where times are constants, a signal history 

of each signal line is represented by a linear list of events. In the case 

of time-symbolic simulation the simulation results depends on relations 

among occurrence times of events. We use a data structure named an 

event tree as shown in Fig. 6.3 (a) in order to represent such a signal 

history.

'~  
t2+di+d3 I 1 I—^
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  An event tree is a directed tree. Nodes are classified into event nodes 

and condition nodes. An event node is labeled by an event, a tuple of 

time and a signal value. The time is expressed by a linear combination 

of time variables. A condition node is labeled by a linear inequality. We 

will refer an event node and a condition node simply as an event and a 
condition, respectively, for simplicity. Direct edges represent the order 

of event occurrences. The root node of an event tree is an event node 

whose occurrence time is  —oo and is called the initial event node. All 

the leaf nodes are event nodes and are called final event nodes which 
represent that there are no more events after the events. Each of the 

event nodes except for final event nodes has just one successor and each 

of the condition nodes has two successors. The first (the upper, in the 
figure) edge represents the case where the the linear inequality 'y of the 

node holds, and the second (the lower) edge represents the case where 
-y does not hold . We refer to -y and --y as branching conditions of the 

first edge and the second edge, respectively. The path condition of a node 

is the product of the branching conditions of the edges constructing the 

path from the root node to the node. The event tree in Fig. 6.3 (a) 
represents three event sequences in Fig. 6.3 (b). 

6.3.4 Algorithm of Gate Evaluation 

The algorithms of gate evaluation in time-symbolic simulation is basi-

cally the same as that of the usual logic simulation but for the following 

exceptions. 

 1) Since there can be more than one candidate for the next event at 
    each input line of a gate, we must investigate all the possible cases. 

   For example in Fig. 6.4, input A has two candidates ((1) and (2)) 

   and B has also two candidates ((3) and (4)) for the next event. We 
   must investigate the four cases for the combination (1)(3), (1)(4), 

   (2)(3) and (2)(4).
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2)

--- _Art di +ti 11 --> (1)      Al -co I 0 d1<d)          1^n (2) 
                „Jr, d3 + t2  I 0-----------Hi! (3) 

     B -co 1 d3<d4 •l d4 + ti I 0 1_011 (4) 
---- J^ (1)(3) 

d3<d4 
y (1)(4)     YI-c0I0 4<d) 

                            J^ (2)(3) 
                             d3<d4                              (
2)(4) 

     Fig. 6.4 Computation of the output event tree. 

Even if each input line has a unique candidate for the next event, 

there are cases where we cannot decide which input has the event of 

the minimum occurrence time. In such cases we must also investigate 

all the possibilities. For example, suppose we are investigating the 

combination (1)(4) in Fig. 6.4. We have to examine the two cases if 
we can not decide which of d1 and d4 is the smaller.

 _ co 0 d1 <dz
ti

 _ co 1 d3<dd

 _ co 0 CC<dz:

  In both 1) and 2), new condition nodes are appended to the output 

event tree to make branching. Note that there are cases where branching 

does not occur depending on the path conditions and variable constraints. 

In the example in 2), we can decide the next event if the variable con-
straints includes {d1 < 3, 5 <  d4} because d1 t1 is always smaller than 

d4 ~ti. 

  Fig. 6.5 shows an algorithm of computing the output event tree of a 

2-input gate from the given input event trees, for the static nominal delay 
model. The followings are the explanation of the algorithm. 

 1) Function gateEval receives root nodes a and b of the event trees of 
   the inputs and returns the root node of the resulting output event 

     tree.
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function gateEval(node a, node b) return(node) 
begin op(a, b, variable _constraints, unknown, unknown, unknown) end gateEval;

function op(node a, node b,  inequality _set  s, sig_val vy, sig_val va, sig_val vb) 
  return(node) 

begin 
  if a is a condition node then 

  begin 

pc+: = pcU{a.cond}; 
pc-:=pcU{-'a.cond}; 
     if sat(pc+)A-'sat(pc-) then return op(a.upper, b, pc, vy, va, vb) 

     else if -isat(pc+)Asat(pc-) then return op(a.lower, b, pc, vy, va, vb) 
     else if sat(pc+)Asat(pc-) then 

        return cnode( a.cond, op(a.upper, b, pc*, vy, va, vb), 
                            op(a.lower, b, pc-, vy, va, vb)) 
   end 

  else if b is a condition node then similar to the case where a is a condition node 
  else if both a and b are event nodes then 

  begin 

pc+: = pcU{a.time b.time}; 
pc-:= pcU{a.time> b.time}; 

     if sat(pc+)A-'sat(pc-) then return evalA(a, b, pc, vy, va, vb) 
     else if -'sat(pc+)Asat(pc-) then return evalB(a, b, pc, vy, va, vb) 
     else if sat(pc+)Asat(pc-) then 

        return cnode( a.time b.time, evalA(a, b, pc+, vy, va, vb), 
                                   evalB(a, b, pc-, vy, va, vb)) 
   end 

end op; 

function evalA(node a, node b, inequality_set s, sig_val vy, sig_val va, sig_val vb) 
   return(node) 

begin 
vy':=FUNC(a.val, vb); 
next:=op(a.next, b, pc, vy', a.val, vb); 
if(vy'#vy) then return enode(a.time+DELAY, vy', next) 

              else return next 
end evalA;

function evalB is similar to evalA;

Fig. 6.5 An algorithm of computing output event trees.
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 2) Function op receives root nodes a and b of the subtrees of the input 

   event trees, set of inequalities s representing variable constraints 

   and path conditions, and the current signal values of the output 

   line and the input lines vy, va,vb. It computes the sub- event tree 

   corresponding to the sub - event trees rooted by a and b, and returns 

   the root node of the sub- event tree. 

 3) Function evalA and  evalB receive the same arguments as op except 

   that root nodes a and b are event nodes. They computes output 

    sub- event trees obtained when a and b occur earlier, respectively. 

 4) The occurrence time, the signal value and the next node of event 

    node e are denoted as e . time, e . val and e . next, respectively. The 

    event node whose occurrence time, signal value and next node are 

   t, v and n, respectively, is denoted as enode (t , v , n) . 

 5) The inequality of a condition node c is denoted as c. cond. The nodes 

   which are pointed by the upper and the lower edges of condition node 

    c is denoted as c.upper and c.lower, respectively. The condition 

    node which satisfies c . cond=i, c .upper=u and c . lower=l is denoted 

    as cnode(i,u,1). 

 6) FUNC is the Boolean function of the gate and DELAY is the delay 

   variable of the gate. 

 7) Function sat judges whether a given set of linear inequalities is fea-

   sible (whether there is an assignment to the time variables which 

   satisfies all the inequalities in the set) or not . Details of the compu-
   tation procedure is described in section 6.3.5 . 

  In the case of the static rise/fall delay model , we must change the 
delay variable according to the new output value . Furthermore we need 

the event cancellation operation as is the case of the conventional logic 

simulation [Bre76]. Let dr and d f be the time-variables representing rise



6.3  Time-Symbolic Simulation Based on T-Algorithm 137

A 

B 

C 

D

Fig. 6.6

 A B 

Do  
d, ~ 

dd3 

        (a) The circuit in Fig. 6.1. 
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       (b) The simulation result 

An example of the time-symbolic simulation (1)

d,+ -'I di +d3 0  fi

delay and fall delay, respectively,  er and ef be the expression representing 

the time of input events which cause the 0 --> 1 event and 1 - 0 event 

at the output of a gate, respectively. We assume that e,. < ef absolutely 

holds. In the case of er + dr > ef + df, we have to cancel events at time 

ef + df. We judge the feasibility of the inequalities and make branching 

if necessary. 

  Time-symbolic simulation of the dynamic delay model is realized by 

introducing as many time-variables as output events. We also need event 

cancellation. In many cases, difference of the delays is not so large. 

We can express this by the variable constraints. Although we need much 

more variables than static delay model, we can expect more precise timing 

analysis. 

  Fig. 6.6 shows the result of time-symbolic simulation on the same 

circuit and the same input pattern as in Fig. 6.1. In the computation on 

gate D, we do not make branching because we can tell that the event on 
the output of B occurs earlier than that on the output of C by algebraic 

comparison. As the result, we can conclude that there is no possibility
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of the hazard on the output of D. 

6.3.5 Manipulation of Algebraic Expressions 

In order to execute the procedure described in the previous section, it 

is necessary to treat algebraic expressions which include time variables. 

The required operations are as follows. 

 1) Addition of simulation time and gate delays. 

 2) Simplification of inequalities such as d3  + d2 < d1 -F d2 —> d3 < dl. 

 3) Judgment of feasibility of a set of linear inequalities. 

  Since all the algebraic expressions appearing in our time-symbolic sim-

ulation are linear combinations of time variables, these operations are 

easily realized. 1) is achieved by addition of each coefficients. 2) is also 
trivial if we use the normal form representations of inequalities such as 

>2aidi c < 0. As for 3), we solve the feasibility problem by linear 
i=1 
programming. 

6.4 Timing Verification by Time-Symbolic Simula-

    tion 

We have implemented a time-symbolic simulator based on the above al -

gorithm, on the SUN 3/60 workstation in C language. We use the simplex 
method for linear programming. 

6.4.1 Hazard Detection 

We can tell the possibility of hazards directly from the result obtained 

by time-symbolic simulation. Fig . 6.7 shows the result of the simulation 

on the circuit in Fig. 6.2 (a). A falling edge is given to the input . From 
the result we can tell the possibility of a static hazard on output E .
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(a) The circuit in Fig. 6.2 (a).
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 —Co 0 d, <d2

d2> 
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d1 +d3 
+ d4

d2+d4 0

                     (b) The simulation result. 

     Fig. 6.7 An example of the time-symbolic simulation (2). 

Furthermore we can tell that the condition where the hazard occurs is 

d1 < d2 A d1 + d3 < d2 (namely d1 + d3 < d2) and that we can avoid the 

hazard by increasing the delay value of d1.

6.4.2 Verification of Asynchronous Sequential Circuits 

Although our simulator is applicable only to combinational circuits, we 

can verify the behavior of asynchronous sequential circuits by examining 

the behavior of the combinational part [Kim88]. 

  We assume that the followings are given as an instance for the verifi-

cation. 

 1) The state transition table of basic mode asynchronous sequential 

   machine M. 

 2) Gate level implementation C of M.



140 6. Time-Symbolic Simulation for Accurate Timing Verification

  XZ Zexp  
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   Fig. 6.8 Verification of an asynchronous sequential circuit. 

3) The state assignment and the correspondence between state vari-
  ables and feedback lines in C. 

 The algorithm of the verification is as follows (see Fig. 6.8): 

1) Get a combinational circuit C' by disconnecting the feedback lines 
  corresponding to the state variables. 

2) For each state transition, verify the correctness by 3)r 5). 

3) Let X, Zexp, and Yexp be event sequences to appear at the primary 

  inputs, the primary outputs and the feedback loops
, respectively, 

  when the transition occurs. X and Zerp are derived directly from 

  the state transition table. As for Yexp, we can guess a proper pattern 

  since the signal values of the feedback lines before and after the 

  transition are specified in the state transition table . If the occurrence 

  time of an event is unknown, represent the time by a time variable . 

4) Perform time-symbolic simulation on C' giving X and Yesp to the 
  primary inputs and the disconnected lines, respectively, and get the 

  output Zsim and Ysim, on the primary outputs and the disconnected 

  lines, respectively.

Zexp
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5) Compare  Zsir,,, with Zexp, and Ysim, with Yexp. If they are consistent, 

  we can conclude that the correct state transition takes place regard-

  less of the delay variations. Otherwise we can get the condition 

  where the correct transition occurs.

  Note that the condition obtained in 5) is a sufficient condition because 

there is a possibility that the correct transition takes place with the event 

sequences different from Yey, which we chose in 3). 

  We show an example of verification of a T-flipflop. The state transition 

table and a gate level implementation are shown in Fig. 6.9 (a) and 

(b). We get four input and desirable patterns for the four transitions 

(Fig. 6.9 (c)) from the state transition table. Here we expect that there 
are no hazards also on the feedback lines. (This assumption is considered 
to be a feasible one). We introduce time-variables ti, t2, t3 and t4 to 

represent delay times for the transitions because they are unknown. 

  By executing time-symbolic simulation and comparing the simulation 

results, we obtain the condition shown in Fig. 6.9 (d). The four equations 

express the value of t 1.•t4, namely the time necessary for each transition. 

We can tell the critical path for each transition from these equations. The 

two inequalities the condition where the circuit correctly works as a T-

flipflop. The inequalities do not contain time variables u1 and u2 which 

represents the delay values of the feedback lines. From this fact, we can 

conclude that the circuit may fall into an erroneous behavior depending 

on the variations of the delay values in the combinational part and that 

it is impossible to avoid the timing error by adjusting the delay values of 

the feedback lines. 

  Fig. 6.10 (a) is an alternative design whose combinational part has 

hazard detection gates. The verification result is shown in Fig. 6.10 (b). 
In this case, the inequalities contain time variable t2. This tells us that 

there is no danger of combinational hazards but that there is, in turn, the 

possibility of sequential hazards. We also conclude that we can satisfy
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(a) State transition diagram. (b) A gate-level implementation . 
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                (c) Expected timing charts. 

t1 =d4+d7 

t2=d1+d5+d6 
t3=d1 +d5+d7 

                    t4=d3+d6 

                  dl +d5<d4 

                  dl +d5>d3 

                      (d) Result. 

           Fig. 6.9 Verification of a T-flipflop .
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Fig

 ti =d4+d7 

 t2=d1+d5+d6 

t3=d1 +d5+d7 

t4=d3+d6 

d3<u2+d8+d1 +d5+d7 

d1<u2+d4+d7

(a) A gate-level implementation.(b) Result. 

. 6.10 Verification of a T-ffipflop with hazard detection gates.

the condition by increasing the 

critical paths for the transitions 

the hazard detection gates.

delay of the feedback line 

are the same in spite of th

and that the 

e addition of

6.4.3 Result-Analysis System

Time-symbolic simulation makes it possible not only to confirm the cir-

cuit's correct behavior but to obtain the conditions for correct behavior 

of the circuit. In order to obtain conditions for correct behavior of cir-

cuits, it is necessary to compare event trees with correct event sequences. 

This comparison process is hard by hand when event trees become large. 

In order to solve this problem, we have also developed a result analysis 

system for the time-symbolic simulation. 

  It compares multiple pairs of an event tree and an expected event 

sequence and outputs the condition which matches the all pairs. The 

condition is shown as a sum of products of linear inequalities. It also 

reduces the duplicated and redundant conditions. For example, the con-
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dition 

 d2+d3+d6  <  d4  A  d4+d5 

is reduced into 

d2 + d3 + ds < d4 A d4 + d5 

because the third inequality 

and is redundant. We judge 

programming.

<d1+d3Ad2<d1

<d1+d3 

can be derived from the other conditions 

the redundancy also by means of linear

6.4.4 Performance of the Simulator

The CPU time required for the verification of the T-flipflops is less than 

0.1 seconds in total and the simulation speed in this case is about 100 

  300 event/second. This speed is considered to be enough for verifying 
small scale circuits. However, the computation cost of time-symbolic sim-

ulation is at least proportional to the exponential of the number of gates 

in the worst case. Although this is inevitable if we consider the com-

plexity of the problem, it is difficult to apply time-symbolic simulation 

to large scale circuits. In this case combination use of the time-symbolic 

simulation and the conventional min/max delay simulation will be effec-
tive. 

  As for the memory requirement, the size of the event trees grow being 

proportional to the number of gates and will be dominant. However, in 

the small scale circuit we can not neglect the size of the tableau for the 

linear programming, which is proportional to the product of the number 

of time variables and the number of inequalities . Our current simulator 

can deal with circuits of about 100 gates within the storage of 8MB .

6.5 Coded Time-Symbolic Simulation - CTSS

In the T-algorithm based approach , we can not directly deal with cir-

cuits with feedback loops. On the other hand , in the S-algorithm based
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approach described in section 6.3.2, impractical computation time is re-

quired to simulate even a small scale circuits. In this section we propose 
an alternative algorithm for time-symbolic simulation which can deal 

with circuits with feedback loops. It is based on Boolean function ma-

nipulation and can simulate circuits with feedback loops almost in the 

same speed as circuits without feedback  loops.

6.5.1 Modeling of Uncertain Delay by Boolean Variables 

The most important assumption in this section is that the time is discrete 

as is in the conventional logic simulation. Namely the simulation time and 

the delay values take integer values. Under the discrete time assumption 

we can enumerate the possibilities of actual values of a bounded static 

uncertain delay. Let us take the circuit in Fig. 6.1 (a) as an example. 

Each of two inverters B and C, whose delay is specified as [0,3], will 
take one of four delay values {0,1,2,3}. If we investigate the 16 cases, 

namely the 4 cases for B multiplied by the 4 cases for C, we can get 

a completely accurate simulation result. The total number of the cases 

to be examined will be exponential to the number of uncertain delay 

components in a circuit. This is inevitable because of the complexity of 

the problem that we discussed earlier. We focus our attention on how we 

can make the simulation process efficient. 

  Again in the example above, 16 possible signal values are associated 

with a signal line at a time period. If we code the delay of B and C 

using Boolean variables, such as delayB = (b1, b0) and delays = (ci, co), 

the 16 signal values can be seen as a Boolean function of the 4 input 

variables. Then the simulation with the uncertain delays is reduced into 

usual symbolic simulation. This is a basic idea of our coded time-symbolic 
simulation. 

  For the convenience of explanation, we assume without loss of gener-

ality that a gate in a circuit is either a pure functional gate with delay
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b1 bo

    Fig. 6.11 An interpretation of the coding of delay variation. 

0 or a pure delay gate with a single input and a single output. Let us 

denote a signal value on line s at time t as s [t] . Then the signal value on 
output line y of functional gate g is computed by the following equation: 

y[t] = f9 (xi [t], x2[t], ... , xk[t])(6.1) 

where f9 is the Boolean function of g, and xi, x2, • • , xk are the signal 
lines which feed g. 

  As for a delay gate, we can interpret a coding of delay as shown in 

Fig. 6.11. Time variables b1 and bo are selection inputs to choose one 
of the four delay possibilities. If we relate (b1, bo) with the binary rep-

resentation of delayB, we can compute the output y of the delay unit 

according to the following formula: 

y[t] = bi bo x[t] 

       + bi - bo • x [t — 1] 

+ bi•bo-x[t-2] 

+ bi•bo•x[t-3] 

  The definition of delay gate g in general is as follows . Let y and 

x be the output line and the input line of g , min9 and max9 be the 

minimum and maximum delay value of g , and go, gi, • • • , gi (where 1 = 
[log2(max9 — ming + 1)1 — 1) be the time variables coding the possibility 
of delay values of g. Let us also define g2 k> and G<k> as follows.
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 <k> 9
z

 G<k>  =  g 

The output value of delay gate g is computed according to the equation: 

y[t] = G<o> x[t — mint'] 

+ G<1> x[t —ming-1] 

+ G<maxg—ming> x[t — max9].(6.2) 

  Fig. 6.12 is an example of simulation on the circuit in Fig. 6.1 (a). 

Fig. 6.12 (a) shows a coding of delay variation. Fig. 6.12 (b) shows the 
simulation result, namely the signal values of each signal line at each 

time. A rising edge at time 0 is given to A. The Boolean function 

b1 + bo + ci + co appearing on line C at time 0, for example, indicates 

that the value is 1 when b1 = bo = c1 = co = 0, namely delayB = 0 

and delays = 1, and otherwise the value is 0. The signal value on D is 

always 0, which is the accurate result that we expected. In the CTSS, 

the variables of a delay unit do not appear in the formula to represent 

the signal value on line s at time t, as long as the delay does not affect 

s at time t. So we can automatically avoid the useless comparison and 

branching. 

6.5.2 Representation of Boolean Functions by a Shared Bi-

      nary Decision Diagram 

Good representation of Boolean function is a key to efficient symbolic 

simulation. In our implementation we use a shared binary decision di-

agram (SBDD) [Min90, Min91], which is an improvement of the binary

gi if i-th bit of the binary 

  representation of k is 0, 

gi otherwise.
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 bl bo I delayB II c1 co delay
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(a) Coding of the delay values.

 t  ll  A[i] B [t] C[t] D[t]
 -1

1J 1 0 0

0
I

bi + bo 0 0

1 1 bi b1 + bo + cl + co 0

2 1 bi • bo bl + cl • bo • co 0

3 1 0 bi+cl+bo+co•b1•c1 0

4 1 0 0bi+cl+bl+bo+cl+ca

+bo + co • bi • c1

5 1 0 bl+c1+b1•c1 0

6 1 0 b1•bo•C1•Co 0

7 1 0 1 0

Fig. 6.12

       (b) The simulation result. 

An example of coded time-symbolic simulation.
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(a) Binary decision diagrams. 

a---b aeb a + ---b

0 1

                (b) A shared binary decision diagram. 

      Fig. 6.13 A shared binary decision diagram (SBDD). 

decision diagram  [Bry86]. In the SBDD all possible subgraphs are shared 

among multiple functions, as shown in Fig. 6.13. 

  The SBDD has the following advantages besides those of the BDD. 

 1) Many functions can be efficiently expressed simultaneously. 

 2) Many of the operations can be done much faster than those of the 

   BDD. Especially, equivalence of two functions are checked by simply 

   comparing the pointers while, in the BDD isomorphism should be 

    examined. 

  These two advantages are very much suitable for our purpose. Since in 

the CTSS we need to represent many Boolean functions to express signal 

values on signal lines, the property 1) is very favorable. Fig. 6.14 shows 
the representation of the signal values in the simulation of delay units 

connected in cascade. We can see how well the subgraphs are shared. The



150 6. Time-Symbolic Simulation for Accurate Timing Verification

 X
 A B 

 [0:3] [0:3]

delayA = (al,ao) 
delayB = (b1,bo)

B[6] B[5] B[4] B[3] B[2] B[1] B[0]

X[6] X[5] X[4] X[3] X[2]  X[1] X[0]

0]

Fig. 6.14 Representation of signal values by SBDD.

property 2) is also favorable for detecting the changes of signal values in 
symbolic simulation. The Boolean functions appearing in the CTSS are 

produced by the logical operations for gate evaluations and the delay 

operations which correspond to addition and comparison of the integers 

in binary representation. We can expect efficient simulation because 

BDD's are known to have good affinity for these operations [Ish90y]
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6.6 Timing Verification by Coded Time-Symbolic 

Simulation

6.6.1 Result Analysis of the CTSS 

Although CTSS offers accurate simulation results, they are represented 

by Boolean functions and it is often difficult to understand the meaning 

of the Boolean functions and to tell if there exist errors. For example, in 

Fig. 6.12 the signal values on C satisfies the following relation. 

   0 =  C[0] c C[1] c C[2] c • • • c C[6] = 1, 

where x C y is defined as x -{- y. From this relation, we can conclude that 

there is always a single rising edge on C regardless of the combination of 

delay values. However, it seems difficult to derive the fact only by looking 

at the expressions. It is therefore important to prepare a mechanism 

to analyze simulation results and tell if the simulation results match 

desirable behavior of the circuit under test. In this section, we will discuss 

methods of analyzing results. We propose a novel technique of comparing 

the simulation results with desirable ones.

6.6.2 Analysis of Simulation Results Based on Symbolic Sim-

      ulation of Finite Automata 

In section 7.4 we compared simulation results with desirable results by 

expressing the desirable waveforms using the same data structure as sim-

ulation results. Although we can also apply this strategy to the CTSS, 

it is difficult to derive Boolean expressions to represent the specifications 

in general. In this paper we propose a novel technique of comparing 

simulation results with desirable waveforms on the basis of symbolic sim-

ulation of finite automata. This technique is a generalization of the edge 

detection technique shown above.
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1 1 0 1 

A B C D E F 

               Fig. 6.15 Finite Automaton My. 

  At first we represent desirable behavior of a circuit by regular expres-

sion 77. We construct deterministic finite automaton Ay which accepts 

the same set of sequences as 77. We design sequential circuit Mn which 

inputs a sequence and outputs 1 if and only if Ay accepts the sequence. 

We simulate My along with the circuit under test. When the final output 

of the My, is 1, we can conclude that the circuit satisfies the specification 

77 regardless of the delay values. When the final output is a Boolean ex-

pression containing delay variables, the expression indicates the possible 

combinations of actual delay values for the correct behavior of the circuit. 

  For example, when we want to verify that not more than two 1-pulses 

are allowed on the output line x of the circuit C, the specification is 

written as: 

77 = 00* + 00*11*00* + 00*11*00*11*00*. 

From this regular expression we can construct deterministic automaton 

Ay as shown in Fig. 6.15. 

  By state assignment A = (1,0,0),B = (0,0 ,0),C = (1, 0, 1), D = 
(0, 0, 1), E = (1,1,1), F = (0,1,1), we get sequential machine My ex-
pressed by the following equation, where yl, y2 and y3 are state variables 

and ok is the output of My: 

    yi = x•y2+x•yl•y3, 

ya = Y2•Y3-I-x•yi•Y3, 

ys = Y3+x•yi, 
    ok = yi •
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By simulating  Mn along with the circuit C, we know if C satisfies the 

specification 1].

6.6.3 Extraction of Algebraic Expressions 

As a result of the comparison discussed in the previous subsection, we 

get a Boolean expression indicating delay conditions for correct behavior. 

We are able to obtain a set of combinations of delay values immediately 

from this expression. However, it is much more helpful if we obtain 

algebraic relations between the delay values. Suppose the following ex-

pression is obtained, where delayA and delayB are coded by (a2, al, ao) 
and (b2, bl, bo), respectively. 

   ok = b2•a2+b2 bl •al+b2•bl b0•a0 

+ b2 al b0•a0 a2•b1•al 

       ^a2•bl •b0•a0+a2•a1 b0 a0. 

It is difficult to realize by what condition the circuit behaves correctly. 

If we extract the following algebraic expression of delayA and delayB, we 

can understand the condition very well. 

   delayA < delayB. 

  Extraction of an algebraic expression from a Boolean function repre-

sented by a BDD is discussed in [Ohm90]. Currently we have an efficient 

algorithm to extract a single linear inequality. There is room for a fur-

ther study to extract delay conditions in general, which are expressed as 

logical combinations of linear inequalities.

6.6.4 Implementation Issues 

In order to enhance the performance of simulators, we usually adopt 

event driven simulation mechanism. In this implementation, however, 

we decided to adopt the compiler driven simulation mechanism. It is
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because we considered that the event driven simulation is not necessarily 

advantageous for the following reasons: 

 1) Since an event on the input line of delay gate g at time t affects the 
 output  line  of  g at time t + ming, t + mint' +1, • • • ,t + maxg, we have 

   to handle much more events than in usual logic simulation. 

 2) In order to accelerate symbolic operations in a SBDD, we keep re-

   cent results of symbolic operations in a hash table [Min90], and we 
    can execute the same symbolic operations as we executed recently 

   by just looking up the table. Since the cost of the table look-ups is 

   much smaller than that of the symbolic operations, we can not ex-

   pect a drastic reduction of computation time by omitting the same 

   operations according to the event driven simulation strategy. 

On the other hand, in the compiler driven simulation, we must pay atten-

tion to the order of gate evaluation, because we are required to evaluate 

a gate for many times until the circuit becomes stable. This requirement 

brings a considerable drawback to computation time. We classify gates 

into the following two categories. 

 1) Delay gates whose minimum delay value is not 0. 

 2) Functional gates (whose delay value is 0) and delay gates whose 

   minimum delay value is 0. 

Since the output value of a gate in Category 1) at time t does not depend 

on the input value at time t, we can evaluate the gate without waiting for 

the evaluations of the other gates. However we need to be careful about 

the order of the evaluations of gates in Category 2). In our implementa-

tion, we evaluate all gates in Category 1) first and then evaluate gates in 
Category 2) in the order of the level number. We exclude a circuit which 

contains loops consisting of gates in Category 2) in the preprocessing 

stage.
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Table 6.1 Performance of the coded time-symbolic simulator .

Circuit

 # of

gates

Simulated

time

units

CPU

time

[sec]

# of
nodes

Speed

[event
/sec]

adderl

adder2

adder,

adder 8

adder 16

6

12

24

48

96

10

26

34

66

130

0.2

0.8

2.7

15.0

350.4

29

121

653

4,285

31,229

105.0

97.5

111.1

78.4

13.3

mult,2

mul t.4

16

88

22 1.3 438 126.2

dec8

enc8

17

22

18

10

3.0

4.4

6,489

10,424

47.3

52.5

tff (1)
tff (2)

7

7

29

29

2.4

0.9

2,758

75

84.4

108.8

  We implemented a coded time-symbolic simulator based on the meth-

ods described so far. The simulator is written in language C and runs on 

a Sun3/60 workstation.

6.6.5 Experimental Results 

The simulator successfully computed the accurate results of the difficult 

examples in Fig. 6.2. Table 6.1 shows performance figures on some cir-

cuits. The column circuit shows the names of circuits simulated. Here, 

addern is an n-bit ripple carry adder, multn an n-bit array multiplier, 

dec8 an 8-bit decoder, enc8 an 8-bit priority encoder, and  tff a T flip-

flop presented in [Ish89]. Bounded uncertain delays of [1,4], minimum 1 

and maximum 4, were assigned to all the gates in the circuits, except for 

tff(2). At first each circuit was initialized with an arbitrary input pattern, 

and then all the input signal values were inverted all at once at time 0. 

Simulation was executed until there remain no events except for tff(1).
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The T flip-flop contained feedback loops and began oscillation when all 

the gates had delays of [1,4]. We stopped the simulation at time 29. Row 

tff(1) shows the result of this simulation. In the simulation of tff(2), the 

delays were adjusted so that oscillation might not occur (delay of each 

gate had width of 4). The maximum SBDD size was limited to 100,000 
nodes. Simulation was stopped when there was the larger requirement 

(indicated as '-' in the table). 
  We counted the number of events occurred during the simulation by 

a separate program. Simulation speed was computed by dividing the 

number of events by CPU time for simulation. The simulation speed 

is about 10 to 100 events per second, which decreased with the growth 

of circuit size. We conclude that our simulator is much slower than 

conventional  min/max delay simulators, but it is amazingly fast because 

it simulated 496 cases in about 6 minutes as is shown in the result of 
adder/6. The circuit with feedback loops was also simulated at the speed 

as fast as combinational circuits, though it took a lot of time if the circuit 

oscillated. Since we have not attempted to order the variables, these 
figures (the number of nodes and simulation speed) should improve, if 
the variables are appropriately ordered.

6.7 Remarks and Discussions 

New notions of time-symbolic simulation and coded time-symbolic sim-

ulation have been proposed as a new approach for accurate timing ver-

ification of logic circuits, and its implementation and application have 

been described. Our simulation techniques make it possible to simulate 

logic circuits with uncertain delay units precisely . Furthermore they en-
able us to derive the conditions in which the circuits behave correctly . 
It is also possible to compute the probability where the circuit under 

test falls into the erroneous behavior by extending the coding scheme of
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CTSS  [Deg90]. These by-products are very useful for design correction 
and design improvements. 

  Both of the methods are considered to be effective to handle the static 

variation of the delay value. Although the dynamic variation of a de-

lay value can be also modeled by introducing many variables, we can 

not expect efficient simulation. There is much room for a study on the 

simulation methods for dynamic delay variation. 

  As for simulation speed, we succeeded in simulating small scale circuits 

within feasible CPU time. In the CTSS the circuit with feedback loops 

can be simulated in as much time as combinational circuits unless it 

oscillates. The simulators run fast enough to simulate small scale circuits 

and are considered to be effective for the verification and redesign of small 

asynchronous blocks such as flipflops. 

  It is considered to be difficult to simulate a large scale circuit of more 

than 10,000 gates by time-symbolic simulation because of the complex-

ity of the problem. As a solution we are now developing an approxi-

mated symbolic evaluation technique and the method of combining time-

symbolic simulation with the conventional min/max delay simulation.
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Chapter 7

NES: A Nondeterministic Behavior 

Model for Hardware Description 

Languages

7.1 Introduction

Hardware description languages (HDL's) are kernels of CAD systems for 

integrated circuits which work as inputs to various CAD tools, design doc-

uments and vehicles for design interchange among different CAD systems. 

Although a lot of research projects have been carried out on hardware 

description languages, we are now confronted with a big turning point 

due to two trends; standardization and extension of the applications of 

HDL's. 

  Standardization of a hardware description language (HDL) has an in-

estimable impact on the development of hardware design, including CAD 

tool development and design education. There are several activities for 

standardization in the U. S., Europe, and Japan [Kar89, Pi183, Coe89, 
Har86]. Since a standard HDL is used by many users, including IC man-

ufactures and tool developers working in various kinds of design culture, 

we should provide them with a method of sharing a detailed idea on the 

HDL. It is therefore essential to define rigid syntax and semantics of the 

                            159
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language. Although almost all the HDL's are designed on the basis of 

the formal definition of syntax by a meta language like BNF, there are 

very few HDL's, especially among the practical ones, which has clear 

definition of semantics. The task of defining the formal semantics of an 

HDL can be broken into the following two subtasks. 

 1) Defining a basic model of explaining hardware behavior. 

 2) Defining the relation between syntax and semantics based on the 

   behavioral model. 

  There have been a lot of researches on the method of 2) in the area of 

programming languages  [Bjo78]. There have been, however, few studies 
in the area of HDL's other than [Pi183] . Especially there have been no 

established models which explain the behavior of the hardware described 

in HDL's. In view of the trend of standardization, it is considered to 

be an urgent research theme to develop good behavior models for HDL's 

and to establish formal methods for defining semantics of HDL's. 

  Extension of the applications of HDL's is also changing the situation. 

For many years logic simulation has been the most important applica-

tion of HDL's. Actually semantics of HDL's is closely related to efficient 

simulation algorithms and how to build behavior models which enable ef-

ficient simulation has been one of the most important issues. In practical 

situations semantics of an HDL is defined by means of the simulator for 

the HDL. However, recent researches in the area of CAD for integrated 

circuits have brought about outstanding development of techniques for 

various design support by computers. Especially logic synthesis come to 

become a practical technique and there are strong demands for HDL's to 

support logic synthesis. However, the simulation based semantics often 

causes inconsistency. On example is the handling of don't cares . In logic 

synthesis, we assume all the possible values for don't care specifications
, 

but in logic simulation don't care values are dealt with as unknown values .
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This is inevitable if we consider efficiency of simulation execution but it 

often brings about unnatural results as is discussed in Chapter 6. The 

same inconvenience arise also in applying  HDL's to formal verification. 

Furthermore the techniques of logic simulation are also changing. Many 

simulators attempt efforts to avoid unnatural results at the computation 

cost as small as possible. Now we need a behavior model for HDL's which 

is disengaged from the conventional simulation techniques and can sup-

port various applications such as logic synthesis, formal verification and 
advanced simulation techniques.

  In this chapter we propose a new behavioral model of hardware, named 

NES (Nondeterministic Event Sequences) model [Ish90y]. The NES model 

is a generalization of the event-driven simulation mechanism. The most 

important feature of the NES model is that it models uncertainty of 

hardware behavior by means of nondeterminism. Uncertain behavior 

of hardware is associated with signal values which are not specified or 

specified as don't cares, delays whose values are specified only by their 

minimum and maximum values, and so on. The uncertainty often makes 

the semantics of HDL's unclear and ambiguous. We mean by the term 
"nondeterminism" to take all the possible behavior derived from the de-

scription into account. The nondeterministic semantics forms a rigid 

basis for logic synthesis and formal verification, and also can be a final 

goal of logic simulation [Yas89, Yas901.

  In the following section, we describe basic concepts of the NES model. 

We show how waveforms and the behavior of a hardware module are 

modeled and described in section 7.3, and show the modeling of connected 

modules in section 7.4. We also discuss applications of the NES model 

in section 7.5.
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(a) Uncertain delay values.
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       (b) Uncertain signal values. 

deterministic modeling of the behavior. 

of the NES Model

7.2.1 Modeling of Uncertainty by Nondeterminism 

When we attempt to model hardware, we often face with uncertainty of 

hardware behavior, such as a signal value whose value is unknown a delay 

time whose only minimum and maximum values are known . There are 

two reasons that explain such uncertainty. One is that we can not specify 

the exact behavior of hardware in an actual condition. For example , as we 
mentioned in Chap 6, it is impossible to specify the actual delay time in 

advance. We refer to this kind of uncertainty as don't know uncertainty . 

Another kind of uncertainty is what we call don't care uncertainty . If we 

do not mind, or do not want to mind, all the details of a design
, we do 

not describe the complete specification but leave a signal value as don't 

care or specify the delay of combinational circuits by a pair of minimum 

and maximum values. 

  Traditionally, such kinds of uncertainty has been modeled by intro-

ducing a special signal value denoting unknown; behavior of hardware
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has been explained based on a calculus such as unknown + 1 = 1 but 

unknown  + unknown = unknown. This is considered to be a  simula-

tion oriented calculus because it enables fast computation. It has been 

pointed out, however, that this poor calculus often leads to pessimistic 

and unnatural semantics, as is discussed in Chapter 6. For example, in 

Fig. 7.1 (a), the unknown value on the line E indicates a possibility of a 
hazard, which never occurs in an actual circuit. Fig. 7.1 (b) shows an-

other example which explains the pessimism in signal values. The input 

values on A and B are 1 while the value on S is x which specifies don't 

care or unknown. According to the deterministic calculus the output 

value on Y is x. However, in actual circuits, the output value on Y is 

always 1 regardless of the value on S because this circuit is a gate-level 

implementation of a selector. 

  Such a deterministic modeling of uncertainty has been a natural con-

sequence when simulation is by far the most important application of 

HDL's. The semantics of HDL's has been directly connected with simu-

lation techniques. Nowadays, however, simulation is not the only impor-

tant application of HDL's. We should take account of synthesis, verifica-

tion, and other various applications, where simulation technique oriented 

semantics will cause many inconsistencies. Especially in synthesis and 

verification we need to deal with the uncertainty of hardware behavior 

in a strict sense. 

  In the NES model, we attempt to express the uncertainty by means 

of nondeterminism. We describe the possible behaviors of hardware as-

sociated with the uncertainty using a set. This concept is similar to that 

of the coded time-symbolic simulation in Chapter 6. For example, we 

treat an uncertain delay between 1 and 4 in Figure 1(a) as a set of delays 

{1,2,3,4}. The behavior of the circuit is explained with all the possible 
combinations of delay values. Similarly, unknown value on line S of the 

circuit in Figure 1(b) is treated as a set of values {0,1}, which brings
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about signal value 1 on line Y. Thus we can define natural and strict 

semantics for uncertain hardware behavior. This feature is also desirable 

for creating strict discussions on formal verification and synthesis. We 

will discuss this issue in section 7.5.

7.2.2 Modeling of a Zero Delay 

In designing hardware, timing relations among events are very important. 

HDL's must have a framework of specification of timing relations. Thus 

one of the most important issues in developing a behavioral model of 

hardware is how to model time. 

  Probably one of the simplest way of modeling time is to represent a 

waveform by a sequence of symbols, each of which is associated with a 

minimum unit of the discrete time. Then the behavior of a hardware 

component is represented by a sequential machine over the set of the 

symbols. Although this modeling realizes simple mathematical handling, 

it lacks the ability to express the occurrence of multiple events at the same 

place within a unit time. So it is very difficult to explain the behavior 
of the circuits that contain loops consisting of zero delay components. 

Here, zero delay means the delay less than the unit time. It is a product 

of the quantitization of time. If the delay time of a component is less 

than the minimum unit of the time, it is specified as 0. The zero delay 

also comes up when we take a clock cycle as a unit time. In such a case, 

delay of gates is treated as zero delay because it is not measured by the 

unit time. The zero delay expresses before-after relationship or causality 

whose delay time is 0 measured by the unit time, 

  In order to deal with the zero delay, the time models of bcl (Conlan) 

[Pi183] and VHDL [Coe89] are designed on the basis of a sub-unit time 
named a step and a 0-delay, respectively. The signal value at a unit time 

is the final result of the infinite repetition of the computation in a step or 

a L -delay. Since these models are invented to compute the final result at
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     Fig. 7.2 Results dependent on the order of computation . 

a unit time, no attention is paid to the order of the computation within 

a unit time. Actually, a step or a  0-delay is associated with simulation 

under the unit delay model. There are cases where the final result de-

pends on the order of the computation. For example, in Fig. 7.2, while 

the circuit is impractical, there may be a hazard on D which changes the 

signal value on Q. By using the models of bcl and VHDL, we will never 

get this result. This is again because these languages are based on the 
deterministic computation model.

7.3 Modeling and Description of Behavior of a Hard-

    ware Module 

7.3.1 Modeling of Waveforms 

In the NES model, we model waveforms on signal lines by a set of event 

sequences. An event is a tuple of a place and a signal value. A place 

is associated with a signal line. An intuitive meaning of event (p, v) is 

that the value of place p becomes v. An event is considered to have no 

duration. The order of the events in a sequence represents the before-

after relationship between events. Namely, the events are totally ordered 

and there is no concept of simultaneous occurrence. Generally, causality 

between events is modeled by a partial order between events. In our 

model, as shown in Fig. 7.3, we represent a partial order by a set of all 

the possible event sequences that are consistent with the partial order. 

  Time is modeled by special events that indicate the progress of the
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Fig.
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               Fig. 7.4 Modeling of waveforms. 

time. This framework is essential to represent a causality relationship 

independent of the time. It is also possible to express more than one 

notion of time in the framework, such as nano-second and clock-cycle , 
simultaneously. Fig. 7.4 is an example of the representation of waveforms . 

The waveforms in timing chart (a) is represented by a set of three event 

sequences. (@t ,ns) is an event that expresses a progress of the time in 

nano second. Uncertainty of the time of the falling edge on Y is expressed 
by the three possible event sequences.

X ={ (CK,0)(D,1)(CK,1)(D,0)••• 
(D,1)(CK,0)(CK,1)(D,0)•••}

Y ={ (CK,0)(D,1)(CK,1) 
(D,1)(C K,0)(C K,1)

1 (D,0)••• 
Q,  (D,0) •}

Fig. 7.5 Behavior of a hardware module .
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event sequence

(q',  Q)ESM(q, e)

          Fig. 7.6 Operation of the abstract machine. 

7.3.2 Modeling of Behavior of a Module 

The behavior of a hardware module can be regarded as a process which 

computes, from a set of event sequences on its inputs, the set of event 

sequences on its inputs and outputs (see Fig. 7.5). We model this process 

on the basis of the behavior of an abstract machine. Intuitively, the 

machine scans each of given event sequences with a pointer and inserts 

output events into proper positions. The abstract machine M over a set 

of event E is a triple M =  (QM,  IM,  SM), where QM is a set of states, 

IM C QM is a set of initial states, and SM : QM x E _+ 2QM xE* is a 

partial function which defines the state transition of M. bM(q, e) is a set 
of possible actions of M in state q and reading event e. An action is 

specified by a pair of the next state and an output event sequence. The 

machine chooses one of the actions (q', ci) in SM(q, e). An important point 

is that this choice is nondeterministic; that is, all the possible cases are 

considered. It inserts the output event sequence ci right after the pointer, 

advances the pointer by one and changes its state to state q', as shown 

in Fig. 7.6. 

  The formal definition of the behavior of the abstract machine is as 

follows. Let us define function "M : Q x E* --* 2E` for M = (QM, IM, bM). 

(q, x) is a set of event sequences which is obtained from x by repeating 
the possible actions starting from q. 

11,1(q, E) = {e}, 

M(q, e • x) = {e • y I (q , oi) E M(q, e),
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y E M(q a x)}. 

  The formal semantics of the abstract machine M is defined a function 

EM : 2E. --> 2E`. E-EM(X) is a set of event sequences obtained from set of 
event sequences X given as an input stimulus to M. 

EM(X)={y yE M(s,x),sEIM,xEX}. 

7.3.3 Description of Behavior of Modules 

We can consider many ways of describing the set of states, the set of 

initial states and state transition function of the abstract machine. In 

this paper, we use prolog for this purpose. In the following discussion, 

event (p, v) is described as term p (v) . An event sequence and a set of 

event sequences are described as a list of events and a list of lists of 

events, respectively. For example, event sequence (a, 0)(y, 1) is described 

as [a(0) ,y(1)], and set of event sequences {(a, 0)(y,1), (a, 0)(y, 0)} is 
described as [[a(0) ;y(1)] , [a(0) ,y(0)]]. 

  In order to specify M = (QM, IM, EM), we describe IM and bM by 

the predicates init and delta, respectively. Q is described implicitly. 
Predicate init ( M , q ) declares q E IM, and delta( M , q , e , q' , 
s ) declares (q', s) E bM(q, e). 

  We show a description of the behavior of a D-flipflop (dff) as a simple 

example. dff has three places; data input d, clock input ck, and output 

q. Two state variables are used to describe the states of dff; the first 

one represents the current value of d and the second one represents the 

previous value of ck. 

init(dff, [0,0]) .(1) 

init(dff , [0,1]) .(2) 

init(dff, [1,0]) .(3) 

init(dff , [1,1]) .(4) 

delta(dff, [M,P] ,d(D) , [D,P] , []) .(5)
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 delta(dff,  [M,  0]  ,  ck(1)  ,  [M,1]  ,  [q(M)])  .(6) 
delta(dff , [M,1] , ck(0) , [M, 0] , []) .(7) 

delta(dff, [M,P] , ck(P) , [M,P] , []) .(8) 

delta(dff, [M,P] , E , [M,P] , []) : - E\=d(D) , E\=ck(C) . (9) 

  (1) N (4) declare that there are four possible initial states, which 
are the formal interpretation of the unknown initial state of dff. (5) is 

interpreted as "when the current state of dff is [M,P] and there happens 
an event d (D) , the next state is ED, P] and there are no output events". 

Namely, the new value D on the data input d is taken into the first state 

variable. (6) describes the behavior of dff at a rising edge of ck. The 
current state [M, 0] (the previous value on ck is 0) and an input event 

ck (1) mean a rising edge on ck. On this event, there will be an output 

event q (M) . The event E in (9) is an event which occurs neither on d nor 
ck. In response to the event, dff keeps the current state and outputs no 

events. 

  Now, we show how dff behaves. Suppose an event sequence 

[d(1) , ck(0) , ck(1) , d(0)] is given to dff. The behavior of the abstract 

machine of dff is as follows:

1) Chooses one of the initial states declared by an init predicate. Here, 

  as an example, we will trace the case where [0,0] is chosen. The 

  pointer is set to point the first event of the sequence. 

2) Reads the first event d(1).  According to the clause (5) above, 
  changes the state to [1,0]. Advances the pointer by 1. 

3) Reads the next event ck(0), changes the state to [1,0] according 

  to the clause (8), and advances the pointer by 1. 

4) Reads ck(1). According to the clause (6), changes the state to 

[1,1] and inserts event q(1) after ck(1). As a result, the event
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   sequence becomes [d(1) , ck(0) , ck(1) ,q(1) , d(0)] . The pointer is 

   advanced by 1, and it points to q(1). 

 5) Reads q(1).  Stay at state [1, 1]  and outputs no events according 
   to the clause (9). Advances the pointer by 1. 

 6) Reads d(0). Changes the state to [1,0] and halts. 

Asa result, we get the final sequence [d(1) , ck (0) , ck (1) , q(1) ,d(0)]  . 
Although there are four possibilities for the initial state, all of them lead 

to the same result. In this example, there are no nondeterministic choices 
of actions because only one action is specified for each pair of the current 

state and the input event.

7.3.4 Description of a Zero-Delay Unit 

Another example, rather sophisticated but demonstrating the expressive-

ness of the NES model, is concerned with the description of a zero-delay 

unit zd. zd transmits only the value on its input q to its output y be-

fore an occurrence of event t (ns) , which means that time progresses by 

1 nano second. When there occur more than one event on the input, 

events corresponding the input occur on the output in arbitrary timing 

but the events preserve the order of the occurrence. This machine has in 

mind a queue that keeps the order of the events, and outputs the events 

from the queue before the event to advance time comes. 

init (zd, []) .(1) 

delta(zd, [] ,q(Q) , [Q] , [] ) .(2) 

delta(zd, [] , q(Q) , [] , [y (Q)]) . (3) 

delta(zd, [] , t (ns) , [] , [] ) . (4) 

delta(zd, [] ,E,0, [] ):- 

 E\=t(ns)  ,E\=q(Q).(5) 

delta(zd, [HIT],q(Q),HTQ, []):-
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 append(  [HIT]  , [Q] ,HTQ) .(6) 

delta(zd, [HIT] ,q(Q) ,TQ, [y(H)]) : -

 append(T,[Q],TQ).(7) 

delta(zd, [HIT] ,E, [HIT], ^):-

 E\=t(ns) ,E\=q(Q).(8) 

delta(zd, [HIT] ,E,T, [y(H)]) :-

 E \=t(ns),E\=q(Q).(9) 

  In this case, the machine shows nondeterministic behavior. For ex-

ample, in (2) and (3), two possible actions are specified for current state 

[] and an input event q(Q); to take the value Q into the queue (clause 

(2)), or to output the value Q immediately (clause (3)). As a result of the 
state transitions, more than one sequence can be computed for a given 

sequence. For example, in response to a sequence 

[t(ns),q(1),d(0),q(0),t(ns)] 

the abstract machine computes a set consisting of three event sequences: 

[t(ns),q(1),d(0),q(0),y(1),y(0),t(ns)] 

[t(ns),q(1),d(0),y(1),q(0),y(0),t(ns)] 

[t(ns),q(1),y(1),d(0),q(0),y(0),t(ns)] 

  Addition of the next lines will make the zd a zero-delay unit with 

arbitrary inertia. 

delta(zd,[HIT],q(Q),[Q],C] ). (10) 

delta(zd,[HIT],q(Q),C] ,Cy (QM . (11) 

7.3.5 Simulation of the Abstract Machine 

The semantics of description of abstract machines can be also described 

as a prolog program. It is possible, therefore, to simulate the abstract 

machine described in prolog. The program is shown below. Predicate
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xi (M,  q,  x, y) means that M computes event sequence y from event se-

quence x by repeating transitions starting from state q. This is a straight-

forward translation of the definition of y = "M(q, x). 

xi(M,Q,[],^). 

xi(M,Q, [EIX] , [EIY]) :-

   delta(M,Q,E,NQ,Z), append(Z,X,ZX), xi(M,NQ,ZX,Y). 

  The above program works as a prototype simulator of the NES model. 

For example, in response to the query 

xi(zd,Q,[t(ns),q(1),d(0),q(0),t(ns)],Y) :- init(zd,Q). 

there will be the following solutions: 

Y = [t(ns),q(1),d(0),q(0),y(1),y(0),t(ns)]; 

Y = [t(ns),q(1),d(0),y(1),q(0),y(0),t(ns)]; 
Y = [t(ns) ,q(1) ,y(1),d(0) ,q(0) ,y(0),t(ns)] 

7.4 Modeling and Descriptions of Connected Mod-

     ules 

7.4.1 Modeling of Connected Modules 

Let M1 and M2 be abstract machines. We model the parallel opera-
tion of M1 and M2 by the behavior of a new abstract machine that is 

constructed from M1 and M2. We denote the new machine as WW2 . 
. The places that have an identical name are to be connected . For ex-

ample, dff 11 zd corresponds to the circuit consisting of dff and zd 
where the output q of dff and the input q of zd are connected with 

each other. Let M1 = (QMI, IMI, bMl) and M2 = (QM2, IM2, 6M2). The 
state of M1MM2 is defined as a composite of the states of M1 and M2. 
When Ml iM2 is in a state (qi, q2) and reads event e, 6M, (qi, e) and
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SM2(g2i e) are computed. The machine chooses (qi, al) E SMl (ql, e) and 

(q' , a1) E SMl (ql, e). This choice is also nondeterministic. The next state 
of the machine is (qi, q'2). An output event sequence to be inserted after 

the pointer is chosen from a set shuffle(a1i 0-2), which is a set of event se-

quences obtained by shuffling al and a2. For example, shufe(abc, xy) = 

{abcxy, abxcy, abxyc, axbcy, axbyc, axybc, xabcy, xabyc, xaybc, xyabe}. 
  The formal definition of M1IIM2 is as follows.

1VI1~~NIz= (QM1 X QM2, IMi X IM2, SM1IIM2),

where

SM,IIM2((g1, g2), e) = 

{((q , q2), a) 

(q , a1) E SM1(g1, e), 

(q2, 0-2) E bM2(g2, e), 
    a E shuffle(al, a2)},

and

shuffle(x, y) = 

{xi •yl•x2.y2...xk•ykI xi, yiEE, 
x = xi • X2 ... Xis, y = y1 ' y2 ... Yk}.

  When feedback loops are constructed by connecting modules, a new 

abstract machine that represents the behavior of the connected modules 

must read events which it outputs. That is the reason why the abstract 

machine inserts an output event sequence right after the pointer. There 

is a possibility of infinite looping of computation. This is the semantics of 

the description because the described circuit in this case oscillates within 

a unit time.
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7.4.2 Description of Connected Modules 

Let us describe the set of initial states and the state transition function 

of the machine  Mill  M211  •  •  1  l  Mn as 

init ([M1,M2,...,Mn], q). 

delta([M1,M2,...,Mn], q,e,nq,^). 

  These predicates are automatically derived from the description for 

M1, M2, • • , Mn by the following programs. These programs are also 

straightforward interpretations of the definition in the previous subsec-

tion. 

init([],[]).; 

init([MIMS],[QI QS] ) :- init(M,Q), init(MS,QS). 

delta([], [],E, [], []). 

delta( [M I MS] , [Q I QS] ,E, [NQ I NQS] , SHUFFLE) :- 

  delta(M,  Q, E, NQ, Z), 

  delta(MS,QS,E, NQS,ZS), 

  shuffle(Z, ZS, SHUFFLE ). 

shuffle([] ,Y,Y) . 

shuffle(X, [] ,X) . 

shuffle([HIT],Y, [HIZ]) :- Y \_ [], shuffle(T ,Y,Z). 
shuffle(X, [HIT] , [HIZ]) :- X \= [] , shuffle (X,T ,Z) -

  The following query enables the simulation of the connection of the 

dff and the zd. 

xi([dff,zd],Q, [d(1),ck(0),ck(1),d(0)] ,Y) init([dff,zd],Q). 

  In this case, the description of zd in the previous subsection is not 

enough. The complete version is as follows.
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 init  (zd, [ [] , 0]) . 

delta(zd, [[],N],q(Q), [[Q],N], [] ). 

delta(zd,[[I,O],q(Q), [[],1], [y(Q)]). 

delta(zd,[[],N],t(ns),[[],N], [] ). 

delta(zd, [[],N],y(Y), [[],NN], [] ): 

  NN is N-1. 

delta(zd, [[],N],E, [[],N], []):-

 E\=t(ns) ,E\=q(Q) ,E\=y(Y) . 

delta(zd, [[HIT] ,N] ,q(Q) , [HTQ,N] , []) : -

 append ([H 1 T] , [Q] ,HTQ) 

delta(zd, [[HIT] ,0] ,q(Q) , [TQ,1] , Cy (H) ) 

 append(T, [Q] ,TQ) . 

delta(zd, [CHIT] , 0] ,q(Q) , C^,1], Cy(Q)l) 

delta(zd, [[HIT] ,N] ,E, [[HIT] ,N] , []):-

 E\=t(ns) ,E\=q(Q) ,E\=y(Y). 

delta(zd, [CHI , 0] ,E, [T,1] , [y (H)]) :- 

 E\=t (ns)  ,E\=q(Q),E\=y(Y). 

delta(zd, [[HIT], 1],y(Y), [T, 1], Cy(H)])

7.5 Applications of the NES Model 

7.5.1 Definition of Semantics of UDL/I 

In the standardization project of a hardware design language UDL/I, we 

attempted to define semantics of the language based on the NES model 

[Kar89, Yas89]. This is done by means of defining rules of translating a 
description in UDL/I into a description of an abstract machine of the NES 

model. Since UDL/I has rich syntax and is based on sophisticated default 
interpretation, it is not a prospective method to reduce a description in 

UDL/I directly into a description of the abstract machine. We therefore 
took the following three steps.
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1) Reduce a description in  UDL/I into a description in a very small 

  subset of UDL/I, named core subset. 

2) Resolve conflict of multiple outputs in the description obtained in 

  1) by inserting conflict resolution logic. 

3) Define an abstract machine for a conflict free description in the core 
  subset.

  In this method, the core subset works as an interface to the behavioral 

model. This small interface is also useful in comparing the expressive 

power of UDL/I with that of other HDL's or in discussing the correctness 
of the interlanguage translation. 

  The nondeterministic interpretation takes place, for example, in the 

following cases. 

 1) Variety of a delay value: When a delay value is specified only by its 

   minimum and maximum values, the value of the delay is decided by 

   a nondeterministic choice at every event occurrence. 

 2) Order of event evaluation whose before-after relationship is unknown: 

   All the possible orders are taken into account unless there are no 

   before-after relationships, as discussed in 7 .2.2. 

 3) Unspecified signal values: A logic value is decided by a nondetermin -
   istic choice from all the possible logic values when the signal value 

   is unknown for the lack of specification or a don't care specification . 

 4) Unknown value caused by signal conflict: When different signal val-
   ues are assigned from different sources at the same time

, we have 
   to resolve the conflict according to the resolution rules . Nondeter-

   ministic choice of conflicting signal values is prepared as one of for 

   conflict resolution rules.
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Although the semantics of the final version of UDL/I  ver1.0 is determined 
based on the deterministic semantics, the discussion on the nondetermin-

istic semantics have enabled us to identify the statements to which we 

must pay attention in defining semantics.

7.5.2 Nondeterministic Semantics and CAD Tools 

The most important feature of the NES model is that we can explain 

the behavior of designs including uncertain factors without ambiguity as 

mentioned in 2.1. This feature is desirable for creating strict discussions 

on formal verification and synthesis. In the NES model, the behavior of 

an abstract machine for a given stimulus is dealt with as a set of possible 

behaviors. We can define the specification-implementation relationship 

between two descriptions of designs in terms of the inclusion relationship 

between the behaviors of abstract machines for the descriptions. For 

example, suppose S is a register transfer level description of a circuit 

which computes function f with delay between lOns and 20ns, and I is 

a gate level description of a circuit which also computes f with delay 

between 14ns and 15ns. Then the behavior of I is included by S and we 

can say I is an implementation of S. This relationship is mathematically 

described as follows: 

VX EE*: Em, (X)C:Ms(X), 

where MI and Ms are abstract machines for I and S, respectively. For-

mal design verification is defined as to prove this relation. Synthesis is 

also defined as to generate an implementation I for S which satisfies the 

relation. In this way, we can define what is the implementation of a speci-

fication without ambiguity, which will be a guideline for the development 

of verifiers and synthesizers. 

   On the other hand, nondeterministic semantics may be undesirable 

for simulator designers. It is very difficult, or almost impossible, to im-
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plement an efficient simulator which guarantees, for all kinds of circuits, 

results consistent with the  nondeterministic semantics. However, deter-

ministic simulators which approximate the nondeterministic semantics 

can be valid under certain design constraints. An usual zero-delay simu-

lator, which runs quite fast, can compute exactly the same results as the 

nondeterministic semantics if the circuit under test follows the strict syn-

chronous design methodology, while the simulation result is far from the 

ideal semantics if the circuit is an asynchronous circuit. We consider that 

simulation is an approximation of the ideal semantics and many simula-

tors of various accuracy and efficiency levels should be chosen according 

to design styles. 

  When we attempt to define deterministic semantics of an HDL of the 

gate level, we must fix very details of the simulation mechanism for the 

items 1) N 3) in the previous subsection. Simulation efficiency is closely 

related to 2). Accuracy largely depends on 1) and 3). There have been 
and will be numerous efforts to develop simulation techniques to enhance 

the efficiency and accuracy of simulation. Especially, symbolic simu-

lation techniques [Car89, Ish90d] will enable accurate and yet efficient 

simulation. It is not an appropriate approach to define the deterministic 

semantics that fixes the accuracy and may stop improvements on simu-

lation techniques. We should rather consider to provide ideal semantics 

that has a good affinity for formal verification and synthesis and can be 

a final goal for simulation techniques.

7.6 Remarks and Considerations

We have shown basic concepts, formal definition and a description method 

of the NES model. We have also described the role of the nondetermin -

istic semantics in the applications of HDL's
, especially in logic synthesis, 

formal verification and advanced logic simulation . We believe that the
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nondeterministic semantics will be an essential feature for HDL's of the 

next generation. 

  One weakness of the NES model is that its mathematical handling 

is difficult despite that it is formal and mathematically defined. It is 

therefore difficult to develop tools based on formal methods that directly 

employ the NES model. This difficulty is due to the ability of the NES 

model to handle infinite behavior within a unit time. In order to find a 

new possibility of extending the formal application of HDL's, we are also 

working on a behavioral model whose mathematical handling is easier 

and more efficient  [Kou90]  .
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Chapter 8

Conclusions

In this thesis, acceleration of logic simulation speed, accuracy of tim-

ing verification, and a hardware model for formal semantics of hardware 

description languages are discussed. 

  As a new approach to accelerating execution speed of logic simulation 

and fault simulation, efficient use of vector supercomputers were proposed. 

  In chapter 3, three types of simulation algorithms were proposed which 

are dedicated for 1) zero-delay simulation of combinational circuits, 2) 

zero-delay simulation of synchronous sequential circuits, and 3) simula-
tion with delay consideration. As well as the algorithms for simulation, 

the algorithms for preprocessing are also very important for efficient sim-

ulation. In order to reduce the storage requirements or to extend the 

vector length, we proposed some heuristic algorithms based on the data 

flow sorting. The simulators implemented based on the simulation tech-

niques were shown to have high performance especially in large scale 

simulation. The performance of our simulators is comparable to that of 

hardware simulation engines. 

  In chapter 4, a dynamic  2-dimensional parallel fault simulation tech-

nique was proposed as a vector supercomputer oriented fault simulation 

algorithm which is dedicated for the zero-delay two-valued fault simula-

tion of gate-level combinational circuits with single stuck-at faults. Large 

vector length is obtained by processing many faults for many patterns at 

                           181
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a time and fault dropping is efficiently performed by dynamic adjustment 

of the two parallelism factors. Computation cost was further reduced by 

combining the algorithm with selective tracing. Experimental results 

told us that the fault simulator implemented on the FACOM VP-200 su-

percomputer achieved acceleration ratio of 15 through vectorization and 

that the simulator is effective for test generation using random patterns, 

coverage estimation of a large set of random patterns or a built-in self 

test design. 

  Vector processors seem to have great potential for not only numerical 

computation but also for combinational problems in the area of CAD for 

digital systems. There will be a lot of earnest researches to develop vector 

processor oriented algorithms for variety of combinational problems. In 
converse, it is also considered to be important to improve architecture of 

vector processors suitable to process combinational problems. 

  In Chapter 5 accuracy of logic simulation was discussed from theoreti-

cal point of view, focusing on a hazard detection problem of combinational 

circuits with uncertain delay units. It was shown that the problem of de-

tecting hazards under uncertain delay assumption is NP-hard both in the 

discrete time model and the continuous time model and that it is hence 

difficult to solve the problem by a simple extension of the  min/max delay 

simulation technique. It was also shown that there is an essential differ-

ence between the discrete time model and the continuous time model 

and a lower bound of the width between ticks were shown that make the 

discrete time model equivalent to the continuous time model . 

  In chapter 6, a new simulation technique named time-symbolic simula-

tion and two efficient algorithms for it were presented . The time-symbolic 

simulation enables us to get conditions where the circuit under test be-

haves as expected, as well as accurate simulation result event under ex-

istence of uncertainty delay. The two algorithms , which are based on 
the linear programming and Boolean function manipulation respectively ,
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were shown to be able to verify small scale circuits up to 100 gates within 

feasible computation time. With the ability to derive delay conditions for 

correct behavior and the ability to identify critical paths, time-symbolic 

simulation is considered to be effective for design error correction and 

design improvements. 

  In chapter 7, an NES model was proposed as a model of hardware 

that can express uncertain behavior of hardware by means of  nondeter-

minism. Discussions were created on the role of the nondeterministic 

semantics in various new applications of HDL's such as logic synthesis, 

formal verification and sophisticated logic simulation. 

  As alternatives to logic simulators on general purpose computers, spe-

cial purpose hardware for logic simulation (logic simulation engines) have 

been developed, which achieves very high performance by parallel com-

putation scheme. However, there are trade-offs between simulation speed 

and flexibility, or affinity for existing CAD systems on general purpose 

computers. The new approach of developing logic simulators and fault 

simulators on general purpose vector supercomputer is expected to be 

the one that fills the gap between the two approaches. 

  A part of the growth of the computation time and required storage 

for logic simulation due to circuit size itself will be compensated by the 

growth of the performance of computers on which logic simulators run. 

However, the growth of circuit size and circuit complexity cause incidental 

increase in test pattern size which leads to additional increase in the 

computation cost. This is the very part of the growth of simulation cost 

that we must try to reduce with continual efforts to improve simulation 

efficiency. It is considered to be difficult to encounter this problem only 

by enhancing the performance of the simulator. Improvements in the 

way of simulation or the design for easier verification must be taken into 

account. 

  The symbolic approach discussed in chapter 6 may be a good sugges-
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tion on how to carry out verification efficiently. Although the symbolic 

simulation is much slower than the simulation for a specific pattern, it is 

incredibly faster than simulating the same number of the cases separately. 

Symbolic simulators based on BDD's can verify the logical equivalence 

of combinational circuits faster than the logic simulator on a vector pro-

cessor in many cases [Fuj88,  Min90]. These are the examples where we 

can reduce computation cost for verification by efficiently investigating 

multiple cases at a time. Formal verification [Hir89] is considered to be 

an ultimate way of examining all the possible cases efficiently. However, 

there seems to be still a large distance from logic simulation to formal 

verification in spite of earnest researches on this area, because complete 

verification without a guide of design knowledge is still too expensive 

in large scale design. In near future, verification using symbolic simu-

lation is considered to play an important role as a semi-automatic and 

semi-exhaustive verification method. 

  Another way of reducing the complexity of design verification problem 

is utilizing the information of design hierarchy. The existence of a certain 

design hierarchy implies design constraints on the lower level implemen-

tation. The computation cost for verification can be drastically reduced 

by exploiting the information. Also the combination of verification in 

higher-level and logic synthesis will be a promising approach . In either 

case, how to describe hardware in various design levels become an im-

portant issue. As is discussed in chapter 7, nondeterministic semantics 

is an important concept in order to express the relations between two 

circuits of different design levels. This will be a good base for logic syn-

thesis and formal verification. In order to perform formal verification , 
however, mathematical handling of the basic model must be easy . This 

was not achieved in the NES model, but is very important in introducing 

formal ways into the various applications of HDL's . The author believes 

that the nondeterministic semantics and a formal model which allows
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mathematical handling 

generation.

are indispensable factors of HDL's of the next
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