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 CHAPTER  I 

INTRODUCTION

    Gas flows around a condensed phase, where evaporation or condensation is taking 

place, have been investigated by many authors on the basis of kinetic theory, and various 

interesting and important results of the flow have been presented.1-28 The approach by 

kinetic theory is required, on one hand, by the fact that many important engineering 

problems that involve evaporation or condensation, such as isotope separation with 

laser29, occur in a low density state and, on the other hand, in order to derive the 

fundamental law concerning evaporation and condensation in hydrodynamics, which is 

outside of the continuum mechanics. 

    One of the most important problems in the latter category is derivation of the 

boundary condition for the hydrodynamic equation on the interface between a vapor 

gas and its condensed phase. The problem has been studied by analyzing the asymp-

totic behavior of the small mean free path limit of the boundary-value problem of the 

kinetic equation for a general domain.1o,12,23,30,31From the analysis, the hydrodynamic 

equation, which describes the over-all behavior of the gas, is derived and the problem 

determining the boundary condition for the hydrodynamic equation on the interface is 

reduced to the problem of evaporation or condensation on an infinite plane condensed 

phase. The solution of the half-space problem over the plane boundary gives not only 

the boundary condition for the hydrodynamic equation but also the local correction, 

called Knudsen layer correction, to the solution of the hydrodynamic equation. 

   Because of this importance besides its simplicity and intrinsic physical interest, the 

evaporation and condensation problem on a plane condensed phase has been extensively 
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 studied.1-6,9-22 For weak evaporation or condensation, the problem is clarified theoret-

ically and numerically. The relation between the rate of evaporation or condensation, 

the parameters of the condensed phase and those of the gas at infinity is established, 

and the behavior of the gas in the nonequilibrium region from the condensed phase to 

the equilibrium state at infinity is obtained. The case of strong condensation is also 

clarified.18,21 Owing to the combination of a Knudsen layer and a shock wave resulting 

from the nonlinearity of the problem, an interesting feature not found in the case of 

weak condensation is seen. 

    In the present study, we first study the strong evaporation from a plane condensed 

phase and clarify the relation between the evaporation rate, the parameters of the con-

densed phase and those of the gas at infinity together with the behavior of the gas in the 

transition region from the condensed phase to the equilibrium state at infinity (Chapter 

II). Thus, we establish the boundary condition for the hydrodynamic equation on the in-

terface where strong evaporation is taking place. In order to avoid missing any possible 

stable solution in the nonlinear problem where no mathematical theorem is available, 

we analyze the problem by the time-dependent approach which is successfully applied to 

the study of strong condensation.18,21 As the by-product of the time-dependent study, 

we find various important features of wave propagation in a rarefied gas
, especially the 

propagation of discontinuity of the velocity distribution function of the molecules into 

a gas. 

    The plane condensed phase problem, where there is no geometric reference length
, 

does not provide information about evaporating flows from a finite body, i.e., the effect 

of the gas rarefaction (Knudsen number effect) on the flows. Thus, in Chapter III , 

the problem of steady flows evaporating from its cylindrical condensed phase in an 
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infinite expanse of the gas is considered. We analyze the problem numerically for a 

wide range of gas rarefaction and strength of evaporation and obtain the flow field from 

the condensed phase to infinity as well as the relation among the mass and energy flow 

rates, the parameters of the condensed phase and those of the surrounding gas. Thus, 

we clarify the effect of the gas rarefaction on the evaporation flow from a finite body. 

In the analysis we point out the existence of discontinuity of the velocity distribution 

function of the molecules in a gas around a convex body and propose a general method 

of analyzing rarefied gas flow problems with this type of discontinuity.
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CHAPTER II 

STRONG EVAPORATION 

FROM A PLANE CONDENSED PHASE32-35

I. INTRODUCTION 

   Consider a semi-infinite expanse of an initially uniform gas bounded by its plane 

condensed phase. Depending on the conditions of the gas and the condensed phase, 

condensation or evaporation will take place on the condensed phase; the disturbance 

induced by their interaction will propagate in the gas; and after a long time a steady 

condensation or evaporation flow will be established. In Refs. 18 and 21, the problem 

is considered on the basis of kinetic theory when condensation takes place, and the 

behavior of the gas is analyzed numerically by a finite difference method for a large 

number of initial situations, from which the transient behavior to a final steady state is 

classified and the steady behavior, especially the relation satisfied among the parameters 

at infinity and of the condensed phase in a condensation flow, is clarified. 

    In this chapter we consider the problem when evaporation takes place from the 

condensed phase and investigate the time development of the disturbance, especially the 

propagation and decay of the discontinuity of the velocity distribution function, and the 

steady behavior of the evaporation from a plane condensed phase. The relations among 

the variables at infinity and of the condensed phase in the steady evaporation serve as 

the boundary condition for the macroscopic gas dynamic equations on the interface of a 

gas and its condensed phase. Thus we also investigate the effect of different microscopic 

boundary conditions on the steady evaporation. 
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II. PROBLEM AND ASSUMPTION 

    Consider a semi-infinite expanse of a rarefied gas bounded by its plane condensed 

phase with a uniform and constant surface temperature  Tv. Let the gas occupy x1 > 0, 

where x; is the Cartesian coordinate system. At time t=0, the gas is in a uniform equi-

librium state with pressure poo, temperature Too, and velocity u;oo = (uo„, 0, 0), which 

is not in equilibrium with the condensed phase. We investigate the time development 

of the disturbance produced by the interaction of the gas with the condensed phase on 

the basis of kinetic theory and clarify the behavior of the steady evaporation in the half 

space from the long time behavior of the transient solution. 

    We analyze the problem under the following assumptions: 

(i) The behavior of the gas is described by the Boltzmann-Krook-Welander (BKW) 

equation36,37 

(ii) In Sec. IV we consider the problem under the conventional boundary condition on the 

   condensed phase. That is, the gas molecules leaving the condensed phase constitute 

   the corresponding part of the Maxwellian distribution pertaining to the saturated 

   gas at rest and with temperature of the condensed phase. In Sec. V we discuss the 

   effect of different boundary conditions at the condensed phase on the steady solution. 

   The explicit forms of the condition to be considered are given there.

III. BASIC EQUATION AND BOUNDARY CONDITION 

    The Boltzmann-Krook-Welander equation in the present one dimensional case is 

written in the following form: 

Of 
+eiOf=Acol/~(fe— 1),(2 — 1) 8t O

xl 
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             au,2
l  fe(2irRT)3/2 exp(—(2RT)'22) 

p=ffffdid2d3,(2— 3a) 

ul p fff1 f d64243,(2 — 3b) 
              T 3Rp fjj(i — ui)2fdS1dS2d3,(2 — 3c) 

p=RpT.(2-3d) 

where f(t, x1, ei) is the velocity distribution function, i is the molecular velocity, p is 

the density of the gas, ui = (u1, 0, 0) is its velocity, T is its temperature, p is its pressure, 

R is the specific gas constant, A„1 is a constant (Acoip is the collision frequency of the 

gas molecules), and the domain of integration in Eq. (3) is the whole space of 

   The conventional boundary condition on the condensed phase is 

    Pw2 f (271-RTw)3/2exp(2RTw )'(for6> 0, at x1 = 0), (2 — 4a) 
where pw is given by pw, the saturation gas pressure at temperature Tw, and Tw with 

pw = pw(RTT)-1.(2 — 4b) 

In the present study, however, the relation between pw and Tw ( Clausius-Clapeyron 

relation3s) is never used, thus they can be chosen freely in the results. The boundary 

condition at infinity and the initial condition are 

_PooilSi — ua~)2 f(27rRT00)3/2expI—2RT0)' 
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 (for  e1 < 0, at x1 —* oo and for all ;, at t = 0), (2 — 5a) 

where 

Poo = poo(RT00)-1.(2 — 5b) 

    According to Ref. 39, we can eliminate the two molecular velocity components, 6 

and e3 from our system, Eqs. (1)-(5). That is, multiplying Eqs. (1), (4), and (5) by 1 

and e2 +a and integrating the results over the whole 6-6 space, we obtain the system 

for the reduced distribution functions g and h defined by 

               _g              [hi  1 °°2RTw—pw(2RTT)1/2 jie2 +31 d2d 3. (2 — 6) 

The equations derived from Eq. (1) are as follows: 

                  + C 8==P(~e—(D),(2 — 7) 

(1)e(t, x, = `y(P(t, x), u(t, x), T(t, x),(2 — 8a) 

                                                     u 

             ~'(P,u,7',~)_ -------~,exp(—(CT~)2                                )'(2— 8b)

= f 9dk, 
          00 

 =1°°    f(gd(, 

       (fC2g+hdc_ 

P = pT.

Pu2J

(2 — 9a)

(2 — 9b)

(2 — 9c)

(2 — 9d)
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The boundary and inital conditions derived from Eqs. (4) and (5)  a 

 x,  C) ='1(1, 0, 1, C), (for C > 0, at x = 0), 

                               5 \1/2 T 
              4)(t, x, C)_'1`-74-1)71                       ~M°°(3RTCf,~°° 

                     (for C < 0, at x --> oo and for all C, at t = 

where _ 
x = twlxl, 

                          = (2RTw)-1/251, 

                        1= 

                   P(t, x) = PwP(twt, twx), 

u(t,x) _ (2RTw)-1/2u(twt,twx), 

T(t,x) = T, 1T(twt,1wx),

it, 

tw

(2RTw)1/2 
Aco1 Pw 

tw  

(2RTw)1/2 

sional vari 

or various 
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are as follows: 

 (2  —  10) 

= 0), (2 — 11)

(2 — 12a)

The system arranged in the nondimensional variables contains three parameters 

uo0/(5RT00/3)1/2], Poo/Pw, TO/TW, for various sets of which we analyze the prol 

numerically.

 (2 — 12b) 

eters 

the oo [_ problem



 IV_ BEHAVIOR OF THE GAS 

A. Transient behavior 

   For > 0, the velocity distribution function 4) is discontinuous at (t, x) _ (0, 0), 

i.e., Jim 4)(t, 0, ()#limo4)(0, x, (P), from the boundary and initial data, Eqs. (10), (11). 
This discontinuity propagates into the gas along each characteristic line x = (1 of 

Eq. (7), depending on C, as time goes on. Therefore, 4) is discontinuous on the surface 

x = (1 (( > 0) in the (1, x, () space. On the other hand, 1 is continuous for ( < 0. 

The macroscopic variables, p', u, T, are continuous in the (1, x) plane. The discontinuity 

in 43 is expected to decay rapidly with time (exponentially in 1) owing to molecular 

collisions. Since the standard finite difference method can not describe this discontinuity 

accurately, we rewrite the system in the characteristic variables (t, x—(, () and integrate 

this system until the discontinuities of g and h decay sufficiently. After that, we analyzed 

the original system by a finite difference method.21 

    The transient behavior for Moo = 0, poo /pw = 1/4, and To I Tw = 1 is shown in 

Figs. 1-3. Fig. 1 shows the development of the disturbance at initial stage, and Fig. 2 

shows the separation process of the disturbance into a shock wave, a contact layer, and 

a Knudsen layer, accompanying the development of uniform regions between these wave 

or layers. Fig. 3 shows the decay of the discontinuity of the reduced velocity distribution 

function g, where the discontinuity is invisible at t = 504) . 

    Figs. 4 and 5 show the case with Meo = 0.75, poo /pw = 1, and Too I Tw = 1. Since 

the gas is initially receding from the condensed phase, a rarefaction region develops near 

the condensed phase, from which an expansion wave, a contact layer, and a Knudsen 

layer are separated and uniform regions develop between the wave or layers. 

   The long time behavior of the case Meo = 1.0924, polpw = 0.1850, and Tc,ITW = 
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0.6152 in Figs. 6 and 7 is an example to demonstrate that a supersonic region in the gas, 

if any, moves away up to infinity. In the figures,  c= (5RT/3)1/2 is the local sound speed, 

and X° is the point where (u1 —c)/(2RTw)1/2 takes a given value and thus a function of 

(u1 — c)/(2RTw)1/2 and t/tw. In Fig. 6 the supersonic region is shifting toward infinity. 

In Fig. 7 the shifting velocity dX°/dt of the point X' of a given (u1—c)/(2RTw )1/2 versus 

u1—c is plotted for various large t, where the curve t -i oo is estimated by extrapolating 

the approximate behavior ,3t-" of d2Xd/dt2 around t = 200004, up tot = co. The 

dX /dt approaches u1 — c in the supersonic region and 0 in the subsonic region. This 

suggests that an expansion wave in the classical gas dynamics is propagating toward 

the condensed phase relative to the gas motion . Since any supersonic Xc point moves 

away from the condensed phase with a speed larger than u1 — c , the supersonic region 

finally disappears from the flow field to infinity . 

B. Steady behavior 

    Making use of the preceding transient behavior , we construct a large number of 

steady solutions, from which the behavior of steady evaporation is clarified . That is, 

we pursue the time development until a uniform state ahead of the Knudsen laye
r 

develops enough and confirm that g and h there correspond to those of the Maxwellian; 

if necessary, we introduce the following cut and patch process several times: replace th
e 

contact layer etc. ahead of the nearly uniform region by a uniform state and pursue 

the time development. Since we are interested only in a steady solution
, we don't 

have to follow the time development accurately
, and the time consuming characteristic 

coordinate method is unnecessary. Instead , in order to avoid to miss any possible stable 

steady solution, we try various nonuniform initial conditions . 

   From a large number of steady solutions, we find that Pcx,/pw and Tor,/T„ are 
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determined by  Moo, where per, Too, and Moo are the data at infinity in the steady 

solution (but not those of the initial data). They are tabulated in Table 1. No steady 

solution exists for Moo > 1. Three examples of the transition region or Knudsen layer 

(Mo. = 0.1, 0.5001, and 0.9897) are shown in Fig. 8, where x denotes the value at 

xi = 0. For Moo = 0.9897 the transition region extends over about 1004, or 401 , 

where 64= (pw /poo )(Too/Tw )3121w] is the mean free path of the equilibrium state at 

rest with pressure poo and temperature Too. In contrast to the case of condensation,18,21 

the thickness of the transition region depends much on Moo. 

    When Moo ^• 1, convergence to its steady state is very slow. In order to confirm 

the convergence, we examine the decay of the shifting velocity dX M /dt of the point 

XM with a given local Mach number M[= ul(5RT/3)-1/9. If the slope of the curve 

log10(dXM/dt)(2RTw)-1/2 versus log10 t/t„ is less than —1, the point XM converges 

to a finite point from the condensed phase. Fig. 9 shows the curves for various M in a 

case, where the flow converges to the steady state with Moo = 0 .9897. From the decay 

curve of dXM/dt, we can also estimate the error of the steady profiles. This method is 

also applied in Ref. 21.

C. Asymptotic behavior 

   From about 70 examples of the numerical solution as shown in Sec . IV A, we induce 

that the long time behavior of our system (1)-(5) is classified in the following cases. 

0 : Knudsen layer + contact layer + shock wave, 

©: Knudsen layer + contact layer + expansion wave R, 

©: Knudsen layer + expansion wave L + contact layer + shock wave, 

 4 : Knudsen layer + expansion wave L + contact layer + expansion wave R
, 
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where each element is arranged in order of the position from the condensed phase. The 

shock wave and the expansion wave  R are propagating away from the condensed phase 

relative to the gas motion. The expansion wave L is propagating toward the condensed 

phase relative to the gas motion, and its front is at sonic condition. The contact layer 

corresponds to the contact discontinuity in the classical gas dynamics. 

    After each element is separated enough from each other, the Knudsen layer, prac-

tically steady, corresponds to the steady solution in Sec. IV B, and the uniform regions 

on both sides of shock wave or expansion wave or contact layer are confirmed numeri-

cally to be related by the classical gas dynamic relation of shock wave or simple wave 

or contact discontinuity. This is reasonable from the asymptotic  theory.40 With the aid 

of these relations we can derive, by a simple calculation, which asymptotic behavior 0, 

©, ©, or 4 occurs from a given initial condition. The map of the asymptotic behavior 

on the initial data uc,„ — pc,„ plane for Too = T,,, is given in Fig. 10, where the framed 

number except © corresponds to the number of the preceding classification. In the re-

gion © condensation takes place, which is discussed in detail in Refs. 18 and 21. As the 

shock or expansion (R) wave vanishes with the approach of the initial condition to the 

boundary of Q and © or © and 4 regions, a weak pulse propagating with attenuation 

as Fig. 4(e) of Ref. 18 dominates in the microstructure.

V. EFFECT OF BOUNDARY CONDITION 

   So far we discussed the problem under the conventional boundary condition on the 

condensed phase, where the velocity distribution function of the molecules leaving the 

condensed phase is independent of the velocity distribution of the molecules incident 

on the condensed phase and its shape is the half of a stationary Maxwellian. Now we 
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investigate the effect of different boundary conditions at the condensed phase on the 

steady evaporation. 

A. Effect of the condensation factor 

    First we consider the effect of the incident molecules. The generalized boundary 

condition suggested by Woetberg's  experiment20 on a solid surface is given as follows. 

The velocity distribution of the leaving molecules is given by the sum of two terms: a, 

times of the distribution of the conventional boundary condition (Sec. IV) and (1 — (re.) 

times of the diffuse reflection distribution, where a,(0 < a, < 1) is a constant called 

condensation factor. That is, the distribution of the leaving molecules is given by 

replacing pw in the conventional boundary condition (4) by the following pw: 

pw = acpw — (1 — ac)(2rrRTw)1/2 felf(t, 0,.i)de1dk2d~a. (2 — 13) 
                                                             .<o 

    Comparing the conventional condition (4) and the generalized condition, we find a 

simple relation between the steady solutions of the two types of the boundary condition. 

Let f a(z1i;, pG, Tw) be the steady solution under the generalized boundary condition 

with pw = pG and Tw = Tw , and let f (xi, i, pwc, Tw) be the steady solution under the 

conventional boundary condition (4) with pw = pw and Tw = T,, , where poo, Too, and 

Moo are assumed to be common. Then the following relations hold between the two 

solutions: 

fa(x1, ei, pG, Tw) = f (x1, Si, pw)Tw),(2 — 14a) 

pG = [1 + (1 — ac)K (Moo )]ac 1pw,(2 — 14b) 

                                 TwG=Tcw,                                                  (2 — 14c) 
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where 

 K(M„,,) = (107r/3)1/2(poo/pw)(Too/T5)-1/2M00 - 1. (2 - 15) 

The pc„/pw and Too/T5,  the pressure and temperature ratios for the conventional 

boundary condition, are the functions of Moo given in Table 1 with pw and Tw re-

placed by pw and T„° respectively. The K(M ,) versus Moo is plotted in Fig. 11, and 

poo /pw versus Moo for various a, in Fig. 12. 

B. Effect of the form of the distribution function of the molecules 

    Next we consider the effect of the shape of the velocity distribution of the leaving 

molecules on the steady evaporation. Let the velocity distribution of the molecules 

leaving the condensed phase be the corresponding part of the Maxwellian I with pressure 

p, temperature T, and velocity (u, 0, 0), and put 

               pw=2aIc16S2dS3,(2 — 16a) 
                                  ~1>0 

            {tr .(2 - 16b) 
-1        Ts =3R

/3)f?JdS1d~2d 3 (f(16_42(16)          ~1>0e1>0 

Taking M[=u(5RT-1/2] as the shape factor, we consider the cases M = -0 .5, 0.5, 

1.0, and 1.5 [ M = 0 corresponds to the conventional boundary condition (4)]. For 

each M, we look for the possible steady solutions as in Sec . IV B and find the relations 

among pc.°/pw, Too /TW and Moo that allow a steady solution. The pc,./pis, and TOO/TS 

are the functions of Moo plotted in Figs. 13 and 14 . When M < 1, the steady solution 

exists for Moo < 1; when M > 1, the steady solution exists for M
oo < ML, where 

ML = [(M2 + 3)/(5M2 - 1)]1/2 (the standing shock wave relation between upstream 

and downstream Mach numbers, M and ML), besides an obvious isolated solution, 

Maxwellian with pressure P, temperature T , and gas velocity (u, 0, 0), for pc,„ =P, 

Too = T, and /too = u (thus Moo > 1). Finally, the distributions of the leaving molecules 

considered here are compared in Fig. 15. 
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CHAPTER III 

STEADY FLOWS OF A GAS EVAPORATING 

FROM ITS CYLINDRICAL CONDENSED  PHASE41,42

I. INTRODUCTION 

    In Chapter II, the steady transient process of flows evaporating from a plane con-

densed phase to a uniform state at infinity was extensively studied as the limiting 

solution of a time-dependent problem. The problem contains three parameters: the 

pressure ratio (the pressure at infinity divided by the saturation pressure at the tem-

perature of the condensed phase), the temperature ratio (the temperature at infinity 

divided by the temperature of the condensed phase), and the Mach number at infinity. 

In the steady flow these parameters are not independent and only one of them can be 

chosen. As the pressure ratio is decreased, the Mach number increases, but the flow 

with the pressure ratio less than a certain constant (0.2075 for the Boltzmann-Krook-

Welander equation36,37 and the conventional boundary condition) is not realized. The 

flow is accelerated as going downstream from the condensed phase and reaches a uni-

form state, but it cannot be supersonic anywhere in the gas for any pressure ratio. It 

is important both theoretically and practically to study how these fundamental flow 

properties are different in evaporation flows from a condensed phase of a finite size and 

to clarify the effect of gas rarefaction (or Knudsen number), which has degenerated in 

the preceding one-dimensional problem of a semi-infinite domain. In this chapter we 

investigate a steady flow evaporating from a cylindrical condensed phase to a uniform 

state at infinity for a wide range of the pressure ratio and the Knudsen number and 
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 clarify the flow field from the condensed phase to infinity as well as the relations among 

 the mass flow rate, the energy flow rate, the pressure ratio, and the temperature ratio. 

    Another important point which we discuss in this chapter is a discontinuity of the 

 velocity distribution function in the gas. In Sec. III C, we point out that there is a 

discontinuity of the velocity distribution function in a gas around a convex body (with 

 or without evaporation or condensation) and discuss its behavior. Then we propose a 

scheme to analyze a gas flow problem with this discontinuity accurately and efficiently. 

For small Knudsen numbers the discontinuity is in a thin layer with thickness of the 

order of the mean free path squared over the radius of the curvature of the boundary. 

This is the S-layer at the bottom of the Knudsen layer, pointed out in Ref. 43. 

    In the two dimensional problem, approach to the uniform state at infinity is slow. 

Some technique is required for numerical computation of the problem. In Sec III B we 

discuss the analytical asymptotic solution far from the cylinder and, on the basis of this, 

present a method which is generally applicable to an infinite domain problem. 

II. PROBLEM AND BASIC EQUATION 

    Consider a cylindrical condensed phase (radius L and surface temperature  T
v, ) in 

an infinite expanse of its vapor gas at rest (pressure pc, and temperature Too ). Let pw be 

the saturation gas pressure at temperature Tw . If po # pw , evaporation or condensation 

takes place on the condensed phase. In this chapter we investigate the steady evapo-

ration flow induced around the cylinder for a wide range of the pressure ratio poo /pw 
and the Knudsen number Knw (the mean free path at the stationary equilibrium state 

with pressure pw and temperature Tw divided by the radius of the cylinder) under the 

following assumptions: (i) the behavior of the gas is described by the Boltzmann-Krook-

Welander (BKW or BGK) equation3s,37; (ii) the gas molecules leaving the condensed 
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phase constitute the corresponding part of the stationary Maxwellian distribution with 

pressure  pw and temperature Tw (the conventional boundary condition for evaporation-

condensation). The extension of the results to more general boundary condition will be 

discussed in Sec. VI. 

    The Boltzmann-Krook-Welander equation for a steady flow is 

                 i=Acv]P(fe — f),(3 — 1) 

fe = p exp(.i — u.)2                 (2irRT)3/2(2RT}'(3 — 2) 

p=1 fd id 2d 3,(3-3a) 

          IL; P fj[          fd64243,(3 — 3b) 

1 

                  =T
3Rp(e_ — u;)2fdkidk2d3, (3 — 3c) 

p=RpT,(3-3d) 

where x; is the Cartesian coordinate system with the x3 axis on the axis of the cylinder; 

e= is the molecular velocity; f is the velocity distribution function of the gas molecules; 

p is the density of the gas; u; is the flow velocity; T is the gas temperature; p is 

the gas pressure; Acoi is a constant; R is the specific gas constant (per unit mass); 

the integrations are carried out over the whole space of e;. The A„ip is the collision 

frequency of a gas molecule, which is independent of molecular velocity for the BKW 

equation. 
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   The boundary condition on the condensed phase (at r =  L, where r = (4+ 4)112 ) 

is 

                                   2 f(27rRTw)3/2exp C-2RTw(61x1 +2x2 > 0), (3 — 4a) 
where 

Pw = pw/RTw.(3 — 4b) 

The condition at infinity (r -+ oo) is 

f Poo expe(e1x1 +x2 < 0), (3 — 5a)          ((271-R7'00)3/2(2RT~)'62 
where 

pc,„ = p„,,/RTC.(3 — 5b) 

   In view of the cylindrical symmetry and independence from x3 of the problem, we 

introduce the following nondimensional variables: 

x1 = LT cos 9, x2 = Lr sin 9,(3 — 6a) 

bl = VwCcos(9 + B(), e2 = VwCsin(9 + 9c), S3 = V (2, (3 — 6b) 

f 214
,3f(r,(,9 ,z),(3-6c) 

where

P = PwP(r), T = 

ut = II—JO) cos 9,

TwT(r), p = p„ IV), 

u2 =Vwu(r) sin 9, 

Vw = (2RTw)1/2. 

     18

U3 = 0,

(3 — 6d) 

 (3  —  6e)



The variables  (LT,  9, x3), where r = r/L, are cylindrical coordinates for the physical 

space, and the variables (V,,, (, 9 , V,,, (Z) are local cylindrical coordinates for the molec-

ular velocity (Fig. 1). The gas flow has only the radial component u: 

u=Vwu(T).(3-6f) 

The velocity distribution function f is an even function of 8c: 

f(r,C,8c,CZ)=(3-6g) 

and therefore will be considered over the domain (1 < T < oo, 0 < (< oo, 0 < 9 < 

—oo < ( < co). 

    With these new variables, the BKW equation is reduced to 

               Df=~K
nw2------P(fe— f),(3 — 7) 

where 

D = ( cosBc0—S T e~a8~(3 — 8a) 
                   Knw =-tw,tw=                              (88RTw/~r)1~2(3 — 8b) 

LAco1Pw 

           f 2p(\—(2+u2—2u(cos9c+(z1          e=( ~T)3i2exp J(3 — 8c) 

The parameter L is the mean free path at the equilibrium state at rest with pres-

sure pw and temperature Tw, and Knw is called Knudsen number at the state. The 

nondimensional macroscopic variables p, u, T, and P are related to f as 

           = fff Cf dCd9cdcc,(3 — 9a) 
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 u  =  1  f[[f (2 cos ec f d(dec d(z f(3 — 9b) 

T 3p(1 (((2 + (Di' d(d9cd(z — AO), (3 — 9c) 

     p—PZ'(3-9d) 

The three fold integrations with respect to (, Oc, and (z in Eqs. (9a)—(9c) and the 

following are carried out over the domain (0 < ( Goo, 0 < Oc <— ir, —oo < (z < co ), 

unless otherwise stated. 

   The nondimensional form of the boundary conditions are , at r = 1, 

f = 73 2 exp (—((2 + (z )) , (0 < Oc < it/2), (3 — 10) 

and, at infinity, 

                      22 f=2P".3/2exp(—(T(zl~(ir/2<0`<7r),(3-11) 
         (~rT.)to) 

where 

p00=Poo/Pw, ii. = To /Tw.(3-12) 

    We can eliminate the molecular velocity (z from the boundary-value problem, 

Eqs. (7)—(11). That is, multiplying Eqs. (7), (10), and (11) by 1 or (z and integrating 

them over —oo < (z < oo, we obtain the system for the marginal velocity distribution 

functions g and h defined by 

[g] —fl[<.?lid(z.(3 — 13) 
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The equations for g and h are 

 D[h] F------K2nw[he] — Viz]) (3-14) 

         [:]-p[2/T] eXp( (2 +u2 —2u(cos9c)(3 _ 15)     1J 

The variables p , u, and T are expressed by g and h as 

p = JJ (g d(d0c,(3 — 16a) 

u =P ff(2cosocgd(dec,(3 — 16b) 

               = 3P (f f (((2g + h) d(d9c — pu2). (3 — 16c) 

The two fold integrations with respect to ( and Oc in Eqs. (16a)-(16c) and the following 

are carried out over the domain (0 < ( < oo, 0 < 6 < 7r), unless otherwise stated. The 

boundary conditions are, at r = 1, 

            [ghl =ri[21]P (—~ex2)(0 < 8( < 7r/2), (3 — 17) 
and, as r - * oo, 

        [9]13'__ ~----- [2/}exp(_) (7r/2 < B( <r). (3 — 18) 
   The boundary value problem, Eqs. (7)-(11) or Eqs. (14)-(18), contains the two 

parameters, the pressure ratio Poo (= pc, /pw) and the temperature ratio T~ (= T~ /T„,), 

besides the Knudsen number Knw . The solution of the problem exists only when these 
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parameters satisfy a relation, i.e.,  To = FT (73„3, Knw). In this chapter we analyze 

the problem numerically by a finite difference method and obtain the accurate solution 

over the whole field, as well as the relations among Poo, T4, Knw, and the rate of 

evaporation, for a wide range of pcx, and Knw. 

   From the equation obtained by integrating Eq. (7) multiplied by 1 or (2 + (Z over 

the whole space of ((, O , (Z), we obtain the following integrals of Eq. (7): 

             Pur = Q/(2rpwVV L),(3 — 19) 

              2.-OF = W/(2irpwVwL),(3 — 20) 

                iu = JJ (2(C2g + h) cos 9 d(d9 ,(3 — 21) 

where Q and W are the mass flow rate and the energy flow rate from the cylinder (per 

its unit length and per unit time) respectively. The relations (19) and (20) are used in 

the accuracy test of computation (Sec. V D). 

   The saturation gas pressure pw is a function of Tw given by the Clausius-Clapeyron 

relation33. In the following analysis, however, the relation between pw and Tw is never 

used, and thus pw and Tw can be chosen freely in the results. 

III. METHOD OF ANALYSIS 

A. Outline of numerical analysis 

   In the following numerical analysis of the boundary-value problem, Eqs. (14)—(18), 

by a finite difference method, we consider the problem over a finite domain (1 < T < rD 

0 < ( < CD, 0 < BC < 7r), where rD and CD are chosen properly depending on the 

situations. The process of reduction to the finite domain will be discussed in Sec. III B . 
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Let  (r(i), ~(~), 9(k)) be the lattice points in the domain, where i = 0, 1, ... , I (r(°) = 1, 

T(I) = TD), j = 0,1, ... , J (C(°) = 0, C(') = CD), and k = 0,1, ... , K, ... , K (B(°) = 0, 

B(cK) 7/2, B(cK) = ~r). For the convenience of analysis, the points i(i), C(i), and B(k) 

are taken as the values of smooth functions r(s), C(s), and BC(s) of a continuous variable 

s evaluated at integer points s = i, j, and k : 

F(i) = r(i), Cu) = C(j), B(ck) = BC(k). (3 — 22) 

The variables g, h, p, etc. at a lattice point are denoted by the superscripts correspond-

ing to the lattice point: 

g(i,S,k) = g(r(i), C(.i), B(k)) P(i) = P(r(i))• (3 — 23) 

The notations and 4:)e are introduced for simplicity: 

= 

                [g],fie= IgeI•(3-24) 
Then 

               1(''k)l[ge (i,7,k) 

                      L(i,7,k)J~e(a,1,k)i,i,k)(3 — 25) 

Note that iDe(i,.i,k) depends on r(i) only through p(i), 2l(i), and T(i) (see Eq. (15)). 

   We construct the discrete solution (1)(i'j'k) of Eqs. (14)—(18) as the limit of the series 

~(i'i'k)(n = 0, 1, 2, ...) obtained by the iteration process described below. Correspond- 

ing to Eq. (14), the following finite difference equation for '(n)'k) is adopted: 

A (i,J,k)~t(J) sin e(k)0(i,i,k)~ 
       ((.i) cos B(k)(n)2(n)  (di /di) r(i) (de

(/dk) 

                                      2  (i)
'(i,j,k)—(i,7,k) 

                               ~Knw i9(n-1)(e(n-1).(n))'(3 — 26) 
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where 

               3 (1:1(i,1,k) — 2~(i-1,1,k)+~(,1,k), 
           (n)(n)2n)i-2 

 (2  <  i  <  I,  0  <  k  <  K  —1), (3 — 27a) 

A(i,7,k)~(n)_~(l,.i,k)— 4(o,,,k)~(0 < k < k - 1),(3 — 27b) 

3 (i, .7,k)(i+1,,k)—1(i+2,j,k) 

             2~(n)+2~(n)2~(n) 

(0<i <I-1, k<k<K), (3-27c) 

6,(2i>9,k) 4.(n)  — 4:D(j'k) + 2~(j)'k+1) — 2 4,(j)'k+2) (3 — 27d) 

(c11.1 di) = (dr/ds),=;, (ad dk) = (dB(/ds),=k, (3 — 27e) 

                            (D(i,.1,K+1)=~(i 
                        (n,9),K-1) (3 — 27f) 

                (DM,K-1-1) 

and~e(i'?'1)is defined by Eqs. (15) and (25) where'~_1),u()_1),and T~i)1)are substi- 
tuted for p(i), u(i> and T(i) respectively. Equation (27f) corresponds to the symmetry 

relation with respect to Bc around Bc = it (Eq. (6g)). The variable (1)(n) 1j'k) outside the 

domain is specified as a part of boundary conditions (Sec. III B). The(13.(n)'K+2) does 

not appear since sin B(K) = 0. 

    Corresponding to the boundary condition (17), we impose the condition: 

      ~(m)'k)_[1] exp(—(((i))2), (k = 0, 1, ... , k - 1), (3 — 28) 

which is independent of k. As the condition at r" = rD, we assume 

                4)(n)'k)~((n)(k =K,...,K), (3 — 29a) 
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 lo(n+1,1,k) = 41b1, k ), (k = k,... , K). (3 — 29b) 

Two conditions are required since the second order difference scheme, Eq. (27c), is used 

in Eq. (26). The explicit forms of 1F(''nk)and W)and the reason of their choice are                        a()b(n 

given in Sec. III B. 

    We construct the series (1)((i4k) (n = 0,1, 2, ...) by the following process (see 

Fig. 2a). Let 4)(ni'i),thusp~~_1, u('),andT('), be known.         ()()(n-1)(n1) 

 (i) For k < k < K, starting from (1,((n> 1'i'k), compute (1)((nj)'k) using Eqs. (26), (29a), 
   and (29b) in descending order of i down to cDrntk). The step i = i + 1 to i = i is 

    as follows. Let CD((nii'k) (i' > i) be given. Starting from 4:1)((ni)'K), compute (1)((n)'k) 

   using Eqs. (26), (27c), and (27d) (and Eqs. (29a) and (29b) for i = I — 1, I — 2) in 

    descending order of k down to((nj)'K). Carry out this step for every j. 

(ii) For 0 < k < K - 1, starting from ee,ln'5'k), compute e(ntk) using Eqs. (26), (28) 
   in ascending order of i up to tb((ntk). The step i = i — 1 to i = i is as follows. 

   Let 4:0(n)''k) (i' < i) be given. Starting from (D(n),K-1), compute~(n)'k) using 

   Eqs. (26)-(27b) and (27d) (and Eq. (28) for i = 1 and 2) in descending order of k 

   down to (1)(n)'°). Carry out this step for every j. 

(iii) Applying the Simpson formula to Eqs. (16a)-(16c), compute p~ ~), u(( )), and T(n) 
   from (1)(n'k)             ) • 

(iv) Repeat the process of (i)-(iii) with shift of the subscript (n to n + 1) until (1)(nj>k) 
   converges. We take the limit as the solution 4)(''Lk) 

   The order of computation in the preceding process is consistent with the natural 

course of integration of Eq. (14) along its characteristics in the direction of molecular 

velocity. 
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B. Asymptotic behavior for  large and the condition at r = rD 

    We have limited the original infinite domain (1 < r" < oo, 0 < ( < oo, 0 < Bc 5_10 

to the finite domain (1 < r < FD, 0 < C < (D, 0 < ec < ir). It does not introduce 

any problem to limit the range of C. As is easily checked by computation, decays 

very rapidly as ( oo, and therefore the accurate computation of the problem can be 

carried out with a reasonable size of SD. 

    The problem is not so simple for the case of the r variable. Obviously from Eq. (19), 

u(r) decays very slowly (N r-1) as r —> oo. Because of the slow decay to the uniform 

state at infinity, a very large iD is required to obtain an accurate result by simple 

application of the boundary condition (18). We therefore introduce a method to make 

use of the asymptotic solution for large r". 

   Let the deviation (54)(= (1)(r, C, 9c) — (13(oo, C, Bc)) from the equilibrium state at 

infinity be O(r""-1) for large F. Then 0S4)/Br = r-10(84)) . That is, for r > FA the 

characteristic length scale of variation of 8c is larger than FA , and therefore the effective 

Knudsen number Knell (= £a„ /LrA = Knoo /rA, where £cx, is the mean free path at 

infinity (u = 0, p = pte, T =Tao)) is small for large FA. Then we can make use of the 

asymptotic theory developed in Refs. 24, 30, 31, and 44. In r > FA, the deviation St. is 

O(r`A'), and therefore 8(I) = O(Kne ff ). This is the case to which the weakly nonlinear 

theory in Refs. 24, 31, and 44 applies. The asymptotic solution (I)
a of the diverging 

radial flow, accurate up to the 2nd order of Kn e f f or SI., is expressed as follows: 

    lba—T[2/11a jexP(_(2+it-2a—2uaCcosBc — XC2cos2t9(—T3-30)  aa/ 

 __
poo21?a                    _1,      it' =

rpa=(1 —),Ta =Too (1 —r2)'Pa=(3 — 31a) Ta 

          1, —X_2(2k + X)X22kX(3 — 31b)                   5(k 
+ X)'2' 
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         k =~3/2 
             T°° Knw =2Kn00,Q =2~pwL, (3  —  31c)                2Poo 

where Q (the mass flow rate) and X are undetermined constants, which enter in Eqs. (30) 

and (31a) since the condition of the upstream is not imposed. In these equations some 

higher-order terms of Knell such as (k /r)3 are included so that Eq. (30) can be arranged 

in an exponential form. 

   If rD is taken larger than rA, Eq. (30) can be used to evaluate 4) at r = r(I) 

and 1.(i+1). t That is, let P,„ be fixed and let Too be left free in Eqs. (31a)—(31c). 

We connectua, Via, and Ta in Eq. (31a), respectively, withun~,p~n~(= p(n~TT7)), and 

T~I~,determined by the step (iii) in Sec. III A, atr"= FD by adjusting the three free 
parameters Tom, Q, and X. Let the asymptotic solution (Da thus connected be 4)a(n)• 

Then we take (Da(n) at (r"(I), ((i), B((k)) and at (T(I+1), ((j), e(.k)) as If(a('n)+1) (Eq. (29a)) 

and fi(4 +1) (Eq. (29b)), respectively. Thus the boundary condition (29a) and (29b) 

for the finite difference system is completed (see Fig. 2a). Incidentally, it may be noted 

that To finally obtained depends on foo and Kitt,. 

    Two practical points to improve the accuracy of numerical computation are added 

here. For a rather wide range of r (say rd < r < FD), the difference between the solution 

4) and the asymptotic solution 'a is fairly small. We, therefore, take the difference: 

4' _ — 4)a,(3 — 32) 

and analyze the equation for 4)': 

                D(1)' =2 K
nwp(-4)'+(De —(1)a) —D4)a,(3 — 33) 

 t Let the lattice points on r be extended to r(I+1) 
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numerically in the range  rd  <  r < rD instead of Eq. (14). By this approach, we can 

avoid the error introduced to form the more slowly decaying dominant part 4)a by the 

direct analysis of Eq. (14). t In fact, the accuracy of conservation relations (19) and 

(20) are considerably improved in our numerical test. Another point is also related to 

errors in numerical integration. For rather large r, the solution 4) is not far from the 

equilibrium distribution 4)e. Then for the step (iii) in Sec. III A, we put 

4'(n) = (4)(n) — 4)e(n-1)) + 4)e(n-1), (3 — 34) 

and compute the integral (16a)-(16c). The contribution of the last term, which is the 

dominant part for large r, can be computed rigorously and is expressed by p(n_1), 

ii(n-1), and T(n_1). Thus the error of integration is considerably reduced. 

C. Discontinuity of the velocity distribution function and an appropriate 

difference scheme 

   Discontinuity of the velocity distribution function in a gas is one of the typical 

features of the behavior of the gas around a convex body. On a boundary the velocity 

distribution of the molecules incident on the boundary is determined by the behavior of 

the surrounding gas, but that of the molecules leaving the boundary is determined by 

the condition of the boundary. Their nature is different, and the velocity distribution 

function of the molecules has discontinuity at the molecular velocities whose normal 

components to the boundary vanish. This discontinuity propagates into the gas in the 

  t The effect of this method is easily examined by a simple equation dy/dx + 3y/x = 

2/x2 (*). The accurate asymptotic behavior of y for x> 1 is obtained more efficiently 

by the equation for y(= y —1/x), dy/dx + 3y/x = 0, than by Eq. (*) (e.g., solve Eq. (*) 

for x > 10 under y(10) = 1). 
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direction of the velocity at this discontinuity, which is the characteristic of Eq. (1), 

when the boundary is convex. Such discontinuity does not exist in a gas over a concave 

boundary since the corresponding characteristic does not enter into the gas. 

    The discontinuity decays with distance from the boundary owing to molecular 

 collision and is appreciable only over the distance of the order of the mean free path 

 along the characteristic. When the Knudsen number 11L,., where L,. is the radius of 

the curvature of the boundary and thus L,. = L in our cylinder problem, is of the order 

of unity or larger, the discontinuity extends to the region of the order of £ from the 

boundary (Fig. 3a). When the Knudsen number £/L,. is small, the discontinuity decays 

in a short distance compared with L,. (Fig. 3b), where the line of discontinuity is still 

nearly parallel to the boundary and its distance 6 from the boundary is of the order 

of £2/L, since (L,. + 6)2 = LZ + O(12) and £/L,. « 1. Therefore, the discontinuity is 

confined in a thin layer with thickness of the order of 12/L,. adjacent to the boundary. 

This thin layer corresponds to the S-layer43 at the bottom of the Knudsen layer with 

thickness of the order of I. Thus, the correction to the Knudsen layer is required over 

a convex boundary (see Ref. 45 for details). It may be worth repeating that there is 

a decisive difference between the velocity distribution function over a convex boundary 

and that over a concave boundary. 

   The difference scheme, Eqs. (26)—(27d), is not appropriate to describe the discon-

tinuity of around the cylinder because the difference formulae (27a)—(27d) for OIDIOr 

and O41IOBc contain the values at the lattice points on both sides of the discontinuity. 

It may be a natural way to integrate Eq. (14) along the characteristics until the discon-

tinuity vanishes practically and to use the standard scheme, (26)—(27d), as was done in 

Chapter II for a time-dependent problem. The method, however, is time-consuming. 
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 Fortunately, since the discontinuity is only on a single characteristic
, 1h9c — 1, fixed 

 in (r,8c, C) space in the present problem, we can introduce a more effective method, sim- 

 ilar to that used in Ref. 46 for a time-dependent problem over a plane wall , to describe 

 the discontinuity accurately. 

    In our problem the discontinuity is only on the characteristic of leaving molecules 

 tangent to the cylinder, i.e.,  r sin Bc = 1 (0 < Bc < 7r/2), which extends from 

  = 1, Bc _ 7r/2 to r —> oo, Oc = 0. No correction, therefore, is required for the 

formulae for 7r/2<Oc <irork=KtoK . For 0<0c<7r/2ork=Otok-1,we 

introduce the following corrections to the difference formulae for 84/8r and 84/80c at 

some neighboring points (i, j , k) of the discontinuity (Fig. 4): 

(i.a) Let the characteristic pass the line Bc =B(k) between r — i (a-2) and r = r(i-1) 

    Then replace D(ii'j'k)(1)(n) in Eq. (27a) by 

64i,j,k)4,(n) = A14,((nj),k) _ A2e(n)l,j,k) + A3,1,(+,(k)), (3 — 35) 

     where 

                (D(+(n) 4'(n)(1/ sin B(k) +0,((j),Btk)), (3 — 36) 

    and A1, A2, and A3 are chosen in such a way that the present 61i '''k)4/(dr`/di) is 
    a difference expression of the 2nd order accuracy for 8(1)/8r at (r(')

, ((j), 0(k)), 

(i.b) Let the characteristic pass the line Bc = (Sk) between r` = r"(a-1) and r = r(') . 

   Then replace D42'''k)(1)(n) in Eq. (27a) and (27b) by 

                        Q(is,j,k)4.(n=A4~( ,j,k)_n(j,k)                        )                         (()+(n))'(3 — 37) 

   where A4 is chosen in such a way that this D(
ib'j'k)(1,/(dr/di) is a difference expres-

   sion of the 1st order accuracy for 8(lc./8T at (T(a), ((j), 0(sk)). 
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 (ii.a) Let the characteristic pass r = 

replace A(2s'j'k)(1)(m) in Eq. (27d)

Q(2+,j,No

FM between 

by

(n) = B14(nj,k)— B2

BC = 6(k+2) and

•(in,j,k+1)+ B34:0('' )),

Bc = 9(ck+1) Then

(3 — 38)

     where 

(D(s()) = 4)(n)(r('), (Cl), sin-1(1/r(')) — 0), (3 — 39) 

    and B1, B2, and B3 are chosen in such a way that L (2s'''k)(1'/(d9c/dk) is a difference 

    expression of the 2nd order accuracy for 84)/819c at W0,0), ), Bck)). 

(ii.b) Let the characteristic pass r = FM between o = Bak+1) and e = Bck). Then 
    replace 0(2='''k)(1)(„) in Eq. (27d) by 

02+,7,k)(1,(n) = B4(4)(,?)'k) — cp('i.))),(3 — 40) 

    where B4 is chosen in such a way that A(2i'''k)(1)/(doc/dk) is a difference expression 

    of the 1st order accuracy for 01.100c at (r('), E(U), B(ck)). 

The Al A4 and B1 N B4 depend on i and k but not on j and n, and are determined 

once the lattice system is fixed. Therefore, they can be prepared before computation of 

  ,(i,j,k). 

    The new difference formulae (35), (37), (38), and (40) contain 4,(_''k) and (1.(''i), i.e., 

the values of on either side of the discontinuity. They are computed as follows. From 

Eq. (14), the equation for 4, along the characteristic F. Bi = 1, where the discontinuity 

lies, is written as 

        ((r2---------------rl)1/2dr"d(r(sin-1(1/r))v _KniP{e—)•{              ~r',~ ~~3— 41) 

                                                  w 
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The difference equation for Eq. (41) corresponding to the system (26) is 

     co) (r(i)a - 1)1/2  0(=,1)(1)(n) _  2  p(i)(t(n,i)1- (DOA(3 - 42) F(i)di/di~KnwP(n-1)e(n-1) (n) 

where z (1')4)(n) is the expression similar to Eq. (27a) or (27b) with the subscript k 

being discarded and~e((;r~)1) is~e(n_1) withp=p~~_1),u=u~~_1),T=T(n)1), 

C = CU), and O = sin-1(1/i(')). Let 4:1:0(R(n)) be the solution of Eq. (42) with the initial 

data given by Eq. (17) t and the data P(n)_1), u( )_1), and T(n) 1) of the previous stage. 

Then, 

                 _ ~(a,.i)(3 - 43) —(n) R(n)• 

Let(1)(''') be the solution of Eq.(42) with the initial data~(°'''K)obtained from the data L(n)(n) 

at r = 1 by the step (i) of the process of solution in Sec. III A. This is the solution on 

the other side of the discontinuity.The ~(i'k)is obtained~(''J)byinterpolation.                              +(n)d fromL(n)Yolation.P 

(See Fig. 5.) 

   Now we can obtain the solution describing the discontinuity accurately. We insert 

the above-mentioned step to obtain (I)(°'('n))and~(') 
                                  'k)between the steps (i) and (ii) in the 

              —+(n 

process (i)-(iv) of solution in Sec. III A and then carry out the step (ii) with the modified 

difference scheme (see Fig. 2b). The data on the different sides of the discontinuity are 

computed independently. After the discontinuity decays to be negligibly small , we 

return to the original scheme (26)-(27d).

  t We take the limiting value as Bc -f 7r/2-. From its derivation the value (1)((°tK), 
obtained by the step (i) of the process of solution in Sec. III A, is the limiting value as 

Bc - 7r/2+. 

                          32



IV. ASYMPTOTIC SOLUTION IN THE CONTINUUM LIMIT 

    Before presenting the results of the numerical analysis, we give the asymptotic 

solution for  Knw -i 0. The general behavior of steady flows of a slightly rarefied gas 

past its condensed phase, where (strong) evaporation or condensation is taking place, 

is studied in Ref. 23. In the limit of the Knudsen number being zero, the flow field is 

described by the solution of the Euler equation of an ideal gas under an appropriate 

boundary condition, with local corrections such as Knudsen layer (cf. Chapter II and 

Ref. 21) or shock layer47.48. The condition across the shock layer is the well-known 

Rankine-Hugoniot relations47-4s. The boundary condition on the condensed phase at 

rest where evaporation is taking place is given as follows. 

                = h1(M), Z,w= h2(M), (M < 1),(3 — 44)                   Pw 

where M is the Mach number (3/4/5RT)1/2 and we have already obtained the func-

tions h1(M), h2(M) in Chapter II ((M,,,,,, pcx,/pw,Too/Tw) in Table 2-1 corresponds to 

(M, h1(M), h2(M)).) In addition, the tangential velocity should be zero. The solution 

with M > 1 is impossible. 

    The problem of evaporation from a cylinder, therefore, is a simple problem of 

isentropic flows except for the shock layer, if any. The temperature ratio ToITW, the 

nondimensional mass flow rate Q/(2irpw(2RTw)112L), and the nondimensional energy 

flow rate W/(2irpw(2RTw)1/2L) are easily obtained as functions of the pressure ratio 

pc:0 /pw as follows. 

 (i) For pco/pw > (4/3)5/2h1(1)(= 0.4260): 

   The results are expressed with the aid of the parameter M (the Mach number on 
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the condensed phase). 

 5 

                 11CC _(M2 + 1)2 h1(M),(3 — 45a) 
          Pw3J 

                  Too—`23-I- 1)h2(M),(3 — 45b) 

                   T ucc, = 0,(3 — 45c) 

             Q -5Mh1(M)(3 — 45d) 2lr w2RTw-----------------1/2L(6) h2(M)' 
         W 12M2+ 1Mh l(M)1fh2(M),(3 — 45e)     2r(1/2L0(5)2{3)        Pw2RT\w) 

where u~ _ (u?)1/2 at infinity. 

(ii) For 0 < pOO/pw < (4/3)5!2h1(1): 

    A shock layer stands between the cylinder and infinity. 

                    OOh 2(1) = 0.8579,(3 — 46a) 
            T3 

uoo = 0,(3 — 46b) 

                                                     2 

                Q  = (5) h1(1)  -0•2361,(3 — 46c) 
             2rpw(2RTw)112L 6 ^h2(1) 

                                                     3     W  

        2irpw(2RTw)1/2L-4 (-53) 2 hi(1)1"h2(1) = 0.5065. (3 — 46d) 
For this pressure range, the variables at infinity are independent of the pressure ratio 

Poo /Pw• 

 (iii) For pOO/pw = 0 (evaporation into vacuum): 

To/TW = 0,(3 — 47a) 
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 ue0/(2RTw)112 = (10h2(1)/3)1/2 = 1.464, (3 — 47b) 

                    Q  =52h1 (1)   = 0.2361, (3 — 47c)             2irpw(2RTu,)1/2L(6) h2(1) 

3 

        27pw(2RTw)1/2L=V(-53) 2 h1(1)Vh2(1) = 0.5065. (3 — 47d) 
   The dependence of TQQ/TW, Q/(2irpw(2RTw)1/2L), and W/(27rp,,,(2RT,,,)1/2L) on 

poo/pw is shown by the curves A in Figs. 6, 7 and 8 and by the data with Knw = 0 

in Tables 1, 2, and 3. It should be noted that the solutions of the cases (ii) and 

(iii) have infinite derivative with respect to r on the condensed phase, which violates 

the assumption of the asymptotic analysis in Ref. 23. The case with M 1 on the 

condensed phase, therefore, should be treated on the basis of kinetic theory, even when 

the Knudsen number is very small. 

V. RESULT OF COMPUTATION 

    Following the procedure described in Sec. III, we analyzed the problem numerically 

for a wide range of the pressure ratio and the Knudsen number (0.05 < poo/pw < 

0.9, 0.01 < Knw < 10). The results are summarized, with their discussions, in this 

section. 

A. Profiles of macroscopic variables 

    If we look for the solution of the problem for a given pressure ratio pco/pw and 

a given Knudsen number Knw, we find that the solution takes a special temperature 

ratio Too/T„. That is, for a solution to exist, the temperature ratio should take a value 

determined by the pressure ratio and the Knudsen number. The relation T,,177„ versus 

poo /pw is shown for various Knw in Fig. 6 and Table 1. This is a typical feature of one-

and two-dimensional problems of nonfinite domain, common with the classical heat 
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conduction or convection problem. In these problems the energy flow is large enough to 

warm up (or cool down) the gas up to infinity. That is, if the temperature at infinity is 

specified otherwise, a time-dependent process occurs and a new steady state satisfying 

the preceding relation is established. 

    The profiles of the macroscopic variables: the flow velocity, the pressure, the tem-

perature, and the Mach number, are shown in Figs. 9-17. Each figure from Fig. 9 to 

Fig. 14 shows the profiles of the variables at a given pressure ratio  poo /pw for various 

Knudsen numbers (Knw = 0, 0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 1, 2, 5, and 10). The case 

with Knw = 0 is the result by the asymptotic analysis based on Ref. 23 (cf. Sec. IV). 

The profiles change considerably with the Knudsen number. The variations of the vari-

ables with the radial distance, r = Lr", become more and more moderate as the Knudsen 

number increases. 

    In Fig. 9 the profiles at poo/pw = 0.8 (rather weak evaporation) are shown. The 

flow is accelerated very slightly near the condensed phase and then is decelerated to the 

stationary state at infinity. The pressure and the temperature for small Kn w decrease 

sharply near the condensed phase, overshooting the uniform state at infinity , and then 

increase gradually to the state at infinity (cf. Ref. 50). As Knw becomes larger, their 

overshoots disappear and they decrease moderately and monotonically to the state at 

infinity. At poo /pw = 0.5 (Fig. 10), the general features are the same as those at 

Pco/Pw = 0.8, but the acceleration of the flow and the overshoots of the pressure and 

temperature are intensified. At poo/pw = 0.4260 (Fig. 11), the flow (except for the 

Knudsen-layer correction) with Knw = 0 reaches sonic (M = 1) on the condensed 

phase, but the flow with Knw # 0 is still subsonic in the entire field. The acceleration 

and the overshoots are more intensified and extend in a wider region. At Nopw = 0.3 
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(Fig. 12), the flows with  Knw = 0.01 and 0.02, as well as that with Knw = 0, are 

accelerated to supersonic speed and then are decelerated sharply. As pc.° /pw decreases, 

the flow is accelerated up to farther downstream and the acceleration to supersonic state 

also occurs in larger Knw . For Knw > 0.2 in Fig. 13 or Knw > 2 in Fig. 14, however, 

the flow is still subsonic in the entire field. The deceleration after supersonic region 

for small Knw is very sharp, which corresponds to a shock wave. As Knw increases, 

the acceleration region becomes narrower and the deceleration becomes more moderate 

even after the supersonic region. In any case, the acceleration near the condensed phase 

is very sharp, whose local profiles are shown in Fig. 15. In Figs. 16 and 17, the profiles 

with various pc,„/p„ for given Knudsen numbers are plotted to show the variation of the 

flow with pc°/pw. 

B. Mass flow rate and energy flow rate from the cylinder 

   The variations of the mass flow rate Q/(27rpw(2RTw)1/2L) and the energy flow rate 

W/(2irpw(2RTw)1/2L) with the pressure ratio p„/pw are shown for various Knudsen 

numbers Knw in Figs. 7 and 8 and Tables 2 and 3. In the continuum limit, they increase 

monotonically as poo/pw decreases to 0.4260, and remain constant for smaller Poo /pw. 

The flow becomes sonic at pc,,/p„ = 0.4260 on the condensed phase, and the mass flux 

is maximum at the sonic condition for a classical ideal fluid. For smaller p<,/pw, the 

flow is expressed by a single supersonic solution starting from the sonic condition on the 

condensed phase, accompanied by a shock wave and subsonic solution to be adjusted 

to the pressure at infinity (Figs. 12, 13 and 14). This is the reason of the constancy 

of Too, Q, and W for p~/pw < 0.4260. As the Knudsen number increases, this strict 

feature of the classical ideal gas is relaxed, and Too, Q, and W vary more uniformly 

with pc°/pw and exceed the constant values for Knw = 0. 
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 C. Velocity distribution function 

    The marginal velocity distribution function g(= (2RTw) 2 pw1r f  d6; see 

Eqs. (6) and (13)) at several points in the gas are shown for four typical types of 

the profiles of macroscopic variables (Sec. III A) in Figs. 18-21. For poo/pw = 0.5 and 

Knw = 0.01 (Fig. 18), the distribution is smoothed out by frequent molecular collisions 

in a short distance with a slight shift of its center corresponding to acceleration of the 

gas flow ((a) r/L = 1 -* (b) r/L = 1.102 ). The distribution (b) at r/L = 1.102 and 

that (c) at r/L = 2.499 are quite similar. The main difference is the shift of its center 

toward the origin corresponding to deceleration . The similarity shows that the gas is in 

the continuum region. For p,/pw = 0.5 and Knw = 1 (Fig. 19), in a short distance ((a) 

r/L = 1 --* (b) r/L = 1.106) the distribution on each side of the discontinuity remains 

almost unchanged except for a shift of the discontinuity and deformation in the small 

 region (C = (2RTw) -112 (51 +a)1/2\ .   The deformation for small (is considerable 

because slow molecules have many chances of collision; the shift of the discontinuity 

corresponds to the change of the direction viewing the edge of the cylinder . The dis-

tribution is smoothed out in a long distance ((a) -} (b) -- (c)) , and there remains a 

discontinuity at r/L = 2.469. The deformation is mainly on one side of the disconti-

nuity corresponding to the molecular velocities leaving the cylinder. For poo1pw = 0.05 

and Knw = 0.01 (Fig. 20), the distribution is smoothed out with a shift of its center 

in a short distance ((a) r/L = 1 -4 (b) r/L = 1.105). The center of the distribution 

is further shifted and its extent shrinks , corresponding to acceleration and temperature 

drop ((b) r/L = 1.105 -* (c) r/L = 10.23; note the difference in scale between the 

figures (b) and (c)). Then the peak of the distribution is lowered and another bump 

appears ((c) r/L = 10.23 -* (d) r/L = 12.03). The peak disappears and a hill around 
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the bump is established ((d)  r/L = 12.03 (e) r/L = 13.02). The process (c) --> (d) —^ 

(e) corresponds to a shock wave, through which the gas is decelerated and heated. For 

poo/pw = 0.05 and Knw = 1 (Fig. 21), the distribution with a big discontinuity on the 

cylinder ((a) r/L = 1) is deformed from the small ( side, and the peak is formed in posi-

tive ( cos tic region, which corresponds to acceleration ((a) r/L = 1 —* (b) r/L = 1.106). 

Then the peak is lowered gradually and thus the center of mass of the distribution moves 

toward the origin, corresponding to deceleration ((b) r/L = 1.106 —+ (c) r/L = 10.15 —p 

(d) r/L = 19.98; note the difference in scale between the figures (b) and (c)). There 

still remains a discontinuity and big anisotropy of the distribution at r/L = 19.98. 

   We have discussed the discontinuity of the velocity distribution function in a gas 

around a convex body and proposed a scheme to analyze the discontinuity in Sec. III C. 

In order to show the decay of the discontinuity with r/L, we present the marginal veloc-

ity distribution function g(r/L, (, B<.) at a given ( in Figs. 22 and 23. The discontinuity 

lies on (r/L) sin 8<. = 1, which is independent of (, pco/pw, and Knw. The size of the 

discontinuity, on the other hand, considerably depends on the Knudsen number and the 

molecular speed. The discontinuity decays with distance owing to molecular collisions. 

Therefore it is appreciable only in the neighborhood of the cylinder for Knw = 0.1 

(Fig. 22) and extends far away from the cylinder for Knw = 10 (Fig. 23(a)), and for a 

given Knw the discontinuity decays more rapidly for smaller ( since slower molecules 

have smaller free paths (compare Fig. 23(a) with Fig. 23(b)).

D. Lattice system and the accuracy of computation 

   Since the behavior of the gas depends considerably on pc,„/pw and Knw, the lattice 

system (the lattice functions i(s), B<.(s), and ((s) defined in Eq. (22); I, J, K, and k; 
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 FD and CD) is chosen appropriately depending on the situation. Comparing the data 

ofTQQ/TW and Q/(2irpti,(RT„,)1/2L) obtained with several kinds of lattice systems (half, 

 double, etc. lattices), we confirmed that the data are reliable down to 3 or 4 decimal 

 places shown in Tables 1 and 2. Then for typical cases we examined the difference 

 of the profiles of the macroscopic variables for different lattice systems and checked 

whether there are enough lattice points for the variation of the variables, especially in 

the Knudsen layer and the shock wave. If the result was not satisfactory, we recomputed 

all the cases of similar situations with finer lattice systems . 

    Some of the data of our lattice system are given here for reference. (i) The lattice 

function r(s) is given by 

dr(s) — f1(F)f2(T) r(0) = 1,(3 — 48a)                 ds f3(r) 

fl = d2 + (dl — d2) exp(—d3(r — 1)),(3 — 48b) 

                12 = 1 + (d7 — 1) exp(—d3(r — 1)),(3 — 48c) 

fs = 1+ d4 exp(—(T — d5)2/d6),(3 — 48d) 

where d1, d2, ... , d8 are constants chosen properly in each case. The fundamental lattice 

moderately broadening from the cylinder is expressed by f l; A finer lattice adjacent to 

the cylinder for the Knudsen layer and that in the midst of the gas for the shock wave are 

expressed by f2 and f3 respectively. Examples of the lattice data are given in Table 4. 

The appropriate size of the domain FD depends considerably on p
~/pw and Kn,,,, whose 

examples are given in Table 5. (ii) For ((i) lattice, C(s) = as3 (a: a constant), CD = 8, 
  t The data determined in the connecting process with the asymptotic solution in 

Sec. III B. 
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and J = 24, 48, or 96. Most cases were computed with J = 24. (iii) Corresponding to 

a sharp variation near the cylinder, a finer lattice of  0((k) is required near Bt = it/2; For 

moderate or large Knw, a finer lattice is also required near 9 = 0 since the discontinuity 

extends far away from the cylinder. Examples of K and K are given in Table 6. 

    In order to examine the accuracy of our computation, we computed Q and W by 

Eqs. (19) and (20) at all the lattice points of r and examined their relative errors ((max 

Q - min Q)/min Q and (max W - min W)/min W). The relative errors of Q and W 

are less than 0.1% for the values of poo/pw and Knw for which the data Too/TW are 

given down to 4 decimal places in Table 1. For other poo/pw and Knw, the errors are 

0.1%~0.5% but the cases with 0.4N0.5% are only a few. The data in Tables 2 and 3 

are the averages of Q and W over 1 < r < FD (e.g., (rD - 1)-1 fi D Qdr). 

   The computation was carried out by Apollo DN 4500, DG AV 310, and MIPS 

RS 3230 computers at our Laboratory and by FACOM VP-2600 computer at the Data 

Processing Center of Kyoto University. 

VI. EFFECT OF CONDENSATION FACTOR IN KINETIC BOUNDARY 

CONDITION 

    As in most works on a gas flow with evaporation and condensation, we considered 

the problem under the conventional boundary condition (the assumption (ii) in Sec. II), 

where the velocity distribution of the molecules leaving the condensed phase is inde-

pendent of the distribution of the incident molecules. Experimental data showing the 

dependence of the distribution of the molecules on that of the incident molecules on a 

certain solid surface are reported.20 A generalization of the conventional boundary con-

dition is reported in Ref. 5, where the conversion formula of the solution of the linearized 

half-space problem under the conventional condition to that under the generalized one 
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is also given. The conversion relation is generalized to the two surface and the nonlinear 

half-space problems in Refs. 23, 26 and Chapter II . The conversion relation can also 

be derived for the present problem. 

   The generalized boundary condition given in Ref. 5 is obtained by simply replacing 

the  pw in Eq. (4a) by the following quantity: 

            xx)() 
   a°RT— (1 — ac)(27r/RTw)1/2(~11+2z fd~ld2da~3 — 49 

   wJeixi+e2x2<o r 

where a, is a constant (0 < a,, < 1) called the condensation factor of the boundary. The 

case a, = 1 corresponds to the conventional condition. The two problems differ only in 

the boundary condition (4a) by a factor. We can, therefore, derive a simple conversion 

formula between the two classes of solutions. Only the result is given here. Let the 

nondimensional solution (f, g, h, u, P, P, T, Q(= Q/(2irpw(2RT„)1/2L)), W(= W/ 

(2irpw(2RTw)1/2L))) under the conventional boundary condition for Poo = Pc and 

Knw = Kc be denoted by the subscript C, and let the solution under the generalized 

boundary condition for P0„ = PG and Knw = KG be denoted by the subscript G. The 

following one-to-one correspondence holds between the two classes of solutions: 

(fG) PG, KG) = F(fc, Pc, Kc),(3 — 50) 

where 

                  F = (1 + 2\5(1 — ac)ac 1Qc)-1•(3 — 51) 

Then, 

(gG) hG, PG, PG, QG, WG) = F(gc, hc, Pc, Pc, Qc, Wc), (3 — 52a) 

(uG, TG) MG) _ (uc) 7'c, Mc).(3 — 52b) 

It is noted that all the pw in Eqs. (6c), (6d), (8b), etc. (except in Eq. (4a)) is the 

original pw defined by pw = pw/RTT but not the quantity (49). 
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VII. CONCLUDING REMARKS 

    We considered evaporating flows of a rarefied gas from its cylindrical condensed 

phase in an infinite expanse of the gas and tried to analyze the problem numerically. 

First the difficulties in analyzing the problem were resolved: On the basis of the asymp-

totic analysis, a method to treat infinite domain problems where the approach to the uni-

form state at infinity is slow as in the present problem is proposed (Sec. III B). The dis-

continuity of the velocity distribution function in a gas around a convex body is pointed 

out, and a numerical scheme to analyze this discontinuity is presented (Sec. III C). The 

discontinuity is not only of theoretical interest but also important in numerical analy-

sis. If the discontinuity is not properly treated, considerable errors are introduced in 

macroscopic variables, especially for moderate and large Knudsen numbers. With these 

preparations, we analyzed the problem numerically for a wide range of the pressure ratio 

 (  pc°/pi, = 0.05 N 0.9) and the Knudsen number ( Kau, = 0.01 N 10). The numerical 

data of the scheme and the accuracy test of the numerical computation are described 

briefly in Sec. V D. Finally the effect of the condensation factor in the kinetic boundary 

condition is discussed (Sec. VI). 

    The comprehensive data of the macroscopic variables over the whole flow field are 

presented in Figs. 9-17. The profiles of the flow velocity, the pressure, the temperature, 

and the Mach number of a given pressure ratio for various Knudsen numbers are shown 

in each of Figs. 9-14 from the pressure ratio 0.8 to 0.05. Comparison of the profiles of 

various pressure ratios (0.05 N 0.6) is given in Figs. 16 and 17 for Knudsen numbers 0.01 

and 0.2, respectively. The flow, generally, is first accelerated and then decelerated to the 

state at infinity. The variations of the variables are more moderate for larger Knudsen 

numbers. Sharp acceleration occurs near the condensed phase (see also Fig. 15). As 
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the pressure ratio decreases, the region of acceleration extends farther downstream. For 

the pressure ratio smaller than a certain value, a supersonic region appears in the flow 

field. The threshold pressure ratio decreases as the Knudsen number increases. For the 

Knudsen number larger than a certain value, the flow remains subsonic for the entire 

field (e.g.,  Knw > 2 for p,, 1pw = 0.05, Knw > 0.2 for pc., 1pw = 0.2.). The deceleration 

from the supersonic flow is very steep for small Knudsen numbers. In most figures 

the result in the continuum limit obtained by the asymptotic theory23 is shown for 

comparison. 

    The temperature ratio Too / Ty, , the nondimensional mass flow rate 

Q/27rpw(2RTw)1/2L, and the nondimensional energy flow rate W/2irpw(2RTw)1/2L ver-

sus the pressure ratio for various Knudsen numbers are presented in Figs. 6-8 and in 

Tables 1-3 with their discussions in Secs. V A and V B. The results in the continuum 

limit are given in Sec. IV. The choking feature of these three quantities in the contin-

uum limit is seen to relax as the Knudsen number increases. The dependence of the 

temperature ratio on the pressure ratio is a typical feature of one and two-dimensional 

problems of nonfinite domain. 

   The behavior of the velocity distribution function is depicted in Figs. 18-23 with 

the discussion in Sec. V C. The process of its deformation as going away from the 

condensed phase is given for four sets of the pressure ratio and the Knudsen number 

in Figs. 18-21. The discontinuity of the velocity distribution function in the gas is a 

typical feature of gas flows around a convex body. It extends far away from the cylinder 

and the distribution function shows a strong anisotropy for small pressure ratio and 

moderate or large Knudsen numbers (Fig. 21). The process of deceleration through a 

shock wave is clearly seen in Fig. 20. 
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    The case with zero pressure ratio (evaporation into vacuum), however, was not 

computed although the case with small pressure ratio  poo/pw = 0.05 was computed. 

The recent experiment 28 of Faubel ei al. arose new interest in analysis of the problem. 

For comprehensive understanding of the problem , further extensive study is required 

although some works have been done (e.g., Refs. 8 and 27).
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(3-45b), and (3-46a)).
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Table 2-1  Poo /Pw and T00/TW versus Moo in the steady evaporation.
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Table 3-1 The temperature ratio  TOO/TWversus the pressure ratio pco/pw for various Knudsen numbers.
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0.8579 

0.8579 

0.8579 

0.8579 

0.8579

0.9784 

0.9553 

0.9306 

0.9043 

0.8769 

0.8637 

0.8525 

0.8480 

0.8480 

0.848 

0.848 

0.848 

0.848 

0.848

0.9784 

0.9554 

0.9309 

0.9049 

0.8775 

0.8644 

0.8527 

0.8447 

0.8431 

0.843 

0.843 

0.843 

0.843 

0.843

0.9783 

0.9555 

0.9313 

0.9060 

0.8793 

0.8662 

0.8541 

0.8439 

0.8373 

0.835 

0.835 

0.835 

0.835 

0.835

0.9779 

0.9552 

0.9316 

0.9069 

0.8814 

0.8568 

0.846 

0.837 

0.831 

0.828 

0.827 

0.826 

0.826

0.9773 

0.9546 

0.9316 

0.9080 

0.8842 

0.861 

0.840 

0.831 

0.825 

0.819 

0.819

0.9764 

0.9535 

0.9311 

0.9091 

0.887 

0.866 

0.846 

0.837 

0.829 

0.816 

0.812

0.976 

0.953 

0.931 

0.910 

0.889 

0.869 

0.850 

0.832 

0.816 

0.809

0.976 

0.954 

0.932 

0.911 

0.890 

0.871 

0.852 

0.834 

0.817 

0.809

0.976 

0.954 

0.932 

0.911 

0.891 

0.872 

0.854 

0.835 

0.817 

0.810

0.977 

0.955 

0.933 

0.913 

0.893 

0.873 

0.854 

0.835 

0.818 

0.809

a The data for Km. = 0 are taken from Eqs. (3-45a), (3-45b) and (3-46a).
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0

 Table 3-2 The nondimensional mass flow rate Q/27rpz„(2RTw)1/2L from the cylinder versus the pressure ratio Poo/Pw 

for various Knudsen numbers.

Q/21rpw(2RTw)1/2L

Poo /Pw Knu, =0a 0.01 0.02 0.05 0.1 0.2 0.5 1 2 5 10

0.90 

0.80 

0.70 

0.60 

0.50 

0.45 

0.40 

0.35 

0.30 

0.25 

0.20 

0.15 

0.10 

0.05

0.0466 

0.0922 

0.1364 

0.1780 

0.2152 

0.2305 

0.2361 

0.2361 

0.2361 

0.2361 

0.2361 

0.2361 

0.2361 

0.2361

0.0463 

0.0917 

0.1357 

0.1772 

0.2141 

0.2297 

0.2416 

0.2463 

0.2464 

0.2464 

0.2464 

0.246 

0.246 

0.246

0.0461 

0.0912 

0.1349 

0.1763 

0.2130 

0.2288 

0.2415 

0.2493 

0.2509 

0.2510 

0.2510 

0.251 

0.251 

0.251

0.0453 

0.0897 

0.1326 

0.1733 

0.2096 

0.2256 

0.2394 

0.2498 

0.2560 

0.258 

0.259 

0.259 

0.259 

0.259

0.0442 

0.0874 

0.1290 

0.1685 

0.2044 

0.2346 

0.247 

0.256 

0.261 

0.264 

0.265 

0.265 

0.265

0.0421 

0.0833 

0.1231 

0.1608 

0.1956 

0.226 

0.250 

0.259 

0.265 

0.270 

0.270

0.0380 

0.0753 

0.1116 

0.1465 

0.179 

0.209 

0.236 

0.247 

0.257 

0.271 

0.276

0.035 

0.069 

0.102 

0.135 

0.166 

0.196 

0.224 

0.248 

0.268 

0.275

0.031 

0.063 

0.094 

0.125 

0.156 

0.185 

0.213 

0.239 

0.262 

0.272

0.029 

0.058 

0.087 

0.116 

0.145 

0.174 

0.203 

0.231 

0.257 

0.270

0.027 

0.055 

0.083 

0.112 

0.140 

0.169 

0.198 

0.227 

0.255 

0.269

' The data for Knt„ = 0 are taken from Eqs. (3-45a), (3-45d) and (3-46c).



 Table 3-3 The 

 poo /pw for various

nondimensional energy flow 

Knudsen numbers.

rate W/2irpw(2RTw)1/2L from the cylinder versus the pressure ratio

WJ2wpw(2RTw)1/2L

pooipw Knw =0a 0.01 0.02 0.05 0.1 0.2 0.5 1 2 5 10

0.90 

0.80 

0.70 

0.60 

0.50 

0.45 

0.40 

0.35 

0.30 

0.25 

0.20 

0.15 

0.10 

0.05

0.1140 

0.2202 

0.3172 

0.4023 

0.4714 

0.4972 

0.5065 

0.5065 

0.5065 

0.5065 

0.5065 

0.5065 

0.5065 

0.5065

0.1133 

0.2190 

0.3156 

0.4005 

0.4693 

0.4959 

0.5149 

0.5221 

0.5222 

0.5222 

0.5222 

0.522 

0.522 

0.522

0.1127 

0.2178 

0.3138 

0.3986 

0.4672 

0.4943 

0.5147 

0.5265 

0.5289 

0.5289 

0.5290 

0.529 

0.529 

0.529

0,1109 

0.2143 

0.3086 

0.3924 

0.4608 

0.4886 

0.5111 

0.5270 

0.5358 

0.539 

0.540 

0.540 

0.541 

0.542

0.1080 

0.2086 

0.3005 

0.3819 

0.4503 

0.5025 

0.521 

0.535 

0.543 

0.547 

0.548 

0.548 

0.547

0.1029 

0.1988 

0.2866 

0.3651 

0.4324 

0.487 

0.525 

0.538 

0.547 

0.553 

0.553

0.0928 

0.1796 

0.2598 

0.3329 

0.398 

0.454 

0.499 

0.516 

0.533 

0.553 

0.559

0.084 

0.164 

0.238 

0.307 

0.370 

0.426 

0.475 

0.515 

0.546 

0.556

0.077 

0.150 

0.220 

0.285 

0.346 

0.403 

0.453 

0.499 

0.535 

0.551

0.070 

0.138 

0.203 

0.265 

0.324 

0.379 

0.433 

0.483 

0.526 

0.547

0.067 

0.132 

0.195 

0.255 

0.314 

0.369 

0.423 

0.474 

0.523 

0.544

 The data for Ii-nw = 0 are taken from Eqs. (3-45a) , (3-45e) and (3-46d).



Table 3-4 Examples of the lattice of  F.

(knw, Pco lPw ) (0.01, 0.05) (0.1, 0.4) (10, 0.05)

r(i) dr/di F(i) dr/di T(i) dr"/di

 0 

10 

50 

100 

144 

176 

200 

210 

230 

236 

250 

252

   1 

 1.0006 

 1.067 

  1.93 

  9.13 

  12.0 

  13.0 

  17.4 

 40.4 

51.2 (=TD)

5x10_8. 

3.73x10-4 

3.86x10-3 

 0.0466 

 0.389 

0.0325 

 0.0902 

 0.755 

  1.63 

  1.97

  1 

1.00009 

 1.007 

1.27 

  6.43 

20.7 (=ID)

5x10-6 

1.36x10-5 

6.90x10-4 

 0.0117 

 0.139 

 0.475

   1 

  1.12 

  9.05 

  351 

 11800 

19800 (=TD)

7.29x10-3 

 0.0185 

 0.743 

  16.7 

  160 

  160



Table 3-5 Examples of the outer limit  fp of the numerical computation.

Knw Poo /Pw =0.1 0.2 0.4 0.6 0.8

0.01 

0.1 

 1 

10

 20 

100 

200 

10000

10 

50 

100 

2000

10 

20 

50 

2000

 5 

10 

50 

1000

2.5 

 5 

50 

1000

103



Table 3-6 Examples of (K, k)

Knw po0 /pw =0.1 0.2 0.6 0.8

0.01 

0.1 

 1 

10

96, 48 

144, 96 

144, 96 

240, 192

96, 48 

96, 48 

144, 96 

240, 192

96, 

72, 

96, 

144,

48 

48 

48 

96

96, 

72, 

72, 

144,

48 

48 

48 

96

104






