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Abstract

Recent advances in very large scale integration (VLSI) technology have 
made it possible to realize larger and more sophisticated logic circuits. 

Today, it is hard to design logic circuits efficiently and correctly without 

using computer-aided design (CAD) systems. However, with the growth 
of the scale of VLSI, CAD systems have revealed their problem of in-

creasing time and space for computation. 

 In this thesis, three topics concerning Boolean function manipulation 

are discussed in order to solve very large problems in CAD of digital 

systems. One is on high-speed generation of prime implicants of a given 

Boolean function. It has been studied by many researchers as the first 

step of two level logic minimization, which is one of the most classi-

cal and yet very important problem in CAD. The other two topics are 

on Boolean function manipulation based on ordered binary-decision di-

agrams (OBDDs), or simply Binary-Decision Diagram (BDD). BDD is 
a graph representation of Boolean functions proposed by Akers and de-

veloped by Bryant. BDDs have excellent properties which are useful to 

solve CAD problems symbolically, including that (1)BDD is a canonical 
representation of Boolean function, (2)Boolean operation is performed in 
time proportional to the size of BDD, using two hash tables, (3)size of 
BDDs is not large for many Boolean functions found in digital designs, 

etc. Boolean function manipulators based on Shared BDDs (SBDDs), or 
multirooted BDDs, implemented on workstations are appreciated their
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usefulness in CAD systems. 

  In chapter 2, high-speed algorithms for generating prime implicants of 

a given Boolean function are discussed, and the use of a vector super-

computer is proposed. The proposed algorithms are based on the con-

sensus expansion presented by Tison. The proposed algorithms are iin-

plemented efficiently on vector supercomputers by performing consensus 
expansion in breadth-first manner, and employing truth table represen-

tati_oni of Boolean functions and map representation of a set of prime im-

plicants. Table look-up technique is also employed to reduce the consen-
sus expansion stages. The proposed algorithms are implemented on the 

vector supercomputer FACOM VP-400E at the Kyoto University Data 

Processing Center and compared with several other algorithms. For ex-

ample, by the consensus expansion method with table look-up, all prime 

implicants of randomly generated 18-variable .Boolean functions are gen-

erated in about 1.4 seconds on the average. As an application of the 

proposed algorithm, we will show the results related to the number of 

prime implicants of Boolean functions. We will show that Igarashi's con-

jecture on the maximum number of n-variable Boolean functions is true 
for n = 5 and 6, i. e., the maximum number of prime implicants of 5- and 

6-variable Boolean functions are 32 and 92, respectively. 

  In chapter 3 and chapter 4, algorithms for manipulating SBDDs are 

discussed in order to manipulate very large SBDDs which cannot be ma-

nipulated on conventional workstations, and the use of breadth-first al-

gorithm is proposed. The breadth-first algorithm consists of two parts; 
an expansion phase and a reduction phase. In the expansion phase, new 

nodes sufficient to represent the resultant Boolean function are generated 

in a breadth-first manner from the root-node toward leaf-nodes. In the 

reduction phase, the nodes generated in the expansion phase are checked 

in a breadth-first manner from nodes nearby leaf-nodes toward the root-
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node.

  In chapter 3, a high-speed algorithm for manipulating SBDDs which is 

suitable for vector supercomputers is proposed. Breadth-first algorithm is 

employed to vectorize manipulation, and actually almost all steps are vec-

torized, including hash table access which is efficiently vectorizecl using 

high-speed vector indirect store instruction of a vector supercomputer 

HITAC S-820/80. A Boolean function manipulator based on the pro-

posed algorithm is implemented on the HITAC S-820/80 at the University 
of Tokyo, and experiments of constructing the SBDDs representing the 

Boolean functions of all the primary outputs and nets from a circuit de-

scription chosen from ISCAS'85 are performed. From these experiments, 

the vector acceleration ratio on the S-820/80 is 5.3 to 27.8. Compared 
with the results on the workstation Sun3/60 by Minato et al., our results 
are up to 130 times faster in the best case. In addition, as an example of 

applications of developed SBDD manipulator, a design verification sys-

tem based on computation tree logic (CTL) model checker is implemented 
and the experimental results are shown. 

  In chapter 4, the use of secondary memory is discussed in order to 

manipulate SBDDs which are too large to be stored within main memory. 

In order to avoid random accesses to the secondary memory, level-by-level 

manipulation of Shared Quasi-reduced BDDs (SQBDDs) upon a breadth-
first algorithm is employed. The use of garbage collection with sliding 

type compaction is also introduced to reduce page faults in succeeding 

manipulation. A Boolean function manipulator based on the proposed 

algorithm is implemented and evaluated on the workstation Sun SPARC 

Station 10 with 64 megabyte main memory and a one gigabyte hard disk 

drive connected via SCSI-2 standard interface. More than 50 million 

nodes can be allocated within one gigabyte virtual memory space, and 

as a result, an SQBDD with more than 12 million nodes representing all
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the primary outputs of a 15-bit multiplier is constructed from a circuit 

description in about 5.6 hours. If the conventional SBDD manipulator is 

used instead, it is estimated that it would take about 1,900 hours. So we 

can say that our manipulator achieved about 330 times improvement in 

elapsed time. Furthermore, we made experiments using semiconductor 

extended storage instead of hard disk, and showed that the required time 

for the 15-bit multiplier is reduced to about 2.2 hours.
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Chapter 1

Introduct ion

1.1 Background

Recent advances in very large scale integration (VLSI) technology have 
made it possible to realize larger and more sophisticated logic circuits. 

Today, it is hard to design logic circuits efficiently and correctly without 

using computer-aided design (CAD) systems. However, with the growth 
of the scale of  VLSI, CAD systems have revealed their problem of in-

creasing time and space for computation. 

  Among many steps of designing hardware, logic minimization is one 

of the most classical and yet very important problem. Two level logic 

minimization is the rrrost basic problem in logic minimization. It is useful 

to optimize combinational circuit, and today it is very important to realize 

programmable logic array (PLA). Quine showed that the minimum two 
level formula can he derived from a set of prime irnplieants of a given 

Boolean function[Qui55]. McCluskey proposed a method that consists of 
two steps; (1)Generate all prime irnplieants of a given Boolean function, 
and (2)derive a minimum cover of the given Boolean function by the 

prime implicants[McC56]. Since the so-called Quine-McCluskey method 
was presented, various algorithms for generating all prime implicants of
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a given Boolean function which are suited to computer processing have 

been proposed. 

  Nelson showed that when a product-of-sums representation of a Boolean 

function is expanded to a  sure-of-products representation by means of the 

distributive law (A(B + C) = AB + AC) and some other primitive laws, 
all prime implicants of a given Boolean function are generated with, pos-

sibly, some non-prime iniplicants[Ne154]. Slagle et al. proposed a method 
for generating prime implicants from a product-of-sums representation by 

means of tree search[SCL70]. Kambayashi et al. proposed the clause selec-
tion method by combining Nelson's theory and Slagle's method, in which 

the searched tree is smaller than that of the Slagle's method[KOY79]. 
  Tison showed that all prime irnplicants of a given Boolean function can 

be generated by consensus expansion[Tis67]. The consensus expansion is 
based on the following equation 

(which holds for any Boolean function f :         f =xif(.i = 0)+xif(xi = 1) + f(xi = 0)f (xi = 1) 

where xi is a Boolean variable in f. Using the equation repeatedly for ev-
ery variable, f is expanded in a ternary tree fashion, and consequently, its 
all implicants are generated. In order to use the consensus expansion for 

generating all prime implicants, the removal of the generated non-prime 
implicants or the prevention of the generation of non-prime implicants 
is necessary. Morreale proposed an algorithm in which the generation of 
non-prime implicants is prevented by means of tagging functions[Mor70]. 
  Thus, various methods for generating all prime implicants have been 

proposed. However, generating all prime implicants is intrinsically very 
time and space consuming, and it was difficult to generate all prime im-

plicants of a Boolean function with more than a dozen or so variables. 
The computation time and the required memory space increase exponen-
tially to the number of variables. There are rt-variable Boolean functions 
which have 0(3"/n) prime irnplicants[DF59].
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  R.ecentry, Kagatani et al. proposed the use of vector supercomputers 

for generating prime implicants, and presented two high-speed vector al-

gorithms, called the variable-oriented expansion method which is based 

on the clause selection method and the ternary tree expansion method 

which is based on the consensus  expansion rnethod[Kag87]. A vector su-

percomputer is a highly pipelined supercomputer which is primarily used 

for large scale scientific and engineering computation. It yields more than 

a giga floating operations per second (GFLOPS) of computation power by 
executing uniform operations on array structured data. In order to sup-

port large-scale computation, it has a large main memory unit (usually 
a hundred mega bytes or more) and powerful load/store pipelines. The 
use of vector supercomputers for non-numerical applications had been 

proposed, including logic simulation by Ishiura et al. [IYY87] 

  Another important step of designing hardware is design verification. 

There are two methods for design verification; logic simulation and formal 

verification. Logic simulation is a method to detect design errors by 

simulating the behavior of a designed circuit for an input sequence. Logic 

simulation is now widely used for design verification, however, it has a 

problem that there may still be undetected errors even if simulation has 

finished successfully, because it is difficult to simulate a logic circuit for 

its all possible input sequences. To overcome this problem, formal design 

verification have been studied in recent years. 

  Formal design verification is to show the correctness of a designed 

logic circuit with respect to its specification of the circuit based on a 

formal system. Among several approaches for formal design verification, 

symbolic simulation and symbolic iriodel checking has been proved their 

usefulness by many researchers in recent years. The performance of both 

symbolic simulation and symbolic model checking owes to Boolean func-

tion manipulator based on ordered binary-decision diagrams (OBDD), or



4 1. Introduction

simply Binary-Decision Diagram (BDD), that is one of representations of 
Boolean functions. 

  Various representations of Boolean functions have been proposed, in-

cluding truth table, Boolean formula, cube representation, etc. For  exam-

ple, truth table is the most simple representation and suitable for vector 

processing, but it takes 0(272) space and time to construct the represen-
tation for an n-variable Boolean function. On the other hand, Boolean 

formula has advantages such as easy operation and relatively small space 

to store, but tautology check or equivalence check is very difficult. 

  BDD is a graph representation of Boolean functions proposed by Akers 

[Ake78] and developed by Bryant[Bry86]. A BDD is a directed acyclic 
graph with two leaf (terminal) nodes labeled by 0 and 1. Every non-
terminal node is labeled by a Boolean variable and has two outgoing edges 

labeled by 0 and 1. No Boolean variable appears more than once in every 

path of a BDD, and the variables appear in a fixed order in all the paths 

of a BDD. A BDD is defined as the graph obtained from binary decision 

tree by removing all redundant nodes and non-unique nodes (hut one). 
BDDs have excellent properties which are useful to solve CAD problems 

symbolically, including (1)BDD is a canonical representation of Boolean 
function, (2)Boolean operation is performed in time proportional to the 
size of BDD, using two hash tables, (3)size of BDDs is not large for many 
Boolean functions found in digital designs, etc. 

  At present, subroutine packages, called Boolean function manipulators, 
based on Shared BDD (SBDD), or i ultirooted BDD, are implemented 
on workstations which support primary operations of Boolean function 

manipulation. Several techniques for implementation of Boolean function 

manipulators are proposed in order to reduce the time and the storage 

for manipulation, such as various attributed edges, automatic garbage 

collection, and so on. Variable ordering of BDD has also been studied
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by many researchers to reduce the size of BDD. SBDD based Boolean 

function manipulators are now widely utilized in various applications of 

CAD systems, not  only formal design verification, but also test genera-

tion, logic synthesis and so on, and even the use for other combinatorial 

problems has been studied. 

  Thus, Boolean function manipulators based on SBDDs implemented 

on workstations are appreciated their usefulness in CAD systems. How-

ever, according to the recent progress of the VLSI technology, it is re-

quired to manipulate larger and larger scale Boolean functions, which 

will exceed the computational power of workstations. In order to fulfill 

this requirement, the use of parallel machines or connection machines is 

studied.

1.2 Outline of the Thesis

In this thesis, three topics concerning Boolean function manipulation are 

discussed in order to solve very large problems in CAD of digital systems. 

  In chapter 2, high-speed algorithms for generating prime implicants of 

a given Boolean function are discussed, and the use of vector supercom-

puter is proposed. The proposed algorithms are based on the consensus 
expansion. The proposed algorithms are implemented efficiently on vector 

supercomputers by performing consensus expansion in breadth-first man-

ner, and employing truth table representation of Boolean functions and 

map representation of a set of prime implicants. Table look-up technique 

is also employed to reduce the consensus expansion stages. The pro-

posed algorithms are implemented on the vector supercomputer FACOM 
VP-400E at the Kyoto University Data Processing Center and compared 

with several other algorithms. For example, by the consensus expansion 

method with table look-up, all prime implicants of randomly generated
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18-variable Boolean functions are generated in about 1.4 seconds on the 

average. As an application of the proposed algorithm, we will show the 

results related to the number of prime  irnplicants of Boolean functions. 

We will show that the Igarashi's conjecture on the maximum number of 

n-variable Boolean functions is true for n = 5 and 6. 

  In chapter 3 and chapter 4, algorithms for manipulating SBDDs are 

discussed in order to manipulate very large SBDDs which cannot be ma-

nipulated by conventional workstations, and the use of breadth-first al-

gorithm is proposed. The breadth-first algorithm consists of two parts; 
an expansion phase and a reduction phase. In the expansion phase, new 

nodes sufficient to represent the resultant Boolean function are generated 

in a breadth-first manner from the root-node toward leaf-nodes. In the 

reduction phase, the nodes generated in the expansion phase are checked 

in a breadth-first manner from nodes nearby leaf-nodes toward the root-

node. 

  In chapter 3, a high-speed algorithm for manipulating SBDDs which is 

suitable for vector supercomputers is proposed. Breadth-first algorithm is 

employed to vectorize manipulation, and actually almost all steps are vec-

torized, including hash table access which is efficiently vectorized using 

high-speed vector indirect store instruction of a vector supercomputer 

HITAC S-820/80. A Boolean function manipulator based on the pro-

posed algorithm is implemented on the HITAC S-820/80 at the Univer-
sity of Tokyo, and experiments of constructing the SBDDs representing 
the Boolean functions of all the primary outputs and nets from a circuit 
description chosen from ISCAS'85 [BF85] are performed. From these ex-

periments, the vector acceleration ratio on the S-820/80 is 5.3 to 27.8. 
Compared with the results on the workstation Sun3/60 by Minato et 
al.[MIY90], our results are up to 130 times faster in the best case. In ad-
dition, as an example of applications of developed SBDD manipulator, a
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design verification  system based on computation tree logic (CTL) model 
checker is implemented and the experimental results are shown. 

  In chapter 4, the use of secondary memory is discussed in order to 

manipulate SBDDs which are too large to be stored within main memory. 

In order to avoid random accesses to the secondary memory, level-by-level 

manipulation of Shared Quasi-reduced BDDs (SQBDDs) upon a breadth-
first algorithm is employed. The use of garbage collection with sliding 

type compaction is also introduced to reduce page faults in succeeding 

manipulation. A Boolean function manipulator based on the proposed 

algorithm is implemented and evaluated on the workstation Sun SPARC 

Station 10 with 64 megabyte main memory and a one gigabyte hard disk 

drive connected via SCSI-2 standard interface. More than 50 million 

nodes can be allocated within one gigabyte virtual memory space, and 

as a result, an SQBDD with more than 12 million nodes representing all 

the primary outputs of a 15-bit multiplier is constructed from a circuit 

description in about 5.6 hours. If the conventional SBDD manipulator is 

used instead, it is estimated that it would take about 1,900 hours. So we 

can say that our manipulator achieved about 330 times improvement in 

elapsed time. Furthermore, we made experiments using semiconductor 

extended storage instead of hard disk, and showed that the required time 

for the 15-bit multiplier is reduced to about 2.2 hours. 

  In chapter 5, the conclusion of this thesis and future problems are 

stated.
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Chapter 2

Vector 

Prime

Algorithms 

 Implicants

for Generating

2.1 Introduction

Generation of all prime implicants of a given Boolean function is a funda-

mental task in two-level logic minimization[Qui55, McC56, PetGO] which 
is an important process in logic design and logic synthesis. Various stud-
ies have been made on this subject, and many algorithms suitable for 
computer processing have been proposed[Ne154, SCL70, Mor70, Tis67, 
KOY79]. However, since the subject is intrinsically very time and space 
consuming, it is difficult to generate all prime implicants of a Boolean 

function with more than a dozen or so variables by means of these meth-

ods on conventional scalar processors. The computation time and the 

required memory space increase exponentially to the number of vari-

ables. There are n-variable Boolean functions which have O(3' /n) prime 
implicants[DF59]. For example, there are 16-variable Boolean functions 
which have more than two million prime irnplicants[Iga79]. 

  In this chapter, the use of vector supercomputers for generating all 

prime implicants of a given Boolean function is considered. Several vector 

supercomputers have been developed for large-scale computation. They 
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are used mainly for numerical computations, but can be also used effi-

ciently for non-numerical computations such as logic simulation[IYY87]. 
The function pipelines which support bit-wise logical operations on a 

word and the load/store pipelines which support various access modes 
are useful for non-numerical computations. 

  In this chapter, two high-speed vector algorithms, called the consen-

sus expansion method with table look-up and the Morreale method with 

table look-up, are proposed. These algorithms are based on the consen-

sus expansion[Tis67], and effective data structure and a table look-up 
technique are introduced in the implementation. In addition to these 

high-speed algorithms, another algorithm, called the extended consensus 

expansion method with table look-up, is also proposed in order to gen-

erate all prime implicants of a Boolean function of more variables within 

the limited main memory space. They are implemented on the vector su-

percomputer FACOM VP-400E at the Kyoto University Data Processing 

Center and compared with several other algorithms including two for-

merly proposed vector algorithrns[Kag87]. We show that by means of the 
new algorithms, the generation of all prime implicants of a given Boolean 

function can be performed in much higher speed with a high accelera-

tion ratio. For example, by the consensus expansion method with table 

look-up, all prime implicants of randomly generated 18-variable Boolean 

functions are generated in about 1.4 seconds on the average. 

  In the next section, several terms relating to Boolean functions will 

be defined and an overview of algorithms for generating prince implicants 

will he made. The new vector algorithms will be proposed in section 3 , 4 
and 5. In section 6, evaluation and discussions will be made. In section 7, 

it will be shown that the maximum number of prime implicants of 5- and 

6-variable Boolean functions are 32 and 92, respectively. These results are 

obtained by the experiments using the developed program based on the
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consensus expansion method with table look-up. Section 8 will appear as 

a conclusion.

2.2 Preliminaries

2.2.1 Boolean Function and Prime Implicant 

A Boolean variable, denoted by  xi, is a variable which assumes a binary 
value 0 or 1. A literal l; for a variable xi is either xi or .e; (the complement 
of xi). An n-variable Boolean function, denoted by f ,...,x)xn) or simply 

f , is a mapping from {0, 1 }'t to {0, 1 }. In the following, a Boolean variable 
and a Boolean function are sometimes simply referred to as a variable and 

a function, respectively. 

  A logical product of literals where literals appear at most once for 

each variable is called a product term. Similarly, a sum term is defined. 

A product term p is independent of a variable .xi, if p contains no literal 

of a variable xi. A minterm is a product term which consists of literals 

of all Boolean variables. 

When a sum of product terms represents a Boolean function, it is called 

a sum-of-products representation of the function. Similarly, a product-of-

sums representation of a function is defined. 

  We say that a Boolean function f implies another Boolean function g, 

when every combination of values of the variables which satisfies f = 1 

also satisfies g = 1. The implication relation is similarly defined for 

product terms. 
  An implicant of a Boolean function f is a product term which implies 

f. A minterm, which is an implicant of a Boolean function f , is simply 
called a minterm of f . A prime implicant of a Boolean function f is 

defined as an implicant of f that implies no other implicant of f . An 

implicant of a function f is called a non-prime implicant of f , when it is
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not a prime implicant. 

  f (xi = 0) is an (ri — 1)-variable function f (x , x.t_i, 0, xi+i, • • • , xn) 
obtained from an 'n-variable function .f by fixing xi to 0, where xi is a 
variable in f. Similarly, f (xi = 1) is defined. A Boolean function f is 
independent of a variable xi, if f (.tj = 0) = f (xi = 1) for all combinations 
of values of all variables except xi. 

  We denote the logical product of f (xi = 0) and f (xi = 1) by f (xi = *).

2.2.2 Conventional Algorithms for Generating Prime Impli-

       cants 

Various algorithms for generating all prime implicants of a Boolean func-

tion which are suited to computer processing have been proposed. They 

can be classified in three types: the Quine-McCluskey method, algorithms 

based on the expansion of a product-of-sums representation and ones 

based on the consensus expansion. 

  In the Quine-McClusk;ey method[Qui55, McC56], adjacent implicants 
are combined exhaustively in a systematic manner using tables of impli-

cants. 

  Nelson showed that when a product-of-sums representation of a Boolean 

function is expanded to a sum-of-products representation by means of 

the distributive law (A(B + C) = AB + AC) and some other primi-
tive laws, all prime implicants of a given Boolean function are generated 

with, possibly, some non-prime implicants[Ne154]. Slagle et al. proposed 
a method for generating prime implicants from a product-of-sums repre-

sentation by means of tree search[SCL70]. Kambayashi et al. proposed 
the clause selection method by combining Nelson's theory and Slagle's 

method. in which the searched tree is smaller than that of the Slagle's 

Inethod[KOY79]. Recently, the author's colleague developed a vector al-

gorithm called the variable-oriented expansion method based on the same
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idea, and showed that the computation time on the vector supercomputer 

is improved[Kag87]. 
  Tison showed that all prime implicants of a given Boolean function can 

be generated by consensus expansion[Tis67]. The consensus expansion is 
based on the following equation which holds for any Boolean function f :

f = xif (xi = 0) + xif (xi = 1) + f (xi = *)

where xi is a Boolean variable in f . Using the equation repeatedly for ev-
ery variable, f is expanded in a ternary tree fashion, and consequently, its 
all implicants are generated. In order to use the consensus expansion for 

generating all prime implicants, the removal of the generated non-prime 
implicants Or the prevention of the generation of non-prime -implicants 
is necessary. Morreale proposed an algorithm (we call it the Morreale 
method) in which the generation of non-prime implicants is prevented 
by means of tagging functions[Mor70]. Recently, the author's colleague 
developed the ternary tree expansion method (we call it the consensus 
expansion method with pointers in this thesis), in which pointers are in-
troduced for the removal of non-prime implicants[Kag87]. 

  The three new vector algorithms proposed in this chapter are based 

on the consensus expansion.

2.2.3 Vector Supercomputer 

A vector supercomputer is a highly pipelined supercomputer which is 

primarily used for large scale scientific and engineering computation. It 
has, in addition to a conventional processing unit (a scalar unit), several 
function pipelines and vector registers (a vector unit). It yields more than 
GFLOPS (Giga FLoating Operations Per Second) of computation power 
by executing uniform operations on array structured data. In order to
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support large-scale computation, it has a large main memory unit (usually 
a hundred mega bytes or more) and powerful load/store pipelines. 

  In addition, vector supercomputers have many advanced features in 

order to make it versatile enough to be used in a wide range of applica-

tions. For example, vector supercomputers such as the FACOM VP-400E 

at the Kyoto University and HITAC S-820/80 at the University of Tokyo 

provides the following vector operations. 

(1) Element-wise Vector Operations 
   Vector supercomputers can handle integer and logical data as well 

   as floating-point data by function pipelines. For example, integer 

   arithmetic operations, bit-wise (32 bits per word) logical operations 
   and logical shift operations can be vectorized. 

(2) Conditional Vector Operations 
   The above operations can be masked by conditions, i. e., operations 

   work only on elements which satisfy a specified condition. For ex-

   ample, the following program is vectorized by this function.

  DO 10 I=1,N 

    IF (IM(I).EQ.0) IA(I)=IB(I)+IC(I) 

10 CONTINUE

(3) Constant Stridden Vector Access and List Vector Access 
   Vector supercomputers provide constant stridden vector access and 

  indirect memory access (referred to as list vector access) as well as 
   contiguous vector access. For example, the following program is 

   vectorized by constant stridden vector access;

  DO 20 I=1,N,K 

    IA(I)=IB(I)+IC(I) 

20 CONTINUE
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and the following program is vectorized by list vector access;

  DO 30 I=1,N 

   IA(I)=IB(IL(I)) 

30 CONTINUE

(4) Compress operations 
   Compress  operation, which constructs new vector IA from vector 

IB by collecting elements which satisfy a specified condition, can be 

vectorized. An example program for compress operation is as follows.

  K=0 

  DO 40 I=1,N 

    IF (IM(I).EQ.0) THEN 

       K=K+1 

     IA(K)=IB(I) 

    ENDIF 

40 CONTINUE

Discussions in the following sections are common to all vector supercom-

puters which have above four features. 

hi order to utilize vector supercomputers efficiently, we must tune up 

the coding schemes and/or modify the basic algorithms so that our pro-

grams are suitable for vector processing. The features of the programs 
required for efficient vector processing are 

(1) high vectorization ratio, i. e., almost all operations in the program 
   should be processed by a vector unit. 

(2) long vector length, i. e., sufficiently many elements should be pro-
   cessed simultaneously.
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2.3 Consensus Expansion Method with Table Look-

   Up 

2.3.1 Algorithm 

In the consensus expansion method with table look-up, a systematic pro-

cedure to remove non-prime implicants is introduced. Assuming that all 

prime implicants of every in-variable Boolean function are known for a 
certain in (> 0), following algorithm generates all prime implicants of a 

given n-variable Boolean function fgiven (n > in). Fi and Pi (rn < i < n) 
are a set of Boolean functions and a set of product terms, respectively. 

[Algorithm 1] 
Input: fgiven(xl, ... , xn) : an n-variable Boolean function 
Output: P„ : the set of all prime implicants of fgiven 

1. Fn = { fgiven} 

   (a set with only one element function) 

 2. for k = n downto m + 1 do 

F~-1 = { kf(xk = 0),xkf(xk = 1), f(xk _ *)If E Fk} 

 3. PTZ={all prime implicants of f I f E Fnt } 

   (Note that f E F, is the logical product of a product term, say p, 
   with at most (n—in) literals and an rn-variable function , say f. A set 

   of all prime implicants of f is easily obtained as the logical product 
   of p and every prime implicants of f .) 

 4. for k.=rn+1tondo 

   Let Pk he the set of all product terms of Pk_1 each of which either 

   (a) independent of xk, or
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 (b) dependent on xk and there is not such product term in Pk_1 that 
      is obtained by removing the literal of xk from the representation 

      of it. 

  In step 2, the consensus expansion on fgiven is performed for the (n—m) 
variables. In every consensus expansion, the number of elements of the 

set is increased by at most three times, and the maximum number of 

elements of I'm  is 3"-"'. In step 3, the set, Pm, whose each element 

is a prime irnplicant of a function in F.,-, is obtained. P„, includes all 

prime implicants of fyi,;en as well as, possibly, the greater part of the non-

prime implicants. In step 4, all non-prime implicants in Pm are removed 
systematically, and the set Pn, which includes only all prime implicants 

of f given, is obtained. 

  We will show the correctness of Algorithm 1. 

[Lemma 1] 
Let f be a k-variable Boolean function, and xi a Boolean variable (1 < 
i < k). A product term p is a prime irnplicant of f , if and only if one of 
the following statements is true. 

 1. p is a prime irnplicant of f (xi = *). 

 2. p is a prune irnplicant of Tf (xi = 0), and does not imply f (xi = *). 

 3. p is a prime irnplicant of xi f (xi = 1), and does not imply f (xi = *) 

  A proof of Lemma 1 will appear in appendix. 

[Lemma 2] 
Let f be a Boolean function, p a prime irnplicant of f , and g a Boolean 
function which implies f . p implies g if and only if p is an implicant of 

g. If p is an implicant of g, p is a prune irnplicant of g.
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Lemma 2 is obvious.

 [Theorem 1] 
P,, obtained by Algorithm 1 is a set of all prime implicants of fgiveiz• 

(proof)Assuming that Pk_l={all prime irnplicants of f f E Fk-1 } (^n < 
k < n), it follows from Lemma 1 and Lemma 2 that Pk={all prime 
irnplicants of f f E Fk }.

2.3.2 Data Structure 

In step 2, each function f in Fk is represented as 

f =pf(xk,...,x1) 

where p is a product term Ln • • • Lk+1 and Li E {xi, xi, 1} (k+ 1 < i < n). 
In order to implement efficiently on vector supercomputers, we represent 

every f by a truth table, i. e., a 2k-hit sequence. (We assume that fo,„ 
is also represented by a truth table.) The truth table for f can be repre-
sented using 2k-5 words, because a word consists of 32 (= 25) bits. Each 
word stores a truth table for the 5 variables, x5, ... , x1, which is a part 

of the truth table for f corresponding to a certain combination of values 

of the k — 5 variables, ,...,x x6• The adopted data structure for f's of 

Fk is shown in Figure 2.1. The product term p = Ln • • • Lk+1 for every 

f E Fk is represented by an integer according to the following formula 
and stored in a word 

E ri3z-1 
                              i=k+1 

where ri takes 0 or 1 or 2 accordingly as Li is Ti or xi or 1. Since there 

are at most 3"-k functions in Fk, (2' + 1)3"-k words are sufficient to 
represent Fk. In addition, it is possible to implement step 2 so as to reuse 

the space for Fk to the space for Fk_1. Hence (21"-5 + 1)3"-'" words are 
sufficient to implement step 2.
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 2k-63,t-k words for 3"-k l's

 2k_5words 

for an f

Figure 2.1: Data Structure of Fk

  In step 3, a read-only table is introduced to give all prune implicants 

of arbitrary rn-variable Boolean function. Table look-up is efficiently 

implemented on vector supercomputers using list vector access. Because 

the number of all m-variable Boolean function is 2', we let ^n be 4 

considering the size of the table which have to be stored within main 

memory. It is true that a large space is required for this table, but the 

required space for step 2 is considerably saved choosing large m. 

  In step 3 and step 4, we use a 3"-hit sequence to represent (candidates 

of) the prime implicants of an n-variable Boolean function. We call it a 

map representation of prime implicants. Every bit in the sequence corre-

sponds to a product term of n variables, and is 1 when the corresponding 

product term is (a candidate of) a prime implicant of the function. To 
simplify the processing, we use 3"-3 words to represent each Pk where 
only 3'3 = 27 hits are used in each word. The 27 product terms corre-
sponding to a word are the same except the literals for x3, x2 and x1. 
We arrange the words in the sequence so that each path in step 4 can he 

performed by a linear scan on Pk;. The word corresponding to a product 
term L" • • • L4 is in the (EZ` 4 i 3i-4 + 1)st location, where r1 takes 0 or 1 
or 2 accordingly as Li is % or x3 or 1. The data structure for Pk is shown 
in Figure 2.2. It is also possible to implement step 4 so as to reuse the 
space for Pk_1 to the space for P, hence the required space for step 4 is
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 372-3 words

1  word

 5  bits 

(unused)

27 bits

               Figure 2.2: Data Structure of Pk 

3"-3 words. 

  The constant stridden vector access is useful in step 2 and step 4, and 

the indirectly addressed access is useful in step 3. The function pipelines 

which support bit-wise logical operations on a word are useful through 

the whole processing. Therefore, Algorithm 1 is expected to be highly 

vectorized. 

  The required memory space is proportional to 3". It is reasonable 

because there are n-variable Boolean functions which have O(3"/n) prime 
irnplicants[DF59]. For example. generation of all prime implicants of 18-
variable Boolean function is performed within 100 megabytes. 

  In order to estimate the computation time, let us consider the ref-

erences of memory. In step 2, the number of references of memory is 

proportional to the size of F,". In step 3, table references are at most 

3n — rn times. In step 4, 3"-bit space is scanned (n — ̂ n) times. There-
fore, step 4 is the most time consuming, and the computation time of 
Algorithm 1 is O((n — rn)3"). Compared to the case that the table is not 
used (i. e., choosing m=0), the table which gives all prime implicants of
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all in-variable Boolean function  enables us n/(n — in) times speed up. 

2.4 Morreale Method with Table Look-Up 

2.4.1 Algorithm 

In the Morreale method with table look-up, the Morreale method[Mor70] 
is modified so that the table look-up technique can be introduced. Follow-

ing algorithm generates all prime implicants of a given Boolean function, 

assuming that, for a certain in (> 0), all prime implicants of every in-
variable Boolean function are known. [f, g1i ... , g;] is a tuple of Boolean 
functions f, gl, ... , g;. Tk. (in < k < n) and P are a set of tuples and a 
set of product terms, respectively. 

[Algorithm 2] 
Input: f yi„„ (x i , ... , x1z) : an n-variable Boolean function 
Output: P, : the set of all prime implicants of fgivefl 

1. T,, = {[+given]} 

   (a set with only one element which is a tuple of only one Boolean 
   function) 

 2. for k = n downto in + 1 do 
Tk-1 = {[f (xk = *), g1(:ck _ *), ... , gj(Xk _ *)], 

[titif (xk = 0), wg1(xk = 0), ... , wg.i (xk = 0), f (xk = *)], 
[xkf (xk = 1), xk91(xk = 1), ... , xkgi(xk = 1); f (xk _ *)] 

[f,91,...'9i1 ETk} 

 3. P = {all prime implicants of f which are prime implicants of 
        neither g1, ... , nor g.i I [f, 91, ... , gi] E TT,1]} 

   (Note that f in [f, g', ... , g~] E T,n is the logical product of a product 
   term, say p, with at most (n— in) literals and an in-variable function,
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   say f. A set of all prime implicants of f is easily obtained as the 
    logical product of p and every prime implicants of f . In the same 

   way, a set of all prime implicants of gi's (1 < i < j)is easily obtained.) 

  The generation of non-prime implicants is prevented by using the tag-

ging functions gi's. In step 2, fgiven is decomposed to m-variable functions 
by the consensus expansion and, at the same time, the tagging functions 
are generated. Consequently, the set T,,,., of tuples of functions, is ob-
tained. In step 3, the set, P, is obtained. Each element of P is a prime 
implicant of the function f but is a prime implicant of neither of the 
functions gi, ... , nor gi where [f, gi, ..., g~] is in Fn,. P includes all prime 
implicants of fgiven but nothing else. The process for removing non-prime 
implicants is not necessary. 

  Algorithm 2 includes the Morreale method by choosing m = 0. 
  We will show the correctness of Algorithm 2. 

[Lemma 3] 
Let f be a k-variable Boolean function and gi, ... and gi (j > 0) be k-
variable Boolean functions which implies f, and xi be a Boolean variable 

(1 < z < k). p is a prince implicant of f which implies neither gi, ... nor 
gj , if and only if 

 1. p is a prime implicant of f (xi = *) which implies neither gi(xi = *), 
, nor gj(xi = *), or 

 2. p is a prime implicant of tic f (xi = 0) which implies neither :iigi(Xi = 
   0), ... , 2'igj(xi = 0) nor f (xi = *), or 

 3. p is a prime implicant of xi f (xi = 1) which implies neither xigi(xi = 
1), ... , = 1) nor f (xi = *). 

  A proof of Leiirrna 3 will appear in appendix. Note that Lemma 3 

implies Lemma 1 by choosing j = 0.
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(n — k + 1)2k-53"-k words for 3"-k tuples

f 

k)

..47z-k

,,^-----------------------------------------------------------

v-

(n — k  -}- 1)2'x-5 words for a tuple

                Figure 2.3: Data Structure of Tk. 

[Theorem 2] 
P obtained by Algorithm 2 is a set of all prime implicants of fgiven• 

(proof)Apply Lemma 2 and Lemma 3 to every expansion of step 2 in 
Algorithm 2.^

2.4.2 Data Structure 

Data structure for Algorithm 2 is basically the same as that for Algorithm 

1. The data structure for Tk can be implemented as the (n — k -}- 1)-

ple of the data structure for Fk mentioned in previous section. We 
regard [f(xk _ *), J1(xk = *), • . • ,gi(xk _ *)] as [f(xk _ *),91( k 
*), ... , 9~ (x _ *), 0] in order to introduce uniform data structure. There-
fore, the required space for Tk is ((n — k -{- 1) 2k — 5 -I- 1)3n-k words. The 
adopted data structure for Tk is shown in Figure 2.3. In addition, it is 

possible to implement step 2 so as to reuse the space for Tk to the space for 
Tk_1. Hence ((n — in+ 1)2in-5 1)3"-"' words are sufficient to implement 
step 2. 

  P is obtained by calculating the logical product of the table content
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referred to by f and the logical negations of those referred to by gi's 

(1 < i < n — 4) for every triple [f, gl, ... , g„_41 in Fn. The data structuire 
adopted for P and the table is the same as in Algorithm 1. Therefore the 
size of P is 3' words. 

  Various functions of a vector supercomputer can he effectively used, 
and Algorithm 2 is expected to he highly vectorized. 

  The required memory space to generate all prime ilnplicants of arbi-
trary 18-variable Boolean functions is about 169 Mbytes. 

  In order to estimate the computation time, let us consider the ref-
erences of memory. In step 2, the number of references of memory is 

proportional to the size of T„t. In step 3, table references are at most 

(n — in + 1)3n — in times. Therefore, the computation time of Algorithm 
2 is O((n — in)3"). Compared to the case that the table is not used 

(i. e., choosing m=0), the table which gives all prime irnplicants of all 
in-variable Boolean function enables us n/(n. — in) times speed up.

2.5 Extended Consensus Expansion Method with 

    Table Look-Up 

Instead of using look-up table to obtain all prime inlplicants of an in-

variable Boolean function in step 3 of Algorithm 1 or 2, it is possible 

to use a program which generates all prime irnplicants of an in-variable 

Boolean function. Let us consider the use of Algorithm 1 for the `look-up 

table' for Algorithm 2. In the following, we denote en's in Algorithm 1 

and 2 by ini and in2. respectively, to distinguish them. 

  The consensus expansion method with table look-up is a high-speed al-

gorithm suitable for vector supercomputer. However, its ability is limited 
by required memory space. During step 4, whole set. of (candidates of) 

prime irnplicants should be held on the main memory. On the other hand,
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the removal of non-prime  implicants is not necessary in Algorithm 2, and 
every tuple in T 12 can be processed sequentially. That is , Algorithm 2 

can be implemented if only there is the space for T„~2 and the space to ob-

tain (applying Algorithm 1) all prime implicants of m2-variable Boolean 
functions in just one tuple in T,,,2. This approach enables us to enjoy 
the high-speed of Algorithm 1 for generating all prime implicants of a 
Boolean function with larger number of variables within limited memory 
space. 
  It is clear from Lemma 2 that the set of prime implicants of tagging 

functions used in step 3 may include non-prime implicants.. In other 
word, step 4 of Algorithm 1 can be omitted for generating a set of prime 
implicants of tagging functions of Algorithm 2. 

  The required memory space for this method, called the extended con-
sensus expansion method with table look-up, is as follows;

• For T,,,2, ((n — in2 +1)2'2-5 + 1)3"-m2 words.

• For Algorithm 1 called by Algorithm 2, O(3m2).

Therefore, when n is not much larger than m2, the required memory 

space for this method is O(3m2). In other words, this method enables us 
to generate all prime implicants of an n-variable Boolean function within 

only the memory space required for generating all prime implicants of 

an in2-variable Boolean function by Algorithm 1, where n, is just a little 

larger than in2. 

  In order to estimate the computation time, let us consider the ref-

erences of memory. In step 2, the number of references of memory is 

proportional to the size of T,,,2. In step 3, Algorithm 1 is called to obtain 

prince implicants of 3"-"~2 f's and (n — in2)3"-"2 tagging functions. The 
number of memory references of Algorithm 1 for an m2-variable Boolean 

function is O((rn2 — mi)3'112). For tagging functions, step 4 may he omit-
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 ted, and the number of memory references of Algorithm 1 is 
to O(3"t2-"tl ). Therefore, the number of memory references in 
Algorithm 2 is O((m2 — m i)3" + (rc —

reduced 

step 3 of

2.6 Implementation and Evaluation 

2.6.1 Implementation 

The methods proposed in sections 2.3, 2.4 and 2.5 are coded in Fortran77 

and implemented on FACOM VP-400E at the Kyoto University Data 

Processing Center. We call the program CE/T, M/T and ECE/T. respec-
tively. Following techniques are adopted for implementation of CE/T. 

 1. In step 2, inconsistency in Fk, i. e., the f whose corresponding f is 0 
   for every combination of values of the variables, can be eliminated, 

   because they have no implicants. Since it is not so efficient to check 
   such f's in Ft.'s for A: > 5, we check f's in only F5. The check can be 

   performed by examining whether the word expressing the f is zero. 
   The vector compress function is effectively used for the elimination. 

 2. The last expansion in step 2, i. e., the expansion for x5, and the 
   table look-up for obtaining all prime implicants of 4-variable Boolean 

   functions in step 3 are combined. The contents of the table indexed 
   by the lower and the upper half-word of the corresponding f are 

   referred to for f (x5 = 0) and f (x5 = 1) respectively, where f E F5. 
   For f (x5 = *), the content indexed by the logical product of the two 
   half-words is referred to. Each referenced content is stored at the 
   correct location in P,, using the integer representation of p as an 
   index. 

 3. In order to reduce the bank confliction of memory references, four 
   copies of the table are prepared and used one after another. About
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   800 kilowords are required for the four tables. 

 4. Two adjacent iteration steps in step 4 are paired into one iteration 
   step so as to accelerate the computation speed (loop unrolling). 

  All of the above  techniques are also adopted for ECE/T, and (1) and 

(2) of the above techniques are adopted for M/T. For CE/T and M/T, 
4 is chosen as in, and for ECE/T, 4 and 18 are chosen as inl and in2, 
respectively.

2.6.2 Evaluation 

Figure 2.4, 2.5 and 2.6 show the benchmark result of the programs CE/T, 
M/T and ECE/T, respectively, on the FACOM VP-400E. Experiments 
for CE/T and M/T are performed for 12- to 18-variable Boolean func-
tions, and experiments for ECE/T are performed for 19- and 20-variable 
Boolean functions. Every cross designates average computation time for 

10 Boolean functions of the same number of variables and truth table 

density. (Truth table density is the ratio of l's in the truth table.) The 

truth tables of the functions are generated randomly based on Lehiner's 

linear congruence method using RANU2 in the scientific subroutine li-

brary SSL-II[Fuj80]. (The Boolean functions for the truth table density 
0/16 and 16/16 are unique. which are called inconsistency and tautology, 
respectively. ) 

  The computation time by CE/T is not much affected by the truth table 
density. The average computation time is about 2.3 insec for 12-variable 

functions, and about 1.4 sec for 18-variable functions. The computation 

time by M/T deeply depends on the truth table density, due to the num-
ber of table references in step 3 which are affected by the elimination of 

the triples with inconsistency. The average computation time is about 

9.7 cosec for 12-variable functions, and about 5.3 sec for 18-variable func-
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tions. The average computation time by ECE/T is about 15.8 sec for 
20-variable functions. 

  For comparison, the Quine-McCluskey method and the Morreale method 

are also implemented on the VP-400E.  We call the programs QM and M, 

respectively. Figure 2.7 shows the comparison of the computation time. 

Each dot indicates average computation time for 150 Boolean functions 

of the same number of variables (10 functions for each of 15 kinds of truth 
table density). The average computation time for 12-variable functions 
by a program based on the clause selection method (CS), that by one 
based on the variable-oriented expansion method (VOE) and that by one 
based on the consensus expansion method with pointers (CEP) are also 
designated in the figure, which were evaluated on FACOM VP-200 by 

Kagatarri et al.[Kag87]. 

  Table 2.1 shows comparison of the vector acceleration ratio, i. e., (CPU 
time using scalar unit only) / (CPU time enabling vector unit). As the 
table indicates, the acceleration ratio of CE/T is very high. In this ta-
ble, computation time of V-versions, i. e., programs coded to he suited 
for vector execution, are compared. However, it is confirmed by other 
experiments that S-versions, programs suitable for scalar execution, are 
at most 20% faster than the corresponding V-versions in scalar execution 
for these algorithms except the M (the Morreale method) whose S-version 
is about 2.7 times faster than the V-version. 

  Table 2.2 shows the required memory size for CE/T, M/T and ECE/T. 
This table represents the total size of declared fortran array size, and do 

not include the space for scalar variables or machine codes. 

  The developed programs are portable, and easily implemented on an-

other vector supercomputer HITAC S-820/80 at the University of Tokyo 
without loss of efficiency. By the similar experiments to the VP-400E, 

the average computation time on S-820/80 for 18-variable functions by
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Table 2.1: Comparison of Vector Acceleration Ratio

Program  n Processor CPU Time (msec) Vector Acceleration

Scalar (S) Vector (V) Ratio (S/V)

CE/T 12 VP-400E 1 33.3 2.31 14.42

M/T 12 VP-400E 65.9 9.69 6.81

M 12 VP-400E 571.4 47.5 12.03

QM 10 VP-400E 5,187 523 9.92

VOE 12 VP-200 10,851 1,186 9.15

CE/P 12 VP-200 10,579 1,183 8.94

CS 12 VP-200 46,750 32,009 1.46

Table 2.2:  Required Memory Size (kilobytes)

 n CE/T  M/T ECE/T

12 1 3,242 948

13 3,434 1,332

14 4,011 2,537

15 5,744 6,304

16 10,940 18,068

17 26,529 54,743

18 73,296 168,920

19 73,296

20 73,296
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CE/T is about 0.4 sec. This program is also efficient on conventional 
scalar processors; for example, the average computation time on the pro-

cessors such as FACOM NI-360R or ACOS-850/8 for 12-variable functions 
by CE/T is about 0.2 sec.

2.6.3 Discussions 

As Figure 2.7 indicates, programs based on the proposed methods are 

faster than the programs based on the conventional methods. Especially, 

CE/T is the fastest, and is about 20 times as fast as M which is the 
fastest among the programs based on previous algorithms. As Table 2.1 

indicates, the programs based on the proposed methods achieves high 

vector acceleration ratio. As estimated in the previous sections, Figure 2.7 

indicates that the computation time of CE/T, M/T and ECE/T increases 
approximately 3 times per variable. As Table 2.2 shows, ECE/T realizes 
the speediness of CE/T within the limited memory space. 

  In QNI, each operation is simple and hence the acceleration ratio is 
high. However, the computation time is large due to so many opera-
tions. CS and VOE, as well as CE/P, are not so efficient because of the 
complex data structure. It is difficult to find effective data structure for 

representing the logical sum of product-of-sums' or the logical product of 

sum-of-products' which appears during the expansion. Thus, the algo-

rithms based on the consensus expansion are the most suited to vector 

processing among the three types of algorithms. The truth table repre-

sentation of a function and the bit-sequence representation of (candidates 
of) prime irnplicants are effective. 

  The table look-up technique is also effective to reduce the computa-
tion time and the required memory space. The difference in performance 
between the M/T and M is due to the data structure and the use of the 
table look-up technique. (The table of about 800 Kilobytes saves hull-



2.7 Application for the Study on the Number of Prime Implicants 35

dreds of Megabytes of  memory space required for the expansion process 
for the last 4 variables.) 

  M/T, as well as M, can be used for the generation of all prime irnpli-
cants of an incompletely specified Boolean function, i. e., a function with 
don't cares, with a slight modification[Mor70]. We can also generate all 

prime irnplicants of such a function using CET twice. 

Using the developed program ECE/T with in2 = 18, prime implicants 
of a Boolean function with even 22 or more variables can be generated 

within the main memory of the VP-400E at the Kyoto University. For 

furthermore variables, the required space for the step 2 become dominant. 

In such case, we can execute sequentially not only step 3 but also step 2 

to reduce the required space for step 2. 

  We implemented the step 3 of Algorithm 1 by table look-up. It is pos-

sible by adding special vector instruction (e. g. a vector instruction which 
computes all prime implicants of given 5-variable Boolean functions) to 
make Algorithm 1 faster.

2.7 Application for the Study on the Number of 

    Prime Implicants 

Related to the two-level logic minimization, various studies on the num-

ber of prime implicants of Boolean functions have been made. The 

best known lower bound on the maximum number of prime implicants 

of n-variable Boolean functions is O(371/n) presented by Igarashi[Iga79]. 
Igarashi conjectured that his lower bound is optimal. The best known 
upper bound on the maximum number of prime implicants of n-variable 
Boolean functions is O(3"A/it) presented by Chandra et al.[CM78]. The 
average number of prime implicants of n-variable Boolean functions is 

studied by Cobham et al. and Mileto et al.[CFN62, MPG4].
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  In this section, we will make an experimental study on the number 

of prime  implicants of Boolean functions by means of the developed pro-

gram. First, we will present the maximum number of prime implicants of 

5-variable Boolean functions obtained by examining the number of prime 

implicants of every 5-variable Boolean functions exhaustively. Next, we 

will show the maximum number of prime implicants of 6-variable Boolean 

functions using the result obtained by the above experiment. The ob-

tained value, 32 and 92, of the maximum number of prime implicants of 

respectively 5- and 6-variable Boolean functions are equal to the Igarashi's 

lower bound. We also present some other results related to the number 

of prime implicants.

2.7.1 Maximum Number of the Prime Implicants of 5-Variable 

      Boolean Functions 

It has been not clear whether Igarashi's lower hound[Iga79] is tight or 
not, even for n = 5. To solve this open problem, we first examined the 

number of all 5-variable Boolean functions. Using high-speed program for 

generating all prime implicants based on the consensus expansion method 

with table look-up, the experiment is performed on a computer ACOS-

850/8 at the Integrated Media Environment Experimental Laboratory of 

Kyoto University. 
  Table 2.3 shows the result of this experiment. This table represents 

the number of Boolean functions with in minterms and p prime impli-
cants. From the observation of this table, there are 16 5-variable Boolean 
functions with 32 prime implicants, and there is no 5-variable Boolean 
functions with more than 32 prime implicants. This value, 32, is equal to 
the Igarashi's lower bound for n = 5. The 16 5-variable Boolean functions 
with 32 prime implicants are equivalent up to the negation of the vari-
ables. This table also indicates the average number of prime implicants



2.7 Application for the Study on the Number of Prime Implicants 37

for every number of minterms.

2.7.2 Maximum Number of the Prime Implicants of 6-Variable 

     Logic Functions 

Since there are  2" 6-variable Boolean functions, it is unfeasible to exam-

ine the number of prime implicants of all 6-variable Boolean functions, as 

could be performed for 5-variable Boolean functions. We will determine 

the maximum number of prime implicants of 6-variable Boolean functions 

by applying Lemma 1 to the results of the experiments on 5-variable func-

tions. 

  Now it has been determined that the maximum number of prime im-

plicants of 5-variable Boolean functions is 32, following corollary holds. 

[Corollary 1] 
If there exists a 6-variable Boolean function f which has N prime impli-
cants, the numbers of prime implicants of both f (x6 = 0) and f (.x6 = 1) 
are more than or equal to (N — 64). 

(proof)The numbers of prime implicants of f (x6 = *), xs f (x6 = 0), and 
x6 f (x6 = 1) are at most 32. From Lemma 1, the sum of the numbers of 

prime implicants of above three 5-variable Boolean functions should be 
more than or equal to N.^ 

  From Corollary 1, we can conclude that, in order to find out all 6-
variable Boolean functions with N or more prime implicants, it is suffi-
cient to examine all 6-variable Boolean functions which can be synthesized 
as sg-Fx6h, where g and h are 5-variable Boolean functions with (N-64) 
or more prime implicants. 

  Since Igarashi showed that there are 6-variable Boolean functions with 

92 prime implicants[Iga79], we made an experiment for N = 92 as follows: 

 1. Generate a set of all 5-variable Boolean functions with 28 (= 92— 64)
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   or more prime implicants, say F5 (Cartesian of F.5 is 1808). 

 2. Examine the number of prime implicants of all 6-variable Boolean 

   functions synthesized by two 5-variable Boolean functions out of F5. 

We used the same program and computer as used for 5-variable func-

   tions to examine the number of prime implicants of every Boolean 

    function. 

  From the experiment, there are 32 6-variable Boolean functions with 92 

prime implicants, and there is no 6-variable Boolean functions with more 

than 92 prime implicants. This value, 92, is also equal to the Igarashi's 

lower hound for n = 6. The 32 6-variable Boolean functions with 92 

prime implicants are equivalent up to the negation of the variables. 

2.7.3 The Number of Prime Implicants of Boolean Functions 

      of 7 or More Variables 

From Lemma 1, we can observe that the following corollary holds. 

[Corollary 2] 
The maximum number of prime implicants of n-variable Boolean func-

tions do not exceed three times of the maximum number of prime impli-

cants of (n. — 1)-variable Boolean functions. 

  From Corollary 2 and the fact that the maximum number of prime 

implicants of 6-variable Boolean functions is 92, we can obtain the trivial 

upper bound 92 • 3"-6 on the maximum number of n-variable Boolean 

functions, where n. > 6. Table 2.4 shows this upper bound compared 

with the Igarashi's lower bound and the upper hound of Chandra et al. 

Our upper bound is better than that of Chandra et al. up to 43. 

  At last, Figure 2.8 shows the average number of prime implicants of 

8- to 20-variable Boolean functions obtained experimentally. This result
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Table 2.4: Upper and Lower Bounds of the maximum Number of Prime 

 Iriiplicants of n-variable Boolean Functions

 n
Lower  Bound by Upper Bound by Upper Bound of

Igarashi Chandra et al. This Thesis

4 13 32 13

5 32 80 32

6 92 240 92

7 218 672 276

8 576 1,792 828

9 1,698 5,376 2,484

10 4,300 15,360 7,452

20 1.33 x 108 6.35 x 108 4.40 x 108

30 5.55 x 1012 3.15 x 1013 2.60 x 1013

40 1.62 x 1018 1.53 x 1018

50 8.46 x 1022 9.06 x 1022

O(3"/n) O(3"/ n) O(3")
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is obtained by the experiments in section 2.6. From this figure, we can 

observe that the average number of prime  implicants increases exponen-

tially for the number of variable, and for every number of variables, the 

average number of prime implicants rises to the peak where the truth 

table density is very high.

2.8 Conclusion

In this chapter, three vector algorithms for generating all prime impli-

cants of a given Boolean function have been proposed, and the required 

time and space for an arbitrary n.-variable Boolean function have been 

shown. We have also shown that the proposed algorithms are much faster 

than any other conventional algorithm by benchmark results on a vector 

supercomputer FACOM VP-400E. It has been shown that the generation 

of prime implicants can be performed efficiently on a vector supercom-

puter by developing good vector algorithms and introducing effective data 
structure and a table look-up technique in their implementation. 

  As an application of the proposed algorithm, we have shown the results 

related to the number of prime implicants of Boolean functions. We have 

shown that Igarashi's conjecture on the maximum number of n-variable 

Boolean functions is true for n = 5 and 6.
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Chapter 3 

Vector Algorithms for Manipulating 

Binary-Decision Diagrams 

3.1 Introduction 

Recent progress of semiconductor technologies has enabled us to realize 

larger and more sophisticated logic circuits. Today, it is almost impossible 

to design logic circuits efficiently and correctly without using computer-

aided design (CAD)  systems. However, with the growth of the scale of 

VLSI, CAD systems have revealed its problem of increasing time and 

storage for computation. 

  In such CAD systems as design verification, test generation or logic 

synthesis, the major part of computation is, or can he reduced to, the 

manipulation of Boolean functions. A typical process of Boolean function 

manipulation in CAD systems are as follows: 

(1) Input the description of a given instance, then encode the descrip-
   tion into Boolean functions and represent them by an internal data 

   structure of the system. 

(2) Compute Boolean operations such as NOT, AND, OR. and EXOR. 

(3) Obtain the results of comparison (i. e., equivalence check) of two 
                             45
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   Boolean functions or of substitution of 0 or 1 for variables of a 
    Boolean function. 

Primary operations in the above Boolean function  manipulation are 

(A) the unary operation for a Boolean function, i. e., NOT, 

(B) binary operations for Boolean functions, such as AND, OR and EXOR, 

(C) comparison of two Boolean functions, and 

(D) substitution of 0 or 1 for a variable of a Boolean function. 

  The efficiency of such Boolean function manipulation is closely con-
nected with the internal representation of Boolean functions. For exam-

ple, using truth tables as a representation of Boolean functions, (A), (B) 
and (C) require time proportional to 2" for any n-variable Boolean func-
tion, while using Boolean formulas as a representation of Boolean func-

tions, (C) is very difficult in general. Various representations of Boolean 
functions have been proposed for efficient Boolean function manipulation. 

Ordered Binary-Decision Diagram (OBDD), or simply Binary-Decision 
Diagram (BDD), is a graph representation of Boolean functions proposed 
by Akers[Ake78] and developed by Bryant[Bry86]. BDDs have excellent 

properties which makes (C) very easy and (A), (B) and (D) feasible in 
many practical cases. 

  At present, subroutine packages, called Boolean function manipulators, 

based on Shared Binary-Decision Diagram (SBDD), or inultirooted BDD, 
are implemented on workstations which support primary operations of 

Boolean function manipulation of CAD systems. Several techniques for 

implementation of Boolean function manipulators based on SBDDs are 

proposed in order to reduce time and storage for manipulation, such 

as two kinds of hash tables[Bry8G] and various attributed edges[MIY90,
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 BRB90]. These manipulators are now widely utilized in various applica-
tions such as design verification[FFK88, IDY90], test generation[CB89], 
logic synthesis[SYMF90] and so on. 

  Thus Boolean function manipulators based on SBDDs implemented on 
workstations are proven useful in CAD systems. However, according to 
the recent progress of the VLSI technology, it is required to manipulate 
larger and larger scale Boolean functions, which will exceed the compu-
tational power of workstations. In order to satisfy this requirement, the 
use of parallel machines or connection machines are studied[KC90]. In 
this chapter, an algorithm suitable for vector supercomputers is proposed. 

The proposed algorithm is based on so-called breadth-first manipulation 

to utilize the high performance of vector supercomputers, while the con-

ventional algorithms for workstations are based on depth-first manipu-

lation. The proposed breadth-first algorithm consists of two parts; an 

expansion phase and a reduction phase. In the expansion phase, new 

nodes sufficient to represent the resultant Boolean function are generated 

in a breadth-first manner from the root-node toward leaf-nodes. In the 

reduction phase, the nodes generated in the expansion phase are checked 

in a breadth-first manner from nodes nearby leaf-nodes toward the root-

node. A modified algorithm which can manage efficiently SBDDs with 

output inverters, a kind of attributed edges, is also considered. 

  A Boolean function manipulator based on the proposed algorithm is 

implemented on the vector supercomputer HITAC S-820/80 at the Uni-
versity of Tokyo, and the results of the evaluations are shown in this 

chapter. From the experiments of constructing the SBDDs representing 

the Boolean functions of all the primary outputs and nets from a circuit 

description chosen from ISCAS'85 [BF85], the vector acceleration ratio 
on the S-820/80 is 5.3 to 27.8. Our manipulator on the S-820/80 is faster 
than that of Minato et al. on the workstation Sun3/60[MIY90] by up to
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(a) A Shared Binary-Decision Diagram (b) Binary Decision Trees

Figure 3.1: Binary Decision Trees and a Shared Binary-Decision Diagram 

130 times. In addition, as an example of applications of SBDDs, a design 

verification system based on computation tree logic (CTL) model checker 
is implemented and the experimental results are shown in this chapter. 

  In the following section, basic explanation on SBDDs and additional 

explanation on a vector supercomputer will be described. In section 3, a 

new algorithm will be proposed. In section 4, experimental results of the 

Boolean function manipulator will be shown. In section 5, an application 

to CTL model checker will be described. Section 6 will provide some 

concluding remarks.

3.2 Preliminaries 

3.2.1 Shared Binary-Decision Diagram (SBDD) 

  An Ordered Binary-Decision Diagram (OBDD), or simply a Binary-
Decision Diagram (BDD), is a directed acyclic graph which represents 
a Boolean function[Ake78,  Bry86]. A Shared Binary-Decision Diagram
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 (SBDD) is a muitirooted directed acyclic graph which represents multiple 
Boolean fuuctioiis[MIY90, BRB90]. An example of an SBDD is shown in 
Figure 3.1 (a). This graph represents four Boolean functions correspond-
ing to four root-edges. The node (vertex) pointed to by a root-edge of a 
Boolean function is referred to as the 'root-node of the Boolean function. 
There are (at most) two terminal nodes, leaf-nodes, which are labeled by 0 
and 1. Every non-terminal node, or simply node, is labeled by a Boolean 
variable. Every node has exactly two outgoing edges (arcs). They are 

labeled by '0' and '1'. They are called '0' edge and '1' edge, respectively. 
     SBDD is defined as the graph obtained from binary decision trees 

representing Boolean functions (Figure 3.1 (b)) by repeating the following 
transformations until they are not applicable. 

(a) To share isomorphic sub-graphs. 

(b) To delete every node both of whose '0' edge and '1' edge point to 
    the saiiie node. 

  Note that no Boolean variable appears more than once in every path 
of an SBDD, and the variables appear in a fixed order in all the paths of 
an SBDD. An integer number, called level, is assigned to every Boolean 
variable with respect to the ordering of the variables in an SBDD. This 
assignment corresponds to the ordering so that a variable hearer to the 
leaf-nodes has a smaller number. We denote the variable with level i as 

  Also note that there is no node which has either of the following prop-
erty; 

  • A redundant node: A node whose '0' edge is the same as its '1' edge. 

  • Non-unique nodes: A node whose '0' edge and '1' edge are equivalent 

    to respective those of another node of the same level.
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 X2+Xi X2+Xi  Xz+Xi X2+Xi

                  Figure 3.2: Output Inverters 

  SBDDs have following excellent properties: 

  • Canonical, i. e., there are no two root-edges of a graph which point 

   to the different nodes and yet represent the same Boolean function. 

   The equivalence of two Boolean functions represented by an SBDD 

   can be tested simply by comparing the root-edges corresponding to 

   the functions. 

  • The size of the graph is small for many practical Boolean functions. 

  • The manipulations for various operations on Boolean functions rep-

   resented by an SBDD can  be performed in time proportional to the 

   number of the nodes of the graph[Bry86]. 

  In order to reduce the number of nodes and/or the time for manipu-
lation of an SBDD, various attributed edges are proposed, such as output 

inverters, input inverters, variable shifters, and so on[MIY90, BRB90]. 
Among them, output inverter is effective in realizing high-speed SBDD 

manipulation, which is the aim of this chapter. Output inverter is the 

attribute indicating to complement the Boolean function of the subgraph
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pointed to by the edge (Figure 3.2). Employing this attribute, the  num-
ber of nodes of SBDDs can be reduced to a half in the best case, NOT 

operations can he executed without traversing the graph and whether 

two given Boolean functions are complement to each other or not can 

he examined without traversing the graph. Abuse of output inverters 

break the important property of SBDDs giving unique representations of 

Boolean functions. The following limitations are placed in order to keep 

this property: 

(A) Output inverters must not he used in '0' edges, i. e., output inverters 
    are used only in '1' edges or in the root-edges. 

(B) The leaf-node must be unique. In this thesis, only 0 is used as the 
    leaf-node. 

3.2.2 Conventional Algorithm for Manipulating SBDDs 

The principal tasks of Boolean function manipulators are 

(A) the unary operation for a Boolean function, i. e., NOT, 

(B) binary operations for Boolean functions, such as AND, OR and EXOR, 

(C) comparison of two Boolean functions, and 

(D) substitution of 0 or 1 for a variable of a Boolean function. 

  If the Boolean functions are represented by an SBDD, (C) can he 
achieved only by comparing two root-edges of the given functions, and 

(A) is also easily realizable if output inverters are employed. In this 
section, the conventional algorithms for (B) and (D) are described. In 
addition, another operation shift of variables is described. (An operation 
over BDD to perform (B) is often called APPLY.)
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f g h= AND (f, g)

AND  (f  0, g0)
AND Oval) , g1

          Figure 3.3: Conventional Recursive Algorithm 

Binary Operations 

  For example, let us consider a conventional recursive algorithm[MIY90, 
BRB90] for generating the graph that represents the Boolean function 
h=AND(f, g), where f and g are Boolean functions represented by a given 
SBDD with two root-edges e f and eg. We denote the levels of the root-

nodes of f and g as L1 and Lg, and let L = max(L f, Lg). Recall defini-
tions of f (xi = 0) and f (xi = 1) appeared in section 2.2. We will denote 
them simply fo and fi, respectively, if xi is obvious from context. 

[A Conventional Depth-First Algorithm for AND] 
Examine the given two root-edges e f and eg, and execute one of the 

following statements: 

(1) If e f and/or eg point(s) to the leaf-node 0, then return the edge 
   pointing to the leaf-node 0. 

(2) If of (eg) points to the leaf-node 1, then return eg (e1). 

(3) If e f = eg, then return e f. 

(4) Otherwise, compute the root-edges of h(xLh = 0) = AND (f(xLh = 
   0), g(xLh = 0)) and h(xL, = 1) = AND (f (xL,, = 1), g(xLh = 1)),
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 f(X,  =1. X,,:O) 

X 1(X76=0. X»3=0)

1

 f(X,=1)
9

'29

         Figure 3.4: Effect of the Operation-Result-Table 

   recursively using this same algorithm. Then examine the obtained 

   root-edges of h(xLh = 0) and h(xLh = 1) and execute either of the 
   following statements. 

  (4.1) If h(xLh = 0) = h(xL, = 1), then return the root-edge of h(xLh = 
      0). 

  (4.2) If there exists a node whose level is Lh and whose '0' edge and 
       '1' edge point to the root -node of h0 and h1, respectively, then 

      return the edge pointing to this node. 

  (4.3) Otherwise, generate a new root-node for h whose level is Lh and 
       whose '0' edge and '1' edge point to the root-node of h(xLh = 

      0) and h(xLh = 1), respectively (Figure 3.3). Return the edge 

      pointing to this new node. 

  For (4.2) of the above algorithm, a hash table, node-table, is introduced. 
It manages all the nodes of the graph. The keys of the node-table are the 

level, '0' edge and '1' edge of a node. 

  Another hash table (or may be hash-based cache), called an operation-
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result-table is introduced to avoid repetition of the same operations. The 

keys of the operation-result-table are a Boolean operator (e. g. AND) 
and given two root-edges. Every time when (4) of the above algorithm 
is completed, the result is registered to this table. The tirrre for ex-
ecuting (4) is saved if the result is found in this table before execut-
ing the statement (4). This table is important especially when there 
are many reconvergences in the sub-graphs of the given functions. A 

simple example is shown in Figure 3.4. Let us consider the case of 

computing AND(f, g). According to the above algorithm, one must ob-
tain AND(f (x35 = 0), g) and AND(f(x35 = 1), g). In order to obtain 
AND(f (x35 = 0), g), both AND(f (X35 = 0, x:33 = 0), g) and AND(f (x35 = 
0, 233 = 1), g) are required, while in order to obtain AND(f (x:35 = 1),g), 
both AND(f(x35 = 1, 2:3:3 = 0), g) and AND(f(x35 = 1, x:3:3 = 1), g) are 
required. Because f(x35 = 0, x:3:3 = 0) is equal to f(x35 = 1, x:3:; = 0), 
the result of AND(f (235 = 0, x:3:3 = 0), g) can be reused as the result for 
AND(f (x35 = 1, x:33 = 0), g) if the operation-result-table is introduced. 
  The other binary operations such as OR. or EXOR can be done in the 

same way. 

Substitution of 0 or 1 for a Variable 

Substitution of 0 for a variable x; of a Boolean function f , i. e., gener-
ation of an SBDD which represents Boolean function f (xt = 0) can be 
done by the following recursive algorithm. Generation of an SBDD which 
represents Boolean function f (x = 1) can be performed similarly. 

[A Conventional Depth-First Algorithm for f (x; = 0)] 
Examine the given root-edge e f, and execute either of the following state-

ments: 

(1) If e f points to the leaf-node 0 (1), then return the edge pointing to
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   the leaf-node 0 (1). 

(2) If i >  L  f, then return e f. 

(3) If i = L f, then return the edge pointing to the node pointed to by 
   the '0' edge of the root-edges of f. 

(4) Otherwise, compute the root-edges of g(xL1 = 0) = f (xLI = 0, xZ = 
   0) and g(xL1 = 1) = f (xLf = 1, xi = 0) recursively. Then examine 

   the obtained root-edges of g(xL1 = 0) and g(xL1 = 1) and execute 
   either of the following statements: 

  (4.1) If g(xLi = 0) = g(xLJ = 1), then return the root-edge of g(xLf = 
      0). 

  (4.2) If there exists a node whose level is .L1  and whose '0' edge and 
       '1' edge point to the root -node of go and gl , respectively, then 

      return the edge pointing to this node. 

  (4.3) Otherwise, generate a new root-node for g whose level is Lf and 
       whose '0' edge and '1' edge point to the root-node of g(xLf = 0) 

      and g(xL1 = 1), respectively. Return the edge pointing to this 
        new node. 

  As the algorithm for AND, node-table and operation-result-table is used 

for (4). The keys of the operation-result-table are a operation ("substitute 
0" or "substitute 1") and a given root-edge. 

Shift of Variables 

There are some applications (such as CTL model checker described in 
section 3.5) which needs the operation of shifting all the subscripts of 
variables of a given Boolean function, i. e., generation of an SBDD which 
represents Boolean functiona'„+C) when positive constant
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c and the root-edge for the Boolean function  f  (xi, x2, ... ,x71) are given. 

This can be performed by the following recursive algorithm: 

[A Conventional Depth-First Algorithm for Shift of Variables] 
Examine the given root-edge ef, and execute either of the following state-

ments: 

(1) If e f points to the leaf-node 0 (1), then return the edge pointing to 
   the leaf-node 0 (1). 

(2) Otherwise, compute the root-edges for g(.r',j+c = 0) = f (:L1+c, 32+c, 
..., XL —1+c, 0) and g(xLf+c = 1) = f (xi+c, X2+c, ..., XL1-1+c, 1) 

   recursively. Then examine the obtained root-edges of g(xLf+c = 0) 
   and g(xL J+c = 1) and execute either of the following statements: 

  (2.1) If g(xLf+c = 0) = g(xLj+c = 1), then return the root-edge of 
9(xLf+c = 0). 

  (2.2) If there exists a node whose level is (L1 c) and whose '0' edge 
       and '1' edge point to the root-node of go and g1, respectively, 

       then return the edge pointing to this node. 

  (2.3) Otherwise, generate a new root-node for g whose level is (L f-}-c) 
       and whose '0' edge and '1' edge point to the root-node of g(xLf _ 

      0) and g(xL1 = 1), respectively. 

  As the algorithm for AND, node-table and operation-result-table is used 
for (2). The keys of the operation-result-table are a operation ("shift of 
variables"), a given root-edge and a given value c. 

3.2.3 High-Speed Vector Indirect Store 

See also section 2.3 of chapter 2 for basic explanation of vector supercom-

puters. In this section, a special feature of HITAC S-820/80 on which we 
have developed our Boolean function manipulator is described.
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  Vector supercomputer HITAC S-820/80 has a special vector instruc-
tion which enables us high-speed vector store in list vector access mode. 

  By normal vector indirect store instruction, it is  guaranteed that the 

latest store is valid at the location where confliction occur. As illustrated 

in Figure 3.5 (a), B [2] will be 62 (not 23) and B [5] will be 91 (not 84) 
after the normal vector indirect store instruction. 

  The special vector indirect store instruction of HITAC S-820/80 is 
about 3 times faster than the normal vector indirect store instruction. 

However, if there are confliction, it is guaranteed only that one of the 

store is valid. For example in Figure 3.5 (b), it is not defined that B [2] 

will be 23 or 68. 

  This special instruction is designed to be used when user know that 

there is no confliction. For example, user can inform FORTRAN compiler 

by statement 

                    *VOPTION VIST 

that the special instruction may be used in the succeeding DO loop. In this 

chapter, we utilize this instruction for hash tabel access where conflictions 

may be occur.

3.3 Breadth-First Vector Algorithm for Manipulat-

    ing SBDDs 

3.3.1 Basic Idea 

As mentioned in the preceding section, the conventional algorithm for 

managing SBDDs is based on a recursive procedure (or a depth-first op-
eration), which is not suitable for vector processing. In this section, a 
breadth-first algorithm for managing SBDDs is proposed. 

  The proposed algorithm consists of two phases; an expansion phase
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and a reduction phase. In the  expansion-phase, new nodes sufficient to 

represent the resultant function are generated in a breadth-first manner 

from the root-node toward the leaf-nodes. In the reduction phase, the 

nodes generated in the expansion phase are checked and the redundant 

Modes and the 11o11-unique nodes are removed in a breadth-first manner 

from the nodes nearby the leaf-nodes toward the root-node. The nodes 

generated in the expansion phase are called temporary nodes, while the 

nodes which already exist are called permanent nodes.

3.3.2 Algorithm 

In this section, the breadth-first algorithm for binary operation is de-

scribed. Other operations, i. e., substitution of 0 or 1 for a variable and 

the shift of variables, are also implemented similarly.

Expansion Phase 

An input for the expansion phase is a triple (op, e f, e9), where op is a 
Boolean operator to be executed, such as AND, OR or EXOR, and e f and eg 

are root-edges of argument Boolean functions represented by an SBDD. 

This triple is referred to as a requirement. A requirement (op, f , g) re-

quires to compute the root-edge for the resultant function of op(f, g). 
During processing a requirement, new requirements are generated for 

computing the operations between sub-functions or sub-sub-functions ... 

of the argument functions. Actually a requirement corresponds to a pro-

cedure call in the depth-first algorithm. A queue called a requirement 

queue is introduced to manage these requirements, which makes our pro-

cedure breadth-first. (The procedure would be depth-first if a stack is 
used instead of the queue.) 

  For a given requirement (op, e f, eg), a new root-node is not always



60 3. Vector Algorithms for Manipulating Binary-Decision Diagrams

generated. A new node should not be generated if a node representing 
the result of  op(f, g) already exists. For example, if the result of op(f, g) 
is found trivially (the cases (1) (3) in the algorithm in the depth-first 
algorithm), or found by looking up the operation-result-table, a new node 
is not generated. In these cases, the judgement can be performed imme-
diately from e f and eq. However, in general, there are cases where the 
existence of the root-node of op(f, g) cannot he determined until the whole 

graph for the sub-functions of op(f, g) is constructed. In this breadth-
first algorithm, a temporary node is generated in such cases. Whether the 
temporary node is actually essential or not is examined in the reduction 

phase. 
  Following procedure is the expansion phase. Initially, the requirement 

queue is empty, and there is no temporary node. 

[Expansion Phase of Binary Operations] 
Put a given requirement (op, e f, eg) to the requirement queue and repeat 
the following operations for every requirement in the queue until the 

queue becomes empty. 

(1) If the root-node representing the result of op(f, g) is trivial, then 
   return the edge pointing to the node. 

(2) If the root-node representing the result of op(f, g) is found in the 
   operation-result-table, then return the edge found in the table . 

(3) Otherwise, generate a new temporary node and return the edge 
   pointing to the temporary node. At the same time, register the 

   edge pointing to the temporary node to the operation-result-table as 

   the result of op(f, g) and put new requirements (op, e fo„ eg„) and (op, 
e f„ eg,) to the requirement queue, whose result will be '0' edge and 

   '1' edge
, respectively, of this temporary node.
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  Note that the temporary nodes must  be registered to the operation-

result-table in the expansion phase in order to avoid repetition of the 

same operation (recall the example of Figure 3.4). On the other hand, 
the registration to the node-table is done in the reduction phase. 

  Also note that the total number of requirements processed in the above 

procedure is exactly the same as the number of procedure calls in the 
depth-first algorithm in section 3.2.2 and thus there is no serious increase 

on the computation cost. The only drawback of our algorithm is the 

increase of the storage required for temporary nodes. 

  This procedure is suitable for vector processing because of the following 

reasons: 

(1) High vectorization ratio. All of the repeated operations can be exe-
    cuted by vector instructions. 

(2) Long vector length. All requirements existing in the queue can be 
    processed simultaneously. 

List vector access is utilized in the whole operations of the expansion 

phase by means of referring to the queue as a list vector. Trivial require-
ments and non-trivial requirements can be exclusively executed using 

conditional vector operations. New requirements are put to the queue 

using compress operations. Registration to the operation-result-table is 

also vectorizable by the technique which will be stated in section 3.3.3.

Reduction Phase 

There may be redundant nodes and non-unique nodes among the tem-

porary nodes generated in the expansion phase. The Iriain tasks of the 

reduction phase are to find redundant nodes and non-unique nodes and 

to remove therm. In our algorithm, these tasks are executed in a breadth-

first manner from the nodes nearby the leaf-nodes toward the root-node.
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In addition, temporary nodes which are neither the redundant nodes nor 

the  non-unique nodes are registered to the node-table. 

  In practice, the removal of the redundant nodes and the non-unique 

nodes must be performed at the end of the reduction phase because there 

are edges pointing to these nodes. In our algorithm, the nodes classified 

as redundant nodes or non-unique nodes are marked as useless nodes. 

Every useless node has a forwarding pointer to indicate the node that 

takes the place of the useless erode. 

  Following procedure is the reduction phase.

[Reduction Phase of Binary Operations] 
Repeat the following operations while there are temporary nodes.

(1) For every temporary node whose '0' edge or '1' edge point to a useless 
node, redirect the edge so as to point to the node pointed to by the 

   forwarding pointer of the useless node.

(2) For every temporary node both of whose '0' edge and '1' edge are not 
   temporary nodes (i. e., permanent nodes or the leaf-nodes), execute 

   following statements:

(2.1)

(2.2)

(2.3)

If its '0' edge and '1' edge are the same, rrrark the node as a 

useless node, and set its forwarding pointer to point to the node 

pointed to by its '0' edge. 

If there is a mode which is equivalent to this node and registered 

in the node-table, mark the temporary node as a useless node, 

and set its forwarding pointer to point to the node which is 

registered in the node-table. 

Otherwise, register the node to the node-table, and mark it as 

permanent node.
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  This procedure is also suitable for vector processing because all tem-

porary nodes whose '0' edges and '1' edges are not temporary nodes can 
be processed simultaneously, and  almost all operations are vectorizable. 

Vectorization of registration to the node-table is discussed in section 3.3.3.

Example 

Figure 3.6 illustrates the proposed algorithm via an example. This ex-

ample shows the process of AND operation whose arguments are Boolean 

functions represented by the root-edges e f, and e14 pointing to the nodes 

117 and n4, respectively, of the SBDD in Figure 3.6 (a). Here we de-

note a Boolean function whose root-node is Ilk by fk. For simplicity, the 

operation-result-table is assumed to be initially empty. 

  At the beginning of the expansion phase, the requirement (AND, e1„ 
ef4) is put to the requirement queue. 

  Because the result of the requirement (AND, eh, e14) is not trivial 
and not found in the operation-result-table, a new temporary node n8 is 
allocated as the root-node of the result of (AND, e1,, c14). The level of the 
new node is max(L1„ L14)=7. The edge f8 pointing to the new node n8 is 
registered to the operation-result-table. The requirement (AND, eh, ef4) 
is dequenecl and the new requirements (AND, ef,(x;__0), emx7_0))=(AND, 
eh, ef4) and (AND, ef,(a:,_I)' e f4 f,_1))=(AND, eh, ef4), corresponding to 
the '0' edge of 118 and '1' edge of n8 respectively, are put to the queue. 

  Similarly, two requirements (AND, eh, ef4) and (AND, e1,, ef4) are pro-
cessed simultaneously (Figure 3.6 (b)). Now, there are four requirements 

(AND, ef.,. e14), (AND, ef.;, ef4), (AND. eh, e14) and (AND, e11, ef4), corre-
sponding to the '0' edge of n9, the '0' edge of 1110, the '1' edge of n9 and 
the '1' edge of 7110, respectively. 

  Now, the requirement (AND, eh, ef4) corresponding to the '0' edge of 
ng is processed. Because the result of the requirement is not trivial and
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operand 1  fs 12 f7 fa 16 f1

operand 2 14 fa fa fa 14 14

operation AND AND AND AND AND AND

result 110 f12 18 f11 fa Um

Node-Table

n7 n4  n2 n6 nins n3

(c) The SBDD at the End of the 3rd Stage of the Expansion Phase 

Figure 3.6: Example of the Breadth-First Manipulation (Continued)
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n3

f7 

I Xi

fa

nil r

 f8 

 x,

niz n13

Operation-Result-Table

operand 1  fe 12 f7 f2 f3 fe f1

operand 2 f4 f4 14 11 14 14 f4

operation AND AND AND AND AND AND AND

result f10 f12 fa 114 f11 f9 113

Node-Table

 n7 n13 n4 nuns n2 n9 ns nlns n10 n3 n12

Figure 3.6

      (e) The SBDD after Operation 

: Example of the Breadth-First Manipulation (Continued)
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not found in the operation-result-table, a new node n11 is generated and 

is registered to the operation-result-table. Next, the requirement (AND, 
eh, e f4) corresponding to the '0' edge of No is processed. Note that 
this requirement is the same as one just processed. According to the 
operation-result-table, the result of this requirement is fll, so that the '0' 
edge of n10 is directed to n11 instead of a new distinct temporary node. 
For the other two requirements in the queue, new temporary nodes n12 
and nl;;, respectively, are generated (Figure 3.6 (c)). Six requirements 
corresponding to '0' edges and '1' edges of three new temporary nodes 

are put to the queue. 

  The result of the requirement (AND, 0, eft) corresponding to the '0' 
edge of n11 is trivial, i. e., 0, therefore, the '0' edge of n11 is directed to the 

leaf-node 0. The result of the requirement (AND, e12, eh) corresponding 

to the '0' edge of n.12 is trivial, i. e., fl, therefore, the '0' edge of n12 is 

directed to n2. In the same way, the '1' edge of nil and the '1' edge of 

ni3 are directed to n1. For the requirement (AND, e12, eh) corresponding 
the '0' edge of n1;3, a new node n14 is generated, and registered to the 

operation-result-table. The '1' edge of 1112 is directed to n14 according to 

the operation-result-table. 

  There are two requirements corresponding to the '0' edge and '1' edge 

of n14. They are both trivial. Figure 3.6 (d) shows the SBDD at the end 
of the expansion phase. 

  Then the reduction phase begins. The temporary nodes both of whose 
'0' edges and '1' edges are not temporary nodes are processed , i. e., n11 

and n14 are processed. 1111 is not redundant (i. e., the '0' edge of 11.11 is 

different from the '1' edge of n i I). But according to the node-table, there 

is an isomorphic node, i. e., n;3 whose level, '0' edge and '1' edge are the 

same as n11, therefore, Till is marked as useless node and its forwarding 

pointer is set to point to n;3, and n 11 is not registered to the node-table.
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In addition, the entry of the operation-result-table of  f  l  l is modified to 

f3. On the other hand, n14 is not redundant nor isomorphic to any other 

permanent nodes, therefore, registered to the node-table and marked as 

permanent node. 
  Next, n12 and .1113 are processed in the same way, and both of them are 

registered to the node-table and marked as permanent nodes. 

  Next, n9 and 140 are processed (Before processing, their '0' edges point-

ing to the useless node nil are redirected to 113 according to the forwarding 

pointer). 
  Finally, 118 is processed, and the result for the initial requirement is 

the SBDD with the root-edge efi (Figure 3.6 (e)). The useless node n11 

is removed now.

3.3.3 Vectorization of Hash Table Access

The access to the operation-result-table in the expansion phase and the 

access to the node-table in the reduction phase cannot be vectorized in a 

straightforward manner. 

  If the expansion phase is vectorized in a straightforward manner (i. e., 

refering to the operation-result-table simultaneously, generating a new 

temporary nodes simultaneously, then registering them to the operation-

result-table simultaneously), duplication of temporary nodes occur when 

the same requirements are processed simultaneously. For example, con-

sider the third stage of the expansion phase of the example of Figure 3.6. 

There are requirements corresponding to the '0' edge of n9 and '0' edge 

of n10. The former requirement is the same as the latter one. They are 

processed together in the next stage. When at first the operation-result-
table is referred to complying with both requirements, the result is not 

yet written. Therefore, new temporary nodes are generated complying 
with the both requirements, which cause the duplication of the temporary
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nodes. 

This can be avoided by checking the operation-result-table again just 

after the registration to the operation-result-table . Those temporary 
nodes are removed whose registration to the operation-result-table is 

overwritten by the registration of another teitiporal;y node which is pro-

cessed simultaneously. If there are duplicated requirements, the regis-

trations to the operation-result-table conflict, because the values of the 

hash function for these requirements are the same. After the registra-

tions to the operation-result-table, only the last registration is valid in 

the entry of the table where the conflict occurred. In this way, by means 

of the one-more check of the operation-result-table, all but one dupli-

cated temporary nodes can be removed. Note that the valid registration 

in the entry of the table where the conflict occurred may be arbitrary 

one of the registrations to this entry. This fact enables us to employ 

the high-speed vector indirect store instruction of HITAC S-820/80. In 
addition, the operation-result-table can be implemented as a hash-based 

cache in practice[BRB90], therefore, the registrations and check can be 
simply implemented. 

  In the case of the access to the node-table in the reduction phase, 

the basic idea for vectorization is similar to the operation-result-table. 

However, the node-table cannot he implemented as a hash-based cache: 

the node-table must keep all the registered nodes. The node-table is 

constructed by an array T of pointers; every pointer corresponds to a 

value of hash function and points to the head of the linked list of the 

registered nodes. 

The simultaneous references to the node-table according to the tempo-

rary nodes to be processed in a stage of the reduction phase are vectorizecl 

as follows; 

(1) Generate an array L of the pointers to the temporary nodes to he
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 processed. Compute the value of the hash function for every tem-

porary nodes and copy the pointer in T to a work area p of the 

temporary node.

(2) Check every p pointed to by L. If p is nil, then currently there is no 
  registered node which is equivalent to the temporary node. Remove 

  from L the pointers to these nodes.

(3) Refer to the permanent nodes pointed to by p's pointed to by L. 
   Check whether each permanent node is actually equivalent to the 

temporary node. If so, the temporary node is marked with useless 

   node, and set its forwarding pointer to point to the permanent node 

  pointed to by p. If not, the temporary node and the permanent 
   node pointed to by p have, occasionally, the common value of the 

  hash function, but, in fact, distinct each other. For such temporary 

  nodes, update p's by copying the link pointers of the permanent 

   nodes pointed to by p's.

(4) Remove from L the pointers to the useless nodes. Repeat from step 

  (2) until L become empty.

At first, the vector references to the 1st nodes in the linked lists are exe-

cuted. For the temporary nodes which accessed to the distinct permanent 

nodes, the vector references to the 2nd nodes in the linked lists are ex-

ecuted, and so forth. The removal of pointers from L is vectorized with 

the vector compress operation. 

  The simultaneous registrations to the node-table and the simultaneous 

one-more check of the node-table are also vectorized in a similar way.
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1st list 

2nd list 

3rd list 

512th list

         Free nodes

 o--o--
o--o--

o--o--

o-o--

Tops of the avail lists

               Figure 3.7: Multiple Avail Lists 

3.3.4 Management of Free Nodes 

As mentioned in the  explanation of the reduction phase, the useless nodes 
are removed from the graph at the end of the operation. In order to reuse 
these nodes, the use of avail list is considered. There are well-known 
efficient procedures for a node to be inserted to and deleted from the top 
of a linked list. However, multiple nodes cannot be inserted to or deleted 
from a linked list simultaneously. 

  In order to vectorize the insertion and deletion of multiple nodes, we 
introduce multiple avail lists. Instead of single pointer for the top of 
an avail list, an array of 512 pointers for the tops of the 512 avail lists is 
introduced (Figure 3.7). Initially, all the avail lists have the same number
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of the free nodes and the total number of the free nodes are set to the 
variable #free. When  n(< 512) free nodes are required, the top nodes in 
the (mod(#free —11,512)  + 1)th through (mod(#free — 1, 512) + 1)th 
avail lists are used, then #free is decreased by ri. When more than 512 
free nodes are required, the vector operations of the length (up to) 512 
are repeated. The insertion of the multiple useless nodes is done by the 
above steps backward. The number of the avail lists is chosen to be 512 
because the length of the vector registers of the HITAC S-820/80 are 512. 

  This technique is also used in the process of the garbage collection 

[BRB90]. Garbage collection collects the useless nodes in the graph ac-
cording to the 'free' declarations by the application program. The nodes 

used for the intermediate result of the application program can be reused 

by means of the 'free' declarations and the garbage collection.

3.3.5 Management of SBDDs with Output Inverters 

In this section, a method for managing the SBDDs with output inverters 

is described. As mentioned in section 3.2.1, various attributed edges are 

proposed. The output inverters are efficient to reduce the time for ma-
nipulation. In the conventional recursive algorithm, the attributes of the 

edge pointing to a new node can be easily determined using the result of 

the recursive steps for its sub-functions. In the vector algorithm, suitable 

methods for applying output inverters varies among the operations. 

  Under the limitations of the use of output inverters mentioned in sec-

tion 3.2.1, the following property holds. Methods described so far are 

based on this property.

[Property 1] The output inverter is attached to the root-edge of f if 
and only if the value of f is 1 when 0 is substituted to all the variables.
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Binary Operation 

In the binary operations, the output inverters of the edges can be decided 
without using the result of its sub-functions. Let us denote the existence 
of the output inverter on edge e as oi(e), whose value is true if the output 
inverter exists and false otherwise. From Property 1 and an equation li(0, 
0,...,0)= op( PO, 0,...,0),g(0,0,...,0)) where h= op( f,g) and op 
is a binary operator such as AND, OR. or EXOR, Property 2 follows. 

[Property 2] oi(the root-edge of op(f, g)) = op(oi(the root-edge of f), 
oi(the root-edge of g)) 

  Based on Property 2, a method is proposed by which the output in-
verters are computed in every stage of the breadth-first operation in the 
expansion phase and no more computation of output inverters is required 
in the reduction phase. The rules to be added to the expansion phase are 
as follows: 

  • Attach an output inverter to the root-edge of op(e f, e4) iff op(oi(e f), 
    oi(eg)) is true. 

  • For the requirement (op, e f„, ey„), attach an output inverter to the 
   root-edge e f„ (eq„) iff oi(e f) (oi(eg)) is true. 

  • For the requirement (op, e11, eq, ), attach an output inverter to the 

   root-edge e1, (e9,) iff oi(e f) (oi(eg)) is different from oi('1' edge of 
    the root-node of f (g)). 

  • Never attach an output inverter to the '0' edge corresponding to the 

requirement (op, e 1„, eq„)• 

  • Attach an output inverter to the '1' edge corresponding to the re-

    quirement (op, e11, e91) iff op(oi(e f,), oi(eg,)) is different from op(oi(e f„). 
oi(eg„)).
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Substitution of 0 and Shift of Variables

It is clear from Property 1, the output inverter of the root-edge of the 

Boolean function f(x = 0) is the same as the output inverter of the root-
edge of Boolean function f. The output inverter of the root-edge of the 
Boolean function f (xi+e,' Z2+,, x„+,) is also the same as the output 
inverter of the root-edge of Boolean function f (.xi, x2, ... , x„). Therefore, 
there is no need to compute the output inverters during these operations.

Substitution of 1

The output inverter of the root-edge of the Boolean function f(x = 1) 
cannot be decided only by the output inverter of the root-edge of Boolean 
function f in general. For example, output inverter i's not attached to the 
root-edge of a Boolean function f=AND(x2, NOT(xi)) nor the root-edge of 

f (xl = 1), while output inverter is attached to the root-edge of f(x2 = 1) 
(recall Property 1). Therefore, the output inverters must be computed 
during the reduction phase of the breadth-first algorithm.

3.3.6 Parallelization Multiple Operations

If multiple requirements of Boolean operations are given simultaneously, 

then they can he processed together by putting them to the requirement 

queue in the initialization of the expansion phase. This. technique is 
expected to extend the vector length of both the expansion phase and 

the reduction phase, which will improve vector acceleration ratio. 

  In the case of such application as construction of an SBDD for a given 

Boolean formula or a given circuit description, multiple operations can 

be evaluated together whose Maximum levels in the parse tree or in the 

circuit diagram are the sanre[KC90].
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Circuit #node CPU  time [rnsec] Acceleration

Circuit size Scalar Vector Ratio

In. Out. Nets. (S) (V) (S/V)
c432 36 7 196 104,066 9,099 412 22.09

c499 41 32 243 65,671 2,585 163 15.86

c880 60 26 438 31,378 2,057 221 9.31

c1355 41 32 587 208,324 5,886 407 14.46

c1908 33 25 913 60,850 3,038 375 8.10

c3540 50 22 1719 1,029,210 74,834 2,692 27.80

c5315 178 123 2485 48,353 5,151 970 5.31

3.4

          Table 3.1: Experimental results 

Implementation and Evaluation

3.4.1 Implementation 

We  implemented an SBDD manipulator based on the proposed algo-

rithm (including output inverters) on the vector supercomputer HITAC 
S-820/80 at the University of Tokyo. The program is coded in Fortran i i . 
Almost all inner DO loops of the program are vectorized. 

  The required storage is 7 words (28 bytes) for a permanent node ('0' 
edge, '1' edge and level etc. and the space for the node-table and the 
operation-result-table) and the additional required temporary storage for 
a temporary node is 5 words (20 bytes). Since we can use up to 256 
megabyte main memory on the HITAC S-820/80 at the University of 
Tokyo, we can manage an SBDD of more than 5 million nodes.
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3.4.2 Evaluation 

Table 3.1 shows the benchmark results on the S-820/80. This table 
shows the required CPU time for constructing the graph representing 

the Boolean functions of all primary outputs and all nets from a circuit 

 description. For example, an SBDD for the circuit 'c432' represents 203 

Boolean functions (7 primary outputs and 196 nets). The benchmark cir-
cuits are chosen from ones in ISCAS'85 [BF85]. For the ordering of the 
variables, the dynamic weight assignment methocl[MIY90] is employed 

(the computation time for the ordering is not contained in Table 3.1). 
The vector execution time (V) is the required CPU time using all fea-
tures of the S-820/80, while the scalar execution time (S) is the required 
CPU time using only the conventional scalar processing unit of the S-
820/80. A source program which is tuned for vectorization is used for 
both scalar execution and vector execution (i. e., two object codes with 
and without vector instructions are generated by the Fortran 77 compiler 
of HITAC S-820/80). The vector acceleration ratio (S/V) is the ratio 
of the scalar execution time to the vector execution time. #node is the 
number of the nodes of the SBDD representing the Boolean functions of 
all primary outputs and all the nets. 

  From Table 3.1. we can see that 5.3 to 27.8 vector acceleration ratio 
is gained. These results show how the program is suited for the vector 
supercomputer. Especially, the circuits with large niunber of nodes and 
small number of variables, such as c432, c499, c1355 and c3540, are highly 
accelerated. This is because the width of the SBDDs of such circuits are 
very large. i. e., there are many nodes in every level of the graph, and the 
vector length is very long on the average when such a graph is processed. 

  Compared with the results on the workstation Sun3/60 by Minato et 
al.[MIY90], our results are 130 times faster in the best case. For example, 
only 0.163 sec. and 0.407 sec. are required for c499 and c1355 respectively
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 e = AG (px, = (AX (AX pz,)) ) 

 (a) An Example of CTL Formula 

Xi =0/zi =0 x1=0/z1=0 

xi =1 /zi =1

xi =11z1=0 Xi =1 /Zi =1

Xi =0/Zi =1

 Xi =1/z1=1

xi =0/zi =1 

            (b) An Example of Sequential Machine 

  Figure 3.8: An Example of CTL Formula and Sequential Machine 

in Table 3.1, while 21.5 sec. and 51.4 sec., respectively, were required in 

[MIY90] .

3.5 Application for CTL Model Checker 

As an example of applications of the developed Boolean function manip-

ulator, a computation tree logic (CTL) model checker is implemented on 
the vector supercomputer HITAC S-820/80.
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Figure 3.9: An Example of Kripke Structure

3.5.1 Outline

CTL model checking is a formal method for design verification of finite 

state machines such as sequential machines. Input for the model checker 

is a CTL formula expressing the specification of the sequential machine 

and a designed sequential machine. The model checker verifies whether a 

designed sequential machine satisfies the specification or not by comput-

ing the truth-value of the CTL formula at the initial states of the Kripke 

structure corresponding to the designed sequential machine.



3.5 Application for CTL Model Checker 81

  Figure 3.8 illustrates an example of the CTL model checking. Fig-
ure 3.8 (a) is a CTL formula given as the specification of a sequential 
machine. Figure 3.8 (b) is a state transition diagram of the given de-
signed sequential  machine. A directed graph Figure 3.9 represents the 

Kripke structure corresponding to the sequential machine of Figure 3.8 

(h). Every node of Figure 3.9 representing a state of the Kripke struc-
ture corresponds to an edge of Figure 3.8 (b). The truth-value of a CTL 

formula is determined by a state of a Kripke structure. The CTL model 

checker computes the truth-values of the CTL formula at the initial states 

of the Kripke structure. If all these truth-values are true then the de-

signed sequential machine satisfies the specification. 

  CTL model checker has been implemented on workstations using Boolean 

function manipulators based on SBDDs and its efficiency has been re-

ported [BCMD90]. In this chapter, the implementation of the CTL model 
checker using the vectorized Boolean function manipulator is discussed 

and the experimental results are shown. 

3.5.2 Computational Tree Logic 

Computational Tree Logic (CTL)[CES83] is a temporal logic. Let AP be 
a set of atomic propositions. CTL formulas are inductively defined as 

follows: 

  • If p E AP, then p is a CTL formula. 

  • If is a CTL formula, then so are ter,, EX ti and EGq. 

  • If ti and are CTL formulas, then so are rt V and E[rilf ]. 

  The semantics of CTL is defined over a Kripke structure K = (S, R, I), 
where 

  • S is a non-empty finite set of states.
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 •  R  C  S  x  S is a total binary relation on S (i. e., for Vs E S, there 
   exists s' E S such that (s, s') E R). 

  • I : S —> 2AP is an interpretation function which labels each state 

    with a set of atomic propositions true at that state. 

  An infinite sequence of states 7r = sasis2 ... is called a path from so if 

(Si, si+i) E R for Vi > 0. 7r(i) denotes the i—th state of the sequence 7r (i. 
e., 7r(i) = si). 
  The truth-value of a CTL formula is determined by a state of a Kripke 
structure and K, s ri denotes that a CTL formula ij holds at a state s 
of a Kripke structure K. If there is no ambiguity, we will omit K and 

just write as s The relation is recursively defined as follows: 

 • s p (E AP) iff p E I(s). 

•s=-ii iff s ri. 

•s=riViffs~r)ors~. 

  • s EK.q iff there exists some next state s' of s (i. e., (s, s') E R) 

   such that s' ri. 

  • s EGri iff there exists some path rr on K starting from the state 

s such that ir(i) rj for `di>0. 

  • s EN UJ iff there exists some path 71 on K starting from the state 
s such that ai > 0, rr(i) andrr(j) r/ for 0<dj < 

 addition to other Boolean operators such as conjunction (A), the 
following abbreviations are often used: 

 • AX n = 

 • A[r1U ] = -,(EG(rl A -1) V E[(77 A -10) u(-,rl A -'f)]).
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  • AFT, = -iEG-ir1. 

 • EFr1 = E[trueUfrd. 

  • AGi = -iEF-ir1. 

  Intuitively, the first letters of temporal operators, A and E, represent 

universal and existential path quantifier, respectively. The other letters 

of temporal operators represents: 

  • X7) represents that rj holds at the next state; 

  • Grp represents that rj holds at every state on the path; 

  • Fri represents that holds at some state on the path; 

  • ritk represents that holds at some state and 'r holds always before 

   that state on the path. 

3.5.3 Sequential Machines 

A subset S of B" is represented by a characteristic function F such that 

F(s) = 1 if and only if s E S. 
  Let x;(1 < i < 1), < j < in) be input variables and state vari-

ables, respectively. Let x and y be vectors .x1, x2, ....r/ and 7,1, y2, ... y„„ 
respectively. 

  A sequential machine with 1 inputs, in, state variables and ri outputs 
are given in the form of Boolean functions as follows: 

  • Transition functions: 

fi(x,Y) (1 <.1 < in) 

  • Output functions: 
   zk(y) (1 < k < n) for Moore-type machines 

zk(x,y) (1 < k < n.) for Mealy-type machines
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  In order to associate inputs and outputs of a sequential machine with 

atomic propositions of the Kripke structure,  px; (1 < i < 1) and pzk 

(1 < k < n) are used as atomic propositions corresponding to xi and zk 
respectively. x; = 1 corresponds to px; = true and so on. In addition, 
Boolean function Fi,,,t(y) is introduced in order to represent the set of 
initial states of the sequential machine, i. e., F;,,,t(y)=1 if state vector y 
corresponds to an initial state. 

3.5.4 Basic Algorithm 

The algorithm shown in this section is based on [BCMD90]. 
  Since the semantics of CTL is defined over Kriplce structures, a given 

sequential machine has to be transformed to a Kriplce structure for model 

checking. 

  The set of states of a Kripke structure is interpreted as the set of edges 

of the state transition diagram of the sequential machine. 

  Let s he x#y, a concatenation of two vectors x and y. By introduc-

ing new vectors of variables x' = x' ~ , x'2, r'1 and Y' = :~' 1, y'2, . y',» 

corresponding to x and y. s' is defined to be x'#y'. 

  The Kripke structure A is represented by the following Boolean func-

tion FA' : 

Fl; (S', s) = H EQUIV(yi, fj(x, y)) 
0<j<777 

This function means that FA (s', s) = 1 if and only if (s, s') is an edge of 
the Kripke structure obtained from the sequential machines. 

3x;. f is defined to he oR.(f (:r;; = 0), f (xi = 1)). 3x. f is defined to be 
a•1, i .3x2....... Vx.f is defined similarly. 

[Algorithm of CTL Model Checker] 
  • Input: a CTL formula 0 and Boolean functions representing the 

   sequential machine, fj (1 < j < ^!t,), zk (1 < k < n) and F;,,•
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 • Output: good if the sequential  machine satisfies 0 and bad otherwise. 

(1) Construct a Boolean function representing a Kripke structure FI; 
   Set Fp (s) = xj and F1,z, (s) = 74. 

                             (2) For each suhforrnula Hi of H, compute a Boolean function F0, repre-
   senting the set of states where H.i holds as follows. The algorithm 

   runs in bottom up manner and finally computes F0: 

   (a) If Hi is an atomic proposition, then return F©,. 

   (b) If Hi is -ir~, then return NoT(Fn(s)). 

   (c) If Hi is rq V , then return OR(Fn(s), Fe(s)). 

(d) If Oi is E Y r1, then return FE x 71 as follows: 
FEx,i(s) = as'. AND(FT1(s'), Fig (s', s)) 

   (e) If Hi is EGri, then return EEG?/ which is obtained as the fixed 
       point of the following sequence of functions, Ao, A1, ...: 

           Ao(s) = F71(s) 
Ai+1(s) = AND(Ai(s), ]s'.AND(Ai(S'), Fl, (s', s))) 

   (f) If Hi is E[r1 U ], then return FE[7ruc which is obtained as the fixed 
       point of the following sequence of functions, Ao, A1, ...: 

          Ao(s) = Fe(s) 
Ai+1(s) = OR(Ai(s), 

3s'.AND(Ai(s'), AND(F71(S), Fl; (s', s)))) 

(3) If Vy. OR(NOT(F277.ii ), F0) = true then. return good else return bad. 

3.5.5 Implicit Manipulation of Kripke Structure 

Basic idea of this section is in [HHY92].
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  The size of an SBDD representing  Fj;  (s', s) = ni<j<,,, EQUIV(yli, fi(x, y)) 
can be very large, even if the total size for fi is small. By the following 
computation, the construction of SBDD representing FK can he avoided. 
  The Boolean function Fj; (s', s) is used only in the form: 2s'. AND(C(s'), 
Fj; (s', s)). This function can be calculated as follows: 

[Algorithm for 3s'.AND(C(s'), FA-(s' , s))] 
Obtain the (m + 1) functions Di (i = 0, ... , in) defined as follows. Return 
D,,,(s) as 3s'.AND(C(s'), Fj; (s', s)): 

Do(s', s)_ 3x'.C'(s') 
Di+1(y42,y4:3, ,yn„s) = OR(AND(Di(y41 = 1), fi+1(s)), 

AND(Di(g+1 = 0), NOT(fi+1(S)))) 
for i.=0,1,...,m-1 

  Note that if Di is independent of g+1, then Di+1 = Di. Whether Di 
depends on g+1 or not can be tested by checking equivalence of Di and 
Di(y;+1 = 0). Using this technique, large part of computation can be 
reduced.

3.5.6 Implementation and Evaluation 

The CTL model checker based on the above method was implemented on 

the vector supercomputer HITAC S-820/80 at the University of Tokyo. 
This program utilizes the Boolean function manipulator proposed in this 
chapter. An SBDD representing the Boolean function F(s') is obtained 
from an SBDD representing F(s) using the operation shift of variables. 
The program is coded in Fortran 77. 

  The benchmark results are shown in Table 3.2. This table shows the 
required CPU time for model checking. The vector execution time (V), 

the scalar execution time (S) and the vector acceleration ratio (S/V) are
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 Sequential #node of CPU time Acceleration

Machine Sequential [sec] Ratio

Machine Scalar (S) Vector (V) (S/V)
padd2 186 4.25 0.78 5.44

padd4 359 12.70 1.91 6.66

padd8 741 55.77 6.74 8.27

paddl2 1,171 155.00 16.53 9.38

paddl6 1,649 386.66 36.09 10.71

calu2 628 18.48 1.83 10.08

calu4 1,220 94.50 6.28 15.05

calu8 2,476 804.52 37.67 21.36

calul2 3,828 157.40

calu l6 5,276 665.02

Table 3.2  : Experimental results

defined in section 3.4.2. The  ,mode of sequential machine is the num-

ber of the nodes of SBDD representing the designed sequential machine. 

Note that the maximum number of nodes required in the process of the 

model checking is much greater than #node of sequential machine. The 

sequential machines used for the benchmarks are pipelined CPU's. All 

results of the benchmarks are good, i. e., every sequential machine satis-

fies the specification. Experiments of the scalar execution for benchmarks 
'calul2' and 'calulG' was not performed because these jobs seemed to ex-

ceed the time limit of batch jobs of the University of Tokyo (3,600 sec.). 

  From Table 3.2, we can see that 5.4 to 21.4 vector acceleration ratio is 

gained (the vector acceleration ratio of 'calul2' and 'calul6' is expected 
to be larger). These figures show that the program is suited for the vec-
tor supercomputer. In particular, the model checking for the sequential
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 machines represented by large munber of nodes are highly accelerated.

3.6 Conclusion 

In this chapter a vector algorithm for manipulating Boolean functions 

based on SBDDs has been proposed. The proposed algorithm is based 

on breadth-first manipulation to utilize the high performance of vector 

supercomputers. 

  The Boolean function manipulator based on the proposed algorithm is 

developed on the vector supercomputer HITAC S-820/80 at the Univer-
sity of Tokyo and benchmark results are shown. The vector 'acceleration 

ratio on the S-820/80 is 5.3 to 27.8. This manipulator on the S-820/80 
is faster than that of Minato et al. on Sun3/60 up to 130 times. As an 
application, this manipulator is utilized for CTL model checker. 

  Thus, the developed algorithm has been proven to be suitable for vector 

supercomputers and the manipulator is proven to be faster than conven-

tional ones. The developed technique for Boolean function manipulation 

is expected to be utilized for various applications of CAD systems such 

as design verification, test generation, logic synthesis and so on which 

support the design of VLSI whose scale and complexity are increasing 

rapidly. 

  Furthermore, there are many Mon-numerical computations other than 

CAD systems which manipulate Boolean functions as given data or in-

termediate data. For such applications, Boolean function manipulators 

based on SBDD may be utilized effectively. The results of this chapter , 

therefore, also suggests that the vector supercomputers can be utilized 

for various non-numerical computations using SBDDs .



Chapter 4

Algorithms for Manipulating 

Binary-Decision Diagrams in 

Secondary Memory

4.1 Introduction

As described in the previous chapter, Ordered Binary-Decision Diagrams 

(OBDDs), or simply Binary-Decision Diagrams (BDDs), are excellent 
graph representation of Boolean  functions[Ake78, Bry8G]. Efficient Boolean 
function manipulators based on the Shared BDD (SBDD, a multirooted 
BDD) representation have been developed[MIY90, BR.B90], and they are 
widely used in various applications in Computer-Aided Design (CAD) of 
digital systems. 

  At present, SBDD manipulators are, in most cases, implemented on 
workstations. The recent progress in VLSI technologies requires them 
to manipulate larger-scale Boolean functions. The maximum size of the 
SBDDs which can be manipulated on workstations is limited by both 
required time and required memory. In order to reduce the computation 
time, the use of parallel machines or connection inachines[ILC90] or the 
use of vector supercomputers has been proposed. However, yet in many 

                             89
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applications we have to give up to design large-scale circuits due to the 

limitation of the size of main  memory to store SBDDs rather than the 

computation time. In order to reduce the size of SBDDs, attributed 

edges have been proposed[MIY90, BRB90]. Variable ordering has been 
also studied by many researchers. 

  In this chapter, the use of secondary memory, such as hard disk drives 

of workstations, is considered in order to manipulate very large SBDDs 

which is too large to he stored within main memory. Irr contrast that 

the conventional depth-first algorithm causes random access of memory, 

the proposed method is intended to cause sequential access of memory. 

The main idea of our method is level-by-level manipulation of Shared 

Quasi-reduced BDDs (SQBDDs) upon a breadth-first algorithm. A set 
of nodes and hash tables of one level are recalled from secondary memory 

in one lot, then operations for the nodes of the level are performed within 

main memory, and the results of the operations for the level are stored 

to secondary memory all together. This algorithm is effective to reduce 

the overhead due to access of secondary memory, because it requires 

much fewer times to access secondary memory; every time a large data 

block is transferred between main memory and secondary memory. In 

addition, a garbage collection algorithm based on sliding type compaction 

is introduced to reduce page faults in succeeding manipulation. 

We implemented and evaluated the proposed method on a worksta-

tion Sun SPARC Station 10 with 64 megabyte main memory and a one 

gigabyte hard disk drive connected via SCSI-2 standard interface. More 
than 50 million nodes can be allocated within one gigabyte virtual mem-

ory space, and as a result an SQBDD with more than 12 million nodes 

representing all primary outputs of a 15-bit multiplier was constructed 

from a circuit description in about 5.6 hours. If the conventional SBDD 

manipulator were used instead, it is estimated that it would take about
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1,900 hours, so we can say that our manipulator achieved about 330 times 

improvement in elapsed time. Furthermore, we made experiments using 

semiconductor extended storage instead of hard disk, and showed that 

the required time for the 15-hit multiplier is reduced to about 2.2 hours. 

  In the following section, basic explanation on secondary memory and 

inefficiency in using it for depth-first SBDD manipulator will he described. 

See also section 2 of the previous chapter for basic explanation on SBDDs. 

In section 3, a new method will be proposed. In section 4, experimental 

results of the Boolean function manipulator will he shown. Section 5 will 

provide some concluding remarks.

4.2 Preliminaries

4.2.1 Secondary Memory

Today, almost all general purpose computers have secondary memory 

which have much larger capacity than main memory. In this paper, we as-

sume the following secondary memory devices for workstations and show 

experimental results with them. 

  Hard disk is one of magnetic memory devices. The transfer rate of the 

hard disk drive used in experiments of section 4.4 is 10 megabytes per 

second via SCSI-2 ANSI standard interface. The average access time of 

the hard disk drive is 10 milliseconds. Semiconductor extended storage 

is a secondary memory made of semiconductor memory devices, such as 

DRAM's. The transfer rate of the semiconductor extended memory unit 

used in section 4.4 is 10 megabytes per second via SCSI-2 interface. The 

average access time of the semiconductor extended storage unit is 0.3 

milliseconds. 

  No matter which device is used, every transfer between main memory 

and secondary memory is performed by a block transfer of contiguous
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space. The minimum unit of transfer is called page. The page size defined 

in the  O. S. we will use in section 4.4 is 4096 bytes. In order to utilize 

the maximum transfer rate, every transferred page should be filled with 

actually used data. 

4.2.2 Problems in the Use of Secondary Memory with Depth-

     First Algorithm 

Now let us consider the use of secondary memory to enable manipulating 

very large SBDDs which are too large to store within main memory. 

  As mentioned in section 3.2.2, the conventional depth-first algorithm 

for manipulating SBDDs is widely used on workstations. On the memory 

access during the depth-first manipulation, following can be said; 

  • Access to nodes causes random access in some cases. In order to 

   avoid random access during the depth-first traversals of an SBDD, 

   adjacent nodes should be placed in neighborhood in memory space. 

   However, it is impossible if there are many nodes which have large 

indegree. 

  • Access to the operation-result-table and the node-table causes ran-

    dom access, because they are hash tables. 

  As mentioned in section 4.2.1, a transfer between main memory and 

secondary memory is performed by a block transfer of contiguous space. 

Even if the required data in a page is only one node (about 20 bytes) 
or only one entry of the operation-result-table (about 12 bytes), a whole 

page is transferred, and the transfer time for the whole page (e. g. 4096 
bytes) is required. It follows that secondary memory is not suitable to 
store BDD when depth-first algorithm is employed.
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 X3  X2  Xi X, X3QX20X1 X3 X/ + X3 X2 X1

(a) A Shared Quasi-Reduced BDD

 X3  X2  X1 X1 X3QX20X1 X3 X1 +X3 X2 X1

(b) A Shared Binary-Decision Diagram

Figure 4.1: A Shared Quasi-reduced BDD (SQBDD) and SBDD

4.3 Breadth-First Algorithm for Manipulating SB-

DDs in Secondary Memory

4.3.1 Outline of the Proposed Method

In this section, we propose an efficient method for manipulating very 
large SBDDs in secondary memory. The proposed method is based on the 
breadth-first algorithm for manipulating diagrams level-by-level and the 
data structure which explicitly classifies data according to levels. The set 
of nodes of a level is stored in a contiguous space of secondary memory. 
The operation-result-table and the node-table are also constructed for 
every level. 

  To enable level-by-level manipulation, let us introduce Shared Quasi-
reduced BDDs (SQBDDs). An SQBDD is a representation of Boolean 
functions using an acyclic directed graph. An example of an SQBDD is 
shown in Figure 4.1 (a). This graph represents four Boolean functions
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 I

 a h= AND (I. g)

Figure 4.2: Expansion Phase of the Breadth-First Algorithm for Manip-
ulating SQBDDs 

as represented by an SBDD in Figure 4.1 (b). There is no non-unique 
node, but there are some redundant nodes in SQBDD. SQBDDs have 
redundant nodes so as to hold the following property; 

  • Every '0' edge and '1' edge of a level i node points to either a level 

   (i — 1) node or a leaf-node. 

  • Root-nodes which are externally referred to by users have the com-

   mon level, called  level  max, except the root-nodes which represent 0 

    or 1. 

  Note that there is no pseudo-leaf-node in SQBDDs, where pseudo-leaf-

node is a redundant node whose '0' edge and '1' edge point to the same 

leaf-node. 

  SQBDDs have the same excellent properties as SBDDs. SQBDDs are 

canonical, and small in size for many practical Boolean functions.
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a  h. AND (I.9)

Figure 4.3: Reduction Phase of the Breadth-First Algorithm for Manip-
ulating SQBDDs

4.3.2 Algorithm 

As described in the previous chapter, the breadth-first algorithm consists 

of two phases; an expansion phase and a reduction phase. In the expan-

sion phase, temporary nodes that are sufficient to represent the resultant 

function are generated in a breadth-first manner from the root-node to-

ward the leaf-nodes (Figure 4.2). In the reduction phase, the temporary 
nodes generated in the expansion phase are checked and the redundant 

nodes and the non-unique nodes are removed in a breadth-first manner 

from the nodes nearby the leaf-nodes toward the root-node (Figure 4.3). 
  We will show the algorithm which is modified for manipulating SQB-

DDs.

The Expansion Phase 

An input for the expansion phase is a requirement, which is a triple (op, 
 e  f, eg), where op is a Boolean operator to be executed, and ef and eg are 

root-edges of argument Boolean functions represented by an SQBDD. A



96 4. Algorithms for Manipulating Binary-Decision Diagrams in Secondary Memory

    requirement (op,  e  f, eg) requires to compute the root-edge of the resul-
    tant function of op(f, g). During processing a requirement of level i, new 

requirements of level (i — 1) are generated for computing the operations 
    between sub-functions of the argument functions. Similar to the previous 

     chapter, we introduce a requirement queue in order to manage these re-

    quirements, making our procedure breadth-first, and the nodes generated 

    in the expansion phase are called temporary nodes, while the nodes which 

     already exist are called permanent nodes. 

      The following procedure is executed in the expansion phase. Initially, 

     a requirement queue is empty, and there is no temporary node. 

    [The Expansion Phase of the Breadth-First Algorithm] 

     (1) Put the given requirement (op, e f, eg) to the requirement queue. 

     (2) lev = level_inax 

     (3) Execute one of (3.1), (3.2) or (3.3) for every requirement of level let; 
         in the requirement queue. 

      (3.1) If the root-node representing the result of op(f, g) is found triv-
           ially, then attach the edge pointing to the node as the result of 

            the requirement. 

      (3.2) If the root-node representing the result of op(f, g) is found in the 
operation-result-table, attach the edge that is found in the table 

            as the result of the requirement. 

       (3.3) Otherwise, generate a new temporary node of level ley and at-
           tach the edge pointing to the temporary node as the result of 

           the requirement. At the same time, register the edge pointing 

             to the temporary node to the operation-result-table as the result 
'at f , j) and put new requirements of level (lets — 1), (op, e f„,
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 e90) and (op, eh, efh ), whose result will be '0' edge and '1' edge, 
      respectively, of this temporary node, to the requirement queue. 

(4) lev = lev — 1 

(5) If the requirement queue is not empty, then go to (3).

The Reduction Phase 

After the expansion phase is completed, there may be temporary nodes 

which are pseudo-leaf-nodes or non-unique nodes. The riiain tasks in 

the reduction phase are to find and. remove such nodes. In addition, 

temporary nodes that are neither a pseudo-leaf-node nor a non-unique 

node are registered to the node-table. In this algorithm, these tasks are 

executed in a breadth-first manner from the nodes nearby the leaf-nodes 

toward the root-node. 

  When a pseudo-leaf-node or a non-unique node of level i is removed, a 

forwarding pointer is set to indicate the node that takes the place of the 
removed node. When the '0' edge or '1' edge of a temporary node of level 

(i + 1) points to a removed node of level i, the edge is redirected'to point 
to the node pointed to by the forwarding pointer of the removed node 
before checking whether the temporary node of level (i + 1") is neither a 

pseudo-leaf-node nor a non-unique node. Forwarding pointers are stored 
in the array which were used as the requirement queue in the expansion 

phase. 
  The reduction phase is formalized as follows; 

[The Reduction Phase of the Breadth-First Algorithm] 

(1) = 1 

(2) Execute (2.1) - (2.4) for every temporary nodes of the level lev.
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 (2.1) If its '0' edge or '1' edge points to a removed node, modify the 
      edge so as to point to the node pointed to by the forwarding 

      pointer of the removed node. 

 (2.2) If its '0' edge and '1' edge  point to the same leaf-node, remove 
      the node, and set its forwarding pointer to point to the leaf-node. 

 (2.3) If there is an equivalent node registered in the node-table, remove 
      the temporary node, and set its forwarding pointer to point to 

      the node found in the node-table. 

 (2.4) Otherwise, register the iiode to the node-table, and change the 
      attribute of the node to "permanent" from "temporary". 

(3) ley = ley + 1 

(4) If lev < level max, then go to (2).

4.3.3 Data Structure 

The above algorithm is effective for SQBDDs stored in secondary memory 
if all the nodes of every level are stored together in a contiguous location in 
secondary memory. Requirements of level i can be solved in the expansion 

phase only if the nodes of level i and level (i — 1) are in main memory. 
Temporary nodes of level i. can be checked in the reduction phase only 
if nodes of level i and level (i — 1) are in main memory. In addition, 
if the two hash tables are split up according to level, we need only one 
operation-result-table at a time during the expansion phase and only one 
node-table at a time during the reduction phase, and tables of other levels 
can be swapped out to secondary memory. 

  The allocated secondary memory space for the set of nodes of every 
level includes free nodes for generating new temporary nodes. While 
there are free nodes of a level, the size of an array of the set of nodes of
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the level do not change, so the array of the level is stored again in the 

same location of the secondary memory space as they were. If there is 

no free nodes in the allocated memory space for the level when a new 

temporary node should he generated, garbage collection (see section 3.4) 
is performed. If there are few nodes to be recycled anymore, then the total 

number of the nodes of the level is increased by twice by allocating a new 

location in the secondary memory space to store the new greater array for 

the level. As described in [BRB90], the necessary size for the operation-
result-table and the node-table to keep the efficiency of the operation is 

1/4 to the number of nodes. When the total number of the nodes of a 
level is updated, then the operation-result-table and the node-table of 

the level are also increased in size, and all elements are re-hashed into 

the larger tables. This incremental allocation strategy has the following 

advantages in the use of secondary memory; 

  • The allocated spaces of secondary memory for levels are proportional 

   to number of nodes of the levels. It optimizes the utilization of the 

    space of the secondary memory. 

  • The data density, i. e., the number of the actually used nodes per 

   the number of allocated nodes, is kept high during manipulation. It 

   is crucial to keep the data density to reduce the overhead of access 

    of secondary memory (recall section 2.3).

4.3.4 Garbage Collection 

Let us consider the implementation of automatic garbage collection for 

our SQBDD manipulator. Basic idea described in [BRB90] is applied, 
but sonic other techniques are also introduced[Coh81]. Each node has a 
reference count of the number of '0' edges and '1' edges that reference it (if 
the node is not level_max) or the number of user formulas that reference
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it (if the node is level_max). This count is maintained incrementally. A 
node with a reference count of 0 is called dead. 

  When a user formula is freed, the reference count of its root-node 

is decremented. If the renewed reference count of the root-node is 0, 

the reference counts of its children should be recursively  decremented. 

However, decrernentation of the children are not performed immediately 

in order to avoid extra access of secondary memory. Instead, dead root-

nodes are linked to a list, a dead list, of level_max. Just before the step 

(3) of the expansion phase of succeeding operation, the reference counts of 
the modes of level (lev — 1) which are referenced by the nodes in dead list 
of level ley is decremented and those nodes whose reference count become 
0 are linked to the dead list of level (le v —1). In this way, reference counts 
are updated in breadth-first manner during the expansion phase. 

  When the array of the set of nodes of a level become full, a garbage 
collection for the level is performed. Garbage collection consists of delet-
ing all entries of the hash tables of the level that reference dead nodes and 
compacting all non-dead nodes of the level in one end of the array. Com-

paction is effective for reducing page faults in succeeding manipulation of 
this level. Furthermore, we choose sliding type compaction, i. e., non-dead 
codes of the level are moved toward one end of the array without chang-
ing their linear order. Sliding type compaction keeps those nodes which 
has been defined in the same expansion phase placed in neighborhood 
in the array. which seems to be the best way to minimize the random 
access within a level. Compaction step of the garbage collection includes, 
of course, redirection of several kinds of pointers. See [Coh81] for more 
detail on sliding type compaction of garbage collection. 

  Sliding type compaction is also done- in the reduction phase in order 

to remove pseudo-leaf-nodes and non-unique nodes.
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4.4 Implementation and Evaluation 

4.4.1 Implementation 

We implemented the proposed  method in C language on the worksta-

tion Sun SPARC Station 10 (36MHz, SunOS 4.1.3) with 64 megabyte 
main memory. As the secondary memory, hard disk and semiconduc-

tor extended storage are employed. Specifications of these devices are 

described in section 4.2.1. Secondary memory space is allocated as the 

swap area, which is used as the physical storage of the virtual memory 

space managed by the OS. We used the secondary memory devices trans-

parently under the memory management system of the OS. This is the 
easiest implementation of our method. 

  The required space per a node is 18.25 bytes, including the space for 

the hash tables. Within one gigabyte virtual memory space, more than 

50 million nodes can be allocated. 

  Minato et al. have proposed several attributed edges, including output 

inverters, for the purpose of reducing the number of the nodes and/or 
the time used for the manipulation of SBDDs[MIY90]. We employed the 
output inverters. 

  If multiple requirements of Boolean operations are given simultane-

ously, then they can be processed together by putting them to the re-

quirement queue at the initial step of the expansion phase of the breadth-
first algorithm. This technique is effective for parallel implementation of 

SBDD manipulators. because it extends the parallelism of the process 

[ILC90]. This technique is even more effective for our implementation to 
use secondary memory, because it reduces the number of cycles of the 

expansion phase and the reduction phase. We employed this technique. 

  We chose multipliers as benchmarks of our manipulator in order to 

demonstrate manipulation of very large SQBDDs which is too large to be
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Table 4.1:  Becliirrarlc Results o f our Manipulator

circuit  #  node in HD in SS

name #used #red. #alloc time (sec) time (sec)
elapsed CPU elapsed CPU

mult8 10,800 236 41,392 1.21 1.21 1.22 1.22

mult9 29,851 412 98,862 3.26 3.26 3.26 3.26

multl0 82,369 639 329,004 9.489.47 9.49 9.48

mult 11 227,655 1,083 869,674 28.69 28.68 28.74 28.69

mult12 626,859 1,870 1,592,104 80.78 80.74 80.87 80.79

mult 13 1,697,928 3,089 3,608,358 390.54 284.85 310.79 284.75

mult14 4,599,659 5,312 9,107,236 5,017.75 1,095.14 2,054.35 1,114.37

multl5 12,432,897 10,121 26,924,834 20,185.67 3,487.82 8,190.48 3,730.47

stored in main memory. (Standard  benchmarks such as ISCAS'85 circuits 

(except (.6288) are too small in BDD size to use secondary memory if ap-

propriate variable orderings are employed.) An SQBDD which represents 
the Boolean functions of all primary outputs of an unsigned multiplier is 

constructed from its circuit description. The employed variable ordering 

is 

ao›-bTZ_1dal>-b„_2>-a2 bn-: ••>- bo 

where a's and b's are the multiplicand and the multiplier, respectively, and 

ao aml bo are the LSB of them. This variable ordering requires relatively 

small number of nodes during construction of SQBDDs for multipliers 

among several systematic variable orderings.

4.4.2 Experimental Results 

Table 4.1 shows the experimental results of our manipulator with one 

gigabyte secondary memory. This table shows required CPU time (time 
spent by user plus time spent by system) and elapsed time for constructing
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Table 4.2

 

:  Bechmark Results of the Conventional Manipulator

circuit  #node within MM in IID in SS

name used time (sec) time (sec) time (sec)
elapsed CPU elapsed CPU elapsed CPU

mult8 10,140 2.93 2.93 1,134.89 62.85 367.56 61.50

mult9 28,833 4.27 4.27 3,417.84 114.24 757.32 96.58

uniltl0 80,850 8.34 8.33 12,254.06 323.05 2,061.25 193.89

mult11 225,106 21.27 21.24 47,262.49 1,152.08 6,421.09 453.84

mult12 622,221 69.29 69.22 158,026.52 3,882.65 19,271.27 1,257.62

m uIt13 1,689,752 (unable) (not tried) 64,732.90 5,356.41

an SQBDD. Note that CPU time does not include idle time spent for 

waiting for responses from secondary memory devices. The column #used 

shows the number of  nodes of the final SQBDD which represents the 

Boolean functions of all the primary outputs of a multiplier. The column 

#red. shows the number of redundant nodes among them (#used—#red. 
is the number of nodes of SBDDs). We can see that the number of 
nodes of an SQBDD is almost the same as the number of nodes of an 
SBDD. The column #alloc shows the number of allocated nodes, i. e., 
total size of the final arrays for the sets of nodes. The column in HD 
and in SS shows the results of the experiments with the hard disk and 
the semiconductor extended storage, respectively. Elapsed time is almost 
the same as CPU time up to 12-bit multiplier. In fact, the experiments 
of up to 12-bit multiplier required no physical I/O. This is because they 
can be performed within 64 megabyte main memory. This is yet another 

advantage of our implementation of incremental allocation and the use of 

virtual memory space managed by OS. From Table 4.1, the elapsed time 

for generating an SQBDD for a 15-hit multiplier is about 5.6 hours and 

2.3 hours using the hard disk and the semiconductor extended storage,
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respectively. 

  Table 4.2 shows the experimental results of the conventional depth-

first algorithm. The manipulator used for these experiments is the SBDD 

manipulator developed by Minato et al. which supports two kinds of at-

tributed edges, output inverters and input inverters[MIY90]. Their SBDD 
manipulator does not support incremental allocation of memory space; 

all the array space are allocated at the initialization process. The column 

in HD and in SS shows the result using hard disk and semiconductor 

extended storage, respectively, obtained by allocating (virtual) memory 
space for 16,777,216 erodes (372 megabytes), that is probably the least 
2's power necessary to generate an SBDD for 15-bit multiplier in order 
to estimate the elapsed time for 15-bit multiplier (In fact, we could not 
make the experiments for the multiplier of 14-bit or more, because they 
take too long time). The column within MM shows the result obtained by 
allocating only 24 megabyte memory space. From Table 4.2, the elapsed 
time for generating an SBDD for a 12-bit multiplier using the conven-
tional depth-first manipulator is almost 2 clays when the SBDD is stored 
in hard disk.

4.4.3 Discussion 

Figure 4.4 illustrates the results shown in Table 4.1 and Table 4.2. 

  By means of the conventional manipulator, elapsed time for a 12-hit 

multiplier is about 2,300 times greater when the diagram is stored in hard 

disk than when whole diagram is stored within the main memory. This 

is unbearable. 

From Figure 4.4, we can estimate that it takes about 2,000 seconds for 

a 15-bit multiplier every when large enough main rrrerrrory would be avail-

able. By means of our manipulator, elapsed time for a 15-hit multiplier 

using hard disk is only about 10 times greater than the above estimation.
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  It is also estimated from Figure 4.4 that it takes more than 2 months 

for -a 15-bit multiplier using the conventional manipulator and hard disk. 

We can say that manipulator achieved 330 times improvement on elapsed 

time. 

Using, semicoIlductor extended storage, elapsed time of the conven-

tional manipulator for a 12-bit multiplier is improved about 8.2 times 

compared with using hard disk, but still unbearable. Elapsed time of our 

manipulator for a 15-hit multiplier is improved about 2.5 times and is 

only about 4.1 tinges greater than the estimated elapsed time with large 

enough main memory.

4.5 Conclusion

We have proposed an efficient method for manipulating very large SQB-

DDs in secondary memory and shown benchmark results. The developed 

technique for SQBDD manipulation is expected to be utilized for various 

CAD applications such as formal design verification, test generation, logic 

synthesis and so on in order to enable us much Iarger and more complex 

design which were not possible with the conventional SBDD manipula-

tors.



Chapter 5

Conclusions

In this thesis, three topics  concerning Boolean function manipulation have 

been discussed in order to solve very large problems in CAD of digital 

systems. 

  In chapter 2, high-speed algorithms for generating prime implicants 

of a given Boolean function were discussed, and the use of vector su-

percomputer was proposed. The proposed algorithms were based on the 

consensus expansion. The proposed algorithms were implemented ef-

ficiently on vector supercomputers by performing consensus expansion 

in breadth-first manner, and employing truth table representation of a 

Boolean function and map representation of a set of prune implicants. 

Table look-up technique was also employed to reduce the consensus ex-

pansion stages. The proposed algorithms were implemented on the vector 

supercomputer FACOM VP-400E at the Kyoto University Data Process-

ing Center and compared with several other algorithms. For example, by 

the consensus expansion method with table look-up, all prime implicants 

of randomly generated 18-variable Boolean functions were generated in 

about 1.4 seconds on the average. 

  As an application of the proposed algorithm, we have shown the results 

related to the number of prime implicants of Boolean functions. We have 
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shown that the Igarashi's conjecture on the  inaxinmm number of prime 

implicants of n-variable Boolean functions is true for n = 5 and 6, i. e., 

the maximum in tuber of prime implicants of 5- and 6-variable Boolean 

functions are 32 and 92, respectively. It is still open whether the Igarashi's 

conjecture is true for is = 7 and beyond.` . 

  In chapter 3 and chapter 4, algorithms for manipulating SBDDs were 

discussed in order to manipulate very large SBDDs which 4cannot be ma-
nipulated by conventional workstations, and the use of breadth-first al-

goritleln was proposed. The breadth-first algorithm consists of two parts; 
an expansion phase and a reduction phase. In the expansion phase, new 

Bodes sufficient to represent; the resultant Boolean fi.ulction are generated 
in a breadth-first manner from the root-node toward leaf-nodes. In the 
reduction phase, the nodes generated in the expansion phase are checked 
in a breadth-first manner from nodes nearby leaf-nodes toward the root-
node.' a 

  In chapter 3, a high-speed algorithm for manipulating SBDDs which 
is suitable for vector supercomputers was proposed. Breadth-first algo-
rithm was employed to vectorize manipulation, and actually almost all 
steps were vectorized, including hash table access which was efficiently 
vectorized using high-speed vector indirect store instruction of a vector 
supercomputer HITAC S-820/80. A Boolean function manipulator based 
on tie proposed algorithm was implemented on the HITAC S-820/80 at 
the University of Tokyo, and experiments of constructing the SBDDs 
representing the Boolean functions of all the primary ' outputs and Teets 
front a circuit description chosen from ISCAS'85 [BF85] were perfoirned. 
From'these`experiments, the vector acceleration ratio on the S-820/80 
was 5.3 to 27.8.  Compared with the results on the work station Sun3/6O 
by' Minato et al. [MIY90], our results were up to 130 tithes' faster in the 
best case. Ili addition, as an example of applications of SBDDs, 'a' design



 onciusions 109

verification system based on computation tree logic (CTL) model checker 
was implemented and the experimental results were shown. 

  In chapter 4, the use of secondary memory was discussed in order to 

manipulate SBDDs which were too large to be stored within main mem-

ory. In order to avoid random accesses to the secondary memory, level-

by-level manipulation of Shared Quasi-reduced BDDs (SQBDDs) upon 
a breadth-first algorithm was employed. The use of garbage collection 

with sliding type compaction was also introduced to reduce page faults 

in succeeding manipulation. A Boolean function manipulator based on 

the proposed algorithm was implemented and evaluated on the worksta-

tion Sun SPARC Station 10 with 64 megabyte main memory and a one 

gigabyte hard disk drive connected via SCSI-2 standard interface. As a 
result an SQBDD with more than 12 million nodes representing all the 

primary outputs of a 15-bit multiplier was constructed froirl a circuit de-
scription in about 5.6 hours. If the conventional SBDD manipulator is 

used instead, it is estimated that it would take about 1,900 hours, so we 

can say that our manipulator achieved about 330 times improvement in 

elapsed time. 

  The results in chapter 2 and 3 suggests that the use of vector super-

computers is effective not only for numerical problems, but also for logical 

and combinatorial problems. There are also many non-numerical com-

putations other than CAD systems. Some of the developed algorithms, 
data structures and techniques seems useful for such applications. 

  BDDs are now widely utilized in various areas, including design veri-

fication, test generation and logic synthesis for VLSI CAD, truth main-

tenance system of artificial intelligence, and sonic other mathematical 

problems. BDD-based prime implicants generation has been also stud-
ied [C'1\I92]. The developed Boolean function manipulators are expected 
to be used for various BDD applications. Discovering new application
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areas of BDDs and improving the performance of Boolean function  ma-

nipulators will provide a fruitful area of research for many years to come. 

Especially, studies on computer architecture for Boolean function manip-

ulation seem challenging; memory architecture and/or connnunication of 

processors are and will he the central problems. The proposed breadth-

first algorithm for manipulating SBDDs seems useful for large and corn-

plex problems of Boolean functions to solve.
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Appendixes

Proof of Lemma 1 

[Lemma 1] 
Let f be a k-variable Boolean function. and  xi a Boolean variable (1 < 
i < k). A product term p is a prime implicant of f . if and only if one of 
the following statements is true. 

 1. p is a prime irnplicant of f (x; = *). 

 2. 1) is a prime implicant of i;f (xi = 0). and does not imply f (xi = *). 

 3. p is a. prime implicant of xi f (.r; = 1). and does not imply f (.r; = *) 

(proof)It is clear that a prime implicant off is an implicant of ?if (x; = 0) 
(xi f (xi = 1)) if 2i (.r;) appears in its representation. A prime implicant of 
f which is independent of x; is an implicant of f (.r; = *). Hence a prime 
implicant of f is an implicant of at least_ one of .r; f (.r; = 0)..r; f (xi = 1) 
and f (.r; _ *). 

  Suppose that there is an implicant of either ; f (.r; = 0), .X; f (.r; = 1) 
or f (xi = *) that is implied by a prime implicant of f . From the equation 

f = .i; f (x; = 0) + xi f (x; = 1) + f (xi = *), it follows that an implicant of 
either %f (.r; = 0), x; f (.r; = 1) or f (xi = *) is an implicant of f . Hence 
there is an implicant of f that is implied by another implicant of f 
which contradicts the definition of prime implicant; accordingly, a prune 
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implicant of f is a prime implicant of either zi f (xi = 0), xi f (xi = 1) or 

f (xi = *). 
  A prime implicant of f (xi = *) is independent of xi, thus it does not 

imply both Tf (xi = 0) and xi f (xi = 1). A prime implicant of either 
.z i f (xi = 0) or xi f (.ri = 1) which is not a prime implicant of f is a non-

prime implicant of f. and the prince implicant of f which is implied by it 
is obviously a prime implicant of f (xi = *).^ 

Proof of Lemma 3 

[Lemma 3] 
Let f he an k-variable Boolean function and g1, ... and g; (j > 0) be k-
variable Boolean functions which implies f, and .ri be a Boolean variable 

(1 < i < k). p is a prime implicant of f which implies neither ~1, ...nor 
rJ; , if and only if 

 1. 1) is a prune implicant of f (xi = *) which implies neither g1(xi = *), 
,nor g;(xi=*),or 

 2. p is a prime implicant of .cif (xi = 0) which implies neither gi (xi = 
    0), ... , .Y'ig;(xi = 0) nor f (xi = *), or 

 3. p is a prime implicant of xi f (xi = 1) which implies neither xig1(xi = 
1). , = 1) nor f (xi = *). 

(proof)By mathematical induction on j. 
  Case 1 : When .j = 0, Lemma 3 is equivalent to Lemma 1. 

  Case 2 : Assume that Lemma 3 is true for j = jo > 0. On a Boolean 
function. say gi„+1. which implies f, it is obvious that 

  • a prime implicant of category (1) of the statement of Lemma 3 that 

implies g;„+1 implies g;„+l(xi = *), and
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• a prime implicant of category (2) ((3)) 

 i9;„+1 (xi = 0) (xigi„+i(xi = 1)). 

Hence Lemma 3 is also true for j = jo + 1.

that irn plies 9i„+1 implies
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