
Algorithms and Data Structures for

Manipulating Boolean Functions

Hiroyuki OCHI

December 1993

Algorithms and Data Structures for

 Manipulating Boolean Functions

Hiroyuki OCHI

 December 1993

Abstract

Recent advances in very large scale integration (VLSI) technology have
made it possible to realize larger and more sophisticated logic circuits.

Today, it is hard to design logic circuits efficiently and correctly without

using computer-aided design (CAD) systems. However, with the growth
of the scale of VLSI, CAD systems have revealed their problem of in-

creasing time and space for computation.

 In this thesis, three topics concerning Boolean function manipulation

are discussed in order to solve very large problems in CAD of digital

systems. One is on high-speed generation of prime implicants of a given

Boolean function. It has been studied by many researchers as the first

step of two level logic minimization, which is one of the most classi-

cal and yet very important problem in CAD. The other two topics are

on Boolean function manipulation based on ordered binary-decision di-

agrams (OBDDs), or simply Binary-Decision Diagram (BDD). BDD is
a graph representation of Boolean functions proposed by Akers and de-

veloped by Bryant. BDDs have excellent properties which are useful to

solve CAD problems symbolically, including that (1)BDD is a canonical
representation of Boolean function, (2)Boolean operation is performed in
time proportional to the size of BDD, using two hash tables, (3)size of
BDDs is not large for many Boolean functions found in digital designs,

etc. Boolean function manipulators based on Shared BDDs (SBDDs), or
multirooted BDDs, implemented on workstations are appreciated their

 ii Abstract

usefulness in CAD systems.

 In chapter 2, high-speed algorithms for generating prime implicants of

a given Boolean function are discussed, and the use of a vector super-

computer is proposed. The proposed algorithms are based on the con-

sensus expansion presented by Tison. The proposed algorithms are iin-

plemented efficiently on vector supercomputers by performing consensus
expansion in breadth-first manner, and employing truth table represen-

tati_oni of Boolean functions and map representation of a set of prime im-

plicants. Table look-up technique is also employed to reduce the consen-
sus expansion stages. The proposed algorithms are implemented on the

vector supercomputer FACOM VP-400E at the Kyoto University Data

Processing Center and compared with several other algorithms. For ex-

ample, by the consensus expansion method with table look-up, all prime

implicants of randomly generated 18-variable .Boolean functions are gen-

erated in about 1.4 seconds on the average. As an application of the

proposed algorithm, we will show the results related to the number of

prime implicants of Boolean functions. We will show that Igarashi's con-

jecture on the maximum number of n-variable Boolean functions is true
for n = 5 and 6, i. e., the maximum number of prime implicants of 5- and

6-variable Boolean functions are 32 and 92, respectively.

 In chapter 3 and chapter 4, algorithms for manipulating SBDDs are

discussed in order to manipulate very large SBDDs which cannot be ma-

nipulated on conventional workstations, and the use of breadth-first al-

gorithm is proposed. The breadth-first algorithm consists of two parts;
an expansion phase and a reduction phase. In the expansion phase, new

nodes sufficient to represent the resultant Boolean function are generated

in a breadth-first manner from the root-node toward leaf-nodes. In the

reduction phase, the nodes generated in the expansion phase are checked

in a breadth-first manner from nodes nearby leaf-nodes toward the root-

Abstract ui

node.

 In chapter 3, a high-speed algorithm for manipulating SBDDs which is

suitable for vector supercomputers is proposed. Breadth-first algorithm is

employed to vectorize manipulation, and actually almost all steps are vec-

torized, including hash table access which is efficiently vectorizecl using

high-speed vector indirect store instruction of a vector supercomputer

HITAC S-820/80. A Boolean function manipulator based on the pro-

posed algorithm is implemented on the HITAC S-820/80 at the University
of Tokyo, and experiments of constructing the SBDDs representing the

Boolean functions of all the primary outputs and nets from a circuit de-

scription chosen from ISCAS'85 are performed. From these experiments,

the vector acceleration ratio on the S-820/80 is 5.3 to 27.8. Compared
with the results on the workstation Sun3/60 by Minato et al., our results
are up to 130 times faster in the best case. In addition, as an example of

applications of developed SBDD manipulator, a design verification sys-

tem based on computation tree logic (CTL) model checker is implemented
and the experimental results are shown.

 In chapter 4, the use of secondary memory is discussed in order to

manipulate SBDDs which are too large to be stored within main memory.

In order to avoid random accesses to the secondary memory, level-by-level

manipulation of Shared Quasi-reduced BDDs (SQBDDs) upon a breadth-
first algorithm is employed. The use of garbage collection with sliding

type compaction is also introduced to reduce page faults in succeeding

manipulation. A Boolean function manipulator based on the proposed

algorithm is implemented and evaluated on the workstation Sun SPARC

Station 10 with 64 megabyte main memory and a one gigabyte hard disk

drive connected via SCSI-2 standard interface. More than 50 million

nodes can be allocated within one gigabyte virtual memory space, and

as a result, an SQBDD with more than 12 million nodes representing all

 iv Abstract

the primary outputs of a 15-bit multiplier is constructed from a circuit

description in about 5.6 hours. If the conventional SBDD manipulator is

used instead, it is estimated that it would take about 1,900 hours. So we

can say that our manipulator achieved about 330 times improvement in

elapsed time. Furthermore, we made experiments using semiconductor

extended storage instead of hard disk, and showed that the required time

for the 15-bit multiplier is reduced to about 2.2 hours.

Contents

Abstract i

 I Introduction

1.1

1.2

Background

Outline of the Thesis

1

1

5

2 Vector Algorithms for Generating Prime Implicants

2.1

2.2

2.3

2.4

2.5

2.6

Introduction

Preliminaries

2.2.1

2.2.2

2.2.3

Boolean Function and Prime Iniplicant

Conventional A1gorithins for GenefatinPrime Tm-

plicants

Vector Supercomputer

Consensus Expansion Method with Table Look-Up

2.3.1

2.3.2

Algorithm

Data Structure

Morreale Method with Table Look-Up.

2.4.1

2.4.2

Algorithm

Data Structure

Extended,C.onsensus Expansion Method with!TableLook-Up

Implementation and Evaluation

2.6.1 Irnplementatioxi

9

9

11

11

12

13

16

16

18

21

21

23

24

26

26

V

 vi Contents

2.7

2.8

2.6.2

2.6.3

Evaluation

Discussions

Application for the Study on the Number of Prime Implicants

2.7.1

2.7.2

2.7.3

Maximum Number of the Prime Irnplicants of 5-

Variable Boolean Functions

Maximum Number of the Prime Irnplicants of 6-

Variable Logic Functions

The Number of Prime Implicants of Boolean Func-

tions of 7 or More Variables

Conclusion

27

34

35

36

37

40

43

Vector Algorithms for Manipulating Binary-Decision Di-

agrams

3.1

3.2

3.3

3.4

3.5

Introduction

Preliminaries

3.2.1

3.2.2

3.2.3

Shared Binary-Decision Diagram (SBDD)
Conventional Algorithm for Manipulating SBDDs

High-Speed Vector Indirect Store

Breadth-First Vector Algorithm for Manipulating SBDDs

3.3.1

3.3.2

3.3.3

3.3.4

3.3.5

3.3.6

Basic Idea

Algorithm

Vectorization of Hash Table Access

Management of Free Nodes

Management of SBDDs with Output Inverters

Parallelization Multiple Operations

Implementation and Evaluation

3.4.1

3A.2

Irripleinentation

Evaluation

Application for CTL Model Checker

45

45

48

48

51

56

57

57

59

70

73

74

76

77

77

78

79

Contents VII

3.6

3.5.1

3.5.2

3.5.3

3.5.4

3.5.5

3.5.6

Outline

Computational Tree Logic

Sequential Machines

Basic Algorithm

Implicit Manipulation of I .ripke Structure

Implementation and Evaluation

Conclusion

80

81

83

84

85

86

88

4 Algorithms for Manipulating Binary-Decision Diagrams

in Secondary Memory

4.1

4.2

4.3

4.4

4.5

Introduction

Preliminaries

4.2.1

4.2.2

Secondary Memory

Problems in the Use of Secondary Memory with

Depth-First Algorithm

Breadth-First Algorithm for Manipulating SBDDs in Sec-

ondary Memory

4.3.1

4.3.2

4.3.3

4.3.4

Outline of the Proposed Method

Algorithm

Data Structure

Garbage Collection

Implementation and Evaluation

4.4.1

4.4.2

4.4.3

Implementation

Experimental Results

Discussion

Conclusion

89

89

91

91

92

93

93

95

98

99

101

101

102

104

106

5 Conclusions 107

References 111

VIII Contents

Acknowledgment 117

Appendixes 119

List of Publications by the Author 123

Chapter 1

Introduct ion

1.1 Background

Recent advances in very large scale integration (VLSI) technology have
made it possible to realize larger and more sophisticated logic circuits.

Today, it is hard to design logic circuits efficiently and correctly without

using computer-aided design (CAD) systems. However, with the growth
of the scale of VLSI, CAD systems have revealed their problem of in-

creasing time and space for computation.

 Among many steps of designing hardware, logic minimization is one

of the most classical and yet very important problem. Two level logic

minimization is the rrrost basic problem in logic minimization. It is useful

to optimize combinational circuit, and today it is very important to realize

programmable logic array (PLA). Quine showed that the minimum two
level formula can he derived from a set of prime irnplieants of a given

Boolean function[Qui55]. McCluskey proposed a method that consists of
two steps; (1)Generate all prime irnplieants of a given Boolean function,
and (2)derive a minimum cover of the given Boolean function by the

prime implicants[McC56]. Since the so-called Quine-McCluskey method
was presented, various algorithms for generating all prime implicants of

2 1. Introduction

a given Boolean function which are suited to computer processing have

been proposed.

 Nelson showed that when a product-of-sums representation of a Boolean

function is expanded to a sure-of-products representation by means of the

distributive law (A(B + C) = AB + AC) and some other primitive laws,
all prime implicants of a given Boolean function are generated with, pos-

sibly, some non-prime iniplicants[Ne154]. Slagle et al. proposed a method
for generating prime implicants from a product-of-sums representation by

means of tree search[SCL70]. Kambayashi et al. proposed the clause selec-
tion method by combining Nelson's theory and Slagle's method, in which

the searched tree is smaller than that of the Slagle's method[KOY79].
 Tison showed that all prime irnplicants of a given Boolean function can

be generated by consensus expansion[Tis67]. The consensus expansion is
based on the following equation

(which holds for any Boolean function f : f =xif(.i = 0)+xif(xi = 1) + f(xi = 0)f (xi = 1)

where xi is a Boolean variable in f. Using the equation repeatedly for ev-
ery variable, f is expanded in a ternary tree fashion, and consequently, its
all implicants are generated. In order to use the consensus expansion for

generating all prime implicants, the removal of the generated non-prime
implicants or the prevention of the generation of non-prime implicants
is necessary. Morreale proposed an algorithm in which the generation of
non-prime implicants is prevented by means of tagging functions[Mor70].
 Thus, various methods for generating all prime implicants have been

proposed. However, generating all prime implicants is intrinsically very
time and space consuming, and it was difficult to generate all prime im-

plicants of a Boolean function with more than a dozen or so variables.
The computation time and the required memory space increase exponen-
tially to the number of variables. There are rt-variable Boolean functions
which have 0(3"/n) prime irnplicants[DF59].

1.1 Background 3

 R.ecentry, Kagatani et al. proposed the use of vector supercomputers

for generating prime implicants, and presented two high-speed vector al-

gorithms, called the variable-oriented expansion method which is based

on the clause selection method and the ternary tree expansion method

which is based on the consensus expansion rnethod[Kag87]. A vector su-

percomputer is a highly pipelined supercomputer which is primarily used

for large scale scientific and engineering computation. It yields more than

a giga floating operations per second (GFLOPS) of computation power by
executing uniform operations on array structured data. In order to sup-

port large-scale computation, it has a large main memory unit (usually
a hundred mega bytes or more) and powerful load/store pipelines. The
use of vector supercomputers for non-numerical applications had been

proposed, including logic simulation by Ishiura et al. [IYY87]

 Another important step of designing hardware is design verification.

There are two methods for design verification; logic simulation and formal

verification. Logic simulation is a method to detect design errors by

simulating the behavior of a designed circuit for an input sequence. Logic

simulation is now widely used for design verification, however, it has a

problem that there may still be undetected errors even if simulation has

finished successfully, because it is difficult to simulate a logic circuit for

its all possible input sequences. To overcome this problem, formal design

verification have been studied in recent years.

 Formal design verification is to show the correctness of a designed

logic circuit with respect to its specification of the circuit based on a

formal system. Among several approaches for formal design verification,

symbolic simulation and symbolic iriodel checking has been proved their

usefulness by many researchers in recent years. The performance of both

symbolic simulation and symbolic model checking owes to Boolean func-

tion manipulator based on ordered binary-decision diagrams (OBDD), or

4 1. Introduction

simply Binary-Decision Diagram (BDD), that is one of representations of
Boolean functions.

 Various representations of Boolean functions have been proposed, in-

cluding truth table, Boolean formula, cube representation, etc. For exam-

ple, truth table is the most simple representation and suitable for vector

processing, but it takes 0(272) space and time to construct the represen-
tation for an n-variable Boolean function. On the other hand, Boolean

formula has advantages such as easy operation and relatively small space

to store, but tautology check or equivalence check is very difficult.

 BDD is a graph representation of Boolean functions proposed by Akers

[Ake78] and developed by Bryant[Bry86]. A BDD is a directed acyclic
graph with two leaf (terminal) nodes labeled by 0 and 1. Every non-
terminal node is labeled by a Boolean variable and has two outgoing edges

labeled by 0 and 1. No Boolean variable appears more than once in every

path of a BDD, and the variables appear in a fixed order in all the paths

of a BDD. A BDD is defined as the graph obtained from binary decision

tree by removing all redundant nodes and non-unique nodes (hut one).
BDDs have excellent properties which are useful to solve CAD problems

symbolically, including (1)BDD is a canonical representation of Boolean
function, (2)Boolean operation is performed in time proportional to the
size of BDD, using two hash tables, (3)size of BDDs is not large for many
Boolean functions found in digital designs, etc.

 At present, subroutine packages, called Boolean function manipulators,
based on Shared BDD (SBDD), or i ultirooted BDD, are implemented
on workstations which support primary operations of Boolean function

manipulation. Several techniques for implementation of Boolean function

manipulators are proposed in order to reduce the time and the storage

for manipulation, such as various attributed edges, automatic garbage

collection, and so on. Variable ordering of BDD has also been studied

1.2 Outline of the Thesis 5

by many researchers to reduce the size of BDD. SBDD based Boolean

function manipulators are now widely utilized in various applications of

CAD systems, not only formal design verification, but also test genera-

tion, logic synthesis and so on, and even the use for other combinatorial

problems has been studied.

 Thus, Boolean function manipulators based on SBDDs implemented

on workstations are appreciated their usefulness in CAD systems. How-

ever, according to the recent progress of the VLSI technology, it is re-

quired to manipulate larger and larger scale Boolean functions, which

will exceed the computational power of workstations. In order to fulfill

this requirement, the use of parallel machines or connection machines is

studied.

1.2 Outline of the Thesis

In this thesis, three topics concerning Boolean function manipulation are

discussed in order to solve very large problems in CAD of digital systems.

 In chapter 2, high-speed algorithms for generating prime implicants of

a given Boolean function are discussed, and the use of vector supercom-

puter is proposed. The proposed algorithms are based on the consensus
expansion. The proposed algorithms are implemented efficiently on vector

supercomputers by performing consensus expansion in breadth-first man-

ner, and employing truth table representation of Boolean functions and

map representation of a set of prime implicants. Table look-up technique

is also employed to reduce the consensus expansion stages. The pro-

posed algorithms are implemented on the vector supercomputer FACOM
VP-400E at the Kyoto University Data Processing Center and compared

with several other algorithms. For example, by the consensus expansion

method with table look-up, all prime implicants of randomly generated

6 1. Introduction

18-variable Boolean functions are generated in about 1.4 seconds on the

average. As an application of the proposed algorithm, we will show the

results related to the number of prime irnplicants of Boolean functions.

We will show that the Igarashi's conjecture on the maximum number of

n-variable Boolean functions is true for n = 5 and 6.

 In chapter 3 and chapter 4, algorithms for manipulating SBDDs are

discussed in order to manipulate very large SBDDs which cannot be ma-

nipulated by conventional workstations, and the use of breadth-first al-

gorithm is proposed. The breadth-first algorithm consists of two parts;
an expansion phase and a reduction phase. In the expansion phase, new

nodes sufficient to represent the resultant Boolean function are generated

in a breadth-first manner from the root-node toward leaf-nodes. In the

reduction phase, the nodes generated in the expansion phase are checked

in a breadth-first manner from nodes nearby leaf-nodes toward the root-

node.

 In chapter 3, a high-speed algorithm for manipulating SBDDs which is

suitable for vector supercomputers is proposed. Breadth-first algorithm is

employed to vectorize manipulation, and actually almost all steps are vec-

torized, including hash table access which is efficiently vectorized using

high-speed vector indirect store instruction of a vector supercomputer

HITAC S-820/80. A Boolean function manipulator based on the pro-

posed algorithm is implemented on the HITAC S-820/80 at the Univer-
sity of Tokyo, and experiments of constructing the SBDDs representing
the Boolean functions of all the primary outputs and nets from a circuit
description chosen from ISCAS'85 [BF85] are performed. From these ex-

periments, the vector acceleration ratio on the S-820/80 is 5.3 to 27.8.
Compared with the results on the workstation Sun3/60 by Minato et
al.[MIY90], our results are up to 130 times faster in the best case. In ad-
dition, as an example of applications of developed SBDD manipulator, a

1.2 Outline of the Thesis 7

design verification system based on computation tree logic (CTL) model
checker is implemented and the experimental results are shown.

 In chapter 4, the use of secondary memory is discussed in order to

manipulate SBDDs which are too large to be stored within main memory.

In order to avoid random accesses to the secondary memory, level-by-level

manipulation of Shared Quasi-reduced BDDs (SQBDDs) upon a breadth-
first algorithm is employed. The use of garbage collection with sliding

type compaction is also introduced to reduce page faults in succeeding

manipulation. A Boolean function manipulator based on the proposed

algorithm is implemented and evaluated on the workstation Sun SPARC

Station 10 with 64 megabyte main memory and a one gigabyte hard disk

drive connected via SCSI-2 standard interface. More than 50 million

nodes can be allocated within one gigabyte virtual memory space, and

as a result, an SQBDD with more than 12 million nodes representing all

the primary outputs of a 15-bit multiplier is constructed from a circuit

description in about 5.6 hours. If the conventional SBDD manipulator is

used instead, it is estimated that it would take about 1,900 hours. So we

can say that our manipulator achieved about 330 times improvement in

elapsed time. Furthermore, we made experiments using semiconductor

extended storage instead of hard disk, and showed that the required time

for the 15-bit multiplier is reduced to about 2.2 hours.

 In chapter 5, the conclusion of this thesis and future problems are

stated.

8 1. Introduction

Chapter 2

Vector

Prime

Algorithms

 Implicants

for Generating

2.1 Introduction

Generation of all prime implicants of a given Boolean function is a funda-

mental task in two-level logic minimization[Qui55, McC56, PetGO] which
is an important process in logic design and logic synthesis. Various stud-
ies have been made on this subject, and many algorithms suitable for
computer processing have been proposed[Ne154, SCL70, Mor70, Tis67,
KOY79]. However, since the subject is intrinsically very time and space
consuming, it is difficult to generate all prime implicants of a Boolean

function with more than a dozen or so variables by means of these meth-

ods on conventional scalar processors. The computation time and the

required memory space increase exponentially to the number of vari-

ables. There are n-variable Boolean functions which have O(3' /n) prime
implicants[DF59]. For example, there are 16-variable Boolean functions
which have more than two million prime irnplicants[Iga79].

 In this chapter, the use of vector supercomputers for generating all

prime implicants of a given Boolean function is considered. Several vector

supercomputers have been developed for large-scale computation. They

 9

 I() 2. Vector Algorithms for Generating Prime Implicants

are used mainly for numerical computations, but can be also used effi-

ciently for non-numerical computations such as logic simulation[IYY87].
The function pipelines which support bit-wise logical operations on a

word and the load/store pipelines which support various access modes
are useful for non-numerical computations.

 In this chapter, two high-speed vector algorithms, called the consen-

sus expansion method with table look-up and the Morreale method with

table look-up, are proposed. These algorithms are based on the consen-

sus expansion[Tis67], and effective data structure and a table look-up
technique are introduced in the implementation. In addition to these

high-speed algorithms, another algorithm, called the extended consensus

expansion method with table look-up, is also proposed in order to gen-

erate all prime implicants of a Boolean function of more variables within

the limited main memory space. They are implemented on the vector su-

percomputer FACOM VP-400E at the Kyoto University Data Processing

Center and compared with several other algorithms including two for-

merly proposed vector algorithrns[Kag87]. We show that by means of the
new algorithms, the generation of all prime implicants of a given Boolean

function can be performed in much higher speed with a high accelera-

tion ratio. For example, by the consensus expansion method with table

look-up, all prime implicants of randomly generated 18-variable Boolean

functions are generated in about 1.4 seconds on the average.

 In the next section, several terms relating to Boolean functions will

be defined and an overview of algorithms for generating prince implicants

will he made. The new vector algorithms will be proposed in section 3 , 4
and 5. In section 6, evaluation and discussions will be made. In section 7,

it will be shown that the maximum number of prime implicants of 5- and

6-variable Boolean functions are 32 and 92, respectively. These results are

obtained by the experiments using the developed program based on the

2.2 Preliminaries 11

consensus expansion method with table look-up. Section 8 will appear as

a conclusion.

2.2 Preliminaries

2.2.1 Boolean Function and Prime Implicant

A Boolean variable, denoted by xi, is a variable which assumes a binary
value 0 or 1. A literal l; for a variable xi is either xi or .e; (the complement
of xi). An n-variable Boolean function, denoted by f ,...,x)xn) or simply

f , is a mapping from {0, 1 }'t to {0, 1 }. In the following, a Boolean variable
and a Boolean function are sometimes simply referred to as a variable and

a function, respectively.

 A logical product of literals where literals appear at most once for

each variable is called a product term. Similarly, a sum term is defined.

A product term p is independent of a variable .xi, if p contains no literal

of a variable xi. A minterm is a product term which consists of literals

of all Boolean variables.

When a sum of product terms represents a Boolean function, it is called

a sum-of-products representation of the function. Similarly, a product-of-

sums representation of a function is defined.

 We say that a Boolean function f implies another Boolean function g,

when every combination of values of the variables which satisfies f = 1

also satisfies g = 1. The implication relation is similarly defined for

product terms.
 An implicant of a Boolean function f is a product term which implies

f. A minterm, which is an implicant of a Boolean function f , is simply
called a minterm of f . A prime implicant of a Boolean function f is

defined as an implicant of f that implies no other implicant of f . An

implicant of a function f is called a non-prime implicant of f , when it is

12 2. Vector Algorithms for Generating Prime Implicants

not a prime implicant.

 f (xi = 0) is an (ri — 1)-variable function f (x , x.t_i, 0, xi+i, • • • , xn)
obtained from an 'n-variable function .f by fixing xi to 0, where xi is a
variable in f. Similarly, f (xi = 1) is defined. A Boolean function f is
independent of a variable xi, if f (.tj = 0) = f (xi = 1) for all combinations
of values of all variables except xi.

 We denote the logical product of f (xi = 0) and f (xi = 1) by f (xi = *).

2.2.2 Conventional Algorithms for Generating Prime Impli-

 cants

Various algorithms for generating all prime implicants of a Boolean func-

tion which are suited to computer processing have been proposed. They

can be classified in three types: the Quine-McCluskey method, algorithms

based on the expansion of a product-of-sums representation and ones

based on the consensus expansion.

 In the Quine-McClusk;ey method[Qui55, McC56], adjacent implicants
are combined exhaustively in a systematic manner using tables of impli-

cants.

 Nelson showed that when a product-of-sums representation of a Boolean

function is expanded to a sum-of-products representation by means of

the distributive law (A(B + C) = AB + AC) and some other primi-
tive laws, all prime implicants of a given Boolean function are generated

with, possibly, some non-prime implicants[Ne154]. Slagle et al. proposed
a method for generating prime implicants from a product-of-sums repre-

sentation by means of tree search[SCL70]. Kambayashi et al. proposed
the clause selection method by combining Nelson's theory and Slagle's

method. in which the searched tree is smaller than that of the Slagle's

Inethod[KOY79]. Recently, the author's colleague developed a vector al-

gorithm called the variable-oriented expansion method based on the same

2.2 Preliminaries 13

idea, and showed that the computation time on the vector supercomputer

is improved[Kag87].
 Tison showed that all prime implicants of a given Boolean function can

be generated by consensus expansion[Tis67]. The consensus expansion is
based on the following equation which holds for any Boolean function f :

f = xif (xi = 0) + xif (xi = 1) + f (xi = *)

where xi is a Boolean variable in f . Using the equation repeatedly for ev-
ery variable, f is expanded in a ternary tree fashion, and consequently, its
all implicants are generated. In order to use the consensus expansion for

generating all prime implicants, the removal of the generated non-prime
implicants Or the prevention of the generation of non-prime -implicants
is necessary. Morreale proposed an algorithm (we call it the Morreale
method) in which the generation of non-prime implicants is prevented
by means of tagging functions[Mor70]. Recently, the author's colleague
developed the ternary tree expansion method (we call it the consensus
expansion method with pointers in this thesis), in which pointers are in-
troduced for the removal of non-prime implicants[Kag87].

 The three new vector algorithms proposed in this chapter are based

on the consensus expansion.

2.2.3 Vector Supercomputer

A vector supercomputer is a highly pipelined supercomputer which is

primarily used for large scale scientific and engineering computation. It
has, in addition to a conventional processing unit (a scalar unit), several
function pipelines and vector registers (a vector unit). It yields more than
GFLOPS (Giga FLoating Operations Per Second) of computation power
by executing uniform operations on array structured data. In order to

 14 2. Vector Algorithms for Generating Prime Implicants

support large-scale computation, it has a large main memory unit (usually
a hundred mega bytes or more) and powerful load/store pipelines.

 In addition, vector supercomputers have many advanced features in

order to make it versatile enough to be used in a wide range of applica-

tions. For example, vector supercomputers such as the FACOM VP-400E

at the Kyoto University and HITAC S-820/80 at the University of Tokyo

provides the following vector operations.

(1) Element-wise Vector Operations
 Vector supercomputers can handle integer and logical data as well

 as floating-point data by function pipelines. For example, integer

 arithmetic operations, bit-wise (32 bits per word) logical operations
 and logical shift operations can be vectorized.

(2) Conditional Vector Operations
 The above operations can be masked by conditions, i. e., operations

 work only on elements which satisfy a specified condition. For ex-

 ample, the following program is vectorized by this function.

 DO 10 I=1,N

 IF (IM(I).EQ.0) IA(I)=IB(I)+IC(I)

10 CONTINUE

(3) Constant Stridden Vector Access and List Vector Access
 Vector supercomputers provide constant stridden vector access and

 indirect memory access (referred to as list vector access) as well as
 contiguous vector access. For example, the following program is

 vectorized by constant stridden vector access;

 DO 20 I=1,N,K

 IA(I)=IB(I)+IC(I)

20 CONTINUE

2.2 Preliminaries 15

and the following program is vectorized by list vector access;

 DO 30 I=1,N

 IA(I)=IB(IL(I))

30 CONTINUE

(4) Compress operations
 Compress operation, which constructs new vector IA from vector

IB by collecting elements which satisfy a specified condition, can be

vectorized. An example program for compress operation is as follows.

 K=0

 DO 40 I=1,N

 IF (IM(I).EQ.0) THEN

 K=K+1

 IA(K)=IB(I)

 ENDIF

40 CONTINUE

Discussions in the following sections are common to all vector supercom-

puters which have above four features.

hi order to utilize vector supercomputers efficiently, we must tune up

the coding schemes and/or modify the basic algorithms so that our pro-

grams are suitable for vector processing. The features of the programs
required for efficient vector processing are

(1) high vectorization ratio, i. e., almost all operations in the program
 should be processed by a vector unit.

(2) long vector length, i. e., sufficiently many elements should be pro-
 cessed simultaneously.

16 2. Vector Algorithms for Generating Prime Implicants

2.3 Consensus Expansion Method with Table Look-

 Up

2.3.1 Algorithm

In the consensus expansion method with table look-up, a systematic pro-

cedure to remove non-prime implicants is introduced. Assuming that all

prime implicants of every in-variable Boolean function are known for a
certain in (> 0), following algorithm generates all prime implicants of a

given n-variable Boolean function fgiven (n > in). Fi and Pi (rn < i < n)
are a set of Boolean functions and a set of product terms, respectively.

[Algorithm 1]
Input: fgiven(xl, ... , xn) : an n-variable Boolean function
Output: P„ : the set of all prime implicants of fgiven

1. Fn = { fgiven}

 (a set with only one element function)

 2. for k = n downto m + 1 do

F~-1 = { kf(xk = 0),xkf(xk = 1), f(xk _ *)If E Fk}

 3. PTZ={all prime implicants of f I f E Fnt }

 (Note that f E F, is the logical product of a product term, say p,
 with at most (n—in) literals and an rn-variable function , say f. A set

 of all prime implicants of f is easily obtained as the logical product
 of p and every prime implicants of f .)

 4. for k.=rn+1tondo

 Let Pk he the set of all product terms of Pk_1 each of which either

 (a) independent of xk, or

2.3 Consensus Expansion Method with Table Look-Up 17

 (b) dependent on xk and there is not such product term in Pk_1 that
 is obtained by removing the literal of xk from the representation

 of it.

 In step 2, the consensus expansion on fgiven is performed for the (n—m)
variables. In every consensus expansion, the number of elements of the

set is increased by at most three times, and the maximum number of

elements of I'm is 3"-"'. In step 3, the set, Pm, whose each element

is a prime irnplicant of a function in F.,-, is obtained. P„, includes all

prime implicants of fyi,;en as well as, possibly, the greater part of the non-

prime implicants. In step 4, all non-prime implicants in Pm are removed
systematically, and the set Pn, which includes only all prime implicants

of f given, is obtained.

 We will show the correctness of Algorithm 1.

[Lemma 1]
Let f be a k-variable Boolean function, and xi a Boolean variable (1 <
i < k). A product term p is a prime irnplicant of f , if and only if one of
the following statements is true.

 1. p is a prime irnplicant of f (xi = *).

 2. p is a prune irnplicant of Tf (xi = 0), and does not imply f (xi = *).

 3. p is a prime irnplicant of xi f (xi = 1), and does not imply f (xi = *)

 A proof of Lemma 1 will appear in appendix.

[Lemma 2]
Let f be a Boolean function, p a prime irnplicant of f , and g a Boolean
function which implies f . p implies g if and only if p is an implicant of

g. If p is an implicant of g, p is a prune irnplicant of g.

18 2. Vector Algorithms for Generating Prime Implicants

Lemma 2 is obvious.

 [Theorem 1]
P,, obtained by Algorithm 1 is a set of all prime implicants of fgiveiz•

(proof)Assuming that Pk_l={all prime irnplicants of f f E Fk-1 } (^n <
k < n), it follows from Lemma 1 and Lemma 2 that Pk={all prime
irnplicants of f f E Fk }.

2.3.2 Data Structure

In step 2, each function f in Fk is represented as

f =pf(xk,...,x1)

where p is a product term Ln • • • Lk+1 and Li E {xi, xi, 1} (k+ 1 < i < n).
In order to implement efficiently on vector supercomputers, we represent

every f by a truth table, i. e., a 2k-hit sequence. (We assume that fo,„
is also represented by a truth table.) The truth table for f can be repre-
sented using 2k-5 words, because a word consists of 32 (= 25) bits. Each
word stores a truth table for the 5 variables, x5, ... , x1, which is a part

of the truth table for f corresponding to a certain combination of values

of the k — 5 variables, ,...,x x6• The adopted data structure for f's of

Fk is shown in Figure 2.1. The product term p = Ln • • • Lk+1 for every

f E Fk is represented by an integer according to the following formula
and stored in a word

E ri3z-1
 i=k+1

where ri takes 0 or 1 or 2 accordingly as Li is Ti or xi or 1. Since there

are at most 3"-k functions in Fk, (2' + 1)3"-k words are sufficient to
represent Fk. In addition, it is possible to implement step 2 so as to reuse

the space for Fk to the space for Fk_1. Hence (21"-5 + 1)3"-'" words are
sufficient to implement step 2.

2.3 Consensus Expansion Method with Table Look-Up 19

 2k-63,t-k words for 3"-k l's

 2k_5words

for an f

Figure 2.1: Data Structure of Fk

 In step 3, a read-only table is introduced to give all prune implicants

of arbitrary rn-variable Boolean function. Table look-up is efficiently

implemented on vector supercomputers using list vector access. Because

the number of all m-variable Boolean function is 2', we let ^n be 4

considering the size of the table which have to be stored within main

memory. It is true that a large space is required for this table, but the

required space for step 2 is considerably saved choosing large m.

 In step 3 and step 4, we use a 3"-hit sequence to represent (candidates

of) the prime implicants of an n-variable Boolean function. We call it a

map representation of prime implicants. Every bit in the sequence corre-

sponds to a product term of n variables, and is 1 when the corresponding

product term is (a candidate of) a prime implicant of the function. To
simplify the processing, we use 3"-3 words to represent each Pk where
only 3'3 = 27 hits are used in each word. The 27 product terms corre-
sponding to a word are the same except the literals for x3, x2 and x1.
We arrange the words in the sequence so that each path in step 4 can he

performed by a linear scan on Pk;. The word corresponding to a product
term L" • • • L4 is in the (EZ` 4 i 3i-4 + 1)st location, where r1 takes 0 or 1
or 2 accordingly as Li is % or x3 or 1. The data structure for Pk is shown
in Figure 2.2. It is also possible to implement step 4 so as to reuse the
space for Pk_1 to the space for P, hence the required space for step 4 is

20 2. Vector Algorithms for Generating Prime Implicants

 372-3 words

1 word

 5 bits

(unused)

27 bits

 Figure 2.2: Data Structure of Pk

3"-3 words.

 The constant stridden vector access is useful in step 2 and step 4, and

the indirectly addressed access is useful in step 3. The function pipelines

which support bit-wise logical operations on a word are useful through

the whole processing. Therefore, Algorithm 1 is expected to be highly

vectorized.

 The required memory space is proportional to 3". It is reasonable

because there are n-variable Boolean functions which have O(3"/n) prime
irnplicants[DF59]. For example. generation of all prime implicants of 18-
variable Boolean function is performed within 100 megabytes.

 In order to estimate the computation time, let us consider the ref-

erences of memory. In step 2, the number of references of memory is

proportional to the size of F,". In step 3, table references are at most

3n — rn times. In step 4, 3"-bit space is scanned (n — ̂ n) times. There-
fore, step 4 is the most time consuming, and the computation time of
Algorithm 1 is O((n — rn)3"). Compared to the case that the table is not
used (i. e., choosing m=0), the table which gives all prime implicants of

2.4 Morreale Method with Table Look-Up 21

all in-variable Boolean function enables us n/(n — in) times speed up.

2.4 Morreale Method with Table Look-Up

2.4.1 Algorithm

In the Morreale method with table look-up, the Morreale method[Mor70]
is modified so that the table look-up technique can be introduced. Follow-

ing algorithm generates all prime implicants of a given Boolean function,

assuming that, for a certain in (> 0), all prime implicants of every in-
variable Boolean function are known. [f, g1i ... , g;] is a tuple of Boolean
functions f, gl, ... , g;. Tk. (in < k < n) and P are a set of tuples and a
set of product terms, respectively.

[Algorithm 2]
Input: f yi„„ (x i , ... , x1z) : an n-variable Boolean function
Output: P, : the set of all prime implicants of fgivefl

1. T,, = {[+given]}

 (a set with only one element which is a tuple of only one Boolean
 function)

 2. for k = n downto in + 1 do
Tk-1 = {[f (xk = *), g1(:ck _ *), ... , gj(Xk _ *)],

[titif (xk = 0), wg1(xk = 0), ... , wg.i (xk = 0), f (xk = *)],
[xkf (xk = 1), xk91(xk = 1), ... , xkgi(xk = 1); f (xk _ *)]

[f,91,...'9i1 ETk}

 3. P = {all prime implicants of f which are prime implicants of
 neither g1, ... , nor g.i I [f, 91, ... , gi] E TT,1]}

 (Note that f in [f, g', ... , g~] E T,n is the logical product of a product
 term, say p, with at most (n— in) literals and an in-variable function,

22 2. Vector Algorithms for Generating Prime Implicants

 say f. A set of all prime implicants of f is easily obtained as the
 logical product of p and every prime implicants of f . In the same

 way, a set of all prime implicants of gi's (1 < i < j)is easily obtained.)

 The generation of non-prime implicants is prevented by using the tag-

ging functions gi's. In step 2, fgiven is decomposed to m-variable functions
by the consensus expansion and, at the same time, the tagging functions
are generated. Consequently, the set T,,,., of tuples of functions, is ob-
tained. In step 3, the set, P, is obtained. Each element of P is a prime
implicant of the function f but is a prime implicant of neither of the
functions gi, ... , nor gi where [f, gi, ..., g~] is in Fn,. P includes all prime
implicants of fgiven but nothing else. The process for removing non-prime
implicants is not necessary.

 Algorithm 2 includes the Morreale method by choosing m = 0.
 We will show the correctness of Algorithm 2.

[Lemma 3]
Let f be a k-variable Boolean function and gi, ... and gi (j > 0) be k-
variable Boolean functions which implies f, and xi be a Boolean variable

(1 < z < k). p is a prince implicant of f which implies neither gi, ... nor
gj , if and only if

 1. p is a prime implicant of f (xi = *) which implies neither gi(xi = *),
, nor gj(xi = *), or

 2. p is a prime implicant of tic f (xi = 0) which implies neither :iigi(Xi =
 0), ... , 2'igj(xi = 0) nor f (xi = *), or

 3. p is a prime implicant of xi f (xi = 1) which implies neither xigi(xi =
1), ... , = 1) nor f (xi = *).

 A proof of Leiirrna 3 will appear in appendix. Note that Lemma 3

implies Lemma 1 by choosing j = 0.

2.4 Morreale Method with Table Look-Up 23

(n — k + 1)2k-53"-k words for 3"-k tuples

f

k)

..47z-k

,,^---

v-

(n — k -}- 1)2'x-5 words for a tuple

 Figure 2.3: Data Structure of Tk.

[Theorem 2]
P obtained by Algorithm 2 is a set of all prime implicants of fgiven•

(proof)Apply Lemma 2 and Lemma 3 to every expansion of step 2 in
Algorithm 2.^

2.4.2 Data Structure

Data structure for Algorithm 2 is basically the same as that for Algorithm

1. The data structure for Tk can be implemented as the (n — k -}- 1)-

ple of the data structure for Fk mentioned in previous section. We
regard [f(xk _ *), J1(xk = *), • . • ,gi(xk _ *)] as [f(xk _ *),91(k
*), ... , 9~ (x _ *), 0] in order to introduce uniform data structure. There-
fore, the required space for Tk is ((n — k -{- 1) 2k — 5 -I- 1)3n-k words. The
adopted data structure for Tk is shown in Figure 2.3. In addition, it is

possible to implement step 2 so as to reuse the space for Tk to the space for
Tk_1. Hence ((n — in+ 1)2in-5 1)3"-"' words are sufficient to implement
step 2.

 P is obtained by calculating the logical product of the table content

24 2. Vector Algorithms for Generating Prime Implicants

referred to by f and the logical negations of those referred to by gi's

(1 < i < n — 4) for every triple [f, gl, ... , g„_41 in Fn. The data structuire
adopted for P and the table is the same as in Algorithm 1. Therefore the
size of P is 3' words.

 Various functions of a vector supercomputer can he effectively used,
and Algorithm 2 is expected to he highly vectorized.

 The required memory space to generate all prime ilnplicants of arbi-
trary 18-variable Boolean functions is about 169 Mbytes.

 In order to estimate the computation time, let us consider the ref-
erences of memory. In step 2, the number of references of memory is

proportional to the size of T„t. In step 3, table references are at most

(n — in + 1)3n — in times. Therefore, the computation time of Algorithm
2 is O((n — in)3"). Compared to the case that the table is not used

(i. e., choosing m=0), the table which gives all prime irnplicants of all
in-variable Boolean function enables us n/(n. — in) times speed up.

2.5 Extended Consensus Expansion Method with

 Table Look-Up

Instead of using look-up table to obtain all prime inlplicants of an in-

variable Boolean function in step 3 of Algorithm 1 or 2, it is possible

to use a program which generates all prime irnplicants of an in-variable

Boolean function. Let us consider the use of Algorithm 1 for the `look-up

table' for Algorithm 2. In the following, we denote en's in Algorithm 1

and 2 by ini and in2. respectively, to distinguish them.

 The consensus expansion method with table look-up is a high-speed al-

gorithm suitable for vector supercomputer. However, its ability is limited
by required memory space. During step 4, whole set. of (candidates of)

prime irnplicants should be held on the main memory. On the other hand,

2.5 Extended Consensus Expansion Method with Table Look-Up 25

the removal of non-prime implicants is not necessary in Algorithm 2, and
every tuple in T 12 can be processed sequentially. That is , Algorithm 2

can be implemented if only there is the space for T„~2 and the space to ob-

tain (applying Algorithm 1) all prime implicants of m2-variable Boolean
functions in just one tuple in T,,,2. This approach enables us to enjoy
the high-speed of Algorithm 1 for generating all prime implicants of a
Boolean function with larger number of variables within limited memory
space.
 It is clear from Lemma 2 that the set of prime implicants of tagging

functions used in step 3 may include non-prime implicants.. In other
word, step 4 of Algorithm 1 can be omitted for generating a set of prime
implicants of tagging functions of Algorithm 2.

 The required memory space for this method, called the extended con-
sensus expansion method with table look-up, is as follows;

• For T,,,2, ((n — in2 +1)2'2-5 + 1)3"-m2 words.

• For Algorithm 1 called by Algorithm 2, O(3m2).

Therefore, when n is not much larger than m2, the required memory

space for this method is O(3m2). In other words, this method enables us
to generate all prime implicants of an n-variable Boolean function within

only the memory space required for generating all prime implicants of

an in2-variable Boolean function by Algorithm 1, where n, is just a little

larger than in2.

 In order to estimate the computation time, let us consider the ref-

erences of memory. In step 2, the number of references of memory is

proportional to the size of T,,,2. In step 3, Algorithm 1 is called to obtain

prince implicants of 3"-"~2 f's and (n — in2)3"-"2 tagging functions. The
number of memory references of Algorithm 1 for an m2-variable Boolean

function is O((rn2 — mi)3'112). For tagging functions, step 4 may he omit-

26 2. Vector Algorithms for Generating Prime Implicants

 ted, and the number of memory references of Algorithm 1 is
to O(3"t2-"tl). Therefore, the number of memory references in
Algorithm 2 is O((m2 — m i)3" + (rc —

reduced

step 3 of

2.6 Implementation and Evaluation

2.6.1 Implementation

The methods proposed in sections 2.3, 2.4 and 2.5 are coded in Fortran77

and implemented on FACOM VP-400E at the Kyoto University Data

Processing Center. We call the program CE/T, M/T and ECE/T. respec-
tively. Following techniques are adopted for implementation of CE/T.

 1. In step 2, inconsistency in Fk, i. e., the f whose corresponding f is 0
 for every combination of values of the variables, can be eliminated,

 because they have no implicants. Since it is not so efficient to check
 such f's in Ft.'s for A: > 5, we check f's in only F5. The check can be

 performed by examining whether the word expressing the f is zero.
 The vector compress function is effectively used for the elimination.

 2. The last expansion in step 2, i. e., the expansion for x5, and the
 table look-up for obtaining all prime implicants of 4-variable Boolean

 functions in step 3 are combined. The contents of the table indexed
 by the lower and the upper half-word of the corresponding f are

 referred to for f (x5 = 0) and f (x5 = 1) respectively, where f E F5.
 For f (x5 = *), the content indexed by the logical product of the two
 half-words is referred to. Each referenced content is stored at the
 correct location in P,, using the integer representation of p as an
 index.

 3. In order to reduce the bank confliction of memory references, four
 copies of the table are prepared and used one after another. About

2.6 Implementation and Evaluation 27

 800 kilowords are required for the four tables.

 4. Two adjacent iteration steps in step 4 are paired into one iteration
 step so as to accelerate the computation speed (loop unrolling).

 All of the above techniques are also adopted for ECE/T, and (1) and

(2) of the above techniques are adopted for M/T. For CE/T and M/T,
4 is chosen as in, and for ECE/T, 4 and 18 are chosen as inl and in2,
respectively.

2.6.2 Evaluation

Figure 2.4, 2.5 and 2.6 show the benchmark result of the programs CE/T,
M/T and ECE/T, respectively, on the FACOM VP-400E. Experiments
for CE/T and M/T are performed for 12- to 18-variable Boolean func-
tions, and experiments for ECE/T are performed for 19- and 20-variable
Boolean functions. Every cross designates average computation time for

10 Boolean functions of the same number of variables and truth table

density. (Truth table density is the ratio of l's in the truth table.) The

truth tables of the functions are generated randomly based on Lehiner's

linear congruence method using RANU2 in the scientific subroutine li-

brary SSL-II[Fuj80]. (The Boolean functions for the truth table density
0/16 and 16/16 are unique. which are called inconsistency and tautology,
respectively.)

 The computation time by CE/T is not much affected by the truth table
density. The average computation time is about 2.3 insec for 12-variable

functions, and about 1.4 sec for 18-variable functions. The computation

time by M/T deeply depends on the truth table density, due to the num-
ber of table references in step 3 which are affected by the elimination of

the triples with inconsistency. The average computation time is about

9.7 cosec for 12-variable functions, and about 5.3 sec for 18-variable func-

28 2. Vector Algorithms for Generating Prime Implicants

CPU Time

sec)

 ^,000

,00d

no:

1

 •

n : Number of Variables

n=1

n=1

n=1

n=1

n=1

ir n=1

X n=1

4-) X.) 3K X......X..... 3(.. X..... 3 0C....
.... 01(...3

x
x......0)[

..... 3

3

C

(-

IC.....X......X

X

3K

X

X

3'.

) (•

C•

x

X

...X......

X......

t3 C..... X- c•- •X -0 C .3 X..... 3C)

C)

(•• X

c•••••x

...-0 C.....xx......

x......
3K) C. -0 C

• 3 C
.•••

I.....3 I. 1
X.....X

)) *.....) C..... 01; -0

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
 Truth Table Density (1/16)

Figure 2.4: Average Computation T

Method with Table Look-up

ime of the Consensus Expansion

2.6 Implementation and Evaluation 29

 CPU Time
(msec)

10,000

1,000

100

10

0 1 2 3 4 5 6 7 8 9

18

17

16

15

14

10 11 12 13 14 15 16
Truth Table Density (1/16)

3

2

Figure 2.5: Average

Table Look-up
Computation Time of the Morreale Method with

30 2. Vector Algorithms for Generating Prime Implicants

CPU Time
msec)

 ^ 0,000'

1,000

100

10

1

 1 X.....3

n : Number of Variables

........ nr.2....

nr.20

<n19

3 C C..... X ; C C.....

X......X 3C.....X.....3 *3 *3

.... .

.... ;

 0 1 2 3 4 5 6 7 8

Figure 2.6: Average Computation Time

pansion Method with Table Look-up

 9 10 11 12 13 14 15 16
 Truth Table Density (1/16)

of the Extended Consensus Ex-

2.6 Implementation and Evaluation 31

tions. The average computation time by ECE/T is about 15.8 sec for
20-variable functions.

 For comparison, the Quine-McCluskey method and the Morreale method

are also implemented on the VP-400E. We call the programs QM and M,

respectively. Figure 2.7 shows the comparison of the computation time.

Each dot indicates average computation time for 150 Boolean functions

of the same number of variables (10 functions for each of 15 kinds of truth
table density). The average computation time for 12-variable functions
by a program based on the clause selection method (CS), that by one
based on the variable-oriented expansion method (VOE) and that by one
based on the consensus expansion method with pointers (CEP) are also
designated in the figure, which were evaluated on FACOM VP-200 by

Kagatarri et al.[Kag87].

 Table 2.1 shows comparison of the vector acceleration ratio, i. e., (CPU
time using scalar unit only) / (CPU time enabling vector unit). As the
table indicates, the acceleration ratio of CE/T is very high. In this ta-
ble, computation time of V-versions, i. e., programs coded to he suited
for vector execution, are compared. However, it is confirmed by other
experiments that S-versions, programs suitable for scalar execution, are
at most 20% faster than the corresponding V-versions in scalar execution
for these algorithms except the M (the Morreale method) whose S-version
is about 2.7 times faster than the V-version.

 Table 2.2 shows the required memory size for CE/T, M/T and ECE/T.
This table represents the total size of declared fortran array size, and do

not include the space for scalar variables or machine codes.

 The developed programs are portable, and easily implemented on an-

other vector supercomputer HITAC S-820/80 at the University of Tokyo
without loss of efficiency. By the similar experiments to the VP-400E,

the average computation time on S-820/80 for 18-variable functions by

32 2. Vector Algorithms for Generating Prime Implicants

 CPU Time
(msec)

10,000

1,000

 100

10

1

 •

I CS

^^

SeIf
-

''

||
^/'^^!

^

OM

CE/P
||

~

^

]

u

ill .1
^^'

^

^^

U

8 9 10

 Figure 2.7:

11 12 13 14 15 16 17 18 19 20

 Number of Variables

Comparison of Computation Time

2.6 Implementation and Evaluation 33

Table 2.1: Comparison of Vector Acceleration Ratio

Program n Processor CPU Time (msec) Vector Acceleration

Scalar (S) Vector (V) Ratio (S/V)

CE/T 12 VP-400E 1 33.3 2.31 14.42

M/T 12 VP-400E 65.9 9.69 6.81

M 12 VP-400E 571.4 47.5 12.03

QM 10 VP-400E 5,187 523 9.92

VOE 12 VP-200 10,851 1,186 9.15

CE/P 12 VP-200 10,579 1,183 8.94

CS 12 VP-200 46,750 32,009 1.46

Table 2.2: Required Memory Size (kilobytes)

 n CE/T M/T ECE/T

12 1 3,242 948

13 3,434 1,332

14 4,011 2,537

15 5,744 6,304

16 10,940 18,068

17 26,529 54,743

18 73,296 168,920

19 73,296

20 73,296

34 2. Vector Algorithms for Generating Prime Implicants

CE/T is about 0.4 sec. This program is also efficient on conventional
scalar processors; for example, the average computation time on the pro-

cessors such as FACOM NI-360R or ACOS-850/8 for 12-variable functions
by CE/T is about 0.2 sec.

2.6.3 Discussions

As Figure 2.7 indicates, programs based on the proposed methods are

faster than the programs based on the conventional methods. Especially,

CE/T is the fastest, and is about 20 times as fast as M which is the
fastest among the programs based on previous algorithms. As Table 2.1

indicates, the programs based on the proposed methods achieves high

vector acceleration ratio. As estimated in the previous sections, Figure 2.7

indicates that the computation time of CE/T, M/T and ECE/T increases
approximately 3 times per variable. As Table 2.2 shows, ECE/T realizes
the speediness of CE/T within the limited memory space.

 In QNI, each operation is simple and hence the acceleration ratio is
high. However, the computation time is large due to so many opera-
tions. CS and VOE, as well as CE/P, are not so efficient because of the
complex data structure. It is difficult to find effective data structure for

representing the logical sum of product-of-sums' or the logical product of

sum-of-products' which appears during the expansion. Thus, the algo-

rithms based on the consensus expansion are the most suited to vector

processing among the three types of algorithms. The truth table repre-

sentation of a function and the bit-sequence representation of (candidates
of) prime irnplicants are effective.

 The table look-up technique is also effective to reduce the computa-
tion time and the required memory space. The difference in performance
between the M/T and M is due to the data structure and the use of the
table look-up technique. (The table of about 800 Kilobytes saves hull-

2.7 Application for the Study on the Number of Prime Implicants 35

dreds of Megabytes of memory space required for the expansion process
for the last 4 variables.)

 M/T, as well as M, can be used for the generation of all prime irnpli-
cants of an incompletely specified Boolean function, i. e., a function with
don't cares, with a slight modification[Mor70]. We can also generate all

prime irnplicants of such a function using CET twice.

Using the developed program ECE/T with in2 = 18, prime implicants
of a Boolean function with even 22 or more variables can be generated

within the main memory of the VP-400E at the Kyoto University. For

furthermore variables, the required space for the step 2 become dominant.

In such case, we can execute sequentially not only step 3 but also step 2

to reduce the required space for step 2.

 We implemented the step 3 of Algorithm 1 by table look-up. It is pos-

sible by adding special vector instruction (e. g. a vector instruction which
computes all prime implicants of given 5-variable Boolean functions) to
make Algorithm 1 faster.

2.7 Application for the Study on the Number of

 Prime Implicants

Related to the two-level logic minimization, various studies on the num-

ber of prime implicants of Boolean functions have been made. The

best known lower bound on the maximum number of prime implicants

of n-variable Boolean functions is O(371/n) presented by Igarashi[Iga79].
Igarashi conjectured that his lower bound is optimal. The best known
upper bound on the maximum number of prime implicants of n-variable
Boolean functions is O(3"A/it) presented by Chandra et al.[CM78]. The
average number of prime implicants of n-variable Boolean functions is

studied by Cobham et al. and Mileto et al.[CFN62, MPG4].

36 2. Vector Algorithms for Generating Prime Implicants

 In this section, we will make an experimental study on the number

of prime implicants of Boolean functions by means of the developed pro-

gram. First, we will present the maximum number of prime implicants of

5-variable Boolean functions obtained by examining the number of prime

implicants of every 5-variable Boolean functions exhaustively. Next, we

will show the maximum number of prime implicants of 6-variable Boolean

functions using the result obtained by the above experiment. The ob-

tained value, 32 and 92, of the maximum number of prime implicants of

respectively 5- and 6-variable Boolean functions are equal to the Igarashi's

lower bound. We also present some other results related to the number

of prime implicants.

2.7.1 Maximum Number of the Prime Implicants of 5-Variable

 Boolean Functions

It has been not clear whether Igarashi's lower hound[Iga79] is tight or
not, even for n = 5. To solve this open problem, we first examined the

number of all 5-variable Boolean functions. Using high-speed program for

generating all prime implicants based on the consensus expansion method

with table look-up, the experiment is performed on a computer ACOS-

850/8 at the Integrated Media Environment Experimental Laboratory of

Kyoto University.
 Table 2.3 shows the result of this experiment. This table represents

the number of Boolean functions with in minterms and p prime impli-
cants. From the observation of this table, there are 16 5-variable Boolean
functions with 32 prime implicants, and there is no 5-variable Boolean
functions with more than 32 prime implicants. This value, 32, is equal to
the Igarashi's lower bound for n = 5. The 16 5-variable Boolean functions
with 32 prime implicants are equivalent up to the negation of the vari-
ables. This table also indicates the average number of prime implicants

2.7 Application for the Study on the Number of Prime Implicants 37

for every number of minterms.

2.7.2 Maximum Number of the Prime Implicants of 6-Variable

 Logic Functions

Since there are 2" 6-variable Boolean functions, it is unfeasible to exam-

ine the number of prime implicants of all 6-variable Boolean functions, as

could be performed for 5-variable Boolean functions. We will determine

the maximum number of prime implicants of 6-variable Boolean functions

by applying Lemma 1 to the results of the experiments on 5-variable func-

tions.

 Now it has been determined that the maximum number of prime im-

plicants of 5-variable Boolean functions is 32, following corollary holds.

[Corollary 1]
If there exists a 6-variable Boolean function f which has N prime impli-
cants, the numbers of prime implicants of both f (x6 = 0) and f (.x6 = 1)
are more than or equal to (N — 64).

(proof)The numbers of prime implicants of f (x6 = *), xs f (x6 = 0), and
x6 f (x6 = 1) are at most 32. From Lemma 1, the sum of the numbers of

prime implicants of above three 5-variable Boolean functions should be
more than or equal to N.^

 From Corollary 1, we can conclude that, in order to find out all 6-
variable Boolean functions with N or more prime implicants, it is suffi-
cient to examine all 6-variable Boolean functions which can be synthesized
as sg-Fx6h, where g and h are 5-variable Boolean functions with (N-64)
or more prime implicants.

 Since Igarashi showed that there are 6-variable Boolean functions with

92 prime implicants[Iga79], we made an experiment for N = 92 as follows:

 1. Generate a set of all 5-variable Boolean functions with 28 (= 92— 64)

38 2. Vector Algorithms for Generating Prime Implicants

Table

her of

2.3: Correlation of the Number of Prime Implicants

Minterins of 5-Variable Boolean Functions

and the Nurn-

number

prime

 number of

 minterms
of

implicants

1 2 3 4 5 6 7 8

0
1
2
3

4
5
6
7
8
9

10
11
12
13
14
15
16

17
18
19
20
21

22
23
24
25
26
27
28
29

30
31
32

0
32

0
0

0
0
0
0
0

0
0
0
0
0
0
0

0
0
0
0
0
0

0
0
0
0
0
0
0
0

0
0
0

8
41

0
0

2080
2880

0
0
0
0
0
0

0
0
0
0
0
0

0
0
0
0
0

0
0
0
0
0
0
0

0
0
0
0
0

 0
 80

1720
22400

11760
 0

 0
 0
 0
 0

 0
 0
 0
 0
 0
 0

 0
 0
 0
 0
 0

 0
 0
 0
 0
 0
 0
 0

 0
 0
 0
 0
 0

 0
 0
 2240

34400

134880
29856

 0
 0
 0
 0

 0
 0
 0
 0
 0
 0

 0
 0
 0
 0
 0
 0

 0
 0
 0
 0
 0

 0
 0
 0
 0
 0
 0

 0
 0
 2720

37680

289440
527232

49120
 0

 0
 0

 0
 0
 0
 0
 0
 0

 0
 0
 0
 0
 0

 0
 0
 0
 0
 0
 0

 0
 0
 0
 0
 0
 0

 0
 0
 480

 58240
340960

1400640
1507392

 58144
 0

 0

 0
 0
 0
 0
 0
 0

 0
 0
 0
 0
 0

 0
 0
 0
 0
 0
 0

 0
 0
 0
 0
 0
 0

 0
 40

 640
 32480

553620
1793440
4539520
3512960

 85600

 0
 0
 0
 0
 0
 0
 0

 0
 0
 0
 0
 0

 0
 0
 0
 0
 0
 0

 0
 0
 0
 0
 0
 0

average number of

prime implicants 1.000 1.839 2.581 3.275 3.955 4.643 5.346 6.065

number

prime

 number of
 minterms

of
implicants

9 10 11 12 13 14 15 16

0

1
2
3
4

6
7
8
9

10
11

12
13
14
15
16

17
18
19
20

21
22
23
24

25
26
27

28
29
30
31
32

1

 96
 2160

 45376
301984
616496

1086624
722320
 29728

 96

 0

 0
 1440

 16800
317840

3028992
10697440

15328320
20436480
13476640

119084
 1728
 16

 0
 0
 320

 28800
191040

2383904

12196064
26670400
30006080
31314240
22335296

375081
14480

 272

 0
 0
 480

 20960
265160

1334720

10623384
33307072
49797040
48911680
40663776
31227584

8874584
738400
 28000

0
0
0

0
0
0
0

0
0
0
0

0
0
0
0

0
0
0

 0
 0
 0
 10560

269120

1424160
6033760

31141920
66370400
74061920
67244800
47555680

35339360
15319840

242640
17232
 336

 0
 0
 240

 10080

136640
1654800
4999920

18292880
65059200

101446880
93328640

77110400
51810240
33071520
18713040

5121120

646240
 33120

 640

 0
 0
 0
 0

 0
 0
 0
 0

 0
 0
 0
 0

 0
 0

 0
 0
 0

 4320
136160
908864

6028800
12545920
38383520

103669280
123617600
102839680

74909920
49648960

28388640
16216384

6804800
1464640

146240
 8960

 32
0

0
0
0
0

0
0

0
0
0
0
0

 0
 10

 20

 2720
 77940

832480
3394544

14710240
23202650
59398720

130077424
126269920

97298000

64488960
39352000
22747296
11295914

5620160

1936000
330400
 42560

 2432
0
0
0

0
0
0

0
0
0
0
0

average number of

prime implicants 6.792 7.515 8.222 8.902 9.544 10.146 10.709 11.237

2.7 Application for the Study on the Number of Prime Implicants 39

Table

her of

2.3: Correlation of the Number of Prime Implicants and
Minterms of 5-Variable Boolean Functions (Continued)

the Num-

number

prime

 number of
 minterms

of

implicants

17 18 19 20 21 22 23 24

0
1
2
3
4

5
6
7
8
9

10
11
12
13
14
15

16
17
18
19
20

21
22
23
24
25
26
27
28
29
30
31
32

 0
 0
 160

 1920
 35520

 561920

 2989920
 7877120

25892320
32469440
71507744

129824640
113637440

77722400
48699040
27329920

14643552
 7411264

 3175040
 1465440
 382880

 81280
 12800
 960

 0

 0
 0
 0
 0
 0
 0
 0
 0

 0

 0
 320

 1040
 35120

261120

2113920
6626720

12984080
33615280
36402080

67315520
106442960

88843040
54775040
31244480
16297680

8068800
3800800
1646720

629440
235360
 71600

 19520
 4480

 480
 0

 0
 0
 0
 0
 0
 0

 0

 0
 0
 3520

 6400
226720

1054400
4721440
9911040

15822720
33774240

33058720
49773440
72811040
60053600
34250080
17384160

8308960

3683680
1520960

658080
231840
 70720

 30400
 10080
 6080

 960
 320

 0
 0
 0

 0
 0

 0
 0
 240

 1840
 16960

 72680

777280
2388400
6790440

11183680
14097936

26944320
24982720
28932080
40730720
35241504
19149760

8848480
3491840

1364640
493120
178080
 79040

 15680
 6520

 1184
 2560

 480
 640
 0

 16
 0

 0

 0

 0
 0
 2880

 9600
 52384

336640

1613760
3280960
6794720
9784800
9796224

16346560
16153120
13788000
17457120
17574784

990336
421424

128128
43126
14320
 3792

 1504
 4000

 227

 32

 3

 0
 0
 0
 1920

 14240
 22880

148064
727760

2174560
2915200
5006720
6501280

5903040
6908560
8696160
5887584
5746304
6461280
4617520
2018720

568752
 136320
 41760

 9440
 3200
 320

 640
 0

 0
 0
 0
 0
 16

 0
 0
 0
 480

 13120
 31680

 28960
325760
903520

1811040
2013440
2670080

3168800
3046880
2328960
2923200
2732160
1564800
1616000
1515200

917760

317600
 95040

 17280
 6240

 0
 800

 0
 0
 0
 0
 0
 0

 0
 0
 40

 120
 6620

 31280

 43280
 24400

407200
725700
979000

1122240
997760

1150720
1106720

872640
607100
753280
596520
311680
306400

238880
154880
 53600

 20640
 7200

 0
 320

 80
 0

 0
 0
 0

average number of

prime implicants 11.736 12.211 12.659 13.067 13. 411 13. 653 13. 750 13.662

number

prime

 number of
minterms

of
implicants

25 26 27 28 29 30 31 32

0

1
2
3

4
5
6
7
8
9

10
11
12

13
14
15
16
17
18
19
20
21

22
23
24
25

26
27
28
29

30
31
32

4

 0
 0
 0

 320
 0

24160
32320

32000
37280

289280
388320
383840

393440
355200
291040
257600
228320

180640
120000
107520

90784
57280
35680
29280
17280

 8640
 4000
 1280
 320

 0
 32

 0
 0

 0
 0
 0

 480
 1120

 1280
31840
20640

11280
26800

135776
128160

128800
76960
97920
55200
55840
33920
24640

20480
23520
10560
 7840

 6080
 2320
 2304

 1600
 480

 0
 320

 0
 32

 0

 0

 0
 0
 0

1920

 320
2880

21760
7520
4800

4480
38432
36800
21440
17120

13184
12960

1280
4800
4800
3840
 640

 960

 160
 960
 320

 0
 0

 0
 0
 0
 0
 0

 8
24

236

 8
16

888
288

88

340
752
384
320

136
96
12

 0
 0
 0

 0
320

 0
1280

 0
 0

480
1600

 0
 0

 0
320

 0
960

 0
 0
 0
 0
 0

 0
 0
 0
 0
 0

 0
 0
 0
 0
 0
 0

 0
 0
 0
 0

80
160

 0
 0

160
 0

 0
 0
 0

80
 0
 0
 0

 0
 0
 0

16
 0
 0
 0

 0
 0
 0
 0

 0
 0
 0
 0
 0

0
0
0
0
0

32

0
0
0
0
0

0
0
0
0
0
0
0

0
0
0
0
0
0
0
0

0
0
0
0
0

0
0

average number of

prime implicants 13.372 12. 886 12. 218 11.309 9.903 7.581 5.000 1.000

40 2. Vector Algorithms for Generating Prime Implicants

 or more prime implicants, say F5 (Cartesian of F.5 is 1808).

 2. Examine the number of prime implicants of all 6-variable Boolean

 functions synthesized by two 5-variable Boolean functions out of F5.

We used the same program and computer as used for 5-variable func-

 tions to examine the number of prime implicants of every Boolean

 function.

 From the experiment, there are 32 6-variable Boolean functions with 92

prime implicants, and there is no 6-variable Boolean functions with more

than 92 prime implicants. This value, 92, is also equal to the Igarashi's

lower hound for n = 6. The 32 6-variable Boolean functions with 92

prime implicants are equivalent up to the negation of the variables.

2.7.3 The Number of Prime Implicants of Boolean Functions

 of 7 or More Variables

From Lemma 1, we can observe that the following corollary holds.

[Corollary 2]
The maximum number of prime implicants of n-variable Boolean func-

tions do not exceed three times of the maximum number of prime impli-

cants of (n. — 1)-variable Boolean functions.

 From Corollary 2 and the fact that the maximum number of prime

implicants of 6-variable Boolean functions is 92, we can obtain the trivial

upper bound 92 • 3"-6 on the maximum number of n-variable Boolean

functions, where n. > 6. Table 2.4 shows this upper bound compared

with the Igarashi's lower bound and the upper hound of Chandra et al.

Our upper bound is better than that of Chandra et al. up to 43.

 At last, Figure 2.8 shows the average number of prime implicants of

8- to 20-variable Boolean functions obtained experimentally. This result

2.7 Application for the Study on the Number of Prime Implicants
41

Table 2.4: Upper and Lower Bounds of the maximum Number of Prime

 Iriiplicants of n-variable Boolean Functions

 n
Lower Bound by Upper Bound by Upper Bound of

Igarashi Chandra et al. This Thesis

4 13 32 13

5 32 80 32

6 92 240 92

7 218 672 276

8 576 1,792 828

9 1,698 5,376 2,484

10 4,300 15,360 7,452

20 1.33 x 108 6.35 x 108 4.40 x 108

30 5.55 x 1012 3.15 x 1013 2.60 x 1013

40 1.62 x 1018 1.53 x 1018

50 8.46 x 1022 9.06 x 1022

O(3"/n) O(3"/ n) O(3")

42 2. Vector Algorithms for Generating Prime Implicants

Number of

10

10

10

10

10

 10-1 ')I(,w I air- r I IIIII dr.. I"iv-
 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

 Truth Table Density (1/16)

Figure 2.8: Average Number of Prime Implicants of 8- to 20-Variable
Boolean Functions

 Implicants n : Number of Variables

•

7 10.1
n=2

6

...xx"

..x
x"

x.'
...X

x.'

..;

X'....X

...xx'

n=1

n=1

n=1

5

.)

IC....C..

X'

.X.

IC.....

...X

...Xx.'

..x

.. x:
46 ...

X-*

x.'

X**

.'

.***.X

*..Xe.

...x
...Xx.'

..,XX.'

....x

x
n=1

n=1

4

..*-

..X

' X

....X

...X

...X

...XX**

..x

...x

..xX."
...xx.'

...X

..x

..xX..'

......

x**

..xx.*

...x

..Xx."

..x

.*..X

.. xc•.*

....

... x

....

....t ..

....4 X•X

n=1

n=1

I. ..o JK
.•• c

n=1

3

,•,7, X
0*.

X.

..,X

..XX."

..X

.•7-11

.0X

0.XX..

.•.x
.'

X."
x..

)

.........

...Xt..

......

X.'

IC...

....

..

......

c I n=1

;#t

X

X.

X

....••

...a

..a

...3
.X.

.x.*

x

IC....

.... .

..X.X.'

..X.x**

x....)

x....

X

.... t

......

IC......

.... X

e•—•

....

....3

C...-

-1

.... n=1n=9

2 •••
6 e-• • *" X._ n=8

•

2.8 Conclusion 43

is obtained by the experiments in section 2.6. From this figure, we can

observe that the average number of prime implicants increases exponen-

tially for the number of variable, and for every number of variables, the

average number of prime implicants rises to the peak where the truth

table density is very high.

2.8 Conclusion

In this chapter, three vector algorithms for generating all prime impli-

cants of a given Boolean function have been proposed, and the required

time and space for an arbitrary n.-variable Boolean function have been

shown. We have also shown that the proposed algorithms are much faster

than any other conventional algorithm by benchmark results on a vector

supercomputer FACOM VP-400E. It has been shown that the generation

of prime implicants can be performed efficiently on a vector supercom-

puter by developing good vector algorithms and introducing effective data
structure and a table look-up technique in their implementation.

 As an application of the proposed algorithm, we have shown the results

related to the number of prime implicants of Boolean functions. We have

shown that Igarashi's conjecture on the maximum number of n-variable

Boolean functions is true for n = 5 and 6.

44 2. Vector Algorithms for Generating Prime Implicants

Chapter 3

Vector Algorithms for Manipulating

Binary-Decision Diagrams

3.1 Introduction

Recent progress of semiconductor technologies has enabled us to realize

larger and more sophisticated logic circuits. Today, it is almost impossible

to design logic circuits efficiently and correctly without using computer-

aided design (CAD) systems. However, with the growth of the scale of

VLSI, CAD systems have revealed its problem of increasing time and

storage for computation.

 In such CAD systems as design verification, test generation or logic

synthesis, the major part of computation is, or can he reduced to, the

manipulation of Boolean functions. A typical process of Boolean function

manipulation in CAD systems are as follows:

(1) Input the description of a given instance, then encode the descrip-
 tion into Boolean functions and represent them by an internal data

 structure of the system.

(2) Compute Boolean operations such as NOT, AND, OR. and EXOR.

(3) Obtain the results of comparison (i. e., equivalence check) of two
 45

46 3. Vector Algorithms for Manipulating Binary-Decision Diagrams

 Boolean functions or of substitution of 0 or 1 for variables of a
 Boolean function.

Primary operations in the above Boolean function manipulation are

(A) the unary operation for a Boolean function, i. e., NOT,

(B) binary operations for Boolean functions, such as AND, OR and EXOR,

(C) comparison of two Boolean functions, and

(D) substitution of 0 or 1 for a variable of a Boolean function.

 The efficiency of such Boolean function manipulation is closely con-
nected with the internal representation of Boolean functions. For exam-

ple, using truth tables as a representation of Boolean functions, (A), (B)
and (C) require time proportional to 2" for any n-variable Boolean func-
tion, while using Boolean formulas as a representation of Boolean func-

tions, (C) is very difficult in general. Various representations of Boolean
functions have been proposed for efficient Boolean function manipulation.

Ordered Binary-Decision Diagram (OBDD), or simply Binary-Decision
Diagram (BDD), is a graph representation of Boolean functions proposed
by Akers[Ake78] and developed by Bryant[Bry86]. BDDs have excellent

properties which makes (C) very easy and (A), (B) and (D) feasible in
many practical cases.

 At present, subroutine packages, called Boolean function manipulators,

based on Shared Binary-Decision Diagram (SBDD), or inultirooted BDD,
are implemented on workstations which support primary operations of

Boolean function manipulation of CAD systems. Several techniques for

implementation of Boolean function manipulators based on SBDDs are

proposed in order to reduce time and storage for manipulation, such

as two kinds of hash tables[Bry8G] and various attributed edges[MIY90,

3.1 Introduction 47

 BRB90]. These manipulators are now widely utilized in various applica-
tions such as design verification[FFK88, IDY90], test generation[CB89],
logic synthesis[SYMF90] and so on.

 Thus Boolean function manipulators based on SBDDs implemented on
workstations are proven useful in CAD systems. However, according to
the recent progress of the VLSI technology, it is required to manipulate
larger and larger scale Boolean functions, which will exceed the compu-
tational power of workstations. In order to satisfy this requirement, the
use of parallel machines or connection machines are studied[KC90]. In
this chapter, an algorithm suitable for vector supercomputers is proposed.

The proposed algorithm is based on so-called breadth-first manipulation

to utilize the high performance of vector supercomputers, while the con-

ventional algorithms for workstations are based on depth-first manipu-

lation. The proposed breadth-first algorithm consists of two parts; an

expansion phase and a reduction phase. In the expansion phase, new

nodes sufficient to represent the resultant Boolean function are generated

in a breadth-first manner from the root-node toward leaf-nodes. In the

reduction phase, the nodes generated in the expansion phase are checked

in a breadth-first manner from nodes nearby leaf-nodes toward the root-

node. A modified algorithm which can manage efficiently SBDDs with

output inverters, a kind of attributed edges, is also considered.

 A Boolean function manipulator based on the proposed algorithm is

implemented on the vector supercomputer HITAC S-820/80 at the Uni-
versity of Tokyo, and the results of the evaluations are shown in this

chapter. From the experiments of constructing the SBDDs representing

the Boolean functions of all the primary outputs and nets from a circuit

description chosen from ISCAS'85 [BF85], the vector acceleration ratio
on the S-820/80 is 5.3 to 27.8. Our manipulator on the S-820/80 is faster
than that of Minato et al. on the workstation Sun3/60[MIY90] by up to

48 3. Vector Algorithms for Manipulating Binary-Decision Diagrams

(a) A Shared Binary-Decision Diagram (b) Binary Decision Trees

Figure 3.1: Binary Decision Trees and a Shared Binary-Decision Diagram

130 times. In addition, as an example of applications of SBDDs, a design

verification system based on computation tree logic (CTL) model checker
is implemented and the experimental results are shown in this chapter.

 In the following section, basic explanation on SBDDs and additional

explanation on a vector supercomputer will be described. In section 3, a

new algorithm will be proposed. In section 4, experimental results of the

Boolean function manipulator will be shown. In section 5, an application

to CTL model checker will be described. Section 6 will provide some

concluding remarks.

3.2 Preliminaries

3.2.1 Shared Binary-Decision Diagram (SBDD)

 An Ordered Binary-Decision Diagram (OBDD), or simply a Binary-
Decision Diagram (BDD), is a directed acyclic graph which represents
a Boolean function[Ake78, Bry86]. A Shared Binary-Decision Diagram

3.2 Preliminaries 49

 (SBDD) is a muitirooted directed acyclic graph which represents multiple
Boolean fuuctioiis[MIY90, BRB90]. An example of an SBDD is shown in
Figure 3.1 (a). This graph represents four Boolean functions correspond-
ing to four root-edges. The node (vertex) pointed to by a root-edge of a
Boolean function is referred to as the 'root-node of the Boolean function.
There are (at most) two terminal nodes, leaf-nodes, which are labeled by 0
and 1. Every non-terminal node, or simply node, is labeled by a Boolean
variable. Every node has exactly two outgoing edges (arcs). They are

labeled by '0' and '1'. They are called '0' edge and '1' edge, respectively.
 SBDD is defined as the graph obtained from binary decision trees

representing Boolean functions (Figure 3.1 (b)) by repeating the following
transformations until they are not applicable.

(a) To share isomorphic sub-graphs.

(b) To delete every node both of whose '0' edge and '1' edge point to
 the saiiie node.

 Note that no Boolean variable appears more than once in every path
of an SBDD, and the variables appear in a fixed order in all the paths of
an SBDD. An integer number, called level, is assigned to every Boolean
variable with respect to the ordering of the variables in an SBDD. This
assignment corresponds to the ordering so that a variable hearer to the
leaf-nodes has a smaller number. We denote the variable with level i as

 Also note that there is no node which has either of the following prop-
erty;

 • A redundant node: A node whose '0' edge is the same as its '1' edge.

 • Non-unique nodes: A node whose '0' edge and '1' edge are equivalent

 to respective those of another node of the same level.

50 3. Vector Algorithms for Manipulating Binary-Decision Diagrams

 X2+Xi X2+Xi Xz+Xi X2+Xi

 Figure 3.2: Output Inverters

 SBDDs have following excellent properties:

 • Canonical, i. e., there are no two root-edges of a graph which point

 to the different nodes and yet represent the same Boolean function.

 The equivalence of two Boolean functions represented by an SBDD

 can be tested simply by comparing the root-edges corresponding to

 the functions.

 • The size of the graph is small for many practical Boolean functions.

 • The manipulations for various operations on Boolean functions rep-

 resented by an SBDD can be performed in time proportional to the

 number of the nodes of the graph[Bry86].

 In order to reduce the number of nodes and/or the time for manipu-
lation of an SBDD, various attributed edges are proposed, such as output

inverters, input inverters, variable shifters, and so on[MIY90, BRB90].
Among them, output inverter is effective in realizing high-speed SBDD

manipulation, which is the aim of this chapter. Output inverter is the

attribute indicating to complement the Boolean function of the subgraph

3.2 Preliminaries 51

pointed to by the edge (Figure 3.2). Employing this attribute, the num-
ber of nodes of SBDDs can be reduced to a half in the best case, NOT

operations can he executed without traversing the graph and whether

two given Boolean functions are complement to each other or not can

he examined without traversing the graph. Abuse of output inverters

break the important property of SBDDs giving unique representations of

Boolean functions. The following limitations are placed in order to keep

this property:

(A) Output inverters must not he used in '0' edges, i. e., output inverters
 are used only in '1' edges or in the root-edges.

(B) The leaf-node must be unique. In this thesis, only 0 is used as the
 leaf-node.

3.2.2 Conventional Algorithm for Manipulating SBDDs

The principal tasks of Boolean function manipulators are

(A) the unary operation for a Boolean function, i. e., NOT,

(B) binary operations for Boolean functions, such as AND, OR and EXOR,

(C) comparison of two Boolean functions, and

(D) substitution of 0 or 1 for a variable of a Boolean function.

 If the Boolean functions are represented by an SBDD, (C) can he
achieved only by comparing two root-edges of the given functions, and

(A) is also easily realizable if output inverters are employed. In this
section, the conventional algorithms for (B) and (D) are described. In
addition, another operation shift of variables is described. (An operation
over BDD to perform (B) is often called APPLY.)

52 3. Vector Algorithms for Manipulating Binary-Decision Diagrams

f g h= AND (f, g)

AND (f 0, g0)
AND Oval) , g1

 Figure 3.3: Conventional Recursive Algorithm

Binary Operations

 For example, let us consider a conventional recursive algorithm[MIY90,
BRB90] for generating the graph that represents the Boolean function
h=AND(f, g), where f and g are Boolean functions represented by a given
SBDD with two root-edges e f and eg. We denote the levels of the root-

nodes of f and g as L1 and Lg, and let L = max(L f, Lg). Recall defini-
tions of f (xi = 0) and f (xi = 1) appeared in section 2.2. We will denote
them simply fo and fi, respectively, if xi is obvious from context.

[A Conventional Depth-First Algorithm for AND]
Examine the given two root-edges e f and eg, and execute one of the

following statements:

(1) If e f and/or eg point(s) to the leaf-node 0, then return the edge
 pointing to the leaf-node 0.

(2) If of (eg) points to the leaf-node 1, then return eg (e1).

(3) If e f = eg, then return e f.

(4) Otherwise, compute the root-edges of h(xLh = 0) = AND (f(xLh =
 0), g(xLh = 0)) and h(xL, = 1) = AND (f (xL,, = 1), g(xLh = 1)),

3.2 Preliminaries 53

 f(X, =1. X,,:O)

X 1(X76=0. X»3=0)

1

 f(X,=1)
9

'29

 Figure 3.4: Effect of the Operation-Result-Table

 recursively using this same algorithm. Then examine the obtained

 root-edges of h(xLh = 0) and h(xLh = 1) and execute either of the
 following statements.

 (4.1) If h(xLh = 0) = h(xL, = 1), then return the root-edge of h(xLh =
 0).

 (4.2) If there exists a node whose level is Lh and whose '0' edge and
 '1' edge point to the root -node of h0 and h1, respectively, then

 return the edge pointing to this node.

 (4.3) Otherwise, generate a new root-node for h whose level is Lh and
 whose '0' edge and '1' edge point to the root-node of h(xLh =

 0) and h(xLh = 1), respectively (Figure 3.3). Return the edge

 pointing to this new node.

 For (4.2) of the above algorithm, a hash table, node-table, is introduced.
It manages all the nodes of the graph. The keys of the node-table are the

level, '0' edge and '1' edge of a node.

 Another hash table (or may be hash-based cache), called an operation-

 04 3. Vector Algorithms for Manipulating Binary-Decision Diagrams

result-table is introduced to avoid repetition of the same operations. The

keys of the operation-result-table are a Boolean operator (e. g. AND)
and given two root-edges. Every time when (4) of the above algorithm
is completed, the result is registered to this table. The tirrre for ex-
ecuting (4) is saved if the result is found in this table before execut-
ing the statement (4). This table is important especially when there
are many reconvergences in the sub-graphs of the given functions. A

simple example is shown in Figure 3.4. Let us consider the case of

computing AND(f, g). According to the above algorithm, one must ob-
tain AND(f (x35 = 0), g) and AND(f(x35 = 1), g). In order to obtain
AND(f (x35 = 0), g), both AND(f (X35 = 0, x:33 = 0), g) and AND(f (x35 =
0, 233 = 1), g) are required, while in order to obtain AND(f (x:35 = 1),g),
both AND(f(x35 = 1, 2:3:3 = 0), g) and AND(f(x35 = 1, x:3:3 = 1), g) are
required. Because f(x35 = 0, x:3:3 = 0) is equal to f(x35 = 1, x:3:; = 0),
the result of AND(f (235 = 0, x:3:3 = 0), g) can be reused as the result for
AND(f (x35 = 1, x:33 = 0), g) if the operation-result-table is introduced.
 The other binary operations such as OR. or EXOR can be done in the

same way.

Substitution of 0 or 1 for a Variable

Substitution of 0 for a variable x; of a Boolean function f , i. e., gener-
ation of an SBDD which represents Boolean function f (xt = 0) can be
done by the following recursive algorithm. Generation of an SBDD which
represents Boolean function f (x = 1) can be performed similarly.

[A Conventional Depth-First Algorithm for f (x; = 0)]
Examine the given root-edge e f, and execute either of the following state-

ments:

(1) If e f points to the leaf-node 0 (1), then return the edge pointing to

3.2 Preliminaries 55

 the leaf-node 0 (1).

(2) If i > L f, then return e f.

(3) If i = L f, then return the edge pointing to the node pointed to by
 the '0' edge of the root-edges of f.

(4) Otherwise, compute the root-edges of g(xL1 = 0) = f (xLI = 0, xZ =
 0) and g(xL1 = 1) = f (xLf = 1, xi = 0) recursively. Then examine

 the obtained root-edges of g(xL1 = 0) and g(xL1 = 1) and execute
 either of the following statements:

 (4.1) If g(xLi = 0) = g(xLJ = 1), then return the root-edge of g(xLf =
 0).

 (4.2) If there exists a node whose level is .L1 and whose '0' edge and
 '1' edge point to the root -node of go and gl , respectively, then

 return the edge pointing to this node.

 (4.3) Otherwise, generate a new root-node for g whose level is Lf and
 whose '0' edge and '1' edge point to the root-node of g(xLf = 0)

 and g(xL1 = 1), respectively. Return the edge pointing to this
 new node.

 As the algorithm for AND, node-table and operation-result-table is used

for (4). The keys of the operation-result-table are a operation ("substitute
0" or "substitute 1") and a given root-edge.

Shift of Variables

There are some applications (such as CTL model checker described in
section 3.5) which needs the operation of shifting all the subscripts of
variables of a given Boolean function, i. e., generation of an SBDD which
represents Boolean functiona'„+C) when positive constant

56 3. Vector Algorithms for Manipulating Binary-Decision Diagrams

c and the root-edge for the Boolean function f (xi, x2, ... ,x71) are given.

This can be performed by the following recursive algorithm:

[A Conventional Depth-First Algorithm for Shift of Variables]
Examine the given root-edge ef, and execute either of the following state-

ments:

(1) If e f points to the leaf-node 0 (1), then return the edge pointing to
 the leaf-node 0 (1).

(2) Otherwise, compute the root-edges for g(.r',j+c = 0) = f (:L1+c, 32+c,
..., XL —1+c, 0) and g(xLf+c = 1) = f (xi+c, X2+c, ..., XL1-1+c, 1)

 recursively. Then examine the obtained root-edges of g(xLf+c = 0)
 and g(xL J+c = 1) and execute either of the following statements:

 (2.1) If g(xLf+c = 0) = g(xLj+c = 1), then return the root-edge of
9(xLf+c = 0).

 (2.2) If there exists a node whose level is (L1 c) and whose '0' edge
 and '1' edge point to the root-node of go and g1, respectively,

 then return the edge pointing to this node.

 (2.3) Otherwise, generate a new root-node for g whose level is (L f-}-c)
 and whose '0' edge and '1' edge point to the root-node of g(xLf _

 0) and g(xL1 = 1), respectively.

 As the algorithm for AND, node-table and operation-result-table is used
for (2). The keys of the operation-result-table are a operation ("shift of
variables"), a given root-edge and a given value c.

3.2.3 High-Speed Vector Indirect Store

See also section 2.3 of chapter 2 for basic explanation of vector supercom-

puters. In this section, a special feature of HITAC S-820/80 on which we
have developed our Boolean function manipulator is described.

3.3 Breadth-First Vector Algorithm for Manipulating SBDDs 57

 Vector supercomputer HITAC S-820/80 has a special vector instruc-
tion which enables us high-speed vector store in list vector access mode.

 By normal vector indirect store instruction, it is guaranteed that the

latest store is valid at the location where confliction occur. As illustrated

in Figure 3.5 (a), B [2] will be 62 (not 23) and B [5] will be 91 (not 84)
after the normal vector indirect store instruction.

 The special vector indirect store instruction of HITAC S-820/80 is
about 3 times faster than the normal vector indirect store instruction.

However, if there are confliction, it is guaranteed only that one of the

store is valid. For example in Figure 3.5 (b), it is not defined that B [2]

will be 23 or 68.

 This special instruction is designed to be used when user know that

there is no confliction. For example, user can inform FORTRAN compiler

by statement

 *VOPTION VIST

that the special instruction may be used in the succeeding DO loop. In this

chapter, we utilize this instruction for hash tabel access where conflictions

may be occur.

3.3 Breadth-First Vector Algorithm for Manipulat-

 ing SBDDs

3.3.1 Basic Idea

As mentioned in the preceding section, the conventional algorithm for

managing SBDDs is based on a recursive procedure (or a depth-first op-
eration), which is not suitable for vector processing. In this section, a
breadth-first algorithm for managing SBDDs is proposed.

 The proposed algorithm consists of two phases; an expansion phase

3 2 5 8 11 2 5 7

3 2 5 8 11 2 5 7

583. Vector Algorithms for Manipulating Binary-Decision Diagrams

 L[1] L[2] L[3] L[4] L[5] L [6] L[7] L[8]

3 2 5 8 11 2 5 7

A [1] A [2] A [3] A [4] A [5] A [6] A [7] A [8]DO 10 1=1
,8

55 23 84 III 45 68 91 37B [L [I]] =AU]
 _~--10 CONTINUE

 L PrA I ̂
 68

BD.] B[2] B[3] B[4] B[5] B[6] B[7] B[8] B [9] B [10]B [11]B [12]

(a) Normal Vector hidirect Store

L[1] L[2] L[3] L[4] L [5] L [6] L [7] L[8]

3 2 5 8 11 2 5 7

A [1] A [2] A[3] A [4] A [5] A [6] A [7] A [8] *VOPTION VIST

 10268 55'or89137
B[1] B[2] B[3] B[4] B[5] B[6] BM

(b) High-Speed Vector Indirect

 Figure 3.5:

DO 10 I=1,8
B [L [I]] =A [I]

CONTINUE

17 45

B[8] B[9]B[10]B[11]B[12]

Store of HITAC S-820/80

Vector Indirect Store

3.3 Breadth-First Vector Algorithm for Manipulating SBDDs 59

and a reduction phase. In the expansion-phase, new nodes sufficient to

represent the resultant function are generated in a breadth-first manner

from the root-node toward the leaf-nodes. In the reduction phase, the

nodes generated in the expansion phase are checked and the redundant

Modes and the 11o11-unique nodes are removed in a breadth-first manner

from the nodes nearby the leaf-nodes toward the root-node. The nodes

generated in the expansion phase are called temporary nodes, while the

nodes which already exist are called permanent nodes.

3.3.2 Algorithm

In this section, the breadth-first algorithm for binary operation is de-

scribed. Other operations, i. e., substitution of 0 or 1 for a variable and

the shift of variables, are also implemented similarly.

Expansion Phase

An input for the expansion phase is a triple (op, e f, e9), where op is a
Boolean operator to be executed, such as AND, OR or EXOR, and e f and eg

are root-edges of argument Boolean functions represented by an SBDD.

This triple is referred to as a requirement. A requirement (op, f , g) re-

quires to compute the root-edge for the resultant function of op(f, g).
During processing a requirement, new requirements are generated for

computing the operations between sub-functions or sub-sub-functions ...

of the argument functions. Actually a requirement corresponds to a pro-

cedure call in the depth-first algorithm. A queue called a requirement

queue is introduced to manage these requirements, which makes our pro-

cedure breadth-first. (The procedure would be depth-first if a stack is
used instead of the queue.)

 For a given requirement (op, e f, eg), a new root-node is not always

60 3. Vector Algorithms for Manipulating Binary-Decision Diagrams

generated. A new node should not be generated if a node representing
the result of op(f, g) already exists. For example, if the result of op(f, g)
is found trivially (the cases (1) (3) in the algorithm in the depth-first
algorithm), or found by looking up the operation-result-table, a new node
is not generated. In these cases, the judgement can be performed imme-
diately from e f and eq. However, in general, there are cases where the
existence of the root-node of op(f, g) cannot he determined until the whole

graph for the sub-functions of op(f, g) is constructed. In this breadth-
first algorithm, a temporary node is generated in such cases. Whether the
temporary node is actually essential or not is examined in the reduction

phase.
 Following procedure is the expansion phase. Initially, the requirement

queue is empty, and there is no temporary node.

[Expansion Phase of Binary Operations]
Put a given requirement (op, e f, eg) to the requirement queue and repeat
the following operations for every requirement in the queue until the

queue becomes empty.

(1) If the root-node representing the result of op(f, g) is trivial, then
 return the edge pointing to the node.

(2) If the root-node representing the result of op(f, g) is found in the
 operation-result-table, then return the edge found in the table .

(3) Otherwise, generate a new temporary node and return the edge
 pointing to the temporary node. At the same time, register the

 edge pointing to the temporary node to the operation-result-table as

 the result of op(f, g) and put new requirements (op, e fo„ eg„) and (op,
e f„ eg,) to the requirement queue, whose result will be '0' edge and

 '1' edge
, respectively, of this temporary node.

3.3 Breadth-First Vector Algorithm for Manipulating SBDDs 61

 Note that the temporary nodes must be registered to the operation-

result-table in the expansion phase in order to avoid repetition of the

same operation (recall the example of Figure 3.4). On the other hand,
the registration to the node-table is done in the reduction phase.

 Also note that the total number of requirements processed in the above

procedure is exactly the same as the number of procedure calls in the
depth-first algorithm in section 3.2.2 and thus there is no serious increase

on the computation cost. The only drawback of our algorithm is the

increase of the storage required for temporary nodes.

 This procedure is suitable for vector processing because of the following

reasons:

(1) High vectorization ratio. All of the repeated operations can be exe-
 cuted by vector instructions.

(2) Long vector length. All requirements existing in the queue can be
 processed simultaneously.

List vector access is utilized in the whole operations of the expansion

phase by means of referring to the queue as a list vector. Trivial require-
ments and non-trivial requirements can be exclusively executed using

conditional vector operations. New requirements are put to the queue

using compress operations. Registration to the operation-result-table is

also vectorizable by the technique which will be stated in section 3.3.3.

Reduction Phase

There may be redundant nodes and non-unique nodes among the tem-

porary nodes generated in the expansion phase. The Iriain tasks of the

reduction phase are to find redundant nodes and non-unique nodes and

to remove therm. In our algorithm, these tasks are executed in a breadth-

first manner from the nodes nearby the leaf-nodes toward the root-node.

62 3. Vector Algorithms for Manipulating Binary-Decision Diagrams

In addition, temporary nodes which are neither the redundant nodes nor

the non-unique nodes are registered to the node-table.

 In practice, the removal of the redundant nodes and the non-unique

nodes must be performed at the end of the reduction phase because there

are edges pointing to these nodes. In our algorithm, the nodes classified

as redundant nodes or non-unique nodes are marked as useless nodes.

Every useless node has a forwarding pointer to indicate the node that

takes the place of the useless erode.

 Following procedure is the reduction phase.

[Reduction Phase of Binary Operations]
Repeat the following operations while there are temporary nodes.

(1) For every temporary node whose '0' edge or '1' edge point to a useless
node, redirect the edge so as to point to the node pointed to by the

 forwarding pointer of the useless node.

(2) For every temporary node both of whose '0' edge and '1' edge are not
 temporary nodes (i. e., permanent nodes or the leaf-nodes), execute

 following statements:

(2.1)

(2.2)

(2.3)

If its '0' edge and '1' edge are the same, rrrark the node as a

useless node, and set its forwarding pointer to point to the node

pointed to by its '0' edge.

If there is a mode which is equivalent to this node and registered

in the node-table, mark the temporary node as a useless node,

and set its forwarding pointer to point to the node which is

registered in the node-table.

Otherwise, register the node to the node-table, and mark it as

permanent node.

3.3 Breadth-First Vector Algorithm for Manipulating SBDDs 63

 This procedure is also suitable for vector processing because all tem-

porary nodes whose '0' edges and '1' edges are not temporary nodes can
be processed simultaneously, and almost all operations are vectorizable.

Vectorization of registration to the node-table is discussed in section 3.3.3.

Example

Figure 3.6 illustrates the proposed algorithm via an example. This ex-

ample shows the process of AND operation whose arguments are Boolean

functions represented by the root-edges e f, and e14 pointing to the nodes

117 and n4, respectively, of the SBDD in Figure 3.6 (a). Here we de-

note a Boolean function whose root-node is Ilk by fk. For simplicity, the

operation-result-table is assumed to be initially empty.

 At the beginning of the expansion phase, the requirement (AND, e1„
ef4) is put to the requirement queue.

 Because the result of the requirement (AND, eh, e14) is not trivial
and not found in the operation-result-table, a new temporary node n8 is
allocated as the root-node of the result of (AND, e1,, c14). The level of the
new node is max(L1„ L14)=7. The edge f8 pointing to the new node n8 is
registered to the operation-result-table. The requirement (AND, eh, ef4)
is dequenecl and the new requirements (AND, ef,(x;__0), emx7_0))=(AND,
eh, ef4) and (AND, ef,(a:,_I)' e f4 f,_1))=(AND, eh, ef4), corresponding to
the '0' edge of 118 and '1' edge of n8 respectively, are put to the queue.

 Similarly, two requirements (AND, eh, ef4) and (AND, e1,, ef4) are pro-
cessed simultaneously (Figure 3.6 (b)). Now, there are four requirements

(AND, ef.,. e14), (AND, ef.;, ef4), (AND. eh, e14) and (AND, e11, ef4), corre-
sponding to the '0' edge of n9, the '0' edge of 1110, the '1' edge of n9 and
the '1' edge of 7110, respectively.

 Now, the requirement (AND, eh, ef4) corresponding to the '0' edge of
ng is processed. Because the result of the requirement is not trivial and

64 3. Vector Algorithms for Manipulating Binary-Decision Diagrams

 n3

17

I X,

f4

Operation-Result-Table

 operand 1

operand 2

operation

result

Node-Table

 ni

n7 n4 nz ns nins n3

Figure 3.6

 (a) An SBDD before Operation

: Example of the Breadth-First Manipulation

3.3 Breadth- First Vector Algorith m for Manipulating SBDDs
65

n3

 f7

 I

 x,

fa

 0

2

 Xs

ni

fs

I x,
n8

1

ni0

Operation-Result-Table

operand 1 fs 17 f6

operand 2 fa fa 14

operation AND AND AND

result fio 18 fs

Node-Table

 n7 n4 nz ns Wins n3

(b) The SBDD at the End of the 2nd Stage of the Expansion Phase

Figure 3.6: Example of the Breadth-First Manipulation (Continued)

66 3. Vector Algorithms for Manipulating Binary-Decision Diagrams

 n3

f7 14 fa

 n1z niz

Operation-Resu It-Table

operand 1 fs 12 f7 fa 16 f1

operand 2 14 fa fa fa 14 14

operation AND AND AND AND AND AND

result 110 f12 18 f11 fa Um

Node-Table

n7 n4 n2 n6 nins n3

(c) The SBDD at the End of the 3rd Stage of the Expansion Phase

Figure 3.6: Example of the Breadth-First Manipulation (Continued)

3.3 Breadth- First Vector Algorithm for Manipulatin
g SBDDs

n3

 f7

I x,

Operation-Result-Table

operand 1 fs f2 17 f2 13 f6 ft

operand 2 fa fa fa ft 14 14 fa

operation AND AND AND AND AND AND AND

result fia 112 f8 114 fit 19 113

Node-Table

 h12 n13

n7 na n2 ns nlns n3

Figure

(d)

3.6:

The SBDD at

Example of the

the End of the

Breadth-First

Expansion Phase

Manipulation (Continued)

67

 68 3. Vector Algorithms for Manipulating Binary-D ecision Diagrams

n3

f7

I Xi

fa

nil r

 f8

 x,

niz n13

Operation-Result-Table

operand 1 fe 12 f7 f2 f3 fe f1

operand 2 f4 f4 14 11 14 14 f4

operation AND AND AND AND AND AND AND

result f10 f12 fa 114 f11 f9 113

Node-Table

 n7 n13 n4 nuns n2 n9 ns nlns n10 n3 n12

Figure 3.6

 (e) The SBDD after Operation

: Example of the Breadth-First Manipulation (Continued)

3.3 Breadth-First Vector Algorithm for Manipulating SBDDs 69

not found in the operation-result-table, a new node n11 is generated and

is registered to the operation-result-table. Next, the requirement (AND,
eh, e f4) corresponding to the '0' edge of No is processed. Note that
this requirement is the same as one just processed. According to the
operation-result-table, the result of this requirement is fll, so that the '0'
edge of n10 is directed to n11 instead of a new distinct temporary node.
For the other two requirements in the queue, new temporary nodes n12
and nl;;, respectively, are generated (Figure 3.6 (c)). Six requirements
corresponding to '0' edges and '1' edges of three new temporary nodes

are put to the queue.

 The result of the requirement (AND, 0, eft) corresponding to the '0'
edge of n11 is trivial, i. e., 0, therefore, the '0' edge of n11 is directed to the

leaf-node 0. The result of the requirement (AND, e12, eh) corresponding

to the '0' edge of n.12 is trivial, i. e., fl, therefore, the '0' edge of n12 is

directed to n2. In the same way, the '1' edge of nil and the '1' edge of

ni3 are directed to n1. For the requirement (AND, e12, eh) corresponding
the '0' edge of n1;3, a new node n14 is generated, and registered to the

operation-result-table. The '1' edge of 1112 is directed to n14 according to

the operation-result-table.

 There are two requirements corresponding to the '0' edge and '1' edge

of n14. They are both trivial. Figure 3.6 (d) shows the SBDD at the end
of the expansion phase.

 Then the reduction phase begins. The temporary nodes both of whose
'0' edges and '1' edges are not temporary nodes are processed , i. e., n11

and n14 are processed. 1111 is not redundant (i. e., the '0' edge of 11.11 is

different from the '1' edge of n i I). But according to the node-table, there

is an isomorphic node, i. e., n;3 whose level, '0' edge and '1' edge are the

same as n11, therefore, Till is marked as useless node and its forwarding

pointer is set to point to n;3, and n 11 is not registered to the node-table.

70 3. Vector Algorithms for Manipulating Binary-Decision Diagrams

In addition, the entry of the operation-result-table of f l l is modified to

f3. On the other hand, n14 is not redundant nor isomorphic to any other

permanent nodes, therefore, registered to the node-table and marked as

permanent node.
 Next, n12 and .1113 are processed in the same way, and both of them are

registered to the node-table and marked as permanent nodes.

 Next, n9 and 140 are processed (Before processing, their '0' edges point-

ing to the useless node nil are redirected to 113 according to the forwarding

pointer).
 Finally, 118 is processed, and the result for the initial requirement is

the SBDD with the root-edge efi (Figure 3.6 (e)). The useless node n11

is removed now.

3.3.3 Vectorization of Hash Table Access

The access to the operation-result-table in the expansion phase and the

access to the node-table in the reduction phase cannot be vectorized in a

straightforward manner.

 If the expansion phase is vectorized in a straightforward manner (i. e.,

refering to the operation-result-table simultaneously, generating a new

temporary nodes simultaneously, then registering them to the operation-

result-table simultaneously), duplication of temporary nodes occur when

the same requirements are processed simultaneously. For example, con-

sider the third stage of the expansion phase of the example of Figure 3.6.

There are requirements corresponding to the '0' edge of n9 and '0' edge

of n10. The former requirement is the same as the latter one. They are

processed together in the next stage. When at first the operation-result-
table is referred to complying with both requirements, the result is not

yet written. Therefore, new temporary nodes are generated complying
with the both requirements, which cause the duplication of the temporary

3.3 Breadth-First Vector Algorithm for Manipulating SBDDs 7l

nodes.

This can be avoided by checking the operation-result-table again just

after the registration to the operation-result-table . Those temporary
nodes are removed whose registration to the operation-result-table is

overwritten by the registration of another teitiporal;y node which is pro-

cessed simultaneously. If there are duplicated requirements, the regis-

trations to the operation-result-table conflict, because the values of the

hash function for these requirements are the same. After the registra-

tions to the operation-result-table, only the last registration is valid in

the entry of the table where the conflict occurred. In this way, by means

of the one-more check of the operation-result-table, all but one dupli-

cated temporary nodes can be removed. Note that the valid registration

in the entry of the table where the conflict occurred may be arbitrary

one of the registrations to this entry. This fact enables us to employ

the high-speed vector indirect store instruction of HITAC S-820/80. In
addition, the operation-result-table can be implemented as a hash-based

cache in practice[BRB90], therefore, the registrations and check can be
simply implemented.

 In the case of the access to the node-table in the reduction phase,

the basic idea for vectorization is similar to the operation-result-table.

However, the node-table cannot he implemented as a hash-based cache:

the node-table must keep all the registered nodes. The node-table is

constructed by an array T of pointers; every pointer corresponds to a

value of hash function and points to the head of the linked list of the

registered nodes.

The simultaneous references to the node-table according to the tempo-

rary nodes to be processed in a stage of the reduction phase are vectorizecl

as follows;

(1) Generate an array L of the pointers to the temporary nodes to he

72 3. Vector Algorithms for Manipulating Binary-Decision Diagrams

 processed. Compute the value of the hash function for every tem-

porary nodes and copy the pointer in T to a work area p of the

temporary node.

(2) Check every p pointed to by L. If p is nil, then currently there is no
 registered node which is equivalent to the temporary node. Remove

 from L the pointers to these nodes.

(3) Refer to the permanent nodes pointed to by p's pointed to by L.
 Check whether each permanent node is actually equivalent to the

temporary node. If so, the temporary node is marked with useless

 node, and set its forwarding pointer to point to the permanent node

 pointed to by p. If not, the temporary node and the permanent
 node pointed to by p have, occasionally, the common value of the

 hash function, but, in fact, distinct each other. For such temporary

 nodes, update p's by copying the link pointers of the permanent

 nodes pointed to by p's.

(4) Remove from L the pointers to the useless nodes. Repeat from step

 (2) until L become empty.

At first, the vector references to the 1st nodes in the linked lists are exe-

cuted. For the temporary nodes which accessed to the distinct permanent

nodes, the vector references to the 2nd nodes in the linked lists are ex-

ecuted, and so forth. The removal of pointers from L is vectorized with

the vector compress operation.

 The simultaneous registrations to the node-table and the simultaneous

one-more check of the node-table are also vectorized in a similar way.

3.3 Breadth-First Vector Algorithm for Manipulating SBDDs
73

1st list

2nd list

3rd list

512th list

 Free nodes

 o--o--
o--o--

o--o--

o-o--

Tops of the avail lists

 Figure 3.7: Multiple Avail Lists

3.3.4 Management of Free Nodes

As mentioned in the explanation of the reduction phase, the useless nodes
are removed from the graph at the end of the operation. In order to reuse
these nodes, the use of avail list is considered. There are well-known
efficient procedures for a node to be inserted to and deleted from the top
of a linked list. However, multiple nodes cannot be inserted to or deleted
from a linked list simultaneously.

 In order to vectorize the insertion and deletion of multiple nodes, we
introduce multiple avail lists. Instead of single pointer for the top of
an avail list, an array of 512 pointers for the tops of the 512 avail lists is
introduced (Figure 3.7). Initially, all the avail lists have the same number

74 3. Vector Algorithms for Manipulating Binary-Decision Diagrams

of the free nodes and the total number of the free nodes are set to the
variable #free. When n(< 512) free nodes are required, the top nodes in
the (mod(#free —11,512) + 1)th through (mod(#free — 1, 512) + 1)th
avail lists are used, then #free is decreased by ri. When more than 512
free nodes are required, the vector operations of the length (up to) 512
are repeated. The insertion of the multiple useless nodes is done by the
above steps backward. The number of the avail lists is chosen to be 512
because the length of the vector registers of the HITAC S-820/80 are 512.

 This technique is also used in the process of the garbage collection

[BRB90]. Garbage collection collects the useless nodes in the graph ac-
cording to the 'free' declarations by the application program. The nodes

used for the intermediate result of the application program can be reused

by means of the 'free' declarations and the garbage collection.

3.3.5 Management of SBDDs with Output Inverters

In this section, a method for managing the SBDDs with output inverters

is described. As mentioned in section 3.2.1, various attributed edges are

proposed. The output inverters are efficient to reduce the time for ma-
nipulation. In the conventional recursive algorithm, the attributes of the

edge pointing to a new node can be easily determined using the result of

the recursive steps for its sub-functions. In the vector algorithm, suitable

methods for applying output inverters varies among the operations.

 Under the limitations of the use of output inverters mentioned in sec-

tion 3.2.1, the following property holds. Methods described so far are

based on this property.

[Property 1] The output inverter is attached to the root-edge of f if
and only if the value of f is 1 when 0 is substituted to all the variables.

3.3 Breadth-First Vector Algorithm. for Manipulating SBDDs 75

Binary Operation

In the binary operations, the output inverters of the edges can be decided
without using the result of its sub-functions. Let us denote the existence
of the output inverter on edge e as oi(e), whose value is true if the output
inverter exists and false otherwise. From Property 1 and an equation li(0,
0,...,0)= op(PO, 0,...,0),g(0,0,...,0)) where h= op(f,g) and op
is a binary operator such as AND, OR. or EXOR, Property 2 follows.

[Property 2] oi(the root-edge of op(f, g)) = op(oi(the root-edge of f),
oi(the root-edge of g))

 Based on Property 2, a method is proposed by which the output in-
verters are computed in every stage of the breadth-first operation in the
expansion phase and no more computation of output inverters is required
in the reduction phase. The rules to be added to the expansion phase are
as follows:

 • Attach an output inverter to the root-edge of op(e f, e4) iff op(oi(e f),
 oi(eg)) is true.

 • For the requirement (op, e f„, ey„), attach an output inverter to the
 root-edge e f„ (eq„) iff oi(e f) (oi(eg)) is true.

 • For the requirement (op, e11, eq,), attach an output inverter to the

 root-edge e1, (e9,) iff oi(e f) (oi(eg)) is different from oi('1' edge of
 the root-node of f (g)).

 • Never attach an output inverter to the '0' edge corresponding to the

requirement (op, e 1„, eq„)•

 • Attach an output inverter to the '1' edge corresponding to the re-

 quirement (op, e11, e91) iff op(oi(e f,), oi(eg,)) is different from op(oi(e f„).
oi(eg„)).

76 3. Vector Algorithms for Manipulating Binary-Decision Diagrams

Substitution of 0 and Shift of Variables

It is clear from Property 1, the output inverter of the root-edge of the

Boolean function f(x = 0) is the same as the output inverter of the root-
edge of Boolean function f. The output inverter of the root-edge of the
Boolean function f (xi+e,' Z2+,, x„+,) is also the same as the output
inverter of the root-edge of Boolean function f (.xi, x2, ... , x„). Therefore,
there is no need to compute the output inverters during these operations.

Substitution of 1

The output inverter of the root-edge of the Boolean function f(x = 1)
cannot be decided only by the output inverter of the root-edge of Boolean
function f in general. For example, output inverter i's not attached to the
root-edge of a Boolean function f=AND(x2, NOT(xi)) nor the root-edge of

f (xl = 1), while output inverter is attached to the root-edge of f(x2 = 1)
(recall Property 1). Therefore, the output inverters must be computed
during the reduction phase of the breadth-first algorithm.

3.3.6 Parallelization Multiple Operations

If multiple requirements of Boolean operations are given simultaneously,

then they can he processed together by putting them to the requirement

queue in the initialization of the expansion phase. This. technique is
expected to extend the vector length of both the expansion phase and

the reduction phase, which will improve vector acceleration ratio.

 In the case of such application as construction of an SBDD for a given

Boolean formula or a given circuit description, multiple operations can

be evaluated together whose Maximum levels in the parse tree or in the

circuit diagram are the sanre[KC90].

3.4 Implementation and Evaluation 77

Circuit #node CPU time [rnsec] Acceleration

Circuit size Scalar Vector Ratio

In. Out. Nets. (S) (V) (S/V)
c432 36 7 196 104,066 9,099 412 22.09

c499 41 32 243 65,671 2,585 163 15.86

c880 60 26 438 31,378 2,057 221 9.31

c1355 41 32 587 208,324 5,886 407 14.46

c1908 33 25 913 60,850 3,038 375 8.10

c3540 50 22 1719 1,029,210 74,834 2,692 27.80

c5315 178 123 2485 48,353 5,151 970 5.31

3.4

 Table 3.1: Experimental results

Implementation and Evaluation

3.4.1 Implementation

We implemented an SBDD manipulator based on the proposed algo-

rithm (including output inverters) on the vector supercomputer HITAC
S-820/80 at the University of Tokyo. The program is coded in Fortran i i .
Almost all inner DO loops of the program are vectorized.

 The required storage is 7 words (28 bytes) for a permanent node ('0'
edge, '1' edge and level etc. and the space for the node-table and the
operation-result-table) and the additional required temporary storage for
a temporary node is 5 words (20 bytes). Since we can use up to 256
megabyte main memory on the HITAC S-820/80 at the University of
Tokyo, we can manage an SBDD of more than 5 million nodes.

78 3. Vector Algorithms for Manipulating Binary-Decision Diagrams

3.4.2 Evaluation

Table 3.1 shows the benchmark results on the S-820/80. This table
shows the required CPU time for constructing the graph representing

the Boolean functions of all primary outputs and all nets from a circuit

 description. For example, an SBDD for the circuit 'c432' represents 203

Boolean functions (7 primary outputs and 196 nets). The benchmark cir-
cuits are chosen from ones in ISCAS'85 [BF85]. For the ordering of the
variables, the dynamic weight assignment methocl[MIY90] is employed

(the computation time for the ordering is not contained in Table 3.1).
The vector execution time (V) is the required CPU time using all fea-
tures of the S-820/80, while the scalar execution time (S) is the required
CPU time using only the conventional scalar processing unit of the S-
820/80. A source program which is tuned for vectorization is used for
both scalar execution and vector execution (i. e., two object codes with
and without vector instructions are generated by the Fortran 77 compiler
of HITAC S-820/80). The vector acceleration ratio (S/V) is the ratio
of the scalar execution time to the vector execution time. #node is the
number of the nodes of the SBDD representing the Boolean functions of
all primary outputs and all the nets.

 From Table 3.1. we can see that 5.3 to 27.8 vector acceleration ratio
is gained. These results show how the program is suited for the vector
supercomputer. Especially, the circuits with large niunber of nodes and
small number of variables, such as c432, c499, c1355 and c3540, are highly
accelerated. This is because the width of the SBDDs of such circuits are
very large. i. e., there are many nodes in every level of the graph, and the
vector length is very long on the average when such a graph is processed.

 Compared with the results on the workstation Sun3/60 by Minato et
al.[MIY90], our results are 130 times faster in the best case. For example,
only 0.163 sec. and 0.407 sec. are required for c499 and c1355 respectively

3.5 Application for CTL Model Checker 79

 e = AG (px, = (AX (AX pz,)))

 (a) An Example of CTL Formula

Xi =0/zi =0 x1=0/z1=0

xi =1 /zi =1

xi =11z1=0 Xi =1 /Zi =1

Xi =0/Zi =1

 Xi =1/z1=1

xi =0/zi =1

 (b) An Example of Sequential Machine

 Figure 3.8: An Example of CTL Formula and Sequential Machine

in Table 3.1, while 21.5 sec. and 51.4 sec., respectively, were required in

[MIY90] .

3.5 Application for CTL Model Checker

As an example of applications of the developed Boolean function manip-

ulator, a computation tree logic (CTL) model checker is implemented on
the vector supercomputer HITAC S-820/80.

80 3. Vector Algorithms for Manipulating Binary-Decision Diagrams

 1-xi
-p

z1

pxi
—1p

pxi

pz1

--Ip

—,p

--, p
xi

'Z1

—,p

pzi

pxi

pz1

Figure 3.9: An Example of Kripke Structure

3.5.1 Outline

CTL model checking is a formal method for design verification of finite

state machines such as sequential machines. Input for the model checker

is a CTL formula expressing the specification of the sequential machine

and a designed sequential machine. The model checker verifies whether a

designed sequential machine satisfies the specification or not by comput-

ing the truth-value of the CTL formula at the initial states of the Kripke

structure corresponding to the designed sequential machine.

3.5 Application for CTL Model Checker 81

 Figure 3.8 illustrates an example of the CTL model checking. Fig-
ure 3.8 (a) is a CTL formula given as the specification of a sequential
machine. Figure 3.8 (b) is a state transition diagram of the given de-
signed sequential machine. A directed graph Figure 3.9 represents the

Kripke structure corresponding to the sequential machine of Figure 3.8

(h). Every node of Figure 3.9 representing a state of the Kripke struc-
ture corresponds to an edge of Figure 3.8 (b). The truth-value of a CTL

formula is determined by a state of a Kripke structure. The CTL model

checker computes the truth-values of the CTL formula at the initial states

of the Kripke structure. If all these truth-values are true then the de-

signed sequential machine satisfies the specification.

 CTL model checker has been implemented on workstations using Boolean

function manipulators based on SBDDs and its efficiency has been re-

ported [BCMD90]. In this chapter, the implementation of the CTL model
checker using the vectorized Boolean function manipulator is discussed

and the experimental results are shown.

3.5.2 Computational Tree Logic

Computational Tree Logic (CTL)[CES83] is a temporal logic. Let AP be
a set of atomic propositions. CTL formulas are inductively defined as

follows:

 • If p E AP, then p is a CTL formula.

 • If is a CTL formula, then so are ter,, EX ti and EGq.

 • If ti and are CTL formulas, then so are rt V and E[rilf].

 The semantics of CTL is defined over a Kripke structure K = (S, R, I),
where

 • S is a non-empty finite set of states.

82 3. Vector Algorithms for Manipulating Binary-Decision Diagrams

 • R C S x S is a total binary relation on S (i. e., for Vs E S, there
 exists s' E S such that (s, s') E R).

 • I : S —> 2AP is an interpretation function which labels each state

 with a set of atomic propositions true at that state.

 An infinite sequence of states 7r = sasis2 ... is called a path from so if

(Si, si+i) E R for Vi > 0. 7r(i) denotes the i—th state of the sequence 7r (i.
e., 7r(i) = si).
 The truth-value of a CTL formula is determined by a state of a Kripke
structure and K, s ri denotes that a CTL formula ij holds at a state s
of a Kripke structure K. If there is no ambiguity, we will omit K and

just write as s The relation is recursively defined as follows:

 • s p (E AP) iff p E I(s).

•s=-ii iff s ri.

•s=riViffs~r)ors~.

 • s EK.q iff there exists some next state s' of s (i. e., (s, s') E R)

 such that s' ri.

 • s EGri iff there exists some path rr on K starting from the state

s such that ir(i) rj for `di>0.

 • s EN UJ iff there exists some path 71 on K starting from the state
s such that ai > 0, rr(i) andrr(j) r/ for 0<dj <

 addition to other Boolean operators such as conjunction (A), the
following abbreviations are often used:

 • AX n =

 • A[r1U] = -,(EG(rl A -1) V E[(77 A -10) u(-,rl A -'f)]).

3.5 Application for CTL Model Checker 83

 • AFT, = -iEG-ir1.

 • EFr1 = E[trueUfrd.

 • AGi = -iEF-ir1.

 Intuitively, the first letters of temporal operators, A and E, represent

universal and existential path quantifier, respectively. The other letters

of temporal operators represents:

 • X7) represents that rj holds at the next state;

 • Grp represents that rj holds at every state on the path;

 • Fri represents that holds at some state on the path;

 • ritk represents that holds at some state and 'r holds always before

 that state on the path.

3.5.3 Sequential Machines

A subset S of B" is represented by a characteristic function F such that

F(s) = 1 if and only if s E S.
 Let x;(1 < i < 1), < j < in) be input variables and state vari-

ables, respectively. Let x and y be vectors .x1, x2,r/ and 7,1, y2, ... y„„
respectively.

 A sequential machine with 1 inputs, in, state variables and ri outputs
are given in the form of Boolean functions as follows:

 • Transition functions:

fi(x,Y) (1 <.1 < in)

 • Output functions:
 zk(y) (1 < k < n) for Moore-type machines

zk(x,y) (1 < k < n.) for Mealy-type machines

84 3. Vector Algorithms for Manipulating Binary-Decision Diagrams

 In order to associate inputs and outputs of a sequential machine with

atomic propositions of the Kripke structure, px; (1 < i < 1) and pzk

(1 < k < n) are used as atomic propositions corresponding to xi and zk
respectively. x; = 1 corresponds to px; = true and so on. In addition,
Boolean function Fi,,,t(y) is introduced in order to represent the set of
initial states of the sequential machine, i. e., F;,,,t(y)=1 if state vector y
corresponds to an initial state.

3.5.4 Basic Algorithm

The algorithm shown in this section is based on [BCMD90].
 Since the semantics of CTL is defined over Kriplce structures, a given

sequential machine has to be transformed to a Kriplce structure for model

checking.

 The set of states of a Kripke structure is interpreted as the set of edges

of the state transition diagram of the sequential machine.

 Let s he x#y, a concatenation of two vectors x and y. By introduc-

ing new vectors of variables x' = x' ~ , x'2, r'1 and Y' = :~' 1, y'2, . y',»

corresponding to x and y. s' is defined to be x'#y'.

 The Kripke structure A is represented by the following Boolean func-

tion FA' :

Fl; (S', s) = H EQUIV(yi, fj(x, y))
0<j<777

This function means that FA (s', s) = 1 if and only if (s, s') is an edge of
the Kripke structure obtained from the sequential machines.

3x;. f is defined to he oR.(f (:r;; = 0), f (xi = 1)). 3x. f is defined to be
a•1, i .3x2....... Vx.f is defined similarly.

[Algorithm of CTL Model Checker]
 • Input: a CTL formula 0 and Boolean functions representing the

 sequential machine, fj (1 < j < ^!t,), zk (1 < k < n) and F;,,•

3.5 Application for CTL Model Checker 85

 • Output: good if the sequential machine satisfies 0 and bad otherwise.

(1) Construct a Boolean function representing a Kripke structure FI;
 Set Fp (s) = xj and F1,z, (s) = 74.

 (2) For each suhforrnula Hi of H, compute a Boolean function F0, repre-
 senting the set of states where H.i holds as follows. The algorithm

 runs in bottom up manner and finally computes F0:

 (a) If Hi is an atomic proposition, then return F©,.

 (b) If Hi is -ir~, then return NoT(Fn(s)).

 (c) If Hi is rq V , then return OR(Fn(s), Fe(s)).

(d) If Oi is E Y r1, then return FE x 71 as follows:
FEx,i(s) = as'. AND(FT1(s'), Fig (s', s))

 (e) If Hi is EGri, then return EEG?/ which is obtained as the fixed
 point of the following sequence of functions, Ao, A1, ...:

 Ao(s) = F71(s)
Ai+1(s) = AND(Ai(s),]s'.AND(Ai(S'), Fl, (s', s)))

 (f) If Hi is E[r1 U], then return FE[7ruc which is obtained as the fixed
 point of the following sequence of functions, Ao, A1, ...:

 Ao(s) = Fe(s)
Ai+1(s) = OR(Ai(s),

3s'.AND(Ai(s'), AND(F71(S), Fl; (s', s))))

(3) If Vy. OR(NOT(F277.ii), F0) = true then. return good else return bad.

3.5.5 Implicit Manipulation of Kripke Structure

Basic idea of this section is in [HHY92].

86 3. Vector Algorithms for Manipulating Binary-Decision Diagrams

 The size of an SBDD representing Fj; (s', s) = ni<j<,,, EQUIV(yli, fi(x, y))
can be very large, even if the total size for fi is small. By the following
computation, the construction of SBDD representing FK can he avoided.
 The Boolean function Fj; (s', s) is used only in the form: 2s'. AND(C(s'),
Fj; (s', s)). This function can be calculated as follows:

[Algorithm for 3s'.AND(C(s'), FA-(s' , s))]
Obtain the (m + 1) functions Di (i = 0, ... , in) defined as follows. Return
D,,,(s) as 3s'.AND(C(s'), Fj; (s', s)):

Do(s', s)_ 3x'.C'(s')
Di+1(y42,y4:3, ,yn„s) = OR(AND(Di(y41 = 1), fi+1(s)),

AND(Di(g+1 = 0), NOT(fi+1(S))))
for i.=0,1,...,m-1

 Note that if Di is independent of g+1, then Di+1 = Di. Whether Di
depends on g+1 or not can be tested by checking equivalence of Di and
Di(y;+1 = 0). Using this technique, large part of computation can be
reduced.

3.5.6 Implementation and Evaluation

The CTL model checker based on the above method was implemented on

the vector supercomputer HITAC S-820/80 at the University of Tokyo.
This program utilizes the Boolean function manipulator proposed in this
chapter. An SBDD representing the Boolean function F(s') is obtained
from an SBDD representing F(s) using the operation shift of variables.
The program is coded in Fortran 77.

 The benchmark results are shown in Table 3.2. This table shows the
required CPU time for model checking. The vector execution time (V),

the scalar execution time (S) and the vector acceleration ratio (S/V) are

3.5 Application for CTL Model Checker 87

 Sequential #node of CPU time Acceleration

Machine Sequential [sec] Ratio

Machine Scalar (S) Vector (V) (S/V)
padd2 186 4.25 0.78 5.44

padd4 359 12.70 1.91 6.66

padd8 741 55.77 6.74 8.27

paddl2 1,171 155.00 16.53 9.38

paddl6 1,649 386.66 36.09 10.71

calu2 628 18.48 1.83 10.08

calu4 1,220 94.50 6.28 15.05

calu8 2,476 804.52 37.67 21.36

calul2 3,828 157.40

calu l6 5,276 665.02

Table 3.2 : Experimental results

defined in section 3.4.2. The ,mode of sequential machine is the num-

ber of the nodes of SBDD representing the designed sequential machine.

Note that the maximum number of nodes required in the process of the

model checking is much greater than #node of sequential machine. The

sequential machines used for the benchmarks are pipelined CPU's. All

results of the benchmarks are good, i. e., every sequential machine satis-

fies the specification. Experiments of the scalar execution for benchmarks
'calul2' and 'calulG' was not performed because these jobs seemed to ex-

ceed the time limit of batch jobs of the University of Tokyo (3,600 sec.).

 From Table 3.2, we can see that 5.4 to 21.4 vector acceleration ratio is

gained (the vector acceleration ratio of 'calul2' and 'calul6' is expected
to be larger). These figures show that the program is suited for the vec-
tor supercomputer. In particular, the model checking for the sequential

88 3. Vector Algorithms for Manipulating Binary-Decision Diagrams

 machines represented by large munber of nodes are highly accelerated.

3.6 Conclusion

In this chapter a vector algorithm for manipulating Boolean functions

based on SBDDs has been proposed. The proposed algorithm is based

on breadth-first manipulation to utilize the high performance of vector

supercomputers.

 The Boolean function manipulator based on the proposed algorithm is

developed on the vector supercomputer HITAC S-820/80 at the Univer-
sity of Tokyo and benchmark results are shown. The vector 'acceleration

ratio on the S-820/80 is 5.3 to 27.8. This manipulator on the S-820/80
is faster than that of Minato et al. on Sun3/60 up to 130 times. As an
application, this manipulator is utilized for CTL model checker.

 Thus, the developed algorithm has been proven to be suitable for vector

supercomputers and the manipulator is proven to be faster than conven-

tional ones. The developed technique for Boolean function manipulation

is expected to be utilized for various applications of CAD systems such

as design verification, test generation, logic synthesis and so on which

support the design of VLSI whose scale and complexity are increasing

rapidly.

 Furthermore, there are many Mon-numerical computations other than

CAD systems which manipulate Boolean functions as given data or in-

termediate data. For such applications, Boolean function manipulators

based on SBDD may be utilized effectively. The results of this chapter ,

therefore, also suggests that the vector supercomputers can be utilized

for various non-numerical computations using SBDDs .

Chapter 4

Algorithms for Manipulating

Binary-Decision Diagrams in

Secondary Memory

4.1 Introduction

As described in the previous chapter, Ordered Binary-Decision Diagrams

(OBDDs), or simply Binary-Decision Diagrams (BDDs), are excellent
graph representation of Boolean functions[Ake78, Bry8G]. Efficient Boolean
function manipulators based on the Shared BDD (SBDD, a multirooted
BDD) representation have been developed[MIY90, BR.B90], and they are
widely used in various applications in Computer-Aided Design (CAD) of
digital systems.

 At present, SBDD manipulators are, in most cases, implemented on
workstations. The recent progress in VLSI technologies requires them
to manipulate larger-scale Boolean functions. The maximum size of the
SBDDs which can be manipulated on workstations is limited by both
required time and required memory. In order to reduce the computation
time, the use of parallel machines or connection inachines[ILC90] or the
use of vector supercomputers has been proposed. However, yet in many

 89

90 4. Algorithms for Manipulating Binary-Decision Diagrams in Secondary Memory

applications we have to give up to design large-scale circuits due to the

limitation of the size of main memory to store SBDDs rather than the

computation time. In order to reduce the size of SBDDs, attributed

edges have been proposed[MIY90, BRB90]. Variable ordering has been
also studied by many researchers.

 In this chapter, the use of secondary memory, such as hard disk drives

of workstations, is considered in order to manipulate very large SBDDs

which is too large to he stored within main memory. Irr contrast that

the conventional depth-first algorithm causes random access of memory,

the proposed method is intended to cause sequential access of memory.

The main idea of our method is level-by-level manipulation of Shared

Quasi-reduced BDDs (SQBDDs) upon a breadth-first algorithm. A set
of nodes and hash tables of one level are recalled from secondary memory

in one lot, then operations for the nodes of the level are performed within

main memory, and the results of the operations for the level are stored

to secondary memory all together. This algorithm is effective to reduce

the overhead due to access of secondary memory, because it requires

much fewer times to access secondary memory; every time a large data

block is transferred between main memory and secondary memory. In

addition, a garbage collection algorithm based on sliding type compaction

is introduced to reduce page faults in succeeding manipulation.

We implemented and evaluated the proposed method on a worksta-

tion Sun SPARC Station 10 with 64 megabyte main memory and a one

gigabyte hard disk drive connected via SCSI-2 standard interface. More
than 50 million nodes can be allocated within one gigabyte virtual mem-

ory space, and as a result an SQBDD with more than 12 million nodes

representing all primary outputs of a 15-bit multiplier was constructed

from a circuit description in about 5.6 hours. If the conventional SBDD

manipulator were used instead, it is estimated that it would take about

 4.2 Preliminaries 91

1,900 hours, so we can say that our manipulator achieved about 330 times

improvement in elapsed time. Furthermore, we made experiments using

semiconductor extended storage instead of hard disk, and showed that

the required time for the 15-hit multiplier is reduced to about 2.2 hours.

 In the following section, basic explanation on secondary memory and

inefficiency in using it for depth-first SBDD manipulator will he described.

See also section 2 of the previous chapter for basic explanation on SBDDs.

In section 3, a new method will be proposed. In section 4, experimental

results of the Boolean function manipulator will he shown. Section 5 will

provide some concluding remarks.

4.2 Preliminaries

4.2.1 Secondary Memory

Today, almost all general purpose computers have secondary memory

which have much larger capacity than main memory. In this paper, we as-

sume the following secondary memory devices for workstations and show

experimental results with them.

 Hard disk is one of magnetic memory devices. The transfer rate of the

hard disk drive used in experiments of section 4.4 is 10 megabytes per

second via SCSI-2 ANSI standard interface. The average access time of

the hard disk drive is 10 milliseconds. Semiconductor extended storage

is a secondary memory made of semiconductor memory devices, such as

DRAM's. The transfer rate of the semiconductor extended memory unit

used in section 4.4 is 10 megabytes per second via SCSI-2 interface. The

average access time of the semiconductor extended storage unit is 0.3

milliseconds.

 No matter which device is used, every transfer between main memory

and secondary memory is performed by a block transfer of contiguous

92 4. Algorithms for Manipulating Binary-Decision Diagrams in Secondary Memory

space. The minimum unit of transfer is called page. The page size defined

in the O. S. we will use in section 4.4 is 4096 bytes. In order to utilize

the maximum transfer rate, every transferred page should be filled with

actually used data.

4.2.2 Problems in the Use of Secondary Memory with Depth-

 First Algorithm

Now let us consider the use of secondary memory to enable manipulating

very large SBDDs which are too large to store within main memory.

 As mentioned in section 3.2.2, the conventional depth-first algorithm

for manipulating SBDDs is widely used on workstations. On the memory

access during the depth-first manipulation, following can be said;

 • Access to nodes causes random access in some cases. In order to

 avoid random access during the depth-first traversals of an SBDD,

 adjacent nodes should be placed in neighborhood in memory space.

 However, it is impossible if there are many nodes which have large

indegree.

 • Access to the operation-result-table and the node-table causes ran-

 dom access, because they are hash tables.

 As mentioned in section 4.2.1, a transfer between main memory and

secondary memory is performed by a block transfer of contiguous space.

Even if the required data in a page is only one node (about 20 bytes)
or only one entry of the operation-result-table (about 12 bytes), a whole

page is transferred, and the transfer time for the whole page (e. g. 4096
bytes) is required. It follows that secondary memory is not suitable to
store BDD when depth-first algorithm is employed.

4.3 Breadth-First Algorithm for Manipulating SBDDs in Secondary Memory 93

 X3 X2 Xi X, X3QX20X1 X3 X/ + X3 X2 X1

(a) A Shared Quasi-Reduced BDD

 X3 X2 X1 X1 X3QX20X1 X3 X1 +X3 X2 X1

(b) A Shared Binary-Decision Diagram

Figure 4.1: A Shared Quasi-reduced BDD (SQBDD) and SBDD

4.3 Breadth-First Algorithm for Manipulating SB-

DDs in Secondary Memory

4.3.1 Outline of the Proposed Method

In this section, we propose an efficient method for manipulating very
large SBDDs in secondary memory. The proposed method is based on the
breadth-first algorithm for manipulating diagrams level-by-level and the
data structure which explicitly classifies data according to levels. The set
of nodes of a level is stored in a contiguous space of secondary memory.
The operation-result-table and the node-table are also constructed for
every level.

 To enable level-by-level manipulation, let us introduce Shared Quasi-
reduced BDDs (SQBDDs). An SQBDD is a representation of Boolean
functions using an acyclic directed graph. An example of an SQBDD is
shown in Figure 4.1 (a). This graph represents four Boolean functions

94 4. Algorithms for Manipulating Binary-Decision Diagrams in Secondary Memory

 I

 a h= AND (I. g)

Figure 4.2: Expansion Phase of the Breadth-First Algorithm for Manip-
ulating SQBDDs

as represented by an SBDD in Figure 4.1 (b). There is no non-unique
node, but there are some redundant nodes in SQBDD. SQBDDs have
redundant nodes so as to hold the following property;

 • Every '0' edge and '1' edge of a level i node points to either a level

 (i — 1) node or a leaf-node.

 • Root-nodes which are externally referred to by users have the com-

 mon level, called level max, except the root-nodes which represent 0

 or 1.

 Note that there is no pseudo-leaf-node in SQBDDs, where pseudo-leaf-

node is a redundant node whose '0' edge and '1' edge point to the same

leaf-node.

 SQBDDs have the same excellent properties as SBDDs. SQBDDs are

canonical, and small in size for many practical Boolean functions.

4.3 Breadth-First Algorithm for Manipulating SBDDs in Secondary Memory 95

a h. AND (I.9)

Figure 4.3: Reduction Phase of the Breadth-First Algorithm for Manip-
ulating SQBDDs

4.3.2 Algorithm

As described in the previous chapter, the breadth-first algorithm consists

of two phases; an expansion phase and a reduction phase. In the expan-

sion phase, temporary nodes that are sufficient to represent the resultant

function are generated in a breadth-first manner from the root-node to-

ward the leaf-nodes (Figure 4.2). In the reduction phase, the temporary
nodes generated in the expansion phase are checked and the redundant

nodes and the non-unique nodes are removed in a breadth-first manner

from the nodes nearby the leaf-nodes toward the root-node (Figure 4.3).
 We will show the algorithm which is modified for manipulating SQB-

DDs.

The Expansion Phase

An input for the expansion phase is a requirement, which is a triple (op,
 e f, eg), where op is a Boolean operator to be executed, and ef and eg are

root-edges of argument Boolean functions represented by an SQBDD. A

96 4. Algorithms for Manipulating Binary-Decision Diagrams in Secondary Memory

 requirement (op, e f, eg) requires to compute the root-edge of the resul-
 tant function of op(f, g). During processing a requirement of level i, new

requirements of level (i — 1) are generated for computing the operations
 between sub-functions of the argument functions. Similar to the previous

 chapter, we introduce a requirement queue in order to manage these re-

 quirements, making our procedure breadth-first, and the nodes generated

 in the expansion phase are called temporary nodes, while the nodes which

 already exist are called permanent nodes.

 The following procedure is executed in the expansion phase. Initially,

 a requirement queue is empty, and there is no temporary node.

 [The Expansion Phase of the Breadth-First Algorithm]

 (1) Put the given requirement (op, e f, eg) to the requirement queue.

 (2) lev = level_inax

 (3) Execute one of (3.1), (3.2) or (3.3) for every requirement of level let;
 in the requirement queue.

 (3.1) If the root-node representing the result of op(f, g) is found triv-
 ially, then attach the edge pointing to the node as the result of

 the requirement.

 (3.2) If the root-node representing the result of op(f, g) is found in the
operation-result-table, attach the edge that is found in the table

 as the result of the requirement.

 (3.3) Otherwise, generate a new temporary node of level ley and at-
 tach the edge pointing to the temporary node as the result of

 the requirement. At the same time, register the edge pointing

 to the temporary node to the operation-result-table as the result
'at f , j) and put new requirements of level (lets — 1), (op, e f„,

4.3 Breadth-First Algorithm for Manipulating SBDDs in Secondary Memory 97

 e90) and (op, eh, efh), whose result will be '0' edge and '1' edge,
 respectively, of this temporary node, to the requirement queue.

(4) lev = lev — 1

(5) If the requirement queue is not empty, then go to (3).

The Reduction Phase

After the expansion phase is completed, there may be temporary nodes

which are pseudo-leaf-nodes or non-unique nodes. The riiain tasks in

the reduction phase are to find and. remove such nodes. In addition,

temporary nodes that are neither a pseudo-leaf-node nor a non-unique

node are registered to the node-table. In this algorithm, these tasks are

executed in a breadth-first manner from the nodes nearby the leaf-nodes

toward the root-node.

 When a pseudo-leaf-node or a non-unique node of level i is removed, a

forwarding pointer is set to indicate the node that takes the place of the
removed node. When the '0' edge or '1' edge of a temporary node of level

(i + 1) points to a removed node of level i, the edge is redirected'to point
to the node pointed to by the forwarding pointer of the removed node
before checking whether the temporary node of level (i + 1") is neither a

pseudo-leaf-node nor a non-unique node. Forwarding pointers are stored
in the array which were used as the requirement queue in the expansion

phase.
 The reduction phase is formalized as follows;

[The Reduction Phase of the Breadth-First Algorithm]

(1) = 1

(2) Execute (2.1) - (2.4) for every temporary nodes of the level lev.

4. Algorithms for Manipulating Binary-Decision Diagrams in Secondary Memory

 (2.1) If its '0' edge or '1' edge points to a removed node, modify the
 edge so as to point to the node pointed to by the forwarding

 pointer of the removed node.

 (2.2) If its '0' edge and '1' edge point to the same leaf-node, remove
 the node, and set its forwarding pointer to point to the leaf-node.

 (2.3) If there is an equivalent node registered in the node-table, remove
 the temporary node, and set its forwarding pointer to point to

 the node found in the node-table.

 (2.4) Otherwise, register the iiode to the node-table, and change the
 attribute of the node to "permanent" from "temporary".

(3) ley = ley + 1

(4) If lev < level max, then go to (2).

4.3.3 Data Structure

The above algorithm is effective for SQBDDs stored in secondary memory
if all the nodes of every level are stored together in a contiguous location in
secondary memory. Requirements of level i can be solved in the expansion

phase only if the nodes of level i and level (i — 1) are in main memory.
Temporary nodes of level i. can be checked in the reduction phase only
if nodes of level i and level (i — 1) are in main memory. In addition,
if the two hash tables are split up according to level, we need only one
operation-result-table at a time during the expansion phase and only one
node-table at a time during the reduction phase, and tables of other levels
can be swapped out to secondary memory.

 The allocated secondary memory space for the set of nodes of every
level includes free nodes for generating new temporary nodes. While
there are free nodes of a level, the size of an array of the set of nodes of

4.3 Breadth-First Algorithm for Manipulating SBDDs in Secondary Memory 99

the level do not change, so the array of the level is stored again in the

same location of the secondary memory space as they were. If there is

no free nodes in the allocated memory space for the level when a new

temporary node should he generated, garbage collection (see section 3.4)
is performed. If there are few nodes to be recycled anymore, then the total

number of the nodes of the level is increased by twice by allocating a new

location in the secondary memory space to store the new greater array for

the level. As described in [BRB90], the necessary size for the operation-
result-table and the node-table to keep the efficiency of the operation is

1/4 to the number of nodes. When the total number of the nodes of a
level is updated, then the operation-result-table and the node-table of

the level are also increased in size, and all elements are re-hashed into

the larger tables. This incremental allocation strategy has the following

advantages in the use of secondary memory;

 • The allocated spaces of secondary memory for levels are proportional

 to number of nodes of the levels. It optimizes the utilization of the

 space of the secondary memory.

 • The data density, i. e., the number of the actually used nodes per

 the number of allocated nodes, is kept high during manipulation. It

 is crucial to keep the data density to reduce the overhead of access

 of secondary memory (recall section 2.3).

4.3.4 Garbage Collection

Let us consider the implementation of automatic garbage collection for

our SQBDD manipulator. Basic idea described in [BRB90] is applied,
but sonic other techniques are also introduced[Coh81]. Each node has a
reference count of the number of '0' edges and '1' edges that reference it (if
the node is not level_max) or the number of user formulas that reference

100 4. Algorithms for Manipulating Binary-Decision Diagrams in Secondary Memory

it (if the node is level_max). This count is maintained incrementally. A
node with a reference count of 0 is called dead.

 When a user formula is freed, the reference count of its root-node

is decremented. If the renewed reference count of the root-node is 0,

the reference counts of its children should be recursively decremented.

However, decrernentation of the children are not performed immediately

in order to avoid extra access of secondary memory. Instead, dead root-

nodes are linked to a list, a dead list, of level_max. Just before the step

(3) of the expansion phase of succeeding operation, the reference counts of
the modes of level (lev — 1) which are referenced by the nodes in dead list
of level ley is decremented and those nodes whose reference count become
0 are linked to the dead list of level (le v —1). In this way, reference counts
are updated in breadth-first manner during the expansion phase.

 When the array of the set of nodes of a level become full, a garbage
collection for the level is performed. Garbage collection consists of delet-
ing all entries of the hash tables of the level that reference dead nodes and
compacting all non-dead nodes of the level in one end of the array. Com-

paction is effective for reducing page faults in succeeding manipulation of
this level. Furthermore, we choose sliding type compaction, i. e., non-dead
codes of the level are moved toward one end of the array without chang-
ing their linear order. Sliding type compaction keeps those nodes which
has been defined in the same expansion phase placed in neighborhood
in the array. which seems to be the best way to minimize the random
access within a level. Compaction step of the garbage collection includes,
of course, redirection of several kinds of pointers. See [Coh81] for more
detail on sliding type compaction of garbage collection.

 Sliding type compaction is also done- in the reduction phase in order

to remove pseudo-leaf-nodes and non-unique nodes.

4.4 Implementation and Evaluation 101

4.4 Implementation and Evaluation

4.4.1 Implementation

We implemented the proposed method in C language on the worksta-

tion Sun SPARC Station 10 (36MHz, SunOS 4.1.3) with 64 megabyte
main memory. As the secondary memory, hard disk and semiconduc-

tor extended storage are employed. Specifications of these devices are

described in section 4.2.1. Secondary memory space is allocated as the

swap area, which is used as the physical storage of the virtual memory

space managed by the OS. We used the secondary memory devices trans-

parently under the memory management system of the OS. This is the
easiest implementation of our method.

 The required space per a node is 18.25 bytes, including the space for

the hash tables. Within one gigabyte virtual memory space, more than

50 million nodes can be allocated.

 Minato et al. have proposed several attributed edges, including output

inverters, for the purpose of reducing the number of the nodes and/or
the time used for the manipulation of SBDDs[MIY90]. We employed the
output inverters.

 If multiple requirements of Boolean operations are given simultane-

ously, then they can be processed together by putting them to the re-

quirement queue at the initial step of the expansion phase of the breadth-
first algorithm. This technique is effective for parallel implementation of

SBDD manipulators. because it extends the parallelism of the process

[ILC90]. This technique is even more effective for our implementation to
use secondary memory, because it reduces the number of cycles of the

expansion phase and the reduction phase. We employed this technique.

 We chose multipliers as benchmarks of our manipulator in order to

demonstrate manipulation of very large SQBDDs which is too large to be

102 4. Algorithms for Manipulating Binary-Decision Diagrams in Secondary Memory

Table 4.1: Becliirrarlc Results o f our Manipulator

circuit # node in HD in SS

name #used #red. #alloc time (sec) time (sec)
elapsed CPU elapsed CPU

mult8 10,800 236 41,392 1.21 1.21 1.22 1.22

mult9 29,851 412 98,862 3.26 3.26 3.26 3.26

multl0 82,369 639 329,004 9.489.47 9.49 9.48

mult 11 227,655 1,083 869,674 28.69 28.68 28.74 28.69

mult12 626,859 1,870 1,592,104 80.78 80.74 80.87 80.79

mult 13 1,697,928 3,089 3,608,358 390.54 284.85 310.79 284.75

mult14 4,599,659 5,312 9,107,236 5,017.75 1,095.14 2,054.35 1,114.37

multl5 12,432,897 10,121 26,924,834 20,185.67 3,487.82 8,190.48 3,730.47

stored in main memory. (Standard benchmarks such as ISCAS'85 circuits

(except (.6288) are too small in BDD size to use secondary memory if ap-

propriate variable orderings are employed.) An SQBDD which represents
the Boolean functions of all primary outputs of an unsigned multiplier is

constructed from its circuit description. The employed variable ordering

is

ao›-bTZ_1dal>-b„_2>-a2 bn-: ••>- bo

where a's and b's are the multiplicand and the multiplier, respectively, and

ao aml bo are the LSB of them. This variable ordering requires relatively

small number of nodes during construction of SQBDDs for multipliers

among several systematic variable orderings.

4.4.2 Experimental Results

Table 4.1 shows the experimental results of our manipulator with one

gigabyte secondary memory. This table shows required CPU time (time
spent by user plus time spent by system) and elapsed time for constructing

4.4 Implementation and Evaluation 103

Table 4.2

: Bechmark Results of the Conventional Manipulator

circuit #node within MM in IID in SS

name used time (sec) time (sec) time (sec)
elapsed CPU elapsed CPU elapsed CPU

mult8 10,140 2.93 2.93 1,134.89 62.85 367.56 61.50

mult9 28,833 4.27 4.27 3,417.84 114.24 757.32 96.58

uniltl0 80,850 8.34 8.33 12,254.06 323.05 2,061.25 193.89

mult11 225,106 21.27 21.24 47,262.49 1,152.08 6,421.09 453.84

mult12 622,221 69.29 69.22 158,026.52 3,882.65 19,271.27 1,257.62

m uIt13 1,689,752 (unable) (not tried) 64,732.90 5,356.41

an SQBDD. Note that CPU time does not include idle time spent for

waiting for responses from secondary memory devices. The column #used

shows the number of nodes of the final SQBDD which represents the

Boolean functions of all the primary outputs of a multiplier. The column

#red. shows the number of redundant nodes among them (#used—#red.
is the number of nodes of SBDDs). We can see that the number of
nodes of an SQBDD is almost the same as the number of nodes of an
SBDD. The column #alloc shows the number of allocated nodes, i. e.,
total size of the final arrays for the sets of nodes. The column in HD
and in SS shows the results of the experiments with the hard disk and
the semiconductor extended storage, respectively. Elapsed time is almost
the same as CPU time up to 12-bit multiplier. In fact, the experiments
of up to 12-bit multiplier required no physical I/O. This is because they
can be performed within 64 megabyte main memory. This is yet another

advantage of our implementation of incremental allocation and the use of

virtual memory space managed by OS. From Table 4.1, the elapsed time

for generating an SQBDD for a 15-hit multiplier is about 5.6 hours and

2.3 hours using the hard disk and the semiconductor extended storage,

 101 4. Algorithms for Manipulating Binary-Decision Diagrams in Secondary Memory

respectively.

 Table 4.2 shows the experimental results of the conventional depth-

first algorithm. The manipulator used for these experiments is the SBDD

manipulator developed by Minato et al. which supports two kinds of at-

tributed edges, output inverters and input inverters[MIY90]. Their SBDD
manipulator does not support incremental allocation of memory space;

all the array space are allocated at the initialization process. The column

in HD and in SS shows the result using hard disk and semiconductor

extended storage, respectively, obtained by allocating (virtual) memory
space for 16,777,216 erodes (372 megabytes), that is probably the least
2's power necessary to generate an SBDD for 15-bit multiplier in order
to estimate the elapsed time for 15-bit multiplier (In fact, we could not
make the experiments for the multiplier of 14-bit or more, because they
take too long time). The column within MM shows the result obtained by
allocating only 24 megabyte memory space. From Table 4.2, the elapsed
time for generating an SBDD for a 12-bit multiplier using the conven-
tional depth-first manipulator is almost 2 clays when the SBDD is stored
in hard disk.

4.4.3 Discussion

Figure 4.4 illustrates the results shown in Table 4.1 and Table 4.2.

 By means of the conventional manipulator, elapsed time for a 12-hit

multiplier is about 2,300 times greater when the diagram is stored in hard

disk than when whole diagram is stored within the main memory. This

is unbearable.

From Figure 4.4, we can estimate that it takes about 2,000 seconds for

a 15-bit multiplier every when large enough main rrrerrrory would be avail-

able. By means of our manipulator, elapsed time for a 15-hit multiplier

using hard disk is only about 10 times greater than the above estimation.

4.4 Implementation and Evaluation 105

 Elapsed
Time
 (sec)

1,000,000

 100,000

 10,000

1,00C

 100

 10

1

Breadth-First

(within Main Memory)

ti 2,300
times

ti 280
times

Depth-First

(within Main Memory)

.~k, 330
times

:Depth-First

 (in HD)

 ;Depth-First
 (In SS)

 ti 90
 times

 Breadth-First
' (In HD)

VVBreadth-First .. (I
n SS)

ti 4.1
times

•.'k;10
times

8

Figure

9

4.4

 10 11

: Comparison

12

of the

13 14 15

Elapsed Time

Number of Bits
of Multiplier

 106 4. Algorithms for Manipulating Binary-Decision Diagrams in Secondary. Memory

 It is also estimated from Figure 4.4 that it takes more than 2 months

for -a 15-bit multiplier using the conventional manipulator and hard disk.

We can say that manipulator achieved 330 times improvement on elapsed

time.

Using, semicoIlductor extended storage, elapsed time of the conven-

tional manipulator for a 12-bit multiplier is improved about 8.2 times

compared with using hard disk, but still unbearable. Elapsed time of our

manipulator for a 15-hit multiplier is improved about 2.5 times and is

only about 4.1 tinges greater than the estimated elapsed time with large

enough main memory.

4.5 Conclusion

We have proposed an efficient method for manipulating very large SQB-

DDs in secondary memory and shown benchmark results. The developed

technique for SQBDD manipulation is expected to be utilized for various

CAD applications such as formal design verification, test generation, logic

synthesis and so on in order to enable us much Iarger and more complex

design which were not possible with the conventional SBDD manipula-

tors.

Chapter 5

Conclusions

In this thesis, three topics concerning Boolean function manipulation have

been discussed in order to solve very large problems in CAD of digital

systems.

 In chapter 2, high-speed algorithms for generating prime implicants

of a given Boolean function were discussed, and the use of vector su-

percomputer was proposed. The proposed algorithms were based on the

consensus expansion. The proposed algorithms were implemented ef-

ficiently on vector supercomputers by performing consensus expansion

in breadth-first manner, and employing truth table representation of a

Boolean function and map representation of a set of prune implicants.

Table look-up technique was also employed to reduce the consensus ex-

pansion stages. The proposed algorithms were implemented on the vector

supercomputer FACOM VP-400E at the Kyoto University Data Process-

ing Center and compared with several other algorithms. For example, by

the consensus expansion method with table look-up, all prime implicants

of randomly generated 18-variable Boolean functions were generated in

about 1.4 seconds on the average.

 As an application of the proposed algorithm, we have shown the results

related to the number of prime implicants of Boolean functions. We have

 107

108 Conclusions

shown that the Igarashi's conjecture on the inaxinmm number of prime

implicants of n-variable Boolean functions is true for n = 5 and 6, i. e.,

the maximum in tuber of prime implicants of 5- and 6-variable Boolean

functions are 32 and 92, respectively. It is still open whether the Igarashi's

conjecture is true for is = 7 and beyond.` .

 In chapter 3 and chapter 4, algorithms for manipulating SBDDs were

discussed in order to manipulate very large SBDDs which 4cannot be ma-
nipulated by conventional workstations, and the use of breadth-first al-

goritleln was proposed. The breadth-first algorithm consists of two parts;
an expansion phase and a reduction phase. In the expansion phase, new

Bodes sufficient to represent; the resultant Boolean fi.ulction are generated
in a breadth-first manner from the root-node toward leaf-nodes. In the
reduction phase, the nodes generated in the expansion phase are checked
in a breadth-first manner from nodes nearby leaf-nodes toward the root-
node.' a

 In chapter 3, a high-speed algorithm for manipulating SBDDs which
is suitable for vector supercomputers was proposed. Breadth-first algo-
rithm was employed to vectorize manipulation, and actually almost all
steps were vectorized, including hash table access which was efficiently
vectorized using high-speed vector indirect store instruction of a vector
supercomputer HITAC S-820/80. A Boolean function manipulator based
on tie proposed algorithm was implemented on the HITAC S-820/80 at
the University of Tokyo, and experiments of constructing the SBDDs
representing the Boolean functions of all the primary ' outputs and Teets
front a circuit description chosen from ISCAS'85 [BF85] were perfoirned.
From'these`experiments, the vector acceleration ratio on the S-820/80
was 5.3 to 27.8. Compared with the results on the work station Sun3/6O
by' Minato et al. [MIY90], our results were up to 130 tithes' faster in the
best case. Ili addition, as an example of applications of SBDDs, 'a' design

 onciusions 109

verification system based on computation tree logic (CTL) model checker
was implemented and the experimental results were shown.

 In chapter 4, the use of secondary memory was discussed in order to

manipulate SBDDs which were too large to be stored within main mem-

ory. In order to avoid random accesses to the secondary memory, level-

by-level manipulation of Shared Quasi-reduced BDDs (SQBDDs) upon
a breadth-first algorithm was employed. The use of garbage collection

with sliding type compaction was also introduced to reduce page faults

in succeeding manipulation. A Boolean function manipulator based on

the proposed algorithm was implemented and evaluated on the worksta-

tion Sun SPARC Station 10 with 64 megabyte main memory and a one

gigabyte hard disk drive connected via SCSI-2 standard interface. As a
result an SQBDD with more than 12 million nodes representing all the

primary outputs of a 15-bit multiplier was constructed froirl a circuit de-
scription in about 5.6 hours. If the conventional SBDD manipulator is

used instead, it is estimated that it would take about 1,900 hours, so we

can say that our manipulator achieved about 330 times improvement in

elapsed time.

 The results in chapter 2 and 3 suggests that the use of vector super-

computers is effective not only for numerical problems, but also for logical

and combinatorial problems. There are also many non-numerical com-

putations other than CAD systems. Some of the developed algorithms,
data structures and techniques seems useful for such applications.

 BDDs are now widely utilized in various areas, including design veri-

fication, test generation and logic synthesis for VLSI CAD, truth main-

tenance system of artificial intelligence, and sonic other mathematical

problems. BDD-based prime implicants generation has been also stud-
ied [C'1\I92]. The developed Boolean function manipulators are expected
to be used for various BDD applications. Discovering new application

110 Conclusions

areas of BDDs and improving the performance of Boolean function ma-

nipulators will provide a fruitful area of research for many years to come.

Especially, studies on computer architecture for Boolean function manip-

ulation seem challenging; memory architecture and/or connnunication of

processors are and will he the central problems. The proposed breadth-

first algorithm for manipulating SBDDs seems useful for large and corn-

plex problems of Boolean functions to solve.

References

 [Ake 78]

[BCNID90]

[BF85]

[BRB90]

[Bry 8G]

[CB89]

S. B. Akers. Binary decision diagrams. IEEE Trans. Comput.,

C-27(6):509-516, June 1978.

J. R. Burch, E. M. Clarke, K. L. McMillan, and D. L. Dill. Se-

quential circuit verification using symbolic model checking. In

Proc. 27th ACM/IEEE Design Automation Conference, pages
46-51, June 1990.

F. Brglez and H. Fujiwara. A neutral netlist of 10 combina-

tional circuits, special session on ATPG and fault simulation.

In Proc. 1985 IEEE International Symposium on Circuit and

Systems, hyoto, Japan, Tune 1985.

K. S. Brace, R. L. Rudell, and R. E. Bryant. Efficient im-

plementation of a BDD package. In Proc. 27th ACM/IEEE
Design Automation Conference, pages 40-45, June 1990.

R. E. Bryant.. Graph-based algorithms for Boolean function

manipulation. IEEE Trans. Concput., C-35(8):677-691, Au-

gust 1986.

K. Cho and R. E. Bryant. Test pattern generation for sequen-

tial NIOS circuits by symbolic fault simulation. In Proc. 26th

ACM/IEEE Design Automation Conference, pages 418--123.
June 1989.

 111

References

 [IDY00]

[Iga70]

[IYY87]

[Kag87]

[KC00]

[KOY 7 9]

[McC56]

113

ing for branching time temporal logic. In Proc. Synthesis

and Simulation Meeting and International Interchange 1992,

pages 243-252, April 1992.

N. Ishiura, Y. Deguchi, and S. Yajima. Coded time-symbolic

simulation using shared binary decision diagram. In Proc.

27th ACM/IEEE Design Automation Conference, pages 130-
135, June 1990.

Y. Igarashi. An improved lower bound on the maximum num-

ber of prime implicants. Trans. IECEJ, E62(6):380-394, June

1979.

N. Ishiura, H. Yasuura, and S. Yajima. High-speed logic sim-

ulation on vector processors. IEEE Trans. Computer-Aided

Design, CAD-6(3):305-321, May 1987.

T. Kagatani. Vector algorithms for generating prime impli-

cants of logic functions. Master's thesis, Department of In-

formation Science, Faculty of Engineering, Kyoto University,

Japan, February 1987.

S. Kimura and E. M. Clarke. A parallel algorithm for con-

structing binary decision diagrams. In Proc. 1990 IEEE In-

ternational Conference on Computer Design, pages 220-223,

September 1990.

Y. Kaunbayashi, K. Okada, and S. Yajima. Prince implicant

generation of logic functions using clause selection method.
Trans. IECEJ, J62-D(2):80-96, February 1979. (in Japanese).

E. J. M-IcCluskey, Jr. Minimization of Boolean functions. Bell

Syst. Tech. J., 35(6):1417-1444, November 1956.

114 References

[MIY90]

 [Mor70]

[MP64]

[Ne154]

[Pet60]

[Qui55]

[SCL 7 0]

[SYMF90]

S. Minato, N. Ishiura, and S. Yajima. Shared binary decision

diagram with attributed edges for efficient Boolean function

manipulation. In Proc. 27th ACM/IEEE Design Automation
Conference, pages 52-57, June 1990.

E. Morreale. Recursive operators for prime implicant and irre-
clundant normal form determination. IEEE Trans. Comput.,
C-19(6):504-509, June 1970.

F. Mileto and G. Putzolu. Average values of quantities ap-

pearing in Boolean function minimization. IEEE Trans. Elec-
tron. Comput., EC-13:87--92, April 1964.

R. J. Nelson. Simplest normal truth functions. J. Symbolic

Logic, 20(2):105-108, June 1954.

S. R. Petrick. On the minimization of Boolean functions.

In Proc. International Conference on Information Processing,

1959, pages 422-423, Germany, 1960. Oldenbourg.

W. V. Quine. A way to simplify truth functions. American

Mathematical Monthly, 62:627-631, November 1955.

J. R.. Slagle, C. L. Chang, and R. C. T. Lee. A new algorithm

for generating prime irnplicants. IEEE Trans. Comput ., C-
19(4):304-310, April 1970.

H. Sato, Y. Yasue, Y. Matsunaga, and 1\1 Fujita . Boolean
resubstitution with permissible functions and binary decision

diagrams. In Proc. 27th ACM/IEEE Design Automation Con-

ference, pages 284-289, June 1990.

References 115

[Tis67] P. Tisoii. Generalization of consensus theory and

to the minimization of Boolean functions. IEEE

trop. Comput., EC-16(4):446-456, August 1967.

application

Trans. Dec-

Acknowledgment

I would like to express my sincere appreciation to Professor Shuzo Yajiina

of Kyoto University for his continuous guidance, interesting suggestions,

accurate criticisms and encouragements throughout this research.

 I would also like to express my thanks to Associate Professor Naofurni

Takagi of Kyoto University who introduced me to the research field of

logic design and has been giving me invaluable suggestions and accurate

criticisms. I am also grateful for his comments and advices for the study

described in chapter 2.

 I would also like to express my thanks to Dr. Nagisa Ishiura of Osaka

University who introduced me to the research field of supercomputing and

binary-decision diagrams, and has been giving inc invaluable suggestions

and helpful advices throughout the study described in chapter 2 and 3.

 I would also like to appreciate Professor Hirouii Hiraishi of Kyoto

Sangyo University and Dr. Kiyoharu Hamaguchi of Kyoto University for

their helpful suggestions and discussions. I am also grateful for their help

in implementation of CTL model checker in section 3.5.

 I would also like to thank Mr. Koichi Yasuoka of Kyoto University

for his invaluable suggestions and comments especially for the study de-

scribed in chapter 4.

 I would also like to thank Mr. Shin-ichi Minato for his valuable sugges-

tions and discussions on binary-decision diagrams. His SBDD subroutine

library were indispensable for the evaluation in section 4.4.

 117

118 Acknowledgment

 I wish to express my gratitude to Mr. Katsutoshi Amitani for develop-

ing the vectorized prime implicant generator based on Quine-I'Ic'Cluskey

method in section 2.6.

 I would also like to thank Mr. Nobuyoshi Kaneda of Nittetsu Hokkaido

Control Systems and Mr. Ichiro Okinaka of Nippon Steel for giving me

an opportunity to utilize the semiconductor extended storage devices for

the experiments in section 4.4.

 Thanks are also due to all the members of the Professor Yajima's

Laboratory for their discussions and supports throughout this research.

especially to Mr. Hiroyuki Ogino, Mr. Kazuyoshi Takagi and Mr. Yasuhiro

Fujiyoslli, who helped me in carrying out the experiments in section 4.4.

Appendixes

Proof of Lemma 1

[Lemma 1]
Let f be a k-variable Boolean function. and xi a Boolean variable (1 <
i < k). A product term p is a prime implicant of f . if and only if one of
the following statements is true.

 1. p is a prime irnplicant of f (x; = *).

 2. 1) is a prime implicant of i;f (xi = 0). and does not imply f (xi = *).

 3. p is a. prime implicant of xi f (.r; = 1). and does not imply f (.r; = *)

(proof)It is clear that a prime implicant off is an implicant of ?if (x; = 0)
(xi f (xi = 1)) if 2i (.r;) appears in its representation. A prime implicant of
f which is independent of x; is an implicant of f (.r; = *). Hence a prime
implicant of f is an implicant of at least_ one of .r; f (.r; = 0)..r; f (xi = 1)
and f (.r; _ *).

 Suppose that there is an implicant of either ; f (.r; = 0), .X; f (.r; = 1)
or f (xi = *) that is implied by a prime implicant of f . From the equation

f = .i; f (x; = 0) + xi f (x; = 1) + f (xi = *), it follows that an implicant of
either %f (.r; = 0), x; f (.r; = 1) or f (xi = *) is an implicant of f . Hence
there is an implicant of f that is implied by another implicant of f
which contradicts the definition of prime implicant; accordingly, a prune

 119

120 Appendixes

implicant of f is a prime implicant of either zi f (xi = 0), xi f (xi = 1) or

f (xi = *).
 A prime implicant of f (xi = *) is independent of xi, thus it does not

imply both Tf (xi = 0) and xi f (xi = 1). A prime implicant of either
.z i f (xi = 0) or xi f (.ri = 1) which is not a prime implicant of f is a non-

prime implicant of f. and the prince implicant of f which is implied by it
is obviously a prime implicant of f (xi = *).^

Proof of Lemma 3

[Lemma 3]
Let f he an k-variable Boolean function and g1, ... and g; (j > 0) be k-
variable Boolean functions which implies f, and .ri be a Boolean variable

(1 < i < k). p is a prime implicant of f which implies neither ~1, ...nor
rJ; , if and only if

 1. 1) is a prune implicant of f (xi = *) which implies neither g1(xi = *),
,nor g;(xi=*),or

 2. p is a prime implicant of .cif (xi = 0) which implies neither gi (xi =
 0), ... , .Y'ig;(xi = 0) nor f (xi = *), or

 3. p is a prime implicant of xi f (xi = 1) which implies neither xig1(xi =
1). , = 1) nor f (xi = *).

(proof)By mathematical induction on j.
 Case 1 : When .j = 0, Lemma 3 is equivalent to Lemma 1.

 Case 2 : Assume that Lemma 3 is true for j = jo > 0. On a Boolean
function. say gi„+1. which implies f, it is obvious that

 • a prime implicant of category (1) of the statement of Lemma 3 that

implies g;„+1 implies g;„+l(xi = *), and

Appendixes 121

• a prime implicant of category (2) ((3))

 i9;„+1 (xi = 0) (xigi„+i(xi = 1)).

Hence Lemma 3 is also true for j = jo + 1.

that irn plies 9i„+1 implies

122 Appendixes

List of Publications by the Author

Major Publications

1. N. Takagi, H. Oclii and S. Yajima : "Vector Algorithms for Generat-
 ing Prime Implicants of Logic Functions", Proc. Third International

 Conference on Supercomputing, vol. 3, pp. 281-287, (May 1988).

2. H. Ochi, N. Takagi and S. Yajima : "Vector Algorithms for Gen-
 erating Prime Implicants of Logic Functions Based on Consensus

Expansion" (in Japanese), Trans. IEICE D-I, vol. J72-D-I, no. 9,

 pp. 652-659, (Sep. 1989).

3. H. Ochi, N. Ishiura and S. Yajima : "Breadth-First Manipulation
 of SBDD of Boolean Functions for Vector Processing", Proc. 28th

 ACM/IEEE Design Automation Conference, pp. 413-416, (June 1991).

4. H. Hiraishi, K. Hamaguchi, H. Oclii and S. Yakima : "Vectorized

Symbolic. Model Checking of Computation Tree Logic for Sequential

Machine Verification", Proc. Third Workshop on Computer Aided

 Verification, vol. I, pp.279-290, (July 1991).

5. H. Ochi, N. Ishiura and S. Yajima : "A Vector Algorithm for Ma-

 nipulating Boolean Functions Based on Shared Binary Decision Dia-

 grams", Proc. International Symposium on Supercomputing, pp. 191-
 200, (Nov. 1991).

 123

124 List of Publications by the Author

6. H. Ochi, N. Ishiura and S. Yajima : "A Vector Algorithm for Ma-

 nipulating Boolean Functions Based on Shared Binary Decision Di-

 agrams", Supercomputer 46, vol. VIII, no. 6, pp. 101-118, ASFRA,

 (Nov. 1991).

7. H. Ochi, K. Yasuoka and S. Yajima : "Breadth-First Manipulation
 of Very Large Binary-Decision Diagrams", Proc. International Con-

 ference on Computer-Aided Design 93, pp. 48-55, (Nov. 1993).

Technical Reports

 1. H. Ochi, N. Takagi and S. Yajima : "High-Speed Generation of Prime

 Implicants of Logic Functions on Vector Processors" (in Japanese),

 Technical . Report of IPS Japan, vol. 88, no. 10, 88-DA-41, (Feb.

 1988).

 2. H. Ochi, N. Takagi and S. Yajima : "On the Number of Prime Impli-

 cants of Logic Functions" (in Japanese), Technical Report of IEICE,

 vol. 89, no. 85, COMP89-23, (June 1989).

 3. H. Ochi, N. Ishiura, N. Takagi and S. Yajima : "A Breadth-First

 Vector Algorithm for Manipulating SBDD", Technical Report of IPS

 Japan, vol. 91, no. 11. 91-AL-19. (Jan. 1991).

 4. H. Ochi, H. Sawada, K. Okada, A. Uejima, H. Kanibara , K. Ham-
 aguchi and H. Yasuura : "A Microprocessor for Education of Com-

 puter Engineering and Integrated Circuit Design : KUE-CHIP2" (in
 Japanese), Technical Report of IPS Japan, vol. 92, no. 82, 92-ARC-

 96. pp. 93-100, (Oct. 1992).

 5. H. Ochi, K. Yasuoka and S. Yajima : "A Secondary Storage Oriented

 Breadth-First Algorithm for Manipulating Very Large SBDD's", Tech-

List of Publications by the Author 125

 nical Report of IPS Japan, vol. 93, no. 6, 93-ARC-98/93-DA-65,

 pp. 25-32, (Jan. 1993)

 6. H. Ochi, K. Yasuoka and S. Yajima : "A Breadth-First Algorithm
 for Manipulating Very Large Shared Binary-Decision Diagrams" (in

 Japanese), Proc. Design Automation Symposium '93, IPS Japan,

pp. 121-124, (Aug. 1993).

Convention Records

 1. H. Ochi, N. Takagi and S. Yajima : "Generating Prime Implicants
 of Logic Functions on a Vector Processor by Consensus Expansion
 Method with Table Look-up" (in Japanese), Proc. 36th Annual Con-

 vention IPS .Japan, vol. 3, pp. 1987-1988, (May 1988).

 2. H. Ochi, N. Takagi and S. Yajima : "On the Maximum Number of
Prime Implicants of 5- and 6-Variable Logic Functions" (in Japanese),

 1989 Spring National Convention Record, IEICE, vol. 6, p. 92, (May
 1989).

 3. H. Ochi, N. Ishiura, N. Takagi and S. Yajima : "A Vector Algorithm
 for Boolean Function Manipulation Based on Shared Binary Decision

 Diagrams" (in Japanese), Record of the 1990 Kattsai-Section .Joint
 Convention of Institutes of Electrical Engineering, Japan. p. S57.

 (Oct. 1990).

 4. H. Ochi, N. Ishiura and S. Yajima : "A Vector Algorithm for Manip-
 ulating SBDD" (in .Japanese), Proc. 42nd Annual Convention IPS

.Japan, vol. 6, pp. 156-157, (May 1991).

 5. H. Ochi, K. Yasuoka and S. Yajima : "A Breadth-First Algorithm
 for Efficient Manipulation of Shared Binary Decision Diagrams in the

126 List of Publications by the Author

 Secondary Memory" (in Japanese), Proc. 45th Animal Convention
 IPS Japan, vol. 6, pp. 137-138, (Oct. 1992).

 6. H. Ochi, K. Yasuoka and S. Yajima : "A Breadth-First Algorithm for
 Manipulating Shared Binary-Decision Diagrams in Secondary Stor-

 age" (in Japanese), Proc. 1993 IEICE Fall Conference, vol. 1, p. 60,

 (Sep. 1993).

Miscellaneous

 1. H. Ochi, K. Yassuoka and S. Yajima : "Secondary Storage Oriented
 Breadth-First Manipulation of Very Large Shared Binary Decision
 Diagrams", KUIS Technical Report, KUIS-92-0005, Kyoto Univer-
 sity, Japan, (Dec. 1992).

 2. H. Ochi, K. Yasuoka and S. Yajima : "A Secondary Memory Ori-
 ented BDD Manipulator Using Garbage Collection Based on Sliding

 Type Compaction", KUIS Technical Report, KUIS-93-0007, Kyoto
University, Japan, (Apr. 1993).

