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Abstract

  This paper is concerned with robust control of nonlinear systems 
including robot manipulators. The following results have been obtained 
in this research. 

  Robust trajectory control of robot manipulators: A practical 
robust control design method is proposed, fully exploiting the prop-
erty of manipulators, i.e., the feature that the dynamics is composed 
of the linear combination between unknown physical parameters and 
measurable parameters such as joint displacement or the feature that 
the acceleration sensor information or joint torque sensor information is 
available. In addition, a digital robust controller of robot manipulators 
is proposed, where the effect of the discretization of a robust controller 
on the control error is taken into consideration. 
• Development of foundations of robust control of nonlinear 

systems: First, a characterization of the bounded real condition of 
nonlinear systems is given using the Hamilton-Jacobi equation with 
a stabilizing solution and the Hamilton-Jacobi strict inequality. The 
former has an important role to analyze the internal stability of non-
linear systems, while the latter has an advantage that it can simply 
be applied to the  Hco control problem. The characterization by these 
two approaches completes the strict bounded real condition of nonlin-
ear systems to form a basis to develop the nonlinear Hco control the-
ory. Second, based on the above obtained results, some sufficient (and 
necessary) conditions for the solvability of the nonlinear Hoc, control 

problems via state feedback or output feedback are given. In addition, 
the obtained He° state feedback control is applied to the robust sta-

bilization problem of nonlinear system with unstructured uncertainty. 

Finally, a global robust stabilizability condition for nonlinear cascaded 

systems is analyzed, using a different approach from the nonlinear H,,, 

control theory.
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Chapter 1

INTRODUCTION

1.1 History of robust control 

  In general, it is difficult to find a model of the plant to be controlled 

rigorously. There mostly exists some discrepancy between the real plant 

and the model which is analytically or experimentally given. If we take 

no account of such a modeling error to design a controller based on 

the model, then the obtained controller frequently may make a closed 

loop system unstable or give an unsatisfactory control performance. 

Thus since the late 1970s, many researchers have developed control 

system design methods to make a plant stable or keep a specified control 

performance of the closed  loop systems in spite of uncertainties such as 
the modeling error. Such a control theory is called the robust control 

theory. Although the robust control theory has many approaches at 

present, two approaches are focused on here, that is, an approach based 
on the Lyapunov Stability Theorem and an approach based on the Heo 

control theory. 

Robust control based on Lyapunov Stability Theorem

  Studies on the stabilization of linear systems with deterministic un-

certainty began in the late 1970s, based on the Lyapunov Stability 

Theorem [38, 70]. After that, the Lyapunov-based robust control ap-
proach of linear systems has been extended to nonlinear setting. There 
are many results especially when there exist uncertainties satisfying 

the so-called matching condition (which is a condition for an input of

1



2 Chapter 1 Introduction

a plant to act on uncertainties directly) [37, 28, 2, 32, 29]. In addition, 
combined with the singular perturbation theory [104, 72, 26, 71, 122, 64] 
or differential geometric approach [109, 14, 34], the control theory based 
on the Lyapunov Stability Theorem has been developed as one field of 

the robust control theory of nonlinear systems. This approach has  also 

been applied to tracking control problems of robot manipulators which 

have strong nonlinearity [103, 39, 119, 93, 59, 1]. 
  In the case of linear systems, on the other hand, the Lyapunov-

based robust control approach has been developed as the quadratic 

stabilization scheme. The quadratic stabilization problem is reduced 

to the solvability of the Riccati equation, and the method is useful 

even for the uncertainty which does not satisfy the matching condition 

[11, 100, 98, 95, 96, 99, 97, 151, 150, 102, 62, 94]. 
Hc,„ control theory  

  In the field of linear system control theory, the robust control has 

also been considered from the viewpoint of the frequency domain. Es-

pecially since the early 1980s, the Hoc control theory, which was pro-

posed by Zames, has been developed [148, 33, 36, 31]. Recently the 
Hoo control theory is well acknowledged as one of the most powerful 

design schemes for the robust control system. It pays attention to a 

maximum gain of a transfer function, which is called H, norm or L2 

gain, to reduce a robust control problem to a Hcc, control problem. 
A state space solution to the general Hoo control problem was given 

by Glover and Doyle in 1988. Using the Hao control theory, we can 

solve a robust stabilization problem for the unstructured uncertainty 

such as the modeling error which is given by the discrepancy of the 

gain. In addition, the relation between the Hoo control scheme and 
the quadratic stabilization scheme was clarified, and it was found in 

[62] that, roughly speaking, the former includes the latter. Recently, 
several researchers have begun to extend the Hoo control theory of lin-

ear systems to nonlinear setting. We call it the nonlinear H, control 

theory. 

  Under the above background on the robust control, this paper treats 

two topics of the robust control: (I) Studies on the robust control of 
robot manipulators based on the Lyapunov Stability Theorem, and (II) 
Studies on the robust control of nonlinear systems (the nonlinear H,„ 
control and global robust stabilization in the absence of the matching
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condition). In this first chapter, the previous works on both topics are 
surveyed first, and then the goal and the composition of this thesis are 

described.

1.2 Background of robust control 

manipulators

of  robot

  Trajectory control of a robot manipulator is one of fundamental 
problems in the field of robotics. Since a robot manipulator in general 
has some kind of nonlinearity, it is much important to consider the non-
linearity in the trajectory control problem. Although there exist many 
previous studies on the trajectory control, one of well known results 
was given by Luh et al. [77] in 1980, which is called the resolved accel-
eration control method or the dynamic control. A controller designed 
by this scheme is composed of linearization and servo compensation. 
In other words, the linearizing compensation makes the dynamics of 
the manipulator linear and then the resulting linearized system is com-

pensated by a linear servo controller. Indeed, the idea of this control 
scheme is natural from the viewpoint of the control of nonlinear system, 
but it requires an exact model of the real plant to be controlled. In the 
case of a robot manipulator, it is usual that real values of some physical 

parameters such as the mass and the inertia of the arm or the friction 
coefficient of the joint are exactly unknown, although we can get esti-
mated values of these parameters by some identification method. If the 
estimated values are used for the linearization of the manipulator, then 
the manipulator cannot be often controlled theoretically well, and the 
obtained controller may be unsatisfactory from the viewpoint of con-
trol performance, because the dynamics of the manipulator cannot be 
linearized completely. In addition, there may exist some disturbances 
such as measurement noise in the manipulator system, which often lead 
to unsatisfactory control performance. 

  Thus the robust control scheme based on the Lyapunov Stability 
Theorem, which has been developed for general nonlinear systems with 
deterministic uncertainty, began to be applied to the trajectory control 
of manipulators. There are mainly two approaches in this field: sliding
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mode control and robust control based on the Lyapunov Stability The-

orem (in the local sense). The sliding mode control scheme has been 
developed by Itkis [58] and Utkin [126] et al., and has been applied 
to the trajectory control of the manipulator by Young [147] and some 
researchers [114, 112, 41, 143, 68, 20]. On the other hand, concerning 
the robust control approach based on the Lyapunov Stability Theo-

rem (in the local sense), Ryan et al. [103] applied the Lyapunov-based 
robust control scheme proposed by Corless and Leitmann [28] to the 
trajectory control of manipulators for the first time. After that, using 
this approach, the robust trajectory control of manipulators has been 
studied by many researchers [2, 39, 119, 93, 59, 1]. Especially, Slotine 
[112], and Osuka and Sugie [93, 119] clarified how to design control pa-
rameters so as to achieve the specified tracking precision. In addition, 
the idea that the feedback gain in the above robust control is automat-
ically adjusted according to the bound of the control error has been 
developed for general nonlinear systems including robot manipulators, 
which is called an adaptive robust control scheme [27, 21, 81, 24, 73]. 
  Although these methods commonly adopt a high feedback gain in 

order to compensate for the uncertainty, the unnecessarily high gain in 

feedback may make the system unstable by the effect of the unmod-

elled dynamics, and cause unexpected phenomena such as chattering 

in digital control systems. Therefore from the practical viewpoint, it is 

crucial to make the feedback gain as small as possible without sacrific-

ing the tracking accuracy. In the conventional robust control methods 

of robot manipulators, the estimation of the bound of the uncertain-

ties is too conservative, and as a result, the feedback gain calculated 

by the conservative estimation on the uncertainty tends to be much 

larger than necessary to achieve the specified tracking precision. On 

the other hand, the conventional adaptive robust control methods have 

an advantage that the feedback gain is automatically determined with-

out any a priori information on the uncertainty. However, the explicit 

quantitative relation between the tracking error bound and the design 

parameters is not clear at all there. In this light, it is difficult to tell 
whether the feedback gain is unnecessarily high or not. Also the design 

procedure of both the conventional robust and adaptive robust con-
trollers of robot manipulators is much complicated. These problems in 

the conventional robust control of robot manipulators come from the
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fact that the robust control schemes for general nonlinear systems is 

straightforwardly applied to that of robot manipulators and the spe-

cial structure of the manipulator dynamics is not fully exploited there. 

General formulation may result in the conservative estimation of the 

uncertainty, makes the controller more complicated, and makes it more 

difficult to clarify the relation between the design parameters and the 

bound of the control error. 

  In addition, most of robust controllers of nonlinear systems are non-

linear, so the robust nonlinear controller is usually discretized when it 

is implemented. Thus we need to take account of the effect of the dis-

cretization of the robust controller on the control error, but there has 

been no research on this topic. 

  It is concluded that the robust control schemes of robot manipulators 

in the existing literatures are not sufficient from a practical point of 

view. We believe that it is much significant to establish a practical 

robust control design scheme of robot manipulators, fully exploiting 

properties of the plant itself.

1.3 Background of robust 

linear systems

control of non-

1.3.1 Nonlinear  Hco control

  As stated in Section 1.1, various techniques on the H,„ control 

theory of linear systems have been developed in the last decade, see 

e.g. [36, 31], and several researchers have recently attempted to ex-
tend the Hoc, control to the case of nonlinear systems. Ball and Hel-

ton [7, 8, 9], from a viewpoint of operator theory, discussed H,, con-
trol theory of nonlinear systems, for the first time, and connected it 

with the differential game theory [13, 124, 74, 12]. Van der Schaft 
[130] analyzed the relation between the L2 gains of nonlinear systems 
and their linearization, and gave a sufficient condition for the exis-

tence of smooth Hco state feedback control. In addition, van der 

Schaft [131, 127, 128] paid attention to the dissipative system theory 
[139, 138, 137, 85, 84, 46, 44, 45, 134], and discussed the relation be-
tween the L2 gain and the Hamilton-Jacobi equation, and applied to
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the state feedback case. However, there was no discussion on a stabiliz-

ing solution of the Hamilton-Jacobi equation, except for the discussion 

based on the linearization. Isidori and Astolfi [55, 57, 54] have derived 
a sufficient condition for the existence of  Hc,„ output feedback control 

as well as state feedback in the case where the Hamiltonian system does 

not necessarily have a hyperbolic equilibrium. Their success is based 

on the differential game theory and the La Salle's Invariance Principle. 

Using the latter, they proved the internal stability of the closed loop 

system. However, their sufficient condition is more restrictive than that 

of the linear case at the point that it requires positive definiteness of 

the solution of the Hamilton-Jacobi-Isaacs equation, while a positive 

semi-definite solution is enough in the linear case. There is also some 

discussion on a necessary condition for Hoo control. 

  Very recently, Ball et al. [10] and van der Schaft [129] discussed 
a necessary condition for the existence of H,, output feedback con-

trol, from the dissipative system theory, and the structure of nonlinear 

Hoo controllers, but the derived condition is not necessary and suf-

ficient. There is also no analysis on the stabilizing solution of the 

Hamilton-Jacobi-Isaacs equation, which appears in the nonlinear Hco 

control theory, while the stabilizing solution of the Riccati equation 

plays an important role in the linear Hoo theory. In addition, van der 

Schaft [129] gave some results about the strict H , control problem, 
where the strict inequality condition for the L2 gain of the systems is 

taken into consideration. However, his results cannot be extended to 

an asymptotic stability case, because it is based on the linearization. 

  Although the former results shown above are very interesting and 

important, it is not satisfactory in the following sense: they do not 

give the answer to the following fundamental questions. (1) Can we 
treat the strict Ho° problem of nonlinear systems in the case of asymp-

totic stability? (2) When does there exist a stabilizing solution of the 
Hamilton-Jacobi equation? (3) Do we really need a positive definite 
solution of the Hamilton-Jacobi-Isaacs equations rather than a positive 

semi-definite solution? (4) How do the Hoc, control (or L2 gain) re-
sults depend on the type of the stability ( such as asymptotic stability 
or exponential stability )? (5) Can we extend the approach based on 
the Riccati strict inequality [149, 107] to nonlinear setting? So there 
is a big gap between the linear H,, control theory and its nonlinear



version obtained so far, and one can hardly say that the essence of the 

 Hc, control of nonlinear systems was captured. This is mainly because 

the conventional methods strongly depend on the linearization or the 

linear Hc,„ control techniques. Therefore we need a different approach, 

which does not depend on the linearization or the linear Hoo control 

techniques, to capture the essential feature of the strict Hoo control 

theory of nonlinear systems. 

  In addition, the robust stabilization problem is one of fundamental 

robust control problems to be considered. However, there was no re-

search on the robust stabilization of nonlinear systems in terms of the 

nonlinear Ho. control theory so far (although most recently van der 
Schaft [132] and Isidori [53] treated this topic). In order to develop the 
robust control theory of nonlinear systems in terms of the nonlinear 

Hc, control, we need to analyze fundamental problems such as robust 

stabilization conditions for unstructured uncertainty.

1.3.2 Global robust stabilization of nonlinear cas-

      caded systems 

  Since the 1980s, nonlinear system analysis has been studied based 
on the differential geometric theory [56], and some fundamental and 
important results have been derived. Especially, in the early 1980s, the 

problem on the state space linearization via coordinate transformation 
and nonlinear state feedback was completely solved by Su [118] or Hunt 
et al. [51]. After that, the idea of "zero dynamics", which corresponds 
to the zero of a transfer function of a linear system have been devel-

oped in the mid 1980s [16], and the idea of "normal form" of nonlinear 
systems have been established in 1991 [15]. 
  Based on these studies, in the late 1980s, the stabilization problem 

of nonlinear systems that have the normal form structure has attracted 

considerable attention, and some sufficient conditions for local or global 

stabilization of these systems have been derived [15, 79, 17, 18, 67, 123, 
105]. Since the normal form systems have the structure similar to a class 
of nonlinear cascaded systems, the stabilization problem for a class of 

nonlinear cascaded systems has also been attacked by many researchers 

[111, 91, 110, 19]. Needless to say, the important next step is to dis-
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cuss the stabilization of the nonlinear cascaded system in the presence 

of uncertainty. This will be the first step to the robust stabilization 

of general nonlinear systems. However, the previous works described 

above assume that the systems to be controlled are completely known, 

and this assumption is crucial to prove the stability. Therefore, it is dif-

ficult to apply their methods to the case where the uncertainty exists. 

Although there are a few researches [109, 108, 14, 34] about robust con-
trol of uncertain systems with normal form, these are concerned with a 

robust output tracking control problem, not a global stabilization one. 

  As stated in section 1.1, on the other hand, the robust stabiliza-

tion techniques based on the Lyapunov Stability Theorem have been 

developed for nonlinear systems in the presence of uncertainty. Most of 

them treat the case where the uncertainty satisfies the so-called match-

ing condition [37, 28, 2], although some of them studied mismatched 
uncertainty cases such as the cone-bounded case [89, 140, 23, 25, 106] 
or the singular perturbation case [104, 72, 26, 71, 122, 64], which is of 
local nature essentially. However, in order to discuss the robust stabi-
lization of nonlinear cascaded systems, the matching condition is too 
restrictive. In addition, it is difficult to apply the latter methods to the 

global stabilization problem. 
  In summary, it is still an open problem how a nonlinear system with 

mismatched uncertainty is globally stabilized. We believe that it is 
much significant to find an essence of the solution to such a problem 
from the viewpoint how the input and the term of the uncertainty 
should be cascaded in the state space description of nonlinear systems 
in order to globally stabilize it.

1.4 The goal and the organization of this 

thesis

  There are two main goals in this thesis. The first goal is to  estab-
lish a robust trajectory control design method of robot ma-
nipulators: A practical and systematic robust control design method 
is proposed, fully exploiting the property of manipulators, i.e., the fea-
ture that the dynamics is composed of the linear combination between
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unknown physical parameters and measurable parameters such as joint 
displacement or the feature that the acceleration sensor information or 

joint torque sensor information is available. In addition, a digital ro-
bust controller of robot manipulators is proposed, where the effect of 
the  discretization of a robust controller on the control error is consid-
ered. The second goal is to develop foundations of robust con-
trol of nonlinear systems: First, a characterization of the bounded 
real condition of nonlinear systems via the Hamilton-Jacobi equation 
with a stabilizing solution or the Hamilton-Jacobi strict inequality is 

presented. Second, based on the above condition, the nonlinear Hc„, 
control theory is discussed. In addition, the obtained Ho. state feed-
back control is applied to robust stabilization problems of nonlinear 
system with unstructured uncertainty. Finally, a global robust stabi-
lizability condition for nonlinear cascaded systems is analyzed, using a 
different approach from the nonlinear Hc,„ control theory. 

  The organization of this thesis is as follows. Chapters 2 to 6 are 
concerned with a robust trajectory control of robot manipulators, which 
are for the first goal. Chapters 7 to 9 are concerned with a robust 
control of general nonlinear systems, which are for the second goal. 

  Chapter 2 is concerned with a robust trajectory control of robot ma-
nipulators, where the joint displacement and the velocity are available. 
First, a new robust control scheme of robot manipulators is proposed, 
which overcomes some drawbacks of conventional robust control meth-
ods. The proposed controller has a simple structure by exploiting the 
special structure of the manipulator dynamics, and achieves the spec-
ified tracking precision. Next, based on the formulation of the above 
robust control, a new adaptive robust control scheme for manipulators 
is proposed, where the feedback gain is automatically adjusted based 
on the bound of the control error and no a priori information on un-
certainty is required. Thus the feedback gain of the proposed method 
is almost necessary and minimum for the specified precision. To verify 
the advantages of the adaptive robust control method, experimental 
results are shown for the trajectory control of a 2 link direct-drive arm. 

  In chapter 3, merits of acceleration information in the robust control 
of robot manipulators are clarified in the case that the signal is avail-
able. First, the essential feature of the conventional methods is made 
clear, and it is shown what their problems are. Second, a robust control
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scheme using acceleration information is proposed for robot manipula-
tors, which overcomes the above problems. Finally, the advantage of 
acceleration information for the proposed scheme is discussed. 

  Chapter 4 is concerned with the robust control of robot manipulators 
in the case where  joint  torque sensor information is available. First, a 
dynamic equation of the manipulator with joint torque sensors is de-
rived, which explicitly expresses a nonlinear multivariable structure. 
This dynamic equation makes it possible to construct the control sys-
tems of the manipulators with joint torque sensors based on the same 
method as in the conventional case without the sensors. Second, based 
on this dynamic equation, a robust control scheme is proposed, which 
achieves the specified tracking precision in the presence of the modeling 
error including the modeling error of actuator systems. The proposed 
method fully exploits joint torque sensor information to compensate for 
the uncertainty of link and load parameters. Furthermore, an illustra-
tive simulation result is given to show the effectiveness of the proposed 
control method. 

  In chapter 5, a digital robust control method of robot manipulators 
is proposed. The effect of the discretization of a robust controller on 
the control error is discussed theoretically. The design procedure for a 
digital robust control system, which is obtained by the above analysis, 

gives an allowable feedback gain to guarantee the specified tracking 
precision. Moreover, a simple idea is proposed to make the feedback 
gain small so as to decrease the chattering, and the effectiveness of this 
idea is shown by illustrative simulation results. 

  In chapter 6, a hierarchical robust control scheme of robot manip-
ulators is proposed, which has a hierarchical structure with an upper 
level loop and a lower level loop. In the upper level loop, an input 
for linearizing compensation, a desired trajectory and a switching gain 
are computed at a low sampling frequency. In the lower level loop, a 
switching input is generated at a high sampling frequency. This scheme 
will make the computation for robust compensation very fast, so we can 
expect that the effect of the discretization of a robust controller on the 
control error is smaller. The control performance of this hierarchical 
system is analyzed under the consideration of the sampling period of 
an upper level loop and the modeling error. 

  Chapter 7 is concerned with the strict Hc„, control theory of non-
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linear systems. First, a necessary and sufficient condition for nonlinear 

systems to be internally stable and to have the L2 gain less than a 

specified number  ry, which is called the strict bounded real condition, 

is given via the Hamilton-Jacobi equation with a stabilizing solution 

and the Hamilton-Jacobi strict inequality. The former has an impor-

tant role to analyze the internal stability of nonlinear systems, while 

the latter has an advantage that it can simply be applied to the strict 

H„„ control problem. The characterization by these two approaches 

completes the strict bounded real condition of nonlinear systems to 

form a basis to develop the strict Ho° control theory. Second, based on 

the above results, some sufficient (and necessary) conditions are given 
for the solvability of the strict Hcc, state or output feedback control 

problem, which exactly correspond to the case of linear systems. 
  Chapter 8 is concerned with robust stabilization of nonlinear systems 

in terms of the nonlinear state feedback theory. First, a robust sta-

bility condition is given for a closed loop system which is composed of 

a nonlinear nominal system and an unstructured uncertainty. Second, 

based on the obtained robust stability condition, a sufficient condition 

for robust stabilization by state feedback is given in terms of the solv-

ability of some Ho° state feedback control problem. 

  In chapter 9, a sufficient condition is given for a class of nonlinear 

cascaded systems to be globally stabilizable via state feedback in the 

presence of uncertainty which does not necessarily satisfy the so-called 
matching condition. The obtained result is an extension of the former 

stabilization results which treated systems without uncertainty, in the 

sense that the uncertainty is taken into account. In addition, consid-

ering a specified class of the systems, a more practical condition for 

global robust stabilization is derived. 
  We will use the following notations in the paper. Rn denotes an 

n-dimensional real Euclidean space whose norm is given by 11 • II. A E 
RI' is a n x m matrix, and An,(A) and )M(A) express minimum and 
maximum singular values of a matrix, respectively. I expresses a unit 

matrix.
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 Chapter  2

ROBUST CONTROL AND 

ADAPTIVE ROBUST 

CONTROL OF ROBOT 

MANIPULATORS

2.1 Introduction

  In the past several years, various robust trajectory control schemes 
have been developed for robot manipulators with unknown parameters 
or disturbances, such as sliding mode control [147, 114, 112, 41, 143, 20], 
robust control [103, 2, 39, 119, 93, 59, 1], or adaptive robust control 
[27, 21, 81, 22, 24, 73]. One of the fundamental problems in this field 
is to control the robot manipulator so as to track the desired trajec-
tory within a specified tracking precision in the presence of uncertainty. 
Especially, Slotine [112] and, Osuka and Sugie [93, 119] clarified how 
to design control parameters so as to achieve the specified tracking 

precision. 

  In most of the previous existing literatures, however, the design 

procedures are much complicated. In addition, the estimation of the 
bound of the uncertainties is too conservative, so the feedback gain 

calculated by the conservative estimation on the uncertainty is much 

larger than necessary to achieve the specified tracking precision. As

13
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a result, the obtained controller is impossible to be implemented in 

practice, since too high feedback gain excites unmodelled dynamics. It 
is desired that the feedback gain is necessarily and sufficiently high to 

achieve the specified tracking precision. In addition, the conventional 

adaptive robust control schemes clarify no relation between the design 

parameters and the specified precision. 
  In this chapter, a new robust control scheme for robot manipulators 

is proposed first, which overcomes the above shortcomings of the former 

robust control methods in the sense that it has the following properties: 

by fully exploiting the property of the structure of the dynamics, (i) 
the controller structure is as simple as the conventional dynamic control 

method  [77] except that it has only a time-varying feedback gain and 
(ii) the estimation of the bound of the uncertainty is less conservative. 
Next, based on the above robust control scheme, a new adaptive robust 

control scheme is proposed, which, in addition to the above advantages, 

(iii) clarifies the explicit relation between the design parameters and the 
tracking precision, (iv) achieves the specified tracking precision without 
any a priori information on the robot uncertainty, and (v) the feedback 
gain of the proposed adaptive robust control is much smaller than the 
robust control case. 

  Furthermore, the validity of the proposed adaptive robust control 

method is experimentally verified using a 2 link Direct-Drive robot 

arm.

2.2 Problem statement

  Consider a manipulator with n degrees of freedom whose dynamics 

is described by the following equation : 

M(4), 6)6 + h(4 , 6, 6) = u(2 .1) 
where 6°_ [Or, 02, ... , j ]T is the n-dimensional vector of joint displace-
ments, q5 is the physical parameter vector with an appropriate dimen-
sion, u is the n-dimensional joint torque input vector, M(b , 0) is the 
n x n manipulator inertia matrix, and h(4, 6, 6) is the n-dimensional 
vector that represents the nonlinear terms such as the centrifugal, Cori-

olis, frictional, and gravitational forces. 

  This system usually has the following features.
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  [Feature 2.1  ] M(6) is a positive definite matrix for any 6. 
  [Feature 2.2 ] The left-hand side of (2.1) can be expressed as 

M(q, 6)6 + h(¢, 6, 6) = E(qS)y(6, 0,6) (2.2) 
where E(4)) is an appropriate dimensional matrix consisting of physical 
parameters, and y(6, 6, 6) is an appropriate dimensional vector whose 
elements are known functions of 6, 6, and 6 (see section 2.5). 

  In this chapter, the following assumptions are made.

  [Assumption 2.1 ] 
  [Assumption 2.2 

cb may be unknown, 
region 11. 

  [Assumption 2.3 ] 
such that there exist 

but it is known that ch

such that there exist ounc 
the following conditions for 
and appropriate dimensional 

     a II x 112< xT Ix, 

0IIyII>_IIM-1(

6 and 0 are measurable. 
The values of the physical parameter vector 
is known that ch exists in a certain bounded 

I 
A vector 4, a bounded estimate of 0, is given 
led positive constants a and 3 which satisfy 

' , any non-zero 
and any q E 12: 

                        (2.3) 
                        (2.4) 

I
  The existence of the positive constant a in (2.3) is dependent on the 
estimate q. However, it is difficult to show rigorously when such an a 
exists. According to our experience on numerical analysis of various 2 
DOF manipulators, there exists an a even when the difference between 
the real values and the estimate values of the physical parameters is 50 
% of the real values. While, Khosla and Kanade [65, 66] have shown the 
effectiveness of a dynamic control law with the parameters estimated 

by their identification method. This means that the estimated value 

of the physical parameters are not quite different from the real values. 

So using the conventional identification methods such as [65, 80, 6], we 
believe that it would be possible to estimate the physical parameters 

within such accuracy that there exists a a > 0 in (2.3). Therefore we 
do not think that the assumption of (2.3) is so restrictive in a practical 
sense. On the other hand, it is guaranteed that there exists a positive 
constant 0, because of the fact that M is a positive definite matrix 
(namely M-1 is bounded) and that E is a constant matrix. Note that 
a and 13 are obtained by calculating the smallest and largest singular
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values of  I and M-1 {E(0) — E(43)}, respectively, if the region .0 is 
known. _ 
  For simplicity, the following notation are used: M == M(4, 6), 
h °= h(4;b, 6, 6), and E _° EC-4i)). 
  Now, the following problem is considered. 

  [Problem 2.1 ] For the robot manipulator given by (2.1) that 
satisfies Assumptions 2.1 to 2.3, the desired trajectory 6d(t) is given 
whose derivatives 6d and 6d exist and are bounded. Also Ep and ev, 
the tracking precision, are given. Then, find a control law such that 

ii e(t) li< EP,II e(t) Il< ev Vt > T (2.5) 
holds for some finite time T > to, where e(t) A- 6(t) — 0d(t) and to is 
an initial time.i 

  For simplicity, one may assume that e(to) = o and e(to) = o. 

2.3 Robust control 

  In this section, a robust control method is proposed which determines 

the feedback gain using the information on (2 so as to achieve the 

relation (2.5). The argument is much simpler than the former works 
[103, 2, 39, 119, 93, 59, 1], and gives a good insight for the robust 
control of robot manipulators. 

  In order to solve the problem in section 2.2, the following control 

algorithm with a constant gain A and a time-varying gain k(t) is con-
sidered. 

u = MA — (a + k(t))e — Ak(t)e} + h (2.6) 
Note that this algorithm is the same as in the conventional dynamic 

control method [77] except that the conventional algorithm consists of 
the fixed PD gain in (2.6). 
  First, the error equation which is important for the control system 

design is derived. Substituting (2.6) into (2.1), one obtains the following 
error system: 

e+ (AI +kI)e+Akle='q(2 .7) 
where 

' °= M-1(E — E)yd 

        A 

     ydy(6, e, ed — \e)
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If we have no modeling error,  rj = o and I = I in the error equation 

(2.7). So rj can be regarded as a disturbance which results from the 
modeling error and Ti as one part of the feedback gain which contains 
uncertainty. The effect of these uncertainties, I and ri, on the control 
error e is evaluated by (2.3) and (2.4), respectively: the infimum value 
of the uncertain part, I, of the feedback gain is estimated as a in (2.3), 
and the supremum value of the disturbance ij by (2.4) as follows. 

0 II yd II?MM n II(2.8) 
Note that yd is measurable, because 9d is known. Therefore, one will 

determine the feedback gains A and k so as to satisfy the relation (2.5) 
based on the error equation (2.7) and the information on the uncer-
tainties, a and 0. 

  By letting 
0 13 

 7=(2.9) 
a we obtain the following result. 

  [Theorem 2.1 ] Consider the manipulator (2.1) that satisfies 
Assumptions 2.1 to 2.3. The desired trajectory ed and the specified 
tracking error precision, ep and Lv, are given. Moreover suppose -y is 
obtained from a priori knowledge of the region Si. If the control law 
(2.6) whose feedback gains are given as 

            Ev 
 A 2

e(2.10) 

             P k=711YdII(2.11) 
AEp 

is applied to the manipulator, then 

11 e(t) Il< EP,II e(t) M< ev(2.12) 
holds for any t > to. 

Proof: By defining a new variable s as s == e+ Ae, one can reduce the 
error equation (2.7) to two first order differential equations as follows. 

s+kls=rl(2.13) 
e+Ae=s(2.14) 

First, it will be shown that the following relation is satisfied in (2.13) 
if the feedback gain k is determined by (2.11). 

il s Il < Asp Vt > to(2.15) 
To this end, a Lyapunov candidate is considered:
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 Vi = 2sTS(2.16) 

Differentiating VI (t) along (2.13), one can see that the following relation 
holds, provided that II s II> AeP, by using the information on the 
modeling error of (2.3) and (2.8), and the feedback gain k in (2.11). 

VI = ST (71 — kis) 
      < 0IIydIIIISII—kaIIs112 

II s II (0 II yd II —ka) EP) = 0 (2.17) 
Therefore, one can get (2.15) with the initial condition s(to) = o. 

  Next in order to show the first part of (2.12), the extended error s 
in (2.14) is regarded as the disturbance with the condition (2.15), and 
the norm of e is evaluated in the same way as the evaluation of II s II. 
Consider the following Lyapunov candidate. 

  V2 = 2eTe(2.18) 
Differentiating V2(t) along (2.14) and using (2.15), one obtains the fol-
lowing relation provided that II e II > E 

     V2 = eT (s — )e) 
<— IIe1IIISII—A11e112 

11e11(11SII—AeP)<0(2.19) 
Therefore, one gets the first part of (2.12) with the initial condition 
e(to) = o. 

 Lastly, the second part of (2.12) is proven. The relation II a II<II s II 
+a II e II is obtained from (2.14). Therefore the second part of (2.12) 
is shown by using (2.10), (2.15), and the former part of (2.12). This 
completes the proof. 

  The proposed robust control method has three features compared 

with the conventional robust control methods: (i) The controller struc-
ture is very simple because it is based on the conventional dynamic 

control method. (ii) The argument is much simpler (see the proof of 
Theorem 2.1). The employment of the error equation (2.7) (namely, 
(2.13) and (2.14)) enables this kind of simplification. (iii) The pro-
posed method has a less conservative evaluation in determining the 
feedback gain, because the measurable signals are fully exploited by 

making use of Feature 2.2 of the manipulator.
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 k=II  Yd+Il  
 As 

f PIIyd+lll1SII if Ilsll>_as    y= 0if Ilsll<As 

and the input u(t) is given by (2.6), then 
V3<0 for IIsII>)e 

holds along the trajectory of the system (2.1), 
candidate: 

           1  
    V3(t)2

a8TS1± ,.

2.4 Adaptive robust control 

  In the proposed robust control law of the previous section, y, which 
expresses a bound of the uncertainty, is calculated in advance based on 
the knowledge of the region 11. However y depends on the informa-
tion on (1, and often tends to be unnecessarily high for the specified 
tracking precision. Therefore in this section, an adaptive robust control 
method is proposed which adjusts the feedback gain adaptively, that is, 
it estimates the parameter y, in order to achieve the specified tracking 

precision without any a priori information on ,fl. The estimate of -y is 
denoted by y. 

  Here, the same control law is considered as the previous robust con-
trol law (2.6). Thus, the error equation is again (2.7), namely (2.13) 
and (2.14). It is shown that (2.5) is guaranteed by suitably adjusting 
the feedback gains k(t) in (2.13) and A in (2.14). As a preparation, the 
following lemma is given. 

  [Lemma 2.1 ] Consider the manipulator (2.1) that satisfies As-
sumptions 2.1 to 2.3. Assume that positive constants s and A are 
given, and p > 0, the gain of the adaptation law, is given. Also let 
II Yd+ IIoII Yd ll +6, where 6 is an arbitrary small positive number. If 
the gain k is given by

Proof: Differentiating 

relation provided that 

modeling error of (2.3)

5(t0)

where V3(t)

>0

(2.20)

(2.21)

    (2.22) 
is a Lyapunov

                         (2.23) 

1 

V3(t) along (2.13), one obtains the following 
II s II> As, by using the information on the 
and (2.8), the feedback gain k given by (2.20),
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and the parameter adaptation law (2.21). 

      V3 =—s1T(7J  —  kis) — —1(7— -y)Y 

a 

       < 7IIyd+IIIISII—kIISII2—(7-3')IIyd+IIIISII 
<_ IIsII(''IIyd+II—kAE)=0 (2.24) 

Thus one gets V3 < 0 provided that I I s II > )E. This completes the 
proof. 

Remark 2.1 If II Yd II is non-zero provided that II s II > AE, one can 
replace II yd+ II by II yd II 1 

  Based on the above Lemma, the following result is obtained. 

  [Theorem 2.2 ] Consider the manipulator given by (2.1) that 
satisfies Assumptions 2.1 to 2.3. Suppose that 0d is given, and E p 
and Ev, the specified tracking precision, are also given. Moreover the 
adaptation gain p and the initial value 5% are given. If E(< E p) is given, 
and the control law (2.6) whose feedback gains, A and k, are given as 
(2.10), (2.20), and (2.21), is applied to the manipulator, then there 
exists a finite time T(> to) which satisfies 

II e(t) II< EP, II e(t) II< EVVt > T (2.25) 

Proof: First, we show the boundedness of all the signals in the system. 

Noting that y = 0 holds when II s II < AE, it is easily verified by using 
Lemma 2.1 that V3(t) of (2.23) is bounded for any t. Therefore one 
obtains that 7 and s are bounded. Let the maximum value of II s II be 
smax. Then one gets 

    II e(t) II< SmaxiA Vt > to (2.26) 
in the same way as (2.18) and (2.19) of the robust control. So 0 is 
bounded. Moreover from the boundedness of e and s, it is obtained 
that 0 is bounded. Therefore it is proved that u is bounded and so is 
6. 
Next, we prove that there exists a finite time tN(> to) such that 

II S(t) II< AEPVt > tN (2.27) 
We consider the time qj;(i = 0, 1; j = 1, 2, . . .) such that 

II S(qi;) II= AE(2.28) 
and 

II s(t) II? AE Vt E [qo;, qi;] (2.29)
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Since the proof of (2.27) is trivial in the case that j is finite, only the 
case that  qii (i = 1, 2) is an infinite sequence in j is considered. Then 
since s(t) is continuous in t and s(t) is bounded, there exists a positive 
constant El which satisfies the following condition for any j: 

III s(t)[I—IIs(goi)IIl<EiIgij—qo; dtE[go;,gl,](2.30) 
On the other hand, let Oqi o —q03(> 0), then Aq; converges to zero 
as j —> oo. This is because, if Oqj is not a convergent sequence to zero, 
which means that E;_1 0q; is infinite, then it is inconsistent with the 
boundedness of y obtained by (2.21). Thus there exists some N which 
satisfies the following condition provided that Ep > E : 

    IOq,I<A(EP — E) Vj > N(2.31) 
E1 

Therefore from (2.28), (2.30), and (2.31), one obtains that there exists 
a finite time tN(°= qoN) which satisfies the condition of (2.27). 

  Lastly by using (2.14) and (2.27), the relation (2.25) is proved in 
a similar way to the second part of the proof of Theorem 2.1. This 

completes the proof. 

  This theorem shows that the tracking error precision is explicitly 

specified based on the quantitative relation between the control error 

and the design parameters. Note that the above point was not clear 

in the conventional adaptive robust control method [27, 21, 81, 24, 
73]. Furthermore, the structure of the proposed controller is much 
simpler than the conventional ones. For example, one needs only one 

parameter adaptation law (2.21), and its formulation is quite clear. The 
employment of Feature 2.2 enabled this kind of simplification. 

  Compared with the robust control method in section 2.3, the pro-

posed adaptive robust control method has the advantages that the feed-
back gain is automatically determined by using the parameter adapta-

tion law (2.21), and that 5% is independent of a priori information on 
Q. The parameter adaptation law has the following physical interpre-

tation. If the norm of s is greater than or equal to the specified value 

(i.e., As), then the feedback gain k is considered to be too small, so 
ry is increased (i.e., 5% > 0). Otherwise, the gain k is considered to be 
sufficiently large, so 5 is not renewed (i.e., =y = 0). Thus one can expect 
that the adaptation mechanism produces the necessary and minimum 

feedback gain which provides the specified tracking accuracy. However



22 Chapter 2 Robust and Adaptive robust control

one should note that the adaptive robust control method achieves the 

specified tracking accuracy only in the steady-state, while the robust 

control method achieves it all the time. 

  Finally, the proposed method is compared to the adaptive control 

methods (e.g. [50, 113,  92]). The proposed Method adjusts the feed-
back gain so as to achieve the specified tracking precision, while the 

adaptive control methods try to do the on-line estimation of the phys-

ical parameters. Therefore these two methods are different from each 

other in essence. The proposed method is easy to cope with the unex-

pected disturbances, since the robustness of the proposed method relies 
on the feedback structure.

2.5 Experiment

  In this section, the validity of the proposed adaptive robust control 

method is demonstrated by some experiments. In these experiments, 

the validity from the following viewpoint is considered. 

<V1> Will the proposed adaptive robust control achieve the spec-

ified tracking precision after some finite time without any a priori in-

formation on the uncertainty ? 

<V2> Will the feedback gain of the adaptive robust control method 
become smaller than that of the robust control method for the same 

specified tracking precision ? 

  For the experiment, a 2 link Direct-Drive (for simplicity, DD) arm 
built by Shin Meiwa Industry Co., LTD. is used (see Fig.2.1). The 
length of link 1 and 2 is 250(mm) and 300(mm) respectively. The joint 
angle and angular velocity are detected by an optical encoder at each 

joint, and are sent through a PI/0 board to the host computer (NEC 
PC-9801DA with an 80387 numerical processor). The signal of each 
joint driving input is supplied through a D/A converter to a driver 
amplifier. Assembler and C language are used. Sampling period is 1.36 

ms. 

  Now in order to design the controller, the model of this DD arm 
is given as follows. Let mi, Ii, li, and l9i denote the mass of link i , 
the moment of inertia of link i about the center of mass, the length of 
link i, and the distance between joint i and the center of mass of link
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              Figure 2.2: Model of 2 link arm 

i (i =  1,  2), respectively. The physical parameters 01, 09, and 03 are 
defined as 01 = m1l 1 + Il + 7712li, 02 = m2l1l92, and = m2lg2 + 12. 
Then the dynamic equation of the manipulator shown in Fig.2.2 is 

described by 

M(0,0)0 + h(4, 9, 9) = u(2.32) 
9 = [91, 02F,]T~T                   u=~ui,u2,q= [01, 02, 03 

         r       M(0
, e) —I01 + 03 + 202C203 + 02C2 

1           L 03+02C203 
           •

h(~, 9, e) =
L—C~3S2(26162+e2)              L 03S291 

where S, == sin 9i, C, == cos 9; (j = 1, 2). Therefore E and y of (2.2)
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can be selected as follows. 
         ~1+ 03 EN))
L

y(0, 9, 9) =

03
03 
03 

91 
82

2c2 02 02 0 

02 0 0 02

    C201 

C202 

—S2(2O1O2 + e2) 
   S2ei

Although we do not have any a priori information on the range Si, we 

assume that theestimates of Oi (i = 1, 2, 3), 0i, are given as 01 = 1.8, 
~2=0.48, and~3=0A9. 

  The desired trajectory of the end effector is given by 
xd = 0.35 cos(7rt) (m) 

      yd = 0.35(m) for 0 < t_< 6.0(s)(2.33) 
which has the period of 2 seconds (see Fig.2.2). The desired trajectory 
of each joint (ed1, 0d2) is calculated from (xd, yd) in advance. The initial 
errors of position and velocity are e(0) = o and e(0) = o, respectively. 

  In this situation, the following two experiments are made. 

Experiment I This experiment is concerned with [V1]. The tracking 
precision is specified as ep = 0.03 and e'v = 0.6 in the proposed adaptive 
robust control. Then one obtains A = 10.0 from (2.10) and e = 0.0299 
from e < Ep. Also set the initial estimate in (2.21) as y(0) = 0.0, the 
adaptation gain in (2.21) as p = 0.35, and S in (2.20) and (2.21) as 
b = 0.01. 

  Fig.2.3 shows the result. Fig.2.3(a) and (b) show s 11, the norm of 
the extended error, and y, the parameter estimate. From these figures, 
one can see the following: the parameter estimate y is adjusted when 
the norm of s is greater than or equal to As, and after the second 
period (2 seconds), the norm of s is smaller than As and y is not 
renewed. Fig.2.3(c) and (d) show the feedback gain k and the control 
error norm II e II, respectively. After the second period (2 seconds), an 
appropriate feedback gain is obtained to achieve the specified tracking 

error precision. A similar result concerning the velocity error e has also 

been obtained. Moreover Fig.2.3(e) shows the joint driving input , and 
so we can see that the input is very smooth. Therefore the validity
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Figure 2.3: Experimental results of the adaptive robust control: (a) 
Extended error; (b) Parameter estimate; (c) Feedback gain; (d) Position 
error; (e) Input torque.
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about  [V1] is verified from these results. 
Experiment II In this experiment, the robust control in section 

2.3 is applied to this arm and [V2] is discussed. It is assumed that 
the estimation error of cbi(i = 1, 2, 3) is within ±20%, and by using 
this information, ry in (2.11) is determined as -y = 3.39. First the same 
tracking precision as in Experiment I is set, that is, Ep = 0.03 and 

  = 0.6. However in this case, remarkable chattering occurred in the 

joint driving input, and the real trajectory could not track the desired 
trajectory at all. This is because the feedback gain is too large. So 
the specified tracking precision is set as Ep = 0.2 and ev = 4.0. Then 
A = 10.0. Experimental results for this case is shown in Fig.2.4. Even in 
this case, we can see that the chattering is very large in Fig.2.4(c), and 
that the real control error is about one tenth of the specified precision in 

Fig.2.4(b). This is the result of too high gain feedback for the specified 
precision as shown Fig.2.4(a). Certainly, the feedback gain depends on 
the information on the uncertainty, but for example, even in the case 
that the real parameters exist within ±10% of the estimated values, 
-y is 4 times larger than in the adaptive robust control of Experiment 

I. In this way the evaluation of the bound of uncertainty, 7, tends 
to be conservative in the robust control method. On the other hand, 
Fig.2.3(d) shows that the bound of the norm of control error is about 
60% of the specified tracking precision in the adaptive robust control 
method. This means that the feedback gain is almost necessary and 
minimum for the specified precision. Furthermore, the adaptation gain 
p is reset as p = 0.3 in order to achieve the same specified precision by 
a smaller feedback gain. In this case, the feedback gain is 90 % of the 
case of p = 0.35, and the bound of the norm of control error is about 
70% of the specified tracking precision. From these results, we confirm 
the usefulness of the proposed adaptive robust control law with respect 
to [V2]. 

  The same results about [V1] and [V2] for several different values of 
Ep and ev have also been obtained. These results show the validity of 

the proposed adaptive robust control.

Remark 2.2 In this experimental system, there exists about ±20 % 
torque distortion because of the fact that the motor driver is not ad-

justed well. In spite of this wrong adjustment, the proposed method has
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achieved the specified error precision. Probably this is because of the fact 
that the torque uncertainty is acted on the adaptive robust controller as 
something like the perturbation of the physical parameters.

2.6 Conclusion

The main results obtained in this chapter are summarized as follows.

(i) A new robust control scheme of robot manipulators with uncer-
  tainty has been proposed, which is almost as simple as that of 

  the dynamic control method, and has a less conservative evalu-

  ation in determining the feedback gain, because it makes use of 

  the effective expression (i.e., <P2>) of the dynamics of the robot 
   manipulator.

(ii) Based on the above robust control, a new adaptive robust con-
   trol scheme of robot manipulators with uncertainty has been pro-

   posed, in addition to the merits in (i), where the tracking precision 
   is explicitly specified and, as a result, it is possible to evaluate if 

   the feedback gain is small enough for the specified tracking pre-

    cision.

(iii) By the experiment of the trajectory control of a 2 link DD arm, 
it has been verified that the feedback gain of the adaptive robust 
control method is much smaller than that of the robust control 
method, and is almost necessary and minimum for the specified 
tracking precision.



 Chapter  3

ROBUST CONTROL OF

ROBOT MANIPULATORS

BASED ON

ACCELERATION

INFORMATION

3.1 Introduction

  In the previous chapter, a robust tracking control method of robot 

manipulators is treated, where only information on position and ve-

locity is available. In the case of the manipulator, it is relatively ease 

to get acceleration information by acceleration sensors, as well as the 

position and velocity information. So what merits will be added in the 
robust control, if acceleration information is available in addition to the 

position and velocity information? The purpose of this chapter is to 
clarify the merits of acceleration information in the robust control of 

robot manipulators. 

  Acceleration feedback control methods of robot manipulators have 

been studied since the early 1980s (e.g., [43] ). In the late 1980s, a 
scheme which is called a disturbance observer [87, 90, 125] or a scheme 
which is called a time delay control scheme [83, 146, 49, 48] have been

29
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developed independently. However, both schemes are based on the 
same idea that the interference force in each arm or the uncertainty in 
the physical parameters is compensated by feeding back the difference 
between the input and the acceleration, and the control problem for the 
multi-variable system is reduced to that for a single-input single-output 
system on each joint. However, there is little discussion on the reason 
why the uncertainty is compensated by such an acceleration feedback 
system, which is the essence of this control system, or what problems 
there are in this method. In addition, in the analysis of the effect of 
the uncertainty on the closed loop system, the disturbance observer 
treats the manipulator which originally belongs to a class of nonlinear 
systems as a linear system with a step disturbance, and the time-delay 
control scheme assumes that the state at some time is equivalent to 
the state at the time before one step. Both methods lacks the rigorous 
discussion. It is needed to analyze the effect of the uncertainty on the 
control error rigorously. 

  In the first part of this chapter, the essence of the conventional ac-
celeration feedback control system is made clear, and it is shown what 
their problems are. Second, a new robust control scheme based on the 
acceleration information is proposed, which overcomes the above prob-
lems in the conventional methods. Especially, the proposed method 
shows one idea on how to express the uncertainty which exists in the 
manipulator and how to compensate for it by fully exploiting acceler-
ation information. Finally, the advantages of acceleration information 
for the proposed scheme are clarified, and simulation results show the 
effectiveness of the proposed scheme.

3.2 Discussion on conventional accelera-

tion feedback systems

  In this section, the essence of conventional acceleration feedback 

systems is discussed, and some disadvantages are clarified . 

  Consider a manipulator with n degrees of freedom whose dynamics 

is described by the following equation : 

M(4, 6)8 + h(4, 6, 9) = u(3 .1)



31

Figure 3.1: Conventional control system

where  8  °_ [Or, 02, ... , OrdT is the n-dimensional vector of joint displace-
ments, u is the n-dimensional joint torque input vector, M(4 , 8) is the 
n x n manipulator inertia matrix, and h(4 , 8, 8) is the n-dimensional 
vector that represents the nonlinear terms such as centrifugal, Coriolis, 

frictional, and gravitational forces. 

  Then in the conventional approach, (3.1) is rewritten as follows. 
FO = u + [(F — M(0, 8))8 — h(q, 8, 8)] (3.2) 

where F0= diag{yl, y2i • • • , -N}, and yj(i = 1, 2, • , n) is a positive 
number. Here assume that the second term of the right-hand side 

in (3.2) is a disturbance to the system Fe = u. Then if the angler 
acceleration 8 is available by some sensor, we can know the value of 

the disturbance, i.e., the second term of the right-hand side in (3.2) by 
calculating the term FO —u. Thus the following controller is considered. 

u=T+T 

   = u —'8(3.3) 
I where T is an input to compensate for the disturbance, and -r is a new 

input. This control system is shown in Fig.3.1. The controller given by 

(3.3) leads to the following closed loop system. 
I'6 = T(3.4) 

Therefore, a control problem for multi-input multi-output nonlinear 

system given by (3.1) is reduced to a control problem for a decoupled 
system, i.e., each joint system. In addition, in the conventional ap-
proach using acceleration information, we do not have to know the real
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Figure 3.2: Equivalent control system

value of the physical parameters, and the nonlinearity of the manip-

ulator is compensated for by acceleration feedback. This may be one 

feature of the conventional approach. 
  Why can the conventional approach using acceleration information 

compensate for the nonlinearity of the manipulator without the real 
values of the physical parameters and reduce a multivariable system to 
a decoupled system? Then Fig.3.1 is rewritten to Fig.3.2 , where we can 
find the essence of the conventional acceleration feedback system: the 
conventional system contains a infinite feedback gain at all frequency, 
which compensates for the nonlinearity of the manipulator. In addition, 
by feeding back the acceleration of each joint to each corresponding 

joint, namely, by making a matrix F diagonal, the system in question 
is decoupled. 

  In such a system, there are the following problems. First, we cannot 
define the closed loop system which includes infinite gain mathemati-
cally, although we can write the system in a block diagram. In addition, 
we cannot implement the system which includes the infinite gain , be-
cause the system has more or less time lag.  1 Second, it is difficult 
to estimate the effect of the uncertainty which cannot be compensated 
for when the T is fed back through some filter in order to eliminate the

1Hsia [49] and Mizutani [82] discuss the infinite gain of the closed loop system. 
However we discuss it here, from a different point of view in the sense that we do 
not share the advantages of the infinite gain of the conventional approach, while 
they do.
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disadvantage due to the infinite gain. In fact, the disturbance observer 

[87, 90, 125] uses some filter such as a low-pass filter. However, the 
uncertainty which cannot be compensated for owing to the use of the 

filter is regarded as a step disturbance, and its effect on the system 

is discussed in the field of the linear system theory, because it is not 

easy to estimate its effect rigorously. In addition, in the case of the 

time-delay control method, which corresponds to the case that (3.3) is 
replaced by 

 u(t)  =  T(t)  +  r(t)(
3.5)  T(t) = u(t —  tL) — I'O(t — tL) 

where tL is the time lag, the effect of the uncertainty which cannot be 

compensated for is not considered since supposing that u(t—tL) = u(t) 
and 0(t — tL) = 0(t) [146]. 
  Third, the time-delay control method does not theoretically guaran-

tee the internal stability of the closed loop system, that is, the bound-

edness of all the signals of the closed loop system, because the closed 

loop system becomes a nonlinear system including the time lag, and it 

is much difficult to analyze the stability [48]. 
  The above disadvantages result from feedback of the input signal as 

shown in Fig.3.1. So in the next section, a new approach using accelera-

tion information will be given to eliminate all the above disadvantages.

3.3 Robust control based on acceleration 

information

  The discussion in section 3.2 gives the following remarks when the un-

certainty such as nonlinearity is compensated for by acceleration feed-

back. 

(a) There is no infinite gain in the closed loop system. 

(b) The effect of the uncertainty which cannot be compensated for 
    on the control error is rigorously estimated, namely, for a given 

    desired trajectory Od(t) E Rn with twice derivatives which are 
    bounded, and a given design parameter e [El, E2, • • • , en]T, the 
    control error e = 0(t) — Od(t) satisfies
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et(t) l< E_
`dt>0

, i= 1, ,n

when e(0) = o and e(0) = o.

(c) It is guaranteed 
    bounded.

that all the signal of the closed loop system is

Now. a control method satisfying the above specifications is given. In 

the same way as section 2.2, we can express the left-hand side of (3.1) 
as 

M(0,0)0 + h(4), 0, 0) = E(0)y(0,0 , 0) (3.6) 
where E(4)) is an appropriate dimensional matrix consisting of physical 
parameters, and y(O, 0, 0) is an appropriate dimensional vector whose 
elements are known functions of 0, 0, and 0 (see section 3.5). 
  Some assumptions are also made.

  [Assumption 3.1 ] 
  [Assumption 3.2 ] 

4) may be unknown, 
region 11. 

  [Assumption 3.3 ] 
  For simplicity, we

0, 0 

The

but it is known

  [Assumption 3.3 ] 6k, a bounded estimate of (.-k, is given. 
  For simplicity, we use the notations la, and E in place of 

and E(4)). 
  One can get, from 3.6) and E--°—E—E, 

M(0)O +140,0)  = u+ Ey(O, 9, 0)(3 .7) 
Then by regarding the second term of the right-hand side of (3.7) as 
a disturbance to the system MO + h = u, we consider the following 

controller. 

u=uDl+UD?+UR(3 .8) 
uDl = M0 +11(3 .9) 
uD2 = —I'O(3 .10) 

where um is an input which compensates for the nonlinearity of the 
manipulator as possible, by using the estimated value of the physical 

parameters, and uD2 is an input which gives a desired inertia of the ma-
nipulator. A matrix I' is nonsingular, but it is not necessarily diagonal . 
uR is an input to compensate for the uncertainty which cannot be com-
pensated for by urn, namely, the modeling error. Then substituting 
(3.8) (3.10) into (3.7), we get

, and 0 are measurable. 1 
values of the physical parameter vector 
wwn that exists in a certain bounded 

bounded estimate of (.-k, is given. 
notations la, and E in place of I
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    FO =  uR + Ey(9, 0, 0)(3.11) 
which corresponds to (3.4). Therefore, the control problem for (3.7) is 
reduced to that for the case of F0 = uR where the term _Ey(0, 0, 0) 
is regarded as a disturbance term. In addition, the termEy has the 

following property. There is a non-negative function g(6,6,6) (i = 
1, 2, • • • ,n) such that, for all 0, 0, and 6, 

gi(0, 0, 0) > aiy(0, 0, 0) I _(3.12) 
where ai is the ith row vector of a matrix F 1E. An example of gi in 

the case of a 2 d.o.f manipulator is shown in section 3.5. In the next 

discussion, a function gi satisfying (3.12) is assumed to be given. 
  Now we consider the following input as a uR. 

uR = Fled— (A + K)e — KAe}(3.13) 
where A= diag{Ai, A2i • • • , A, }, and Ai > 0(i = 1, 2, • • , n) is a positive 
constant. A is a design parameter that specifies the control precision. 

K is a time-varying gain matrix, and K =diag{ki, k2, • • •, ki,}. Then 
substituting (3.13) into (3.11), we get the error equation: 

e + (A + K)e + KAe = F-1Ey(0, 0, 9) (3.14) 
or equivalently 

ei + (Ai + ki)ei + ki)iei = aiy(0, 0, 0) i = 1, ... ,n (3.15) 
Based on this equation, the following theorem is obtained, where the 

relation between the design parameters Ai and ki and the control error 

ei is clarified. 

  [Theorem 3.1 ] Consider the manipulator given by (3.1) that 
satisfies Assumptions 3.1 to 3.3. Suppose a desired trajectory 0d with 
twice derivatives which are bounded is given, and a design parameter 
vector e and a matrix A are given. Assume also that a time-varying 
gain ki is given by 

k(6,6,6) =e 2gi(0, 0, 0)(3.16) 
(i = 1, 2, • • • , n). Then if the control law given by (3.8), (3.9), (3.10), 
and (3.13) is applied to the manipulator subject to e(0) = e(0) = 0, 
then 

ei(t) < ei, I 6i(t) I< 2Aiej(3.17) 
holds for all t > 0, and i = 1, 2, • • • , n, when the angular acceleration 0 
is not infinite for any finite time.1 

Proof: Define
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0` 
Si = 

A. +niei(3.18) 
Then, from (3.15) we get 

Si + kisi = ai y(9, 9, 9)(3.19) 
which is the first order differential equation. Thus the bound of si is 
estimated. Consider as a non-negative function 

  V = 2 si(3.20) 
Then differentiating (3.20) along (3.19), one gets 

V = —sikisi + siaiy(0, 0, 9)(3.21) 
Eqns.(3.16) and (3.21) imply 

V = — = I si 12 +siaiy(9, 0, 0)(3.22) 
AiEi 

Then if the acceleration 0 is not infinite for any finite time, one obtains, 

from (3.12) and (3.22), 

<_ 9i Isil(IsiI—E'iAi) Vt>0(3.23) 
Aiei 

which means 

    I si I> AiE'i = V < 0(3.24) 
Since it is assumed that ei(0) = 0 and ei(0) = 0, (3.24) implies 

si 1< \iE1 Vt > 0(3 .25) 
Next, the bound of ei is estimated. It can be verified that 

I ei I< Ei Vt > 0(3.26) 
in the same way as the case of Si. Also one can show the case of ei , by 
noting 

16i l<I si I +Ai I ei IVt > 0(3.27) 
This completes the proof. 

  It has been shown that the specification (b) holds under the assump-
tion that the acceleration is not infinite in Theorem 3 .1. Now based 
on the result of Theorem 3.1, a design procedure of the control system 

satisfying the specifications (b) and (c) is given. 
  It can be easily verified that, for a g = [g1, g2, • • • , g,,,JT satisfying (

3.12), there exist a matrix K(9, 0, 9d, 9d) and a vector f(9 , 9, 9d, ed) 
such that the equation 

FK(9, e, e)(e + Ae) = K8 + f (3.28) 
holds, if one choose gi as an appropriate function. An example on (3.28) 
is shown in section 3.5. Then the design procedure is as follows .
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Step 1 Give a desired trajectory  9d,9d,9d and a specified track 
    cision E and A.

ing pre-

Step 2 

    is

Choose a function g satisfying (3.12) and find a matrix K sat-
fying (3.28).

Step 3 Consider a set WE which consists of all the element (0,0) to 
be characterized by (0d, 0d) and (3.17) (See the definition of We 
in (3.A3) of Appendix). Then find a matrix I' such that, for all 
(0,0) E ,

det(M—M+I'+K) 0 (3.29)

holds.

Step 4 Give a control law which composed of (3.8), (3.9), 
    (3.13).

(3.10), and

  It can be proven that a controller designed according to the above 

procedure guarantees the boundedness of the acceleration for all (0,0) E 
   and satisfies the specifications (b) and (c) by Theorem 3.1. The 

proof is shown in Appendix. 
  In section 3.2, it is clarified that, in the case of conventional accelera-

tion feedback systems, the nonlinearity of a manipulator is compensated 

for by high gain feedback, which is due to positive feedback of an input. 

On the other hand, the controller proposed here includes a nonlinear 

compensation, i.e., urn, which compensates for a known nonlinearity 

and a feedback with respect to position and velocity, i.e. uR, which 

compensates for a unknown nonlinearity, as shown in Fig.3.3. Hence 

the proposed controller has no infinite gain. 

  Therefore, the controller designed according to the proposed design 

procedure satisfies three specifications (a), (b) and (c). 
Remark 3.1 The matrix I' which corresponds to a desired inertia ma-

trix needs to be a nonsingular one satisfying (3.29), which does not need 
to be positive definite.
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3.4 Discussion

3.4.1 Advantages of acceleration information

  Some merits of acceleration information are clarified here, comparing 

a control method using acceleration information with that without it. 

The former corresponds to the proposed control method, and the latter 

corresponds to a robust control method that is treated in chapter 2. 

  In the robust control method treated in chapter 2, which uses no 

acceleration information, the following control law is applied to a robot 

manipulator (3.1). 
 u=M{ed—(A+k)e—kAe}+ii(3.30) 

where A is a positive constant, and k = k(6, kb.  - Ae). Then we get, 
as an error equation, 

e + (A + k11/1-1M)e + kAM-1Me 
     = M-'Ey(B, 9, ed — Ae)(3 .31) 

Based on this error equation, the appropriate feedback gain k is given so 

as to control the effect of the uncertainty. The acceleration information 

is not required to calculate a gain k because the term in the right-hand 

side of (3.31), which is concerned with the uncertainty, is independent 
on the acceleration 6. However, since the uncertainty is appeared in 

the term with the gain k in the right-hand side of (3.31), it is difficult to 
estimate the effect of the uncertainty for each joint, and it is estimated 
for all joints altogether in terms of a singular value. This leads to
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a conservative estimation and a too high feedback gain. In addition, 
although the robust control method treated in chapter 2 also achieves 
the specified tracking precision, the control error is estimated in terms 
of the Euclidean norm, and so the control error for each joint angler 
cannot be specified independently. It is also required that  M-1.M is a 
co-positive definite matrix. 

  On the other hand, in the case of the robust control method pro-

posed here, which uses the acceleration information, the effect of the 
uncertainty is estimated for each joint as you can easily see in (3.14), 
and so the control error is specified for each joint angler. In addition, 
we can give any desired inertia F, although it is required that F and 
M — M + F + K are nonsingular. 

  In summary, the advantages of the use of the acceleration information 
are : (i) the effect of the uncertainty on the control error is estimated 
for each joint, and so the estimate is easier and is less conservative than 
the case without acceleration information, (ii) the control precision can 
be specified for each joint angler, and (iii) a larger class of the desired 
inertia F is specified.

3.4.2 Relation to the conventional control meth-
      ods 

  It is stated that the proposed robust control law given by (3.8), 
(3.9), (3.10), and (3.13) includes the conventional control laws as a 
special case. _ 

  When M = M andh = h in (3.9), the control law is 
u=M9+h—I'9+uR(3.32) 

Then the control law given by (3.32) corresponds to the disturbance 
observer [87, 90, 125] or the time delay control [83, 146, 49, 48], regard-
ing the term MO + h — £9 in (3.32) as an observer of the disturbance. 
Note that, however, the proposed robust control law (3.32) does not 
include the infinite gain in the closed loop system. 

  When £ = M in (3.10), the control law is 
u = M{9d — (A + K)e — KAe} + h(3.33) 

Then the control law given by (3.33) corresponds to that in the dynamic 
control method [77] or in the robust control method obtained in chapter
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Figure 3.4: Model of 2 d.o.f. manipulator

2, which use no acceleration information. Eq. (3.33) still requires the 
acceleration information, but if we can estimate the maximum value of 

the acceleration in (3.A4) according to the design procedure in section 
3.3 and the acceleration 6 in k is replaced by the maximum value, 
then the controller achieves a specified tracking precision for each joint 
angler and requires no acceleration information.

3.5 Simulation

  This section shows a simulation result of the trajectory control of a 
2 d.o.f. manipulator shown in Fig.3.4 to verify the effectiveness of the 
proposed control method. 

  Let the mass of the jth link be mi, the moment of the inertia about 
the center of the mass of the jth link be I,, the length of the jth link 
be l;, the distance between the jth joint and the center of the mass of 
the jth link be lg, (j = 1, 2). Also let 

01 = m1191 -I- I1 + m21? 
02 = m2111g2 
03 = m2122 + I2
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Table 3.1: Unknown parameters of manipulator

Unknown

parameter

 Inf.

value

Sup.

value

Real

value

Nominal

value

ml (kg) 6.0 8.0 6.0 7.0

m2 (kg) 6.0 8.0 6.0 7.0

I1 (kgm2) 0.2 0.4 0.2 0.3

I2 (kgm2) 0.2 0.4 0.2 0.3

Then we get the dynamic equation of the manipulator in Fig.3.4: 

 M(4, 9)0 + h(q, 0,0) = u(3.34) 
       0 =

,/[01,02]T, u = [u1, u2]T       M(0 , 0) - f 01 + 03 + 202C2 03 4" 52C2 
J 

                   ,/0,3 + 02C2 03      h(4, 0,e) _—`Y2S2(2e102 + e2) l 
Y2S2B1 

where Si _° sin 0; and C3 = cos 03 (j = 1, 2), and the gravity term is 
omitted for simplicity. Set E and y as 

       _01 + 03 03 202 02 02 0 

        — 

    E [ 03 03 02 0 0 02

y(9,9,9) =

which are verified to satisfy 

physical parameters are shown in Tab 
1g1 = lg2 = 0.25(m) are used. 

  Now a robust controller 

proposed in section 3.3. 

Step 1 : For the desired trajectory g

01 
    02 

C201 
C202 

—S2(2O102+e2) 
   S201 - 

           real and estimated values of the 

shown in le 3.1. Also 11 = l2 = 0.5(m) and 

n- is designed according to the design procedure

iven by
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Step

Step
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edl(t) = — cos(irt/3) 
      Od2(t) = — sin(7rt/3) — 2.0 for 0 < t < 6.0(3.35) 

Set 0.01(rad) as control precision with respect to the position, and 
0.02(rad/s) as control precision with respect to the velocity for 
each joint. Then from (3.17), we get Ei = 0.01 and Ai = 1.0(i = 
1, 2). 

2 : Let be the estimate of 0i, and 

ai=maxIcbi — l i=1,2,3 

Also let a4 be an appropriate positive constant. Then if one 

chooses a function g(6, 9, 0) as

9=[71 0 
72 [ al + a3 a3 2a2   a3 a3 a2 

I I 
   I 02 

  IC2II01I 
IC2IIO2I 

I S2(2B1O2+e2) I •   
I S2Bi I

a2 a2 0 1 
0 0 a2

   aa44 1

(3.36)

where F = diag{71,'y2}('yi > 0), one can verify that g given by 
(3.36) satisfies (3.12). According to this, one gets al = 0.4125, 
a2 = 0.125, and a3 = 0.1625. Also set a4 = 0.01. Then K of 

(3.28) is given by 

        s  

  K = E1110al+ a3 + 2a2 I C2 I a3 + a2 I C2        0E[a3-f-a2 I C2 Ia3 
                22 

x [sgn(Oi) 0 
          0sgn(B2) 

where sgn(•) is a sign function. 

3 : Set 71 = 5.0 and -12 = 5.0 so as to satisfy (3.29) for all 
(0,e) E'!l
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Figure 3.5: Simulation results

Step 4 : The controller is given by (3.8), (3.9), (3.10), and (3.13).

The sampling period is 1(msec). 
  Then simulation results are shown in Fig.3.5, which shows that the 
control error for each joint angle is within the specified tracking preci-
sion, and the control inputs are bounded. It is also verified that all the 
signals are bounded in this simulation. The simulation results show the 
validity of the proposed control method.

3.6 Conclusion

The main results obtained in this chapter are summarized as follows.

(i) It has been pointed out that the conventional acceleration feed-
  back system compensates for the uncertainty by high gain feed-

  back essentially, and the use of acceleration feedback gain matrix 

  which is diagonal reduces a multivariable control problem to a 

  decoupled control problem.

(ii) The disadvantages of the conventional acceleration feedback method 

have been clarified; (a) there exists a infinite feedback gain in the 
closed loop system, (b) there is no analytic discussion on the ef-
fect of the uncertainty which cannot be compensated for on the 

control error, and (c) there is no discussion on the boundedness 
of all the signals of the closed loop systems.
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 (iii)

(iv)

A robust tracking control methods using acceleration information 

for a robot manipulator with uncertainties has been proposed, 

where the acceleration information is fully exploited and the dis-

advantages of the conventional control methods are overcome. 

Comparing with the robust control methods without accelera-

tion information, the advantages of the proposed method with 

acceleration information have been shown; (a) the effect of the 
uncertainty on the control error is estimated for each joint, so 
the estimate is less conservative, (b) the control precision can be 
specified for each joint angler independently, and (c) we can give 
a larger class of a desired inertia.

Appendix 

Proof: Define the following set for a given desired trajectory  Od(t) 
and ed(t), a given vector = [e1, • • ,6„17' E Rn, and a given matrix 
A = diag{A1, • • • , An}E Rnxn 

P'o(ed(t), ed(t), S, A) 
g {(e(t)

, e(t)) I I Bi — edi I< 6i, I Bi — edi I< 2~i i, 
i = 1, • • • , n}(3 .A1) 

In addition let us define the following sets given by 

     ~'W !.0(6 d(t), ed(t), w, A)(3 .A2) 
     'I'E '0(ed(t) , ed(t), e, A)(3.A3) 

where w E Rn is a constant vector that satisfies  C •                                                             ,,,, namely, 
Ei < Wi 

From (3.1), (3.8), (3.9),(3.10), (3.13), (3.16), and (3.28), we get 
(M—M+r—K)9 
      = r(ed — Ae) + h(0, e) — h(e , e) — f(e, e, ed, ed) 

                                       (3.A4) 
Then it is verified that 

I 9 i< oo, V(0,0) E ~(3.A5) 
if the following relation holds for all (0, 9) E 

clet(M—M+r+K) � 0(3 .A6)
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  Now suppose that there exists a matrix F satisfying (3.A6) for all 
 (0,0) E !P . Let 

'W
s °_ {s(t) I I si ~< .~iCJi i = 1, • • • , n} (3.A7) 

Then it is verified that the acceleration 6 is bounded for all s E 

noting that (0,0) E for all s E T.s because of the assumption on the 
initial state error. Hence (3.24) in the proof of Theorem 3.1 holds for all 
S E C. It can also be shown that (3.25) holds because a nonnegative 
function V of (3.20) has a maximum value when si i< .iEi, and 
(3.17) holds. Therefore if we use a matrix F which satisfies (3.A6) for 
(0,0) E !P, , (3.17) holds. It can also be verified that, when a specified 
control precision e, A are given in advance, we have only to use a 

matrix F which satisfies (3.A6) for all (6,6) E 
 summary, if we design a control law according to the design proce-

dure given by section 3.3, then (3.17) holds, the boundedness of 6 and 
6 is always guaranteed, and so is the boundedness of 6. That is to say, 

the specifications (a) to (c) are achieved. 
Finally, the existence of F in (3.A6) is discussed. Assume that F is 
given by F = diag{ry1i 72i • • • , 7n}('yi > 0), and gi satisfying (3.12) and 
(3.28) is given by gi = 7i9i. Let N = M - M + K. If 

det(I + F-1N) � 0(3.A8) 
then (3.29) holds because det(F) # 0. Note that K does not contain 
-yi(i = 1, 2, • • • , n). Hence if det(F) � 0 holds, the fact that the eigen-
values of F-1N are -1 is equivalent to (3.A6). Thus, for example, if 
there exists a F such that, for all N, 

amin(r) > Qmax(N)(3.A9) 
then (3.A6) holds, where Qmin(•) and Umax(•) are the minimum singular 
value and the maximum singular value, respectively.
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 Chapter  4

ROBUST CONTROL OF 

ROBOT MANIPULATORS 

BASED ON JOINT 

TORQUE INFORMATION

4.1 Introduction

  In the previous chapter, a robust tracking control method of robot 
manipulators is treated where acceralation informations are available. 
In the case of a manipulator, it is not so difficult to get joint torque 
information using a torque sensor built in each joint. This chapter 
focuses on the robust control of robot manipulators in the case that 
the joint torque information is available. 

  In the past decade, various methods utilizing the information of a 
joint torque sensor in each joint have been developed to improve the 
torque control performance of actuators of a robot arm [141, 76, 5, 
101, 135]. Some experiments have shown that the utilization of joint 
torque information is effective to compensate for the nonlinearity of the 
actuator such as friction. 

  Recently, using a different viewpoint from the above methods, ro-
bust tracking control methods using joint torque information have been 
proposed by Kosuge [68, 69] and Hashimoto [42]. In these methods, un-

                     47
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certainties of links and an end-effector are regarded as a part of load on 
each joint axis, and the joint torque information, which is equivalent 
to the load on the joint axes, is fed back to the joint driving torque 
to cancel out the dynamics, including uncertainty. Hence the resul-
tant control system becomes robust. To design a controller based on 
this idea, a model of manipulators in the case where torque sensors 
are available is proposed by Kosuge [68], whose equation gives the in-
verse dynamics in a recursive form. Although the dynamic equation 

is effective in calculating the inverse dynamics, it is not convenient for 

control system design in the case where the coupling terms of the links 

and the modeling error of the actuator system are not negligible. This 

is because the dynamic equation has no explicit expression of the to-

tal structure which is inherently a nonlinear multi-input/multi-output 
system. So the dynamic equation that explicitly expresses the total 
structure is desired for the design of the control system. 

  In this chapter, a robust control method of robot manipulators based 
on joint torque information is proposed. First, a dynamic equation of 
a robot manipulator with torque sensors is derived, where a nonlinear 
multivariable structure is explicitly described. Some features on the 
structure are clarified. For instance, the coefficient matrix of the joint 
angular acceleration is nonsingular and lower triangular, and the total 
dynamics are given in a form such that the link dynamics is implicitly 
contained in the torque sensor signal. This dynamic equation makes 
it possible to design the control system of a robot manipulator with 
torque sensors based on the similar method used in the conventional 
case without torque sensors, for example, the dynamic control method 

[77] . 
  Second, it is shown that the proposed dynamic equation is effec-

tive for the design of the robust control system against the uncertainty 
of the actuator system, which has never been considered in previous 
methods using torque information. The proposed controller achieves 
the specified tracking precision in the presence of the modeling error , 
where torque information is fully exploited to compensate for the un-
certainty of the links and the load at the end-effector . In chapter 2, 
the robust tracking control method is treated in the case where the 

joint torque sensor is not available, which achieves the specified track-
ing performance against parameter uncertainties. Compared with the
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robust method in chapter 2, the proposed method needs less knowledge 
about the uncertainties. For example, no a priori information on the 
bounds of the uncertainties of the links and the load at the end-effector 
is required, because these uncertainties are compensated for by torque 
information. Furthermore, it is shown that the proposed method re-

quires less computational time to calculate the control input than the 
conventional methods. Finally, some simulation results are given to 
confirm the  effectiveness of the use of joint torque information .

4.2 Model

torque

of a manipulator with 

sensors

joint

  In this section, we derive a dynamic equation of the manipulator with 

joint torque sensors, and state some features of this equation. Further-
more, we consider the derived dynamic equation from the viewpoint of 
the control system design.

4.2.1 Derivation of dynamic equation

  We consider a serial link manipulator with n rotary joints that has a 
joint torque sensor in each joint. As is shown in Fig.4.1 , the dynamics 
of each link are divided into two dynamic systems namely, the motor 
system and the link system, by regarding each joint torque sensor as 
the border, like Kosuge [68]: the motor system includes a rotor and 
a speed reducer, and the link system is composed of a link. Then we 
define coordinate frames as follows. The origin of coordinate frame Ei 
of the ith link is set on the ith joint axis. The Z axis of Ei is selected in 
such a way that it aligns with the ith joint axis, and the unit vector in 
the direction of the Z axis of Ei is denoted by zi. The ith motor, which 
drives the ith joint, is fixed to the (i-1)th link, and the origin of coordi-
nate frame Emi of the ith motor is set on the axis of rotation of the rotor 

in the ith motor, called the ith rotor. The Z axis of Er.i is selected in 

such a way that it aligns with the axis of rotation of the ith rotor, and 

the unit vector in the direction of the Z axis of Erni is denoted by zmi. 

Let the moment of inertia of the ith rotor about the axis of rotation 

be Imi and the viscous friction coefficient of the ith motor system be
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joint i

 tot

0;

joint torque sensor

speed reducer

Figure 4.1: Joint model of a robot arm

b,ni. The output torque of the ith rotor is denoted by ui, and usi de-
notes the coupling force by the other motor systems and link systems, 
that is, the load exerted on the ith motor system that can be measured 
by joint torque sensor on the ith joint. Moreover, we use the follow- 
ing notations: u = [u1, u2,..., un]TE Rn, us= [usi, u32, • • • , usn]T E

111Rn, t1 [Im1, Im2, • • • , I,m.n]T , dB[bm]., bm2, ... , bm,n]T , and I' 
diag{-yi , 'Y2, • ,7n},  where -yi (_> 1) represents the reduction ratio at 
the ith joint. 

  Now the following assumptions are made. 

  [Assumption 4.1 ] Each rotor is symmetric with respect to the 
axis of rotation. 

  [Assumption 4.2 ] The torsion at each joint due to the flexibility 
of the torque sensor is small enough that it can be ignored, so the joint 
axis is regarded as a rigid one. 

  [Assumption 4.3 ] The transmitted force does not fail at the 
speed reducer, and the inertia between the torque sensor and the speed 
reducer is negligible. 

  Then the dynamic equation of the manipulator with joint torque 
sensors is derived as follows:
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 M(01, 0)8 + h(Cb1, OB, 0,0) + I'-lus = u 

where 0°_ [Or, 02i ... , 0n]T E Rn is a joint angle vector, the 
ment of M E Rn", denoted by Mij, is 

         6. Imi'Yi if i = M
ij = ImiZTnizj if i > j 

            0 if i<j 

and the ith element of h E Rn, denoted by hi, is

hi =

 bmi'Yi  ei if i=1,2

  (4.1) 

(i, j) ele-

(4.2)

Here x denotes the vector product. See Appendix for the proof 

eq.(4.1). 
  Next we clarify some features of the dynamic equation given by 
eq.(4.1).

i—lj-1
(/(4.3) I,niE E zmi(zk X Zj)ekej '+' bmiryiei 

j=2 k=1 

             if i > 3 

the vector product. See Appendix for the proof of

  [Feature 4.1 ] Nonlinear terms M and h contain only the phys-
ical parameters of the motor systems, c¢1 and OB. On the other hand, 
the load u3 that acts on the motor system consists of the dynamics of 
link systems and external force.

  [Feature 4.2 ] 
lar.

The matrix M is nonsingular and lower triangu-
                      I

  [Feature 4.3 ] The first and second terms of the left-hand side 
of eq.(4.1) can be expressed as 

M(01, 6)6 + h(41, (/)B, 6, 6) = E(01, B)y(6, 6, 6) (4.4) 
where E(&, 4B) is an appropriate dimensional matrix consisting of 
physical parameters, and y(6, 6, 6) is an appropriate dimensional vec-
tor whose elements are known functions of 6, 6, and 6. 1

  [Feature 4.4 ] The diagonal element Mii of M is in proportion 
to reduction ratio 1'i. So if the reduction ratio is high, then the effect of 
the coupling term in the motor systems is small.



52Chapter 4 Robust control based on Torque  Information 

4.2.2 Advantages of the derived dynamic equa-
      tion 

  We discuss some advantages of the dynamic equation (4.1) from the 
viewpoint of control system design. Let TE Rn be a new input. The 

following control law is considered. 

U = I'—lus + T(4.5) 
Substituting eq.(4.5) into eq.(4.1), we obtain 

M(01,9)9 + h(01, 0B, 9, 9) = T(4.6) 
This means that we do not have to consider the link dynamics at all 
when the joint torque information is available, and that the control 

problem of a robot manipulator can be reduced to that of the motor 
system. Moreover we easily see that the control system of eq.(4.6) can 
be designed in a similar way as the control method of the robot manip-

ulator without joint torque sensors (For example, Luh [77]). Namely, 
the desired trajectory 9d(t) is assumed to be given whose derivatives 9d 
and 9d exist and are bounded, and the control law T is given as follows: 

T = M(9d - Kde — Kpe) + h(4.7) 
where e ==9-9d is the control error, and Kp and Kd E IV" are 

appropriate position and velocity gain matrices. Then from eqs.(4.6), 
(4.7), and 4.2, we obtain the error equation 

e+Kde+Kpe = o(4.8) 
Hence, if Kp =kpI and Kd = kdl, where kp and kd are positive con-

stants and I is a unit matrix, then e(t)-* o(t -40o), and 9, 9, and 9 are 
bounded. Furthermore, since us is a function of 9, 9, 9, and external 

force (note that the formulation of us can be explicitly expressed by 
Lagrangian method), the signal us is bounded when the external force 
is bounded. Therefore all the signals of the closed loop system given 

by eqs.(4.1), (4.5), and (4.7) are bounded. 
  Although the above discussion is about the joint servo system, it 

is straightforward that the control system can be designed even in the 
operational space. Now we consider the variable at the operational 
coordinates given by r = PO) E Rn. The relation between and 9 
is given by r =JO, where J is the Jacobian matrix. Then assuming 
that J is nonsingular in a certain region of 9, we consider the following 
control algorithm
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     T =  MJ-1(rd — Kde, — Kper — JO) + h(4 .9) 
where rd is a desired trajectory expressed in the operational coordi-
nates, and the control error is given by e,. °=r—rd. The error equation 
in this case is similar to eq.(4.8), and we get the same result as the joint 
servo system. 

  Moreover, when the force at the end effector, denoted by f, is mea-
surable, the control law u can be given as 

u=F-1(us+JTf)+T(4.10) 
Substituting eq.(4.10) into eq.(4.1), we get 

M(01,0)0 + h(41, dB, 0,e) = T + I'-1JT f (4.11) 
Therefore, the robust force control system with joint torque sensor feed-
back is designed in the same way as in the case of the robot manipulator 
without joint torque sensors. 

  As a result, "we can design the control system of a robot manipula-
tor with joint torque sensors based on the similar method used in the 
conventional case without joint torque sensors ". Although this result 
is also pointed out by Kosuge [68], it is not clear because the dynamic 
equation given in a recursive form dose not clarify the explicit structure 
of the coupling term and whether M is nonsingular. On the other 
hand, our dynamic equation, where the structure of the robot manip-
ulator with, joint torque sensors is explicitly expressed, gives the above 
result more clearly. Furthermore, the proposed dynamic equation is 
effective for the design of robust control system against the uncertainty 
of the actuator system, which has never been considered in previous 
methods using joint torque information. It is stated in the next sec-
tion.

4.3 Robust control design in the pres-

ence of motor system uncertainties

  In this section, based on the dynamic equation in section 4.2, we take 

the uncertainties of the motor system into consideration to establish a 

more practical control system design, and propose a robust control 

method that achieves the specified tracking accuracy in the presence
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of the modeling error, where joint torque information is fully utilized 
to compensate for the uncertainty of link parameters etc.. Next we 
state some advantages of our method, compared with the conventional 
robust control methods without joint torque information. 

  We consider the following problem. 

  [Problem 4.1 ] For the robot manipulator given by eq. (4.1), it 
is assumed that the desired trajectory 9d is given, and that the tracking 
precision e and ev are given. Then find a control law such that 

                                    e(t) 11< Ep, 11 e(t) JI < Ev (4.12) 
holds for any t > O. 

  We assume that e(0) = o and e(0) = o for simplicity, and that the 
following assumption is made. 

  [Assumption 4.4 ] The values of the physical parameter vectors 
(Ai and 4B are unknown, but it is known that ckI and dB exist in 
known and bounded regions III and IIB, respectively. Moreover, the 
estimates of c/II and cbB, denoted by 4 and 4 B, respectively, are given 
such that there exist bounded positive constants a and /3 that satisfy the 
following conditions for any non-zero vector x E R", any non-zero and 
appropriate dimensional vector y, any 9 E Rn, any 0I E III, and any 

  E IIB: 
     a II x 112< XT 1X, I °= M-1(~I, 9)M(~I, 9) (4.13) 

a II y II>II M-1(fl,I, 9){E(OI, C5B) - E(4)I, 4B)}y II (4.14) 

Remark 4.1 For simplicity, we use /3 II as the function that dom-
inates the right-hand side of eq. (ij.14). However, even in the case of 
>i /3igi(0, 9, 9), where ,QZ are appropriate positive constants and gi is a 
non-negative function, the argument here can be also applied. 

 Let M °= M( I, 9), h =° h(/I, 4B, 9, 9), and E _° EC(' ). Note 
that a and /3 are obtained by calculating the smallest and largest sin-
gular values of I and M-1 {E - E}, respectively, using the information 
on the bound of the uncertainty, that is, III and rig. 

  Under the above assumption, we consider the same control law as 

given by eqs.(4.5) and (4.7) as follows. 
     u = F-lu9 + M(9d — (a + k)e - Ake) + h(4.15)
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where A is a constant gain and k is a time varying gain. Then substi-

tuting eq.(4.15) into eq.(4.1), we obtain the error equation: 
 e+(Al+kI)e+Akle=71(4.16) 

A where r) =°M_1(E — E)yd and yd === y(9, kb. — Ae). If we have no 
modeling error, that is, if r) = o and I = I, then eq.(4.16) is almost 
the same as eq.(4.8). So r) is 

Ti"reated as the disturbance that results from the modeling error, and as one part of the feedback gain that 

contains uncertainty. The effect of these uncertainties,I and r), on the 

control error e is evaluated by eqs.(4.13) and (4.14), respectively. That 
is to say, we can estimate the infimum value of the uncertain part, I, 

of the feedback gain in terms of a positive number a in eq.(4.13), and 
the supremum value of the disturbance r) by eq.(4.14) as follows: 

/ 1 Yd 11>—II 71 II (4.17) 
  Then we obtain the following result. 

  [Theorem 4.1 ] Consider the manipulator eq. (4.1) that satisfies 
Assumptions 4.1 to 4.4. The desired trajectory 6d with twice partial 
derivatives and the specified tracking precision, E p and Ev are given. 
Suppose that a in eq.(4.13) and ,Q in eq.(4.14) are obtained from the 
knowledge of the regions HI and IIB. If the control law eq. (4.15) whose 
feedback gains are given by 

    A __ Ev k = 0 II Yd 11(4.18) 
       2E p'aAEp 

is applied to the manipulator, then 

II e(t)11< EP, II e(t) II < Ev(4.19) 
holds for any t > O. 

  A similar proof can be found in the proof of Theorem 2.1 in section 
2.3. This theorem shows that it is possible to design a robust control 
system that achieves the specified tracking precision, through compen-
sating for the uncertainty of the motor system by high gain feedback 
with eq.(4.18) and any disturbance to act on the link or the end effector 
etc. by joint torque sensor feedback. 

  The proposed robust control system based on joint torque infor-
mation is constructed in the same way as the robust control method 
without joint torque information obtained in chapter 2. As shown in 
Table 4.1, however, the proposed method has some advantages, com-
pared with the robust control method without joint torque informa-
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Table 4.1: Advantage o f joint torque information
  proposed method 

with torque information

  robust control method 
without torque information

uncertainty

to be considered
motor system only motor and

link systems

feedback gain  Ismall large

computational

load

 

I add.  mul. I add. mul.

—17 in'nl+ ;yn-23 96n — 83 122n — 92

21n — 19 32n — 25

tion. Namely, the method proposed here has only to take account of 
the uncertainty of the motor system, because it compensates for the 
uncertainty of the link system by the joint torque sensor feedback. In 
the case without no joint torque information, on the other hand, the 
uncertainties of both the motor system and the link system are compen-
sated for by high gain feedback of position and velocity control error, 
as you can see in section 2. Hence the robust control method without 

joint torque information requires the information on the bound of the 
uncertainties of not only the motor system but also the link system, 
and need a higher feedback gain than the method with joint torque 
information, in the condition of the same specified tracking precision 

(easily seen from  eqs.(4.13) and (4.14)). High gain feedback often causes 
unexpected phenomena such as chattering in digital implementation. 

  Furthermore, as shown in Table 4.1, the computational load of the 

control law in the proposed method is about 1/2 ti 1/5 times smaller 
than in the robust control method without joint torque information. 
Note that the values in Table 4.1 is the computational amount for 
solving the inverse dynamics in the case that zm2 = z2(i = 1, 2,• • • ,n). 
The computational load in the robust control method without joint 
torque information is based on the formulation of Newton-Euler method 
[77]. The value of the upper section in the proposed method is the net 
computational load based on the dynamic equation (4.1), and the value 
of the lower section is the load based on the recursive formulation of 

the dynamic equation (4.1). 
  Compared with the former control methods with joint torque in-

formation [68, 42], the proposed method has quantitative evaluation of 
the effect of the uncertainty of motor systems and achieves the specified 

tracking precision. Furthermore, although we discussed the uncertainty
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of the motor system in this section, the proposed method can be applied 

even in the following case. In the high reduction ratio, the decoupling 

control law that M in eq.(4.15) is a diagonal matrix is  effective because 
of 4.4 in section 4.2. Note that the obtained theorem holds even if M 

is any matrix to satisfy eq.(4.13). This decoupling control law is almost 
equivalent to that given by Hashimoto [42], but his method ignores the 
effect of the coupling term. On the other hand, the proposed method 

in this case can evaluate the effect of the coupling term that is not 

compensated, by calculating a in eq.(4.13) and /3 in eq.(4.14). Further-
more, if the maximum value of the measurement noise is known in the 

case of the torque information with measurement noise, the proposed 

method evaluates the effect on the control error.

4.4 Simulation

  In this section, to verify the effectiveness of the proposed method 
with joint torque information, we show simulation results of trajectory 
control of a 2 d.o.f. direct-drive arm (7i = 1.0, i = 1, 2), where the 
desired trajectory is given by 

Odl(t) = —1.8 cos(irt/3) (rad) 
0d2(t) = —1.8 cos(irt/3) — 1.0 (rad)(4.20) 

                         for 0 < t < 3.0 (sec) 
  The model of a 2 d.o.f. arm with joint torque sensors is given as 

follows, by using eq.(4.1)(see Fig.4.2). 
L Im1 0e1+bmi8i+U31lfull(4 .21)      Im2Im2I[02][bm292[us2JLU2 

                                            J Here, we set real values of the physical parameters as shown in Table 

4.2. In this situation, the only a priori information about the physical 

parameters of this arm is that Imi(i = 1, 2) is between 0.3 and 0.5, and 
bmi is between 0.5 and 0.7. The estimate $r is given as :;3I =[0.4,0.4]T 
so as to satisfy the relation (4.13). The estimate cB is given as 4'B = 
[0.6, 0.6]T. Then the tracking precision is specified as Ep = 0.011(rad) 
and Ev = 0.022(rad/sec). Then a = 1.0 by eq.(4.18). a is evaluated as 
a= 0.69 by eq.(4.13), and k in eq.(4.18) is determined using eq.(4.14) 
as follows: 

     k = (0.45 11 ed — Ae 11 +0.54 11 e II +0.01)/(aAEp) (4.22)
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Figure 4.2: Model of 2 d.o.f. direct-drive arm

Table 4.2: Physical parameters
Moment of inertia of the ith link  I; = 0.4 (kg.m2), i = 1,2

Length of the ith link = 0.5 (m), i = 1,2

Distance between the ith joint and the center of
the mass of the ith link

19i=0.25(m), i = 1,2

Mass of the ith link

5 (kg) for 0 < t < 1.0 (sec)

{8 (kg) for 1.0 < t < 2.0 (sec)= m,— { 2 (kg) for 2.0 < t < 3.0 (sec)
Mass of the 2nd rotor mm2 = 2.0 (kg)
Moment of inertia of the ith rotor = 0.3 (kg•m2) , i = 1,2
Viscous friction coefficient of the ith rotor bmi=0.5, i=1,2
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Figure 4.3: Simulation results for proposed robust control method 

joint torque information
using

Note that, although a manipulator is a continuous-time system, this 

simulation uses the Euler method with the integral interval of 0.1(msec) 
as numerical integration, and the digital control with the sampling pe-

riod of 1(msec). The measurable signals are assumed to be available at 
the moment, and the time delay for computing the control law is not 

considered. Fig.4.3 shows the results. The norm of the control error 

is smaller than the specified precision Ep at any time, and the input 

torque u is smooth. A similar result has also been obtained concerning 

the velocity error  e. 
  For comparison, we show the simulation results in the case of the ro-
bust control methods without joint torque information, which is treated 
in chapter 2. In this case, a priori information about the physical pa-
rameters is that Ii = 0.4(kg.m2) and m„t2 = 2.0(kg) (namely, the real 
values of Ii(i = 1, 2) and mm2 are known), and that mi is between 2.0 
and 8.0. In addition, a priori information on the physical parameters of 

the rotors is assumed to be the same as the case of the proposed method, 

and the estimate of mi is given as 4.0(kg). The specified tracking preci-
sion in this case is equal to the proposed case. The control parameters 

a and k are determined in the same way as the proposed case. 

  Simulation results are shown in Fig.4.4 . The norm of the control 

error is smaller than the specified precision. However, the chattering 

appears in the input torque. The smaller the specified precision is set, 

the larger the chattering becomes. This reason is as follows. In gen-
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Figure 4.4: Simulation results for robust control method without joint 
torque information
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Figure 4.5: Comparison of feedback gain

eral, the robust control method without joint torque information tends 
to conservatively evaluate the feedback gain to achieve the specified 

precision, because there is a lot of uncertainty to be compensated for 
by high gain feedback. As a result, the feedback gains of position and 
velocity error are too high. So Fig.4.5 shows the comparison of the feed-
back gains between the method with joint torque information and the 
method without joint torque information. In spite of the same speci-
fied tracking precision, the feedback gain in the former method is about 
0.10 times smaller than in the latter method. Consequently, the former 
method can reduce the chattering owing to the high gain feedback of 

position and velocity error more than can the latter method.
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  Furthermore, a simulation is made to take a time delay for generating 

the control input into account, and almost the same result as the case 

without considering the time delay are obtained there. 

  These results show the effectiveness of the proposed robust control 

 method.

4.5 Conclusion

The main results obtained in this chapter are summarized as follows .

(i) A dynamic equation of the manipulator with joint torque sen-
  sors has been derived, which expresses explicitly the multivari-

  able structure. As a result, the proposed dynamic equation clari-
  fies that the robust control system of the manipulator with joint 
  torque sensors can be designed as in the same way as the case of 

  the manipulator without joint torque sensors.

(ii) It has been shown that the proposed dynamic equation is effec-
   tive for the design of robust control system against the uncer-

   tainty of the motor system. The proposed robust control method 
   achieves the specified tracking precision in the presence of the 

   modeling error, where joint torque information is fully exploited 
   to compensate for the uncertainty of the links and the load at the 

    end-effector.

(iii) Although the proposed method requires the exact information on 
the joint torque, the following advantages has been clarified, com-
pared with the conventional robust control without joint torque 
information; (a) we need less a priori information on uncertain-
ties, (b) the computational load for the control law is smaller, and 
(c) the feedback gain to achieve the specified tracking precision 
is much lower. In addition, compared with the previous existing 

methods with joint torque information, (d) the proposed method 
is more systematic in the sense that it is possible to evaluate the 

effect on the uncertainty of the motor system and to achieve the 

specified tracking accuracy.
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Appendix

Proof of Eq.(4.1) : Adding to the notations in section 4.2, we define 
the following notations . nmi denotes the moment vector exerted on the 

ith rotor by the i — lth link, which is expressed in the reference frame. 

nsi denotes the moment vector exerted on the ith rotor through the 

torque sensor by the ith link , which is expressed in the reference frame. 
Imi, expressed in the reference frame, is the tensor of the inertia of the 

ith rotor. wi and wmi, expressed in the reference frame, represent the 

angular velocity vectors of the ith link and the ith rotor, respectively. 

emi is an angle about the axis of the rotation of the ith rotor. 

  Then from Euler's equation, we get

nmi = Imiwmi + wmi X (Imiwmi) + bmiOmiZmi + nsi 
In addition, using Assumption 4 .2 in section 4.2, we obtain 

emi = 7iei 

        wmi — wi-1 + OmiZmi 

wmi = wi-1 +'7ieQzmi + Wi-1 X (7ieizmi) 

nsi = usizmi/ryi 
Substituting these relations into eq.(4.A1), the following eq 
obtained: 

ui = zTminmi 

                          T =z milmiwi-1+(zmilmizmi)`yiei 
        +zT,milmi(wi_i X7'ieizmi)+zTmi[Wmi X (Imiwmi)} 

+yibmiei + usi/ryi 
Using Assumption 4.1, we prove that the third and fourth ten 

right-hand side of eq.(4.A2) is equal to 0. Moreover note that

0 W
i-1 =

 0 

 z1e1

(4.A1)

equation is

            (4.A2) 
d and fourth terms of the

i-1 i-1J-1 

+ > >(z~: 
j=1j=2k=1

if i=1 

if i = 2

X z~ )BkO j

if i > 3

(4.A3)



                                         63 

and  z  ilmi = ImizTmi. Therefore from (4.A2), we get 
i-1 

ui = Imi7iei '+' Imi E zm,izjej 
j=1 

i-1 j-1 

+Imi E E Zmi(zkXzj)ekej+yibmiei+usi/Yi (4.A4) 
j=2 k=1 

where the second and third terms are equal to 0 when i = 1, and the 
third term is equal to 0 when i = 2. This completes the derivation of 
eq.(4.1).
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 Chapter  5

DIGITAL ROBUST

CONTROL OF ROBOT

MANIPULATORS

5.1 Introduction

  In chapters 2 to 4, various types of continuous-time robust controllers 

of robot manipulators have been discussed. However, since the above 

continuous-time robust controllers are nonlinear, we have to descretize 

them when it is implemented in practice. In other wards, we need a 

digital controller to control a robot manipulator in fact. If we descretize 

a continuous robust controller and implement it as a digital controller, 

the following unexpected phenomena may occur. When a feedback 

gain is too high, namely, the uncertainty is much large or the specified 
control precision is much small, the real control error is larger than the 

allowable control precision that is theoretically obtained in continuous-

time robust control theory. In addition, although a continuous-time 

robust controller that is composed of a continuous function does not 

lead to chattering theoretically, even in such a case, the chattering 

often occurs if a digital control is used. These result from the fact that 

an input to a plant is constant in a sampling period. Thus there are 

few works on robust control premising a digital control [142, 78, 35]. 
However, these works treat the case of linear systems only, and there is
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no research in the nonlinear system case so far. 

 This chapter discusses a robust control method of robot manipulators 

premising a digital control, which is called a digital robust control. 
The effect of a sampling period on control performance is discussed 

theoretically. Based on the above analysis, a design procedure of the 

digital robust control system, that is to say, how to calculate the value 

of a feedback gain to achieve the specified tracking precision for a given 

sampling period is given. Moreover, a weighting function for a feedback 

gain is proposed to make the feedback gain small so as to decrease the 
chattering, and the effectiveness of this idea is shown by illustrative 

simulation results.

5.2 Problem statement

  Consider a manipulator with n degrees of freedom whose dynamics 

is described by the following equation : 

M(4, 0)6 + h(4, 0,0) = u(5.1) 
where 0 _ [01, 02, ... , 8,,,]T is the n-dimensional vector of joint displace-
ments, 4 is the physical parameter vector with an appropriate dimen-
sion, u is the n-dimensional joint torque input vector, M(0, 0) is the 
n x n manipulator inertia matrix, and h(c/), 9, 0) is the n-dimensional 
vector that represents the nonlinear terms such as centrifugal, Coriolis, 

frictional, and gravitational forces. 

  This system usually has the following features. 

' [Feature 5.1 ] M(4, 0) is a positive definite matrix for any 9. 
  We begin with the definition of notations which express mechanical 

performance of a manipulator given here. Let eimax denote a maxi-

mum movable range of the ith joint angle, that is, eimax =° max I 0i ~. 
Let Bimax denote a maximum angular velocity of the ith joint , that is, 

    0 Bimax= max I 6i I. Let Bimax denote a maximum angular acceleration 
of the ith joint, that is, Bimax = max Bi I. Also let 

,f2p - {e l l e l< eimax, = 1, 2, ... , n} (5.2) 

       ,fl„ 01 I B, I5_ e jill aX j = 1, 2, ... , n} (5.3)
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 Da = {9 I I §i I< ejmax, .7 = 1,2,...,n} (5.4) 
Let T denote a sampling period, which is assumed to be given in ad-
vance to depend on the degrees of freedom of the joints and mechanical 

performance such as computer performance. For given 6 E slp and 
6Eflv,let 

np(6)A= { I I - 6; i< 0jmaxT, j = 1, 2, ... , n} (5.5) 

nv(6) { I I — e; I < 8jmaxT, j = 1, 2, ... , n} (5.6) 

where °_ [c1i 1;2i ... , n]T. IIp(6) and nv(6) express a set of joint 
angle and joint angular velocity which is reachable in 1 sampling period 
from 6(t) andra(t), respectively. 

  Then the following assumptions are made. 

  [Assumption 5.1 ] The values of 0 and 6 at each sampling 
point, that is, 6(iT) and 0(iT) (i = 0, 1, 2, • • •) are known. 1 

  [Assumption 5.2 ] 0i„tax, Bimax, and 6imax are known. 1 
  [Assumption 5.3 ] The values of a physical parameter vector 

0 may be unknown, but it is known that 0 exists in a known bounded 
region 110. 

  [Assumption 5.4 ] Each element of M and h is continuous on 
0, 6 and 6. 

  In addition, let

For a given 

(k = 1, 2, . .

M(6) _°

N(6) °_ M

M1(0) 

Mn(9) 
      N1(6) 

Nn(9) 
~Ic

 OE fly, we define a vector 9k °_ [91, a2, . 
. , n). Using this, we also define

  0 N=

 N1(61) 

Nn(9n)
Then the following assumption is made.

(5.7)

(5.8)

 ..  , 9klT E rip(0)

(5.9)



68 Chapter 5 Digital robust control

  [Assumption 5.5  ] 4), a bounded estimate of 4), is given such 
that the following matrix is positive definite for all 9 E Op, 9k E IIr(9), 
  E Do and k, 

  M°TT      _ {NM +1VIN }/2(5.10) 
where M=M(4,O). 
  Assumption 5.4 implies that, for example, we do not consider here 
Coulomb's friction. In Assumption 5.5, although it is not easy to ana-
lytically show a condition of 4) satisfying that M is positive definite, we 
believe that Assumption 5.5 is satisfied mostly if the sampling period 
is small enough. 
Note that, from Assumptions 5.3 and 5.5, there exist positive constants 
am and am such that the following conditions are satisfied. 

0<a.m, <Am(NM+MTNT)/2 

y9 E,,`d9k          ,Q E fl (9), Vk(5.11) 
ant > AM(NM) 

       d9 E Op, v?k E Tf (9), dk(5.12) 
  Now let 

= [9T AOT]T(5 .13) 
where )A is a positive constant. Then we get the following state space 

equation of (5.1). 
       = Acx + B,M-1(9){u — h(9 , 0)}(5.14)        A [ i AoaI

JE R2n<2n(5.15)            0 0 

                                  2nxn        B~~IE R2nxn 
where I is a unit matrix. 

Remark 5.1 When we estimate the bound of the control error in terms 
of the Euclidean norm, we can specify a ratio between 9 and 0 , by a 
positive constant A. 

  For the above robot manipulator, we consider the following problem . 

  [Problem 5.1 ] For a robot manipulator given by (5.1) or (5.14) 
that satisfies Assumptions 5.1 to 5.5, a desired trajectory Od(t) is given 
whose derivatives 9d and 9d exist and are bounded . Consider a digital
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control system with a sampling period T. Then for given  sp, find a 
control law such that 

     e(t) II < 5p Vt > T 
1(5.17) holds for all t > 0, where e(t) = [~~~)J—0.d(t)and to is 

an initial time. 

5.3 Digital robust control 

  In this section, at first, we get a discrete-time state space equation 

from a continuous state space equation given by (5.14) and give a dig-
ital robust controller for a discrete-time system. Second, we estimate 
the bound of the control error in that case, and finally give a design 
procedure of a digital robust control system of a robot manipulator, 
which achieves a specified tracking control precision. 

5.3.1 Discrete-time nonlinear systems 

  It is followed from (5.14) that 
      x(t) = eAc(t-to)x(to) 

           +IteAc(t—T)BcM-1(e(T)){u(T) —h(e(T), e(T))}dT 

                           o 

                                        (5.18) 
Assume that the input u(r) is ui for all T E [iT, (i + 1)T), where ui 
is a constant vector. Replacing to and t in (5.18) by iT and (i + 1)T, 
respectively, we get 

                IT(i+1)T      Xi-F1 = Axt +J
TB(T, i).M-1(e(T)){u(T) 

—h(9(T), 0(T))}dT(5.19) 

      A o[oI, E R2~,.x2n(5.20) 
B(T, i)[{(i + 1— T}I E R2nxn (5.21) 

A where xi x(iT). Using (5.1), we can also express (5.19) by
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                   (i+1)T 
 xi+1 = Axi+           fiT                 B(T, i)O(T)dT(5.22) 

                  Note that there exists a state in the integral term of the right-hand 

side of (5.19), comparing with the case of linear systems. So using the 
average-valued theory in the integral, we rewrite (5.19) or (5.22). Then 
let f E R'z be a function defined by

f (e, e) o M_1 h o

Let also Oi 

we define

 fi  (e, 0) 

f7,(0, e)
(5.23)

 9(iT) and  9i =° 9(iT). For given 9i E fl, and 9i E fin,

Ni =

 N1(6) 

N~(OZ )
(5.24)

 1i=

 1 -1 

 fi  (°  ,  Oi  ) 

     n ^-n 

fnleiei
(5.25)

for any  0i E Hp(0i) and 62 E fIv(62) (k = 1, 2, ... , n). In addition, 
let  

 o_   62N2u2 — .f 2(5.26) 
  In the same way as the definition of 0i, for any 6k E ri p(62) and 

k Bi E ffv(62) (k = 1, 2,... , n), let 

  _6,N2u2-f2(5.27) 
whereN2 and f 2 is defined in the same way as (5.24) and (5.25). 

  We use the following notations hereafter. For a vector x and a
_matrix A

, x2 and A2 express values at the ith sampling point.xi,xi,A2 and 

A2 express values at some time in the ith sampling interval . 
  Then we get the following lemma. 

  [Lemma 5.1 ] For given ui, 0i, and 0i, there exist 6kEII(62) 
k and 6i E ILA) (k = 1, 2, ... , ii) satisfying
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IT(i+1)TB(T, i)6(T)dT = B9i+B09i (5.28)
where 

    Dei g  L — ei 

     [T21B= E R2nxn ATI
B °o r 1 E R2n,Xn 

       0

Proof: Since an input is constant, 0 is continuous. 

average valued theory in the integral, we get 

   f(i+1)TT2 

     JB(T, i)e(T)dr =2e:   zTATO, 

Hence from (5.30) and (5.29), (5.28) follows. 
Applying Lemma 5.1 to (5.22), we obtain 

xi+1 = Axi + B0i + BAOi 

which is a discrete-time expression of (5.14).

(5.29)

Then using

I 

the

(5.30) 

I

(5.31)

5.3.2 Digital robust controller 

  We consider the following reference model for a discrete-time system 

given by (5.31). 
XMi+1 = AMXMi + BUMi(5.32) 
AM = A + BK(5.33) 

uMi E NI(5.34) 
where xMi E R2" is the state of a reference model at the ith sampling 

point. uMi is a reference input which is given so as to hold
/ XMi =[eMi,~eMilT(5.35) 

Note that we cannot always find 'Mi such that (5.35) holds. However 
for simplicity, it is assumed that there exists a reference input uMi such 

that (5.35) holds, because we can directly extend an approach obtained 
hereafter to the case that there exists no reference input such that (5.35) 
holds. In addition assume that K = [k1I, k21} for simplicity, and K 
is selected such that the absolute value of the eigenvalue of A+BK is 

less than 1. ,f2 Al expresses a set of reference inputs which are feasible, 

and will be defined later.
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  Let  ei be a control error at the ith sampling point denoted by ei —° 

xi — xMi. Then we get an error system between (5.31) and (5.32) as 
follows. 

ei+i = AMei 

+B{Niui — f i — (UMi + Kxi)} + B06i (5.36) 
For an error system given by (5.36), consider the following controller. 

ui = uLi + uRi(5.37) 
where uLi is a linearizing controller and um is a robust controller. 

<Linearizing compensationuLi> 

Noting (5.36), we consider 
uLi = Mi{f i + (uMi + Kxi)}(5.38) 

where Mi°=M(6i) and f i is the estimate value of :1i. 
                                           <Robust compensationuRi> 

Let Si be an extended error given by 

  si = BTPAMei(5.39) 
where a matrix P is a positive definite solution to the Discrete Lya-

punov equation 
AMPAM — P = —Q(5.40) 

for a positive definite matrix Q. For simplicity, we assume 

Q = [gni  gig J E R2nX2n(5.41)             qI2' 47:I J 

      P=fplIP:I E R2nx2n(5.42) 
p2I p3I 

In addition, let ' be a switching function given by 

0(si)SIIiIIifIISi110o(5.43) 
Then noting that there exists a positive function g(x, uMi) such that 

g(xi, uMi) 
>~~ NiMifi — fi + (NiMi - I)(uMi + Kxi) 

VOi E Op, V6, E Si,,, VuMi E fim 

           d62 E p(6i), V6k E II„(6i), Vk(5 .44) 
we consider the following robust controller. 

uRi = — a wg(xi, uAi)'(si)(5 .45                              )
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where w  (> 0) is a design parameter to specify the control error preci-
sion. We call wg(xi,uMi) a switching gain hereafter. cti,n is a positive 
number to satisfy (5.11).

Let Tp be a positive constant denoted by 

Tp o T4p1/4 + AT3p2 + )2T2p3 
Then note that Tp has the following relation to BT PB. 

BTPB = TpI 

Furthermore, let g be a maximum value of g(xi,uMi), that is, 

g = max{g(xi, uMi)} 
d9i E 9p, d9i E duMi E DM 

Then we define the following function of to.  

0 13(w) +0(w)2 + Am(Q)Tp7(w)2g2  
    b(w)

5.3.3 Estimation of the bound of control error 

  In this subsection, we estimate the bound of the control error when 
a controller given by (5.37), (5.38), and (5.45) is applied to an error 
system (5.36). 
  First, note that there exists a positive number v such that, for 09i 

given by (5.29), 
v > )M(AMPB) II oei II 

Vei E Sl, `d9i E Qv, duMi E nM 

         d9i E 17p(9i), d9i E -MOT) 
               -k^k 

                                         (5.46)

Am ( I ) 
where 

            '\M(BT PAM)g(1 — w) + v 
13(w)°= if 0<w<1 

                     if w> 1 

01-fif 0<w<1 
     7(w)- 1+( )w if w>1 

  Then we get the following lemma. 

  [Lemma 5.2 ] For a positive definite function

(5.47) 

(5.48)

(5.49)

(5.50)

(5.51)

(5.52)
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  = eT Pei(5.53) 
let OV = V+1 — V . If a control input given by (5.37), (5.38), and 
(5.45) is applied to an error system (5.36), then 

LV < 0(5.54) 
when 

  II ei II>— 6(5.55) I 

Proof: Substituting (5.36), (5.22), (5.39), and (5.40) into the equation
OV = e +1Pei+i — eT Pei 

we get 

OV = —eT Qei + 2sT {Niui — .f i — (umi + Kxi)} 

+2eT AMPB09i + yT Pyi 
where 

             /'(i+1) 
yiJB(T, i)8(T)dT —B(2GNli+Kxi) 

             iT 
We show the case of 0 < w < 1 here. 

eT Qei \m(Q) II ei 112 
ST AI- = sT (Sr iMi + 1VI NsiI2 

              > an, 11Si112 
we get 

oV < —am(Q) II ei 112 +2v II ei II 
          +2 II sill (1 — w)g + yT Pyi 

< —am(Q) II ei 112 +27'11 ei II 
+2.M(BT PAM)(1 — w)g II ei II +yT Pyi 

It also follows from (5.51) and 
y? Pyi < Tn7(w)292 = Tp7(1)292 

(See Appendix), that 
z < —Am(Q)IIeiII2+2,Q(w)IIeiII 

         + Tp'y(1)292 
Therefore, eqs.(5.50) and (5.63) imply that 
The case of w > 1 will be shown in the similar 

  The following result is concerned with the 

in each sampling term. 

  [Lemma 5.3 J Suppose a desired trajectory O ,1(t) 
continuous on t. Then if, for a positive constant 77,

(5.56)

(5.57)

(5.58)
5.45), and 

                 (5.59)

(5.60)

(5.61)

(5.62)

             (5.63) (
5.54) holds when II ei II> 

.ilar way. 

e bound of the ontrol error
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 11  ei I l < Vi 
then 

  e(t) 11 < + Et 
for all t > 0, where Et is a positive numb

Et =1E(6 
J=1

er defined by

(5.64) 

(5.65)

(5.66) 

 1
Proof: For all t  E [iT, (i +1)711, the following relation holds. 

0i(t) — ej(iT)15_ 0imaxT/2 Vj(5.67) 
19Mj(t) — 0mi(iT) l< Bimaz,T/2 Vj (5.68) 

Then we get 

I {6i(t) — Omi(t)} — {03(iT) — 0mi(iT)} I < BimaxT 
j = 1, 2, ... , n(5.69) 

The same relation as (5.69) also holds with respect to the velocity. So 
letting Le(t — iT) = e(t) — e(iT), we obtain 

II oe(t — iT) 11< Et(5.70) 
Hence noting 

    II e(t) II <II e(iT) II + II oe(t — iT) II(5.71) 
eq.(5.65) follows. 

  We get the following theorem using Lemmas 5.2 and 5.3 

  [Theorem 5.1 ] Suppose a control input given by (5.37), (5.38), 
and (5.45) is applied to an error system (5.36). Then for any positive 
definite matrices P satisfying (5.42) and Q satisfying (5.41),

where
II e(t) 11< max{s,so} + Et 

Eo6(w) 

A 
c=

so =

am(P)
)'M(P) + .m(Q)

Vo

)m(P)

Vt>0 (5.72)

(5.73)

(5.74)

(5.75) 

1

Proof: We complete the proof by considering two cases, namely, (i) 
II co II< S and (ii) II eo II>— S.



for all i. Noting that 

 —Am(Q)62 + 206 + Tp72g2 = 0(5.82) 
we get from (5.81) 

IIeiII<6=E Vi(5.83) 

(ii) eo II> S : Let Vmax be a maximum value of V with respect to 
i. Then Vmax is equal to Vo or V.+1 given in (i). Namely, 

Vmax < max{Vo,,\M(P)S2 +2136 + Tpy2g2}(5.84) 
Hence we get 

II ei II< lnax{E,EO} Vi(5.85) 
in the same way as the proof (i). 
  Noting that 

 E > Eo(5 .86) 
when II eo II < 6, we conclude, from (i) and (ii), 

II ei II< max{E,Eo}di(5.87) 
Finally using Lemma 5.3, we get (5.72).
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(i) II eo II < 6 : From Lemma 5.2, we can show that there exists a i 
such that II ei II< 6 <II ei-k1 II and V+1 has a maximum value at i, that 
is, 

V+1 > max{Vk}(5.76) 

Let such a i be i*. Then 

V. < )M(P) II ei. II2< AM(P)62(5.77) 
On the other hand, in the same way of the derivation of (5.63) of Lemma 
5.2 we get 

   OV. < 206 +Tpy2g2(5.78) 
Hence it follows from (5.77) and (5.78) that 

V.+1 < Am (P)62 + 2/36 +Tpy2g2(5.79) 
which means that , for all i, 

'tm(P) II ei I12< V < )M(P)62 +2136 +Tpy2g2 (5.80) 
Then we get 

         aM(P)S2 +--------------------------2,06 +Tpy2g2   IIP_II~.(581) 

for all i. Noting that
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5.3.4 Design procedure 

  In this subsection, using Theorem 5.1, we give a design procedure, 
that is, how to determine design parameters, especially w based on the 
specified control precision. Then we define the following functions. 

 w1(e) (Am(Q)cE — 2v)cE — 1} am(5.88) 
1 Tpg2am 

     W2(6){Am(Q)(5(1) + cE) — 2,@(1)}{S(1) — cE} + 1 20(0) — 0(1)}cE 

                                        (5.89) 
Note that these functions are obtained by solving (5.73) with respect 
to w. 

  First, we give a minimum value of feasible specified control precision 
by considering a class of feasible desired trajectories and also a maxi-
mum value of feasible control inputs which satisfy Assumption 5.2. A 
class of feasible desired trajectories is given as follows. 9M(t) is twice 
differentiable 

(and satisfies, for a positive numberw0, 

      

16Mj(t) jmax — Wp j = 1, 2, ... , n (5.90) 
0Mj(t) l< ejmax—j= 1, 2, ... , n (5.91) 

eMj (t) I< ejmax = 1, 2, ... , n (5.92) 
where cvo will be specified later. According to the above desired trajec-
tory, a set 12 is given by 

m = {um, I ejmax > {M-1(0i)(uLi — h(02, 6 ))1i, 
             j = 1, 2, ... , n, `d9i E (lp, `d9i E (iv} (5.93) 

Thus, let Qn,1(Wo) be a set of feasible desired trajectories satisfying 
(5.90), (5.91), (5.92), and (5.93). 
  Let also gmax be a maximum value of a switching gain which is 

determined by a control input satisfying I ej I_ <I ejmax I (See Appendix). 
Then a maximum value of w, wmax is given by 

gmax(5 .94) Wmax = 
g 

  A E in (5.73) is a function of w. Since S(w) a monotonous decreasing 
function for 0 _< w < 1 and a monotonous increasing function for 

w > 1, E has a minimum value at w = 1 or w = wmax. So let Emin be a 

minimum value of E. Then
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                .̀1j  if wmax > 1 Emin =(5.95)              16007,4%0if wmax < 1         l c 
Therefore from Theorem 5.1, Emin + Et expresses a minimum value of 

the feasible specified tracking precision, provided Emin > Eo. 

  From the above discussion, wo and Emin must satisfy the following 

condition, if we use Theorem 5.1 to design a digital robust controller 

satisfying the specified tracking precision. Assume that, for a wo satis-

fying 

wo > Eo + et(5.96) 
a desired trajectory which belongs to QM(wo) is given. Then Emin and 
wo must have the relation 

Emin + Et < wo(5.97) 
  A wo given by (5.96) is an offset parameter to guarantee that a real 

trajectory always keeps within a feasible movable region even if control 
error exists. So (5.96) and (5.97) guarantee that wo is larger than the 
tracking precision and the initial error. If, for a given wo, Emin + Et does 

not satisfy (5.97), we need to change the value of design parameters such 
as wo or the sampling period. Thus if there exists a positive constant 

wo such that (5.97) holds, we get the following result. 

  [Theorem 5.2 ] For a robot manipulator given by (5.1), suppose 
Assumptions 5.1 to 5.4. A specified tracking precision wd is given so as 
to satisfy 

Emin + St < Wd < wo(5.98) 
Then maximum and minimum values of a allowable gain w are given 
by 

w = min{wl(wd — Et), wmax}(5 .99) 

    w = max{w,(wd — Et), 0}(5.100) 

In addition, if, for a given w satisfying w < w < w, a control input 
given by (5.37), (5.38), and (5.45) is applied to a robot manipulator 
(5.1), then 

11 e(t) 11< w, Vt > 0.(5.101) 
where 

wA= max{wd,EO + st}(5 .102) 
and we call w a tracking precision, while wd a specified tracking preci-
sion.1
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Proof: Noting 0  _< w < wmax, we have only to solve (5.73) with respect 
to w. 

  If wd < so + Et in Theorem 5.2, then the tracking precision w is char-

acterized by the initial state error, so the specified tracking precision 

wd has no effect on w. However, the norm of the control error converges 

to wd as time goes. 

  [Theorem 5.3 ] Suppose a control input given by (5.37), (5.38), 
and (5.45) is applied to a robot manipulator (5.1). Then for all ~(> 
wd — Et), there exists a finite number I(V) when ll eo II> S, and 

   e(t) + Et, Vt(5.103) 
where 

  S °= c~ >(5.104) 
                 )'m(P)s2 — Vo                                        (

5.105)          [—Am(Q)S2 + 2,36 +Tp')2:02I 
and [•] is a function which satisfies [a] = b + 1 when b < a < b + 1, for 
a real number a and a integer b. 

Proof: The proof can be shown in the same way as Theorem 3 in [78k
  In general, when continuous time control theory is applied to digital 

control directly, we can frequently find that chattering becomes larger 

and so the specified tracking precision cannot be achieved as a switching 

gain becomes larger for a fixed sampling period. On the other hand, 
Theorem 5.2 gives an allowable bound of a switching gain to achieve 

the specified tracking precision in the case of digital control. Based on 

Theorem 5.2, a design procedure of a digital robust control system is 

shown in Fig.5.1. In addition, when a switching gain wg(xi, UMi) and a 
specified tracking precision wd are given, we can estimate an allowable 

bound of the sampling period so as to achieve (5.101) by (5.73).

5.4 Discussion on chattering phenomenon

  Since a robust controller proposed in section 5.3 has a discontinuous 

function on si, i.e., iO(si), chattering phenomena occur in the digital 
control system. In the case of continuous time control, the chattering
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5.1  : Flow chart of design procedure for digital robust control
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phenomenon does not theoretically yield by using a continuous func-
tion in place of a discontinuous function. However, in the digital control 

case, we believe that the chattering depends on the bound of a switch-

ing gain, rather than whether a  robust control law has a continuous 

function or not, because a control law which has a too high gain tends 

to occur the chattering even if a continuous function is used. Thus 

in this section, we discuss how to decrease the chattering, by paying 

attention to the bound of a switching gain.

5.4.1 Use of weighting function for switching gain 

  We consider a weighting function that makes a switching gain smaller 
as the norm of the control error II ei II becomes smaller. Thus we 
consider the following controller. 

<Robust compensation URi> 

     URi =-a 22z(ei)wg(~i,uMi)71)(si)(5.106) 
where 

   z(ei)= Ile1ifIIeiII>—5.107         (------)/`ifIl eiII<S() 
  When ic = 0, (5.106) and (5.107) are equivalent to (5.45). When 

 > 0, a switching gain in (5.106) is smaller than that of (5.45) if 
ei II < (. Note that a switching gain becomes smaller as K becomes 

larger. Thus we expect some reduction of the chattering by using a 

weighting function z(ei). Here we get the following lemma about a 
threshold C. 

  [Lemma 5.4 ] Suppose a controller given by (5.37), (5.38), and 
(5.106) is applied to a robot manipulator (5.1), and there exists i such 
that 11 ei < 6. If ( satisfies  

5-  
0(0) (/3(0) 2)'m(P)62 — Tp't2g2  

Am(P) + 1 \AM(P)) +AM(P) 
                                       (5.108) 

then at the next sampling point i + 1, ei+1 Il< 6. 
Proof: Substituting (5.38) and (5.106) into (5.57), and using Ap-
pendix, we get 

vV < 2/(0)( +Tpy2g2(5.109)
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From  II e2 II < (, we also obtain 
V < Am(P) II ei 112< AM(P)C2(5.110) 

Hence (5.109) and (5.110) imply 
V+1 < AM(P)(2 + 20(0)(+ Tp,y2g2(5.111) 

Thus from (5.111) and 
V+1 > \m(P) II ei+1 112(5.112) 

we conclude that if 

)M(P)C2 + 20(0)( Tpy2g2 < )m(P)62(5.113) 
then II ei+1 II< 8. Eq.(5.108) follows from (5.113). 
  From Lemma 5.4, we get the following theorem. 

  [Theorem 5.4 ] Suppose a controller given by (5.37), (5.38), 
and (5.106) is applied to a robot manipulator (5.1). Then if C satisfies 
(5.108), then 

II e(t) II< max{e,eo} + Et, Vt > 0(5.114) 
which is the same result as that in the case of (5.38) and (5.45). 
Proof: From Lemma 5.4, a weighting function z always becomes 1 

until ei II is larger than 6. Then Lemma 5.2 can be applied, and the 
proof is the same as Theorem 5.1. 

  Therefore, from Theorem 4, the same results as Theorems 5.2 and 

5.3 holds in the case of (5.106). 
Remark 5.2 Although z(ei) is considered as (5.107) here, in general 
the above discussion holds if a weighting function z satisfies 0 < z < 1 
in the case of II ei II _< C. Therefore i is independent on the other design 
parameters such as wd.

5.4.2 Estimation of the bound of uncertainty 

  In the right-hand side of (5.44), we use a set of the state which is 
determined by some mechanical performance to estimate the bound of 

the uncertainty. However, this estimation frequently becomes conserva-

tive. Thus we use here a set of the state which is within some distance 

from a given reference trajectory to estimate it. Using wo in (5.90) and 
(5.91), we redefine Op and s2z as follows. 

rip ~ {eI I e~ I<_lO I +wo,j=1,2,...,n}(5 .115) 

    ~lv ° {e I I eil<_Iem; I +A,j = 1, 2, ... , n} (5.116)
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Figure 5.2: Model of 2 d.o.f. Manipulator

When the sets ,f2p and (2.„ are applied to estimate the bound of the 

uncertainty in the right-hand side of (5.44), the estimation becomes less 
conservative, so a part of a switching gain g(xi, uMi) becomes relatively 
small. The estimation of (5.11), (5.12), and (5.46) can be treated in 
the same way.

5.5 Simulation

  In order to verify the effectiveness of the proposed control method, 
we show some simulation results of a desired trajectory control of a 2 
degree of freedom manipulator shown in Fig.5.2. 

  Let mi, Ii, li, and lgi denote the mass of link i, the moment of 
inertia of link i about the center of mass, the length of link i, and the 
distance between joint i and the center of mass of link i (i = 1, 2), 
respectively. The physical parameters 01, 02, and 03 are defined as 
951 = m11221 + Il + m21?, 02 = m2/1/g2, and 03 = m21922 + 12. Then a 
dynamic equation of a manipulator shown in Fig.5.2 is described by 

M(4, 0)8 + h(c6, B, 9) = u(5.117)



84 Chapter 5 Digital robust control

Table 5.1  : Unknown parameters of manipulator

Unknown

parameter

 Min.

value

Max.

value

Real

value

Nominal

value

m2 (kg) 5.0 7.0 5.0 6.0

12 (kgm2) 0.104 0.1456 0.104 0.125

Table 5.2  : Known parameters of manipulator

Known

parameter

Real

value

Known

parameter

Real

value

 Il (kgm2) 0.104 I mi (kg) 5.0

lnl (m) 0.5 I 1n2 (m) 0.5

lgl (m) 0.25 1g2 (m) 0.25

 e =  [Bl,  027,u = [u1, U27, q5 = [017 027 031T 

     M(4), 9) —41 + 03 + 202C203 + q'2C21 
03 + 02 C203fI 

h(4, 0, 0) _—03,52(20102+ 02)                       0
3,52012 

where Siosin Oi and C, = cos 9;(j = 1, 2). Assume that m2 
and I2 are unknown, but a maximum value and a minimum value are 

known, which are shown together with real values and nominal values 

in Table 5.1. The other parameters are known as shown in Table 5.2. 

The mechanical performance is assumed as ir(rad), 0jmax = 0.7 
(rad/s), and 9jmax= 3.0 (rad/s2) (j = 1, 2). 

  Design parameters are given as follows. T =1(msec), A= 1.0, k1 = 
k2 = —1.0, q2 = 0.0, and ql = q3 = 0.01. Then from (5.66), Et = 
4.357x 10-3, and also from (5.96), w0 = 0.08. Then a desired trajectory 
which belongs to QM(wo) is given by 

9M1(t) = —0.5 cos(irt/3) 
0M2(t) _ —0.5 cos(irt/3) — 1.0 

     for 0<t<6.0(5.118)
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Figure 5.3: Desired trajectory of end effector

where a trajectory of an end effector is shown in Fig.5.3. The initial 
state errors are set as el(0) = 0.02 and e2(0) = 0.0. In addition, 
9max = 1.0 from (5.Al2), a.m, = 1.032 from (5.11), am = 1.250 from 
(5.12),v=3.0x10-7 from (5.46),TT=1.0x10-5 from (5.47),g=0.47 
from (5.49), wmax = 2.12 from (5.94), and Em,in + Et = 0.0575 from 
(5.95). Then we set a specified tracking precision as cod = 0.065 (< w0), 
so w = 1.252 and w = 0.992 from (5.99). Then we set w as w = 0.992. 
From (5.102), w = 0.065. A function g(xi, UMi) is set as g = g, and the 
sets Slp and ,f2„ are given by (5.115) and (5.116), respectively. 
  Under the above situation, simulation results are shown in Figs.5.4 

to 5.6. Note that, although a manipulator is a continuous-time system, 

we use in this simulation the Euler method with the integral interval of 

0.1(msec) as numerical integration. Fig.5.4 shows a result in the case of 
(5.38) and (5.45), and Fig.5.4(a) shows a relation between the norm of 
the tracking control error e(t) II and the specified tracking precision 
co. As you can see in Fig.5.4, the norm of the control error is less 

than the specified tracking precision. Fig.5.4(b) shows an input. The 
chattering appears in an control input due to the use of a discontinuous 

function. Concerning u2, the same result as ul is obtained, although it 

is not shown in figure. Fig.5.5 shows a result in the case of (5.38) and
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Figure 5.6: Comparison of both switching gains

(5.106).  / in (5.106) is given as IC = 3. In Fig.5.5(b), we can see that 
the chattering is much decreased, compared with Fig.5.4(b). Fig.5.6 
shows a relation between time and a switching gain z(ei)wg. The use 
of a weighting function z(ei) makes a switching gain much smaller. 
  These results shows the effectiveness of the proposed controller.

5.6 Conclusion 

 The main results obtained in this chapter are summarized as follows. 

 (i) The relation between a feedback gain and a control error for a 
    given sampling period has been clarified in the digital control 

    of robot manipulators, by deriving some kind of discrete-time 

    description of nonlinear systems. 

(ii) Based on the above analysis, a digital robust control scheme of 
    robot manipulators has been proposed, which gives a design pro-

    cedure to find a feedback gain so as to achieve the specified track-

    ing precision for a given sampling period.
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(iii)

(iv)

A weighting function for a feedback gain has been proposed in 

order to decrease the chattering.

Simulation results have been given to illustrate the validity of the 

proposed method.

Appendix

Proof of  (5.62)  : From (5.30) in Lemma 5.1, we get 

yi = 
          lei — (uAi + Kx0}T2/2 

{ei — (uAi, + Kxi)}.\T 
Substituting (5.38) and (5.45)( or(5.106)) into (5.A1), we get 

     IIei — (umi + Kxi) II<7(w)g 
In the same way, 

II ei — (Um i + Kxi) II< 7(w)g 
Hence it follows from (5.A2), (5.A3), and (5.42) that 

yT Pyi < Tp7(w)2g2 
Calculation of gmax : For a given desired trajectory xM(t), 
estimate a maximum value of a linearizing input given by 

also a maximum value of each element of M-1 (IL Li — h). Let vi

(5.A1)

(5.A2)

(5.A3)

estimate a maximum value of a linearizing input given by (5.38), 
also a maximum value of each element of M-1 (IL Li — h). Let vimax(j = 
1, 2, ... , n) be a maximum value of each element of M-1(uLi — h) , that 
is to say, 

            A vjmax = max{ I vi I } 
VOi E ,f2p, \Oi E 12,,, `duMi E ,f2M (5.A5) 

where vi _ {M-1(uLi — h)}j. In addition, let 
     vjmax= max{E I mjk I } Vei E ,flp(5 .A6) 

where mjk =° {M-1 Mi } jk 
 Then we get the following result. 

 [Lemma 5.5 ] 
If a switching gain in (5.45) satisfies 

wg(xi,ulvli) < min{am(ejmax —vjmax)/vj}(5 .A7) 
then 

10i l< 0jrnax VJ(5.A8) 
1

(5.A4) 
we can
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Proof: If a switching gain wg satisfies (5.A7), 
 vjmax + vjwglam, < ejmax, dj 

On the other hand, from 

      0 = M-1(uLi + uRi — h) 
we get 

ej IC vjmax + vjwg/am, V3 
Hence (5.A8) follows from (5.A9) and (5.A11). 
  From Lemma 5.5, we conclude that 

gmax = min{am(ejmax — vjmax)/41j}

then

(5.A9)

(5.A10)

(5.A11) I

(5.Al2)
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 Chapter  6

HIERARCHICAL ROBUST 

CONTROL OF ROBOT 

MANIPULATORS

6.1 Introduction

  In the previous chapter, a digital robust control method has been dis-

cussed for tracking control of robot manipulators. This chapter treats 

a robust control system of robot manipulators which has a hierarchical 

structure composed of two loops, i.e., an upper level loop and a lower 

level loop. It is called a hierarchical robust control system. 

  Robust controllers of robot manipulators are usually composed of 

linearization and robust compensation. In general, the generation of 

the linearization requires much amount of calculation, so we may fre-

quently be impossible to ignore the calculation time. On the other 
hand, the robust compensation is based on the high gain feedback, 

so it is desired that the computation period for the generation of the 

robust compensator is small as possible. 

  From the above point of view, in this chapter, a hierarchical robust 

control method of robot manipulators is proposed, where the control 

system has two loops; an upper level loop which works at a low sam-

pling frequency and a lower level loop which works at a high sampling 
frequency. In the upper level loop, an input for the linearizing compen-

91



92 Chapter 6 Hierarch ical robust control

sation, a desired trajectory, and a feedback gain are generated at a low 
sampling frequency. In the lower level  loop, a switching input, which 
is one part of the robust compensator, is computed at a high sampling 
frequency. This scheme make the calculation for the generation of the 
robust compensator much faster, so we expect that the effect of the 
discretization of a robust controller on the control error is smaller. The 
hierarchical structure of the control system in the dynamic control of 
robot manipulators itself was proposed by Khatib et al. [63] in 1986, 
and the effectiveness of this method was shown by an experiment result 

by Yoshikawa et al. [144] in 1988. However, there was no theoretical 
discussion on the control performance in the system with the hierar-

chical structure. In the next sections, the control performance of this 

hierarchical system is analyzed under the consideration of a sampling 

period of an upper level loop and a modeling error. Finally, some sim-
ulation results are shown to verify the effectiveness of the hierarchical 

robust control systems.

6.2 Problem Statement

  Consider a manipulator with n degrees of freedom whose dynamics 

is described by the following equation : 

M(4), 0)0 + h(4), 6, 0) = u(6 .1) 
where 0 =° [01,02,... , 6,]T is the n-dimensional vector of joint displace-
ments, 4) is the physical parameter vector with an appropriate dimen-
sion, u is the n-dimensional joint torque input vector, M(0,60 is the 
n x n manipulator inertia matrix, and h(4), 6, 6) is the n-dimensional 
vector that represents the nonlinear terms such as centrifugal , Coriolis, 
frictional, and gravitational forces. 

  This system usually has the following features. 

  [Feature 6.1 ] M(0,0) is a positive definite matrix for any 6.

  [Feature 6.2 J The left-hand side of (6.1) can be expressed as 
M(4),0)6 + h(¢, 6, 6) = E(4))y(6, 6, 6) (6.2) 

where E(4)) is an appropriate dimensional matrix consisting of physical 
parameters, and y(0, 6, 6) is an appropriate dimensional vector whose 
elements are known functions of 0, 6, and 6.
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the ith joint, that is, Oimax = max I 
sets for  ejmax and ejmax• 

P~{eI Iej I_<ejmax, = 
Qd= {eI I ej I<ejmax, = 

Let T denote a sampling period in 

low sampling frequency. Note that,

 We begin with the definition of the notations which express mechan-

ical performance of a manipulator given here. Let eimax denote maxi-

mum movable range of the ith joint angle, that is, eimax = max I ei I. 
Let eimax denote maximum angular velocity of the ith joint, that is, 
Oimax = max I ei I. Let eimax denote maximum angular acceleration of 
the ith joint, that is, Oimax "I" max I Bi I. We also define the following

Let T denote a sampling period in the upper level loop, which has a 
low sampling frequency. Note that, since T is dependent on degrees of 
freedom of joints and the performance of a hardware used in the control 
system, we assume here that T is a positive constant given in advance. 
Then for a given 6 E SlP, 6 E ,fld, we define the following sets. 

Hp(19) { I Ij — ej I < 2ejmaxT, j = 1, 2, ... , n} (6.5) 

                                              •  

     nd(e)o I I Sj - ej I < 2ejmaxT, j = 1,2,... , n} (6.6) 
where = [61i e2, ... , ,h]T • 11P(6) and IId(6) express a set of joint 
angle and joint angular velocity which is reachable in 2 sampling periods 
from 6(t) and-0{t), respectively. 
  Then the following assumptions are made. 

  [Assumption 6.1 ] 6 and 6 are measurable. 
  [Assumption 6.2 ] eimax, eimax, and eimax are known. 1 

  [Assumption 6.3 ] The values of the physical parameter vector 
0 may be unknown, but it is known that 4 exists in a certain bounded 
region no.1 

  [Assumption 6.4 ] 0, a bounded estimate of ), is given such 
that the following matrix is positive definite for all 6 E Op, E IIP(6), 
and 4) E n Q. 

M °_ {M-1(0, )M(4, 6) + MT (4) 6)M-T (0, )}/2 (6.7) 

  Note that, from Assumptions 6.3 and 6.4, there exist positive con-

stants a and Q such that the following conditions are satisfied. 

     a < am(M), `d6 E ,f2P, d E IIP(6), V• E 120 (6.8)

1, 2, 

1, 2, 

the

,n } 

,n }

     (6.3) 

     (6.4) 
which has a 

on degrees of



94 Chapter 6 Hierarchica 1 robust control

 i  > \M(M-1M) Ve E Qp, b' E II(6), `dO E (20 (6.9) 
  For the above robot manipulator, we consider the following problem. 

  [Problem 6.1 ] For a robot manipulator given by (6.1) that sat-
isfies Assumption 6.1 to 6.4, a desired trajectory 6d(t) is given whose 
derivatives 6d and 6d exist and are bounded. Then we consider a con-
trol system, which has two hierarchical feedback loops, that is, an upper 
level loop to work at low sampling frequency T and a lower level loop 
to work at high sampling frequency. Then for given Ep and Ev, find a 
control law such that 

     e(t) Il < Ep,II e(t) II < ev Vt > T (6.10) 
holds for all t > 0, where e(t) = e(t) - 6d(t) and to is an initial time. 
I 
  For simplicity, we assume that e(to) = o and e(to) = o. In addition 
we assume hereafter that a sampling period in the lower level is small 
enough to be negligible, namely, a control signal in the lower level loop 
is continuous on time. 

Remark 6.1 If we assume that a control input in the lower level loop 
is digital, we can estimate the bound of the control error in such a case, 
using the technique developed in chapter 5.

6.3 Hierarchical robust control

  In this section, we propose a hierarchical robust control system for 

a robot manipulator given by (6.1).

6.3.1 Approximated desired trajectory in lower 
      level loop 

  For a given desired trajectory, we consider how to generate a desired 
value at each sampling point. In the lower level loop, we usually hope 
that the computational amount to generate a control input is as small 
as possible, because it is desirable to make a sampling period small in 
the lower level loop. If we use desired values stored in memory , we may 
need a huge memory because a sampling period in the lower level loop 
is very small. Hence we use the first order approximation of the desired
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values generated in the upper level loop as a desired value in the lower 

level loop, which requires no large computation. That is to say, we use 

the following as a desired value at  ti  E [iT, (i + 1)T) in the lower loop 
level, 

ed(ti) = edi + (edi+1 — edi)(ti — iT)/T (6.11) 

• ed(ti)= edi + (Bdi+1 — edi)(ti — iT)/T (6.12) 
where edi and edi mean the values at the i sampling point, namley, 

edi = ed(2T) and edi ed(iT) 
  The value with the subscirpt i means the value at the ith sampling 

point, except for ti which means the time at the ith sampling period, 
i.e., ti E [iT, (i + 1)T) hereafter. 
Remark 6.2 When an approximated desired trajectory is not used in 
the lower level loop, we have only to replace ed(ti) and ed(ti) by ed(ti) 
and ed(ti), respectively, for ti E [iT, (i + 1)T) in the next argument.

6.3.2 Hierarchical robust controller

  We consider the following control input which is composed of a lin-

earizing compensator uL(t) and a robust compensator uR(t). 
   u(t) = uL(t) + uR(t)(6.13) 

Then a control input in the ith sampling period is given as follows 

<Linearizing compensation> 

uL(ti) = E(`l')yi-1(6.14) 
where 

    yi-1y(ei-1,Of-l,ri-1)(6.15) 
ri_1o edi— A(ei-1 — edi)(6.16) 

and A is a part of velocity gain and is a design parameter to specify the 

control error precision. 

  Note that a control law given by (6.14) has almost the same form as 
the conventional dynamic control method, and ri_1 means a modified 
desired trajectory. 
<Robust compensation> 
The parametric uncertainty which cannot be compensated for by the 
above linearizing compensation is give by 

   ~E °— E(0) — E(Q)(6.17)
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and the discrepancy in y between the measurement of the state in the 

upper level loop where a computation time lag exists and the real state 

is given by 

 Dyi y(e(ti), e(ti), ed(ti) — Ae(ti)) — yi~ (6.18) 
for all ti E [iT, (i + 1)T). Then from Assumption 6.3, there exists a 
function g(yi_1) such that 

9(yi-1) >~~ M-1(AEyi_1 +EDyi) 
V02_1 E Or, dei-1 E nd 

d0(ti) E IIP(ei-1), Ve(ti) E Hd(ei-1) (6.19) 
because M-1, AE, and E are bounded, and for example, for all ti E 

[iT, (i +1)T) 
e (ti) — °;((i — 1)T) I< 2e;maxT < oo(6.20) 

  Let S denote an extended error between the state and the approxi-

mated desired value given by

S=(9—ed)+A(0—ed) 
and W denote a weighting function given by 

     W(S, b,p)~Ilsllpif ~~ S ~~> S             (
b)if~~SII << 6 

where 8 is a design parameter to specify the control error. 

(6.19), (6.21), and (6.22), we consider 
f uR(ti) = —W(s,6,p)(Mi-1~a){g(yi-1) + OOP) 

where k is a positive constant, and 

      Mi-1 — M(ei-1) 

      (S) °— IISII if ~~ s II� o ° ifIIS11=o 

input. g is a part of a switching gain to compensate for thi 

uncertainty 

given by (6.18). WP, 6,p) is a weighting function for a sw 
A positive 

switching 

discontinuous 

to make 

then it corresponds to the conventional controller which 

order weighting

(6.21)

   (6.22) 

Then using

(6.23)

(6.24)

(6.25)

                                      a switching 

g is a part of a switching gain to compensate for the parametric 

the time lag 

y (6.18). WP, 6,p) is a weighting function for a itching gain. 
tive number p is a design parameter to specify the bound of a 

ng gain. If p = 0, then the robust compensator consists of a 

inuous function on If p > 0, then it has a weighting function 

e a switching gain smaller when II becomes smaller. If p = 1, 
corresponds to the conventional controller which has the first 

reighting function. Therefore, when II g II< 6, the witching gain
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Upper level loop

trajectory

 0d AO di 

Bdi AO di

edi 0d 0d Linearizing compensation 

  Switching gain

 ILL 

 M;_1 

9(TJ'~-1)

9i-1 9i-1

----------------  Bd 
Interpolated 9 

  desiredd  
trajectory

Lower level loop

Switching 
 input Total input

e(ti) B(ti)

Figure 6.1: Hierarchical robust control system

in the case of p > 2 is smaller than that in the case of p = 1, which is 

the conventional case, and we can expect that a chattering phenomenon 

is decreased in the case of p > 2. 

Remark 6.3 We define W by (6.22). However if W satisfies 0 < W < 
1 in the case of II< S, the arguments in the next sections hold. 

  We show a hierarchical control system in Fig.6.1. The real line 

in Fig.6.1 expresses a signal of the lower level loop (high sampling 
frequency), and the solid line expresses a signal of the upper level loop 
(low sampling frequency). In the upper level loop, a desired value at 
the ith sampling point is generated, and a linearizing compensator and 

a switching gain are calculated using the ith desired value and the state 

at the i—lth sampling point. On the other hand, in the lower level loop, 

an approximated desired value is generated based on the desired value 

generated at each sampling point in the upper level loop. In addition,
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a switching input is calculated using the approximated desired value 

and the state at that time of a manipulator, which generates a control 

input u, together with the linearizing compensator and the switching 

gain in the upper level loop. Note that we consider the time lag due 
to the computation in the upper level loop . As the computation time 
lag becomes larger, the switching gain becomes larger . Hence it is 

desirable to make the computational amount in the upper level loop 

as small as possible. In the computation of (6.14), we can use the 
computation method by Newton-Euler formulation , which is useful for 
the computation of the dynamics of a multiple d .o.f manipulator.

6.4 Estimation of the bound of control 

      error 

  We estimate the bound of the control error when a controller given 

in section 6.3 is applied to a manipulator . 
  Let s denote an extended error between the state and the desired 

value given by 

  s-°-e + Ae(6 .26) 
Let p and  gmax denote positive constants satisfying 

     p = sup II 9d(t) - d(t) + A(ed(t) - ed(t)) II (6.27) 

      gmax > g(yi-1) 
bei-1 E f1 , Vei-i E d, Vedi, VOdi (6.28) 

Then for given p and gmax, define 

P(l +a)(1 +gkax)(6.29) 
  Then we get thefollowing lemma . 

  [Lemma 6.1 ] Suppose a control input given by (6.13) is applied 
to a manipulator (6.1). Consider 

V(t) = 2s(t)T s(t)(6 .30) 
Then if 6 satisfies 

6>y-p(6 .31) 
then 

V(t) < 0, Vt > 0(6 .32)
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when

s(t)  MM? 6+p

Proof: We begin to consider V (ti), iT < ti < (i + 1)T. 
V(ti) along the manipulator, we get.. 

V(ti) = sT M-1 [u — M(9d — Ae) — h — g] 
sTM-1 [,uR + uL — Ey(e, 9, r)] 

where r = 9d — )e. Substituting (6.14) into (6.34) leads to 
1.7(ti)  = sT M-1 uR — — EAYil 

From (6.27) and (6.33), we get 
II g11� 

Noting that it follows from (6.7) and (6.8) that 
      sTM-11VIs sT1Vls 

arn(M)IIs112>aIIs112 
we get, from (6.23) and(6.35) 

V(ti) < —k [I1 s II —p { g----k x (1+ /,)  + a }J 
On the other hand, it follows from (6.29) that 

    >y—p=p{gmk'  (1+aJ+-} 
                                a This implies/JJJJJJ 

V(ti) < 0 Vti E [iT, (i + 1)T) 
Hence noting that (6.40) holds for all i and V (t) is 
can show (6.32). 
  From Lemma 6.1, we get the following result on the 

the bound of the control error. 

  [Lemma 6.2 ] Suppose a control input given by 
to a manipulator (6.1). Then for all t > 0, 

    I1s(t)II<6+p 
In addition, for all t > 0, 

     e(t) II< Ap 

II e(t)11< 2(6 + p)

Proof: 

proof in

     (6.33) I 

ferentiating

(6.34) 

(6.35) 

(6.36)

(6.37)

(6.38)

(6.39)

continuous on

We can show this in the same way as the 

Theorem 6.1

(6.40)

estimation of

I) is applied 

      (6.41)

latter

   (6.42) 

   (6.43) 
I 

part of the 
I
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  From Lemmas 6.1 and 6.2, we get the following theorem. 

  [Theorem 6.1 ] For a manipulator given by (6.1) satisfying As-
sumptions 6.1 to  6.4, a desired trajectory is given. According to the 
desired trajectory, we calculate a positive number -y in (6.29). The pa-
rameters e and a that specify tracking precision are given to satisfy 

eA > y(6.44) 
Also S is given by 

= e. — p(6.45) 
Then if a control input (6.13) is applied to the manipulator, then 

   e(t) II< e(6.46) 
e(t) II< 2,\s(6.47) 

for all t>0. 
Proof: It follows from (6.44) and (6.45) that 

=eA — p> -y — p(6.48) 
and (6.32) of Lemma 6.1 holds. Then we get (6.42) and (6.43) from 
Lemma 6.2. Noting 

+ P = e(6.49) 

A we get (6.46) and (6.47).1 
  In Theorem 6.1, we have to note that the desired trajectory is real-

izable, because the mechanical performance of the given manipulator 
is restricted. Also we have to take account of the bound of the input, 
especially, the switching gain, when we determine the design parame-
ters.

6.5 Comparison of computational amount

  We discuss, in this section, how small the computational amount 
for the switching input is by using a hierarchical structure. We con-
sider a n d.o.f. robot manipulator with rotational joints only, and use 
Denavit-Hartenberg notation. As for the upper level loop, we calculate 
the computational amount of the linearizing input (6.14) and the esti-
mated value of the inertia matrix (6.24). As for the lower level loop, 
we calculate the computational amount of the approximated desired
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Table 6.1: Computational amount for each method

Method Multiplications Additions
Hierarchical

control

Upper level  12n2  +  190n  —  71 7n2+174n-97
Lower level n`+5n+5+p n2+9n+2

Non-hierarchical 

    control
 137n-15+p 112n — 20

Table 6.2: Number of arithmetic operations for n=3 and 6

Method  n=3 n=6

Hierarchical

control

Upper level Mul. 607 1095

(16.3)
1501 2700

(16.5)Add. 488 1199

Lower level Mul. 29+p 67+p
(1.0)

71+p 163+p
(1.0)Add. 38 92

Non-hierarchical 
    control

Mul.  1396+p 712+p 

(10.6)
807 +p

Add. 316 652

1459 +p 

 (9.0)
() means the rate of the computational amount of the upper level (or 

       Non-hierarchical control) for that of the low level.

trajectory (6.11) and (6.12), the switching input (6.25), the weight-
ing function (6.22), and the total input (6.13). On the other hand, in 
the case of the conventional robust control which is not hierarchical, 

we calculate the computational amount of (6.14) and (6.23). Also we 
use the Newton-Euler method [136, 86] in the computation amount of 
the linearizing input and the estimated value of the inertia matrix in 
the upper level loop, and also in that of the non-hierarchical robust 
control. 1. We do not calculate the computational amount of the de-
sired trajectory and switching gain, because they are dependent on the 
trajectory or the function g. 

  The result is shown in Table 6.1. Especially, we show the case of 
n = 3 and n = 6 in Table 6.2. The notation (•) expresses the ratio of

1In the non-hierarchical robust control case, combining (6.14) and (6.23) in the 
following way, we can use Newton-Euler method. 

                                 u(ti) = M1_1 [r:-1 - (W/a)(g + k)b] + h;-1 + 9t-1 
where h and g is the estimate of h and g.
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the computational amount of the upper level  loop (or Non-hierarchical 
control case ) to the lower level loop. These tables show that the 
sampling period for computing the switching input in the hierarchical 

control case is about 1/9 times as small as that in the non-hierarchical 
control case. Hence we can expect the chattering is decreased by the 
use of the hierarchical structure. In addition, if we consider the compu-
tational amount of the desired trajectory and the switching gain in the 
upper loop level or the non-hierarchical control, the ratio of the com-

putational amount of the upper level loop (or Non-hierarchical control 
case ) to the lower level loop will be larger. Note that the computa-
tional amount in the upper level loop is about 2 times as large as that of 

the non-hierarchical control case. This is because of the computational 

amount of the estimates of the inertia matrix in the upper level loop.

6.6 Simulation

  In order to verify the effectiveness of the proposed method, we show 
simulation results in the case of the trajectory tracking control of a 3 
d.o.f. robot manipulator as shown in Fig.6.2. 

  Let mi be the mass of the jth link (j = 2, 3). The center of the mass 
of the 1st link is in the Z axis, and the center of the mass of the jth 
link (j = 2, 3) is in the jth link. Let lyi (j = 2, 3) denote the distance 
between the center of the mass of the jth link and the jth joint . The 
inertia tensor about the center of the mass of each link can be expressed 
by a diagonal matrix diag [I;x, liy, I;z](j = 1, 2, 3), respectively. Let 

Pok = m212 +7723/a2+ I2k (k=y, z) 
       Pik =m3193 I3k (k = y, z) 

       P2 = m3lalg3 

P3 = m21g22 +m3la+ (I2y—I2x) 
      P4 =m3193(I3y — I3x) 
Then the dynamic equation in Fig.6.2 is given by 

M(9)9 + h(9, 9) = u(6 .50)
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Figure 6.2: 3 d.o.f. robot manipulator model

0 = [B1, 92, 031T 
 u = [ul, u2,u3FT 

     NI11 0 

 M(9) = 0M22 
         0P1z+P2C3 

h(0, e) — [h1, h2, h3]T 

M11 = Its + I2xS2 + POyC72 

M22= Pik +P1z+2P2C3

  0 

Piz + P2 C3 

Piz

               2C2 3

hl = —2P3S2C20102 — 2P4S23c23e1(e2 + 03) 
—2P2{(C23S2 + S23C2)0102 + S23C2O1B3} 

       1/2 = P3S2C2V1 + P4S23C2361 
+P2{(C23S2 + S23C2)O — S303(202 + 03)} 

      h3 = P4S23C2301 + P2{S23C20i + S302} 
where Si  sin 0i, C; == cos 0; (j = 1, 2), S23 == sin(02 + 03), C23 0 
cos(02 + 03), and we do not consider the gravity for simplicity. We
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assume that  Bjmax = it (rad), Bjmax = 2.0 (rad/s), and Bjmax 
(rad/s2) (j = 1, 2, 3) as a mechanical performance. Also Define 

Ilz 0 001. 

      E1 =0 Poz+ Piz Piz , Yi = 02 

      0 P1z P1z03         2P2 0 0IC2C2301 
E2 =0 2P2 P2 , Y2 = C302 

      0 P2 0C303

E3 =

'2x POy '3x Ply 0 0 0 0 1 , y3= 
0 0 0 0

S301 S281 

C2B   21 

 S23e1 
C223e1 

20102 

2U1

 =  5.0

P3 0 0-2S2C20102 E4 = 0 P3 0 I , y4 = S2 CM 
0 0 P30 

P4 0 0 -2S23C230102 + 03)       E5 = 0 P4 0 1 , y5 = S23 C239 
        0 0 P4S23 C2319 

P2 0 0 

E6= 0 P2 0 

          0 0 P2 

           -2{(C23S2 + S23C2)O192 + S23C20103} 

Y6 =(C23S2 + S23C2)0 - S303(2612 + 83) 
S23C29i + S3e2 

    E = [E1 E2 E3 E4 E5 E6](6 .51) 
Y = [yi y2 ys y4 y4 ys ]T(6.52) 

Then we can verify that Feature 6.2 is satisfied. We show real values 

and estimated values of the physical parameters in Tables 6.3 and 6 .4. 

Also g in (6.19) is given by 

                6 g(yi-1) - E ak II Jk,i-1 II +a7(6.53) 
k=1 

where ak (k = 1, 2, ... , 7) is a positive constants satisfying 
ak > A ,1(M-10Ek)
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Table 6.3  : Unknown parameters of manipulator

Unknown

parameter

Inf.

value

Sup.

value

Real

value

Nominal

value

m3 (kg) 6.0 12.0 6.0 9.0

 13x (kgm2) 0.3 0.9 0.3 0.6

13y (kgm2) 0.3 0.9 0.3 0.6

13z (kgm2) 0.3 0.9 0.3 0.6

Table 6.4

 

: Known parameters of manipulator

Known

parameter

Real

value

Known

parameter

Real

value

 11z (kgm2) 0.4 m2 (kg) 8.0

12x (kgm2) 0.4 I192(m) 0.25

12y (kgm2) 0.4 1g3 (m) 0.25

12z (kgm2) 0.4 lQ (m) 0.5
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Table 6.5: Design parameters

CASE(i) CASE(ii) CASE(iii)
 Tjov,(msec) 5.0 8.0 8.0

ThZ9h(msec) 0.5 0.5

p 1 1 3

e 0.0295 0.0045 0.002

al 1.518 a2 0.794

a3 0.478 a4 3.399

a5 3.569 a6 1.700

a7 1.194 k 0.3

a 0.58 7 1.5 x 10-3

2.22 P 8.0 x 10-6

     a7  >II M-'EL\yi 
The desired trajectory is given by 

°dl = 0.5 cos(7rt/3) - 1.0 
       0d2 = -0.5 cos(7t/3) 

       0d3 = -0.5 cos(irt/3) - 1.0 for 
  We discuss how small the tracking 

following three cases.

0<t<3.0
(6.54)

recision can be specified in the

(i) Non-hierarchical robust control method with p = 1

(ii) Hierarchical robust control I with p = 1

(iii) Hierarchical robust control II with p = 3

We consider p = 1 in the case of (i) and (ii), while p = 3 in the case 
of (iii). Design parameters for each case are shown in Table 6.5, where 
T1 is a sampling period in the upper level loop and Thigh is a sampling 
period in the lower level loop. Note that e is given as small as possible 
under the condition that the chattering does not appear almost . The 
switching gain ai is given as shown in Table 6.5, although a7 = 0.0 
and k = 0.0 in the case (i). Also we set .\ = 1.0. Note that , although 
a manipulator is a continuous-time system, we use in this simulation
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the Euler method with the integral interval of 0.1(msec) as numerical 
integration. 

  The simulation results are shown in Figs.6.3, 6.4, and 6.5. 

Fig.6.3 shows that the chattering occurs in the case (i) with E  = 0.0295. 
If e becomes smaller, then the chattering becomes larger, and the con-
trol error cannot achieve the specified tracking precision. On the other 
hand, in the case (ii) in Fig.6.4, the chattering does not appear even 
in the case of 6 = 0.0045, which is 1/6 times as small as e = 0.0295. 
In addition, we can give the specified tracking precision e in the case 

(iii) which is 1/15 times as small as e = 0.0295 as shown in Fig.6.5. 
Also note that in the case (iii), the maximum value of the real control 
error is closer to the specified tracking precision than the case (i) or (ii), 
which means that the feedback gain is not so larger than necessary, by 

the effect of the weighting function W. 

  The above simulation results show the validity of the proposed con-

trol method.

6.7 Conclusion

 The main results obtained in this chapter are summarized as follows. 

 (i) A hierarchical robust control method of robot manipulators has 
    been proposed. A hierarchical control system enables us to gen-

    erate a robust compensator much faster than the non-hierarchical 

    case. By assuming that a control signal in the lower level loop is 

    continuous on time, the effect of the uncertainty on the control 

    error is theoretically analyzed. In addition, the part which can-

    not be linearized due to the computation time lag is theoretically 

    compensated by the robust controller. 

(ii) The proposal of some weighting function for a feedback gain 
    enables us to make the feedback gain lower and to decrease chat-

    tering phenomena. 

(iii) The simulation results have illustrated that the proposed hierar-
    chical controller is effective.
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CHARACTERIZATION OF 

STRICT BOUNDED REAL 

CONDITION OF 

NONLINEAR SYSTEMS 

AND ITS APPLICATION 

TO NONLINEAR Hoo 

CONTROL

7.1 Introduction

  In the linear system control theory, the Hoo control theory gives 

powerful tools for robust control theory. In other wards, various robust 
control problems such as robust stabilization can be solved by using 

the Hcx, control theory. Thus recently, some nonlinear extensions of 

the H,, control theory have been studied by several researchers, which 

is called nonlinear Hoo control theory. However, since the conventional 

works about the nonlinear H,„, theory strongly depend on the lineariza-

tion or the linear H00 control techniques, it is not satisfactory in the 

sense that they do not give the answer to the following fundamental

111
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questions. (1) Can we treat the strict  1100 problem of nonlinear sys-
tems in the case of asymptotic stability? (2) When does there exist a 
stabilizing solution of the Hamilton-Jacobi equation? (3) Do we really 
need a positive definite solution of the Hamilton-Jacobi-Isaacs equa-

tions rather than a positive semi-definite solution? (4) How do the 
Hoc, control (or L2 gain) results depend on the type of the stability 
( such as asymptotic stability or exponential stability )? (5) Can we 
extend the approach based on the Riccati strict inequality [149, 107] to 
nonlinear setting? 

  So there is a big gap between the linear Hoo control theory and its 

nonlinear version obtained so far, and we can hardly say that the essence 

of Ho° control of nonlinear systems was captured. Therefore we need 

a new different approach, which does not depend on the linearization 

of nonlinear systems, to capture the essential feature of the strict H , 

control theory of nonlinear systems. 

  The main purpose of this chapter is to give answers to the above five 

questions by obtaining a nonlinear version of the bounded real lemma 
in a rigorous way. A characterization of the bounded real condition 

of nonlinear systems, which is a necessary and sufficient condition for 

nonlinear systems to be internally stable and to have the L2 gain less 

than a specified number ry is given via two approaches: an approach 

based on the Hamilton-Jacobi equation with a stabilizing solution and 

an approach based on the Hamilton-Jacobi strict inequality. In the for-

mer approach, a stabilizing solution plays an important role to develop 

the strict Ho° control theory, while the latter is a nonlinear extension 

of a characterization based on the Riccati strict inequality and is useful 

for analyzing necessary conditions for the solvability of nonlinear H~ 

control problems. 

  The derived results on the L2 gain have the following properties, 

compared with the previous results. First, the necessity as well as the 

sufficiency are rigorously treated, though some natural assumptions are 

needed. Second, main results are not based on the linearization of the 

nonlinear system, and it is possible to treat the critical case and so 

on. Third, main results completely include the bounded real lemma of 

linear time-invariant systems. Finally, the relation between the internal 

stability of the system and the stabilizing solution of the Hamilton-

Jacobi equation is clarified, which is particular to the nonlinear case .
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The characterization by these two approaches will complete the strict 

bounded real condition of nonlinear systems to form a basis to solve 

the strict  H„,, control problem.

  As an application of the above results, some sufficient (and neces-
sary) conditions are given for the solvability of the strict Hoo state 
(or output) feedback control problem. The derived results completely 
correspond to the case of linear systems, and are stronger than the 

sufficient condition derived by Isidori [55].

  The following notations are used: For a function u(t) : R --f Rn 
on [a, b], let L2(a, b) be a set of measurable functions on [a, b] with 

fa II u(t) 112 dt < oo, and II u 112 be (.i.6. II u(t) 112 dt)112. Let L2e(a) be 
an extended space of L2(a, oo), and

L2e(a) {u:R—R.I 11u oo,VT>a}

where 11 u 112T=-Z\(fQ(t)11 u112dt)1~2, and a constant a expresses an 
infimum value of the domain where a function u(t) in question is de-
fined. For simplicity, L2e(a) is denoted by L2e. Moreover, let L2 denote 
L2(to, oo) where to is the initial time of the system considered in the 
next section, and L2/{0} denote L2 with 11 x II2 0. Define L2e/{0} 
in the same way. Let L2 denote L2 (1 Co, where Co is the set ofall 
functions which converge to 0 as the argument tends to oo. DefineL2e 
in the same way. L„,, expresses a set of bounded functions, and also Le 
denotes a set of bounded functions with supt 11 x(t) II< c. Br denotes 
a compact set on R" such that Br =° {x E Rn1 11 x Il< r}, where r is a 
positive constant. Let f(x) and g(x) be scalar functions. Then we use 
f = 0(g) if limllx11 .o ILsI < oo holds, which means that there exists a 
positive constant k such that 1 f I< k 1 g 1 in a neighborhood of x = o. 
A real-valued function 0(•) said to belong to the class K 
(or z(i E K) if it is continuous and strictly increasing functions with 

(0) = 0.
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7.2 L2 gain and the Hamilton-Jacobi 

tion

equa-

  In this section, we state the relation between the L2 gain of nonlinear 

systems and the Hamilton-Jacobi equation which corresponds to the 

algebraic Riccati equation arising in the case of linear systems. 

  Consider the following nonlinear system whose input-output relation 

is given by an operator S : L2e L2e• 

x = f (x) + g(x)u(7.1) 

   y = h(x)(7.2) 
x(to) = xo 

where x E Rn is the state, u E R'" is the input, y E RP is the 

output, and to is the initial time. P.) : Rn —* R", h(.) : Rn RP, 
and g(.) : Rn --> Rnxin are sufficiently smooth known functions with 
f (o) = o and h(o) = o. It is assumed that (7.1) has a unique solution 
for any u E L2e. 

  Define the L2 gain for the system S as follows. 

  [Definition 7.1 ] 

II S IlL2g sup IISu          u~~112(7.3) 
u€L2/{o} 

subject to xo = o. 

  The following assumptions are made. 

  [Assumption 7.1 ] The system S is reachable from .the origin 
(x = o). Namely, given any x1 and ti, there exists a finite time to < t1 
and a control input u E L2(to, t1) such that the state can be driven from 
x(to) = o to x(ti) = x1. 

  [Assumption 7.2 ] For the system S, let ¢a(x) be the function 
defined by 

0a(x) _° inf JT(72uTu  — yTy)dT(7.4) 
uEL2,,T>t 

where x(t) = x and y is a given positive constant. When 0a(x) exists, 
it is C1. In addition, when q5a(x) exists globally, there exists an optimal 
control input u. E L2(ta, tb) which minimizes the cost function given
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by

      `j(x(ta),U(),ta) = —0a(x(tb)) + L:b(2uTu  —  yTy)dT 
                                for a sufficiently small time period [ta, tb]. 

  Assumption 7.1 implies that, when the system is linear , it is 
trollable. Assumption 7.2 holds ver the system is lineartrollable. Assumption 7.2 holds whene 

invariant. 

  Then one gets the following theorem.

  [Theorem 7.1 ] 
positive constant. 
the system S. 

(i) 
    IIYII2T<y 
II u II2T 

(ii) 
    II Y 112 < y 
IIu1l2 

(iii) 
II S IIL2<_ y 

(iv) There exists

Under

Then the fo

(7.5) 

1 
con-

time-

Assumptions 7.1 and 7.2, let y be a given 
llowing four statements are equivalent for

VT>to, VuEL2e/{0}, xo=o

VuEL2/{0}, x0=o

a positive

such that, for all x E R''
a¢ 

ax 7f+ 4y2 ax
1 00

T 99

semi-definite function 5(•)

Tact.+hTh=O 
 ax

(7.6)

(7.7)

    (7.8) 
:R'z — R

(7.9) 

1
Proof: See Appendix. 

  Using the methods of [84] and [46], van der Schaft [127] has already 
shown the equivalence between (iii) and (iv). However, the proof of (iii) 
—> (iv) is not clear there, since we believe that Assumption 7.2 is neces-
sary, but it is not explicitly made. In Theorem 7.1, we give a rigorous 

and alternative proof, which is convenient to prove the local setting of 

Theorem 7.1. The main feature of the proof is the derivation of (7.A1). 
In addition, the equivalence between (i), (ii), and (iii) is not clear in 
[127]. Note that it is not easy to show (i) .— (ii) directly, because (7.6) 
at T oo means--Y--II< not II-V13- <The equivalence (ii) IIuI12y'quivalence between() 
and (iii) implies that there exists no input that maximizes the input-
output rate of the system, and it is important that the condition (ii) 
does not necessarily mean the condition II S I L2<'1'.
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Remark 7.1 We compare the result of Theorem 7.1 to the bounded 
real lemma of linear systems. For a linear system 

   3{ x = Fx+Gu (7.10) 1 y = Hx 
where F, G, and H are appropriate dimensional constant matrix, a 
necessary and sufficient condition for L2< ry is that there exists a 

positive semi-definite solution P that satisfies the Riccati equation 

PF+FTP+ 2PGGTP+HTH=o(7.11) 
(See 41). From this, one can see that the Hamilton-Jacobi equation of 
(7.9) in Theorem 7.1, when 0(x) = xT Px, is equivalent to the Riccati 
equation given by (7.11).1 

Remark 7.2 Let Or(x) be the function defined by 

                      J1(72uTuyTy)dr(x) inf TLEL2e,t0<t1o 
           x(to) = o, x(ti) = x(7.12) 

Assume that cbr(x) satisfies an assumption similar to Assumption 7.2. 
Then Or(x) is also a positive semi-definite solution of the Hamilton-
Jacobi equation (7.9) when the condition (iii) of Theorem 7.1 holds. 
I 

  In Theorem 7.1, we have discussed I/O relation only (i.e. L2 gain 
of the system). However, the internal stability is important from the 
viewpoint of control system design. Therefore, we give a necessary 

and sufficient condition for the system to be internally stable with the 

specified L2 gain in the following sections, where we consider three 

cases, namely asymptotic stability, exponential stability, and globally 

exponential stability as the internal stability. 

7.3 Characterization via the Hamilton-

    Jacobi equation with a stabilizing so-

    lution 

  In this section, we give a nonlinear extension of the strict bounded 

real lemma of linear systems, based on a stabilizing solution of the
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Hamilton-Jacobi equation. Next, as an application of the obtained re-

sult, we give some sufficient (and necessity) conditions for the solvability 
of a strict  H,,„, control problem via state feedback.

7.3.1 Strict bounded real lemma including inter-

      nal asymptotic stability 

  Here asymptotic stability is considered as internal stability. 

  [Definition 7.2 ] For the system S with u - o, namely, x = 
f (x), we call the system S internally asymptotically stable, if the origin 
(x = o) of the system is an asymptotically stable equilibrium. 
  Define the following input-output stability when the input belongs 

to L2 n L',,,,,. 

  [Definition 7.3 ] /134] The system S is said to be small signal 
L2 stable if there exist constants k and c such that II y II2< k II 'u 112, 
for xo = o and all u E L2 n L. The system S is also said to be small 
signal L2 stable if there exist constants k and c such that II y II2< k ll 
u1I2i for xo = o and all uEL2nL~.^ 

  Define the L2 gain of the system S as follows. 

  [Definition 7.4 ] 

II S II L2c°sup IISu112(7.13) 
                ueL-/{o}nL° 

where c is an appropriate positive constant and xo = o. We say the 

system has the small signal L2 gain II S II L2c •I 
  Note that the system which is small signal L2 stable has the finite 

small signal L2 gain. 

  In the case of linear systems, the internal stability automatically 

means globally exponential stability. So the state x(t) goes to the 
origin (x = o) as t --* co for any input that belongs to L2. In the 
nonlinear case, since the internal stability considered in this section 
implies local asymptotic stability, we pay attention to L2 n L , as a 
class of input signals of the L2 gain, in order to guarantee that the 
state of the system S is always in the stability region. In addition, we 
need the fact that the stateconverges to the origin as t tends to 0o for 
any input that belongs toL2i in order to prove the necessity on the
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bounded real lemma. Concerning this point, the following lemma is 

obtained. 

  [Lemma 7.1 ] Assume that the system S is internally asymptot-
ically stable on  B,., namely, there exists a Lyapunov function in Br to 
guarantee that the system x = f (x) is asymptotically stable at x = o. 
Then for any positive constant r1(< r), there exists a positive constant 
c such that x E Co fl Lr holds for all u E Co n L. There also exists a 
positive constant r2 such that y E Co fl L~ holds for all u E Co fl L. 
Furthermore, given any positive constant c1(< c), there exists a positive 
constant r3(< ri) such that x E Co fl L~ holds for all u E Co fl Lcool. 

Proof: This lemma can be readily proven by using Theorem 68.2 in 

[40], page 344. 
  Now the following assumptions are needed, which are similar to those 

of section 7.2. 

  [Assumption 7.3 ] The system S is locally reachable with a 
small input. Namely, given any c > 0, there exists an r(c) > 0 sat-
isfying the following: for any x1 E Br and t1, there exist finite time 
to(< t1) and a control input u E L2(to, t1) fl L~ such that the state is 
driven from x(to)=o tox(ti)=xi. 

  [Assumption 7.4 ] For the system S, let ii,a(x) be the function 
defined by 

   ,/T f(y2uTu — inf —yTy)dT (7.14) 
                   uELZnL,T>t 

where x(t) = x and -y is a given positive constant. When (15a(x) exists 
in a neighborhood of the origin, it is C1. In addition, when 0a(x) exists 
in a neighborhood of the origin, there exists an optimal control input 
u* E L2(ta, tb) fl Lee° which minimizes the cost function given by 

J(x(ta), "t-l(.),t a)  = —Y'a(X (tb)) + ftb(y2uT uyT y) dT          I

for a sufficiently small time period t E [ta,tb]. Furthermore, 
be the function defined by 

    A

~t/ 

     ~r0 (x) =inf f('youT u — yT y) dr 
                    UEL3enL,to<t0 

              x(to) = o, x(t) = x

  (7.15) 
let .ro(x)

(7.16)
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where 70(<  -y) is a positive constant which is sufficiently close to -y. 
When 0r0(x) _exists in a neighborhood of the origin, it is Cl. In ad- 
dition, whenQ~r0(x) exists in a neighborhood of the origin, there exists 
an optimal control input u,, E L2(ta, tb) fl Leo° which minimizes the cost 
function given by 

              f(T      J(x(tb), u(•), tb)_(T'r0(x(ta)) +— yTy)dT 

                           (7.17) 
for a sufficiently small time period t E [ta, tb]. 
  Define the following systems: 

Sv : x = f (x) + g(x)u - 
1 00 

v =2
ry2gTax(x)+u(7.18) 

                     1 S71:x=f(x)+2
y2ggTax(x)+g(x)v 

u=2~2gT(x)+ v(7.19) 
where (/,(•) : Rn — R is an appropriate real function. Note the system 
s-„-1 is the inverse system of Si,. It is assumed that the system s,71 has 
a unique solution for any v E L2e. 

  Then the following theorem is obtained. 

  [Theorem 7.2 ] Under Assumptions 7.3 and 7.4, let 7 be a given 
positive constant. Then the following statements are equivalent for the 
system S. 
(i) The system S is internally asymptotically stable, and there exists 
a positive constant c such that II S II L2c< "Y 
(ii) There exists a positive semi-definite function 0(.) : Rn —* R in a 
neighborhood of the origin which satisfies the following two conditions. 
(A) 

axT f + 4y2 axT ggTax+hT h0(7.20) 
(B) The system S' is internally asymptotically stable, and small 
signal L2 stable.1 

  In [130] and [127], van der Schaft has shown that, under the assump-
tion that there exists the first order term of Taylor series expansion at 

the origin of a nonlinear system, a sufficient condition for the nonlinear
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 system S to be internally exponentially stable with  II S L2c< 7 is that 
 the linearization S given by (7.10) is internally stable with II S IIL2< 'Y. 

 It has also been shown that this sufficient condition guarantees the 

 smoothness of ¢a(x). This result is useful for the evaluation of the 
 L2 gain of a nonlinear system with internal stability , because one can 

 evaluate it by checking the existence of the stabilizing solution of the 

 Riccati equation. However, since this result is based on the one about 

 the L2 gain of the linearization , it may not be sufficient for the analysis 
 of the L2 gain of nonlinear systems . For example, the following simple 

 system cannot be treated by his result . 
X = —4x3 + u 

y = idx3(7.21) 
While, we can show that the small signal L2 gain of the system given 

by (7.21) is less than -.1,,  via simple calculation by using Theorem 7.2 ( 
The function q5 = 41-x4satisfies the conditions (A) and (B) ). Van der 
Schaft's result cannot also treat the critical case , that is, the system 
has the internally asymptotic stability at the origin (not exponential 
stability) and the I/O relation is small signal L2 stable, but Theorem 
7.2 can. In addition, the result of Theorem 7.2 is necessary as well as 
sufficient for the nonlinear system S to be internally stable and have a 
kind of the L2 gain which is strictly less than a specified number. 
Remark 7.3 Theorem 7.2 exactly corresponds to the strict bounded 
real lemma of linear systems. In fact, for the linear system S given 
by (7.10), a necessary and sufficient condition for the system S to be 
internally stable with II S 11L2< 'Y is that there exists a stabilizing solu-
tion P _> 0 for the Riccati equation (7.11), where P of (7.11) is said 
to be a stabilizing solution if F + -15.

7 GGT P is exponentially stable (See [
31]). In (B) of Theorem 7.2, the condition that the system S1 is in-
ternally asymptotically stable corresponds to the requirement for P to 
be a stabilizing solution. 

  It is important that Theorem 7.2 requires the additional condition 
that the system 5,71 is small signal L2 stable, because the internal sta-
bility of S1 in (B) is the asymptotic stability which is weaker than that 
of the linear case. 

  Several lemmas are needed in order to prove Theorem 7.2. At first, 
we state a result corresponding to Theorem 7.1.
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         y
112<-y  VuEL2/{0}n   IIL~ 

          u (ii) There exists a positive semi-definite function 0.(•) : 
which satisfies (7.20) in a neighborhood of the origin. 
Proof: See Appendix. 

  While Theorem 7.1 is for the global case, Lemma 7.2 is fo 

case. 

to 11 S IlL9c< 7, but does not mean II SIIL2c< In order to 
 S II L2c< 7, one has to pay attention to the existence of sor 11 

solution satisfying the Hamilton-Jacobi equation. 

  Next the following lemma is given which 

the internal stability of the system S when 

semi-definite. 

  [Lemma 7.3 ] Consider a system 
x =:f(x)  + g(x)s(x), x(to) = xo 

where P.) : Rn — Rh, s(•): Rn —* R'i, and g(•) : Rn 
are sufficiently smooth, with f (o) = o and s(o) = o. This 
assumed to satisfy the following conditions.

  [Lemma 7.2 ] Suppose Assumptions 7.3 and 7.4 for the system 
S and the system is internally asymptotically stable, and let -y be a 
given positive constant. Then the following statements are equivalent. 
(i) There exists a c > 0 such that

  (7.22) 
Rn -->R 

I

  While Theorem 7.1 is for the global case, Lemma 7.2 is for the local 

.se. As in Theorem 7.1, the condition (i) in Lemma 7.2 is equivalent 
  II SIIL9c< but does not mean II S L2c< -y. In order to guarantee 
 S ilL2c< 7, one has to pay attention to the existence of some specific

hich is useful for the proof on 

                                             is positive

  (7.23) 
Rn" 

system is

rium at the origin. 

  Then the system given by (7.23) is asymptotically stable at the origin. 
1 
Proof: See Appendix. 
Remark 7.4 As you can easily see from the proof, the asymptotic sta-
bility property of (7.23) is guaranteed for all initial state xo where the 
conditions (i) and (ii) hold simultaneously. 

  Isidori [55, 57] has shown, under the condition that 0(x) is the 
positive definite and asymptotic stabilizing solution of the Hamilton-

(i) There exists a positive semi-definite function q5(•) : Rn —> R in a 
neighborhood of the origin such that, for a positive number p, 

axT [ f gs] < —psT s(7.24) 
(ii) The system given by x = f (x) has an asymptotic stable equilib-
rium
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Jacobi equation, the asymptotic stability of the system given by (7.23), 
by using La Salle's Invariance Principle (See [55]). However, when  q 
is positive semi-definite, La Salle's Invariance Principle does not lead 

to the asymptotic stability. (Note that in the case of linear systems, 
the existence of the positive semi-definite stabilizing  -solution of the 

Riccati equation is enough to guarantee the internal stability of the 

system.) Thus, Lemma 7.3 is developed as a new tool to guarantee the 
asymptotic stability. The success in Lemma 7.3 is based on a kind of 
Lyapunov function obtained by fully exploiting the system structure, 
namely it is affine in s. 

  Compared to the case of linear systems, Lemma 7.3 corresponds 
to the result that the internal stability of the linear systemS given 
by (7.10) is shown by the positive semi-definite solution of the Riccati 
equation (7.11) and the detectability of some suitable system. In order 
to clarify this relation, we define the following term. 

  [Definition 7.5 ] For the system S given by (7.1) and (7.2), 
(f, h) is said to be asymptotically detectable, if the system with u = o 
and y - o is asymptotically stable at the origin.1 

  Note that this definition is different from the definition of zero-state 
detectability [19]. If (f, h) is asymptotically detectable, then it is zero-
state detectable. But the converse is not true. In addition, if the 

system is internally asymptotically stable, then (f, h) is asymptotically 
detectable. The following corollary follows from Lemma 7.3 , which, as 

you can easily see, completely corresponds to the well known result in 
the case of linear systems. 

  [Corollary 7.1 ] Suppose that, for the system S given by (7.1) 
and (7.2), (f ,h) is asymptotically detectable. If there exists a positive 
semi-definite function OH : Rh -* R in a neighborhood of the origin 
such that 

----f < —hT h(7.25) axT 
then the system S is internally asymptotically stable. 

Proof: Set u - o. By an appropriate coordinate transformation, the 

system given by (7.1) and (7.2) can be transformed to the system 
        = f('1 ,&2) 

          = h(xi, x2) = x2(7 .26)
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where =  [xi x2 ]T , and f and h are appropriate functions obtained 
by coordinate transformation. Then we get from (7.25) 

                                   axT{f(l,o)—F(x1)-12)-2} <—x2x2(7.27) 
where is an appropriate positive semi-definite function obtained 

by coordinate transformation of 0(x), and F(x1, x2) is an appropriate 
function. Then from Lemma 7.3, we conclude the internal asymptotic 

stability of the system given by (7.1) and (7.2).1 
  Third, concerning a stabilizing solution of the partial differential 

equation given by (7.20), the following result is obtained. 

  [Lemma 7.4 ] Suppose Assumptions 7.3 and 7.4 for the system 
S, and the system is internally asymptotically stable. Assume alsothat, 

given -y > 0, there exists a c > 0 such thatIISIIL2c<'y. Then ca(x) 
given by (7.14) satisfies (7.20) in a neighborhood of the origin, and the 
system x=f-~27 ggT  is asymptotically stable at the origin. 
Proof: See Appendix. _ 

  In the case of the linear systemSgiven by (7.10), if the system is 
internally stable and satisfiesIISIIL2<'y,then there exist solutions 
of the Riccati equation and the minimum solution is a stabilizing one 

(See [31, 4]). Lemma 7.4 is a nonlinear extension of this linear case. In 
Lemma 7.4, it is important that the existence of the stabilizing solution 

can be proven by the argument of time domain. There is no discussion 

on the above point in the former researches. 

  [Lemma 7.5 ] Suppose Assumption 7.3 for the system S, and 
the system is internally asymptotically stable. Then the system S _is 
small signal L2 stable if and only if the system S is small signalL2 
stable.1 

Proof See Appendix. 
  Now we are in the position to give the proof of Theorem 7.2 using 

Lemmas 7.1 to 7.4. 

(Proof of Theorem 7.2) 
(ii)—*(i): (a) Internal stability of the system S: In Lemma 7.3, 
let s be s =—272gTax ,f be f=f +2y,ggTa,andgbeg= g. 
Then f -F gs = f. By the condition (A), one gets 

-----f<-4f2~ ggTa~(7.28) 
      axT
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and the condition (i) of Lemma 7.3 holds when p =  72. Further the 
condition (ii) of Lemma 7.3 holds, because the system Sv 1 given by 
(7.19) is internally asymptotically stable. Therefore, the system S is 
internally asymptotically stable. 

(b) II S II L2c< 'y : Suppose the condition (A) holds for all x E B,.1. 
Since the system S is internally asymptotically stable, from Lemma 
7.1, there exists a c1 > 0 such that x E La, holds for all u E . Thus 
using the condition (A), one obtains 

7211u113-11 113>7211v113, vuEL2nLoic), xo=0(7.29) 
Further there exists a positive constant c2 such that v E L2 n LZ holds 
for all u E L2 n LZ. Since the system S' is small signal L2 stable, 
there exist k > 1 and c3 > 0 such that 

IIu112<kIIV112 b'vEL2n(7.30) 
Thus from (7.30), the internal stability of Sv 1, and Lemma 7.1, there 
exist c4(<c3) and c5 > 0 such that u E L2 n LZ holds for all v E 
L2 n LZ_Therefore one gets, for a sufficiently small positive number 
c < min{ci, c5}, 

IIu112<kl1V112 VuEL2nLe.(7.31) 
From (7.29) and (7.31), one obtains 

     2_11y113>211v112>y2 
       IIull2ry IIu112 k2 

`du E L2/{0} n L , , xo = o (7.32) 
This implies II S IIL2c<7. 

(i)—*(ii): (a) Condition (A): From Lemma 7.2, one can see that 
there exists a r1 > 0 such that Cba(x) given by (7.14) satisfies (7.20) for 
all xEBr,. 

  Then in the following proof, consider the systems S„ and 51,71- given 
by (7.18) and (7.19) where 0 = is set. 
(b) Internal stability of 57 1: It follows from Lemma 7.4. 
(c) Small signal L2 stability of 5,71: If II S IIL2c< 'y, then there 
exists a positive number E(< 72) such that 

    II Y   
II u II2T< 72 - EVT > to, Vu E L2e/{0} n Lcc,(7.33) 

The internal stability of the system S and Lemma 7.1 yield that there 
exists a positive number ci (< c) such that x E Co n Lr holds for all
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u E L2  n  LZ. So using the condition (A), one gets 
    72IIu113T—IIYII2T = a(X(77))+7211V112T 

         VT > to, Vu E L2e/{0} n x0= o (7.34) 
Eqs.(7.33) and (7.34) imply 

     y~a(x(7'))+'y2IIv112T>_EII UI12T 
          VT > to, `du E L2e/{0} n = 0 (7.35) 

Further from the internal stability of S,,, there exists a c2 > 0 such 
that v EL2e n Lc„,, holds for all u E L26 n LZ. Also from the internal 
stability of S1, there exist c3 > 0 and c4 > 0 such that u E L2e nL~ 
holds for all v EL2e n L. Therefore, for a sufficiently small positive 
number c5 < min{c2, c3}, one gets from (7.35) 

    ya(x(T))+72IIVII2T ? EIIu112T 
Vv E L2e/{0} n LZ, xo = o (7.36) 

Noting that x(oo) = o holds for all v E L2nLco,, because of the internal 
stability of Sv1 and Lemma 7.1, and that u EL2 n LZ holds for all 
v E L2 n LZ because of (7.36), one obtains 

72 II v I12>_ E II u 112 Vv E L2 n L~, xo = o (7.37) 
This implies that 51,71 is small signal L2 stable. The system 5%71 is 
locally reachable because of Assumption 7.3 and is internally asymp-
totically stable. Therefore, from Lemma 7.5, S-„-1- is small signal L2 
stable.1

7.3.2 Strict bounded real lemma including inter-

      nal exponential stability 

  In this subsection, a necessary and sufficient condition is given for 
the system to be internally (globally) exponentially stable with the 
specified L2 gain. In addition, a relation to linear approximation system 

is discussed. 

  At first, we consider the case of exponential stability. Thus sev-

eral lemmas are given, which correspond to Lemmas 7.1, 7.3, and 7.4, 

respectively. 

  [Definition 7.6 ] For the system S with u - o, namely, x = 
f (x), we call the system S internally exponentially stable, if x = o of 
the system is an exponentially stable equilibrium.
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  For the internal exponential stability, the following result which is 

similar to Lemma 7.1 is obtained. 

  [Lemma 7.6  ] Suppose the system S has a unique solution for 
each u E  L  , and is internally exponentially stable on Br, namely, 
there exists a Lyapunov function on Br to guarantee that the system 
x = f (x) is exponentially stable at the origin. Then the system S 
is small signal L2 stable. Further, for any positive constant ri(< r), 
there exists a positive constant c such that x E L2 n Lrool holds for 
all u ~_E L2 n L. There also exists a positive constant r2 such that 
y EL2 n Lat holds for all u E L2 n Lccc. Furthermore, given any 
positive constant ci(< c), there exists a positive constant r3(< ri) such 
that x EL2 n Lrcct holds for all u E L2 n L~ .1 
Proof: It is straightforward from [134, 44].1 
  Lemma 7.6 shows that the internal exponential stability guarantees 

x(t) -* o as t --> oo for all u E L2, as long as the state remains in the 
stability region. 

  We give a result corresponding to Lemma 7.3. 

  [Lemma 7.7 ] Consider the system given by (7.23). Suppose the 
following two conditions hold. 
(i)' There exists a C2 positive semi-definite function O(•) : R" -f R 
in a neighborhood of the origin such that, for a positive number p, 
eq. (7.2i) holds. 
(ii)' The system given by x = :f(x)  has an exponential stable equi-
librium at the origin. 

  Then the system given by (7.23) is exponentially stable at the origin. 

Proof: See Appendix. 
  Now in Assumption _7.4, C1 is replaced by C2 with respect to the 

smoothness of~aand-q-5,0. Then we call this Assumption 7.4'. The 
following result corresponding to Lemma 7.4 is given. 

  [Lemma 7.8 ] Suppose Assumptions 7.3 and 7.4' for the system 
S, and the system is internally exponentially stable. Assume alsothat , 

giveny> 0, there exists a c > 0 such thatIIS II L2c<y. Then~a(x) 
satisfies (7.20) in a neighborhood of the origin, and the system given by 
x = f -~ 2,12 ggT a is exponentially stable at the origin. 1
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Proof: The proof is almost the same as Lemma 7.4, except for the use 

of Lemmas 7.2, 7.6, and 7.7. 

  Then the following theorem is obtained, which corresponds to The-

orem 7.2. 

  [Theorem  7.3  ] Under Assumptions 7.3 and 7.4', let -y be a given 
positive constant. Then the following statements are equivalent for the 
system S. 
(i) The system S is internally exponentially stable, and there exists 
a positive constant c such that II S II L2c< 7. 
(ii) There exists a C2 positive semi-definite function c/o(•) : R" -* R 
in a neighborhood of the origin which satisfies the following two condi-
tions (A) and (B). 
(A) 

          1 00   
     8xTf +472axT99Tax+hTh=0(7.38) 

(B) The system S,~1 is internally exponentially stable. 
Proof: It can be proven in the same way as Theorem 7.2, by utilizing 

Lemmas 7.2, and 7.6 to 7.8. 

  Theorem 7.3 is concerned with the small signal L2 gain, since L2f1Lec.,, 

is treated as a class of input signals. By the fact that if the system is 

internally exponentially stable, then it is small signal L2 stable (see 
Lemma 7.6), Theorem 7.3 requires only the exponential stabilizing so-
lution, while Theorem 7.2 requires the small signal L2 stability of S,71 
as well as the asymptotic stabilizing solution. Note that the result of 
Theorem 7.3 is necessary as well as sufficient for the nonlinear system 
S to be internally exponential stable with II S IIL2c< 'y. 
  Next, let us consider the case of global exponential stability. The 

following assumption is made. 

  [Assumption 7.5 ] Define a function 0ro(x) where -y in (7.12) 
is replaced with -yo(< ly). When 0r0(x) exists, it is C1. In addition 
when gro(x) globally exists, there exists an optimal control input u* E 
L2(ta, tb) which minimizes the cost function defined by 

     J(x(tb), u(•),tb) _gro(x(ta)) +f tb(7ouTu — yTy)dr (7.39) 
                                                       ca 

for a sufficiently small time period t E [ta, tb] • 
  Now a global version of Theorem 7.3 is given.
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  [Theorem 7.4  ] Under Assumptions 7.1, 7.2, and 7.5, let 7 be 
a any given positive constant. Assume that f is globally Lipschitz in 
x, and that ax given by (7.4) and ax , when they exists globally, are 
globally Lipschitz in x. Suppose also supx II g(x) II< co. Then the 
following statements are equivalent for the system S. 
(i) The system S is globally and internally exponentially stable, and 
satisfies II S 112< y. 
(ii) There exists a positive semi-definite function q5(•) : Rn -* R 
which satisfies the following conditions (A), (B) and (C). 
(A) 

    00 1 00  
axT+ 472 axTg9Tax+ hT h = 0,Vx (7.40) 

(B) The system S.,1 is globally and internally exponentially stable. 
(C) -(x) is globally Lipschitz in x. 
Proof: See Appendix. 

  This result is a global extension of Theorem 7.3. Theorem 7.4 com-

pletely includes the bounded real lemma of controllable linear systems, 
since the linear systems satisfy the assumptions of Theorem 7.4. As 

a result, the approach derived here enables us to naturally extend the 

idea of the Hcx, norm of linear systems to the L2 gain of nonlinear sys-

tems. Theorems 7.2 to 7.4 also clarify the relation between the internal 

stability of the system and the stabilizing solution of the Hamilton-

Jacobi equation. We believe that Theorems 7.2 to 7.4 give essential 

results for the L2 gain of nonlinear systems. 

  Finally, combining Theorem 7.3 with van der Schaft's results [130, 
127], we show the relation on L2 gain between the nonlinear system S 
and the linearization S given by (7.10) where F = a r(o), G = g(o), 
and H = 

  Then the following result is obtained. 

  [Corollary 7.2 ] Under Assumptions 7.3 and 7.4', let -y be a 
given positive constant. Then the following statements are equivalent 
for the nonlinear system S and the linearization S. 
(i) The system S is internally stable with II S IIL2<'y. 
(ii) The system S is internally exponentially stable, and there exists 
a positive constant c such that II S I I L2c< "y 
(iii) There exists a C2 positive semi-definite function q5(.) : Rn — R



129

in a neighborhood of the origin which satisfies the following two condi-
tions (A) and (B). 
(A)      00f +472aT99Ta~+hTh=0(7.41) 
(B) The system  5;1 is internally exponentially stable. 
Proof: The proof of (i)—.(ii)(or (iii)) is given by van der Schaft [130, 
127]. So it is enough to show (ii)— (iii) and (iii) —> (i). From Theorem 
7.3, the former is obvious. Concerning to the latter, the second order 

linearization of the partial differential equation leads to the Riccati 

equation of (7.11), and by the fact thatqa(x) is the exponentially 
stabilizing solution, the linearization of~a(x) is a stabilizing solution 
of (7.11). The above argument implies that the condition (i) holds. 

  Van der Schaft has also shown the result similar to Corollary 7.2 in 

[129], which has a different proof from that of Corollary 7.2. Corollary 
7.2 is utilized to prove a necessary condition for the existence of H,„, 

state feedback control in the next section. 

Remark 7.5 The equivalence between (i) and (ii) can be shown under 
the assumption that 0,.o(x) is C2, in the similar way to Corollary 7.2. 
I

7.3.3 Strict Hoo state feedback control problem 

  In this subsection, based on the above results about the strict bounded 
real lemma, we give some conditions for the solvability of a strict H cc, 
state feedback control problem. 

  Consider the following nonlinear systems: 
x = .f (x) + 91(x)w + 92(x)u(7.42) 

   z = h(x) + j(x)u(7.43) 
where x E Rn is the state, u E Rm. is the control input, w E RP 

is the disturbance, z E R4 is the controlled output, and to is the 

initial time. f (•) : Rn ---f Rn, h(.) : Rn -> Rq,91(•) : Rn—>Rn"r, 
g2(•) : Rn -> Rn"'n, and j(.) : Rn Rgxm are sufficiently smooth 
known functions with f (o) = o and h(o) = o. It is assumed that (7.42) 
has a unique solution for any u E L2e and w E L2e. For simplicity, 

assume that the following condition holds.
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 [hT jT ]j = [o I] Vx E Rn 
 Let Szu, define an operator which expresses the relation between w 

 and z in the closed loop system given by (7.42), (7.43), and u = k(x), 
 where k(.) : Rn -f R'n is an appropriate function. 

   Then the following problem is considered . 

   [Problem 7.1 ] (Strict Hc,„ state feedback control prob-
 lem) For the system given by (7.42) and (7.43), find a state feedback 

 control u = k(x) which satisfies the following conditions. 
(S1) II Szw IIL2c< `y 

 (S2) The system x = f(x) + g2(x)k(x) is asymptotically stable (or 
exponentially stable) at x = o .U 

   The following system is defined. 
    -11Tao 1 Ta~ _       S x= .f(x) +2 -y2Oxax 2g2g2ax+91z 

       w=2ry29ia~+z(7.44) 
where OH : Rn R is an appropriate real function. Then we get the 
following result. 

  [Theorem 7.5 ] For the system by (7.42) and (7.43), a positive constant 7 is given. If there exists a positive semi-definite function 
0(•) : Rn R in a neighborhood of the origin which satisfies the 
following two conditions 
(A) 

          1 ao T ao 1 acb Tao 
      axTf + 472 axTglgl ax — 4 axT g2g2 ax + h h = 0 (7.45) 

(B) Sz1 is internally asymptotically stable and is small signal L2 stable 
then the strict Hc, state feedback control problem is solvable in the case 
of asymptotic stability. 

  In addition, when there exists a q(x) which satisfies conditions (A) 
and (B), one of nonlinear state feedback controllers which satisfy con-
ditions (i) and (ii) can be given by k(x) _ —2g2 ax 
Proof: Consider a system with u = —2g2 a in (7.42) and (7.43). Note that the condition (A) implies 

     8~1T1 aqa 
        ax%`(f—2u2g2 ax)+4712axl.glglT 

+(h -' ig9T a)T(h — 2j9i ax) = 0(7 .46)
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Then conditions (i) and (ii) follow from conditions (A) and (B), ap-
plying the result on (ii)  -i (i) of Theorem 7.2 to the system with 
u—Ta~       292 ax • 

  In the same way as Theorem 7.5, one can get the result in the case 

of exponential stability. 

  [Theorem 7.6 ] For the system by (7.42) and (7.43), a positive 
constant ry is given. If there exists a C2 positive semi-definite function 
0(•) : R" R in a neighborhood of the origin which satisfies the 
following two conditions (A) 

001 aoTao 1 ag5T aoT 

                — 

     axTf+ 472 axTgigl ax4 axTg2g2 ax+hh- 0 (7.47) 
(B) Sz 1 is internally exponentially stable 
then the strict H„,, state feedback control problem is solvable in the case 
of exponential stability. 

  In addition, when there exists a 0(x) with conditions (A) and (B), 
one of nonlinear state feedback controllers which satisfy conditions (i) 
and(ii)an begivenbykxiT1     )9y() = — 292 ax 
Remark 7.6 Under appropriate assumptions, the result in the global 

case is also obtained in the same way as Theorem 7.6. 

  The above results, although they are the sufficient conditions, com-

pletely correspond to those in linear systems: the derived conditions 
require a positive semi-definite solution of the Hamilton-Jacobi-Isaacs 

equation given by (7.45) (or (7.47)) as the linear case, and the existence 
of the stabilizing solutions leads to II SZw 111,2c< 'y (II S. I1L2< 'y) as 
well as 11 SZw IJL2c< 7 (II SZw I1L2< 7). Note that the results by Isidori 
[55] do not clarify that the existence of the stabilizing solution implies 
the L2 gain strictly less than the specified number. In addition, the 

sufficient conditions derived here are stronger than that of Isidori in 

the sense that the condition by Isidori requires a positive definite (not 
positive semi-definite) solution in order to guarantee the asymptotic 
stability of the closed loop system. 

  Next, the sufficient condition of Theorem 7.6 is proven to be a neces-

sary condition for the existence of the strict Ho° state feedback control 

under a certain assumption. 

  Assume F =a1.(o), G; = g,(o) (i = 1, 2), H = a r(o), and 
J = j(o), and consider the linearization of the system given by (7.42)
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and (7.43): 
 x = Fx +  Giw + G2u(7.48) 

  z = Hx + Ju(7.49) 
Further let Szw be the operator which expresses the relation between w 

and z in the closed loop system given by (7.48), (7.43a), and u = Kx, 
where K is an appropriate matrix. 

  Then the following result is obtained. 

  [Corollary 7.3 ] Let y be a given positive constant. Assume that, 
for any CI- function k(x) satisfying (S1) and (S2), the system Szw sat-
isfies the assumptions in Corollary 7.2, and also (H, F) is detectable. 
Then the following statements are equivalent for the nonlinear system 
Szw and the linearization S..
(i) There_exists a linear state feedbackcontrolleru= Kx such that 
the systemSzw is internally stable with 11L2< y. 
(ii) There exists a nonlinear state feedback controller u = k(x) which 
solves the strict Hoo control problem in the case of exponential stability. 
(iii) There exists a C2 positive semi-definite function OH : Rn R 
in a neighborhood of the origin which satisfies conditions (A) and (B) 
in Theorem 7.6.

Proof: The proof of (i)-qiii) has already been proven by van der 
Schaft [130, 127]. So we prove (iii) -* (ii) and (ii) —> (i). The former is 
shown by Theorem 7.6. Concerning to the latter, assume thatu =k(x) 
satisfies condition (ii), and that K is the linearization ofk(x). Then 
Corollary 7.2 is applied to the closed loop system Szwwith u=k(x) 
and Szw with u = Kx. Thus (i) follows from (ii).

7.4 Characterization via the Hamilton-

Jacobi strict inequality

  In this section, we characterize the strict bounded real condition of 

nonlinear systems via the Hamilton-Jacobi strict inequality. In addi-

tion, based on the obtained bounded real lemma, we give a necessary 

and sufficient condition for the solvability of a strict H„, control prob-

lem via state feedback.
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7.4.1 Strict bounded real lemma including inter-

     nal asymptotic stability 

  In this subsection, we discuss the relation between the L2 gain of 
nonlinear systems and the Hamilton-Jacobi strict inequality. 

  The following assumption is made. 

  [Assumption  7.6  ] Let 70 be a given positive constant. Then for 
the system S, a function cao(x) defined by 

    &To(x)— inff (y(3uT u yT y)dr (7.50) 
                 UEL2efLoo,T>t t 

where x(t) = x and 'yo is a given positive constant, is C', when it exists 
in a neighborhood of the origin.1 

  Then the following theorem is obtained. 

  [Theorem 7.7 ] For the system S given by (7.1) and (7.2) which 
is locally reachable, let y be a given positive constant, and assume As-
sumption 7.6 for a positive constant yo < y which is sufficiently close 
to y. Then the following statements are equivalent. 
(i) The system S is internally asymptotically stable, and there exists 
a positive constant c such that II S II L2c< y. 
(ii) There exist positive definite functions q5(•) : Rn - R and 
IP(•) : Rn -* R in a neighborhood of the origin which satisfy the follow-
ing two conditions. 

(A) 

     c7xT+4y2axT99Tax+hTh+(x)<0 (7.51) 
(B) II gT a II2= O(P) 
  The following lemmas are needed in order to prove Theorem 2.1. 

First we need local version of the Bounded real lemma of nonlinear 

systems [46]. 

  [Lemma 7.9 ] For the system S which is locally reachable, let 
y be a given positive constant, and assume Al for a positive constant 
yo = y. Then the following statements are equivalent. 
(i) For the system S, there exists a positive constant c such that 
II S y. 
(ii) There exists a positive semi-definite function q (•) : Rn ---* R in 
a neighborhood of the origin satisfying
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      ao  

axT'f+472 axT ggTax + hTh < 0 

  The following lemma is concerned with the relation between the 
internal asymptotic stability and the L2 stability, which is much useful 
for the proof of Theorem 7.7. 

  [Lemma 7.10 ] The system x = f(x) is assumed to be asymp-
totically stable at x = o, and f (x) and g(x) are sufficiently smooth in 
x. Then there exist sufficiently smooth and positive definite functions 
W(•) : Rn — R and 6(•) : Rn R in a neighborhood of the origin 
such that 

      f1 OWaW 
axT+ 4k axT ggTax+S < 0(7.52) 

holds for some k > 0.U 
Proof: See Appendix. 
Remark 7.7 This lemma implies that if the system is asymptotically 
stable at the origin, then there exists some output function such that 
the system is small signal L2 stable. Namely, let y = 15(x) in Lemma 
7.10. Then it follows from (7.52) that the system 

x = f (x) + g(x)u 
= \/S(x) 

is small signal L2 stable. 

  Now we are in the position to give the proof of Theorem 7.7 using 

Lemmas 7.9 amd 7.10. 

(Proof of Theorem 7.7) The condition (i) implies that there exist 
positive constants y2(i = 0, 1) such that 

     IIy1I2 2 2 2 
    IIu1I2<7i<7 <7 

It also follows from the internal stability of the system S and Lemma 

7.10 that there exist sufficiently smooth and positive definite functions 

W(.) : Rn -> R, 6(.) : Rn — R, and positive constant k in a neighbor-
hood of the origin such that 

aW1 OW T aW  

    axTf+ 4k axT 99 ax +"/  0(7.53) 
In addition, under Assumption 7.6 and Lemma 7.9, since II S IIL2c< 71, 
there exists a positive semi-definite function :q3ao in (7.50) such that
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     axTf+4ry2 axTT99axo+hT h < 0(7.54) 
                  i holds in a neighborhood of the origin . 

  Consider  W'(x) = 1W(x), using a positive number 1. Then, from (
7.53), we get 

OW' 1 aW'TOW' 

axT f+ 41k axTgg Ox+lb<0(7.55) 
Let 0* = W' + ¢ao. Then using (7.54) and (7.53), we can show that the 
following relation holds in a neighborhood of the origin, for a sufficiently 
small number 1. 

l a

a0*a      aOTf+4-2Tgg5*+hTh+lb<0(7.56)               Yo 
Let i*(x) be 

1 1 1 00* T aCb* = 4(„y — ry2)axT99 ax +lS 
Then one gets 

00*1 a~*T a0*T 
      axTf+4,Y2 axT99ax+hh + * < 0 

from (7.54). It is obvious that b*(x) is positive definite and satisfies the 
condition (B). Therefore, it was shown that there exist positive definite 
functions 0* and 7,b. which satisfy the conditions (A) and (B). 

(ii)—*(i): Noting that 0 and b are positive definite functions, it 
follows from the condition (A) that the system S is internally asymp-
totically stable. The condition (B) implies that there exists a positive 
constant E such that E  gT---- 112< IP holds in a neighborhood of 
x = o. From this fact and the condition (A), there exists a positive 
constant 71(< -y) such that 

      axTf+412axTggTax+ hTh<0               7i 
Using Lemma 7.9, this implies that there exists a positive constant c 
such that II S II L2c <_ 'YL < 'Y. 

Remark 7.8 Let us compare Theorem 7.7 with the non-strict bounded 
real condition of nonlinear systems i.e., Lemma 7.9 given by Hill and 
Moylan [/46J. Lemma 7.9 takes no account of the internal stability of 
the system as well as the L2 gain, while Theorem 7.7 does. As a result, 
Theorem 7.7 requires the positive definiteness of 0, not the positive 
semi-definiteness, the existence of a positive definite function ?,b, and the
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condition (B) which expresses the relation on the boundedness between 
the term  g  ax and 0. Since most of previous works on the nonlinear 
Hc, control theory are based on Lemma 7.9, they are concerned with 
the non-strict case, and do not discuss the necessary condition on the 
internal stability in both cases of state feedback and output feedback, 
although the strict Ha° control problem can be solved in the case of 
linear systems. On the other hand, since Theorem 7.7 treats the internal 
stability, Theorem 2.1 will be more useful than Lemma 7.9 in developing 
the strict Hoo control theory. We will apply Theorem 7.7 to the strict 
Hco control problem via state feedback or output feedback in the next 
sections. As you can easily see in the proof of Theorem 7.7, the positive 
definiteness of 0 and 'fP guarantees the internal stability of the system 
S, and the condition (B) guarantees that II S IIL2c is strictly less than 
7.1 
Remark 7.9 We compare the result of Theorem 7.7 to the strict bounded 
real lemma of linear systems [149]. Consider the controllable linear sys-
tem S given by (7.10). Then the strict bounded real condition for the 
linear system, i.e., a necessary and sufficient condition for the system 
S to be internal stable and has Il S IIL2< -y is that there exist a positive 
definite solution P and positive number e which satisfies 

PF+FTP+ 2PGGTP+HTH+eI= o(7.57) 
               72 

 set f = Fx, g = G, and h = Hx in (7.1) and (7.2). Then if we 
consider 0(x) = xTPx and '0(x) = exT x in the condition (A), respec-
tively, the positive definiteness of 0 and '% is satisfied. Here note that 
Theorem 7.7 holds even when the inequality in the condition (A) is re-
placed by the equality. In addition, one can see that = exT x automat-
ically satisfies the condition (B) in Theorem 7.7. Therefore, Theorem 
7.7 consistently corresponds to the case of linear systems. Comparing 
to the linear case, however, the main feature of the nonlinear case is 
the explicit requirement of the condition (B).U 
Remark 7.10 Note that Assumption 7.6 is required to prove the ne-
cessity in Theorem 7.7, rather than the sufficiency. 

  Next we will show another characterization of the bounded real con-
dition via Hamilton-Jacobi strict inequality. Namely, it will be proven 
that the condition (B) in Theorem 7.7 can be replaced by the condition 
between h and 0.
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  [Theorem 7.8 ] Suppose the same assumption as Theorem 7.7 
for the system S. Then the following statements are equivalent. 
(i) The system S is internally asymptotically stable, and there exists 
a positive constant c such that  II S IIL2c< 'y. 
(ii) There exist positive definite functions OH : R" —4 R and ON : 
R" —> R in a neighborhood of the origin that satisfy the following two 
conditions. 
(A) 

     4f+4ggT_+hTh+'b(x)<o 
                                    (B) The following condition holds. 

(B1) II2gTa 112= O(0) 
or 

(B2) II h 112= O(P) 
or 

   (B3) II 29T ax II2= O(0) and II h 112= O(P) 
Proof: First, we show (i) -- (ii)(A) and (B3). From II S II L2c< -y, there 
exist -yi and 72 such that 71 < 72 < 7 and II S II L2c< 'yi. Let ylo h. 
Then 

II vi. I12<72IIuII2 
which means that there exists a positive semi-definite function 0 such 
that 

               4hTh + ----T+<0 (7.58) 
Hence noting 217, > 1, we can show that there exists a satisfying 

II h I12= O(0) as well as the conditions (A) and (B1) in the same way 
as the proof of Theorem 7.7. 

Concerning (ii)(A) and (B2) --> (i), the proof is straightforward using 
the the above technique and the proof of Theorem 7.7. 

Remark 7.11 In Theorem 7.8, the conditions (A) and (B2) is more 
useful than the other cases in the sense that we can easily specify the 
form of 0 because the condition (B2) does not include the unknown 
function 0. On the other hand, the condition (B1) will plays a impor-
tant role to derive a necessary and sufficient condition for the solvability 
of the strict H„,, control problem via state feedback. The condition (B3) 
will also be used in deriving a necessary condition of the solvability of
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the nonlinear  Hoc, problem via output feedback.

7.4.2 Strict bounded real lemma including inter-

      nal exponential stability 

  Next we show a result about the exponential stability case. So in 
Assumption 7.6, C1 is replaced by C2, which is called Assumption 7.6'. 

  [Theorem 7.9 ] For the system S which is locally reachable, let y 
be a given positive constant, and assume Assumption 7.6' for a positive 
constant 70 = 7. Then the following statements are equivalent. 
(i) The system S is internally exponentially stable, and there exists 
a positive constant c such that II S IIL2c< 7. 
(ii) There exists a C2 positive definite function .00 : Rn -* R and 
a positive constant E in a neighborhood of the origin which satisfies the 
following condition.

ao 
axTf+ 4y2 axT99Tax+hT h + exT x < 0 (7.59) 

                               I 
Proof: (i)—j(ii). It can be shown in the same way of the proof of 
Theorem 7.7. (ii) —* (i). For a C2 positive definite function satisfying 
(7.59), there exists an appropriate positive definite matrix P such that 
0(x) = xTPx + 01(x), where 01(x) is a function vanishing at the 
origin together with all the second order derivatives. Then since 0(x) 
is a Lyapunov function, the system S is internally exponentially stable. 

In addition, there exists a positive constant e0 such that 

60 II2gTax II-" s II x 112 (7.60) 
holds in a neighborhood of the origin. It follows from (7.59) and (7.60) 
that II S IIL2c< 7 holds, in the same way as the proof of Theorem 7.13. 
I 
Remark 7.12 In the case of exponential stability, a positive definite 
function 0 to satisfy the condition (B) can be chosen as 0 = exT x, in 
the same way as the linear case. 

Remark 7.13 We can treat a global exponential stability case in the 

same way as Theorems 7.7 and 7.9, under some assumptions such as 

a global Lipschitz condition.



139

7.4.3 Strict  1100 state feedback control problem 

  In this subsection, we give a necessary and sufficient condition for 
the solvability of the strict H,, state feedback control problem, based 
on the results obtained in the above subsections. 

  Consider the same problem as in section 7.3. We say a state feed-
back controller which satisfies the conditions (S1) and (S2) in the strict 
H,, state feedback control problem an admissible controller. Then the 

following assumption is made. 

  [Assumption 7.7 ] For all admissible controller, the system 
given by (7.42) is locally reachable by w, and the assumption such as 
Assumption 7.6 holds for the system SZ,, for all admissible controllers. 

I 

  Then we obtain the following result. 

  [Theorem 7.10 ] Let -y be a given positive constant, and assume 
Assumption 7.7 for a positive constant '70 < -y which is sufficiently 
close to 7. Then for the system given by (7.42) and (7.43), the strict 
H,,9 state feedback control problem is solvable if and only if there exist 
positive definite functions 0(•) : R" —f R and (•) : Rn — R in a 
neighborhood of the origin which satisfy the following two conditions. 
(A) 

001 ao T ao 1 ao Ta~T 
axTf+ 4y2 axT glgl ax4 axT g2g2ax +h h+< 0(7.61) 

(B) II gT a 112= O(0) 
  In addition, when there exist 0 and 1,b which satisfy the conditions 

(A) and (B), one of admissible controllers is given by k(x) = — 2g2 

Proof: "If': Set k(x) = —OM.  Then it is shown that the conditions 
(S1) and (S2) hold, by using Theorem 7.7. "Only if": Suppose u = u* 
satisfies the condition (S1) and (S2). Then under Assumption 7.7, by 
Theorem 7.7,there exist positive definite functions¢* and O. satisfying      ack.

axT (f +g2u*)+4-y2 axTgigiax*+hTh+uT u*+1%* < 0(7.62) 
and II gi h 112= o(!). It follows from (7.62) that 

      a~* 1 00* T acb* 1  ao* T ao* -{- hTh +* < 0 
axTf +4-y2axTg1g1 ax 4 axT g2g2 ax
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Therefore,  cb* and i/4 satisfy the conditions (A) and (B). 1 
  Theorem 7.10 gives a necessary and sufficient condition in the case 

of the asymptotic stability, although Assumption 7.7 is required. This 

success is based on the characterization of the strict bounded real con-

dition by the Hamilton-Jacobi strict inequality . 

Remark 7.14 Assumption 7 .7 is needed to prove the necessity in The-

orem 7.10 rather than the sufficiency. If g1 = g2 and (f , g1) is reach-
able, then the assumption of reachability in Assumption 7.7 is satisfied. 

Theorem 7.10 can be extended to the case of the exponential stability 
and even the global exponential stability under appropriate assump-
tions. We show the exponential stability case only as follows. In As-
sumption 7.7, Assumption 7.6 is replaced by Assumption 7.6', which is 
called Assumption 7.7'. 

  [Theorem 7.11 ] Let 7 be a given positive constant, and assume 
Assumption 7. 7' for a positive constant y0 < -y which is sufficiently close 
to -y. Then for the system given by (7.42) and (7.43), the strict H 
state feedback control problem in the exponential stability case is solvable 
if and only if there exists a C2 positive definite function cb(•) : Rn --> R 
and a positive number e in a neighborhood of the origin which satisfy 

00 1 C7cb T O 1 DOT C70 T 
axTaaxaxT g2g2ax+hh+exx < 0(7.63) f+4ry2xT 9191 

 In addition, when there exist ¢ and 0 which satisfy the above condi-
tion, one of admissible controllers is given by k(x) = — l ya 1 

                                    2 ax

7.4.4 Strict Hco output feedback control problem 

  Consider 
x = f (x) + g1(x)w + g2(x)u(7 .64) 

   z = hi(x) +j12(x)u(7 .65) 
   y = h2(x) +j21(x)w(7 .66) 

where x E Rn, w E Rm1, u E Rm2 z E RP', y E RP'. f, hi, g2 
(i = 1, 2), j12, and j21 are sufficiently smooth functions, and f(o) = o, h
t(o) = o. It is assumed that (7.64) has a unique solution for any 

u E L2e and w E L2e. Assume [hr= [o I] and j
21[gT j] _ [o I] for all x E Rn.
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  Now we consider as a output feedback controller 

 e =  f + 9cWy 
u = k()(7 .67) 

where E R", and functions k, f c, and g, are sufficiently smooth and 
satisfy k(o) = o and f c(o) = o. Let SX71, define the operator which 
expresses the relation between w and z in the closed loop system given 

by (7.64) to (7.67). Then the following problem is considered.

  [Problem 7.2 ] (Strict Hco output feedback control prob-
lem) For the system given by (7.64) to (7.66), find an output feedback 
control given by (7.67) which satisfies the following conditions. 
(S1) II Szw II L2c< 7 
(S2) The system Szw is internally asymptotically stable. 

  We say an output feedback controller which satisfies the conditions 

(S1) and (S2) an admissible controller. Then the following assumption 
is made. 

  [Assumption 7.8 ] For all admissible controller, the system 
given by (7.64) to (7.66) is locally reachable by w, and the assump-
tion such as Assumption 7.6 holds for the system Sz,,,. In addition 
concerning a function ga,o(x, ~) in Assumption 7.6 for the closed loop 
system Szw, there exists a function p(.) : Rn satisfying 

:q30 (
x, p(x)) = 0, p(o) = o 

in a neighborhood of the origin [129]. 
  Then the following result is concerned with a necessity condition of 

the strict Hco control problem via output feedback. 

  [Theorem 7.12 ] Let y be a given positive constant, and suppose 
Assumption 7.8  for a positive constant 'yo < y which is sufficiently 
close to y. Then for the system given by (7.64) to (7.66), the strict 
H , control problem via output feedback is solvable only if the following 
conditions hold. _ 
(A) There exist positive definite functionsq(•) : Rn —> R and '(•) : 
Rn —+ R in a neighborhood of the origin that satisfy 

ao1 a~1T _T+hTh1+< 0(7.68) axif+4 ax'~`{7'9191929z}ax1 
11 9ia II2= OO(7.69)
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(B) There exist positive definite functions  q5() : Rn —> R and 21)(•) : 
Rn —> R in a neighborhood of the origin that satisfy 

      ax---`f +472ax---91g1a+ hihl - 72h2 h2 + < 0 (7.70) 

        _II 9ia112= O(1)(7.71) 
(C) A function¢ — is positive definite in a neighborhood of the origin. 

Proof: Using Theorem 7.8 and the same technique as [10] and [129], 
we can show that there exists a positive function g such that 

       axT(f+92c)+4172O9i9ix+hihi+<0 
                                       (7.72) 

I~ 9i - 112= O(')(7.73) 

hi h1 + = O(zG)(7.74) 
where c(x) _° c(p(x) for some function = p(x) in Assumption 7.8. 
Now let ~1 =° (1 — s)¢, where 0 < e < 1. Then, it will be shown that 
~1 satisfies three conditions (7.72) to (7.74). Let 

A      T(E) = xT(f + 92C) +1—472g1g1b-+hi hl + cTc      ax4ry2 ax 

Then noting that ax, (f + g2c) < 0, 
                   1aa     T(E)<(1—E)2a-----(f+92c)+(1—s)2472axT9191ax

+hihi + cT c 
= (1 — s)2T(0) + s(2 — E)(hi h1 +cTc) 

Noting that T(0) < — (1 — op where 0 < < 1, we get 
T(s) < —(1 — 6)2N — (1 — e)2(1 — ~) 

+e(2—e)(hrhi+cTc) 
In addition, from (7.74), there exists a positive constant k 

hihi+cTc<kE 
Therefore it follows from (7.30) to (7.31) that, for e > 0 
sufficiently close to 0, 

     T(E) < —1k 
where 71 = (1—s)2(1—€) '. This means that a31 satisfies

(7.75)

such

which

(7.76) 

t (7.77) 
ich is

     (7.78) 
    to (7.74)
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 where  //) is replaced by 01. In addition, it follows from (7.72) to (7.74) 
that ¢1 and 01 satisfy the condition (A). Concerning the condition (B), 
we can show that there exists a positive definite functions ¢ and 
satisfying the_condition (B) in a similar way to the above proof. 

  Now, 0 — ¢ > 0, which is shown in [129] . Then 
— >q—q>0 , x o _   Th

ese mean that the functions 01,,, andsatisfy the conditions 
(A), (B), and (C). 
Remark 7.15 Ball et al. and van der Schaft have derived the results 
on the necessity condition of the solvability of nonlinear H , control 
problems, which are concerned with the non-strict case, and also take no 
account of the internal stability of the closed loop systems. On the other 
hand, Theorem 7.12 is concerned with the strict case, and takes account 
of the internal stability. So Theorem 7.12 completely corresponds to the 
necessary condition obtained in the linear case [107], and is a natural 
extension of the linear case to the nonlinear setting. 

  Using Theorem 7.9, we can also obtain a necessary condition in 
the exponential stability case, in the same way as Theorem 7.12. In 
addition, in the case of exponential stability, we can show that the 
necessary condition is sufficient for the solvability of the strict H , 
control problem via output feedback, using van der Schaft's method. 

  [Theorem 7.13 ] Let -y be a given positive constant, and suppose 
Assumption 7.8 where Assumption 7.6 is replaced by Assumption 7.6', 
for a positive constant -yo < 'y which is sufficiently close to 'y. Then for 
the system given by (7.64) to (7.66), the strict Hco control problem via 
output feedback is solvable if and only if the following conditions hold. 
(A) There exist a C2 positive definite function c(•) : Rn —> R and a 
positive number E in a neighborhood of the origin that satisfy 

     axTf+4axT{2glgi                 'Yg2ga}ax+hlh1+=0 (7.79) 
where =6' ExT x + b3, and L'3 is an appropriate function vanishing at 
the origin together with all the second order derivatives. 
(B) There exist a C2 positive definite functionc(•) : R" R and E in 
a neighborhood of the origin that satisfy 

aaxcS  .f + 472 axT gig, ax+hlh1 — 72h2h2 + = 0 (7.80)
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where  °_  €xT  x ~b3, and 3 is an appropriate function vanishing at 
the origin together with all the second order derivatives. 

(C) A function q — ¢ is positive definite in a neighborhood of the origin 
and € — E is positive. _ 

  In addition, when there exist and¢ satisfying the above conditions, 
one of admissible controllers is given by_ 

     =f(~)+2s(~)9i(~)ax(~)-292( )92(~)ax(e) 
              27 

+L( ){h2( ) - y} 

u =—292()~~()(7.81) 
where L satisfies 

     2{axT(x) -a(x)}L(x) _ —2''2 (x) 
Proof: "Only if': It is obtained from Theorem 7.9. "If': It can be 

shown based on the linearization ([129, 57, 75]). Namely, we can show 
that the linearization of the closed loop system solves the strict Hcc 

control problem in almost the same way as the proof of the sufficiency 

of Theorem 1 in [107]. _Note also that L exists locally, because the 
Hessian matrix of — 0 is positive definite by the conditions (A) to 
(C). 
Remark 7.16 A sufficient condition for the solvability of the strict 
Heo control problem via output feedback has been given by van der 
Schaft in [129], based on the linearization. However, it has not been 
shown that the sufficient condition is necessary there. On the other 
hand, Theorem 7.13 shows the necessary and sufficient condition. This 
success is based on the approach via the Hamilton-Jacobi strict inequal-
ity, that is, Theorem 7.9

7.5 Conclusion

The main results obtained in this chapter are summarized as follows. 

(i) A new approach for nonlinear H,, control theory has been given, 
  which does not depend on the Linearization and the linear Hoc,
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control techniques.

 (ii) Some strict bounded real conditions of nonlinear systems have 

been characterized via two approaches: One is based on the 

Hamilton-Jacobi equation with a stabilizing solution and another 

is based on the Hamilton-Jacobi strict inequality. The former has 

an important role to analyze the internal stability of nonlinear 

systems, and the latter has an advantage that it can simply be 

applied to the strict  Hoc control problem. Each characterization 

of the strict bounded real condition is much significant, and the 

total use of both characterizations forms a more useful foundation 

to develop the strict Hc, control theory of nonlinear systems. The 

derived results completely include the strict bounded real lemma 

of linear systems, and are also stronger and applicable to more 

general nonlinear systems, compared to the former results.

(iii) The relations between internal stability of nonlinear systems and 

the stabilizing solution of the Hamilton-Jacobi equation have been 

clarified, which are peculiar to nonlinear systems.

(iv) Based on results of (ii), several sufficient 
tions for the solvability of the strict Hoc 

problem have been derived.

(and necessary) condi-
state feedback control

(v) Based on results of (ii), a necessary condition for the solvabil-
  ity of the strict Hco output feedback control problem has been 

   given, and also a necessary and sufficient condition in the case of 
   exponential stability has been given.

Appendix

Proof of Theorem 7.1: We prove (a)(i)—*(iii) and (ii)~(iii), (b)(iii)— 
(iv), and (c)(iv)—*(i) and (iv)— (ii), subsequently. 
(a): Obvious. 
(b): From (iii), one can show the global existence of 0a(x) given by 
(7.4) (See [84]). Simple calculation shows 

—0a(xi) = infuEL2(t,,t2)[—ca(x(t2)) .ft12 L(u, y)dr]
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 Vxl = x(ti)(7.A1) 
where L(u,y) _° 72uT u — yT y. If the time period [ti, t2] is small 
enough, under Assumption 7.2, there exists an optimal control input 

which minimizes the right hand side of (7.A1). Thus one obtains 
— a(X1) = minuEL2(tl,12)[—ca(x(t2)) + ft,2 L(u, y)dr] 

                 Vx1 = x(ti)(7.A2) 
Applying the Hamilton-Jacobi Theory (see e.g. [3]) to (7.A2) yields 

     min[L(u,y)—a
xT (f + 9u)] = 0(7.A3) 

which implies (7.9). 
(c) : At first, (iv)—>(i) is shown. Substituting (7.1), (7.2) and (7.9) to 
(7.6), one gets 

        72II?II2T-IIYII2T 
= 0(x(T)) — 0(x(to)) +72IIu272gTaxII2T (7.A4) 

by completion of the square. Since the third term of the right hand 

side of (7.A4) is non-negative, and 0(x) > 0(q5(xo) = 0, xo = o), one 
obtains 

72IIu112T-IIVIIrT>-0 Vu E L2e (7.A5) 
Now it is enough to show that the equality in (7.A5) holds only if 
u - o. Let u* be the input satisfying the equality, then it must be 

  = 272gTaxfrom (7.A4). However, u*(to)=o from (7.9). This 
implies x(t) - o, i.e., u*(t) - o. (vi)—* (ii) can be proven in the same 
way as the proof of (iv) -> (i).1 
Proof of Lemma 7.2: At first, (ii) --> (i). From (ii), there exists a 
positive constant r such that both eq.(7.22) and the internal stability 
of S hold for all x E Br. Since S is internally asymptotically stable, 

using Lemma 7.1, for a positive number ri(< r), there exists a positive 
number cl such that x E LZ holds for all u E L2e fl LZ. Thus, the 
condition (ii) holds in the presence of u E L2e fl LZ. Therefore, one 
can prove (i) in the same way as the proof of Theorem 7.1. 
Second, (i)—*(ii). One can prove this in the same way as the proof of 
Theorem 7.1. Note that the minimizing control input u(t) of (7.A3) is 
in Bel and that a function &a(x) exists only in a neighborhood of the 
origin. In order to cope with these conditions, one has only to consider 
the optimal control problem given by (7.A2) for some sufficiently small
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time period  [t1it2] and the initial state x1 that is sufficiently close to 
the origin. 

Proof of Lemma 7.3 : At first, it is shown that the system given 

by (7.23) is stable in the sense of Lyapunov. From the condition (ii), 
by the converse theorem of Lyapunov (see [40, 145, 133}), there exist a 
continuous differentiable and positive definite function W(•) : R, 
functions /Pi(-) E K(i = 1,2,3), and a positive constant r1 such that 

01(11x II) <_ 147(x) 02(11 x II) 

       1vlx-f =              OWf < —03(II x II) b'x E Br1 (7.A6) 
Also assume that the condition (i) holds for all x E Br2. Therefore, 
when r = min{ri, r2}, it is enough for us to show that, given any 
positive number E(< r), there exists a 6 > 0 such that, whenever II 
x0 11< 6, 

II x(t) 11< E dt > to (7.A7) 
  As a preparation, it is shown that the function W in (7.A6) can be 

chosen to satisfy 
au7 

(7.A8)

   

11 —       ax112= 

. When Wi Wi(i is a positive integer), one obtains 
01(11x II) < u'i(x)< i(IlxID 

      >%t?Ixf=iWi-1OWf < —iWi-1b3(II x II) 

                    Vx E Br1 

Now define ord(y) as 
     ord(y) max{sl 

11x11limoIIx IIS< co} 
Assume ord(b3(II x II)) = s1, where si(< oo) is 
Since W is continuously differentiable and W(x) 
ord(W) = 82, where 1 < s2 < oo. From this, 
ord(Wi-1i3) = s1 -}- s2(i — 1). Let 03 E K be 
than03 for each x in a neighborhood of the 
ord(f3)=Si + s2(i — 1) + 1. Since ord(ll a 112 
exists an i such that, for sufficiently large i, 11 ax 
Wi is redefined as W, W given by (7.A6) satisfies 
of generality. 

  Now define, given ei > 0,

(7.A9)

(7.A10)

positive 
x II), one gets 

ord(Wi) s2i, and 
ion to be less 

                                    origin and to satisfy 

(i — 1), there 
0s01 x II)). If 

                                            without loss

(7.A11) 

one gets 

s2i, and 

) be less
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 k(E1)  — max { 11 g II'I1 ax 112 } (7.Al2) E1<I1x1l<r 4'03(II x II) 
and a function 04 E K satisfying g5(x) < 04(Il x II) for all x E Br. 
Then consider a positive definite function V given by V(x) = P¢(x) + 
W(x). Differentiating V along the system given by (7.23), one gets, 
from (7.24) and (7.A6) 

   V < —k(II s II— II 9 1121kaxII )2 
+II9II2IlaxI12_ 3(1I x II) 0 

4k 

           for ei <II x I1< r(7.A13) 
Using this, one can show that, whenever II xo II< ei, II x(t) II< 
 i i(pk(ei)~4(Ei) + '2(Ei)) for all t(> to). Therefore, if there exists 

an Ei > 0 such that 

pk(e1)04(Ei) + 02(e1) < 0i(E)(7.A14) 
holds for any given positive number E(< r), it is concluded that (7.A7) 
holds whenever II xo Il< ei(= S). Since supo<El<r k(El) < oo by (7.A8), 
there exists an Ei > 0 satisfying (7.A14) for any positive number e(< r). 

  Next it is shown that x(t) -> o as t -* oo. The stability in the sense 
of Lyapunov implies x E Lc„, for all xo in a neighborhood of x = o. 

Then s E Lc°. Integrating the both side hands of (7.24), one gets 

g5(x(to)) — 0(x(t)) > pf oII s 112 dr (7.A15) 
From 0(x(t)) < oo for all t > to and (7.A15), s E L2. Further since 
x(t) is continuous and x E Loo, s is uniformly continuous with respect 
to t. From the uniform continuity of s and s E L2, S -> 0 as t — o0 

(See [30]). Therefore s E Lc, fl Co. If s is regarded as an input of the 
system given by (7.23) and Lemma 7.1 is applied, then x E L. fl Co.

  The stability in the sense of Lyapunov and the attractivity mean 

that the system given by (7.23) is asymptotically stable at x = o. 1 
Proof of Lemma 7.4: From Lemma 7.2, it is clear that ca(x) given 
by (7.14) satisfies (7.20) in a neighborhood of the origin. Further from 
II S IlL2c< y, there exists a positive number yo(< 7) such that II S II L2c< 
yo. Therefore one can show that, under Assumptions 7.3 and 7.4, there 
exists a positive semi-definite function gbro(x) given by (7.16) such that
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it satisfies 

   axT1        f42arTggTaxo+ hTh = 0(7.A16)              70 
in a neighborhood of the origin. 

  Now we show  0(x) _° ~ro(x) — :q3a(x) > 0 ina neighborhood of the 
origin. So suppose that there exist0a(x) and_¢,.o(x) for all x E B5 to 
satisfy each Hamilton-Jacobi equation. From 11 S I1L2c< 70, one gets 

     j:To('y2UTU—yTy)dT>0 
du E L2e n Lc„,o, VT > to, x(to) = o (7.A17) 

In (7.A17), consider a time t1 (to < t1 < T), and define u1 : [to, t1) --> 
Rm and u2 : [ti, oo) —> Rm. Then one obtains 

ftal ('y0 ui ui — yT y)dT + f T ('YO u2 u2 — yT y)dT > 0 
VT>ti, Vto<ti, x(to)=o 

Vu1 E L2(to, t1) n L~, Vu2 E L2e n Lc (7.A18) 
Adding fi'(-y2 — 'yo)u2 u2dT > 0 to the left side hand of (7.A18), one 
gets 

fto' ('yo ui ui — yTy)dr + fT ('y2u2 u2 — yT y)dT > 0 
VT>ti,Vto <t1i x(to)=o 

Vu1 E L2(to, t1) n Lcco, Vu2 E L2e n Lccx, (7.A19) 
Therefore it follows from (7.A19) that 5ro(xi) — &(x1) > 0 for all 
xi E B5, where xi A. x(t1)• 

  Now from (7.20) with cb _ cba and (7.A16), one gets 
     a1 ao Tao 1 1 1a~roT a~ro  

      axTf a — — 472 axT gg ax  4k -ye,  72) axT gg ax 
         Vx E B5(7.A20) 

where     ¢-g~ro—~aand f af+2y2 ggTa Now a — gT ax 
b = gT a , and c _ [aT bT )T . Then one gets axT fa = —cT Mc, where 

           (1~)IilffI1      M= o —Ilf470oryIIJLI —I!I(7.A21)         1L4'-     LI I—oo 

                                       7 , and M > 0 since -—7 0. Therefore let a be 474\min(M)(Amin(.) 
expresses a minimum singular value), so one obtains 

aO f
a< -a ~~1,g7 aaxa& II2dx E B5 (7.A22) 

  axT27-
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From (7.A22) and the internal stability of the system S, using Lemma 
7.3, one can show that the system given by  x = f a(x) is asymptotically 
stable at the origin. 

Proof of Lemma 7.5 : The necessity is obvious. Consider the suf- 

ficiency. Assume that the system S is small signalL2 stable. Then 

the following function exists in a neighborhood of the origin, from the 

reachability of the system. 

                         C a(x) _ — inf JT2T — yTy)dT (7.A23) 
                   uEL2enL,T>t  

where x(t) = x. Then since the system S is internally asymptotically 
stable, one can show (see [139]) 

(ba(x) = — inff~(k2uT u — yT y)dycba(x) (7.A24) 
                uEL2enL,t 

Then this implies k2 II u 112 — II Y II2> 0 for all u E L2 fl Leo.. 
Proof of Lemma 7.7 : From the condition (ii)', by the converse theo-
rem of Lyapunov (see [40, 145, 133]), there exist a smooth positive def-
inite function W(.) : Rn -* R, and positive constants ai(i = 1, 2, 3, 4) 
and r1 such that 

alIIxjj2 <_ W(x)<a2II x11 

       WI.           x=f8xTf<—a3IIxII2 

II aW II <_ a4 II x II Vx E Br, (7.A25) 
        Ox 

It is also assumed that the condition (i)' holds for all x E B,.9. Define 
r == min{ri, r2} andmaxxEB rII gIIThen consider a positive 
definite function V °= n0 + W, where k is selected as 

             z-2 k >4u(7.A26) 
             3 Differentiating V along the system given by (7.23) and completing the 

squares, one gets 

    V < —a3IIx1I2-- a4IIxIIIISII—kIISII2 
                       Za2          —(a3—4k4) II x 112 Vx E Br(7.A27) 

Therefore from (7.A26),there exists a b3 > 0 such that V < —b3 II x 112. 
Further noting thatax(o) = o and that q is C2, there exist bi > 0 
(i = 1, 2) such that, for all x E Br, b1 II x II2< V(x) < b2 II x 112. The
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existence of  b1 > 0(i = 1, 2, 3) implies that the system given by (7.23i 
is exponential stable at the origin. 

Proof of Theorem 7.4: (i)— (ii): Since Oa defined by (7.4) exists 
globally and satisfies (7.40) by Theorem 7.1, the condition (A) is satis-
fied. In order to prove that Oa satisfies the condition (B), it is enough 
to show that Lemmas 7.7 and 7.8 hold globally. A global version of 

Lemma 7.7 can be proven in the same way as Lemma 7.7, under the 

assumption that ax is globally Lipschitz and that sup II g(x) 11< oo. 
  A global version of Lemma 7.8 can also be proven by using a global 

Lipschitz condition of axand ax. It is trivial that the condition (C) 
is necessary. 

(ii)-~(i): The global and internal exponential stability of the system 
S can be easily shown by the condition (A) and the global version of 
Lemma 7.7. Now it is shown that II S 11L2< y. At first, it is shown 
that, since the system S is globally and internally exponentially stable, 

x E L2 fl fl Co holds for all u E L2 as follows. It is obvious that 

x E L2 holds for all u E L2, using the result of [44] from the global 
Lipschitz condition of f and sup II g(x) II< oo. Further one can easily 
show x E L2. Therefore from x E L2 and x E L2, x E L2 fl Lo. fl Co 

holds. Using the above fact and the condition (A), one gets 
72IIuII2—IIilI2=7211vIL `duEL2 (7.A28) 

where v is defined by (7.18). 
  Using the global and internal exponential stability of the system 

S' given by (7.19), the global Lipschitz condition of f andax,and 
sup II g(x) II< oo, it is obtained that the system St,' is L2 stable, that 
is, there exists k > 0 such that 

IIUII2<kIIV112 VvEL2 (7.A29) 
In the system S,,, from (7.A28), v E L2 holds for all u E L2, and in 
the system S1, from (7.A29), u E L2 holds for all v E L2. Then one 
gets 

IIu1I2<k1Iv112 Vu E L2(7.A30) 
Eqs. (7.A28) and (7.A30) imply II S II L2< 7. 
Proof of Lemma 7.10: Since the x = f (x) is asymptotically stable 
at x = o, by the converse theorem of Lyapunov, there exist a suffi-

ciently smooth and positive definite function W(.) : Rn -* R and C° 
functions ii(-) E K(i = 1,2,3) satisfying in a neighborhood of x = o 

01(II x II) <_ W(x) < b2(II x II) (7.A31)
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 WI  x=  f  axT  f<—'cG3(II x II)(7.A32) 
In addition, we can show that, without loss of generality, W satisfies 

~~ OW~~2= p(OWf)(7.A33)     axaxT 
  Now noting that —ax f is a positive definite function, there exists 
a sufficiently smooth positive definite function b(.) : R" —> R such that 
E6<—axf in a neighborhood of x = o, for a E satisfying 0 < E < 1. 
  Let k1 and k2 be positive constants satisfying on some local region 

U      OW II
axII2= k1 JUWTf 1 

k2 = xaX Amax (99T ) 

Then if k satisfies 

k>k1k2  1—e 

we can show that eq.(7.52) holds locally.I



 Chapter  8

ROBUST STABILIZATION 

OF NONLINEAR 

SYSTEMS BY Hoo STATE 

FEEDBACK

8.1 Introduction

  Among stabilization problems of control systems, it is important that 

parametric and/or unstructured uncertainty is taken into account. Al-
though there are many researches about robust stabilization of nonlin-

ear systems with parametric or structured uncertainty [52, 26, 122],there 
are few researches about robust stabilization of nonlinear systems with 

unstructured uncertainty. 

  Recently, several researchers have attempted to extend the H , con-

trol theory to the case of nonlinear systems, and the solutions of Hc,„ 

state or output feedback control problems are given as shown in the 

Introduction 1.3.1. In addition, some new results were given in the 

previous chapter 7. For linear systems, Hc„, control theory combined 
with the small gain theorem solves the robust stabilization problem for 

unstructured uncertainty directly. However, this is not the case for non-

linear systems. In order to solve the problem, we need to discuss not 

only the L7 gain property (with I/O stability) but also internal stabil-

153
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ity rigorously. So far several researchers discussed the relation between 

the L2 stability and the internal stability [138, 46, 47, 44, 134], but the 
result seems to be too restrictive to apply to the robust stabilization 

problem. 

  In this chapter, a robust stabilization problem by state feedback for 

nonlinear systems with unstructured uncertainty is considered. First, 

based on some results in chapter 7, the robust stability condition is 

given. The obtained condition completely corresponds to the well-
known robust stability condition for linear systems. Second, a suffi-

cient condition for the existence of a robust stabilizing controller is 

given, based on nonlinear Hoo state feedback control theory in chapter 
7. The obtained approach allows us to treat various types of stability, 

i.e. asymptotic, exponential, and global exponential stability (which 
includes linear system case), in a unified way in solving the robust sta-
bilization problem. In this sense, the result obtained here is a natural 

nonlinear extension of the robust stabilization of linear systems. In ad-

dition, some numerical examples show the effectiveness of the obtained 

nonlinear robust stabilizing controller. 

  The same notations are used as chapter 7.

8.2 Robust stabilization problem

  Consider the following nonlinear system whose input-output relation 

is given by an operator G : L2e L2e• 

x = f (x) + g(x)u 
          y = h(x) + j(x)u 

x(to) = x° 
where x E Rn is the state, u E Rm is the input, y E Rm is the output, 

and to is the initial time. f(.) : Rn -f Rn, g(.) : Rn Rn"m h(.) : 
Rn — RP, and j(.) : Rn --> RP' are sufficiently smooth functions 
with f (o) = o and h(o) = o. 
  Then three kinds of internal stability are defined as follows. 

  [Definition 8.1 ] The system G is said to be internally asymp-
totically, internally exponentially, and internally globally exponentially 

stable, if the origin (x = o) of the system G with u - o, namely
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 x =  f  (x), is an asymptotically, exponentially, and globally exponen-
tially stable equilibrium, respectively. 

  We consider input-output stability in the case that the input belongs 

to L2 n Lc. as follows. 

  [Definition 8.2 ] The system G is said to be small signal L2 
stable if there exist constants k and c such that II y II2C k 11 u 112, 
for x° = o and all u E L2 n Lccx, /134.1. Furthermore the system G is 
said to be strongly small signal L2 stable if there exist a positive semi-
definite function '(•) : Rn —^ R and a positive constant k satisfying, 
in a neighborhood of the origin, 

00 1TC7`~TT 2T11T0~IT 
       axTf+(29x+jh) (kI — ij)(29x+jh) 

-}-hT h < 0 

                               I 

  Note that if the system is strongly small signal L2 stable, then it is 
small signal L2 stable. Under some assumptions such as the smoothness 
of an available storage function, the strong small signal L2 stability is 
equivalent to the small signal L2 stability [46]. The strong small signal 
L2 stability also implies that the system is dissipative with a C1 storage 

function when a supply rate is k2uTu — yT y as defined in [18]. 
  We also define the L2 gain for the system G as follows. 

  [Definition 8.3 ] The system G is said to have a small signal 
L2 gain, if there exists a positive constant c such that II G I l L2c is finite 
subject to x° = o, where 

II Gil L2c= supII y 112  
uELZ/{o}nL` II u 112 

If c = oo, II G 4200 is denoted by II G 42, which is L2-induced norm. 
I 

  Now let us state a robust stabilization problem. Consider the state 
feedback system as shown in Fig.8.1. Let P be the nominal plant 
and A be the uncertain plant, which have the following state space 
realizations.

/     P 1 xi = fi(xi)+gi(xi)u             y = h1(xl) 
         xi(to) = x°
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P

Figure 8.1

 v=hl(x1)I-i--

: Closed loop system

x2 = f 2(x2)+g2(x2)z 
             w = h2(x2) 

x2(to) = 4 
where x1 E R"' and x2 E Fr are the state vector, u E Rml and z E 

Rm' are the input, y E Rm2 and w E Rm' is the output, respectively. 

Functions Ii, gi, and hi are sufficiently smooth with f i(o) = o, and 
hi(o) = o (i = 1, 2). It is assumed that 11, gi, and h1 are known, but 
12, 92, and h2 are unknown. A function k(.) : Rh' Rini in Fig.8.1 
expresses a state feedback controller. 

  Then the following assumptions are made. 

  [Assumption 8.1] Concerning the nominal plant P, P is locally 
reachable with small input. Namely, given any c > 0, there exists an 

r(c) > 0 satisfying the following: for any xi E Br and t1, there exist 
finite time t0(< t1) and a control input u E L2(to,t1) n Le. such that 
the state is driven from xi(to) = o to xi(t1) = xl. 

  [Assumption 8.2 ] Concerning to the uncertain plant A, A 
is locally reachable with small input. Furthermore, the uncertain plant 

  is internally asymptotically (exponentially, or globally exponentially) 
stable at the origin, and for a positive constant -y, there is a positive 
constant c such that II A II L2c< 17. 

                        Let the real plant which is composed of P and A be P, and let the 

set of the systems which are composed of P and the set of the plant 

A with Assumption 8.2 be A. Then the closed loop system in Fig.8.1
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z

A

 S

 w

Figure 8.2: Equivalent system

is said to be robustly asymptotically (exponentially, or globally expo-
nentially) stable, if the closed loop system is internally asymptotically 
(exponentially, or globally exponentially) stable for all the systems P 
which belong to the set A. Then we consider the following problem. 

  [Problem 8.1 ] (Robust stabilization problem) Find a state 
feedback controller which robustly asymptotically (exponentially, or glob-
ally exponentially) stabilizes the closed loop system in Fig.8.1.

8.3 Robust stabilization

  In the first part of this section, a sufficient condition for the closed 

loop system in Fig.8.1 to be robustly asymptotically stable is derived. 

Second, a sufficient condition for the existence of the robust asymp-

totic stabilizing controller, that is, the robust stabilizability condition 

is given. Finally, we give some results about the robust exponential 

stability case.

8.3.1 Robust asymptotic stability condition 

  The system in Fig.8.2 is equivalent to the system in Fig.8.1. S is an 
operator which expresses the input-output relation from w to z, and 
has the following state space realization.
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S x1 = f1(xi) — 91(xi)k(x1) + 91(xi)w { z = —k(xi) 
  We define the following functions for the system S and A, respec-

tively. 

     Cbl(xl(t))— inf J(2wTw  — zTz)dr 
wELse(t)nLc  

     52(x2(t)) g— inf f(-zTz   — wTw)dr 
                     zEL0e(t)nL~y 

where y, -yi(< 'y), c1, and c are positive constants. Then the following 
assumptions are made. 

  [Assumption 8.3 ] When ~1(x1) exists in a neighborhood of the 
origin, it is C1. 

  [Assumption 8.4 ] When i152(x2) exists in a neighborhood of the 
origin, it is C'. 

  The following result is obtained. 

  [Theorem 8.1 ] For positive constants y and c, the nominal 
plant P and the uncertain plant A are assumed to satisfy Assumptions 
8.1 to 8.4 (A is internally asymptotically stable). Then the closed loop 
system in Fig.8.2 is robustly asymptotically stable, if the following two 
conditions hold simultaneously. 

(i) The system S is internally asymptotically stable. 

(ii) There exists a positive constant c1 such that II S IIL2c1 < y. 

I 

Proof: The proof is based on Lemma 7.3 in chapter 7: we show that 
the conditions (i) and (ii) in 7.3 hold for the closed loop system which 
consists of S and 4 in Fig.8.2. 

  From II S II L2ci < y, there exists a positive constant 'yi (< y) such 
that II S IIL2c1 C yl . Under Assumptions 8.1 and 8.2, II S II L2c1 < 71 
and II 4 II L2c< 7 imply that there exist positive semi-definite functions 
i1(x1) and ~2(x2) with cf)1(o) = 0 and ii52(o) = 0 in a neighborhood 
of the origin, respectively [84, 46]. In addition, under Assumptions 8.3 
and 8.4, 11 S IIL2c, < 71 and II 4 IIL2c< 1,7 imply that the following
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relations hold locally. 

     (xl)at   A
0xT(f1—glk+glw)<y12wTw—zTz 

     q32(x2)=ax + g2z) < —1zTz_.wTw 

Then we define a function~_(x) by 

     0(x) =+ 
722~1(xl) ~2(x2) 

where x = [x1T , x2T1T E and 72 is a positive constant sai 
7' < 72 < 7. Differentiatingalong the closed -m 
consists of S and A, we obtains, from (8.1) and (8.2) 

     ~(x)ry 2~1(xl)+~2(x2) 

            1 

           <2(y12wTw-zTz)+-=2-wTw 
              y2 

    112 _—(ry
22—y2)zTz — (1 —72 

Therefore, noting that— > 0 and 1—2> 0,thefollowingr 
        72 7 72 

holds in a neighborhood of the origin.

(8.1)

(8.2)

                  ERni+n2and72isapositiveconstantsatisfying 

tiatingalongtheclosedloonwhich

                                    the following elation

(Rx) C —P(kT (xl)k(xl) + hi (x2)h2(x2)) 
where 

     A1 1 7121      P = mill[y22—72,1 —722 
Let f , g, and s in Lemma 7.3 in chapter 7 be 0fl—gl0[gi9 2J, sA[h21f-2g— 
Then from (8.3), the condition (i) in Lemma 7.3 hold for t 
loop system with S and A. Furthermore, 

internal asymptotic stability of . imply the condition (ii) 
7.3. Consequently, by Lemma 7.3, the closed loop system wi 

A is internally asymptotically stable. 

Remark 8.1 Note that Theorem 8.1 cannot be derived dire 

the small gain theorem, since the small gain theorem is conce 

the input-output stability, not the internal stability. Willems 

Hill and Moylan [47j showed that the

(8.3)
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is internally asymptotically stable, if both systems S and  4 have a 
kind of observable property and the L2 gain of the system composed 
of S and 4 is less than 1. However this result cannot be applied to 
the robust stability condition considered here, because, in [138, 47], the 
assumption of the observability for the system is crucial to prove the 
internal stability of the closed loop system. On the other hand, Theorem 
8.1 is an extension of the previous results such as Corollary 2 in [47] 
to the case that the observability is not assumed. Theorem 8.1 shows 
that if both systems S and are internally asymptotically stable and 

 S 42,11 A I1L2c< 1, then the closed loop system in Fig.8.2 is internally 
asymptotically stable.1 

  In the proof of Theorem 8.1, the idea of the derivation of (8.3) is 
the same as Corollary 2 in [47]. Hill and Moylan showed in Corollary 
2 of 147] that, using the equation corresponding to (8.3) and a kind of 
observability, the storage function is positive definite , and then the La 
Salle invariance principle proves the asymptotic stability of the closed 

loop system. However, we cannot use the principle in Theorem 8 .1 
where the observability is not assumed , because the storage function is 
not necessarily positive definite (When the storage function is positive 
semi-definite, not positive definite, the La Salle invariance principle im -

plies that the system is attractive, not asymptotically stable.). Thus we 
need the different approach, which is Lemma 7 .3 in chapter 7. Lemma 
7.3 has an important role in our paper . 

  Although Theorem 8.1 is concerned with the sufficiency of robust 

stability, it naturally corresponds to the well-known robust stability 

condition for linear systems .

8.3.2 Robust asymptotic stabilizability condition 

  Consider the following system: 

     S f xl = .f i(xi) + 2(y — 1)glgf-1+gv 
                                    =1T 
                                               - w2

72g1 ax,'v 
where O(•) : Rn' —> R is an appropriate real function. Then we get the 
following result, based on Theorem 8 .1. 

  [Theorem 8.2 ] For positive constants y and c, the uncertain 
plant 4 is assumed to satisfy Assumptions 8.2 and 8. (4 is inter-
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nally asymptotically stable). Then the closed loop system in  Fig.8.1 is 
robustly asymptotically stabilizable by state feedback y = k(xi) E R" t' , if 

there exist a C1 positive semi-definite function 00 : Rni —* R and 
a vector-valued function l(.) : Rni -* R' a is a positive integer) in a 
neighborhood of the origin satisfying the following two conditions simul-
taneously. 
(A) 

---- fi+4(y2— 1)agigia xl+1T1=0 
(B) The system S is internally asymptotically stable and strongly 
small signal L2 stable. 

Then a robust stabilizing controller is given by k(xi) = 29i----xl . 
Proof: Consider k =2gia----~,as a state feedback controller. First, we 
show that the system S is internally asymptotically stable, by using 

Lemma 7.3 in chapter 7. Let 1, g, and s in Lemma 7.3 be f =2 
 _1TA+1 2glgiaand srespectively.,ggi,—12gia, f 129191axl2ry127 i 

Then the condition (A) implies (7.24), namely, the condition (i) in 
Lemma 7.3. In addition, the internalasymptoticstability of the system 

S implies the asymptotic stability of xi = f (xi), namely, the condition 
(ii) in Lemma 7.3. Therefore, the system S is internally asymptotically 
stable. 

  Next, it is shown that the relation which corresponds to (8.1) holds 
under the condition (A) and the L2 stability of S. The condition (A) 
implies that the following relation holds locally. 

      • A 
a-----(f1-gik+giw)<y2wTw—zTz-y2vTv (8.4)         xT 

where v = w — 272gia~l•Furthermore, the strong small signal L2 
stability of S means, by Definition 8.2, that there exists a positive 

semi-definite function 1(.) : Rn' -* R and a positive constant k(> 1) 
satisfying, in a neighborhood of the origin, 

                11^Ta~ 
        axi { f1+2(-— 1)919iaxi} 

         1( ao 1 00TT( —+a1 a~) +
4(k2 — 1)axl +72axi)9i9iaxi                                             ax, 

      ao T a~<0(8 .5) +
474 axi9i9iax,
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From (8.5), we get 
 A  

axT  1 —91k+91w) < k2vTv — wTw(8.6) 
0 Now consider 0 _ q + ,0. Then by (8.4) and (8.6), there exists a 

positive constant -y1(< 7) such that 
       A 

8x(f1-91k+91w)<ywTw—zTZ(8.7) 
              1 Eq.(8.7) corresponds to (8.1) in the proof of Theorem 8.1. 

  Under the above preparation, we can prove that the closed loop 

system which is composed of S and z is internally asymptotically 

stable, in a similar way to the part after (8.2) in the proof of Theorem 
8.1. This completes the proof.1 

Remark 8.2 Theorem 8.2 shows that the robust stabilizability condi-
tion is given in terms of the solvability of nonlinear Ho° state feedback 
control, in the same way as linear system case. Note that a solution sat-
isfying the conditions (A) and (B) corresponds to a stabilizing solution 
of the Riccati equation appeared in linear system case. 1 

Remark 8.3 Note that the assumptions with respect to the system S 
(or P), namely Assumptions 8.1 and 8.3, are not made in Theorem 
8.2. Thus, we do not need to check Assumptions 8.1 and 8.3. 1 

Remark 8.4 Theorem 8.2, as you can see from the proof and Lemma 
7.3, shows if there exist positive semi-definite functions and V on 
Br satisfying the conditions (A) and (B), and there exists a Lyapunov 
function on Br which ensures the internal asymptotic stability of the 
system S, then there exists a Lyapunov function on Br which guar-
antees the internal asymptotic stability of the closed loop system with 
k(xi) = 2gi ax Thus using the Lyapunov function on Br, we can 
estimate the stability region of the closed loop system. 1 

Remark 8.5 If we consider the case of II 4 IIL2c< 7, not II 4 II L2c<— 7 
in Theorem 8.1, then the robust stabilizability condition is the condition 

(A) and the internal asymptotic stability ofS. As a result, it is not 
required that the systemS is strongly small signal L2 stable, because 

we have only to show that the system S satisfies II S II L2c, < y, not 
IIS I1L2c,< 7.1
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8.3.3 Robust exponential stabilization 

  In this section, we discuss a robust exponential stabilization prob-
lem. In Assumptions 8.3 and 8.4,  Cl is replaced by C2 with respect 
to the smoothness of Oi (i = 1, 2), and these are called Assumptions 
8.3' and 8.4', respectively. Then concerning to the robust exponential 

stability condition, the following result corresponding to Theorem 8.1 

is obtained. 

  [Theorem 8.3 ] For positive constants 7 and c, the nominal 
plant P and the uncertain plant 4 are assumed to satisfy Assumptions 
8.1, 8.2, 8.3', and 8.4' (4 is internally exponentially stable). Then 
the closed loop system in Fig.8.2 is robustly exponentially stable, if the 
following two conditions hold simultaneously. 

(1) The system S is internally exponentially stable. 

(ii) There exists a positive constant c1 such that S ~~L2c1 < 7. 

1 

Proof: We can prove Theorem 8.3, by using Lemma 7.7 in chapter 7 
in a similar way to the proof of Theorem 8.1. 

  In addition, we get a result corresponding to Theorem 8.2. 

  [Theorem 8.4 ] For positive constants -y and c, the uncertain 
plant 4 is assumed to satisfy Assumptions 8.2 and 8.4' (4 is inter-
nally exponentially stable). Then the closed loop system in Fig.8.1 is 
robustly exponentially stabilizable by state feedback yc = k(xi) E R1, 
if there exist a C2 positive semi-definite function O(•) : R'~1 — R and 
a vector-valued function l(.) : R'll -* R1 (1 is a positive integer) in a 
neighborhood of the origin satisfying the following two conditions simul-
taneously. 
(A) 

acb 11190~T 
axi.f1 + 4('y2—1)axiglglax, 

+ll=o 

(B) The system S is internally exponentially stable. 
Then a robust stabilizingcontroller isgivenbyk(xi) T a~               g9y() =291 axl . 
Proof: We prove Theorem 8.4 in a similar way to the proof of Theorem 

8.2. Consider k(xi) = gi d ~~ as a state feedback controller. First by
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Lemma 7.7, the internal exponential stability of the system S follows 

from the conditions (A) and (B). Second, the condition (A) yields (8.4). 
Third, we show the relation which corresponds to (8.6). From the 
condition (B), by the Converse Theorem of Lyapunov, there exists a 
positive definite function V(.) : Rn' R and positive constants ai(i = 
1, 2) in a neighborhood of the origin such that 

     aT{ f i +2(-- 1)gigla0l}<—al 11 xi112(8.8) 
                 IIaVII<a2 II xi II(8.9) 

axl 
Differentiating V along the system S, we get, from (8.8) and (8.9) 

   aV) V
axi (fi -gik+giw 

< —ai 11 xi 112 +a2a311 xi 1111 v 11 (8.10) 
where a3 is an appropriate positive constant, and v = w — 2yz9i e 
By simple computation, (8.10) yields 

   aV)       V
axT(f1 -g1k+giw 

                 1 

      < a411V112—a511W112 (8.11) 
where ai(i = 4, 5) are appropriate positive constants and satisfy a4 > 
a5. Eq.(8.11) corresponds to (8.6).. From (8.4) and (8.11), we get the 
relation which corresponds to (8.7). 
  Under the above preparation, we can prove that the closed loop 
system with S and A is internally exponentially stable, in a similar 
way to the proof of Theorem 8.2.1 

Remark 8.6 While the case of asymptotic stabilization in Theorem 8.2 
requires some kind of L2 stability for the system S, that is, the latter 
part of the condition (B), the case of exponential stabilization explicitly 
does not. This is because the internal exponential stability of S means 
the strong small signal L2 stability of S.1 

Remark 8.7 Theorems 8.1 to 8.4 are concerned with the local stability. 
Global exponential stability case can be treated, under some assumptions 
such as global Lipschitz condition, in a similar way to the exponential 
stability case. These global results to correspond to Theorems 8.3 and 
8.4 completely include the well-known results of the linear system case. 
Therefore, our results are natural nonlinear extensions of the linear
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 8..4 Numerical examples 

  In this section, two numerical examples concerning to Theorems 8.2 

and 8.4 are given. In addition, we discuss the feature of the obtained 

nonlinear controllers, comparing to linear controllers.

8.4.1 Example 1 : Robust asymptotic stabiliza-

      tion 

  In Fig.8.1, consider the following system as a nominal plant P. 

P x1 = 2x13+u 
y1 = h(xi) 

where h(xi) is an arbitrary function. Concerning to an uncertain plant 
A, it is assumed that II A II L2c< *( This means ry = ). Then 
we find a state feedback controller which robustly stabilizes the closed 
loop system in Fig.8.1, by using Theorem 8.2. When the function 0, 
and 1 are given as 

4(x1) = 4x1 , 1(x1) = 0, 
then the condition (A) is satisfied. Since the system S is given as 

   S, x1 = v          w = 4x1+v 

the system S is internally asymptotically stable. In addition, a positive 

semi-definite function b(x1) and a positive constant k satisfying (8.5) 
are given as 0(x1) = 4x1 and k = 17. Thus the system S is strongly 
small signal L2 stable. 

  Therefore, this closed loop system can be robustly asymptotically 

stabilized by 

k(xi) =29ia= 8x1 
if the uncertain plant is internally stable and satisfies Assumptions 8.2 

and 8.4.



166Chapter 8 Robust stabilization by  H,0 state feedback 

8.4.2 Example 2 : Robust exponential stabiliza-

      tion 

  In Fig.8.1, consider the following system as a nominal plant P. 
xpi = 4xp2 + 16xp23 

      P xi,' 2 = --1x0+4xp2 - 16xp13 + 3xp23 + u 
yi = h(xi) 

where h is an arbitrary function, and xl = [xp1i xp2]T . Concerning to an 
uncertain plant 4, it is assumed that II 4 II L2c< 2 ( This means ry = 2 
). Then we find a state feedback controller which robustly stabilizes 
the closed loop system in Fig.8.1, by using Theorem 8.4. 

  When the functions 0 and l are given as 
0(xi) = gxp12 + 2xp22 + 4(xp14 + xp24) 
l(xi) = 0 

then the condition (A) is satisfied. Since the system S is given as 
xi,' l = 4xp2 + 16xp23 

S xp2 = —4xp1 — 4xp2 — 16xp13 — 3xp23 + v 
          w =..xp2 + 2xp23 + v 

the condition (B) is satisfied. 
  Therefore, this closed loop system can be robustly exponentially 

stabilized by 

    k(xl)=2gi= 2xp2 + 8xp23(8.12) 
if the uncertain plant is internally exponentially stable and satisfies 

Assumptions 8.2 and 8.4'. 

  Now we compare the nonlinear controller given by (8.12) to a linear 
controller obtained by the robust stabilization of the linearization of 

the nonlinear plant P. Since the linearization of P is given as 

     40 x1={04 4'Xi+ {1.JU 
we get k(xi) = 2xp2 as a robust stabilizing controller. Then as an 
uncertain plant which has II -A II L2= 2, let us consider, for simplicity, 
the following linear system. 

    4x2 = 1x2+Z 
W -sx2 

It can be easily checked that Assumptions 8.2 and 8.4' are satisfied. 

 Fig.8.3 show the initial state response when xi(0) = [0, 0.65]T, x2(0)



167

 3

 T0r 

(a) 2,1

H

01

0.6 

01 

03

-03 

.0.4

AI

   Moe 

(b)  xr7

Figure 8.3: Initial state response: (a) x,l, (b) xp2i Solid lines express 
the nonlinear case, while dashed lines express the linear case
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Figure 8.4 : Stability reg ion in linear controller case
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0. We can see that the state response in the nonlinear controller case 

is better than that in the linear controller case. In addition, we nu-

merically estimated the stability region in each case. Fig.8.4 shows the 

stability region in the linear controller case. The stability region may 

not be large. In the case of the nonlinear controller, on the other hand, 

the stability region is much larger than that of the linear case (it may 
be everywhere, although we cannot show it analytically).

8.5 Conclusion

  The main results obtained in this chapter are summarized as follows. 

 (i) A robust stability condition has been given for nonlinear systems 
    with unstructured uncertainty. Furthermore, a robust stabiliz-

    ability condition has been derived in terms of the solvability of 

    some partial differential equation and a robust stabilizing con-

    troller has been given, which is based on the nonlinear H,, state 

    feedback control theory developed in section 7.3. 

(ii) The obtained approach in the robust stabilization problem with 
    unstructured uncertainty allows us to treat various types of sta-

    bility, i.e. asymptotic stability, exponential stability, and global 
    exponential stability, in a unified way in solving the robust stabi-
    lization problem of nonlinear systems. 

(iii) Some numerical examples show the validity of the proposed non-
    linear controller, compared to a robust stabilizing linear controller 

    for the linearization of the original nonlinear system.



 Chapter  9

GLOBAL ROBUST 

STABILIZATION OF 

NONLINEAR CASCADED 

SYSTEM

9.1 Introduction

  Global stabilization of nonlinear systems is one of fundamental prob-

lems, but it is a very difficult problem. Recently, such a problem has 

been attacked as a stabilization problem for a nonlinear system which 

has the so-called "normal form" [15, 79, 17, 18, 67, 123, 105] or a class 
of nonlinear cascaded systems [117, 116, 120, 115, 111, 91, 121, 110, 19]. 
Needless to say, the important next step is to discuss the stabilization of 

the nonlinear cascaded system in the presence of uncertainty. This will 

be the first step to the robust stabilization of general nonlinear systems. 

However, the above approach cannot be straightforwardly extended to 

robust setting. Although there are a few researches [109, 108, 14, 34] 
about robust control of uncertain systems with a normal form, these 

are concerned with robust output tracking control problem, not global 

stabilization one. 

  From a quite different viewpoint, various stabilization techniques 

have been developed for nonlinear systems in the presence of uncer-

169
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tainty. Most of them treat the case where the uncertainty satisfies 

the so-called matching condition [37, 28, 2], though some of them 
tackled the mismatched uncertainty case such as the cone-bounded 

[89, 140, 25, 106] or singular perturbation case [104, 72, 26] which has 
local nature essentially. However, in order to discuss the  robust stabi-

lization of nonlinear cascaded systems, the matching condition is too 

restrictive. In addition, it is difficult to apply the latter methods to the 

global stabilization problem. 

  The purpose of this chapter is to give a sufficient condition for the 

global robust stabilization, via state feedback, of a class of nonlinear 
cascaded systems in the presence of uncertainty which does not neces-

sarily satisfy the so-called matching condition. In addition, considering 

a specified class of the systems, a more practical condition for global ro-

bust stabilization is derived. The obtained results extend a condition of 

global stabilization for nonlinear cascade systems without uncertainty, 
which has been derived recently by [15, 18, 19], in the sense that the 
system uncertainty is taken into consideration. Further the obtained 

results show that, under a certain condition, a class of systems with the 

uncertainty that is acted on by input through a strictly positive real 

linear system (of course this uncertainty does not satisfy the matching 
condition and is not cone bounded) is globally stabilizable. 
  The following notations are used: The Euclidean norm and its in-

duced norm are denoted by II • II. A function f (x) is referred to as C°° 
if its partial derivatives of any order with respect to x E Rn exist and 

are continuous. Jacobian matrix of f (x), , is denoted by Dx f

9.2 Problem statement

  Consider a nonlinear cascaded system S1 given by 

      = f (x, ) + O f (x, , p)(9 .1) 
  rl = + Bu(9 .2) 
  = Crl(9 .3) 

where x E Rn and rj E Rm are the state of Si, u E R1 is the input, 

and E R1 is the output of the subsystem given by (9.2) and (9.3). 
p E Rq expresses a vector composed of uncertain parameters. P.) :
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 Rn x RI —+ TO and A f (•) • Rn x R1 x Rq —p Rn represent the nominal 
and perturbed part of the system, respectively. The system given by 

(9.1) is referred to as an upper system and the system given by (9.2) 
and (9.3) as a lower system. The following assumptions are made. 

  [Assumption 9.1 ] A p belongs to a known compact set given 
by 12.I 

  [Assumption 9.2 ] Functions f(.) and A f (•) are known, and 
C° in x and for all p E 11. A f (•) is continuous in p. I 

  [Assumption 9.3 ] Constant matrices A, B and C are known, 
and rankB = 1. For the lower system given by (9.2) and (9.3), there are 
positive definite matrices P and Q that satisfy the following condition. 

PA + AT P = —Q(9.4) 
BT P = C(9.5) 

I 
  The system 51 has almost the same structure as considered in the 

former researches [15, 18, 19]. However, it includes parametric uncer-
tainty which does not satisfy the matching condition. 

Remark 9.1 In the case that (A, B, C) is minimal, the condition 
given by (9.4) and (9.5) of Assumption 9.3 is equivalent to a strictly 
positive real condition [88]. One can weaken Assumption 9.3 by con-
sidering input transformation, such as [67]. 

  The following term is defined in order to state the stabilization prob-

lem. 

  [Definition 9.1 ] A function g(-): Rn x Rq -* Rn and a compact 
set Si C Rq are assumed to be given. Then consider a nonlinear system 

x = g(x,p) with a parametric uncertainty p E Si. Let the initial 
state x(to) be xo, where to E R is the initial time. Suppose also that 
the system has an unique solution. Then if the system has a globally 
asymptotically stable equilibrium at x = xe for all p E Si and all 
xo E Rn, the system is said to be globally robustly asymptotically stable 
(or, simply, GRA stable) at x = xe•I 

  Then the following problem is considered here. 

  [Problem 9.1 ] For the nonlinear cascaded system S1 which sat-
isfies Assumptions 9.1 to 9.3, find a sufficient condition for GRA stabi-
lization at an equilibrium (x,77) = (xe, r1e) via appropriate continuous 
state feedback.
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  Now define terms about stability to be required in the following 

sections. 

  [Definition 9.2 ] Consider the same system as in Definition 1. 
For some positive constants a and b, and  xe E Rn, if 

      x(t) — xe II < a II x0 — xe II e-b(t-t0) 
                  Vp E 12, b'xo E R, `dt(> to) 

then the system is said to be globally robustly exponentially stable (or, 
simply, GRE stable) at x = xe. 

  [Definition 9.3 ] Consider the same system as in Definition 9.1. 
If there exist certain positive constants ai (i = 1, 2, 3) and a real-valued 
function V(x,p) that satisfies the following condition for all x E Rn 
and all p E ,fl, and that is C°° in x and continuous in p, then we 

say the system is globally robustly exponentially stable at x = xe by 

Lyapunov Stability Theorem (or LGRE stable). 
a1 II x 112< V(x,P) < a2 x 112(9.6) 

DxV{9(x,P)} < —a3 x II2(9.7) 
I 

Remark 9.2 Note that LGRE stability is sufficient for GRE stability, 
not necessary. Furthermore for the system without uncertainty, we de-
fine the globally exponential stability by Lyapunov Stability Theorem (or 
LGE stability) in a similar way.1

9.3 Sufficient condition for robust stabi-

lization

  At first, we derive a robust stabilization condition for systems of 

the form S1 which satisfy additional requirements . Next, based on the 

obtained robust stabilization condition, we give a robust stabilization 

condition for the general system S1.

9.3.1 Special case of the cascaded system 

 Consider the system that satisfies (A, B, C) = (o, I, I) in the system 
Si, that is, 

x = .f(x, )+z.f(x,,P)(9.8)
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 = u(9 .9) 
where  I is a unit matrix. This system is referred to as S2 . Then the 
following result is obtained. 

  [Theorem 9.1 ] Assume that any  xe and Se are given. If, for the 
nonlinear system (9.8) which satisfies Assumptions 9.1 and 9.1, there 
exists a C°° function k(.) : R" -3 R1 such that 

x = f (x, k(x)) + of (x, k(x), p)(9.10) 
is LGRE stable at x = xe, and k(xe) = e, then the nonlinear sys-
tem S2 which satisfies Assumptions 9.1 and 9.2 is GRA stabilizable at 
(x, ) = (xe, e) via an appropriate continuous state feedback law u = 
T(x,). In addition, if k(•) satisfies that k(x)-k(xe) 11< k x-xe ~1 
for somepositive constant k, then the system S2 is GRE stabilizable at 
(x, ) =(xe,e)• 

Proof: Suppose, without loss of generality, that xe = o and e = O. 

If we transform the coordinates in the state space of the system S2 by 

global diffeomorphism 

 ~s~(9.11) 
where s = - k(x), then one gets 

    S~{= f(x,)+Af(x, ,p)       2s = u-D xk{f(x, )+Af(x, ,p)} 
If the system S2 is GRE stabilizable at (x, s) = (o, o) via continuous 
state feedback, then the system S2 is GRA stabilizable at (x, ) = 
(o, o). So we show that there exist a feedback law u = 7-(x,), a real 
function W(.) : Rn+l x R9 -p R and positive constants a, (i = 1, 2, 3) 
that satisfy the following condition for all p E S2. 

al II z 112< LV(z, p) < a2 II z 112(9.12) 
W(z)p)1 s2' 5- -a3 11 z 112(9.13) 

where z=°[xT 8T]Tand W(z, p)ls, expresses the time derivative of 
W (z, p) along the solution of S2 with u = T(x, ). Furthermore by 
(9.11), (9.12) and (9.13), the additional condition II k(x) 11< k x 
implies that the system S2 is GRE stabilizable at (x,) = (o, o). 

  Since the system (9.10) is LGRE stabilizable, there exist a real-
valued function V(x,p), which is C°° in x and continuous in p, and
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positive constants  /i (i = 1, 2, 3) such that, for all p E Si and x E Rn, 
01 II x II2 < V (x, P) � 02 II x 112 (9.14) 

DxV{ f (x, k(x)) + Af (x, k(x), P)} < —03 II x 112 (9.15) 
From Assumption 9.2, there exist OFi(x, , p) (i = 1, 2, 3) and F(x, ~) 
such that 

Af (x, , p) = —f(0,0)+  OF1x + AF2s (9.16) 
Af (x, , P) = Af (x, k(x), P) + AF3s (9.17) 

f (x, ) = f (x, k(x)) + Fs(9.18) 
where OFi are C°° in x and , and continuous in p, and F is C°° in 

x and . 

  Based on the above preparation, we show that there exist a feedback 

law u = -1-(x,) and a real function W (z, p) _ V (x, p) + sT s/2 which 
satisfies (9.12) and (9.13). 

  It is obvious that the function W (z, p) satisfies (9.12). Consider 
(9.13). There exist continuous functions (5j(.) : IV X R1 -* R (i = 
1, 2, 3) such that, for all x E Rn, E R'n, and p E Si, 

II AFi(x, ,P) II <-i = 1, 2 (9.19) 
F(x, ) + AF3(x, , P) II5_ 03(X) ) (9.20) 

because of Assumption 9.1 and the continuity of AFi in p. Furthermore 

from (9.14) and (9.15), it is obtained that DxVT (o, p) = o, and that 
there exists a continuous function c4(•) : Rn —+ R such that 

DxVT (x, p) II < 04(x) x Vp E S2, Vx E Rn (9.21) 
Then consider the following control law 

     u = Dxk{ f (x, ) — f (o) o)} — g(x, )s(9.22) 
where g(.): TV X R1 --> R is given by, for a positive constant s(< /33). 

(II Dxk II 01+ 0403)2  
      _ g4(i3 — s)+I~Dxk II 02 + e (9.23) 

  Now differentiating W along the system S'2, one can get, by using 

(9.16), (9:17), and (9.18), 
W = DxV{f(x,k(x))+Af(x,k(x),P)} 

       + DxV {F(x, ) + /F3(x,, p)}s 
+ sTu 

        — sTDxk{f(x,) — f(o,o)} 
        — sTDxk{AF1(x, ~, p)x + AF2(x, , p)s} (9.24)
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Then by using (9.22) and completing the squares with respect to x and 
s, one gets 

     W  < —EIIz1I2 

       —(N3—E){}IxII—IIDxkII01+0403IISII}2 
                           2(,03 —e) 

       + {II DxkII952+~(IIDxkII01+0403)2—g} IIsII2 4(
/3—e) 

                                        (9.25) 
Therefore, (9.23) and (9.25) imply (9.13) if a3 = e. This completes 

the proof. 
  This theorem shows that the cascaded system S2 is GRA stabiliz-

able via continuous state feedback, if the upper system (9.8) is LGRE 
stabilizable via C°° state feedback in the case that in (9.8) is regarded 
as the input. We explain the main difference from the former methods 

by using (9.24) in the proof. If there is no uncertainty in (9.24) as in 
the former researches, then one can straightforwardly cancel the terms 

on the right hand side of (9.24) except for the first term by an appro-
priate u, and make W negative definite. However in the presence of 
the uncertainty, these terms cannot be directly canceled. This implies 

that the former methods cannot be applied immediately to the prob-

lem in the presence of the uncertainty. One point of our method is the 

combination of (a) completing the squares with respect to x and s and 
(b) nonlinear high gain feedback, which makes W negative definite.

9.3.2 General case of the cascaded system

  The following result is obtained by using Theorem 9.1. 

  [Theorem 9.2 ] Assume that any xe and e are given. If, for the 
nonlinear system (9.1) which satisfies Assumptions 9.1 and 9.2, there 
exists a C°° function k(.) : Rn —> R1 such that 

x = f (x, k(x)) + O f (x, k(x), p)(9.26) 
is LGRE stable at x = xe, and k(xe) = the nonlinear sys-
tem Si which satisfies Assumptions 9.1 to 9.3 is GRA stabilizable at 

(x,77) = (xe7'q ), where rle -- A-1B(CA-1B)-1' e, via an appropriate 
continuous state feedback law u = r(x, n).
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Proof: Suppose, without loss of generality, that  xe = 0 and e = o 

(automatically rie = o). Since CB is
rnonsingular from Assumption 9.3, there exists a matrix C such thatLC}s nonsingular and CB = o. 

So transforming the coordinates of the system S1 by

    [ss21      °_CIri k(o)(9.27)     LL 

one can obtain the following system, which is referred to as Si.. 
      = .f(x,)+Af(x, ,P)(9.28) 

sl = CAr1 + CBu — Dxk{ f (x, ) + Af (x, , p)} (9.29) 
82 = CAr)(9.30) 

Thus we show that the system S1 is GRA stabilizable at (x, si, s2) = 
(o, o, o) via continuous state feedback. The proof is completed in the 
following three steps. 

Step 1: One can show the system given by (9.28) and (9.29) is glob-
ally robustly stabilized at (x, si) = (o, o) by an appropriate control 
law. In fact, this is reduced to the stabilization problem considered 

in Theorem 9.1, by appropriate input transformation: if we consider 

u = (CB)-1(u — CAi1), where u is a new input, then there exists a 
GRA stabilizing control law for a new system by input transformation, 

by the same way as Theorem 9.1. 

Step 2: Here consider the subsystem (9.30). By (9.27), (9.30), and 

               r-1    [D1D2]o[C] 
one gets 

82 = CAD2s2 + CAD1 {s1 + k(x)}(9.31) 

  Now consider a positive definite function V1 = r)T Pr), using a posi-

tive definite matrix P in Assumption 9.3. Differentiating V1 along the 

system (9.2) with any input that x(t) - o and sl (t) - o, one obtains 
that V1 = _9 T Qr) by noting Cri = BT Pr) = o, and so rl —> o as 
t -* oo. This means s2 o by (9.27), when x(t) - o and s1(t) e o 
in (9.31). Consequently, CAD2 in (9.31) is asymptotically stable, and 
there exists a positive definite matrix P such that 

P(CAD2) + (CAD2)TP = —I(9.32)
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Step 3: Finally, the GRA stability of the total system given by (9.28), 
(9.29), and (9.31) with the control law derived in Step 1 can be proved 
using the result shown by Sontag [116] (See Appendix 9.5). Now let 

 x  1 A 
       =A , x2=82 

            1 
_ 

and suppose, using P in (9.32) 
V2 = x2 Px2 

From this, one can show that, by differentiating V2 along (9.31), for 
each positive constant c1, there exists some positive constant c2 such 

that 

V2 < —IIx211(IIx2II—c2)<o 
              V II Xi lI�Cl, VIIX2II>C2(9.33) 

Hence by Lemma in Appendix 9.5, (9.33) in addition to the facts of 
Steps 1 and 2 implies that the closed loop system given by (9.28), 
(9.29), and (9.31) with the control law derived in Step 1 is GRA stable 
at (x, s1, 52)= (o, o, o). This completes the proof. 

  Theorem 9.2 is an extension of the former results [15, 19] in the 
sense that the uncertainty of the system is considered. Furthermore 

compared to the former robust control methods in the presence of the 

matching condition [37, 28, 2], Theorem 9.2 shows that it is possible 
that the system with the mismatched uncertainty is globally and ro-
bustly stabilized, if the input acts on the uncertainty through a strictly 
positive real linear system. 
Remark 9.3 In the field of adaptive control, there also are some re-
searches (see, e.g., [60, 61]) as an extension of global stabilization of 
nonlinear cascaded systems. However the adaptive control methods as-
sume that the parametric uncertainty has a special form, and for ex-
ample, can not treat an uncertainty such as cos(px), where p is an 
unknown parameter and x is the state. More detailed comparison to 
the adaptive control will be an interesting topic in a future research. 

Remark 9.4 We indeed consider a continuous robust stabilizing con-
troller here, but our approach can treat the case of a smooth controller: 
it can be obtained by simple modification of the obtained continuous 

                                                              controller. 

Remark 9.5 The local robust exponential stabilization problem is triv-
ial, if we do not request to specify the bound of the stability region.
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This stabilization can be achieved by a robust stabilizing controller for 
the linearization of the original nonlinear system. However, the ap-
proach proposed here can be straightforwardly extended to the local case 
(rigorously, semi-global case) where the robust exponential stability is 
achieved on any specified  compact-set. 

  Theorem 9.2 also gives the following result for the system Si without 
the uncertainty. 

  [Corollary 9.1 ] Assume that any xe and Se are given. If, for 
the nonlinear system (9.1) which satisfies 0 f (.) - o and Assumption 
9.2, there exists a C" function k(.) : Rn —* RI such that 

X = f (x, k(x))(9.34) 
has a globally asymptotically stable equilibrium at x = xe and k(xe) = 
e, then the nonlinear cascaded system Si which satisfies Af (•) - o, 

and Assumptions 9.2 and 9.3 is globally asymptotically stabilizable at 

(x, rl) _ (xe, rie), where rie A A-1B(CA-1B)-4 e, via C°° state feed-
back. 

Proof: Noting the fact that if the system given by (9.34) is globally 
asymptotically stable, there exists some Lyapunov function by the Con-

verse Lyapunov Theorem, set AP.)  - o in the proof of Theorem 9.2. 
I 
  Tsinias [123] and Byrnes [15] have shown that the system 

= f (x, ) 
= u 

is globally asymptotically stabilizable if the system x = f (x,) is glob-
ally asymptotically stabilizable when the input is . On the other hand, 

Kokotovic et al. [67, 105] have considered the stabilization problem of 
the system 

x = f(x,) 
rl = Arl + Bu(9.35) 

= Crl 

as a more general form, and shown that the system is globally asymp-

totically stabilizable, if (i) A is stable and (A, B, C) is positive real, 
and (ii) the system x = f (x, o) is globally asymptotically stable at the 
origin. Moreover, the condition (i) is strengthened in [91, 19]. How-
ever when the condition (ii) is replaced by the condition (ii') that the
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system  x =  f  (x,) is globally asymptotically stabilizable provided the 
input is ~, it is difficult to extend their approach straightforwardly, as 
you can easily see from their proof in [67]. Corollary 9.1 shows that, if 
the condition (i) is replaced by Assumption 9.3 which is stronger than 
(i), the system given by (9.35) is globally asymptotically stabilizable 
under the condition (ii'). Therefore Corollary 9.1 is some extension of 
the result by Kokotovic et. al. This success is based on the factoriza-

tion of the system such as (9.28) to (9.30) and the full exploitation of 
the result by Sontag [116]. However it should be noted that our result 
cannot be straightforwardly extended to stabilization problem of the 

nonlinear cascaded system whose lower system is nonlinear, which is 

treated in [91, 19].

9.4 Robust stabilization for a certain 

of nonlinear cascaded systems

class

  In Theorem 9.2, we have derived the stabilization condition that 

there exists a C°° function k(x) such that the system (9.26) is LGRE 
stable at x = xe. When does such a function k(.) exist? So in this. 
section, we discuss this problem for a certain class of nonlinear systems. 

  Consider the following system whose input satisfies a matching con-

dition for uncertainty. 

      = f (x) + G(x){ + Of (x, p)}(9.36) 
where x E Rn and p E R" are defined in the same way as in the system 
S1 of section 9.2, and t; E RI is regarded as a input. The following 
assumptions are made. 

[Assumption 9.4 f(•):Rn-*Rn,Af(.):RnxR4 RI, 
and G(•) :Rn_—>Rn x RI are known functions, which are C°° in x for 
all p E11.Af is continuous in p. Further f (xe) = o. 

  [Assumption 9.5 ] rank{G(x)} = 1, for all x E Rn. 
  Then the following result is obtained. 

  [Theorem 9.3 ] A nonlinear system (9.36) which satisfies As-
sumptions 9.1, 9.4, and 9.5 is LGRE stabilizable at x = xe by an 
appropriate C°° state feedback control law = ?(x) with T(xe) = e,
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if and only if the following conditions are satisfied. 
(i) There exists a  C°° function k(•) : R" --> RI such that a system 

x = f (x) + G(x)k(x)(9.37) 
is LGE stable at x = xe• 

(2i)of(xe,p)+ =0, VpES2. 
Proof: Assume, without loss of generality, that xe = o and Se = 0. 

First, the necessity is proved. Now one of the elements that belong 

to the known set 12 is denoted by p*. Since the closed loop system 

by (9.36) and = :r(x) is LGRE stable, the closed loop system with 
p = p* is also LGE stable. So the condition (i) is obtained by 

k(x) = .1-(x)  + Of (x, p*)(9.38) 
because T and A f are C. Further Assumptions 9.4 and 9.5 and 
T(o) = o obviously mean the condition (ii). 

  Second, the sufficiencyis proved. The condition (i) implies that 
there exist a C°° functionV and positive constants aj (i = 1, 2, 3) such 
that _ 

al 11 x 112<V(x) < 612 11 x 112 (9.39) 
DxV{ f (x) + G(x)k(x)} < -a3 11 x 112 (9.40) 

Assumption 9.4 and the condition (ii) also imply that there exists a 
C°° function AF such that

of (x, p) = OF(x, p)x 
Note that AF is continuous in p from Assumption 9.4. 

  Now differentiating V along the system (9.36), one gets 

V = DxV{ f +d-(+ + OFx)} 
Then consider the following control law: 

= k(x) — 9(x)v 

where v =GTDxVT, g(•) : R" —> R is a C°° function which 
for a positive constant €(< a3), 

     9(x)>~~OF'(x,p) 112 Vx E R'2, Vp E ,fl 4(a
3-€) 

The control law given by (9.43) is composed of C°° functions, 
k, G, V, and g is C°°. Note also that the control law (9.43) 
T(o) = o, since k(o) = o and .W/T(o) = o. 

 Substituting (9.40) and (9.43) into (9.42) and completing the 
one can get

(9.41)

(9.42)

(9.43)
ich satisfies,

 (9.44) 

because 

satisfies
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 V<—~Ilxll2 Vx E(9.45) 
Eqs. (9.39) and (9.45) mean that the system (9.36) is LGRE stabiliz-
able. This completes the proof.1 

  In Theorem 9.3, the stabilization condition is much simpler, because 
the condition about the uncertain part and the condition about the 
known part are independently derived. For example, if the known part 
is a linear system, that is, f (x) = Ax and G(x) = B, where A and 
B are constant matrices, the condition (i) of Theorem 9.3 is equivalent 
to the condition that (A, B) is stabilizable. Moreover it is important 
that Theorem 9.3 gives, where of course the matching condition is satis-

fied, the condition for the robust asymptotic stabilization via C°° state 

feedback, because the conventional researches have developed robust 

asymptotic stabilization via discontinuous feedback [37] or practical 
stabilization via continuous feedback [28, 2]. 
  Now the combination of Theorems 9.2 and 9.3 gives the following 

result directly.

  [Corollary 9.2 ] Suppose that the following cascaded system S3 
consists of the upper system (9.36) with Assumptions 9.1, 9.4, and 9.5, 
and the lower system (9.2) and (9.3) with Assumption 9.3. 

x = f(x)+G(x){ (x,p)}(9.36) 
= A'q + Bu(9.2) 

  = Crj(9.3) 

                                                     ° Then the system 53 is GRA stabilizable at (x,97) = (xe,Tie),e),Tie 
A-1B(CA-1B)-1e, via continuous state feedback, if the conditions 
(i) and (ii) in Theorem 9.3 are satisfied. 

  Corollary 9.2 clarifies that, if the input acts on the uncertainty 

through a strictly positive real linear system and the uncertainty satis-

fies the condition (ii), the system is globally robust stabilizable under 
the condition (i). Note that Corollary 9.2 permits a broader class of 
uncertainty than the cone-bounded case, while the conventional results 

for global robust stabilization [89, 140, 25, 106] are concerned only with 
the case of the cone-bounded uncertainty. Furthermore, the stabiliza-

tion condition in Corollary 9.2 is more practical than that in Theorem 

9.2.
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9.5 Conclusion 

  The main results obtained in this chapter are summarized as follows. 

 (i) A sufficient condition has been given for global robust stabiliza-
    tion of a class of nonlinear cascaded systems with uncertainty, 

    which does not necessarily satisfy the matching condition. The 

    obtained result is an extension of the conventional researches 

    about global stabilization of nonlinear cascade systems without 

    uncertainty, in the sense that system uncertainty is considered. 

    The obtained result also clarifies that the system that includes 

    the uncertainty without the matching condition is globally sta-

    bilizable, if the input acts on the uncertainty through a strictly 

    positive real linear system. 

(ii) A sufficient condition for global stabilization of a class of nonlinear 
    cascaded system without uncertainty has been derived, which is 

    stronger than the previous existing results and can be applied to 

    a more large class of nonlinear systems. 

(iii) For a specified class of the systems, a more practical condition for 
    global robust stabilization has been derived.

Appendix 

Lemma by Sontag: For the readers' convenience, we show the result 

obtained by Sontag [116] 
[Lemma] Consider a nonlinear cascaded system 

xi = ii(xi)(9.A1) 
x2 = f2(xi, x2)(9.A2) 

where x1 E Rn 1 and x2 E Rn are state vectors. Then this nonlinear 

cascaded system has a globally asymptotically stable equilibrium at 

(x1, x2) = (o, o), if the following three conditions are satisfied. 
(i) A subsystem given by (9.A1) has a globally asymptotically stable 
equilibrium at x1 = o. 

(ii) A subsystem x9 = f2(o, x2) has a globally asymptotically stable 
equilibrium at x2 = o.
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(iii) For each positive constant  c1, there exists a positive constant c2, 
and a positive definite and radically unbounded function V(.) : Rn2 —> 
R such that             OV 

/./(x2) af 2(x1, x2) < 0 

                     2 

         for d II x1 II< ci, d 11 x2 II> c2 (9.A3)
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Chapter 10

CONCLUDING REMARKS

  In this paper, robust control problems of nonlinear systems includ-
ing robot manipulators have been investigated from the viewpoint of 
Lyapunov-based approach and  H00-type approach. In chapters 2 to 
6, some new results on the robust trajectory control of robot manip-
ulators have been given, from the practical viewpoint, based on the 
Lyapunov-based approach. In chapters 7 to 9, fundamental problems 
on nonlinear H„,, control theory and (global) robust stabilization have 
been discussed and some new and useful results have been derived. 

  In chapter 2, a new robust trajectory control scheme of robot manip-
ulators with uncertainty has been proposed, which is almost as simple 
as that of the dynamic control method, and has a less conservative eval-
uation in determining the feedback gain, fully exploiting the effective 
expression of the dynamics of the robot manipulator. Based on the 
above robust control, a new adaptive robust trajectory control scheme 
of robot manipulators with uncertainty has been proposed, in addition 
to the above merits, where the tracking precision is explicitly specified 
and, as a result, it is possible to evaluate if the feedback gain is small 
enough for the specified tracking precision. By an experiment of the 
trajectory control of a 2 link DD arm, it has been verified that the 
feedback gain of the adaptive robust control method is much smaller 
than that of the robust control method, and is almost necessary and 
minimum for the specified tracking precision. 

  In chapter 3, it has first been pointed out that the conventional 
acceleration feedback system compensates for the uncertainty by high

185
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gain feedback essentially, and the use of acceleration feedback gain ma-
trix which is diagonal reduces a multivariable control problem to a 
decoupled control problem. Second, the disadvantages of the conven-
tional acceleration feedback methods have been clarified. Finally, a 
robust tracking control methods using acceleration information for a 
robot manipulator with uncertainties has been proposed, where the ac-
celeration information is fully exploited and the disadvantages of the 
conventional control methods are overcome. 

  In chapter 4, a robust control problem of robot manipulators where 

joint torque sensor information is available has been discussed. First, 
a dynamic equation of the manipulator with joint torque sensors has 
been derived, which expresses explicitly the multivariable  structure. 
As a result, the proposed dynamic equation clarifies that the robust 
control system of the manipulator with joint torque sensors can be 
designed as in the same way as the case of the manipulator without 

joint torque sensors. It has also been shown that the proposed dynamic 
equation is effective for the design of the robust control system against 
the uncertainty of the motor system. The proposed robust control 
method achieves the specified tracking precision in the presence of the 
modeling error. 

  In chapter 5, the relation between a feedback gain and a control error 
for a given sampling period has been clarified in the digital control of 
robot manipulators, by deriving some kind of discrete-time description 
of nonlinear systems. Based on the above analysis, a new digital robust 
control scheme of robot manipulators has been proposed, which gives a 
systematic design procedure to find a feedback gain so as to achieve the 
specified tracking precision for a given sampling period. A weighting 
function for a feedback gain has also been proposed in order to decrease 
the chattering. 

  In chapter 6, a hierarchical robust control method of robot manip-
ulators has been proposed. A hierarchical control system makes the 
sampling period to generate a robust compensator much smaller than 
that of the non-hierarchical case. By assuming a control signal in the 
lower level loop is continuous on time, the effect of the uncertainty on 
the control error is theoretically analyzed. In addition, the part which 
cannot be linearized due to the computation time lag is theoretically 
compensated by the robust controller.
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  In chapter 7, a new approach for nonlinear  Hco control theory has 

been given, which does not depend on the Linearization or the linear 

H , control techniques. First, some strict bounded real conditions of 

nonlinear systems have been characterized via two approaches: One 

is based on the Hamilton-Jacobi equation with a stabilizing solution 

and another is based on the Hamilton-Jacobi strict inequality. The 

former has an important role to analyze the internal stability of non-

linear systems, and the latter has an advantage that it can simply be 

applied to the strict H„0 control problem. Both will form a useful 

foundation to develop the strict Hco control theory of nonlinear sys-

tems. The obtained results completely include the strict bounded real 

lemma of linear systems, and are also stronger and applicable to more 

general nonlinear systems, compared with the former results. Based on 
the above results, several sufficient (and necessary) conditions for the 
solvability of the strict Hc,„ state feedback control problem have been 

derived. In addition, a necessary condition for the solvability of the 

strict Ho° output feedback control problem has been given and it has 

also been shown that the obtained necessary condition is sufficient in 

the case of exponential stability. 

  In chapter 8, a robust stability condition has been given for non-

linear systems with unstructured uncertainty. Furthermore, a robust 

stabilizability condition has been derived in terms of the solvability of 

some partial differential equation and a robust stabilizing controller has 

been given, which is based on the nonlinear Hc, state feedback control 

theory developed in chapter 7. The obtained approach in the robust 

stabilization problem with unstructured uncertainty allows us to treat 

various types of stability, i.e. asymptotic stability, exponential stability, 

and global exponential stability, in a unified way. 

  In chapter 9, a sufficient condition has been given for global ro-

bust stabilization of a class of nonlinear cascaded systems with uncer-

tainty, which does not necessarily satisfy the matching condition. The 

obtained result is an extension of the conventional researches about 

global stabilization of nonlinear cascaded systems without uncertainty, 
in the sense that system uncertainty is considered. The obtained re-

sult also clarifies that the system that includes the uncertainty without 

the matching condition is globally stabilizable, if the input acts on the 

uncertainty through a strictly positive real linear system. A sufficient
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condition for global stabilization of a class of nonlinear cascaded system 

without uncertainty has been derived, which is stronger than the previ-

ous existing results and can be applied to a more large class of nonlinear 

systems. For a specified class of the systems, a more practical condition 

for global robust stabilization has been derived. 

  Robust control of nonlinear systems is one of attractive and impor-

tant control problems. However there are many open problems in this 

field. Most of the results obtained in this paper are for basic problems 

in this field. We will need to work more deeply and widely to establish 

a systematic robust control design method of nonlinear systems. The 

author believes that the results obtained here will contribute to the 

development of this field.
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