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Abstract

This paper is concerned with robust control of nonlinear systems

including robot manipulators. The following results have been obtained
in this research.
- Robust trajectory control of robot manipulators: A practical
robust control design method is proposed, fully exploiting the prop-
erty of manipulators, i.e., the feature that the dynamics is composed
of the linear combination between unknown physical parameters and
measurable parameters such as joint displacement or the feature that
the acceleration sensor information or joint torque sensor information is
available. In addition, a digital robust controller of robot manipulators
is proposed, where the effect of the discretization of a robust controller
on the control error is taken into consideration.

Development of foundations of robust control of nonlinear
systems: First, a characterization of the bounded real condition of
nonlinear systems is given using the Hamilton-Jacobi equation with
a stabilizing solution and the Hamilton-Jacobi strict inequality. The
former has an important role to analyze the internal stability of non-
linear systems, while the latter has an advantage that it can simply
be applied to the H ,, control problem. The characterization by these
two approaches completes the strict bounded real condition of nonlin-
ear systems to form a basis to develop the nonlinear H ., control the-
ory. Second, based on the above obtained results, some sufficient (and
necessary) conditions for the solvability of the nonlinear H ., control
problems via state feedback or output feedback are given. In addition,
the obtained H ., state feedback control is applied to the robust sta-
bilization problem of nonlinear system with unstructured uncertainty.
Finally, a global robust stabilizability condition for nonlinear cascaded
systems is analyzed, using a different approach from the nonlinear H,
control theory.
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Chapter 1

INTRODUCTION

1.1 History of robust control

In general, it is difficult to find a model of the plant to be controlled
rigorously. There mostly exists some discrepancy between the real plant
and the model which is analytically or experimentally given. If we take
no account of such a modeling error to design a controller based on
the model, then the obtained controller frequently may make a closed
loop system unstable or give an unsatisfactory control performance.
Thus since the late 1970s, many researchers have developed control
system design methods to make a plant stable or keep a specified control
performance of the closed loop systems in spite of uncertainties such as
the modeling error. Such a control theory is called the robust control
theory. Although the robust control theory has many approaches at
present, two approaches are focused on here, that is, an approach based
on the Lyapunov Stability Theorem and an approach based on the H .,
control theory.

Robust control based on Lyapunov Stability Theorem

Studies on the stabilization of linear systems with deterministic un-
certainty began in the late 1970s, based on the Lyapunov Stability
Theorem (38, 70]. After that, the Lyapunov-based robust control ap-
proach of linear systems has been extended to nonlinear setting. There
are many results especially when there exist uncertainties satisfying
the so-called matching condition (which is a condition for an input of

1



2 Chapter 1 Introduction

a plant to act on uncertainties directly) [37, 28, 2, 32, 29]. In addition,
combined with the singular perturbation theory [104, 72, 26, 71, 122, 64]
or differential geometric approach [109, 14, 34], the control theory based
on the Lyapunov Stability Theorem has been developed as one field of
the robust control theory of nonlinear systems. This approach has also
been applied to tracking control problems of robot manipulators which
have strong nonlinearity [103, 39, 119, 93, 59, 1].

In the case of linear systems, on the other hand, the Lyapunov-
based robust control approach has been developed as the quadratic
stabilization scheme. The quadratic stabilization problem is reduced
to the solvability of the Riccati equation, and the method is useful
even for the uncertainty which does not satisfy the matching condition
(11, 100, 98, 95, 96, 99, 97, 151, 150, 102, 62, 94].

H _, control theory

In the field of linear system control theory, the robust control has
also been considered from the viewpoint of the frequency domain. Es-
pecially since the early 1980s, the H, control theory, which was pro-
posed by Zames, has been developed [148, 33, 36, 31]. Recently the
H , control theory is well acknowledged as one of the most powerful
design schemes for the robust control system. It pays attention to a
maximum gain of a transfer function, which is called H_ norm or L,
gain, to reduce a robust control problem to a H, control problem.
A state space solution to the general H, control problem was given
by Glover and Doyle in 1988. Using the H, control theory, we can
solve a robust stabilization problem for the unstructured uncertainty
such as the modeling error which is given by the discrepancy of the
gain. In addition, the relation between the H,, control scheme and
the quadratic stabilization scheme was clarified, and it was found in
[62] that, roughly speaking, the former includes the latter. Recently,
several researchers have begun to extend the H, control theory of lin-
ear systems to nonlinear setting. We call it the nonlinear H ., control
theory.

Under the above background on the robust control, this paper treats
two topics of the robust control: (I) Studies on the robust control of
robot manipulators based on the Lyapunov Stability Theorem, and (1I1)
Studies on the robust control of nonlinear systems (the nonlinear H
control and global robust stabilization in the absence of the matching




condition). In this first chapter, the previous works on both topics are
surveyed first, and then the goal and the composition of this thesis are
described.

1.2 Background of robust control of robot
manipulators

Trajectory control of a robot manipulator is one of fundamental
problems in the field of robotics. Since a robot manipulator in general
has some kind of nonlinearity, it is much important to consider the non-
linearity in the trajectory control problem. Although there exist many
previous studies on the trajectory control, one of well known results
was given by Luh et al. [77] in 1980, which is called the resolved accel-
eration control method or the dynamic control. A controller designed
by this scheme is composed of linearization and servo compensation.
In other words, the linearizing compensation makes the dynamics of
the manipulator linear and then the resulting linearized system is com-
pensated by a linear servo controller. Indeed, the idea of this control
scheme is natural from the viewpoint of the control of nonlinear system,
but it requires an exact model of the real plant to be controlled. In the
case of a robot manipulator, it is usual that real values of some physical
parameters such as the mass and the inertia of the arm or the friction
coefficient of the joint are exactly unknown, although we can get esti-
mated values of these parameters by some identification method. If the
estimated values are used for the linearization of the manipulator, then
the manipulator cannot be often controlled theoretically well, and the
obtained controller may be unsatisfactory from the viewpoint of con-
trol performance, because the dynamics of the manipulator cannot be
linearized completely. In addition, there may exist some disturbances
such as measurement noise in the manipulator system, which often lead
to unsatisfactory control performance.

Thus the robust control scheme based on the Lyapunov Stability
Theorem, which has been developed for general nonlinear systems with
deterministic uncertainty, began to be applied to the trajectory control
of manipulators. There are mainly two approaches in this field: sliding



4 Chapter 1 Introduction

mode control and robust control based on the Lyapunov Stability The-
orem (in the local sense). The sliding mode control scheme has been
developed by Itkis [58] and Utkin [126] et al., and has been applied
to the trajectory control of the manipulator by Young [147] and some
researchers [114, 112, 41, 143, 68, 20]. On the other hand, concerning
the robust control approach based on the Lyapunov Stability Theo-
rem (in the local sense), Ryan et al. [103] applied the Lyapunov-based
robust control scheme proposed by Corless and Leitmann [28] to the
trajectory control of manipulators for the first time. After that, using
this approach, the robust trajectory control of manipulators has been
studied by many researchers [2, 39, 119, 93, 59, 1]. Especially, Slotine
[112], and Osuka and Sugie [93, 119] clarified how to design control pa-
rameters so as to achieve the specified tracking precision. In addition,
the idea that the feedback gain in the above robust control is automat-
ically adjusted according to the bound of the control error has been
developed for general nonlinear systems including robot manipulators,
which is called an adaptive robust control scheme [27, 21, 81, 24, 73].
Although these methods commonly adopt a high feedback gain in
order to compensate for the uncertainty, the unnecessarily high gain in
feedback may make the system unstable by the effect of the unmod-
elled dynamics, and cause unexpected phenomena such as chattering
in digital control systems. Therefore from the practical viewpoint, it is
crucial to make the feedback gain as small as possible without sacrific-
ing the tracking accuracy. In the conventional robust control methods
of robot manipulators, the estimation of the bound of the uncertain-
ties is too conservative, and as a result, the feedback gain calculated
by the conservative estimation on the uncertainty tends to be much
larger than necessary to achieve the specified tracking precision. On
the other hand, the conventional adaptive robust control methods have
an advantage that the feedback gain is automatically determined with-
out any a priori information on the uncertainty. However, the explicit
quantitative relation between the tracking error bound and the design
parameters is not clear at all there. In this light, it is difficult to tell
whether the feedback gain is unnecessarily high or not. Also the design
procedure of both the conventional robust and adaptive robust con-
trollers of robot manipulators is much complicated. These problems in
the conventional robust control of robot manipulators come from the



fact that the robust control schemes for general nonlinear systems is
straightforwardly applied to that of robot manipulators and the spe-
cial structure of the manipulator dynamics is not fully exploited there.
General formulation may result in the conservative estimation of the
uncertainty, makes the controller more complicated, and makes it more
difficult to clarify the relation between the design parameters and the
bound of the control error.

In addition, most of robust controllers of nonlinear systems are non-
linear, so the robust nonlinear controller is usually discretized when it
is implemented. Thus we need to take account of the effect of the dis-
cretization of the robust controller on the control error, but there has
been no research on this topic.

It is concluded that the robust control schemes of robot manipulators
in the existing literatures are not sufficient from a practical point of
view. We believe that it is much significant to establish a practical
robust control design scheme of robot manipulators, fully exploiting
properties of the plant itself.

1.3 Background of robust control of non-
linear systems

1.3.1 Nonlinear H., control

As stated in Section 1.1, various techniques on the H,., control
theory of linear systems have been developed in the last decade, see
e.g. [36, 31], and several researchers have recently attempted to ex-
tend the H,, control to the case of nonlinear systems. Ball and Hel-
ton (7, 8, 9], from a viewpoint of operator theory, discussed H ., con-
trol theory of nonlinear systems, for the first time, and connected it
with the differential game theory [13, 124, 74, 12]. Van der Schaft
[130] analyzed the relation between the L, gains of nonlinear systems
and their linearization, and gave a sufficient condition for the exis-
tence of smooth H ., state feedback control. In addition, van der
Schaft [131, 127, 128] paid attention to the dissipative system theory
(139, 138, 137, 85, 84, 46, 44, 45, 134], and discussed the relation be-
tween the Ly gain and the Hamilton-Jacobi equation, and applied to
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the state feedback case. However, there was no discussion on a stabiliz-
ing solution of the Hamilton-Jacobi equation, except for the discussion
based on the linearization. Isidori and Astolfi [55, 57, 54] have derived
a sufficient condition for the existence of H,, output feedback control
as well as state feedback in the case where the Hamiltonian system does
not necessarily have a hyperbolic equilibrium. Their success is based
on the differential game theory and the La Salle’s Invariance Principle.
Using the latter, they proved the internal stability of the closed loop
system. However, their sufficient condition is more restrictive than that
of the linear case at the point that it requires positive definiteness of
the solution of the Hamilton-Jacobi-Isaacs equation, while a positive
semi-definite solution is enough in the linear case. There is also some
discussion on a necessary condition for H, control.

Very recently, Ball et al. [10] and van der Schaft [129] discussed
a necessary condition for the existence of H . output feedback con-
trol, from the dissipative system theory, and the structure of nonlinear
H , controllers, but the derived condition is not necessary and suf-
ficient. There is also no analysis on the stabilizing solution of the
Hamilton-Jacobi-Isaacs equation, which appears in the nonlinear H.,
control theory, while the stabilizing solution of the Riccati equation
plays an important role in the linear H, theory. In addition, van der
Schaft [129] gave some results about the strict H,, control problem,
where the strict inequality condition for the L, gain of the systems is
taken into consideration. However, his results cannot be extended to
an asymptotic stability case, because it is based on the linearization.

Although the former results shown above are very interesting and
important, it is not satisfactory in the following sense: they do not
give the answer to the following fundamental questions. (1) Can we
treat the strict H ., problem of nonlinear systems in the case of asymp-
totic stability? (2) When does there exist a stabilizing solution of the
Hamilton-Jacobi equation? (3) Do we really need a positive definite
solution of the Hamilton-Jacobi-Isaacs equations rather than a positive
semi-definite solution? (4) How do the H ., control (or Ly gain) re-
sults depend on the type of the stability ( such as asymptotic stability
or exponential stability )? (5) Can we extend the approach based on
the Riccati strict inequality [149, 107] to nonlinear setting? So there
is a big gap between the linear H, control theory and its nonlinear
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version obtained so far, and one can hardly say that the essence of the
H , control of nonlinear systems was captured. This is mainly because
the conventional methods strongly depend on the linearization or the
linear H , control techniques. Therefore we need a different approach,
which does not depend on the linearization or the linear H ., control
techniques, to capture the essential feature of the strict H_, control
theory of nonlinear systems.

In addition, the robust stabilization problem is one of fundamental
robust control problems to be considered. However, there was no re-
search on the robust stabilization of nonlinear systems in terms of the
nonlinear H ,, control theory so far (although most recently van der
Schaft [132] and Isidori [53] treated this topic). In order to develop the
robust control theory of nonlinear systems in terms of the nonlinear
H , control, we need to analyze fundamental problems such as robust
stabilization conditions for unstructured uncertainty.

1.3.2 Global robust stabilization of nonlinear cas-
caded systems

Since the 1980s, nonlinear system analysis has been studied based
on the differential geometric theory [56], and some fundamental and
important results have been derived. Especially, in the early 1980s, the
problem on the state space linearization via coordinate transformation
and nonlinear state feedback was completely solved by Su [118] or Hunt
et al. [51]. After that, the idea of "zero dynamics”, which corresponds
to the zero of a transfer function of a linear system have been devel-
oped in the mid 1980s [16], and the idea of "normal form” of nonlinear
systems have been established in 1991 [15].

Based on these studies, in the late 1980s, the stabilization problem
of nonlinear systems that have the normal form structure has attracted
considerable attention, and some sufficient conditions for local or global
stabilization of these systems have been derived [15, 79, 17, 18, 67, 123,
105]. Since the normal form systems have the structure similar to a class
of nonlinear cascaded systems, the stabilization problem for a class of
nonlinear cascaded systems has also been attacked by many researchers
[111, 91, 110, 19]. Needless to say, the important next step is to dis-
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cuss the stabilization of the nonlinear cascaded system in the presence
of uncertainty. This will be the first step to the robust stabilization
of general nonlinear systems. However, the previous works described
above assume that the systems to be controlled are completely known,
and this assumption is crucial to prove the stability. Therefore, it is dif-
ficult to apply their methods to the case where the uncertainty exists.
Although there are a few researches [109, 108, 14, 34] about robust con-
trol of uncertain systems with normal form, these are concerned with a
robust output tracking control problem, not a global stabilization one.

As stated in section 1.1, on the other hand, the robust stabiliza-
tion techniques based on the Lyapunov Stability Theorem have been
developed for nonlinear systems in the presence of uncertainty. Most of
them treat the case where the uncertainty satisfies the so-called match-
ing condition [37, 28, 2], although some of them studied mismatched
uncertainty cases such as the cone-bounded case [89, 140, 23, 25, 106]
or the singular perturbation case [104, 72, 26, 71, 122, 64], which is of
local nature essentially. However, in order to discuss the robust stabi-
lization of nonlinear cascaded systems, the matching condition is too
restrictive. In addition, it is difficult to apply the latter methods to the
global stabilization problem.

In summary, it is still an open problem how a nonlinear system with
mismatched uncertainty is globally stabilized. We believe that it is
much significant to find an essence of the solution to such a problem
from the viewpoint how the input and the term of the uncertainty
should be cascaded in the state space description of nonlinear systems
in order to globally stabilize if.

1.4 The goal and the organization of this
thesis

There are two main goals in this thesis. The first goal is to estab-
lish a robust trajectory control design method of robot ma-
nipulators: A practical and systematic robust control design method
is proposed, fully exploiting the property of manipulators, i.e., the fea-
ture that the dynamics is composed of the linear combination between
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unknown physical parameters and measurable parameters such as joint
displacement or the feature that the acceleration sensor information or
joint torque sensor information is available. In addition, a digital ro-
bust controller of robot manipulators is proposed, where the effect of
the discretization of a robust controller on the control error is consid-
ered, The second goal is to develop foundations of robust con-
trol of nonlinear systems: First, a characterization of the bounded
real condition of nonlinear systems via the Hamilton-Jacobi equation
with a stabilizing solution or the Hamilton-Jacobi strict inequality is
presented. Second, based on the above condition, the nonlinear H ..
control theory is discussed. In addition, the obtained H . state feed-
back control is applied to robust stabilization problems of nonlinear
system with unstructured uncertainty. .Finally, a global robust stabi-
lizability condition for nonlinear cascaded systems is analyzed, using a
different approach from the nonlinear H, control theory.

The organization of this thesis is as follows. Chapters 2 to 6 are
concerned with a robust trajectory control of robot manipulators, which
are for the first goal. Chapters 7 to 9 are concerned with a robust
control of general nonlinear systems, which are for the second goal.

Chapter 2 is concerned with a robust trajectory control of robot ma-
nipulators, where the joint displacement and the velocity are available.
First, a new robust control scheme of robot manipulators is proposed,
which overcomes some drawbacks of conventional robust control meth-
ods. The proposed controller has a simple structure by exploiting the
special structure of the manipulator dynamics, and achieves the spec-
ified tracking precision. Next, based on the formulation of the above
robust control, a new adaptive robust control scheme for manipulators
is proposed, where the feedback gain is automatically adjusted based
on the bound of the control error and no a priori information on un-
certainty is required. Thus the feedback gain of the proposed method
is almost necessary and minimum for the specified precision. To verify
the advantages of the adaptive robust control method, experimental
results are shown for the trajectory control of a 2 link direct-drive arm.

In chapter 3, merits of acceleration information in the robust control
of robot manipulators are clarified in the case that the signal is avail-
able. First, the essential feature of the conventional methods is made
clear, and it is shown what their problems are. Second, a robust control
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scheme using acceleration information is proposed for robot manipula-
tors, which overcomes the above problems. Finally, the advantage of
acceleration information for the proposed scheme is discussed.

Chapter 4 is concerned with the robust control of robot manipulators
in the case where joint torque sensor information is available. First, a
dynamic equation of the manipulator with joint torque sensors is de-
rived, which explicitly expresses a nonlinear multivariable structure.
This dynamic equation makes it possible to construct the control sys-
tems of the manipulators with joint torque sensors based on the same
method as in the conventional case without the sensors. Second, based
on this dynamic equation, a robust control scheme is proposed, which
achieves the specified tracking precision in the presence of the modeling
error including the modeling error of actuator systems. The proposed
method fully exploits joint torque sensor information to compensate for
the uncertainty of link and load parameters. Furthermore, an illustra-
tive simulation result is given to show the effectiveness of the proposed
control method.

In chapter 5, a digital robust control method of robot manipulators
is proposed. The effect of the discretization of a robust controller on
the control error is discussed theoretically. The design procedure for a
digital robust control system, which is obtained by the above analysis,
gives an allowable feedback gain to guarantee the specified tracking
precision. Moreover, a simple idea is proposed to make the feedback
gain small so as to decrease the chattering, and the effectiveness of this
idea is shown by illustrative simulation results.

In chapter 6, a hierarchical robust control scheme of robot manip-
ulators is proposed, which has a hierarchical structure with an upper
level loop and a lower level loop. In the upper level loop, an input
for linearizing compensation, a desired trajectory and a switching gain
are computed at a low sampling frequency. In the lower level loop, a
switching input is generated at a high sampling frequency. This scheme
will make the computation for robust compensation very fast, so we can
expect that the effect of the discretization of a robust controller on the
control error is smaller. The control performance of this hierarchical
system is analyzed under the consideration of the sampling period of
an upper level loop and the modeling error.

Chapter 7 is concerned with the strict H ., control theory of non-
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linear systems. First, a necessary and sufficient condition for nonlinear
systems to be internally stable and to have the L, gain less than a
specified number <y, which is called the strict bounded real condition,
is given via the Hamilton-Jacobi equation with a stabilizing solution
and the Hamilton-Jacobi strict inequality. The former has an impor-
tant role to analyze the internal stability of nonlinear systems, while
the latter has an advantage that it can simply be applied to the strict
H ., control problem. The characterization by these two approaches
completes the strict bounded real condition of nonlinear systems to
form a basis to develop the strict H , control theory. Second, based on
the above results, some sufficient (and necessary) conditions are given
for the solvability of the strict H,, state or output feedback control
problem, which exactly correspond to the case of linear systems.

Chapter 8 is concerned with robust stabilization of nonlinear systems
in terms of the nonlinear H ., state feedback theory. First, a robust sta-
bility condition is given for a closed loop system which is composed of
a nonlinear nominal system and an unstructured uncertainty. Second,
based on the obtained robust stability condition, a sufficient condition
for robust stabilization by state feedback is given in terms of the solv-
ability of some H ., state feedback control problem.

In chapter 9, a sufficient condition is given for a class of nonlinear
cascaded systems to be globally stabilizable via state feedback in the
presence of uncertainty which does not necessarily satisfy the so-called
matching condition. The obtained result is an extension of the former
stabilization results which treated systems without uncertainty, in the
sense that the uncertainty is taken into account. In addition, consid-
ering a specified class of the systems, a more practical condition for
global robust stabilization is derived.

We will use the following notations in the paper. R" denotes an
n-dimensional real Euclidean space whose norm is given by || - ||. A €
R"™ ™ is a n X m matrix, and A, (A) and Ay (A) express minimum and
maximum singular values of a matrix, respectively. I expresses a unit
matrix.
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Chapter 1

Introduction



Chapter 2

ROBUST CONTROL AND
ADAPTIVE ROBUST
CONTROL OF ROBOT
MANIPULATORS

2.1 Introduction

In the past several years, various robust trajectory control schemes
have been developed for robot manipulators with unknown parameters
or disturbances, such as sliding mode control [147, 114, 112, 41, 143, 20],
robust control [103, 2, 39, 119, 93, 59, 1], or adaptive robust control
(27, 21, 81, 22, 24, 73]. One of the fundamental problems in this field
is to control the robot manipulator so as to track the desired trajec-
tory within a specified tracking precision in the presence of uncertainty.
Especially, Slotine [112] and, Osuka and Sugie [93, 119] clarified how
to design control parameters so as to achieve the specified tracking
precision.

In most of the previous existing literatures, however, the design
procedures are much complicated. In addition, the estimation of the
bound of the uncertainties is too conservative, so the feedback gain
calculated by the conservative estimation on the uncertainty is much
larger than necessary to achieve the specified tracking precision. As

13
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a result, the obtained controller is impossible to be implemented in
practice, since too high feedback gain excites unmodelled dynamics. It
is desired that the feedback gain is necessarily and sufficiently high to
achieve the specified tracking precision. In addition, the conventional
adaptive robust control schemes clarify no relation between the design
parameters and the specified precision.

In this chapter, a new robust control scheme for robot manipulators
is proposed first, which overcomes the above shortcomings of the former
robust control methods in the sense that it has the following properties:
by fully exploiting the property of the structure of the dynamics, (i)
the controller structure is as simple as the conventional dynamic control
method [77] except that it has only a time-varying feedback gain and
(ii) the estimation of the bound of the uncertainty is less conservative.
Next, based on the above robust control scheme, a new adaptive robust
control scheme is proposed, which, in addition to the above advantages,
(iii) clarifies the explicit relation between the design parameters and the
tracking precision, (iv) achieves the specified tracking precision without
any a priori information on the robot uncertainty, and (v) the feedback
gain of the proposed adaptive robust control is much smaller than the
robust control case.

Furthermore, the validity of the proposed adaptive robust control
method is experimentally verified using a 2 link Direct-Drive robot
arm.

2.2 Problem statement

Consider a manipulator with n degrees of freedom whose dynamics
is described by the following equation :

M(¢,6)6 + h(9,0,0) = u (2.1)
where 8 = [6’1,92, ..., 0,7 is the n-dimensional vector of joint displace-
ments, ¢ is the physical parameter vector with an appropriate dimen-
sion, » is the n-dimensional joint torque input vector, M(¢,0) is the
n x n manipulator inertia matrix, and h(¢, 8, 8) is the n-dimensional
vector that represents the nonlinear terms such as the centrifugal, Cori-
olis, frictional, and gravitational forces.

This system usually has the following features.
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[Feature 2.1 ]  M(8) is a positive definite matriz for any 6. N
[Feature 2.2 |  The left-hand side of (2.1) can be expressed as

M(¢,6)0 + h(¢,0,6) = E(¢)y(6,6,0) (2.2)

where E(¢) is an appropriate dimensional matriz consisting of physical

parameters, and y(6,6,0) is an appropriate dimensional vector whose

elements are known functions of 8, 8, and 0 (see section 2.5). |

In this chapter, the following assumptions are made.

[Assumption 2.1 ] 6 and 8 are measurable. i

[Assumption 2.2 ] The values of the physical parameter vector
¢ may be unknown, but it is known that ¢ exists in a certain bounded
region §2.

[Assumption 2.3] A vector ¢, a bounded estimate of ¢, is given
such that there exist bounded positive constants o and  which satisfy
the following conditions for any non-zero vector € € R", any non-zero
and appropriate dimensional vector y, any @ € R", and any ¢ € £2:

a|| =< s"Te, T2 MY ($,6)M(3,6) (2.3)
By Izl M7\ (¢,0){E($) - E(¢)}y || (24;

The existence of the positive constant « in (2.3) is dependent on the
estimate ¢. However, it is difficult to show rigorously when such an a
exists. According to our experience on numerical analysis of various 2
DOF manipulators, there exists an a even when the difference between
the real values and the estimate values of the physical parameters is 50
% of the real values. While, Khosla and Kanade [65, 66] have shown the
effectiveness of a dynamic control law with the parameters estimated
by their identification method. This means that the estimated value
of the physical parameters are not quite different from the real values.
So using the conventional identification methods such as [65, 80, 6], we
believe that it would be possible to estimate the physical parameters
within such accuracy that there exists a @ > 0 in (2.3). Therefore we
do not think that the assumption of (2.3) is so restrictive in a practical
sense. On the other hand, it is gunaranteed that there exists a positive
constant [, because of the fact that M is a positive definite matrix
(namely M ™" is bounded) and that E is a constant matrix. Note that
o and [ are obtained by calculating the smallest and largest singular
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values of T and M~*{E(¢) — E()}, respectively, if the region §2 is
known. . ~

For simplicity, the following notation are used: M = M(¢,8),
h £ h(,6,6), and E = E(3).

Now, the following problem is considered.

[Problem 2.1 ] For the robot manipulator given by (2.1) that
satisfies Assumptions 2.1 to 2.3, the desired trajectory 04(t) is given
whose derivatives 84 and Bd exist and are bounded. Also ep and ey,
the tracking precision, are given. Then, find a control law such that

| e(?) |I< ep, | e()||l<evy Vt=2T (2.5)
holds for some finite time T > to, where e(t) 2 6(t) — 84(t) and t, is
an initial time. i

For simplicity, one may assume that e(tp) = o and é(tp) = o.

2.3 Robust control

In this section, a robust control method is proposed which determines
the feedback gain using the information on §2 so as to achieve the
relation (2.5). The argument is much simpler than the former works
(103, 2, 39, 119, 93, 59, 1], and gives a good insight for the robust
control of robot manipulators.

In order to solve the problem in section 2.2, the following control
algorithm with a constant gain A and a time-varying gain k(t) is con-
sidered. . _

w=M{B,— (A +k(1)é - Ak(t)e} + h (2.6)
Note that this algorithm is the same as in the conventional dynamic
control method [77] except that the conventional algorithm consists of
the fixed PD gain in (2.6).

First, the error equation which is important for the control system
design is derived. Substituting (2.6) into (2.1), one obtains the following
error system:

é+(AI+kf)é+Akje:n (2.7)
where

"?éM_l(E—E)yd
Yy = y(G 6,6, — \é)
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If we have no modeling error, n = o and I = I in the error equation
(2.7). So m can be regarded as a disturbance which results from the
modeling error and I as one part of the feedback gain which contains
uncertainty. The effect of these uncertainties, T and 7, on the control
error e is evaluated by (2.3) and (2.4), respectively: the infimum value
of the uncertain part, I, of the feedback gain is estimated as a in (2.3),
and the supremum value of the disturbance n by (2.4) as follows.

Bllyal=lml ) (2.8)
Note that y, is measurable, because 6, is known. Therefore, one will
determine the feedback gains A and k so as to satisfy the relation (2.5)
based on the error equation (2.7) and the information on the uncer-
tainties, a and .

By letting

- g (2.9)
we obtain the following result.

[Theorem 2.1 ] Consider the manipulator (2.1) that satisfies
Assumptions 2.1 to 2.5. The desired trajectory 8, and the specified
tracking error precision, £p and €y, are given. Moreover suppose 7y is
obtained from a priori knowledge of the region $2. If the control law
(2.6) whose feedback gains are given as

Ey
= 2.10
2ep (2.10)
vyl
=Ll 480 2.11
Nep (2.11)
1s applied to the manipulator, then
| e(?) I< ep, || e(t) [|< ev (2.12)
holds for any t > tg. ]

Proof: By defining a new variable s as s Set Ae, one can reduce the
error equation (2.7) to two first order differential equations as follows.
s+kls=n (2.13)
e+le=s (2.14)
First, it will be shown that the following relation is satisfied in (2.13)
if the feedback gain k is determined by (2.11).
| s|l< Aep YVt >t (2.15)
To this end, a Lyapunov candidate is considered:
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W= ésTs (2.16)

Differentiating V;(t) along (2.13), one can see that the following relation
holds, provided that || s ||> Aep, by using the information on the
modeling error of (2.3) and (2.8), and the feedback gain k in (2.11).
Vi = sT(n—kls)
< Bllyallll sl —ka |l s |
< lslf(Bllygll —karep) =0 (2.17)
Therefore, one can get (2.15) with the initial condition s(to) = o.

Next in order to show the first part of (2.12), the extended error s
in (2.14) is regarded as the disturbance with the condition (2.15), and
the norm of e is evaluated in the same way as the evaluation of || s ||.
Consider the following Lyapunov candidate.

Vo = %eTe (2.18)
Differentiating V5(t) along (2.14) and using (2.15), one obtains the fol-
lowing relation provided that || e ||> p.

Vo = €e'(s—Xe)

< llelllslh=Alel?

< llell (sl -Xep) <0 (2.19)
Therefore, one gets the first part of (2.12) with the initial condition
e(fo) = 0.

Lastly, the second part of (2.12) is proven. The relation || e ||<|| s ||
+A || e || is obtained from (2.14). Therefore the second part of (2.12)
is shown by using (2.10), (2.15), and the former part of (2.12). This
completes the proof. |

The proposed robust control method has three features compared
with the conventional robust control methods: (i) The controller struc-
ture is very simple because it is based on the conventional dynamic
control method. (ii) The argument is much simpler (see the proof of
Theorem 2.1). The employment of the error equation (2.7) (namely,
(2.13) and (2.14)) enables this kind of simplification. (iii) The pro-
posed method has a less conservative evaluation in determining the
feedback gain, because the measurable signals are fully exploited by
making use of Feature 2.2 of the manipulator.
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2.4 Adaptive robust control

In the proposed robust control law of the previous section, v, which
expresses a bound of the uncertainty, 1s calculated in advance based on
the knowledge of the region f2. However v depends on the informa-
tion on §2, and often tends to be unnecessarily high for the specified
tracking precision. Therefore in this section, an adaptive robust control
method is proposed which adjusts the feedback gain adaptively, that is,
1t estimates the parameter 7, in order to achieve the specified tracking
precision without any a priori information on 2. The estimate of 7 is
denoted by 7.

Here, the same control law is considered as the previous robust con-
trol law (2.6). Thus, the error equation is again (2.7), namely (2.13)
and (2.14). It is shown that (2.5) is guaranteed by suitably adjusting
the feedback gains k(¢) in (2.13) and A in (2.14). As a preparation, the
following lemma is given.

[Lemma 2.1 ]  Consider the manipulator (2.1) that satisfies As-
sumptions 2.1 to 2.5. Assume that positive constants € and A are
gwen, and p > 0, the gain of the adaptation law, is given. Also let
| yas ||-£—[| y, || +8, where 6 is an arbitrary small positive number. If
the gain k is given by

Y yay |
= 2
e (2.20)

- {Phugllel o el )50 @
and the input u(t) is given by (2.6), then
V3 <0 for || s||= e (2.22)
holds along the trajectory of the system (2.1), where V3(t) is a Lyapunov
candidate:
Vilt) = 58"s + 501 =7 (2.23)
i

Proof: Differentiating V3(t) along (2.13), one obtains the following
relation provided that || s ||> Ae, by using the information on the
modeling error of (2.3) and (2.8), the feedback gain & given by (2.20),
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and the parameter adaptation law (2.21).
- 1 =1,
Vs = os'(n—kls)=2(v=AN

< vllya sl =kl s =(v=3) ll yar Il s

< sl (B yas | —kAe) =0 (2.24)
Thus one gets V3 < 0 provided that || s ||> Ae. This completes the
proof. |

Remark 2.1 If || v, || is non-zero provided that || s ||> e, one can
replace || yay || by | ya |-
Based on the above Lemma, the following result is obtained.

[Theorem 2.2 ] Consider the manipulator given by (2.1) that
satisfies Assumptions 2.1 to 2.3. Suppose that 84 is given, and €p
and €y, the specified tracking precision, are also given. Moreover the
adaptation gain p and the initial value ¥ are given. If e(< €p) is given,
and the control law (2.6) whose feedback gains, A and k, are given as
(2.10), (2.20), and (2.21), is applied to the manipulator, then there
exists a finite time T'(> tg) which satisfies

| e®) l<er. |l elt)ll<ev Vt>T (2-25.)

Proof: First, we show the boundedness of all the signals in the system.
Noting that 4 = 0 holds when || s ||< Ae, it is easily verified by using
Lemma 2.1 that V3(t) of (2.23) is bounded for any ¢. Therefore one
obtains that 5 and s are bounded. Let the maximum value of || s || be
Smaz- Lhen one gets

| e(t) < Smaz/A Vi > to (2.26)
in the same way as (2.18) and (2.19) of the robust control. So 8 is
bounded. Moreover from the boundedness of e and s, it is obtained
that 8 is bounded. Therefore it is proved that w is bounded and so is
6.
Next, we prove that there exists a finite time ¢ 5(> t¢) such that

|| s(t) I< Aep Vt >ty (2.27)
We consider the time ¢;;(i = 0,1;j5 = 1,2,---) such that
|| s(gi;) l|l= Ae (2.28)

and
| s(t) |2 Ae Vit € [qo5, q1;] (2.29)
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Since the proof of (2.27) is trivial in the case that j is finite, only the
case that ¢;; (¢ = 1,2) is an infinite sequence in j is considered. Then
since s(t) is continuous in ¢ and $(t) is bounded, there exists a positive
constant £; which satisfies the following condition for any j:

@) 1| = Il s(q0s) Il < 1| g —qo | V€ [g05,15] (2.30)
On the other hand, let Ag; 2 qi; —qoj (> 0), then Ag; converges to zero
as j — oo. This is because, if Ag; is not a convergent sequence to zero,
which means that 3332, Ag; is infinite, then it is inconsistent with the
boundedness of 4 obtained by (2.21). Thus there exists some N which
satisfies the following condition provided that ep > ¢ :

Mep — :
| Ag; |< 22 =€) Wiz N (2.31)
€1

Therefore from (2.28), (2.30), and (2.31), one obtains that there exists

a finite time tN(é qon) Which satisfies the condition of (2.27).

Lastly by using (2.14) and (2.27), the relation (2.25) is proved in
a similar way to the second part of the proof of Theorem 2.1. This
completes the proof. |

This theorem shows that the tracking error precision is explicitly
specified based on the quantitative relation between the control error
and the design parameters. Note that the above point was not clear
in the conventional adaptive robust control method (27, 21, 81, 24,
73]. Furthermore, the structure of the proposed controller is much
simpler than the conventional ones. For example, one needs only one
parameter adaptation law (2.21), and its formulation is quite clear. The
employment of Feature 2.2 enabled this kind of simplification.

Compared with the robust control method in section 2.3, the pro-
posed adaptive robust control method has the advantages that the feed-
back gain is automatically determined by using the parameter adapta-
tion law (2.21), and that % is independent of a priori information on
{2. The parameter adaptation law has the following physical interpre-
tation. If the norm of s is greater than or equal to the specified value
(i.e., Ag), then the feedback gain k is considered to be too small, so
3 is increased (i.e., 7 > 0). Otherwise, the gain k is considered to be
sufficiently large, so % is not renewed (i.e., "? = 0). Thus one can expect
that the adaptation mechanism produces the necessary and minimum
feedback gain which provides the specified tracking accuracy. However
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one should note that the adaptive robust control method achieves the
specified tracking accuracy only in the steady-state, while the robust
control method achieves it all the time.

Finally, the proposed method is compared to the adaptive control
methods (e.g. [50, 113, 92]). The proposed miethod adjusts the feed-
back gain so as to achieve the specified tracking precision, while the
adaptive control methods try to do the on-line estimation of the phys-
ical parameters. Therefore these two methods are different from each
other in essence. The proposed method is easy to cope with the unex-
pected disturbances, since the robustness of the proposed method relies
on the feedback structure.

2.5 Experiment

In this section, the validity of the proposed adaptive robust control
method is demonstrated by some experiments. In these experiments,
the validity from the following viewpoint is considered.
<V1> Will the proposed adaptive robust control achieve the spec-
ified tracking precision after some finite time without any a priori in-
formation on the uncertainty ?
<V2> Will the feedback gain of the adaptive robust control method
become smaller than that of the robust control method for the same
specified tracking precision 7

For the experiment, a 2 link Direct-Drive (for simplicity, DD) arm
built by Shin Meiwa Industry Co., LTD. is used (see Fig.2.1). The
length of link 1 and 2 is 250(mm) and 300(mm) respectively. The joint
angle and angular velocity are detected by an optical encoder at each
joint, and are sent through a PI/O board to the host computer (NEC
PC-9801DA with an 80387 numerical processor). The signal of each
joint driving input is supplied through a D/A converter to a driver
amplifier. Assembler and C language are used. Sampling period is 1.36
ms.

Now in order to design the controller, the model of this DD arm
is given as follows. Let m;, I;, l;, and lj; denote the mass of link ¢,
the moment of inertia of link ¢ about the center of mass, the length of
link 7, and the distance between joint ¢ and the center of mass of link
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Figure 2.1: 2 link DD arm
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Figure 2.2: Model of 2 link arm

t (¢ = 1,2), respectively. The physical parameters ¢;, ¢, and ¢3 are
defined as ¢; = mill) + I + mali, o = malilys, and @3 = mglgg + Ip.
Then the dynamic equation of the manipulator shown in Fig.2.2 is
described by
M(¢,0)0 + h(},0,0) = u (2.32)
0 =100,,05]", w=[uyu]", &=][p1, ¢ ¢s]"
¢1+ @3+ 2¢2Cy  d3 + $2Cs

M@0 =" srme, 4
5 =5 2
h(¢,6,6) = ¢3ng;g§ +62) ]

where S; £ sin 8;, C; = cost; (j=1,2). Therefore E and y of (2.2)
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can he selected as follows.

¢1+d3 @3 202 ¢2 P O
BO=|"6" 6 ¢ 0 0 &
= 9‘1 E-
2
Cab;
Ca0s
—S55(26,05 + 9%)
i S,6? y
Although we do not have any a priori information on the range 2, we
assume that the estimates of ¢; (i =1,2,3), ;, are given as ¢; = 1.8,
¢'2—048 and¢3—049

The desired trajectory of the end effector is given by

z4 = 0.35cos(mt) (m)

yg = 0.35 (m) for 0<t<6.0(s)
which has the period of 2 seconds (see Fig.2.2). The desired trajectory
of each joint (841, 842) is calculated from (z4, y4) in advance. The initial
errors of position and velocity are e(0) = o and e(0) = o, respectively.

In this situation, the following two experiments are made.
Experiment I  This experiment is concerned with [V1]. The tracking
precision is specified as ep = 0.03 and ey = 0.6 in the proposed adaptive
robust control. Then one obtains A = 10.0 from (2.10) and £ = 0.0299
from ¢ < ep. Also set the initial estimate in (2.21) as 5(0) = 0.0, the
adaptation gain in (2.21) as p = 0.35, and 6 in (2.20) and (2.21) as
6 =0.01.

Fig.2.3 shows the result. Fig.2.3(a) and (b) show || s ||, the norm of
the extended error, and 7, the parameter estimate. From these figures,
one can see the following: the parameter estimate 4 is adjusted when
the norm of s is greater than or equal to Ae, and after the second
period (2 seconds), the norm of s is smaller than Ae and 7 is not
renewed. Fig.2.3(c) and (d) show the feedback gain k and the control
error norm || e ||, respectively. After the second period (2 seconds), an
appropriate feedback gain is obtained to achieve the specified tracking
error precision. A similar result concerning the velocity error € has also
been obtained. Moreover Fig.2.3(e) shows the joint driving input, and
so we can see that the input is very smooth. Therefore the validity

y(6,6,8) =

(2.33)
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Figure 2.3: Experimental results of the adaptive robust control: (a)
Extended error; (b) Parameter estimate; (c) Feedback gain; (d) Position
error; (e) Input torque.
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Figure 2.4: Experimental results of the robust control

: (a) Feedback
gain; (b) Position error; (c) Input torque.
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about [V1] is verified from these results.
Experiment II  In this experiment, the robust control in section
2.3 is applied to this arm and [V2] is discussed. It is assumed that
the estimation error of ¢;(i = 1,2,3) is within £20%, and by using
this information, v in (2.11) is determined as v = 3.39. First the same
tracking precision as in Experiment I is set, that is, ep = 0.03 and
gy = 0.6. However in this case, remarkable chattering occurred in the
joint driving input, and the real trajectory could not track the desired
trajectory at all. This is because the feedback gain is too large. So
the specified tracking precision is set as ép = 0.2 and ey = 4.0. Then
A = 10.0. Experimental results for this case is shown in Fig.2.4. Even in
this case, we can see that the chattering is very large in Fig.2.4(c), and
that the real control error is about one tenth of the specified precision in
Fig.2.4(b). This is the result of too high gain feedback for the specified
precision as shown Fig.2.4(a). Certainly, the feedback gain depends on
the information on the uncertainty, but for example, even in the case
that the real parameters exist within £10% of the estimated values,
v is 4 times larger than in the adaptive robust control of Experiment
I. In this way the evaluation of the bound of uncertainty, 7, tends
to be conservative in the robust control method. On the other hand,
Fig.2.3(d) shows that the bound of the norm of control error is about
60% of the specified tracking precision in the adaptive robust control
method. This means that the feedback gain is almost necessary and
minimum for the specified precision. Furthermore, the adaptation gain
p is reset as p = 0.3 in order to achieve the same specified precision by
a smaller feedback gain. In this case, the feedback gain is 90 % of the
case of p = 0.35, and the bound of the norm of control error is about
70% of the specified tracking precision. From these results, we confirm
the usefulness of the proposed adaptive robust control law with respect
to [V2].

The same results about [V1] and [V2] for several different values of
ep and ey have also been obtained. These results show the validity of
the proposed adaptive robust control.

Remark 2.2 In this ezperimental system, there exists about £20 %
torque distortion because of the fact that the motor driver is not ad-
justed well. In spite of this wrong adjustment, the proposed method has
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achieved the specified error precision. Probably this is because of the fact
that the torque uncertainty s acted on the adaptive robust controller as
something like the perturbation of the physical parameters.

2.6 Conclusion

The main results obtained in this chapter are summarized as follows.

(i) A new robust control scheme of robot manipulators with uncer-
tainty has been proposed, which is almost as simple as that of
the dynamic control method, and has a less conservative evalu-
ation in determining the feedback gain, because it makes use of
the effective expression (i.e., <P2>) of the dynamics of the robot
manipulator.

(ii) Based on the above robust control, a new adaptive robust con-
trol scheme of robot manipulators with uncertainty has been pro-
posed, in addition to the merits in (i), where the tracking precision
is explicitly specified and, as a result, it is possible to evaluate if
the feedback gain is small enough for the specified tracking pre-
cision.

(iii) By the experiment of the trajectory control of a 2 link DD arm,
it has been verified that the feedback gain of the adaptive robust
control method is much smaller than that of the robust control
method, and is almost necessary and minimum for the specified
tracking precision.
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ROBUST CONTROL OF
ROBOT MANIPULATORS
BASED ON
ACCELERATION
INFORMATION

3.1 Introduction

In the previous chapter, a robust tracking control method of robot
manipulators is treated, where only information on position and ve-
locity is available. In the case of the manipulator, it is relatively ease
to get acceleration information by acceleration sensors, as well as the
position and velocity information. So what merits will be added in the
robust control, if acceleration information is available in addition to the
position and velocity information? The purpose of this chapter is to
clarify the merits of acceleration information in the robust control of
robot manipulators.

Acceleration feedback control methods of robot manipulators have
been studied since the early 1980s (e.g., [43]). In the late 1980s, a
scheme which is called a disturbance observer [87, 90, 125] or a scheme
which is called a time delay control scheme [83, 146, 49, 48] have been

29
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developed independently. However, both schemes are based on the
same idea that the interference force in each arm or the uncertainty in
the physical parameters is compensated by feeding back the difference
between the input and the acceleration, and the control problem for the
multi-variable system is reduced to that for a single-input single-output
system on each joint. However, there is little discussion on the reason
why the uncertainty is compensated by such an acceleration feedback
system, which is the essence of this control system, or what problems
there are in this method. In addition, in the analysis of the effect of
the uncertainty on the closed loop system, the disturbance observer
treats the manipulator which originally belongs to a class of nonlinear
systems as a linear system with a step disturbance, and the time-delay
control scheme assumes that the state at some time is equivalent to
the state at the time before one step. Both methods lacks the rigorous
discussion. It is needed to analyze the effect of the uncertainty on the
control error rigorously.

In the first part of this chapter, the essence of the conventional ac-
celeration feedback control system is made clear, and it is shown what
their problems are. Second, a new robust control scheme based on the
acceleration information is proposed, which overcomes the above prob-
lems in the conventional methods. Especially, the proposed method
shows one idea on how to express the uncertainty which exists in the
manipulator and how to compensate for it by fully exploiting acceler-
ation information. Finally, the advantages of acceleration information
for the proposed scheme are clarified, and simulation results show the
effectiveness of the proposed scheme.

3.2 Discussion on conventional accelera-
tion feedback systems

In this section, the essence of conventional acceleration feedback
systems is discussed, and some disadvantages are clarified.
Consider a manipulator with n degrees of freedom whose dynamics
is described by the following equation :
M(,0)0 + h(9,0,60) = u (3.1)
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robot

Figure 3.1: Conventional control system

where 8 2 [61,02,...,0,)7 is the n-dimensional vector of joint displace-
ments, u is the n-dimensional joint torque input vector, M (¢, 8) is the
n X n manipulator inertia matrix, and h(¢, @, 8) is the n-dimensional
vector that represents the nonlinear terms such as centrifugal, Coriolis,
frictional, and gravitational forces.
Then in the conventional approach, (3.1) is rewritten as follows.
I =u+[(I'-M(¢,0))8 —h(¢,06,0)] (3.2)

where I' £ diag{v1,72,- -, 7}, and %(¢ = 1,2,---,n) is a positive
number. Here assume that the second term of the right-hand side
in (3.2) is a disturbance to the system I'6 = u. Then if the angler
acceleration @ is available by some sensor, we can know the value of
the disturbance, i.e., the second term of the right-hand side in (3.2) by
calculating the term I"6 —w. Thus the following controller is considered.
U=T4+T
{ T=u-T 9 (33)
where T is an input to compensate for the disturbance, and 7 is a new
input. This control system is shown in Fig.3.1. The controller given by
(3.3) leads to the following closed loop system.
re=r (3.4)
Therefore, a control problem for multi-input multi-output nonlinear
system given by (3.1) is reduced to a control problem for a decoupled
system, i.e., each joint system. In addition, in the conventional ap-
proach using acceleration information, we do not have to know the real
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e co robot

Figure 3.2: Equivalent control system

value of the physical parameters, and the nonlinearity of the manip-
ulator is compensated for by acceleration feedback. This may be one
feature of the conventional approach.

Why can the conventional approach using acceleration information
compensate for the nonlinearity of the manipulator without the real
values of the physical parameters and reduce a multivariable system to
a decoupled system? Then Fig.3.1 is rewritten to Fig.3.2 | where we can
find the essence of the conventional acceleration feedback system: the
conventional system contains a infinite feedback gain at all frequency,
which compensates for the nonlinearity of the manipulator. In addition,
by feeding back the acceleration of each joint to each corresponding
joint, namely, by making a matrix I" diagonal, the system in question
is decoupled.

In such a system, there are the following problems. First, we cannot
define the closed loop system which includes infinite gain mathemati-
cally, although we can write the system in a block diagram. In addition,
we cannot implement the system which includes the infinite gain, be-
cause the system has more or less time lag. ! Second, it is difficult
to estimate the effect of the uncertainty which cannot be compensated
for when the 7 is fed back through some filter in order to eliminate the

'Hsia [49] and Mizutani [82] discuss the infinite gain of the closed loop system.
However we discuss it here, from a different point of view in the sense that we do
not share the advantages of the infinite gain of the conventional approach, while
they do.
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disadvantage due to the infinite gain. In fact, the disturbance observer
(87, 90, 125] uses some filter such as a low-pass filter. However, the
uncertainty which cannot be compensated for owing to the use of the
filter is regarded as a step disturbance, and its effect on the system
is discussed in the field of the linear system theory, because it is not
easy to estimate its effect rigorously. In addition, in the case of the
time-delay control method, which corresponds to the case that (3.3) is
replaced by
{ u(t) = 7(t) + () .

et - (3.5)

F(t)=u(t—t,)—T0(t—1t,)
where 1y is the time lag, the effect of the uncertainty which cannot be
compensated for is not considered since supposing that w(t—¢;) = w(t)
and B(t —t,) = 6(t) [146].

Third, the time-delay control method does not theoretically guaran-
tee the internal stability of the closed loop system, that is, the bound-
edness of all the signals of the closed loop system, because the closed
loop system becomes a nonlinear system including the time lag, and it
is much difficult to analyze the stability [48].

The above disadvantages result from feedback of the input signal as
shown in Fig.3.1. So in the next section, a new approach using accelera-
tion information will be given to eliminate all the above disadvantages.

3.3 Robust control based on acceleration
information

The discussion in section 3.2 gives the following remarks when the un-
certainty such as nonlinearity is compensated for by acceleration feed-
back.

(a) There is no infinite gain in the closed loop system.

(b) The effect of the uncertainty which cannot be compensated for
on the control error is rigorously estimated, namely, for a given
desired trajectory 64(¢t) € R" with twice derivatives which are

bounded, and a given design parameter 2 [e1,€2,--,&n]T, the
control error e 2 8(t) — B4(t) satisfies
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Iei(t) IS & Vtzoa i=l:"':n

when e(0) = o and ¢(0) = o.

(c) It is guaranteed that all the signal of the closed loop system is
bounded.

Now a control method satisfying the above specifications is given. In
the same way as section 2.2, we can express the left-hand side of (3.1)
as

M(4,6)6 + h(¢,0,0) = E(¢)y(6,6,0) (3.6)
where E(¢) is an appropriate dimensional matrix consisting of physical
parameters, and y(@,8,80) is an appropriate dimensional vector whose
elements are known functions of @, @, and @ (see section 3.5).

Some assumptions are also made.

[Assumption 3.1 ] 6, 6, and 8 are measurable. |

[Assumption 3.2 | The values of the physical parameter vector
¢ may be unknown, but it is known that ¢ exists in a certain bounded
region {2. |

[Assumption 3.3] ¢, a bounded estimate of ¢, is given. |

For simplicity, we use the notations M h and E in place of

M(9,8), h($,6,6), and E().
One can get, from (3.6) and E' E-E,
M(6)6 + h(6,8) = u + Ey(6.6 ,0) (3.7)
Then by regarding the second term of the right-hand side of (3.7) as
a disturbance to the system MO + h = u, we consider the following
controller.

u:uq‘l_j:upz—l- Up (3.8)
up) = MG“+ h (3.9)
Ups = -Ire (310)

where up; is an input which compensates for the nonlinearity of the
manipulator as possible, by using the estimated value of the physical
parameters, and upy is an input which gives a desired inertia of the ma-
nipulator. A matrix I"is nonsingular, but it is not necessarily diagonal.
ug is an input to compensate for the uncertainty which cannot be com-
pensated for by wpi, namely, the modeling error. Then substituting
(3.8) ~ (3.10) into (3.7), we get
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e =ugp+ Ey(9,6,6) (3.11)
which corresponds to (3.4). Therefore, the control problem for (3.7) is
reduced to that for the case of I'8 = ug where the term Ey(8,8,0)
is regarded as a disturbance term. In addition, the term Evy has the
following property. There is a non-negative function gi(fi,!'?,é)' (i =
1,2,---,n) such that, for all 6, 6, and 0,

g,(B 6 B) >| a;y(0, 0 ,0) | . (3.12)
where a; is the ith row vector of a matrix I""*E. An example of g; in
the case of a 2 d.o.f manipulator is shown in section 3.5. In the next
discussion, a function g; satisfying (3.12) is assumed to be given.

Now we consider the following input as a ug.
where A = diag{A1, A2, -, A\n},and X; > 0(i =1,2,---,n)isa posnwe
constant. A is a design parameter that specifies the control precision.
K is a time-varying gain matrix, and K =diag{k, ko, -+, ks }. Then
substituting (3.13) into (3.11), we get the error equation:

é+(A+K)e+KAe=TI""Ey(8,6,0) (3.14)
or equivalently )

+()\, +}C1‘)é,'+k‘,'/\i€{ = aiy(e,é,é) = 1,"',TL (315)
Based on this equation, the following theorem is obtained, where the
relation between the design parameters A; and k; and the control error
e; 1s clarified.

[Theorem 3.1 | Consider the manipulator given by (5.1) that
satisfies Assumptions 3.1 to 3.3. Suppose a desired trajectory 8, with
twice derivatives which are bounded is given, and a design parameter
vector € and a matriz A are given. Assume also that a time-varying
gain k; is given by

ki(0,6,6) = A—-gi(B 6,6) (3.16)
(i =1,2,---,n). Then if the control law given by (3.8), (3.9), (3.10),

and (3.18) is applied to the manipulator subject to e(0) = &(0) = 0,
then

| e,;(t) |S Eiy | é,'(t) |S 2)\,‘6,‘ (317)
holds for allt >0, and i = 1,2,---,n, when the angular acceleration @
is not infinite for any finite time. |

Proof: Define
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8 —é.. é; + Ae; (318)
Then, from (3.15) we get o
$i+ kis; = a;y(0,0,0) (3.19)

which is the first order differential equation. Thus the bound of s; is
estimated. Consider as a non-negative function

= %Sg (3.20)
Then differentiating (3.20) along (3.19), one gets
Vi = —s;kis; + 5:a0,9(6,6,0) (3.21)
Eqns.(3.16) and (3.21) imply
Vi = —%: | s: |? +s:0:4(0,8,86) (3.22)

Then if the acceleration @ is not infinite for any finite time, one obtains,
from (3.12) and (3.22),

Vi < —f; lsi|(]si] —eh)  VE>0 (3.23)
which means o

|si|>Nes = V<0 (3.24)
Since it is assumed that e;(0) = 0 and €;(0) = 0, (3.24) implies

l 8 ,< /\;'E,; Vi >0 (325)
Next, the bound of e; is estimated. It can be verified that

| e |< e; Yi>0 (3.26)

in the same way as the case of s;. Also one can show the case of ¢;, by
noting

| & |<| si | +Xi | e | Vi>0 (3.27)
This completes the proof. [ |

It has been shown that the specification (b) holds under the assump-
tion that the acceleration is not infinite in Theorem 3.1. Now based
on the result of Theorem 3.1, a design procedure of the control system
satisfying the specifications (b) and (c) is given.

It can be easily verified that, for a g = [g, gy, -, g,)T satisfying
(3.12), there exist a matrix K(6, 8, 04,0 4) and a vector f(8, 8, 04, éd)
such that the equation

I'K(6,6,8)(¢+ Ae) = K0 + (3.28)
holds, if one choose g; as an appropriate function. An example on (3.28)
is shown in section 3.5. Then the design procedure is as follows,
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Step 1 Give a desired trajectory 84,84,8, and a specified tracking pre-
cision € and A.

Step 2 Choose a function g satisfying (3.12) and find a matrix K sat-
isfying (3.28).

Step 3 Consider a set ¥, which consists of all the element (6,8) to
be characterized by (84,64) and (3.17) (See the definition of ¥,
in (3.A3) of Appendix). Then find a matrix I" such that, for all
(0,0) € W, '

det(M —M+TI'+K)#0 (3.29)

holds.

Step 4 Give a control law which composed of (3.8), (3.9), (3.10), and
(3.13).

It can be proven that a controller designed according to the above
procedure guarantees the boundedness of the acceleration for all (8, 9) €
¥, and satisfies the specifications (b) and (¢) by Theorem 3.1. The
proof is shown in Appendix.

In section 3.2, it is clarified that, in the case of conventional accelera-
tion feedback systems, the nonlinearity of a manipulator is compensated
for by high gain feedback, which is due to positive feedback of an input.
On the other hand, the controller proposed here includes a nonlinear
compensation, i.e., wp;, which compensates for a known nonlinearity
and a feedback with respect to position and velocity, i.e. wg, which
compensates for a unknown nonlinearity, as shown in Fig.3.3. Hence
the proposed controller has no infinite gain.

Therefore, the controller designed according to the proposed design
procedure satisfies three specifications (a), (b) and (c).

Remark 3.1 The matriz I' which corresponds to a desired inertia ma-
triz needs to be a nonsingular one satisfying (3.29), which does not need
to be positive definite. |
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h(6,8) | 8,8
Bd,éd,éd robust servo Up + u
— " ——-*—- robot
compensation o Rl
§
M(9)-T

Figure 3.3: Proposed control system

3.4 Discussion

3.4.1 Advantages of acceleration information

Some merits of acceleration information are clarified here, comparing
a control method using acceleration information with that without it.
The former corresponds to the proposed control method, and the latter
corresponds to a robust control method that is treated in chapter 2.
In the robust control method treated in chapter 2, which uses no
acceleration information, the following control law is applied to a robot
manipulator (3.1).
w=M{B;—(A+k)e—k)e}+h (3.30)
where ) is a positive constant, and k = k(6,8,0, — Aé). Then we get,
as an error equation, -
e+(A+kMM)e+ kXM Me
=M"Ey(6,0,0, — Aé) (3.31)
Based on this error equation, the appropriate feedback gain k& is given so
as to control the effect of the uncertainty. The acceleration information
is not required to calculate a gain k because the term in the right-hand
side of (3.31), which is concerned with the uncertainty, is independent
on the acceleration 8. However, since the uncertainty is appeared in
the term with the gain k in the right-hand side of (3.31), it is difficult to
estimate the effect of the uncertainty for each joint, and it is estimated
for all joints altogether in terms of a singular value. This leads to
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a conservative estimation and a too high feedback gain. In addition,
although the robust control method treated in chapter 2 also achieves
the specified tracking precision, the control error is estimated in terms
of the Euclidean norm, and so the control error for each joint angler
cannot be specified independently. It is also required that M ~*M is a
co-positive definite matrix.

On the other hand, in the case of the robust control method pro-
posed here, which uses the acceleration information, the effect of the
uncertainty is estimated for each joint as you can easily see in (3.14),
and so the control error is specified for each joint angler. In addition,
we can give any desired inertia I', although it is required that I" and
M — M +I' + K are nonsingular.

In summary, the advantages of the use of the acceleration information
are : (i) the effect of the uncertainty on the control error is estimated
for each joint, and so the estimate is easier and is less conservative than
the case without acceleration information, (ii) the control precision can
be specified for each joint angler, and (iii) a larger class of the desired
inertia I" is specified.

3.4.2 Relation to the conventional control meth-
ods

It is stated -that the proposed robust control law given by (3.8),
(3.9), (3.10), and (3.13) includes the conventional control laws as a
special case.

When M = M and h = h in (3.9), the control law is

w=M6+h—TI86+ug (3.32)
Then the control law given by (3.32) corresponds to the disturbance
observer (87, 90, 125] or the time delay control [83, 146, 49, 48], regard-
ing the term M6+ h — I'6 in (3.32) as an observer of the disturbance.
Note that, however, the proposed robust control law (3.32) does not
include the infinite gain in the closed loop system.

When I' = M in (3.10), the control law is

u=M{0;— (A+K)ée - KAe} +h (3.33)
Then the control law given by (3.33) corresponds to that in the dynamic
control method [77] or in the robust control method obtained in chapter



40 Chapter 3 Robust control based on Acceleration Information

jointl

Figure 3.4: Model of 2 d.o.f. manipulator

2, which use no acceleration information. Eq. (3.33) still requires the
acceleration information, but if we can estimate the maximum value of
the acceleration in (3.A4) according to the design procedure in section
3.3 and the acceleration @ in k is replaced by the maximum value,
then the controller achieves a specified tracking precision for each joint
angler and requires no acceleration information.

3.5 Simulation

This section shows a simulation result of the trajectory control of a
2 d.o.f. manipulator shown in Fig.3.4 to verify the effectiveness of the
proposed control method.

Let the mass of the jth link be m;, the moment of the inertia about
the center of the mass of the jth link be I;, the length of the jth link
be [}, the distance between the jth joint and the center of the mass of
the jth link be I ;(7 = 1,2). Also let

(,'!51 = m.lﬁl + I1 + mzlf
b2 = malyly
by = mally + I
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Table 3.1: Unknown parameters of manipulator

Unknown | Inf. | Sup. | Real | Nominal
parameter | value | value | value | value
my (kg) 6.0 8.0 6.0 7.0
mo (kg) 6.0 8.0 6.0 7.0

I (kgm?) [ 02 | 04 | 0.2 0.3
I (kgm?) | 0.2 | 04 | 02 0.3

Then we get the dynamic equation of the manipulator in Fig.3.4:

(4; 8)8 + h(,6,0) = u (3.34)
— [611 92] u = [ul,ﬂzl
b1 + @3 + 20205 3+ @525'2
M0 = | LT |
£k, T = [ ~6252(20165 + 6}
$2.52607

where S; 2 sin 8; and Cj 2 cos 6; (j =1,2), and the gravity term is
omitted for sunphcn;y Set E and vy as
[¢1+¢3 3 2¢2 ¢2 @2 0 }
¢35 2 0 0 ¢

2 '

0

- 0291
y(919=9) - 0282
—52(2616_?2 +62)
1 207
which are verified to satisfy (3.6). The real and estimated values of the
physical parameters are shown in Table 3.1. Also l; =y = 0.5(m) and
lg1 = lgo = 0.25(m) are used.

Now a robust controller is designed according to the design procedure

proposed in section 3.3.

Step 1 : For the desired trajectory given by
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041(t) = — cos(mt/3)

Bao(t) = —sin(rt/3) —2.0 for 0<t<6.0 (3.35)

Set 0.01(rad) as control precision with respect to the position, and
0.02(rad/s) as control precision with respect to the velocity for
each joint. Then from (3.17), we get &; = 0.01 and A; = 1.0(¢ =
1,2).

Step 2 : Let c,gt- be the estimate of ¢;, and
a,-=max|¢,--—$,—| i=123

Also let oy be an appropriate positive constant. Then if one
chooses a function g(8,0,6) as

gz['n 0 -[a1+a3 a3 2as @y s O]

0 72 ] Qg ag a O 0 o
’- | 61 |
| 62| (3.36)
L | Ca [ 61 | L] oa
| C2 || 82| oy
| S2(261682 + 63) |
| S267 |

where I' = diag{y1,712}(% > 0), one can verify that g given by
(3.36) satisfies (3.12). According to this, one gets a; = 0.4125,
ay = 0.125, and a3 = 0.1625. Also set @y = 0.01. Then K of

(3.28) is given by
ay + a3 + 2a9 | Co| az+ay | Cs |

_Si__ 0
K= €141 5
0 E_i_g ” Oc3+a'g|02 | g

y [ sgn(6;) 0
0 sgn(fs)

where sgn(-) is a sign function.

Step 3 : Set 71 = 5.0 and 7, = 5.0 so as to satisfy (3.29) for all
(6,0) € ¥,
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Figure 3.5: Simulation results

Step 4 : The controller is given by (3.8), (3.9), (3.10), and (3.13).

The sampling period is 1(msec).

Then simulation results are shown in Fig.3.5, which shows that the
control error for each joint angle is within the specified tracking preci-
sion, and the control inputs are bounded. It is also verified that all the
signals are bounded in this simulation. The simulation results show the
validity of the proposed control method.

3.6 Conclusion

The main results obtained in this chapter are summarized as follows.

(i) It has been pointed out that the conventional acceleration feed-
back system compensates for the uncertainty by high gain feed-
back essentially, and the use of acceleration feedback gain matrix
which is diagonal reduces a multivariable control problem to a
decoupled control problem.

(ii) The disadvantages of the conventional acceleration feedback method
have been clarified; (a) there exists a infinite feedback gain in the
closed loop system, (b) there is no analytic discussion on the ef-
fect of the uncertainty which cannot be compensated for on the
control error, and (c) there is no discussion on the boundedness
of all the signals of the closed loop systems.
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(iii) A robust tracking control methods using acceleration information
for a robot manipulator with uncertainties has been proposed,
where the acceleration information is fully exploited and the dis-
advantages of the conventional control methods are overcome.

(iv) Comparing with the robust control methods without accelera-
tion information, the advantages of the proposed method with
acceleration information have been shown; (a) the effect of the
uncertainty on the control error is estimated for each joint, so
the estimate is less conservative, (b) the control precision can be
specified for each joint angler independently, and (c) we can give
a larger class of a desired inertia.

Appendix

Proof:  Define the following set for a given desired trajectory 8,(t)
and 6,4(t), a given vector £ = [£},--+,&,]T € R™, and a given matrix
A = diag{Ay,---, A} € R™,

Po(6a(t),04(t),€, A)

A . >
= {(0(),0()) | |6 — 04 |< &, | 0; — 8a: | < 206,
i=1,---,n} (3.A1)
In addition let us define the following sets given by
W, 2 Wo(04(t),0u(t),w, A) (3.A2)
T, £ Wo(04(t), 0ult), €, A) (3.A3)

where w € R" is a constant vector that satisfies ¥, C ¥, namely,
€ S w;
From (3.1), (3.8), (3.9), (3.10), (3.13), (3.16), and (3.28), we get
(M-M+TI'-K)6
=I'(64— Aé) + h(6,6) ~ h(6,6) - £(6,0,6,,0,)
‘ (3.A4)

Then it is verified that _

| 6 |< o0, v(8,8) e v, ' (3.A5)
if the following relation holds for all (6,0) € w,,.

det(tM —M+T+K)#0 (3.A6)
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Now suppose that there exists a matrix I" satisfying (3.A6) for all
(8,0) € W, Let
v, = {S(t) | |8 |€ dwy,i=1,-+-,m} (3.A7)
‘Then it is verified that the acceleration € is bounded for all s € ¥,,
noting that (8,8) € ¥, for all s € ¥, because of the assumption on the
initial state error. Hence (3.24) in the proof of Theorem 3.1 holds for all
8 € ¥,. It can also be shown that (3.25) holds because a nonnegative
function V; of (3.20) has a maximum value when | s; |< A;z;, and
(3.17) holds. Therefore if we use a matrix I’ which satisfies (3.A6) for
(8,08) € &, (3.17) holds. It can also be verified that, when a specified
control precision &, A are given in advance, we have only to use a
matrix T which satisfies (3.A6) for all (8,8) € &,.
In summary, if we design a control law according to the design proce-
dure given by section 3.3, then (3.17) holds, the boundedness of @ and
8 is always guaranteed, and so is the boundedness of 8. That is to say,
the specifications (a) to (c) are achieved.
Finally, the existence of I' in (3.A6) is discussed. Assume that I' is
given by I' = diag{y1,72, -, }(7: > 0), and g; satisfying (3.12) and
(3.28) is given by g; = v:g;. Let N EM-M+K. If
det(I+I''IN)#0 (3.A8)
then (3.29) holds because det(I") # 0. Note that K does not contain
7:(t = 1,2,--+,n). Hence if det(I") # 0 holds, the fact that the eigen-
values of I'"' N are —1 is equivalent to (3.A6). Thus, for example, if
there exists a I'" such that, for all IV,
Tmin (F) > gfnax(N) (BAQ)
then (3.A6) holds, where 0,,i,(+) and Opmqz(-) are the minimum singular
value and the maximum singular value, respectively.
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Chapter 4

ROBUST CONTROL OF
ROBOT MANTPULATORS
BASED ON JOINT

TORQUE INFORMATION

4.1 Introduction

In the previous chapter, a robust tracking control method of robot
manipulators is treated where acceralation informations are available.
In the case of a manipulator, it is not so difficult to get joint torque
information using a torque sensor built in each joint. This chapter
focuses on the robust control of robot manipulators in the case that
the joint torque information is available.

In the past decade, various methods utilizing the information of a
joint torque sensor in each joint have been developed to improve the
torque control performance of actuators of a robot arm [141, 76, 5,
101, 135]. Some experiments have shown that the utilization of joint
torque information is effective to compensate for the nonlinearity of the
actuator such as friction.

Recently, using a different viewpoint from the above methods, ro-
bust tracking control methods using joint torque information have been
proposed by Kosuge [68, 69] and Hashimoto [42]. In these methods, un-
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certainties of links and an end-effector are regarded as a part of load on
each joint axis, and the joint torque information, which is equivalent
to the load on the joint axes, is fed back to the joint driving torque
to cancel out the dynamies, including uncertainty. Hence the resul-
tant control system becomes robust. To design a controller based on
this idea, a model of manipulators in the case where torque sensors
are available is proposed by Kosuge [68], whose equation gives the in-
verse dynamics in a recursive form. Although the dynamic equation
is effective in calculating the inverse dynamics, it is not convenient for
control system design in the case where the coupling terms of the links
and the modeling error of the actuator system are not negligible. This
is because the dynamic equation has no explicit expression of the to-
tal structure which is inherently a nonlinear multi-input/multi-output
system. So the dynamic equation that explicitly expresses the total
structure is desired for the design of the control system.

In this chapter, a robust control method of robot manipulators based
on joint torque information is proposed. First, a dynamic equation of
a robot manipulator with torque sensors is derived, where a nonlinear
multivariable structure is explicitly described. Some features on the
structure are clarified. For instance, the coefficient matrix of the joint
angular acceleration is nonsingular and lower triangular, and the total
dynamics are given in a form such that the link dynamics is implicitly
contained in the torque sensor signal. This dynamic equation makes
it possible to design the control system of a robot manipulator with
torque sensors based on the similar method used in the conventional
case without torque sensors, for example, the dynamic control method
(77].

Second, it is shown that the proposed dynamic equation is effec-
tive for the design of the robust control system against the uncertainty
of the actuator system, which has never been considered in previous
methods using torque information. The proposed controller achieves
the specified tracking precision in the presence of the modeling error,
where torque information is fully exploited to compensate for the un-
certainty of the links and the load at the end-effector. In chapter 2,
the robust tracking control method is treated in the case where the
joint torque sensor is not available, which achieves the specified track-
ing performance against parameter uncertainties. Compared with the
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robust method in chapter 2, the proposed method needs less knowledge
about the uncertainties. For example, no a priori information on the
bounds of the uncertainties of the links and the load at the end-effector
is required, because these uncertainties are compensated for by torque
information. Furthermore, it is shown that the proposed method re-
quires less computational time to calculate the control input than the
conventional methods. Finally, some simulation results are given to
confirm the effectiveness of the nuse of joint torque information.

4.2 Model of a manipulator with joint
torque sensors

In this section, we derive a dynamic equation of the manipulator with
joint torque sensors, and state some features of this equation. Further-
more, we consider the derived dynamic equation from the viewpoint of
the control system design.

4.2.1 Derivation of dynamic equation

We consider a serial link manipulator with n rotary joints that has a
joint torque sensor in each joint. As is shown in Fig.4.1 , the dynamics
of each link are divided into two dynamic systems namely, the motor
system and the link system, by regarding each joint torque sensor as
the border, like Kosuge [68]: the motor system includes a rotor and
a speed reducer, and the link system is composed of a link. Then we
define coordinate frames as follows. The origin of coordinate frame X;
of the 7th link is set on the ith joint axis. The Z axis of X; 1s selected in
such a way that it aligns with the ith joint axis, and the unit vector in
the direction of the Z axis of ¥; is denoted by z;. The ith motor, which
drives the ith joint, is fixed to the (z—1)th link, and the origin of coordi-
nate frame X,,; of the 7th motor is set on the axis of rotation of the rotor
in the 1th motor, called the ith rotor. The Z axis of ¥,,; is selected in
such a way that it aligns with the axis of rotation of the ¢th rotor, and
the unit vector in the direction of the Z axis of ¥,; is denoted by z,,;.
Let the moment of inertia of the ith rotor about the axis of rotation
be I,,; and the viscous friction coefficient of the ith motor system be
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joint ¢

<=6 link i

| )

wy; =P _—joint torque sensor

?-‘Speed reducer

Zi

link i-1

rot0t >

Zmi

Figure 4.1: Joint model of a robot arm

bmi-  The output torque of the ¢th rotor is denoted by u;, and ug; de-
notes the coupling force by the other motor systems and link systems,
that is, the load exerted on the ith motor system that can be measured
by joint torque sensor on the ith joint. Moreover, we use the follow-

. , A A
ing notations: u = [uy,us,...,u,)T € R, us = [us1, Usp, ..., Usn|T €

Rn: ¢I g [Imlv!m%"':fmn]'ra ¢’B é [bmlabm%"'abmn]Ta and I' é

diag{~1,72,"**,Vn}, Where (> 1) represents the reduction ratio at
the 7th joint.
Now the following assumptions are made.

[Assumption 4.1 |  Each rotor is symmetric with respect to the
azis of rotation. | |

[Assumption 4.2 ]  The torsion at each joint due to the flexibility
of the torque sensor is small enough that it can be ignored, so the joint
azis is regarded as a rigid one.

[Assumption 4.3 ] The transmitted force does mot fail at the
speed reducer, and the inertia between the torque sensor and the speed
reducer is negligible.

Then the dynamic equation of the manipulator with joint torque
sensors is derived as follows:
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o1

M(¢116)é+h(¢11¢8'9:é)+F_1u.s =u (41)

A
where 8 = [01,0,,...,6,]T € R" is a joint angle vector, the (i,7) ele-
ment of M € R™", denoted by M;;, is
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Ivm"Yi if 1 =j

M;; 2 IizTiz; if i>5 (4.2)
0 if i< j
and the ith element of h € R", denoted by h;, is
B Yibi if t1=1,2
hi 240 e N (43)
Ii D > zhi( 2k X 25)00; + bivib
{ if 123

Here X denotes the vector product. See Appendix for the proof of
eq.(4.1).

Next we clarify some features of the dynamic equation given by
eq.(4.1).

[Feature 4.1 ]  Nonlinear terms M and h contain only the phys-
ical parameters of the motor systems, ¢; and ¢g. On the other hand,
the load u, that acts on the motor system consists of the dynamics of
link systems and external force.

Feature 4.2 The matriz M is nonsingular and lower triangu-
g g
lar.

[Feature 4.3 | The first and second terms of the left-hand side
of eq.(4.1) can be expressed as

M(¢,,60)6 + h(¢;, ¢5,0,0) = E(¢;,¢5)y(6,6,0) (4.4)
where E(¢;,¢p) is an appropriate dimensional matriz consisting of
physical parameters, and y(B,é, 9) is an appropriate dimensional vec-
tor whose elements are known functions of 6, 8, and 8. |

[Feature 4.4 ]  The diagonal element M;; of M 1s in proportion
to reduction ratio ;. So if the reduction ratio is high, then the effect of
the coupling term in the motor systems is small.
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4.2.2 Advantages of the derived dynamic equa-
tion
We discuss some advantages of the dynamic equation (4.1) from the

viewpoint of control system design. Let 7€ R" be a new input. The
following control law is considered.

u=I"lu,+7 (4.5)
Substituting eq.(4.5) into eq.(4.1), we obtain
M(¢;,0)0 + h(d;, ¢pp,0,0) =T (4.6)

This means that we do not have to consider the link dynamics at all
when the joint torque information is available, and that the control
problem of a robot manipulator can be reduced to that of the motor
system. Moreover we easily see that the control system of eq.(4.6) can
be designed in a similar way as the control method of the robot manip-
ulator without joint torque sensors (For example, Luh [77]). Namely,
the desired trajectory 64(t) is assumed to be given whose derivatives 8,4
and éd exist and are bounded, and the control law 7 is given as follows:

T=M(éd—Kdé—K.pe)+h (4.7)

where e ée—ed is the control error, and K, and K, € R"™" are
appropriate position and velocity gain matrices. Then from egs.(4.6),
(4.7), and 4.2, we obtain the error equation

ée+ K+ Kye=o0 (4.8)
Hence, if K, =k,I and Ky = kqI, where k, and k4 are positive con-
stants and I is a unit matrix, then e(t)— o(t —o0), and 8, 8, and 8 are
bounded. Furthermore, since u, is a function of 8, 9, 8, and external
force (note that the formulation of u, can be explicitly expressed by
Lagrangian method), the signal w, is bounded when the external force
is bounded. Therefore all the signals of the closed loop system given
by egs.(4.1), (4.5), and (4.7) are bounded.

Although the above discussion is about the joint servo system, it
is straightforward that the control system can be designed even in the
operational space. Now we consider the variable at the operational
coordinates given by » = f(6) € R". The relation between 7 and 6
is given by r =J8, where J is the Jacobian matrix. Then assuming
that J is nonsingular in a certain region of 8, we consider the following
control algorithm
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T=MJ (¥, - K4, ~ Kye, —J0)+h (4.9)
where T4 is a desired trajectory expressed in the operational coordi-
nates, and the control error is given by e, =r—ry. The error equation

in this case is similar to eq.(4.8), and we get the same result as the joint
servo system. '

Moreover, when the force at the end effector, denoted by f, is mea-
surable, the control law w can be given as

v=I"Yu,+JTf)+1 (4.10)
Substituting eq.(4.10) into eq.(4.1), we get
M($;,60)8 + h(¢;,¢5,0,0) =7+ JTf (4.11)

Therefore, the robust force control system with joint torque sensor feed-
back is designed in the same way as in the case of the robot manipulator
without joint torque sensors.

As a result, “we can design the control system of a robot manipula-
tor with joint torque sensors based on the similar method used in the
conventional case without joint torgue sensors . Although this result
is also pointed out by Kosuge [68], it is not clear because the dynamic
equation given in a recursive form dose not clarify the explicit structure
of the coupling term and whether M is nonsingular. On the other
hand, our dynamic equation, where the structure of the robot manip-
ulator with joint torque sensors is explicitly expressed, gives the above
result more clearly. Furthermore, the proposed dynamic equation is
effective for the design of robust control system against the uncertainty
of the actuator system, which has never been considered in previous
methods using joint torque information. It is stated in the next sec-
tiom.

4.3 Robust control design in the pres-
ence of motor system uncertainties

In this section, based on the dynamic equation in section 4.2, we take
the uncertainties of the motor system into consideration to establish a
more practical control system design, and propose a robust control
method that achieves the specified tracking accuracy in the presence
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of the modeling error, where joint torque information is fully utilized
to compensate for the uncertainty of link parameters etc.. Next we
state some advantages of our method, compared with the conventional
robust control methods without joint torque information.

We consider the following problem.

[Problem 4.1 ]  For the robot manipulator given by eq.(4.1), it
is assumed that the desired trajectory 84 is given, and that the tracking
precision ep and ey are given. Then find a control law such that

I e®) l<er, |l &) ll<ev (4.12)
holds for anyt > 0. i

We assume that e(0) = o and &(0) = o for simplicity, and that the
following assumption is made.

[Assumption 4.4 |  The values of the physical parameter vectors
¢; and ¢p are unknown, but it is known that ¢; and ¢p exist in
known and bounded regions Il; and Ilg, respectively. Moreover, the
estimates of ¢p; and ¢ g, denoted by t,'fvj and 653, respectively, are given
such that there exist bounded positive constants o and [ that satisfy the
following conditions for any non-zero vector x € R", any non-zero and
appropriate dimensional vector y, any 8 € R", any ¢; € 1l;, and any

¢p € lp:

o z|?< 2Tz, I2=M(¢,0)M(e;,0) (4.13)
Blly Izl M~ (¢, 0){E($;, ) — E(dr, )}y || (4.14)
i

Remark 4.1 For simplicity, we use 8 || y || as the function that dom-
inates the right-hand side of eq.(4.14). However, even in the case of
> Bigi(6, o 9) where [3; are appropriate positive constants and g; is a
non-negative function, the argument here can be also applied. |

Let M 2 M($,6), h 2 h(d;,$5,6,6), and E £ E(,, $5). Note
that a and [ are obtained by calculating the smallest and largest sin-
gular values of Tand M! {E - E} respectively, using the information
on the bound of the uncertainty, that is, II; and Ilp.

Under the above assumption, we consider the same control law as
given by egs.(4.5) and (4.7) as follows.

u=I"'u, + M(8y— (A +k)é — ke) + h (4.15)
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where ) is a constant gain and k& is a time varying gain. Then substi-
tuting eq.(4.15) into eq.(4.1), we obtain the error equation:

é+ (M +kIe+ \Ie=n (4.16)
where i £ MYE - E)y, and y, a y(6,6,8, — Aé). If we have no
modeling error, that is, if n = o and T = I, then eq.(4.16) is almost
the same as eq.(4.8). So n is treated as the disturbance that results
from the modeling error, and I as one part of the feedback gain that
contains uncertainty. The effect of these uncertainties, I and 1, on the
control error e is evaluated by eqgs.(4.13) and (4.14), respectively. That
is to say, we can estimate the infimum value of the uncertain part, 1,
of the feedback gain in terms of a positive number ¢ in eq.(4.13), and
the supremum value of the disturbance 1 by eq.(4.14) as follows:

BlyallZllnll (4.17)
Then we obtain the following result.

[Theorem 4.1 ]  Constider the manipulator eq.(4.1) that satisfies
Assumptions 4.1 to 4.4. The desired trajectory 04 with twice partial
dertvatives and the specified tracking precision, ep and ey are given.
Suppose that « in eq.({.13) and B in eq.(4.14) are obtained from the
knowledge of the regions I1; and Ilg. If the control law eq.(4.15) whose
feedback gains are given by

Ey Bllyall
= — = ——— 4.18
. 2513’ g Ot)\&'p ( )
18 applied to the manipulator, then
Il e(t) ll<ep. |l et)ll<ev (4.19)
holds for anyt > 0. |

A similar proof can be found in the proof of Theorem 2.1 in section
2.3. This theorem shows that it is possible to design a robust control
system that achieves the specified tracking precision, through compen-
sating for the uncertainty of the motor system by high gain feedback
with eq.(4.18) and any disturbance to act on the link or the end effector
etc. by joint torque sensor feedback.

The proposed robust control system based on joint torque infor-
mation is constructed in the same way as the robust control method
without joint torque information obtained in chapter 2. As shown in
Table 4.1, however, the proposed method has some advantages, com-
pared with the robust control method without joint torque informa-
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Table 4.1: Advantage of joint torque information

proposed method robust control method
with torque information without torque information
uncertainty motor system only motor and
to be considered . link systems
feedback gain small large
computational add. mul, add. mul.
load In?+ On—17 | S+ Zn—23 || 96n 83 122n — 92
2In — 19 32n - 25

tion. Namely, the method proposed here has only to take account of
the uncertainty of the motor system, because it compensates for the
uncertainty of the link system by the joint torque sensor feedback. In
the case without no joint torque information, on the other hand, the
uncertainties of both the motor system and the link system are compen-
sated for by high gain feedback of position and velocity control error,
as you can see in section 2. Hence the robust control method without
joint torque information requires the information on the bound of the
uncertainties of not only the motor system but also the link system,
and need a higher feedback gain than the method with joint torque
information, in the condition of the same specified tracking precision
(easily seen from eqs.(4.13) and (4.14)). High gain feedback often causes
unexpected phenomena such as chattering in digital implementation.

Furthermore, as shown in Table 4.1, the computational load of the
control law in the proposed method is about 1/2 ~ 1/5 times smaller
than in the robust control method without joint torque information.
Note that the values in Table 4.1 is the computational amount for
solving the inverse dynamics in the case that z,; = z;(: = 1,2,--- n).
The computational load in the robust control method without joint
torque information is based on the formulation of Newton-Euler method
[77]. The value of the upper section in the proposed method is the net
computational load based on the dynamic equation (4.1), and the value
of the lower section is the load based on the recursive formulation of
the dynamic equation (4.1).

Compared with the former control methods with joint torque in-
formation [68, 42], the proposed method has quantitative evaluation of
the effect of the uncertainty of motor systems and achieves the specified
tracking precision. Furthermore, although we discussed the uncertainty
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of the motor system in this section, the proposed method can be applied
even in the following case. In the high reduction ratio, the decoupling
control law that M in eq.(4.15) is a diagonal matrix is effective because
of 4.4 in section 4.2. Note that the obtained theorem holds even if M
is any matrix to satisfy eq.(4.13). This decoupling control law is almost
equivalent to that given by Hashimoto [42], but his method ignores the
effect of the coupling term. On the other hand, the proposed method
in this case can evaluate the effect of the coupling term that is not
compensated, by calculating o in eq.(4.13) and 3 in eq.(4.14). Further-
more, if the maximum value of the measurement noise is known in the
case of the torque information with measurement noise, the proposed
method evaluates the effect on the control error.

4.4 Simulation

In this section, to verify the effectiveness of the proposed method
with joint torque information, we show simulation results of trajectory
control of a 2 d.o.f. direct-drive arm (v; = 1.0,7 = 1,2), where the
desired trajectory is given by

B41(t) = —1.8cos(wt/3) (rad)
B42(t) = —1.8 cos(nt/3) — 1.0 (rad) (4.20)
for 0<t<3.0 (sec)

The model of a 2 d.o.f. arm with joint torque sensors is given as
follows, by using eq.(4.1)(see Fig.4.2).

Imi O &, bmlél Us1
AN

iy
= 4.21
bmgﬂg Us2 l Ug ] ( )

Here, we set real values of the physical parameters as shown in Table
4.2, In this situation, the only a priori information about the physical
parameters of this arm is that [,;(¢ = 1, 2) is between 0.3 and 0.5, and
b,.i is between 0.5 and 0.7. The estimate ¢; is given as ér =[0.4 0.4]7
so as to satisfy the relation (4.13). The estimate ¢p is given as ¢p =
[0.6,0.6]T. Then the tracking precision is specified as ep = 0.011(rad)
and ey = 0.022(rad/sec). Then A = 1.0 by eq.(4.18). « is evaluated as
a= 0.69 by eq.(4.13), and k in eq.(4.18) is determined using eq.(4.14)
as follows: ) '

k=045 64— Xe | +0.54 | €| +0.01)/(a)ep) (4.22)
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Figure 4.2: Model of 2 d.o.f. direct-drive arm

Table 4.2: Physical parameters

Moment of inertia of the ith link Ii =04 (kgm?), i =12
Length of the ith link {i=05(m), i=1,2
Distance between the ith joint and the center of lyi = 0.25 (m), i=1,2

the mass of the ith link

5 (kg) for 0 <t < 1.0 (sec)
g :{ 8 (kg) for 1.0 < t < 2.0 (sec)

Mass of the ith link
2 (kg) for 2.0 < t < 3.0 (sec)

Mass of the 2nd rotor Mmpma = 2.0 (kg)

Moment of inertia of the ith rotor Imi = 0.3 (kgm®), i=1,2

Viscous friction coefficient of the ith rotor bni =05, i=1,2
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Figure 4.3: Simulation results for proposed robust control method using
joint torque information

Note that, although a manipulator is a continuous-time system, this
simulation uses the Euler method with the integral interval of 0.1(msec)
as numerical integration, and the digital control with the sampling pe-
riod of 1(msec). The measurable signals are assumed to be available at
the moment, and the time delay for computing the control law is not
considered. Fig.4.3 shows the results. The norm of the control error
is smaller than the specified precision £p at any time, and the input
torque u is smooth. A similar result has also been obtained concerning
the velocity error e.

For comparison, we show the simulation results in the case of the ro-
bust control methods without joint torque information, which is treated
in chapter 2. In this case, a priori information about the physical pa-
rameters is that I; = 0.4(kg-m?) and m» = 2.0(kg) (namely, the real
values of [;(1 = 1,2) and m,,s are known), and that m; is between 2.0
and 8.0. In addition, a priori information on the physical parameters of
the rotors is assumed to be the same as the case of the proposed method,
and the estimate of m; is given as 4.0(kg). The specified tracking preci-
sion in this case is equal to the proposed case. The control parameters
« and k are determined in the same way as the proposed case.

Simulation results are shown in Fig.4.4 . The norm of the control
error is smaller than the specified precision. However, the chattering
appears in the input torque. The smaller the specified precision is set,
the larger the chattering becomes. This reason is as follows. In gen-
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Figure 4.4: Simulation results for robust control method without joint
torque information
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Figure 4.5: Comparison of feedback gain

eral, the robust control method without joint torque information tends
to conservatively evaluate the feedback gain to achieve the specified
precision, because there is a lot of uncertainty to be compensated for
by high gain feedback. As a result, the feedback gains of position and
velocity error are too high. So Fig.4.5 shows the comparison of the feed-
back gains between the method with joint torque information and the
method without joint torque information. In spite of the same speci-
fled tracking precision, the feedback gain in the former method is about
0.10 times smaller than in the latter method. Consequently, the former
method can reduce the chattering owing to the high gain feedback of
position and velocity error more than can the latter method.
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Furthermore, a simulation is made to take a time delay for generating
the control input into account, and almost the same result as the case
without considering the time delay are obtained there.

These results show the effectiveness of the proposed robust control
method.

4.5 Conclusion

The main results obtained in this chapter are summarized as follows.

(i) A dynamic equation of the manipulator with joint torque sen-

(ii)

sors has been derived, which expresses explicitly the multivari-
able structure. As a result, the proposed dynamic equation clari-
fies that the robust control system of the manipulator with joint
torque sensors can be designed as in the same way as the case of
the manipulator without joint torque sensors.

It has been shown that the proposed dynamic equation is effec-
tive for the design of robust control system against the uncer-
tainty of the motor system. The proposed robust control method
achieves the specified tracking precision in the presence of the
modeling error, where joint torque information is fully exploited
to compensate for the uncertainty of the links and the load at the
end-effector.

(iii) Although the proposed method requires the exact information on

the joint torque, the following advantages has been clarified, com-
pared with the conventional robust control without joint torque
information; (a) we need less a priori information on uncertain-
ties, (b) the computational load for the control law is smaller, and
(c) the feedback gain to achieve the specified tracking precision
is much lower. In addition, compared with the previous existing
methods with joint torque information, (d) the proposed method
is more systematic in the sense that it is possible to evaluate the
effect on the uncertainty of the motor system and to achieve the
specified tracking accuracy.
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Appendix

Proof of Eq.(4.1) : Adding to the notations in section 4.2, we define
the following notations. n,,; denotes the moment vector exerted on the
tth rotor by the ¢ — 1th link, which is expressed in the reference frame,
ng; denotes the moment vector exerted on the ith rotor through the
torque sensor by the 7th link, which is expressed in the reference frame.
I, expressed in the reference frame, is the tensor of the inertia of the
ith rotor. w; and w,,;, expressed in the reference frame, represent the
angular velocity vectors of the 7th link and the ith rotor, respectively.
i 18 an angle about the axis of the rotation of the ith rotor.

Then from Euler’s equation, we get
Tomi = Lyl + Wi X (jmiwmi) - bm:'émz'zmi + Mg, (4.A1)
In addition, using Assumption 4.2 in section 4.2, we obtain
émi e '}'iéi
Wi = Wi + OmiZom;
Wi = Wi_1 + ’Yiéosz +wi-1 X ('Tiéizmi)

Msi = UsiZmi /i

Substituting these relations into eq.(4.A1), the following equation is
obtained:

=Z£iImid’i—l + (ZZ:,'Imizmi)'Yigi

+ 20 L mi(wiog x YibiZmi) + Zoi[Wimi X (Imiwmi)]

+ Yibmifi + wai (4.A2)
Using Assumption 4.1, we prove that the third and fourth terms of the
right-hand side of eq.(4.A2) is equal to 0. Moreover note that

P

0 if =1
2,6, if 1=2
. A
Wi £ o L (4.A3)
ZZJ@ +zﬂz zi % 2;)040;
J= 1

\ 1ft23
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and z?;j'm; = I 52T .. Therefore from (4.A2), we get
£es i_l -
Ui =IniVi0i + Imi D ZmiZi0;
j=1

i—1j-1 . .
+Lni 3D 282k X 2;)0k0; + Yibmii + vaif ¥ (4.A4)
71=2k=1
where the second and third terms are equal to 0 when ¢ = 1, and the
third term is equal to 0 when ¢ = 2. This completes the derivation of

eq.(4.1).
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Chapter 5

DIGITAL ROBUST
CONTROL OF ROBOT
MANIPULATORS

5.1 Introduction

In chapters 2 to 4, various types of continuous-time robust controllers
of robot manipulators have been discussed. However, since the above
continuous-time robust controllers are nonlinear, we have to descretize
them when it is implemented in practice. In other wards, we need a
digital controller to control a robot manipulator in fact. If we descretize
a continuous robust controller and implement it as a digital controller,
the following unexpected phenomena may occur. When a feedback
gain is too high, namely, the uncertainty is much large or the specified
control precision is much small, the real control error is larger than the
allowable control precision that is theoretically obtained in continuous-
time robust control theory. In addition, although a continuous-time
robust controller that is composed of a continuous function does not
lead to chattering theoretically, even in such a case, the chattering
often occurs if a digital control is used. These result from the fact that
an input to a plant is constant in a sampling period. Thus there are
few works on robust control premising a digital control [142, 78, 35].
However, these works treat the case of linear systems only, and there is

65
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no research in the nonlinear system case so far.

This chapter discusses a robust control method of robot manipulators
premising a digital control, which is called a digital robust control.
The effect of a sampling period on control performance is discussed
theoretically. Based on the above analysis, a design procedure of the
digital robust control system, that is to say, how to calculate the value
of a feedback gain to achieve the specified tracking precision for a given
sampling period is given. Moreover, a weighting function for a feedback
gain is proposed to make the feedback gain small so as to decrease the
chattering, and the effectiveness of this idea is shown by illustrative
simulation results.

5.2 Problem statement

Consider a manipulator with n degrees of freedom whose dynamics
is described by the following equation :

M($,0)8 + h(¢$,0,0) =u (5.1)
where 8 = [61,92, ..,0,]7 is the n-dimensional vector of joint displace-
ments, ¢ is the physical parameter vector with an appropriate dimen-
sion, u is the n-dimensional joint torque input vector, M (¢, @) is the
n x n manipulator inertia matrix, and h(¢, 8, 8) is the n-dimensional
vector that represents the nonlinear terms such as centrifugal, Coriolis,
frictional, and gravitational forces.

This system usually has the following features.

[Feature 5.1 ]  M(¢,80) is a positive definite matriz for any 0.

We begin with the definition of notations which express mechanical
performance of a manipulator given here. Let ;.. denote a maxi-

mum movable range of the ith joint angle, that is, 8;ma. B w | 6 1.
Let finae denote a maximum angular velocity of the ¢th joint, that is,

A
Bimar = max | 6; |. Let fimqr denote a maximum angular acceleration
of the 1th joint, that is, 8;yqz £ max | 0; |. Also let

A :

2, ={0|]0; |< Ojmaz, J=1,2,...,n} (5.2)
B ot ; .

2, ={6]16; |<Ojmaz, J=1,2,...,n} (5.3)
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& .. .. e -
ﬂa:{gl |9J |S Qjmﬂr, ]:1,2,...,?1} (54)
Let T' denote a sampling period, which is assumed to be given in ad-

vance to depend on the degrees of freedom of the joints and mechanical
performance such as computer performance. For given 8 € 12, and

@ c 2, let
IT,0) 2 {€]|| & =0, |< bjmacT, 5=1,2,...,n} (5.5)

Hu(a)é{fl I‘SJ"BJ |§ gjma:rTa j=1:2$‘n} (56)

where & £ [€1,&2,-..,&]T. II,(8) and IT,(8) express a set of joint
angle and joint angular velocity which is reachable in 1 sampling period
from 8(t) and #{t), respectively.

Then the following assumptions are made.

[Assumption 5.1 ] The values of 6 and @ at each sampling

point, that is, 8(iT) and 6(iT) (i = 0,1,2,--) are knoun. |
[Assumption 5.2 ]  imas, Gimas, and Oiman are known. |
[Assumption 5.3 ] The values of a physical parameter vector
¢ may be unknown, but it is known that ¢ exists in a known bounded
region 2. |
[Assumption 5.4 ]  Fach element of M and h is continuous on
@, 0 and 6. |
In addition, let
M, (6)
M) 2 ; (5.7)
M, (6)
N, (6)
N EMT(O)=| (58)
N,.(9)

For a given 8€ £2,, we define a vector 0" L35, 0k,... 84T € IT1,(6)
(k=1,2,...,n). Using this, we also define
~1
_ N(6)

nNE (5.9)

N,.(8")
Then the following assumption is made.
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[Assumption 5.5 ] ¢, a bounded estimate of ¢, is given such
that the following matriz is positive definite for all@ € §2,, ék € IT,(0),
¢7 € .Qq; and k 4

A e ~ T T
M={NM+M N }/2 (5.10)
where M 2 M(,8). |

Assumption 5.4 implies that, for example, we do not consider here
Coulomb’s friction. In Assumption 5.5, although it is not easy to ana-
lytically show a condition of ¢ satisfying that M is positive definite, we
believe that Assumption 5.5 is satisfied mostly if the sampling period
is small enough.

Note that, from Assumptions 5.3 and 5.5, there exist positive constants
am and aps such that the following conditions are satisfied.

0 < am < An(NM + MTN")/2

~k
V0 € £2,, V6 € IT,(8), Vk (5.11)
ay > Ay(INM)
V6 € 12,,¥8" € IT,(6), Vk (5.12)
Now let ,
z=[6" 2T (5.13)

where A is a positive constant. Then we get the following state space
equation of (5.1).

&= A+ B.M(0){u - h(6,6)} (5.14)
é 0 '};I 2nx2n
Ac—la E ]ER (5.15)
é o 2nXxn I
Bc_[/\I}eR % (5.16)

where I is a unit matrix.

Remark 5.1 When we estimate the bound of the control error in terms
of the Euclidean norm, we can specify a ratio between 6 and 6, by a
positive constant A.

For the above robot manipulator, we consider the following problem.

[Problem 5.1 ]  For a robot manipulator given by (5.1) or (5.14)
that satisfies Assumptions 5.1 to 5.5, a desired trajectory 8,4(t) is given
whose derivatives 8y and 84 exist and are bounded. Consider q dvgital
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control system with a sampling period T. Then for given cp, find a
control law such that

| e(t) ll<ep  VE2T (5.17)

_ | @) B4(t) :

holds for allt > 0, where e(t) = [ 2(2) ] - [ 28,(4) and tq 1s
an wnitial time. |

5.3 Digital robust control

In this section, at first, we get a discrete-time state space equation
from a continuous state space equation given by (5.14) and give a dig-
ital robust controller for a discrete-time system. Second, we estimate
the bound of the control error in that case, and finally give a design
procedure of a digital robust control system of a robot manipulator,
which achieves a specified tracking control precision.

5.3.1 Discrete-time nonlinear systems

It is followed from (5.14) that
2(t) = eADa(ty)

+ [ A B M O(r)) (u(r) — h(8(r), 8(r))}dr

to
(5.18)
Assume that the input w(7) is w; for all 7 € /T, (i + 1)T"), where u;
is a constant vector. Replacing ty and ¢ in (5.18) by ¢7" and (¢ + 1)7,
respectively, we get

v = Azt [ Blri) MO ()

~h(8(r), 6(r))}dr (5.19)
AL [ j TII ] c R (5.20)
B(r,i) & [ {+ 1;?””] & Rtet (5.21)

where x; £ z(iT'). Using (5.1), we can also express (5.19) by
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(i+1)T .
254, = Amy+ / B(r,)8(r)dr (5.22)
Note that there exists é,Tstate in the integral term of the right-hand
side of (5.19), comparing with the case of linear systems. So using the
average-valued theory in the integral, we rewrite (5.19) or (5.22). Then
let f € R" be a function defined by

) fl(eae)
f(6,0)2 M'h 2 : (5.23)
/n(6,0)
Let also 8; £ 8(iT) and 6; 2 6(iT). For given 8; € R, and 6; € £2,,
we define "
[ M@
e = P (5.24)
N.(6;)
~1
}. A fl( i) :)
8 ' (5.25)
fn( 1.6;)

i ~k ;
for any 8; € IT,(6;) and 8, € IT,(6;) (k=1,2,...,n). In addition,
let

6; & Nou; - §, (5.26)

In the same way as the definition of 9,, for any 9 € II,(6;) and
BEH(G)(L_IQ ., n), let

9 = N b = f‘ (5.27)

where IN; and . is defined in the same way as (5.24) and (5.25).

We use the following notations hereafter. For a vector = and a matrix
A, x; and A; express values at the ith sampling point. #;, Z;, A; and
A, express values at some time in the ith sampling interval,

Then we get the following lemma.

[Lwe;cmma 5.1 ] For given u;, 0;, and 9;', there exist E?f € I1,(6;)
and 8; € IT,(0;) (k=1,2....,n) satisfying



71

(i+1)T o = s |
/T B(r,1)6(7)dr = B8, + BAS, (5.28)
where % 0B 3
&|[ BT 2 =a |21
= 3 nxn e 2nXn
B [ NI ER , B= 20 €ER
|

Proof: Since an input is constant, 8 is continuous. Then using the
average valued theory in the integral, we get

(i+1)T s T_?g
[ B(r,)i(r)dr= | 7% (5.30)
iT ATB,
Hence from (5.30) and (5.29), (5.28) follows. |
Applying Lemma 5.1 to @.22), we obtain
Tit1l :AI!;-’-BB,-}'EAG, (531)

which is a discrete-time expression of (5.14).

5.3.2 Digital robust controller

We consider the following reference model for a discrete-time system
given by (5.31).

T i1 = AnTari + Buy; (5.32)
Ay =A+BK (5.33)
upmi € 2y (5.34)

where x,; € R®™ is the state of a reference model at the ith sampling
point. wyy; is a reference input which is given so as to hold

Tpsi = (O3, /\GI:!-]T (5.35)
Note that we cannot always find wys; such that (5.35) holds. However
for simplicity, it is assumed that there exists a reference input w,; such
that (5.35) holds, because we can directly extend an approach obtained
hereafter to the case that there exists no reference input such that (5.35)
holds. In addition assume that K = [k I, koI for simplicity, and K
is selected such that the absolute value of the eigenvalue of A+ BK is
less than 1. §2), expresses a set of reference inputs which are feasible,
and will be defined later.
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Let e; be a control error at the ith sampling point denoted by e; o
x; — ;. Then we get an error system between (5.31) and (5.32) as
follows.

eip1 = Aue;

+B{Nu; - f; — (up: + Kx:)} + BAS; (5.36)
For an error system given by (5.36), consider the following controller.
w; = wr; + UR; (5.37)

where 1 ; is a linearizing controller and ug; is a robust controller.
<Linearizing compensationu; >
Noting (5.36), we consider

up; = M{f; + (i + Kwi)} (5.38)
where M; 2 M(6;) and F, is the estimate value of f;.
<Robust compensationug;>
Let s; be an extended error given by

si £ BTPAye; (5.39)
where a matrix P is a positive definite solution to the Discrete Lya-
punov equation

AT PAy - P=-Q (5.40)
for a positive definite matrix Q. For simplicity, we assume
anl  qol 2nx2n
= R :

Q [ ql Q'f3I] e (5.41)

plI ng 2nx2n
P= R
[ poI ol l € (hhd)

In addition, let ¥ be a switching function given by

S ,
A | =t if || s;||#0
N2 sl :
8;) = : .
(si) { ) i | =0 (5.43)
Then noting that there exists a positive function g(x, uss;) such that

9(-’51‘,12«15) ~ .
2| N:Mif; — fi+ (NiM; = I)(uy; + Ka;) ||
Vo, € ‘QP' VO; € 12, Yuy € 2y

sk ek .
Ve, € I1,(8;), V6, € IT,(6;), Vk (5.44)
we consider the following robust controller.

M ;
upi = = _—wg(@i, war)Y(si) (5.45)

m
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where w (> 0) is a design parameter to specify the control error preci-
sion. We call wg(x;,up;) a switching gain hereafter. o, is a positive
number to satisfy (5.11).

5.3.3 Estimation of the bound of control error

In this subsection, we estimate the bound of the control error when
a controller given by (5.37), (5.38), and (5.45) is applied to an error
system (5.36).

First, note that there exists a positive number v such that, for AE’;
given by (5.29),

v > AM(ALPE)_” A |
VO; € 12, VO; € 12, Vuy; € 2y

L ~k .
V0, € I1,(;), V8, € I1,(6;)

= ~k ;
Vo: € IT,(8;), Y0, € I1,(0;) (5.46)
Let T, be a positive constant denoted by
T, £ Tp, /4 + AT%py + A2Tps (5.47)
Then note that T}, has the following relation to BTPB.
BTPB =T, (5.48)

Furthermore, let § be a maximum value of g(x;,u ), that is,
7 2 max{g(z:, uass)}
VO; € 12, V8; € 12, Yuy € 2y (5.49)
Then we define the following function of w.

y A Blw) + \/ﬂ(tv)Z + ’\m(Q)Tp'}f(w)zg?

8 (5.50)
(w) (@)
where
A(BTPAy)g(1 —w) +v
Alw) & if 0<w<l (5.51)
v if w>1
A 142 if 0<w<l
ot Drn 5 2
rY(?.U) = { 1+(%ii')w if w 2 1 (5 9 )

Then we get the following lemma.

[Lemma 5.2 ]  For a positive definite function
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V; = e Pe; (5.53)
let AV £ Vier — Vi If a control input given by (5.37), (5.58), and
(5.45) is applied to an error system (5.36), then

AV; <0 (5.54)
when
| e[|z 6 (5.55)
|
Proof: Substituting (5.36), (5.22), (5.39), and (5.40) into the equation
AV; = el Pe;;, — €] Pe; (5.56)
we get . _
AV: = —e?Qei -+ QST{Niu,- — fi— (upmi + Ka;)}
+2eT AT, PBAG; + yT Py; (5.57)
where
A [li+1) .
v 2 [ B(r, )8(r)dr - Bluui + Ka) (5.58)
We show the case of 0 < w < 1 here. From (5.57), (5.38), (5.45), and
e/ Qe 2 Mn(Q) | & |I” (5.59)
S?KriMiS; = S?(N,‘M{ =+ M?NT)SI/Q
> am | s | (5.60)
we get
AV; < =An(Q) [l & |I” +2v || e ||
+2 | s: || (1 — w)g +y] Py,
< =An(@Q) [l e |1 +2v || e ||
+2(B"PAy)(1 - w)7 || & || +y] Py; (5.61)
It also follows from (5.51) and
y; Py; < T,7(w)’g” = T,7(1)5° (5.62)

(See Appendix), that
AV; < =Xal(Q) |l e [ +28(w) || e ||
+ T(1)g (5.63)

Therefore, egs.(5.50) and (5.63) imply that (5.54) holds when || e; ||I> 8
The case of w > 1 will be shown in the similar way. [ |

The following result is concerned with the bound of the control error
in each sampling term.

[Lemma 5.3 ]  Suppose a desired trajectory 6 ,(t) and ] m(t) are
continuous on t. Then if, for a positive constant 1,
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| e ll<n Vi (5.64)
then
| e?) < n+ e (5.65)
for all t > 0, where &, is a positive number defined by
& 2T, 3 (Oar + 320200) (5.66)
i=1
|
Proof: For all t € [iT, (i + 1)T], the following relation holds.
| gj(t) = Bj(iT) IS gjmaa:T/2 v (5.67)
| 0345(t) = Oari(GT) | OjmacT/2 V) (5.68)
Then we get _
| {05(t) = On;(2)} — {6;(iT) — Oars({T)} [ BjmacT
F=1,2 .0 (5.69)

The same relation as (5.69) also holds with respect to the velocity. So
letting Ae(t — iT) £ e(t) — e(iT), we obtain

| Ae(t —iT) ||< & (5.70)
Hence noting

I e(®) <]l e(:T) || + || Aeft —<T) || (5.71)
eq.(5.65) follows. ]

We get the following theorem using Lemmas 5.2 and 5.3

[Theorem 5.1 ]  Suppose a control input given by (5.37), (5.38),
and (5.45) is applied to an error system (5.36). Then for any positive
definite matrices P satisfying (5.42) and Q satisfying (5.41),

| e(t) ||< max{e,en} + € Vit >0 (5.72)
where
¢4 2Y) (5.73)
s A (P)
= \I 3 (P) + An(Q) T
£g 2 - ‘(/‘fp) (5.75)
|

Proof:  We complete the proof by considering two cases, namely, (1)
| eo |l< 6 and (ii) || o ||> 6.
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(i) | eo ||< ¢ : From Lemma 5.2, we can show that there exists a 1
such that || e; ||[< 6 <|| 41 || and Viy1 has a maximum value at 7, that

is,
Vis1 2 mﬁxx{vk} (5.76)
Let such a ¢ be ¢*. Then
Vie < Au(P) || e |IP< Ay (P)8? (5.77)
On the other hand, in the same way of the derivation of (5.63) of Lemma
5.2 we get

AV < 286 + T,7%5* (5.78)
Hence it follows from (5.77) and (5.78) that

Vies1 < Aur(P)6* + 286 + T,v°5° (5.79)
which means that , for all ,

Am(P) || € |I°< V; < Au(P)6* + 286 + T,v* 5 (5.80)
Then we get

I e lI< J )”"'(P)éz;;?f;;"LTﬂzg? (5.81)
for all 2. Noting that

—Am(Q)6% + 266 + T,7*5 =0 (5.82)
we get from (5.81) |

leil<=c W (5.89)
(ii) |l eo|[> 6 : Let Viiar be a maximum value of V; with respect to
i. Then V4. is equal to Vj or Vi-4; given in (i). Namely,

Vimae < max{Vp,Au(P)8” + 266 + T,y*5%} (5.84)
Hence we get

I ei ll< max{e,eo} Vi (5.85)

in the same way as the proof (i).
Noting that
€> & (5.86)
when || €g ||< 6, we conclude, from (i) and (ii),
I e; ||< max{e,eo} Vi (5.87)
Finally using Lemma 5.3, we get (5.72). d
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5.3.4 Design procedure

In this subsection, using Theorem 5.1, we give a design procedure,
that is, how to determine design parameters, especially w based on the
specified control precision. Then we define the following functions.

wi(e) £ {\J el QI — PHIE 1} = (5.88)

Tpgz pf
& {An(@)(5(1) + ce) — 28(1)H{8(1) = ce}
2{B(0) — B(1)Jee

wa(e)

41

(5.89)

Note that these functions are obtained by solving (5.73) with respect
to w.

First, we give a minimum value of feasible specified control precision
by considering a class of feasible desired trajectories and also a maxi-
mum value of feasible control inputs which satisfy Assumption 5.2. A
class of feasible desired trajectories is given as follows. 6(¢) is twice
differentiable and satisfies, for a positive number wy,

| an(f) |S ejmm_- — Wy ] == 1,2,. — (590)
3 . @3] .

I 9&{}’(!") IS gjmafﬂ - Tﬂ §j=1,2,....,n (591)

[ Gaesl8) | € Gimae  § = 1,250 icnmt (5.92)

where wy will be specified later. According to the above desired trajec-
tory, a set £2,, is given by _
2y = {wpi| Omar > {M71(0:)(ur; — h(6:,6)))},
j=1,2,...,n, V6;€ N, V0, ¢cNR,} (5.93)
Thus, let @, (wo) be a set of feasible desired trajectories satisfying
(5.90), (5.91), (5.92), and (5.93).

Let also gme be a maximum value of a switching gain which is
determined by a control input satisfying | 6; |<| #jma= | (See Appendix).
Then a maximum value of w, Wmez 1S given by

2 riEE (5.94)

wmaz - =

A ¢ in (5.73) is a function of w. Since §(w) a monotonous decreasing
function for 0 < w < 1 and a monotonous increasing function for
w > 1, € has a minimum value at w = 1 or W = Wyae- S0 let £min be a
minimum value of €. Then
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5(1) ;
A == i w >1
Emin = i ¥ mar = 595

{ S(wmer} £ Wmae < 1 ( )

Therefore from Theo;em 5.1, Emin + &; expresses a minimum value of
the feasible specified tracking precision, provided €,;, > €p.

From the above discussion, wg and &,,;, must satisfy the following
condition, if we use Theorem 5.1 to design a digital robust controller
satisfying the specified tracking precision. Assume that, for a wqy satis-
fying

Wy 2 €o + &4 (596)
a desired trajectory which belongs to Q,,(wp) is given. Then &,,;, and
wy must have the relation

Emin + & S Wo (5.97)

A wp given by (5.96) is an offset parameter to guarantee that a real
trajectory always keeps within a feasible movable region even if control
error exists. So (5.96) and (5.97) guarantee that wy is larger than the
tracking precision and the initial error. If, for a given wy, €min +&¢ does
not satisfy (5.97), we need to change the value of design parameters such
as wy or the sampling period. Thus if there exists a positive constant
wp such that (5.97) holds, we get the following result.

[Theorem 5.2 ]  For a robot manipulator given by (5.1), suppose
Assumptions 5.1 to 5.4. A specified tracking precision wg s given so as
to satisfy

Emin + & S Wy S Wo (598)
Then mazimum and minimum values of a allowable gain w are given
by

@ = min{w; (Wg — &¢), Wnaz } (5.99)

w = max{ws(wy — &), 0} (5.100)
In addition, if, for a given w satisfying w < w < W, a control input
given by (5.87), (5.38), and (5.45) is applied to a robot manipulator
(5.1), then

I e(t) l<w, VE>0 (5.101)
where N

w = max{wq, &9 + £} (5.102)
and we call w a tracking precision, while wy a specified tracking preci-
sion.
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Proof: Noting 0 < w < w,,4., we have only to solve (5.73) with respect
to w.

If wg < €9 +¢, in Theorem 5.2, then the tracking precision w is char-
acterized by the initial state error, so the specified tracking precision
wq has no effect on w. However, the norm of the control érror converges
to wy as time goes.

[Theorem 5.3 ]  Suppose a control input given by (5.37), (5.38),

and (5.45) is applied to a robot manipulator (5.1). Then for all &(>
wq — &), there ezists a finite number I(g) when || eq ||> &, and

le(t) |<&+e, Vt>IET (5.103)
where )
FLee>6 (5.104)
- A )\m(-lj)g2 - ‘/D
i = £ 2 |
&=\ orrmms T,7°5 {5-105)

and [-] is @ function which satisfies [a] =b+ 1 whenb<a <b+1, for
a real number a and a integer b.

Proof: The proof can be shown in the same way as Theorem 3 in [TSk

In general, when continuous time control theory is applied to digital
control directly, we can frequently find that chattering becomes larger
and so the specified tracking precision cannot be achieved as a switching
gain becomes larger for a fixed sampling period. On the other hand,
Theorem 5.2 gives an allowable bound of a switching gain to achieve
the specified tracking precision in the case of digital control. Based on
Theorem 5.2, a design procedure of a digital robust control system is
shown in Fig.5.1. In addition, when a switching gain wg(x;, u;) and a
specified tracking precision wy are given, we can estimate an allowable
bound of the sampling period so as to achieve (5.101) by (5.73).

5.4 Discussion on chattering phenomenon

Since a robust controller proposed in section 5.3 has a discontinuous
function on s;, i.e., ¥(s;), chattering phenomena occur in the digital
control system. In the case of continuous time control, the chattering
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performance q,**, ¢;,™", ;"""

] initial volue V,
[ Decision of sampling time T I
| Decision of 1 >0 J
I Caleulation of & . I
[ Decision of Aw.Q, P ]

{ Decision of wy J

}

| Decision of the desired trajectory J

}

Caleulation of Emas: Gm. Cu, ¥, €

]

[ Calculation of W, |
|
[ Cakulation of €ni "

cain t 8= Wy

Decision of wy
EointE S wiE wg

]

I Caleulation of wap, Wiar ]

| Decision of w |

]

[ Tmplementation of the control law ‘

Figure 5.1: Flow chart of design procedure for digital robust control
system
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phenomenon does not theoretically yield by using a continuous func-
tion in place of a discontinuous function. However, in the digital control
case, we believe that the chattering depends on the bound of a switch-
ing gain, rather than whether a robust control law has a continuous
function or not, because a control law which has a too high gain tends
to occur the chattering even if a continuous function is used. Thus
in this section, we discuss how to decrease the chattering, by paying
attention to the bound of a switching gain.

5.4.1 Use of weighting function for switching gain

We consider a weighting function that makes a switching gain smaller
as the norm of the control error || e; || becomes smaller. Thus we
consider the following controller.
<Robust compensation wg;>

UR; = _Miz(ei)wg(mi; uni)Y(si) (5.106)
e L el
Y 1 € |2
2(e;) = { (U%ﬂ)x it [ el<¢ (5.107)

When & = 0, (5.106) and (5.107) are equivalent to (5.45). When
k > 0, a switching gain in (5.106) is smaller than that of (5.45) if
| e ||< ¢. Note that a switching gain becomes smaller as x becomes
larger. Thus we expect some reduction of the chattering by using a
weighting function z(e;). Here we get the following lemma about a
threshold ¢.

[Lemma 5.4 ]  Suppose a controller given by (5.57), (5.38), and
(5.106) is applied to a robot manipulator (5.1), and there exists 1 such
that || e; ||[< ¢ < é. If ( satisfies

5(0) B(0) \*  An(P)82 — T,17
_)\M(P)+ ( ) * Au(P)

‘s Au(P)

(5.108)
then at the next sampling point i + 1, || ei41 ||< 6. |
Proof: Substituting (5.38) and (5.106) into (5.57), and using Ap-

pendix, we get
AV; < 28(0)¢ + T,7°5° (5.109)
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From | e; ||< ¢, we also obtain

Vi < An(P) || & [IP< An(P)¢" (5.110)
Hence (5.109) and (5.110) imply

Vier < Au(P)CE +26(0)¢ + Tp7%5° (5.111)
Thus from (5.111) and

Vigr 2 An(P) || €t 12 (5.112)
we conclude that if

Mr(P)C? +28(0)C + T,v*5" < Am(P)6” (5.113)
then || e;4; ||< 6. Eq.(5.108) follows from (5.113). |

From Lemma 5.4, we get the following theorem.

[Theorem 5.4 ] Suppose a controller given by (5.37), (5.38),
and (5.106) is applied to a robot manipulator (5.1). Then if ( satisfies
(5.108), then

| e(t) ||< max{e,eq} +&¢,, VEZ0 (5.114)
which is the same result as that in the case of (5.88) and (5.45). N

Proof: From Lemma 5.4, a weighting function z always becomes 1
until || e; || is larger than 6. Then Lemma 5.2 can be applied, and the
proof is the same as Theorem 5.1.

Therefore, from Theorem 4, the same results as Theorems 5.2 and
5.3 holds in the case of (5.106).

Remark 5.2 Although z(e;) is considered as (5.107) here, in general
the above discussion holds if a weighting function z satisfies 0 < 2 < 1
in the case of || e; |< (. Therefore k is independent on the other design
parameters such as wy. [ |

5.4.2 Estimation of the bound of uncertainty

In the right-hand side of (5.44), we use a set of the state which is
determined by some mechanical performance to estimate the bound of
the uncertainty. However, this estimation frequently becomes conserva-
tive. Thus we use here a set of the state which is within some distance
from a given reference trajectory to estimate it. Using wy 1n (5.90) and
(5.91), we redefine £2, and §2, as follows.

A .
2, =6 06; |<] O | +wo, 5 = 1,2,...,n} (5.115)
A 0 . . w ,
9v={ﬂllf’j|S|9ﬂ«rj|+j\g,3=1,2,...,n} (5.116)
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jointl
Figure 5.2: Model of 2 d.o.f. Manipulator

When the sets 2, and {2, are applied to estimate the bound of the
uncertainty in the right-hand side of (5.44), the estimation becomes less
conservative, so a part of a switching gain g(z;, u,;) becomes relatively
small. The estimation of (5.11), (5.12), and (5.46) can be treated in
the same way.

5.5 Simulation

In order to verify the effectiveness of the proposed control method,
we show some simulation results of a desired trajectory control of a 2
degree of freedom manipulator shown in Fig.5.2.

Let m;, I, l;, and l,; denote the mass of link i, the moment of
inertia of link 7 about the center of mass, the length of link 7, and the
distance between joint ¢ and the center of mass of link ¢ (i = 1,2),
respectively. The physical parameters ¢, ¢2, and ¢3 are defined as
¢ = mllgl + I} + malf, ¢ = maolilys, and ¢3 = mglﬁz + I5. Then a
dynamic equation of a manipulator shown in Fig.5.2 is described by

M(¢,0)0 + h($,0,0) =u (5.117)
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Table 5.1; Unknown parameters of manipulator

Unknown | Min. [ Max. | Real | Nominal
parameter | value | value | value | value
my (kg) 50 | 7.0 | 5.0 6.0

I, (kgmg) 0.104 | 0.1456 | 0.104 0.125

Table 5.2: Known parameters of manipulator

Known Real || Known Real
parameter | value || parameter | value
I, (kgm?) | 0.104 || m; (kg) 5.0
o1 (m) 0.5 || laa (m) 0.5
Ig1 (m) 0.25 | Iy (m) 0.25

0= [91192]1"’ U= [U11“2]T’ b= [¢1'¢2r¢'3]T

| @1+ P34+ 2¢2Cs 3+ @2C
M(¢:9) = [ ¢3 + ¢202 . ¢32
. _ 2
h($,8,) = [ ¢33ﬁ;g§+ ) ]

where S; 2 sin 8; and Cj e cosf; (7 = 1,2). Assume that my
and I, are unknown, but a maximum value and a minimum value are
known, which are shown together with real values and nominal values
in Table 5.1. The other parameters are known as shown in Table 5.2.
The mechanical performance is assumed as 8;mq.= m(rad), éjmﬂr = 0.7
(rad/s), and 8;mex= 3.0 (rad/s?) (7 = 1,2).

Design parameters are given as follows. T =1(msec), A= 1.0, k; =
ky = —1.0, G = 0.0, and § = g = 0.01. Then from (5.66), & =
4.357 x 10~3, and also from (5.96), wy = 0.08. Then a desired trajectory
which belongs to Qu(wq) is given by

GMl(t) = —0.5 COS(?T?:/:B)

Opr2(t) = —0.5cos(mt/3) — 1.0
for 0<t<6.0 (5.118)
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desired
trajectory

Figure 5.3: Desired trajectory of end effector

where a trajectory of an end effector is shown in Fig.5.3. The initial
state errors are set as €;(0) = 0.02 and e3(0) = 0.0. In addition,
Omaz = 1.0 from (5.A12), a,, = 1.032 from (5.11), ay = 1.250 from
(5.12), v = 3.0x 107" from (5.46), T, = 1.0x 107° from (5.47), § = 0.47
from (5.49), Wnee = 2.12 from (5.94), and e, + £, = 0.0575 from
(5.95). Then we set a specified tracking precision as wy = 0.065 (< wy),
so W = 1.252 and w = 0.992 from (5.99). Then we set w as w = 0.992,
From (5.102), w = 0.065. A function g(z;, up;) is set as g = g, and the
sets §2, and £2, are given by (5.115) and (5.116), respectively.

Under the above situation, simulation results are shown in Figs.5.4
to 5.6. Note that, although a manipulator is a continuous-time system,
we use in this simulation the Euler method with the integral interval of
0.1(msec) as numerical integration. Fig.5.4 shows a result in the case of
(5.38) and (5.45), and Fig.5.4(a) shows a relation between the norm of
the tracking control error || e(t) || and the specified tracking precision
w. As you can see in Fig.5.4, the norm of the control error is less
than the specified tracking precision. Fig.5.4(b) shows an input. The
chattering appears in an control input due to the use of a discontinuous
function. Concerning us, the same result as u; is obtained, although it
is not shown in figure. Fig.5.5 shows a result in the case of (5.38) and
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Figure 5.4: Simulation results using the proposed controller: (a) Norm
of state error, (b) Input torque
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Figure 5.5: Simulation results using the proposed controller with a
weighting function z: (a) Norm of state error, (b) Input torque
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Figure 5.6: Comparison of both switching gains

(5.108). x in (5.106) is given as k = 3. In Fig.5.5(b), we can see that
the chattering is much decreased, compared with Fig.5.4(b). Fig.5.6
shows a relation between time and a switching gain z(e;)wg. The use
of a weighting function z(e;) makes a switching gain much smaller.
These results shows the effectiveness of the proposed controller.

5.6 Conclusion

The main results obtained in this chapter are summarized as follows.

(i) The relation between a feedback gain and a control error for a
given sampling period has been clarified in the digital control
of robot manipulators, by deriving some kind of discrete-time
description of nonlinear systems.

(ii) Based on the above analysis, a digital robust control scheme of
robot manipulators has been proposed, which gives a design pro-
cedure to find a feedback gain so as to achieve the specified track-
ing precision for a given sampling period.
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(iii) A weighting function for a feedback gain has been proposed in
order to decrease the chattering.

(iv) Simulation results have been given to illustrate the validity of the
proposed method.

Appendix

Proof of (5.62) : From (5.30) in Lemma 5.1, we get
0. _ _ N2
gy {efi'117 (wari + Kz;)}T° /2 (5.A1)
{0; — (up; + Kx:) } AT
Substituting (5.38) and (5.45)( or (5.106)) into (5.A1), we get

I 8; = (wari + Ka;) [|< y(w)g (5.A2)
In the same way,

| 8; — (wmi + Kz;) ||< v(w)g (5.A3)
Hence it follows from (5.A2), (5.A3), and (5.42) that

y! Py; < T(w)*3* (5.A4)

Calculation of g, : For a given desired trajectory x)s(t), we can
estimate a maximum value of a linearizing input given by (5.38), and
also a maximum value of each element of M~ (uz; —h). Let vjme.(j =

1,2,...,n) be a maximum value of each element of M‘l('u.,g,- —h), that
is to say,
A
vymae 2 max{|v; [}
Ve, € ‘QP’ Ve, e Q,_,,Vfu.M,' € .QM (5.A5)

where v; £ {M ™" (uy; — h)};. In addition, let

. A

Ujmaz = max{)_ | mj. |} Vé; € 12, (5.A8)

where m £ (MM},
Then we get the following result.
[Lemma 5.5 ]
If a switching gain in (5.45) satisfies
wg(i, up) < Irgin{am(ejmar ~ Yjmaz )/ T} (5.A7)
then .- m
|6 1< Gimae Vi (5.A8)
|



Proof: If a switching gain wg satisfies (5.A7), then
vjma:r: + ﬂng/am S gjmaan VJ

On the other hand, from
6 =M (upi+ug —h)

we get
I 9.7' |S Ujmaz + ﬁng/ama Vi

Hence (5.A8) follows from (5.A9) and (5.A11).

From Lemma 5.5, we conclude that

Omazr — Inj:ln{am(éjma:t i 'Ujmar)/raj}

89

(5.A9)
(5.A10)

(5.A11)

(5.A12)
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Chapter 6

HIERARCHICAL ROBUST
CONTROL OF ROBOT
MANIPULATORS

6.1 Introduction

In the previous chapter, a digital robust control method has been dis-
cussed for tracking control of robot manipulators. This chapter treats
a robust control system of robot manipulators which has a hierarchical
structure composed of two loops, i.e., an upper level loop and a lower
level loop. It is called a hierarchical robust control system.

Robust controllers of robot manipulators are usually composed of
linearization and robust compensation. In general, the generation of
the linearization requires much amount of calculation, so we may fre-
quently be impossible to ignore the calculation time. On the other
hand, the robust compensation is based on the high gain feedback,
so it is desired that the computation period for the generation of the
robust compensator is small as possible.

From the above point of view, in this chapter, a hierarchical robust
control method of robot manipulators is proposed, where the control
system has two loops; an upper level loop which works at a low sam-
pling frequency and a lower level loop which works at a high sampling
frequency. In the upper level loop, an input for the linearizing compen-

91
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sation, a desired trajectory, and a feedback gain are generated at a low
sampling frequency. In the lower level loop, a switching input, which
is one part of the robust compensator, is computed at a high sampling
frequency. This scheme make the calculation for the generation of the
robust compensator much faster, so we expect that the effect of the
discretization of a robust controller on the control error is smaller. The
hierarchical structure of the control system in the dynamic control of
robot manipulators itself was proposed by Khatib et al. [63] in 1986,
and the effectiveness of this method was shown by an experiment result
by Yoshikawa et al. [144] in 1988. However, there was no theoretical
discussion on the control performance in the system with the hierar-
chical structure. In the next sections, the control performance of this
hierarchical system is analyzed under the consideration of a sampling
period of an upper level loop and a modeling error. Finally, some sim-
ulation results are shown to verify the effectiveness of the hierarchical
robust control systems.

6.2 Problem Statement

Consider a manipulator with n degrees of freedom whose dynamics
is described by the following equation :

M ($,0)8 + h($,8,0) =u (6.1)
where 6 2 (01,02, ...,6,]" is the n-dimensional vector of joint displace-
ments, ¢ is the physical parameter vector with an appropriate dimen-
sion, w 1s the n-dimensional joint torque input vector, M(¢,8) is the
n X n manipulator inertia matrix, and h(¢,8,8) is the n-dimensional
vector that represents the nonlinear terms such as centrifugal, Coriolis,
frictional, and gravitational forces.

This system usually has the following features.

[Feature 6.1 ]  M(¢,0) is a positive definite matriz for any 6.

[Feature 6.2 |  The left-hand side of ( 6.1) can be expressed as
M($,0)6 + h(¢,0.0) = E(¢)y(9,6,0) (6:2)
where E(¢) is an appropriate dimensional matriz consisting of physical
parameters, and y(0,0,0) is an appropriate dimensional vector whose
elements are known functions of 8, 8, and 8. |
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We begin with the definition of the notations which express mechan-
ical performance of a manipulator given here. Let #;,,,, denote maxi-
mum movable range of the ith joint angle, that is, f;mas £ max | ;|
Let fimar denote maximum angular velocity of the ith joint, that is,
Oimaz £ max | 9, |. Let f:mar denote maximum angular acceleration of
the ith joint, that is, Bimas 2 max | 6, |. We also define the following
sets for Ojmer and &maz.

2,200 16; 1< Ojmazr 5=1,2,...,0 ) (6.3)
R2:2616; |<bjmass =1,2,...,0 } (6.4)
Let T" denote a sampling period in the upper level loop, which has a
low sampling frequency. Note that, since 1" is dependent on degrees of
freedom of joints and the performance of a hardware used in the control

system, we assume here that 7' is a positive constant given in advance.
Then for a given 0 € §2,, 0 € £2,, we define the following sets.

IT,(8) £ {€ | | & — 6; |< BjmaaT, j=1,2,...,n}  (65)
IT8) £ (£ | & = 6; |< 26jmecT, §=1,2,...,n} (6.6)
where &€ = [£1,&,...,&]7. IT,(8) and IT4(0) express a set of joint
angle and joint angular velocity which is reachable in 2 sampling periods
from 6(t) and-6{t), respectively.
Then the following assumptions are made.
[Assumption 6.1] 6 and 8 are measurable, |
[Assumption 6.2 |  fimaa, Bimaz, and O;imas are known. |
[Assumption 6.3 ] The values of the physical parameter vector
¢ may be unknown, but it is known that ¢ ezists in a certain bounded
region £24. |
[Assumption 6.4 ] ¢, a bounded estimate of ¢, is given such
that the following matriz is positive definite for all @ € §2,,, £ € 11,(8),
and ¢ € ﬂ¢,

M2 (M~ ($,6)M($,6) + M ($,0)M~"(¢,€)}/2 (6-?

Note that, from Assumptions 6.3 and 6.4, there exist positive con-
stants a and 3 such that the following conditions are satisfied.
a <A\ (M), V0e€ 2, VEelIl,(0) Yoe 12, (6.8)
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B> MA(M™IM) V0 € 2, VE € II(0), Vpe 2y (69)
For the above robot manipulator, we consider the following problem.

[Problem 6.1 ]  For a robot manipulator given by (6.1) that sat-
isfies Assumption 6.1 to 6.4, a desired trajectory 0,(t) is given whose
derivatives 84 and 84 exist and are bounded. Then we consider a con-
trol system, which has two hierarchical feedback loops, that is, an upper
level loop to work at low sampling frequency T and a lower level loop
to work at high sampling frequency. Then for given ep and €y, find a
control law such that

| e(t) ||< ep, | e(t) ||< ev Vi>T (6.10)
f.wzds for all t > 0, where e(t) 2 8(t) — 84(t) and tq is an initial time.

For simplicity, we assume that e(ty) = o and é(tp) = 0. In addition
we assume hereafter that a sampling period in the lower level is small
enough to be negligible, namely, a control signal in the lower level loop
is continuous on time.

Remark 6.1 If we assume that a control input in the lower level loop
is digital, we can estimate the bound of the control error in such a case,
using the technique developed in chapter 5. | |

6.3 Hierarchical robust control

In this section, we propose a hierarchical robust control system for
a robot manipulator given by (6.1).

6.3.1 Approximated desired trajectory in lower
level loop

For a given desired trajectory, we consider how to generate a desired
value at each sampling point. In the lower level loop, we usually hope
that the computational amount to generate a control input is as small
as possible, because it is desirable to make a sampling period small in
the lower level loop. If we use desired values stored in memory, we may
need a huge memory because a sampling period in the lower leve] loop
is very small. Hence we use the first order approximation of the desired
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values generated in the upper level loop as a desired value in the lower
level loop, which requires no large computation. That is to say, we use
the following as a desired value at ¢; € [iT, (i + 1)T) in the lower loop
level,

8a(t:) S 8ui + (Buisr — 0ai)(ti — iT)/T (6.11)

Ba(t:) £ 64 + (Byisr — 0u)(t: — iT)/T (6.12)
where 6, and 85 mean the values at the ¢ sampling point, namley,
84 £ 0,(iT) and 84 2 0,(:T)

The value with the subscirpt ¢ means the value at the :th sampling
point, except for t; which means the time at the ith sampling period,
ie., t; € iT,(i + 1)T') hereafter.

Remark 6.2 When an approzimated desired trajectory is not used in

the lower level loop, we have only to replace éd(ti] and éd(t,') by 64(t;)
and B4(t;), respectively, for t; € [iT,(i + 1)T') in the nect argument.

6.3.2 Hierarchical robust controller

We consider the following control input which is composed of a lin-
earizing compensator u(t) and a robust compensator ug(t).
w(t) = ur(t) +ug(t) (6.13)
Then a control input in the ith sampling period is given as follows
<Linearizing compensation>

ur(ts) = B()¥;, (6.14)
where N ‘

Yio1 = Y(0i-1,0i-1,7i-1) (6.15)

Ti—1 é éd,‘ — A(é,‘_}_ = édg) (516)

and A is a part of velocity gain and is a design parameter to specify the
control error precision.

Note that a control law given by (6.14) has almost the same form as
the conventional dynamic control method, and r;_; means a modified
desired trajectory.
<Robust compensation>
The parametric uncertainty which cannot be compensated for by the
above linearizing compensation is give by

AE £ E(¢) — E($) (6.17)
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and the discrepancy in y between the measurement of the state in the
upper level loop where a computation time lag exists and the real state
is given by

Ay, £ y(6(t:), 6(t:), Ba(ts) — Ne(t:) — 9y (6.18)
for all t; € [{T,(i + 1)T). Then from Assumption 6.3, there exists a
function g(y,;_;) such that

9(¥i1) > M~ (AEg,_, + EAy,) |

V0, € 12,, VO, € 12,

V6(t;) € IT,(6;-1), VO(t:) € IT4(6;) (6.19)
because M~!, AE, and E are bounded, and for example, for all t; €
[¢T, (¢ 4+ 1)T)

I GJ'(ti) - 9}((% - I)T) IS. 2é,;iﬂm:r:T < o0 (620)
Let 3 denote an extended error between the state and the approxi-
mated desired value given by

52(0-0,)+ M08, (6.21)
and W denote a weighting function given by
W35 )é 1 if ||3||>6 (6.22)
RS LY |

where 6 is a design parameter to specify the control error. Then using
(6.19), (6.21), and (6.22), we consider

uR(ti) = _"V(ga 6ap)(Mi—l/a){g(ﬂi—l) F k}d"(‘é) (623)
where £ is a positive constant, and
N, , & N(6;_,) (6.24)
& en -
el BT
(8) { o if]3[=o (6.25)

~

We call (M;_;/a)(g + k) a switching gain, and ¥(3) a switching
input. ¢ is a part of a switching gain to compensate for the parametric
uncertainty given by (6.17) and the discrepancy due to the time lag
given by (6.18). W(3, 6, p) is a weighting function for a switching gain.
A positive number p is a design parameter to specify the bound of a
switching gain. If p = 0, then the robust compensator consists of a
discontinuous function on 5. If p > 0, then it has a weighting function
to make a switching gain smaller when || 3 || becomes smaller. If p = 1,
then it corresponds to the conventional controller which has the first
order weighting function. Therefore, when || 5 ||< §, the switching gain
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Figure 6.1: Hierarchical robust control system

in the case of p > 2 is smaller than that in the case of p = 1, which is
the conventional case, and we can expect that a chattering phenomenon
is decreased in the case of p > 2.

Remark 6.3 We define W by (6.22). However if W satisfies0 < W <
1 in the case of | 3 ||< 6, the arguments in the next sections hold. |

We show a hierarchical control system in Fig.6.1. The real line
in Fig.6.1 expresses a signal of the lower level loop (high sampling
frequency), and the solid line expresses a signal of the upper level loop
(low sampling frequency). In the upper level loop, a desired value at
the ¢th sampling point is generated, and a linearizing compensator and
a switching gain are calculated using the ith desired value and the state
at the t—1th sampling point. On the other hand, in the lower level loop,
an approximated desired value is generated based on the desired value
generated at each sampling point in the upper level loop. In addition,
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a switching input is calculated using the approximated desired value
and the state at that time of a manipulator, which generates a control
input u, together with the linearizing compensator and the switching
gain in the upper level loop. Note that we consider the time lag due
to the computation in the upper level loop. As the computation time
lag becomes larger, the switching gain becomes larger. Hence it is
desirable to make the computational amount in the upper level loop
as small as possible. In the computation of (6.14), we can use the
computation method by Newton-Euler formulation, which is useful for
the computation of the dynamics of a multiple d.o.f manipulator.

6.4 Estimation of the bound of control
error

We estimate the bound of the control error when a controller given
in section 6.3 is applied to a manipulator.

Let s denote an extended error between the state and the desired
value given by

sZe+e (6.26)
Let p and gpyqr denote positive constants satisfying

p = sup || 84(t) — B4(t) + M(8a(t) — O4(t)) | (6.27)

Imaz > g(@i—l)

VO 1 € £2,, Y6,_1 € £24, V04, VO (6.28)
Then for given p and gpnq., define
A 18 Omax
fy_p(l-l—zk-)(l—!— —1 (6.29)

Then we get the following lemma.

[Lemma 6.1 ]  Suppose a control input gwen by (6.13) is applied
to a manipulator (6.1). Consider

Vit) = és(i)Ts(t) (6.30)
Then if 6 satisfies
O6>y—p (6.31)

then )
V(t) <0, Yt >0 (6.32)
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when

| s(®) 1> 6+p (6.33&

Proof: We begin to consider V(¢;), i7" < t; < (i + 1)T. Differentiating
V(t:) along the manipulator, we get

V({t:) = s"M7u— M(8y— ) - b —g]
= s"M 'up+u;— Ey(60,0 y ¥l (6.34)
where r = 8, — Aé. Substituting (6. 14) into (6.34) leads to
V(t) = sTMup— AEj,_, — EAy, (6.35)
From (6.27) and (6.33), we get
I'511=6 (6.36)

Noting that it follows from (6.7) and (6.8) that
M "Mz = 3¥Ms

> An(M)[3|P>al 5] (6.37)

we get, from (6.23) and(6.35)

3 = Imax ;8 )6

V() < k[||s|| p{ - (l+a)~|—a}] (6.38)
On the other hand, it follows from (6.29) that

Imaxz E é

b>y—p= p{ © (1+a)—l-a} (6.39)
This implies

V(t;) <0 vt € T, (i + 1)T) (6.40)
Hence noting that (6.40) holds for all ¢ and V() is continuous on ¢, we
can show (6.32). |

From Lemma 6.1, we get the following result on the estimation of
the bound of the control error.

[Lemma 6.2 ]  Suppose a control input given by (6.13) is applied
to a manipulator (6.1). Then for allt > 0,

| s(t) l<6+p (6.41)
In addition, for alfét >0,
+
Il et) lI< - (6.42)
|| &) |<2(6 + p) (6.43l)

Proof: We can show this in the same way as the latter part of the
proof in Theorem 6.1
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From Lemmas 6.1 and 6.2, we get the following theorem.

[Theorem 6.1 ]  For a manipulator given by (6.1) satisfying As-
sumptions 6.1 to 6.4, a desired trajectory is given. According to the
desired trajectory, we calculate a positive number y in (6.29). The pa-
rameters € and X that specify tracking precision are given to satisfy

EXA >y (6.44)
Also 8 1s given by

b=cA—p (6.45)
Then if a control input (6.13) is applied to the manipulator, then

| e(t) ll<e (6.46)

| &(t) ||< 22e (6.47)
for allt > 0. |
Proof: It follows from (6.44) and (6.45) that

d=el—p>v—p (6.48)

and (6.32) of Lemma 6.1 holds. Then we get (6.42) and (6.43) from
Lemma 6.2. Noting

6
-—? o (6.49)
we get (6.46) and (6.47). |

In Theorem 6.1, we have to note that the desired trajectory is real-
izable, because the mechanical performance of the given manipulator
is restricted. Also we have to take account of the bound of the input,
especially, the switching gain, when we determine the design parame-
ters.

6.5 Comparison of computational amount

We discuss, in this section, how small the computational amount
for the switching input is by using a hierarchical structure. We con-
sider a n d.o.f. robot manipulator with rotational joints only, and use
Denavit-Hartenberg notation. As for the upper level loop, we calculate
the computational amount of the linearizing input (6.14) and the esti-
mated value of the inertia matrix (6.24). As for the lower level loop,
we calculate the computational amount of the approximated desired
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Table 6.1: Computational amount for each method

Method Multiplications Additions
Hierarchical | Upper level | 12n% + 190n — 71 | 7n?% + 174n — 97
control Lower level | n®+5n+5+p n® +9n 4 2
Non-hierarchical 137n —15+p 112n — 20

control

Table 6.2: Number of arithmetic operations for n=3 and 6

Method n=3 n=~6
Upper level | Mul. 607 1095 1501 2700
Hierarchical Add. 488 (16.3) 1199 (16.5)
control Lower level | Mul. | 29+p | 67+4+p | T14+p | 163+p
Add. 38 (1.0) 92 (1.0)
Non-hierarchical Mul. | 3964+p | 712+ p | 807+ p | 1459+ p
control Add. 316 (10.6) 652 (9.0)

( ) means the rate of the computational amount of the upper level (or
Non-hierarchical control) for that of the low level.

trajectory (6.11) and (6.12), the switching input (6.25), the weight-
ing function (6.22), and the total input (6.13). On the other hand, in
the case of the conventional robust control which is not hierarchical,
we calculate the computational amount of (6.14) and (6.23). Also we
use the Newton-Euler method {136, 86] in the computation amount of
the linearizing input and the estimated value of the inertia matrix in
the upper level loop, and also in that of the non-hierarchical robust
control. '. We do not calculate the computational amount of the de-
sired trajectory and switching gain, because they are dependent on the
trajectory or the function g.

The result is shown in Table 6.1. Especially, we show the case of
n =3 and n = 6 in Table 6.2. The notation (-) expresses the ratio of

In the non-hierarchical robust control case, combining (6.14) and (6.23) in the
following way, we can use Newton-Euler method. R
ut;) = Mio1[rics — (W/a)(g+k)¢] + hic1 + 9,
where h and § is the estimate of h and g.
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the computational amount of the upper level loop (or Non-hierarchical
control case ) to the lower level loop. These tables show that the
sampling period for computing the switching input in the hierarchical
control case is about 1/9 times as small as that in the non-hierarchical
control case. Hence we can expect the chattering is decreased by the
use of the hierarchical structure. In addition, if we consider the compu-
tational amount of the desired trajectory and the switching gain in the
upper loop level or the non-hierarchical control, the ratio of the com-
putational amount of the upper level loop (or Non-hierarchical control
case ) to the lower level loop will be larger. Note that the computa-
tional amount in the upper level loop is about 2 times as large as that of
the non-hierarchical control case. This is because of the computational
amount of the estimates of the inertia matrix in the upper level loop.

6.6 Simulation

In order to verify the effectiveness of the proposed method, we show
simulation results in the case of the trajectory tracking control of a 3
d.o.f. robot manipulator as shown in Fig.6.2.

Let m; be the mass of the jth link (j = 2,3). The center of the mass
of the 1st link is in the Z axis, and the center of the mass of the jth
link (7 = 2,3) is in the jth link. Let {;; (j = 2,3) denote the distance
between the center of the mass of the jth link and the jth joint. The
inertia tensor about the center of the mass of each link can be expressed
by a diagonal matrix diag [Ij;, Ijy, [;.](j = 1,2, 3), respectively. Let

Pk = m2122 + mgl?! + Iy (k =y, 2,’)
Plk — m3[;q3 + ng (k =1, Z)
Pg = ?1133‘1193
P = mglzz + m;ﬁ + (Igy = ng)
Py = malsy + (I3, — Is;)
Then the dynamic equation in Fig.6.2 is given by

M(8)0 + h(6,6) = u (6.50)
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1T

Figure 6.2: 3 d.o.f. robot manipulator model

0 = [6,60,03]F
u = (uli U3z, u3]T
.(1{[11 0 0
M(B) = 0 ﬂ/fgg P1z 4 PQC;;
' 0 PI: + PZC3 Plz
h(8,8) = [k, hy, hy]"
My =1+ 12153 + ngC'%
+I3IS§3 -+ PlyC§3 + 2P,CoCo3
M3z = Py: + Py, + 2PC3
hy = —2P355C20,8 — 2P1.S53C)361(6 + 65)
—2P5{(C235> + S23C2)0165 + S23C20103}
ho = P3S9Cof; + PyS23Ca303
+Po{(Ca3S2 + S23C2)0; — S363(20 + 63)}
hg = P4S-230239.f -+ Pg{SggCge? + 539%}
where S; £ sinf;, Cj 2 cos6; (j = 1,2), So3 £ sin(6y + 63), Cas
cos(fy + 03), and we do not consider the gravity for simplicity. Ve

B
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assume that 8;,,, = 7 (rad), 6"ij = 2.0 (rad/s), and B.J-mu = 5.0
(rad/s?) (j = 1,2,3) as a mechanical performance. Also Define

L. 0 0 b,
E1= 0 P02+Plz -Plz ’ U = Q_E
L 0 Plz Plz 93
[2P, 0 0 CaCasfy
E,=| 0 2P, B |, y,=| OCif
0 P 0 C3b3
] 5260
I‘!:: P[Jy I"}: Ply 02261
Es=|0 0 0 0|, y3= 5;’ 51
0 0 0 0 a5
] Ci301
[P; 0 0 —232023'192
E,=| 0 B 0], y= S,Cs07
0 0 P 0
P, 0 0] —2523Ca36) (é2 + 63)
Es=|0 P 0 |,ys= 5230239.%
L 0 0 Py S93C136%
[P, 0 0 ]
Es=| 0 P 0
0 0 B
—2{(C23S2 + S23C3)0102 + Sa3C20165}
Ys = | (C23S2+ S23C2)07 — S363(26, + )
Sa3Cob} + S363
E=[E, E;, E; E, E; E (6.51)
v=1[yl v vi vi vi uil" (6.52)

Then we can verify that Feature 6.2 is satisfied. We show real values

and estimated values of the physical parameters in Tables 6.3 and 6.4.
Also ¢ in (6.19) is given by
6

9(#i1) = 2 ak || Gui-1 || +az (6.53)
k=1

where a; (k=1,2,...,7) is a positive constants satisfying

ap > )lM(M—l&Ek)
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Table 6.3: Unknown parameters of manipulator

Unknown Inf. | Sup. | Real | Nominal
parameter | value | value | value | value
my (kg) 6.0 | 12.0 | 6.0 9.0
I, (kgm?) | 0.3 0.9 0.3 0.6
Iy, (kgm?) | 0.3 0.9 0.3 0.6
I, (kgm®) | 03 | 09 | 0.3 0.6

Table 6.4: Known parameters of manipulator

Known Real || Known Real
parameter | value || parameter | value
Y| 04 | ma (kg) 8.0

( )| 0.4 | iz (m) 0.25

I, (kgm?) | 0.4 | I3 (m) 0.25
( )| 04 | I, (m) 0.5
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Table 6.5: Design parameters

CASE(i) | CASE(ii) | CASE(iii)
Tiow(msec) 5.0 8.0 8.0
Thigh(msec) 0.5 0.5
P 1 1 3
€ 0.0295 0.0045 0.002
ay 1.518 as 0.794
as 0.478 ayq 3.399
as 3.569 ag 1.700
ag 1.194 k 0.3
o 0.58 ¥ 1.5% 10~
8 2.22 P 8.0x 107
ar >|| M~ EAy; |

The desired trajectory is given by
B4 = 0.5cos(nt/3) — 1.0
04 = —0.5cos(mt/3) (6.54)
043 = —0.5cos(mt/3) — 1.0 for 0<t<3.0
We discuss how small the tracking precision can be specified in the
following three cases.

(i) Non-hierarchical robust control method with p =1
(ii) Hierarchical robust control I with p =1
(iii) Hierarchical robust control IT with p = 3

We consider p = 1 in the case of (i) and (ii), while p = 3 in the case
of (iii). Design parameters for each case are shown in Table 6.5, where
Tlow is a sampling period in the upper level loop and T}, is a sampling
period in the lower level loop. Note that ¢ is given as small as possible
under the condition that the chattering does not appear almost. The
switching gain a; is given as shown in Table 6.5, although a; = 0.0
and k = 0.0 in the case (i). Also we set A = 1.0. Note that, although
a manipulator is a continuous-time system, we use in this simulation
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the Euler method with the integral interval of 0.1(msec) as numerical
integration.

The simulation results are shown in Figs.6.3, 6.4, and 6.5.
Fig.6.3 shows that the chattering occurs in the case (1) with ¢ = 0.0295.
If £ becomes smaller, then the chattering becomes larger, and the con-
trol error cannot achieve the specified tracking precision. On the other
hand, in the case (ii) in Fig.6.4, the chattering does not appear even
in the case of ¢ = 0.0045, which is 1/6 times as small as ¢ = 0.0295.
In addition, we can give the specified tracking precision ¢ in the case
(iii) which is 1/15 times as small as € = 0.0295 as shown in Fig.6.5.
Also note that in the case (iii), the maximum value of the real control
error is closer to the specified tracking precision than the case (i) or (ii),
which means that the feedback gain is not so larger than necessary, by
the effect of the weighting function W.

The above simulation results show the validity of the proposed con-
trol method.

6.7 Conclusion

The main results obtained in this chapter are summarized as follows.

(i) A hierarchical robust control method of robot manipulators has
been proposed. A hierarchical control system enables us to gen-
erate a robust compensator much faster than the non-hierarchical
case. By assuming that a control signal in the lower level loop is
continuous on time, the effect of the uncertainty on the control
error is theoretically analyzed. In addition, the part which can-
not be linearized due to the computation time lag is theoretically
compensated by the robust controller.

(ii)  The proposal of some weighting function for a feedback gain
enables us to make the feedback gain lower and to decrease chat-
tering phenomena.

(iii) The simulation results have illustrated that the proposed hierar-
chical controller is effective.
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Figure 6.3: Simulation results of case (i): Non-hierarchical robust con-

trol with p=1
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Figure 6.4: Simulation results of case (ii): Hierarchical robust control
I withp=1
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Figure 6.5: Simulation results of case (iii): Hierarchical robust control
II withp=3



Chapter 7

CHARACTERIZATION OF
STRICT BOUNDED REAL
CONDITION OF
NONLINEAR SYSTEMS
AND ITS APPLICATION
TO NONLINEAR Hy
CONTROL

7.1 Introduction

In the linear system control theory, the H,, control theory gives
powerful tools for robust control theory. In other wards, various robust
control problems such as robust stabilization can be solved by using
the H, control theory. Thus recently, some nonlinear extensions of
the H, control theory have been studied by several researchers, which
is called nonlinear H . control theory. However, since the conventional
works about the nonlinear H ., theory strongly depend on the lineariza-
tion or the linear H, control techniques, it is not satisfactory in the
sense that they do not give the answer to the following fundamental

111
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questions. (1) Can we treat the strict H, problem of nonlinear sys-
tems in the case of asymptotic stability? (2) When does there exist a
stabilizing solution of the Hamilton-Jacobi equation? (3) Do we really
need a positive definite solution of the Hamilton-Jacobi-Isaacs equa-
tions rather than a positive semi-definite solution? (4) How do the
H . control (or Ly gain) results depend on the type of the stability
( such as asymptotic stability or exponential stability )? (5) Can we
extend the approach based on the Riccati strict inequality [149, 107] to
nonlinear setting?

So there is a big gap between the linear H ,, control theory and its
nonlinear version obtained so far, and we can hardly say that the essence
of H ., control of nonlinear systems was captured. Therefore we need
a new different approach, which does not depend on the linearization
of nonlinear systems, to capture the essential feature of the strict H
control theory of nonlinear systems.

The main purpose of this chapter is to give answers to the above five
questions by obtaining a nonlinear version of the bounded real lemma
in a rigorous way. A characterization of the bounded real condition
of nonlinear systems, which is a necessary and sufficient condition for
nonlinear systems to be internally stable and to have the L, gain less
than a specified number v is given via two approaches: an approach
based on the Hamilton-Jacobi equation with a stabilizing solution and
an approach based on the Hamilton-Jacobi strict inequality. In the for-
mer approach, a stabilizing solution plays an important role to develop
the strict H ,, control theory, while the latter is a nonlinear extension
of a characterization based on the Riccati strict inequality and is useful
for analyzing necessary conditions for the solvability of nonlinear H,
control problems.

The derived results on the L, gain have the following properties,
compared with the previous results. First, the necessity as well as the
sufficiency are rigorously treated, though some natural assumptions are
needed. Second, main results are not based on the linearization of the
nonlinear system, and it is possible to treat the critical case and so
on. Third, main results completely include the bounded real lemma of
linear time-invariant systems. Finally, the relation between the internal
stability of the system and the stabilizing solution of the Hamilton-
Jacobi equation is clarified, which is particular to the nonlinear case.



113

The characterization by these two approaches will complete the strict
bounded real condition of nonlinear systems to form a basis to solve
the strict H,, control problem.

As an application of the above results, some sufficient (and neces-
sary) conditions are given for the solvability of the strict H,, state
(or output) feedback control problem. The derived results completely
correspond to the case of linear systems, and are stronger than the
sufficient condition derived by Isidori [55].

The following notations are used: For a function u(t) : R — R"
on [a,b], let Ls(a,b) be a set of measurable functions on [a,b] with

J2 1] u(t) |2 dt < oo, and || w |l» e (J2 || w(®) II* dt)". Let La.(a) be
an extended space of Ls(a, 00), and

Lo(a) S {u: R — R"| || w |lar< 00,¥T > a}

where || u ||-z:ré (f;‘r | u(t) || dt)lfz, and a constant a expresses an
infimum value of the domain where a function () in question is de-
fined. For simplicity, Lo.(a) is denoted by Ls.. Moreover, let Ly denote
Ls(tg, 00) where tp is the initial time of the system considered in the
next section, and L5/{0} denote Ly with || = |[»# 0. Define L,./{0}
in the same way. Let L, denote L, N Cy, where Cy is the set of all
functions which converge to 0 as the argument tends to co. Define L
in the same way. L, expresses a set of bounded functions, and also Lg,

denotes a set of bounded functions with sup, || z(t) ||[< c. B, denotes
a compact set on R" such that B, £ {zeR"|||z|<r}, whererisa
positive constant. Let f(z) and g(z) be scalar functions. Then we use
f = 0(g) if lxm”a;“_,oH < oo holds, which means that there exists a
positive constant k such that | f |[< k| g | in a neighborhood of = = o.

A real-valued function %(-) : R — R is said to belong to the class K
(or 1 € K) if it is continuous and strictly increasing functions with

w(0) = 0.
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7.2 L, gain and the Hamilton-Jacobi equa-
tion

In this section, we state the relation between the L, gain of nonlinear
systems and the Hamilton-Jacobi equation which corresponds to the
algebraic Riccati equation arising in the case of linear systems.

Consider the following nonlinear system whose input-output relation
is given by an operator S : Ly, — Lo,.

z = f(z)+g(x)u (7.1)
y = h(z) (7.2)
:E(tg) = @y

where & € R" is the state, u € R™ is the input, y € RP is the
output, and ¢, is the initial time. f(-): R" — R", h(:) : R" — RP,
and g(-) : R" — R™™ are sufficiently smooth known functions with
f(o) = o0 and h(o) = 0. It is assumed that (7.1) has a unique solution
for any w € Lo,.

Define the L5 gain for the system S as follows.

[Definition 7.1 ]

A Su

| Sllz2= sup | S
ueL,/{0} ” U "2

subject to Ty = 0. |

(7.3)

The following assumptions are made.

[Assumption 7.1 ] The system S is reachable from the origin
(x = 0). Namely, given any T, andt,, there exists a finite time ty < t,
and a control input w € Ly(to,t1) such that the state can be driven from
z(tp) = 0 to z(t;) = x,. |

[Assumption 7.2 ]  For the system S, let ¢,(x) be the function
defined by
A . T a7 T
$o(x) = _uerf,f:zefe (v v -y y)dr (7.4)
where x(t) = & and v is a given positive constant. When balx) exists,
it is C1. In addition, when ¢,(x) exists globally, there ezists an optimal
control input . € La(tq,ty) which minimizes the cost function given
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by
J(2(ta), ("), ta) = —a(a(ty)) +f:°(72urru —Tidr  (75)

for a sufficiently small time period [t,, te). |

Assumption 7.1 implies that, when the system is linear, it is con-
trollable. Assumption 7.2 holds whenever the system is linear time-
invariant.

Then one gets the following theorem.

[Theorem 7.1]  Under Assumptions 7.1 and 7.2, let y be a given
positive constant. Then the following four statements are equivalent for
the system S.

(i)

” z llti <7, VI'>ty, VueLy/{0}, zp=0 (7.6)
(i)
(iii)

IS li2< 7 {7.8)

(iu)  There exists a positive semi-definite function ¢(-) : R* — R
such that, for allz € R"

d¢ 1 8¢ 100 .7, ”
awa+47gangg am+h h=0 (7.9)

Proof: See Appendix.

Using the methods of [84] and [46], van der Schaft [127] has already
shown the equivalence between (iii) and (iv). However, the proof of (iii)
— (iv) is not clear there, since we believe that Assumption 7.2 is neces-
sary, but it is not explicitly made. In Theorem 7.1, we give a rigorous
and alternative proof, which is convenient to prove the local setting of
Theorem 7.1. The main feature of the proof is the derivation of (7.A1).
In addition, the equivalence between (i), (ii), and (iii) is not clear in
[127]. Note that it is not easy to show (i) — (ii) directly, because (7.6)
at 7 — oo means ll[%l}l_ < v, not :gt < 4. The equivalence between (ii)
and (iil) implies that there exists no input that maximizes the input-
output rate of the system, and it is important that the condition (ii)

does not necessarily mean the condition || S |[z2< 7.
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Remark 7.1 We compare the result of Theorem 7.1 to the bounded
real lemma of linear systems. For a linear system

o z = Fz+Gu

5 g = e (?’..10)
where F, G, and H are appropriate dimensional constant matriz, a
necessary and sufficient condition for || 8 ||12< 7 is that there ezists a
positive semi-definite solution P that satisfies the Riccati equation

PF+FTP+§15PGG’TP+HTH=0 (7.11)

(See [4]). From this, one can see that the Hamilton-Jacobi equation of
(7.9) in Theorem 7.1, when ¢(z) = =T Pz, is equivalent to the Riccati
equation given by (7.11). |
Remark 7.2 Let ¢.(x) be the function defined by
biz) 2 i [Crutu-yTy)dr
ue L. to<ty Yo
gl =0; =)=z (7.12)
Assume that ¢.(x) satisfies an assumption similar to Assumption 7.2.
Then ¢.(x) is also a positive semi-definite solution of the Hamilton-
Jacobi equation (7.9) when the condition (i) of Theorem 7.1 holds.

In Theorem 7.1, we have discussed 1/O relation only (i.e. L, gain
of the system). However, the internal stability is important from the
viewpoint of control system design. Therefore, we give a necessary
and sufficient condition for the system to be internally stable with the
specified Ly gain in the following sections, where we consider three
cases, namely asymptotic stability, exponential stability, and globally
exponential stability as the internal stability.

7.3 Characterization via the Hamilton-
Jacobi equation with a stabilizing so-
lution

In this section, we give a nonlinear extension of the strict bounded
real lemma of linear systems, based on a stabilizing solution of the
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Hamilton-Jacobi equation. Next, as an application of the obtained re-
sult, we give some sufficient (and necessity) conditions for the solvability
of a strict H ,, control problem via state feedback.

7.3.1 Strict bounded real lemma including inter-
nal asymptotic stability

Here asymptotic stability is considered as internal stability.

[Definition 7.2 ] For the system S with w = 0o, namely, & =
f(x), we call the system S internally asymptotically stable, if the origin
(x = 0) of the system ts an asymptotically stable equilibrium. |

Define the following input-output stability when the input belongs
to La N Lgo

[Definition 7.3 ] [184]  The system S is said to be small signal
L, stable if there exist constants k and ¢ such that || y [2< k || u ||z,
for g = 0 and allw € LoN LY. The system S is also said to be small
signal Lo stable if there exist constants k and ¢ such that || y [|]2< k%
u ||2, for @y = 0 and all uw € L N L.

Define the Lo gain of the system S as follows.
[Definition 7.4 ]

A Su
ISl sp LS

ueLn oL, w2
where ¢ is an appropriate positive constant and Tq = 0. We say the
system has the small signal L gain || S | p2.-

Note that the system which is small signal Ly stable has the finite
small signal L, gain.

In the case of linear systems, the internal stability automatically
means globally exponential stability. So the state z(t) goes to the
origin (& = 0) as t — oo for any input that belongs to L,. In the
nonlinear case, since the internal stability considered in this section
implies local asymptotic stability, we pay attention to LyNL as a
class of input signals of the L, gain, in order to guarantee that the
state of the system S is always in the stability region. In addition, we
need the fact that the state converges to the origin as t tends to co for
any input that belongs to L,, in order to prove the necessity on the

(7.13)
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bounded real lemma. Concerning this point, the following lemma is
obtained.

[Lemma 7.1]  Assume that the system S is internally asymptot-
ically stable on B,, namely, there exists a Lyapunov function in B, to
guarantee that the system © = f(x) is asymptotically stable at T = o.
Then for any positive constant r\(< 1), there exists a positive constant
c such that x € CoN L2 holds for allu € CoNL:,. There also exists a
posttive constant ry such that y € CoN L2 holds for allu € CoNLE,.
Furthermore, given any positive constant c;(< c), there ezists a positive
constant r3(< 1) such that @ € CoN L7 holds for allu € Con L.

Proof: This lemma can be readily proven by using Theorem 68.2 in
[40], page 344. i

Now the following assumptions are needed, which are similar to those
of section 7.2.

[Assumption 7.3 | The system S is locally reachable with a
small input. Namely, given any ¢ > 0, there erists an r(c) > 0 sat-
isfying the following: for any x, € B, and t,, there ezist finite time
to(£ 1) and a control input u € Lo(tg,t1) N LZ_ such that the state is
driven from x(tg) = 0 to z(t;) = x;. |

[Assumption 7.4 ]  For the system S, let ¢o(x) be the function
defined by
Gu@) 2= it [ (PuTu yTy)ar (7.14)
ue Ly .nL; 1>t
where z(t) = x and vy is a given positive constant. When gba(m) exists
in a neighborhood of the origin, it is C*. In addition, when q&a(m) ezists
m a neighborhood of the origin, there ezists an optimal control input
u. € Ly(ts,ty) N LY, which minimizes the cost function given by

T(o(ta), () te) = ~du(w(ts)) + [ (Pu"u - yTy)dr

(7.15)
for a sufficiently small time period t € [t,,ty]. Furthermore, let ¢(x)
be the function deﬁned by

e L inf f ulu — dr
¢ o{®) veLa.nL?  to<t (% v'y)

z(t)) =0, z(t)=z (7.16)
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where Y9(< 7y) 1s a positive constant which is sufficiently close to 7.
When ¢ro(x) exists in a neighborhood of the origin, it is C*. In ad-
dition, when ¢.o(x) exists in a neighborhood of the origin, there exists
an optimal control input w, € Ly(t,,ty) N L, which minimizes the cost
function given by

H(a(ts),u(),t) = Fo(a(ta) + | (FuTu - yTy)ds

(7.17)
for a sufficiently small time period t € [t,,1,]. i
Define the following systems:
S,: & = f(z)+g(z)u
B 1 7 0¢
v = — 3:1:( z)+u (7.18)
o : 1
8t & = f( )+ﬁQQTa¢( )+ g(z)v
¢
5 539 5 (%) +v (7.19)

where ¢(-) : R" — R is an appropriate real function. Note the system
S ! is the inverse system of S,. It is assumed that the system S has
a unique solution for any v € Ls..

Then the following theorem is obtained.

[Theorem 7.2]  Under Assumptions 7.3 and 7.4, let y be a given
positive constant. Then the following statements are equivalent for the
system S.

(i)  The system S is internally asymptotically stable, and there ezists
a positive constant ¢ such that || S || z2.< 7.
(ii) ~ There ezists a positive semi-definite function ¢(-) : R* - Rina
neighborhood of the origin which satisfies the following two conditions.
A do 1 3¢ 10¢
BwT'f * 42 B:I:ng oz
(B)  The system S, L' is internally asymptotically stable, and small
signal Lo stable. |
In (130] and (127], van der Schaft has shown that, under the assump-

tion that there exists the first order term of Taylor series expansion at
the origin of a nonlinear system, a sufficient condition for the nonlinear

+hTh =0 (7.20)
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system .S to be internally exponentially stable with || S || 12:< 7y is that
the linearization .S given by (7.10) is internally stable with || S [|z2< 7.
It has also been shown that this sufficient condition guarantees the
smoothness of ¢,(z). This result is useful for the evaluation of the
L, gain of a nonlinear system with internal stability, because one can
evaluate it by checking the existence of the stabilizing solution of the
Riccati equation. However, since this result is based on the one about
the Ly gain of the linearization, it may not be sufficient for the analysis
of the Ly gain of nonlinear systems. For example, the following simple
system cannot be treated by his result.
T = —4z¥4u

VES (7.21)
While, we can show tha,t the small signal L, gain of the system given
by (7.21) is less than , via simple calculation by using Theorem 7.2 (
The function ¢ = ;z* satzsﬁes the conditions (A) and (B) ). Van der
Schaft’s result ca.nnot also treat the critical case, that is, the system
has the internally asymptotic stability at the origin (not exponential
stability) and the I/O relation is small signal L, stable, but Theorem
7.2 can. In addition, the result of Theorem 7.2 is necessary as well as
sufficient for the nonlinear system S to be internally stable and have a
kind of the L, gain which is strictly less than a, specified number.

Remark 7.3 Theorem 7.2 ezactly corresponds to the strict bounded
real lemma of linear systems, In fact, for the linear system S given
by (7.10), a necessery and sufficient condition for the system S to be
internally stable with || 8 || o< 7 is that there ezists a stabilizing solu-
tion P > 0 for the Riccati equatwn (7. II) where P of (7.11) is said
to be a stabilizing solution if F + LGGTP is exponentially stable (See

[31]). In (B) of Theorem 7.2, the condition that the system S is in-
ternally asymptotically stable corresponds to the requirement for P to
be a stabilizing solution.

It is important thc:r.t Theorem 7.2 requires the additional condition
that the system S is small signal L, stable, because the internal sta-
bility of S;! in (B) is the asymptotic stability which is weaker than that
of the lmear case. |

Several lemmas are needed in order to prove Theorem 7.2. At first,
we state a result corresponding to Theorem 7.1.
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[Lemma 7.2 ]  Suppose Assumptions 7.3 and 7.4 for the system
S and the system is internally asymptotically stable, and let v be a
giwven positive constant. Then the following statements are equivalent.
(1) There exists a ¢ > 0 such that

” i |||[2 <7 Yue Ly/{0}n L (7.22)
2

(1)  There exists a positive semi-definite function ¢(:) : R* — R

which satisfies (7.20) in a neighborhood of the origin. i

Proof: See Appendix.

While Theorem 7.1 is for the global case, Lemma 7.2 is for the local
case. As in Theorem 7.1, the condition (i) in Lemma 7.2 is equivalent
to || S || 2.< 7, but does not mean || S ||z2.< 7. In order to guarantee
| S || z2.< 7, one has to pay attention to the existence of some specific
solution satisfying the Hamilton-Jacobi equation.

Next the following lemma is given which is useful for the proof on
the internal stability of the system S when ¢(x) of (7.20) is positive
semi-definite.

[Lemma 7.3 ]  Consider a system
& = F(2) +3(@)s(@), (t) = @ (7.23)
where f(-) : R* - R", s(:) : R" - R™, and g(-) : R* — R™™
are sufficiently smooth, with f(0) = o and s(0) = 0. This system 1s
assumed to satisfy the following conditions. :
(i)  There ezists a positive semi-definite function ¢(-) : R* — R in a
neighborhood of the origin such that, for a positive number p,

0 % | -
7Ll + 351 < —ps's (2]
(i)  The system given by T = f(x) has an asymptotic stable equilib-

rium at the origin.
Then the system given by (7.23) is asymptotically stable at the origin.
i

Proof: See Appendix.

Remark 7.4 As you can easily see from the proof, the asymptotic sta-
bility property of (7.23) is guaranteed for all initial state xy where the
conditions (i) and (i) hold simultaneously. i

Isidori [55, 57] has shown, under the condition that ¢(x) is the
positive definite and asymptotic stabilizing solution of the Hamilton-
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Jacobi equation, the asymptotic stability of the system given by (7.23),
by using La Salle’s Invariance Principle (See [55]). However, when ¢
is positive semi-definite, La Salle’s Invariance Principle does not lead
to the asymptotic stability. (Note that in the case of linear systems,
the existence of the positive semi-definite stabilizing solution of the
Riccati equation is enough to guarantee the internal stability of the
system.) Thus, Lemma 7.3 is developed as a new tool to guarantee the
asymptotic stability. The success in Lemma 7.3 is based on a kind of
Lyapunov function obtained by fully exploiting the system structure,
namely it is affine in s.

Compared to the case of linear systems, Lemma 7.3 corresponds
to the result that the internal stability of the linear system S given
by (7.10) is shown by the positive semi-definite solution of the Riccati
equation (7.11) and the detectability of some suitable system. In order
to clarify this relation, we define the following term.

[Definition 7.5 |  For the system S given by (7.1) and (7.2),
(f,h) is said to be asymptotically detectable, if the system with u = o
and y = o0 s asymptotically stable at the origin. |

Note that this definition is different from the definition of zero-state
detectability [19]. If (f, h) is asymptotically detectable, then it is zero-
state detectable. But the converse is not true. In addition, if the
system is internally asymptotically stable, then ( f, k) is asymptotically
detectable. The following corollary follows from Lemma 7.3 , which, as
you can easily see, completely corresponds to the well known result in
the case of linear systems.

[Corollary 7.1 |  Suppose that, for the system S given by (7.1)
and (7.2), (f,h) is asymptotically detectable. If there erists a positive
semi-definite function ¢(-) : R" — R in a neighborhood of the origin
such that 86

amTf < —hth (7.25)
then the system S is internally asymptotically stable. |

Proof: Set u = 0. By an appropriate coordinate transformation, the
system given by (7.1) and (7.2) can be transformed to the system

z = .f(ffmfﬁz)
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where & = [2] &I]7, and f and A are appropriate functions obtained
by coordinate transformation. Then we get from (7.25)

aAT {f(who) s (5'31, Ty)Zp} < -—a:2 o (7.27)

where ¢(Z) is an appropriate positive semi-definite function obtained
by coordinate transformation of ¢(z), and ﬁ(iﬁ],%‘z) is an appropriate
function. Then from Lemma 7.3, we conclude the internal asymptotic
stability of the system given by (7.1) and (7.2).

Third, concerning a stabilizing solution of the partial differential
equation given by (7.20), the following result is obtained.

[Lemma 7.4 ]  Suppose Assumptions 7.8 and 7.4 for the system
S, and the system is internally asymptotically stable. Assume also that,
given v > 0, there ezists a ¢ > 0 such that || S ||pac< 7. Then ¢o(z)
given by (7.14) satz’sﬁes (7 20) in a neighborhood of the origin, and the
system & = f + 27,
Proof: See Appendix.

In the case of the linear system S given by (7.10), if the system is
internally stable and satisfies | S |[z2< <y, then there exist solutions
of the Riccati equation and the minimum solution is a stabilizing one
(See (31, 4]). Lemma 7.4 is a nonlinear extension of this linear case. In
Lemma 7.4, it is important that the existence of the stabilizing solution
can be proven by the argument of time domain. There is no discussion
on the above point in the former researches.

[Lemma 7.5 ]  Suppose Assumption 7.3 for the system S, and
the system is internally asymptotically stable. Then the system S is
small signal Lo stable +f and only if the system S s small signal Lo
stable.

Proof See Appendix.

Now we are in the position to give the proof of Theorem 7.2 using

Lemmas 7.1 to 7.4.
(Proof of Theorem 7.2)
(ii)—(i): (a) Internal stability of the system S: In Lemma 7.3,

T—j’—— 15 asymptotically stable at the origin. £

let 5 be s = —55 =f+ 357 T2 and gbeg=g.
Then f + §3 = f. By the condition (A), one gets
f L @ T% (7.28)
B:z:T s 472 02799 5z ’
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and the condition (i) of Lemma 7.3 holds when p = v?. Further the
condition (ii) of Lemma 7.3 holds, because the system S, ! given by
(7.19) is internally asymptotically stable. Therefore, the system S is
internally asymptotically stable.
(b) || S |lz2e< 7 : Suppose the condition (A) holds for alt x € B,,.
Since the system S is internally asymptotically stable, from Lemma
7.1, there exists a ¢; > 0 such that & € L7} holds for all w € Lg,. Thus
using the condition (A), one obtains
YPlulE-lyl3=2?Nvl3,  Vu€LNLg, xo = 0(7.29)
Further there exists a positive constant ¢y such that v € LaNLZ holds
for all w € Ly N L%, Since the system S is small signal Ly stable,
there exist £ > 1 and ¢z > 0 such that
lul<kllvle VveLnLg (7.30)
Thus from (7.30), the internal stability of S}, and Lemma 7.1, there
exist c4(< ¢3) and ¢5 > 0 such that w € Ly N L holds for all v €
L, N LY. Therefore one gets, for a sufficiently small positive number
C S min{cl,c5},
lul<kl[v]2 VueLynL (7.31)
From (7.29) and (7.31), one obtains
o NwlB, Llol3 o 2
fwlz = " Nwld = &2
Yu € LQ/{U} NLE, xg=o0 (732)

co?

This implies || S || z2.< 7.

(i)—(ii): (a) Condition (A): From Lemma 7.2, one can see that
there exists a r; > 0 such that @q(x) given by (7.14) satisfies (7.20) for
all z € B,,.

Then in the following proof, consider the systems S, and S ! given
by (7.18) and (7.19) where ¢ = ¢, is set.
(b) Internal stability of S,': It follows from Lemma 7.4.
(c) Small signal L, stability of S;': If | S ||z2.< 7, then there
exists a positive number £(< 7?) such that

2
% <y’—¢ VI >ty,, VuelLy/{0}nLs, (7.33)
ar
The internal stability of the system S and Lemma 7.1 yield that there
exists a positive number ¢;(< ¢) such that & € Cy N L. holds for all
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u € LyN LY. So using the condition (A), one gets
“lylzr = Gula(T)+7* || v I3
VT >t), VYu € Lyp/{0}NLY, zy=0 (7.34)
Eqs.(?.33ﬁ) and (7.34) imply
ba(x(T)+7 v l3r 2 ellully
YT >ty, VYVu € LQe/{O}an, Tp=20 (7 30)
Further from the internal stability of S,, there exists a ¢ > 0 such
that v € Lo, ﬂ L2 holds for all w € Lo, N L7 . Also from the internal
stability of S , there exist ¢3 > 0 and ¢4 > D such that u € Ly, N Ly
holds for all v e Lge N LZ. Therefore, for a sufficiently small positive
number ¢; < min{ecs, cs} one gets from (7.35)
45‘a( TN+ vl = elluli
Vo € Ly/{0}NL%, xy=o0 (7.36)
Noting that :r( ) = o holds for all v € L,NLZ, because of the internal
stability of S,! and Lemma 7.1, and that w € Ly N L holds for all '
velL,n LC5 because of (7.36), one obtains
Plolizeful} WoelnLs, mo=o (7.37)
This implies that S;! is small signal L, stable. The system S =
locally reachable because of Assumption 7.3 and is internally asymp-
totically stable. Therefore, from Lemma 7.5, S,’_,1 is small signal L,
stable. |

7.3.2 Strict bounded real lemma including inter-
nal exponential stability

In this subsection, a necessary and sufficient condition is given for
the system to be internally (globally) exponentially stable with the
specified Ly gain. In addition, a relation to linear approximation system
is discussed.

At first, we consider the case of exponential stability. Thus sev-
eral lemmas are given, which correspond to Lemmas 7.1, 7.3, and 7.4,
respectively.

[Definition 7.6 ] For the system S with u = 0, namely, & =
f(z), we call the system S internally ezponentially stable, if x = o of
the system is an exponentially stable equilibrium.



126 Chapter 7 Bounded real condition

For the internal exponential stability, the following result which is
similar to Lemma 7.1 is obtained.

[Lemma 7.6 |  Suppose the system S has a unigue solution for
each uw € Lo, and is internally ezponentially stable on B., namely,
there ezists a Lyapunov function on B, to guarantee that the system
& = f(x) is ezponentially stable at the origin. Then the system S
is small signal Ly stable. Further, for any positive constant 11(< r),
there ezists a positive constant ¢ such that @ € Lo N L7, holds for
all u € LynN LS. There also exists a positive constant vy such that
= Is 0 L7 holds for all w € Ly N L. Furthermore, given any
positive constant ¢i(< ¢), there exists a positive constant r3(< r1) such
that @ € Lo N L™ holds for all w € Ly N L2,

Proof: It is straightforward from [134, 44]. |
Lemma 7.6 shows that the internal exponential stability guarantees
x(t) — 0 ast — oo for all w € Lo, as long as the state remains in the
stability region.
We give a result corresponding to Lemma 7.3.
[Lemma 7.7]  Consider the system given by (7.23). Suppose the
following two conditions hold.
(1)’ There exists a C? positive semi-definite function ¢(-) : R® — R
in a neighborhood of the origin such that, for a positive number p,
eq.(7.24) holds.
(i)’ The system given by @ = f(x) has an ezponential stable equi-
librium at the origin.
. Then the system given by (7.23) is ezponentially stable at the origin.

Proof: See Appendix.

Now in Assumption 7.4, C! is replaced by C? with respect to the
smoothness of ¢, and ¢,9. Then we call this Assumption 7.4’. The
following result corresponding to Lemma 7.4 is given.

[Lemma 7.8 ]  Suppose Assumptions 7.8 and 7.4’ for the system
S, and the system is internally ezponentially stable. Assume also that,
given y > 0, there exists a ¢ > 0 such that | S ||z2e< 7. Then ¢o(z)
satisfies (7.20) in_a neighborhood of the origin, and the system given by

z=f+

ZigggT%%’: 15 exponentially stable at the origin. |
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Proof: The proof is almost the same as Lemma 7.4, except for the use
of Lemmas 7.2, 7.6, and 7.7.

Then the following theorem is obtained, which corresponds to The-
orem 7.2.

[Theorem 7.3]  Under Assumptions 7.3 and 7.4’, let v be a given
positive constant. Then the following statements are equivalent for the
system S.

(i)  The system S is internally exponentially stable, and there exists
a positive constant ¢ such that || S |[z2.< 7.

(ii)  There exists a C? positive semi-definite function ¢(-) : R* - R
in a neighborhood of the origin which satisfies the following two condi-
tions (A) and (B).

) d¢ 1 8¢ 10¢
T ;o N
5T T 17202799 3z +h"h =0 (7.38)
(B) The system S, is internally exponentially stable. |

Proof: It can be proven in the same way as Theorem 7.2, by utilizing
Lemmas 7.2, and 7.6 to 7.8.

Theorem 7.3 is concerned with the small signal L gain, since LoNLg,
is treated as a class of input signals. By the fact that if the system is
internally exponentially stable, then it is small signal Lo stable (see
Lemma 7.6), Theorem 7.3 requires only the exponential stabilizing so-
lution, while Theorem 7.2 requires the small signal L, stability of St
as well as the asymptotic stabilizing solution. Note that the result of
Theorem 7.3 is necessary as well as sufficient for the nonlinear system
S to be internally exponential stable with || S || z2.< -

Next, let us consider the case of global exponential stability. The
following assumption is made.

[Assumption 7.5 ]  Define a function ¢.o(x) where v in (7.12)
is replaced with (< 7). When ¢o(x) ezists, it is C*. In addition
when ¢o(x) globally exists, there exists an optimal control input u. €
Ly(tq,ty) which mintmizes the cost function defined by

ty
Ta(ts), ul), ) = do(@(ta) + [ (uTu—yTy)dr  (7.39)
for a sufficiently small time period t € [ta,ts).
Now a global version of Theorem 7.3 is given.
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[Theorem 7.4 ]  Under Assumptions 7.1, 7.2, and 7.5, let 7 be
a any given positive constant. Assume that f is globally Lipschitz in
z, and that %% given by (7.4) and %‘%’—, when they exists globally, are
globally Lipschitz in ©. Suppose also supg || g(z) ||< co. Then the
following statements are equivalent for the system S.

(i)  The system S is globally and internally exponentially stable, and
satisfies || S [la< -

(1) There ezists a positive semi-definite function ¢(-) : R — R
which satisfies the following conditions (A), (B) and (C).

R ¢ 1 9¢ d¢

(B)  The system S, is globally and internally ezponentially stable.
(C) %(m) is globally Lipschitz in x. i
Proof: See Appendix.

This result is a global extension of Theorem 7.3. Theorem 7.4 com-
pletely includes the bounded real lemma of controllable linear systems,
since the linear systems satisfy the assumptions of Theorem 7.4. As
a result, the approach derived here enables us to naturally extend the
idea of the H , norm of linear systems to the L, gain of nonlinear sys-
tems. Theorems 7.2 to 7.4 also clarify the relation between the internal
stability of the system and the stabilizing solution of the Hamilton-
Jacobi equation. We believe that Theorems 7.2 to 7.4 give essential
results for the Ly gain of nonlinear systems.

Finally, combining Theorem 7.3 with van der Schaft’s results [130,
127], we show the relation on L, gain between the nonlinear system S

and the linearization S given by (7.10) where F = a(’;c (0), G = g(0),

and H = aa—élr(o)_

Then the following result is obtained.

[Corollary 7.2 ] Under Assumptions 7.3 and 7.4°, let v be a
gwen positive constant. Then the following statements are equivalent
for the nonlinear system S and the linearization S.

(i)  The system S is internally stable with || S ||2< 7.

(i)  The system S is internally exponentially stable, and there exists
a positive constant ¢ such that || S ||L2e< 7.

(1ii)  There exists a C* positive semi-definite function ¢(-) : R — R
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in a neighborhood of the origin which satisfies the following two condi-
tions (A) and (B).

@ do 1 d¢ O
T T
B;BTf + 4(}{2 angg % +h"h=0 (7.41)
(B)  The system S, is internally exponentially stable. |

Proof: The proof of (i)—(ii)(or (iii)) is given by van der Schaft [130,
127]. So it is enough to show (ii)—(iii) and (iii) — (i). From Theorem
7.3, the former is obvious. Concerning to the latter, the second order
linearization of the partial differential equation leads to the Riccati
equation of (7.11), and by the fact that (Ba(w) is the exponentially
stabilizing solution, the linearization of ¢,(2) is a stabilizing solution
of (7.11). The above argument implies that the condition (i) holds. W

Van der Schaft has also shown the result similar to Corollary 7.2 in
[129], which has a different proof from that of Corollary 7.2. Corollary
7.2 is utilized to prove a necessary condition for the existence of H,
state feedback control in the next section.

Remark 7.5 The equivalence between (i) and (i) can be shown under
the assumption that ¢.o(x) is C?, in the similar way to Corollary 7.2.

7.3.3 Strict H,, state feedback control problem

In this subsection, based on the above results about the strict bounded
real lemma, we give some conditions for the solvability of a strict H
state feedback control problem.

Consider the following nonlinear systems:

& = f(z)+g,(z)w+gy(z)u (7.42)

z = h(z)+j(z)u (7.43)
where £ € R" is the state, w € R™ is the control input, w € R
is the disturbance, z € RY is the controlled output, and tg is the
initial time. f(:): R® — R", h(-): R* — R, g,(-) : R" — R"?,
g,(-) : R* — R*™™, and j(-) : R" — R™™ are sufficiently smooth
known functions with f(0) = o and h(0) = o. It is assumed that (7.42)
has a unique solution for any u € Ls, and w € Lj.. For simplicity,
assume that the following condition holds.
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[R" §Tj=[0 I] VYzeR"

Let §., define an operator which expresses the relation between w
and z in the closed loop system given by (7.42), (7.43), and u = k(z),
where k() : R® — R™ is an appropriate function.

Then the following problem is considered.

[Problem 7.1]  (Strict H,, state feedback control prob-
lem) For the system given by ( 7.42) and (7.43), find a state feedback
control w = k(z) which satisfies the following conditions.

(Sl) ” Szw “L‘2c< Y )
(82) The system & = f(x) + gx(@)k(z) is asymptotically stable (or
ezponentially stable) at & = o. 1

The following system is defined.

’ 1 d¢ 1 o _
-1 . _ 7a —, = T
S & = f(z)+ ‘—”‘2729191 9z 292925, T hZ
1 .00
= gl F 44
27291 ox +z (7 )

where ¢(-) : R" — R is an appropriate real function. Then we get the
following result.

[Theorem 7.5 ]  For the system by (7.42) and (7.43), a positive
constant vy s given. If there exists a positive semi-definite function
#(:) + R* — R in a neighborhood of the origin which satisfies the
following two conditions
(A)

5} 1 8 d 10 0
5551’ + 4—7—2@—&:%919?5% - Z&%gzgggg +hTh =0 (7.45)
(B) Sf_,?l is internally asymptotically stable and is small signal Ly stable
then the strict H ,, state feedback control problem is solvable in the case
of asymptotic stability.

In addition, when there exists a d(x) which satisfies conditions (A)
and (B), one of nonlinear state feedback controllers which satisfy con-

ditions (i) and (ii) can be given by k(z) = héggaﬁ%. |
Proof: Consider a system with u = —%ggé‘a—% in (7.42) and (7.43).

Note that the condition (A) implies
5z (f = 19,97 28) + e g2 9,7 22
+(h = 3393 5%) (h - 3591 %) = 0 (7.46)
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Tht?n conditions (i) and (ii) follow from conditions (A) and (B), ap-
plying the result on (ii) — (i) of Theorem 7.2 to the system with
u=—L1g708 i
292 7% -
In the same way as Theorem 7.5, one can get the result in the case
of exponential stability.

[Theorem 7.6 |  For the system by (7.42) and (7.43), a positive
constant v is given. If there ezists a C? positive semi-definite function
o(:) : R® — R in a neighborhood of the origin which satisfies the

following atwo conditions (A)
[0 1 09 a 1 9¢ a
57! t 172 aj,-glg?gg = Z%gggga—i +hTh =0 (7.47)

(B) S-:—l is internally ezponentially stable
then the strict H ., state feedback control problem is solvable in the case
of exponential stability.

In addition, when there exists a ¢(x) with conditions (A) and (B),
one of nonlinear state feedback controllers which satisfy conditions (i)

and (ii) can be given by k(z) = —1g7 2%

Remark 7.6 Under appropriate assumptions, the result in the global
case is also obtained in the same way as Theorem 7.0. |

The above results, although they are the sufficient conditions, com-
pletely correspond to those in linear systems: the derived conditions
require a positive semi-definite solution of the Hamilton-Jacobi-Isaacs
equation given by (7.45) (or (7.47)) as the linear case, and the existence
of the stabilizing solutions leads to || S.w |lz2c< ¥ (|| S:w [l2< 7) as
well as || S.w [|l22:< ¥ (|| S:w ll22< 7). Note that the results by Isidori
[55] do not clarify that the existence of the stabilizing solution implies
the L gain strictly less than the specified number. In addition, the
sufficient conditions derived here are stronger than that of Isidori in
the sense that the condition by Isidori requires a positive definite (not
positive semi-definite) solution in order to guarantee the asymptotic
stability of the closed loop system.

Next, the sufficient condition of Theorem 7.6 is proven to be a neces-
sary condition for the existence of the strict H state feedback control
under a certain assumption.

Assume F = %(0), G; =g;0) i1 =12), H= a%i-lq-(o), and
J = j(0), and consider the linearization of the system given by (7.42)
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and (7.43):
# = Fz+Gw+Gou (7.48)
z = Hz+Ju (7.49)

Further let S,,, be the operator which expresses the relation between w
and z in the closed loop system given by (7.48), (7.43a), and u = K,
where K is an appropriate matrix.

Then the following result is obtained.

[Corollary 7.3]  Lety be a given positive constant. Assume that,
for any C' function k(zx) satisfying (S1) and (S2), the system S, sat-
isfies the assumptions in Corollary 7.2, and also (H, F') ts detectable.
Then the following statements are equivalent for the nonlinear system
S, and the linearization S,..

(i)  There exists a linear state feedback controller w = Kx such that
the system S, is internally stable with || 8.y ||12< -

(ii)  There ezists a nonlinear state feedback controller w = k(x) which
solves the strict H o, control problem in the case of exponential stability.
(iti)  There exists a C? positive semi-definite function ¢(-) : R* — R
in a neighborhood of the origin which satisfies conditions (A) and (B)
in Theorem 7.6. |

Proof: The proof of (i)—(iii) has already been proven by van der
Schaft (130, 127]. So we prove (iii) — (ii) and (ii) — (i). The former is
shown by Theorem 7.6. Concerning to the latter, assume that u = k(z)
satisfies condition (ii), and that K is the hneauzalnon of k(z). Then
Corollary 7.2 is applied to the closed loop system S, with u = k(z)
and S,, with u = Kz. Thus (i) follows from (ii).

7.4 Characterization via the Hamilton-
Jacobi strict inequality

In this section, we characterize the strict bounded real condition of
nonlinear systems via the Hamilton-Jacobi strict inequality. In addi-
tion, based on the obtained bounded real lemma, we give a necessary
and sufficient condition for the solvability of a strict H ., control prob-
lem via state feedback.
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7.4.1 Strict bounded real lemma including inter-
nal asymptotic stability

In this subsection, we discuss the relation between the L, gain of
nonlinear systems and the Hamilton-Jacobi strict inequality.
The following assumption is made.

[Assumption 7.6 |  Lety, be a given positive constant. Then for
the system S, a functzon bao(z) defined by
T
buol@) 2= inf [ (fuTu—y y)dr (7.50)
uEchﬂL;,TZE t
where z(t) = & and 7y 15 a given positive constant, is C*, when it exists
in a neighborhood of the origin. |

Then the following theorem is obtained.

[Theorem 7.7]  For the system S given by (7.1) and (7.2) which
is locally reachable, let v be a given positive constant, and assume As-
sumption 7.6 for a positive constant 7y < vy which is sufficiently close
to v. Then the following statements are equivalent.

(i)  The system S is internally asymptotically stable, and there exists
a positive constant ¢ such that || S |[z2.< 7.

(i)  There ezist positive definite functions ¢(-) : R® — R and
¥(+) : R — R in a neighborhood of the origin which satisfy the follow-
ing two conditions.

(A)
aa;,,f + 4}}(2 aii,gg aq‘:v +hTh+y(z) < (7.51)
(B) |l9"%% |I’=O(®) 0

The following lemmas are needed in order to prove Theorem 2.1.
First we need local version of the Bounded real lemma of nonlinear
systems [46].

[Lemma 7.9 ]  For the system S which is locally reachable, let
v be a given positive constant, and assume Al for a positive constant
o = 7. Then the following statements are equivalent.

(i)  For the system S, there ezists a positive constant c such that
| S [lLee< -

(i)  There ezists a positive semi-definite function ¢(-): R" = R in
a neighborhood of the origin satisfying
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a¢ 1 9¢ 109 .7
—f+-——=99 — +h"h <0
dxT + 42 9279 9z * -
I

The following lemma is concerned with the relation between the
internal asymptotic stability and the Ly stability, which is much useful
for the proof of Theorem 7.7.

[Lemma 7.10 ]  The system & = f(x) is assumed to be asymp-
totically stable at € = o, and f(z) and g(x) are sufficiently smooth in
x. Then there exist sufficiently smooth and positive definite functions
W(:): R* - R and §(1) : R* — R 1in a neighborhood of the origin

ek Low  jow
—ggT—+86§<0 (7.52)

227! T et og TOS
holds for some k > 0. |
Proof: See Appendix.
Remark 7.7 This lemma implies that if the system is asymptotically
stable at the origin, then there exists some output function such that
the system is small signal Ly stable. Namely, let § = 1/6(x) in Lemma
7.10. Then it follows from (7.52) that the system

T = f(z)+g(z)u

i = 8z

is small signal Ly stable. |

Now we are in the position to give the proof of Theorem 7.7 using
Lemmas 7.9 amd 7.10.
(Proof of Theorem 7.7) The condition (i) implies that there exist
positive constants y;(z = 0,1) such that

3 :
;SN <<

It also follows from the internal stability of the system S and Lemma

7.10 that there exist sufficiently smooth and positive definite functions

W():R"— R, §(-): R" — R, and positive constant k in a neighbor-

hood of the origin such that

oW, 10W 0w
B <

mrf 22799 52 +6<0 (7.53)

In addition, under Assumption 7.6 and Lemma 7.9, since || S ||z2.< 71,

there exists a positive semi-definite function ¢,o in (7.50) such that
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9 1 a0 70bag T

63:Tf + 4—7%5;2,—,99 Ep +h h <0 (7.54)
holds in a neighborhood of the origin.

Consider W’(:c) = W (x), using a positive number !. Then, from

(7.53), we get

oW’ 1 oW’ oW’

awa ik angg £ +16<0 (7.55)
Let ¢. = W’ + dap. Then using (7.54) and (7.53), we can show that the
following relation holds in a neighborhood of the origin, for a sufficiently
small number I.

1 9¢. 10

BmTf 472 92799 Bz +hTh+16<0 (7.56)
Let ¥.(xz) b
_ 1 1 3¢ T@qb,.
Then one gets
d9. 1 9¢. 70¢. .7
57! T 1 ggr99 g tH R YS0

from (7.54). It is obvmus that v¥.(x) is positive definite and satisfies the
condition (B). Therefore, it was shown that there exist positive definite
functions ¢. and 1. which satisfy the conditions (A) and (B).
(ii)—(i): Noting that ¢ and v are positive definite functions, it
follows from the condition (A) that the system .S is internally asymp-
totically stable. The condition (B) implies that there exists a positive
constant ¢ such that ¢ || 1g7£2 ||?< ¢ holds in a neighborhood of
x = 0. From this fact and the condition (A), there exists a positive

constant (< <) such that
¢ 1 96 09 -
— ———=99 —— +h"h<0
ﬁst:Tf ® 43 0z79Y oz -
Using Lemma 7.9, this implies that there exists a positive constant c
such that || S |2 < 71 < 7. |

Remark 7.8 Let us compare Theorem 7.7 with the non-strict bounded
real condition of nonlinear systems i.e., Lemma 7.9 gwen by Hill and
Moylan [{6]. Lemma 7.9 takes no account of the internal stability of
the system as well as the Ly gain, while Theorem 7.7 does. As a result,
Theorem 7.7 requires the positive definiteness of ¢, not the positive
semi-definiteness, the existence of a positive definite function 1, and the
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condition (B) which expresses the relation on the boundedness bet'_ween
the term gg—:‘; and 1. Since most of previous works on the nonlmf.iar
H_, control theory are based on Lemma 7.9, they are concerned with
the non-strict case, and do not discuss the necessary condition on the
internal stability in both cases of state feedback and output feedback,
although the strict H., control problem can be solved in the case of
linear systems. On the other hand, since Theoremn 7.7 treats the internal
stability, Theorem 2.1 will be more useful than Lemma 7.9 in developing
the strict H . control theory. We will apply Theorem 7.7 to the strict
H_, control problem via state feedback or output feedback in the next
sections. As you can easily see in the proof of Theorem 7.7, the positive
definiteness of ¢ and ) guarantees the internal stability of the system
S, and the condition (B) guarantees that || S | 2. s strictly less than
7.

Remark 7.9 We compare the result of Theorern 7.7 to the strict bounded
real lemma of linear systems [149]. Consider the controllable linear sys-
tem S given by (7.10). Then the strict bounded real condition for the
linear system, i.e., a necessary and sufficient condition for the system
S to be internal stable and has || S ||z2< v is that there exist a positive
definite solution P and positive number € which satisfies

PF +F'P + %PGGTP +H'H+el=0 (7.57)

Now set f = Fz, g = (;'Y, and h = Hz in (7.1) and (7.2). Then if we
consider ¢(z) = 2T Pz and ¢(x) = ez x in the condition (4), respec-
twely, the positive definiteness of ¢ and v is satisfied. Here note that
Theorem 7.7 holds even when the inequality in the condition (A) is re-
placed by the equality. In addition, one can see thaty = ez’ automat-
ically satisfies the condition (B) in Theorem 7.7. Therefore, Theorem
7.7 consistently corresponds to the case of linear systems. Comparing
to the linear case, however, the main feature of the nonlinear case is
the explicit requirement of the condition (B). |
Remark 7.10 Note that Assumption 7.6 is required to prove the ne-
cessity in Theorem 7.7, rather than the sufficiency.

Next we will show another characterization of the bounded real con-
dition via Hamilton-Jacobi strict inequality. Namely, it will be proven
that the condition (B) in Theorem 7.7 can be replaced by the condition
between h and 2.
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[Theorem 7.8 ] Suppose the same assumption as Theorem 7.7
for the system S. Then the following statements are equivalent,
(i)  The system S is internally asymptotically stable, and there exists
a positive constant ¢ such that || S ||r2.< 7.
(i)  There exist positive definite functions ¢(-) : R® — R and ¥(-) :
R" — R in a neighborhood of the origin that satisfy the following two
conditions.
= 9¢ 1 9¢ 3]
+ T4 hT <
2! ViR ar gy T BF U <1

(B)  The following condition holds.
(B1) || 39" 5% II’= O(¥)

or
(B2) || b ||*= O(+)
(B3) || 39" 5 I’= O(¢) and || b ||*= O(3)) 1

Proof: First, we show (i) — (ii)(A) and (B3). From || S ||z2.< 7, there

exist 7, and 7y, such that v <y <y and || S ||z2.< 71. Let y, 2 ﬁh.
Then

oy ll2< 72 I e 2 B
which means that there exists a positive semi-definite function ¢ such
that 5% 5% _ ,

1 ' o}

am"f,f t g anggTa—i + %-l%hTh <0 (7.58)
Hence noting Eﬁ > 1, we can show that there exists a ¢ satisfying
| h ||>= O(¥) as well as the conditions (A) and (B1) in the same way
as the proof of Theorem 7.7.
Concerning (ii)(A) and (B2) — (i), the proof is straightforward using
the the above technique and the proof of Theorem 7.7. |

Remark 7.11 In Theorem 7.8, the conditions (A) and (B2) is more
useful than the other cases in the sense that we can easily specify the
form of i because the condition (B2) does not include the unknown
function ¢. On the other hand, the condition (B1) will plays a impor-
tant role to derive a necessary and sufficient condition for the solvability
of the strict H, control problem via state feedback. The condition (B3)
will also be used in dertving a necessary condition of the solvability of
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the nonlinear H ., problem via output feedback.

7.4.2 Strict bounded real lemma including inter-
nal exponential stability

Next we show a result about the exponential stability case. So in
Assumption 7.6, C! is replaced by C?, which is called Assumption 7.6".

[Theorem 7.9]  For the system S which is locally reachable, let -y
be a given positive constant, and assume Assumption 7.6° for a positive
constant o = v. Then the following statements are equivalent.

(i)  The system S is internally exponentially stable, and there exists
a positive constant ¢ such that || S ||z2.< 7-

(i)  There exists a C? positive definite function ¢(-) : R" — R and
a positive constant € in a neighborhood of the origin which satisfies the
following condition.

¢ 1 8¢ 0¢ 7 T
—_— e — < 7.59
ozT +4’}’23ng9 8m+h hetew e sl ( .)

Proof: (i)—(ii). It can be shown in the same way of the proof of
Theorem 7.7. (ii) — (i). For a C? positive definite function ¢ satisfying
(7.59), there exists an appropriate positive definite matrix P such that
Hz) = 2T Pz + ¢)(x), where ¢1(z) is a function vanishing at the
origin together with all the second order derivatives. Then since ¢(z)
is a Lyapunov function, the system S is internally exponentially stable.
In addition, there exists a positive constant &y such that

g ; .,
ol 59722 IP< <= | (7.60)

holds in a neighborhood of the origin. It follows from (7.59) and (7.60)
that || S ||z2.< 7 holds, in the same way as the proof of Theorem 7.13.
_

Remark 7.12 In the case of exponential stability, a positive definite
function v to satisfy the condition (B) can be chosen as ¢ = exTx, in
the same way as the linear case.

Remark 7.13 We can treat a global exponential stability case in the

same way as Theorems 7.7 and 7.9, under some assumptions such as
a global Lipschitz condition. |



139

7.4.3 Strict H, state feedback control problem

In this subsection, we give a necessary and sufficient condition for
the solvability of the strict H, state feedback control problem, based
on the results obtained in the above subsections.

Consider the same problem as in section 7.3. We say a state feed-
back controller which satisfies the conditions (S1) and (S2) in the strict
H , state feedback control problem an admissible controller. Then the
following assumption is made.

[Assumption 7.7 | For all admissible controller, the system
given by (7.42) is locally reachable by w, and the assumption such as
Assumption 7.6 holds for the system S, for all admissible controllers.

Then we obtain the following result.

[Theorem 7.10 ]  Lety be a given positive constant, and assume
Assumption 7.7 for a positive constant g < 7 which is sufficiently
close to v. Then for the system given by (7.42) end (7.43), the strict
H_, state feedback control problem s solvable if and only if there erist
positive definite functions ¢(-) : R* — R and ¢(-) : R" — R in a
neighborhood of the origin which satisfy the following two conditions.
(A)

00 . 1 36 206 104 506
0z +4’y Ba:'—"gl 19z 40279929
(B) llgtésI’=
In addition, when there exist ¢ and Y which satisfy the condztzons

+hTh+ < 0(7.61)

(A) and (B), one of admissible controllers is given by k(x) = 19722
Proof: "If": Set k(x) = 722 Then it is shown that the conditions

(S1) and (S2) hold, by usmg Theorem 7.7. ”Only if’: Suppose u = u.
satisfies the condition (S1) and (S2). Then under Assumption 7.7, by
Theorem 7 7, there exist positive definite functions ¢. and 9. satisfying

1 8¢, 00
(f+go I T 9191 5, +hT htulu+4h. < 0(7.62)
O(%?). Tt follows from (7.62) that
1 8¢. 04 10¢. 700
472 a:chlgl 9z 13:1:7"9292 e

+hTh 4+, <0

—f+

accT
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Therefore, ¢, and v, satisfy the conditions (A) and (B). |

Theorem 7.10 gives a necessary and sufficient condition in the case
of the asymptotic stability, although Assumption 7.7 is required. This
success is based on the characterization of the strict bounded real con-
dition by the Hamilton-Jacobi strict inequality.

Remark 7.14 Assumption 7.7 is needed to prove the necessz'ty_ in The-
orem 7.10 rather than the sufficiency. If g, = g5 and (f,g,) is reach-
able, then the assumption of reachability in Assumption 7.7 is satisfied.

Theorem 7.10 can be extended to the case of the exponential stability
and even the global exponential stability under appropriate assump-
tions. We show the exponential stability case only as follows. In As-
sumption 7.7, Assumption 7.6 is replaced by Assumption 7.6’, which is
called Assumption 7.7,

[Theorem 7.11 ]  Lety be a given positive constant, and assume
Assumption 7.7’ for a positive constanty, <  which is sufficiently close
toy. Then for the system given by (7.42) and (7.43), the strict H .,
state feedback control problem in the ezponential stability case is solvable
if and only if there exists a C? positive definite function () R* = R
and a pos(;te've nur{zbeg € 1n @ %eighgmgood of tge origin which satisfy
%I+4—qﬂa—$~glgfa—i—-Za—m%g?ggﬁ+h7h+eme < 0(7.63)
In addition, when there ezist ¢ and y which satisfy the above condi-

tion, one of admissible controllers is given by k(x) = —%g%’-g%. |

7.4.4 Strict H,, output feedback control problem

Consider
T = f(z)+ g, (z)w+ gy(x)u (7.64)
z = hy=z) + jio(x)u (7.65)
Yy = ho(z) 47y (z)w (7.66)

where z € R", w € R™, w € R™, z ¢ R,y e R* f, b, g,
(i =1,2), j 9, and j,, are sufficiently smooth functions, and f(0) = o,
hi(0o) = o. It is assumed that (7.64) has a unique solution for any
u € Ly and w € Ly.. Assume [h{ jiJj15 = [0 I] and j,[qT
jnl=[o I)foralze R"
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Now we consider as a output feedback controller

£ = F&)+9.(8)y

u = k(&) (7.67)
where £ € R”, and functions k, f., and g, are sufficiently smooth and
satisfy k(o) = o and f. (o) = 0. Let S,, define the operator which
expresses the relation between w and z in the closed loop system given
by (7.64) to (7.67).  Then the following problem is considered.

[Problem 7.2 ] (Strict H,, output feedback control prob-
lem) For the system given by (7.64) to (7.66), find an output feedback
control given by (7.67) which satisfies the following conditions.

(51) || Szw l|z2e<
(S2) The system S.,, is internally asymptotically stable. |

We say an output feedback controller which satisfies the conditions
(S1) and (S2) an admissible controller. Then the following assumption
is made.

[Assumption 7.8 ] For all admissible controller, the system
given by (7.64) to (7.66) is locally reachable by w, and the assump-
tion such as Assumption 7.6 holds for the system S.,. In addition
concerning a function deo(x, &) in Assumption 7.6 for the closed loop
system S, there exists a function p(): R* — RY satisfying

So(ap() =0, plo) = o
in a neighborhood of the origin [129]. i

Then the following result is concerned with a necessity condition of
the strict H ., control problem via output feedback.

[Theorem 7.12]  Let~y be a given positive constant, and suppose
Assumption 7.8 for a positive constant g < 7 which is sufficiently
close to v. Then for the system given by (7.64) to (7.66), the sirict
H ., control problem via output feedback is solvable only if the following
conditions hold. B _

(A) There exist positive definite functions ¢(-) : R" — R and i(:) :
R" — R in a neighborhood of the origin that satisfy ~
2o f + 120 ({5g,07 — 9,97} 5 +hThi+ ¥ <0 (7.68)

| o722 |12= O(¥) (7.69)
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(B) There exist positive definite functions ¢(-) : R* — R and ¥(-) :
R" — R in a neighborhood of the origin that satisfy

T
an'f + 43;’ ﬁ:‘érglgl 0T +hihs—7hy by + $<0  (7.70)

_ lst&r=0W) (711)
(C) A function ¢— o is positive definite in a neighborhood of the omgml.

Proof: Using Theorem 7.8 and the same technique as [10] and [129],
we can show that there exists a positive function ¢ such that

2 . ) ) s
aqs(f‘I‘ 2)+4123€ﬂ91913¢+hq‘h1+ Te+9 <0

(7.72)
16722 1= o) (7.73)
hTh,l +e&Te=0() (7.74)

where ¢(xz) & ¢(p(z) for some function £ = p(x) in Assumption 7.8.
Now let & £ (1- €)$, where 0 < £ < 1. Then, it will be shown that
¢ satisfies three conditions (7.72) to (7.74). Let
a 09 1 0¢1 701 | 7 Tz
T(E) oxT (f+ 2)+4 2 9 Tglla +h’ h’1+

Then noting that ﬁi‘-’r(f + ggc) <0,

T(e) < (1- 6)2 ¢ =(f +g5¢) + (1 —¢)? 19 08¢T919T§i
+hTh1 +¢'e
= (1-¢)T(0)+e(2—¢)(h{h1 +2"0) (7.75)

Noting that 7'(0) < —& — (1 — &)1 where 0 < £ < 1, we get
T(e) < —(1—e)ep—(1- ) (1-&yp

+¢(2 — €)(hTh, 4+ 7€) (7.76)
In addition, from (T 74), there exists a positive constant k such that
hTh, + &€ < k& (7.77)

Therefore it follows from (7.30) to (7.31) that, for € > 0 which is
sufficiently close to 0,

_Te) = ~t ~ _ (7.78)
where ¢, = (1—¢)}(1—£)1. This means that ¢, satisfies (7.72) to (7.74)
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where 7 is replaced by 1. In addition, it follows from (7.72) to (7.74)
that ¢; and ¢, satisfy the condition (A) Concerning the condition (B),
we can show that there exists a positive definite functions ¢ and ¥
sat:sfym& the condition (B) in a similar way to the above proof.

Now, iﬁ — ¢ 2 0, which is shown in [129]. Then

(251 > ¢ Cb > 0 T 75 (8]

These mean that the functions ¢;, ¥, @, and ¥ satisfy the conditions
(A), (B), and (C). i
Remark 7.15 Ball et al. and van der Schaft have derived the results
on the necessity condition of the solvability of nonlinear H_, control
problems, which are concerned with the non-strict case, and also take no
account of the internal stability of the closed loop systems. On the other
hand, Theorem 7.12 is concerned with the strict case, and takes account
of the internal stability. So Theorem 7.12 completely corresponds to the
necessary condition obtained in the linear case [107], and is a natural
extension of the linear case to the nonlinear setting. |

Using Theorem 7.9, we can also obtain a necessary condition in
the exponential stability case, in the same way as Theorem 7.12. In
addition, in the case of exponential stability, we can show that the
necessary condition is sufficient for the solvability of the strict H
control problem via output feedback, using van der Schaft’s method.

[Theorem 7.13 |  Let~ be a given positive constant, and suppose
Assumption 7.8 where Assumption 7.6 is replaced by Assumption 7.6,
for a positive constant o < v which is sufficiently close to y. Then for
the system given by (7.64) to (7.66), the strict H, control problem via
output feedback is solvable if and only if the following conditions hold.
(A) There exist a C? positive definite function ¢(-) : R" — R and a
positive number € in a neighborhood of the orzgzn that satisfy

20 12 (gt~ g} T+ T =0 (170
where ¥ = 2 zxTx + V3, and U3 is an appmprzate function vanishing at
the origin together with all the second order derivatives.

(B) There ezist a C* positive definite function #(): R" = R and € in
a neighborhood of the origin that satisfy

99 1 96 109 .1 2, T 7 _ =
Tf-l_ll_-"’y 8 Tglgla +h h]_ i h2h2+¢—0 ((80)
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where 1,5 £ zxTx + 93, and ¥y is an appropriate function vanishing at
the origin together with all the second order derivatives.
(C) A function ¢ — ¢ is positive definite in a neighborhood of the origin
and £ — £ is positive.

In addition, when there exist qﬁ and ¢ satisfying the above conditions,
one of admassible contml!ers is given by _

d¢ 1

E = f(&)+ o 291(5)91( )B:n(g) 29 g3(8)g (E] ( )
+L(§ {h2~ -y}
u = —2gl(E) (&) (7.81)
where L satis_ﬁes .
é{a{iz(m) = ai¢y(w)}L($) = —7*h3 ()

Proof: ”Ounly if’: It is obtained from Theorem 7.9. "If”: It can be
shown based on the linearization ([129, 57, 75]). Namely, we can show
that the linearization of the closed loop system solves the strict H
control problem in almost the same way as the proof of the sufficiency
of Theorem 1 in [107]. Note also that L exists locally, because the
Hessian matrix of ¢ — & is positive definite by the conditions (A) to
(C).

Remark 7.16 A sufficient condition for the solvability of the strict
H ., control problem via output feedback has been given by wvan der
Schaft in [129], based on the linearization. However, it has not been
shown that the sufficient condition is necessary there. On the other
hand, Theorem 7.13 shows the necessary and sufficient condition. This
success 1s based on the approach via the Hamilton-Jacobi strict inequal-
ity, that is, Theorem 7.9

7.5 Conclusion

The main results obtained in this chapter are summarized as follows.

(i) A new approach for nonlinear H, control theory has been given,
which does not depend on the Linearization and the linear H



control techniques.

(ii) Some strict bounded real conditions of nonlinear systems have
been characterized via two approaches: One is based on the
Hamilton-Jacobi equation with a stabilizing solution and another
1s based on the Hamilton-Jacobi strict inequality. The former has
an important role to analyze the internal stability of nonlinear
systems, and the latter has an advantage that it can simply be
applied to the strict H, control problem. Each characterization
of the strict bounded real condition i1s much significant, and the
total use of both characterizations forms a more useful foundation
to develop the strict H ., control theory of nonlinear systems. The
derived results completely include the strict bounded real lemma
of linear systems, and are also stronger and applicable to more
general nonlinear systems, compared to the former results.

(iii) The relations between internal stability of nonlinear systems and
the stabilizing solution of the Hamilton-Jacobi equation have been
clarified, which are peculiar to nonlinear systems.

(iv) Based on results of (ii), several sufficient (and necessary) condi-
tions for the solvability of the strict H, state feedback control
problem have been derived.

(v) Based on results of (ii), a necessary condition for the solvabil-
ity of the strict H, output feedback control problem has been
given, and also a necessary and sufficient condition in the case of
exponential stability has been given.

Appendix

Proof of Theorem 7.1: We prove (a)(i)—(iil) and (ii)—(iii), (b)(iii)—
(iv), and (c)(iv)—(i) and (iv)—(ii), subsequently.
(a): Obvious.
(b): From (iii), one can show the global existence of ¢,(z) given by
(7.4) (See [84]). Simple calculation shows

—0ul®1) = il L [ Bel@(02) + Ji2 Llu,y)d7
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Vz, = z(t1) (7.A1)
where L(u,y) = v2uTy — yTy. If the time period [t;,t5] is small
enough, under Assumption 7.2, there exists an optimal control input
which minimizes the right hand side of (7.A1). Thus one obtains

—do(z1) = minueLz(h‘12)[—¢:a(:c(t2)) - fff L(u, y)dr]

Vo, = #(t;) (7.A2)
Applying the Hamilton-Jacobi Theory (see e.g. [3]) to (7.A2) yields
0dq -
= 7.A3
min(L(u,y) ~ 5 7(f +gu)] =0 (7.A3)

which implies (7.9).
(c) : At first, (iv)—(i) is shown. Substituting (7.1), (7.2) and (7.9) to

(7.6), one gets
Pl B = 1y [l
& 1 709
= H(@(T) ~ dlalto) + 7 |l u=530750 I3 (T:A9)

by completion of the square. Since the third terrn of the right hand
side of (7.A4) is non-negative, and ¢(x) > 0(¢(xp) = 0, To = 0), one
obtains

VPllullze =l yllz20  Vu€ Ly (7.A5)
Now it is enough to show that the equality in (7.A5) holds only if
© = 0. Let u” be the input satisfying the equality, then it must be
U = °_g'T":"‘;’ from (7.A4). However, u*(fy) = o from (7.9). This
imphes :n(t) = o0, i.e., w*(t) = 0. (vi)— (ii) can be proven in the same
way as the proof of (1v (1).
Proof of Lemma 7.2: At first, (ii) — (i). From (ii), there exists a
positive constant r such that both eq.(7.22) and the internal stability
of S hold for all z € B,. Since S is internally asymptotically stable,
using Lemma 7.1, for a positive number r1(< r), there exists a positive
number ¢; such that & € L7} holds for all w € Lg. N L. Thus, the
condition (ii) holds in the presence of w € Ls, N LY. Therefore, one
can prove (i) in the same way as the proof of Theorem 7.1.
Second, (i)—(ii). One can prove this in the same way as the proof of
Theorem 7.1. Note that the minimizing control input w(t) of (7.A3) is
in B, and that a function ¢,(z) exists only in a neighborhood of the
origin. In order to cope with these conditions, one has only to consider
the optimal control problem given by (7.A2) for some sufficiently small
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time period [t;,?] and the initial state =, that is sufficiently close to
the origin. |
Proof of Lemma 7.3 : At first, it is shown that the system given
by (7.23) is stable in the sense of Lyapunov. From the condition (ii),
by the converse theorem of Lyapunov (see [40, 145, 133]), there exist a
continuous differentiable and positive definite function W(.) : R" — R,
functions ¢4(-) € K(i = 1,2,3), and a positive constant r; such that
vl ) £ W(z) <l =)
W ; = ShF<—wllzl) veecB,  (T.A0)
Also assume that the condition (i) holds for all x € B,,. Therefore,
when r 2 min{ry, 79}, it is enough for us to show that, given any
positive number (< 7), there exists a § > 0 such that, whenever ||
T [[< 6,
| z(t) |[<e Vt=tg (7.A7)
As a preparatlon it is shown that the function W in (7.A6) can be
chosen to satisfy

ow
I 55 I’= 0Ws(l = ) (7.A8)
When W; _: W ‘(1 is a positive integer), one obtains
Yillz ) < Wiz) < (]l = |]) (7.A9)
: oW ~ “
Wil = W o f < =W (|| 2 )
Vz € B, (7.A10)
Now define ord( ) as
Y
s 7.A11
ord(y) £ max{s I"mlﬁno Tz - oo} ( )
Assume ord(¥3(]| = ||)) = s1, where 51(< c0) is a positive number.

Since W is continuously differentiable and W(z) = O(]| z ||), one gets
ord(W) = sq, where 1 < s < co. From this, ord(W;) = s2t, and
ord(Wi143) = 51 + sa(i — 1). Let ¥3 € K be a function to be less
than Wil for each z in a neighborhood of the origin and to satisfy
ord(y4) = 1 + s2(i — 1) + 1. Since ord(|| 25 [|?) > 252(1 — 1), there
exists an 7 such that, for sufficiently large 1, | a—W* ||2 (il z 1))- If
W, is redefined as W, W given by (7.A6) satlsﬁes (7. AS) without loss
of generality.
Now define, given ¢; > 0,
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Lo Il # 1, (1.A12)

A
k(er) = g gﬁ%ﬁ‘:r{ ()
and a function ¢y € K satisfying ¢(z) < ¢4(|| = ||) for all z € B,.
Then consider a positive definite function V given by V(z) = ~¢’(Cc) +
W(z). Differentiating V along the system given by (7.23), one gets,
from (7.24) and (7.A6)

g llll 5z II)

V < —k
I
2| W |12
g A AAN
s N EIEL:
for g <||lz|<r (7.A13)
Using this, one can show that, whenever || =y ||< €1, || =(t) |<

Ur (p (e1)w4(e1) + ¥o(ey)) for all ¢(> tp). Therefore, if there exists
an €1 > 0 such that

%k(&])’lf)‘;(fl) -+ ’l,bg(&'l) < ’lf)l(é‘) (7A14)

holds for any given positive number (< r), it is concluded that (7.A7)
holds whenever || ¢ ||< &1(= 6). Since supg.,, . k(€1) < 0o by (7.A8),
there exists an £, > 0 satisfying (7.A14) for any positive number (< 7).
Next it is shown that «(¢) — 0 as t — oo. The stability in the sense
of Lyapunov implies & € L, for all &y in a neighborhood of z = o.
Then s € L. Integrating the both side hands of (7.24), one gets

Holto) ~ a) 2 p [ | s | dr (7.A15)
From ¢(z(t)) < oo for all t > to and (7.A15), s € Ly. Further since
@(t) is continuous and & € L, s is uniformly continuous with respect
to t. From the uniform continuity of s and s € Ly, s — 0 ast — oo
(See [30]). Therefore s € L, N Cy. If s is regarded as an input of the
system given by (7.23) and Lemma 7.1 is applied, then z € L., N Cy.

The stability in the sense of Lyapunov and the attractivity mean
that the system given by (7.23) is asymptotically stable at ¢ = o. N
Proof of Lemma 7.4: From Lemma 7.2, it is clear that ¢.(x) given
by (7.14) satisfies (7.20) in a neighborhood of the origin. Further from
| S llz2c< 7, there exists a positive number yo(< 7) such that || S || z2.<
vo- Therefore one can show that, under Assumptions 7.3 and 7.4, there
exists a positive semi-definite function Ero(m) given by (7.16) such that
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it satisfies ~
a¢'rg 1 a@ro Ta¢’r0
dxT " F 498 22799 Tox
in a neighborhood of the origin.
Now we show ¢(z) 2 bro(x) — do() > 0 in a neighborhood of the
origin. So suppose that there exist éi,(a:) and cgro(ﬂ:) for all z € Bj to
satisfy each Hamilton-Jacobi equation. From || S |jz2.< 7o, one gets

ftT(wguTu —yTy)dr >0
0

Vu € Ly, NL,,, VI >tg, xz(fg) =0 (7.A17)
In (7.A17), consider a time ¢; (tp < t; < T), and define u, : [tp,t1) —
R™ and ws : [t;,00) — R™. Then one obtains

2 (Buluy — yTy)dr + [ (Gufus — y y)df >0

YT >t, VYip<t, z(t)=
Vu; € Ly(to,t1) N Lg,, Vuz € Ly N L; (7.A18)

Adding [ (+? - 43)uluadr > 0 to the left side hand of (7.A18), one
gets

+hTh =0 (7.A16)

2(ulur — yTy)dr + [ (Yufuz — yTy)dr 2 0
VTZtl, Vfgﬁtl, E(to)zo
Yu, € Ly(to,t1) N L, Vuz € Ly N L, (7.A19)
Therefore it follows from (7.A19) that ¢ro(z1) — @a(®1) > 0 for all
A
x| € By, where ¢; = x(1)).
Now from (7.20) with ¢ = $o and (7.A16), one gets

2 1 06 704 1.1 1,060 1080
daT Fatle = T2 Bngg dr 4(73 )8:1:T 99 5z
Vo € 135 (7.A20)

2 & n A T3
where ¢ 2 $r0 — ¢a and f, f F .).erQTi Now a = gT_a?c'qv

b= QT%, and ¢ £ [aTb7]T. Then one gets F%fa = —cT Me, where

I I k-1 o I o
M=[0 —I][‘I%OT L | T -1 (ALl

,and M > 0 since & — -5 > 0. Therefore let a be 494\ in (M) Amin(*)
0 -
expresses a minimum singular value), so one obtains

9 R ¥
a;:;‘ 1.5 Qﬂfgg’*"% I? Ve Bs (7.A22)
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From (7.A22) and the internal stability of the system S, using Lemma
7.3, one can show that the system given by £ = f,(x) is asymptotically
stable at the origin.
Proof of Lemma 7.5 : The necessity is obvious. Con51der the suf-
ficiency. Assume that the system S is small signal L stable. Then
the following function exists in a neighborhood of the origin, from the
reachability of the system.

do(z) S = inf / T(kzuTu — yTy)dr (7.A23)

veLy.nLS T>t7!

where &(t) = . Then since the system S is internally asymptotically
stable, one can show (see [139])

bo(z)=— inf ~ 2ulu — yTy)dr & R 7.A24)
Gul@) == _nt [ yy)dr £ 6u(z)
Then this implies &% || w ||2 — || ¥ ||2> 0 for all w € LoyN LS. i

Proof of Lemma 7.7 : From the condition (ii)’, by the converse theo-
rem of Lyapunov (see [40, 145, 133]), there exist a smooth positive def-
inite function W(-) : R" — R, and positive constants a;(i = 1,2, 3,4)
and 7 such that

allz|? < Wz)<a|z|
oW ~
oxT oz7d S

Wy = —a3 || = |’

oW
|| — | € aljz| VxeB, (7.A25)

It is also assumed that the condition (i)’ holds for all # € B,,. Define
A _A . -
r = min{ry,r2} and § = maxz.pg || g |- Then consider a positive
definite function V 2 %q& + W, where k is selected as
a3g*
k> (7.A26)

403
Differentiating V' along the system given by (7.23) and completing the

squares, one gets
V < —az ||2 +gas lellls | =% s ]I*

€ — J"'4)||m||'~’ Vz € B, (7.A27)

Therefore from (7. A26) there exists a by > 0 such that V < —by || = ||2.
Further noting that —35—( ) = o0 and that ¢ is C?, there exist b; > 0
(i = 1,2) such that, for all x € B,, by || x ||?< V(:L'} < b ||  ||>. The
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existence of b; > 0(7 = 1,2, 3) implies that the system given by (7.23)
is exponential stable at the origin.

Proof of Theorem 7.4: (i)—(ii): Since ¢, defined by (7.4) exists
globally and satisfies (7.40) by Theorem 7.1, the condition (A) is satis-
fied. In order to prove that ¢, satisfies the condition (B), it is enough
to show that Lemmas 7.7 and 7.8 hold globally. A global version of
Lemma 7.7 can be proven in the same way as Lemma 7.7, under the
assumption that % is globally Lipschitz and that sup || g() ||< oo.

A global version of Lemma 7.8 can also be proven by using a global
Lipschitz condition of am and 3— It is trivial that the condition (C)
is necessary.

(i1)—(i): The global and internal exponential stability of the system
S can be easily shown by the condition (A) and the global version of
Lemma 7.7. Now it is shown that || S [|zo< 7. At first, it is shown
that, since the system S is globally and internally exponentially stable,
xz € Ly N L, NCy holds for all w € L, as follows. It is obvious that
x € L holds for all w € Lo, using the result of [44] from the global
Lipschitz condition of f and sup || g(z) ||< oo. Further one can easily
show ¢ € L. Therefore from ¢ € Ly and & € Ly, ¢ € LyN L, N Cy
holds. Using the above fact and the condition (A), one gets

2lull-lyB=2 v} VueL (7.A28)
where v is defined by (7.18).

Usmg the global and internal exponential stability of the syetem
S, ! given by (7.19), the global Lipschitz condition of f and 2 5> and
sup || g(z) ||< o0, it is obtained that the system S is Ly stable, that
is, there exists & > 0 such that

|| u ”2S k ” () ”2 Yv € Lo (TAZQ)
In the system S,, from (7.A28), v € Ly holds for all u € Lj, and in
the system S;l, from (7.A29), w € L» holds for all v € Ly. Then one
gets

” u ”)_S k I[ v ”2 Yu € Lo (7.A30)
Egs. (7.A28) and (7.A30) imply || S [|z2< 7- |
Proof of Lemma 7.10: Since the £ = f(z) is asymptotically stable
at # = o, by the converse theorem of Lyapunov, there exist a suffi-
ciently smooth and positive definite function W(-) : R* — R and C*
functions ¥;(-) € K(i = 1,2,3) satisfying in a neighborhood of = 0

bllzl) < W) <l ) (7.A31)
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. ow
Wig_y = 5ot < vl z 1) (7.A32)
In add1t1on We can show tha.t without loss of generality, W satisfies
E‘)W
H IIQ (7.A33)

Now notzng that — QW is a positive definite function, there exists
a sufficiently smooth posztwe definite function é(-) : R® — R such that
;1-6 < ‘aﬁa:‘%"f in a neighborhood of & = o, for a ¢ satisfying 0 < £ < 1.

Let k; and ks be positive constants satisfying on some local region
U

|| Il2 ki I I

ky = max Apq
2 raglegf (gg)

Then if k satisfies

k> lk 1k2ﬁ
we can show that eq.(7.52) holds locally. |




Chapter 8

ROBUST STABILIZATION
OF NONLINEAR
SYSTEMS BY H., STATE
FEEDBACK

8.1 Introduction

Among stabilization problems of control systems, it is important that
parametric and/or unstructured uncertainty is taken into account. Al-
though there are many researches about robust stabilization of nonlin-
ear systems with parametric or structured uncertainty [52, 26, 122],there
are few researches about robust stabilization of nonlinear systems with
unstructured uncertainty.

Recently, several researchers have attempted to extend the H, con-
trol theory to the case of nonlinear systems, and the solutions of H
state or output feedback control problems are given as shown in the
Introduction 1.3.1. In addition, some new results were given in the
previous chapter 7. For linear systems, H, control theory combined
with the small gain theorem solves the robust stabilization problem for
unstructured uncertainty directly. However, this is not the case for non-
linear systems. In order to solve the problem, we need to discuss not
only the Lo gain property (with I/O stability) but also internal stabil-

153
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ity rigorously. So far several researchers discussed the relation between
the L, stability and the internal stability [138, 46, 47, 44, 134], but the
result seems to be too restrictive to apply to the robust stabilization
problem.

In this chapter, a robust stabilization problem by state feedback for
nonlinear systems with unstructured uncertainty is considered. First,
based on some results in chapter 7, the robust stability condition is
given. The obtained condition completely corresponds to the well-
known robust stability condition for linear systems. Second, a suffi-
cient condition for the existence of a robust stabilizing controller is
given, based on nonlinear H , state feedback control theory in chapter
7. The obtained approach allows us to treat various types of stability,
i.e. asymptotic, exponential, and global exponential stability (which
includes linear system case), in a unified way in solving the robust sta-
bilization problem. In this sense, the result obtained here is a natural
nonlinear extension of the robust stabilization of linear systems. In ad-
dition, some numerical examples show the effectiveness of the obtained
nonlinear robust stabilizing controller.

The same notations are used as chapter 7.

8.2 Robust stabilization problem

Consider the following nonlinear system whose input-output relation
is given by an operator G : Ly, — Lo,.
z = f(z)+g(z)u
G y = h(z)+j(z)u
z(ty) = z°
where € R" is the state, u € R™ is the input, y € R™ is the output,
and tg is the initial time. f(-) : R" — R", g(-) : R* — R™™™, h(-) :
R" — RP, and j(-) : R® — RP™ are sufficiently smooth functions
with f(o) = o and h(0) = o.
Then three kinds of internal stability are defined as follows.
[Definition 8.1 |  The system G is said to be internally asymp-

totically, internally exponentially, and internally globally ezponentially
stable, if the origin (x = o) of the system G with u = o, namely
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z = f(x), 1s an asymptotically, exponentially, and globally ezponen-
tially stable equilibrium, respectively.

We consider input-output stability in the case that the input belongs
to Ly N LS, as follows.

[Definition 8.2 ] The system G is said to be small signal Ly
stable if there exist constants k and ¢ such that || y |[2< k || u |2,
for 2 = 0 and all w € Ly N LS, [134]. Furthermore the system G is
said to be strongly small signal L2 stable if there exist a positive semi-
definite function () : R" — R and a positive constant k satisfying,
tn a neighborhood of the origin,

azpf+(1 wa

+h,Th, <0

P
+3Th) (KT —375) N zgT =

.T
h
2% oz +3h)

Note that if the system is strongly small signal L, stable, then it is
small signal L5 stable. Under some assumptions such as the smoothness
of an available storage function, the strong small signal L stability is
equivalent to the small signal Lo stability [46]. The strong small signal
L, stability also implies that the system is dissipative with a C? storage
function when a supply rate is k>ufu — yTy as defined in [18].

We also define the L gain for the system G as follows.

[Definition 8.3 ] The system G 1is said to have a small signal
L, gain, if there exists a positive constant ¢ such that | G || 2. is finite
subject to ¥ = 0, where

A Y2
162 s AR
ueL,/qoynLZ, I Y 112

Ifc =00, || G ||1200 ts denoted by || G |12, which is La-induced nomﬁ

Now let us state a robust stabilization problem. Consider the state
feedback system as shown in Fig.8.1. Let P be the nominal plant
and A be the uncertain plant, which have the following state space

realizations.
x, = fi(z1)+g(z1)u
P Y hi(z;)
z1(to) z}
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P
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o M= fi(@) + gy(@)u T v =h(@) [T

i ui — i

!L.—-—‘_.—'_.—-—-: ........................ : ------------------------------------- _i

™ | Ve = k(=) [<
Figure 8.1: Closed loop system
Ty = folwz) + go(@2)z
A w = hy(x;)

zy(to) = =xf
where £, € R™ and x, € R™ are the state vector, v € R™ and z €
R™ are the input, ¥y € R™ and w € R™ is the output, respectively.
Functions f;, g;, and h; are sufficiently smooth with f.(0) = o, and
h;(0) = o (i =1,2). It is assumed that f,, g,, and h; are known, but
f2, g2, and hy are unknown. A function k(-) : R™ — R™ in Fig.8.1
expresses a state feedback controller.
Then the following assumptions are made.

[Assumption 8.1]  Concerning the nominal plant P, P s locally
reachable with small input. Namely, given any ¢ > 0, there exists an
r(e) > 0 satisfying the following: for any xi € B, and t;, there erist
finite time to(< t1) and a control input u € Ly(tg,t1) N LS, such that

the state is driven from z1(to) = o to z,(t) = =!.

[Assumption 8.2 | Concerning to the uncertain plant A, A
15 locally reachable with small input. Furthermore, the uncertain plant
A is internally asymptotically (exponentially, or globally exponentially)
stable at the origin, and for a positive constant vy, there is a positive
constant ¢ such that || A ||g2.< 2. i

Let the real plant which is composed of P and A be f’, and let the
set of the systems which are composed of P and the set of the plant
A with Assumption 8.2 be A. Then the closed loop system in Fig.8.1
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Figure 8.2: Equivalent system

is said to be robustly asymptotically (exponentially, or globally expo-
nentially) stable, if the closed loop system is internally asymptotically
(exponentially, or globally exponentially) stable for all the systems P
which belong to the set 4. Then we consider the following problem.

[Problem 8.1] (Robust stabilization problem) Find a state
feedback controller which robustly asymptotically (ezponentially, or glob-
ally exponentially) stabilizes the closed loop system in Fig.8.1.

8.3 Robust stabilization

In the first part of this section, a sufficient condition for the closed
loop system in Fig.8.1 to be robustly asymptotically stable is derived.
Second, a sufficient condition for the existence of the robust asymp-
totic stabilizing controller, that is, the robust stabilizability condition
is given. Finally, we give some results about the robust exponential
stability case.

8.3.1 Robust asymptotic stability condition

The system in Fig.8.2 is equivalent to the system in Fig.8.1. S is an
operator which expresses the input-output relation from w to z, and
has the following state space realization.



158 Chapter 8 Robust stabilization by He state feedback

S & = f(z1)— g (z1)k(z)) + g1 (21)w
z = —k(z)
We define the following functions for the system S and A, respec-
tively. ~
Si(zi(t) & - [7 P w — 2T2)dr
1

inf
weLn (nL32

—~ A . o« ] T T
zo(t)) = — nf / —zTz —w w)dr
#olea(d) Loz P

where v, 71(< 7), ¢1, and ¢ are positive constants. Then the following
assumptions are made.

[Assumption 8.3 ]  When é1(x1) ezists in a neighborhood of the
origin, it is C*. |

[Assumption 8.4 ] When 52(:1:2) ezists in a netghborhood of the
origin, it is C. |

The following result is obtained.

[Theorem 8.1 ] For positive constants v and ¢, the nominal
plant P and the uncertain plant A are assumed to satisfy Assumptions
8.1 to 8.4 (A 1is internally asymptotically stable). Then the closed loop

system in Fig.8.2 is robustly asymptotically stable, if the following two
conditions hold simultaneously.

(1) The system S is internally asymptotically stable.

(ii) There exists a positive constant ¢ such that || S ||r2e, < -

Proof: The proof is based on Lemma 7.3 in chapter 7: we show that
the conditions (i) and (ii) in 7.3 hold for the closed loop system which
consists of S and A in Fig.8.2.

From || S ||z2,< 7, there exists a positive constant (< 7) such
that || S ||r2,,< 71. Under Assumptions 8.1 and 8.2, || S |72, < ™
and | A |[z2.< % imply that there exist positive semi-definite functions
d1(x1) and Po(xy) with $1(0) = 0 and ¢y(0) = 0 in a neighborhood
of the origin, respectively [84, 46]. In addition, under Assumptions 8.3
and 8.4, || S |lz2¢,< 1 and || A [[z2.< % imply that the following



159

relations hold locally.

$i(z1) = aml} (fi—gik+gw) < n*wfw-2Tz  (8.1)
& s 04 1
po(Ta) = "a?;?(fg +g,2) < ;y—QZTZ ~wlw (8.2)

Then we define a function ¢(z) by
o« de B o A
¢lz) = 723@51(581) + ¢a(@2)

where z = [@,T ,2,T]T € R™*™ and 7, is a positive constant satisfying
7 < 72 < 7. Differentiating ¢ along the closed loop system which
consists of S and A, we obtains, from (8.1) and (8.2)

= 1 = e
plz) = §¢1(‘U1)+¢2(5’»‘2)

1 :
i 2y T e OO
< 722(711010 zz)+72zz w'w
= —(—=-5)Tz-(1- =S )wlw
<722 72) ( 722)

W

Therefore, noting that :{% —27 > 0and 1 -2 > 0, the following relation
holds in a neighborhood of the origin. ’

B(x) < —p(kT (z1)k(z1) + h3 (z2) ho(w2)) (8.3)

P 2 min [_1_ 1 712]
el A

Let f, g, and s in Lemma 7.3 in chapter 7 be

AT L] e[

Then from (8.3), the condition (i) in Lemma 7.3 hold for the closed
loop system with S and A. Furthermore, the condition (i) and the
internal asymptotic stability of A imply the condition (ii) in Lemma
7.3. Consequently, by Lemma 7.3, the closed loop system with S and
A is internally asymptotically stable. This completes the proof. |

where

Remark 8.1 Note that Theorem 8.1 cannot be derived directly from
the small gain theorem, since the small gain theorem 1is concerned with
the input-output stability, not the internal stability. Willems [138] and
Hill and Moylan [{7] showed that the closed loop system in Fig.8.2



160 Chapter 8 Robust stabilization by H., state feedback

is wnternally asymptotically stable, if both systems S and A have a
kind of observable property and the Ly gain of the system composed
of § and A is less than 1. However this result cannot be applied to
the robust stability condition considered here, because, in [138, 47], the
assumption of the observability for the system is crucial to prove the
internal stability of the closed loop system. On the other hand, Theorem
8.1 is an extension of the previous results such as Corollary 2 in [{7]
to the case that the observability is not assumed. Theorem 8.1 shows
that if both systems S and A are internally asymptotically stable and
| S llz2cll A |[r2c< 1, then the closed loop system in Fig.8.2 is internally
asymptotically stable. E

In the proof of Theorem 8.1, the idea of the derivation of (8.3) is
the same as Corollary 2 in [47]. Hill and Moylan showed in Corollary
2 of [47] that, using the equation corresponding to (8.3) and a kind of
observability, the storage function is positive definite, and then the La
Salle invariance principle proves the asymptotic stability of the closed
loop system. However, we cannot use the principle in Theorem 8.1
where the observability is not assumed, because the storage function is
not necessarily positive definite (When the storage function is positive
semi-definite, not positive definite, the La Salle invariance principle im-
plies that the system is attractive, not asymptotically stable.). Thus we
need the different approach, which is Lemma 7.3 in chapter 7. Lemma
7.3 has an important role in our paper.

Although Theorem 8.1 is concerned with the sufficiency of robust
stability, it naturally corresponds to the well-known robust stability
condition for linear systems.

8.3.2 Robust asymptotic stabilizability condition

Consider the following system:

3 { T = f;(?){; $r— 1)919?% +g\v

w o= 7291 3z, +v
where ¢(-) : R™ — R is an appropriate real function. Then we get the
following result, based on Theorem 8.1.

[Theorem 8.2 ]  For positive constants v and ¢, the uncertain
plant A is assumed to satisfy Assumptions 8.2 and 8.4 (A is inter-
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nally asymptotically stable). Then the closed loop system in Fig.8.1 is
robustly asymptotically stabilizable by state feedback Y. = k(xz,) e R™,
if there ezist a C! positive semi-definite functzon ¢() : R™ - R and
a vector-valued function I(-) : R™ — R' (I is a positive integer) in a
neighborhood of the origin satisfying the following two conditions simul-
taneously.
B dg 1 d

¢
3:I:Tf1 Z( )a T lg’{a +£TI—D
(B)  The system S‘,‘ is intemally asymptotically stable and strongly
small signal Ly stable.
Then a robust stabilizing controller is given by k(x,) = zngaTg{ |

Proof: Consider k = §g] 22 as a state feedback controller. First, we
show that the system S is 1nternally asymptotically stable, by usmg

Lemma 7.3 in chapter 7. Let _f, g, and s in Lemma 7.3 be f

a -~ A
fi— 29‘191 a—:%—f-h—zglgf a;; y G = gl, and s = —27291 ﬁ%, respectively.

Then the condition (A) implies (7.24), namely, the condition (i) in
Lemma 7.3. In addition, the internal asymptotic stability of the system
S implies the asymptotic stability of &; = f( x1), namely, the condition
(ii) in Lemma 7.3. Therefore, the system S is internally asymptotically
stable.

Next, it is shown that the relation which corresponds to (8.1) holds
under the condition (A) and the L, stability of S. The condition (A)
implies that the following relation holds locally.

;A
6= o r(fi—gk+aw) <y'wlw—2Tz -9y (8.4)
1

where v = w — 2#21??6_83%' Furthermore, the strong small signal L,

stability of S means, by Definition 8.2, that there exists a positive
semi-definite function ¥(-) : R™ — R and a positive constant k(> 1)
satisfying, in a nelghborhood of the origin,

1,1 ad
0] T{.fl ( —1)g,9 aj}
1 ng 1 0¢ .p oY 1 9¢
i 4(}:2—1)(62:1 +?8w1) B0 (6:13 3 12 O,
+ = O 700 <0 (8.5)

-l_-_’}f‘l—anglgl _3:1':1 =
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From (8. 5) we get

I at/) a7 (1~ @ik +a1w) Kolv — whw (8:6)

Now consider ¢; 24+ -;f:-:f) Then by (8.4) and (8.6), there exists a
positive constant (< ) such that

&éaaﬂ(fl 91k+91w)<71w w-z'z (8.7)
Eq.(8.7) corresponds to (8.1) in the proof of Theorem 8.1.

Under the above preparation, we can prove that the closed loop
system which is composed of S and A is internally asymptotically
stable, in a similar way to the part after (8.2) in the proof of Theorem
8.1. This completes the proof. |

Remark 8.2 Theorem 8.2 shows that the robust stabilizability cond:-
tion is given in terms of the solvability of nonlinear H o, state feedback
control, in the same way as linear system case. Note that a solution sat-
isfying the conditions (A) and (B) corresponds to a stabilizing solution
of the Riccati equation appeared in linear system case. |

Remark 8.3 Note that the assumptions with respect to the system S
(or P), namely Assumptions 8.1 and 8.3, are not made in Theorem
8.2. Thus, we do not need to check Assumptions 8.1 and 8.3. (]

Remark 8.4 Theorem 8.2, as you can see from the proof and Lemma
7.3, shows if there exist positive semi-definite functions ¢ and i on
B, satisfying the conditions (A) and (B), and there exists a Lyapunov
function on B, which ensures the internal asymptotic stability of the
system S, then there ezists a Lyapunov function on B, which guar-
antees the internal asymptotic stability of the closed loop system with
ke ) = 2g] —i Thus using the Lyapunov function on B,, we can

estimate the stabzlzty region of the closed loop system. |

Remark 8.5 If we consider the case of || A ||L2c< 1 not] Alpe< 2 &
in Theorem 8.1, then the robust stabilizability condztwn is the condition
(A) and the internal asymptotic stability of S. As a result, it is not
required that the system S is strongly small signal Lo stable, because
we have only to show that the system S satisfies | S |12, < v, not
| S |l z2e, < 7.
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8.3.3 Robust exponential stabilization

In this section, we discuss a robust exponential stabilization prob-
lem. In Assumptions 8.3 and 8.4, C! is replaced by C? with respect
to the smoothness of ¢; (i = 1,2), and these are called Assumptions
8.3’ and 8.4°, respectively. Then concerning to the robust exponential
stability condition, the following result corresponding to Theorem 8.1
is obtained.

[Theorem 8.3 | For positive constants v and c, the nominal
plant P and the uncertain plant A are assumed to satisfy Assumptions
8.1, 82, 8.3, and 8.4’ (A is internally ezponentially stable). Then
the closed loop system in Fig.8.2 is robustly exponentially stable, if the
following two conditions hold simultaneously.

(i) The system S 1is internally ezponentially stable.

(ii) There exists a positive constant ¢, such that || S || f2e, < 7.

Proof: We can prove Theorem 8.3, by using Lemma 7.7 in chapter 7
in a similar way to the proof of Theorem 8.1.
In addition, we get a result corresponding to Theorem 8.2.

[Theorem 8.4 ] For positive constants v and ¢, the uncertain
plant A is assumed to satisfy Assumptions 8.2 and 8.4 (A is inter-
nally ezponentially stable). Then the closed loop system in Fig.8.1 s
robustly exponentially stabilizable by state feedback y, = k(z,) e R™,
if there exist a C? positive semi-definite function ¢(-) : R™ — R and
a vector-valued function I(-) : R™ — R' (I is a positive integer) in a
neighborhood of the origin satisfying the following two conditions stmaul-
taneously.

i d¢ 1,1 do 0o
I 2 b —De—gii — + 1 =0
3:17?f1+4~('72 l)aw'{glgl aml +

(B)  The system S is internally exponentially stable.

Then a robust stabilizing controller is given by k(z1) = %g{%. 1

Proof: We prove Theorem 8.4 in a similar way to the proof of Theorem

8.2. Consider k(x,) = %g?% as a state feedback controller. First by
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Lemma 7.7, the internal exponential stability of the system S follows
from the CODd]thnS (A) and (B). Second, the condition (A) yields (8. 4).
Third, we show the relation which corresponds to (8.6). From the
condition (B), by the Converse Theorem of Lyapunov, there exists a
positive definite function V(-) : R™ — R and positive constants a;(¢ =
1,2)in a neighborhood of the origin such that

1,1 7 06

S+ 555~ Vel . By < —alml? @9
|| “ < alel (8.9)
Differentiating V' along the system S’ we get, from (8.8) and (8.9)
a0V
vV = an{(fl — 91k + g,w)
< —ar | @ | +azas || |l v ] (8.10)

. . .y 1 T a
where a3 is an appropriate positive constant, and v = w — 7291 ﬁ%

By simple computation, (8.10) yields
Looa OV
vV = ﬁ(.fl - g:k+g,w)
< aflvf’-as || w]? (8.11)

where a;(t = 4,5) are appropriate positive constants and satisfy ay >
as. Eq.(8.11) corresponds to (8.6). From (8.4) and (8.11), we get the
relation which corresponds to (8.7).

Under the above preparation, we can prove that the closed loop
system with S and A is internally exponentially stable, in a similar
way to the proof of Theorem 8.2. |

Remark 8.6 While the case of asymptotic stabilization in Theorem 8.2
requires some kind of Ly stability for the system S, that is, the latter
part of the condition (B), the case of exponential stabilization explicitly
does not. This is because the internal exponential stability of S means
the strong small signal Ly stability of S.

Remark 8.7 Theorems 8.1 to 8.4 are concerned with the local stability.
Global exponential stability case can be treated, under some assumptions
such as global Lipschitz condition, in a similar way to the exponential
stability case. These global results to correspond to Theorems 8.3 and
8.4 completely include the well-known results of the linear system case.
Therefore, our results are natural nonlinear extensions of the linear
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system case. B

8.4 Numerical examples

In this section, two numerical examples concerning to Theorems 8.2
and 8.4 are given. In addition, we discuss the feature of the obtained
nonlinear controllers, comparing to linear controllers.

8.4.1 Example 1 : Robust asymptotic stabiliza-
tion

In Fig.8.1, consider the following system as a nominal plant P.
P .I“l = 2.1713 + u
n = h{z)
where h(zy) is an arbitrary function. Concerning to an uncertain plant
A, it is assumed that | A |[[z2.< 715( This means v = v/2 ). Then
we find a state feedback controller which robustly stabilizes the closed
loop system in Fig.8.1, by using Theorem 8.2. When the function ¢,
and [ are given as
¢($l) = 4:[:.% ) i(j’l) = 0: 5
then the condition (A) is satisfied. Since the system S is given as
g I = —-2.‘1.‘:1] + v
w = 4a3+v
the system S is internally asymptotically stable. In addition, a positive
semi-definite function ¥(z,) and a positive constant k satisfying (8.5)
are given as ¥(z;) = 42} and k = V/17. Thus the system S is strongly
small signal L, stable.
Therefore, this closed loop system can be robustly asymptotically

stabilized by

1 09
k(z) = 59?% = 82}

if the uncertain plant is internally stable and satisfies Assumptions 8.2
and 8.4.
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8.4.2 Example 2 : Robust exponential stabiliza-
tion

In Fig.8.1, consider the followmg system as a nominal plant P.

IpI = 4dxp+ 16Ip2
P :I.‘:pg = IJ‘,‘pl + .’L'Pg 16.’L'pl3 + SIPQ +u
y = hz)

where h is an arbitrary function, and @, = [zp1, ng] Concerning to an
uncertain plant A, it is assumed that || A ||z2.< 3( This means v =2
). Then we find a state feedback controller which robustly stabilizes

the closed loop system in Fig.8.1, by using Theorem 8.4.
When the functions ¢ and [ are given as

¢($1) = -,1;3:3,12 -+ 2$p22 -+ ‘4(.’1?}:,14 + $p24)
E(:z:l) = 0
then the condition (A) is satisfied. Since the system S is given as
:L‘;,l = 455';;2 + 16$p23
S Tp = —i:cpl — %:rpg — 16IP13 - 3931323 + v
w = %:Epg + 2$p23 +v

the condition (B) is satisfied.
Therefore, this closed loop system can be robustly exponentially

stabilized by
1
T

if the uncertain plant is internally exponentially stable and satisfies
Assumptions 8.2 and 8.4".

Now we compare the nonlinear controller given by (8.12) to a linear
controller obtained by the robust stabilization of the linearization of
the nonlinear plant P. Since the linearization of P is given as

: 0 4 0
4 4
we get k(x;) = 2z, as a robust stabilizing controller. Then as an
uncertain plant which has || A [|;9= 3, let us consider, for simplicity,
the following linear system
A o —EL2+Z
w = —E.I.'Z
It can be easily checked that Assumptions 8.2 and 8.4’ are satisfied.
Fig.8.3 show the initial state response when x1(0) = [0, 0.65]7, 25(0) =
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W ® =

Figure 8.3: Initial state response: (a) zp1, (b) zp2, Solid lines express
the nonlinear case, while dashed lines express the linear case

.

Figure 8.4: Stability region in linear controller case
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0. We can see that the state response in the nonlinear controller case
is better than that in the linear controller case. In addition, we nu-
merically estimated the stability region in each case. Fig.8.4 shows the
stability region in the linear controller case. The stability region may
not be large. In the case of the nonlinear controller, on the other hand,
the stability region is much larger than that of the linear case (it may
be everywhere, although we cannot show it analytically).

8.5 Conclusion
The main results obtained in this chapter are summarized as follows.

(1) A robust stability condition has been given for nonlinear systems
with unstructured uncertainty. Furthermore, a robust stabiliz-
ability condition has been derived in terms of the solvability of
some partial differential equation and a robust stabilizing con-
troller has been given, which is based on the nonlinear H ., state
feedback control theory developed in section 7.3.

(ii) The obtained approach in the robust stabilization problem with
unstructured uncertainty allows us to treat various types of sta-
bility, i.e. asymptotic stability, exponential stability, and global
exponential stability, in a unified way in solving the robust stabi-
lization problem of nonlinear systems.

(iii) Some numerical examples show the validity of the proposed non-
linear controller, compared to a robust stabilizing linear controller
for the linearization of the original nonlinear system.



Chapter 9

GLOBAL ROBUST
STABILIZATION OF
NONLINEAR CASCADED
SYSTEM

9.1 Introduction

Global stabilization of nonlinear systems is one of fundamental prob-
lems, but it is a very difficult problem. Recently, such a problem has
been attacked as a stabilization problem for a nonlinear system which
has the so-called "normal form” [15, 79, 17, 18, 67, 123, 105] or a class
of nonlinear cascaded systems [117, 116, 120, 115, 111, 91, 121, 110, 19].
Needless to say, the important next step is to discuss the stabilization of
the nonlinear cascaded system in the presence of uncertainty. This will
be the first step to the robust stabilization of general nonlinear systems.
However, the above approach cannot be straightforwardly extended to
robust setting. Although there are a few researches [109, 108, 14, 34]
about robust control of uncertain systems with a normal form, these
are concerned with robust output tracking control problem, not global
stabilization one.

From a quite different viewpoint, various stabilization techniques
have been developed for nonlinear systems in the presence of uncer-

169
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tainty. Most of them treat the case where the uncertainty satisfies
the so-called matching condition [37, 28, 2], though some of them
tackled the mismatched uncertainty case such as the cone-bounded
[89, 140, 25, 106] or singular perturbation case [104, 72, 26] which has
local nature essentially. However, in order to discuss the robust stabi-
lization of nonlinear cascaded systems, the matching condition is too
restrictive. In addition, it is difficult to apply the latter methods to the
global stabilization problem.

The purpose of this chapter is to give a sufficient condition for the
global robust stabilization, via state feedback, of a class of nonlinear
cascaded systems in the presence of uncertainty which does not neces-
sarily satisfy the so-called matching condition. In addition, considering
a specified class of the systems, a more practical condition for global ro-
bust stabilization is derived. The obtained results extend a condition of
global stabilization for nonlinear cascade systems without uncertainty,
which has been derived recently by [15, 18, 19], in the sense that the
system uncertainty is taken into consideration. Further the obtained
results show that, under a certain condition, a class of systems with the
uncertainty that is acted on by input through a strictly positive real
linear system (of course this uncertainty does not satisfy the matching
condition and is not cone bounded) is globally stabilizable.

The following notations are used: The Euclidean norm and its in-
duced norm are denoted by || - ||. A function f(z) is referred to as C*°
if its partial derivatives of any order with respect to £ € R" exist and

are continuous. Jacobian matrix of f(x), a%-;-, is denoted by D, f.

9.2 Problem statement

Consider a nonlinear cascaded system S, given by

z = f(z,§)+Af(z,& p) (9.1)
n = An+ Bu (9.2)
£ = Cn (9.3)

where 2 € R" and 7 € R™ are the state of S}, u € R' is the input,
and £ € R' is the output of the subsystem given by (9.2) and (9.3).
P € R? expresses a vector composed of uncertain parameters. f(-) :
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R"xR'— R" and A f): R"xR'xR"— R" represent the nominal
and perturbed part of the system, respectively. The system given by
(9.1) is referred to as an upper system and the system given by (9.2)
and (9.3) as a lower system. The following assumptions are made.
[Assumption 9.1 ] A4 p belongs to a known compact set given
by 12.
[Assumption 9.2 |  Functions f(-) and Af(-) are known, and
C* mx and & for allp € £2. Af(") is continuous in p.
[Assumption 9.3 ]  Constant matrices A, B and C are known,
and rankB = (. For the lower system given by (9.2) and (9.3), there are
positive definite matrices P and Q that satisfy the following condition.
PA+ATP = —Q (9.4)
B'™P = C (95)

The system S; has almost the same structure as considered in the
former researches [15, 18, 19]. However, it includes parametric uncer-
tainty which does not satisfy the matching condition.

Remark 9.1 In the case that (A, B,C) is minimal, the condition
given by (9.4) and (9.5) of Assumption 9.3 is equivalent to a strictly
positive real condition [88]. One can weaken Assumption 9.3 by con-
sidering input transformation, such as [67]. i

The following term is defined in order to state the stabilization prob-
lem.

[Definition 9.1] 4 functiong(-) : R"xR? — R" and a compact
set £2 C R are assumed to be gwen. Then consider a nonlinear system
& = g(x,p) with a parametric uncertainty p € 2. Let the initial
state x(ty) be xp, where tg € R is the initial time. Suppose also that
the system has an unique solution. Then if the system has a globally
asymptotically stable equilibrium at © = . for all p € §2 and all
zo € R, the system is said to be globally robustly asymptotically stable
(or, simply, GRA stable) at T = x..

Then the following problem is considered here.

[Problem 9.1]  For the nonlinear cascaded system S, which sat-
isfies Assumptions 9.1 to 9.3, find a sufficient condition for GRA stabi-
lization at an equilibrium (z,n) = (@, n,.) vie appropriate continuous
state feedback. 1
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Now define terms about stability to be required in the following
sections.

[Definition 9.2 |  Consider the same system as in Definition 1.
For some positive constants a and b, and ¢, € R", if

la(t) —z. || < afmo— |
Vp € 2,Vzo € R",Vt(> ty)

then the system is said to be globally robustly ezponentially stable (or,
simply, GRE stable) at x = z..

[Definition 9.3 ]  Consider the same system as in Definition 9.1.
If there exist certain positive constants a; (1 = 1,2,3) and a real-valued
function V(z, p) that satisfies the following condition for all x € R™
and all p € §2, and that is C™ in x and continuous i p, then we
say the system is globally robustly exponentially stable at © = x. by
Lyapunouv Stability Theorem (or LGRE stable).

a |z |P<V(e,p) < afz|? (9.6)
D.V{g(z,p)} < —aslz|’ (9-73

Remark 9.2 Note that LGRE stability is sufficient for GRE stability,
not necessary. Furthermore for the system without uncertainty, we de-
fine the globally exponential stability by Lyapunov Stability Theorem (or
LGE stability) in a similar way. i

9.3 Sufficient condition for robust stabi-
lization

At first, we derive a robust stabilization condition for systems of
the form S; which satisfy additional requirements. Next, based on the
obtained robust stabilization condition, we give a robust stabilization
condition for the general system S.

9.3.1 Special case of the cascaded system

Consider the system that satisfies (A, B,C) = (0, I, I) in the system
Sy, that is,
z = f(z &)+ Af(z,€ p) (9.8)
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where I is a unit matrix. This system is referred to as S,. Then the
following result is obtained.

[Theorem 9.1]  Assume that any x. and €, are given. If, for the
nonlinear system (9.8) which satisfies Assumptions 9.1 and 9.1, there
ezists @ C* function k(-) : R* — R' such that

z = f(x,k(x)) + Af(x, k(z),p) (9.10)
ts LGRE stable at © = z., and k(z.) = £,, then the nonlinear sys-
tem So which satisfies Assumptions 9.1 and 9.2 is GRA stabilizable at
(x,€) = (., &,) vie an appropriate continuous state feedback law u =
7(x,§). In addition, if k(-) satisfies that || k(z)—k(z.) |< k|| z—2z. |
for some positive constant k, then the system Sy is GRE stabilizable at

(z,£) = (., &),

Proof: Suppose, without loss of generality, that 2, = 0 and £, = o.
If we transform the coordinates in the state space of the system S5 by
global diffeomorphism

w([‘g‘ )2[";’] (9.11)

where s £ & — k(x), then one gets

2

$§ = u—D.k{f(z,&)+Af(x,{p)}

If the system S, is GRE stabilizable at (z,s) = (0,0) via continuous
state feedback, then the system S5 is GRA stabilizable at (z,£) =
(0,0). So we show that there exist a feedback law u = 7(z,£), a real
function W(-) : R"* x R? — R and positive constants o; (i = 1,2,3)

that satisfy the following condition for all p € Q.
a || z P< W(z,p) < o z]|? (9.12)
W(zp)lg < —aslzl? (9.13)
where z 2 (7 s7)T and W(z,p)| s expresses the time derivative of

W(z,p) along the solution of S, with u = 7(x,&). Furthermore by
(9.11), (9.12) and (9.13), the additional condition || k(z) ||< k || = ||
implies that the system S5 is GRE stabilizable at (z,£) = (0,0).
Since the system (9.10) is LGRE stabilizable, there exist a real-
valued function V(z,p), which is C* in = and continuous in p, and
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positive constants 8; (i = 1,2, 3) such that, for all p € £2 gmd z € R*,

Bille|P<Vie,p) < Bzl (9.14)

D.V{f(z,k(z)) + Af(z,k(z),p)} < —Ballzl® (9.15)

From Assumption 9.2, there exist AF;(z, &, p) (i = 1,2,3) and F(z, )
such that

Af(2,€,p) = —f(0,0)+AF T + AF)s (9.16)

Af(z,&,p) = Af(z k(z),p)+ AF;s (9.17)

f(z,€) = f(z k(z))+Fs (9.18)

where AF; are C* in « and &, and continuous in p, and F' is C*° in
x and €.

Based on the above preparation, we show that there exist a feedback
law u = 7(x, €) and a real function W(z,p) = V(z,p)+ sTs/2 which
satisfies (9.12) and (9.13).

It is obvious that the function W(z,p) satisfies (9.12). Consider
(9.13). There exist continuous functions ¢;(-) : R" x R' — R (i =
1,2,3) such that, for allz € R", £ € R™, and p € {2,

| AF((2,€,p) |I< di(,€) i=1,2 (9.19)

because of Assumption 9.1 and the continuity of AF; in p. Furthermore
from (9.14) and (9.15), it is obtained that D,V7(o0,p) = o, and that
there exists a continuous function ¢4(-) : R" — R such that

| D.VT(z,p) |< da(z) | z|| VpeN, VeeR" (9.21)
Then consider the following control law

u :ka{f(m,ﬁ)—f(o,o)}-—-g(a:,{)s (922)

where g(-): R* x R' — R is giwen by, for a positive constant (< 33).
D.k +

i 4(%’1_ E)‘ﬁ“% + || Dok || g2+ € (9.23)

Now differentiating W along the system ,5'2, one can get, by using
(9.16), (9.17), and (9.18),
W = D.V{f(z k(z)) + Af(z, k(z),p)}
+ D V{F(x,£)+ AF3(z,€,p)}s
+ sTu
— ' D.k{f(z,€) - f(0,0)}
— sTD.k{AF\(z, €& p)xr + AFy(z,£,p)s) (9.24)
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Then by using (9.22) and completing the squares with respect to = and
s, one gets
W o< -z’

— Bs-e){| =] _” D,k || ¢ "1“?54‘253

2
2063 —¢) |5 |}
(Il Dok || 61 + P403)?

2
b (Dl v UDRLOLOBT

(9.25)

Therefore, (9.23) and (9.25) imply (9.13) if a3 = . This completes

the proof. |

This theorem shows that the cascaded system S5 is GRA stabiliz-
able via continuous state feedback, if the upper system (9.8) is LGRE
stabilizable via C* state feedback in the case that £ in (9.8) is regarded
as the input. We explain the main difference from the former methods
by using (9.24) in the proof. If there is no uncertainty in (9.24) as in
the former researches, then one can straightforwardly cancel the terms
on the right hand side of (9.24) except for the first term by an appro-
priate u, and make W negative definite. However in the presence of
the uncertainty, these terms cannot be directly canceled. This implies
that the former methods cannot be applied immediately to the prob-
lem in the presence of the uncertainty. One point of our method is the
combination of (a) completing the squares with respect to ¢ and s and
(b) nonlinear high gain feedback, which makes W negative definite.

9.3.2 General case of the cascaded system

The following result is obtained by using Theorem 9.1.

[Theorem 9.2 ]  Assume that any =, and €, are given. If, for the
nonlinear system (9.1) which satisfies Assumptions 9.1 and 9.2, there
ezists a C* function k(-) : R® — R' such that

i = f(z, k(z)) + Af(2, k(2), p) (9.26)
is LGRE stable at © = z., and k(z.) = &, then the nonlinear sys-
tem S8, which satisfies Assumptions 9.1 to 9.3 is GRA stabilizable at
(z,n) = (€M), wheren, & A"'B(CA™'B)7!¢,, via an appropriate
continuous state feedback law u = 7(x,n). il
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Proof: Suppose, without loss of generality, that ¢, = 0 and _Ee =0
(automatically 5, = 0). Since CB is nonsingular from Assumption 9.3,

== C _ —
there exists a matrix C such that [ = }s nonsingular and C'B = o.

C
So transforming the coordinates of the system S; by
s1|a|C| | k(z) 9.97
58] ] 621
one can obtain the following system, which is referred to as S
& = flz,6)+Af(z,E p) (9.28)
8 = CAn+CBu— Dk{f(=,€)+Af(z, & p)} (9.29)
8 = CAn (9.30)

Thus we show that the system S is GRA stabilizable at (z, 51, 82) =
(0,0,0) via continuous state feedback. The proof is completed in the
following three steps.

Step 1: One can show the system given by (9.28) and (9.29) is glob-
ally robustly stabilized at (z,s;) = (0,0) by an appropriate control
law. In fact, this is reduced to the stabilization problem considered
in Theorem 9.1, by appropriate input transformation: if we consider
u = (CB)™!(u — CAn), where @ is a new input, then there exists a
GRA stabilizing control law for a new system by input transformation,

by the same way as Theorem 9.1.
Step 2: Here consider the subsystem (9.30). By (9.27), (9.30), and

=1
Al C
i 2]
one gets
59 = CAD,s5+ CAD, {5, + k(z)} (9.31)

Now consider a positive definite function V; = n7 Pn, using a posi-
tive definite matrix P in Assumption 9.3. Differentiating V] along the
system (9.2) with any input that z(t) = o and s,(t) = o, one obtains
that ¥} = —nTQn by noting Cn = BTPn = o, and so 5 — o0 as
t — oco. This means s; — o by (9.27), when z(t) = 0 and s,(t) = o
in (9.31). Consequently, C AD, in (9.31) is asymptotically stable, and
there exists a positive definite matrix P such that

P(CAD,)+ (CAD,)™P = -I (9.32)



177

Step 3: Finally, the GRA stability of the total system given by (9.28),
(9.29), and (9.31) with the control law derived in Step 1 can be proved
using the result shown by Sontag [116] (See Appendix 9.5). Now let
Ly é ® 3 i) é 89
81
and suppose, using P in (9.32)
.Vg = mngg
From this, one can show that, by differentiating V5 along (9.31), for
each positive constant ¢;, there exists some positive constant ¢y such
that .
Vo £ —[l@| (e —c2) <0
Ve ||€a, Y]z:|Ze (9.33)
Hence by Lemma in Appendix 9.5, (9.33) in addition to the facts of
Steps 1 and 2 implies that the closed loop system given by (9.28),
(9.29), and (9.31) with the control law derived in Step 1 is GRA stable
at (x, s1,82)= (0,0,0). This completes the proof. |
Theorem 9.2 is an extension of the former results [15, 19] in the
sense that the uncertainty of the system is considered. Furthermore
compared to the former robust control methods in the presence of the
matching condition [37, 28, 2], Theorem 9.2 shows that it is possible
that the system with the mismatched uncertainty is globally .and ro-
bustly stabilized, if the input acts on the uncertainty through a strictly
positive real linear system.

Remark 9.3 In the field of adaptive control, there also are some re-
searches (see, e.g., [60, 61]) as an extension of global stabilization of
nonlinear cascaded systems. However the adaptive control methods as-
sume that the parametric uncertainty has a special form, and for ez-
ample, can not treat an uncertainty such as cos(pz), where p is an
unknouwn parameter and z is the state. More detailed comparison to
the adaptive control will be an interesting topic in @ future research. 11
Remark 9.4 We indeed consider a continuous robust stabilizing con-
troller here, but our approach can treat the case of a smooth controller:
it can be obtained by simple modification of the obtained continuous
controller.

Remark 9.5 The local robust exponential stabilization problem is triv-
ial, if we do not request to specify the bound of the stability regiomn.
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This stabilization can be achieved by a robust stabilizing controller for
the linearization of the original nonlinear system. However, the ap-
proach proposed here can be straightforwardly eztended to the local case
(rigorously, semi-global case) where the robust ezponential stability is
achteved on any specified compact set.

Theorem 9.2 also gives the following result for the system S without
the uncertainty.

[Corollary 9.1 ] Assume that any . and &, are given. If, for
the nonlinear system (9.1) which satisfies Af(-) = o and Assumption
9.2, there ezists a C* function k(-) : R" — R' such that

= f(z, kiz)) (9.34)
has a globally asymptotically stable equilibrium ot ¢ = ©. and k(z.) =
£,, then the nonlinear cascaded system S which satisfies Af(-) = o,
and Assumptions 9.2 and 9.3 is globally asymptotically stabilizable at
(x,n) = (xe,m,), where n, £ A"'B(CA™'B)'¢,, via C*™ state feed-
back. |
Proof: Noting the fact that if the system given by (9.34) is globally

asymptotically stable, there exists some Lyapunov function by the Con-
verse Lyapunov Theorem, set Af(-) = o in the proof of Theorem 9.2.

Tsinias [123] and Byrnes [15] have shown that the system
r = f(z,£)
£ = u
is globally asymptotically stabilizable if the system @ = f(z, £) is glob-
ally asymptotically stabilizable when the input is £. On the other hand,
Kokotovic et al. [67, 105] have considered the stabilization problem of
the system

r = f(z§)
n = An+ Bu (9.35)
£ = Cn

as a more general form, and shown that the system is globally asymp-
totically stabilizable, if (i) A is stable and (A, B,C) is positive real,
and (ii) the system £ = f(x, 0) is globally asymptotically stable at the
origin. Moreover, the condition (i) is strengthened in [91, 19]. How-
ever when the condition (ii) is replaced by the condition (ii’) that the
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system ¢ = f(z,§) is globally asymptotically stabilizable provided the
input is &, it is difficult to extend their approach straightforwardly, as
you can easily see from their proof in [67]. Corollary 9.1 shows that, if
the condition (i) is replaced by Assumption 9.3 which is stronger than
(1), the system given by (9.35) is globally asymptotically stabilizable
under the condition (ii’). Therefore Corollary 9.1 is some extension of
the result by Kokotovic et. al. This success is based on the factoriza-
tion of the system such as (9.28) to (9.30) and the full exploitation of
the result by Sontag [116]. However it should be noted that our result
cannot be straightforwardly extended to stabilization problem of the
nonlinear cascaded system whose lower system is nonlinear, which is
treated in [91, 19].

9.4 Robust stabilization for a certain class
of nonlinear cascaded systems

In Theorem 9.2, we have derived the stabilization condition that
there exists a C* function k(z) such that the system (9.26) is LGRE
stable at £ = .. When does such a function k(-) exist? So in this,
section, we discuss this problem for a certain class of nonlinear systems.

Consider the following system whose input satisfies a matching con-
dition for uncertainty. ~

i = F(2) + G(@){€ + AF(=, p)} (9.36)
where z € R" and p € R? are defined in the same way as in the system
S, of section 9.2, and & € R! is regarded as a input. The following
assumptions are made.

[Assumption 9.4 |  F(-): R — R", Af(): R" x R' » R/,
and G(-) : R" — R™ x R' are known functions, which are C* in x for
allp € 2. AT is continuous in p. Further f(z.) = o. |

[Assumption 9.5 ] rank{G(x)} =1, for allz € R", L
Then the following result is obtained.

[Theorem 9.3 ] A nonlinear system (9.36) which satisfies As-
sumptions 9.1, 9.4, and 9.5 is LGRE stabilizable at & = . by an
appropriate C*° state feedback control law § = Tx) with T(z.) = &,,
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if and only if the following conditions are satisfied.
(i) There exists a C*° function k( ): R — R! such that a system

& = f(z) + G()k(z) (9.37)
is LGE stable at z = z..
(i) Af(ze,p) + €, =0, Vpe . I

Proof: Assume, without loss of generality, that . = 0 and £, = o.
First, the necessity is proved. Now one of the elements that belong
to the known set £2 is denoted by p*. Since the closed loop system
by (9.36) and & = 7(z) is LGRE stable, the closed loop system with
p=pis also LGE stable. So the condition (i) is obtained by

k(o) = #(z) + AF(2,p") (9.38)
because T and A f are C*°. Further Assumptions 9.4 and 9.5 and
7(0) = o obviously mean the condition (ii).

Second, the sufficiency is proved. The condition (i) implies that
there exist a C* function V and positive constants &; (i = 1,2,3) such
that

afzP<V(z) < @ | (9.39)
D,V{f(z)+G(a)k(x)} < —d3] 2|’ (9.40)
Assumption 9.4 and the condition (ii) also imply that there exists a
C* function AF such that
Af(z,p) = AF(z,p)x (9.41)
Note that AF is continuous in p from Assumption 9.4.
Now differentiating V along the system (9.36), one gets

V =D,V{F+G(¢ + AFz)) (9.42)
Then considef the following control law:
£ = k(z) - jlz)v (9.43)

where v = @TDJ'T, () : R" — R is a C* function which satisfies,
for a positive constant (< @3),
i 2
a) 2] i{(‘”"? ”
(@3 — &)
The control law given by (9.43) is composed of C*® functions, because
k, G, V,and § g 18 C*. Note also that the control law (9. 43) satisfies
(u) = 0, since k(o) = 0 and D,V7(0) = 0.
Substituting (9.40) and (9.43) into (9.42) and completing the squares,
one can get

Ve e R", Vpef2 (9.44)
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V<-¢||lz||®> VeeR" (9.45)
Egs. (9.39) and (9.45) mean that the system (9.36) is LGRE stabiliz-
able. This completes the proof. |

In Theorem 9.3, the stabilization condition is much simpler, because
the condition about the uncertain part and the condition about the
known part are independently derived. For example, if the known part
is a linear system, that is, f(z) = Az and G(z) = B, where A and
B are constant matrices, the condition (i) of Theorem 9.3 is equivalent
to the condition that (A, B) is stabilizable. Moreover it is important
that Theorem 9.3 gives, where of course the matching condition is satis-
fied, the condition for the robust asymptotic stabilization via C*° state
feedback, because the conventional researches have developed robust
asymptotic stabilization via discontinuous feedback [37] or practical
stabilization via continuous feedback [28, 2].

Now the combination of Theorems 9.2 and 9.3 gives the following
result directly.

[Corollary 9.2 ]  Suppose that the following cascaded system S
consists of the upper system (9.36) with Assumptions 9.1, 9.4, and 9.5,
and the lower system (9.2) and (9.3) with Assumption 9.3.

& = f(z)+G(z){¢+Af(z,p)} (9.36)
7 = An+ Bu (9.2)
£ = Cn (9.3)

A
Then the system S3 is GRA stabilizable at (z,m) = (zc,1.), wheren, =
A"'B(CA™'B)7¢,, via continuous state feedback, if the conditions
(i) and (ii) in Theorem 9.3 are satisfied.

Corollary 9.2 clarifies that, if the input acts on the uncertainty
through a strictly positive real linear system and the uncertainty satis-
fies the condition (ii), the system is globally robust stabilizable under
the condition (i). Note that Corollary 9.2 permits a broader class of
uncertainty than the cone-bounded case, while the conventional results
for global robust stabilization (89, 140, 25, 106] are concerned only with
the case of the cone-bounded uncertainty. Furthermore, the stabiliza-
tion condition in Corollary 9.2 is more practical than that in Theorem

9.2,
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9.5 Conclusion
The main results obtained in this chapter are summarized as follows.

(i) A sufficient condition has been given for global robust stabiliza-
tion of a class of nonlinear cascaded systems with uncertainty,
which does not necessarily satisfy the matching condition. The
obtained result is an extension of the conventional researches
about global stabilization of nonlinear cascade systems without
uncertainty, in the sense that system uncertainty is considered.
The obtained result also clarifies that the system that includes
the uncertainty without the matching condition is globally sta-
bilizable, if the input acts on the uncertainty through a strictly
positive real linear system.

(i1) A sufficient condition for global stabilization of a class of nonlinear
cascaded system without uncertainty has been derived, which is
stronger than the previous existing results and can be applied to
a more large class of nonlinear systems.

(iii) For a specified class of the systems, a more practical condition for
global robust stabilization has been derived.

Appendix

Lemma by Sontag: For the readers’ convenience, we show the result
obtained by Sontag [116]
[Lemma]  Consider a nonlinear cascaded system
z1 = filz) (9.A1)
Lo = foz), o) (9.A2)
where ©; € R™ and z» € R™ are state vectors. Then this nonlinear
cascaded system has a globally asymptotically stable equilibrium at
(z,22) = (0, 0), if the following three conditions are satisfied.
(i) A subsystem given by (9.A1) has a globally asymptotically stable
equilibrium at z; = o.
(ii) A subsystem @, = f,(0,x2) has a globally asymptotically stable
equilibrium at x; = o.
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(iii)  For each positive constant ¢;, there exists a positive constant ¢z,
and a positive definite and radically unbounded function V(-) : R* —

R such that o
V(zs) = ‘éﬁfz(iﬂl,&‘z) <0
2

for Y|z ||<ea, Yl@lZe (9.A3)
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Chapter 10

CONCLUDING REMARKS

In this paper, robust control problems of nonlinear systems includ-
ing robot manipulators have been investigated from the viewpoint of
Lyapunov-based approach and H.-type approach. In chapters 2 to
6, some new results on the robust trajectory control of robot manip-
ulators have been given, from the practical viewpoint, based on the
Lyapunov-based approach. In chapters 7 to 9, fundamental problems
on nonlinear H,, control theory and (global) robust stabilization have
been discussed and some new and useful results have been derived.

In chapter 2, a new robust trajectory control scheme of robot manip-
ulators with uncertainty has been proposed, which is almost as simple
as that of the dynamic control method, and has a less conservative eval-
uation in determining the feedback gain, fully exploiting the effective
expression of the dynamics of the robot manipulator. Based on the
above robust control, a new adaptive robust trajectory control scheme
of robot manipulators with uncertainty has been proposed, in addition
to the above merits, where the tracking precision is explicitly specified
and, as a result, it is possible to evaluate if the feedback gain is small
enough for the specified tracking precision. By an experiment of the
trajectory control of a 2 link DD arm, it has been verified that the
feedback gain of the adaptive robust control method is much smaller
than that of the robust control method, and is almost necessary and
minimum for the specified tracking precision.

In chapter 3, it has first been pointed out that the conventional
acceleration feedback system compensates for the uncertainty by high

185
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gain feedback essentially, and the use of acceleration feedback gain ma-
trix which is diagonal reduces a multivariable control problem to a
decoupled control problem. Second, the disadvantages of the conven-
tional acceleration feedback methods have been clarified. Finally, a
robust tracking control methods using acceleration information for a
robot manipulator with uncertainties has been proposed, where the ac-
celeration information is fully exploited and the disadvantages of the
conventional control methods are overcome.

In chapter 4, a robust control problem of robot manipulators where
joint torque sensor information is available has been discussed. First,
a dynamic equation of the manipulator with joint torque sensors has
been derived, which expresses explicitly the multivariable structure.
As a result, the proposed dynamic equation clarifies that the robust
control system of the manipulator with joint torque semsors can be
designed as in the same way as the case of the manipulator without
joint torque sensors. It has also been shown that the proposed dynamie
equation is effective for the design of the robust control system against
the uncertainty of the motor system. The proposed robust control
method achieves the specified tracking precision in the presence of the
modeling error.

In chapter 5, the relation between a feedback gain and a control error
for a given sampling period has been clarified in the digital control of
robot manipulators, by deriving some kind of discrete-time description
of nonlinear systems. Based on the above analysis, a new digital robust
control scheme of robot manipulators has been proposed, which gives a
systematic design procedure to find a feedback gain so as to achieve the
specified tracking precision for a given sampling period. A weighting
function for a feedback gain has also been proposed in order to decrease
the chattering.

In chapter 6, a hierarchical robust control method of robot manip-
ulators has been proposed. A hierarchical control system makes the
sampling period to generate a robust compensator much smaller than
that of the non-hierarchical case. By assuming a control signal in the
lower level loop is continuous on time, the effect of the uncertainty on
the control error is theoretically analyzed. In addition, the part which
cannot be linearized due to the computation time lag is theoretically
compensated by the robust controller.
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In chapter 7, a new approach for nonlinear H, control theory has
been given, which does not depend on the Linearization or the linear
H  control techniques. First, some strict bounded real conditions of
nonlinear systems have been characterized via two approaches: One
is based on the Hamilton-Jacobi equation with a stabilizing solution
and another is based on the Hamilton-Jacobi strict inequality. The
former has an important role to analyze the internal stability of non-
linear systems, and the latter has an advantage that it can simply be
applied to the strict H ., control problem. Both will form a useful
foundation to develop the strict H, control theory of nonlinear sys-
tems. The obtained results completely include the strict bounded real
lemma of linear systems, and are also stronger and applicable to more
general nonlinear systems, compared with the former results. Based on
the above results, several sufficient (and necessary) conditions for the
solvability of the strict H, state feedback control problem have been
derived. In addition, a necessary condition for the solvability of the
strict H , output feedback control problem has been given and it has
also been shown that the obtained necessary condition is sufficient in
the case of exponential stability.

In chapter 8, a robust stability condition has been given for non-
linear systems with unstructured uncertainty. Furthermore, a robust
stabilizability condition has been derived in terms of the solvability of
some partial differential equation and a robust stabilizing controller has
been given, which is based on the nonlinear H , state feedback control
theory developed in chapter 7. The obtained approach in the robust
stabilization problem with unstructured uncertainty allows us to treat
various types of stability, i.e. asymptotic stability, exponential stability,
and global exponential stability, in a unified way.

In chapter 9, a sufficient condition has been given for global ro-
bust stabilization of a class of nonlinear cascaded systems with uncer-
tainty, which does not necessarily satisfy the matching condition. The
obtained result is an extension of the conventional researches about
global stabilization of nonlinear cascaded systems without uncertainty,
in the sense that system uncertainty is considered. The obtained re-
sult also clarifies that the system that includes the uncertainty without
the matching condition is globally stabilizable, if the input acts on the
uncertainty through a strictly positive real linear system. A sufficient
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condition for global stabilization of a class of nonlinear cascaded system
without uncertainty has been derived, which is stronger than the previ-
ous existing results and can be applied to a more large class of nonlinear
systems. For a specified class of the systems, a more practical condition
for global robust stabilization has been derived.

Robust control of nonlinear systems is one of attractive and impor-
tant control problems. However there are many open problems in this
field. Most of the results obtained in this paper are for basic problems
in this field. We will need to work more deeply and widely to establish
a systematic robust control design method of nonlinear systems. The
author believes that the results obtained here will contribute to the
development of this field.
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