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ABSTRACT

     Atom arrangements in  III-V alloy semiconductors are theoreti-

cally investigated and analyzed by a thermodynamic approach. For 

ternary alloys, e.g., In1 -xGaxAs and quaternary alloys of (ABC)D 
type, e.g., In1 -x-yGaxAlyAs, the bond strain energy is considered 

as a dominant interaction among constituent compounds. In these 

alloys, atoms of different sizes tend to be neighbours, but neigh-

bour pairs of similar size atoms are not favorable. This indi-

cates the preference for unlike-neighbour-pair for the ternary al-

loys, but not necessarily for the quaternary alloys of (ABC)D type. 

     For quaternary alloys of (AB)(CD) type, e.g., In1 -xGaxAs1-yPy, 
the cohesive energy change depending on the relative numbers of 

bonds is considered in addition to the strain energy. When the 

heavier group V atom is assigned to CV, In-DVand Ga-CV bonds 

increase in InGaCVDV, and Ga-CVand Al-DVbonds increase in 
V V1-xx1-yy G

a1 -xAlxC1-yDy at the thermal equilibrium states compared with the 

case of random atom arrangement. The bond statistics are nearly 

equal to those of the random case for In1 -xAlxCV1-yDVy. 
     For calculating the strain energy, bond lengths and angles 

must be known. In the analysis, strain of each bond is calculated 

in all types of tetrahedron cells. By taking weighted average, 

the average bond lengths are obtained, and their relation with the 

atom arrangement is discussed. The results agree fairly well with 

data from extended-X-ray-absorption fine-structure measurements. 

     The influences of atom arrangement are studied for some mate-

rial properties. It is shown for ternary alloys that the alloy 

scattering mobility and the hardness are influenced by the nonran-

domness in the atom arrangement. The stability of superlattices 

is also studied. The monolayer structure on (100) or (110) sur-

face can be stable, but other structures are not stable at any 

temperature.
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I. INTRODUCTION  

     This study deals with solid solutions of semiconductors which 

have zincblende structure with group III and group V sublattices 

and are composed of more than two kinds of elements, i.e., one or 

more of Al, Ga, and In and one or more of P, As, and Sb. Exam-

ples are Al1-xGaxAs, In1-xGaxAs1-yPy,and In1-x-yGaxAlyAs. Al- 

though they can be called  "III-V solid solutions" or "III-V mixed 

crystals", they are referred to as "III-V alloy semiconductors" or 

more simply "III-V alloys" in this study. 

     According to the number of constituent elements, III-V alloys 

are classified into the following groups: i) ternary or pseudo-

binary alloys, e.g., All -xGaxAs and GaAs1-xPx, ii) quaternary or 

pseudoternary alloys, e.g., In1-x-yGaxAlyAs and GaSbl-x-yAsxPy, 

iii) quaternary alloys composed of two group III and two group V 

elements, e.g., In1 -xGaxAs1-yPy, iv) pentanary alloys, e.g., 

In1 -x-yGaxAlyAs1-zPz, and v) alloy composed of six elements, i.e., 

                             The groups iv) and v) are not dealed In1-x-yGaxAlySb1-z-wAszPw. 

with here, since they have not been widely used for devices so far 

and one is able to know to some extent the results for them from 

those for other types of alloys. Through this study, the group 

i) is referred to as ternary alloys, ii) quaternary alloys of 

(ABC)D type, and iii) quaternary alloys of (AB)(CD) type. 

     Their importance comes from the flexibility to design mate-

rial properties. Under the condition of stoichiometry, the rela-

tive content of two (or more) kinds of group III or V atoms, i.e., 

the composition of alloys, can be varied continuously, at least in 

the composition range outside of miscibility gap, and consequently 

the material properties can be changed.)) Then, for example, one 

can get the alloy for radiation of a required wavelength by de-

signing the energy band gap. Most of advanced semiconductor 

technology would not have been evolved without this designability 

of alloy semiconductors. For example, semiconductor lasers had
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not been developed without double  heterostructure of a good quali-

ty, which cannot be easily constructed by any semiconductor except 

for alloy semiconductors.2) 

     At present, material properties of many III-V alloys have 

become known by necessity in device applications.3) However, 

understanding of their properties seems still empirical and phe-

nomenological. In general, properties of an alloy are much 

harder to understand than those of an element or a compound semi-

conductor. The band structure would be a good example. At 

present, very sophisticated methods have been developed for calcu-

lating band structures.4) However, they cannot be directly 

applied to alloys because of the lack of periodicity in the atom 

arrangement: composition disorder exists in alloy semiconductors. 

In addition, microscopic structural disorder, e.g., change in the 

nearest-neighbour distances, also influences band structure.5-7) 

These disorders make it difficult to understand or predict not 

only band structure but also other properties, e.g., electrical, 

elastic, and thermodynamic properties. Thus, so far, properties 

of alloys have been understood on the basis of various approxima-

tions or macroscopic models. 

     The simplest model of an alloy is the virtual crystal approx-

imation, VCA. This model assumes an atom with properties linear-

ly varying with the composition of an alloy. For example, each 

of the group III lattice sites in In1 -xGaxAs alloy is assumed to 

be occupied by such hypothetical atom. The crystal structure is 

assumed to be an undistorted zincblende lattice. It is an useful 

model: some material parameters, e.g., lattice constant, depend 

linearly on the composition, i.e., follow the Vegard law, and such 

linear dependence on composition could be understood on the basis 

of VCA. However, VCA is obviously insufficient; especially, ran-

domness in the atom arrangement is not considered in the model, 

and thus, for example, alloy scattering of carriers cannot be 

explained by VCA. In addition, the results of recent extended-

                                          -2-



X-ray-absorption fine-structure measurements show that the  III-V 

ternary and quaternary alloy crystals largely deviate from the 

structure of VCA.8-11) VCA is sometimes used by considering 

nonlinear variation of atom properties with composition. 

However, so long as the hypothetical atom is assumed, the model 

has the same shortcomings as mentioned above. 

     Next, as more advanced models, an ordered alloy model and a 

completely random alloy model can be considered. In the ordered 

alloy model, the atom arrangement is assumed to be perfectly or-

dered, and only a single type of unit cell is considered.5,12-15) 

Then, analyses become very easy owing to periodicity. By 

simulating the alloy of a certain composition by such ordered 

alloy, one can discuss some phenomena peculiar to alloys, e.g., 

lattice relaxation. The analysis described in Subsec. 5-3-1 in 

this study is based on the ordered alloy model. However, such 

approach is not realistic because the atom arrangement of III-V 

alloys is, at least somewhat, random. 

     The random alloy model, where alloy atoms are assumed to be 

distributed completely at random, has been extensively used. For 

example, most of the calculations of alloy scattering mobility are 

based on the assumption of completely random arrangement of 

atoms.16) The coherent potential approximation, which is used 

for calculating electronic or phonon properties of alloys, is 

usually based on the assumption of random atom arrangement.17) 

The regular or simple solution model used in thermodynamic analy-

ses is also a random alloy model.18) These calculations seem 

very successful in phenomenological understanding of alloy proper-

ties. However, the assumption of random arrangement has not been 

verified, yet. In addition, ordered arrangement was recently 

observed by transmission electron microscope in some III-V ternary 

alloys, e.g., InGaAs,19-21) Al Ga Asand and GaAs Sb23)•       1-xx1-x x1-x x 

Thus, the assumption of random atom arrangement should be 

reconsidered.
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     For a more realistic picture of  III-V alloys, one must take 

into account the fact that the atom arrangement is neither com-

pletely random nor perfectly ordered. First of all, it is neces-

sary to determine the atom arrangement or degree of order, and 

then, on the basis of the results, various properties will become 

possible to discuss, such as alloy scattering mobility, and energy 

band gap. 

     Atom arrangement has been extensively investigated for metal 

alloys: nonrandomness in the arrangement has been observed by, for 

example, X-ray scattering measurement,24) and many calculations 

have been carried out on the basis of thermodynamic theories.25) 

However, there are only few studies for atom arrangement in III-V 

alloys,26-31) in spite of the fact that they are no less important 

than those for metal alloys. 

     The basis of analyses for III-V alloys will be different from 

that for metal alloys, since III-V compounds are constructed by 

covalent bondings,32,33) quite different from metallic cohesion. 

In Chap. II, basic consideration is given for energetical inter-

actions in III-V alloys. Atom arrangement and bond lengths are 

quantitatively discussed in Chap. III, IV, and V for III-V 

ternary, quaternary of (ABC)D, and quaternary alloys of (AB)(CD) 

type, respectively. The bond length is closely related to atom 

arrangement, because bond strain energy is a dominant portion of 

energetical interaction in most III-V alloys, as being shown in 

Chap. II. In Chap. VI, influences of atom arrangement on mate-

rial properties are discussed, and the importance of investigating 

atom arrangement is described. Finally, conclusions and sugges-

tions for possible extensions of the study are given in Chap. VII. 
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II. ENERGETICAL INTERACTIONS IN  III-V ALLOY SEMICONDUCTORS

2-1. INTRODUCTION 

     In thermodynamic analysis, i) calculation of enthalpy and ii) 

calculation of entropy are generally required. For solid phases, 

enthalpy is usually assumed to correspond to internal energy. 

Total enthalpy H can be formally expressed by 

     H = H
o+ Hm,(2-1) 

where H
o is the part varying linearly with composition and Hm the 

excess part, i.e., mixing enthalpy. Since H
0is uniquely deter- 

mined from composition and independent of atom arrangement, the 

atom arrangement is not influenced by Ho. The Hm is caused by 

interaction among constituent elements in an alloy and influenced 

by the atom arrangement. It also affects other thermodynamic 

properties, e.g., range of miscibility gap. In this chapter, the 

basis for calculating Hm is given. 

2-2. SECOND-NEAREST-NEIGHBOUR INTERACTION AND STRAIN ENERGY 

     In this section, a model previously used is critically re-

viewed, and the importance of strain energy is described. 

     The pairwise interaction model (PIM) has been widely used in 

thermodynamic analysis of metal alloys.l) According to PIM, the 

enthalpy H of an alloy Al -xBx is expressed by 

          H = nAAhAA+nBBhBB+nABhAB(2-2) 

where n denotes the number of p-q pair and h the enthalpy due  PqPq 

to cohesion of p-q pair. Here, h
pqhas been considered inde- 

pendent of composition x in the PIM. 

     The PIM has been also applied to III-V alloys not only for
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phenomenological description of thermodynamic  behavior2-4), but 

also for discussing atom arrangement.5,6) 

     First, PIM is reviewed and criticized for III-V ternary 

alloys. The number of nearest-neighbour pairs in a III-V ternary 

alloy is uniquely determined from atomic composition and varies 

linearly with composition; for example, the relative numbers of 

In-As and Ga-As pairs are 1-x and x, respectively for In1-xGaxAs 

alloy. Thus, the nearest-neighbour interaction does not contrib-

ute to the mixing enthalpy Hm. On the other hand, it is known 
that Hm is non-zero (positive) for most III-V ternary alloys.) 
Accoring to PIM, the origin of H is the interaction between the 

second-nearest-neighbour atoms.2,W) Then, the fact that Hm>0 

indicates 

      hAB>2(hAA+hBB)(2-3) 

Here, a larger negative h implies that the stability of the pair 

is increased, since h is enthalpy. Thus, Eq.(2-3) indicates that 

A-B pair is unstable compared with like-pairs A-A and B-B. Then, 

increase of like-pair or clustering of like atoms becomes able to 

occur.5) 

     However, it has not verified that the second nearest-neigh-

bour interaction is dominant in III-V alloys: cohesion of III-V 

compounds is mostly due to covalent bonding between the nearest-

neighbour atoms,8) and the second nearest-neighbour interaction is 

expected to have only minor effect. Moreover, it is considered 

inappropriate to neglect the change in the nearest-neighbour 

interaction energy.9) It will be easy to see that lengths or 

angles of bonds must deviate from their original values when com-

pounds with different lattice constants are mixed and constitute a 

single crystal of an alloy. Besides, the change in bond length 

is confirmed by extended X-ray absorption fine-structure measure-

ment.10-13) The length or angle deviation causes a change in the 

cohesive energy of bonds. Such energy change is known as strain
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energy and has been calculated by some researchers.14-19) All of 

their calculations show that the strain energy is comparable to 

the mixing enthalpy detemined from thermodynamic experiments. 

Thus, a theory which does not take strain energy into account is 

not appropriate for  III-V alloys. According to a recent pseudo-

potential calculation, the participation of strain energy to Hm is 

more than one order greater than those of other energies.19) 

This also indicates that PIM is not appropriate for III-V alloys. 

     Strain energy is very small in A11 -xGaxCV (CV=P, As, Sb) 

since the lattice constants of their constituent compounds are 

almost equal, and then PIM could be valid for these alloys. How-

ever, their Hm's are known to be very small,) i.e., the second 
nearest-neighbour interaction energy would be still negligible. 

PIM has been applied to quaternary alloys, too.6) However, 

the strain energy in quaternary alloys is also shown to be no less 

than H
m determined experimentally.20) The domination of strain 

energy is attributed to covalent character of bonding and thus 

would hold for most III-V alloys. Thus, PIM is not adopted in 

this study. 

2-2. VALENCE-FORCE-FIELD MODEL 

     The strain energy is an energy change accompanying changes in 

atomic spacings: it would involve not only a change in the near-

est-neighbour interaction (bond) but also changes in other inter-

actions. However, for covalent bonding crystals where the near-

est-neighbour interaction is dominant, an elastic model based on 

the nearest interaction has been developed. This model is called 

the valence-force-field (VFF) model and successfully applied to 

element and compound semiconductors.21) In this work, the VFF 

model developed by Martin22) is adopted; it is extended from the 

model by Keating23) and applicable to zincblende structure crys-

tals. In this model, strain energy, c, involved in a crystal is 

                                          -9-



calculated in terms of bond length deviations and bond angle 

distortions:22,23) 

      13 [o(d1•d1)]21C3[o(d~•dk)]2   e=2L-4a --------------- j02j+ 2/G—ko-----------------o , (2-4) 
    jdjs j,kdjdk 

where s=1 and 2 denote group III and group V atoms, respectively. 

The bonds around each atom are denotedby j,k=1...4, and ds and dk 
are the bond vectors around s atom. dis the equilibrium length 

                                 j 
of bond j. ajis the force constant of length distortion of bond 

j, and 13jk the force constant of angle distortion between bond j 

and k. 

     The elastic constants a and 13 of III-V compounds are listed 

in Table 2-I with equilibrium length of each bond.22) Although 

elastic constants of AlAs and AlP are not known, they are assumed 

to be the same as those of GaAs and GaP, respectively; there is a 

linear relation between elastic and lattice constants of III-V 

compounds,24) and lattice constants of AlAs and AlP are almost 

equal to those of GaAs and GaP, respectively. 

     Elastic constants of a certain bond in an alloy would be dif-

ferent from those of the corresponding pure compound. However,

MATERIALd a S 
          (A) (103 dyn/cm) 

AlP 

AlAs 

AlSb 

GaP 

GaAs 

GaSb 

InP 

InAs 

InSb

2.365 

2.451 

2.657 

2.360 

2.448 

2.640 

2.541 

2.623 

2.806

(47.32) 

(41.19) 

35.35 

47.32 

41.19 

33.16 

43.04 

35.18 

29.61

(10.44) 

(8.95) 

 6.77 

10.44 

 8.95 

  7.22 

 6.24 

 5.50 

 4.77

Table 2-I. Bond length d, 

 length distortion elastic 

 constant a, and angle dis-

 tortion elastic constant 0 

 for nine III-V binary 

 compounds.22)
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they can be approximated equal, since the elastic model used in 

this study is based on the nearest interaction and does not take 

the influence from the second-nearest interaction. 

     The values of elastic constants listed in Table 2-I are those 

at room temperature (RT). The temperature dependence is ne-

glected in the analyses because it is not known except for a few 

compounds. For GaAs, the elastic constants at 800 K are smaller 

by about 10  % than those at RT. Thus, the neglect of the temper-

ature dependence will lead to slight overestimation of strain en-

ergy at temperatures higher than RT. The temperature dependence 

of bond length is also neglected in the analyses. If the thermal 

expansion coefficient is equal for all constituent compounds, the 

neglect of thermal expansion does not cause any influencial error 

in estimating strain energy. In fact, there is a difference in 

thermal expansion coefficients, but it is very small (less than 

 2x10-6 1/K). Thus, it can be safely neglected. 

2-3. LATTICE RELAXATION 

     In order to calculate the bond strain energy by the VFF 

model, one need know lengths and angles of bonds. The simplest 

approach is based on the assumption that the lengths of bonds are 

all equal to the length of the virtual crystal approximation 

(VCA), and bond angles are undistorted. However, the resultant 

strain energy becomes about four times greater than experimentally 

determined mixing enthalpy.15) The results of the recent EXAFS 

measurements show that the bond length in an alloy tends to pre-

serve that in the corresponding binary compound.10-13) Thus, the 

above assumption is not a good approximation for bonds in III-V 

alloys: the lattice relaxes for the reduction in the strain energy 

of bonds. According to a approach based on the VFF model, the 

lattice relaxation occurs for equilibrium of length change and 

angle distortions,17) and the angles are largely distorted com-
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pared with lengths, since the elastic constant of angle distortion 

 13 is smaller than that of length deviation a, as can be seen from 

Table 2-I. 

     In this study, the lattice relaxation is taken into account 

in calculating the strain energy on the basis of the VFF model. 

However, some assumptions are made, i.e., the relaxation is 

considered under a certain restriction so that the thermodynamic 

analysis can be carried out analytically. Different assumption 

is made for a different type of alloy, as will be described in 

later chapters. 

2-4. LATTICE COHERENCY 

     In estimating the strain energy, it is assumed that lattice 

coherency is retained in a whole crystal. This assumption is 

crucial for the discussion about the effect of the strain energy. 

In order to explain this, the following two cases are considered 

here. 

     In the first case, a ternary alloy crystal of composition 

 x=0.5 is assumed to decompose into two separate crystals of con-

stiuent binary compounds, apart from each other. Here, the 

ternary alloy is assumed to have considerable strain energy due to 

difference in lattice constant between two constituent compounds. 

After the decomposition, the total strain energy becomes null, 

since a binary compound crystal has no strain. It should be 

noted that in this case the lattice constants of the binary com-

pound crystals are their own equilibrium values. In the second 

case, a small crystal (N atom cluster) of the constituent compound 

is considered to be inserted to a space for N atoms in a large 

crystal of x=0.5. If they are bonded at the interface, the small 

crystals are distorted by the surrounding alloy crystal because of 

lattice mismatch between the alloy and the compound. Then, the 

strain energy per unit volume of the small crystal is no longer 
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null and will be even larger than that of the alloy of  x=0.5. 

     From the first case, one could conclude that a cluster of bi-

nary compound is energetically preferable to a uniform alloy, but 

from the second case one could conclude it is not. This differ-

ence arises from the fact that lattice coherency is not retained 

in the first case but in the second case: the strain energy acts 

on the atom arrangement differently depending on whether the lat-

tice coherency is retained or not. 

     The next problem is under what condition the lattice coher-

ency is broken. Strained-layer superlattice (SLS) is illustra-

tive of this point. SLS is a periodic multilayer structure 

composed of two (or more) crystals with different lattice con-

stants.25) If each layer is sufficiently thick, dislocations 

generate at the interfaces, and the stress due to misfit between 

layers is relaxed.25) Although dislocation itself causes some 

strain, it exists only in vicinity of each interface and the rest 

of the crystal becomes strain-free. However, on the contrary, if 

each layer is sufficiently thin, the generation of dislocations is 

no more preferable: the strain-free region diminishes, and the 

strain energy caused by dislocations overcomes the reduction in 

the misfit strain energy.25) Then, each layer becomes disloca-

tion-free and is strained coherently. These facts can be gener-

alized as follows. Suppose two or more regions with different 

lattice constants coexist in a crystal. If the size of each 

region is sufficiently large, the lattice coherency will be neces-

sarily broken. If not, it can be retained. A conventional 

thermodynamic theory of phase separation neglects the strain 

caused by coexistence of two or more different composition re-

gions:26) it is assumed that the lattice constants of the regions 

are independent, determined by their respective compositions. 

This approach is appropriate for macroscopic separation where the 

lattice coherency is not retained. On the other hand, it is 

necessary to take into account the lattice coherency for single 
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phase crystals, i.e., crystals without macroscopic composition 

fluctuation. The coherency will be retained almost completely 

for a high quality crystal used for devices or a layer epitaxially 

grown on a certain substrate: the lattice constant averaged within 

a certain volume scarcely deviates from the value determined from 

the global composition. The purpose of this study is to discuss 

microscopic arrangement of atoms in a single phase alloy, and thus 

the lattice coherency is assumed to be completely retained. 
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III. ATOM ARRANGEMENT IN TERNARY ALLOY SEMICONDUCTORS

 3-1. INTRODUCTION 

      Composition of a  III-V ternary alloy semiconductor is ex-

pressed by a single variable x, as in In1 -xGaxAs: this type of 
alloy is often referred to as a pseudobinary or quasibinary alloy. 

The composition x is usually chosen so that the alloy has required 

energy band gap, or so that its lattice constant is equal to that 

of a certain binary compound, i.e., the alloy is lattice-matched 

to a certain substrate. For example, x of GaAs
1-xPx used for 

light-emitting diodes is selected so as to obtain radiation with 

required photon energy,1) and x of In
1-xGaxAs is usually 0.47 for                                    ) 

lattice-matching when it is grown on an InP substrate .2 

      In this chapter, the atom arrangement and the bond lengths 

are discussed on the basis of a thermodynanic analysis for III-V 

ternary alloy semiconductors. The bond length is closely related 

to the atom arrangement: As described in the last chapter , the 
bond strain energy is the dominant portion of the mixing enthalpy 

for most III-V ternary alloys. Then, nonrandomness is induced in 

the atom arrangement for reduction in the strain energy (mixing 

enthalpy): the strain energy causes nonrandomness in the atom 

arrangement. Conversely, it means that the strain of bonds is 

expected to be reduced by the nonrandomness on an average . Thus, 

in this work, the bond length is calculated by considering the 

nonrandomness. 

     There are 18 different III-V ternary alloys , and they can be 
classified into following two groups according to the group of 

                  III mixed 
elements: A1-xBxCVand CIIIAV1-xBVx, where superscripts III     1-xx 

and V represent group III and group V elements , respectively. 
The analysis is applied to all 18 ternary alloys , and the results 
show that there is a preference for short-range order in most of 

them. 
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3-2. STATISTICS OF TETRAHEDRON CELLS 

3-2-1. Formalism of Free Energy 

A. Basic figure and entropy 

     In a thermodynamic analysis, a free energy is calculated as a 

function of the numbers of basic figures, and then the most prob-

able set of their relative numbers is determined. In general, 

the enthalpy can be estimated more accurately as a larger basic 

figure is adopted. However, estimation of the entropy becomes 

more difficult for a larger basic figure. Here, a tetrahedron 

cell shown in Fig. 3-1 is chosen as a basic figure: the lattice 

relaxation can be taken into  account,3) and the entropy can be 

explicitly expressed as a function of the relative numbers of 

them, as shown in this section. 

     In this approach, all of nearest-neighbour bonds are con-

sidered for calculating the strain of a certain bond.4) In a 

zincblende structure, there are six nearest-neighbour bonds to a 

certain bond. Three of them share a group III atom and the other 

three share a group V atom. Then, for example, three of the 

nearest neighbours of an A-C bond in AIIIBIIICV alloy are all A-C                                              1-x x 

bonds: they share the A atom with each other. The other three 

nearest bonds, which share the C atom, are not uniquely deter-

mined: they constitute one of five tetrahedra shown in Fig. 3-1. 

/1A/ ---- 
CiCC 

A------/ A----/ A------ 
TYPEO TYPE1TYPE2  

B------B----- 

----- B/Fig.3-1 Tetrahedron cells in a 
'Cternary alloy se

miconductor 

~BAIIIBIIICV or CIIIAVBV. A---------B'1-x x1-x 
 TYPE 3 TYPE 4
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Thus, types of the tetrahedra shown in Fig. 3-1 involve what the 

nearest bonds  are.4) 

     In calculating entropy as a function of the numbers of tetra-

hedra, one should note the fact that tetrahedra is not independent 

entities: Each atom is shared by four tetrahedra and it is impos-

sible, for example, that type-0 and -4 cells be neighbours. In 

order to obtain an approximate entropy, the method developed by 

Kikuchi is adopted.5) Number of type-i cell is expressed by 

Ngigi, where qi is the probability of appearance of a certain con-

figuration of type-i cell and gi is the degenerecy factor, i.e., 

the number of different configuration having the same cell compo-

sition and given by the combination value of 4Ci. Since qi's are 

relative numbers, 

g.q. = 1(3-1) 

They are related to the composition of B atom, x, as 

         4gigi= x .(3-2) 

     The entropy of the face-centered cubic (fcc) lattice was de-

rived by Kikuchi5), but the entropy of a ternary zincblende alloy 

is not the same as that of the fcc lattice. In the zincblende 

structure, there are two kinds of tetrahedra: one includes an atom 

of the other group at the central position, and thus four nearest-

neighbour pairs (bonds) and six second-nearest pairs (nearest 

cation-cation or anion-anion pairs) exist, as shown in Fig. 3-1. 

The other kind of tetrahedron does not include any bonds and 

constitutes a tetrahedral interstitial site. Since only the 

nearest-neighbour interaction is taken into the analysis, the 

distribution of the latter tetrahedron can be excluded when we 

consider the entropy of ternary alloys. Applying the procedures) 

to derive the entropy to ternary zincblende alloys,6) one obtains
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      S = kBN  [3{xlnx +(1-x)ln(1-x)}-Igigiingi],(3-3) 

where, x denotes the composition of B atom, kB is the Boltzmann 

constant, and N the number of atoms in the mixed sublattice. S 

becomes maximum when atoms are distributed completely at random, 

i.e., q=x1(1-x)4-i. Then, Eq.(3-3) is reduced to 

         S = -kBN[xlnx + (1-x)ln(1-x)] (3-4) 

This is the entropy of the regular solution model.) 

B. Enthalpy: strain energy 

     For ternary alloys, it is assumed that the mixing enthalpy is 

the bond strain energy: The relative numbers of bonds are uniquely 

determined from atomic composition and does not depend on atom 

arrangement, and thus the strain energy, i.e., the change in cohe-

sive energy of bonds is considered to be a dominant factor deter-

mining the atom arrangement. 

     In calculating the strain energy for each tetrahedron cell, 

the following assumption is made: 

• The mixed sublattice , e.g., the group III sublattice in 

In1 -xGaxAs remains an undistored fcc lattice, whereas the sub-

lattice of the common element is distorted. 

This assumption is supported by experimental data from extended-

X-ray-absorption fine-structure (EXAFS) measurement which show 

that the nearest cation-cation distances in In1 -xGaxAs are rather 

close to the values of the virtual crystal approximation (VCA).8) 

It can be understood from the fact that an atom on the mixed sub-

lattice is surrounded by four identical atoms, whereas the common 

element atom is surrounded by two different kinds of atoms. 

Thus, atoms on the mixed sublattice tend to remain at the central 

position among four identical atoms as in a binary compound;
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however the common element atoms shift their position, because the 

symmetry is broken around them (see also Subsec. 5-3-1). 

     Because of this assumption, the strain in various types of 

tetrahedra can be calculated independent of what are the neigh-

bours: the size of each cell is all equal, determined from the 

global composition or by VCA. However, in reality, their sizes 

will depend on surrounding local environments, i.e., the mixed 

sublattice will also deviate from an undistorted fcc lattice. 

The error caused by the assumption will be discussed in Sec. 3-4. 

     In calculating the strain energy of a cell, the position of 

the C atom is found numerically so that the cell strain energy 

becomes minimum. The lengths of the four bonds within it are 

simultaneously determined and used for calculating average bond 

lengths, as will be described in the next section. The Vegard 

law is assumed for lattice constant of alloys: the VCA atomic 

spacings vary linearly with composition. 

     The total strain energy is expressed by 

       Hm=  X gig.Ci ,(3-5) 

where Ei is the strain energy of type-i cell. 

C. Free energy and equilibrium State 

     The mixing free energy, F
m, is given by Fm=Hm-TS where Hm is 

the mixing enthalpy and T is the absolute temperature. From Eqs. 

(3-3) and (3-5), Fm is obtained as 

Fm= NXgigici- NkBT[3{xlnx +(1-x)ln(1-x)}-gigiingi] . (3-6) 

The values of qi's at the thermal equilibrium state are obtained 

from the condition for a minimum free energy: 

      LaqiS4i= 0,(3-7) 
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 gidgi= 0 ,(3-8) 

i 
4gidgi= 0•(3-9) 

     The second and the third equations are the derivatives of 

Eqs. (3-1) and (3-2), respectively. The conditions are rewritten 

by using the Lagrange multipliers, ~1 and A2, as 

           aF 
            8q,+11g.+ A24gi=0 (1=0.14),(3-10) 

The equilibrium values, q°.'s, can be calculated with the condi-

tions of Eqs. (3-1) and (3-2). They are 

    o4-i-14-i 
     q= c niA(c =LginiA) , (3-11) 

where ni=exp(-Ei/kBT), and A is exp(-X1/4kBT) and satisfies the 
equation: 

(1-x)n0A4+(3-4x)n1A3+(3-6x)n2A2+(1-4x)n3A-xn4=0 . (3-12) 

     For expressing the degree of the short-range order quantita-
tively, the short-range order parameter, a, is used; it is defined 
as9) 

= 1 -PAB(3-13)                ax 

where PAB is the probability that a B atom occupies the second-

nearest neighbour site of an A atom. The second-nearest pair in 

the zincblende structure corresponds to the first-nearest pair on 

the fcc sublattice; the order parameter which has been used for a 

binary alloy A
xB1-x can be applied to the mixed fcc sublattice of                                                  III

a zincblende structure of ternary alloy A
xIIB1-xCVor CIIIAxB1-x' 

The values of a is negative when atoms tend to order, i.e., there 

is a preference for unlike second-nearest neighbour pair, whereas
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it becomes positive when like atoms tend to cluster. 

   The order parameter is used in calculating alloy scattering 

mobility as being described in Chap. VI. It can be used for 

comparison with experimental data of the X-ray diffuse scattering 

measurement, since the experimental results are usually expressed 

in terms of the short-range order  parameters.9) 

     The relation between a and qi's can be obtained by counting 

the number of A-B pairs in each tetrahedron: 

          (q1+2q2+q3)(3-14) 
Q = 1 - ----------------x(1-x) 

     It can be proved by considering the number of A-B pairs in 

the tetrahedra that the lower limit of a is -1/3 for ternary 

zincblende alloys. 

3-2-2. Numerical Results 

A. Strain energy of tetrahedron cell 

     The strain energies of five types of tetrahedron cells are 

shown in Fig. 3-2 and 3-3 for 18 III-V ternary alloy semicon-

ductors. The composition dependence of the strain energy of a 

certain type of cell has almost the same features for all of 18 

kinds of alloys, although the amount of the energy is quite 

different among alloys. At a given global or average composi-

tion, the strain energy is minimum for the cell whose composition 

is closest to the average composition. For example, in 

In1 -xGaxCV alloy, type-2 (In2Ga2) and -3 (In1Ga3) cells have the 

lowest strain energy among five cells for the average composition 

x=0.5 and x=0.75, respectively. For a given cell, its strain 

energy is a minimum when its composition is equal to the global 

composition, e.g., x=0.5 for a type-2 cell. This is because a 

tetrahedron cell is distorted by its surrounding crystal lattice 

if there is a difference between the cell composition and the
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global composition. Figures are not exactly symmetric about 

 x=0.5 because of the difference in elastic constants between con-

stituent binary compounds. 

     The value of the strain energy is large for alloy systems 

where there is a large difference in lattice constant between con-

stituent compounds, e.g., CIIISb P,whereas it is very small                                        1
-x x 

for closely lattice-matched alloys, i.e., Al1
-xGaxCV. For 

In1 -xGaxCV group alloys, for example, amount of the lattice-

mismatch is nearly equal, but the strain energy becomes smaller in 

the following order: In1 -xGaxP > In1-xGaxAs > In1-xGaxSb. This 

is due to the difference in elastic constants: elastic constants 

tend to decrease as the constituent element becomes heavier. 

B. Statistics of tetrahedron cells 

   Figures 3-4 and 3-5 show relative numbers of five types of 

cells for AIIIBIIICV and CIIIAV BV alloys, respectively. The      1 -x x1-x x 

broken lines represent a cell distribution in a random arrangement 

and the solid lines at the thermal equilibrium state. Tempera-

ture of 1000 K, near which usual epitaxial growth is done, is 

adopted except for alloys involving InSb, for which 800 K is 

adopted: the melting point of InSb is about 800 K, and the analy-

sis for a solid phase should be carried out for temperatures lower 

than it. Since the diffusivity of atoms in III-V compounds is 

very small, the atom arrangement at growth temperature will be 

preserved at temperatures below. 

    As it is shown in the figures, the number of the cell whose 

composition is closest to the global composition increases from 

the number for the random arrangement. For example, at x=0.5, 

type-2 cell increases, while type-0 and -4 cells decrease from 

the random case. By comparing Figs. 3-2, 3-3 and Figs. 3-4, 3-5, 

we can easily see that a cell with larger energy decreases at the 

thermal equilibrium state.

-25-



z  11 A11_xGaxP¢,1Al1_xGaxAs¢ 1 1 mwT=1000Kco-------- T=1000Ko 
a -  -  -  RANDOM¢o--RANDOM¢i.0 

L7,i.0(4,1„,680 4wcC                  (A14_1Ga1)4 u, 

r ww 
000 

=0.5E50.53m0.5 
                         m CD zz 

w~ZIz~I 
     a~z 

                                                                                       WLU 

LcCi,~.^!•~.¢,.I.^!•~. 
00.5 1 00.5 1 0 

       COMPOSITION xCOMPOSITION x 

                                                      z11 
El1'Inn1_xGaxP ¢ 11In1_XGaXAs Q 

0 °T=1000 K wmT=1000K 
a- - - RANDOM=;,0 - - -RANDOM¢U0     0

UN-16a04w(In4_1Ga1)4`- 

                                                            w 0131Q w 0.5\z/ES,0.5\I**3U30.5m>_z\\z/ m/ \zzw\ww
litp, /4011L ,—1—               .4)\0 *AL—  A00.5 1 00.5 1 0 

       COMPOSITION xCOMPOSITION x 

2 1In 1_xA1xP¢1In1_XA1XA5¢11 
w-------- T=1000 K°w------- T=1000Kow 
a - =0 - - - RANDOMa;_0 - - -RANDOMa 

         (In4_1A11) 4;(In4_1A1114¢0 

                                                         w 0^\1O\ 1p 

E0.5—32w0.52 3w0.5 
  .m         •m_m z _//\ip,/ \z/\Z/ 

W/ / \ w/w 

                                                                / ;--.;-,,,,4*A4\J I 
00.5 100.5 1 0 

        COMPOSITION ACOMPOSITION x 

 Fig.3-4 Relative numbers or statistics of tetrahedron c 

    alloy semiconductors of AIIIBIIICV group. Broken li                                   1 -x x 
     completely random arrangement. The relative numbers 

    little different from those of random mixing in the a 

    (All -xGax)CV, and thus the solid and the broken lines 

     superimposed.

 Al1_xGaxSb 
— T=1000 
- — RANDOM 

(A14_1Ga1)

     0.5 
COMPOSITION x

1

 In1_XGaxSb 
— T=750 K 
- — RANDOM 

(In4_,&a,)

     0.5 
COMPOSITION x

1

 In1_xA1Sb

T=750 h 
RANDOM 

(In4_IA111

           0.5 
    COMPOSITION x 

cells in ternary 

lines represent 

rs at 1000 K is 

alloy system of 

es are

1

-26-



•I1AlAsi _xPx¢1 
         T=1000 K w 

_- - - RANDOM =  a 

        (A544304-11r 
 w w 
rr 

ww 
O0 

0.5 t3 w 0.5 m

'4~#2co 

f: D~~ 
zz 

rr < 

ili

00.5 1 0 
          COMPOSITION x 

o1AISb~_xAsxQ11 
m w

-T=1000 Kw a - 
i_0-- RANDOM 

r              (Sb4_1A5.)4w 1
r 

w - \w 
oto 

         2 3 /¢ O.5 E0.
5-—co 
_f 

z
//\ \/ \\z WV;w

cr 
a

I~/a J\J Wr 
00.51 0 

           COMPOSITION x 

•1A15b
i_xPx11 

wkoT=1000 Kw a - ---  RANDOM 4 = 
Ma rt(Sb4-tPt) r-'\t

it2F- 
w -3 / w 
oo 

E0.5-w0.5 
mm 

F 

Zz
W/w
HH
r/t- 

    /\W
//

_W   /,_~~~a 
00.51 0 

          COMPOSITION x 

 Fig.3-5 Relative numbers or 

    alloy semiconductors of C 

     completely random arrange

 i=0 

\ i 

0

z / \ 

   w 

I    H 

               /  J 
/    W 

 ¢/ 

     0 
             COMPOSITION 

bers or statistics 

rs of CIIIAI 

arrangement. 

               -27-

GaAs i_xP4¢11 InAs1_xPx 
— T=1000 K°------- T=1000 K 
- -RANDOMa

0- -RANDOM 
  (As4_1P~)4w(As4_,Pi) 

LL. 0 

   3w0.5 i3 

\/194111 
zcz 

     4 I~0~ /J 

 0.51 00 .51 
COMPOSITION xCOMPOSITION x 

 GaSbi_XAsxo                 P
c1, InSb1_xASx 

T=1000 K o------- T=750K 
 — — RANDOMa

i_0 — — — RANDOM, 
   (Sb4_,As,)4w(Sb4_,As,)4 

/IPfi
,1— 

                  w 

      o1 

  z3 /w0 .5\z3 / 

m /1 .0/If 
                                                      ~ ~_w\ 

                  J 

 0.51 00 .51 
COMPOSITION xCOMPOSITION x 

 GaSb1_xPxQ 1' InSb1_xPx 

ildr./1241allilh...... T=1000 Ki,p --------- T=750 K 
• — — RANDOM 4a— — — RANDOM4 

                   ow 

(Sb4_,P1)U \ 1(Sb4_1P1) 2ft 3      3/o\/ 

                              M0.     m/s,lit4
1„zw\                                                                  ,,,                                 „. 

                            12-1                                                               \ 

     1 00 .51 
COMPOSITION xCOMPOSITION x 

tistics of tetrahedron cells in ternary 

group. Broken lines represent



      As the energy difference among cells increases, the deviation 

from random arrangement increases. The statistics of tetrahedron 

cells in Al1
-xGaxCV alloys are close to random arrangement, be- 

cause the strain-energy difference is much smaller than the ther- 

mal energy at 1000 K. The results for In1-xGaxCVare almost the 
same as those for In1

-xAl  C  , since the length of Ga-C bond is 

nearly equal to that of Al-CV bond. 

     The figures are in general asymmetric with respect to the 

line of x=0.5. This is due to the asymmetry of Fig. 3-2 and 3-3, 

i.e., due to the difference in elastic constants. For an example 

of GaSb1
-xPx,the number of Sb3P1 cell at x=0.25 is greater than 

that of Sb1P3 cell at x=0.75, because Ga-Sb has smaller elastic 

constants than Ga-P as shown in Table 2-I: Sb
3P1 cell has smaller 

strain energy than Sb1P3 for a certain amount of mismatch between 

the cell and the surrounding crystal. 

     The composition dependence of the short-range order parameter 

is shown in Fig.3-6 for In1 -xGaxAs alloy. At any global composi-

tion, the parameter is negative, which indicates that short-range 

ordering is more probable than clustering. The parameter is 

calculated for some other ternary alloys at x=0.5, T=1000 K and 

listed in Table 3-I with the lattice-mismatch between constituent 

compounds. The value of IaI increases with the lattice-mismatch . 
     In Fig. 3-7, temperature dependence of the short-range order 

parameter and the numbers of cells are shown for In0
~5Ga0~5As. 

In the temperature range below 100K, the entropy term, TS, is 

negligible compared with H
m, and thus there is almost perfect 

order in the atom arrangement. In the temperature range between 

102 and 104 K, the order parameter decreases logarithmically with 

temperature. The calculated results show little order at the 

temperature above 104K because of domination of the entropy over 

H
m, although In0.5Ga0.5As is no longer solid in this temperature 

range.
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MATERIAL  a  T=1000 K 
x=0.5 

(10-2)

Aa / a 

(7.)

(A1Ga)As 

(A1Ga)Sb 

(InGa)P 

(InGa)As 

(InGa)Sb 

Ga(AsP) 

In(AsP) 

Ga(AsSb) 

In(AsSb) 

Ga(PSb) 

In(PSb)

   0 

-0.10 

-11.6 

-9.72 

-7.56 

-3.23 

-2.73 

-10.8 

-9.36 

-18.8 

-17.0

 0.20 

 0.64 

 7.39 

 6.92 

 6.11 

 3.64 

 3.17 

 7.52 

 6.72 

11.15 

9.88

Table 3-I. The short-range 

 order parameter Q at x=0 .5, 

T=1000K and the relative dif-

ference in lattice constant 

Aa/a between two constituent 

binary compounds.
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C. Total strain energy 

     Figure 3-8 shows the total strain energy of  In1 -xGaxAs alloy 

as a function of composition x. The broken line represents the 

value for the random case and the solid line for the short-range 

ordering at T=1000 K. Because of ordering, the cell having 

relatively high strain energy decreases compared with the random 

case, and therefore the total strain decreases. 

     It should be noted that, in Fig. 3-8, the total strain energy 

or the mixing enthalpy is nearly proportional to x(1-x). The 

relation of H
m«x(1-x) has been used to explain the thermodynamic 

properties of binary or pseudobinary alloys including III-V 

ternary alloys,7'10) and the interaction parameter defined by 
10) 

l=Hm/x(1-x) has been determined from the experiments. When the 

pairwise-interaction model is employed, it has been shown theoret-

ically that H
ma x(1-x) for a binary or pseudobinary alloy.) The
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Fig.3-8 Composition dependence of 

   the total strain energy (mixing 

   enthalpy) for In1 _XGaxAs. 
   Broken line: random arrangement. 
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strain energy is also shown to be proportional to x(1-x) when the 

macroscopic elastic models are  used.11,12) In the analysis 

described in the last subsection, the relation H
max(1-x) does not 

appear explicitly in the equation, but the total strain energy 

shown in Fig. 3-8 follows this dependence of H
m on x. Similar 

composition dependence of Hm is also obtained for other alloys. 

However, in a highly ordered state, the composition dependence of 

Hm possesses minimum values at x=0.25, 0.5, and 0.75, and becomes 
asymmetric about x=0.5. Below but near the melting temperature, 

the relation H
m«x(1-x) is almost satisfied. Because the melting 

temperatures of most of the alloys listed in Table 3-I are around 

1000 °C, we determine the interaction parameter from the present 

strain energy calculation by using 

2cal = 4•Hm(T=1000 °C,x=0.5) .(3-15) 

The values of 
cal are plotted against experimentally determined 

R' Rexp' in Fig. 3-9. Both agree qualitatively, which indicates 

that the mixing enthalpy is mainly the strain energy. However, 

2cal are larger than 2e Xp. This discrepancy would be due to the 
assumption that the atoms of mixed sublattice are at VCA posi-

tions. The neglect of the temperature dependence of elastic 

constants would also lead to overestimation of the strain energy. 

3-3. AVERAGE BOND LENGTH 

3-3-1. Calculational Procedure 

     In A1-xBxC alloy, an A-C bond appears in the type-0,1,2,and 3 
tetrahedra as shown in Fig. 3-1, and the bond length would be 

different when involved in a different cell. Since the atom 

arrangement is at least somewhat random, i.e, the alloy is com-

posed of various types of cells, a certain kind of bond is sur-

rounded by various configurations of the nearest bonds. Then,

-31-



the bond length is not of a single value, but there are four dif-

ferent lengths for each kind of bond such as the A-C bond lengths 

in type-0,1,2,3 of tetrahedra and the B-C bond lengths in type-

1,2,3,4 of tetrahedra. However, in reality, the second-nearest 

bonds and further could affect the strain of the bond: each bond 

length does not possess four discrete values but some additional 

broadening due to the composition fluctuation outside the tetra-

hedron. This effect will not be taken into account in the 

analysis. 

     The average values of bond lengths can be obtained from the 

relative numbers of tetrahedra and each bond length. Then, for 

example, the average A-C bond length  dAC is calculated by 

          --
d-1(4-i)gigidi      dACY

.(4-i)gigi(3-16) 

where dAC and 4-i are the length and the number of A-C bond within 

type-i tetrahedron, respectively. dAC and dBC are obtained by 

minimizing the strain energy of that tetrahedron, while qi's are 

by minimizing the total free energy of the alloy crystal, as 

described in the last section. 

3-3-2. Numerical Results 

     The average bond lengths at room temperature are calculated 

from Eq.(3-16) taking the short-range order at 1000 K into ac-

count, except for the alloys including InSb, for which 800 K is 

chosen; as stated earlier, the atom arrangement at the growth 

temperature will be preserved even at room temperature owing to 

small diffusivity of atoms in solids. The results are given in 

Figs. 3-10 and 3-11, where bold lines denote the average bond 

lengths dACand aBC,broken lines the bond lengths in each cell dAC 

and dBC,and solid lines the VCA bond lengths d. Because of 
assumption described in the last section, the bond length averaged 

                                         -32-



 .Q 

I 
r-
0 
 Z 
W 
J 

0 
Z 0 

m

 0

  2.7 

  2.6 

 .a 

= 2.5 

w w -' 2.4 0 
z 
0 co 
  2.3 

22

(AI4_iGa;)

AI,_.GarP

Ga-P

    0.5 

COMPOSITION x

1

 0

 4_;Ga;  )

I ni_,Ga,P 

In-P

     0.5 

COMPOSITION x

2.7------------------------------------------------ 
In,sAI,P 

2.6= `-3 In-P 

= 2.5— 
c~y4\ 

2.4- 
z`~ 
co 
  23- 

(In4_,AI;)~` 

22  . . .  
0 0.51 

COMPOSITION x 

Fig.3-10 Bond length v 

   AIIIBIIICV group wit      1
-x x 

   with VCA is for the 

   approximation, and t 

   The broken lines are 

    type-i, Short-rang 

   average bond lengths

 2.46

,Q J.3 

2.45 

z w J 

z 
0 co 
  2.44

0

  2.7 

 = 2.6 

 z 
W 

   2.5 

z z 
0 

24 

2.3

(A14_;Ga; )

    0.5 

COMPOSITION x

2.67- 

266-
 a 

= 265-, 

z W 

264-
  z 

263- 

2.62_ 
0

0

 2.8

27 
.Q 

x 2.6 
0 
z 
W 
  2.5 

z 
0 co 

2.4 

2.3

(I n4.;Ga; ) 
a EXAFS

0.5 

COMPOSITION x

7

\ Z.

d length variations 

 group with respect 

s for the bond leng 

ion, and two bold 1 

 lines are for the 

Short-range order i 

nd lengths.

 Ini_XAIxAs 

In

3-

  3.0 

   2.9 
 .Q 

I 2.E ro 
Z W J 2i 
O 
z 
co co 
  2.E 

2E

-1

(Alc_;Ga1)

    0.5 

COMPOSITION x

1

 30 

29 

x 2.8 

0 
Z 
W 

27 O 

Z 0 
co 

2.6 

   2.5

0

-.2

(1n4_;Ga;)

In1_xGaxSb 

In -SID

    0.5 
COMPOSITION x

J~

1

 In,_,AI,Sb 

In-Sb

     0°4-AOAI-As~~``terAI-Sbi';                                  
I`( in4_,AI;) 2.3-------------------------------------------------------2.5-------------------------------------------- 00

.5100 .5 CO
MPOSITION xCOMPOSITION x 

riations in ternary alloy semiconductors of 

 respect to the composition. The solid line 

and length calculated from the virtual crystal 

o bold lines are for the average bond lengths. 

for the bond lengths in tetrahedron cell of the 

order is taken into account in calculating the

-33-



 x 

 0 
z 
w 

z 
0 m

25

24

2.3

 0

  2.8 

  2.7 

 .Q 

   2.6 

z 
w 

25 

2.4 

2.3

 l~ 3

(AsL_;Pi)

AI As, _x Px

     0.5 
COMPOSITION x

.1

1

0

  2.9 

 2.8 

^ 2 .7 

z 2.6 
t-

z 2 .5 

0 
z 2.4 
0 
m

AI-As 

(Sb4_; As; )

Al Sb;_%Asx 

Al-Sb

    0.5 
COMPOSITION x

3-

i-

7

 (Sbw;P,)

AISb,,Px 

Al -Sb

z-

.Q 

2 

Z 
W 

Z 
0 
(fl

 0

 2.8 

  2.7 

= 2.6 

0 
z W 

   2.5 
0 
z 
0 
m 
   2.4 

   2.3

(As~_i Pi) 

 EXAFS

GaAS,_xP, 

Ga-As

     0.5 

COMPOSITION

0

   2. 

 .Q 2.7 

= 2.6 

0 z 

w 2.5, 

J 0 

23 

   2.2

-~3

(Sb4_;As;)

   Ga Sbi_xAsx 

Ga-5b

0.5 
COMPOSITION x

1' 
i—

 (Sb4_;P,)

GaSbi _zP, 

Ga-Sb

Z 3-- 
ice.

2.7

 2.6= 

O_ 

W 
J Z 

O 
ID 

   2.5—

 3.0

0

2.9-

.a 

x 2.8 
0 
Z 
W J 27 

Z 
0 
co 
   2.6 

   2.5

(As4_i

I n As,_x Px 

In-As

     0.5 

COMPOSITION

1

0

   3.1 

 3.0
, 

•< 2.9 

2.8 

0 

w 2.7 
J O 

z 2.6 0 
m 
   2.5 

  2A

(5b4_iAsi)

I n 5bi_xAsx 

In-Sb

     0.5 

COMPOSITION x

 t~~

-:J

 (Sb4_;P;  )

InSbi_xPx 

In-Sb

-7,

00.51 0as1 00.5 
      COMPOSITION xCOMPOSITION xCOMPOSITION x 

Fig.3-11 Bond length variations in ternary alloy semiconductors of 

   III    CA

1-xBx group with respect to the composition. The solid line 

   with VCA is for the bond length calculated from the virtual crystal 

   approximation, and two bold lines are for the average bond lengths. 

   The broken lines are for the bond lengths in tetrahedron cell of the 

type-i. Short-range order is taken into account in calculating the 

   average bond lengths.

-34-



within a cell is equal to the VCA value  d, i.e., (4-i)dAC+idBC=4d. 
Thus, bond lengths in type-0 and -4 cells are equal to the VCA 

value in this model. 

    The experimental data of bond length by EXAFS measurements 

are available for In1 -xGaxAs$) and GaAs1-xPx.13) The agreements 

between the experimental and the theoretical values are fairly 

good for both alloys. However, some discrepancy is seen partic-

ularly for In1 -xGaxAs: the bond length deviation from that in the 

corresponding binary compound is larger for the theoretical 

values. This difference would be due to the assumption of the 

model and/or the insufficient validity of the material parameters 

used here. Some error could not be avoided in the EXAFS measure-

ments and data analyses. 

     For comparison, the average bond lengths for the complete 

random arrangement are calculated for In1 -xGaxAs and plotted by 

dash-dott lines in Fig. 3-12. Although the difference due to the 

short-range order is rather small, the average bond lengths in the 

completely random case deviate from that in the binary compound 

more largely than those in the equilibrium state do: the bond 

length deviation is decreased by the short-range order. This can
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be interpreted as follows: at the thermal equilibrium state, 

largely distorted bonds tend to decrease because such bond has 

large strain energy. For an example of  x=0.5, A-C bond is dis-

torted most largely when included in type-0 cell. Since type-0 

cell has relatively large strain energy at x=0.5, it decreases 

from the value of the completely random case. Then, the distor-

tion of A-C bond decreases on an average owing to the short-range 

order. The decrease in the average distortion of bonds results 

in the decrease in the total strain energy, as shown in Fig. 3-8. 

For GaAs1 -xPx,for example, the effect of short-range order is 

almost negligible because the degree of order is low, as can be 

seen from Figs. 3-5. 

3-4. DISCUSSIONS 

     The short-range order parameter can be estimated by X-ray 

diffuse scattering measurement.9) However, the results of the 

measurement are not available for III-V alloys except for 

A11 -xGaxAs14) and In1-xGaxAs15).For Al1-xGaxAs, the atom 

arrangement was found to be completely random, and for In1 -xGaxAs, 

the short-range order parameter a is evaluated to be -0.05. 

Those results are consistent with the results given here. How-

ever, further experimental data is needed to test the accuracy of 

the analysis. 

    Long-range order or superstructure has been observed by trans-

mission electron microscope in some III-V ternary alloys.16-20) 

The results for GaSb1 -xAsx can be qualitatively explained from the 

results given here: Superstructures observed in the alloy of x=0.5 

are monolayer structure along <100> axis and chalcopyrite struc-

ture.16) They are, if perfect, composed of type-2 cell, which is 

shown to be energetically favorable by the present analysis. 

However, the experimental results for other alloys are not neces-

sarily consistent with the present results. Long-range order in
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 A11-xGaxAs17) cannot be explained by this analysis. For 

In1 -xGaxAs (x=0.5), three different types of structures were 

observed: monolayer structure along <100>18), famatinite 

structure19), and monolayer structure along <111>20). The latter 

two are, if perfect, composed of type-1 and -3 cells, which are 

shown to be less favorable than type-2 cell in the analysis. In 

addition, the analysis on long-range order, described in Chap. VI, 

shows that the superstructure is unstable even for GaSb1 -xAsxat 
temperatures of an usual crystal growth. Kinetic factors, e.g., 

surface reaction during the growth, would be necessary to consider 

in addition to the thermodynamic factors considered here. 

     The results of the analysis agree fairly well with the 

results from EXAFS in term of bond length. However, they must be 

compared with each other in term of dispersion of bond lengths, 

too. In EXAFS data analyses, length fluctuation including ther-

mal vibration is taken into account as the Debye-Waller factor. 

The Debye-Waller factors experimentally determined for alloys do 

not significantly increase compared with those for binary com-

pounds,8,13) Thus, the dispersion of bond lengths predicted from 

the analysis has not been experimentally confirmed. As for the 

length dispersion, the theory is required to take into account the 

influence of local environment outside each tetrahedron, i.e., 

reexamin the assumption, and the EXAFS to improve the analysis for 

structurally disordered materials.21) 

     In the analysis, it is assumed that the atoms on the mixed 

sublattice are on the VCA lattice sites. This assumption can be 

qualitatively justified by the discussion in Subsec.3-2-1, but it 

will cause some errors in the results. If the relaxation of the 

mixed sublattice is allowed, the strain energy of each cell will 

decrease further. Consequently, the total strain energy, i.e., 

H
mwill also decrease, and then the difference between experimen- 

tal and calculated interaction parameters will be reduced (see 

Fig.3-9). The energy decrease would be large for more largely
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strained cell, and thus the energy difference among cells would 

decreases. This reduces the degree of the nonrandomness. The 

decrease in energy difference implies the decrease in the length 

difference of a certain bond among cells, i.e., the decrease in 

the dispersion of bond lengths. In reality, the dispersion might 

be so small that it cannot be detected by EXAFS measurements. 

     Recently, Sher et al. calculated the statistics of tetrahedra 

and the bond lengths for In Ga As taking account of the relaxa-

tion of the mixed sublattice.22 Their results agree qualita-

tively with the present results, but, as expected, the energy 

difference among cells and the length dispersion are smaller than 

those given here. Further study is needed to include the relaxa-

tion of mixed sublattice into the present model. 

     In spite of the difference in estimation of enthalpy, the 

cell statistics obtained by Sher et al. quantitatively agree with 

the results given here. They use 16-bond cluster as a basic 

figure and use only 1/4 of the common element sites as cluster 

centers. Thus, for a certain number of alloy atoms, the number 

of basic figures is four times smaller in their analysis than in 

the present one, and consequently the decrease in S from the value 

of Eq.(3-4) is smaller in their analysis for a given degree of 

order. Then, higher degree of order will be concluded in their 

analysis even if the energies of cells are evaluated by the same 

way. Thus, their results are very similar to the present ones 

although energy difference among cells is smaller in their model. 

    The mixing enthalpy is considered to be the bond strain energy 

in this study. The interaction other than strain is customarily 

called chemical interaction and has been estimated by some re-

searchers for  III-V ternary alloys. According to the calcula-

tions by Sher et al.22) and Ito23), the chemical term is very 

small compared with the strain energy. On the other hand, the 

results of the calculation by Zunger et al. indicate that the 

chemical term is considerably large.24'25) However, their cal-
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culation is considered to overestimate the chemical interaction 

because of Brillouin zone effects in the pseudopotential  calcula-

tion.25) Therefore, the chemical interaction does not seem to 

greatly influence the atom arrangement in III-V ternary alloys. 

3-5. SUMMARY 

     The statistics of tetrahedron cells and the average bond 

lengths have been calculated for 18 III-V ternary alloy semicon-

ductors through a thermodynamic procedure. The results are sum-

marized as follows: 

i) In the atom arrangement of III-V ternary alloys, there is some 

degree of short-range order as well as randomness. 

ii) The bond length deviation decreases on an average owing to the 

short-range order. 

iii) The calculated average bond lengths agree fairly well with 

those obtained from EXAFS. 

iv) The values of the interaction parameter obtained from the cal-

culation of the strain energy agree qualitatively with the values 

determined from thermodynamic experiments. This supports the 

validity of the assumption that the mixing enthalpy is the bond 

strain energy. 

v) For more accurate analysis, it is needed to take into account 

the relaxation of the mixed sublattice. 
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IV. ATOM ARRANGEMENT IN  QUATERNARY ALLOY SEMICONDUCTORS OF (ABC)D TYPE

4-1. INTRODUCTION 

III-V quaternary alloy systems have two independent variables 

to express their atomic composition, and thus two material parame-

ters, e.g., band gap and lattice constant, can be independently 

selected within a certain range. This makes quaternary alloys 

indispensable for fabrication of closely lattice matched hetero-

structures. Quaternary alloys of (ABC)D type attract much atten-

tion as elements of various heterostructures,1'2) and some of 

their band structures have been calculated on the basis of the 

coherent potential approximation.3'4) In addition, by molecular 

beam epitaxial growth, an (ABC)IIIDV alloy can in general be grown 

much easier than an (AB)III(CD)V alloy and thus has began to be 

widely used.5) A DIII(ABC)V alloy In(SbAsP) has been successful-

ly grown by metalorganic vapour phase epitaxy.6) Liquid-phase 

epitaxial growth of a GaSbl -x-yAsxPy was also reported.) 
     In this chapter, the atom arrangement and the average bond 

length are discused for III-V quaternary alloy of (ABC)D type. 

In this type of quaternary alloys, mixing is restricted to one 

sublattice as in ternary alloys. Owing to this similarity, the 

approach is basically the same as for ternary alloys. The re-

sults of the analysis also have some similarities, but are differ-

ent in some aspects; for example, clustering of like atoms never 

occurs in ternary alloys, but it can occur in a certain composi-

tion range in quaternary alloys of (ABC)D type. 

4-2. ATOM ARRANGEMENT 

4-2-1. Formalism of Free Energy
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A. Basic figure and  entropy 

     As for ternary alloys, a tetrahedron cell shown in Fig. 4-1 

is taken as a basic figure of the thermodynamic analysis. While 

a ternary alloy is composed of five types of cells, an (ABC)D 

alloy is composed of 15 different types of cells. Their cell 

compositions are plotted by dark circles in the (ABC) composition 

plane in Fig. 4-1. The cell type is specified by the indices 

(i,j), where i and j are the number of B and C atoms in the cell, 

respectively. The relative number of each cell is represented by 

g..q...Here,g.. is the number of distinct configuration of13  1313

atoms for the cell of type (i,j) and given by 

        gi'4Ci4 -iC,(4-1)       J .7 

where C denotes the computation of combination. q.. is the prob-
                                                  1J 

ability of appearance of the cell of type (i,j) with a given atom-

ic configuration. Since g.,q „ 's are relative numbers, 
13 13 

= 1 .(4-2)
   13-1J

 (2)  A, 
• D 

Fig. 4-1 Tetrahedron cell 

   different types of cells 

   compositions are plotted 

   composition plane (right

B

A 

(0,0)

in  a 

 constitute 

by dark ci 

 triangle). 
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Under a given composition,  gijIs must satisfy the following condi-

tions: 
               i 

        Lgijqij=x ,(4-3) 

        4gijqij= y(4-4) 

where x is the composition of element B and y that of element C. 

     The entropy S is derived by cluster variational method of 

Kikuchi8) to be 

        S = -kBN{ 1 g..q..ingij-3(xlnx+ylny+zlnz) },(4-5) 

(z=1-x-y) 

Equation (4-5) is basically the same as the entropy for a ternary 

alloy: if either x, y, or z is zero, it is reduced to Eq.(3-3). 

     If the atoms are distributed completely at random, then 

               qij             = z4-i-jxiyj ,(4-6) 

and 

          S = -kBN(xlnx+ylny+zlnz) .(4-7) 

This is the entropy of the regular solution model. 

B. Enthalpy 

     In (ABC)D quaternary alloys, the relative numbers of bonds 

are uniquely determined from the atomic composition. Thus, the 

strain energy is thought to be the dominant portion of the mixing 

enthalpy as in ternary alloys. Then, the mixing enthalpy is 

given by 

                  Hm 1 g..q..          E.,(48) 

where Eijis the strain energy of type (i,j) cell. 

     D atom is allowed to move from the central position of the 

cell for minimizing the strain energy of the cell, and then its 
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 c..  is determined. However, atoms on the mixed sublattice, e.g., 

the group III atoms in (InGaAl)As, are assumed to be on the lat-

tice sites of the virtual crystal approximation (VCA). This is 

the same assumption as that used for ternary alloys. As dis-

cussed in the last chapter for ternary alloys, an atom on the 

mixed sublattice is surrounded by four identical atoms (common 

element atoms), and thus it tends to remain at the central posi-

tion among four atoms owing to the symmetry around it. On the 

other hand, a common element atom is surrounded by two (or more) 

different kinds of atoms. Thus the symmetry is broken and it 

moves largely from the central site. This discussion can be also 

applied to alloys of (ABC)D type, where the mixing is restricted 

to one sublattice. Therefore, the relaxation of the mixed sub-

lattice is neglected. It should be noted that each c.is a 

function of only the average lattice constant (VCA atomic spacing) 

owing to this assumption. The error caused by this assumption is 

discussed in the Sec.4-4. 

C. Equilibrium state 

     The mixing free energy is given by 

       F
m = Hm-TS ,(4-9) 

q., at the thermal equilibrium state is obtained from the condi- 

tion for a minimum free energy: 

               aF                       m 

1 aq,6n.. = 0 ,(4-10) 
                    13 

1 g..6q.. = 0 ,(4-11) 13 13 

i 

         L 4g..6g1.= 0 ,(4-12)              13

1 4g..(Sq=0 .(4-13)13 ij 
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Equations (4-11), (4-12), and (4-13) are the derivative of Eqs. 

(4-2), (4-3), and (4-4), respectively. By using the Lagrange 

multipliers  X0, Xi, and X2, the above conditions are rewritten as 

             aFm 
         + Xgg.            a
gij1 4i+ ~gi+ ~`gi=0               j2 4j0j 

for i=0 to 4 and j=0 to 4-i. From Eqs.(4-3), (4-4), and (4-14), 

the following nonlinear simultaneous equations are obtained: 

                                                             -e .. 
(x-4) gi.eXP(1) A11 A23 =0(4-15) 

                            B 

                 J-El 
            (y-4) gi.exp(kT)Al12                        A3 =0(4-16) 

                             B 

where Ak=exp(-Xk/4kBT) (k=1,2).The equilibrium values q°,.'s are                                                  J 

calculated by 

-s 

qij = AOexp(kT) A11 A2J(4-17) 

                          B 

              A0= [g..exp() A1iA2j ]-1k
BT 

     Equations (4-15) and (4-16) are solved by the Newton method. 

D. Order parameter 

     The analysis here gives the relative numbers of the tetra-

hedron cells. However, it is not easy to deduce qualitative fea-

tures in the atom arrangement directly from ratios of 15 different 

cells. Here, the short-range order parameters (SROP's) are used 

to represent relative numbers of the second-nearest pairs, e.g., 

A-A or A-B. For (ABC)D alloy system, the SROP's are defined by9) 

_ (Px)                      PPP  6
PP (1xp),(4-18)
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 P 

        Qpq= 1 -xPq(4-19) 
 q 

where  x is the composition of p element and P
pqthe probability 

of a q atom occupying thesecond-nearest neighbour site of a p 

atom. For a completely random arrangement, all a's become zero, 

and thus a's represent the deviation from the random arrangement. 

In an (ABC)D system, there are six distinct SROP's: (IAA' °BB' aCC' 

aAB' aAC' and aBC. However, for a three-component system, the 

number of linear-independent SROP's is three,9) i.e., a 's can be 
                                               PP 

calculated from a
pq's (p#q) by the equations such as 

_(xBaAB + xCaAC)  a
AA+ x(4-20) 

                        x 

            BC 

However, all of six a's are used for clarifying tendencies of atom 

arrangement. 

     In III-V ternary alloys, Eqs.(4-18) and (4-19) are reduced to 

the definition by Cowley10), i.e., Eq.(3-13), and the number of 

independent SROP becomes unity: for example, in (AB)D system, 

      aAA = aBB = aAB(4-21) 

In the limit of x->0, a converges to zero, as can be seen from 
PP 

Eq.(4-18), but Q
pqdoes not necessarily converge to zero. 

4-2-2. Numerical Results 

A. In1 -x-yGaxAlyDV (DV=P, As,Sb) systems 

     Main features of atom arrangement are similar irrespective of 

species of DV element, and thus the results for InGaAlAs                                                 1-x-yxy 
are described in detail as an example. The results for other two 

alloys are also shown but not discussed in detail. 

     As noted in the last section, the strain energy of each cell 

is determined by the lattice constant of the alloy, aQ. Figure 
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4-2 shows the  cij's as functions of aQ, where i and j are the 

numbers of Ga and Al atoms in the cell, respectively. In this 

0 system, aQis minimum for GaAs (5.6533A) and maximum for InAs 

(6.0584A), as shown in Fig. 4-3. Here, the lattice constant is 

approximated to follow the Vegard law. Each eij becomes minimum 

when aQ is nearly equal to the lattice constant at x=i/4, y=j/4. 

cij is in general different for a different index i or j. In 

(InGaAl)DV system, e..i~                          's with the same i+j are almost equal be- 

cause Ga-DVbond length is very close to the Al-DV bond length. 

     Figures 4-4 are the contour charts of the SROP Q's. Nega-

tive a indicates increase (decrease) for an unlike-pair (a like-

pair) compared with the completely random arrangement. As can be 

seen from Figs. 4-4, all like-pairs decrease and In-Ga pair in-

creases in the whole composition region. Ga-Al pair decreases, 

and In-Al pair increases at all compositions except in the vicini-

ty of the line of x+y=1, where the opposite tendency appears for 

these two pairs. Those tendencies are all in accordance with the 

following simple rule: a pair composed of larger and smaller atoms 

is favorable, but a pair of two larger or two smaller atoms is 

unfavorable. Here whether an atom is larger or smaller is said 

relative to the average covalent radius of atoms being mixed in 

the alloy: A atom, for example, is larger atom when A-D bond 

length is larger than the bond length averaged in a whole alloy. 

It can be stated as a physical ground rule that the strain is 

reduced effectively by the shift of D atom (As atom in this case) 

when a large atom neighbours a small atom; on the contrary, a 

cluster of large or small atoms is unfavorable since it causes a 

large strain energy due to lattice-mismatch between the cluster 

and the surrounding alloy crystal. In In1 -x-yGaxAlyAs alloy, 

In-Ga and In-Al are larger-smaller pairs, In-In is a larger-larger 

pair, and Ga-Ga, Al-Al, and Ga-Al are smaller-smaller pairs except 

in the region of x+y=1, where In-Al is a pair of larger atoms and 

Ga-Al is a smaller-larger pair. From these facts and the above 
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rule, one can predict the sign of a correctly at any composition. 

    Figure 4-5 shows SROP's and lattice constant for (InGaAl)P 

and (InGaAl)Sb. Although the temperature is the same, each  lal 
is larger in (InGaAl)P than in (InGaAl)As, because the elastic 

constants and thus the strain energy are larger for (InGaAl)P. 

On the other hand, if at the same temperature, the elastic con-

stants and thus  101's will be smaller for (InGaAl)Sb, although 
800K is adopted here because of low melting temperature of InSb. 

However, the sign of each a is the same for all of the three sys-

tems, because it is determined from order of size among In, Ga, 

and Al atoms, i.e., In > Al = Ga. 

B. DIIISb1 -x-yAsxPy (DIII=A1,Ga,In) systems 

     Here, the results for GaSb1 -x-yAsxPyare described in detail, 

and then those for other two alloys are shown. 

     The strain energy eij's, lattice constant, and SROP a's are 

shown in Figs. 4-6, 4-7, and 4-8, respectively. Here, i and j 

are the numbers of As and P atoms, respectively. Again, all of 

these tendencies in Fig. 4-8 can be interpreted on the basis of 

the rule. Sb-Sb and P-P pairs are always a pair of larger atoms 

and of smaller atoms, respectively, and thus both decrease (a<0). 

Sb-P, being always a larger-smaller pair, increases (a>0) in the 

whole composition. The signs of other a's change depending on 

composition. For aA
sP and aSbAs' the boundary between negative 

and positive sign nearly coincides with the composition line where 

the alloy lattice constant aQ is equal to that of GaAs aG
aAs (see 

Fig.4-7). As atom is an atom larger than the av rage when 

a<abut a smaller atom when a>aThus,when a <a QG
aAsQGaAs''GaAs' 

As-P pair is a larger-smaller pair and increases (aA
sP<0), ile 

it is a smaller-smaller pair and decreases (QA
sP>0) when aQ>aGaAs. 

Similarly, Sb-As pair is a larger-larger pair and decreases when 

aQ<aG
aAs' but it is a larger-smaller pair and increases when
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aQ>aG
aAs' 
     As-As is a pair of smaller atoms in Sb rich region, while it 

is a pair of larger atoms in P rich region. Thus, it decreases 

in the both regions. However, in the region of aQ=aGaAs' the 

cluster of As (GaAs) is closely lattice-matched to the surrounding 

crystal and thus has very small strain energy. Therefore, As 4 

tetrahedron and thus As-As pair increase in that compositon re-

gion. In (InGaAl)As alloy, Al atom cluster becomes strain-free 

at the composition of  aQ=aA1A
s' However, since the size of Ga 

and Al atoms are very silimar, Ga-Al and Ga-Ga pairs are as favor-

able as Al-Al pair, and thus the tendency of Al clustering does 

not appear. 

    Figure 4-9 shows SROP's and lattice constant for Al(SbAsP) and 

In(SbAsP). 800 K is adopted for In(SbAsP) because of low melting 

point of InSb. Degree of nonrandomness in Al(SbAsP) is very 

similar to that in Ga(SbAsP) because of the similarity between 

A1DV and GaDV. On the other hand, at a certain temperature, 

In(SbAsP) is less nonrandom, since In based compounds have smaller 

elastic constant than Ga based ones. 

4-3. AVERAGE BOND LENGTHS 

     The average bond lengths are calculated using equations simi-

lar to Eq.(3-16). Figures 4-10 and 4-11 show average bond lengths 

and VCA bond length for (InGaAl)As and Ga(SbAsP), respectively. 

The nonrandomnes in the atom arrangement at 1000 K is taken into 

account. Here, as an example, the results for Ga(SbAsP) are in-

terpreted; from Fig. 4-11, the following features are summarized: 

i) The change in bond length is largest in Ga-Sb bond and smallest 

in Ga-P bond. 

ii) For all of three bonds, the spacing between contour lines be-

come narrow when P composition is large, and thus bond length dis-

tortion increases on an average as P composition increases. 
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iii) The contour lines of each bond length are nearly parallel to 

those of the VCA length, and thus the length of each bond barely 

depends on the composition if the lattice constant or the total 

average bond length is unchanged. 

    Feature i) is due to the difference in a. The Ga-P bond has 

the largest a among the three bonds and thus is difficult to dis-

tort, whereas Ga-Sb bond is the weakest and easy to distort. 

Feature ii) is attributed to the fact that GaP has a large elastic 

constant of angle distortion, in P-rich alloy, the angles of 

the crystal become stiff and difficult to distort. Then, length 

deviation becomes large, since the position of the common element 

atom in each tetrahedron is determined for equilibrium of angle 

and length distortions. 

     Feature iii) might seem due to the assumption that the cell 

sizes are determined from the lattice constant of the alloy. 

However, as composition changes, the relative numbers of tetra-

hedra also change. Since each bond length is different when in-

volved in a different cell, it would have been possible to expect 

that each bond length changes with composition even if the lattice 

constant is unchanged. Thus, feature iii) cannot be directly de-

duced from the above assumption; it appears because length changes 

in various types of cells compensate each other. 

     For comparison, the average bond lengths for completely ran-

dom arrangement are shown by broken contour lines. As in ternary 

alloys, the length deviation from the length in the binary com-

pound is reduced by the nonrandomness in the atom arrangement. 

This tendency can be interpreted in the same way as for ternary 

alloys: at the thermal equilibrium state, the cell involving 

largely distorted bonds decreases, and thus the average length 

deviation decreases. 

4-4. DISCUSSIONS
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     In this section, firstly, the results of statistic of tetra-

hedra are compared with those for ternary alloys, and then the 

accuracy of the analysis is examined. 

     As stated earlier, a pair of larger and smalller atoms is 

favorable for reducing the strain energy, since its strain can be 

effectively relaxed by the shift of the common element atom. For 

this reason, an unlike-pair increases and a like-pair decreases in 

ternary alloys; since the lattice constant of (AB)D is always an 

intermediate value between those of AD and BD, the unlike pair 

(A-B pair) is inevitably a pair of larger and smaller atoms and a 

like-pair a pair of larger or smaller atoms. 

     On the other hand, in quaternary alloys of (ABC)D type, cer-

tain unlike-pairs decrease (Q
pq>0), because an unlike-pair does 

not necessarily correspond to larger-smaller pair: the pair com-

posed of largest and smallest atoms among three alloy atoms corre-

sponds necessarily to a larger-smaller pair, but other unlike-

pairs can be a pair of larger or smaller atoms at certain composi-

tions. 

     The pair of largest (smallest) atoms, e.g., Sb-Sb (P-P) in 

Ga(SbAsP), is always a pair of two larger (smaller) atoms and 

decreases. However, like-pair of the mediate size atom, e.g., As 

in Ga(SbAsP) can increase at the compositions where the alloy is 

lattice-matched to the corresponding binary compound. This does 

not occur for ternary alloys, but for quaternary alloys. It may 

seem an exceptional case which occurs only in the limited composi-

tions but is in fact very important, since the composition of a 

quaternary alloy is often selected so that the alloy is lattice-

matched to a substrate of a binary compound. For example, 

In1 -xGaxAs1-yPy is often grown on a InP substrate with lattice-

matching, and then InP cluster in the alloy is a strain-free clus-

ter, i.e., very favorable for reducing the strain energy. How-

ever, for AIIIBIIIC1-yDValloys, the change in the bond statistics 
must be considered, and thus one cannot immediately conclude the 
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tendency of clustering, as will be discussed in the next chapter. 

The analysis here predicts the tendency of clustering of As 

compound for  DIII(SbAsP) alloy on DIIIAs substrate. 

    Since the approach described in this chapter is basically the 

same as that for ternary alloys, it involves similar shortcomings. 

The most important one is the neglect of relaxation of a mixed 

sublattice; it would result in overestimation of nonrandomness. 

     EXAFS experiment has not been carried out for quaternary al-

loys of (ABC)D type, and thus it is not possible to compare the 

calculated results with experimental ones. 

4-5. SUMMARY

     The atom arrangement and the bond lengths in III-V quaternary 

alloys of (ABC)D type have been investigated through the thermo-

dynamic analysis. The results are summarized as follows: 

i) The relative numbers of the second-nearest pairs are represent-

ed by short-range order parameters. A pair increases compared 

with the random arrangement case if it is composed of larger and 

smaller atoms than the average. Whereas, a pair of two larger or 

smaller atoms decreases. 

ii) When the lattice constant of the alloy coincides with that of 

a constituent binary compound, there appears the preference for 

clustering of the compound. 

iii) A proportional dependence is found between the average length 

of each bond and the VCA bond length. 

iv) The length deviation from that of a binary compound is small 

if the elastic constant of length deviation is large and/or the 

average angle-distortion elastic constant is small. 

v) The bond length deviation decreases on an average owing to the 

nonrandomness in the atom arrangement.
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V. ATOM ARRANGEMENT IN QUATERNARY ALLOY SEMICONDUCTORS OF  (AB)(CD) TYPE

5-1. INTRODUCTION 

    In ternary alloys and quaternary alloys of (ABC)D type, the 

relative numbers of bonds are uniquely determined from the atomic 

composition. However, they cannot be uniquely determined in a 
                  II quaternary alloy, Al_xBXIICI-yDy:1-3)two species of atoms are 

distributed on each of group III and group V sublattices, and thus 

the statistics of bonds, formed between group III and group V 

atoms, depend on the distribution of atoms in the sublattices. 

One can regard, for example, In0
.5Ga0.5As0.5P0.5alloy as a 1:1 

mixture of either InP and GaAs or InAs and GaP: Various ratios of 

bonds yield the same atomic composition. 

    The strain energy is considered to be a dominant portion of 

the mixing enthalpy for quaternary alloys of (AB)(CD) type, too.4) 

However, the cohesive energy change due to the change in the sta-

tistics of bonds also needs to be considered.1) In this chapter, 

first, the factors which determine the statistics of bonds are 

qualitatively discussed, and then calculation procedure of the 

free energy including the mixing entropy and enthalpy is described 

in detail. Calculation results of statistics of bonds are given 

for nine quaternary alloy systems of (AB)(CD) type. 

     In calculating the strain energy, effects of local environ-

ment on the strain of bonds are taken into account as in the anal-

yses of previous chapters: the length of a bond takes 16 different 

values depending on what bonds are its neighbours. The average 

bond length is calculated for In1 -xGaxAs1-YPy, and its dependence 
on the bond statistics are discussed.
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5-2. STATISTICS OF BONDS 

5-2-1. Enthalpy of Quaternary Alloys of (AB)(CD) Type 

     Statistics of bonds must be consistent with the atomic com-

position. For example, the sum of the relative numbers of A-C 

and A-D bonds should not contradict the composition ratio of A 

atom in AI -IIBIIIC1DV alloy. Because of these constraints, the                  Y Y 
statistics of bonds are expressed by a single variable which is 

defined in Subsec. 5-2-2. Here, it should be noted that A-C and 

B-D bonds simultaneously increase or decrease by the same amount, 

and so do A-D and B-C bonds.1-3) 

     For determining relative numbers of bonds, the following two 

factors should be taken into account:  i) cohesive energy and ii) 

 train energy of each bond. The strain energy here corresponds 

to a change in the cohesive energy of bonds, as discussed in Chap. 

II. As the factor 1), the cohesive energy in unstrained bonds is 

considered, and then the strain energy is included as the factor 

ii). 

     The effect of the factor i) on the statistics of bonds is 

easily understood: the number of bonds with large cohesive energy 

tends to increase at the thermal equilibrium. Since the numbers 

of two kinds of bonds increase or decrease simultaneouly, the sum 

of cohesive energy of these two bonds determines whether they will 

increase or decrease. For example, A-C bonds and thus B-D bonds 

increase if the sum of cohesive energy of them is larger than that 

of A-D and B-C bonds. 

     Next, we turn to the factor ii), i.e., the strain energy. 

In a ternary alloy, the coexistence of two or more different com-

position regions or the composition fluctuations in lattice-coher-

ent semiconductors causes some excess strain energy, since differ-

ent composition regions necessarily have different lattice con-

stants. Such mechanism cannot always be applied to quaternary 
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alloys: Consider an alloy system AIIIBIIICV-yDVin which the 
lattice constant of binary compound AD is equal to that of BC but 

there is large difference in lattice constant between AC and BD. 

Although such alloy system is hypothetical, it is very similar to 

In1 -xGaxSb1-yAsy: the lattice mismatch between InAs and GaSb is 

 0.767, while that between GaAs and InSb is 14%. If the atom ar-

rangement is random, an alloy AOI5BOI5C0.5D0.5is composed of four 
kinds of bonds. Then, large strain energy is stored in this 

alloy because of the difference in length among three of four 

bonds. Assume that it is decomposed into two regions AD and BC. 

Then, the crystal is composed of A-D and B-C bonds only. Since 

their lengths are the same, they do not strain each other. Thus 

the strain energy is decreased down to zero by such decomposition, 

even if the lattice coherency is retained between two regions. 

     Noting that bonds increase or decrease in pairs, the above 

effect can be generalized as follows: the strain energy would 

decrease with increasing the bond pair with smaller length differ-

ence, such as A-D and B-C bond pair in the above case. If, on 

the contrary, the pair of larger length difference increases, the 

strain energy would increase because these two bond largely 

strained each other. This tendency is confirmed by the calcula-

tion described in later subsections. 

     Therefore, in the analysis, following two factors are consid-

ered for determining the statistics of bonds: i) cohesive energy 

of bonds and ii) strain energy. In a general case, A-C bond and 

thus B-D bond may increase when i) the sum of cohesive energy of 

A-C and B-D bonds is larger than that of A-D and B-C bonds, and/or 

ii) the length difference between A-C and B-D bonds is smaller 

than that between A-D and B-C bonds. The effects of these two 

factors are investigated more quantitatively in the next two sub-

sections.
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5-2-2. Formalism of Free Energy 

     The free energy is expressed by 

      F  =Hb+H
s -TS(5-1) 

where Hb is the enthalpy due to the cohesive energy of bond, i.e., 

the factor i) in the last subsection, H
s the strain energy, i.e., 

the factor ii). and TS the product of the entropy S and the tem-

perature T. The statistics of bonds at the thermal equilibrium 

state are obtained by minimizing F with respect to relative 

numbers of bonds.

A. Relative number of bond and the entropy 

     Not all of the relative numbers of bonds are independent 

variables for a given atomic composition. They are conveniently 

expressed by using a single variable as follows:3) 

       XAC= xAXC + , XBC xBxC - ' 

      XAD= XAXD- , XBD= XBXD + E ,(5-2) 

where X
pqis the relative number of the p-q bond, and xpis the 

composition of atom p and satisfies the relation x
A+xB=1 or 

xC+xD=1. It is easy to see that the statistics of bonds given by 

Eq.(5-2) are always consistent with the atomic compositions. The 

  becomes zero if the atom arrangement is completely random. 

     The approximate entropy of mixing S was derived as follows:1) 

         S = NkB(-4
pqXpglnXpq+ 3Pxpinxp),(5-3) 

where N is the number of group III (V) atoms.

B. Cohesive energy 

     The enthalpy due to the cohesion of bonds, Hb, is written as
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       Hb = 4N  1 X
PghPq'(5-4) 

where hpqis the enthalpy due to the cohesion of an unstrained p-q 

bond. As noted earlier, the strain energy is taken separately 

into account by the term H
s. The 4N is the total number of 

bonds. It should be noted that the bond is less stable with 

smaller value of Ih
pgl since hpqis the enthalpy. The h is a                                                  Pq 

negative value, and its absolute value corresponds to the amount 

of the cohesive energy. 

     With the use of Eq.(5-2), Hb can be rewritten as follows: 

          Hb = H
o+ Wb 

          Ho= 4N1 x x h P q Pq 

wb = 4N{(hAC+hBD)-(hAD+hBC)} .(5-5) 

If the quaternary alloy system A1-xBXIIC1-YY                                              D
yis an ideal solu- 

tion, there is no strain energy in the alloy and the atom arrange-

ment is completely random. Then the total enthalpy becomes H
o.                                                                               0 

Since H
o is uniquely determined by the composition, only Wb is 

necessary to consider for the determination of statistics of 

bonds: the mixing enthalpy H
mis expressed by 

H
m = Hs + WbC(5-6) 

     Since h is defined as the enthalpy for the unstrained p-q 
          Pq 

bond, we can derive it from the thermodynamic properties of the 

binary compound pq, which consists of unstrained bonds. The 

entropy of mixing is zero for a binary compound, and the cohesion 

of the crystal is considered to be solely due to bonds in the mod-

el. Thus 4Nh =u corresponds to the free energy or the chem-
            Pq Pq 

ical potential of the binary compound pq. The Wb can be calcu-

lated by
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 Wb= ('AC+ UBD)-(uAD+ uBC) (5-7) 

The values of the equivalent of Wb have already been obtained for 

nine III-V quaternary alloy systems in Ref. 5. 

C. Strain energy 

    The strain of each bond is affected by what kinds of bonds 

surround it; for example, the bond tends to be greatly compressed 

when surrounded by bonds longer than the total average length. In 

the model, the strain energy of a bond is calculated in each tet-

rahedron cell. For ternary alloys, it is assumed that the strain 

of a bond is determined in various types of tetrahedra where a 

central site is occupied by a common element and surrounding sites 

by mixed elements as shown in Fig. 3-1. For quaternary alloys of 

(AB)(CD) type, one need consider both group III and group V tetra-

hedra; for example, the B-C bond represented by the double line in 

Fig. 5-1 is simultaneously contained in an A(3)B(1) (group III) 

tetrahedron and a C(2)D(2) (group V) tetrahedron. In general, a

 eA  OB  OOH  OD 

Fig.5-1 Tetrahedra in the qua-

   ternary alloy Al -xBxCl-yDy. 
   The B-C bond represented by a 

  double line is included in 

  A(3)B(1) (group III) and 

  C(2)D(2) (group V) tetrahedra.

 OA

0

OB

0

Oc 0

Fig.5-2 Zincblende-like 

   cell which consists of 

  A(3)B(1) and C(2)D(2) 

   tetrahedra.

unit
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B-C bond can be contained in A(4-i)B(i) for  i=1,2,3,4 and 

C(4-k)D(k) for k=0,1,2,3 tetrahedra. Note that tetrahedra with-

out either B or C atom cannot contain B-C bond. Thus, there are 

16 kinds of local environments for B-C bonds in an alloy, and the 

B-C bond can have 16 different amounts of strain energy, one for 

each local environment. 

    Another factor influencing the bond strain is the average 

lattice constant of the alloy crystal within which the tetrahedra 

are embedded; for example, a bond length in a certain type of tet-

rahedron would decrease when the lattice constant of the crystal 

decreases. Therefore, in this model, the strain energy of bonds 

is determined from a) the type of group III tetrahedron, b) the 

type of group V tetrahedron, and c) the lattice constant. 

     In calculating the strain energy in quaternary alloys, the 

unit cells such as shown in Fig. 5-2 is used. It should be noted 

that the crystal represented by this unit cell consists of only 

A(3)B(1) and C(2)D(2) tetrahedra. Thus the B-C bond (double 

line) in Fig. 5-1 and that in Fig. 5-2 are surrounded by the same 

tetrahedra. Although some other A(3)B(1) and C(2)D(2) unit cells 

are possible, they are all obtained by symmetric operations from 

the cell in Fig. 5-2, and thus all of them are equivalent. Let 

the size of the unit cell be equal to the lattice constant of the 

alloy in which the tetrahedra shown in Fig. 5-1 are embedded. 

Then, with respect to the above three factors a), b), and c), the 

environment around the B-C bond in Fig.5-1 is the same as that in 

Fig.5-2, and thus the strain energy is considered equal for both 

B-C bonds in the model. The lattice constant of the alloy is 

calculated from the atomic compositions by using the Vegard law. 

     The strain calculation in the unit cell was carried out by 

taking account of the deviation from VCA structure for both sub-

lattices: the strain energy of the ordered alloy represented by a 

unit cell such as shown in Fig. 5-2 is minimized by moving all
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atoms under a given lattice constant, and then the strain of each 

bond is determined. First, calculation was done for the case 

where the size of the unit cell is equal to the average lattice 

constant weighted by the composition of that cell. The amounts 

of angle distortion and/or length deviation of a certain kind of 

bond are quite different among unit cells. Then, strain energy 

is calculated for several unit cells by varying the size of the 

cell. The results show that the angles between bonds depend 

little on the size of the cell. This indicates that the angle 

distortion energy depends weakly on the size of the cell. Thus, 

it can be assumed that the change in the cell size does not much 

influence the angle distortion energy. It does influence the 

length deviation energy: if the size of the unit cell changes by 

 pa, each bond within it changes by //4pa. The strain energy of, 

for example, a B-C bond in A(4-1)B(i)C(4-k)D(k) unit cell is 

expressed as 
0 

eBC(i,k) =-1eBC(i,k) +-1aBC{dBC-dBC(i,k)}2 , (5-8) 

whereCBC(i,k) is the strain energy stored in the angles between 
B-C bond and its neighbors. The factor 1/2 appears because the 
strain energy of each angle will be counted twice when the strain 
energy for all bonds is summed up. The second term is the length 

0 
deviation energy of the B-C bond. Here,dBCand aBC are the 
unstrained bond length and the elastic constant of length devia-
tion of B-C bond, respectively, and dBC(i,k) is the length of B-C 
bond in A(4-i)B(i)C(4-k)D(k) unit cell. It was assumed that the 
size of a unit cell does not influence CBC(i,k) but dBC(i,k), as 
discussed above. 

     The strain energy of all B-C bonds in an alloy is given by 

            H
s C= 4NY PBC(i,k,r)gBC(i,k),(5-9) ik 

where PBC(i,k,) is the relative number of B-C bond contained in 
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 A(4-i)B(i) and C(4-k)D(k) tetrahedra, and given by 

                                X4-iXi+4-k Xk 
          PBC(i,k'E)3 1C.-13CkAC3BC3BD(5-10) 

                          XBxC 

where 3Cm is the combination number and defined as zero when 

m=0,4. For other bonds, i and 4-i (k and 4-k) are exchanged 

according to the exchange between A and B (C and D). The 

P
pq(i,k,E) satisfies 

1 Ppq(i,k,E) = Xpq.(5-11) 
  ik 

     The total strain energy is expressed by 

Hs = 1 Hsq = 4N1 1 P (i,k,E)e (i,k) . (5-12) 
Pq Pq ikPq Pq 

5-2-3. Numerical Results 

A. In GaAs1 -P               YY 

     First, the results for In1 -xGaxAs1-yPy system are shown, and 

it is discussed how each term influences the equilibrium value of 

      Figure 5-3 shows H
s, WbE, and TS as functions of E for the 

composition x=0.5 and y=0.5 at the temperature T=1000 K. The 

3 I 

02 

70H1no.5Ga0.5Aso.5~.5 Fig.5-3 Strain energy Hs, cohesive 
vi^sIT=1000 Kenergy term Wb , entropy term TS, 
0./WnIand the mixing free energy 

Z0IF©Hs+WbC-TS as functions of C for 
wF m=Hs•wbt IS                                           In

0.5Ga0.5As0.5P0.5at T=1000 K. -1                                       P
ositive (negative) i; indicates 

-0 .100.1 more In-As and Ga-P (Ga-As and 
InP~InAs 
GaAsGaPIn-P) bonds. 
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mixing free energy F
mis the sum of these three terms and differs 

from the total free energy F by  Ho, which is independent of . 

The 
o represents the equilibrium value of at which Fm is mini-

mum. As seen from Fig. 5-3, Hs increases with , while Wb 

decreases. Thus, their effects compensate each other to some 

extent, and the
0is close to zero because of TS being maximum at 

•0 . However, because the slope of H
sV=                                           near0 is somewhat larg- 

er than that of Wb , i.e.,IWbI,the o becomes negative (-0.018). 
The dependence of Hson is in accordance with the prediction 
that H

swill decrease if the pair of bonds with smaller length 
difference increases. In the In1 -xGGaxAs1-yPysystem, 

dI
nP-dGaAs=0.093 A and dlnAs-dGaP=0.263 A. 

     Figure 5-4 shows the temperature dependence of 
o for x=0.5 

and y=0.5. At low temperatures, TS is negligible, and thus 

H
s+Wb determines Eo. The result near T=0 K indicates that 

H
s+WbC is minimun at =-0.09. As T increases, the entropy term 

begins to dominate, and 
o is close to zero at temperatures of 

usual crystal growth. 

B. Other quaternary alloy systems 

     Next the results are shown for other eight quaternary alloy 

systems at x=0.5, y=0.5, and T=1000 K. When assigning the ele-

ment to the symbol, A,B,C,or D, we put the heavier element to

   0 

Sa —Q05 

   -0.1
 0

 

I  n0 .5  Ga0.5As0.5 P0.5

500 1000 
TEMPERATURE (K)

Fig.5-4 Temperature 

   of the equilibrium 

   for In0
.5GaAs                 0.50.

dependence 

value of 

5P0.5.
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   (g)(h) 

 Fig.5-5 Figures similar to Fig.5-3 for quaternary alloys other than 

     In1 -xGaxAs1-yPyat x=0.5, y=0.5, and T=1000 K. 

A(C), as in In1 -xGaxAs1-yPy. 

     The results are shown in Figs. 5-5. On the basis of quali-

tative features of the results, the nine alloy systems are classi-

fied into the following three groups. 

1) In1-xGaxC1-yDy(CV, DV=Sb, As, P; Figs.5-3,-5 a,b): wbE de- 
creases and Hs increases with E. However, the slope of Hs at E=0 
is larger than lwbl. Thus, Eo becomes negative. In the alloy 
of In0

.5Ga0.5Sb0.5As0.5,Hsdecreases down to a very small value, 
0.03kcal/mol at the lower limit of E (E=-0.25) because the length 

difference between In-As and Ga-Sb is very small, as mentioned in 

Subsec. 5-2-1. 

2)In1-xAlxCV-yDV(Figs.5-5 c-e): the value of H is not much dif- 
ferent from that in the corresponding

VIn1-xGaxC/lVyDysystem, be- 
cause the elastic properties of Ga-C and Al-C bonds are very 

similar. However,l~blis larger than that in InxGaxC1-yDy. 
Thus, though Hs dominates over wbE in In1-xGaxC1-yDy, the varia-
tions of H

s and wbE compensate each other almost completely in 
In1-xAlxC1-yDy, and thus Eo is very close to zero.
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3) Ga1-xAlxC1-yDy (Figs.5-5 f-h):  wbC decreases with C, while Hs 
weakly depends on c and is nearly symmetric with respect to the 

line of C=0. Thus, Co is positive owing to the variation of wbC. 
The even-function-like dependence of H

s on C is due to the fact 
that dG

aCv-dAlCv; for example, in GaAlAsP, d=dand                                  1-xx1-yyGaPA1P 
dG

aAs-dAlAs, and thus, as concerns the elastic properties, the 
increase of Ga-P and Al-As bonds is almost equivalent to the in-

crease of Al-P and Ga-As bonds. On the other hand, the chemical 

properties of Ga-CVand Al-CV bonds are quite different. Thus wb 

can be a large negative value relative to the variation of H
s.                                                                          s 

    The composition dependence of C
o at 1000 K is shown in Fig. 

5-6 for nine systems. The wb is independent of the composition 

as seen in Eq. (5-5). The value of H
s depends on the composition 

rather strongly, but the slope of H
s at C=0 depends weakly; for an 

example of In1 -xGaxAs1-yPy, the slope varies within ±15% from that 

at x=0.5 and y=0.5. For In1 -xAlxSb1-yAsy and In1-xAlxSb1-yPy, in 

which two factors compensate each other, the sign of
0changes 

owing to the small variation in slope of H
s. Except for these 

two systems, the dependence in Fig. 5-6 is mainly influenced by 

change in the entropy: a certain amount of deviation of C from 

zero causes larger decrease in S, as x or y approaches zero or 

unity. In addition, the variable range of C diminishes: 

-min{(1-x)(1-y),xy}< C <min{(1-x)y,x(1-y)}, (5-13) 

since X >O. (Refer to Eq.(5-2)) For ternary alloys and binary 
      Pq 

compounds, there is no freedom in the statistics of bonds. Thus, 

0=0 at the sides of each rectangle. 

5-2-4. Interpretation of the Results 

    The following features are commonly observed from the results 

for all quaternary alloy systems: wb is negative, and H
s increases
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with except for Ga1-xAlxC1-yDy systems where  Hs weakly depends 
on  . This is not accidental but can be interpreted as follows. 

     Consider the covalent radius r for each atom. The p-q bond 

length d is approximately given by r +r (or the covalent radii  PqP q 

are defined so that r +r =d ). If it is assumed that r>rand      P
Vq pqAB rC>rD for A1-yDy system, then, 

(rA+rC)-(rB+rD) > I(rA+rD)-(rB+rC)I.(5-14) 

According to the consideration in Subsec. 5-2-1, Hs becomes large 

with the increase in the numbers of A-C and B-D bonds, because the 

pair of A-C and B-D strain each other more largely than A-D and 

B-C pair. Since the heavier atom usually has larger covalent 

radius and is assigned to A(C), the relations rA>rB, rC>rD are 

satisfied except Ga1-xAlxC1-yDy systems. Thus, Hs increases with 
more A-C and B-D bonds, i.e., with positive for In1-xGa C1-DV 

                                                       Yy 

and In1-xAlxC1-YYDysystems. We have rAl-rGafor Ga1-xAlxC1-YDVY, 
since dAlCv-dG

aCv and thus 

I(rGa+rC )-(rAl+rD )I-I(rGa+rD )-(rAl+rC )I 
=(r

Ga+rC -rAl-rD )-(rAl+rC -rGa-rD ) 

=2(r
Ga-rAl) 

-0 .(5-15) 

Therefore, Hs depends weakly on for Gal-xAlxC1-yDysystem. 
     The sign of wb can also be understood by considering covalent 

radii. The negative cob indicates that the sum of cohesive energy 

of A-C and B-D bonds is larger than that of A-D and B-C bonds. 

The cohesive energy of the covalent crystal is considered to be 

approximately proportional to d-2.5,6) and under the conditions of 

rA>rB and rC>rD,the following relation is satisfied: 

(rA+rC)-2.5+(rB+rD)-2.5 > (rA+rD)-2.5+(rB+rC)-2.5. (5-16)
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This indicates that the sum of the cohesive energy of A-C and B-D 

bonds is larger than that of A-D and B-C bonds, i.e.,  Wb<0, under 

the above conditions. As mentioned earlier, these conditions are 

satisfied for all quaternary alloys except for Gal-xAlxCaDy. 
For A1CV compounds, the cohesive energy is larger than that ex-

pected from the d-2.5 dependence; for example, although the bond 

lengths of AlAs and GaAs are almost the same, the melting point of 

AlAs is significantly higher than that of GaAs, which implies that 

the cohesive energy of Al-As is larger than that of Ga-As. Thus, 

one should regard dA1& and thus rAl as smaller than the crystal-

lographic one when the d-2.5 dependence of cohesive energy is as-

sumed. Such effective bond length was found to be useful to pre- 

dict some electronic properties of A1CV, although its physical 

basis is not clear. ) Then, as concerns the cohesive energy, we 
can expect that Eq. (5-16) is satisfied for all quaternary alloy 

systems discussed here. Thus Wb is negative for all quaternary 

alloy systems. 

     As described in the last section, the qualitative features of 

the results depend on species of the group III elements. This is 

ascribed to the fact that the cohesive energy of Al-CV bond is 

larger than that expected from its crystallographic length: the 

effect of Wb becomes relatively large as compared with that of H
s 

when the alloy includes Al. 

     For binary or ternary Al -xBxC alloy, the atom arrangement is 

described in term of order (preference for unlike neighbor pair) 

or cluster (preference for like neighbor pair). However, it is 

difficult to relate the value of to order or cluster in quater-

nary alloys. For example, if E becomes positive, i.e., A-C bond 

increases, then the triplet A-C-A increases, but A-D-A decreases 

because of the decrease of A-D bond. Then, in general, one can-

not conclude whether the like pair A-A increases or not. Rather, 

   is the measure for the uniformity in an alloy. If A-C and B-D 
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bonds increase, the region including both A and C atoms more than 

the average composition increases, and the region with more B and 

D atoms also increases. Thus, there would be two types of re-

gions with different compositions in the alloy, i.e., the alloy 

would become nonuniform. The alloy is the most uniform at  =0, 

and the value of Io1 represents the degree of nonuniformity. 
     At x=0.5 and y=0.5, like pairs necessarily increase, i.e., 

clustering occurs with the increase of ICI, because 

(0.25+0)2+(0.25-0)2= 0.25+42, where the two terms in the left-
hand side are the probabilities of appearance of two different 
triplets including the same like-pair, such as A-C-A and A-D-A. 
The increase in Hs at nonzero in Ga1-xAlxC1-YDVYis due to the 
cluster; the strain energy tends to increase by the clustering as 

discussed in the previous chapters. 

5-3. BOND LENGTHS 

5-3-1. Bond Lengths in Unit Cells 

     The results given in this subsection are obtained on the 

basis of the assumption that an alloy is composed of a single type 

of unit cell such as shown in Fig. 5-2. This is not a realistic 

approach since an actual quaternary alloy is composed of various 

types of unit cells. In addition, the calculation is limited to 

an alloy with certain compositions, i.e., multiples of 0.25. 

However, the results give a basis for understanding how the 

lattice is relaxed in quaternary alloys of (AB)(CD) type. Here, 

the results for In1 -xGaxAs1-YPYare given as an example, but they 
can be generalized for other quaternary alloys. The results for 

average bond lengths are given in the next subsection. 

A. Equilibrium position of atoms 

    The equilibrium positions of atoms are determined by varying 
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all of the nearest- and second-nearest-neighbour distances and 

minimizing the strain energy of the unit cell. For all ternary 

alloys, the mixed sublattice, e.g., the sublattice for In and Ga 

in In1 -xGaxAs is found to be an undistorted virtual crystal fcc 

lattice even after the minimization of the total strain energy. 

Figure 5-7 illustrates how different the relaxation of the mixed 

sublattice is from that of the common element sublattice, taking 

an In0
.5Ga0.5As as the example. In this alloy, an In atom or a 

Ga atom is surrounded by 4 identical atoms, i.e., 4 As atoms, 

whereas As atoms are surrounded by two kinds of atoms, e.g., 2 In 

atoms and 2 Ga atoms. Thus, the configuration around In or Ga 

atom is symmetric, whereas that around As atoms is asymmetric. 

This asymmetry causes As atom to move from the VCA lattice site. 

In a random alloy, this distortion of the As lattice breaks the 

symmetry around In and Ga atoms. However, such effect is of the 

second order and the distortion of the cation sublattice is ex-

pected to be small. In the approach based on the single unit 

cell model, the periodicity of the atom arrangement is assumed. 

Because of this assumed periodicity, a Ga atom or an In atom re-

mains just at the center position among 4 As atoms. 

     These theoretical results qualitatively explain the EXAFS  re-
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 sults for In1 -xGaxAs that the cation sublattice remains relatively 

undistorted compared with the anion sublattice8) and support the 

validity of the assmption used for ternary alloys in Chap. III. 

     In an In1 -xGaxAs1-yPy quaternary alloy, both sublattices ob-

tained by the calculation are distorted from fcc lattice. It is 

because atoms of both sublattices are surrounded by two different 

kinds of atoms in quaternary alloys of (AB)(CD) type. 

B. Bond length 

     Figure 5-8 shows the contour lines of bond lengths for four 

bonds in In1 -xGaxAs1-yPy alloy. For the composition to which 

this approach may not be applied, the value of bond lengths are 

obtained by linear inter- or extra-polation. Although the shape 

of contour line would somewhat depend on the method of inter- and 
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c)II. 
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extra-polation, the results would be good enough for qualitative 

discussion. The total average bond length or VCA bond length is 

shown in Fig. 5-9. As seen from these figures, some qualitative 

features can be summarized in the following: 

i) The change in bond length is the largest in In-As bond and the 

smallest in Ga-P bond. 

ii) For all of four bonds, the spacing between contour lines be-

comes narrow where Ga composition is large, and thus bond length 

distortion increases on an average as Ga composition increases. 

iii) The contour lines in Fig. 5-8 are nearly parallel to those in 

Fig. 5-9, and thus the length of each bond barely depends on the 

composition, if the lattice constant or the average bond length is 

constant. 

     These features are similar to those obtained for (ABC)D type 

quaternary alloys and can be interpreted similarly. Feature i) 

is due to the difference in a. The Ga-P bond has the largest a 

among the four bonds and thus its distortion results in large 

strain energy, whereas In-As bond is the weakest and easy to dis-

tort. Feature ii) is attributed to the fact that Ga-based com-

pounds have large  13 than In-based compounds; as Ga composition 

increases, the average (3 increases and therefore a bond-angle dis-

tortion is accompanied with more strain energy. Thus, in Ga-rich 

alloy, the strain energy becomes minimum at the state with more 

 GaP[nP  

  /7/ ti .Q 
            v VCAo NFig.5-9 Contour chart of the 

                            yo-,                     n VCA bond length in In1-xGaxAs1-YPY.    //// nAsThe Vegard law is assumed.                                     The numerical values indicate bond 

  GaAslengths in A. 
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Table 

in In 

EXAFS 

cell

5-I. Comparison of the calculated values 

     As1 -yP alloys with the experimental 

 measurement./ The calculation is based 
                                                       0 

model. Bond lengths are given in A.

of the 

 values 

on the

bond lengths 

obtained by 

single unit

COMPOSITION Ga-As In-As Ga-P  In

x=0.47,y 

x=0.5, y

=0, 

=0

exp. 

cal.

2.47 
2.473

2.60 

2.601

x=0.26,y 

x=0.25,y

=0.42 exp. 

=0.5 cal.
2.47 

2.468
2.59 
2.604

2. 

2.

40 

400 2.543

bond length distortion and less bond angle distortion than in In-

rich alloy. Feature iii) indicates that each bond length depends 

on the average properties of the lattice surrounding the bond. 

     Theoretical results are listed in Table 5-I for a comparison 

with EXAFS experimental data.9) The experimental results are 

accidentally available for the crystal with composition close to 

those of unit cells. The theoretical results agree with them 

very well.

5-3-2. Average Bond Lengths 

A. c-dependence 

    The average bond lengths, dpq's, are calculated by the 

equation: 

            d =X11 Ppq(i,k,) dpq(i,k)(5-17) 
            PqPq 

As can be seen from this equation, each average bond length de-

pends on and atomic composition. Figures 5-10 show the average 

bond lengths as functions of for In1-xGaxAs1-yPy at T=1000 K. 

At the composition x=0.5, y=0.5 (Fig.5-10 (a)), In-P and Ga-P bond 

lengths increase with , whereas In-As and Ga-As lengths decrease. 

First these -dependences are interpreted taking Ga-As bond as the
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example. As mentioned earlier, the bond strain is influenced by 

what bonds are its neighbours. With a change in  , two kinds of 

replacements of bonds occur in the nearest-neighbourhood of a 

Ga-As bond, one around the Ga atom, and the other around the As 

atom. The probabilities of finding As and P atoms at the nearest 

neighbour site of Ga are XG
aAs/x and XGaP/x, respectively; by 

using , they are expressed by {x(1-y)-}/x and {xy+}/x. If 
increases by g, a certain portion (QE/0.5) of As atoms are re-

placed by P atoms around Ga atoms, i.e., Ga-As bonds are replaced 
by Ga-P bonds. Similarly, g/0.5 of Ga-As bonds are replaced by 
In-As bonds around As atoms. The probabilities of these two 
replacements are equal, i.e., g/0.5. However, the replacement 
from Ga-As to In-As has larger influence than that from Ga-As to 

                                                                     0 Ga-P; Ga-P is shorter than Ga-As by 0.088A, while In-As is longer 

                              0 than Ga-As by 0.175A. Thus, a Ga-As bond tends to be surrounded 
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by longer bond with the increase in  C. Then, a Ga-As bond be-

comes shorter on the average so that the volume of the tetrahedra 

including it remains matched to the average value of the surround-

ing crystal. 

     Next, we turn to In-As bond. With the increase in E, In-P 

bonds around In and Ga-As bonds around As are replaced both by 

In-As bonds in the nearest-neighbourhood of an In-As bond. By 

these replacements, the lengths of bonds surrounding the In-As 

bond increase on the average. Then, for matching to the average 

volume, the average In-As bond length decreases. The c-depend-

ences of In-P and Ga-P lengths are interpreted similarly to those 

of Ga-As and In-As lengths, respectively. 

     The results at the composition x=0.2, y=0.2 are shown in Fig. 

5-10 (b). Here, Ga-As bond length increases with C, in contrast 

to Fig. 5-10 (a). This is because around a Ga-As bond the re-

placement from Ga-As to Ga-P occurs four times as frequently as 

that from Ga-As to In-As with increase in C: the probability of 

the former replacement is AC/0.2 whereas that of the latter is 

AC/0.8. Then, a Ga-As bond tends to be surrounded by shorter 

bond with increase in C, and thus its average length becomes long-

er. The E-dependeces of other bond lengths are similar to those 

shown in Fig.5-10 (a) and can be interpreted similarly. 

     The total average bond length or the bond length of VCA, 

dVCA'is shown by a broken line in Fig. 5-10.The bond lengths 
     o 

of the binary compounds or unstrained lengths dpq's are also indi- 

cated by arrows at the right side of the figure. The difference 
0 

between d
pqand average bond length, dpq, corresponds to the aver- 

age length deviation. For the example of x, y=0.5 (Fig. 5-10 

(a)), the length deviation is large for In-As and Ga-P bonds, 

while it is relatively small for Ga-As and In-P bonds. This 

tendency can be easily interpreted from the fact that the differ-

ence between dVCAand unstrained length is large for In-As and 

Ga-P, while small for Ga-As and In-P. A bond with large length 
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deviation has large strain energy. Thus, as shown in Fig. 5-3, 

the strain energy increases with the increase in  , i.e., with the 

increase of In-As and Ga-P bonds. 

B. Composition dependence 

     The contours of the average bond lengths are shown in Fig. 

5-11. The bond lengths represented by solid lines are calculated 

from the values of 
o obtained at T=1000K. The results are very 

similar to those given in the last subsection, and the discussions 

given there hold for the average bond lengths, too. However, the 

length deviations obtained here are larger than the previous re-

sults. In the last subsection, only the least distorted unit 
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Fig.5-11 Contour charts of the average bond lengths for an 
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   numerical values indicate bond lengths in A. The bond lengths 

   represented by solid lines are calculated from the equilibrium 

   values of while those represented by dashed lines by assuming 
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Table  5-11. Comparison of the calculated average bond lengths with 

the results of EXAFS measurements for Inl -xGaxAslsyPy. The EXAFS 

data are from Ref.9. Bond lengths are given in A.

x ,

   Ga-As 

exn. cal.

   In-As 

exn. cal.

   Ga-P 

exn. cal.

In-P 

 cal.

0.47, 0 

0.40, 0.11 

0.26, 0.42

2.47 2.494 

2.47 2.492 

2.47 2.491

2.60 2.587 

2.60 2.590 

2.59 2.592

- 2.433 

2.40 2.433

- 2.537 

- 2.540

cell among 25 cells is considered, e.g., In(3)Ga(1)As(2)P(2) cell 

                               In the present model, other cells, for In0
.75Ga0.25As0.5P0.5' 

which are more largely strained, are included, and thus the bond 

length deviations become larger on the average. 

    The average bond lengths at =0 are shown by broken lines in 

Fig. 5-11. As seen from Fig. 5-6 ,o<0 for In1 -xGaxAs1-yPy sys-

tem. For Ga-P and In-As bonds, length deviation is smaller at 

=
o than at C=0, i.e., both bond lengths approach to those in the 

respective binary compounds. This is because at any composition 

Ga-P becomes shorter and In-As becomes longer as decreases, as 

shown in Fig. 5-10 for examples. On the other hand, Ga-As length 

decreases in the composition region of xGa<xAs/2 while increases 

when xG
a>xAs/2 as compared with the case of C=0. We have already 

interpreted the fact that the sign of 3dGaAs/a changes depending 

on composition by comparing Fig. 5-10 (a) and (b). (BdInP/3 )xCo 

is negative when xI
n>x,/2 and positive when xIn<xP/2. 

C. Comparison with the EXAFS data 

     Table 5-II lists the results of the EXAFS measurements with 

the calculated average bond lengths at the same compositions. 

The agreement between them is fairly good, but the calculated 

lengths tend to deviate from those in the corresponding binary 

compounds further than the experimental ones do. This discrepan-

                                        -85-



cy would be mainly due to the assumption used here. Some error 

could not be avoided in the EXAFS measurements and data analyses. 

5-4. DISCUSSIONS 

     The statistics of bonds could be experimentally determined 

from the lattice vibration spectra. For some alloys, there ap-

pear several phonon modes corresponding to bonds; for example, 

In-As, Ga-As, In-P, and Ga-P like phonon modes appear within a 

certain composition range for In1 -xGaxAs1-yPy, and the intensity 

of the signal of each mode is considered to represent the number 

of the oscillator, i.e., the corresponding bond. It have been 

reported that results of infrared reflectivity measurements on 

In1 -xGa As1-yPy can be explained well by assuming xpq=xpxq 

Co=0., i.e.,      10This would be consistent with the results that Co is 

close to zero for In1 -xGaxAs1-yPy. However, the accuracy of such 

experimental approach would not be good enough to estimate a small 

deviation from  C=0. It seems that the experimental technique for 

determining the statistics of bonds is yet to be developed. 

     The pairwise interaction model (PIM) has been used for dis-

cussion about the atom arrangement of quaternary alloys and gives 

very different results from the present ones.1) For example, 

according to PIM, enthalpy due to the second-nearest interaction 

decreases with C for In1 -xGaxAs1-yPy, and consequently Co is rela-
tively a large positive value. However, PIM seems inappropriate 

for III-V alloys since it neglects the strain energy, as discussed 

in Chap. II. 

     In the model proposed here, a bond is chosen as a basic fig-

ure of the thermodynamic analysis, and thus the correlation among 

atoms is considered only to the lowest order: single variable C is 

not enough to describe the atom arrangement of quaternary alloys. 

For example, the probability of the appearance of a tetrahedron in 

fact cannot be uniquely determined from the relative numbers of 
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bonds but should be treated as another independent variable; in 

deriving Eq.(5-10), it is assumed that there is no excess correla-

tion among bonds. Equation (5-10) is reduced to a simple binomi-

al distribution for tetrahedra in ternary alloys. (This does not 

mean that the arrangement of bond is completely random: the un-

physical situations, such as A-D bond sharing an atom with B-C 

bond, are excluded in deriving the entropy.1)) For a more accu-

rate analysis, one need choose a tetrahedron as a basic figure, 

since the short-range order on a sublattice influeces the strain 

energy. However, this effect is rather small; for example, the 

decrease of the strain energy due to the short-range order is 

about 10  % for In1 -xGaxAs at T=1000 K, as shown in Fig. 3-8. 
Thus, the qualitative features of the results given here will not 

be affected by neglect of the short-range order. 

    In calculating the strain of a bond within a certain atomic 

configuration, it is assumed that the strain depends on the near-

est bonds, i.e., types of tetrahedra. However, the second or 

further bonds would also influence the bond strain. If the fur-

ther bonds are included in the analysis, there appear the follow-

ing differences in the results. i) In the present model, there 

are 16 distinct environments for each kind of bond in an alloy. 

If the further bonds are included, a greater number of distinct 

environments are possible and thus the number of different lengths 

becomes much more than 16 even for a single kind of bond. ii) 

The lattice relaxation of longer range can be taken into account. 

Then, in general, bonds tend to relax further, and dpqwill get 
0 

closer to d.It would result in a better agreement between the 
         Pq 

calculated and the experimental results. 

5-5. SUMMARY 

    The relative numbers of bonds in III-V quaternary alloys of 

(AB)(CD) type have been derived by the thermodynamic analysis. 
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In calculating the strain energy, a given type of bond is consid-

ered to have 16 different amounts of strain, one for each distinct 

configuration of the surrounding bonds. The results are summa-

rized as follows: 

i) In In1 -XGaXAsl-yPy, Ga-As and In-P bonds slightly increase from 

the value of completely random atom arrangement to reduce the 

strain energy, although the sum of cohesive energy of Ga-P and 

In-As is larger than that of Ga-As and In-P. The same tendency 

is commonly observed for other Inl -X-Ga CDVsystems: when the                                       Y Y 

heavier group V atom is assigned to C , In-DVand Ga-CV bonds 

increase compared with the random arrangement case. 

ii) For Gal-XAlXC1-yDV,Vthe effect of the cohesive energy is pre- 
dominant: Ga-C and Al-D bonds increase. 

iii) The effects of both energies compensate each other almost 

completely for In1-XAlXC1-yDy systems, and thus the bond statis-
tics are nearly equal to those of the random arrangement case. 

iv) On the basis of the above results, the average bond lengths in 

In1 -XGaXAs1-yPy have been obtained, and their dependences on the 

bond statistics and composition have been discussed. The calcu-

lated average bond lengths agree fairly well with the EXAFS data. 
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VI. ATOM ARRANGEMENT AND MATERIAL PROPERTIES

6-1. INTRODUCTION

     The atom arrangement affects various aspects of material 

properties. In this chapter, the following four subjects are 

discussed mainly in terms of relation with tendency in atom 

arrangement. 

 i) Stability of superstructures of ternary alloy systems. 

ii) Alloy scattering of carriers in ternary alloys. 

iii) Mechanical properties: solution hardening in ternary alloys. 

iv) Lattice constant and band gap of quaternary alloys of (AB)(CD) 

type.

6-2. STABILITY OF ULTRATHIN SUPERLATTICES OF TERNARY ALLOY SYSTEMS

     Properties of ultrathin superstructures (or superlattices) of 

 III-V semiconductors are extensively investigated since they are 

free from various phenomena inherent in alloys, e.g., alloy scat-

tering.1'2) Owing to recent development of crystal growth tech-

nology, mono- and bi-layer superstructures become possible to 

grow.3'4) However, if structural stability of a superstructure 

is far more inferior to that of a bulk or a single-layered alloy, 

a superlattice seems not to be suitable to device applications. 

     In the analysis, the free energies are derived for mono- and 

bi-layer superstructures of III-V ternary alloy systems of average 

composition x=0.5 as the function of order parameter or structural 

completeness. If the free energy is minimum at a certain degree 

of ordering, a partially ordered structure is stable and will not 

collapse further. Otherwise, it will collapse to a random atom 

arrangement. Thus, the derivation of free energy gives what 

orderings of atoms are stable in superstructures.
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6-2-1. Equation for Free Energy of Superstructures 

     Two kinds of sites can be settled in the mixed sublattice of 

an alloy with long-range order as shown in Fig. 6-1. A and B 

atoms occupy a and  13 sites, respectively, in a completely ordered 

structure. For specifying the degree of ordering or complete-

ness, the Bragg-Williams order parameter cp is employed; it is 

defined by 

cP = 2r - 1 ,(6-1) 

where r is the probability of an a site occupied by an A atom 

which is equal to the probability of a (3 site occupied by a B 

atom.5) cp=0 for a random alloy where r=0.5, whereas cp=1 for a 

completely ordered structure where r=1. 

      With the use of the Bragg-Williams approximation,6) the en-

tropy is expressed as 

              Nk 
        S = -(1+cp)ln{ 12c-}+(1-p)ln{12y}](6-2) 

     Enthalpy is calculated by the same approach as described in 

Chap. III, i.e., the strain energy is calculated for each type of 

tetrahedron, and the mixing enthalpy is obtained by summing up the 

energy for all tetrahedra. The strain energies of tetrahedra, 

i's are shown in Fig. 3-2 and 3-3, and the values at x=0.5 are 

used in the analysis for the superstructure of average composition 

x=0.5. At composition x=0.5, c2<e1=e
3<c0,e4, as can be seen in 

the figures. 

O O O O OOO•O.;0 
• • • • 

Fig.6-1 Atom sites a) in monolayerOo0o00.00.0o O.O.O.O       ..• 

  superstructure on (100) surface O.O.O.O.O Ta(DeC-)* 
  and b) in bilayer superstructure©•©•©.(:)Q<too>0,9O.0.0o•Oo.c111) Iv 

  on (111) surface. The dark cir- O O O O OO.O.O.O.0 
• • • • 

  cle denotes the common element 0 0 0 0 0 0 0 0 0 0 
(a)(b) 
   atom. O 

a SITE ©13 SITE 
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6-2-2. Free Energy and Equilibrium State 

A. Monolayer superstructure 

 i) On (100) surface 

     In this structure, as shown in Fig. 6-2, two a sites and two 

(3 sites constitute a tetrahedron. From the definition of r given 

in the last subsection, the probabilities of an a site occupation 

by an A atom and by B atom are r and 1-r, respectively, and vice 

versa for a (3 site. Then, the relative numbers of cells, ni's 

are expressed by using r as follows: 

              n0= n4 = r2(1-r)2 

             n1 = n3 = 2r3(1-r) + 2r(1-r)3 

          n2 = r4+ 4r2(1-r)2+ (1-r)4(6-3) 

From these and Eq. (6-1), ni's are easily calculated as functions 

of cp. 

     The mixing free energy for the monolayer superlattice can be 

obtained by using Eqs. (6-1)—(6-3). It is 

     Fm=-N1--6{(c0+e4)(cp4-2(p2+1)+4(E1+£3)(-cp4+1)+2c2(3cp4+2cp2+3)] - 
  - TS(6-4) 

    tam)0 
`rte 

•• (a)     t4. 
                      OOO ¶(111)(c 

 115,•Fig.6-2 Tetrahedrons (groups of         QOdSITE—
•{/sites) in monolayer supersruc- 

 (~ - 1(110)OOf3SITE 
                                       tures on a) (100), b) (110),     • 

      1111n (b)and c) (111) surface.
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Fig.6-3 Mixing free energy of mono-

   layer superstructure of (InGa)As 

   system as a function of cp.

AlAs-GaAs 

AlSb-GaSb 

InP-GaP 

InAs-GaAs 

GaAs-GaP 

InAs-InP 

GaSb-GaAs 

GaSb-GaP

0.15 

 4.0 
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492 

139 
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559 

1283

Figure 6-3 shows F
m as a function of cp at some temperatures. The 

equilibrium state of the atom arrangement is obtained by minimiz-

ing the free energy. Its value of cp, cp0 is given by aF/aq=0: 

                               1+cp 

          e"cp03-C'cp0+ 2kBTln{---------1-T0} = 0,(6-5) 

C" =0+ C4- 4e1- 4e3+ 6c2 

C' = C0+ e4- 2c2 

From the results of Chap. III, e'>>a">0. Equation (6-5) has non-

zero value of solution when temperature is lower than T
o given by 

0+4- 2e2 T
o 4kB(6-6) 

The values of T
o for several ternary alloy systems are listed in 

Table 6-I. The dependence of cp on T/T
o for In1-XGaXAs is shown 

in Fig. 6-4. This dependency is not much different among materi-
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als. 

ii) On (110) surface 

    As shown in Fig. 6-2(b), 2 a sites and 2  13 sites constitute a 

tetrahedron, which is the same as on (100) surface. Thus the 

expression of Fm and the equilibrium value of p are the same as on 

(100) surface. 

iii) On (111) surface 

      In this structure, the half of a whole number of tetrahedron 

cells are composed of 3 a sites and 1 S site, and the other half 

are composed of 1 a site and 3 13 sites. Accounting a possible 

occupation by atom A and B in the tetrahedron as in the case of 

(100) surface, we obtain the free energy of the superstructure on 

(111) surface. The free energy is 

   Fm={(c0+c4)(-cp4+1)+4(c3+c1)(cp4+1)+6c2(-cp4+1)] - TS , (6-7) 

and the condition aF/acp=0 is given by 

                         1            -c"cp03+ 2kBTln{1~O}= 0 .(6-8) 
Since c">O, the nonzero value of cp0 can exist under a certain tem-

perature. It occurs only at extremely low temperatures because 

1.0 

9 
m 

                                  Fig.6-4 Equilibrium value of p as a 

        _ 

                                     function of T/T o for In0.5Oa0.5As 
                                       monolayer superstructure on (100) 

wand (110) surface. This depend- 

0ence of p on T/T
o is almost the 

_same for other materials.              

i The To denotes the upper limit 
0.51.0 

T/ Totemperature listed in Table 6-I. 
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the values of  E" are rather small. In addition, it can be easily 

proved that the value of F at cP=O is always lower than the value 

at p>0. Thus, on (111)-oriented surface, the completely disorder-

ed structure is always stabler than the monolayer superstructure 

of a certain degree of ordering. 

B. Bilayer superstructure 

      The previous procedure can be applied for calculating the 

free energy of bilayer superstructures. For example, in a bilay-

er superstructure on (100) surface, the half of tetrahedron cells 

are composed of 2 a sites and 2 sites and the other half are 

composed of 4 a sites or 4 S sites as shown in Fig. 6-5. From 

this configuration, one can calculate the probability of apper-

ance, ni. However, on (111) surface, the consecutive two a (S) 

site layers are not equivalent to each other. This corresponds 

to the difference between (111)A and (111)B surface. Here, it is 

assumed that the probabilities of finding atoms in these two lay-

ers are the same. This assumption is not necessary on (100) or 

(110) surface since such two layers are equivalent. 

     The free energies are written as follows: 

    Fm=1(E0+e4)(cp4+2cp2+1)+4(c1+e3)(-cp4+1)+2c4(3cp4-2cp2+3)] 
        - TS , for (100) surface .(6-9) 

a11

 .1 Cl 

0 aSITE 013 SITE

1(100)
Fig.6-5 Tetrahedrons (group of sites) 

   in bilayer superstructure on 

   (100) surface. 

     -94-



    Equation (6-7) , for (110) surface. 

    Fm=1(e0+e4)(3cp2+1)+4(c1+e3)+6e2(-cp2+1)] - TS 
                           for (111) surface. (6-10) 

All of these energies are minimum at  cp=0 at any temperature. 

Thus, random arrangement is energetically preferable to bilayer 

superstructures. 

6-2-3. Discussion 

     One result of the analysis is that the monolayer superstruc-

tures are energetically stabler than the bilayer structures. 

This result is attributed to the fact that tetrahedron cells other 

than type-2 cell increase in bilayer superstructures when ordering 

occurs. In a crystal of average composition x=0.5, the strain 

energy becomes minimum at the type-2 cell. The monolayer super-

structure with a complete ordering on (100) surface is constructed 

with only type-2 cell. On the other hand, only the half of tet-

rahedron cells in a bilayer structure on (100) surface are type-2 

cell, and the other half are type-0 or -4 cells, which have higher 

strain energy. Thus, a monolayer superstructure could have a 

lower enthalpy. The longer period superstructures (such as tri-, 

tetra-layers) are less stable because the numbers of type-0 and 

type-4 cells are increased. 

----------—A — 
--------—B---

---------~A— 

------------ AFig.6-6 Lattice relaxation in a---- 
— B-------

_ bilayer superstructure. It is 

-----------—A—assumed that the lattice con- 

-------------------A---stant of compound AC is larger 

dAc > dBCthan that of BC.
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     However, it should be considered that the lattices in long 

period superstructures could relax towards those of composite bi-

nary compounds, as shown in Fig. 6-6. The lattice relaxation 

appears along the growth direction, although the lattice along the 

direction parallel to the interface is bound to the average spac-

ing. Taking the strain reduction due to such relaxation into 

account, the total strain energy is calculated for the bilayer 

superstructure of complete order. It results in higher strain 

energy than that of monolayer structure. Thus, the monolayer 

superstructure can be stabler than the bilayer superstructure, 

even though the relaxation is considered. 

     This result will be supported by the experiment by Fukui et 

 a1.4) They reported that the monolayer superstructures of InAs 

and GaAs had better surface morphology and smaller linewidth of 

X-ray rocking curve than the bilayer superstructures. 

     Another result is that the superstructure on (100) or (110) 

surface is stabler than that on (111) surface. This dependence 

on surface orientation can be understood similarly, i.e., by 

counting the possible number of each cell. In the monolayer 

superstructure on (111) surface, there is no type-2 cell when the 

ordering is complete and therefore the superstructure is unstable. 

     It should be noted that a structure in which the free energy 

is not minimum can exist, because the atom arrangement cannot be 

altered at room temperature because of a small diffusivity of atom 

in a solid phase. It would take very long term for a crystal to 

approach the equilibrium state. Although the usual growth tem-

peratures are higher than T0's listed in Table 6-I for most of the 

alloy systems, the growth of superstructures with a higher free 

energy can be possible because of small diffusivity of atom.324) 

One must take the diffusivity into account to discuss the stabili-

ty of grown structures. 

     If an alloy of composition x=0.5 is grown below T
o, a mono-

layer superstructure tends to align with a certain degree of 
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ordering along <100> or <110>. However, the  T
o is considerably 

lower than usual growth temperatures for most III-V ternary sys-

tems. Thus, the present analysis does not fully explain the un-

intentional formation of superstructures observed in some ternary 

alloys.7-11) The energetical interaction other than strain might 

be responsible for the formation. However, the results of recent 

total energy calculations indicate that the monolayer structure of 

GaAs and AlAs is energetically unstable,12,13) although its unin-

tentional formation was observed.8) Thus, kinetic factors, such 

as surface reactions, would be necessary to consider.14)

6-3. ALLOY SCATTERING MOBILITY IN TERNARY ALLOYS WITH NONRANDOM 

    ATOM ARRANGEMENT

     Electrical properties of III-V alloy semiconductors, espe-

cially alloy scattering have been greatly investigated because of 

their importance to high speed devices.15) However, in most of 

theoretical calculations of alloy scattering mobility, it has been 

assumed that atom arrangement is completely random. As discussed 

in the previous chapters, this assumption should be reconsidered: 

it is necessary to investigate the effects of order or cluster on 

alloy scattering. The aim of the analysis is to estimate alloy 

scattering mobility in III-V ternary alloys as a function of 

short-range order parameter.

6-3-1. Analytical Procedure 

    Multiple scatterings of electron would occur in alloys, but 

their influence is considered to be rather small on alloy scatter-

ing mobility in most III-V ternary alloys.16) Thus, the theory 

developed by Asch and Hall is adopted, where multiple scatterings 

are neglected.17) The square of the transition matrix element 

between the states 11)(K) and (K') is given by17)
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 IM(K,K')I2=1 a(T) Nx(1-x)exp(iAK•T)Im(K,K')I2, (6-11) 

m(K,K') = Jti(K) Au(r) (K') dr ,(6-12) 

where K and K' denote wave vectors and N is the number of atom on 

the mixed sublattice in the crystal of a unit volume, Au(r) the 

potential difference between an A atom and a B atom, i.e. the 

alloy scattering potential, and x the composition for B atom as in 

Al -xBxC. a(T) is the short-range order parameter defined by18) 

                    PAB(T) 
a(T) = 1 - ----------- ,(6-13) 

where PAB(T) is the probability that a B atom occupies the atom 

site with coordinate T with respect to a given A atom. a used in 

Chap. III is a(T) with T corresponding to the second-nearest dis-

tance. In case of random arrangement, a(0)=1 and a(T)=0 (T�0). 

Because of the symmetry of the sublattice of zincblende structure, 

c(T)=a(-T), and thus exp(iAK•T) can be replaced by cos(AK•T). 

According to Harrison and Hauser, Au has been assumed to be con-

stant within a volume v around an atom.19) Then, m(K,K') is 

independent of K and K', and can be written simply as m=vAu. 

This is due to the fact that the product of lattice constant a and 

wave vector IKI is much smaller than unity in direct band-gap 
semiconductors.19) 

     In the following discussion, it is assumed that the degree of 

short-range order or cluster is low. Thus, la(T)1 decreases rap-
idly with increasing ITI and becomes negligible for ITI larger 
than several times of lattice constant. Then, the summation in 

Eq. (6-11) can be restricted within this range of T. Since 

IKIa<<1, the relation AK.T<<1 and thus cos(AK•T)=1 is satisfied 
for T's concerned. Therefore, Eq. (6-11) becomes, 

IMI2 = IM012 / Q(T) ,(6-14)
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where 1M012is the value of 11412 in case of random arrangement and 
                    2 written as x(1-x)N(vtu) . The alloy scattering mobility  u is 

proportional to 1/1 1141 and thus uo/{10.(T)} where uo is the 
alloy scattering mobility for the random arrangement. 

     In the following discussion, the notation ai is used instead 

of a(T) for T corresponding to the distance between the i-th near-

est pair. Here, the order of neighbours is counted on the mixed 

sublattice. Thus, for example, 'the nearest neighbour' used here 

in fact corresponds to the second nearest neighbour in a zinc-

blende structure. The value of 61 was obtained from the thermo-

dynamic analysis given in Chap. III. However, for III-V alloys, 

any of the theories proposed so far cannot derive with i>1. 

Here, the approximate equation derived by Cowley is adopted:18)

13J{x +Q.}{ 1-x+a.121n..cT. +kB                 Tln~1-xi2x j = 0 , (6-15) •1(1-a .) 

where kB and T are the Boltzmann constant and temperature, respec-

tively, n., the number of the j-th site among the 12 nearest 

neighbours of the i-th neighbour site, and V1 the interaction 

potential between the nearest neighbour pair. Though in III-V 

ternary alloys there is no evidence that such pairwise interaction 

is dominant, this equation is used by considering V1 as an effec-

tive potential which reproduces a given a1. Here, V1 is not 

related to a specific physical quantity but it phenomenologically 

represents the strength of attractive or repulsive interaction 

among atoms. 

     As mentioned earlier, only a low degree of nonrandomness is 

considered: in calculating a(T), it is assumed that one can ne-

glectawith j greater than a certain integer, imax. Then, Eq. 

(6-15) can be written for i=1 to imax By solving these simulta-

neous equations, we obtain the values of V1/T, a2, a3••••ai for 
                                                                  max
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a given  Q1. The choice of max could be justified by confirming 

that the value of Q(T) is little changed by increasing imax fur-

ther. Figure 6-7 shows the result of calculation of cri, where 

Qi's with i up to 13 are considered. Figure 6-7(a) indicates the 

tendency of cluster , whereas (b) indicates that of order. If 

 I61I<0.1, 10 seems sufficient for imax' because 10(T) for imax 10 
is little different from that for imax=13. 

6-3-2. Results and Discussions 

      Figure 6-8 shows the relation between the short-range order 

parameter 0-1 and 1/{1ci(T)} or u/llo obtained for imax 13. At 
x=0.5, can vary from -1/3 (complete order) to 1 (complete clus-

 ter), and thus the range of -0.1<01<0.2 corresponds to rather low 

degree of order or cluster, to which this approach can be applied. 

The relation shown in Fig. 6-8 depends weakly on the composition 

within the composition range of 0.25<x<0.75. However, as x ap-

proaches zero or unity, the lower limit of a1' amin' approaches 

 zero: 

          a.1 -x(0<x<0.25) 

1-x (0
.75<x<1) .(6-16) 

0.05-
                                                               2 

0.1-
- '= 1

-3 

1=41 5 6 7 89 19 11 12,1; -x=0 .501I 
w0.5 11.51 1 2 2.5 

0.05—wDISTANCE 
                                                                                                                   - 2 

3-x=0.5 

045cc-0.05— 00 —"I I6 B 9 1011 1213 -
   0.5 1 1.5 2 2.5 0 - 

       DISTANCE- 

      (a)0.1                                        (b) 

  Fig.6-7 Short-range order parameter a(T) calculated using Eq.(6-16) 

     for a given a1. (a): a1=0.1. (b): a1=-0.1. Distance is 

     normalized by the lattice constant. 
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The result in Fig. 6-8 is valid only for  Q1 not near to its limit 

value, Amin' because the calculation is valid only for a low de-

gree of nonrandomness. 

     According to the thermodynamic calculation described in Chap. 

III, 0-1=-0.1 for In0 .5Ga0.5As grown at 1000 K (see Fig.3-6). As 
seen from Fig. 6-8, u at this degree of order is 3 times larger 

than uo. Thus, if one estimates Au from the measured alloy scat-

tering mobility without considering atom arrangement, Au will be 

underestimated by a factor of ,, because ua1/{IDuI2XQ(T)}. 
     Figure 6-9 shows examples of alloy scattering mobility influ-

enced by nonrandom arrangement. Here, material properties of 

In1 -xGaxAs are used, and the alloy scattering potential is assumed 

to be 0.53 eV15) and Q1 to be proportional to x(1-x) (see 

Fig.3-6).

10

b 1 
W

0.1

 0.1 O0.1 0.2 
ORDER PARAMETER o1 

Fig.6-8 The relation between a1 

  and 1/{Ea(T)1. Alloy scat-
   tering mobility is increased 

   or decreased by a factor of 

1/{Ea(T)1, because of order 

(a1<0) or cluster (01>0) in 
   the atom arrangement.

—107 _ 
ate,1ni_x Gax As 

T=300K dU-0.53 eV 

a: oi.-0.4x(1-x) 

b: 01=0 

   m106c: al= 0.4x(1-x) 

O z 

wxa 

w 

  N106_ 

O  J J  Q 

  104I II   00 .51 
              COMPOSITION x 

Fig.6-9Examples of calculated 

   alloy scattering mobilities. 

   Material parameters for 

   In1 -xGaxAs are used. a1 is 

   assumed to be proportional to 

   x(1-x).
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     Oosaka calculated the alloy scattering incorporating  clus-

ter,20) and long-range order was taken into account by Sasaki.21) 

However, it is difficult to compare these results with each other 

because the different descriptions of atom arrangement were used. 

The results given here would be more general, because they include 

both order and cluster. 

6-4. SOLUTION HARDENING DUE TO SHORT-RANGE ORDER IN TERNARY ALLOYS 

     Generation and motion of dislocations greatly affect perform-

ance and reliability of various semiconductor devices. For exam-

ple, a dislocation manifests itself as a dark line defect in a 

light-emitting diode (LED) and a laser diode (LD).22) The life 

time of these devices strongly depends on how easily dislocations 

move: it is considered that the life time of LD of (InGa)(AsP)/InP 

system is relatively long compared with that of (AlGa)As/GaAs 

system because the dislocations move more easily in (AlGa)As/GaAs 

than in (InGa)(AsP)/InP.23) In this section, effects of atom 

arrangement on dislocation development is discussed. 

6-4-1. Solution Hardening 

     In a semiconductor, there is a relatively strong intrinsic 

resistance against the dislocation movement. It originates from 

the Peierls potential, i.e., the periodic potential of the crys-

tal. However, dislocations surmount the Peierls potential with 

the assistance of phonons at high temperatures. In addition, the 

motion of a dislocation becomes easy with large electric current 

injection or strong light irradiation. Thus, the generation and 

motion of dislocations become easy during the operation of 

devices.22) 

     On the other hand, it is known that dislocations become more 

difficult to move in an alloy than in a pure crystal.24) This
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phenomenon is called solution hardening and have been extensively 

studied for metal  alloys.24) The solution hardening effect is 

expected for III-V alloys, too, and in fact the dislocation densi-

ty of a GaAs bulk crystal is decreased by adding a small amount of 

In.25) This is considered due to the dislocation pinning caused 

by the local strain field around In atoms:26) it is due to the 

nonuniformity of strain in the crystal. This effect will be sig-

nificant in a dilute alloy, but it does not seem clearly under-

stood how strong the effect is in a concentrated alloy. 

     In a concentrated alloy, nonrandomness in the atom arrange-

ment hardens the crystal.27,24) As a dislocation moves, crystal 

atoms in the one side of the gliding plane are shifted relative to 

atoms in the other side of the plane. The shift vector corre-

sponds to the Burgers vector of the dislocation. Then, if there 

is nonrandomness in atom arrangement, it is disturbed by the pas-

sage of a dislocation.27) Since the nonrandomness in atom ar-

rangement is induced for reduction in the internal energy of the 

crystal, the internal energy is increased if the nonrandomness is 

disturbed. Thus, the motion of the dislocation needs excess ex-

ternal force corresponding to the increment of the internal energy 

of the crystal. The resolved shear stress (RSS) needed to over-

come the resistance due to the nonrandomness is expressed by27) 

TLc ,(6-17) 

where Ac is the increment in the internal energy per unit area due 

to the passage of a dislocation, and b is the Burgers vector of 

the dislocation. 

    This hardening mechanism affects the glide motion of a dislo-

cation. Although the climb motion of a dislocation also affects 

a device performance,23) it is not discussed in this study. 

     In calculating Ac, it is assumed that the nonrandomness dis-

appears on the gliding plane after the passage of a dislocation.
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This will be a reasonable assumption for short-range ordering 

(preference for unlike nearest pair): if the order is of short-

range, it is largely disturbed by shifting atoms even by a small 

amount, e.g., b. On the other hand, the assumption involves rel-

atively large error for large scale clustering or long-range 

ordering: the large scale cluster is not completely decomposed by 

the passage of a single dislocation. And in case of long-range 

ordering, dislocations are expected to regroup themselves and 

reduce Qe.27) 

 Ac is calculated from the difference in the internal energy 

or the enthalpy between the ordered state and the random state: 

                  4 
Ac _ ---------- (H-H) ,(6-18) 

                  a2 Nr 

where H
r and H are the enthalpy per N atoms in the random and the 

ordered states, respectively, and a the lattice constant. By 

multiplying the factor, H
r-H is converted to the energy difference 

per unit area of the gliding plane, i.e., {111} plane for a zinc-
blende structure. The Burgers vector of the dislocation is 

a/2<110>. Although a dislocation is decomposed into two partial 

dislocations in a zincblende crystal,28) these two dislocations
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. 

20 
J) 
w 
cr 
t— o 

cc 
a w 

0 10 
a 
w 
J 
0 
in 
w 
ec 

  0

I  n,_xGax As

     0.5 
COMPOSITION x

1

Fig.6-10 Resolved shear stress re-

   quired for a dislocation to move 

   against the resistance due to 

   short-range order in the atom 

   arrangement for Ini -XGaXAs. 

   Short-range order at 1000 K is 

   taken into account.
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MATERIAL 
 (x=0.5)

 T 

(MPa)
Ad/d 
 (7.)

(GaAl)As 

(GaA1)Sb 

(GaAl)P 

(InGa)P 

(InGa)As 

(InGa)Sb 

(InA1)As 

Ga(AsP) 

In(AsP) 

Ga(SbAs) 

In(SbAs) 

Ga(SbP) 

In(SbP)

   0 

0.001 

   0 

 27.2 

16.1 

7.55 

15.0 

1.80 

1.04 

20.7 

12.5 

84.1 

59.0

0.13 

0.64 

0.2 

7.4 

6.9 

6.1 

6.7 

3.6 

3.2 

7.5 

6.7 

11.2 

9.9

move in pair and the shift caused by the 

to that caused by a single dislocation 

a/2<110>. 

6-4-2. Results and Discussions 

     Figure 6-10 shows the RSS T 

move against the resistance due to the 

arrangement for In1 -xGaxAs as a 

The effect of the Peierls potential 

calculating T, the short-range order 

shown in the figure, T becomes maximum 

value in a dilute alloy. Thus 

will not contribute to the reduction 

doped GaAs. 

    Table 6-II lists the values 

alloys at the composition of 0.5. 

at 1000 K is considered. The tableals 
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    Table 6-II. Resolved shear 

    stress T required for a dis- 

    location to move against the 

    resistance due to short-range 

    order for various ternay 

    alloys. Relative lattice 

    mismatch between two constit- 

    uent compound Mid is also 

    shown. Composition is 0.5, 

    and the short-range order at 

   1000 K is considered. 

bythedislocation pair is equal 

ocationwith the Burgers vector 

required for a dislocation to 

otheshort-range order in atom 

function of Ga composition x. 

ialisnot included in it. In 

erat000 K is considered. As 

ximumat x=0.5 and is very small 

       mechanism considered here 

onindislocation density in In- 

ofTfor various III-V ternary 

        the short-range ordering 

le  oals lists the amount of the



lattice mismatch between two constituent binary compounds. Al-

loys with large lattice mismatch tend to have large T, whereas T 

is negligibly small for  (GaAl)CV (CV=As, Sb) alloy systems: in 

(GaAl)CV alloys, the atom arrangement is almost completely random 

and thus the hardening considered here is little. 

     The resolved shear stress required for a dislocation to move 

0 in undoped GaAs crystal is 20 MPa at 250 C and 2 MPa at 550 
0
C.29) As stated earlier, phonon helps dislocations surmount the 

Peierls potential, and thus the resistance due to the Peierls po-

tential decreases rapidly with a raise in temperature. However, 

the resistance due to the short-range order is independent of 

temperature unless the nonrandomness itself disappears by the 

interdiffusion of atoms.27) 

     Therefore, the solution hardening due to the nonrandomness 

can be significant at relatively high temperatures, where the 

resistance due to the Peierls potential becomes weak. In addi-

tion, it will be effective under the large current injection or 

strong optical excitation, too: Under these circumstances, the 

Peierls potential is easily surmounted; this is considered due to 

the phonon emission accompanying the nonradiative recombination at 

a dislocation.30) Then, the nonrandomness in the atom arrange-

ment could be one of the dominant factors determining the rate of 

the dislocation development during the operation of devices. 

Thus, for example, devices of (A1Ga)As/GaAs system will be degrad-

ed more easily than those composed of (InGa)As alloy. In prac-

tice, devices of (A1Ga)As/GaAs use the Al-composition less than 

0.4, whereas those of (InGa)As/InP the In-composition of about 

0.5. This will also cause difference in the strength of the 

hardening. 

     Although the analysis here can be applied only to ternary al-

loys, we can expect that T for quaternary alloys of (AB)(CD) type 

is no less than those of the relevant ternary alloys; T is large 

for alloys with large strain energy, and the strain energy of a 
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quaternary alloy is no less than those of the relevant ternary 

 aiioys.31) Then, for example, T for (InGa)(AsP) will be compa- 

rable to that for (InGa)CV(CV=As, P) or that for CIII(AsP) (CIII_ 

Ga, In) and thus will be much larger than T for (GaAl)As. This 

would be relevant to the fact that life time of a (InGa)(AsP)/InP 

LD is in general longer than that of a (GaAl)As/GaAs LD. How-

ever, for more rigorous discussion, we should consider various 

factors, e.g., climb motion of dislocation, misfit stress, and 

surface damage during a device processing. 

6-5. EFFECTS OF BOND STATISTICS ON PROPERTIES OF QUATERNARY ALLOYS 
   OF (AB)(CD) TYPE 

    The ambiguity in the statistics of bonds could cause diffi-

culties in predicting various material parameters.32) In an usu-

al interpolation procedure, the properties of constituent binary 

compounds are averaged weighted by their respective ratios in the 

alloy, i.e., the properties are linearly interpolated, although a 

nonlinear term is added for some parameters,33-35) The ratio of 

a compound is usually assumed to be the product of the composi-

tions of its composite atoms: for example, the ratio of GaAs is 

assumed to be x(1-y) for In1 -xGaxAs1-YPY. A change in the bond 
statistics is considered as a change in the ratios of the constit-

uent compounds, and an interpolation using a different set of 

weighting ratios can give a different value of a material proper-

ties. Thus, the interpolation procedures applied to quaternary 

alloys should be reexamined on the basis of the actual bond 

statistics. 

     In this section, the effects of bond statistics on material 

properties are evaluated using an interpolation technique. 

6-5-1. Variation in Material Properties
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A. Lattice constant 

     Lattice constant accurately follows the Vegard law: the lat- 

tice constant of A1-xBXIIC1-yDy,  aQ, is expressed by 
       aQ= 1 X

pgapq(6-19) 

where a is the latice constant of binary compound pq. The 
Pq 

above equation is usually used with the assumption C=0: 

               ao = L x x a(6-20) 
          Q PgPq 

aQ can be rewritten as 

             aQ= aQ+ Cwa 
wa = aAC+aBD-aAD-aBC(6-21) 

As can be seen from the equation, the variation in lattice con-

stant due to C is expressed C times a factor which is independent 

of the composition. The values of the factor wa are listed in 

the second column of Table 6-III. w
a is very small for all of 

nine alloy systems. This could be attributed to the fact that 

each bond length is approximately expressed as the sum of the co-

valent radii of the composite atoms. Let r
pdenote the covalent 

radius of p atom. Then p-q bond length d is approximately 
                                       Pq 

equal to r
p+rq. Since apq=4/f3dpq, 

=4 waT(dAC+ dBD_dAD_ dBC) 

4 = {(r
A+rC)+(rB+rD)-(rA+rD)-(rB+rC)} 
                 =0(6-22) 

As can be seen from Fig.5-6 and Table 6-III, wC is less than 10-3 
oa 
A and thus could be neglected in calculating lattice constant. 
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Table 

  on 

 (w  g

6-III. 

lattice 

). wa

Parameter w 

constant (w 

is given in

describing the effects of 

a), direct (r) and indirect 
 0 A and w

g in eV.

bond 

(X)

statistics 

band gap

SYSTEM w
a

wg(r) Wg(X)

(InGa)(AsP) 

(InGa)(SbAs) 

(InGa)(SbP) 

(InAl)(AsP) 

(InAl)(SbAs) 

(InAl)(SbP) 

(GaA1)(AsP) 

(GaA1)(SbAs) 

(GaA1)(SbP)

-o 

-o 

-o 

-o 

-o 

-o 

0 

-o 

-o

013 

0210 

0345 

0086 

0544 

063 

0049 

0334 

0285

0 

0 

0 

-0 

0 

0 

-o 

0 

-0

•

37 

52 

89 

35 

57 

22 

72 

04 

68

-o 

0 

0 

-0 

-0 

0 

-0 

-0 

-0

1 

24 

13 

2 

08 

28 

1 

31 

41

B. Energy band gap 

     The band gap does not accurately follow the Vegard law, and 

there appears downward bowing in its composition dependence. 

However, the portion of nonlinear variation is relatively small 

compared with linear-variational part. Since the purpose of the 

present analysis is not to obtain values of the band gap but to 

estimate the effect of bond statistics, the change in the linear-

variational part is considered: the band gap of an alloy, EQ, is 

expressed by 

EQ = E0Q + Ewg 

wg = EAR+ CBD- CAD- EBC ' (6-23) 

where, co is the band gap of the alloy when =0, and Epqthe band 

gap of the compound pq. Here, as a first approximation, yde-

pendence of the nonlinear-variational part is neglected.

-109-



     The values of the factor  Wg are listed in the third and forth 

columns in Table 6-111 for direct and indirect (X) band gaps. 

They are rather small compared with differences among Cpq's of 

constituent compounds. For example, the difference between CInAs 

and CGaAs or between CInAs and CInP is about 1 eV, but IWgI for 

(InGa)(AsP) is less than 0.4 eV. This is because the following 

relation is satisfied when the heavier element is assigned to A or 

C. 

CAC< CAD ' CBC < CBD(6-24) 

Thus, W
g is the difference between the sum of the largest and the 

smallest C
pq's and the sum of the two intermediate cpq's: the dif- 

ferences among c 's are canceled to some extent. The relation               Pq 

(6-24) is generally satisfied because Cpqis always smaller for a 

heavier composite element. The sign of Wg depends on but IWgI 
does not depend on how the elements are assigned to the symbols. 

     The value of EW
g is less than 10 meV for most alloy systems, 

and thus other factors, e.g., ambiguity in bowing parameter, would 

cause larger error than the bond statistics in an interpolation 

procedure. 

6-5-2. Discussions 

     As described in the last section, the effects of the bond 

statistics are small, because IEoI is not large and the factor w 
is relatively small owing to cancel of differences in parameters 

among constituent compounds. Therefore, the error caused by the 

assumption that E=0 is not large for lattice constant and band 

gap. However,0used here is the equilibrium value at 1000 K. 

0       could be larger, if the alloy is grown at lower temperatures 
or through nonequilibrium processes. Then, the effect of E could 

be considerably large. 

     For calculating the factor W, the properties of the binary
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compounds need be known. Here, w is not given for other proper-

ties, e.g., dielectric constant, since they are not determined 

accurately enough for some binary compounds. 

    In this study, the material properties are discussed on the 

basis of the linear interpolation. It is accurate for lattice 

constant, but a more sophisticated approach, such as the coherent-

potential approximation, need be emplyed for the band gap in order 

to take account of the compositional disorder  effect.36) In 

addition, the strain of bonds is also considered to influence the 

band gap.37) Since the strain energy depends on C, the energy 

variation due to bond strain will also depend on C. For further 

study, the band gap should be obtained as a function of C by 

considering the compositional and structural disorder effects. 

6-6. SUMMARY 

     The relation between atom arrangement and material properties 

has been discussed. The results are summarized as follows: 

i) For ternary systems of average composition x=0.5, monolayer 

structure on a (100) or (110) surface becomes stable below a cer-

tain temperature, but monolayer structure on (111) surface and 

longer-period structures are not stable. 

ii) The alloy scattering mobility is greatly influenced by even 

low degree of the nonrandomness in the atom arrangement. Thus, 

it is necessary to take into account the nonrandomness in estimat-

ing alloy scattering potential from experimental data. 

iii) The short-range order impedes glide motion of dislocations. 

It could play an important role during operation of a certain 

device and elongate the life time of the device. 

iv) Lattice constants and band gaps of quaternary alloys of 

(AB)(CD) type are calculated from the bond statistics at the ther-

mal equilibrium state. The results are a little different from 

those for the random arrangement case. 
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VII. CONCLUSIONS  

     In this study, atom arrangements in  III-V alloy semiconduc-

tors have been theoretically investigated. The thermodynamic 

approach has been adopted, and internal energy of an alloy has 

been estimated from the energy of nearest-neighbour interaction or 

covalent bonding between group III and V atoms. For ternary al-

loys and quaternary alloys of (ABC)D type, the bond strain energy 

has been considered as a dominant interaction among constituent 

compounds, but the energy change depending on change in the rela-

tive numbers of bonds has also been considered for quaternary 

alloys of (AB)(CD) type. For calculating the strain energy, bond 

lengths and angles must be known; in this work, they have been 

evaluated on the basis of the valence-force-field model. In 

addition, the average bond length has been calculated, and its 

relation with the atom arrangement has been described. The in-

fluences of the atom arrangement have been quantitatively studied 

for some material properties. 

     In Chap. II, it has been explained why the strain energy must 

be considered as a dominant interaction. It has also been shown 

that coherency of a lattice should be taken into account for dis-

cussing the microscopic atom arrangement in a single phase alloy. 

     In Chap. III, the atom arrangement in III-V ternary alloy 

semiconductors has been studied. Five types of tetrahedra are 

used as basic figures of the analysis. In most of ternary al-

loys, there is a preference for ordering but not for clustering. 

This is in contrast to the results obtained by the pairwise inter-

action model. In calculating the strain energy, the strain of a 

bond is assumed to depend on type of tetrahedron. The average 

lengths have been calculated by averaging bond length in all types 

of tetrahedra weighted by their relative numbers. The results 

agree fairly well with the reported EXAFS data. 

     In Chap. IV, the atom arrangement in quaternary alloys of 
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(ABC)D type has been studied with the same approach as in Chap. 

 III. The second-nearest pairs composed of a larger atom and a 

smaller atom than the average are favorable, but a pair of two 

larger or smaller atoms is not. The average bond lengths have 

also been calculated. 

    In ternary alloys and quaternary alloys of (ABC)D type, the 

relative numbers of bonds are uniquely determined from atomic com-

position, but they are not in quaternary alloys of (AB)(CD) type. 

In Chap. V, the relative numbers of bonds have been derived for 

(AB)(CD) alloy systems. When heavier group V atom is assigned to 

CV, In-DVand Ga-CVbonds increase in In1-xGaxCV1-yDVy, and Ga-CV 

and Al-DVbonds increase in Ga1-xAlxC1-yDy compared with the case 
of random atom arrangement. The bond statistics are nearly equal 

to those in the random case for In1-xAlxC1-yDV. In the analysis, 
bond length is assumed to depend on types of group III and group V 

tetrahedra. The average bond lengths have also been calculated, 

and they agree fairly well with EXAFS data. 

     In Chap. VI, the relation between the atom arrangement and 

some material properties has been studied. It has been shown 

for ternary alloys that the alloy scattering mobility and the 

hardness of the crystal are greatly influenced by the nonrandom-

ness in the atom arrangement. By extending the thermodynamic 

analysis, the stability of a superlattice has been analyzed for 

ternary alloy systems of x=0.5. The monolayer structure on (100) 

or (110) surface can be stable but other structures are not at any 

temperature. The effects of bond statistics on material proper-

ties of (AB)(CD) alloys have been discussed. 

     Although this study would give a physical basis for under-

standing the atomic scale structure of III-V alloy semiconductors, 

further investigations are needed for higher accuracy of the anal-

ysis and for disclosing implications of the results. Possible 

extensions of this study are summarized as follows. 

i) The assumption that the volume of a tetrahedron cell is equal 
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to the average value need be reconsidered. Another and possibly 

better approach is to connect the tetrahedron to a certain effec-

tive medium and allow it to relax. In this case, the strain 

energy stored in the medium should be considered as a part of the 

strain energy of the tetrahedron, since it is caused by that cell. 

ii) The thermodynamic analysis proposed here can be extended to 

investigation of a phase diagram. The nonrandomness in atom 

arrangement is induced for reduction in the free energy, and the 

change in the free energy causes some changes in the macroscopic 

phase diagram. 

iii) The atom arrangement in a bulk crystal is analyzed in this 

study. A surface is quite different from the bulk, and thus the 

most favorable arrangement on a surface could be different from 

that in a bulk. During some sort of epitaxial growth, a crys-

tal grows layer by layer, and then the arrangement favorable on 

the surface would appear on the growth surface because atoms move 

rather fast on a surface. This arrangement might be retained in 

the bulk, since atoms move much slower in a bulk. Thus, it will 

be important task to investigate the atom arrangement on surfaces. 

iv) It will be very interesting to investigate the effects of 

atom arrangement on band structures. The band structure of an 

alloy has been calculated by the coherent-potential-approximation 

(CPA) but usually with the assumption of random arrangement. It 

will be very difficult to take short-range order into the CPA cal-

culation, but long-range order can be taken into account without 

further theoretical development of the CPA theory. From the CPA 

calculation one can estimate not only band gap but also alloy 

scattering mobility and electronic density of states. In addi-

tion, from the energy of electrons in valence bands, one can esti-

mate electronic binding energy of the crystal as a function of 

degree of order in the atom arrangement. If this energy is taken 

into account in addition to the strain energy, the thermodynamic 

analysis will become more accurate. 
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                       APPENDIX  

A. DERIVATION OF THE ENTROPY [Eq.(3-3) and (4-5)] 

    First, Kikuchi's approach for deriving entropy is briefly 

described for a fcc lattice, and then it is applied to a zinc-

blende structure. (For a more detailed description, see R. 

Kikuchi, Phys. Rev. 81 (1951) 988.) 

     Consider a system composed of N alloy atoms and an ensemble 

which contains L systems. In a fcc lattice, the number of ways, 

GL,of putting an atom on lattice site A in Fig.  A-1 is calulated 

as follows 

        _ {Triangle feg}     G
L— Afeg}xCL(A-1) 

         = ['
Tetrahedron CDf}Pointf ] 

       C 

       L{Tetrahedron ACDf} •jBond Af 
             {Bond BC}  Point C         x [{Triangle ABC} •jBond AC] 
          {Bond Be}  Point C Point B L!  x [

{Triangle ABe}(Bond ACxBond AB{Point A})] 
Here, 

                   gP 
{ (figure p) }= H {nP!},(A-2) 

where n! is the number of type-i of figure p (p=Point, Pair, Tri-

          1 angle, Tetrahedra), and gPiits degeneracy factor. CL is the

.. .

 ^^^^ ^ \ / \ /
o

7--

\
/

^

^^ . o

Fig.A-1 An intermediate 

   of constructing a fcc

stage 

lattice.
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correction factor which makes relative numbers of the tetrahedra 

and the triangles containing A coincide with given values,  n!. 

     The entropy is calculated by 

      S = LkBln(GL)(A-3) 

for N atom lattice. 

     A zincblende ternary alloy can be constructued by putting 

atoms of the other group at the central site of tetrahedra. In a 

zincblende type of semiconductor, there are two kinds of tetrahe-

dra: one contains an atoms in it and the other does not. They 

are equal number in semiconductors; tetrahedra on a fcc lattice 

are twice as many as atoms. When the energy of bonds is consid-

ered, the statistics of the tetrahedra without any bonds can be 

neglected. Then the correction terms of the above equation can 

be reduced. For example, 

   __ Bond CD}  L! Point B  L!    C
LTriangle ACD} ' {Point A} x{Bond AB ' {Point A}(A-4) 

In the next stage of the construction, Triangle ACD becomes an 

tetrahedron equivalent to Afeg, Bond AB a triangle equivalent to 

ACD. Then GL is expressed by

           G{Triangle fegj  x               L {Tetrahedron Afeg} 

_ {Point }3  
(L!)2{Tetrahedron } 

With the use of the Stirling formula, the above GL gi 

tropy expressed by Eq. (3-3) or Eq. (4-5) for a ternary 

quaternary alloy of (ABC)D type, respectively. 

B. CONTINUUM MODEL 

     The continuum model has been used for evaluating 

field around an impurity atom in a metal. (See J. 
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                                                   (A-5) 

                                         the above GL gives the en-

                                         ) for a ternary or a

 the strain 

D. Eshelby,



"Solid State Physics" , Academic, New York, 1956, Vol.3, p.79) 

Bond-length calculation based on this simplified model is de-

scribed in this section. 

    In the continuum model, a crystal is considered as a plastic 

medium, and an impurity atom as a plastic ball. In the analysis, 

a space shared by a bond is regarded as a plastic ball inserted 

into a hole in the continuous medium. Then the volume change of 

the ball  AVi is 

Av. 4
1.1+3B,(vh-vi)(A-6) 

i where Viand Vh are the volume of the unstrained ball and the un- 

strained hole, respectively, u is the shear modulus of the medium, 

and B. is the bulk modulus of the ball. The bond length may 

  GaPInP GaPInP 
 (a) IF(C) 

                     V' 
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 v~ 
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                      ry
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Fig.A-2 Contour charts 
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Table A-I. Comparison of the calculated values of 

  in In1 -xCaxAs1-yPy alloys with the experimental 

  by EXAFS measurement. The calculation is based 

 0 

  continuum model. Bond lengths are given in A.

the bond lengths 

values obtained 

 on the

 Composition Ga-As In-As Ga-P In-P

x=0.47,y=0, exp. 

cal.

2.47 

2.477

2.60 

2.593

x=0.4, y=0.11 exp. 

                  cal.

2.47 

2.477

2.60 

2.59 2.410 2.542

x=0.26,y=0.42 exp. 

                   cal.

2.47 

2.477

2.59 

2.594

2 

2

40 

409 2.541

correspond to the radius of the ball, and thus, the bond length di 

is, to a first approximation, given by 

di = di+4+3B(d - di),(A-7) 
               u1 

0 
where, di is an unstrained bond length of the bond i and d the 

total average bond length of the alloy. 

     Figure A-2 shows composition dependence of bond lengths for 

In1 -xGaxAs1-yPy. The results are very similar to those described 
in Chap. V. The bond lengths obtained by Eq. (A-7) are listed in 

Table A-I with EXAFS results (H. Oyanagi, Y. Takeda, T. 

Matsushita, T. Ishiguro, and A. Sasaki, Inst. Phys. Conf. Ser. 79, 

Adams Hilger, 1986, p.295). The agreement is quite good . 

     Although the continuum model does not give us a realistic 

picture of a crystal lattice, the long-range relaxation of strain 

is taken into the model. Thus, it could be used for improving 

the strain calculation in this study. 

C. VALIDITY OF THE VEGARD LAW FOR LATTICE CONSTANT 

     In this study, the Vegard law is assumed for lattice con-

stant; lattice constant is assumed to vary linearly with composi-
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tion. In this section, the validity of the assumption is 

discussed. 

    The lattice constant is determined so that the total energy 

of the crystal is minimum at that lattice constant. Figure A-3 

shows the total strain energies as functions of lattice constant 

for two types of unit cells of  Ini _xGaxAs1-xPx system (see Fig. 
5-2). The strain energies of other types of cells also become 

minimum when the lattice constant is slightly smaller (by 0.1 — 

0.2 7.) than the value of the Vegard law. 

     Lattice constant can be calculated by the continuum model, 

too. The total average bond length is given by 

           K.d.x.3B. 
a = K

.x,i  (K— ---------(A-8) 

(See J. D. Eshelby, "Solid State Physics", Vol.3, p.79.) The 

lattice constant is d times 4/,/. 
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     Figure A-4 shows the deviation of the equilibrium lattice 

constant from the Vegard law for  In1 -xGaxAs; the solid line is 

obtained by Eq. (A-8) and dark circles are from unit cell calcula-

tion described above. 

     The deviation from the law is caused by a difference in the 

elastic constants; the lattice constant deviates from the Vegard 

law value and becomes close to that of a constituent compound with 

a large elastic constant (a or B) in order to reduce the strain of 

that compound. Since a compound with a large elastic constant 

tends to have a small lattice constant, negative deviation from 

the law is expected for most of III-V alloys. However, since the 

deviation is quite small, the use of the Vegard law will scarcely 

cause degradation in accuracy of the analysis. For observing the 

deviation experimentally, it will be necessary to prepare an 

uniform crystal and to accurately determine both of the lattice 

constant and the composition.
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