

ヘリオトロン E プラズマ中の 不純物の分光学的研究

1987

近藤克己

ヘリオトロンEプラズマ中の 不 純 物 の 分 光 学 的 研 究

1987

近藤克己

内	容	梗	概			
第-	一章	Ę	ik ا	À		1
	§1 —	• 1	はじめ	17		1
1	§1−	2	磁気閉し	ジ込め	装置による研究の発展	2
	§1 —	3	ヘリオト	ロン	磁場によるプラズマの閉じ込め及び加熱研究の歴史 …	4
	§1 –	4	磁場閉し	ジンと	装置における分光学的方法による不純物研究の発展 …	5
	§1-	5	本論文の	D目的]及び意義	9
			文	献		10
第二	二章	~	、リオトロ	ッンE	装置	14
	§2 —	1	はじめ	ĸ		14
	§2 —	2	ヘリオト	・ロン	′E装置	14
	§2 –	3	真空排象	系系		16
	§2—	4	電源装	置		17
	§2 —	5	プラズマ	7 生成	なび加熱装置	18
	§2 —	6	ヘリカハ	レヘリ	オトロン磁場	21
			文	献		24
第三	三章	~	ヽリオトロ	ッンE	装置での主な計測	26
	§3-	1	はじめ	12		26
	§3–	2	計測概	説		26
	3 -	3	計測各	論		29
	3-3	-1	電子密	度		29
	3-3	-2	電子温	度		31
	3-3	-3	イオン浩]度		35
	3-3	-4	不 純	物		37
	3-3	-5	データ欠	心理		38
			文	献		40
第日	四章	真幻	巴紫分光器	暑によ	:る不純物計測	43
	§4 –	- 1	はじめ	に		43

§4-2 斜入射真空紫外分光器による不純物計測	44
§ 4 - 3 分光写真による不純物イオンの同定	45
§ 4 - 4 光電測定及び感度較正	54
§ 4 − 5 不純物のイオンからの線輻射強度	57
§4-6 ま と め	60
文 献	61
第五章 不純物注入による輸送過程の解析	63
§5-1 はじめに	63
§ 5 − 2	64
§ 5 - 3 ECHプラズマへの Si 注入	66
§ 5 - 4 注入された Si の拡散係数 D 及び内向速度 V	69
§5-5 ま と め	71
文 献	73
第六音 レーザー添起常光注に下る山枕独臣子測完	74
第八章 レック 防陸虫儿伝による十匹妖原] 例だ	
第7年 P 9 meg元伝による中国大宗 1 前足 § 6 - 1 はじめに	74
 第 6 - 1 はじめに § 6 - 2 レーザー誘起蛍光法の原理 	74 74
 第八章 レッショニュニスによる中性(気気) 前定 § 6 - 1 はじめに § 6 - 2 レーザー誘起蛍光法の原理 § 6 - 3 ヘリオトロンE用レーザー誘起蛍光測定系 	74 74 76
 第八章 レック 訪追望兄伝による中性妖族 「 御定 § 6 - 1 はじめに § 6 - 2 レーザー誘起蛍光法の原理 § 6 - 3 ヘリオトロンE用レーザー誘起蛍光測定系 § 6 - 4 同軸光学系の絶対感度較正 	74 74 76 78
第八章 レーザー誘起蛍光法の原理 § 6 - 2 レーザー誘起蛍光法の原理 § 6 - 3 ヘリオトロンE用レーザー誘起蛍光測定系 § 6 - 4 同軸光学系の絶対感度較正 § 6 - 5 ヘリオトロンE装置での中性鉄原子の測定	74 74 76 78 80
 第八章 レッショニュニスによる中性鉄原子の測定 § 6 - 1 はじめに § 6 - 2 レーザー誘起蛍光法の原理 § 6 - 3 ヘリオトロンE用レーザー誘起蛍光測定系 § 6 - 4 同軸光学系の絶対感度較正 § 6 - 5 ヘリオトロンE装置での中性鉄原子の測定 § 6 - 6 ま と め 	74 74 76 78 80 83
第7年 レーザー誘起蛍光法の原理 § 6 - 1 はじめに § 6 - 2 レーザー誘起蛍光法の原理 § 6 - 3 ヘリオトロンE用レーザー誘起蛍光測定系 § 6 - 4 同軸光学系の絶対感度較正 § 6 - 5 ヘリオトロンE装置での中性鉄原子の測定 § 6 - 6 ま 文 献	74 74 76 78 80 83 85
第六章 レーザー誘起蛍光法の原理 § 6 - 2 レーザー誘起蛍光法の原理 § 6 - 3 ヘリオトロンE用レーザー誘起蛍光測定系 § 6 - 4 同軸光学系の絶対感度較正 § 6 - 5 ヘリオトロンE装置での中性鉄原子の測定 § 6 - 6 ま 文 献	74 74 76 78 80 83 85 86
第八章 レーザー誘起蛍光法の原理 §6-1 はじめに §6-2 レーザー誘起蛍光法の原理 §6-3 ヘリオトロンE用レーザー誘起蛍光測定系 §6-4 同軸光学系の絶対感度較正 §6-5 ヘリオトロンE装置での中性鉄原子の測定 §6-6 ま 文 献 第七章 総 括 附録 Ti注入による禁制線の観測	74 74 76 78 80 83 85 86 87
第八章 レーザー訪起蛍光法の原理 §6-1 はじめに §6-2 レーザー誘起蛍光法の原理 §6-3 ヘリオトロンE用レーザー誘起蛍光測定系 §6-4 同軸光学系の絶対感度較正 §6-5 ヘリオトロンE装置での中性鉄原子の測定 §6-6 ま 次 献 第七章 総 括 附録 Ti注入による禁制線の観測 謝 辞	74 74 76 78 80 83 85 86 87 89
第八章 レーザー誘起蛍光法の原理 §6-1 はじめに §6-2 レーザー誘起蛍光法の原理 §6-3 ヘリオトロンE用レーザー誘起蛍光測定系 §6-4 同軸光学系の絶対感度較正 §6-5 ヘリオトロンE装置での中性鉄原子の測定 §6-6 ま 文 献 第七章 総 括 1 第日 1 注入による禁制線の観測 調 辞 表	74 74 76 78 80 83 85 86 87 89 90

内 容 梗 概

本論文は, ヘリオトロンE装置を用いて行う閉じ込め加熱実験で大きな影響を及ぼす不純物に関して, その種類, 密度, 輻射損失, 輸送過程と発生機構について種々の分光学的方法を用いて実験的に明らかにしたものである。

全体は七章で構成されており,第一章では核融合実現にとりくむこれまでの研究の歴史, ヘリオトロン装置による研究成果を概説し,同時に不純物の研究の進展を示し,その重要 性及び問題点を指摘し,かつ本論文の目的と意義を述べる。

第二章では、この研究の対象となったヘリオトロンE装置について特に実験目的、装置の概要及びヘリオトロン磁場の特徴を記す。

第三章では,実験を遂行する上で重要な各種プラズマパラメータの計測法について述べる。

第四章では,真空紫外分光器による不純物計測の重要性を示し,不純物イオンの種類, 電離状態の同定,密度,輻射損失の評価を行う。

第五章では,不純物イオンの輸送過程に注目し,その解明に有力な不純物注入法を用い て拡散係数,対流速度の評価を行う。

第六章では、レーザー誘起蛍光法を用いて放電管壁近傍の中性鉄原子密度を測定し、そ の発生機構を明らかにする。

第七章では、本論文の総括を行い、今後の課題を指摘する。

本研究に関係ある発表及び論文は巻末に記した。

第一章 序 論

1-1 はじめに

制御核融合反応の研究は、人類にとって新しいエネルギー源を引き出す方法を開発する 上で極めて重要なものである。

特に資源の乏しい我国においては、燃料となる重水素が海水中から取り出せること、出 カエネルギーが高いことから最もふさわしい方法と考えられている。⁽¹⁾

核融合反応によるエネルギー取り出しは、重水素、三重水素、ヘリウム等の核子一個あたりの結合エネルギーの水さい核が融合する時に生じる余剰エネルギーを利用するもので 実用の可能性のある反応として次のものが考えられている。

D + D →	T (1.01 MeV) + p (3.03 MeV)	(1-1)
D + D →	$He^{3}(0.82 MeV) + n(2.45 MeV)$	(1-2)
D + T →	$He^{4}(3.52 \text{ MeV}) + n(14.06 \text{ MeV})$	(1-3)
$D + He^3 \longrightarrow$	He ⁴ (3.67 MeV) + p(14.67 MeV)	(1-4)
Li ⁶ +n →	$T + He^{4} + 4.8 MeV$	(1-5)
$Li^7 + n (+ 2.5 M)$	$\text{feV}) \longrightarrow T + \text{He}^4 + n$	(1 - 6)

炉心での D-D 及び D-T の反応の結果生じた中性子は,Liブランケットで高速中性子 を減速し熱エネルギーから電気エネルギーへと変換される。又(1-5)の反応では,三 重水素の増殖を行う。制御核融合反応としては,最終的には,クリーンな D-D 反応を目 標としているが,D-T 反応はイオン温度 10 keV の時,D-D 反応に比べ 100 倍以上反応 率が大きいので,核融合炉の物理及び工学的研究としては,まず D-T 炉の実現が目標と されている。

地上で制御核融合反応を実現し核反応エネルギーを有効に取り出すには,D-T反応の 反応率⁽²⁾が

 $<\sigma_{\rm V}>_{\rm DT} \simeq 5.1 \times 10^{-16} (l_n({\rm Ti}) - 2.1)$ (cm³ · sec⁻¹)

(10 < Ti < 50 keV)

で与えられることにより、T_i = 10 keV で、 $\langle \sigma v \rangle_{DT} \simeq 10^{-16} \text{ cm}^3 \text{sec}^{-1}$ となり、多量の重水素、三重水素を反応させる必要がある。

従って核融合炉としては,燃料である重水素,三重水素のガスを高温に加熱して電離さ せ,その熱エネルギーによってクーロン反発力に打ち勝って反応を持続させねばならない。 そこで目標とされるプラズマパラメータは、Lawsonによって、温度 10 keVの時、密度と閉じ込め時間の積 n^{τ} は、10¹⁴ ~ 10¹⁵ cm⁻³ secが必要とされている⁽³⁾

従って,制御核融合反応を実現させようとする研究では,高温プラズマを生成して,そ の閉じ込め及び加熱の機構を明らかにする事が最も重要な課題となっている。

現在,上に述べたローソン条件を達成する方法は,高密度,短時間で実現しようとする 慣性核融合方式と,密度10¹⁴cm³程度で,閉じ込め時間として1秒以上を目標とする磁気 閉じ込め方式による研究が進められている。

更に装置の特徴によって図1-1に示すよう細かく分類される。このうちヘリオトロン 装置は、プラズマ電流を必要としない、ヘリカルコイルによる回転変換によるてプラズ マを閉じ込める装置である。この装置は、将来の核融合核として考えた時、定常運転が可 能であるという利点を有する。

以下の各節で磁場閉じ込め装置による研究の歴史とヘリオトロンによる研究経過の概略 を述べる。第4節では、磁場閉じ込め装置における分光学的方法による不純物計測の発展 について概説して第5節で本研究の目的と意義を示す。

図1-1 制御核融合装置の分類

1-2 磁気閉じ込め装置による研究の発展

磁気閉じ込め装置によるプラズマの研究は、特徴をもった装置群の建設、運転の変遷を みるとよくわかる。

図1-2には、ヘリオトロン、ステラレータ、^(4,5)トカマク^(6,7,8)系の主要装置の稼動状 熊とIAEA 主催のプラズマ物理と制御核融合の国際会議の開催地が示されている。

- 2 -

図1-2 主な磁場閉じ込め装置の稼動状況とIAEA会議の開催地

この図からわかるようにプラズマ閉じ込め実験は、1950年代の初めに、外部導体系の8 字型ステラレータによって開始された。この装置では、トーラス装置による閉じ込めで最 も基本的な概念である回転変換について深い認識が生まれた。⁽⁹⁾

次のC-ステラレータでは、プラズマ閉じ込め、加熱、ダイバータと今日もなお新鮮な 問題となっている多くの研究の端緒が開かれた。しかし生成されたプラズマは、異常拡散 によって急速に失われ期待されるパラメータの達成ができなかった。但しこの装置による 実験が、プラズマの閉じ込め、加熱のむつかしさを示し、多くの理論家、実験家に対して 解決すべき問題点を鮮明に提示した意義は極めて大きい。⁽¹⁰⁾

一方ソ連では、トカマク装置が考案され、ノボシビルスクでの第3回プラズマ物理と制御核融合国際会議でその成果が発表された。⁽¹¹⁾ そしてこのトカマク型装置は、一躍世界的に注目を引いた。更に彼らが主張した高い電子温度が、イギリスカラム研究所の測定グループによるルビーレーザートムソン散乱で確かめれると⁽¹²⁾より一層トカマク型装置への傾倒が進み、米国では、C-ステラレータが直ちにST-トカマク装置に改造されT-3と同様のパラメータを再現した。⁽¹³⁾

その後米国では,オークリッジ国立研究所で ORMAK,⁽¹⁴⁾フランスで TFR,⁽¹⁵⁾日本では

JFT-2⁽¹⁶⁾と次々にトカマク装置が建設され、その装置サイズが大きくなるごとにより高 い温度、密度を達成するようになった。加熱法についてもORMAKで中性粒子ビーム入射 が行われ、イオン温度上昇が確かめられ、⁽¹⁷⁾まさにトカマクの全盛を思わせた。この傾向 は、次世代のPLT装置にも引きつがれ8keVのイオン温度が達成された。⁽¹⁸⁾プラズマが高 温になると、不純物による輻射が重要なエネルギー損失として注目され不純物制御のため ダイバータをもつ DIVA⁽¹⁹⁾ DITE⁽²⁰⁾ PDX⁽²¹⁾ ASDEX⁽²²⁾ Doublet [⁽²³⁾が建設されダイバ ータ効果が精力的に調べられてきた。トカマク装置は現在 break even 達成を目標とする TF TR (米国)⁽²⁴⁾ JET⁽²⁴⁾(ヨーロッパ共同体), JT-60(日本) が稼動を始め核融合反応の 科学的検証を間近にひかえている。

他方トーラスによるプラズマ閉じ込めの端緒を用いた外部導体系は,Wendelstein VII - $A^{(26)}$ 及び Heliotron $E^{(27)}$ が無電流の高温プラズマの閉じ込めに成功して以来,本質的 に定常運転可能な装置であるという特徴が広く認められ,その大型化した実験が強く望ま れるようになった。外部導体系装置が一時全て消えた米国においても ISX – B装置の後に, Heliotron 型の ATF 装置⁽²⁸⁾が建設され,ヘリカル系に対する評価が一段と高くなってい る。

1-3 ヘリオトロン磁場によるプラズマ閉じ込め加熱研究の歴史

ヘリオトロン装置は,K.Uoによって考案されたヘリオトロン磁場⁽²⁹⁻³⁴⁾によってプラ ズマを閉じ込めるものであって,その特徴は,大きい回転変換と強いシァーをもつことで ある。

図1-2に示したように,実験は1958年に開始され,装置もA,B,C,D,DM,DR,Eと次第 に大きくなってきている。

ヘリカルコイルによるヘリオトロン磁場装置はD装置からであり、ジュール放電による 本格的なプラズマ閉じ込め実験が開始された。

このD装置では、ヘリオトロン磁場の特徴である磁気リミッター⁽³⁵⁾及びダイバータの 有効性⁽³⁶⁾が証明された。

又イオンサイクロトロン⁽³⁷⁾シァーアルベン波⁽³⁸⁾による高周波加熱も精力的に行われ良 好な結果が得られている。又定常運転が可能であるという特徴を活した核融合炉の概念設 計⁽³⁹⁻⁴⁰⁾も始っている。

現在は,これらの成果を集約して建設されたE装置において,ジュールプラズマ,⁽⁴⁰⁾EC RH プラズマ,⁽⁴¹⁾それに中性粒子ビームを入射⁽⁴²⁾したり,イオンサイクロトロン波領成の 高周波⁽⁴¹⁾を加えて加熱した高温プラズマの研究が精力的に進められている。

1-4 磁場閉じ込め装置における分光学的方法による不純物計測の発展

磁場閉じ込め装置でプラズマを有効に加熱しようとする時,プラズマ中にその動作ガス 以外の不純物イオンが存在すると,加熱された電子が,その不純物イオンと衝突してイオ ンを更に電離,あるいは励起して,その輻射を通してエネルギーを失い電子温度の低下を 招き有効なプラズマ加熱が期待できない。又この電子温度低下や不純物イオンの存在によ る Zeffの増加はプラズマの伝導率の変化をもたらし特にトカマク装置では電流分布が急激 にかわり激しい MHD 不安定性の原因となり得る。

このようにプラズマ中に不純物が存在することは,安定でかつ高温のプラズマを得難く するので,プラズマ中に可能な限り不純物が入り込まないようにする必要がある。

このためには、プラズマを生成した時、(I) どのような種類の不純物がどのような機構に よってどこからどれだけ発生するか。(II) プラズマ中に入った不純物は、どのように輸送さ れるか。(III) 不純物の密度,輻射損失はどれ位かを知る必要がある。

これらの課題に対して,多くの閉じ込め装置において図 1-3 に示すように,1)Energy Loss, 2) Transport, 3) Laser Induced Fluorescence, 4) Atomic Physics, 5) Instrumentsの観点から多くの研究が進められてきた。

1) Energy Loss

1970年代後半の電子温度1keV程度の中型トカマク装置では、主としてプラズマ内の高 電離不純物の線輻射損失が注目^(43,44,45)された。それは、線輻射が再結合、制動放射より 輻射強度が強いことと、線輻射がイオン固有の波長スペクトラムを有することによりその イオン種、電離状態の同定が可能であるからである。但しこれらの線輻射は、対象とする イオンの電離が進むと電離エネルギーの増加とともに励起された電子が基底準位へ遷移す る時放出する線輻射(共鳴線)のエネルギーも大きくなり波長は500Å以下に分布するよ うになる。この波長域は酸素による吸収が大きいので測定系を真空排気する必要があるの で真空紫外域と呼ばれる。従って高電離イオンの分光学的研究には、この真空紫外域での 測定が重要となる。⁽⁴⁶⁾

輻射損失を実験的に求めるためにプラズマ中に存在するすべての不純物イオンについて すべての発光スペクトルを測定することは困難な場合が多い。従って限られた測定結果か ら全体の輻射量を評価する研究が進められ、電離平衡⁽⁴⁷⁾Cooling Rate⁽⁴⁸⁾を理論的に解析 する手法が提唱され、原子構造を人工的な仮想原子モデルで近似する方法も開発された。

- 5 -

_		75	76	77	78	79	8	30	81	82	8	3 84	4
1	Energy Loss	TFR ¹	Ion.Eq ²	Radiative	Cooling ³		TFR ⁴	PLI	(NBI	ICRF) ⁵	TFR ⁶	PLT(ICR	F
2	Transport	LaserBl ATC (Al	TFR ⁹ low off) ⁸			1	Alcato (Si)	rÅ ISX	B ¹¹ Ald TF	cator C ¹² A R (V, Cr, N	Alçator 13 15X-F	PLT (Ma A ⁴ Heliotro 3 ⁵ W-VIIA(nE(Si) ¹⁶ nE(Si) ⁷ Al) ⁸
3	Laser Induced Fluorescence			Pla: Inte	smaWall ¹⁹ traction	9		ISX- (Fe)	B ²⁰ W- Do	DEX(Ti VIIA (Mo oublet III) ²¹ 5) ²² (Ti,D)	Heliotron TEXTOR()	E(Fe) ²⁴ Fe) ²⁵
4	Atomic Physics			Pseudo.Co ORMAK(W	n. Forbid) ²⁶ PLT(lden Fe) ²⁷	PDX (Ti) ²⁸				TFR ²⁹ (Ti,V,Cr,F	e,Ni)
		Recomb. ST ³⁰		Fe CX-Recomb ORMAK (O	ChargeSi D. PLT ³¹) ³⁵	t. Diele	ctroni CX Red PLT (F	c Satel comb ⁻ e ,Ti) ³⁶	llite P	2LT (Fe) ³² DX(0) ³⁷	2,33,34 PLT PDX	(Al,Sc) ³⁸ X(He,C,O)	39
5	Instruments	GISMO ⁴⁰ McPhers Nikon ⁴²	on247 ⁴¹			SI Alc	DS ⁴³ ator	TimeR Spect Alcato	lesolv rograj pr	ig oh ⁴⁴ SPF PD)	RED ⁴⁵	T.R.S.(G.I PLT Alcator	.)46

図1-3 不純物に関する問題点とそれに関与した主な装置名

- 6 -

[1]	TFR	Nucl.Fusion	15	(1975)	1053
[2]	C.Breton, et al.	EUR-CEA-FC-853		(1976)	
[3]	D.E.Post, et al. Ato	mic & Nucl.Tables 2	20	(1977)	397
[4]	C.Breton, et al.	EUR-CEA-FC-1039		(1980)	
[5]	S.Suckewer, et al.	Nucl.Fusion	21	(1981)	981
[6]	C.Breton, et al.	J.Phys.B	16	(1983)	2627
[7]	B.C.Stratton, et al.	Nucl.Fusion	24	(1984)	767
[8]	TFR	Phys.Rev.Lett.	36	(1976)	1306
[9]	S.A.Cohen, et al.	Phys, Rev. Lett.	35	(1975)	1507
[10]	E.S.Marmar, et al.	Phys.Rev.Lett.	45	(1980)	2025
[11]	R.C.Isler, et al.	Phys.Rev.Lett.	47	(1981)	649
[12]	E.S.Marmar, et al.	Nucl.Fusion	22	(1982)	1567
[13]	TFR	Phys.Lett.A 87	7A	(1982)	169
[14]	S.L.Allen, et al.	Nucl.Fusion	23	(1983)	303
[15]	R.C.Isler, et al.	Nucl.Fusion	23	(1983)	1017
[16]	S.Suckewer, et al.	Nucl.Fusion	24	(1984)	815
[17]	J.E.Rice, et al.	Nucl.Fusion	24	(1984)	1205
[18]	W VII-A Plasma Physics	& Controlled Fusio	on	(1984)	D-IV-5
[19]	P.Bogen Com.Plasma	Phys.Con.Fusion	4	(1978)	115
[20]	C.H.Muller, et al.	Phys.Rev.Lett.	47	(1981)	330
[21]	B.Schweer, et al. J.Nu	cl.Mater. 111 & 11	12	(1982)	71
[22]	P.Bogen, et al. J.Nu	cl.Mater. 111 & 11	12	(1982)	67
[23]	C.H.Muller, et al. J.Nu	cl.Mater. 111 & 11	12	(1982)	56
[24]	T.Oda, et al. J.Nu	cl.Mater. 128 & 12	29	(1984)	262
[25]	H.L.Bay, et al. J.Nu	cl.Mater. 128 & 12	29	(1984)	257
[26]	R.C.Isler, et al.	Phys.Lett.A 63	3A	(1977)	295
[27]	S.Suchewer, et al.	Phys.Rev.Lett.	41	(1978)	756
[28]	S.Suchewer, et al.	Phys.Rev. A	21	(1980)	924
[29]	M.Finkenthal,et al.	J.Appl.Phys.	56	(1984)	2012
[30]	S.von Goeler, et al.	Nucl.Fusion	15	(1975)	301
[31]	K.Hill, et al.	Phys.Rev. A	19	(1979)	1770
[32]	M.Bitter, et al.	Phys.Rev.Lett.	42	(1979)	304
[33]	M.Bitter, et al.	Phys.Rev.Lett.	43	(1979)	129
[34]	M.Bitter, et al.	Phys.Rev.Lett.	4/	(1981)	921
[35]	R.C.Isler	Phys.Rev.Lett.	38	(19//)	1359
[36]	S.Suckewer, et al.	Phys.Rev. A	22	(1980)	/25
[3/]	R.J.Fonck, et al.	Phys.Rev.Lett.	49	(1982)	/3/
[38]	C.H.Skinner, et al.	Phys.Rev.Lett.	53	(1984)	458
[39]	R.J.Fonck, et al.	Phys.Rev. A	29	(1984)	3288
[40]	Grazing Incidence Spect	rometer & Monochron	nat	or, SPI	<u>-</u> X
[41]	Grazing Incidence Monoc	hromator & Spectrog	gra	ipn, McPi	nerson
[42]	NIKON W.	Ders Cai Tustus -	c 1	(1000)	1
[43]	R.R.RICHARDS, et al.	Rev. Sci. Instrum.	50	(1900)	1000
[44]	R.E.Dell, et al.	Nev.SCI.Instrum.	22	(1000)	1000
[45]	WI Hodge of al	Row Soi Trater	55	(109/)	16
[40]	w.L.nouge, et al.	Nev, oct, Instituil,	כנ	(1304)	10

これらの成果を踏まえて中性粒子ビーム入射時 ICRF 加熱時における輻射損失の評価が為 されるようになった。

2) Transport

プラズマ中の不純物制御の観点からは,不純物イオンがプラズマ中でどのように輸送さ れるかを明らかにする必要がある。そのためには拡散係数,対流速度を求めなければなら ない。その方法として不純物をレーザー照射して瞬間的に蒸発させプラズマ中に注入する レーザーブローオフ法が開発された。この方法は,プラズマ中に元々存在する不純物を用 いてその輸送過程を調べる⁽⁵³⁾よりはるかに精度良く輸送係数を与えることが示された。 初期のATC装置での実験⁽⁵⁴⁾では,不純物の輸送が新古典論で説明できるとされたが, 1980年代の実験では,それを支持しない例が発表され,^(55~63)不純物輸送については,今後 更に詳しい研究が必要とされている。

3) Laser Induced Fluorescence

不純物の発生源,発生量,発生機構については,1970年代後半よりプラズマと真空容器 壁間の相互作用の研究が進み,特に色素レーザーを用いて壁近傍の中性金属原子を励起し 放出される蛍光からその密度を求めるレーザー誘起蛍光法⁽⁶⁴⁾が実用になった。この方法 により荷電交換中性粒子束によるスパッタリングによって壁から放出される鉄原子の測 定^(65,66,67)ダイバータープレートにおけるチタンの放出⁽⁶⁸⁾中性粒子ビームのダンプ板か らのモリブデンの放出⁽⁶⁹⁾等が,測定され不純物の発生機構,発生量の解明⁽⁷⁰⁾が進めら れてきた。

4) Atomic Physics

高温プラズマが容易に得られるようになると、従来太陽コロナ中でのみ観測されていた 高電離イオンが実験室で制御されたプラズマ中で観測できるようになり、原子物理学発展 に大きな寄与をすることになった。その一つは高電離イオンの原子構造に関するもので疑 似連続光、禁制線の観測である。疑似連続光⁽⁷¹⁾は、タングステン、モリブデン等の重金 属不純物の高電離イオンからの線輻射によるものだが、複雑な電子構造に由来する遷移が 50~100Å附近に密に存在し一見連続光として観測されるものである。この疑似連続光に よる輻射損失は大きく中心部での電子温度が低いホロー状分布生成の原因と考えられた。 これらの結果リミッター材としてタングステン、モリブデンの重金属にかわって、炭素等 の軽元素が使用されるようになった。

禁制線は,^(72,73,74)量子力学的な電気双極子遷移の選択則をみたさない遷移であり、ここでは磁気双極子,電気四重極子による遷移として観測されるものをいう。鉄、チタン等の

- 8 -

高電離イオンでみられ,基底準位の多重項の間の遷移で生じる。従って波長が共鳴線に比 べて長いのが特徴である。中には可視域に存在するものもあって,ドップラー巾によるイオ ン温度測定,シフトによるプラズマ回転速度の測定に有用である。

他方原子過程については,電離,再結合^(75,76,77,78,79),励起,荷電交換再結合^(80,81,82,83,84) などが明らかにされ原子データの集積,精密化が進展し,それとともにこれらの原子過程 を利用した新しいプラズマ計測法が開発され,例えば従来測定が困難とされた完全電離イ オンの密度測定が試みられるようになった。

5) Instruments

測定器としては,原子分光学の発展とともに高い技術的水準に達した真空紫外分光器^(85,86) が用いられているが,プラズマ閉じ込め装置の大型化,放電時間の長時間化にともないプ ラズマ閉じ込め装置のための分光器として多数の空間点,広い波長域を一度に測定できる 性能が重要な条件として要求されるようになった。これらの試みは,1980年代に入って 新しい半導体多素子検出器の発展をみて可能となった。⁽⁸⁷⁻⁹⁰⁾

1-5 本論文の目的及び意義

本論文では,前節で概観した磁場閉じ込め装置における不純物計測の発展の中で明らか にした不純物計測の課題の中から

(I) ヘリオトロンEプラズマ中に含まれる不純物の種類,密度輻射損失

(II) 不純物の輸送過程

(11) 放電管壁近傍の中性鉄原子の測定,その発生機構

について,真空紫外分光器,レーザーブローオフ法,レーザー誘起蛍光法を用いて実験的 に解明することを目的とする。

ここで得られる結果は、単にヘリオトロンE装置で高温、高密度プラズマを生成する上 で役立つのみならず、将来のより大きな装置建設に対して充分意義あるデータを提供する ものと思われる。

第一章 参 考 文 献

- 1) 宮本健郎, 核融合のためのプラズマ物理(岩波書店, 1926)
- 2) T.J.Dolan, Fusion Research (Pergamon Press, NewYork, 1980)
- 3) J.D.Lawson, Proc. Phys. Soc (London) B70 (1957) 1
- 4) K.Miyamoto, Nucl. Fusion 18 (1978) 243
- 5) V.D.Shafranov, Nucl. Fusion 20 (1980) 1075
- 6) L.A.Artimovich, Nucl. Fusion 12 (1972) 215
- 7) H.P.Furth, Nucl Fusion 15 (1975) 487
- 8) P. Rutherford, Nucl, Fusion 20 (1980) 1086
- 9) L. Spitzer, Jr., Phys. Fluids 1 (1958) 253
- 10) K.M.Young, Plasma Phys. 16 (1974) 119
- 11) L.A.Artsimovich, etal., Nucl. Fusion Special Suppl. (1969) 17
- 12) M.J.Forrest, N.J.Peacock, et al., CLM-R 107 (1970)
- D.Dimock, D.Eckhartt, et al, Plasma Physics and Controlled Nuclear Fusion Research (Madison, 1971) Vol.
- 14) C.F.Barnett, J.F.Clarke, et al., ibid. p.347
- 15) TFR Plasma Physics and Controlled Nuclear Fusion Research (Tokyo, 1974) Vol I, p.127
- 16) N.Fujisawa, A.Funahashi, et al., ibid. p.3
- 17) L.A.Berry, C.E.Bush, et al., ibid p.125
- H.Eubank, R.J.Goldston, et al., Plasma Physics and Controlled Nuclear Fusion Research (Innsbruck, 1979) Vol I. p.167
- 19) H. Maeda, S. Sengoku, et al., ibid p.377
- 20) K.B.Axon, G.A.Baxfer, et al., ibid p.51
- D.Meade, V.Arunasalam, et al., Plasma Physics and Controlled Nuclear Fusion Research (Brussels, 1980) Vol I, p.665
- 22) M.Keilhacker, D.B.Albert, et al., ibid, Vol.II, p.351
- 23) M.Nagami, N.Fujisawa, et al., ibid, Vol.II, p.367
- 24) P.C.Efthimion, M.Bell, et al., Phys. Rev. Lett, 52 (1984) 1492
- 25) P.H.Rebut, D.V.Bartlett, et al., Plasma Physics and Controlled Nuclear Fusion

Research (London, 1984) A-I-1

- 26) W VII-A, Plasma Physics and Controlled Nuclear Fusion Research (Baltimore, 1982) Vol.II, p.241
- 27) K.Uo, A.Iiyoshi, T.Obiki, O.Motojima, et al., ibid p.209
- 28) R.L.Tohnson, O.B.Adams, et al., Nuclear Technology/Fusion 4 (1983) 1296
- 29) K.Uo, J.Phys. Soc. Japan. 16 (1961) 1380
- 30) K.Uo, Memories of the Faculty of Engineeving (Kyoto University) 23 (1962)
 31
- 31) K.Uo, Electro, Tech. Journal of Japan. 8 (1963) 48
- 32) K.Uo, Plasma Phys. <u>13</u> (1971) 243
- 33) K.Uo, Nucl, Fusion. 13 (1973) 661
- 34) K.Uo, Electrical Engineering in Japan. 94 (1974) 25
- 35) K.Uo, S.Morimoto, et al., Phys. Rev. Lett. 31 (1973) 986
- 36) O.Motojima, A.Iiyoshi, K.Uo, Nucl. Fusion. 15 (1975) 985
- 37) A. liyoshi, M. Sato, et al., Nucl. Fusion. 14 (1974) 789
- 38) T.Obiki, T.Mutoh, et al., Phys. Rev. Lett. 39 (1977) 812
- A.Iiyoshi, K.Uo, Plasma Physics and Controlled Nuclear Fusion (Tokyo, 1974)
 Vol. III. p.619
- 40) K.Uo, A.Iiyoshi, T.Obiki, O.Motojima, et al., Plasma Physics and Controlled Nuclear Fusion Research (Baltimore, 1982) Vol.II. p.209
- 41) A.Iiyoshi, O.Motojima, M.Sato, T.Mutoh, et al, Plasma Physics and Controlled Nuclear Fusion Research (London, 1984) F-I-4
- 42) K.Uo, A.Iiyoshi, T.Obiki, O.Motojima, et al., ibid D-I-2
- 43) C.Breton, C.DeMichelis, et al., EUR-CEA-FC-1060 (1980)
- 44) S.Suckewer, Physica Scripta. 23 (1981) 72
- 45) R.C.Isler, Nucl, Fusion. 24 (1984) 1599
- 46) TFR, Nucl. Fusion. 15 (1975) 1053
- 47) C.Breton, C.DeMichelis, et al., EUR-CEA-FC-853
- D.E.Post, R.V.Jensen, et al., Atomic Data and Nucl. Data Tables. <u>20</u> (1977) 397
- 49) C.Breton, C.DeMichelis, et al., EUR-CEA-FC-1039 (1980)

- 50) S.Suckewer, E.Hinnov, et al., Nucl. Fusion. 21 (1981) 981
- 51) C.Breton, A.Compant, et al., J.Phys. B 16 (1983) 2627
- 52) B.C.Stratton, H.W.Moos, et al., Nucl. Fusion. 24 (1984) 267
- 53) TFR, Phys. Rev. Lett. 36 (1976) 1306
- 54) S.A.Cohen, J.L.Cecchi, et al., Phys. Rev Lett. 35 (1975) 1507
- 55) E S.Marmar, J.E.Rice. etaal., Phys. Rev. Lett. 45 (1980) 2025
- 56) R C.Isler, L.E.Murray, et al., Phys. Rev. Lett. 47 (1981) 649
- 57) E.S.Marmar, J.E.Rice, et al., Nucl. Fusion. 22 (1982) 1567
- 58) TFR, Phys, Lett A. 87A (1982) 169
- 59) S.L.Allen, H.W.Moos, et al., Nucl. Fusion. 23 (1983) 303
- 60) R.C.Isler, L.E.Murray, et al., Nucl. Fusion. 23 (1983) 1017
- 61) S.Suckewer, A.Cavallo, et al., Nucl. Fusion. 24 (1984) 815
- 62) J.E.Rice, J.L.Terry, et al., Nucl. Fusion. 24 (1984) 1205
- 63) W VII-A, Plasma Physics and Controlled Nuclear Fusion Research (London, 1984) D-IV-5
- 64) P.Bogen, Com Plasma Phys. Cont. Fusion. 4 (1978) 115
- 65) C.H.Muller, III, K.H.Burrell, Phys. Rev. Lett. 47 (1981) 330
- 66) H.L.Bay, B.Scthweer, J.Nucl. Mater. <u>128 & 129</u> (1984) 257
- 67) T.Oda, K.Kondo, et al., J.Nucl. Mater. 128 & 129 (1984) 262
- 68) B Schweer, P.Bogen, et al., J.Nucl. Mater. <u>111 & 112</u> (1982) 71
- 69) P.Bogen, B.Schweer, et al., J.Nucl. Mater. 111 & 112 (1982) 67
- 70) C.H.Muller. III. D.R.Eames, et al., J Nucl. Mater. 111 & 112 (1982) 56
- 71) R.C.Isler, R.V.Neidigh, et al., Phys Lett A 63A (1977) 295
- 72) S.Suckewer, E.Hinnov, et al., Phys. Rev. Lett. 41 (1978) 756
- 73) S.Suckewer, R.Fonck, et al., Phys. Rev. A21 (1980) 924
- 74) M.Finkenthal, R.E.Bell, et al., J.Appl. Phys. 56 (1984) 2012
- 75) S.von Goelor, W.Stodiek, et al., Nucl. Fusion 15 (1975) 301
- 76) K.W.Hill, S von Goeler, et al., Phys. Rev. A19 (1979) 1770
- 77) M.Bitter, S.von Goeler, et al., Phys. Rev. Lett. 42 (1979) 304
- 78) M.Bitter, K.W.Hill, et al., Phys. Rev, Lett. 43 (1979) 129
- 79) M.Bitter, S.von Goeler, et al., Phys. Rev. Lett. 47 (1981) 921

- 80) R.C.Isler, Phys. Rev. Lett. 38 (1977) 1359
- 81) S.Suckewer, E.Hinnov, et al., Phys. Rev. A22 (1980) 725
- 82) R.J.Fonck, M.Finkenthal, et al., Phys. Rev. Lett. 49 (1982) 737
- 83) C.H.Skinner, S.Suckewer, et al., Phys. Rev. Lett. 53 (1984) 458
- 84) R.J.Fonck, D.S.Darrow, et al., Phys. Rev. A29 (1984) 3288
- 85) GISMO; Grazing Incidence Spectrometer/Monochromator', SPEX Industries
- 86) Grazing Incidence Monochromator/Spectrograph; McPherson Instrum. Coop.
- 87) R.K.Richards, H W.Moos, et al., Rev. Sci. Instrum. 51 (1980) 1
- 88) R.E.Bell, M.Finkenthal, et al., Rev. Sci.Instrum. 52 (1981) 1806
- 89) R.J.Fonck, A.T.Ramsey, et al., PPPL-1883 (1982)
- 90) W.L.Hodge, B.C.Stratton, et al., Rev. Sci. Instrum. 55 (1984) 16

第二章 ヘリオトロンE装置

2-1 はじめに

ヘリオトロンE装置は我国における初の核融合志向の大型プロジェクト研究のための実 験装置として建設されたものであり、ヘリカルヘリオトロン磁場による外部導体系の世界 最大規模のものである。

この装置はヘリオトロン閉じ込め磁場の有効性を同規模のトカマク装置で得られている プラズマパラメータと同じ領域で検証するためのものである。

特にヘリオトロンD装置で、ジュール電流をクラスカルシャフラーノフ限界をはるかに 越えて流すことができたこと、⁽¹⁾高周波加熱^(2,3)及び磁気リミッタ⁽¹⁾とダイバータの有効性⁽⁴⁾ が示されたことからヘリオトロンE装置では次の研究目標が設定された。

- (1) ジュールプラズマについての閉じ込めと安定性の研究
- (2) 中性粒子ビーム入射及び高周波による追加熱の有効性の証明
- (3) 定常核融合炉を想定した無電流高温プラズマの生成とその閉じ込めと安定性の研究
- (4) ヘリオトロン型ダイバータの研究
- (5) 高β値達成の研究
- (6) ヘリオトロン型装置の比例則の確立

これらの目標を実現するため1976年に設計及びヘリカルコイルと真空容器のR&Dを 開始し、その後電源、計測系を1980年3月に完成し、同年4月より実験を開始した。

以後追加熱用の中性粒子ビーム入射装置,高周波加熱装置の整備を行い,今日までに上 記の研究目標の大部分の実験が行われ,いずれも良好な成果が得られている。

この章では、ヘリオトロンE装置の構成及びヘリオトロン磁場について述べる。

2-2 ヘリオトロンE装置^(5,6)

ヘリオトロンE装置の構成は、図2-1に示されているように、プラズマを閉じ込める 主半径2.2m、ポロイダル断面が小半径0.41m、0.21mのレーストラック型をトーラス小 軸に沿って回転させた形の真空容器とそれに巻かれたヘリカルコイル、トロイダルコイル 垂直磁場コイル、ジュールコイル等のコイル群と、各コイルに直流大電流を供給する縦型 発電機、整流器機及び真空排気系、放電管ベーキング装置と、プラズマ加熱、計測系から なっている。

図2-1 ヘリオトロンE実験装置概観

ヘリオトロンE装置の主な仕 様を表2-1に示す。ヘリオト ロンE真空容器は図2-2に示 すように, ヘリオトロン磁気面 を包み,かつプラズマ軸上での 磁場強度を強くするためヘリカ ルコイルをできるだけプラズマ の近くに配置するためレースト ラック形の断面形状が選ばれた。 又, ヘリカルコイル通電時(最 大1.16MA)の大きい電磁力を 放電管で支えるため放電管は厚 さ3cmの新しく開発された高耐 力(40kg/mm²)のYUS170と いうステンレススチールでつく られている。この放電管の全容 量は4.5m³で壁の表面積は,

表2-1 ヘリオトロンE装置

VACUUM CHAMBER		
MAJOR RADIUS	R	2.2 m
MINOR RADIUS	a	0.21-0.4 m
MATERIAL		YUS 170
MAGNETIC FIELD		
TOROIDAL COMPONENT OF THE HELICAL FIELD PRO- DUCED BY THE HELICAL COIL	Bhøo	2 Tesla
TOROIDAL COIL FEILD	Bto	0.6 Tesla
VERTICAL COIL FIELD	$\mathbf{R}_{\mathbf{V}}$	0.37 Tesla
HELICAL COIL		
TOROIDAL ROTATION NUMBER	1	2
POLOIDAL ROTATION NUMBER	κ (m/2)	9.5
HELICAL COIL CURRENT	I _H	1.16 M A
HELICAL COIL CURRENT DENSITY		7 kA/cm²
NUMBER OF TOROIDAL COILS		38
FLAT TOP TIME		0.5 sec
REPETITION TIME		10 min
POWER SUPPLY		330 NI \ A

31.5m²である。ジュール放電を行うために放電管は2分割され絶縁材として初期には, テフロンを使用していた。現在は高抵抗のベローズで接続してある。

図2-2 ヘリオトロンE装置

2-3 真空排気系^(5,6)

良好なプラズマ生成のため、ヘリオトロンEでは真空管理に充分な注意が払われている 排気系の構成は粗引系と主排気系補助排気系からなっている。主排気系は排気速度 2400// sec のターボ分子ポンプ4台で円筒系のマニホールドを介してヘリオトロンE真空容器の 排気を行っている。補助排気系はスパッタイオンポンプと排気速度10⁴//secのクライオポ ンプが装備され、真空容器内の到達真空度は2×10⁴ torr以下に保たれている。これら高真 空維持の努力は、計測系にも適用され、真空的にもE放電管と絶縁できない中性粒子エネ ルギー分析器、真空紫外分光器等では、ベーキングのできない検出部とE放電管の間を強 力に差動排気を行い、かつプラズマが生成されている間のみゲートバルブが開くようにし て測定系からのガス流入がないように充分注意が払われている。

真空容器壁に対しては、ベーキング、放電洗浄、チタンゲッタリングが行われる。ベー キングは真空容器の大気開放後の排気に続いて行われ、放電管の外側に巻いてある油管に

- 16 -

約100°Cに加熱したサームエス#600油を1001/minの流量で流す。

放電洗浄は、2.45 GHz, ECRH 放電、グロー放電等が用いられ、充分洗浄が終ったあと には、チタンゲッターが行われる。

2-4 電源装置^(5,6)

ヘリオトロンE装置で最も大 きな電流を必要とするのは、へ リカルコイル系で,最大1.16 MA • Turn に達する。この電流 容量は, 受電系統から直接流用 するには負荷が大きすぎるので 330 MVA の縦型発電機を用意 している。この発電機は充分な 質量を有し, GD²=1400t・m² 以上あるのでフライホイールを 用いなくてよい。最大定格回転 数は650 rpm で放電時約3秒間 で励磁を行い,回転エネルギー を電気出力としてとり出してい る。最大出力電圧は18KVで 30~100%の間で設定が可能で ある。

発電機出力は,各コイル毎に 変流器を通してサイリスタ整流 器に送られ,ヘリカルコイル系 では24相整流,トロイダルコイ ル系では6相整流されて各コイ ルに通電される。

ジュール電流は,空心コイル にあらかじめ電流を流し,その しゃ断時に現われるフラックス

変化によって生じる電圧によってプラズマ電流を流す,誘導性エネルギー蓄積方式が採用 されている。電源系の構成を図2-3に示す。電動発電機から供給される各コイルの通電 波形を図2-4に示す。

2-5 プラズマ生成及び加熱装置

この節では、ヘリオトロンE装置で用いられているプラズマ生成法と加熱法を概説する。 ヘリオトロンE実験で注目されるプラズマパラメータは、ヘリオトロンD装置が主とし て衝突頻度の大きい MHD 領域からプラトー領域での閉じ込めについて研究されたことか ら、より高温の無衝突領域が研究対象となる。この領域のプラズマを生成する有力な方法 としてジュール放電によるもの、ヘリオトロン装置の特徴である無電流プラズマを生成す る ECRHがある。更に追加熱として中性粒子ビーム入射と ICRF が準備されている。

ジュール放電

ジュール放電は,真空容器の外側に巻かれた180ターンの空心コイルに流れる最大6KA の電流を10msecの速さでしゃ断し,その際誘起される1ターン電圧による電子加速によ って行われる。有効磁束は3V・secで最大立ち上

げ電圧は200Vである。

ジュール電流の向きは、ヘリカルコイルのつく る回転変換とジュール電流による回転変換が同じ 向きになる方向(Additive)と逆になる方向 (Substractive)のいずれも可能である。ジュール プラズマの閉じ込め時間 τ は、ドリフトパラメー タ ξ = Vd/Vth (Vd:ドリフト速度、Vth:熱 速度)に対して図 2 - 5 にみられるような強い依 存性がある⁽⁷⁾

図2-5 閉じ込め時間のドリフトパ ラメーターに対する依存性

ECRH

ECRHによるヘリオトロンE装置におけるプラズマ生成は,将来の定常核融合炉に対し て最も明るい見通しを与えるものである。

第一段階では同波数28GHz,100kW,パルス巾10msecのバリアン社製ジィャラトロンで,電子密度4×10¹² cm⁻³,電子温度500~600eVのプラズマを得ることができた。⁽⁹⁾

現在では,発振周波数を53.2 GHz に上げ,より高い密度のプラズマを生成することができる。(10) この周波数は,B=0.95 T の時の電子サイクロトロン周波数の第二高周波とな

っており、ここで生成されたプラズマに中性粒子ビームを入射することにより、 $\beta \lesssim 4\%$ のプラズマも得られている。図2-6にECRH出力と電子温度、内部エネルギーの依存性を示す。

図2-6 電子温度,蓄積エネルギー,ボロメーター出力のECR出力に対する依存性 中性粒子ビーム入射加熱

高温プラズマを生成する方法として最も有力な手段と考えられる高エネルギー中性粒子 ビーム入射装置が備えられている。

バケット型イオン源で生成された高速のH⁺ イオンビームは、中性化セルにおいて電子 を吸着して中性H⁰ビームに変換され、閉じ込め磁場を横切ってプラズマ中に入射される。 入射された高速の中性粒子は、主としてプラズマ中のH⁺イオンとの荷電交換反応によって 電離され閉じ込められ、イオンと電子の加熱を行う。⁽¹¹⁾

ヘリオトロンE装置では、最大エネルギー30kV, ビーム電流40Aのイオン源をもつビ ームラインが3本あり、そのうち2本は28°,他は90°の入射角が与えられている。特に 90°入射は将来の装置における取りつけ易さを考える上で重要な試みである。又、モンテ カルロ法による計算結果からもヘリオトロン磁場配位での90°入射の有効性が確かめられ ており⁽¹²⁾ その加熱実験の意義は大きい⁽¹³⁾

NBIによる加熱効率としては,

 $\Delta T = 2 [eV] P_{abs} [KW] / n_e (10^{13} cm^{-3})$

が得られる。(図2-7),又,中性粒子ビーム入射によるβ値を図2-8に示す。

図 2 - 8 中心 β 値の電子 密度依存性

ICRF

イオンサイクロトロン周波数領域 の高周派加熱は大出力の発振器が期 待されることや,電源設備その他を プラズマ発生装置から充分離すこと が可能であることから定常核融合炉 における追加熱法として大きな期待 が寄せられている。

発振周波数 26.7 MHz, 出力2 MW の高周波発振器を用い真空容器中に とりつけられた上下対称の half-turn 型ループアンテナで fast mode, slow mode の実験が行われ有効なイオン 加熱が観測されている。結果を図 2 - 9 に示す。^(14, 15)

 図 2 - 9 ICRF 加熱時における電子密度 ボロメーター出力,イオン温度 電子温度の時間変化

2-6 ヘリカルヘリオトロン磁場

ヘリカルヘリオトロン磁場配位は,K.Uo^(16,17,18,19,20,21)によって考案され,

$$θ = κ φ$$
 ($θ$: ポロイダル角, $φ$: トロイダル角, $κ$: 半整数)

に従って巻かれたヘリカルコイルによって閉じた磁気面が形成される。ヘリカルコイルは 2 κ回ポロイダル方向に回転すると、トロイダル方向に2回転して元の位置にもどる。ある ポロイダル断面でみると180°離れた位置に同一方向に流れる電流のための導体が存在する ことになる。

ヘリオトロン磁場を特徴つける主要パラメータは,r, α^* , β^* の三種類があって, そ れぞれ次のように定義される。

これらの組み合わせによって多様な磁気面が構成される。

図 2 – 10 に, $\alpha^* - r$ 面上で閉じた磁気面が存在する領域を示す。図中 Fordidden Zone と記された領域では,閉じた磁気面が存在しない。

rが0.9以上になるとα*=0でも閉じた磁気面が存在する。このことはトロイダルコイ ルによる磁場を必要としないことを意味する。事実へリオトロンD及び DM 装置によって 実験的に明らかにされた

ヘリオトロンE装置では、プラズマ半径をできるだけ大きくして、 α^* を適切に選ぶこと により磁気面の多様性を保障するという実験からの要請とヘリカルコイルの巻き易さとい う製作上要請から3層9ターンのヘリカルコイルを κ =9.5、R=2.2m、 コイル半径 a = 0.31mでつくることに決定された。この κ =9.5、 α^* =0、 β^* =-0.185における磁気面

- 21 -

を図2-11 に示す。又,磁場強 度分布を図2-12に示す。

閉じ込め磁場配位における重 要なパラメータである回転変換 *及びシァーを図2-13に示す。 この図よりヘリオトロンE装置 では中心で *=0.5,周辺で3, シァーは周辺で0.5になってい ることがわかる。

外部導体系のステラレータで ある W VII-a では, $t \simeq 0.2$ ($t \simeq 0.7$ も可)でシァーは殆 んど存在しない。これに反して ヘリオトロンは大きい回転変換 と強いシァーを併せて有してい ることが特徴である。

図 2-14には,ヘリカルリッ プルとトロイダルリップルを示 す。

2-10 α*, r面上で示された閉じた 磁気面の存在領域

図 2-11 ヘリオトロンEの磁気面の例

図 2-13 回転変換(ま) 及びシァー(θ)

図 2-14 ヘリカルリップル (ϵ_h) とトロイダルリップル (ϵ_t)

第二章 参考 文献

- K.Uo, S.Morimoto, S.Konoshima, M.Koyama, A.Iiyoshi, Phys. Rev. Lett <u>31</u>, (1973) 986
- 2) A.Iiyoshi, M.Sato, A.Sasaki, T.Obiki, K.Uo, Nucl. Fusion 14 (1974) 789
- T.Obiki, T.Mutoh, S.Adachi, A Sasaki, A.Iiyoshi, K.Uo, Phys. Rev. Lett. <u>39</u> (1977) 812
- 4) O.Motojima, A.Iiyoshi, K.Uo, Nucl. Fusion 15 (1975) 985
- 5) 宇尾光治, 飯吉厚夫, 加沢義彰, 鈴木昌平, 橋本 宏, 尾形文夫, 封井勝治, 磯部昭 二, 谷口 昭, 日立評論 <u>62</u>(1980) 29
- 6) 中嶋洋輔, 京都大学博士学位論文(1983年)
- 7) K.Uo, A.Iiyoshi, T.Obiki, S.Morimoto, O.Motojima, A.Sasaki, K.Kondo, M.Sato, T.Mutoh, H.Zushi, H.Kaneko, S.Besshou, F.Sano, T.Mizuuchi, S.Sudo, Y. Nakashima, N.Nishino (Proc. 10th European Conf, Controlled Fusion and Plasma Phys. Moscow, 1981) 357
- A.Iiyoshi, M.Sato, O.Motojima, T.Mutoh, S.Sudo, M.lima, S.Kinoshita, H.Kaneko, H.Zushi, S.Besshou, K.Kondo, T.Mizuuchi, S.Morimoto, K.Uo, Phys. Rev. Lett. 48 (1982) 745
- 9) M.Sato, O.Motojima, S.Sudo, T.Mutoh, H.Zushi, K.Kondo, S.Besshou,
 H.Kaneko, T.Mizuuchi, K Hanatani, M.Nakasuga, M.Iima, Y.Nakashima,
 N.Nishino, A.Iiyoshi, K.Uo, Nucl, Fusion <u>23</u> (1983) 1333
- A.Iiyoshi, O.Motojima, M.Sato, T.Mutoh, S.Sudo, T.Mizuuchi, K.Kaneko, H.Zushi, S.Besshou, K.Kondo, H.Okada, M.Iima, I.Ohtake, M.Wakatani, M.Nakasuga, T.Obiki, K.Uo, 9th Int. Conf. on Plasma Physics and Controlled Nuclear Fusion Research, London, 1984, F-14
- 11) F.Sano, T.Obiki, A.Sasaki, A.Iiyoshi, K.Uo, Jpn. J Appl. Phys. 21 (1982) 517
- 12) K Hanatani, M. Wakatani, K. Uo, Nucl. Fusion 21 (1981) 1067
- F.Sano, T.Obiki, O.Motojima, A.Sasaki, K.Hanatani, H.Zushi, S.Sudo,
 S.Besshou, M.Sato, T.Mutoh, H.Kaneko, T.Mizuuchi, K.Kondo, M.Nakasuga,
 Y.Nakashima, N.Nishino, A.Iiyoshi, K. Uo, Nucl. Fusion. <u>24</u> (1984) 1103
- 14) T.Mutoh, H.Okada, O.Motojima, S.Morimoto, M.Sato, H.Zushi, K.Kondo,

- 24 -

S.Sudo, S.Besshou, T.Mizuuchi, H.Kaneko, Nucl. Fusion. <u>24</u> (1984) 1003 F.Sano, M.Iima, T.Ohiki, A.Iiyoshi, K.Uo.

- 15) 武藤 敬, 京都大学博士学位論文
- 16) K.Uo, J.Phys. Soc. Jap. <u>16</u> (1961) 1380
- 17) K.Uo, Memoriesof Faculty of Engineering (Kyoto Univ.) 23 (1962) 31
- 18) K.Uo, Electro Tech. J. of Jap. 8 (1963) 48
- 19) K.Uo, Plasma Phys. 13 (1971) 243
- 20) K.Uo, Nucl. Fusion. 13 (1973) 661
- 21) K.Uo, Electrical Engineeing in Japan. 94 (1974) 25

第三章 ヘリオトロンE装置での主な計測

3-1 はじめに

プラズマの閉じ込め及び有効な加熱を達成するには、プラズマ生成加熱法の研究ととも に生成されたプラズマ諸量の正確な測定が必要である。

ヘリオトロンE装置のようにこれまで我国では例をみない大きさ,放電時間の長いプラ ズマを計測するためには,信頼性が高く安定に動作し,かつ精度が良いことが必要である。 ここでは,ヘリオトロンE装置で用いられている主な計測法を概説する。

3-2 計 測 概 説

プラズマ計測の主な方法は⁽¹⁻⁶⁾プラズマから放出される電磁波や粒子のエネルギーを解 析したり(受動的計測),プラズマの外からエネルギー(波長)のわかった粒子束,電磁 波を入射してそれに対するプラズマの反応をみてプラズマ諸量を評価する(能動的計測) 二つの方法に大別される。

前者は,対象とするプラズマを乱すことが少ないが,往々にして空間分解を必要とする 測定が困難である。後者は,入射する電磁波や粒子束の量に充分注意すればプラズマを乱

図3-1 プラズマ計測に用いられる電磁波、粒子束と主な検出器

すことなく高い分解能で測定が可能となる。

プラズマ計測で考えられる電磁波,粒子のエネルギー(波長)依存性を図3-1に示す。 横軸にエネルギー(波長)を目盛り,それぞれに対応するプラズマから放出される粒子と 電磁波の種類を示した。同時にその発生機構や能動的計測に用いられる電磁波,粒子と主 な検出器を併せて記してある。⁽⁷⁾

電子は、プラズマ周辺から放出される低エネルギーのものから電場で加速され数 MeV に達するものまで分布する。イオン及び荷電交換中性粒子は、イオン温度の10倍以上のエ ネルギー領域まで分布する。中性粒子ビーム入射をする時には、更にその入射エネルギー 附近まで分布が拡がる。又、将来の核反応プラズマでは、14 MeV の中性子、3.5 MeV の α 粒子が重要となる。

一方電磁波では,最もエネルギーの高い硬X線の領域から制動輻射,再結合輻射からな る軟X線領域,次に高電離金属イオンの線輻射が主となる真空紫外域,低電離イオンの線 輻射による可視域から近赤外領域へと広がる。更に波長が長くなり遠赤外から μ波領域で は,プラズマ電子密度測定に有力な遠赤外レーザー,μ波干渉計の能動源の領域となる。 又,電子サイクロトロン放射による電子温度測定の重要な領域でもある。

能動源となる電磁波は、可視域に、電子温度密度測定に有力なルビーレーザー(6943Å) がある。又、有機色素の反転エネルギー準位を利用した色素レーザーが4000~7500Åの範 囲で発振可能で、更に非線型結晶を用いて第2高調波を発生させれば、2000Åの短波長 域まで使用できる。猶三光子過程や高電離イオンを用いて真空紫外域からX線領域でのレ ーザー発振の可能性を探る努力が続けられている。

遠赤外領域では,新しい半導体検出器の発展とともにYAG レーザー(1.06 µm)がト ムソン散乱に使えるようになり,高い繰り返し発振を利用して電子温度,密度の時間変化 の測定が行われるようになった。

このようにプラズマを深く理解するには,エネルギーとして数 eV から数 MeV の粒子, 波長数 cm から数 pm の電磁波を広い範囲にわたって測定する必要がある。実際の測定で は,測定しようとするエネルギー領域で最も適した方法と検出器を選ぶ必要がある。又, 一つの物理量の測定についても異なったエネルギー領域の測定法を採用し,それぞれが独 立した原理に基づく評価を行い信頼性を高めることが重要である。

又,放電周期が,最大定格時10分と長いことから,一日の放電回数が通常40~50ショットになり,その間に種々のパラメータ依存性を調べるので同一条件下での放電数が限られる。従って一回の放電でできるだけ多くのデータを得ることも重要な条件である。

- 27 -

ヘリオトロンE装置の計測法としては、重要な諸量については、二種類以上の方法を準備してその信頼性を高め、又、できるだけ多くの情報が得られるようにした⁽⁸⁾。表3-1 に主なパラメータとその測定法及び特徴を記した。図3-2は、測定器の配置例を示す。

測定パラメータ	測 定 方 法	構成及び特徴
電子密度	5 ch 2 mm # 波干渉計 5 ch 118 # m 遠赤外干渉計	大出力 EIO 光励起双子型 メチルアルコールレーザー
電子 温度	Rbーレーザートムソン散乱 ECE Soft X	低ビーム拡がり角Rb-レーザー 周波数掃引 BW O 3 ch Si (Li)結晶
イオン温度	荷電交換中性粒子 エネルギー分析 ドップラー巾測定	質量分析型 振動鏡による波長走査
不純物	可視分光 真空紫外分光 レーザー誘起蛍光法 レーザーブローオフ法 表面分析	P-250 McPherson 247 V フラッシュランプ励起 各種不純物の注入
輻射損失	ボロメーター	SUS 薄膜
中 性 子	中性子カウンター	BF ³ , He ³ NE213

表3-1 主なプラズマパラメーターとその測定法及び構成

図 3-2 主な測定装置の配置例

3-3 計 測 各 論

3-3-1 電子密度

プラズマ中を電磁波が伝播するとプラズマがない場合に比べて位相が

$$\Delta \mathbf{0} = \frac{2\pi}{\lambda_{b}} \int_{-a}^{a} \left[1 - \left(1 - \frac{n_{e}}{n_{co}} \right)^{2} \right] dr \qquad \qquad \begin{pmatrix} a : プラズマ半径\\ n_{e} : 電子密度\\ n_{co} : カットオフ密度 \end{pmatrix}$$

だけ変化する。従ってプラズマ中を伝播するプローブ光とプラズマを通らない参照波を干 渉させその位相差を測定することにより,電子密度を知ることができる。⁽⁹⁾

ヘリオトロンE装置では,干渉計として 2mm μ 波と 118 μm CH₃OH レーザーによる二 つが用意されている。

 $2 \text{ mm} \mu$ 波干渉計の発振器は出力 20W の EIOを使用し、5本の干渉路があって空間分布 の測定ができるようになっている。(図 3-3)。但し図 3-4 にみられるようにカットオ フ密度が、2.6×10¹⁴ cm⁻³、又、密度分布を放物形に仮定した時、sin (δ_{MAX}) = (f_{pe}/f_o)²、 (f_{pe} : プラズマ周波数、f_o: 電磁波周波数)で与えられる最大屈折角 δ_{MAX} は⁽¹⁰⁾、中心の電 子密度 1×10¹³ cm⁻³ で 2°となり 50 cm 離れた位置でビームが 1.7 cm ずれこの影響を無視で きない。従ってより高い密度領域での空間分布測定用に、波長が短かく屈折効果の小さ

- 29 -

い118μm CH₃OH レーザーの干 渉計が用意された。⁽¹¹⁾

この系は、CO2 レーザーによ る光励起のCH₃OHレーザー2 本による光源と,干渉計,Ge-Ga 検出器, 信号処理部と遠赤外 干渉計の機械振動を補償する可 視干渉計から構成されている。 図3-5に示すようにプローブ 光はプラズマを通過してヘリオ トロンE装置上ベースにとりつ けられたコーナーキューブプリ ズムで反射され参照光と干渉す る。干渉路は7本あって適宜3 本を選択できるようになってい る。検出器は、⁽¹⁷⁾40~170 µmの 波長域で感度を有する Ge-Ga 光伝導型でその周波数応答は 50kHz~5MHzで,液体ヘリウ ムで冷却して使用する。

この遠赤外干渉計は,電子密 度10¹³cm⁻³で測定フリンジが 0.4と1フリンジ以下になる。 5×10¹²cm⁻³まで測定するには, 1/20のフリンジ分解能を必要と

5 ch. 2 mm µwave interferometer system

図3-3 5ch 2mmマイクロ波干渉計

図3-4 電子密度とフリンジ数及び屈折角の関係

する。このためには,発振周波数が,1MHz異なるCH₃OH レーザー2本を用いてそのビ ートを利用する。

プローブ光 $x = a \cos(\omega t - \varphi)$, 参照光 $x_R = b \cos(\omega t + \varphi)$ を検出する検出器出力S,S_R は S = $(x + x_R)^2$ = $ab \cos(\varphi + \psi)$ S_R = $a'b' \cos \psi$

図3-5 メチルアルコールレーザー干渉計

となり,位相差 φ は,S及びS_Rの零クロッシングの時間差として表わされる。この位相差 を実時間で表示するには,Sがマイナスからプラスへ零クロッシングする時は,up-counter で加算し,S_Rが,マイナスからプラスへ零クロッシングする時,down-counterで減算する。 そのカウンター値をDAコンバータで電圧信号に変換後,積分器を通し直視化している⁽¹⁸⁾

この118μm干渉計は、コーナーキューブプリズムが変位をすることによっても位相変 化を生じるので、干渉計の機械的変位を補償するために、プラズマによる位相変化が無視 できて、機械的変位を観測するより波長の短かい He- Ne レーザー(6328Å)の干渉計が 組み込まれている。

3-3-2 電子温度

電子温度測定には、(1)ルビーレーザートムソン散乱、(2)電子サイクロトロン高調波測定 (3)軟X線波高分布解析の三種類がある。

(1) ルビーレーザートムソン散乱

ルビーレーザートムソン散乱による電子温度測定は,波長 6943 Åのルビーレーザー光を プラズマ中に入射して熱電子による散乱光のドップラー拡がりの半値巾 $d\lambda$ 1/2=32 $\sqrt{\text{Te}(eV)}$ (Å)を測定して電子温度を評価する。^(19,20,21)測定系が,レーリー散乱等で絶対感度較 正されておれば,散乱光強度より電子密度の評価ができる。散乱はレーザー光が通過する 領域でのみ生じることから、集光系を工夫することにより(数 mm×数10 mm)の高い空間 分解能を容易に得ることができる。又、レーザー発振のパルス巾が 50 nsec であるので、時 間分解能も極めて高い。但し、トムソン散乱の散乱断面積が、 6.7×10^{-25} cm² と小さいので、 初期には、高密度ピンチプラズマ^(22,23)に適用されるに留っていたが、T-3トカマク⁽²⁴⁾で測定 が成功して以来、トカマク、ステラレータ、ヘリオトロン⁽²⁵⁾等のトーラス装置の電子温度測定 の最も標準的方法となった。初期の測定系では、一回の放電中、空間1点、時間1点のデータが 得られるのみであったが、PLTでは一回の放電で空間90点の測定ができるようになった⁽²⁶⁾。

ヘリオトロンE装置でも空間分布測定の重要性を考慮して空間10点(+25cm~-20cm) 時間2点(100msec間隔)測定可能な系を製作した。⁽²⁷⁾

レーザー発振器は,ビーム拡 がり角を1mrad以下にするため, 図 3-6に示すようにルビーロ ッドを4本使用し,発振段共振 器内にアパーチャを入れてビー ム径をしぼりかつ各段間にビー ムエクスパンダーを入れてビー

図3-6 Rb-レーザー発振器

ム径をルビーロッド径に一致させた。ルビーを励起するキセノンフラッシュランプは,ル ビーロッドをとりまくヘリカル型と,楕円反射筒の焦点軸にルビーロッドと平行に置く直 管型の二種類があるが,フラッシュランプの交換の容易さから直管型を採用した。各フラ ッシュランプには,二つの電源が用意されサイリスタスウィッチで制御されダブルパルス 発振ができる。

レーザービームは,図3-7, a, b に示すように,放電管下の48×200 mm²のポートか ら上向きに入射し,トロイダル方向へ±9.5°離れた位置にある二つの横ポートから散乱光 を観測している。散乱光は分割プリズムを用いて空間2点(A),3点(B)合計5点に分け各 々を5台のツェルニーターナー型分光器に導く。各々の分光器の出口スリット上の像を 更に上下二分割し,それぞれを各8チャンネルの光電子増倍管で散乱光のスペクトルを測 定している。従って測定される空間点は10点で,使用する光電子増倍管は80本となる。

光電子増倍管は、レーザー発振した時と、その後14 µsec後の2回高圧ゲート回路が働き、散乱光とプラズマ背景光を測定する。

その電気信号は、分解能9ビット、32ワードメモリの AD コンバータ(Le Croy 2250 L) にたくわえられ放電終了後計算機に読み込まれ散乱光スペクトルをガウス分布で近似

図3-7b Rb-レーザートムソン散乱系(立面図)

してその半値巾から温度を計算 する。図3-8にデータ処理系 のブロック図を示す。

(2) 電子サイクロトロン高調 波測定

電子サイクロトロン波の第2 高調波は,プラズマが光学的に 充分厚い時には,その輻射強度

図3-8 レーザー散乱データ処理系

Iwは,黒体輻射強度に等しくなり,Iw = $\omega^2 T_e / 8\pi^3 C^2$ と電子温度 T_eに比例する。⁽¹⁹⁾又,受信周波数を変えることにより共鳴する磁場強度が変化し,空間分布の測定も可能となる。 ヘリオトロンE装置で中心磁場 2 T の時のサイクロトロン第 2 高調波の周波数は,中心で

112 GHz,長軸に沿って プラズマの端では70 GHz となる。

これらの領域の輻射測 定法には,(i)ヘテロダイ ン法,⁽²⁸⁾(ii)フーリエ分光 法,⁽²⁹⁾(iii)マルチチャンネ ルフィルター法,⁽³⁰⁾(iV)回 折格子分光法,⁽³¹⁾(V)ファ ブリペロー干渉法⁽³²⁾と

種々開発されているが,表3-2からわかるように最も分解能 の優れたヘテロダイン法を採用 した。構成を図3-9に示す。 局所発振器は10msecの間に75 GHzから110GHzまで発振周波 数を変えることができるBWO である。

猶第3高調波は,輻射強度が n_eT_eに比例するので,電子密度

表3-2 電子サイクロトロン放射の測定法とその特徴

方法	周波数分解能 ⊿f/f	時間分解能	検出器
ヘテロダイ	ン 1×10 ⁻³	1 μsec	diode
フーリエ分	光 3×10 ⁻²	10~15msec	InSb
マルチチャンネフィルタ	0.5~1	1 µsec	InSb
グレーティ	グ 0.05~0.1	1 µ sec	InSb
ファブリペロ	- 0.1	10 <i>µ</i> sec	InSb

図3-9 電子サイクロトロン高調波測定系

電子温度のいずれかを他の方法で求めれば他方を評価することができる。⁽³³⁾

(3) 軟X線の波高分析

エネルギー1keVから10keVの軟X線領域では、制動輻射と再結合輻射による連続光が 放出される。

制動輻射の強度は

$$\left(\frac{\Delta W}{\Delta k}\right)_{\rm ff} = 3 \times 10^{11} \frac{n_e \sum n_i Z_{\rm iff}^2}{10^{26} ({\rm cm}^3)} \left(\frac{T_e}{({\rm keV})}\right)^{\frac{1}{2}} g_{\rm ff} \exp\left(-\frac{k}{T_e}\right) ({\rm sec}^{-1})$$

再結合輻射の強度は

$$\left(\frac{\Delta W}{\Delta k}\right)_{tb} = 3 \times 10^{11} \frac{n_e n_1}{10^{26} (cm^{-3})} Z_1 \left(\frac{T_e}{keV}\right)^{\frac{1}{2}} g_{tb} \exp\left(-\frac{k}{T_e}\right)$$

$$\times \left[\frac{\xi}{n^3} \frac{\chi_1}{T_e} \exp\frac{\chi_1}{T_e} + \sum_{\nu=1}^{\infty} \frac{2\chi_H}{T_e} \frac{Z_1^2}{(n+\nu)^3} \exp\left(\frac{Z_1^2}{(n+\nu)^2} - \frac{\chi_H}{T_e}\right)\right]$$

で与えられ⁽³⁴⁾いずれも exp(-k/T。)の依存性をもつ。従って放出される軟 X 線の光子 数をエネルギー巾を決めて計数することによりエネルギースペクトラムが得られ、その傾 きから電子温度を得ることがで

きる。

ヘリオトロンE装置では、光 子のエネルギー測定に Si(Li) の結晶⁽³⁵⁾を用いている。エネ ルギー分解能は 200eVである。 図 3-10 に測定系の概念図を示 す。

図 3-10 軟 X 線測定系

3-3-3 イオン温度

イオン温度測定は、(1)荷電交換中性粒子のエネルギー分析と(2)不純物イオンの線スペクトルのドップラー巾から求めている。

(1) 荷電交換中性粒子エネルギー分析^(36,37,38)

プムズマ中に存在するイオンは、閉じ込め磁場によって容易に外に出て来ないが、わず かに存在する中性原子との荷電交換反応 H⁰stow + H⁺hot → H⁰hot + H⁺stow によって生成され た高速の中性粒子は、閉じ込め磁場にかかわりなくプラズマの外へ出てくる。従ってこの 中性粒子のエネルギー分析を行うことによってプラズマ中のイオン温度を評価することが できる。

ここで用いられているエネルギー分析器は、ソ連 loffe 研究所で製作されたものである。⁽³⁹⁾ 中性粒子は窒素ガスの入ったストリッピングセルで電離され磁石(あるいは静電プレート) によってエネルギー分析され、更に10チャンネルの円筒型コンデンサーによって分析され る。この磁場と電場の組み合わせの場合は、質量とエネルギーの分析を同時に行うことが できる。

イオンはステンレス板でつくられたコレクターに衝突して二次電子を放出する。この二 次電子は、チャンネルトロン、セラトロンで電荷パルスに変換され、ディスクリミネータ ー、増巾器(PAD400)を経てスケーラーで計数される。⁽⁴⁰⁾測定エネルギー範囲は、0.2 ~40keV,エネルギー分解能は5~25%である。分析器本体は軟鉄でつくられており外部 磁界 0.02Tまでは、磁気シールドなしで使用できる。図 3-11に装置を示す。

図 3-11 荷電交換中性粒子測定系

(2) 不純物イオンの線スペクトルのドップラー巾測定

イオンが熱運動していると発光する線スペクトルは、その熱速度に比例するドップラー 拡がりを示し、線スペクトルの形状は、ガウス型となって、その半値巾 $d \lambda_{1/2}$ は、 $d \lambda_{1/2} = 2.44 \times 10^{-3} \lambda \sqrt{\text{Ti} / \text{Mi}}$ (Å, keV, amu)で与えられる⁽⁴¹⁾

ヘリオトロンE装置では、この半値巾測定用に焦点距離1.26mのツェルニーターナー型 回折格子分光器(spex1269)を用いている。

一回の放電中に何点かの時刻におけるイオン温度を測定するため出口スリット直前に振

動鏡を置いて出口スリットを通過する光の波長を時間とともに変化させ線巾を測定できる ようにした。⁽⁴²⁾ この方法の特徴は、出口スリット巾が自由に変えられるので、波長分解能 を任意に選ぶことができることと、検出器が一つで済むことによりデータ処理が楽なこと である。

ドップラー巾測定を精度良く 行うには,対象とする光の波長 が,長い方が有利であるが,短 かい波長を対象とする時は,回 折の次数を上げて測定を行う。 光電子増倍管で電気信号に変え られたあとは,計算機でガウス 分布に近似して温度を評価す る。⁽⁴³⁾測定系を図3-12に示す。

図 3-12 ドップラー巾測定系

3-3-4 不純物計測

不純物に関しては、Ⅰ. プラズマ中に含まれる不純物の種類,密度(atoms/cm³),輻 射損失(W/cm³),Ⅱ.輸送過程,Ⅲ.不純物の発生場所,発生量(atoms/sec cm²),発 生機構などが重要な課題である。Ⅰについては,第四章,真空紫外分光器を用いた不純物 計測,Ⅱについては,第五章,不純物注入による輸送過程で,Ⅲについては,第六章,レ ーザー誘起蛍光法による中性鉄原子測定で,それぞれ詳述するので,ここではヘリオトロ

-						
	型式名	F 数	焦点距離 (mm)	逆。分散 (A/mm)	分解。能 (A)	使用目的
可 Nikon 4 2		250	30	0.1	低電離イオンの線強度 測定	
	SPEX 1704	8	1000	8	0.08	分光写真撮影
視	SPEX 1269	10	1260	6.3	0.06	振動鏡によるドップラ ー巾測定
真空紫外	McPherson 247 V	42	2217 (Rawland 円直径)	0.3	0.15	多価電離イオンの写真 撮影及び線強度測定

表3-3 ヘリオトロンE装置で用いられている分光器の仕様と用途

ンEで用いられている主な分光器の仕様を紹介するに留める。

可視域では焦点距離 250 mm の P-250 型, 焦点距離 1 m の SPEX 1704, 1.26 m の SPEX 1269 の三種類がある。真空紫外域では, McPherson 247 V が使用されている。それぞれの 性能及び用途を表 3 - 3 にまとめる。

3-3-5 データ処理

前節で述べた各種測定器からのデータの形式は,干渉計のように連続した信号(Continuous型),レーザー散乱のように非常に短かいパルス的なもの(Laser型),荷電交換中性粒子エネルギー解析のようにパルス列をある時間巾毎に計数するもの(Scaler型) 軟X線の波高分析のように振巾の異なったパルス列をある時間巾毎にそのパルスの振巾別 に数えるもの(Pulse Height型)に大別される。

これらの信号は、このままでは必要な物理量にならず、例えば、最少二乗法によって最 も近いガウス分布を求めその半値巾から温度を決めるという処理を高速にかつ正確に進め る必要がある。⁽⁴⁴⁾

このために多くの入力チャンネルとそれに付随したメモリをもつ計算機によるデータ処 理系が必要である。

入力チャンネル数は,原則的には,検出器の数だけ必要であり,外部メモリの容量(語数)は,各チャンネルあたり

- C型:(放電時間)/(時間分解能)
- (2) L型: (ゲート動作回数)
- (3) S型: (放電時間)/(ゲート巾時間)
- (4) P型:(最大パルス振巾)/(最小識別パルス振巾)
 - ×(放電時間)/(時間分解能)

を必要とする。

計算機システムは、図3-13に示されるように中央処理装置を中心として周辺機器,入 出力装置によって構成されており、オンラインデータ収集モードでは、放電開始のパルス とともに前もって設定されたサンプリング時間(あるいはゲート時間)、サンプリング開 始時刻に従って各入力チャンネルについている外部メモリにデータが収集される。放電が 終了すると外部メモリから順次データを読み出し各種プログラムに従って演算され、電子 密度、温度等がグラフィクディスプレイに表示されて、次の放電を待機する。

一方外部メモリから読み出されたデータは磁気テープに書き込まれて永久保存される。

DATA ACQUISITION SYSTEM OF HELIOTRON-E

図3-13 データ処理系

第三章 参考 文献

- R.H.Huddlestone, S.L.Leonard, Plasma Diagnostic Techniques (Academic Press, New York, 1965)
- W.Lochte-Hottgreven, Plasma Diagnostic (North-Holland Pub. Co. Amsterdam 1968)
- A. Eubank, E. Sindoni, Course on Plasma Diagnostics and Data Acquisition Systems (International School of Plasma Physics, Varrena, 1975)
- E.Sindoni, C.Wharton, Diagnostics for Fusion Experiments (International School of Plasma Physics, Varrena, 1978)
- 5) Equipe TFR, Nucl. Fnsion. 18 (1978) 647
- 6) N.C.Luhman, Jr, W.A.Peebles, Rev. Sci, Instrum, 55 (1984) 279
- 7)近藤克己,佐藤浩之助,磁場核融合プラズマ計測(核反応プラズマ実験における放射線)1984
- Heliotron E G, Proc. of USSR-JAPAN, Joint-Seminar on Plasma Diagnostics, Nagoya (1980)
- M.A.Heald, C.B.Wharton, Plasma Diagnostics with Microwaves (John Wiley & Sons. Inc. NewYork, 1965)
- 10) J.Shmoys, J.Appl. Phys. <u>32</u> (1961) 689
- D. Veron, Submillimeter Interferometry of Hish Density Plasmas in Infrared and Millimeter Waves, vol. II (Academic Press, New York, 1979)
- 12) D.Veron, EUR-CEA-FC-980 (1978)
- 13) D. Veron, Opt. Com. 10 (1974) 95
- 14) S.M.Wolfe, K.J.Button, J.Waldman, D.R.Cohn, Appl. Opt. 15 (1976) 2645
- 15) K.J.Button, S.M.Wolfe, SPIE 105 (1977) 72
- 16) D.R.Baker, S.T.Lee, Rev. Sci. Instrum. 49 (1978) 919
- 17) 東京理科大学にて製作
- 18) C. A. J. Hugenholtz, B. J. H. Mecldens, Rijnhuizen Report 76-100 (1976)
- G.Bekefi, Radiation Processes in Plasmas (John Wiley & Sons. Inc, NewYork, 1966)
- 20) S.E.Schwarz, J.Appl. Phys. 36 (1965) 1836

- 21) A.W. DeSilva, G.C.Goldenbaum, Methods of Experimental Physics vol. 9 (Academic Press, NewYork, 1970)
- 22) D.E.Evans, M.J.Forrest, J.Katzenstein, Nature 211 (1966) 23
- 23) A.W. DeSilva, J.Fujita, T.Kawabe, K Kondo, T.Uyama, Phys. Fluids <u>17</u> (1974) 1780
- 24) M.J.Forrest, N.J.Peacock, D.C.Robinson, V.V.Sannikov, P.D.Wilcock CLM-R107 (1970)
- 25) S. Morimoto, K. Kondo, T. Mizuuchi, A. Iiyoshi, K. Uo, Jpn, J. Appl. Phys. <u>18</u> (1979) 621
- 26) N.Bretz, D.Dimock, V.Foote, D.Johnson, D.Long, E.Jolnas, Appl. Opt. <u>17</u> (1978) 192
- 27) S.Sudo, K.Kondo, T.Mutoh, H.Zushi, A.Iiyoshi, K.Uo, Jpn. J.Appl Phys.22 (1983) 485
- Equipe TFR, Proc. 7 th European Conf. on Controlled Fusion and Plasma Physics, Lausanne (1975), p146
- 29) A.E.Costley, TFR G, Phys. Rev. Letters 38 (1977) 1477
- 30) D.A.Boyd, F J.Stauffer, A.W. Trivelpiece, Phys. Rev. Letters 37 (1976) 98
- W.R Rutgers, Proc. 8th European Conf on Controlled Fusion and Plasma Physics, Prague (1977) p.138
- 32) R.A.Blanken, P.Brossier, D S.Komm, IEEE Trans. Microwave Theory and Tech 22 (1974) 1057
- J.N. Talmadge, H Zushi, S.Sudo, T.Mutoh, T Obiki, O.Motojima, A Iiyoshi,
 K.Uo, Phys. Rev. Letters 52 (1984) 33
- 34) S, von Goeler, W.Stodiek, H.Fishman, S.Grebenshchikov, E.Hinnou, Nucl. Fusion <u>15</u> (1975) 301
- 35) E H.Silver, M.Bitter, K.Brau, D.Eames, A.Greenberger, K.W.Hill, D.M Meade, W.Roney, N.R.Sauthoff, S.von Goeler Rev. Sci. Instrum. <u>53</u> (1982) 1198
- 36) M.P. Petrov, Sov. J. Plasma Phys. 2 (1976) 201
- 37) A.I.Kislyakou, L.I.Krupnik, Sov. J.Plasma Phys. 7 (1981) 478
- 38) 中嶋洋輔, 京都大学博士論文(1983)

- 41 -

- 39) V.V Afrosimov, E.L.Beregovskii, I P.Gladkouskii, A.I.Kislyakov, M.P.Petrov,
 V.A.Sadounikou Sov. Phys. Tech. Phys. 20 (1975) 33
- 40) H Zushi, Y.Nakashima, K.Kondo, A.liyoshi, K Uo, J.Phys. Soc. Jpn <u>51</u> (1982) 2673
- H.R.Griem, Spectral Line Broadening by Plasmas (Academic Press, NewYork, 1974)
- 42) S Suckewer, E. Hinnov. Nucl Fusion 17 (1977) 945
- 43) K.Kondo, N.Nishino, K.Magome, T.Mutoh, H.Kaneko, H.Zushi, O.Motojima, T.Obiki, A.Iiyoshi, K Uo, Proc. on Symp. on Atomic Collision Data for Diagnostics and Modeling of Fusion Plasma, Nagoya, (1983) p 139
- 44) A.Ogata, JAERI-memo 7515 (1978)
- 45) T.Mutoh, O.Motojima, S Sudo. K.Kondo, Y.Ijiri, S.Besshou, H.Kaneko, T. Mizuuchi, T.Obiki, A Iiyoshi, K.Uo, IEEE Trans. on Plasma Science PS-11 (1983) 238

第四章 真空紫外分光器を用いた不純物計測

4-1 はじめに

この章では,不純物計測の課題である,(1)プラズマ中の不純物イオンの種類及び電離状態の同定,(2)不純物イオンの密度,(3)不純物イオンによる輻射損失について述べる。

プラズマを生成すると、真空容器を大気開放した際に壁に附着した酸素、炭素、窒素等の軽元素や、真空容器の構成材である鉄、ニッケル、クロム、又チタンゲッターで蒸着されたチタン等の金属元素がプラズマからの荷電交換中性粒子やイオンとの衝突によって壁から飛び出してプラズマ中へ不純物として持ち込まれる。⁽¹⁾これらの不純物イオンがプラズマ中に存在すると電子衝突による励起後、光として電子エネルギーをプラズマ外へ放出したりして大きなエネルギー損失になり得る可能性がある。従って上記(1),(2),(3)の項目について正確な情報が必要とされる。

プラズマ中に侵入した不純物原子は,高温の電子との衝突によって,次々に電離し,又 同時に束縛電子を励起する。励起された電子は,量子力学的に許される遷移をして様々な 波長の光を放出する。

一般に第一励起準位から基底準位への遷移の時放出される光(共鳴線)の波長は,電 離が進む程短波長域に移行し,波長1000Å以下の波長域に分布する^(2,3)。この共鳴線は, 基底準位への遷移であるからその線強度の評価が他の高い励起準位間の遷移に比べて容易 であるから定量的測定を行う場合特に選ばれる。従って波長1000Å以下の領域の測定が重 要となる。^(4,5,6,7)しかしこの波長域には,大気中の酸素分子による吸収帯があるので測定系 即ちプラズマから分光器,検出器までの間を真空排気する必要がある。このためにこの波 長域を真空紫外域と呼ぶ。又,波長が短かくなると金属面での反射率が低下するため反射 素子の使用は極力押え,分散と集光を兼ねた凹面回折格子とスリットからなる斜入射真空 紫外分光器が最も有力な測定器となっている。

以下2節で真空紫外分光器の概要と測定系の感度較正を第3節で分光写真による不純物 の同定結果を示す。第四節では、光電測定を行う上で必要な線強度評価のための原子デー タについて述べる。第5節では、ヘリオトロンEプラズマでの光電測定の結果を示し、第 6節で全体のまとめをする。

4-2 斜入射真空紫外分光器

波長1000Å以下の真空紫外域で用いる分光器は,装置内を真空排気できることが第一 条件として挙げられる。又,分光器内の光学系は短波長域で金属面の反射率が急減するた め極力反射面を減らすように設計され,凹面鏡に刻線した凹面回折格子,入口スリットと 出口スリットあるいは,写真乾板をローランド円周上に配置して構成されている。凹面回 折格子への入射角の大小でこの真空紫外分光器は,二つに大別される。入射角が小さく凹 面回折子に垂直に近い角度で光が入射する直入射型と,回折格子面に光をかすめるように 入射角を大きくして光を入射させる斜入射型である。前者は波長が500Å以下になると反 射率が低下するので実用波長域は500Å以上となっている。従ってこれ以下の波長域を 測定対象とする時は,後者の斜入射型を必要とする。入射角をなとした時,測定できる最 短波長 λ_{\min} は, λ_{\min} =154 sin(90°- α)(Å)(金蒸着回折格子)で与えられるので短 かい波長を測定する時には入射角 α を大きくしなければならない。しかし入射角を大きく すると実効的F数が大きくなり光の透過率が減少することと,凹面回折格子をかすめるよ うに光が通ることから迷光が大きくなる。従って実際の測定では適切な入射角を選ぶ必要 がある。

今回使用した斜入射真空紫外分光器は, McPherson 247 V 型で入射角は 82°~ 88°で

図4-1 写真乾板によるスペクトル測定

連続可変である。凹面回折格子の刻線は,600本/mmで,金蒸着がされている。その大き さは50 mm×30 mm 曲率半径(= Rowland 円直径)は2217.6 mm である。スリットは巾5 μ ~2000 μ m,高さ10 mm まで連続可変である。逆線分散は,10 Å附近で0.3 Å/mm,100 Å 附近で0.6 Å/mm,1000 Å 附近で1.8 Å/mm である。スリット巾10 μ m の時の波長分解能 は,0.15 Å である。この分光器は、ローランド円周上の結像面にガラス写真乾板をおいて 分光写真機としての使用法と、ローランド円周上を移動する出口スリットとその後につけ た電子増倍管で光強度を測定する単色計との二通りの使用法がある。第3節で述べる不純 物イオンの線スペクトルの同定は、図4-1に示すように前者の方法で、第4節以下の輻 射強度の測定は後者の方法を用いている。この斜入射真空紫外分光器とヘリオトロンE装 置との接続は、ヘリオトロンE側の高真空を汚染しないように特に注意が払われている。 真空紫外分光器本体は、5001/secの排気量をもつターボ分子ポンプで排気され4×10⁻⁷ torr の真空度に保たれている。一方E装置では10⁻⁸ torr 以下の高真空であるのでE装置と

ポンプで差動排気し2×10⁻⁸ torr の高真空を維持している。更に差 動排気部と分光器の間にはゲート バルブを設け放電直前に開き放電 終了と同時に速やかに閉じるよう になっている。測定系を図4-2 に示す。

分光器との間を同様のターボ分子

図4-2 真空紫外分光器による測定系

4-3 分光写真による不純物イオンの同定

この章の第一の目的であるプラズマ中の不純物の種類とその電離状態の同定には,各イ オンがそれぞれ固有の線スペクトルからなる線輻射を放出することに注目して分光写真を 撮影し,その波長を精密に測定する方法を採用した。

McPherson 247 V 斜入射真空紫外分光器を分光写真機として使用する場合は, ローラン ド円周上の結像面に 2×10 (インチ)² の大きさの 2 枚のガラス乾板(Kodak SWR)を置 き,プラズマ光を撮影する。 2 枚のガラス乾板で撮影できる波長域は対象とする波長によ って若干の差はあるが,平均 700 Åの範囲を撮影することができる。撮影に要する放電数 は概略 100~150 回である。 線スペクトルの波長の決定法

図4-3 波長(¹)とそのガラス乾板上の位置(1)
 の関係

得られる。但し、ガラス乾板上に撮影された線スペクトルを解析する時は、ガラス面が、 直平面となるので、波長 λ と凹面回折格子の中心から結像点までのローランド円に沿った 距離 l の関係が必要となる。これは、 $\angle OCB = \pi - 2\beta$ より、 $l = (\pi - 2\beta) R/2$ となり、

$$\beta = \arcsin\left\{\sin\alpha - \left(\frac{m\lambda}{d}\right)\right\}$$
 と与えられる。

この式で与えられる距離 *l* を動作ガスである水素の Ly α 1215Å,多くの装置で観測さ れる強い線スペクトル OVI 1032Å,1038Å,OV 630Å等について実測値と比較して遂次同 定を進めていく。実際の過程では、ミクロホトデンシトメーターで乾板上のスペクトルを 15倍に距離 *l* を拡大し、かつ想定される不純物イオンの波長及びイオン種を計算機に入力 し、それをプロッターで作画して実験値と比較して長波長側から同定を進めた。波長の読 みとり精度は、0.1Å程度である。測定された波長からイオン種を決めるには、主として R.L.Kelly、L.J.Palumbo による Atomic and Ionic Emission Lines Below 2000 Angstroms,⁽⁹⁾ とその改訂版 ORNL-5922、及びグロトリアンダイヤグラム,^(2,3)波長表^(10,11,12,13,14) を用いた。

NBIプラズマの分光写真による不純物同定

図4-4に中性粒子ビームを入射して得られた電子温度,イオン温度約600eV,平均電子密度3×10¹³ cm⁻³,放電時間約0.3秒のプラズマを100~150ショット重ねて撮影した分光写

- 46 -

真を示す。

線スペクトルは,短波長側では 60Åから400Åにかけて密に存在 し,特に150Åから300Åでは強 い線スペクトルが顕著である。 400Åより長波長側では,比較的疎 に分布している。又,この写真か らは疑似連続光⁽¹⁵⁾はみられない。 図4-5にミクロホトデンシトメ ーターで得た出力図にイオン種, 波長を同定した結果を示す。

これより観測された主な線スペ クトルについて述べる。

波長 400 Å 以上の長波長域では 動作ガスの水素 Ly α 1215 Å, NV 1242.79 Å, 1238.80 Å, OVI 1037.62 Å, 1031.93 Å, CIII 977.02 Å, OIV 790.20 Å, OV 760.45 Å, OV 629.73 Å等の軽元 素の低電離イオンによるものが目 立つ。但しチタンゲッターによる TiXI 568.44 Å, TiXII 460.69 Å の金属イオンも明瞭に観測されて いる。

400 Å以下の波長域では、FeXVI 360.79 Å, 335.41 Å, 265.01 Å,

図4-4 分光写真

FeXV 284.35Å, FeXIV 264.78Å, FeIX 171.08Å, TiXIV 121.99Å, TiXVI 169.74Å等 の金属イオンが認められる。強い線スペクトルは, 100Å以上では dn = 0 (n = 3)の遷移 によるものであり、100Å以下では、dn = 1 ($n = 3 \leftarrow n = 4$) の遷移となり相対的に強度 が減少する。

これらの結果から、このプラズマに含まれる不純物イオンは、軽元素では、酸素、炭素、

図4-5-a ミクロホトデンシトメーター出力図

窒素が認められ,金属元素では,鉄及びチタンとなっている。少数ではあるが,クロム, ニッケルも観測されている。同定された結果を表4-1に示す。又,炭素,酸素,チタン 鉄については,同定された主な線スペクトルを各電離状態で分類したものを図4-6から

図4-9に示す。図中□印は,電離エネルギーを示し○印をつけた線スペクトルは,光電 測定の対象としたものを示す。

表4-1 同定されたスペクトル

			4.5	
1242.80	п	٧	2s-2p	-S-2P0
1238.81	11	۷	2m-2p	4. 7.0
1213.67	ĸ	117	1 -1 2=-2n	2, 2,0
1037.63	0	V1	2#-2p	25.2.0
977.026	c	111	242-24(2S)2P	1 ₅₋ 1 _p 0
884.53	c	111	1# ² 2#3p-1# ² 2p2d	1p0_1F0
790,710	0	1V	2# ² 2p-2s(15)2p ²	200_2D
790.710	0	19	2s ² 2p-2s(15)2p ²	2p0_2D
790.103	0	19	2s22p-2s(15)2p2	2p0_2p
760.445	0	v	2#2p-2p ⁴	303
760.229	0	v	202p-2p*	3.0 3.
762.001	0	v	2#2p-2p 2#2p-2p ²	3,03,
758.677	0	÷.	2020-20 ²	3,03,
759.440	D	v	Zs2p-2p ²	3p0_3p
629.732	0	v	2s ² -2s(² 5)2p	15.1p0
625.41	0	IV	2=2p ² -2p ³	*P-*s0
609.829	0	IV.	25 ² 2p-25(¹ S)2p ²	2p0_25
608.395	0	IV	2s ² 2p-2s(¹ 5)2p ²	2p0_25
500 502			2.72.2.2.2.2.7	1n, 1p ⁰
555 516	0	111	2n 2p -2n2p 2n ² 2p-2n(¹ 5)2n ²	2,0.2,
554.074	0	IV	2a ² 2p-2a(¹ S)2p ²	2p0_2p
555.262	٥	IV	2=22p-2=113>2p2	2 _p 0_2 _p
553.328	0	17	2=27p-2s(15)2p2	2p0_2p
538.312	c	ш	2629-25(² 5)3s	3p0_3s
538.150	¢	111	202p-20(² 5)30	3 _p 0_3 ₅
538.075	с	ш	2=2p-2=(*S)3=	3p0_3s
529.713		ш	2p*-2p3d	3. 3.0
529,627	н 	11.	2p2p2d	J. 3.0
529.605	8	11	2p ² -2p3d	3p-3p0
329.343		II	2p ² -2p3d	34-340
525.795	0	111	2s ² 2p ² -2s2p ³	1D-1Pa
510.757	Ø,	44	2p ² -2p4d	10.1F0
508.182	0	111	2n ² 2p ² -2n2p ³	3p-3s0
307.683	0	111	2= ² 2p ² -2s2p ³	3 _{P.35} 0
507.391	0	111	2# ² 2p ² -2s2p ³	3P-350
506.160	n	11	2s2p'-2s2p*(*P)3d	5-7F
506,057	0	11	58262826-(p)30	-3 - Y
498 890	a	VI	3p-4d	2p0_2p
479.88	71	X11	3s-3p	2 S-2 PO
475.867	8	11	2p ² -2p4d	3 ^{6-3⁰0}
\$75.800	п	11	2p ² -2p4d	3P-300
475.697	R	11	2p*-2p4d	3- 3-0
		10.00		
475,638		11	2p - 2ped	20.200
475,638 472 392 472 232	H H H	11 111 111	2p2p ² -2p2q ³ p ⁰)3d 2p2p ² -2p2q ³ p ⁰)3d 2p2p ² -2p2q ³ p ⁰)3d	2 ₅ .2 _p 0
475,638 472 392 472,232	н н н	11 111 111	2p - 2p + d 2p + +	2 ₅ .2 _p 0 2 ₅ .2 _p 0 2 ₆ 0_2 _p
475,638 472 392 472,232 471,603 471,273	н п 11 0	11 111 111 1V 1V	2p ² -2p ² -2p2p(³ p ⁰)3d 2a2p ² -2a2p(³ p ⁰)3d 2p ³ -2a2p(³ p ⁰)3p 2p ³ -2a2p(³ p ⁰)3p	25.2p0 25.2p0 200.2p 2p0.2p
475,638 472 392 472,232 471,603 471,273 460,74	H H H O O TL	11 111 111 1V 1V X11	2p - 2pp-d 2p2p ² - 2p2p ⁴ 2p2p ² - 2p2p ⁴ ³ p ⁰ } 3d 2p2p ² - 2p2p ⁴ ³ p ⁰ 3d 2p ³ - 2p2p ⁴ ³ p ⁰ 3p 2p ³ - 2p2p ⁴ ³ p ⁰ 3p 3p - 3p	25.2p0 25.2p0 200.2p 2p0.2p 2p0.2p 25.2p0
475,638 472 392 472,232 471,603 471,273 460,74 452,226	H H O O TL N	11 111 111 1V 1V X11 111	2p - 2pp-d 2p2p ² - 2p2p ³ 3p ⁰ 3d 2n2p ² - 2n2p (³ p ⁰) 3d 2p ³ - 2n2p (³ p ⁰) 3p 2p ³ - 2n2p (³ p ⁰) 3p 3n - 3p 2p - 3n	25.2p0 25.2p0 25.2p0 20.2p 20.2p 25.2p0 20.2p 25.2p0 20.2p 25.2p0
475,638 472 392 472,232 471,603 471,273 460,74 452,226 459,633	н н 0 0 ті л с	11 111 111 1V 1V X11 111 111	2p - 2p - 3 2p 2p ² - 2p 2q (³ p ⁰) 3d 2n 2p ² - 2n 2p (³ p ⁰) 3d 2p ³ - 2n 2p (³ p ⁰) 3p 2p ³ - 2n 2p (³ p ⁰) 3p 3n - 3p 2p - 3n 2n 2p - 2n (² n))d	25.2p0 25.3p0 25.3p0
475,638 472 392 472,232 471,603 471,273 460,74 452,226 459,633 439 321	н 11 0 т 1 п с с	11 111 111 1V 1V X11 111 111 111	$\begin{array}{l} 2p - 2p + a \\ 2p + 2p + 2p + 2p + 2p + 3p + 0 \\ 3p + 2p + 2p + 2p + 2p + 3p + 0 \\ 3p + 2p + 2p + 2p + 2p + 3p + 0 \\ 3p + 2p + 2p + 2p + 3p + 0 \\ 3p + 3p + 2p + 2p + 2p + 3p + 0 \\ 3p + 3p + 2p + 2p + 2p + 3p + 0 \\ 3p + 3p + 2p + 2p + 2p + 2p + 2p + 0 \\ 3p + 3p + 2p + 2p + 2p + 2p + 2p + 2p +$	25.2p0 25.3p0 25.3p0
475, 638 472, 372 472, 232 471, 603 471, 273 460, 74 452, 226 459, 633 459, 521 459, 642	н 11 0 ті 12 с с	11 111 111 111 111 111 111 111 111	2p - 2p - 3 2p + 2p - 3 $2p + 2p^2 - 2x + 2p + 3p^0 + 3d$ $2p^2 - 2x + 2p + 2p^0 + 3d$ $2p^3 - 2x + 2p + 2p^0 + 3p$ $2p^3 - 2x + 2p + 2p^0 + 3p$ 3p - 3p 2p - 3a $2p - 2a + 2p + 3p^0 + 3p$ $2p - 2a + 2p + 3p^0 + 3p^0$	2, 2 2, 2 2 2, 2 2 0, 2 0,
475, 638 472, 372 472, 232 471, 603 471, 273 460, 74 452, 226 459, 633 459, 521 459, 642 439, 643	H H O T L C C C	11 111 111 111 111 111 111 111 111 111	$\begin{array}{c} z_{P} - z_{P} a_{d} \\ z_{P} z_{P}^{2} - z_{2} z_{P} (^{3} P^{0})_{3} d \\ z_{R} z_{P}^{2} - z_{R} z_{P} (^{3} P^{0})_{3} d \\ z_{R} z_{P}^{3} - z_{R} z_{P} (^{3} P^{0})_{3} p \\ z_{P}^{3} - z_{R} z_{P} (^{3} P^{0})_{3} p \\ z_{P} - z_{R} z_{P} (^{3} P^{0})_{3} p \\ z_{P} - z_{R} (^{2} z_{P})_{3} d \\ z_{R} z_{R} - z_{R} (^{2} z_{R})_{3} d \\ z_{R} - z_{R} (^{2} z$	$r_{1} = 0$ $r_{2} = 2p^{0}$ $r_{2} = 2p^{0}$ $r_{2} = 0$ $r_{2} $
475, 638 472, 372 472, 232 471, 603 471, 273 460, 74 452, 226 459, 633 459, 521 459, 633 459, 521 459, 633 459, 521		11 111 111 111 111 111 111 111	$\begin{array}{c} z_{P} - z_{P} a_{2}\\ z_{P} \bar{z}_{-2} z_{2} z_{P} (^{2} \bar{p}^{0})_{3d}\\ z_{R2} \bar{p}^{2} - z_{R2} p_{1} (^{2} \bar{p}^{0})_{3d}\\ z_{P}^{3} - z_{R2} p_{1} (^{2} \bar{p}^{0})_{3p}\\ z_{P}^{3} - z_{R2} p_{1} (^{2} \bar{p}^{0})_{3p}\\ z_{P} - z_{R} (^{2} \bar{z}_{S})_{3d}\\ z_{P} - z_{R} (^{2} \bar{z}_{S})_{3d}\\ z_{R2} p_{-2R} (^{2} \bar{z}_{S})_{2d}\\ z_{R2} p_{$	2, 2p0 2, 2p0
475, 638 472, 372 472, 232 471, 263 471, 273 460, 74 652, 226 659, 633 659, 521 459, 642 459, 633 459, 521 459, 522 450, 680		11 111 111 111 111 111 111 111	20 - 2004 2257 - 2227 (-227) (-2004) 2257 - 2227 (-270) (-2004) 227 - 2227 (-270) (-2004) 297 - 2227 (-270) (-270) 297 - 2227 (-270) (-270) 207 - 227 (-270) (-270) (-270) 207 - 227 (-270) (-270) (-270) 207 - 270 (-270) (-270) (-270) (-270) (-270) 207 - 270 (-270)	2, 2, 2, 2 2, 2, 2, 2 2, 2, 2, 2 2, 0, 2, 2 2, 0, 2, 2 2, 0, 2, 2 2, 0, 2, 2 3, 2, 0, 2 3, 2,
475, 638 472, 372 472, 232 471, 273 460, 74 652, 226 659, 633 659, 531 459, 642 459, 633 459, 633 459, 521 652, 226 450, 080 467, 860		11 111 111 111 111 111 111 111	20 - 200 2227 - 2227 - 2227 (² 7 ⁰)30 2227 ² - 2220 (² 7 ⁰)32 23 ³ - 2220 (² 7 ⁰)3p 3a - 3p 2a - 32 2a ³ - 2220 (² 7 ⁰)3p 3a - 3p 2a - 32 2a ³ - 222 (² 7 ⁰)3 2a ² - 223 (² 5)3 2a ² - 23 (² 5)3 2a ³ - 33 (² 5)3 2a ³ - 34 (³ 5)3 2a	2,5,2,0 2,5,2,0 2,5,2,0 2,5,2,0 2,5,2,0 2,5,2,0 3,0,3,0 3,0,5,0,0 3,0,0,0 3,0,0,0 3,0,0,0 3,0,0,0 3,0,0,0 3,0,0,0 3,0,0,0 3,0,0,0 3,0,0,0 3,0,0,0 3,0,0,0 3,0,0,0 3,0,0,0 3,0,0,0 3,0,0,0 3,0,0,0,0 3,0,0,0,0,0 3,0,0,0,0 3,0,0,0,0 3,0,0,0,0,0,0 3,0,0,0,0,0,0,0,0 3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
475,638 472,372 472,232 471,603 471,273 460,74 652,226 639,633 639,521 459,642 459,633 459,521 452,226 450,080 467,840	н п о т с с с с и п о	11 111 111 111 111 111 111 111	2p - 2pai 2x2p ² - 2x2p ² (² p ²)3d 2x2p ² - 2x2p ² (² p ⁰)3d 2p ³ - 2x2p ² (² p ⁰)3p 3x - 2p 2p ³ - 2x2p ² (² p ⁰)3p 3x - 2p 2p - 2x 2x2p - 2x ² (² x)3d 2x2p - 2x ² (² x)3d 2x ² (²	25.2p0 25.2p0 26.2p 260.2p 260.2p 260.2p 260.2p 260.2p 260.25 360.36 360.36 360.36 360.36 360.36 360.36 360.36 260.25 27.2p0
475,658 472,322 471,603 471,273 471,603 471,273 460,74 452,226 459,633 459,633 459,633 459,633 459,633 459,633 459,633 459,633	н и о т и с с с с и и о о т и и о о т и о о т и о о т и о о	11 111 111 111 111 111 111 111	2p - 2pad 2p - 2pad 2x2p ² - 2x2p(² p ⁰)3d 2x2p ² - 2x2p(² p ⁰)3g 2p ³ - 2x2p(² p ⁰)3p 3n - 2p 2p - 3a 2x2p(² p ⁰)3p 2a - 2a 2x2p - 2a(² s)3d 2x2p - 3a(² s)3d 2	25.2p0 25.2p0 26.2p 26.2p 26.2p 26.2p 26.2p 26.2p 26.2p 3p0.36 3p0.36 3p0.36 3p0.36 3p0.36 2p0.25 2p0.25 2p0.25 2p0.25 2p0.25 2p0.26 2p0.25 2p0.26 2p0.26 2p0.25 2p0.26 2p0.2
475, 568 477, 379, 478, 477, 478, 477, 479, 477, 479, 477, 479, 479, 479	н и о о ті и с с с с и и о о ті и о о ті	11 111 111 111 111 111 111 111	2p - 2poi 2x2p ² - 2x2p ² (² x2p ²) ² x3p ² 2x2p ² - 2x2p ² (² p ⁰)3d 2p ³ - 2x2p ² (² p ⁰)3p 2p ³ - 2x2p ² (² p ³)3p 3e - 3p 2e - 3a 2e - 3a 2e - 2a ² (² 5)3d 2x2p - 2a ² (² 5)3d 2xp - 3a ² 1 3 - 5e ² 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2, 2, 2, 0 2, 2, 2, 0 2, 2, 2, 0 2, 0, 2, 2, 2 2, 0, 2, 2, 2 2, 0, 2, 2, 2 2, 0, 2, 2, 2 3, 0, 0, 2 3, 0, 0, 3 3, 0, 0, 0, 3 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
475, 648 477, 247, 479, 479, 479, 479, 479, 479, 479, 4	н п п о о т і л с с с с и п о о р и	11 111 111 111 111 111 111 111	20 - 200 2227 - 2227 - 2227 - 270 2227 - 2227 - 270 2227 - 2220 - 270 20 - 2220 - 270 20 - 2220 - 270 20 - 2220 - 270 20 - 220 20 - 20 20 - 20 2	2, 2, 2, 0 2, 2, 2, 0 2, 2, 2, 0 2, 0, 2, 2 2, 0, 2, 2 2, 0, 2, 2 2, 0, 2, 2 3, 0, 0, 2 3, 0, 0, 0 3, 0 3, 0, 0 3,
475, 658 472, 592 472, 633 471, 663 471, 273 471, 663 471, 273 471, 663 479, 643 479, 643 479, 643 459, 645 459, 645450, 645 450, 645 450, 645450, 645 450, 645 450, 645450, 645 450, 645 450, 645450, 645 450, 645 450, 645450, 645 450, 645450, 645 450, 645 450, 645450, 645450, 645450, 645450	н и л о о т и н о о о р и н	11 111 111 111 111 111 111 111	20 - 200 2127 - 2227 - 2227 - 279 2227 - 2228 - 279 227 - 228 227 -	2,5,2,0 2,5,2,0 2,5,2,0 2,0,2,2 2,0,2,2 2,0,2,2 3,0,3,0,0 3,0,3,0 3,0,3,0 3,0,3,0 3,0,3,0 3,0,3,0 3,0,3,0 3,0,3,0 3,0,3,0 3,0,3,0 3,0,3,0 3,0,3,0 3,0,3,0 3,0,3,0 3,0,3,0 3,0,0,0 3,0,0,0 3,0,0,0 3,0,0,0 3,0,0,0 3,0,0,0 3,0,0,0 3,0,0,0 3,0,0,0 3,0,0,0 3,0,0,0 3,0,0,0,0 3,0,0,0,0,0 3,0,0,0,0 3,0,0,0,0,0,0,0 3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
475, 638 472, 392 471, 603 471, 273 471, 603 471, 273 471, 603 471, 273 470, 603 470, 603 479, 604 479, 604 479	н и и и о о ти с с с с и и о о п и н и и	11 111 111 111 111 111 111 111	20 - 2poi 22 - 22 - 22 - 22 - 22 - 2 22 - 22 -	25,290 25,290 25,290 26,02,
475, 638 472, 392 471, 603 471, 273 471, 603 471, 273 471, 603 471, 273 479, 603 479, 633 479, 633 479, 633 479, 633 479, 633 479, 633 479, 634 450, 636 452, 626 453, 638 454, 638454, 638 454, 638 454, 638455, 638 454, 638 454, 638456, 638 456, 638466, 638466, 638 466, 638466, 638466, 638466	н и и и о о ті и с с с с и и о о п и и и о о ті и о о ті и	11 111 111 111 111 111 111 111	$\begin{array}{c} z_{2} - z_{2} z_{3} \\ z_{2} z_{1} z_{2} - z_{2} z_{1} z_{1} z_{2} z_{1} z_{2} z_{2} z_{2} z_{2} z_{1} z_{1} z_{1} z_{3} \\ z_{2} z_{1} z_{2} z_{2} z_{2} z_{1} z_{1} z_{1} z_{3} \\ z_{2} z_{2} z_{2} z_{2} z_{1} z_{1} z_{2} z_{3} z_{1} z_{3} \\ z_{3} - z_{3} z_{2} z_{2} z_{1} z_{1} z_{3} z_{3} \\ z_{3} - z_{3} z_{2} z_{2} z_{1} z_{3} z_{3} \\ z_{4} z_{2} z_{4} z_{5} z_{3} z_{4} \\ z_{4} z_{5} z_{4} z_{5} z_{3} z_{4} \\ z_{4} z_{5} z_{4} z_{5} z_{3} \\ z_{4} z_{5} z_{4} z_{5} z_{3} \\ z_{5} - z_{6} z_{5} z_{5} \\ z_{5} z_{6} - z_{5} z_{5} \\ z_{5} z_{6} - z_{5} z_{5} \\ z_{4} z_{7} - z_{4} z_{7} z_{7} z_{7} \\ z_{7} z_{7} z_{7} z_{7} z_{7} z_{7} z_{7} \\ z_{7} z_{7} z_{7} z_{7} z_{7} z_{7} z_{7} \\ z_{7} z_{7} z_{7} z_{7} z_{7} z_{7} z_{7} z_{7} \\ z_{7} z_{7} z_{7} z_{7} z_{7} z_{7} z_{7} z_{7} \\ z_{7} z_{7}$	25,290 25,290 25,290 26,02 26,02 26,02 26,02 390,36 39
475, 638 472, 392 472, 603 471, 603 471, 273 471, 603 471, 273 471, 603 472, 272 479, 603 479, 613 479, 613 479, 613 479, 614 479, 613 479, 614 479, 614479, 614 479	н п и о о ти н с с с с и п о о о н н н и и с	11 111 111 111 111 111 111 111	$\begin{array}{c} 2p - 2pa \\ 2p - 2pa \\ 2xzp^2 - 2xzp(-2p^2)(-2p^2)(-2p^2) \\ 2xzp^2 - 2xzp(-2p^2)(-2p) \\ 2p^2 - 2xzp(-2p^2)(-2p^2)(-2p^2) \\ 2p^2 - 2xzp(-2p^2)(-2p^2)(-2p^2) \\ 2p^2 - 2x(-2p^2)(-2p^2)(-2p^2)(-2p^2) \\ 2p^2 - 2x(-2p^2)(-2p^2)(-2p^2)(-2p^2) \\ 2p^2 - 2x(-2p^2)(-2p^2)(-2p^2)(-2p^2) \\ 2p^2 - 2x(-2p^2)(-2p^2)(-2p^2)(-2p^2) \\ 2p^2 - 2x(-2p^2)(-2p^2)(-2p^2)(-2p^2)(-2p^2) \\ 2p^2 - 2x(-2p^2)(-2p^2)(-2p^2)(-2p^2)(-2p^2) \\ 2p^2 - 2x(-2p^2)(-2p^2)(-2p^2)(-2p^2)(-2p^2)(-2p^2) \\ 2p^2 - 2x(-2p^2)(-2p$	2,2,2,0 2,2,2,0 2,0,2,2, 2,0,2,4, 2,0,2,4, 2,0,2,4,4,0 2,0,2,4,4,0 2,0,2,5 2,0,2,5 2,0,2,6 2
475, 658 472, 592 471, 663 471, 273 471, 663 471, 273 471, 663 479, 261 479, 613 479, 614 479, 614 479	H II I O O TL N C C C C II II O O O P H H H H C C	11 111 111 111 111 111 111 111	$\begin{array}{c} 2p - 2pa \\ 2p - 2pa \\ 2xz^2 - 2xz^2 (-2y^2 (-2y (-2y^2 (-2y^2 (-2y (-2y^2 (-2y^2 (-2y^2 (-2y (-2y^2 $	2,2,2,0 2,2,2,0 2,2,2,0 2,0,2,2,4 2,0,2,5 2,0,5
475, 638 472, 392 473, 633 471, 633 471, 633 471, 633 471, 633 471, 633 473, 633 479, 634 479, 635 479, 635 470, 635 470	н п и о о ті н с с с с и п о – о о н и и и и с с с с	11 111 111 111 111 111 111 111	29 - 2904 29 - 2904 2027 - 2229(²⁷ P ⁰)30 2027 ² - 2229(²⁷ P ⁰)3p 29 ² - 2229(²⁷ P ⁰)3p 29 ³ - 229 ² - 29 ² - 2	۲, 5 2, 2, 20 2, 2, 20 2, 2, 20 2, 0, 2, 2, 2, 0, 2, 2, 2, 0, 2, 3, 2, 0, 2, 3, 3, 0, 3, 5 3, 0, 3, 5 3
475, 638 472, 392 471, 603 471, 753 471, 603 471, 753 471, 603 471, 753 471, 603 471, 753 471, 753 471, 753 473, 754 473, 754 474, 754 474, 754 475, 754 755, 754 755, 754 755, 755, 755, 755, 755, 755, 755, 755,	н II II 0 0 TH C C C C II II 0 0 0 P H H H H C C C C	11 111 111 111 111 111 111 111	$\begin{array}{c} \mu_{2} - \mu_{2} \\ \mu_{2} - \mu_{3} \\ \mu_{2} - 2 \mu_{2} \\ \mu_{2}$	r_{1} , r_{2} , r
475, 638 472, 392 472, 392 477, 603 471, 273 471, 603 471, 273 471, 603 472, 232 479, 603 479, 513 479, 543 479, 544 479, 555 479, 558 479, 558	H II I O O TH C C C C U II O O O H H H H H C C C C O .	11 111 111 111 111 111 111 111	$\begin{array}{c} 2p - 2pa \\ 2p - 2pa \\ 2xz p^2 - 2xz p (-^2 p^2) 3d \\ 2xz p^2 - 2zz p (-^2 p^2) 3p \\ 2p^2 - 2zz p (-^2 p^2) 3p \\ 2p^2 - 2zz p (-^2 p^2) 3p \\ 3a - 2p \\ 2p - 3a \\ 2a + 2a +$	**************************************
475, 658 472, 592 472, 592 471, 603 471, 603 471, 273 471, 603 472, 282 479, 613 479, 614 479, 614 479	н II II 0 0 TL H C C C C C II II 0 0 0 P H H H H C C C C C C C C II II 0 0 0 P H H H H C C C C O C C	11 111 111 111 111 111 111 111	29 - 2904 29 - 2904 2027 - 2229 (² 7 ⁰) 30 2028 ² - 2229 (² 7 ⁰) 3p 20 ² - 2229 (² 7 ⁰) 3p 20 ² - 2229 (² 7 ⁰) 3p 20 ² - 2229 (² 7 ⁰) 3p 20 ² - 22 ² (² 7 ⁰) 3p 20 ² - 22 ² (² 7 ⁰) 3p 20 ² - 20 ² (² 7 ⁰) 3p 20 ² - 20 ² (² 7 ⁰) 3p 20 ² - 20 ² (² 7 ⁰) 3p 20 ² - 20 ² (² 7 ⁰) 3p 20 ² - 20 ² (² 7 ⁰) 3p 20 ² - 20 ² (² 7 ⁰) 3p 20 ² - 20 ² (² 7 ⁰) 3p 20 ² - 20 ² (² 7 ⁰) 3p 20 ² - 20 ² (² 7 ⁰) 3p 20 ² - 20 ² (² 7 ⁰) 3p 20 ² - 20 ² (² 7 ⁰) 3p 20 ² - 20 ² (² 7 ⁰) 3p 20 ² - 20 ² (² 7 ⁰) 3p 20 ² - 20 ² (² 7 ⁰) 3p 20 ² - 20 ² (² 7 ⁰) 3p	$\begin{array}{c} r_{1} \\ r_{2} \\$
475, 638 472, 392 471, 603 471, 603 471, 603 471, 603 471, 603 471, 603 472, 607 472, 607 472, 607 479, 603 479, 603 479	н и о о ти с с с с и и о о о и и и и и с с с с о с с с	11 111 111 111 111 111 111 111	$\begin{array}{c} p_{2} - p_{2} \\ p_{2} - p_{2} \\ z_{2} p_{2}^{2} - z_{2} p_{1}^{2} p_{1}^{2} p_{1}^{2} \\ z_{2} p_{1}^{2} - z_{2} p_{1}^{2} p_{1}^{2} p_{1}^{2} \\ z_{2} p_{2}^{2} - z_{2} p_{1}^{2} p_{1}^{2} p_{1}^{2} \\ z_{2} p_{2}^{2} - z_{2} p_{1}^{2} p_{1}^{2} p_{1}^{2} \\ z_{2} p_{2} - z_{2} p_{1}^{2} p_{1}^{2} p_{1}^{2} \\ z_{2} p_{2} - z_{2} p_{1}^{2} p_{1}^{2} \\ z_{2} p_{2} - z_{1} p_{1}^{2} \\ z_{2} p_{2} - z_{2} p_{1}^{2} \\ z_{2} p_{1}^{2} - z_{2} p_{1}^{2} \\ z_{2} p_{1}^{2} - z_{2} p_{1}^{2} p_{1}^{2} \\ z_{2} p_{2}^{2} - z_{2} p_{1}^{$	γ ₁ , 2, 3, ρ 2 2, 2, 2, ρ 3 2, 0, 2, 3, 2, 2, 3, 2, 0, 3, 3, 2, 0, 3, 3, 3, 0, 3, 3, 6, 3, 3, 2, 2, 3, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
475, 638 472, 392 471, 603 471, 603 473, 604 473, 604 474, 604 474	H II O O TH C C C C U N O O O P H H H H C C C C O C C C H	11 111 111 111 111 111 111 111	$\begin{array}{c} \mu_{2} - \mu_{2} \mu_{3} \\ \mu_{2} - \mu_{3} \mu_{3} \\ \lambda_{2} \lambda_{2}^{2} - \lambda_{2} \lambda_{2} (\lambda_{1}^{2} - \lambda_{3}^{2} - \lambda_{3}^{2} \lambda_{3}^{2} \lambda_{3}^{2} - \lambda_{3}^{2} \lambda_{3}^$	2,2,2,0 2,2,2,0,0 2,2,2,0,0 2,2,2,0,
475, 638 472, 392 472, 392 473, 603 471, 273 471, 603 471, 273 471, 603 472, 232 479, 603 479, 241 479, 633 479, 541 479, 543 479, 545 479, 545479, 545 545545, 545 545, 545	н и о о ть н с с с с и и о о о в и н и и с с с с с с и и с	11 111 111 111 111 111 111 111	$\begin{array}{c} 2p - 2pai \\ 2p - 2pai \\ 2xzp^2 - 2xzp(-2p^2)(-2p^2)(-2p^2) \\ 2xzp^2 - 2xzp(-2p^2)(-2p^2) \\ 2p^2 - 2xzp(-2p^2)(-2p^2) \\ 2p^2 - 2xzp(-2p^2)(-2p^2) \\ 2p^2 - 2xzp(-2p^2)(-2p^2)(-2p^2) \\ 2p^2 - 2x(-2p^2)(-2p^2)(-2p^2)(-2p^2) \\ 2xzp - 2x(-2p^2)(-2p^2)(-2p^2)(-2p^2) \\ 2xzp - 2x(-2p^2)(-2p^2)(-2p^2)(-2p^2)(-2p^2)(-2p^2) \\ 2xzp - 2x(-2p^2)(-2p^2$	۲, 2, 2, 2, 0 2, 2, 0 2, 2, 0 2, 2, 0 2,
475, 638 472, 392 477, 603 471, 603 471, 603 471, 603 471, 603 472, 792 479, 603 479, 613 479, 614 479, 614 479	н и и о о ті и с с с с и и о о о и и и и и с с с с с	11 111 111 111 111 111 111 111	$\begin{array}{c} \mu_{2} - \mu_{2} \mu_{3} \\ \mu_{2} - \mu_{3} \mu_{3} \\ \lambda_{2} + \lambda_{2} + \lambda_{2} + \lambda_{2} + \lambda_{3} + \lambda_{3} \\ \lambda_{2} + \lambda_{2} + \lambda_{2} + \lambda_{2} + \lambda_{3} + \lambda_{3} \\ \lambda_{3} + \lambda_{3} + \lambda_{3} + \lambda_{3} \\ \lambda_{3} + \lambda_{3} + \lambda_{3} + \lambda_{3} + \lambda_{3} \\ \lambda_{3} + \lambda_{3} + \lambda_{3} + \lambda_{3} + \lambda_{3} \\ \lambda_{3} + \lambda_{3} + \lambda_{3} + \lambda_{3} + \lambda_{3} \\ \lambda_{3} + \lambda_{3} + \lambda_{3} + \lambda_{3} + \lambda_{3} \\ \lambda_{3} + \lambda_{3} + \lambda_{3} + \lambda_{3} + \lambda_{3} \\ \lambda_{3} + \lambda_{3} + \lambda_{3} + \lambda_{3} + \lambda_{3} \\ \lambda_{3} + \lambda_{3} + \lambda_{3} + \lambda_{3} + \lambda_{3} \\ \lambda_{3} + \lambda_{3} + \lambda_{3} + \lambda_{3} + \lambda_{3} \\ \lambda_{3} + \lambda_{3} + \lambda_{3} + \lambda_{3} + \lambda_{3} \\ \lambda_{3} + \lambda_{$	۲, 2, 2, 2, 0 2, 2, 2, 0 2, 2, 2, 2, 2, 2, 0 2, 2, 2, 2, 2, 0 2, 2, 2, 2, 2, 0 2,
475, 658 472, 592 471, 663 471, 263 471, 663 471, 273 471, 663 472, 226 479, 643 479, 643 479	н н л о о о т. с с с с с и п о о о с с с с и п о о о с с с с и п с с с с с и п с с с с с с п с т. с	11 11 11 11 11 11 11 11 11 11	$\begin{array}{c} p_{2} - p_{2} \\ p_{2} - p_{2} \\ z_{2} p_{2}^{2} - z_{2} p_{1}^{2} p_{1}^{2} p_{1}^{2} \\ z_{2} p_{1}^{2} - z_{2} p_{1}^{2} p_{1}^{2} p_{1}^{2} \\ z_{2} p_{2}^{2} z_{2} p_{2}^{2} p_{1}^{2} p_{1}^{2} \\ z_{2} p_{2} z_{2} p_{1}^{2} p_{1}^{2} \\ z_{2} p_{2} z_{2} p_{1}^{2} p_{1}^{2} \\ z_{2} p_{2}^{2} z_{2} p_{1}^{2} \\ z_{2}^{2} z_{2} p_{2}^{2} \\ z_{2}^{2} z_{2} z_{2} \\ z_{2}^{2} z_{2} p_{2}^{2} \\ z_{2}^{2} z_{2} z_{2} \\ z_{2}^{2} z_{2} \\ z_{2}^{2} z_{2} z_{2} \\ z_{$	γ, 2, 2, 2, 0 2, 2, 2, 2, 0 2, 2, 2, 2, 0 2, 2, 2, 2, 0 2, 2, 2, 2, 0 2, 2, 2, 2, 0 2, 2, 2, 2, 0 3, 2, 0, 2, 3, 10 3, 2, 0, 2, 3, 10 3, 2, 0, 2, 3, 10 3, 2, 0, 2, 3, 10 3, 2, 0, 2, 3, 10 4, 2, 2, 10 4, 2, 2, 10 3, 10, 2, 10

# R		a n	3, 3,0
3/3.803	0 111	2p -	3,0,10
369.482	E	1.23.3.3.3.3.4	4-0.4p
363 864	e 111	24-35	3 ₀ -3 ₅
360.796	Fe XVI	20038-302	25-2p0
360.675	c 111	2028-20(2P0)3p	3 _p 0-3 _p
360.620	C 111	282p-2p(2p0) 3p	3p0-3p
360.557	c 111	2s2p-2p(2p0)3p	3p0,3p
359.384	0 111	2p-3s	550.5p
353.94	TI D	3.2382-3.393	¹ p- ¹ p ⁰
345.309	0 III	2p ² -2p(² P ⁰)3d	"s_1p0
339.773	c 111	7	
335.41	Fe XVI	3s-3p	² s- ² n ⁰
335.030	N IV	-2#2p-2#(*5)3d	¹ p ⁰ - ¹ p
328,448	0 111	2p ² -2p(² P ⁰)3d	1p-100
323,671	11 111	2s2p-2p3p	2.0-2.
321.457	0 IV	Zp"-2p"("D)3s	-pp
320.929	0 111	2p-3d	, 1.0 J.
320,738	0 111	222p -202p (0))	1,1,0
319,998	0 111	29-34	0-1
316.967	9 111	2p ² -2p4 =	1 ₅₋ 1 _P ⁰
315.053	8 17	2p ² -2p3d	10-1F0
317.418	c 1V	2s-3p	2 ₅₋ 2 _P 0
312.455	C 1V	2s-3p	25-2F0
305.769	0 111	2p ² -2p(² p ⁰)3d	3 ₂₋₃ 00
305.656	0 111	2p ² -2p(² p ⁰)3d	3 ⁶⁻³⁰ 0
305.596	0 111	2p ² -2p(² p ⁰)3d	3 ^{h-3^b0}
305.836	0 111	2p ² -2p(² p ⁰)3d	³ p ⁻³ p ⁰
305.703	0 111	2p ² -2p(² p ⁰)3d	3y-300
305.679	0 111	2p ² -2p(² F ⁰)3d	Jp-100
303,709	0 111	2p*-2p(*P*)3d	1.30
303.515	0 111	2p*-2p(*P*)3d	1, 1.0
303,693	0 111	2p*-2p(*P*)3d	3, 3,0
303,400	0 111	2p - 2p(P) Jd	J ₀ , J ₀ 0
203.621	0 111	2p - 2p(P 136	3p_3p0
300.316	n tv	20-4f	10-1p0
296,931	c tv	Zp-La	2p0_25
296.857	C IV	2p-4s	2p0_25
296.944	0 111	2p ² -2p4d	1 _{S-} 1 _P 0
295.511	0 111	2p-4s	¹ D- ¹ P ⁰
292.595	n 111	2p-5d	2p0.2p
292.447	1 111	2p-30	2p0-20
291.330	C 111	2s*-2s5p	S-1P
291-054	0 11	2p ² -2p ² (² P)3d	*P**D
289.988	D IV	2p*-2p*(*\$)3s	2-0 2-
289.230	C 1V	2p-4d	2.0 2.
287.143	C 19	20-40	i, i,0
281 579	10	2+2m-2+(2513)	3p0_3n
283.470	11 1V	2x2p-2x(² 5)3d	3p0_30
283.420	11 IV	2s2p-2s(2s)3d	3 _P 0_3 _D
280.690	Fe XIV	3s3p ² -3p ³	4p-450
277.610	Fe VI	3d ³ -3d ² (a ³ P)4p	**F-y400
276.701	T1 VI	1 3p ³ -3p ² (¹ D)3d	2p0_2p
274.191	Fe X11	3= ² 3p-3=3p ²	2p0_2s
273.178	TI VII	1 3p ³ -3p2(¹ D)3d	² p ⁰ - ² p
279.937	0 11	2p-(¹ 5)3s	
279.633	0 111	2p-(15)3s	
274.051	¢ 111	2s ⁴ -2s7p	15-170
271 523	0 11	2020 2020264 816	550 Sp
270.512	Fe 315	3=23F-3=3p ²	2p0_2p
269.759	T: VI	3p ⁴ -3p3(² 0 ⁰)3d	3p-350
269.599	0 11	2p ³ 2p2(¹ 0)3d	2p0_2s
267.941	T1 1X	3p ² -3p3d	¹ 0- ¹ F ⁰
266.375	5 V	2p-3s	2p0_2s
256,192	H A	Zp-Js	270.25
264.779	Fe XI	(3s ² 3p-3s3p ²	490-2p
264.257	0 [1]	2s'3p-3s3p ²	*p ⁰⁻² F
364,338	0 [1]	2s']p-]s]p'	-P"-"P 2.0 2.
264,480	0 11	2**3p-3*3p*	2.0-2.
263.364	TI VI	11 Jp3p"("\$13d	2,0 2,
262.245	c	Jp - Jp (D) Jd	2 _p 0-2 _g
262 551	¢ 19	20-56	2p0-25
261,725	TI VI	11 3p ³ -3p ² (¹ 5)3d	2 _P 0_2 _D
260.704	TI VI	1 3p4-3p)(2p0)3d	1 _{D-} 1 _D 0
260.455	N 17	ZaZp-Za%d	1 _P 0_1 _D
259.542	C 17	2p-5d	² P ⁰ - ² D
259.471	C 14	2p-5d	2p0_2p

2 X	H		• • 1 - 7 h- 14	2.0.7.
258.610	TL	VIII)p ² -3p ² (*D) 3d	20.20
257.395	0 E	111	20-4d	550.5p
255.252	0	17	2s2p ² -2s2p(¹ p ⁰)3s	200.2p
254.15	Gr	x	3p ³ -3p ² (³ F13d	200_2P
253.948	0	14	7	20.200
253.082		10	2s2p2s2pt P 130	2p012-2p
251.949	Fe	XIII	3p ² -3s3p ³	3p2_3s0
251.065	Fe	xv1	3p-3d	2p0_20
249.365	ø	LV	2p-3d	2p-2p0
249.223	0	IV	2p-Jd	1-0 1-
248.459	0	v	2s2p-2s(*5)3s	2, 2,0
744.049	0	111	2p-3p	1 ₀₋ 1 ₉ 0
240 713	7e	*111	3a ² 3p ² -3e3p ³	3p0_350
240.079	0	IV	2s2p ² -2p ² (³ P)3p	2p-250
240.239	0	IV	1	
240.934 238.573	0 0	IV IV	7 2p-(¹ 513d	2p0-20
114 161	s.	10	2011 CON	2,0.2
217.983	N	tv	2520-2645	3,0.3s
237,903	11	11	2s2p-2e4s	3pa_35
237.861	8	IV	2#2p-2#4#	380°32
236,710	o	111	25 2p2-252 (*P)+p	18-300
234.988	٥	17	202p ² -20 ⁴ 51	1 10
234,336	Fe	VIL	3d~-3d4p	1,0 1,
232.256		17	7s7p-2p3p	3,0 3s
231 823	0	v	2p-3d	1s-1e0
231.081	0	17	2s2p ² -2s2p(³ p ⁹)3d	4p_4p0
230,755	ø	14	2s2p ² -2s2p(³ p ⁰)4d	25-270
230.430	c	IA	2p-9d	2-0-2
228,762	a c	111	2s*2p-2s2p(*P*19p	2,02
227.511	a	v	2p ² -2p(² p ⁰) 3s	1p-100
226.038	0	ш	2. 2p2 - 2. 2p2 (4P14	3P-300
225.299	0	14	2=2p ² -2=2p(¹ p ⁰)3d	20-2F0
225.025	11	IV	2s2p-2s(² S)4d	3p0-3p
725.136	u	IV	2s2p-2s(⁴ 5)4d	J ^b 0 ⁻ J ^D
225.098	11	14	2020-20(² 5)4d	3p0_3p
224.745	Fe	10	JsJp-JsJd	2,0-2,
222.793	č	11	2a-5p	25-2p0
222.288	0	17	т	
221.830	ī e	\$111	3p ² -3p3d	¹ D- ¹ D ⁰
220.352	0	v	2s2p-2s(² 5)3d	2.0.2.
219.135	Fe	110	Jp-Jd	2,0-2
218.985	D	IV	2p ² -2p5d	3 _F -3 _D 0
217.227		19	2x2p-2p4p	1p0_1D
216.018	0	۷	2p-3d	1p-190
215.245	0	N.	2x2p-2x(² 5)3x	1p0_1p
215.104	0	¥	2s2p-2s(² S))s	3_0_3
215.034	0		282p-28(*5)3e	3, 3,0
211.396	14	10	2x ² -2p)5	15-1p0
211.328	Fe	* *17	3p-3d	3p.2p
209.634	Fe	x111	3p ² -3p3d	3p1_3p
285,306	8	٧	2s-3p	2 ₅ -2 _p 0
209,274	u	v	2s+3p	2 ₅₋ 2 _p 0
207.794	0	A	2p ² -2p(² P ⁰)3d	2.0 2
207,163	0	19	2#"2p-2#2p("P")3p	3p_3n0
204.708	0	19	2s2p2-2p2(3p)3p	20.200
704.302	н	14	2p ² -2p8d	1 ₀₋ 1 _p 0
203.890	0	v	2p ² -2p(² p ⁰)3d	3 ₈ -3 ⁰ 0
203.835	Fe	3111	Jp ² -JpJd	³ P-30
203.057	C	EA.	2=-8p	*s-2p0 2p0 7-
202.334	0	V.	2p ² -2p(² p ⁰)1n	3, 3,0
202.056	Fe	×111	Jp ² -JpJd	3 _{P-} 3 _D 0
201.745	Fe	x11	3p ³ -3p ² (¹ D)3d	2 _p 0-2 _p
201.134	Fe	×111	3p ² -3p3d	3 _{P-} 3 _D 0
200.033	Fe	* *171	bfqC-3qC	3 _P .3 _D 0
199.06	c	IV.	28-10p	*S-*P0
197.620	c	tv	28-119	2 ₅₋ 2 _p 0
197.443	Fe	x111	3p ² -3p3d	3 ₈ .300
196.649	Fe	x11	3p ³ -3p ² (¹ 0)3d	200-20

	*	4 11	
196.531	Fe XII	1 3p ² -3p3d	10-1F0
195.863	0 11	2p-4d	2p0_2D
195.127	Fe XII	3p ³ -3p ² (³ P)3d	450_4p
194.593	0 V	252p-2p(2p0)3p	1p0_1p
193.517	Fe XII	3p ³ -3p ² (³ P)3d	450-4F
192.85	o v	7	
192.906	0 1	2p-3d	3 ₂ 0_3 ₀
192.751	0 1	2p-3d	3p0_3p
192.800	o v	2p-3d	3 p0_3 p
192.402	Fe XII	3p ³ -3p ² (³ 2)3d	450_4p
191.051	Fe XII	3p3-3p2(3p)3d	2p0_2p
190 844	Fe X	30 ⁵ -30 ⁴ (¹ 0)3d	2,0.25
188.219	Te XII	3p ¹ -3p ² (³ 2)3d	2p0_2p
186.609	Fe VII	30 ⁶ 3d-30 ⁵ 3d ²	2p.2r0
185.225	Te VIL	1 30 ⁶ 34-30 ⁵ 34 ²	20-2r0
184 800	fe II	10 ⁴ -10 ³ (² 0 ⁰)1d	1 ₀₋ 1 ₀ 0
184.552	Fe X	305-304/2n13d	2,0.2
184.117	0 11	20.34	2,0.2
163 817	0 97	20-34	2,0 2,
102.123	F- 11	3.6 3.3,4.0,31	3, 3,0
101.115	FO AL	3p - 3p (3)3u	
181.140	Fc XI	3p ⁴ -3p ³ (⁴ 5 ⁰)3d	1 ^{b-3^D0}
180.6	Fe XI	3p ⁴ -3p ³ (⁴ 5 ⁰)3d	3P-3D0
180.4	Fc X	3p ⁵ -3p ⁴ (¹ D)	2p0_2p
178.06	Fo XI	39 ⁶ -39 ³ (⁶ 5 ⁰)3d	3p-300
177,243	Fc X	3p ³ -3p ⁴ (¹ D)	2p0_2p
175.265	Fe X	3p ⁵ -3p ⁶ (¹ D)3d	2p0_2D
174.534	Fc X	3p ³ -3p ⁴ (¹ D)3d	2p0-2D
173.082	0 VI	2p-3d	2p0-2p
172.935	0 VI	2p-3d	2 p0-20
172.168	0 V	24 ² -24(² 5)3p	15-1p0
171.075	Fc II	3p ⁶ -3p ⁵ 3d	1s-1p0
169 740	TI XV1	2s ² 2p ³ -2s2p ⁴	45 ⁰⁻⁴ P
168 932	Fe VII	1 3p ⁶ 3c-3p ⁵ 3d ²	2 ₀₋ 2 _p 0
168.548	Fe VII	1 3p ⁶ 3d-3p ⁵ 3d ²	2 _{D-} 2p ⁰
168,517	n v	Zp-Sa	²p ^{Ω-2} s
168.176	Fe VII	1 3p ⁶]d-3p ⁵]d ²	20-200
168.077	υν	1s2p-2p(² p ⁰)3p	3p0_3D
167.448	Fe XII	1 3p ⁶ 3d-3p ⁵ 3d ²	20-200
165.947	9 V .	2p-5d	2p0_2D
166,234	οv	2s2p-2p(² p ⁰)Jp	3p0.35
144.10-		0.1.1.1.0	1. 3.0
1051403	11 VIL	3p - P (2)4s	3.0.3
104.378	0 0	202p-2p("P")3p	1- 1-0
184.176	0 9	2p2#61	1- 2-0
102 362	11 V 2017 VIII	25-50	4.0 4.
140 530	11 AV1	25 29 -252p	1.0 1.
160.530		1529-1876	3. 3.0
137.77	101.0411	3 2 2 4 3 4 3 4 3 4 3 4 3 4 4 3 4 4 4 4	2.0.2.
117.790			3- 3-0
137-73	DI ALL	1 3p - 3p 1 5 330	3.0-3.
159.223		2020-2009	2.0
113.064	ti vii	3p - 3p (234d	in la0
123.100	re vil	3 2.3	2,0 2.
150.000	IN VIL	a up -up ("P)48	2, 2,0
150.088	o vi	20-30 14-34	4. 2.0
190,124	0 YL	25-3p	3. 3.0
148.61	11.24	ce :th -535b,	2.0 2
148.387	64 N	2p+9s 2_0.	1_0 1_
147.261	u v	282p-2p("P")4p	2.0.2
165.921	at iv	2p-10s	2.0 2
145.742	n v	2p-11d	.bb

4 8.	4	a. #		4.4		4.0
145.656	Fr. 25	/111 20 ⁷ 20 ⁶ 1 ¹ 533#-20	2p ⁵ (³ p ⁰)3s ² s- ² p ⁰	113.15	TI KI	3#3p-3s
144.802	0 V	2p ² -2p30	3 ⁶⁻³⁹⁰	112,930	Fe VIII	3p63d-3
144,976	n v	2p-12d	² p ⁰ , ² 0	110.280	TL 18	1
143.914	11 V	2p-14d	² p ⁰ ² p	109.11	T1 X11	Ip-4s
143.520	u v	2p-15d	² P ⁰⁻² D	109 309	Fe X11	3p ² (¹ n)
142.69	Ti X	34-45	² D- ² F ⁰	109.015	Fe X11	3p ² (³ P)
142.60	Ti X	3d-4f	2 ₀₋ 2 _F 0	108,086	11 X11	3p+4a
141.988	TI VI	1 3p ⁵ -3p ⁴ (¹ S)4d	² _P ⁰ ² _D	108.083	Fe VIII	ld-Sf
140.36	Ti XI	11 3d-4p	2 _{D-} 2 _P 0	107.872	Fe VLIS	34-55
139.88	TI XI	L1 3d-4p	2 _{D+} 2 _P 0	105.600	Gr XVI	242205.
138.33	73.83	25 ² 2p ⁴ +292p ⁵	³ p- ³ p ⁰	105.205	Fc 1X	3p ⁶ -3p ⁵
134 942	Cr VI	(11 3p ⁵ -3p ⁴ (³ P)4s	2p0_4p	104,811	a v2	2a-5p
134.63	T1 X1	2022p4-202p5	3p-3p0	103.960	Fe XVII	1 252205
132.76	Cr XV	111 20 ² 20 ⁴ -2020 ⁵	3 _{P-} 3 _p 0	103.566	Fe 1X	30-305
132.733	TL VI	11 3p ⁴ -3p ³ (² 0 ⁰)4d	3 ₈₋₃ 00	102.430	0 VIII	2o-Jd
131.120	Ti XI	1 25 ² 29 ⁴ -2529 ⁵	1 ₅₋ 1 _p 0	102.300	O VI	2p-10d
130,87	Ti XV	/11 2s ² 2p ² -2s2p ³	¹ D- ¹ P ⁰	100.59	TI XT	3
129 872	o vi	I Ip-6d	2p0-2p	55 788	Fe X	305-304
129.786	0 VI	1 2p-4d	2 _p 0+2 ₀	95 774	Se X	305-304
129.38	Fe XI	1V 2s ² 2p ⁵ -2s2p ⁵	2p0_25	95.338	Fe X	3p ⁵ _3p ⁴
128 5	6 10	11 1.20.1014	3.0.3			
128 612	0 11	It le?e-le3d	3,0,30	91.940	Fe XVII	1.58.55
199 97				91.02	0 VI1	1825-14
135 587	E. Y	3,2,0,3,2,3,2	0, 3,0 3,	86.07	0 411	Es2p-La
174 408	0 4	22-7e5n	1 _{c-1p} 0	82,423	Fe IX	36e-363
131. 36		1.1.2 1.1. 3.0.4	** 4.0	80.916	Cr XIV	lp-4s
122.05		3434 3459(1 74	3.0 3.	80.150	Fe X11	3p ² -3p ⁴
172 800	11 A		2,0 2,	80.022	Fo k11	1p ³ -3p ²
123.800	UT	1111 23 2p -452p	1 + 5	76 495	Fe X	3b2-3b
122.91	CF A	1114 (76.117	Fe XIII)p ² -)p4
122.91	11.0	2. 5	2.0 2.	76.006	Fc X	jbjb,
121.99	T1 X1	1 25-2p252p	in Jap	75.892	Fe XIII	Jp2-Jp4
120.840	Cr XI	/11 2s-2p'-2s2p'	3- 3-0	73,473	Fe XV	3p3d-3p
129.331	0 11	11 1525-1535	2. 6.0	73.281	T1 XI	
118 28	Fe VI	[[] 3p"3d-3p"3d("F")	2 0 7	71.870	F6 X1V	1d3p ² -3
116.419	0 VI	Zp-3d	2 3 D	71.377	Fe 219	3=302-)
115.824	0 .VI	1 2s-4p	2.0.2	70 986	T1 X11	
115.40	Ce XS	21 Zs=Zp=-Zs2p	-25	69 945	Fe XV	1s3d-3r
115.03	Ti XV	/ 2s*2p*-2s2p*	10-1F	69.5	Fe X11	3p ³ -3p ²
115.02	Ti XI	1 3539-3545	'P"-'S	\$6.298	Fe ZII	3p ³ -3p ²
113,84	TI XI	l JsJp-Js6s	3p. 38	64.805	0 VIL	

25-2p0	5.1		a n Jalaslasf	10.3,0
	112 910	Fe WIII	3063d=3052de160	La 20.700
	116 780	TL 18	+	
	109.11	TL XII	10-45	20.25
	102 109	7e X11	30 ² (¹ 0)34-30 ² (¹ 0	14p 2F-2p0
	109.015	Fe X11	3p ² (³ P)3d-3p ² (³ P	14p 40-4p0
	108,086	TE X11	3p-4s	2,0.25
	108.083	Fe VIII	1d-5f	2D-2F0
	107.872	Fe VIII	34-56	20.2F0
	105,600	Gr XVI	2422p5-252p6	3p0_25
	105.205	Fc 1X	3p ⁶ -3p ⁵ 4s	*5- ³ p ⁰
	104.811	a va	2s-5p	25-2p0
	103.960	Fe XVII	1 25 ² 3p ⁵ -2n2p ⁶	2p0_2s
	103.566	Fe 1X	3p ⁸ -3p ⁵ 4s	'5- ¹ p ⁰
	102.430	0 VIII	2p-Jd	2 pg . 2 g
	102.300	0 11	2p-10d	2p0_20
	100.59	TL XT	а	
	96 788	Fc X	3p5-3p4 (3p)4a	2p0_2p
	95.374	Fe X	3p ⁵ -3p ⁴ (¹ D)4#	2 p0_2 p
	95.338	Fe X	3p ^{5_3} p ⁴ (³ 2)4s	2p0_1p
	91.940	Fe XVI	1 2s ² 2p ⁵ -2s2p ⁶	2 p0_28
	91.02	0 VI1	1x25-1x4p	16.30
1	86.07	0 911	Esdp+185d	2 ^{h0-20}
D.	82,423	Fe IX	3p ⁶ -3p ⁵ (² p ⁰)4d	2p0_25
	50.916	Cr X1V	3 p - 4 s	
	80.150	8e X11	3p ² -3p ² (¹ D)4s	2 p ⁰ 2 p
	80.022	Fo h11	1p ³ -3p ² (³ P)4s	⁴ ≤ ⁰ - ⁴ ₽
	76 495	Te X	3p ⁵ -3p ⁶ (¹ D)4d	2p0_2p
	76.117	Fe X11	1)p ² -)p4s	10-190
	76,006	Fe X	3p ³ -3p ⁴ (¹ D)4d	2p0_2p
	25.892	Fe XIII	I Jp ² −Jp4π	3p-3p0
	73,473	Fe XV	3p3d-3p4f	1F0_1C
	73,281	T1 XI		
	71.870	Fc X1V	1d3p ² -3±3p4+	2 p - 4 p ^O
	21.377	Fe X19	353p ² -353p45	20-250
	70 986	T1 X11		
	69 945	Fe XV	ls3d-Js4f	3D-3F0
	69.5	Fe X11	3p ³ -3p ² (³ P)4d	2p0_4p
	66.298	Fe #11	3p ³ -3p ² 1 ³ P)40	450_4p

図4-7 酸素の電離電圧(□)と線スペクトル

図4-8 チタンの電離電圧(□)と線スペクトル

図4-9 鉄の電離電圧(□)と線スペクトル

4-4 光電測定及び感度較正

前節では,分光写真の解析によってプラズマ中に含まれる不純物イオンの種類,電離状態を明らかにしたが,それら不純物イオンの密度,輻射損失を評価するには,分光写真のような時間積分された情報ではなく時間分解された定量的な測定をする必要がある。

このために McPherson 247 V 分光器を単色計として使用する。即ちローランド円周上に 移動可能な出口スリットと Cu-Be の光陰極を有する電子増倍管をおき,測定すべき波長の 線強度(photons/sec・cm² sr)を電気信号に変換する。線強度を測定する場合入口スリッ ト巾 50 μm,出口スリット巾 200 μm として対象とする波長のドップラー巾より充分広く してスリット半値巾 1.5 Å で行った。

測定された電気信号の定量化には、線強度(photons/sec・cm² sr)と測定電圧(V)との 関係である測定系の絶対感度を調べておく必要がある。

真空紫外域での絶対感度較正は、可視領域で使用されるような手軽な標準光源が存在し ないことから通常極めて困難な作業となる。現在は、(1)原子分岐線対法^(16,17)と(2)シンク ロトロン放射光を絶対光源⁽¹⁸⁾とする二つの方法が用いられている。原子分岐線対法は、 測定対象のプラズマを光源として上の準位を共有し、可視光と真空紫外光を放出する遷移 の対を探し、まず標準光源で絶対感度が決められた可視分光器で可視光の線強度を測定し 次に遷移確率の比から真空紫外光の線強度を計算で与え、その計算値と測定信号値の比と して絶対感度を決める方法である。この方法は、特別な光源を必要とせず、原理的にも明 確であるが、現実に適用するには、次のような問題がある。(1)線スペクトルを対象とする から特定の波長でのみ較正ができる。(2)この線対のいずれかあるいは相方の線強度が弱い 場合が多い。従って現実に使用できるのは、極めて限られた波長に限定される。

他方シンクロトロン放射光を光源とする方法は,シンクロトロン放射光の強度が,電子 の加速エネルギーを決めると一意的に決り,かつ連続スペクトルであるので任意の波長 で較正することができる。従って今日では,このシンクロトロン放射光を用いた絶対感度 較正法が標準的となっている。

今回使用した McPherson 247 V 真空紫外分光器の絶対感度較正は,このシンクロトロン 放射光を間接的に使用した方法で行った。

米国標準局(NBS)にあるシンクロトロン SURF II(E=0.24 GeV, R=0 83 m, I=
 30 mA)によって較正された斜入射真空紫外分光器(ローランド円半径1m, 1200本/mm)
 を用いて、ヘリオトロンEプラズマからの線輻射を同時に観測し、その測定値を比較して

感度を決めた。較正した波長は, FeIX 171 Å, FeXV 284 Å, FeXVI 335 Å, TiXI 386 Å, TiXII 460 Åの 5 点である。OV 630 Åの値は,外 插値を示す。図4-10に, FeXVI 335 Åの光を同時に測定した例を示 す。又,較正結果を図4-11 に示 す。横軸は波長で,縦軸が絶対感 度でその単位は,検出器で1Vの 出力を得る時の線強度 photons/ sec・cm²・srである。感度の高い 波長は,200 Å附近で,9×10¹⁶ photons/sec・cm²·sr perV とな っている。

次に光電測定の対象とした線ス ペクトルの選択について述べる。 測定対象の線スペクトルは、その 強度を測定することによって, そ のイオンの特性が充分に理解でき るものでなければならない。その 候補は, 第一励起準位から基底準 位への遷移による共鳴線である。 線輻射では,励起準位(p)から 下の準位(q)へ自然遷移する時, その確率Aに比例する数の光子を放 出する。従って光子数Nは励起準 位の占有密度をn(p)とした時, N=An(p)で与えられる。ここで 占有密度 n (p) は, 基底準位(g) から電子衝突による励起と自然遷 移とのバランスで決まるので、ne

- 55 -

を電子密度, Qを励起係数とした 時 $n_en(g)Q=n(p) \sum A(p,q)$ の 関係が成立する。従って放出光子 数は,電子密度,基底準位密度を 用いて, $N=n_en(g)QA/\sum A(p, q)$ と表わすことができる。従って Branching Ratio $A/\sum(p,q)$ と励 起係数Qの大きい共鳴線が最も適 切な測定対象となる。

FeXVIイオンを例にしてこのこ とを調べてみる。

FeXVIの基底準位は、3s²Sであ る。この時 3p²P⁰-3s²Sの遷移 335Åは、Branching Ratio=1で、 図4-12にみられるように励起係 数も他の準位への励起に比べて充 分大きい。又、励起係数の温度依 存性が少ないので線強度の解釈が し易い。

このような観点から選んだ線ス ペクトルを表4-2にまとめた。 但しOVIII,OVIIの共鳴線は, 18.9Å,21.6Åであるが,この波 長域では,分光器の迷光が大きい こと,この領域を測定する時は, 凹面回折格子と検出器を結ぶ真空 用ベローズを短かいものに取りか えねばならないので,100Å附近の 高い励起準位間の遷移によるもの を測定した。

図4-12 FeXVIの3p, 3dへの励起係数

Species	I.P.(eV)	(A)	E(eV)	Conf.	Term
H	13.6	1215.7	10.2	ls - 2s	${}^{2}s - {}^{2}p^{0}$
C 111	47.8	977.0	12.7	2s - 2p	${}^{1}s - {}^{1}p^{0}$
οv	113.9	629.7	19.7	2s - 2p	${}^{1}s - {}^{1}p^{0}$
O VI	138.1	1031.9 150.1	12.0 82.6	2s - 2p 2s - 3p	$\frac{1}{2} = \frac{1}{2} = \frac{1}$
0 VII	739.3	120.3	103.1	2s - 3p	${}^{3}s - {}^{3}p^{0}$
O VIII	871.3	102.4	121.1	2p - 3d	² p ⁰ ² D
Ti XI	265.0	386.1	32.1	3s - 3p	${}^{1}s - {}^{1}p^{0}$
Ti XII	291.5	460.7	26.9	3s - 3p	${}^{2}s - {}^{2}p^{0}$
TI XIV	861.3	121.9	101.7	2s ² 2p ⁵ 2s2p ⁶	² p ⁰ ² S
TI XVI	1042.0	169.7	73.1	2p ² 2p ³ 2s2p ⁴	⁴ s ⁰ - ⁴ P
Fe IX	234.0	171.i	72.4	3p ⁶ - 3p ⁵ 3d	1 _s 1 _p 0
Fe XIV	392.2	264.8	46.8	3s ² 3p - 3s3p ²	² p ⁰ - ² p
Fe XVI	489.2	335.4	36.9	2p ⁶ 3s - 2p ⁶ 3p	${}^{2}s_{1/2} - {}^{2}p^{0}_{3/2}$
Fe XVIII	1358.0	93.9	132.0	$2s^22p^5 - 2s2p^6$	${}^{2}p^{0}_{3/2} - {}^{2}s_{1/2}$

表4-2 光電測光に用いられた線スペクトル

4-5 不純物イオンからの線輻射強度

前節で述べた感度較正法で得られた絶対感度を用いて酸素,鉄,チタン等の不純物線の 線輻射強度を測定した。

代表的な例として、中性粒子ビーム 3.6 MW 入射の場合を示す。この時の平均電子密度は、2.5×10¹³ cm⁻³、中性粒子エネルギー分析器で測定されたイオン温度は、1000 eV、レーザーで測定された電子温度は約 700 eV である。これらの時間変化を図4-13 に示す。

この時測定された FeIX(172Å), FeXV(284Å), FeXVI(335Å), FeXVII(94Å)の 線輻射強度(Brightness)の時間変化を図4-14に示す。これら各イオンの Brightness は は, ECHのパルス中は,低いレベルにあり Brightness は 10¹³ photons/sec cm² sr 台に なっている。NBI入射が始まると, FeIX からFeXVI までの各線輻射は急激に増加し,それぞれ 2×10¹⁴

104

3

Fe IX

photons/sec · cm² sr~4×10[™] photons/sec · cm² sr の値に達する。そして NBIパルスが切れた後,強い 発光が認められる。この発光のピークに達する時刻

図4-13 Te, Ti, neの時間変化

⊠4-14 FeIX, XV, XVI, XVIII Ø Brightness

は於電離電圧の低い低電離イオン程遅くなっていることから、この強い発光が再結合によるものと考えられる。FeXVIIIにはこのような再結合による強い発光が見られないことから、このプラズマでは、FeXVIIIが最終電離状態となっていると考えられる。

このプラズマ中に含まれる鉄密度の概算は次のようにして行うことができる。測定された Brightness B は、B= $\frac{1}{4\pi}\int$ n_en_{1mp} Qdr(Q:励起係数)で与えられているので、励起係数と、不純物が存在する領域の評価ができれば、n_{1mp}=2 π B/n_eQ*d*rで与えられる。Qの値を図4-15に示す。これより n_{FeXVII} ~ 7×10⁹ cm⁻³(*d*r ~ 10 cm)の概略値を得る。全鉄密度は、FeXVIIIの fractional abundance 0.4 より n_{Fe} ~ 10¹⁰ cm⁻³が与えられる。従って n_{Fe}/n_e ~ 4×10⁻⁴となる。

より正確に密度を求めるには、1次元の輸送方程式を用いて、各イオンのプロファイル を求める必要がある。その時拡散係数Dと内向速度Vは、不純物注入実験で得られた値を 用いる(第5章)。図4-16にD=1200cm²/sec,V=300cm/sec,を用いて得られた

図4-15 FelX, XIV, XV, XVI, XVIII の励起係数

FeXVIII, FeXVI, FeXV, FeIX の分布

を示す。この結果からは、中心での

- 58 -

この時の中心部からの輻射損失は, 図4-17のCooling rateを用いて 約50mW/cm³となる。又, Zerrは,

 $Z_{eff} = 1 + \sum \frac{n}{n_e} (< Z^2 > - < Z >)$ より図4-18を用いて $Z_{eff} - 1 \approx 0.2$ となる。

次に各線輻射強度の NBIパワー 依存性を図4-19に示す。これら のプラズマの平均電子密度は, 1.7×10¹³ cm⁻³(ECHのみ) ~ 3×10¹³ cm⁻³(3.6 MW 入射)と比 較的電子密度の変化が小さく、N BI パワーに対する依存性を見易く している。OVの Brightness は, 10¹⁵ photons/sec · cm² sr とそれ程 大きく変化しない。但し, OVIIIに ついては, 高入力パワーの時つま り電子温度の上昇によってよく見 えるようになっている。鉄, チタ ンに関しては、NBIパワーの増加 によって著しく増加することがわ かる。これは,鉄,チタンの influx が NBIパワーとともに増加 していることを示唆している。こ れは,第6章のレーザー誘起蛍光 法による壁近傍の中性鉄原子の測 定で明らかにされる。

図4-18 (<Z²>-<Z>)とT_eの関係

図 4-19 Brightness の NBI 出力に対する依存性

4-6まとめ

真空紫外分光器を用いて,不純物イオンの同定を写真撮影で行ない,ヘリオトロンEプ ラズマ中の主な不純物が鉄,チタン,酸素,炭素であることを確認した。光電測光を行う 際,シンクロトロン放射光で絶対感度較正された他の真空紫外分光器を用いて絶対感度較 正を行った。これを用いて鉄,チタン,酸素の不純物イオンの線輻射強度(Brightness) を測定し,不純物イオン密度及び Z_{eff} を評価した。

第四章参考文献

- 1) G.M.McCracken, P.E.Post, Nucl. Fusion 19 (1979) 889
- 2) S.Bashkin, J.O.Stoner, Jr. Atomic Energy Level & Grotrian Diagrams
 - 1. H P (1975)
 - 2. S Ti (1978)
 - 3. V Cr (1981)
 - 4. Mn (1982)

(North-Holland Pub. Co, Amsterdam)

- K.Mori, M.Otsuka, T.Kato, Atomic Data and Nuclear Data Tables <u>23</u> (1979) 195
- 4) C.Breton, C.DeMichelis, M.Mattioli, EUR-CEA-FC 1060 (1980)
- 5) TFR G, Nucl. Fusion 15 (1975) 1053
- 6) S.Suckewer, Physica Scripta 23 (1981) 72
- 7) R.C.Isler, Nucl. Fusion 24 (1984) 1599
- J.A.R.Samson, Techniques of Vacuum Ultraviolet Spectroscopy (John Wiley & Sons. Inc. New York, 1967)
- 9) R.L.Kelly, L.J.Palumbo, NRL-7599 (1973), ORNL-5922 (1982)
- 10) W.L.Wiese, M.W.Smith, B.M.Glennon, Atomic Transition Probabilities Hydrogen through Neon, NSRDS-National Bureau of Standards (US. Government Printing Office, Washington D.C. 1966)
- 11) W.L. Wiese, M.W.Smith, B.M.Miles, Atomic Transition Probabilities Sodium through Calcium, NSRDS-National Bureau of Standards (U.S.Goverment Printing Office, Washington D.C. 1969)
- 12) J.R.Fuhr, G.A.Martin, W.L.Wiese, S.M.Younger, J.Phys. Chem. Ref. Data 10 (1981) 305
- C.Breton, C.DeMichelis, M.Finkenthal, M.Mattioli, EUR-CEA-FC-1039 (1980)
- 14) 佐野和夫, 杉江達夫, 船橋昭昌, JAERI-M 9510 (1981)
- 15) R.C.Isler, R.V.Neidigh, R.D.Cowan, Phys. Letters A 63A (1977) 295
- 16) E. Hinnou, F W. Hofman, J. Opt. Soc. Am 53 (1963) 1259

- 61 -

- W.L.Wiese, Proc. on Atomic Processes in Hish Temperature Plasmas, Knoxville 1977
- 18) C.Kunz, Synchrotron Radiation (Springer Verlag, Berlin, 1979)
- W.L.Hodge, Jr, J.Castracane, H.W.Moos, Nucl. Instru. and Meth. <u>172</u> (1980)
 97
- 20) D.E.Post, R.V.Jensen, C.B.Tarter, V.H.Grasberger, W.A.Lokke Atomic Data and Nucl. Data Tables 20 (1977) 397
- S.Chandrasekhar, An Introduction to the Study of Stellar Structure (Univ. Chicago. Press. 1939)

第五章 不純物注入による輸送過程の解析

5-1 はじめに

高温プラズマに含まれる不純物は、輻射を通してプラズマからエネルギーを放出する。 従ってプラズマ中に混入した不純物がどのような法則に従って輸送されるかを明らかにす ることは、プラズマ中の不純物量を軽減する制御の観点からも極めて重要な課題である。

すでに今日までに多くの閉じ込め装置において不純物の輸送について調べられている。 その一方法は、TFR装置による初期の実験で試みられたようにプラズマ中に存在する酸 素、モリブデンの真空紫外域での輻射の空間分布から拡散係数を求めるものである。

他方, Al, Si, Fe 等の元素をガラス板上に数 µm の厚みで蒸着し, その裏側からルビー レーザー光を照射して瞬間的に蒸発させて, プラズマ中に注入し, 次々に電離し拡散する 様子を種々の分光的計測を用いて各イオンの空間分布, 時間変化を調べるレーザーブロー オフ法が考えられた⁽²⁾

E. S. Marmar らは、1975年にこの方法を用いて ATC 装置に Al を注入し、Al XI (I. P. = 442 eV)までの各イオンの線強度の時間変化と空間分布を測定し、その結果を新古典論 で与えられるアルミニウムイオン (j)の拡散束 Γ_i

$$\Gamma_{j} = \sum_{b} \frac{\rho_{b}^{2} Z_{b} \nu_{bj}}{Z_{j} T_{b}} \left(1 + \alpha q^{2} \right) \left(T_{b} \frac{\partial n_{b}}{\partial r} - \frac{n_{b}}{n_{j}} \frac{Z_{b}}{Z_{j}} T_{j} \frac{\partial n_{j}}{\partial r} \right)$$

ρb; 背景イオンのジャイロ半径

ν_{bj}; 背景イオンの衝突周波数

を次の拡散方程式,

$$\frac{\partial n_j}{\partial t} = \frac{1}{r} \frac{\partial}{\partial r} (r\Gamma_j) + S_j$$

(S; は、電離、再結合による源項)

に代入し,各電離イオン密度の時間,空間分布を求め実験値と良い一致をみたことから, 注入されたアルミニウムイオンの輸送は,新古典的であると結論した⁽³⁾

他方 1977 年 TFR 装置⁽⁴⁾では、プラズマ中に酸素ガスを注入してモリブデンイオンを調べた場合、新古典論による拡散束のみでは、実験データを説明することができず不純物イ

オンの異常拡散の概念が生まれた。

その後 E. S. Marmar⁽⁵⁾らは, Alcator A 装置に Si を注入し, Si IV (458 Å), Si XI (303 Å), Si XII (499 Å), Si XIII (6.65 Å), Si XIV (6.18 Å) を観測することによって新古典論 では説明できない異常拡散現象を見いだした。更に水素様イオン Si XIV の減衰時間がプ ラズマイオン (H, D, ³He, ⁴He) の質量に比例するという事実も見いだされた。この依 存性は、その後の Alcator C⁽⁶⁾ TFR 装置⁽⁷⁾でも同様に観測されている。

Alcator C 装置では, Si の閉じ込め時間 τ₁ が,次に示すような比例則に従うことを実験的に導いた。

$$\tau_{I}(\text{msec}) = 0.075 a_{L} m_{bg} q_{L}^{-1} R^{0.75} \frac{Z_{eff}}{Z_{bg}}$$

 a_{L} ; リミッター半径(cm)

mbg; プラズマイオンの質量(原子単位)

q_L; リミッターでの q 値

R; 主半径

Zbg; プラズマイオンの荷電数

Zeff; 実効荷電数

他方, ISX-B 装置⁽⁸⁾では,重水素放電の場合,水素放電に比べて不純物が中心部へ集積 する現象が見いだされている。更にこの重水素プラズマ中にプラズマ電流と同じ向きに中 性粒子ビームを入射した時は,逆向きに入射した時に比べて不純物の中心部への集積が抑 制されるとして中性粒子ビーム入射による不純物制御の可能性を示唆した。⁽⁹⁾

こうした状況において異常拡散がプラズマ電流によるか否かを調べるためにも無電流プ ラズマを ECRH によって容易に生成できるヘリオトロンE装置で不純物輸送を明らかにす ることは重要である。

第2節では、レーザーブローオフ法について、第3、4節で実験結果を、第5節でま とめを述べる。

5-2 レーザーブローオフ法⁽²⁾

不純物原子をプラズマ中に注入するには、その原子をガラス面上に数 µm の厚さで蒸着 し、プラズマ容器内に設置する。そしてその裏面よりルビーレーザー光を照射して瞬間的 に蒸発させプラズマ中へ入れる。
この方法の特徴は、(1)注入したい原子の種類を、Mg, Al, Si, Sc, Ti, V, Cr, Mn, Fe, Ni, ……等と広範に選ぶことが可能である。(2)注入量は、蒸着層の厚みを変えたり、レー ザーのスポットサイズ、出力を変えることによって、10¹⁶~10¹⁸ atoms/shot まで調節でき る。(3)パルス幅 50 n sec のルビーレーザーによる瞬間的な蒸発であるので極く短時間の注 入と考えられる。(4)ガスパフによる気体原子と異なってリサイクリングは殆んど考慮しな くてよい。このような特徴を有しているのでプラズマ中に元来存在しない原子をトレーサ ーとして注入し、次々と電離、拡散していく各イオンを主として分光的計測法(可視、真 空紫外、X線分光)でその時間変化、空間分布を高い S/N 比で調べることができる。従っ てこの測定から輸送係数の評価が可能となる。

図5-1に、ヘリオトロンE装 置で行われたレーザーブローオ フ実験の概念図を示す。注入する原 sx(15-15kev) 原子は、5 cm 角のガラス板に1~ 5 µmの厚みで蒸着され、マニュ ピレーターで真空中に支持されて いる。ルビーレーザーは出力エネ ルギー1J、パルス幅50 n sec で、 単レンズで試料面に集光されてい る。プラズマ中に入ったこの不純 物は、可視分光器(P-250, SPEX 1269)によって低電離イオン、真 空紫外分光器(McPherson 247V) によって中~高電離イオン, PET 結晶分光器,軟X線検出器群によ って主として He 様イオンを観測 する。

注入する原子としては,主とし て Siが選ばれた。図5-2に示し たように, Si XII の電離エネルギー は,523.5 eV で, Si XIII は 2437.7

図5-2 可視,真空紫外,結晶分光器で測定した 線スペクトル

eV であるので、ヘリオトロンEプラズマでは、Siの最高電離状態はHe 様イオンである。

同時に図5-2には、観測した線スペクトルの遷移が示されている。

Siの注入量は、測定対象とするプラズマの電子温度、密度等の主要パラメータが変化しない程度に注入し、注入された Siの様子は、Siを注入した放電と注入しない放電を行いその差をもって確めた。

実験的に輸送係数を決めるには,注入された不純物の拡散束 *Г* を拡散係数 *D*,内向き 対流速度 *V*。を用いて,

$$\Gamma_z = D \frac{\partial n_z}{\partial r} + V_0 \frac{r}{a} n_z$$

と表わし,

$$\frac{\partial n_z}{\partial t} = \frac{1}{r} \frac{\partial}{\partial r} r \Gamma_z + n_e n_{z-1} S_{z-1} - n_e n_z S_z + n_e n_{z+1} \alpha_{z+1} - n_e n_z \alpha_z$$

S₂; 電離係数

αz; 再結合係数

で、実験データをシミュレートして最もよく合う D, Vを選んで、その時の輸送係数とした。

5-3 ECHプラズマへのSi注入

ヘリオトロンE装置での特徴的な無電流プラズマ中への Si 注入について述べる。

発振周波数 53.2 GHz, 出力 350 kW のジャイラトロンで生成され た中心電子温度1 keV, イオン温 度 200 eV, 平均電子密度 8×10¹² cm⁻³ の水素プラズマ中にSiを注 入し, その時観測された可視光Si IV(4089 Å), 真空紫外光 Si XI (303 Å)の時間変化を図 5 - 3 に 示す。可視光はポート[#]13.5 及び 31.5 の 2 か所で測定しており, 両 者が同様の時間変化を示すことか ら Si⁺³ 以上の電離状態のイオンで

図 5-4 シリコンを入射した時の Soft X-ray の時間変化

は、トロイダル方向で一様と考える ことができる。図5-4には、同時 に測定された軟X線の時間変化を示 す。

注入された Si の振舞をより詳しく みるために,各測定値からSiを注入 しない時の放電で観測される信号強 度を差し引いた Si IV, Si XI, Si XII, Si XIII,及び中心コードをみている 軟X線強度の時間変化を図5-5に 示す。

この図からは、時刻t = 388 msec にルビーレーザーを発振させ、Si を 蒸発させると、すぐにSi IVの光強度 の急激な増加がみられ、Si がプラズ マ中に注入されたことが認められる。

図 5 - 5 バックグラウンドを差引いた Si の各 line の時間変化

Si IV の光強度は、そのピーク値に達すると 1.5 m sec という早い減衰時間で減少し、次に Si XI の光強度が約 2 m sec の遅れ時間でそのピーク値に達する。以下 Si XI の減少ととも に、Si IV のピーク値より 5 m sec 遅れて Si XII がピーク値に達し、Si XIII が 15 m sec 後に

ピーク値に達する。ピーク値に達した後
は、図5-6に示すように、Si XI が5
msec, Si XII が13 msec, Si XIII が18
msec の減衰時間で減少し、注入後 50
msec後には、すべての線強度は、注入
以前の値に復帰する。

このことは, 注入された Si が, 次々と 電子温度の高い領域へ拡散しながら高電 離状態へ移っていくが, 有限の時間の間 にプラズマからすべて排出されプラズマ 中に留っていないことを示している。

Si IV から XIII の光強度の減衰時間を決める過程は,(1)次の電離状態への電離と,(2)拡 散の2つの過程が考えられる。

電離に関しては、特に低電離イオ ンでは、次の電離状態へ電離するの に要する時間は、1 msec 以下である ので、拡散過程の特徴的時間より短 かく、低電離イオンでの減衰時間を 決めている。Si XIII からSi XIVへの 電離は、図5-2で示したように電 離エネルギーが、2,437 eV と高いこ とから、対象としたプラズマでは、 殆んど考えなくてよい。 従って Si XIII の減衰時間が、このプラズマ中 の、Si の粒子閉じ込め時間に最も近 い値を示すと考えられる。

これらの実験データを最もよく再 現する拡散方程式の解は,拡散係数

図 5-7 D2 プラズマでの Si 注入

- 68 -

 $D & 500 \text{ cm}^2 / \sec$ と選ぶのがよく、それより求められる粒子閉じ込め時間 τ は、 $\tau = a^2 / c^2$

(2.4)²Dより、15msec が得られた。

同様に、重水素プラズマにSiを注 入した例を図5-7に示す。

このプラズマの電子温度は,750 eV,密度は、8×10¹² cm⁻³ である。 Si IV は、水素プラズマの時と同様に 早い減衰を示すが、Si XII, Si XIII は、 水素プラズマの場合より長い減衰時 間を示し、 $\tau = 23$ msec が与えられ る。プラズマイオン質量に対する依 存性を図5-8に示す。

次に Si と Ti を,同様のプラズマ 中に注入した時の閉じ込め時間を図 5-9に示す。これより注入された 不純物の種類に依らないことがわか る。

5-4 注入されたSiの拡散係数 D及び内向速度V

注入された Si が, 種々のプラズマ パラメータに対してどのような振舞 を示すかを, 平均電子密度 0.4×10^{13} cm⁻³ から 5×10^{13} cm⁻³, 中心電子温 度 400 eV から 1100 eV までのプラズ マに対して調べてみた。図 5 - 10に 測定対象とするプラズマの平均電子 密度 $\overline{n_e}$ と中心の電子温度 T_e を示 した。この図中平均電子密度が $2 \times$ 10^{13} cm⁻³より低い領域にある〇印は ECH プラズマで, それより高い電子

図5-8 Si閉じ込め時間の動作ガス質量に対する 依存性

図 5-9 注入された Si と Tiの閉じ込め時間

密度領域の◇印は,NBI プラズで ある。 ECH プラズマは,電子温 度と平均電子密度の両方が変化し ているが,NBI プラズマでは,電 子温度は概略 500 eV であり,平均 電子密度のみが 2×10^{13} cm⁻³ から 5×10^{13} cm⁻³ まで変化している。 従ってこの領域では,拡散係数 D 及び内向速度 V の電子密度依存性 をみるのに適している。これらの プラズマで得られた拡散係数 Dと 内向速度 V の電子密度依存性を図 5-11に示す。低電子密度の ECH

図 5 - 10 Si 注入実験の対象としたプラズマの電子
 密度と電子温度

プラズマでは、 $D \approx 3000 \text{ cm}^2/\text{sec}$, $V \approx 0 \text{ cm}/\text{sec}$ の値が得られ、電子密度が高くなるにつ れDの値は小さく、Vは大きくなる。NBI プラズマでは、 $D \approx 1000 \text{ cm}^2/\text{sec}$, $V \approx 300 \text{ cm}/\text{sec}$ の値を示し、平均電子密度が変化しても、D, Vの値は大きく変わらない。

図 5-11 拡散係数 Dと内向速度(V)の密度依存性

次に得られた拡散係数D及び 内向速度Vより注入されたSiの閉 じ込め時間 τ_{imp} を評価する。 τ_{imp} は,内向速度V=0の場合,ベッセ ル関数の0点より, $\tau_{imp}=a^2/$ (2.4²D),(a:プラズマ半径)で 与えられるが,Vが有限の場合, 拡散方程式は,合流型超幾何方 程式となりその最小0点から求 まる固有値の近似解より,

$$\tau_{\rm imp} \simeq \frac{77 + S^2}{56 + S^2} \frac{e^s - s - 1}{4s^2} \frac{a^2}{D}$$

で与えられる $^{(10)}_{\circ}$ ここで、 $s=V_a/2D$ である。 $V\approx 0$ の場合、即ち $S\approx 0$ で、

$$e^s \approx 1 + \frac{s}{1!} + \frac{s^2}{2!} + \cdots$$

となり、 $\tau_{imp} \approx a^2 / (2.4^2 D)$ になる。このようにして得られた τ_{imp} の平均電子密度依存性 を図 5 - 12に示す。この図からは、低密度領域 ($n_e < 2 \times 10^{13} \text{ cm}^{-3}$)では、 $\tau_{imp} \simeq 20 \sim 100$ msec、高密度領域では、 $\tau_{imp} \approx 150 \sim 200$ msec となっている。つまり ECH のみによって つくられた低密度高温プラズマでは、注入されたSiの閉じ込め時間は短かく NBI プラズマ では長い。平均電子密度に対する依存性は小さく、プラズマ生成法により大きく依存して いるように考えられる。NBI プラズマ中でより長い閉じ込め時間を示す理由としては、高 速イオンの損失によって生じる負電位による内向き拡散が考えられる。

5-5 まとめ

レーザーブローオフ法を用いてSiをプラズマ中に注入し、Si IV, XI, XII, XIII, SXの時間変化,及びSXの空間分布を測定することにより、不純物の拡散係数Dと内向速度Vを求めた。低電位密度の ECH プラズマでは、 $D \approx 1000 \sim 4000 \text{ cm}^2$ / sec の拡散係数, $V \approx 0 \sim 250 \text{ cm}$ / sec の内向速度で、又 NBI プラズマは、 $D \approx 1000 \text{ cm}^2$ / sec, $V \approx 300 \text{ cm}$ / sec で説明された。又特に ECH プラズマでは、水素及び重水素によるプラズマの違いを調べ、重水素プラズマの場合の方が長い閉じ込め時間を示すことが見いだされた。又Si と Tiの注入を行うことにより、注入される不純物の質量には、大きく依らないことも示された。

- 71 -

D及びVの平均電子密度に対する依存性は、2つの異なるプラズマ生成法(ECH, NBI) による変化を示している可能性が強く、NBIプラズマでは、高速イオンの損失が、内向径 方向電場を生成し、不純物のプラズマ中心への集積を助長していると考えられる。従って 電場計測と合わせてこのSi注入実験を今後続ければ、不純物の振舞をより深く理解するこ とが可能となる。

第五章 参考 文献

- 1) TFRG. Phys. Rev. Lett. 36 (1976) 1306
- 2) E. S. Marmar, J. L. Cecchi, S. A. Cohen Rev. Sci. Instrum. 46 (1975) 1149
- 3) S. A. Cohen, J. L. Cecchi, E. S. Marmar Phys. Rev. Lett. 35 (1975) 507
- 4) TFR. Nucl. Fusion 17 (1977) 1297
- 5) E. S. Marmar, J. E. Rice, S. L. Allen Phys. Rev. Lett. 45 (1980) 2025
- 6) E. S. Marmar, J. E. Rice, J. L. Terry, F. H. Seguin Nucl. Fusion 22 (1982) 1567
- 7) TFR. Phys. Lett. 87A (1982) 169
- R. C. Isler, S. Kasai, L. E. Murray, M. Saltmarsh, M. Murakami Phys. Rev. Lett. 47 (1981) 333
- R. C. Isler, L. E. Murray, S. Sakai, D. E. Arnuris, S. C. Bates, E. C. Crume, J. L. Dunlap, P. H. Edmonds, E. A. Lazarus, M. Murakami, V. K. Pare, M. J. Saltmarsh, D. W. Swain, C. E. Thomas Phys. Rev. Lett. 47 (1981) 649
- 10) F H. Seguin, R. Petrasso, E. S. Marmar Phys. Rev. Lett. 51 (1983) 455

第六章 レーザー誘起蛍光法による中性鉄原子測定

6-1 はじめに

不純物の挙動を知る上で、プラズマ中の不純物の輸送過程の解明とともに重要な課題は、 その発生機構を明らかにすることである。ヘリオトロンE装置は、磁気リミッター配位でプ ラズマの形状を決めており、金属リミッターを使用していないので通常のトカマク装置と異 なって放電管壁とプラズマとの相互作用を調べることが重要である。放電管はYUS170ステ ンレス製であるので最も含有量の多い鉄に注目し、放電管壁近傍の中性鉄原子密度の測定を 試みた。放電管壁近傍は、電子密度が低いプラズマが存在するのみであるから電子衝突励起 による発光スペクトルは弱く通常の分光測定が困難である。従って強力なレーザー光を用い て原子を励起しその蛍光を観測するレーザー誘起蛍光法^(1,2,3)を用いることにした。

第2節ではレーザー誘起蛍光法の概略を示し,第3節ではヘリオトロンE装置に適用する ために開発した同軸光学系について述べる。第4節では,同軸光学系の絶対感度較正法とそ の結果を示し,第5節でヘリオトロンE装置での測定結果を示す。第6節で全体のまとめを 行う。

6-2 レーザー誘起蛍光法の原理

レーザー誘起蛍光法による原子密度測定は,波長可変色素レーザーの波長を測定しようと する原子の共鳴線波長に合わせて測定領域に照射する。レーザー光を照射された原子は,吸 収の遷移確率 B_{12} に従って基底準位1から準位2へ励起される。励起された原子は誘導放出 の確率 B_{21} ,自然放出の確率 A_{21} (他の準位がある場合には $A_{2i}(i=3, 4, \dots)$)に従って光 を放出する。この時,図6-1に示すような散乱光学系を構成しておけば,自然放出の確率 A_{21} によって決まる蛍光を測定することによって散乱体積中(V)に存在する原子密度を知ること が可能である。

このことを、図6-2に示した三準位系³⁾を例にして述べる。基底準位及び色素レーザーで 励起される励起準位をそれぞれ1,2とし、観測する蛍光は励起準位2から準位3への遷移に よるものとする。 n_i , g_i (i=1, 2, 3)を各準位における占有密度と統計重率とし、レーザ ーの単位周波数あたりのエネルギー密度を $u(\nu)$ とする。このとき励起準位2の占有密度 n_2 の時間変化は、

 $dn_2/dt = u(v)(B_{12}n_1 - B_{21}n_2) - A_2n_2 \quad (A_2 = A_{21} + A_{23})$

となる。

ここで、 $S \equiv u(\nu)(B_{12}+B_{21})/A_2$ で定義される飽和パラメータSが1 に比べて充分大きい場合、上のレー ト方程式の近似解は

$$n_{2}(t) = \frac{g_{2}}{g_{1} + g_{2}} n$$

$$\exp\left[-\frac{g_{2}}{g_{1} + g_{2}}A_{23}t\right]$$

$$(n = n_{1} + n_{2} + n_{3})$$

となり、測定される蛍光の光子数は,

$$\int A_{23}n_2(t)\frac{d\mathcal{Q}}{4\pi}Vdt = \frac{d\mathcal{Q}}{4\pi}nV$$

で与えられ,レーザー出力に依存せ ず,これより散乱体積中の原子密度 を知ることができる。

上で定義したSパラメータを周波数表示から 波長表示に書きかえると,

$$S \equiv u(\nu) (B_{12} + B_{21}) / A_2$$

= $\phi(\lambda) / \phi_0(\lambda)$
 $\phi_0(\lambda) = (g_1 / (g_1 + g_2)) (\delta \pi h c^2 / \lambda^5) ((A_{21} + A_{22}) / A_{21})$

となり、 $\phi_0(\lambda)$ を飽和出力と呼ぶ。図6-3の 鉄原子のエネルギー準位図で示した励起波長 3020Å($a^5D_4 - y^5D_4^{\circ}$)での飽和出力は $\phi_0(3020$ Å)=1.14×10⁴W/cm²・Å となる。飽和出力 は、単位面積、単位波長あたりの出力として定 義されるので、使用するレーザーの発振波長幅 が充分狭いこと、又散乱光学系を構成する時に、 入射レーザービームを充分細く集光することが 必要である。特に後者は、空間分解能を高くす

Species	$\lambda_{pump}^{(nm)}$	$\lambda_{\text{detect}^{(nm)}}$
Fe I	302.06 $(a^{5}D, -v^{5}D^{0})$	382.04 ($v^5 D_{c}^{o} - a^5 F_{c}$)
Fe II	259.94 ($a^{6}D-Z^{6}D^{\circ}$)	327.74 $(Z^{6}D^{\circ}-a^{4}D)$
Ti I	294.20 $(a^{3}F_{2}-v^{3}F_{2}^{0})$	445.33 $(v^3F_2^0-b^3F_2)$
Ti II	314.80 (a ⁴ F _{3/2} -Z ² D [°])	368.52 (2 ² D ⁰ -a ² F)
Al I	308.22 (³ p° _{1/2} - ³ D _{3/2})	308.22 (³ P ^o _{1/2} - ³ D _{3/2})
Mo I	300.22 (a ⁷ S ₃ -y ⁵ P ₂ ^o)	457.65 (y ⁵ P ₂ ^o -a ⁵ D ₂)

図6-1 レーザー誘起蛍光法

表6-1 レーザー誘記蛍光法による励起波長と測定波長

る上からも重要なことである。図6-4に励起 波長に対する飽和出力を示す。飽和出力は励起 波長 λ の5乗に逆比例し短波長になるに従って 急速に増大する。現在の色素レーザーの発振出 力は短波長域で急速に減少するので,HI(1215 Å),CI(1560Å),NI(1134Å),OI(1355Å)の 測定でS>1の実現は極めて困難である。従っ て表 6-1に示した鉄,^(4,5)チタン,⁽⁶⁾アルミニウ ム,⁽⁷⁾モリブデン⁽⁸⁾等の中性原子あるいは1価電 離イオンが測定対象となっている。

6-3 ヘリオトロン E 用レーザー誘起蛍光測 定系

ヘリオトロンE装置において鉄原子測定を目 的としてレーザー誘起蛍光法を適用する際直面 した最大の困難は、レーザービーム入射と蛍光 集光光学系を通常の90°散乱にする適切なポー トの組み合わせが得られないことである。

このため大口径のポート1つを用いてレーザ ービーム入射と蛍光集光の両方を行う同軸光学 系⁽⁹⁾を採用した。この同軸光学系は通常の90° 散乱系に対して次の三点の問題点を克服しなけ ればならない。(1)微弱な蛍光と強力なレーザー 光が同一の光軸を有することによるレーザー光 からの迷光を除去すること。(2)視線方向の空間 分解能を規定する方法を工夫すること。(3)ポー ト窓ガラスをレーザー光が通過する際生じるガ ラス窓からの蛍光を除去すること。(1)に対して は,三準位系を用いて入射レーザー光の波長 3020Åと蛍光波長 3820Åを 800Å離し,集光レ ンズは BK7を用いて 3020Åの光の透過率を小

Fe I

図6-3 中性鉄原子のグロトリアン図

図6-4 波長に対する飽和レーザー出力

さくした。

(2)の視線方向の空間分解能の規定には、集光レンズの後に、レンズ中央部を通る光をさえ ぎる光路ストップ板を置き、かつ結像点にアパーチャを置いて、レーザービーム上の限られ た部分から発した光のみが検出器に入るようにした。(3)のポート窓ガラスによる蛍光は、ポ ート位置でのレーザービーム径を約1 cm ¢ に拡げ、単位面積あたりの出力を小さくするとと もに(2)の光路ストップ板、及びアパーチャの組み合わせによりポート附近から出る光が検出 器に入らないようにした。これら三点を考慮して図6-5 に示す測定系を構成⁽¹⁰⁾した。

図6-5 同軸レーザー誘起蛍光測定系

色素レーザーは、色素(ローダミン6G)をフラッシュランプで励起しレーザー発振をさせる型式(Phase R DL2100C)のものを用いた。発振波長の設定は、グレーティング(1200/mm)を用い、共振器中にエタロン板を入れ、発振波長幅の狭帯域化をはかり、0.05Åを得ている。鉄原子励起に必要な波長 3020Åの光は、色素レーザーからは直接得られないので、レーザー光を 6040Åで発振させ、Ammonium Dihydrogen Arsenade の結晶中に集光しその第2高調波として取り出している。基本波はフィルターで遮断している。レーザーの発振パルス幅は 300 nsec、第2高調波での出力は 150 W 以上あり飽和領域に達している。

レーザービームは、レンズ、鏡等で入射ポート直前の位置で蛍光集光光学系の光軸と一致 させ、入射ポートを通ってヘリオトロンE放電管の中に導かれ、向側の壁近傍の測定領域で 3mmø に集光されている。蛍光集光光学系は、壁に沿って縦方向の空間分布が測定できるよ うに準備された角度可変な鏡と、有効径 200mmø, 焦点距離 900mm の集光レンズからなっ ている。集光レンズの後には 100mmø の光路ストップ板が置いてあるので集光レンズの有 効面は中心部を除いた半径 50 mm から 100 mm のリング状となっている。又集光レンズの結 像面には 5 mm φ のアパーチャがあり、その後には中心透過波長 3820Å, 透過波長域 20Åの 干渉フィルターが置かれ、プラズマ光の軽減をはかっている。検出器は 10 μ sec の高圧ゲー トつきの光電子増幅管(HTV R 1332)を使用している。

レーザーの発振波長幅が狭いので 波長設定に通常の分光器が使用でき ない。従ってあらたにエッシェル型 回析格子(d=1/79mm)をリトロー 配置し,かつスペクトル像を凹レン ズで拡大する高逆線分散の分光写真 器を製作した。⁽¹¹⁾その構造を図6-6 に示す。

波長の標準として Ne 5881.9Å, 6382.9Åを選びそれぞれ 39次, 36次で観測し, レーザー 波長 6040Åは, 38次で観測した。Ne による波長較正の結果, 逆線分散は, 0.156Å/mm で あった。

6-4 同軸光学系の絶対感度較正⁽¹²⁾

測定された蛍光強度から原子密度を評価する には、全光学系の絶対感度較正をする必要があ る。最も信頼性の高い較正法は、鉄原子を発生 させ、その蛍光強度と鉄原子密度との関係を調 べておく方法である。鉄原子蒸気は、クヌーセ ンセル中に鉄試料を入れ、加熱することによっ て容易に得られる。又その密度は、温度を測定 することによってわかる。実際に製作されたク ズーセンセルは、アルミナ製で、そのまわりに タングステンヒーターを巻き、1400°K~1900°K に加熱することにより、10¹⁰~10¹⁵ cm⁻³の鉄蒸 気をクヌーセンセル中に生成することができる。 図 6 - 7 にクヌーセンセルの温度と鉄原子密度 の関係を示す。

図6-7 クヌーセンセル温度と鉄原子密度

図6-8 クヌーセンセルによる同軸光学系の較正

同軸光学系の絶対感度較正は、図6-8に示すようにヘリオトロンE装置と同一サイズの 入射ポートを備えた真空容器をつくり、測定位置にクヌーセンセルを配置して、そこの鉄原 子からの蛍光を測定した。レーザービームはクヌーセンセルの上方47mmの所で15mmの

長さで鉄蒸気と交叉している。又 この時同軸光学系の測定と同時に 90°方向からみた蛍光強度の測定も 行った。

図6-9は、クヌーセンセルの 温度を一定に保ち鉄原子密度を変 えないで、レーザー出力のみをフ ィルターを用いて変化させ蛍光強 度を測定した結果を示す。レーザ ー出力が100Wを越えるあたりか ら蛍光強度はレーザー出力に依存

せず飽和をし始める。S パラメータを評価してみると 70W 附近で S ≃1 となっている。 以 後の測定データは全てこの飽和領域で測定したものである。 図6-10は同軸光学系の空間分解能を確めた 結果である。測定系を光軸に沿ってクヌーセン セルに対して前後に動かし,同軸光学系(a), 90°散乱系(b)の蛍光強度をみたものである。 同軸光学系では集光レンズからクヌーセンセル までの距離Lが1830mmを中心にして前後75 mmで蛍光強度が1/2に減少し更に離れると殆 んどみられなくなる。一方90°散乱系では,レ ーザービーム径が殆んど変化しないので,ほぼ 一様な蛍光強度が得られている。このように同 軸光学系では集光レンズの後の光路ストップ板 とアパーチャの組み合わせによって視線方向の 空間分解ができることが示された。又この時得 られた空間分解能は,図6-11に示すように計 算値と良く一致する。

同軸光学系全体の絶対感度較正は、クヌーセ ンセルの温度を1400~1900°Kまで変化させて 鉄原子密度を変え蛍光強度を測定して行った。 図 6-12はその時測定された同軸光学系Scoと 90°散乱系S₉₀の蛍光強度の鉄原子密度に対する 依存性を示している。各々の蛍光強度は鉄原子 密度に比例して変化していることがわかる。こ の結果から同軸光学系の絶対感度は、1.5×10° Fe atoms/mV の値が得られる。但しこの時の 散乱体積として 0.1 cm³を用いている。

6-5 ヘリオトロンE装置での中性鉄原子の測定⁽¹³⁾

6-5-1 蛍光強度の時間変化

ヘリオトロンE装置のポート * 5.5 にこのレ ーザー誘起蛍光測定装置をとりつけて中性鉄原

図 6-10 同軸光学系の空間分解能

図 6-11 空間分解能の計算値(0)と実測値

図6-12 クヌーセンセルによる較正結果

子密度を測定した結果を記す。

測定の対象は、磁場強度1.9 T、 53.2 GHz EC H パルスでつくられ、 3.6 MWの中性粒子ビームで加熱 されたプラズマである。平均電子 密度は 2.5×10¹³ cm⁻³, 電子温度 700 eV, イオン温度は 1000 eV で ある。これらのプラズマパラメー タの時間変化を図6-13に示す。 このプラズマに対して、測定用ポ - トの向い側の壁の中央部で測定 された蛍光強度の時間変化を図6 -14に示す。ECH パルスのみが印 加されている時は、鉄原子による 蛍光は、観測されなかった。中性 粒子ビームの入射による加熱が始 まると、15~20mVの蛍光信号が 観測された。この強度は、中性粒 子ビーム入射中ほぼ一定の値を示 している。前節で示した系の絶対 感度較正の結果を用いると、散乱 体積中に~3×10⁷個の鉄原子が存 在することがわかる。平均の鉄原 子密度を求めるには、散乱体積の 評価が必要であるが、この場合光

図 6-14 鉄原子による蛍光強度の時間変化

路ストップ板とアパーチャで決る幾何学的空間分解能が壁と最外殻磁気面間の距離と同程度 なので充分な注意が必要である。この領域にも1~5×10¹¹cm⁻³,10 eV 程度の低密度,低温 度のプラズマが存在することがプローブ測定で確められているので,実効的な散乱体積は, 壁から出た鉄原子の特徴的な電離長で決ると考えられる。上のプラズマパラメータでは,こ の長さは約5 cm と評価されるので,平均的な鉄原子密度としては,10⁸ cm⁻³ が与えられる。 同時に測定された荷電交換中性粒子束を図6-15に示す。その時間変化は、蛍光強度と同 様に ECH のみ印加される時は,10¹¹ ~10¹² cm⁻² sec⁻¹ keV⁻¹で,中性粒子 ビームが入射されると急激に10¹⁴~ 10¹⁵ cm⁻² sec⁻¹ keV⁻¹まで増加し,ほ ぼ一定の値となる。

この荷電交換中性粒子束によって スパッターされる鉄原子密度を評価 してみる。H⁰及びD⁰のスパッタリ ング率を1.1×10⁻², 3×10⁻² として 各々の粒子束に掛け,更にスパッタ リングの実験⁽¹⁴⁾で求められた平均 速度 2×10⁵ cm/sec を採用すれば, 密度として, 1.3×10⁸ cm⁻³ が得られ る。

次にこのプラズマの中に含まれる多価電離した 鉄イオン, Fe IX, Fe XV, Fe XVI の輻射強度の 時間変化を図6-16に示す。これら線輻射の時間 変化は,蛍光強度,荷電交換中性粒子束の時間変 化と同様に ECH パルスのみ印加されている時に は低い値にあって,中性粒子ビーム入射中には高 い値となっている。

6-5-2 蛍光強度の空間分布

前節と同じプラズマを測定対象として放電管壁 に沿って縦方向の蛍光分布を測定した。測定位置 は集光光学系の最初の鏡を傾けることにより下方 15 cm より上方 15 cm まで変えた。 図 6-17 に測 定結果を示す。蛍光強度は,測定された範囲内で 大きな変化は認められなかった。このことは鉄原 子の発生場所が局在していないことを示す。

図6-16 多価電離鉄イオンの発光強度

6-5-3 中性粒子ビームパワーに対する 依存性

蛍光強度の中性粒子ビームパワーに対する依存性を調べた。ビームパワーは、0.8MWと3.6MWの2種類である。平均電子密度は、両者とも2.5×10¹³ cm⁻³ であるが、イオン温度は、0.8MW入射の時400 eV、3.6MW入射の時1000 eVである。蛍光感度は、図6-18に示すように、ビームパワーが0.8MWから3.6MWに増加した時4~5倍増加している。同様に荷電交換中性子束も変化している。

6-6 まとめ

ヘリオトロンE装置でレーザー誘起蛍光法を 適用して中性鉄原子密度を測定するために,只 1つの測定ポートを用いる同軸光学系を開発し た。この方法は装置の構造上適切なポートの組 み合わせが得られない場合や,加熱等によって ポートの数が制限される場合に有効となる。但

図 6-18 蛍光強度の NBI出力依存性

し視線方向の空間分解能を高めるためには、大きな光路ストップ板、小さな径のアパーチャ が必要となり、集光の立体角が小さくなり S/N の低下を招き易い。従って光学系設計には充 分な注意が必要である。系の絶対感度較正は、クヌーセンセルで発生した鉄蒸気を用いて充 分な精度をもって行うことができ、この種の装置の絶対感度較正法を確立した。

蛍光強度の時間変化,空間分布の測定から,壁よりスパッターされる鉄原子は,中性粒子 束と強い相関が認められた。このことより中性粒子によるスパッタリングが鉄原子発生の大 きな原因と考えることができる。3.6 MWの中性粒子ビーム入射時に於ける平均鉄原子密度 は、10⁸ cm⁻³ と評価され、放電管壁全体からの Flux 量としては、8×10¹⁸/sec と見積られる。 他方、プラズマ中の多価鉄イオンの Brightness からは、5×10¹⁸/sec の influx が、プラズマの 端からプラズマ中に入ることが考えられる。

従ってプラズマ中の鉄の量は、この荷電交換中性粒子束によって発生する鉄の量によって 決ると考えられる。

第六章 参考 文献

- 1) P Bogen, E. Hintz Comments. Plasma Phys. Cont. Fusion 4 (1978) 115
- 2) E. Hintz J. Nucl. Mater. 93 & 94 (1980) 86
- 3) 近藤克己, 浜本 誠, 尾田年充 応用物理 53 (1984) 1042
- 4) C. H. Muller III, K. H. Buwell Phys. Rev. Lett. 47 (1981) 330
- 5) H. Bay, B. Schweer J. Nucl. Mater. 128 & 129 (1984) 257
- B. Schweer, P. Bogen, E. Hintz, D. Rusbuldt, S. Goto, K. H. Steuer J. Nucl. Mater. 111 & 112 (1982) 71
- E. Dullni, E. Hintz, J. B. Roberto, R. J. Colchin, and R. K. Richards J. Nucl. Mater. <u>111 & 112</u> (1982) 61
- 8) P. Bogen, B. Schweer, H. Ringler, W. Otto J. Nucl. Mater. 111 & 112 (1982) 67
- 9) A. C. Eckveth, J. W. Davis Appl. Opt. 16 (1977) 804
- T. Oda, K. Kondo, M. Hamamoto, T. Ohgo, S. Sudo, H. Zushi, T. Mutoh, F. Sano, M. Sato, H. Kaneko, T. Mizuuchi, S. Besshou, O. Motojima, T. Obiki, A. Iiyoshi, K. Uo J. Nucl. Mater. 128 & 129 (1984) 262
- 11) D. Rusbüldt 私信
- 12) M. Hamamoto, T. Ohgo, K. Kondo, T. Oda, A. Iiyoshi, and K. Uo Jpn. J. Appl. Phys. <u>25</u> (1986) 99
- 13) K. Kondo, T. Oda, M. Hamamoto, T. Ohgo, H. Okada, H. Zushi, T. Mizuuchi, S. Besshou, H. Kaneko, Y. Takeiri, T. Mutoh, S. Sudo, F. Sano, M. Sato, O. Motojima, T. Obiki, A. Iiyoshi, and K. Uo 7th Int. Conf. on Plasma-Surface Interactions in Controlled Fusion Devices. Princeton, 1986 J. Nucl. Mater. <u>145-147</u> (1987) 501
- 14) H. L. Bay, B. Schweer, P Bogen and E. Hintz J. Nucl. Mater. <u>111 & 112</u> (1982) 732

第七章 総 括

本研究によって、ヘリオトロンE装置で生成されたプラズマに含まれる不純物イオンに関して、その種類、密度、輻射損失、輸送過程について実験的に明らかにすることができた。

不純物イオンの種類については,分光写真のスペクトル分析によって放電管壁の構成材で ある鉄のスペクトルを多数同定し鉄が重要な不純物イオンであることを確認した。又チタン フラッシングされたチタンも同様にプラズマ中に多く含まれることも明らかになった。軽元 素では酸素によるスペクトルが多く次に炭素,窒素が認められた。

光電測定による密度評価では,鉄が多く10¹⁰~10¹¹ cm⁻³の値を示し,次に酸素10¹¹ cm⁻³, チタン10¹⁰ cm⁻³の値を示している。

輻射損失は、鉄による割合が大きく全体の輻射量の70~80%を占めるものと考えられる。

輸送過程については、レーザー ブロー オフ法によって拡散係数 Dと内向対流速度 Vを決 めることができ、Dの値としては、 $600 \sim 4000 \text{ cm}^2/\text{sec}$ 、Vの値は、 $0 \sim 300 \text{ cm}/\text{sec}$ の範囲の 数値が得られた。Dの値が大きく、Vの値が小さい組み合わせは、ECRH単独でつくられた プラズマでみられ、NBI を加えると、Dの値は小さく内向きの対流速度がみられるようにな った。

不純物の発生機構については、特に中性鉄原子を対象として、レーザー誘起蛍光法を用い て調べた。この方法によって放電管壁近傍の中性鉄原子密度を評価し、NBI時に10⁸ cm⁻³ 程 度の値を得た。又この測定では、荷電交換中性粒子束との強い相関が認められ、発生機構と しては、この中性粒子によるスパッタリングが大きな原因と考えられることを明らかにした。 この測定を遂行する上で、従来2つの測定ポートを使用していたのを只1つのポートで測定 できる同軸光学系を開発し有効に動作することを実験的に確認した。

今後の課題は、これまでに確立された実験的方法、レーザーブローオフ法、レーザー誘 起蛍光法を駆使して、更に詳しく不純物の発生量、輸送過程を調べ、極力不純物を減少させ る努力が必要である。

測定技術に関しては, single channel の真空紫外分光器を multi-channel 化しスペクトルを 明確に把握し波長の同定等が可能にできるようにする必要がある。又シンクロトロン光を用 いた絶対感度較正法を我が国に於いて確立する必要がある。

本研究が,今後行われるヘリオトロン型装置の研究に少しでも参考になれば,筆者にとっ てこれにまさる喜びはない。

附録 Ti注入による禁制線の観測

レーザーブローオフ法による 不純物注入法を用いることにより, 通常測定が困難な線スペクトルを 極めて高い S/N 比で観測するこ とが可能になる。従って原子分光 学的あるいはプラズマ計測上興味 ある禁制線を調べることができる。

禁制線は、電気双極子輻射の許 容線の選択則、 $Al = \pm 1$ 、AS = 0に従わない遷移で、磁気双極子輻 射の場合には、Al = 0、An = 0の 遷移が許される。^(1,2) 表A - 1 に選 択則を示してある。この磁気双極 子輻射は、高温プラズマ中の多価

電離イオンの基底準位間の遷移として認められる⁽³⁾ この遷移の特徴は,対応するエネルギー準位の幅が 狭く,放出される光の波長が長くなり近紫外域に分 布し,高分解能を有する可視分光器の測定対象にな りうることである。このことは,ドップラー幅,シ フトの測定が容易であり,高電離イオンのイオン温 度や、速度の評価の有力な手段になり得る^(4,5)

ここでは Ti を注入して, Ti XV 2544.8 Å の禁制 線を確認したことを述べる。図A-1は, Ti XV の ブロトリアン図である。2544.8 Å の線輻射は, 基底 準位間の ${}^{3}P_{1}-{}^{3}P_{2}$ の遷移に対応しており, dl=0, dn=0 の磁気双極子遷移になっている。 表A-1 選択則

Selection Rules

Electric dipole	Magnetic dipole	Electric 'quadrapole
$\Delta J = 0, \pm 1$	ΔJ = 0, ±1	$\Delta J = 0, \pm 1, \pm 2$
(0↔))	(0↔→0)	{0↔→0, 1/2↔→1/2, 0↔→1
ΔH = 0, ±1	∆M = 0, ±1	∆M = 0, ±1, ±2
Parity change	No Parity change	No parity change
One-electron jump	No electron jump	One or no electron jump
$\Delta 1 = \pm 1$	∆1 - 0	$\Delta 1 = 0, \pm 2$
	$\Delta n = 0$	
∆s = 0	∆s = 0	ΔS = 0
ΔL = 0, ±1	ΔL - 0	∆L = 0, ±1, ±2
(0↔))		(0↔→0, 0↔→1)

Ti XV ^{3}P $_{2s2p^{5}}$ $^{3p^{0}}$ $_{0}$ $^{1}2$ 148.5 134.6 140.4 $_{2s^{2}2p^{4}}$ 0 forbidden 2

平均電子密度 4×10¹³ cm⁻³,電子温度 500 eV,イオン温度 550 eV のプラズマ中に Ti を注入した時,可視分光器 SPEC 1269 で波長 2544 Å で観測した光強度の時間変化を図A-2 に

図A-1 TiXVのグロトリアン図 (波長はÅで表示)

示す。

Tiは、レーザーブローオフ法によって時刻 t=446 msec に入射した。(a)は、出口ス リット幅 300 µm にして波長 2544 Åに設定して測定したものである。プラズマ生成と同時に、 光強度が増加し、Ti を注入すると更に急激に増加し徐々に減少する。このことは、目的とす る禁制線がプラズマ生成と同時に現われ Ti 注入によって更に増大しているのか、あるいは 禁制線近くの他の線輻射が重っているのか識別できない。このいずれであるかを確めるため 出口スリット直前に置かれた振動鏡で波長を高速で走査しこの近傍のスペクトルを観測した

線輻射が認められ▲印をつけた線 輻射の強度の時間変化は真空紫外 分光器で観測した Ti XII460Å(c) よりゆっくり減衰しているので Ti XIIより高い電離電圧を有して いることがわかる。これより▲印 をつけた線輻射が Ti XV 2544.8Å によるものと結論づけられる。他 の2本の線輻射は Ti IV 2546Å, 2547Åが可能性として考えられる。 このように Tiを注入することによ って Ti XV の禁制線を観測できる ことを実験的に明らかにすること ができた。

のが(b)である。これより3本の

禁制線は, Tiの他にFe, Ni, Cr, Co等^(7,8)についても調べられて いるのでこれらのイオンを適切に 組み合わせて注入してドップラー 幅を測定すれば, それらの電離エ ネルギーと電子温度を比較するこ

図A-2 禁制線2544ÅとTiXI 460Åの時間変化

とによりイオン温度の空間分布を詳しく知ることが可能であり、中性粒子エネルギー分析器 によるイオン温度評価と併用すれば、より豊かな情報が得られるものと期待される。

附録2 文 献

- R. H. Garstang D. R. Bates(ed), Atomic and Molecular Processes (Academic Press, New York, 1962)
- R. D. Cowan The Theory of Atomic Structure and Spectra (Univ. California Press, California, 1981)
- 3. G. A. Doschek, U. Feldman J. Appl. Phys. 47 (1976)
- 4. S. Suckewer, E. Hinnov Phys. Rev. Lett. 41 (1978) 756
- 5. S. Suckewer, R. Fonik, E. Hinnov Phys. Rev. A21 (1980)
- 6. A. K. Bhatia J. Appl. Phys. 51 (1980) 146
- 7. U. Feldman, G. A. Doschek, C. C. Cheng J. Appl. Phys. 51 (1980) 190
- 8. K. D. Lawson, N. J. Peacock, M. F Stamp J. Phys. B 14 (1981) 1929

本研究を行うにあたり、研究の場を与えられ終始絶大なる御指導、御鞭撻を賜わり、今日 まで筆者を暖かく見守って頂いた京都大学へリオトロン核融合研究センター長宇尾光治教授 に心から感謝の意を表します。又飯吉厚夫教授には終始懇切なる御指導を頂き深く感謝致し ます。大引得弘教授には、中性粒子ビーム入射実験において御指導を頂き、本島 修教授に は、ヘリオトロンE実験において多大の御指導、御協力を頂いたことに感謝します。森本茂 行助教授には、ヘリオトロンD、DM、DR実験において御指導を頂き感謝します。又EC RHプラズマでの実験では佐藤元泰助教授、中性粒子ビーム入射実験では、佐野史道助教授 に終始御協力、御助言を頂いたことを感謝致します。又測定に関しては、須藤 滋助教授、 武藤 敬助教授、図子秀樹助手、金子 博助手、別生 栄助手、水内 亨助手、竹入康彦助 手、他多くの技官の方々の御協力を頂いた。又当時大学院生であった西野信博氏、馬籠幸一 氏にも実験遂行上多くの御協力を頂いたことに感謝致します。

真空紫外分光器の感度較正には、米国MIT, J. Terry 博士,不純物入射実験では,同 J. Rice 博士, E. Marmar 博士の極めて強力な御指導,御協力を頂いた。又当センターの金子博助手には不純物入射時の軟X線データの解析結果について御教示頂いた。ここに厚く感謝の意を表します。

レーザー誘起蛍光法による測定では、広島大学尾田年充教授、大分大学浜本 誠助教授、 福岡教育大学大後忠志講師に御指導、御協力を頂いた。ここに厚く感謝の意を表します。

又中性粒子エネルギー分析器に関しては、ソ連 Ioffe 研究所の Kislyakov 博士と筑波大学中 島洋輔助手に感謝致します。

更に多くの議論を頂いた若谷誠宏教授,花谷 清助手,中須賀正彦助手に感謝致します。 本研究はヘリオトロン核融合研究センターで行われている制御核融合炉を目的としたヘリ オトロン研究の一環として行われたものであり,以上の多くの方々の御指導,御協力があっ

て初めて実現し得たものである。ここに改めて深い感謝の意を表します。

日本物理学会における発表

ヘリオトロンE装置における計測 1980年(35回年会) 30a-K-23
 ヘリオトロンE装置における不純物の振舞 1980年(科の分科会) 1a-R-6
 ヘリオトロンEプラズマの分光測定 1981年(36回年会) 30a-F-6
 ヘリオトロンEプラズマの分光測定 1981年(秋の分科会) 4 p-NW-4
 ヘリオトロンEプラズマの真空紫外分光測定 1982年(37回年会) 2a-Y-12
 ヘリオトロンEプラズマの分光測定 1983年(38回年会) 30p-A-2
 ヘリオトロンEプラズマの分光測定 1983年(秋の分科会) 13p-DJ-8
 レーザー誘起蛍光法によるヘリオトロンEプラズマの計測 1983年(秋の分科会) 1983年(秋の分科会) 1983年(秋の分科会) 1983年(秋の分科会) 1983年(秋の分科会) 1983年(秋の分科会) 1983年(秋の分科会) 14p-DJ-3

9. ヘリオトロンEプラズマへの不純物入射実験 1984年(39回年会) 3p-RB-3

レーザー誘起蛍光法によるヘリオトロンEプラズマの計測Ⅱ 1984年(39回年会)
 4p-RC-7

論 文

- 近藤克己 ヘリオトロン装置における分光測定 「プラズマ原子過程と極端紫 外輻射の分光研究」 p. 29, 1980年3月
- 近藤克己,図子秀樹,中須賀正彦 ヘリオトロンE装置での分光測定計画 核融合 研究 別冊 43/3, p. 61, 1980年
- 近藤克己,西野信博 ヘリオトロンE装置における分光計測 核融合研究 別冊 45/3,1981年
- 西野信博,近藤克己 ヘリオトロンEプラズマの分光測定 核融合研究 別冊 47/
 5, p. 127, 1982年
- 5. 近藤克己 ヘリオトロンEの計測 核融合研究 別冊 47/6, p.21, 1982年
- 西野信博,近藤克己 ヘリオトロンEにおける分光測定 核融合研究 別冊 49/4
 p. 271, 1983年
- 近藤克己,西野信博 ヘリオトロン装置における分光測定 「プラズマ原子過程と スペクトル線の構造」 p. 87, 1983年
- 近藤克己,浜本 誠,尾田年充 レーザー誘起蛍光法によるプラズマ計測 応用物
 理 53,1042,1984年
- K. Uo, A. Iiyoshi, T. Obiki, S. Morimoto, A. Asaki, K. Kondo, S. Yoshioka, I. Ohtake, S. Konoshima, M. Sato, O. Motojima, M. Koyama. Confinement and Ion-Cyclotron-Heating Experiments with Ohmically Heated Plasma in the Heliotron-D. Plasma Physics and Controlled Nuclear Fusion Research. (Proc. 5th Int. Conf. Tokyo, 1974) vol. II, (1975) p. 129
- K. Uo, A. Iiyoshi, T. Obiki, S. Morimoto, A. Asaki, K. Kondo, O. motojima, S.Yoshioka, I. Ohtake, M. Nakasuga, M. Sato, K. Hanatani, T. Mutoh. Plasma Confinement and RF Heating on the Heliotron DM and D Devices. Plasma Physics and Controlled Nuclear Fusion Research (Proc. 6th Int. Conf. Berchtesgarden), vol. II. (1977) p. 103
- K. Uo, A. Iiyoshi, H. Akimune, T. Obiki, S. Morimoto, M. Wakatani, A. Sasaki,
 K. Kondo, O. Motojima, M. Sato, T. Mutoh, I. Ohtake, M. Naka-

suga, T. Mizuuchi, S. Kinoshita, K. Hanatani, T. Amano, S. Hamada. RF. Heating Experiments on Heliotron Devices and Analysis of Equilibrium and Stability of Straight Helical Heliotron Plasma. Plasma Physics and Controlled Nuclear Fusion Research (Proc. 7th Int. Conf. Innsbruck) vol. II (1979) p. 323

- K. Uo, A. Iiyoshi, T. Obiki, S. Morimoto, M. Wakatani, O. Motojima, A. Sasaki, K. Kondo, M. Sato, K. Hanatani, T. Mutoh, H. Zushi, H. Kaneko, S. Besshou, F. Sano, I. Ohtake, M. Nakasuga, T. Mizuuchi, S. Kinoshita, Y. Nakashima, N. Nishino. Recent Developments in Heliotron Research. Plasma Physics and Controlled Nuclear Fusion Research (Proc. 8th Int. Conf. Brussels) vol. I (1981) p. 217
- K. Uo, A. Iiyoshi, T. Obiki, O. Motojima, S. Morimoto, A. Sasaki, K. Kondo, M. Sato, T. Mutoh, H. Zushi, H. Kaneko, S. Besshou, F. Sano, T. Mi-zuuchi, S. Sudo, K. Hanatani, M. Nakasuga, I. Ohtake, M. Iima, Y. Nakashima, N. Nishino. Plasma Physics and Controlled Nuclear Fusion Research (Proc. 9th Int. Conf. Baltimore) vol. II, (1983) p. 209
- K. Uo, A. Iiyoshi, T. Obiki, O. Motojima, S. Morimoto, M. Wakatani, A. Sasaki, K. Kondo, M. Sato, K. Hanatani, T. Mutoh, H. Zushi, H. Kaneko, S. Besshou, M. Nakasuga, F. Sano, T. Mizuuchi, S. Sudo, J. Harris, I. Ohtake, M. Iima, H. Okada, Y. Nakashima. Plasma Physics and Controlled Nuclear Fusion Research (Proc. 10th Int. Conf. London) D-I-2
- 15. A. Iiyoshi, O. Motojima, M. Sato, T. Mutoh, S. Sudo, T. Mizuuchi, H. Kaneko, H. Zushi, S. Besshou, K. Kondo, H. Okada, M. Iima, I. Ohtake, M. Wakatani, S. Morimoto, M. Nakasuga, T. Obiki, K. Uo. RF. Heating of Currentless Plasma in Heliotron E. Plasma Physics and Controlled Nuclear Fusion Research (Proc. 10th Int. Conf. London) F-I-4
- S. Morimoto, K. Kondo, T. Mizuuchi, A. Iiyoshi, K. Uo. Confinement of Ohmically Heated Plasmas in Heliotron D. Jpn. J. Appl. Phys. 18 (1979) 621

- Heliotron E G. Diagnostics in Heliotron E. Proc. of USSR-Japan Joint Seminar on Plasma Diagnostics Nagoya, (1980) p. 22
- S. Morimoto, K. Kondo, T. Mizuuchi, A. Iiyoshi, K. Uo. Electron Thermal Energy of Ohmically-Heated Plasmas in Heliotron D. Jpn. J. Appl. Phys. 20 (1981) 301
- H. Zushi, Y. Nakashima, K. Kondo, A. Iiyoshi, K. Uo. Charge Exchange Neutral Measurement in Heliotron E. J. Phys. Soc. Jpn. 51 (1982) 2673
- H. Zushi, Y. Nakashima, K. Noumi, K. Kondo, S. Sudo, T. Mutoh, O. Motojima,
 A. Iiyoshi, K. Uo. Ion Energy Containment in Heliotron E. Nucl. Fusion 22 (1982) 1341
- T. Mutoh, O. Motojima, S. Sudo, K. Kondo, Y. Ijiri, S. Besshou, H. Kaneko, T. Mizuuchi, H. Zushi, T. Obiki, A. Iiyoshi, K. Uo. Parametric Studies of Ohmically Heated Plasmas in Heliotron E. IEEE Trans. on Plasma Science PS-11 (1983) 238
- S. Sudo, K. Kondo, T. Mutoh, H. Zushi, A. Iiyoshi, K. Uo. Two Pulse and Multiple Position Thomsom Scattering System. Jpn. J. Appl. Phys. 22 (1983) 485
- 23. K. Kondo, S. Sudo, H. Zushi, T. Mizuuchi, T. Mutoh, H. Kaneko, K. Yaguchi, A. Iiyoshi, K. Uo, T. Oda, M. Hamamoto, T. Ohgo. Laser-Aided Plasma Diagnostics on Heliotron E. Proc. Kyushu Int. Symp. Laser-Aided Plasma Diagnostics (1983) p. 45
- 24. K. Kondo, N. Nishino, K. Magome, T. Mutoh, H. Kaneko, H. Zushi, O. Motojima, T. Obiki, A. Iiyoshi, K. Uo. Spectroscopy in Heliotron E. Proc. on Symp. on Atomic Collision Data for Diagnostics and Modeling of Fusion Plasma, Nagoya (1983) p. 139
- J. E. Rice, J. L. Terry, E. S. Marmar, O. Motojima, H. Kaneko, K. Kondo, T. Mizuuchi, S. Besshou, T. Mutoh, F. Sano, A. Sasaki, M. Sato, S. Sudo, H. Zushi, M. Iima, K. Magome, T. Obiki, A. Iiyoshi, K. Uo. Transport of Injected Impurities in Heliotron E. Nucl. Fusion <u>24</u> (1984) 1205
- 26. T. Oda, K. Kondo, M. Hamamoto, T. Ohgo, S. Sudo, H. Zushi, T. Mutoh, F. Sano,

M. Sato, H. Kaneko, T. Mizuuchi, S. Besshou, O. Motojima, T. Obiki, A. Iiyoshi, K. Uo. Observation of Metal Impurity Behavior in Heliotron by Use of Laser-Induced Flourescence Technique. J. Nucl. Mater. <u>128 & 129</u> (1984) 262

- 27. K. Kondo, H. Kaneko, H. Zushi, T. Mizuuchi, T. Mutoh, S. Besshou, H. Okada, S. Sudo, F. Sano, M. Sato, O. Motojima, T. Obiki, A. Iiyoshi, T. Oda, M. Hamamoto, T. Ohgo, J. Terry, J. Rice, E. Marmar, K. Uo. Spectroscopic Measurements on Heliotron E. Proc. on US-Japan Workshop on Tokamak Diagnostics by X-Ray, VUV andOptical Radiations, Nagoya (1984) p. 4
- M. Hamamoto, T. Ohgo, K. Kondo, T. Oda, A. Iiyoshi and K. Uo. Coaxial Laser-Induced Flourescence Spectroscopic System for Impurity Diagnostics in Plasmas. Jpn. J. Appl. Phys. <u>25</u> (1986) 99
- K. Kondo, H. Okada, H. Zushi, T. Mizuuchi, S. Besshou, H. Kaneko, Y. Takeiri, T. Mutoh, S. Sudo, F. Sano, M. Sato, O. Motojima, T. Obiki, A. Iiyoshi, K. Uo, T. Oda, M. Hamamoto, T. Ohgo. Neutral Fe Atom Measurements by Laser Induced Flourescence Spectroscopy in Heliotron-E. J. Nucl. Mater. <u>145-147</u> (1987) 501

