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               SYNOPSIS  

      Time  varyingelectromagnetic field, produced 

by electrodes or coils with configuration that has 

a central axis and azimuthal and axial periodicities, 

is analyzed in general. As special cases of such 

a configuration, many types ofelectromagnetic fields , 

such as helical type, line cusp type and mirror type 

are found. Many configurations of electromagnetic 

fields used for plasma heating can be reduced to 

these special cases. 

      Ion motions, rf power absorption and other 

cooperative phenemena of plasma in the helical type 

field and the picket fence field are investigated. 

It can be found that these rf fields are suitable for 

ion cyclotron heating of plasma, when a strong axial 

magnetic field is externally imposed. If the plasma 

density is considerably higher, circularly polarized 

fields rotating in the same sense as would ions are 

shielded by the reacting ion currents. Reversely 

polarized field , however, penetrateinto the plasma 

without considerable change in its magnitude. The 

peak of the rf power absorption curve drawn as a 

function of the external magnetic field or the rf 

frequency is expected to shift from the corresponding 

ion cyclotron resonance position, when the plasma 

is beam-like. This theoretically predicted shift
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was experimentally verified by using a plasma 

generator  "Heliotron-B". The helical type field 

was attempted and could raise electron temperature 

up to 7 x 105 °K in helium discharge. 

     Ion cyclotron waves with nonaxis7mmetric modes 

are generally analyzed, where an ion beam is flowing. 

A boundary condition, that a cylindrical plasma is 

coaxially immersed in a cylindrical sheet current 

and has a vacuum clearance with the sheet, is taken 

into account. The resulting inner field, the ion 

current, the electron current are also discussed. 

As special cases of this general mode, dispersion 

relations for axisymmetric mode given by Stix or 

for nonaxisymmetric mode without axial ion current 

given by Bernstein and Trehan are found. 

     It can be found that momentum transfer of ions 

to neutral molecules causes a broadening of the 

absorption curve of ion cyclotron resonance. Rf 

field penetration ana power dissipation in slightly 

ionized gas are also analyzed under the boundary 

condition of a cylindrical configuration. Experimentally, 

this broadening could be verified. Some collision 

frequencies for different conditions wee determined . 

Experiments ontheion cyclotron heating of plasma 

was made by using the Heliotron-B device . The plasma 

generated by a Joule heating was supplied with rf
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power of 100 kilowatts, and  ion cyclotron waves was 

excited in a rf coil region and then damped in the 

slopes of the Heliotron magnetic field. As a result, 

ion temperature could be raised up to 4 x 105 °K. 

Electron temperature was insensible to this heating.
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                 PREFACE  

     The successful release and utilization of the 

nuclear fusion energy of deuterium will serve the 

human being an inexhaustible energy source. In order 

to realize this controlled fusion reaction, we must 

first investigate the generation of deuterium plasma 

of extremely high temperature. Many procedures to 

get such a plasma may be considered. One of them 

is that, in the first stage, deuterium gas is brought 

to a fully ionized plasma and then heated and confined 

in a  strong magnetic vessel. The heating method in 

this case, of course, much concerns the confining 

field itself. A plasma generator named "Heliotron-B" 

of KyotoUniversity belongs to this type. "Ion cyclotron 

heating" is one of the heating methods applicable to 

the confining field of the Heliotron-B device. 

     This thesis is the record of the investigation 

of ion cylotron heating of plasma, which was carried 

out by the author as a member of Kyoto University 

High Temperature Plasma Researching System called 

"Helicon Project" . 

     It should be noted that Gauss units are used 

throughout this thesis, except for a description of 

electric currents in the magnetic coils of the device. 

Because it is convenient to the treatment of plasma 

behaviours, such as phase velocity, plasma density,
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and wave length of spectral line. 
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 I High  Frecluency Coil for Plasma Heating

1.1 introduction 

Tviany configurations of time varying electromagnetic 

field for plasma heating have been proposed and applied 

to experimental devices. However, it seems that such 

configurations have not been generally analyzed. Diffi-

culties of general treatment of these fields may be due. 

to the fact that the configuration of field for plasma 

heating must concern itself with the configuration of 

magnetic field for plasma confinement. Behaviours of 

plasma induced by the heating field, such as charge 

separation, must also be taken into account. 

     If it is able to find the common properties between 

the configurations of field for plasma heating and those 

for plasma confinement, then the way of the general 

treatment will be revealed. These common properties 

essentially originate from human nature and technical 

facilities, since human kind lives in three dimensional 

space and can make things only of three dimensional 

geometry. Furthermore, it should be remembered that 

plasma under fusion reaction must be confined in a 

bounded volume with a closed surface, as torus, ellip-

soid, spheroid, wheel limniscoid, etc. Generally these 

have geometrically three axes. From the viewpoint of 

engineering, configurations with an axis are easy to
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 realized. Therefore it should be concluded that we 

 1st deal with the configuration which has at least one 

cis. 

    In fact, most of the devices for plasma experiment 

ive a configuration with an axis or more. For instance, 

ellarators1)of Princeton University and Heliotron2)of 

roto University are of race-track shape and have two 

ces. Mirror machines, as DCX3)of Oak Ridge, FELIX 4)oi 

;RL, etc., have a central axis. As far as the small 

;ction of a torus or race-track is concerned, its 

)nfiguration may be regarded as that with an axis. 

    On the basis of the above mentioned facts, configu-

itions with a central axis are dealt with in this 
    61) 

iapter. Electric field for plasma heating may be 

Lassified into two types according to their production 

chanism; one is electrostatic field and the other 

Zduced field. However, in many practical cases, both 

ipes of fields coexist and produce a complicated 

)nfiguration. 

    In the next section 1.2, we deal with electrostatic 

Leld with a central axis. And electric field induced 

/ time varying magnetic field will be discussed in a 

_ction 1.3. Combined field of both types is also 

3alt vvith in a section 1.4. 

    Since relatively low frequency field is of interest 

a the case of magnetic pumping or ion cyclotron heating 

                  2



of plasma, displacement current is neglected in the 

analyses through these sections.  As the special case 

of this general configuration, many types of electro-

magnetic fields, such as helical type, line cusp type 

and mirror type, are found. Many configurations of 

electromagnetic fields used for plasma heating can be 

reduced to these special cases. 

1.2 Electric Field Produced by Electrodes 

     In order to treat the problem generally, we consider 

time varying electric field in vacuum produced by electrodes 

with the configuration that has a central axis and azi-

muthal and axial periodicities. Let us assume that the 

frequency of the field is sufficiently low enough for 

displacement current to be neglected. In other words, 

we treat the case in which the characteristic length 

of the machine under consideration is very short in 

comparison with the electromagnetic wave length with 

that frequency. Whence, the problem can be reduced to 

solve the Laplacian equation: 

C12,1_ = 0,(1-1) 

under given conditions, wnere 1 is a scalar electric 

potential. Electric field 2 can be obtained from the 

potential I by using the relation as
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 -Vq.(1-2) 

     Since we are interested ill configurations with an 

axis, it is suitable to use cylindrical co-ordinates 

(r,6 , z). Equation (1-1) is expressed in cylindrical 

co-ordinhites as 

      1(r-)+1
~a2= 0.(1-3) r or ar r2z 

To solve the above equation, we shall seek the :.olution 

such as 

        = R(r)F(e)Z(z)f(t).(1-4) 

Here F(0) and Z(z) are periodic functions of 9 and z, 

respectively, and f(t) is a function of time t. There-

fore we can express Z(z) by means of a Fourier series: 

      Z(z) =Zy=~ cycos(ykz) + dysin(vkz) . (1-5) 
                   L'=I v_1 

Substituting equations (1-4) and (1-5) into equation 

(1-3), we have 

      [Fz 2R+1 aR-, ,2k2R1+RZ2  662 = 0. (1-6)   v.1 r r ar ) r 

From the fact that equation (1-6) must be held for 

any value of z, we obtain
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 C'  3 

 R(r) = A I (ykr) + BK(ykr)(1-7) 
± n nnn 

n=o 

and 

F(0) _ Pncos nO + Qnsin 1'19},(1-8) 
  u-o 

where In and Kn are the modified Bessel functions of tine 

first kind and o second kind, respectively, and An, 

Bn, Pn and Qn are constants which should be determined 

from boundary conditions. On the other hand, a parti-

cular solution of equation (1-3) is found to be 

          = f(t)4e1log r + e29 + e3zI . (1-9) 

Again el, e2and e5 are constants. Thus we get the 

general solution of equation (1-3): 

dp = f(t)[e1log r + e29 + e3z +1 cycos(ykz) + dysin(Vkz) \X 
v=i m0 

(Pncos Yie + Qnsinn8) iAnIn(Vkr) + BnKn(Ykr)y (1-10) 

The analytical procedures introducing equation (1-10) 

was first developed by Uo5)he adopted this method so 
as to analyze the static magnetic field such as the 

heliotron field. 

     Imposing following boundary conditions on equation 

(1-10), that is, 

                    5



 1E1 is finite at r=0 
(1-11) 
       Er = 0 when n0 + Vkz = mn, m=0,1,2,... , 

we obtain finally 

+0ro 

o = f(t) 1e3z + ~~ nYIn(ykr)sin(n0 + Vkr)] . (1-12) 
Y_.00 1w-41 

Substituting equation (1-12) into equation (1-2), we 

obtain the expressions of the electric field 

    Er = -f(t)kt j'yAnen' (ykr)sin(n8 + ykz), 
V.-co 'WO 

00 00 

E8 = -f(t)y)nAnvIn(Ykr)cos(n8 + Vkz),(1-13) 
y=-co nO 

Ez = -f(t)[e3 + k  71/A I (Ykr)cos(n9+/kz)]                               nY n 
V.-03 n=0 

Needless to say, each constant in equation (1-13) should 

be determined from boundary conditions. However, these 

boundary conditions are much concerned with the configu- 

zation of electrodes in a given special case. Therefore, 

let us consider several special cases in following small 

sections.

1.2.1 Case that n=0 and ))=1 

                                The condition n=0 corresponds 

configuration. When n=0, equations

to an axisymmetric 

(1-12) and (1-13)
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become 

                                  +00       =  f(t)  Le3z +) AovIo(Vkr)sin(Vkz)1(1-14) 
                                             V=-oo 

and 

   Er = -f(t)kVAoVI1(Vkr)sin(Vkz), 
v=0 

Ee = 0,(1-15) 

Ez = -f(t) [e3 + k yVA0VI0(Vkr)cos(Vkz). 

Clearly equation (1-15) gives exact solutions of any 

given configuration of axisymmetric field. 

     On the other hand, the approximate field expressions 

of the configuration of electrodes shown in Fig. 1-1 are 

found, by putting p=1, to be 

      = f(t)Le3z + Aollo(kr)sin (kz)1 ,(1-16)

E r 

E0 

E
z 

If the 

where 

to be

= -f(t) kA
o111(kr)sin(kz), 

 = 0, 

= -f(t)1-e,+ kAo1I0(kr)cos(kz)J. 

 potential diference between neigh 

r=ro isfi o when t=to, the constant

neighbouring 

stant  Ao1 is

(1-17)

electrodes 

determined



Furthermore 

introduces 

Thus under 

    E_1  r- 2 

 ES = 0 

1      E
z_         -2 

T--(7-. 

------ Fig. 1-1

Ao1= - -------------------        2f(to)1o(kro)  • 

, the condition 

2)t 

   E d
z=0       z

a 

 e3 = 0. 

these conditions, vve have 

f(t)7 „,I, 
f(to)oIo(kro)sin(kz), 

f(t)Io(kr) 
f~ k~o Ir            0(ko cos(kz). 

) (I) L 
   Configuration of ring electrodes 

 n=0 and 1' =1. 
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(1-18)
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It is clarified from equation  (1-18) that, when `ipo is 

constant, the axial field on the z-axis decreases as 

1- r
o decreases. 

     This field configuration is the same as linear 

accelerators for heavy ions. If an external magnetic 

field is present parallel to the z-axis, one may expect 

the axial acceleration of charged particles along the 

magnetic lines of force. However, all particles are not 

always in phase with the electric field. Some particle 

may be subject to a trapping similar to that in longi-

tudinal electrostatic plasma oscillations. 

     Some trials to adopt this kind of acceleration had 
                                    6) 

been done by K. Watanabe and his coworkers (1963) . 

Their experimental device had a discharge tube of a 

eight-figure shape, which consisted of ring electrodes 

of Alminium and insulator rings of epoxi-regin. The 

external magnetic field was energized by the currentS 

in coils set around the discharge tube. As a result, 

a rotational transform would be acheived as Stellarator 

machines. But, unfortunately, they could not have fully 

ionized gases at high temperature inside the discharge 

tube. 

      One more example of the configuration of this type 

is also seen in a L-C resonant circuit shown in Fig. l-2a. 

Voltage between the terminals of the inductive coil 
                                      7) 

causes a electric field inside the coil. Stix's coil

9



 for ion cyclotron 

similar electric 

the excitation of

 heating as shown in 

field inside the coil 

 ion cyclotron waves.

C  o

 ' Coil 

 (a) 

    Potential 

  circuit. 

(a) Ordinary 
(b) Exciting

(b)

 Fig.l-2b 

, wbich

 generates 

damages 

Fig. 1-2  difference occurr6l in 

induction coil 

coil of ion cyclotron

 P -49-

Coil

a resonance 

waves

1.2.2 Case that  V=1 and kz->0 

     This case corresponds to the situation that electrodes 

are set parallel to the axis at a constant interval where 

r=ro and their potential are periodic in the azimuthal 

direction. 

     In a region of small kr, equations (1-12) and (1-13) 

are put in the form, approximately, as
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 =  f(t)

Er = -f(t)

Ee -f(t)

E
z = -e3'

             kn rn e3z +~Anl n-sin n&] , n=o2n~ 

knrn-1 

LAnl n---------- s in n 6 , 
71=02(n-1) I 

          nn-1       k r  cos n0 , 
T1.0 nl 2n(n-1)

(1-19)

(1-20)

Under the condition that the potential difference 

between the neighbouring electrodes is  4
o when t=to 

and only the terms where n=m in equations (1-19) and 

(1-20) are taken into account, we get 

                           m 

       -0f(t)rsinme ,(1-21) 

m-1
E= r 2ru 

         0 

        0 Ef)= 2
r 

 = 0.

f(t)  
   f(toT 

f(t)  
f(t0)

r ) 
r0 

rm-1 
r0)

sin m9 ,

cos me , (1-22)

These equations give approximately the electric field 01 

the configuration of electrodes shown in Fig. 1-3. It 

becomes evident from equation (1-22) that an increase 

of m is associated with a large decrease in the electric

11
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helical 
m=4 case

electrodes 
 is shown.

when

Whence approximate  formulae of equations (1-12) 

(1-13) are 

      = f(t) [e3z + Am1Im(kr)sin(m8 + kz)1, 

    Er = -f(t)kAm1Im'(kr)sin(m9 + kz), 

               m Ee = -f(t)pmlIm(kr)cos(me + kz), 

Ez = -f(t) re3 + kAmIm(kr)cos(m8 + kz)j. 

Under the condition that, when t=to and z=0, 

O()_ _ 1) 
9-2m(2p+1)D=2m(2p)o 

               (p: integer) 
                   13

and

(1-23)

(1-24)



we have 

   E = f(to) 2Im(kroIm' (kr)sin(m0+kz), 

E0          f(t)) 2lkr)r Im(kr)cos(m0+kz), 
      omo 

k         f(t)  
   Ezf(t

o) 2Im(kro)Im(kr)cos(m8+kz). 

Especially, when m=l, equation (1-25) becomes 

   _f(t) ko)    Er - f tJ 4I
1(kro)sin(0+kz,

                k       f(t)o      E9 -_f(t
o) 4I1(kro) cos(8+kz), 

    E
z= 0. 

Equation (1-26) indicates that this field 

polarized travelling field. 

    If we adopt complex co-ordinates perp 

the z-axis and assume that f(t) varies si 

time, then we can express the field by, i 

scluation (1-26), 

        E = E (eiwt + e-iWt)ei(kz-0) 

0 where E = Er + iEe. 
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(1-25)

(1-26)

ield is a circularly 

perpendicular to 

s sinusoidally with 

y, instead of 

         (1-27)



It becomes evident from equation (1-27) that this 

configuration of electrodes (i.e.  m=1 mode) produceS 

an effective field to heat charged particles by means 

of cyclotron resonance under the existence of an exter-

nally applied magnetic field. Discussions of the heatin 

by such afieldis to be given in detail in the next 

chapter. Also the last chapter is devoted to describe 

an experiment of this field. 

1.3 Induced Electric Field 

     When magnetic configuration are given beforehand, 

induced electric field can be found from Maxwell's 

equations. We shall analyze here the electric field 

induced by current flows whose configurations are 

similar to those of electrodes discussed in the previous 

section. Namely its configuration has a central axis 

and periodicities in both the axial and the azimuthal 

directions. K. Uo analized static magnetic fields 

which have similar configurations as will be discussed 

here. We are now interested in field with time varia-

tion, the frequency of which is sufficiently low so 

that displacement current can be neglected. Therefore, 

we can apply his method to the analyses of the magnetic 

field. lveglecting a displacement current, we have 

Maxwell's ecsuationS as

15



 V  x L = 0(1-28) 

/ • = 0(1-29) 

Thus we can express } in terms of a scalar potential 

T, that is, 

     = v50 .(1-30) 

Substituting equation (1-30) into eouation (1-28), we 

obtain 

     02,E = 0 ,(1-31) 

vvhicn is to be solved under given boundary conditions. 

      The same procedure as in the previous section 

yields the general solution of equation (1-31). This 

solution is written in the cylindrical co-ordinates in 

the form: 

B = f(t)kE ~VAnyIn' (Vkr)sin(ne +vkz) , 
P -a >,=o 

  ~~
I      Bc = f(t)rn4nAnpIn(Vkr)cos(ne + vkz),}(1-32) 

12 --00 rko 

co C 3 -1 Bz = f(t) [e1+7AnvIn(),)kr) cos(nO +ykz) • 
v=-~ rr 

Where A
m, and elare determined from boundary conditions. 

Induced electric field is readily obtained by using a 

,,_ <_well' s equation:
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      V x  E = _ 1 a(1-33) 
                                c at' 

Once a configuration of currents is given, the constant 

in equation (1-32) are determined and then the analysis 

of inauced electric field is straightforward. Therefor 

in following small sections let us consider the several 

special configurations of currents and the correspondin 

electric fields. 

1.3.1 Axisymmetric Configuration (n=0, v=1) 

     The conaition n=0 means an axisymmetric configu-

ration. In this case, equation (1-32) becomes 

tEf         B
i• 

        Be 

Bz 

The magnetic 

in Fig. 1-5 

taking 1) =1, 

Lr 

'U9 

Bz

LI V Y 1 
y, -co 

= 0, 

4(}1e1 + 12A0vIo(ykr)cos(ykz)] . 
          v=-m 

 field proauced by current flows 

is approximately expressed in the 

= f(t) kA
01I1(kr)sin(kz), 

= 0, 

= f(t) [el+ kAolIo(kr)cos(kz)] .

 (1-34)

as shown 

 form, by

  (1-35)
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Strictly speaking,  equation (1-35) expresses the field 

configuration such that neighbouring ring currents are 

mutually opposite in their directions and arranged 

periodically along the z-axis. (heedless to say, 

e(juation (1-35) is also valid for the case that all 

currents are flowing in the same direction.) 

     Let the coil interval be a, the radius of the coils 

b and the ratio of the larger current to the opposite 

neighbouring smaller current n. Then we can determine 

k, eland Aol in equation (1-35) . 1Viany special configu-

rations are found, according as different values of 

and a/b.

-~I 

---- a

I  -AI 

O)

Fig. 1-5

0 ~O 
Magnetic lines of force 

Configuration of axisymmetric currents.
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 When the currents vary with time as I•f(t) , we 

determine the constants in equation (1-35) in 

of \, a and b. Thus we obtain 

      Be= kAof
a 

                 =,b23(S 1-S2)(1+x), 

el=c•b23(S1+S2)(1-X), 

a where 

    33 
S -a1+b 1  + .... ,      1 b34 a3 Ib23 

                    (1+) 
4a2 

      S2= 2 + .... 

               b2 3            (1+
2) 

                      a Equations (1-36) and (1-37) were introduced by 

Some configurations,have circles N. L. (i.e. n 

line) at which magnetic field vanishes. Let t 

of N. L. be at ( ro, (2n+1) a ), then we have 

1-\ S1+S2           l
o(kro) = 1+)\ S1-S2 

In terms of the above constants, equation (1-3 

rewritten to be

can 

terms

(1-36)

 (1-37)

(1-38)

y K. Uo. 

neutral 

the position

(1-39)

(1-35) is

19



         Br = f(t) I1(kr) sin(kz), 

 Be = 0, (1-40) 

Bz = f(t) BeIo(kro) + Io(kr)cos(kz)]. 

Whence, equation (1-33) yields an induced electric 

field as 

Ee = -f'(t)Be2krIo(kro) + Il(kr)cos(kz)1. 

A number of induced field configurations of our interes 

can be derived from equation (1-41) for different and 

a/b. 

(i) Case that A= S2/S1

 I1(kr)cos(kz)1. (1-41) 

s of our interest 

different and

'ig
. 1-6 Configuration of  axisymmetric 

20
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    Magnetic lines 

        of force

              S2 
currents when)=S 

                1



     Whence,  I
o(kro)=1. The magnetic field in this case 

is as shown in Fig. 1-6. N. L. is reduced to a point 

on the axis. The induced electric field is expressed 

by 

EB = -f' (t) Bc[1kr + I1(kr) cos(kz)1 (1-42). 

(ii) Case that X =1 (Picket Fence type) 

     From equation (1-37), el.must vanish. Hence we have 

B 

       Be= -f'(t)kcI1(kr) cos(kz).(1-43) 

The magnetic field of this configuration may be regarded 

as a series of linecusps which are arranged along the 

z-axis. Fig. 1-7 shows the magnetic lines of force in 

this case.

I -I  I
 current 

 0 ~~iagnetic 
of force

line

C

Fig. 1-7  Configuration 
)\_=1.

0

of  nxisymmetric 
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     The induced electric field is perpendicular to the 

axis and periodic along the axis. Therefore, this field 

has been applied to a  plasma heating of ion cyclotron 
7) 

resonance. Stix (1958) used this m=o mode field to 

excite ion cyclotron waves. In this thesis, the experi-

ment of plasma heating by this field is to be described 

in a latter chapter. 

(iii) Case that 1,,<1 

     When 7. is suitable value less than 1, so-called 

Heliotron type is found, whose magnetic lines of force 

were shown in Fig. 1-5. Also the expression describing 

the induced field were given by equation (1-41). 

     No application of this type of field have been tried 

up to the present, but projected by Mohri and his colLabo-

rators in order to heat plasma by adiabatic compression. 

Let Bz at kz=2nn be Bo when t=t o, then we obtain another 

expression for equation (1-41) as 

             B r I (kr ) 1-------((~~1 I1(kr)                                             Ee-f'(t)--------oco1+I
0(kr0) kr0L2kr + I0 (kr o)cos(kz)] . 

                                             (1-44) 

To clarify the dependence of Ee on kr and kz, a term in 

equation (1-44): 

Io(kr o) 1 1 I1(kr) 
1+Io(kro) kro 12kr + I0(kro)-----cos(kz)1 
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 is 

for

shown graphically 

 different kz when

0

-1

in Fig. 1-8 as 

    __n kr
o 2'

a function of kr

Fig. 1-8 Radial and axial  variations of the azimuthal 

          electric field when n=0 and kro=n/2. 

(iv) Case that ,X=0 (Mirror type) 

      This case corresponds to a corrugated magnetic field. 

Whence the induced electric field is given by 

B 1 S-+S0 

       Ed =-f'(t)kc[2S1 kr + I1(kr)cos(kz)J, (1-45) 
                               1 `2 

             9) 
For instance, th+S ( a plasma pinch machine) belongs to 

this type.
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1.3.2 Line Cusp Configuration 

     Next let us investigate the configuration that 

current flows are parallel to the axis with azimuthal 

periodicity and neighbouring  currentsare opposite in 

their direction. This type corresponds to the case 

that V=1 and kz-,0. If only a region near the axis is 

concerned, an approximate expression of the magnetic 

field is readily obtained to be 

                     n 

Br = f(t)~nAnl rn-1 sin(n8), n=i 2(n-1)1 

                k 

                    nA 

BB = f(t)Xnl  rn-1 cos(n0),(1-46) 
                 ,i-o 2n(n-1)1                                         '

II B
z = f(t)e1 . 

The magnetic field with a configuration as shown 

in Fig. 1-9 can be given approximately by 

      B = f(t) C rm-1 sin(me),

where

1111 

Br, = f(t) Cm r 

Bz = f(t)el , 

kmAml  
C = - -- m 

2m(m-1)1

m-1 cos(mO) 
,  (1-47)
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Combination of (1-47) and (1-33) yields 

 C 

 Ez -fl(t) merm cos(m0)(1-48) 

where e3=0 case is only considered. 

     Heating and confinement of plasma by this field 
                                       10) 

have been tried by E. N. Little and W. E. Quinn of 

University of California. They have adopted a m=3 

configuration (so-called Hexapole field), where elin 

equation (1-47) is not zero. This configuration has 

a stalization effect for plasma, that is, so-called 

minimum B configuration. However their experimental 

results were not always as what might have been expected. 
                   11) 

On the other hand, Kondo proposed a method for trapping 

plasma by a similar type of field, any experiment on 

his proposal has not been made.

I

 I 

-I

 I 

Fig. 1-9 Line cusp configuration of currents when 
             m=3.
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 1.3.3 Helical Type Configuration 

      Here we consider the configuration which is achieved 

by twisting the current flows around the axis as shown 

in Fig. 1-9. This magnetic field is expressed by 

equation (1-32). 

     Let us consider the configuration as shown in Fig. 

1-10. Again this type is approximately described, when 

n=m and V=l. Once we know the axial magnetic field at 

a given point and time as 

Bz = Bo where me + kz = 0 

                                r = ro , (1-49) 

t = to 

then we can obtain the approximate expressions of the 

magnetic field 

I(kr) 
Br = f(t

o~Bo Ir(kro) sin(me + kz) 

                      I (kr) 
Bgf(t)jBo k r Im(krjcos(me + kz) (1-50) 

     omo 

      B-f(t)B m(kr)         zf(t
o)o Im(kro) cos(me + kz) 

Combination of equations (1-50) and (1-33) yields an 

approximate expression of the induced field near axis 

as

 26



         Bmrm+1 
     Erf(ttj

oco4(m+1)o(r)  sin(m0+kz), 

f, (t) Bo (m+2)ro r m+l      E
9f t0T c 4(m+1) (ro) cos(m0+kz), (1-51, 

B m 
     Et k

c(r) cos(m8+kz).     z f(to) 0 

Under another condition such as 

B!9 = Bo where ( m + kz =0 
         Irr

0(1-52) 
                                 t = t 

0 

equation (1-51) can be rewritten to be 

          B kr2m+l        -f(t
o)c -----------o 

                         0 

    Er =4( m+l)(r) sin(m9+kz), ' 

f, (t) Bo (m+2)kr2rm+l E9 - - f(t
o) c 4m(m+1)(ro) cos(mS+kz), (1-53) 

       Brm 

     Ez=f(t
o)' (t------r0ro(rcos(rn +kz). 

  0 

    Needless to say, equation (1-51) can be reduced to 

the approximate formula of equation (1-43) when m=0. 

Also equE-Ition (1-53) is able to be reduced to equation 

(1-48) when k=0. 

                   27



     From equation (1-51) or (1-52), it becomes evident 

that all directional components of the electric field 

are finite and the axial electric field  becomeSdominant 

at small r, especially wuen k is small. Provided that 

an external magnetic field is applied parallel to the 

axis, and heating of electrons in plasma is desired, 

this axial field may desirably work for this purpose. 

Because electrons stick to the magnetic lines of force 

and easily move along the lines. Therefore, this configu-

ration will be applicable to a preheating of plasma. 

In contrast to this effect, the axial field will lead 

to a trapping of charged particles in the potential 

wall of the field. Thus accelerations of charged particles 

perpendicular to the magnetic field have to be followed 

by charge separation, since electrons of small mass 

would cansel the charge separation unless the trapping 

does not take place. In this case, plasma neutrality 

is no longer retained and undesirable co-operative 

phenomena for plasma confinement may arise. 

Also it is a noticeable characteristic of the 

field that the induced electric field becomeSvery weak 

when m is sufficiently large. If a combined type of 

electrostatic and induced fields is set up, the induced 

field in the case with large m will be negligible fre-

quently compared with the electrostatic field.
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  I 
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-- 

        -z 
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V 

I Configuration of helical currents when m=4 .
Fig. 1-10

1.4 Combined Electric Field 

     Electrostatic and induced electric  fieldSdescribed 

in sections 1.2 and 1.3 coexist frequently in practical 

devices. The configurations shown in Fig. 1-2 are 

examples. Here we investigate another example. 

      Let us consider a resonant circuit of L-C as shown 

in Fig. 1-11a. Resultant fields are an electrostatic 

field in the diametral direction and an induced field 

in the axial direction. As describedin the section 1.3 .2 

the induced field with large m is very weak near the 

axis, On the other hand, the electrostatic field is not 

negligible, since the field corresponds the case when 

m=i in equation (1-22).
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 Furthermore, twisting the conducting bar as shown 

in Fig. 1-l1b, we have a combined helical electric field 

that is described by equations (1-26) and (1-51) for 

electrostatic and induced electric fields, respectively. 

It is to be explained in the next chapter that this 

configuration of field is suitable and applicable to 

an ion cyclotron heating of plasma with-a finite m mode. 
                        12) 

A. Mohri and S. Hayashi (1964) made the experiment on 

such a heatingof plasma. Many other combined fields may 

be considered, but these fields have not been used yet 

for plasma heating, except several cases.

Condenser

(a)

 Coil
`
a----------------------------------------

7

Condenser

(b)

Fig.  1-11 Resonant circuits 

     (a) Line cusp type 
     (b) Helical type

Coil

producing a combined field.
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 II. Particle  'Treatment of Ion Cyclotron 

       Heating of Plasma

2.1 Introduction 

A time varying electric field perpendiculaz to a 

strong static magnetic field can directly accelerate 

ions of plasma at or near their ion cyclotron fre(;uency. 

This mechanism is similar to the acceleration in ordinary 

cyclotron acceleratord. It is considerea that this 

heating of ions would be one of the most prominent methodc 

to laibe quickly ion temperature from zero to an appro-

priate reacting temperature for fusion. In this chapter, 

this ion cyclotron heating will be discussed theoretically 

from a microscopic point of view. 

     Tenuous plasma at a sufficiently high temperature 

may be regaraed as a collisionless plasma. K. M. Watson13) 

demonstrated the equivalence of the Boltzman equation in 

the absence of collisions and the particle 0/bit theorem 

within the accuracy of the adiabatic theorem. Therefore, 

we can deal with the mechanism by means of particle 

oLbits in the field. 

dececeary pzoperties of the electric field for ion 

cyclotron heating are as follows. 

(i) The field has no axial component, if static magnetic 

      field is imposed along the axis . 

(ii) Its perpendicular components are periodic along the

3.1



      axis. This  condition comes from the requirement 

     that space charge neutrality of plasma is maintained 

     under the heating, so as to make the heating 

     efficiency high. 

Appropriate configurations of electric field for the 

above stated conoitions should be picked out from those 

a,iven in the chapter I. The electric fields given by 

euation (1-43) and (1-26) are found to be suitable for 

this purpose, becau:i.e of their simple configuration and 

easy realization in practice. One is a Picket Fence 

type of the inaucea electric field and another a helical 

type of the electrostatic field. 

     It is convenient to rewrite the above fields 

accoiding to a complex notation: 

   E = Er, + iEe .(2-1) 

Then we obtain for the Picket Fence type field 

E = (E+e,iwt+ E _e—iwt) sin(kz).( 2-2) 

AILS for the helical type field we may write 

E = (E+eiwt + E e-iwt) eiO eikz.                                               (2-3) 

In equations (2-2) and (2-3), we decomposed the field 

into two components, each of which revoives with time 

on a circle at a given point. A term e-iwt expresses 

a circularly polalized field in the same sense as ion
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cyclotron gyration. Therefore, this term much contributes 

to the ion cyclotron heating as seen below.  Needless to 

say, in the absence of plasma reaction (i.e. in vacuum 

field), E + should be equal to 8 -. 

      Many analyses of the ion cyclotron heating by the 
14)15)16 fi

eld given by equation (2-2) were reported, but 

the heating by the helical type field given by equation 

 (2-3) has not been discussed up to the present. This 

helical field will be discussed in the next section 2.2; 

where frequency spectra of energy flux ejected from a 

heating region are to be discussed in detail in comparison 

with those in the case of the Picket Pence field. Through 

 this comparison, it will be found that a remarkable dif-

 ference between the frequency spectra of energy flux in 

 both cases is present. Also it will be revealed that 

 these spectra have a kind of Doppler shift when the 

velocity distribution is shifted Maxwellian. This 

 result could be confirmed experimentally by the auther 

 as described in a chapter VII. Thus we can have a method 

 to determine the macroscopic velocity of anion beam from 

 the measuiement of this Doppler shift. In a section 2,3, 

 the frequency spectra of energy flux in the case of the 

Picket rence field are to be given. 

 2.2 Ion Cyclotron heating by the Helical Field 

      In this section, the ion cyclotron heating by the 
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helical field expressed by equation (2-3) will be dealt 

 with. The physical situation under consideration is as 

follows. An infinitely long cylindrical plasma is 

confinea in a strong static magnetic field parallel 

to its axis (the axis). A small oscillating electric 

field expressea by equation (2-3) is superimposed on a 

finite heating section of the cylinder. In this heating 

region, ions feels the electric field as they travel 

parallel to the z-axis with their thermal velocity. If 

the frequency of oscillation is near the ion cyclotron 

frequency, so-called ion cyclotron heating will be 

achieved ana their velocity perpendicular to the z-axis 

will increase. On the other hand, the parallel velocity 

component will not be changed, since the accelerating 

field has no parallel component. Such ion motions will 

give rise to large ioncurrents and then the oscillation 

in the ionic charge density.. On the contrary, electrons 

are sticked to the magnetic line's of force, and can move 

freely along the lines in consequence of their small maec . 

Therefore, electric neutrality of plasma will be retained 

by such a neutralization effect of electron flow , provided 

that the oscillation of the ionic charge separation is 

periodic along the z-axis. This is the rea,on why ae must 

use an axially periodic electric field for accelerating . 

The electron flows will produce induced fields . This 

suggests that we must treat the situation by a self -

consistent method.
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     Consequently, in the next small section 2.2.1, let 

an electric field be assumed given, and the resulting 

ion behaviours are found. An energy flux ejected from 

the heating region is also introduced. Section 2.2.2 is 

devoted to give physical picture of the properties of 

the  energy flux. An energy flux averaged over velocity 

space, which was calcurated by a digital computer, is 

also given in a section 2.2.3. In a section 2.2.4, 

co-operative phenomena will be discussed by means of a 

self-consistent method. Finally, it should be noted 

that the analytical method applied in this section is 

the same in several points as that developed by A.Lenard 
           14) 

and R. Kulsrud. They dealt with the case of the 

Picket r'ence Type. 

2.2.1 Ion Motion 

     As above stated, the electric field for acceleration 

of ions is assumed given as the equation (2-3). The basic 

equation to be solved is a familiar equation of motion of 

a particle of charge q and mass M in a region in an 

  They analyzed only the case of the ordinary Laxwellian 

  distribution of ionic velocity_
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electric field  r and a magnetic field al. This is 

        dvv  iVIdt= q(+cwx),(2-4) 

where w and c are the velocities of the particle and 

light, respectively. 

ii'or the sake of simplification of the analysis, we 

shall make four approximations: 

(I) We neglect the oscillating component of magnetic 

         field so that =o = const, vihich is parallel 

          to the z-axis. 

  (ii) We assume electrical neutrality, which may be 

          achieved by freely movable electrons along the 

         magnetic lines of force, if the resulting pheno-

          mena are periodic in the z-axis. 

  (iii) We neglect the variation of the transverse 

         electric field over the Larmor radius of the 

            ion. 

  (iv) We neglect the axial electric field. That iS, 

Ez = 0.(2-5) 

         We are now interested di) the field with 

frequency near the ion cyclotron frequency, 

         so electron inertia can be neglected and then 

         electrons cansel the axial field by their free 

         motions along the magnetic lines of force. 

          In other words, equation (2-5) corresponds to 

          an approximation as 

                    36



          m(electron mass)   «  1
. (2-6) M(ion mass) 

     We assume a finite heating section, where the 

accelerating field is working. This heating region 

m-y be expressed by 

-L< z<L .(2-7) 

We also assume that the length of the heating region is 

an integer times as large as the axial wave length of 

the accelerating field. 

Then, we note 

                 L= mN 
                                              (2-8) 

                N : integer 

where k is the same notation as used in equation (2-3). 

     Combination of equations (2-4) and (2-5) yield,5,in 

our approximations, 

dw 

at=0.(2-9) 

According to the approximation (iii), it is no longer 

necescary to consider the radial and the azimuthal 

variation of the accelerating field in equation (2-4). 

      It is convenient to re\,,,rite the velocity of 

particle w in the complex formula, like4ise in 

equation (2-3); that is,
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 w =  wr + iw9 .(2-10) 

Then equation (2-4) can be rewritten by 

      dw+ iw .w =Li,( 2-11)    Mtt 1lv 

where 

q 
wi = lvic (ion cyclotron angular frequency) . 

The gene/al solution of equation (2-11) is readily 

obtained by using a Laplace transformation. If t1 is 

the incident time of the particle into the heating 

region, then the solution is 

               iw.(t-t ) tiw.(s-t) 
      w(t) = w(t1)e11+ Mds E(s)e1 

tl 

                                                (2-12) 

In order to carry out the integration in equation (2-12), 

the axial position z of the particle in question need to 

be expressed as a function of t. Equation (2-9) now yields 

this relation

z(t) _ + wo(t- t1) + L 

                                              (2-13) 
wo = +wz( wo > 0 ) , 

where the upper (lower) sign corresponus to ions 

moving in the directions of increasing (decreasing) z. 

     With this transformation, the solution (2-12) then 

becomes
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                iwi(t-t1) N _ie E eiet  w(t) - w+(t1)e+(-1)iglFw
l-----+w±k~voX 

                    -i(w
i+w)(Ltz)-iwt 

eik(L±z)Ee         - ew
o+ -------—X                                                       w

i-w±kwo 

           le±ik(Ltz)_1(u'i-w) (L±z) e wo1]•(2-14) 
                                                         The first term on the right hand side of equation (2-12) 

(or equation (2-14) ) represents the undisturbed cyclotron 

gyration, whereas the second represents the increase in 

velocity due to the acceleration. If we consider the 

mean ion velocity averaged over the phase between the 

randomly incoming particle and the accelerating field, 

this first term vanishes. The second term on the right 

hand side of equation (2-14) may be decomposed into two 

terms; one including eiwt and the other e-iwt. If the 

frequency of the accelerating field is near the cyclotron 

frequency, the term including e-iwt becomes predominant. 

Therefore, near ion cyclotron resonance, the mean 

velocity w+ may be given approximately by 

i8 

      wqEe  (-1)N e-iwt        +(t) = iM wi-w±kw oX 
i(o i-w)(L+z) 

                 e±ik(Ltz) - ewo(2-15)

Next let us consider the energy gain W of the 

at the exit and of the heating section. This is 

from equation (2-15), which becomes 
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                                                       w.-w 

             2 2g2E_2 sin2(nNkw                o(2-16) 
 W+ =2w= ----------            +Il1Mk2w2 w  .  -w 2                 o (1+ k

w) 

                                          0 Equation (2-16) can introduce anenergy flux ejected from 

the end of the heating section. This energy flux may be 

regardea as the energy flow, carried out by ions moving 

paiallel to the axis, per unit time per unit area. If 

E.F. denotes the energy flux, we obtain 

E.F.+ = niwzW+ 
w . -w 

sin2(nh - -) 
          2n.g2E 2kwo 

      _ 1  (2-17)               + 
Mk2wo (1 +  wi-w )2 

kw 0 

where ni is the number density of ions. Physical 

meanings brought out from equation (2-17) will be given 

 in the next small section. 

      Equation (2-17) denotes only the energy flux 

carried out by ions of a mono-energy. In practice, 

 however, ionic velocity is distributed. Thus we must 

 consider a mean energy flux averaged over ionic 

velocities. If we assume the shifted (or drifted) 

maxwellian distribution of ionic velocity, this 

normalized distribution function is writted by
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 (wz-u)~ 
                     VT2 

------ e    i(w)=V
T  z(2-28) 

             12kT 

                   _ 

        VT 

             u : beam velocity, 

             k : Boltzmann constant. 

     An energy dissipation per unit time per unit area 

from the heating region may also be defined by the 

relation 

F.D. = I< E.F.+A + I< E.F. _ >I , (2-19) 

where < x> denotes to average x over velocity space. 

From equations (2-17) and (2-18), we find 

              2 wi-w (w -u)2 
      2n.q2 24.00,sin (nN------kw)V2 

E.D. = 1z _eT dw. (2-20) 
     F1d1k'VT I w

z I (1+wkww) 2z 

                                         z

In order to carry out the integrali_on in equation (2-20) 

by a digital computer, we rewrite the integrand in a 

non-dimensional form, and we get 

       2n.g2E_2t~sin2(nwa)2 
F.D. = -------------1Se-1 -d, (2-21)                        ~)        51vik`V T,~S (1+a)2
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 where 

w -w 

        kVT = a, 

(2-22) 

u  

        VT = L • 

The parameter indicates the deviation in velocity 

distribution from the ordinary iliaxwellian distribution 

(i.e. u=0). Accordingly, we can get frequency spectra 

of the energy dissipation for different . In the 

section 2.2.3, this frequency spectra, which are computed 

numerically by a electronic digital computer KDC-1 of 

Kyoto University, are to be given. 

     Next let us give the average transverse ion 

velocity over the longitudinal ionic velocities. This 

average transverse velocity at any given point in the 

heating section is derived from the equations (2-15) 

and (2-18), according to the relation 

+00 <w>~= ff(w)  (w+ + w) dwz.(2-23) 

After some algebra, we have 

       v~++w _= e-iwt qge—ig 2(-1)1" 
ilbi w.—w

-                                                                                                          x.                          1                              kw0(k wo)21 

               w

kwweikz(-1)N - e-i(wi-w)Wo 

                    o 

           w
kwocos{(wi-w)Z~+ sinS(wi-w)WO(2-24    l51 
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 Then we find, under 

-i9 
qg_e 

MVTk

the condition 

e-iwt I(kz;

u = 

-----) kV,L,

0,

(2-25)

where

I(kz,a) _ 2  sg(a) ~a 
iirfcJo 

   e-ixivisg(a)                isos 
w.-w 

a = i  
               kVT 

sg(a)

 -a2/x2 

e---- 

    Le x2-1 

xkz + 

sign of a

ikz

in

- (-1)1' X

xkz l dx ,

(2-26)

     In 

induced 

(2-25) ,

the section 2.2.4, co-operative 

by the mean ion velocity Kw~ 

will be discussed.

 phenomena, 

in equation

2.2.2Physical Picture of the Energy Flux of 

Mono-energy Ions 

     When the energy flux of mono-energy ions, 

by equation (2-17), is contemplated in detail, 

physical pictures of ion cyclotron heating may 

clarified. Therefore, let us examine equation 

in this small section. 

     Taking the term of plus sign in equation

given 

many 

be 

(2-17)

(2-17)
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we have 

                       2w-w 
           ~n22sin(nN-kw) 

        lqE------------------0(2-27) 
 h.F,+ =  2— 

      bkww.-w2 

                       ( l+kw
o) 

              22          2niqE - sin2(nNa')(2 -28) 
            Mk2w0 (l+a)2 

2 2 2niq _ a'sin (nNa')                                              (
2-29) 

Mk(wi-u)(1+42 

                                    w.                        -w 
where a' = ------1 

kw 0 

The prime of a' is employed to distinguish a' from a 

in equation (2-22). 

     If w0 is assumed constant, the frequency 

spectrum of E.F.+ is found from the consideraeion of 

behaviours of a term in equation (2-28) , which is 

sin2(nNa') = Y(a') ,(2-30) 
(1+42 

Readily, we find 

Y(a') = 0 (minimum value) , when a'= 1j (2-31) 

( s : integer buts / -N ) 

               2N 
Y(a')=2n2N2 (maximum values) , (2-3%) 

n N (a+l) + 1 

                    when tan( nNa') = nN (a' + 1) . (2-33) 
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 When a is large, roots of equation (2-33 

approximately by 

2s +  1        a —2N 

and a = -1 is also a root. As a result, 

the variation of Y(a') with a' as shown 

This curve is the frequency spectrum for 

ions, which is just to be obtained. 

Y(a',) ,.2,2

) are given 

         (2-34) 

we can trace 

in Fig. 2-1. 

 mono-energy

       -1-1 -1-2- -1-1 

 Fig.2-1 Y(a') as a 

     It should be noted 

Fig. 2-1 is remarkably 

the accelerating field 

Y(a') in Fig. 2-1 has a 

On the other hand, the

-1 -1+N-1+N -1+N 
a' 
 function of a'. 

 that the spectrum shown in 

different from the spectrum in 

expressed by equation (2-2) . 

 maximum value where a = -1. 

spectrum in the field of the

In this 

F.F

case 

'+

, spectrum 

2niqE-2 
Mk 2 w o

is given by 

sin2nNa'  
      2 

(1-a'2)
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Picket Fence type has two identical muxima where 

a =  +1. 

     From the curve in Fig. 2-1, we may say that this 

spectrum has a fine structure, which underlielin the 

envelope shown by a dashed line. If the beam velocity 

is slightly distributed by nwo, according as 

      1»~WO,N(2 -35) 

                             0 We can only observe the spectrum similar to the dashed 

line. 

     In practice, this dushed line may be verified from 

the measurement of power absorption of plasma under 

Joule (or Ohmic) heating with high accelerating field. 

In high accelerating field, ions will become beamlike 

as well as electrons. Therefore, we can determine the 

beam velosity by measuring the shift of the absorption 

peak from the ion cyclotron frequency. This method can 

be applied in the case of the Picket Fence field. 

     Again return to equation (2-27) (or(2-30) ), and 

let us examine the physical picture of this fine 

structure. The frequency that ions feel in the heating 

region is 

u~ f•= w- k w o . 

Therefore the beat .frequency between wfand wi is 

given by

46



 wb = wf ., wi = 1(w - kwo) - wil • 

Substituting equation (2-31) into the above equation, we 

have 

wb =s Nkw o (2-36) 

when E.F.+ vanishes. The transit time through the 

heating Section is also given by 

               __2I__2nN         tt 
wo kwo • 

Thus we have the relation 

tt = (s +N)wn.(2-37) 

                      b From equation (2-37), it is clarified tha.t the transit 

time becomes integer times as large as the period of the 

beat, when E.F.+ vanishes. Intuitively, this fact may 

be explained as follows. 

          Particle may be accelerated in phase with the 

      field at a moment, but,in the next instance,deaccele- - 

rated out of phase. This process is periodic with 

     the beat frequency wb. Fig. 2-2 is given for 

      explaining this phenomengrlschematically_

 w+=0

Heating

1I____ 2n1 cub 
1-------------------------------------t

t>  
  Fig. 2-2 Schematic explanation of the 

        fine structure of Y(a'). 
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 l2'inaly let us consider extreme cases and explain the 

result intuitively. 

  (i) E.F. -i 0 as a'-4 00 . 

         This case is decomposed into two extreme cases 

      (a) wo -~ 0 

              whence' there is no out flow from the 

               heating region. 

      (b) w -' oo 

              At high frequency, ions can not follow 

              the field, due to their mass inertia. 

 (ii) 0 as a' 0. 

         This case is also decomposed into three. 

     (a) w o o0 

             , whence the transite time become zero, 

              that is equivalent to the nonexistence 

              of the accelerating field. 

      (b) k -p vo 

               This corresponds to the zero wave length 

               so there is no heating field. 

      (c) wi = w 

               This case is included in the a' =  case 

2.2.3 Frequency Spectra of the Energy Flux for 

Distributed Ion Velocities 

     In order to examine the dependence of the energy
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dissipation E.D. in equation (2-21) on parameters a 

 andiS, the integration in this equation was carried out 

numerically by using an electronic digital computer 

KDC-1 of Kyoto University. 

      For convenience' sake, we define 

           +00 2 a 

     I(a, 8) =sin(nN)e-(s-E)2 ds,(2-38) 
is1 (1+ (1)2 

where a and d' are given by equation (2-22) . If I (a , (S ) 

is calculated for different values of a and for a given 

E, a frequency spectrum of E.D. will be obtained as a 

function of a. This process gives a number of spectra 

for different '. 

     A comparatively accurate result was obtained by 

u„,ing an integration method of Simpson's rule in the 

case that 6=0, where the integration was made to an 

accuracy of an absolute value of 0.01

* refer to KDC-1 Manual of Kyoto University , Vol. 3, 

  p. 68; Routine 1o. : I 1-002
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The numerical values computed in 

 Table 2-1. 

            Table 2-1 I(a,0)

this

for

way are shown in

different a

a I(a,0) a I(a,0)

-5 
-4 
-4 
-4 
-4 
-4 
-3 

-3 
-3 
-3 
-2 
-2 
-2 
-2 
-2 
-1 
-1 
-1

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

 • 

• 

 • 

 •

0 
8 
6 
4 
2 
0 
8 
6 
4 
2 

8 
6 
4 
2 

8 
6 
4

2 
2 
2 

3 
3 
4 
4 
4 
6 
6 
8 
1 
1 
2 

3 
6 
1 
1 
2

.19 

.45 

.64 

.33 

.46 

.18 
.30 
.78 
.57 
.92 
.99 
.206 
.666 
.449 
.857 
.240 
.0217 
.6949 
.7684

x 10_2 
N 10 _ x 

10 -2 
x 10 _2 
x 10 _2 
x 10 
x 10-~ 
x 10-_~ 
x 10 _~ 
x 10 

x 10 _1 
x 10 -1 
x 10 _1 
x 10 _1 
x 10 -1 
x 10 
x 10° 
x 10° 

x 10°

-1 .2 
-1 .0 
-0 .8 
-0 .6 
-0 .4 
-0 .2 
-0 

+0.2 
+0.4 
+0.6 
+0.8 
+1.0 
+1.2 
+1.4 
+1.6 
+1.8 
+2.0 
+2.2 
+2.4

4 
6 

9 
1 
1 
1 

1 0 
1 
1 
9 
6 
4 
2 
1 
1 
6 

3 
2

.3715 

.6175 

.4758 

.27655 

.60864 

.92488 

.92488 

.60864 

.27355 

.4703 

.5693 
.3453 
.7534 
.6910 
.0204 
.213 
.790 
.405

x 10° 

x 10° 
x 101 
x. 101 

101 

x 10 

x 101 

x 10 
x 101 

x,10° 

x 10° 
x 10° 
x 10° 

x 10°0 
10°1 

x 10 _1 
x 10 _1 
x 10

     However, Simpson's method in this case takes long 

time for the calculation of I(a, E). Therefore, it is 

more suitable to use Legendre-sau.ss 16 point method 

for the computation, in order to see the shapes of the 

frequency spectra for different cS . This computed 

results are given in 2-3. From the results, eve 

can obtain the following information ; 

(i) When = 0, H.D. becomes maximum where a is 

          equal to obout zero. Namely, if the velocity 

          distribution is the ordinary i,axwellian, the

U cws 

Univ

of  Electronic Computer 

f o . 1 , Subroutine No.:
Laboratory 

I1-007A

of hyoto
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(ii)

 iii

most efficient heating may be achieved when 

 w = wi. 

Each spectrum for a given 8' , has only 

a peak, which should be compared with the case 

of the Picket Fence field. 

In the region of high value of d , the 

corresponding peak of F.D. is situated near 

the position where S = a(i.e. w.1-w=ku). 

In addition to this property, the shape of 

the spectrum becomes to resemble the dashed 

line shown in Fig. 2.1. Needless to say, 

these properties of the spectrum are due to 

the physical situation that the macroscopic 

velocity of ions becomes so high that plasma 

can be regarded as a beam of charged particle. 

Therefore, if plasma is beamlike, we can 

determine the beam velocity and its direction 

from the measurei ent of the shift of the 

E.D. peak. This method will become a useful 

one to decide a ion beam energy, since we 

have only a few method for determing the ion 

energy of high temperature plasma.
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 Q1 

N

-5

--^ of

Fig. 2-3 I(a,b) as a 
the helical

 function of a for 
type field.

different 3 in the case of



2.2.4 Penetration of the Accelerating Field into 

         Plasma 

 Next we shall examine the cooperative phenomena 

of the plasma as a whole, especially the penetration 

of the accelerating field. The ion motion induced by 

the oscillating field produces ion currents perpendicular 

to the axial direction, as shown in the small section 

2.2.1. The resulting ion charge fluctuations are 

neutralized by electron motion along the magnetic lines 

of force, owing to the negligibly small mass of electrons 

compared with ion mass. These oscillating currents 

induce an oscillating electric field by induction. 

hence, we must solve the phenomena by a self-consistent 

method. 

Maxwell's equations without displacement current 

are 

x =~-`J,(2-39) 

x i = - -61 a ,(2-40) 

where is the current density in the plasma. In our 

approximation, V x should vanish in vacuum. The 

field in vacuum, which is expressed by the form of 

equation (2-3), is solenoidal but not irrotutional. 

This originates in that we have neglected the axial 

component ()f the accelerating field compared with other
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 1 aEz aEz---- t
wo components, but r  a~andare not negligible 

or 

DE9 a Er  
compared with az and az . Therefore, a compensating 

term must be introduced into equation (2-40) in this 

case, which is in complex form 

     Sr + iSe = 2Eok cos wt ei(kz c.;)(2-41) 

where we have used the relation E+_ _ Eoin vacuum. 

In cylindrical coordinates, equations (2-39) and 

(2-40) are expressed by 

      1 aBz a Ba _4n 
     r 90 a z-cJr 

aBr 
_aBz__4nJ( 2-42) 

   dz arc 

      rr(rBe)raBr=4nJ             a9cz 

and 
aE01 8B

r 
az----+ Sr= -c at 

     aEr
+ S_1 aB0    2 z6-c at(2-43) 

1 a1 9Er1aBz 
    r ar(rE0)r a6 c at , 

where we have introduced the compensating term 
. 

From equations (2-1) and (2-3), we readily get the 

relation
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 aEr 
 Er -

and a E
~ = -E

r . 

Combining equations 

    1 d _2                E
r drk~r 

       2 

    Ld k2    dr2J

(2-41) to (2-44), finally we

r) S
E 4n a Jr 

c2 ;t 

S
r 4n 3J& 

a z c2 at

(2-44)

have

(2-45)

(2-46)

     As described in the next chapter, the contribution 

of electron flow to the transverse current is negligible. 

Then the transverse current is expressed by equation 
                      14) (

2-25). Lenard and Kulsrud showed that I(kz, a) 

given by equation (2-26) has an oscillatory behaviour 

with the approximate wavelength 2n/k. Therefore, 

        I(kz, a) I eikz 

is qualitatively an approximate form. Then we get 

~w~ - ------q~1-e                        i(kz-e)e-iwt              MV
Tk•(2-47) 

The transverse current components are obtained by 

using above equation and they are
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    J _r = gniRe<w> 

         g2n1 Re4~-ei(kz-e)Itcoswt+Im~',£ei(kz-70)I 

                                                  - 

         NikVT L t 

                                            (2-48) 

   Je  = gniIm<w> 

       = g2nl r-Re to eilkz-4)I-isinwt+Im(E_ei(kz-9)coswt          MkVT 

(2-49) 

Similarly, we have 

         i(kz-e)1i(kz-C   Er=Re [(E++E_)eJcoswt-Im'(~-E )e'sinwt, 
                                            (2-50) 

  EB=Re[(E+-E)ei(kz-e)~sinwt+ImkL(E++E )ei(kz-O)]coswt, 
                                             (2-51) 

  Sr=2kR 4 oei(kz-9)]coswt,(2-52) 

    [ 

    e,                i(kz-'O)'coswt.  S =2kIm(2-53) 
 9 Lo 

We can now rewrite equations (2-45) and (2-46) in terms 

of 6+ and E_. Each equation is divided into two parts; 

one varying with sinwt and the other with coswt. Thus 

we obtain four equations for the complex amplitudes E+ 

and E . These equations are
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 (r  da-k2)Re(E++E) + 2k2Re(E0) = s Im(EI) ,(2-54) 

  (r dr-k2)Re(-E++s _)=-CRe(EI),(2-55) 

2 2 
  (2-k )Im(E++ E_) - 2k2Im(Eo) =-CRe(E_I_),(2-56) 

   dr 

                                          2 

  (d2-k2)Re(E-E)=-CIm(E _I_),(2-57) 
   dr 

                                                                where 

                __4nnq 2w                                                (2-58) 
MkVTc2 

In complex form, equations (2-54) to (2-57) are written 

as 

(r dr-k2)(E++ E-) + 2k2Re(E0) = -isEI , (2-59) 

     2 

    (~2------k2) (E+-E_)+ 2k2ilm(Eo) = i cE I_ , (2-60) 

r where x* denotes the conjugate of x. As assumptions 

Im(E 0)=0 and k>0 do not violate the generality of 

equations (2-59) and (2-60), we shall solve the equations 

under these assumptions. 

     The field equations in vacuum can be get by setting 

C=0, and their solutions are found to be
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 *vv= ce-kr    -~
-1 

 6  +v +v = 2E0

(2-61) 

(2-62)

In order to distinguish the quantities in vacuum from 

those in plasma, we affix superscripts v and p to the 

symbols in vacuum and plasma, respectively. If 

krp < 1, we can express the general solutions of 

equations (2-59) and (2-60) in terms of power series 

of kr. These solutions can be found after some 

calculations ,and they are 

                          ~                                         iI_Ial £+p= a + air +2(a-£0) (kr)2+12L2+ k2Jk(kr) 3 
......... + anrn + ...., 

(2-63) 
                     iCI 

EP= b - a1r +2 (b-E,:) - 2 b}(kr) 2 

                        k 

              1

kiCI al +12(-2+----2k (kr)3+....bnrn+..., 
                                           (2-64) 

where 

                 1r  a2m+l4m(2m+1)Lk2        -(2m+1)a2m-l+(2m-1)(k2-i;;I_)b2m_lj 
                                           for m ?1, 

    1  a2m 2m(2m-1)Lk2ma2m-2+(m-1)(k2-1CI_)b2m-2 
                                            for m _Z2,  (2 -65) 

b2m+1 4m(2m+1)------------Lk2(2m-1)a2m-1+(2m+1) (k2-iCI_)b2m_lJ 
                                               for m 21, 

             1r b2m- 2m(2 m-1Lk2(m-1)a2m-2+(m-1)(k2-i~I_)b2m-2 

                                               for m ? 2. 
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The constants  a, al, b and cl are determined from 

boundary conditions. Next we shall derive the boundary 

equations so as to determine the constants. From 

Maxwell's equations, we have 

b,(1.4) = 0,(2-66) 

-AC; x ~) _ ~s ,(2-67) 

A(1 x 1E) = 0 ,(2-68) 

 p(r•~) = 0 ,(2-69) 

where and are the surface current and the electric 

displacement. A(x) denotes the change of some quantity 

X across the plasma surface. Since there is no mass 

flow across the interface, a magneto-hydrodynamic 

equation 

     aV _1x 
) atc 

yields x z = 0,(2-70) 

in the approximation of the first order. From 

equations (2-66) to (2-70), we finally get the first 

order boundary equations as 

     aEB aE9 

a = az ,(2-71) 

-a0aEg 
a a r ,(2-72) 

  EPe= E g,(2-73) 

   DPv   Dr= Dr(2-74) 
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at r=rp,where we have used equation (2-42). 

     From equation (2-51), we have 

   p 

 aE9 = kCRe(Ep+Ep)ei(kz-B)coscut-Im(Ep-cpl(kz-e)~Ssinwt 
 z- 

                                              (2-75) 

 aE0 
and likewise 2 zis expressed. Then equation (2-71) 

is written by 

   Re(Ep+~p) = Re(E++Ev),(2-76) 

Im(Ep-Ep) = Im(E -e) .(2-77) 

In complex form, above equations become 

6+p + = E+v + av = 2E0 ,(2-78) 

where we have used equation (2-62). Analogously, 

the boundary conditions (2-72) and (2-73) can be 

expressed in terms of E+ and E_ as 

    d 
dr(a+p-a)=dr(e+v-E )= -kcle-krp(2-79) 

     +p - ~p=+v-vc1e-krp .(2-80) 

      In order to derive the electric displacement 1, 

the ion currents, induced by the field component 

varying with time as e1Wt, must be taken into account. 

This current is given in complex form by
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 n.q 2 

    J+r+ iJ+@ N1V
Tk+I(kz;P) e-i8eiwt ,(2-81) 

where I(kz;(3) is defined by equation (2-26) and 

                     w .+w 

R - kV
T•(2-82) 

The term I(kz;(3) may be approximately expressed by 

I(kz; p) I+eikz , 

similarly to equation (2-47). Thus the induced current 

  is given by 

              niq2 ietp -iwti(kz-B)    Jr+iJe=P;1Vk L£+I+e+ e_I_e]e. (2-83)   

              T The electric displacement 1 includes the vacuum dis-

placement and the plasma current according to the 

relation 

      + 4m dt .(2-84) 

Combination of equations (2-3), (2-83) and (2-84) 

yields the displacement current in complex form 

  D+iD=(~poiwt+~e-iwt)+i~c2(EI+eiwt+ c-PIe-iwt)Jei(kz--- reLw 

                                             (2-85) 

Thus the last boundary equation (2-74) is expressed by

+pI+ + EpI- = C ,(2-86) 
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where we have used equation  (2-78). This relation 

implies there is no radial current at the interface. 

In the case of zero plasma density, equation (2-86) 

is no longer valid, but equation (2-80) acts as a 

substitute for this equation. 

     The constants a, al, b and c1 can be determined 

from these four boundary equations (2-78), (2-79), 

(2-80) and (2-86). Finally we can write down the 

solutions as 

 +p= Eo[l+e+(1-5k2ro)-5(kro)\(77(kr) 2+0 (kr) 3} J 
(2-87) 

EP = EQA1 - e + (kro) (kr)-  r/(kr) 2 + 0 1(kr)3f1 (2-88) 

and 

E+v = Eo(l + e' e-kr) ,( 2-89) 

8 v = e0(1 - e-kz) ,(2-90) 

where 

i~I - .2 w --------
k2iwpik3VTc2( 2-91) 

l -277kr     2o2                      - Ktl+ yi(1 +2kr o)           - 
1 - k2r2 + K tl - 4(l+ 2 77) k2ro 

                                           (2-92) 

4nnig2 l/2 
wpi (----------- ) : ion plasma frequency, ( 2-93)
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 ~'I* 

 ~ 

   K  = 
E:12)= -+at r=rwhen ni/0 , (2-94) 

  =1when n
i=0, (2-94)' 

k 0.(2 -95) 
      When ni tends to zero, vanishes and then 

E+p-~p-E+v=e_ =E0- Needless to say, this implies 

the vacuum field. In the central region of the plasma
, 

the field is approximately given by 

     E-4_4(1`)=Eoll+ + 7)(1-ek2ro)},(2-96) 

EP = go( 1 - e ) •(2-97) 

Generally K is small quantity in the cyclotron resonance 

stateiwi+wMwi-wI .Therefore, if kro«l (i.e. the case 

of long axial wavelength), equations (2-96) and (2-97) 

approximately become 

9+13 = 2E (l - K) ,(2-98) 

fip = 2EK.(2-99) 

That is IE+pl   IEp 
                                             (2-100) 

The polarized field in the same sense as the ion 

gyration becomes very small in this case. As seen 

from equations (2-26), I +(kz,p) approaches I_(kz,a) 

as kVT tends to infinity; namely, II+I approaches 
These facts mean that the axial wavelength of the 

heating field, 2i, should be appropriately short in 
order to heat the plasma efficiently by this configu-

ration of field. This is the reason why axially 

periodic heating fields are used for ion cyclotron 

heating of plasma.63



2.3 Ion Cyclotron  Ileating by the Picket Fence Field 

     The ion cyclotron heating by the Picket Fence 

field expressed by equation (2-2) will be treated in 

this section. The analytical process is alike to 

that adopted in the section 2.2, so that only the results 

are given here. 

     We make the same approximations as in the section 

2.2 and then solve the equation of motion (2-4). The 

mean velocity and mean energy flux averaged over all 

phase of incoming ions will be derived. Averaging 

these quantities over distributed velocities of ions, 

we have the energy dissipation from the heating region 

and the averaged ion velocity in this case. 

2.3.1 Ion. Motion and Physical Picture 

     After some algebra, we get the mean energy flux of 

mono-energy ions, which is, in the similar notations 

in the Section 2.2, 

            2n.q 
      E. 

       iE~ sin2nl~la'
(2_101)      +_ M

k2w o(1-a'2)2 

where 

                 w.-w 

      a        = 1        = kw 

0 

Then we get the averaged energy dissipation from the 

heating section, which is
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      222a 

 E.D. -2n.qE_f00sin (nb) e-(s-8 )2 ds, (2-102) 
              2.LIsi (1-a2)2          IiikkV

T 

where 

w 1-w 

             VI=a 

Vu J 
T hquation(2-101) corresponds to equation (2-28) and 

equation(2-102) to equation (2-21). 

Now let us consider the physical picture introduced 

frox~ equation (2-101). Similarly to the section 2.2, we 

have a curve of the frequency spectrum of E.F . For 

convenience' sake, we define 

    Y(a') =sin2()(2-103) 
                (1-a'2)2 

which again corresponds to equation (2-30). Then we 

find 

Y(a') = 0, when a = (s : integer but 4+1), 

n2N2 Y(a') _ ---------------------------------, when 
               n2N2(1-a'2)2 + 4a'2 

                  tan (nNa'.) = - nN (1-a'2) 2a' 

As a results, we have the frequency spectrum of E.F
+ as 

shown in 1{'ig. 2-4.
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Fig. 2-4 Y(a') as a function of a' . 

  It is ,,orth while noting that this frequency spectrum has 

  two identical maxima where a = + 1. On the other 

hanu, the spectrum in the case of the helical field 

  has only a maximum. This situation may be explained 

  as follows. 

       A particle traveling in the heating region feels 

       two frequencies at the same time; one is due to 

       the fielu approaching to the particle (or w'=w+kw
o) 

       and another due to the field going away from the 

       particle (or w'=w-kwo), In other words, the 

        particle feels two shifted frequenciee on account 

       of a Doppler effect. If w
o is somewhat distributed 

       by A w
o, according as 

                         w 

                   wo~1 

                          0 

  then the frequency spe ctru;., has no longer fine structure 

..nd it Hiype becomes to the envelope shown in 

ig. 2-4. 
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2.3.2 Frequency Spectra of the Energy  Flux for 

        Distributed Ion Velocities 

     Again, we shall see the frequency dependence of 

the energy dissipation from the heating region. For 

this sake, we shall examine a term in equation (2-102) 

                   „o sin2(nNa) -(s-)2     I(
a,) =seds. (2-104) 

                  _,~,(sI (1-a2)2 

Computed values of I(a,eS ) by KDC-1 are given in 

Fig. 2-5 for different values of a and 5 . Consequent-

ly, we can get information as follows. 

(i) For large , the corresponding peak of I(a.g)

(ii)

(iii)

        For large c; , the corresponding peak of I(a,.E) 

         (or L.D.) is situated near the position where 

a=f S (i.e. co = wi+ku). In this case, the 

        shape of the spectrum tends to resemble to the 

dashed line in Fig. 2-4. Therefore we can also 

        determine the beam velocity of plasma, in a 

         similar way described in the section 2.2.3. 

        For large , the spectrum tends to have double 

         peaks on both the negative and the positive 

sideS of a. This point is different from the 

        case of the helical field. 

The heating efficiency, wilich corresponds to 

I(a, ) , rapidly decreases as becomes larger.
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 Fig. -5 1( 6, 0) as 
the Ficket

--+  of

a function of a for 
fence type field.

different S in the case of

co



2.3.3 Penetration of the Accelerating Field into 

        Plasma 

     This problem is considerably simple in comparison 

with the case of the helical field, since the field 

configuration is axisymmetric and consequently its 

boundary condition is simple. There is only an azimu-

thal electric component at the boundary, so that the 

connection of the displacement as expressed by 

equation (2-69) is no longer required. Furthermore, 

differential field equations in the first order 

approximation are in simple form. Lenard and Kulsrud 

analyzed the  radial dependence of the field and found 

E+p = c1J1(ikr),(2-105) 

e+p+ £p = r,I(kz,a)e_ ,(2-106) 

    +v = c1Q-J1(ikr) ,(2-107) 

  E + EV = 0.(2-108) 

where 

     d 2_ ~3I - 2            - 2~I - 2 , 

l: defined by equation (2-91), 
                 as.                —w 

     a kV
T 

              2sg(a)O°-a2/2      I(kzra)=-—jdx e 
i'T 
                     sin kz -1(-1)NeNnixsg(a)sin xkz

1 - x2
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If we consider the extreme case we get to 

a good approximation 

 E+ =-E(2-109) 
In this case the two circularly polarized electric 

field components have about the same amplitude. Above 

relation implies 

  EP<.< E6(2-110) 

In the opposite case of sufficiently high density, 

E+p =1IE(2-111) 

This shows that the component rotating in the opposite 

sense of ion gyration is predominant. In this case the 

circularly polarized field component rotating in the 

same sense as would ions becomes very small and ,as a 

result, the heating efficiency is low.

70



 III Theory of  Ionaxis ,ymmetric Oscillation 

of Plasma near Ion Cyclotron Frequency 

in -n External Magnetic Field

3.1 Introduction 

     After Alfven's discovery17)of magnetohydrodynamic 

waves in 1942, many types of plasma oscillations have 

been found theoretically and also verified experimenth lly, 

In such waves, so-called in cyclotron w,ves were found 
                                 18) 

useful for plasma heating by Stix (1957) , since then 

many investigations have been done on these waves. As 

stated in the chapterll, the direct heating of ions with 

the ion cyclotron resonance tends to be less efficient 

as plasma density increases, which is due to the shield-

ing of accelerating field by the inductive ion currents. 

On the other hand, in such high density plasma, ion 

cyclotron waves can naturally exist and be resonantly 

excited by externally applied currents surrounding the 

plasma. The ion cyclotron wave, excited in such a way, 

may propagate along the magnetic lines of force through 

a region where the magnetic field decreases slowly in 

the direction of the wave propagation. In this region, 

the ph.se velocity of the wave will become slower and 

slower and finally bjects to cyclotron damping, which 

in a xind of phase mixing. As a result, the oscill:itius 

energy wiil be converted irrto r;,ndom energy of ions (i.e. 

thexm;il energy) . This is the heating mechaninm.
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     Stix  and his collaborators verified experimentally 

tnis thermalization mechanism by using Model B-65 

Stellaratorl9)andModel B-66 Stellarator20~ Wilcox 
             21) 

ana hiE!, coworkers observed the cjclotron damping of a 

torsional Alfven wave. However, these theoretical and 

experimental results were only concerning axisymmetric 

modes of the waves, except for Bernstein and Trehan's 
             22) 

theoretical work This reason is that there are 

lying many difficulties to solve nonaxisymmetric modes. 

Bernstein and Trehan found a way to obtain the dispc:rsion 

relation of nonaxisymmetric modes of ion cyclotron waves. 

Neverthless, they treated the case .ithout beam current, 

and did not give the detail physical picture of the 

waves. 

In this chapter, nonaxisymmetric modes with an ionic 

beam current are to be generally analyzed by expanding 

the Bernstein and Trehan's analytical method. Further-

more, detail discussions of the physical picture and 

the boundary situation. of the waves are also to be 

given. The aispersion relation will be derived in a 

section 3.2. The physical pictures, such s ion current, 

electron motion and plasma neutr;lity, are also discussed 

in a section `,.3. Discussions of bounded plasma osci- 

listions are to be done in a section 3.4. Finally, in 

a section 3.5, application to plasma heating is to be 

briefly explained.



 Since relatively low frequency oscillations are 

of interest for ion heating, we shall simplify the 

analysis ,Nith following approximations through this 

chapter. 

(i) Oscillation frequency w is sufficiently low 

      compared with electron plasma frequency w
p e 
      and electron cyclotron frequency we. That is, 

       w2<‹ w
pe2 we2(3-1) 

(ii) Electron mass m can be neglected in comparison 

      with ion mass M. That is, 

    Nl < 1(3-2) 

(iii) We assume electrical neutrality in enuilibrium 

       state. 

(iv) Plasma is so tenuous that interparticle collisi

(v)



3.2 Derivation of Dispersion Relation 

 Situations discussed in this section are schemati-

cally shown in Fig. 3-1. 

    In equilibrium state, an external static magnetic 

field is imposed parallel to the z-axis of cylindrical 

co-ordinates (r, 9, z) . An infintely long cylindrical 

uniform plasma is set up coaxially with the z-axis. 

The plasma pressure is assumed zero, but a beam of ions 

with velocity u is flowing parallel to the z-axis. A 

variety of boundary conditions may be considered, but 

these problem will be discussed again in the section 3.4.

 „4.r
NI

 z

  0 

 u

    Fig. 3-1 Schematic drawing of plasma situation 

First-order perturbations from the equilibrium 

situation are considered. , , 1 and v are the first-

order perturbed quantities of magnetic field
, electric 

field, current and men mass velocity , respectively. 

    In the next small section, basic equations valid 

for this situation are to be derived . Dispersion 

relations of general or special cases are both disccused 

in i.he remaining small sections.
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3.2.1 Basic Equations 

     The macroscopic  quantities are determined by the 

transport equations of kinetic theory . In the 

approximations stated above, we have a linealized 

equation for ions 

Z. e 

   at + (u.v)1 = Ni (iE + +Cvixo).(3-3) 

For electrons, 

ve 
 - at =

we get 

e (~E + 

m

cveX o)

Where suffices 

respectively, 

an electron. 

together with 

V x 

V x 

          V•E = 

where 

              n1Zievi - n

(3-4)

orrespond to ion and electron, 

andZ.eand e are the charges of an ion and 

Equations (3-3) and (3-4) must be solved 

equations: 

  o)(3-5) 

(3-6) 

                                 (3-7) 

(3-8)

e
ev

e
nee(V - v), (3-'))
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 0 

 (v  =

neeu. 

 nilvv. + n my ee

 v.)

(3-10)

n. 
 1

M + n
e

m

and ni and ne are numbsr 

electron, respectively. 

brium state as

densities 

There is

 of the ion 

a relation

 and the 

in equili=

n.Z. = ne. (3-11)

We have neglected the displacement current, since we 

are interested only in low frequency oscillations. 

     To obtain the dispersion relation, we derive some 

convenient formulae from above equations. )ombination 

of e,_,uations (3-3) and (3-4) gives

 1 

nee  e
2 at

(u4)v. Z. 
+ ----------e 1 = (M + m)~ 

cve

+1 SZi 
   c li 

o~

(ux~~vix~ o) +mvex1 

 (3-12)

of

0 Sav tat 

where se 

relation 

\,,hich is

+ (u •v)v } _ 

have adopted 

(3-2) , and

11,110 + cuoxuo, (3-13) 

the approximation expressed by 

is the mass density of plasma,
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    9  niNI.(3-14) 

From the definition of J, we get 

ve V - n
ee        J.(3-15) 

                           e 

 Substituting equation (3-15) into equation (3-13), 

iinally we have 

-2 a -~ 1-~12 
            at=E+cvxo-cneexo - 4nwpe(-Jo•V')v, 4nwpe 

(3-16) 

  where 
         24nne2          wpe=(electron plasma frequency). 

                      m 

 When w ((wpeand ku ((wpe (k: ' wave number) , equation 

  (3-16) can be rewritten as 

      E+wxBocnex o= 0.(3-17) 

                               e 

 This is a linealized equ-ltion of the generalized Ohm's 

la„ when an ion beam is flowing. 

Equations (3-13) , (3-17) and ,Eixwell's equati oue 

Lre the bsic equations for solving the problem. Also 

it should be noted that equation (3-17) shows the non- 

  el.is t, nce of the electric field parallel to the e;;terne_ ] 

magnetic field.-
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 3.2.2 Dispersion  Relation of Nonaxisymmetric hode 

      in order to obtain the dispersion relation, we 

follow a normal mode analysis similar to thet of Berstein 

 and Trehan, though the situation in this case is different 

from in their case. We assume that variations of all 

quantities conform to a form expi(me + kz 

Combination of equations (3-7) and (3-17) yields 

at v xvx Bocnee(3-18) 
----- xIo j. 

Furthermore, differentiating equation (3-18) with respect 

to t, then we get 

   a2 av - I(3 -19)       at2- v{2t                      xonee atx Bo5' 

Using equations (3-13) and (3-5), we find that equation 

(3-19) becomes 

                                                    u 

    A2 

--- = 1 X L(vx]) xzxz+ i~'~ku~(/x) xz1+w
A2~1 , 

(3-20) 

where we have assumed that the contribution of the 

electron motion to transverse plsma current is negli- 

gi bi compared vvith that of the ion motion . Also u. i 
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is  The ion cyclotron frequency and A is defined as 

B 
    A2 = 4.7L3- ,(3-21) 

which is the velocity of Alfven wave. 

     Bach component of equation (3-20) is readily found 

to be 

r-component: 

0w .0w.0 

(k--2)Br= ik(kS2*-~2)BgT,+r(k0*_A2)}Bz. 

                                               (3-22) 

0-component: 

2w.0 w.0 

   (k2--)BA=-ik(kS+ (                   *-1 2)BrkQ*_A-)arA2YkiBz' 
(3-23) 

z-component: 

    221aw2m2-(m* _wiua     -(
ar2+r Dr+A2-1,2)Bz-kr-(kS~A2)(r+Dr)j 

w.0                               -1-)11+ k(z 
                         r-)\Br 

                                                (3-24) 

where Q* _w-ku, and the term exp i i (m7)+kz ) is 
w 1 

supressed. 
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From 

after

 equations (3-22), 

 some algebra,

Br = F2-k2G2 Lr

(3-23)

G(F-k2).B7

and (3-24), we

+ k(F-G2)

have, 

 _ 1 m_ Be
F,2-k2G2r r

k(F-G2)Bz + G(F-k2)

-?B
z 

2r '

aB Z 
'Dr

(3-25)

(3-26)

Bz = C Jm (hr) exp i(me + kz - wt), (3-27)

where

h2 = -F2---------k2G2 
F-G 

                 w.0 
G =kSd~-1 

           A2 ' 

         2 
F = k2 - 

        A            2 '

(3-28)

(3-29)

      w-ku 

 5.          1

an 

is 

we

Jm is the Bessel Function of the 

arbitrary muatiplica.tive constant. 

the .o-called dispersion relation 

can rewrite it as

mth order. C is 

  Equation (3-28) 

to be solved, and
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        2 w 2 2 2 w.02 
              (k -) - k(kc~*-2) 

h2      A2A2 2 u.0 (3-28)' k2- A2- (kQ* -A2) 2 

Radial wave number h is determined from boundary condi-

tions, about which we shall discuss in the section 3.4. 

Once we know C and h, the transverse components will 

be easily determined from the equations (3-25) and 

(3-26). Consequently, other fields, such as Er and EB, 

are also obtainable, by using appropriate relations 

between / and . 

     If we assume u=0, then the resulting dispersion 

formula agrees with that obtained by Stix or Bernstein 

and Trehan, which is 

              (k2-w2)2 - k4Q4 

 A--------------------------- 

                  2 
   h2 =-2(3-30) 

k2 -  - k202 
                   A2 

or, in another notations, 

Q4 -SZ2(2K2c2k4c4) +k4c4            w4) 

c2h2piwpi upi (3 -31) 

      pi2,2(1+k2c2) _k2c2  22 w 

Pipi

where
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               = 
                   w.'                     1 

             4nZi e2ni 
         w

pi -Nl------------- (ion Plasma frequency).  (3-32) 

It should be noted that the radial wave number h has 

no relation with the azimuthal wave number m. 

3,2.3 Oscillation near Ion Cyclotron Frequency 

     Let us consider the case that the oscillation 

frequency Is near ion cyclotron frequency, or w '= w 

Furthermore, we assume that the plasma density is tenuous 

enough to satisfy the relation 

   22                     w .     1 P1 << 1 .(3-33) 
k2A2 k2c2 

Relation (3-33) means that the ion plasma frequency is 

very low compared with the frequency of an electromagnetic 

wave with wavelength of 2n/k. 

Equation (3-30) may be rewritten in another form 

as 

1wita2w2 -----(w-ku-2)`_ (1 - -------w2)(12 2 2
\)(3-34) w

ikAPk A (k +h)
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Under  the condition given by equation (3-33), 

eHuation becomes, approximately, 

    (w-ku)2 1 -  w2 w2  
                     A- k2 A2(k2+h2) •

This is the 

wave with an 

     We have

  =

dispersion relation of 

 ion beam. 

, instead of

1

[ku.

above

(3-35)

the ion cyclotron

1.+

22 
w.2  i2k +h

A2k2k2+h2

             equation (3-35), 

                     u2k+h` 

                A k +h

  2 ~ 1/2 
  'i

_ 

k2u2) } 1 . . 

(3-36)

Therefore, if we assume k 

            2 
    2co.2  k2                        +h2    u2+ A

2k+h

real and

(3-37)

then w becomes complex. lamely, the wave groNs or 

damps with time. This phenomengnmay be considf r=d as 

a kind of br.am instability. however, equation (3-21) 

indicates that, in dilute plasma, the velocity of 

i 1fven Nave A is very fast. Consequently, the condition 

)f equation (3-37) may be impossible to be re.±li_. nj in 

practice. 1''or example, ions of tenuous plasma under 

Joule heating (or Uhmic heating) not be. accelE r<ated
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 enough to satisfy equation (3-37), due to their large 

mass inertia. In contrast to this ion motion, electrons 

will get high speed and finally grow up to runaway 

electrons. Ec,_u«tion (3-35) may be also applied to the 

plasma with a much shifted ion distribution, since it 

can be regarded as a beamlike plama. 

     When u=0, e(,uation (3-35) may be expressed by 

2 2 w.w. 
      w2w12(l 

A2k2 A2(k24h2))'(3-38) 

or 

       2 2 

    w2 - wi2(1wp1-p22--------------).(3-39) 
                    c2k2                          c2(k+h) 

This agrees with Stix's result for m=0 mode . When 

wi tends to w, the axial wave number k (the axial wave 

length 271/k) approach to infinite (zero). And then 

the wave vanishes, so that the kinetic energy of the 

wave is converted into the thermal energy of the plasma. 

This mecr anism msy be called "~ agnetic Beach" 23), 

becaut'e it has analogy is the collapse of Ocean waves 

running up on a beach. 

3.2.4 DisperKion Relations in Other Special Cases 

(i) When h=0, equation (3-34) becomes 

                              Pi   w - ku = ± wi(1-221\) , (3-40) 
                                ck 
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     Equation (3-40) represents the dispersion  relation 

of one dimensional case. ierger, Newcomb, Dawson, 

Frieman, Kulsrud and Lenard (1958)24)had already obtcined 

the dispersion relation in this case, but it is some-

what different in form from equation (3-40). However, 

we can easily show that they are both the same in our 

approximations. For large k, we have the relation 

           c2k2?~wi2 - wpi2 

by using relation (3-33). Then equation (3-40) may be 

rewritten to be 

                                 2 

          w - ku = + wil+ -2wpl222 } 
                             w2 (ck+ w) ' 

                                        i ,here we have assumed w ^' wi. Then we can readily find 

2 222  w- ku     w2 ck
w                  - wpi w - kui                              T_ 0.(3-4]_) 

When many ion beams are flowing, equation (3-41) may be 

modified as 

2 
                    w(w-kus) 

w2 -2k2_7  piss—= 0.(3-42) 
S w - kusw i 

Equation (3-42) is just the dispersion rF L,.tion obtained 
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 (ii)

(iii)

by Berger et al. 

When h/0, a similar formula is also derived. 

Finally, equation (3-35) is written to be 

                                                           ,~   w2- c2k2 - wpiGw-ku±wilw - ku ± wi2~.kL+h2)k_ 
(3-43)

When w<< wi and u=0, then equation (3-34) becomes

           2 

    (1 - A
k2)(1 

Consequently, we 

      w2 = A2k2 

and 

w2 = A2(k2 +

2 

A2 k2 

have

h2).

 1
2)=0. 

+h

(3-44)

(3-45)

(iv)

Equation (3-44) is the dispersion relation found 

by Alfven17)(1942). Also equation (3-43) is the 

dicpt.:rsion relation of the extra ordinary hydro-

magnetic waves, which was derived by Astrft25) 

(1950). 

When w << wi and u0, a term wi2u/kA2 in equation 

(3-34) becomes dominant compared with ku. Hence, 

get, by solving w2 in equation (3-34) ,
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                                 2 w.2u2  w2 =  A2k2(l-k2+hk2A4)(3-46) 

and 

                                       2 w.2u2 w2 = A2(k2+ h2) (1+h2k2A4).(3-41) 

In this case, the velocity of Alfven .vave becomes 

 faster, whereas that of the extra ordinary wave slower. 

These facts come of the diStorsion of the magnetic 

 field by the current Jo= nilieu. 

3.3 Physical Picture 

     It gives detail information about physical circum-

stances insiae the plasma to investigate the field, the 

ion currents, the electron motion, etc. Therefore, in 

this section, we shall discuss behavious of these quan-

tites in the waves. 

3.3.1 Electric Field 

aub5tituting equations (3-25), (3-26) and (3-27) 

into equation (3-7), we get easily the electric field 

in the plasma, which is 

        22 z  Eg =-ik cT,2-k2G2rG(F-k)is5+k(T'-G)at]  , 

w 1 _m22'}l3      E
r= -kc2_22Frk(T-0)B2+U(E-k)t',l,--4~3) F-kG 

E - 0. 
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In 

we

order to 

calculate 

 iEr 
Ee=

examine the sense 

iEr/E9 . We then 

mk(F-G2)Jm(hr) +

of the field rotation, 

 have 

G(F-k2)hrJm(hr)

or

mG(F-k2)Jm(hr) + 

m(k+G) (F-kG) J_ -

k(F-G2)hrJm(hr)

G(F-k2)hrJ_,1(hr)

3-49)

(3-50) 
m(k+G)(F-kG)Jm - k(F-G2)hrJm+1(hr) 

These relations are valid for the general case. If 

we consider Alfven wave and the case u=0, we get, from 

equation (3-44) and (3-49), 

      iEr _ ( 3-51)     EiT• 

For the ion cyclotron waves, equation (3-49) is approxi- 

  teiy reduced to tire form 

                          2 
hrJ m+1(hr) -112hrJm(hr) 

         k  

 ~-2(3-52)               h
rJm+i(hr) +h2 mJm 

or 

           2J(hr)          - Li+h2(1-hr Jmm+ l------------(hr))] (3-53) 

                                       where the condition u=0 i.;ctg.E in assumed.
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Therefore, the electric field in the plasma is generally 

elliptically polarized.  Also the sense of the field 

rotation depends on the sign in the brackets of equation 

(3-53). For large k, the field maj rotates around the 

magnetic field in the same sense as that of the ion 

Larmar gyration, This is clarified as follows. 

      If we consider the particle velocity w of an ion 

    immersed in the magnetic field o, the equation of 

    motion is 

            dw Z.e 

            at=wxDo• 

    If vVi varies with time as e-iwt, then we have 

iw r 
= -1 

wo 

                                         (3-54) 
    andw = w•

For the axisymmetric mode of the ion cyclotron waves, 

the polarization is expressed by, from equation (3-53), 

            iEr2          Er)-( 1 +k2),( 3-55) 

                         18) 
which agrees with Stix's result. 

3.3.2 Ion Motion 

     Ordered motion of ions may be regarded ar ti c ma Y
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motion of plasma, so that  v obtained from equations 

(3-13) and (3-17) will indicate the macroscopic ion 

motion. 

-4 
     Elliminating J from equations (3-13) and (,-l7) , 

we get, after some calculations, 

     vxz+w(m-ku)v-ikuv+ uzx+B--= 0, 
   1eoo 

                                           (3-56) 

w±a re we have made use of equation (3-10), Each 

component of equation (3-56) gives the relation: 

r-component: 

i(s-ku-ku)v+ v-BSucE= 0 wi we8rB+oBo( 3-56-1) 

6-component: 

               B
rcE        -vr+ i(wwku- wu)ve+Bu +BA= 0 (3-56-2)- 

     1eo o 

Combination of above two equations yields 

      yr1-------2 Br( iQ~B~+B
r)+ (E8-iSZEr)' , ( 3-57)          1 -Q*2 L 

-i 
       v

1-5~2 lio[ ~)u+ (S)*E~,-iEz)(3-58)
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where we have neglectedwto1                              - . Then we find that              w
e  1 

the macroscopic mass velocity (or ion velocity) becomes 

extremely large when  SZ* is near one. 

     Next let us consider the rotation of the velocity 

vector. For the sake of this purpose, we consider 

ivr/ve , which is obtained to be 

         iEB iB 

ivr1 - 0----+EB(1+53*BB )r c 
  viEBriB•(3-5)        9 

       Q*--+E
0 3r_) 

c 

           89 r 

While we have the relations: 

    kciEriB8     B
r=wEeand -E0_ - Br 

which are derived from equations (3-7) and (3-17). 

Then we get finally 

                        iE 
1 - C2*r    iv

rE9 
v8 = —iEr --( 3-59) 

sz -                      E
& 

In the case u=0, equation (3-59) becomes 

                      iE 

       iv1 -SZ_Er      r 
_-9  

v6-iEr(3-60) 

E e

91.



 'When  w  is  close  t o  wi  and u=0, the macroscopic 

ion velocity rotates circularly in the same sense as 

would the ions. It should be emphasized that the fact 

above stated is valid for any finite m mode. For m=0 

mode, Stix also derived the same formula as equation 

(3-60) .

  Next,we shall discuss the ion current in 

lviultiplying the unit vector z vectorically 

sides of equation (3-13), we get 

4-3 

      J1 = ic2*(nzev x z) + Bl J o

 the wave. 

to both

(3-61)

where

and

Jl = 

B1 =

For 

plasma, 

becomes

From 

to be

the

n 

Jrr + J9 

B
rr + BB6 

                                 •

 the 

Q* is

cyclotron wsve 

 close to one.

for sufficiently 

 Whence equation

   iv 
 _r -1 . v

9 

above relation, equation 

Jl =n.Zie(1+Bu). 
                      no

(3-61) is

tenuous 

(3-59)

(3-62)

re,,ritten

(3-63)
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Thus we can say that the transverse component of the 

plasma current is mainly carried by the ions. The 
 B1  

',:econd  term  7—u in the parenthesis of equation (3-63) 

indicates the transverse bend of the ion beam in 

consequence of the oscillating magnetic field per-

pendicular to the axis, as shown in Fig. 3-2. 

Magnetic lines of force 

                                          Bou = u 
                                                 Bo 

  Fig. 3-2 Transverse bend of an ion beam due to the 

          oscillating magnetic field in the wave. 

3.3.3 Electron Motion 

Transverse motion of the electron is a drift, 

which is given by 

Ve1 = cx2c Bz(3-64) 
                B2 

Then the resulting electron current is 

        Jei = -neecBz  

                             0 

           necE E0e

B-------r(E8rn—e).(3-65) 
        or 
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From equations (3-56-1) and (3-7), we have finally 

                        iv 
     E r/BQ*---yr +  1 

             o - = —(3-66) 
 ve/c (1 +ku) 

                       ~u • 

The numerator on the right nand side of equation (3-66) 

is rewritten to be 

  iv 
S2r + 1 = 

   vg 
          2     (1-d) (-m(k+G) (,'-kG)Jm(hr)+G(F-k2)hrJm+1(hr)]

(1-Q*)[m(k+G)(F-kG)Jm(hr)+ [G(F-k2)-Q*k(F-G2)hrJm+1(hr) 

                                           (3-67) 

where we have made use of equations (3-50) and (3-59). 

     For the ion cyclotron \vaves without the beam, 

equEition (3-66) becomes, after oome algebra, 

r/Bo~'i22k2+h2 
                       X   v

P/c=A2k2x2+h2 

                   2            -m12~~(2h2) Jm(hr) + hrJm+1(hr ) 
      k+h"  

      1+52 °'i+h2       m22
.2---------2hrjm+1(hr) 

   Ak+h 

                                            (3-68)
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Therefore, combination of equations  (3-65)  , (3-66) and 

(3-68) yields the transverse current of electrons. If 

we consider only the azimuthal component, equation 

(3-65) gives

         EcEr/B 
   rc      J e. = nee -I-= nee v0/

c v6(3-69)           7.

Er/E 
wherev-----ohas been already given by equation(3-68). 

      9/c 

Especially for large k (resonant state and m=0 mode), 

equation (3-69) may be simplified as 

    22 U.w. 
J ee = - nee -212v-nee-212v. ( -70)        AkAk

Therefore, it becomes evident tiiat, in the case of the 

ion cyclotron wave, the contribution of the electron 

motion tc the transverse current is very small compared 

wi2 
with that of the ion motion. since-2-----2is very small. 

                                 Ak 

For the cace tnat m=0 and u=0, ne can readily find 

     22 

       el=-nilie ------'2vll= -A2k2,Jiy(3-71) 

            (Jil;transverse ion current)
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 If the displacement current is negligible,it can be 

concluded that the charge accumulation arising from the 

transverse ion current is neutralized by the electron 

current parallel to the magnetic field. 

3.4 Bounded Plasma Oscillations 

     In the sections 3.2 and 3.3, the radial wave number 

h has been assumed given for proper boundary conditions. 

However, the radial modes are not indispensable for 

investigating bounded plasma oscillations. In this 

section, we shall discuss nonaxisymmetric oscillations 

of bounded plasma for several different boundary situa-

tions. To treat the problem generally, first we consider 

the plasma which is immersed in a cylindrical current 

sheet and has a vacuum clearance between the plasma 

and the sheet. Fig. 3-3 shows this configuration. 

 Current sheet 

Bw

7)
/ BP Z' 

Plasma P 

\ Vacuu~ 

Vacuum

Fig. 3-3 Boundary situation of plasma.
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 Ilasni oscillations in this general case will be 

tr:,ated in a suction 3.4.1. If the vacuum clearnce 

degenurates, we have a plasma wave guide discussed in 

  section 3.4.2. In a section 3.4.3, we consider a 

configuration without the'current sheet, which is clled 

natusal oscillations.Bernstein and `lrehan treated 

ncnaxisymmetric nctural oscillations without the besm, 

but this general configuration to be discussed here 

has not been treated up to the present. 

3.4.1 General Configuration 

Again the normal mode analysis is applied to 

following discussicns, so that we assume that all 

quantities in equestion vary as exp i(me+kz-wt) . Let 

the radii of the plasma and the current sheet r and 

r s, respectively, as shown in Fig. 3-3. The surface 

current of the plasma is denoted by J* and the sheet 

current by Js. 

We neglect the displacement current, so that 

the vacuum field may be similarly treated as in the 

chapter I. Then we can easily show that each magnetic 

field is approximately expressed rs follows. 

For rs<r,Bw = kSZ I (kr) 
        r m ~ 

  (outer region) 
                    Bc=imSt ( kr) ,            r m(3-72) 

                    B7 = ikS I~m(kr).
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For r ~<r<r 

  (vacuum 

   region)

For  r<r, 

  (plasma 

Bp =

s' 

clearance

region) 

-i  

F2-k2G2

1  

i+2-k2G2

Cr

Cr

B = k[LIm(kr)+QKm(kr)] 

Be=rmCI,Im(kr)+QKm(kr)3 , 

BY = ik[LIm(kr)+QKm(kr)] .

G(F-k2 )Bp + k(F-G2) 

)Bp + G(F-k2)

aBp 

r aBz 
2r

 (3-73)

Be

Bp = CJ z m(hr).

k(F-G2

II

(3-74) 

or(3-25) 

(3-27)

Where we have suppressed e term exp i(me+kz-wt), and 

we have used superscripts p, v and w to indicate the 

quantities referring to the plasma, the vacuum clear-

ance and the outer vacuum region, respectively. 

Constants S, I, Q and C should be related each other 

through boundary conditions , We shall next derive 

the boundary equations . From i:axwell's equations, 

we have 

A (1..1)=0,( 3-75) 

and - (x)= ( or Alt(3-76) 
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Also the  ma,netic pressure 

gives the relation 

2 

(8m)= 0. 

Where P(X) denotes the cha 

the surface. The 

      BPv             Br= Br . , 

Bp = By , 
                z 

By = Bw r r ' 

and 

           By-Bw=4n Js 
Z Z C 0 

     or -(B0-Be) = 4n Js

balance at

                    the nge 

linearized

(r=r) 

 of some 

forms of 

(r=r) 

(r=r) 

(r=rs ) 

(r=rs )

     The constants S, L, Q 

from the combination of the 

to (3-74) and the bounaary 

After some straightforward 

             4mr S = i  c sJS[Im(krs)-Y 
4nrs s 

L = i  J9Km(krs)' 

               4mr              s s 

Q=-i  JsKm(krs) H , 

4nrs s kr -0Ts ) 
C = - ------c JO------------J

m(hrp)

the interface

(3-77)

quantity X across 

these equations are 

(3-78) 

         (3-79)

(3-80)

(3-81)

                              and C can be determined 

eld equations (3-72) 

rations (3-78) to (3-81). 

reductions, we get finally

Km (kr s)~

k5-2)

                          HK m(krp 
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where 

 H I m(krp) - krPI' (krp) 
 Y = 

        H Km(krp) - krpK' (krp) '                m

2Jmp_                                  (hr) H =k  
       rb(-k2) G + k(i'-~x) hr ------------     ,2-k2G2p Jm(hr

p) 

Thu we can rite dovvn the magnetic field in 

region, and they are 

for rs < r, Br = iNskrs(I'(krs) - YK' (krs)1 
                         mr 

            Be= —NS-----rs~Irn(krs) - YKm(krs)1 Km(kr), (3- 

               Bw                 z = -N8krs[ I ' (krs) - YKm(krs)1 Ki(kr) , 

for rp< r < rs, 

3 = iNskr5Km(krs) FI' (kr) - YKr~(kr)',, 

                 mr    ss      13vB= -lv r K' (krs) 1 Im(kr) - Y Km(kr)] , (3-86) 

t3vz _ -Nskr.IS (krs) 1:Im(kr) — Y Km(kr) , 

for r < r
p, 

Bp =-i~"krsKm(krs)-------------1       zJ m(hrp) H Km(krp) -krphmkcJm( hr) , 

p 

                                            (3-87) 
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 4 ~~                      n 9  
where N''  _(3-88) 

and we have again suppressed the term exp i(me+kz-wt). 

Equations (3-85), (3-66) and. (3-(q) give the complete 

solution for steady state excitation. The electric 

field in each region is readily obtained from h.axwell's 

equation (i.e. rot =-g/cat) and equations (3-85) to 

(3-87). 

3.4.2 Cylindrical Plasma Waveguide 

     Natural wave modes inside a conducting cylinder 

are discussed in this small section. Natural waves 

mean the oscillations without any external exciting 

current. Outside the completely conducting cylinder, 

there are no oscillating field. Then we can set ww=0 

for rr r s, but this solution is somewhat complicated 

still. For simplicity, we shall consider the case 

rs=rp(i.e. the completely filled plasma waveguide), 

whence 

                         HI (kr ) -kr I ' (kr) 
Bw=-lvskr LI'(kr)- --------m-s p mS K' (kr )1 K zs msHK

m(krs)-krpK'(krs) m s m 

= O.(3 -9) 

The .olution of above equation is given by

kr)
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 H  =  0 

orJ'(hr) 
       m(F-k2)G+ k(F-G2)hr r«s  = 0 ,(3-90)                          p

Jm(hrs) 

where we have used equation (3-84) and the fact that 

h' (krp) is finite when krp=0.  m

For the axisymmetric mode (i.e. m=0 mode), the 

result is very simple, which is 

J'(hr) = J'(hrs) = 0.(3-91) 

This gives infinite number of discrete h as the roots, 

which are all the radial 1;,/ave number. 

     On the other hand, for the ion cyclotron waves, 

equation (3-90) is also transformed to a simple one, 

which is given by 

         hr sJm+l(hrs) -mh2 Jm( hrs ) -k2(3-92) 

                                                                                                w.                                          2 
where we have used the approximation that -------1 KKl 

                                       A2k2 

and assumed a=0. The right hand side of equation 

(3-92) is very small in this case, so that the roots 

are approximately given by an equation 

J m+l(hrs) = 0(3-93) 
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Needless to say, equation (3-92) may be reduced  to 

equation (3-91) men m=0, because Jo = -Jl. 

3.4.3 Vacuum Boundary 

                         Natural modes of a plasma cylinder surrounded by 

vacuum can be examined by setting s=0. The condition 

that V has a finite value when s=0 leads—to the re-

lation 

  kJ'(hr) -krKm 
  F2(kr )  ~,(m(Fk2)G+k(F-G2pp            )hr ---------A 

  -k2G2lp J
m(hrp) Km(krp) 

                                      (3-94) 

where we have used equation (3-84) and (3-87). Equation 

(3-94) gives infinite number of the radial vave number 

h, so that this equation may be called "characteri._tic 

ecluetion". When u=0, equation (3-94) becomes 

      2 [ mw+(k22-w2-42-A2k22J(hr)p    (k )5k 
      A krK'(kr) 

                             Km(krp),(3-95) 

which is in agreement withBernstein and Trehan's 

result. 

    For the axisymmetric ion cyclotron wave, eouation 
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(3-95) can be reduced to 

     Jo (hr  )  Ke(kr p  
_ _   0~- 

hJo(hr) kKo(krp 

This is also re~fritten as 

     hrpJI(hrp)krpK'(kr) 
J1(hrp) K1(krp)(3-96) 

where we have used the relationE as 

J'(z) = -J1(z),K'(z) _ -K1(z) 

       J (z)K(z) 
Jo(z) = J'(z)+ lz ,Ko(z) = -K1(z)-K1(z)• 

                                       26) 
Equation (3-96) is in agreement with 3tix's result. 

3.5 Application of Ion Cyclotron Waves to Plasma 

Heat it 

     It has been shown in the chapter II that the 

efficiency of the direct ion cyclotron heating of 

plasma falls away as tt,e plasma density increases. 

On the contrary, ion cyclotron waves are apt to be 

excited in such a nigh density. If there is a damping 

mechanism of the waves, we can heat plasma through two 

etages as follows. At first, we excite ion cyclotron 
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waves in a heating section. This excitation can be 

made with high efficiency, since the mass velocity 

in the waves  becomesextremely high as Q* tends to 

unity as seen in equations (3-57) and (3-58). In the 

next stage, these excited waves are caused to damp by 

a damping mechanism. Thus the energy consumed by the 

excitation of ion cyclotron waves is finally converted 

into the thermal energy of plasma. 

Many damping mechanisms of ion cyclotron waves (or 

hydromagnetic waves) may be considered, but the most 

effective are so-called "phase mixing" and "cyclotron 

damping". Possible radial and axial wave numbers h 

and k of the bounded waves are determined by the 

characteristic equation (3-90) for the configuration 

of a cylindrical wave guide or (3-94) for the configu-

ration with a vacuum boundary. Therefore, there occur 

many waves with the same frequency. These waves are 

not excited equally, but the wave of the mode closest 

to resonant condition may be predominantly excited. 

In other words, one predominant wave corresponds to an 

ion beam. The expressions for yr and v9, given by 

equations(3-57) and (3-58) indicate the occurence of 

this resonant excitation. If there are a number of 

ion beams in the plasma, many predominant waves may 

be excited. In the heating region, these waves are 

forced to be in phase. Generally predominant waves
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corresponding to different beam velocities have 

different phase velocities. Therefore, as the waves 

propagate away from the heating region, these waves 

may become out of phase with each other; that is to 

say, a phase mixing occurs. This phase mixing gives 

rise to the conversion of the ordered motion of ions 

into random motion (or the wave energy into thermal 

energy of ions). 

     There are also configurations of coil for exciting 

only a hydromagnetic wave. For instance, Stix's coil 

excites plasma waves with a fixed axial wavelength. 

Similar phase mixing can also be expected even in such 
                              27) 

a case, analogously to  Landau damping This mecha-

nism is named "cyclotron damping". If the ion 

cyclotron wave, excited in the heating region, falls 

in a region where many beams are near resonance, its 

phase velocity becomes very slow compared with the 

thermal motion of ions parallel to the propagating 

direction (i.e. the axial direction). This situation 

can be seen in the dispersion relation (3-28)' for 

general case or (3-40) for infinite radial wavelength. 

The wave form is randomized by the parallel motion 

of ions and consequently the wave disappears or be 

ther_malized. From the microscopic point of view, this 

mechanism is regarded as a cyclotron resonance 

ab.,orption of ions feeling the wave field at their
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own cyclotron frequencies. This damping is much 

effectively accomplished with damping length shorter 
               24) 16) 

than a wavelength. Dawson and Stixderived the 

damping length for axisymmetric mode. 

     The Heliotron-B device is equipped with a 

exciting coil of Stix's type. Excited ion cyclotron 

waves in this coil region are expected to be damped 

with the cyclotron damping at the slope of the 

Heliotron magnetic field, experiments on which will 

be described in a chapter VIII.
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 IV Ion Cyclotron Resonance with Collision 

Relaxation

4.1 Introduction 

      In the chapters II and III, plasma consisting 

of one kind of ions and electrons was considered, 

so that their momentum transfer to another kind of 

ions was not necessary to be taken into account. 

however, the fusion reactions between triton and 

deuteron (T-D reaction) can easily take place compared 

with deuteron-deuteron reaction (D-D reaction), since 

the T-D cross section has its peak at the deuteron 

energy of 100 keV, whereas the D-D cross section at 

2 MeV. If we consider a plasma under the D-T fusion 

reaction, the momentum transfer must be taken into 

account. But this momentum transfer has a velocity 

dependence as w-2 at extremely high temperature . This 

fact makes it somewhat difficult to treat the problem
, 

since the Boltzmann equation can not be linearlized 

in this case. 

     On the other hand, a weakiy ionized gas governed 

by constant mean free time hypothesis has a linear 

dependence of the moment transfer on particle velocity
. 

Then the Boltzmann equation will be approximately linear - 

li'ed. Furthermore, this kind of gas may be regarded 

as a simple model of high temperature plasma with
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collision relaxation. This case is to be analyzed 

in this chapter. 

     Cyclotron resonance with relaxation was first 
                                   28) 

investigated by  Dresselhaus, Kip and Kittel to 

determine the effective mass of electrons or holes 

in semiconductor. They observed that there are many 

electrons with different effective mass in germanium 

at 4°K and discussed the structures of the valence 

band of germanium and silicon. Ion Cyclotron Resonance 

in a weakly ionized gas has many similar points to 

the cyclotron resonance in solid, except for applied 

frequencies. When the mass is known, so-called relaxa-

tion time (i.e. collision time) of the particle may 

be determined. 

     The mechanism of the ion cyclotron resonance with 

collision relaxation is described as follows. Suppose 

a weakly ionized gas is placed in an externally applied 

strong magnetic field and a rf electric field perpen-

dicular to the magnetic field, the frequency of ahich 

is near the ion cyclotron frequency_ The ions are 

resonantly accelerated, and then they collide with 

the molecules of the gas and loss their energy con-

sequently. 

     If we oweep the rf frequency or tie magnetic 

field strength, then we have an absorption curve of 

the ion cyclotron resonance, the peak of wnich is

109



near the cyclotron frequency. As shown in a  Section 

4.4, the half-width of this resonant absorption curve 

depends on the momentum collision,frequency between 

the ions and the molecules. Therefore, we can deter-

mine the momentum collision freciuency from the half-
                                         29)30) 

width. This method was proposed by the auther (1961) 

and will become an important one to determine the 

collision cross sections between ions and molecules, 

especially at low energy. Because Born's approximation 

methodis invalid for the case of low energy ions and 

also an experimental ion beam injection method becomes 

very difficult at low beam energy. The dependence of 

the half-width on collision frec1uenc yn,; could be 

experimentally verified as described in the next chapter 

V. 

      After the auther's investigations, Wobscfall, 

Graham andMalone (1963)31)carried out similar experi-

ments in detail and determined the collision cross 

sections h2+ and Ar+ in their parent gases. 

     In this chapter, we treat the case as the rf 

electric field for the cyclotron resonance is induced 

by a solenoidal sneet current flowing azimuthally and 

a weakly ionized gas cylinder is co-axially immersed. 

An external strong magnetic field is imposed parallel 

to its axis. Wobsnall et al used the electrostatic 

field produced by two plane electrodes, but this
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configuration makes the phenomena in plasma very 

complicated, since the sheath formation on the plate 

will play a dominant role in the case.  Therefore, it 

may be prudent to avoid such a configuration and adopt 

the axisymmetric induced field. 

    We derive the energy dissipation of the electric 

field by the ion cyclotron resonance in a section 4.2. 

Then the penetration of the rf field into the plasma 

will be discussed in a section 4.3. The proposed 

method to determine the collision cross section is 

to be described in the chapter 4.4. 

4.2 Energy Dissipation into Gas under Ion Cyclotron 

Heating 

     The physical situation under consideration is as 

follows. Minfinitely long cylindrical slightly ionized 

gas is immersed. in a strong static field parallel 

to its axis (the z-axis). Ef solenoidal current flows 

co-axially with the gas column and induces an azimuthal 

rf electric field. There is a vacuum gap (or clearance) 

between the current sheet and the gas column. The 

fields have no variation in the axial direction. This 

configuration is shown in Pig. 4-1. 

     The induced field in the plasma is generally di-

fferent from the vacuum field, due to plasma reactions. 

     problem is to be discussed in the next section.
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current  sheet 

(7--- 
l'Sc, 

vacuum 

        ---- 

1 plasma-

   Fig. 4-1 Boundary situation of plasma. 

In this section, the electric field is assumed given 

and the resulting ionic behaviours will be investigated 

self-consistently in the next section.  The electric 

field may be expressed by complex notation as 

   E = Er + 1E0(4-1) 

             _ E eiwt"+ E e-iwt      (4-2) 

This expression is similar to that used in the chapter 

II. A term e-iwt expresses a circularly polarized 

fiel.d in the same sense as the ion cyclotron gyration 

and another term eiwt in the opposite sense. As no 

axial dependence of fields is assumed, so E+ and E_ 

are functions of only the radial distance r. further-

more, it should be noted that the axial component of 

the electric fie]d does not exit in this configuration
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of the sheet current. 

     For the sake of simplification, we shall make 

several  approximations  as follows. 

1) We neglect the oscillating component of the 

    magnetic field so that =' Bo an unit vector 

     in the z-direction ). 

ii) We neglect the variation of the transverse 

     electric field over the Larmor radius of the 

      ion. 

iii) The momentum transfer from the ions to the 

     molecules of the gas is proportional to the 

     velocity of the ions. That is, 

in = -VV ,(4-3) 

     whereinis the rate of transfer of momentum 

     (per cm3 per sec) from the ions to the gas 

     molecules and v is the macroscopic velocity 

     of an ensemble of ions. 

iv) We neglect the gravitational force and the 

     pressure gradient of the plasma. And also we 

     neglect the radial diffusion of the charged 

      particles. 

    The basic equation for the ions in these appro-

ximations is given by 

       t=a(E)+vx Boz)-vmv.(4-4) 
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In our complex co-ordinates, equation (4-4) can be 

 re\Nritten to be 

at+iwim?          + vv=,(4-5) 

where 

v = yr + iv&(4-6) 

and wi is the ion cyclotron angular frequency. 

Equation (4-6) can be readily solved by using Laplace 

transformation and then we get 

          -v
ffit -iw.t    v = ee[vo+Nl{~ wi+(p)+vm + i(wi-w)+vm~ J 

       Eeiwt-iwt            e~ 
     +q 5-(w++w)+vm----------------- +i(w.-w)+vm(4-7) 

where v+ is the initial velocity. Therefore, the 
steady solution of equation (4-5) becomes 

iwteiwt 

v = a Li(wi+17+ Vm + i(wi-w)+ vm I . (4-8) 

     In steady state, the input power and the energy 

loss due to collisions are balanced each other, that 

is similar to the case of rain drops falling down 
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through the atmosphere. At the beginning, a rain drop 

is accelerated by the gravitational force and then 

 finaJly its speed becomes constant, when the input 

power from the gravitational force becomes e,,ual to 

the drop's work against air friction force . There-

fore, the input power from the gravitational force 

in steady state is mg.v, where m, g and v are the 

mass of the rain drop, the gravitational acceleration 

and the velocity, respectively. Analogously to this 

rain drop model, we can determine the energy dissi-

pation rate (or absorption rate), which is

E.D. = n v• , 

       i

where F is a force acting on the ion. 

rewritten as 

       E.D. = ni(v
r Fr + ve Fe) 

niRe(v • f*) ,

(4-9)

This is also

(4-10)

where

and X* 

f* is

 f =
r + iFe 

 denotes the conjugate 

also expressed in terms

(4-ii)

of X. 

 of E given in equation
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(4-2) and then we have 

 f*  = qE* 

         q~+e-iwt+* eiwti(4-12) 

Thus we get 

 _2Q --------------i2wtl v. f*M1l212[E+E*{Vmi(ui+` )1++~* S Vm-i(c~i+cu)~eJ 
         ll; +(wi+w) 

+ 21 2                   LEE*(w?~mii-w)~+ EE+(vm( w i-w ))(e-i2wt1~ Vm +(wi-w) 

                                           (4-13) 

Taking time average of E.D., then we have 

   E.D=nig2VmIE+I2+--1E12                                J (4-14)                   vm+(wi+w)2vm+ (wi-w)2 

which is the root mean square of the dissipation power 

into the plasma per cm3 per sec. If E+ and E2 are 
constant and Vm is small, the second term in the 

braket of equation (4-14) becomes dominant when w-wi. 

Then the absorption curve (or the line shape) becomes 

Lorentzian. 
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     The induced 

complex form as 

          =  nigv 

           niq2

ion current is also

C e
iwt

   -t  

 i(w+w

E e

obtained in

-iwt

i
+~ 

m

i(w -w
i

+v
m, (4-15)

where

j = J + iJB

4.3 P_netration of RF Field into Plasma. 

     We shall consider the radial variations of E+ 

and in both the plasma and the vacuum gap and discuss 

the penetration of the rf field into the plasma for 

different cs:;es. 

     The fields under consideration are all axisy-

mmetric and axially invariable. Therefore,Naxwell's 

equation,:, without displacement current become in 

cylindrical co-ordinates 

0 = Jr ,(4-16-1) 

a$ z 4Tc 
     ar- c~(4-16-2) 

4n 
rar(1-139)  =c`Jz(4-16-3)
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and  zB
r 0- 

at ' 

aBc., 

0= 
at 

          r a(rEe) = 

where we have assumed 

and (4-17) correspond 

respectively. Then we 

and (4-17-3),

  1 
c 

that 

to "/ 

 have

(4-17-1)

(4-17-2)

dBz 

at(4-17-3) 

             • Ez=0. Equations (4-16) 

x = 4c J and / x = - 
, from equations (4-16-2)

1 

c at'

Also

a1 

   arLr ar 

we have 

DJz 

at = 0.

(rEe) _4n 

c2

Since no constant current 

is considered, then we get

Electron 

compared

 Jz = 0 . 

drift induced 

with the ion

d Je 

at '

flow parallel to the

(4-18)

z-axis

(4-19)

 by the rf-field is negligible 

velocity, as described in the
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chapter 111. Also we have assumed that there is no 

 radial diffusion. Therefore, it is reasonable that 

the radial current Jr in the plasma, if it flows, is 

mainly carried by the radial motion of the ions. 

Also the azimuthal current JB is in the same manner. 

    The radial current may be obtained from•equation 

(4-15) and it becomes 

Jr = Re(j) 

          2        n
Tviq-------[--------1 21he(E+d+)coswt - Im(E+d+)sinwt            d+I 

           

+ -------12he(e_d_)coswt +Im(=_d_)sinwt~l, 
  Id _IJ 

                                           (4-20) 

where 

d+ _ 'Jm - i(wi t w) .(4-21) 

Equation (4-16-1) is valid at any time, so that we 

have from equation (4-20) 

  1
2[ mhe(E+)+(wi+w)Im(ti+)J'+ -------12[mT,e(_)+(wi-w)Im(~_)~ d+II d_I 

= 0 

                                             (4-22) 

and 
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 - id+!2vmIm(E+)-(n1+w)Re(E+)]+ 
          1 Im c -( w 

         2 Id m 

In  complex form, equotions (4-22) and (4-23) become 

             0m+(w.-w)2.\m+1(u).+0)) * 
E- -2

+(w+w)27-71-77-77-7)7-u_~                      i(4-24) 
m i 

This relation gives the ratio of F_ to in the plasma 

region. 

In an extreme case 0m=0 (i.e.collisionless plasma), 

equation (4-24) becomes 

w1-w 
_ +(4-25) 

                     w .+w   .1 

Thus E_ will be very small if w=w1. In other words, 

the circularly polarized field in the same sense as 

the ion gyration can not penetrate into the plasma 

and only the oppositely polarized field exists in the 

plasma region. As seen in the chapter II, both the 

polarized fields can penetrate into the plasma, if 

the field is periodic in the axial direction. This 

is the reason vvhy the axially periodic field is adopted 

for ion cyclotron heating of plasma. 
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     In another extreme case  Vm-,o equation (4-24) 

becomes 

      E__ -E+* •(4-26) 

Infinite V m implies that the ions cannot move and 

rigidly stick to the gas, which may be regarded as 

solid in this case. Therefore, this state is equi-

valent to vacuum, since the ions do not react against 

the field. Equation (4-26) shows that 6+ and are 

of the same order, that should be emphasized. 

     Next we shall discuss the radial variations of 

E+ and E . From equation (4-15), the azimuthal 

component of the current is found to be 

J8 = Im(j) 

           2 

        n
Mq 12SIm(E+d+)cos et + Re(E+d+)sinwt~           Id+~ 

+ ----------l 2)Im(E_d_)coswt - Re(E-d_)sinwtf 

                                            (4-27) 

where d+ are again given by equation (4-21). The 

azimuthal component of the electric field is also 

obtained from equation (4-2), which is 

Ea = Im(E ) 

            = Re(E+-E )sinwt + Im(e++~_) coswt.(4-28) 
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 Combination 

yields the

 of equations 

.relations

(4-18), (4-27) and (4-28)

DrRe(E +--)1_w 2 

p

 c 2 d~12
Im(a d )- -1-- Im(E. 

+ + 
1,3_12 

  (4-29)

D[Im(a++L_)    2 
  wpi

w_ 

c2

1 -_ 

d+'

he(c+d+) 1 

d_,'

Im (,:_d

 (4-30)

where

D _ d 1. di-LTdr ri (4-31)

In 

as

complex

D(a+

form,

     w      p =
~

equations

02

(4-29)

   -+  

  1)111-i~

and (4-30) are

+ ),)m+i(w.-w) I

expressed

(4-32)

Furthermore, equation (4-32) is

relation

or

(4-24), to be 

LI(E+) _ _ 7E4

d'E+ 
-- + 

dr.22
r

d~+ 
 dr

b2 - 

a r2

rewritten, by

)~+ = 0,

using

(4-33)
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where 

 2ym   -  iw     a = 2
vm—i(wi+w~(4-34) 

               2 

     b2 =2w iw  
               c2               \111-i(wi+w),(4-35) 

Thus we have 

s+ = E0J1(ar),(4-36) 

where E
o is a multiplicative constant and determined 

from the boundary conditions. 

    On the other hand, E+ in vacuum is found by putting 

wpi=0, and then we have the equation 

     d2£+ld£+ 

dr2+r dr- E+ = 0.(4-37) 

This solution is readily found to be 

£+ =E1r+E2r •(4-38) 

In order to distinguish the field in the plasma 

region from thatin the outer vacuum region, we shall 

use the superscriptsp and v in bellow discussions as 

in the chapter III. The boundary conditions, which 

determine the constants 6o, El and a2' are described
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in  this axisymmetric configuration as follows. 

At r=r 
p 

  EPB= E9,(4-39) 

dE8 dE® 
  drdr(4-40) 

and at rp=rs 

v 
         -d

r 
= -4nwJ9cosu~t.(4-41) 

c Where we have assumed thet the sheet current varies 

with time as 4 sinwt (per cm). be is also expressed, 

instead of equation (4-28), in the form 

Ee _ -Im(EI-E _)c.oswt l~e(E - _)sinwt. (4-42) 

Therefore, egiuotions (4-39) and (4-40) imply that 

(~-~) and its radial derivative should be continuous +- 

   at r=r
p.In the plasma, we have already introduced 

the relation 

c-p* - p = a2~p* 
+-(4-43) 

In the vacuum gap, a2 is 2 as above stated. Therefore 

we have 

         ~v-v=2~v     + - + .(4-44) 
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Thus we get, instead of equations (4-39) and (4-40), 

  a2ep**      = 2E+ at  r=r(4-45) 

and 

    dr(ap*)  = 2d             dr(E+*) at r=rs. (4-46) 

if the gas is assumed slightly ionized, ar will be 

very small. Then J1(ar) is nearly equal to tr. In 
this case, we can easily determine Eo and E.2 in terms 

of E1 as 

       Eo=dbc-         1 'E2 = 0.(4-47) 

Combination of equations (4-38), (4-41), (4-42) and 

(4-44) yields the relations 

       2,Im(E1) =4n~e 

                     J 

       Re(E1) = 0 . 

In complex form, 

2nw s E
1 - 1 2 Je(4-48) 

Finally we get the solution as
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 for r< r , 

  P= (Ep*) * ,(4-49) 

EP = (1-a2 )E* ,(4-50) 

EP* = i 2n26~r(4-51) 

for r< r <rs , 

   ~+ _ ~V = -i 2n2J91'(4-52) 

It is worth while noting that+ and E,v are both purely 
imaginary; that is, there is only the azimuthal electric 

field. 

      If the plasma is collisionless, a2 becomes 1 and 

we find 

Ep = 0 , 

    Ep=2E+ 

, at the intersurface of the plasma and the vacuum gap. 

As the electromagnetic energy density in the vacuum 

side is twice times as much as the electric energy 

density, so the electromagnetic energy in vacuum side 

126



 ._

becomes just the electric energy density as one passes 

through the intersurface from the vacuum region . 

     Generally, the E+ field penetrates the plasma 

without considerable change, independently of the ion 

density. On the contrary, the E field is also un-

changed for sufficiently low ion density but is reduced 

by a large factor for high ion density. 

4.4 Absorption Curve and Determination of Momentum 

      Collision Frequency 

     In this section we shall investigate the energy 

dissipation due to the cyclotron resonance,by using 

the result in the previous sections. Then a method 

to determine momentum collision frequency is to be 

proposed. 

     First we shall obtain theenergy absorption per 

unit length of the cylinder. From equation (4-24) we 

obtain 

         p2 
                ())2+1112_wi)2+4?ll.iw2u2       I~I 2+(w•+w)2I5+I(4-53) 

            I~ 1 

Then the dissipation power given by equation (4-14) 

2

v~ 
•w

()r~y2~+w2+WW•)`-}~`wi~l~rw2+(v,-w4+5^2                                                       +4
m  4 ------ Js 21,2~‘m,,, g c(v+w2+(w+w)2~fy2+( w.+m)+(w                                                 lr,~rr . 

                                           (4-54) 
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 E.D.U.=

where we have used equations (4-34), (4-51) and (4-53). 

Thus we can derive the dissipation power per unit 

length of the cylinder E.D.U. from the integration 

of equation (4-54) with respect to r from 0 to rp. 

Then we get 

     3222~22222w2 - rtwv;+w+..~)-y„wy a~(v-w+w}+4w.       ::iulim m i mi   ~(Jts}' 224~~„' I+ 3c4(U`~{y+(r,±~1v+(w +w1.())lw2+.-w), 1m    m+(9Ti1Z 

                                          (4-55) 

where we have assumed that w2                                 (or the ion density) 

 is constant in the plasma region. 

      If we draw a curve of E.D.U. as a function of w, 

 this curve will have a peak near the ion cyclotron 

frequency wi. Also the half-width of the peak has a 

 relation to the ion-molecule momentum collision frequency 

 `5 .,according to equation (4-55). Therefore, if we can 

practically observe this absorption curve for a given 

 partially ionized gas, tnen we can determine m under 

 the situation from the half-width. 

      The frequency dependence of E.D.U. given by 

 equation (4-55) is rather complicated, but it is sim-

plified for slightly ionized gas. Because, in this 

case, I~pl2is the same asIEpl2 and then we can use the 
relation given by equation (4-14) in place of (4-55). 

Furthermore, if >>m is relatively small compared with
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w.,  the second term in the bracketSof equation (4-14) 

becomes predomin<<nt and the absorption curve will be 

of a Lolentzian shape. Then, the half-width aw is 

given by 

pw = 1)111 .(4-56) 

This relation is shown in Fig. 4-2-a.

 wi 
wBres Bo 

  (a)(b) Fi
g. 4-2 Absorption curve of ion cyclotron resonance. 

           (a) Frequency sweeping. 
          (b) Magnetic field sweeping. 

If we sweep the static magnetic field instead of the 

frequency sweeping, the half-width of the absorption 

curve as a function of Bo is also given by 

           =  

      12/11
GBo- wbres ,(4-57) 

wherelv_cw 
  L2._-( 4-58)       res q 

In such a manner, we can experimentally determine -21,. 

Such experiment was carried out by the =uthor a 

described in the next chapter.
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V Experiment on Ion Cyclotron Resonance 

with Collision  Relaxation

5.1 Introduction 

      As explained in the previous chapter, the line 

broadening of the absorption curve of ion cyclotron 

resonance in a slightly ionized gas is mainly caused 

by the collision relaxation of ions with,neutral gas 

molecules. Experiments described in this chapter were 

carried out so as to verify the dependence of the half-

width on neutral molecule density and determine the 

momentum collision frequencies for different gas pressures . 

      Many experiments on ion cyclotron heating of plasma 

have been reported, but those which had pure aim to 

determine the collision frequency were restricted to 

only experiments by the auther0)andby Wobschall uraham 
and Malone.l)Also Dubovoi,)Thvets and Ovchinnikov32) 
)bserved the dependence of the line broadening on gas 

pressure in their experiment of ion cyclotron resonance 

in dense plasma, though they made experiment on plasma 

heating. 

     It is mainly attributable to the difficulty of 

detection of the absorption curve that there have been 

only a few reports concerting this problem . Becuase 

the re,,onance signal is so eak and noisy that we 

must begin with the development of detecting method
.
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The author, and  Wobshall and his coworkers succeeded 

in the improvement on the signal to noise ratio by 

combining a phase-sensitive detector and a narrow 

band amplifier. This technique was much obliged to 

the development of nuclear magnetic resonance spectro-

meters. 

    Also it should be noted that Kelly, Margenau and 

Brown33)had investigated-electron cyclotron resonance 

for determining collision cross sections for low-

energy electrons from the theoretical and experimental 

pointsof view. In this case, the frequency of electric 

field is in a microwave region and then the technique 

is of course quite different from that of the in 

cyclotron resonance. 

     In the next section 5.2, . several detecting methods 

of the absorption power and the results by them will 

be described. Especially, the result on the collision 

broadened curve observed by an autodyne oscillator 

method is to be given and discussed in detail in the 

subsequent section 5.3. 

5.2 Detecting Methods for Collision Broadened Lines 

      of Ion Cyclotron Resonance 

     In order to obtain the absorption curve of ion 

cyclotron resonance in a slightly ionized gas, two 

methods may be considered; that is, a magnetic field 

sweeping metliod and a frequency sweeping method, as 
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explained in the section 4.4. Technically, the former 

method is rather simple but physically the latter is 

more suitable, since there are  apprehensions of the 

change in physical plasma situation during the magnetic 

field sweeping. t;ethods described in this chapter 

belong to the type of the field sweeping. The reason 

is scribed to the difficulty to make a high gain 

detector for the frequency sweeping.On the contrary, 

as explained in a chapter VII, a frequency sweeping 

method could be adopted to measure the exciting power 

absorption of ion cyclotron waves in the Heliotron-B 

device, because the plasma density in the device was 

relatively high (10 2/cm and a Franklin oscillator 

could be used. 

     The plasma and its container for the measurement 

of collision frequency should have properties as follows 

(1) The plasma must be quiescent as much as possible, 

      since plasma noise has direct influence upon 

      the S/N ratio of signals. 

(ii) The plasma should be pure. For the sake, it is 

      necessary to diminish the outgas from its gas 

       container or diecharge electrodes . 

(iii) The container must be sufficiently large compared 

riith the Larmoi radius and the mean free path of 

ioris, and otherwise the apparent collision fre- 

       uency ,voul d be decided by the scale of the 
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       container. 

(iv) Currents in the plasma parallel to  the magnetic 

      field are desired to be very small. 

     Several detecting methodstried by the author will 

be described in following small sections. 

5.2.1 Combination of a Magnetic Field Modulation 

         and a Lock-In Amplifier. 

     The foundation of this method may be found in the 

technique of the detection of nuclear magnetic resonance, 

though there lies some differences between them. nuclear 

magnetic resonance can be caused when the tr sition 

energy of the nuclei in a magnetic field between energy 

levels becomes equal to the quantum energy of an applied 

electromagnetic radiation. This relation may be written 

as 

413N Ho 
hi) = (5-1) 

or 

2i = Y. Ho = wm(5-2) 

where I and 4 are the spin number and the magnetic 

moment of the nuclei, 13N is a constant called the 

nuclear magneton, Ho the magnetic field strength, 

h Flank's constant and 1) the frequency. Also Y is 

known as the gyromagnetic ratio. wm given by equation 

(5-2) is classically understood to be the precession 
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angular frequency of the nuclear magnet. Then we 

can find the correspondence of the nuclear magnetic 

 resonance with the ion cyclotron resonance. That is, 

the precession angular frequency wm corresponds to 

the ion cyclotron angular frequency wi and T in equa-

tion (5-2) to M2c-of the ions. This correspondence 

may be schematically shown in Fig. 5-1. However, a 

remarkable difference between them is that the transi-

tion of the nuclear magnetic resonance is discrete

0 
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and, on  the contrary, the acceleration by the ion 

cyclotron resonance is continuous, as seen in Fig. 5-1. 

Nuclear magnetic resonance spectrometers are 

ordinarily of a field modulation type. If an oscillating 

magnetic field of small amplitude is imposed parallel 

to the static magnetic field and only a signal of the 

modulation frequency is detected, then the differential 

curve of an abLorption signHl can be obt-,.ined, through 

a phase-sensitive detector (Lock-in amplifier) as 

explained in Fig. 5-2.

1
 '

 ,1

1 +

I ,--Absorption curve

( Signal

-2 -1 77) 2 7 >

Fieid

modulation

-DifferentiH1 cur\RJ

 Fig.5-2 Aborption curve «rA(a it. differ•entie1 curve
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In this case, the  S/N ratio can be much improved, 

owing to a narrow-band amplifier and a phase-sensitive 

detector. This method is also available to ion 

cyclotron resonance spectrometers, if some attentions 

are paid. 

     The practical detecting apparatus tried by the 

author is shown in Fig. 5-3. A discharge tube(8 cm 

long and 3 cm in diameterwas mounted in the gap of 

poles of an electromagnet and its axis was parallel 

to the magnetic field. A rf work coil wound around 

the discharge tube formed the L-C tuning circuit of 

an autodyne oscillator, the circuit of which was the 

same as nuclear magnetic resonance spectrometer and 

will be again described in detail in the next section 

5.3. A compensating rf coil was connected in series 

with the rf work coil and compensated the modulated 

magnetic flux passing through the rf work coil. 

Therefore, no signal should come from the autodyne 

oscillator, as far as the cyclotron resonance absorp-

tion did not occur. The ion cyclotron resonance 

absorption of plasma gave rise to the decrease of 

the oscillation level of the oscillator. The signal 

of this change in the level was modulated due to the 

magnetic field modulation and approximately proportional 

to the derivative of the absorption curve, which could 

he checked by using a dammy load instead of plasma.
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      The signal from the oscillator was amplified by 

a  pre-amplifier and then put in a Lock-in amplifier 

through a narrow-band amplifier of the modulation 

frequency (80 cps), the gain.of which was 60 db. 

The AC sigruH was converted into DC signal by the 

Loah-in amplifier and finally recorded by a pen recorder. 

The spacial homogeneity of the magnetic field was 10-5 

over the plasma region, since the magnet had been 

made for apelectron spin resonance spectrometer. If 

the main static magnetic field was swept, then a 

differential absorption curve would be recorded. 

      Fig. 5-4 shows an example of the differential 

absorption curves obtained in such a manner. Here, 

the gas used was helium and the ions being subjected 

to ion cyclotron resonance were singly ionized helium 

atoms (fie+), which were produced by discharge of 100 

mA. The pressure of gas was 1.6 x 10-1 Torr , that 

was measured by a Macleod gauge . The corresponding 

ordinary absorption curve could be obtained from 

the graphical integration of this differential curve , 

which is shown in Fig. 5-5 . This is an absorption 

curve of the ion cyclotron resonance with collision 

relaxation. The curve is much broadened due to Het 

molecule collisions and its half-width is about 600 

gausses. Then the momentum collision frequency is 

about 7 x 105 per second in the case .
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     This detecting method is supposed to be the most 

reliable one, since the S/N ratio is very large as 

seen in Fig. 5-4.  However, long use of this electro-

magnet was impossible unfortunately, for it should be 

u.,ed for its original purpose. For the reason only a 

few results could be obtained by this method. Never-

thless, it became evident that rf power absorption 

of a slightly ionized plasma has its peak near the 

ion cyclotron frequency and the shape of the line is 

such as expected theoretically in the previous chapter 

IV. 

5.2.2 Direct iveasurement of the Oscillation Level 

        of Autodyne Oscillator 

     The direct measurement of oscillation level 

of the autodyne oscillator no longer needs the magnetic 

field modulation, though its S/N ratio becomes somewhat 

inferior to that of the modulation method. Therefore, 

the apparatus for it will be more simple. 

     Detail discussions of the apparatus and the 

results by this method are again to be given in the 

section 5.3. 

5.2.3 detection of Emitted Light Intensity 

If radio frequency discharge in a strong magnetic 

field is caused by an azimuthal electric field and its 

frequency is near the cyclotron frequency of ionized
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particles in their parent gas, the ions will be 

resonantly accelerated and will contribute to the 

ionization of the gas molecules. Then, we may observed 

this ionization effect of the ion cyclotron resonance 

from the measurement of light intensity radiated from 

the ionized gas. Also it  will be observed that this 

effect is affected by the collision relaxation between 

the ions and the molecules. 

     In order to verify this effect, a simple experi-

ment was carried out by using an apparatus as shown 

in Fig. 5-6. A discharge tube of Pyrex glass (40 cm 

long and 4 cm in diameter) was inserted in a solenoidal 

coil (50 cm long and 9 cm in inner diameter) co-axially 

with its axis. Around the discharge tube, a rf work 

coil was wound and induced an azimuthal rf electric 

field. Rf power was feeded through a mA"ching network 

from a continuously working oscillator, the power and 

the frequency of which were 300 watts and 10 Megacycles 

per second. The magnetic coil was energized by a 

condenser bank of energy 40 kilojoule. The resulting 

magnetic field strength was 1.17 x 104 gausses of 

maximum. The total emitted light was led through a 

optical pipe of plastics and then detected by a 

photomultiplier RCA6342 . Since the homogeneity of 

the magnetic field was + 2% over the plasma region, 

then the line width of the light intensity variation
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as a function of the magnetic field strength would 

be expected to be observed, if the cyclotron resonance 

effect was present. 

     Experimental procedure was as follows.  hydrogen 

gas at pressure of 10-3 Torr was first put in the dis-

charge tube and then the rf discharge produced plasma. 

lext, the condenser bank energyzed the magnetic coil 

with an ignitron switch. In such a manner, time 

variations of the light intensity could be observed with 

a synchroscope. Namely, the variation of the light 

intensity could be observed as a function of the magnetic 

field strength. 

     An example of the results is shown in Fig. 5-7. 

The light intensity increased quickly at the beginning 

of the magnetic field rise and then decreased slowly. 

Again it increased as the magnetic field was decaying. 

During this variation, two small peaks could be observed, 

which are indicated by arrows in the figure. These 

peaks corresponded exactly to the magnetic field where. 

proton cyclotron frequency was equal to the rf frequency. 

However, these peaks became very broad 10 minutes 

after from the start of discharge, as seen in the second 

osciilogram of the figure. This may be explained 

as that outgassing from the tube wall raised the inner 

gas density gradually and, as a result , so-called 

collision broadening of the peak was caused. Though
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 the light  was pink at the beginning, it became white 

10 minutes after. This also suggested the outgas of 

impurities. 

      Therefore, it might be concluded that the ion 

cyclotron resonance affects the ionization mechanism of 

the azimuthal rf discharge and the resulting variation 

of light inten:ity is dependent upon ion-molecule 

collision frequency. 

5.2.4 Other Detecting Iethods 

      Other tried detecting method5for the measurement 

of the ,absorption curve were as follows. 

(i) Q-meter 

      By meaburing the Q value of the rf coil wound 

around the discharge tube, the absorption curves can 

be obtained. In practice, the resonant .absorption 

could be detected . However, the dip of Q value due 

to the ion cyclotron resonance was very small and so 

unavailable for determining collision frequency . 

(ii) Franklin Type Oscillator 

       A franklin type oscillator was also tried , 

instead of the : utody .ne oscillator. This oscillator 

has a pure sinusoidal wave form and can cover the 

wide frequency range with little variation of power . 

These chnracteri .sti ce make it pose i ble to adopt a 

frequency plotting . Therefore, this circuit was
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applied for observing ion cylotron waves of plasma 

in the Heliotron-B device, as described in the chapter 

VII. 

5.3 Collision Broadened Absorption Curve and  lviomentum 

      Collision Frequency 

     In this section, collision broadened absorption 

curves and momentum collision frequencies obtained by 

the autodyne oscillator method will be given for 

different gas pressures. 

5.3.1 Experimental Apparatus 

     A discharge tube was inserted in the gap of pole 

pieces of a electromagnet. A rf coil wound around the 

discharge tube formed the L-C tuning circuit of an 

autodyne oscillator and induced an azimuthal electric 

field, so that the configuration of the field for 

acceleration became as discussed in the chapter IV. 

The power absorption of this rf field could be detected 

by measuring the variations of the oscillation level 

of the autodyne oscillator. The detail explanation of 

each part of the apparatus is as follows. 

(i) The electromagnet 

     The gap and the diameter of the pole pieces was 

10 cm and 25 cr,,, respectively.'lhe available scanning 

range of its field strength was from 800 to 5400 gausses. 

The field uniformity was less than 10-4 in the discharge
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 region. 

(ii)  The discharge tube and the rf coil 

       Fig. 5-9 shows the sectional diagrams of the 

discharge tube of Pyrex glass. It was 9 cm in length 

and 3 cm in diameter. The discharge was caused between 

a copper plate anode and a hot cathod coated with 

barium oxide. The rf coil was wound around the dis-

charge tube.and a mica cushion was interposed between 

them for good fitting. 

      The arrangement of the discharge tube and the 

electromagnet is shown in Fig. 5-8. And its photo-

graph is also given in Fig. 5-10. Fig. 5-11 shows 

the photograph of the discharge tube. 

(iii) The detecting circuit 

       The circuit of the autodyne oscillator used is 

shown in Fig. 5-12. The frequency could be determined 

by adjusting the capacity of the main variable con -

denser. The rf work coil was connected to the osci= 

llator with a co-axial cable hG 63/J of 1 .5 m length, 

owing to its low capacitance as 30 pF/m . Variations 

of the oscillating level was detected by measuring 

the voltage of a terminal denoted by B in Fig . 5-12. 

Approximate proportionality of the variation to the 

sppr,rent power loss could be verified by using a 

dammy load resistance . Frequency shift due to the 

plasma reaction was negligible, if the plasma ion 
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density was very low. In this case, the frequency 

shift  was within 10 J. The oscillation power was 

about 10 milliwatts. 

5.3.2 Obt~ ined Results 

      An example of the variation of the oscillation 

level obtained in such a wzy is shown in Fig. 5-13, 

when the gas used was hydrogen and the objective ion 

was proton. the dip of the level is certainly due. 

to the proton cyclotron resonance absorption, since 

the peak of the dip exactly corresponds to the magnetic 

field where the proton cyclotron frequency is equal 

to that of the rf field. If only the magnitude of 

the dip is considered, then one can get a absorption 

curve of the proton cyclotron resonance. 

      In order to get the pressure dependence of the 

line width, a series of experiments were carried out 

for the proton cyclotron resonance in hydrogen gas 

molecules. Typical results obtained are shown in 

Fig. 5-14. The width of the dip of the oscillation 

level clearly depends on the pressure of the parent 

gas hydrogen. The width becomes wider as the pressure 

increases. This dependence is such as predicted 

theoretically in the chapter IV. If normalized 

absorption curves are drawn, this dependence will 

be more clarified. Fig. 5-15 shows these normalized 

absorption curves for different gas pressures , where
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the discharge current was retained constant to be 

130  mA. 

     Thus proton's momentum collision frequency with 

hydrogen molecules  H2 can be determined from the half-

width of the absorption curve as shown in Fig. 5-15, 

by using the relation (4-57). Fig. 5-16 shows the 

calculated results in such a vvay. 

5.3.3 Discussion of the hesults 

As shown in Fig. 5-16, the collision frequency 

obtained is nearly constant at lower gas pressure than 

2.8 x 10-2 Tarr, but, beyond this pressure, it may be 

proportional to gas pressure (refer to dotted line in 

Fig. 5-16). This deviation from the proportionality 

between the collision frequency and the gas pressure 

has been observed in the case of electron cyclotron 

resonance by Kelly, Margenau and Brown 3)or by Dodo34) 
This anticipated result below a pressure is perhaps 

due to the increase of the mean free path of protons, 

outgas from the tube wall, the rise of the proton 

temperature or invalidity of the relation (4-57). 

     If the mean free path and the mean free time of 

protons are assumed to be the distance between the 

electrodes and the reverse of the constant collision 

frequency in Fig. 5-16, respectively, then the result-

ing proton energy should be about 6 eV. This magni-

tude of the energy may be attainable with DO accele-

                  155



ration in the magnetic field direction by the electric 

field for discharge. Therefore, when the pressure is 

low and the discharge field is high (or at high E/p), 

protons will be accelerated by the DC field without 

collisions up to the energy of 6 eV and will directly 

inpact the cathod. Then the apparent collision fre-

quency will be measured to be about 2.4 x 106 /sec. 

 This is an explanation. 

      In these experiments the gas pressure was measured 

just before the discharge, so no contributions of the 

gas attaching on the tube wall and the outgas from it 

in the discharge were taken into account. Then the 

outgas might raise the molecule density and, in the 

result, the collision frequency might be as shown in 

Fig. 5-16. 

     Therefore, to discuss in detail, the more precise 

experiment must be carried out without DC electric 

field and outgas. 

5.4 Conclusion 

     The experiments described in this chapter made 

it clear that the collision frequency of ions with 

molecuies really affects the half-width of the ab-

sorption curve of ion cyclotron resonance , as predicted 

theoretically. Also the collision frequencies for 

different hydrogen gas pressures could be determined 

for protons. This method for determing the collision
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 VI Experiment on Joule Heating of Plasma 

in the Heliotron-B device

6.1 introduction 

In 1958 ho proposed the P.eliotron as a, device 

for confining plasma and heating it to thermonuclear 

temperature and Project Helicon wes organized to 

investigate and construct the Heliotron. Since that 

time the Heliotron-A bnd the Heliotron-B have been 

constructed and operated at Kyoto University. The 

Heliotron-A was destroyed unfortunately in 1959, due 

to the lack of rigidity of its discharge tube of 

ceramic. Next the Heliotron-B was constructed in 1960, 

since then the experiment on the Joule heating has 

been carried out. The parts for the ion cyclotron 

heating was equipped in 1962, and the excitation of 

the ion cyclotron eaves and their thermalization have 

been also investigated. 

     it should be noted that the experiments described 

in this chapter were done in collaboration with Uo, 

Itatbni, uohri, Oshiyema, Kato, Kubo, Ishii and Ariga 

unuer the direction of Hayashi. however , the description 

of thee experiments will contribute to the clear 

apprehension of the experiment on the ion cyclotron 

heating of plasma in the hieliutrc)n-L device , which 

is to be described in the claapt .'r• VII and VIII. For
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the sake the Joule heating of plasma in the Heliotron-B 

device  will be briefly described in this chapter. 

     The heliotron-B device has a magnetic field for 

confining the plasma called "Heliotron magnetic field". 

The concept of the field will be given in a next section 

6.2. In course of the experiments, it became evident 

that this Heliotron-13 device has several constructive 

defects, such as the irregularity of the coil interval, 

the lack of the accelerating field uniformity for Joule 

heating and the evil vertical magnetic field produced 

by the Joule heating windings. Efforts to remove these 

defects have been made as much as possible. For instance, 

a correcting winding for the Joule heating windings 

was tried as described in a section 6.5. Neverthless, 

complete improvement on them was found impossible in 

practice, so that a new device Heliotron-C is now under 

construction. In a section 6.3, the heliotron-B device 

and its experimental procedure are to be explained. 

The results of the Joule heating are given in a section 

6.4. 

6.2 Heliotron Principles 

     The magnetic field used for the Heliotron-B was 

a so-called Heliotron magnetic field, as shown in Fig. 

1-5. If these coils are wound around the dischL.rge 

tube and the N.Z. (i.e. neutral line) is present in 

the tube, charged particles in the tube may be classified 
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into two ensembles according to the characteristics 

of the magnetic lines of force, to which they stick. 

In the region near the tube axis, the magnetic lines 

of force  undulate along the axis without crossing the 

tube wall, wherea:: those ne._.r the tube wall, namely 

outside the d.L, surface (the surface consisting of 

the lines of force intersecting the N.L.), cross the 

tube wall. Therefore, if the magnetic field is suffi-

ciently strong, charged particles inside the N.L. 

surface can move along the lines of force without 

impacting the tube wall. On the other hand, particles 

outside the N.L. surface also run along the lines of 

force but finally touch the tube Thus, it may 

be expected that we can generate the discharge only 

in the region inside the N.L. surface, if an axial 

electric field is imposed. In other words, the N.L. 

may act as a substitute for an aperture limiter equipped 
           35) 

in a Stellarator of Princeton University. The other 

distinctive characteristics of the heliotron magnetic 

field are as follows. 

(i) The charge separation of the plasma due to the 

      curvature drifts of particies can be eliminated 

      by the azimuthal drifts of the particles in the 

      undulated field. This effect as verified from 

      the calculation with an electronic digital computer 

      by Amano, iiiurrtkami and 6chi36) (1964) . 
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(ii)  It is possible to heat the plasma by the thermali-

      zation of the ion cyclotron waves by using the 

      beach effect at many slopes of the undulation of 

      the Heliotron field. This thermalization effect 

      was experimentally verified by the author as des-

      cribed in the chapter VIII. 

(iii) By the existence of the circular cusp (N.L,) 

      series inside the tube wall, we can satisfy the 

      necessary condition for equilibrium of the plasma 

      under the magnet hydrodynamical assumptions. 

     On the contrary, the defects of the Heliotron field 

may be 

(I) The particles may be lost from the N.L. 

(ii) Plasma oscillations may be apt to occur with the 

      wavelength of the interval (or the axial period) 

      of the Heliotron field. 

However, the former fault will be overcome under the 

Joule heating, since the resultant plasma current produces 

an azimuthal magnetic field and, as a result, the N.L, 

becomes no longer the cusp. 

     The Heliotron-B device has the shape of a race-track. 

Therefore, the magnetic lines of force near the tube axis 

close themselves. If an electric field is induced parallel 

to the tube axis, the resulting plasma current can flow 

along the magnetic lines of force and forms the plasma 

column inside the N.L. surface. Ionization and preliminary 
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heating of gas in the Heliotron are accomplished by 

making a local rf discharge in the tube. Such ionized 

particles diffuse along the lines of force and finally 

the gas in the tube becomes a weakly ionized conducting 

gas. The Joule heating field is next imposed so as to 

ionize fully the gas and to heat electrons in the plasma. 

     Plasma instabilities, which may occur in the Heliotron, 

are not completely known, owing to the complexity of the 

field. Rotation of the plasma column around the tube 

axis may arise from the driving force generated by the 

vector product of the plasma current and the magnetic 

field. Some observations of these instabilities or osci-

llations will be explained in the section 6.4. As the 

conductivity of the plasma rises rapidly with temperature, 

so the heating rate of the Joule heating decreases. 

Furthermore, instability of  Kulskal type7may arise with 
large plasma current. Therefore, the temperature, that 

can be achieved by ohmic heating, is upper-bounded. 

6.3 Heliotron-E device and Experimental Procedure 

     The description in this section is concerning only 

the Joule heating of plasma in the Heliotron-B device. 

The Heiotron-B has the shape of a race-track . Fig. 

8_2 in the chapter VIII is its photograph, and its plane 

figure is also shown in Fig . 6-1. The discharge tube 

is mHde of stainless steel of 2 mm thickness ELCI insulated 

by a ceramic (Zirconia) tube at one of the two linear
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legs of the race track shape. This ceramic break 

prevents the discharge tube from short-circuiting the 

heating transformer on the secondary side and provides 

a convenient section for the ion cyclotron heating. 

The torus radius of its curved part is 31.2 cm and the 

total axial length 2.96  m. The inner diameter of the 

discharge tube is 8.4 cm at the linear parts and 7.5 

cm at the curved parts. The positive and the negative 

coils, which produce the Heliotron magnetic field, are 

supported by the gun metal supportors fixed on the 

angle-irons. The Joule heating windings which induce 

the accelerating field for the Joule heating are wound 

outside the gun metal supportors along the tube axis. 

Nine viewing ports for observation are also installed. 

     Pulsed confining magnetic field used in the 

Heliotron-B. Energy storage for this field is obtained 

from a capacitor bank of 6.4 x 104 joules. This 

switching is performed by ignitrons MI-1200. Subsequent 

to the initial breakdown rf discharge, ionization is 

completed and the plasma is heated by means of a 

unidirectional axial electric field induced by the 

currents in the Joule heating , windings. This heating 

current is also generated by the discharge of a 

condenser bank of 2 x 104 joules. The capacities and 

the charging voltageof condensers for the magnetic 

field and the Joule heating are decided according 

to the purpose of experiment. Fig.6-2 shows the dis-
 a 

chrging circuit of the condenser banks . 
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     The relative time-scale and-sequence of the magnetic 

field confining, rf preheating and the Joule heating 

is shown in Fig. 6-3.  IVaximum current in the magnetic 

coil is about 500 amperes, and that in the Joule heating 

winding 7bout 1.8 x 104 amperes. Slightly before the 

peak of the magnetic field current, the preheating rf 

field (10 megacycle. 1 kilowatt x 1 millisecond) is 

imposed. When the confining magnetic field becomes 

maximum, the Joule heating field is applied and produces 

a fully ionized gas at high electron temperature in 

the discharge tube. As described in the section 6.5, 

a collection winding for the Joule heating windings is 

also equipped to compensate the vertical field produced 

by the Joule heating windings. This correction winding 

is connected parallel to the Joule heating windings. 

     A neutral gas is let flow in the discharge tube 

through a controllable needle valve or a paradium leak, 
e 

wh,reas a 4" oil diffusion pump is also continuously 

working. Therefore, the internal gas pressure is 

settled with the balancing between the gas inflow and 

the pumping-out speed and its range is from 10-2 to 

10-4 Torr. Helium, Hydrogen and Deuterium are used . 

The vacuum obtainable is usually around 10-5 Torr . 

The pressure is measured with an ionization gauge for 

high vacuum and a pirany gauge for relatively high 

pressure.
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 The instantanuous Joule heating field is inferrel 

from the voltage of the one turn loop along the tube 

axis. The plasma current is measured by means of 

movable Rogowski coils (toroidally wound pick up loops 

encircling the plasma) or fixed Rogowski coils, the 

output from which is electrically integrated. 

     Electron temperature is inferred from the relative 

strengths of related singlet and triplet lines in the 

neutral helium spectra, which is again to be discussed 

in the chapter VIII. Magnetic probes, Langmuir probes 

and a streak camera are also used for investigating 

oscillations and instabilities of the plasma. Electron 

density may be inferred from the phase-shift of a 

transmitted millimeter microwave beam, but this micro-

wave method was not available to these experiments. 

Therefore, accurate electron density could notbe measured 

unfortunately and only the results obtained from Langmuir 

probes uncertainly gave the density. 

     Ion temperature was measured by the author with 

a plane grating optical spectrometer, details of which 

will be described in the chapter VIII, This temperature 

could be inferred from Doppler broadening of spectral 

lines of ionized impurities. 

     An arrangement of these measuring apparatus and 

the Heliotron-b is schematically shown in Fig. 6-4. 

The outline of tte Heliotron-b and diagnostic instru-

ments is given in Table 6-1. 
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 TE.ble 6-1 Outline of 

diagnostic

the Heliotron-B 

instruments

and

deliotron-B

Magnetic coil 

Joule heating coil 

Discharge tube

Vacuum system 

Condenser bank 

Accelerating field 

Magnetic field 

   (on tube axis)

normal coil: 167 turns). 20 pairs 
reverse coil: 84 turns 

10, 20, 30, 60 turns changeable 

race track type, stainless made 
linear part: 50 cm, 
radius of curvature: 312 mmR, 
ceramic section: 330 mm, 
11 obserbing ports: 40 mmY 

Liquid oxygen trap + 4" oil diffu-
s i on pump + rotary pump 

1.4 x 103 I,F, 84 kJ 

1.5 V/cm at max. 

max: 5,000 gausses 
min: 500 susses

Diagnostic Instruments

Physical quantities or 
behaviours to be measured

Movable Rogowski coil 

Langmuir double probe 

Magnetic probe 

Louble prism spectrometer 

Hilger qualtzspectrometer 

Smallqualtzspectrometer 

Plane Grating spectrometer 

Streak camera,

Current density (J) 

Electron density (Te) 

Plasma oscillations 

Electron temperature 

Impurities 

survey of impurities 

Ion temperature 

Plasma oscillations
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6.4  Experimental hesults 

     In this section typical experimental observations 

of plasma behaviours under the Joule heating are 

eummerized. Principal variables were the confining 

field, the Joule heating field (0.7 to 1.5 V/cm), and 

the initial gas pressure (i0-3 to 10-1 Torr). Gases 

used were hydrogen and helium. The following discussion 

in this section refers to the operation without the 

correction for the Joule heating windings unless other-

wise stated. 

6.4.1 Total Plasma Current 

     As described in the section 6.5, the total plasma 

current was much affected with the confining field 

configuration and the correction for the Joule heating 

windings. The current rise, however, had little relation 

with the latter, since the vertical magnetic field due 

to the Joule primary current was weak still during the 

current rise. On the other hand, the current after its 

rise depended on the Joule heating primary current . 

Rogowsk,i coils encircling the plasma column were 

inserted in the discharge tube from the viewing ports 

and picked up the azimuthal magnetic field produced by 

the total plasma current. Therefore, the plasma current 

was inferred Li'm the electronical integration of the 

hogowski coil signal . 

     Upon application of the Joule heating field, the 
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growth rate of the plasma current depended on the 

 heating field strength and the confining magnetic 

field strength. Figs, 6-5 to 6-7 show representative 

cases for hydrogen discharge. For helium discharge 

1'igs. 6-8 to 6-10 are also given. The plasma current 

in each case was measured at the port 1 in Fig. 6-4 

and the correction winding did not work. From these 

experiments, following facts became evident. 

(i) In weak confining field, as shown in Fig. 6-5 or 6-8, 

  (a) the current could grow only in high heating field; 

  (b) the first peak of the current was low in its value 

      and irreproducible; 

  (c) the second peak of the current was relatively 

      high in low heating field, but, in high heating 

      field, it became rather lower and decayed more 

      rapidly from its peak as indicated with an arrow 

       in Fig. 6-5. 

(ii) In strong confining field, as shown in Fig. 6-7 

       or 6-10, 

  (a) the current could grow in relatively low heating 

      field; 

  (b) its first peak value was also large even in low 

      heating field and the reproducibility of peak 

      value was fairly good; 

  (c) the second peak decayed more slowly than in v,eak 

      confining field.
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 The facts (a) in both cases may be ascribed to break 

down conditions for discharge, which are governed by 

the balance of diffusion and production of charged 

particles. Other facts (b) may be due to the confining 

effect of the field. the phenomena intimated by (-c) 

implies there may be a instability like Kruskal in-

stability or other causes. Afterwards, this was found 

to be due to the vertical magnetic field produced by 

the primary current for the Joule heating. This magnetic 

field is perpendicular (vertical) to the torus plane 

and bends the magnetic lines of force to the tube wall. 

Consequently, particles moving along the lines of force 

impact the tube surface, especially where the confining 

field is weak. This leads to the inflow of the current 

into the stainless tube. The rapid decay of the second 

peak of the current may originate in such a inflow of 

current. Detail discussions of the vertical field 

will be again given in the section 6.5. 

6.4.2 Average Current-Density Distribution 

Aovable Rogowski coils were used to measure the 

plasma current distribution. As shown in Fig. 6-13, 

the coil woo wound around a vinyl tube of 3 mm diameter 

and inserted in a ring glass tube, whose inner and 

outer radii were 10 and 17 mm. 'ihe glaHs tube is fixed 

at the end of the movable probe holder. The measuring 

ports were 1 to 6 in Fig. 6-4. 
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         A representative result obtained is shown in 

   Fig. 6-11. The measuring position was at the port 1. 

 In this figure 1 represents the average current density 

    in the region of the aperture of the Rogowski coil. 

   The magnetic field intensity on the tube axis was 5000 

   gausses unaer the positive coil and 800 gausses under 

    the negative coil. The movable hogowski coil inserted 

    into the pluma region detected the current passing 

    through the aperture of the coil container. 

         The maximum value of the current density was near 

    the tube axis and aecreased with the radius r. Finally 

    the current density became zero near the position r=20 mm. 

   There was no current signal in the outer region from 

r=20 mm. Therefore, the real current-density distri-

    bution can be represented by the broken lines in Fig. 

6-11. 

         The average current-density distribution in the 

    toroidal solenoid field is as shown in. Fig. 6-12. The 

    curves show that the current flux existed even in the 

   vicinity of the tube wall. 

         Such tendency of the current-density distribution 

    could be observed in the case with the correction for 

    the vertical field. Therefore, it may be concluded 

    that the concentration of the plasma current near the 

    axis is an important characteristic of the Reliotron 

    field.
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6.4.3 Plasma Temperature 

 nlectron temperature of the plasma Te was deter-

mined from the relative strengths of related singlet 

O0 

(4922 A) and triplet (4713 A) lines in the neutral 

helium spectra. This measuring technique will be ex-

plained in the chapter VIII. 

     The maximum value of the electron temperature 

was about 5 x 105°K under the Joule heating. Time 

variations of the electro.n temperature measured at a 

port much depended on the direction of the plasma 

current and the magnetic field strength, even under 

working of the correction winding. This might be due 

to the lack of uniformity of the Joule heating field. 

     The ion temperature of the plasma was determined 

from the Doppler broadening of a singly ionized carbon 

line ( 4267 A). A plane grating spectrometer (8 

                                                                      0 was used and line widths were inferred from the photo-

graphs of line images. However, this technique was 

difficult and only the time-integrated value could be 

known. 

     The ion temperature under the Joule heating was 

1 x 1050K or less. 

6.4.4 Spectra of Impurities 

     In order to verify the spacial confinement of 

the plasma in the Heliotron magnetic field, the 
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impurity lines in the spectra from the plasma were 

investigated. 

     Many impurity lines could be observed, such as 

 OII, OIII, NII, CI, CII, CIII, FeII, CrII and 

The spectral lines of 0, N, and C are supposed to 

originate from the impurities in the gas or in the 

backflow of vapour from the oil diffusion pump, whereas 

the lines of Fe, Cr, and Mn from the wall material. 

     When the correction winding worked, intensities 

of these impurity lines from wall material could be 

reduced. Similarly, the outgas detected by an ioni-

zation gauge was reduced in this case. 

     Therefore, the existence of the lines of Fe, Cr 

and Mn might be due to the intersections of the magnetic 

lines of force within the N.L. surface with the tube 

wall. These intersections would be caused with the 

bend of the lines of force by the vertical field or 

the irregurality of the coil interval. 

     Impurity lines emitted from the plasma in the 

toroidal solenoid field discharge were stronger in 

intensity than in the Heliotron magnetic field. This 

fact may be interpreted in terms of the current dis-

tribution in the discharge tube; that is to say, high 

energy electrons are apt to bombard the tube wall in 

the solenoid field compared ith in the Heliotron 

field.
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   6.5 Correction for the  Toroidal Joule heating 

         Windings 

         The Joule heating windings wound around a toroidal 

    discharge tube as shown in Fig. 6-14 had been adopted 

    in the Heliotron-A. It is generally believed that 

    such sorts of windings would generate a good coupling 

    between the currents in the windings (i.e. primary 

    currents) and the plasma current (i.e. secondary current). 

However,it was found there is an inevitable defect 

   of the field deformation in the Heliotron field: the 

    currents flowing with a certain curvature in the toroidal 

   windings produce a magnetic field perpendicular to the 

   plane of the torus (vertical field). This point has 

    been overlooked, since, in the case of a straight 

    cylinder, the sheet currents flowing parallel to its 

    axis produce no magnetic field inside the cylinder. 

         The vector force generated as the vector product 

    of the plasma current and the transverse field pushes 

    the plasma column to the discharge tube and disturbs 

    the equilibrium conditions of plasma confinement. 

        Fig. 6-16(a) shows the magnetic lines of force 

   produced by the currents flowing with the same magni-

    tude in each winding. ¶tnis result was obtained by an 

   axiallysymmetricmagnetic field simulator38) The dots 

    in the figure denote the cross section of the Joule 

   heating windings and the solid lines are the magnetic
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lines of force. For example, under the condition that 

 R`o=30 cm, D=25 cm and the total ampere turns of the 

currents is 1.5 x 105, the field on the tube axis 

becomes 1.2 x 103 gausses. 

     To avoid the defect of this curvature effect, 

several methods may be considered. 

(i) To add the auxiliary compensating current to the 

       uniform configuration of the primary currents. 

      This method was adopted in the Heliotron-B. 

(ii) To use a proper distribution of primary currents 

      such that the vertical field vanishes. 

(iii) To adopt iron-cores instead of the Windings on 

      the toroidal discharge tube. This method is 

      adopted in the Heliotron-C, which is now under 

construction. 

     The correction winding in the case (i) is shown 

as the point C in Fig. 6-16 (b), and the current in it 

should flow with appropriate magnitude in the same 

direction as the primary currents. It can be found 

that there exists a region where the transverse field 

vanishes, but in all region within the discharge tube 

the field can not be cancelled out. 

     If the discharge tube has a race-track type as 

the device Heliotron-B, the configuration of such a 

correction winding becomes somewhat complicated and 

:hould be shaped like a dumo-bell. This configuration
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 rdopted in the Heliotron-E is shown in Fig. 6-15. 

In practice, the shape was decided by the experimental 

procedures, and as the final result the magnetic flux 

density of the transverse field could be reduced 

less than 10 gausses over the discharge region. 

6.5.1 Effect on Impurities 

     Experiments on plasma confinement .and heating 

with the Heliotron-B showed that this correction wind-

ing works very effectively and contacts of the plasma 

with the tube wall resulting from the vertical field 

becomesslight compared with the case without the 

correction. 

In practice, spectral lines of impurities could 

become weak with the correction, due to the diminution 

of the contacts of the plasma with the tube wall. Fig. 

6-17 shows the microphotometric trace of the spectro-

graph taken v±hth.e double-prism spectrometer, when 

the ,correction winding cid not work. On the other hand, 

Fig. 6-18 shows the case with the correction. In both 

cases, a mixture of hydrogen and helium was used and 

their pressure components werel.7x 10-3 Torr (H2) and 

5 x 10-4 Torr (He). On comparison, impurity lines 

without the correction turned out to be more and stronger 

than those with the correction. Such a tendency was 

observed in all oases.
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6.5.2 Effect on  Outgas 

     Another remarkable effect of the correction for 

the Joule windings could be seen in the outgas from 

the tube wall. 

     If a plenty of outgas of hydrogen flows into the 

plasma .region, then the plasma density will increase 

and line5of Balmer series will be broadened due to 

Stark effect. 

     Even for an initial gas pressure, the widths of 

HR and HT lines in the case without the correction 

became considerably broader than in the case with the 

correction. Figf_ 6-19 and 6-20 show examples of 

them. Of course, this effect was fairly dependent 

upon the antecedents of the discharge. After many 

discharges, the outgas would become imperceptible. 

6.6 Conclusion 

     In the Heliotron magnetic field, the hot plasma 

current is concentrated in the central region of the 

discharge tube. Therefore, the neutral lines (the N.L.) 

may be regarded as aperture limiters of the plasma. 

     The correction winding for the Joule heating wind-

ings works very effectively to reduce impurites and 

the current inflow into the stainless tube. However, 

perfect correction can not be expected by this correct-

ing method.
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     The Joule heating in the Heliotron field can 

raise  the electron temperature of plasma to fairly 

high temperature (5 x 100K) but cannot raise the 

 ion temperature sufficiently. 

Iuany oscillations of plasma are apt to be generated, 

 but detail discussions on them cannot be made because 

 of the constructive defects of the Heliotron-B device.
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 VII Experiment on Ion Cyclotron Absorption 

of Plasma in the Heliotron-B device

7.1 Introduction 

      In this chapter, experiments on excitation of 

ion cyclotron waves and single-particle ion cyclotron 

resonance are to be described. 

Ion cyclotron waves with an axisymmetric mode 

was first observed by Stix and his coworkers (1958) 

by using the 13-65 Stellarator of Princeton University. 

They came to this conclusion from an asymmetry of rf 

absorption curves of plasma. Afterward, they gave 
          19) 

direct evidence (1960) for the existence of these waves 

by measuring the rf field of the waves in plasma excited 

by an induction coil, which was energized at 11 .5 Mc 

with approximately 200 kilowatts of rf power. Duvovoi, 

                      32) Sh
vets and Ovchinnikov (1959) observed the plasma 

loading of an induction coil due to ion cyclotron 

resonance, where the plasma was not highly ionized . 
                                        39) 

Bakaev, Zaleskii, 1Vlazarov, Ukrainskii and Torok(1962) 

observed the generation and absorption of ion cyclotron 

waves in a moving plasmoid ejected from a plasma gun . 

Bakaev et al also observed a Doppler effect occuring 
                                   40) f

rom the plasmoid velocity _ The author (1963) found 

from the measurement of rf power absorption that there 

appear many beams of ions in the plasma under the Joule
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heating in the Heliotron-B, by using such a Doppler 

shift. 

     Plasma under the Joule heating may have beam-like 

ions and, as a result , the ion cyclotron absorption 

may be shifted in frequency from the ion cyclotron 

frequency due to a Doppler effect, as predicted in the 

chapter II or III. Since the plasma density in the 

Heliotron-B is attainable to considerably higher value 

than in the Stellarators of Princeton University, the 

rf absorption resulting from the excitation of ion 

cyclotron waves is expected to be clearly distinguished 

from the single-particle cyclotron resonance absorption. 

This separation between both absorptions will give a 

clear evidence for the existence of ion cyclotron waves 

in plasma. 

     The experiment described herein  was—made so as to 

get basic and preliminary information on the ion cyclotron 

heating of plasma in the Heliotron-B. For this purpose, 

the following subjects were investigated. 

(i) The existence of ion cyclotron waves 

(ii) The distribution of ion v'elocity 

(iii) The efficiency for exciting ion cyclotron waves 

The plasma to be excited with ion cyclotron waves was 

generated by the Joule heating. The existence of the 

ion cyclotron waves may be inferred from the rf absorption 

curves, from which beam velocities of ions may be also

193



determined. 

    A frequency sweeping method was adopted to get 

such rf absorption curves, so that properties of plasma 

were never disturbed during the observation. On the 

contrary, magnetic sweeping  methodsadopted by Stix 

or Duvovoi are apt to change the plasma property itself, 

since it is generally much dependent of the confining 

field. 

     In the subsequent section 7.2, the experimental 

apparatus will be explained. Experimental results 

are also given in a section 7.3. The major conclusion 

drawn from these results will be summarized- in a 

section 7.4. 

7.2 Experimental Procedure 

     A rf coil for exciting ion cyclotron waves was 

installed to the Heliotron-B after some investigations 

of the Joule heating of plasma. The Heliotron-B with 

this exciting rf coil is shown in Fig. 6=4 with a 

simplified drawing. The rf coil was set on the ceramic 

break at one straight leg of the race track tube .. The 

magnetic coil in this section was renewed to make uni-

form magnetic field. Fig. 7-1 shows the sectional 

diagram of these renovated parts. A detecting circuit 

of the rf power absorption due to the excitation of the 

waves is connected to the rf coil. Detail explanation 

of each part is given as follows . 
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7.2.1  Rf coil and Magnetic Field 

     The rf coil is wound around the zircon ceramic 

tube, which was inserted for preventing a short-

circuiting the stainless tube under the Joule heating. 

The rf coil is made of a gold-plated copper lod of 

8 mm in diameter, and it shapes so that the azimuthal 

direction of the rf current alternates every 1 1/2 

turns at the axial interval of 6 cm, as shown in Fig. 

7-1. Thus, the coil imposes an axially periodic 

perturbation on plasma over a range of two wave lengths 

of 24 cm. The hot rf lead is connected to the centre 

tap of the coil, and two ends of the coil are connected 

to a grounded tube, which forms a co-axial line with 

the hot rf lead. Aninsulator between the hot lead 

and the outer tube is made of polyethylene and helps 

to prevent arcing at the high voltage up to 50 kilo-

watts. The rf coil is enclosed with a-stainless tube 

of thickness 2 mm for rf shielding. 

     In order to excite a simple axisymmetric ion 

cyclotron waves, the magnetic field in the rf coil 

region is desired to be uniform. The magnetic coils 

for this sake were designed with the axially symmetric 
                  38) 

magnetic field simulator and their shapes and positions 

were determined as shown in Fig. 7-1. The coils of 

2 mm copper wire are impregnated with bpoxi regin . 

These coils are connected in series with the other 
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 Heliotron magnetic coils. The uniformity of the 

magnetic field in the rf coil region is within ± 2%. 

This uniform magnetic field smoothly continues the 

Heliotron magnetic field as shown in Fig. 7-1. 

     Excited ion cyclotron waves in the rf coil region 

propagate along the axis into the corrugated magnetic 

field of the Heliotron and disappear due to the phase 

maxing (or magnetic beach effect), as explained in the 

chapter III. In other words, the oscillating energy 

of the waves is converted into thermal energy of plasma. 

The ratio of the minimum value of the Heliotron magnetic 

field to the uniform field strength in the rf coil region 
lc >s t41w,, 

ise%4. so that ion cyclotron waves in considerably 

higher density of plasma can be thermalized. This is 

one of distinctive characteristics of the Heliotron 

field. 

     Fig. 7-2 shows a photograph of the assembly of the 

rf coil, the ceramic tube, the magnetic coil and shield-

ing stainless tube. Fig. 7-3 shows a close up of the 

rf coil wound around the ceramic tube. A photograph 

of the heating section attached to the Heliotron-B 

device is shown in Fig. 7-4, where the Joule heating 

windings are not installed. 

7.2.2 Detecting Method of the RI' Absorption of Plasma 

     As stated in the introduction, the detecting method 

of rf absorption of plasma in this experiment belongs 
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