
      iili II It i 1 i 

 3

 a.

DE E ERAII1!l9ti8





Molecular Dynamics Studies

of Exothermically Reacting Particle Systems

Toshihiro KAWAKATSU

DECEMBER 1988





       Molecular 

of Exothermically

Dynamics 

Reacting

 Studies 

Particle Systems

      by 

Toshihiro KAWAKATSU

Submitted in partial fulfilment of 

    requirement for the degree of 

       DOCTOR OF ENGINEERING 

 ( Applied Mathematics and Physics 

                at 

        KYOTO UNIVERSITY 

            Kyoto, Japan 

         DECEMBER 1988

the





                     ABSTRACT 

    Various nonequilibrium phenomena in an exothermically 

reacting system are studied with use of the molecular dynamics 

(MD) method. The model reaction system is a hard disk system in 

which an exothermic isomerization reaction expressed as A + S  F B 

+ S + AQ is introduced as the two body collisions between the 

hard disks. Here, AQ is a reaction heat of the forward reaction 

and the species S plays a role of a catalyst. 

    We performed the MD experiments on the relaxation process 

from the initial nonequilibrium state in which the A and the S 

particles are uniformly distributed. During such relaxation 

processes, the A particles turn to the B particles through the 

reaction A + S - B + S and the created B particles form the 

spatial patterns. Two types of the pattern formation processes 

which are similar to those found in the phase transition 

phenomena of the alloy or the spin systems are examined. One is 

a nucleation and growth process of the circular domain of the 

created B particles and the other a spatially homogeneous 

creation of the B particles which resembles to the spinodal 

decomposition. The former corresponds to the ignition and the 

propagation of the reaction wave and the latter to the thermal 

explosion, respectively. The growth law of the circular domain 

in the former case is investigated and the differences between 

our reacting system and the alloy or spin systems are discussed. 

    In order to clarify the propagation mechanism of the 

boundary of the above-mentioned nucleus in detail, the MD 
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experiments on the one-dimensional propagation phenomena of the 

reaction wave are performed. It is found that the reaction wave 

in our system corresponds to a detonation and the MD results on 

the structure and the propagation velocity of the detonation well 

reproduce those of the real detonation as long as there exists 

enough number of the catalyst S. The spatial correlation effects 

on the detonation propagation mechanism are studied by changing 

the molar fraction of the S particles in the initial state. For 

the case of the high molar fraction of the A particles in the 

initial state, we found that the effects of the spatial 

inhomogeneity in the microscopic level become to be dominant in 

the propagation mechanism. The energy relaxation processes at 

the detonation wave front are investigated in order to clarify 

such effects. We found that the decay process of the 

fluctuations in the spatial distribution of the particles is the 

rate-determining process in the energy relaxation process behind 

the detonation wave front. 

     Next, we investigated above-mentioned spatial inhomogeneity 

effects by performing a series of MD runs of relaxation processes 

from the initial homogeneous states composed of the A and the S 

particles. The decaying law of the number of the A particles are 

found to be different from that predicted by the rate equation 

which assumes the spatial homogeneity and the late stage dynamics 

is dominated by the initial fluctuations in the spatial 

distribution of the particles. 

    Finally, we performed the MD experiments on the detonation 

propagation in the A A*  B type reaction system  in order to 
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clarify the effects of the activated complex A* with finite 

lifetime. The existence of the A* does not change the 

propagation mechanism but changes the wave front structure 

slightly. This result indicates that the model reaction system 

A +  S  E B + S, which neglects the lifetime of the activated 
complex A*, used in our MD experiments is a good approximation of 

the real reaction system as long as we are concerned with the 

high-speed nonequilibrium processes such as the detonation and 

the explosion phenomena.
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                      CHAPTER I 

                     INTRODUCTION 

 § 1.1 Overview 

    Recently, there has been taken a great interest on the 

dynamical phenomena occurred in the various chemical reaction 

systems. Typical examples are the photochemical processes in the 

liquid  solvent,1) the macroscopic cooperative phenomena in the 

nonlinear and nonequilibrium systems,2) the combustion and the 

explosion in the exothermically reacting systems3'4) and the 

fluctuation dominated kinetics in the diffusion controlled 

reaction systems.5) The most difficult point in treating these 

phenomena theoretically is the fact that the system is in far 

from equilibrium state. In these cases usual macroscopic 

description of the system using the deterministic differential 

equations is insufficient to understand the phenomena in detail 

and the microscopic fluctuations must be taken into account. 

    The molecular dynamics (MD) method is a computer experiment 

technique which can investigate both the static and the dynamic 

processes of the system including the microscopic fluctuations. 

This method was first applied to the dynamics of the simple 

gases, liquids and solids from the end of the 1950's to the 

1960's.6-11) As the full description of the chemically reacting 

systems in far from equilibrium state is required in order to 

treat the fluctuations of various types and scales, the use of
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the MD method in these fields is expected to provide a new aspect 

to our knowledge on the reaction systems. In addition, we can 

mention another advantage of the MD method. By using the MD 

method, we can investigate not only the realistic systems but 

also the idealized systems in which the particles interact each 

other with an idealized interaction. We can expect that the 

universal features over the reacting systems can be obtained with 

a simplified model which retains the essentials of the reacting 

systems. In the following, recent developments of the MD 

experiments on the dynamical phenomena of the chemically reacting 

systems are reviewed. 

    The chemical reaction phenomena that the MD method was first 

applied are the photo-chemical  processes.12-16) As the photo-

chemical processes are often accompanied by the release or the 

absorption of a large amount of chemical energy, these processes 

produce a very far from equilibrium state. The photo-

dissociation and the recombination of molecules in a liquid 

solvent is employed frequently as an example of such processes. 

Bunker and Jacobson studied the cage effect on the photo-

dissociation and recombination of the I2 molecule in liquid CC14 

solvent using the MD method.12) The electron which is initially 

in the ground state of the I2 molecule is activated to the 

excited state by the photon absorption and then the I2 molecule 

begins to dissociate into two I atoms with releasing the binding 

energy to the solvent molecules. As this process takes place in 

the surrounding solvent molecules, the situation is as if the two 

I atoms were trapped in a cage constructed by the solvent 
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molecules. This cage prevents the dissociated I atoms pair from 

getting apart and raises the possibility of the recombination of 

the I atoms back into the  I2 molecule. The MD experiments of 

Bunker and Jacobson showed that the recombination process is 

strongly affected by the page effect and the microscopic 

description of the system is needed to understand the 

recombination process entirely. 

     In the 1970's, Prigogine and his co-workers have developed 

the theory of "dissipative structures". The dissipative 

structures are the macroscopic cooperative phenomena occurred in 

the chemical reaction systems such as the bifurcation, the 

emergency of the spatial and/or temporal oscillations and so 

on.2) The usual description of the dissipative structures is 

done with use of the macroscopic reaction-diffusion equations, 

which describe the diffusive motion of the macroscopic variables, 

such as the number density of the chemical species or the 

temperature, taking into account of the reaction processes. It 

is shown that the dissipative structures can emerge only in the 

case that the reaction-diffusion equation of the system is 

nonlinear with respect to its dependent variables and the system 

is in nonequilibrium state, which is often called as the 

"nonlinear nonequilibrium system" . The main target of the theory 

of dissipative structures by Prigogine et al. was the nonlinear 

non-exothermic reaction systems. 

    In the transient period before such cooperative phenomena 

emerge, many types of fluctuations compete and a specified mode 

grows to a macroscopic scale to dominate the dynamics of the
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 whole system and leads the system to the cooperative regime . In 

 such early stage, both the macroscopic and the microscopic 

 fluctuations coexist in the system. It was demonstrated that the 

 macroscopic fluctuation is well described by the birth-and-death 

 theory and obeys the non-Poisson distribution. However, the 

 birth-and-death theory takes into account of only the large scale 

 fluctuations and it neglects the small size fluctuations. It was 

 theoretically predicted that the small size fluctuations do not 

 obey the non-Poisson distribution but obey the Poisson  one .17-20) 

 The first attempt to examine this problem directly with use of 

 the MD method was done by Portnow in 1975 .21) Portnow performed 

 the MD experiments on the reacting hard sphere systems and 

calculated the probability distribution of the small fluctuations 

 in the number density of each of the species . The results of 

this work support the theoretical prediction of the Poisson 

behavior of the small fluctuations . Therefore, the 

characteristics of the large fluctuations are different from 

those of the small fluctuations and it is required to treat the 

evolution of the macroscopic variables along with the microscopic 

fluctuations simultaneously in discussing the initiation of the 

dissipative structures. Stimulated by the above Portnow's work
, 

several MD experiments were performed on the chemical phase 

transition and other dynamical problems of the chemi
cally 

reacting systems22-28) 

    While the cooperative phenomena in the non -exothermic 

reaction systems originate from the nonlinearity of the 
reaction-

diffusion equations, in the exothermic reaction systems the
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cooperative phenomena are derived from the nonlinearity in the 

 Arrhenius factor of the reaction rate constant of the form 

exp(-E/kBT), where E is the activation energy of the reaction, kB 

is the Boltzmann's constant and T is the temperature. As the 

exothermic reactions cause the temperature raise, such 

nonlinearity gives the reaction a self-catalytic feature and the 

region where the exothermic reactions proceed spreads 

automatically. This process is essential in the combustion and 

the explosion phenomena.3'4) As the combustion and the explosion 

phenomena are accompanied by the release of a large amount of 

heat, the temperature and the pressure of the system change 

drastically in a very short time period and/or in a very small 

distance. By this reason, the MD experiments on such phenomena 

as well as the theoretical analyses have been difficult to be 

performed. Until recently the combustion and the explosion 

phenomena have been studied using the hydrodynamic equations 

based on the continuum approximation.3'4) Whether the continuum 

approximation to the combustion phenomena is appropriate or not 

is an important problem. Very recently, the MD experiments on 

this problem become to be performed. Tsai and Trevino 

investigated the dynamics of the exothermic reactions by MD 

method in a series of their works.29-31) Using the three-

dimensional model of the exothermically reacting system composed 

of the energetic diatomic molecules, they studied the 

nonequilibrium relaxation processes,29) the equilibrium 

properties30) and the detonation propagation phenomena31) in 

crystals. Here the detonation, which will be explained in detail 
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 in the following chapters, is a kind of the combustion wave 

 accompanied by a shock wave and it propagates with a supersonic 

 velocity. The detonation propagation phenomena was also 

 investigated by Peyrard et al. for the 2-dimensional energetic 

 diatomic molecular  crystal,32) by Lambrakos for the 3-dimensional 

crystals33) and by Kawakatsu et al. for the 2-dimensional high- 

 density liquids.34-37) On the other hand , the microscopic 

 properties of the combustion and the thermal explosion processes 

 are studied by Chou and Yip,38-39) by Gorecki and Gryko40) and by 

Kawakatsu and Ueda41) using the MD method . From these works, the 

precise microscopic information on the detonation, the combustion 

and the explosion phenomena beyond the continuum approximation 

have been accumulated and more detailed understanding of such 

phenomena has been achieved. The details will be mentioned in 

the following chapters. 

     The problem on the effects of the fluctuation in the spatial 

distribution of the particles on the dynamics of the diffusion 

controlled reaction systems becomes to gain attentions of many 

researchers in the last decade.5'42-50) When the time scale of 

the elementary processes of the reaction is much shorter than 

that of the intervals of the contacts of the reaction pair b
y 

diffusive motion, the reaction is called as diffusion controll
ed. 

In such case, the spatial inhomogeneity
, such as the clustering 

of the particles, plays an important role in the late 
stage 

dynamics through the diffusion process . Among many types of 

diffusion controlled reactions , the radical recombination 

reaction A + A 4 0,5'42) the particle-antiparticle recombination 
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reaction A + B  4  45,42-46) and the unimolecular trapping reaction 

A + S 4 S47-49) have been extensively studied by the theoretical 

and the Monte Carlo simulation method. In chapter V, it will be 

shown that our model reaction system can be reduced to the 

unimolecular trapping reaction type and the results of our MD 

experiments on the fluctuation dominated kinetics will be 

compared with those of the theoretical and the Monte Carlo 

results of the previous works.

§ 1.2 Outline of the Dissertation 

    The thesis is composed of 5 parts which are concerned with 

the following five topics: 1) The model reaction systems and the 

technical details of our MD experiments, 2) the spatial pattern 

formation processes in the exothermically reacting systems, 3) a 

detonation propagation phenomena (the structure and the 

propagation velocity) and the energy relaxation processes at the 

detonation wave front, 4) the fluctuation dominated kinetics on 

the diffusion controlled reaction and 5) the effects of the 

activated complex with finite lifetime on the reaction dynamics. 

All of these investigations are performed on the 2 dimensional 

hard disk system combined with the model exothermic isomerization 

reaction A + SEB + S + AQ (OQ is the reaction heat of the 

forward reaction) by the MD computer experiments. 

    In the first part (chapter II), detailed explanations on the 

model system and the techniques used in our MD experiments are 
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 presented. Our model reaction system is a very simple one. WhY 

we decided to use such a simple model and what features of the 

 reaction systems we expect to understand are explained in detail. 

The computational techniques for the MD method are also 

 presented. 

     From the second to fifth parts are devoted to the results of 

our MD experiments. In the second part (chapter III). we study 

 the spatial pattern formation processes by the created B 

particles during the relaxation from the nonequilibrium initial 

state composed of uniformly distributed A and S particles . We 

will find two types of pattern formation processes, one is a 

nucleation and growth of the circular domain of the created B 

particles and the other is a homogeneous creation of the B 

particles. These correspond to the ignition and the thermal 

explosion processes, respectively. The analogy of these 

processes to the phase transition phenomena of the alloy or spin 

systems is discussed. 

    The third part (chapter IV and V) is devoted to the 

investigations of the detonation propagation phenomena . It is 

shown that our simple reaction model , which is a hard disk model 

combined with an  exothermic reaction , can reproduce the main 

features of the real detonation concerning such as the wave front 

structure and the propagation velocity. A cage effect , which is 

the result of the spatial fluctuations in the particle 

distribution, on the detonation propagation phenomena is also 

studied in detail by calculating the energy relaxation processes 

at the detonation wave front . It will be shown that in the case 
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of small molar fraction of the catalyst S the energy relaxation 

processes are dominated by the cage effect in the late stage and 

therefore the long time behavior is quite different from that 

predicted with use of the assumption of spatial homogeneity. We 

can recognize that the fluctuation in the molecular level finally 

affects the macroscopic phenomena such as the detonation 

propagation in the late stage. 

    In the fourth part (chapter VI), the effects of the 

fluctuations  in the particle distribution on the macroscopic 

dynamics of the system in the late stage are investigated by 

calculating the relaxation process of the particle number from 

the initial nonequilibrium state composed of the A and the S 

particles. The decay law of the number density of the A 

particles does not depend on time t as exp(-kt) predicted by the 

rate equation (assumption of homogeneity) but as exp(-kt1/2). 

The comparison between the statistical theory and the MD 

experiments are presented. 

    In the final part (chapter VII), the activated complex with 

finite lifetime which has been neglected in the studies in the 

second to fourth parts is taken into account to test the range of 

validity of our model and the effects of the activated complex on 

the dynamical processes of the reaction system. As the objective 

phenomena, we adopt the detonation propagation phenomena. It 

will be demonstrated that the role of the activated complex is 

not essential in the detonation propagation mechanism except for 

the slight change observed in the detonation wave structure.

9



                     CHAPTER II 

 DETAILS OF THE MODEL FOR THE MD EXPERIMENTS 

§ 2.1 General Procedures of the MD Experiment 

    In the field of statistical physics there are two major 

techniques for the computer experiments, one is the MD method and 

the other the Monte Carlo (MC) method. Basically the MC method 

is a technique to calculate the canonical ensemble average of the 

physical quantities in the equilibrium state.51'52) In the MC 

experiments, a lot of representative points in the phase space or 

the configuration space are generated by the Markoffian random 

walks in such a space and the ensemble average is taken over all 

these representative points. So the MC method is suitable to 

investigate the static properties of the system in its 

equilibrium state. On the other hand the MD method is a useful 

tool to study the dynamical properties of the system such as the 

transport phenomena, non-equilibrium phenomena and so on.52) In 

the MD calculations, for the system consisting of many 

interacting particles, the Newton's equations of motion (EOM) for 

each of the particles

   d2-?.(t) 8k(r.(t))) 
M.1..r._ 1                                            -4 

1dt2dr
. 
                          1

(2.1.1)
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are integrated 

system. Here, 

i-th particle 

energy defined

at 

as

numerically 

 m. andr.(t) 
1 1 

 time t and

to 

is 

is

follow the time evolution of the 

the mass and the position of the 

the total interatomic potential

R(r.(t)}) 

   J

1 
2

E E 
k(�j)

co (W) — r
kI), (2.1.2)

where we approximated the total potential f as the sum of the 

pair interaction potential 4(r). From the data thus obtained the 

dynamical quantities are calculated. 

    The selection of the interatomic potential function •(r) is 

the most important problem in the MD experiments. The commonly 

used potential functions are classified in two types; One is the 

continuous potential functions such as the Coulomb potential 'P(r) 

                        126 
= k/r, the Lennard-Jones potential •(r) = 4E ((Q) - (Q) } and 

n the soft core potential 4'(r) = E(4) , where a corresponds to the 
diameter of the particle and k and E are constants. The other 

type of the interatomic potentials are discontinuous potentials 

such as the hard core potential
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 0 (  r  >  0  ) 
 Cr) =(2.1.3) 

(r50). 

    For the continuous potential function, Verlet's leap-flog 

algorism 

2 

                            [ri(t+A) = 2ri(t) -ri(t-A) +m., + o(L4)(2.1.4) 
1 8r. 1 

is usually employed to integrate EOM, where A is the time mesh 

width. For the hard core potential, the integration of the EOM 

are performed in a quite different manner. As the interaction 

between the hard core particles is non-zero only when the two 

particles contact, the track of a particle between consecutive 

two collisions draws a straight line. Therefore we have only to 

determine the successive collision events in order to grasp the 

whole behavior of the system. 

    In §.2.3, the detailed procedure is given for the MD 

experiments on our model system which consists of the particles 

interact with the hard core potential.
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 6 2.2 Model of the Reaction System 

    Our model system for the MD experiments consists of N hard 

disks, all with the identical mass m and the diameter  0, 

contained in a square/rectangular box. Each disk is assigned one 

of the three species A, B and S. We assume that an exothermic 

isomerization reaction, A + S : B + S + AQ, takes place on a two-

body collision between the two disks. Here the quantity AQ is 

the reaction heat of the forward reaction. Therefore, the 

potential energy (chemical energy) of an A particle is higher 

than that of a B particle by the amount of AQ. We assume that 

there exist a transition state between these two isomers A and B 

and the barrier hight of the transition state, which corresponds 

to the so-called activation energy, is assumed to be 2 for the 

forward reaction and 2 + AQ for the reverse reaction. We further 

assume that the lifetime of such transition state is negligibly 

short and the reaction A 4 B or B 4 A takes place 

instantaneously. If a reactive pair of particles (A + S or B + 

S) collides and the head-on collision component of the relative 

kinetic energy exceeds the activation energy (2 for the forward 

reaction and 2 + AQ for the reverse reaction), this collision is 

regarded as reactive. Then the particle A (B) changes to B (A) 

and the total kinetic energy increases by AQ for the forward 

reaction A + S - B + S and decreases by AQ for the reverse 

reaction B + S 4 A + S. The velocities of the colliding 

particles after the collision are perfectly determined by the 

momentum conservation law and the energy conservation law that 
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takes into account of the energy release or the energy absorption 

of the reaction heat. As every particle has the identical mass, 

the released energy is divided equally between the two colliding 

particles in the center-of-mass system. If the above-mentioned 

conditions for the reactive collision are not fulfilled, then the 

collision  is regarded as non-reactive and elastic. Here, for 

simplicity, we assume that any type of collision other than A + S 

and B + S, such as A + A, are elastic. This assumption, however, 

is expected not to affect the qualitative features that we are 

now interested in. 

    In this model, we adopt only three characteristic properties 

which are basically common in reacting systems, that is; a) the 

change of chemical species, b) the release or the absorption of 

the reaction heat and c) the translational freedom of the 

particles. All the other properties except a)-c) are neglected 

in this model. Our main purpose is to extract the common 

features of the reacting system by using the above-mentioned. 

simplified model. It can be said that the features which this 

model reaction system shows are universal in the general reaction 

system. In the following we study this model reaction system by 

the MD method from such point of view.

14



 § 2.3 Computational Schemes 

    In this section the computational scheme for our MD 

experiments are presented. 

    LetTiand vi be the position and the velocity of the i-th 

particle. We define the relative position and the relative 

velocity of the j-th particle from the i-th particle as 

 4  4 4 

  r= r.- r.(2.3.1) 
   ijJ1 

and 

  v..=v. -v. .(2.3.2)    i~  

If we definebijas 

     bij = rij•vii                                                         (2.3.3) 

the two particles i and j collide only whenbij< 0 and 

bij2 - I12 (112- 02) > 0. (Note that each particle moves 

straight between the collisions.) Then the time spent until the 

collision between i and j takes place is given by 

tij= [ -bij-(bij2-Ivijl2(Irijl2- 02))1/21/1I2. I2. (2.3.4) 
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The velocities of the colliding two particles i and  3 after the 

collision,v"iandv"~,are determined using the momentum and the 

energy conservation relations as follows: 

  v=v. - Av •e(2.3.5) 
    i 1 

and 

  v= v. + Av •e .(2.3.6) 

Hereais the relative positionri~at the instant of the 

collision and dv is given by 

Av =2( - yr//+ (m( Er// + q ))1/2] .(2.3.7) 

In eq. (2.3.7), q is the reaction heat which is equal to AQ for 

the forward reaction A + S 4 B + S, -AQ for the reverse reaction 

B +S 4 A + S and 0 for the non-reactive collisions. The 

quantities yr// and Er// are the head-on collision components of 

the relative velocity and the relative kinetic energy, 

respectively, defined as follows: 

yr// vii • e(2.3.8) 

    E- m • v 2•(2.3.9)     r//4 r// 

On the collision between the reactive type pair, the collision is 

regarded as reactive if E
r// exceeds the activation energy of the 
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reaction. Otherwise the collision is regarded as non-reactive 

and therefore elastic as mentioned before. 

    In order to save computing time for the calculation of the 

successive collisions, we employ the book-keeping method. This 

method is based on the fact that in a dense system a particle 

collides only with its neighbouring particles within a short time 

interval. At t = n tB (n  = 0,1,2,—), ), a table is made for each 

of the particles which registers the indices of all the particles 

locating within the distance rB from the particle, where the time 

tB and the distance rB must be determined appropriately by taking 

the following situation into account. In the time interval n tB 

5 t 5 (n+1) tB, as the candidates of possible collisions, only 

pairs registered at t = ntB are considered. No collisions occur 

between particle pairs which have not been registered in the 

table may take place. As the result the cost for searching 

collision events is reduced largely. 

    To find the fist collision in the system, we calculate the 

collision times for all the particle pairs registered in the 

table under the assumption that each particle moves straight with 

its velocity without colliding. The obtained collision times are 

registered in a 1-dimensional list in a descending order. As the 

first element of this list corresponds to the first collision in 

the system, we make each particle travel until the time and the 

velocities of the colliding two particles are renewed according 

to eqs. (2.3.5) and (2.3.6). Then the data in the list of 

collision times which concern to the colliding pair are also

17



renewed 

way we

 and the renewed 

can trace the time

data in the list 

evolution of the

 are sorted. 

system.

In these
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          CHAPTER III 

    PATTERN FORMATION PROCESSES 

IN THE EXOTHERMICALLY REACTING SYSTEMS

 § 3.1 Introduction 

    The pattern formation processes in the various chemical as 

well as physical systems have recently been one of the central 

interests in the fields of statistical physics and the physical 

chemistry, and a lot of works have been done on the phase 

transition phenomena, chemical instability, hydrodynamic 

instability and so  on.2,4,53,54) On the emergence of such 

spatial patterns, it is well known that the fluctuations play an 

essential role.2,53,54) Therefore the MD method, which treats 

the microscopic fluctuations exactly, can give us an important 

information on such phenomena. Until recently, however, the MD 

method was not applied to the pattern formation processes because 

of the limitation of the system size available on the computers. 

Only recently, the MD method becomes to be applied to the 

nucleation processes in the chemical phase transition23'26) and 

the hydrodynamic instability.55) In the present chapter, our 

main concern is the pattern formation processes in the 

exothermically reacting systems and we study the relation between 

these macroscopic patterns and the microscopic dynamics of the 

particles. 

                       19



 § 3.2 Results of the MD Experiments 

     The model reaction for the MD experiments are exothermic 

 reaction A +  S B + S + AQ explained in the preceding chapter. 

For investigating the pattern formation processes, MD experiments 

 are performed as follows: First, we prepare a non-reactive hard 

disk system in thermal equilibrium of temperature TO contained in 

a square box with the periodic boundary condition on each of the 

sides. Next, we assign species to each particle randomly, with a 

uniform density distribution, in such a way that a half of the 

 total number of particles are A's and the rest are B's. Since an 

A particle has more internal energy than a B particle, the state 

then changes to a nonequilibrium state that has an excess 

internal energy. We adopt this state as an initial state of the 

reacting system. Then, we follow the time evolution of this 

system under the exothermic reaction dynamics. The system is 

expected to relax towards an equilibrium state of temperature , 

say Te' in which the numbers of A and B particles , NA and NB, 

satisfy the relation NA/NB = exp(-AQ/k
BTe). We set the total 

number of particles N = 9752 and the density of the particles n02 

= 0.770, where n is the total number density and a the di
ameter 

of the hard disk. This density corresponds to a fluid state of 

density slightly lower than its fluid-solid transition density .7) 

Parameters AQ and E are selected in two ways: that is
, a) AQ = 

40.0 and E = 10.0; and b) AQ = 3 .0 and E = 3.0. Here the 

parameters AQ and E are measured by the mean kinetic energy per 

particle of the initial state. Computations are continued until 
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200,000 collisions have been performed in the system. Hereafter, 

we make quantities dimensionless by use of the units of length  a, 

mass m (m: mass of the hard disk) and time (m02/kBTO)1/2, 

respectively. 

    In Figure 3.1 we show the time evolution of the spatial 

distribution of the created B particles through reactions for 

cases a and b, respectively. In case a, we observe clearly a 

nucleation and growth process of the circular domain of the B 

particles which corresponds to the ignition and combustion 

process. Case b shows a rapid and almost homogeneous growth of 

the domains of B particles, which is suggestive of spinodal 

decomposition in the phase separation of alloys. We remark here 

that the initial state is metastable in case a, while unstable in 

case b. In case a, as the activation energy E is much higher 

than the average kinetic energy of a particle, most of the 

collisions are elastic. Once a reaction takes place, however, a 

large amount of energy is released, which raises the local 

temperature and causes reactive collisions successively. 

Therefore this state may be considered as metastable. On the 

other hand, in case b, as the activation energy is relatively 

low, reactive collisions can take place easily and the system 

relaxes to the equilibrium state rapidly. So this state is 

unstable. These circumstances are similar to those of alloy or 

spin systems.56) 

   For case a, we carried out 5 runs in order to get qualitative 

features for the growth mechanism of the nucleus. In these runs, 

we assign initially an excess kinetic energy to an A particle at
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Figure 3.1

Time evolutions of the spatial distribution of the created B

particles are shown for case a and case b, respectively.
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the center of the system so as to reduce the initial induction 

time before the ignition, with which we are now less concerned. 

In Fig. 3.2, we show the time evolution of the radius of the 

nucleus. Here, the radius of the nucleus is defined as the 

radius of a circle centered at the initial ignition point that 

contains 90% of the created B particles. We see that the radius 

evolves proportionally to time throughout the computations. 

Figure 3.3 shows the time evolution of the profile of the domain, 

that is, the radial distribution of the B particles measured from 

the initial ignition point. To derive the profile, which is 

obtained by averaging over the 5 runs, the origins of time of 

individual runs are suitably shifted in order to reduce the 

effects of fluctuation in the induction time. 

   Two types of mechanism can be considered for this linear 

growth of the domain. One is the mechanism of thermal diffusion 

and activation at the domain boundary, which  is well known for 

the drift mechanism of the flame and leads to the stationary 

propagation of the boundary.3'4) However, as is shown in 

Fig. 3.3, the profile of the domain boundary has not yet reached 

its stationary profile. In this time region, therefore, a 

different mechanism is required to explain the growth mechanism. 

In Fig. 3.4, we present a flow pattern of the momentum field 

which is indicated by arrows. Here, the system is divided into 

20 x 20 meshes with a mesh width of 5.5a. An arrow is defined as 

an average momentum of about 80 particles contained in a small 

circle centered at a mesh point with a radius same as the mesh 

width. There exists a circular domain in Fig. 3.4, and the 
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momentum flow is noticeable in a boundary region of this domain 

with a width of about  150. The domain previously defined by B 

particles in Fig. 3.1 is well reproduced by this domain of 

momentum flow. Since successive collisions of particles at the 

domain boundary quickly transfer the momentum out and away from 

the domain, this momentum transfer is expected to dominate the 

spreading of the domain. If the momentum flux at the boundary 

flows steadily, the boundary propagates with a constant speed. 

For the duration of the stationary propagation, balancing is 

needed between the decay of momentum flux at the boundary and the 

supply of momentum due to the exothermic reactions and the 

increase of pressure inside the domain. The stability of this 

balancing and the transition from the momentum transfer mechanism 

to the thermal diffusion mechanism are interesting problems from 

the viewpoint of the dynamical correlation. These problems will 

be discussed in the following chapters.
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                    CHAPTER IV 

     DETONATION WAVE: PROPAGATION VELOCITY AND STRUCTURE 

 § 4.1 Introduction 

    In the preceeding chapter (chapter III), we studied the 

pattern formation processes of a hard disk system which undergoes 

an exothermic reaction. We found that this model system shows 

spatial pattern formation processes similar to those in the phase 

transition of the alloy system, that is, a nucleation and growth 

process and a uniform pattern formation like a spinodal 

decomposition. We studied the nucleation and growth process and 

found that the boundary of the nucleus, which corresponds to a 

combustion wave, propagates steadily in time and that the wave is 

driven by the fast flow of momentum around the boundary region. 

In this chapter, we study the structure of this reaction wave and 

the mechanism of the propagation in detail by performing the MD 

experiments of the one-dimensional propagation of the reaction 

wave for a long period. The results of such MD experiments will 

be also used to test the validity of the macroscopic description 

of reacting system by the macroscopic equations. 
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     In  § 4.2, the details of our experiments are presented. An 

analysis by the macroscopic hydrodynamic theory is made for our 

MD experiments in § 4.3. Comparison between the hydrodynamic 

theory and the MD experiments is made in § 4.4. We will see that 

the reaction wave of our experiment corresponds to a detonation. 

Finally in § 4.5, we summarize our results. 

  § 4.2 Model Reaction and MD Experiment 

    The model reaction system used in the present experiment is 

basically the same as that used in chapter III. The system 

consists of N hard disks each of which has one of the chemical 

species A, B and S and all disk have the identical mass m and the 

diameter O. An exothermic isomerization reaction denoted as; 

A+ SEB+ S+ AQ(4.2.1) 
                     ( AQ20 ) 

is introduced into this system. 

     In this chapter, the dynamics of one-dimensional propagation 

of a reaction wave is studied. To observe the wave propagation 

for a long period, we prepare a rectangular box whose side length 

Lx in the x-direction and the side length Lyin the y-direction 

are in the ratio 20 : 1. We impose a periodic boundary condition 

upon the sides in the x-direction while we assume the both sides 

in the y-direction as the elastic walls. A reaction wave is 
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generated in the vicinity of one end of the side in the x-

direction ( x = 0 ) and travels along the x-direction. 

    The computations are performed as follows: First, we 

prepare a hard disk system in thermal equilibrium of temperature 

T0.Next, each particle is given species A or S randomly in such 

a way that the half of the total particles are A's and the rest 

are S's. As was shown in chapter III, this state is metastable 

in case that the activation energy  E is large compared to the 

mean kinetic energy per particle kBTO. To initiate the reaction, 

we heat the particles in a small region at the one end of the 

system ( 0 5 x 6 L
x/50.0 ) by multiplying a factor 5.0 to their 

velocities. Then we can observe a reaction wave propagating 

along the x-direction. 

    Hereafter, we use dimensionless quantities by use of the 

units of length o, mass m, time (ma2/kBTO)1/2 and energy kBTO. 

    We performed a series of MD runs for a various values of the 

number density of the particles na2 ( n : total number density ), 

reaction heat AQ and activation energy E. Their values are 

listed in Table 4-I. For the runs of type a) in Table 4-I, we 

changed the na2 keeping AQ and E to be constant, while we changed 

AQ and E keeping no2 to be constant for type B) runs. All runs 

were performed for 9,000 hard disk system. For each set of 

parameters of type a) given in Table 4-I, three runs were 

performed changing the initial configurations and velocities of 

particles and the assignment of species. On the other hand, one 

run was performed for each set of parameters of type B). 
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Table 4-I The 

experimental data 

performed until 1 

hard disk reacting

 parameters used for 

 of wave velocity. 

,000,000 collisions 

system.

 the 

 All 

were

experiments and 

 experiments 

achieved in a 9

 the 

were 

,000

Density 

 n  62

Reaction 

 heat 

AO

Activation 
 energy 

    £

Wavea) 

velocity

Macha) 

number

Sound 

velocity

a

0.770 

0.385 

0.231 

0.116

40.0 10.0

61.4 

20.1 

14.6 

12.1

7.33 

7.00 

6.94 

7.08

8.38 

2.87 

2.10 

1.71

40.0 10.0 

20.0

20.0 

19.7

6.97 

6.86

R 0.385 80.0 10.0 

20.0

32.2 

28.4

11.21 

9.89

2.87

160.0 20.0 40.0 13.93

a) For each set of parameters of type a), three runs were 

performed and the listed data of wave velocity and Mach numbers 

are the average values over the three runs. On the other hand, 

one run was performed for each of type R). 

b) Sound velocities are evaluated for the upper stream region 

using eq. (4.3.16).
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     In Fig 4.1, the spatial distribution of the created B 

particles for one of the three runs of type  a) n02 = 0.770, 

E = 10.0 and AQ = 40 .0 is shown. These parameters are the same 

as those used in chapter III. In this figure, we can see a B-

rich region spreading from the left to the right. This region 

corresponds to the burnt gas, and the boundary of this region is 

regarded as a reaction wave front ( combustion wave ). In 

Fig 4.2, the time dependence of the position of the reaction wave 

front in Fig 4.1 is shown. Here, the position of the wave front 

is determined from the spatial distribution of B particles shown 

in Fig 4.1, errors being at most N 100 . We found that the 

reaction wave propagates with a constant velocity. The averaged 

velocity of three runs for this set of parameters is 61 .4. In 

order to know the real physical magnitude of this propagation 

velocity, it is convenient to normalize the velocity using the 

sound velocity for the upper stream region . As the upper stream 

region in our experiments is equivalent to the equilibrium state 

of the non-reactive hard disk system of temperature T
O (note that 

no reactive collision takes place in this region) , we can 

estimate the sound velocity with use of a thermodynamic relation 

( see next section ). With this sound velocity . we can see the 

above mentioned propagation velocity of the reaction wave 61
.4 

corresponds to Mach 7.33. Therefore , the propagation of the 

reaction wave is a supersonic phenomenon . The other experiments 

for the parameters listed in Table 4-I also showed steady 

propagation of the reaction wave with a supersonic velocity . The 

experimental values of the propagation velocity and the Mach 
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number of the reaction wave are shown in Table 4-I. It is found 

that the wave velocity is sensitive to the density  no2 and the 

reaction heat AQ, but less sensitive to the activation energy E. 

This suggests that the activation energy is irrelevant to the 

propagation mechanism of the wave. 

    Next, we calculate the thermodynamic structure of this 

reaction wave. For hard disk system, pressure is usually 

calculated using the virial theorem. Since the numbers of 

particles of respective species are not constant but fluctuate, 

the ensemble average in the virial theorem should be regarded as 

the average in the grand canonical ensemble; 

   PV1
2N1TE..>(4.2.2)     NP   BB 3r

. 

Here, I is the total inter-particle potential, ri is the position 

of the i-th particle and < > denotes the average in grand 

canonical ensemble. Using the fact that there are no 

inter-particle forces during the interval between collisions, we 

can rewrite eq. (4.2.2) as follows; 

 PV1   

   NkBT1+2NkBTtE (ri-rj )•Api , (4.2.3) 

where i and j are the indices of the colliding pair of each 

collision, Lp. is the change in momentum of particle i on the 

collision and the summation is taken over all the collisions 

which have occurred in the objective region of volume V during 
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the time interval of t. We calculate the pressure of the 

reacting system using eq. (4.2.3). 

  In Fig. 4.3, the profiles of a) pressure, b) temperature and  c) 

the number of net forward reaction ( (forward) - (reverse) ) per 

unit area per unit time are shown for the reaction wave presented 

in Fig 4.1. All quantities are measured on a coordinate system 

moving with the wave front, the origin of which corresponds to 

the reaction wave front. The plotted points are derived as 

follows; The system is divided into many sections along the 

x-direction in the above-mentioned coordinate system. The width 

of each section, say ,x, is taken to be Ax = Lx / 300.0. 

Therefore, each section contains about 30 particles, over which 

pressure, temperature and the number of reactions are averaged. 

Each value of temperature is evaluated using the root mean square 

of the velocities of particles in each section at t = 3.03. On 

the other hand, each values of pressure and the number of 

reactions are measured from about 300 collision data experienced 

by the particles in each section during a time interval 

3.03 5 t 5 3.71. We see a steep increase of pressure and 

temperature at the wave front. This structure is characteristic 

of a shock wave. Therefore, we see that the reaction wave is 

accompanied by a shock compression in front of it . 

    It is known that there are two types of combustion wave , one 

is called a deflagration and the other a detonation .3'4) A 

deflagration is the usual combustion wave which propagates with a 

subsonic velocity. On the other hand, a detonation is a 

supersonic combustion wave which has a preceding shock wave . 
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Therefore, the 

characteristics

reaction wave of our MD experiment 

of a detonation.

has the

 § 4.3 Hydrodynamic Theory 

    In this section, we derive the stable detonation velocity 

for our hard disk reaction system, following the hydrodynamic 

theory.4) 

    Now we consider a steady one-dimensional propagation of a 

combustion wave. The basic equations are mass, momentum and 

energy conservation equations and they are given in the 

co-ordinate system moving with the wave as follows; 

 Plul = P2u2 ,(4.3.1) 

Pl + Plul2 = P2 + P2u22,(4.3.2) 

    h1+2u12= h2 +2u22 .(4.3.3) 

Here, P is the mass density , u the flow velocity of the fluid, P 

the pressure, h the enthalpy per unit mass defined as h = e + PV 

and e is the internal energy per unit mass. Subscripts 1 and 2 

indicate the upper stream (reactant) and the down stream (burnt) 

state, respectively. From eqs. (4.3.1) and (4.3.2), we can 

represent the wave velocity ul as
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      22  P2-P1       u= -V 
     I2 V2-VI • 

Here, V = 1/P is the volume per unit 

see that ul, the wave velocity against 

proportional to the square root of the 

so-called Rayleigh line, connecting 

(P2,V2) on the P-V plane. On 

eqs. (4.3.1)-(4.3.3) we obtain 

     h2 - h1 =2 (P2 - P1)(V2 + V1)

(4.3.4)

mass. From eq. (4.3.4) we 

the upper stream fluid, is 

slope of a straight line, 

the two points (P1.V1) and 

  the other hand, from

(4.3.5)

which is called Rankine-Hugoniot equation. If we consider P2 and 

V2 in eq. (4.3.5) as unknown variables, this equation gives the 

allowed point for state 2 on the P-V plane, provided the initial 

pressure PI and volume VI. 

    Now we evaluate eq. (4.3.5) for our hard disk system. As 

there is no inter-particle potential energy in hard disk system, 

the internal energy e is composed of the thermal energy NkBT and 

the chemical energy ec:

Here, 

denote 

state

e=NkBT+ec .

N is the total number of particles per 

 the released chemical energy during 

1 to state 2 as q, we obtain

unit 

the

(4.3.6)

mass. 

change

If we 

from
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 ecl = ec2 + q .

Substituting eqs. 

2 (P2 - P1

(4.3.6) and

)(V

(4.3.7) into eq. (4 .3.5)

2 + V1) = NkB(T2 - T1) + (P2V2

(4.3.7)

. we obtain

- P
1V1) - 

     (4.3.

q 

8)

When 

state 

state

the 

1, 

2,

 system is composed of 

 the equilibrium number 

which is denoted as NB, is 

  N 

same numbers of 

of created B 

given by

B 2 ( 1 + exp( -AQ/kBT2)) ' 

 immediately derived from the 

q using eq. (4.3.9) as

A's and S's 

particles

(4.3.9)

in 

in

which is 

evaluate

Boltzmann factor. We can

Therefore 

Hugoniot 

given by

q=NBAQ. 

, with use of eqs. (4 

equation (4.3.8) for

(P2 + P
1)(V2 - V1) + 2Nk

.3. 

our

9) and (4.3 

hard disk

B(T2 - T 1)  i-7

(4.3.

.10), the 

reacting

NN

10)

Rankine-

system is

exp( - AQ/k
BT2) '

(4.3. 11)
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In eq. (4.3.11), temperature T can be expressed by pressure P and 

volume V with the use of the  Pade approximation of the equation 

of state of the hard disk system57) both for state 1 and state 2. 

The validity of applying this equation of state of non-reactive 

hard disk system to state 2, which is the equilibrium state of a 

reactive hard disk system, is discussed in the next section. In 

this way, we can draw the Rankine-Hugoniot curve on the P-V 

plane. 

    It is known that the stable detonation wave is represented 

by the point at which the Rayleigh line contacts tangentially 

with the Rankine-Hugoniot curve. This point is called as upper 

Chapman-Jouguet point ( upper CJ point ).4) 

    If the reaction heat AQ is much larger than kBT1, it can be 

shown that the stable detonation velocity evaluated at the upper 

CJ point is proportional to (AQ)1/2 with use of eq. (4.3.11) as 

follows. If we define P as P = P / AQ, then eq. (4.3.11) leads 

to 

(P2 + P1)(V2 - V1) + 2NkB(T2AQ----------T1) =1 + exp(N- AQ/k
BT2) •

(4.3.12) 

If we use the equation of state 

  V= 1 + f(v) ,(4.3.13) 
 NkBTBT

41



where f is a function of only density, and eliminate temperature 

in eq. (4.3.12), we obtain 

 (142 + P1)(V2 - V1) + 2[2V2(1 + f(~))-1 -1V1(1 + f(Y))-1) 
     21         

N----------------------------------------------------(4.3.14) 

              1 + exp( - N(1 + f(N/V2))/P2V2) 

As is seen from eq. (4.3.14), Rankine-Hugoniot curve is 

independent of AQ when it is drawn on the P-V plane. On the 

other hand, the Rayleigh line is a line connecting the two points 

(P1,V1) and (P2,V2) on the P-V plane. If we assume that 

AQ >> kBT1, then we can put P1= 0 while P2 is finite. 

Therefore, the Rayleigh line on the P-V plane can approximately 

be regarded as a line connecting the two points (P2,V2) and (0, 

V1) on the P-V plane. Then the Rayleigh line is also independent 

of AQ. As a result we see that the upper CJ point on the P-V 

plane is independent of AQ and the slope of the Rayleigh line 

which passes through the upper CJ point is also independent of AQ 

on the P-V plane. As is mentioned previously, since the 

detonation velocity is proportional to the square root of the 

slope of the Rayleigh line on the original P-V plane, the 

detonation velocity is proportional to (AQ)1/2. 

    Finally, we present an expression for the sound velocity in 

a hard disk system. The sound velocity c is obtained from the 

thermodynamic relation; 

c2 lap s•(4.3.15) 
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As for the hard disk system, this relation leads 

 c2 = v2l R13TJ~PE) J '                  vT 

where R = kB/m is the gas constant per unit mass 

the equation of state of the hard disk system,57) 

the sound velocity from eq. (4.3.16), which 

Table 4-I.

to 

      (4.3.16) 

. Together with 

we can evaluate 

 are given in

§ 4.4 Comparison between Experiment and Theory 

    We evaluated the upper CJ point and the stable detonation 

velocity from eqs. (4.3.4) and (4.3.11) for the values of n02 and 

LQ, listed in Table 4-I a). As was mentioned in §. 4.3, we 

applied the equation of state for the non-reactive hard disk 

system57) in order to evaluate the temperature in state 2. In 

order to check the validity of this equation of state for our 

reacting hard disk system, we performed different runs. From 

these runs (data from the 1,000,000 collisions in equilibrium 

state of 10,000 reacting hard disks), we confirmed that the 

equation of state is valid even for the equilibrium state of our 

reactive system within an accuracy of 1 %. So we can use the 

equation of state for state 2 as well as state 1. In Figs 4.4 

and 4.5, we present the experimental ( MD ) and the theoretical 

( eqs. (4.3.4) and (4.3.11) ) values of the wave velocities. 

Density dependence of the wave velocity is shown in Fig 4.4,

4.3
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while dependence on the reaction heat  AQ is shown in Fig 4.5. As 

was theoretically demonstrated in § 4.3, the experimental wave 

velocity is seen to be proportional to (OQ)1/2. Dependence of 

the wave velocity on the activation energy E was not noticeable 

(see Table 4-I). Agreement between the experimental values and 

the theoretical values is achieved within an accuracy of a few 

percent. From these results and the structure of the reaction 

wave mentioned in § 4.2, we can conclude that the reaction wave 

in our MD experiments is a detonation. 

    We also calculated the theoretical values of the 

thermodynamic variables in state 2 (downstream state), defined as 

the upper Cd point, from eqs. (4.3.4) and (4.3.11). On the other 

hand, the corresponding experimental values are calculated in the 

region enough backward of the wave front. In Table 4-II, both 

these theoretical values and the experimental values are shown. 

The agreement between them is not good. It is thought that this 

disagreement is caused by the elastic wall condition we imposed 

to the wall at x = 0, whereas the steady flow condition is 

assumed in the theory. From this disagreement and the agreement 

between the theoretical and experimental values of the wave 

velocity shown in Figs 4.4 and 4.5, we see that the wave velocity 

is insensitive to the state of the downstream region. That is, 

the wave velocity is mainly determined by the condition in the 

narrow region at the wave front. This is also confirmed by the 

fact that the wave velocity is proportional to (AQ)1/2. The 

quantity (OQ)1/2 is the corresponding velocity to the released 

reaction heat. Therefore the (AQ)1/2 dependence of the wave 
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Table  4-II Comparison between the theoretical values 

experimental values of the thermodynamical variables 

downstream region. All experimental data are the averaged 

over three runs of type a) in Table 4-I.

and the 

of the 

values

Upper CJ point 

    (Theoretical

State 2 

(Experimental

 2a) 
na V/Vb)P/Pb)T V/Vb)P/Pb)T

0.770 

0.385 

0.231 

0.116

0.93 37.36 26.70 

0.82 37.12 24.80 

0.76 37.60 24.64 

0.71 37.53 24.49

1.04 13.55 15.59 

1.10 13.14 15.52 

1.12 13.60 15.87 

1.23 12.23 15.51

a) The other parameters AQ, 2 and T1 are kept constant at 40.0, 

10.0 and 1.0, respectively. 

b) The volume and the pressure are normalized by the 

corresponding values in the state 1 (upper stream region).

47



velocity indicates that the momentum flow is steadily maintained 

by the successive reactive collisions of the particles at the 

wave front. 

 § 4.5 Concluding Remarks 

     In the preceding sections, we found that, in some respects, 

our reactive hard disk system can reproduce a detonation both 

qualitatively and quantitatively. Therefore, we can conclude 

that a detonation, which is a highly nonequilibrium phenomena, 

can be realized by only three properties which our model 

maintains; translational motion, change of species and release of 

heat. The most remarkable difference between the detonation of 

our experiments and the real one is the position of the reaction 

zone. As is shown in Fig 4.3, the reaction zone of the 

experimental detonation locates immediately after the wave front. 

While it is known that the reaction zone of the real detonation 

locates somewhat backward of the  front4). This is caused by the 

relaxation of the translational energy, which the molecule gains 

through the passage of the shock wave, to the internal mode of 

the molecule which induces the reaction. As our hard disk system 

does not have these internal degrees of freedom, the excess 

translational energy from the shock compression immediately 

raises up the reaction. So the location of the reaction zone 

coincides with the wave front. Recently, Tsai and Trevino31) 

studied a detonation in a diatomic molecular crystal using MD 
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method. The structure of the detonation of their experiment is 

similar to our results. Only difference is that the reaction 

zone in their experiment locates backward of the shock front, 

which originates from the fact that their model molecule has the 

internal degrees of freedom. Therefore, the characteristic 

structure of our detonation is due to the lack of the internal 

degrees of freedom of the hard disk system. Taking these 

internal degrees of freedom into account in our model will be 

discussed in chapter VII. 

    We also found that the driving mechanism lies in the narrow 

region at the wave front. The thickness of this region is the 

same order as the mean free path. In such a microscopic region, 

discreteness of the fluid is by no means negligible. Further 

analyses on the dynamics in the scale of the inter-particle 

distance are presented in the next chapter.
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                    CHAPTER V 

DETONATION WAVE: ENERGY RELAXATION PROCESSES AT THE WAVE FRONT

 § 5.1 Introduction 

    The elucidation of many-body correlation is one of the 

central problems in condensed matter physics. To study this 

problem for classical particle system directly, the molecular 

dynamics ( MD ) method has been playing an important  role.6-11) 

    In the previous chapter (chapter IV) with the MD method, we 

studied a reaction wave propagation in a hard disk system which 

undergoes an exothermic reaction. We found that the generated 

reaction wave corresponds to a detonation. A detonation is a 

supersonic combustion wave which is accompanied by a shock 

compression in front of it, and the thickness of the shock front 

is of the order of the mean free path of the particles. 

Therefore, information on the molecular level microscopic 

dynamics of the particles at the detonation wave front is 

required in order to understand the mechanism of the propagation 

of the detonation. We found that the propagation velocity of the 

detonation is in good agreement with the theoretical value of the 

stable detonation velocity obtained with a hydrodynamic theory. 

In this chapter, we investigate the energy relaxation processes
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at the detonation wave front. Especially, we are interested in 

the effects of the many-body correlation among particles on the 

propagation mechanism of the detonation. 

     In the next section we summarize the model used for the MD 

experiments. In  § 5.3 the dependence of the detonation velocity 

on the molar fraction of each species is studied and compared 

with a hydrodynamic theory. The energy relaxation processes at 

the detonation wave front are examined in detail and the results 

are shown in § 5.4. Finally in § 5.5 we make some remarks. 

§ 5.2 Summary of the Model for MD Experiments 

     The model reaction system used in this chapter is the same 

as that used in the previous chapter (chapter IV). We prepare a 

hard disk system, in which each disk has an identical mass m and 

a diameter Q. We introduce an exothermic isomerization reaction, 

which is expressed as 

    A+SEB+S+AQ(5.2.1) 

                    ( AQ 2 0 ) 

into the hard disk system. 

    In order to observe the detonation propagation phenomena, we 

set 9,000 hard disks in a rectangular box whose side length Lx 

and L are in the ratio 20 : 1. We take the x-coordinate along 

the longer side Lx and y-coordinate along the shorter side L. 
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respectively. A periodic boundary condition is imposed only for 

the  y-direction and the walIs on the shorter sides are assumed to 

be elastic. After realizing an equilibrium state of the 

non-reactive hard disk system at temperature T0, we assign 

species A or S to each disk spatially randomly according to an 

uniform distribution. Then, the particles of which x-coordinates 

are in the region 0 5 x 5 L
x/50 are heated by multiplying their 

velocities by a factor of 5.0 in order to initiate a detonation. 

The A particles in this region begin to make reactions and turn 

into B particles by releasing the reaction heat. The released 

reaction heat induces next reactive collisions and in this way 

the reactive region propagates in the x-direction, that is, a 

detonation propagates. 

     In chapter IV, each molar fraction of species A and S in the 

initial state was fixed to be 0.5, that is, the number of 

particles of species A was equal to that of species S. In this 

chapter, we change these molar fractions in order to investigate 

the effects of composition on the detonation propagation 

mechanism. 

    Hereafter we present the results of computations by 

dimensionless quantities using the units of mass m, length a, 

time (ma2/kBTO)1/2 and energy kBT
O,except for § 5.4 and the 

Appendices where the derivation of expressions is done with the 

quantities which are not normalized for the convenience of the 

readers.

52



 § 5.3 Detonation Velocity : MD Experiment and Theory 

     We performed a series of MD runs with the parameters listed 

 in Table 5-I. In the table, the quantity cR is the molar 

fraction of the total reactive species A and B, which is 

invariant through the reaction process. Therefore, 1 - cR means 

the molar fraction of species S. The parameters ne2, AQ and s 

indicate the dimensionless number density of hard disks, reaction 

heat and the activation energy of the forward reaction, 

respectively. The case n62 = 0.770 corresponds to a high density 

fluid phase of the hard disk system, while the case n62 = 0.116 

to a low density fluid phase. 

     For each run we observed that a B-rich region, which 

corresponds to the burnt gas region, spreads along the 

x-direction. The boundary of the B-rich region corresponds to 

the detonation wave front. As an example, in Fig. 5.1 we show 

the time dependence of the position of wave front, which is 

determined from the spatial distribution of created B particles, 

for the case of nd2 = 0.770 and cR = 0.75. The straight line in 

this figure is drawn with the least square method. The obtained 

detonation velocities for various cR values and densities are 

also shown in Table 5-I. 

    Figure 5.2 shows the detonation velocities as a function of 

cR, where the theoretical values obtained by a hydrodynamic 

consideration ( see Appendix A ) are also shown for comparison. 

To derive the theoretical values, we assumed that the down stream 
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 Table 5-I The parameters used in 

MD results of the detonation velocity. 

     In each case, the parameters 2 

respectively, and one computation run 

set of parameters.

the

and 

was

MD experiments

 /Q are 10 

performed

.0 

for

and

and 

the

the

40.0, 

each

nct2 cR Detonation velocity (MD)

0.770

0.25 
0.50 

0.75 

0.90

47.3 

64.2 

62.6 

51.3

0.116

0.25 
0.50 

0.75 
0.90

9.0 

12.1 

13.7 

14.0
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Fig. 5.1  

    The time dependence of the position of the detonation wave 

front is presented for the case ni2 = 0.770 and cR = 0.75. Here, 

the time and position are non-dimensionalized with use of the 

units of length 0 and time (m62/kBTO)1/2. The straight line in 

the figure is determined by a least square method with which the 

detonation velocity is evaluated. 
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Fig. 5.2  

    Dependence of the dimensionless detonation velocity on the 

molar fraction of reactive species (A + B) is shown for 

(a) n62 = 0.770 and (b) nO2 = 0.116. Solid circles indicate the 

MD results and the solid curve shows the theoretical values 

obtained from eq. (A.3). The probability that the true value 

lies within the error bar is 95%. 
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region of the detonation is in chemical as well as thermal 

equilibrium. 

    From Fig. 5.2 we see that the agreement between the results 

of the MD and the theory is good except for the high density and 

large  cR region, where the MD results are systematically smaller 

than the theoretical values. We expect that in the region 

mentioned above the equilibrium assumption used in the 

hydrodynamic calculation is not valid for the down stream region. 

In the high density and large cR region, the number of A 

particles are much more abundant than that of S particles, so 

there exist considerable numbers of clusters composed of only A 

and B particles. For the A particles inner in such clusters, 

there is no neighboring S particle and they have less possibility 

to experience reactive collisions with S particles. As a result 

the A particle is considered to be trapped in a cage. We can 

imagine that such cage effect works to suppress reactive 

collisions to occur and reduces the detonation velocity compared 

with the theoretical value. This point is discussed in the next 

section.
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 § 5.4 Relaxation of Energy at the Wave Front 

   5.4.1 Methods of calculation and the results 

    In order to clarify the cage effect suggested in the 

preceding section, we investigate the energy relaxation processes 

at the detonation wave front. 

    As is mentioned in  § 5.3, the position of the wave front 

x(t) can be fitted to a linear function of time as x(t) = 

vt + x0.We determined these two parameters v and x0with the 

use of the least square method. Using this expression, we 

evaluate the time when the wave front passes over the i-th 

particle and we denote it as ti0). Now, we define an ensemble 

average of any quantity Qi(t) associated with the i-th particle, 

such as the particle velocity, as follows: 

              N   < Q(T) > = NE Q.( t-ti0)).(5.4.1)                1i
=1 

where N is the number of sample particles and T is defined as 

T =-t-ti0)for the i-th particle.Thequantitiesti0)'sare 
constants and independent of the ensemble average. By this 

definition of < Q(T) > we can investigate how < Q(T) > changes 

before and after the passage of the wave front. Hereafter, we 

use the notation t instead of T. 

    In Fig. 5.3 the time evolution of various physical 

quantities is presented for the case n62 = 0.770 and cR = 0.75. 
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Fix. 5.3  

    Time evolutions of averaged dynamical quantities of 

particles; (a) x-component of the particle velocity, (b) total 

energy per particle, (c) kinetic energy per particle, 

(d) chemical energy per particle, (e) temperature (random part of 

the kinetic energy) and (f) mean free time, are shown for the 

case n c = 0.770 and cR = 0.75. The time origin corresponds to 

the time when the detonation wave front determined by the 

straight line in Fig. 5.1 passes through the particle. Here all 

quantities are dimensionless. 
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The ensemble average was taken over all the particles of which 

species are A in the initial state. Each figure shows the 

evolution of (a) x-component of the particle velocity <  vx(t) >, 

(b) total energy ( kinetic energy plus chemical energy ) per 

particle < ET(t) >, (c) kinetic energy per particle < EK(t) >, 

(d) chemical energy per particle < Ep(t) >, (e) temperature T(t) 

and (f) mean free time tF(t), all of which are presented in 

dimensionless values. Here, kinetic energy is calculated from 

the mean square velocity of particles and includes the components 

of the systematic flow which are expressed by the x and 

y-components of the mean velocity. On the other hand, 

contributions of these systematic flow are not included in the 

temperature. As a chemical energy the value AQ is assigned to 

species A and the value 0 to species B. So the quantity 

< E,(t) > is directly proportional to the number of the surviving 

fraction of A particles at time t. Mean free time tF(t) is 

calculated by counting the number of collisions of each particle 

occurred in a small time interval at time t. 

    A rapid movement of the particles along the x-direction due 

to the shock compression is clearly seen in Fig. 5.3(a). Due to 

this compression and the release of the reaction heat, the total 

energy (Fig. 5.3(b)) as well as temperature (Fig. 5.3(e)) 

increases abruptly and then the total energy begins to decrease 

which is due to the relaxation of both the kinetic and the 

chemical energies as shown in Figs. 5.3(c) and 5.3(d). The 

quantities < vx(t) >, < E(t) >, < EK(t) > and T(t) make changes 

simultaneously in a step-wise manner. The < E(t) > decays due 
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to the loss of A particles through reactive collisions 

A + S  4 B + S. We see that the time dependence of <  Ep(t) > is 

composed of two time regions, one is a rapid decay in the early 

stage and the other a relatively slow decay in the late stage. 

Crossover from the first rapid region (region I) to the latter 

slow region (region II) occurs at the time when < vx(t) > and 

< E(t) > take their maximum values (for example, compare 

Figs. 5.3(a) and 5.3(d)). 

    To find the decaying rate in these two regions, we present 

semi-log plots of < E(t) > in Fig. 5.4 for (a) n02 = 0.770 and 

(b) n02 = 0.116. We see that two linear regions exist, which 

suggests an exponential decay of the form

< E (t) > a exp( - t / T ), (5.4.2)

where T 

for the 

square 

for (a) 

time tF 

10tF and

  is a relaxation time. The relaxation times TI and TII 

respective two time regions are derived with use of least 

method and shown in Figs. 5.5 and 5.6 with solid circles 

region I and (b) region II. Compared with the mean free 

(t), the relaxation times TI and TII are of the order of 

100tF, respectively.

5.4.2 Decay process in region I

    Relaxation processes in region I can 

a simple non-correlated collision model.

mainly be 

Consider

explained by 

an A particle
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exponential relaxation processes are observed 
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      The experimental (MD) values of the relaxation times rI 

      (dimensionless) for the case no2= 0.770 are shown TII 

  (a) region I and (b) region II with solid circles. 

 Fig. 5.5(a) the theoretical values, which are evaluated 

  eq. (5.4.5), are also shown with crosses. In Fig. 5.5(b) 

 relaxation times calculated from the decay processes of the 

 cluster size of surviving A particles are shown with crosses 

cR = 0.75 and 0.9. 
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at time t  = t0( t0< 0 ). This A particle experiences tF1(t) 

collisions per unit time at time t. If the collisions have no 

correlation, one collision may be between non-reactive type pair 

( A + A or A + B ) at the rate of cR or reactive-type ( A + S ) 

at the rate 1 - cR. When the collision is a reactive-type, a 

reaction takes place at the rate

PR(t) = J
Oexp(1k        1 -x2B T(t)) dx ,

(5.4.3)

which is the probability that the head-on collision component of 

the relative kinetic energy at a collision exceeds the activation 

energy E under temperature T(t) (see Appendix B). Here, we 

assumed that the system is in thermal equilibrium. Therefore, 

the probability that an A particle survives after a collision is 

expressed as

•P(t) = c
R + ( 1 - cR )( 1 - PR (t)) . (5.4.4)

As the 

surviving

quantity < EP(t) > is 

A particles, we obtain

proportional to the 

the next relation:

fraction of

<E(t) > = 11 
(t.)

P(ti). (5.4.5)

where the 

collision 

calculated

multiplication is taken over 

times (ti). Using the MD 

 < E(t) > from eqs. (5.4.

the sequence of successive 

data of T(t) and tF(t), we 

3)-(5.4.5) and the results
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are shown in Fig. 5.7 with the fine curve for the case 

 n62 = 0.770 and cR = 0.75 along with the MD data shown with the 

bold curve, which is the same as that shown in Fig. 5.4(a). Here 

as the time sequence (til in eq. (5.4.5) we adopt a collision 

time sequence of idealized collisions of a particle which 

experiences successive collisions in which each time interval of 

collisions equals to the MD results of the mean free time tF(t). 

The agreement between the MD data and the theoretical results 

(eq. (5.4.5)) is fairly good for region I. From the theoretical 

curves thus obtained for all the cases in Table 5-I, we evaluated 

the theoretical values of TI which are shown in Figs. 5.5(a) and 

5.6(a) with crosses. We see that the experimental relaxation 

times are fairly well reproduced by the theory. This indicates 

that the decay process in the region I is mainly determined by 

the successive non-correlated reactive collisions. 

   5.4.3 Decay process in region II 

    Now we look for the mechanism of region II. One of the 

important factors to be considered is the relaxation of 

temperature. As is shown in Fig. 5.3(e), after the temperature 

raises and takes its maximum value, it begins to decay slowly 

compared to the abrupt increase. This process is mainly caused 

by the decrease of density which has been raised by the shock 

compression. If we assume that the system is always in 

equilibrium at temperature T(t) in region II, the number of A
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particles per unit mass,  NA, becomes a function of T and is 

expressed as (see eq. (A.2)) 

   NA = cRN exp( -AQ/kBT ) / { 1 + exp( -~Q/kBT )} , (5.4.6) 

and the chemical energy per particle is given by 

  < E(t) > = OQ NA/cRN ,(5.4.7) 

where N is the total number of particles per unit mass. We 

calculated the expected values of < Ep(t) > in region II, 

assuming the system to be in equilibrium with temperature T(t), 

using eq. (5.4.7) with the data of T(t). The results are shown 

in Fig. 5.8 for the high density case ( n02 = 0.770 ). For small 

cR, MD data and the data obtained by eq. (5.4.7) are in good 

agreement ( Figs. 5.8(a) and (b) ). For large cR values, 

however, the decay process of < Ep(t) > can not fully be 

explained by the relaxation of temperature. On the other hand, 

in the low density case ( nO2 = 0.116 ) we confirmed for all 

values of cR used in the runs that the decay of < E(t) > is 

completely explained by the temperature relaxation. Therefore, 

the region in which eq. (5.4.7) cannot reproduce the behavior of 

relaxation is limited to the high density and large cR region. 

As was noticed in § 5.3, such a region corresponds to the region 

where the MD and the theoretical detonation velocities are not in 

agreement. We expect that the cage effect becomes more important 

in such a region. As is suggested in § 5.3, a cluster composed 
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Fig. 5.8 

    Comparison between the experimental relaxation 

( bold curve ) and that obtained with an equilibrium 

eq. (5.4.7) ( fine curve ), is made for the high 

n62 = 0.770. The parameter cR is (a) 0.25, (b) 0. 

and (d) 0.90, respectively. 
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of only A and B particles plays the role of a cage which prevents 

the inner A particles from making reactive collisions (see 

Fig. 5.9). If this clustering is the dominant factor of the 

relaxation in region II, the relaxation time T11 must be of the 

same order with the lifetime of such clusters. 

    To confirm the prediction above, we calculate the lifetime 

of the clusters of the A particles trapped in the cage. In order 

to define clusters without ambiguity, we use the Voronoi 

 polygon.58) A Voronoi polygon is a region associated to each of 

the particle and is defined as a set of points whose nearest 

particle is the center particle of the Voronoi polygon. By this 

definition, the system is spatially divided into Voronoi polygons 

uniquely. In what follows, a set of Voronoi polygons is called a 

domain if the set consists of Voronoi polygons of the same 

species and any of the polygons in this set has at least one 

contiguous polygon which belongs to the set. If the domain is 

enclosed by domains of the different species, the domain is 

called a cluster. The size of the cluster is given by the number 

of particles in the cluster. 

    In Fig. 5.10 we show examples of the domain structure around 

a specified A particle, which is indicated by a large solid 

circle at the center of each figures, at four different times 

t = -1.0, 0.0, 1.0 and 2.0 for the case na2 = 0.770 and 

cR = 0.75. Here the time t is set equal to zero at the time when 

the compression wave front passes over the specified particle . 

In the figures the open Voronoi polygons, the shaded polygons and 

the dark polygons show those which correspond to S , A and B 
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R A

R

R
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 Fix. 5.9

    A cage which is composed of only reactive species ( A and 

B) and no catalyst ( S ) is shown. In this figure, particles 

marked as "R" represent particles of species A or B. The center 

A particle has less opportunity to experience reactive type 

collision ( A + S type collision ) than the average.
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particles, respectively. At t = -1.0 small or one-particle 

S-clusters are embedded in a large domain of A particles. At 

t = 0.0 as a result of reactions between A and S particles, 

B-clusters are  created in the left-half of the A-domain as shown 

in Fig. 5.10(b). As time goes further, the reactions proceed and 

resultant B particles make small B-clusters form a large 

B-domain. The domain structure at t = 2.0 shows the pattern 

after all reactive collisions ceased (Fig. 5.10(d)). There are 

several A particles which are enclosed by B particles and hence 

have no opportunities to make reactive collisions with S 

particles. As a result these A particles survive for a 

considerably long period. In this way for the case cR = 0.75 the 

relaxation processes after the passage of the wave front may be 

sketched as destruction and shrinkage of the A-domain and the 

diffusion of S particles into A and B-clusters. 

    On the other hand, in case of cR = 0.9, the situation 

becomes rather different. In Fig. 5.11, similar snapshot 

pictures of the Voronoi polygons to those in Fig. 5.10 are shown 

for the case na2 = 0.770 and cR = 0.9. In Fig. 5.11(c) it is 

shown that there remains considerably large clusters of A 

particles compared to the case cR = 0.75 (Fig. 5.10(c)). In this 

case we consider the relaxation process as the nucleation and 

growth process of created B particles from the dispersed center 

of S particles rather than as the shrinkage process of the 

A-clusters. 

    To see whether the process of the shrinkage of the 

A-clusters is the dominant factor of region II or not, we 
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 (a) t=-1.0

CR =0.75 

   (b) t=

(c)  t=1.0

0.0

 (d  ) t= 2.0

Fig. 5.10

    Time evolution of the clusters of surviving A particles are 

shown for the case na2 = 0.770 and  cR = 0.75 using the Voronoi 

polygons. The open Voronoi polygons, the shaded polygons and the 

dark polygons show those of the S, A and B particles, 

respectively. 
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(d) t= 2.0

Fig. 5.11
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calculate the time evolution of the average cluster size of the 

surviving A particles  Ti(t), and the results are shown in 

Fig. 5.12 using semi-log plot for the case (a) na2 = 0.770 and 

cR = 0.75 and (b) na2 = 0.770 and cR = 0.9, respectively. Here 

in the definition of the A-cluster, the A particles which have 

contiguous S particles are not included in the member of the 

cluster because we are interested in the clusters of A particles 

which are trapped in a cage and have no opportunity to experience 

reactive type collisions. 

  In Fig. 5.12, ensemble average was taken over all the clusters 

observed in the system at various time, and the time in the 

figure is measured from the time when the wave front passes over 

the center particle in the cluster, which is defined as the 

nearest particle to the center of mass of the cluster. After the 

wave front passes through the cluster, the mean cluster size 

begins to decrease exponentially. The relaxation times 

calculated from these data are shown in Fig. 5.5(b) with crosses. 

For cR = 0.75, relaxation time of the mean cluster size agrees 

with that of the chemical energy relaxation in the region II. 

This means that the process of cluster shrinkage well describes 

the slow relaxation in the region II. On the other hand, for 

cR= 0.9,the relaxation time of the mean cluster size does not 

agree with TII. As was shown in Fig. 5.11, the picture of 

cluster shrinkage is not appropriate in this very large cR 

region. 
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 § 5.5 Concluding Remarks 

    We found that the energy relaxation processes at the 

detonation wave front are composed of two different time regions. 

In the first region, progress of the reaction process is mainly 

determined by the rapid and non-correlated reactive collisions. 

In the late stage, two mechanisms compete. One is the relaxation 

of the temperature, and the other is the cage effect. In the 

latter case, the lifetime of the clusters due to diffusion 

process is much longer than the time scale of the element process 

of the reaction. Then the reaction process is regarded as a 

diffusion controlled reaction and the correlation between the 

collisions comes to be dominant in the time evolution of the 

whole system. This problem will be further investigated in the 

next chapter.
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                    CHAPTER VI 

            FLUCTUATION DOMINATED KINETICS 

IN THE NON-EXOTHERMIC AND THE EXOTHERMIC REACTION SYSTEMS

 § 6.1 Introduction 

    When the time scale of the elementary process of the 

reaction is negligibly small compared to that of the diffusive 

motion of the reactive particles until they contact, the 

dynamical processes of this system are limited by the diffusion 

process and, therefore, this type of reaction is called the 

diffusion controlled reaction. In such system, the spatial 

fluctuations in the initial density distribution of the particles 

decay very slowly and survive even in the late stage of the 

reaction process. Therefore such fluctuations dominate the late 

stage dynamics and the  behavior of the system does not obey the 

so-called rate equation, which assumes the system to be spatially 

homogeneous throughout the reaction process. The fluctuation 

dominated kinetics in the diffusion controlled reaction systems 

has recently been extensively investigated.5,42-49) As the model 

reaction, 1) the radical recombination reaction A + A -> 0, 2) the 

particle-antiparticle recombination reaction A + B -, 0 and 3) the 

unimolecular trapping reaction A + S S have been often employed 
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and the long time behavior of these systems has been studied. On 

each of these examples, anomalous long time tail of the decay 

process of the total number density of the species A has been 

theoretically predicted and confirmed by the Monte Carlo 

simulations. 

    As an example we mention the  unimolecular trapping reaction. 

The unimolecular trapping reaction is expressed as 

  A + S - S.(6.1.1) 

In the reaction (6.1.1), the A particles can be regarded as being 

trapped by the perfect sink S, which is left unchanged after 

trapping an A particle. A lot of investigations on the 

fluctuation dominated kinetics of reaction (6.1.1) have been 

performed with the assumption that the sink S is static and 

uniformly distributed.47-49) If we assume that each of the 

species A and S distributes homogeneously at any time, then the 

total number density of the A particles at time t, denoted as 

PA(t), obeys the rate equation 

aPA(t) 

at--------- = - k PA(t) PS,(6.1.2) 

where k is a reaction rate constant and PS denotes the total 

number density of the S particles which is invariant through the 

reaction process. The rate equation (6.1.2) gives the decay law 

of PA(t) as
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   PA(t)  N exp(-kt).(6.1.3) 

On the other hand, if we take into account the spatial 

inhomogeneity it is demonstrated that the long time behavior of 

PA(t) decays as 

PA(t) N exp(-Ktd/(d+2)).(6.1.4) 

where K is a constant which depends on the initial number density 

of species A and d is the spatial dimension.47-49) The anomalous 

decay law (6.1.4) originates from the fact that there exists an 

arbitrary large trap free region in which no trap S exists and 

the A particles can continue the random walks without being 

trapped for a long period. 

    As was seen in the preceding chapter the microscopic 

fluctuations in the particle distribution play an essential role 

in the late stage dynamics of our reacting system, when the 

system enters into the diffusion controlled regime. In this 

chapter we focus our attention to the fluctuation effects on the 

late stage dynamics and perform a series of MD runs to 

investigate such effects separately.

§ 6.2 

    As 

energy

Rate Equation Analysis for Our Model 

 was discussed in chapter V, the slow 

after the detonation wave front passes 
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factors, one is the temperature relaxation and the other is the 

spatial inhomogeneity. The former factor originates from the 

increase of the reverse reactions near the equilibrium and we are 

not interested in this factor at present. In order to 

concentrate on the latter factor, we suppress the reverse 

reaction in our model reaction and consider an irreversible 

reaction expressed as 

 A+S-,B+S+AQ.(6.2.1) 

In this reaction, the created B particles do not affect the 

reaction dynamics and can be identified with the inert species. 

Therefore the reaction (6.2.1) is reduced to the unimolecular 

trapping reaction (6.1.1). The differences between our model 

reaction and that used in the above investigations47-49) are that 

the trap S is mobile in our model and our reaction is accompanied 

by the release of the reaction heat AQ. Therefore, on analyzing 

the behavior of the particle number in our system, we must 

consider the temperature change simultaneously. 

    Before performing the MD experiments, we present the results 

of analysis using the rate equation for the reaction (6.2.1). 

The rate equation for the reaction (6.2.1) is 

2PA(t) 

at---------- = - k(T) PA(t) PS,(6.2.2)
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which is 

reaction 

as the 

constant

  the same as eq. (6.1.2). But in this case, as the 

 (6.2.1) is exothermic reaction, the temperature changes 

reaction process proceeds. Therefore the reaction rate 

k depends on the temperature  T as

k(T) =  k0 T1/2 exp(
 kBT)'   B

(6.2.3)

where k0is a constant which depends on the total number density 

of the particles. The factor exp( - kET ) is the usual 
B 

Boltzmann's factor and the factor T1/2 originates from the fact 

that the collision frequency is proportional to the mean velocity 

of the particles and therefore proportional to T1/2. We can 

determine the temperature at time t, denoted as T(t), as a 

function of PA(t). The conservation relation of the total energy 

is expressed as

nkBTO + AQ PA(0) = nkB T(t) + dQ P
A(t), (6.2.4)

where PA 

initial 

eqs. (6. 

leads to

(0) 

time 

2.3) 

the

 is the number 

 and n is the 

  and (6.2.4) 

closed equation

 density of 

 total number 

into the rate 

for PA(t) as

the A particles at the 

density. Substituting 

 equation, eq (6.2.2),
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 dPA(t) 

 dt= - k0PSPA(t) ( TO+ (PA(0) - PA(t))nkB11/2

x exp( - k

BTO-------------+ (PA
(0) - P

A(t)) AQ/n). (6.2.5)

By solving eq. (6.2.5), we can predict the time evolution of 

PA(t) under the assumption that the system is always homogeneous. 

    As we are now interested in the long time behavior of the 

system, the asymptotic form of the solution of the eq. (6.2.5) 

will be important. As PA(t) decays monotonically to zero, we can 

assume that PA(t) << 1 when t - °°. Therefore, expanding 

eq. (6.2.5) in powers of PA(t) and retaining the leading term 

we have

dPA(t) 

dt= -k0PS(T0 + PA(0)nk1/2                            )eXp( -
kBTO + PA(0)AQ/n ) PA(t),

(6.2.6)

which leads to the exponential decay law of PA(t) irrespective of 

the values of each of the parameters.
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 § 6.3 MD Experiments and Simple Theoretical Interpretations 

    We performed the MD experiments on the fluctuation effects 

on the late stage dynamics as follows: The system is a square box 

and the periodic boundary condition is imposed on each of the 

sides. The  initial state is a mixture of the A and the S 

particles uniformly distributed in the box. The particle numbers 

of the species A and S in the initial state, NA and NS, is in the 

ratio NA : NS = cR : 1 - cR, and, therefore, PA(0) = cR. From 

this initial state, we calculate the time evolution of the system 

following the reaction (6.2.1) and the decay process of PA(t) is 

observed for the parameters listed in Table 6-I. The density of 

the system is taken to be high density (no2 = 0.770) in which the 

fluctuation effects is expected to be important. 

    In Fig. 6.1 we present the MD results of the decay process 

of PA(t) in the normal plot and the semi-log plot along with the 

results of the rate equation (6.2.5) for the case a) E = 0.0, AQ 

= 0.0 and cR = 0.5 and b) E = 3 .0, AQ = 3.0 and cR = 0.5, 

respectively. We find that the rate equation well describes the 

early stage behavior of PA(t). In the late stage, on the other 

hand, the decay rate of the system becomes slower than that 

predicted by the rate equation, which is suggestive of the 

effects of the spatial inhomogeneity. Such discrepancy between 

the results of the MD and the rate equation was also obtained for 

the other sets of parameters listed in Table. 6-I. 

    We can give an intuitive explanation to this slow decay 

process following Balagurov and Yaks.47) If the molar fraction 
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Table 6-I  

fluctuation 

 B+S+AQ.

   The 

effects 

MD runs

parameters 

  in the 

were done

used for the MD 

  irreversible 

on the N = 9752

runs to 

reaction 

system.

study 

A + S

the

na2 AQ cR

A---------------------------------------------------------------)

0.770

0.0 0.0
V 

0 
0

• 

• 

• 

•

50a) 

75 
90

3.0 3.0
0.25 

0.50 

0.75 

0.90

a) In these cases, the MD runs were done on the N=28080 system.
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Fig. 6.1 

    The MD result (solid lines) and the prediction of the rate 

equation (6.2.5) (broken lines) of the decay processes of  PA(t), 

the total number density of the species A, are presented for the 

case a) E = 0.0 and AQ = 0.0 and b) E = 3.0 and AQ = 3.0. The 

density is nd2 = 0.770 and the initial molar fraction of the 

species A is cR = 0.5. It can be found that the rate equation 

does not give the correct behavior in the late stage.
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of the species A is not so large, the system can be regarded to 

be composed of many clusters of A particles (hereafter we call 

such clusters as the A-clusters). As we assign species to each 

particle randomly in the initial state, the probability that we 

find a region of area A2in which all of the particles are A's 

obeys the Poisson distribution. Therefore, the probability of 

finding an A-cluster of linear dimension  A, say f(A), obeys the 

Gaussian distribution: 

1/22 
  EA) = 2 (n) exp( - CA2),(6.3.1) 

where C is a function of the mean separation distance A between 

the particles 

  C = - 12In cR ( > 0 ) .(6.3.2) 
        A 

As the reaction process proceeds, each of the A-clusters shrinks 

and the number of the A particles contained in a cluster 

decreases monotonically. Now we define 4 (t) as the number of 

the A particles per cluster at time t averaged over the A-

clusters whose initial linear dimensions are A. If we assume 

that the decay of the A-clusters, which existed in the initial 

state, dominates the density variation PA(t) in the late stage, 

PA(t) can be given by averaging over all the A-clusters which 

initially existed as
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   PA(t)  N j 0f(A) .A(t) dA .(6.3.3) 

Here we neglected the constant factor because we are interested 

in the qualitative behavior of PA(t). We must determine the 

decaying law (PA(t). If the species S is static and distributes 

uniformly, it is known that •A(t) N exp(- Dk02t), where D is the 

diffusion constant of the particles and k0is the smallest 

possible wave number inside the cluster and is the order of 

1/Q,47) As the S particles are mobile in our case, the decay law 

of the clusters must be, at the slowest, exponential function of 

time. We performed a series of MD experiments on the decay 

process of the circular domain of A particles isolated in the sea 

of the S particles. A typical example is shown in Fig. 6.2. In 

this figure the spatial distribution of the A particles are 

shown. From the results of such MD runs, we confirmed that the 

circular domain decays exponentially in time. The relaxation 

time of the domain of size A, denoted as TA, can be estimated by 

the time during which the diffusion length becomes to be the size 

of the cluster: 

   ( D TA )1/2 N A .(6.3.4) 

Therefore we obtain the decay law of the cluster as 

(I)A(t) N exp( - Dt/A2) .(6 .3.5)
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Substituting eq. (6.3.5) into the eq. (6.3.3), we obtain the long 

time behavior of PA(t) as 

  PA(t)  N exp( - 2 ,/CDt) ,(6.3.6) 

which is slower than exponential. In Fig. 6.3 we plot log PA(t) 

versus ft in order to check the prediction (6.3.6). The 

linearity of the curve is made better than that of Fig. 6.1, 

which suggests the cluster picture mentioned above. 

    If the system size is finite as the system used in the MD 

experiments, there is an upper cut-off of the distribution of the 

cluster size, say Qc. Then, the upper limit of the integral in 

eq. (6.3.3) must be replaced by Ac and the resulting decay law is 

as follows:

   PA(t) N 

where tc= CA

 exp  (-  2  JCDt  )( t < tc ) 

C1/2 Q 2 
•AAc3/2exp(12(D03/2 ) ( t > tc ), 

   2(Dt)                 C1/2A
c 

                                            (6.3.7) 

c2/D and A is the normalization constant defined as 
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  A = Jcexp( -  CA2 ) dA .(6.3.8) 

As the exponential decay predicted by the rate equation (6.2.6) 

is slower than the long time tail of eq. (6.3.7), the system 

regains the exponential decay in the time region t > tc. This 

behavior is also confirmed by the MD calculations (see Fig. 6.4). 

6 6.4 Concluding Remarks 

    The fluctuation in the particle number density was found to 

dominate the late stage of the decay process of PA(t) in a manner 

that the above naive theory predicts in both the non-exothermic 

and the exothermic reaction systems. We could not detect the 

characteristics of the exothermic reaction in this problem. This 

originates from the fact that in the late stage the effects of 

the reaction heat are negligible because the reaction events 

scarcely take place and therefore the system can be regarded as 

the non-exothermic reaction system. 

    Further investigations on the dynamical aspects of the 

fluctuation effects on the other type of reaction systems, such 

as the particle-antiparticle annihilation reaction A + B 4 0, in 

which the segregation of the species A and B emerges in the late 

stage,5) and the radical recombination reaction A + A 4 0 are 

left to be done in future.
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                    CHAPTER VII 

    EFFECTS OF THE ACTIVATED COMPLEX WITH FINITE LIFETIME 

 § 7.1 Introduction 

    In the previous chapters, we used a reactive hard disk 

system to model the exothermically reacting particles. Our main 

purpose is to understand how this simple model realizes the 

properties of the real reaction systems and what is the essential 

features of the reaction dynamics. For this purpose we adopted a 

model of an exothermic  isomerization reaction 

A+SEB+S+AQ,(7.1.1) 

which occurs on the two body collisions between the reactive pair 

of the hard disks. Here the species A and B are isomers, S is 

the catalyst and AQ is the reaction heat of the forward reaction. 

We studied the detonation propagation phenomena using the model 

reaction (7.1.1) by MD method. It was shown that as long as the 

S particles are abundant in the system the detonation wave 

propagates stationarily with the velocity predicted from the 

hydrodynamic considerations and that the structure of the 

detonation in our MD experiments is similar to that of the real 
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detonation (chapters IV and V). The dynamical properties of the 

particles were also studied by calculating the energy relaxation 

processes at the detonation wave front (chapter V). By these 

works it was established that the simple reaction model, the hard 

disk system combined with the model reaction (7.1.1), can 

reproduce the main features of the detonation. 

    In this chapter we focus our attentions to the effects of 

the finite lifetime of the activated complex which is neglected 

in the model reaction (7.1.1). When the activated complex A*is 

introduced in the model as

AA*  B+  A.Q, (7.1.2)

the structure of the wave front and the energy relaxation 

processes are expected to be different from those of model 

(7.1.1) and to have more realistic features. 

    We summarize the model of the MD experiment in the next 

section and the results and the discussions are presented in 

6 7.3. In the final section § 7.4 we conclude this chapter.

6 7.2 Summary of the Model

    In order to introduce the activated 

reactive hard disk model, we regard that the 

composed of following set of reactions;

complex 

reaction

A* 

(7

into 

.1.2)

our 

 is
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  A + S  4 A* + S(7.2.1) 

  B + S  -+ A* + S(7.2.2) 

A*+X 4A +X 

-> B + X ,(7.2.3) 

where X denotes A, B or S species. We assume that the A* is 

created by a collision between A and S or B and S and has the 

excess internal energy compared with either A or B (reactions 

(7.2.1) and (7.2.2)). The activated complex A* thus created 

turns to the stable (or metastable) B or A species by releasing 

the excess energy through collisions with another particle 

(reaction (7.2.3)). By these assumptions, the reactions (7.2.1) 

and (7.2.2) are endothermic and the reaction (7.2.3) is 

exothermic. In these schemes, we neglect the possibility of the 

occurrence of the reactive collisions between two A* particles 

such as A* + A* -^ B + A*. We neglect such process so as not to 

introduce any nonlinearity (nonlinear terms in the reaction rate 

equations) into the reactions (7.2.1)-(7.2.3), because we wish to 

construct a simple extension of the model reaction (7.1.1) 

keeping the linearity of the rate equation. As the A* particles 

are short-lived in our model as will be shown below, A* + A* type 

collisions are expected to be negligible and we can justify above 

assumption. 

    We present the schematic representations of the internal 

energy levels of the species A, B and A* in Fig 7.1 for a) A E B 
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reaction (7.1.1) and b) AFA* B reaction (7.2.1)-(7.2.3). If 
the reactive type pair collides and the head-on  collision 

component of the relative kinetic energy exceeds the activation 

energy (E + E- for (7.2.1), E + AQ + E" for (7.2.2) and E" for 

(7.2.3)), the reaction takes place and the reaction heat (-E for 

(7.2.1), -(2 + AQ) for (7.2.2) and E or E + AQ for (7.2.3)) is 

released to the kinetic energy of the colliding two particles. 

Here we assume that each of the two open channels in reaction 

(7.2.3) is selected randomly with an equal possibility. In this 

model an activated complex A* has a finite lifetime which is of 

the same order as the mean free time of the particles as long as 

the activation energy E" for the reaction (7.2.3) is comparable 

to the mean kinetic energy per a particle. 

   The methods of the MD experiments used in this work are as 

follows. The system is an N hard disk system (N = 9000 or 28000) 

all with identical mass m and diameter a contained in a 

rectangular box with sides Lx and Ly along which we take the x 

and y-coordinates. The ratio of the length of the side L
x to 

that of the side L
y is 20:1 for the case N = 9000 and 60:1 for 

the case N = 28000, respectively. The sides L
x's are assumed to 

be periodic boundaries and Ly's are to be elastic walls. First 

we prepare a thermal equilibrium state of the non-reactive hard 

disk system at temperature T0and with specified dimensionless 

particle number density na2, where n is the particle number 

density, and we assign species A or S to each disk randomly with 

a uniform distribution so that the number of total A's and S's 

are in the ratio cR:l-cR. Then the velocities of all the 
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particles in the range 0  5 x 5 Mx are multiplied by a factor 5.0 

in order to initiate a detonation, where the value of Y is 1/50.0 

for N = 9000 case and 1/150.0 for N = 28000 case. The detonation 

wave thus initiated propagates along the x-direction and we 

calculate the detonation velocity and the energy relaxation 

processes at the detonation wave front from the MD data. 

    In the following all quantities are dimensionless with use 

of the units of length a, mass m, time (ma2/kBTO)1/2 and energy 

kBTO,where kB is the Boltzmann's constant. 

§ 7.3 The Results of the MD Experiments 

    As we are interested in the effects of activated complex A* 

which has the finite lifetime, we performed a series of MD runs 

for the same parameters that were used for the previous A E B 

reaction in chapter V by changing E which determines the mean 

lifetime of A*. The parameters used are listed in Tables 7-I and 

7-II. In the MD runs listed in Table 7-I, we kept the parameters 

E" to be 0.0. Therefore, an A* turns to an A or a B at the first 

collision with another particle and the lifetime of A* 

corresponds to the mean free time. In the runs in Table 7-II the 

lifetime of A*increases as the values of E" increase. Most of 

the computations are done for the N=9000 system except for a few 

cases in which we use N=28000 system to test the stability of the 

detonation for a long period. 
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Table  7-I The parameters used in 

MD results of the detonation velocity. 

    The parameters E. AQ and E' 

respectively, and one computation run 

of parameters.

the MD

are 

was

experiments

 10.0, 40 

performed

.0 

for

and the

and 0.0 

each set

n 62 CR Detonation velocity (MD)

0.770

0.25 

0.50 
0.75 

0.90

41.4a) 
53.0 
55.8a) 
49.8

0.116

0.25 

0.50 

0.75 
0.90

8.6a) 

11.6 

12.9a) 
13.8

a) For these 

28000 systems. 

presented in the

cases 

The 

table

 the MD runs were done for both 

values of the MD detonation 

are determined using the N=28000

N=9000 and 

velocities 

 data.
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Table  7-II The parameters used and the detonation velocities 

from a series of MD runs in which the lifetime of the activated 

complex A*is changed. 

     In each case, the parameters E, AQ, n02 and cR are 10.0, 

40.0, 0.770 and 0.5 respectively, and one computation run was 

performed with N = 9000 system for each set of parameters. 

       ncs2 E" Detonation velocity (MD) 

  0.053.0d)------------------------------------------------------------------- 
       10.050.5 

   0.770 15.048.3 b) 
        20.0----  

        0.011.6dl 
        10.010.8 b) 

   0.116 15.0---- b) 
     20.0----  

a) Results of N = 28000 system. 

b) In each of these cases, the detonation did not propagate 

stationary.
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    Despite the fact that the lifetime of the  A*'s is of the 

order of the mean free time, the detonation propagates 

considerable distance during the lifetime of the A*. Therefore 

it is expected that the A*'s have the detectable effects on the 

velocity and the structure of the detonation. 

    First we consider the detonation velocity. In our MD runs 

we found that, different from the previous A f B reaction case, 

the detonation velocity increases slightly for a short period 

after its initiation. This transient period originates from the 

fact that more excess enthalpy is needed to construct a stable 

detonation in the AFA*EBreactionthanintheAEB reaction 
because of the existence of the energetic A*'s at and behind the 

wave front. After such transient period we can observe that the 

detonation propagate stationarily. We determined the detonation 

velocities from the MD data in the stationary region of the 

propagation and the results are also listed in Tables 7-I and 7-

II. In Fig 7.2 we show, for the cases a) nc2 = 0.770 (high 

density fluid phase) and b) nc2 = 0.116 (low density fluid phase) 

both with C = 0.0, the comparison between the MD detonation 

velocities and the theoretical ones, for which we employed 

hydrodynamics as in chapter V. From Fig 7.2 the overall behavior 

is quite similar to that of the A E B reaction. We find the 

disagreement between the MD and the theoretical velocities in the 

high density and large cR region, which originates from the cage 

effect mentioned in chapter V. Moreover, from the MD results of 

the detonation velocity in Table 7-II, it is seen that the 

detonation velocity is rather insensitive to the change in the
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lifetime of A* (the change of  E") and the detonation velocity 

decreases slightly as the lifetime of A* increases (E-

increases). From these results we can conclude that the finite 

lifetime of A* has an unimportant effect on the detonation 

velocity. It only determines the critical lifetime of A* above 

which the detonation can no longer propagate stationarily. 

   Next we turn to the wave front structure. Now our attention 

is being paid mainly to the fact that the wave front structure of 

the detonation in the                        previous A  B reaction system deviates 

from that of the real detonation (chapter IV). The real 

detonation wave consists of two parts, one is the compression 

zone and the other is the reaction zone. The compression zone 

corresponds to the induction period in which the excess energy of 

the translational motion of the molecule activated by the passage 

of the shock wave front is transferred to the internal 

vibrational motion of the molecule which finally causes the 

exothermic reaction. After this induction period the actual 

isomerization reaction begins to proceed and this region is 

called as the reaction zone. Our previous MD experiment on the 

detonation in the A  B reaction system did not reproduce the 

compression zone and we considered that this character originates 

from the lack of the internal degrees of freedom in our hard disk 

reaction system A4B (chapter IV). In the AEA* EB reaction 

system, on the other hand, we expect that the activated complex 

A* gives rise to the relaxation time for the energy transfer from 

the translational motion to the internal vibrational motion and

104



that this reaction system including A* reproduces the wave front 

structure correctly. 

    In order to investigate this problem on the wave front 

structure we calculated the energy relaxation processes of the A 

particles at the detonation wave front, following the methods of 

calculation presented in chapter V. Now we define a quantity 

<E(t)> as an average total energy per particle at time t, where 

the time t is measured from the time when the wave front passes 

over the particle. Here the total energy <E(t)> is the sum of the 

chemical energy (potential energy) per particle  <Ep(t)> and the 

kinetic energy per particle <Ek(t)>. In Fig.7.3 we show how the 

<E(t)> changes during the passage of the wave front for the case 

no2 = 0.770 and cR = 0.5. Figure 7.3a) is for the A B reaction 

with E = 10.0 and AQ = 40.0 and Figs 7.3b)-d) are for the A E A* 

  B reaction with E = 10.0 and AQ = 40.0 and E" = b) 0.0, c) 10.0 

and d) 15.0 respectively. In these figures the time t = 0 

corresponds to the time when the wave front passes over the 

observer. The most significant difference between the reactions 

AEB and A E A* E B is whether the total energy <E(t)> increases 

at the wave front (t=0.0) or not. As the <E(t)> is the sum of 

the <Ep(t)> and the <Ek(t)>, we can analyze the above-mentioned 

behavior by decomposing the <E(t)> into these two components. In 

Fig 7.4 we present an example of the decomposition of the <E(t)> 

as shown in Fig 7.3b). As is seen from this figure the chemical 

energy per an initial A particle decays monotonically, which 

indicates the progress of the exothermic isomerization reaction 

A 4 B. Therefore we can regard that the beginning of the
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decrease of <E
p(t)> corresponds to the passage of the reaction 

zone front. On the other hand, as the kinetic energy  <Ek(t)> 

increases primarily by the shock compression, we can consider 

that the abrupt increase of the <Ek(t)> corresponds to the 

passage of the shock front. Combining these two effects it is 

understood that the increase of the <E(t)> means that the 

particle gains the excess energy from the shock compression of 

the detonation wave without losing its chemical energy by the 

reactive collisions and therefore the period in which the <E(t)> 

is increasing can be regarded as the compression zone. Returning 

to Fig. 7.3 we see that for the reaction AE B (Fig 7.3a) the 
<E(t)> decays almost monotonically. This means that for A E B 

reaction system there is no compression zone and the shock wave 

front coincides with the front of the reaction zone. For the 

reaction AFA*F B (Fig 7.3b-d), however, there exists a time 
interval in which the <E(t)> increases and this indicates the 

existence of the compression zone. The period of such time 

interval is about 0.3 (dimensionless time) and this corresponds 

to the width of the compression zone of about 150 (because the 

detonation velocity is about 50). Therefore introducing A* into 

the model makes the structure of the detonation more realistic.

§ 7.4 Concluding Remarks 

    As was seen in the preceding section, the existence of the 

activated complex A*is not essential in the propagation
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mechanism of the detonation. One of the effects of the A* is the 

formation of the compression zone before the exothermic reactions 

begin. This point was the only difference between the real 

detonation and the MD detonation from the model (7.1.1) (chapter 

IV). Therefore we can conclude that the simplicity in the model 

reaction (7.1.1) we used in the previous chapters is reasonable 

as long as we are not concerned with the details of the structure 

of the wave front.
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CHAPTER VIII 

CONCLUSIONS

    In the preceding 

following dynamical 

 B+S+AQ. 

    1) The nattern

chapters 

aspects 

formation

, using the MD method we found the 

of the exothermic reaction A + S 4 

processes. During the relaxation

processes from the non-equilibrium state the spatial pattern 

formation processes were observed. It was found that they are 

similar to those in the phase transition phenomena in the 

alloy/spin systems. We investigated the nucleation and the 

growth processes and found that the growth law of the nucleus is 

different from that of the alloy/spin systems. Such difference 

originates from the difference in the driving mechanism of the 

domain boundary between the two systems. In our reaction system, 

the momentum flow at the boundary caused by the successive 

reactive collisions at the boundary sustains the propagation of 

the boundary. 

    2) The detonation propagation phenomena. It was

demonstrated that our discretized description using particles can 

well reproduce the macroscopic features of the real detonation. 

The effects of the microscopic cluster which is caused by the 

fluctuations in particle number density distribution were also 

investigated. It was found that such microscopic fluctuations 

affect the detonation propagation velocity. Therefore we can say 
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that this is an example of the  effect 

processes on the macroscopic phenomena. 

    3) Fluctuation dominated kinetics.

fluctuations in density distribution dominate 

the whole system in the late stage and lead it 

different from the exponential decay law 

equation. A simple analytical explanation 

effects was suggested, which predicts a slower 

than exponential exp(-kt). We note that 

supported this result. The difference between 

and the exothermic reactions was not detected 

effects. 

    4) The effects of the activated

  of the microscopic 

We found that the 

nate the evolution of 

d it to the decay law 

predicted by the rate 

n of such fluctuation 

wer decay exp(-kt1/2) 

he MD experiments 

en he non-exothermic 

ed in the fluctuation 

complex with finite

lifetime. Introducing an activated complex A*, which has a 

finite lifetime, did not affect the essentials of the propagation 

mechanism of the detonation but changed the wave front structure 

of the detonation. This result indicates that our simple 

reaction model is a good approximation of the real exothermic 

reaction systems. 

    Despite the fact that our model system is a quite simple 

one, it shows various dynamical phenomena as were mentioned 

above. These phenomena will be common among the general 

exothermic reaction systems because we can expect that the 

essentials do not depend on the details of the reaction 

mechanism. For the simple model, in addition, we can perform a 

large scale MD experiments which gives us the information on the 

macroscopic phenomena. The macroscopic dynamics of the 
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chemically reacting systems in the non-equilibrium state have not 

been fully understood yet. The microscopic approach, such as the 

MD method, will become more and more important to gain deeper 

understanding of the chemical reaction systems.
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APPENDICES

                       Appendix A 

    Here, we give a brief derivation of Rankine-Hugoniot 

equation for our reactive system. 

    As was presented in chapter IV,  Rankine-Hugoniot equation 

for a steady detonation wave is described as follows: 

   2(P2- P1)(V2 + V1) = NkB(T2 - T1) + (P2V2 - P1V1) - q 
                                                 ( A.1 ) 

Here, the quantities P, V, N and T represent pressure, volume per 

unit mass, total number of particles per unit mass and 

temperature, respectively. Subscripts 1 and 2 represent the 

upper stream and the down stream region of the wave. The 

parameter q is the released chemical energy during the change 

from state 1 to state 2. When the initial state ( state 1 ) is 

composed of A and S particles, whose numbers are in the ratio 

cR : 1-cR, the equilibrium number of created B particles in state 

2 is given by 

cRN 
  NB=1 + exp( -OQ/k

BT2)'( A.2 )
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As the 

 Hugoniot

released 

equation

chemical energy 

 (A.1) becomes

q is given 

to

by q = NBAQ, Rankine-

(P2 + P1 )(V2 - V1) + 2NkB(T2 - T1) = i--71. 
2cRNAQ

exp( -AQ/kBT2) • 

            ( A.3 )

   With 

evaluated 

obtaining

use 

the 

the

 of this 

stable 

detonation

 Rankine-Hugoniot equation, eq. (A.3), 

detonation velocity. The procedure 

velocity is described in chapter IV.

we 

for
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Appendix B

   If 

to be 

function 

is given

we assume the velocity distribution 

a 2-dimensional Maxwell-Boltzmann 

 of the magnitude of the relative 

by

 function 

one, the 

velocity

of particles 

distribution 

g=Iv2 -v11

 f  (g) dg=2k

BTg
exp(

 m

Tg2) dg. 4k  B
( B.1 )

If we 

forward

denote 

reaction

the impact 

takes place

parameter as b, the 

is as follows:

condition that a

m 
4

g2 ( 1 - (b)2 ) 2 E. ( B.2 )

Assuming 

( -0,'  a ]

a 

as

uniform distribution of b within a section of

f(b) =f 

If

1/(2a) 

0

-a5b 5a 

otherwise , ( B.3 )

the probability of 

reactive-type collision

the 

is

occurrence of a reaction at a

PR = ff dg db 

    D

f(g) f(b) , ( B.4 )
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where 

(B.2)

D 

is

means the 

 satisfied.

domain in 

From eq.

(g,b) 

(B.4)

plane in which the 

we obtain eq. (5.4.

condition 

3).
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