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                       ABSTRACT 

     Dynamics of diffusion and its relation with the 

interionic potential in superionic conductors are studied 

with use of the molecular dynamics method. The model systems 

for a-AgI and CaF2 are analyzed from the following 

viewpoints. First we investigate the characteristics of the 

interionic potential which give rise to the superionic phase. 

Secondly we investigate dynamic correlations and the 

mechanism of diffusion. The difference in the diffusion 

mechanism between  a-AgI and CaF2 is studied in detail. The 

interionic potential is assumed to consist of the Coulomb 

and the soft-core potentials. The system has a simple 

scaling property and the thermodynamic state is characterized 

by the ratio of core radii, the ratio of the Coulomb 

potential to the soft-core potential and the reduced 

temperature. 

      In a-AgI we outline the region in scaling parameters in 

which I- ions form a stable bcc lattice and Agi ions diffuse 

with a high mobility. The results are interpreted in view 

of the scaling law. It is shown that Pauling's concept of 

the additivity rule of ionic radii is necessary for the 

stability of the I--sublattice and the Coulomb force must be 

appropriately weak for the diffusion of Ag` ions to take 

place. The dynamic correlations between Ag` and the 

I--sublattice are studied in detail The characteristics of
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the driving force of diffusion are examined. The collective 

motions are investigated by calculating dynamical structure 

factors and current correlation functions. It is shown that 

the vibrational motions of  Ag+ and I- are strongly correlated 

in the longitudinal acoustic mode at long wavelengths. The 

motion of Ag+, however, has no correlation with the 

longitudinal optic mode of the I--sublattice for large wave 

vectors. Summarizing these results, the diffusion mechanism 

of Ag+ ions is presented from a dynamical viewpoint. 

    In CaF2 we investigate the dependence of the 

distribution of F- ions on the interionic potential. It is 

found that the diffusion path is largely influenced by the 

softness of the soft—core repulsion. Dynamical properties 

of CaF2 are studied in comparison with those of a—AgI. The 

jump diffusion picture of F- ions so far discussed in earlier 

works is reconfirmed in the present study. In contrast with 

the case of a—AgI, the diffusion of F- occurs by strongly 

correlated hops between well defined sites. We further study 

the dynamics of the correlated jumps. Our data suggest that 

there are two types of motions in a sequence of successive 

jumps of F- ions. A new mechanism of the correlated jumps 

is discussed.
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CHAPTER  I

 INTRODUCTION



     Superionic conductors(SIC's) are solid state systems 

which exhibit a high ionic conductivity well below their 

melting point. Most of the ordinary solids show the ionic 

conductivity of the order of  10-8D-1cm-I at moderate 

temperatures. SIC's are characterized by the ionic 

conductivity more than 10-3.Q-Icm-1, and in some class of 

materials the conductivity reaches values of the order of 1 

.Q-1cm, which are typical of those found in molten salts or 

ionic solutions. Carrier ions, which may be cations or 

anions, can diffuse with a high mobility through the lattice 

formed by other ion species. 

     The first experimental research for SIC's may be that 

of Tubandt and Lorentz° in 1914. They found that AgI 

displays a remarkably high ionic conductivity in the high 

temperature a-phase. This is due to the disorder in the 

Ag+-sublattice and the distribution of Ag' in a-AgI and 

a-Ag2S was examined by Strock2) and Rahlfs3) using the X-ray 

diffraction method. The structural properties and the phase 

transitions of various Ag- and Cu-conductors were 

investigated in the 1930's. However, SIC's were not paid 

further attention until the late 1960's, because Ag compounds 

are not suitable for practical use. The recent research for 

the physics of SIC's was stimulated by the work of Yao and 

Kummer who found the superionic conductivity in the alkali 

metal conductor Na j9-alumina.4) After that, many kinds of 

alkali metal and oxygen conductors were discovered and

2



applied to electronic devices such as solid state batteries 

and sensors. In the  1970's experimental studies of SIC's 

were performed extensively by the sophisticated techniques 

such as neutron scattering, EXAFS, infrared and Raman 

spectroscopy and NMR. The main results of these works are 

summarized in review articles.5-8) 

     SIC's are classified into three classes according to 

their types of the phase transition from a low temperature 

insulating phase to a high temperature superionic phase.9j 

In the first type(type I) there is a well defined first order 

phase transition which accompanies the structural change of 

the immobile ion sublattice. AgI- and CuI-type conductors 

belong to this type. In the second type(type II) there is no 

structural change and the conductivity gradually increases 

with temperature accompanying a specific heat anomaly, which 

resembles the A anomaly of the second order phase transition. 

The SIC's with a fluorite structure such as CaF2 belong to 

this type. In the third type(type I) there is no structural 

change and no anomaly in the specific heat. The conductivity 

exhibit an exponential growth with temperature. Alkali metal 

fl-alumina is the representative of this type. 

     The fundamental problem in the physics of SIC's is 

'
why carrier ions can diffuse with a high mobility through a 

host lattice?' 

SIC's involve both the solid-like aspect of immobile ions 

and the liquid-like aspect of mobile ions in one phase.
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These two properties must be correlated with each other and 

such a correlation is expected to play an important role in 

the conduction processes. There are many theoretical works 

trying to explain the conduction mechanism in SIC's. 

Huberman and Martin 10) proposed the hydrodynamic theory for 

the coupled crystalline-cage charged-liquid fluctuations. 

Hinkelman and  Hubermann11 applied the small polaron theory 

to the dynamics of mobile ions so as to take the interaction 

between mobile and immobile ions into account. Yokota12) 

proposed the caterpillar mechanism to analyze the correlated 

jumps of mobile ions. The Brownian motion in a periodic 

potential was extensively studied as a model of SIC's.13) This 

approach was initiated by Fulde et al.14) who calculated the 

frequency dependent mobility with use of Mori's continued 

fraction method./5) Lattice dynamics studies were also 

performed to analyze the observed spectra of the inelastic 

neutron scatterine and the Raman scattering.rn For SIC's, 

however, the theoretical treatments are rather difficult 

because of a high degree of disorder, the anharmonicity in 

lattice vibrations and the long range nature of the 

interaction potential. For this reason, in spite of many 

attempts, the theory to explain the conduction mechanism in 

SIC's is not constructed yet. 

     The molecular dynamics(MD) method is a powerful tool to 

study many body problems in condensed matter systems.18) The 

advantage of the MD method is that physical properties of
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the system with a given interaction potential is investigated 

without any approximations. Moreover, the experimentally 

inaccessible data can be obtained in MD simulations. The 

pioneering MD work is that of Alder and  Wainwright,19 who 

studied the solid—fluid phase transition of a hard—core 

system. Dynamical as well as structural properties of simple 

liquids were investigated by Rahman2020 and the Orsay 

group.-24) Their results showed that the experimental data 

such as neutron scattering spectra can be realized even by a 

simple interatomic potential such as a Lennard—Jones 

potential. The first MD study of a charged system may be 

due to Hansen et al.LS) on the dynamical properties of a 

classical one component plasma(OCP). Ever since their work, 

a lot of MD simulations have been performed for molten 

salts,26-28) ionic solids, binary ionic mixtures and so on. 

     In this article we study the superionic conductivity 

with use of the MD method. The purpose of this thesis is to 

clarify the characteristics of SIC's from the following 

viewpoints. 

(1) What are the characteristics of the interionic potential 

which give rise to the superionic phase? 

We investigate the interrelation between the superionic 

conductivity and the interionic potential to find out which 

part of the potential is responsible for a high ionic 

conductivity and the stability of the sublattice. 

(2) What is the mechanism of the diffusion of mobile ions?
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We investigate the dynamic correlation between mobile and 

immobile ions and that among mobile ions to clarify the 

mechanism of diffusion from a dynamical viewpoint. 

     Two materials,  a-AgI and CaF2, are investigated. a-AgI 

is a prototype of the SIC of type I. Iodine ions form a 

loosely-packed bcc lattice and Ag+ ions are disordered. The 

recent neutron diffraction study31) showed that Ag+ ions are 

distributed over the 12(d) sites in the bcc structure. 

(Fig.1.1) The number of the sites is six times as large as 

that of Ag+ ions and the density distribution of Agr extends 

continuously to the neighboring sites. It has been 

considered that Ag+ ions move rather freely through the 

I--sublattice. On the other hand, CaF2, which is a prototype 

of the SIC of type II, is structurally quite different from 

a-AgI. Calcium ions form a closely-packed fcc lattice and 

fluorine ions occupy tetrahedral sites.(Fig.1.2) The ionic 

conduction is due to the disorder in the F--sublattice. 

According to the recent experimental works,32,33) F- does not 

occupy octahedral voids in the superionic phase and diffuse 

among tetrahedral sites. If this picture is allowed, there 

is no empty site for diffusing F- ions. Therefore the 

diffusion mechanism in CaF2 is expected to be different from 

that in a-AgI. We study our problem (1) mainly for a-AgI. 

The problem (2) is studied for both a-AgI and CaF2 and the 

difference between two materials is discussed. 

     One of the important problems in the MD simulation is 
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how to determine the interaction potential. It is well known 

that in simple liquid such as argon the short range repulsive 

part of the pair potential plays an important role in 

structural and dynamical properties and the phase  transition 

of the system. The soft-core system, characterized by the 

inverse power repulsive potential 

(r) = E (r)",(1 .1 ) 

was widely studied as a model of rare gas systems and 

metallic systems. It was shown that the soft-core system 

with n < 7 realizes the three-phase behavior of softer 

metals, that is, a low temperature close-packed phase, an 

intermediate temperature bcc phase and a high temperature 

fluid phase.34) The thermodynamic properties of this 

"three -phase model" were studied by Hiwatari and Matsuda .35) 

The dynamical properties of the soft-core system were studied 

in detail by Hiwatari et al.36) by the MD method. 

     In this work we apply the soft-core system to the ionic 

system. The simple and natural extension of the soft-core 

system to a charged system may be to assume the pair 

potential as 

Q{ + 6jnZi.Zj(fe)2  
    ij(r) - e(r)+(1.2)
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where  ai and Zi are the effective core radius and the valence 

of ion i, respectively. The ionicity f is also introduced. 

In what follows the system with the pair potential (1.2) will 

be called the ionic soft-core system. As is described in 

chapter II, the ionic soft-core system has a simple scaling 

property similar to that of the soft-core system. The 

equilibrium state is characterized by only a few 

dimensionless parameters. This makes it easy to understand 

the interrelation between the physical properties of the 

system and the characteristics of the interaction potential. 

The potential (1.2) was first applied to SIC's by Hiwatari 

and Ueda in their Monte Carlo(MC) studies of a-AgI and 

CaF2. ” Their works were extended by Fukumoto et al.39 who 

performed the MD simulation of a-AgI with the potential 

(1.2). They examined the relation between the potential 

parameters and the existence of the a-phase. Using the data 

of Fukumoto et at . Hokazono et al.4UU studied the dynamical 

structure of a-AgI. They examined the correlation between 

the diffusive motion of Ag" ions and the vibration of the 

I--sublattice. The present study is based on these works. 

     The contents of this article are organized as follows. 

     In chapter II we first describe the scaling law of the 

ionic soft-core system. We give the physical interpretation 

of the scaling parameters in relation with the scaling law 

of the soft-core system and that of the OCP. Secondly we 

present the computational method of the MD simulations.
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     Chapters  ^I, IV and V are devoted to the study of a—AgI. 

In Chapter ^I we study the interrelation between the 

superionic conductivity and the interionic potential. The 

region in scaling parameters 6Ag/Oi, T and T*(defined in 

chapter II) within which the superionic state is realized is 

semiquantitatively determined. The results are interpreted 

in view of the scaling law. We discuss the characteristic 

feature of the potential which gives rise to the a—phase. 

It is found that Pauling's concept of the additivity rule of 

the ionic radii is necessary for the stability of the 

I--sublattice and that the Coulomb force must be 

appropriately weak for the diffusion of Ag+ ions to take 

place. 

     In chapter N we study the self—diffusion of Ag+ by the 

following three approaches. First we investigate the 

correlation between diffusing Ag+ and a tetrahedron in the 

I--sublattice. The characteristics of the driving force of 

the diffusion is examined. Secondly we analyze the space 

and time correlation functions. The static structure factor 

and the self intermediate scattering function are calculated. 

Finally we have produced a 16mm movie from the MD data in 

order to see the ionic motion directly. The motion of Ag+ 

ions looks more liquid—like than expected from numerical 

results so far obtained. Strongly correlated motions of Ag+ 

and I- are also observed. 

     The collective motion in a—AgI is investigated in

10



chapter V. The dynamical structure factors and the current 

correlation functions are calculated. Correlated motions of 

mobile and immobile ions are investigated by partial 

dynamical structure factors together with the spectra of the 

velocity autocorrelation functions. The transverse modes 

are also examined by both the dynamical structure factors 

and the transverse current correlation functions. It is 

clarified that the vibrational motions of  Ag+ and I- are 

strongly correlated in the longitudinal acoustic mode at long 

wavelengths. The motion of Ag}, however, has no correlation 

with the longitudinal optic mode of the I--sublattice for 

larger wave vectors. Summarizing the results, the mechanism 

of the diffusion is presented from a dynamical view point. 

     Chapters VI and VII are devoted to the study of CaF2. 

     In chapter VI, after summarizing the experimental and 

simulational works on superionic fluorites, we study the 

dependence of the system on the interionic potential. The 

influence of the potential, especially of the softness of 

the soft—core repulsion, on the distribution of F- is 

examined. Irrespective of the softness of the potential, F-

does not occupy octahedral voids and the diffusion occurs 

between tetrahedral sites. The diffusion path, however, 

largely deflects towards octahedral positions when the 

repulsion becomes harder. 

     The dynamics of the diffusion of F- ions is studied in 

chapter W. It has been considered that F- diffuses by
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discrete hops among the tetrahedral sites, which is in 

contrast with the diffusion in a-AgI. This picture is 

confirmed in our present data. The local correlation between 

 F- and a tetrahedron in the fcc lattice is investigated in 

the same manner as in case of a-AgI. In CaF2, the correlation 

between mobile ions is more prominent than in a-AgI. We 

closely examine the correlated motions of F" ions. The 

motions of F- ions in a sequence of successive jumps are not 

identical. A new mechanism of the correlated jumps is 

suggested. We also study the lattice vibrations in CaF2. 

The vibrational properties of CaF2 are quite different from 

those of a-AgI. Whereas mobile Ag+ ions oscillate more 

slowly than the I--sublattice, mobile F- ions oscillate with 

                                                                                                                                                                             • higher frequencies than the Cat+-sublattice. 

     In chapter 1, main results are summarized from the two 

viewpoints stated above and the difference between a-AgI and 

CaF2 is discussed.
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CHAPTER  If

MODEL SYSTEM AND METHOD OF COMPUTATIONS



 2.1

ionic 

ionic 

H is 

given

Scaling properties of the ionic soft—core system 

In this section, we introduce the scaling law of the 

 soft—core system following Fukumoto et al..40) If the 

 soft—core system is applied to 6—AgI, the Hamiltonian 

scaled as H = e(261/1)11. The scaled Hamiltonian H is 

by

H =P? +1] (  6i'+ 6i' )"+rZiZ', (2. 1 )        2m1rii i>i ro 

where l—(V/N)1/3, ri =lri, Pi=(mil/r)Pi, and 

6i'-6i/26l. mi is the mass of an iodine ion and the unit of 

time r is given by l (mi/e) VV2(l/261)"/2. The Hamiltonian H is 

characterized by the ratio of the ionic core radii 6Ag/6l and 

1' defined by

1' _ (fe)2 e(26j)• ll

T represents the 

soft—core potential

(2.2)

ratio of the Coulomb potential to 

. The reduced temperature is given by

T* = k8T/e(2l1)n.

the

(2.3)
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If  n and the mass ratio are kept constant, the equilibrium 

state of the system is specified by  6h/6I, 1' and T*. 

     The physical interpretation of the scaling parameters 

is as follows. The thermodynamic state of the soft—core 

system with the potential (1.1) is characterized by the 

reduced density p*,26) which is related with the reduced 

temperature TS as

Ts = kBTI £ )n 

      = (p *) —1/3 (2.4)

Ts gives the ratio of the kinetic energy to the potential 

energy. Thus T* in Eq.(2.3) has the same meaning as that of 

the soft—core system. In the ionic soft—core system the 

Coulomb potential is added to the soft—core system. This 

gives rise to an additional parameter P, which represents 

the ratio of the two potentials. Let us compare our scaling 

law with that of the OCP. In the classical OCP, the 

thermodynamic state is specified by the plasma parameter 

defined as

rP —(Ze)2 
      akBT ' (2.5)
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where  a=(3V/4jrN). If we use the Coulomb energy as the unit 

of energy, 1/Pp gives the reduced temperature instead of 

Eq.(2.3). Pp is related with our scaling parameters as 

rp aT* .(2.6) 

To sum up, the soft—core system with (1.1) is extended to a 

two component system, which gives rise to the parameter 

6Ag/6i, and extended to a Coulomb system, which gives rise to 

the parameter r. In the limit 1'-0, the ionic soft—core 

system becomes the two component soft—core system and in the 

limit r->W, it becomes the two component plasma. If the 

superionic phase is realized by this system, it must be in 

some region of r. This problem is examined in detail in 

chapter I.
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2.2 Computational method of MD simulations 

     The MD simulation is performed for the states at 

constant energy and constant volume. The system consists of 

N particles  (N=256-500 for a—AgI and N=324-768 for CaF2) 

and a periodic boundary condition is imposed. The equation 

of motion is integrated by Verlet's algorithm. That is, 

the difference equations 

vi(t) = (ri(t+dt) — ri(t—dt))/(2dt)(2.7) 

and 

ri(t+dt) = 2ri(t) — ri(t—At) + ai(t)(dt)2(2.8) 

are solved numerically, where vi (t) , ri (t) and ai (t) are the 

velocity, position and acceleration of ion i at time t, 

respectively. At is an appropriate time mesh which is chosen 

as 1/40 1/50 of r. 

     The Coulomb forces are evaluated by the Ewald method. 

In order to save the CPU time of computations, we have 

tabulated the electrostatic energy between two particles at 

grid points on a three dimensional fine grained lattice which 

span the cell in advance. At each simulation step, the 

electrostatic force is computed by the interpolation with

17



use of the tabulated  values.43) 

     Eqs. (2.7) and (2.8) are integrated in most cases up 

to 5000-10000dt. In the analysis of dynamical properties 

we extend the simulation up to N40000dt in order to obtain 

reliable results of the time correlation functions. In most 

of our simulations, the total energy is conserved within a 

fluctuation of 1%.
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SUPERIONIC

       CHAPTER 

CONDUCTIVITY AND 

          IN  a-AgI

I 

INTERIONIC POTENTIAL



3.1 Introduction 

     Silver iodide undergoes a phase transition from the low 

temperature  $-phase(wurtzite structure) to the superionic 

a-phase at 420K and melts at 828K. In the a-phase Ag+ 

diffuses through the bcc lattice of I- ions. The distribution 

of Ag+ in the a-phase has been investigated by many workers. 

Strock2) and Rahlfs3) proposed a model in which Ag+ ions are 

statistically distributed over the 42 positions, that is, 

6(b),12(d) and 24(h) sites.(Fig.1.1) The recent neutron 

diffraction study of Cava et a1.31) clearly showed that the 

distribution of Ago ions takes the maximum value at 12(d) 

sites. The X-ray and neutron scattering study") and EXAFS 

study45) support this 'fact. 

     A MD simulation of a-AgI was first performed by 

Schommers,46) using the Born-Mayer potential for the short 

range repulsion. Although the a-phase seemed to be realized, 

he assumed the unphysical harmonic potential between I- ions 

so as to stabilize the bcc lattice. Vashishta and 

Rahman(VR)47) succeeded to simulate the a-phase by the 

potential 

                   6i+6j Rgigje2                           2 2e2 Wo 
    pzj(r) ° A0( r ) +-2 (atgt+a)qj)7-
r6, (3. 1 ) 

              r where a, denotes the electronic polarizabili.ty.The third 
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term represents the polarization energy and the fourth the 

dispersion energy. Their results of the distribution of  Ag' 

and the diffusion constant are in agreement with experiment. 

     Although VR's potential seems realistic, it is 

complicated to understand which term is important for the 

results. Fukumoto et al. showed that the a—phase can be 

realized by the first two terms of the potential (3.1). This 

clearly shows that the short range attractive force is rather 

irrelevant to the existence of the a—phase. They showed that 

there exists a range of T and temperature in which I- ions 

form a stable bcc lattice and Ag¢ ions are diffusive. Let 

us call the region of scaling parameters in whichthe 

superionic state is realized the 'a—region'. Fukumoto et 

al. outlined the a—region on T-T* plane for 044/6w=0.286. 

The value of aAg, which was originally used by VR, is about 

a half of Pauling's value.44” 

     In this chapter we further study the interrelation 

between the superionic conductivity and the interionic 

potential. It is examined how the a—region on T-T" plane 

changes with increasing 6k/a( and to what value of aag/6t the 

a—region appears. Our problem is to find the region of the 

three parameters T, T* and 6Ag/6I which gives rise to the 

superionic state. In choosing the ionic radii, we pay 

attention to Pauling's concept of the additivity rule. He 

assumed the relation 6. = a- = ( nearest neighbor distance 

(n.n.d.)) to assign a crystal radius to various ion species

21



which are assumed to form a rocksalt structure. In a—AgI, 

 Ag+ ions are disordered. We examine whether the additivity 

rule is still required or not as a criterion of the stability 

of the I--sublattice as in case of ordinary crystals.
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3.2 Parameter setting 

     In order to investigate the problems stated above, we 

set up the potential parameters 6,f,  6Ag and 6l according to 

the following three cases. 

I. The core radii are kept constant and the r—dependence of 

the system is examined by changing e and/or f. 

II. P is kept constant and the 6Ag/6(—dependence of the system 

is examined. 

I. Both T and 6Ag/6l are changed under the condition 

6Ag+6l=n.n.d. 

     Here the n.n.d. is the value when Ag{ is located at a 

tetrahedral site. The values of the parameters are listed 

in Table 3.1. Following Fukumoto et al., we put n=7 and the 

lattice constant of the I--sublattice is a=5.08A. 

     The case I is the extension of the cases studied by 

Fukumoto et al.. The values of 6Ag and 6l are the same as 

those determined by VR from the relations 

6l + 6l = I—I n.n.d. (4.4 A),(3.2a) 

6Ag + of = Ag—I n.n.d. (2.83 A) . (3.2b) 

The cases Ia, Ib and Ic correspond to the cases C, B and A in 

Fukumoto et al., respectively. They found that the a—phase 

exists for Ib and Ic, but not for Ia. In the case Ia, although 

                          23



r  e  (eV) f aAz(A) al (A) apt/d1

a 0.99 0.177 0.6 0.63 2.2 0 .286 3. 1

b 2.06 0.0851 0.6 0.63 2.2 0 .286 2.83

I
c 2.75 0.177 1.0 0.63 2.2 0 .286 2. 71

d 4.02 0.0851 0.84 0.63 2.2 0 .286 2. 59

a 2.06 0.0851 0.6 0.71 2.2 0 .323 2. 91
II

b 2.75 0.177 1.0 0.79 2.2 0 .359 2. 86

a 4.0 0.0851 0.6 0.8 2.0 0 .4 2. 8

III b 8.38 0.2354 1.0 1.0 1.8 0 .556 2. 8

c 19.1 0.2354 1.0 1.2 1.6 0 .75 2. 8

Table 3.1

Potential parameters used in our simulations.
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 Ag' ions are diffusive, the I--sublattice is unstable and 

has a tendency to deform into a more closely packed 

structure. The case Ib reproduces the experimentally 

observed temperature range of the a—phase and the 

distribution of Ag} is in agreement with experimental 

results. The data at T"=0.0611 of Ib are analyzed extensively 

for the dynamical problems by Hokazono et a1.. The 

parameters of fia and fib are the same as those of Ib and Ic, 

respectively, except that aAg is larger. 

    Here one needs some remarks on the condition 

aAg+aI=n.n.d.. If one compares the values of al of arbitrary 

two cases, a must be kept constant. According to the scaling 

law, the characteristics of the scaled system remain 

unchanged as far as 1' and aAg/al are kept constant even if E 

and f are changed. Therefore when we refer to the condition 

aAg+al=n.n.d. , we reduce e and f to those of Ib and re—define 

61 and aAg so as to keep T and aAg/a, unchanged. The reduced 

radii are denoted as and bag. The values of aA;+a( are shown 

in the last column of Table 3.1. For example, in the case 

Ia though aAg and al satisfy the condition (3.2) , the reduced 

values are GAg=0.7 and 6i=2.4, the sum of which is about 10% 

larger than the n.n.d.. In the case fdl both T and aAg/at are 

changed so as to keep 

bag + at = 2.8.3.3)
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     The simulations are performed for 256—ion system. 

Initially  I- ions are placed to form a bcc lattice and Ag+ 

ions are distributed over tetrahedral sites. The equations 

of motion are integrated in most cases up to 5000dt and in 

some cases up to 10000dt to confirm the stability of the 

I--sublattice, where dt is taken as 0.928x10-14sec. In order 

to investigate the degree of the diffusion and the stability 

of the I--sublattice, the following calculations are 

performed. The self—diffusion constant DAg is obtained from 

the slope of the mean square displacement <1r(t+s)—r(s)I2>, 

and scaled value D* is calculated from the relation D* = 

DAgr/l2. The mean square amplitude (MSA) of I- from the 

lattice sites is evaluated bythe value of 

<Ir(t+s)—r(s) I2>/2 at large t.49) The trajectories of ions 

drawn by the XY—plotter are also examined to find out any 

indication of deformation of the I--sublattice.
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 T(K) T'
D,4

10cm2/s )
D'(x10-2) NSA (A2)

Ib

373
383
404
453

501
560

668
763

0.0407
0.0415
0.0441
0.0494
0.0551
0.0611

0.0729
0.0832

0.51

1.61
2.60
2.76
3.50
4.69
5.71

0.21
0.65
1.05

1.11
1.41

1.89
2.30

0..21
0.285

0.29
0.36
0.39
0.44
0.58
0.81"

Ic

949

1032
1248
1530
1675

0.0497
0.0540
0.0654
0.0801
0.0877

3.36
4.50
6.83
7.31

0.94
1.26
1.91
2.04

0.24'
0.39
0.48
0.60
1.06"

Id
432
537
599

0.0471
0.0586

0.0654

0.27
1.42

2.28

0.11
0.57

0.92

0.30'
0.53'
melt

IIa 553 0.0603 2.72 1.10 0.49'

IIb

913
1095
1187
1425
1516
1712

0.0478
0.0574
0.0622
0.0746
0.0794
0.0897

0.26
3.48
4.54

5.09
6.24

0.07
0.97
1.27
1.42
1.74

0.23
0.34
0.45
0.60
0.63
0.86"

IIIa

363
364
373
416
452

0.0772
0.0774
0.0793
0.0885
0.0961

0.16
1.17
1.91
2.30
2.88

0.09
0.66
1.08
1.30
1.63

0.37'
0.43
0.44
0.54
0.81"

IIIb

874
904
908
910
939
962
997

1188

0.1402
0.1450
0.1457
0.1461
0.1506
0.1544
0.1600

0.1906

2.41
0.17
1.14
2.67
3.18

4.18

1.18
0.08

0.56..
1.31
1.55

2.04

0.46'
0.49'
0.66
0.55'
0.66
1.06"
1.15"

melt

IIIc
641
755
806

850

0.2346
0.2763
0.2951

0.3110

0.02
0.71

2.49

0.01
0.52
1.84

0.37'
0.49'
0.85"

melt

Table 3.2 

     Simulation results. The results of Fukumoto et  al. 

are also listed. T is the average temperature and T* is its 

reduced value. The simulation of the case Id for T=432K and 

599 are performed for N=108. ( * : The bcc lattice deforms. 

** : The diffusive motions of I- are observed. )
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3.3 Results 

     In Table 3.2 temperature, diffusion constants and MSA 

of the simulated states are summarized. From these data and 

the trajectories of ions we carefully examined whether the 

 I--sublattice in the simulated individual states is stable 

or not. The examples of the trajectories of I- are shown in 

Fig.3.1. Figure 3.1(a) shows the trajectories of the case 

Ib at T*=0.0729. Iodine ions form a stable bcc lattice and 

Ag+ diffuses with D*=1 .89x10-2. Figure 3. 1 (b) shows those of 

the case Id at T*=0.0586. In this case the I--lattice is 

slightly distorted from a regular bcc lattice and an 

irregularity in the diagonal direction is observed. Such a 

deformation is not reflected in the MSA(=0.53A2). The 

diffusion constant D* isi0.57x10-2, being small compared with 

the case shown in Fig.3.1(a). Hereafter the bcc lattice is 

called stable when such a deformation is not observed. 

     Concerning the existence of the superionic state, the 

cases Ia ti Plc are classified into three types. The first type 

is the case for which there exists the temperature range of 

the a—phase. The cases Ib, Ic, lib, fa and Ib belong to this 

type. In all these cases, D* is of the order of 10-2. For 

the second type, although there is a temperature range in 

which Ag+ ions are diffusive, the bcc lattice is not stable. 

This is also a superionic state, but D* is small compared with 

that of the first type. The case Id and lie belong to this
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  Fig. 3.1 

     (a) Trajectories ofI- ions for the stable case Ib 

(T*=0.0729). The average positions of ions in two layers 

for the period of 20dt are joined by polygonal lines and are 

projected on to the face of the box. (b) Trajectories of I-

ions for the unstable case Id (T*=0.0586) plotted in the same 

way as in (a). 

                           29



UAL/CT

0.8

0.6

 0.4

0.2

0

Fig. 3.2

The  a—region 

0 : 

A : 

X :

 on 

The 

The 

The

the I'—QAg/al 

first type 

second type 

third type

plane.

30



type. The case  Ia also belongs to this type, for which the 

deformation of the lattice is more prominent than that of 

Id.3) The third type is found in the case d[c for which the 

superionic state does not exist. Both Ag`— and I--lattice 

melt at the same temperature. 

     These results are graphically summarized on the f—apg/6I 

plane in Fig.3.2, where open circles (0) denote the first 

type, open triangles (0) the second type and crosses (X) 

the third type. For cAg/a1=0.286, T 4.0 seems the upper 

limit of the a—region. The a—region shifts to large T as 

crag/at increases. Note that with the increase of apg/aI from 

0.286 to 0.4, the second type(Id) becomes the first 

type(Ra). 

     Comparing Fig.3.2 with the last column of Table 3.1, we 

find that 6a T6I is approximately equal to the n.n.d. when 

the bcc lattice is stable. The deformation of the lattice 

occurs when 6A.9,+61 is larger (Ia,I[a) or smaller (Id) than 2.8. 

This strongly suggests that in the superionic state the 

condition (3.3) is necessary for the stability of the 

sublattice. Even if this condition is satisfied, however, 

the a—phase can not be realized when I' or aig/aI is too large. 

     Let us examine the temperature dependence of the 

diffusion constant and the MSA. Figure 3.3 shows logD* and 

the MSA as a function of T' for the cases of the first type. 

In Fig.3.3(b) the lines A and B are drawn by eye to 

distinguish the simulated states according to the degree of 
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 Ag} diffusion and the stability of the I--sublattice. Points 

in the region between the two lines correspond to the 

superionic state. The MSA increases almost linearly with T' 

in this region. For Ib, the temperature dependence of the 

MSA's is in good agreement with experiment, although they 

are slightly larger than the experimental value evaluated 

from the Debye-Waller factor B.31) In this region logD* also 

increases almost linearly with T" and the slopes are almost 

the same for each case. The activation energy evaluated from 

the slope of logDAg vs. 1/T is about 0.1eV for 

Ib(T*=0.0611), which is also in good agreement with 

experiment.5° 

     The states near the line A are considered to be close 

to the melting temperature Tm of each case. Above this line, 

not only the amplitude of thermal oscillations is large, but 

also the diffusive motion of I- is observed. At low 

temperature, on the other hand, Ag} is not diffusive and 

oscillates in the vicinity of the tetrahedral sites. The 

points below the line B correspond to such a state. In some 

of these states a slight deformation of the I--sublattice is 

observed. Such a deformation vanishes when Ag- becomes 

diffusive at high temperature. The temperature at which Ag" 

starts to diffuse will be denoted as Tm. The origin of the 

deformation of the lattice will be discussed in the next 

section. 

     Figure 3.4 shows the a-region on the T-TY plane. For
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large  r the a—region shifts 

becomes large,  Te approaches 

a—region becomes narrower. 

614161, the temperature range 

to evaluate accurately the 

physical quantities such as 

case is considered to be 

a—region.

 to high temperature. When r 

T. and the temperature range of 

For ^[b, owing to large r and 

is very narrow It is difficult 

temperature dependence of the 

 the diffusion constant. This 

near the upper limit of the
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3.4 Summary and discussion 

     The a—region in  1', CAg/It and T* is semiquantitatively 

determined. The salient features of our results are 

summarized as follows. 

(1) The condition (3.3), though not strictly as for alkali 

halide crystals, is necessary for the stability of the 

I--sublattice. This implies that the repulsive part of the 

interaction potential plays an important role for the 

existence of the a—phase. 

(2) Even if the condition (3.3) is satisfied, the a—phase 

can not be realized if F or ag/CI is too large. 

(3) For large T, the range of the a—phase shifts to high 

temperature in the reduced value. The width of the range 

becomes narrower. 

(4) When Ag' is not diffusive at low temperature, there are 

some cases for which the bcc lattice deforms slightly. 

     Let us start our discussion with the crystal structure. 

In a—AgI, the number of tetrahedral sites is six times as 

large as that of Ag+ ions and all sites are energetically 

equivalent. Thus the crystal is not symmetric if Ag+ ions 

occupy only a part of these sites. This fact is considered 

as the origin of the deformation of the bcc lattice at 

low temperature. When Ag+ diffuses with a high mobility, 

every site is occupied with equal probability. As a result 

the crystal recovers the symmetry and the deformation of the
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lattice vanishes. Therefore the diffusion of Ag' is 

important for the stability of the  I--sublattice. 

     In connection with this fact, there is another reason 

to be considered for the lattice deformationat low 

temperature. Fukumoto et al. showed that the frequency 

spectrum of I- of the case Ib, which is calculated from the 

Fourier transform of the velocity autocorrelation function, 

has qualitatively the same feature as that of the 

Lennard-Jones solid just below the melting temperature. This 

suggests that the I--sublattice behaves like a one-component 

system. Furthermore, the ratios Tm/TC of Ib and Ic are -2.0 

and ^•1.6, respectively, which agree with the ratio of the 

melting temperature to the bcc-fcc transition temperature of 

the soft-core system with n^-7 evaluated by Hoover et at .34) 

Therefore, in addition to the fact mentioned above, the 

deformation of the I--sublattice at low temperature is 

interpreted as the reflection of the bcc-fcc transition of 

the soft-core system. For Ia, where both 6xe and 6i are large, 

I- ions indeed have a tendency to take a more closely-packed 

configuration even when Ag- ions are diffusive. 

     Let us next discuss the a-region in view of the scaling 

properties of the system. When the constraint (3.3) is 

imposed, I' and 6Ag; 6( are not independent of each other and T 

increases simultaneously with increasing 6Ag/61.Since T is 

the ratio of the Coulomb potential to the soft-core 

potential, the large I' corresponds to the state with strong
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 "C
oulomb" force, where "Coulomb" means the relative strength 

of the Coulomb force in the scaled system. Figure 3.5 shows 

the pair potential between Ag+ and I- scaled by E (2ui/l )2 as 

a function of the interatomic distance. The position of the 

minimum of the potential is almost the same for each case, 

which reflects the condition (3.3). The depth increases with 

increasing P owing to the large "Coulomb" potential. 

Therefore the diffusion of Ag+ is suppressed for large 

6k/6L In other words, an appropriately weak "Coulomb" force 

is necessary for the superionic phase to appear. That is, P 

< 8.0. The shift of the temperature region towards high 

temperature shown in Fig.3.4 is also attributed to the change 

in the depth of the potential. 

      In order to reproduce the observed temperature range of 

a—AgI from 420K to 828K, P must be rather small as the case 

Ib. One of the parameters which is related with the smallness 

of P is the ionicity f. It is introduced to take the effect 

of the covalent interaction into account in our rigid ion 

model. Actually in the case Ib with f=0.6, the temperature 

range is from —430K to —790K. If we set f=1.0 as in the case 

Ic, the a—region shifts to much higher temperature region. 

In this sense the weak "Coulomb" is related with the 

partially covalent interaction between Ago and I-. The 

experimental value of f, which was determined from the 

measurement of the phonon dispersion curves, is 0.56,16) 

     The discussions so far given on the existence of the 
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a—region are summarized schematically in Fig.3.6.

 40



 Stabi  I  ity 

 of 4 

bcc lattice

 QAg+O

1
Diffusion 

  of 

 Ag+

4
Weak 

weir
force

I 1
Covalent 

interaction

Fig. 3.6

Illustration of the summary of our discussions.

41





CHAPTER  IV

SELF-DIFFUSION OF  Ag+ IN a-AgI



4.1 Introduction 

    In this chapter we study the dynamics of the 

self-diffusion in a-AgI. As is stated in chapter I, Ag' ions 

are distributed over the tetrahedral  sites(t--sites) of the 

bcc lattice. However, the amplitude of thermal vibrations 

of Ag* is quite large and the density distribution extends 

continuously to the nearest neighbor t-sites.31) Moreover, 

the velocity autocorrelation function of Ag' has a similar 

feature to that of a molten salt. These facts suggest that 

Ag' behaves like a liquid enclosed by the cage of the I- bcc 

lattice. Hence the 't-site' is not an appropriate concept 

to indicate the instantaneous positions of Ag' ions. For this 

reason Hokazono et al.41) paid a special attention to a 

tetrahedron(TH) in the I- bcc lattice instead of t-sites. 

The residence time of Ag' in a TH was evaluated without any 

ambiguity. The successive movement of Ag' among TH's and 

the dynamical correlations between Ag' and TH's were also 

examined. 

     We present the results of the further analysis on the 

diffusion of Ag among TH's. In order to investigate the 

driving force of the diffusion we calculate the potential 

energy experienced by Ag' which moves from a TH to its n.n. 

TH and examine the time variation of the potential barrier 

along the diffusion path. The contributions of the Coulomb 

force and the soft-core force to the diffusion are examined 
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separately. The diffusion of  Ag+ is also examined by 

calculating the correlation functions. The static structure 

factor and the self intermediate scattering functions are 

analyzed. In order to see the correlated motion of ions, we 

have also produced a 16mm movie from the MD data with use of 

the computer graphics system. The data used in this chapter 

are the same as those analyzed by Hokazono et al.. The 

potential parameters are those of the case Ib and the average 

temperature is 560K. The system consists of 256 ions and 

the equations of motion are integrated up to 30000dt with 

dt=0.928x 10-14sec . 

     We briefly summarize the results of Hokazono et at 

for convenience of later discussions. In Fig.4.1 we denote 

the TH made up of I- ions numbered 1, 2, 3 and 4 as TH(1324). 

TH(3524) has four nearest neighbor TH's, that is, TH(1324), 

TH(5724), TH(3526) and TH(3548). Each TH contains one 

t-site. The mean residence time r of Ag+ in a TH is 0.62ps 

and the distribution of r extends to about 2ps.(See Fig.3 in 

Ref.41 ) 

     Suppose that Ag" moves from TH(1324) to TH(3524) in 

Fig.4.1. The frequencies of the successive movements from 

TH(3524) to (1)TH(1324), (2)TH(5724), (3)TH(3526) and 

(4)TH(3548) are 42, 31, 13.5 and 13.5%, respectively. 

TH(1324) and TH(5724) share the edge 2-4 with TH(3524), but 

TH(3526) and TH(3548) share the edge 3-5 with TH(3524), the 

two edges being perpendicular to each other. Since more than
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70% of the successive movements are those of (1) and (2), 

the movement of  Ag" mainly occurs among the four TH's which 

share the same edge. 

     To see the dynamical correlation between TH's and the 

movement of Ag{,the quantities Pkt=Irk—rt I/a and 

Rkt=idt (rk—rt)2/au are calculated for the pair of I- ions of k 

and 1 when Ag' moves from a TH to the adjacent TH. Here a 

is the lattice constant of the bcc lattice and v=(3kBT/mt) 1"2. 

They calculated the mean values of these quantities at the 

instant when Ag- reaches the face of a TH. If the movement 

is assumed to occur from TH(1324) to TH(3524) , <P24> is 1 .061 , 

which shows that the common axis 2-4 is elongated by 6% 

compared with a. This suggests that the potential barrier 

at the instant of the movement is lowered. Since <R13> is 

negative(=-0.038) and <R35> is positive(=0.036), the distance 

between I- of 1 and 3 is decreasing and that between I- of 3 

and 5 increasing. Thus at the instant of the movement TH's 

deform so as to make the Ag+ diffusion easier.
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4.2 Diffusion of  Ag' among TH's in the I--sublattice 

     In this section we study the driving force of the 

diffusion. First we pick out Ag' trajectories of time 

interval 3000 with an arbitrary initial time(to). These 

trajectories are referred to as 'samples'. They are 

classified into three cases, A: d > a, B: a > d > a/2 and C: 

a/2 > d, where d is the distance I r (to+300dt) —r (to) l . Note 

that the mean square displacement of Ag' is about (a/2)2 at 

300dt(=2.78ps).40) We examined the movements of Ag" from one 

TH to another TH in individual trajectories in the same 

manner as Hokazono et al.. Among 1920 samples, 8270 

movements are observed. The contributions of the respective 

three cases to the diffusion constant DAg and the frequencies 

of the successive movements are listed in Table 4.1. Since 

the movements of the types (3) and (4) are equivalent, they 

are listed together in the last column as (3)+(4). 

     In the case A, Ag' moves largely, but the contribution 

to DAg is small because of rare events. The main contribution 

to DAg comes from the case B though the number of samples is 

only a half of that of the case C. Total frequencies of the 

successive movements of the type (1), (2) and (3)+(4) are 

consistent with the results mentioned in section 4.1, but 

the frequency of (3)+(4) increases with the distance d. 

     In the following, we use the samples of the case B 

because they have a large contribution to the diffusion 
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Number Contribution Number
of  to  Dhof

samples (104cm2/s) movements
(1) (2) (3)+(4)

A

B

C

31 0.54191

651 2.683023

1238 0.355056

22.5 30.5 47.

32 30 38

46 33 21

Total 1920 3.568270 40 32 28

  Table 4.1 

     Classification of the  'samples' of trajectories and the 

types of the successive movements. A,B and C are the classes 

of Ag' trajectories defined in the text. The contribution 

to D,g is calculated from the slope of the square displacement 

of the sampled Ag' ions. The last three column show the 

frequencies(%) of the successive movements of the types (1), 

(2) and (3)+(4).
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constant. Among  Ag' ions moving between TH's we pick out 

Ago which stays in the initial TH and the final TH for more 

than 40dt. The potential energy experienced by Ag' along 

the diffusion path is calculated for the time interval 40dt, 

that is, from -200 to +20dt, where the instant of the 

transition between TH's is set as t=0. Figure 4.2 shows the 

Coulomb potential and the soft-core potential which Ago would 

experience if it moves along the path when all the other ions 

are fixed to the positions at the instant indicated by 

circles, i.e., -20dt, -10dt, 0, 10dt and 20dt (reading from 

left to right). Here each potential curve in Fig.4.2 is 

obtained by averaging over the sampled Ag' ions . The unit 

of 'energy is e2/A (=14.39eV). The gradient of the curve at 

the position of circles coincides with the direction of the 

force acting on Ag'. Note that the time interval 

40dt(=0.37ps) is slightly shorter than the vibration period 

of the I--sublattice evaluated from the spectrum of the 

velocity autocorrelation function. The mean distance between 

the initial and final positions of the path is 1.18A . 

     It is clearly seen that the soft-core potential barrier 

becomes lower and lower as Ag' moves along the path from a 

TH to the adjacent TH, which corresponds to the fact 

described in section 4.1. Especially for the type (1), the 

soft-core potential is almost "flat" during the movement and 

effectively no repulsive force acts on Ago . On the other 

hand, for the type (3)+(4) the contribution of the soft-core 
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repulsion is prominent especially after the transition. Even 

at  t=20dt the repulsive force still works in the direction 

to accelerate the diffusion. Therefore the movement of the 

type (3)+(4) is influenced by the vibrational motion of l-

ions compared with the cases (1) and (2). This is considered 

to be due to the difference in the geometrical situation of 

the TH's involved in the diffusion and the dynamics of I- ions 

which form TH's, especially depending on whether they have 

the common edge or not. 

     The curves of the Coulomb potential have no significant 

difference among (1),(2) and (3)+(4). The Coulomb force acts 

to accelerate Ag+ in the forward direction for t<0 and in 

the backward direction for t>0. Thus the main driving force 

of diffusion is the Coulomb force.The overall feature of 

the curves of the type (1) is similar to that of (2). As is 

seen from the curves at 20dt , the backward force is almost 

relaxed for these types. Thus the movements of (1) and (2) 

is expected to occur more smoothly than that of (3)+(4).
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4.3 Space and time correlation functions 

     The static structure factor Saa(k) of ion species  a(+ 

or —) is calculated from the definition 

Saa (k) = -1<E  eik. r„—r`")>.(4. 1 ) 
Na i i=1 

where Na is the number of a—ions. The wave vectors are chosen 

as (2A/a)(4',0,0), (21/a)(4",4',0) and (2a/a)( ,n with a 

parameter Different from the usual structure factor of 

liquids averaged over the direction of k, Saa(k) is directly 

related to the intensity of the Bragg scattering_ Because 

of the finite size of the system, the height and the width 

of peaks depend upon Na. The results are shown in Fig.4.3. 

     At (110), (200), (220) and (222) S—(k) becomes large, 

which corresponds to the Bragg peaks of the bcc structure. 

This confirms the stability of the I--sublattice. It should 

be noted that peaks are also observed in S—(k) at (110) and 

(200) although they are much lower than those of S—(k). This 

means that the configuration of Agi ions is predominantly 

influenced by the structure of the I- bcc lattice resulting 

in the Bragg peaks in S,(k) even if Agi behaves like a liquid. 

     In connection with this result, we investigate the self 

intermediate scattering function of Agi defined as
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 N,. 

Fs(k, t) a N+<Eeik(r,(r)-r,(0))>.(4.2) 

It is calculated for wave vectors in 0100) and 0103 directions 

with magnitudes between 0.3A"' and 6A-I. The results are shown 

in Fig.4.4. For sufficiently large or small k, Fs(k,t) is 

described by only one decay rate, but for the intermediate 

k, the decay consists of an initial fast decay and a 

subsequent slow decay. We assume at large t as 

—1nFs(k, t) = r (k) t + c(k) ,(4.3) 

and evaluate the decay rate r(k) by a least square method. 

Figure 4.5 shows r(k) for small k as a function of k2. In 

the hydrodynamic limit Fs(k,t) is well described by the 

isotropic diffusion Fs(k,t)=exp(—Dk2t), and the gradient of 

r(k) is in good agreement with DAg (=3.56x10-5cm2/sec) 

calculated from the mean square displacement(the straight 

line in Fig.4.5). 

     The Gaussian approximation 

FS(k,t) = exp(—sk2<Ir(t)—r(0) I2>)(4.4) 

is also compared with the MD results in Fig.4.4. FS(k,t) 

agrees with the MD results only for sufficiently small k. 

For larger k the agreement becomes poor. The decay rate of 
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the slowly decaying part of  FS(k,t) is dependent upon the 

direction of k and cannot be described by a simple Gaussian 

function. As is seen in Fig.4.4, for k=(2,r/a)(1,1,0) and 

(2ir/a) (2,0,0) Fs(k, t) does not vanish at t-4co, that is, 

r(k)-0. These wave vectors correspond to the positions of 

peaks of S++(k). This is easily understood by noting that 

in the limit of t-.co Fs(k,t) tends to the same formal 

expression as the intensity of the elastic Bragg 

diffraction.51) 

     Finally we comment on the inadequacy of the jump 

diffusion picture of Ag+. If we apply the Chudley-Elliott 

jump diffusion model to a-AgI assuming that the diffusion 

of Ag+ is described by the instantaneous jumps between 

t-sites and fit the model to•our MD data, the residence time 

r at a t-site is estimated as r-2ps, which is much larger 

than the mean residence time in a TH.
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4.4 Observation of the 16mm movie 

     With use of the MD data we have produced a 16mm movie 

of the ionic motion with the aid of a computer—graphics. 

The snapshots of our film are shown in Fig.4.6. The 

outermost square shows the real box and  in the direction 

perpendicular to the paper, ions in one fourth of the box 

are drawn. The dots joined by the straight lines are I- ions. 

Ag' ions are denoted by open circles. Their trajectories 

are drawn for time interval 1.86ps. We have observed this 

film repeatedly to find out the characteristic feature of 

ionic motions. The results are summarized as follows. 

1) Several Ag' ions form a momentary configurational order 

especially in <110> direction. The order appears in any 

places and in any <110> directions. It lasts for about 

0.3-0.5ps and then disappears. We can observe such examples 

in Fig.4.6(a), that is, Ag' ions numbered as (1,2,3,4,5), 

(6,7,8,9) and (10.11,12,13). Figure 4.6(b) shows the case 

where no <110> order exists. 

2) Most of Ag' ions move to and fro in local regions. 

Occasionally a large motion of Ag' is observed such as Ag' 

of 7 and 14 in Fig.4.6(a). 

3) The amplitude of the lattice vibration of I- is large as 

expected from the large value of the mean square 

displacement. 

4) Ag' moves smoothly through the I--sublattice and exhibit 
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quite a liquid—like behavior. Correlated motions of  Ag{ 

are clearly observed. Several Ag` ions move in the 

direction at the same time such as Ag{ ions (16,17,18,19 

in Fig.4.6(b).

ions 

same 

,20)
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4.5 Summary 

     We have studied the characteristics of the diffusion in 

 a—AgI by three approaches, that is, the microscopic analysis 

concerning TH's, correlation functions and the observation 

• of the 16mm movie. 

     The role of the Coulomb force and the soft—core force 

for the diffusion process of Ag' is clarified. That is, the 

main driving force of diffusion is the Coulomb force. The 

soft—core potential barrier becomes lower and lower as Ag' 

moves along the diffusion path, and the potential is almost 

"fl
at" when Ag' reaches the boundary of TH's. In this sense 

the repulsive interaction contributes to the movement of 

Ag'. However, the mechanism of the diffusion is not such that 

Ag' is "pushed" out of a TH by I- as expected from the results 

of <Rkt> presented in section 4.1. 

     As is seen from the potential curves for the movements 

of the types (1) and (2), the diffusion occurs smoothly among 

the four TH's which share the edge. This suggests that the 

four TH's form a unit of a local region in which Ag' can move 

rather freely. This is consistent with the results on the 

frequencies of the successive movements. If this picture is 

allowed, the movement of the type (3)+(4) occurs when Ag' 

moves from one unit region to another one. In Fig.4.1 such 

two regions are formed by the TH's which share the edge 2-4 

and by those which share the edge 3-5. Note that they have 
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the common TH formed by the common edges 2-4 and 3-5. In this 

case, the role of the repulsive force is clearly seen as 

shown in Fig.4.2(c). Therefore it is considered that a large 

movement of  Ag} from one region to another is strongly 

influenced by the vibrational motion of the I--sublattice. 

     From the observation of the 16mm movie the liquid like 

picture of the motion of Ag+, which was so far expected from 

numerical results, is greatly emphasized. As stated in 2) 

and 4) in section 4.4, the movement of Ag` occurs smoothly 

and is quite different from that of the jump diffusion type. 

We could directly observe several Ag+ ions moving in phase 

and also those moving as if they were dragged by the 

vibrating I--sublattice.
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5.1 Introduction 

     We studied in chapter N the single particle aspect of 

the diffusion. This chapter deals with the collective 

motions in a—AgI. As is seen in the 16mm movie, the motion 

of  Ag+ is strongly coupled with the vibrational motion of 

the I--sublattice. We want to investigate such a correlation 

quantitatively to clarify the mechanism of diffusion from a 

dynamical point of view. 

     First we briefly review the MD works on the collective 

excitations in classical many particle systems. Many workers 

investigated whether a propagating wave similar to phonons 

in crystals exists in liquid phases. In simple liquid the 

Brillouin peak, representing a sound wave propagation, is 

observed in MD simulations 2°,2i.24) as well as in the neutron 

scattering experiments.53) The existence of a propagating 

shear wave similar to transverse phonons in crystals was 

confirmed in fluid phases.24'54) A MD method is also powerful 

in studies of the anharmonic effects in crystals. With use 

of MD results, the validity of the self—consistent phonon 

theory was examined for rare gas solids55), ionic solids29) 

and metallic solids.56-58) The collective motions in charged 

liquids are also studied by the MD method. Hansen et a1..25) 

showed that the single particle motion in the classical OCP 

is strongly correlated with the collective plasma 

oscillation. The dynamical structure factor of the OCP
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consists of a sharp peak near the plasma frequency up to the 

wavelength as small as the nearest neighbor distance and the 

dispersion relation is typical of the optic mode. In the 

OCP charge and mass densities are equivalent because of the 

rigidity of the uniform neutralizing background. In view of 

our present study, the collective motions in molten salts 

are more interesting than those in the OCP. It is expected 

that both the optic and acoustic modes are observed. 

However, the earlier MD works on molten salts were performed 

for rather small  systems,) and no trace of the Brillouin 

peak was observed in these studies. De Leeuw59} reported that 

he observed the Brillouin peak as well as the optic-type mode 

for molten SrC12 with 324 particles. 

     In a-AgI collective excitations are expected to reflect 

both liquid-like and solid-like features, which are 

correlated with each other. We mainly analyze the dynamical 

structure factor S(k,w) for various wave vectors. The 

acoustic and optic modes are identified as the peaks of the 

mass and charge density dynamical structure factors, 

respectively. We examine how the motions of Agr and I-

contribute to the modes by calculating the partial dynamical 

structure factors S—(k,w) and S_"k,w). In order to study 

the correlation between single particle motions and 

collective motions, we compare S(k,w) with the spectra of 

the velocity autocorrelation functions(VAF's). It is shown 

that the vibrational motion of Ag- is strongly correlated
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with the longitudinal acoustic mode of the  I--sublattice for 

small wave vectors. On the other hand, the I--sublattice 

has a high frequency longitudinal optic mode for large wave 

vectors and the motion of Ag+ is not correlated with such high 

frequency motions. In order to analyze the transverse mode, 

we also calculate the transverse current correlation 

functions. Summarizing these results and our previous 

results, we propose the diffusion mechanism in a—AgI in the 

last section.
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5.2 Method of computations

     The MD simulations are performed for the 500-ion system 

for the case  Ib. Equations of motion are integrated up to 

38000At with dt=0.929x10-14sec. The average temperature and 

the diffusion constant are 572K and 3.6x10-5cm2/sec, 

respectively We also use the data of the 256-ion system at 

T=560K analyzed in chapter N for comparison. 

     The Fourier component of the density of ion species a 

(+ or -) is given by

Pa (k , t) _ E'e=k-r„ (t3 
                  L=~

(5.1)

where r,i(t) is the position of a-ion i at time t. Using 

the definition (5.1), the mass and charge densities are 

expressed as

Pl(k, t) _ [m_P_(k, t) + m-P-(k, tn/(m_m-) 112, (5.2)

Pc(k, t) = Z_P_(k, t) + Z-p-(k, t) 

         = // _(k, t) - P-(k, t) , (5.3)

respectively, where mQ is the mass of a-ion. The partial 

dynamical structure factor Sap(k,ar) is defined as the spectrum
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of the density correlation between a- and 5-ions, that is, 

      SQe(k,w) = 1 f~eivt<Pa(k,t)Pp(-k,0)>dt. (5.4) 
                  2.ir (NQNa) 1 /2 -m 

The dynamical structure factors representing the mass and 

charge density correlations are related to  SQ,g(k,co) by 

SMM(k,co) 1  fineiwt<PM(k, t)PM(-k,0)>dt 
2/rN_m 

= NCm2N+S++(k,co) + m2N-S-(k,co) 

                          + 2m+m- (N+N-) 1 "2S+- (k , w) )/ m+m- (5.5) 

and 

Scc(k,w) = 2K1N_finetmt<PC(k,t)PC(-k,0)>dt 

                                 m 

              = N (ZZN+S++ (k , co) + Z?N-S-- (k , (0) 

                                             + 2 Z +Z - (N+N-) 1 / 28+- (k , (D)J, (5.6) 

respectively. 

     When a vibrational mode has a long lifetime, the Fourier 

transform (5.4) becomes difficult because of the slow 

convergence of the time correlation function. This 

difficulty can be avoided by evaluating the power spectrum
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directly with use of the formula 

     S(k,w)  = 21N1ineidt<p(k,t)P(-k,0)>dt 

                             T 

              211T!mTIfei'tp(k,t)dt12. (5.7) 

We truncate T at 215dt and the statistical noise is eliminated 

by convoluting the raw data with a Gaussian filter 

function.29.55) The full width at half maximum (FWHM) of the 

filter is 1.0ps-1. 

     The currents associated with the densities (5.1)-(5.3) 

are defined as 

Nv 

ja(k,t) = Evai(t)eik-r-(t),(5.8) 
i=1 

jm(k, t) = (m+j+(k, t) + m-j-(k, t)J/(m+m-) 1/2,(5.9) 

jc(k, t) = Z+j=(k, t) + Z-j-(k, t) ,(5.10) 

respectively, where vai(t) is the velocity of a-ion i. These 

currents are divided into two parts, one is parallel to the 

wave vector (longitudinal current) and the other is 

perpendicular to it (transverse current). The spectrum of 

the longitudinal current correlation function is related to 

                          69



 S(k,w) by the equation of continuity, that is, 

CT(k,w) =  2n1Nf_inet'r<k.j(k,t)k•.)(—k,0)>dt 

                                  m w2S(k,w) .(5.11) 

The partial transverse current correlation function is given 

by 

Caa(k, t) 2(NQNa) 1/2Tr<Ckxja(k, t))Ckxjs(—k,0))>. (5.12) 

and similarly the mass and charge current correlation 

functions are expressed as 

Cab(k,t) = 2NTr<(kxja(k,t))Ckxjb(—k,0)3>,(5.13) 

where a and b stand for M or C. The Fourier spectra of 

Eqs.(5.12) and (5.13) are calculated by the direct method 

similar to the formula (5.7). In the following sections, we 

present our results of S(k,w) and CT(k,w) in the normalized 

forms as 

Sae(k,w) S,o(k,w)/Sas(k) ,(5.14) 
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 CaeT  (k,(U) = Cfa ( k ,w)/Caa(k, t=0) , (5.15)

where S4,13(k) is the static structure factor. 

     Owing to the periodic boundary condition, wave vectors 

are restricted to discrete values. In the 500—ion system, 

which consists of 5x5x5 unit cells, k is restricted to 

(21./a) (nh/5,n2/5,n3/5) , where ni, n2 and n3 denote integers. 

Similarly the allowed k becomes (2a/a)(n1/4,n2/4,n3/4) for 

the 256—ion system.
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5.3. Results 

5.3.1 Longitudinal collective modes 

     Figure 5.1 shows  Sm(k,w) and Scc(k,w) in 0100) and (110) 

directions. The peaks of the longitudinal acoustic (LA) mode 

are observed in Sm(k,w) for small wave vectors up to 

(2z/a)(O.6,0,0) and (2zr/a)(O.4,0.4,0). These wave vectors 

correspond to the wavelength A-1.7a. Scc(k,w) has a peak of 

the longitudinal optic (LO) mode at a frequency slightly 

higher than the plasma frequency wp=12.8ps-1 and it persists 

to A-1.2a. The dispersion relations of each mode are 

summarized in Fig.5.2, where the data of the 256—ion system 

are also shown. The dispersion of the LO mode is negative 

in 0100) direction and almost flat in (110) direction. For 

large Ikl, the broad quasielastic peak grows both in SM,i(k,w) 

and Scc(k,w) and the peaks of the LA mode merge into it. 

Si (k,w) and Scc(k,w) have almost the same structure for 

>1.0. The broad quasielastic peak is also observed in the 

neutron scattering experiments.60) 

     The partial dynamical structure factors of Ag' and I-

are compared in Fig.5.3 for the same wave vectors as in 

Fig.5.1. For =0.2, 3 (k,w) is almost the same as S—(k,w) 

and consists of a sharp peak of the LA mode and a small broad 

peak of the LO mode. Thus the long—wavelength vibrational 

properties of Ag' are similar to those of the I--sublattice 

and are characterized mainly by the low frequency LA mode. 
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With increasing  Ikl the difference between S++(k,w) and 

S—(k,w) becomes evident. While the LO peak is clearly 

observed in S--(k,w) even for large wave vectors, S++(k,w) 

consists of only a broad quasielastic peak and has no peak 

as observed in S—(k,w) at high frequencies. This implies 

that the motion of Ag+ has no correlation with the LO mode 

of the I--sublattice for large wave vectors. 

     These results should be compared with the frequency 

spectrum of the VAF defined as 

       +Ga(w) f:ei@t<<v;0o>>dt.(5.16) 

                                       Figure 5.4 shows 4+(w) and r'-(w) of the 500—ion system, which 

agree well with those for the 256—ion system.40)As is 

discussed in Ref.41, 0-(w) has a second peak at w~14ps-1, 

which is interpreted to arise from the LO mode. However, 

'+(w) consists of only a very broad peak around —5ps-/ with 

a small bump near wp. Thus the vibrational motion of Ag+ does 

not couple with the high frequency LO mode of the 

I--sublattice, which directly corresponds to the results on 

S(k,w). 

5.3.2 Transverse collective modes 

     Since the Fourier component of the density contains the 

coordinate ri(t) in the form k•ri(t), only the longitudinal 
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modes are examined by S(k,w). In order to investigate the 

transverse collective modes, we adopt the following two 

methods which are complementary to each other. 

     First we calculate S(k,w) for  k=q+K, where q is the wave 

vector in the first Brillouin zone and K is the reciprocal 

lattice vector perpendicular to q.61) We take K=(2n/a)(0,2,0) 

for which both S++(k) and S—(k) have peaks. Examples of our 

calculations are shown in Fig.5.5 for k=(2,r/a)(0.2,2,0) and 

(2,r/a)(0.4,2,0). There is a peak of the transverse acoustic 

(TA) mode both in Sm(k,w) and S--(k,w) at the frequency lower 

than that of the LA mode. For the same wave vectors, 

5+.(k,w) and Scc(k,w) consist of a broad quasielastic peak with 

a bump near the frequency of the TA mode. The dispersion 

relation of the TA mode is compared with that'obtained from 

the neutron scattering experiment at T=573K in Fig.5.2. 

     Secondly the transverse motions are examined more 

quantitatively by calculating the transverse current 

correlation functions. Figure 5.6 shows the normalized 

spectra in (100] direction. CA(k,w) has a sharp peak of the 

TA mode for small Ikl's at the frequency slightly higher than 

that of the respective SH1/(k,w) in Fig.5.5. In contrast with 

the TA mode, Cj(k,w) consists of a low and broad peak at 

5-10ps-1 for all wave vectors. Although this is expected to 

arise from the transverse optic (TO) vibrations, the peak 

position and the dispersion relation of the mode can not be 

identified in the present data.
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     In Fig.5.6(b) the peak frequency of  C:(k,w) is lower 

than that of CT(k,w) and the difference between the two 

spectra becomes more evident as Ikl increases The peak in 

C(k,w) broadens for large Ikl, while a clear peak still 

exists in CT(k,w). This suggests that the transverse motions 

of Ag} and I- do not occur in phase. 

5.3.3 Quasielastic peaks 

     The k-dependence of the half width at half maximum(HWHM) 

of the quasielastic peaks of S (k,w), Sy(k,m) and Sc(k,w) 

is shown in Fig.5.7. At k=(2x/a)(2,0,0) and (2jr/a)(1,1,0), 

the width becomes zero within the resolution of the present 

calculation even for Ag{. These wave vectors corresponds to 

the positions of peaks of the static structure factors. The 

narrowing of the peak occurs in the vicinity of these k's. 

The widths of the peaks in 1 (k,m) , SM,y(k,m) and Scc(k,w) are 

almost the same. 

     In Fig.5. 1 (a) and 5.3(a) , we find a sharp peak at w=0 

in Scc(k,w) and S—(k,w) for small ikl, which is much narrower 

than the quasielastic peaks for large Ikl. The interpretation 

of the narrow peak is suggested by Zeyher in the hydrodynamic 

theory.6” Applying Mori's formalism,64) he studied the 

collective motions in superionic conductors and showed that 

there are two non-propagating modes resulting in the narrow 

and broad central components in S(k,w). The broad one, with 

a constant width and the intensity proportional to Ice, arises
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from the diffusive motion of mobile ions and the narrow one, 

with a constant intensity and the width proportional to k2, 

is attributed to the energy dissipation. Thus one 

interpretation of the narrow peak is the effect of the energy 

dissipation. However, the estimation of the k—dependence of 

the widths is not possible in the present data because they 

are less than the FWHM of the window function.
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5.4 The mechanism of diffusion 

     We have studied the characteristic feature of the 

correlated motions in a—AgI through the dynamical structure 

factors and the current correlation functions. The main 

results so far obtained are summarized as follows. 

(1) For long wavelengths, the vibrational properties of  Ag+ 

are similar to those of F. The motion of Ag+ is correlated 

with the vibrational motion of the I--sublattice in the low 

frequency LA mode. 

(2) However, the motion of Ag` has no correlation with the 

high frequency LO mode of the I--sublattice for large Ikl. 

This corresponds to the difference observed in r'+(w) and 

t6-(w) . 

(3) The frequency of the transverse vibration of I- is higher 

than that of Ag+. This suggests that the transverse motions 

of Ag' and I- do not occur in phase. 

(4) A narrowing of the quasielastic peak of S.(k,cu) occurs 

in the vicinity of k=(27r/a) (2,0,0) and (27r/a) (1 , 1 ,0) , which 

are the positions of peaks in the static structure factors. 

     On the basis of the results of this and previous 

chapters, let us discuss the diffusion mechanism in a—AgI. 

As is mentioned in chapter N, the volume of a TH varies 

rapidly, while Ag+ contained in it oscillates rather 

slowly.(See Fig.2 in Ref.41) If the variation of the volume 

is due to the LO mode, this fact directly corresponds to our 
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result (2). The diffusive motion of  Ag- is strongly 

correlated with the vibrational motion of TH's. Hokazono et 

al. showed that the average volume of TH's which contain 

Ag- is somewhat smaller than that of empty TH's. However, 

at the instant when Ag- moves from a TH to the adjacent TH, 

the volumes of the two TH's becomes equal. Thus, once Ag' 

moves into a new TH, it shrinks its volume and stores the 

strain energy. This process results in the local 

transportation of the strain energy and the lattice vibration 

of I- is affected by the diffusion of Ag-. Moreover, when 

Ag- diffuses, TH's deform so as to make the movement easier. 

The potential barrier along the diffusion paths becomes lower 

and lower as Ag` moves from a TH to the adjacent TH. 

     Summarizing these facts, we propose the diffusion 

mechanism in a—AgI as follows. 

(1) Ag- oscillates in a TH coupled with the low frequency LA 

mode at long wavelength. 

(2) TH's also oscillate at the high frequency LO mode. When 

they deform so as to lower the potential barrier, Ag' moves 

out to the adjacent TH. 

(3) When Ag- diffuses, the relaxation of the local distortion 

of the I--sublattice occurs. 

(4) Then the strain energy is released to excite the lattice 

vibration and I- ions again swing Ag
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6.1 Introduction

     In this and next chapters we study the diffusion in 

CaF2. Alkaline earth fluorides, which have a fluorite 

structure, undergo a phase transition from the 

low-temperature insulating phase to the high-temperature 

superionic phase, accompanying a specific heat anomaly. The 

ionic conductivity gradually increases with temperature and 

the structure of immobile-ion sublattice is the same in the 

insulating and superionic phases. The transport properties 

of this type of superionic conductor were widely studied both 

theoretical ly65,66) and  experimentally  .32,33,67,68) 

     One of the important problems of the ionic conduction 

in CaF2 is'the distribution of F- in the superionic phase. 

The octahedral sites(o-sites), the body centered position 

and its equivalent positions in the Ca2+ fcc lattice, provide 

the interstitial positions for F-.(Fig.1.2) It is known that 

in the low temperature phase an interstitial F- occupies 

o-site leaving a vacancy on t-site and that the conduction 

is due to the interstitial-vacancy pairs. On the other hand, 

according to the recent neutron scattering experiments32•33), 

F- does not occupy o-sites in the superionic phase and the 

diffusion occurs among t-sites. Hutchings et a1.33) proposed 

a defect cluster model, which consists of an interstitial 

F-, vacancies on t-sites and the distortion in the 

surrounding lattice. In their model an interstitial F- is
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not situated on  o-sites, but between t-sites slightly shifted 

towards octahedral positions. Applying this model, they 

analyzed the data of the diffuse quasielastic neutron 

scattering experiments. 

    A lot of MD simulations were also performed for 

superionic fluorites. Rahman69) first performed the MD 

simulation of CaF2 assuming Kim-Gordon's potential70) as the 

short range repulsion. His work was extended by Jacucci and 

Rahman for dynamical problems.71) Gillan and his co-workers 

studied the diffusion in CaF272.73) and SrC1274) assuming the 

Born-Mayer-Huggins potential. They claimed that F- (or C1-) 

does not occupy o-sites and that the diffusion can be 

analyzed in terms of jumps between t-sites. Hiwatari and 

Ueda) applied the ionic soft-core system to CaF2 in their 

Monte Carlo (MC) study. In contrast with the results of 

Gillan et al., it seemed that a large amount of F- occupy 

o-sites in the superionic phase. 

     In this chapter we reexamine the distribution of F- ions 

in CaF2. We apply the potential (1.2) and investigate the 

influence of the interionic potential. We first adopt the 

same potential parameters as those of Hiwatari and Ueda and 

modify them appropriately. We study how the occupancy of 

o-sites and the diffusion paths are influenced by the 

softness of the soft-core repulsion.
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6.2 Parameter setting and scaling properties 

     The Hamiltonian of the system can be scaled in the same 

way as in a—AgI. We take the soft—core energy between 

immobile ions as the unit of energy in order that the 

comparison with a—AgI becomes easier. The Hamiltonian is 

characterized by the exponent n , the ratio of radii and 

   1'= 4(fe)2 /e(26Ca)n(6.1) 

                    l The factor 4 appeared in the right hand side of (6.1) arises 

from the valence  Z,.=+2 of calcium ions. In the ease of 

a—AgI, the dependence of the system on T and the ratio of 

radii was examined, while it is kept constant. In this 

chapter the dependence on it is also examined. 

      The values of parameters used in our simulations are 

listed in Table 6.1. In each case 1' is much larger than that 

of a—AgI, which reflects a large Coulomb interaction between 

calcium ions. The parameters of A are those used by Hiwatari 

and Ueda. The value of e was fitted to Kim—Gordon's 

potential70) between Cat'' and F- at the nearest neighbor 

distance(n.n.d). The core radii are chosen so as to satisfy 

the relation 6Ca-1-0F=n.n.d.. In B we reduce n to 9, retaining 

other parameters unchanged. The pressure of the system is 

negative for this case. The parameters of C are chosen so
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n  e(eV) f au(A) 0-F(A) r

A 
B 
C

12 
9 
7

0.154 
0.154 
0.280

1.0 
1.0 
1.0

1.28 
1.28 
1.28

1. 
1. 
1.

28 
28 
28

157.04 
153.96 

83.56

Table 6.1

Potential parameters and the scaling parameters.

90



that ionic conduction occurs at about 1400K with a positive 

pressure. The pair potentials  y+- of each case are 

illustrated in Fig.6.1, together with Kim—Gordon's potential. 

The potential of C fits well with that of Kim and Gordon 

except for the repulsive part at a short distance. Following 

Hiwatari and Ueda, we take the lattice constant a of Cat+ 

fcc lattice as 5.9A, which was first adopted in Rahman's 

work.69) Although this is slightly larger than the 

experimental value, we use this value throughout our 

calculation.
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6.3 results 

     The MD simulations are performed for the 324—ion system. 

Initially each ion is placed on the regular sites of the 

fluorite structure. The average temperature, the 

compressibility factor, the diffusion constant of  F- and the 

MSA of  Cat+ at each run are summarized in Table 6.2, together 

with the time mesh dt. The stability of the Cat+— and 

F--sublattice is examined by studying the trajectories and 

the radial distribution functions. It is found that in all 

runs listed in Table 6.2 the Cat' fcc lattice is stable. 

     The MD results of A agree with the MC results of 

Hiwatari and Ueda. The transition to the superionic phase' 

occurs at about 2400K and the melting temperature is higher 

than 3500K. Note that the experimental values of the 

transition temperature and the melting temperature are 1423K 

and 1691K, respectively.9) In B the transition temperature 

becomes —1400K. However, the pressure becomes negative even 

at the highest temperature. This is the same feature as that 

of Rahman's work.69) He showed that the pressure becomes 

negative even at density p=2.8g/cm3, which corresponds to 

a=5.7A.75> Positive pressure is obtained for C. The 

temperature dependence of the diffusion constant for C is in 

agreement with that of Rahman's work performed for 

p=2.8g/cm3. The melting temperature for the three cases are 

higher than the experimental value. This may be partly
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 DF  D*
T(K) T' PV/NKT NSA (A2) A t

(10-5cm2/s) (10 2) (10-15s)

2013 1.219 0.26 0.12 1.95
A 2386 1.445 1.58 2.89 1.92 0.18 1_95*

3020 1.829 2.36 7.74 5.13 0.29 1.95.

1027 0.610 -5 .89 0.30 2.34
B 1620 0.962 -2 .09 2.03 1.33 0.34 1.95*

2055 1.220 -0 .54 5.80 3.81 0.47 2.34*

1014 0.327 1.48 0.18 2.34
C 1210 0.390 1.99 0.20 2.34

1681 0.542 2.80 2.00 0.97 0.28 2.34*
2059 0.663 3.09 6.19 2.99 0.35 2.34

  Table 6.2 

     Simulation results.  T* and D* are the reduced values 

of average temperature T and diffusion constant De, 

respectively_ The compressibility factor and the MSA of 

Cat` are also listed. At is the time mesh of the integration. 

* : The equations of motion are integrated up to 10000dt, 

and others 5000dt.
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because the density of the system is kept constant in all 

temperatures. 

     The relation between the exponent n and T* in the 

superionic phase is illustrated in Fig.6.2.  T becomes larger 

as n increases and the temperature range of the superionic 

phase shifts to larger T*. Note that the melting point of a 

soft-core system shifts to higher temperature when n becomes 

larger.76) Thus our result is interpreted as the 

characteristics of the soft-core system. 

     In all our simulations the ratio aF/CCa is taken to be 

unity. If we adopt a larger aF/aCa, for example, aF=1.36A 

and aCa=1.18A, the distortion of the F--sublattice is observed 

in the low temperature phase. The radial distribution 

function of the distorted F--sublattice is similar to that 

of a fcc lattice. This suggests that the simple cubic 

structure of F- is unstable for large aF and F- ions have a 

tendency to form a more close-packed structure. This is also 

the case with a-AgI for the case Ia.
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Fig. 6.2 

 Superionic phase in n—T* plane for A(0), B (A) and C(0) .
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6.4 Influence of the potential on the distribution of  F-

     Let us compare the data of A at T=2386K and C at T=1681K. 

The diffusion constants of these cases are close to that of 

the data analyzed by Jacucci and Rahman.71) The trajectories 

of F- are compared in Fig.6.3. It is observed in both cases 

that F- ions form a simple cubic structure and move among well 

defined sites, which is in contrast with a-AgI. However, 

some difference in the diffusion paths is observed between 

the two cases. Although F- seems to hop between t-sites in 

<100> direction in C, the trajectories which pass through 

o-sites are observed in A. In Fig.6.3(a) a small amount of 

F- ions seem to occupy o-sites and the density of F- ions in 

the midst of the nearest neighbor t-sites is very low. 

     In order to examine the distribution of F- more 

quantitatively, we have extracted the jump events between 

sites by counting at every time step the number of F- inside 

the spheres with an appropriate radius centered at t- and 

o-sites. The positions of sites are determined by referring 

to the time-averaged positions of Cat+ ions. The fractional 

numbers of F- ions which occupy t- or o-sites are shown as a 

function of R, the radius of sphere, in Fig.6.4. The 

fraction of the octahedral location for A is slightly larger 

than that for C. In both cases, however, the fraction of 

the tetrahedral location is much larger than that of the 

octahedral location. The observed jump events in specified 
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directions are listed in Table 6.3, where R is taken as a/10. 

The jumps in the <100> direction are more than 80% in both 

cases. Among these <100> jumps 122 events pass through the 

inside of spheres at  o—sites for A, but only 49 events for 

C. Thus the diffusion paths for A deflect towards o—sites 

compared with those for C. In both cases the average flight 

time, the time F- spends between the spheres at t—sites 

(1 . 12ps for A and 1 . 15ps for C) , is much smaller than the mean 

residence time at t—sites calculated from the jump 

frequency(6.16ps for A and 7.66ps for C). Therefore F- does 

not stay in o—sites even for A, but only pass near the 

o—sites. 

     Such a difference in the diffusion paths between A and 

C is considered to be caused by the difference in the 

softness of the repulsion between F- and Ca2+. The midpoint 

of nearest neighbor t—sites is located at the edge of the 

tetrahedron in the Ca2j—sublattice. The soft—core repulsion 

between Cat} and F- may be large when F- passes through this 

point. If n is large, the diffusing F- is pushed towards 

the empty o—sites by the strong soft—core repulsion from 

Cat. As a result, the diffusion paths largely deflect 

towards o—sites when n is 12. However, irrespective of the 

values of n, more than 80% of F--jumps occur in the <100> 

direction, which is the same result as that of earlier MD 

works . 71-74) 
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 273(80) 
278 (84)

55(16) 
47(14)

11 (3) 
4(1)

342 
330

Table 6.3

     The number of jump events 

directions. The percentages of 

also shown in parenthesis.

in <100>, 

respective

<110> and <111> 

 directions are
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CHAPTER  VI

DYNAMICS OF DIFFUSION IN CaF2



7.1 Introduction 

     As is shown in chapter  VI, F- diffuses by discrete hops 

between t—sites irrespective of the difference in the 

softness of the repulsion. The number of t—sites is the same 

as that of F- ions. This is quite different from the case 

of a—AgI, where the number of t—sites is larger than that of 

Ag+ ions. Furthermore, the characteristics of the interionic 

potential of CaF2 are different from those of a—AgI. In our 

simulation aF is taken to be equal to ac., whereas aAg must be 

smaller than al for the stability of the I--sublattice. From 

these facts, the mechanism of the diffusion in CaF2 is 

expected to be different from that in a—AgI. 

     In this chapter we study the dynamical properties of 

CaF2 in comparison with those of a—AgI. The local correlation 

between F- and TH's in the Ca2+—sublattice is investigated in 

the same manner as in a—AgI. The correlated jumps of F- is 

studied in detail. A new mechanism of the F--diffusion is 

suggested. We also study the vibrational motions by both 

the VAF's and the dynamical structure factors. In contrast 

with a—AgI, mobile F- ions oscillate with higher frequencies 

than the Ca2+—sublattice. 

     We analyze the data of the case C at T=1681K presented 

in chapter V. The integration is extended up to 300000. 

In the analysis of the lattice vibrations we also use the 

data of the 768—ion system simulated with the same potential
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parameters up to  30000dt. The average temperature and 

diffusion constant of the 768—ion system are 1752K 

3 .7x1 0-5cm2/sec , respectively.

the 

and
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7.2 Diffusion of  F- among TH's in the Cat+—sublattice 

     Here we apply the analysis concerning TH's to CaF2. In 

CaF2 the Cat+ fcc lattice consists of both TH's and 

octahedrons(OH's). Since each TH and the adjacent OH have a 

common face, the diffusion occurs through the face of a TH. 

by way of an OH. Among 278 jump events listed in Table 6.3, 

we use the 266 events in the following analyses, excluding 

F- ions which perform an oscillatory motion near the face of 

a TH. The instants tt and t2, at which F- leaves a TH and 

enters another TH, respectively, of all samples are 

cataloged. The time to=t2—ti distributes less than ^-0.4ps 

with the average 0.22ps. This average time is much smaller 

than the flight time obtained by referring to the spheres. 

The following quantities at ti and t2 are calculated for Cat+ 

ions of k and 1 , which form a common edge of adjacent two 

TH's. That is, 

  Pkt = Irk—rtI/a0,(7.1) 

and 

Rkt = -dt (rk—r1)2/a0v,(7.2) 

where v=(3kBT/mcc) 1/2 and ao is the nearest neighbor distance 
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between  Cat` ions. The averaged values of Pkd at ti and t2 

are 1.033 and 1.036, respectively. This means that the 

common edge is about 3% elongated than ao at these instants. 

The average <Rkt> is positive(0.055) at ti and 

negative(-0.033) at t2, which shows that the length of the 

common edge increases at ti and decreases at t2. These facts 

suggest that TH's deform so as to make the diffusion easier. 

This is the same feature as in case of a—AgI. 

     In order to examine characteristic roles of the Coulomb 

and soft—core forces separately, we calculate the potential 

energy experienced by F- when it leaves and enters TH's. We 

use 186 samples of F- trajectories, of which flight time is 

less than 1001t. For individual samples, the potential 

energy curves for F- at a given instant are calculated by 

integrating the forces along the trajectories. In case of 

leaving TH, four specific times t=t1-10dt,ti, ti+10dt and 

ti+20dt are selected, while in case of entering TH, 

t=t2-20dt , t2-10dt , t2 and t2±l Odt are selected. The partial 

potential energy curves, which are obtained by averaging over 

the samples, are shown in Fig.7.1(a) for case of leaving and 

in Fig.7.1(b) for case of entering. All the curves are drawn 

as a function of time for the time interval 30dt and the 

positions of the circles indicate the instants mentioned 

above. This is the same calculation as that in Fig.4.2 

except that the potential at the initial position is taken 

as zero. 
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     Average potential energy experienced by diffusing  F-

along the path for 300. The contributions of repulsions 

from Cat* and other F-, and of Coulomb interactions are shown 
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     The soft-core potential barrier made by  Cat` ions becomes 

lower when F- leaves a TH, corresponding to the fact that 

<Rkt> is positive at ti. When F- enters a TH, there is a small 

barrier just before t2 and after that the repulsive force of 

Cat} acts so as to push F-. This feature is more prominent 

than observed in a-AgI. The variation of Coulomb potential 

is qualitatively similar to that of a-AgI. The Coulomb force 

works so as to drive the F--diffusion when it leaves and 

enters TH. 

     An important difference between the present results and 

those of a-AgI lies in the characteristics of the repulsive 

force between mobile ions. In Fig.7.1 the soft-core force 

between F- ions works to drive the diffusion at all times of 

the movement. Especially at the time of entering TH, the 

strong repulsive force acts on the diffusing F-. This is 

considered to arise from the interaction with the adjacent 

F- which moves in the same direction as the diffusing F. 

These facts suggest that the F--FT repulsive force plays an 

important role for diffusion together with the Coulomb 

interaction.
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7.3 Correlated jumps of  F-

     Because all t-sites are occupied by, F- ions, a strong 

correlation is expected among the jumps of adjacent F- ions. 

An example of the trajectories of diffusing F- ions is shown 

in Fig.7.2. A jump of F- always accompanies jumps of 

neighboring F- ions. Such a correlation was pointed out in 

the MD work of Dixon and Gillan,72.74) who represented the 

correlated jumps in CaF2 and SrC12 diagrammatically. 

      In order to represent the correlation quantitatively, 

we calculate the displacement-displacement correlation 

function of neighboring F- ions, defined as 

dn(t)" <(x,,-n(t+to)-xr,.n(to))(xr(t+to)-xr(to))>, (7.3) 

where xr(t) and xr+n(t) are the x-coordinates of F" ions which 

are closest to t-site r and its nth neighbor t-site at time 

t, respectively. The average < > is taken over the initial 

time to and over all F- ions. The function (7.3) is expected 

to be large when two F- ions at sites r and r+n diffuse in 

the same direction and at the same time. The geometrical 

situation of the sites r and r+n is illustrated in 

Fig.7.3(a). We denote the direction in which we calculate 

the displacement as the x-direction. In the figure, n=0 

corresponds to the site r , and n=1,2 and 3 correspond to 

the first, second and third neighbor sites, respectively, in
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the  x—direction. The first and second neighbors in the 

u—direction perpendicular to the x—direction are denoted as 

1' and 2', respectively. The calculated d„(t) for respective 

it is shown in Fig.7.3(b). For n=1, 2 and 3 dR(t) increases 

with time, but does not for n=1' and 2'. The correlations 

are observed even with the second and third neighbor ions in 

the <100> direction. Thus the diffusion occurs mainly by 

<100> hops accompanying the correlated jumps of neighboring 

F- aligned in the direction of diffusion. 

     Let us investigate the characteristics of the correlated 

jumps in more detail. We pick out the jumps between t—sites 

in the same manner as in chapter W. That is, the jump between 

sites is identified as the movement of F- from a sphere at 

t—site to the adjacent sphere. Here we take the radius of 

the sphere as a/10. When we get a jump from the site n to 

the site m, we search for the jump of another F- from the site 

m. In this way we follow the sequence of successive jumps. 

We find that some sequences of jumps form a closed loop. Most 

of the loops are made up of 4-8 jumps. 

     Figure 7.4(a) shows the flight time of jumps in the 

sequence of four jumps. The lateral axis shows time and F-

ions are numbered as 132, 222, 152 and 224. The arrows show 

the flight time from a sphere to the next one. The figures 

at both ends of the arrow stand for the numbers of the t—sites 

before and after the movement. In Fig.7 4(a) we find two 

types of motions of F- ions The F- of 132 departs from the
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t-site 114 for a long time and the  F- ions of 222, 152 and 

224 move between t-sites in a rather short time. The 

trajectories of these F- ions are drawn in Fig.7.4(b), where 

the F- of 132 is identified by the bold line. The motion of 

F- of 132 is clearly different from another F- ions. This 

suggests that the large motion of the F- 132 induces the 

movements of other F- ions.
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7.4 Lattice vibrations

     In this section we study the vibrational properties of 

CaF2. Figure 7.5 shows the frequency spectra of the VAF's 

of  Cat' and F- of the 768—ion system.The spectrum of F-

extends from low frequency('22ps-I) to high 

frequency(-66ps-I). On the other hand, the Cat+—spectrum has 

a large peak at w-22ps-I with a bump near the plasma frequency 

wp=83.4ps-1. This figure is in contrast with that of a—AgI 

shown in Fig.5.4. The characteristics of the mobile and 

immobile ion spectra are opposite to those of a—AgI. The 

spectrum of the Ca2+—sublattice is similar to that of mobile 

Ag+ and that of mobile F- is similar to that of the 

I--sublattice. Such a difference is also reflected in 

collective motions. Figure 7.6 shows the partial dynamical 

structure factors of Cat+ and F- in (100] direction calculated 

in the same manner as in chapter V. Although SFF(k,w) is 

similar to SCaCa(k,m) for small wave vectors, the peaks of 

the high frequency mode exists in SFF(k,(0) for larger wave 

vectors. This is also in contrast with the results of 

a—AgI shown in Fig.5.3. Therefore in CaF2 mobile F- ions 

oscillate at higher frequencies than the Cat+ ions. 

     Let us investigate the origin of this difference. 

Recently Kobayashi et a1.77) performed the MD simulation of 

the superionic conductor a—Ag2Te assuming the potential (1.2) 

with the parameters similar to our values of a—AgI. a—Ag2Te
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has an anti—fluorite structure, that is, the same structure 

as CaF2 except that the roles of cation and anion are 

interchanged. They showed that the spectra of  mobile(Agt) 

and immobile(Te2-) ions are similar to the respective spectra 

of a—AgI, but not to those of CaF2. This implies that for 

vibrational properties the difference in potentials is more 

significant than that in lattice structures. Here we pay 

attention to the differences in the ratio of masses and the 

ratio of core radii. The mass ratios in a—AgI and CaF2 are 

m;g/mi=0.85 and mF/mca=0.474. It is reasonable that light F-

ions oscillate with high frequencies. It should be noted 

that I- ions oscillate with higher frequencies than light 

Ago ions. The ratios of core radii are taken as 6A4/6[=0.28 

and 6F/6Ca=1.0 in our simulations. In a—AgI the repulsive 

force between I- ions is much stronger than that between 

silver ions. However, since 6F/6Ca is taken as unity, a 

one—component like structure of the Cat.--spectrum can not be 

expected in CaF2. 

     In order to see the influence of the parameters we have 

performed the following calculations. In the simulation of 

CaF2, we replace 6F/6Ca and/or mF/mca by the values of a—AgI 

and compare the spectra of the VAF's. The results are 

summarized in Fig.7.7. Figure 7.7(a) shows the spectra of 

the original CaF2. Figure 7.7(b) shows the case in which 

6F/6ca is taken as 0.28 and in Fig.7.7(c) mF/6ca is taken as 

0.85 In Fig.7.7(d) both 6F/6Ca and mF/mCa are changed. The 

118



 0(w)  
(o) F 

 0.02CA0.02 

0.010.01 

COi , ' 
 01 000                                      CPS-') 

     (b) F ------ 
0.020.02 

   41CA------- 
0.010.01        )!\

, 
 0 100 0 (PS-`) 

  Fig. 7.7 

     Dependence of the frequency spectra 

ratio of masses and the ratio of core radii 

  (a) The spectra of CaF2 

  (b) aF/aCa is replaced by the value of AgI 
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  (d) Both aF/aca and mF/mca are replaced. 
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average temperatures of the states shown in Fig.7.7(b), (c) 

and (d) are 1664K, 1618K and 1688K, respectively, and the 

diffusion constants of  F- are 2.77x10-5, 2.17x10-5 and 

2.4x10-5(cm2/s), respectively. In each state the 

Cat{—sublattice is stable. The peak at a high frequency 

appears in the Cat'—spectrum in Fig.7.7(b) and (c), which 

means that both the ratio of masses and the ratio of core 

radii contribute to the difference in the spectra. 

Fig.7.7(d) quite resembles the spectra of a—AgI. This 

clearly shows that the difference in the spectra is 

attributed to the differences in the ratio of masses and in 

the ratio of core radii.
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7.5 Summary 

     The main results on the dynamics of CaF2 are summarized 

as follows. 

(1) When  F- diffuses between TH's by way of an OH, TH's deform 

so as to make the movement easier, which is the same result 

as in a-AgI. The soft-core force between F- ions is important 

for the diffusion as well as the Coulomb interaction. 

(2) The diffusion of F- occurs by the correlated jumps between 

t-sites. The correlation of mobile ions is also observed in 

a-AgI (Fig.4.6(b)), but it is more prominent in CaF2. There 

observed two types of motions of diffusing F- ions. Some F-

departs largely from t-sites and the surrounding F- ions move 

between t-sites in a rather short time. 

(3) The vibrational motion of CaF2 is quite different from 

that of a-AgI. Mobile F- ions oscillate with higher 

frequencies than the immobile Cat+ ions. This is due to the 

difference in the ratio of masses and the ratio of core 

radii. 

     The result (2) is considered as a clue to understand 

the mechanism of correlated jumps. The motions of F- ions 

in the sequence of jumps are not identical. Some F- departs 

largely from t-sites and seems to induce the jumps of 

surrounding F- ions. Figure 7.8 shows an example of a long 

sequence of jumps drawn in the same way as Fig.7.4(a). We 

can observe the two types of motions discussed above. The 
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large motion is always 

flight time. This is 

the correlated jumps in

 followed by the 

considered as the 

 CaF2.

jumps with a short 

general feature of
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CHAPTER  VI

CONCLUSIONS



     Applying the ionic soft-core system, we have studied 

the ionic motions in superionic conductors in view of two 

problems mentioned in chapter I. Here we summarize our 

results comparing  a-AgI and CaF2.

(1) The characteristics of the interionic potential which 

give rise to the superionic phase. 

     This problem is studied in detail for a-AgI. The ratio 

ah/61 must be appropriately small ( < 0.4 ) and the additivity 

rule Gds+al=n.n.d. is necessary for the stability of the 

I--sublattice. The diffusion of Ag' ions is necessary to keep 

the symmetry of the lattice structure, which also contributes 

to the stability of the I--sublattice. In order that the 

diffusion of Ag' occurs, the "Coulomb" force must be 

appropriately weak. One of the origin to reduce the 

"Coulomb" force is the smallness of the ionicity f
, which is 

related with the partially covalent interaction between Ag' 

and I-. 

     In CaF2 the stability of the lattice is not so sensitive 

to the interaction potential as in a-AgI. The structure of 

the Cat+-sublattice is stable in all simulated states 

presented in this paper, where the condition aca+6F=n.n.d. 

is satisfied. This implies that the stability of a loosely 

packed structure is more sensitive to the potential than that 

of a closely-packed structure. The distribution of F- ions 

in the superionic phase is not influenced by the softness of
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the repulsive potential. Irrespective of the value of  n, F-

occupies t—sites and. moves between sites. The diffusion 

path, however, is influenced by the potential. The path 

between t—sites largely deflects towards octahedral positions 

when the soft—core repulsion becomes harder. 

(2) The dynamic correlation and the mechanism of diffusion. 

     In a—AgI AgT ions behave quite liquid—like through the 

cage of the I--sublattice. This is clearly observed in the 

16mm movie. Ag. oscillates rather slowly in a TH coupled with 

the low frequency LA mode at long wavelengths. TH's 

oscillate in a high frequency LO mode, which is not 

correlated with the vibrational motion of AgT ions. When TH's 

deform so as to lower the soft—core potential barrier, Ag+ 

moves smoothly to the adjacent TH. The main driving force 

is the Coulomb force. The movement of Ag` results in the 

relaxation of the local distortion of the I--sublattice. 

This is quite different from the jump diffusion picture 

usually applied to the diffusion in solids 78) 

     The jump diffusion picture in CaF2 so far discussed in 

earlier works is reconfirmed in our simulation. The 

diffusion of F- occurs by discrete hops between t—sites 

mainly in <100> direction. As in case of a—AgI, when F- moves 

between TH's by way of an OH, TH's deform so as to make the 

movement easier The F--F- repulsive force is important for 

the diffusion as well as the Coulomb force. The vibrational
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property of CaF2 is quite different from that of a—AgI. 

Mobile  F- ions oscillate with higher frequencies than Cat+ 

ions. This is attributed to the difference in the ratio of 

masses and the ratio of core radii. 

     The diffusion in CaF2 is characterized as the 

"correlated jumps A sequence of the jumps of F" ions 

aligned in <100> direction is clearly observed. We 

represented the correlation quantitatively by the 

displacement—displacement correlation function. A new 

mechanism of the correlated motions is suggested. As is 

shown in Figs 7.4 and 7.7, some F- moves largely out of 

t—sites. The jumps of neighboring F- ions seem to be induced 

by the large motion. This diffusion mechanism seems 

different from that so far discussed in the literatures.5-$)
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