Studies on Anodic Selective Functionalization of Cyclic Amine Derivatives

Osamu Onomura

Studies on Anodic Selective Functionalization of Cyclic Amine Derivatives

Osamu Onomura

PREFACE

The studies presented in this thesis have been carried out under the direction of Professor Tatsuya Shono at the Department of Synthetic Chemistry of Kyoto University during 1983-1988. The thesis is concerned with anodically selective functionalization of cyclic amine derivatives.

The author wishes to express his sincerest gratitude to Professor Tatsuya Shono for his constant guidance, valuable suggestions, and heartly encouragement throughout the course of the work. The author is also deeply grateful to Associate Professor Yoshihiro Matsumura for his continuous advice and helpful discussions during this work. He wishes to acknowledge the suggestions and criticisms of Drs. Shigenori Kashimura, Kenji Tsubata, Naoki- Kise, Kenji Inoue, and Kenshi Uchida. Furthermore, the author's grateful thanks are given to Messrs. Masaru 0gaki, Tsutomu Yoshida, Yasufu Yamada, and Masaaki Sato for their active collaborations. The author is indebted to the other members of the research group of Professor Tatsuya Shono.

The author wishes to thank Mrs. Yohko Ohmizu and Mr. Susumu Katoh for their affectionate encouragement throughout this mork.

Finally, the author is grateful to his father, Yoshihiro Onomura and his wife Kayoko Onomura for their great and constant assistance and encouragement.

Department of Synthetic Chemistry
Faculty of Engineering
Kyoto University
October, 1988.
General Introduction p. 1
Chapter 1 Asymmetric Carbon-Carbon Bond Forming Reaction at the Position α to the Nitrogen Atom of Cyclic Amine Derivatives $\quad \mathrm{p}$ 5
Chapter 2-1 $\quad \beta$-Acetoxylation and β-Halogenation of N-Methoxycarbonyl Cyclic Amines p. 20
Chapter 2-2 Synthesis of (+)- and (-)-N-Methylpseudoconhydrine from L- Lysine Using Anodic Oxidation as the Key Reaction p. 54
Chapter 3 A Nem Method for Introducing Some Active Methylene or Methine Groups to the 3-Position of Pyrrolidine or Piperidine Skeleton and Its Application to Preparation of Key Intermediate for the (土)-Eburnamonine Synthesis p. 66
Chapter 4-1 A New Method for Introducing A Bis(methoxycarbonyl)methyl Group to 4-Position of Piperidine Skeleton, and Its Application to Synthesis of (\pm)-Meroquinene and (\pm)- Epimeroquinene Derivatives p. 78
Chapter 4-2 An Approach to Synthesis of (-)-Dihydrocorynantheol fromL-Lysine Using Anodic Oxidationp. 93
Chapter 5-1 A New Method for Regioselective Synthesis of 2-Substituted-1-(methoxycarbonyl)-1,2-dihydropyridines and 5-Substituted Ones p. 102
Chapter 5-2 Synthesis of Optically Pure 2-Substituted-1- (methoxycarbonyl)-1,2-dihydropyridines. Preparation of Optically Active 2-Aza-2,5,6-tris(methoxycarbonyl)- bicyclo[2.2.2]octane p. 113
List of Publications p. 127

General Introduction

A lot of piperidine alkaloids have attracted much attention of synthetic organic chemists because of the biological activities. ${ }^{1}$ Those alkaloids are characterized by the piperidine skeletons which have various substituents (for examples, see Scheme 1). Although many methods for the synthesis of piperidine derivatives have been exploited so far, they are not always convenient with respect to reaction steps, starting materials, reagents, and so on. Accordingly, exploiting highly effective methods for the preparation of such skeletons are worthwhile from a synthetic viewpoint.

Scheme 1.

T. Shono et al. have already exploited a convenient method for introducing various nucleophiles (Nu) into the position α to the nitrogen atom of carbamates $\underline{1}$ using anodic oxidation followed by the reaction of oxidized products $\underline{2}$ with Nu as shown in eq $1 .^{3}$

This method, however, has not been applicable to introduce substituents to the other positions than $\alpha .^{4}$

This thesis describes new methods for introducing various substituents into the β, γ, and/or δ-position of piperidine ring (A in Scheme 1) by using the anodic oxidation as key reactions. Furthermore, their application to the synthesis of some piperidine alkaloids as shown in Scheme 1 is described. This thesis also describes the transformations of L-pipecolinic acid derivative $\underline{5}$, which can be anodically prepared from L-lysine through $\underline{4}$, into optically active piperidine alkaloids utilyzing these methods (eq 2). ${ }^{5}$ Some of exploited synthetic routes seem to be very interesting from a viewpoint of biosynthetic pathways. ${ }^{6}$

Chapter 1 is concerned with applications to asymmetric carbon-carbon bond forming reaction in the displacement of the methoxyl group of anodically prepared α-methoxylated cyclic amines with carbon nucleophiles.

Chapter 2-1 is concerned with anodic α, β-difunctionalization of cyclic amine derivatives and its application to synthesis of some useful intermediates for pyrrolidine and piperidine alkaloids.

Chapter 2-2 is concerned with the synthesis of (+)- and (-)-N-methylpseudoconhydrine from L-lysine using anodic oxidations.

Chapter 3 is concerned with introducing some active methylene or methyne groups to the β-position of cyclic amines and its application to synthesis of (\pm)-eburnamonine.

Chapter 4-1 is concerned with introducing a bis(methoxycarbonyl)methyl group to γ-position of piperidine ring, and its application to synthesis of (\pm)-meroquinene and (\pm)-epimeroquinene.

Chapter 4-2 is concerned with diastereoselective introducing 2-hydroxyethyl group to $\quad \gamma$-position of anodically prepared pipecolinic acid derivative from L-lysine and an approach to synthesis of (-)-dihydrocorynantheol.

Chapter 5-1 is concerned with regioselective synthesis of 2- and 5substituted 1,2-dihydropyridines.

Chapter 5-2 is concerned with optically pure 2-substituted 1,2-dihydropyridines and its application to preparation of optically active 2-aza-2,5,

6-tris(methoxycarbonyl)bicyclo[2.2.2]octane.

References and Notes

1. For examples, see: a) Glasby, J. S. In "Encyclopedia of the Alkaloids," Plenum Press: New York and London, 1975; Vol. 1 and 2: 1977; vol. 3. b) ApSimon, J. In "The Total Synthesis of Natural Products," Wiley: New York and London, 1977; vol. 3. c) Kocovsky, P. In "Synthesis of Natural Products," CRC Press: Florida, 1986; vol. 2.
2. a) Shono, T.; Hamaguchi, H. ; Matsumura, Y. J. Am. Chem. Soc. 1975, 97, 4264. b) Shono, T.; Matsumura, Y.; Tsubata, K. Org. Syn. 1985, 63, 206.
3. For examples, see: a) Shono, T.; Matsumura, Y.; Tsubata, K. J. Am. Chem. Soc. 1981, 103, 1172. b) Idem. Tetrahedron Lett. 1981, 22, 2411. c) Shono, T.; Matsumura, Y.; Uchida, K.; Tsubata, K.; Makino, A. J. Org. Chem. 1984, 49, 300. d) Shono, T.; Matsumura, Y.; Uchida, K.; Kobayashi, H. J. Org. Chem. 1985, 50, 3243.
4. A method to introduction of acyl groups to the β-position have been exploited.
a) Shono, T.; Matsumura, Y.; Tsubata, K.; Sugihara, Y. Tetrahedron Lett. 1982, 23, 1201. b) Shono, T.; Matsumura, Y.; Tsubata, K.; Sugihara, Y. ; Yamane, S.; Kanazawa, T.; Aoki, T. J. Am. Chem. Soc. 1982, 104, 6697.
5. Shono, T.; Matsumura, Y.; Inoue, K. J. Chem. Soc., Chem. Commun. 1983, 1169.
6. a) Hervert, R. B. In "Rodd's Chemistry of Carbon Compounds," Vol. IV, Part G, Ed.; Elsevier Scientific Publishing Company: Amsterdam, 1980; p.312. b) Coppola, G. M. ; Schster, H. F.; In "Asymmetric Synthesis. Construction of Chiral Molecules Using Amino Acids," John wiley and Sons : New York, 1987, p. 258.

Asymmetric Carbon-Carbon Bond Forming Reaction at the Position α to the Nitrogen Atom of Cyclic Amine Derivatives

Abstract

Two methodologies were applied for asymmetric carbon-carbon bond forming reaction in the displacement of the methoxyl group of anodically prepared α-methoxylated cyclic amines with carbon nucleophile. One of them was a method using substrates which possess a chirality at the α-position, and the other was a method in which a chiral auxiliary was located on the protecting group of nitrogen atom of substrates. Although the first method was not effective, the second method was found to be promising for the asymetric carbon-carbon bond forming reaction.

Many groups have developed various methodologies for the introduction of nucleophiles (Nu) to the position α to the nitrogrn atom of cyclic amines and applied ther to the synthesis of naturally occuring alkaloids which have physiologically important activities. ${ }^{1}$ One of the methodologies involves anodic α-methoxylation of \underline{N}-methoxycarbonylated cyclic amines $\underline{1}$ followed by Lewis acid catalyzed displacement of α-methoxyl group of the oxidation products $\underline{2}$ with $\mathrm{Nu}(\mathrm{eq.1}) .^{2}$ Although this methodology is very convenient for the carbon-carbon bond formation at the α-position of $\underline{1}$ (Nu in eq.1; carbon nucleophile), an asymetric carbon-carbon bond forming reaction has still remained to be explored. We report herein our approach for this purpose.

1

2

3

In order to achieve asymmetric carbon-carbon bond formation at the $\boldsymbol{\alpha}$ position, the following five methods (Scheme 1) may be effective depending on the location of chiral source; (1) A chiral source is located in the parent skeleton, though this method requires to remove the original chiral source on the course of reaction sequence. (2) A method utilizing nucleophiles which possess chiral auxiliaries. (3) A method in which Lewis acids are chiral. (4) Forth one is a special case of method (1) in which substrates $\underline{4}$ possessing a chirality at the α-position are used. This method, however, may be effective only in the case that the displacement of the leaving group (L of $\underline{4}$) with Nu proceeds with $\mathrm{S}_{\mathrm{N}} 2$-like. (5) Last one is a method in which a chiral auxiliary is located on the protecting group of the nitrogen atom of substrates $\underline{\mathbf{6}}$.

Among these, method (1) has already been proved by us to be effective for the purpose as exemplified by the synthesis of (+)- \mathbf{N}-methylconiine, $(+)-17$, with high enantioselectivity (96% ee). ${ }^{3}$ Recently, enantioselective synthesis of bicyclic alkaloids by method (2) has been reported. ${ }^{5}$ Methods (3) and (4) have not been examined so far, and few reports concerning on method (5) have been appeared during the course of this study. ${ }^{6}$ This paper describes our studies on methods (4) and (5).

Method (1):

Method (2):

Method (3):

$$
2 \xrightarrow[\mathrm{Nu}]{\text { Lewis ocid* }}{\substack{N^{*} \\ \frac{1}{Z}}}_{\substack{\mathrm{Nu}}}
$$

Method (4):

Method (5):

Scheme 1.

Results and Discussion

Synthesis of Compounds 4 possessing Chirality at the α-Carbon and Carbon-Carbon Bond Forming Reaction Using 4 (Method 4). Provided that nucleophilic attack of Nu on $\underline{4}$ proceeds with $\mathrm{S}_{\mathrm{N}} 2-1$ ike, it is expected that the displacement of a leaving group of chiral $\underline{4}$ with Nu may produce optically active products $\underline{5}$. Thus, we tried to prepare optically active $\underline{4}$ from enecarbamate $\underline{8}$ and $\underline{11}$ which were easily obtainable frow \underline{N}-methoxycarbonylated cyclic amines $\underline{7}$ and $\underline{10}$, respectively. ${ }^{8}$ Addition of ethyl L-lactate to $\underline{8}$ under acidic conditions gave optically active compounds $\underline{9 a}$ and $\underline{g b}$ (eq.2).

Although each diastereoisomer was separable by column chromatography (the ratio of the diastereoisomers $=70: 30$), ${ }^{9}$ the identification of the structure of isolated stereoisomer was not accomplished. In contrast to $\underline{8}$, addition of ethyl L-lactate on 10 did not proceed since addition products $\underline{12}$ were unstable under acidic conditions to easily go back to the starting enecarbamate 11 (eq.3). ${ }^{10}$

Although treatment of isolated $\underline{9 a}$ or $9 b$ with Lewis acids in the presence of trimethylsilyl cyanide or allyltrimethylsilane gave cyanated or allylated products $\underline{13}$ or 14 , these poroducts did not show any chirality (eq. . . 4).

This result suggests a mechanism involving a carbon-carbon bond forming reaction which proceeds with $\mathrm{S}_{\mathrm{N}} 1-1 \mathrm{ike},{ }^{3}$ and, thus, method (4) is not effective for asymatric carbon-carbon bond forming reaction.

Carbon-Carbon Bond Forming Reaction of Compounds possessing Chiral Auxiliaryon the N -Protecting Group (Method 5). The effectiveness of method (5) on the asymmetric carbon-carbon bond formation at the α-position of $\underline{6}$ was examined with α-methoxylated piperidine derivatives possessing chiral auxiliary on the nitrogen atom. First, D-camphorsulfonylamide 13 a and Lisomer $\underline{13 \mathrm{~b}}$ were prepared by usual methods, and they were oxidized to α methoxylated compounds $\underline{14 \mathrm{a}}$ and $\underline{14 \mathrm{~b}}$ by anodic oxidation. Treatment of $\underline{14}$ with allytrimethylsilane in the presence of TiCl_{4} gave allylated product $\underline{15}$, which was hydrogenated, deprotected, and \underline{N}-methoxycarbonylated, successively, to give $\underline{16}$ as shown in eq. 5 .
The obtained $\underline{17 \mathrm{a}}$ by the reduction of 16 a showed (+)-optical rotation, and the optical purity was found to be 15% ee by comparison with authentic sample. ${ }^{11}$ Similarly, the product 17b obtained from 14b showed (-)-optical rotation with 15% ee. Although the optical yields were low, method (5) was found to be effective for asymetric carbon-carbon bond forming reaction.

The lower optical yields seemed to be explainable in terms of long distance between the chiral center and reaction point. Thus, in the next place, we tried to prepare piperidine derivatives protected with L-lactic acid. Heating of piperidine with ethyl L-lactate gave N-protected piperidine derivative 18 in which the number of bonds between chiral center and reaction point was three but four in 14.

13a,b
14a, 90\%
15a, 95\%
b, 86%
b, 82%

16a, 38\%
17a, 77\%, (S) 15% ee
b, 37%
b, 66%, (R) 15% ee
a; $Z^{*}=$

b; Z" -

The anodic oxidation of 18 in methanol afforded a mixture of carboncarbon bond cleaved product $\underline{19}$ and α-methoxylated product $\underline{20}$ in 10% and 58 \% yields, respectively (eq. 6), ${ }^{13}$ and treatment of 20 with allyltrimethylsilane in the presence of TiCl_{4} did not give α-allylated product but $\underline{21}$ (eq.7).

In order to avoid these undesirable reactions, 18 was mesylated with mesyl chloride to give 22.

21, 70\%

Anodic oxidation of $\underline{22}$ followed by allylation of anodically generated α methoxylated product 23 afforded 24 . Then, the deprotection and successive \underline{N}-methoxycardonylation gave $\underline{25}$ (eq.8). Since optical rotation of obtained 17 c was (-) with 42% ee, the absolute stereochimistry of main enantiomer of $\underline{17 \mathrm{C}}$ was found to be R. ${ }^{12}$

22, 95%
23, 70\%
24, 89%
25, 45\%

This diastereoselectivity seems to be caused by the steric hindrance between the methyl group of N -protecting group and attacking Nu as shown in Fig.1.

Fig. 1.

In conclusion, method (5) is effective for the synthesis of optically acitive piperidine derivatives but method (4) is not. It is supposed that by a suitable selection of N -protecting group may enable the optical purity higher.

Experimental Section

Materials. Compounds $\underline{8}$ and $\underline{11}$ were prepared according to the reported method. ${ }^{8}$

Hemiacetal 9a and 9b. Into a solution of enecarbamate $\underline{8}$ (2.655g, 20.9 mmol) and L-ethyl lactate (2.4mL, 20.9mmol) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (5mL) was added $\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}(40 \mu \mathrm{~L})$ at room temperature. After the solution was stirred overnight, it was poured into aqueous $\mathrm{Na}_{2} \mathrm{CO}_{3}$ (15 mL) and the organic portion was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 30 \mathrm{~mL})$. After the extract was dried over MgSO_{4} and the solvent was removed in vacuo, the residue was chromatographed on silica gel (Ac0Et:hexane=1:10) to afford $\underline{9 a}$ and $9 \underline{b}$ in 70% and 30% yields, respectively.

9a (less polar isomer): $[\alpha]_{\mathrm{D}}{ }^{20}-54.0^{\circ}$; IR (neat) 2990, 2962, 1748, $1715,1451,1382,1197,1142,1100 \mathrm{~cm}^{-1}$; NMR (CCl_{4}) $\delta 1.24(\mathrm{~d}, \mathrm{~J}=7 \mathrm{~Hz}, 3 \mathrm{H})$, 1.27 ($\mathrm{t}, \mathrm{J}=7 \mathrm{~Hz}, 3 \mathrm{H}$) , 1.36-2.51(m, 4H), 3.03-3.61 (m, 2 H), $3.64(\mathrm{~s}, 3 \mathrm{H}), 3.70-$ 4.40 (m, 1H), $4.15(\mathrm{q}, \underset{\mathrm{J}}{\mathrm{J}}=5 \mathrm{~Hz}, 2 \mathrm{H}), 5.30$ (br t, $\mathrm{J}=5 \mathrm{~Hz}, 1 \mathrm{H})$. Anal. Calcd for $\mathrm{C}_{11} \mathrm{H}_{19} \mathrm{NO}_{5}$: C, 53.87 ; H, 7.81; $\mathrm{N}, 5.71$. Found: C, $53.96 ; \mathrm{H}, 8.01, \mathrm{~N}, 5.62$.

9b (polar isomer): [$\alpha]_{\mathrm{o}}{ }^{20}-89.0^{\circ}$ (c 0.4, Et0H); IR (neat) 2990, $2962,1748,1715,1451,1382,1197,1142,1100 \mathrm{~cm}^{-1}$; NMR $\left(\mathrm{CCl}_{4}\right)$ ס $1.15-2.40$
 1 H), 4.07 ($\mathrm{q}, \mathrm{J}=7 \mathrm{~Hz}, 2 \mathrm{H}$), 5.33 (br s, 1 H). Anal. Calcd for $\mathrm{C}_{11} \mathrm{H}_{1} \mathrm{NO}_{5}$: C , 53.87; H, 7.81; N, 5.71. Found: C,53.93; H, 8.06, N, 6.08.

Cyanation and Allylation of 9a or 9b was carried out under the similar conditions to those of $\underline{11}$ or $\underline{19}$ described bellow. Obtained $\underline{13}$ (74% yield) ${ }^{14}$ and $\underline{14}$ (83% yield) ${ }^{15}$ were racenic.

Sulfonamides 13a,b. Into a dispersion of piperidine (20mL, 231mmol) and $\mathrm{K}_{2} \mathrm{C} \mathrm{CO}_{3}$ ($27 \mathrm{~g}, 134$ mmol) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (100 mL) was added D -comphorsul fonylchloride ($16.8 \mathrm{~g}, 67 \mathrm{mmol}$). After it was stirred overnight, the solid was removed by filtration. After filtrated solution was washed with dil. HC1, the organic layer was dried over MgSO_{4} and successively the solvent was removed in vacuo. The residue was recrystalyzed from ether to afford 13a (96\%yield). By the similar procedure starting from L-comphorsulfonylchloride was yielded 13b (93\%).

13a: mp. 44-45 ${ }^{\circ} \mathrm{C}$ (from ether); $[\alpha]_{\mathrm{D}^{20}}+30.3^{\circ}$ (c 1.5, Et0H); IR (KBr) 2930, 1738, 1336, 1160, 1142, 1049, $936 \mathrm{~cm}^{-1}$; NMR (CDCl_{3}) $\delta 0.87$ ($\left.\mathrm{s}, 3 \mathrm{H}\right)$, 1.13 ($\mathrm{s}, 3 \mathrm{H}$), $1.26-2.66$ ($\mathbf{m}, 13 \mathrm{H}$), 2.72 ($\mathrm{d}, \mathrm{J}=16 \mathrm{~Hz}, 1 \mathrm{H}), 3.17-3.37$ ($\mathbf{m}, 2 \mathrm{H}$), $3.33(\mathrm{~d}, \underline{\mathrm{~J}}=16 \mathrm{~Hz}, 1 \mathrm{H})$. Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{25} \mathrm{NO}_{3} \mathrm{~S}: \mathrm{C}, 60.17$; H, 8.42; N , 4.68; S, 10.71. Found: C, 60.02; H, 8.61; N, 4.77; S, 10.65.

13b: mp 42-43${ }^{\circ}$ (from ether); $[\alpha]_{\mathrm{D}}{ }^{20}-31.2^{\circ}$ (c 1.1, EtOH); Anal. Found: C, 60.43; H, 8.71; N, 4.69; S, 10.66.

Anodic 0xidation of 13a,b. α-Methoxylation of 13a,b was achieved under conditions similar to the anodic oxidation of $\underline{10}$. Usual morking up gave $\underline{14 a}$ (90% yield, at $5 \mathrm{~F} / \mathrm{mol}$) and $\underline{14 \mathrm{~b}}$ (86% yield, at $6 \mathrm{~F} / \mathrm{mol}$).

14a: IR (neat) $2950,1742,1349,1158,1056,937 \mathrm{~cm}^{-1}$; NMR ($\left.\mathrm{CDCl}_{3}\right) ~ \delta$ 0.88 (br s, 1H), $1.14(\mathrm{~s}, 3 \mathrm{H}), 1.28-3.92(\mathrm{~m}, 2 \mathrm{H}), 3.33$ and $3.37(2 \mathrm{~s}, 1.27 \mathrm{H}$ and 1.73 H), 5.03 (br s, 1H). Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{27} \mathrm{NO}_{4} \mathrm{~S}: \mathrm{C}, 58.33$; $\mathrm{H}, 8.26$; N, 4.25; S, 9.73.Found: C, 58.74; H, 8.00; N, 4.19; S, 9.66.

14b: IR (neat) $2950,1742,1349,1158,1056,937 \mathrm{~cm}^{-1}$; NMR $\left(\mathrm{CDCl}_{3}\right) \delta$ $0.88(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 1.14(\mathrm{~s}, 3 \mathrm{H}), 1.28-3.92(\mathrm{~m}, 2 \mathrm{H}), 3.33$ and $3.37(2 \mathrm{~s}, 1.73 \mathrm{H}$ and 1.27 H), 5.03 (br s, 1H). Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{27} \mathrm{NO}_{4} \mathrm{~S}: \mathrm{C}, 58.33$; $\mathrm{H}, 8.26$; N, 4.25; S, 9.73 Found: C, 58.32; H, 8.31; N, 4.20; S, 9.58.

Allylation of 14a, b was achieved under conditions similar to the allylation of $\underline{22}$ except for temperature (at $-40^{\circ} \mathrm{C}$).

15a: mp. 92-93. $5^{\circ} \mathrm{C}$ (from ether); IR (KBr) 2945, 1743, 1644, 1336, 1166, $1147,1052,1003,938 \mathrm{~cm}^{-1}$; $\operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 0.89(\mathrm{~s}, 3 \mathrm{H}), 1.15(\mathrm{~s}, 3 \mathrm{H}), 1.37-$ 1.43 (m, 1H), 1.52-1.71 (m, 7H), 1.90-1.95 (m, 1H), 2.00-2.09 (m, 2H), 2.342.59 (m, 4H), 2.80 (d, $\underset{=15 H z}{ } 1 \mathrm{H}$), 3.05 (br t, $\underset{=}{\mathrm{J}}=13 \mathrm{~Hz}, 1 \mathrm{H}$), 3.40 ($\mathrm{d}, \underline{\mathrm{J}}=$ $15 \mathrm{~Hz}, 1 \mathrm{H}$), 3.72 (br d, $\underset{=}{\mathrm{J}}=14 \mathrm{~Hz}, 1 \mathrm{H}$), 4.08-4.10 ($\mathbb{I}, 1 \mathrm{H}$), 5.07-5.14 (m, 2 H), 5.74-5.84 (m, 1H) ; Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{29} \mathrm{NO}_{3} \mathrm{~S}: \mathrm{C}, 63.68 ; \mathrm{H}, 8.61 ; \mathrm{N}, 4.13$; S, 9.44. Found: C, 63.65; H, 8.67; N, 3.94; S, 9.44.

15b: IR (KBr) $2945,1743,1644,1336,1166,1147,1052,1003,938 \mathrm{~cm}^{-1} ; ;$; NMR (CDCl_{3}) $\delta 0.89(\mathrm{~s}, 3 \mathrm{H}), 1.15(\mathrm{~s}, 3 \mathrm{H}), 1.37-1.43(\mathrm{~m}, 1 \mathrm{H}), 1.52-1.71$ (m, 7 H) , 1.90-1.95 (m, 1H), 2.00-2.09 (m, 2 H), 2.34-2.59 ($\mathbf{m}, 4 \mathrm{H}$), 2.80 (d, J=15
 1 H), 4.08-4.10 (m, 1H), 5.07-5.14 ($\mathbf{1}, 2 \mathrm{H}$), 5.74-5.84 (m, 1H). Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{29} \mathrm{NO}_{3} \mathrm{~S}: \mathrm{C}, 63.68 ; \mathrm{H}, 8.61 ; \mathrm{N}, 4.13 ; \mathrm{S}, 9.44$. Found: C, 63.80 ; H, 8.83; N, 3.94; S, 9.26.

Preparation of 16 from 19a,b was carried out according to general procedure described above.

Amide 18. A mixture of L-ethyl lactate (20mL, 176mmol) and piperidine (30mL, 303 miol) was refluxed for 6 h . After excess of piperidine was removed, the residue was distilled to afford $\underline{18}$ ($24.3 \mathrm{~g}, 88 \%$ yield): bp $104-106{ }^{\circ} \mathrm{C}$ (8mim); IR (neat) $3425,2950,2870,1648,1455,1115 \mathrm{~cm}^{-1}$; NMR (CC1 $\left.{ }_{4}\right) \delta 1.30$
 4.64 (brs, 1H). Anal. Calcd for $\mathrm{C}_{8} \mathrm{H}_{15} \mathrm{NO}_{2}$: C, 61.12; H, 9.62; N, 8.91. Found : C, 61.37; H, 9.61; N, 8.70.

Anodic Oxidation of 18. Anodic oxidation of 18 was carried out by the procedure similar to the anodic oxidation of $\underline{19}$ to afford $\underline{19}^{16}$ and $\underline{20}$ in 10\% and 58% yield, respectively at $5 \underline{\mathrm{~F}}$ /mol.

20: IR (neat) $3430,2952,1648,1450,1138,1095,1040,1020,962 \mathrm{~cm}^{-1}$; NMR (CCl_{4}) $\delta 1.27(\mathrm{~d}, \mathrm{~J}=6 \mathrm{~Hz}, 3 \mathrm{H}), 1.19-1.90(\mathrm{~m}, 6 \mathrm{H}), 2.60-4.43(\mathrm{~m}, 3 \mathrm{H})$,
 172, 154, 142(base); exact mass calcd $\mathfrak{m} / \mathrm{e}$ 187.1208, found 187.1191.

Treatment of 20 with Allyl trimethylsilane: This reaction was carried out under conditions similar to the allylation of 11 . Usual morking up gave $\underline{21}$ in 70% yield: IR (neat) $2940,2855,1711,1453,1118,1100,984 \mathrm{~cm}^{-1}$; NMR $\left(\mathrm{CCl}_{4}\right) \quad \delta 1.28$ and $1.31(2 \mathrm{~d}, \underline{\mathrm{~J}}=6 \mathrm{~Hz}, 3 \mathrm{H}), 1.33-2.25(\mathrm{~m}, 6 \mathrm{H}), 2.39-2.98(\mathbb{m}$, $1 \mathrm{H}), 3.74-4.33(\mathbf{m}, 2 \mathrm{H}), 4.70-5.03(\mathbf{m}, 1 \mathrm{H})$; MS, $\mathrm{m} / \mathrm{e} 155\left(\mathrm{M}^{+}\right), 154$ (base), 127; exact mass calcd $\mathbf{I} / \mathrm{e} 155.0946$, found 155.0940 .

Methanesulfonate 22. Into a solution of 18 ($5 \mathrm{~g}, 31.8 \mathrm{mmol}$) and tri-
ethylamine ($8 \mathrm{~mL}, 50 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (40mL) was added dropwise methanesulfonylchloride ($4 \mathrm{~mL}, 44 \mathrm{mmol}$) at $0^{\circ} \mathrm{C}$. After the reaction wixture was stirred for 30 min , it was poured into water (50 mL). The organic portion was extracted with dichloromethane ($3 \times 30 \mathrm{~mL}$). After the extract was dried over MgSO_{4} and the solvent was removed in vacuo, the residue was chromatographed on silica gel (Ac0Et:hexane=1:1) to afford colorless solid $\underline{21}$ ($5.85 \mathrm{~g}, 88 \%$ yield): mp $57-58^{\circ} \mathrm{C} ; \quad[\alpha]_{\mathrm{D}}{ }^{20}-32.4^{\circ}$ (c 1.0, Et0H); IR (KBr) 2945, 2855, $1652,1355,1190 \mathrm{~cm}^{-1}$; $\operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 1.57(\mathrm{~d}, \underline{\mathrm{~J}}=8 \mathrm{~Hz}, 3 \mathrm{H}), 1.53-1.80(\mathbb{1}, 6 \mathrm{H})$, 3.13 ($\mathrm{s}, 3 \mathrm{H}$), 3.20-3.90 ($\mathbf{m}, 4 \mathrm{H}$), $5.46(\mathrm{q}, \underline{\mathrm{J}}=8 \mathrm{~Hz}, 1 \mathrm{H})$. Anal. Calcd for $\mathrm{C}_{9} \mathrm{H}_{17} \mathrm{NO}_{4} \mathrm{~S}: \mathrm{C}, 45.94 ; \mathrm{H}, 7.26 ; \mathrm{N}, 5.95 ; \mathrm{S}, 13.63$. Found: C, 46.02 ; H, 7.35 ; N, 5.86; S, 13.37.

Anodic Oxidation of 21. Into an undivided cell equipped with carbon rod anode and cathode $(8 \operatorname{man} \phi)$ was added a solution of $\underline{21}(2.35 \mathrm{~g}, 10 \mathrm{~m})$ and Et ${ }_{4} \mathrm{NOTs}$ ($0.6 \mathrm{~g}, 2 \mathrm{mmol}$) in methanol (30mL), and $5 \underline{F} / \mathrm{mol}$ of electricity was passed at a constant current of 0.5 A (2.7h, terminal voltage; ca. 7 V) through the solution which was cooled with ice-water. The solution was poured into water and the organic portion was extracted with $\mathrm{C}_{2} \mathrm{HCl}_{2}$ (4 x 40mL). After the extract was dried over MgSO_{4} and the solvent removed in vacuo, the residue was chromatographed on silica gel (Ac0Et:hexane=1:2) to afford $\underline{22}$ in 70% yield: IR (neat) $2950,1658,1360,1180 \mathrm{~cm}^{-1}$; NMR (CDCl_{3}) δ $1.10-2.22(\mathrm{~m}, 6 \mathrm{H}), 1.58$ and $1.59(2 \mathrm{~d}, \mathrm{~J}=8 \mathrm{~Hz}$ and $8 \mathrm{~Hz}, 3 \mathrm{H}), 2.65-3.90(\mathrm{~m}, 3 \mathrm{H})$, 3.14 and $3.16(2 \mathrm{~s}, 3 \mathrm{H}), 3.27(\mathrm{~s}, 3 \mathrm{H}), 5.49(\mathrm{q}, \underline{\mathrm{J}}=8 \mathrm{~Hz}, 1 \mathrm{H}), 5.70-5.93(\mathrm{~m}, 1 \mathrm{H})$; MS, $\mathbb{I} / \mathrm{e} 234\left(\mathrm{M}^{+}-\mathrm{OMe}\right), 233\left(\mathrm{M}^{+}-\mathrm{MeOH}\right)$. Anal. Calcd for $\mathrm{C}_{10} \mathrm{H}_{19} \mathrm{NO}_{5} \mathrm{~S}: \mathrm{C}, 45.27$; H, 7.22; N, 5.28; S, 12.08. Found: C, 46.08; H, 7.14; N, 5.11; S, 11.52.

Allylation of 22. Into a solution of TiCl_{4} (1mL, 4.4mmol) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (5mL) was added dropwise a solution of $\underline{22}(0.779 \mathrm{mg}, 2.94 m o l)$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$
(5 mL) at $-70^{\circ} \mathrm{C}$ under an atmosphere of nitrogen. After the solution was stirred at the temperature for 5 min, a solution of allyltrimethylsilane ($0.524 \mathrm{~g}, 4.6 \mathrm{mmol}$) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (5mL) was added dropwise. After the resulting reaction mixture was stirred for 1 h at $-70^{\circ} \mathrm{C}$, water (15il) was poured into the reaction mixture and stirred for 10min. The organic layer was separated, and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ($3 \times 30 \mathrm{~mL}$). After the combined organic layers were dried over MgSO_{4}, the solvent removed in vacuo. The residue was chromatographed on silica gel (AcOEt:hexane $=1: 5$) to afford $\underline{23}$ in 89% yield: IR (neat) $2945,1652,1360,1180 \mathrm{~cm}^{-1}$; NMR ($\left.\mathrm{CDCl}_{3}\right) \delta 1.47$ ($\mathrm{d}, \mathrm{J}=7 \mathrm{~Hz}, 3 \mathrm{H}$), 1.38-1.81 (四, 6H), 2.17-2.55 (m, 2H), 2.71-5.91 ($\mathbf{i}, 7 \mathrm{H}$), 3.01 and $3.07(2 \mathrm{~s}, 2.13 \mathrm{H}$ and 0.87 H$)$. Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{2} \mathrm{NO}_{4} \mathrm{~S}: \mathrm{C}, 52.34$; H, 7.69; N, 5.09; S, 11.64. Found: C, 52.48; H, 7.73; N, 4.92; S,11.34.

Preparation of 17, General Procedure. After hydrogenation of 12 (1.052 $\mathrm{g}, 3.8 \mathrm{mmol}$) in methanol containing catalytic amount of $\mathrm{Pt0}_{2}$ (1atm) overnight and followed by hydrolysis mas carried out in $25 \% \mathrm{HBr}-\mathrm{Ac} 0 \mathrm{H}$ (10هL) at $80^{\circ} \mathrm{C}$ for 20 h , the resulting mixture was poured into $50 \% \mathrm{NaOH}$ containing $\mathrm{ClCO}_{2} \mathrm{Me}$ ($10 \mathrm{~mL}, 12.9 \mathrm{mmol}$). After it was stirred for 1 h , the organic portion was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ($4 \times 25 \mathrm{~mL}$). The extract was dried over MgSO_{4}. After the solvent mas removed in vacuo, the residue was chromatographed on silica gel (Ac0Et:hexane $=1: 5$) and further distilled by kugel rohr ($150{ }^{\circ} \mathrm{C} / 1 \min$) to afford 13^{13} ($0.356 \mathrm{~g}, 51 \%$ yield) in 42% ee. ${ }^{8}$

References and Notes

1. For examples, see; (a) Glasby, J. S. In "Encyclopedia of the Alkaloids," Plenum Press: New York and London, 1975; Vol. 1 and 2: 1977; Vol. 3.
(b) Kocovsky, P.; Turecek, F.; Hazicek, J. In "Synthesis of Natural products: Problems of Stereoselectivity," CRC Press: Florida, 1986; Vol. 2. (c) Klyne, w. ; Buckingham, J. In "Atlas of Stereochemistry," Fletcher and Son: London, 1974; p. 137.
2. Shono, T.; Matsumura, Y.; Tsubata, K. Org. Synth. 1984, 63, 206 and references cited therein.
3. Shono, T.; Matsumura, Y.; Tsubata, K. ; Uchida, K. J. Org. Chem. 1986, 51, $2590 .{ }^{4}$
4. The synthesis of (+)-sedamine by the similar procedure, see; Irie, K.; Aoe, K. ; Tanaka, T.; Saito, S. J. Chem. Soc. , Chem. Compan. 1985, 633.
5. Nagao, Y.; Dai, W-M.; Ochiai, M.; Tukagoshi, S.; Fujita, E. J. Am. Chem. Soc. 1988, 110, 289.
6. (a) Shono, T.; Matsumura, Y.; Onomura, 0. The 52nd Annual Meeting of CSJ, abstr. p. 1497 (1986). (b) Wanner, K. T.; Kartner, A. Heterocycles 1987, 26, 921. ${ }^{7}$
7. This type reaction of acyclic α-methoxylated \underline{N}-protected dipeptides: Renaud, P.; Seebach, D. Angew. Chem. Int. Ed. Engl. 1986, 25, 843.
8. Shono, T.; Matsumura, Y.; Tsubata, K.; Sugihara, Y.; Yamane, S.;

Kanazawa, T.; Aoki, T. J. Am. Chem. Soc. 1982, 104, 6697.
9. Less hindered isomer 9 a was considered to be a main product.

90

$9 b$
10. Shono, T.; Matsumura, Y.; Onomura, 0.; Ogaki, M. ; Kanazawa, T. J. Org. Chem. 1987, 52, 536.
11. Enantiomeric excess (ee) of 16 was determined by $400 \mathrm{MHz}{ }^{1} \mathrm{HNNR}$. Namely,
a solution of 16 in CDCl_{3} was measured in the presence of $\mathrm{Eu}(\mathrm{hfc})_{3}$ (lequiv.) at $60^{\circ} \mathrm{C}$. And absolute configuration of 16 was determined by optical rotations of 17 obtained from $16 .{ }^{12}$
12. Pure $\underline{17}\left\{[\alpha]_{\mathrm{D}}+74.9^{\circ}\right.$ (95\% ethanol, c $\left.\left.0.2-2.0\right)\right\}$ is (S) configuration. Craig, J. C.; Lee, S.-Y. C.; Pereira, W.E.Jr.; Beyerman, H.C. Tetrahedron 1978, 34, 501.
13. Shono, T. ; Matsumura, Y.; Tsubata, K.; Sugihara, Y. Nippon Kagaku Kaishi 1984, 1782.
14. Shono, T. ; Matsumura, Y.; Tsubata, K. Tetrahedron Lett. 1981, 22, 2411.
15. Shono, T. ; Matsumura, Y. ; Uchida, K. ; Kobayashi, H. J. Org. Chem. 1985, 50, 3243.
16. Shono, T.; Hamaguchi, H. ; Matsumura, Y. J. Am. Chem. Soc. 1975, 97, 4264.
β-Acetoxylation and β-Halogenation of N-Methoxycarbonyl Cyclic Amines

Abstract

Anodic oxidation of N -methoxycarbonyl-pyrrolidines and -piperidines in $\mathrm{Ac} 0 \mathrm{H}-\mathrm{Ac} 0 \mathrm{~K}$, aqueous $\mathrm{CH}_{3} \mathrm{CN}-\mathrm{NH}_{4} \mathrm{Cl}, \mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{Et}_{4} \mathrm{NOTs}$, MeOH$\mathrm{NH}_{4} \mathrm{Cl}$ system gave α, β-disubstituted compounds. The α-substituents were easily removed by NaBH_{4} under acidic conditions to give β-substituted compounds. This method was applied to the synthesis of racemic Conium alkaloids such as pseudoconhydrine and N -methylpseudoconhydrine.

Functionalization of a less reactive methylene group is one of the most interesting current topics, while generally effective methods have not always been found as yet. One of the methods hitherto exploited may be the remote oxidation, in which a methylene group at a remote position from an activating group can be oxidized with some efficient selectivity. ${ }^{1}$

In this chapter is described a convienient method for introducing an acetoxyl group or a halogen atom to the β-methylene group of \underline{N}-methoxycarbonyl cyclic amines A.

Shono et al., have already exploited the anodic oxidation for the α methoxylation ${ }^{2}$ or α-hydroxylation ${ }^{3 i}$ of a variety of carbamates. In continuing this study, we have found that the anodic oxidation of \underline{A} under some selected conditions gave α, β-disubtituted products \underline{B} in satisfactory yields instead of α-monosubstituted ones. Since the α-substituent of \underline{B} is easily removable by reduction to give β-substituted compounds $\underline{\mathrm{C}}$, the over-
all transformation from \underline{A} to final products \underline{C} corresponds to a β-functionalization of $\underset{\text { A (Scheme 1). }}{ }$)

This chapter describes these results together with brief discussion on the reaction mechanism of the α, β-disubstitution.

In addition, this paper also reports some utilization of \underline{B} and \underline{C} in organic synthesis as exemplified by the stereoselective synthesis of racemic Conium alkaloids such as pseudoconhydorine and \underline{N}-methylpseudoconhydrine. ${ }^{4}$

Scheme 1

Anodic α, β-Diacetoxylation of N-Methoxycarbonylpiperidines. Although the anodic oxidation of \underline{N}-methoxycarbonylpiperidines $1 \mathrm{a}-\mathrm{d}$ in methanol using Et ${ }_{4}$ NOTs as a supporting electrolyte gives α-methoxylated products, ${ }^{2}$ the anodic oxidation of 1a-d in acetic acid containing Ac 0 K as a supporting electrolyte gave α, β-diacetoxylated products $2 \mathrm{a}-\mathrm{d}$ (eq 1). Since the compounds $\underline{2}$ were somewhat unstable under the reaction conditions and at the step of workup, careful morkup of the electrolyzed solution with
cold aqueous NaHCO_{3} (method a) was necessary to get $\underline{2}$ as the main products, while the morkup with water (method b) gave only α-hydroxy-β-acetoxy compounds $\underline{3}$. The yields of $\underline{2}$ and $\underline{3}$ are summarized in Table 1 .

a, $\mathrm{R}=\mathrm{H} \quad$ d, $\mathrm{R}=\mathrm{CH}_{2} \mathrm{COCH}_{3}$
b, $\mathrm{R}=\mathrm{CH}_{3}$
c. $\mathrm{R}=\mathrm{n}-\mathrm{C}_{3} \mathrm{H}_{7}$

Table 1. Anodic 0xidation of N -Metyhoxycarbonylpiperidines $\underline{1 a-d}$

Run	Compound	Method ${ }^{\text {a }}$	Isolated	
			Yield(\%)	
			$\underline{2}$	3
1	1a	a		3a(88)
2	1a	b	$\underline{2 a}(61)$	3a(20)
3	1b	a		3b(92)
4	1b	b	$\underline{2 b}(34)$	3b(45)
5	1c	a		3c(93)
6	1d	a		3d(53)

${ }^{\text {a }}$ see text.

Anodic α-Hydroxy- β-chlorination of N-Methoxycarbonyl-piperidines and -pyrrolidines. Anodic oxidation of \underline{N}-methoxycarbonyl-piperidines $\underline{1 a, b}$ and pyrrolidines 5 a,b in aqueous acetonitrile containing $\mathrm{NH}_{4} \mathrm{Cl}$ gave α-hydroxy-β-chlorinated products $\underline{4 \mathrm{a}, \mathrm{b}}$ and $\underline{6 \mathrm{a}, \mathrm{b}}$, respectively, in satisfactory yields
(eqs 2 and 3). ${ }^{5}$

$40, R=H, 57 \%$
lib, $\mathrm{R}=\mathrm{CH}_{3}, 47 \%$

5a, $R=H$
6a, $R=H$,
5b, $\mathrm{R}=\mathrm{CO}_{2} \mathrm{CH}_{3}$
6 b, $\mathrm{R}=\mathrm{CO}_{2} \mathrm{CH}_{3}$,
47%
68\%

This type of β-chlorination was also achieved by anodic oxidation in dichloromethane containing Et ${ }_{4} \mathrm{NOTs}$ (eq 4) or in methanol containing $\mathrm{NH}_{4} \mathrm{Cl}$ (eq 5).

$$
\begin{array}{ll}
\text { la,b } \frac{\text { l) }-4 e, \mathrm{CH}_{2} \mathrm{Cl}_{2}}{\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{4} \mathrm{NOTs}} & 40, \mathrm{~b} \tag{4}\\
\begin{array}{ll}
\text { 2) } \mathrm{H}_{2} \mathrm{O} & \text { a, } 31 \% \\
& \text { b, } 61 \%
\end{array}
\end{array}
$$

$$
\begin{equation*}
\text { la } \xrightarrow[\mathrm{NH}_{4} \mathrm{Cl}]{-4 \mathrm{e}, \mathrm{CH}_{3} \mathrm{OH}} \tag{5}
\end{equation*}
$$

7, 90%

On the other hand, some devices were required to achieve β-bromination or -iodination of \underline{A}, since the use of $\mathrm{NH}_{4} \mathrm{Br}$ or $\mathrm{NH}_{4} \mathrm{I}$ as a supporting electrolyte resulted in the recovery of $\underset{A}{ }$.

Reaction Mechanism of Anodic α, β-Diacetoxylation of N -Methoxycarbonylpiperidines. The acetoxylation of less reactive β-position of \underline{A} may proceed through the following three steps ($a-c$), that is, (a) the formation of α-cation intermediate \underline{D} by the anodic oxidation of \underline{A}, (b) the conversion of \underline{D} directly, or passing through α-acetoxylated compound \underline{E} ($Y=0 \mathrm{Ac}$) to α, β-unsaturated compound \underline{F}, and (c) the subsequent anodic oxidation of \underline{F} to diacetoxylated product \underline{H} through the formation of dicationic intermediate G, as shown in Scheme 2.

Scheme 2

The α-acetoxylated intermediate E was, however, neither isolated, nor observed the existence throughout the anodic oxidation. Accordingly, the direct formation of \underline{F} from \underline{D} without the intervention of \underline{E} is most likely.

Provided that the first intermediate E was generated, the acidic reaction conditions seemed to make \underline{E} unstable. In fact, α-methoxy- $\underline{-}$-methoxycarbonylpiperidine $\underline{8}$ was easily converted by treatment with acetic acid to α, β-unsaturated \underline{N}-methoxycarbonylpiperidine $\underline{9 a}$ (eq 6).

Also, $\underline{8}$ was converted to α, β-disubstituted compound $\underline{3 a}$ by the anodic oxidation in acetic acid (eq 7).
2) $\mathrm{H}_{2} \mathrm{O}$

3a, 62\%

Although $\underline{\mathrm{F}}$ was also not observed, its intermediary formation is reasonable since the anodic oxidation of independently prepared α, β-unsaturated compounds $\underline{9 a-e}^{3 e, f}$ in acetic acid also gave 2a, $\underline{10 b-e}$ and/or 3a (eq 8). ${ }^{6}$ Yields of these products are shown in Table 2. ${ }^{5}$

Table 2. Anodic 0xidation of α, β-Unsaturated Compounds $\underline{9 a-e}^{a}$

Run Compound	Supporting Isolated Electrolyte Yield(\%)
$1 \quad 9 \mathrm{a}$	$\mathrm{Ac} 0 \mathrm{~K} \quad \underline{2 a}(65) \quad \underline{3 a}(22)$
	Ac 0 Na
3 $\simeq_{\mathrm{N}-\mathrm{CO}_{2} \mathrm{CH}_{3}} \frac{9 \mathrm{C}}{\mathrm{C}}$	Ac 0 Na
4	Ac0Na
5	

a The workup was carried out by method b. See text.

Reaction Mechanism of Anodic β-Chlorination of N-Methoxycarbonylpiperidines and -pyrrolidines. The anodic α-methoxyl-, or α-hydroxyl-β-chlorination may also proceed in a similar mechanism to the anodic α, β -diacetoxylation except step c (Scheme 3). Thus, the intermediate \underline{F} may be generated in situ directly from \underline{D}, or passing through $\underline{E}(Y=0 M e, 0 H$, or Cl$) .{ }^{7}$

Scheme 3

The intervention of \underline{F} was strongly suggested by the facts that the anodic oxidation of independently prepared $\underline{9 a}$ in a reaction system of aqueous $\mathrm{CH}_{3} \mathrm{CN}-\mathrm{NH}_{4} \mathrm{Cl}$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{Et}_{4} \mathrm{NOTs}$ gave the β-chlorinated product $\underline{4 \mathrm{a}}$ in 79% and 34\% yield, respectively, and that $\underline{7}$ was prepared by anodic oxidation of 9a in methanol containing $\mathrm{NH}_{4} \mathrm{Cl}$ with 82% yield.

Although the β-chlorination of \underline{F} seems to be explainable by the similar mechanism to the α, β-diacetoxylation in which the direct oxidation of \underline{F} generates dication intermediate \underline{G}, the attack of ${ }^{*} \mathrm{Cl}{ }^{+* 9}$ or Cl_{2} generated by anodic oxidation of $\mathrm{Cl}^{-},{ }^{10}$ on $\underline{\mathrm{F}}$ followed by the conversion of the intermediate cation \underline{I} to \underline{J} is more plausible ${ }^{12}$ since β-chlorination of α, β-unsaturated compound $\underline{\mathrm{F}}$ (9a) was achieved by treating $\underline{\mathrm{F}}$ with tertbutylhypochlorite (eq 9), ${ }^{5}$ and it has well been known that ${ }^{*} \mathrm{Cl}^{+*}$ or Cl_{2} generated anodically from Cl^{-}attaks on alkenes. ${ }^{11 \mathrm{~b}, 13}$

$$
\begin{equation*}
9 \mathrm{a} \xrightarrow[\mathrm{CH}_{3} \mathrm{OH}]{t_{2}-\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{OCl}}{ }_{70 \%}^{7} \tag{9}
\end{equation*}
$$

This mechanism suggests that the anodic oxidation of \underline{F} in the presence of Br^{-}or I^{-}makes β-bromination and β-iodination of $\underline{\mathrm{F}}$ possible, since Br^{-}and I^{-}are more easily oxidizable than $\mathrm{Cl}^{-} .{ }^{14}$ Thus, the anodic oxidation of $\underline{9 a}, \underline{b}, \underline{f}$ under the reaction conditions shown in eq 10 gave β brominated and β-iodinated products $\underline{11}, \underline{12}$, and $\underline{13} .{ }^{5}$

Reductive Elimination of α-Substituents of B and Synthesis of

 (eq 11). ${ }^{5}$

10b, $n=1, X=Y=0 A C, R=H$	14, $\mathrm{n}=1, \mathrm{X}=0 \mathrm{Ac}, \mathrm{R}=\mathrm{H}$,	82\% from lob
b, $n=1, X=C l, Y=0 \mathrm{H}, \mathrm{R}=\mathrm{CO}_{2} \mathrm{CH}_{3}$	15, $n=1, X=C 1, \quad R=\mathrm{CO}_{2} \mathrm{CH}_{3}$,	116% from 6b
2a, $n=2, X=Y=0 A C$,	16a, $\mathrm{n}=2, \mathrm{X}=0 \mathrm{Ac}, \mathrm{R}=\mathrm{H}$,	92\% from 20
b, $n=2, X=Y=O A C, R=\mathrm{CH}_{3}$	16b, $\mathrm{n}=2, \mathrm{X}=0 \mathrm{Ac}, \mathrm{R}=\mathrm{CH}_{3}$,	84\% from 2b
3c, $n=2, X=0 A C, Y=0 H, R=n-C_{3} H_{7}$	16c, $n=2, X=0 \mathrm{AC}, \mathrm{R}=\mathrm{n}-\mathrm{C}_{3} \mathrm{H}_{7}$,	78\% from 3c
10e, $n=2, X=Y=0 \mathrm{Ac}, \mathrm{R}=\mathrm{CO}_{2} \mathrm{CH}_{3}$	16e, $n=2, \mathrm{X}=0 \mathrm{Ac}, \mathrm{R}=\mathrm{CO}_{2} \mathrm{CH}_{3}$,	93\% from
la, $n=2, X=C l, Y=O H, R=H$	17, $n=2, X=C 1, ~ R=H$,	80\% from

The stereoconfiguration of \underline{C} was easily determined by GLC method except a proline derivative 15 . The ratios of trans to cis were 8:2 in $\underline{16 \mathrm{~b}}$ and $9: 1$ in $16 \mathrm{c} .{ }^{15}$ The synthesis of racemic Conium alkaloids and the related compounds was easily achievable starting from 16. Hydrolysis of trans-16b with $47 \% \mathrm{HBr}$ followed by treatment with aqueous NaOH gave trans- β-hydroxy-α-methylpiperidine, trans-18b.
Similar hydrolysis of trans-16c gave pseudoconhydrine, trans-18c. Also, reduction of trans- $\underline{16 c}$ with LiAlH_{4} gave $\underline{\mathrm{N}}$-methylpseudoconhydrine, trans-19 (eq 12). In conclusion, the synthesis of racemic Conium alkaloids, trans18c and trans-19, was achieved almost diastereoselectively starting from \underline{A}.

trans-16b,c

trans-18h, $\mathrm{R}=\mathrm{CH}_{3}, \quad 59 \%$ from trans-1Gb trans-18C, $R=n-C_{3} H_{7}, 58 \%$ from trans-16c

trans-19, 93\% from trans-16c ted Compounds and β-0xo Compounds. Heating α, β-disubstituted compounds $\underline{B}(\underline{2 a}, b, \underline{3 c}, \underline{4 a}, \underline{6 b}, \underline{10 e}$, and 12 p) easily gave β-substituted α, β-unsaturated compounds (20-23) (eq 13).

B

Furthermore, the β-substituted α, β-unsatureted compounds were good precursers for β-oxo compounds as exemplified by the synthesis of β oxopiperidine derivatives 24a,e. The oxidation of ga with $\underline{\mathbb{m}}$-CPBA was found to be an alternative route to 24a (eqs 14 and 15).

2le

Substutution at the α-Position of B. Methods for the substitution of the α-methoxy group of α-methoxylated compounds \underline{K} with a variety of nucleophiles (Nu) have already been exploited (eq 16). ${ }^{3,16}$

K

Application of these methods to \underline{B} led to the facile preparation of a variety of α-substituted β-acetoxyl- or β-halogeno compounds. For example, allylation at the α-position of $\underline{3 a}$ and $\underline{12 p}$ according to the reported conditions ${ }^{4}$ gave α-allylated compounds $\underline{25}$ and $\underline{26}$, respectively (eq 17). ${ }^{5}$

3a, $x=O A C, y=O H$
12p, $x=\mathrm{Br}, \quad \gamma=0 \mathrm{CH}_{3}$

25, $x=0 \mathrm{AC}, 68 \%$
26, $x=B r, 82 \%$

Also, the reaction of $\underline{2 \mathrm{a}}$ or $\underline{3 \mathrm{a}, \mathrm{b}}$ with enol ether $\underline{27}$ or enol ester $\underline{29}$ afforded α-substituted products $\underline{29}$ or $30 \mathrm{a}, \mathrm{b}$ (eqs 18 and 19). ${ }^{5}$

Experimental Section

Anodic Oxidation．Anodic oxidation was carried out using DC Power Supply（GP 050－2）of Takasago Seisakusho，Ltd．A glass beaker（50mL） equipped with Pt plate anode（20 x 20 醉）and carbon rod cathode（8m中） was used as an electrolysis cell．

Materials．The preparation of $\underline{1 a}, \underline{b},{ }^{2} \underline{5 a},{ }^{3 f} \underline{8},{ }^{2} \underline{9 a-d},{ }^{3 f}$ and $\underline{9 e},{ }^{17}$ has been reported．Compounds $\underline{1 d}$ and $\underline{9 f}$ were prepared according to the reported method．${ }^{3}$
α－Acetonyl－ N －methoxycarbonylpiperidine（1d）was prepared by the reaction of $\underline{8}$ with isoprppenyl acetate（29）in the presence of TiCl_{4} in 69% yield：IR（neat） $2950,2920,1700,1452,1270,1175,762 \mathrm{~cm}^{-1}$ ；NMR（CC14）δ $1.46(\mathrm{br} \mathrm{s}, 6 \mathrm{H}), 2.16(\mathrm{~s}, 3 \mathrm{H}), 2.48(\mathrm{~d}, \underset{\mathrm{~J}}{\mathrm{~J}}=7 \mathrm{~Hz}, 2 \mathrm{H}), 2.85(\mathrm{dt}, \underset{\mathrm{J}}{\mathrm{J}}=3$ and 14 Hz ， $1 \mathrm{H}), 3.67(\mathrm{~s}, 3 \mathrm{H}), 3.96(\mathrm{dd}, \mathrm{J}=14$ and $3 \mathrm{~Hz}, 1 \mathrm{H}$ ），4．52－4．83（m，1H）．Anal． Calcd for $\mathrm{C}_{10} \mathrm{H}_{17} \mathrm{NO}_{3}: \mathrm{C}, 60.28 ; \mathrm{H}, 8.60 ; \mathrm{N}, 7.03$ ．Found： $\mathrm{C}, 60.42 ; \mathrm{H}, 8.75$ ； N，6．74．

N－Methoxycarbonylaza－2－cycloheptene（9f）：86\％yield from the correspond－ ing α－methoxylated compound；${ }^{3 \mathrm{~h}} \mathrm{bp} 94-95^{\circ} \mathrm{C}$（25min）；IR（neat）2940， 2860 ， $1712,1655,1448,1220,788 \mathrm{c}^{-1}$ ；NNR $\left(\mathrm{CCl}_{4}\right) \delta 1.55-1.92(\mathbf{m}, 4 \mathrm{H}), 2.09-3.34$ （m，2H），3．59－3．84（四，2H）， $3.71(\mathrm{~s}, 3 \mathrm{H}), 4.88(\mathrm{dt}, \underline{\mathrm{J}}=9$ and $6 \mathrm{~Hz}, 1 \mathrm{H}), 6.51$ （br d，$\underset{=}{ }=9 \mathrm{~Hz}, 1 \mathrm{H}$ ）．Anal．Calcd for $\mathrm{C}_{8} \mathrm{H}_{13} \mathrm{NO}_{2}: \mathrm{C}, 61.91 ; \mathrm{H}, 8.44 ; \mathrm{N}, 9.03$. Found：C，61．64；H，8．72；N，8．81．

N －Methoxycarbonyl－α－propylpiperidine（1c）was prepared by the $\mathrm{TiCl}_{4}{ }^{-}$ catalyzed reaction of $\underline{8}$ with allyltrimethylsilane followed by hydrogenation
in 82% yield or by the reaction of $\underline{8}$ with propylmagnesium bromide in the presence of $\mathrm{BF}_{3} .0 \mathrm{Et}_{2}$ in 45% yield: ${ }^{18}$ IR (neat) $2935,2865,1685,1445,1370$, $1260,1180,1148,1090,767 \mathrm{~cm}^{-1}$; NMR $\left(\mathrm{CCl}_{4}\right) \delta 0.93(\mathrm{t}, \underline{\mathrm{J}}=6 \mathrm{~Hz}, 3 \mathrm{H}), 1.10-$ $1.92(\mathrm{~m}, 10 \mathrm{H}), 2.78(\mathrm{dt}, \underline{\mathrm{J}}=12$ and 3 Hz), $3.60(\mathrm{~s}, 3 \mathrm{H}), 3.81-4.40(\mathrm{~m}, 2 \mathrm{H})$. Anal. Calcd for $\mathrm{C}_{10} \mathrm{H}_{19} \mathrm{NO}_{2}$: C, 64.83 ; $\mathrm{H}, 10.34 ; \mathrm{N}, 7.56$. Found: $\mathrm{C}, 64.96 ; \mathrm{H}$, 10.64; N, 7.58.

Anodic Oxidation of $1 \mathrm{a}-\mathrm{d}$ in Ac 0 H Containing Ac 0 K . A general procedure for α, β-diacetoxylation of $1 \mathrm{a}-\mathrm{d}$ is exemplified by the anodic oxidation of 1a. Into an electrolysis cell as described above was added a solution of 1a $(2.145 \mathrm{~g}, 15 \mathrm{mmol})$ and $\mathrm{Ac} 0 \mathrm{~K}(3.0 \mathrm{~g}, 30.6 \mathrm{mmol})$ in acetic acid (30 mL). After 12F/mol of electricity was passed at a constant current of 0.4 A (12 h , terminal voltage; ca. 35 V) through the solution cooled with water, aqueous NaHCO_{3} was added into the reaction mixture cooled ice-water (method b in Table 1, Run 2), and the organic portion was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (30mLx4). After the extract was dried over MgSO_{4} and the solvent was removed in vacuo, the residue was chromatographed on silica gel (Ac0Et:hexane=1:1) to afford α, β-diacetoxy-N-methoxycarbonylpiperidine (2a) in 61% yield and $\underline{\beta-}$ acetoxy- α-hydroxy- N -methoxycarbonylpiperidine (3a) in 20% yield.

On the other hand, working up the reaction mixture by stirring with water at room temperature for 6 h (method a in Table 1, Run 1) afforded only $\underline{3 a}$ in 88% yield (20F/mol). NMR spectra showed that 2 a was a mixture of trans and cis isomer (2:1), ${ }^{2}$ and $\underline{3 a}$ was a mixture of trans and cis isomers (1:1).

2a: IR (neat) $2953,2880,1740,1708,1442,1368,1238,1222,1160$, $1044,769 \mathrm{~cm}^{-1} ; \operatorname{NMR}\left(\mathrm{CCl}_{4}\right) \delta 1.42-1.98(\mathrm{~m}, 4 \mathrm{H}), 1.91(\mathrm{~s}, 3 \mathrm{H}), 2.02(\mathrm{~s}, 3 \mathrm{H})$, $2.60-3.33(\mathrm{~m}, 1 \mathrm{H}), 3.61-4.13(\mathrm{~m}, 1 \mathrm{H}), 3.68(\mathrm{~s}, 3 \mathrm{H}), 4.51-4.91$ (m, 1H), 6.31
and $6.71(2 \mathrm{~d}, \underline{\mathrm{~J}}=4$ and $6 \mathrm{~Hz}, 1 / 3 \mathrm{H}$ and $2 / 3 \mathrm{H})$. Anal. Calcd for $\mathrm{C}_{11} \mathrm{H}_{17} \mathrm{NO}_{6}$: C, $50.96 ; \mathrm{H}, 6.61 ; \mathrm{N}, 5.40$.Found: C, $51.10 ; \mathrm{H}, 6.87$; N, 5.40.

3a: IR (neat) $3440,2953,2865,1738,1698,1450,1367,1242,1155$, $1052,1002,775 \mathrm{~cm}^{-1}$; NMR $\left(\mathrm{CC1}_{4}\right) \delta 1.23-2.00(\mathrm{~m}, 4 \mathrm{H}), 2.03(\mathrm{~s}, 3 \mathrm{H}), 2.86-$ $3.33(\mathrm{~m}, 1 \mathrm{H})$, $3.66(\mathrm{~s}, 3 \mathrm{H}), 3.60-3.93(\mathrm{~m}, 1 \mathrm{H}), 4.43-5.30(\mathrm{~m}, 2 \mathrm{H}), 5.47$ and $5.70(2 \mathrm{~d}, \mathrm{~J}=3$ and $4 \mathrm{~Hz}, 1 / 2 \mathrm{H}$ and $1 / 2 \mathrm{H})$. Anal. Calcd for $\mathrm{C}_{9} \mathrm{H}_{15} \mathrm{NO}_{5}$: C, 49.76 ; H, 6.96;N, 6.45. Found: C, 49.47; H, 6.97; N, 6.31.

Similarly, the anodic oxidation (20F/mol of electricity) of 1 b followed by the morkup (method b in Table 1, Run 4) gave $\underline{2 b}$ and $\underline{3 b}$ in 34 and 45\% yields, respectively, while the morkup (method a in Table 1, Run 3) gave only $\underline{3 b}$ in 92% yield. Similar anodic oxidation of $1 \mathbf{c , d}$ gave $3 \mathrm{c}, \mathrm{d}$. The stereochemistry of $\underline{2 b}$ and $\underline{3 b-d}$ could not be determined on the basis of their NMR spectra.
α, β-Diacetoxy- N -methoxycarbonyl- α^{\prime}-methylpiperidine (2b): IR (neat) $2955,1746,1718,1445,1372,1315,1240,1208,785 \mathrm{~cm}^{-1}$; NMR (CC1 ${ }_{4}$) $\delta 1.03-2.27(\mathrm{~m}, 4 \mathrm{H}), 1.18(\mathrm{~d}, \underline{\mathrm{~J}}=6 \mathrm{~Hz}, 3 \mathrm{H}), 1.95,2.03$, and $2.07(3 \mathrm{~s}, 6 \mathrm{H})$, 3.77 (s, 3H9, 4.06-4.51 (m, 1H), 4.70-4.91 (m, 1H), 6.46 and 6.76 ($2 \mathrm{~d}, \underline{\mathrm{~J}}=1$ and $3 \mathrm{~Hz}, 1 / 4 \mathrm{H}$ and $3 / 4 \mathrm{H}$). Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{19} \mathrm{NO}_{6}: \mathrm{C}, 52.74 ; \mathrm{H}, 7.01 ; \mathrm{N}$, 5.13. Found: C, 52.98 ; H, 7.23 ; $\mathrm{N}, 5.17$.
β-Acetoxy- α-hydroxy-N-methoxycarbonyl- α^{\prime}-methylpiperidine (3b): IR (neat) $3450,2965,1740,1702,1688,1456,1375,1242,1034,780 \mathrm{~cm}^{-1}$; NMR ($\mathrm{CC1}_{4}$) $\delta 1.15-2.27(\mathbb{m}, 4 \mathrm{H}), 1.27(\mathrm{~d}, \underline{\mathrm{~J}}=8 \mathrm{~Hz}, 3 \mathrm{H}), 2.02(\mathrm{~s}, 3 \mathrm{H}), 3.68$ ($\mathrm{s}, 3 \mathrm{H}$), 3.96-4.38 (m, 2H), 4.62-4.90 (m, 1H), 5.40 and 5.60 ($2 \mathrm{~d}, \mathrm{~J}=3$ and 4 $\mathrm{Hz}, 1 / 6 \mathrm{H}$ and $5 / 6 \mathrm{H}$) ; MS, $\mathbb{m} / \mathrm{e} 214$ ($\mathrm{M}^{+}-0 \mathrm{H}$), 171 (base); exact mass calcd \mathbb{m} / e
$214.1080\left(\mathrm{M}^{+}-\mathrm{OH}\right)$, found $214.1095\left(\mathrm{M}^{+}-\mathrm{OH}\right)$.
β-Acetoxy- α-hydroxy- N -methoxycarbonyl- α^{\prime}-propylpiperidine (3c):
93\% yield at 21F/mol (method a in Table 1, Run 5); IR (neat) 3430, 2970, $2880,1740,1712,1456,1240,1052,778 \mathrm{~cm}^{-1}$; NMR (CCl_{4}) $\delta 0.93(\mathrm{t}, \underline{\mathrm{J}}=7 \mathrm{~Hz}$, 3 H), 0.99-2.30 (m, 8H), 2.03 ($\mathrm{s}, 3 \mathrm{H}$), 3.53-4.24 (m, 1H), 3.68 (s, 3H), 4.41$4.90(\mathbb{m}, 1 \mathrm{H}), 5.43$ and $5.67(2 \mathrm{~d}, \underline{\mathrm{~J}}=3$ and $4 \mathrm{~Hz}, 1 / 4 \mathrm{H}$ and $3 / 4 \mathrm{H}), 6.13$ (br s, 1H). Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{21} \mathrm{NO}_{5}$: C, 55.58 ; H, 8.16 ; $\mathrm{N}, 5.40$. Found: C, 55.34; H, 8.33; N, 5.41.
α^{\prime}-Acetonyl- β-acetoxy- α-hydroxy- N-methoxycarbonylpiperidine (3d):
53\% yield at $18 \mathrm{~F} / \mathrm{mol}$ (method a in Table 1, Run 6); IR (neat) 3400, 2950, $2865,1740,1680,1452,1378,1246,1030,790 \mathrm{~cm}^{-1}$; NMR (CC1 ${ }_{4}$) $\delta 1.20-2.24$ ($\mathrm{m}, 4 \mathrm{H}$), 2.01 ($\mathrm{s}, 3 \mathrm{H}$), 2.11 ($\mathrm{s}, 3 \mathrm{H}), 2.77$ ($\mathrm{d}, \mathrm{J}=6 \mathrm{~Hz}, 2 \mathrm{H}$), 3.64 (br s, 1 H), $3.66(\mathrm{~s}, 3 \mathrm{H}), 4.28-4.87(\mathrm{~m}, 2 \mathrm{H}), 5.42$ and $5.66(2 \mathrm{~d}, \mathrm{~J}=3$ and $4 \mathrm{~Hz}, 1 / 6 \mathrm{H}$ and $5 / 6 \mathrm{H})$. Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{19} \mathrm{NO}_{6}$: C, 52.74 ; $\mathrm{H}, 7.01 ; \mathrm{N}, 5.13$. Found: C , 52.64; H, 6.95; N, 4.85.

Anodic 0xidation of 1a,b and 5a,b in Aqueous MeCN Containing $\mathrm{NH}_{4} \mathrm{Cl}$. α-Hydroxy- β-chlorination of $\underline{1 a, b}$ and $\underline{5 a, b}$ in aqueous acetonitrile was carried out under the following conditions. Into an electrolysis cell as described above was added a solution of $\underline{1 a}(0.429 \mathrm{~g}, 3 \mathrm{mmol})$ and $\mathrm{NH}_{4} \mathrm{Cl}(2.0 \mathrm{~g}$, 37.4 mmol) in acetonitrile (30mL) and water (3mL). After 15F/mol of electricity was passed at a constant current of 0.5 A (2.4 h , terminal voltage; ca. 45V) through the solution, water (30mL) was added to the electrolyzed solution and the organic portion was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (25mLx4). After the extract was dried over MgSO_{4} and the solvent was removed in vacuo, the residue was chromatographed on silica gel (AcOEt:hexane=1:1) to afford
β-chloro- α-hydroxy-N-methoxycarbonylpiperidine (4a) in 57% yield. By the similar procedure were obtained $\underline{4 b}$ and $\underline{6 a, b}$ from $\underline{1 b}$ and $\underline{5 a, b}$, respectively. Although these products consisted of stereoisomers, their ratios could not be determined.

4a: IR (neat) $3360,2954,2860,1700,1680,1444,1260,1037,768 \mathrm{~cm}^{-1}$; NMR (CCl_{4}) $\quad \delta 1.26-2.62(\mathbf{m}, 4 \mathrm{H}), 2.86-3.43(\mathbb{m}, 1 \mathrm{H}), 3.53-4.47(\mathbb{1}, 3 \mathrm{H}), 3.73$ (s, 3H), 5.60-5.99 (br s, 1H), Anal. Calcd for $\mathrm{C}_{7} \mathrm{H}_{12} \mathrm{NO}_{3} \mathrm{Cl}: \mathrm{C}, 43.42, \mathrm{H}$, 6.25 ; N, 7.23; C1, 18.31. Found: C, 43.52; H, 6.27; N, 7.17; C1, 18.46.
β-Chloro- α-hydroxy- N -methoxycarbonyl- α^{\prime}-methylpiperidine (4b): 47\% yield at 15F/mol; IR (neat) 3400, 2950, 1708, 1442, 1090, 975, 788, 732 cm^{-1}; $\mathrm{NMR}\left(\mathrm{CCl}_{4}\right) \quad \delta 1.15(\mathrm{~d}, \underline{\mathrm{~J}}=7 \mathrm{~Hz}, 3 \mathrm{H}), 1.43-1.77(\mathrm{~m}, 2 \mathrm{H}), 1.90-2.49(\mathrm{~m}$, $2 \mathrm{H}), 3.31$ (br s, 1H), 3.79 ($\mathrm{s}, 3 \mathrm{H}$), 4.05-4.56 ($\mathbf{1}, 2 \mathrm{H}$), 5.90 (br s, 1H); MS, $\mathbb{m} / \mathrm{e} 209,207\left(\mathbb{M}^{+}\right), 194,192$ (base), 154; exact mass calcd $\mathbb{m} / \mathrm{e} 207.0662$, found 207.0648.
β-Chloro- α-hydroxy-N-methoxycarbonylpyrrolidine (6a): 47\% yield at 20F/mol; mp 60-61 ${ }^{\circ} \mathrm{C}$ (from ether); IR (neat) 3500, 2968, 2905, 1692, 1458, 1387, 1208, 1126, 1030, $778 \mathrm{~cm}^{-1}$; NMR (CDCl_{3}) $\delta 1.84-2.85(\mathbb{I}, 2 \mathrm{H}), 3.49(\mathrm{br}$ $\mathrm{d}, \underline{\mathrm{J}}=4 \mathrm{~Hz}, 1 \mathrm{H}), 3.63(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}), 4.17(\mathrm{br} \mathrm{d}, \underline{\mathrm{J}}=4 \mathrm{~Hz}, 1 \mathrm{H}), 5.21$ (br s, 1H), 5.39 (br s, 1H). Anal. Calcd for $\mathrm{C}_{6} \mathrm{H}_{10} \mathrm{NO}_{3} \mathrm{Cl}: \mathrm{C}, 40.12$; H, 5.61; N, 7.80; Cl, 19.74. Found: C, 40.07; H, 5.65; N, 8.00; C1, 19.53.
β-Chloro- α^{\prime}, N-dimethoxycarbonyl- α-hydroxypyrrolidine (6b): 68\% yield at 50F/mol; IR (neat) 3450, 2975, 1730, 1705, 1459, 1383, 1208, 1137, $1052,1020,780 \mathrm{~cm}^{-1}$; $\operatorname{NMR}\left(\mathrm{CCl}_{4}\right) \quad \delta 2.13-2.93(\mathrm{~m}, 2 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.86$ (s, 3H), 4.12-5.40 (m, 3H), 5.67 (br s, 1H). Anal. Calcd for $\mathrm{C}_{8} \mathrm{H}_{12} \mathrm{NO}_{5} \mathrm{Cl}$:

C, 40.43; H, 5.09 ; N, 5.89 ; Cl, 14.92. Found: C, 40.41 ; H, $5.36 ; \mathrm{N}, 5.66$; C1, 14.71.

Anodic 0xidation of $1 \mathrm{a}, \mathrm{b}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ Containing $\mathrm{Et}_{4} \mathrm{NOT}_{\mathrm{T}}$. Into an electrolysis cell as described above added a solution of 1a ($0.429 \mathrm{~g}, 3 \mathrm{mmol}$) and $\mathrm{Et}_{4} \mathrm{NOTs}(0.15 \mathrm{~g}, 0.5 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (10 mL). After $5 \mathrm{~F} /$ mol of electricity was passed at a constant current of 0.3 A (1.4h, terminal voltage; ca. 30V) through the solution, the usual morkup gave $\underline{4 a}$ in 31% yield. Similarly, $\underline{4 b}$ was obtained from $\underline{1 \mathrm{~b}}$ in 61% yield ($11.2 \underline{\mathrm{~F}} / \mathrm{mol}$).

Anodic 0xidation of 1a in MeOH Containing $\mathrm{NH}_{4} \mathrm{Cl}$. Into an electrolysis cell as described above was added a solution of 1a ($2.145 \mathrm{~g}, 15$ mol) and $\mathrm{NH}_{4} \mathrm{Cl}$ ($1.17 \mathrm{~g}, 21.9 \mathrm{mmol}$) in MeOH (40nL), and $15 \mathrm{~F} / \mathrm{mol}$ of electricity mas passed at a constant current of $1 \mathrm{~A}(6.4 \mathrm{~h}$, terminal voltage; ca. 12V) through the solution. After the solvent was removed in vacuo without heating, water (30 mL) was added to the residue, and the organic portion was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (25mLx4). After the extract was dried over MgSO_{4} and the solvent was removed in vacuo, the residue was chromatographed on silica gel (Ac0Et: hexane $=1: 5$) to afford $\underline{\beta}$-chloro- α-methoxy- N -methoxycarbonylpiperidine (7) in 90\% yield. NAR spectrum showed that $\underline{7}$ was a mixture of stereoisomers (trans:cis=4:1). ${ }^{20}$ The ratio was determined on the basis of the strength of peaks of the α-methoxy group.

7: IR (neat) 2970, 1710, 1452, 1279, 1182, 1085, 965, 949, 774, 706 cm^{-1}; $\operatorname{NMR}\left(\mathrm{CCl}_{4}\right) \delta 1.24-2.32(\mathrm{~m}, 4 \mathrm{H}), 2.91$ (br $\left.\mathrm{t}, \mathrm{J}=12 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.29$ and $3.35(2 \mathrm{~s}, 12 / 5 \mathrm{H}$ and $3 / 5 \mathrm{H}$), $3.60-4.21$ ($\mathbf{m}, 2 \mathrm{H}$), 3.72 (s, 3 H), 5.31 (br s, 1 H); MS, $\mathbb{m} / \mathrm{e} 209,207\left(M^{+}\right), 178,176$ (base); exact mass calcd $\mathbb{\pi} / \mathrm{e} 207.0663$, found 207.0687. Anal. Calcd for $\mathrm{C}_{8} \mathrm{H}_{14} \mathrm{NO}_{3} \mathrm{Cl}: \mathrm{C}, 46.27$; $\mathrm{H}, 6.80 ; \mathrm{N}, 6.75 ; \mathrm{Cl}$,
17.07. Found: $\mathrm{C}, 46.74 ; \mathrm{H}, 7.04 ; \mathrm{N}, 6.69 ; \mathrm{Cl} ; 16.67$.

Transformation of 8 to 9a. A solution of $\underline{8}$ (1.039g, 6.0mmol) in AcOH (50 mL) was stirred at room tmperature. After 12 h , the solution was poured into aqueous NaHCO_{3}, and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The extract was dried over MgSO_{4}, and subjected to column chromatography on silica gel (Ac0Et:hexane= 1:5) to afford $\underline{9 a}$ in quantitative yield.

Transformation of 8 to 3 a . Compound $\underline{3 a}$ was obtained from $\underline{8}$ in 62% yield at $7 \mathrm{~F} / \mathrm{mol}$, by the procedure similar to the anodic diacetoxylation of 1a-d in Ac 0 OH containing Ac0K (morkup: method a).

Anodic 0xidation of 9a-e in AcOH. $\quad \alpha, \beta$-Diacetoxylation of 9a-e was achieved under conditions similar to the anodic oxidation of la-d in Ac 0 H . After the morkup (method b), products were isolated by colum chromatography (silica gel). The yields of $\underline{2 a}$ and $\underline{3 a}$ were 65 and 22% yields ($6 \underline{F} / \mathrm{mol}$), respectively. The ratios of trans to cis of $\underline{2 a}$ and $\underline{3 a}$ were identical with those of $\underline{2 a}$ and $\underline{3 a}$ obtained by the anodic oxidation of $\underline{1 a}$. The stereochemistry of products $10 \mathrm{~b}-\mathrm{e}$ could not be determined.
α, β-Diacetoxy-N-methoxycarbonylpyrrolidine (10b): 55\% yield at 3.8 F/mol; IR (neat) 2954, 1720, 1448, 1392, 1240, 1206, 1018, 952, $775 \mathrm{~cm}^{-1}$; NMR (CCl_{4}) $\quad \delta 1.83-2.23(\mathrm{~m}, 2 \mathrm{H}), 2.01(\mathrm{~s}, 3 \mathrm{H}), 2.06(\mathrm{~s}, 3 \mathrm{H}), 3.23-3.60(\mathrm{~m}$, $2 \mathrm{H}), 3.67$ ($\mathrm{s}, 3 \mathrm{H}$), 4.86-5.10 ($\mathbf{m}, 1 \mathrm{H}$), 6.21-6.77 ($\mathbf{1}, 1 \mathrm{H}$); MS, $\mathbf{m} / \mathrm{e} 202\left(\mathrm{M}^{+-}\right.$ Ac), 186, 173, 160, 143 (base); exact mass calcd \mathbb{m} / e 202.0715, found 202.0713.

$$
N-(\alpha, \beta \text {-Diacetoxy)butyl-N-methoxycarbonylbutylamine (10c): } 76 \% \text { yield }
$$

at $4.2 \mathrm{~F} / \mathrm{mol}$; IR (neat) 2952, 2876, 1732, 1695, 1452, 1370, 1218, 1018, 775 cm^{-1}; $\operatorname{NMR}\left(\mathrm{CCl}_{4}\right) \delta 0.80-1.08(\mathrm{~m}, 6 \mathrm{H}), 1.12-1.76$ (m, 6H), 1.99 (s, 3H), 2.01 ($\mathrm{s}, 3 \mathrm{H}$), 3.00-3.04 (m, 2H), 3.70 and 3.72 ($2 \mathrm{~s}, 3 \mathrm{H}$), 4.97-5.26 (m, 1 H), 6.39 (d, $\underline{J}=9 H z, 1 H$). Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{25} \mathrm{NO}_{6}: \mathrm{C}, 55.43$; H, 8.31; N, 4.62. Found: C, 55.39; h, 8.53; N, 4.78.

N -(α, β-Diacetoxy) butyl- N -methoxycarbonylallylamine (10d): 83% yield at $5.9 \mathrm{~F} / \mathrm{mol}$; IR (neat) 3080, 2972, 2880, 1732, 1705, 1450, 1370, 1312, 1220, 1020, $772 \mathrm{~cm}^{-1}$; $\operatorname{NMR}\left(\mathrm{CCl}_{4}\right) \delta 0.85$ and $0.90(2 \mathrm{t}, \underline{\mathrm{J}}=8$ and $9 \mathrm{~Hz}, 3 \mathrm{H}), 1.24-$ $1.80(\mathbb{m}, 2 \mathrm{H}), 1.95(\mathrm{~s}, 3 \mathrm{H}), 1.98(\mathrm{~s}, 3 \mathrm{H}), 3.67(\mathrm{~s}, 3 \mathrm{H}), 3.71-3.88(\mathrm{~m}, 2 \mathrm{H})$,
 $\mathrm{C}_{13} \mathrm{H}_{2} \mathrm{NO}_{6}$: C, 54.34 ; H, 7.37 ; N, 4.88; Found: C, 54.20 ; H, 7.42 ; N, 4.85.
α, β-Diacetoxy- α^{\prime}, N-dimethoxycarbonylpiperidine (10e). 75\% yield at $7 \mathrm{~F} / \mathrm{mol}$; IR (neat) $2975,1740,1452,1378,1205,1030,1018 \mathrm{~cm}^{-1}$; NMR $\left(\mathrm{CCl}_{4}\right) \quad \delta 1.64-2.35(\mathrm{~m}, 4 \mathrm{H}), 2.03(\mathrm{~s}, 3 \mathrm{H}), 2.10 \mathrm{~m}(\mathrm{~s}, 3 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H})$, 3.84 (s, 3H), 4.91 (br s, 2H), 6.63-6.84 (m, 1H). Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{19} \mathrm{NO}_{8}: \mathrm{C}, 49.21 ; \mathrm{H}, 6.04 ; \mathrm{N}, 4.41$. Found: C, 48.94; H, 6.15; N, 4.11.
α-Hydroxy- or α-Methoxy- β-chlorination of 9a. Compound ga was transformed into 4a by the anodic oxidation similar to that of $\underline{1 a}$ in aqueous acetonitrile containing $\mathrm{NH}_{4} \mathrm{Cl}$ (79% yield at $3.5 \mathrm{~F} / \mathrm{mol}$) or $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ containing Et ${ }_{4}$ NOTs (34% yield at $6 \underline{F} / \mathbf{m o l}$). Compound $\underline{7}$ was obtained from $\underline{9 a}$ by the similar anodic oxidation of 1 a in MeOH containg $\mathrm{NH}_{4} \mathrm{Cl}$ (82% yield at $6 \mathrm{~F} / \mathrm{mol}$).

Transformation of 9 ga into 7 with tert- BuOCl in MeOH . Into a solution of $\underline{9 \mathrm{a}}$ ($2.822 \mathrm{~g}, 20 \mathrm{mmol}$) in methanol (30mL) at room temperature was added dropwise tert-butyl hypochlorite ($2.98 \mathrm{~mL}, 25 \mathrm{mmol}$) in a period of 2 min .

After the solution was stirred for 10 min , the usual workup afforded $\underline{7}$ (trans :cis=4:1) in 70\% yield. NMR spectrum of $\underline{7}$ obtained by this method was identical with that of $\underline{7}$ obtained by anodic method of $\underline{1 a}$.

Anodic Oxidation of $9 \mathrm{ga}, \mathrm{b}, \mathrm{f}$ in Me OH Containing $\mathrm{NH}_{4} \mathrm{X}$ or $\mathrm{NaX} . ~ \alpha-$ Methoxy-β-bromination and β-iodination of $9 \mathrm{a}, \mathrm{b}, \mathrm{f}$ in methanol were carried out by the procedures as exemplified by β-bromination of $\underline{\mathrm{gb}}$. Into an electrolysis cell as described above was added a solution of $\underline{9 b}(0.636 \mathrm{~g}, 5 \mathrm{mmol})$ and $\mathrm{NH}_{4} \mathrm{Br}$ ($0.735 \mathrm{~g}, 7.5 \mathrm{mmol}$) in methanol (20mL), and $3.5 \mathrm{~F} / \mathrm{mol}$ of electricity was passed at a constant current of $0.3 \mathrm{~A}(1 \mathrm{~h}$, terminal voltage; ca. 6 V) through the solution. After the solvent was removed in vacuo without heating, aqueous $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ (20mL) was added to the residue, and the organic portion was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (15mLx4). After the extract was dried over MgSO_{4} and the solvent was removed in vacuo, the residue was chromatographed on silica gel (Ac0Et: hexane=1:5) to afford β-bromo- α-methoxy- N-methoxycarbonylpyrrolidine (11p) in 42% yield. Compounds $11 q, \underline{12 p, q}$, and $\underline{13 p, q}$ were obtained according to the similar procedures. NMR spectra showed that $\underline{11 p, q,} \underline{12 q}$, and $\underline{13 p, q}$ were almost trans isomer, while $\underline{12 p}$ was a mixture of stereoisomers (trans:cis=5:1). ${ }^{20}$

11p: IR (neat) $2955,1718,1450,1200,1180,1122,1080,778 \mathrm{~cm}^{-1}$; NMR (CCl_{4}) $\quad \delta 1.93-2.84(\mathrm{~m}, 2 \mathrm{H}), 3.26-3.84(\mathrm{~m}, 2 \mathrm{H}), 3.39(\mathrm{~s}, 3 \mathrm{H}), 3.74(\mathrm{~s}$, 3H), 4.16 (br d, $\underline{J}=5 \mathrm{~Hz}, 1 \mathrm{H}$), 5.09-5.34 (m, 1H). Anal. Calcd for $\mathrm{C}_{7} \mathrm{H}_{12} \mathrm{NO}_{3} \mathrm{Br}$: C, 35.31 ; H, 5.08 ; N, 5.88 ; Br, 33.56. Found: C, 35.52 ; H, 5.07 ; N, 5.59 ; $\mathrm{Br}, 33.81$.
β-Iodo- α-methoxy- N-methoxycarbonylpyrrolidine (11q): 38% yield at 5F/mol (supporting electrolyte: $\mathrm{NH}_{4} \mathrm{I}$); IR (neat) 2960, 1715, 1452, 1380,

1112，1080， $958,780 \mathrm{~cm}^{-1}$ ； $\operatorname{NMR}\left(\mathrm{CCl}_{4}\right)$ § 2．03－2．81（m，2H），3．20－3．80（m， 2 H ）， 3.34 （br s， 3 H ）， 3.74 （ $\mathrm{s}, 3 \mathrm{H}$ ）， 4.16 （ $\mathrm{br} \mathrm{d}, \underline{\mathrm{J}}=5 \mathrm{~Hz}, 1 \mathrm{H}$ ）， $5.16-5.43$（ \mathbf{m} ， 1H）．Anal．Calcd for $\mathrm{C}_{7} \mathrm{H}_{12} \mathrm{NO}_{3} \mathrm{I}: \mathrm{C}, 29.49 ; \mathrm{H}, 4.24 ; \mathrm{N}, 4.91$ ；I， 44.52 ． Found：C，29．67；H，4．30；N，4．97；I，44．52．
β－Bromo－α－methoxy－N－methoxycarbonylpiperidine（12p）：81\％yield at 3．5F／mol（supporting electrolyte： $\mathrm{NH}_{4} \mathrm{Br}$ ）；IR（neat）2952，1712，1448，1272， $1160,1082,968,952,778 \mathrm{~cm}^{-1}$ ；NMR（ CCl_{4} ）$\delta 1.29-2.45(\mathbf{m}, 4 \mathrm{H}), 2.95$ （br $\mathrm{t}, \mathrm{J}=12 \mathrm{~Hz}, 1 \mathrm{H}$ ）， 3.27 and $3.36(2 \mathrm{~s}, 5 / 2 \mathrm{H}$ and $1 / 2 \mathrm{H}$ ），3．63－4．63（ $\mathbf{m}, 2 \mathrm{H}$ ）， 3.74 （s，3H）， 5.44 （br s，1H）；MS，国e 253， 251 （ M^{+}），222， 220 （base）； exact mass calcd w／e 251．0157，found 251.0146 ．
β－Iodo－α－methoxy－ N －methoxycarbonylpiperidine（12q）：81\％yield at 4．0F／mol（supporting electrolyte： $\mathrm{NH}_{4} \mathrm{I}$ ）；IR（neat）2950，1712，1448，1258， $1200,1152,1072,940 \mathrm{~cm}^{-1}$ ； $\operatorname{NMR}\left(\mathrm{CCl}_{4}\right) \quad \delta 1.34-2.24$（四，4H）， $2.97(\mathrm{br} \mathrm{t}, \underline{\mathrm{J}}=$ $12 \mathrm{~Hz}, 1 \mathrm{H}$ ）， 3.26 （s， 3 H ）， 3.75 （s， 3 H ），3．79－4．14（m，1H）， 4.41 （br s， 1 H ）， 5.44 （br s，1H）；MS，w／e 268 （ $\mathbb{M}^{+}-0 \mathrm{Me}$ ），172， 158 （base）；exact mass calcd \mathbb{m} / e 267．9837，found 267．9856．
β－Bromo－α－methoxy－N－methoxycarbonylazacycloheptane（13p）：70\％yield at 5．0ㅇ﹎mol（supporting electrolyte：NaBr）；IR（neat）2948，2855，1703， $1438,1335,1118,1095,1085,1010,955,776 \mathrm{~cm}^{-1}$ ；NMR $\left(\mathrm{CCl}_{4}\right) \delta 1.13-2.31$ （m，6H），2．59－3．96（m，3H）， 3.28 （s，3H）， 3.74 （s，3H），5．25－5．61（m，1H）； MS，畂 267． $265\left({ }^{+}+\right.$），236，234，208，206，186，154，144， 128 （base）；exact mass calcd \mathbb{m} / e 265．0314，found 265.0302 ．
β－Iodo－α－methoxy－ N －methoxycarbonylazacycloheptane（13q）： 66% yield at 4．5F／mol（supporting electrolyte：NaI）；IR（neat）2940，2850，1700，
$1436,1338,1137,1105,1088,1068,1003,943,770 \mathrm{~cm}^{-1}$; $N \mathbb{R}\left(\mathrm{CCl}_{4}\right) \delta 1.23-$ 2.51 (m, 6H), 2.69-3.09 (m, 1H), 3.18-4.13 (m, 2H), 3.32 ($\mathrm{s}, 3 \mathrm{H}$), 3.79 (s, 3 H), 5.36-5.73 ($\mathbf{m}, 1 \mathrm{H}$); MS, $\mathbb{m} / \mathrm{e} 313\left(\mathbb{M}^{+}\right), 282,254,196,186$ (base); exact mass calcd $\mathfrak{m} / \mathrm{e}$ 313.0176, found 313.0151 .

Reduction of 2a,b, 3c, 4a, and 10b. A general procedure is exemplified by reduction of 10 b . Into a solution of $10 \mathrm{~b}(0.238 \mathrm{~g}, 0.97 \mathrm{mmol})$ in acetic acid (4mL) was added in portions $90 \% \mathrm{NaBH}_{4}$ ($0.184 \mathrm{~g}, 4.36$ mol). After 1.5 h , aqueous NaHCO_{3} (20mL) was poured into the reaction mixture and the organic portion was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (20mLx4). After the extract was dried over MbSO_{4} and the solvent was removed in vacuo, the redisue was chromatogra phed on silica gel (AcOEt:hexane=1:2) to afford $\underline{\beta \text {-acetoxy- } \mathrm{N} \text {-methoxy }-~}$ carbonylpyrrolidine (14) in 82% yield.

14: IR (neat) $2955,2890,1741,1710,1458,1395,1248,1202,775 \mathrm{~cm}^{-1}$; NMR (CCl_{4}) $\delta 1.83-2.29(\mathrm{~m}, 2 \mathrm{H}), 2.07(\mathrm{~s}, 3 \mathrm{H}), 3.09-3.84(\mathrm{~m}, 4 \mathrm{H}), 3.66(\mathrm{~s}$, $3 H)$, 5.15-5.49 (m, 1H). Anal. Calcd for $\mathrm{C}_{8} \mathrm{H}_{13} \mathrm{NO}_{4}: \mathrm{C}, 51.33 ; \mathrm{H}, 7.00 ; \mathrm{N}$, 7.00. Found: C, 51.05; H, 6.99; N, 7.20.

The reduction of $\underline{2 a}, \mathrm{~b}, \underline{3 c}$, and $\underline{4 a}$ under the similar conditions gave 16a,b,c, and 17, respectively. Compounds 16b,c consisted of mixtures of stereoisomers. The GLC (Silicon DC 550) and NMR spectra showed that the ratios of stereoisomers of $\underline{16 \mathrm{~b}}$ and $\underline{16 \mathrm{c}}$ were 8:2 and 9:1, respectively. The main isomers (trans-isomers) of $16 \mathrm{~b}, \mathrm{c}$ could be separated by chromatography.
β-Acetoxy- N -methoxycarbonylpiperidine (16a): 92% yield from 2a; IR (neat) $2960,2875,1741,1712,1452,1238,1049,776 \mathrm{~cm}^{-1}$; $\operatorname{NMR}\left(\mathrm{CCl}_{4}\right) \delta$
1.33-2.13 (m, 4H), 1.98 (s, 3H), 3.21-3.55 (m, 4H), 3.60 (s, 3 H), 4.65-4.97 (m, 1H). Anal. Calcd for $\mathrm{C}_{9} \mathrm{H}_{15} \mathrm{NO}_{4}: \mathrm{C}, 53.72 ; \mathrm{H}, 7.51 ; \mathrm{N}, 6.96$. Found: C , 53.64; H, 7.63; N, 6.94.
β-Acetoxy- N-methoxycarbonyl- α^{\prime}-methylpiperidine (trans:cis=8:2, 16b): 84% yield from 2b; IR (neat) $2960,2865,1740,1452,1372,1235$, $1165,1027,960,942,923,873,850,825,772 \mathrm{~cm}^{-1}$; NMR (CC1 $\left.1_{4}\right) \delta 1.17(\mathrm{~d}$, $\underline{\mathrm{J}}=7 \mathrm{~Hz}, 3 \mathrm{H}), 1.32-1.92(\mathrm{~m}, 4 \mathrm{H}), 2.04$ and $2.05(2 \mathrm{~s}, 12 / 5 \mathrm{H}$ and $3 / 5 \mathrm{H}), 2.78(\mathrm{dd}$, $\underline{\mathrm{J}}=15$ and $11 \mathrm{~Hz}, 1 / 5 \mathrm{H}$), $3.05(\mathrm{dd}, \underline{\mathrm{J}}=15$ and $2 \mathrm{~Hz}, 4 / 5 \mathrm{H}$), 3.69 and $3.71(2 \mathrm{~s}, 12 / 5$ H and $3 / 5 \mathrm{H}$), 4.10-4.92 (m, 3H). Anal. Calcd for $\mathrm{C}_{10} \mathrm{H}_{17} \mathrm{NO}_{4}$: C, 55.80 ; H, 7.96; N, 6.51. Found: C, 56.09; H, 8.18; N, 6.44.
trans-16b: NMR (400MHz, CDCl_{3}) $\delta 1.17$ ($\mathrm{d}, \underline{\mathrm{J}=7 \mathrm{~Hz}, 3 \mathrm{H}), 1.32-1.92 \text { (m, }}$ 4 H), 2.04 (s, 3 H), 3.05 ($\mathrm{dd}, \underline{\mathrm{J}}=15 \mathrm{~Hz}$ and $2 \mathrm{~Hz}, 1 \mathrm{H}$), 3.69 ($\mathrm{s}, 3 \mathrm{H}$), 4.15 (d, $\underline{\mathrm{J}}=$ $15 \mathrm{~Hz}, 1 \mathrm{H}$), 4.50 (br s, 1H), 4.89 (br s, 1H).
β-Acetoxy-N-methoxycarbonyl- α^{\prime}-propylpiperidine (trans:cis=9:1, 16c): 78\% yield from 3c; IR (neat) 2950, 2860, 1736, 1695, 1444, 1368, $1230,1158,1020,958,840,770 \mathrm{~cm}^{-1}$; $\operatorname{NMR}\left(\mathrm{CCl}_{4}\right) \delta 0.93(\mathrm{t}, \underline{\mathrm{J}}=7 \mathrm{~Hz}, 3 \mathrm{H})$, 1.21-1.94 (m, 8H), 2.03 and 2.05 ($2 \mathrm{~s}, 27 / 10 \mathrm{H}$ and $3 / 10 \mathrm{H}$), 2.69 ($\mathrm{dd}, \underline{\mathrm{J}=13}$ and $11 \mathrm{~Hz}, 1 / 10 \mathrm{H}$), 2.97 (dd, $\underline{\mathrm{J}=15}$ and $2 \mathrm{~Hz}, 9 / 10 \mathrm{H}$), 3.68 and $3.69(2 \mathrm{~s}, 27 / 10 \mathrm{H}$ and 3/10H), 4.16-4.90 (m, 3H). Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{2} \mathrm{NO}_{4}$: C, 59.24; H, 8.70; $\mathrm{N}, 5.76$. Found: $\mathrm{C}, 59.14 ; \mathrm{H}, 8.87$; N, 5.64.
 8 H), 2.03 ($\mathrm{s}, 3 \mathrm{H}$), 2.97 (dd, $\underline{\mathrm{J}=15}$ and $2 \mathrm{~Hz}, 1 \mathrm{H}$), 3.68 ($\mathrm{s}, 3 \mathrm{H}), 4.18$ ($\mathrm{d}, \underline{\mathrm{J}}=14$ $\mathrm{Hz}, 1 \mathrm{H}$), 4.32 (br s, 1H), 4.84 (br s, 1H).
β-Chloro- N -methoxycarbonylpiperidine (17): 80\% yield from 4a; IR (neat) $2972,2880,1718,1481,1454,1419,1270,1248,1202,1162,1138$,
$972,778,770 \mathrm{~cm}^{-1}$; $\operatorname{NMR}\left(\mathrm{CCl}_{4}\right) \delta 1.23-2.49(\mathbf{m}, 4 \mathrm{H}), 2.76-3.30(\mathrm{II}, 2 \mathrm{H})$, $3.53-4.30(\mathbf{m}, 3 \mathrm{H}), 3.68$ (s, 3H); MS, m/e 179, 177, 164, 162, 142, 102 (base) ; exact mass calcd \mathbf{l} / e 177.0556, found 177.0543.

Reduction of 6 a and 10 e . The reduction of $\underline{6 \mathrm{~b}}$ and $\underline{10 \mathrm{e}}$ required more acidic conditions. That is, into a solution of 10 e ($0.428 \mathrm{~g}, 1.35 \mathrm{~mol}$) and $\mathrm{CF}_{3} \mathrm{SO}_{3} \mathrm{H}$ ($0.6 \mathrm{~mL}, 6.75 \mathrm{mmol}$) in acetic acid (10 mL) was added in portions 90% NaBH_{4} ($1.134 \mathrm{~g}, 27$ mol). After stirred at room temperature for 2 days, the solution was morked up by usual method to give β-acetoxy- α^{\prime}, N -bis(methoxycarbonyl)piperidine (16e) in 91% yield. GLC showed that 16 e was a mixture of stereoisomers (9:1). On the other hand, the stereochemistry of β-chloro- α^{\prime}, N -bis(methoxycarbonyl)pyrrolidine (15) could not be determined on basis of GLC.

15: IR (neat) $2970,1750,1715,1458,1395,1222,1205,1125,1040$, $718 \mathrm{~cm}^{-1}$;NMR (CC1 $\left.\mathrm{Cl}_{4}\right) \delta 1.91-3.10(\mathrm{~m}, 2 \mathrm{H}), 3.47-4.70(\mathrm{~m}, 4 \mathrm{H}), 3.76$ ($\left.\mathrm{s}, 3 \mathrm{H}\right)$, 3.80 (s, 3H). Anal. Calcd for $\mathrm{C}_{8} \mathrm{H}_{12} \mathrm{NO}_{4} \mathrm{Cl}: \mathrm{C}, 43.35 ; \mathrm{H}, 5.46 ; \mathrm{N}, 5.32 ; \mathrm{Cl}$, 16.00. Found: C, 43.10; H, 5.29; N, 6.45; C1, 15.76.

16e: IR (neat) 2965, 1738, 1705, 1452, 1374, 1236, 1158, 1124, 1028' Cm^{-1}; $\operatorname{NNR}\left(\mathrm{CCl}_{4}\right) \quad \delta 1.38-2.21(\mathbb{m}, 4 \mathrm{H}), 2.04(\mathrm{~s}, 3 \mathrm{H}), 3.11-3.41(\mathrm{~m}, 1 \mathrm{H})$, 3.75 (s, 3 H), 3.79 ($\mathrm{s}, 3 \mathrm{H}$), 3.96-4.37 ($\mathbf{1}, 1 \mathrm{H}$), 4.92 (br s, 2 H). Anal. Calcd for $\mathrm{C}_{11} \mathrm{H}_{17} \mathrm{NO}_{6}$: C, 50.96 ; H, 6.61; $\mathrm{N}, 5.40$. Found: C, 51.18 ; H, 6.75 ; N, 5.30.

Synthesis of (\pm)-Pseudoconhydrine (trans-18c). A solution of trans16c ($0.243 \mathrm{~g}, 1 \mathrm{mmol}$) in 47% aqueous HBr was refluxed for 2 h . Into the mixture was poured aqueous NaOH until the solution became to be pH 9 and the
organic portion was extracted with Ac0Et (20mLx4). After the extract was dried over MgSO_{4}, the solvent was evaporated to give a redisue, which was distilled with kugel rohr to give trans-18c in 58\% yield. The similar procedure yielded trans-18b from trans-16b in 59\% yield. The spectroscopic data of trans-18b,c were identical with those of reported authentic samples. ${ }^{15 a}$ b

Synthesis of (\pm)-N-Methylpseudoconhydrine (trans-19). Into a solution of trans $1 \underline{16 \mathrm{c}}$ ($0.243 \mathrm{~g}, 1 \mathrm{mmol}$) in ether (10 mL) was added in portions LAH ($0.076 \mathrm{~g}, 2 \mathrm{mmol}$) and the solution was refluxed for 3 h . After the solution was quenched with water, the organic portions was extracted with AcOEt (15 mLx 4). The extract was dried over MgSO_{4} and the solvent was removed by distillation to afford trans-19 $\underline{9}^{4 \mathrm{~b}}$ in 93% yield.

Transformation of $4 \mathrm{a}, 6 \mathrm{~b}, 10 \mathrm{e}$, and 12 p to $20,21 \mathrm{e}, 22$, and 23 . A mixture of $29 \mathrm{a}(0.332 \mathrm{~g}, 1.85 \mathrm{mmol})$ and $\mathrm{NH}_{4} \mathrm{Cl}(0.01 \mathrm{~g}, 0.19$ moll $)$ was heated (100 ${ }^{\circ} \mathrm{C}$) under an atmosphere of nitrogen with reduced pressure (22min) for 3 h . After the reaction was completed, β-chloro- N -methoxycarbonyl-2-pyrroline (20) was isolated by kugel rohr distillation in 94\% yield. $\quad \underline{\beta \text {-Bromo- } \alpha \text {, }}$ β-didehydro- N -methoxycarbonylpiperidine (22) was prepared in 96% yield by heating $\left(225^{\circ} \mathrm{C}\right) \underline{12 p}$ under reduced pressure (45 mm). Also, β-acetoxy- α, β-didehydro- $\alpha^{\prime}, \mathrm{N}$-bis(methoxycarbonyl)piperidine (21e) was prepared in 87% yield by heating ($165{ }^{\circ} \mathrm{C}$) $\underline{10 \mathrm{e}}$ under reduced pressure (16m). On the other hand, 4a was transformed into β-chloro- α, β-didehydro-N-methoxycarbonylpiperidine (23) by heating ($120{ }^{\circ} \mathrm{C}$) without $\mathrm{NH}_{4} \mathrm{Cl}$ in 76% yield.

20: bp $140^{\circ} \mathrm{C}$ (22mim); IR (neat) 2970, 2915, 1718, 1459, 1390, 1200, $1132 \mathrm{~cm}^{-1}$; NMR $\left(\mathrm{CCl}_{4}\right) \delta 1.97(\mathrm{tt}, \underline{\mathrm{J}}=6$ and $6 \mathrm{~Hz}, 2 \mathrm{H}), 2.46(\mathrm{t}, \underline{\mathrm{J}}=6 \mathrm{~Hz}, 2 \mathrm{H})$,
$3.59(\mathrm{t}, \mathrm{J}=6 \mathrm{~Hz}, 2 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 7.12(\mathrm{br} \mathrm{s}, 1 \mathrm{H})$. Anal. Calcd for $\mathrm{C}_{7} \mathrm{H}_{10} \mathrm{NO}_{2} \mathrm{Br}: \mathrm{C}, 38.21$; $\mathrm{H}, 4.58 ; \mathrm{N}, 6.36 ; \mathrm{Br}, 36.31$. Found: $\mathrm{C}, 38.31 ; \mathrm{H}$, 4.56; N, 6.19; Br, 36.04.

23: bp $150-160{ }^{\circ} \mathrm{C}$ (2ma) ; IR (neat) $3100,2951,2872,1713,1657,1442$, $1190,968,914,760,690 \mathrm{~cm}^{-1}$; NNR ($\mathrm{CC1}_{4}$) $\delta 1.91(\mathrm{t}, \underline{\mathrm{J}}=6 \mathrm{~Hz}, 2 \mathrm{H}), 2.33(\mathrm{t}$,
 175 (base, \mathbb{M}^{+}), 140; exact mass calcd $\mathbb{m} / \mathrm{e} 175.0400$, found 175.0404 .

21e: bp $165^{\circ} \mathrm{C}$ (22mm); IR (neat) 3020, 2960, 1755, 1720, 1448, 1360 , $1220,1200,772 \mathrm{~cm}^{-1}$; $\operatorname{NMR}\left(\mathrm{CDCl}_{3}\right)$ § $1.90-2.60(\mathrm{~m}, 4 \mathrm{H}), 2.15(\mathrm{~s}, 3 \mathrm{H}), 3.80$ ($\mathrm{s}, 3 \mathrm{H}$), $3.83(\mathrm{~s}, 3 \mathrm{H}), 4.76-5.07(\mathrm{~m}, 1 \mathrm{H}), 7.06(\mathrm{br} \mathrm{d}, \underline{\mathrm{J}}=10 \mathrm{~Hz}, 1 \mathrm{H})$. Anal. Calcd for $\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{NO}_{6}$: C, 51.36 ; H, $5.88 ; \mathrm{N}, 5.46$. Found: C, 51.33 ; H, 5.91; N, 5.49 .

Synthesis of 21a-c from 2a,b or 3c. A solution of $2 \mathrm{a}, \mathrm{b}$ or 3 c (5 mmol) in acetic acid (10 ml) was refluxed in flask equipped with a reflux condenser. After 10 min , acetic acid was distilled and the residue was chromatographed on silica gel (Ac0Et:hexane=1:5) to afford 21a-c in quantitative yields.
β-Acetoxy- α, β-didehydro- N -methoxycarbonylpiperidine (21a): IR (neat) 3113, 2950, 2876, 1748, 1693, 1442, 1392, 1358, 1220, 1192, 1100, 1043, $980,920,760 \mathrm{~cm}^{-1}$; $\operatorname{NMR}\left(\mathrm{CCl}_{4}\right) \delta 1.73-2.06(\mathrm{~m}, 2 \mathrm{H}), 2.08(\mathrm{~s}, 3 \mathrm{H})$, $2.24(\mathrm{t}, \mathrm{J}=6 \mathrm{~Hz}, 2 \mathrm{H}), 3.47-3.63(\mathrm{~m}, 2 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H}), 6.65(\mathrm{br} \mathrm{s}, 1 \mathrm{H})$. Anal. Calcd for $\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{NO}_{3}$: C, $54.26 ; \mathrm{H}, 6.58 ; \mathrm{N}, 7.03$. Found: C, 54.45 ; H, 6.69; N, 6.83.
β-Acetoxy- α, β-didehydro-N-methoxycarbonyl- α^{\prime}-畂thylpiperidine (21b): IR (neat) 2952, 1759, 1711, 1442, 1360, 1340, 1199, 1099, 1086, 765 cm^{-1}; $\mathrm{NMR}\left(\mathrm{CCl}_{4}\right) \quad \delta 1.15(\mathrm{~d}, \underline{\mathrm{~J}}=7 \mathrm{~Hz}, 3 \mathrm{H}), 1.33-2.67(\mathrm{~m}, 4 \mathrm{H}), 2.18(\mathrm{~s}, 3 \mathrm{H})$, 3.71 (s, 3H), 4.09-4.51 (m, 1H), 6.58 (br s, 1H); MS, $\mathbf{m} / \mathrm{e} 213\left(\mathrm{M}^{+}\right), 171$ (base), 156; exact mass calcd $\mathbb{m} / \mathrm{e} 213.1000$, found 213.0978.
β-Acetoxy- α, β-didehydro-N-methoxycarbonyl- α^{\prime}-propylpiperidine (21c): IR (neat) 2960, 2940, 2870, 1752, 1704, 1442, 1360, 1220, 1190, 1098, $788,764 \mathrm{~cm}^{-1}$; $\mathrm{NMR}\left(\mathrm{CCl}_{4}\right) \delta 0.95(\mathrm{t}, \underline{\mathrm{J}}=3 \mathrm{~Hz}, 3 \mathrm{H}), 1.07-2.26(\mathbb{1}, 8 \mathrm{H}), 2.07$ (s, 3H), 3.69 (s, 3H), 3.93-4.43 (m, 1H), 6.64 (br s, 1H); MS, $\mathbb{L} / \mathrm{e} 241$ $\left(\mathrm{M}^{+}\right), 199,156$ (base); exact mass calcd \mathbf{m} / e 241.1313, found 241.1312 .

Preparation of β-0xo compounds (24a,e). Into a flask was added a solution of 21a ($0.136 \mathrm{~g}, 0.683 \mathrm{mmol}$) and $85 \% \mathrm{KOH}(0.057 \mathrm{~g}, 0.935 \mathrm{~mol})$ in water (5.6 mL) and the resulting solution was stirred with cooling in ice-water. After 15 min, the organic portion was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (15mLx4) and the extract was dried over MgSO_{4}. Then, the solvent was removed in vacuo to give a residue which was chromatographed on silica gel (AcOEt:hexane=1:2) to afford N-methoxycarbonyl- β-oxopiperidine (24a) in 62% yield. By the similar procedure was obtained $\quad \alpha^{\prime}, N$-bis(methoxycarbonyl)- β-oxopiperidine (24e) from 21 e in 58% yield.

The preparation of $\underline{24 a}$ was achieved by oxidation of $\underline{9 a}$. That is, a solution of $\underline{9 a}(1.41 \mathrm{~g}, 10 \mathrm{mmol})$ and 80% m-CPBA ($2.158 \mathrm{~g}, 10 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ mas stirred at room temperature. After $18 \mathrm{~h}, \mathrm{p}-\mathrm{Ts} 0 \mathrm{H} \cdot \mathrm{H}_{2} 0$ ($0.41 \mathrm{~g}, 2.15$ mol) was added to the reaction mixture, which was then stirred at room temperature overnight. The reaction mixture was washed with 0.5% aqueous NaOH (50 mixu) and the organic portion was separated. After the aqueous layer was
extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (30mLx4), the combined extracts were dried over MgSO_{4} and the solvent was removed in vacuo. The product 24 a was isolated in 37% yield by columin chromatography: IR (neat) 2965, 2880, 1700, 1454, 1225, $1120,964,772 \mathrm{~cm}^{-1}$; NMR $\left(\mathrm{CCl}_{4}\right) \delta 2.03(\mathrm{tt}, \underline{\mathrm{J}}=6$ and $7 \mathrm{~Hz}, 2 \mathrm{H}), 2.40(\mathrm{t}, \underline{\mathrm{J}}=$ $7 \mathrm{~Hz}, 2 \mathrm{H}$), $3.59(\mathrm{t}, \mathrm{J}=6 \mathrm{~Hz}, 2 \mathrm{H}), 3.67(\mathrm{~s}, 3 \mathrm{H}), 3.91(\mathrm{~s}, 2 \mathrm{H})$. Anal. Calcd for $\mathrm{C}_{7} \mathrm{H}_{11} \mathrm{NO}_{3}$: C, 53.49 ; H, 7.05; N, 8.91. Found: C, 53.72 ; H, 7.19; N, 8.69.

24e: IR (neat) $2960,1738,1715,1700,1450,1224,1202,788 \mathrm{~cm}^{-1}$; NMR (CCl_{4}) δ 2.11-2.64 ($\mathbf{m}, 4 \mathrm{H}$), $3.85(\mathrm{~s}, 3 \mathrm{H}), 3.89(\mathrm{~s}, 3 \mathrm{H}), 4.01-5.11(\mathrm{~m}$, 3H). Anal. Calcd for $\mathrm{C}_{9} \mathrm{H}_{13} \mathrm{NO}_{5}: \mathrm{C}, 50.23$; $\mathrm{H}, 6.09 ; \mathrm{N}, 6.51$. Found: C , 50.04; H, 6.13; N, 6.48.
α-Alkylation of α, β-Disubstituted Piperidines 2a, 3a, b, and 12p. α-Alkyl- β-acetoxy(or bromo)-N-methoxycarbonylpiperidines $\underline{25}, \underline{26}, \underline{28}$, and 30a,b were prepared according to the reported method. ${ }^{3}$ A general procedure is exemplified by preparation of $\underline{25}$. Into a solution of TiCl_{4} (0.95 mL , 8.62 meol) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (10 mL) was added dropwise a solution of 3a (1.288 g , 5.75 mmol) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (5mL) at $-20^{\circ} \mathrm{C}$ under an atmosphere of nitrogen. After the solution was stirred at the temperature for 5 min, a solution of allyltrimethylsilane ($0.95 \mathrm{~mL}, 8.62 \mathrm{mmol}$) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (5 mL) was added dropwise in a period of 10 min . The resulting reaction mixture was stirred for 2 h at $-20^{\circ} \mathrm{C}$ and allowed to stand until it was warmed to room temperature. After stirred overnight, the reaction mixture was poured into a cold brine (100 mL) and stirred for 10 min . The organic layer was separated, and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (30mLx4). The combined organic layer was dried over MgSO_{4} and the solvent removed in vacuo. The residue was chromatographed on silica gel (Ac0Et:hexane=1:2) to afford $\underline{\beta \text {-acetoxy- }}$ $\underline{\alpha-a l l y l-N-m e t h o x y c a r b o n y l p i p e r i d i n e ~(25) ~ i n ~ 68 \% ~ y i e l d . ~}$
α-Alkylations of $\underline{12 p}, \underline{2 a}$, and $\underline{3 a, b}$ with allyltrimethylsilane, enol ether $\underline{27}$, and enol ester $\underline{29}$ were carried out under the similar conditions. Among the products, $\underline{25}, \underline{26}, \underline{28}$, and $30 \mathrm{a}, \mathrm{b}$, the ratios of stereoisomers of 25, $\underline{26}$, and 30 a were determined by GLC to be $8: 2,9: 1$, and $8: 2$, respectively.

25: IR (neat) $2955,2855,1740,1702,1645,1453,1372,1242,772 \mathrm{~cm}^{-1}$; NMR (CCl_{4}) $\delta 1.27-1.87(\mathbf{w}, 4 \mathrm{H}), 1.99(\mathrm{~s}, 3 \mathrm{H}), 2.34(\mathrm{t}, \underline{\mathrm{J}}=7 \mathrm{~Hz}, 2 \mathrm{H}), 2.80$
 $\underline{J}=9 \mathrm{~Hz}, 1 \mathrm{H}), 4.60-4.83(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.86-5.18$ (m, 2H), 5.50-5.59 (m, 1H). Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{19} \mathrm{NO}_{4}$: C, $59.73 ; \mathrm{H}, 7.84 ; \mathrm{N}, 5.81$. Found: C, 59.68; H, 8.08; N, 5.78.
α-Allyl- β-bromo-N-methoxycarbonylpiperidine (26): 82% yield from $\underline{12 p}$ with allyltrimethylsilane; IR (neat) 2960, 2863, 1698, 1645, 1455, 1270, $1195,1125,920,768 \mathrm{~cm}^{-1}$; NMR (CC1 $\left.\mathbf{C l}_{4}\right) \delta 1.37-1.66(\mathbb{m}, 1 \mathrm{H}), 1.82-2.27(\mathrm{~m}$,

 141 (base); exact mass calcd \mathbf{w} / e 219.9997, found 219.9996. Anal. Calcd for $\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{NO}_{2} \mathrm{Br}: \mathrm{C}, 45.82 ; \mathrm{H}, 6.15 ; \mathrm{N}, 5.34 ; \mathrm{Br}, 30.48$. Found: C, 46.14 ; H , 6.30; N, 5.57; Br, 29.84.
β-Acetoxy-N-methoxycarbonyl- α-phenacylpiperidine (28): 42\% yield from 2a with $\underline{27}$; IR (neat) 2953, 2925, 1737, 1692, 1681, 1595, 1580, 1448 , $1375,1256,1200,1142,760 \mathrm{~cm}^{-1}$; $\operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 1.30-2.02(\mathbb{1}, 4 \mathrm{H}), 2.03(\mathrm{~s}$, $3 \mathrm{H}), 3.21$ ($\mathrm{d}, \mathrm{J}=12 \mathrm{~Hz}, 2 \mathrm{H}$), 2.73-3.38 (m, 1H), 3.59 (s, 3 H), 3.90-4.42 (\mathbf{m}, 1H), 4.71-5.08 (m, 2H), 7.34-7.66 (m, 3H), 7.86-8.13 (m, 2H). Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{2} \mathrm{NO}_{5}$: C, 63.94; H, 6.63; $\mathrm{N}, 4.39$. Found: C, 64.11 ; H, 6.84 ; N ,
4.43.
α-Acetonyl- β-acetoxy-N-methoxycarbonylpiperidine (30a): 70\% yield from 3a with 29; IR (neat) 2970, 2880, 1745, 1703, 1457, 1246, 1048, 788 cm^{-1}; NMR (CCl_{4}) $\delta \quad 1.24-2.20(\mathrm{~m}, 4 \mathrm{H}), 2.00$ and $2.08(2 \mathrm{~s}, 3 \mathrm{H}), 2.13$ and $2.16(2 \mathrm{~s}, 3 \mathrm{H}), 2.35-3.10(\mathrm{~m}, 1 \mathrm{H}), 2.58(\mathrm{~d}, \mathrm{~J}=9 \mathrm{~Hz}, 2 \mathrm{H}), 3.64(\mathrm{~s}, 3 \mathrm{H}), 3.60-$ 4.21 (m, 1H), 4.56-4.98 (m, 2H). Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{1} \mathrm{NO}_{5}: \mathrm{C}, 56.02$; H, 7.44; N, 5.44. Found: C, 55.85; H, 7.31; N, 5.30.
α-Acetonyl- β-acetoxy-N-methoxycarbonyl- α^{\prime}-methylpiperidine (30b):
72\% yield from $\underline{3 \mathrm{~b}}$ with 29 ; IR (neat) 2952, 1735, 1698, 1445, 1362, 1242, $1090,1024,788 \mathrm{~cm}^{-1}$; NRR $\left(\mathrm{CCl}_{4}\right) \quad \delta 1.10-2.15(\mathrm{~m}, 4 \mathrm{H}), 1.17(\mathrm{~d}, \underline{\mathrm{~J}}=8 \mathrm{~Hz}, 3 \mathrm{H})$, 2.07 ($\mathrm{s}, 3 \mathrm{H}$), 2.19 ($\mathrm{s}, 3 \mathrm{H}$), 2.53 ($\mathrm{d}, \mathrm{J}=9 \mathrm{~Hz}, 2 \mathrm{H}$), 3.69 ($\mathrm{s}, 3 \mathrm{H}$), 4.03-5.01 (m, 3H). Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{2} \mathrm{NO}_{5}: \mathrm{C}, 57.55 ; \mathrm{H}, 7.80, \mathrm{~N}, 5.16$. Found: C , 57.43; H, 7.80; N, 5.21.

References and Notes

1. For examples, see: (a) Heusler, K.; Wieland, P.; Meystre, Ch. Org. Synth, 1965, 45, 57. (b) Mihailovic, M. Lj.; Cekovic, Z.; Stankovic, J. J. J.Chem. Soc., Chem. Conmun. 1969, 981.
(c) Becker, Y.;Byrd, L. R.; Miller, L. L. J. Am. Chem. Soc. 1974, 96, 4718.
(d) Breslow, R.; Corcoran, R. J.; Snider, B. B.: Doll, R. J.; Khanna, P. L.; Kaleya, R. Ibid. 1977, 99, 905.
(e) Haines, A. H. "Methods for the Oxidation of Oraganic Cpmpounds", ed. Katrizky, A. R.; Meth-Cohn, 0.; Ress, C. W. Academic Press: New York, 1985; p 49.
2. Shono, T.; Hamaguchi, H.; Matsumura, Y. J. All. Chem. Soc. 1975, $\underline{\underline{97} \text {, }}$ 4264.
3. (a) Shono, T.; Matsumura, Y.; Tsubata, K. J. Am. Chem. Soc. 1981, $\underline{\underline{103} \text {, }}$ 1172.
(b) Idem, Tetrahedron Lett. 1981, 22, 2411.
(c) Idem, Ibid, 1981, 22, 3249.
(d) Shono, T.; Matsumura, Y. ; Tsubata, K. ; Takata, J. Chem. Lett. 1981, 1121.
(e) Shono, T.; Matsumura, Y.; Tsubata, K.; Sugihara, Y. Tetrahedron Lett. 1982, 23, 1201.
(f) Shono, T.; Matsumura, Y.; Tsubata, K.; Sugihara, Y.; Yamane, S.; Kanazawa, T.; Aoki, T. J. Am. Chem. Soc. 1982, 104, 6697.
(g) Shono, T.; Matsumura, Y.; Kanazawa, T. Tetrahedron Lett. 1983, 24, 1259.
(h) Shono, T.; Tsubata, K. ; Okinaga, N. J. Org. Chem. 1984, 49, 1056.
(i) Shono, T.; Matsumura, Y.; Kanazawa, T.; Habuka, M. ; Uchida, K.;

Toyoda, K. J. Chem. Res. (S) 1984, 320. (M) 1984, 2876.
4. (a) Gross, D. Fortschr. Chem. Org. Naturst. 1977, 29, 9.
(b) Roberts, M. F.; Brown, R. T. Phytochemistry 1981, 20, 447.
(c) Glasby, J. S."Encyclopedia of the Alkaloids", Plenum Press: New York and London, 1975; Vol. 1 and 2: 1977; Vol.3.
5. Products consisted of a mixture of stereoisomers or almost only one isomers. See experimental section.
6. Oxidation of enamines; Hickmott, P. W. Tetrahedron 1982, 38, 3363.
7. The reaction conditions $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{Et}_{4} \mathrm{NOTs}\right.$, aqueous $\mathrm{CH}_{3} \mathrm{CN}-\mathrm{NH}_{4} \mathrm{Cl}$ or $\mathrm{CH}_{3} \mathrm{OH}_{-} \mathrm{NH}_{4} \mathrm{Cl}$) became acidic while the electrolysis proceeded. ${ }^{\circ}$
8. The generation of electrogenerated acid; Uneyama, K. J. Synth. Org. Chem. Jpn. 1985, 43, 557.
$9{ }^{*} \mathrm{Cl}^{+*}$ denotes the positive halogen species generated from Cl^{-}.
10. Under the conditions of $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{Et}_{4} \mathrm{NOTs}$ system, Cl^{-}may be generated by the cathodic reduction of $\mathrm{CH}_{2} \mathrm{Cl}_{2} .{ }^{11 \mathrm{a}}$
11. (a) Siegerman, H. (p 828) and (b) Weinberg, N. L. (p 373)" Technique of Electroorganic Synthesis," ed. Weinberg, N. L. Wiley: Chichster, 1974.
12. The potentials at which oxidation begins to occur in $\mathrm{CH}_{3} \mathrm{CN}-$ $0.1 \mathrm{~N} \mathrm{LiCl0} 0_{4} ; 1.05 \mathrm{~V}$ vs SCE for $9 \mathrm{ga} ; 1.08 \mathrm{~V}$ vs SCE for $\underline{9 b} ; 1.22 \mathrm{~V}$ vs SCE for $\underline{9 f} ; 0.94 \mathrm{~V}$ vs SCE for $\mathrm{Cl}^{-}(100 \mathrm{mV} / \mathrm{sec})$.
13. Electrophilic attack of halogens to enamines ; see ref 6.
14. Yoshida, K. "Electrooxidation in Organic Chemistry," Wiley, Chichester, 1984; p 88.
15. (a) Brown, E.; Lavoue, J.; Dhal, R. Tetrahedron 1973, 29, 455.
(b) Cook, M. M. ; Djerassi, C. J. Am. Chem. Soc. 1973, 95, 3678.
(c) Renger, B.; Kalinowski, H. -0.; Seebach, D. Chem. Ber. 1977, 110, 1866.
(d) Renger, B.; Huge1, H. Ibid. 1978, 111, 2630.
(e) Harding, K. E.; Burks, S. R. J. Org. Chem. 1984, 49, 40. 16. Amidoalkylation; Zaug, H. E. Synthesis 1970, 49.
17. Shono, T.; Matsumura, Y.; Tsubata, K. unpublished data.
18. Shono, T.; Matsumura, Y.; Inoue, K. J. Chem. Soc., Chem. Comern. 1983, 1169.
19. Hoffmann, R. V.; Butain, G. A. J. Org. Chem. 1983, 48, 3308.
20. The stereochemistry of the main isomer was suggested to be trans since it has been known that electrophilic addition to 3,4 -dihydro- 2 H -pyrane and 2,3-dihydrofuran derivatives predominantly gives the trans adducts. ${ }^{19.21}$
21. (a) Lemieux, R. V.; Fraser-Reid, B. Can. J. Chem. 1965, 43, 1460.
(b) Hall, L. D.; Manville, J. F. ibid. 1969, 47, 361.
(c) Crombie, L. ; Wyvill, R. D. J. Chem. Soc. Perkin Trans. I 1985, 1971.

Synthesis of (+)- and (-)- N-Methylpseudoconhydrine from L-Lysine Using Anodic Oxidation as the Key Reaction

Abstract: (+)- and (-)-N-Methylpseudoconhydrine were synthesized with high optical purity from L-Lysine by utilyzing both anodic decarboxylation of pipecolinic acid derivatives and anodic diacetoxylation at 2and 3 - positions of piperidine skeleton as key reactions.

Synthesis of optically active piperidine alkaloids from L-lysine is particularly interesting since the piperidine skeleton found in some natural piperidine alkaloids has been known to be formed from L-lysine. ${ }^{1}$

As we have already reported, the anodic transformation of L-lysine to optically active pipecolinic acid is an excellent method of synthesis of piperidine skeleton from L-lysine. ${ }^{2}$ Our previously reported enantioselective synthesis of (+)- \underline{N}-methylconiine (5) from L-lysine was a typical example of applying this anodic transformation as the key reaction. ${ }^{3,4}$ We report herein a first synthesis of optically active (+)- and (-)- N-methylpseudoconhydrine, $(+)$ - and (-)-1, from L-lysine using anodic oxidation as the key reaction.

$(+)-1$

$(-)-1$
(+)- $-\mathbf{N}$-Methylpseudoconhydrine, (+)-1, is an alkaloid yielded from South African Conium species and possesses a structure of (2 $\underline{S}, 5 \underline{S}$)-5-hydroxy-1-
methyl-2-propylpiperidine. ${ }^{5}$ Although some methods have been exploited for the diastereoselective construction of 5-hydroxy-2-propylpiperidines, ${ }^{6}$ no studies on the synthesis of optically active ones have been carried out so far except a synthesis of (+)-pseudoconhydrine from D-glucosamine. ${ }^{7}$

Synthesis of (+)-N-Methylpseudoconhydrine $\{(+)-1\}$. Our methodology for synthesis of (+)-1 is shown in Scheme I in which (1) a chiral piperidine $\underline{N}, \underline{0}-{ }^{-a c e t a l} \underline{3}$ is prepared from L-lysine derivative $\underline{2}$ (step a), (2) a propyl group is diastereoselectively introduced to the 2-position of $\underline{3}$ under the influence of the methoxycarbonyl group on the chiral 6-position (step b), (3) an acetoxyl group is introduced to the 5 -position of $\underline{4}$ under the influence of the propyl group on the chiral 2-position (step c). and (4) the 6hydroxyl group of $\underline{7}$ is eliminated to afford $\underline{8}$ (step d). Of these steps, anodic oxidations are utilized in steps (a) and (c).

Scheme I

The synthesis of $\underline{4}$ from L-lysine has been described in our previous report, ${ }^{3}$ in which the 2 -methoxyl group of $\underline{3}$ was substituted by an allyl group and the product was hydrogenated and decarboxylated to give finally $\underline{5}$. Since the stereochemistry at the 2-position of the resulting $\underline{5}$ was (S) and its optical purity was more than $96 \%, \underline{4}$ is expected to be an excellent precursor for the synthesis of $(+)-\underline{1}$ provided that both elimination of a methoxycarbonyl group at the 6-position of $\underline{4}$ and stereoselective introduction of a hydroxyl group into the 5-position are achievable.

Using compound $\underline{9}$ as a model, we have examined the effectiveness of the anodic oxidation as the key method and found that it morked nicely. Namely, hydrolysis of $\underline{9}$ and subsequent anodic oxidation of $\underline{10}$ in acetic acid gave 11 which was easily reduced to $\underline{12}$ in 59% overall yield (eq 1).

Compound 7, a key intermediate for the synthesis of (+)-1, was obtained from $\underline{4}$ in 71% yield by similar procedures. The hydroxyl group of $\underline{7}$ was easily removed by reducing $\underline{7}$ with NaBH_{4} and a stereoisomeric mixture of 8a and 8 b was obtained in 69% yield. Stereochemistry of 5-acetoxyl group of 7
was unknown, but the stereochemistry of $\underline{8}$ was found to mainly be trans (9:1). After each stereoisomer was separated by column chromatography, the reduction of main isomer 8a with LAH followed by treatment with HC1 gave (+)-1 HCl in 95% optical purity. ${ }^{5}$

The anodic oxidation of $\underline{6}$ to $\underline{7}$ (or $\underline{10}$ to $\underline{11}$) probably proceeded through the intermediary formation of $\underline{13}, \underline{14}$, and $\underline{15}$ (eq. 2). Anodic decarboxylation of α-amino acid derivatives has been known ${ }^{8}$ and anodic diacetoxylation of 1-(methoxycarbonyl)-1,2,3,4-tetrahydropyridines has already been reported by us. ${ }^{9}$

Synthesis of (-)-N-Methylpseudoconhydrine $\{(-)-1\}$. Unnatural type alkaloid (-)-1 has a structure of (2 $\underline{\mathrm{R}}, 5 \underline{\mathrm{R}}$)-5-hydroxy-1-methyl-2-propylpiperidine. Hence, the key intermediate 4 was not utilizable for the synthesis of $(-)-\underline{1}$ since the stereochemistry at the $2-p o s i t i o n ~ o f ~ \underline{4}$ was (S).

Scheme II shows a route for the synthesis of (-)-1 from L-lysine. Anodic oxidation of $\underline{3}$ in acetic acid gave $\underline{16}$ in which the stereochemistry is unknown. ${ }^{9,10}$ Then, treatment of 16 with NaBH_{4} under acidic conditions gave trans-isomer 17a (80\% yield) together with small amount of cis-isomer 17b (6% yield). The ratio of 17 a and 17 b (93:7) was measured by separation with
column chromatography. The stereochemistry at the 5-position of the main product 17a was (R), which was determined at the final stage. Alkaline hydrolysis of 17a followed by anodic decarboxylation in a mixed solvent of methanol and acetic acid gave $\underline{19}$ (62% yield), ${ }^{11}$ which was then treated with allyltrimethylsilane in the presence of TiCl_{4} and hydrogenated successively to give a mixture of $\underline{20 \mathrm{a}}$ and $\underline{20 \mathrm{~b}}$. It was then acetylated and each isomer was separated by columin chromatography. The main product, (2R,5R)-isomer 21a (69\% yield) was reduced with LAH to give (-) - 1 , which was identified as its HC1 salt,(-)-1 HC1 (90\% optical purity). ${ }^{5}$ The stereochemistry of the minor isomer 21b (5\% yield) was (2S,5R).

Scheme II

2la $\xrightarrow[\text { 2) HCl }]{\text { 1) LAH }}(-)-1 \cdot \mathrm{HCl}, 60 \%$ (90\% optical purity)

In conclusion, the anodic methods, namely, both anodic decarboxylation of pipecolinic acid derivatives and anodic 2,3-diacetoxylation of 1(methoxycarbonyl)piperidines have been shown to be highly effective in the
synthesis of optically active piperidine alkaloids from L-lysine.

Experimental Section

${ }^{1}$ H NMR spectra were measured on a Varian Associates EM-360 or EM-390 spectrometer with chemical shifts given in parts per million (δ) downfield from tetramethylsilane as an internal standard. IR spectra were recorded on a Hitachi 260-10 spectrometers. Elemental analyses were deternined by the Center for Instrumental Analysis of Kyoto University. Optical rotations were measured with Perkin-Elmer 241 polarimeter. Mass specra were recorded on a JEOL IMS-DS300 mass spectrometer. Melting points are uncorrected.

Anodic oxidation was carried out with a DC power supply (GP 050-2) of Takasago Seisakusho, Ltd. A glass beaker (50 mL) equipped with a carbon-rod anode and cathode ($8 \mathrm{~mm} \boldsymbol{\Phi}$) was used as an electrolysis cell.

Preparation of 5-Acetoxy-6-hydroxy-1-(methoxycarbonyl)-2-propylpiperidine(7). A solution of $\underline{4}^{3}(1.868 \mathrm{~g}, 7.69 \mathrm{mmol})$ and $85 \% \mathrm{KOH}(2.5 \mathrm{~g}, 38.4 \mathrm{mmol})$ in a mixed solvent of methanol (10 mL) and water (10 mL) was stirred at $0{ }^{\circ} \mathrm{C}$ and gradually warmed to room temperature. After stirring for 10 h , the solvent was evaporated to remove methanol. The residual aqueous layer was acidified with conc. HCl and the organic portion was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ($3 \times 20 \mathrm{~mL}$). The combined organic layer was dried over MgSO_{4}, and the solvent was removed to give crude carboxylic acid $\underline{6}(1.874 \mathrm{~g}),{ }^{3}$ which was used without purification.

Into an electrolysis cell described above was added a solution of crude $\underline{6}(1.874 \mathrm{~g})$ and $\mathrm{Ac} 0 \mathrm{~K}(3 \mathrm{~g}, 26.3 \mathrm{mmol})$ in acetic acid(50 mL). After $13 \underline{F} / \mathrm{mol}$ of electricity was passed at a constant current of 0.2 A (2.9h, terminal voltage; ca.30V) through the solution cooled with water, water (100mL) was added
to the reaction mixture and stirred for 3 h . The organic portion was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ($3 \times 50 \mathrm{~mL}$). The combined organic layer was dried over MgSO_{4} and the solvent was removed in vacuo. The residue was chromatographed on silica gel (Ac0Et:hexane=1:4) to afford $\underline{7}(1.412 \mathrm{~g}, 5.45 \mathrm{mmol})$ in 71% yield. Spectroscopic data of $\underline{\underline{7}}$ were consistent with those of known racemic sample. ${ }^{9}$

Reduction of 7. Into a solution of $\underline{7}$ ($0.698 \mathrm{~g}, 2.7 \mathrm{mmol}$) in formic acid (10 ml) was added, in portions, $90 \% \mathrm{NaBH}_{4}(0.46 \mathrm{~g}, 10.9 \mathrm{mmol})$. After 1 h , water (30 mL) was poured into the reaction mixture and the organic portion was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 30 \mathrm{~mL})$. After the extract was dried over MgSO_{4} and the solvent was removed in vacuo, the residue was chromatographed on silica gel (Ac0Et:hexane=1:4) to afford (2S,5S)-5-acetoxy-1-(methoxycarbonyl)-2propylpiperidine (8a) and (2ㅇ,5R)-isomer (8b) in 62% ($0.406 \mathrm{~g}, 1.67 \mathrm{mmol}$) and $7 \% ~(0.046 \mathrm{~g}, 0.19 \mathrm{mmol})$ yields, respectively.

8a (polar isomer): IR (neat) 2950, 2860, 1736, 1695, 1444, 1368, 1230, $1158,1020,958,840,770 \mathrm{~cm}^{-1}$; $\operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 0.93(\mathrm{t}, \underset{\mathrm{J}}{\mathrm{J}}=7 \mathrm{~Hz}, 3 \mathrm{H}), 1.26-1.81$ (m, 8H), 2.03 ($\mathrm{s}, 3 \mathrm{H}$), 2.97 ($\mathrm{dd}, \underline{\mathrm{J}=15}$ and $2 \mathrm{~Hz}, 1 \mathrm{H}$), 3.68 ($\mathrm{s}, 3 \mathrm{H}), 4.18(\mathrm{~d}, \underline{\mathrm{~J}}$ $=14 \mathrm{~Hz}, 1 \mathrm{H}$), 4.32 (br s, 1H), 4.84 (br s, 1 H). Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{2} \mathrm{NO}_{4}$: C, 59.24 ; H, 8.70 ; N, 5.76. Found: C, 59.14; H, 8.87; N, 5.64.

8b (less polar isomer): IR (neat) 2952, 2865, 1736, 1698, 1442, 1362, $1235,1160,1092,1039,768 \mathrm{~cm}^{-1}$; NMR $\left(\mathrm{CDCl}_{3}\right) \delta 0.93(\mathrm{t}, \underline{\mathrm{J}}=7 \mathrm{~Hz}, 3 \mathrm{H}), 1.21-$ $1.94(\mathrm{~m}, 8 \mathrm{H}), 2.05(\mathrm{~s}, 3 \mathrm{H}), 2.69(\mathrm{dd}, \underline{\mathrm{J}}=13$ and $11 \mathrm{~Hz}, 1 \mathrm{H}), 3.69(\mathrm{~s}, 3 \mathrm{H}), 4.16$ $-4.35(\mathrm{~m}, 2 \mathrm{H}), 4.64$ (m, 1H). Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{21} \mathrm{NO}_{4}: \mathrm{C}, 59.24 ; \mathrm{H}, 8.70$; N , 5.76. Found: C, 58.99; H, 8.41; N, 5.63.

3-Acetoxy-1-(methoxycarbonyl)piperidine (12) was prepared according to
a similar procedure described above through $\underline{10}$ and $\underline{11}^{9}$ from $\underline{9}^{2}$ in 59\% overall yield: IR (neat) 2960, 2875, 1741, 1452, 1238, 1049, $776 \mathrm{~cm}^{-1}$; NNR (CCl_{4}) $\delta 1.33-2.13(\mathrm{~m}, 4 \mathrm{H}), 1.98(\mathrm{~s}, 3 \mathrm{H}), 3.21-3.55(\mathrm{~m}, 4 \mathrm{H}), 3.60(\mathrm{~s}, 3 \mathrm{H})$, 4.56-4.67 (m, 1H). Anal. Calcd for $\mathrm{C}_{9} \mathrm{H}_{15} \mathrm{NO}_{4}$: C, 53.72 ; H, 7.51; N, 6.96. Found: C, 53.64;H, 7.63; N, 6.94.
(+)-N-Methylpseudoconhydrine hydrochloride $\{(+)-1 \cdot \mathrm{HCl}\}$. To a stirred suspension of LAH ($0.078 \mathrm{~g}, 2.05 \mathrm{mmol}$) in dry ether (10 ml) was added dropwise a solution of $\underline{8 a}(0.29 \mathrm{~g}, 1.19 \mathrm{mmol})$ in dry ether (10 mL). The mixture was refluxed for 2 h and then cooled to room temperature. Usual working up followed by treatment with HC1 gas, gave a crude solid (0.245 g). After the solid was washed with Ac0Et, (+)- $\underline{1} \cdot \mathrm{HCl}$ was crystallized from methanolacetone ($1: 9$) at $-20^{\circ} \mathrm{C}$ in 95% optical purity ${ }^{5}$ ($0.137 \mathrm{~g}, 0.7$ mol, 59% yield) : mp $169-170^{\circ} \mathrm{C}$; $[\alpha] \mathrm{D}^{25}+23.8$ (c 0.7, MeOH). The free base: liquid, MS, II/e $157\left(M^{+}\right), 128,115,114$ (base), 96. IR (CHCl_{3}) 3602, 2965, 2945, 2875, $2800,1467,1382,1098,1060,1008,968,888 \mathrm{~cm}^{-1}$; $\operatorname{NHR}\left(\mathrm{CDCl}_{3}\right) \delta 0.90(\mathrm{t}, \mathrm{J}=$ $7 \mathrm{~Hz}, 3 \mathrm{H}), 1.00-2.33(\mathrm{~m}, 11 \mathrm{H}), 2.24(\mathrm{~s}, 3 \mathrm{H}), 2.95(\mathrm{ddd}, \mathrm{J}=10$, 4 , and 2 Hz , 1H), 3.35-3.93 (m, 1H).

Anodic oxidation of 3^{2} in acetic acid was carried out according to a similar procedure to the anodic oxidation of $\underline{6}$ described above. 2,3-Diacet-oxy-1,2-bis(methoxycarbonyl)piperidine (16) ${ }^{9}$ was obtained in 76% yield (8F/mol).

Reduction of 16 . Into a solution of $\underline{16}(1.828 \mathrm{~g}, 5.77$ nmol) in formic acid (20 mL) was added, in portions, $90 \% \mathrm{NaBH}_{4}(1.21 \mathrm{~g}, 28.9$ mmol). After stirring at room temperature for 1 h , the solution was morked up by a similar method described above to give trans-5-acetoxy-1,2-bis(methoxycarbonyl)pipe-
ridine (17a) and cis-isomer (17b) in $80 \% ~(1.200 \mathrm{~g}, 4.63 \mathrm{mmol})$ and $6 \% ~(0.096 \mathrm{~g}$, 0.37 mmol) yields, respectively.

17a (polar isomer): IR (neat) 2965, 1740, 1710, 1452, 1374, 1236, 1158, $1124,1024 \mathrm{~cm}^{-1}$; NNR $\left(\mathrm{CCl}_{4}\right) \delta 1.38-2.21(\mathrm{~m}, 4 \mathrm{H}), 2.04(\mathrm{~s}, 3 \mathrm{H}), 3.11-3.41$ (m , $1 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.96-4.37(\mathrm{~m}, 1 \mathrm{H}), 4.92$ (br s, 2 H$)$. Anal. Calcd for $\mathrm{C}_{11} \mathrm{H}_{17} \mathrm{NO}_{6}$: C, $50.96 ; \mathrm{H}, 6.61 ; \mathrm{N}, 5.40$. Found: C, $51.18 ; \mathrm{H}, 6.75$; N, 5.30.

17b (less polar isomer): IR (neat) 2965, 1740, 1710, 1450, 1370, 1242, $1232,1162,1048 \mathrm{~cm}^{-1}$; NMR $\left(\mathrm{CCl}_{4}\right) \delta 1.40-2.30(\mathrm{~m}, 4 \mathrm{H}), 1.98(\mathrm{~s}, 3 \mathrm{H}), 2.57-$ 3.00 (m, 1H), 3.71 ($\mathrm{s}, 3 \mathrm{H}$), 3.77 ($\mathrm{s}, 3 \mathrm{H}$), 3.95-4.33 (m, 1H), 4.47-4.97 (m, $2 H)$; MS, $\mathbb{m} / \mathrm{e} 258\left(\mathrm{M}^{+}-\mathrm{H}\right), 230,200,140$ (base). Anal. Calcd for $\mathrm{C}_{11} \mathrm{H}_{17} \mathrm{NO}_{6}$: C, 50.96 ; H, 6.61 ; N, 5.40. Found: C, $51.25 ; \mathrm{H}, 6.66 ; \mathrm{N}, 5.26$.

Preparation of 5-Hydroxy-2-methoxy-1-(methoxycarbonyl)piperidine (19). Carboxylic acid $\underline{18}$ was obtained as a white solid by hydrolysis of $\underline{17 \text { a }}$ (1.988 g, 7.68mol) carried out as described above (1.56g). Into an electrolysis cell as described above was added a solution of the crude $\underline{18}(1.56 \mathrm{~g})$ and Ac 0 K ($2 \mathrm{~g}, 20 \mathrm{mmol}$) in methanol (20 mL) and acetic acid (2ml). After 5F/mol of electricity was passed at a constant current of 0.2 A (5.1h, terminal voltage; ca. 10 V) through the solution cooled with water, water (20 mL) was poured into the resulting reaction mixture. The organic portion was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 20 \mathrm{~mL})$ and the combined organic layer was dried over MgSO_{4}. The solvent was removed in vacuo to give a residue, which was chromatographed on silica gel (Ac0Et:hexane=1:2) to afford $\underline{19}(0.900 \mathrm{~g}, 4.76 \mathrm{mmol}$) in 62% yield: IR (neat) $3450,2948,1695,1260,1155,1070,1001 \mathrm{~cm}^{-1}$; NNR (CC1 ${ }_{4}$) δ $1.30-2.06(\mathrm{~m}, 4 \mathrm{H}), 2.30-4.20(\mathrm{~m}, 4 \mathrm{H}), 3.14(\mathrm{~s}, 3 \mathrm{H}), 3.62(\mathrm{~s}, 3 \mathrm{H}), 5.10$ (br s, $1 \mathrm{H})$; MS, $\underline{\text { m }}$ /e $172\left(\mathrm{M}^{+}-\mathrm{OH}\right), 157\left(\mathrm{M}^{+}-\mathrm{MeOH}\right), 140,114$ (base); exact mass calcd $\underline{m} / \mathrm{e} 157.0739\left(\mathrm{M}^{+}-\mathrm{MeOH}\right)$, found $157.0722\left(\mathrm{M}^{+}-\mathrm{MeOH}\right)$. Anal. Calcd for $\mathrm{C}_{8} \mathrm{H}_{15} \mathrm{NO}_{4}$:

C,50.78; H, 7.99, N, 7.40. Found: C, 51.05; H, 8.13; N, 7.10.
(2R,5R)- and (2S,5R)-Acetoxy-2-propyl-1-(methoxycarbonyl)piperidine (21a) and (21b). To a stirred solution of $\mathrm{TiCl}_{4}(0.42 \mathrm{~mL}, 3.83 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (7mL) was added dropwise a solution of $\underline{19}(0.723 \mathrm{~g}, 3.83 \mathrm{mmol})$ and allyltrimethylsilane (0.91 mL, 5.75 mmol) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (17 mL) at $-70^{\circ} \mathrm{C}$ under an atmosphere of nitrogen. The mixture was gradually warmed to room temperature. Water (25 mL) was added to the solution and the organic portion was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ($3 \times 30 \mathrm{~mL}$). The combined organic layer was dried over MgSO_{4} and the solvent was removed. A mixture of the residue and a catalytic amount of PtO_{2} in acetic acid (10mL) was stirred overnight at room temperature under an atmosphere of hydrogen (latm). After the catalyst and solvent were removed, the residue was dissolved in a mixed solvent of acetic anhydride ($1.08 \mathrm{~mL}, 11.5 \mathrm{mmol}$) and pyridine ($0.93 \mathrm{~mL}, 11.5 \mathrm{mmol}$). After the solution was stirred for 2 h , dil. HCl (20mL) was added into the reaction mixture. The organic portion was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 30 \mathrm{~mL})$ and the combined organic layer was dried over MgSO_{4}. After the solvent was removed in vacuo, the residue was chromatographed on silica gel (AcOEt:hexane=1:4) to afford (2R,5R)-isomer 21a and (2S,5R)-isomer 21b in 69% ($0.635 \mathrm{~g}, 2.64$ mol) and 5% ($0.050 \mathrm{~g}, 0.21 \mathrm{mmol}$) yields, respectively. Their spectroscopic data were consistent with those of $8 \mathrm{a}, \mathrm{b}$.
(-)-N-Methylpseudoconhydrine hydrochloride $\{(-)-1 \cdot H C 1\}$. Treatment of 21a with LAH in a similar way to the synthesis of (+)-1 from 8a gave $(-)-\underline{1}$ in more than 70%. IR, NMR, and MS spectrum of (-)-1 were consistent with those of $(+)-\underline{1}$. The optical purity of synthesized $(-)-\underline{1}$ was determined as its HCl salt (60% yield from 21a, 90% optical purity) : ${ }^{5}$ mp $157-158^{\circ} \mathrm{C}$; $[\alpha]_{\mathrm{D}}{ }^{25}-22.6^{\circ}$ (c 1.0, MeOH).

References and Notes

1．Herbert，R．B．In＂Rodd＇s Chemistry of Carbon Compounds，＂Coffey，S． Ed．；Elsevier Scientific Publishing Company：Amsterdam，1980；p． 312.
2．Shono，T．；Matsumura，Y．；Inoue，K．J．Chem．Soc．，Chem．Conmun．1983， 1169.

3．Shono，T．；Matsumura，Y．；Tsubata，K．；Uchida，K．J．Org．Chem．1986， 51， 2590.
4．Synthesis of（＋）－sedamine from L－lysine by the similar procedure，see： Irie，K．；Aoe，K．；Tanaka，T．；Saito，S．J．Chem．Soc．，Chem．Commin． 1985， 633.
5．Pure（ + ）$-1 \cdot \mathrm{HCl} \mathrm{mp} 157^{\circ} \mathrm{C} ;[\alpha] \mathrm{D}^{25}+25^{\circ}(\mathrm{MeOH})$ ，see：Roberts，M．F．； Brown，R．T．Phytochemistry，1981，20， 447.
6．For a mixture of the trans form and the cis form，see：（a）Gruber，W．； Schlogl，K．Monatsch．Chem．1949，80，499．（b）Marion，L．；Cockburn，W． F．J．Am．Chem．Soc．1949，71，3402．（c）Sorm，F．；Sicher，J．Collect． Czech．Chem．Commun．1949，14，331．For the trans form，see：（d）Brown， E．；Lavoue，J．；Dhal，R．Tetrahedron．1973，29，455．（e）Harding，K．E．； Burks，S．R．J．Org．Chem．1984，49，40．For the cis form，see：（f） Renger，B．；Kal inowski，H．－0．；Seebach，D．Che⿴囗十 ，Ber．1977，110， 1866. For each of the trans form and the cis form，see：（f）Shono，T．； Matsumura，Y．；Onomura，0．；Kanazawa，T．；Habuka，M．Chem．Lett． 1984 ， 1101.

7．Tadano，K．；Iimura，Y．；Suami，T．J．Carbohydr．Chem．1985，4， 129.
8．For examples，see：（a）Horikawa，H．；Imasaki，T．；Matsumoto，K．； Miyoshi，M．Tetrahedron Lett．1976，191．（b）Idem．J．Org．Chem．1977，

42, 2419. (c) Renand, P.; Seebach, D. Helv. Chim. Acta. 1986, 69, 1704.
9. Shono, T.; Matsumura, Y.; Onomura, 0.; 0gaki, M. ; Kanazawa, T. J. Org. Chem. 1987, 52, 536.
10. In contrast with 6 -acetoxyl group of 15,6 -acetoxyl group of $\underline{16}$ was not hydrolyzed at the step of working up.
11. The yield of 19 was 32% in a case using only methanol as a solvent. Improvement of yields by adding acetic acid into reaction systems has also been observed in anodic α-methoxylation of aliphatic ethers. ${ }^{12}$
12. Shono, T.; Matsumura, Y.; Onomura, 0.; Yamada, Y. Synthesis 1987, 1099.

Chapter 3

A New Method for Introducing Some Active Methylene or Methine Groups to the 3-Position of Pyrrolidine or Piperidine Skeleton, and Its Application to Preparation of Key Intermediate for the (\pm)-Eburnamonine Synthesis

Abstract: A new mehtod for introducing a bis(methoxycarbonyl)methyl or 2-oxopropyl group to the 3-position of pyrrolidine or piperidine skeleton has been exploited, and this method could be used in the synthesis of a key intermediate for the (\pm)-eburnamonine synthesis.

Introducing a variety of substituents to certain positions of pyrrolidine or piperidine skeleton is worthwhile in organic synthesis since substituted pyrrolidine or piperidine skeleton is found in many types of alkaloid. ${ }^{1}$

In continuing our studies carried out from this standpoint, ${ }^{2}$ we found a new method for the introduction of some active methylene or methine groups (Y) such as a bis(methoxycarbonyl)methyl or 2-oxopropyl group to the 3position of pyrrolidine or piperidine skeleton and succeeded in its application to synthesis of $\underline{26}$, a key intermediate in the synthesis of (\pm)-eburnamonine $1,{ }^{3}$ an indole alkaloid isolated from Hunteria eburnea Pichon. ${ }^{4}$

Our method for introducing Y group to the 3-position of piperidine skeleton is shown in scheme 1 which consists of the following four steps: (1) the synthesis of $1,2,3,4$-tetrahydro-1-methoxycarbonylpyridine $\underline{3}$ fro 1 -
methoxycarbonylpiperidine $\underline{2}$, (2) the bromomethoxylation of $\underline{3}$ yielding 3-bromo-2-methoxy-1- methoxycarbonylpiperidine 4, (3) the introduction of Y group to the 2-position of $\underline{4}$ affording 2-Y-3-bromo-1-methoxycarbonylpiperidine $\underline{5}$ or $\underline{6}$, and (4) the base treatment of $\underline{5}$ or $\underline{6}$ giving piperidine derivatives $\underline{7}$ or $\underline{8}$ bearing a substituent Y at the 3 -position.

The experimental procedures of these steps were very simple as described below. The preparation of $\underline{4}$ from $\underline{2}$ has already been reported ($\underline{3}^{2 \mathrm{~b} . \mathrm{c}}, 83 \%$ yield from $\underline{2}: \underline{4}^{2 \mathrm{~d}}, 81 \%$. yield from $\underline{3}$). ${ }^{5}$ Subsequent introduction of Y group to the 2 -position of $\underline{4}$ was achievable according to our reported method. ${ }^{2 a}$ That is a solution of $\underline{4}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and a solution of a mixture of dimethyl malonate (1.5 equiv.) and $\mathrm{Et}_{3} \mathrm{~N}$ (1.5 equiv.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ were succesively added into a solution of TiCl_{4} (1.0 equiv.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $-78{ }^{\circ} \mathrm{C}$, and then the resulting solution was warmed to room temperature. The usual workup gave $\underline{5}$ in 75% yield. Compound $\underline{6}$ was obtained in 78% yield by the reaction of $\underline{4}$ with isopropenyl acetate (1.5 equiv.) in the presence of TiCl_{4} (1.0 equiv.).

Scheme 1

The final step was the rearrangement of the substituent Y from the 2position to the 3 -position. The rearrangement of $\underline{5}$ yielding $\underline{7}$ was found to be easily achieved by treating 5 with NaOMe (1.2 equiv.) in methanol. Similar treatment of 5 with aqueous methanol containing KOH gave an amino lactone $\underline{7}$. On the other hand, the transformation of $\underline{6}$ to $\underline{8}$ required the treatment of $\underline{6}$ with NaOMe (1.2 equiv.) in methanol followed by acidifying the resulting solution with conc. HCl , and the compound $\underline{8}^{*}$ was obtained instead of 8 .

Our method is also applicable to the introduction of Y group to the 3position of pyrrolidine skeleton (Scheme 2). That is, compounds $\underline{14}$ and $\underline{15}$ were preparable from $\underline{9}$ from intermediates $\underline{10}-13$ which were formed by similar procedures to the preparation of $\underline{3-6}$ ($10,91 \%$ yield ${ }^{2 c}: \underline{11}, 42 \%$ yield ${ }^{2 d .5}$: 12, 81% yield : $\underline{13}$, 82% yield).

Scheme 2

The yields of $\underline{7}, \underline{7}^{\prime}, \underline{8}^{\prime}, \underline{14}$, and $\underline{15}$, and the reaction conditions for the rearrangement are summarized in Table 1.

Table 1. Rearrangement of $\underline{5}, \underline{6}, \underline{12}$, and $\underline{13}$ to $\underline{7}, \underline{7}, \underline{8} \underline{8}^{\prime}, \underline{14}$ and $\underline{15}$.

Substrate	Reaction conditions	Product	Isolated $y i e l d / \%$
$\underline{5}$	$\mathrm{NaOMe} / \mathrm{MeOH}, \mathrm{rt}, 22 \mathrm{~h}$	$\underline{7}$	59
$\underline{5}$	$\mathrm{NaOH} / \mathrm{Me} 0 \mathrm{H}-\mathrm{H}_{2} \mathrm{O}(2: 1), \mathrm{rt}, 5 \mathrm{~h}$	$\underline{7^{\prime}}$	68
$\underline{6}$	$\mathrm{NaOMe} / \mathrm{MeOH}, \mathrm{rt}, 15 \mathrm{~h}$, then conc $\mathrm{HCl}, \mathrm{rt}, 18 \mathrm{~h}$	$\underline{8^{\prime}}$	72
$\underline{12}$	$\mathrm{Na} 0 \mathrm{Me} / \mathrm{MeOH}, \mathrm{rt}, 22 \mathrm{~h}$	$\underline{14}$	82
$\underline{13}$	$\mathrm{NaOMe} / \mathrm{MeOH}, \mathrm{rt}, 12 \mathrm{~h}$, then conc $\mathrm{HCl}, \mathrm{rt}, 15 \mathrm{~h}$	$\underline{15}$	48

The rearrangement of Y group from 2-position to 3-position in compounds $\underline{5}, \underline{6}, \underline{12}$, and $\underline{13}$ may proceed through the formation of cyclopropane intermediates $16-19$. In fact, the formation of 18 or $\underline{19}$ was observed in the reaction of $\underline{6}$ or $\underline{13}$ with bases, whereas $\underline{16}$ or $\underline{17}$ was not detected in the reaction of $\underline{5}$ or $\underline{12}$ with bases.

$\begin{array}{ll}\text { 16; } n=1, R^{1}=R^{2}=C O_{2} \mathrm{Me} & \text { 17; } n=2, R^{1}=R^{2}=C O_{2} \mathrm{Me} \\ \text { 18; } n=1, R^{1}=C O M e, R^{2}=H & \text { 19; } n=2, R^{1}=C O M e, R^{2}=H\end{array}$

Among the products, the structure of $\underline{T^{\prime}}$ is interesting since it is similar to an amino lactone $\underline{27}$ which is a key intermediate in the synthesis of $\underline{1}$. Wenkert et al. have reported the synthesis of $\underline{27}$ using a cyclopropane intermediate prepared by copper catalyzed reaction of ethyl diazoacetate with $\underline{21} .^{6}$ Ban et al. have synthesized $\underline{26}$ by utilizing anodic oxidation of 3-ethyl-3-carboxymethyl-1-methoxycarbonylpiperidine, and converted $\underline{26}$ to $\underline{1}$ through $\underline{27}$. ${ }^{7}$ More recently, Hanaoka et al. have also succeeded in the synthesis of $\underline{27}$ starting from 1,6-dihydro-3(2H)-pyridinone. ${ }^{3}$

Thus, our effort has been directed toward the application of our method to the synthesis of $\underline{27}$ (Scheme 3). The starting compound $\underline{21}$ was prepared in 69\% yield by Ni-catalyzed reaction of 3-chloro-1-methoxycarbonyl-1,4,5,6tetrahydropyridine $\underline{20}^{2 \mathrm{~d}}$ with ethylmagnesium bromide. ${ }^{\text {a, } 9}$ The bromomethoxylation of $\underline{21}$ giving $\underline{22}$ was easily carried out by treating $\underline{21}$ with bromine in methanol containing NaOMe (1.1 equiv.) (92% yield). However, in contrast with the transformation of $\underline{4}$ to $\underline{5}$, introducing a bis(methoxycarbonyl)methyl group tothe 2 -position of $\underline{22}$ was unsuccessful possibly because of the steric constraint of substituents at the 3-position of $\underline{22}$. On the other hand, fortunately, chloromethoxylated compound 23, prepared by the reaction of $\underline{21}$ with t-butyl hypochrolite (1.2 equiv.) in methanol (93\% yield), reacted with dimethyl malonate affording $\underline{24}$ (80% yield). Compound $\underline{24}$ was transformed to $\underline{25}$ on treatment with KOH (20 equiv.) in methanol for 20 h at $65^{\circ} \mathrm{C}$, and $\underline{25}$ was decarboxylated by heating $\underline{25}$ in DMF for 11 h to give $\underline{26}$ (66% yield from $\underline{24}$). The hydrolysis of $\underline{26}$ giving $\underline{27}$ and the easy transformation of $\underline{27}$ to $\underline{1}$ have already been reported. ${ }^{3,6,7}$

Scheme 3

Experimental Section

Starting materials $\underline{4},{ }^{2 \mathrm{c}} \underline{11},{ }^{2 \mathrm{c}}$ and $\underline{20}^{2 \mathrm{~d}}$ were prepared according to our prviously reported method.

Reaction of $4,11,22$, and 23 with Nucleophiles. A general procedure is exemplified by the reaction of $\underline{4}$ with dimethyl malonate. Into a solution of $\mathrm{TiCl}_{4}(0.66 \mathrm{~mL}, 6 \mathrm{~mol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (8mL) was dropwise a solution $\underline{4}$ (1.34 g, 5.33 mol) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (8 mL) at $-70{ }^{\circ} \mathrm{C}$ under an atmosphere of nitrogen. After the solution was stirred at the temperature for 5 min, a solution of dimethyl malonate ($0.91 \mathrm{~mL}, 8 \mathrm{~mol}$) and triethylanine (1.12mL, 8mol) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (8mL) was added dropwise in a period of 10 in. The resulting mixture was stirred for 14 h and allowed to stand until it was warmed to room temperature. The reaction mixture was poured into water (20ml) and stirred for 10 min. The organic layer was separated, and the aqueous layer was extracted
with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ($3 \times 20 \mathrm{~mL}$). The combined organic layer was dried over MgSO_{4} and the solvent was removed in vacuo. The residue was chromatographed on silica gel (Ac0Et:hexane=1:5) to afford $\underline{5}$ ($1.41 \mathrm{~g}, 75 \%$ yield).

The reaction of $\underline{4}$ and $\underline{11}$ with isopropenyl acetate as nucleophile did not use triethylamine.
$\underline{5}$: IR (neat) $2970,1760,1740,1710,1450,1415,1300,1270,1155 \mathrm{~cm}^{-1}$; NMR (CCl_{4}) δ 1.30-1.70 ($\mathbf{m}, 1 \mathrm{H}$), 1.72-2.15 ($\mathbf{m}, 3 \mathrm{H}$), 2.50-3.20 ($\mathbf{m}, 1 \mathrm{H}$), 3.55$4.30(\mathbb{B}, 2 \mathrm{H}), 3.59(\mathrm{~s}, 3 \mathrm{H}), 3.61(\mathrm{~s}, 3 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 4.25-4.50(\mathrm{~m}, 1 \mathrm{H})$, 4.80-5.15 (m, 1H). Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{BrNO}_{6}: \mathrm{C}, 40.93 ; \mathrm{H}, 5.15 ; \mathrm{Br}$, 22.69 ; N, 3.98. Found: C, 40.92; H, 5.14; Br, 22.84; N, 3.82.

6: IR (neat) $2950,2860,1700,1450,1410,1270,1120,1050,760 \mathrm{~cm}^{-1}$; NMR (CC1 ${ }_{4}$) $\delta 1.25-1.73(\mathbf{m}, 1 \mathrm{H}), 1.80-2.15(\mathbf{m}, 3 \mathrm{H}), 2.12(\mathrm{~s}, 3 \mathrm{H}), 2.65(\mathrm{~d}$, $\underline{\mathrm{J}=7 \mathrm{~Hz}, 2 \mathrm{H}), 2.50-3.20(\mathrm{~m}, 1 \mathrm{H}), 3.58(\mathrm{~s}, 3 \mathrm{H}), 3.87-4.30(\mathrm{~m}, 2 \mathrm{H}), 4.56-4.90}$ (III, 1H). Anal. Calcd for $\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{BrNO}_{3}: \mathrm{C}, 43.18 ; \mathrm{H}, 5.80 ; \mathrm{Br}, 28.73 ; \mathrm{N}, 5.04$. Found: C, 43.34; H, 5.83; Br, 28.70; N, 5.23.

12: IR (neat) $2955,1740,1710,1450,1395,1200,1160 \mathrm{~cm}^{-1}$; $\mathrm{NMR}\left(\mathrm{CCl}_{4}\right)$ $\delta 1.90-2.55$ ($\mathbf{m}, 2 \mathrm{H}$), 3.10-4.08 (m, 3H), 3.60 (s, 3 H), 3.62 (s, 3 H), 3.65 (s, 3H), 4.37-4.70 (m,2H). Anal. Calcd for $\mathrm{C}_{11} \mathrm{H}_{16} \mathrm{BrNO}_{6}: \mathrm{C}, 39.07$; H, 4.77; $\mathrm{Br}, 23.63$; $\mathrm{N}, 4.14$. Found: $\mathrm{C}, 39.08$; $\mathrm{H}, 4.72$; $\mathrm{Br}, 23.68$; $\mathrm{N}, 4.32$.

13: IR (neat) 2950, 1700, 1450, 1380, $1120 \mathrm{~cm}^{-1}$; NMR (CCl_{4}) $\delta 2.13$ ($\mathrm{s}, 3 \mathrm{H}$), 2.03- $2.50(\mathrm{~m}, 2 \mathrm{H}), 2.53(\mathrm{~d}, \underline{\mathrm{~J}}=9 \mathrm{~Hz}, 1 \mathrm{H}), 2.83(\mathrm{~d}, \underline{\mathrm{~J}}=4 \mathrm{~Hz}, 1 \mathrm{H}), 3.30-$ 3.75 ($\mathbf{m}, 2 \mathrm{H}$), 3.62 ($\mathrm{s}, 3 \mathrm{H}$), 4.12- 4.43 (m, 2H). Anal.Calcd for $\mathrm{C}_{9} \mathrm{H}_{14} \mathrm{BrNO}_{3}$: C, 40.93; H, $5.34 ; \mathrm{Br}, 30.25$; N, 5.30 . Found: C, 41.10 ; H, 5.38 ; $\mathrm{Br}, 30.10$; N, 5.35.

24: IR (neat) $2960,1760,1740,1705,1450,1280,1140 \mathrm{~cm}^{-1}$; NMR (CC1 ${ }_{4}$) $\delta \quad 0.80-2.30$ ($\mathbf{m}, 9 \mathrm{H}$), 2.40-3.10 (m, 1H), 3.40-4.25 (m, 2H), 3.60 (s, 3H), 3.63 (s, 3H), 3.70 (s, 3H), 4.95-5.35 (m, 1H); MS, $\mathbb{m} / \mathrm{e} 337,335.1163$ (calcd for $\mathrm{C}_{14} \mathrm{H}_{22} \mathrm{ClNO}_{6}: 335.1136$), 300, 299, 276, 232, 206, 204, 168 (base).

3-Ethyl-1-(methoxycarbonyl)-1,4,5,6-tetrahydropyridine (21). Into a solution of EtMgBr (59.3 mmol) in dry ether (10mL) was added $\mathrm{Ni}(\mathrm{dppp}) \mathrm{Cl}_{2}$ ($0.16 \mathrm{~g}, 0.30 \mathrm{mmol}$) at $5^{\circ} \mathrm{C}$ under an atmosphere of nitrogen. After the solution was stirred at the temperature for 10min, a solution of $\underline{20}$ (5.21g, 29.7 mimol) in dry ether (15 mLL) was added dropwise in a period of 10 min . After stirred for 6 h , the reaction mixture was poured into dil. HCl and stirred for 15 min . The organic layer was washed with sodium bicarbonate and dried over MgSO_{4}. The solvent was removed in vacuo and the residue was chromatographed on silica gel (Ac0Et:hexane=1:10) to afford $\underline{21}$ ($3.46 \mathrm{~g}, 69 \%$ yield).

Preparation of 22 and 23. Into a solution of $\underline{21}(0.24 \mathrm{~g}, 1.43 \mathrm{mmol})$ in MeOH (10 mL) was added $\mathrm{Na}(0.04 \mathrm{~g}, 1.57 \mathrm{mmol})$. After the solution was stirred at the temperature for 10 min , a solution of bromine ($0.08 \mathrm{~mL}, 1.57 \mathrm{~mol}$) was added dropwise in a period of 10 min . After stirred for 30min, the reaction mixture was poured into aqueous $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ and stirred for 15 min. The organic layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ($3 \times 15 \mathrm{~mL}$) and dried over MgSO_{4}. The solvent was removed in vacuo and the residue was chromatographed on silica gel (AcOEt:hexane=1:10) to afford $\underline{22}(0.37 \mathrm{~g}, 92 \%$ yield).

Similary the reaction of $\underline{21}$ with tert.-BuOC1 gave $\underline{23}$.

22: IR (neat) $2970,1710,1455,1418,1290,1205,1168,1083,975 \mathrm{~cm}^{-1}$; $\operatorname{NMR}\left(\mathrm{CCl}_{4}\right) \quad \delta 1.10(\mathrm{t}, \underline{\mathrm{J}}=6.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.30-1.68(\mathrm{~m}, 1 \mathrm{H}), 1.69-2.52(\mathrm{~m}, 5 \mathrm{H})$, 2.54-3.12 (m, 1H), 3.25 (s, 3H), 3.55-4.31 (m, 1H), 3.71 (s, 3H), 5.13 and
5.33 (2s, 1H). Anal.Calcd for $\mathrm{C}_{10} \mathrm{H}_{18} \mathrm{BrNO} \mathrm{B}_{3}: \mathrm{C}, 42.87 ; \mathrm{H}, 6.48 ; \mathrm{Br}, 28.52 ; \mathrm{N}$, 5.00. Found: C, 42.61 ; H, 6.36; Br, $28.48 ; \mathrm{N}, 5.13$.

23: $\operatorname{NMR}\left(\mathrm{CCl}_{4}\right) \delta 1.00(\mathrm{t}, \underline{\mathrm{J}=7 \mathrm{~Hz}, 3 \mathrm{H}), 1.30-2.30(\mathrm{~m}, 6 \mathrm{H}), 2.40-3.10(\mathrm{~m},}$ $1 \mathrm{H}), 3.20(\mathrm{~s}, 3 \mathrm{H}), 3.50-4.20(\mathrm{~m}, 1 \mathrm{H}), 3.60(\mathrm{~s}, 3 \mathrm{H}), 4.95$ and 5.13 ($2 \mathrm{~s}, 1 \mathrm{H}$). Anal.Calcd for $\mathrm{C}_{10} \mathrm{H}_{18} \mathrm{ClNO}_{3}: \mathrm{C}, 50.96 ; \mathrm{H}, 7.70 ; \mathrm{Cl}, 15.04 ; \mathrm{N}, 5.94$. Found: C , 50.91; H, 7.81; C1, 15.07; N, 5.79.

Rearrangement of $5,6,12,13$, and 24. A general procedure is exemplified by preparation of $\underline{7}$. Into a solution of $\underline{5}(0.63 \mathrm{~g}, 1.79 \mathrm{mmol})$ in Me 0 H (8mL) was added Na ($0.05 \mathrm{~g}, 2.15 \mathrm{mmol}$). After stirred for 22 h , the reaction mixture was poured into water and the organic layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The extract was dried over MgSO_{4} and the solvent was removed in vacuo, the residue was chromatographed on silica gel (Ac0Et:hexane=1:3) to afford $\underline{7}$ ($0.32 \mathrm{~g}, 59 \%$).

7: IR (neat) $2950,1760,1735,1705,1440,1265,1155,1080 \mathrm{~cm}^{-1}$; NNR $\left(\mathrm{CCl}_{4}\right) \delta 1.20-1.80(\mathbb{m}, 4 \mathrm{H}), 1.90-2.45(\mathbb{m}, 1 \mathrm{H}), 2.50-3.00(\dot{m}, 1 \mathrm{H}), 3.12$ and $3.20(2 \mathrm{~s}, 3 \mathrm{H}), 3.40-4.20(\mathbb{H}, 2 \mathrm{H}), 3.60(\mathrm{~s}, 3 \mathrm{H}), 3.63(\mathrm{~s}, 3 \mathrm{H}), 3.69(\mathrm{~s}, 3 \mathrm{H})$,
 51.48 ; H, 6.98; N, 4.62. Found: C, 51.23 ; H, 6.84; N, 4.69

After treatment of $\underline{6}$ with NaOMe, the reaction mixture was acidified with conc. HCl and stirred for 18 h . The resulting reaction mixture was poured into aqueous NaHCO_{3}, and the similar procedure described above gave $\underline{8^{*}}$ in 72% yield.

$$
\underline{8^{\prime}}: \text { IR (neat) } 2960,1710,1680,1450,1400,1320,1265 \mathrm{~cm}^{-1} ; \operatorname{NMR}\left(\mathrm{CCl}_{4}\right)
$$

$\delta 1.45-2.10(\mathrm{~m}, 4 \mathrm{H}), 2.02(\mathrm{~s}, 3 \mathrm{H}), 2.93(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 3.30-3.70(\mathrm{~m}, 2 \mathrm{H})$, 3.60 (s, 3H), 6.60 (br s, 1H). Anal. Calcd for $\mathrm{C}_{10} \mathrm{H}_{15} \mathrm{NO}_{3}: \mathrm{C}, 60.90 ; \mathrm{H}, 7.67$; $\mathrm{N}, 7.10$. Found: C, 60.92; H, 7.82; N, 6.88.

Compound $\underline{12}$ was transformed into a mixture of two stereoisomers $\underline{14 a}$ and 14b in 56% and 26% yields, respectively.

14a: IR (neat) $3060,1755,1740,1710,1450,1400,1380,1280 \mathrm{~cm}^{-1}$; NMR $\left(\mathrm{CCl}_{4}\right) \delta 1.60-2.15(\mathrm{~m}, 2 \mathrm{H}), 2.20-2.80(\mathrm{~m}, 1 \mathrm{H}), 3.23$ and $3.30(2 \mathrm{~s}, 3 \mathrm{H})$, $3.30-3.75(\mathrm{~m}, 3 \mathrm{H}), 3.60(\mathrm{~s}, 3 \mathrm{H}), 3.63(\mathrm{~s}, 3 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 5.05(\mathrm{~d}, \mathrm{~J}=4 \mathrm{~Hz}$, 1H). Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{19} \mathrm{NO}_{7}: \mathrm{C}, 49.82 ; \mathrm{H}, 6.62 ; \mathrm{N}, 4.84$. Found: C , 49.95; H, 6.56; N, 4.73.

14b: IR (neat) $2970,1760,1740,1720,1460,1390,1090 \mathrm{~cm}^{-1}$; NMR $\left(\mathrm{CCl}_{4}\right) \delta 1.50-2.90(\mathrm{~m}, 3 \mathrm{H}), 3.15-3.80(\mathrm{~m}, 3 \mathrm{H}), 3.28(\mathrm{~s}, 3 \mathrm{H}), 3.63(\mathrm{~s}$, $3 \mathrm{H})$, $3.68(\mathrm{~s}, 3 \mathrm{H}), 3.70(\mathrm{~s}, 3 \mathrm{H}), 4.82(\mathrm{~s}, 1 \mathrm{H})$. Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{19} \mathrm{NO}_{7}: \mathrm{C}$, 49.82; H, 6.62; N, 4.84. Found: C, 49.68; H, 6.57; N, 5.10.

15: IR (neat) $2960,1715,1450,1380,1120,1080 \mathrm{~cm}^{-1}$;
NMR $\left(\mathrm{CCl}_{4}\right) \delta 1.50-2.20(\mathrm{~m}, 3 \mathrm{H}), 2.16(\mathrm{~s}, 3 \mathrm{H}), 2.30-2.75(\mathrm{~m}, 2 \mathrm{H}), 3.10-3.60$ ($\mathrm{m}, 2 \mathrm{H}$), $3.63(\mathrm{~s}, 3 \mathrm{H}), 5.00(\mathrm{~d}, \underline{\mathrm{~J}}=4 \mathrm{~Hz}, 1 \mathrm{H})$. Anal.Calcd for $\mathrm{C}_{10} \mathrm{H}_{17} \mathrm{NO}_{4}: \mathrm{C}$, 55.80 ; H, 7.96; N, 6.51. Found: C, 55.91 ; H, 8.12; N, 6.44.
$\underline{7^{\prime}}: ~ I R ~(n e a t) 3700-2600,1790,1730,1460,1360,1180 \mathrm{~cm}^{-1}$; NMR $\left(\mathrm{CCl}_{4}\right) \delta 1.07-2.30(\mathrm{~m}, 4 \mathrm{H}), 2.50-3.16(\mathrm{~m}, 2 \mathrm{H}), 3.35$ (br s, 1 H$), 3.60-$ $4.20(\mathrm{~m}, 1 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}), 6.45(\mathrm{~d}, \mathrm{~J}=4.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.46$ (br s, 1 H$)$. Anal. Calcd for $\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{NO}_{6}$: C, 49.38; H, 5.39; N, 5.76. Found: C, 49.57; H,5.32; N, 5.73.

After the solution of $\underline{24}(0.36 \mathrm{~g}, 1.07 \mathrm{mmol})$ and $85 \% \mathrm{KOH}(1.32 \mathrm{~g}, 20 \mathrm{mmol})$ in Me 0 H (10 mL) was refluxed for 20 h , the reaction mixture was acidified with dil. HCl. The organic portion was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and dried over MgSO_{4}. After the solvent was removed in vacuo, into the residue was added DMF (5mL). After the solution was heated at $90^{\circ} \mathrm{C}$ for 11 h , the solvent was removed. The residue was chromatographed on silica gel (Ac0Et:hexane=1:4) to afford $\underline{26}(0.16 \mathrm{~g}, 66 \%)$.

26: mp $66-67{ }^{\circ} \mathrm{C}\left(1 \mathrm{it}^{7} 66-67.5^{\circ} \mathrm{C}\right)$; $\mathrm{IR}\left(\mathrm{CDCl}_{3}\right) 1770,1710 \mathrm{~cm}^{-1}$; NMR $\left(\mathrm{CDCl}_{3}\right) \delta 0.93(\mathrm{t}, \underline{\mathrm{J}}=7 \mathrm{~Hz}, 3 \mathrm{H}), 1.30-1.90(\mathrm{~m}, 6 \mathrm{H}), 2.40(\mathrm{~d}, \underline{\mathrm{~J}}=4 \mathrm{~Hz}, 2 \mathrm{H}), 2.70$ $-3.20(\mathrm{~m}, 1 \mathrm{H}), 3.35(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.60-4.20(\mathrm{~m}, 1 \mathrm{H}), 3.72$ ($\mathrm{s}, 3 \mathrm{H}), 5.95$ (br s, 1H).

References and notes

1. Glasby, J. S. In "Encyclopedia of the alkaloids," Plenum press, New York and London, 1975; Vols. 1 and 2: 1977; Vol. 3.
2. a) Shono, T.; Matsumura, Y.; Tsubata, K. J. Am. Chem. Soc. 1981, 103, 1172.
b) Shono, T.; Matsumura, Y.; Tsubata,T. Org. Synth. 1984, 63, 206.
c) Shono, T.; Matsumura, Y.; Tsubata,T.; Sugihara, Y.; Yamane, S.; Kanazawa, T.; Aoki, T. J. Am. Chem. Soc. 1982, 104, 6697.
d) Shono, T.; Matsumura, Y.; Onomura, 0.; 0gaki, M.; Kanazawa, T. J. Org. Chem. 1987, 52, 536.
3. Imanishi, T.; Miyashita, K.; Nakai, A.; Inoue, M.; Hanaoka, M. Chem. Pharm. Bull. 1983, 31, 1191, and references cited therein.
4. Bartlett, M. F.; Taylor, W. I.; Hamet, R. C. R. Acad. Sci., Ser. C 1959 ,

249, 1259.
5. The transformation of $\underline{3}$ to $\underline{4}$ or of $\underline{10}$ to $\underline{11}$ was also achieved by adding bromine (1.2 equiv.) to a solution of $\underline{3}$ or $\underline{10}$ in methanol containing NaOMe (1.2 equiv.) ($\underline{4}, 80 \%$ yield: $11,71 \%$ yield).
6. Wenkert, E. ; Hudlicky, T.; Showalter, H. D. H. J. Am. Chem. Soc. 1978 , 100, 4893.
7. Ban, Y.; Irie, K. Heterocycles, 1981, 201.
8. The yield of $\underline{21}$ descrived in a literature ${ }^{7}$ was very low (14% yield starting from 3-acetyl-1,4,5,6-tetrahydropyridine).
9. Tamao, K.; Sumitani, K.; Kiso, Y.; Zembayashi, M.; Fujioka, A.; Kodama, S.; Nakajima, I.; Minato, A.; Kumada, M. Bull. Chem. Soc. Jpn. 1976, 49, 1958.

A New Method for Introducing A Bis(methoxycarbonyl)methyl Group to 4-Position of Piperidine Skeleton, and Its Application to Synthesis of (\pm)-Meroquinene and (\pm)-Epimeroquinene Derivatives

Abstract: A new method for introducing a bis(methoxycarbonyl)methyl group to 4 -position of piperidine skeleton was exploited, and this method was applied to the synthesis of (\pm)-meroquinene and (\pm)epimeroquinene derivatives starting from 1-(methoxycarbonyl)piperidine.

We have already exploited convenient methods for introducing various nucleophiles (Nu) to the unactivated 2- and/or 3-positions of 1-(methoxycarbonyl)piperidine (1) using anodic oxidation as a key reaction and synthesized some piperidine alkaloids. ${ }^{1.2}$

1

2; $\mathrm{R}^{1}=-\mathrm{CH}=\mathrm{CH}_{2}, \mathrm{R}^{2}=\mathrm{H}$
3; $\mathrm{R}^{1}=\mathrm{H}, \quad \mathrm{R}^{2}=-\mathrm{CH}=\mathrm{CH}_{2}$

This chapter describes a new method for introducing a bis(methoxycarbonyl)methyl group to the 4 -position of $\underline{1}^{3}$ and its application to synthesis of (\pm)-meroquinene derivative $\underline{2}^{4}$ and (\pm)-epimeroquinene derivative $\underline{3},{ }^{5}$ synthetic key intermediates of (\pm)-quinine and (\pm)-ajmalicine, respectively.

Our method consists of three steps (a)-(c) which are shown in Scheme 1 . Namely, $\underline{1}$ is transformed to 3 -substituted enecarbamates $\underline{4}$ utilizing anodic
oxidation (step a), $\underline{4}$ is transformed into 3 -substituted 2 -methoxy-1,2,5,6tetrahydropyridines $\underline{5}$ (step b), and a bis(methoxycarbonyl)methyl group is introduced to the 4 -position of $\underline{5}$ to afford $\underline{6}$ (step c).

Scheme 1
step a

$\mathrm{a} ; \mathrm{R}=\mathrm{H}, \mathrm{b} ; \mathrm{R}=\mathrm{Me}, \mathrm{c} ; \mathrm{R}=\mathrm{Et}, \mathrm{d} ; \mathrm{R}=\mathrm{Br}, \mathrm{e} ; \mathrm{R}=\mathrm{CHO}, \mathrm{f} ; \mathrm{R}=\mathrm{COMe}$

The detail of each step is as follows (Scheme 2): step a; Anodic oxidation of $\underline{1}$ in methanol followed by removal of methanol from the oxidized product $\underline{7}$ gave $\underline{4 \mathrm{a}} .{ }^{6}$ The Vilsmeyer reaction or the Friedel-Crafts reaction to $\underline{4 a}$ afforded $\underline{4 e, f},{ }^{6}$ and then the reduction of $\underline{4 e, f(5 m o l) w i t h ~}$ NaBH_{4} (12.5 mmol) in acetic acid (10 mL) and a treatment of the products with $\mathrm{CF}_{3} \mathrm{SO}_{3} \mathrm{H}(0.5 \mathrm{~mL})$, successively, gave $4 \mathrm{~b}, \mathrm{c} .{ }^{7} \quad 3$-Bromo enecarbamate 4 d was obtained by adding bromine (11 mmol) into a methanolic solution of 4 a (10 mmol) and Na 0 Me (11 mmol) at room temperature followed by heating the product 8 in the presence of $\mathrm{NH}_{4} \mathrm{Cl}^{8}$: step b; Addition of bromine (11 mmol) into a methanolic solution of $4 \mathrm{a}-\mathrm{d}$ (10 mmol) and Na0Me (11 mmol) at room temperature followed by treatment ($90{ }^{\circ} \mathrm{C}, 1.5 \mathrm{~h}$) with DBU (15 mol) afforded $\underline{5}^{9}$: step c; a solution of dimethyl malonate (15 mimol) and triethylamine (10 mmol) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (15 mL) was added dropwise into a solution of $\underline{5}$ (10 mmol) and TiCl_{4} (10 mmol) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL})$ at $-70^{\circ} \mathrm{C}$ under an atmosphere of nitrogen and the resulting reaction mixture was gradually warmed to room temperature.

After the solution was stirred for 15 h , the usual working up gave $\underline{6}$. Yields of $\underline{4}-\underline{6}$ are shown in Table 1.

Scheme 2^{a}

Table 1. Yields (\%) of 4-6

	R	$\underline{4}^{\mathrm{a}}$	$\underline{\mathbf{5}}$	$\underline{\mathbf{6}}$
a	H	83	58	6
d	Me	48	54	52
c	Et	33	73	91
d	Br	65	47	0

a Overall yield of $\underline{4}$ from $\underline{1}$.

The reaction mechanism for alkylation of $\underline{5}$ at the 4 -position with dimethyl malonate was scrutinized in the reaction of 5 c with dimethyl malonate (eq 1). Namely, when the reaction was carried out at $-70^{\circ} \mathrm{C}, \underline{\mathrm{g}}$ was obtained in high yield. Furthermore, when the reaction mixture was warmed without isolation of $\underline{9 c}$ to room temperature, $\underline{6 c}$ was formed with disappearance of $\underline{\mathrm{c}}$. These results suggest that $\underline{\mathrm{c}}$ is a kinetically controlled product and $\underline{6 c}$ is a thermodynamically controlled product. ${ }^{10}$

The formation of $\underline{6}$ seems to depend on the stability of Nu^{-}and/or the electronegativity of a substituent at 3 -position of piperidine skeleton. Namely, while using methyl acetoacetate as Nu afforded bicyclic compound $1 \underline{0}$ (eq 2), isopropenyl acetate as Nu gave 2-substituted compound $\underline{11}$ (eq 3). Also, the reaction of dimethyl malonate with \underline{f} possessing a bromo substituent at the 3 -position gave 2 -substituted product 9 d (79\%).

11, 61\%

$9 d$

In the case of $\underline{5 a}$ in which a substituent at the 3 -position is a hydrogen, the initially formed 4 -substituted product 6 6a was easily protonated at the uncrowded 3-position and thus 2,4-disubstituted compound $\underline{12}$ (54\%) was obtained as main product (eq 4).

81

Next, our effort has been directed toward a synthesis of $\underline{2}$ and $\underline{3}$ using our method. A preparation of starting material \underline{j}^{11} was carried out by the method described bellow. Compound 4 g was prepared according to our previously reporeted method in which a bis(methoxycarbonyl)methyl group could be introduced into 3 -position of piperidine skeleton (eq 5). ${ }^{2}$

13
49

Demethoxycarbonylation of $\underline{4 g}$ and reduction of the product $\underline{4 h}$ gave $\underline{4 i}$, which was transformed into 3-(2-chloroethyl)enecarbamate 4 j. Then, iodomethoxylation ${ }^{12}$ of $4 \underline{j}$ and dehydroiodination, successively, gave $\underline{5 j}$ (eq 6).

4J

The reaction of $\underline{5 j}$ with dimethyl malonate gave $\underline{6 j}$ in excellent yield. Decarboxylation of $\underline{6 j}$ gave $\underline{6 \mathrm{k}}$. By the reduction of $\underline{6 \mathrm{k}}$ with NaBH_{4} and successive 1-benzoylation (Method A) was obtained only trans-isomer 3'. Similarly the reduction of $\underline{6 i}$ with hydrogen (Method B) was yielded mainly trans-isomer (Scheme 3).

To obtain selectively, $\underline{2}$ was thought to be needed the migration of unsaturated bond. In fact, compound $\underline{14}$ was hydrogenated to yield mainly $\underline{2}$ (eq 7). The easy transformation of $\underline{2}^{\prime}$ and $\underline{3}^{\prime}$ into $\underline{2}$ and $\underline{3}$, respectively, have already been reported. ${ }^{4,5,13}$

$2^{\prime} \xrightarrow{\text { ref. } 5} 2$

Experimental Section

Materials $\underline{4 a, e, f},{ }^{6} \underline{4 d},{ }^{8} \underline{5 a},{ }^{9}$ and $\underline{13}^{2}$ were prepared by our previously
reported $\boldsymbol{m e t h o d s . ~}$

Preparation of 3-Alkylated Enecarbamates 4b and 4c. A general procedure is exemplified by preparation of $\underline{4 c}$. Into a solution of $\underline{4 f}(0.82 \mathrm{~g}$, 4.5 mmol) in acetic acid (20mL) was added in portions $90 \% \mathrm{NaBH}_{4}$ (2.54g, 67 mmol). After stirred at room temperature for 3 h , into the solution was poured water (30mL). The organic layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ($3 \times 30 \mathrm{~mL}$) and dried over MgSO_{4}. After the solvent was removed in vacuo, the residue was chromatographed on silica gel (Ac0Et:hexane $=1: 10)$ to afford $4 \mathrm{c}(0.37 \mathrm{~g}$, 52%). ${ }^{8}$

Similarly $\underline{4 b}{ }^{7}$ was prepared from 4 e in 62% yield.

Bromomethoxylation ${ }^{10}$ and dehydrobromination ${ }^{10}$ was carried out according to known methods.

5b: IR (neat) $2940,1705,1440,1200,1180,1080,1060 \mathrm{~cm}^{-1}$; NMR $\left(\mathrm{CCl}_{4}\right)$ $\delta 1.30-2.20(\mathrm{~m}, 5 \mathrm{H}), 2.55-3.35(\mathrm{~m}, 1 \mathrm{H}), 3.17(\mathrm{~s}, 3 \mathrm{H}), 3.53(\mathrm{~s}, 3 \mathrm{H}), 4.90$ (br s, 1 H), $5.30(b r s, 1 H) ; M S$, $\underline{m} / \mathrm{e} 185.1067\left(\mathrm{M}^{+}\right.$, calcd for $\mathrm{C}_{9} \mathrm{H}_{15} \mathrm{NO}_{3}$: 185.1052), 170, 155, 154 (base).

5c: IR (neat) $2940,1710,1450,1342,1208,1075,970,772 \mathrm{~cm}^{-1}$; NMR (CCl_{4}) $\delta 1.01(\mathrm{t}, \mathrm{J}=6.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.50-2.59(\mathrm{~m}, 4 \mathrm{H}), 2.67-3.40(\mathrm{~m}, 1 \mathrm{H}), 3.22$ (s, 3H), 3.48-4.20 (m, 1H) 3.60 (s, 3 H), 5.06 (br s, 1 H), 5.27-5.57 (m, 1 H). Anal. Calcd for $\mathrm{C}_{10} \mathrm{H}_{17} \mathrm{NO}_{3}$: C, $60.28 ; \mathrm{H}, 8.60 ; \mathrm{N}, 7.03$. Found: $\mathrm{C}, 60.33$; H , 8.73; N, 6.98.

5d: NMR (CCl_{4}) $\delta 1.80-2.40(\mathrm{~m}, 2 \mathrm{H}), 3.35(\mathrm{~s}, 3 \mathrm{H}), 3.68(\mathrm{~s}, 3 \mathrm{H}), 5.72$ (br s, 1H), 6.07-6.27 (m, 1H). Anal. Calcd for $\mathrm{C}_{8} \mathrm{H}_{12} \mathrm{BrNO}_{3}: \mathrm{C}, 38.42$; H,
4.84; Br, 31.95; N, 5.60. Found: C, $38.45 ; \mathrm{H}, 4.88 ; \mathrm{Br}, 32.19 ; \mathrm{N}, 5.62$.

TiC14-Catalyzed C-C Bond Formation. A General Procedure. Into a solution of $\mathrm{TiCl}_{4}(1.4 \mathrm{~mL}, 12.6 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (10 mL) was added dropwise a solution of $\underline{5 \mathrm{c}}(2.5 \mathrm{~g}, 12.5 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (15 mL) at $-70^{\circ} \mathrm{C}$ under an atmosphere of nitrogen. After stirred for 10 min at the temperature, into the solution was added dropwise a solution of dimethyl malonate (2.1mL, 18.8 mmol) and triethylamine ($1.4 \mathrm{~mL}, 12.5 \mathrm{mmol}$) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (10mL). The resulting reaction mixture was stirred for 15 h until it was warmed to room temperature. The solution was poured into water (25mL) and stirred for 10 min . The organic layer was separated and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ($3 \times 20 \mathrm{~mL}$). The combined organic layer was dried over MgSO_{4} and the solvent was removed in vacuo. The residue was chromatographed on silica gel (Ac0Et:hexane=1:4) to afford 6c (3.4g, 91\%). Similarly 6a, b, 어, $\underline{10}, \underline{11}$, and $\underline{12}$ were obtained. On the other hand, in order to obtain $\underline{9} \underline{f}$ from $\underline{6 c}$ was carried out this reaction at $-70^{\circ} \mathrm{C}$ for 1 h .

6c: IR (neat) $2960,1750,1710,1665,1445,1320,1295 \mathrm{~cm}^{-1}$; NMR (CCl_{4}) $\delta 1.00(\mathrm{t}, \underline{\mathrm{J}=7 \mathrm{~Hz}, 3 \mathrm{H}), 1.70-2.20(\mathrm{~m}, 4 \mathrm{H}), 2.75-3.05(\mathbf{m}, 1 \mathrm{H}), 3.15-1020}$ 3.65 ($\mathbf{m}, 3 \mathrm{H}$), 3.69 ($\mathbf{m}, 9 \mathrm{H}$), 6.57 (br s, 1H). Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{2} \mathrm{NO}_{6}: \mathrm{C}$, 56.18 ; H, 7.07; N, 4.68. Found: C, 55.93; H, 7.30; N, 4.43.

6a: IR (neat) $2975,1760,1740,1720,1660,1450,1200 \mathrm{~cm}^{-1}$; NNR $\left(\mathrm{CCl}_{4}\right)$ $\delta 1.35-2.35(\mathrm{~m}, 2 \mathrm{H}), 2.50-4.05(\mathbb{m}, 4 \mathrm{H}), 3.68(\mathrm{~s}, 9 \mathrm{H}), 4.45-4.82(\mathbb{m}, 1 \mathrm{H})$, $6.55-6.90(\mathrm{~m}, 1 \mathrm{H})$; MS, $\mathrm{m} / \mathrm{e} 271.1054\left(\mathrm{M}^{+}\right.$, calcd for $\left.\mathrm{C}_{12} \mathrm{H}_{17} \mathrm{NO}_{6}: 271.1056\right)$, 212, 140 (base).

6b: IR (neat) $2960,1760,1740,1710,1670,1450 \mathrm{~cm}^{-1}$; $\operatorname{NMR}\left(\mathrm{CCl}_{4}\right) \delta$
1.75 (br s, 3H), 1.80-2.05 (m, 2H), 2.65-3.05 (m, 1H), 3.35-3.70 (m, 3H), 3.70 (s, 9H), 6.60 (br s, 1H). Anal Calcd for $\mathrm{C}_{13} \mathrm{H}_{19} \mathrm{NO}_{6}$: C, 54.73; H, 6.71; $\mathrm{N}, 4.91$. Found: C, 54.68; H, 6.71; N, 4.78.

9c: IR (neat) 2969, 1760, 1670, 1445, 1300, 1200, $1160 \mathrm{~cm}^{-1}$; NMR (CC1 ${ }_{4}$)
 $3.65(\mathrm{~s}, 3 \mathrm{H}), 3.67$ ($\mathrm{s}, 3 \mathrm{H}$), 5.05 (br d, J=6H, 1H), 5.43 (br s, 1H). Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{2} \mathrm{NO}_{6}$: C, 56.18 ; H, 7.07; N, 4.68. Found: C, 55.99 ; H, 7.04; N, 4.73.

9d: IR (neat) 2965, 1745, 1715, 1658, 1450, $1292 \mathrm{~cm}^{-1}$; NMR (CC1 ${ }_{4}$) 2.00 -2.48 (m, 2H), 2.85-3.60 (m,1H), 3.60-4.30 (m, 4H), 3.67 (s, 9H), 5.05-5.30 (m, 1H), 6.07-6.45 (m, 1H). Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{BrNO}_{6}$: C, 41.16; H, 4.61; $\mathrm{Br}, 22.82$; N, 4.00. Found: C,40.91; H, 4.62; Br, 23.10; N, 4.12.

10: IR (neat) $2960,1760,1740,1670,1445,1300,1200,1160 \mathrm{~cm}^{-1}$; NMR (CCl_{4}) $\delta 0.80-2.05(\mathrm{~m}, 3 \mathrm{H}), 2.26(\mathrm{~s}, 3 \mathrm{H}), 2.60-3.06$ (m, 1H), 3.60-4.10 (m, $1 \mathrm{H})$, $3.63(\mathrm{~s}, 3 \mathrm{H}), 3.69(\mathrm{~s}, 3 \mathrm{H}), 5.75-6.10(\mathrm{~m}, 1 \mathrm{H})$. Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{2} \mathrm{NO}_{6}: \mathrm{C}, 59.35 ; \mathrm{H}, 7.47 ; \mathrm{N}, 4.94$. Found: C, $59.24 ; \mathrm{H}, 7.52 ; \mathrm{N}, 4.87$.

11: IR (neat) $2980,1720,1708,1675,1455 \mathrm{~cm}^{-1}$; NMR (CCl_{4}) $\delta 1.06$ (br s, 3H), 1.64-3.20 (m, 5H), 2.12 (s, 3H), 3.60 (s, 3H), 3.70-4.22 (m, $1 \mathrm{H}), 4.50-4.85$ (m, 1H), 5.40 (br s, 1H); MS, $\mathrm{m} / \mathrm{e} 225.1369$ (M^{+}, calcd for $\mathrm{C}_{12} \mathrm{H}_{19} \mathrm{NO}_{3}: 225.1365$), 168 (base), 166.

12: IR (neat) $2970,1760,1740,1705,1455,1280,1200,1030 \mathrm{~cm}^{-1}$; NMR (CCl_{4}) $\delta 0.90-2.50(\mathrm{~m}, 4 \mathrm{H}), 2.70-4.40(\mathrm{~m}, 5 \mathrm{H}), 3.53,3.63$, and 3.69 (3 s ,

15H), 4.60-5.05 ($\mathbf{\omega}, 1 \mathrm{H}$). Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{25} \mathrm{NO}_{10}: \mathrm{C}, 50.62 ; \mathrm{H}, 6.25 ; \mathrm{N}$, 3.47. Found: C, 50.39; H, 6.19; N, 3.50 .

Preparation of 4 g . After the solution of $\underline{13}(4.28 \mathrm{~g}, 12.2 \mathrm{~mol})$ and triethylamine in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (14mi) was refluxed for 22 h , the reaction mixture was poured into water. The organic portion was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and the solvent was dried over MgSO_{4}. After the solvent was removed in vacuo, the residue was chromatographed on silica gel (Ac0Et:hexane=1:5) to afford 4 g (3.04g, 92\%): IR (neat) $2970,1760,1740,1720,1670,1450,1270,1200 \mathrm{~cm}^{-1}$; NMR (CCl_{4}) $\delta 1.50-2.30$ ($\quad 4 \mathrm{H}$), 3.40-4.00 (п, 3H), 3.69 ($\left.\mathrm{s}, 9 \mathrm{H}\right), 6.68$ (br $\mathrm{s}, \mathrm{1H})$. Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{17} \mathrm{NO}_{6}: \mathrm{C}, 53.13$; $\mathrm{H}, 6.32 ; \mathrm{N}, 5.16$. Found: C , 52.84; H, 6.35; N, 5.09.

Demethoxycarbonylation of 4 g . The solution of 4 g ($6.01 \mathrm{~g}, 22.2 \mathrm{mmol}$), $\mathrm{NaCl}(1.66 \mathrm{~g}, 28.4 \mathrm{~mol})$, and water (1.6 mL , 89mol) in DMSO (32mL) was heated at $170^{\circ} \mathrm{C}$ for 7 h . After the solution was cooled down to room temperature, it was poured into water. The organic portion was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and dried over MgSO_{4}. After the solvent was removed in vacuo, the residue was chromatographed on silica ge1 (AcOEt:hexane=1:4) to afford 4h (3.61g, 76\%) : IR (neat) 2960, 1740, 1720, 1710, 1670, 1445, 1400, 1260, $1200 \mathrm{~cm}^{-1}$; NNR (CCl_{4}) $\delta 1.60-2.23$ ($\mathbf{1}, 4 \mathrm{H}$), 2.90 (br s, 2H), 3.40-3.60 ($\mathbf{~}, 2 \mathrm{H}$), 3.60 (s, $3 \mathrm{H})$, 3.67 (s, 3H), 6.65 (br s, 1H). Anal. Calcd for $\mathrm{C}_{10} \mathrm{H}_{15} \mathrm{NO}_{4}: \mathrm{C}, 56.33$; H, 7.09 ; N, 6.57. Found: C, 56.25 ; H, 7.26; 6.53.

3-(2-Hydroxyethyl)-1-methoxycarbonyl-1,4,5,6-tetrahydropyridine (4i). Into a solution of 4 h ($3.6 \mathrm{~g}, 16.9 \mathrm{mmol}$) in DME (1 mL) and MeOH (2.5 mL) was added in portions $90 \% \mathrm{NaBH}_{4}(1.28 \mathrm{~g}, 23.9 \mathrm{~mol})$. After the reaction mixture was stirred at room temperature for 18 h , it was poured into water (10mi).

The organic portion was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 20 \mathrm{~mL})$ and dried over MgSO_{4}. After the solvent was removed in vacuo, the residue mas chromatographed on silica gel (Ac0Et:hexane=1:2) to afford 4i (2.84g, 91\%): IR (neat) 3450, 2950, 2900, 1710, 1700, 1680, 1460, $1400 \mathrm{~cm}^{-1}$; NMR (CC1 ${ }_{4}$) $\delta 1.55-2.30(\mathbb{m}$, $6 \mathrm{H})$, 3.35-3.70 (m, 5H), 3.67 (s, 3H), 6.57 (br s, 1H). Anal. Calcd for $\mathrm{C}_{9} \mathrm{H}_{15} \mathrm{NO}_{3}$: C, $58.36 ; \mathrm{H}, 8.16 ; \mathrm{N}, 7.56$. Found: C, $58.08 ; \mathrm{H}, 8.46 ; \mathrm{N}, 7.36$.

3-(2-Chloroethyl)-1-methoxycarbonyl-1,4,5,6-tetrahydropyridine (4j). A solution of $4 \mathrm{i}(0.7 \mathrm{~g}, 3.8 \mathrm{mmol}), \mathrm{CCl}_{4}(0.42 \mathrm{~mL}, 4.38 \mathrm{mmol})$, and triphenylphosphine ($1.14 \mathrm{~g}, 4.38 \mathrm{mmol}$) in DMF (10 mL) was stirred at room temperature for 14 h . After it was poured into water (15 mL), the organic portion was extracted with ether ($3 x 25 \mathrm{~mL}$). The solvent was dried over MgSO_{4} and removed in vacuo. The residue was chromatographed on silica gel (Ac0Et:hexane=1:3) to afford $4 \underline{\mathrm{j}}(0.56 \mathrm{~g}, 73 \%$): IR (neat) 2960, 2880, 1720, 1710, 1670, 1445, $1400,1320,1260,1195 \mathrm{~cm}^{-1}$; NmR $\left(\mathrm{CCl}_{4}\right) \delta 1.60-2.20(\mathrm{~m}, 4 \mathrm{H}), 2.30(\mathrm{t}, \underline{\mathrm{J}}=7 \mathrm{~Hz}$, $2 \mathrm{H})$, $3.35-3.70(\mathbf{m}, 4 \mathrm{H}), 3.67(\mathrm{~s}, 3 \mathrm{H}), 6.65(\mathrm{br} \mathrm{s}, 1 \mathrm{H})$. Anal. Calcd for $\mathrm{C}_{9} \mathrm{H}_{14} \mathrm{ClNO}_{2}: \mathrm{C}, 53.08 ; \mathrm{H}, 6.93 ; \mathrm{C} 1,17.41 ; \mathrm{N}, 6.88$. Found: C, 52.86 ; H, 7.13; Cl, 17.14; N, 6.83.

3-(2-Chloroethyl)-2-methoxy-1-methoxycarbonyl-1,2,5,6-tetrahydropyridine (5 j). Into a solution of $\underline{4 \mathrm{j}}$ ($0.19 \mathrm{~g}, 0.93 \mathrm{mmol}$) in methanol (8mL) was added NIS ($0.31 \mathrm{~g}, 1.4 \mathrm{mmol}$). After stirred for 0.5 h , it was poured into aqueous $\mathrm{Na}_{2} \mathrm{SO}_{3}$ (15mL). After the organic portion was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ($3 \times 15 \mathrm{~mL}$). the solution was dried over MgSO_{4}. The solvent was removed in vacuo. The solution 0 F DBU ($0.15 \mathrm{~mL}, 1.03 \mathrm{mmol}$) and the residue in DMF (18mi) was stirred at room temperature for 13 h . The resulting reaction mixture was poured into water (30 mL) and the organic portion was extracted with ether ($3 \times 30 \mathrm{~mL}$). It was dried over MgSO_{4} and the solvent was removed in
vacuo. The residue was chromatographed on silica gel (Ac0Et:hexane=1:4) to afford 5 j ($0.18 \mathrm{~g}, 81 \%$) : IR (neat) $3010,2950,1715,1680,1475,1450,1210$, $1085,1065 \mathrm{~cm}^{-1}$; NMR (CCl_{4}) $\delta 1.90-2.30(\mathrm{~m}, 2 \mathrm{H}), 2.45(\mathrm{t}, \mathrm{J}=7 \mathrm{~Hz}, 2 \mathrm{H}), 2.70-$ 3.15 ($\mathbf{m}, 1 \mathrm{H}$), 3.27 (s, 3H), 3.20-3.70 (m, 2H), 3.65 (s, 3 H), 3.70-4.10 (m, 1H), 5.17 (br s,1H), 5.65 (br s, 1H). Anal. Calcd for $\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{ClNO}_{3}: \mathrm{C}, 51.40$; H, 6.90; C1, 15.17; N, 5.99. Found: C, 51.33; H, 7.17; Cl, 14.88; N, 6.03.

4-Bis(methoxycarbonyl)-3-(2-chloroethyl)-methoxycarbonyl-1,4,5,6-tetrahydropyridine (6 j) was prepared by the reaction of 5 j with dimethyl malonate according to the general procedure described above: IR (neat) 2950, 1750, $1735,1710,1660,1445,1300,1195 \mathrm{~cm}^{-1}$; NMR $\left(\mathrm{CCl}_{4}\right) \quad \delta 1.65-2.05(\mathrm{~m}, 2 \mathrm{H})$, 2.10-2.60 (m, 2H), 2.75-3.13 ($\mathbf{m}, 1 \mathrm{H}$), 3.30-3.85 (m, 5H), 3.72 ($\mathrm{s}, 9 \mathrm{H}$), 6.78 (br s, 1H); MS, $\underline{\underline{m} / e} 333.0976\left(M^{+}\right.$, calcd for $\left.\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{ClNO} \mathrm{O}_{6}: 333.0979\right)$, 284, 204, 202 (base).

4-(Methoxycarbonyl)methyl-3-(2-chloroethyl)-1-methoxycarbonyl-1,4,5,6tetrahydropyridine (6 k). A solution of 6 ($0.302 \mathrm{~g}, 0.906 \mathrm{mmol}$), NaCl (0.082 $\mathrm{g}, 1.4 \mathrm{mmol}$), and water ($0.079 \mathrm{~mL}, 4.37 \mathrm{mmol}$) in DMF (3mL) was refluxed for 2.8 h. After the reaction mixture was poured into water (10mL), the organic portion was extracted with ether (3x15mL). It was dried over MgSO_{4} and the solvent was removed in vacuo. The residue was chromatographed on silica gel (Ac0Et:hexane $=1: 4$) to afford $6 \underline{k}(0.167 \mathrm{~g}, 67 \%)$: IR (neat) 2960, 1740, 1715, $1670,1450,1400,1200,770 \mathrm{~cm}^{-1}$; NNR (CCl_{4}) $\delta 1.55-1.95$ (m, 2 H), 2.10-2.75 ($\mathbf{m}, 4 \mathrm{H}$), 3.00-3.90 (m, 5H), 3.56 (s, 3H), 3.60 (s, 3H), 6.60 (br s, 1 H). Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{ClNO}_{4}$: $\mathrm{C}, 52.28 ; \mathrm{H}, 6.58 ; \mathrm{Cl}, 12.86 ; \mathrm{N}, 5.08$. Found: C, 52.45 ; H, 6.63 ; C1, 12.63; N, 5.09.
trans-1-Benzoyl-3-(2-chloroethyl)-4-(methoxycarbonyl)piperidine (3').
Method A. Into a solution of $\underline{6 k}(0.099 \mathrm{~g}, 0.36 \mathrm{mmol})$ in formic acid (4mL) was added in portions $90 \% \mathrm{NaBH}_{4}(0.27 \mathrm{~g}, 7.19$ mmol $)$. After stirred for 0.5 h , the reaction mixture was poured into aqueous $\mathrm{NaHCO}_{3}(15 \mathrm{~mL})$. The organic portion was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (3x15mL) and dried over MgSO_{4}. After the solvent removed in vacuo, into a solution of the residue in CHCl_{3} (3mL) was added iodotrimethylsilane ($0.077 \mathrm{~mL}, 0.54 \mathrm{mmol}$). After the reaction mixture was heated at $50^{\circ} \mathrm{C}$ for 1 h , it was cooled down to room temperature. Into it was added MeOH (2mL) and stirred 0.5 h . Into it was added aqueous $\mathrm{K}_{2} \mathrm{CO}_{3}$ (10 mL) and benzoyl chloride ($0.04 \mathrm{~mL}, 0.36 \mathrm{mmol}$) and stirred for 6 h . Into the resulting reaction mixture was poured water (10mL) and the organic portion was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ($3 \times 10 \mathrm{~mL}$). The extract was dried over MgSO_{4} and the solvent removed in vacuo. The residue was chromatographed on silica gel (Ac0Et:hexane $=1: 3$) to afford $3^{\prime}(0.058 \mathrm{~g}, 52 \%) .{ }^{5}$

Metod B. A solution of $\underline{6 \mathrm{k}}$ ($0.26 \mathrm{~g}, 0.94 \mathrm{mmol}$) in acetic acid (5ml) containing cat.amt. of $\mathrm{Pt} 0_{2}$ was stirred under hydrogen atmosphere $\left(10 \mathrm{~kg} / \mathrm{cm}^{2}\right)$ at room temperature. After stirred for 20 h , the treatment similar to Method A afforded $\underline{2}^{\prime}(0.027 \mathrm{~g}, 9 \%)^{4}$ and $\underline{3}^{\prime}(0.22 \mathrm{~g}, 72 \%)$.

3-(2-Chloroethyl)-1-(methoxycarbonyl)-4-(methoxycarbonyl)methyl-1,2,5,6 -tetrahydropyridine (14). Into a solution of 6 j ($0.465 \mathrm{~g}, 1.69$ miol) in methanol (5 mL) was added NIS ($0.417 \mathrm{~g}, 1.85 \mathrm{mmol}$). After stirred for 1 h , it was poured into aqueous $\mathrm{Na}_{2} \mathrm{SO}_{3}$ (10mL). After the organic portion was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ($3 \times 15 \mathrm{~mL}$), the solution was dried over MgSO_{4}. The solvent was removed in vacuo. The solution OF DBU ($0.15 \mathrm{~mL}, 1.03$ mmol) and the residue in DMF (18mL) was stirred at room temperature for 13h. The resulting reaction mixture was poured into water (30mL) and the organic
portion was extracted with ether ($3 \times 30 \mathrm{~mL}$). It was dried over MgSO_{4} and the solvent was removed in vacuo. Into a solution of the residue in formic acid (8mL) was added a portion $90 \% \mathrm{NaBH}_{4}$ ($0.32 \mathrm{~g}, 8.4 \mathrm{mmol}$). After stirred for 0.5 h , the reaction mixture was poured into aqueous NaHCO_{3} (15 mL). The organic portion was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ($3 \times 15 \mathrm{~mL}$) and dried over MgSO_{4}. After the solvent was removed in vacuo, the residue was chromatographed on silica gel (Ac0Et:hexane $=1: 4$) to afford $14(0.303 \mathrm{~g}, 65 \%)$: IR (neat) 2960, $1740,1705,1450,1250 \mathrm{~cm}^{-1}$; $\operatorname{NNR}\left(\mathrm{CCl}_{4}\right) \delta 1.95-2.35(\mathrm{~m}, 2 \mathrm{H}), 2.52(\mathrm{br} \mathrm{t}, \mathrm{J}=$ $8 \mathrm{~Hz}, 2 \mathrm{H}), 3.05(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 3.30-3.70(\mathrm{~m}, 4 \mathrm{H}), 3.65(\mathrm{~s}, 6 \mathrm{H}), 3.70-3.97(\mathrm{~m}$, 2H). Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{ClNO}_{4}: \mathrm{C}, 52.28 ; \mathrm{H}, 6: 58 ; \mathrm{Cl}, 12.86 ; \mathrm{N}, 5.08$. Found: C, 52.20 ; H, 6.69; C1, 12.67; N, 5.00.
cis-1-Benzoyl-3-(2-chloroethyl)-4-(methoxycarbonyl)piperidine (2'). The procedure similar to Method B gave 2' (37\%) and $\underline{3}^{\prime}$ (13\%).

References and Notes

1.a) Shono, T.; Matsumura, Y.; Tsubata, K. J. Am. Chem. Soc. 1981, 103 , 1172.
b) Idem. Org. Synth. 1984, 63, 206, and references cited therein.
2. Shono, T.; Matsumura, Y.; Ogaki, M. ; Onomura, 0. Chem. Lett. 1987, 1447.
3.a) Base-catalyzed condensations of dimethyl malonate with 3-acylpyridinium salt, see: Wenkert, E.; Chang, C-J.; Chawla, H.P.S.; Cochran, D. W.; Hagaman, E. W. ; King, J. C.; Orito, K. J. Am. Chem. Soc. 1976, 98, 3645 , and references cited therein.
b) Silver ion promoted condensations of β-dicarbonyl anions with 2-cyano-3-ethyl-1-methyl-1,2,5,6-tetrahydropyridine, see: Grierson, D.S.;

Harris, M. ; Husson, H.-P. J. Am. Chem. Soc. 1980, 102, 1064.
4. Uskoković, M. R.; Henderson, T.; Reese, C, Lee, H. L.; Grethe, G.; Gutzwiller, J. J. Am. Chem. Soc. 1978, 100, 571.
5. Uskoković, M. R.; Reese, C.; Lee, H. L.; Grethe, G.; Gutzwiller, J. J. Am. Chem. Soc. 1971, 93, 5902.
6. Shono, T.; Matsumura, Y.; Tsubata, K.; Sugihara, Y.; Yamane, S.; Kanazawa, T. ; Aoki, T. J. Am. Chem. Soc. 1982, 104, 6697.
7. Other method for transformation of 4 c into $\underline{\mathrm{e}}$ was reported by Wenkert, see: Wenkert, E.; Hudlicky, T. J. Org. Chem. 1988, 53,1953.
8. Shono, T.; Matsumura, Y.; Onomura, 0.; 0gaki, M. ; Kanazawa, T. J. Org. Chem. 1987, 52, 536.
9. Shono, T.; Matsumura, Y.; Onomura, 0.; Yamada, Y. Tetrahedron Lett. 1987, 28, 4073.
10. The Lewis acid induced reaction of 1-ethoxycarbonyl-4-hydroxy-1,2,3,4tetrahydropyridine with heteroatom nucleophiles gave 4 -substituted compounds, while it with carbon nucleophiles gave 2-substituted ones, see: Kozikowski, A. P.; Park, P. J. Org. Chem. 1984, 49, 1674.
11. Uskokovic et al. synthesized $\underline{2}$ and $\underline{3}$ via cis-1-benzoyl-3-(2-chloro-ethyl)-4-(methoxycarbonyl)methylpiperidine $\underline{2}$ ' and trans-isomer $\underline{3}^{3},{ }^{4,5}$ we selected $\underline{2}^{\prime}$ and $\underline{3}^{\prime}$ as synthetic targets.
12. Since the dehydrobromination of $\underline{15}$ gave $\underline{6 j}$ in low yield, the iodomethoxylation of 4 j was carried out.

15
13. Imanishi, T.; Inoue, M.; Wada, Y.; Hanaoka, M. Chem. Pharm. Bull. 1983, 31, 1551.

Chapter 4-2

An Approach to Synthesis of (-)-Dihydrocorynantheol
 from L-Lysine Using Anodic Oxidation.

Abstract: A key intermediate for the (-)-Dihydrocorynantheol synthesis was prepared with high optical purity by utilyzing stereoselective introducing carbon chain into the 2-, 4-, and 5-position of anodically prepared pipecolinic acid derivative from L-lysine.

Synthesis of optically active piperidine alkaloids from L-lysine is particularly interesting since the piperidine skeleton found in some natural piperidine alkaloids has been known to be formed from L-lysine. ${ }^{1}$

In this viewpoint we have synthesized optically active piperidine alkaloids from L-lysine using anodic oxidation as key reactions. ${ }^{2}$

This paper describes a synthesis of (-)-dihydrocorynantheol (1), which was first isolated from Aspidosperma marcgravianum. ${ }^{3.4}$ Our synthetic route is shown in Scheme 1, which containes two our previously reported methods. Namely, one is the anodic transformation of L-lysine to optically active pipecolinic acid. ${ }^{5}$ The other is an introducing carbon chain into the 3- and /or 4-position of piperidine skeleton. ${ }^{6}$

1

Scheme 1
step a step b step c step d step e

This route consists of four steps: step a; Pipecolinic acid derivatives $\underline{2}$ was prepared by anodic oxidation of L-lysine derivatives and treatment of the product with acid: step b; Introduction of ethyl group of into the 5-position of 2: step c; Introduction of bis(methoxycarbonyl)rethyl group into the 4 -position of $\underline{3}$: step d ; Condensation of $\underline{4}$ with tryptphyl bromide: step e; Transformation of 5 into 1 .

The details of each step is described bellow.
step a. The content of this step was reported by us (eq 1). ${ }^{4}$

6
2. 702 from 6
step b. Friedel-Crafts reaction of 2 with acetyl chloride gave 5-acetylated product $\underline{7}$ in 58% yield, ${ }^{7}$ which was transformed into 5-ethyl compound $\underline{3}$ by the reduction of $\underline{2}$ with NaBH_{4} in acetic acid and the treatment of the product with $\mathrm{CF}_{3} \mathrm{SO}_{3} \mathrm{H}$ in 52% yield (eq 2).

step c. Bromomethoxylation of $\underline{3}$ and followed by base treatment of the product afforded $\underline{9}$ (75% yield from $\underline{3}^{\text {) }} .^{8}$ Then, by TiCl ${ }_{4}$-catalyzed condensation of $\underline{9}$ with dimethyl malonate was obtained cis- 4 -substituted compound $\underline{4}$ (66% yield) together with small amountof trans-isomer $\underline{4}^{\prime}\left(3 \%\right.$ yield) (eq 3). ${ }^{6}$ The ratio of $\underline{4}$ and $\underline{4^{\prime}}$ (96:4) was measured by separation with column chromatography.

step d. Reduction of $\underline{4}$ with NaBH_{4} in acidic solvent gave (2 $\underline{S}, \underline{\mathrm{~S}}, 5 \underline{\mathrm{R}}$)-1, 2,4,5-tetrasubstituted piperidine derivative $\underline{10}$ in 93% yield, which was transformed into $\underline{11}$ by the demethoxycarbonylation in 83% yield. Transformation of 1-methoxycarbonyl group of $\underline{11}$ into tryptphyl group gave $\underline{12}$ in 75% yield. By hydrolysis of $\underline{12}$ and follwed by the treatment with POCl_{3}, however, was obtained $\underline{13}$ in 40% yield (eq 4) instead of $5 .{ }^{9}$
On the other hand, the hydrogenation of $\underline{4}$ afforded (2 $2 \underline{S}, 4 \underline{R}, 5 \underline{R}$)-isomer $\underline{13}$ (eq 5). This compound may be a important precurcer for syntheses of hetero-
reserpine alkaloids.

step e. The reduction of $\underline{5}$ with LAH may afford (-)-1 (eq 6).

$$
\begin{equation*}
5 \xrightarrow{\text { LAH }}(-)-1 \tag{6}
\end{equation*}
$$

In conclusion, anodically prepared pipecolinic acid derivative from L-lysine was trnasformed into a key intermediate for the (-)-dihydrocorynantheol synthesis with high optical purity. This method will be effective in the synthesis of various optically, active piperidine alkaloids. .

Experimental Section

Compound $\underline{2}$ was prepared according to our previously reported method. ${ }^{4}$

Acetylation of 2. Into a solution of AcCl (12.2mL, 172mmol) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (30mL) was added dropwise a solution of SnCl_{4} (8.1mL, 69mmol) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL})$ at $-70^{\circ} \mathrm{C}$ under an atmosphere of nitrogen. After stirring for 10 min , into the reaction mixture was added dropwise a solution of $\underline{2}$ (6.84 g , 34.4mmol) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (30mL). After the solution was gradually warmed to room temperature and stirred overnight. The mixture was poured into cold water (50 mL) and the organic layer was separated. The solution was washed with aq. $\mathrm{Na}_{2} \mathrm{CO}_{3}$ (50 mL) and dried over MgSO_{4}. The solvent was removed in vacuo and the residue was chromatographed on silica gel (Ac0Et:hexane=1:2) to afford 8 in 58% yield: IR (neat) $2975,1740,1660,1640,1448,1255$, $1200 \mathrm{~cm}^{-1}$; NMR $\left(\mathrm{CCl}_{4}\right) \delta 1.57-2.77(\mathrm{~m}, 4 \mathrm{H}), 2.24(\mathrm{~s}, 3 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H}), 3.86$ (s, 3H) , 4.77 (br s, 1H), $7.90(\mathrm{br} \mathrm{s}, 1 \mathrm{H}) ; \mathrm{MS}, \underline{\mathbb{I} / \mathrm{e} 241\left(\mathrm{M}^{+}\right), 226,182}$ (base); exact mass calcd $\underline{m} / \mathrm{e} 241.0950$, found 241.0930 .

Preparation of 3 . Into a solution of $\underline{8}(0.64 \mathrm{~g}, 2.66 \mathrm{mmol})$ in $\mathrm{HCO}_{2} \mathrm{H}(20$ mL) was added, in portions, $90 \% \mathrm{NaBH}_{4}$ ($0.892 \mathrm{~g}, 21.2$ mmol). After stirring for 1 h , into the solution was added water (20 mL). The product was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 30 \mathrm{~mL})$ and dried over MgSO_{4}. After the solvent was removed in vacuo, into the residue was added $\mathrm{CF}_{3} \mathrm{SO}_{3} \mathrm{H}(0.1 \mathrm{~mL})$. After stirring for 1 h , into the solution was poured water (20 mL). The product was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ($3 \times 30 \mathrm{~mL}$) and dried over MgSO_{4}. After the solvent was removed in vacuo, the residue was chromatographed on silica gel (Ac0Et:hexane=1:5) to afford 3 ($0.311 \mathrm{~g}, 52 \%$): IR (neat) $2980,1760,1720,1685,1455,800,745$ ClII^{-1}; $\operatorname{NMR}\left(\mathrm{CCl}_{4}\right) \delta 1.01(\mathrm{t}, \underset{\mathrm{J}}{\mathrm{J}}=7.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.70-2.50(\mathrm{~m}, 6 \mathrm{H}), 3.63(\mathrm{~s}, 3 \mathrm{H})$,
3.68 ($\mathrm{s}, 3 \mathrm{H}$), 4.50-4.80 (m, 1H), 6.50 (br d, $\mathrm{J}=7 \mathrm{~Hz}, 1 \mathrm{H}$). Anal.Calcd for $\mathrm{C}_{11} \mathrm{H}_{17} \mathrm{NO}_{4}: \mathrm{C}, 58.14 ; \mathrm{H}, 7.54 ; \mathrm{N}, 6.14$. Found: $\mathrm{C}, 58.08 ; \mathrm{H}, 7.73 ; \mathrm{N}, 6.22$.

Preparation of 9. Into a solution of $\underline{3}$ ($1.213 \mathrm{~g}, 5.34 \mathrm{mmol}$) and Na ($0.15 \mathrm{~g}, 6.41 \mathrm{mmol}$) in MeOH (15 mL) was added dropwise bromine ($0.33 \mathrm{~mL}, 6.41$ mimol). After stirring for 10 min , into the solution was poured aq. $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ (20 mL). The product was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ($3 x 20 \mathrm{~mL}$) and dried over MgSO_{4}. After the solvent was removed in vacuo, a solution of the residue and DBU ($1.6 \mathrm{~mL}, 10.7 \mathrm{mmol}$) in DMF (5 mL) was heated ($95{ }^{\circ} \mathrm{C}$) for 2 h . The solvent was removed in vacuo and the residue was chromatographed on silica ge1 (Ac0Et:hexane=1:4) to afford $\underline{9}$ (1.029g, 75\%): IR (neat) 2952, 1748, $1710,1444,1310,1208,1070 \mathrm{~cm}^{-1}$; $\operatorname{NMR}\left(\mathrm{CCl}_{4}\right) \delta 1.01(\mathrm{t}, \underline{\mathrm{J}}=7 \mathrm{~Hz}, 3 \mathrm{H}), 1.50-$ $2.70(\mathrm{~m}, 4 \mathrm{H}), 3.30(\mathrm{br} \mathrm{s}, 3 \mathrm{H}), 3.67,3.70$, and 3.74 (3s, 6H), 4.60-5.70 (m , 3H) ; MS, w/e 257.1278 (calcd for $\mathrm{C}_{12} \mathrm{H}_{19} \mathrm{NO}_{5}: 257.1263$), 226, 198, 166 (base).

TiC1 ${ }_{4}$-Catalyzed Condensation. Into a solution of TiCl_{4} (1.13mL, 10.3 mmol) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (10 mL) was added dropwise a solution of $\underline{9}$ ($1.758 \mathrm{~g}, 6.84$ mmol) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (10 mL) at $-70{ }^{\circ} \mathrm{C}$ under an atinosphere of nitrogen. After stirring for 10 min , into the solution was added dropwise a solution of dimethyl malonate ($1.17 \mathrm{~mL}, 10.2 \mathrm{mmol}$) and $\mathrm{Et}_{3} \mathrm{~N}(1.43 \mathrm{~mL}, 10.3 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$. After the solution was gradually warmed to room temperature and stirred overnight. Into the mixture was poured water (20mL) and the organic layer was separated. The aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ($2 \times 20 \mathrm{~mL}$). The combined organic layer was dried over MgSO_{4}. After the solvent was removed in vacuo, the residue was chromatographed on silica gel (Ac0Et:hexane=1:4) to afford $\underline{4}(1.608 \mathrm{~g})$ and $\underline{4}^{\prime}(0.075 \mathrm{~g})$ in 66% and 3% yields, respectively.
$\underline{4}$ (less polar isomer): IR (neat) $2970,1760,1740,1725,1452,1215 \mathrm{~cm}^{-1}$; $\operatorname{NMR}\left(\mathrm{CCl}_{4}\right) \delta 0.98(\mathrm{br} \mathrm{t}, \mathrm{J}=7 \mathrm{~Hz}, 3 \mathrm{H}), 1.70-3.30(\mathrm{~m}, 6 \mathrm{H}), 3.62(\mathrm{~s}, 12 \mathrm{H})$,
 53.78 ; H, 6.49; N, 3.92. Found: C, 53.98; H, 6.45; N, 3.70.
4^{+}(polar isomer): IR (neat) $2975,1740,1720,1450,1200 \mathrm{~cm}^{-1}$; NMR $\left(\mathrm{CCl}_{4}\right) \quad \delta 1.07(\mathrm{br} \mathrm{t}, \underset{\mathrm{J}}{\mathrm{J}}=7 \mathrm{~Hz}, 3 \mathrm{H}), 1.70-3.30(\mathrm{~m}, 4 \mathrm{H}), 1.80(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 3.57$. 3.63 , and $3.70(3 \mathrm{~s}, 12 \mathrm{H}), 4.50-4.75(\mathrm{~m}, 1 \mathrm{H}), 6.65(\mathrm{br} \mathrm{d}, \underset{-}{\mathrm{J}}=7 \mathrm{~Hz}, 1 \mathrm{H})$.

Reduction of 4. Into a solution of $\underline{4}(0.707 \mathrm{~g}, 1.98 \mathrm{mmol})$ in $\mathrm{HCO}_{2} \mathrm{H}(10$ mL) and $\mathrm{CF}_{3} \mathrm{SO}_{3} \mathrm{H}(0.5 \mathrm{~mL})$ was added, in portions, $90 \% \mathrm{NaBH}_{4}(0.25 \mathrm{~g}, 5.94 \mathrm{mmol})$. After stirring for 2 h , into the solution was poured water (15 mL). The product was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 20 \mathrm{~mL})$. The solution was dried over MgSO_{4} and the solution was removed in vacuo. The residue was chromatographed on silica gel (Ac0Et:hexane=1:2) to afford $10(0.663 \mathrm{~g}, 83 \%$ yield): IR (neat) 2960, 2930, $1740,1705,1450,1245,1200,1015 \mathrm{~cm}^{-1} ; \operatorname{NMR}\left(\mathrm{CCl}_{4}\right) \delta 0.93(\mathrm{t}$, $\mathrm{J}=4.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.00-2.25(\mathrm{~m}, 6 \mathrm{H}), 2.90-5.00(\mathrm{~m}, 4 \mathrm{H}), 3.70(\mathrm{~s}, 12 \mathrm{H})$. Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{25} \mathrm{NO}_{8}$: C, 53.47 ; H, 7.01; $\mathrm{N}, 3.90$. Found: C, 53.69 ; H, 6.99; N, 3.67.

Catalytic Hydrogenation of 4. A mixture of $\underline{4}$ and a catalytic amount of PtO_{2} in acetic acid was stirred overnight at room temperature under an atmosphere of hydrogen (latil). After the catalyst and the solvent was removed to afford 14: IR (neat) $2980,1744,1715,1452,1202 \mathrm{~cm}^{-1}$; $\operatorname{NMR}\left(\mathrm{CCl}_{4}\right)$ $\delta 0.73-2.05(\mathrm{~m}, 9 \mathrm{H}), 2.80-4.00(\mathrm{~m}, 3 \mathrm{H}), 3.60(\mathrm{~s}, 6 \mathrm{H}), 3.64(\mathrm{~s}, 3 \mathrm{H}), 3.68$ ($\mathrm{s}, 3 \mathrm{H}$) , 4.68 (br d, $\underset{\mathrm{J}=10 \mathrm{H}, 1 \mathrm{H}) \text {. } ~}{\text {. }}$

Demethoxycarbonylation of 10 . A solution of $\underline{2}$ ($0.798 \mathrm{~g}, 2.22 \mathrm{mmol}$), NaCl $(0.2 \mathrm{~g}, 3.33 \mathrm{mmol})$, and water (0.2 mL) in DMF (10 mL) was heated $\left(150^{\circ} \mathrm{C}\right)$. After 7 h , into the solution was poured water (20 mL). The product was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ($3 \times 30 \mathrm{~mL}$). The solution was dried over MgSO_{4} and the solvent was removed in vacuo. The residue was chromatographed on silica gel (Ac0Et:hexane=1:2) to afford $\underline{11}$ ($0.558 \mathrm{~g}, 83 \%$ yield): IR (neat) 2970, 1742, $1710,1450 \mathrm{~cm}^{-1}$; $\operatorname{NMR}\left(\mathrm{CCl}_{4}\right) \delta 0.94(\mathrm{brt}, \underline{J}=5 \mathrm{~Hz}, 3 \mathrm{H}), 1.10-3.40(\mathrm{~m}, 9 \mathrm{H})$, 3.61 and 3.67 (2s, 9H), 3.70-4.93 (m, 2H). Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{23} \mathrm{NO}_{6}: \mathrm{C}$, 55.80 ; H, 7.69 ; N, 4.65 . Found: C, 56.01 ; H, 7.75 ; N, 4.60.

Preparation of 12 . A solution of $\underline{11}(0.558 \mathrm{~g}, 1.85 \mathrm{mmol})$ and TMSI (0.5 mL , 3.51 mmol) in $\mathrm{CHCl}_{3}(10 \mathrm{~mL})$ was heated $\left(50^{\circ} \mathrm{C}\right)$. After 4.5 h , into the solution was poured MeOH (5 mL) at room temperature. After stirred for 30min, water (10 mL) was poured into the reaction mixture. The organic portion was separated and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ($2 \times 10 \mathrm{~mL}$). The combined organic layer mas dried over MgSO_{4} and the solution was removed in vacuo. A solution of the residue, tryptophile bromide ($0.6 \mathrm{~g}, 2.68 \mathrm{mmol}$), and NaHCO_{3} ($0.78 \mathrm{~g}, 9.29 \mathrm{mmol}$) in $\mathrm{CH}_{3} \mathrm{CN}$ (10mL) was stirred for 18 h . After water (20mL) was poured into the reaction mixture, the product was extracted with Ac0Et ($3 \times 30 \mathrm{~mL}$). The solution was dried over MgSO_{4} and the solvent was removed in vacuo. The residuc was chromatographed on alumina ($\mathrm{CHCl}_{3}: \mathrm{Me} 0 \mathrm{H}=$ $10: 1)$ to afford $\underline{12}(0.535 \mathrm{~g}, 75 \%$ yield): IR (neat) $3400,2950,1740,1620$, $1460,1438,1200,1165,740 \mathrm{~cm}^{-1}$; NMR $\left(\mathrm{CDCl}_{3}\right) \delta 0.70-3.40(\mathbb{1}, 18 \mathrm{H}), 3.60$ (s, 3H), 3.66 (s, 3H), 6.83-7.59 (m, 4H), 8.10 (br s, 1H); MS, $\mathbb{m} / \mathrm{e} 386\left(\mathrm{M}^{+}\right)$, 327, 314, 257, 257 (base); exact mass calcd $\mathfrak{m} / \mathrm{e} 386.2205$, found 386.2175.

Preparation of 13 . A solution of $\underline{12}(0.252 \mathrm{~g}, 0.65 \mathrm{mmol})$ and $\mathrm{KOH}(0.21 \mathrm{~g}$, 3.25 mmol) in Me 0 H (10 mL) and water (10 mL) was heated at $60^{\circ} \mathrm{C}$. After 7 h ,
dil. HCl was poured into the solution in order to be acidic. The solvent was removed in vacuo and into the residue was added POCl_{3} (5四). The reaction mixture was heated at $70^{\circ} \mathrm{C}$ for 1 h . This solution was added to a mixture of Ac 0 Et (50 mL) and saturated NaHCO_{3} (100 mL) and stirred for 1 h . The sepatatedorganic layer was evaporated and into the residue was poured MeOH (10 mL). In the solution was blew dry HCl. After stirring overnight, the solvent was evaporated. Into the residue was added water (10 mL) and the aqueous layer was washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (10 mL). The aqueous layer was basified with $\mathrm{K}_{2} \mathrm{CO}_{3}$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ($3 \times 10 \mathrm{~mL}$). The extracts was dried over MgSO_{4} and the solvent was removed in vacuo. The residue was chromatographed on alumina (Ac0Et:hexane=1:5) to afford yellow crystal $\underline{5}$ ($0.085 \mathrm{~g}, 0.26 \mathrm{mmol}$) in 40% yield: mp $175-176^{\circ} \mathrm{C}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$-hexane); IR (KBr) $3340,1740,1618,1060,742 \mathrm{~cm}^{-1} ; 0.70-3.70$ (m, 17H), 3.60 and 3.63 (2s,
 229, 184.

References and Notes

1. Hervert, R. B. In " Rodd's Chemistry of Carbon Compounds," Vol. IV, Part G, Ed.; Elsevier Scientific Publishing Company: Amsterdam, 1980; p. 312.
2.a) Shono, T.; Matsumura, Y.; Tsubata, K.; Uchida, K. J. Org. Chem. 1986, 51, 2590.
b) Shono, T.; Matsumura, Y.; Onomura, 0.; Sato, M. J. Org. Chem. 1988, 53, 4118.
3.a) Varvacas, C.; Philipsborn, W. V.; Schlittler, E.; Schmid, H.; Karrer, P. Helv. Chim. Acta. 1957, 40, 1793.
b) Gilbert, B.; Antonaccio, L. D.; Djerassi, C. J. Org. Chem. 1962, 27, 4702.
2. Synthesis of (\pm)-dihydrocorynantheol, see; a) Sawa, Y. K .; Matsumura, H. J. Chem. Soc., Chem. Commun. 1968, 679. b) Kametani, T.; Kanaya, N.; Hino, H. ; Huang, S-P.; Ihara, M. J. Chem. Soc., Perkin Trans. I 1981, 3168. c) Ihara, M.; Taniguchi, N.; Fukumoto, K.; Kametani, T. J. Chem. Soc., Chem. Commun. 1987, 1438.
3. Shono, T.; Matsumura, Y.; Inoue, K. J. Chem. Soc., Chem. Comer 1983 , 1169.
4. Shono, T. Ogaki, M.; Onomura, 0.; Matsumura, Y. The 56th Annual Meeting of CSJ, abstr. p. 1417 (1988).
5. Shono, T.; Matsumura, Y.; Tsubata, K.; Sugihara, Y.; Yamane, S.; Kanazawa, T.; Aoki, T. J. All. Chem. Soc. 1982, 104, 6697.
6. Shono, T.; Matsumura, Y.; Onomura, 0.; Yamada, Y. Tetrahedron Lett. 1987, 28, 4073.
7. Christie, B. D. ; Rapoport, H. J. Org. Chem. 1985, 50, 1239.

A New Method for Regioselective Synthesis of 2-Substituted-1-(methoxycarbonyl)-1,2-dihydropyridines and 5-Substituted Ones

Abstract: 2-Substituted 1,2-dihydropyridines were regioselectively prepared starting from 2-substituted piperidines through three intermediates, that is, (a) 1,2,3,4-tetrahydropyridines, (b) 5-bromo-6-methoxypiperidines, and (c) 1,2,3,6-tetrahydro-6-methoxypyridines. By the similar procedure was obtained 5 -substituted 1,2-dihydropyridines.

Since 1-acyl-1,2-dihydropyridines have been known to be useful synthetic intermediates as exemplified by their Diels-Alder type reaction to form nitrogen-heterocycles, ${ }^{1}$ a variety of methods have been reported for synthesis of these dienes. ${ }^{2}$

Although the reported syntheses known to be useful ones have been carried out by reduction of pyridinium salts ${ }^{3}$ or by addition of organometallic reagents to pyridinium salts, ${ }^{4}$ these methods form both $1,2^{-}$and 1 , 4 -dihydropyridines. Thus, convenient methods for the synthesis of $1,2-$ dihydropyridines, especially those possessing substituents at certain positions of pyridine nucleus, are quite few so far. ${ }^{5}$

In this chapter is described a new facile method for the regioselective synthesis of 2-substituted-1-(methoxycarbonyl)-1,2-dihydropyridines $\underline{5}$ and 5substituted ones $\underline{11}$ from piperidines $\underline{1}$.

Scheme I shows our method which comprises four steps (a)-(d), that is, (a) preparation of 1,2,3,4-tetrahydropyridines $\underline{2}$ from $\underline{1}$, (b) bromomethoxylation of $\underline{2}$ giving 5-bromo-6-methoxy compounds $\underline{3}$, (c) dehydrobromination of $\underline{3}$ giving 1,2,3,6-tetrahydro-6-thexypyridines $\underline{4}$, and
(d) elimination of methanol from $\underline{4}$ affording $\underline{5}$.

Scheme I

The preparation of 2a-d was achieved according to our previously reported method which consisted of anodic oxidation of $\underline{1 a-d}$ in methanol and elimination of methanol from the oxidized products. ${ }^{6}$

The subsequent transformation of $\underline{2 a-d}$ to 5 a-d was carried out as follows: The addition of bromine (1.1eq.) to a solution of $2 \mathrm{a}-\mathrm{d}$ in $\boldsymbol{m e}$ thanol containing sodium methoxide (1.1eq.) at room temperature gave $3 \mathrm{a}-\mathrm{d},{ }^{7}$ which was then dehydrobrominated by treatment with bases ${ }^{8}$ (DBU in DMF, $90^{\circ} \mathrm{C}$ or electrochemically generated 2 -pyrrolidone anion ${ }^{9}$ in DMF at room temperature) to afford $\underline{4 a-d}$. The desired $\underline{5 a-d}$ were obtained by heating ($90-100^{\circ} \mathrm{C}$) $\underline{4}$ in the presence of a catalytic amount of $\mathrm{NH}_{4} \mathrm{Br}(0.01 \mathrm{eq}$.) under reduced pressure ($70 \sim 100 \mathrm{mmltg}$) for $60 \sim 120 \mathrm{~min} .{ }^{6}$ The yields of $\underline{2 a-d-5 a-d}$ are summarized in Table 1.

The compounds $\underline{4}$ and $\underline{5}$ were found to give the Diels-Alder type adducts upon reaction with dienophiles. For example, the reaction of 4 c with dimethyl fumarate gave the $[4+2]$ cycloadduct $\underline{6}$ in 54% yield (eq 1).

Table 1. Isolated Yields $(\%)$ of Compounds $\underline{2 a-d}-\underline{5 a-d}$.

	R	$\underline{2}$	$\underline{3}$	$\underline{4}$	$\underline{5}$
$\underline{\mathrm{a}}$	H	83	80	72^{a}	$(77)^{\mathrm{b}}$
65					
$\underline{\mathrm{~b}}$	Me	64	80	50^{a}	65
$\underline{\mathrm{c}}$	Et	74	84	74^{a}	89
$\underline{\mathrm{~d}}$	$\mathrm{CH}_{2} \mathrm{COMe}$	60	56	78^{a}	85

${ }^{\text {a }}$ DBU was used as a base.
${ }^{\text {b }}$ Electrochemically generated 2-pyrrodine anion was used as a base.

Our method was applied to the synthesis of the optically active diene 5e, which might be an useful intermediate for the construction of optically active nitrogen heterocycles. The optically active key intermediate $1,2,3$, 4 -tetrahydropyridine $\underline{2 e}$ was preparable by our reported method starting from L-lysine derivative $\underline{7}$ (eq 2). ${ }^{10}$ The optical purity of $\underline{5}{ }^{11}\left\{[\alpha]_{\mathrm{D}}{ }^{25}\right.$ -516.7° (c 1.2, MeOH)\}, obtained according to the procedures shown above (3e, 72\%; $\underline{4 e}, 80 \%$; $\underline{5 e}, 80 \%$), was found to be at least 77% ee after it was converted to $1 e\left(R=\mathrm{CO}_{2} \mathrm{Me}\right)$ by hydrogenation and the optical purity of \underline{e} $\left\{[\alpha]_{\mathrm{D}}{ }^{25}-46.9^{\circ}\right.$ (c 1.5, MeOH) $\}$ was compared with that of an authentic sample $\left\{[\alpha]_{\mathrm{D}}{ }^{25}-60.9^{\circ}\right.$ (c 1.5, MeOH) $\}$.

Although the optical purity is not satisfactory at present, $\underline{5 e}$ is the first example of optically active 1,2-dihydropyridine. In the next Chapter is described the synthesis of optically pure 1,2-dihydropyridines, and their utilization in organic synthesis.

Furthermore, since 1,2-dihydropyridines bearing sustituents at the 5position are frequently required in natural product synthesis, ${ }^{2 b, 5 a}$ by utilizing this method were prepared 5 -substituted 1,2 -dihydropyridines $\underline{11}$ from 5 -substituted 1,2,3,4-tetrahydropyridines $\underline{8}$ which were obtained electrochemically (eq 3).

f, $X=A c$
g, $X=C 1$
h, $x=E t$
In summary, advantages of our method are as follows: (i) The products, 1,2-dihydropyridines $\underline{5}$ are completely uncontaninated with 1,4 -isomers, (ii) the each step is simple, (iii) the starting compounds 1 possessing a variety of substituents R is easily preparable by our reported $\mathbb{m e t h o d}^{\text {a, }}{ }^{11}$ and (iv) optically acitve 1,2-dihydropyridines could be prepared as shown above.

Experimental Section

Compounds $\underline{2 a},{ }^{6} \underline{2} \underline{b},{ }^{6} \underline{2 e},{ }^{10} \underline{8 f},{ }^{6} \underline{8 g},{ }^{7} \underline{8} h^{12}$ were prepared according to our previously reported method. ${ }^{6}$ Similarly 1c, 2c, and 2d were synthesized.

1c: bp $80^{\circ} \mathrm{C} / 6$ milg; IR (neat) 2940, 2870, 1700, 1452, $1260 \mathrm{~cm}^{-1}$; NMR (CCl_{4}) $\delta 0.84(\mathrm{t}, \mathrm{J}=9 \mathrm{~Hz}, 3 \mathrm{H}), 1.17-1.91(\mathbf{m}, 8 \mathrm{H}), 2.53-2.98(\mathbf{m}, 1 \mathrm{H}), 3.57$
($\mathrm{s}, 3 \mathrm{H}$) , 3.75-4.25 (m, 2H). Anal. Calcd for $\mathrm{C}_{9} \mathrm{H}_{17} \mathrm{NO}_{2}: \mathrm{C}, 63.13 ; \mathrm{H}, 10.00$; N, 8.18. Found: C, 62.85 ; H, 10.20; N, 8.26.

2c: IR (neat) $2970,1714,1658,1445,1415,1361,1120,772 \mathrm{~cm}^{-1}$; NMR $\left(\mathrm{CCl}_{4}\right) \delta 0.90(\mathrm{t}, \mathrm{J}=6.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.20-2.21(\mathrm{~m}, 6 \mathrm{H}), 3.62(\mathrm{~s}, 3 \mathrm{H}), 3.80-4.31$ (mill 1 H) , 4.35-4.90 (m, 1H), 6.36-6.75 (m, 1H). Anal. Calcd for $\mathrm{C}_{9} \mathrm{H}_{15} \mathrm{NO}_{2}$: C, $63.88 ; \mathrm{H}, 8.93 ; \mathrm{N}, 8.28$. Found:C, 63.71; H, 9.00; N, 8.11.

2d: IR (neat) $2975,1718,1660,1450,1367 \mathrm{~cm}^{-1}$; NMR (CCl_{4}) $\delta 1.60-$ 2.27 (III, 4H), 2.10 ($\mathrm{s}, 3 \mathrm{H}$), 2.51 ($\mathrm{d}, \mathrm{J}=7 \mathrm{~Hz}, 2 \mathrm{H}$), 3:65 ($\mathrm{s}, 3 \mathrm{H}$), 4.33-4.90 (四,
 140, 139, 138 (base).

Bromomethoxylation of 2 or 8 . General procedure. Into a solution of $\underline{2}$ or $\underline{8}$ (20mmol) and Na (22mol) in methonl (25mL) was added bromine (22mol) at $5^{\circ} \mathrm{C}$. After stirred for 10 min , aq. $\mathrm{Na}_{2} \mathrm{SO}_{3}(30 \mathrm{~L})$ was poured into the reaction mixtue. The organic portion was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ($3 \times 30 \mathrm{~mL}$). The extract was dried over MgSO_{4} and the solvent was removed in vacuo. The residue was chromatographed on silica gel (Ac0Et-hexane) to afford $\underline{3}$ or $\underline{8}$. The spectroscopic data of 3a was consistent with the authentic sample. ${ }^{7}$

3b: IR (neat) $2965,1715,1448,1358,1305,1069 \mathrm{cr}^{-1}$; NAR (CCl_{4}) δ 1.23 and $1.26(2 \mathrm{~d}, \underline{\mathrm{~J}}=7$ and $7 \mathrm{~Hz}, 3 \mathrm{H}), 1.54-2.55$ (罒, 4 H), 3.23 and $3.33(2 \mathrm{~s}$, $3 \mathrm{H})$, 3.62 and $3.65(2 \mathrm{~s}, 3 \mathrm{H}), 4.10-4.50(\mathrm{~m}, 2 \mathrm{H}), 5.33$ (br s, 1H). Anal. Calcd for $\mathrm{C}_{9} \mathrm{H}_{16} \mathrm{BrNO}_{3}$: C, $40.63 ; \mathrm{H}, 6.06 ; \mathrm{Br}, 30.02 ; \mathrm{N}, 5.26$. Found: $\mathrm{C}, 40.60 ; \mathrm{H}$, 6.15 ; $\mathrm{Br}, 30.27$; N, 5.20.

3c: IR (neat) 2970, 1718, 1448, 1360, 1305, 1075, 946, $779 \mathrm{~cm}^{-1}$; NRR (CCl_{4}) $\delta 0.89(\mathrm{t}, \underline{\mathrm{J}}=6.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.21-2.67(\mathrm{~m}, 6 \mathrm{H}), 3.25$ and $3.33(2 \mathrm{~s}, 3 \mathrm{H})$, $3.62(\mathrm{~s}, 3 \mathrm{H}), 3.70-4.30(\mathrm{~m}, 2 \mathrm{H}), 5.28$ (br s, 1H). Anal. Calcd for $\mathrm{C}_{10} \mathrm{H}_{18} \mathrm{BrNO}_{3}: \mathrm{C}, 42.87 ; \mathrm{H}, 6.48 ; \mathrm{Br}, 28.52 ; \mathrm{N}, 5.00$. Found: C, $42.92 ; \mathrm{H}$, 6.59; $\mathrm{Br}, 28.74 ; \mathrm{N}, 4.99$.

3d: IR (neat) $2965,1722,1715,1450,1363,1300,1078 \mathrm{~cm}^{-1}$; NMR (CC1 ${ }_{4}$) $\delta 1.00-2.84$ (m, 6H), 2.05 ($\mathrm{s}, 3 \mathrm{H}$), 3.19 (s, 3H), 3.58 ($\mathrm{s}, 3 \mathrm{H}$), 4.01-4.19 ($\mathbf{m}, 1 \mathrm{H}$), 4.27 ($\mathbf{m}, 1 \mathrm{H}$), 5.17 (br s, 1 H). Anal. Calcd for $\mathrm{C}_{11} \mathrm{H}_{18} \mathrm{BrNO}_{4}$: C , 42.87; H, 5.89 ; Br, 25.93; N, 4.55. Found: C, 43.16; H, 5.98; Br, 26.00; N, 4.45.

3e: IR (neat) 2965, 1742, 1715, 1444, $1083 \mathrm{~cm}^{-1}$; NMR (CCl_{4}) $\delta 1.55-$ $2.60(\mathrm{~m}, 4 \mathrm{H}), 3.27(\mathrm{~s}, 3 \mathrm{H}), 3.65(\mathrm{~s}, 3 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}), 4.06-4.30(\mathrm{~m}, 1 \mathrm{H})$,
 38.73; H, 5.20 ; Br,25.76; N, 4.52. Found: C, 38.79 ; H, 5.17 ; $\mathrm{Br}, 25.55$; N, 4.55.

9f: IR (neat) $2960,1718,1450,1235,1180 \mathrm{~cm}^{-1}$; $N \mathrm{NRR}\left(\mathrm{CCl}_{4}\right) \delta 1.47-$ 2.16 ($\mathbf{m}, 4 \mathrm{H}$), 2.33 (s, 3H), 2.57-3.10 ($\mathbf{m}, 1 \mathrm{H}$), 3.25 (s, 3 H), 3.70-4.23 (m, $1 \mathrm{H}), 3.73$ (s, 3H), 5.47-5.77 (m, 1H). Anal. Calcd for $\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{BrNO} 0_{4}: \mathrm{C}$, 40.83; H, 5.48; Br,27.16; N, 4.76. Found: C, 40.55 ; H, $5.42 ; \mathrm{Br}, 27.28$; N, 4.88.

9g: IR (neat) $2965,1715,1452,1405,1280,1085,777 \mathrm{~cm}^{-1}$; NKR (CC1 ${ }_{4}$) $\delta 1.36-3.17$ (m, 5H), 3.40 (s, 3H), 3.64-4.26 (m, 1H), 3.74 (s, 3H), 5.215.61 (m, 1H). Anal. Calcd for $\mathrm{C}_{8} \mathrm{H}_{13} \mathrm{BrClNO}_{3}: \mathrm{C}, 33.53 ; \mathrm{H}, 4.57$; $\mathrm{Br}, 27.88$; $\mathrm{Cl}, 12.37$; N, 4.89. Found: C, 33.52; H, 4.62; Br, 27.64; C1, 12.27; N,
4.94.

وh: IR (neat) $2970,1720,1455,1290,1083 \mathrm{~cm}^{-1}$; NMR $\left(\mathrm{CCl}_{4}\right) \delta 1.10$ ($\mathrm{t}, \underline{\mathrm{J}}=6.5 \mathrm{~Hz}, 3 \mathrm{H}$) , $1.30-1.68$ (m, 1 H), $1.69-2.52$ (m, 5 H$), 2.54-3.12$ (m, 1 H$)$, $3.25(\mathrm{~s}, 3 \mathrm{H}), 3.55-4.31(\mathrm{~m}, 1 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H}), 5.13$ and $5.33(2 \mathrm{~s}, 1 \mathrm{H})$. Anal. Calcd for $\mathrm{C}_{10} \mathrm{H}_{18} \mathrm{BrNO}_{3}: \mathrm{C}, 42.87 ; \mathrm{H}, 6.48 ; \mathrm{Br}, 28.52 ; \mathrm{N}, 5.00$. Found: C , 42.61; H, 6.36; Br, 28.48; N, 5.13.

Dehydrobromination of 3 or 9 . General procedure. A solution of $\underline{3}$ or $\underline{9}$ (10 mmol) and DBU (15 mol) in DMF (10mol) was heated ($95{ }^{\circ} \mathrm{C}$) for 2 h . After the solvent was removed in vacuo, the residue was chromatographed on silica gel (Ac0Et-hexane) to afford $\underline{4}$ or $\underline{9}$. In the case of $\underline{8 \mathrm{f}}$ was afforded $\underline{10 \mathrm{f}}$ by the this procedure.

4a: IR (neat) $3000,1710,1658,1472,1448 \mathrm{~cm}^{-1}$; NMR $\left(\mathrm{CCl}_{4}\right) \delta 1.87-$ 2.27 (m, 2H) , 2.86-3.35 (m, 1H), 3.29 (s, 3 H), 3.70 (s, 3 H), 3.78-4.17 (m, 1 H), 5.34 (br s, 2H), 5.57-6.08 ($\mathbf{m}, 1 \mathrm{H}$). Anal. Calcd for $\mathrm{C}_{8} \mathrm{H}_{13} \mathrm{NO}_{3}: \mathrm{C}, 56.13$; H, 7.65; N, 8.18. Found: C, 56.34 ; H, 7.90; N, 8.21.

4b: IR (neat) $2980,2945,1710,1665,1450,1350,1340,1120,1078$ cm^{-1}; $\operatorname{NMR}\left(\mathrm{CCl}_{4}\right) \quad \delta 1.26(\mathrm{~d}, \mathrm{~J}=10 \mathrm{~Hz}, 3 \mathrm{H}), 1.72-2.57(\mathrm{~m}, 2 \mathrm{H}), 3.31(\mathrm{~s}, 3 \mathrm{H})$, $3.70(\mathrm{~s}, 3 \mathrm{H}), 4.34-4.73(\mathrm{~m}, 1 \mathrm{H}), 5.33(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 5.79(\mathrm{br} \mathrm{s}, 2 \mathrm{H}) ; \mathrm{MS}$, \mathbb{I} / e 153, 138 (base), 94.

4C: IR (neat) $2970,2945,1710,1670,1450,1354,1325,1125,1078$ Cl^{-1}; $\operatorname{NNR}\left(\mathrm{CCl}_{4}\right) \delta 0.87(\mathrm{t}, \mathrm{J}=10 \mathrm{~Hz}, 3 \mathrm{H}), 1.30-2.50(\mathrm{~m}, 4 \mathrm{H}), 3.30(\mathrm{~s}, 3 \mathrm{H})$, 3.63 ($\mathrm{s}, 3 \mathrm{H}$) , 3.90-4.41 ($\mathrm{m}, 1 \mathrm{H}$) , 5.23 (br s, 1 H), 5.63 (br s, 2H). Anal. Calcd for $\mathrm{C}_{10} \mathrm{H}_{17} \mathrm{NO}_{3}$: C, $60.28 ; \mathrm{H}, 8.60$; $\mathrm{N}, 7.03$. Found: $\mathrm{C}, 59.45 ; \mathrm{H}, 8.57$;

N, 6.91.

4d: IR (neat) 2978, 1730, 1718, 1672, 1456, 1358, 1330, 1080, 960, 781 cm^{-1}; $\operatorname{NMR}\left(\mathrm{CCl}_{4}\right) \quad \delta 1.94-2.45(\mathbf{m}, 2 \mathrm{H}), 2.07(\mathrm{~s}, 3 \mathrm{H}), 2.76(\mathrm{t}, \underline{\mathrm{J}=3.5 \mathrm{~Hz}, 2 \mathrm{H}) \text {, }, ~(1)}$ 3.28 (s, 3H), 3.68 ($\mathrm{s}, 3 \mathrm{H}$), 4.57-5.01 ($\mathbf{m}, 1 \mathrm{H}$), 5.26 (br s, 1 H), 5.66 (br s, 2H). Anal. Calcd for $\mathrm{C}_{11} \mathrm{H}_{17} \mathrm{NO}_{4}: \mathrm{C}, 58.14 ; \mathrm{H}, 7.54 ; \mathrm{N}, 6.16$. Found: C, 59.32; H, 7.79; N, 6.07.

4e: IR (neat) 2965, 1745, 1715, 1670, 1450, $1325 \mathrm{~cm}^{-1}$; $\operatorname{NMR}\left(\mathrm{CCl}_{4}\right) ~ \delta$ 2.15-2.58 (m, 2H), 3.17 and $3.21(2 \mathrm{~s}, 3 \mathrm{H}), 3.53$ and 3.56 ($2 \mathrm{~s}, 3 \mathrm{H}$), 3.63 (s , 3H), 4.63-5.00 ($\mathbf{m}, 1 \mathrm{H}$), 5.05-5.40 ($\mathbf{m}, 1 \mathrm{H}$), 5.45-5.97 (m, 2H). Anal. Calcd for $\mathrm{C}_{10} \mathrm{H}_{15} \mathrm{NO}_{5}$: C, $52.40 ; \mathrm{H}, 6.60 ; \mathrm{N}, 6.11$. Found: C, $52.55 ; \mathrm{H}, 6.82 ; \mathrm{N}$, 5.82 .
$10 \mathrm{~g}:$ IR (neat) $2950,1710,1658,1442,1318,1295,1095,1082,975 \mathrm{~cm}^{-1}$; NMR (CCl_{4}) δ 1.90-2.50 (m, 2H), 2.85-3.40 ($\mathbf{m}, 1 \mathrm{H}$), 3.38 ($\mathrm{s}, 3 \mathrm{H}$), 3.65-4.20 (m, 1H), 3.73 (s, 3H) 5.25 (br s, 1 H), 5.93 (dd, $\underset{=}{\mathrm{J}=6}$ and $3 \mathrm{~Hz}, 1 \mathrm{H}$); MS, $\underline{\mathrm{m} / \mathrm{e}}$ 207, $205.0491\left(\mathrm{M}^{+}\right.$, calcd for $\mathrm{C}_{8} \mathrm{H}_{12} \mathrm{ClNO}_{3}: 205.0505$), 190, 176, 174 (base).

10h: IR (neat) $2940,1710,1668,1450,1342,1208,1075,970,772 \mathrm{~cm}^{-1}$;
 3.22 (s, 3H), 3.48-4.20 ($\mathbf{m}, 1 \mathrm{H}$), 3.60 (s, 3H), 5.06 (br s, 1H), 5.27-5.57 (m, 1H). Anal. Calcd for $\mathrm{C}_{10} \mathrm{H}_{17} \mathrm{NO}_{3}: \mathrm{C}, 60.28 ; \mathrm{H}, 8.60 ; \mathrm{N}, 7.03$. Found: C , 60.33; H, 8.73; N, 6.98.

Preparation of 5 or 11. General procedure. A mixture of $\underline{4}$ or $\underline{10}$ (5mol) and $\mathrm{NH}_{4} \mathrm{Cl}(10 \mathrm{mg})$ was heated $\left(100^{\circ} \mathrm{C}\right)$ under reduced pressure (80 malg). After 2 h , the product was isolated by distillation directly from the reaction
flask．

1，2－Dihydropyridines $5 \underline{a},{ }^{\mathbf{4 b}} \underline{\mathrm{b}},{ }^{2 \mathrm{f}} \underline{\mathrm{c}},^{5 \mathrm{~d}}$ and $11 h^{1 \mathrm{a}}$ were known compounds． New dienes 5 d ，e and $\underline{11 \mathrm{f}, \mathrm{g}}$ were charactized by spectroscopic data．

5d：IR（neat）2975，1726，1718，1655，1650，1587，1450，1353， 1270 ， $1122,776,732 \mathrm{~cm}^{-1}$ ；NMR $\left(\mathrm{CCl}_{4}\right) \delta 2.17(\mathrm{~s} .3 \mathrm{H}), 2.51-3.04(\mathbb{m}, 2 \mathrm{H}), 3.81(\mathrm{~s}$ ， 3H），4．96－5．43（m，2H），5．54－6．04（m，2H），6．51－6．92（m，1H）；MS，w／e $195.0883\left(\mathrm{M}^{+}\right.$，calcd for $\left.\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{NO}_{3}: 195.0895\right), 138$（base）， 94.

5e：IR（neat） $2965,1755,1730,1652,1446,1032 \mathrm{~cm}^{-1}$ ；NMR（ $\left.\mathrm{CCl}_{4}\right) \delta$ 3.76 （ $\mathrm{s}, 3 \mathrm{H}$ ）， $3.80(\mathrm{~s}, 3 \mathrm{H}), 4.73-5.99$（m，4H），6．53－6．87（m，1H）．IR（neat） $1755,1730,1652,1590 \mathrm{~cm}^{-1}$ ；MS，四／e $197.0668\left(\mathrm{M}^{+}\right.$，calcd for $\mathrm{C}_{9} \mathrm{H}_{11} \mathrm{NO}_{4}$ ： 197．0687）， 138 （base）， 94.

11f：IR（KBr）2952，1730，1715，1645，1600，1445，935，775， $738 \mathrm{~cm}^{-1}$ ； NHR $\left(\mathrm{CCl}_{4}\right) \delta 2.27(\mathrm{~s}, 3 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 4.40(\mathrm{dd}, \underline{\mathrm{J}}=6$ and $3 \mathrm{~Hz}, 2 \mathrm{H}), 5.33-$ $5.70(\mathbb{m}, 1 \mathrm{H}), 6.27-6.57(\mathbb{1}, 1 \mathrm{H}), 7.73(\mathrm{br} \mathrm{s}, \mathrm{1H})$ ；MS， $1 \mathbf{l} / \mathrm{e} 181.0747$（base， M^{+}，calcd for $\mathrm{C}_{9} \mathrm{H}_{11} \mathrm{NO}_{3}: 181.0755$ ）， $180,166,136$.

11g：IR（neat） $2950,1710,1648,1590,1440,1290,1115,762 \mathrm{~cm}^{-1}$ ； NMR（ CCl_{4} ）$\delta 3.80(\mathrm{~s}, 3 \mathrm{H}), 4.33(\mathrm{dd}, \mathrm{J}=5$ and $2 \mathrm{~Hz}, 2 \mathrm{H}), 5.40-6.00(\mathrm{~m}, 2 \mathrm{H})$ ， 6．70－7．00（田，1H）；MS，田／e 175，174， 173.0264 （base，M^{+}，calcd for $\left.\mathrm{C}_{7} \mathrm{H}_{8} \mathrm{ClNO}_{2}: 173.0244\right)$ ．

Diels－Alder reaction．A solution of 4c（0．199mg，1mmol），dimethyl malonate（ $0.173 \mathrm{mg}, 1.2 \mathrm{mmol}$ ）， $\mathrm{p}-\mathrm{Ts} 0 \mathrm{H}$（ 10 mg ），and dihydroquinone（ 5 mg）in toluene（2mL）was heated（at $100^{\circ} \mathrm{C}$ ）．After 5 h ，the reaction mixture was
chromatographed on silica gel (Ac0Et:hexane=3:1) to afford [4+2] cycloadduct $\underline{6}$ in 54% yield: mp $85-87^{\circ} \mathrm{C}$ (from Ac0Et-hexane); IR (CC1 ${ }_{4}$) 2960, 1740, 1708, 1620, 1447, 1390, $1200 \mathrm{~cm}^{-1} ; 0.87(\mathrm{t}, \mathrm{J}=6.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.00-2.00(\mathrm{~m}, 2 \mathrm{H}), 2.63$ $-3.70(\mathrm{~m}, 4 \mathrm{H}), 3.60,3.67$, and 3.73 (3s, 9H), 4.67-5.07 ($\mathbf{m}, 1 \mathrm{H}$), 6.10-6.67 ($\mathbf{m}, 2 H$) ; MS, 畂e $311.1366\left(M^{+}\right.$, calcd for $\mathrm{C}_{15} \mathrm{H}_{21} \mathrm{NO}_{6}: 311.1368$), 282, 280 , 167, 139, 138 (base).

References and Notes

1. Dihydropyridines have been used in several synthetic schemes for the preparations of alkaloids. For recent references, see:
a) Raucher, S.; Bray, B. L.; Lawrence, R. F. J. All. Chem. Soc. 1987, 109, 442.
b) Comins, D. L.; Brown, T. D. Tetrahedron Lett. 1986, 27, 4549.
c) Natsume, M.; Utsunomiya, I; Yamaguchi, K.; Sakai, S. Tetrahedron 1985, 41, 2115.
d) Nakazono, Y.; Yamaguchi, R.; Kawanishi, M. Chem. Lett. 1984, 1129.
e) Kunng, F. -A.; Gu, J. -M. ; Chao, S.; Chen, Y.; Marlano, F. S. J. Org. Chem. 1983, 48, 4263.
f) Natsume, M.; 0gawa, M. Heterocycles 1980, 14, 169.
2. a) For review on dihydropyridines, see: Stout, D. M.; Meyers, A. I. Chem. Rev. 1982, 82, 223.
b) Fowler, F. W.; Wyle, M. J. J. Org. Chem. 1984, 49, 4025.
3. a) Natsume, M.; Utsunomiya, I. Chem. Pharm. Bull. 1984, 32, 2477.
b) Fowler, F. J. Org. Chem. 1972, 37, 1321.
4. a) Yamaguchi, R.; Moriyasu, M.; Kawanishi, M. Tetrahedron Lett. 1986, 27, 211.
b) Courtois, G.; Al-aranout, A.; Miginiac, L. Ibid. 1985, 26, 1027.
c) Comins, D. L.; Brown, J. D. Ibid. 1984, 25, 3297.
d) Yamaguchi, R.; Nakazono, Y; Kawanishi, M. Tetrahedron Lett. 1983, 24, 1801.
5. a) Comins, D. L.; Mantlo, N. B. J, Org. Cher. 1986, 51, 5456.
b) Comins, D. L.; Abdullah, A. H.; Mantlo, N. B. Tetrahedron Lett. $\underline{\underline{\text { 1984, }}}$ 25, 4867.
6. Shono, T.; Matsumura, Y.; Tsubata, K.; Sugihara, Y.; Yamane, S.; Kanazawa, T.; Aoki, T. J. Am. Chem. Soc. 1982, 104, 6697.
7. This bromomethoxylation was also achieved by electrochemical method; Shono, T.; Matsumura, Y.; Onomura, 0.; 0gaki, M.; Kanazawa, T. J. Org. Chem. 1987, 52, 536.
8. Renshaw, R. R.; Conn, R. C. J. Am. Chem. Soc. 1938, 60, 745.
9. Shono, T.; Kashimura, S. ; Nogusa, H. J. Org. Chem. 1984, 49, 603.
10. Shono, T.; Matsumura, Y.; Inoue, K. J. Chem. Soc., Chem. Commun. 1983, 1169.
11. a) Shono, T.; Matsumura, Y.; Tsubata, K. J. Am. Chem. Soc. 1981, 103, 1172.
b) Shono, T. ; Matsumura, Y.; Tsubata, K. Org. Synth. 1984, 63, 206, and references cited therein.
12. Shono, T.; Matsumura, Y.; 0gaki, M.; Onomura, 0. Chem. Lett. 1987, 1447.

Synthesis of Optically Pure 2-Substituted-1-(methoxycarbonyl)-1,2-dihydropyridines. Preparation of Optically Active 2-Aza-2,5,6-tris(両ethoxycarbonyl)bicyclo[2.2.2] octane

Abstract

Optically pure 2-substitued 1,2-dihydropyridines were prepared from L-lysine using anodic oxidation as a key reaction, which were transformed into optically active 2 -aza-2,5,6-tris(methoxycarbonyl)bicyclo[2.2.2]octane by Diels-Alder reaction.

Since 1-acyl-1,2-dihydropyridines have been known to be useful synthetic intermediates as exemplified by their Diels-Alder type reaction to form nitrogen-heterocycles, ${ }^{1}$ a variety of methods have been reported for synthesis of these dienes. ${ }^{2}$

In preceding chapter (5-1) was described a new method for regioselective preparation of 2-substituted 1,2-dihydropyridines starting from 2substituted piperidines through three intermediates. ${ }^{3}$ In this chapter that convenient method was applied to the synthesis of optically pure 1,2dihydropyridine from L-lysine, which was transformed into optically active 2-aza-2,5,6-tris(methoxycarbonyl)bicyclo[2.2.2]octane by Diels-Alder reaction.

0ptically Pure 2-Sustituted-1-(methoxycarbonyl)-1,2-dihydropyridines. In chapter 5-1 our method was applied to the synthesis of the optically active diene $\underline{5}$, which might be an useful intermediate for the construction of optically active nitrogen heterocycles. The optically active key inter-
mediate 1,2,3,4-tetrahydropyridine $\underline{2}$ was preparable by our reported method starting from L-lysine (eq 1). ${ }^{3}$ To our regret, the optical purity of $\underline{5}$ was found to be 77\% ee.

Consequently, our effort was directed to the synthesis of optically pure 1,2-dihydropyridines and their utilizations in organic synthesis. Since the racemization of $\underline{5}$ seemed to be caused by the electron-withdrawing effect of 2-methoxycarbonyl group of $\underline{5}$, 2-acetoxymethyl-1,2-dihydropyridine 10 was prepared. Namely, the subsequent transformation of $\underline{1}$ to $\underline{10}$ was carried out as follows (eq 2): The reduction of $\underline{1}$ with NaBH_{4} in dimethoxy-etane-methanol and followed by thetreatment with acetic anhydride gave $\underline{6}$. The preparation of $\underline{7}$ was achieved according to our previously reported method ${ }^{4}$ of the oxidized products and the elimination of methanol from the cyclized product. The addition of bromine to a solution of $\underline{7}$ in methanol containing triethylamine at room temperature gave $\underline{8}$, which was then dehydrobrominated by treatment with DBU in DMF at $90{ }^{\circ} \mathrm{C}$ to afford $\underline{9}$. The desired 10 was obtained by heating ($130{ }^{\circ} \mathrm{C}$) $\underline{9}$ in the presence of a catalytic amount of $\mathrm{NH}_{4} \mathrm{Br}$ under reduced presure (25 m nilg) for 1 h . According to expectation compound 10 was found to be optically pure and as described bellow was a key intermediate for a preparation of optically active 2 -aza-2,5,6-tris (methoxycarbonyl)bicyclo[2.2.2]octane.

On the other hand, bicyclic 1,2-dihydropyridine $\underline{14}(100 \%$ ee) was prepared according to the method described above from 11 which was obtained by the reduction of $\underline{2}$ (eq 3). Compound $\underline{14}$, however, was less reactive with dienophile.

Optically Active 2-Aza-2,5,6-tris(methoxycarbonyl)bicyclo[2.2.2]octane.
The compound 10 was found to give the Diels-Alder type adducts upon reaction with dimethyl maleate (eq 4). ${ }^{1}$ Similarly an intermediate 9 was reactive with dimethyl maleate in the presence of $\mathrm{p}-\mathrm{Ts} 0 \mathrm{H}$ (eq 5). In these reactions as minor products were obtained [4+2] cycloadducts of $\underline{10}$ with dimethyl fumarate (9% from $10,2 \%$ from $\underline{9}$). ${ }^{5}$

Each of these Diels-Alder reactions seemed to be carried out diastereoselectively in the ratio of 9 to 1 , which was determined by HPLC. In fact, the mixture of 15 a and $\underline{15 \mathrm{~b}}$ was transformed into optically active 2 -azabicyclo[2.2.2]octane 18a,b. That is, as shown in Scheme 1, hydrolysis of $15 \mathrm{a}, \mathrm{b}$ and followed by hydrogenation afforded $16 \mathrm{a}, \mathrm{b}$, which were transformed into $17 \mathrm{a}, \mathrm{b}$ by the anodically carbon-carbon bond cleavage ${ }^{6}$ and then the reduction of $\underline{17 \mathrm{a}, \mathrm{b}}$ with NaBH_{4} gave $\underline{18 \mathrm{a}, \mathrm{b} .{ }^{7}}$

Scheme 1

Since the diastereoselectivity seemed to be caused by the steric effect of 2 -acetoxymethyl group of 10 , a main isomer was thought to be 15 (figure 1).

figure 1.

An Approach to Synthesis of (-)-Ibogamine. (-)-Ibogamine (24) is isolated from Tabernanthe iboga Baill, which is of interest because of an inherent pharmacological activity. ${ }^{8}$ Our synthetic route is shown in Scheme 2. As a precurcer for synthesis of $\underline{24}$ we selected $\underline{23}$, which was thought to be obtained Diels-Alder reaction of $\underline{22}$ and α-chloroacrylonitrile. In first, in order to introduce ethyl group into the β-position of 7 , FriedelCraft acetylation of $\underline{7}$ and a reduction of the product $\underline{19}$ was carried out. By the method described above $\underline{20}$ was transformed into a mixture of $\underline{23 a}$ and $\underline{23 b}$. The transformation of $\underline{23}$ into $\underline{24}$ may be carried out according to the known methods. ${ }^{\text {a, } 9}$

Scheme 2

Experimental Section

Carbamate $\underline{1}$ was known compound. ${ }^{4}$ Products $\underline{9}, \underline{10}$, and $\underline{13}$ were not submitted for sufficient analytical data due to their instability.

Reduction of 1 and 2 with NaBH_{4}. In a solution of $\underline{1}$ ($26.8 \mathrm{~g}, \quad 97$ moll) in a mixture of DME (40mL) and MeOH (8mL) was added a portion of NaBH_{4} ($3.06 \mathrm{~g}, 81 \mathrm{mmol}$). After it was stirred overnight, the reaction mixture was poured into $\mathrm{H}_{2} \mathrm{O}$ (50 mL). The organic portion was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (3×40 mil) and dried over MgSO_{4}. The solvent removed in vacuo and into the residue
was poured $\quad \mathrm{Ac}_{2} 0(18.9 \mathrm{~mL}, 200 \mathrm{mmol})$ and successively pyridine（ $20 \mathrm{~mL}, 250$ mmol）．After stirred for 2.5 h ，into the reaction mixture was water（30ml）． The organic layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 40 \mathrm{~mL})$ and dried over MgSO_{4} ． The solvent removed in vacuo and the residue was washed with a mixture of ether and hexane：mp．97－98${ }^{\circ} \mathrm{C}$（from methanol）；IR（KBr）3355，2980，1755， $1700,1555,1230,1068 \mathrm{~cm}^{-1}$ ；NNR $\left(\mathrm{CDCl}_{3}\right) \delta 1.21-1.83$（四， 6 H ）， 2.10 （ s ， $3 \mathrm{H}), 3.06-3.37(\mathrm{~m}, 2 \mathrm{H}), 3.60-4.20(\mathrm{~m}, 1 \mathrm{H}), 3.71(\mathrm{~s}, 6 \mathrm{H}), 4.12(\mathrm{~d}, \mathrm{~J}=4 \mathrm{~Hz}$ ， 2H），4．53－5．03（11，2H）．Anal．Calcd for $\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{6}: \mathrm{C}, 49.65 ; \mathrm{H}, 7.64$ ；N， 9．65．Found：C，49．38；H，7．79；N，9．90．

Compound $\underline{11}$ was by the similar procedure from $\underline{2}$ except for an amount of NaBH_{4}（6．7equiv）：mp $45-46^{\circ} \mathrm{C}$ ；IR $\left(\mathrm{CCl}_{4}\right) 1752,1650,1420,1280,1180$ ， $1058 \mathrm{~cm}^{-1}$ ；NNR $\left(\mathrm{CDCl}_{3}\right) 1.50-2.43$（田， 4 H ），3．60－5．25（ $\mathrm{m}, 4 \mathrm{H}$ ）， 6.60 （br d，$\underset{\mathrm{J}=8}{ }$ $\mathrm{Hz}, 1 \mathrm{H})$ ．Anal．Calcd for $\mathrm{C}_{7} \mathrm{H}_{9} \mathrm{NO}_{2}: \mathrm{C}, 60.43 ; \mathrm{H}, 6.51 ; \mathrm{N}, 10.07$ ．Found： C ， 60.16 ；H， 6.56 ；N， 9.90.

Anodic Oxidation of 6．Into a beker with carbon rod anode and cathode （ 8 min ）was added a mixture of $\underline{6}\left(4.24 \mathrm{~g}, 14.62\right.$ minol ）and $\mathrm{Bu}_{4} \mathrm{NBF}_{4}(1.5 \mathrm{~g})$ in MeOH （ 60 mL ）and Ac 0 H （ 6 mL ）．After $10 \mathrm{~F} / \mathrm{mol}$ of electricity was passed at a constant current of $1 \mathrm{~A}\left(3.9 \mathrm{~h}\right.$ ，terminal voltage；ca． 16 V ）at $-10^{\circ} \mathrm{C}, \mathrm{H}_{2} \mathrm{~S} 0_{4}$ （ 3 mL ）was added the reaction mixture and stirred for 1 h at the temperature． Into the resulting reaction mixture was poured $\mathrm{CH}_{2} \mathrm{Cl}_{2}$（ 100 mL ）and the solution was washed with water（ 50 mL ）and successively aq． $\mathrm{Na}_{2} \mathrm{CO}_{3}$（ 50 mL ）． The organic layer was dried over MgSO_{4} and the solvent removed in vacuo． The residue was distillation by kugel rohr to afford $\underline{7}$（2．66g，66\％）：bp 160 ${ }^{\circ} \mathrm{C}$（2min）；IR（neat）2965，1742，1712，1660，1448，1362， $1240 \mathrm{~cm}^{-1}$ ；NNR $\left(\mathrm{CCl}_{4}\right) \delta 1.70-2.25(\mathrm{~m}, 4 \mathrm{H}), 1.98(\mathrm{~m}, 3 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}), 3.98(\mathrm{t}, \underline{\mathrm{J}}=7 \mathrm{~Hz}$ ， 2 H ），4．28－4．93（m，2H），6．53－6．90（四，1H）．Anal．Calcd for $\mathrm{C}_{\mathbf{1 0}} \mathrm{H}_{15} \mathrm{NO}_{4}$ ：C， 56.33 ；H，7．09；N，6．57．Found：C， 56.07 ；H，7．17；N， 6.40 ．

Bromomethoxylation of 7 and 11. Into a solution of $\underline{7}$ ($10.9 \mathrm{~g}, 50.7 \mathrm{mmol})$ and $\mathrm{Et}_{3} \mathrm{~N}$ ($8.5 \mathrm{~mL}, 60.8 \mathrm{mmol}$) in Me 0 H (60 mL) was added slowly Br_{2} (3.1mL, 60.8 minol) at $5^{\circ} \mathrm{C}$. After stirred for 30 min , aq. $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ was poured into the solution. The organic portion was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ($3 \times 50 \mathrm{~mL}$) and the dried over MgSO_{4}. The solvent was removed in vacuo and the residue was chromatographed on silica gel to afford 8 ($15.37 \mathrm{~g}, 93 \%$ yield): IR (neat) 2970, 1748, 1718, 1448, 1305, 1240, 1082, 1068 cm^{-1}; NMR (CC1 ${ }_{4}$) $\delta 1.40-2.50$ $(\mathbb{m}, 4 \mathrm{H}), 1.97(\mathrm{~s}, 3 \mathrm{H}), 3.29$ and $3.37(2 \mathrm{~s}, 3 \mathrm{H}), 3.67(\mathrm{~s}, 3 \mathrm{H}), 3.70-4.50(\mathrm{~m}$, 4H), 5.10-5.50 ($\mathbf{(1)}, 1 \mathrm{H}$). Anal. Calcd for $\mathrm{C}_{11} \mathrm{H}_{18} \mathrm{BrNO} 0_{5}$: C, 40.76; H, 5.60 ; $\mathrm{Br}, 24.65 ; \mathrm{N}, 4.32$. Found: C, 40.81 ; $\mathrm{H}, 5.81 ; \mathrm{Br} ; 24.37$; $\mathrm{N}, 4.23$.

By the similar procedure except for base ($\mathrm{Et}_{3} \mathrm{~N}$) was obtained $\underline{12}$ from 11: IR (neat) $2940,1760,1410,1260,1062,970,762 \mathrm{~cm}^{-1}$; NMR (CC14) δ $1.55-2.40(\mathrm{~m}, 4 \mathrm{H}), 3.32$ and $3.40(2 \mathrm{~s}, 3 \mathrm{H}), 3.55-4.60(\mathrm{~m}, 4 \mathrm{H}), 4.93(\mathrm{~d}, \underline{\mathrm{~J}}=2$ $\mathrm{Hz}, 1 \mathrm{H})$. Anal. Calcd for $\mathrm{C}_{8} \mathrm{H}_{12} \mathrm{BrNO}_{3}: \mathrm{C}, 38.43 ; \mathrm{H}, 4.84 ; \mathrm{Br}, 31.95 ; \mathrm{N}, 5.60$. Found: C, 38.49 ; $\mathrm{H}, 4.80 ; \mathrm{Br} ; 32.12$; N, 5.54 .

Dehydrobromination of 8 and 12 . A solution of $\underline{8}(15.37 \mathrm{~g}, 47.15 \mathrm{~mol})$ and DBU ($13.7 \mathrm{~mL}, 100 \mathrm{mmol}$) in DMF (50 mL) was heated at $100{ }^{\circ} \mathrm{C}$. After 2 h , the solvent was removed in reduced pressure. The residue was chromatographed on silica gel (Ac0Et:hexane=4:1) to afford $\underline{9}$ ($10.4 \mathrm{~g}, 90 \%$ yield):

NMR (CCl_{4}) $\delta 1.80-2.30(\mathbf{1}, 2 \mathrm{H}), 2.02(\mathrm{~s}, 3 \mathrm{H}), 3.40$ and $3.47(2 \mathrm{~s}, 3 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 3.80-4.83(\mathbf{m}, 3 \mathrm{H}), 5.43(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 5.82(\mathrm{br} \mathrm{s}$, $2 H$) ; MS, $\mathbb{M} / \mathrm{e} 243.1090$ (calcd for $\mathrm{C}_{11} \mathrm{H}_{17} \mathrm{NO}_{5}: 243.1107$), 212, 184, 170 (base), 152, 138.

By the similar procedure was obtained $\underline{13}$ from 12: IR (neat) 2935, 1758 , $1412,1215,1080,780,760 \mathrm{~cm}^{-1}$; NMR (CC1 ${ }_{4}$) $\delta 1.98-2.33(\mathrm{~m}, 2 \mathrm{H}), 3.34(\mathrm{~s}$,
$3 H)$, 3.55-4.67 (m, 3H), 4.93 (br s, 1H), 5.80 (br s, 2H). Anal. Calcd for $\mathrm{C}_{8} \mathrm{H}_{11} \mathrm{NO}_{3}$: $\mathrm{C}, 56.80 ; \mathrm{H}, 6.55 ; \mathrm{N}, 8.28$. Found: $\mathrm{C}, 55.37 ; \mathrm{H}, 6.57 ; \mathrm{N}, 8.08$.

Preparation of 1,2-Dihydropyridines 10 and 14. A mixture of $9(0.325 \mathrm{~g}$, 1.327 mol) and $\mathrm{NH}_{4} \mathrm{Br}(0.01 \mathrm{~g})$ was heated at $150^{\circ} \mathrm{C}$ in reduced pressure (100 mm $H g)$. After 5 min, by the distillation $\left(150^{\circ} \mathrm{C}\right.$, 2 maHg$)$ was afforded 10 (0.265 g, 94\%) : IR (neat) 2955, 1745, 1720, 1640, 1580, 1442, 1355, 1328, 1258, $1230,1120,1046 \mathrm{~cm}^{-1}$; NMR $\left(\mathrm{CCl}_{4}\right) \delta 1.97(\mathrm{~s}, 3 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.82-4.10$ (m, 2H) , 4.85-5.60 (m, 3H), 5.85-6.12 (m, 1H), 6.59-6.92 (田, 1H); MS, 田/e 151, 139, 138 (base), 94.

14: IR (neat) $3025,2402,1765,1520,1425,1216 \mathrm{~cm}^{-1}$; NNR (CCl_{4}) δ
 $1 \mathrm{H})$; MS, $\underline{m} / \mathrm{e} 137.0463$ (base, calcd for $\mathrm{C}_{7} \mathrm{H}_{7} \mathrm{NO}_{2}: 137.0476$), 93, 77.

Diels-Alder reaction. A solution of 10 ($0.231 \mathrm{~g}, 1.095$ mol), dimethyl maleate ($0.68 \mathrm{~mL}, 5.47 \mathrm{mmol}$), and dihydroquinone (5mg) in decaline (3mL) was heated at $140{ }^{\circ} \mathrm{C}$ for 11 h . The solvent was removed in vacuo and the residue was chromatographed on silica gel (Ac0Et-hexane=1:2) to afford a mixture of 15 a and 15 b (215ing, 55\%) and cycloadducts with dimethyl fumarate (37mg, 10%).

15: IR (neat) $2975,1755,1712,1455,1390,1205,1180,1046 \mathrm{~cm}^{-1}$; NMR (CCl_{4}) $\delta 2.03(\mathrm{~s}, 3 \mathrm{H}), 2.73-4.20(\mathrm{~m}, 6 \mathrm{H}), 3.59(\mathrm{~s}, 6 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H})$, 4.83 (br s, 1H), 6.30-6.50 (m, 2H); MS, $\mathbb{1} / \mathrm{e}$ 295, 282, 151, 138, 121, 119, 117 (base). Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{21} \mathrm{NO}_{8}: \mathrm{C}, 54.08 ; \mathrm{H}, 5.96 ; \mathrm{N}, 3.94$. Found: C, $54.05 ; \mathrm{H}, 6.02 ; \mathrm{N}, 3.92$.

The ratio of 15a and 15b was determined by HPLC. HPLC was performed on a Simazu LC-6A with a Shir-pack CLC-0DS coulm (6mpx \boldsymbol{m} 150m). An
elution of 10 m phosphoric acid buffer (pH 2.6) /acetonitrile $=4 / 1$ was applied at $1.5 \mathrm{~mL} /$ min. The peaks were detected by RID-6A (0.16×10 Riufs) at $40^{\circ} \mathrm{C}$ in 8.4min and $10.4 \mathrm{~min}(1: 9)$.

Cycloadducts with Dimethyl Fumarate: IR (neat) 2955, 1740, 1702, 1442, 1337. $1220,1038 \mathrm{~cm}^{-1}$; $\mathrm{NMR}\left(\mathrm{CCl}_{4}\right) \delta 2.02$ and $2.05(2 \mathrm{~s}, 3 \mathrm{H})$, 2.65-4.15 (四, $6 \mathrm{H}), 3.66,3.69,3.74$, and $3.74(4 \mathrm{~s}, 9 \mathrm{H})$, 4.70-5.17(m, 1H), 6.17-6.70 (m, $2 H) ; \mathbb{M S}, \underline{\mathbb{I} / \mathrm{e}} 295,282,151,138$ (base). Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{21} \mathrm{NO}_{8}: \mathrm{C}$, 54.08; H, 5.96; N, 3.94. Found: C, 53.83; H, 5.97; N, 3.84.

By adding p-Ts0H (catalytic amount) from $\underline{9}$ with dimethyl maleate was prepared 15 under the similar conditions.

Preparation of 16 a and 16 b . Into a solution of $15 \mathrm{a}, \mathrm{b}(1.22 \mathrm{~g}, 3.44 \mathrm{mmol})$ in MeOH (20mL) was added HCl gas. After stirred overnight, the solvent was removed in vacuo. A solution of the residue and $5 \% \mathrm{Pd}-\mathrm{C}$ (cat amt.) was stirred for 12 h under an atmosphere of hydrogen (10atm). The reaction mixture was filterded and the filtrate was condensed in vacuo to afford 16a,b (1.02g, 95\% yield): IR (neat) $3470,2970,1740,1705,1458,1395$, $1220 \mathrm{~cm}^{-1}$; NMR $\left(\mathrm{CCl}_{4}\right) \quad \delta 1.40-1.93(\mathrm{~m}, 4 \mathrm{H}), 2.37-2.97(\mathbf{m}, 3 \mathrm{H}), 3.15-4.37$ (m, 5H), $3.59(\mathrm{~s}, 3 \mathrm{H}), 3.63(\mathrm{~s}, 3 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H})$; MS, m/e 297, 285, 284 (base). Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{21} \mathrm{NO}_{7}$: C, $53.33 ; \mathrm{H}, 6.71 ; \mathrm{N}, 4.44$. Found: C , 53.03; H, 6.69; N, 4.27.

Anodic Carbon-Carbon Bond Cleavage of 16a,b. Into an electrolysis cell described above was added a solution of $16 \mathrm{a}, \mathrm{b}(0.329 \mathrm{~g}, 1.044 \mathrm{mmol})$ and $\mathrm{n}-\mathrm{Bu}_{4} \mathrm{NBF}_{4}(0.150 \mathrm{~g})$ in $\mathrm{MeOH}(10 \mathrm{~mL})$ and $\mathrm{Ac} 0 \mathrm{H}(2 \mathrm{~mL})$. After $9 \mathrm{~F} / \mathrm{mol}$ electlicity was passed at a constant current (0.2 A , terminal voltage; ca. 12V). Into the reaction mixture was poured water (15mL). The organic portion was
extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 15 \mathrm{~mL})$ and was dried over MgSO_{4} ．The solvent was removed in vacuo and the residue was chromatographed on silica gel（Ac0Et－ hexane $=1: 3$ ）to afford $17 \mathrm{a}, \mathrm{b}(0.229 \mathrm{~g}, 70 \%$ ）：IR（neat） $2960,1750,1718,1452$ ， $1202 \mathrm{~cm}^{-1}$ ；NMR（ CCl_{4} ）$\delta 1.20-1.90(\mathrm{~m}, 4 \mathrm{H}), 2.30-2.65(\mathrm{~m}, 2 \mathrm{H}), 2.90-3.50(\mathrm{~m}$ ， $1 \mathrm{H}), 3.40(\mathrm{~m}, 1 \mathrm{H}), 3.62(\mathrm{~s}, 3 \mathrm{H})$ ， $3.69(\mathrm{~s}, 3 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 4.00-4.40(\mathrm{~m}$, $1 \mathrm{H})$ ， 4.78 （br s， 1 H ）；MS，略 $300.0173\left(\mathrm{M}^{+}-\mathrm{Me}\right.$ ，calcd for $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{NO}_{7}$ ： 300．1082），285， 284 （base）， 138.

Preparation of Optically Active 2－Aza－2，5，6－tris（methoxycarbonyl）－ bicyclo［2．2．2］octane．Into a solution of 17a，b（ $0.13 \mathrm{~g}, 0.42 \mathrm{mmol}$ ）in AcOH （5mL）was added a portion of NaBH_{4}（．174g，4．2mol）．After stirred for 3h， into the solution was poured water（ 10 mL ）．The organic portion was extract－ ed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$（ $3 \times 15 \mathrm{~mL}$ ）and dried over MgSO_{4} ．The solvent was removed in vacuo and the residue was chromatographed on silica gel（Ac0Et－hexane＝1：3） to afford $18 \mathrm{a}, \mathrm{b}(0.102 \mathrm{~g}, 86 \%):[\alpha]_{\mathrm{b}}{ }^{22}+38.1$（c 0.9 ，EtOH）；IR（neat） $2955,1748,1700,1455,1400,1198,1120,1060 \mathrm{~cm}^{-1}$ ； $\operatorname{NNR}\left(\mathrm{CCl}_{4}\right) \delta 1.44-2.07$ （II，4H）， 2.30 （br s，1H），2．80－3．50（in，2H）， 3.33 （br s，2H）， 3.63 （s，9H）， 4．15－4．40（ $\mathbf{m}, 1 \mathrm{H}$ ）；MS，$\underline{\text { m／e }} 285.1195\left(\mathrm{M}^{+}\right.$，calcd for $\mathrm{C}_{13} \mathrm{H}_{19} \mathrm{NO}_{6}$ ：285．1121）， 254，140， 139 （base）．

Friedel－Crafts reaction．Into a solution of AcCl（6．6mL，95．8mol）in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$（15mL）was added dropwise a solution of SnCl_{4}（4．4mL，38．3 miol）in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$（10 10 LL ）at $-50^{\circ} \mathrm{C}$ under an atmosphere of nitrogen．After stirred for 10 min，a solution of $\underline{7}$（ $4.08 \mathrm{~g}, 19.15 \mathrm{mmol}$ ）in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$（10⿴囗十心 ）was added dropwise．After the reaction mixture was stirred for 10 h at room tempera－ ture，it was poured into ice－water．The organic portion was separated and the aqeous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$（ $3 \times 30 \mathrm{~mL}$ ）．A combined organic layer was dried over MgSO_{4} and the solvent was removed in vacuo．The
residue was chromatographed on silica gel (Ac0Et-hexane=2:1) to afford $\underline{19}$ (2.725g, 56\%): mp. $65-67{ }^{\circ} \mathrm{C}$; NMR (CC1 ${ }_{4}$) $\delta 1.40-2.77$ (m, 4H), 2.00 (s, 3 H), $2.34(\mathrm{~s}, 3 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 3.98(\mathrm{t}, \mathrm{J}=3 \mathrm{~Hz}, 2 \mathrm{H}), 4.30-4.73(\mathrm{~m}, 1 \mathrm{H}), 7.92(\mathrm{~s}$, 1H). Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{17} \mathrm{NO}_{5}$: C, 56.46 ; $\mathrm{H}, 6.71 ; \mathrm{N}, 5.49$. Found: C, 56.23; H, 6.76;N, 5.53.

Preparation of 20. Into a solution of $\underline{19}(1.500 \mathrm{~g}, 5.88 \mathrm{~mol})$ in Ac 0 H (15 mL) was added a portion of $90 \% \mathrm{NaBH}_{4}(1.236 \mathrm{~g}, 29.4 \mathrm{mmol})$. After stirred for 3 h , water (15 mL) was poured into the solution. The organic portion was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (3x20il) and the solution was dried over MgSO_{4}. Into the residue was poured a mixture of $\mathrm{HCO}_{2} \mathrm{H}$ (3mL) and $\mathrm{CF}_{3} \mathrm{SO}_{3} \mathrm{H}$ (0.3 mL). After stirred for 2 h , into the resulting reaction mixture was poured $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (10 mL). The organic layer was washed with water (10mL) and successively aqueous $\mathrm{Na}_{2} \mathrm{CO}_{3}$. The organic layer was dried over MgSO_{4} and the solvent was removed in vacuo and the residue was chromatographed on silica gel (AcOEt: hexane $=1: 5$) to afford $\underline{20}$ ($0.910 \mathrm{~g} 64 \%$): IR (neat) 2970, 1750, 1712, 1680, $1448,1238,1045 \mathrm{~cm}^{-1}$; $\operatorname{NaR}\left(\mathrm{CCl}_{4}\right) \delta 1.03(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.45-2.23$ (\mathbf{m}, 6 H), 1.94 ($\mathrm{s}, 3 \mathrm{H}$), 3.67 ($\mathrm{s}, 3 \mathrm{H}$), 3.88 ($\mathrm{t}, \mathrm{J}=7 \mathrm{~Hz}, 2 \mathrm{H}$), 4.13-4.57 ($\mathrm{m}, 1 \mathrm{H}$), 6.58 (br s, 1H). Anal.Caicd for $\mathrm{C}_{12} \mathrm{H}_{19} \mathrm{NO}_{4}: \mathrm{C}, 59.73 ; \mathrm{H}, 7.94 ; \mathrm{N}, 5.81$. Found: C, 59.48; H, 8.03; N, 5.67.

Preparations of $\underline{21}, \underline{22}$, and $\underline{23}$ were carried out according to the method described above.

21: IR (neat) $2955,1748,1715,1448,1312,1235,1072 \mathrm{Cm}^{-1}$; NMR (CCl_{4}) $\delta 1.08$ (br t, $\left.\underset{=}{\mathrm{J}}=7 \mathrm{~Hz}, 3 \mathrm{H}\right), 1.20-2.30(\mathrm{~m}, 6 \mathrm{H}), 1.97(\mathrm{~s}, 3 \mathrm{H}), 3.28$ and $3.30(2 \mathrm{~s}, 3 \mathrm{H})$, 3.53-4.70 (m, 3H), 3.69 (s, 3H), 5.13-5.43 ($\mathbf{m}, 1 \mathrm{H}$). Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{22} \mathrm{BrNO}_{5}: \mathrm{C}, 44.33 ; \mathrm{H}, 6.30 ; \mathrm{Br}, 22.69 ; \mathrm{N}, 3.98$. Found: C , 44.27, H, 6.23, Br, 22.55, N, 3.91.

22: IR (neat) $2970,1750,1712,1450,1240,1075 \mathrm{~cm}^{-1}$; NMR (CC1 $\left.{ }_{4}\right) \delta$ $1.05(\mathrm{t}, \mathrm{J}=5 \mathrm{~Hz}, 3 \mathrm{H}), 1.53-2.63(\mathrm{~m}, 4 \mathrm{H}), 2.00(\mathrm{~s}, 3 \mathrm{H}), 3.40(\mathrm{~s}, 3 \mathrm{H}), 3.73(\mathrm{~s}$, 3H), 4.00-4.27 ($\mathbf{m}, 2 \mathrm{H}$), 4.37-4.77 (m, 1H), 5.20-5.57 ($\mathbf{m}, 1 \mathrm{H}$). Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{2} \mathrm{NO}_{5}$: C, $57.55 ; \mathrm{H}, 7.80 ; \mathrm{N}, 5.16$. Found: C, $57.28 ; \mathrm{H}, 7.90 ; \mathrm{N}$, 5.17.

23: IR (neat) 2975, 1745, 1718, 1450, 1385, 1240, 1040 cm^{-1}; $\operatorname{NMR}\left(\mathrm{CCl}_{4}\right)$ $\delta 1.11(\mathrm{t}, \underline{\mathrm{J}}=6 \mathrm{~Hz}, 3 \mathrm{H}), 1.90-2.80(\mathrm{~m}, 4 \mathrm{H}), 2.09(\mathrm{~s}, 3 \mathrm{H}), 3.06$ (br s, 1 H$)$, $3.70-4.40(\mathrm{~m}, 3 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 4.98(\mathrm{dd}, \mathrm{J}=20$ and $2 \mathrm{~Hz}, 0.3 \mathrm{H}$), 5.06 (dd, $\underline{J}=20$ and $2 \mathrm{~Hz}, 0.7 \mathrm{H}$), 5.97-6.20 ($\mathbf{m}, 1 \mathrm{H}$). Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{ClN}_{2} \mathrm{O}_{4}: \mathrm{C}$, 55.13 ; H, 5.86 ; Cl, 10.85 ; N, 8.57. Found: C, 54.86 ; H, $5.74 ; \mathrm{Cl}, 10.78$; N, 8.18.

Optical purities of 10 and 14 were determined by comparing optical rotatory of the hydrogenated product $\underline{10}^{\prime}$ and $\underline{14}^{\prime}$ with their authentic samples.

10': [$\alpha]_{\mathrm{D}}{ }^{25}-37.0$ (c 1.38, Et0H); IR (neat) 2950, 2870, 1748,1700, $1450,1260,1228,1050 \mathrm{~cm}^{-1}$; NNR (CCl_{4}) $\delta 1.58(\mathrm{br} \mathrm{s}, 6 \mathrm{H}), 1.95(\mathrm{~s}, 3 \mathrm{H})$, 2.60-3.10 (m, 1H), 3.63 (s, 3H), 3.73-4.60 ($\mathbf{m}, 4 \mathrm{H}$). Anal. Calcd for $\mathrm{C}_{10} \mathrm{H}_{17} \mathrm{NO}_{4}$: C, 55.80 ; H, 7.96 ; N, 6.51. Found: C, 55.85 ; H, $7.94 ; \mathrm{N}, 6.45$.

14': $[\alpha]_{\mathrm{D}^{25}}+18.8$ (c 1.38, Et0H); IR (neat) 2950, 2870, 1750, 1430, $1248,1078,1045 \mathrm{~cm}^{-1}$; NMR (CCl_{4}) $\delta 1.10-2.10$ ($\mathbf{m}, 6 \mathrm{H}$), 2.50-3.07 (m, 1H), 3.30-4.45 (m, 4H). Anal. Calcd for $\mathrm{C}_{7} \mathrm{H}_{11} \mathrm{NO}_{2}: \mathrm{C}, 59.56 ; \mathrm{H}, 7.85 ; \mathrm{N}, 9.92$. Found: C, 59.28; H, 7.96; N, 9.66.

References and Notes

1. Dihydropyridines have been used in several synthetic schemes for the preparations of alkaloids. For recent references, see:
a) Raucher, S.; Bray, B. L.; Lawrence, R. F. J. Am. Chem. Soc. 1987, 109, 442.
b) Comins, D. L.; Brown, T. D. Tetrahedron Lett. 1986, 27, 4549.
c) Natsume, M. ; Utsunomiya, I; Yamaguchi, K.; Sakai, S. Tetrahedron 1985, 41, 2115.
d) Nakazono, Y.; Yamaguchi, R.; Kawanishi, M. Chem. Lett. 1984, 1129.
e) Kunng, F. -A.; Gu, J. -M.; Chao, S.; Chen, Y.; Marlano, F. S. J. Org. Chem. $\xlongequal{1983,} 48,4263$.
f) Natsume, M.; Ogawa, M. Heterocycles 1980, 14, 169.
2. a) For review on dihydropyridines, see: Stout, D. M. ; Meyers, A. I. Chem. Rev. 1982, 82, 223.
b) Fowler, F. W.; Wyle, M. J. J. Org. Chem. 1984, 49, 4025.
3. Shono, T.; Matsumura, Y.; Onomura, 0.; Yamada, Y. Tetrahedron Lett. 1987, 28, 4073.
4. Shono, T.; Matsumura, Y.; Inoue, K. J. Chem. Soc., Chem. Comun. 1983, 1169.
5. The isomerization from dimethyl maleate into dimethyl fumarate are well known.
6. Shono, T. ; Matsumura, Y.; Tsubata, K.; Sugihara, Y. Nippon Kagaku Kaishi 1984, 1782.
7. Shono, T. ; Matsumura, Y. ; Tsubata, K. ; Uchida, K. J. Org. Chem. 1986, 2590.
8. The synthesis of ibogamine, for examples, see: a) Kuehne, M. E.; Reider, P. J. J. Org. Chem. 1985, 50, 1464.
b) Trost, B. M. ; Godleski. S. A. ; Genet, J. P. J. Am. Chem. Soc. 1978, 100, 3930.
c) Rosenmund, P.; Haase, W.; Bauer, J. ; Frishe, R. Chen. Ber. 1975, $\underline{\underline{108} \text {, }}$ 1871.
d) Kutney, J. P.; Cretney, W. J.; Quesne, P. Le. McKague, B.; Piers, E. J. Am. Chem. Soc. 1970, 92, 1712.
e) Ikezaki, M. ; Wakamatsu, T.; Ban, Y. J. Chem. Soc., Chem. Comen. 1969, 88.
f) Nagata, W.; Hirai, S.; 0kumra, T.; Kawata, K. J. Am. Cher. Soc. 1968, 90, 1650.
g) Sallay, S. I. ibid. 1967, 89, 6762.
h) Buchi, G.; Coffen, D. L.; Kocsis, K. Sonnet, P. E.; Ziegler, ibid. 1966, 88, 3099.
9. a) Corey, E. J. ; We inshenker, M. M. ; Schaaf, T. K.; Huber, W. J. Am. Chew. Soc. 1969, 91, 5675.
b) Evans, D. A.; Scott, W. L.; Truesdale, L. K. Tetrahedron Lett. 1972, 121.

List of Publications

Chapter 1 Shono, T.; Matsumura, Y.; Onomura, 0. To be published.

Chapter 2-1 Shono, T.; Matsurura, Y.; Onomura, 0.; Kanazawa, T.; Habuka, M. Chem. Lett. 1984, 1101.

Shono, T.; Matsumura, Y. ; Onomura, 0.; 0gaki, M. Rep. Asahi Glass Found. Ind. Techrol. 1985, 46, 131.
Shono, T.; Matsumura, Y. ; Onowura, O.; Ogaki, M.; Kanazawa, T. J. Org. Chem. 1987, 52, 536.

Chapter 2-2 Shono, T.; Matsumura, Y.; Onomura, 0.; Sato, M. J. Org. Chem. 1988, 53, 4118.

Chapter 3 Shono, T.; Matsumura, Y.; Ogaki, M. ; Onomura, 0. Chem. Lett. 1987, 1447.

Chapter 4-1 Shono, T.; Matsumura, Y.; Ogaki, M. ; Onomura, 0. To be published.

Chapter 4-2 Shono, T.; Matsumura, Y.; Sato, M. ; Onomura, 0. To be published.

Chapter 5-1 Partly reported in Shono, T.; Matsurura, Y.; Onomura, 0.; Yamada, Y. Tetrahedron Lett. 1987, 28, 4073.

Chapter 5-2 Shono, T.; Matsumura, Y.; Onomura, 0.; Sato, M. To be published.

Pubulication Not Included in The Thesis

Anodic α-Methoxylation of Aliphatic Ethers.
Shono, T.; Matsumura, Y.; Onomura, 0.; Yamada, Y. Synthesis 1987, 1099.

