





DYNAMICS OF HELICAL WORMLIKE

POLYMER CHAINS

TAKENAQO YOSHIZAKI

1989






CHAPTER

CHAPTER

CHAPTER

1.
1-1.
1=2.

3—3.

3-5.

8

b

o~ op M

CONTENTS

INTRODUCTION

Background

Outline

References

DYNAMIC MODEL AND DIFFUSION
EQUATION

Introduction

Dynamic Model

Diffusion Equation

Space of bond and infinitesimal rotation

vectors

Space of Euler angles
Approximations

Conclusion

References

EIGENVALUE PROBLEMS
Introduction

Transformation of the Basis Set
Standard basis set

Matrices E and L

(i). (1, 1)-body elements

(i1). (2, 2)~body elements
Time—correlation functions
Subspace Approximation
Block—Diagonal Approximation
Conditions on the Model Parameters
The diffusion matrix B

The lowest branch

(i). Flexible chains

o Y =

12
12
13
25

27
34
44
45
47
49
49
54
54
59
61
62
64
67
73
80
80
85
89



CHAPTER

CHAPTER

(ii). Stiff chains
3—6. Discussion and Concluding Remarks
a. The preaveraging approximation
b. Flexible constraints
c. Periodic vs nonperiodic boundary conditions
d. Conclusion
Appendix 3—A. The Three—Dimensional Eigenvalue
Problem
Appendix 3-B. The Mean Reciprocal Distance
References
4, DIELECTRIC RELAXATION
4-1.  Introduction
4-2.  Formulation
4—3. Eigenvalue Spectra
a. Flexible chains
b. Stiff chains
4—4. Correlation Functions
a. Flexible chains
b. Stiff chains
4—5. Comparison with Experiment
a. Flexible chains
b. Stiff chains
4-6. Discussion

Appendix 4—A. Eigenfunctions

References
5. DYNAMIC INTRINSIC VISCOSITY
5-1. Introduction
5—2. Formulation
a. Time—dependent distribution function
b. Correlation function formalism of the

excess stress tensor

=3 § o

92
94
94
96

98

98
100
106
109
109
112
121
123
128
131
131
137
139
140
149
157
159
162
165
165
167
169

17



Correlation function <I'(0)I'(¢)>.

¢
d. Final expression for [7]

5-3. Eigenvalue

Spectra

5—4. High—Frequency Viscosity

5—-5. Comparison with Experiment

5-6. Concluding Remarks

Appendix 5—A.
Appendix 5-B.
Appendix 5-C.

Appendix 5-D.
Appendix 5-E.

References
LIST OF PUBLICATIONS
ACKNOWLEDGMENT

Excess Stress Tensor

Evaluation of the Function X
Intrinsic Viscosity of the Einstein
Sphere

Matrix Elements

The Six—Dimensional Eigenvalue

Problem

—iii-

177
182
154
187
193
196
197
200

202
204

206
209
211
214






CHAPTER 1

INTRODUCTION

1-1. Background

During the last decade, a series of theoretical studies on
static properties of polymer chains in dilute solution has been made
on the basis of a new general continuous model, called the helical
wormlike (HW) chain, by Yamakawa and his co—workers.™ They
have shown that the model c¢an mimic the equilibrium
conformational behavior of real polymer chains as well as the
rotational isomeric state model,” and that various properties of
both flexible and stiff chains may be evaluated very efficiently on
the basis of the former. On the other hand, in the field of the
dynamics of (flexible and stiff) polymer chains in dilute solution,”™
there still remain many problems, not completely solved as yet,
such as dielectric relaxation and dynamic intrinsic viscosity. Thus,
in this thesis, we shall study them on the basis of the HW chain.

The HW chain is a continuous elastic wire model with
bending and torsional energies such that its total configurational
energy becomes the minimum zero when 1t takes a regular helical
form, which is called the characteristic helix. Necessarily, it is

adequate for a description of equilibrium conformational and/or



steady—state transport properties of real chains on the bond length
or somewhat longer scales, as shown by Yamakawa and his
co—workers, but not, as it stands, for a description of local motions
or conformational transitions, which we are interested in, apart
from its mathematical difficulty. However, this will be achieved
by replacing the continuous HW chain by its discrete analog. It

°10 that the continuous

has been proved by Yamakawa and Shimada
HW chain may also be obtained by taking the continuous limit
of a discrete chain of rigid subbodies, instead of bonds, under
certain conditions, and also that local vectorial and tensorial
properties of the continuous HW chain may be expressed in
localized coordinate systems affixed to 1it, one corresponding to
two successive skeletal bonds in the real chain. Considering these
facts and also the length scales inherent in the continuous HW
chain, it is appropriate to replace it by a discrete chain of
identical rigid subbodies, each corresponding to two bonds or so.
Its size may be determined in such a way that the equilibrium
conformational behavior of the discrete chain is almost identical
with that of the original continuous chain. This is our dynamic
model to be used, and it is referred to as the discrete HW chain
when necessary to distinguish it from the continuous HW chain.
It is clear that our model corresponds to the real chain somewhat

coarse—grained.

Now, we survey theoretical studies presented so far in the



field of the dynamics of polymer chains in dilute solution. It is
useful for clarifying characteristic features of the dynamic model
we have adopted and also for searching for theoretical approaches
to the problems. There have been made three types of studies in
this field, 1. e., analylical investigations based on the diffusion
equation for the time—dependent distribution function for proper

21.26-28,31-33

chain models, those based on the master equation for lattice

chains,®%

and Brownian dynamics simulation studies by the use
of realistic models.®* In the second—type theories, one must make
ad hoc assumptions on the transition rates of elementary motions
artificially chosen, and therefore, no molecular information can be
obtained from the values of the transition rate themselves.
Moreover, the results of these theories exhibit extremely slow
relaxation at long times which is inconsistent with experiments.
In the third—type studies, there is little hope of getting an insight
into the mechanism of the relaxation processes of polymer chains,
especially of the interactions of local and global chain motions.
QOur study in this thesis is categorized into the first type,
and thus we review it rather in detail. A most general theoretical
framework was given by Kirkwood® for the bond chain composed
of frictional elements, each having three translational degrees of
freedom. In this model, each bead corresponds to one of the atoms
constituting the backbone of a given real polymer chain, and thus

necessarily the constraints on the bond lengths and angles and also



the complicated potential energies as functions of rotation angles
are taken into account. These constraints and potential energies
make it difficult to perform analytical evaluation, and only formal
results were obtained. Rouse® and Zimm®™ removed these difficulties
by introducing the spring—bead model. It is composed of statistical
segments or beads having translational friction, each of which
corresponds to a group of several successive atoms of the chain
backbone, and successive two beads are connected by the Gaussian
spring.  Although they achieved a remarkable success in a
description of rather long—wavelength motions of polymer chains,
they abandoned drawing information about local chain motions.
A reconsideration of the bond chain was made by Fixman and

] 26-28
his co—workers,

who rewrote the diffusion equation into a more
transparent form by introducing the constraining matrix. However,
the preaveraging approximation made in this matrix, which is
inevitable for analytical developments, caused a serious error 1n
the evaluation of the relaxation rates of the local motions. It
may be said that Fixman’s “model” or diffusion equation is a
modified spring—bead model in which the effect of the constraints
is taken into account by the preaveraged constraining matrix, and
thus the results of Rouse and Zimm may be recovered if the
constraining matrix is ignored. In short, there is not any theory

based on the diffusion equation which provides a satisfactory

description of the local chain motions.



In contrast to the bond chain, our model consists of rigid
subbodies, each of which has three rotational degrees of freedom
besides the translational ones and has a rotational relaxation rate
associated with a motional (monomer) unit. It seems rather natural
to replace repeating units of a given real polymer chain by the
subbodies instead of {frictional beads only with the translational
degrees of freedom. In our model, the constraints, of course, exist
on the distance between the centers of two successive subbodies
and on the relative orientations between them, and therefore a
proper preaveraging approximation must also be introduced into
our constraining matrix. However, the approximation seems to
make no serious effect on the description of the local chain motions
because of the characteristic features of our model

We have undertaken this work in the hope that local motions
could be treated more effectively than on the basis of the bond
chain for two reasons. First, a basis set corresponding to some
local modes can be included through the rotational degrees of
freedom of the subbodies even in a crude approximation. Second,
we can avoid the serious errors in the evaluation of the relaxation
rates of the local chain motions caused by the preaveraging of

the constraining matrix.



1-2.  OQutline

The plan of this thesis is as follows.

In Chap. 2, we construct the discrete HW chain to be suitable
for the study of the dynamics of polymer chains, both flexible
and stiff. It is a chain of N identical rigid subbodies such that,
apart from its location, its configuration may be specified by N
sets of Buler angles, each associated with one subbody, and that
its equilibrium behavior is almost identical with that of the
continuous HW chain. Then, we formulate the configurational
diffusion equation and give an explicit expression for the diffusion
operator # associated with it. Following the procedure of
Fixman,”® the constraints are handled by setting the components
of the flux associated with the constrained coordinates equal to zero
through constraining forces, so that the diffusion equation and all
configuration—dependent properties may be written in terms of only
the unconstrained coordinates, i. e, the Euler angles.

Finding the solution of the diffusion equation is eguivalent
to solving the eigenvalue problem for the diffusion operator £.
Thus, in Chap. 3, we present a general solution of this eigenvalue
problem by the use of the representation theory in the quantum
mechanics. The problem 1is, to a great extent, decoupled by
introducing a standard representation which is formed by the

eigenfunctions of the total angular momentum operator for the



entire chain. In order to find the analytical solutions, the size of
the problem thus reduced is further reduced by making two
approximations: subspace approximation and block—diagonal
approximation. The former is eqguivalent to neglecting the memory
term in the projection operator method, and the latter consists of
introducing Fourier modes as in the conventional chain, It is
shown that the theory predicts a number of branches of eigenvalue
spectra, We also examine the conditions that should be imposed
on the parameters such as the translational and rotatory friction
coefficients of the subbody.

By the use of the general solution given in Chap. 3, we
readily evaluate various dynamical properties of polymer chains
in dilute solution, Two typical examples are shown in the
following two chapters.

In Chap. 4, dielectric relaxation of both [lexible and stiff
polymers 1in dilute solution is studied on the basis of the discrete
HW chain such that an electric dipole moment is attached rigidly
or with a rotational degree of freedom to each of the subbodies
composing the chain. The complex dielectric constant is formulated
with the dipole correlation function. Then, dielectrically active
branches of the eigenvalue spectrum are identified for a given type
of dipoles, and a mode analysis of them is made in order to
inquire into the interaction between global and local modes. The

decay behavior of the dipole correlation function is also examined



numerically for various chains. A comparison of theory with
experiment is made with respect to the dispersion and loss, and
also the dielectric correlation time 7p as determined from the loss
peak.

In Chap.5 we study the dynamic intrinsic viscosity of
flexible chain polymers in dilute solution. The correlation function
formalism of the complex intrinsic viscosity [7] is given, taking
account of the effect of the finite hydrodynamic volumes of the
subbodies of the chain. In this case, it is convenient to introduce
a new basis set, which is a hybrid of the basis functions defined
in Chap. 3. Then the eigenvalue problem for the representation of
the diffusion operator % may be reduced to N six—dimensional
eigenvalue problems. Among the six branches of the eigenvalue
spectrum, one global and two local branches can be shown to make
contribution to the dynamic intrinsic viscosity. It is shown that
the theory predicts the existence of the high—frequency plateau

which is distinguished from the infinitely high—frequency viscosity.
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CHAPTER 2

DYNAMIC MODEL AND DIFFUSION EQUATION

2—~1. Introduction

Although the continuous helical wormlike (HW) chain'™ may
provide a satisfactory description of equilibrium properties of real
chains on the bond length or somewhat longer scales, it is difficult
to apply this model to dynamical problems as it stands, since, in
general, continuous models have an infinite number of degrees of
freedom and therefore contain unphysical motions of wavelengths
shorter than real bond lengths. Thus, in this chapter, we first
replace the continuous HW chain by its discrete analog, i.e., the
discrete HW chain composed of N identical subbodies, as mentioned
in Chap. 1, and then derive the configurational diffusion equation.

The discrete HW chain has constraints on the distance
between the centers of two successive subbodies and on the relative
orientations between them. As has very often been discussed, such
constraints may be handled in two fundamentally different
methods*” the Kramers type® and the revised Kirkwood type®®
The difference between the results from them is small for long
enough chains. The latter may be further divided into two classes.

One consists of taking the rigid limits of the “flexible” constraints,



as expressed by overdamped harmonically bound oscillators of small
equilibrium root—mean—square amplitudes, at the final stage of
calculation by letting the amplitudes approach zero. It is known

10,11

that this method leads to correct results in some cases, but not

* We therefore adopt the other, i.e, the procedure of

in others!
Fixman and Kovac,*™® in which the constraints are introduced at
an early stage of calculation, and which is more convenient for
our model. The diffusion equation and all configuration—dependent
properties may then be written in terms of only the unconstrained
coordinates, i. e, N sets of Euler angles specifying the orientations
of the N subbodies.

The plan of this chapter is as follows. In Sec. 2-2, we give
a detailed description of the discrete HW chain with an explicit
expression for its potential energy as a function of the Euler
angles. A criterion for the determination of the number of
subbodies in it is established from a comparison with the
continuous HW chain with respect to the equilibrium mean—square

end—to—end distance. In Sec. 2—-3, we derive a diffusion equation

satisfied by the time—dependent configurational distribution function.

2—-2. Dynamic Model

Consider the continuous HW chain such that its total contour

length is L, its stiffness is 47, and the constant curvature and



torsion of its characteristic helix are Kk; and 7y, respectively,
assuming that its Poisson’s ratio ¢ is zero, for simplicity."” We first
replace it by a discrete chain of N identical rigid subbodies of
length @, which are numbered 1, 2, -+, N, as depicted in Figs.
21(a) and (b). The junctions between the (p — 1)th and pth
subbodies and between the pth and (p + 1)th subbodies correspond
to the contour points s and s + 4s of the continuous HW chain (a),
respectively, so that its part from s to s + ds corresponds to the
pth subbody. We note that a is not equal to 4ds, and therefore that
the total contour length Na of the chain (b) is not equal to L.
A relation between a and 4ds is determined later. However, this
discrete model is not amenable to mathematical treatment as yet.
Therefore, we further replace it by the chain (¢) composed of
N + 1 identical beads, in which the center of the pth bead (p =
2, 3, +++, N) corresponding to the pth subbody is located at the
junction between the (p — )th and pth subbodies, the centers of
the first and (N + 1)th beads are located at the chain ends, and
the pth bond vector a, (p = 1, 2, -+, N) of (fixed) length g,
which joins the pth and (p + 1)th beads, is affixed to the pth bead
[not to the (p + 1)th]. Thus, the total contour length of this chain
is still equal to Na. Suppose then that all beads except the
(N + 1)th have translational and rotatory friction coefficients ¢
and ¢, and the (N + 1)th bead has the same translational friction

coefficient ({:) but vanishing rotatory friction coefficient ({, = 0).

,_14_



The addition of the (N + 1)th bead of this nature serves to remove
certain annoying asymmetry in the diffusion equation. There is
no difference between the potential energies of the chains (b) and
(c) (see also below) while their dynamic properties differ, but this
difference will be small for large N. The chain (¢) is the discrete

HW chain to be adopted. In what follows, all lengths are measured

Fig. 21. Replacement of the continuous HW chain by the discrete HW chain
(see text).



in units of the stiffness parameter A, and keT (with ks the
Boltzmann constant and 7 the absolute temperature) is chosen to
be unity, for convenience.

Now we introduce N localized Cartesian coordinate systems
(e, en, e,) (p = 1, 2, ---, N), the pth one being affixed to the
pth bead with the origin at its center and with e, in the direction
of a, (from p to p+1). Let £, = (8, ¢ ¥o) (P = 1, 2, *- -,
N) be the Euler angles defining the orientation of the pth localized
system with respect to an external (lab) coordinate system. Apart
from its location, the configuration of the chain can be specified
by 3N variables (angles), (2, £; ---, 2n) = {82x}. Note that
the orientation or the rotational degrees of freedom of the
(N + 1)th bead are not considered, corresponding to the fact that
its rotatory friction coefficient is taken as zero.

The total potential energy Uy({2nx}) of the chain may then
be expressed as a sum of "pair” potentials w(&,, £2,+),

N=1

Us = Z W(2p 2o0) (2.1)
ignoring excluded volume potentials. We determine the form of u
as follows. It is related to the equilibrium conditional distribution

function ¥q(Rp4:182,) of £,41 with £, fixed, by the equation,

qf@q(lg,r.wllgp) i BKD[ = u’('QP: 'QP'H)]/

f axp [ = wl@y G 1dper , (2.2)

_16_



where d&, = sinf,de¢,d¥,. It is reasonable to assume that this &,
is identical with the corresponding conditional distribution function,
i. e, the equilibrium Green’s function G(&,4 |8, 4s) between the
contour points s and s + 4ds of the continuous HW chain, where

the arguments of ¥., and G take the same values;
Uel o1 2,) = G(Rpn1| 2,5 ds) . (2.3)

Yamakawa et al” have shown that G(R|Qy; s) may be expanded

in terms of the normalized Wigner 2 functions @7 as

GRI2;s) = Y. gl ()@@ @) , (2.4)

tm.y.J

where the sums over @Y are taken over [ 20, Iml =1, Ijl =1,
and the asterisk indicates the complex conjugate. 27" is defined
by

DH(Q) = D8, 9, ¥) = cie™d[M(8)e'” (2.5)

where
e = [(21 + 1)/82°1"% (2.6)
i is the imaginary unit, and

X P{o™ ™ (cos0) (2.7)
with P%%(x) the Jacobi polynomial From Egs. (2.2) and (2.3), we

have

u(Rp, Lorr) = — In G(Lpn1 | £ ds) (2.8)



where we have omitted a constant term. Strictly, the u thus
obtained is not the potential energy of the continuous HW chain
(as an elastic wire) of contour length ds but rather the free energy.
In the limit 4s —=0 (a — 0), the discrete HW chain becomes
exactly identical with the continuous one with the potential energy
u.

In the present case of ¢ (Poisson’s ratio) = 0, G may also
be expanded, by the use of the relations derived by Shimada and
Yamakawa [Egs. (25) and (26) with Egs. (A6) and (A7) of Ref. 16],

as follows,

G212 ) = Y. Bis) Y. DMD)DIMO,)

tmk 2

x Y 91 (0)B (0, (2.9)

where
hi(s) = exp{—=[I(l + 1) + ij(ko’+ 1,95} , (2.10)

2" is the unnormalized Wigner function defined by

DR = ¢ "'DM(R) (2.11)
and

R, = (a, —2/2, 1/2) (2.12)
with

a=-tan™ (Ko/1y), (-1 =<a<0). (2.13)

Comparing Eq. (2.4) with Eq. (2.9), we find



gl'(s) = Z () D20 D (2a) . (2.14)

Equation (2.1) with Egs. (2.4), (2.8), and (2.14) gives the desired
expression for Uy
We then have for the eguilibrium distribution function

Vo({8n}) of {@n}:

Ce({0n}) = 7" / f e 'd { R4}

N-1
= 8 [[ G201 2, ; ds) (2.15)
p=1
with d{Qv} = [[,.d2, 1In what follows, ¥, stands for ¥.({2y})

and <+-->, denotes an equilibrium average evaluated with ¥,

Now the problem is to find the relation between a and 4s.
This can be done by comparing the equilibrium moments of the
discrete and continuous HW chains. It is then noted that vector
moments such as the persistence vector'™ do not appear in dynamic
properties: these may be written in terms of scalar moments,
especially equilibrium ones, such as the mean—square radius of
gyration and mean reciprocal distance between two contour points,
in the regime of linear response. Therefore, the consideration of
the equilibrium mean—square end—to—end distance <R*>,, suffices
for the present purpose.

For the discrete HW chain, <R*>,, = <R¥N)>, may be

expressed as



<RYN)>e = Na’ + 2 ), <a,"as>w

p=<q
N-1
~ Na* + 2% Y. (N — n)g¥nds) , (2.16)
r=1

where we have used the relation,
f@'eqd{ﬂw}/dﬁpd.@q = (87)7'G(2, | 2p; nds) (217)

with g = p + n. Substitution of Eq. (2.14) into the second line of
Egs. (2.16) leads to

<RYN)>y = 2=Nds + &
+ [& + &sin(yNds) + zcos(vNds)]e 2V, (2.18)

where
v = (ko® + %), (2.19)

and

2
Ea = 3—5{1 + Br*y e

+ 20"y g5 [ cos(vds) — 0]},
G = — 2a%e™ {7,y %:

+ k%2 [(1 + e )cos(vds) — 2¢7%]},
¢ = 2(12'(021’_254(&4 =1,

& = 2a’ko"v ™ { &se"sin(vds)

+ &[ — 2 sin(vds) + e *sin(2vds)]},

_.20...



& = 2a*kowH{ — &[1 — e *cos(vds))

+ 25[1 — 207 cos(vds) + e *cos(2vds)]}, (2.20)

with

2= (1 — M5y

& = [1 — 27 cos(vds) + e~*17,
g = {1 — de ™ cos(vds) + 2¢7*[2 + cos(2vds)]

— 4 cos(vds) + e B} (2.21)

For the continuous HW chain, <R2>QQE <R2(L}>._,q has been
given by Yamakawa and Fujii [Eq. (54) of Ref. 3 (with ¢ = L and

6 = 0)]; that is,

<R L)»w = cal — 00077 — 2605754 — v)(4 + )% + e { it

+ 2kp"v7%(4 + ¥))P[(4 — v)cos(vL) — 4dwsin(vL)]}, (2.22)
where c¢e 1s its Kuhn segment length and is given by
Co = Em(<R2(L)>equ) = (4 + rH)/(4 + k® + 1% . (2.23)

It is clear that in Eq. (2.18), we may put

Nds = L. (2.24)
We then impose the condition that

to = Co (2.25)
in order that <R)N)>. becomes equal to <R*L)>e in the limit

N — ®  From the first of Eq.(220) and Eqg. (2.25), we have the



desired relation between a and ds,

/ -2, - —5.  ~ds
a = (cads) {1 + 20,y 24e s 4 opstyiese

X [cos(vds) — ™1} 72, (2.26)

Note that a can be uniquely determined if ko, 7o, and 4s are given.

Qur final problem regarding the model is to establish a
criterion for the determination of 4s. The difference between the
discrete and continuous chains becomes negligibly small as ds is
decreased to zero, while as remarked in Seec. 1-1, 4s must be equal
to or greater than the contour length corresponding to two
successive skeletal bonds in the real chain when it is flexible. This
1s also reasonable if we notice that the smallest motional unit in
the real flexible chain to be probed must be composed of two or
three skeletal bonds. On the other hand, 4s is not permitted to
exceed some value, since then the difference between the discrete
and continuous chains becomes appreciably large. This is clearly
seen if we compare the dependence of <R*N)>, and <R L)>, on
N or L. We take as examples two cases: & = 10 and 7, = 15
[isotactic polystyrene (i-PS)] and k=5 and 7o =1 [syndiotactic
poly(methyl methacrylate) (s—PMMA)]."” Their values of <> gl Cul
are plotted against the logarithm of L in Figs. 22 and 2.3,
respectively, where the full curves represent the values calculated
from Eq.(2.22) for the continuous chains, and the points represent

the values calculated from Egq.(2.18) with Eqgs. (2.24)—(2.26) for the



discrete chains with 4s = 0.05 (open circles), 0.1 (filled circles), 0.2
(squares), and 0.4 (triangles), each for N = 1, 2, 3, 4, 5, 6, 8, 10,
30, and 100. In both cases, the deviation of the discrete chain with
ds = 0.4 (triangles) from the continuous chain is appreciably large
for L 5, so that 4s must be smaller than ~ 0.4. More important
is the fact that for large d4s, the local chain motions are over

coarse—grained. (As Jds is increased, Uy becomes asymptotically

] T T
I.5F -
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o
<
/g a
(‘\.im A
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Fig. 22. Comparison between <R*>../ceL as functions of L for the continuous
and discrete HW chains in the case of k; = 10 and 7y = 15 (isotactic
polystyrene). The full curve represents the values for the continuous chain,
and the points represent the values for the discrete chains with ds = 0.05 (open
circles), 01 (filled circles), 0.2 (squares), and 0.4 (triangles), each for N = 1, 2
3, 4, 5, 6 8 10, 30, and 100. The vertical line segment indicates the lower bound

of L, which is equal to the length corresponding to two skeletal bonds.
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Fig. 23. Comparison between <R2>Eq/cmL as functions of L for the continuous
and discrete HW chains in the case of kg = 5 and 7, = 1 [syndiotactic
poly(methyl methacrylate)]; see legend to Fig. 2.2

independent of {8@y}.) It is also helpful to note that the contour
length 4s corresponding to two bonds is equal to ~ 0.08 for i—PS
(A7'=25A4) and 003 for s~PMMA (A™'=65A). The vertical line
segments in Figs. 22 and 2.3 indicate these values as the lower
bounds of L.

Thus, in the case of flexible chains, it is best to choose s
to be equal to the contour length corresponding to two or three

bonds, since it corresponds to the smallest motional unit and since



the deviation of the equilibrium conformational behavior of such
a discrete chain from that of the continuous chain (real chain) is
negligibly small. In the case of stiff chains, the important range
of L is smaller, so that 4s must be much smaller; for DNA, for
example, 4s will be equal to the distance between base pairs or
50.

In sum, the diserete HW chain, i e, our dynamic model
may be described completely in terms of six parameters N, 4ds
(or a), ko, 7o, &, and ¢, as far as all length are reduced by A7
As shown above, if 4s is properly chosen, all equilibrium moments
appearing in dynamic properties may be replaced in a very good
approximation by those for the corresponding continuous HW chain.
In anticipation of the results, we further note that in the study
of dielectric relaxation, permanent electric dipole moments may be
attached to the beads rigidly or with some rotational degrees of

freedom.

2—3. Diffusion Eguation

In this section, we derive the configurational diffusion
equation for the discrete HW chain having 3(N + 1) degrees of
freedom, 1i. e, three coordinates specifying its location and the N
sets of Euler angles defining the orientations of the beads except

the (N + 1)th. For this purpose, we first consider the chain without
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(rigid) constraints such that each of the first N beads has six,
translational and rotational, degrees of freedom and the (N + 1)th
has only three translational degrees, so that the magnitude of the
bond vector a, is not always equal to a, nor does its direction
always coincide with the ¢, axis of the localized coordinate system
affixed to the pth bead, as depicted in Fig. 24, We then impose

3N rigid constraints on this chain through constraining forces 1n

Fig. 24. Localized coordinate systems affixed to the beads in the chain having
6N+3 degrees of freedom without rigid constraints.



such a way that the magnitude of a, becomes egual to a and its
direction becomes coincident with the §, axis. This can be actually
done by setting the components of the f[lux associated with the
constrained coordinates equal to zero. For convenience, the

derivation is made in two steps.
a. Space of bond and infinitesimal rotation vectors

We consider the chain having 6N + 3 degrees of freedom
(without rigid constraints) as defined above. Let R, = (R,., R,
R,.) be the position vector of the center of the pth bead in an
external Cartesian coordinate system (e., e, e.), and let dx, =
(dXpe, dXpy, dXpe) be its infinitesimal rotation in the pth localized
coordinate system having the orientation £, with respect to the
former. The metric form in (d{Rwy+w}, d{xx}) space is

N+1 N

@1’ = Y. (dR,) + Y (dx,) (2.27)
p=1 P

=]

The time—dependent distribution function ¥F({Ry+.}, {£x}; ¢) for the

chain satisfies the conservation equation in this space,

agr N+1 N
== Y VEJE-) WXL, (2.28)
Bt p=1 p=1

where VE = (8/9R,., 8/9R,,, 9/0R,.), Vi = (8/8xp, 8/0%p, 8/92y),
and Jf and J¥ are the fluxes associated with dR, and dx,,

respectively. Note that the second term on the right—hand side

_27_



of Eq.(2.28) does not appear for the ordinary model. If V, and
W, are the translational and angular velocities of the pth bead
in the external system, respectively, JE and J% may be expressed

as

JE=9vV,, (p=12 -+, N+1), (2.29)

Jf-’-grA[-"wp: (p=1n2s..':N)v (2'30)

where A, = A(R,) is the matrix for transformation from the

external system to the pth localized system, and is given by

€e,Ce,Cu, — Sp,Sv, C8,89p,Cv, T Co,Su, — 86,C4,
A, = — €8,Ce,Sv, — Sg,Cv, T C8,50,5u, + Cp,Cv, 58,5y, (2.31)
S8,Ce, 56,50, Ce, /

with ss, = sinfl,, cp, = cosf,, and so on.
Let F, and T, be the frictional force and torque, respectively,
exerted by the pth bead on the solvent, and the force balance

equations are

F,= - VU +In®) +PE, (p=1,2 -+ N+1), (2.32)

Ap T, = = ViU +In¥) + P, (p=12 -+, N), (2.33)

where U is a "soft” potential,

U=U;+ U. (2.34)
with Ug({2nx1}) the configurational potential energy given by Eq. (2.1)
(ignoring excluded volume potentials) and Ud{Rynl}, {2y}) an

external potential, and P¥ and P} are the constraining forces on

_28_



the pth bead associated with dR, and dx, respectively, which arises
from "hard” potentials.
If V% is the unperturbed solvent velocity at the location of

the pth bead, V, and W, may be expressed in the form,

N+1
Vo= Vo + 6 F, + ), To'Fy, (p=1,2 -, N+1), (235)
U::J
wp= w?7+ é.!'_lTP: (p= 17 2) =2 ..:N); (236)
where
W) = $VIxvY (2.37)

and T, = T(R,) with R,;, = R, — R, is the Oseen hydrodynamic
interaction tensor given by

T(R) = (823,R)™'(I + RR/R?) (2.38)
with I the 3X3 unit tensor and 7; the solvent viscosity. Equations
(2.35) and (2.36) require some comments. They take into account
correctly the hydrodynamic interaction between beads to terms of
O(R™"). The effect of frictional force on angular velocity and that
of frictional torque on translational velocity are at most of (R,
and the effect of frictional torque on angular velocity i1s at most
of &(R*.® Then the Oseen tensor cannot be modified so as to give
correctly both translational and angular velocities to terms of
O(R*™ In what follows, we use, as usual, the configuration—
independent preaveraged Oseen tensor,

<Tpe> = (6770) '<Rpg >1 , (2.39)

“29_



where <---> denotes an average taken with ¥, and <Tp,> may
be replaced by <T,;>. in the regime of linear response.

Substitution of Egs. (2.35) and (2.36) with Egs. (2.32), (2.33),
and (2.39) into Egs. (2.29) and (2.30) leads to

N+l

JE = Y D, ( — VE¥ — ViU + PPR) + ¥V, (2.40)
g=1
JL =67 - VA — PVIU + ¥PL) + TA,- W, (2.41)
with
Dpg = 8pe8 ™ + (1 - 85g)(677) ' <Rpg > (2.42)

Equation (2.28) with Egs. (2.40)—(2.42) gives the diffusion equation
in (d{Rwyn}, d{xn}) space.

Now we transform {Rmy+} to bond coordinates. Since
d{Ry+1} 1s separable from d{xny} in the above diffusion equation,

we may consider only the former part. We put®

a-p = Rp+l - Rp 3 (p = 11 2r E A N) 1 (243)
N+1

Rc = ). w,R,, (2.44)
p=1

where w, are constants independent of coordinates and satisfy

EA
+

1

wp =1, (2.45)

1

o
1l

The differential operators may then be transformed to one another

by

vy = wpVe + (1 = )V — (1 — dpna)V5
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(p=12 -+, N+1), (2.46)

where V¢ = (8/8R¢., 8/0Re,, ©0/0R¢.) and Vi = (0/8a,, 98/9a,,,
8/9a,.). The transformation of the velocities V, (and V%) to those,
Ve and v, (and V& and v%) (p = 1, 2, - -+, N), in (Re, {an}) space
of bond vectors obeys the same (contravariant) law as that of R,,

N+1

Ve = D wgV,, (2.47)
p=1
vP = Vﬂ""l - VP ’ (p = 1! 2: o Ty N) ? (248)

while the transformation of the frictional forces F, to those, F¢
and f, (p = 1, 2, ---, N), in (Re, {an}) space obeys the same
(covariant) law as that of VE,

Fy = wyFe + (1 = @) — (1 = Spa)fy
(p=12 -+, N+1). (2.49)

Further, the transformation of the constraining forces P} to those,
pp (p = 1, 2, -+, N), in (Re, {anv}) space is given by Egq. (2.49)
with Fc = 0 and with P? and p} in place of F, and f,, respectively.
(Note that there is not a constraining forces associated with Re.)

With these transformations, in (R¢, {any}) space, the
translational part on the right—hand side of the conservation

Eq. (2.28) may be written in the form,

=

+1

N
VR JB — Yo Jo + 2. Ve d% (2.50)

1 p=1

]
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where

Jc = Dc(VCW = vaUg)

N =
+ VI = ) Do (V¥ + ¥VAU — ¥p}) (2.51)

p=1

N
JB = — Y B (V3 + ¥V — ¥pl)
g=1

+ vﬂﬂgf - DQP(VC{\U + vaUe) (252)
with
N+l
De= Y. wyweDpq ) (2.53)
p.g=l
N+l
Dop= ), wl — Do + Dyp1) , (2.54)
g=1
By = 2Dpg = Dpgsr — Dptig . (2.55)

We note that we have used here the fact that Uy is independent
of Rec.

If w, is chosen to give

Dep =0 for all p, (2.56)
Jc and J, are the fluxes associated with only Rc¢ and a,,
respectively, so that Re and {awxy} may be decoupled. The w, thus
determined has the following meaning. From Egs. (2.54) and (2.56),

we have

=
&

DPGwQ’BVr (p=1121‘.';N+1)r (2.57)

Q
Il
-
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where V is a constant independent of p. It is seen from Egs. (2.35),
(2.39), (2.42), (2.45), and (257) that this w, is equal to the frictional
force exerted by the pth bead when all beads are moved by the
unit total force with the same translational velocity V, and from
Eq. (2.53) that D¢ is then equal to V and identical with the
translational diffusion coefficient of the chain obtained from the
exact solution of the Kirkwood—Riseman integral equation,® as
given by D¢ = 0192/7,<R*>,)* in the nondraining coil limit** We
note that Rc is then Zimm’s center of resistance.” In what follows,
we use the w, thus chosen, so that the D¢, terms in Jc¢ and J%
may be suppressed. It is also interesting to note that if w, is
chosen to be equal to (N + 1)7', so that Rc¢ is the molecular center
of mass, then Eq. (2.56) does not hold and the D¢ given by Eq. (2.53)
1s 1dentical with the translational diffusion coefficient in the
Kirkwood general theory,’ or the approximate solution of the
Kirkwood—Riseman integral equation, as given by
D¢ = 0.196/7,<R*>,1* in the nondraining coil limit*® When the
translational mode (R¢) is not considered, the diffusion equation
does not depend on the choice of w,, since then Vcg-Jc in Egq. (2.50)
and the Dc, term in J} drop.

Thus, from Egs. (2.28) and (2.50), we obtain for the diffusion

equation for ¥(Re, {an}, {8n}; &) in (Re, {an}, d{xnx}) space

ow ""
a—t . VC'JC - Z (VE'J; + vf?JfT) ’ (258)
p=1
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where the fluxes Jg, J% and J} are given by Egs. (251) and (2.62)
with Eq. (2.56) and Eq.(2.41), respectively. The force balance
Eq. (2.32) is transformed, by the use of Egs. (246) and (2.49), to

those in this space,

Fc = - VC(UE + In g’.) . (259)

L= —ViU+ P+, @=L82 %% N}, (2.60)

and Eq. (2.33) remains unaltered.
b. Space of Euler angles

Let a4, = (&pe, Gpr Gpe) be the pth bond vector expressed in
the pth localized Cartesian system, with spherical polar coordinates

(dp, 0y, @p) associated with it, so that
d, = Ay, (2.61)
with
/ sinBcos, \
i, = a, sinf,sin®, | . (2.62)
\ cosb, /
We transform the Cartesian coordinates (da,, dx,) to curvilinear
coordinates (@, 2,) with 0, = (&, 8, &, by

(' da, de, )

dii, | = U, a0 (2.63)



with

(U‘;ﬁ U;;"') ,

U, =
p 0 U, (2.64)

where 0 is the 3X%3 null matrix, and U}, U}%, and UZ® are the
3X3 matrices given by

3 ~
dd,

Ui= 2, Ap—, (1,7 =123, (2.65)
k=1 90,
nQ : aAp.M._ S
o=y dpx, (i, 7i=123), (2.66)
k=1 B.Qp_j
" Sy, T 88,5y, 0"
U;Q = ( Cy, 85,5y, 0 ) (2.67)
w0 Ca, 1/

with @, = (0,1, 0ps Op3) = (& 8, %0, 2, = (2o1, 22 2p2)
(6o, Pp. ¥p), and &, = (@p1, Gps, @pz) = (&pe, &pp @pe), and with
U®, and so on being the {j components of U% and so on.

It is now convenient to use tensor algebra, although we have
readily derived the diffusion Eq. (2.58) without its explicit use.
Let g’ and g be the (6N + 3)X(6N + 3) metric tensors in (Re, {an},
d{xy}) and (Rc, {On}, {2~]}) spaces, respectively, and let U’ and
U be the (BN + 3)X(6N + 3) transformation matrices between
(d{Ryu}. d{xn}) and (Rc, {awn}, d{xny}) and between (Rc, {aw},
d{x~x}) and (Re, {@On}, {82n}), respectively. We have g/ = U'T-U’
and g = U"-g’-U, where the superscript 7 indicates the transpose.

Noting the facts that the latter transformation is separable with

respect to Rc and the bond (or bead) number p, and that Ilg’l



= 1, we obtain for the determinant of g:

N
gl = [le, (2.68)
p=1
with
gr = 1UZ-U,l = a,'sin’8,sin’f, , (2.69)

where we have used Eq.(2.63) for the transformation for the pth
bond and bead. The diffusion Eq.(2.58) may then be transformed

to that in (Re, {@n}, {82xn}) space,

N
B o Verde = ) g (Vg 95 + Vg0 (2.70)
=1

ot
where V¢ = (8/0a, 9/88, 8/8%,), Vi = (8/96, 8/d¢, 3/8¢,), and
J% and Ji are the fluxes associated with ©, and &, respectively.
These fluxes are obtained from J} and J} given by Eg. (2.52)
with Eq. (256) and Eq. (2.41), respectively, by the contravariant

transformation law,

é / T
(jg\ - U7 ig ). (2.71)

The gradient operators V; and V} and the constraining forces pj
and P% involved in J}% and J} may be transformed to the gradient
operators V; and Vi and the constraining forces p% and PY on @,

and £,, respectively, by the covariant law,

( gg) - U;7- ( g% \) , (2.72)

\ N
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(g‘é ) - Ui ( 11;% ). (2.73)

The inverse U,' in Egs. (2.71)-(2.73) is found, from Eq. (2.64), to be

o = (U - O U U )
\ 0 i

{Uf;g)—l (274)
Thus, the results for J% and J% are
N
Jo= - & Z (U™ Cpg (UG- (Vo + EVGU. —~ Ep()
+ LU T E, - (U (VR + TVU)
+ (U (O — Epr Ap-WOIF (2.78)
I8 = — LU (BT (Ve + OV
+ TS Ep - (USYT(VEF + BVRU, ~ Ppg)
+ (U™ -A,-WeF | (2.76)
with
Cpg = £eBpl + 8,0E,ES (2.77)
B, = U3 (U, (2.78)

where in Egs. (2.75) and (2.76), we have used the facts that U, is

independent of {®y}. and that
po=0, (p=12 -, N). (2.79)

Note that Eq. (2.79) does hold since the constraining forces must



be perpendicular to the unconstrained subspace.
g L ) _
Now, we consider the constraining forces pp (p = 1, 2

N) to make the fluxes Jf; vanish,

J=0, (p=12 -+, N). (2.80)
The solution for p) is then found, from Egs. (2.75) and (2.80), to
be

N
S = Von & 4+ U,) — 3, (U (C - [ Eo (U™

g=1

(Vin ¥ + V2U) + vy — E;- Ay WO, (2.81)

where (C™),, is the pg element {3X3 matrix) of the inverse of the
3NX3N matrix C whose pg element is the 3X3 matrix C,. As a
result, ®, or &, take some fixed values, and the corresponding
fluxes J§ are obtained from Eq.(2.76) with Eq.(2.81). For our
purpose, we want to set ®, = (a, 0, §,) or 4, = (0, 0, a). However,
the matrix (U%)™ in the second term on the right—hand side of
Eq. (2.76) diverges at 8, = 0, and therefore these fixed values must
be taken after substitution of Egq. (2.81) in to Egq. (2.76). Then this
matrix does not appear in Jj. It can easily be shown that the
J? thus obtained is exactly the same as that derived following
the Ikeda—Erpenbeck—Kirkwood procedure®®* However, we note that
the present (Fixman—Kovac) procedure is more straightforward since
in the course of the derivation of J}, we also have p, as above that

is required to complete Eq. (2.60) for f,.
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Now that @, takes the fixed values (a, 0, #,), the distribution

function ¥(Rc, {Ony}, {8n}; t) may be written in the form,

¥ =¥ ({Ox})T(Re, {On}; 1) (2.82)
with
N
¥, = |[ [27a,%sind, ] "0(a, — a)d(d,) . (2.83)
p=1

The average of any configuration—dependent quantity @ may then

be calculated from

N
<a> = f o | g | dRe || da,dB,d3,d6,de,dv,
p=1

- f a¥dRed {2x} (2.84)

where we have used Eq.(2.68) with Eq. (2.69), and note that @, =
(a, 0, #,) or 4, = (0, 0, @) in ¥ It is also clear that ¥, may
be removed from the diffusion equation at the final stage. In what
follows, therefore, we designate ¥ by ¥.

Further, recall that the divergence and gradient operators
with respect to dx, and £, may be written in terms of the angular

momentum operator L, = (Lg, Ly, Lpt),

Vi+ = (sinf,)'Vpsinb, (U™ = L,- ,

Vi = (UY=L (2.85)

with



. a cosY, 9 o)
— - + cotf Yo >
Lot s 33p sinf, 8¢p Sogene pawp
5] siny, @ ] 3
_ ; ~ poblsinty=—r— , (2.86)
Lo = oy + Sinty 3, 00y,
a
Ly = :
oY,

Thus, substituting Egs. (2.76) and (2.80) with Eq. (2.81) into
Eq. (270) and putting 4, = (0, 0, a) in E, (and ¥), we obtain for
the desired diffusion equation for ¥ = ¥(Rc, {&x~}; t) in (R,

{2~}) space

% = = Ve-d¢ + p:2=1 L, {Mpq
[ETNLE 4+ TLU) — Ag- W] — Nyoevi?'} (2.87)

where

Mg = 8501 = B5+ (0o By , (2.88)

Npe = E5+(C g0 (2.89)
with

' C8,Cp,5v, T Se,Cu, C6,Co,Cu, — Sp,Su, 0)
E, = a | ¢8,80,50, — Co,Cy, C8,S¢,Cv, T Cp,8y, 0 | . (2.90)

— Sg,54, = 88,Cy, 0

The first term on the right—hand side of Eq. (2.87) will be necessary

only in a few cases, such as in dynamic light scattering, for which



the translational mode must be considered, and therefore, in what
follows, it is suppressed, so that ¥ = ¥({8x}; ¢).

It is then convenient to rewrite Eq. (2.87) in matrix notation

as usual,
il - 0 0
8—£=L-{M'[§'r (L¥ + ¥LU) — A- W] — N-v7} (2.91)
with v* = (v}, v}, -+, vk), WO = (W), W} --- W), L = (L, L
-, Ly), and
M=1Iy—E-C"“E, (2.92)
N = E?-C™, (2.93)
C=¢(,B+ E-ET (2.94)

where M, N, B, A, E, and Iy are the 3NX3N matrices whose pg
elements are the 3X3 matrices My, Ny Bpy, Ay, Ep, and Iy,

respectively, with

B, = Byl , (2.95)
and

Apg = 0pgAp, Epg =0,E,, Ing =851, (2.96)

It is also useful to introduce the self—adjoint formulation of
the diffusion eguation. We factor ¥ into the equilibrium

distribution function ¥, given by the first line of Egs. (2.15) and

Q

1

¥ =9.0. (2.97)



Equation (2.91) reduces to
(8/8t + £)0 = XO@ , (2.98)
where ¥ and X are operators defined by

F = — W LML, (2.99)

X = -0 LT [M-A-W' 4+ N-v" = & 7'M (LU,)] . (2.100)

If the scalar product <e, B> of any two functions ¢ and f of

{@n} is defined with the weighting function ¥,
<a, B> = [Toa'Bdlon) = <a'>, (2101)

then the operator & becomes self-adjoint,

<a, B> = <P, >

<(Le") &M (LB)> . (2.102)

[

For the later development, it is convenient to expand ¥ in

terms of the % functions as follows,

e = Ingi'“'Ms)Di“j({szN}) , (2.108)
where
- N ]
prent) = [ @rv2,) (2.104)
p=1
with 1 = (i, I, -+, Iy), and so on. The coefficient g may be

obtained by multiplying the second line of Egs. (215) by

DPII*({QN}) and then integrating over {Qy}. The result is

_42_



gM(ds) = (—1)y™gat)"3 Z 01200 100 12,0 15,0,,0 jjiy

I'm’

N N=1
<[ fetoran | focusn v
2 s

=

Lo Lp+ Lp ) [ lp Lpn lp

—e(p) e(p+1) —-_mp N ] _J'I.::'*-J‘p —Jp/
for ¢(N +1)=0,
=0 for e(N + 1) = 0 (2.105)

with

p—1
c(p) = Z my , (2.106)

g=1

where ¢; is given by Eq.(26), g’ is given by Eq. (2.14), and () is
the Wigner 3—; symbol.” In deriving Eq. (2.105), we have used the

ny

properties of )",

@f”*(.!?) _ (_l)m—j.@fl*n‘lﬂ-ﬂ{g) , (2107)

JERCE RO T

S R PR )( i_l ly ig)

— 2
= 8n%eeieil s i die o A (2.108)

and the property of the 3—;j symbol that it takes a nonzero value
only when the following two relations hold at the same time:

m o+ m+my=20,

L =Ll =L<I +1. (2.109)



c. Approximations

In order to obtain the solutions, we must make an
approximation in the matrix M given by Ea. (2.92). It 1is then
reasonable to preaverage the second term E-E" on the right—hand
side of Eq.(2.94) for the matrix C, since the first term is already
independent of the configuration through the preaveraged Oseen

tensor. Thus, we have, from Eq. (2.90),

<E,-El>,, = %1, (2.110)
so that the pg element of C becomes a constant multiple of the
unit matrix,

Coe = Cppl (2.111)
with

Cpq = §Bpg + 40,00 . (2.112)

The pg element of M then becomes

Mpg = 041 — (C-l)paEi'Ea ) (2.113)

where EL-E, may be expressed in terms of the 2 functions as

follows;

ED-E, = 4n%a® ), (1 = 8;)(1 — 8j0)(n;n)

mj.f

X D2 )DT(2,) (2.114)

with



no=nh=(@,40). (2.115)

The replacement of Ep'Ef: by its average in C may be regarded
as having no significant effects on the final results since it depends
only on the orientation of a single bead. However, the further
preaveraging on the M,, given by Eq. (2.113) will destroy to a great
extent the orientational correlations between beads and also the
rigid constraints imposed, and therefore this must be avoided. Note

that with the above approximation, & i1s still self—adjoint.

2—4. Conclusion

We have constructed a model suitable for the study of
polymer chain dynamies, 1. e, the discrete HW chain, in such a
way that its equilibrium conformational behavior is almost identical
with that of the continuous HW chain whose equilibrium properties
have already been investigated in detail. The present model, on
the one hand, may be expected to simulate rather well large—
and small-scale motions of real chains, both flexible and stiff.
On the other hand, it has an advantage in that the diffusion
equation and all configuration—dependent properties may be
expressed in terms of the £ functions of FEuler angles. In other
words, the present model with the orientational degrees of freedom

of beads will give more detailed information, especially about local



motions.

In this connection, three remarks should be made. First,
there are constraints on bond lengths in the present model as well
as in the bond chain, while the constrains on bond angles are
replaced conveniently by those on orientations of beads (subbodies)
in the former. Second, the present model does not require any
preaveraging approximation other than that in matrix C, which
is related to the hydrodynamic interaction between beads and the
orientation of a single bead. Therefore, it scarcely breaks, to a
great extent, the orientational correlations between beads and also
the above constraints imposed. Third, for the present model with
N sets of Euler angles as unconstrained (soft) coordinates, the
correct diffusion equation can be derived straightforwardly
following the rather old procedure of Ikeda, FErpenbeck, and

d,*®* as noted in Sec. 2-3b. Then, the determinant of the

Kirkwoo
metric tensor (of the full coordinate space) can readily be evaluated,
and the constraints can easily be imposed. (The latter has been
actually done by the Fixman—-Kovac procedure™) Note that the
usual bond chain with rigid constraints on bond lengths and angles
is difficult to treat by this old (or the present FK) procedure if
internal rotation (torsion) angles are used as soft coordinates,
though the Fixman—Kovac procedure using bond coordinates is

effective for it.

Finally, it should be mentioned that for the present model,



the procedure based on the Fixman general diffusion equation™
including the metric potential is more laborious than the present
one. The reason for this is that it requires the evaluation of the
determinant of the metric tensor of the wunconsirained subspace.
At present, it is known to be useful for the short bond chain with
internal rotation angles as soft coordinates,® and also for some

small rigid molecules.”
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CHAPTER 3

EIGENVALUE PROBLEMS

3—1. Introduction

In Chap. 2, the diffusion equation has been derived for a
new (dynamiec) model, called the discrete helical wormlike (HW)
chain. In this chapter, we inquire into a general method of
solution of the eigenvalue problems associated with the diffusion
operator 2.

Now, the derived diffusion equation, when linearized, is
analogous to the Schrédinger equation. Because of this and the
model itself, the solution may be formulated by analogy with the
representation (or transformation) theory in quantum mechanies.
In fact, in Chap. 2, we have been able to choose as our basis set
the products of the eigenfunctions of the angular momentum
operators of subbodies, i.e., the Wigner % functions of £, with
2, the Euler angles specifying the orientation of the pth subbody.
(Note that for the conventional bond chain, it is difficult to prepare
such a complete basis set.) Thus, the problem has been reduced to
the eigenvalue problem for the matrix representation of the
diffusion operator in this basis set. In this chapter, we transform

3, " . . . 2
it to a more convenient basis set, 1. e, a standard representation



which is formed by the eigenfunctions of total angular momentum
operator® of the entire chain. With this new basis set, the problem
may readily be, to a great extent, decoupled (diagonalized). As
the result, it is reduced to an infinite number of eigenvalue
problems of much smaller size, among which the number of the
ones that are necessary to actually solve is very small. Moreover,
this representation is very transparent since there 1s clear
correspondence between the matrix elements and time—correlation
functions relevant to a given observable; one (or some) observable
corresponds to one reduced eigenvalue problem.

However, the size of every reduced eigenvalue problem, which
is to be solved numerically, is still very large. Therefore, we treat
a necessary reduced eigenvalue problem 1in a subspace (of full
Hilbert space) containing those standard basis functions which are
required for the formulation of time—correlation functions relevant
to a given observable. This approximation is referred to as the
subspace approximation. It is equivalent to neglecting the memory
term in the projection operator method of Mori” Zwanzig,® and
Evans.’ Mathematically, therefore, our approximation is on a level
with that employed by Evans in his study of the dynamics of short
bond chains.”® However, the correctness of the results must depend
on both the model adopted and the basis set chosen. Since our
model is composed of subbodies having rotational degrees of

freedom, it will give results that are quite different from earlier



ones for the conventional bond chain in some respects and that
provide more detailed information, e. g., a number of branches of
eigenvalue spectra (with unavoided and avoided crossings).

Even in the subspace approximation, the solution is actually
impossible for large IN. Therefore, we must introduce an additional
approximation, 1.e, a block—diagonal approximation with Fourier
modes (or in standard Fourier representations), which becomes
asymptotically correct in the limit N — e With  these
approximations for N » 1, the problem may finally be reduced to
N three— or several-dimensional problems as the case may he.

In order to carry out the numerical computations based on
the general solution thus obtained, we must assign proper values
to the six model parameters other than the number N of subbodies
in the chain, i. e, the constant curvature kp; and torsion 7; of the
characteristic helix of the (continuous) HW chain, the stiffness
parameter 47", the bond length a (or its equivalent 4s), and the
translational and rotatory friction coefficients §. and & of the
subbody. The first three may be determined from equilibrium
conformational properties, while the remaining three are
characteristic of the dynamics of the present model. If 4s and
N (or the total contour length L of the corresponding continuous
HW chain) are given, L (or N) is determined from the relation
L = Nds. (Note that L may be converted to the molecular weight

M by the relation M = M, L with M, the so—called shift factor.)
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For flexible chains, 4s should finally be chosen within its bounds
set in Chap. 2 to give good agreement between calculated and
observed values for, for instance, relaxation times, and thus it
provides important information about the smallest motional unit
in the chain backbone relevant to a given observable (or time scale).
For stiff chains, 4s may be assigned, from the outset, a value
corresponding to the smallest possible division that gives nearly a
continuous model. The friction coefficients ¢, and {. need not
necessarily be assigned Stokes law values precisely. However, it
should be mentioned that their possible ranges are rather limited.
The determination of them is also an important part of the study
in this chapter.

Then, we consider conditions to be imposed on ¢; and €.
The parameter ¢, determines the strength of hydrodynamic
interaction, and it must lie in the range over which the Zwanzig
singularities’ never occur and the diffusion matrix B given by
Eq. (2.55) with Eq. (2.42) is positive definite. Recall that they do
for finite N whenever the Oseen hydrodynamic interaction tensor
i1s used whether it is or is not preaveraged.® On the other hand,
{. does not appear in the theory of conventional bond chains.
For the present model, the eigenvalues (or the relaxation rates)
A%, which form the lowest of the L = 1 branches of the spectrum
for the diffusion operator in the block—diagonal approximation

(with L the "total angular momentum quantum number”), become



positive or negative at small wave number %k depending on N and
¢ (and also on ¢, weakly), while the Fixman-Evans eigenvalues"
for the constrained bond chain may possibly become negative at
large wave numbers. Such breakdown of the positive definiteness
of the diffusion operators arises from the preaveraging
approximations adopted in Chap. 2, whose effects are different in
ours and their cases. Fortunately, however, for flexible chains, it
is possible to make our Ay small in magnitude and recover the
Rouse—Zimm values'™@ for 4}, at small 2 in the coil limit of
N » 1 in a very good approximation by choosing {. properly. This
determines i1ts possible range. For typiecal stiff chains such as
DNA, Ay is very small in magnitude independently of ¢, and then
the possible range of &, or of the ratio ¢./a’t, must be determined
from a classical-hydrodynamic calculation, assuming a proper
model for the subbody. Thus, in any case, we neglect the small
[Alg] to make the lowest branch A}, start from zero (the
translational mode) at k& =0, and remove completely the negative
eigenvalues if any (for flexible chains). And ¢, and {. (along with
ds in the case of flexible chains) should finally be chosen in their
allowed ranges to give good agreement between theory and
experiment.

The plan of this chapter is as follows. In Sec. 3-2, we
consider a unitary transformation to the standard basis set, and

give expressions for the matrix elements of the identity and



diffusion operators and for time—correlation functions in this new
basis set. In Sec. 3-3, we introduce the subspace approximation,
and show its equivalence to the neglect of the memory term in
the projection operator method. In Sec. 3-4, we decouple the
problem into N problems of a small number of dimensions in the
block—diagonal approximation (with the subspace approximation)
for large N. In Sec. 35, we first examine the correctness of the
diagonal approximation to the diffusion matrix B and its positive
definiteness, and then make a detailed analysis of the lowest branch
of the eigenvalue spectrum in order to determine the possible ranges
of § and ¢, In Sec. 3-6, we discuss some general aspects of the
theory developed in Chaps. 2 and 3. In the Appendices, we give
the analytical solutions of the eigenvalue problems for dielectric
relaxation. We also give an interpolation formula for the mean
reciprocal distance between two subbodies, which is necessary for
the evaluation of the approximate eigenvalues AF of the diffusion

matrix B (strictly ¢.B).

3-2. Transformation of the Basis Set

a. Standard basis set

We want to construct from the set {D,} [= {D®™} defined

by Eq.(2.104)] a new set of those basis functions which are



simultaneous eigenfunctions of the square L’ and the z component
L. of the total angular momentum operator L =L, + L; +
+ Ly. This can be done by an application of the theory for the

4

coupling of angular momentum vectors®' For this purpose, it is

convenient to first divide the set {D,} into subsets, each specified

by the index n (= 0, 1, *+ -, N) and composed of functions,
DI (o Ry + -, @5 = @IV Y @R, (3.1)
k=1
where {l,} = 1,0, *-+,l» and so on, and [p.] = p, P2 ", Dn

(p1 < p2 < + - - < prp). The function defined by Eq. (3.1) is just equal
to the D, [given by Eq.(2.104)] with [, =0 for p# p, p2 - °°,
pn, implying that only n particular subbodies, the pith, the psth,

-+, the path, are “excited” For convenience, therefore, these
functions specified by n (irrespective of [p.]) are referred to as
the n—body excitation basis functions. Then, for given [p.], those
new n—body excitation basis functions which are simultaneous
eigenfunctions of L* and L., may be constructed from linear
combinations of the above n—body functions. In practice, we may
construct those linear combinations which are simultaneous
eigenfunctions of the sgquare and the =z component of
L, +L,+ -+ + L,. The new basis functions thus constructed
for all n and [p.] form the desired new complete basis set.
The zero—body excitation is trivial, and therefore we consider the

case of one—, two—, and n—body (n = 3) excitations in order.



In the case of n =1, it is seen that the one—body functions

. . . i

given by Eq.(3.1) are just the simultaneous eigenfunctions of L
and L, since @[V(R,) are the simultaneous eigenfunctions of L.}

Ly, (= 9/89,), and Ly (= 8/9¢,), i.e,"

Ly (-l + DN
Lpz) DR, = ( im 278, (3.2)
\ Lp;- Lj /

with i the imaginary unit. We designate these (new) one—body
excitation basis functions by bf'{p](ﬁp), where we have used the
(resultant) quantum numbers L and M to indicate that the
eigenvalues of L? and L, are — L(L +1) and (M, respectively,
Thus, we have

Ditn(2s) = DYfp1(2) = (827 V12 0}i(0,) . (3.3)

In the case of n =2, the new two—body excitation basis
functions, which we designate by DY oipat(2py, R,), may be

obtained from, for instance, Eq. (3.5.1) of Edmonds® as

th‘[ﬂfﬁ Pl (‘QPH ‘Q.Dz)

= Y <himadams| Ll LM> D@ 2,, 2,0,

O]

= (8r%) V-2 m;lemlzzmz1zJQLM>.@ﬁ*'fl(g,,,)_@gw(gm) . (3.4)
where <--:|---> s the vector—coupling (VC) coefficient.® These

new functions are the simultaneous eigenfunctions of Lp,z, L.
(Ley + Lp)', Lpa+ L., Lyg, and Lyt with the eigenvalues
—L(l + 1), —l(l; + 1), —L(L + 1), iM, ij,, and ij, respectively., We

note that the quantum numbers [y, [, my, ma, Ji, and j; are changed



to L, M, Ui, I3 ji, and j; in the transformation given by Eq. (3.4),
which does not depend on the additicnal quantum numbers j,
and ji,, and also that the above VC coefficient vanishes unless
lhb-LIl = L=<4L4+1l; and mu+m:=M (= —-L, —L + 1, .,
L —1 L), so that L and M lie in these ranges and the sum in
Eq (3.4) may be taken over m; and m: compatible with
my + ome = M.

In the case of n = 3, there exist two or more (in general

many) different schemes of the coupling of angular momentum

vectors. We here adopt the scheme in which n angular momenta

Ly, Lp, ---, Ly, are added step—by—step with n — 2 intermediate
angular momenta Ly (K =2,3, -, n — 1)
Ly=L,.+L,, (=223 -+, n—1), {3:5)

with L, =1L, and L,=L, + L, + -+ + L,. Then, those new

n—body excitation basis functions which are simultaneous

eigenfunctions of L, (k=12 ---,n), L’ (k=23 -, n—1),
(Lg, + L, + == + Lo, Lps + Lpa+ =+ + Lss and Lpe (B = 1,
2, *++, n) with the eigenvalues —l(l, +1) (¢ = 1, 2, -+, n),

iy + 1) (k=238 -+, n—1), —L(L+1), iM, and ij, (k = 1,

2, -+, n), respectively, are given by’
Df-? Ly D}E'{[f;’})(!n-:}[,ﬂn](ﬂpla ‘Q.Dzs te -r‘QPn}

o= Z 3&1,,.1!4[1—[ <zk—1ﬁlk—llkmklzh—llkzkmk>:|

(my} hed



fo?:?{'giﬁ)(qu ‘Q,Dzs RS ‘QPn) : (36)
where 1 = {L}{lncs} {jn} [pn), {2} =I5 s =+ la with L =1

and [, = L, and s is given by
ﬁlk_EZmJ. (k‘=1,2,"',n). (37)

In the transformation given by Eq.(3.6), the quantum numbers
{1,}, {ma}, {j.}, and the subbody numbers [p.] are changed to
L, M, and v (L, M, and {l.—:} on the left—hand side instead of
{m.} on the right—hand side), {j.} being the additional quantum
numbers. We note that max[2max(ly, {5 **, ) — Z:=1 In, 0] =
L = Yuuls and M- Yo mu=—-L —L+1, -+, L In what
follows, we also designate the new one— and two—body excitation
basis functions simply by D¥, with v = [p] for n =1 and
y = (Wl)(j1j2) [ ppe] for n = 2.

Now, from the orthonormality of the £ functions, i. e,
f DR DY()dR = Sudmmd (3.8)

with the asterisk indicating the complex conjugate, and the
unitarity of the VC coefficients, as given by Eg. (3.5.4) of Edmonds,}
the new basis functions DY, thus obtained (for all n and [p.])

are seen to have the orthonormality
[ DDt dten) = sty (39)

Therefore, if in matrix notation, the above transformation from

D, to DY, is written as



D=U"D, (3.10)
then the matrix U is unitary, and in fact orthogonal since the
VC coefficient is real. As seen from Egs. (3.3), (3.4), and (3.6) this
transformation i1s decoupled into those between finite—dimensional
subspaces of full Hilbert space with n, {l.}, {/.}, and [p.] fixed,
so that U 1is diagonal in these indices. We also note that the
new basis set {D},} is complete since the inverse of U exists.
Finally, from the fact that D}, are the simultaneous eigenfunctions
of L* and L, and satisfy the orthonormality given by Eq. (3.9),
we see that the set {D¥,} is just a standard basis set in the full

Hilbert space,’ and thus the desired one.

b. Matrices E and L

Let E and L be the standard matrix representations of the
identity operator and the diffusion operator ¥ with weight ¥,
respectively, in the basis set {D¥,}. For convenience, the matrix
elements constructed from the n— and n'-body excitation basis
functions are referred to as the (n, n')-body elements. In what
follows, the standard basis functions and standard representations
are designated by the symbols without tilde unless noted otherwise.
As in Chap. 2, all lengths are measured in units of the length
A7, and ksT is chosen to be unity, where kg is the Boltzmann

constant and 7 is the absolute temperature.



Now, the scalar ¥, and the scalar operator £ are
rotationally invariant, and commute with the components of the
total angular momentum operator L. According to the theory of
angular momentum,’ therefore, the standard representation E and
L are diagonal in the total angular momentum and magnetic
guantum numbers L and M, and moreover their diagonal elements
are independent of M (a special case of the Wigner—Eckart

theorem). This leads to (2L + 1)-fold degeneracy with respect to

M. The matrix elements may then be written in the form

<DE:D57'>@ = 011 0umwELyy , (3.11)

<D #DE >0 = 8118w Liyy . (3.12)

(We note that in any nonstandard basis |yLM> such that
<YLMIyY' L'M'> = 8,08 muCoy with Crp = 8y, the matrix
representation of a scalar operator is diagonal in L and M, but
then its diagonal elements are dependent on both L and M.) Thus,
the elements Ei,  and L., of the submatrices E, and L, may
be evaluated simply at M = M'=0. Note also that E; and L,
are self—adjoint, 1. e, EL=EI and LL=L}_, where the dagger
indicates the adjoint.

In the following, we give explicit expressions only for the
(1, 1)= and (2, 2)-body elements of E. and L, The (1, 2)— and
(2, 1)-body elements may readily be found from the (2, 2)~body

elements. These will be sufficient for later practical use. In the



evaluation, we have used Eq. (3.7.3) of Edmonds® for the relationship

between the VC coefficient and the 3—j symbol, Eq. (3.7.8) for the

orthogonality of the 3—; symbols, and Eq. (6.2.8) for the replacement

of the sum of products of three 3—j symbols by the product of a

3—/ symbol and a 6—; symbol.
(i). (1, 1)-body elements

We have for the (1, 1)-body elements Ep,r and

’

y=jlpl and v'= j'[p'] for p=p
E¢{y . — 82 Vgl (0’ — p)ds] ,

LS o = (87787 128,78 ,0 — [@HC ™ )pw — 8pp]

X Y. (L+AI+$)f(L, j; ADF(L, j'; dDgivul(p'—p)ds]

Ai=—1
where gf is given by Eq. (2.14) and f(l, j; 41) is given

. - : l 1 L+ 4l
iy = Y a=-swd( ;1 L)

I++ @+ I =4+ 1) e —
= 2i(-1) 1[ TER O ES ) } for 4l
_ cranltj 1 172 =
- 50 ey | far M

o i g+ -5 1" -
201 + 1)(—1)" 1[ 51T = I + D) ] for Al

with (::) being the 3—j symbol and with

ef ~ DU — S+ J + Q1.

LL.TT’;

——

by

=1

with

(3.13)

(3.14)

(3.15)

(3.16)



The elements for p > p' may be obtained from Egs. (3.13)
and (314) with the self-adjointness of EL and Li, e g,

- R
E(ﬂff}:‘.p’] = Ez.f}a’.pl-

(ii). (2, 2)-body elements

We have for the (2, 2)-body elements EL;  with
v = (Wl)(j1j2) [ pp:] and y'= (1{15)(,‘{;’5)[10{;;5] for p1 = p; (where

p1 < p; and p; < p; by the assumption)

(Tl in - LA U404+ f{+ ) 2y—N
Eﬁ.‘(’tfl?l’m}[mpz-pipi] - (_1) A }(8” )

R .

X Z F i 55 pros.pips] Z J A TS [ w(pipapi p2) ] (3.17)
L 17

Here, F ... are numerical constants given by

F Lip it U piprips)

— 3]_,,5(—1)‘(23 + 1)_1’2 for p, < p; < p{ < pé

i i L

= (—1)"*Erier 4+ 1)V oLl for p1 < pi < ps < pz
= (1)1 + 1)V bk Ly, < pl <p; < 3.18
I 1, 1 or pi o)1 Y2y Pz, (3.18)

where {::} is the 6—j symbol,® and vanishes unless |, — | = [
< L +1Il{. w is an operator that rearranges the subbody numbers
pi, P2, pi, p: in the increasing order, and w is an operator that

rearranges the four indices I, Iy I, Iz or ji, jz —Ji, —Jjs in the



order corresponding to that of the subbody numbers, e. g,

w(lilalilz) = (Lllil)  for p1 < p, < pl < ps
= (Llilly) for p1 < pl < ps < ps

= (llilzls) for py< pi < p1 < py. (3.19)

Thus, J:: as a function of the subbody numbers depends on the

order of them, and for p, < p, < ps < ps, it is given by

J {f{ff&{gfﬁwﬁ(P1P2P3p4}

= (D' + D)2 + D)2 + D2 + )2 + 1]V

xp-pems( B L BB B

e = Ja Js —is ! N —j2 ja— 2 2/

X gl [(py — p3)ds] gl ™ [(ps — pa)ds]

X g™ [(p2 — p1)ds] . (3.20)
Next the (2, 2)-body elements Li,r for p, =p; are given by

2 2

Lgﬁf{z—jl‘f}eﬁ[mpz—,pipél = Z Z Liyyp.e; » (3.21)

a=1l f=1

where
_ _I . o r
Lf--rr’.pop’a = {r ( Jaj 80 p, B Lyr

= (12l + 120 + D] [aX(C 0 — pp]

1
% Z Z (_1)53,(L+ L'+ 4045 L+ L' +40)

4L4r'==1 L'

X 2L+ DIl + 41 + 3)Ue + A'+ $)1f (e, Jui ADf (L5, Joi A1)
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L1 1 {L' 1 L }E . ) (3.22)
Ao i ad ly Uy b+ QU ST

with b=0+10 -1 and ly=10+ I; — g Yaan = (L + 81,41,
Iy + 8 d0)(j1j2) [ papa]; and Yhun = (U + 840, 1z + 84 ) j1j2) [ pip2 ],
and in Bq. (3.22), EL,y are the (2, 2)-body elements.

The elements for p, > pi may be obtained again by the use
of the self-adjointness of E; and L.  Further, we note that the
(1, 2)- or (2, 1)-body elements may be obtained from the (2, 2)-body
elements by putting [, = 0 or [; = 0, and also that they reduce to

the (1, 1)-body elements if we put [ = I3 = 0.
¢. Time—correlation functions

We introduce time—correlation functions of the standard basis
functions or a standard correlation matrix C. It is just the
standard representation of the (time-displacement) operator e,
and therefore also diagonal in L and M, 1. e,

<DYy({@x}, ODE ({2}, )7 = <Dlfy e™ DYy,

= 0110w CrLy(t), (3.23)
where the submatrix elements CpLy,{t) are independent of M and
may be evaluated simply at M = M'= 0. Further, since % is a

self—adjoint operator, the matrices C and C. are seen to be

self-adjoint, i.e, Cp = CI, so that in particular, Cr,(t) are real.
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Now, we formulated the eigenvalue problem in the standard
representation. Let &, be the simultaneous diagonalizing matrix
for the two submatrices E; and L; of the full standard

representations £ and L, respectively, 1. e,

QLELQL = 11, (3.24)

QLLLQL = A, (3.25)

where 1, and A, are diagonal matrices with diagonal elements 1
and A respectively. Note that . is not unitary. It is then easy
to show that the correlation submatrix Cp(t) is written in terms
of the solutions €. and A, of the eigenvalue problem given by

Egs. (3.24) and (3.25) as
Cw(t) = Q" exp(—ALt)QI" . (3.26)

It should be noted that the same relations as Eqgs. {(3.24)-(3.26) are
held for the full standard representations E, L, and C, and that
this full problem has been, to a great extent, decoupled by the
properties of the standard set given by Egs. (3.11), (3.12), and (3.23).
The full standard representations £, [, and C are shown
schematically in Fig. 31, where E;, L, or Cp (L =0, 1, 2, --*)
appear in the diagonal blocks (with L = L), the submatrices in
the off-diagonal blocks 0 (with L = L') are null matrices, and
the M degeneracy has not been shown. In what follows, L(n)

denotes the n—body excitation for a given value of the quantum

_65_



number L, or the corresponding subspace of the full Hilbert space.
Note that n =0, 1, 2, +*, N for L =0, and n =1, 2, w=ey, N
for L = 0. As is evident from the above remarks, the dielectric
susceptibility (D) is associated with the 1(1), 1(1) elements, 1. e, the

subblock D in the figure, the fluorescence depolarization (F) and

L 0 | 2 3
LINJO I -=n"=N|] I 2 3 NI 2 3 N| |
0
|
0l : 0 0
n
N
| D
2 O
13 0
2 Y1V
23 (0] @]
N
|
3

X=F,S, BuV: Y =BV

Fig. 31. The full standard representations E, L, and C of the identity operator,
the diffusion operator &, and the operator exp(—%t), respectively (C is the
standard correlation matrix). The submatrices E;, Li, or Cp appear in the
diagonal blocks (L=L"), where the subscript L (= 0, 1, 2, ***) denotes the "total
angular momentum gquantum number.” Dielectric relaxation (D) is associated
with the subblock D with L=L'=1 and n=n"=1, where n is the number of
“excited” subbodies. Fluorescence depolarization (F) and nuclear magnetic spin
relaxation (S) are associated with the subblock X, flow birefringence (B;) with
X and Y, and viscosity (V) with X, Y, and V.
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the nuclear magnetic spin relaxation (S) with the subblock X, the
flow birefringence (B:) with the subblocks X and Y, and the

viscosity (V) with the subblocks X, Y, and V.

3—3. Subspace Approximation

Although we have thus reduced the size of the eigenvalue
problem, and we have seen that the correlation submatrix elements
relevant to a given observable are greatly localized, the size of
the reduced problem is still very large (infinite). For example, in
order to find the correlation matrix in the subblock D, we must
solve the eigenvalue problem for the infinite matrices E, and L,
Therefore, we introduce approximations to further reduce its size.

First, we introduce the subspace approximation, as mentioned
in Sec. 3—1. That is, we approximately decouple the space (strictly
the subspace of the full Hilbert space) specified by the quantum
number L into a subspace relevant to a given observable and its
complementary space; e. g., the subspace 1(1) and its complementary
space {1(2), 1(3), +-+, UN)} in the case of dielectric relaxation,
and the subspace {2(1), 2(2)} and its complementary space{2(3), 2(4),

-, 2(N)} in the case of viscosity. In this approximation,
therefore, E,, L., and . become block diagonal with the null
off-diagonal blocks between these two subspaces, so that the

problem may be solved only in the subblock D, X, or X + Y + V.



Then the subspace L(1) is (2L + 1)N—-dimensional except the M
degeneracy [since p=1, 2, =+++-, N and j=-L, —L+1, ---,
L -1, L in Egs. (313) and (3.14)], while the subspace L(n)
(2=n=N) is infinite dimensional. Therefore, the subspace
approximation must be somewhat modified in the case of viscosity,
and this problem will he considered separately in Chap. 5.

Thus, in order to obtain the correlation matrix Cruft)
appearing in the subblock D (L =1) or X (L = 2), we may solve
the eigenvalue problem for the (2L + 1)NX(2L + 1)N submatrices
Eyyn and Lpy in the subspace L(1), whose elements are given by

Eqgs. (3.13) and (3.14), respectively, i. e.,

QLUEL(DQL{H = 1y, (3.27)
QLI}LL(DQL{]) = Auy , (3.28)
Craft) = QZ%;GXP(""AL(M)QE{%- (3.29)

instead of Egs. (3.24)—(3.26) , respectively. Clearly, this is a crude
approximation. Higher—order approximations may probably be
obtained, though not systematically, if we solve the eigenvalue
problem of somewhat larger size by augmenting the L(1) subset
with some basis functions suitably chosen from the complementary
space {L(2), L(3), -+ -, L(N)}. Note that at ¢ = 0, the Cru(0) given
by Eq.(3.29) is exactly correct even in the crude subspace

approximation.



Now, let us show that the above subspace approximation
(with or without augmentation) is equivalent to neglecting the
memory term appearing in the projection of the f{full space
dynamics onto the subspace L(1) (with or without augmentation)
by the projection operator method® Since the full Hilbert space
is decoupled with respect to L and M, we may consider the space
(strictly subspace) specified by L from the start. Let A(t) be some
dynamical variable, and consider in general a subspace spanned
by VY4 basis functions DY, (i=1,2 ---, ¥q). [Note that if A(0)
is confined in the space L, so is also A(t).] We define the

projection ZA of A(t) onto this subspace by

¥4
@A = Z Dfr;(Es_l)r:r;<Dﬁ:fA>eq ] (3.30)
1

=

where the subseript s has been used to indicate the vgXyq submatrix
in the subspace. If we take A(t) = e DY, (k =1, 2, *+-, va) then
following Mori’ and Zwanzig," we find the kinetic equation satisfied
by the correlation submatrix Cy(t)

8

Co(t) = — LE;'Cy(t) + ftK(t — tC(t" )t , (3.31)
ot 0

with C40) = E,, where the vsXvqy memory kernel matrix
K = [K. (t)] is given by

Y

Ky (t) = 2. <D¥y ¢

k=1

X exp[—(1 — 2)Lt1(1 — P)EL DY >ea(E I, - (3.32)



Note that <D‘f_7>eq =0 for the present case (L # 0). (If
<D’f,y>ﬁq # 0, such DY, must be replaced by D¥. - <D¥)>eq) If we

neglect the memory term in Eq. (3.31), we obtain

aics(a) -~ LEICAY) (3.33)
L

with C0) = E,, When s = L(1), it is easy to show that the solution
of Eq. (3.33) is identical with the Cru(t) approximated by Eq. (3.29).
Thus, we have shown the equivalence. Note that if we take the
present full space L as the space s, we have Z =1 and therefore
K =0, so that Cr(t) exactly obeys Eq.(3.33) with E; and L. in
place of E; and L, respectively. In fact, this is consistent with
Eq. (3.26). Exact solution of Egq. (3.31) with the memory term is
equivalent to finding the exact Cgt) by solving the full eigenvalue
problem for E; and L., and is also impossible. However, 1t 1s
possible to take account of some interactions between the subspace
and its complementary space by augmentation of the subspace with
a small number of basis functions in the subspace approximation,
as noted above, and this is equivalent to partly retaining the
memory term after the projection onto the lowest subspace.

In this connection, we should mention the work of Evans.
He has evaluated several kinds of time—correlation functions for
short bond chains by the projection operator method.” Further, he
has chosen 25 basis functions from a complete set of them for

three—bond chains,® but his treatments for longer chains correspond



to the above crude subspace approximation without augmentation.
Our actual evaluation will also be carried out in this
approximation. However, because of the rotational degrees of
freedom of the subbodies in the HW chain, our approximation
may be regarded as being on a level with a somewhat augmented
crude approximation in the (long) bond chain. Recall that there
are at least (2L + 1)N basis functions in the case of Cpy(t). (For
the three—bond chain, our evaluation is of course less complete than
the above specific treatment of Evans.)

Thus, we return to the eigenvalue problem given by Egs. (3.27)
and (3.28). It may be solved by a standard method. We first

diagonalize the self—adjoint matrix Er, with a unitary matrix

Qfw
Qfﬁ]ELme{n = AL , (3.34)

where Ay is a diagonal matrix with diagonal elements Af. Let
(Afw)™* be the diagonal matrix with diagonal elements (AF)™"%
We then transform Lry, to another self—adjoint matrix with

Qf(ALy)™%, and finally diagonalize it with a unitary matrix Qfy

Q[ (Af ) ™V QEN L@y Afw) 1 QEw = Arw (3.35)

The diagonal matrix Apg must be identical with the one on the
right—hand side of Eq. (3.28), and the diagonalizing matrix @rg in
Egs. (3.27) and (3.28) (which is not unitary) is given by

Quw = QLw(ALw) QL - (3.36)
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Now the diagonalization in Eq. (3.34) may partly be
performed  analytically. By the wuse of Eq.(214) with

Eqs. (2.10)—(2.13), Eq.(3.13) for the elements of Erqy may be rewritten

as
L L
EVfhn = 2 2 QUnaQimeBLiea (3.37)
m==L gg'=]
with
EL.[p,p’] = (87;2)_Nexp[ - L(L + l)lpr— p|dS] 3 (3.38)
Q¥ = 8,y @i (Ra)exp( — ij vpds) , (3.39)

where v is given by Eq.(2.19). From Eq.(3.39) with the unitarity
of the unnormalized Wigner @ functions [Eq. (43.10) of Davydov'],

the matrix Qm, - {Q{f;,p') is seen to be unitary, i. e,

s

L
m=-—L

N
; QTg}’:Q?pr’ = aJ",r"app' . (3.40)
We then solve Eq. (3.37) for Er(,,) by the use of Eq.(3.40) to find

L N
Am ¥ m,m’ Amlit
Y ) B0 = 8Bt - (3.41)

mm'==L gq'=1

Thus, the diagonalization of Epy, in Eg. (3.34) is reduced to a
diagonalization of the NXN real symmetric matrix Er(,y). This
diagonalization and also that of Lyy in  Eq.(3.35) must be
performed numerically. Note that there 1s (2L + 1)—fold degeneracy
with respect to ;j in E.y,, as seen from Egq. (3.41) with Eq. (3.38),

but this is not generally the case with Lpq.



However, for the Kratky—Porod (KP) wormlike chain® as a
special case of the HW chain with k; = 0, the problem is somewhat
simplified. In this case, g(s) has been given by Yamakawa and

Shimada [Eq. (55) of Ref. 16 (with ¢ = 0)]
g (s) = 8;pexp{—[L(L + 1) + ijzels}  (KP), (3.42)

so that Ern and Lpg given by Egs. (3.13) and (3.14) become diagonal
in j, and also we have @}(2,) = ;7 in Eq. (3.39). Since we then
have further EY{;}) = E[ﬁ';{’;ﬁ] and Lifpih = Lf:fip'] and from
Egs. (3.13), (3.14), and (3.42), we see that there are also L sets of
twofold degeneracy with respect to j (= 0) between j and —; in

Lyyy in addition to the (2L + 1)-fold j degeneracy in E.qy,.

3—4. Block—-Diagonal Approximation

We have seen that the problem 1is reduced to the 3N— or
5N-—dimensional eigenvalue problem (for L =1 or 2) in the L(1)
subspace approximation. This reduction suffices for a numerical
solution for N < 30 (with use of a FACOM M-200 digital computer
in this University), but it will actually be impossible for large N.
We must, therefore, introduce an additional approximation, 1. e,
the block—diagonal approximation, as mentioned in Sec. 3—1. This
is done by a further transformation to another standard basis set.

The useful transformation is then the one that approximately



diagonalizes the matrix B defined by Eq.(2.55) with Eq. (2.42), and
therefore also the matrix C defined by Eq. (2.112). The matrix B,
or its minor modification in the Zimm version,” always appears

LB Por  conventional bond

in the dynamics of polymer chains.
chains, both flexible and stiff, it is well known that B may be
diagonalized in a good approximation with the orthogonal,

symmetric matrix Q%"

o = [2/(N + 1)]1Y%sin [1pk/(N + 1)]

(p’k'=1?21-..lN)! (3-43)

which exactly diagonalizes the free—draining matrix B°= B with

neglect of the second term on the right—hand side of Eq. (2.42) (1. e,

2

the Rouse matrix except the factor ¢{,'). For the present model,

we also adopt this approximation, i. €.,

(@B = St "AF (3.44)

(Q°CQNw = Swwa’af | (3.45)
where

A= % + (¢St )af (3.46)

with Af = £(@°BQ". Note that in the coil limit, Af are just the
Rouse—Zimm eigenvalues in the Hearst version’®® The correctness
of Eq. (3.44) will be examined numerically in Sec. 3—5a.

Now we transform the basis functions fop] in the subspace
L(1) to new basis functions F¥ not only with @° but also with

the @ functions in Eq. (3.39) as follows:



N L
Fifa({ox)) = 2 Y. QuBii(Q)DY{,(2,) (3.47)
P=l j'=—p

where L and M remain unchanged. It is easy to see that this
new basis set is also a standard one in the subspace {1(1), 2(1),
3(1), +--}. It i1s referred to as the standard Fourier basis set
(in the subspace), since @" is just a Fourier sine transformation.
Thus, the standard Fourier representations of the identity and
diffusion operators (with the weight) are also diagonal in L and
M with the diagonal elements being independent of M, so that we

may write them as

<Ff'{:}Ff.d".’[’;z']>eq = aLL’aMM'EL(,j[{.]k‘] ; (2.48)
<Ff'[i:]-?F£{'[';z‘]>aq = aLL'aMM’EL(.J[{..h'] " (2.49)

By the use of Eq.(2.14) for gi/(s) appearing in the elements
of Ery and Lry given by Egs. (313) and (3.14), respectively, and
of the unitarity of @§, we find for the elements of E.;, and
Ly

b = Z Z Q%L BT (RN DT (2) ELYE

pp=l mm'=

= 6”(8]?2)—.?\'8(0)}:,: : {350)

N

L = ), Z QUMY D Q)BT (R0 LYY

pp'=1 mm'=—L

= (8:4'2)‘”:,‘1[3,,-,3&&-1,(15 + 1)



J L+JI T T oy
S N saz-zﬂ.kh'] , (3.50)

fi==1 jrem -t
with

N
S = Y @%@k [a¥(C w]”

p.p'=1

Xexp{—[L(L + 1)l p'= pl— iju(p'— p)1ds} (n =0,1), (352)

L
TEH = [32n/2L + )] }.  f(L, m; ADf(L, m'; A1)

mm'==L
X DI R) DT () DT Ra) DT R0) (3.53)

where f(L, j; 41) is given by Eq. (3.15).

If we take the sums over p and p' in Eq. (3.52) by the use
of Eqg. (3.43) with the approximation given by Eq.(3.45), we can
show that ST% with k& # k' are of &(N™") in relation to ST (with
k = k'), and obtain for the latter,

SV =1+ 2 (1= 8 S L(L + 1)ds, k8 + irjvds]

==

+ (N + 1)7'cot(k8)S,[ L{L + 1)ds, k8 + i,jvds])} , (3.54)

[\’_]z

SPh = [2AN + 1)] Z — i) — Big)

e
n

X ([1% Spriwmven] {3 + Sc[L(L + Dds, (k + 1,k")8 + iyjvds]}
+ (N + 1) {cotkf + coti;k’'8 — [1 — Orrigemv+n ] cot(k + i1k")0}

X Ss[L(L + 1)ds, (k + i1k")8 + izjvds]) , (3.55)



where 8 = /(N + 1),

N=1
Sz, = (1 = P )e_""'cos
{x, ¥) ; N+ 1 py

= (N*+ N — 2)/2N + 1),

if x =0 and vy = 2n1 (with n integer)

= (e_"cosy — e — (N + 1) {2V cosNy

e 28_‘N+UXCOS(N = l)y + [e—.‘(cosy - 29—31
+ e ¥cosy — e cosNy + 2¢ V™ eos(N — 1)y

— ™V os(N — 2)y](1 — 2eTcosy + e7)})

X (1 — 2e "cosy + )™, otherwise (3.56)
N-1

Se(x, v) = Z e sinpy
p=1

=0, if x=0 and y = 2n1 (with n integer)
= [e™“siny — e VsinNy + ¢V sin(N — 1)y]

X (1 — 2e “cosy + e ™)™, otherwise . (3.57)
In Eq.(3.55), 4, is given by Eq.(3.46), and m(N + 1) denotes
multiples of N + 1.

Thus, for N » 1, the matrices Eyy and Ly, become
approximately diagonal in k, so that the (2N + 1)N-dimensional
eligenvalue problem in the L(1) subspace approximation given by
Egs. (3.27) and (3.28) may be reduced to N eigenvalue problems
for the (2L + 1)X(2L + 1) matrices Epmm and Limp ( B =1, 2

-, N) whose Jj, j' elements are Ef{/s and L#{u, respectively,



1- —_
QLm.[k]ELm,[k]QLm.ih] = lranie) » (3‘58)

(3.59)

f —
Qruvtri Lo m@uwier = Azanir

where 1pms and Apae are (2L + 1)X(2L + 1) diagonal matrices
with diagonal elements 1 and A, (j=-L, —L+1, ---, L)
respectively, and @rme is a diagonalizing matrix (not unitary).
This is the block—diagonal approximation.

Now, recalling that E.q is already diagonal in j, we may
readily reduce the eigenvalue problem given by Egs. (3.58) and (3.59)
to that for a (2L + 1)X(2L + 1) self—adjoint matrix as in Eg. (3.35);

L e,
+ = i = i
Qa1 LE zantar) L int(E vowanr) 21 @Ean iy = Avcrtag » (3.60)

where (Epwn) ™ is the diagonal matrix with diagonal elements
(E )™ and QFwie is a unitary, diagonalizing matrix. Since
the right—hand sides of Egs. (3.59) and (3.60) are identical, the above
two diagonalizing matrices are related to each other by

Qruvier = (Erwim) " QLanta - (3.61)
The analytical solutions of the three—dimensional (L = 1) eigenvalue
problem given by Eq.(3.60) with Egs. (3.50)—(3.57) are given in
Appendix 3—A,

Finally, the correlation matrix Cpa(t) in the subspace and
block—diagonal approximations is obtained, from Eq. (3.29) with

the elements E/ {4 and the solution of Eq.(3.60), AL: and QFw. (1)



as follows:
T N L — — J*
CUilne) = 20 Y BN T 2)QUQ%

E=1 mm' j==1

"k

X QL QL (BT E LTik]) Pexp(—ALat) , (3.62)

where Qﬂf are the j, /' elements of the unitary matrix Q%u(s).
In contrast to the subspace approximation of Eq. (3.29) alone, the
Cra(D) given by Eq. (3.62) is already approximated because of the
block—diagonal approximation.

For the KP chain (kg = 0), both E.y and Liy are diagonal
in j since then g} is given by Eq. (3.42), so that we need not solve
the eigenvalue problem given by Egs. (3.58) and (3.59); i e,

QL= 8;y. Since we then also have :@fu(.Q,) = 4d,r, Eq.(3.62) reduces

to
N

Cliprm(t) = dr gl Q2@ E Vikexp(—Ahat) (KP), (3.63)
where

BaYWE 4y = S0 = ST, (3.64)

My = Ath (7 = 0) = (Bt " Liikn (3.65)
so that

Clifhn(t) = CLizh(E) . (3.66)



3—5. Conditions on the Model Parameters

In order to find conditions to be imposed on ¢  and { it
is convenient to introduce instead of them the dimensionless
parameters r and r; defined by

ro= &J3nma (3.67)

ry = &la’te (3.68)
with 7p the solvent viscosity. Note that for touched Stokes bead
models, r, = 1 and r; = 1/3, and that a is uniquely related to 4s

by Eq. (2.26). For convenience, we restore kg7 in this section.

a. The diffusion matrix B

We begin by examining the accuracy of the approximate
eigenvalues AF = £ (Q'BQ")u. of ¢,B, where Q" is the Fourier sine
transformation matrix given by Eq. (3.43). In particular, in the coil
limit of N » 1 and k/N <« 1 (for both flexible and stiff chains),
18,19

they are the Rouse—Zimm eigenvalues in the Hearst version,

and are given by

2 4hA;
A= —%(kz + -—;2—') (3.69)
with
A = Tk TRC(TR) — $S(nk)] (3.70)
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where C(x) and S(x) are the Fresnel integrals defined by

g}(x) = (23?)—“2j;‘t-lz{gﬁf} tdt . (3.71)

In Eq.(3.69), h is the conventional draining parameter, and for
the present model, 1t 1s given by
h = £ NV (120 e
= (3/41)"*(a/a)r N"* (3.72)
where a is the (unperturbed) effective bond length of the discrete
HW chain, and is defined, from FEq. (2.18) with Eq. (2.25) for its

equilibrium mean—square end-to—end distance <RYN)>e., by
o’ = |im[<RYN)>.(/N] = cads (3.73)

with ce being given by Eq.(2.23). It is well known that the Af
given by Eg. (3.69) are very good approximations in the coil limit.

Next, we examine the case of small N. Figure 3.2 shows
plots of Af (k=1 2, +++, N) against reduced wave number
k=Fk/(N + 1) for isotactic polystyrene (i-PS; & =11 and
7o = 15)'%* and the KP chain (ks = 0), both with N = 9. (Note that
in the case of k; = 0, the mean reciprocal distance between two
subbodies and therefore the matrix B are independent of 7,) The
open circles represent the exact eigenvalues, and the full and broken
line segments connect the corresponding approximate values. In
the case of 1-PS, the lower and upper points correspond to
ds = 04 and 0.08, its upper and lower bounds, respectively, where

the lower bound corresponds to two skeletal bonds and we have
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Fig. 32. Eigenvalues Af of B plotted against the reduced wave number k&
for isotactic polystyrene and the KP chain with N=9 and the indicated values
of 4s. The open circles represent the exact eigenvalues, and full and broken line
segments connect the corresponding approximate values.

taken A7'= 26.4 A In the case of KP, the lower and upper points
represent the values for 4s = 10° and 107%, respectively, which do
not necessarily correspond to the upper and lower bounds on 4s

for any real chain, but to very flexible and very stiff (KP) chains,



respectively. In any case, there 1s good agreement between the
exact and approximate eigenvalues, the error becoming the largest
at k=1, 4-6%, depending on the model parameters. We note that
for small N, it is easy to make the approximate eigenvalues
correspond to the exact ones, as above, by comparing the respective
eigenvectors, while for large N, this is difficult in the range of
k202 In the range ofk S 02, we have found that the agreement
between the exact and approximate eigenvalues becomes better as
N is increased. Thus, the approximate eigenvalues A may be used
safely as a first approximation for all possible cases of the discrete
HW chain.

Now, Af depend on only r, and N for given Ko, 7o, and Js.
As r, is increased, Af with large & become small, and A%, An-i,

become negative successively; the matrix B is then not positive
definite. Let r{” be the upper bound on r; such that Af = 0 for
all & when r, = r\”. Figure 3.3 shows plots of r{" against 4s not
only for the KP chain and i—PS but also for syndiotactic
polystyrene (s—PS; ky =08 and 17y = 23), isotactic poly(methyl
methacrylate) (i-PMMA; k¢ = 17 and 1o = 14), and syndiotactic
poly(methyl methacrylate) (s—PMMA; k; = 44 and vy = G819 all
with N = 99. The vertical line segments indicate the upper and
lower bounds on 4s. The upper bound is taken as 0.4 for all cases,
and the lower bound for flexible chains corresponds to two skeletal

bonds and is equal to ~ 0.05 for s—PS (A7'= 404 A), ~ 0.06 for
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Fig. 33. The upper bound ri" on 7, plotted against 4s in its allowed range
for isotactic and syndiotactic polystyrenes, isotactic and syndiotactic poly(methyl
methacrylate)s, and the KP chain, all with N=99. The lower bound on 4s
for the KP chain corresponds to the case of DNA.

i—-PMMA (A7'=327 A), and ~ 0.03 for s—PMMA (17'= 656 A). We
have taken as an example of the lower bound for the KP chain
the one which corresponds to the distance between base pairs 3.4 A
of DNA and is equal to ~ 0.0031 if we adopt A™'= 1100 A (in 02 M
NaCl)®™® It is seen that r\” becomes almost independent of the
model parameters as d4s is decreased. We also note that ri¥ is

almost independent of N for N 2 50. Anyway, it appears that



the positive definiteness of the diffusion matrix B is always

guaranteed provided that r < 1.

b. The lowest branch

We make an analysis of the eigenvalues A%, in the j =0
branch of the spectrum for the diffusion operator in the subspace
1(1) (in the block—diagonal approximation). According to the J
indexing of the L =1 branches mentioned in Appendix 3—A, we
always have A, < A7l. TFurther, it can be shown, from Egs. (3A.5),
that A}, < Aj; for N » 1. In other words, the eigenvalues Alx, form
the lowest of the I =1 branches for small 2 provided that N is
large. These eigenvalues are related to a slow part of the dielectric
relaxation rates of the entire chain, and are explicitly given, from

the first of Egs. (3A.5), by
ABp = (BeT/26)[ fr — (f2 — g1, (3.74)
with
fo= (ST + (SPY1(2 — $SE% — 1S — 1580 — 451
+ (k® + 7 W IST = (SPYTI(ESE — ASE + 48P0 - 58
+ "y T(SP)TISE? — §97) (3.75)
gr = 4(SPOSP) {4 — §SEL1 — H(SI + S

» 132 (1)L 1 2,2y g0
— kolroy TSI — St 4 1SPH] — S — (4 — KkwTH)SY



- 2y2 =4 (L ()0
[2“1 - KUQV 28%,”2 + ]J‘g(k'-ug — 2T )1" S8
s 2..=4 (1)L ovil)l 1 ¢or(lo o(1)2
+ (ko + 20,0788 + oz SISE! + 5108
+ %1“6041"-48‘(21)2(5'(1!)1 y S;_Ul)} , (3.76)

where S?” = SP%. and 8% = 8%, are given by Eqgs. (3.54) and (3.55),

respectively, and v is given by Eq. (2.19).
Now we regard ST} (n =0, 1) as continuous functions of

k to find them in the limit of £ — 0,

S = (1 — e™)[1 — 267 cos(juds) + e ] (=0, 1), (3.77)

1+ 3(=1)V*! _
S = § ~ e (318)
‘ N+1
SPh = [4N + 1] — &) k}] (2 = Son — Swaan)(AS)™!
=0

1

X A}: (1=00:) [1 — 2e7"cos(kf + ijvds) + e 171, (L = 0), (3.79)

t=—]

where x =~ L(L + 1)ds, 6 = z/(N + 1), and A is given by Eq. (3.46).
In Eq. (3.79) with Eq. (3.46), we may put A2 =0 and A = 25, so
that

A= %, A > 25 . (3.80)
Correspondingly, we regard Al» as a continuous function of k.
Then, the ordinate intercept A% of a plot of Al against the reduced
wave number is given by Eqg. (3.74) with Eq. (3.75)—(3.80).

Next, we consider the coil  limit of N » 1 and



kI(N + 1) <« 1. We then have

S% = a; = vl(0)REY + -+, (j=0,1), (3.81)

St = % = gradl + - (2822

SPh = al = bREY + -+, (L #0), (3.83)
where

a; = S% , (3.84)

Yi(8) = (1 — e ™) {cos(f + jvds) — de " sinX(f + jvds)
X [1 — 2e“cos(8 + jvds) + e ]7'}
X [1 — 2e “cos(8 + jvds) + e *]7%, (3.85)

al = |im Sth, (L =0, (3.86)

N
bi = Jim [2(N + D17 Y, () [7i(k0) + rT/(k6)] , (L = 0) (3.87)
k=1

with x = L(L + 1)4s and 6 = n/(N + 1). We note that the Af in
Eq. (3.82) is given by Eq.(3.69) and becomes proportional to (k8)?
in the free—draining limit A — 0 and to (k6)*” in the nondraining
limit A — =, and that in Egs. (3.81)—(3.83), we have neglected terms
of order N™' and e %,

The eigenvalues A7, in the lowest branch in the coil limit
may then be written in the form

Ay = A% + Fo(3keT/a’€)A%, (coil limit) (3.88)



where A% is given by Eaq.(3.69) with the effective translational

friction coefficient ¢ in place of {, and
T =01+ AJA) Y, (3.89)

fo

Ala/a)

= A1+ 25,71 — 7MY 4 20Ty e

X (cosvds — e )1 — 2™ M0osyds + M) (3.90)
with

A = 2(aoe) (fo® = g0 7?1 — ${ai + as)
— kolrev'(Ea) — @b + tad)] + H[1 = folfo' — &)
X [a3* + ait — (ko' — ro* W ag" — ai)] . (3.91)

In Eq.(3.89), A; may be written in terms of ko, 7o, fo, &0 @,
7{(0), @i, and bi, but is unnecessary in later numerical
computations, and its explicit expression is not given here. We note
that the f; and gg appearing in A}, A, and A; in Eq. (3.88) should
be evaluated in the limit N — «, and that in the second line of
Eqs. (3.90), we have used Egs. (3.73) and (2.26).

Now, the intercept AYy in general becomes positive or negative
depending on N and r; (and also on r, weakly), the negative Al
giving definitely the negative eigenvalues A}, at small wave numbers.
(We note that the negative eigenvalues occur even without the

block—diagonal approximation.) It is interesting to see that if Al



vanish and if fp were equal to unity, the inverse of Al, given by
Eq. (3.88) would be just the Rouse—Zimm dielectric relaxation times.
(Note then that the appearance of ¢ in place of &, is immaterial,
since it is known that the values to be assigned to a and € are,
to some extent, arbitrary in the two—parameter theory for polymer
chain dynamics.”®) However, this is not generally the case , though
fo =1 in particular case of k=0 or 7, =0 since then A, = a7’
or @;'. Such failure in reproducing long—wavelength (slow) motions
may be regarded as arising from the preaveraging approximation
made in the matrix C given by Eq. (2.94) and contained in matrix
M given by Eq.(292), and therefore [rom the approximation of
the matrix M by Eq. (2113). For flexible chains, it is, however,
possible to make A}y small in magnitude and fp close to unity by
choosing r; properly, as shown below. This determines its possible
range. For typical stiff chains such as DNA, the possible range
of r; must be determined in a different way, as mentioned in

Sec. 3—1,

(i). Flexible chains

Figure 3.4 shows plots of the reduced intercept
Ay = ¢Ao/ksT against r, for four polymers, i-PS, s—PS, i-PMMA,
and s—-PMMA, all with », =1 and N = 99. The full and broken

curves represent the values for the values of 4s equal to its upper
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Fig. 34. The reduced intercept 4,5 of the lowest 1° branch of the eigenvalue
spectrum plotted against ry for isotactic and syndiotactic polystyrenes and
isotactic and syndiotactic poly{methyl methacrylate)s, all with r;=1 and N=99.
The full and broken curves represent the values for the values of 4s equal to
its upper and lower bounds, respectively, for each polymer.

and lower bounds, respectively, for each polymer. 1In all cases,
Alp increases monotonically with increasing r;, and the larger ds,
the smaller A}, at given r.. We note that although A}y is negative
in the range of r; displayed, it becomes positive in some cases
for very large r; and also that A}y is almost independent of N
for N % 100 in the range of r; displayed. It is then important

to see that Aly in general decreases rapidly as r; is decreased to



Fig. 35. The flactor 7[; plotted against r; for the four flexible polymers. The
full and broken curves have the same meaning as in Fig. 34.

zero for r; £ 3, but for r; & 3, it depends on r; weakly, and is
actually very small in magnitude.

Figure 3.5 shows plots of the factor fo (appearing in the coil
limit) against r; at r; = 1 for the same polyniers, the meaning of
the curves being the same as in Fig. 34. In all cases, fu decreases
to unity with increasing ry; and the larger 4ds, the closer to unity
fp at given r; in its range displayed. It is seen that for rs 2 3,

o depends on r; weakly, and moreover 1.0 S fo S 11 it is actually



very close to unity except for s—PMMA. These establish the allowed

range of ry le, rz & 3.

(ii).  Stiff chains

We consider DNA as an example of typical stiff chains. It
is well known that DNA may be represented by the KP chain
(kg = 0). However, in order to apply the present theory to it, we
must also determine its 7p. This can be achieved if a localized
Cartesian coordinate system is affixed to each base pair,
representing it by the KP-1 chain® with & =0 and 7o = 0 (see
Fig. 2 of Ref. 25). Since its one helix turn contains 10 base pairs,
we then have 7y =~ 200, assuming A7'= 1100 A and the distance
between base pairs equal to 3.4 A.  Further, if we take as 4s the
distance between base pairs, we have J4ds = 0.0031, as already
mentioned. For DNA having such model parameters together with
ri =1, it has been found that the reduced intercept Al is very small
in magnitude (~ —2x107%) almost independently of 7, and N for
0=<r, £100 and N % 100. Therefore, we cannot limit the possible
range of r; on the basis of 4, but must be resort to a
classical-hydrodynamic model calculation. (Note that the coil limit
is of no interest in the case of typical stiff chains, and moreover,
for most of them, ko = 0 and therefore fp = 1)

Now, the diameter d of DNA is much greater than ds,



and therefore, for the present purpose, it is more adequate to
regard its subbody as a circular disk of diameter d and width
ds rather than as a spherical bead. For convenience, we then
replace the disk by a ring (regular plane polygon) such that n
Stokes spherical beads of radius r are arranged in touch with each
other on a circumference of diameter d. Its mean translational
and rotatory diffusion coefficients D, and D, (for n *» 1) are given,

from Egs. (72) and (81) of Ref. 26, by

D, = (11kpT/727x00nr)[lnn + v — In(x/2) + 128/99] , (3.92)

D, = (keT/zqonrd®) [1nn + yg — In(2/2) — 13/18] (3.93)

with 7g the Euler constant {= 0.5772--+:). If we put & =~ ksT/D,
and { =~ kgT/D, with d =254, 2r=a=~ds=34A and
n =~ ad/2r. we have r, 25 and r; ~ 15, so that rir, >~ 75 If we
instead regard the disk as an oblate spheroid having major and
minor axes 25 and 3.4 A, respectively, and calculate its D, and
Dl.,”'ZB we then have r, 25 and »; ~ 12 so that rr; 2 60. In any
case, the values of r; and rr; must be about two orders of
magnitude greater than the value 1/3 for a touched Stokes spherical
bead model. However, this value of r; exceeds 1its allowed range,
as seen from the analysis in Sec. 3—5a. We therefore take r =~ 1
and r, = 2080, so that ryr; = 20—80. As shown later, the product
rirs, or &, plays an important role.

Finally, the above analysis requires some remarks. For DNA,

f93 =



if we assume somewhat larger motional units, we must take larger
ds. Further, ds will be larger for most of the other stiff chain
than for DNA. As Jds is so increased, a Stokes spherical bead
model for the subbody seems to become better. However, then,
A%, decreases rapidly as r» is decreased to zero for r: X3, as in
the case of flexible chains (see Fig. 3.4). For such large ds, we

must therefore again impose the condition that ry & 3.

3—6. Discussion and Concluding Remarks

a. The preaveraging approximation

The preaveraging approximation in the matrix C is the most
serious in the present theory since it breaks, to some extent, the
rigid constraints imposed and the components of the flux associated
with the constrained coordinates are only on the average made to
vanish. Now it must be recalled that the constraints are such that
the magnitude of the bond vector a, is fixed to be a and its
direction coincides with the {, axis of the localized coordinate
system affixed to the pth subbody; i.e, la,l = a and e-a,=a
for all p. It is also helpful te recall that the diserete HW chain
is just equivalent to a system of coupled symmetric tops (subbodies)
with constraints such that the rotation axis (e;,) of each points

to the center of mass of its successor with the fixed distance a
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bhetween those of the two. In fact, if we suppress the term
containing the (constraining) matrix C™ in Eq. (2.92) for the matrix
M so that M = Iy, then the diffusion equation reduces to the
(rotational) one for a system of coupled tops without these
constraints. Since it is the orientations £, of the subbodies that
evolve with time in the present model, the partial breakdown of
these constraints must destroy, to some extent, the orientational
correlations between subbodies. However, it seems to have no
significant effect on the local motions, which are governed by the
rather short-ranged correlations. On the other hand, in order that
long—wavelength motions with large relaxation times take place,
there must be correct, long-ranged strong correlations. For
instance, end—over—end rotation of the entire chain 1s possible only
when all £, are varied without relative rotations of the subbodies
with respect to each other. Therefore, if inhibited angular
displacements of the subbodies are accumulated over a long range
along the chain, such long—wavelength motions fail to take place.
This is the reason why the eigenvalues in the lowest 1° branch,
and also in the 2° branch in the case of stiff chain, become
negative at small wave numbers. In this connection, we note that
preaveraging approximations lead to the breakdown of the positive
definiteness of the diffusion operator also in the case of the
conventional bond chain, as shown by Fixman and Evans, but then

it causes errors in local chain motions rather than in



long—wavelength (slow) motions.

In the present theory, however, the proper choice of the
parameter r; (2 3) keeping the parameter r; = 1 allows us to make
the lowest 1° branch of the spectrum start from zero at zero wave
number. For flexible chains, this makes it possible to remove the
negative eigenvalues completely, and moreover the Rouse—Zimm
dielectric relaxation times are then recovered In a very good
approximation. The adjustable parameter r; also serves in its
allowed and acceptable range to remove apparently the effect of
the preaveraging approximation on local chain motions if any,
and thus to give reasonable values for the correlation times. Thus,

our hope mentiocned in Sec. 1-1 has been more than realized.

b. Flexible constraints

Each subbody contains several skeletal bonds of the real
chain, and moreover the interaction between two adjacent subbodies
is governed by the soft potential derived from the free energy of
the continuous HW chain. Therefore, the present model may be
regarded as corresponding to a level of coarse graining of the
realistic chain with flexible constraints on bond lengths and angles.
The recent Brownian dynamic simulation study of Helfand and
his co-workers®™ demonstrates the adequacy of such a bond chain

with flexible constraints, especially on bond angles. However, owing



to the rejection of Boyer— and Schatzki—type crankshaft motions,
it is no longer easy to image a detailed picture of chain motions

clearly in the present model as well as in the bond chain.

¢. Periodic vs nonperiodic boundary conditions

The equilibrium and also time—dependent distribution
functions for the present discrete model have been expanded in
terms of the Wigner functions @/ (with [ integer), and therefore
satisly periodic boundary conditions. Although this is a natural
consequence of the construction of the present model from the
continuous HW chain whose Green's function satisfies similar
boundary conditions, it has a far more important meaning. That
is, it makes the present model correspond to the real (flexible) bond
chain whose potential energy is a periodic function of internal
rotation (torsion) angles. On the contrary, Barkley and Zimm?*
have adopt nonperiodic boundary conditions in their treatment of
the continuous elastic and also spring—bead models for DNA (near
the rod limit). In fact, the nonperiodic boundary conditions are
required when we consider, for instance, the super—coiling of
constrained DNA,® or the linking number and the twist of closed
DNA* However, the periodic boundary conditions lead to no
incorrect results as far as the properties of our present interest

such as dielectric relaxation are concerned even for DNA and other



stiff chains. It is very difficult to impose the nonperiodic boundary
conditions on the distribution functions for the HW chain whether

it is continuous or discrete.

d. Conclusion

We have presented a method of decoupling the eigenvalue
problem for the representation of the diffusion operator .# of the
discrete HW chain by introducing the standard representations by
analogy with gquantum mechanics, and have also given approximate
expressions for the time—correlation functions in the subspace L(1)
for the disecrete HW chains. All the results presented here
encourage us to make a further detailed study of the present model
Thus, in the next chapter, we shall consider dielectric relaxation.
The problem that will then follow is to obtain the eigenvalue
spectra and the time—correlation functions in the subspace {2(1),
2(2)} in order to treat the intrinsic viscosity. This will be done

in Chap. 5.
Appendix 3—A. The Three—Dimensional Eigenvalue Problem

In this Appendix, we give the analytical solution of the
three-dimensional (L = 1) eigenvalue problem given by Eq. (3.60)

(with &y = 0).
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The 3X3 matrices Ewns and Lue are explicitly given by

El(ll[h] = (832)-Ndi&g(a1 B| a) » (3A.1)
_ v f & Tie d .
Liviry = (8747 fr-l( e b ic ) (3A.2)
vd —ie a
with
a = S[lﬂu
g =S, (3A.3)
and

a =2 — vy S + s

- %Kozy—z(sg)ﬂ + %8{11)0 g %S(zm + %S‘zm),

b - — %7021}_2(3{0“0 9 _]fs(allﬂ) - _%_K02y—2(sfil).[ =1 S(zlll) . (3A4)
- 2%/?&0?01,-2(351)0 — B — Lguw 4 3Gl
d = — 3kv (S — 3810 4+ 15wy

where v, ST = ST, and S§’ = S¥i, are given by Eq.(2.19), (3.54),
and (3.55), respectively, and we have used the relation S7'™/= S¥V
[as seen from Eqgs. (3.54) and (3.55)], and expressed Ti% in
Eq. (3.51) explicitly in terms of k; and 7,
Then, the desired eigenvalues 4, (j = —1, 0, 1) are
Mp = (2t [aa + d) + 870 — (-1YA] for j=-1,0
= (¢a) a — d) ot 7 =1, (3A.5)

with

A= {[aNa +d)— B'B]*+ 8(eB) '} . (3A.6)



The corresponding eigenvectors vix, which are the column

vectors of the diagonalizing matrix Qin in Eq. (3.60), are

vid = [—3(—1D(B/A), 2i(aB) ™ e(AB)™,

—‘};(—1)"(3,-/1-1)“2] for j = —1,0

= (1/#2,0, —1/+/2) for j =1, (8A.7)

with
B;=A—(-1YleNa+d)— B8] (=0 -1). (3A.8)

We note that the indexing of the above eigenvalues and eigenvectors
is arbitrary, and does not affect the value of the time—correlation
function given by Eq.(362). In the above, for convenience, the

indexing has been made in such a way that j =0 and -1 for

vi, = v, and j =1 for vl = —vi, where vix = (vl;, v}, vi), and that

Al < A7} in the former.

Appendix 3—B. The Mean Reciprocal Distance

In this Appendix, we give an interpolation formula for the
mean reciprocal distance <R,;'>., between the pth and gqth
subbodies appearing in the diffusion matrix B. As noted before,
it may be replaced by the mean reciprocal (end—to—end) distance
<R7Ys)> of the corresponding continuous HW chain of contour

length s = lg — plds. Here and hereafter, the subscript eq is
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suppressed, for simplicity. For the cylinder model used for the
evaluation of the steady-—state transport coefficients,®® an
interpolation formula for the mean reciprocal distance between a
contour point and a point on the cylinder surface as a function
of s and diameter d has already been given by Yamakawa et al¥
on the basis of the €3 values by the epsilon method, the WI3, WII3,
or FS3 values by the weighting function method, and the second

Daniels approximation values®

For the present case of d = 0, we
can construct an interpolation formula in a similar way but as
a function of s, ky, and 7y covering almost all important ranges
of ky and 7,

It has been found to be convenient to construct an

interpolation formula, instead of for <R7'(s)> itself as in Eq. (66)

of Ref. 37, for a function I'(s) defined by
<R7Y(s)> = [<R¥s)>ke/<R¥s)>1"’<R7'(s)>kel1 + ko’I'(s)] , (3B.1)

where <R¥%s)> is the mean—square end—to—end distance of the same
continuous HW chain and given by Eq. (2.22), <R¥s)>kp is the
mean—square end-to—end distance of the KP chain of the same
contour length and given by Eq.(2.22) with k =0 (co =1 and
to/v = 1), and <R7'(s)>kp is the mean reciprocal distance of the

same KP chain and approximately given by®

ol b 1/2 7
<RsPe = ( 2 ) (1 — g = 448%5) . for s > 2278,

= 571 + ks + 0.1130s* — 0.02447s%)

=104=



for s = 2.278 . (3B.2)

A good approximation to I'(s) has been found to bhe of the form,
2 7
- h
I'(s) = exp(—2/s) O Aws™ + exp[—(2 + $¥)s] ;3 A", (3B3)
k=1 =

with

A= 304 + )4 + T — H(9 + 86 + 0
X [1 4+ (101 + ko®)(4 + 1Y) + 3(160 + Tko*)(4 + 70°)7’] , (3B.4)

7 6

Ar = {1+ 8l + M =111 Y Y, ey,

=0 j=n
(k = 2-7), (3B.5)

where af; are constants independent of s, Ky, and 7o
For s<«1 and s>» 1, <R7'(s)> given by Eq.(3B.1) with

Eqs. (3B.2)—(3B.5) may be expanded as follows:

<R s> =50 +4s+ ), for sx1

N 142 _ . 3K 2
- ( 725 ) (1—{%—x92(4+r02)‘(4+u2)1+ 10

X [1 4 (101 + k™4 + 7)™ + 3(160 + Tko)(4 + 7o) 7%]

X (9 + v")7Y(36 + y")'l}s“l + - ) , for s» 1. (3B6)

That 1is, Eq.(3B.1) gives the exact first—order correction for the
rod limit for s <1 and the first Daniels approximation for

s » 1, as seen from Eq. (47) of Ref. 37 (for s €« 1) and Eq. (55) with
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Eq. (53) of Ref. 37 and Eq. (44) of Ref. 38 (for s » 1). We note that
Eq. (3B.1) gives the approximate second—order term
(0.1130 + ko°/24)s® for s < 1, while the corresponding exact term is
(1/15 + k*/24)s’, as found from Eq. (34) of Ref. 37 and Eg.(17) of
Ref. 39 with its appendix. When k¢ = 0, this statement applies to
the second line of Egs. (3B.2).

The numerical coefficients a, n Eq.(3B.5) have been
determined by the method of least squares from the WI3 values
of <R7'(s)> by the weighting function method for 03 < s < 23
and for various values of k; and 7o. The WI3 values in this range
of s had already been obtained for the values of & and 7, indicated
by the filled points in the (ko, 7o) plane of Fig. 3 of Ref. 36. We
have here added WI3 values in the same range of s at some points
in the domains of ¥ =15 and 0 =1y =05 and of ¥ =8 and
0.5 < 1o/ < 1. The results for alj are given in Table 31. In the
shaded domain of Fig.3 of Ref 36 and the above two added
domains, the values of <R7s)> calculated from Eq.(3B.1) with
Egs. (3B.2)-(3B.5) and with these values of ai, agree with the 3
values for s < 0.3, the WI3 values for 03 = s = 2.3, and the second
Daniels approximation values for s > 23 to within 2%

Finally, we note that in the domain III of Fig. 2 of Ref. 37
for v = 20, Eq.(3B.1) with Egs. (3B.2)-(3B.4) and with A, =10
k = 2-7 gives very good approximations. Thus, this rather simple

formula applies to, for instance, i—PS, polyoxymethylene (ko = 17
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Table 3.1. Values of the coefficients aﬁ in Eq. (3B.5).

k
i § 2 3 4 5 6 7
0 0 —2,7049 —7,5400(=1) 6.1401 —6.6199 2, 6941 4,1447(-2)
0 1 1.5233(1) 9,4768(—1) —-2,2437 —5.9720(1) 9,3801(1) —4,2218(1)
0 2 —9.3705(1) 2, 0811(1) — 8. 8606(1) 3. 6688(2) -3.3357(2) 1.0364(2)
0 3 3.4199(2) —2,0445(2) 6, 7654(2) =1, 0032(3) —1.2857(2) 3.7135(2)
0 4 —6.1943(2) 5.4622(2) ~1.6914(3) 1.3957(3) 1.9124(3) ~1.6006(3)
0 5 5.4254(2) —5,6789(2) 1.7137(3) —1,0037(3) —2,5173(3) 1.8642(3)
0 6 ~ 1. 8450(2) 2.0504(2) —6.1311(2) 3.1010(2) 9, 7025(2) —6.9619(2)
1 0 9.1142 3.4651 —~2,5624(1) 2.9550(1) —1.2770(1) 3.8899(—1)
1 1 — 5. 3595(1) -6,9304 2.1913(1) 2. 0709(2) —3.5688(2) 1.6667(2)
1 2 3.0376(2) —3,0288(1) 1.3036(2) —1.0721(3) 1.2051(3) —4.4621(2)
1 3 —1.0880(3) 5.4423(2) —1.5530(3) 2.2622(3) 8. 0190(2) —1,1734(3)
1 4 1.9786(3) —1,6278(3) 4,4380(3) —2.4375(3) —7.5809(3) 5.4732(3)
1 5 —1.7484(3) 1.7824(3) —4.8472(3) 1.6007(3) 9,4110(3) —6.3560(3)
1 6 6. 0051(2) —6.6501(2) 1.8343(3) —5,9341(2) - 3.4610(3) 2.3325(3)
2 0 —1, 0953(1) —5.1542 3,6013(1) —4,3831(1) 1,9952(1) -1,1709
2 1 5.4313(1) 1. 3826(1) —3.1847(1) - 2,7059(2) 4,9588(2) —2,3698(2)
2 2 —2,2099(2) -3, 2259(1) —4.7715(1) 1. 2764(3) —1.8389(3) 7. 8458(2)
2 3 6.8539(2) -3,6187(2) 1.3094(3) —2,2413(3) 1,1757(2) 6. 0981(2)
z 4 —1.1983(3) 1,4531(3) —4,4486(3) 2,2324(3) 6.9490(3) -5, 0433(3)
2 5 1. 0698(3) =1, 7667(3) 5.3715(3) —1.9864(3) -8, 7553(3) 6, 0542(3)
2 6 —3.8042(2) 6.9945(2) —2,1919(3) 1. 0478(3) 2,9927(3) —2,1592(3)
3 0 5. 7440 3.4159 —-2,2711(1) 2,9061(1) —1.3378(1) 8,6677(—1)
3 1 —1,9872(1) -1, 0809(1) 1, 0667(1) 1.8760(2) -3, 4288(2) 1.6405(2)
3 2 —3.7479 5.6583(1) 7.4575(1) - 9,6990(2) 1, 5440(3) - 6,9034(2)
3 3 1, 5736(2) 3,5420(1) -8, 7510(2) 2,1083(3) —1,9366(3) 5, 8246(2)
3 4 —3,5702(2) ~5,2768(2) 2,9171(3) —3.1763(3) ~7.4079(1) 9, 8854(2)
3 5 3, 0368(2) 7.8272(2) —3,6487(3) 3, 4184(3) 9, 2878(2) =1,5527(3)
3 6 —8,6201(1) —3,4025(2) 1.5476(3) -1.6139(3) —8.5762(1) 4. 9886(2)
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1,0037(-1)

-1,1430(1)
5, 4302(1)

—1.0524(2)
9,1596(1)
2, 9583(1)

—1,3692(-2)

—4,5337(-2)
1,3124

—5,9817
1,1478(1)

—9,9799

. 2356

. 6668(—4)

.5887(—3)

.3926(~.2)

. 4002(=1)
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L9713(=1)

~1,2890(-1)
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-1.1070
3,7734
—2.4593(1)
2,4499(1)
9.9426(1)
-1, 9649(2)
9.4812(1)
1.8B587(-1)
-6, 4465(—1)
4.6045
—-6.9392
—-1,1949(1)
3.0585(1)
—-1,5919(1)
-1, 5546(—2)
5.2776(—2)
~3.9410(-1)
6, 4804(-1)
9, 85324(—1)
—2,7398
1,4718
5.1282(—4)
-1,6554(-3)
1.2641(-2)
—2,0081{-2)
-4, 0030(—2)
1, 0440(—1)
-5,6148(—2)

7.0707
2.0359
—6.8657(1)
4,4154(2)
-1, 2757(3)
1.5435(3)
—6.5280(2)
—1.1416
—1, 5497
2, 2698(1)
—1,1903(2)
3.1002(2)
—3,6016(2)
1.4990(2)
9, 1506(=2)
2,5063(~1)
-3, 0626
1,4823(1)
—3,6396(1)
4,1058(1)
—1.6848(1)
—2,8821(-3)
~1,2765(~2)
1,4489(-1)
-6,7528(-1)
1. 6025
—1.7729
7.1984(-1)

—9,2818
—7.4027(1)
4, 5264(2)
—1.2793(3)
2,3455(3)
—2,5035(3)
1.0764(3)
1,4900
1, 5971(1)
-1,1165(2)
3.6679(2)
—17.1974(2)
7.5604(2)
—-3,1092(2)
~1,1498(-1)
-1,7173
1.3099(1)
—4.6670(1)
9,4233(1)
-9,8016(1)
3.9416(1)
3.3886(—3)
7.125%7(-2)
—5.7451(—1)
2.1445
—4,3922
4,5412
—-1,8035

4,0545 —=1.1502(=1)

1.2920(2) —6.0976(1)
~17.0566(2) 3.1418(2)
1. 5600(3) —6.0554(2)
—2,0101(3) 5, 8374(2)
1.7772(3) —4.0787(2)
- 7.6449(2) 1.8051(2)
—5,5695(=1) —4,5479(-2)
—2,6405(1) 1.2233(1)
1.6633(2) —7.2814(1)
-4,6797(2) 1, 8802(2)
7.7277(2) —2,7903(2)
—7.3586(2) 2,4845(2)
2,9400(2) -9, 7735(1)
3. 0642(-2) 1,1544(=2)
2.7092 —1,2318
—1,8776(1) 8, 0822
5.9690(1) —2,4081(1)
—1,0758(2) 4, 0635(1)
1. 0452(2) —3.7915(1)
—4,0848(1) 1,4602(1)
—3,7515(—4) —6,7520(—4)
~1,0837(-1) 4, 8466(—2)
8.0042(—1) -3,3976(-1)
—2.7276 1, 0976
5.1268 —1,9646
—5.0238 1. 8683
1,9439 —7.1361(=1)

*a(n) means ax 10",



and 7o = 25), and syndiotactic polypropylene (k = 7.5 and 7o = 30)

(see Table I of Ref. 20).
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CHAPTER 4

DIELECTRIC RELAXATION

4-1. Introduction

In Chap.3, we have given an approximate scheme for
partially decoupling the eigenvalue problem for the representation
of the diffusion operator of the discrete helical worm-like (HW)
chain and found the general solutions in the decoupled subspaces
L(1) of the basis functions. In this chapter, we proceed to study
the dielectric relaxation that can be described in terms of the
L =1 correlation functions.

We first give a brief historical survey of dielectric theories
for chain polymers in dilute solution. The foremost of the
development is a diffusion equation approach for the conventional
bond chain with constraints by Kirkwood and his co—workers,'™
in which the dielectric dispersion broader than a Debye one' has
been obtained but the results are far from realistic because of
drastic mathematical approximations. Subsequently, significant
advances have been made by Zimm® and Stockmayer and Baur®
on the basis of the simple tractable spring—bead model. These

provide an understanding of the long—wavelength motions of a

chain, especially having parallel dipoles.”® However, the model fails
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to treat dielectric relaxation arising from the local motions of a
chain having perpendicular dipoles. An analysis of this type of
relaxation can be made, to some extent, on the basis of very simple
models such as a one—dimensional array of perpendicular dipoles,
as done by Clark and Zimm*? and Shore and Zwanzig' (Mansfield"
has recently considered a modification of the Clark—Zimm model,
and Cook and Livornese® have made a Brownian dynamics
simulation study.) These and also stochastic models, including Ising

Y9 serve to understand the basic local processes

and lattice systems,
in chains having perpendicular dipoles and to derive broad and
asymmetric loss curves. However, there is a great gap between
them and real chains, and therefore it is impossible to evaluate
dielectric correlation times, as determined from loss peaks, in terms
of well-defined molecular parameters. In the meanwhile, Fixman
and his co-workers® have elaborated the diffusion equation
approach for the bond chain with constraints. In particular,
Fixman and Evans' have made a semiquantitative analysis of the
interaction between global and local modes by a physical insight,
although the numerical results for, for instance, correlation times
are not always satisfactory because of various preaveraging
approximations.

Thus the main purposes of this chapter are threefold: (i) to
make a mode analysis of the dielectric branches of the eigenvalue

spectrum in order to inquire into the interaction between global
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and local modes; (ii) to explain the broad and asymmetric dielectric
loss and also even two loss peaks in some cases; and (iii) to
evaluate dielectric correlation times for a wide variety of polymers.
All these are done for both flexible and stiff chains on the basis
of the discrete HW model such that an electric dipole moment is
attached rigidly or with a rotational degree of freedom to each
of the subbodies composing the chain.

The plan of this chapter is as follows: In the next section,
the complex dielectric constant 1s formulated with the dipole
correlation function and dielectrically active branches of the
eigenvalue spectrum are identified for a given type of dipoles. In
Sec. 4-3, we make a mode analysis of these branches, and also
examine their dependences on chain length (or N). In Sec. 4—4,
we examine the decay behavior of the dipole correlation function.
In Sec. 4-5, we evaluate the dispersion (permittivity) €'(®@) and loss
¢"(w) as functions of angular frequency @ to construct Cole—Cole
plots for some polymers, and also compute correlation times for
various polymers. Then a comparison with experiment is made.
For stiff chains, the dependence on N of the correlation time is
examined in some detail. In Sec. 4—6, we discuss discrepancies
between theory and experiment, especially those, although not very
large, found systematically for flexible chains, and suggest a

possible direction toward improvement of the theory.
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4-2, Formulation

Let e'= ¢'— i¢" be the excess complex dielectric constant of
the dilute solution over that of the solvent alone. If the effect of
local fields is ignored, it may be expressed in terms of the
Fourier—Laplace transform of the dipole correlation function M(t)

as follows™®

(6" = ea)/(60 — €2) = 1 — iw f "o [ M(2)/M(0)] de (4.1)

where € and é« are the excess limiting low and high frequency
dielectric constants, respectively, and ¢ is the time. If p(t) is the
instantaneous, field—free, dipole moment vector of the entire chain

expressed in an external coordinate system, M(t) is given by
M(t) = <p(0) - p(t)>eq (4.2)

where <--->, denotes an equilibrium average. Note that Eg. (4.1)
with Eq. (4.2) is a good approximation in the case of nonpolar
solvents. Thus our first problem 1s to evaluate M(t). In what
follows, all lengths are measured in units of A™' and kT (with
ks the Boltzmann constant and T the absolute temperature) is
chosen to be unity, unless noted otherwise.

Now let £, =1(0, ¢p ¥,) (p=1 2, +--, N) be the Euler
angles defining the orientation of the pth localized Cartesian
coordinate system (e, e,, e ) affixed to the pth subbody of the

discrete HW chain with respect to the external coordinate system

2



(e., ey, €:). Let m, and rh, be the local electric dipole moment
vectors attached to the pth subbody, expressed in the pth localized
and external coordinate systems, respectively. We assume that their
magnitudes are independent of p so that Im,l=Im,| = m. Further,
suppose that the vector m, is permitted to rotate about an axis,
making a constant angle 4 with the axis, which has constant polar
and azimuthal angles ¢ and p (independent of p) in the pth
localized system, as depicted 1in Fig. 4.1, Let 7ru(t) be the
(time—dependent) dihedral angle between the two planes containing
the rotation axis and e, and the rotation axis and m,, respectively.
The pth dipole moment vector expressed in a Cartesian coordinate
system having the orientation defined by the Euler angles (¢, B8,
7,) with respect to the pth localized system 1is independent of p.
If we designate it by m, we have m = (m sind, 0, m cosd).

The coordinate transformation of a vector may easily be
performed by wusing its spherical components rather than its
Cartesian components, as done by Yamakawa et al’ For example,
the spherical components mY (j =0, =1) of m, may be written
in terms of the Cartesian components (Mg, Mps, Mpt)

i = gy — i),

my = mp , (4.3)

so that the spherical components (m)Y (j =0, 1) of m are given

by
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Fig. 41. Local dipole moment veector m, in the pth localized Cartesian
coordinate system.

m* = F-Tesind
m® = m cosd . (4.4)

Since the spherical components of a vector obey the same
transformation rule as the first—order spherical harmonics, we have

for the spherical components mY (j = 0, £1) of fay
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1

m = (81%/3)% Y B2, m®

k=—1

1
= (87%/3) ). DIQ)Da, B, v, )m™ (45)

by ha=—1

where 9{" is the normalized Wigner functions as defined by
Eq. (2.5).

Noting that

N
p=1

and that a scalar product of vectors may be expressed in terms
of spherical components as in Eq. (9) of Ref. 19, we may write

M(t), from Egs. (4.2) and (4.5), as

N
M(t) = ). <tiy(0) fu(t)>e

pp'=1
N1 . |

= 2 2 <AdNOmP(e)>e
pp'=1 1==1

I

N 1
@r/3) Y. Y <@NQ,028 [q, B, 7,(0)]

pB'=L Ry Ry ki k=1
X DR ODEa, B, 1y(t)]Zeam™m™ (4.7)

where the asterisk indicates the complex conjugate and in the third
equality we have used the fact that m' are real.
Now, in order to evaluate the average of the products of

the 2 functions in Eq.(47), we assume that there are no
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correlations between the motion of each subbody (main chain
motion) and the rotational motion of the dipole moment about
the rotation axis in it (side chain motion) and also between the
latter motions in different subbodies. Then Eqg. (4.7) reduces to
1
M(t) = mPcos®d Y., e YIRG L a)d{(a)M (1)
J'==1
1

1
+ Z e "W (1) Z (1 — Gkadry)

Ji==1 RKk'=-1

xd{*(@)d{* ()m™m™'C () , (4.8)

where du is the Kronecker delta, di’ is defined by Eq. (2.7) and
MY, MY, and Ci' are correlation functions defined by

N

M7 (&) = 875" ). CY®) | (4.9)
p.p'=1
. N Ty
MI(t) = @ Y L) (4.10)
p=L
H(t) = <expl=ij7,(0))exp[i]7,()]>e . (4.11)

In Egs. (4.9) and (4.10), C¥/) ) is the (1, 1)~body standard correlation
function defined in Chap.3 with the "total angular momentum
quantum number” L = 1,

We first consider M”(¢) and MI(t). Taking the sums in
Egs. (4.9) and (4.10) by the use of Eq. (3.62) for CUY{),; (for ko = 0),

we find
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M) = 2N + 1) Y. cot?[Ra/2AN + 1)]

k odd

1

X Y R{RI¥exp(—-Me) (1.12)

=1
M) = Z Z R{F*R{¥ exp(—3t) (4.13)

=g

with
N2 L. ¥ Taimm) 11/2 5 f'm¥

R\ = (87%) Z QU (Bt " 2{™ (2.) , (4.14)

m=-—1

where A{, are the eigenvalues given by Egs. (3A5), @/ are the
j, j elements of the unitary diagonalizing matrix Qf’m,[kl in
Eq. (3.60), E{{l% are the diagonal elements of the standard
representation E](])_[k] of the identity operator in Eq. (3.58), and
D7 (Q:) is the unnormalized Wigner function defined by Eq. (2.11)
with £, given by Eq.(212). Recalling that E{fx and the jth
column vector vis of Qs with v{fE(aJ, ibj, a;) are given by
Eq. (3.50) and (3A.7), respectively, and writing @7(R.) explicitly in

terms of kg and 1y we obtain for Rik:

RITY = R} = o (SO *a; +%xuv“(sa€'ﬁ)“%i (=0 -1),

{% = i [ VZhy(ST) %a; — (ST B (=0, -1), (4.15)

- 1/2
Riy"® = —Rik = S, BR=0,

(st

where S (f =0, 1) are given by Eq.(3.54), and » is given by
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Eq. (2.19).
For the KP chain (ko = 0), C{f{p,n is given by Eq.(3.63), so
that Eqs. (4.14) and (4.15) become
Rih = 8;/82° YV HEHa)"”
= &;,(SUN"* , (KP) , (4.16)
and the eigenvalues A{, are given by Eq.(3.65). When o = 0, we

must use the expression for gf(s) derived by Yamakawa and

Shimada,” i e,
g¥(s) = 8;jexp{—[L(L + 1) + ijro + 6;°]s} , (KP), (4.17)

instead of Eq, (3.42) (with ¢ = 0). The final results for the KP
chain with ¢ # 0 may then be obtained from those with ¢ = 0 only
if L(L+1) is replaced by L(L + 1) + ¢ in the quantities ST
given by Egs. (3.54) and (3.55).

Next we consider the correlation function CI(t). This is
associated with the rotational motion of the dipole moment vector
about the rotation axis, and no information about it is contained
in the present model. However, since it has been assumed to be
independent of other motions, it may be regarded as equivalent to
that of a single—axis rotor. Whether its relaxation is due to
stochastic diffusion among a very large number of equilibrium
positions"® or to random jumps between two or three eguivalent
equilibrium positions to either of the two adjacent ones™? CH(¢)

may then be written in the form
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HOEEDE for j =0

= §;pe ™, for j = %1 (4.18)
with 74 the corresponding correlation time. Note that the jump
rate is equal to (n7rgy)™' for the n—state jump process (n = 2, 3).

If we substitute BEg. (4.18) into Eqg.(48) and write M(¢)

explicitly in terms of trigonometric functions, we obtain

M(t) = m’cos’d[cos’e M™(t) + sin’e M"(¢)
— sin’e cos2B M"7"(¢) + #/Zisin2e sinf M(t)]
+ +m’sin®4 7Y™ [sin®e MY(t) + (1 + cos’a)Mit)

+ sin’e cos2f ME7V(t) — ~2i sin2a sinf M(t)] , (4.19)

where we have used the relations M ™™= @M% M= M and
MM % Ve — M= Y and also similar relations for M. When
the dipole moment vectors are affixed rigidly to the subbodies
(4 = 0), M(t) may be written in terms of M"(¢) if m, is parallel
to e, (¢ = 0), in terms of M'“(t) and M"7"(t) if m, is perpendicular
to e, (¢ = 7/2), and in terms of AM(t) = M"(t) — M'“"(¢t) if m, is
parallel to e, (¢ = 7/2 and B =10 or 7).

Substitution of Egs. (4.12) and (4.13) with Eq. (4.15) into

Eq. (4.19) leads to

1
M(t) = 2(N + 1) 'm’cos’d Z cot’ [ ka/2(N + 1)] Z Afrexp(—A{ut)
3 1

k odd J==

N 1
+ Lmisin®d ). ), Absexp[—(i + 7], (4.20)
1

=1 j=—
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where the coefficients Aj, and AlL. are real and nonnegative, and

given by

Aj, = (WZsina sinf Ri% + i cose R{%Y, for j =10, -1
= sin’a cos’g S | for j =1, (4.21)

Al = (WZcosa sinf R4 — i sine R{%)" + 2cos’B (R{L)",

for j =0, -1
= (sin’f + cos’e cos*B)SY: | for j=1. (4.22)
For the case of 4 =0, we note that if m, is parallel to e
(@ = 0), then Alx = 0, and therefore the j =0 and —1 branches of
the eigenvalue spectrum make contribution to dielectric relaxation,
and also that if m, is parallel to e, (¢ = 2/2 and B = 0 or =), then

only the j =1 branch makes contribution.

For the KP chain, there is degeneracy such that Aj, = AD,
as shown in Egq. (3.65). Therefore, if the second line of Egs. (4.16)

instead of Egs. (4.15) is used, then Egs. (4.21) and (4.22) become

Al = %[1 + (—1Ycos2e¢1S% , for j =01

=0, for j = -1, (KP), (4.23)
Al = (sin’e + 2 cos’@)ST,, for j=0,1
=0, forj = -1, (KP). (4.24)

When 4 =0, only the j=0 or 1 branch is seen to make

contribution if m, is parallel or perpendicular to ec,.

Finally, if we substitute Eq.(4.20) into Eq (41) and perform

the integration over t, we obtain
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e — e _ m? {200524’1 ) t cot? ka Al
£y T Em M{D) N +1 k oodd j==1 2(N + 1) 1+ I:fl)f{,i;

1 .2 Y Al
+ 5sin 4 ’; ,=Z—:1 m} , (4.25)
where
rie = (M), (4.26)
Toa = (Aly + Ta VY, (4.27)

and M(0) is given by Eq. (4.20) with ¢t = 0. We note that although
M(0) = <g*>,, as seen from BEq.(4.2), this M(0) does not exactly
agree with <g*>,, for the continuous chain' because of its
replacement by the discrete chain and also of the block—diagonal
approximation introduced in Chap. 3. The final results in this form
is seen, from Eq. (4.25), not to depend on the magnitude m of the
dipole moment vector but on its orientation in the localized
coordinate system, and can also be seen to be independent of the
sign of the model parameter 73 for ¢ =0 or 7/2. However, it is
more important to see that the eigenvalues with small k& make
the main contribution because of the factor cot*[ka/2(N + 1)] as

far as the main chain motion is concerned.

4-3. Eigenvalue Spectra

Now, we examine the behavior of the three dielectric

(7 = 0, £1) branches of the spectrum in detail, especially their mode
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character and dependences on chain length at small wave number
k. The mode analysis can be made by the wuse of the
geigenfunctions corresponding to M.

Before proceeding to the analysis, some remarks must be
made on the model parameters. We introduce as in Chap. 3 the
dimensionless parameter r; and r:; defined by Egs. (3.67) and (3.68),
respectively, Further, it is convenient to use instead of d4s the
number ny of skeletal bonds of a given real chain (except DNA)
corresponding to one subbody of the discrete HW chain. We may
relate the unreduced 4ds to n, by the eguation

ds = (My/Mvu)ny, , (4.28)
where Mp is the well-known shift factor as defined as the
molecular weight per unit (unreduced) contour length of the HW
chain, and M, is the molecular weight per bond, i.e., the molecular
weight of the monomer unit divided by the number of skeletal
bonds in it. In the case of DNA, it is convenient to let n, be
the number of base pairs in one subbody. As for the model
parameters kg, Ty, A, and M., we adopt the ones determined
recently by Fujii et al® and listed in Table I of Ref. 23. We
consider flexible chains (ko = 0) and KP stiff chains (k; = 0). Note
that in general, for stiff chains, 17" is large, and therefore the
reduced ds is very small. All numerical work has been done by

the use of a FACOM M-382 digital computer in this university.
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a. Flexible chains

We take as examples of flexible chains (ks = 0) syndiotactic
polystyrene (s—PS; &k, =08 and 17,=23) and syndiotactic
poly(methyl methacrylate) (s—=PMMA; k; = 44 and 7, = 0.8). Figure
42 shows plots of the reduced eigenvalues A, = &A./keT =
3rma’riraMp/ksl  (with A{, and @ unreduced) against the reduced
wave number k& = k/(N + 1) for s—PS (full curves) with n, = 2,

N =999, r, =1, and r, = 80 and for s—PMMA (broken curves) with
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Fig. 42. The reduced eigenvalues A, plotted against the reduced wave number
k for syndiotactic polystyrene (full curves) with ny,=2 N=893, ri=1, and
r;=80 and for syndiotactic poly(methyl methacrylate) (broken curves) with
nb=2, N=999, r1=l, and 3"2=20.
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ny, =2 N =999, r, =1, and r; = 20. We have neglected the small
intercept A}y of the lowest (j = 0) branch [given by Egq. (3.74)] to
make A!, start just from zero at k& =0, and thus plotted the
corrected values A, — Al;. This correction is made throughout the
remainder of this chapter. An avoided crossing between the
7 =0 and —1 branches is seen to occur at E ~ 0.04 for s—PS and
at & =~ 002 for s—PMMA,

It is important to see that the avoided crossing is remarkable
for s—PS but not, or weak, for s-PMMA. In general, it 1s
remarkable for monosubstituted syndiotactic chains which are close
to s—PS in the model parameters & and 7y and also for chains
such as monosubstituted isotactic chains having relatively large
To/ko (see Tablel and Fig. 10 of Ref. 23). On the other hand, it is
weak for chains such as s—PMMA having relatively small 7y/kq.
Disubstituted isotactic chains are intermediate.

Now we examine the change of the mode character of each
branch of the dielectric spectrum as £ is changed across the
avoided crossing between the j =0 and —1 branches. This can
be done by using the eigenfunctions corresponding to the L =1
eigenvalues A{y, which we designate by %M, with M (=0, *1) the
"total magnetic quantum number.” As shown in the Appendix 4-A,

they may be written (for k3 = 0) in the form
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vt = vZilcl(R)gh: + ci(k)gh.] , for M =0

= cl(kR)(Figh. + ql,) (i = 0, —1)
+ ci(kRXFigh. + qhy) for M = %1, (4.29)
¥k = vZei(k)alh. | for M =0
1 £ .tk (J = 1)
= Cl(k)(:‘:qfe‘x - Lqi_y) » for M = %=1 g

where ci(k) and ci(k) are real coefficients given as functions of k
by Egs. (4A8), and gf: (i = x, ¥, z) and so on are the components
of vectors qf and so on in the external coordinate system, which

are given by
N

al = 21 Qree, (4.30)
=

and similar equations for gl and qf with @% the orthogonal
symmetric matrix defined by Eq. (3.43). Since aet, is the pth bond
vector, aqh are just the Rouse global, vector (normal) modes. On
the other hand, e, and e,, are perpendicular to the bond vector
and therefore gqf and qf may be regarded as representing local,
vector (although not normal) modes. Thus Egs. (4.29) indicate that
the L = 1 eigenfunctions may be written as linear combinations
of the global and local vector modes.

Specifically, however, ¥y may be written in terms of only
qf, so that the j =1 branch is of the purely local nature, while
there is a mixing of global and local modes in each of the j =0
and —1 branches. Then the fractions xin(k) and xf(k) of global

and local mode contributions to the j (=0 or —1) branch may
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be expressed conveniently as
xloe = (i) [(e® + (ch)*] (=0 -1 (4.31)

with xlg = 1 — xf..  Figure 4.3 shows plots of ad 1F=0; =1
against the reduced wave number E for s—PS (full curves) and
s—PMMA (broken curves) with the same respective model parameters
as in Fig. 42. It is seen that at small k, for both polymers, X

is very small and xj is close to unity, so that there the j =10

branch is mainly global, while the j = —1 branch is mainly local.
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Fig. 43. The local mode fractions x{,. in the j=0 and —1 branches plotted
against the reduced wave number % for syndiotactic polystyrene (full curves)
and syndiotactic poly(methyl methacrylate) (broken curves) with the same
respective model parameters as in Fig. 4.2,
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Recall that in Chap. 3, we have regarded the 7}, given by Eqg. (4.26)
with small k& as the Rouse—Zimm dielectric relaxation times®
Further, in the case of s—PS, for which the avoided crossing is
remarkable, the global and local mode contributions to each branch
are seen to be reversed at k = 0.04 at which it occurs. This is
consistent with the conjecture of Fixman and Evans!” For s—PMMA,
however, such reversal does not occur, although there is a weak
interaction between global and local modes at & = 0.02 at which
the weak avoided crossing occurs.

Next we examine the dependence on N of the eigenvalues.
Figure 4.4 shows plots of the reduced eigenvalues A, G=0 -1
against the reduced wave number E for s—PS with n, =2, r =1,
and 7, = 80. The full curve represent the values for N = 999 as
in Fig. 4.2, and the broken and dotted line segments connect the
values for N =99 and 49, respectively. The open circles at
E = 0.001, 001, and 0.02 represent the values of 2, and A, i e,
the end values for N = 999, 99, and 49, respectively. As seen from
Fig. 4.2, the j =1 branch is very close to the j = —1 branch for
B <004 and to the j =0 branch for k& X 0.04, and therefore it
has been omitted. From Fig. 4.4, the shape of the spectra is seen
to be not strongly depend on N. However, it is interesting to see
that A}, and also Aj; are almost independent of N (R 50), while

Al, decreases to zero with increasing N. The results seem

i + d ;
reasonable since 4}, and Afi are essentially the relaxation rates
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Fig. 44. The reduced eigenvalues A plotted against the reduced wave number
k for syndiotactic polystyrene with ny=2, r,=1, and r;=80. The full curve
represents the values for N=999, and the broken and dotted line segments
connect the values for N=99 and 49, respectively. The open circles represent
the values of A{,.

associated with the global and local motions, respectively. A

further discussion is deferred to Sec. 4—5a.

b. Stiff chains

All typical stiff chains such as DNA have complete helical

structures, and may be represented by the KP1 chain (ky = 0 and
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7o # 0),”) whose contour is taken along the helix axis. Because of
a structural symmetry about it (the ¢ axis), the local dipole
moment vectors m, may be regarded as parallel to it; 1. e,
@ =4 =0 As noted in Sec. 4-2, the dielectric relaxation may then
be written in terms of only the eigenvalues A}, in the j = 0 branch
unless the side chain motion exists. As seen from Egs (4A7) in
the Appendix 4-A, for the KP chain, the eigenfunctions ¢},
corresponding to A!, may be written in terms of only gf, so that
the j = 0 branch is purely global. Furthermore, it can easily be
seen, from Eq. (4.12) and the succeeding development for the KP
chain with Poisson’s ratio ¢ #0, that the dielectric relaxation of
such stiff chains is independent of z; and o.

Thus we examine the behavior of the j = 0 branch, taking
DNA (ko =0 and 7= 200) as an example. As mentioned in
Sec. 3-5b, even if AY; is subtracted, the first two corrected
eigenvalues 4!, and A}, are still negative, although very small in
magnitude, for ny, = 1 (ds = 0.0031), N =199, r, =1, and #; = 50.
(Recall that this arises from the preaveraging approximation.) It
is therefore important to find those ranges of n, and r: over which
the negative eigenvalues can be removed. Figure 4.5 shows plots
of the reduced eigenvalues A, against the reduced wave number k
for DNA with N =199 and r. =1 for various values of n, and
ro. Note that the points connected by the dotted line segment are

just the results obtained previously and that n, = 10 corresponds
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f‘ig. 45, The reduced eigenvalues A, plotted against the reduced wave number
k for DNA with N=199 and r;=1 for the indicated value of n, and r; as ny(ra).

nearly to one turn of the double helix. It is seen that all
eigenvalues are safely positive for n, £ 5 at r; = 50 or for r, = 10
at ny = 10. In any case, n, must be chosen to be relatively large.
It is clear that such a choice is permitted in the case of dielectric
relaxation associated with the global motion, although 4s must be
chosen to be close to the distance between base pairs in the case
of nuclear magnetic relaxation and fluorescence depolarization

associated with the local motion or torsion dynamics.
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As in the case of s—PS shown in Fig. 4.4, the shape of the
spectra in Fig. 4.5 except for the case of n, =1 and r; = 50 (dotted
line) is almost independent of N, and A, decreases to zero with
increasing N provided that all eigenvalues A}, are positive. A

further analysis of the N dependence is deferred to Sec. 4—5b.

4-4, Correlation Functions

In this section, we examine the decay behavior of the dipole
correlation function M(¢) for both flexible chains (ko # 0) and stiff
chains (kg = 0). In general, it 1is governed not only by the

eigenvalues but also by the amplitudes, especially for the former.

a. Flexible chains

We begin by making some general remarks. If side chain
motions do not exist (4 = 0°) and if the dipole moment vector m,
is parallel to e, (¢ =90" and =10 or 180 ), then the dipole
correlation function M(t) given by Eg. (4.20) with Egs. (4.21) and
(4.22) may be written in terms of the eigenvalues Ax in the j =1
branch with small &k, which are there almost independent of %k (see
Fig. 4.2), and therefore it obeys a single exponential decay low.
On the other hand, if two or three branches make contribution,

or if the j = 0 branch makes always contribution, then M(t) may
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be written in terms of two or more different eigenvalues, and
therefore does not obey the single exponential law irrespective of
the value of 4. This is always the case with chains with side
chain motions (4 = 0°). Thus the behavior of M(t) in general
depends strongly on the orientation (@, B) of the dipole moment
vector with respect to the localized coordinate system and on the
degree (4) of side chain motion through the amplitudes. We must
therefore consider the choice of a, B, and 4 for a given polymer.
For convenience, they are determined for the case of the smallest
possible subbody (n, = 2), and the same values are assumed for
the case of larger subbodies (n, =4 or 6). (Recall that n, =2
since, otherwise, the HW c¢hain cannot mimiec the real chain.)

We first take poly(oxyethylene) (POE; ky = 24 and 7, = 0.5)
as an example of symmetric chains. The local dipole moment
vector arising from the C—0O and O-C bonds is in the negative
direction of the & axis if the localized coordinate system
corresponding to that of the HW chain is affixed to the rigid body
part composed of the successive C-0 and O-C bonds in its
monomer unit, which is composed of three skeletal bonds, as done
by Fujii et al® Therefore we choose @ =90°, B = 180", and
4 =10 for POE irrespective of the value of ny, (= 2).

For monosubstituted and disubstituted asymmetric chains,
we take the monomer unit composed of the successive C-C* and

C*~C bonds as the subbody with n, =2 and affix the localized
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coordinate system in such a way as mentioned by Yamakawa et
al®™® [For PMMA, e. g, see case (i) of Fig. 9 of Ref. 20.] Since
the ¢ axis is parallel to the resultant vector of the two successive
bond vectors C—C" and C—C, the local dipole moment vector
arising from the side group attached to the a carbon s
perpendicular to the { axis or permitted to rotate about an axis
perpendicular to the { axis, so that @« = 90°. In order to determine
B, it is necessary to specify the angle ¥ between the € axis and
the plane containing the C-C* and C°~C bonds. We choose
$ = 270" and 0° for monosubstituted isotactic and syndiotactic
chains, respectively, and ¢ = 180" for both disubstituted isotactic
and syndiotactic chains® Then, if all bond angles are assumed to
be equal to 110", we have B = 145" and 325" for monosubstituted
isotactic chains, B = =*55° (or +195" ) alternately for
monosubstituted syndiotactic chains, f = £55° or 125" for
disubstituted isotactic chains, and B = %55 (or *125 ) alternately
for disubstituted syndiotactic chains. Thus the direction of the local
dipole moment vector changes alternately along the chain for
syndiotactic chains. For the present discrete HW chain, however,
# must be independent of the subbody number p since m, is
assumed so. Therefore, for both monosubstituted and disubstituted
syndiotactic chains, we choose m, to be the average of the two

successive local dipole moment vectors (of the real chain); i e,

B =10 or 180" .
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The asymmetric chains (with @ = 90" ) we consider in this
chapter are the following: isotactic poly(p—halostyrene) with
B = 3257, syndiotactic poly(p—halostyrene) with g = 180",
syndiotactic  poly(methyl acrylate) (s—=PMA) with 8 = 180°,
syndiotactic poly(methyl vinyl ketone) (s—PMVK) with £ = 180",
syndiotactic poly(vinyl acetate) (s—PVAc) with B =10", and
syndiotactic poly(vinyl halide) with B = 180" as monosubstituted
chains; and i-PMMA with B =55 (or —55°) and s—PMMA with
B =180 as disubstituted chains. For these polymers except
s—PMVEK,” side chain motions have not been observed in dielectric
relaxation experiments, so that we choose 4 = 0" except for it
[ Note that in fact 4 =0 for poly(p—halostyrene) and poly(vinyl
halide).] Further, we assume that isotactic and syndiotactic
poly(p—halostyrene)s have the same model parameters kg 7y and
A" as isotactic polystyrene (i—PS) and s—PS, respectively, and
identify the former with the latter in this section.

Now we can examine the behavior of M(t). Figure 4.6 shows
plots of the natural logarithm of the normalized dipole correlation
function M(t)/M(0) against ¢ for i—-PS (ky = 11 and 7y = 15) and s—PS
with 7, = 80 (full curves), i-PMMA (kg =17 and 75 = 14) and
s—PMMA with r; = 20 (broken curves), and s—PMVK (¥ = 0.1 and
7o = 2.0) with r; =10 and the indicated values of 4 and with
keTta/t, = 05 (=~ 1/2041;) (chain curves), all with n, = 2, N = 999,

and r; =1, where M(¢) has been computed at 7 = 300 K and

-134-



° = ' ' '

N\ i-ps: rp* B0, g=325°

RN
-0.5 .l\. \ »-PS;r, =80, g=180°
! \ \\\‘- . 9
= N NN
(@] ¥ . \\ NN .
= ‘ N N .\\ i
2 \ OO\ ~ iPMMA; r, = 20,
-0k NN S AeEs
2‘ ! \- \‘ .\\. '\\\
= \ \'\\\ ‘\\ iy
\ R N 8-PMMA; rz-zo. N
\ NGRS N
-1.5F N\ o \\,—s PMVK; 1, 210, 8=180°,

, A=0%r1B0°

.\(_ﬁs 80°%0r |00°\ A= 50% or 130°
L 2(\

-2.0 L
0 I 2 3 4 5
tins)

"\, A*T0%r 110°AN\y,
N

Fig. 46. The natural logarithm of the normalized dipole correlation function
M)/ M) plotted against t for various flexible chains, all with ny,=2 «N=899,
=1, and @=90", at T=300 K and 7;=0006 P, s-PMVK with side chain motions
(4%0°) having kaTra/t.=05.

7o = 0.006 P (corresponding to benzene). (The model parameters &g
and 75 of s—PS and s—PMMA are the same as those in Fig. 4.2.)
For the syndiotactic chains (s—PS, s-PMMA, and s—PMVK
with 4 = 0" ) without side chain motions, it is seen that M(t) obeys
the single exponential law, as expected from the general remarks
at the beginning of this subsection. For the isotactic chains (i—PS

and i—-PMMA) without side chain motions, all the branches of the
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eigenvalue spectrum make contributions, and therefore it s
necessary to examine the amplitudes in each branch in order to
understand the behavior of M(t). In the case of i—PS, the
contributions of A}, Al,, and Al to the relaxation have been found
to be 71 %, 6%, and 5% respectively. That is, the contribution of
the j = 0 branch (global motion) is large despite the fact that i—PS
has perpendicular dipoles (¢ = 90°), and thus the decay of its
M(t) 1s very slow in comparison with other polymers. This may
be regarded as arising from the fact that for monosubstituted
isotactic chains such as i—-PS having large k; and 7, there exist
locally rather tight helices (of small radius),”’ which give rise to
the parallel components of the local dipole moment vectors along
the helix axis with the cancellation of the perpendicular
components. On the other hand, in the case of 1-PMMA, the
contributions of ALy, Ali, and Ayl are 7%, 18 %, and 56 %, respectively,
the j = %1 branches (local motion) making main contribution, and
moreover the eigenvalues in these two branches are almost
independent of k for small k. Therefore its M(t) obeys nearly
the single exponential law. For s—PMVK with side chain motions,
M(t) exhibits an initial rapid decay due to those motions and then
relaxes by main chain motions. The initial decay is more rapid
if 4 is closer to 90", while the rate of the latter part is
independent of 4, as expected.

Finally, it is pertinent to make some remarks on the
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dependence on N of the normalized correlation function. As far
as main chain motions are concerned, the amplitudes in each
branch have been found to be almost independent of N for
N % 50, so that M(t)/M(0) depends on N only through the
eigenvalues in the j =10 branch. Therefore, except for
monosubstituted isotactic chains having local  helices, its N
dependence is negligibly small for large N. Furthermore, the decay
due to side chain motions is independent of N, as is evident [rom

their nature.

b. Stiff chains

As mentioned in Sec. 4—3b, typical stiff chains may be
represented by the KP chain (ko = 0) having parallel dipoles
(¢ =4 =10 ), whose correlation function may be written in terms
of the eigenvalues A1, in the j = 0 branch, so that it is enough
to consider the amplitudes only in this branch. We examine the
behavior of M(t)/M(0) within the ranges of n, and r:; for positive
eigenvalues.

Figure 47 shows plots of the natural logarithm of
M(t)/M(0) against t for DNA with r =1 and the indicated values
of n, and r;, where M(¢) has been computed at 7 = 300 K and
7o,=001P (0.2 M NaCl). The light and heavy curves represent

the values for (N + 1)a, = 5000 and 10000, respectively. It is seen
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Fig. 47. The natural logarithm of the normalized dipole correlation function
M(@/M(©0) plotted against t for DNA (a=4=0") with r;=1 and the indicated
values of ny and ry at T7=300 K and 7;=001 P. The light and heavy curves
represent the values for (N-+1)n,=5000 and 10000, respectively. The insert shows
a double logarithmic plet of the function 7(t) defined by Eq. (4.32) against t
for the case of the heavy full curve.

that the decay is slower for larger (N + l)ny, i. e, for larger chain
length, as expected. We note that the amplitudes of M(¢)/M(0)
are almost independent of N for N = 50, and moreover the
contribution of A}, is 86 %, so that the dependence of M(t)/M(0) on
N arises mainly from A}, In any case, it is seen that the decay

is not single exponential except at large t. This is due to the fact
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that the strong dependence of A{, on k at small k is effective at
small ¢, while only A}, governs the decay at large ¢

For a more quantitative examination, it is convenient Lo
introduce a function (¢} defined by

M(t)/M(0) = 7" . (4.32)
The insert of Fig. 47 shows a double logarithmic plot of 7(¢)
against ¢ for ny, =10, N = 999, r, = 1, and r; = 10 (the same model
parameters as for the heavy full curve), the dotted straight lines
having slopes of 0.75 and 1. It is seen that y(¢) is proportional

to t°” for ¢t £ 10 ms and to t for larger t.

4-5. Comparison with Experiment

In this section, we make a comparison between theory and
experiment with respect to the frequency dependences of the excess
dielectric dispersion &’ and loss ¢, and the dielectric correlation
time 7p as defined as the inverse of @um. corresponding the
maximum loss Emax associated with the (net) main chain motion.
Their theoretical values are computed from Eq. (4.25). The
parameters n, and r; (and also 4 and 75 in the presence of side
chain motion) are then determined to give agreement between
theory and experiment, assuming that r = 1. We estimate the size
(or diameter) of the subbody from r, and r; thus determined and

compare the results with those from chemical structures. For stiff
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chains, attention is given also to the dependence of 7o on the

molecular weight.

a. Flexible chains

In this subsection, we make an analysis for all flexible
chains for which the angles « and B have already been determined
in Sec. 4—4a. As for monosubstituted asymmetric chains, we must
note that experimental data have been obtained for atactic
polymers, while the HW model parameters ko, 7o, 4~, and My have
been determined for isotactic and syndiotactic chains. However,
these atactic samples for which we analyze the data have been
prepared by free radical polymerization, and have the fractions of
meso dyads less than 0.5, and therefore we regard them as having
the HW model parameters for syndiotactic chains, for convenience.

First, we take atactic poly(vinyl acetate) (a—PVAc) as an
example of chains without side chain motions. Figure 4.8 shows
plots of its reduced dispersion & = (¢'— €2)/(6p — €=) and reduced
loss & = ¢"/(ey — €=) against the logarithm of frequency f = w/27.
The open and filled circles represent the experimental values of ¢
and €, respectively, obtained recently by Cole et al®® by time
domain reflectometry in toluene at 23 'C, and the curves represent
the corresponding theoretical values for s-PVAc (kg = 0.4 and

7o = 2.5) with n, =2, N =999, r, = 1, and r; = 27. The insert shows
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Fig. 48. The reduced dispersion €&, and reduced loss & plotted against the
logarithm of frequency [ for atactic poly(vinyl acetate) in toluene at 23C.
The points represent the experimental values of Cole et al. (Ref. 26) and the
curves the theoretical values for the syndiotactic chain (¢=90" and g=0") with
ny=2, N=999, r;=1, and r;=27. The insert shows the corresponding Cole—Cole
plots.

the corresponding Cole—Cole plots, the open circles and curve
representing the experimental and theoretical values, respectively.
The value r; has been determined so that the calculated value of
Tp agrees with the observed value of 2.1 ns. The observed €, is seen
to be asymmetric about fumasx, 1.€, somewhat broader on the

high—frequency side, indicating that the dispersion is not strictly
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of the Debye type, there being several absorption on that side.
On the other hand, the theoretical values exhibit nearly a Debye
dispersion. This corresponds to the fact that for momnosubstituted
syndiotactic chains, the theoretical dipole correlation function obeys
the single exponential law, as mentioned in Sec. 4—4a.  The
disagreement between the theoretical and experimental el and e
indicates a defect of the theory, and it is discussed in Sec. 4-6.
Next, Fig. 49 shows similar plots for a-PMVK as an
example of chains with side chain motions. The experimental
values are those obtained very recently by Mashimo et al® by
the same method in dioxane at 20 C. The full curves represent
the corresponding theoretical values for s—PMVK with n, = &,
N =999, r =1, r; =17, 4 =103", and keTru/t. = 0.5, and the broken

u

curve represents the theoretical values of & for 4 =0 but with
the other parameters remaining unchanged. (Note that 4 = 120
from chemical structures.) The loss peaks on the low— and
high—frequency sides correspond to the main chain and side chain
motions with the correlation times of 2.7 and 0.16 ns, respectively.
However, the correlation time 7p associated with the net main—chain
motion is estimated to be 3.2 ns from the loss peak (of the broken
curve) that would be obtained if the side chain motion were absent
(4=0") We also find 74 = 017 ns from keT7a/E, = 0.5. These

correlation times 7p and 7, are to be compared with the

corresponding values 3.70 and 0.155 ns obtained by Mashimo et al?

—-142-



0.5 .

0.2

10® 107 108 10°
f (Hz)

Fig. 49. The reduced dispersion &, and reduced loss &, plotted against the
logarithm of frequency [ for atactic poly(methyl vinyl ketone) in dioxane at
20C. The points represent the experimental values of Mashimo et al. (Ref. 25).
The full curves represent the theoretical values for the syndiotactic chain
(@=9%0" and B=180") with n,=2 N=9%9, r=lL r;=7 4=103°, and
kel 71/t =05 and the broken curve represents the theoretical values of & for
the net main—chain motion (4=0").

from an analysis with a superposition to the two Havriliak—Negami
functions” for &% In any case, the correlation time 7p for the
net main—chain motion 1is somewhat larger than the correlation
time determined from the loss peak on the low—frequency side
without correction for side chain motion. In contrast to the case

of a—PVAc, the theory can well explain the experimental & and
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€r. The reason for this is that the lack of the absorptions due
to the main—chain motion on the high—frequency side has been
compensated by the absorption due to the side chain motion.

In Table 4.1 are given observed values of 7p thus determined
for POE®® atactic poly(p—chlorostyrene) (a—PPCS)** a-PMA®
a—PMVK,® a-PVAc®™ atactic poly(vinyl chloride) (a—PVC)®
i-PMMA* and s-PMMA* We also give values of r; that give
agreement between the calculated and observed values of 7p for
ny =2 and 6, all for ry =1 and N = 999. The observed values of
Tn determined as above for a-PMVK with ny, =2 and 6 are the
same. We have omitted the value of r; for POE with n, = 6 since
then 4ds exceeds the allowed upper bound 0.4, as given in Chap. 2

However, we have ignored the lower bound of r; (£ 3), which is less

Table 4.1.  Observed values of the dielectric correlation time 7p
and estimates of the parameter r, for the flexible chain polymers.

72 Observed

Temperature Tp, obs values

Polymer Solvent (C) (ns) np=2 ny=6  (Ref.)

POE Benzene 25 0.013 03 --- 28,29
a—PPCS Benzene 25 4.7 65 6.8 30
25.5 6.6 95 10 31
a—PMA  Benzene 20 0.25 2 0.2 32
a—PMVK Dioxane 20 3.28 T 0.8 25
a-PVAc Toluene 23 21 7 2.7 26
a—-PVC Dioxane 30 2.6 6 0.6 33
i—-PMMA Toluene 30 1.0 8 0.9 34
s—PMMA Toluene 30 41 70 7.5 34

“Corresponding to the net main—chain motion,
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important.

Now we estimate the size of the subbody from r; As noted
in Chap. 3, the product of r, and r; rather than their individual
values (or {, rather than {,) plays an important role as far as
the local motions are concerned. (The reduced eigenvalues are
almost independent of r,) From Eqgs. (3.67) and (3.68), we have

rirs = r = E/3a00a° . (4.33)
[t is reasonable here to regard the subbody as a spheroid (ellipsoid
of revolution) having rotation axis of length a and diameter d.
Then ¢, must be then the mean rotatory friction coefficient, and

is given by

_ keT 2 1
{r==3 (D” + Dr.a) , (4.34)

where D,, and D,; are the rotatory diffusion coefficients of the

spheroid about the transverse axis and rotation axis, respectively.

23.36

With the well-known results for them, we obtain from Egs. (4.33)

and (4.34)
=2(1_x2)[ M g ] for x = 1
27x° (1— 2x)F(x) + x Flx) —x
=1/3, for x =1, (4.35)
where
F(x) = (x* — 1) %cosh™x, for x >1
= (1 - xHcosT'x, for x <1 (4.36)

with x = a/d. Thus we may determine d from Egs. (4.35) with
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the values of r and a, where the bond length a may be computed
from Eq.(2.26) with Eq. (4.28).

The values of d thus determined and also those from
chemical structures are given in Table 4.2. The latter values have
been calculated on the assumption that this d is approximately
equal to the diameter of a circumscribed circle of the projection
of the monomer unit composed of the atoms having van der Waals
radii onto the plane perpendicular to the end—to—end vector C—C
of the sequence of two successive skeletal bonds C—C'—C
(C—0—C for POE). Except for POE and a—PMA, the values of
d from r are seen to be 12-2 times as large as those from

chemical structures for n, = 2, and even larger for n, = 6. This

Table 4.2. Values of the diameter d (A) determined
from chemical structures and from the estimates of
the parameter r = rir; for flexible chain polymers.

From From r
chemical

Polymer structures n,=2 ny,=6
POE 45 3.1 ’
a—PPCS 12.0 18.7% 25.3"

21.3" 29.0"
a—PMA 8.5 5.5 2.7
a—PMVK 7.5 8.8 11.3
a—PVAc 9.0 13.8 17.9
a—PVC 6.0 8.2 9.9
1I—PMMA 9.0 10.8 13.8
s—PMMA 9.0 21.6 29.3

*From tp(obs) = 4.7 ns (Ref. 30).
"From rp(obs) = 6.6 ns (Ref. 31).
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indicates that if rp are calculated with the diameters from chemical
structures, the results are smaller than the observed rp. It is also
a defect of the theory.

It 1s then instructive to consider the ratio of 7p to the
dielectric correlation time 7} of the isolated spheroid above having
a2 dipole moment vector parallel to the transverse axis, assuming
that ny, = 2. ¢} can easily be shown to be given by

r% = (Dr.l =+ Dr.3)_1

21n0a’ xt=1

= , for x =1
3kl 3[(x*-2)F(x) + «°)

= B f -1 (4.37)
kel or x . .

where F(x) is again given by Egs. (4.36) with x = a/d. In Table
4.3 are given values of rpobs)/th and rp(calc)/th, where rp(calc)
and rh have been calculated with the diameters d from chemical
structures. The latter ratio is seen to be smaller than the former
except for POE and a—PMA, as expected, but larger than unity
for all cases. The result that 7p > rh seems quite reasonable,
considering the fact that if the isolated subbody or monomer unit
is incorporated into the chain, its correlation time will be
appreciably increased because of the constraints and the interactions
with its neighbors. Thus the ratio 7p/th may be regarded as a
measure of dynamic chain stiffness. For comparison, the values

of the (static) stiffness parameter A" (reproduced from Ref. 23)
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Table 4.3. Dynamic stiffness 7p/th and static stiffness
A" for flexible chain polymers.

Polymer ro(obs)/th  rp(cale)/th fl_l(;i)

POE 0.8 1.9 12.0
#~PPC8 24%(34") 7.8 37.5
a—PMA 3.1 9.0 35.8
a-PMVK 28° 18.6° 65.1
a-PVAc 26 8.4 42.0
a—PVC 50 24.1 78.0
i~-PMMA 13 7.8 32.7
s—PMMA 54 5.0 65.6

“From 7p(obs) = 4.7 ns (Ref. 30).

"From tp(obs) = 6.6 ns (Ref. 31).

‘Corresponding to the net main—chain motion.
are given in the last column of Table 4.3. It is interesting to see
that there is strong correlation between zp(obs)/th and A™' except
for a—PMA. For this polymer, the observed 7p is of the same order
of magnitude as 75 of a~-PMVK (see Table 4.1), and moreover the
dispersion has been found to be nearly of the Debye type,® so that
the observed 7p does not seem to reflect strictly the main—chain
motion. As for other polymers, there is also strong correlation
between rp(obs)/zh (or A7) and rp(cale)/th except for s—PMMA.
The reason for the large discrepancy between theory and
experiment for this polymer is not clear.

Finally, some remarks should be made on the dependence

of 7n on the molecular weight M. The experimental results
obtained by Stockmayer and Matsuo™ for a—PPCS show that 7p

increases with increasing M for M S 2X10' and then levels off.
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According to our computations for s—PPCS with n, =2, r =1,
r; =65 and N +1=10, 20, 50, 100, 200, 500, and 1000, rp is
independent of N for N Z 19, the value for N = 9 being somewhat
smaller. We note that N =9 corresponds to M = 1200, so that
the calculated 7p levels off more rapidly. This disagreement
between theory and experiment may be regarded as arising from
the fact that the diagonal approximation (see Chap. 3) becomes

asymptotically valid only for large N.

b.  Stiff chain

For flexible chains with perpendicular dipoles, the dielectric
correlation time 7p 1s associated with the local main—chain motion,
while for stiff chains (kg = 0) with parallel dipoles (@ = 4 = 0 ),
it reflects the global motion (end—over—end rotation, etc.) and its
molecular weight dependence becomes very important. In this
subsection, we consider primarily this problem.

Before making a comparison with experiment, we must
establish the calculated values of 7p within the ranges of the
parameters for positive eigenvalues as determined in Sec. 4-3b.
For this purpose, we examine its dependence on r. It is then
convenient to use again the parameter a (or 4ds) instead of ny,.
Furthermore, we assume that r; = 1 as before, and do not consider

the model parameters 7; and ¢, since in this case the results are
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independent of them, as mentioned in Sec. 4-3b. Figure 4.10 shows
double logarithmic plots of AsTrn/377a’ against rp for stiff chains
with N =99 and 249, The full and broken curves represent Lhe
values for a = 0.01 and 0.05, respectively. It 1s seen that if ry
decreases and approaches the range for negative eigenvalues,
becomes very large rapidly, but otherwise, it is almost independent
of r; over a relatively wide range. This independence is rather
reasonable since the 7p associated with the global motion should
not depend on {, (related to rs) but on ¢, for large N, as predicted
by the conventional theory for bead models. (Compare with the
case of the local motion.) Indeed, the contribution of & to 7p or
the rotatory friction coefficient of the entire chain is of order
N¢. and negligibly small compared to that of ¢, Recall that the
conventional theory predicts that when a=4=0", 7 Iis
proportional to N°/In N in the long rod limitY and to N*? in the
coil limit.*® Thus, for convenience, we adopt as the calculated values
of ksTrp/377a® independent of r; the minimum values as indicated
by the open circles in Fig. 4.10. (We neglect the slight increase in
this ratio for larger r,. Note that if the theory is exact, it will
be independent of r; over the whole range.) Then, since r; =1, i. e,
{¢ = 3nna, the rp thus evaluated may be regarded as the correlation
time for a touched bead model, each bead being a Stokes sphere
of diameter a.

Next we replace the bead model by an equivalent cylinder
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Fig. 410. Double logarithmic plots of kBTerBnga?’ for stiff chains (k=0 and
@=4=0"). The full and broken curves represent the values for a=001 and 0.5,
respectively, and the open circles indicate the minimum points.

model of diameter d, for which we have previously evaluated
steady—state transport coefficients. This can be done by the use
of a shift factor® we have recently determined to convert a to d
for the case of the touched bead model for a rigid rod with the
nonpreaveraged original or modified Oseen tensor. Although the
present theory uses the preaveraged original Oseen tensor, we may
adopt the shift factor for its nonpreaveraged case since the effects

of this preaveraging are rather small near the rod limit* For



the case of 7p (or the rotatory diffusion coefficient), d is then
related to a by

d = 0.861a . (4.38)
Values of 2kgTrp//n0,d® thus calculated as a function of L/d for
various values of a are represented by the open circles in Fig. 4.11
for the KP cylinder of contour length L (= Nds ~ Na) and
diameter d.

With these values, we have constructed an interpolation

formula, as in the case of the intrinsic viscosity.”” The results reads

Ip = rD,rorlL-s[L + %(G-EL - 1)]3,2

X [1+4 0539526 In(1 + L)] , (L < 30), (4.39)

where Tpra 1s the dielectric correlation time of a spherocylinder
(spheroid cylinder with € = 1) as given by 7p = 1/2D,, with Eq. (120)
of Ref. 41 for D,y 1. e.,
TDrod = N0 L*F(L/d)/6ksT (4.40)
with
F(z)" =Ilnx +2In2 — 11/6 — 8.25644[Iln (1 + x)]7}
+ 13.0447x 7" — 62.6084x 7"
+ 174.0921x %" — 218.8356x "
+ 140.2699x > — 32.2708x%7 . (4.41)
In Fig. 411, the full curves represent the values calculated from
Eq. (4.39), and the dotted curve R those from Eg. (4.40) {for the

spherocylinder.
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Fig. 411. Double logarithmic plots of 2ksTrp/zn0d’ against L/d for the KP
cylinder (kp=0 and 2=4=0") of contour length L and diameter d. The points
represent the original theoretical values. The full curves represent the values
calculated from the interpolation formula [Eg. (4.39)] and the dotted curve R
those from Eq. (4.40) for the spherocylinder.

Now we are in position to make a comparison with
experiment. Fig. 412 shows its example with double logarithmic

plots of 2kpTrp/mnyd® against L/d (= M/dM,. with d unreduced).

The open and filled circles and triangles represent the observed
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Fig. 412. Double logarithmic plots of 2kaTrp/AHod” against L/d for stiff chains
(kp=0 and a=4=0 ). The open and filled circles and triangles represent the
experimental values of Sakamoto et al. (Ref. 42) for DNA in 1 mM NaCl at 10T,
of Bur and Roberts (Ref. 43) for poly(n—butyl isocyanate) in carbon tetrachloride
at 229C, and of Matsumoto et al. (Ref. 44) for poly(y—benzyl L—glutamate)
in m-cresol at 25C, respectively. The full curves represent the best fit theoretical
values calculated from Eq. (439}, and the dotted curve R the values from
Eq. (440) for the spherocylinder.

values obtained by Sakamoto et al' for DNA in 1 mM NaCl at

10C, by Bur and Roberts® for poly(n—butyl isocyanate) (PBIC) in
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carbon tetrachloride at 229C, and by Matsumoto et al* for
poly(r—benzyl L-glutamate) (PBLG) in m-—cresol at 25°C, respectively.
The model parameters determined from a best fit of the theoretical
values to the observed ones are A7'= 2100 A for DNA assuming
d=2A and ML =195A4", 21'=1000 A for PBIC assuming
d=15A and M, = 551A" ;¥ and d =28 A for PBLG assuming
My = 146 At % These values of d and M, have been used to plot
the data points. [We note that the assumed value of d for PBIC
is intermediate between the value 13 A  determined from
crystallographic data*® and the value 16 A for poly(n—hexyl
isocyanate) from intrinsic viscosity data.’] The full curve represent
the theoretical values calculated from Egq. (4.39) with the indicated
values of (reduced) d, and the dotted curve R those from Eaq. (4.40)
for the spherocylinder. The above estimate of A7 for DNA (in
1 mM NaCl) seems reasonable, compared with literature values,*®™
while that for PBIC is somewhat smaller than the value 1440 A
determined”® from dipole moments for the same samples.® (For
PBLG, A7'cannot be determined since the data are confined to the
range of rigid rods.) Thus we may conclude that there is good
agreement between theory and experiment as far as 7p for stiff
chains is concerned.

Finally, we make a comparison of theory with experiment

with respect to the dispersion and loss curves, taking as an example

a fraction of the above PBIC with the weight—average molecular
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weight M, = 23.56X10°. Figure 4.13 shows plots of & and & against
the logarithm of frequency f, and the insert shows the Cole—Cole
plots. As in Figs. 4.8 and 4.9, the points represent the experimental
values and the curves the theoretical values calculated with
np =194 (or a = 0.0174) and N = 245 (corresponding to the above
values of A7, d, My, and M,) and with r, =1 and r; = 30. The

observed €/ is asymmetric and broader on the high—frequency side,

T T ] T L
0.5
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(0]
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. o
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W " v
0.6 | * 40.3
0.4 a 10.2
a L}
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Fig. 413. The reduced dispersion & and reduced loss e, plotted against the
logarithm of frequency f for poly(n-butyl isccyanate) with M.=—23.5%10% in
carbon tetrachloride at 229°C. The points represent the experimental values of
Bur and Roberts (Ref. 43) and the curves the theoretical values calculated with
ny=18.4, N=245 r;=1, and r;=30 (the same model parameters as in Fig. 412).
The insert shows the Cole—Cole plots.



although less remarkably than for PVAc. The theory can explain,
to some extent, this feature, but the agreement with experiment is

not complete.

4—6. Discussion

Among the three main purpose of this chapter, we have
almost completely achieved the first regarding the mode analysis
of the dielectric branches of the eigenvalue spectrum. As for the
other two, which are more 1important, however, the results are
not always satisfactory. In particular, we have failed to completely
explain the asymmetric dielectric loss, especially for flexible chains
without side chain motions. On the other hand, we have been able
to evaluate the dielectric correlation time 7p 1in terms of the
well-defined model parameters for a wide variety of flexible and
stiff chain polymers. The significant results for 7p are the
following two: (i) For flexible chains, there is strong correlation
between the dynamic stiffness 7p/th and the static stiffness A~
and also between the observed and calculated 7p; and (i1) for stiff
chains, there is good agreement between theory and experiment with
respect to the molecular weight dependence of 7p. For flexible
chains, however, calculated values of 7p are one half or one third
of observed values. In order to remove these discrepancies between

theory and experiment, we must search for possibilities of
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improvement of the approximation used.

First we consider the case of flexible chains. We have made
the preaveraging approximations in the Oseen tensor and the
constraining matrix C™". The former may be regarded as having
no significant effect since ¢, plays an important role as far as
local motions are concerned, while the latter breaks, to some extent,
the rigid constraints imposed and therefore may lead to an
underestimate of 7p. At present, however, it is almost impossible
to improve this approximation. Another approximation, which is
more serious for flexible chains, it is subspace approximation, i. e,
the development in terms of only the one—body excitation basis
functions. This approximation fails to take complete account of
the (short-range) interactions between subbodies or more, thereby
weakening the polymeric nature of the chain. This point can be
improved by augmenting the 1(1) subset with two—body excitation
basis functions. The augmentation will lead to perturbation of
the present three dielectric branches of the eigenvalue spectrum
and also addition of a few new branches. Therefore this will
enable us to explain better the asymmetry of the loss curve and
also 7p.  [We note that if 7} is evaluated with the slip boundary
condition, values of 7p(obs)/r}y become larger than those listed in
Table 4.3.]

Next we consider stiff chains. In this case, only the j =10

branch makes contribution, and the first few of the eigenvalues
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A}, in it may possibly become negative because of the preaveraging
approximation 1n the constraining matrix. Fortunately, however,
we have found the maneuver to avoid its serious effects. Clearly
the subspace approximation has much less significant effect, and
the results (dependent on the j =0 branch) will not greatly be
altered by augmentation. On the other hand, the diagonal
approximation 1s not very good for stiff chains except at very
small wave number k. It is therefore easy to understand why
the theory can well explain 7p but not the asymmetry of the loss
curve, if we recall that the former is determined mainly by A7,
and the latter is caused by the first several eigenvalues. However,
it 1s difficult to improve the diagonal approximation.

In conclusion, the present theory as a whole may be regarded
as fairly satisfactory despite the fact that it is only a first—order

approximation within the framework of the discrete HW model.
Appendix 4—A. Eigenfunctions

The eigenfunctions ¥igh({@y}) (M, j =0, £, k=12, -,
N) corresponding to the eigenvalues A{x in the subspace 1(1) of
the basis functions may be expressed, from Egs. (3.47)-(3.49), (3.58),
and (3.59), in the form

N 1 .
WML ((Rp]) = (8192 Y. Y. @u(Ritn) DYih(%,) (4A.1)

pn] jp=_1



where @7, is given by Eq. (3.43), (Rifx))" are the j, ;' elements of
the inverse Ry of the 3X3 matrix Ry whose j, j' elements Rfj
are given by Eq. (4.14) for ky = 0 or by Eq.(4.16) for ¥; = 0, and
DY%1(2,) are the one—body excitation standard basis functions
defined by Eq. (3.3) (with omission of tilde on D).

For the HW chain with kg # 0, we obtain, from Eq. (4.14)
with the use of the unitarity of Qi and 2Y(L2.):

1

(Ritay” = (87572 Y Bim(@,XEm) ok | (4A.2)

m=—1
and therefore

(Riln) ™ = (Rife)V

- T NSO, + _1“‘2:%,,-1(8%-% , (f=0,-1),

(Rit)Y = il ~ w2k (ST) e, + o (S5 %,
K= 9, =13, (4A.3)
(Bipn)™ = ~(Rita)" = —=(sti™,
(Rite)" =0,
where the meaning of the symbols is the same as in Egs. (4.15).

For the KP chain (k; = 0), we have, from Eq. (3.50) and Eq. (4.16),
(Rute)” = &;(SH™? , (KP) . (4A.4)

The @ functions 2{"(2,) involved in DM.1(2,) may be
expressed in terms of the Cartesian components of e, €, and

e;,, in the external coordinate system, which we designate by
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e¢, = (x¢,, ¥¢,, 2¢,) and so on, as follows:

DUVHNR,) = (34320 [ F(xp, — iye,) + i(xn, — ivn)]

DR, = (3/167°) ((F2e, + izy)

DNQp) = (37320 [ £(xe, + iye,) — ixa, + iva)]

DFL,) = (81161 (£x;, — iyy,) (44.5)

DV(R,) = (3/87%) 2 .

For the HW chain with % = 0, if we substitute Egs. (4A.3)
and (4A5) into Eq. (4A.1), we lind Eqgs. (4.29) for 9Mi), where ci(k)
and ci(k) are given by

ci(k) = ¥3(Rifm)™ , (j =0, %1),

ci(k) = —VB72i(Ri)” {f =9, —2j. (4A8)
For the KP chain (kg = 0), if we substitute Egs. (4A.4) and (4A.5)

into Eqg. (4A.1), we [find

i = VBSUV%E,, for M =0
= V372(S) A Fqh. + ighy), for M = 1, (j = 0),
) (4A.7)
Pk = V372(SUL) TV (—gh. + igh.), for M =0

= (V32X ST j(£gh. + igh,) F ighs + ighy]
for M = *1, (j = %1), (KP),

where gi., gl., gi., and so on are defined by Egq. (4.30) and similar
equations. In this case, ¥i% may be written in terms of only
the global modes qf and #i%F in terms of the local modes qi

and qf.
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CHAPTER 5

DYNAMIC INTRINSIC VISCOSITY

5—1. Introduction

In Chap. 4, we have evaluated dielectric relaxation, which
can be expressed in terms of the (1, 1)-body correlation functions.
Now we proceed to study a new observable expressed in terms of
(2, 2) or (1, 2)~body correlation functions, i. e, the dynamic intrinsic
viscosity.

There have been many experimental and theoretical
investigations on the dynamic intrinsic viscosity of flexible chains.'
The foremost of the theoretical ones is the very famous

Rouse—Zimm theory*™

using the spring—bead model. As is well
known, it is in good agreement with experiment in the
low—frequency region, but fails to explain the high-frequency
plateau. Several attempts have been made to give a theoretical
explanation of the latter! Cerf’ and Peterlin® have introduced
phenomenologically the internal viscosity into the spring—bead
model. (A rationale for the internal viscosity has been considered
by Adelman and Freed.) Doi et al® and Fixman and Evans® have

regarded the high—frequency plateau as arising from the constraints

on the bond lengths and bond angles, and obtained the theoretical
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values which lie far below the experimental values. Fixman and
Evans'® have conjectured that the plateau stems from the interaction
between the local and global modes due to the constraints. Adler
and Freed" have shown that the spring—bead model having side
groups (or a comb—like spring—bead model) exhibits a high-
frequency plateau. Despite these efforts, there is still a lack of
complete understanding of the plateau. Thus, our major attention
1s given to it without considering the behavior over the whole
frequency range.

From the studies cited above, it appears that there are two
contributions to the high—frequency viscosity. One is the relaxation
mechanism of a chain with constraints in the high—frequency
region, and the other is the energy dissipation due to a bead (or
monomer unit) having a finite hydrodynamic volume.! The former
may be treated on the basis of our HW chain, ie., the model that
can describe the local chain motion. For the latter, we take into
account its effect by distributing the frictional force on the surface
of the bead instead of regarding it as a point force. As in the
case of the dielectric relaxation treated in Chap. 4, we express the
dynamic intrinsic viscosity in terms of certain correlation functions
in the regime of linear response. In order to obtain an
approximate solution for the correlation matrix, we use the crude
subspace approximation, for simplicity. In this approximation,

the problem may be reduced to N six—dimensional eigenvalue
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problems with N the number of subbodies in the discrete HW chain.
Note that we have encountered the three— or five-dimensional
problems in the preceding chapters.

The plan of this chapter is as follows. In Sec.5-2, the
dynamic intrinsic viscosity of the discrete HW chain is expressed
in terms of correlation functions of basis functions properly chosen,
and approximate solutions for the correlation functions are obtained
in terms of the solutions of relevant eigenvalue problems. In
Sec. 5-3, we examine the behavior of the eigenvalues. In Sec. 54,
we discuss the origin of the high—frequency viscosity. In Sec. 5-5,
we make a comparison of theory with experiment with respect to
the high—frequency viscosity for some flexible chains. Some

mathematical details are given in the Appendices.

5-2., Formulation

In what follows, all lengths are measured in units of 17,
and kgT is chosen to be unity, as in the preceding chapters, unless
noted otherwise.

Now, suppose that the (discrete) HW chain defined above is
immersed in a solvent having an unperturbed oscillating shear flow

field V* at R,

VYR) = e e.e, R, (5.1)
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where ¢ i1s the oscillating rate of shear of angular frequency o,
£ =& Eiwt (52)
with & a constant, ¢ the imaginary unit, and ¢ the time. The

intrinsic viscosity [7] (in volume/weight) is given by
[7] = Nai<o'>:e.e,/Mipge , (5.3)

where N, is the Avogadro number, 0 is the excess stress tensor
due to the addition of one HW chain to the solvent of unit volume,
<-+-+> denotes an average with the time-dependent distribution
function #({£x};t), M is the polymer molecular weight, and 7, is
the viscosity coefficient of the solvent. Let F©(r,) be the frictional
force exerted on the fluid by the unit area at a point on the
surface of the pth subbody of the vector distance r, from the
center of that subbody. The excess stress tensor may then be
written as follows (see Appendix 5-A),
N+l N

<g'> = — Z <R, F,> — Z <f r,F(r,)dr,> | (5.4)
p=1 v S,

=1

where R, is the vector position of the center of the pth subbody,
F, is the total frictional force exerted on the fluid by the pth
subbody, and Ldr,, indicates the integration over its surface. Note
»
that the term <RyuFy.> comes from the (N+1)th bead having
vanishing rotatory friction coefficient (see Sec. 2-2).
In Subsec. @, we find a formal solution for the

time—dependent distribution function ¥ in order to evaluate the
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averages in Eq. (5.4). In Subsec. b, we express the excess stress
tensor <d > in terms of certain time—correlation functions, and in
Subsec. ¢, we evaluate them. In Subsec. d, we give a final

expression for [7].

a. Time—dependent distribution function

In the regime of linear response, the time-dependent

distribution function ¥ may be written as
F{anhit) = Te({Q0)) 11 + o({ 2N} D], (5.5)

where ¥, is the equilibrium distribution function given by Eq. (2.15)
or (2103). The function ¢ is the solution of the (linearized)

diffusion equation, as given by Egq. (2.98), i e,
(8/0t + £) ¢ = X, (5.6)

where # is the diffusion operator given by Eg. (299), and X is
the function (not an operator) given by Eq. (2.100) with the external
potential U, = 0.

In order to obtain an explicit expression for X, we need
explicit forms of the generalized unperturbed fluid velocity v},
(expressed in the bond coordinates) associated with the pth bond
vector a, = R,au—R,, and of the unperturbed fluid angular velocity
W% at the point R, (expressed in the external coordinates), as

defined by Egs. (2.48) and (2.37), respectively. From Eg. (5.1), these
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velocities may be written as

Vi = e eeyrap, (5.7)

W= —lee,. (5.8)

Substitution of Egs. (5.7) and (5.8) into Eq. (2.100) leads to

X = Le(¥r + X" (5.9)
with
N

F=d [ 3 B maran e, + o0 (5.10)
pLp2=l
N

X = Y UL, V. Aye., (5.11)
p=l

where (B'),, is the pg element of the inverse of the NXN
preaveraged diffusion tensor B (expressed in the bond coordinates)
whose pg element is given by Eg.(255), L, is the angular
momentum operator defined by Egs. (2.86), and A, is the 3X3
matrix for transformation from the external coordinate system to
the pth localized coordinate system and is given by Eq. (2.31).
The derivation of Eq.(5.9) with Egs. (5.10) and (5.11) is given in
Appendix 5—B. Note that the first and second terms on the
right—hand side of Eg. (5.9) represent the contributions from the
symmetric part (deformational flow) and the antisymmetric part
(uniform rotational flow) of e.e,, respectively.

From Egs. (5.2), (5.7), (5.8), and (59), ¥ may be formally

written as
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r=rv, [1 + é—f e M Ve ()T + X')ds] . (5.12)

6. Correlation function formalism of the excess stress tensor

Now we consider the problem of expressing, in terms of
time—correlation functions, the two sums on the right—hand side
of Eq. (5.4).

By the wuse of the bond coordinates, the first sum
ZN+] .

o=t <R F,> may be rewritten as
N+1

N
Z <R F,> = Z <apf,> , (5.13)

=1 p=1

where f, is the frictional force associated with the pth bond vector
a, and is defined by Eq.(2.49). Eguation (5.13) has been obtained
by the use of Egs. (2.43) and (249) and of the fact that the total
frictional force exerted by the chain on the solvent vanishes. From

Eq. (2.60) with Egs. (2.72), (2.73), and (2.81), f, is given by
N
f,= — 2 [(ND)po Ly In (F/¥0) + E(C 00 Ve
g=1

— EANT)pe A Wil , (5.14)

where (NT),; is the 3X3 matrix which is the pg element of the
transpose of the 3NX3N matrix N given by Eq.(2.93), and (C ™y

is the 3X3 matrix which is the pg element of the inverse of the
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3NX3N matrix C given by Eaq. (2.94).
From Egs. (5.12), (5.13), and (5.14), we then obtain in the

regime of linear response

N+1 N &
<RPFP> = 7% E <am(NT)mP2-LP2 e-L(t_S)E(S)(‘?r + Xr}dS}GQ
p=1 p.ps=1 -
N
—3(.€ Z 1<ap;(c—j)mpaap?eq:(erey + eyey) . (5.15)
pLp=

Since the excess stress tensor given by Eaqg. (5.4) is symmetric, we
may assume that the tensor on the left—hand side of Eq. (5.15) is

symmetric. Then, we have

=

+1

<R F,>:e.e,
1

o
]

- i {j:e“""*'[%d"(O)F(s)%q-f‘ %<F(0)X'(s)>eq]ds

s
N
+ {(ece, + eye,): Z <a,(C)pipe p>eqi(ecey + eyex)} . (5.16)
PLpa=l

The functions I' and X' may be written in terms of the

normalized Wigner functions 2 defined by Eq. (2.5) as follows,

N
I = irta% ZI(B—’),J,,,Q[ —DQ,)DNR,) + DTNE,)DTR,)],  (5.17)

Pypy=
| = 2L, + 2L, \
N
X' = Wl Ly oy Bin | — i20(L,) — iDIL,) | | (5.18)
p=i

\ VT DY(R,) /
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From these equations and Egs. (3.3) and (3.4), it is seen that I is
a function which belongs to a class of functions specified by the
“total angular momentum quantum number L=2 and the “total
magnetic quantum number” M==%2 and that X' is a function with
L=1 and M=0 (see Sec, 3-2). Since there is no correlation between
functions having different pairs of L and M [see Eq. (3.23)], the

time—correlation function <I'(0)X'(s)>., in Egq.(5.16) vanishes, and

we have
N+1 o g
2 <RPFP}:e-l’e)' = = "}(E [f e-tws_2<r(0)r(s)>e“ds
p=1 0 Os
N
+ {leey + oeyen): Z <ap(C)pplp>eq(ecey + eyer)] : (5.19)
PLp2=1

Integration by parts of the first term in the square brackets on

the right—hand side of Eq. (5.19) leads to an alternative expression,

N1 = 3
Z <R F,>e.e, = — je¢ [iwf et —<I'(0)(5)>eqds
r=l 0 ds
N
+ (e.e, + e,e.): Z <a"l(8_l)p;pzl a7 (ecey, + e),ex)] . (5.20)
pupe=l

N
Next we consider the second sum Zp=l <j; r,F&(r,)dr >
P
Under the nonslip boundary condition, the frictional forces F{'(r,)
(p =1, 2, ++-, N) satisfy the coupled integral equations,

V, + W,xr, — VAR, + r,)

- (&) f K () FS(eh)dr)

=N TE=



N
+ 3. | TR, + r, — Ry — ro)  Fi(r)dr,
g=1 v §,
P

+ T(Rp + rp = RN+1)‘FN+L (P = 1: 2: b .! N) El (521)

where V, and W, are the translational and angular velocities of

the pth subbody, respectively, T(R) is the Oseen tensor' and
K (rpr;) = 8an0T(r, — rp) . (5.22)
We expand T(R,+r,—R,—r,) in a Taylor series around rp,—rg=0,

T(R,+r,—R,—r,) = T(R, — Ry) + (r, — r)'V T(R, — Ry)

+ ey = )ty — P XV Y T(R, — R) + + o, (5.23)

where the nth term is of G(IR,~R;1 ™), and we neglect terms of
n22, as done in Chap. 2. This is egquivalent to replacing
T(R,+r,—R,—r,) by T(R,~R,;). Similarly, T(R,+r,—Ry.) may be

replaced by T(R,—Rwy«) Then, Eq. (5.21) becomes

(Bﬂ'ﬂﬂ)_l'[s Kp(rrnr;) : F;S)(r;,)dr;,

== fe(epy T 8y0,) s + (W — Wup)er

N+l

+V, — ce.e, R, — Z T(R, — R,)-F, . (5.24)
&
#p

Now we define the inverse K;Yr,r;) by

89 e, = ) = [ Kol K (e ppars
Sﬂ
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- j; Klrprp) K;‘(rﬁ,r,’,}drz ) (5.25)

where 3%(r) is the two—dimensional Dirac delta function on the

surface of the pth subbody. [It is not to be confused with the

inverse Ku(rp,ry)™ of the 3X3 matrix Ky (rpry).] With this inverse,

we have formally

- f r.Fo(rp)dr,
S

P

= 4 [SMD-[S drpf dr,’,rPK;‘(rp,r;)rL];(eJe) + eyey)
i 'SF
- {smﬂfs drpf dr;rp[l{;‘(r,,,r;,)xr;]} (W, — WD)
» Sp

— [BJrrfuf dr,,f dr;er?(rp,r;)]
s, S,

N+1

; T(R, — Rq)-FQ] _ (5.26)

) I:Vp — 3¢ eey, R, —

Considering the fact that the stress tensor is symmetric, the xy

component of the tensor on the left—hand side of Eg. (5.26) is found

to be

t(e.ey + egvex)l[ - f rpFEnS)(rp)dr.n:I

i

= L(e.ey + eyex):[BJn}oL drp_[g dr;,ergl(r,,,r;,)r,',]:(exey + eye.)

= T8



= [ A Ws = W) ] ] AT bewe, + s Ay |

N+1

+{a[Vo - te e, R, - X TR, - R)F |}
-3
-%:[Ai-%(efey =5 eyel)'Ap] ; (5.27)

where ¢, and 7, are triadics whose components are expressed in

the pth localized coordinate system, and are defined by

9, = — 817 fs F\(r,) rpdr,, (5.28)

T, = — 871 fs Py(r,) rudr,, (5.29)

with the tensors ¥, and ¥; being the solutions of the integral

equations,
[ Kpip-wiipar; = 1, (5.30)
Sp
fs K(Eo 0 TWFdR, = BoFs) . (5.31)

In Egs. (5.28)—(5.31), the caret on r, indicates that it is expressed
in the pth localized coordinate system. Thus the triadics ¢, and
7, are independent of the bead number p, and correspond to the
shear force and torque triadies introduced by Brenner,”” respectively.

In Chap. 2, we have characterized hydrodynamically the

subbody by the translational friction coefficient & and the rotatory
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friction coefficient ¢{.. This implies that the hydrodynamic
anisotropy of the subbody is neglected as far as its motion is
concerned, and it is replaced by a hypothetical sphere whose
translational and rotatory friction tensors are isotropic but do
not necessarily satisfy the relation for the sphere. Thus, it is
consistent with this situation to use the values of ¢, and 7, for
the sphere. According to Brenner,” they vanish for spherically

isotropic bodies. Therefore, Eq. (5.27) reduces to

oo+ e;e.r):[ - rpF‘f’(rp)drp]

= {(e.e, + EEE,{)Z[BHUof dr,,j; dr;r,,K,','{rp,r;)r;]:(e_(ey + eye.) . (5.32)
Sp Opn

As shown in Appendix 5-C, the right—hand side of Eq.(5.32)
represents the increment of the xy component of the stress tensor

due to the single sphere, and is given by

i(ece, + e,.e,.):[ —LrpF‘,,s’(rp)drp] = 5an.edg/12 (5:38)

with dg the diameter of the sphere. This gives the intrinsic

viscosity of the Einstein sphere.
¢. Correlation function <I(0)I'({)>q

By the use of Egs. (3.3), (3.44), and (3.47), the function I' given

by Eq.(5.17) may be written in terms of the one—body excitation
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Fourier basis functions F¥'(n({2~}) defined by Eq. (3.47), as follows,

N 1
I-o - (BHQ)N(azct"aG)i Z (/{f)—l Z Elﬂn*(gd) @1013*(90)

f=—l

x( = Fifw Fifi + FUUf FUGE) (5.34)
where Af is the kth approximate eigenvalue of the matrix B defined
by Eq.(3.44), @7’ is the unnormalized Wigner function defined by
Eq. (2.11), 2. is given by Eq.(2.12), and the asterisk indicates the
complex conjugate.

From Egs. (3.4) and (3.47) and Egs. (5D.3) and (5D.4), it can
be shown that the product FI{FF{if* in Eq. (5.34) may be written
in terms of Fi¥ (—--2 -1, -+-, 2) and FEWE with
FI:@iise being the two—body excitation Fourier basis functions
defined by Eq. (5D.3). Since both {F{hi{#)} and {F59i{} are the
standard basis sets with L =2 and M = £2 (see Sec. 3-2),
{FELFELEY is also a standard one with L =2 and M = %2,
and therefore I' is the function with L = 2 and M = £2, as already
mentioned, Thus, in order to evaluate the correlation function
<I'(0)I'(t)>., 1t 1s convenlent to use {FEG{FENLEY as a basis set,
which is a hybrid of the one— and two—body excitation basis
functions.

The correlation functions of the standard basis functions

are diagonal in L and M, and their values are independent of M

(see Sec. 3—-2). With these properties, <I'(0)'(t)>., may be simply
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written as

N
<P(O)(t)>eq = BTV [(a’¢)*/18] D (ABAR)™

kel =1
] — .
% Z B.(20) D) B (20) D) CYEIEE)  (5.35)
Jud J =

with
CHBAR ) = <FL{y FuBh e Fifiy Fhii>e . (5.36)

Now, the problem 1s to evaluate the correlation functions
CY45%°(t). Tt is equivalent to the eigenvalue problem for the matrix
representations of of the identity operator and the diffusion
operator & with weight ¥,. For this purpose, we use the subspace
approximation i.e., evaluate the correlation functions without taking
account of correlations between the subspace spanned by the basis
set {FiufgFl'#;} and its complementary space. With this

approximation, we need only the elements of the above matrix

representations in this subspace. They are evaluated to be

g 4* ; » . -l;
<FLiy Fhft) Fhfe) Fifire
_ (sHﬂ)-N[ L ﬁcN‘L)] , (5.37)
<Fi{s) Fhit) & Fhiv) Fhfin e

= (Sfrz)‘”[f‘a{‘{fi,"fiﬁ'}m, S ﬂ(N“):I , (5.38)
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where EV50 B ntmpe eyt and LR otk 101 are  the standard
Fourier representations of the identity and diffusion operators given
by Egs. (5D.6) and (5D.7), respectively.

For this case of Li=l;=l;=I[;=1, ki=k;=Fk, and k{=hk:=k, the
independent elements of EEAdt ke ww1, LEE ke ww1, and CYHRAL
are the ones with pairs of indices (ji,72) and (ji,72)= (—=1,-1), (=1,0),
(-1,1), (0,0), (0,1), and (1,1). We designate these pairs by J and
J=12,++6 in that order, for simplicity, and write, for instance,
BV 480k ew1 as B oiae ew). Taking account of the fact that both
Fz‘,"'di’:'iu(m.a're'j and L' lotes, ) are diagonal in k& [see Egs. (5D.6)
and (5D.7)], we have only to solve the following six~dimensional

eigenvalue problem,

% _
Q2. 10) Ena, 1r) Q220 (k1 = Lo, (8] (5.39)

+ 5
Quar, te) Lo, (1) Qo (1) = Axa, (0] (5.40)

where FEgy, n) and Ezm.{h] are the 6X6 matrices whose JJ' elements
Bl - q T :

are 2,01 ID[kE ER] &L 2,410, 10 [k, B°E' ], TESDECUVEIY, 13, (1) and Ageay, 18]
are 6X6 diagonal matrices with diagonal elements 1 and Ay
(/=1-6), respectively, Q2. (x) is a diagonalizing matrix (not unitary),
and the dagger indicates the adjoint.

; = I : . ! .

Since EfGi vt wr) is diagonal in J, the eigenvalue problem

given by FEgs. (5.39) and (5.40) reduces to the eigenvalue problem,

Lt = -1/2 T = -1/
erzl. [~] [(Ez{za. lfa]) e Lzm, [£] (Ez(:a). lhl) . J]Qé?za. (k] = flz(z). [E] » (5-41)
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where (Esa, 1) is the 6%6 diagonal matrix with diagonal
elell'nents (ES 5 wiae,ws1)™, and @32, (r) is a unitary, diagonalizing
matrix. From a comparison of the left—hand sides of Egs. (5.50)
and (5.41), we have a relation between the above two diagonalizing
matrix, 1. e,

Qaan (k) = (Ezrza.[h])_m Q%EZ),[H ’ (5.42)
The correlation functions C%71'% may then be written in terms of

the solutions of Egs. (5.41) as

— + e /
Cora(t) = (Ezanin)"? Q%’tzr.[kl exp (—Azanin1t) Qionin) (Ez ), (5.43)

where Cy, 1) is the 6X6 matrix whose JJ' element is C¥%%;, and
(Ean, 1))"* is the 6%6 diagonal matrix with diagonal elements
(E{g{(’i{?n][kk‘kk})“z. Note that the correlation function C(g‘f’[‘f::)k'] is also
diagonal in &k, since both Eztﬂ‘li{']lljikh‘h'k'] and Izs:}(':ij.'hnkk.k'k‘l are
diagonal in k. By the use of Egs. (5D.5), Eq. (5.43), and the solution
of the eigenvalue problem given by Egq. (5.41) (which is given in
Appendix 5—E), the correlation function <I'(0)]'(¢)>. given by Eq. (35)

may be finally written as

N
<T(O)T(8)>eq = (a%)® ) (Y (ki ghu + chv gl a)’
k=1

3
X$<Q‘[1;1, Lr)te Rt (5.44)
J=1

where gl is given by Egq. (5D.9), @fi).1s is 1J element of the 3X3

transformation matrix @) defined by Eq. (5E.13), and Ay, is given
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by Eq. (5E.20). Note that the three eigenvalues e (J=1,2,3) make

contribution to <I'(0)['(£)>..
d. Final expression for [n]

In order to obtain a final expression for [#] suitable for
numerical calculations, we rewrite the second terms in the square
brackets on the right—hand sides of Egs. (519) and (5.20) in the

form,

i
fr(ecey + eyey): Z <a,(C)pman™>ei(erey + eye.)
pLpr=l

AI
— ) (A kB ISOh + T ISPY) | (5.45)
k=1

N

(erey + eyeq): <ap{B ppap>e(ese, + eses)

m.pe=1
N

~ Fa¥t ) (AR kST, + A ISR, (5.46)
k=1

where Af is the kth approximate eigenvalue of the matrix a™°C with
C being the NXN matrix defined by Eq.(2.112) and is given by
Eq. (346), and S is given by Eq. (3.54). Note that in obtaining
Eq. (5.45), we have replaced (C )y by (CDppml with (C7)pp the
pip: element of the inverse of C, i.e., preaveraged the constraining
matrix C, as done in Sec. 2—-3c.

Substitution of Egs. (5.19) and (5.33) with Egs. (5.44) and (5.45)
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into Eq. (6.3) with Eg. (5.4) leads to the desired expression,

N
(7] = [Na(a®)"/36n,M ] Z(Af)'z{KSV“zgl kT oz gl W)?

3
x;(Q‘ﬁ}n,u)%dim, S Mo + i0) + (1], (5.47)

where [7]= is the value of [7] in the limit of @ — @ and is

given by
[7]e = (Nat,/60,M) Z(Af)"(xﬁv"‘-sw“ + rhy S,

+ 5aNANdg*/12M . (5.48)
Substitution of Egs. (5.20) and (5.33) with Egs. (5.44) and (5.46) into

Eg. (5.3) with Eq. (5.4) leads to the alternative expression,

N
[7] = [Na(a®.)%/360M] Z(AE)‘Z(xﬁu‘zg; p + T2l )
=1

XZ(Q 21,05 — i@A3g, &)/ (Aba ke + 1@) + [2]0, (5.49)
where [7]o is the value of [7] at @ = 0 and is given by
ul &
[7]0 = (Naa®t/616M) Y (AR (kb 280k + 2S00
k=1

+ 5aNasNdg'/12M. (5.50)
Note that in the Gaussian coil limit (N — ®©@ and 4ds — =) a
becomes equal to its effective bond length with S14=1, and then
[7]y given by Eaq. (550) is the correct zero—frequency intrinsic

viscosity of the spring—bead model,' apart from the second term
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on the right—hand side of Eq. {5.50).

It is pertinent here to make two remarks on Egs. (5.47)—(5.50).
First, the second terms on the right-hand sides of Eqgs. (5.48) and
(5.50) arise from the contributions of the Einstein spherical
subbodies (beads). Second, the two expressions for [7], ie,
Eq. (4.47) with Eq. (548) and Eq. (5.49) with Eq. (5.50), are no longer
equivalent to each other, since we have made the approximations
to evaluate the correlation function <I'(0)['(t)>., and the [7] given
by Eg. (5.48). Therefore, [7] given by Eq. (547) with ®=0 is not
identical with [7], given by Eq. (5.50), nor is [7] given by Eq. (5.49)

with @== identical with [7]= given by Eq. (5.49).

5-3. Eigenvalue Spectra

As in the case of the eigenvalues A0, which form the lowest
of the L=1 branches of the spectrum,” the eigenvalues Als.s which
form the lowest in the present case, may possibly become negative
at small wave numbers k. Therefore, in order to eliminate the
negative eigenvalues, we must first examine the behavior of the
lowest branch in the coil limit of N>»1 and R/(N+1)<1, as done
in Sec. 3-5b.

In this limit, the functions g, defined by Eq.(5D.9) become
equal to S, whose asymptotic form is explicitly given by

Eq. (3.81). Similarly, the functions Sir ({=0) defined by Eg. (5E.T)
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become equal to S

%+ defined by Eq. (3.55), whose asymptotic form
is given by Eq.(3.83). Moreover, the term (1-1/2N)(4;)" appearing
in Egs. (53E.3)—(5E.6) becomes equal to S§%. whose asymptotic form
is given by Eq.(3.82). From these correspondences, we find that
the function a—2d, b, and ¢ with a, b, ¢, and d being defined by
Egs. (5E.3)-(5E6) are equivalent to the functions 2¢ '(a+d), 287'b,
and (aB)"'*c defined in Appendix 3—A, respectively. Thus, in the coil
limit, it can be shown that

Boe = 240k (coil  limit). (5.51)
The eigenvalues 4, are relevant to dielectric relaxation of polymers
having dipoles parallel to the chain contour, and therefore Eq. (5.51)
agrees exactly with the relation between the viscoelastic and
dielectric relaxation rates for the spring—bead model™"

Egquation (5.51) suggests that we may eliminate the negative
eigenvalues by the simple procedure as in Chap. 3, i. e, by replacing
Aok by Ase.a—Asm,0 as far as the eigenvalues themselves are
concerned. This is referred to as procedure A. In the case of [7],
however, we must also give attention to the behavior of the
transformation matrix @f}; at small wave numbers k, since it
determines the relative amplitudes of the J=2 and 3 branches
(relevant to the local motions). From Eq. (5.47) or (5.49), il is seen
that the contributions of these branches diverge unless @k, (J=2,3)

vanish in the limit of & — 0, since the factor (A */M diverges

in this limit. Therefore, in addition to the requirement on the
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lowest branch, it must be required that @M. (J=2,3) vanish in
the limit of k& —= 0. [Because of the preaveraging of the
constraining matrix, the @{ij given by Eq.(5E13) with
Eqgs. (5E.3)-(5E.6), (5E.11), (5E.12), (5E15), (5E.16), (5E.18), and (SE.19)
does not fulfil this requirement.] These two requirements may be
explicitly expressed in terms of the functions a, b, ¢, and d defined

by Eqgs. (6E.3)—-(5E.6) as follows

lim [(a — 2d)b — 8¢*] = 0, (5.52)
lim [~aB/2(a — b — 2d) — 2(a — Bl =0 (5.53)

with @ and f the functions defined by Egs. (5E.11) and (5E.12),
respectively. These requirements may be fulfilled by adding some
constants b and d properly chosen to & and d, respectively. They
are found to be

b = 2(280/t0)" ey — bo , (5.54)

d = a/2 — (2a0/Bo)"*co — do , (5.55)
where the subscript 0 indicates that the values at k=0 are taken.
This procedure is referred to as procedure B.

Now, taking syndiotactic polystyrene (s PS) as an example
of flexible chains, we examine the behavior of the eigenvalues.
We introduce as before the dimensionless parameters r; and r;
defined by

r = {J/31ma , (5.56)

ry = §/a’, (5.57)
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and also use, instead of 4s, the number n, of skeletal bonds of a
given real chain corresponding to one subbody of the discrete HW
chain. These are related to each other by Eq.{4.19). As for the
necessary equilibrium mode!l parameters, ko, 7o, 4, and the shift
factor My, we adopt the ones listed in Table I of Ref. 14. All
numerical work has been done by the use of FACOM M-380 and
VP-200 digital computers in this university.
Figure 5.1 shows plots of the reduced eigenvalues Aara

£ A, o k8T = 37ma’riradis, o/ keT  (with Ajmx and a unreduced) in
the J =1, 2, and 3 branches (relevant to [7]) against the reduced
wave number k& = k/(N + 1) for s—PS with ny =2, N =999, r =1,
and ry; = 15 The full curves represent the values calculated
following procedure B. As in the case of the L(1) eigenvalues
calculated in the crude subspace approximation, avoided crossings
are seen to occur among the J =1, 2and 3 branches at b =~ 0.08,
as conjectured by Fixman and Evans.!” For comparison, the values
calculated following procedure A are also shown in the broken
curves. The difference between the two procedures seems small as
far as the eigenvalues are concerned. In what follows, all

numerical results are obtained by procedure B.

5-4. High—Frequency Viscosity

In this section, we discuss the high—frequency behavior of
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Fig. 51. The reduced eigenvalues ;1'2](2;.;1 (=1 2 3) plotted against the reduced
wave number % for syndiotactic polystyrene with n,=2 N=0999, ri=1, and
rs=15. The full and broken curves represent the values calculated following
procedures B and A, respectively.

the dynamic intrinsic viscosity, i.e, the real part [7'] of
[7]=[2"1—t[1"]. From Eq. (547), [7') may be written in the form,

[7"] = [21%* + [21°° + [#]=, (5.58)
where [7]¥" and [7]® are contributions from the global and local

motions, respectively, and are given by

N
[ﬂ]gfob - [NA(QQCL)E/‘SGUUM] jz: (xﬁy’zgi,k + f:u:b’—'g?.k)z (Qlf’i]-u)z
=]
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X(AR) Ak, [ 1 + (0/Ayzy, )17, (5.59)
N 3
[2]% = [ Na(a®)"/36mM ] ; Z (kv gl + o280 ) (QFh) )
X(AD) A, [ 1 + (@ Beay, 1)?1 7" (5.60)

As noted in Sec. 5-2d, [7'] given by Eq.(558) with @ = 0
is not identical with the correct [7], given by Egq. (56.50). In other
words, Eaq. (559) for [7]9*" along with Eq. (5.60) for [7]% cannot
correctly describe the whole relaxation behavior of [7'] from
[7]o to [7]e. This defect arises from the approximate nature of
the above expressions for [7]%°", [7]%, and [7]e Among them,
that for [7]%“" {s the worst. The reason for this is that as already
discussed, the preaveraging approximation in the constraining
matrix has significant effect on the global motions but not on
the local motions. As for [7]e, we have made this approximation
only to evaluate the equilibrium moments at the stage of Eq. (5.45),
so that Eq. (5.48) may rather be regarded as giving a good
approximate value. Then, it is better to wuse FEq.(547) than
Eq. (5.49) for [7] as far as its behavier in the high—frequency
region is concerned. If [7]%°” is necessary, it is sufficient to
replace it by the Rouse—Zimm theory result properly renormalized,
as done by Brueggeman et al” in the analysis of experimental
data.

Now, we consider the origin of the high—frequency viscosity.
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First, we make a remark on [7]". It can be shown that as
kR/(N+1) approaches zero, Q([l:l].m and Q4,15 obtained by procedure B
become proportional to Af and (AP), respectively, so that the ratio
Q. 12/A8  approaches & non—zero finite value, while @}, 15/A%
approaches zero. This means that the interaction (coupling)
QM1.1y (J=2,3) between the global and local motions becomes
infinitely small as k/(N+1) is decreased [so that the eigenvalues
A » remain unaffected for small £ (and should there become
identical with the Rouse—Zimm eigenvalues A7 if there were no
approximations)], but the contribution of @{%,12 to [2°] never
vanishes because of the factor (Af)* in Eq. (5.60). Moreover, we
have found that the summand on the right—hand side of Eq. (5.60)
becomes a function of &/(N+1) when N>1, and that its amplitude
for J=2 is much larger for smaller k. Thus, the total amplitude
[7]1&c, ie., the zero—frequency value of [7]% is independent of M
when N1, and the terms in Eq. (5.60) with J=2 and with small
k mainly contribute to it.

Since the eigenvalues (relaxation rates) in the J=2 and 3
branches are much larger (faster) than those in the J=1 branch
at small wave numbers k (see Fig.5.1), it is evident that [7]%° still
remains finite after [7]% (with small k) relaxes away. Then
the sum [7]§+[7]= may be regarded as the high—frequency
plateau observed in viscoelastic experiment, which we designate by
i

[7 For larger @, [n]% also relaxes, and only [7]e remains.
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The latter seems to correspond to another high—frequency viscosity
observed in the higher—frequency region® Such relaxation
mechanism is depicted schematically in Fig. 52. The full curve
represents the values of [7'], the broken curves glob and [loc
represent the contributions of [7]%°" and [7]%, respectively, and
the horizontal dotted lines 1 and 2 indicate the values of [7]F

and [7]e, respectively.

(]

M,

(m°

[m]

log w

Fig. 52. Schematic depiction of the relaxation mechanism of [7}']. The full
curve represents the values of [7"], the broken curves glob and loc represent
the contributions of [7]%% and [7]% respectively, and the horizontal dotted
lines 1 and 2 indicate the (frequency-independent) values of [71F and [7]e,
respectively.
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Thus, on the basis of the HW chain, it has been deduced that
the high—frequency plateau [7]7 is composed of the two parts
[71% and [7]e [7]%° stems from the interaction between the global
(Rouse—Zimm) motions and the local ones, since [71% would vanish
if there were no interaction, ie, @f;,1s=0 (J=2,3). In this sense,
the origin of [7]% in the present theory is in accordance with that
conjectured by Fixman and Evans'® In the two theories, however,
the precise mechanisms by which the interaction makes contribution
to the plateau value are somewhat different. In the latter, the
plateau 1is due to the gap structure of the spectrum. As for
[7]=, it has two origins. One arises from the constraints [the first
term on the right—hand side of Eq. (548)], and the other is the
contribution of the FEinstein spherical subbodies. (Such an effect
of the constraints has already been considered by Doi et al® and
Fixman and Evans® for the bond chain.)

Finally, it should be noted that in our model, the interaction
between the motions arises from the local helical nature of the
chain contour, as possessed by almost all kinds of flexible polymers.
In the case of the Kratky—Porod worm-like chain'’ ks = 0 whose
local chain contour is a straight rod, there is no interaction
between them [@f}),1,=0 (J=2,3)], and therefore [7]1{°=0. The (first)
plateau observed for very stiff chains, which may be well
represented by the worm-like chain, arises by a different

18-21%

mechanism,. In the case of rigid rods, it arises from the
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constraints, and within the framework of the present theory, it

corresponds to the part of [7]- due to the constraints.

5-5. Comparison with Experiment

We proceed to make a comparison between theory and
experiment, giving attention only to [7]%, since the theoretical
expression for [7]%°" given by Eq.(5.59) is not reliable, as
mentioned in Sec. 54, and since available experimental data have
not heen obtained in the theta state. The theoretical value of
[7]1%= [7]16+ [7]« is computed from Egs. (5.48) and (5.50), assuming
that n, = 2 and r, = 1.

In Chap. 4, we have regarded the subbody (corresponding to
a monomer unit for almost all flexible polymers) as a spheroid
(ellipsoid of revolution) having rotation axis of length a and
diameter d, and related d to the product rir: by Ea. (4.35). We
must also relate d to the intrinsic viscosity of the Einstein sphere
in order to calculate [7]°. We simply assume that the Einstein
sphere and this spheroid have the same hydrodynamic volume, 1ie,

de’ = ad®. (5.61)

In Table 51 are given observed values of [7]f for atactic
polystyrene (a—PS), 1% atactic poly(methyl methacrylate)
(a—PMMA)Y"® and atactic poly(a—methylstyrene) (a—PaMS3)""** along

with that of [7]e for a—PS,® the calculated values of [7]7,
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Table 5.1. Observed and calculated values of [7]7.

~p61I-—

Observed Calculated
Temperature
Polymer (C) (71%(ml/g) [7)a(ml/g) [7]%(ml/g) [7]8(ml/g) [7]a(mlig) ko 7o r
a—PS 25 14.3* 7° 4.2 0.19 4.0 08 23 15
10.8 0.31 10.5 60
4.4 0.42 4.0 16 23 15
114 0.85 10.5 60
a—PMMA 25 22.8° — 4.0 1.1 2.9 4.4 0.8 6
121 3.5 8.6 30
a—PaMS 25 22.9% — 5.3 1.5 3.8 44 1.0 11
15.9 4.6 11.3 60

*See Refs. 1, 15, and 22.
"See Ref. 186.
‘See Refs. 1, 15, and 23.



[7]5, and [7)]e, and the assigned values of ko, 7o, and rs. For
convenience, we regard the atactic polymers as syndiotactic, as done
in the preceding chapters. The values of %k, and ry are the same
as those listed in Table 1 of Ref. 14 except for k;=1.6 and 7,=2.3
for s—PS. This pair of values of Ky and 7, has been assigned to
examine the dependence of [71F, [71F, and [7]e on ks and 7.
The two values have been assigned for rz; in every case, the smaller
value has been computed by the use of the value of d determined
from the chemical structure (see Table 4.2), and the larger value
is the one determined previously from the analysis of experimental
data in the crude—subspace approximation. The theoretical values
of [7]% calculated with the larger r; are in better agreement with
the observed ones than those calculated with the smaller ri. As seen
from the table, [7]1¥° is sensitive to the change of & and 7o, while
this is not the case with [7]e; [7]° depends on k; and 7o (helical
nature) through [7]f. As for [7]=, the calculated and observed
values are rather in good agreement with each other. We note that
in every case, about 60% of the calculated value of [7]= is the
contribution of the Einstein spheres. In the case of a—PS§, [71¢¢
may be estimated to be ~7 ml/g from the observed values of
[7]% and [#)e, and it is almost egual to the observed value of

e {5 smaller than that

[7]e. However, the calculated value of [7]
of [7]e, and therefore, the crude—subspace approximation seems to

underestimate [7]5°
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5—6. Concluding Remarks

We have evaluated the dynamic intrinsic viscosity of the
discrete HW chain, and showed that it has the high-frequency
plateau [7]7 (=[7]&+ [7]=) which is distinguished from the
infinitely—high—frequency viscosity [7]=. In our model, (718 or
[7]% arises from the interaction (coupling) between the global
and local motions caused by the helical nature of the local chain
contour, and [7]e arises from the constraints and the finite
hydrodynamic volume of the subbody. The agreement between the
theoretical and experimental values of [7]f is rather good, and
the dependence of [7]7 on the chemical structure of the chain
may well be explained. It is evident that the incomplete agreement
between theory and experiment 1is due to the c¢rude—subspace
approximation. On the other hand, the preaveraging approximation
in the constraining matrix has significant effect on the global
motions, and therefore we have not made an analysis of the
J =1 branch of the spectrum corresponding to the Rouse—Zimm
eigenvalues.

In  conclusion, our model has proved effective for a
description of the relaxation behavior of [7"] in the high—frequency
region which concerns the local motions, as in the cases of the L(1)

observable studied in Chap. 4.
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Appendix 5—A. Excess Stress Tensor

In this Appendix, we derive an expression for the excess
stress tensor due to the addition of one HW chain having its finite
volume to an incompressible Stokes fluid.

It is reasonable to assume that the flow of the fluid is
steady at every instant, since the relaxation of the velocity of the
fluid is much faster than the local motion of the polymer chain
immersed in it. This assumption is consistent with the description
of the hydrodynamic interaction among subbodies of the chain by
the use of the Oseen tensor, i.e., the Green's [function of the
time—independent Stokes equation. Thus, the velocity V{(R;t) of the

fluid at a point R satisfies

V-6(R; t) + F(R; t) = 0, (5A.1)
where @ is the stress tensor defined by

0(R; t) = — p(R; )T + 7o{V V(R; t) + [V V(R; )]} (5A.2)

with p the pressure and I the 3X3 unit tensor, and F is the force
density due to the frictional force exerted by one HW chain on

the fluid and is given by
N
FR; t) = 3. | dr,8(R — R, — t,)F&(r,; 1)

p=1 Sp

+ (R — Ryu)Fwale) (5A.3)
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with &(R) the Dirac delta function. The last term on the
right—hand side of Eq. (5A.3) represents the contribution from the
(N+1)th bead. As defined in Sec. 2-2, this bead has vanishing
rotatory friction coefficient, and therefore we may regard 1t as
the point force which exerts the frictional force Fyy on the fluid
at a point Ryy. The dependence of V, d, and p on ¢ comes from
the dependence of F on ¢ and 1s immaterial in the present
treatment. Thus, in what follows, we suppress ¢t

The stress tensor 0 may he written as a sum of the stress
tensor O; of the pure fluid and the excess stress tensor 6  due to
the force density F, i.e, 0 =0y + 0. Therefore, Eq. (5A1) may

be rewritten as
v '60 =10 3 (5A.4)
Vo' +F=0. (5A.5)

In order to express 0’ in terms of F¥(r,) (p =1, 2, -+, N) and

Fy., we take the Fourier transform of Eq. (5A.5),
ik-d'(k) + F(K) = 0, (5A.6)
where

o' (k) = fo’(R)e“‘""dR , (5A.7)

F(K) = fF(R)e“‘ B4R

N
= Z fs drpe* Bt RSy + ek Brmpy. (5A.8)

p=1
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Let R. be the vector position of a point properly chosen to
represent the position of the HW chain in the external coordinate
system, and let fi,, (p=12,- -+, N+1) be the vector distance from
the point R. to the pth subbody, ie., R,=R.+R, Equation (5A.8)
may be rewritten as

N+1

F(k) = ¢*™ ). F,

=1

N 1 .
+ ik'e‘ka‘{z f drp[f e‘ﬁ'm""ﬂdf]{fip + r,)FS(r,)
s 0

p=1 v,

1 -
+ f e*""‘””déRMFM}, (5A.9)
0

where F, (p=1, 2, -+, N) is the total frictional force exerted on
the fluid by the pth subbody and is given by
F, = f F(r,)dr, . (5A.10)
4
Under the condition for which viscosity measurements are carried
out, there is not any external force other than shear flow field,
N+1

and therefore the total frictional force p=1 Fp must vanish. Then,

from Egs. (5A.6) and (5A.9), we obtain

N 1 . ) .
a'(k) = — e“"n‘{Z L dr,;[ j; e‘““RWﬂ’dé](Rp + r)F(r,)
P= 7

L = o
+ f EisklRHHdSRN+1FN*l} . (SA.ll)
0
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Now we take the average of Eq. (5A.11) over the configuration
with the time—dependent distribution function. In order to obtain
a general expression, we do not need its explicit form, but only
its two properties: (1) R. distributes uniformly in the fluid of unit
volume, and (2) the average over R, may be taken independently
of the other variables. With these properties, we obtain

N+1

<6/()> = = a0 L <RoFp>
p=1
N
+ ) <f rpF‘f‘(rP)drp] , (5A.12)
=1 Sp
where <+ :+> denotes an average with ¥. Replacing RP by R,

and taking the inverse Fourier transform, we obtain Eqg. (5.4).

Appendix 5—B. Evaluation of the Function X

In this Appendix, we derive an expression for the function
X  suitable for constructing a formal solution for the
time—dependent distribution function . This does not require explicit
forms of the matrix representations of operators such as E and
L given in Chap. 3. Thus, the preaveraging approximation in the
constraining matrix C™' (see Chap. 2) is not necessary, and all
results in this Appendix are derived without this approximation.

First, we derive a relation among the 3NX3N matrices M,

N, B, and E defined by Egs. (2.92), (2.93), (295), and (2.96),
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respectively. From the definition given by Eq.(2.94), the

o “ -1 . .
constraining matrix C may be written as a series,

= [Z(-l)"(i’r_lB_l "E- ET)”] 6B (5B.1)

n=0

Substitution of Eq. (5B.1) into Eq. (2.92) leads to

M = Y (~1)(ET-¢, "B -E). (5B.2)

n=(

From Eg. (2.93) and Egs. (5B.1) and (5B.2), we obtain the relation,
N= ¢(7M-E"-B, (5B.3)

Then, we derive an expression for X. Substitution of

Egs. (5.5), (5.6), and (5B.3) into Eq. (2.100) with U, = 0 leads to

N
Bk I:%'? Z (B_l)mpeamapzf(exey + eye,)

Puope=l
N
- Z Cr-lq}‘q:l—lel qj‘eq L MP;P: L (B_l)sza(LPsaP:)aps:(e-'e)' - eJ’e-‘f)
Py P p3=1
N
+ Z Feq Lp ¥eq Mpp* Ap,* e:] : (5B.4)
piope=1

where a, is the pth bond vector whose components are expressed
in the external coordinate system and is explicitly given by a, =
(a sin 8, cos ¢, a sin 8, sin ¢,, a cos 8y), and we have used the formal
dyadic notation Lya, In obtaining Eq. (56B.4), we have also used
the following relations,

E;, = L,a, , (5B.5)
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N
5 )
Lm[ Z (B )mpsaneam'ele}']
Per P3=1

N
= Y (B n(Loap)amee, + ee.), (5B.6)
p=1

where E, in Eq. (5B.5) is the 3X3 matrix given by Eq. (2.78).

By the use of Eg. (2.93), Eg. (5B.3), and the relation,

E,-A,"e. = — (e.e, — eye,)-a,, (5B.7)
the third term on the right—hand side of Eq.(5B.4) may be
rewritten as

N N
Z @'eq_le] gfﬁ! : MPan * gy "y ™ E il"'.feq-l]:-‘p {lf'eq * Ap Te;
p=1

i pe=l
N
o Z §7 Wog 'Ly, Tea* Mpyp, * (B )pupns(Lipap)api(ecey — ese.) .  (5B.8)
P Pz P3=1
Substitution of Eg. (5B.8) into KEqg. (5B.4) leads to Eq. (5.9) with

Egs. (5.10) and (5.11).
Appendix 5-C. Intrinsic Viscosity of the Einstein Sphere

In this appendix, we evaluate the right—hand side of
Eq. (5.32). In general, an integral whose integrand includes the
inverse K,'(r, r;) may be evaluated by converting it into an
integral of a certain function which includes the solution of an

integral equation with the kernel K,(r, r;). A simple example is
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the translational friction tensor &, of the pth subbody. It may

be written as

£, = S”UUL drp}; dr;K;I(rp, rp) , (5C.1)

since Eq. (6C.1) may be converted into

g, = L@'p(rp)drp (5C:2)

with &, the solution of the integral eguation,
a0 [ Klry, 1) Weppany = 1. (5C3)

Equation (5C.2) with Eq. (5C.3) is equivalent to the first of Egs. (29)
with Eq. (33) of Ref. 24.
In the present case, the right hand side of Eq. (5.32), which

we designate by ¢, may be written as

o= - Tlf(erey + eye:):f rpruS)(rp}drp (6C.4)
SP

with Ff*(rp) the solution of the integral eguation

(smﬂ)‘lfs K, (r,, rp) F(rp)dr, = — $(ece, + eje.) 1, . (5C.5)

It is seen from Egq. (5C.5) that F'(r,) represents the frictional force

distribution on the pth sphere under the non-slip boundary
condition when it is immersed in the unperturbed oscillating shear
flow given by Eq. (5.1) and rotates around its center with the

angular velocity —€e,/2. Therefore, ¢ represents the increment of
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the xy component of the stress tensor due to the single sphere®

and is given by Eq. (5.33).

Appendix 5-D. Matrix Elements

In this Appendix, we give the (2, 2)-body matrix elements
E'1') ;.{f:z)g')[h,kg.k}'kg'1 and I‘ﬁ'.ﬁff;iﬁg;[fqhgjq‘hz'] in the Fourier basis set
defined by

<F ﬁl(l{iﬁ)ri;rqlf' o k1> eq = O LrSam B PELIL teeanis) (5D.1)

<Ff.1'l”i)[1.' ]-?F}hf".'t(d’z.g’;}{k;hg}>aq = aLL'aMM'z(ﬁ{:l-{?;:.{f:lig')[klkg.kl'kg'] , (6D.2)
where F'{/¥3les) is the two—body excitation Fourier basis function

defined by

Friima({2n}) = Z Z Z Q5 Qo

pe=l my==l m,==l,
m""n

D)D) DY 0001 (L1 21o). (5D.3)

In Eq. (5D.3), we have used the two—body excitation basis function

DI pp(2p, 25) for the case of p>p, which is defined by

DI (@ @) = (—1)F 782%™ N2 Y <lymulomy | LLLM>

g

x'@ﬂm(gm)-@mw(ﬁm) (P> p2), (5D.4)

Note that D‘W:’V,[W](.QM, 2,) for p < p, has already been defined

by Eq. (3.4).
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We may write the (2, 2)-body elements in the form,
EVEREL ot

N L L By L
[i]
= Z Z Z Z Z Q?ﬂﬂqQ?ﬂﬂka?‘q'k;'ng'kg’

prpop o=l ==l me==ly g e =g
pi#pup#py

X DY) D (Q0) DV (20) D (20) ESTEE Dupepine (5D.5)

and the like. By the use of Egs. (3.17)-(3.22), we take the sums
to obtain
Etﬂﬁ#;.{f:ll'l[ialk:.k{h:'] = 811010 ne O bee € jrjr(1 + S10.0m0.0 5,
x(87*) " glingtin, , (5D.6)
LY thpanree) = Out Oty Onp Onen (870 VT
x(am,am;(l + Suudnud iy [ Ll + Vglis, + Ll + Vgl ]
— 88l { REE + $85(2 — (DTG ™ |
- afti:6k1k26}':}:'g{:-2ﬁ:{ hflu 16‘1(2 + (- 1) )T}U U fi)_l} (5D.7)

— 8,0t { REE + 30m(2 — (FLFTEFGE)™ |

— S Snpd et | L + ¥ou(2 + (CD)TEGE)™ } )

with
1 1+41 - N .
RiL =4 Y, Y T LN (ghanew + gleanw) (5D.8)
di==1 j"=—|-4i k=1

where gi. is defined by
glp=—1, if {=j=0 and k=2n(N +1) (with ninteger)

= L[1 — g 2 (1 = dmo) (5D.9)

m=—1
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X [1 = 2704 oos (jyds — mkl) + e 2B04]170 1 otherwise

b

with 0 = 7/(N+1) and ¥ = (k’+ 109", and T4 is defined by
Eq. (3.53). In deriving Egs. (5D.6) and (5D.7), we have ignored terms

N4 and retained terms of &(1).

involving e~
We note that the terms involving hii and (45)" in Eaq. (5D.7)
arise from the constraining matrix appearing in the diffusion

operator %, If these terms are ignored in Eq.(56D.7), then

T a2y i) z
L P theokyhs) become diagonal.

Appendix 5—E. The Six—Dimensional Eigenvalue Problem

In this Appendix, we give the analytical solution of the
six—dimensional eigenvalue problem given by Eq.(5.43) (with
Ko®+ 7p%#0).

From Egs. (58D.7) and (5D.8), the 6X6 matrix M defined by

Mp) = (-Ez(z). (o) Imz),[k] (B, ) (5E.1)
is explicitly given by
| & —~2ic —¥2Zd 0 0 0 |\

V2ic Ha+b) ic  —Zic —d 0

—v2d —ic a 0 —ic —+2d
Mup = & (5E.2)
0 V2ic 0 b V2ic 0
L0 —d ic  —~2ic $(a+d) +2ic
\
0 0 -¥2d 0 —2ic a |
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with
a = (gr) {4 — doo® P[0 = A)ADT + SLi + 8% + 25%4)
— 1o (Sl + S}, (5E.3)
b= (gln™ {4 — k™ ¥(Sii + Sk
= o[ 8(1 — )Y + £SL) ., (5E.4)

g = gffxofov-z(g?.hgi.k)_m[%(1 — g (A

Le— #8%,. + Si.l, (oE.5)
d = $x* v gin) " [3(1 — ) — S + 3SL.T, (5E.6)

where gi, is defined by Eq.(5D.9), v = (ko’+ 1,9"%), A5 is the kth
approximate eigenvalue of the matrix a°C given by Eq. (3.46), and

Si. is defined by

N

St = (2N ) (A9) gluww + gla-i) . (5E.7)
h'=1

The unitary transformation matrix Q% (s which diagonalizes

the matrix M. is found to be of the form

Qv = PraQui (5E.8)

with Pz and @ the 6X6 unitary transformation matrices given

by
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lf —a/2 vap/2 B/2 0 -1/¥2  1/2 |\

" ivaB i(a—B)/VZ iNaB —i/vZ 0 0
—a/NZ Jap B/NE 0 0 —1/+2
Py = , (5E.9)
B 2aB —a 0 0 0
\ inaB i(a—B)/ N2 iNaB i/NZ 0 0

\ —a/2  JaBlZT B2 0 YT  1/2 |
and

Q{[I;i] Oaxz  Ozx \)

Qi) = ( Ozxa Q‘[afi] 0zx1 (5E.10)
0k Oixs 1 /
respectively, where
@ = ko'vigln/(Ko'v 2gin + T g ), (5E.11)
B =t g/ (Ko'v " g1x + To*v gls) . (5E.12)

In Eq. (5E.10), Onxm is the n»Xm null matrix, and @f}; and @Qf, are
the 3X3 and 2X2 unitary transformation matrices given by
[(x+1)/2 y (x—1)/2%\
Qi = ( y Tx Yy ) : (5E.13)
\(x—1)/2 » (x+1)/2/
[(1_2)/2]“2 [(1"‘2’)/2]“2\‘
Qfh = ) . (5E.14)
—[(1+2y21* [(1=2)/2)*2/

respectively, where

x = A(A* + 2BH)™V? | (5E.15)
y = B{A* + 2B, (5E.16)
z=(—a+b+2d)(a —b— 2d)" + 3217 (5E.17)
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with

A=4B—aXa — b — 2d) + 45228 ¢, (5E.18)
B = eB/2(a — b — 2d) + 2(a — B)c . (5E.19)

The desired eigenvalue Aygx (J = 1-6), which is the Jth
diagonal element of the diagonal matrix Ag(g_)_[k] - Q;m_[k]M[kJQz(aJ.[k],
1s given by

Bae = {7 (e + b) — d + (J — 2)(A* + 2B)"]
for J =1,2,3

= (4)™M{Ba + b + 2d) — (1)’ [(a — b — 2d) + 32¢*]")
for J = 4,5

= ¢ (a + 2d) for J =6 . (5E.20)
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