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CHAPTER 1 

INTRODUCTION 

1-1. Background 

      During the last decade, a series of theoretical studies on 

static properties of polymer chains in dilute solution has been made 

on the basis of a new general continuous model, called the helical 

 wormlike (HW) chain, by Yamakawa and his co—workers.1-18 They 

have shown that the model can mimic the equilibrium 

conformational behavior of real polymer chains as well as the 

rotational isomeric state model,19 and that various properties of 

both flexible and stiff chains may be evaluated very efficiently on 

the basis of the former. On the other hand, in the field of the 

dynamics of (flexible and stiff) polymer chains in dilute solution,20 3° 

there still remain many problems, not completely solved as yet, 

such as dielectric relaxation and dynamic intrinsic viscosity. Thus, 

in this thesis, we shall study them on the basis of the HW chain. 

      The HW chain is a continuous elastic wire model with 

bending and torsional energies such that its total configurational 

energy becomes the minimum zero when it takes a regular helical 

form, which is called the characteristic helix. Necessarily, it is 

adequate for a description of equilibrium conformational and/or 
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steady—state transport properties of real chains on the bond length 

or somewhat longer scales, as shown by Yamakawa and his 

co—workers, but not, as it stands, for a description of local motions 

or conformational transitions, which we are interested in, apart 

from its mathematical difficulty. However, this will be achieved 

by replacing the continuous HW chain by its discrete analog. It 

has been proved by Yamakawa and  Shimoda') that the continuous 

11W chain may also be obtained by taking the continuous limit 

of a discrete chain of rigid subbodies, instead of bonds, under 

certain conditions, and also that local vectorial and tensorial 

properties of the continuous 11W chain may be expressed in 

localized coordinate systems affixed to it, one corresponding to 

two successive skeletal bonds in the real chain. Considering these 

facts and also the length scales inherent in the continuous HW 

chain, it is appropriate to replace it by a discrete chain of 

identical rigid subbodies, each corresponding to two bonds or so. 

Its size may be determined in such a way that the equilibrium 

conformational behavior of the discrete chain is almost identical 

with that of the original continuous chain. This is our dynamic 

model to be used, and it is referred to as the discrete HW chain 

when necessary to distinguish it from the continuous 11W chain. 

It is clear that our model corresponds to the real chain somewhat 

coarse—grained. 

      Now, we survey theoretical studies presented so far in the 
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field of the dynamics of polymer chains in dilute solution. It is 

useful for clarifying characteristic features of the dynamic model 

we have adopted and also for searching for theoretical approaches 

to the problems. There have been made three types of studies in 

this field, i. e., analytical investigations based on the diffusion 

equation for the time—dependent distribution function for proper 

chain  models,21,26-28,31-33 those based on the master equation for lattice 

chains,34-36 and Brownian dynamics simulation studies by the use 

of realistic models.29'37'38 In the second—type theories, one must make 

ad hoc assumptions on the transition rates of elementary motions 

artificially chosen, and therefore, no molecular information can be 

obtained from the values of the transition rate themselves. 

Moreover, the results of these theories exhibit extremely slow 

relaxation at long times which is inconsistent with experiments. 

In the third—type studies, there is little hope of getting an insight 

into the mechanism of the relaxation processes of polymer chains, 

especially of the interactions of local and global chain motions. 

      Our study in this thesis is categorized into the first type, 

and thus we review it rather in detail. A most general theoretical 

framework was given by Kirkwood31 for the bond chain composed 

of frictional elements, each having three translational degrees of 

freedom. In this model, each bead corresponds to one of the atoms 

constituting the backbone of a given real polymer chain, and thus 

necessarily the constraints on the bond lengths and angles and also 
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the complicated potential energies as functions of rotation angles 

are taken into account. These constraints and potential energies 

make it difficult to perform analytical evaluation, and only formal 

results were obtained.  Rouse32 and Zimm33 removed these difficulties 

by introducing the spring—bead model. It is composed of statistical 

segments or beads having translational friction, each of which 

corresponds to a group of several successive atoms of the chain 

backbone, and successive two beads are connected by the Gaussian 

spring. Although they achieved a remarkable success in a 

description of rather long—wavelength motions of polymer chains, 

they abandoned drawing information about local chain motions. 

A reconsideration of the bond chain was made by Fixman and 

his co—workers,~6-38 who rewrote the diffusion equation into a more 

transparent form by introducing the constraining matrix. However, 

the preaveraging approximation made in this matrix, which is 

inevitable for analytical developments, caused a serious error in 

the evaluation of the relaxation rates of the local motions. It 

may be said that Fixman's "model" or diffusion equation is a 

modified spring—bead model in which the effect of the constraints 

is taken into account by the preaveraged constraining matrix, and 

thus the results of Rouse and Zimm may be recovered if the 

constraining matrix is ignored. In short, there is not any theory 

based on the diffusion equation which provides a satisfactory 

description of the local chain motions. 
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      In contrast to the bond chain, our model consists of rigid 

subbodies, each of which has three rotational degrees of freedom 

besides the translational ones and has a rotational relaxation rate 

associated with a motional (monomer) unit. It seems rather natural 

to replace repeating units of a given real polymer chain by the 

subbodies instead of frictional beads only with the translational 

degrees of freedom. In our model, the constraints, of course, exist 

on the distance between the centers of two successive subbodies 

and on the relative orientations between them, and  therefore a 

proper preaveraging approximation must also be introduced into 

our constraining matrix. However, the approximation seems to 

make no serious effect on the description of the local chain motions 

because of the characteristic features of our model. 

      We have undertaken this work in the hope that local motions 

could be treated more effectively than on the basis of the bond 

chain for two reasons. First, a basis set corresponding to some 

local modes can be included through the rotational degrees of 

freedom of the subbodies even in a crude approximation. Second, 

we can avoid the serious errors in the evaluation of the relaxation 

rates of the local chain motions caused by the preaveraging of 

the constraining matrix.
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1-2. Outline 

     The plan of this thesis is as follows. 

      In Chap. 2, we construct the discrete HW chain to be suitable 

for the study of the dynamics of polymer chains, both flexible 

and stiff. It is a chain of N identical rigid subbodies such that, 

apart from its location, its configuration may be specified by N 

sets of Euler angles, each associated with one subbody, and that 

its equilibrium behavior is almost identical with that of the 

continuous HW chain. Then, we formulate the configurational 

diffusion equation and give an explicit expression for the diffusion 

operator  2 associated with it. Following the procedure of 

 Fixman,26 the constraints are handled by setting the components 

of the flux associated with the constrained coordinates equal to zero 

through constraining forces, so that the diffusion equation and all 

configuration—dependent properties may be written in terms of only 

the unconstrained coordinates, i. e., the Euler angles. 

     Finding the solution of the diffusion equation is equivalent 

to solving the eigenvalue problem for the diffusion operator 2. 

Thus, in Chap. 3, we present a general solution of this eigenvalue 

problem by the use of the representation theory in the quantum 

mechanics. The problem is, to a great extent, decoupled by 

introducing a standard representation which is formed by the 

eigenfunctions of the total angular momentum operator for the 
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entire chain. In order to find the analytical solutions, the size of 

the problem thus reduced is further reduced by making two 

approximations: subspace approximation and block—diagonal 

approximation. The former is equivalent to neglecting the memory 

term in the projection operator method, and the latter consists of 

introducing Fourier modes as in the conventional chain. It is 

shown that the theory predicts a number of branches of eigenvalue 

spectra. We also examine the conditions that should be imposed 

on the parameters such as the translational and rotatory friction 

 coefficients of the subbody. 

      By the use of the general solution given in Chap. 3, we 

readily evaluate various dynamical properties of polymer chains 

in dilute solution. Two typical examples are shown in the 

following two chapters. 

     In Chap. 4, dielectric relaxation of both flexible and stiff 

polymers in dilute solution is studied on the basis of the discrete 

HW chain such that an electric dipole moment is attached rigidly 

or with a rotational degree of freedom to each of the subbodies 

composing the chain. The complex dielectric constant is formulated 

with the dipole correlation function. Then, dielectrically active 

branches of the eigenvalue spectrum are identified for a given type 

of dipoles, and a mode analysis of them is made in order to 

inquire into the interaction between global and local modes. The 

decay behavior of the dipole correlation function is also examined 
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numerically for various chains. A comparison of theory with 

experiment is made with respect to the dispersion and loss, and 

also the dielectric correlation time  rip as determined from the loss 

peak. 

      In Chap. 5, we study the dynamic intrinsic viscosity of 

flexible chain polymers in dilute solution. The correlation function 

formalism of the complex intrinsic viscosity [ 77 ] is given, taking 

account of the effect of the finite hydrodynamic volumes of the 

subbodies of the chain. In this case, it is convenient to introduce 

a new basis set, which is a hybrid of the basis functions defined 

in Chap. 3. Then the eigenvalue problem for the representation of 

the diffusion operator .9' may be reduced to N six—dimensional 

eigenvalue problems. Among the six branches of the eigenvalue 

spectrum, one global and two local branches can be shown to make 

contribution to the dynamic intrinsic viscosity. It is shown that 

the theory predicts the existence of the high—frequency plateau 

which is distinguished from the infinitely high—frequency viscosity. 
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CHAPTER 

DYNAMIC

2 

MODEL AND DIFFUSION EQUATION

2-1. Introduction 

     Although the continuous helical wormlike (HW)  chain1-3 may 

provide a satisfactory description of equilibrium properties of real 

chains on the bond length or somewhat longer scales, it is difficult 

to apply this model to dynamical problems as it stands, since, in 

general, continuous models have an infinite number of degrees of 

freedom and therefore contain unphysical motions of wavelengths 

shorter than real bond lengths. Thus, in this chapter, we first 

replace the continuous HW chain by its discrete analog, i. e., the 

discrete HW chain composed of N identical subbodies, as mentioned 

in Chap. 1, and then derive the configurational diffusion equation. 

      The discrete HW chain has constraints on the distance 

between the centers of two successive subbodies and on the relative 

orientations between them. As has very often been discussed, such 

constraints may be handled in two fundamentally different 

methods4'5: the Kramers type6'' and the revised Kirkwood type.8'9 

The difference between the results from them is small for long 

enough chains. The latter may be further divided into two classes. 

One consists of taking the rigid limits of the "flexible" constraints, 
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as expressed by overdamped harmonically bound oscillators of small 

equilibrium root—mean—square amplitudes, at the final stage of 

calculation by letting the amplitudes approach zero. It is known 

that this method leads to correct results in some  cases,10'11 but not 

in others.12 We therefore adopt the other, i. e., the procedure of 

Fixman and Kovac,4'i3 in which the constraints are introduced at 

an early stage of calculation, and which is more convenient for 

our model. The diffusion equation and all configuration—dependent 

properties may then be written in terms of only the unconstrained 

coordinates, i. e., N sets of Euler angles specifying the orientations 

of the N subbodies. 

      The plan of this chapter is as follows. In Sec. 2-2, we give 

a detailed description of the discrete HW chain with an explicit 

expression for its potential energy as a function of the Euler 

angles. A criterion for the determination of the number of 

subbodies in it is established from a comparison with the 

continuous HW chain with respect to the equilibrium mean—square 

end—to—end distance. In Sec. 2-3, we derive a diffusion equation 

satisfied by the time—dependent configurational distribution function. 

2-2. Dynamic Model 

      Consider the continuous HW chain such that its total contour 

length is L, its stiffness is /1-1, and the constant curvature and 
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torsion of its characteristic helix are  Ko and ro, respectively, 

assuming that its Poisson's ratio a is zero, for simplicity."2 We first 

replace it by a discrete chain of N identical rigid subbodies of 

length a, which are numbered 1, 2, • • • , N, as depicted in Figs. 

2.1(a) and (b). The junctions between the (p — 1)th and pth 

subbodies and between the pth and (p + 1)th subbodies correspond 

to the contour points s and s + As of the continuous HW chain (a), 

respectively, so that its part from s to s + As corresponds to the 

pth subbody. We note that a is not equal to ds, and therefore that 

the total contour length Na of the chain (b) is not equal to L. 

A relation between a and ds is determined later. However, this 

discrete model is not amenable to mathematical treatment as yet. 

Therefore, we further replace it by the chain (c) composed of 

N + 1 identical beads, in which the center of the pth bead (p = 

2, 3, • • , N) corresponding to the pth subbody is located at the 

junction between the (p — 1)th and pth subbodies, the centers of 

the first and (N + 1)th beads are located at the chain ends, and 

the pth bond vector ap (p = 1, 2, • • •, N) of (fixed) length a, 

which joins the pth and (p + 1)th beads, is affixed to the pth bead 

[ not to the (p + 1)th ] . Thus, the total contour length of this chain 

is still equal to Na. Suppose then that all beads except the 

(N + 1)th have translational and rotatory friction coefficients C't 

and and the (N + 1)th bead has the same translational friction 

coefficient “'t) but vanishing rotatory friction coefficient ("r = 0). 
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The addition of the (N + 1)th bead of this nature serves to remove 

certain annoying asymmetry in the diffusion equation. There is 

no difference between the potential energies of the chains (b) and 

(c) (see also below) while their dynamic properties differ, but this 

difference will be small for large N. The chain (c) is the discrete 

HW chain to be adopted. In what follows, all lengths are measured

/

(a) 

 2

 p 

a

 s+As 

p+ I

(b) 

2

 p+I

     N

ap(Iapl

L

   N N-I-1 --&---N, 
a)

(C)

Fig. 2.1. Replacement of the continuous 11W chain by the discrete 11W chain 

(see text).
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in units of the stiffness parameter  A-1, and hBT (with kg the 

Boltzmann constant and T the absolute temperature) is chosen to 

be unity, for convenience. 

      Now we introduce N localized Cartesian coordinate systems 

(egn, eq,, ecp) (p = 1, 2, • • -, N), the pth one being affixed to the 

pth bead with the origin at its center and with esp in the direction 

of ap (from p to p + 1). Let S2p = (Or, pp, Op) (p = 1, 2, • • •, 

N) be the Euler angles defining the orientation of the pth localized 

system with respect to an external (lab) coordinate system. Apart 

from its location, the configuration of the chain can be specified 

by 3N variables (angles), (521, 92, • • • , S2N) = { S2N } . Note that 

the orientation or the rotational degrees of freedom of the 

(N + 1)th bead are not considered, corresponding to the fact that 

its rotatory friction coefficient is taken as zero. 

     The total potential energy Uo({ S2N }) of the chain may then 

be expressed as a sum of "pair" potentials u(S2p, Qp+1), 

                N
om)-'1 UOE u(S2p, Slp+1) ,(2.1) 

                  p=1 

ignoring excluded volume potentials. We determine the form of u 

as follows. It is related to the equilibrium conditional distribution 

function „(S2p+1I Slp) of Slp+1 with Qp fixed, by the equation, 

Veq(•2p+1 I Slp) = e
fexpxp [ — u(Qp,Slp+1) ]/  [ — u(S2p, S2p+1) ] dSlp+1 ,(2.2) 
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where  dS2p  = sin°pdcppdtPp. It is reasonable to assume that this qt„ 

is identical with the corresponding conditional distribution function, 

i. e., the equilibrium Green's function G(S2p+l I Qp; As) between the 

contour points s and s + As of the continuous HW chain, where 

the arguments of Yreq and G take the same values; 

Teq(Dp+l I S2p) = G(S2p+, I Q,; /is) .(2.3) 

Yamakawa et all' have shown that G(Q I Do; s) may be expanded 

in terms of the normalized Wigner 2 functions 2m' as 

G(S2 I S20; s) _ E g{' (s)2m'(9)2m' *(t2o) ,(2.4) 
                                Z,m,l.l 

where the sums over 271' are taken over 1 ? 0, I m I <_ 1, I j I <_ 1, 

and the asterisk indicates the complex conjugate. 27-' is defined 

by 

2ND) = 2m'(8, 4),') = cie'dml(0)eZl'Y(2.5) 

where 

cc = [ (21 + 1)/8 r2 ] 1/z,(2.6) 

i is the imaginary unit, and 

dm'(B) = r1+)'~~j)! 11/2  ]112(cos4o)1+m(sin4o_mm 
        L(1

xp,m.J+m)(cosO)(2.7) 

with PV)(x) the Jacobi polynomial." From Eqs. (2.2) and (2.3), we 

have 

u(S2p, S2p+1) = — In G(Qp+1I S2p; As) ,(2.8)
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where we have omitted a constant term. Strictly, the u thus 

obtained is not the potential energy of the continuous HW chain 

(as an elastic wire) of contour length 4s but rather the free energy. 

In the limit  ds 0 (a -- 0), the discrete HW chain becomes 

exactly identical with the continuous one with the potential energy 

u. 

      In the present case of a (Poisson's ratio) = 0, G may also 

be expanded, by the use of the relations derived by Shimada and 

Yamakawa [ Eqs. (25) and (26) with Eqs. (A6) and (A7) of Ref. 16 ] , 

as follows, 

G(S2 I S2o; s) = E hi (s) E Ji J(Q)DJk(QQ) 
1,m,kj 

              x E 0 1 J *(S2o)DJik*(S2a), (2.9) 

where 

h{(s) = exp { — [I(1 + 1) + i j (K02+ roz)112 ] s}(2 .10) 

.mi is the unnormalized Wigner function defined by 

DT (S2) = C1 -1.71 J(S2) ,(2 .11) 

and 

S2Q = (a, —1r/2, n/2)(2 .12) 

with 

    a = —tan-1 (Koko) , (-71. < a < 0) •(2.13) 

Comparing Eq. (2.4) with Eq . (2.9), we find
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 glt(S) = E hl(S)f (S2a). J?*(S2a) .(2.14) 
                      Iz 

Equation (2.1) with Eqs. (2.4), (2.8), and (2.14) gives the desired 

expression forUo. 

      We then have for the equilibrium distribution function 

1eq({DN}) of {SQN}: 

Veq({ SQN }) = e-V0/ f e-LOd { Sln } 

                                   N-1 

            = (871z)-1 flG(S20.1 I S2, ; 4s)(2.15) 
P=1 

N 

withd{SQN} _~p=ldSlp. In what follows, Veq stands for 'eq({SQN}) 

and <' • '>eq denotes an equilibrium average evaluated with Veg. 

      Now the problem is to find the relation between a and 4s. 

This can be done by comparing the equilibrium moments of the 

discrete and continuous HW chains. It is then noted that vector 

moments such as the persistence vector17'18 do not appear in dynamic 

properties: these may be written in terms of scalar moments, 

especially equilibrium ones, such as the mean—square radius of 

gyration and mean reciprocal distance between two contour points, 

in the regime of linear response. Therefore, the consideration of 

the equilibrium mean—square end—to—end distance <R2>eq suffices 

for the present purpose. 

      For the discrete HW chain, <R2>eq = <R2(N)>eq may be 

expressed as 

                                    —1 9 —



      <R2(N)>eq =  Na2 + 2 E <a, • aq>eq 
                                     p<q 

N-1 

= Na2 + 2a2 E (N — n)g00(nds) , 
n=1 

where 

/w' wehave used the relation, 

      JTegd {DA /d,f2pdQq = (871.2)-1G(12q I ,2p; nds) 

with q = p + n. Substitution of Eq. (2.14) into the 

Eqs. (2.16) leads to 

<R2(N)>eq = 6.N !Is + Co 

+ [ c1 + czsin(2)N4s) + C3cos(vNd s) ] e 

where 

v (x02 + r02)1/2 

and 

                z 

       cm          =__Qs{1+242y-2,64e-24s 

+ 2ko2v-2C5e-2ns [ cos(vds) — e-ens ] } 

Co = — 2a2e-24s{ro2v-2C4 

+ /Gp2v-2C6 [ (1 + e-4ns)cos(vI s) — 2e-24s ] } 

      C1 = 2a2ro2v-2.4(64 — 1) , 

C2 = 2a2Ko2v-2 { C5e-2nssin(vds) 

           + Cs [ — 2e-24ssin(v4s) + e-44ssin(2v4s) ] } , 

—2 0 —

 second 

-2Nns

 (2.16) 

 (2.17) 

line of 

 (2.18) 

 (2.19)



 63 = 2a2KO2v-2 { — cs [ 1 — e-24scos(vds) ] 

           + '66[1 — 2e-2escos(v4s) + e-44scos(2v4s) ] } , (2.20) 

with 

C4 = (1 — e-2es)-1 

CS = [ 1 — 2e-24scos(v4s) + C441-1, -1 

C6 = { 1 — 4e-24scos(v4s) + 2e-44s [ 2 + cos(2v4s) ] 

         — 4e-611scos(vds) + e-8ds } -1.(2.21) 

      For the continuous HW chain, <R2>eq = <R2(L)>eq has been 

given by Yamakawa and Fujii [ Eq. (54) of Ref. 3 (with t = L and 

 = 0)]; that is , 

<R2(L)>„ = c.L — 4r02v-2 — 2k02v-2(4 — v2)(4 + v2)-2 + e-2L{ zro2v-2 

+ 2K0211-2(4 + v2)-2 [ (4 — v2)cos(vL) — 4vsin(vL) ] 1, (2.22) 

where cm is its Kuhn segment length and is given by 

c. = ,im(<R2(L)>eq/L) = (4 + r02)/(4 + K02 + t02) .(2.23) 

      It is clear that in Eq. (2.18), we may put 

Nds = L .(2.24) 

We then impose the condition that 

 cm = co(2.25) 

in order that <R2(N)>eq becomes equal to <R2(L)>eq in the limit 

N C°. From the first of Eq. (2.20) and Eq. (2.25), we have the 
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desired relation between a and 4s, 

       a =  (cm4s)vz{  1 + 2ro2v-2'4e-24s + 2ko2v-265e-24s 

X [ cos(v4s) — e-2,4s] } -1/2(2.26) 

Note that a can be uniquely determined if K , to, and ds are given. 

     Our final problem regarding the model is to establish a 

criterion for the determination of Qs. The difference between the 

discrete and continuous chains becomes negligibly small as Qs is 

decreased to zero, while as remarked in Sec. 1-1, 4s must be equal 

to or greater than the contour length corresponding to two 

successive skeletal bonds in the real chain when it is flexible. This 

is also reasonable if we notice that the smallest motional unit in 

the real flexible chain to be probed must be composed of two or 

three skeletal bonds. On the other hand, ds is not permitted to 

exceed some value, since then the difference between the discrete 

and continuous chains becomes appreciably large. This is clearly 

seen if we compare the dependence of <R2(N)>eq and <R2(L)>eQ on 

N or L. We take as examples two cases: K0 = 10 and ro = 15 

[ isotactic polystyrene (i—PS) ] and K0 = 5 and ro = 1 [ syndiotactic 

poly(methyl methacrylate) (s—PMMA) ] .19 Their values of <R2>eQ/c.L 

are plotted against the logarithm of L in Figs. 2.2 and 2.3, 

respectively, where the full curves represent the values calculated 

from Eq. (2.22) for the continuous chains , and the points represent 

the values calculated from Eq. (2.18) with Eqs . (2.24)—(2.26) for the 
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discrete chains with  As = 0.05 (open circles), 0.1 (filled circles) , 0.2 

(squares), and 0.4 (triangles), each for N = 1, 2, 3, 4, 5, 6, 8, 10, 

30, and 100. In both cases, the deviation of the discrete chain with 

As = 0.4 (triangles) from the continuous chain is appreciably large 

for L 5, so that As must be smaller than ^- 0.4. More important 

is the fact that for large 4s, the local chain motions are over 

coarse—grained. (As As is increased, U0 becomes asymptotically

1.5 

J 1.0. . 

° Q°. 

                                                                    • 

° • 

                                                                   • 

0.5° • 

                                                        • 

                                                  • 

                                                      • 

                                             • 

10-210- I 10 102 

L Fig. 2.2. Comparison between <R2>eq/coL as functions of L for the continuous 
and discrete HW chains in the case of Ko = 10 and to = 15 (isotactic 

polystyrene). The full curve represents the values for the continuous chain, 
and the points represent the values for the discrete chains with As = 0.05 (open 
circles), 0.1 (filled circles), 0.2 (squares), and 0.4 (triangles), each for N = 1, 2, 
3, 4, 5, 6, 8, 10, 30, and 100. The vertical line segment indicates the lower bound 
of L, which is equal to the length corresponding to two skeletal bonds. 
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Fig. 2.3. Comparison between <R2>eq/coL 
and discrete HW chains in the case of 

poly(methyl methacrylate) ] ; see legend to

10

as functions of 

K0 = 5 and 

Fig. 2.2.

L 

ro

for

102

the continuous 
1 [ syndiotactic

independent of {QN}.) It is also helpful to note that the contour 

length ds corresponding to two bonds is equal to ^ 0.08 for i—PS 

(A-1= 25 A) and 0.03 for s—PMMA (A-1= 65 A). The vertical line 

segments in Figs. 2.2 and 2.3 indicate these values as the lower 

bounds of L. 

     Thus, in the case of flexible chains , it is best to choose ds 

to be equal to the contour length corresponding to two or three 

bonds, since it corresponds to the smallest motional unit and since
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the deviation of the equilibrium conformational behavior of such 

a discrete chain from that of the continuous chain (real chain) is 

negligibly small. In the case of  stiff chains, the important range 

of L is smaller, so that As must be much smaller; for DNA, for 

example, As will be equal to the distance between base pairs or 

so. 

      In sum, the discrete HW chain, i. e., our dynamic model 

may be described completely in terms of six parameters N, As 

(or a), ko, ro, "c, and Sr, as far as all length are reduced by A-1. 

As shown above, if As is properly chosen, all equilibrium moments 

appearing in dynamic properties may be replaced in a very good 

approximation by those for the corresponding continuous HW chain. 

In anticipation of the results, we further note that in the study 

of dielectric relaxation, permanent electric dipole moments may be 

attached to the beads rigidly or with some rotational degrees of 

freedom. 

2-3. Diffusion Equation 

      In this section, we derive the configurational diffusion 

equation for the discrete HW chain having 3(N + 1) degrees of 

freedom, i. e., three coordinates specifying its location and the N 

sets of Euler angles defining the orientations of the beads except 

the (N + 1)th. For this purpose, we first consider the chain without 
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(rigid) constraints such that each of the first N beads has six, 

translational and rotational, degrees of freedom and the (N + 1)th 

has only three translational degrees, so that the magnitude of the 

bond vector ap is not always equal to a, nor does its direction 

always coincide with the  S  p axis of the localized coordinate system 

affixed to the pth bead, as depicted in Fig. 2.4. We then impose 

3N rigid constraints on this chain through constraining forces in 

p+2

p+I  Q  p+

ep+I 
77p

p+I 

-17
p+1

                             N 
P 

Fig. 2.4. Localized coordinate systems affixed to the 

6N+3 degrees of freedom without rigid constraints. 
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such a way that the magnitude of  ap becomes equal to a and its 

direction becomes coincident with the y p axis. This can be actually 

done by setting the components of the flux associated with the 

constrained coordinates equal to zero. For convenience, the 

derivation is made in two steps. 

a. Space of bond and infinitesimal rotation vectors 

     We consider the chain having 6N + 3 degrees of freedom 

(without rigid constraints) as defined above. Let Rp = (Rpx, Rpy, 

Rp2) be the position vector of the center of the pth bead in an 

external Cartesian coordinate system (er, ey, e2), and let dXp = 

(dxpe, dxpn, dxpc) be its infinitesimal rotation in the pth localized 

coordinate system having the orientation Slp with respect to the 

former. The metric form in (d{ RN+1 } , d{ XN }) space is 

N+1 

(dl)2 = E (dRp)2 + E (dxp)2.(2.27) 
       p=1p=1 

The time—dependent distribution function YIN RN+1}, {DA; t) for the 

chain satisfies the conservation equation in this space, 

     __ E opJp-L V,Jp,(2.28) 
atp=1p=1 

where Vp = (a/8Rpx, a/8Rpy, a/8Rp2), Vp = (a/axa, a/axpn, a/axpc), 

and Jp and Jn are the fluxes associated with dRp and dXp, 

respectively. Note that the second term on the right—hand side 
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of Eq. (2.28) does not appear for the ordinary model. If  Vp and 

Wp are the translational and angular velocities of the pth bead 

in the external system, respectively, Jp and Jp may be expressed 

as 

    Jp=T'Vp, (p 1, 2, •• ,N+1),(2.29) 

JP = VAp • WP , (p = 1, 2, .. N) , (2.30) 

where Ap = A(Slp) is the matrix for transformation from the 

external system to the pth localized system, and is given by 

               / Ce C~pC,yp — S~,,S,yp CBS~pC,yp + Cq,pS,y— sopcop 

Ap = l — CB,CQpS/Pp — StppC,p,, — cBpswpso, + CgpCop SBpS+Cp (2.31) 

sopcppseps0pCep 

with set, = sin0p, cep = cos8p, andso on. 

      Let Fp and Tp be the frictional force and torque, respectively, 

exerted by the pth bead on the solvent, and the force balance 

equations are 

Fp = — op(U + lnT) + Pp , (p = 1, 2, • • •, N + 1) , (2.32) 

Ap • Tp = — V p(U + 1nY) + P , (p = 1, 2, • • • , N) , (2.33) 

where U is a "soft" potential, 

U — Uo + Ue(2.34) 

with Uo({ SZN }) the configurational potential energy given by Eq. (2.1) 

(ignoring excluded volume potentials) and Ue({ RN+1 } , {9N1)  an 

external potential, and Pp and Pn are the constraining forces on
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the pth bead associated with  dRp and dxp, respectively, which arises 

from "hard" potentials. 

     If Vp is the unperturbed solvent velocity at the location of 

the pth bead, Vp and W may be expressed in the form, 

N+1 

     Vp = Vp + ~c-11'p + E Tpq • Fq , (p = 1, 2, • • • , N + 1) , (2.35) 
q=1 

�p 

W p = W p + S r-1Tp ,(p = 1, 2, ... , N) , (2.36) 

where 

W° = V XVn ,(2.37) 

and Tpq = T(Rpq) with Rpq = Rq - Rp is the Oseen hydrodynamic 

interaction tensor given by 

    T(R) = (87rr/0R)-1(I + RR/R2)(2.38) 

with I the 3X3 unit tensor and i° the solvent viscosity. Equations 

(2.35) and (2.36) require some comments. They take into account 

correctly the hydrodynamic interaction between beads to terms of 

0(R-1). The effect of frictional force on angular velocity and that 

of frictional torque on translational velocity are at most of 0(R-2), 

and the effect of frictional torque on angular velocity is at most 

of 0(R-3).2° Then the Oseen tensor cannot be modified so as to give 

correctly both translational and angular velocities to terms of 

O(R-3).21 In what follows, we use, as usual, the configuration— 

independent preaveraged Oseen tensor, 

   <Tpq> _ (67r7/0)-1<Rp91>I ,(2.39)
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where  <  • • > denotes an average taken with Y', and <Tpq> may 

be replaced by <TAq>eq in the regime of linear response. 

     Substitution of Eqs. (2.35) and (2.36) with Eqs. (2.32), (2.33), 

and (2.39) into Eqs. (2.29) and (2.30) leads to 

                N++
I1 JAEDpq( - vq qr - giOq U + wPp) + gf vp (2.40) 

q=1 

Jp = S r( - Wpqf - !'OpU + ¶Pp) + TAp • Wp (2.41) 

with 

Dpq = opgt-1 + (1 - 8Aq)(62r)7o)-1<RAg1> .(2.42) 

Equation (2.28) with Eqs. (2.40)-(2.42) gives the diffusion equation 

in (d { RNA-11, d { XN }) space. 

      Now we transform {RN+1} to bond coordinates. Since 

d { RNt1 } is separable from d { XN } in the above diffusion equation, 

we may consider only the former part. We put22 

ap = Rp+i - RA , (p = 1, 2, . . • , N) ,(2.43) 

               N+1 

Rc = E w,RA ,(2.44) 
A=1 

where wA are constants independent of coordinates and satisfy 

        N+1 

E wA = 1 .(2.45) 
A=1 

The differential operators may then be transformed to one another 

by 

     op = wAVc + (1 - aA1)Vp-1 — (1 — Sp,N+1)op , 
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                             (p = 1, 2,  •  •  • , N + 1) , (2.46) 

where Vc = (a/aRcr, a/aRc,,, a/aRcz) and Vp = (a/aa,,X, a/aap,,, 

a/aap2). The transformation of the velocities Vp (and Vp) to those, 

Vc and vp (and Vc and v°p) (p = 1, 2, • • , N), in (Re, { aN }) space 

of bond vectors obeys the same (contravariant) law as that of Rp, 

N+1 

Vc = EwpVp ,(2.47) 
P=1 

Vp = Vp+1 — Vp , (p = 1, 2, • • • , N) , (2.48) 

whilethe transformation of the frictional forces Fp to those, Fc 

and f p (p = 1, 2, • • • , N), in (Rc, { aN}) space obeys the same 

(covariant) law as that of V, 

Fp = wpFc + (1 — ap1)fp-1 — (1 — 8p.N+1)fp 

                               (p = 1, 2, • • , N + 1) . (2.49) 

Further, the transformation of the constraining forces Pp to those, 

pp (p = 1, 2, • • • , N), in (Re, { aN }) space is given by Eq. (2.49) 

with Fc = 0 and with Pp and pp in place of Fp and fp, respectively. 

(Note that there is not a constraining forces associated with Rc.) 

      With these transformations, in (Rc, {aN}) space, the 

translational part on the right—hand side of the conservation 

Eq. (2.28) may be written in the form, 

        N+1 

E 

     Op•JR=vc•Jc+Eop•,n,(2.50) 
P=1P=1 
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where 

     Jc = —  Dc(Vc  ' + VcUe) 

                      N 

            + 1710.              CS'DC,p(0°'P'+ FV"U — qf pp) , (2.51) 
                                              P P=1 

N 

JP — E B,„(V7,T. + q'vgu — I p9) 
q=1 

+ vp7 — Dc,p(VcV + 'VcUe)(2.52) 

with 

                N+1 

  Dc =E wpwqDpq ,(2.53) 
P.9=1 

                 N+1 

Dc,p = E w9( — Dqp + Dq,p+1) ,(2.54) 
q=1 

Bpg = 2Dpq — Dp,q+1 — Dp+1,q •(2.55) 

We note that we have used here the fact that Uo is independent 

of Rc. 

      If wp is chosen to give 

Dc,p = 0 for all p ,(2.56) 

Jc and Jp are the fluxes associated with only Rc and ap, 

respectively, so that Rc and { aN } may be decoupled. The wp thus 

determined has the following meaning. From Eqs. (2.54) and (2.56), 

we have 

        N+1 
E, Dpgwq=V, (p =1,2, •••,N+1),(2.57) 
q=1
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where V is a constant independent of p. It is seen from Eqs. (2.35), 

(2.39), (2.42), (2.45), and (2.57) that this  wp is equal to the frictional 

force exerted by the pth bead when all beads are moved by the 

unit total force with the same translational velocity V, and from 

Eq. (2.53) that Dc is then equal to V and identical with the 

translational diffusion coefficient of the chain obtained from the 

exact solution of the Kirkwood—Riseman integral equation,23 as 

given by Dc = 0.192/770<R2>eqn in the nondraining coil limit.24'25 We 

note that Rc is then Zimm's center of resistance.26 In what follows, 

we use the wp thus chosen, so that the Dc,p terms in Jc and Jp 

may be suppressed. It is also interesting to note that if wp is 

chosen to be equal to (N + 1)-', so that Rc is the molecular center 

of mass, then Eq. (2.56) does not hold and the Dc given by Eq. (2.53) 

is identical with the translational diffusion coefficient in the 

Kirkwood general theory,' or the approximate solution of the 

Kirkwood—Risemanintegral equation, as given by 

Dc = 0.196/7Io<R2>eqn in the nondraining coil limit.24'25 When the 

translational mode (Rc) is not considered, the diffusion equation 

does not depend on the choice of wp, since then Vc Jc in Eq. (2.50) 

and the Dc,p term in Jp drop. 

      Thus, from Eqs. (2.28) and (2.50), we obtain for the diffusion 

equation for W(Rc, {aN}, {[2N}; t) in (Rc, {aN}, d{xN}) space 

         _ 

         — pc Jc— E (4pJp+ VJp) ,(2.58) 
  atp=1 
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where the fluxes Jc,  Jp, and Jp are given by Eqs. (2.51) 

with Eq. (2.56) and Eq. (2.41), respectively. The force 

Eq. (2.32) is transformed, by the use of Eqs. (2.46) and 

those in this space, 

     Fc = — Vc(UQ + In ) , 

f p = — op(U + In ') + pp , (p = 1, 2, • • • , N) , 

and Eq. (2.33) remains unaltered.

and (2.52) 

  balance 

(2.49), to

(2.59) 

(2.60)

b. Space of Euler angles

      Let a, = (ape, ap,, dig) be the pth bond vector expressed in 

the pth localized Cartesian system, with spherical polar coordinates 

(ap, Op, Fpp) associated with it, so that 

ap = Ap • ap ,(2.61) 

with 

                sinOpcos"Op 

ap =apsinOpsinpp(2.62) 

            \ cos-Op / 

We transform the Cartesian coordinates (dap, dxp) to curvilinear 

coordinates (Op, 12p) with Op = (a,,, 0p, 'p) by 

dapdOp
(2.63)        dx) = Up. dDp,
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with 

        ( Upe  Up9 Up =0 Ups,(2.64) 

where 0 is the 3X3 null matrix, and Up°, Up', and Upp are the 

3X3 matrices given by 

3 as 
     Up®; = E Ap,h,p.h , (i, J = 1, 2, 3) ,(2.65) 

h=1aOp .l 

           ta A4P.hi      Una.~;=ap .h , (i, i = 1, 2, 3) ,(2.66) 
h=i app ,, 

s,pp— sops,yp O 
Up9 = c411,Se ,S(1,0(2.67) 

0 cop L 

with Op = (Op.h Op.2, 9p,3) (ap, Bp, jPp), 'QP (pp.], ,Q.Q) 

 ,I,p.2,R3 (Op, ~p,Op), and ap = (ap,1, ap.2, a,,3) (ape, ap , aP$), and with 

Up®; and so on being the ij components of Upe and so on. 

      It is now convenient to use tensor algebra, although wehave 

readily derived the diffusion Eq. (2.58) without its explicit use. 

Let g' and g be the (6N + 3)X(6N + 3) metric tensors in (Rc, {aN}, 

d { XN }) and (Rc, ON},  { DN }) spaces, respectively, and let U' and 

U be the (6N + 3)X(6N + 3) transformation matrices between 

(d{RN+1}; d{XN}) and (Rc, {aN}, d{XN}) and between (Rc, {aN}, 

d { XN }) and (Rc, { ON } , {DA } ), respectively. We have g' = U'T • U' 

and g = UT . g' • U, where the superscript T indicates the transpose. 

Noting the facts that the latter transformation is separable with 

respect to Rc and the bond (or bead) number p, and that I g' I
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= 1, we obtain for the determinant of g: 

 N  

I  g  I = figp(2.68) 
p=1 

with 

gp = I Up • Up I = ap'sin2Bpsin2Bp ,(2.69) 

where we have used Eq. (2.63) for the transformation for the pth 

bond and bead. The diffusion Eq. (2.58) may then be transformed 

to that in (Rc, {ON}, {DA) space, 

      a = — Vc- Jc—gA1/2(Vpgp1/2 •Li: + QPgA"/2 . Jp) ,(2.70) 
atp=1 

where vp = (a/aap, aiaep, aiaop), Vp = (a/aep, aiaVp a/atyp), and 

Jp and Jp are the fluxes associated with Op and 0p, respectively. 

     These fluxes are obtained from Jp and JA given by Eq. (2.52) 

with Eq. (2.56) and Eq. (2.41), respectively, by the contravariant 

transformation law, 

  (8Q    JspI = Up1(J.(2.71)     Jp/JA 

The gradient operators V: and V', and the constraining forces pp 

and Pp involved in Jp and Jr, may be transformed to the gradient 

operators op and Op and the constraining forces pp and Pp on Op 

and 12 p, respectively, by the covariant law, 

     p    (Qp) = Up1T • Qp) ,(2.72) 
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     CPp 1TIPp        x=U~1 \sz 

The inverse  Up' in Eqs. (2.71)—(2.73) is found, from Eq. (2.64), 

     U-1 =`(vO)-1 — (14,E)-1•(U~Qp~•(Ups)-1 

Thus, the results for Jp and Jp are 

Jp _ — r-1 E (UFe)-1 • Cpq • (U~©)-1T •my/ + yfvgUg — Fp9) 
                               g=1 

           + 4-r-1(U4e)-1 • Ep • (UpQ)-1 • (V9, + VQ,U) 

            + (Upe)-1 • (vp — Ep • Ap • Wn)V , 

Jp __ _ "r-1(UpQ)-1 . (Up)-1T • (V2,51 + vV pU) 

             + 4-r-1(UpQ)-1 • ET, • (U7,e)-1T • (V + Y' V ©v e — gfpen) 

           + (UpQ)-1.Ap•'CV , 

with 

          _y        Cpq=SrBpgI +(SpgEp•EpT 

      Ep = UpQ•(UpQ)-1 , 

where inEqs. (2.75) and (2.76), we haveused the facts that 

independent of {eN}, and that 

      pp= 0, (p = 1, 2, . • • N). 

Note that Eq. (2.79) does hold since the constraining forces 
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to be

(2.74)

(2.75)

(2.76)

(2.77) 

(2.78) 

Uo is 

(2.79) 

must



be perpendicular to the unconstrained subspace. 

      Now, we consider the constraining forces  pp (p = 1, 2, • • • , 

N) to make the fluxes Jp vanish, 

Jp = 0 , (p = 1, 2, • N) .(2.80) 

The solution for pp is then found, from Eqs. (2.75) and (2.80), to 

be 

pp = V p(ln F + tie) — E (u )T • (C-1)pq [ Eq • (Uq.Q)-1T 
q=1 

• (V91n + V U) + S r(vq — Eq • Aq ° W9) ] , (2.81) 

where (C-1)p, is the pq element (3x3 matrix) of the inverse of the 

3Nx3N matrix C whose pq element is the 3x3 matrix Cpq. As a 

result, Op or Alp take some fixed values, and the corresponding 

fluxes Jp are obtained from Eq. (2.76) with Eq. (2.81). For our 

purpose, we want to set Op = (a, 0, ^p) or ap = (0, 0, a). However, 

the matrix (Upe)-1T in the second term on the right—hand side of 

Eq. (2.76) diverges at Br, = 0, and therefore these fixed values must 

be taken after substitution of Eq. (2.81) in to Eq. (2.76). Then this 

matrix does not appear in J. It can easily be shown that the 

Jp thus obtained is exactly the same as that derived following 

the Ikeda—Erpenbeck—Kirkwood procedure.8'9'24 However, we note that 

the present (Fixman—Kovac) procedure is more straightforward since 

in the course of the derivation of Jp, we also have pp as above that 

is required to complete Eq. (2.60) for fp. 

—38—



     Now that  Op takes the fixed values (a, 0, app), the distribution 

function !(Rc, {ON}, {,QN}; t) may be written in the form, 

= gro({ ON} )7(Rc , { QN } ; t)(2.82) 

with 

N 
P'o = LJ [ 21tap2sin9p ] -18(ap — a)8(0p) . (2.83) 

                 1 The average of any configuration—dependent quantity a may then 

be calculated from 

          fa<a> =l' I g 1112dRC HdapapdCPpapdcopdtPp P=1 

_ faidRcd{QN}  ,(2.84) 
where we have used Eq. (2.68) with Eq. (2.69), and note that Op = 

(a, 0, Op) or ap = (0, 0, a) in T. It is also clear that 1'o may 

be removed from the diffusion equation at the final stage. In what 

follows, therefore, we designate qi by V. 

      Further, recall that the divergence and gradient operators 

with respect to dxp and Sip may be written in terms of the angular 

momentum operator Lp = (Lpe, Lpn, Lp0, 

op • _ (sinOp)-1OpsinOp • (UpQ)-1 • = Lp • , 

Qp = (Up9)-1T.,4=  Lp(2.85) 

with 
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 LsintJi a—coshyp  a+cotapcosxPpa     PAa
ep S1nOp aq,patpp 

                                 a 
    L=cosGa +s. a_cotOpsinthp,(2.86)      A8—P80

1, sinOp 89patpp 

         a L
pC= a~

A. 

     Thus, substituting Eqs. (2.76) and (2.80) with Eq. (2.81) into 

Eq. (2.70) and putting A = (0, 0, a) in Ep (and T'), we obtain for 

the desired diffusion equation for fr = gr(Rc, { QN}; t) in (Rc, 

{ DA- ) space 

 apN — — Vc•Jc +E Lp . {Mpg 
atP.9=1 

• H"r-1(Lg1' + 'LqU) — Ag • W9 ] — Npq • VW } , (2.87) 

where 

    MAq = S pql — En • (C-1)Pg • Eq ,(2.88) 

Npq - EP • (C-1)pq(2.89) 

with 

                     CgpC,ps,pp + SgpC,pp CgpCrpC,p,, — ScopS,pp 0 

Ep = aCBpsflpsop — C„pc,p, C6pSwpc,pp + c,,pSWp 0 (2.90) 

seps,pp — sopc,pp0 / 
The first term on the right—hand side of Eq. (2.87) will be necessary 

only in a few cases, such as in dynamic light scattering, for which 
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the translational mode must be considered, and therefore, in what 

follows, it is suppressed, so that  P' = '({S2N}; t). 

     It is then convenient to rewrite Eq. (2.87) in matrix notation 

as usual, 

aV = L . { M • [ ~r-1(Lg' + T'LU) — A • W° } — N • v° ' } (2.91)      a
t 

with v° = (v°, vz, ..•v°°N), W° = (W°, 111, ..•W9°v), L = (L1, L2, 

• • • , LN), and 

   M = IN — ET • C-1 • E ,(2.92) 

  N = ET • C-1,(2.93) 

  C = •rB + E • ET ,(2.94) 

where M, N, B, A, E, and IN are the 3Nx3N matrices whose pq 

elements are the 3x3 matrices Mpq, Npq, Bpq, Apq, Epq, and IN,pq, 

respectively, with 

Bpq = BpgI ,(2.95) 

and 

     Apq — (SpgAp , Epq = apgEp , IN.pq = BpgI . (2.96) 

      It is also useful to introduce the self—adjoint formulation of 

the diffusion equation. We factor V into the equilibrium 

distribution function Feq given by the first line of Eqs. (2.15) and 

0, 

_ l eg0 .(2.97)
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Equation (2.91) reduces to 

 (8/8t + 2)0 = X0 ,(2.98) 

where 2 and X are operators defined by 

    2 _ — "r-1Y'eq 1LTeQ • M • L ,(2.99) 

      X = — Veq'LYreq • [ M • A W° + N • v° — "r-1M • (LUe) ] • (2.100) 

If the scalar product <a, a> of any two functions a and B of 

{S2N} is defined with the weighting function Wee, 

    <a, a> = feqa*5d{QN}  = <a*5>eq ,(2.101) 
then the operator .2' becomes self—adjoint, 

      <a, 25> = <2a, 5> 

           = <(La*) • r-1M • (L5)>eq .(2.102) 

      For the later development, it is convenient to expand Weq in 

terms of the . functions as follows, 

     eq = E gj°'(ds)D1 U({ S2N }) ,(2.103) 
Lim; 

where 

D"'({ SZN }) 11 -97nnJp(QP) ,(2 .104) 
P=1 

with 1 = (11, lz, • • •, lN), and so on . The coefficient gin' may be 

obtained bymultiplying the second line of Eqs . (2.15) by 

Dr*({ QN }) and then integrating over { SQN } . The result is
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 gr  3(ds) = (-1)ml-J1(8 2)N-3 E ailo Ji081,11V INZNV 1NJN 

         X[11 f1lN-1                  g{r(In-1-Jn-i)(ds)in cic(n)+Jn 
              nnClnC(n+i                                     (-1) 

       p=2p=2 

             X11"GA-1 1p ) ( 1p1p~-1 1p —c(p) c(P+1) —m
n ' v Jp 

                      for c(N + 1) = 0 , 

      = 0for c(N + 1) 0(2 .105) 

with 

                     n-1 

  c(p) = E mq ,(2.106) 
                    4=1 

where ci is given by Eq. (2.6), g{J' is given by Eq. (2.14), and (:::) is 

the Wigner 3—j symbol.27 In deriving Eq. (2.105), we have used the 

properties of .djtJ, 

2ri J*(Q) _ (_1),n-J(i (i-m)(-J)(9)(2.107) 

     f27,211'(�2).0721.2'2(.S2)2 313(Q)dQ 
          211 12 13 h . 12 13 (2

.108) 8RCi1Cl2Cl3mlm2m3\J1 12 13 

and the property of the3— j symbol that it takes a nonzero value 

only when the followingtwo relations hold at the same time: 

m1+m2+m3= 0, 

111-121 <_l3_l1+12.(2.109)
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c. Approximations 

     In order to obtain the solutions, we must make an 

approximation in the matrix M given by Eq. (2.92). It is then 

reasonable to preaverage the second term E  • ET on the right—hand 

side of Eq. (2.94) for the matrix C, since the first term is already 

independent of the configuration through the preaveraged Oseen 

tensor. Thus, we have, from Eq. (2.90), 

T 2 2(2 .110) 

so that the pq element of C becomes a constant multiple of the 

unit matrix, 

 Cpq = Cpgl(2.111) 

with 

Cpq = yrBpq + ,&pga2 .(2.112) 

      The pq element of M then becomes 

Mpq = 5pgI — (C-1)pgE'p • Eq ,(2.113) 

where ETp • Eq may be expressed in terms of the 2 functions as 

follows; 

ETp Eq =__ 3 ir2a2 (1 — S;o)(1 — Si'o)(nin*') 
in, 1,.1 

X271/(S2p)J1 1 *('2g)(2.114) 

with 
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 nl = n_1 = (1, i, 0) .(2.115) 

The replacement of Ep • Ep by its average in C may be regarded 

as having no significant effects on the final results since it depends 

only on the orientation of a single bead. However, the further 

preaveraging on the Mpg given by Eq. (2.113) will destroy to a great 

extent the orientational correlations between beads and also the 

rigid constraints imposed, and therefore this must be avoided. Note 

that with the above approximation, .2" is still self—adjoint. 

2-4. Conclusion 

      We have constructed a model suitable for the study of 

polymer chain dynamics, i. e., the discrete HW chain, in such a 

way that its equilibrium conformational behavior is almost identical 

with that of the continuous HW chain whose equilibrium properties 

have already been investigated in detail. The present model, on 

the one hand, may be expected to simulate rather well large— 

and small—scale motions of real chains, both flexible and stiff. 

On the other hand, it has an advantage in that the diffusion 

equation and all configuration—dependent properties may be 

expressed in terms of the 2 functions of Euler angles. In other 

words, the present model with the orientational degrees of freedom 

of beads will give more detailed information, especially about local
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motions. 

      In this connection, three remarks should be made. First, 

there are constraints on bond lengths in the present model as well 

as in the bond chain, while the constrains on bond angles are 

replaced conveniently by those on orientations of beads (subbodies) 

in the former. Second, the present model does not require any 

preaveraging approximation other than that in matrix C, which 

is related to the hydrodynamic interaction between beads and the 

orientation of a single bead. Therefore, it scarcely breaks, to a 

great extent, the orientational correlations between beads and also 

the above constraints imposed. Third, for the present model with 

N sets of Euler angles as unconstrained (soft) coordinates, the 

correct diffusion equation can be derived straightforwardly 

following the rather old procedure of Ikeda, Erpenbeck , and 

 Kirkwood,$'9'24 as noted in Sec. 2-3b. Then, the determinant of the 

metric tensor (of the full coordinate space) can readily be evaluated , 

and the constraints can easily be imposed . (The latter has been 

actually done by the Fixman—Kovac procedure .4"3) Note that the 

usual bond chain with rigid constraints on bond lengths and angles 

is difficult to treat by this old (or the present FK) procedure if 

internal rotation (torsion) angles are used as soft coordinates
, 

though the Fixman—Kovac procedure using bond coordinates is 

effective for it. 

     Finally, it should be mentioned that for the present model
, 
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the procedure based on the Fixman general diffusion  equation13 

including the metric potential is more laborious than the present 

one. The reason for this is that it requires the evaluation of the 

determinant of the metric tensor of the unconstrained subspace. 

At present, it is known to be useful for the short bond chain with 

internal rotation angles as soft coordinates,28 and also for some 

small rigid molecules.29 
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CHAPTER 3 

EIGENVALUE PROBLEMS 

3-1. Introduction 

     In Chap. 2, the  diffusion equation has been derived for a 

new (dynamic) model, called the discrete helical wormlike (HW) 

chain. In this chapter, we inquire into a general method of 

solution of the eigenvalue problems associated with the diffusion 

operator 2. 

      Now, the derived diffusion equation, when linearized, is 

analogous to the Schrodinger equation. Because of this and the 

model itself, the solution may be formulated by analogy with the 

representation (or transformation) theory in quantum mechanics.' 

In fact, in Chap. 2, we have been able to choose as our basis set 

the products of the eigenfunctions of the angular momentum 

operators of subbodies, i. e., the Wigner 2 functions of Slp with 

Q, the Euler angles specifying the orientation of the pth subbody. 

(Note that for the conventional bond chain, it is difficult to prepare 

such a complete basis set.) Thus, the problem has been reduced to 

the eigenvalue problem for the matrix representation of the 

diffusion operator in this basis set. In this chapter, we transform 

it to a more convenient basis set, i. e., a standard representation' 
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which is formed by the eigenfunctions of total angular momentum 

 operator' of the entire chain. With this new basis set, the problem 

may readily be, to a great extent, decoupled (diagonalized). As 

the result, it is reduced to an infinite number of eigenvalue 

problems of much smaller size, among which the number of the 

ones that are necessary to actually solve is very small. Moreover, 

this representation is very transparent since there is clear 

correspondence between the matrix elements andtime—correlation 

functions relevant to a given observable; one (or some) observable 

corresponds to one reduced eigenvalue problem. 

      However, the size of every reduced eigenvalue problem, which 

is to be solved numerically, is still very large. Therefore, we treat 

a necessary reduced eigenvalue problem in a subspace (of full 

Hilbert space) containing those standard basis functions which are 

required for the formulation of time—correlation functions relevant 

to a given observable. This approximation is referred to as the 

subspace approximation. It is equivalent to neglecting the memory 

term in the projection operator method of Mori,5 Zwanzig,6 and 

Evans.' Mathematically, therefore, our approximation is on a level 

with that employed by Evans in his study of the dynamics of short 

bond chains.''8 However, the correctness of the results must depend 

on both the model adopted and the basis set chosen . Since our 

model is composed of subbodies having rotational degrees of 

freedom, it will give results that are quite different from earlier 
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ones for the conventional bond chain in some respects and that 

provide more detailed information, e. g., a number of branches of 

eigenvalue spectra (with unavoided and avoided crossings). 

      Even in the subspace approximation, the solution is actually 

impossible for large N. Therefore, we must introduce an additional 

approximation, i. e., a block—diagonal approximation with Fourier 

modes (or in standard Fourier representations), which becomes 

asymptotically correct in the limit N  °D. With these 

approximations for N >> 1, the problem may finally be reduced to 

N three— or several—dimensional problems as the case may be. 

      In order to carry out the numerical computations based on 

the general solution thus obtained, we must assign proper values 

to the six model parameters other than the number N of subbodies 

in the chain, i. e., the constant curvature Ko and torsion to of the 

characteristic helix of the (continuous) HW chain, the stiffness 

parameter d-1, the bond length a (or its equivalent Qs), and the 

translational and rotatory friction coefficients and Sr of the 

subbody. The first three may be determined from equilibrium 

conformational properties, while the remaining three are 

characteristic of the dynamics of the present model. If As and 

N (or the total contour length L of the corresponding continuous 

HW chain) are given, L (or N) is determined from the relation 

L = Nds. (Note that L may be converted to the molecular weight 

M by the relation M = MLL with ML the so—called shift factor.) 
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For flexible chains,  As should finally be chosen within its bounds 

set in Chap. 2 to give good agreement between calculated and 

observed values for, for instance, relaxation times, and thus it 

provides important information about the smallest motional unit 

in the chain backbone relevant to a given observable (or time scale). 

For stiff chains, As may be assigned, from the outset, a value 

corresponding to the smallest possible division that gives nearly a 

continuous model. The friction coefficients t.t and S r need not 

necessarily be assigned Stokes law values precisely. However, it 

should be mentioned that their possible ranges are rather limited. 

The determination of them is also an important part of the study 

in this chapter. 

      Then, we consider conditions to be imposed on and fir. 

The parameter determines the strength of hydrodynamic 

interaction, and it must lie in the range over which the Zwanzig 

singularities9 never occur and the diffusion matrix B given by 

Eq. (2.55) with Eq. (2.42) is positive definite . Recall that they do 

for finite N whenever the Oseen hydrodynamic interaction tensor 

is used whether it is or is not preaveraged .10 On the other hand, 

   does not appear in the theory of conventional bond chains . 

For the present model, the eigenvalues (or the relaxation rates) 

d°.k, which form the lowest of the L = 1 branches of the spectrum 

for the diffusion operator in the block—diagonal approximation 

(with L the "total angular momentum quantum number") , become 
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positive or negative at small wave number h depending on N and 

 S  r (and also on tet weakly), while the Fixman—Evans eigenvaluesu 

for the constrained bond chain may possibly become negative at 

large wave numbers. Such breakdown of the positive definiteness 

of the diffusion operators arises from the preaveraging 

approximations adopted in Chap. 2, whose effects are different in 

ours and their cases. Fortunately, however, for flexible chains, it 

is possible to make our go small in magnitude and recover the 

Rouse—Zimm values12'13 for A°,h at small h in the coil limit of 

N >> 1 in a very good approximation by choosing ter properly. This 

determines its possible range. For typical stiff chains such as 

DNA, go is very small in magnitude independently of ter, and then 

the possible range of ter, or of the ratio S r/a2tet, must be determined 

from a classical—hydrodynamic calculation, assuming a proper 

model for the subbody. Thus, in any case, we neglect the small 

I A?,o I to make the lowest branch A°,h start from zero (the 

translational mode) at k = 0, and remove completely the negative 

eigenvalues if any (for flexible chains). And t't and Sr (along with 

As in the case of flexible chains) should finally be chosen in their 

allowed ranges to give good agreement between theory and 

experiment. 

      The plan of this chapter is as follows. In Sec. 3-2, we 

consider a unitary transformation to the standard basis set, and 

give expressions for the matrix elements of the identity and 
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diffusion operators and for time—correlation functions in this new 

basis set. In  Sec.  3-3, we introduce the subspace approximation, 

and show its equivalence to the neglect of the memory term in 

the projection operator method. In Sec. 3-4, we decouple the 

problem into N problems of a small number of dimensions in the 

block—diagonal approximation (with the subspace approximation) 

for large N. In Sec. 3-5, we first examine the correctness of the 

diagonal approximation to the diffusion matrix B and its positive 

definiteness, and then make a detailed analysis of the lowest branch 

of the eigenvalue spectrum in order to determine the possible ranges 

of and y,-. In Sec. 3-6, we discuss some general aspects of the 

theory developed in Chaps. 2 and 3. In the Appendices, we give 

the analytical solutions of the eigenvalue problems for dielectric 

relaxation. We also give an interpolation formula for the mean 

reciprocal distance between two subbodies, which is necessary for 

the evaluation of the approximate eigenvalues Ar of the diffusion 

matrix B (strictly ~tB). 

3-2. Transformation of the Basis Set 

a. Standard basis set 

     We want to construct from the set { Du} [ = } defined 

by Eq. (2.104) ] a new set of those basis functions which are 
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simultaneous eigenfunctions of the square  12 and the z component 

L2 of the total angular momentum operator L = L1 + L2 + • • • 

+ LN. This can be done by an application of the theory for the 

coupling of angular momentum vectors.3'4 For this purpose, it is 

convenient to first divide the set {Du} into subsets, each specified 

by the index n (= 0, 1, • • , N) and composed of functions, 

Dtl 1[pn5}(•2pl, .f2p2, . . . Dm) (871.2)-(N-n)/2 E kJk(S2pk) (3.1) 
h=1 

where 112,1  = 11, 12, • • • , l„ and so on, and [pa]= p1, P2, pa 

(p1 < p2 < • • • < pa).The function defined by Eq. (3.1) is just equal 

to the Du [ given byEq. (2.104) ] with 1p = 0 for p # p1, p2, • • • , 

pa, implying that only n particular subbodies, the pith, the p2th, 

• • •, the path, are "excited." For convenience, therefore, these 

functions specified by n (irrespective of [ pa]) are referred to as 

the n—body excitation basis functions. Then, for given [p,,], those 

new n—body excitation basis functions which are simultaneous 

eigenfunctions of L2 and Lz may be constructed from linear 

combinations of the above n—body functions. In practice, we may 

construct those linear combinations which are simultaneous 

eigenfunctions of the square and the z component of 

Lpl + L + • • • + L. The new basis functions thus constructed 

for all n and [pa] form the desired new complete basis set. 

The zero—body excitation is trivial, and therefore we consider the 

case of one—, two—, and n—body (n ? 3) excitations in order. 
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       In the case of n = 1, it is seen that the one-body functions 

 given by Eq. (3.1) are just the simultaneous eigenfunctions of L2 

 and  L2j since .71'(S2p) are the simultaneous eigenfunctions of Lp2, 

Lp2 (= 8/atpp), and Lg. (= a/aq.)p) , 1, e.,14 

      Lp27 - 1(1 + 1) 
     Lp2 .r"'(Qp) = im1.Z"'(Qp)(3.2) 

Lpg\ ij 

 with i the imaginary unit . We designate these (new) one-body 

excitation basis functions by Dit(pi(12p), where we have used the 

(resultant) quantum numbers L and M to indicate that the 

eigenvalues of L2 and L2 are - L(L + 1) and iM, respectively. 

Thus, we 

JhaveJ       131/1,,602p)=DL(](S2p) = (81f2)-(N-1)/22MJ('Qp) •(3 .3) 

      In the case of n = 2, the new two-body excitation basis 

functions, which we designate by D//1,02 [ p1p21(.(2p„ .Qpz), may be 
obtained from, for instance, Eq. (3.5.1) of Edmonds' as 

            M.(,,'12)       -bri(412)Ipind (9p1, 12p2) 

         = E, <llmll2m2 11112LM>Di i211p pz1)(fp„ Qp2) 
m1,m2 

(8z2)-(N-2)/2 E <11m112m2 I1112LM> 2l 111(S2p1)2m2J2(Qp2) , (3.4) m1,m2 

where <• • • I • • •> is the vector-coupling (VC) coefficient.' These 
new functions are the simultaneous eigenfunctions of Lp?, LpZ, 
(LP1 + Lp2)2, Lp12 + L,2, Lp14., and Lp24- with the eigenvalues 
-11(11 + 1), -12(12 + 1), -L(L + 1), iM, ij1, and ij2, respectively. We 
note that the quantum numbers 11, 12, m1, m2, Ili and 12 are changed 
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to L, M, 11,  12, j1, and j2 in the transformation given by Eq. (3.4), 

which does not depend on the additional quantum numbers jl 

and 12, and also that the above VC coefficient vanishes unless 

1 11 - 12 1 < L <_ 11 + 12 and ml + m2 = M (= -L, -L + 1, • • • , 

L - 1, L), so that L and M lie in these ranges and the sum in 

Eq (3.4) may be taken over m1 and m2 compatible with 

ml+m2=M. 

      In the case of n >- 3, there exist two or more (in general 

many) different schemes of the coupling of angular momentum 

vectors. We here adopt the scheme in which n angular momenta 

LP1, LP2, • , LP, are added step-by-step with n - 2 intermediate 

angular momenta Lk (k = 2, 3, • • • , n - 1) 

Lk = Lk-1 + LPk , (k = 2, 3, • • • , n - 1) ,(3.5) 

with L1 = LP1 and L,, = LP1 + LP2 + • • + L. Then, those new 

n-body excitation basis functions which are simultaneous 

eigenfunctions of LPk (k = 1, 2, • • • , n), L1,2 (k = 2, 3, • • • , n - 1), 

(LP1 + LP2 + • • • + L„)2, )2, LP12 + L p,z + • • • + LPn2, and LPkt (h = 1, 

2, • • • , n) with the eigenvalues -lk(lk + 1) (k = 1, 2, • • , n), 

-lk(lk + 1) (k = 2, 3, • • , n - 1), -L(L + 1), iM, and ilk (k = 1, 

2, • • , n), respectively, are given by' 

       DAL - DL,{I,}{}n-2}(Pn](DP1, • 2 P2, • • • Ion) 

           = Ej rfin,M[<lk-lmk-llhmh1lh-llklklnh>J 
{m.}k=2
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      #ml{k{;1ry}((3.6)              XDl~tPnJ•QPI~•QP2, ••~~Pn)~ 
where  Y  = {ln} {in-z} { In } [Pn1 , {1n-2} = 12, 13, • • •, In-1 with 11 = 11 

and In = L, and mh is given by 

              h r"nh = E m, , (h = 1, 2, ... n) .(3.7) 
i=1 

In the transformation given by Eq. (3.6), the quantum numbers 

{ln}, {inn}, On}, and the subbody numbers [pn] are changed to 

L, M, and Y (L, M, and { in-21 on the left—hand side instead of 

{inn} on the right—hand side), { jn} being the additional quantum 

numbers. We note that max [2max(ii, lz, • • • , 1n) —h=1 lh, 0] < 

L <_ Eh=, lh, and M = Elan                              =1 mh = —L, —L + 1, • • , L. In what 

follows, we also designate the new one— and two—body excitation 

basis functions simply by 'Mr with r = j [ p] for n = 1 and 

 = (/1/2)(3.1/2)[ PIPM ] for n = 2. 

      Now, from the orthonormality of the 0 functions, i. e., 

     fJr "j*(S2)2i ' (S2)dS2 = Su'am,,,,'Sii'(3.8) 
with the asterisk indicating the complex conjugate, and the 

unitarity of the VC coefficients, as given by Eq. (3.5.4) of Edmonds,3 

the new basis functions re,,, thus obtained (for all n and [pn]) 

are seen to have the orthonormality 

    fDLrDL yd { 'QN } = 8LL'aMM'67y .(3.9) 
Therefore, if in matrix notation, the above transformation from 

Du to Dili, is written as 
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  =  UTD ,(3.10) 

then the matrix U is unitary, and in fact orthogonal since the 

VC coefficient is real. As seen from Eqs. (3.3), (3.4), and (3.6) this 

transformation is decoupled into those between finite—dimensional 

subspaces of full Hilbert space with n, {ln}, On} ,  and [ion ] fixed, 

so that U is diagonal in these indices. We also note that the 

new basis set {DL7} is complete since the inverse of U exists. 

Finally, from the fact that DLr are the simultaneous eigenfunctions 

of L2 and L2 and satisfy the orthonormality given by Eq. (3.9), 

we see that the set {DLr} is just a standard basis set in the full 

Hilbert space,' and thus the desired one. 

b. Matrices E and L 

      Let E and L be the standard matrix representations of the 

identity operator and the diffusion operator .`c° with weight Veq, 

respectively, in the basis set {DLr}. For convenience, the matrix 

elements constructed from the n— and n'—body excitation basis 

functions are referred to as the (n, n')—body elements. In what 

follows, the standard basis functions and standard representations 

are designated by the symbols without tilde unless noted otherwise. 

As in Chap. 2, all lengths are measured in units of the length 

, and kBT is chosen to be unity, where kB is the Boltzmann 

constant and T is the absolute temperature. 
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      Now, the scalar  qTeq and the scalar operator 2 are 

rotationally invariant, and commute with the components of the 

total angular momentum operator L. According to the theory of 

angular momentum,' therefore, the standard representation E and 

L are diagonal in the total angular momentum and magnetic 

quantum numbers L and M, and moreover their diagonal elements 

are independent of M (a special case of the Wigner—Eckart 

theorem). This leads to (2L + 1)—fold degeneracy with respect to 

M. The matrix elements may then be written in the form 

<Di rDL y>eq = 8LL''MM'EL,YY ,(3.11) 

<Di r-c°Di eq = &LL'SMM'LL,77' •(3.12) 

(We note that in any nonstandard basis I yLM> such that 

<yLM I y'L'M'> = SLL'SMM'Cry with Cry ' ry, the matrix 

representation of a scalar operator is diagonal in L and M, but 

then its diagonal elements are dependent on both L and M.) Thus, 

the elements EL,ry and LL,ry of the submatrices EL and LL may 

be evaluated simply at M = M'= 0. Note also that EL and LL 

are self—ad joint, i. e., EL = EL and LL = LL, where the dagger 

indicates the adjoint. 

      In the following, we give explicit expressions only for the 

(1, 1)— and (2, 2)—body elements of EL and LL. The (1, 2)— and 

(2, 1)—body elements may readily be found from the (2, 2)—body 

elements. These will be sufficient -for later practical use. In the 
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evaluation, we have used Eq. (3.7.3) of Edmonds3 for the relationship 

between the VC coefficient and the  3—j symbol, Eq. (3.7.8) for the 

orthogonality of the 3—j symbols, and Eq. (6.2.8) for the replacement 

of the sum of products of three 3—j symbols by the product of a 

3—j symbol and a 6—j symbol. 

(i). (1, 1)—body elements 

      We have for the (1, 1)—body elements EL,ry and LL,rr', with 

Y = J[p] and Y'= j'[ p'] for p < p' 

E2:{n.0 ] = (87(2)-NgL,* [ (p' — p)d s ] ,(3.13) 

   LL.Lp.p~       = (87(2)-NyrI{.1.23'I~~PP[a2(C1)pp— 6.0p'
1] 

  S1 

x E (L+41+4)f(L, j; dl)f(L, j'; dl)gL+at[(p'—p)ds] } , (3.14) 
Al=-1 

whereg{f is given by Eq. (2.14) and f(1, j; 41) is given by 

k f(l, j; Al)=L,(1 -~k0)ci'(j11 l +Jdl 1 
k=-1J 

    = 21(-1)1+'+1[(l(2l +                   +j+1)(2l1)(l+—2)(2lj++1)3)1/2 for Al = 1 

          1 

          [ 1(21 + 1)(2l +-----------------------2) 11/2for Al = 0 
(1 +.0(1—1/z = 2(l + 1)(-1)l+'+i[ 2l(2l —1)(2l +)1)]for dl = —1 (3.15) 

with (:::) being the 3—j symbol and with 

c{ _ [(I — j)(l + j + 1)]"2(3.16) 
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     The elements for p > p' may be obtained from Eqs. (3.13) 

and (3.14) with the  self—adjointness of EL and LL, e. g., 

E2. .P)- 

(ii). (2, 2)—body elements 

     We have for the (2, 2)—body elements EL,ry with 

Y = (1112)(1112) [ PlP2] and Y'= (l1l2)(J15i) I PIP; I for p1 pi (where 

P1 < P2 and pi < pz by the assumption) 

  E'-1(Z1'21j)[PiP2.PiP] (-1)L+1i+Zi+Ji+12(8112)-N 

                               w(JJ-~.-       XEFLl(Z1Z2,1i12)[P1Papipz]Jlw(~11221•1L2~J2)J2J3Iw(P2P2P1 Pz)1•(3.17)     1J2 .J3 

Here, F ... are numerical constants given by 

E' LZ(I1I2.Ii1D [ P1P2•P'Pz) 

     = 8L1(-1)1(21 + 1)-1i2 for pi < P2 < P1' < Pz 

     _ (-1)1+12+1i(21 + 1)112{11 12' L} for Pi < Pi < P2 < P2 
                      12 11 l 

      (—)         1Ii+1()2l+1)1/2,(11 12/L1 forpi<Pl<P2<P2(3.18) 
                    l2 11 1 

                                                                                                               , where {:::} is the 6—j symbol,3 and vanishes unless I 11 — l' I <— 1 

<_ 11 + li. w is an operator that rearranges the subbody numbers 

P1, P2, pi, p2in the increasing order, and w is an operator that 

rearrangesthe four indices 11, 12 II, lz or j1, j2, —ji, —jz in the 
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order corresponding to that of the subbody numbers, e. g., 

 w(11121i1z) _ (11121112) for p1 < Pa < Pi < p2 

=(11111212')for pl<Pi <P2<P2 

_ (l1l'1212)for pi < pi < P2 < p2 . (3.19) 

Thus, J::: as a function of the subbody numbers depends on the 

order of them, and for p1 < p2 < p3 < p4, it is given by 

     J!4'P1P2P3P4) 

       = (-1)1[(21 + 1)(2l1 + 1)(212 + 1)(213 + 1)(214 + 1)]1/2 

      ii+ii+i's'111 X (-1)
J3j3 J333 \—32 3232j2 

X gi4(J1-13) [ (p4 p3)ds ] g13(J_12) [ (P3 p2)4 S ] 

X gli'(-J1) [ (pa — p1)d s ] .(3.20) 

      Next the (2, 2)—body elements LL,7 ' for pa <pi are given by 

                     2 2 

         ((~~2,,1/2.J2      LL,'il,lg.lji))IPiP2,P1A2) = I-'L.71.Papg ,(3.21) 
a=1 /3=1 

where 

LL,77',PaPg = S .1711jaj0SPaP'EL,7Y 

     — (-1)Ja+Jg+l'~+l''i [ (21a + 1)(26 + 1)]1/2[ a2(C-1)Pap, — SP,Pg ] 

            1 X E E (-1)81a(L+L'+41)+81g(L+L'+41') 
            41,41'=-1 L' 

X (2L'+ 1) [(la + 41 + 4)(l; + dl'+ 10]1/2 f(la, Ja; di) f(1;, 113; d1') 
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       lQLl'llL' + dl'EL'.y„,nr;3(,/,,(3.22) 

 x  

1      /c,lQ+dl1{ane 
with 17,=11+12-1Q and l'~=h+lz'-1;; 7Q(41)=(11+81(4, 

12 + 82a41)(J1J2) [ pip21 ; and 7f(4') _ (l1 + 81841', l2 + 8241')(J1)2) 1 p1 P2 1 

and in Eq. (3.22), EL”: are the (2, 2)-body elements. 

     The elements for p1 > pi may be obtained again by the use 

of the self-adjointness of EL and LL. Further, we note that the 

(1, 2)- or (2, 1)-body elements may be obtained from the (2, 2)-body 

elements by putting l2 = 0 or If = 0, and also that they reduce to 

the (1, 1)-body elements if we put l2 = l2 = 0. 

c. Time-correlation functions 

      We introduce time-correlation functions of the standard basis 

functions or a standard correlation matrix C. It is just the 

standard representation of the (time-displacement) operator e-Lt, 

and therefore also diagonal in L and M, i. e., 

<Dt y({ QN } , 0)DL ,y ({ S2N } , t)>eq = <DL' e-zt DL .r'>eq 
= SLL''MM'CL,yy'(t) , (3.23) 

where the submatrix elements CL,yy(t) are independent of M and 

may be evaluated simply at M = M'= 0. Further, since 9 is a 

self-adjoint operator, the matrices C and CL are seen to be 

self-adjoint, i. e., CL = CI, so that in particular, CL,yy(t) are real. 
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      Now, we formulated the eigenvalue problem in the standard 

representation. Let QL be the simultaneous diagonalizing matrix 

for the two submatrices EL and LL of the full standard 

representations E and L, respectively, i. e., 

  QLELQL = 1L ,(3.24) 

 t 

  QLLLQL = AL ,(3.25) 

where 1L and  AL are diagonal matrices with diagonal elements 1 

and Ilk, respectively. Note that QL is not unitary. It is then easy 

to show that the correlation submatrix CL(t) is written in terms 

of the solutions QL and AL of the eigenvalue problem given by 

Eqs. (3.24) and (3.25) as 

   CL(t) = QL1texP(—ALt)QLi .(3.26) 

It should be noted that the same relations as Eqs. (3.24)—(3.26) are 

held for the full standard representations E, L, and C, and that 

this full problem has been, to a great extent, decoupled by the 

properties of the standard set given by Eqs. (3.11), (3.12), and (3.23). 

      The full standard representations E, L, and C are shown 

schematically in Fig. 3.1, where EL, LL, or CL (L = 0, 1, 2, • • • ) 

appear in the diagonal blocks (with L = L'), the submatrices in 

the off—diagonal blocks 0 (with L # L') are null matrices, and 

the M degeneracy has not been shown. In what follows, L(n) 

denotes the n—body excitation for a given value of the quantum 
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number L, or the corresponding subspace of 

Note that n  = 0, 1, 2, • • , N for L = 0, 

for L 0. As is evident from the above 

susceptibility (D) is associated with the 1(1), 

subblock D in the figure, the fluorescence

the full Hilbert space. 

and n=1, 2, • N 

remarks, the dielectric 

 1(1) elements, i. e., the 

depolarization (F) and

 ^  0 2 3

0 I '''n^''N I 2 ^—N | 2 ^—N

0

0

^

N

0 0

2

3

.

N

0

^FA

0

2
2

3
0 0

^ ^

3

 X=F,S, Bf,  V: Y= Bf, V 

Fig. 3.1. The full standard representations E, L, and C of the identity operator, 
the diffusion operator .P, and the operator exp(—.t), respectively (C is the 
standard correlation matrix). The submatrices EL, LL, or CL appear in the 
diagonal blocks (L=L'), where the subscript L (= 0, 1, 2, • • •) denotes the "total 
angular momentum quantum number." Dielectric relaxation (D) is associated 
with the subblock D with L=L'=1 and n=n' =1, where n is the number of 
"excited" subbodies . Fluorescence depolarization (F) and nuclear magnetic spin 
relaxation (S) are associated with the subblock X, flow birefringence (Bf) with 
X and Y, and viscosity (V) with X, Y, and V. 
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the nuclear magnetic spin relaxation (S) with the subblock X, the 

flow birefringence  (BF) with the subblocks X and Y, and the 

viscosity (V) with the subblocks X, Y, and V. 

3-3. Subspace Approximation 

      Although we have thus reduced the size of the eigenvalue 

problem, and we have seen that the correlation submatrix elements 

relevant to a given observable are greatly localized, the size of 

the reduced problem is still very large (infinite). For example, in 

order to find the correlation matrix in the subblock D, we must 

solve the eigenvalue problem for the infinite matrices El and L1. 

Therefore, we introduce approximations to further reduce its size. 

      First, we introduce the subspace approximation, as mentioned 

in Sec. 3-1. That is, we approximately decouple the space (strictly 

the subspace of the full Hilbert space) specified by the quantum 

number L into a subspace relevant to a given observable and its 

complementary space; e. g., the subspace 1(1) and its complementary 

space { 1(2), 1(3), • • • , 1(N) } in the case of dielectric relaxation, 

and the subspace { 2(1), 2(2) } and its complementary space{ 2(3), 2(4), 

• • • , 2(N) } in the case of viscosity. In this approximation, 

therefore, EL, LL, and QL become block diagonal with the null 

off—diagonal blocks between these two subspaces, so that the 

problem may be solved only in the subblock D, X, or X + Y + V. 
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Then the subspace  L(1) is (2L + 1)N—dimensional except the M 

degeneracy [since p = 1, 2, • • , N and j = —L, —L + 1, • • , 

L — 1, L in Eqs. (3.13) and (3.14)1, while the subspace L(n) 

(2 <_ n <_ N) is infinite dimensional. Therefore, the subspace 

approximation must be somewhat modified in the case ofviscosity, 

and this problem will be considered separately in Chap. 5. 

      Thus, in order to obtain the correlation matrix CL(1)(t) 

appearing in the subblock D (L = 1) or X (L = 2), we may solve 

the eigenvalue problem for the (2L + 1)Nx(2L + 1)N submatrices 

EL(1) and LL(1) in the subspace L(1), whose elements are given by 

Eqs. (3.13) and (3.14), respectively, i. e., 

 t
(3.27)    QL(1)EL(1)QL(1)=1L)(1, 

  nt = AL(1) ,(3.28) 

CLU)(t) — QL(1)exp(—11L(1)t)Qul) .(3 .29) 

instead of Eqs. (3.24)—(3.26) , respectively. Clearly, this is a crude 

approximation. Higher—order approximations may probably be 

obtained, though not systematically , if we solve the eigenvalue 

problem of somewhat larger size by augmenting the L(1) subset 

with some basis functions suitably chosen from the compleme ntary 

space { L(2), L(3), • • , L(N)}. Note that at t = 0, the CL(1)(0) given 

by Eq. (3.29) is exactly correct even in the crude subspace 

approximation.
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      Now, let us show that the above subspace approximation 

(with or without augmentation) is equivalent to neglecting the 

memory term appearing in the projection of the full space 

dynamics onto the subspace L(1) (with or without augmentation) 

by the projection operator  method.5•6 Since the full Hilbert space 

is decoupled with respect to L and M, we may consider the space 

(strictly subspace) specified by L from the start. Let A(t) be some 

dynamical variable, and consider in general a subspace spanned 

by vd basis functions DLr, (i = 1, 2, • • •, pa). [Note that if A(0) 

is confined in the space L, so is also A(t). ] We define the 

projection PA of A(t) onto this subspace by 

    *()       =DL r(ES 1)r;r;<DLr~A>eq,3.30 
c,I =1 

where the subscript s has been used to indicate the vdxvd submatrix 

in the subspace. If we take A(t) = e-ztDLrk (k = 1, 2, • •, vd) then 

following Mori5 and Zwanzig,6 we find the kinetic equation satisfied 

by the correlation submatrix Cs(t) 

     fC(t) = - LsE;1Cs(t) + JK(t  — t')C5(t')dt' , (3.31) 
with Cs(0) = Es,where the vdxvd memory kernel matrix 

K = [K77(t) ] is given by 

K71 (t) = E ~DLYt '~ 
                        k=1 

X exp [ —(1 — g).`t°t ] (1 — .9).TDirk>eq(Es1)rkr; . (3.32) 
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Note that  <DL.r>eq = 0 for the present case (L 0). (If 

<D11r>eq 0, such Dir must be replaced by Dir — <Dir>eq.) If we 

neglect the memory term in Eq. (3.31), we obtain 

   atCs(t) = — LsEs 1C5(t) ,(3.33) 

with Cs(0) = Es. When s = L(1), it is easy to show that the solution 

of Eq. (3.33) is identical with the CLa)(t) approximated by Eq. (3.29). 

Thus, we have shown the equivalence. Note that if we take the 

present full space L as the space s, we have o = 1 and therefore 

K = 0, so that CL(t) exactly obeys Eq. (3.33) with EL and LL in 

place of ES and Ls, respectively. In fact, this is consistent with 

Eq. (3.26). Exact solution of Eq. (3.31) with the memory term is 

equivalent to finding the exact Cs(t) by solving the full eigenvalue 

problem for EL and LL, and is also impossible. However, it is 

possible to take account of some interactions between the subspace 

and its complementary space by augmentation of the subspace with 

a small number of basis functions in the subspace approximation, 

as noted above, and this is equivalent to partly retaining the 

memory term after the projection onto the lowest subspace. 

      In this connection, we should mention the work of Evans. 

He has evaluated several kinds of time—correlation functions for 

short bond chains by the projection operator method.' Further, he 

has chosen 25 basis functions from a complete set of them for 

three—bond chains,' but his treatments for longer chains correspond 
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to the above crude subspace approximation without augmentation. 

Our actual evaluation will also be carried out in this 

approximation. However, because of the rotational degrees of 

freedom of the subbodies in the HW chain, our approximation 

may be regarded as being on a level with a somewhat augmented 

crude approximation in the (long) bond chain. Recall that there 

are at least (2L + 1)N basis functions in the case of  CL(1)(t). (For 

the three—bond chain, our evaluation is of course less complete than 

the above specific treatment of Evans.) 

     Thus, we return to the eigenvalue problem given by Eqs. (3.27) 

and (3.28). It may be solved by a standard method. We first 

diagonalize the self—adjoint matrix EL(1) with a unitary matrix 

QL(1) 

   QL 1)EL(1)QL(1) = "L(1) ,(3.34) 

where AL(1) is a diagonal matrix with diagonal elements A,L. Let 

(Af(1))-112 be the diagonal matrix with diagonal elements (4)-1/2 

We then transform LL(1) to another self—adjoint matrix with 

QL(1)(AL(1))-1/2, and finally diagonalize it with a unitary matrixOw

(261)E (AL)-1/2QL 1)LL(1)QL(1)(4L(1))-1/2 ]QL(1) -'IL(1)(3.35) 

The diagonal matrix AL(1) must be identical with the one on the 

right—hand side of Eq. (3.28), and the diagonalizing matrix QL(1) in 

Eqs. (3.27) and (3.28) (which is not unitary) is given by 

    QL(1) — QL(1)(AL(1))-1/20:(1) •(3.36) 
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     Now the diagonalization in Eq. (3.34) may partly be 

performed analytically. By the use of Eq. (2.14) with 

Eqs. (2.10)—(2.13), Eq.(3.13) for the elements of  EL1) may be rewritten 

as 

     ((~~11L N     EL,LP,p 1 E~LP9QLp'q'EL[g.9 ](3.37) 
m=-L q,9 =1 

with 

EL,[p,A ] = (8x2)-Nexp [ — L(L + 1) I p'— p 14s ] ,(3.38) 

    QLAp = appDL'(Q)exp( — iJ'vp4s) ,(3.39) 

where v is given by Eq. (2.19). From Eq. (3.39) with the unitarity 

of the unnormalized Wignerfunctions [Eq. (43.10) of Davydovl], 

the matrix eh(1) = (e2"11;/,' pp') is seen to be unitary, i. e., 

EL N //~~       E,ia*Aqp' = 8Sjj'('pp, .(3.40) 
m=--L q=1 

We then solve Eq. (3.37) for :8 L,( by the use of Eq. (3.40) to find 

L N 

n E EQL*L~q.q,)?Lq'' = jj'           9AE,p!SEL[p.p ](3.41) 
m,rn'=-L q,q'=1 

Thus, the diagonalization of EL(l)in Eq. (3.34) is reducedto a 

diagonalization of the NxN real symmetric matrix EL,[ p,p]. This 

diagonalization and also that of LLl) in Eq. (3.35) must be 

performed numerically. Note that there is (2L + 1)—fold degeneracy 

with respect to j in ELl), as seen from Eq. (3.41) with Eq. (3.38), 

but this is not generally the case with LL(l).
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     However, for the Kratky—Porod (KP) wormlike  chain15 as a 

special case of the HW chain with K0 = 0, the problem is somewhat 

simplified. In this case, gL'(s) has been given by Yamakawa and 

Shimada [ Eq. (55) of Ref. 16 (with 6 = 0) ] 

gL '(s) = 8;;-exp { — [ L(L + 1) + i /to]  s } (KP) , (3.42) 

so that ELT and LLa> given by Eqs. (3.13) and (3.14) become diagonal 

in j, and also we have . L'(SQQ) = 8„• in Eq. (3.39). Since we then 

have further EL,{' ''] = E(;{pn'] and LL1p1)] = L(2'6p) and from 

Eqs. (3.13), (3.14), and (3.42), we see that there are also L sets of 

twofold degeneracy with respect to j ( 0) between j and — j in 

LL(,) in addition to the (2L + 1)—fold j degeneracy in EL(I).

3-4. Block—Diagonal Approximation

     We have seen that the problem is reduced to the 3N— or 

5N—dimensional eigenvalue problem (for L = 1 or 2) in the L(1) 

subspace approximation. This reduction suffices for a numerical 

solution for N S 30 (with use of a FACOM M-200 digital computer 

in this University), but it will actually be impossible for large N. 

We must, therefore, introduce an additional approximation, i. e., 

the block—diagonal approximation, as mentioned in Sec. 3-1. This 

is done by a further transformation to another standard basis set. 

     The useful transformation is then the one that approximately
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 diagonalizes the matrix B defined by Eq. (2.55) with Eq. (2.42), and 

 therefore also the matrix C defined by Eq. (2.112). The matrix B, 

or its minor modification in the Zimm version,13 always appears 

 in the dynamics of polymer chains .12'13'1' For conventional bond 

chains, both flexible and stiff , it is well known that B may be 

diagonalized in a good approximation with the orthogonal , 

symmetric matrix  Qph,ll 

Q°rk = [ 2/(N + 1) ] [ rrph/(N + 1) J 

              (p, h = 1, 2, ... , N) ,(3.43) 

which exactly diagonalizes the free—draining matrix B°= B with 

neglect of the second term on the right—hand side of Eq. (2.42) (i. e., 

the Rouse matrix12 except the factor For the present model, 

we also adopt this approximation , i. e., 

(Q°B(2°)kh' = 5hk'S t-lAlk ,(3 .44) 

(Q°C(2°)kk• = Skk'a2Ak ,(3 .45) 

where 

      Ak=3+ (Syr/a2St)AB                                                    (3.46) 

with AB = ~t(Q°B(1)kk. Note that in the coil limit , Ah are just the 

Rouse—Zimm eigenvalues in the Hearst version .1$'19 The correctness 

of Eq. (3.44) will be examined numerically in Sec. 3-5a. 

      Now we transform the basis functions D11.1:6,1 in the subspace 

L(1) to new basis functions Fi•'i ,] not only with Q° but also with 

the .11 functions in Eq . (3.39) as follows: 
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 N  L

JJJJ      FL:(k1({QN})— E EQPkDLl(s2a)DL,lp1(p) ,(3.47) 
P=1 j'=-L 

where L and M remain unchanged. It is easy to see that this 

new basis set is also a standard one in the subspace { 1(1), 2(1), 

3(1), • }. It is referred to as the standard Fourier basis set 

(in the subspace), since Q° is just a Fourier sine transformation. 

Thus, the standard Fourier representations of the identity and 

diffusion operators (with the weight) are also diagonal in L and 

M with the diagonal elements being independent of M, so that we 

may write them as 

<FL'ik]FL',lh•]>eq — 8LL'SMM'D" L [l,k'1 ,(2.48) 

<FL,6]'2°F114h']>eq = 8LL'aMM'LL?(hli ] •(2.49) 

      By the use of Eq. (2.14) for gL'(s) appearing in the elements 

of EL(1) and LL(1) given by Eqs. (3.13) and (3.14), respectively, and 

of the unitarity of DP', we find for the elements of EL(1) and 

LLa) 

        N L 

      EL.(h,k'1QpkQPh4L (s2,4L ('2a)EL,(p.A1 
p,p'=1 m,ni =—L 

       = 8 jj'(871'2)-N Sae ,(3.50) 

        N L 

LL(kh'1 E E QpkQp'leDn24*a)D1 (S2a)L((1fpP 

(87I2)—N r-1L8jj'8kk'L(L + 1) 
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 —EIA-41J                    TLd SL+dlhh'~ (3.51) 
 41=-1 j"=-L-41 

with 

      SL.hh' =E QpkQp k' [ a2(C)pP ] n 
p•P =1 

Xexp{—[L(L + 1) p'— pI — ijv(p'— p)] s} (n = 0, 1) , (3.52) 

Tip = [32n4/(2L + 1)] E f(L, m; dl)f(L, m'; 41) 
m•,n'=-L 

           x-/7T'*(S2Q)^7T' (QQ)ai+ea(S2Q 2n2.: 1(D et) , (3.53) 

where f(L, j; dl) is given by Eq. (3.15). 

     If we take the sums over p and p' in Eq. (3.52) by the use 

of Eq. (3.43) with the approximation given by Eq. (3.45), we can 

show that SiZh' with k h' are of 6(N-1) in relation to Sz h (with 

h = h'), and obtain for the latter, 

S`i?h = 1 + E (1 — 80){SAL(L + 1)4s, hO + izjvds] 
i1=-1 

         + (N + 1)-lcot(kO)SS [ L(L + 1)4s , hO + ii j vd s ] } , (3.54) 

   lN1      SL'~h = [ 2(N + 1)1-1  E (Ah )-1 E (1 — 8110)(1 — 81,0) 
h'=1 i1,ig=-1 

x ([ 1+ 8h+iik',m(N+1) ] { 2 + Sc [ L(L + 1)ds, (h + i1h')0 + izjvds ] } 

       + (N + 1)-1 { coth0 + cotiih' 0 — [1— 8h+i1h',nt(N+1) ] cot(h + i1h')B } 
X Ss [ L(L + 1)ds, (k + iih')B + izjvds ]) , (3.55) 
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where 0 =  r/(N + 1), 

N-1 Sc(x, y)_E(1—p )e-pxcospy 

                N 

        p=1+ 1 

           = (N2 + N — 2)/2(N + 1) , 

                  if x = 0 and y = 2nx (with n integer) 

_ (e-xcosy — e-2x — (N + 1)-1{2e-NxcosNy 

                 — 2e-(N+1)xcos(N — 1)y + [ e-xcosy — 2e-2x 

                  + e-3xcosy — e-NxcosNy + 2e-(N+1)xcos(N — 1)y 

                 — e-cN+2>xcos(N — 2)y ] (1 — 2e-xcosy + e-2x)-11) 

X (1 — 2e-xcosy + e-2x)-1 , otherwise , (3.56) 

N Ss(x, y) = E e-pxsinpy 
P=1 

             = 0 , if x = 0 and y = 2nJr (with n integer) 

              _ [ e-xsiny — e-NxsinNy + e-(N+1)xsin(N — 1)y ] 

X (1 — 2e-xcosy + e-2x)-1 , otherwise . (3.57) 

In Eq. (3.55), Ah is given by Eq. (3.46), and m(N + 1) denotes 

multiples of N + 1. 

     Thus, forN >> 1, the matrices ELT and Lul> become 

approximately diagonal in h, so that the (2N + 1)N—dimensional 

eigenvalue problem in the L(1) subspace approximation given by 

Eqs. (3.27) and (3.28) may be reduced to N eigenvalue problems 

for the (2L + 1)X(2L + 1) matrices EL(1),th] and LLC1>,mhj ( h = 1, 2, 

• • • , N) whose j, j' elements are Ej,',c,)hi and LL'' h], respectively, 
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 Qt(3.58)          L(1),[k]EL(1),[h]QLQLUiI=1L(1),[k] > 

    At(3.59)        QL(1),[hJLL(1).[k]QL(1),[h]=L(1),[1z1  > 

where  1L(1).[h] and AL(1).[k] are (2L + 1)x(2L + 1) diagonal matrices 

with diagonal elements 1 and AL,k (j = -L, —L + 1, •, L), 

respectively, and QL(1),[h] is a diagonalizing matrix (not unitary). 

This is the block—diagonal approximation. 

      Now, recalling that EL(1) is already diagonal in j, we may 

readily reduce the eigenvalue problem given by Eqs. (3.58) and (3.59) 

to that for a (2L + 1)x(2L + 1) self—adjoint matrix as in Eq. (3.35); 

i. e., 

       QL( ),[kJ [(EL(1),[k1)-U2 LL(1),[hl(EL(1),[hJ)-1/21 QL(1).[k] - ALU),[k} > (3.60) 

where (EL(1).[h])-1/2 is the diagonal matrix with diagonal elements 

(EL(f h'])-112, and Qi(1),[h] is a unitary, diagonalizing matrix. Since 

the right—hand sides of Eqs. (3.59) and (3.60) are identical, the above 

two diagonalizing matrices are related to each other by 

     QL(1).[h] — (E L(1).[h])-1/2QL(1),[h] •(3.61) 

The analytical solutions of the three—dimensional (L = 1) eigenvalue 

problem given by Eq. (3.60) with Eqs. (3.50)—(3.57) are given in 

Appendix 3—A. 

     Finally, the correlation matrix CL(1)(t) in the subspace and 

block—diagonal approximations is obtained, from Eq. (3.29) with 

the elements EL'[i),k] and the solution of Eq. (3.60), AL,h and QL(1).[k], 
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as follows: 

        N L 

     C(L,fn.P](t)  —  E  E  DL  (Qa)WL  *(Qa)QpkQPk 
k=1 m,rri,l =—L 

                  X QLmj"QLm.'j"*(E(m,m)E(m'.m.')112exAft•:3.62                    L,k L,[h,h]L.[h,k])p(—L,k),() 

where Of are the j,~ elements of the unitary matrixL 

In contrast to the subspace approximation of Eq. (3.29) alone, the 

CL(1)(0) given by Eq. (3.62) is already approximated because of the 

block—diagonal approximation. 

      For the KP chain (KO = 0), both EL(1) and LL(1) are diagonal 

in j since then gL• is given by Eq. (3.42), so that we need not solve 

the eigenvalue problem given by Eqs. (3.58) and (3.59); i. e., 

Qi:L = 8 j, . Since we then also have . L (.Qa) = 8,/, Eq. (3.62) reduces 

to 

CV:IA).P ](t) = jl E QphQp,kEL,fr12,k]exp(—A ,ht) (KP) , (3.63) 
h=1 

where

!!     (81I2)NEL~[h,h]=Sak — SL)kk ,(3.64) 

AL,k = A L7ix j 0) = (E%ftkh])-1L1thh] ,(3.65) 

so that 

j,j[     C/,fp,P](t)=CL,6,P)](t) •(3.66)
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3-5. Conditions on the Model Parameters 

     In order to find conditions to be imposed on  ~t and fir, it 

is convenient to introduce instead of them the dimensionless 

parameters ri and rz defined by 

  r1 = ~t/37r7/0a ,(3.67) 

r2 =(3.68) 

with n° the solvent viscosity. Note that for touched Stokes bead 

models, r1 = 1 and r2 = 1/3, and that a is uniquely related to ./Is 

by Eq. (2.26). For convenience, we restore kBT in this section. 

a. The diffusion matrix B 

      We begin by examining the accuracy of the approximate 

eigenvalues Ara = -t(Q°B(2°)hh of ~tB where Q° is the Fourier sine 

transformation matrix given by Eq. (3.43). In particular, in the coil 

limit of N >> 1 and h/N << 1 (for both flexible and stiff chains), 

they are the Rouse—Zimm eigenvalues in the Hearst version,'8'19 

and are given by 

                z 

   Aga=N2kz+4hr2~~(3.69) 

with 

AL, = nrhl z [ 1rkC(nh) — Z S(xh) ] ,(3.70) 
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where C(x) and S(x) are the Fresnel integrals defined by 

 0(x)  _ (2g)-h120t-vz{s n} tdt .(3.71) 
In Eq. (3.69), h is the conventional draining parameter, and for 

the present model, it is given by 

     h = ~tN"2/(127r3)1127oa 

_ (3/47r)172(a/a)riN1iz(3 .72) 

where a is the (unperturbed) effective bond length of the discrete 

HW chain, and is defined, from Eq. (2.18) with Eq. (2.25) for its 

equilibrium mean—square end—to—end distance <R2(N)>eq, by 

az = m [ <R2(N)>e,,/N ] = c.As(3.73) 

with cm being given by Eq. (2.23). It is well known that the AB 

given by Eq. (3.69) are very good approximations in the coil limit. 

      Next, we examine the case of small N. Figure 3.2 shows 

plots of AB (h = 1, 2, • • • , N) against reduced wave number 

h = h/(N + 1) for isotactic polystyrene (i—PS; K0 = 11 and 

To 15)16.20 and the KP chain (uo = 0), both with N = 9. (Note that 

in the case of go = 0, the mean reciprocal distance between two 

subbodies and therefore the matrix B are independent of r0.) The 

open circles represent the exact eigenvalues, and the full and broken 

line segments connect the corresponding approximate values. In 

the case of i—PS, the lower and upper points correspond to 

Cis = 0.4 and 0.08, its upper and lower bounds, respectively, where 

the lower bound corresponds to two skeletal bonds and we have 
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Fig. 3.2. Eigenvalues Af of t'tB plotted against the reduced 
for isotactic polystyrene and the KP chain with N=9 and the 

of As. The open circles represent the exact eigenvalues, and full 

segments connect the corresponding approximate values.

wave number h 

indicated values 

and broken line

taken A-1= 26.4 A.16,20 In the case of KP, the lower and upper points

represent the values for 4s = 104 and 10-8, respectively, which do

not necessarily correspond to the upper and lower bounds on 4s

for any real chain, but to very flexible and very stiff (KP) chains,
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respectively. In any case, there is good agreement between the 

exact and approximate eigenvalues, the error becoming the largest 

at  h = 1, 4-6%, depending on the model parameters. We note that 

for small N, it is easy to make the approximate eigenvalues 

correspond to the exact ones, as above, by comparing the respective 

eigenvectors, while for large N, this is difficult in the range of 

 h ? 0.2. In the range ofk 0.2, we have found that the agreement 

between the exact and approximate eigenvalues becomes better as 

N is increased. Thus, the approximate eigenvalues Ak may be used 

safely as a first approximation for all possible cases of the discrete 

HW chain. 

      Now, Arf depend on only ri and N for given Ko, ro, and As. 

As r1 is increased, AB with large k become small, and AN, AN_1, 

• • become negative successively; the matrix B is then not positive 

definite. Let ria) be the upper bound on r1 such that AB ? 0 for 

all h when r1 < ri°). Figure 3.3 shows plots of ri°) against As not 

only for the KP chain and i—PS but also for syndiotactic 

polystyrene (s—PS; Ko = 0.8 and ro = 2.3), isotactic poly(methyl 

methacrylate) (i—PMMA;K0 = 1.7 and ro = 1.4), and syndiotactic 

poly(methyl methacrylate) (s—PMMA; K0 = 4.4 and to = 0.8),16'20 all 

with N = 99. The vertical line segments indicate the upper and 

lower bounds on As. The upper bound is taken as 0.4 for all cases, 

and the lower bound for flexible chains corresponds to two skeletal 

bonds and is equal to — 0.05 for s—PS (A-1= 40.4 A), — 0.06 for 
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Fig. 3.3. The upper bound rl°> on r1 plotted against As in its allowed range 
for isotactic and syndiotactic polystyrenes, isotactic and syndiotactic poly(methyl 
methacrylate)s, and the KP chain, all with N=99. The lower bound on As 
for the KP chain corresponds to the case of DNA. 

i—PMMA (11-1= 32.7 A), and 0.03 for s—PMMA (d-1= 65.6 A). We 

have taken as an example of the lower bound for the KP chain 

the one which corresponds to the distance between base pairs 3.4 A 

of DNA and is equal to 0.0031 if we adopt /1-1= 1100 A (in 0.2 M 

NaC1).21-24 It is seen that ria) becomes almost independent of the 

model parameters as ds is decreased. We also note that ri°) is 

almost independent of N for N ti 50. Anyway, it appears that 
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the positive definiteness of the diffusion matrix B is always 

guaranteed provided that  r1 < 1. 

b. The lowest branch 

     We make an analysis of the eigenvalues A°,h in the j = 0 

branch of the spectrum for the diffusion operator in the subspace 

1(1) (in the block—diagonal approximation). According to the j 

indexing of the L = 1 branches mentioned in Appendix 3—A, we 

always have A°,1 < ATi. Further, it can be shown, from Eqs. (3A.5), 

that A°,1 < A'1,1 for N >> 1. In other words, the eigenvalues A°,h, form 

the lowest of the L = 1 branches for small h provided that N is 

large. These eigenvalues are related to a slow part of the dielectric 

relaxation rates of the entire chain, and are explicitly given, from 

the first of Eqs. (3A.5), by 

A°.h = (k5T/2"r) [ f h — (f h2 — gh)li2) ,(3.74) 

with 

  fh = [ (sGsr(10).1)-1+(c(1o)1U)-1J(2—20(0U~.71)0—4x11)1—lc(21)0_4 S21)1) 

   3 

         (K0222r(0)0-1(0)112(1)0 —1(1)111(1)1)       + (K.Q+ TO)v[ (S1)— (S1)~(3S04S1+3S2(i)0—4S2 

+ z K02v-2(Sro)1)-1(Szi)o _ Sz')2) ,(3.75) 

            (0)0(0)11J—8(1)0_1p(1)1(1)1   gh = 4(S1S1)l43S0[1(S1+ S2) 

— Ko2ro2v-4( 3(21)0 — C~l)1 + s(21)2)] — rl)1 — (3 — 1402v-wp0 
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 -(2.1)1  - 1412v-2S(21)2 + 112 (K02 - 2r02)2v-4['(ps(21)0 

        +i2(K02 + 2r02)2v-4s221)0s)1+K02r02v-4(`Sii)1S(21)1 + _ S(21 )0s(21)2) 

+ K0 4v-4s(21)2(s11)1 + S(21)1)(3 .76) 

 where SL'' = S° 1, and SL)' = S ,' h are given by Eqs. (3.54) and (3.55), 

 respectively, and v is given by Eq . (2.19). 

      Now we regard SLhh (n = 0, 1) as continuous functions of 

h to find them in the limit of h — 0, 

S;°oo = (1 - e-44s) [ 1 - 2e-2escos(j vd s) + e-441-1 -1 , (J = 0, 1), (3.77) 

  So00=2-1~N+11+1             )2 (AN+1)-1 ,(3.78) 

                                          N+1 

Sif60 = [ 4(N + 1) ] -1(1 - e-2r) E (2 - 80k - 8N+1.h)(4)-1 
h=0 

      X E (1-800 [ 1 - 2e-xcos(kO + LJvds) + e-ZX ] -i , (L 0),(3.79) 

where x = L(L + 1)ds, 0 = 1r/(N + 1), and Ai is given by Eq. (3.46). 

In Eq. (3.79) with Eq. (3.46), we may put Ao = 0 and AN+1AN, so 

that 

   AO = 3 , AN+1 ti AN •(3 .80) 
Correspondingly , we regard AN as a continuous function of h. 
Then, the ordinate intercept 4 ,0 of a plot of AN against the reduced 

wave number is given by Eq. (3.74) with Eq. (3.75)-(3.80). 

     Next, we consider the coil limit of N >> 1 
and 
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k/(N + 1) << 1. We then have 

        = —  ri(0)(ke)2 + ... (j — 0, 1) ,(3.81) 

Soi°h = 2 — a r2AB + ... (3.82) 

SL' h = a3. - bi(k9)2 + • • • (L # 0) ,(3.83) 

where 

 (o)I
\ a;=Sl .00,(3.84) 

ri(e) = e-x(1 - e-2x){cos(0 + jvds) - 4e-xsin2(0 + jvds) 

X [1 - 2e-xcos(0 + jvds) + e-2x]-1} 

X [ 1 - 2e-xcos(0 + jvds) + e-21-2 -2 ,(3 .85) 

ai = J m S ] 0 , (L 0) ,(3.86) 

bi = DT, [ 2(N + 1) ] 1 E (Ak)-1 [ yi(kO) + ri,'(k8) ] , (L 0) (3.87) 
h=1 

with x = L(L + 1)4s and 0 = z/(N + 1). We note that the AB in 

Eq. (3.82) is given by Eq. (3.69) and becomes proportional to (kV)2 

in the free-draining limit h 0 and to (kU)3'2 in the nondraining 

limit h — co, and that in Eqs. (3.81)-(3.83), we have neglected terms 

of order N-1 and e-N. 

     The eigenvalues AN in the lowest branch in the coil limit 

may then be written in the form 

A°,h = A°,0 + fc(3kBT/a2f)A11, , (coil limit) ,(3.88) 
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where  AB is given by Eq. (3.69) with the effective translational 

friction coefficient in place of fit, and 

    = (1 + A2/A1)-1~ t ,(3.89) 

     f D = A1(a/a)2 

= Al [ 1 + 2ro2v-2e-24s(1 _ e-242)-1 + 21c02v-2e-24s 

x (cosvds — e-24s)(1 — 2e-24scosvds + e-44s)-1 ] (3.90) 

with 

Al = 2(aoal)-1(f o2 — go)-1/2 [ 1 — +(al. + az) 

— Kp2r02v-4(4 ai — a2 + 4 a2) ] + 4 [ 1 — f o(f O2 — go)-1/2 

x [ ap 1 + al 1 — (K o2 — rp2)v-2(ao 1 — al 1) ] . (3.91) 

In Eq. (3.89), A2 may be written in terms of Ko, to, fo, go, a,, 

71(0), aL, and bi, but is unnecessary in later numerical 

computations, and its explicit expression is not given here. We note 

that the fo and go appearing in no, A1, and A2 in Eq. (3.88) should 

be evaluated in the limit N co, and that in the second line of 

Eqs. (3.90), we have used Eqs. (3.73) and (2.26). 

      Now, the intercept 4,0 in general becomes positive or negative 

depending on N and r2 (and also on r1 weakly), the negative A°,o 

giving definitely the negative eigenvalues A°,h at small wave numbers. 

(We note that the negative eigenvalues occur even without the 

block—diagonal approximation.) It is interesting to see that if A;,o 
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vanish and if  f  D were equal to unity, the inverse of A°,h given by 

Eq. (3.88) would be just the Rouse—Zimm dielectric relaxation times. 

(Note then that the appearance of in place of is immaterial, 

since it is known that the values to be assigned to a and are, 

to some extent, arbitrary in the two—parameter theory for polymer 

chain dynamics.19) However, this is not generally the case , though 

f D = 1 in particular case of K0 = 0 or ro = 0 since then Al = ao 1 

or QV. Such failure in reproducing long—wavelength (slow) motions 

may be regarded as arising from the preaveraging approximation 

made in the matrix C given by Eq. (2.94) and contained in matrix 

M given by Eq. (2.92), and therefore from the approximation of 

the matrix M by Eq. (2.113). For flexible chains, it is, however, 

possible to make A°,0 small in magnitude and f D close to unity by 

choosing r2 properly, as shown below. This determines its possible 

range. For typical stiff chains such as DNA, the possible range 

of r, must be determined in a different way, as mentioned in 

Sec. 3-1. 

(i). Flexible chains 

      Figure 3.4 shows plots of the reduced intercept 

A°,o = ~,.A°,o/hBT against rz for four polymers, i-PS, s—PS, i—PMMA, 

and s—PMMA, all with rl = 1 and N = 99. The full and broken 

curves represent the values for the values of Os equal to its upper 
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The reduced intercept  ADS of the lowest 1° branch of the eigenvalue 
 plotted against r2 for isotactic and syndiotactic polystyrenes and 

and syndiotactic poly(methyl methacrylate)s, all with r1=1 and N=99. 
and broken curves represent the values for the values of As equal to 

 and lower bounds, respectively, for each polymer.

and lower bounds, respectively, for each polymer. In all cases, 

4,0 increases monotonically with increasing r2, and the larger 4 s, 

the smaller 4,0 at given r2. We note that although A°,0 is negative 

in the range of r2 displayed, it becomes positive in some cases 

for very large r2, and also that no is almost independent of N 

for N 100 in the range of r2 displayed. It is then important 

to see that 4,0 in general decreases rapidly as r2 is decreased to
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Fig. 3.5. The factor  7-D plotted against r2 for the four flexible polymers. The 
full and broken curves have the same meaning as in Fig. 3.4. 

zero for r2 < 3, but for r2 N 3, it depends on r2 weakly, and is 

actually very small in magnitude. 

     Figure 3.5 shows plots of the factor 713 (appearing in the coil 

limit) against r2 at ri = 1 for the same polymers, the meaning of 

the curves being the same as in Fig. 3.4. In all cases, 7D decreases 

to unity with increasing rz, and the larger Cis, the closer to unity 

fD at given rz in its range displayed. It is seen that for r2 N 3, 

7b depends on rz weakly, and moreover 1.0 S 7-13 • 1.1; it is actually 
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very close to unity except for s—PMMA. These establish the allowed 

range of  r2, i. e., r2 N 3. 

(ii). Stiff chains 

     We consider DNA as an example of typical stiff chains. It 

is well known that DNA may be represented by the KP chain 

(/co = 0). However, in order to apply the present theory to it, we 

must also determine its ro. This can be achieved if a localized 

Cartesian coordinate system is affixed to each base pair, 

representing it by the KP-1 chain25 with K0 = 0 and to 0 (see 

Fig. 2 of Ref. 25). Since its one helix turn contains 10 base pairs, 

we then have to = 200, assuming A-1= 1100 Aand the distance 

between base pairs equal to 3.4 A. Further, if we take as ds the 

distance between base pairs, we have As = 0.0031, as already 

mentioned. For DNA having such model parameters together with 

r1 = 1, it has been found that the reduced intercept ;1°,o is very small 

in magnitude ("i —2X10-3) almost independently of r2 and N for 

0 < r2 S 100 and N 100. Therefore, we cannot limit the possible 

range of r2 on the basis of A°,o, but must be resort to a 

classical—hydrodynamic model calculation. (Note that the coil limit 

is of no interest in the case of typical stiff chains, and moreover, 

for most of them, ko = 0 and therefore 713 = 1.) 

      Now, the diameter d of DNA is much greater than ds, 

—92—



and therefore, for the present purpose, it is more adequate to 

regard its subbody as a circular disk of diameter d and width 

 ds rather than as a spherical bead. For convenience, we then 

replace the disk by a ring (regular plane polygon) such that n 

Stokes spherical beads of radius r are arranged in touch with each 

other on a circumference of diameter d. Its mean translational 

and rotatory diffusion coefficients Dt and Dr (for n >> 1) are given, 

from Eqs. (72) and (81) of Ref. 26, by 

Dt = (11kRT/72l0onr) [ lnn + YE - ln(n/2) + 128/99 ] , (3.92) 

Dr = (hBT/n71 oar d2) [ inn + YE - ln(7/2) — 13/18 ] (3.93) 

with YE the Euler constant (= 0.5772 • ). If we put /Dt 

and Sr hBT/Dr with d = 25 A, 2r = a ds = 3.4 A, and 

n ltd/2r, we have r1 5 and r2 ^' 15, so that rlr2 ^' 75. If we 

instead regard the disk as an oblate spheroid having major and 

minor axes 25 and 3.4 A, respectively, and calculate its Dt and 

Dr,27'28 we then have ri ^' 5 and r2 = 12 so that rlr2 ^' 60. In any 

case, the values of r2 and rlr2 must be about two orders of 

magnitude greater than the value 1/3 for a touched Stokes spherical 

bead model. However, this value of r1 exceeds its allowed range, 

as seen from the analysis in Sec. 3-5a. We therefore take r1 1 

and r2 = 20-80, so that rlr2 = 20-80. As shown later, the product 

r1r2, or S r, plays an important role. 

      Finally, the above analysis requires some remarks. For DNA, 
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if we assume somewhat larger motional units, we must take larger 

 ds. Further, ds will be larger for most of the other stiff chain 

than for DNA. As ds is so increased, a Stokes spherical bead 

model for the subbody seems to become better. However, then, 

no decreases rapidly as rz is decreased to zero for rz 3, as in 

the case of flexible chains (see Fig. 3.4). For such large ds, we 

must therefore again impose the condition that r2 ? 3. 

3-6. Discussion and Concluding Remarks 

a. The preaveraging approximation 

      The preaveraging approximation in the matrix C is the most 

serious in the present theory since it breaks, to some extent, the 

rigid constraints imposed and the components of the flux associated 

with the constrained coordinates are only on the average made to 

vanish. Now it must be recalled that the constraints are such that 

the magnitude of the bond vector ap is fixed to be a and its 

direction coincides with the y p axis of the localized coordinate 

system affixed to the pth subbody; i. e., I ap I = a and e~ • ap = a 

for all p. It is also helpful to recall that the discrete HW chain 

is just equivalent to a system of coupled symmetric tops (subbodies) 

with constraints such that the rotation axis (e-p) of each points 

to the center of mass of its successor with the fixed distance a 
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between those of the two. In fact, if we suppress the term 

containing the (constraining) matrix  C-1 in Eq. (2.92) for the matrix 

M so that M = IN, then the diffusion equation reduces to the 

(rotational) one for a system of coupled tops without these 

constraints. Since it is the orientations Qp of the subbodies that 

evolve with time in the present model, the partial breakdown of 

these constraints must destroy, to some extent, the orientational 

correlations between subbodies. However, it seems to have no 

significant effect on the local motions, which are governed by the 

rather short—ranged correlations. On the other hand, in order that 

long—wavelength motions with large relaxation times take place, 

there must be correct, long—ranged strong correlations. For 

instance, end—over—end rotation of the entire chain is possible only 

when all Slp are varied without relative rotations of the subbodies 

with respect to each other. Therefore, if inhibited angular 

displacements of the subbodies are accumulated over a long range 

along the chain, such long—wavelength motions fail to take place. 

This is the reason why the eigenvalues in the lowest 1° branch, 

and also in the 2° branch in the case of stiff chain, become 

negative at small wave numbers. In this connection, we note that 

preaveraging approximations lead to the breakdown of the positive 

definiteness of the diffusion operator also in the case of the 

conventional bond chain, as shown by Fixman and Evans,' but then 

it causes errors in local chain motions rather than in 
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long—wavelength (slow) motions. 

      In the present theory, however, the proper choice of the 

parameter r2  (? 3) keeping the parameter ri = 1 allows us to make 

the lowest 1° branch of the spectrum start from zero at zero wave 

number. For flexible chains, this makes it possible to remove the 

negative eigenvalues completely, and moreover the Rouse—Zimm 

dielectric relaxation times are then recovered in a very good 

approximation. The adjustable parameter r2 also serves in its 

allowed and acceptable range to remove apparently the effect of 

the preaveraging approximation on local chain motions if any, 

and thus to give reasonable values for the correlation times. Thus, 

our hope mentioned in Sec. 1-1 has been more than realized. 

b. Flexible constraints 

      Each subbody contains several skeletal bonds of the real 

chain, and moreover the interaction between two adjacent subbodies 

is governed by the soft potential derived from the free energy of 

the continuous HW chain. Therefore , the present model may be 

regarded as corresponding to a level of coarse graining of the 

realistic chain with flexible constraints on bond lengths and angles . 

The recent Brownian dynamic simulation study of Helfand and 

his co—workers~9-31 demonstrates the adequacy of such a bond chain 

with flexible constraints, especially on bond angles . However, owing 
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to the rejection of Boyer— and Schatzki—type crankshaft motions, 

it is no longer easy to image a detailed picture of chain motions 

clearly in the present model as well as in the bond chain. 

c. Periodic vs nonperiodic boundary conditions 

     The equilibrium and also time—dependent distribution 

functions for the present discrete model have been expanded in 

terms of the Wigner functions  .&7' (with 1 integer), and therefore 

satisfy periodic boundary conditions. Although this is a natural 

consequence of the construction of the present model from the 

continuous HW chain whose Green's function satisfies similar 

boundary conditions, it has a far more important meaning. That 

is, it makes the present model correspond to the real (flexible) bond 

chain whose potential energy is a periodic function of internal 

rotation (torsion) angles. On the contrary, Barkley and Zimm32 

have adopt nonperiodic boundary conditions in their treatment of 

the continuous elastic and also spring—bead models for DNA (near 

the rod limit). In fact, the nonperiodic boundary conditions are 

required when we consider, for instance, the super—coiling of 

constrained DNA,33 or the linking number and the twist of closed 

DNA.34 However, the periodic boundary conditions lead to no 

incorrect results as far as the properties of our present interest 

such as dielectric relaxation are concerned even for DNA and other 
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 stiff chains. It is very difficult to impose the nonperiodic boundary 

conditions on the distribution functions for the HW chain whether 

it is continuous or discrete. 

d. Conclusion 

      We have presented a method of decoupling the eigenvalue 

problem for the representation of the diffusion operator 2' of the 

discrete HW chain by introducing the standard representations by 

analogy with quantum mechanics, and have also given approximate 

expressions for the time—correlation functions in the subspace L(1) 

for the discrete HW chains. All the results presented here 

encourage us to make a further detailed study of the present model. 

Thus, in the next chapter, we shall consider dielectric relaxation. 

The problem that will then follow is to obtain the eigenvalue 

spectra and the time—correlation functions in the subspace {2(1), 

2(2) } in order to treat the intrinsic viscosity. This will be done 

in Chap. 5. 

Appendix 3—A. The Three—Dimensional Eigenvalue Problem 

     In this Appendix, we give the analytical solution of the 

three—dimensional (L = 1) eigenvalue problem given by Eq. (3.60) 

(with K0 # 0). 
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      The  3x3 matrices E1u),[k] and L1(l),[k] are 

Eun .[k] = (8112)-Ndiag(a, N, a) , 

  _( a —ic d 
      Ll(1).[h] = (82T2)r1 ic b ic                           d —ic a , 

with 

a = s10)l 

     Q = sio)o 

and 

  a = 2 —C                 1-2z2vCr(1)1+S'(1)1          zo(1z) 

_ 3 KOzv-2(S(Ol)0 ± 8 s11)0 + $ S21)0 + s21)2) , 

               ¢22(1)01(1)0_122(1)1      b = 2azov(So+zSz)iKov(S1+ 

C =24/TKorov-2(So )o_ $s11)1_aS2)o+s Sp) 

d = _ 2 K0zv-2(S(01)0 _ $ sli)o + a Sz )0) 

where v, SL)' — STY,„ and SL)' = Snk are given 

and (3.55), respectively, and we have used the 

[ as seen from Eqs. (3.54) and (3.55) ] , and 

Eq. (3.51) explicitly in terms of Ko and zo. 

      Then, the desired eigenvalues Al,k (j = —1, 

/11,k = (ZS r)-1 [ a-1(a + d) + a-1b — (-1)''A ] 

_ ("ra)-1(a — d) for j = 1 , 

with 

      A = { [ 0,'1(a + d) — /1 'b ] 2 + 8(a5)-'c2l 112 

—9 9 —

explicitly given by 

           (3A.1) 

           (3A.2) 

           (3A.3) 

S(21)1) (3A.4) 

by Eq. (2.19), (3.54), 

relation SL)-'= SL)' 

expressed Tea( in 

 0, 1) are 

for j = —1, 0 

           (3A.5) 

           (3A.6)



      The corresponding eigenvectors  vi,,,, which are the column 

vectors of the diagonalizing matrix Q (1).[h] in Eq. (3.60), are 

     v{; T = [ — 2 (-1)'(B,/A)1/2 2i((0)—"2c(ABi)—'12 

—4(-1)(B1/A)112] for j = —1, 0 

       = (1/VT, 0, —1/VT) for j = 1,(3A.7) 

with 

B, = A — (-1)' [ a-1(a + d) — rib] (j = 0, —1) . (3A.8) 

We note that the indexing of the above eigenvalues and eigenvectors 

is arbitrary, and does not affect the value of the time—correlation 

function given by Eq. (3.62). In the above, for convenience, the 

indexing has been made in such a way that j = 0 and —1 for 

v'--1 = vi, and j = 1 for vLi = —vi, where vi.h = (u'-1, vo, vi), and that 

A°,1 < Ai,l in the former. 

Appendix 3—B. The Mean Reciprocal Distance 

      In this Appendix, we give an interpolation formula for the 

mean reciprocal distance <Rpgl>eq between the pth and qth 

subbodies appearing in the diffusion matrix B. As noted before, 

it may be replaced by the mean reciprocal (end—to—end) distance 

<R-1(s)> of the corresponding continuous HW chain of contour 

length s = I q — p 14s. Here and hereafter, the subscript eq is
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suppressed, for simplicity. For the cylinder model used for the 

evaluation of the steady—state transport  coefficients,35'36 an 

interpolation formula for the mean reciprocal distance between a 

contour point and a point on the cylinder surface as a function 

of s and diameter d has already been given by Yamakawa et al.37 

on the basis of the e3 values by the epsilon method, the WI3, WII3, 

or FS3 values by the weighting function method, and the second 

Daniels approximation values.37 For the present case of d = 0, we 

can construct an interpolation formula in a similar way but as 

a function of s, K0, and ro covering almost all important ranges 

of Ko and ro. 

      It has been found to be convenient to construct an 

interpolation formula, instead of for <R-1(s)> itself as in Eq. (66) 

of Ref. 37, for a function F(s) defined by 

<R-1(0> _ [ <R2(s)>Kp/<R2(s)> ] 112<R-1(s)>Kp [ 1 + K02r(s) ] , (3B.1) 

where <R2(s)> is the mean—square end—to—end distance of the same 

continuous HW chain and given by Eq. (2.22), <R2(s)>Kp is the 

mean—square end—to—end distance of the KP chain of the same 

contour length and given by Eq. (2.22) with K0 = 0 (cm = 1 and 

zo/v = 1), and <R-1(s)>Kp is the mean reciprocal distance of the 

same KP chain and approximately given by35 

<R-1(s)>Kp .... ()1/a1—40 s—73 z, for s > 2.278 ,           zs(4480s 
= s_1(1 + is + 0.1130s2 — 0.02447s3) , 
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                        for s 2.278 .(3B.2) 

A good approximation to  F(s) has been found to be of the form, 

  27 

      (s) = exp( —2/s)EAks-k + exp [ —(2 +av)s]E Aksh, (3B.3)      k=1h=3 

with 

Al = 3(4 + r02)-1(4 + v2)-1 — 0 (9 + v2)-1(36 + v2)-1 

x [ 1 + (101 + K02)(4 + r°2y1 + 3(160 + 7K02)(4 + 42)-2] , (3B.4) 

                                 7 6 

      Ak = { 1 + Sk2 [ (4 + v2)-1 — 1 ] } E E ah vi(r0/v)2, , 
                                                    i=0 j=0 

(h = 2-7) , (3B.5) 

where a are constants independentof s, Ko, and ro. 

     For s << 1 and s >> 1, <R-1(s)> given by Eq. (3B.1) with 

Eqs. (3B.2)—(3B.5) may be expanded as follows: 

<R-1(s)> = s-1(1 + *s + • • ) , for s << 1 

                  6 s \ 1/2(1 41.0 K02(4 + 42)-1(4 + y2)-1 3K02 

            X [1 + (101 + K02)(4 + 102)-1 + 3(160 + 7K02)(4 + r02)-2] 

x (9 + v2)-1(36 + v2)-1} s_1 + • / , for s >> 1 . (3B.6) 
That is, Eq. (3B.1) gives the exact first—order correction for the 

rod limit for s << 1 and the first Daniels approximation for 

s >> 1, as seen from Eq. (47) of Ref. 37 (for s << 1) and Eq. (55) with
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Eq. (53) of Ref. 37 and Eq. (44) of Ref. 38 (for s >> 1). We note that 

Eq. (3B.1) gives the approximatesecond—order term 

(0.1130 +  K02/24)s2 for s << 1, while the corresponding exact term is 

(1/15 + K02/24)s2, as found from Eq. (34) of Ref. 37 and Eq. (17) of 

Ref. 39 with its appendix. When K0 = 0, this statement applies to 

the second line of Eqs. (3B.2). 

     The numerical coefficients a; n Eq. (3B.5) have been 

determined by the method of least squares from the WI3 values 

of <R-1(s)> by the weighting function method for 0.3 5 s < 2.3 

and for various values of ko and to. The WI3 values in this range 

of s had already been obtained for the values of K0 and to indicated 

by the filled points in the (ico, ro) plane of Fig. 3 of Ref. 36. We 

have here added WI3 values in the same range of s at some points 

in the domains of v < 1.5 and 0 < ro/v <_ 0.5 and of v <_ 8 and 

0.5 <— ro/v <_ 1. The results for a are given in Table 3.1. In the 

shaded domain of Fig. 3 of Ref. 36 and the above two added 

domains, the values of <R-1(s)> calculated from Eq. (3B.1) with 

Eqs. (3B.2)—(3B.5) and with these values of a; agree with the 63 

values for s < 0.3, the WI3 values for 0.3 < s < 2.3, and the second 

Daniels approximation values for s > 2.3 to within 2%. 

     Finally, we note that in the domain III of Fig. 2 of Ref. 37 

for v ? 20, Eq. (3B.1) with Eqs. (3B.2)—(3B.4) and with Ak = 0 

h = 2-7 gives very good approximations. Thus, this rather simple 

formula applies to, for instance, i—PS, polyoxymethylene (Ko = 17 
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Table 3.1. Values of the coefficients  k  a
ilin Eq. (3B.5).

k

1 2 3 4 5 6 7

0 

0 

0 

0 

0 

0 

0 

1 

1 

1 

1 

1 

1 

1 

2 

2 

2 

2 

2 

2 

2 

3 

3 

3 

3 

3 

3 

3

0 

1 

2 

3 

4 

5 

6 

0 

1 

2 

3 

4 

5 

6 

0 

1 

2 

3 

4 

5 

6 

0 

1 

2 

3 

4 

5 

6

- 2 .7049 
1. 5233(1)a 

- 9.3705(1) 

 3.4199(2) 
- 6.1943(2) 

 5.4254(2) 
- I . 8490 (2) 

 9.1142 
- 5.3595(1) 

3. 0376(2) 
-1 .0880(3) 

1. 9786(3) 
-1.7484(3) 

 6.0051(2) 
-1 .0953(1) 

 5.4313(1) 
- 2.2099(2) 

6. 8539(2) 
-1.1983(3) 

1. 0698(3) 
- 3 . 8042(2) 

5. 7440 
-1.9872(1) 
- 3.7479 

 1.5736(2) 
- 3.5702(2) 

3. 0368(2) 
- 8.6201(1)

- 7.5400(-1) 
9.4768(-1) 
 2.0811(1) 

- 2.0445(2) 
 5.4622(2) 

- 5 .6789(2) 
2. 0504(2) 

 3.4651 
- 6.9304 
-3.0288(1) 

5.4423(2) 
-1 .6278(3) 

1. 7824(3) 
- 6.6501(2) 
- 5.1542 

1. 3826(1) 
-3.2259(1) 
- 3.6187(2) 

1. 4531(3) 
-1 .7667(3) 

6.9945(2) 
 3.4159 

-1.0809(1) 
 5.6583(1) 
 3.5420(1) 

- 5.2768(2) 
7. 8272(2) 

- 3.4025(2)

  6.1401 
- 2.2437 
- 8.8606(1) 

6. 7654(2) 
-1 .6914(3) 

1.7137(3) 
- 6.1311(2) 
-2 .5624(1) 

  2.1913(1) 
1.3036(2) 

-1.5530(3) 
  4.4380(3) 
- 4.8472(3) 

  1.8343(3) 
. 3.6013(1) 
-3.1847(1) 
- 4.7715(1) 

1.3094(3) 
- 4.4486(3) 

5.3715(3) 
- 2.1919(3) 
-2 .2711(1) 

10667(1) 
  7.4575(1) 

- 8.7510(2) 
2. 9171(3) 

-3 .6467(3) 
  1.5476(3)

-6.6199 
- 5 .9720(1) 

3. 6688(2) 
-1.0032(3) 

 1.3957(3) 
-1 .0037(3) 

 3.1010(2) 
 2.9550(1) 

2. 0709(2) 
-1.0721(3) 

2.2622(3) 
- 2.4375(3) 

 1.6007(3) 
- 5.9341(2) 

-4.3831(1) 
- 2.7059(2) 

1. 2764(3) 
- 2.2413(3) 

2.2324(3) 
- 1 .9864(3) 

1. 0478(3) 

 2.9061(1) 

1. 8760(2) 
- 9.6990(2) 

 2.1083(3) 
- 3 .1763(3) 

3.4184(3) 
- 1.6139(3)

 2.6941 
 9.3801(1) 

- 3.3357(2) 
- 1.2857(2) 

 1.9124(3) 
- 2.5173(3) 

9. 7025(2) 
-1 .2770(1) 
- 3.5688(2) 

 1.2051(3) 
 8.0190(2) 

- 7.5809(3) 
 9.4110(3) 

- 3.4610(3) 
1.9952(1) 
4. 9588(2) 

-1. 8389(3) 
 1.1757(2) 

6. 9490(3) 
- 8.7553(3) 

2. 9927(3) 
-1 .3378(1) 
- 3.4288(2) 

 1.5440(3) 
-1. 9366(3) 
- 7.4079(1) 

9.2878(2) 
- 8.5762(1)

4.1447(- 2) 
-4 .2218(1) 

 1.0364(2) 
3. 7135(2) 

-1.6006(3) 
 1.8642(3) 

-6 .9619(2) 
3.8899(- 1) 

 1.6667(2) 
- 4.4621(2) 
-1 .1734(3) 

 5.4732(3) 
- 6.3560(3) 

 2.3325(3) 
-1.1709 
- 2 .3698(2) 

 7.8458(2) 
6. 0981(2) 

- 5.0433(3) 
6.0542(3) 

-2.1592(3) 
8.6677(-1) 
1.6405(2) 

- 6.9034(2) 
5.8246(2) 
9. 8854(2) 

-1 .5527(3) 
4. 9886(2)



4 

4 

4 

4 

4 

4 

4 

5 

5 

5 

5 

5 

5 

5 

6 

6 

6 

6 

6 

6 

6 

7 

7 

7 

7 

7 

7 

7

0 

 1 

2 

3 

4 

5 

6 

0 

1 

2 

3 

4 

5 

6 

0 

1 

2 

3 

4 

5 

6 

0 

1 

2 

3 

4 

5 

6

 -1.4876 

2. 5094 

 3. 8402(1) 
- 2. 0277(2) 

4.0109(2) 
- 3.4870(2) 

 1.1115(2) 
2. 0156(- 1) 

 1. 0037(- 1) 
-1.1430(1) 

5.4302(1) 
-1 . 0524(2) 

9.1596(1) 

 2. 9583(1) 
-1.3692(- 2) 
- 4. 5337(- 2) 

1.3124 
-5.9817 

1.1478(1) 
- 9. 9799 

3.2356 

3. 6668(- 4) 
2. 5887(- 3) 

- 5 . 3926(-.2) 
2. 4002(- 1) 

-4. 5749(- 1) 

 3. 9713(- 1) 
-1 . 2890(- 1)

-1.1070 
 3. 7734 
- 2.4593(1) 

2.4499(1) 
9. 9426(1) 

-1. 9649(2) 
9.4812(1) 
 1. 8587(- 1) 

- 6 . 4465(- 1) 
4.6045 

- 6 . 9392 
-1.1949(1) 

3.0585(1) 
-1 . 5919(1) 
-1. 5546(- 2) 

5. 2776(- 2) 
- 3 . 9410(-1) 

6. 4804(- 1) 
 9. 8534(- 1) 

- 2. 7398 
1.4718 
 5. 1292(-4) 

-1. 6554(- 3) 
 1. 2641(- 2) 

- 2. 0081(- 2) 
- 4 . 0030(- 2) 

1, 0440(-1) 
- 5. 6148(- 2)

7. 0707 
 2. 0359 

-6 .8657(1) 

4.4154(2) 
-1 .2757(3) 

 1.5435(3) 
- 6.5280(2) 

-1.1416 

-1.5497 

2.2698(1) 
-1 .1903(2) 

 3. 1002(2) 
- 3 .6016(2) 

1.4990(2) 
9. 1506(- 2) 

 2. 5063(- 1) 
- 3.0626 

1.4823(1) 
- 3 .6396(1) 

4.1058(1) 
-1.6848(1) 
- 2. 8821(- 3) 
-1.2765(- 2) 

1.4489(-1) 
- 6. 7528(- 1) 

1.6025 
-1 .7729 

7. 1994(-1)

- 9.2818 
- 7.4027(1) 

4. 5264(2) 
-1.2793(3) 

2.3455(3) 
- 2.5035(3) 

1.0764(3) 
1.4900 
1. 5971(1) 

- 1. 1165(2) 

3.6679(2) 
- 7.1974(2) 

 7. 5604(2) 
- 3.1092(2) 
-1.1498(-1) 
-1.7173 

1.3099(1) 
-4 .6670(1) 

9.4233(1) 
- 9. 8016(1) 

3. 9416(1) 
3. 3886(- 3) 
7. 1257(- 2) 

- 5.7451(- 1) 
2. 1445 

- 4.3922 
4. 5412 

-1 . 8035

 4. 0545 
1.2920(2) 

- 7. 0566(2) 
 1. 5600(3) 

- 2. 0101(3) 

 1.7772(3) 
- 7.6449(2) 

- 5.5695(-1) 

- 2.6405(1) 

 1.6633(2) 
- 4.6797(2) 

7.7277(2) 
- 7.3586(2) 

 2. 9400(2) 

 3. 0642(- 2) 
2. 7092 

- 1. 8776(1) 

 5. 9690(1) 
-1.0758(2) 

1. 0452(2) 
- 4. 0848(1) 

- 3. 7515(- 4) 
-1 .0837(-1) 

8. 0042(-1) 
- 2 .7276 

 5. 1268 
- 5. 0238 

 1. 9439

-1 .1502(-1) 
- 6. 0976(1) 

3. 1418(2) 
- 6. 0554(2) 

 5. 8374(2) 
- 4 .0787(2) 

1. 8051(2) 
-4.5479(- 2) 

 1.2233(1) 
- 7.2814(1) 

 1. 8802(2) 
- 2.7903(2) 

2.4845(2) 
- 9. 7735(1) 

1. 1544(- 2) 
-1.2318 

 8. 0822 
-2.4081(1) 

 4. 0635(1) 
- 3 . 7915(1) 

1.4602(1) 
-7520(- 4) 

4. 8466(-2) 
-3 . 3976(- 1) 

1.0976 
-1 . 9646 

 1. 8683 
-7.1361(-1)

aa(n)
means ax10".



and to = 25), and syndiotactic polypropylene  (Kco = 7.5 and to = 30) 

(see Table I of Ref. 20). 
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CHAPTER 4 

DIELECTRIC RELAXATION 

4-1. Introduction 

      In Chap. 3, we have given an approximate scheme for 

partially decoupling the eigenvalue problem for the representation 

of the diffusion operator of the discrete helical worm—like (HW) 

chain and found the general solutions in the decoupled subspaces 

L(1) of the basis functions. In this chapter, we proceed to study 

the dielectric relaxation that can be described in terms of the 

L  = 1 correlation functions. 

      We first give a brief historical survey of dielectric theories 

for chain polymers in dilute solution. The foremost of the 

development is a diffusion equation approach for the conventional 

bond chain with constraints by Kirkwood and his co—workers,' 

in which the dielectric dispersion broader than a Debye one4 has 

been obtained but the results are far from realistic because of 

drastic mathematical approximations. Subsequently, significant 

advances have been made by Zimm5 and Stockmayer and Baur6'' 

on the basis of the simple tractable spring—bead model. These 

provide an understanding of the long—wavelength motions of a 

chain, especially having parallel dipoles.''$ However, the model fails 
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to treat dielectric relaxation arising from the local motions of a 

chain having perpendicular dipoles. An analysis of this type of 

relaxation can be made, to some extent, on the basis of very simple 

models such as a one—dimensional array of perpendicular dipoles , 

as done by Clark and  Zimm9'10 and Shore and Zwanzig.' (Mansfield12 

has recently considered a modification of the Clark—Zimm model , 

and Cook and Livornese13 have made a Brownian dynamics 

simulation study.) These and also stochastic models, including Ising 

and lattice sstems14"5serve to understand the basic local   yprocesses 

in chains having perpendicular dipoles and to derive broad and 

asymmetric loss curves. However, there is a great gap between 

them and real chains, and therefore it is impossible to evaluate 

dielectric correlation times, as determined from loss peaks , in terms 

of well—defined molecular parameters . In the meanwhile, Fixman 

and his co—workers16 have elaborated the diffusion equation 

approach for the bond chain with constraints . In particular, 

Fixman and Evans17 have made a semiquantitative analysis of the 

interaction between global and local modes by a physical insight
, 

although the numerical results for , for instance, correlation times 

are not always satisfactory because of various preaveraging 

approximations. 

     Thus the main purposes of this chapter are threefold: (i) to 

make a mode analysis of the dielectric branches of the eigen value 

spectrum in order to inquire into the interaction between global 
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and local modes; (ii) to explain the broad and asymmetric dielectric 

loss and also even two loss peaks in some cases; and (iii) to 

evaluate dielectric correlation times for a wide variety of polymers. 

All these are done  for both flexible and stiff chains on the basis 

of the discrete HW model such that an electric dipole moment is 

attached rigidly or with a rotational degree of freedom to each 

of the subbodies composing the chain. 

     The plan of this chapter is as follows: In the next section , 

the complex dielectric constant is formulated with the dipole 

correlation function and dielectrically active branches of the 

eigenvalue spectrum are identified for a given type of dipoles. In 

Sec. 4-3, we make a mode analysis of these branches, and also 

examine their dependences on chain length (or N). In Sec. 4-4, 

we examine the decay behavior of the dipole correlation function. 

In Sec. 4-5, we evaluate the dispersion (permittivity) e'(w) and loss 

e"(w) as functions of angular frequency w to construct Cole—Cole 

plots for some polymers, and also compute correlation times for 

various polymers. Then a comparison with experiment is made. 

For stiff chains, the dependence on N of the correlation time is 

examined in some detail. In Sec. 4-6, we discuss discrepancies 

between theory and experiment, especially those, although not very 

large, found systematically for flexible chains, and suggest a 

possible direction toward improvement of the theory.
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4-2. Formulation 

      Let  e*= e'— ie" be the excess complex dielectric constant of 

the dilute solution over that of the solvent alone. If the effect of 

local fields is ignored, it may be expressed in terms of the 

Fourier—Laplace transform of the dipole correlation function M(t) 

as followsn'18: 

(e*— em)/(eo — em) = 1 — iwfme-"" [M(t)/M(0)] dt , (4.1) 
                                     0 where eo and em are the excess limiting low and high frequency 

dielectric constants, respectively, and t is the time. If 6t(t) is the 

instantaneous, field—free, dipole moment vector of the entire chain 

expressed in an external coordinate system, M(t) is given by 

   M(t) = Gµ(0) • µ(t)>eq ,(4.2) 

where < • • • >P, denotes an equilibrium average. Note that Eq. (4.1) 

with Eq. (4.2) is a good approximation in the case of nonpolar 

solvents. Thus our first problem is to evaluate M(t). In what 

follows, all lengths are measured in units of ,F' and kBT (with 

kB the Boltzmann constant and T the absolute temperature) is 

chosen to be unity, unless noted otherwise. 

      Now let Q = (O,, 9„, dip) (p = 1, 2, • • •, N) be the Euler 

angles defining the orientation of the pth localized Cartesian 

coordinate system (es ,, en,,, ec„) affixed to the pth subbody of the 

discrete HW chain with respect to the external coordinate system 
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 (ex, e,,, e2). Let mp and mp be the local electric dipole moment 

vectors attached to the pth subbody, expressed in the pth localized 

and external coordinate systems, respectively. We assume that their 

magnitudes are independent of p so that I mp I = I mp I = m. Further, 

suppose that the vector mp is permitted to rotate about an axis, 

making a constant angle with the axis, which has constant polar 

and azimuthal angles a and $ (independent of p) in the pth 

localized system, as depicted in Fig. 4.1. Let rp(t) be the 

(time—dependent) dihedral angle between the two planes containing 

the rotation axis and e~ and the rotation axis and mp, respectively. 

The pth dipole moment vector expressed in a Cartesian coordinate 

system having the orientation defined by the Euler angles (a, $, 

yp) with respect to the pth localized system is independent of p. 

If we designate it by m, we have m = (m sing, 0, m cosd). 

      The coordinate transformation of a vector may easily be 

performed by using its spherical components rather than its 

Cartesian components, as done by Yamakawa et al.19 For example, 

the spherical components mp') (j = 0, ±1) of mp may be written 

in terms of the Cartesian components (mpg, mp,, mps) 

         ct1>_1       m
p—(mpg — impn) 

co)(4 .3) mp = mpg , 

so that the spherical components (m) c'> (j = 0, ±1) of m are given 

by 
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 Fig.  4.1. Local dipole 

coordinate system.

moment vector mA in the

      j(±l) = +Sint] , 

WO) = m cost] . 

Since the spherical components of 

transformation rule as the first—order 

for the spherical components r"n~p) (j =

 a 

sph 

0,

pth localized Cartesian

 vector obey the 

erical harmonics, we 

±1) of m„:

(4.4) 

same 

have
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  mp)I        _(871'E            2/3)1/2  20(12p)rn() 
k=-1 

1

OO           = (871'2/3) E '~1k1(9P)g11h2(a,Y, yp)177-(h2)(4.5) 
k1,k2=-1 

where . L" is the normalized Wigner functions as defined by 

Eq. (2.5). 

     Noting that 

ElIp,(4.6) 
p=1 

and that a scalar product of vectors may be expressed in terms 

of spherical components as in Eq. (9) of Ref. 19, we may write 

M(t), from Eqs. (4.2) and (4.5), as 

     M(t) = E <mp(0) • Illp (t)>eq 
P.12'=1 

             )~Nt)~1           =L .~!J <tP)*(0)1(t)>eq 
p,p=1 J=-1 

                                  ~)1 
(8712/3)2 ELj‹g k,1*(12P,0).011h2* [ a, N, rP(0) 

P,p =1 hh1,h2,hj,h2=-1 

Xrt11k2 [ a, N, rp (t) ] >egm(h2)m(h2) ,(4.7) 

where the asterisk indicates the complex conjugate and in the third 

equality we have used the fact that m(') are real. 

      Now, in order to evaluate the average of the products of 

the 2' functions in Eq. (4.7), we assume that there are no 
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 correlations between the motion of each subbody (main chain 

 motion) and the rotational motion of the dipole moment about 

the rotation axis in it (side chain motion) and also between the 

latter motions in different subbodies . Then Eq. (4.7) reduces to 

                               1 

      M(t) =  m2cos24 E e-Lcj-j')fldi°(a)di o(a)M» (t) 

   11 

+ E e-i(j-j')eMsj'(t) E (1 — 5k05h'O) 
jj'=-1h,h'=-1 

Xdik(a)d(k'(a)m(k)m(k')Cski' (t) , (4.8) 

where 8kh' is the Kronecker delta , di/ is defined by Eq. (2.7) and 

Mil, Msj', and Csi are correlation functions defined by 

N 

> M" (t) = (87r2)N ECl' .lA.p)(t),(4.9) 
A•p =1 

N 

    Mss (t) — (8Z2)N E cy, pl (t) ,(4.10) 
p=1 

     Cs{ = <exp [ —i jrp(0) ] exp [ i j'Y p(t) ] >eq .(4.11) 

In Eqs. (4.9) and (4.10), Ci' jp pj is the (1, 1)—body standard correlation 

function defined in Chap . 3 with the "total angular momentum 

quantum number" L = 1. 

     We first consider Mil (t) and Ms"(t). Taking the sums in 

Eqs. (4.9) and (4.10) by the use of Eq. (3.62) for Ci'epp) (for K0 54 0), 
we find
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 Mir(t) = 2(N + 1)-1 E cot' [ h1r/2(N + 1) 
k odd 

X E Ri,h*Ri,i/exp(—A.kt) ,(4.12) 

                  N1 

    mV(t)_E E Ri,h*Ri.h exp(—Ai,kt)(4.13) 
k=1 i,.=-1 

with 

Rih = (871.2)N/2 Qlkl'*(E(mm) )1/2m*(~a)(4.14) 
m=-1 

where Abe are the eigenvalues given by Eqs. (3A.5), Qih' are the 

j, j' elements of the unitary diagonalizing matrix Qf1),[k] in 

Eq. (3.60), Ei'['hk) are the diagonal elements of the standard 

representation E1(1),[k) of the identity operator in Eq. (3.58), and 

.. (Qa) is the unnormalized Wigner function defined by Eq. (2.11) 

with Da given by Eq. (2.12). Recalling that Ei'(i),k) and the jth 

column vector vi,k of Q1a),[k] with vi,1T = (a1, ibi, ai) are given by 

Eq. (3.50) and (3A.7), respectively, and writing .d 1' (SL) explicitly in 

terms of K0 and ro, we obtain for Ri : 

RL(k 1) = RL k = rov-1(Sl°,401 /zai + 1~ /Cpv-1(Si°,hk)1/zbi (j = 0, —1) , 

Rih = i [ 4/Tkov-1(Si°,hk)1/zai _rov-1(sm1/zbi ] (j = 0, —1) , (4.15) 

      R11') = — Rl k = 1 0                      (Sl,%k)1/zRiot= 

where Si°.kk (j = 0, 1) are given by Eq. (3.54),andv is given by 
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Eq. (2.19). 

     For the KP chain  (k° = 0), Cie; p'] is given by Eq. (3.63), so 

that Eqs. (4.14) and (4.15) become 

Ri = 8 JJ (871.2)N/2c—k- )h] )1/2 

= 8jj•(Si°,i'h a (KP) ,(4.16) 

and the eigenvalues Ai,hare given by Eq. (3.65). When 6 # 0, we 

must use the expression for gL'(s) derived byYamakawa and 

Shimada,20 i. e., 

gL'(s) = 8fj-exp{—[L(L + 1) + ijr0 + j2] s} , (KP) , (4.17) 

instead of Eq, (3.42) (with 6 = 0). The final results for the KP 

chain with 6 � 0 may then be obtained from those with 6 = 0 only 

if L(L + 1) is replaced by L(L + 1) + 6j2 in the quantities SLkh 

given by Eqs. (3.54) and (3.55). 

     Next we consider the correlation function Csi (t). This is 

associated with the rotational motion of the dipole moment vector 

about the rotation axis, and no information about it is contained 

in the present model. However, since it has been assumed to be 

independent of other motions, it may be regarded as equivalent to 

that of a single—axis rotor. Whether its relaxation is due to 

stochastic diffusion among a very large number of equilibrium 

positions4'21 or to random jumps between two or three equivalent 

equilibrium positions to either of the two adjacent ones,21'22 Cd(t) 

may then be written in the form 
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 Csf  (t) = ojj• ,for j = 0 

lSjj e-tiz;~ ,for j = ±1 (4.18) 

with rs1 the correspondingcorrelation time. Note that the jump 

rate is equal to (nrS1)-1 forthe n—state jump process (n = 2, 3). 

     If we substitute Eq. (4.18) into Eq. (4.8) and write M(t) 

explicitly in terms of trigonometric functions, we obtain 

     M(t) = m2cos24  [cos2a M00(t) + sin2a M11(t) 

           — sin2a cos2$ M1c-1>(t) + /i sin2a sins M10(t) ] 

           + Z m2sin24 e-ti=sl [ sin2a M0°(t) + (1 + cos2a)M1,1(t) 

           + sin2acos2sMs(-1)(t) —'i sin2a sinsMS°(t) ],(4.19) 

where we have used the relations 0-')(-1)-- M(-1'1= M1(-1), and 

Mc-1>°= _Moc-1>= —Mel_ M10 and also similar relations for Ms'. When 

the dipole moment vectors are affixed rigidly to the subbodies 

(4 = 0), M(t) may be written in terms of M00(t) if mp is parallel 

to ern (a = 0), in terms of M11(t) and Mu-1>(t) if mp is perpendicular 

to ec„ (a = 7r/2), and in terms of 4M(t) = M11(t) — M1(-1)(t) if mp is 

parallel to et, (a = it/2 and s = 0 or g). 

     Substitution of Eqs. (4.12) and (4.13) with Eq. (4.15) into 

Eq. (4.19) leads to 

   M(t) = 2(N + 1)-1m2cos24 E cote [ h7r/2(N + 1) ] E A{,hexp(—/li,ht) 
h oddj=-1 

                 CN,          +2m2sin24L,E Asl,hexp [—(~li,h+rs~1)t] , (4.20) 
h=1 j=-1 
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where the coefficients  Ai,h and As1,1 are real and nonnegative, and 

given by 

     Aih = (/sing sin$ Rih + i cosa Rik)2 , for j = 0, —1 

= sin2a cos2/3 Si°nh ,for j = 1 ,(4.21) 

Asl,h = ('cosa sing Rih — i sina Rik)2 + 2cos2s (R1.102  , 

                                           for j = 0, —1 

         = (sin2$ + cos2a cos2(3)Si°,kh , for j = 1 .(4.22) 

For the case of d = 0, we note that if mp is parallel to esA 

(a = 0), then Ai,h = 0, and therefore the j = 0 and —1 branches of 

the eigenvalue spectrum make contribution to dielectric relaxation, 

and also that if mp is parallel to egp (a = 7r/2 and $ = 0 or 7r), then 

only the j = 1 branch makes contribution. 

      For the KP chain, there is degeneracy such that A ,h = /1174, 

as shown in Eq. (3.65). Therefore, if the second line of Eqs. (4.16) 

instead of Eqs. (4.15) is used, then Eqs. (4.21) and (4.22) become 

Aih = 2 [ 1 + (-1)3cos2a ] Si°i'h , for j = 0, 1 

= 0 ,for j = —1, (KP) , (4.23) 

As,,h = (sin2a + 2j cos2a)Si°,hh , for j = 0, 1 
      = 0,forj = —1 , (KP) . (4.24) 

When d = 0, only the j = 0 or 1 branch is seen to make 

contribution if mp is parallel or perpendicular to e~p. 

     Finally, if we substitute Eq. (4.20) into Eq (4.1) and perform 

the integration over t, we obtain 
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 —  Em =  m2  f2 cos24cot2r k t  1  Ai,h       co—EmM(0)N + 1 h oddj=_1L2(N + 1) J 1 + icvri,k 

N 1 As
l.h             +2sin24Ej(4.25) 

h=1 j=-1 1 + LCOrs1,h 

where 

ri ,k = (Aik)-1 ,(4.26) 

rs1.k = (Al,h + rsi- 1)-1 ,(4.27) 

and M(0) is given by Eq. (4.20) with t = 0. We note that although 

M(0) = <1.12>eqas seen from Eq. (4.2), this M(0) does not exactly 

agree with<.U2>eq for the continuous chain19 because of its 

replacement by the discrete chain and also of the block—diagonal 

approximation introduced in Chap. 3. The final results in this form 

is seen, from Eq. (4.25), not to depend on the magnitude m of the 

dipole moment vector but on its orientation in the localized 

coordinate system, and can also be seen to be independent of the 

sign of the model parameter ro for a = 0 or n/2. However, it is 

more important to see that the eigenvalues with small h make 

the main contribution because of the factor cote [ kg/2(N + 1) ] as 

far as the main chain motion is concerned. 

4-3. Eigenvalue Spectra 

      Now, we examine the behavior of the three dielectric 

(j = 0, ±1) branches of the spectrum in detail, especially their mode 
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character and dependences on chain length at small wave number 

 h. The mode analysis can be made by the use of the 

eigenfunctions corresponding to Ai,h. 

      Before proceeding to the analysis, some remarks must be 

made on the model parameters. We introduce as in Chap. 3 the 

dimensionless parameter rl and r2 defined by Eqs. (3.67) and (3.68), 

respectively. Further, it is convenient to use instead of ds the 

number nb of skeletal bonds of a given real chain (except DNA) 

corresponding to one subbody of the discrete HW chain. We may 

relate the unreduced ds to nb by the equation 

  d s = (Mb/ML)nb ,(4.28) 

where ML is the well—known shift factor as defined as the 

molecular weight per unit (unreduced) contour length of the HW 

chain, and Mb is the molecular weight per bond, i. e., the molecular 

weight of the monomer unit divided by the number of skeletal 

bonds in it. In the case of DNA, it is convenient to let nb be 

the number of base pairs in one subbody. As for the model 

parameters Ko, to, A-1, and ML, we adopt the ones determined 

recently by Fujii et al.23 and listed in Table I of Ref . 23. We 

consider flexible chains (K0 = 0) and KP stiff chains (x0 = 0). Note 

that in general, for stiff chains , A' is large, and therefore the 

reduced ds is very small. All numerical work has been done by 

the use of a FACOM M-382 digital computer in this university .
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a. Flexible chains

     We take as examples of flexible chains (K0 0) syndiotactic 

polystyrene (s—PS;K0 = 0.8 and to = 2.3) and syndiotactic 

poly(methyl methacrylate) (s—PMMA; K0 = 4.4 and  to = 0.8). Figure 

4.2 shows plots of the reduced eigenvalues ii .h = 

37ttloa3rlrOA1,k/kBT (with Ai,h and a unreduced) against the reduced 

wave number k = k/(N + 1) for s—PS (full curves) with nb = 2, 

N = 999, r1 = 1, and r2 = 80 and for s—PMMA (broken curves) with

0.8

0.6

i•< 0.4

0.2

 =I

 0 1 111       0 0
.02 0.040.06 0.08 0.10 

k 

Fig. 4.2. The reduced eigenvalues ;lb, plotted against the reduced wave number 
h for syndiotactic polystyrene (full curves) with nb=2, N=999, r1=1, and 
r2=80 and for syndiotactic poly(methyl methacrylate) (broken curves) with 
nb=2, N=999, r1=1, and r2=20.
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 nb = 2, N = 999, r1 = 1, and r2 = 20. We have neglected the small 

intercept  A°,o of the lowest (j = 0) branch [ given by Eq. (3.74)1 to 

make A°,hstart just from zero at k = 0, and thus plotted the 

corrected values Abe — A°,o. This correction is made throughout the 

remainder of this chapter. An avoided crossing between the 

j = 0 and —1 branches is seen to occur at k 0.04 for s—PS and 

at k = 0.02 for s—PMMA. 

      It is important to see that the avoided crossing is remarkable 

for s—PS but not, or weak, for s—PMMA. In general, it is 

remarkable for monosubstituted syndiotactic chains which are close 

to s—PS in the model parameters K0 and to, and also for chains 

such as monosubstituted isotactic chains having relatively large 

to/Ko (see Table I and Fig. 10 of Ref. 23). On the other hand, it is 

weak for chains such as s—PMMA having relatively small r0/Ko. 

Disubstituted isotactic chains are intermediate. 

     Now we examine the change of the mode character of each 

branch of the dielectric spectrum as k is changed across the 

avoided crossing between the j = 0 and —1 branches. This can 

be done by using the eigenfunctions corresponding to the L = 1 

eigenvalues Ai.h, which we designate by teIfh] with M (= 0, ±1) the 

"total magnetic quantum numbe r." As shown in the Appendix 4—A, 

they may be written (for Ko 0) in the form
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 'P  i = /i [ ci(h)gh,.z + cz(k)gk,21 , for M = 0 
= ci(k)(T iq ,x + qh.),)(j = 0, —1) 

        + c'z(k)(RLgkz + qk,y) for M = ±1 ,(4.29) 

ti) = cl(k)gh,= ,for M = 0 
                                        (j = 1)         = cl(k)(T gk.x — iq y) , for M = ±1 , 

where ci(k) and c2(k) are real coefficients given as functions of k 

by Eqs. (4A.6), and Ai (i = x, y, z) and so on are the components 

of vectors qh and so on in the external coordinate system, which 

are given by 

qk = E Qphe p ,(4.30) 
p=1 

and similar equations for qi and qk with Q°pk the orthogonal 

symmetric matrix defined by Eq. (3.43). Since aecp is the pth bond 

vector, aqk are just the Rouse global, vector (normal) modes. On 

the other hand, ern and e77 are perpendicular to the bond vector 

and therefore qk and qk may be regarded as representing local, 

vector (although not normal) modes. Thus Eqs. (4.29) indicate that 

the L = 1 eigenfunctions may be written as linear combinations 

of the global and local vector modes. 

     Specifically, however, 0i't1] may be written in terms of only 

qi, so that the j = 1 branch is of the purely local nature, while 

there is a mixing of global and local modes in each of the j = 0 

and —1 branches. Then the fractions 40b(h) and 40,(k) of global 

and local mode contributions to the j (= 0 or —1) branch may 
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be expressed conveniently as 

 xfoc  = (c02/ [(c1)2 + (02 ] (J = 0, —1)(4.31) 

with xg10b = 1 — xfoc. Figure 4.3 shows plots of xfoc (j = 0, —1) 

against the reduced wave number k for s—PS (full curves) and 

s—PMMA (broken curves) with the same respective model parameters 

as in Fig. 4.2. It is seen that at small k, for both polymers, x oc 

is very small and xio is close to unity, so that there the j = 0 

branch is mainly global, while the j = —1 branch is mainly local.

u

I.0
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0.4

0.2

 J=0

J=-I

-I

     0 - 1-*owZ/r...—. -r--
     0 0.02 0.04 0.06 

Fig. 4.3. The local mode fractions xfoc in the j=0 
against the reduced wave number It for syndiotactic 
and syndiotactic poly(methyl methacrylate) (broken 
respective model parameters as in Fig. 4.2.

0.08 0.10

and —1 branches plotted 

polystyrene (full curves) 
 curves) with the same
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Recall that in Chap. 3, we have regarded the  z°.h given by Eq. (4.26) 

with small h as the Rouse—Zimm dielectric relaxation times.' 

Further, in the case of s—PS, for which the avoided crossing is 

remarkable, the global and local mode contributions to each branch 

are seen to be reversed at h 0.04 at which it occurs. This is 

consistent with the conjecture of Fixman and Evans.19 For s—PMMA, 

however, such reversal does not occur, although there is a weak 

interaction between global and local modes at k = 0.02 at which 

the weak avoided crossing occurs. 

      Next we examine the dependence on N of the eigenvalues. 

Figure 4.4 shows plots of the reduced eigenvalues Aih (j = 0, —1) 

against the reduced wave number k for s—PS with nh = 2, ri = 1, 

and r2 = 80. The full curve represent the values for N = 999 as 

in Fig. 4.2, and the broken and dotted line segments connect the 

values for N = 99 and 49, respectively. The open circles at 

h = 0.001, 0.01, and 0.02 represent the values of ~l°,1 and Al,i, i. e., 

the end values for N = 999, 99, and 49, respectively. As seen from 

Fig. 4.2, the j = 1 branch is very close to the j = —1 branch for 

h S 0.04 and to the j = 0 branch for It ? 0.04, and therefore it 

has been omitted. From Fig. 4.4, the shape of the spectra is seen 

to be not strongly depend on N. However, it is interesting to see 

that AL and also AT1 are almost independent of N (? 50), while 

4,1 decreases to zero with increasing N. The results seem 

reasonable since A°,1 and AN are essentially the relaxation rates 
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Fig. 4.4. The reduced eigenvalues Ai.k plotted against the reduced wave number 
le for syndiotactic polystyrene with nh=2, r1=1, and r2=80. The full curve 
represents the values for N=999, and the broken and dotted line segments 
connect the values for N=99 and 49, respectively. The open circles represent 
the values of Ail.
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 to # 0),2¢ whose contour is taken along the helix axis. Because of 

a structural symmetry about it (the t- axis), the local dipole 

moment vectors mp may be regarded as parallel to it; i. e., 

a = d = 0. As noted in Sec. 4-2, the dielectric relaxation may then 

be written in terms of only the eigenvalues A°,h in the j = 0 branch 

unless the side chain motion exists. As seen from Eqs. (4A.7) in 

the Appendix 4—A, for the KP chain, the eigenfunctions 

 to AN may be written in terms of only qh, so that 

the j = 0 branch is purely global. Furthermore, it can easily be 

seen, from Eq. (4.12) and the succeeding development for the KP 

chain with Poisson's ratio 6 00, that the dielectric relaxation of 

such stiff chains is independent of to and 6. 

      Thus we examine the behavior of the j = 0 branch, taking 

DNA (K0 = 0 and to = 200) as an example. As mentioned in 

Sec. 3-5b, even if 4,0 is subtracted, the first two corrected 

eigenvalues A°,1 and 4,2 are still negative, although very small in 

magnitude, for nb = 1 (4s = 0.0031), N = 199, r1 = 1, and P2 = 50. 

(Recall that this arises from the preaveraging approximation.) It 

is therefore important to find those ranges of nb and r2 over which 

the negative eigenvalues can be removed. Figure 4.5 shows plots 

of the reduced eigenvalues A°,h against the reduced wave number k 

for DNA with N = 199 and rl = 1 for various values of nb and 

r2. Note that the points connected by the dotted line segment are 

just the results obtained previously and that nb = 10 corresponds 
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 one turn of the double helix. It is seen that all 

3 are safely positive for nb ? 5 at r2 = 50 or for r2 ? 10 

. In any case, nb must be chosen to be relatively large . 

 that such a choice is permitted in the case of dielectric 

associated with the global motion, although 4s must be 

be close to the distance between base pairs in the case 

r magnetic relaxation and fluorescence depolarization 

with the local motion or torsion dynamics . 
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     As in the case of s—PS shown in  Fig.  4.4, the shape of the 

spectra in Fig. 4.5 except for the case of nb = 1 and r2 = 50 (dotted 

line) is almost independent of N, and A°,1 decreases to zero with 

increasing N provided that all eigenvalues il°,h are positive. A 

further analysis of the N dependence is deferred to Sec. 4-5b. 

4-4. Correlation Functions 

      In this section, we examine the decay behavior of the dipole 

correlation function M(t) for both flexible chains (K0 # 0) and stiff 

chains (/co = 0). In general, it is governed not only by the 

eigenvalues but also by the amplitudes, especially for the former. 

a. Flexible chains 

      We begin by making some general remarks. If side chain 

motions do not exist (4 = 0° ) and if the dipole moment vector mp 

is parallel to et, (a = 90° and )3 = 0° or 180° ), then the dipole 

correlation function M(t) given by Eq. (4.20) with Eqs. (4.21) and 

(4.22) may be written in terms of the eigenvalues /Ilk in the j = 1 

branch with small h, which are there almost independent of h (see 

Fig. 4.2), and therefore it obeys a single exponential decay low. 

On the other hand, if two or three branches make contribution, 

or if the j = 0 branch makes always contribution, then M(t) may 
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be written in terms of two or more different eigenvalues, and 

therefore does not obey the single exponential law irrespective of 

the value of  d. This is always the case with chains with side 

chain motions (4 # 0° ). Thus the behavior of M(t) in general 

depends strongly on the orientation (a, 5) of the dipole moment 

vector with respect to the localized coordinate system and on the 

degree (d) of side chain motion through the amplitudes. We must 

therefore consider the choice of a, 5, and d for a given polymer. 

For convenience, they are determined for the case of the smallest 

possible subbody (nb = 2), and the same values are assumed for 

the case of larger subbodies (nb = 4 or 6). (Recall that nb ? 2 

since, otherwise, the HW chain cannot mimic the real chain.) 

     We first take poly(oxyethylene) (POE; ko = 2.4 and to = 0.5) 

as an example of symmetric chains. The local dipole moment 

vector arising from the C-0 and 0—C bonds is in the negative 

direction of the E axis if the localized coordinate system 

corresponding to that of the HW chain is affixed to the rigid body 

part composed of the successive C-0 and 0—C bonds in its 

monomer unit, which is composed of three skeletal bonds, as done 

by Fujii et al.23 Therefore we choose a = 90° , Q = 1800 , and 

d = 00 for POE irrespective of the value of nb (? 2). 

      For monosubstituted and disubstituted asymmetric chains, 

we take the monomer unit composed of the successive C—C' and 

C°—C bonds as the subbody with nb = 2 and affix the localized 
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coordinate system in such a way as mentioned by Yamakawa et 

 al.2o23 [ For PMMA, e.                      g., see case (i) of Fig. 9 of Ref . 20.] Since 

the axis is parallel to the resultant vector of the two successive 

bond vectors C-1.-C° and C°—~ C the local dipole moment vector 

arising from the side group attached to the a carbon is 

perpendicular to the axis or permitted to rotate about an axis 

perpendicular to the axis, so that a = 90° . In order to determine 

,B, it is necessary to specify the angle i' between the e axis and 

the plane containing the C—C° and C°—C bonds. We choose 

  = 270° and 0° for monosubstituted isotactic and syndiotactic 

chains, respectively, and Q = 180° for both disubstituted isotactic 

and syndiotactic chains.23 Then, if all bond angles are assumed to 

be equal to 110° , we have $ = 145` and 325' for monosubstituted 

isotactic chains, f3 = ±55° (or ±125° ) alternately for 

monosubstituted syndiotactic chains, 3 = ±55° or ±125° for 

disubstituted isotactic chains, and (3 = ±55' (or ±125° ) alternately 

for disubstituted syndiotactic chains. Thus the direction of the local 

dipole moment vector changes alternately along the chain for 

syndiotactic chains. For the present discrete HW chain, however, 

Q must be independent of the subbody number p since mp is 

assumed so. Therefore, for both monosubstituted and disubstituted 

syndiotactic chains, we choose mp to be the average of the two 

successive local dipole moment vectors (of the real chain); i. e., 

= 0° or 180° . 

—133—



     The asymmetric chains (with  a = 90° ) we consider in this 

chapter are the following: isotactic poly(p—halostyrene) with 

 = 325° , syndiotactic poly(p—halostyrene)with = 180° , 

syndiotactic poly(methyl acrylate) (s—PMA)with a = 180° , 

syndiotactic poly(methyl vinyl ketone) (s—PMVK) withS = 180° , 

syndiotactic poly(vinyl acetate) (s—PVAc) with S = 0° , and 

syndiotactic poly(vinyl halide) with S = 180° as monosubstituted 

chains; and i—PMMA with S = 55° (or —55° ) and s—PMMA with 

S = 180° as disubstituted chains. For these polymers except 

s—PMVK,25 side chain motions have not been observed in dielectric 

relaxation experiments, so that we choose d = 0° except for it. 

[ Note that in fact Q = 0° for poly(p—halostyrene) and poly(vinyl 

halide). ] Further, we assume that isotactic and syndiotactic 

poly(p—halostyrene)s have the same model parameters Ko, ro, and 

A-1 as isotactic polystyrene (i—PS) and s—PS, respectively, and 

identify the former with the latter in this section. 

      Now we can examine the behavior of M(t). Figure 4.6 shows 

plots of the natural logarithm of the normalized dipole correlation 

function M(t)/M(0) against t for i—PS (Ko = 11 and to = 15) and s—PS 

with r2 = 80 (full curves), i—PMMA (K0 = 1.7 and to = 1.4) and 

s—PMMA with r2 = 20 (broken curves), and s—PMVK (Ko = 0.1 and 

to = 2.0) with r2 = 10 and the indicated values of Q and with 

hBTrs1/", = 0.5 (= 1/2011,1) (chain curves), all with nt, = 2, N = 999, 

and r1 = 1, where M(t) has been computed at T = 300 K and 
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Fig. 4.6. The natural logarithm of the normalized dipole correlation function 
M(t)/M(0) plotted against t for various flexible chains, all with nb=2, N=999, 
r1=1, and a=90° , at T=300 K and 7/0=0.006 P, s-PMVK with side chain motions 

(400° ) having hBTrsl/Sr=0.5. 

770 = 0.006 P (corresponding to benzene). (The model parameters Ko 

and to of s-PS and s-PMMA are the same as those in Fig. 4.2.) 

      For the syndiotactic chains (s-PS, s-PMMA, and s-PMVK 

with 4 = 0° ) without side chain motions, it is seen that M(t) obeys 

the single exponential law, as expected from the general remarks 

at the beginning of this subsection. For the isotactic chains (i-PS 

and i-PMMA) without side chain motions, all the branches of the
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eigenvalue spectrum make contributions, and therefore it is 

necessary to examine the amplitudes in each branch in order to 

understand the behavior of M(t). In the case of i—PS, the 

contributions of  A°,1, Ai.1, and Al,1 to the relaxation have been found 

to be 71 %, 6 %, and 5 %, respectively. That is, the contribution of 

the j = 0 branch (global motion) is large despite the fact that i—PS 

has perpendicular dipoles (a = 90° ), and thus the decay of its 

M(t) is very slow in comparison with other polymers. This may 

be regarded as arising from the fact that for monosubstituted 

isotactic chains such as i—PS having large k° and toi there exist 

locally rather tight helices (of small radius),20 which give rise to 

the parallel components of the local dipole moment vectors along 

the helix axis with the cancellation of the perpendicular 

components. On the other hand, in the case of i—PMMA, the 

contributions of 4 .1, Ai,1, and ATI are 7 %, 18 %, and 56 %, respectively, 

the j = ±1 branches (local motion) making main contribution , and 

moreover the eigenvalues in these two branches are almost 

independent of h for small h. Therefore its M(t) obeys nearly 

the single exponential law. For s—PMVK with side chain motions , 

M(t) exhibits an initial rapid decay due to those motions and then 

relaxes by main chain motions . The initial decay is more rapid 

if d is closer to 90° , while the rate of the latter part is 

independent of d, as expected. 

      Finally, it is pertinent to make some remarks on the 
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dependence on N of the normalized correlation function . As far 

as main chain motions are concerned, the amplitudes in each 

branch have been found to be almost independent of N for 

N  ? 50, so that M(t)/M(0) depends on N only through the 

eigenvalues in the j = 0 branch. Therefore, except for 

monosubstituted isotactic chains having local helices , its N 

dependence is negligibly small for large N. Furthermore, the decay 

due to side chain motions is independent of N, as is evident from 

their nature. 

b. Stiff chains 

      As mentioned in Sec. 4-3b, typical stiff chains may be 

represented by the KP chain (1Go = 0) having parallel dipoles 

(a = d = 00 ), whose correlation function may be written in terms 

of the eigenvalues /l°,h in the j = 0 branch, so that it is enough 

to consider the amplitudes only in this branch. We examine the 

behavior of M(t)/M(0) within the ranges of nb and rz for positive 

eigenvalues. 

      Figure 4.7 shows plots of the natural logarithm of 

M(t)/M(0) against t for DNA with r1 = 1 and the indicated values 

of nb and r2, where M(t) has been computed at T = 300 K and 

no = 0.01 P (0.2 M NaC1). The light and heavy curves represent 

the values for (N + 1)nt, = 5000 and 10000, respectively. It is seen 
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Fig. 4.7. The natural logarithm of the normalized dipole correlation function 
M(t)/M(0) plotted against t for DNA (a=d=0°) with r1=1 and the indicated 
values of nh and r2 at T=300 K and n0=0.01 P. The light and heavy curves 
represent the values for (N+1)nh=5000 and 10000, respectively. The insert shows 
a double logarithmic plot of the function y(t) defined by Eq. (4.32) against t 
for the case of the heavy full curve. 

that the decay is slower for, larger (N + 1)nh, i. e., for larger chain 

length, as expected. We note that the amplitudes of M(t)/M(0) 

are almost independent of N for N N 50, and moreover the 

contribution of 4,1 is 86 %, so that the dependence of M(t)/M(0) on 

N arises mainly from A7.,1. In any case, it is seen that the decay 

is not single exponential except at large t. This is due to the fact
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that the strong dependence of  /l°,, on h at small h is effective at 

small t, while only A°,1 governs the decay at large t. 

      For a more quantitative examination, it is convenient to 

introduce a function r(t) defined by 

M(t)/M(0) = e-r(t) .(4.32) 

The insert of Fig. 4.7 shows a double logarithmic plot of y(t) 

against t for nb = 10, N = 999, ri = 1, and rz = 10 (the same model 

parameters as for the heavy full curve), the dotted straight lines 

having slopes of 0.75 and 1. It is seen that y(t) is proportional 

to t075 for t 10 ms and to t for larger t. 

4-5. Comparison with Experiment 

      In this section, we make a comparison between theory and 

experiment with respect to the frequency dependences of the excess 

dielectric dispersion e' and loss f", and the dielectric correlation 

time rD as defined as the inverse of wmax corresponding the 

maximum loss cf.,'                  ax associated with the (net) main chain motion. 

Their theoretical values are computed from Eq. (4.25). The 

parameters nb and rz (and also Q and rs1 in the presence of side 

chain motion) are then determined to give agreement between 

theory and experiment, assuming that r1 = 1. We estimate the size 

(or diameter) of the subbody from ri and rz thus determined and 

compare the results with those from chemical structures. For stiff 
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chains, attention is given also to the dependence of  tD on the 

molecular weight. 

a. Flexible chains 

      In this subsection, we make an analysis for all flexible 

chains for which the angles a and S have already been determined 

in Sec. 4-4a. As for monosubstituted asymmetric chains, we must 

note that experimental data have been obtained for atactic 

polymers, while the HW model parameters go, ro, d-1, and ML have 

been determined for isotactic and syndiotactic chains. However, 

these atactic samples for which we analyze the data have been 

prepared by free radical polymerization, and have the fractions of 

meso dyads less than 0.5, and therefore we regard them as having 

the HW model parameters for syndiotactic chains, for convenience. 

      First, we take atactic poly(vinyl acetate) (a—PVAc) as an 

example of chains without side chain motions. Figure 4.8 shows 

plots of its reduced dispersion e, = (e'— em)/(eo — em) and reduced 

loss ef: = e"/(e0 — em) against the logarithm of frequency f = w/22t. 

The open and filled circles represent the experimental values of er 

and e~, respectively, obtained recently by Cole et al.26 by time 

domain reflectometry in toluene at 23 °C, and the curves represent 

the corresponding theoretical values for s—PVAc (K0 = 0.4 and 

ro = 2.5) with ni, = 2, N = 999, r1 = 1, and r2 = 27. The insert shows 
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Fig. 4.8. The reduced dispersion E: and reduced loss Er: plotted against the 
logarithm of frequency f for atactic poly(vinyl acetate) in toluene at 23'C. 
The points represent the experimental values of Cole et al. (Ref. 26) and the 
curves the theoretical values for the syndiotactic chain (a=90° and 1=0°) with 
nb=2, N=999, r1=1, and r2=27. The insert shows the corresponding Cole—Cole 
plots.

the corresponding Cole—Cole plots, the open circles and curve 

representing the experimental and theoretical values, respectively. 

The value r2 has been determined so that the calculated value of 

rip agrees with the observed value of 2.1 ns. The observed E'; is seen 

to be asymmetric about fmax, i. e., somewhat broader on the 

high—frequency side, indicating that the dispersion is not strictly
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of the Debye type, there being several absorption on that side. 

On the other hand, the theoretical values exhibit nearly a Debye 

dispersion. This corresponds to the fact that for monosubstituted 

syndiotactic chains, the theoretical dipole correlation function obeys 

the single exponential law, as mentioned in  Sec.  4-4a. The 

disagreement between the theoretical and experimental e, and er 

indicates a defect of the theory, and it is discussed in Sec. 4-6. 

      Next, Fig. 4.9 shows similar plots for a—PMVK as an 

example of chains with side chain motions. The experimental 

values are those obtained very recently by Mashimo et al.Z5 by 

the same method in dioxane at 20 C. The full curves represent 

the corresponding theoretical values for s—PMVK with nb = 2, 

N = 999, ri = 1, r2 = 7, d = 103` , and kBTrsi/~ r = 0.5, and the broken 

curve represents the theoretical values of e' for d = 0° but with 

the other parameters remaining unchanged. (Note that d = 120` 

from chemical structures.) The loss peaks on the low— and 

high—frequency sides correspond to the main chain and side chain 

motions with the correlation times of 2.7 and 0.16 ns, respectively. 

However, the correlation time rD associated with the net main—chain 

motion is estimated to be 3.2 ns from the loss peak (of the broken 

curve) that would be obtained if the side chain motion were absent 

(d = 0" ). We also find rsi = 0.17 ns from kBTrsi/fir = 0.5. These 

correlation times rD and r are to be compared with the 

corresponding values 3.70 and 0.155 ns obtained by Mashimo et al.25 
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Fig. 4.9. The reduced dispersion E, and reduced loss er; plotted against 
logarithm of frequency f for atactic poly(methyl vinyl ketone) in dioxane at 
20C. The points represent the experimental values of Mashimo et al. 
The full curves represent the theoretical values for the syndiotactic chain 
(a=90° and 5=1800) with nb=2, N=999, r1=1, r2=7, 4=103° 
kBTrs1/Sr=0.5, and the broken curve represents the theoretical values of Err' 
the net main—chain motion (41=0° ). 

from an analysis with a superposition to the two Havriliak—Negami 

functions27 for E*. In any case, the correlation time to for the 

net main—chain motion is somewhat larger than the correlation 

time determined from the loss peak on the low—frequency side 

without correction for side chain motion. In contrast to the case 

of a—PVAc, the theory can well explain the experimental err and 
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 er''. The reason for this is that the lack of the absorptions due 

to the main—chain motion on the high—frequency side has been 

compensated by the absorption due to the side chain motion. 

      In Table 4.1 are given observed values of tD thus determined 

for POE,28'29 atactic poly(p—chlorostyrene) (a—PPCS),30'31 a—PMA,32 

a—PMVK,25 a—PVAc,26 atactic poly(vinyl chloride) (a—PVC),33 

i—PMMA,34 and s—PMMA.34 We also give values of r2that give 

agreement between the calculated and observed valuesof tD for 

nb = 2 and 6, all for r1 = 1 and N = 999. The observed values of 

tD determined as above for a—PMVK with nb = 2 and 6 are the 

same. We have omitted the value of r2 for POE with nb = 6 since 

then ds exceeds the allowed upper bound 0.4, as given in Chap. 2. 

However, we have ignored the lower bound of r2 (? 3), which is less 

Table 4.1. Observed values of the dielectric correlation time rD 
and estimates of the parameter r2 for the flexible chain polymers .

                    Temperature 
Polymer Solvent (t)

TD, obs 

(ns)

r2 Observed 
------------------ values 

nb=2 nb=6 (Ref.)

POE 

a—PPCS 

a—PMA 
a—PMVK 
a—PVAc 
a—PVC 
i—PMMA 
s—PMMA

Benzene 

Benzene 

Benzene 

Dioxane 

Toluene 

Dioxane 

Toluene 

Toluene

25 

25 

25.5 

20 

20 

23 

30 

30 

30

0.013 

4.7 

6.6 

0.25 

3.2a 

2.1 

2.6 

1.0 

4.1

 0.3 

65 

95 

2 

27 

6 

8 

70

 6.8 
10 

 0.2 

 0.8 
 2.7 

 0.6 

 0.9 
 7.5

28,29 

30 

31 

32 

25 

26 

33 

34 

34

'Corresponding to the n
et main—chain motion. 
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important. 

 Now we estimate the size of the subbody from r2. As noted 

in Chap. 3, the product of r1 and r2 rather than their individual 

values (or rather than "t) plays an important role as far as 

the local motions are concerned. (The reduced eigenvalues are 

almost independent of r2.) From Eqs. (3.67) and (3.68), we have 

rlr2 = r = -r/321.77oa3 .(4.33) 

It is reasonable here to regard the subbody as a spheroid (ellipsoid 

of revolution) having rotation axis of length a and diameter d. 

Then must be then the mean rotatory friction coefficient, and 

is given by 

   ~r = h3T  (I ri+Dr.3 )(4.34) 
where Dr,i and Dr,3 are the rotatory diffusion coefficients of the 

spheroid about the transverse axis and rotation axis, respectively. 

With the well—known results for them,3536 we obtain from Eqs. (4.33) 

and (4.34) 

     _2(1 — x2)2(1 + x2)1  r2 7x3L(1- 2x2)F(x) + x+F(x) — x]'for x1 
= 1/3 ,for x = 1 ,(4.35) 

where 

      F(x) = (x2 — 1)-1 2cosh-lx , for x > 1 

         = (1 — x2)-112cos-lx , for x < 1(4.36) 

with x = a/d. Thus we may determine d from Eqs. (4.35) with 
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the values of r and a, where the bond length a may be computed 

from Eq. (2.26) with Eq. (4.28). 

     The values of d thus determined and also those from 

chemical structures are given in Table 4.2. The latter values have 

been calculated on the assumption that this d is approximately 

equal to the diameter of a circumscribed circle of the projection 

of the monomer unit composed of the atoms having van der Waals 

radii onto the plane perpendicular to the end-to-end vector  C-C 

of the sequence of two successive skeletal bonds CSC°-3•C 

(C--).-O-).-C for POE). Except for POE and a-PMA, the values of 

d from r are seen to be 1.2-2 times as large as those from 

chemical structures for n" = 2, and even larger for n" = 6. This 

     Table 4.2. Values of the diameter d (A) determined 
      from chemical structures and from the estimates of 

      the parameter r = rlr2 for flexible chain polymers.

Polymer

 From 

chemical 

structures

   From 

n"= 2

r 

n"=6

POE 

a-PPCS 

a-PMA 

a-PMVK 

a-PVAc 

a-PVC 

i-PMMA 

s-PMMA

4.5 

12.0 

8.5 

 7.5 

9.0 

6.0 

9.0 

9.0

3.1 

18.78 

21.3" 

5.5 

8.8 

13.8 

8.2 

10.8 

21.6

25.3' 

29.0" 

 5.7 

11.3 

17.9 

 9.9 

13.8 

29.3

From 
"From

rD(obs) _ 
rD(obs) _

4.7 ns (Ref. 
6.6 ns (Ref. 
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indicates that  if rD are calculated with the diameters from chemical 

structures, the results are smaller than the observed TD. It is also 

a defect of the theory. 

     It is then instructive to consider the ratio of rD to the 

dielectric correlation time rD of the isolated spheroid above having 

a dipole moment vector parallel to the transverse axis, assuming 

that ni, = 2. rD can easily be shown to be given by 

rD = (Dr1 + Dr.3)-1 

2n27°a3 x4 — 1  
          3kBTx3[ (x2-2)F(x) + x3]for x 1 

     ~770a3f
or x = 1 (4.37) 2kBT ' 

where F(x) is again given by Eqs. (4.36) with x = a/ d. In Table 

4.3 are given values of rD(obs)/rD and rD(calc)/vD, where rD(calc) 

and rD have been calculated with the diameters d from chemical 

structures. The latter ratio is seen to be smaller than the former 

except for POE and a—PMA, as expected, but larger than unity 

for all cases. The result that VD > rD seems quite reasonable, 

considering the fact that if the isolated subbody or monomer unit 

is incorporated into the chain, its correlation time will be 

appreciably increased because of the constraints and the interactions 

with its neighbors. Thus the ratio rD/r° may be regarded as a 

measure of dynamic chain stiffness. For comparison, the values 

of the (static) stiffness parameter ,F' (reproduced from Ref. 23) 
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Table 4.3. Dynamic stiffness zD/zD 
 A-1 for flexible chain polymers.

and static stiffness

Polymer rD(obs)/zD zD(calc)/zD A-1(A)

POE 
a-PPCS 
a-PMA 
a-PMVK 
a-PVAc 
a-PVC 
i-PMMA 
s-PMMA

  0.8 
24&(34") 

  3.1 
28' 
 26 
 50 
13 
 54

 1.9 

 7.2 

 9.0 

18.6` 

8.4 

24.1 

 7.8 

 5.0

12.0 

37.5 

35.8 

65.1 

42.0 

78.0 

32.7 

65.6

'From rD(obs) = 4.7 ns (Ref. 30). "From rD(obs) = 6.6 ns (Ref. 31). `Corresponding to th e net main-chain motion. 

are given in the last column of Table 4.3. It is interesting to see 

that there is strong correlation between rn(obs)/r and A-1 except 

for a-PMA. For this polymer, the observed rD is of the same order 

of magnitude as rS1 of a-PMVK (see Table 4.1), and moreover the 

dispersion has been found to be nearly of the Debye type ,26 so that 

the observed re does not seem to reflect strictly the main-chain 

motion. As for other polymers, there is also strong correlation 

between zn(obs)/zD (or A-1) and rn(calc)/zD except for s-PMMA . 

The reason for the large discrepancy between theory and 

experiment for this polymer is not clear. 

      Finally, some remarks should be made on the dependence 

of re on the molecular weight M. The experimental results 

obtained by Stockmayer and Matsuo30 for a-PPCS show that rD 

increases with increasing M for M 2X104 and then levels off . 
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According to our computations for s—PPCS with  nh = 2, r1 = 1, 

r2 = 65, and N + 1 = 10, 20, 50, 100, 200, 500, and 1000, TD is 

independent of N for N N 19, the value for N = 9 being somewhat 

smaller. We note that N = 9 corresponds to M 1200, so that 

the calculated ZD levels off more rapidly. This disagreement 

between theory and experiment may be regarded as arising from 

the fact that the diagonal approximation (see Chap. 3) becomes 

asymptotically valid only for large N. 

b. Stiff chain 

      For flexible chains with perpendicular dipoles, the dielectric 

correlation time rip is associated with the local main—chain motion, 

while for stiff chains (x0 = 0) with parallel dipoles (a = d = 0 ), 

it reflects the global motion (end—over—end rotation, etc.) and its 

molecular weight dependence becomes very important. In this 

subsection, we consider primarily this problem. 

      Before making a comparison with experiment, we must 

establish the calculated values of VD within the ranges of the 

parameters for positive eigenvalues as determined in Sec. 4-3b. 

For this purpose, we examine its dependence on rz. It is then 

convenient to use again the parameter a (or ds) instead of nh. 

Furthermore, we assume that r1 = 1 as before, and do not consider 

the model parameters r0 and 6, since in this case the results are 
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independent of them, as mentioned in Sec. 4-3b. Figure 4.10 shows 

double logarithmic plots of  ksTro/31rrloa3 against r2 for stiff chains 

with N = 99 and 249. The full and broken curves represent the 

values for a = 0.01 and 0.05, respectively. It is seen that if r2 

decreases and approaches the range for negative eigenvalues, TD 

becomes very large rapidly, but otherwise, it is almost independent 

of r2 over a relatively wide range. This independence is rather 

reasonable since the rip associated with the global motion should 

not depend on 4", (related to r2) but on 4et for large N, as predicted 

by the conventional theory for bead models. (Compare with the 

case of the local motion.) Indeed, the contribution of S r to r or 

the rotatory friction coefficient of the entire chain is of order 

N"r and negligibly small compared to that of fit. Recall that the 

conventional theory predicts that when a = d = 0` , rD is 

proportional to N3/1n N in the long rod limit37 and to N312 in the 

coil limit.s'6 Thus, for convenience , we adopt as the calculated values 

of kBTrD/3irzioa3 independent of r2 the minimum values as indicated 

by the open circles in Fig. 4.10. (We neglect the slight increase in 

this ratio for larger r2. Note that if the theory is exact , it will 

be independent of r2 over the whole range .) Then, since r1 = 1, i. e., 

  = 3700a , the VD thus evaluated may be regarded as the correlation 

time for a touched bead model, each bead being a Stokes sphere 

of diameter a. 

     Next we replace the bead model by an equivalent cylinder 
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                                 r2 

Fig. 4.10. Double logarithmic plots of kBTTD/3ni,oa3 for stiff chains (K0=0 and 
a=d=0' ). The full and broken curves represent the values for a=0.01 and 0.05, 
respectively, and the open circles indicate the minimum points. 

model of diameter d, for which we have previously evaluated 

steady—state transport coefficients. This can be done by the use 

of a shift factor38 we have recently determined to convert a to d 

for the case of the touched bead model for a rigid rod with the 

nonpreaveraged original or modified Oseen tensor. Although the 

present theory uses the preaveraged original Oseen tensor, we may 

adopt the shift factor for its nonpreaveraged case since the effects 

of this preaveraging are rather small near the rod limit.39 For 
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the case of  rD (or the rotatory diffusion coefficient), d is then 

related to a by 

  d = 0.861a .(4.38) 

Values of 2kBTrD//7r10d3 thus calculated as a function of L/d for 

various values of a are represented by the open circles in Fig. 4.11 

for the KP cylinder of contour length L (= Nds ^' Na) and 

diameter d. 

      With these values, we have constructed an interpolation 

formula, as in the case of the intrinsic viscosity.40 The results reads 

rD = rD.rodL-3 [ L + 2 (e-2L — 1)13" 

x [ 1 + 0.539526 ln(1 + L) ] , (L S 30) , (4.39) 

where VD,rod is the dielectric correlation time of a spherocylinder 

(spheroid cylinder with E = 1) as given by rD = 1/2Dr,1 with Eq. (120) 

of Ref. 41 for Dr.l; i. e., 

rD.rod = r4oL3Fr(L/d)/6kBT(4.40) 

with 

Fr(x)-1 = In x + 2 In 2 — 11/6 — 8.25644 [ In (1 + x)]-1 

                 + 13.0447x-1/4 — 62.6084x-1/2 

                + 174.0921x-3/4 — 218.8356x-1 

             + 140.2699x-514 — 32.2708x-3/2 .(4.41) 

In Fig. 4.11, the full curves represent the values calculated from 

Eq. (4.39), and the dotted curve R those from Eq . (4.40) for the 

spherocylinder. 
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Fig. 4.11. Double logarithmic plots of 2kBTrD/,n 0d3 against L/d for the KP 
cylinder (ko=O and a=d=0°) of contour length L and diameter d. The points 
represent the original theoretical values. The full curves represent the values 
calculated from the interpolation formula [Eq. (4.39)] and the dotted curve R 
those from Eq. (4.40) for the spherocylinder.

     Now we are in position to make a comparison with 

experiment. Fig. 4.12 shows its example with double logarithmic 

plots of 2kBTrD/vlod3 against L/d (= M/dML with d unreduced). 

The open and filled circles and triangles represent the observed

—1 5 3 —



 108

106

M -D
o 

k 

 0 

"--104 

Y N

102

 I0 102 

L /d

03

d=0.015 

0.012

104

Fig. 4.12. Double logarithmic plots of 2kBTrD/rnod3 against L/d for stiff chains 

(xo=0 and a=4=0' ). The open and filled circles and triangles represent the 
experimental values of Sakamoto et al. (Ref. 42) for DNA in 1 mM NaC1 at 10`C, 
of Bur and Roberts (Ref. 43) for poly(n—butyl isocyanate) in carbon tetrachloride 
at 22.9`C, and of Matsumoto et al. (Ref. 44) for poly(r—benzyl L—glutamate) 
in m—cresol at 25'C, respectively. The full curves represent the best fit theoretical 
values calculated from Eq. (4.39), and the dotted curve R the values from 
Eq. (4.40) for the spherocylinder.

values obtained by Sakamoto et al.42 for DNA in 1 mM NaC1 

10'C, by Bur and Roberts43 for poly(n—butyl isocyanate) (PBIC)

at 

in
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carbon  tetrachloride at 22.9'C, and by Matsumoto et al.44 for 

poly(r—benzyl L—glutamate) (PBLG) in m—cresol at 25"C, respectively. 

The model parameters determined from a best fit of the theoretical 

values to the observed ones are A-1= 2100 A for DNA assuming 

d = 25 A and ML = 195 A_'; A-1= 1000 A for PBIC assuming 

d = 15 A and ML = 55.1 A-1 ; 19 and d = 28 A for PBLG assuming 

ML = 146 A-1 45 These values of d and ML have been used to plot 

the data points. [ We note that the assumed value of d for PBIC 

is intermediate between the value 13 A determined from 

crystallographic data46 and the value 16 A for poly(n—hexyl 

isocyanate) from intrinsic viscosity data.47] The full curve represent 

the theoretical values calculated from Eq. (4.39) with the indicated 

values of (reduced) d, and the dotted curve R those from Eq. (4.40) 

for the spherocylinder. The above estimate of A' for DNA (in 

1 mM NaCl) seems reasonable, compared with literature values,48-5o 

while that for PBIC is somewhat smaller than the value 1440 A 

determined19 from dipole moments for the same samples.43 (For 

PBLG, ricannot be determined since the data are confined to the 

range of rigid rods.) Thus we may conclude that there is good 

agreement between theory and experiment as far as to for stiff 

chains is concerned. 

      Finally, we make a comparison of theory with experiment 

with respect to the dispersion and loss curves, taking as an example 

a fraction of the above PBIC with the weight—average molecular 
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the logarithm 
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values and 
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observed e° is

23.5x104. Figure 4.13 shows plots of e, and er against 

 of frequency f, and the insert shows the Cole—Cole 

Figs. 4.8 and 4.9, the points represent the experimental 

the curves the theoretical values calculated with 

a = 0.0174) and N = 245 (corresponding to the above 
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Fig. 4.13. The reduced dispersioneand reduced loss 6';plotted against the 
logarithm of frequency f for poly(n—butyl isocyanate) with Miv= 23.5x104 in 
carbon tetrachloride at 22.9'C. The points represent the experimental values of 
Bur and Roberts (Ref. 43) and the curves the theoretical values calculated with 
nb=19.4, N=245, r1=1, and r2=30 (the same model parameters as in Fig. 4.12). 
The insert shows the Cole—Cole plots.

0.4
14.1. 

0.3 

0.2 

0.I 

 0

—156—



although less remarkably than for PVAc. The theory can explain, 

to some extent, this feature, but the agreement with experiment is 

not complete. 

4-6. Discussion 

      Among the three main purpose of this chapter, we have 

almost completely achieved the first regarding the mode analysis 

of the dielectric branches of the eigenvalue spectrum. As for the 

other two, which are more important, however, the results are 

not always satisfactory. In particular, we have failed to completely 

explain the asymmetric dielectric loss, especially for flexible chains 

without side chain motions. On the other hand, we have been able 

to evaluate the dielectric correlation time  rD in terms of the 

well—defined model parameters for a wide variety of flexible and 

stiff chain polymers. The significant results for rip are the 

following two: (i) For flexible chains, there is strong correlation 

between the dynamic stiffness rD/rD and the static stiffness A-1 

and also between the observed and calculated rD; and (ii) for stiff 

chains, there is good agreement between theory and experiment with 

respect to the molecular weight dependence of VD. For flexible 

chains, however, calculated values of rD are one half or one third 

of observed values. In order to remove these discrepancies between 

theory and experiment, we must search for possibilities of 
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improvement of the approximation used. 

      First we consider the case of flexible chains. We have made 

the preaveraging approximations in the Oseen tensor and the 

constraining matrix  C-1. The former may be regarded as having 

no significant effect since Sr plays an important role as far as 

local motions are concerned, while the latter breaks, to some extent , 

the rigid constraints imposed and therefore may lead to an 

underestimate of VD. At present, however, it is almost impossible 

to improve this approximation. Another approximation, which is 

more serious for flexible chains, it is subspace approximation , i. e., 

the development in terms of only the one—body excitation basis 

functions. This approximation fails to take complete account of 

the (short—range) interactions between subbodies or more , thereby 

weakening the polymeric nature of the chain . This point can be 

improved by augmenting the 1(1) subset with two—body excitation 

basis functions. The augmentation will lead to perturbation of 

the present three dielectric branches of the eigenvalue spectrum 

and also addition of a few new branches . Therefore this will 

enable us to explain better the asymmetry of the loss curve and 

also T.D. [ We note that if rD is evaluated with the slip boundary 

condition, values of ri(obs)/rD become larger than those listed in 

Table 4.3.] 

     Next we consider stiff chains . In this case, only the j = 0 

branch makes contribution , and the first few of the eigenvalues 
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 A°.h in it may possibly become negative because of the preaveraging 

approximation in the constraining matrix. Fortunately, however, 

we have found the maneuver to avoid its serious effects. Clearly 

the subspace approximation has much less significant effect, and 

the results (dependent on the j = 0 branch) will not greatly be 

altered by augmentation. On the other hand, the diagonal 

approximation is not very good for stiff chains except at very 

small wave number h. It is therefore easy to understand why 

the theory can well explain VD but not the asymmetry of the loss 

curve, if we recall that the former is determined mainly by A°.1 

and the latter is caused by the first several eigenvalues. However, 

it is difficult to improve the diagonal approximation. 

      In conclusion, the present theory as a whole may be regarded 

as fairly satisfactory despite the fact that it is only a first—order 

approximation within the framework of the discrete HW model. 

Appendix 4—A. Eigenfunctions 

      The eigenfunctions 1P' ]({S2N}) (M, j = 0, ±1; k = 1, 2, • •, 

N) corresponding to the eigenvalues ALA in the subspace 1(1) of 

the basis functions may be expressed, from Eqs. (3.47)—(3.49), (3.58), 

and (3.59), in the form 

  fN      01 hl({12N~)= (81f2)N/2E EQPh(RL[hi)~'D1,[Pl('2P) ,(4A.1) 
P=1 j'=-1
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where VIA is given by Eq. (3.43), (Ri-,[h])"' are the  j, j' elements of 

the inverse Ri,[h] of the 3X3 matrix Rl,[h] whose j, j' elements Rik 

are given by Eq. (4.14) for #co # 0 or by Eq. (4.16) for Ko = 0, and 

DM p](S2p) are the one-body excitation standard basis functions 

defined by Eq. (3.3) (with omission of tilde on D). 

      For the HW chain with K0 0 0, we obtain, from Eq. (4.14) 

with the use of the unitarity of Qicl).[h] and .1''(S2a): 

(Ri.(kl)"             == E .D'i (S2a)(Ei [kh])-1i2Qiii ' (4A.2) 
m=-1 

and therefore 

(R1.[h])(-1)i = (Ri_[h])1i 

            1you-vz11co)o-vz _               TOU(511th)al+KOV(Sl .hlz)bi , (j0, -1) , 

(RI.[h])°' = i [ — N G KO- 1(51°ih)-1i 2a~ + T0v-1( Sta)-1b, 1 , 

(j = 0, -1) ,(4A.3) 

      (R17[h])(-1)1 = —(RLth])11 — 2(1°lh)-12 

     (Ri.[h])01 = 0 , 

where the meaning of the symbols is the same asin Eqs. (4.15). 

For the KP chain (K0 = 0), we have, from Eq. (3.50) and Eq. (4.16), 

(Rl.[h])" = ~ii'(Si°1h)-v2 , (K1') •(4A .4) 

     The 2 functions .0~"(S2,0) involved in DM';,](12p) may be 

expressed in terms of the Cartesian components of ee
n, en and 

e4,, in the external coordinate system
, which we designate by 
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 et, = (xe,, yep, zep) and so on, as follows: 

GJ1-1)(f1)(S2p) _ (3/327(2)1/2 [ +(xen L.yt`,) + L(xA iY,p) I > 

g0(±1)(QF) = (3/167(2)1/2(~zep + izgp) 

21(±1)(S2 p) _ (3/327(2)112[ ±(xep + iyep) — L(xl„ + iy0p) ] , 

.1')o(S2p) = (3/1612)1/2(±x5p — iy~) ,(4A.5) 

      g000(Q ) _ (3/8z2)1/2ztp 

      For the HW chain with k° 0, if we substitute Eqs. (4A.3) 

and (4A.5) into Eq. (4A.1), we find Eqs. (4.29) fori"t''h], where ci(h) 

and cz(h) are given by 

     ci(k) = A/T(Ri,[h])(-1)/ , (j = 0, ±1) , 

cz(k) = —.V3/2i(RT[h])°j , (j = 0, —1) .(4A.6) 

For the KP chain (K0 = 0), if we substitute Eqs. (4A.4) and (4A.5) 

into Eq. (4A.1), we find 

    ,,1/,,M.0(o)o-1/zs     .v[Iz] = ~(Sl ,h,)glz,z ,for M = 0 

_ A/3/2(S0,o)-1/z(Tgi,x ̂igi.y) , for M = ±1, (j = 0), 
                                                   (4A.7) 

tYM,I = x/3/2ST,,i'h -112e ^ign.z) , for M = 0 
        = (N J /2)(SP,hh)-1; 2 [ j(± qt,x  + Lq% Y) + Lgl.x + Lgk,Y I , 

                             for M = ±1, (j = ±1), (KP), 

where qh,x, qi.x, qi,x, and so on are defined by Eq. (4.30) and similar 

equations. In this case,'1'` ,~'(k] may be written in terms of only 

the global modes qi and tpi'(h] in terms of the local modes qh 

and qh.
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CHAPTER 5 

DYNAMIC INTRINSIC VISCOSITY 

5-1. Introduction 

      In Chap. 4, we have evaluated dielectric relaxation, which 

can be expressed in terms of the (1, 1)—body correlation  functions. 

Now we proceed to study a new observable expressed in terms of 

(2, 2) or (1, 2)—body correlation functions, i. e., the dynamic intrinsic 

viscosity. 

      There have been many experimental and theoretical 

investigations on the dynamic intrinsic viscosity of flexible chains.' 

The foremost of the theoretical ones is the very famous 

Rouse—Zimm theory~-4 using the spring—bead model. Asis well 

known, it is in good agreement with experimentin the 

low—frequency region, but fails to explain the high—frequency 

plateau. Several attempts have been made to give a theoretical 

explanation of the latter.' Cerf5 and Peterlin6 have introduced 

phenomenologically the internal viscosity into the spring—bead 

model. (A rationale for the internal viscosity has been considered 

by Adelman and Freed.') Doi et al.$ and Fixman and Evans' have 

regarded the high—frequency plateau as arising from the constraints 

on the bond lengths and bond angles, and obtained the theoretical 
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values which lie far below the experimental values. Fixman and 

 Evans10 have conjectured that the plateau stems from the interaction 

between the local and global modes due to the constraints. Adler 

and Freed" have shown that the spring—bead model having side 

groups (or a comb—like spring—bead model) exhibits a high— 

frequency plateau. Despite these efforts, there is still a lack of 

complete understanding of the plateau. Thus, our major attention 

is given to it without considering the behavior over the whole 

frequency range. 

      From the studies cited above, it appears that there are two 

contributions to the high—frequency viscosity. One is the relaxation 

mechanism of a chain with constraints in the high—frequency 

region, and the other is the energy dissipation due to a bead (or 

monomer unit) having a finite hydrodynamic volume.9 The former 

may be treated on the basis of our HW chain, i.e., the model that 

can describe the local chain motion. For the latter, we take into 

account its effect by distributing the frictional force on the surface 

of the bead instead of regarding it as a point force. As in the 

case of the dielectric relaxation treated in Chap . 4, we express the 

dynamic intrinsic viscosity in terms of certain correlation functions 

in the regime of linear response . In order to obtain an 

approximate solution for the correlation matrix , we use the crude 

subspace approximation, for simplicity . In this approximation, 

the problem may be reduced to N six—dimensional eigenvalue 
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problems with N the number of subbodies in the discrete HW chain. 

Note that we have encountered the three— or five—dimensional 

problems in the preceding chapters. 

     The plan of this chapter is as follows. In  Sec.  5-2, the 

dynamic intrinsic viscosity of the discrete HW chain is expressed 

in terms of correlation functions of basis functions properly chosen, 

and approximate solutions for the correlation functions are obtained 

in terms of the solutions of relevant eigenvalue problems. In 

Sec. 5-3, we examine the behavior of the eigenvalues. In Sec. 5-4, 

we discuss the origin of the high—frequency viscosity. In Sec. 5-5, 

we make a comparison of theory with experiment with respect to 

the high—frequency viscosity for some flexible chains. Some 

mathematical details are given in the Appendices. 

5-2. Formulation 

      In what follows, all lengths are measured in units of d-1, 

and kBT is chosen to be unity, as in the preceding chapters, unless 

noted otherwise. 

      Now, suppose that the (discrete) HW chain defined above is 

immersed in a solvent having an unperturbed oscillating shear flow 

field V° at R, 

   V°(R) = e exe), • R ,(5.1)
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where e is the  oscillating rate of shear of angular frequency co, 

e = eo e`U t(5.2) 

with eo a constant, i the imaginary unit, and t the time. The 

intrinsic viscosity [ 77 ] (in volume/weight) is given by 

[ /7] = NA<6'>:erey/M71oe ,(5.3) 

where NA is the Avogadro number, 6' is the excess stress tensor 

due to the addition of one HW chain to the solvent of unit volume, 

< • • • > denotes an average with the time—dependent distribution 

function 7({ S2N } ;t), M is the polymer molecular weight , and 770 is 

the viscosity coefficient of the solvent. Let Fr(rp) be the frictional 

force exerted on the fluid by the unit area at a point on the 

surface of the pth subbody of the vector distance rp from the 

center of that subbody. The excess stress tensor may then be 

written as follows (see Appendix 5—A), 

N-1-1N <6'> = —E <RpFp> — E <frpFP)(rp)drp> , (5.4) 
         p=1p=1sp 

where Rp is the vector position of the center of the pth subbody
, 

Fp is the totalfrictional force exerted on the fluid by the pth 

            fdrp subbody, and indicates the integration over its surface. Note 
                            p that the term <RN+1FN+1> comes from the (N+1)th bead having 

vanishing rotatory friction coefficient (see Sec . 2-2). 

     In Subsec. a, we find a formal solution for the 

time—dependent distribution function V in order to evaluate the 
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averages in Eq. (5.4). In Subsec. b, we express the excess stress 

tensor  <Y'> in terms of certain time—correlation functions, and in 

Subsec. c, we evaluate them. In Subsec. d, we give a final 

expression for [ 771. 

a. Time—dependent distribution function 

      In the regime of linear response, the time—dependent 

distribution function 7 may be written as 

({SZN},t) =ec(IQir}) [1 + q)({QN}; t)1 ,(5.5) 

where We, is the equilibrium distribution function given by Eq. (2.15) 

or (2.103). The function to is the solution of the (linearized) 

diffusion equation, as given by Eq. (2.98), i. e., 

(8/8t+2)co=X,(5.6) 

where 2 is the diffusion operator given by Eq. (2.99), and X is 

the function (not an operator) given by Eq. (2.100) with the external 

potential Ue = 0. 

       In order to obtain an explicit expression for X, we need 

explicit forms of the generalized unperturbed fluid velocity vu 

(expressed in the bond coordinates) associated with the pth bond 

 vector an = Rp+1—Rp, and of the unperturbed fluid angular velocity 

Wp at the point Rp (expressed in the external coordinates), as 

defined by Eqs. (2.48) and (2.37), respectively. From Eq. (5.1), these 
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velocities may be written as 

  vp= E exey • a, ,(5.7) 

 Top  =  —  z  e  ez(5.8) 

Substitution of Eqs. (5.7) and (5.8) into Eq. (2.100) leads to 

  X = Ze (.PP + )(')(5.9) 

with 

       = 2 [E (B-1)p,p,apiapz]:(exey + eyex) , (5.10) 
                       pi,p2=1 

     =E , eq Lp eq - Ap ez ,(5.11) 
                     P=1 

where (B-1)pq is thepq element of the inverse of the NxN 

preaveraged diffusion tensor B (expressed in the bond coordinates) 

whose pq element is given by Eq. (2.55), Lp is the angular 

momentum operator defined by Eqs. (2.86), and Ap is the 3x3 

matrix for transformation from the external coordinate system to 

the pth localized coordinate system and is given by Eq. (2.31). 

The derivation of Eq. (5.9) with Eqs. (5.10) and (5.11) is given in 

Appendix 5—B. Note that the first and second terms on the 

right—hand side of Eq. (5.9) represent the contributions from the 

symmetric part (deformational flow) and the antisymmetric part 

(uniform rotational flow) of exey, respectively. 

     From Eqs. (5.2), (5.7), (5.8), and (5.9), q' may be formally 

written as 

—170—



      =  We.q [1 + z J t e-L(e-s)E(s)(21' + X')ds] .(5.12) 

b. Correlation function formalism of the excess stress tensor 

      Now we consider the problem of expressing, in terms of 

time—correlation functions, the two sums on the right—hand side 

of Eq. (5.4). 

     By the use of the bond coordinates, the first sum 

Lp1   1<RpFp> may be rewritten as 
N+1 

E <RpFp> = E <apfp> ,(5.13) 
p=1 p=1 

where fp is the frictional force associated with the pth bond vector 

ap and is defined by Eq. (2.49). Equation (5.13) has been obtained 

by the use of Eqs. (2.43) and (2.49) and of the fact that the total 

frictional force exerted by the chain on the solvent vanishes. From 

Eq. (2.60) with Eqs. (2.72), (2.73), and (2.81), fp is given by 

fp— E [(N)pq • Lq In (P./YIN) + S r(C-1)pq • v9 
q=1 

            — S r(NT )pq • A, • W°,] ,(5.14) 

where (NT)pqis the 3X3 matrix which is the pq element of the 

transpose ofthe 3NX3N matrix N given by Eq. (2.93), and (C-1)pq 

is the 3X3 matrix which is the pq element of the inverse of the 
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 3Nx3N matrix C given by Eq. (2.94). 

      From Eqs. (5.12), (5.13), and (5.14), we then obtain in the 

regime of linear response 

E<RpFp> = - 2 E <a„,(NT)P1P2 • Lp2 J me 1-(t-s)e(s)(2r + X')dS>eq p=1Pt.P2=1 

2 S rE E <ap1(c-1)A1P2aP2>eq•(erey + eyes) . (5.15) 
P1,P2=1 

Since the excess stress tensor given by Eq. (5.4) is symmetric, we 

may assume that the tensor on the left-hand side of Eq. (5.15) is 

symmetric. Then, we have 

N+1 

E<RpFp>:exey 
p=1 

      =-,e {fe_i[4<[(0)P(s)>eq+ r(o)X'(s)>eq]ds 

  J + S r(exey + eyer): E <ap,(C 1)P P2ap2>eq:(exey + eyex) } . (5.16) 
P1.P2=1 

      The functions F and X' may be written in terms of the 

normalized Wigner functions defined by Eq. (2.5) as follows , 

r = 3 7(2a2i E (B-1)p1 2 [ -210(s2P)210(QP) 2i-1)0(s2p1)21 1)0(s2Pa) ] , (5.17) 
P1•P2=1 

/ — . '( 2p)+ 30(-1)(Qp) 

                                        / X _ E e i Lp e, • 23 z - ig01(12p) - i2o(-1)(Qp)(5 .18) 
r-1 

TONS-2p) 
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From these equations and Eqs. (3.3) and (3.4), it is seen that  r is 

a function which belongs to a class of functions specified by the 

"t
otal angular momentum quantum number" L=2 and the "total 

magnetic quantum number" M=±2, and that X' is a function with 

L=1 and M=0 (see Sec. 3-2). Since there is no correlation between 

functions having different pairs of L and M [see Eq. (3.23)], the 

time—correlation function <P(0)X'(s)>eq in Eq. (5.16) vanishes, and 

we have 

                                                  z E<R„Fp>:e,ey=— it C fme-c~ssz<r(0)r(s)>e~,ds       p=i

+~,.(exe,,+ eyeX): E<ap~(C1)pip,ap..>eq:(e,ey + eye,)] • (5.19) 
p1,p2=1 

Integration by parts ofthe first term in the square brackets on 

the right—hand side of Eq. (5.19) leads to an alternative expression, 

N±1

—      ~,<RnFp>:exey — 4 s [iwfeLs----<r(o)r(s)>egds 
 8s 

         + (e.ey + e,e,): E <api(B 1)p1p2I ap2>eq:(exey + eyex)J • (5.20) 
p1.132=1 

      Next we consider the second sum Lp=1 < rpFp'(rp)drp> 
                                                                          sn 

Under the nonslip boundary condition, the frictional forces Fp)(rp) 

(p = 1, 2, • • • , N) satisfy the coupled integral equations, 

Vp + Wpxrp — V°(Rp + rp) 

_ 

      (8z770)-ifKp(rp,rp) • Fp)(rp)drp 
                     sn 
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 N  + E fT(Rp + rp — Rq — rq) •Fq)(rq)drq 
             q=1q 

�p 

        + T(Rp + rp — RN+1)•FN+1 (p = 1, 2, • • •, N) , (5.21) 

where Vp and Wp are the translational and angular velocities of 

the pth subbody, respectively, T(R) is the Oseen tensor4 and 

K p(r p,r p) = 81117oT(rp — rp) •(5.22) 

We expand T(Rp+rp—Rq—rq) in a Taylor series around rp—rq=0, 

T(Rp+rp—Rq—rq) = T(Rp — Rq) + (rp — rq) • V T(Rp — Rq) 

+ z (rp - rq)(rp - rg):V V T(Rp — Rq) + • • • , (5.23) 

where the nth term is of G( I Rp—Rq I -"), and we neglect terms of 

n?2, as done in Chap. 2. This is equivalent to replacing 

T(Rp+rp—Rq—rq) by T(Rp—Rq). Similarly, T(Rp+rp—RN+1) may be 

replaced by T(Rp—RN+1) Then, Eq. (5.21) becomes 

     (8Xno)_1fKp(rp,rp) • Fps)(rp)drp 
                   sn 

= — i e(e xey + e.vex) • rp + (Wp — WP)Xrp 

N+1 

+ Vp - eexey • Rp - E T(Rp — Rq) • Fq .(5.24) 
q=1 
#p 

     Now we define the inverse K1,1(rp,rq) by 

                         s 

      8(2)(rp— rPG')I =fK-1(rP,pr") • KpP(r",rpG                                        ')d r" 

                                          n —1 7 4 —



        =1II1nIn(5 .25)                   JKp(rp,rp)Kp(rp,rp}drp , 
                              Sp 

where  6(2)(r) is thetwo-dimensional Dirac delta function on the 

surface of the pth subbody. [ It is not to be confused with the 

inverse Kp(rp,r)-1 of the 3X3 matrix Kp(rp,r). ] With this inverse , 

we have formally 

                 cs~                 frpF(rp)drp 

                    p 

      = 2 [8x77ofdrpfdrprpKp-l(rp,rp)rp~:(exey + eyex)pSp 

        + j87[~/ofdi-pifdrnrp[K,V(rp,rp)Xrp]} • (Wp - Wp) 
            {8        spsp 

       - [8z1ofdrpfdrprpKpl(rp,rp)] 
             pSp 

N+1 • [V p - 16 exey • Rp - E T(Rp - Rq) • Fq] . (5.26) 
q=1 
#p 

Considering the fact that thestress tensor is symmetric, the xy 

component of the tensor on the left-hand side of Eq. (5.26) is found 

to be 

    2(exey + eyex):[ - jrpF(rp)drp] 

                                        p 

      = 4(exey + eyex):[8v/ofdrpfdrprpKp1(rp,rp)rp~:(exey + eye.) 
                      spsp
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        —  [A,   •  (W  P — W °n) ] • Zp: [ Ap z (exey + eyex) • Ap ] 

        {A.N++[vp —zEee•RpT(11, —q=1 
#p 

• Tp:[ApT • 2 (exey + eyex) • Ad , (5.27) 
where app and zp are triadics whose components are expressed in 

the pth localized coordinate system, and are defined by 

    ~p = — 87(7)oJT1(rp)Trpdrp,(5.28) 
                          Sp 

Zp = — 87<77oJ72(rp)T rpdrp(5.29) 
                         Sn 

with the tensorsq'1 and r'2 being the solutions of the integral 

equations, 

   fK(p,) •w1(rp)drp = I ,(5.30) 

     fK(p,)  •1'2(;)drp=B0().(5.31) 
               n In Eqs. (5.28)—(5.31), the caret on rp indicates that it is expressed 

in the pth localized coordinate system. Thus the triadics cop and 

Zp are independent of the bead number p, and correspond to the 

shear force and torque triadics introduced by Brenner,12 respectively. 

      In Chap. 2, we have characterized hydrodynamically the 

subbody by the translational friction coefficient and the rotatory 
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friction  coefficient yr. This implies that the hydrodynamic 

anisotropy of the subbody is neglected as far as its motion is 

concerned, and it is replaced by a hypothetical sphere whose 

translational and rotatory friction tensors are isotropic but do 

not necessarily satisfy the relation for the sphere. Thus, it is 

consistent with this situation to use the values of cop and r for 

the sphere. According to Brenner,12 they vanish for spherically 

isotropic bodies. Therefore, Eq. (5.27) reduces to 

z (exe,, + eyex):[ — frpF(rp)drp] 

                                     n 

   = 4(exe), + eye‘):[87/77ofdrpfdrprpKpl(rp,rp)rp]:(exey + eyes) . (5.32) 
                   SnSn 

As shown in Appendix 5—C, the right—hand side of Eq. (5.32) 

represents the increment of the xy component of the stress tensor 

due to the single sphere, and is given by 

z(exey + e,,e_t):[— LrpF(rp)drp] = 5~r/oed53/12(5.33) 
         Ln 

with dE the diameter of the sphere. This givesthe intrinsic 

 viscosity of the Einstein sphere.

c. Correlation function <r(o)r(t)>eq

     By the 

by Eq. (5.17)

use 

may

of 

be

Eqs. (3.3) 

 written

, (3.44), and 

 in terms

(3.47), 

of the

the function r given 

one—body excitation
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Fourier basis functions  FL;  ['h]({SAN}) defined by Eq. (3.47), as follows, 

                                     )~'I r = (87r2)N(aiLJ t/6)i (AB)-1 E `, loll*(S2a) D-1oJ2*(Qa) 
                         h=1 11 Jz=-1 

x ( -F[['h]Fi;[]+ F1'Fl,[hi/ , (5.34) 

where Ar is the hth approximate eigenvalue of the matrix B defined 

by Eq. (3.44), DL' is the unnormalized Wigner function defined by 

Eq. (2.11), Sla is given by Eq. (2.12), and the asterisk indicates the 

complex conjugate. 

     From Eqs. (3.4) and (3.47) and Eqs. (5D.3) and (5D.4), it can 

be shown that the product Fi±l?hj'F1tY;d2 in Eq. (5.34) may be written 

in terms of F2hj (j = —2, —1, • • • , 2) and Fz 2a''] with 

F .'~~ll2j[hih2] being the two—body excitation Fourier basis functions 

defined by Eq. (5D.3). Since both { F(2±,2NA } and { Fz 2)hj } are the 

standard basis sets with L = 2 and M = ±2 (see Sec. 3-2), 

{ F l~hi11' ,, (h ° } is also a standard one with L = 2 and M = ±2, 

and therefore r is thefunction with L = 2 and M = ±2, as already 

mentioned. Thus, inorder to evaluate the correlation function 

<r(o)r(t)>ep, it is convenient to use {Fi±,Y1,j'F1tM2} as a basis set, 

which is a hybrid of the one— and two—body excitation basis 

functions. 

      The correlation functions of the standard basis functions 

are diagonal in L and M, and their values are independent of M 

(see Sec. 3-2). With these properties, <r(o)r(t)>, may be simply 

—1 7 8 —



written as 

                                            N' 
  <I' (0)F  (t)>„ = (8.2)2N [ (a2..02/18 l~)LI (Are A,k3,)-1 

h,li =1 

X E1j               G1Oi1(Qa)(ii0/2(QQ)D1 OJi *(Qet)D10:724040   C2lt[ i,'hJ~>()(5.35) 
J1,IZ.Ji J5'=-1 

with 

Cz 1{'h' 1?'(t) = <Ft: [}*] Fi [ I(' e—Lt Fi [1h'] F1 [h']>eq .(5.36) 

      Now, the problem is to evaluate the correlation functions 

Ca,1'[0f)(t). It is equivalent to the eigenvalue problem for the matrix 

representations of of the identity operator and the diffusion 

operator 2' with weight Veq. For this purpose, we use the subspace 

approximation i.e., evaluate the correlation functions without taking 

account of correlations between the subspace spanned by the basis 

set {F;: {]Ft: {`] } and its complementary space. With this 

approximation, we need only the elements of the above matrix 

representations in this subspace. They are evaluated to be 

<Ft {'h*] Ft: {I I F1: ['k'] F is {h']>eq 

                   (8,1,2)-NLEViiii'lak,h'h']+ 0(N-1)J,(5.37) 

<Ft: {1k] Ft: NI(' 2 11: {1h'] F1: {1e']>eq 

                = (87/2)-NLL21M/Mah, /eh] + 0(N_1),(5.38)
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where E(ll'ii;ii^,'>and L2.1ii;1..'{'           L,(T~l..,~lZ~)[hlh~., h[h= li _i)[hlh2,  hl'h2  J are the standard 

Fourier representations of the identity and diffusion operators given 

by Eqs. (5D.6) and (5D.7), respectively. 

      For this case of 11-12=1;=1 —1,hl=k2=h, and ki=hz=h, the 

independent elements of EZ','01,1j0 h, kw], Li','ifi,'iliikh, kW], and C2;1['1 ) 

are the ones with pairs of indices (ji,j2) and (ji,ji)= (-1,-1), (-1,0), 

(-1,1), (0,0), (0,1), and (1,1). We designate these pairs by J and 

J =1,2

1, • • • ,6 in that order, for simplicity, and write, for instance, E,Liii,flehh,k'h•] as E2,(u n)[hh,h'k]• Taking account of the fact that both 

Ei ui lt)[hh, k'k'] and Li (ii h)[kk, k•k'l are diagonal in h [ see Eqs. (5D.6) 

and (5D.7) ] , we have only tosolve the following six—dimensional 

eigenvalue problem, 

      `y2(2), [h] E2(2), [h] Q2(2), [k]—12(2), [k](5.39), 

      Qz(z>,[k]] L2(2),[h] Q2(2), [k] =/12(2), [k],(5.40) 

where E2(2), [h] and L2(2), [k] are the 6X6 matrices whose JJr elements 

are 22(ili u)[kk, k')t] and Lz (iiu)[kh, h'h'], respectively, 12(2), [k] and 112(2), [k) 

are 6x6 diagonal matrices with diagonal elements 1 and 42), k 

                                                                 (J=1-6), respectively, Q2(2), [h] is a diagonalizing matrix (not unitary), 

and the dagger indicates the adjoint. 

     Since Ez (ii il)[kh,h•h'l is diagonal in J , the eigenvalue problem 

given by Eqs. (5.39) and (5.40) reduces to the eigenvalue problem, 

      Q2(2), [k]L(E2(2), [k])-1/2 L2(2), [5] E2(2), [h])-1/2 ] 02), [k] — A2(2), [k] ,(5.41) 
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where (E2(2),  [h])-112 is the 6X6 diagonal matrix with diagonal 

elements (E2, (i,11)[hh, hh])-1/Z, and Q2(z), [h] is a unitary, diagonalizing 

matrix. From a comparison of the left—hand sides of Eqs. (5.50) 

and (5.41), we have a relation between the above two diagonalizing 

matrix, i. e., 

Q2(2), [h]= (E2(2),1/2(2 [h] •(5.42) 

The correlation functions C2, [h,)h'} may then be written in terms of 

the solutions ofEqs. (5.41) as 

  C2,[h](t) = (E2(2),[h])1/2(2(2),[1e] eXp(—A2(2),[h]t)Qzia).[h](E2(2).[h])172 (5.43) 

where C2, [h] is the 6x6 matrix whose JJ' element is Czj'[h,)h], and 

(Ez(z), [hi )1/2 is the 6X6 diagonal matrix with diagonal elements 

(E2Jill 11)[kh, kit] )1/2- Note that the correlation function Cz,'[h,)h'] is also 

diagonal in h, since both 1E2`;'(10,1)[ kk, Jew] and Lz tii 11)[hh,h'h•] are 

diagonal in h. By the use of Eqs. (5D.5), Eq. (5.43), and the solution 

of the eigenvalue problem given by Eq. (5.41) (which is given in 

Appendix 5—E), the correlation function <r(o)r(t)>e, given by Eq. (35) 

may be finally written as 

                            yN      <r(o)r(t)>,9(a2St)2 E(All) 2(41 2gl, h + t0zi g1, h)2 
k=1 

                                3 

XE(014) ,w)2e-42),kt ,(5.44) 
                                        J=1 

where g{,h is given byEq. (5D.9), Q([iz],1J is 1J element of the 3x3 

transformation matrix Q([14] defined by Eq. (5E.13), and A2~2),h is given 
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by Eq. (5E.20). Note that the three eigenvalues  /1'1Q),  h (J=1,2,3) make 

contribution to <r(o)r(t)>eq. 

d. Final expression for [n] 

      In order to obtain a final expression for [ I ] suitable for 

numerical calculations, we rewrite the second terms in the square 

brackets on the right—hand sides of Eqs. (5.19) and (5.20) in the 

form, 

      Sr(esey+ eyer):E<ap,(C1)Pip2ap2>eq:(exey + eyes) 
P1•P2=1 

S rE(Ah) 1(KOV-2S101 rOv-2sT,L)(5.45) 
                              h=1 

(ere), + eyer):E<apl(B1)Plp,ap2>eq:(exey + eyer) 
P1.P2 1 

3 a2 tE(AB)-1(K02)-2s101 + z0v-2S(10,)kh)(5.46) 
                               h=1 

where ilk is the kth approximate eigenvalue of the matrix a-2C with 

C being the NxNmatrix defined by Eq. (2.112) and is given by 

Eq. (3.46), and ST! foe is given by Eq. (3.54). Note that in obtaining 

Eq. (5.45), we havereplaced (C-')P1P2 by (C-1)P1P2I with (C-')P,P2 the 

PiP2 element of the inverse of C, i.e., preaveraged the constraining 

matrix C-1, as done in Sec. 2-3c. 

     Substitution of Eqs. (5.19) and (5.33) with Eqs. (5.44) and (5.45) 
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into Eq. (5.3) with Eq. (5.4) leads to the desired expression, 

 

[  2  ] [ NA(a2S t)2/ 36770m E(A )-2(xov-2g1, h r v 2g01, k)2 
                                               k=1 

             X E3 /                  (Q[h], 1J)2(42), 02/(A2(2), k + i(0) + [ 771 m ,(5.47) 
J=1 

where [ 77 ] m is the value of [ 2) ] in the limit of w co and is 

given by 

[ 711 co = (NAS r/ 6110M) (Ah)-1(K2v-25rkh + 6)-2 
h=1 

+ 57TNANdE3/12M .(5.48) 

Substitution of Eqs. (5.20) and (5.33) with Eqs. (5.44) and (5.46) into 

Eq. (5.3) with Eq. (5.4) leads to the alternative expression, 

[ 7/ ] _ [ NA(a2y t)2/367/oM ] E(4)-2(K20v-2g1, k + Zov-2g0, k)2 
                                                  h=1 

                   33 

  EMI],/              XLJ(QlIh], 1J)2(—iw/12i2), k)/(A (2), k+i(D)+[ill]o,(5.49) 
J=1 

where [ 77]  0 is the value of [ 7l ] at w = 0 and is given by 

[1]  0 = (NAa2y t/67/0M) E(A )-1(KOv-2S(j0)kk + r8v-25(j0)h0 
h=1 

+ 57tNANdE3/12M.(5.50) 

Note that in the Gaussian coil limit (N 03 and ds co;) a 

becomes equal to its effective bond length with Si°) h=1, and then 

[ 7/ ] 0 given by Eq. (5.50) is the correct zero—frequency intrinsic 

viscosity of the spring—bead model,' apart from the second term 
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on the right—hand side of Eq. (5.50). 

      It is pertinent here to make two remarks on Eqs. (5.47)—(5.50). 

First, the second terms on the right—hand sides of Eqs. (5.48) and 

(5.50) arise from the contributions of the Einstein spherical 

subbodies (beads). Second, the two expressions for  [n] , i.e., 

Eq. (4.47) with Eq. (5.48) and Eq. (5.49) with Eq. (5.50), are no longer 

equivalent to each other, since we have made the approximations 

to evaluate the correlation function <r(o)r(t)>e, and the Pd .  given 

by Eq. (5.48). Therefore, ['i I given by Eq. (5.47) with c0=0 is not 

identical with Pi]  o given by Eq. (5.50), nor is [ id given by Eq. (5.49) 

with Co=co identical with [ i ] , given by Eq. (5.49). 

5-3. Eigenvalue Spectra 

      As in the case of the eigenvalues d°, h, which form the lowest 

of the L=1 branches of the spectrum,2 the eigenvalues Aim),  h, which 

form the lowest in the present case , may possibly become negative 

at small wave numbers h. Therefore, in order to eliminate the 

negative eigenvalues, we must first examine the behavior of the 

lowest branch in the coil limit of N>>1 and k/(N+1)<<1, as done 

in Sec. 3-5b. 

     In this limit, the functions g{,h defined by Eq. (5D.9) become 

equal to Snh, whose asymptotic form is explicitly given by 

Eq. (3.81). Similarly, the functions S{,h (l00) defined by Eq. (5E.7) 
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become equal to  S(/-1)4k defined by Eq. (3.55), whose asymptotic form 

is given by Eq. (3.83). Moreover, the term (1-1/2N)(Ah)-1 appearing 

in Eqs. (5E.3)-(5E.6) becomes equal to So11k whose asymptotic form 

is given by Eq. (3.82). From these correspondences, we find that 

the function a-2d, b, and c with a, b, c, and d being defined by 

Eqs. (5E.3)-(5E.6) are equivalent to the functions 2a-1(a+ d), 2S-lb, 

and (a13)-1'2c defined in Appendix 3-A, respectively. Thus, in the coil 

limit, it can be shown that 

Al2.(2), k = 2A1, k (coil limit).(5.51) 

The eigenvalues 4, 1, are relevant to dielectric relaxation of polymers 

having dipoles parallel to the chain contour, and therefore Eq. (5.51) 

agrees exactly with the relation between the viscoelastic and 

dielectric relaxation rates for the spring-bead model.3'4'13 

      Equation (5.51) suggests that we may eliminate the negative 

eigenvalues by the simple procedure as in Chap. 3, i. e., by replacing 

/122(2), k by A2i2), k-42), o, as far as the eigenvalues themselves are 

concerned. This is referred to as procedure A. In the case of [ n ] , 

however, we must also give attention to the behavior of the 

transformation matrix Q'J at small wave numbers h, since it 

determines the relative amplitudes of the J=2 and 3 branches 

(relevant to the local motions). From Eq. (5.47) or (5.49), it is seen 

that the contributions of these branches diverge unless 01], 1J (J=2,3) 

vanish in the limit of h ---• 0, since the factor (AB)-2/M diverges 

in this limit. Therefore, in addition to the requirement on the 
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lowest branch, it must be required that  04),L1 (J=2,3) vanish in 

the limit of h 0. [ Because of the preaveraging of the 

constraining matrix, the Old given by Eq. (5E.13) with 

Eqs. (5E.3)—(5E.6), (5E.11), (5E.12), (5E.15), (5E.16), (5E.18), and (5E.19) 

does not fulfil this requirement. ] These two requirements may be 

explicitly expressed in terms of the functions a, b, c, and d defined 

by Eqs. (5E.3)—(5E.6) as follows 

limo [ (a — 2d)b — 8c2 ] = 0 ,(5.52) 

lh o [ ,,/a$/2 (a — b — 2d) — 2(a — /3)c] = 0(5.53) 

with a and $ the functions defined by Eqs. (5E.11) and (5E.12), 

respectively. These requirements may be fulfilled by adding some 

constants b and Ti properly chosen to b and d, respectively. They 

are found to be 

b = 2(250/17o)"2co — bo ,(5.54) 

d = a0/2 — (2a0/)90)1i2co — do ,(5.55) 

where the subscript 0 indicates that the values at h=0 are taken. 

This procedure is referred to as procedure B. 

      Now, taking syndiotactic polystyrene (s—PS) as an example 

of flexible chains, we examine the behavior of the eigenvalues. 

We introduce as before the dimensionless parameters ri and r2 

defined by 

  ri = t/37(7/oa ,(5.56) 

r2 = ~r/a2~t ,(5.57) 
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and also use, instead of  ds, the number nb of skeletal bonds of a 

given real chain corresponding to one subbody of the discrete HW 

chain. These are related to each other by Eq. (4.19). As for the 

necessary equilibrium model parameters, /co, r0, A-1, and the shift 

factor ML, we adopt the ones listed in Table I of Ref. 14. All 

numerical work has been done by the use of FACOM M-380 and 

VP-200 digital computers in this university. 

      Figure 5.1 shows plots of the reduced eigenvalues A2(2),h 

..,-A2(2), h/kBT = 39r7]0a3rir2A(2), h/kBT (with AL), h and a unreduced) in 

the J = 1, 2, and 3 branches (relevant to [77] )  against the reduced 

wave number h = k/(N + 1) for s—PS with nb = 2, N = 999, rl = 1, 

and r2 = 15. The full curves represent the values calculated 

following procedure B. As in the case of the L(1) eigenvalues 

calculated in the crude subspace approximation, avoided crossings 

are seen to occur among the J = 1, 2,and 3 branches at k = 0.06, 

as conjectured by Fixman and Evans.10 For comparison, the values 

calculated following procedure A are also shown in the broken 

curves. The difference between the two procedures seems small as 

far as the eigenvalues are concerned. In what follows, all 

numerical results are obtained by procedure B. 

5-4. High—Frequency Viscosity 

       In this section, we discuss the high—frequency behavior of 
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dynamic intrinsic viscosity, i. e., the real part [77' ] of 

[77' ] —i [ i" ]. From Eq. (5.47), [ 77' ] may be written in the form, 

p1'] [2]glob + [11]loc + ,(5.58) 

[ A ] glob and [ 77 ]/" are contributions from the global and local 

ns, respectively, and are given by 

 [ ] glob = [N A(a2 )2/36r10M ] E (Kov-2g, h + 76v_2g , h)2 (Q[lh). 11)2 
h=1 
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 X(4)-2A2(2), h [ 1 + (w/ A2(2), h)2 ] —1 ,(5 .59) 

       yN 3       [ ]1"= [ NA(a2St)2/3677oM ](KVv-2gi , h+rov-2g?,h)2 (`x(141J)2 
h=1 J=2 

               X(AB)-2A2i2), h[1  + (w/ g2), h)2 ] —1 • (5.60) 

      As noted in Sec. 5-2d, [ 77r] given by Eq. (5.58) with w = 0 

is not identical with the correct [ 77 ] o given by Eq. (5.50). In other 

words, Eq. (5.59) for [ rl ] glob along with Eq. (5.60) for [ n II" cannot 

correctly describe the whole relaxation behavior of [ ] from 

[ 7 ] 0 to [ ] m. This defect arises from the approximate nature of 

the above expressions for [ n ] g1°b [2 ] 1oc and [ 77 ] m. Among them , 

that for [ 77 ] glob is the worst. The reason for this is that as already 

discussed, the preaveraging approximation in the constraining 

matrix has significant effect on the global motions but not on 

the local motions. As for [ >> ] co, we have made this approximation 

only to evaluate the equilibrium moments at the stage of Eq. (5.45), 

so that Eq. (5.48) may rather be regarded as giving a good 

approximate value. Then, it is better to use Eq. (5.47) than 

Eq. (5.49) for [ ii ] as far as its behavior in the high—frequency 

region is concerned. If [ 77 ] glob is necessary, it is sufficient to 

replace it by the Rouse—Zimm theory result properly renormalized, 

as done by Brueggeman et al.15 in the analysis of experimental 

data. 

      Now, we consider the origin of the high—frequency viscosity. 
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First, we make a remark on  [  77  ]  l°` It can be shown that as 

k/(N+1) approaches zero, 014), 12 and Q14j, 13 obtained by procedure B 

become proportional to AB and (e)2, respectively, so that the ratio 

Q(4),12/4 approaches a non—zero finite value, while Q([1], 

approaches zero. This means that the interaction (coupling) 

1J (J=2,3) between the global and local motions becomes 

infinitely small as k/(N+1) is decreased [so that the eigenvalues 

Alm, le remain unaffected for small k (and should there become 

identical with the Rouse—Zimm eigenvalues AB if there were no 

approximations) ] , but the contribution of Q`'i ],12 to [ i' ] never 

vanishes because of the factor (A,B)-2 in Eq. (5.60). Moreover, we 

have found that the summand on the right—hand side of Eq. (5.60) 

becomes a function of h/(N+1) when N>>1, and that its amplitude 

for J=2 is much larger for smaller h. Thus, the total amplitude 

[1]  o ̀ , i.e., the zero—frequency value of [7/ ]z°` is independent of M 

when N>>1, and the terms in Eq. (5.60) with J=2 and with small 

k mainly contribute to it. 

      Since the eigenvalues (relaxation rates) in the J=2 and 3 

branches are much larger (faster) than those in the J=1 branch 

at small wave numbers h (see Fig. 5.1), it is evident that [ 1i ] 1oc still 

remains finite after [ r) J glob (with small h) relaxes away. Then 

the sum [ 1) ] o ̀+ [ r1 ] m may be regarded as the high—frequency 

plateau observed in viscoelastic experiment, which we designate by 

[ ] ] P. For larger co, [ r°` also relaxes, and only [ r1 ] m remains. 
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The latter seems to correspond to another high—frequency viscosity 

observed in the higher—frequency  region ."' Such relaxation 

mechanism is depicted schematically in Fig . 5.2. The full curve 

represents the values of [rl'], the broken curves glob and loc 

represent the contributions of [ rl ] gi°b and [ 77 ]1" , respectively, and 

the horizontal dotted lines 1 and 2 indicate the values of [ n ] P 

and [ 77 ] m, respectively.

[n']

[ii)

[1]m

glob

log  w

Fig. 5.2. Schematic depiction of the relaxation mechanism of 
curve represents the values of  [ r/' ] , the broken curves glob 
the contributions of [ i ] glob and [ 71 ] Z°`, respectively, and the 
lines 1 and 2 indicate the (frequency—independent) values of 
respectively.

[ 7/ ' J . The full 
and loc represent 
horizontal dotted 
[/]P and [/]m,
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     Thus, on the basis of the HW chain, it has been deduced that 

the high—frequency plateau  [ 77] P is composed of the two parts 

[ ] o°` and [ '7 ] m. [ 7/] o ̀  stems from the interaction between the global 

(Rouse—Zimm) motions and the local ones, since [7,]o ̀  would vanish 

if there were no interaction, i.e., OIL 1J=O (J=2,3). In this sense, 

the origin of [„]o ` in the present theory is in accordance with that 

conjectured by Fixman and Evans.19 In the two theories, however, 

the precise mechanisms by which the interaction makes contribution 

to the plateau value are somewhat different. In the latter, the 

plateau is due to the gap structure of the spectrum. As for 

[ 77 ] m, it has two origins. One arises from the constraints [ the first 

term on the right—hand side of Eq. (5.48) ] , and the other is the 

contribution of the Einstein spherical subbodies. (Such an effect 

of the constraints has already been considered by Doi et al.8 and 

Fixman and Evans for the bond chain.) 

      Finally, it should be noted that in our model, the interaction 

between the motions arises from the local helical nature of the 

chain contour, as possessed by almost all kinds of flexible polymers. 

In the case of the Kratky—Porod worm—like chain'' ko = 0 whose 

local chain contour is a straight rod, there is no interaction 

between them [ Old, 1J=0 (J=2,3) ] , and therefore [ 7/ ] o °=0. The (first) 

plateau observed for very stiff chains, which may be well 

represented by the worm—like chain, arises by a different 

mechanism.18-21$ In the case of rigid rods, it arises from the 
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constraints, and within the framework of the present theory, it 

corresponds to the part of  [  77]. due to the constraints. 

5-5. Comparison with Experiment 

      We proceed to make a comparison between theory and 

experiment, giving attention only to [ 77 ] P, since the theoretical 

expression for [ ]glob given by Eq. (5.59) is not reliable, as 

mentioned in Sec. 5-4, and since available experimental data have 

not been obtained in the theta state. The theoretical value of 

[   P_ []tr +  77]r7o[ ] m is computed from Eqs. (5.48) and (5.50), assuming 

that nb = 2 and r1 = 1. 

      In Chap. 4, we have regarded the subbody (corresponding to 

a monomer unit for almost all flexible polymers) as a spheroid 

(ellipsoid of revolution) having rotation axis of length a and 

diameter d, and related d to the product r1r2 by Eq. (4.35). We 

must also relate d to the intrinsic viscosity of the Einstein sphere 

in order to calculate [71]P.  We simply assume that the Einstein 

sphere and this spheroid have the same hydrodynamic volume, i.e., 

d53 = ad' .(5.61) 

      In Table 5.1 are given observed values of [ 77]  P for atactic 

polystyrene (a—PS),1,1522 atactic poly(methyl methacrylate) 

(a—PMMA)1,15.23 and atactic poly(a—methylstyrene) (a—PaMS)1,15.22 along 

with that of [ 77]. for a—PS,16 the calculated values of [771P, 
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Table 5.1. Observed and calculated values of  [2]]P.

Polymer

Temperature 

('C)

Observed Calculated

[27 ] "(ml/g) [27]m(ml/g) [27]P(ml/g) [27]0 (̀ml/g) [7]]m(mlig) K0 to r2

a-PS

a-PMMA

a-PaMS

25

25

25

14.38

22.8'

71'

22.28

4.2 

10.8 

4.4 

11.4 

4.0 
12.1 

5.3 

15.9

0.19 

0.31 

0.42 

0.85 

1.1 

3.5 
1.5 

4.6

4.0 

10.5 

4.0 

10.5 
2.9 

8.6 

3.8 
11.3

0.8

1.6

4.4

4.4

2.3

2.3

0.8

1.0

15 

60 

15 

60 

6 

30 
11 

60

8See 

"See 

°See

Refs. 1, 15, 

Ref. 16. 

Refs. 1, 15,

and 22.

and 23.



 

[  /  ]  10',  and [ 27 ] m, and the assigned values of Ko, ro, and r2. For 

convenience, we regard the atactic polymers as syndiotactic, as done 

in the preceding chapters. The values of Ko and to are the same 

as those listed in Table I of Ref. 14 except for Ko=1.6 and to=2.3 

for s—PS. This pair of values of Ko and to has been assigned to 

examine the dependence of [ 27 ] P, [ 2) ] 10',  and [ 7) ] m on Ko and To. 

The two values have been assigned for r2; in every case, the smaller 

value has been computed by the use of the value of d determined 

from the chemical structure (see Table 4.2), and the larger value 

is the one determined previously from the analysis of experimental 

data in the crude—subspace approximation. The theoretical values 

of [ 27 ] P calculated with the larger r2 are in better agreement with 

the observed ones than those calculated with the smaller r2. As seen 

from the table, [ 27 ] o ̀  is sensitive to the change of Ko and to, while 

this is not the case with [ 27 ] [ A ] P depends on Ko and to (helical 

nature) through [ n ] o As for [ 27 ] m, the calculated and observed 

values are rather in good agreement with each other. We note that 

in every case, about 60% of the calculated value of [ 27 ] m is the 

contribution of the Einstein spheres. In the case of a—PS, [ 27 ] o 

may be estimated to be r-7 ml/g from the observed values of 

[ n ] P and [ 27 ] m, and it is almost equal to the observed value of 

[ 27 ] m. However, the calculated value of [ ] r is smaller than that 

of [ii], and therefore, the crude—subspace approximation seems to 

underestimate [ 27 ] O'. 

                        —195—



5-6. Concluding Remarks 

      We have evaluated the dynamic intrinsic viscosity of the 

discrete HW chain, and showed that it has the high—frequency 

plateau  [  n ] P (= [ 77 ] r+ [ ] m) which is distinguished from the 

infinitely—high—frequency viscosity [ 77 ] m. In our model, [ 77 ] o ̀  or 

[ r/ ] /0, arises from the interaction (coupling) between the global 

and local motions caused by the helical nature of the local chain 

contour, and [ i ] m arises from the constraints and the finite 

hydrodynamic volume of the subbody. The agreement between the 

theoretical and experimental values of [ rl ] P is rather good, and 

the dependence of [ rl ] P on the chemical structure of the chain 

may well be explained. It is evident that the incomplete agreement 

between theory and experiment is due to the crude—subspace 

approximation. On the other hand, the preaveraging approximation 

in the constraining matrix has significant effect on the global 

motions, and therefore we have not made an analysis of the 

J = 1 branch of the spectrum corresponding to the Rouse—Zimm 

eigenvalues. 

      In conclusion, our model has proved effective for a 

description of the relaxation behavior of [ r/' ] in the high—frequency 

region which concerns the local motions, as in the cases of the L(1) 

observable studied in Chap. 4. 

—196—



Appendix 5—A. Excess Stress Tensor 

      In this Appendix, we derive an expression for the excess 

stress tensor due to the addition of one HW chain having its finite 

volume to an incompressible Stokes fluid. 

      It is reasonable to assume that the flow of the fluid is 

steady at every instant, since the relaxation of the velocity of the 

fluid is much faster than the local motion of the polymer chain 

immersed in it. This assumption is consistent with the description 

of the hydrodynamic interaction among subbodies of the chain by 

the use of the Oseen tensor, i.e., the Green's function of the 

time—independent Stokes equation. Thus, the velocity V(R;t) of the 

fluid at a point R satisfies 

 V  •  6(R; t) + F(R; t) = 0 ,(5A.1) 

where 6 is the stress tensor defined by 

6(R; t) = — p(R; t)I + 710 { V V(R; t) + [ V V(R; t)] T } (5A.2) 

with p the pressure and I the 3X3 unit tensor, and F is the force 

density due to the frictional force exerted by one HW chain on 

the fluid and is given by 

     F(R; t) = E fdrp8(R — Rp — rr)Fep)(r„; t) 
                             p=1p 

        + 8(R — RN+1)FN+1(t)(5A.3) 
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with  8(R) the Dirac delta function. The last term on the 

right—hand side of Eq. (5A.3) represents the contribution from the 

(N+1)th bead. As defined in Sec. 2-2, this bead has vanishing 

rotatory friction coefficient, and therefore we may regard it as 

the point force which exerts the frictional force FN-El on the fluid 

at a point RN+1. The dependence of V, 6, and p on t comes from 

the dependence of F on t, and is immaterial in the present 

treatment. Thus, in what follows, we suppress t. 

      The stress tensor 6 may be written as a sum of the stress 

tensor Co of the pure fluid and the excess stress tensor 6' due to 

the force density F, i. e., 6 = 60 + 6'. Therefore, Eq. (5A.1) may 

be rewritten as 

V • 60 = 0 ,(5A.4) 

V•6' + F = 0.(5A .5) 

In order to express 6' in terms of Fp)(rp) (p = 1, 2, • • •, N) and 

FN+1, we take the Fourier transform of Eq. (5A.5), 

ik • 6'(k) + F(K) = 0 ,(5A.6) 

where 

(k) =__ fC'(R)edR,(5A.7) 

F(K) = fF(R)edR 

                          E f drpeik•(Rptrn)F(pS )(rp) eikRN+1Fi'N+1 • (5A.8) 
                p=1 Sn 
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Let  Rc be the vector position of a point properly chosen to 

represent the position of the HW chain in the external coordinate 

system, and let ftp (p=1,2, • • • , N+1) be the vector distance from 

the point R, to the pth subbody, i.e., Rp=Rc+Rp . Equation (5A.8) 

may be rewritten as 

                   N
C+1      F(k) = eikR°L, Fp 
p=1 

             Nr(' 

+Lk eikRcJdrpl(eiek(Rp+rp)dEl(Rp+r)F(P)(1'n)            fillp=1If,,LJ05J/ 

+ fe itk•RN"dEF1,(5A.9) 

                               6 where Fp (p=1, 2, • • •, N) is the total frictional force exerted on 

the fluid by 

fF(rp)drp.the pth subbody and is given by Fp =(5A.10) 

                      n Under the condition for which viscosity measurements are carried 

out, there is not any external force other than shear flow field, 

                                                      N+1 

and therefore the total frictional forceLp=1 Fp must vanish. Then, 

from Eqs. (5A.6) and (5A.9), we obtain 

               N fr(~I 
     ~(k) —eikRJ~dt pf! ectk(Rntrn)dl(RP+rP)Fn)(rn)                ))llp=1nLJ0J 

         + fei°•RN+ideRN+1FN+11 • (5A.11) 
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      Now we take the average of Eq.  (5A.11) over the configuration 

with the time—dependent distribution function. In order to obtain 

a general expression, we do not need its explicit form, but only 

its two properties: (1) R, distributes uniformly in the fluid of unit 

volume, and (2) the average over R, may be taken independently 

of the other variables. With these properties, we obtain 

N+1 

<6'(k)> = — (27)36(k) E<RpFp> 
                                              P=1 

             N r               + E <frpFp)(rp)drp> J ,(5A.12)                      p=1sp 

where < • • • > denotes an average with V. Replacing Rp by Rp 

and taking the inverse Fourier transform, we obtain Eq. (5.4). 

Appendix 5—B. Evaluation of the Function X 

      In this Appendix, we derive an expression for the function 

X suitable for constructing a formal solution for the 

time—dependent distribution function . This does not require explicit 

forms of the matrix representations of operators such as E and 

L given in Chap. 3. Thus, the preaveraging approximation in the 

constraining matrix C-1 (see Chap. 2) is not necessary, and all 

results in this Appendix are derived without this approximation. 

      First, we derive a relation among the 3Nx3N matrices M, 

N, B, and E defined by Eqs. (2.92), (2.93), (2.95), and (2.96), 
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respectively. From the definition given by Eq. (2.94), the 

constraining matrix  C-1 may be written as a series, 

C-1 = [(_1)r'B'  ,E • ET)n] .'r-1B-1 .(5B.1) 

Substitution of Eq. (5B.1) into Eq. (2.92) leads to 

M = L(—i)n(ET • S r-1B-1. E)n .(5B.2) 
n=0 

From Eq. (2.93) and Eqs. (5B.1) and (5B.2), we obtain the relation, 

   N = S r-im • ET • B-1 .(5B.3) 

      Then, we derive an expression for X. Substitution of 

Eqs. (5.5), (5.6), and (5B.3) into Eq. (2.100) with Ue = 0 leads to 

N X= ft [42 E (B-1)P1P2aP1aP2:(exey + eyex) 
P1' P2=1 

N 

y          — r-1eq 1LP1 greq ' MPtP2 ' (B-1)P2P3(LPsaP)aP3:(exey — eyes) 
P1, P2, Ps=1 

N 

+ E Feq 1 LP1 VeqMP1P2' AP,' e2 (5B.4) 
P1' P2=1 

where aPis the pth bond vector whose components are expressed 

in the external coordinate system and is explicitly given by aP = 

(a sin BP cos 9)19,  a sin Op sin 'Pp, a cos Or), and we have used the formal 

dyadic notation LPaP. In obtaining Eq. (5B.4), we have also used 

the following relations, 

 ET(5B.5)          P= , 
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     LL.,01[  E (B1)p2p3ap2ap3:exe] 
Ay p3=1 

!J' (B-1)p1P2(Lp1aP1)ap2:(exey + eye).) , (5B.6) 
                          Ps=1 

where Ep in Eq. (5B.5) is the 3x3 matrix given by Eq. (2.78). 

      By the use of Eq. (2.93), Eq. (5B.3), and the relation, 

Ep • Ap • ez = — (exey — eyex) • ap ,(5B.7) 

the third term on the right—hand side of Eq. (5B.4) may be 

rewritten as 

NN 

EeG 1Lp1 eq • MP1p2 • AP2 • ez — Ej eq 1Lp gfeq • Ap • ez 
P1• p2=1p=1 

+ E S r-1 Weq 1LP1 T.eq • Mp1p2 • (B_1),,p3(LA2a-p2)apa:(exey — eyex) . (5B.8) 
PL P2' P3=1 

Substitution of Eq. (5B.8) into Eq. (5B.4) leads to Eq. (5.9) with 

Eqs. (5.10) and (5.11). 

Appendix 5—C. Intrinsic Viscosity of the Einstein Sphere 

      In this appendix, we evaluate the right—hand side of 

Eq. (5.32). In general, an integral whose integrand includes the 

inverse Kp-1(rp, r,) may be evaluated by converting it into an 

integral of a certain function which includes the solution of an 

integral equation with the kernel Kp(rp, r;,). A simple example is 
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the translational friction tensor Ep of the pth subbody . It may 

be written as 

 p  = 87tnoJdrpfdrpKpl(p, rp) ,(5C .1) 
            sPsP 

since Eq. (5C.1) may be converted into 

  = fFp(rp)drp(5C.2) 

with !p the solution of the integral equation , 

     (8v70)-ifKp(rp, rp) • Tp(rp)drp = I I.(5C.3) 
                    sP 

Equation (5C.2) with Eq. (5C.3) is equivalent to the first of Eqs . (29) 

with Eq. (33) of Ref. 24. 

      In the present case, the right—hand side of Eq . (5.32), which 

we designate by 6, may be written as 

6 = - z (erey + eyex):LrpFp'(rp)drp(5C .4) 
                                       sP 

with F(r) the solution of the integral equation 

     (87t7/0)-ifKp(rp, rp) • Fp ~(rp)drp=—z(e~ey+ eyex) • rp . (5C.5) 
                   sP 

It is seen from Eq. (5C.5) that F(r) represents the frictional force 

distribution on the pth sphere under the non—slip boundary 

condition when it is immersed in the unperturbed oscillating shear 

flow given by Eq. (5.1) and rotates around its center with the 

angular velocity —fez/2. Therefore, 6 represents the increment of 
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the  xy component of the stress tensor due to the single sphere,24 

and is given by Eq. (5.33). 

Appendix 5—D. Matrix Elements 

      In this Appendix, we give the (2, 2)—body matrix elements 

 (),i=•~'i2;)0112'11in the Fourier basis set EL(11,ZZ)Ik1k2•kllzi]and L.41.1‘21,12:/)2') [Ia1h2.h1a2 ] 

defined by 

         M1^)*M',(ff}
2)8l(1J1q',J].'1        GFi,,•(Z,(f1zTUx1/z2]F'L'.(hZ4''z)[k1'hz J>eq=LL'tLIM'EL1.(L1LZ.l1l2) Uzlkz,ki(5D.1)hi1r 

    <FMCJii)*.~>F'(JJ~8LOJ,i.i'iz')(5D.2)           L.(Il2TIk1/z2]L',(111z)[kikz]eq=LL',1d M'L.(1,Z;,11Z~) [h1lz2,hj ki 1 , 

where Fi'((t;1;51k1k2) isthe two—body excitation Fourier basis function 

defined by 

        JJN Zt 12       FL.((Zi~~T [h1h21(l           N})P1k1QP2h2 
P1,P2=1 m1=-11 m2=-12 

P1#p2 

X r")111(Q)- m12iz(Q)DL(1112rnn)~1JL(5D.3)                              11\aZza/L .(l,lz)Cp1Pz1(~LPVPz) 

In Eq. (5D.3), we have used the two—body excitation basis function 

Di'(( l'i[P1p2](flPV S2p2) for the case of p1> p2, which is defined by 

D,L((1,o1P1p2](flP1r s2P2) = (-1)L-11-12(82)—(N-2)/2 E <11m1L2m2I 1112LM> 
rnl.na2 

Xg 1i1(S2P1)g1z2J2(s2p2) (p). > P2) ,(5D.4) 

Note that DL'(((1'S[P1p2](S2P„ S2p2) for p1 < p2has already been defined 

by Eq. (3.4).
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     We may write the (2, 2)—body elements in the form, 

 E  (L,(l11,1,'l2') [ k1k2,k1'h2 ] 

      ~jN'I11 12II'12'                                       1 

      EEEE E vp1k1QP2k2QP1,hi3O2,h2 
P1.P2,P1'.P°=1 m1--11 m2=-12 m1'=-11' 2 =-12 
P1#P^•P1'#P2 

X miji*(�2a) G~ 12j2*(C2a)'i Lt71 ( a)(rv1 i2'(.S2a)EL (r:42: `t2 j P)1P2•P1'P2] , 

and the like. By the use of Eqs. (3.17)—(3.22), we take the 

to obtain 

E(L1(2i, i1'lg')Ih1h2,k1h2] = 81111'812128k,k1,8k2k28i1ii8i2j2'(1 + 81,128kik28jij2) 

X(8712)-Ng11.h1g12.h2 , 

  L((1112)= 8114'8124:akh'81e2h2(87f2)—N'I1      ~,(~tlti.di12') [klkakl"k2]11 

X 18;1;18ith'(1 +811128hik28jii2)L11(11+1)g/z,h,+ 12(12+ 1)gill,k1 

      — 812j2g12,k2 f hill: +• 480 ( 2  — (-1)L+12 ) T{Jc.O(A 1)-1 } 
      — fS 111251,11,28j2i,,g12.h2 { h,111,1,2: + *81,i(  2 + (-1)L)71.1.-q%°(4)-' } 

      — 8J f1 g11.h1 { 11122,t; +• 3 8121(2 — (-1)L+11) TI21 °(A )-1 } 

      — 811128k1k28j1i2g11.k1 { h12k12 + 48121(2 + (-1)L)T121 '°(Ah)-1 } 

with 

          JJ 1 1+d1N       11,6 — 2 E E Tiii1j" E (NAC)-1(g1+dl,h+h' + g1+41,k—h') , 
41=-1 j"=-1—d1k =1 

where g1,k is defined by 

g{,k = —1 , if I = j = 0 andk = 2n(N + 1) (with ninteger) 

1 

    = 4 [ 1 — e-21(1+1)4s ] E (1 —8m0) 
m=-1 

—2 0 5 —

(5D.5) 

sums

(5D.6)

(5D.7)

(5D.8)

(5D.9)



 x  [1 — 2e-1"+"s cos (jvds — mkt)) + e-21“+1)a1-1 otherwise , 

with 0 = /(N+1) and v = (Ko2+ roz)"2, and T{,'Qt' is defined by 

Eq. (3.53). In deriving Eqs. (5D.6) and (5D.7), we have ignored terms 

involving e1'4, and retained terms of 0(1). 

     We note that the terms involving hLk and (11h)-1 in Eq. (5D.7) 

arise from the constraining matrix appearing in the diffusion 

operator 2. If these terms are ignored in Eq. (5D.7), then 

L(N'f;1;'2')[k,k,.k,'k_ ] become diagonal. 

Appendix 5—E. The Six—Dimensional Eigenvalue Problem 

      In this Appendix, we give the analytical solution of the 

six—dimensional eigenvalue problem given by Eq. (5.43) (with 

K02+ roe#O). 

     From Eqs. (5D.7) and (5D.8), the 6X6 matrix M[k] defined by 

M[k] _ (E2(2), [k])-1/2•2(2), [h] (E2(2), [k])-1/2(5E.1) 

is explicitly given by 

f a —A/Tic — /d00 0 
Aic 2 (a+b) ic — tic—d 0 

—mod —ica 0—ic —mod 

M[k] _ ~~ (5E.2) 
        0./Tic0 bAic 0 

            0 —d ic — /ic z (a+b) 'ic 

1 0 0 —A/Id 0 — /ica 

—206—



with 

      a  = (gl, !x)-1 { 4 2 Ko2v-2 3 (1 2N )(A)-1 + S?, k, + 3 S~,k + 2S2.h J 

       — r02v-2(Sth + S1,h) } ,(5E .3) 

       b = (go, k)-1 { 4 — KO2v-2(Sl.h + S2.h) 

             -ro2v-2 i 3 (1 2N)(Ak)-1 + 3 S(.h J } ,(5E.4)

— c = Korov-2(go, kg1, h)-1/2 [ 3 (1 2N )(Ak)-1 

       — Si ,h — 3'Sth + S2,h] ,(5E.5) 

      d = 9 /CO2v-2(g1,h)-1 [ 3 (12N)(Ak)-1 — S?.h + 3 S12.lx J ,(5E.6) 

where g{, /x is defined by Eq. (5D.9), v = (ico2+ r02)1/2), Ah is the hth 

approximate eigenvalue of the matrix a-2C given by Eq. (3.46), and 

Si), is defined by 

Sf.k = (2N)-1 E (4)-1(gi.h+h' + gf.k-k) .(5E.7) 
k'=1 

      The unitarytransformation matrix 02) ,[hl which diagonalizes 

the matrix M[k] is found to be of the form 

   Q2(2).[hJ = P[h1Q[h](5E.8) 

with P[k] and Q[h] the 6X6 unitary transformation matricesgiven 

by 
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 ( —a/2  A/a13/2 8/2 0 —1/VT 1/2 

/ i ia i(a -5)/ i a$ —i/a 0 0 

—a//3// 0 0 —1/WY 

P[h] _ 
0—a 0 0 0 

i ap i(a-5)/ i a8 i/ 0 0 

      —a/2 A/a$/2 5/2 0 1/A/7 1/2 

and 

               (2([14] 03x2 03x1 
Q 1k] 02x3 'q'[k] 02x1 

01x3 01x2 1 / 

respectively, where 

      a = K02v-2gi.h/(Ko2v-2gih + r02v-zgo.h) 

   q-zo1z-zo       N= rozvgl.yh/(kozv-zgl.h+r0vgl.h) 

In Eq. (5E.10), 0nxm is the nXm null matrix, and Q[k] and 

the 3X3 and 2x2 unitary transformation matrices given by 

            (x+1)/2 y (x-1)/2 

Q[k] = y —x y 

(x-1)/2 y (x+1)/2 

[(1—z)/2]112 [(1+z)/2]"2 
Q([h], 

— [ (1+z)/2 ] 112 [ (1_z)/2 ] 1 2 

respectively, where 

     x = A(A2 + 2B2)-1'2 

      y = B(A2 + 2B2)-1/2 , 

     z = (—a + b + 2d) [ (a — b — 2d)2 + 32c2 ] -1/2 
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  (5E.9) 

 (5E.10) 

 (5E.11) 

 (5E.12) 

Oil] are 

 (5E.13) 

 (5E.14) 

 (5E.15) 

 (5E.16) 

 (5E.17)



with 

     A =  z  (Q — a)(a — b - 2d) + 4,/2a$ c ,(5E.18) 

     B = ,/a/3/2 (a - b - 2d) + 2(a - 13)c .(5E.19) 

     The desired eigenvalue Ai(2),k (J = 1-6), which is the Jth 

diagonal element of the diagonal matrix A2(2),[k] = Q2(2),[k]M[k]Q2(2),[k], 

is given by 

   A2~2).k = ~r 1 [ z (a + b) - d + (J - 2)(A2 + 2B2)112] 

                                       for J = 1, 2, 3 

        = (g- r)-1{(3a + b + 2d) - (-1)J [ (a - b - 2d)2 + 32c'] 112 } 

                                       for J = 4, 5 

     = t",-1(a + 2d) for J = 6 .(5E.20) 
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