
THE

         STUDIES ON 

ORBITAL THEORIES FOR  OPEN- SHELL SYSTEM S 

           AND 

THE MOLECULAR ELECTRONIC STRUCTURE

HIROSHI NAKATSUJI 

KYOTO UNIVERSITY 

     1970

1





THE

          STUDIES ON 

ORBITAL THEORIES FOR OPEN-SHELL  SYSTEM  S 

            AND 

THE MOLECULAR ELECTRONIC STRUCTURE

       HIROSHI NAKATSUJI 

DEPARTMENT OF HYDROCARBON CHEMISTRY 

       FACULTY OF ENGINEERING 

         KYOTO UNIVERSITY 

             1970





 PREFACE, 

     Almost all of the chemical phenomena are governed by the 

motions of electrons and nuclei, and the underlying physical laws 

necessary to describe these motions are completely known (Dirac, 

1929) as a branch of quantum mechanics. However, since quantum 

chemistry deals with an essentially unsoluble many-body problem, 

the approximate nconceptn which extracts an essence of the physical 

reality becomes very important. Among these approximate concepts, 

orbital model (Hartree-Fock theory) have worked very well in the 

understandings of the electronic structures of atoms, molecules 

and solids. It is distinguished from other theories by its 

physical simplicity and visuality.. 

     However, there are still many things when we go beyond the 

Hartree-Fock theory. These phenomena, which are called collec-

tively as electron-correlation phenomena, offer recent topics in 

quantum chemistry. Among these, spin-correlation is one of the 

main interests of the present thesis. For example, in the open-

shell electronic systems, the simple orbital model breaks down; 

the restricted Hartree-Fock (RHF) theory does not take into account 

the effect of spin-correlation, and in the unrestricted Hartree-

Pock (UHF) theory, its wavefunction is not an eigenfunction of 52. 

However, an extention of orbital model satisfying both of these 

requirements is possible, and is made as the spin-extended Hartree-

Pock (SEHF) theory. 

    In Part I of this thesis, orbital theories in open-shell 

electronic system are studied laying stress on the spin-correlation 

problem. The orbital theories examined are the UHF theory, the 
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 projected or annihilated UHF  (PUHF) theory and the SERF theory, 

 and the starting basis is the RHF theory. Firstly, the UHF wave-, 

 function is interpreted in relation to the configuration inter-

 action (CI) method and a first-order relation connecting between 

 the UHF and the PUHF wavefunctions is presented. From this, a 

simple method is found to separate the UHF or PUHF spin density 

 into contributions due to spin-polarization (SP) and spin-delocali-

 zation (SD) mechanisms. These results are applied in Part II to 

clarify the nature of spin density in doublet radicals. Secondly, 

perturbation-variation treatment is applied to interconnect these 

UHF, PUHF and SEHF orbital theories in conjunction with the first . 

 order sum-over-state perturbation method . The accuracy of the 

 expectation values of the one-electron operators using orbital 

model is also investigated . Through the examination of these 

results in the light of the physical reality of th
e correlation 

phenomena in open-shell electronic systems , it is found out that 
the orbital model in open-shell electronic system di

storts to some 
extent the real spin-correlation correcti

on, in order to include 
effectively the correlation correction d

ue essentially to the two-

electron correlation phenomena . To overcome this limitation of 

the orbital model, two methods are sugg
ested for the spin-correla-

tion problem in open-shell electronic 
system. Thirdly, short 

examinations of the orbital model i
n closed-shell spin-correlation 

problem is given in connection with the finit
e perturbation theory . 

This is the background of the tr
eatment given in Part III about 

the anisotropy of the indir
ect nuclear spin-spin coupling 

constant 
in nuclear magnetic resona

nce spectra. 

    In Part II of the present the
sis, the electronic structures 
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of carbonium ions and doublet  radicals are studied by the semi-

empirical SCF-MO method for valence electron systems. This method 

is also applied to the calculation of force constant of ethylene. 

     As has been known from the early days of the electronic theory 

of chemical valency, valence electrons play essential role in 

chemical bindings and in other chemical phenomena. Nevertheless, 

it was only recently that the semi-empirical SCF-MO method for 

valence electron systems becomes popular (Pople's CNDO method, 

1965). The valence-electron SCF-MO method used in Part II is 

based on the method presented by Yonezawa, Yamaguchi and Kato. 

To apply this method to doublet radicals, extentions are made by 

means of the RHF and UHF theories. 

     Three points should be noted. Firstly, in the studies of 

carbonium ions and doublet radicals (especially, their hfs cons-

tants in electron-spin resonance spectra), explicit accounts of 

a-electrons (not like in it-electron theory) and of the electron-

repulsion terms (not like in the extended HUckel theory) are 

shown very important. Secondly, the theoretical results of Part 

I are applied in the study of doublet radicals, and are proved to 

be very useful. Thirdly, the present valence-electron SCF-MO 

method is found applicable also to the calculation of force con-

stant after small modification in the core-repulsion term. 

    In Part III of this thesis, anisotropy of the indirect 

nuclear spin-spin coupling constant is studied theoretically . 

The information on the order of magnitude of the anisotropy of the 

indirect nuclear spin-spin coupling constant is important in the 

determination of the molecular geometry from the NMR spectra of 

the molecule dissolved in a nematic solvent . Since there has 

been no theoretical study on this subject
, the author firstly 
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 formulated three mechanisms important to  anisotropy  by the usual 

 sum-over-state perturbation method. They are Fermi-spin dipolar 

 cross term, spin dipolar term and orbital term. Relative impor-

 tance of these mechanisms is investigated. Since the indirect 

 coupling constant is due to the spin-correlation phenomena in 

 closed shell electronic systems, the author also applied the finite 

perturbation theory proved useful in Part I of this thesis. 

This is the first application of this theory to this problem , ex-

cept Fermi contact term . The actual calculations are carried out 

by the INDO method of Pople et al
, and the order of magnitude of 

the anisotropy is calculated for various nuclear pairs . From this 

and from the detailed examinations on the !experimental' values of 

the coupling anisotropy
, it is pointed out that the molecular geo-

metry may change from its gas state t
o the solute state in a nema-

tic solvent. This point will be important i
n the study on the 

nature of solvent-solute interaction
. 

     Finally, general conclusions of these inve
stigations are 

given at the end of this thesis .
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                        CHAPTER 1 

 INTRODUCTION 

       The correlation problem which searches for the gap between the 

  exact wavefunction and the (restricted) Hartree- Fock wavefunction 

  is one of the recent topics in quantum chemistry.1'2 Some pheno-

  mena are there which can never be explained within the restricted 

Hartree-Fock orbital theory; proton hyperfine splitting constants 

  of the planar n-electron radicals in the electron spin resonance 

  (ESR) spectra, contact shifts and indirect nuclear-spin coupling 

constants in nuclear magnetic resonance (NMR) spectra, etc.. 

  From theoretical viewpoint, these phenomena are (at least in part) 

  essentially due to the spin-correlation phenomena. Although spin-

  correlation emerges mainly as the one-electron orbital correction , 

  it is closely related to the two-, three, ---, electron-correlation 

  phenomena.2 

       In Part ,I of this thesis, orbital theories in open-shell elect-

  ronic system are studied laying stress on the spin-correlation 

  problem. For example, the restricted Hartree-Fock (RHF) theory3 

  does not take into account the effect of spin-polarization,and in 

  the unrestricted Hartree-Fock (UHF) theory its wavefunction is not 

  an eigenfunction of ;2. The spin-extended Hartree-Fock (SEHF) 

  theory5 is an extention of orbital model satisfying both of these 

  requirements. These orbital theories are interconnected and exa-

 mined in the light of the physical reality of the correlation phe-

  nomena in open-shell electronic systems. 

      In Chapter 2 (published in Chemical Physics Letters, 2, 454 

(1968), and in the Journal of Chemical Physics, 511, 669 (1969)), 

a method to separate the spin density calculated with the UHF



   method into components due to the spin-polarization and  spin-dela-

    calization mechanisms is presented, and applied to some doublet and• 

   triplet radicals. The results are examined by means of the UHF 

   natural orbitals and of the RHF orbitals, and the validity of the 

   method is 'confirmed. 

       In Chapter 3 (published in the Journal of Chemical Physics, 51, 

   3175 (1969)), the general behavior of the UHF wavefunction is ana-

   lyzed and interpleted by means of the configuration-interaction (CI) 

   language, and a first-order relation connecting between the UHF and 

  the projected6 (or annihilated7) UHF (PUHF) wavefunctions is pre -

   sented. The effect of projection (or annihilation) is examined 

  for the expectation values of the one -electron spin-independent and 

  spin-linear operators . From this, the generalization is made on 

  the method for separation of the UHF or PUHF spi n density into mecha-
  nistic contributions . 

       In Chapter 4 (under preparation for publi cation), a perturba-
  tion-variation treatment is applied t o interconnect the orbital 

  theories in open-shell electroni c systems, namely the UHF, PUHF and 
  SEHF theories, in conjunction with the fi rst-order sum-over-state 

  perturbation wavefunction starting from the RHF wavefunction. 
  Interrelation in the spin densities obt ained by these four methods 

 is also clarified. The accuracy of the expectation values of the 
  one-electron operators using the se orbital models is also investi -

 gated for both the closed and open -shell electronic sy stems. 
Based on these results

, an examination of the orbital model f or 
 the spin-correlation problem i s carried out in the light of the 

 physical reality of the correlation phenomena in open-shell el ect-
 ronic systems. Two methods are suggested at the end of this 

 study to overcome the limit ation of the orbital model in the spin-

                            2



correlation problem in the  open-shell electronic systems. 
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 PART I, CHAPTER 2 

  SPIN DISTRIBUTION MECHANISMS 

             IN 

 UNRESTRICTED HARTREE-FOCK THEORY





SPIN  POLARIZATION 

  IN UNRESTRICTED

AND SPIN DELOCALIZATION 

HARTREE-FOCK METHOD

  A theory for the separation of the spin density calculated with the unrestricted Hartree-Fock method 
into the two components due to the spin polarization and spin delocalization mechanisms is given and ap-

plied to methyl, ethyl and vinyl radicals.

   The unrestricted Hartree-Fock (UHF) method 
 based on a spin polarized self-consistent field 
 single determinaft wave function [1] has been 

widely used for the spin density calculations of 
 many organic and inorganic radicals. However, 

 the unrestricted Hartree-Fock method, compared 
with the configuration interaction or perturbation 
methods, does not provide the information about 
the spin density appearing mechanisms such as 
the spin polarization (SP) and spin delocalization 
(SD) mechanisms*. In the present communication, 
we propose a procedure to separate the spin den-
sity calculated with the UHF method and those ob-
tained with the annihilation method [3] into com-
ponents due to the SP mechanism and to the SD 
mechanism. 
   Here we follow closely the results given by 
Snyder and Amos [4]. The total wave function of 
the UHF method is written by the p a-spin orbi-
tals and the q 0-spin orbitals and we assume p > q 
without loss of generality. The unitary transfor-
mation of the unrestricted molecular orbitals 
(MO's) gives the corresponding MO's, Xi and Ili, 
which are closely related to the natural orbitals, 
X, v and A: 

    Xt = Ai(1-bi)2 +viAi,f= I,...,q;

" To avoid confusion . see ref. 121, we give a provision- 
 al definition of the spin delocalization and spin pola-

 rization mechanisms used in this communication. The 
 former means the spin density appearing mechanism 

due to the singly occupied orbitals of the best re-
 stricted total wave function and the latter is defined 

 as that due to the correlation between electron spins. 
 This definition of the SP and SD mechanisms is identi-
 cal with that used by Colpa and de Boer.

   rli = Ai (1-A2)2 - vioi • i = 1.... ,q ; 

   Xi=ui,i=q+1,. .•p; (1) 

where 

   4i = (I - Ti )2/V2. f Xi /3 dr - Ti dij . 

Using eq. (1), we can rewrite the UHF single de- 
terminant as the following for doublet radicals 
(p=q+1) 

+UHF =

  rf rf se se se se de de = Ci +, + C, +, + 4' + C: +, + ... , (2) 
 2 2 2 2 2 2 2 2 

where 

giff = iAicrA1(3A2aA2i3...gaAq/3~tpal (3) 
and 411e and ifr are the sums of the singly ex-
cited doublet abd quartet configurations resulting 
from the excitation of an electron from Ai to vi. 

By assuming C1CO1A>CSe, CSe,and by neg- 
lecting the doubly excited configuration +.tand 
higher terms, the spin density of the UN? method 
at the position i can be written as • 

p'URF~p(rf'"zjrf2)+ 

     + 2 Crep (rf a I set) + 2 deP (Ili I sei) . (4) 

2

From the following relations [4]

• The spin density operator and the spin squared oper-

ator do not commute.
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                       Table 1 
Spin polarization and spin  delocalization in the calculated spin density

Radical
Atomic 

Orbital (Puhf)sp (Pkihf)sd (Paa)sp (Paa)sd Prhf

Methyl

Ethyl

Vinyl 

0=1350

2Sc 

H' 

2Sc1 

2Sc2 

H3 

H4 

H5. lid 

H7 

2Sc 

2Sc13 

He 

Ht 

Hcr

 0.147( 99) * 

-0.028(100) 

 0.159( 99) 

-0.012(100) 

-0.035(100) 

-0.03.5(100) 

 0.014( 26) 

-0.002(100) 

0.122( 59) 

-0.035(111) 

0.009( 21) 

0.026( 27) 

-0.042(197)

0.002( 1) 

0.000( 0) 

0.002( 1) 

0.000( 1) 

0.000( 0) 

0.000( 0) 

0.040( 74) 

0.000( 0) 

0.083( 41) 

0.004(-11) 

0.035( 79) 

0.071( 73) 

0.021(-97)

0.049( 96) 

-0.009( 100) 

 0.053( 95) 

-0.004( 100) 

-0.012( 100) 

-0.012( 100) 

0.005( 11) 

-0.002( 100) 

 0.041( 33) 

-0.012( 146) 

0.003( 8) 

0.009( 11) 

-0.014(-218)

 0.002( 4) 

0.000( 0) 

0.002( 5) 

0.000( 0) 

0.000( 0) 

0.000( 0) 

0.040( 89) 

0.000( 0) 

0.083( 67) 

o.004(-46) 

0.035( 92) 

0.071( 89) 

0.021(318)

0.000 

0.000 

0.000 

0.000 

0.000 

0.000 

0.041 

0.000 

0.081 

0.004 

0.036 

0.075 

0.017

* The values
in parentheses show the percentages of the contributions .

Irks - e ir z?p(rdisez)=~pt(rfz'+sei), 
eq. (4) reduces to 

    UHF  p (rf i l rf2) + cept(r.f I sel) (5) 
and similarly, the spin densities after . single an-nihilation (pasa) and after annihilation (p

aa) are [3) 

  pasa pt(rf z rf2) + 2fCSepr(rf2!se') , (6) 

                                     2

   paa pt(rfz rrfa) + Csepi(rf se!). (7) 
                                   2 Referring to eq. (3). it may be clear that the first 

terms of eqs. (5) - (7) represent the contributions 
due to the SD mechanism and the second terms 
represent approximately those due to the SP me-
chanism. It may be noteworthy, however, that 
the unpaired orbital we mean is the natural orbi -
tal, Ai. in eq. (1) and that the iliTe in eq. (2) in-cludes only the limited configurations like 

 xi• v•. based on the natural orbitals . and does not inc fude those expressed as a1 • vi (1 *)) [3). The natural orbitals A. u and v are not identical 
but closely similar to the best restricted orbitals as pointed out by Amos and Snyder [3). and this point will be examined numerically in table 1 by 
comparing- the results obtained with the UHF method to those with the open shell restri cted Hartree-Fock (RHF) method [51.

100•(pt)sp/Ptand 100•(pt)sd/pt. respectively.

   From eqs. (5) - (7), we obtain the results 
          ,.._iUH

F)sp =I(PUHF - Paa) • (8) 

        (Pasa)sp = PUHF - paa ,(9) 

         (Pt)sp =i(PUHF -Pad •(10) 
where (P6F)S0 is the SP contribution to the spin 
density calculated with the UHF method, and   i 
(pasa)sp and (pi )spare those top

asaand paa' 
respectively. The SD contributions are , there-fore, written, in common as 

(Pi)sd = Pt - (Pi)sp.(11) 
When only the SP mechanism is the source of the 
spin density as in the case of the a-type atomic 
orbitals of the methyl radical , eqs. (8)- (10) give 

          i 7 t
3pt(12)          pi            Zpasaa a 

as was pointed out by Amos and Snyder.   A 
semi-empirical unrestricted SCF-MO meth-

od for valence electron systems including differ -
ential overlap proposed by the present authors 
[6) gave spin densities listed in table 2. As is 
well known. the spin densities on the a -type atom-
ic orbitals of the methyl radicaI are due only to 
the SP mechanism and therefore . relation (12) 
holds fairly satisfactorily . 

13y using the values shown in table 2 . the con-t
ributions of the SP and SD mechanisms to spin
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 Table 2 
Spin densities calculated before and after .annihilation 

          of the quartet spin functions

Radical
Atom is 

Orbital' Puhf * * Pan

Methyl

Ethyl

Vinyl 

E) = 135°' 
r •

2Sc 

H 

2Sc1 

2Se2 

113 

114 

H5. H,, 

117 

2Sccv 

2Sci3 

He 

Ht 

Ha

0.1487 

-0.0275 

0,1ii14 

-0.0123 

-0.0343 

-0,0345 

0,0538 

-0,0020 

0.2051 

-0,0315 

0.0438 

0.0974 

-0.0213

0.0510 

-0.00e9 

0.0555 

-0.0040 

-0.0111 

-0-om 

0.0442 

-0.0007 

0.1240 

-0.0082 

0.038I 

0.0799 

0.0064

of RHF are given in the last column of table 1. 
It may b,  - en that the tp contributions calculated 
by the UHF method agree reasonable with those 
obtained by the RHF method. In the ethyl radical„ 
the spin densities on H5 and H6 atoms are due to 
25 -10% SP and 75 - 90% SD contributions and 
those of the other atoms are chiefly due to the 
SP mechanism. In the vinyl radical, both me-
chanisms are important, and especially for the 
a-hydrogen atom, the calculated spin density is 
the result of the large cancelling contributions of 
both mechanisms. It may be said based on the 

present results that extended Hiickel type calcu-
lations [7,8] of the vinyl radical, where only the 
SD mechanism is considered, have some doubt 

as has been mentioned by Dixon [9]. 
  More details of the above method and its ex-

tention to the triplet state will be described else-
where in the near future.

• 115Hd 
~,1i3 He 

H72-C1H4 HtC~t Eir7 
'• To compare with the experimentally observed pro-

   ton hyperfine coupling constants. the proportional-

   ity constant. 743 gauss. determined by the best fit 
   method is .recommended. 

•" The most stable configuration calculated with the 

   present method.

densities are calculated from eqs. (8) - (11) and 
the results are summarized in table 1. Moreover, 
the spin density calculated by the RHF method 
(PRHF) m:'y be regarded as a reasonable meas-
ure of the validity of the SD contribution obtained 
by the above method*, and therefore, the values

' Eqs
. (8) -(11) are correct only when the contributions 

 due to the higher terms neglected in eq. (4) are neg-

 ligibly small.
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Spin Polarization and Spin Delocalization in Unrestricted Hartree—Fock Method

 A method to separate the spin density calculated with the unrestricted Iiartree-Fock method into com-

ponents due to spin-polarization and spin-dclocalization mechanisms is presented, and applied to some 
doublet and triplet radicals. The results are examined by means of tI e UHF natural orbit;ils and of the 
open-shell restricted Hartree-Fock orbitals, and the validity of the method is confirmed.

            I. INTRODUCTION 

  The unrestricted Hartree-Fock (UHF I method based 
 on a spin-polarized self-consistent-field single-deter-

 minant wavefunction' is widely used for spin-density 
calculations. However, compared with configuration-

 interaction or perturbation methods ,2•a the I. HF 
 method does not usually provide information about 

 "spin -appearing" mechanisms' such as spin-polarization 
 (SP) and spin-delocalization (SD) mechanisms.9-7 

  In a previous communication,7 we proposed a 
procedure to separate the spin density calculated with 
the UHF method (pUHF) and that obtained after the 
annihilation methods (pas. and p°B)9 into components d
ue to the SP mechanism (psp) and to the SD mecha-

nism (psn) . For doublet radicals, the results are 

(PIMP) SP = a (PUE1P— Pss) , 

(Pass)SP= PIMP— pas, 

(Pss) SP = l (PUHF —Pan) , (1) 

where (pupF)sr denotes the SP contribution to the 
spin density calculated with the UHF method and 
(Pass)sp and (pss)sP are those to Nan and pss, respec-

  t J. A. Popic and R. K. Nesbet, J. Chem. Phys. 22, 571 (1964)-   2 !a) A. D. McLachlan, Mol. Phys. 3, 233 (1960). (b) S. Aono and J. Higuchi, Progr. Theoret. Phys. 28, 589 (1962). (c) J . P. Malrieu, J. Chem. Phys. 46, 1654 (1967). (d) A. L. H. Chung, ibid. 46, 3144 (1967) . 3 J . P. Colpa and E. de Boer, .fol. Phys. 7, 333 (1964), and the references cited in this paper. 'By "spin-appearing' mechanism, we mean the mechanism by which the spin-density distribution occurs. ' al D. I.azdins and M. Karplus, J. Chem. Phys. 44, 1600 (1066). (h', J. P. Colpa, E. de Bner. I). Lazdins. and M. Karplus, ibid. 47, 3008 '1%7'r, ° To avoid confu-ion [sec Ref. 5 I) ] we provisionally define the spin delocalization and spin•poIarization mechanisms used here. The former mean- the ",: ,                       in-apperinmechanism due to the `inr)y occupied orbitalsof~the be T1 restricted wavefunction, and the lac'.-r is <lei:ned a, that due to corrclation between electron spins. This definition of the SP and St) mechanisms is identical w•th that given b
y Colpa and do Boer in Ref. 3(h). ' 1'. Vnnerr..ca, H. \akatsuii , T. Kawamura, and H. Kato, (''icm. l'h\ s. Letters 2, 454 )1968). " a A. T. Amos and G. G. Hall, Proc. Roy. Soc. (London) A203, 483 (1%1), tb) A. T. Amos, Mot. Phys. 5, 91 (1962). (c) P. Amos and L. C. Snyder, J. Chem. Phys.41, 1773 (1964). (d) I.. C. Snyder and T. Amos, ibid. 42,367'0(1965). }fere we follow the notations used by Amos and Snyder.8a the sutlixes "asa" and "aa" mean "after single annihilation" and after annihilation," respectively.

tively. The spin-delocalization contribution is approxi-
mated as the difference 

(P)sn=P-- (P'sP.(2) 

Furthermore, the validity of this approach was con-
firmed by comparing the SD contributions calculated 
by Eq. (2) with those obtained by the open-shell 
restricted Hartree-Fock method.1° 

  The separation of the unrestricted spin density into 
mechanistic contributions is also possible by means of 
the natural orbitals of the UHF method. Here, we 
compare the results obtained by the above method with 
those calculated from the natural orbitals of the UHF 
method.Sa In the next section, an extension of the 
above method to triplet states is described and some 
assumptions in the formalism are examined. Then, we 
apply the method to typical doublet and triplet radicals 
in Sec. III. The conclusion of the present study is 
given in Sec. IV.

             IL THEORY 

  The total wavefunction of the UHF method is 
written by a single determinant in which the a-spin 
orbitals f cci) may be different from the /3-spin orbitals  
I T9~, 
*UHF =[(p+q) !J—"2 det{rp/(1)a(1)se2(2)a(2) 

•--,Pp(P)a(P)4*i(P+1)$(p+1)02(p+2)fl(p+2) 

• • -c¢(P+q)a(p+q) ), (3) 
where we assume p> q without loss of generality. For 
doublet radicals, p=q+1 , and for triplet radicals, 
p=q+2. As shown by Amos and Hall" and byAmos 
and Snyder,"the unitary transformationsof the 
unrestricted molecular orbitals (MO's) (cod and {0i) 
give the corresponding MO's {xi) and f ri4, respec-
tively. These are closely related to the natural orbitals 
A, z, and v by the following equations: 

Xi= Ai( 1—pi2)1/2+yi~ i=1, . • . q, 

ni=ai(1— Qtz) uz i =1, • • •, q, 

                              i= 1 • - (4) 

10 C. C. J. Roothaan, Rev. Mod. Phys. 32, 179 (1960)•

7



where 

      Di =(1f)                     fxriidr'_T&i. 
                              As seen in Eq. (4), the corresponding orbitals of the 

 UHF method are related to the alternant MO's pro-
posed by Lowdin,11 and the natural orbitals A and is are 
closely related to the restricted MO's, as noted by 
Amos and Snyder.'° In this treatment, we assume that 
the natural orbitals µ are dosely similar to the unpaired 
orbitals of the restricted open-shell method," and this 
point will be verified later. (See Table VIII.) 

 Now, we extend the method described previously' to 
the triplet state. As shown by Snyder and Amos,'d we 
can rewrite the UHF single determinant, using Eq. (4), 
in the following manner for the triplet state (p=q-f-2) : 

Sour = Cu? hIfsi ?I+ Cstei'see 

                       +Ciis"ifie+Csnd"1'usa.-I-..., (5) 
where tsts't is the normalized restricted function built 
up of the natural orbitals A and p: 

'sis't= I Al itAtaA20. • •A.aXitiPoictise1 a I, (6) 

and its coefficient is giver. by 

C„:r1= (1—a;).(7) 

`1°sis" and 11,0" are sums of the singly excited triplet and 
quintet configurations, resulting from excitation from 
Ai to vi; 

     1 `P
us "= (1- Lif2)1"NrEI ... va`r, i(a13+042) C

t/7~ f~3 
... /1/44-1C41/4+201 I — 1 ...yf«Afa•..Ijo1Fiv+s(a9+Aar) I], 

                           q(8) `I'as"=1LA,(1-6')" Nitirl ...ycAt(atel-Pa)       c
i/s" '-1 

...,N .,.1Qwwl,.sa I + I ...viaAia...µc!-11444(a8+0c8) I], 

                        (9) 
where 

Ni= (1-41/), 

and their coefficients are given by 

Cse = Cies" = ( 0(1- MN ". (10) 
f-1 

Here we consider the expectation value of the normalized 
spin-density operator," pi= 5,-1E4 S.i8(ri- ri) . IIy 

El O. L5wdin, Phys. Rev. 97,1509 (1955)• a' Strictly speaking, this assumption should be that the folkway 
transformat natural orbitals p are closely similar to the unpaired 
orbitals of the RHF wavefunction. 

11 H. M. McConnell, J. Chem. Phys. 21t,1188 (1958).

assuming Csn't>•Csri", C.,s" and by neglecting the 
doubly excited configuration 'P1d' and higher terms," 
we obtain 

Qum. = (Cm")7P'trf(2/2) I rf(2/2)] 

+2Cvs'tCsis"Pt[d(2/2) I se (2/2)3 

+2Csis'tCus'°P'tri(2/2) 1 se(4/2)3, (11) 

where ptrf(2/2) 1 se(2/2) J denotes the matrix element 
between '':tse1 and *se with respect to the normalized 
spin-den'ity operator. From Eq. (10) and from the 
relation 

P'Cd(2/2) ( se(2/2)]°Ptrf(2/2) I se(4/2)1 

Eq. (11) reduces to 

neur4= (Csrs'1)1o0E11(2/2) I rf(2/2)3 

+4Csd"'Csrsap'Lrf(2/2) I se(2/2)]. (12) 

Similarly, the spin densities after single annihilation 
(p...) and after annihilation (P,.) are written as 

P..si= (Cid1)'Ptrf(2/2) I rf(2/2)] 

+3Ctis'tCsis"Ptri(2/2) I se(2/2)] 
and 

pa.i=(C:,s't)3Ptrf(2/2) 1 rf(2/2)3 

+2Cs^sr'Cv?'p'trf(2/2) I se(2/2)]. (13) 

From the definition given in Ref. 6, the first terms of 
Eqs. (12) and .( /3)  represent the contributions due to 
the SD mechanism, and the second termn represent 
those due to the SP mechanism. Note that frvi" and 
legs° given by Eqs. (8) and (9) include only the 
limited configurations Ince I A,-vi I, the excited con-
figuration, where A4 is replaced by vi, and do not include 
those expressed by I Ai-iv, I (i�j), I ,-sit I, and 
I I, and that the occupation number of Is is unity. 
[See Eq. (4) .] Moreover, Eqs. (12) and (13) show that 
the annihilation of the lowest contaminating spin state 
(quintet state in this case) affects only the SP con-
tributions. 
 From Eqs. (12) and (13), we obtain the results for 

triplet radicals. By using the values of p..i, the SP 
contributions are calculated from 

(Patfr9 sP m 2(Pvaar4-P.ai) 

(Pm')SP cI(posri-Peei), 

            (p.. )BE' 'Pvp r'—pea',(14) 

11 This assumption corresponds tocontrlbatioas from 
p'se(2/2) I se(3/2)] and aiCse(4/2) se(4)~,etc. In other 
words, this corresponds to omissionpart of the second- and 
higher-order terms with respect to the cpta-corre;ttl n psr-
turbation.
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 and by using p,..', from 

(Prnr')sP=4(PCnr'—p..a'), 

(P,.a')sr= 3(e.a.4—Aa.a'), 

(Pas ')sP=2(puxa'—pMa{)• (13) 

The SI) contribution in the triplet state is given by 

          2[J,<(r0 12+ 1i,,,,,-2(14)~) j2J, 

since the occupation number of i is unity. But in the 
present approximation (see Ref. 14), this is given by 

(P4)813= (C212't)'P'[rf(2/2) 1 rf(2/2)] 

7          2(C2,2')2(11jq~1(r') 12+ /4441(r') ly], (16) 

and is calculated from 

(P)so=p—(p)8P,(17) 

• without a knowledge of the natural orbitals µi. When 
only the SP mechanism is the source of spin density as 
is the case of spin densities in the o-type atomic orbitals 
of the planar it--sir* triplet state of ethylene, Eq. (14) 
leads to 

pvsF'=$~Pa.: =2Paa'~. (18) 

  For doublet radicals, the results have been reported 
previously.? However, it may be convenient to sum-
marize the resulis here. The SP contributions to the 
spin densities are calculated by using pump and pa. from 

(puny')8P— z (PunP4—Paa')3 

(pus')8P PtJH Paa', 

(Pae')BP=1(Prrar'—Paa4), (19) 

and by using Pura andpa,.from 

           (Puny')sr =3(puHr'—pa.a'), 

(pmai) 8P = 2 (pvsi"— pa.a'), 

(13444)8P=PLTBF'—P..a'- (20) 

The SD contributions are also given by Eq. (17) . 
When only the SP mechanism is important , the spin d
ensities calculated by the three methods satisfy the 

following relation: 

         PIMP—''=3s(21)                           .~P..aP0.aP 
as pointed out by Amos and Snyder 0e 

 The separation of the UHF spin densities into 
mechanistic contributions is also possible by means of 
the natural orbitals of the UHF method, which is more direct than the above=inethod. In this method, the mechanistic contributions can be calculated directly 
from Eq. (5) for triplet states, and for doublet radicals from [see Eq. (2) in the previous paper'] 

*tap= C1/' l/'+Cii'P'''Ii/a.+C1,2a /$, +aa
a(22)

D Sl'i`1

TABLE

I)ELOCAI.IZAT10N

1. Comparison of UHF orbitals, UHF natural 
   and RHF orbitals of the methyl radical.

orbitals,

SymmetryCoefficientTc 

                 UHF Orbitals 
a-Spin orbitals 

a,' 0.79505+0.112902+h:+h:) 

0.4645X-0.5153(h,—h4) 
e' 

0.4645 Y+0, 5950h,— 0.2975 (h,+h,) 

a," 1.0000Z 

a-Spin orbitals 

0.6951S+0.1642(4-1-ha+hi) 

0.4520X-0.5249(h,— ha) 
e'

a', 

e'

a,' 

i'

0. 4520Y+0.6061h1-0. 3030(h,+h4) 

      UHF Natural orbitals 

G. 74545+0.1386(h,-l-h:-f-14) 

0.4582X-0.5201(k— h4) 

0.4582 Y+0. 6005h,— 0.3002 (h1+ h,) 

1.0000Z 

       RHF Orbitals 

0.74625+0.1382 (h,-}-h,+h4 ) 

0.4686X-0.5121 (h8—h41 

0.4686Y+0.5914h,-0.2957 (1e4+14) 

1.0000Z

0.9979 

1.0000 

1.0000

where the coefficients are given by 

Ci/21'= I (1—Q s) 
and 

C21,°° = (1/4)(73/2... 

(3%'/'( Z., [A,(1—bi )"N3]2)1/2 (23) 
                         F-1 

The SD contribution, which is compared with the one 
obtained by the above method, is given by Eq. (16) 
for triplet states, and by the following equation for 
doublet radicals: 

(p')en=(C112 )' I iw-1(ri) 12. (24) 

On the other hand, the SP contribution may be calcu-
lated by applying the spin-density operator to Eq. (5) 
or to Eq. (22). However, this is rather impracticaI, 
since the natural orbital v: is given by to 

Pi = (X c-- n;)/^12 (1— Ti)112, 

where T; is always very close to unity. (For example, 
see Tables I and IL) A more straightforward way than

C



 Taat.s U. Comparison of 11-IF orbitals, UHF natural orbitals, and RIIF orbitals of the r-r• tripirt state of planar ethylene.

Symmetry Coefficient T4

a-Spin orbitals 

as 

   Aw 

bw 

bis 

as 

bi.

a-Spin orbitals 

as 

bsY 

brs 

bi" 

as

a„ 

bas 

bss 

b1, 

as 

~/lY 

5s•

as 

b,Y 

b,Y 

a" 

6k,, 

bss

UHF Orbitals

0.6014(Si+Ss) -O.0096(Xi-Xi) -0.0085(ha+h4+h,+4) 

0.4987 (Si- S3) -0.1188 (Xi +Xs) +0. 2067 (h,-+-14- h,- he) 

0.3396(Yi+Ys) +0.3081(h,-h4-h,+h,) 

0.3240(Y1- Y,) +0.4274 (hs- h4+he-h,)
-0 . 0682 (Si+Ss) - 0. 5069(X1-X2) +0. 2129(hs+h4+he+he) 

0.6271(Z,+Zs) 

0.8283(Z,-Z2)

0.5357 (Si+Ss) +0.0242 (Xi-X,) +0.0441(h,+h.+h,+h.) 

0.4082(5,- Ss) -0. 1258 (XI + Xs) +0. 2497 (hs+ irk -h,-he) 

0.3245(Y,+Ys)+0.3213(hi-Js4-4+h$) 

0.3119(1'1- Ys) +0.4353 (h,-h4+h,- h,) 

0.0851 (Si +Ss) +0. 50/4(14- Xs) -0. 2196(hs+ke+J4+h,)

              UHF Natural orbitals 

0.5531 (Si+Ss) -0.0620 (Xi-Xs) +0.0472 (h,+h4+h,+h,) 

0.4537 (Si- Ss) -0.1223 (XI+Xs) +0.2283 (h,+h4- h,-h,) 

0.3321(Yi+ Y,) +0.3147 (he-h4-he+hi) 

0.3180(Yj- Ys) +0.4313 (hs-h4+h,-he) 

-0.154/ (Si +52) -0. 5003 (X,-Xs) +0. 2120(h,+h4+4+he) 

0.6271(Z2+4) 

0.8283 (Z,-Zs)

                RHF Orbitals 

 0. 5626 (Si-I-Ss) -0.0004 (X1-. +0.0259(h,+Jt4-}d,,+Jss) 

0.4495 (St- Ss) -0. 1245 (Xi +X2) +0.2294(h2+h4-he-he) 

0.3376(Y1+Yp)+0.3099(4-h4-h4+he) 

0.3253 (Yi- Y2) +0.4266(hs-h4-+-h2-he) 

-0.0905 (Si+Ss) -0.5030(X,-Xs) +0.2174(h,+J4+he+he) 

0. 6271(Z,+Zs) 

0.8283(Z,-Zs)

0.9971 

0.9977 

0.9998 

1.0000 

1.0000

this is to use the equation 

(P)sp=P- (p)s,. (25) 

In the present paper, we also calculate the mechanistic 
contributions by this method and compare the results 
with those obtained with Eqs. (14)-(20). Hereafter 
we call the method based on Eqs. (14)-(20) as "anni-
hilation method (AN method)" and the one based on 
Eqs. (16), (24), and (25) as "natural-orbital method 
(NO method) ."

 In the formulations of Eqs. (14)-(18) for triplet 
states and in those of Eqs. (19)-(21) for doublet 
radicals described previously, we set the following two 
assumptions: One is that the natural orbitals R are 
closely similar to the unpaired orbitals of the best 
restricted molecular orbitals, and the other is that the 
coefficients in Eq. (5) satisfy the relation Cwa'>>Caia"', 
C4/9". (See also Ref. 14.) Now, we examine these 
assumptions. In Tables I and II the natural orbitals of 
the UHF method calculated for the methyl radical and
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 SPIN POLARIZATION

TABLE M.

A N 1) SPIN DELOCALI

Comparison of the UHF natural orbitals

ZATION

it and the RHF unpaired orbitals.'

Radical A06
  UHF RHF 

p`[rf(1/2) ( rf(1/2)] p'(RFIF RHF)
Triplet 

state A01,
    UHF 

p'[rf(2/2) ; rf(2/2)]
   RHF 

p'(RHF j RHF)

Ethyl

Vinyl

2P,(C1) 

2P.(C2) 

5h, 6h

2S(C,) 

2P:(C.J 

2P,(CC) 

2S(Cs) 

2P: (CO 

2P„(C) 

hg 

kg

1.000 

0.000 

0.039

0.090 

0.118 

0.739 

0.008 

0.001 

0.000 

0.053 

0.071 

0.020

0.999 

0.000 

0.041

0.081 

0.125 

0.745 

0.004 

0.004 

0.001 

0.037 

0.075 

0.017

H2CO 

(1-s rs)

H2C0 

(n- it*)

2P,(C) 

2P,(0)

2Py(C) 

2P,(C) 

2P„(0) 

2P,(0) 

h

0.525 

0.525

0.000 

0.407 

0.484 

0.226 

0.022

0.525 

0.525

0.000 

0.438 

0.483 

0.187 

0.023

Only the coefficie^•s of the diagonal elements of the AO spin-density 
matrix are given. (See Ref. 13.)

 b The values of the AO's other than 

by symmetry.

those given in this table are zero

for the 7r------).-A* triplet state of ethylene are compared16 
with the MO's obtained by the open-shell restricted 
Hartree-Fock (RHF) method.10 (The method of 
calculations and estimations of integral values are 
described in Ref. 16.) Since the wavefunction obtained 
with the Roothaan's open-shell method may be regarded 
as the best RHF wavefunction within the approxi-
mations introduced in the integral estimations, it 
provides a good criterion of the restricted configuration 
[Eq. (6) ] included in the UHF wavefunction. As seen 
in Tables I and II, the natural orbitals of the UHF 
method accord satisfactorily well with the MO's 
obtained by the RHF method. Note that, in the cases 
shown in Tables I and II, the unpaired orbitals are 
uniquely determined by symmetry requirements. In 
Table III, the natural orbitals ,u of some doublet and 
triplet radicals are compared with the unpaired orbitals 
of the RHF method. Generally, they are very close to 
each other, exc^pt some large differences which lie in 
the the A() of the vinyl radical and in the 2P,(C) and 
2P5(0) AO's of the u-*tr* triplet state of formaldehyde. 

161n the cases of the methyl radical and the ,r-.9r` triplet state of planar ethylene each orbital belongs to different symmetry 
representation exc-,,t the aorbital, in the a-.~r' triplet state, so we can compare ' -ctiy the calculated UHF natural orbitals, having degenerate Ti eal_les, with the MO's obtained by the RHP 
method.  16T. Vonezw^wa, H. Nakatsuji, T. Kawamura, and H. Kato, Unrestricted SCF-1110 Treatment for Valence El

ectron Systems. I. Application to Small Doublet Radicals," Bull. Chem, Soc. J:pan (to be published). The methods of es'i-mating the integr-J values in the present UHF calculations are 
the same as those in this paper. In the RHF calculations, the two-center o-r-type e,.change repulsion integrals are omitted. Since these integrals are very small in magnitude, they don't affect the SD contributions. Hence, the SD contributions calcu-lated by both methods can be directly compared.

However, the agreement to this order between the 
UHF natural orbitals and the RHF orbitals is rather 
surprising, considering, the large differences in the 
variation processes of both methods. This lends sup-
port to the first assumption that the natural orbitals 

 are closely similar to the unpaired orbitals of the best 
restricted molecular orbitals. Referring to Tables I and 
II, we see that the natural-orbital coefficients are always 
the median in magnitude of those of the a- and $-spin 
orbitals of the UHF method. 

  Then, we examine the second assumption: From the 
Ti values shown in the Iast column of Tables I and II, 
the coefficients of the singly excited configurations in 
Eqs. (5) and (22) are calculated, and they are sum-
marized in Table IV for doublet radicals, while those for 
triplet states are listed in Table V. Generally speaking, 
the second assumption that the coefficient of the 
restricted configuration is much larger than the coeffi-
cients of the singly excited configurations is good and 
the magnitude of error due to this assumption is 
•_(0°)2/C'e .17 As described in Ref. 14, this assumption 

17 The magnitude of error due to this assumption can also be 
estimated approximately by calculating the weight of mixing of 
the lowest contaminating spin state into the UHF total wave-
function, and this is calculated for doublet radicals by 

EC(quartet) /C(doublet) ]2 (4 (S2 )UnF-3)/ (15-4 (.S' )owF) 

and for triplet states by 

CC(quintet) ( (S2)z,$F-2)/(6- (S2)uEF), 

where (S2)truF is the expectation value of the UHF total wave-f
unction with respect to the spin-squared operator . These values are 0.00217 and 0.01372 for ethyl and vinyl radicals, and 0.00583 and 0.00472 for the n--*ar* and rr-- 7r* triplet states of formaldehyde. They correspond reasonably well with the values shown in Tables 

IV and V. See also the succeeding paper (Ref. 16).
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TABLE IV.  Coefficients in doublet radicals.

C1i, e Clue

Radical Cu:" o-+o* Type ir--+nr* Type o--,a5 Type     Type

Methyl 

Ethyl 

Vinyl

0.9989 

0.9984 

0.9901

0.0269 

0.0327 

0.0260 0.0763

0.0373 

0.0464 

0.0367 0.1079

corresponds to omission of part of the second and 
higher terms with respect to the spin-correlation 
perturbation, and the errors in the final results are seen 
by comparing the SD contributions calculated by the 
AN and NO methods given in Tables VI-VIII. An 
examination of this point is discussed more fully in 
the next section.

III. DI3CUSSION OF THE RESULTS 

             A. Doublet Radicals 

  In this section, we apply the AN Method to doublet 
 radicals such as ethyl and vinyl radicals (geometries 

 and numberings are illustrated in Fig. 1.) and compare 
 the results with those obtained by the NO method. 
 (About the method of the UHF and RHF calculations 

 and estimations of integral values, see Ref. 16.) The 
 UHF natural orbitals are calculated by means of the 
 method given by Amos and Hall sa The UHF calcula-

 tions of the spin densities of the ethyl and vinyl radicals 
 were recently reported by Pople, Beveridge, and 

Doboshl8 and by Atherton and Hincliffe,l9 respectively, 
 who considered all the valence electrons of the con-

 stituent atoms. Here, we also apply the AN method to 
 their results, and compare them with the present ones. 

  In Table VI, the UHF spin densities and their 
mechanistic contributions in ethyl radical calculated by 
the AN method are compared with those obtained by 
the NO method, and with the values obtained by 
applying the AN method to the INDO results of Pople, 
Beveridge, and Dobosh.18 Since the AN method is 
derived by assuming C11>>C1/2"°, Ca/2'°, the calculated 
mechanistic contributions include some small errors as 
seen by the nonzero SD contributions in the 2S(C1) 

        TABLE V. Coefficients in triplet radicals.

and 2Pz(C2) AO's, which must be zero by symmetry. 
Nevertheless, the SD contributions calculated by the 
AN method agree fairly well with those obtained by 
means of the NO method and of the RHF method (the 
fourth column of Table III). This is a direct proof that 
the natural orbital of the UHF method is closely similar 
to the unpaired orbital of the restricted open-shell 
method, and that the contributions to spin densities 
from part of the second- and higher-order terms with 
respect to the spin-correlation perturbation14 are 
negligibly small. The UHF spin densities on the atomic 
orbitals, where the NO method gives zero spin density, 
are due only to the SP mechanism. Hence, in these 
positions, the relation [Eq. (21)j pIIgg=3pa, holds 
fairly satisfactorily, and this is also true for the INDO 
calculations." 
 The UHF spin densities on the 115 and He protons 

obtained before annihilation are due to 26% SP and 
74% SD contributions in the present calculation, and 
the mechanistic separation of the INDO results pre-
dicts 47% SP and 53% SD contributions. Anyway, the 
SP mechanism contributes much to the spin densities 
on these protons. Lazdins and Sarplussa pointed out

H3

H3

Triplet radical CV?' Csn" Cue

Ethylene (a--+,r*) 

Formaldehyde (n-_+,r•)

0.9973 

0.9942 

0.9953

0.0520 

0.0761 

0.0684

0.0520 

0.0761 

0.0684

re J . A. Pople, D. L. Beveridge, and P. A. Dobosh, J. Chem. 
Phys. 47, 2026 (1967) . 

"N. M. Atherton and A. Hincliffe, Mal. Phys. 12, 349 (1967).

112 
C~

H4

H4 

C2-Ci 
H3

H3 

H4

    ,„/

H3 H3 

/C`0 
H4

H6

H5

         He 

HtHa 

Flo. 1. Geometries [L. E. Sutton (Ed.), Chem. Soc. (Londan) 
Spec. Publ. 11 (1956) ; 18 (1963) ]. For methyl radical, C-H = 
1.079 A; for ethyl, C-C =1.50 A, C (1)-H =1.079 A, C (2) -H = 
1.09 A; for vinyI, C-C =1.34 A, C-H =1.07 A, L CC11 i ai 
1350; for ethylene triplet radical, C-C =1.337  A, C-H =1.086 A, 
LHCH=117.3°; for formaldehyde, C-H =1.12 A, C-0 =1.21 A, 
LHCH=118°.
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SPIN POLARIZATION AND SPIN  DELOCALIZATION 

TABLE VI. SP and SD mechanism in ethyl radical.'

AN Method

Before annihilation After annihilation

Atom AO !P (P)sr (P)w (p).• (P)8P (s)so
NO Method 

Wen

C,

C1

Cl

C,

2S 

2P, 

211, 

21", 

2S 

2P, 

2P, 

2P, 

.3k 

41: 

5h, 6h 

7h

2$ 

2P, 

2P, 

2P, 

23 

2P, 

21', 

2P, 

34 

4h 

5h, 6k 

7k

 0.161 

 0.042 

 0.015 

 1.000 

-0.012 

-0.047 

 0.000 

-0.013 

-0.035 

-0.035 

 0.054 

-0.002

 0.049 

 0.028 

 0.030 

 0.926 

-0.015 

-0.033 

-0.013 

-0 .046 

-0.037 

-0.038 

0.075 

 0.003

(52)=0.7565
0.159 

 0.042 

 0.015 

 0.002 

-0.012 

-0.048 

0.000 

-0.013 

-0 .035 

-0.035 

 0.014 

-0.002

A. Present

0.002 

0.000 

0.000 

0.998 

0.000 

0.001 

0.000 

0.000 

0.000 

0.000 

0.040 

0.000

 0.055 

 0.014 

 0.005 

 0.999 

-0.004 

-0 .015 

 0.000 

-0.004 

-0.011 

-0.011 

 0.044 

-0.001

   B. Pop1e, Beveridge, and Doboshb 

(S')=0.7573
 0.048 

 0.028 

 0.030 

 0.010 

-0.015 

-0.033 

-0.012 

-0.048 

-0.037 

-0.038 

 0.035 

 0.003

0.001 

0.000 

0.000 

0.916 

0.000 

0.000 

0.001 

0.002 

0.000 

0.000 

0.040 

0.000

 0.017 

 0.009 

 0.010 

 0.919 

-0.005 

-0.011 

-0.005 

-0 .014 

-0 .012 

-0.013 

 0.051 

 0.001

(.5'r)=0.7500 
   0.053 

   0.014 

   0.005 

   0.001 

  -0.004 

  -0.016 

   0.000 
-0.004 

-0.012 

  -0.012 

   0.005 
  -0.001

(S')=0.7500 
   0.016 

   0.009 

   0.010 

   0.003 

  -0.005 

  -0.011 

  -0.004 

  -0 .016 

  -0.012 

  -0.013 

   0.012 

   0.001

0.002 

0.000 

0.000 

0.998 

0.000 

0,001 

0.000 

0.000 

0.000 

0.000 

0.040 

0.000

0.001 

0.000 

0.000 

0.916 

0.000 

0.000 

0.001 

0.002 

0.000 

0.000 

0.040 

0.000

0.000 

0.000 

0.000 

0..997 

0.000 

0.000 

0.000 

0.000 

0.000 

0.000 

0.039 

0.000

SOO 

SOO

SOO 

SOO 

sea

ONO 

SOO 

IPSO 

SOO

• Geometry and numbering are I lustrated in Fig. 1. _. 

this fact in the valence-bond languages .Sb Some atten-ti
on was also given to this point by Colpa and d

e Boer' and b
y I'ople, Beveridge, and Dobosb,' but they 

estimated the SP contribution to the meth
yl-proton spin density from th

e one on the H7 atom in the con -f
iguration illustrated in Fig . 1. Since there is no reasons 

* T eP mechanism also shows a large angular dependence
, and the manner of dependence is written to a good approximation as (P)sP (d) ar+(P')

ego cos'8. This point will be discussed more fully in the a. ar future.

  b Reference 18. 

to believe that the SP mechanism has no angular 
dependence on the rotation about the C-C single bond , this kind of estim

ation of the SP mechanism is certainly 
erronious and leads to too small values ."  F

rom Table VI, we notice that the INDO results a
re rather si

milar, except for the SP contribution in the 
2S(C3) AO, to those of the present a

uthors. This is 
'1 Colppa and de Boer* estimated about 3% SP contribution, and Pople, Beveridge, and Doboshvi estimated 7% SP contribution from th

e results quoted in Table VI.
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 Tassx VII. SP and SD mechanisms in vinyl radical.'

AN Method

Before annihilation After annihilation

Morn AO (P )UHP (a)OP (P)8D (P). (P) SP (P)so
NO Method 

(P)an

Ca

Cs

2S 

211. 

2P„ 

2P,

2S 

2P„ 

2P„ 

2P,

0.205 

0.153 

0.748 

0.196

-0.031 

-0.028 

-0 .012 

-0 .193

A. Present (LCC1:1„=130°)b

(.5').40. 7892 

   0.122 

   0.026 

   0.017 

    0.188

-0.035 

-0.033 

-0.014 

-0 .198

0.083 

0.127 

0.731 

0.008

0.004 

0.005 

0.002 

0.005

0.124 

0.136 

0.737 

0.070

-0.008 

-0 .006 

-0.003 

-0.061

(82)=-0. 7503 

   0.041 

   0.009 

   0.006 

   0.063

-0.012 

-0 .011 

-0.005 

 0.066

0.083 

0.127 

0.731 

0.007

0.004 

0.003 

0.002 

0.005

0.088 

0.116 

0.724 

0.000

0.008 

0.001 

0.000 

0.000

ho 

ha

 0.044 

 0.097 

-0 .021

 0.009 

 0.026 

-0 .042

0.035 

0.071 

0.021

0.038 

0.080 

0.006

 0.003 

 0.009 

-0 .014

0.035 

0.071 

0.021

0.032 

0.070 

0.020

C° 2S 

2P. 

2P„

h. 

he 

h..

0.031 

0.027 

0.766

0.115 

0.174 

0.028

$. Atherton and Hincliffe (L CCL =160°) e 

(S')=0. 7634 
-0 .006 0.037 0.035 

-0.007 0.034 0 .031 

0.017 0.749 0.755

0.055 

0.079 

0.011

0.060 

0.095 

0.017

0.079 

0.121 

0.020

(S')=0.7501 
   -0 .002 

  -0.002 

    0.006

0.018 

0.026 

0.004

0.037 

0.033 

0.749

0.060 

0.095 

0.016

' Geometry is given is Fig . 1. 
b Reference 22 .

*Reference 19.

very interesting, considering the large differences of 
these two methods. (See Refs. 16 and 18.) 

 Now, we discuss the spin densities of the vinyl 
radical22 In Table VII, the UHF spin densities and 
their mechanistic contributions calculated by the AN 
method are compared with those obtained from the 
NO method. As seen from the values given in the-last 
two columns, the SD contributions calculated by these 
two methods agree satisfactorily except the ones in the 
he AO. The differences in these two set of values are 
attributed to the assumption C1r2">>C1r22°, Cad", and 
are nearly 100X (00)2/(00)% of the value of (p)unF. 
(See Table IV.) Referring to Table III, the SD con-
tributions calculated by the AN method agree satis-

 22In the succeeding_paper,24 the angular configuration of vinyl 
radical is examined. The most probable configuration expected 
from both the potential curve and the calculated his constants 
is L CCR,, =135°. (See Fig. 1.)

factorily well with those obtained by the RHF wave-
function. Hence, the errors due to the two assumptions 
set in the previous section almost cancel in this case. 

 In the lower part of Table VII, the SP and SD con-
tributions in the CNDO,12 results of Atherton and 
Hincliffel5 are calculated by means of the AN method. 
Although the SD contributions obtained by both 
authors are rather similar, the SP contributions are 
quite different, especially in the AO's near the radical 
center atom. The most remarkable differences exist in 
the 2S(Ca) and hQ AO's, and both results differ even in 
sign. The most probable reason of these differences is 
that in the CNDO/2 method the one-center exchange 
repulsion integrals are neglected, while in the present 
method the one-center (and part of the two-center) 
o-s-type exchange repulsion integrals, which are 
important to the SP mechanism, are included. (See 
Ref. 16.) Since, referring to Table III, the natural
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 SPIN 

TABLE  VIII.

POLARIZATION AND SPIN DELOCALIZATION 

Normalized spin densities* and their SP and SD contributions in triplet state.b

AN Method

Before annihilation After annihilation

Triplet 
state Atom AO (P hall' (P)et (P)sn (p)" (P)SP (P)sn

NO Method 
  (P)sn

C,Ii4 

(7r._„r' 7

H2CO 

(,r._„r*) a

H2C0 

(n--o r")'

C

C

0

C

0

2S 

2F 

2P„ 

2P. 

h

2S 

2P, 

2P, 

2P. 

2S 

2P„ 

2P„ 

2P, 

h

2S 

2P: 

2P„ 

2P, 

2S 

2P, 

2P, 

2P, 

h

 0.077 

 0.002 

 0.009 

0.540 

-0 .020

0.072 

-0 .009 

 0.007 

 0.525 

 0.090 

 0.015 

 0.008 

 0.525 

-0.028

 0.052 

-0 .013 

-0 .006 

 0.407 

 0.113 

 0.025 

 0.484 

 0.226 

 0.017

(S=)=2.0109 

   0.075 

    0.002 

    0.009 

   0.001 

   -0 .020 

(52)=2.0188 

    0.070 

   -0 .011 

    0.007 

    0.002 

    0.088 

    0.014 

    0.008 

   0.002 

   -0.028 

(S=)=2.0232 

   0.049 

   -0 .017 

  -0 .006 

   0.002 

   0.108 

    0.023 

   0.003 

   0.002 

  -0.006

0.002 

0.000 

0.000 

0.539 

0.000

0.002 

0.002 

0.000 

0.523 

0.002 

0.001 

0.000 

0.523 

0.000

0.003 

0.004 

0.000 

0.405 

0.005 

0.002 

0.481 

0.224 

0.023

 0.040 

 0.001 

 0.005 

 0.539 

-0.010

0.037 

-0.003 

 0.003 

 0.524 

 0.047 

 0.008 

 0.004 

 0.524 

-0.014

 0.027 

-0 .005 

-0 .003 

 0.406 

 0.059 

 0.014 

 0.482 

 0.225 

 0.020

(S1)=2.0001 

    0.038 

    0.001 

    0.005 

    0.000 

-0 .010 

(52) -2.0001

    0.035 

-0 .005 

0.003 

    0.001 

    0.045 

    0.007 

    0.004 

    0.001 
   -0 .014 

(S2)=2.0001 

    0.024 

  -0 .009 
-0 .003 

   0.001 

    0.054 

   0.012 

   0.001 

   0.001 

-0 .003

0.002 

0.000 

0.000 

0.539 

0.000

0.002 

0.002 

0.000 

0.523 

0.002 

0.001 

0.000 

0.523 

0.000

0.003 

0.004 

0.000 

0.405 

0.005 

0.002 

0.481 

0.224 

0.023

0.000 

0.000 

0.000 

0.537 

0.000

0.000 

0.000 

0.000 

0.520 

0.000 

0.000 

0.000 

0.520 

0.000

0.000 

0.000 

0.000 

0.402 

0.000 

0.000 

0.478 

0.223 

0,022
• Rocrence U. 

orbital p and the unpaired orbital of the RHF wave -
function are mainly composed of the 2P =(Ca) and 2P

,,(C,) AO's, inclusion of these integrals is essential 
even in the a-electron radicals like the vinyl radical

, as in the r-ekct run radicals.16 

              B. Triplet State 

 The "spin-:appearing" mechanisms in triplet states 
are very similar2' ar in doublet radicals , and the defini-ti

on of these mechanisms is completely the same as i
n doubl

et radicals. (See Ref. 6.) Here , we apply the AN method to the UHF spin densities of some t
riplet 

A. D. McLachlan, Mol. Phys. 5, 53 (1962).

  b Geometries are given in Fig. 1. 

radicals such as the 1r-rn* triplet states of ethylene and 
formaldehyde and the n--nr* triplet state of formal-
dehyde. (The geometries are illustrated in Fig. 1.) 

  In Table VIII, the mechanistic contributions to the 
UHF spin densities in the triplet state calculated by 
the AN method are summarized and compared with the 
SD contributions calculated from the NO method. B

y comparing the SD contributions calculated by 
these two methods. the validity of the assumption 
(C212ef»G128e, C4/2'e) is examined. The largest error is 0
.005 in the 25(0) AO in the n-*ar* triplet state of 

formaldehyde, and is 4% of the value of (p)vaF• Moreover, the UHF spin densities in the AO's
, where zero SD contributions are expected from the symmetry
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requirement, satisfy the relation [Eq. (18)  ] prnr' = 
2p,e to good approximation. 

 In the present calculation of triplet states, their 
ground-state geometries are consistently used. Since the 
excited-state configurations are quite different"' from 
the ground-state ones in the cases of ethylene and 
formaldehyde, the spin densities reported here do not 
correspond to the real ones. Nevertheless, the spin 
densities in the 7r— 7r* triplet state of ethylene in the 
planar configuration has foremost importance in the 
study of 7r—err* triplet states of conjugated hydro-
carbons. The situation is very similar to that of the 
methyl radical in the study of conjugated radicals. 
Close similarities are found between the 1r-.4r* triplet 
state of ethylene and the 7r-electron radical such as 
ethyl radical. Referring to Tables VI and VIII, we see 
that the ratios of the spin densities, pss(c)/p2P,(c) and 
Ph/par (c), in the ir-1ir* triplet state of ethylene are 
closely similar to p2s(c,)/p2PP(ct) and pn,/p2P,(c,>, in ethyl 
radical. 
 The unpaired orbitals of the n—)ir* triplet state of 
formaldehyde are calculated by the RHF method to be 

'Gn=0.9828P,,(0) +0.0206P„(C) —0.2139(ha—h4) 

and 
0...0.8220P,(0) —0.4173P,(C) . 

The n-type orbital is mainly localized on the 2P„(0) 
AO and lies in the molecular plane, while the a* orbital 
has its node in this plane. This situation is very inter-
esting, namely, the n•—ow* triplet state of formaldehyde

_+ G. Herzberg , Molecular Spectra and Molecular Structure (A
. Van Nostrand Co., Inc., New York, 1966), Vol. 3.

in this configuration has both characteristic features of 
the a- and ir-electron radicals, and may be regarded as 
the starting point for a study of the n—ew* triplet state 
of heteroconjugated molecules. A prominent difference 
between the spin densities of the planar r-4-ir* and 
n—ew* triplet states of formaldehyde exists in their 
proton spin densities. That of the former is negative in 
sign and that of the latter is positive in sign, and they 
are comparable in magnitude. The positive proton spin 
density in the n—_rr* triplet state of formaldehyde is 
due to the delocalization of the n-type unpaired orbitaI 
J+, above.

IV. CONCI,CSION 

 As seen in the previous sections, the validity of the 
AN method, proposed to separate the UHF spin 
densities into mechanistic contributions, is confirmed. 
Since the SP and SI) mechanisms are quite different 
and very important origins of the spin density, the 

present method to calculate their contributions is very 
useful in order to clarify the nature of spin density. 
Note that, when the lowest contaminating spin state in 
the UHF wavefunction is annihilated to improve the 
spin density,8 the information about the "spin-
appearing” mechanisms is obtained at the same time by 
means of the AN method. The generalization of the 
method to any multiplicity is simple?' Some applica-
tions of the method to doublet radicals are given in the 
succeeding paper." 

" H. Nakatsuji, H. Kato, and T. Yonezawa, "On the Unre-
stricted Hartree-Fock Wavefunction," J. Chem. Phys. (to be 
published).
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On the Unrestricted  Hartree—Foch S; Ja vcfurrr:i•i~% .s

  The unrestrir'Ilartree-Fock (UHF) wavefunction is analyzed and interpreted in cnn;iguration inter- 
action (CI`ianguage. The results of the present study are as follows. (i) The UHF wavefunction includes 
onlY r.,;e type of the singly excited configurations [Eq. (20)3, and thus the correlation effects included arc 
varyli.nifcd ones,compared with the usual CI treatment. (ii) The weight of the lowest contaminating 
spin `,.nction, included in the UHF wavefunction, decreases with increasing spin multiplicity. (iii) The 
apuhilation of the lowest contaminating spin function little affects the electron density distributions and 
other physical quantities, the operators of which commute with the annihilation operator. (iv) In the 
UHF method, the "spin appearing" (spin-polarization and spin-clelocalization) mechanisms are dearly-
divided, and an approximate method to separate these contributions is generalized, and some discussions 
about spin annihilation are made.

           I. INTRODUCTION 

 The unrestricted Hartree-Fock (UHF) method,' 
which takes account of correlation effects between elec-
trons with different spins, has been extensively applied 
in the study of spin properties. Amos, Hall, and Snyder' 
examined the UHF wavef unction and connected it with 
the alternant molecular-orbital method and with the 
configuration-interaction method. Since the UHF wave-
function is net an eigenfunction of a spin-squared 
operator S9., they proposed to annihilate the lowest 
contaminating spin function after energy minimiza-
tion? However, the validity of annihilation after energy 
minimization is still questionable,' and Sando and 
Harriman compared the spin densities associated with 
the various SCE methods. 

 Here, the UHF wavefunction is analyzed and inter-
preted in configuration-interaction language by means 
of the natural orbitals of the UHF wavefunction .2a 
The charge-density and spin-density properties of the 
UHF wavefunction are studied and the generalization 
of the previous results,' which provides a useful pro-
cedure to separate the UHF spin densities into com-
ponents due to the mechanistic contributions (spin-
puiari`ation and spin-delocaliza.i.ion contributions), are 
carried out. Snm:. discussions about spin annihilation 
are made in the last section.

IL BASIC THEORY

 The unrestricted single-determinantal wavefunction 
built up of the p cr-spin and q 0-spin orbitals is written as 

`I'caF=[(p+q) !J "2 detlvlacP2a...C,yabtach•2,d...4'3 

                          (1)

where cpi and di may be different, and we assume p>q 
without loss of generality. The wavefunction (1) is an 
eigenfunction of an operator S_, and its eigenvalue is 
zs (s= p—q) in h units, 

Sz`YuxF= zs`I'unr•(2)

 As shown by Amos and Hall,"' the unitary trans-
formations of the unrestricted molecular orbitals 
(MO's) ;:P;) and 10;) lead to the corresponding orbitals 
Xi] and kJ) which are orthonormal in each sets but 

have overlap between them when i= j,

fXinfir TiVij•
By means of these corresponding 
wavefunction is rewritten asac

`I'u.wF= [(P -{ q) a-Lf2 det{XIaxzn'

orbitals, the

•Xva'7>l3'7• •

(3)

UHF

.7190).

(4)

' J . A. Pople and R. K.Mesbet, J. Chem. Phys. 22, 571 (1954). 
i a) A. T. Amos and G. G. Hall, 1'roc. Roy. Soc. (London) 

A263, 483 (1961) ; ( h) A. T. Amos, Mol. Phys. 5, 91 (1962) ; 
(c) 'I'. Amos and L. C. Snyder; J. Chem. Phys. 41, 1773 (1964) ; 
(d) L. C. Snyder and T. Amos, ibid. 42, 3670 (1965). 

  W. Marshall, Proc. Phys. Soc. (London) A78, 113 (1961). 
9 (a) K . M. Sando and J: E. Harriman, J. Chem. Phys. 47, 180 

(1967); (b) J. E. Harriman and K. M. Sando, ibid. 48, 5138 
(1968) ; (c) see also J. E. Harriman, ibid. 40, 2827 (1964). 

(a) T. Yonezawa, H. Nakatsuji, T. Kawamura, and H. Kato, 
Chem. Phys. Letters 2, 454 (1968). (b) T. Yonezawa, H. Naka-
tsuji. T. Kawamura, and H. Kato, J. Chem. Phys. 51, 669 
t,1969).

where we omitted the unimportant constant f:',:tor 
introduced by the unitary transformation. Furthermore, 
these corresponding orbitals are connected with the 
natural orbitals X, p, and of .the UHF wavefunction 
by the following equationsaa: 

Xi` Qi~.~ b.v;, j=1, ... q, 

n;=a Xi—b;a;,• i=1, • •', q, 

Xa++=~i, i=i, ..., s, (5)
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where 
 ai=Li(1+TOP', 

(1—(6)                          (6) 

These natural orbitals are orthogonal to each other 
and diagonalize the reduced density matrix'" 

p(1 2)= t (1+Ti)Ai*(1)Ai(2) 

   + (1—Ti)pi*(1)Yi(2) - tlii*(1),i(2)• (7) 
Note that the natural orbitals are not changed by 
projection. Only the occupation numbers are changed 
by projection,'° Moreover, the natural orbitals Ai and pi 
are similar2°'b to the restricted IIartree-Fock MO's,' 

 By using Eq. (5), the UHF wavefunction LEq, (4)J 
may be expanded in the form of the limited configura-
tion interaction,2c,7 

*lair= Cod fiforf { C e+CM1de+Cter)• • ., (8) 
where Tort is the normalized restricted function with 
eigenvalue of S2, is(s+1),

4"8/2`r= I Xj&u3...Aea&aRµialt2a.' •µ8a I 
and its coefl'icic it is given by 

C,= ai2. 
                                        9°t1 

III" and *d° are the sums of the normalized 

excited and doubly excited configurations , 

                           i•al 

Il"°(ii*) = ( Aia48...p ,Ai(1/ V2)

and

(9)

(10)

singly

(11)

X (01+Ra) • • • AQaAQRpia i2a • • •µ,a 1, (12)

CdeI,4e=  C4°(ii*;?7*) de(ii*;i *) 
i<i

               + Ce/24O(ii*)`1,e/2de(ii*), (13) 

C•10(ii*, jj*) = 2a;biaibiNii, 
4'de(ii*;.7j*) _ I AxaXali• .. i' Ai (1/ l2) (aR+)3a) ... piAi 

     X (1/ v7) (cga+tia) • • ' AQaAQRuia. • ',ha J, (14) 
C,/24e(ii*) =bi2/yi7 

ireel (ii*) _ I AiaA/R • • ' i' api$' • • AaaA*(31i a • ..µea 
' R. Lefebvre,11.f. Roothaan,Dearman,aPhys.Mnnee                         .McCollll, J. Chem. Phys.32, 176 (1960) .

Obviously, there is only one function which satisfies the 
relation (18). It is expressed as 

1(a/2)-f tee (ii*) = (s_ - 2) "-I/2 I piXiAil • .. A4e 

X((aR-I 3a)a,..a+aaEa•••ai3a..•a) I, (19) 
                                    i•°3 

where the second term in the braces means the sum 

Ea.. •aOa• • •a=Raa...a+aaa...a 
,-1 

-haaf...a+... +aaa• • •p. 

'For example, see Tables IV and V of Ref. .5(b).

 where 

Nz= + a, '=a7 

                           „R                 T.1I am2. 

The higher-order terms in Eq. (8) are written in the 
same manner as above. Note that the singly and doubly 
excited configurations given above are not eigenfunc-
tions of the spin-squared operator S2, except a/24e(ii*). 

III. SPIN FUNCTIONS INCLUDED IN THE UHF 
           WAVEFUNCTION 

  As shown previously,Sb the bi values in Eq. (6) are 
very small and then the relation, C8/2rr> C8e> Cae.. 
may be expected in Eq. (8) . Therefore, the correlation 
effects included in the UHF wavefunction may be 
attributed mainy to the singly excited configurations 

• expressed by Eqs. (11) and (12) . This was certainly 
true in the cases previously studied.' Here, we analyze 
this configuration and divide it into eigenfunctions with 
respect to the spin-squared operator S2. 

  We rewrite the singly excited configuration as 
•Fee(ii*) _ J AiaAj(i• • .piAi(1/ )12) 

                       X (a(3+,3a) .. • AaaXQ01,4ap2a• • . µea. 
z'iXi(1/ V2) (4+Ra)lzial•i2a.. •iea (15) 

for brevity. It includes s-f2 singly occupied orbitals, 
and is the eigenfunction of the operator S. with eigen-
value as. This configuration Ve(ii*) may be expressed 
as 

( ifs) =1``F,/2°°(ii*)-F (8/2)+14e(ii*), (16) 
where the functions satisfy the following eigenvalue 
problems: 

S2I,/2eB (ii*) = is (is+ 1)111e/2eC (ii*), 

SAfe/2e°(2ti*) =-IS e/2eC(1i*), (17) 

S (e/2)+i°e(ii*) (10+1) (14-f- 2) (42)+,18(ii*),
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 UNRESTRICTED HARTREE-FOCK WAVEFUNCTION

  Now, we determine. the function which satisfies 
Eq. (17). There are s+1 such functions. Note that all 
of these s+1 functions are considered in the usual CI 

 treatment. However, as shown in the Appendix, only one 
function among them satisfies Eq. (16) and it is given 
by 

`k,,21e(ii*) 

   = (s+2)-1121 viX, s • • •^•40( (is) u2(c8+1 a)a.. •a 

(2/s)1(2aaEa•••afia•••a} (20) 

From Eqs. (19) and (20), the coefficients in Eq. (16) 
are given by 

= Es/ (s+2)J/2, =[2/(s+2)J112, (21) 

as shawn in the Appendix. Then Eq. (16) becomes 
4 (ii*) = Es/ (s+2)J" 4/2°"(%i*) 

+[2/(s+2) J1^2*c42>+ se(ii*). (22) 
  Equations (19), (20), and (22) show the nature of 

the correlation effects and of the contaminating spin 
function included in the UHF wavefunction: The 
correlation effect included in the UHF wavefunction is 
a very limited one, compared with the usual CI treat-
ment. First, the UHF wavefunction includes only that 
type of singly excited configuration which is expressed 
by the transitions from Ai to v; 20 Second, only one spin 
function [Eq. (20)] among the s+1 spin functions 
[see Eq. (A1) in Appendix], is considered in the UHF 
wavef unction. 

  Note the following two limiting cases; when s= 
(singlet case), Eq. (22) reduces to 

*se(ii*) = 1sc(ii*), (23) 
which shows that the singly excited configurations 
included in the UHF wavefunction are all due to the 
contaminating (triplet) spin function. Fople, McIver, 
and Ostlunde exploited this fact in their finite perturba-
tion methods. (Note that the spin-density operator and 
the spin-squared operator do not commute.) When 
s= co, 

'I'"e (ii*) = ~I'a^z8e (ii*) , 

which shows that the singly excited configurations-in 
the UHF wavefunction do nol include the contaminating 
spin function. Since 41a/2rf in Eq. (8) is the eigenfunction 
of . with the eigenvalue zs(zs+1), a conclusion is 
that the weight of the lowest contaminating spin state 
in the UHF wavefunction decreases with increasing 
spin multiplicity, s+1, However, as s increases, so 
decrease the correlation effects included in the UHF 
wavefunction, compared with the usual CI treatment. 
Of course, these discussions are valid only when the 

1J. A. Poltle, J. W. Mayer, Jr., and N. S. Ostlund, J. Chem. 
Phys. 49, 2960, 2968 (1968).

Err—Cs/ (s-f-2)JE,l21e(iin —[2/ (s+ 2)1E0/2)41 

                         (24) 
where 3C is a Hamiltonian operator. Note that in the 
calculation of the spin densities of the 0--type atomic 
orbitals of the 2r-electron radicals, the numerator of 
Eq. (24) reduces to the a-ir-type electron repulsion 
integrals. 

            IV. DENSITY 

 Here, we discuss the density properties of the UHF 
wavefunction. The UHF eleetrou density at position r is 
calculated by applying the density operator 

9(r) = Ea(rk—.r) 

to Eq. (8), 

genr'= ('I'UHF I q(r) 1.41tHr)
(" = (C./2'9 2 (a/2rf I q (r) I ̀Pori) • 

1-20eCs/2rf(.'s,2rf I Cr) I *se) 

+(Cse)20e"  q(r) I *Y'e)+•... (25) 
The second term in Eq. (25) is calculated by using 
Eqs. (9) and (12), 
Cae(~,a^2riIry(r) 1110e)              j

CFCae(ii*) (`Ya^2rr q(r) I V (2i*) )

singly excited configurations are important, as in the 
actual calculations reported previously.' However, 
for the spin-density calculations, only the singly 
excited configuration expressed by Eq. (20) is impor-
tant, and the other s spin functions and the doubly 
excited and higher-order configurations in Eq. (8) do 
not contribute to the first-order approximation of a 
perturbation theory (see Appendix). 

 To the first-order approximation of a perturbation 
theory, the coefficient Cee (ii*) of Eq. (11) may be 
written as24 

=c (s+2)]"2

=z C8e(ii*)(hi(r)vi(r)—X,(r)vi(r)) 

=0. 

Similarly, all the off-diagonal elements included in the 
expansion (25) are zero. This is obvious from Eq. (7). 
Thus, Eq. (25) 

/reduces to qunr'=(Cs/2rf)2(~al2rfIq(r)4,42rf) 
'i (0120 se q(r) I ̀P °)-i-• • •, (26) 

which includes only the diagonal elements.
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 As shown  previously,""  the relation, (Cs/2r1)2>>(0°)2 
holds fairly satisfactorily  in the actual calculations. 
Therefore, Eq. (26) shows that the annihilation of 
the lowest contaminating spin function in the UHF 
wavefunction '.ittle affects the electron density dis-
tribution. This point was suggested by Amos?0 Harri-
man,40 and by the present authors.10 Referring to 
Eq. (7), the above approximation, (C.rsrf)2>>(00)2, 
corresponds to omitting the second term in Eq. (7). 

 Note that the above conclusion is obtained more 
elegantly only from the knowledge that the change 
density operator commutes with the annihilation 
operator. This is easily generalized. Namely, all the 
VHF expectation values of the physical quantities, 
the operators of which commute with the annihilaticn 
operator, do not change much by annihilation, if 
(Gart.) 2>>[C(42)tle° (i2*) J-

          V. SPIN DENSITY 

 The UHF method is frequently applied to the spin-
density calculations. Especially in ir-electron radicals 
the correlation effects are essential to interpret the 
observed ESR hfs constants. The UHF spin density 
at the position r is calculated by applying the following 
normalized spin-density operatorn: 

p(r)=s,--1 E Saka(rk—r),

which do not commute with the annihilation operator, 
to Eq. (8). The result is 

puiiFT= (I'crg I ®(r) I *cur) 
   = (C./2rf)2(.Ir./2rf I t(r) I *ad') 

200C,/2rf(,/2rf I e(r) 141°O) 

~- (C'°)20" I P(r) 1110°)+• • • . (27) 

From Eqs. (4) and (5), puse is also written as

2 et,• PvIiFr=S.2,a;biA,(r)vc(r)+(2S.)-1Epf(r)2. (28)
 Equation (`i. is very simple and has clear phy$fcal 

meaning about the "spin-appearing" mechanisms.' The 
first term represents the contributions due to the 
"spin-polarization" (SP) mechanism

, and the second t
erm represents those due to the "spin-delocalization" 

(SD) mechanism. (The definitions of these termi-
nologies were given previously.1) By calculating the 
terms in Eq. (27), we obtain the following descriptions 

10 See Table III of Ref. 11. "T . Yonezawa, H. Nakatsuji, T. Kawamura, and H. Kato, Bull. Chem. Soc. Japan 42, No. 9 (1969). u H. M. McConnell, J. Chem. Phys. 28,1188 (1958). u See Footnote 6 of Ref. 5(b).

for each of the mechanistic contributions; 

(puniFr)sn= (2S,)-1 E p1(r)2 

      = (C,rirf)2p'(rfiS I rf s)-}-(C°°)2p`(se I se) 
-}-(Cd°)2pr(de I de) +•••, (29) 

which contains only diagonal elements, and 
      2 L aib,A((r)vf(r) 

S, f•~t 

=20*C./srfpr(rfir I se)+2040"pr(se I de) 

+ 2Cd°Ct9pr (de te) + • • . , (30) 

which contains only off-diagonal elements. p'(rfis I se) 
is the matrix element between 4142r( and 'I' and lIos with respect 
to the normalized spin-density operator p(t'). 

VI. SPIN-APPEARING MECHANISMS 

 Here we derive the approximate equations which 
serve a useful procedure in the separation of the UHF 
spin densities into mechanistic (spin-polarization and 
spin-delacalization) contributions. For the special 
cases of doublet and triplet radicals, the results have 
already been reported.' 

 First, we assume that the second and higher terms in 
Eqs. (29) and (30) are negligibly small,

(paur')sn= (C./2rf)2p'(rfzs I rfis), 

(puse)sp=2C°°C,/srfpr(rf s I se), 

puuFr= (puuF')sD+ (Puur')sP• 
By using Eq. (22), Eq. (8) is rewritten as 
IruSF=Cs/2rfts/2rf+Cs/2°°ti/2°°+C(d2)+i°D (.,^) 1", 

where 
C, a=[s/(s+2)J1/2C e, 

C(•/21+1°°= [2/ (s+ 2) Y20.. 

From Eqs. (9), (19), and (20), the equation 

p'[rfzs I sear-I-1)j= (2/s)i/2pr(rf . 
is obtained. By using Eqs. (32)-(34), the UTI 
density (pu$Fr) is written as 

Punr'= (C,/srf)2pr(rfis I tits) 
      +2[1+ (2/s)JC,/srfG.,,fepr(rf 

Similarly, by assuming that the 
constant associated with the annihilation 
contaminating spin function is very close to 
the spin densities obtained after single 
(asa) and after annihilation (aa)2are given by 

P°,.'= (C,/2rf)2p'(rf2ns I rfIs) 

+2( 1+ rit) C.hrfC./?

(31a) 

(31b) 

(31c)

(32)

(33)

r sets) (34) 

                         the :F spin

     (35) 

renormalization 
m of the lowest 
close to unity, 
de annihilation

sets)
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Tax L Ratios of (nag) BP:(P.) SP: (Pas) SP.

Singlet 

 s=0

Doublet 

s=1

Triplet 

s=2

Quartet 

 s=3

Qunitet 

s=4 s=s

(PUHF) ®P 

(Pam) BP 

(Pu3 Si'

2 

1 

0

3 

2 

1

4 

3 

2

4 

3

6 

5 

4

  s+2 

s±1

and 

Paar= (C,i2df)2Pr(rfis Ira's) 
-f-2C.,irfC42"Pr (rfts sets) . 

By comparing Eqs. (35) and (36) with Eq. (31) 
mechanistic contributions are derived. The SP 
tribution is given by using pusF and paa as 

(Pun S)sr= s[1-{- (2/s)](Pimp-Pea), 

(Pass) Sr = is( 1+S-1) (PLUM- Pas)

(pea)sP 's(PUHF-Pas), 
or, by using punk' and Paaa as 

(PUHF) SP=.v[1+ (2/S) ] (PUHF-Paaa), 

        (pasa)sP=s(1-H-1) (Pu$F-Pasa), 

(Paa)SP= s(PvHF-pees) • 
The SD contribution is calculated from Eq. (31c) 

(P)sn=P- (P)sP•

(36) 

, the 
con-

(37)

results obtained by the present study apply to the un-
pr'ojected AMO method. The extensive studies of the 
AMO method were given by Lowdin, de Heer, and 
Pauncz.14 
 Now, we discuss the approximate method obtained 
in Sec. VI. Since the spin densities in the 0'-type atomic 
orbitals of the 7r-electron radicals are due only to the 
SP mechanism, the approximate relation (40) holds 
for the total spin densities. Moreover, this relation 
may be used to check the validity of the approxima-
tions introduced in Sec. 'VIP' For example, in the 
"a -quartet" state of the allyl radical,la the values of

TABLE II. Spin density' in the ",r-quartet" state 
  of the allvl radical."

(38) 

as 

(39) 

spin

Atom AO PUHF Pas paa from 
Eqs. (40), (41)

 Note the fact that the SP contributions to the 
densities associated with the various stages of annihila-
tion satisfy the relation, 

(PURF)SP: (pass)sP: (Pas)R.= (s+2) • (s+1) :s (40) 
and 

(pvnF)8n= (pasa)SD= (psa)en• (41) 
Table I shows the above relation [Eq. (40)] for some 
examples. 
 For special case of s= 0 (singlet state), Eqs. (37) 

and (38) cannot be applied. However, in this case, 
from Eq. (23), the spin densities are all due to the 
contaminating (triplet) spin function and are due only 
to the SP mechanism. By the similar procedure 
above, the spin densities obtained at various stages of 
annihilation are shown to hold the relation, 

            punr:Pasa•paa=2.1:0.(42) 
This is the special case of Eq. (40). 

          VII. DISCUSSION 

 As may be noticed, Eq. (5) is very similar to the 
starting point of alternant molecular-orbital (AMO) 
method. X. and pi correspond to the bonding and anti-
bonding AMO partners, respectively. Therefore, all the

C,, Ca

C2

H4, Hs 

H,, H7 

Hs

2S 

2Px 

2Py 

2Pz 

2S 

2Px 

2Py 

2Pz 

1.3 

iS 

IS

0.051 

 0.000 

 0.003 

 0.355 

 0.054 

 0.000 

 0.005 

 0.377 

-0 .013 

-0 .012 

-0 .018

 0.031 

 0.000 

 0.002 

0.354 

 0.033 

 0.000 

 0.003 

 0.376 

-0 .008 

-0 .007 

-0.010

 0.031 

 0.000 

 0.002 

 0.355 

 0.033 

 0.000 

 0.003 

 0.377 

-0.008 

-0.007 

-0 .010

*About the method of calculatfon, see Ref. 13: 
e Numbering of atoms is as follows: 

4 s 

        •12 

5 7 

s 
The geometry is C-C=/.40 A. C-H =1.08 A, and L HCH = L HCC 
L CCC =120°. 

24 (a) P.-0. Lowdin, Phys. Rev. 97,1509 (1955) ; (b) R. Pauncz, 
J. de Beer, and P.-0. LOOwdin, J. Chem. Phys. 36, 2247 ,(1962), 
and the succeeding papers; (c) R. Pauncz, Allernant Molecular 
Orbital Method (W. E. Saunders and Co., Philadelphia, Pa., 
1967). 

u Note that in the ",r-quartet" state of the allyl radical, the 
order of the proton spin densities (absolute values) is H6>H4> 
Hs, but, on the other hand, in the doublet ally] radical, it is H.> 
H.>Hs and is reverse to the above. (Ref. 11.)
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 Pita are compared with those calculated by Eqs. (40) and  (
41) from Punr (Table II). Theyagree very satisfacto- 

 rily. For some doublet and triplet radicals, theexamina- 
 tion of the method described in Sec, VI is carried out 

 more rigorously in the previous reports .6 
  Equations (40) and (41) show approximately the 

 theoretical relations existing among pm., pRR4, and 
Pa Thus, at present, we think it almost meaningless to 

 discuss theoretically whether the annihilation of the 
 lowest contaminating spin function "improves" the 
 spin-density properties. Far example, in the methyl 

 radical, the spin densities in the a-type atomic orbitals 
 are due only to the SP mechanism,h," then the relation, 

PUTIF:PRSa:Pas— 3:2:1, 
 can be expected transcendentally. The computational 

 examination of the validity of projection after energy 
minimization is carried out by Harriman and Sancta.' 

 They reported that the spin densities obtained by the 
 spin-extended SCF calculations are generally (but not 
 always) closer to the unrestricted values' 

  Another important aspect of the spin-density calcula-
 tions (especially in the semiempiricat ones) lies in their 

agreement with experiments. From the above stand-
 point and from Eq. (24), the problem, "which stages of 

 annihilation are best re,commended," depends very 
much on the choice of the integral values (especially 

 on the choice of the a-ir-type electron repulsion inte-
grals) is In the conventional (semiempirical) calcula-
tions of the his constants (a), it may be approved to 
consider A of the following equation: 

a=Ap, 
as a proportionality constant determined by "best 
fitting" the calculated spin densities with the observed 
hfs constants 11.17 However, from Eqs. (24), (40), and (4

1), we think it very difficult to determine both the 
values of ARM' and A., which reproduce satisfactorily 
the observed hfs constants from pup and p¢a, respec-tively. A good example is the ethyl radical. Its 
methylene-group proton spin density is due only to the 
SP mechanism, and thus (puxr)cn,=3(pss)ci;„1138 whil

e its methyl-group proton spin density (assuming 
free rotation) is due to both (SP and SD) mechanisms, and thus

, (punr)cn,^1.2(PaR)cn, in our calculation” 
and (PUxr)eur^-1.4(eaa)Cx, in the Pople, Beveridge, and Dobosh's calculation.° This example shows that 
if one adjusts the semiempirical (a-r-type) repulsion 
integrals° so as to obtain a good correlation of the 

"See the paragraph which includes Eq. (24). 17 (a) J. A. Paple, D. L. Beveridge, and P. A. Dobasb, J. Am. Chan. Soc. 90, 4201 (1968); (h) D. L. Beveridge and P. A. Dobash, J. Chem. Phys. 48.5532 (1968). u 
j. A. NixieD. L. Beveridge, and P. A. Dobosb, J. Chem. Phys. 47, 2036(1967).

 UHF spin densities with the observed his constants, 
 then only A unr is acceptable in the least-mean-square 

 sense (and vice versa.)." 
  For some doublet and triplet radicals, the method 

 stated in Sec, VI has been applied in order to clarify 
 the "spin-appearing" mechanisms, and threw a new,  li

ght on the nature of spin density.541 
             APPENDIX 

  Here we determine the spin function which satisfies 
 Eq. (17) , There are s-h 1 such functions, The spin parts 

 of them may be written as'9 
e11,11;1=(1/V2)(a..•aEla—a•• aaig), 

  ~1+•1+;2^ 6 1/~(2a+• •fiaa—a• • •afla—a• • •aafi), 

elf .is; = Cs (s+ 1)1-14(34a* • • a—aatl. • • a— • • . 
—a• - •9aa—a• ..Oa—a. • • crafi), 

914.18;itt=r[(s-1-I) (s+2)1-'l' (s-l-1)8aa• . •a._a a, • •a 
—a.. •19aa—a• • •a?a—a...aap]. (Al) 

Among the above functions, we need only the functions 
which satisfy the following two demands: (a) The first 
two terms must have the form, (03+13a) o- • • • a, except 
for a constant factor, (b) it must satisfy Eq. (16) with 
Eq. (19). From demand (a) only the last two functions 
are important. By taking linear combinations of these 
two functions, we obtain 
[s/2(s+1)J11 $/24/2;,—[(s+2)/2(s-f-1)]lr +/2.0;•t1 

1/ Aa(ap—fia)a...a (A2) 
and 

[(s+ 2)/2 (s-l- 1) ]u'p12.si2:.-1-[s/2 (s-1- 1) ]us(]ez.vr;+• i 
= (s-i-2)-1/$[(is)uz(afl+fia)a• • •a 

(2/s)lraaa E a...ada...a], (A3) 

Between the above two functions, only the second satisfies the demands (a) and (b). Then, Eq. (20) f
ollows. 
 From Eqs. (19) and (20), the coefficients f and fE in E
q. (16) are determined. By comparing Eq. (16) with 

Eqs.  (19) and (20), we obtain the following two rela-
tions 

(s+2)-"2CE+ (is)" ]=1/ v7, 
and 

(s+2)-112U— (24)1/y3=0, 

Thus, Eq. (21) follows,  
 1

guQ T.See,forTablesexample,o1cullarntegralns(MauzenCo.,Ltd., Tokyo, Japan, 1963), P. 5.
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        Studies on the Orbital  Model in the Spin-Correlation 

                            Problem 

I. INTRODUCTION 

     There are several methods which stand essentially on the orbi-

tal model and which are used to calculate spin-correlation effects 

in open-shell electronic structure. Among these, the unrestricted, 

the.projected (or annihilated) unrestricted, and the spin-extended 

Hartree-Fack theories are therepresentetive..l The unrestricted 

Hartree-Fock (UHF) wavefunction is a,single determinant in which 

different orbitals are allowed for different spins. However ob- ' 

jections can be raised to. spin-density calculations with this method 

since its wavefunction is not an eigenfunction of S2. The pro-

jected (or annihilated) unrestricted Hartree-Fock (PUHF) wavefunc-

tion is the spin-projected (or spin-annihilated) function of the 

UHF wavefunction after energy minimization. Then, this wavefunc-

tion does not satisfy the variation condition. The spin-extended 

Hartree-Fock (SEHF) wavefunction is the function which minimize the 

energy after spin-projection of a single determinant. Thus, the 

SEHF method is the best among these three methods. 

                       2      In the previous paper, we analSzed the UHF wavefunction in 

configuration-interaction (CI) language to first order and showed 

a simple relation existing between the UHF and the PUHF wavefunc-

tions. From this, we found a simple method to separate the spin 

density calculated with the UHF method into contributions due to 

spin-polarization and spin-delocalization mechanisms.2' 38 

Because of the physical symplicity and visuality of each mechanism, 

more profound understandings than before on the nature of spin 
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 density have become possible.3b 

     In the present study, our aim is to clarify the theoretical 

 features of these orbital models  of the open-shell electronic -: 

 structure and to examine their applicabilities (or limitations) in 

 the spin-correlation problem, refering the physical reality of the 

 correlation phenomena in open-shell electronic systems.4 

     In the following two sections, we present the perturbation-

 variational description of the UHF and the SEHF wavefunctions to 

 first order, taking the restricted Hartree-Fock (RHF) wavefunction5 

 as a starting point. These results on the orbital models are com-

pared in Section IV with the first-order perturbation theory. 

The interconnection of the UHF, PUHF and SEHF orbital theories for 

open-shell electronic systems becomes clear in conjunction with 

the first order sum-over-state perturbation theory starting from 

the RHF wavefunction. Interrelation in the spin densities obtai
n-

ed from these four orbital theories is also given
. In Section 

V, the accuracy of the expectation values of th
e one-electron opera-

tors using these orbital models is investigated f
or both closed 

and open-shell electronic systems . Then, in Section VI, the exami-' 

nation of orbital model for the spin -correlation problem is carried 

out in the light of the physical r
eality of the correlation pheno-

mena in open-shell electronic system
s, Lastly in Section VII, two 

methods are suggested to overcome th
e limitation of the orbital 

model for the spin-correlation probl
em in open-shell electronic 

systems. 
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 II. PERTURBATION-VARIATIONAL DESCRIPTION OF THE UHF WAVEFUNCTION 

     The starting wavefunction of the present study is the RHF 

single determinant built up from q closed orbitals and s (= p-q) 

open orbitals, 

   s'
o=ItP+'P+---`PR4'K .....9143% 41+I.._.•l,r„---if? I (1) 

which is 'ain eigenfunction of the operators S2 and S
z with eigen-

values .(*tI) andzs, respectively. In the followings, k,l refer 
to closed orbitals, m, n to open orbitals, t, u to vacant orbitals and 

i,j to general orbitals. The important feature of the RHF wave-

function given in .Wq. (1) is the following Brillouin theorem. 

Consider the one-electron excited functions of the forms; 

                                                  t(1) = go-P. ..... Y'GtliK ( Cr (3DI) ..... B $ Vg+1 ... .  I , 
Stl' 

km =o p 4q+ I ..... Yp t ,(2) 
S

mt=4ittl •••• 9m--1'-Ymta16' 

then, the Hamiltonian matrix elements between s0 and the con-

figurations given in Eq.(2) becomes zero: 

   (S`�C`kt(1)) = a 

(SipI ee Is`'km> = O)(3) 

        ae IS?mt= 0. 

     The UHF single determinant built up from p a-spin and q 13-spin 

orbitals is written as 

41UHF = I tiu .... 45 ct) • tg 'g +i44,1 .... +m ....cPi7(4) 
which is an eigenfunction of Sz with eigenvalue ft but not an 
eigenfunction of S2. Note that UHF is independent of the unitary 

transformations within the a-spin and a-spin orbitals except an 

unimportant constant factor. This stands also for the RHF wave-

                         25



function of  Eq. (1) for the unitary transformations within the 

closed and open orbitals. After relevant unitary transformation, 

the difference between UHF and RHF orbitals becomes very small.6 

We set these differences as fia and fill. 

                          = + a ; i 1, --- , P; 

        + fi;1,`..,q. 
 iA =i= 

In the treatment below,, it is more convenient to substitute, 

4 =2(fka + fkA), 
irk =z( fka -fk),k=1,..,,q.(6) 

Then, Eq. (5) becomes 

ka = ifik + 'x + -k 

k =k-+ 4k( 7) 

 Oa=      }CE= , + fm ~ 

where nk represents the polarization correction to orbital V/k. 

     In the UHF method, the total energy expressed by 

  EUHF ` ( 'LINE I 1 kluHF 1 f { UHF >( k) 

is minimized to all orders of the independent orbital corrections 

fa and g and therefore, to all orders of the independent correc-
tions 7)4and1d.        k,4kandThe treatment given below in this section is 

similar to that used by Ditchfield et al .7 in the analysis of the 

finite perturbation theory.8 

    Since our main interest of the present paper lies in the spin -

correlation correction which comes chiefly from the first -oder 

correction to the RHF wavefunction
, it may be sufficient to mini-

mize the energy correct to second order in 17
k, L1K and foic4 .9 

Inserting Eq. (7) to Eq. (6) and expanding it up to second order
, 
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we obtain the expression except normalization factor, 

                              c 

     u H F = ~ 0   I , , .... k  PR  (-c<13 t ic.... 11. iVg 'Pp! .... P 

     t 2° 1 4, , • .. - y,g 4 y,ts-, ..... f ... p I 

t le~IIw,4),•-Qkak....~,g~,$4'$+1 WPI—I,P,,....ne11-'1?10141g 
X /Pr, ••.P I } 

+~`I41,. .... Zrk4k(°t3t ... ~'Vi+1....YrI 

+ f<f  143, T), - 11,e tPk (a93-t- $-t) • • • 1j vi coy feu 'Pt Y,1 
            t I W^ le tPle (eq-(3°1) - 4~ )2 (at3 —Pe° -..., ;f)¢ Y$+/ __.) )) 

    1. ~zG....-.--• 
Izck~ 14), 4N,1r~YIe(°(~t~d}Q1 % (oYf-lecoWga+', 

0 m< n 

-I- (higher order term)
.(q) 

      Now, let's expand the orbitalcorrections 11'k, 4k and fm by 

means of the complete set of the RHF orbitals &J. From the anti-

symmetric property of determinant, the expansions become; 

1T',t = v akt Pt , 4k =12.1 12.1 4.).0fm= v•cm-tCIO 
t where t runs over the vacant orbitals. Insertion of Eq. (10) into 

Eq. (9) gives the UHF wavefunction correct to second order in 

orbital corrections, which is given in Eq. (A-1) of Appendix. 

Among the first-order configurations, kt, S Kt u) and S4% given 

in Appendix, the most important configuration V" given by 
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 —  1 VI , ... • PLR (°1(3-t )/Jz .....11)/IN Tgt, • • • • ~}'P I (i ) 

is not an eigenfunction of S2, and can be rewritten as the sum of 

the spin-eigenfunctions,2 

   ̀ le '" Stz) Vz s le (2) t ( 2 )Y2 s+2i)?(12) 
where the configurations, skt(2) ands+22'kt satisfies 

•t s s t ) s (2) ) ss'1 st2 - (I.+ 1) (i ' z) $1. 
(13) 

and is given by 

 s 
                `}I

,    le(2(s-t-~>'v~14'tq'K~gt, •_.•'~ (q~t~~)~•«_ (S)/~~a~,~..~~~..a 
(14-a) 

s*-2 = (s-f 2) va tpo t ... 1 (ocertaa) a,ofIo(ot a1 • • ofgof ..a(F I 
               t1C 

(14-1D) 
In Eq. (16), we used the abbreviations like; 

Note that the configuration (14-b) is the main spin-contaminating 

configuration of the UHF wavefunction. Then the effects of spin-

annihilation and spin-projectionll on the UHF spin density can be 

analyzed approximately by starting from Eq. (lLf).2 

    The UHF total energy correct to second order in Tit, 4k and f m 

is obtained from Eq. (8) by using Eq. (11) and the Brillouin theorem 

shown in Eq. (3). The final result is given in Eq. (A-3) of 

Appendix. From the variation theorem, we can require the expan-^ 

sion coefficients, akt, bkt and c
mt,which make the second order 

energy given in (A-3) stationary. Firstly , by differentiating 

this with respect to akt, we obtain 

I dj  .2 dae-=Zakt1'1*SEt(2)+S2stszEk' ° E — KKt . 

         2° (hit{ km)
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 +  alt[ °cltoillot)—( Itt)—(ktl it) ~ 
aWk) 

f ~,QKif(t~Iu^n)- (tul lelz)~-(tlzik), 

raft) 6t114,, [ (tuts. Ie) t (k u. I .Q t .) ) 
      + 121et 7° (Kmk — Ko,t ) 

+ket[°(Ienft Lew)]--ZVb1e~C°(trv~lwin)]       Ato14e t) 
t ° Cmt [ I° (P$ )1 I IV) -- (iin k l tt) — (Ie t I m t) a 

       —°
Iem~[(tuimk)t(k~tlmt)1  m

o(I6) 

Secondly, by differatiating with respect to bkt, we obtain, 

2



Thirdly, by differentiating  with respect to cmt, we obtain, 

  44,11E HF = 2 Cont ($Et - Fo ) 
      mt 

t2° cnt °(}m^in)-(tnnitD)t (nit i i).] 
,11(.4111) 

t IV Cma z r(nti un) -- (t: lrnm)+ (11tirvia)) 
k(*t) 

tX° 2,v C911412 0111-1)1a) -- (mn^tµ)— ctrt41rt)] 
          714M) WO) 

t 2ICakt [ (mnlien) - (mlZ^tt) -(ktirrit)) 
le n 

- 2 IC f (t i m ̂ e) — (iet i rn ut) l 
R to (4 t) 

       ^Z C {20 [ ~ (m n ! K rt) - C YI !e ; t , 1- Cktt m t) 

      f2,`Z.V)bhu[4(ieuimt)—(tLAI1 )—(m(4ciet)J 

= 0(i8) 

In the above equation, 

(id i if I ) JJ Ti* (1) tpd- (1) Vrj. le (.2) 1i/4 tz) a Zt 01~z a 
and Fo, $Ek (I) , SE, (x) , s+.a E and SrD are the energies.. cor 'espond--. 
ingtothe cccnfiurationss,T's(1) 5$tt(2)S*zS,~'and 51,11-9 4~Xo,i~~~~~-IQ70~ 

respectively. 

    By using the coefficients obtained from Eqs. (16), (17)and 

(18), the UHF wavefunction correct to first order in orbital correc-

tion is given by 

            _Q VS-TV    ̀ Lu^rF811.0 tzyakt,kt~Z`Tv bietTvt-mtm• 
(19) 
    Eqs. (16), (17) and (18) are the coupled equations. In order 

to solve these equations, $CF process becomes necessary.This 

situation is very similar to that appeared in the coupled Hartree9 
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 Fock perturbation theory.12 As in this theory, the uncoupling of 

these equations makes the problem very simple. The uncoupled 

equations of Eqs. (16), (17) and (08) are 

s T: (Mt 1 k )  

                                             2 

   Q.f(SFt
~-2St2tjo               4St2k(2)at$Ek) - Ce - Kitt 

bi t = 0 ,(21) 

CmT = O.(22) 

Namely, in the uncoupled approximation, the orbital corrections dit 

and fM are zero as expected from the Brillouin theorem, although 
they are not necessarily zero in the coupled equations (See Eq. 

(17).). Then, in the uncoupled approximation, the UHF wavefunction 

is written to first order as 

      ur~F S`10 t 2CV Zkt ̀' (23) 
    Note firstly that the numerator of Eq. (20' comes from the 

matrix element (s?O l De l } = - Z° (mtl km) , and secondly that 

the term st2Etin the denominator comes from the spin-contaminating  aP~g 

configuration S2 k appearing in Eq. (12), and thirdly that the 
termktin the denominator comes from the matrix element (SioWa5-7 

in which W is usually the most important configuration in the 
electron-correlation corrections13(See Eq. (A-2) in Appendix). 

By using the following relation, 

    E4l2)-st2E=(K,+ K.) , (2*)                  2s m 

Eq. (20) is rewritten as 

               I~m(mt(le') 
(20"

sE(2) —Ea — S`"(K.'nk - Icmt ! - Kn. 
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 III. PERTURBATION-VARIATIONAL DESCRIPTION OF THE SEHF WAVEFUNCTION 

      In this section, we consider on the SEHF wavefunction along 

  the same line to the treatment of the previous section . In the 

  SEHF method, the single determinant of the same form as the UHF 

  function of Eq. (4) is first spin-projected and then its orbital 

 is varied to minimize the energy . 

~sEfF ( Os UtIF { af 1 03''UNF) f < Os +UHF 0s ̀ T'tHF ) (25) 

 where 0
s is the projection operator having the property, 

s20g = -1-S(1+-1-) Os 

      Firstly, let's examine the effect of the projecti on operator 
 on the UHF wavefunction expressed by E

q. (A-1) in Appendix. 
 Among the configurations expressed in Eq. (A-2) of Appendix, only 

 that configurations which are not eigenfu nctions of S2 suffer 
 change. They are the configuration s 1), 6)4,9) and ll). More-

 over, in the energy expression of Eq. (A-3), the configurations 6)• 
,N-9) and 11) appear s only in the form, <SL 1 R 1 +

6,,,faw n}, since here 
we consider the energy correct 

only to second order in orbital 

corrections. Thus
, from the equality, 

(s. id°  I ef 1 'P6,9 er !! ><s` o 1 1 0s1 or H 
we have only to consider th

e effect of projection operat
or on 

in the energy expression 
of Eq. (A-3) in Appendix

. This effect 
appears only in the matrix element, 2 nerr 

                                       t and in the normaliz
ation term comingfrom                           g2(a,tt)z (,t 1 k > 

. They are calculated e
asily by using the relati

on, 

0s +itt = (Th. Y12 s~~ Iz) 
obtained from Eq . (12). The final e

xpression of the total 
energy 
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 for the SEHF waverunction is given in Eq. (A-L) in Appendix. 

    Thus, the orbital corrections in the SEEF ir, ,Tefuncti on, 

   irk`Mati,L!R=tb~tx,tM_fcmt t , (26) 

are easily .calculated as before by varying the SETT"' energy correct 

to second order with respect to aktl, bkt' and cmt'. The results 

for akti. is given by 

  

• 1 d wrsryF = 2 Gt zt j s t z i Wu) - Eo ]— K t 
   2 d a kr 

        — ° (mtiI?m) 

       + lc~~1iLs-r2-------rn°(Iernixw^)--s+z(ki Itt)-(ieti it)) 

t 2V Qieu [ si2 ° (Mt I (Am ) - s ti (t{A.I ) - Ite ki 
u(*t) 

            0144( s 2 (tuiIP) t (le(AlVI)] 

+ b kt 1° (Kw* - Knit ) 

        Iwob~t[Q(ieml~m)j—bto [°(tmiuvn)} 

      t °CmtCX° Urn' ien)- 'mt.)] 

°
toCo,u[(VA.t(kuimt)J 

0(27) 

The results for bkt' and have have exactly the sane forms as those 

given in Eqs. (17) and (18) except that akt, bkt and cmt appearing 

in these equations change to akt,, bkt' and c
mtto By using these 

coefficients obtained from Eq.(27) and the SETT correspondences of 

Eqs. (17) and (18), the SEHF wavefunction correct to first order 
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in  orbital correction is given by, 

   $ sSHF—s~° 'fVScyV a1s't(2) $1rcV12~.~t%o) 

                         k t 2° 2v cnt siffi(2k) 

     As seen in the previous section, the uncoupling of those equ- 

ations giving akt , bkt                        and cmto leads to the following simple 

equations. 

  Q~2°(mtlfrY)(a~)        t = 

              s+2 SFt(2)-ED) K,' 

   ~kt = 0 ,(30) 

   Cmt = C•(31) 

That is, in the uncoupled approximation, the orbital corrections 

41k1 and f are zero as expected from the Brillouin theorem, and 
the SEHF wavefunction becomes to first order as 

Si
sal a ° + V StZGdakt5pk(2). (3,2) 

Comparing Eq. (29) to Eq. (20), note that in the denominator of 

Eq. (29) the term ILktstill appears, although the term due to spin- 

contamination isr'                poJected out in Eq. (29) . 
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 IV. COMPARISON WITH THE SUM-OVER-STATE PERTURBATION THEORY 

     In this section, we compare the results for the OF and SERF 

wavefunctionsobtained in the previous sections, and the result for 

the PUHF wavefunction reported previously2 to the first-order sum-

over-state perturbation (FO-SOSP) wavefunction based on the RHF 

wavefunction as in the previous section. 

     Considering the Srillouin theorem for the RHF wavefunction, 

there are s one-electron excited spin-functions which interact 

with the RHF wavefunction oof Eq. (1).2 They are all built up 

from the excitation from the close .d orbital k to the open orbital 

t. However, since our present interest iies in the spin-correla-

tion problem,we have only to consider the configuration 5i:t2}of 

Eq. (14-a) among these s spin-functions. 

     From the first order perturbation theory, 

                                      s      SOSa'~-rA.4 os(2) ,(33 ) 
where the coeffecient akt°S is given by 

     ATS i Z° (rnt I k m) 
akt• 

                ((34) 

                           i 

                $.,-2y2(SFat(2—ro ) 
    Since the FO-SOSP coefficient of Eq.. (34) is essentially the 

uncoupled one, we compared it in Table I to the UHF, PUHF and SEHF 

ones obtained by the uncoupled approximation. In Table the 

coefficients are defined by the equation, 

     ` Ts+2 s+zt-     x'=Si°+CZv~kts`ip (2) + 2`y_VaS`2k ,( 3S) 

where the last configuration is the spin-contaminating configura-

tion (See Eq. (12).). Refering Table I, note firstly that the 

term, s c(Kmk+ Kmt) in the denominators of the UHF and PUHF methods 
comes from the spin-contaminating configurations+zt(See Eq. (12)•), 
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Table  I. First-order coefficients in the uncoupled approximation

 Method akt
a+2 a
kt

FO-SOSP   vt.' (r'!t m )

4+7;  ($E (2) — o ) 

(mt(iem)

0

UHFb

?UHFb

/f 

s

SE-
1;0(2j s

°(4
rn i Knit 14z

fir (mt(lem)

4.4°(mt1 m)
SE (2)-E

0- s M°( K
ink t' Knit) ̀Kt)

S —C 

s

SZHF/  -•.-------------------------------------------------------------- 

Y s+~ (3E 2) — E0) ' 1' S Kier 

a Th
e coefficients are defined by 

        p+ c v aoi1 si/:(2) t~`~v 
b The energy st=Et of the spin -contaminating 

appearing in the denominat
or, is given by 

  "4E
41't2 
       'Ek (~) -s~(K nott Knit) .

SFkt(2)—F9 — S i'(K, tKmt)— 4DJ 

1112 tmt 'run)

0

st23t 
   TO: . 

configuration sts t? 
  *it 3
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and secondly that the exchange integral Kkt common to the  denomina-

tors of the three orbital models, UHF, PUHF and SEHF methods, but 

missing in the FO-SOSP method, comes from the two-electron excited 

configuration s%hot which is usually the most important configura-
tion in the electron-correlation corrections13 (See Eq. (A-2) in 

Appendix). This point is more fully discussed in Sec. VI in the 

light of the physical visuality of the Sinanoglu's meny electron 

theory.4,13 

     Since spin density gives a good measure of the spin-correla-

tion effects in the open-shell electronic structure, it is conve-

nient to compare these four methods by means of this measure. 

By applying the normalized spin-density operator~5 

' (r) = <S;)-' 2 Svc (Irk Ir) 
to Eq. (37), and by using the relation2 

(5 J $ (Ir) I S42V > (1)4 ( q0 y Or) I STwt(2))) 

we obtain the following equations for the first-order spin density, 

= 
-sr, (3G) 

where 

        _ . 0Jy(r)J >, 

     rs~kcV(Qt4)i/2 Afzt2)CS'Iy(tri15~~(2)> 

In Eq. (36), fsp is the spin density due to the spin-delocaliza-

tion (SD) mechanism and i'sp is the one due to the spin-polariza-

tion (SP) mechanism.?'3 As seen from Eq. (37), sSD is the same for 

these FO-SOSP, UHF, PUHF and SEHF methods in the uncoupled appro-

ximation. However, psp is different for different methods and 

gives a good measure of the spin-correlation effects included in 
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these  methods. In Table II, 5'sp obtained in the uncoupled appro-

ximation of the UHF, PUHF and SERF methods are compared to that 

obtained from the FO-SOSP method. Note that, in the UHF method, 

S'sp includes also the contribution due to the spin-contaminating 

configuration s+2 p , although it is easily picked out by projec-

tion or by the method reported previously (See Table I of Ref. 2.). 

    From Table II, we first notice that the differences in gsp 

among the FO-SOSP, UHF and SEHF methods lie in their denominators. 

Since the exchange integrals Kmk, Kmt and Kkt are always positive, 

the relations; 

    I (Ysos )sr I < (ruNF)sP I 
(3g) 

     I `rsos)SP I < I( ?SENF)SF I, 

are expected in the first-order uncoupled approximation. The 

relative magnitude between (? RF)Sp and (?SEHF)SP depends on the 

relative magnitude between 2°(Kmk+ Kmt) and 2Kkt. Generally 

                                m speaking, the more similar the orbitals i and j are, the larger the 

exchange integral Kij. Since the similality between orbitals i 

and j is closely related to the level splitting between orbitals 

i and j, we can expect the relation,K
mk+ Kmt >2 Kkt for the 

ground state radicals like al'ernant hydrocarbon radicals. Since 

s is always larger than unity (s = 1, for doublet radicals) , the 

following relation may be expected. 

        ° (K
ink + Kmt ) > 2 Kn.(39) 

Thus, 

I ( )sp I < I (3'uHF )sp I (40) 

However, if the symmetry representathn of the orbital
s k, t are 

the same but different from that of th
e orbital m, the relation (39) 
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Table  II. JSP in the uncoupled approximation.

Method YSP

±o-sosp
S2 

k

CTV

°(m1ihm) 

sEk (2) — E a
(r) TT.(r)

UHF z2 

S

ciV
sE:(2) — Er, 3

(Kmx+ Kr^t)—
Tic or) lit Or) K

wv

PUHFa s

St3 ruHr )SP

SEHF
cr 

t

2°trnt!ken)
s ` (z)— E

0 — fit ?) Kitt 
        1~1or) 4)t or)

a S
ee Table I of Ref. 2.
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and therefore  (40) do not necessarily correct (e.g. n-electron spin 

density in the planar H2C0 anion). 

     For the relative magnitude between(S'UHF)SP'and iUPuHE')SP' the 

relation obtained previously2is useful.For the usual doublet 

(s=1), triplet(s =2) and quartet(s-3) radicals, the value of (?PUHF)Sp 

obtained from the relation2, 

------ ruHF)SP(40         (1ppuHF)Spr$ + 2 

is expected to be much smaller than ("UHF) SP and even than (YSE)SP 

and (/SOS)SP' considering the magnitude of the exchange integrals 

appearing in the denominators given in Table II. Therfore, we 

can expect finally the following relation, 

(YPutip)sp I < I (54sas)sp i < I (fssrtF)sP I < 1 (puKF)sp (42) 

in the first-order uncoupled approximation. Note that the rela-

tion (40) stands on the assumed inequality (3?)
, and therefore can 

reverse in certain cases. 

     To verify the relation (42) in the actual calculations
, we 

summarized in Table III the spin densities calculated by th
ese me- 

thods.1'16 All the values are calcul ated 1,y the PPP method with 

the same integral values . Among these, the values for FO-SOSP 

method are obtained by the present author
.As seen in the positions 

of negative spin density
, where only the SP mechanism is important, 

the relation (42) holds satisfactorily
. However, for the positions 

where both of the SP and SD mech
anisms are important, the relation 

expected from Eq. (42) and from th e equality off'
SDfor these four 

methods does not always hold
s. This is perhaps due to the crude -

ness of the uncoupled approxi
mation. Note that the last relation 

A-( ?tifft3j,)proposed by Amos and Woodward from the exa-
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 mination of the numerical results obtained for the several alter-

nant hydrocarbon radicals can be rewritt?n by using Eq. (41) as, 

           I10 

       4-TutiFYew ) (YutiF )sr) A ( 5'11 h sp (43) 

which states that, at least in the alternant hydrocarbon radicals, 

the s'ein density calculated by the Full CI method with the PPP 

T)Iproximation can generally be approximated by taking half of the 

SP contribution of the UHF spin density. However, this relation 

seems not to hole generally. See, for example the data given by 

Meyer.

V. ACCURACY OF THE EXPECTATION VALUES OF ONE-ELECTRON OPERATORS 

                 USING ORBITAL MODEL 

     In this section, we examine the order of magnitude of the 

residual errors of the expectation values of one-electron operators 

calculated by using orbital model. Although there have been many 

studies on this subject,18 almost all of them are concerned with 

the accuracy of the expectation values of the spin-independent one 

electron operators using the BIT wavefunction for closed-shell 

electronic systems. In the followings, we first examine the 

errs of the orbital model in the closed-shell electronic systems . 

('ur main interest lies in the finite perturbation theory(FPT) .7'8 
Then, we proceed to examine the errors in the SEHF method . The 

Thysical meaning of the result is dJsscussed in the next section . 

     To bein with, let us write the true wavefunction Yi as 

+j,<X)/ ( 21( <T>,IX> <XIX>)14 (44) 

11.2



where  is the approximate wavefunction and X is the correction 

 term to  it. Here, X is taken to be nonorthogonal to 00 for 

generality. Then, the expectation value of an arbitrary operator 

A is given by 

«IAIy> Aext 

< ,IAI1o> + 2/A <#04AI x> +jtta<XIAIX> 
                        I t A <75.1x> -1,71A4 <ZIz} 

(4s) 

which is rewritten as the followings correct to second order in JAI 

Aext = A00 t 2f& < 00 1 A — Aoa i I X > 

t 2 {<xl Alx> — 4 <001X><',IAI x> 

                        + (4- <001 x is -- < 120 )A04) } 
   + p9A3 ) ......(4C) 

where A00 = <1661  A 1 yb, > and I is the identity operator. Thus, 

if <I A - Ao, I I x> vanishes, the expectation value of A calculated 

fromthe approximate wavefunction 0bis correct to second order in 

l. 

V-1. Examination for Closed-Shell Electronic System 

     In FPT, the Hamiltonian u-nd'er consideration is 

e R = H + A 2 f or„) *~~Er/r~„(4'7) 

ee u - fi -A 2 hr.) Z h/rAv (48) 

where H denotes the core-Hamiltonian due to the kinetic plus nuclear 

attraction energy. In Eq. (47), the spin-independent one-electron 

perturbation, AI f qr,,), exert to the system. In Eq. (48), it is 
spin-linear20, and then spin-correlation do occur in this closed-
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shell system.19 Since [S2,                              Nu) +0, the wavefunction correspond- 

ing to  Ieu need not to be an eigenfunction of S2, although it must 

be an eigenfunction of Sz, since [ Sz, 40 3 = U. 

     The present interest is the accuracy of the expectation values 

of anotherone-electron operators,f(1J and Irf(^Y„)8NJ , calculated 
from the RHF and UHF wavefunctions, Ro and."la corresponding to the 

Hamiltonians (47) and (48), respectively. The Brillouin theorem 

for the RHF and UHF wavefunction is given by 

Rti F; (R cI ae' I R ,Ct> = 0A (see F$. (3).) ('F9 

u ul,,"`>=o;( LI iee9 1.1,10,(SJ) 

where q.t.' is the one-electron excited configuration obtained from 
140 by changing the occupied orbital A,7 to the vacant orbital t 
Eqs. (49) and (50) states that the correlation correction X in Eq. 

(44) begins from the two-electron excited configurations for both 

RHF and UHF wavefunctions. Since A in Eq. (48) is here the one-

electron operator and since X is here orthogonal to ~ , the 
matrix element (#,IA-A..TIX)vanishes for both the RHF and UHF wavefunc-
tions. Thus, the second-order property calculated by using FPT 

is correct to second order in
,_the correlation correction for both 

the spin-independent and spin-linear operat
ors. Since,in the 

small perturbation limit
, FPT is equivalent to the coupled Hartree-

Fock perturbation method,12 the above stat
ement applies also to 

this method.

V-2. Examination for the SEHF Meth
od in Open-Shell 

    In the SEHF method, the correction t
erm X in 

Witten as

Electronic System 

Eq. (44) may be
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 x= L 2 cia Os ̀ a t~Cttab OS`dbt .....(5I)4019 
where §`a is a single determinant obtained by changing the i-th 

occupied spin-orbital of the single determinant ~ of the SEHF 

wavefunction Osto to the vacant spin-orbital 90a. 9a is chosen 

such that 

<pAI 9i>=0,(S2) 

                                                               ab  
 whereTi runs over the all occupied orbitals inTidis the 

two-electron excited determinant similarly defined as V. The 

A in Eq. (44) is here Osko , the normalization facter of which 
is omitted here for brevity. Note that the overlaps (Os ie I Os l',a 

and (Osto (Os`cjab) are not necessarily zero even if the orbitals 

satisfy Eq. (52).21 

    As shown by Kaldor,22 the generalized Brillouin theorem apply-
ing to the SEHF wavefunction is 

( Os ~ a I e — F i I Os I.o > = 0 , (53) 

where E is the SEHF energy, and I the identity operator. From the 

first-order perturbation theory making use of the expansion in terms 

of the arbitrary complete set,9 the coefficient ci a in Eq. (51) is 

written to first order as 

    cia=bCos4)' —Erio3c,>/<0,tiaI eg - Ell Os.tb>> 

d which vanishes from Eq. (53). Thus, the correction term X of Eq. 

(51) may be rewritten as 

a(5g-)     X —. uT,ccdb^t ..... 
  As seen from Eq. (46) , if < Os~ a I A - A.0112) vanishes, the ex-

pectation value of the operator A calculated from the SEHF wavefunc-
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   tion is  correct to second order in"LHowever, (0s/01 A—nooII 0.sb) 

   does not necessarily vanish even if A is a one-electrcn operator 

   (spin-independent or spin-linear) and the spin-orbitals 9›a and TI) 

   satisfies Eq. (52). This comes from the fact that the overlap 

   between two space parts of a-spin and 3-spin orbitals does not 

   necessarily vanish. Therefore, the expectation values calculated 

   from the SEHF wavefunction include errors to first order in „U,. 
  Note however that the meaning of )14 used for the SEHF wavefunction 

  in the open-shell electronic system is utterly different from that 

  used for the wavefunctions obtained by the FPT or the coupled Har-

  tree-Fock theory in the closed-shell electronic systems, discussed 

  in the previous paragraph. Although, in the closed-shell systems
, 

  the physical meaning of 1.4. was clear as the correlation correction 

  due mainly to the binary "collision" of two electrons13 , that for 
  the SEHF wavefunction becomes vague since it includes partly the 

  effect of "Coulomb hole" within the orbital model . This point is 
  the main subject of the next section . 

       Lastly we note that it is nonsence to discuss the a ccuracy of 
  the expectation value of the spin-linear operato r, obtained from 

the UHF and PUHF wavefunctions , because of their defects stated in 
  Sec. i,2 For the expectation value of th e spin-independent opera- 

  tor, we discussed previously .'

VI. EXAMINATION OF ORBITAL MODEL FOR THE 
SPIN-CORRELATION PROBLEM 

                IN OPEN-SHELL ELECTRONIC SYSTEM 

    In this section
, the features of orbital model of the op

en-
shell electronic structure a

re examined in the light of th
e 

physical visuality of the Sinanogl u's many-electron theory .4'13 
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Our starting point is the RHF  wavefunction. 

     Electron has two attributes, namely charge and spin. In the 

closed-shell electronic structure, orbitals are determined by the 

average coulombic field, where the effect of spin appears only to 

modify this field. However, in the open-shell electronic structure 

such as in the doublet and triplet states, the effects of spins are 

not canceled out. Thus there arises two fields, spin field and 

charge field (or Coulomb field). The first is spin selective,al-

though the second isn't, and these two fields always accompany. 

In the restricted orbital model, two electrons of different spins 

are forced on the same orbital, neglecting the spin-selective cha-

racter of the spin field. Thus, in the electron-correlation pro-

blem in open-shell electronic system, two correlation effects
A 

becomes important, namely fk and'`d.13represents mainly 

the orbital spin-polarization effects rie in Eq. (7) (spin-origin) 

in thek,       present study.dand faaare also included infbut 
are expected to be very small from the Brillouin theorem. uv 

is the sum 

     =f:f.+u~=o ota---(. ~                 'd 

where the first term 1 fd (that is, the unlinked cluster o v in 

Sinanoglu's notation) is mainly the "coupling" of orbital polari-

zation and the second term a„." represent chiefly the 

effect due to the binary "collision" of two electrons (charge-

origin).13 Note that in the closed-shell electronic systems, 

   (orbital correction) is very small due to the Brillouin theorem. 

It comes out only from the third order correction. However, in 

the open-shell electronic system, 9is usually very important and 
is the origin of spin-correlation effects. Glv" plays an impor-
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 tant role mainly to improve total energy (or the expectation values 

 of the more-than-two electron operator).ji is not so important 

 energetically.4b 

     In the orbital model which is, in other words, the orbital-

 constrained variation method, one introduces first rather formally 

 the orbital correction ,fc as in Eq. (5) and makesit optimum from 
 the variational standpoint. However, since the first-order correc-

 tipn to the wavefunction is determined by varying the energy correct 

 to second order,9 there comes out the coupling term Mid- in the 

 energy expression. This is seen in Eqs. (A-3)and (A-1) in Appen- 
dix. Among these, the most important is fa which gives the con-
figurations`zYNis?S~kirandzciaktokuspokt`1inEq. (A_1) . However, 
these configurations, rgr and s%cr(1) are also important in des-
cribing the "collision" term u `d . In other words, these two, 
electron excited configuration of desired spin -multiplicity is also 

used to describe the correlation term aq 
, by giving free varia-- 

                       •tion paramet
er likeevsrt                         itk ~k 

, which is not constrained as 

the product of orbital corrections like R e(6s).2 
There- 

fore ,, by the variation of the energy correct to second -order in 

orbital correction
, the effect of the binally "collision" % is 

included effectively through , the constrained form 
.174 f                                               . It is 

well known that , like this, we can explain about 85 % 
of the n-

electron correlation energy 
of benzene by means of the alt

ernant 
molecular orbital method .23,24 However

, this ~ xi~ i.s not so grateful 
in the open 

            A            

-shell electronic system
s, since the real , orbital pole- 

rization ff is distorted b
y the effective inclusion of a I

n 
other words, if we writ

e the orbital polariz
ation obtained by the 

orbital model asorb                 p.7,, , it i.s c'.istorted like, say , lorb f "kg 
by the orbital-constrai

ned variation . Since the configuration! 
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swkt 
  o  is very important also in )4 , it appears even in the uncoup-

led equations (20) and (29) as Kkt in the denominator ((kPo)3e1sPk 

Kkt). For example, as seen in Eq. (42), the spin density due 

to the SP mechanism in the SEHF method is always larger than that 

calculated by the FO-SOSP method. This point is also seen numeri-

cally even if we compare the values of (,PSEHF)SP with those calcu-

lated by the full CI method, (See Table III.) Moreover, that the 

error in the expectation value of one-electron operator begins with 

the first order term in )l , which is proved rather formally in the 

previous section for the SEHF method, seems to support the above 

disscussions. 

    Note lastly that, in the closed-shell electronic systems, the 

effect purely due to fk is very small even in the alternant molecular 

orbital method. This point may be clear from the fact that all 

the singly excited configuration constructed by introducing j= 

completely projected out by the projection operator.24

VII. Discussions 

     As shown in the previous sections, the orbital model in open-

shell electronic system sacrifices to some extent the orbital pole- 

rization correction f,A in order to include effectively the correla-

tion effect due to binary "collision" u . Since both of these 

corrections, It and u4 , are important in open-shell electronic 
systems, it seems necessary for the future theories of spin-correla-

tion to include both of these corrections explicitly in a reasonable 

n way, or to exclude reasonably the effect due to the correlation Gle . 

    In order to keep from the effect of 121d; Meyerl7 dropped 

49



out from the projected function of  Eq. (A-i) in Appendix the confi` 

gurations S and W14(0 (0 coming from the coupling term 0 and . 
considered only the polarization interaction term liostU).µ 
Although he considered only the correction Me in Eq. (26) in an 

approximate way, his results were satisfactory in the calculations 

of the hfs constants of the first-low atoms. Since in atoms, the 

                                                                                   n main correlation effect is the intra-shell correlation effect inGteia 

his treatment may be justified. However, we doubt wether the con-

figurations Shen and 54:4(f) are purely origin and can be 
omitted completely. Moreover, from the general treatment presented 

here, we found that many other terms than I' 0) arises. The rela-

tive importance between them and the relative weight in their ori-

gins between h and uv must also be examined if we adhere to 
the orbital model. 

     Taking account of the considerations given hitherto, we may 

rather set up more direct method which covers both correlation 

           A effects fA and aid in the possible simplest, but unconstrained 
framework. This point is the problem succeeded by future study. 

However, it is expected that the multi-configurational SCF treatment 

will be hopeful., since,by this method,the expectation value of one-

electron operator is correct to second order in rt defined by Eq . (44).
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 APPENDIX 

Insertion of Eq. (10) irto Eqr (9 ) gives he unnormalized UHF 

wavefunction correct to second order in orbital correction, 

+IMF = !+0 + `GV akt t >CIV 190 q:(1) t Ld  ~mt %111; 
k t t » 

      + ~C ~V { (b,kt)2 - (arey )2 J+ett+/1ICY12V( /70~'ka-aky akK)sRI:'(1) 
ittxt<c~ 

+ I CXV ZV aidOleu''k~~t 2`E`IV(aof ast - bitQ;,t 4ixtti~~) 
ietrA(;t)!e<1 . 

_i_ 2 r`r`SV V V ale. al
lotu)t22:c2c?v2'~b,b,tu(2) <Rtu(st)<Af 1440 k-Q 

     + 2 yC c !`' aiet ket ' RQt(3) 1-2 I' 2' IV EV a kt b,t a iK r(3) K .£<tk) t .Q«le) G u.4 t) 

 ^kCm~IV (aCOVV                     FeGmt—b~I trit)tt~)t~`1}~a''k2) 
    ttU t)"ktC 

       t•ri`°~Vvb~^~S~m~~~+Z~°LV1ccnu' 
kmtCVO,^n u E*.) 

where 

0) .S4'a M tpi 4', .......  k ...... 445+I - - - - - Tm _ • - P I 

~) = 4Pt4'? (avt g04r)/r ---- 4'c& 451, 11-ti ...... 

 2) s U) = I 'P 451 -------4^t 4' a - (3 c) /'r ...... `Pg 4i wp-1 -----1Vp I 

si jy i iv, LTi ..... -4't Tit ...... 4'g '';t 4'P 

5) 3ika"(1) = i 4'1 4'1 ..... --41t ti' Cap - (°4 )/d2 -......qh& 'Pp- . - _.. gip I 

6) `iKiru = I Tr LI'r - LPG TK (N e t p )/v .....LP1 q3; S*' ----- Llip I 
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 7) ' 9 (1) _ { (pi ti^a ..... ytq^R (0c,1+/~ ...... th (0(p+13,4J12 ...._ ).;ii --- yPI 

(2) = I 'Y, °i'1-- - 'V-G'ht (a(- (!)« )/i -----+14+1(0q. - clo v,r - f i I 

9) +414(3) l ̀ Pi °I1 ..... the (a + 13c )/r.... yu °Pg (a f VI2.....t 'it! - 41. 

10) %1„.:(1) ---- V1 Tie  ~Via......'Pt Tit +gtH ..... q')LPntH - - ti-JPI 

11) kp>em (2) = - % (alp t 13o/ )J,r - --- - ~$'11g4-1.... 'n,-H 4 ( 4m+i .....'P I 

12) srN(i) = 1'lif1131 •_ g Tt+H - - 4'm-~ t thrill 4171-1 +u 11/n*1 ......lip I 

(A-2) 

The configurations l)'-3) are the one-electron excited first-order 

configurations and those of 1+)",- l2) are the two-electron excited 

second-order configurations. The superscript s denotes that it is 

an eigenfunction of 32 with eigenvalue, (I+ ) 

    The UHF total energy correct to second order in orbital correc-

tions is calculated from Eq. (8) by using Eq . (A-I) and the Brillou-

in theorem shown in Eq. (3). Note that in the energy expression , 

the configurations 6) and 9) do not contribute since (l
a Ie(ciievit 

( s~a (c = 0 . After some manipulations, the energy 
correct to second order in orbital correction is given by

, 

"'t IHF (' uHF I XI %PiniF > / < +UHF I •YUHF 

EO 2 2c2v cal t)2SlSt2SFtt St23+2G'k}'- EO — 1/k~} 
                          akt 1 r (mD i km)) f. 

      t 2 c~'5Y air; aka [ ~° (Intl an) -- (tu.I kie) - (Ikl I k u) J 
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 t  2  ie  641  a..t [  n0111)1)  -  (IewV1)  -  (kti/T)1 

 2  rIv an%IA  [ (trAI/le) t (Ie&f1))  icowt

1- 2 2`2'(b )2 [ PEI()) - ED ) t 4t] 
k t 

t 2 Z ̀Zi}70}702°(Ili1c(>7)t 3 (tieIRIO- (kit 10-)  1 

o t2 `lc bstt[2°(lenl- n)t 3(tiI let) - (Id I VD) ] 
                                                 ^1t)t 

t2Icic2V2)br~170 [4,(tkI/a)- (tu lle)-tk(AIlit)7    te

+ ~° Y (Cmt)2' (SE — E0 ) 
01 t 

+ °rv~v Com Cmu { Fortian) - (aim t(.) t(mtlam)) 

y 

       ;Ott) 

 t 2°la Goa Cnt [ ~ Q (in' iwi) - (Y1 en 117t) t (mt I 'v1t)) 
IN r (#1N) t6 

1-2.°Z°^n~Zyl-c)Cm~tCnmn[ 2 (t Iu)--(rn n I tu) —(m u I n t) j 

+ 2 Itc2yalZtbbt Z° (Knit — Knt 

- 2 2 .` z V.-vab,e,t° (tin(urn) +1.caret bit(lemI.R rn) 
  ktuot)~t"~K9(Mk) t 

t2Ic2°IV art c,sv [(mrrIen) - (mititt)-(letlrnt)~ 
 tmt" 

-2 Zcm°Zt )ar~tCmu [(tulmk)t(rzulmt)} 

t2 l`M°120Cnt[(MNIkr)tt                           3(le(nit)(mk(t't)] 

Z Zc2Q1.11br<t Cow 14(ktI,i t.) —(tAIMk)- (ratI Ka)) 
     Ft MttAkit) 

t .....(A-3) 
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    The energy expression for the SERF wavefunction is obtained 

from Eq.  (25). As discussed in the text, this is easily calculat-

ed by using the following relation obtained from Eq. (12), 

        4s s~1¢~_s)112St-:(2)    Kt 

The final expression is different from Eq. (A-3) only in the terms 

in which the coefficients are the product of two a's, except that 

all coefficients change to akt' , bkt'andc
mt' in the SERF expre-. 

ssion. Then, in the following expression , only the first four 

terms different from Eq. (A-3) is given, the others are formally 

the same as Eq.. (A-3). 

(2)E
SEHF = OS 41uHF I I Os uNF>`(OsUHFIOS'JUHF 

       E0 1- 2 c V (Wier? I Sfi2 (sE (2) — Eo) Kter} 
                          - at 2,°(mt i km)) 

+ 2 c~v2_v                 aRD~~euIs-t2:°(tnlun) -stz(t.tlkk) -(letlleun 

     1- kCICtva61;t CSt2i°(Un I2n) -t2(k2ltt) - (kiln)]  
      2`Ic~V2 . cct1L[S+2(tuilsz)+(RultA) K) 

 SOK) t K($t) 

•(A - 4)
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                     CHAPTER 5 

                      CONCLUSION 

 In. Part I of this thesis, orbital theories in open-shell 

electronic system are studied laying stress on the spin-correlation, 

problem. 

    In Chapter 2, a method is proposed for separating the spin 

d•ei.sity calculated by the UHF into components due to spin-

polarization and spin delocalization mechanisms, and the validity 

of the method is confirmed. By using this method, more profound 

understandings than before on the nature of spin density may be 

gained because of the physical simplicity and visuality of each 

mechanism. This will be exemplified in the actual applications 

given in Part II, Capter 4. Moreover, since these two mechanisms 

depend on the different type of integrals, the estimation of these 

integral values and the examination of the computational scheme 

becomes more easy. The author believes that this general trearment 

has put an end to the previous confusions seen on this subject. 

    From the study given in Chapter 3, an interconnection between 

UHF and PUHF wavefunctions is clarified. Moreover, some of the 

general propearties of the UHF wavefunction have revealed. Firstly, 

the weight of the lowest contaminating spin func ion included in 

the UHF wavefunction decreases with increasing spin multiplicity. 

Secondly, the annihilation of the lowest contaminating spin function 

little affects on the electron density distribution and on the 

other physical quantities, the operators of which commute with the 

annihilation operator. Thirdly, in the UHF method, the "spin-

appearing mechanisms" (spin-polarization and spin-delocalization) 

are clearly divided, and the generalization of the method to 
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separate these contributions is carried out. 

     From the study given in Chapter  4, an interconnection between 

UHF and SEHF theories are clarified. Thus, together with the 

results given in Chapter 3, the three orbital thories (UH', PUHF 

and SEHF theories) for open-shell electronic systems are inter-

connected in conjunction with the first-order sum-over-state 

perturbation wavefunction starting from the RHF wavefunction. The 

acctracy of the expectation values of one-electron operators calcu-

lated from these wavefunctions is also clarified for both the closed 

and open-shell electronic systems. These results mean physically 

that the orbital model in open-shell electronic system sacrifices 

to some extent the spin-polarization correction in order to include 

effectively the correlation correction due essentially to the two-

electron correlation phenomena. Since both of the spin-correla-

tion and the two-electron correlation corrections are important in 

open shell electronic systems , it seems necessary for the future 

theories of spin-correlation to include both of these corrections 

explicitly in a reasonable way , or to exclude reasonably the effect 

due to the two-electron correlation correcti
ons.
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THE

 PART II 

STUDIES ON 

THE ELECTRONIC STRUCTURE OF 

     CARBONIUN IONS 

AND 

    DOUBLET RADICALS 

         AND 

CALCULATION OF FORCE CONSTANTS





                       CHAPTER 1 

                       INTRODUCTION 

     As has been known from the early days of the electronic 

theory of chemical valency, valence electrons play essential role 

in chemical bindings and in other chemical phenomena. Nevertheless, 

it was only recently that the semi-empirical SCF-MO method for 

 valence electron systems have become popular in various studies 

of chemistry: After the extended H.iickel theory (Hoffmann, 1963)1 

for valence electron systems, the first attempt to extend valence 

electron theory to the SCF scheme2 was firstly made by Pople, 

Santry and Segal (1965) as CNDO method,3 which has now become 

popular in various studies of molecular electronic structure. 

This method is based on the zero-differential overlap approximation 

which was widely used in the 7-electron theories, such as in the 

Pariser-Parr-Pople's method.4 On the other hand, the valence ele-

ctron SCF-MO method including differential overlap was firstly 

developed by Yonezawa, Yamaguchi and Kato in 19675 although an 

application of this method appeared already in 1966.6 

The first purpose of this part is to extend the applicability 

of the above method to various __mo1ecular properties, and the second 

is to show in actual calculations the usefulness of the method 

Proposed in Part I, Chapter 2 to separate the UHF spin density 

into its mechanistic components, The method of calculation and 

the values of integrals used in the following chapters are due 

basically to the study given in Ref. 5 , Small modifications added 

to the original method are given in each chapter. Extention to 

the open-shell electronic systems7 by means of the UHF theory 

will be described in Chapter 3. 
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      In Chapter 2 (published in the Journal of the American  Chemi-

 cal Society, 90, 1239 (1968), and in the Bulletin of the Comical 

 Society of Japan, 39, 2788 (1966)), the electronic structures of 

carbonium ions are studied by the semi-empirical SCF-M0 method 

 for valence electron systems. The carbonium ions studied are 

 alkyl cations and some protonated hydrocarbons. It is found out 

that the explicit inclusions of a-electrons (not like in n.pelectron 

 theory) and of the electron-repulsion terms (not like in the extend-

 ed 'Rickel theory) are very important for the electron-deficient 

species like carbonium ions . The change of the a and n electron 

 Populations with the structural change in alkyl cations, and the n-

 typ .e conjugation seen in cyclopropylmethyl cation are also investi -

 gated. 

     In Chapter 3, two studies on the electronic structure of doub-
let radicals are summarized . The main interest lies in their 
spin densities , and the method proposed in Part I, Chapter 2 is 
successfully applied 

     In Chapter 3, Section 1 (published in the Bulletin of th e 
Chemical Society of Japan , , 2L.37 (1969), and in Molecular 
Physics, , 589 (1967)) , an extention of the original valence-
electron SCF-MQ method5 to the ope n-shell electronic system is 
made by means of the unrestricted Hart

ree-Fock method,7 and this 
is applied to the study of the electronic structure of small 
doublet radicals . By the inclusion of all th e valence electrons, 
the empirical McConnell relati on for the n-electron radicals 
becomes unnecessary

, and direct calculation of the hfs constant 
becomes possible . Generally , the calculated proton hfs constants 
agree satisfactorily with experiments. Furthermore

, by separating th
e calculated spin densiti es into mechanistic contributi ons, the 
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 spin-polarization mechanism is shown important even in the cases 

where the spin-delocalization mechanism has been considered 

dominant (e.g. ethyl and vinyl radicals). The structure dependence 

of the hfs constants and their mecanistic contributions are also 

examined. Lastly, the preferable structure of the hydrogenated 

pyridine is studied by examining both of the total energy and the 

hfs constants. 

    In Chapter 3, Section 2 (published in the Bulletin of the 

Chemical Society of Japan, 698 (1970)), the angular dependence 

of the methyl group hfs constants is studied, laying stress on the 

behavior of the spin-polarization mechanism, since this mechanism 

is found very important by the study given in Section 1. Origin 

of the angular dependence is also investigated by applying the 

theory given in Part I, Chapter 3. 

    In Chapter 4 (published in the Journal of Chemical Physics, 

53, 1305 (1970)), the present valence electron SCF-MO method is 

applied to the calculation of force constant of ethylene after a 

small modification in the core-repulsion energy_ All the diagonal 

quadratic force constants in the internal symmetry coordinate 

system are calculated and compared with those obtained from vibra-

tional spectra, It is noticeable that this method can reproduce 

reasonable potential curves even for the stretching coordinate.
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The  Electronic Structure of Carbonium Tons. 
Alkyl Cations and Prct-J.zated Hydrocarbons

Abstract: The electronic structure of alkyl cations and some protonated hydrocarbons has been studied by a semi-
empirical SCF MO treatment for valence electron systems. it is found that the inclusion of electron repulsion and 
core repulsion terms is essential for the successful investigation of charged species. Good agreements of calculated 
ionization potentials of alkYl radicals with experiments are obtained. The electronic excitation energies and oscil-
lator strengths of some alkyl cations are presented; the energy changes in some ionic reactions are calculated, and 
the results compare satisfactory with experiment. The change of a and it electron populations with structural 
change in alkyl cations is investigated, and the comparison of the electronic structure of CH5+ and CH5— is carried 
out. The stable configurations of C5H5f and C lia+ are also examined.

/The chemistry of carbonium ions has been developed 
   extensively in recent years. Until recently, one of 

the most general features of carbonium ions was their 
transient character. But recently, it has been possible t
o capture carbonium ions in the form of stable salts 

with very strong acids.' 
 Theoretical studies of carbonium ions have been 

largely limited to conjugated cations and thereby the 
behavior of a. electrons, perhaps essential for the study 
of positively charged species, was left unsolved.  R

ecently, Hoffmann developed the extended Wicket 
theoryt and applied it to some carbonium ions.' T
his was the first attempt to treat carbiriium ions ex-

tensively, .consider;ng all valence el'. trons of ciie con-
stitutent atoms, and was v.ry instr active. But one of 
the shortcomings of this treatment was that the electron 

 (1) (a) N. C. Detto,Progr. Phys. Qrg. Chem., 2, 129 (1964); (b) 
Q. A. Qlaand C. U.Pittman, *Ivan. Phys. Rig. Chem., 4, 305 (1966).  (2) R.Hoffmann, ^. Chant. Phys., 39, 1397 (1963). 

 (3) R. Hw1)'taana,1b.'J. 40, 241tQ (1964).

interaction and nuclear repulsion terms were not taken 
into account explicitly. 

In the present work, the electronic structures of some 
carbonium ions have been studied with our newly 
developed semiempirical ASMO SCF method for val-
ence electron systems. The carbonium ions investigated 
are some alkyl cations, such as methyl, ethyl, n-propyl, 
isopropyl, isobutyl, and (-butyl cations, and some 
protonated hydrocarbons, such as protonated methane, 
protonated ethylene, and protonated acethylene. We 
also examined the electronic structures of some alkyl 
anions and Cl-ls as a reference. 

 One of the main purposes of this study is to examine 
the effects of the electron repulsion term in charged 
species. It has been found that the inclusion of electron

 (4) T. Yonezawa, K. Yamaguchi, and H. Kato, Roll. Chem. Soc. 
lap., 40, 536 (1967). In these calculations, one-center exchange integrals 
are further considered. See also H. Kato, H. Konisbi, and T. Yone-
zawa, /6W., 40, 1017, 2761 (1967).
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 repulsion is essential especially for the successful in-
vestigation of orbital energies. 

Method and Parameters 
 The molecular orbitals (MO's), sea's, are taken as a 

linear combination of all valence atomic orbitals 
(AO's), Xr's, centered on the various atoms of the 
molecule. Roothaan's SCF equation8 for a closed 
shell molecule is 

ECir(Frs - Srse,) = 0 (s = 1, 2, • • •)(1) 

where 
     Frs = firs -r- EPtu((rsitu) - 'I2(rt su)] (2)

         Srs - fXrXdT(3) 
(rs f u) = fXr)Xs) c—Xi(v)Xu(v) dr„ dr„ (4) 

                                   r,„ 

   The atomic integrals appearing in the above equa-
  tions are evaluated by the approximations previously 

reported,' 
   The additional improvement introduced in the present 
calculations is the inclusion of one-center exchange in-

 tegrals with the approximations6 

(2s,2k2s,2pa) = (2s,2pa1 2s,2p7r) 
(5) = 0.200(2s,2s12per,2pe) 

 and 

(2pu,2p,ri2pee,2p?r) _ (2p7r,2pirl2p7r,2pie) 

= 0.0604(2pv,2po-) 2pr,,2p7r)(6) 
   The Wolfsberg-Helmholtz parameter, K; introduced'  in the calculations of off-diagonal elements of Hrsr in 

 eq 2 is set at 1.1 and 1.08.8 
  The total electronic energy (E) of the valence electrons 

is written as 

          E = 'IsEPrs(Hrs -1- Frs)(7) 
                               ra 

 and the total energy (W) of the molecule is obtained b
y 
        W = E f EEZAZBIRAB(8) 

n>B 

in which the nuclear repulsion energy EE Z
AZB/RAn is 

calculated by the hoie 'B 

r/   EEZAZBIRAB='EZAZB(2SA,2SA(2SB,2SB) (9) A> B 

where ZA and 2SA are the core charge and th
e 2S AO of the 

atom, A, respectively. 
  In the present calculations , it is assumed that the 

cationic carbon of alkyl cation is in the trig
onal state,1° 

 (6) H. HinzchandHnt-I. JaffgJChem. Plus., 38, 1834 (1963).   (7) The invariance of the Wolfsberg-I-telmholtz appr
oximation to ro-tation of the basis set in space is 

easily seen in eq 6 and 7 in ref 4
, repre-senting that Krr`s for 2p,, 2p,,, and 29, AO's ott the same atom becom

e equal regardless of their orientation in space.  (8) The results obtained by adjusting K to 1
.08 are almost parallel with those obtained by K = 1.1, so that we will show 

only the results obtained by K = 1,1. 
  (9) G. Del Re and R. C. Parr, Rev. Mod. Phy3., 35, 604 (1963).  (10) Recently, Olah, et at., substantiated the planar sp5-hybridizcd structure of the simpl

e alkyl cations in solution: G. A. Olah, E. B. Baker, J. C. Evans, W. S.'Tolgyesi, J. S. McIntyre
, and I. J. I3astien, J. 4mer. C1tem.Soc., 86, 1360 (1964).

and that the bond distance between the spa and spa 
carbons is 1.50 A. The bond distances between a 
carbon and a hydrogen atom and between spa carbons 
are taken to be 1.09 and 1,54 A, respectively.

Results and Discussion 

  In the present paper, we will discuss first the general 
results on the orbital energies and the electronic transi-
tions of carbonium ions, and then enter into details of 
the electronic structures of alkyl cations and protonated 
hydrocarbons. 
  Orbital Energies. .Carbonium ions are electron-
deficient species compared with radicals or neutral 
molecules. Therefore, the destabilization due to the 
electron repulsion decrczses in these species. Hence , 
the neglect of electron interaction and paranietrization 
for neutral molecules will lead to too high orbital 
energies in carbonium ions. This is the case for the 
treatment of carbonium ions by the extended Hiickel 
method. The orbital energies calculated for ethyl 
cation and staggered ethane by the extended Mickel 
method and the present method are compared in Table 
I. The ionization potentials (IF's) of ethyl cation and

Table 1.. Orbital Energies of Ethyl Cation and 
Staggered Ethane

C21'10+-------- ----Stag. C2H4------ -
       Present,Present, 

Hoffmann IC = 1.1 Hofmann K — Li

LV 
110

—10.482 
—13 .744 
—14.316 
— 15 .295 
—16 ,070 
—21 .231 
—26.860

 —8 .696 
—19 .899 
-20 .222 
— 20 .690 
—22 .677 
— 26.765 
— 30.563

  3.212 
—13 .763 
—13 .763 
—14 .126 
—15 .871 
—15 .871 
—21 .873 
—26 .711

 13.917 
—12.088 
—12.589 
— 12.589 
—14.918 
—14 .918 
—19.757 
—23.001

ethane calculated by the extended Mickel method are 
 13.74 and 13.76 eV, respectively , and those calculated  b

y the present method are 19.90 eV for K = 1.1, 19.42 
eV for K = 1.08, and 12.09 eV for K = 1, 11.42 eV for 
K = 1.08, respectively . The IP of ethyl cation has 

• never been reported , so far as we know, but it may be 
expected to be much larger than that of neutral molecule

, which is compatible wu.h tile present results. On the 
other hand, the orbital energies of ethane calculated by 
the two different methods do not differ as much as in the 
case of the ethyl cation , and the IP calculated by our 
method agrees reasonably with the experimental value," 11

.65 eV. It seems therefore that the extended Mickel 
method may be approximately valid in the calculations 
of the neutral molecules , but invalid in those of the 
charged molecules such as cations and anions

, where the term r
epresenting the electron interaction in eq 2 

cannot be neglected .  T
he orbital energies of methyl cation , methyl anion, and meth

ane are compared in Table II , The ehanges of o
rbital energies are remarkable and their trends seem 

reasonable, for the lowest vacant (LV) and the highest' 
occupied (HO) orbital energies correspond to the elec-
tron affinity and the IP of the referring .molecules, r
espectively. 

((1) K. Watanabe, J. Chem. Phys,, 26, 542 (1957).
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Table 11. Orbital Energies of Methyl Cation, Methane, 
and Methyl Anion

 CH"*, 
K=I.t

CH4, 
K

CH,-, 
K= 1.1

Table IV. Calculated Transition Energies (EE) and 
Transition Moments (Q) of Alkyl Cations

LV 
HO

-9.661 
-21.618 
-21.618 
-29.053

 11.740 
-12.671 
-12.671 
-12.671 
-20.137

18.878 
-0 .290 
-3 .371 

    -3 .371 
-10 .260

       Type of .- K = 1.1 --.'..- K m 1.08 
       transi- ' E, 'DE, Q, aAEr '4E , Q, C

ation tiona eV eV A eV cV A

 The ionization potential of a radical may be set ap-

proximately equal to the electron affinity of the corre-
sponding cation. is 

/Prettiest = -» eUrcation(10) 

But, in the above approximation, a further investigation 
should be required to adopt the energy of the LV orbital, 
since the LV orbital is not included in the SCF 
procedure. 
 An IP of a radical can also be calculated by 

IPradiiat = ;Vanden - Wrad[cal (11) 

which is essentially a better approximation of the IP of a 
radical than eq 10, and may be used to check the validity 
of the LV orbital energy. The term, Wradical: ap-
peering in eq 11 denotes the total energy of the re-f
erring radical and is calculated by the relation's 

Wradlcai Wanton +'Paulen(12) 

 The IP's of the alkyl radicals calculated by the above 
two methods are compared with the experimental values 
in Table III, where the IP's calculated by eq 11 and 12

Table M. IP's of Alkyl Radicals and Cations

CH,+ 
C4-11+ 

n-C,Ht+ 

I CaH7+

I.C4H,+.

t-C4Ho+

a1-r* 

r- 3r* 

ar-r' 

a1-r* 

0a-r* 

r-r* 

or-r* 

r-r* 

Q3_rM-

 2.06 '2.47 0,0 1,56 1.95 0.0 ' 
3,91 4.07 0.110 3.51 3.63 , 0.103 2

.27 3.28 0:179 1.78 2.39 0.188 
4.88 6.04 0,684 4.16 '5•.07 0.684 
4.06 4.23 0.095 3.14 3.26' 0.040 
4.99 5,55 0.526 4.44 4.85 0.451 
4.91 5.06 0.170 4.33 4.50 0.181 
4,52 4.79 0.098 3.34 3.65 0.085 
4.89 5.17 0.1d2 3.94 4.24 0.179 , 6

.41 7.24 0,849 5.32 6.03 0.786 
4.57 4.64 0.052 3.69 3,77' 0.091 
4,71 5.06 0.271 4.01 4.35 0.233 
5,28 6.39 _0.718 .4.28 5.34 0.704 
6.26' 6.56 0.002 4.73 5.05 0.010 
7.73 7.79 0.002 6.33 6.37 0.001 
8,51 9.22 0.779 6.91 7.54 0.739

----iF of radical----- IP of cation, 
 K = 1.1Exptle K = 1.1

r' orbital is LV orbital in every case. m and a= denote the 
highest and the next highest a-type orbitals, respectively. "The HO 
orbital is doubly. degenerate.

Table V. Some Orbitals of Ethyl Cation Calculated 
with K = 1.1

(A) HO orbital of ethyl cation• 
-0.294r'c, -{- 0.562a'c, - 0,236(h, - h4) - 0.395(h, - ha) 

(13) LV orbital of ethyl cation" 
0.992rc, - 0.174ac, + 0.119(h, + h,) _ 0.239h, 

(C) Highest r-type orbital of ethyl cation" 
0.200rci -b 0.573rc, - 0.226(h, + ha) + 0.452ho

CH, 

n-CaH, 
I-C"H1 
t.C4Hs 
t.Cale

9.661 (9.643)' 
8.696(8.712) 
8.377 
7.410 (7.436) 
8.155 
5.885

9.95 
8,78 
8.69 
7.90 
8.35 
7.42

21.168 
19.899 
18.826 
19.423 
18.523 
19:513

A. Streitwieser, Jr., Progr. Plrys. Org. Chem, 1, I (1963).. 'The values in parentheses are calculated by eq 11. 

are shown in parentheses. It is seen that the IP values. 
calculated by both methods are very close and agree 
fairly well with experiments, and, hence, the validity of 
the LV orbital energies in SCF procedure may be as-
sured. 
 Further, the calculated IP values of the alkyl cations 
are summarized in Table III. The IP's of alkyl cations 
seem not to have been observed and these values should 
be checked by experiment. 

 The Electronic Transitions. Some calculated transi-
tion energies and transition moments of various alkyl, 
cations are shown in Table IV. It is seen from the 
table that the lowest transitions of alkyl cations are 
excitations of the o -^ a" type and their intensity will be 
rather small. 

(12) N. S. Hush and J. A. Popte, Trans. Faraday Sae., 51. 901 (1955). 
03) In these calculations, the geometries of'cations and anions are 

assumed to be the satne.

a r and ar' denote the pr AO in and out of the molecular plane, 
respectively, and the numbering of the constituent atoms are 
shown in Table VII. "The geometry chosen for ethyl cation 
causes additional terms due to hyperconjugation, and these are: 
-0.002scr. -° 0.003aea -f- 0.001ac, 4- 0.001(h, + h4). • The ad-
ditional terms due to hyperconjugation are: 0.002sc, + 0.003ac -
0.002sc, ̀l- 0.001ao, - 0.001(h, -l- h4). 

 These circumstances may be understood by referring to 
the natures of HO and LV orbitals of alkyl cations. As 
an example, the HO and LV orbitals of ethyl cation are 
listed in Table V. As will be seen in this example, the 
HO orbitals of alkyl cations are the tr-type orbitals 
consisting of AO's lying in the molecular plane, and, on 
the other hands, the LV orbitals of alkyl cations are the 
sr-type orbitals which are almost localized on the cat-
ionic carbon atom. 

 Referring to Table IV, the strong transitions in alkyl 
cations which are expected to be found in the rather 
short wavelength region may be due to the excitation of 
a electron from the highest sr-type orbitals to the . LV 
orbitals. The highest rr-type orbitals of mono-, di-, and. 
trimethylcarbonium ions are constructed chiefly by the 
pseudo-stand -pr AO's of the hyperconjugative methyl 
groups, as is shown by the example of ethyl cation in 
Table V. 

 Measurements of electronic spectra of alkyl cations 
have been made by several investigators but decisive 
assignments of the observed spectra to alkyl cations 
seem not to have been completed." However, the 

 (14) The ultraviolet absorption of alkyl cations was observed by.1. 
Rosenbaum and M. C. R. Symons (Mot. PIus., 3.205 (1960)) in concen-
trated sulfuric acid and they reported that isopropyl and t-butyl cations 
have the absorption maxima at 296 and 293 ma (em,,,, 6.4 X 10'), respec-
tively. (The intensity of absorption was later corrected to be <2000; see 
ref lb.) But Denali, held a different view and suggested that they are 
entirely due to a mixture of' cyclopentenyl and eycloherenyl cations.
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 present calculations may suggest that the observed 
spectra of isopropyl cation at 296 mµ (4.19 eV) and of 
t-butyl cations at 293 mp (4.25 eV) are assigned to the 
tr -* ir* transition. 

 As shown in the previous paper,4 the LV orbital 
energy depends comparatively on the Wolfsberg-
Helmholtz parameter, K, and the greater the value of K, 
the higher the LV energy. Therefore, the calculated 
transition energy for K = 1.1 is larger than those for 
K = 1.08. t6But the calculated transition moment is 
little influenced by this parameter, as is seen in Table IV. 

 Alkyl Cations. The total electronic energies, nuclear 
repulsion energies, and total energies calculated for 
alkyl cations are summarized in Table VI. It is seen in 
thetable that the structural isomerizations of alkyl 
cations cause only small changes in total energies, in 
spite of the rather large•changes in total electronic 
energies and nuclear repulsion energies.

Table VI. Total Electronic Energies (E), Nuclear Repulsion 
Energies (NRE), and Total Energies (W) of Alkyl Cations

Table VII. Atom Bond Populations of Alkyl Cations 
Calculated with K a 1.1

Alkyl cation
~---- Population 

 Atom Bond

W, 
Kg 1.1

Methyl 
  (i) the spt form 

  (ii) the spa form 

Ethyl 

11 sn' 

if

n-Propyl 

1- 
            H.

 Cation
E, 

K-. 1.1 NRE

CHa+. 
CH.+ r 
C,H,+ 
n-CaH7+ 
1-C,H,+ 
t-C,H,+ 
t-C,H,+

- 287,79 
-288.03 
-802,84 

-1493 .10 
-1482 .95 
-2352.73 
-2328.43

 128.67 
129.54 
475.38 
986.80 
976.58 

1657,08 
1632.48

-159.11 
-158.50 
-327.46 
-506.29 
- 506 .37 
-695.65 
-695.95

• Trigonal configuration
. s Tetrahedral configuration.

  Further, it may be noted that the experimentally ob-
served order of stability between isomers (i-C0F17+ and 
t-C41.19+ are more stable than n-C3117+ and i-C4Hs+, 
respectively) should reflect those of the nuclear repul-
sion energy. Since the resultant isomerization energies 
seem rather small compared with experiment, a further 
improvement in the present treatment seems necessary.   T

he calculated populations of some alkyl cations and. fo
r comparison, those of methane and staggered ethane 

are presented in Table VII. It is seen in Table VII that 
the charge of the cationic carbon distributes chiefly on 
the hydrogens of the adjacent methyl or methylene 
groups, and even to those of the terminal methyl group 
of the n-propyl cation. The average net charges of the 
hydrogen atom in methyl groups of isopropyl and 
t-butyl cations are +0.153 and +0.146 for K = 1.1 and 
these parallel the observed" chemical shifts of -5 .06 and -4 .35 ppm from tetramethylsilane, respectively. The 
population of the C-H bond lying in the plane perpen-
dicular to the molecular plane is the smallest in every 
case, and it is expected that next fission of a hydrogen 
may occur at this bond. It is to be noted that the bonds 
between a-carbon and fl-carbon are generally the weakest 
ones in the molecule, and that the bond population be-
tween the cationic carbon and a-carbon is exceptionally 
Olah, et al. 10 also observed a single weak absorption maximum around 290 mp with a low extinction coefficient in antimony pcntafluoride solu• lion of some alkyl fluorides, and they assigned it to v -, s• transition, But Olah and Pittman corrected their conclusion in their recent review", and stated that this absorption is not due to alkyl cation but to im-purity ions. 

 (13) Prom the calculations carried out for neutral molecules, the transition energies calculated by K . 1.1 may be recommended for the small molecules and those calculated by K - 1.08 for the large mole-cules, such as isobutyl and t-butyi cations (see ref 4).

Isopropyl 

       He", 

H,--c H 

Isobutyl 

   11~,cat4 

t-Butyl 

    Hv ~1+a 

Methane

Stag. ethane

H 
C. 
H 

1 
2 
3 
5 
7 

1 
2 
3 
4. 
S 
6, 7•
8, 9, 10•

2 
4 
3 
6 

7 

1 
2 
3 
5 
7
8, 9, 10•

1 
2 
5 
7• 

C 
H 

C 
H

 +0.261 
 +0.246 
 +0.231 
 +0.256 

+0.339 
-0,198 
+0.180 
+0.154 
+0.192 

+0.372 
-0.142 
-0 .212 
+0.152 
+0.153 
+0.175 
+0.108 

+0.362 
-0.209 
+0.133 
+0.137 
+0.180 
+0.143 

+0.379 
-0.064 
-0.206 
+0.136 
+0.172 
+0.108 

+0.382 
-0.231 
+0.134 
+0.170 
--0.167 
+0.042 
-0 .113 
+0.064

C-H 

C-H

1-2 

1-3 
2-5 
2-7

1-2 
2-3 
 1-4 
1-5.. 
2-6 
3-10 

1-2 
• 1-4 

2-5 
2-6 
27

0.724.; 

0.714 

0.809 
0.802 
0.790 
0.740 

0.897' 
,0.714 
0:822 
0.812 
0.769 
0.813;

0.866 
0.840 
0.795 
0.790 
0.746

1-2 .0.944 
2-3 0.717 
1-5 0.823 
2-7 0.780 
3-8 0.816

1-2 0.891 
2-5 0.794 
2-7 0.749

C-H 0.788

C-C 0.681 
C-H 0.823

• Average value.

large, compared with that of the ethane C-C bond. 
These parallel the experimentally observed to bond-
stretching frequencies of C-C and C-H bonds of the 
simple alkyl cations. In these; the small bond popula-
tions between the a- and 1-carbons of n-propyl and 
isobutyl cations interpret the well-known ft-fission rule. to 

  The change in charge at the cationic carbons with in-
creasing number of methyl groups attached is of special 
interest. They are +0.261, +0.345, +0.362, and 
+0.382 for methyl, ethyl, isopropyl, and t-butyl cations, 
respectively.17 More detailed analyses of these values 
are shown in Table VIII,1e which also includes those of 
the populations on a-carbons. It is seen in Table VII! 
that the ar population at the cationic carbon increases 
with increasing number of methyl groups linked to it. 
This is the same trend as that obtained by Muller and 

 (16) Poe example, see B. S. Grcensfelder in 1°The Chemistry of 
Petroleum Hydrocarbons,' Vol. 4, B. T. Brook, et at., Bd., Reinhold 
Publishing Corp., New York, N. Y., 1954, Chapter .27. 

 (17) The corresponding values calculated by Hoffmann were +0.609. 
+0,571, +0.611, and +0.692, respectively, and their changes were not 
monotonous (see ref 3). 

 (18) We gave preliminary results on the electronic structure of cycle-
propylmethyl cations calculated by the method which does not include 
one-center exchange terms in eq 5 and 6. Therefore, the values pre- 
tented here differ a little from those in our earlier paper: T. Yonezawa, 
11, Nakatsuji, and H. Kato, Bell. Chem. See.lap., 39, 2788 (1966).



 Table y111.. AO Populations at Cationic Carbons and a-Carbons

Cation

Cationic carbon, 
K = 1.1 ' a-Carbon, K = 1.1 

oa 7T o-i-7r on. ar a

3.7

Ciia+ 
C2H6+ 
n•C,ki7+ 
i-CsH7+ 
i=C,H9+ 
PC+Ha+ 
Stag. C2H6

3.739 0.0 3.739 
3.512 0.150 3.661 
3.4I2 0.216 3.628 
3.342 0.296. 3.638 
3.359 0.262 3.621 
3.225 0.393 3.618

3.152 1.046 4.198 
3.098 1.044 4.142 

3.143 1,066 4.209 
3.060 1.004 4.064 

3.140 1.093 4,232 
3.153 1.039 4.192

if-AO's in this table are the sums of s, po, and pir' AO's of the 
referring carbon atom.

Mulliken,ts so that these delocalization of a electrons 
 may be attributed to the hyperconjugative effect of the 

 methyl group. On the other hand, o electrons behave 
 conversely compared with ir electrons, namely, the a 

populationnat the cationic carbon decreases with increas- i
ng number of methyl grouh: attached to it. This be-

 havior of Q electrons is reasonable, since an ine rease of 7r-
 population due to hyperconjugation wi'& cause a &- 

crease of Q population owing mainly to the one-center 
 electron repulsion terms in eq 2. 

  The behavior of the AO populations at cationic carbon 
 with increasing number of methyl groups attached is 

 illustrated in Figure 1, which shows that, in spite of 
 large changes in o and ,r nopulations, the change of total 

 population is surprising'.y small. The trend of total r-nulation reflects that of the o population, but is the 
a.verse of that of the ir population. Hence it may be 

 stressed that the usual approximation of o-7r separation 
 is inadequate in alkyl cations. 

  Further, Table VIII may indicate that the o popula-
 tion of the "trigonal" carbon atom is larger than that of 

 the adjacent spa carbon atom. This would be the con-
 sequence of larger electronegativity of an sp2 carbon than 
 an spa carbon.20 However, interestingly, the AO 
 population of the a-carbon in an alkyl cation suffers 

 little change from those of the spa carbon in ethane 
(Table VIII), so that the comparatively large a popula-
tion of the sp2 carbon is due chiefly to the supply from 
hydrogens in the molecule. The o and 7r populations 
at the cationic carbon of the n-propyl cation are be-
tween those of ethyl and isopropyl cations, and those of 
the isobutyl cation are between those of n-propyl and 
isopropyl cations. These facts may suggest the order 9f 
the electronic effect of alkyl substituents on the cationic-
carbon atom. 

  The ir AO bond populations between cationic carbon 
and a-carbon calculated with K = 1.1 are 0.094, 0.090, 
and 0.081 for C2115+, i-C3H7+, and t-C419+, respectively, 
which shows that the n-bond population decreases w:*bj 
increasing number of methyl groups t:nked to the 
cationic carbon. Further, those of n-CaH7+ and 1-
C4H9+ are calculated with K = 1.1 to be 0.120 and 
0.133, respectively. 

  Protonated Hydrocarbons. Proton Affinities and 
Heat of Reactions in Some Ionic Reactions. A proton-
ated hydrocarbon is a proton adduct of a hydrocarbon, 
and the energy which is released in this process is the 
proto- n affinity of a hydrocarbon. The calculated total 
energies of protonated hydrocarbons are listed in 

  (19) N. Muller and R. S. Multiken, J. Amer. Chem. Soc., 80, 3489 (195$). 
  (20) W. Moffitt, Proc. Roy. Soc. (London), A202, 534, 538 (1950).
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Figure 1. Changes of AO populations at the cationic carbon with 
increasing number of methyl groups attached.

Table IX, which also includes those of the parent hydro-
carbons. Calculated proton affinities of CH4, C2H4, , 
and C2H2 are shown in Table X, together with the cal-
culated energy changes for the reactions 

CHa+ --3 CHa+ + 2H 

                  CH4 --3- CHa+ -}- H 

and 

C,H, C2H5+ -i- H

Table IX. Calculated Total Energies of Protonated 
Hydrocarbons and Their Parent Hydrocarbons

Species K = 1.1 Species K = 1.1

CH5+ 
C2H5+ 
    A form 

    A' form 

   ~~++~B form    C2H3+ 

    A form 
B' form

—192 . 07 

— 327 .48 
—328.00 
—326 .86

—290.68 
—291.19

CHa 

C2H, 
C,H4 
C,H4

—186 .15 
—285 .53 
—320.31 
—356.79

Table X. Calculated Energy Changes for Some Reactions

Reaction Exptl
Calcd, 

K = 1.1

CH4 CH2++H±e 

CH5+-- - CH3+ + 2H 
CHa+ CH4 -F H+ 
C,Ha+ —* C2H2 -I- H+ 
C,HS+ --i- C2H4 -i- H+ 
C2H5 C21-15+ -i- H -i- e

14.39, 
5.7' 
 4.95 5.586 
5.93' 
6.6d 

12.96

13.44 
5.76 
5.92 
5.67 
7.68 

15.19

*Reference 21. 6 Reference 25. ' Estimated value from iHt-
(C2Ha+) = 283 kcal/moI.00 d Reference 16. • 1. L. Franklin and 
H. E. Lumpkin, J. Chem. Phys., 20, 745 (1952).

In calculating the values shown in Table X, we used the 
total energy of the most stable conformation expected for
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the referring cation, which will be discussed below. 
The  agreement with experiment seems satisfactory, and 
the more detailed discussions about Table X will be 
seen in the corresponding sections which follow. 

  Protonated Methane and Its Negative Isomer. The 
assumed geometry of protonated methane is a trigonal 
bipyramid with a carbon-hydrogen bond of 1.05 
A.21 - This model may be considered as an adduct of 
two hydrogen atoms on both ends of the vacant it AO 
of the methyl cation. The calculated atom bond pop-
ulations are shown in Table XI, which indicates that 
the three hydrogens (Ha's) of the parent methyl group 
are bound more tightly than the other two hydrogens 
(lib's). Interestingly, the charge of the central carbon 
is more negative than that of methane, and the net 
charge of this cation is completely distributeu to 1.,,/,-..-o- 
gens in molecule. 

Table XI. Atom Bond Populations of Protonated Hydrocarbons 
Calculated:with K = 1.1

Table XII. AO and AO-Bond Populations in CH4
, C21-I4, C2Hs, C11

6+, and CH5- °

Species sc-h

C-H 
       bond H atom 

popula- popula- (pcc-h)/ 
poc h tion tion (sc-h)

CH4 
C2H4 
C2H2 

H;, 
Hb 

CH5-
 H, 

Hb

0.207 
0.285 
0.376 

0.164 
0.186 

0.272 
0.049

0.581 
0.542 
0.418 

0.538 
0.427 

0.533 
0.417

0.788 
0.827 

0.794 

0.702 
0.613 

0.805 

0.466

0.958 
0.922 
0.865 

0.769 
0.672 

1.175 
1.405

2.81 

1.90 
1.11 

3.28 
2.29 

1.96 
8.51

Population ------. 
Protonated hydrocarbon MomBond

Protonated methane 

K.~I 
fl 

Protonated ethylene 
 (1) the A fornv' 

H, 

 (ii) the A' formb

  (iii) the B form° 

;s
,         C

x"~ C,. 

Protonated acetylene

 (1) the A form 

           .H; 
H-C,N•••^C,-1{, 

 (ii) the B form 
H 

H, 

Ethylene 

Acetylene

1 
a 
b 

1 
3 
7

3 
7 
1 
3 
7

1 
3 

5 

1 
2 
3 
4 

C 

C 
H

-0 .348 

+0.231 
+0.328 

+0.060 
+0.162 
+0.233

+0.028 
+0.168 
+0.274 
+0.034 
+0.170 
+0.252

+0.120 
+0.238 
+0.285 

+0.248 
+0.062 
+0.268 
+0.211 

-0 .155 
+0.078 

-0 .135 

+0.135

1-a 
1-b

1-2 
1-3 
1-7

1-2 
1-3 
1-7 
1-2 
1-3 
1-7

1-2 
1-3 
1-5 

1-2 
1-3 
2-4 

C-C 
C-H 

C-C 

C-H

0.702 
0.613

0.885 
0.823 
0.313

0.801 
0.817 
0.423 
0.862 
0.815 
0.310

1.478 
0.775 
0.278' 

1.288 
0.743 
0.752 

1.225--
0.827 " 

1.828 
0.794

° The distance between H, and the center of the C-C bond is 1.2 A. b The distance between H7 and the center of the C-C bond is 0.8 A. 

  The nature of the carbon-hydrogen bond in pro -t
onated methane is of special interest , and we sum-m
arized the calculated AO and AO-bond population

s of CH
6+ in Table XII, which also includes those of 

methane, ethylene, and acetylene . The value of the 
ratio of the AO-bond populations

, (poc-h)/(sc-h), in Tabl
e XII, which may be considered to represent the 

hybridized state of the referring carbon atom
, under-goes a great change from meth

ane to ethylene , and from 
 (21) (a) J. R. Hoyland and F. W. Lampe, J. Chem. Phvs., 37, 1066 (1962): (b) I. Higuchi, (bid., 31, 563 (1959).

° The values in this table are calculated with K = 4.1. 

  ethylene to acetylene. These values of the C-Ha and C-Hb bonds in CH6+ are remarkably different from 
  each other, although the assumed bond lengths are 
  1.05 A for both bonds, and it may be concluded that 

 the s character of C-Hb bond is greater than that of the 
C-Ha bond. 

   The LV orbital of CH6- calculated with K = 1.1 is42 
ic,LVemo = 0.100Sc -f- 0.552(hal -F- ha2 + ha3) --

                             0.889(hb1 -!- hb2) 
 This is bonding between se and ha AO's but antibonding 

 between sc and hb AO's. The orbital energy calculated 
 with K = 1.1 is -1.429 eV and is extraordinarily higher 

 than the LV orbital energies of usual alkyl cations and 
 protonated hydrocarbons (-6 r., -10 eV; see also 
 Table III). Also the electron affinity of CH6+ may be 
 expected to be very small,23 and will be the order of 
 magnitude of those in neutral molecules.2" We ex-

 amined further the occupied orbitals of CH6+ and found 
 that all the occupied orbitals are bonding between the 

C-Hb bond. 
  The proton affinity of methane was observed 26 to be in 

 the range 4.95-5.58 eV, and the present calculation gave. 5.92 eV by K = 1.1 and 4.68 eV by K = 1.08 as shown  i
n Table X. 

  We also calculated the electronic structure of CH
,, which may be assumed to be a model compound re-

sembling the transition state of the SN2 reaction. The calculated AO and AO-bond populations and the ratio, (poc-h)/(sc-h), are also summarized in Table XI1. It may be noted that the difference between the bond 
populations of the C-Ha and C-Hb bonds increases re-
markably from CH6+ to CI b-. This means that the C-Hb bond becomes much weaker than the C-I-Ia bond 
in CI-15`. Further, the sc-h bond population is nearly zero in CHb , indicating that the C-Hb bond in CH

s is formed by almost pure p AO of the central 
carbon atom. Thus, the Hb- -Hb bond of CH6- may 
properly be called a three-center bond. The ratio, (P 

c-h)/(sc-h), of the C-Ha bond in CHs approaches to the value of ethylene. 
 (22) The appropriateness of this LV orbital may be 'checked by the HO orbital of CH,- (see below).  (23) The electron affinity of CHc+ calculated by cq 11 is 1.446 eV and agrees fairly well with the estimated value (1.429 eV) from the LV orbital energy of CHo+.  (24) For example, the observed electron affinity of methyl radical is 1.1 eV. See also H. 0. Pritchard, Chem. Rea., 52, 529 (1953), and N. S. Hush and I. A. Pople, Trans. Faraday Soc., 51, 600 (1955).  (25) V. L. Tal'rose and E. L. Frankeritch,1. Amer. Chem. Soc., 80, 2344 (1958).
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   The HO orbital of  CH5 which corresponds to the 
LV orbital of CH5+ is 

  ~HOCn~=0.059sC+ 0.560(hd1+114-i-h, ;) -
                             0.884(h61 -l- hn2) 

 and its energy is +6.367 eV, which is very large and 
 is extraordinarily higher than that of the usual anions, 

 since the 1-10 orbital energy of an anion may be set ap-
 nroximutely equal to the electron affinity of the corre- s

ponding radical.24 Further, because of the instability 
or the HO orbital of CH5- the total energy of CHa 
( 87.148 eV) is larger than that of CH5+ (-192.069), 

 and this is also exceptional, referring . , those of alkyl 
 cations and anions. 

   Protonated Ethylene. Protonated ethylene is an 
 isomer of ethyl cation and is sometimes postulated to 
 represent the true configuration of C2H5+.26 In order 

 to study the stable coil figuration, we calculated the total 
 energies of protonated ethylenes with some configura-

 tions which are shown in Table XI. in the A form in 
 Table XI, the proton adds symmetrically to planar ethyl-

 ene. In the B for'n, the terminal carbon-hydrogen 
 bonds are bent in the tetrahedral angle; in both cases, 

 the C-C bond lengths are assumed to be 1.44 A. As a 
 first step, the distance from the adding proton to the 

 center of the C= C bond is assumed to be 1.2 A3 and the 
 results with K = 1.1 and K = 1.08 predict that the A 
 form will be more stable than the B form by 0.61 and 

 0.52 eV, respectively. When this length in the A form 
 is varied, the total energy minimum is obtained about 

 0.8 A (the A' form in Table XI) by K = 1.1. But this 
 value may be rather small, and may not rcprcaent the 
 real configuration of protonated ethylene, since the 
 approximation introduced in eq 9 may underestimate 

 the nuclear repulsion energy when the interatomic dis-
 tance becomes small. 

   Comparing the total energy of the A' form with that of 
 ethyl cation of the geometry shown in Table VII, the 

 present calculation may suggest that the stable con-
 figuration of C2H6+ will be protonated ethylene type of 

 the A' form. 
   The atom bond populations of the A, A', and B forms 

 are illustrated in Table XI. The charge of the adding 
 proton is well distrib .ted, and the bond population Oe-

 tween this proton and c,arbor' atom i., relatively large. 
 The it-AO population of the carbon atom is 0.79a in 

 the A' form and is remarkably small, compared with tlfe, 
 value 1.00 for ethylene. Further, the C-C bond popula-

 tion of ethylene calculated by K = 1.1 is 1.225. This 
 bond in protonated ''ylene is considerably weakened 

 by prntonation. 
   The proton affin y of ethylene and the heat of forma-

 tion of C2H5+ from ethane, which are shown in Table X, 
 are calculated based on the A' form which is expected 

 to be the most stablc form of C2H5+. The appearance 
 potentials of CI-13+ from CH4 and of C2h5+ from C2H6 

 were observed to be 14.39 and 12.9 eV, respectively, and 
 the stabilization energy27 of C2H5+ relative to CHa+ was 
   (26) L. G. Connell and R. W. Taft, Jr., J. Amer. Chem. Soc., 78, 5812  (

1956). 
   (27) See Table X, footnote e.

expected to be 1.5 eV. But we failed in calculating 
the stabilization energy of C2Hr,+, and this is due to the 
overestimation of off-diagonal core Hamiltonian 
matrix elements (firs in eq 2) by the weight K.4.28 

  Protonated Acetylene. Protonated acety;enes of two 
configurations, symmetrical and unsymmetrical, il-
lustrated in Table XI are considered. In the A form, 
the distance between the adding proton and the center 
of the C-C bond of acetylene is assumed to be 1.20 A, 
in the B form, one of the terminal carbons is assumed to 
be in the sp2 state, and C-C bond lengths of both forms 
are assumed to be 1.27 A. As shown in Table IX, the B 
form ...licit may be regarded as the product of the de-
hydride reaction of ethylene is expected to be more stable 
than the A form by 0.514 eV, and this is the same trend 
as reported by Hoffmann.' However, both methods 
involve some approximations, and further investigations 
would be necessary to draw a final conclusion. 

 The atom bond populations of protonated acetylene 
are shown in Table XI, which shows also that the net 
charge of the adding proton distributes in the molecule. 
Further, the atom population of the sp carbon in the B 
form is remarkably small and this is due to the small 
value (0.115 by K = 1.1) of the 7r'-AO population of 
this carbon atom. 

 The IN and next LV orbitals of the B form areYB 

LV 

0.9957'e1 - 0.1147r'C2 -- 0.248(h4 - hs) 

Next LV 

0.7427ra, - 0.902irC2 

and their orbital energies are -8.58 and -7.05 eV,30 
respectively. These results may suggest that the pro-
tonated aceylene of the B form has two stable unoccupied 
orbitals, one of which lies in the molecular plane and 
the other lies in the plane perpendicular to the molecular 
plane. 
 The proton affinity of acetylene estimated from the 

observed10 heat of formation of C2H3+ is 5.93 eV and is 
less than the observed value for ethylene. The cal-
culated proton affinity of acetylene, based on the B 
form. is 5.67 eV and i5 ,'.ca less than the calculated 
value of ethylene, as shown in Table X. The agree-
ment of the calculated value with the estimated values is 
excellent. 

Acknowledgment. The calculations were carried 
out on an HITAC 5020 E computer at the computation 
center of the University of Tokyo, whom the authors 
wish to thank. 

 (28) By improving the overestimation of off-diagonal core Hamil-
tonian matrix element, we succeeded in calculating the stabilization 
energy. Namely, the appearance potentials of CH,. from C1.4 and 
of CxRa` from C R, arc calculated by the improved method as 13.43 
and 12.40 eV, rc,pectively. More detas about this improvement will 
be published in the near future. 

 (29) In the LV orbital, the group orbital (h4 - lit) is antibonding 
with vr'ct, and bonding with rr'c+_. 

 (30) The IP of the vinyl radical was observed to be 9.45 eV: A. G. 
Harrison and F. P. Lossing, J. Amer. Chem. Soc.; 82. 519 (l960). isut 
the observed configuration of vinyl radical is different from that of the 
B form in the present calculation: R. W. Fesscnden and R. H. Schuler, 
J. Chem. Phys., 39, 2147 (1963).
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The  z-Type Conjugation in the Cyclopropylmethyl Cation

Tl:e high conjugative ability of the cyclopropyl 
Y-roup with an adjacent ar orbital has been estab-
lished experimentallyl) and theoretically.2-4) For 
the cyclopropyl derivatives, Walsh predicted that 
this conjugation would be most effective when 
these compounds were in a "bisected" conforma-
tion (I in Fig. 1). Recently his prediction has 
been confirmed by Pittman and Olah through their 
NMR measurements .') 

  In the present paper, we will treat quantitatively 
the electronic structures of the two conformers , "bisected" (I) and "non-bisected" (II) (see Fig. 
1), of the cyclopropylmethyI cation with our newly-

developed semi-empirical ASMO-SCF method .5) 
The geometry chosen for the cyclopropyl group is 
the same as that in cyclopropane, while the C1-05 
bond distance (in Fig. 1) is assumed to be 1.50 A. 

t74

3

3

III 

  Fig. 1. The configurations a " bisected 
" non -bisected 

    the atoms Ho C/ and the terminal C 
    are on the same plane, and in the II 

C1-H4 bona is perpendicuiar to the 
    the terminal 

  TABLE I. Ti, 
IN CYCLOPROPYL GROUP 

 CompoundC1-C2 F 

Bisected (I)0.585 0 
Non-bisected (II) 0.650 0 

Cyclopropane0.651 0.367 

  1) C. U. Pittman, Jr., and 
Cheat. Soc., *7, 5123 (1965). 

  2) A. D. Walsh, Trans. Faraday 
  3) C. A. Coulson and W. E. Moffitt , 40. 1, (1949). 

  4) R. Hoffmann, J. Chem. 
Tetrahedron Letters, 43, 3819 (19 

  5) T. ""onezawa, K. Yamaguchi 
This Bulletin, to be published; Abstract of / 
si,om on Molecular Structure, Osaka (1966; 

• In Ref . 1 it is stated that 
between these two conformers might be 
8 - 10 kcal.(nmol.

bisected "(I)and 
ed " (II) conformers. In to I form, 

               C/ and the terminal Hz group 
            same plane, and in the II form the 

              is perpendicuiar to the plane of 

                 AT034 AND AO BOND POPULATION'S

1+ Poch 

7 0.523 
i 0.464 
1 0.539 

3h, J. Am. 

179 (1949). 
                         E. Moffitt, Phil. Mag., 

840 (1964); 

taguchi and H. Kato ,                       Abstract of the Sympo-
                                   1, p. 49. 

t the energy difference 
s might be larger than
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   The calculated total energies show that the I 
 form is more stable than the II form by 0.813 eV. 

 The it atomic orbital (AO) population of the C5 
 atom is 0;443 in I and 0.280 in II. As to the 

 atom bond population between the C1 and C5 
 atoms, the values are 1.015 in I and 0.924 in II, 
 while the ar AO bond poptlations are 0.203 in I 

 and 0.113 in II; other .z AO bond values ob-
 tained by the same method include 0.425 in ethyl-

ene, 0.114 in the ethyl cation, and —0.022 in 
ethane. Accordingly, it may be concluded that 
the at-conjugation in the I form is quite strong 
and that it contributes greatly to the stabilization 
of the I form. 

  The atom bond populations of C1-C2 and C1-H4 
are collected in Table I, together with the cor-
responding values in cyclopropane. The table 
implies that the values of C,-C2 in the II form and 
of C,-H4 in the I form do not suffer much change, 
compared with the values in the cyclopropane, 
while remarkable changes do occur in Cr-C2 
in I and in C1--H4 in II. Further, in Table I, the 
sum of the AO bond populations between the three 
p AO's belonging to the C1 and C2 atoms, denoted 
by pi-p2 in Table I, and the value between the 
pa AO of the C1 atom and the Is AO of the H4 
atom (p,,-h) are also indicated. Hence, the 
following conclusion may be drawn; the large 
changes in the atom bond population of C1-C2 in 
I and of Cl-H4 in II are mainly caused by the 
changes in Pl-P2 in I and in p,1-h in II. As 
may be seen in Fig. 1, the p AO of the C1 
atom conjugating with the vacant at AO of the 
C5 atom also participates in the C-C bonding in 
the I form and in the C-H bonding in the II form. 
Accordingly, the above-mentioned changes are 
largely due to the interactions between the p AO 
of the C1 atom and the vacant r AO. 

  From the above discussions, it is clear that the 
stabilization in the I form arises mainly from 
it-type interaction between the vacant ar AO of 
the sp2 carbon and the a-like AO's in the ring 
carbons. 
 The transition energies for the first excitation 

may be evaluated as 6.60 eV. and 5.04 eV., and 
the oscillator strengths as 0.054 and 0.015, for I 
and II respectively. These transitions may be 
attributed to the intramolecular charge transfer 
from the cyclopropane ring to the vacant r AO 
of the sp2 carbon.
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Semi-empirical  Unrestricted SCF-MO Treatment for Valence Electron Systems. I

Semi- empirical Unrestricted SCF-MO 

   Systems. I. Application to

Treatment for Valence 

Small Doublet Radicals

Electron

 Recently semi-empirical SCF methods for valence 

electron systems have been generally applied to

   A semi-empirical SCF method for valence electron systems including a differential overlap 

previously pden..-ed by the present authors is here extended to molecules with an open-shell struc-
ture. The unrestricted Hartree-Fock method is applied, and the one-centre and part of two-
centre o—tr-type exchange repulsion integrals, playic;g an essential role in spin-density calculations, 
are included in the calculations. The calculated spin densities are divided into the mechanistic 

(spin-polarization and spin-delocalization) contributions. The spin-polarization mechanism is 
shown to be important even in case:. where the spin delocalization mechanism has usually been 
considered to be dominant (e. g., ethyl and vinyl radicals). The calculated spin densities of re-
electron radicals (methyl, ethyl, ally', and trans-butadienyl anion radicals) and of ar-electron radicals 
(vinyl, formyl, NO2, CO2—, CN) are discussed. Their hfs constants and mechanistic contributions 
are calculated; for the methyl and vinyl radicals these are shown to be strongly angular-dependent. 
The calculated potential curve and the hfs constants of the vinyl radical lead to the CCHQ angle, 
0^.135'; furthermore, the He and Cg hfs constants are shown to be negative. Generally, the 
calculated proton his constants agree satisfactorily with the experimental data and with other 
calculations except in the case of the formyl radical. The atomic dipoles of some a-electron radi-
cals are calculated, and some interesting features common to all the n-electron radicals gtudied 
are found.

calculations of certain physical and chemical

I) a) J. A. ile, D. P. Santry znd G. A. Segal, 
J. Chem. Phys., 4, Z^29 (1965). '_t) j. A. Pople and 
G. A. Segal, 44, 3289 (196t.). c) J. A. Pople, 
1). L. Beveridge .a.id is.  A. Dobosh, ibid., 47, 2026 (1967). 
•J. A. Pople, D. L. Beveridge and P. A. Dobosh 

j. Ant. Chem. - , 90, 4201 (196b). 
 2) N. M. Atherton and A. Ilinchli?'."e, Mol. Phys., 12, 

349 (1967). 
8) T. Yonezawa, H. Konishi and H. Kato, This 

Bulletin, 41, 1031 (1968) . 
 4) a) T. Yonezawa, K. Yamaguchi and H. Kato, 

•40 , 535 (1967). b) T. Yonezawa, H. Konishi 
and H. Kate, ibid., 40, 1071 (1967). c) H. Kato, H. 
Konishi, H. Yamabe and T. Yonezawa, ibid., 40, 2761 
(1967). d) T. Yonezawa, H. Nakatsuji and H. Kato, 
J. Am. Chem. Soc., 90, 1239 (1968). 

  5) a) T. Yonezawa, H. Nakatsuji, T. Kawamura 
and H. Kato, This Bulletin, 40, 2211 (1967). b) T. 
Yonezawa, H. Nakatsuji T. Kawamura and H. Kato, 
Mal. Phys., 13, 589 (1967).
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properties of molecules. We ha"e prc_innsly 
proposed a semi-empirical SCF method including 
differential overlaps for valence electron syrnetnz 
and applied it to various closed-shell fmketiiLx.'l 
Here, we extend this rne..thea: to saudeenles with an 
open-shell structure. As in the preliminary repor:s,b) 
the unrestricted Hartre a-Foek (UHF) method) is 
applied. S;ace the UHF wave function is not an 
eigenfunctien of the spin-squared operator, Sa, ;le 
lowest contaminating spin furetions are annihilated', 
after energy minimization. 

 The spin density calculated by the UHF method 
originates from two main mechanisms,') the spin-

polarization (SP) and spin-delocal zation (SD) 
mechanisms. In order to clarify the nature of the 
spin-density, these mechanistic contributions are 

  6) J. A. Pople and R. K. Nesbet, J. Cheat. Phys., 22, 
371 (1954). 

  7) a) T. Amos and G. G. Hail, Proc. Roy. Soc. 
(London), A263, 483 (1961). b) A. T. Amos, Mol. 
Phys., 5, 91 (1962). c) T. Amos and L. C. Snyder, 
J. Chem. Phys., 41, 1773 (1964). d) L. C. Snyder and 
T. Amos, ibid., 42, 3670 (1965).



 sepai  and by the method eported previously.b) 
In It-electron radicals, the SP mechanism is 
dominant and is reduced to small er-rr-type election 
repulsion integrals. In the present calculation, 
the one-center and part of two-center a-n-type 
exchange repulsion integrals are included, although 
the latter was neglected previous/y.5) 

  The method is applied mainly to the spin-density 
calculations of rt-clectron radicals, such as the 
methyl, ethyl, allyl, and s-drans-butadienyl anion 
radicals, and of some a-electron radicals , such as 
vinyl, formyl, . NO2, CO2 and CN radicals. The 
mechanistic contributions to the spin density arc 
separated, and some interesting features of spin 
density are revealed. Lastly , the dipole moments 
of the a-electron radicals are analyzed .

                Method 

   An unrestricted wavefunction for a system with 
 p a-spin and q fl-spi.t electrons has the form: 

#uhr = Ift(1)22(i)...'Pn(p)a(p)V'14(p+1)p(p+) ... 

Vq 00(>r)1,(1) 
 where n= p+q. For the doublet radicals considered 
herep=q+ 1. The molecular orbital is expanded as a 

 linear combination of alI the valence atomic orbitals 
 (VAO's), Xe, of the constituent atoms: 

              ePi = EC%X. 
 and: 

           rPi = C11 Xr•(2) 

 The unrestricted SCF equations of the LCAO 
 approximation arc: 

FnC7 e,'SC7 

and: 

FPO = ef'SCis' T(3) 

in the usual notations.') 
Esdmadoss of Integral Valens. One of tht 

main features of the unrestricted SCF theory is 
its inclusion of spin correlation, thus enabling us to 
calculated negative spin densities . In the case of 
,r-electron radicals, the spin densities appearing in 
the o-type AO's are due to the e-rr-type spin -
polarization mechani.-n.*,10) In order to study these 
radicals, the following exchange integrals are con -
sidered in the calculations: 
(a) The cnc-center exchange r 2puluon integrals*s 
are evaluated by the approximate relations:41 

 8) ap T. Yonezawa, H. Nakatsuji, T. Kawamura 
and H. Kato, Cheat. Phys. Letters, 2, 454 (1968). b) T. Y

onezawa, H. Nakatsuji, T. Kawamura and H . Kato, j
. MM. Phys., in press. c) H. Nakatsuji, H. Kato 

and T. Yonr~.~w.,, ibid., in press.
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~p1 _ U.043Z.,tssipp; 
  and: 

(pp'(pp') = 0.011 Z4(ppl pp), (4) 

  where s denotes the 2s AO. 

  (b) A part of the two-center a-rr-type exchange 
  repulsion integrals is approximated by the following 

semi-empirical estimation: 

(inr.k hrtA)'o,,,;—,,i,.;r4.•nl — k'(latxih rr)slni..r 

    ~~.YTr.Y'~1~.r7ryq~)erni-~m,lri~nl `k(~l.C7rsY'Ip[7ttf)Slne••r (5) 

(ltxvx'lPrvr) (l+rv'r'Survr')I V: 

  where h is a hydrogen Is AO, where ,u is a 23, 
2pa or 2prt AO, and where X and 1' denote the 

  first-row elements of the periodic table. The value 
 of the parameter, k, is chosen so that the calculated 

 proton spin densities of the methyl and ethyl 
 radicals obtained before annihilation may reasonably 

  be compared with the experimental results; the 
 value is equal to 0.58 throughout these calcula-

 tions.*s For the 2s AO spin density of the carbon 
  atom, the above two-center ,r-rr-type exchange 

repulsion integrals are ,tot so important as are 
 those for the proton spin density." 

   Note that many other two-center a-tr-type 
 electron repulsion integrals are omitted. However , 

 the parameter k, introduced in Eq. (5), may effec-
 tively include these neglected integrals for the 

 proton-spin density in the C-H bond;" this 
 assumption will, however, break down for hetero-

 polar cases such as for the N-H and 0-H bonds, 

   9) a) H. M. McConnell, J . Chem. Phys., 24, 764 
 (1956). b) H. M. McConnell and D. B. Chesnut, 

 ibid., 27, 984 (1957); 28, 107 (1958). c) H. M. McCon-
 nell, ibid., 28, 1188 (1958). d) S. I. Weissman, ibid., 

 25, 890 (1956). 
  10) M. Karplus and G. K. Fraenkel, J. Chem. Phys., 

35, 1312 (1961). 
*= The inclusion of one-center exchange repulsion 

 integrals destroys the invariance.) of the Mulliken 
approximation, since (pp/p'p') = (pp/pp) — 2(pp'/pp'). Th

erefore, the one-center exchange repulsion integrals 
are included in the method after the Mulliken approxi-
mation for (rs/tu) is completed, and the term 2(pp'lpp') i
s introduced as a correction to (pp/p'p'). Thus, the 
present method is invariant to rotation around local 
atomic axis. 

  *3 The ratios of the adopted one-center exchange 
integrals to the theoretical values calculated from Slater AO'

s are 0.51 for (pp'/pp') and 0.58 for (sp/sp). #4 F
or the methyl radical, the contributions of the one- and the two-center o—r.type exchange repulsion 

int-grals are —0.0787 w,: j ;-0.0512 for the proton-spin d
ensity, and 0.1788 and —0.0301 for the carbon 2s AO 

spin-density (before annihilation). *5 T
he contribution of the a-rr-type ionic integrals i

s zero if the C-H bond is assumed to be homopolar. F
or example, the configuration interaction treatment 

of the methyl radical, using the simple MO's based on th
e hybrid orbitals, showed that the contribution due 

to the two center o-rr-type ionic integrals amounts to 
only 6% of the total proton spin density.
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where the omitted a-lt type ionic integrals may 
 become im tant. 

  The method of estimating all the °her integral 
values is the same as has been pre rously reported .4 'j 

Spin-pc larization and Spin-delocalization 
Contributions. As has been shown in previous 

papers,") the spinrpolarization (SP) contribution to 
the calculated spin density at the i position is given 
by the following equations for doublet radicals: 

{ 3 

(". ,)sr = (pr., —k.~).(6) 

(p{b.)sP is the SP contribution to the spin density, 
Pb*i calculated by the UHF method, and (p'„)s, 
is the SP contribution to the spin density, p'.,, 
obtained after annihilation.*s The spin-delocali-
zation (SD) contributions are the same for both 
stages (ha and aa) and are approximateds) by: 

(F'')sn -- pz—(p`)sp.(7) 

  Estimation of the Isotropic hfs Constants. 
The isotropic proton hfs constant, a, is expressed 
approximately by: all =At/mote) while the values 
for the first-row nuclei of the periodic table are 

given as the sum of the 2s contribution (A,$(N) • 
Now) and of the inner is contribution. st   I

n the present calculations, An is regarded as 
a proportie';ality constant determined by "best 
fitting” the calculated spin densitie' (before an-
nihilation) to the observed hfs :-onstants. An is 
set equal to 743 gauss throughout this paper. The 
2s contribution tc; the his constant of the 13C nucleus 
is calculated by setting A2s(c) =1110 gauss.") 
However, the present method does not give the 

quite important contributions to hfs constants by 

*' Hereafter, the spin densities calculted befor and 
after annihilation will be wyitten as <p)b, and <p>;i; 
rid the charge ~tensties, as <Os, anb <a),,, <p>t has 

fa the same meaning as the punt in the previous paper.s> 
*' For the proton, the hfs constants calculated only 

from (ph)b,,, are compared with the experimental results. 
The reasons for this are as follows: As may be seen 
from Eq. (6), the SP contributions satisfy the relation: 
(Pie.)sr-3(p`.,)so, while the SD contributions satisfy 
(p{n,)sa=(pt,.)so. For example, in the ethyl radical, 
the spin density of the H; atom is due to both mechanisms, 
while that of the H, atom is due only to the SP mech-
anism. (See Fig. 1 and Table 4.) Thus, pt,a I.2p,,, 
for the H, atom and for the H, atom. This 
example shows that, if the a-at-type electron repulsion 
integrals are so adjusted that p,, correlates well with 
the experimental values, then pa, correlates poorly with 
the observed values in the least-mean-square's sense. 
For a comparison of the spin densities calculated by the 
various methods, see the article by Harriman and Sando 
(J. Chem. Phys., 4*, 5138 (1968)). 
11) J. R. Morton, Chem. Rem., 64, 453 (1964). 
12) A. L. H. Chung, J. Chem. Phys.., 46, 3144 (1967).

Trrarnn(snt f^,r A'alrnrr Eli, tr<rr ti, v(rrtIs 1 

inner I, AO's.",' > 1 hr'e contribution, are oplxt,its 

in sign to those of the `'1 AO's . am,iz) 

Application of the Method 

  In this section we will present the results obtained 
by applying the above method to three types of 
adicals: 1) organic n-electron radicals. such as 

methyl, ethyl, ally!, and tranc-butadienyl anion 
adicals; 2) organic a-electron radicals, such as vinyl 

and formyl radicals, and 3) inorganic a-electron 
adicals, such as NO2, CO2-, and CN radicals. The 

geometries and the numberings arc illustrated in 
Fig. 1. In this section we will first show the 

general features common to the three types of 
adicals. Secondly, the characteristic features of 

each type of radical will be compared with the 
xperimental results, and lastly, the dipole moments 

of the a-electron radicals will be analyzed. 
  General Features. The calculated ionization 

potentials and electron affinities are given in 
'able 1, together with the experimental values. 

The calculated ionization potentials are generally 
larger than the observed values. 

  Table 2 gives the expectation values of the 
pin-squared operator, S2, before and after the 
nnihilation of the quartet spin function. The 
nnihilation of the lowest contaiminating spin 
ate yields a sufficiently pure eigenstate of S2. 

If the sextet and higher spin states are neglected, 
the UHF wavefunction for doublet radicals may 
be written as: 

nnr = C,/3( 1/2 + C,/,S''a/z, 

and the relative weight, (C3/2)2/(C,/2)2. may be 
calculated by:') 

         (C,1.)2l(c,12)''4`S2>unt-3(8)•15 — 4<S2)„nr 

In the last column of Table 2, these values are 

given: for various radicals; they are less than 9),04 
for all the cases studied here. 

 That annihilation of the lowest contaminating 
in state weakly influences the total charge den-

 ties'n) is shown in Table 3 for the methyl and 
Os radicals. This fact can be deduced generally.s') 

However, the annihilation causes large changes in 
to spin-density distributions, as will be shown 
elow. 
Organic tt-Electroon Radicals. i) Methyl 

Radical. The geometry, hfs constants, and some 
her properties of the methyl radical have been 
:amined theoreticallyt'r,te,ts,ta) and experimental- 

 13) a) M. Karplus, J. Chem. Phys., 30, 15 (1959). 
   D. M. Schrader and M. Karplus, ibid., 40, 1593 

964). c) D. M. Schrader, ibid., 46, 3895 (1967). 
   K. Morokuma, L. Pedersen and M. Karplus, ibid., 

I, 4801 (1968). e) D. L. Beveridge and K. Miller, 
rol. Phys., 14, 401 (1968).
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 H'  H 
 C-H • 1.075 A

H71011•""-C2 Ci1 

 H5H3 

C-C = 1.50 A 
0(1)-H a 1.079 A, 0(2)-H = 1.09 

He 

-K-Cot 

HtH« 

C+C a 1.34 A. C-H . 1.07 A

/0 

     N 

~o 
N-0 = 1.2 A 

OHO a 134' 

FIE. I. Gnome

~O 

a 
C-O 

LOCO

H4

H

A

C-C 

[ACI

H8

7C3~ 
C2 H7

1.180 A 

'4'

H6 
a 1.40 A, 0-H • 1.08 A 

= £HCC = £0CC = 120' 

Hs 

C3 --H\ 
   - C2 

H6 H7 

C(1)-C(?) a 1.337 A, C-) 
C09-0(3) - 1.483 A

C-0 a 1.198 A, C-H - 1.08 A 

[HCO a 119.5'

C. 

C-N = 1.1718 A

H3 

C4 
 \

H10

. 1.08 A

X

tries (I. E. Sutton Ed., "Tables of Interatomic Distances 
  and Configuration in Molecules and Ions," Chem. Soc. (London), 

  (1956) ar 3 (1965)). 

TABLE 1. IONIZATION FOTENT)AI. (IP) AND ELECTRON AFFINITY (EA) (eV)

Radical
IP 

E)tp>.1. . Calcd

EA

Exptl. Calcd

Wit 

   s CA" 
CsHa 
HCO 
NO, 
Co, 
CN

9.86,•) 
8.67,') 
8.16,1) 

-0.34b) 

9.450) 
9.82,) 

11.3,) 

14. 55,.)

9.95') 
8.78') 
8.755')

9.88') 
9.78') 

15.130

-10 .310 
10.062 
 9.202 

-0.164 

10.223 
 9.854 
11.967 
 1.820 
11.307

1.1,d) 
0.9,0 
2.1,4) 

2.34,0 

3.210

1.4') 
0.940) 
2.210

1.62n)

-0.813 
-0 .690 

 0.050 
-7.728 
-0.665 
 0.200 

 2.18 
-8.041 
 0.445

a) R. W. Kiser, "Tables of Ionization Potentials", United States Atomic Energy Commission, TID-
  6142 (1960). 

b) The value cited is the calculated EA of trans-butadiene: N. S. Hush and J. A. Pople, Trans. 
Fordo Soc., 51, 600 (1955). 

c) F. W. McLafferty, "Mass Spectrometry of Organic Ions," Academic Press Inc., New York (1963), 
  p. 240. 

d) H. 0. Pritchard, Orem. Rms., 52, 529 (1953); H. O. Pritchard and H. A. Skinner, ibid., 55, 745 
(199°). 

e) F. M. Poise, Symp. Combust. 9-th, Pasadena, Calif., 1960. 7, 160. ' f) D
.:. C. Morris, J. IXU . . Ntxi. them., 6, 293 (1958). 

g) J. T. H'rr o #,x1 V. H. Dibeler, J. Am. Qicm. Soc., 82, 1555 (1960). 
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 TABLE 2. 
   AND

Semi-empirical Unrestricted SCF-MO 

TS1E EXPECTATION VAi ES Or .cE 
AiTL' R YNNIIfl ATION OF (HE QUARTET 

       SPIN FUNCTION

Treatment for Valence Electron Systems . 1

Radical

<S2> 
(C34)28)  B

efore After (Cf/s)' annihilation annihilation

-173.2

Methyl 
16.  0.0' 

6.0° 
12.0° 
19.47° 

Ethyl 
Allyl 

(t-Butadiene)-
Vinyl

9=120° 

135° 

  150° 

180° 

Formyl 

NOs 

COS_

0.7544 
0.7542 

0.7537 

0.7529 

0.7564 
0.8584 

0.7828

0.7880 
0:7892 

0.7906 

0.7922 

0.7713 

0.7563 

0.7529 

0.7562

0.7500 

0.7500 
0.7500 

0.7500 

0.7500 

0.7510 

0.7502

0.7502 

0.7503 

0.7504 

0.7506 

0.7502 

0.7500 

0.7500 

0.7500

0.0014 

0.0014 

0.0012 

0.0010 

0.0021 

0.0399 

0.0113

0.0132 

0.0137 

0.0142 

0.0148 

0.0071 

0.0021 

0.0009 

0.0020

  -173 .3 

u

-173 .4

 010 

 11 (degree) 

Fig. 2. Potential curve for out-of-plane 
 the methyl radical.

20

bending of

a) See Eq. (8).

TABLE 3. Tv&AL CHARGE DENSITIES OF THE CH, AND 
     NO, RADICALS CALCULATED BEFO: A *"l 

             AFTER ANNIHILATI

(Hs 

  Atomic 
  orbital Was <Oa*

2s 1.115:4 1.1126 
?ps, 2p. 0.4200 0.4200 
2p, 1.000 1."'900 
h 0.76110.7602

NO, 

Atomic  
 orbitalN4/a^ Ng/46

2s(N) 1.4906 1.4900 
2p:(N) 1.0690 1.0686 
2p1,(N) 0.2588 0.2578 
2p.(N) 0.7605 0.7603 
2s(0) 2.0238 2.0239 
2p:(0) 1.5712 1.5742 
2p,,(0) 1.1459 1.1454 
2p:(0) 1.4142 1.4141

lyt') in great detail. In this paper we examine 
its structure, force constant, and hfs constants. 

 In Fig. 2, the calculated potential curve for the 
out-of-plane bending of the methyl radical is shown. 
The present calculation predicts a planar configura- 

 14) a) T. Cole, H. O. Pritchard, N. R. Davidson 
and H. M. McConnell, Mal. Phys., 1, 406 (1958). 
I) G. Herzberg and J. Shoossnith, Can. J. Phys., 34, 
523. (1956). c) G. Herzberg, Proc. Roy. Soc. (London), 
*262. 291 (1961). d) R. W. F sendcn and R. H. 
Schuler, J. (:han. Phys., 3$, 2147 (1963) . e) R. W. 
Fesnenden, J. Phys. aeon., 71, 74 (1967). f) W. L. S. 
Andrews and (`. C. Pimrntel, J. Chem Phys., 44, 2527 
(19661. g D. E. Nfiltigan and M. E..1 Ix. ibid., 47, 
5146 (1967). 
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tion'*) and gives a force constant of 0.183 mdyn/A, 
which is comparable with the experimental values, 
0.2527 in a solid-argon matrixl"> and 0.177 in a 
nitrogen r1 .ri7L.Ias) 

  Recently, the isotope effects on the hfs constants 
of the methyl radicals have been reported by 
Fessenden;u°) the spin densities on both the proton 
and the carbon nuclei have been seen to increase 
with an increase in the angie 16 of Fig. 1. Here, 
we will examine the angular dependence of the 
spin densities in order to clarify the mechanism of 
these angular dependencies. The results are sum-
marized in Table 4, while those for the carbon 2s 
AO are illustrated in Fig. 3. They predict rea-
sonably well the angular dependences of the spin 
densities on both the hydrogen Is and the carbon 
2s AO's, which is in accordance with the experi-
ments. Note that as the angle increases, the 
(Auto )SD value increases, and that this increase 
exceeds the decreasing tendency of (Pu(c))s,r, VU. 
Fig. 3. For the proton-spin density, the observed 
tendency may be explained by the increasing 
contribution of the SD mechanism with an increase 
in the angle. Note that the SP contribution is 
almost constant over the angular range considered 
and that the SD contribution is very small, even 
in the tetrahedral configuration. 

 In Table 5, these isotope effects of the methyl 
radicals are summarized and compared with the 
experimental values,U') the temperature effects") 
are neglected and the calculated hfs constants are 
averaged over the zero-point vibration, and the 
force constant of the C713 radical obtained by 
Milligan and Jacoxl") is used for all the isotopical-



TABLE 4.  SPIN DENSITIES IN THE METHYL RADICAL

Geometry 
cI

Atomic 
orbital

    Before annihilation 

<P>1% lf')sr (p)so

    After annihilation 

f' '• (P)se (P)so

0'

6"

12°

19.47°b)

2s(C) 
2p:(c), 2p=(C) 
2p,(c) 
h

2s(C) 
2pr(+v..;, •,P.pa(C) 
2ps(C) 
h

2s(C) 
hpp (C), 2p=(C) 

2py(C) 
h

2s(C) 
2p=(c),2p,(C) 
2p„ C) 
h

 0.1487 

 0.0115 

 1.0000 
--0 .0175 

0.1523 

 0.0117 

 0.9909 

-0.0270

0.1622 

 0.0126 

 0.9653 

-0.0258

0.1812 

 0.0145 

 0.9164 
-0.0241

 0.147 

 0.012 

 0.000 

--0.028 

 0.143 

0.012 

 0.001 

-0 .028

 0.132 

 0.013 

 0.003 
-0.028

 0.114 

 0.015 

 0.004 

--0.029 

0.002°" 

0.000 

1.000 

0.000

0.009 

0.000 

0.990 

0.001

0.030 

0.000 

0.962 

0.002

0.067 

0.000 

0.912 

0.005

 0.0510 

 0.0038 

 0.9990 

--0 .0089 

      0.0570 

0.0039 

 0.9897 

--0.0084 

 0.0739 

 0.0042 

 0.9635 
--0.0071 

0.1052 

 0.0049 

 0.9138 

-0 .0050

 0.049 

 0.004 

 0.000 

-0.009

 0.048 

0. 0(14 

 0.000 
-0 .009

 0.044 

 0.004 
0,001 

--0.009 

 0.038 

0.005 

 0.001 

-0 .010

0.002" 

0.000 

0.999 

0.000

0.009 

0.000 

0.990 

0.001

0.030 

0.000 

0.962 

0.002

0.067 

0.000 

0.912 

0.005

a) This value must be zero by symmetry, and the error results from the approximation used to derive 
  Eq. (7) (See Ref. 8). 

b) Tetrahedral angle.

o.

.15

.10

.05

 P2S(C)

 (P2540)

c)

.00 t 
  01020 

¢ (degree) 

Fig. 3. Gcc>>w and its mechanistic contributions 
versus the bending angle ¢ in the methyl radical .  O

nly the curves obtained bofore annihilation are 
given, but the characteristic features are the same 

 in both stages.

1y-substituted methyl radicals. As Table 5 shows, the rate of the change in the calculated hfs constants 
with an increase in the number of the deuterium 
atom is less than that required to explain the 
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observed hfs constants; this has also been noted 
by Morokuma, Pedersen and Karplus."''1 The 
vibrational corrections to the spin density arc 
4 0.0004 (0.29 gauss) and +0.0156 — {- 0.0052 

(17.31--5.77 gauss) for the hydrogen is AO . and 
for the carbon 2s AO respectively. (See also Table 
7.) 

ii) Ethyl, Allyl and Butadienyl Anion Radicals. 
In this section, the spin densities of the ethyl , allyl, 
and s-trans-butadienyl ax.;, _.1 radicals arc discussed. 
The calculated spin densities and their mechanistic 
contributions are summarized in Table 6, . while 
the ,proton hfs constants calculated from (Ps>,,, 
are shown in Table 7. 

Previously,^) the methyl proton hfs constants 
of the ethyl radical have been shown to be due to 
a major SD contribution and a minor SP contribu-
tion. When we assume the a .perimentally observed 
relation") for the methyl proton hfs constant , 
as=Bo+Bicos29, where 8 is the rotational angle 
about the C—C single bond , the values of Bo and B

, may be calculated as --1.49 and 55.28 gauss 
respectively.*s The average a

s value over the 
rotational angle, 0, is 26.15 gauss, which may be 
compared with the observed value ,"') 26.87 gauss. 

15) a) C. Heller and H . M. McConnell, J. Chem. 
Phrs., 32, 1535 (1960). b) A. Horsfield, J. R. Morton 
and D. H. Whiffen, Mol. Plys., 4, 425 (1961). *8 Bo is calculated fmm the results previnwly repnrtrrl 
;R~ f. 8 ,.
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TABLE 5. ISOTOPE EFFECTS FOR THE his CONSTANT (gauss)

Radical ~F^k~ba
     Rs 

Cakd Facptl.b)
Radical

`P2s (c,> 

ba aa

44( °40)0 

Calcd 
r- -~ Expt1.0 

ha aa

"Clf, 
1'C,rr_D 

"CD,

-0.027), 

-(.0271, 

-0.0271, 

-0.0272,

20.15 
20.17 

20.19 

20.22

23.038 

23.10 

23.21 

23.291

"CHs 
"CHID 
"CND, 
"CD,

0.1518, 0.0562, 

0.I515, 0.0558, 

0.15131 0.0554, 

0.1511, 0.0550,

 0.00 

-0.24 

-0.50 

-0.78

 0.00 

-0 .41 

-0 .85 

-1 .33

 0.00 
-0.52 

-1 .28 
-2.36

a) 
b) 
c)

Arise) =a("C) -a("aC in "CH,) 
Ref. He. 
The relation, as=6.514a0, is used.

.TA$$LE 6. SPIN DENSITIES IN THE ETHYL, ALLYL, AND 0411S-EUTADLENYL'ANION RADICALS

Radical
Atomic 
orbital

Before annihilation After annihilation

<P>" (P)sr (P)so <P>.. (P)SP (P)SD

Ethyl

Allyl

Butadiei.; 3 

Anion

2s(C,) 
2p•(C1) 
2s(C,) 
2Ps(C ,) 
ha, h, 
h5, At 
he 

2s(CL) 
22pstC,) 
2s(C,) 
2p,(Cs) 
hu h, 
h,, h, 
he 

2s(C,) 
2ps(C,) 
2s(C,) 
2p,(C,) 
ho ht. 

hs 
h,, hs

 0.1614 

 1.0001 
-0.0123 

-0.0130 

-0.0345 

0.0)65 

0.0 '4

 0.0908 

 0.6840 
-0.0534 

-0.3414 

-0.0188 

-0.0191 

 0.0049

 0.0674 

 0.5022 

0.0)57 

 0.1330 
-0.0132 

-0.0125 

--0.0070 

 0.159 

 0.002 
-0 .012 
-0 .013 
-0.035 

 0.003 

 0.020

 0.099 

 0.173 
-0.054 
- 0 .356 
-0 .019 
-0 .019 

 0.005

 0.067 

0.00i 

 0.016 
-0.094 

-0.013 

-,0 ,013 
-0.007

0.002=0 

0.998 

0.000 

0.000 

0.000 

0.013 

0.052

0.000 

0.511 

0.000 
0.01500

0.000 

0.000 

0.000

0.000 

0.407 

0.000 

0.227 

0.000 

0.000 

0.000

0.0555 

 0.9985 
-0 .0040 
- 0.0042 

-0.0111 

 0.0142 

 0.0593

 0.0335 
 0.5686 

--0 .0175 
      -0 .1043 

-0 .0061 
-0.0462 

0.00i6

 0.0228 

 0.4387 

 0.0053 
0.1957 

-0.0043 
-0 ,0041 
-0 .0023

 0.053 

 0.001 
-0 .004 
-0.004 

-0.011 

 0.001 

 9.007

0.034 

 0.058 
-0 .018 
-0 .119 
-0.006 

-0,006 

0.002

 0.022 
 0.032 
0.005 

-0 .031 
-0.004 
-0 .004 
-0.002

0.0020 

0.998 

0.000 

0.000 

0.000 

0.013 

0.052

0.000 
0.511 

0.000 

0.015•I 

0.000 

0.000 

0.000

0.000 
0.407 
0.000 
0.227 
0.000 
0.000 
0.000

a) See Ref. a) of Table 4.

 The allyl radical has been eattensively studied") 
using the ,r-approximation method. The a-spin 
densities calculated by the UHF method by 
lilerthierals") are 0.812 for 2p,(Ci) and -0.619 for 
2,b,(Cs) AO, and the projected values") arc 0.609 
and --0.185 respectively. The corresponding values 
obtained by the present method are given in Talbe 6. 
The SP contribution to the spin density in the 
2p,(C1) AO is 1s great as 10-2570."9 The spin

16) a) O. Be, dder, J. chins. Ph, • , 52, 141 
b) H. 74. ika.4CanLe11, j. Chmi. Pitts., 22, 244 
c) C. Heller and T. Cole, grid., 37, 243 (19621. 
lazdiln and M. Karplus, ibid., 44, 1600 (1960).

(1955). 
(19581. 
d). D.
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densities on the 2p,(C,) and the h, AO's are calcu-
lated to be negative and positive in sign respectively, 
which is in agreement with earlier theoretical 
works.") 
  The electron-spin resonance study by Fcsscnden 
and Schulcr"'1) of the allyl radical in a liquid me-
dium showed a slight difference in the his con-
stants for the two methylene protons (H, and H, 
in Fig. 1). Obviously, McConntll's rclation,f0) as 

        can not interp: e ̀ this observed difference. 
However, the present valence electron treatment 
yields a small difference in the spin densities on the 
H4 and H5 nuclei. Therefnre, the observed hit 
constants of 13.93 and 14.83 gauss may be assigned



 TABLE  7. ISOTROPIC PROTON /fs CONSIAd"4s

Radical

Methyl (¢=0 )

        hfs Constant (gauss) 
Position 

Ca1cd'> Exptr

Ethyl

Allyl

t-Butadicnyl 

Anion

Vinyl (0-135°)

Formyl

H 
H(CH,) 
H(CH,) 
114, H, 
Hs, H, 
Hs 
H,, HIa 
He, H, 
H?, He 
He 
HL 

Ha 

H

—20.43 

—25 .63 

  26.15') 
—13.97 

—34.19 

  3.64 
--9.8. 

 —9.29 

 —5.21 

 32.54 

 72.37 

—15 .83 

 38.63

(—) 23.04 
(—) 22.38 
(-4-) 26.87 
(—) 13.93 

(—) 14.83 
(1) 4.06 
(—) 7.62 
(—) 7.62 
(—) 2.79 
(+) 34 
(+) 68 
(—) 16, (—) 13.4 

(+) 137.0

   a) Calculated from Gob.. See faotnote *'.    b
) Refs. 14e, 18, and 22. 

c) The relation, aH=B8+B1 cos' 0, is assumed. 

to the Hd (Hs) and Hs (H?) nuclei respectively. 
This assignment is the same as the one previously 
reported.") However, the recent calculations by 
Hindi and Atherton") and by Pople, Beveridge, 
and Doboahi") gave an assignment opposite to that 
reported here. Further exprr :me_ ' rk is 
necessary t) settle this point.*" 

  The proton k 'conn.ants of the butadienyl anion 
radical have been observed by Levy and Myers.") 
The calculated values, assuming the s-trans con-
figuration, are drown in Table 6. The CHs protons 
of butadiene . ron-equivalent and aferent hfs 
constants are predictd; this is in contrast to the 
observed identical hfs constants for these protons.")  A

s is well kn iwn, the spin densities in the o-type 
AO's of planar :z-electron radicals and in the 2p,(C,) AO of the allyl radical are due only to the

, SP mechanism. There.°ore, the <A)b.= 3 <p>.,rela~ 
tion,w,^) is fairly satisfactory, except for the 2p,(C=) AO of the allyl radical."l' 

 Oviank ouaects s Rsdiptb. i) Viny' Radical. Th
e hfs constants of the vinyl radical have recently 

been ,'"d,'d*,1f) and its structure and 
the sign of the Vs constant of its aproton have

 17) A. Hincliffe and H. M. Atherton, Mel. Phys., 13
, 89 (1967). 
*s Recent experiments by Kochi and K

rusic (J. As,. Ch
an. Sec., It 7157 (1968)) support the present -

meat. 

 18) D. H. Levy and R. J. Myers, J . Chem. Phys., 41, 1062 (1964
). „e This ex" on may b

e atcdbtucd to the rather l
arge value of (C.sts)s!(C,/s)* shown in Tnble 2

, since the assumption used t
o derive Eq. (6) F letwA ;n this
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been intensely  investigated.2,5' 4920) 1'reviously,6 1 
we suggested that the hfs constant of the a-proton 
is negative in sign. Here, we will examine theo-
retically the structure*" and the i,1 constants of, 
this radical. 

  The calculated potential curve with respect to 
the bending of the 0 angle of Fig. I is illustrated in 
Fig. 4. The minimum in the potential curve 
appears near I35°, the calculated barrier to inver-
sion:

H. ^H H, 
C --c • ._:: t :.--( . 

H~H' 4.1

is 1.6 kcal/mol, which is comparable with the value, 
—2 kcal/mol, estimated by the ESR technique.ttdl 

  One of the main features of the present method 
lies in its consistent applicability to the spin-density 
calculations of both v- and ir-electron radicals. Good 
examples in which the et -x-type SP mechanism, 
the "bulk" SP mechanism, and the SD mechanism 
are all competing with one another are the spin 
densities on the a-hydrogen and the a- and /-carbon 
atoms of the vinyl radical. None of these mech-
anisms can be ignored. This may be understood 
from the fact that the unpaired orbital of this radical

-300 .0

-300.5

-301.0 t-----------------------------------------------------------tI 
   90 120 150 180 

                 0 (degree) 
 Fig. 4. Total energy (eV) on bending of CCH. in    the vinyl radical. 

 19) B. L. Cochran, F. J. Adrian and V. A. flown, 
                                      J. awn. Phys., 49, 213 (1964). 

 20) a) W. T. Dixon, Mel. Phys.,9, 201 (1965). b) G
. A. Peterson and A. D. Mcl.acblan, J. Chan. Ph

ys., 45, 628 (1966). c) R. S. Drago and H. Petersen, Jr., J. Am. Chem. Sm., 89, 5774 (1%7). d) A. Hinchlife, Th
ere,. ehim. Acho (Bert.), II, 300 (1967). e) Y. lr, llinger, 

A. Rassat, R. Subra and G. Bertbier, ibid., 1111, 289 (1%8
). a's The present method predicts the angular geometry 

of ethylene in fair agreement with the experim
ent; this will b

e reported in detail at a later date
.



 S t~ri- ullnrie.tl t nr 'u i~ led S(:I'-11( ) 

at 0= l35°, calculated %%ith the open-shell restricted 
Hartrcc-Fmk (RHF) method,*12 is 

   } nr — 0.2848(2s(C,.)) ̂  0.3542(2prtC..) ) 
-} O.8Ii30(2p9(C„ ))—O.0tr09(2s(Cg)) 

—0. _:;64(2p:(C0)) --f- 0.0368(2pv(Cy) ) 
--U.1g10(h.) -i-0•2737(h,)—Q.1`)!')  

and is mainly localized in the 2ps.(i) and 2p„(C,.) 
AO's. 
 The spin densities and their mechanistic contribu-
tions are given in Table 8 for various configurations 
of the vinyl radit.;II. The dependence of the carbon 
2.s AO ,spin density on the 0 angle is illustrated in 
Fig. 5,'while that of the proton spin density is il-
lwtrated in Fig. 6.

Q.

.25

.20

.15

.10

.05

 P2S(C«)

(Pzs(c Ps) sP

(Pr.,c«e)

 .00 ------------------------------ 
P25(C t) 

- .05 -------------------------------------- 
        120 150 180 

                 0 (degree) 

 Fig. 5. 2s AO sr > a dons:ties of carbon atoms rerrus 
   the bending of CCH. in the vinyl radical. Only 
   the curves obtained before annihilation are shown, _ 

   but the characteristic features are the same in both - 
    stages. 

figure 5 shows that the angular dependence of 
the SD contrib:ttion to the a-carbon 2s AO spin 
density is opposite to that of the SP contribution, 
and that it deter..lines the dependence of the total 
spin density. At 0=135°, p2a(C.„) is due to the 
41-67% SD and 59-33% SP contributions. For 
the P-carbon atom, the angular dependence is 
exceptionally small and its 2s AO spin density is 
always negative. 

 Figure 6 shows that the spin density on the a-

proton is the sum of the negative SP and the positive 

•1* C. C. J. Roothaan, Rev. Mod. Phys., 32, 179 (1960). 
The estimations of the integral values are the same as 
for the present UHF calculations, except that the two 
center a-x-type exchange repulsion integrals are not 
included in the RHF calculation.

Trcat men t for

.10

.08

.0 S.

.04

.02

.00

- .02

- .04

Valence Electron Systems. I

 Pht

( Pha )sa

-.06 

        120 150 
                0 (degree) 

Fig. 6. Proton spin densities (ba) versus 
CCH, in vinyl radical.
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bending of

SD contributions. They depend oppositely on the 
angle 0, and at 8=135°, where the minimum poten-
tial lies,s the a-proton spin density is due to the 
97% SD and —197% SP contributions. For the 
cis- and trans-protons, their spin densities also show 
a large angular dependence, and they are also due 
to both the SD and SP mechanisms. At 0=135°, 
the spin density of the trans-proton is due to the 
73% SD and 27% SP contributions, while that of 
the cis-proton is due to the 80% SD and 20% SP 
contributions. 
  The calculated proton ids constants at the min-
imum potential (0=135°) are agC=32.54, asa = 72.37, 
and aBs= —15.83 gauss (Table 7). These values 
agree satisfactorily with the experimental values. 
Moreover, as may be seen in Table 8 and Fig. 6, 
the calculated proton hfs constants obtained near 
0=135° agree most reasonably with the experimental 
values, thus lending support to the vinyl radical 
configuration with 0=135°. 

 Note that the calculated hfs constant of the a-
proton is negative in sign.5a) However, recent 
INDO calculations by Pople, Beveridge and 
Dobosh") have predicted the opposite sign. Fur-
ther experimental work, such as with isotope 
effects,".) will be necessary to settle this point. 
Figures 5 and 6 will be very useful when one ex-
perimentally determines the sign of the a-proton 
his constant. When the a-proton is replaced by 
deuterium, a smaller his constant (except for a 
constant factor g5/g0=6.514) should be observed 
if atm is negative, and vice versa. 

 Let us now comment on the recent theoretical 
spin-density studies of the vinyl radical, in which
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1.;LLI  U. SPIN  DENSITIES IN THE \ IN\'L RADICAL

Geome i;y 

  0

12T

135

150'

180'

Atomic 
orbital 

r (CQ) 

2s(Cg) 
h,• 
'if 
h„ 

2s(C„) 
2s(Cn) 
ltg 

ha 

2s(CQ) 
2s(Co) 
he 
h, 
!re 

2s(Ca) 
2s(Cp) 
he, ht 
h,

Before annihilation

 0.2251 

- 0.0286 

0.0286 

 0.0913 

-0 .0083 

 0.2051 

-0 .0315 

 0.0438 

 0.0974 

-0.0213 

 0.1870 
-0 .0348 

 0.0614 

 0.1013 
-0 .0345 

0.1690 

-0 .0384 

 0.0926 

-0 .0487

(P)sp (p)sD 

0.125 
0.004 
0.024 
0.067 
0.031 

0.083 

0.004 
0.035 
0.071 
0.021 

0.044 
0.002 
0.048 
0.074 
0.011 

0,0030 
0.000 
0.070 
0.0010

After annihilation 

(P)SP

  0.100 

-0 .033 

 0.005 

0.02.4 

-0 .039 

0.122 

-0 .035 

 0.009 

0.G26 

      -0 .042 

 0.143 

-0.037 

 0.013 

 0.027 

-0.045 

 0.166 

-0.038 

 0.023 

-0.050

  0.1581 
-0.0063 

  0.0255 
0.0752 
0,0175 

 0.1240 
-0.0082 

 0.0381 
0.0799 
 0.0064 

0.0917 
-0 .0102 

 0.0525 
 0.0832 

-0 .0042 

0.0583 
-0 .0125 

0.d774 
-0 .0153

  0.033 
-0 .011 

  0.002 

0.008 
-0 .013 

 0.041 
-0.012 

0.003 

 0.009 
-0 .014 

 0.048 
-0 .012 

 0.004 

 0.009 
-0 .015 

 0.055 
-0.013 

 0.008 
-0 .017

(P)sn 

0.125 
0.004 

0.024 
0.067 
0.031 

0.083 
0.004 

0.035 
0.071 
0.021 

0.044 
0.002 
0.048 
0.074 

0.011 

0.00301 

0.000 
0.070 
0.002"

a) See Ref. a) of Table 4.

 only the SD contribution was taken into ac-
 count.80b' ) For instance, if the SP mechanism 

 is neg:,cted, the a-proton spin density will be about 
+0.021 ((pHa)sn shown in Table 81, which is of 

 the same magnitude, but of th oppcs; to .A_gn, as 
the present result, -0.0213. Thus, even if the SP 
contribution is neglected, a value which is appar-
ently reasonable in magnitude can be obtained for 
the a-proton spin density. Furthermore, neglect 
of the SP contribution leads to serious errors in the 
calculation of the spin densities even of other protons 
and of the carbon 2s AO's, as is shown in Table 8, Fi

g. 5, and Fig. 6. This is probably true for other 
a-electron radicals as well; namely, one should 
not neglect th t spin polarization mechanism even 
in a-electron radicals, especially in AO's near the 
radical-center atom..S',20 ) 

  ii) Formyl Radical. Recently, the results of 
a non-empirical UHF calculation of the formyl 
radical hfs constants have been reported by Hincliffe 
and Cook") to be in good agreement with the 
experimental values.") However, most of the 
semi-empirical 110 calculations''.2.20 •20d) have 

 21) A. Hincliffe and D. B. Cook. Chem. Phrs. Letters, 1
, 217 (1967). 

 22) a) F.J. Adrian, E. L. Cochran and V.A. Bowers, 
J. Chem. Phys., 36, 1661 (196T. b) J. A. Brivati, N. Keen and M. C. R. Symons, J . Chem. Soc., 1962, 237. c) F. J. Adrian, E. L. Cochran and V. A. Bowers, 
J. Chem. Phys., 44. 4626 (1966` 
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 failed to yield such a large proton hfs constant as 
 was experimentally observed value, 137.0 gauss .22) 

 As may be seen in Table 9, the present result for 
 the proton hfs constant is also disappointing . It 
 is necessary to examine I:re present result to deter-

mine its failing by comparing it with the result of 
 the non-empirical calculation . 

  From the (p)s, showp in Table 9 we can see that 
the unpaired orbital consists mainly of the 2/,

y(C) and 2py(0) AO's. This implies that the SP mech -
anism is very important to the hfs constant of this 
radical. The nonempirical calculation of the 

proton hfs constant gave 154.58 gauss before an-
nihilation and 133.95 gauss after single ann'hila -
tion. The SP and SD contributions calculated 
from these values (see Eq . (20) of the previous 
report.g°)) are 61.89 and 92.69 gauss before an-
nihilation. In the present calculations

, they are -5 .94 and 44.58 gauss respectively . Very large d
ifferences exist in both contributions . The SP 

contributions of both methods differ especiall
y even in sign. The reason for this is perhaps that 

a-n-type exchange repulsion integrals other than 
those included in the present calculation (especially 
the two center c-n-type ionic integrals which make 
a positive contribution to the proton hfs constant) 
can not be neglected in this case . 

 Inorganic a-Electron Radicals . SVe chose h
ere, as sample calculations for the inorganic r,-

electron radicals , the isoelectronic NO2 and CO2- 
radicals, where the spin densities on the VAO's



 Semi-empirical Unrestricted SCF-Af0 Treatment fur \d , < l; 

TAIILE 9. SPIN DENSITIEs THE EoksfY! . KAUIC...L

let tr In SV1 rn. .

Atomic 
orbital

      Before annihilation 

<P>w(P)sp (P)sn

      After annihilation 

<P)••1p)sp (P)sD
2s(C) 
2p:(C) 
2p„iC) 
2p, (C:) 
Il 
2s(0) 
_pr(o) 
214(0) 

21h(0)

 0.1603 
-0.0169 

0.1028 
-0 .1118 

 0.0522 

0.1106 

 0.0593 

0.4802 

 0.1310

 0.029 

-0 .021 

-0 .014 

-0 .114 

-0 .008 

 0.109 

 0.020 
') .012 

0.128

0.131 

0.004 

0.517 

0.11020 

0.060 

0.002 

0.039 

0.44i8 

0.003')

 0.1409 
-0.0029 

0.5124 
-0 .0356 

 0.0574 

 0.0378 

 0.0457 

0.47_'S 

0.0407

0.010 
-0. .007 
-0.001 
      -0 .038 
-0.003 

 0.036 

 0.007 
 0.004 

 0.043

0.131 

0.004 

0.517 

n 002"r 

0.060 

0.002 

0.039 

0.468 

0.0030

a) S •e Ref a) of fable 4.

TABLE 10. SPIN DENSITIES IN NO2, CO2-, AND CN RADICAt C

Radical
Atomic 
orbital <P>. <PsP>t," <Psn>J, <p~n" Experimental•

NO,

CO,-

CN

2s(N) 

2px(N) 
2ps(N) 

2s(0) 
2px(0) 
2pa(0) 

2s(C) 
2px(C) 

2ps(C) 
2s(0) 
2px(0) 
214(0) 

2s(C) 
2p,.(C) 
2p,((:), 

2s(N) 
2px(N) 

2py(N),

02(c)

2p,(N)

 0.1900 

 0.4576 

 0.0497 

 0.0505 

 0.3495 
-0.0250 

 0.2652 

 0.5421 
0.0131 

 0.0641 

 0.2746 
-0.0080 

 0.0884 

0.3377 
-0 .0494 

 0.0876 

 0.4994 
 0.0563

 0.057 

 0.001 

 0.049 

 0.048 

 0.012 

-0 .025 

0.012 

-0.006 

 0.013 

 0.056 

 0.008 
-0 .008 

-0 .026 

-0 .003 

-0 .050 

 0.054 

 0.006 

 0.056

0.133 

0.457 

0.000 

0.003 

0.337 

0.000 

0.253 

0.548 

0.000 

0.008 

0.267 

0.000 

0.115 

0.341 

0.001 

0.034 

0.493 

0.000

0.1522 

 0.4570 

 0.0169 

 0.0185 

 0.3412 

-0.0082 

 0.2571 

 0.5460 

 0.0044 

 0.0271 

 0.2690 

-0.0026 

 0.1060 

 0.3398 

-0 .0162 

0.0515 

 0.4956 

 0.0191

0.106, 0.097 

0.452, 0.371 

  0.019

0.14 

0.66 

0.08

     a) Ref. 23a.

are assum^d from the anisotropy of the ESR pa-
rameters23) and the CN radical, which is especially 

interesting in its dipole moment. Table 10 sum-

marizes the spin densities calculated on the various 

VAO's of the: a radicals, along with those estimated 
from the experiments.") The NO2 spin densities 

theoretically calculated by \leFwen'-'') and by

2:1) al P. W. Atkins. N. Keen and M. C. R. Symons, 

,J. Chem. Soc., 1962. 2873. b) H. Zeldes and R. 
Livingston. J. Chem. P/irs.. 35. 563 (1961). c) H. 
Zeldes and R. Livingston, ibid., 31, 3017 (1962). d) D. 
W. Ovenall and D. H. Whiffen, Proc. Chem. Soc., 1960, 
420. e) 1). W. Ovenall and D. H. Whiffen. .%fol. 
Phls., 4, 135 (l961). f, J. A. Brivati. N. Keen. M. C. 
R. Symons and P..1.. Trevalinis. Proc. Chem .Soc., 1961. 
66.
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Green and Linnctt21l gave small magnitudes 
(0.263 and 0.222 respectively) for the spin density 
on the 2p,z(N) AO, but the present method gave 
p,ys(N) - 0.457, which is in closer agreement with 
the experimental estimations. 

 Table 10 shows that the present calculation 
qualitatively predicts almost all features of the spin 
densities of the isoelectronic NO, and GO,- radicals. 
For example, the spin density on the 2px(N) AO of 
NO, is smaller than that on the 2p;(C) AO of CO2, 
the delocalization of the unpaired spin to oxygens 
is greater in NO2 than in CO2-, etc.

21 a , K. L. 

19601. h) M. 

Faraday Soc., 57, I

AicEwrn, ,J. 
Green and 
(1961).

Chem. 

1. 'V.

Pl0's.. 32, 

l,tnnr t.

1801 

l rao c.



  Note that the 2s spin densities shown in the last 
column of  Table 10 are estimated from the observed 
values without paying any attention to the inner 
Is contributions. Hence, these 2s con tr; .ions 
Cannot be compared directly w ;.h the calculated 
contributions. 

Analyses of Dipole Moments of o-Electron 
Radicals. The dipole moment of a neutral mole-
cule may be expressed approximately as the sum 
of the atomic dipole (PAD) and the charge dipole 

(ucD)• The atomic dipole (.x-direction) of the first-
row atoms of the periodic table is given by: 

/tnu(x) _ --7.3370EA(I.t) 

in debye units, and the charge dipole is: 

;kW-Y) = 4.8029D(ZA-NA)xA, 
if we adopt the Mulliken approximation: 

(x,1x17,) =2rs{(xrlXr)-+(x,ixix,)}. 

CA is the Slater exponent, and NA is the atomic 
population of the A atom. PsP(x) is the off-diagonal 
density matrix element between the 2s and 2px 
AO's of the A atom. 

 The analyses of the dipole moment of vinyl, 
formyl, NO2, and CN radicals are given in Table 
11; they were obtained by using the values obtained 
before annihilation. AD and AD are the contribu-
tions to the atomic dipole from all the occupied 
a- and f- spin orbitals respectively. These con-
tributions may be further divided into those due 
to the first-row atoms in the molecule. As is shown 
in the forth ar,d fifth columns of the table, An due

TABI.E 11.

     Radical

to the radical center atom (e.g., C:,, in vinyl) surpas-
ses the lt4I, due to the other atoms and the AD values 
of all the constituent atoms. The values of AD (HO) 
in the sixth column give contributions to the atomic 
dipole only from the highest occupied (HO) x-
spin orbital. Note that the A, (HO) at the radical-
center atom makes the dominant contribution 
to AD and even to pAt,. Thus, the most unstable 
HO orbital of the a-electron radical extends con-
siderably out of the molecule from the radical 
center atom. The direction of the -p" (IlO 
of the vinyl radical is 113 from the C.,,- C e bond. 

  In NO and CN radicals, the contributuats 
due to the charge dipole cancel those due to the 
atomic dipole. In the CN radical espccia iy, 
these two contributions are almost the same in 
magnitude, but reverse in direction, so the 
resultant dipole moment is very small. This 
should be compared with the well-known example 
of the CO molecule, where its atomic dipole 
surpasses its charge dipole and makes it a powerful 
ligand in the chemistry of metal complexes. 
The calculated dipole moment of NO2 is -1.301 
debye, which is too large if compared with the 
oserved value, -0.29 debye. However, the above 
qualitative discussion will not be altered by more 
rigorous calculations. 

       Summary and Conclusions 

 As has been seen in the previous sections, the 
semi-empirical method for valence electron systems 
including differential c. -•-lap can be satisfactorily 
extended to systems with open-shell structures.

ANALYSES OF DIPOt.F_ MOMENTS OF a-ELECTRON RADICALS (in debye units)

Atom Direction

AD')

Analyses of atomic dipole 

AD Al0(HO)L) PAD')
Total

Vinyl (0=)35°)

Formyl

NO2'"

CN

C, 

Cf 

C 

O

N 

0 

C 

N

x 

y 

x 

x 

y 

x 

v 

x 

r 

x

-0 .36 
-0.85 

0. i6 

 0.01 

 0.31 
-1.58 

-0 .36 

 0.23 

 1.17 
-0 .17 

 1.87 
-1 .01

 0.06 

 0.16 

 0.09 

 0.01 

 0.36 
-0 .36 
-0 .55 

 0.30 

 0.32 
-0 .31 

 0.90 
-0 .63

-0 .31 
-0 .71 
-0 .02 
-0.01 

-0.13 

-1.09 

 0.01 

0.04 

 0.59 

 0.02 

 1.03 
-0 .31

-0.31 

-0.69 

 0.24 

 0.02 

0.67 
-1 .93 
-0 .91 

 0.53 

- 1.49 

-0.48 

 2.77 
-1 .64

/,AD=0.68 
/tcp=0.52 

p=1.19

PAD=1.42 
/tc0=3.07 

k=3.16 

/tAD=O.52 
pCD= -1.83 

=-J.30 

/tAn-1.13 
ItcD--1.18 

p=-0.05
a) 
b) 
c) 
(I)

P7w denotes the contribution to atomic dipole (pAD) from all the occupied a-spin orbitals. AD(HO) denotes the contribution to atomic dipole from the highest occupied s-spin orbital. 
pAD - pAD _L pAD• 
The experimental value is -0.29 debye; C. H. Townes and A. L. Schawlow"Microwave Spectroscopy," McGraw-Hill Book Co., New York (1935).' 
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 The results of the present study are as folio%s: 

 (1) The separation of the mechanistic con-
tributions to spin density makes it possible to enter 
into detailed discussions of the nature of the spin 
density; e.g., the spin-polarization mechanism is 
shown to be very important even when the spin-
delocalization mechanism has hithcrto been con-
sidered dominant (e.g., ethyl and vinyl radicals). 

 (2) A good correlation between the calculated 
Vs constants and the configurations of radicals 
is found for methyl and vinyl radicals. The 

geometry of the vinyl radical is ,,redicted to 
be 0 N135° from both the pot-ratial cur.'c and 
the calculated hfs constants. -Jince there are 
many radicals with known hfs constants, but with

unknoH n configurations, the agreement between 
the configuration expected from the calculated 

potential curve and that expected from the cal-
culated hfs constants is ideal for a reliable predic-
tion of the configuration of the radical from the 
theoretical point of view. 

 (3) The analyses of the atomic dipole moments 
of the ?-electron radicals revealed some interesting 
features. For example, the highest occupied 
orbitals of these a-electron radicals make decisive 
contributions to the total atomic dipole. 

 The calculations were carried out on a HITAC 
5020 E computer at the computation center of the 
University of Tokyo.
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Notes on the E.S.R. spectrum of hydrogenated pyridine

   The E.S.R. spectrum of irradiated pyridine has recently been reported by 
 different authors [1, 2]. David et al. and Tsuji et al. obtained almost the same 

spectra for irradiated pyridine in solid state and confirmed that three kinds of 
radicals were produced. The triplet spectrum observed at 77°K was assigned by 
both authors to the pyridine cation radical produced by the removal of one electron 
from the nitrogen lone pair. The singlet spectrum observed at 221°K is identified 
by Tsuji et al. as the pyridyl radical. The spectrum observed at about 200°K, 
however, was assigned to different species of hydrogenated pyridine; namely, 
Da-,,id et al. assigned to N-hydrogenated pyridine (N-Py), and on the other hand, 
Tsuji et al. to 3-hydrogenated pyridine (C-Py). 

   In order to settle t!is proL.sy4, we have calculated the electronic structures for 
bii.h N-Py .7nd C-Fy radicals. The calculation was carried out by the semi-
empirical unrestricted SCF-MO method, all the valence electrons being considered. 
The evaluation of matrix elements was made by the method developed by the 
present authors [3, 4], except for the off-diagonal core Hamiltonian matrix elements 
[5], rn actual calculation, we assumed that the hydrogen attaches to the 3-carbon 
atom or the nitrogen atom of pyridine with the tetrahedral angle and with the C-H 
bond distance of 1.09 A and the N-H bond distance of 1.032 A fcr C-Py and 
N-Fy, respectively. 

  The total energy was calculated to be -932.25 and - 935.66 ev for C-Py and 
N-Py, respectivelyt, and the calculated hyperfine coupling constants of both 
hydrogenated pyridines are summarized in the table. The observed coupling 
constant (24 G) was assigned by David et at to 1-hydrogen of N-Py, and by Tsuji et al. to 8-hydrogen of C-Py. The_ present  calculations seem to support the 
assignment by David et al. The coupling constants calculated for N-Py are in 
good agreement with the observed values. The hyperfine coupling constant, 54.6 o calculated for 8-hydrogen of C-Py is almost consistent with the observed 
[8] and calculated [9, 10] results for the cyclohexadienyl radical.   W

e may conclude from the above two reasons (total energy and calculated h
yperfine coupling constants) that the E.S.R. spectrum of The irradiated pyridine 

observed at about 200°K may be due to the N-hydrogenated pyridine radical.   It 
may be interesting to discuss here the electronic structure of N-Py briefly. The highest occupied orbital (singly occupied orbital in the sense of restricted MO

t The single determinant used in unrestricted Hartree-Fock method is not generally the .'genfunction of the total spin angular momentum operator, S2, but it might not lead to serious error for the comp. -ison of the total energy of two moleculc: -omposed of the same number of electror- [6}.
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 Radical

(1) C-Py
H10

Hg 

 He

H7 
r

(2) N-Py
H

H10

Hg

N\He 
H7

Position a, obsd. (G)

N 
7 
8 

10 
11 
12

N 
7 
8 
9 

10

12 
24 
12 

12

12 
24 
12 

12

a, calcd. (G)

2.13$ 
-11.2 

56.4 
-15.2 

8.13 
-15.2

(-10'0): 

(-I1.7) 
(4-91) 

(-11.9)

9.37 
24.4 

_8.64 

5.59 
-13.2

(-8-08) 
(3.45) 

(-10.3)

'f The proton hyperfine coupling constants are calculated by multiplying 508 c to the 

spin density on hydrogen atom, and the nitrogen hyperfine coupling constants are calculated 
by the empirical relation obtained by Ward [7]. 

$ The values in parentheses are calculated from the spin densities on the carbon n-AO's 
using the McConnell relation (aft = — 23.04 pc;,). 

                  Calculated hyperfine coupling constants (a's) of 
C-Py and N-Pv radicals. 

method) of N-Py is; 

0i1 SN - 0.30P„N - 0•41PZN + 0•53(Pz2r + Pzsc') 
                    + 0.11(PZ3C. + Pzsc) — 0'58Pz4(• — 0.24h7+ 0(0.01), 

where, 0(0.01) denotes the smaller term, the coefficients of which are in the range 
of 0.01 - 0.09. 

  The remarkable 7r-type conjugation is assured between the sp3-type AO's on 
the nitrogen atom and the rr-type AO's of the carbon skeletons of N-Py. Further, 
the a-bond population of the C-N bonds in N-Py and pyridine are calculated to 
be 0.056 and 0-216, respectively. This shows that the double bond character of 
the C-N bonds in N-Py radical decreases remarkably. The C_-C3 bond in N-Py 
is, t -'wever, strengthened compared with that in pyridine; the 'rr-bond population of 
C2-C3 bond in N-Py and pyridine ate-calculated to be 0-292 and 0-143, respectively. 

T:le details of this - tudy v: ixi :Je published in the near future.
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   PART II,  CHAPTER 3 

SECTION 2 

    ANGULAR DEPENDENCE 

   OF THE METHYL GROUP 

HYPERFINE SPLITTING CONSTANT





Semi-empirical Unrestricted 

    Electron Systems.  H. 
        of the Methyl

SCF-MO Treatment for Valence 
 The Angular Dependence 

Group hfs Constants

   Since the spin-polarization contribution to the methyl-group hfs constant of the ethyl radical 
has been recognized to be important, the angular dependence of the )3-proton hfs constants is re-
examined for various radicals. Thus, the observed relation, Q(0)=Bo- B, cost 0, is interpreted 
as being the sum of the following two equations. 

Q sD(0) _ (B1)sD Cos2 0 
QsP(0) = (Bo)sP + (B,)se cos' 0, 

where S!T and SP denote the spin delocalization and spin polarization contributions respectively. 
0 is the rotational angle about C-C single bond. A molecular orbital description of the above 
angular depend-nces is also given.

  The methyl-group proton hfs constants of aliphatic 
and aromatic hydrocarbon radicals have been ex-
tensively studied from both experimental") and 
theoreticals) points of view. The theoretical studies 
of the methyl proton spin densities have been carried 
out mainly by two different methods, namely by 
the valence bond (VB) and molecular orbital (MO) 
methods,^) and an interesting view of the spin-
appearing mechanisms was presented by Lazdins 
and Karplus.=s> They stated that the methyl-group 

proton spin density in the ethyl radical is due to 
nearly 60% "exchange polarization" and nearly 
40% "electron transfer" contributions. In a pre-
vious MO study") it was shown that the methyl-

  1) a) C. Hc:;cr and H. M. McConnell. J. Chsm. 
Phys., 32, 1535 (1960). b) A. Horsfield, J. R. Morton 
and D. H. Whiffen, Mot. Phys., 4, 425 (1961). c) J. R. 
Bolton, A. Carrington and A. D. McLachlan, ibid., 5, 
31 (1962). d) j. R. Bolton, A. Carrington, A. Forman 
and L. E. Orgel, ibid., 5, 43 (1962). e) A. Horsfield, 
J. R. Morton and D.H. Whiffen, ibid., 5, 115 (19E2). 

 2) a) A. ID. McLachlan, ibid., 1, 233 (1958). b) 
P. G. Lykos, f. C em. Phys., 32, 625 (1960). c) S. Aono 
and J. Higuchi, Progr. Thor. Phys. (Kyoto), 28, 589 
(1962). d) E. %V. Stone and A. H. Maki, j. Chem. 
Phys., 37, 1326 (1962). e) K. Morokurna and K. 
Fukui, This Bulletin, 36, 534 (1963). f) J. P. Co/pa 
and E. de Boer, Mol. Phys., 7, 333 (1964). g) 17. 
Lazdins and M. Karplus, J. Chem. Phys., 44, 1600 (1966). 
h) Z. Luz, ibid., 48, 4186 (1968). 

 3) T. H. Brown and M. Karplus, ibid., 46, 870 (1967). 
 4) . a) T. Yonezawa, H. Nakatsuji, T. Kawamura 

and H. Kato, Chem. Phys., "otters, 2, 454 (1968). b) T. 
Yonezawa, H. Nakatsuji, T. Kawamura and H. Kato, 
J. Chem. Phu., 51, 669 (1969).

proton spin density is due to 74% "spin delocaliz-
ation (SD)" and 26% "spin polarization (SP)" 
contributions.5) 
  The angular dependence of the /3-,proton hfs con-
stant on the rotation about the Ca Cp single bond 
has been well established experimentally and is 
explained by the relation"): 

as = Q(0)pc,(1) 

where p% is the spin density in the 2pca atomic 
orbital o the contiguous it-carbon atom, and where 
Q(0) is expressed as: 

Q(0) = B,, -r B, cos20,(2) 

where 0 is the angle between the axis of the 2pca 
orbital and the Ce—H bond, both projected on a 
plane perpendicular to the C,.—Cs bond. Aono 
and Higuchi2> studied the angular dependence 
of the fl-proton hfs constant theoretically by con-
sidering only the spin delocalization (spin-hyperco-
njugation) mechanism; they successfully derived the 
Q(0)=B1 cos20 relation, where B, is a constant. 
However, since the /3-proton spin density is in large 
part due to the SP mechanism, it seems necessary 
to examine the angular dependence of the SP 
contribution in order to interpret the observed 
relation (2). 

 In the present study, the methyl-proton hfs 
constants of the various doublet radicals (ethyl, 
n-propyl, methyl-substituted allyl radicals, and 
toluene ion-radicals). are calculated by the un-
restricted Hartree-Fock (UHF) method reported 

5) J. P. Colpa, E. de Boer, D. Lazdins and M. 
Karplus, J. Chem. Phys., 47, 3098 (1967).
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 TABLE I. THE METHYL PROTON SPIN DENSITY IN THE ETHYL RADICAL

Angle 

 0

UHF spin density 

Pelf
      From

(2) (P )se
From 
Eq. (3) (P)SD

From 
Eq. (4)

AA 
Pia

0 

15 

30 

45 

60 

75 

90

 0.072 

 0.067 

 0.054 

 0.035 

 0.017 

0,003 
-0.002

 (0.072) 
  0.067 
  0.053 
  0.035 
  0.017 
  0.003 

(-0.002)

 0.020 

 0.018 

 0.014 

 0.009 

 0.003 

 0.000 
-0 .002

 (0.020) 
  0.018 
  0.014 
  0.009 
  0.003 

  0.000 

(-0.002)

0.053 

0.050 

0.039 

0.02(1 

0.013 

0.004 

0.000

(0.053) 
0.049 
0.039 
0.026 
0.013 
0.004 
0.000

0.059 

 0.055 

 0.044 

 0.029 

 0.014 

 0.003 

-0.001

 in a previous study of this series,°) and the mecha-
 nistic contributions to the hfs constants are diveded 

by means of the method previously proposed by the 

present authors.°"°l The conclusions are that the 
Sp contribution to the methyl-proton hfs constant 
has the angular dependence expressed by: 

Qsr(0) _ (B,)SP -f- (BI)SP CO32O (3) 
and that the observed relation (2) is to be understood 
as the sum of the angular dependence of the SD 
contribution. 

Q.sD(0) _ (BI)s0 cos'O(4) 

and that of the SP contribution (Eq. (3)). Thus, 
the constants, B's, in Eq. (2) are expressed as: 

           B, = (B,)sP 

and: 

14 .= (BI)sP -I- (BI)sn.(5) 

  Moreover, for the isotropic y-carbon hfs constants, 
one may expect the same dependences as those 
for the methyl-proton his constants. This is cer-
tainly true for the 2s AO spin density of the y-
carbon atom of the n-propyl radical.' 

  In the last section, a molecular orbital description 
of the above angular dependences is given. It is 
shown that the intrinsic restriction of the UHF 
method, compared with the configuration interaction 
method, does not much affect the above conclusions.

Results and Discussion 

Angular Dependence. In Table 1 the methyl-
proton spin densities in the ethyl radical are given 
for the various angles, and then they are illustrated 
in Fig. 1. For the total spin density , pub" the 
relation (2) holds fairly satisfactorily , while for the SP 

and SD contributions Eqs. (3) and (4) excellently 
represent their angular dependences. The curves 
obtained from Eqs. (2), (3), and (4) almost overlap 
with the corresponding curves shown in Fig. 1. 

 6) T. Yonezawa, H. Nakatsuji, T. Kawamura and 
H. Kato, This Bulletin, 42, 2437 (1969).  7

) H. Nakatsuji, H. Kato and T. Yonezawa, J. Client. Phys., 51, 3175 (1969).
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  Fig. I. Angular dependence of the methyl proton 

    spin density in the ethyl radical. 
-" puhf; -- , (puhr)sn;-----, (puhr)sP 

The coefficients, B, calculated from the results 
shown in Table I, are given in Table 2. 

  For the n-propyl radical, the situation is very 
similar to that of the ethyl radical . For the fl-
proton spin density, the dependences of p.m., 
(pubr)sr, and (p„hr)sn on the rotational angle, 0, 
is illustrated in Fig. 2. The relation (2) deviates 
only slightly from the calculated dependence; this 
deviation is mainly due to the SD contribution. 
The constants, B, in Eqs. (2), (3), and (4) were 
obtained by fitting the calculated curves; they are 
given in Table 2. 

  For the isotropic y-carbon hfs constants of the 
n-propyl radical, one may expect the same depend-
ences as those for the methyl proton hfs constants 
in the ethyl radical. This is certainly true for the 
2s AO spin density of the y-carbon atom. The 
angular dependences of the 2s AO spin density and 
of the mechanistic contributions are illustrated in 
Fig. 3. The curves of this figure are very well re-
presented by pnhr--0.001+0.018 00019, (pohr)sn=



o'.

.06

.04

.02

.00

   \` 
     \, 

 a 

 1

(/,/

0 90 180 

                  0 (degree) 

Fig. 2. Angular dependence of the f-proton spin density of the 
 n-propyl radical. 

-, polo; --, (PUbt)sn: ---. (pmr)sP; ....., p calculated 
 from Eq. (2)

TAB LE 2. ANGULAR DEPENDENCE OF 

MECHANISTIC CONTRIBUTIONS°)

TIIE

Radical Bob) Bi (BO sP (BO s,PC  

Ethyl-1.5 55.4 16.0 39.4 1.000 
i-Propyl0.6 50.0 13.7 36.3 1.000 
cis-l-MethyLllyl -0.5 49.2 21.4 27.9 0.689 
trans-1-Mcthylslly1 -0.5 50.7 21.7 29.0 0.694 
2-Methylaliy11.6 44.1 44.1 0.0 -0.:A5 

                                           Toluene anion4.1 39.1 39.1 0.0 -0.135 
Toluene cation -- 1.0 63.4 23.8 39.6 0.383 

    a) The values of B are given in gauss unit. 
h) Bo- (B0)sp 

0.005 cos2O, and (p„br)sr- -0.001 +0.013 cos20. 
 Among the methyl-substituted allyt radicals _ the 

2-methy,lally1 .-adical . is of great interest. Since 
the singly-occupied • n-orbital of this radical has a 
node on the C. atom, the spin density of the methyl 

group is expected to be due only to the SP mecha-
nism and to be negative in sign. This is certainly 
true, as Tables 2 and 3 show. Thus, the angular 
dependence of the methyl proton spin density of the 
2-methylallyl radical is well represented only by

TABLE 3. The METHYL PROTON SPIN DENSITY OF 

THE 2•METRYLALLYL nAro CAL

in de, •ty 

 PFrom  (P)s°      Eq .(2)or(3)

.015

UHF sp
AA 

Pan

.010

Angle 

 0 

 30 

ti0 

 90

(P)sp

      - .620 

-0.6!6 

      -.006

-0 .020 
-0.016 

-0.006 

-0.001

0.000 (-0.020) -0.006 
0.000 -0.016 -0.005 
0.000 -0.006 -0.002 
0.000 (-0.001) 0.000
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.000
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            0 (degree) 

Fig. 3. Angular dependence of the  2s 
 density of the y-carbon atom of the 
 ridical. 

-'-r Il'uhf; - —, (etsf/ _J; -----, (puhr)s,

90

AO spin 

n-propy[

Eq. (3), as is shown in Table 3. 
 For the other methyl-substituted allyl radicals 

(cis-l-methylallyl and trans-l-methylallyl), the situ-
ations are similar to that of the ethyl radical. The 
SD contributions to the methyl proton spin densities 
of these radicals are nearly 60%, small compared 
with those of the ethyl radical (See Table 2). Much
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TAELE 4. The METHYL PROTON SPIN DENSITY OP THE TOLUENE ION-RADICALS

Angle 

8

UHF spin density

Species
Paht

From 
Eq. (2)

(P)se
From 
Eq. (3) (p)so

From 
Eq. (4)

AA 
pas

Anion

Cation

0 
30 

45 

60 

90 

0 

30 

45 

60 

90

-0.008 

-0.006 

- 0.004 

- 0.003 

 0.001 

 0.033 

 0.024 

 0.016 

 0.007 
-0.001

(-0.008) 
 -0 .006 
-0.005 
 -0.003 

(--0.001) 
 (0.033) 
  0.025 
  0.016 
  0.008 

(-0.001)

-0.008 

-0.006 

-0.004 

-0 .003 
-0 .001 

 0.012 

 0.009 

 0.006 

 0.002 
-0.001

(-0.006) 
-0 .006 

 -0 .005 
--0 .003 

( -0.001) 
 (0.012) 
 0.009 
  0.006 
  0.003 

(-0.001)

0.000 

0.000 

0.000 

0.000 

0.000 

0.021 

0.015 

0.010 

0.005 

0.000

0.000 
0.000 
0.000 
0.000 
0.000 

(0.021) 
0.016 
0.010 
0.005 
0.000

 as with the above examples, the angular dependences 
of the SP and SD contributions are well represented 
by Eqs. (3) and (4). The values of B in these 
equations are given in Table 2. 

  The methyl-proton spin densities of the toluene-
ion radicals are summarized in Table 4. Although 
the tolune ions have nearly degenerate symmetric 
and =asymmetric electronic states' with respect to 
the Cs operation, only their ground electronic 
states (the symmetric electronic state for the cation 
and the antisymmetric state for the anion) are 
calculated for the present purposes. For the 
antisymmetric state of the anion radical, its singly-
occupied n-orbital has a node on the I-carbon 
(the carbon to which the methyl group is attached) ; 
therefore, the spin density of the methyl proton is 
due only to the SF mechanism and is negative, 
similar to that of the 2-methylallyl radical. By 
referring to Table 4, Eq. (3) is found to apply 
sathfactorily. For the symmetric state of the cation 
radical, the SD contribution to the methyl proton 
spin density is nearly 60%. As is shown in Table 3, 
Eqs. (2), (3), and (4) hold very satisfactorily. The 
values of B in these equations are given in Table-2. 
Note that the Bs values of the anion and cation 
differ greatly. 

  One conclusion from Table 2 is that the methyl 
proton spin densities are composed of a major 
(60-75%) SD contribution and of a minor (25--
40%) SP contribution, except for the special cases 
of the 2-methylallyl radical and the antisymmetric 
state of the toluene anion. Note that the B values 
of the 2-methylallyl and toluene anion radicals, 
in which only the SP mechanism is important, 
deviate greatly from the average B values. Another 
conclusion of the present study is that the observed 
relation, (2), can be interpreted as the sum of Eqs. 
(3) and (4), and that this relation may also hold 
for the 2$ AO spin density of the y-carbon atom 
(as is shown in the case of the n-propyl radical). 

4{ ra Corassusts. The proton afs constants') 
 8) Proton Aft constants are calculated by multiplying 

p•u by 743 pun.

calculated by assuming the free rotation 
methyl group are compared with the experimental 
results in Tables 5 and 6. Although the toluene 
ions have nearly degenerate electronic states, the 
calculated values given in Table 5 correspond only 
to the lower electronic states (the symmetric state 
for the cation and the =asymmetric state for the 
an»on). For a more rigorous discussion of the lfft 
constants, the thermal and vibronic coupling effects 
must be considered,u) as Purins and Karplus did 
recently.") Note, however, that the inclusion of 

TABLE 5. CALCULATED PROTON Ills coNsrArni

-0 .003 
-0.002 

- 0.001 

 0.001 
 0.000 

0.021 

 0.018 

 0.012 

 0.006 

 0.000 

,tatim of the

Radical

Ethyl

n-Propyl

Toluene anion

Toluene cation

         Ilfs constant 
Position 

Ca!ed.') Exptl.

•a-H 

f-H 
a-H 

p-H 
y-H 
  a-H 
at-H 
p-H 
H(CH,) 
  a-H 
rx-H 

p-H 
H(CHs)

-25.6 

 26.2 
-25.3 

 25.6 
 -1 .8 

 -9 .0 
-9.6 

 -0.1 

 -3.2 

 -2.7 

 -1.1 

 -9 .1 

1I.8

(-) 22.380 
(-{-) 26.870 
(-) 22.080 
(+) 33.20 
(-) 0.380 
(-) 5.120 
(-) 5.450 
(-) 0.59"l 
(-l-) 0.790

90

a) The calculated values are obtained by assuming 
     free rotation of the methyl group about the C-C 

     single bond. 
  b) R. W. Fessenden and R.. H. Schuler, J. Chem. Fl

ys., 39, 2147 (1963). 
c) Only the antisymmetric electronic state is 

calculated. 
d) J. R. Bolton, A. Carrington , A. Forman and      L

. E. Orgel, AM. Phys., 5,43 (1962). 
e) Only the symmetric electronic state is calcu-

     lated. 

 9) a)  D. Purins and M. Karplus, J. Chem. Phys., 
50, 241 (1969). b) D. Purins and M. Karolus, J. 
Are?. C nn. Sac., S9, 6275 (1968).



TABLE 6. PROTON  hfs CONSTANT OF THE ALLYL 
   AND Mk.TI V t.-SUBSTITVTLD ALLYL RADICALS

Radical

Ally( 

   1) , 

H\C/2\g 

  

I i 
 H H~ 

cis-1-Methylallyl 

11\l/2\1 ,/ C  

CH, Hp 

trans-1-Methylally 1 

11CH„ 

H H,~ 

2-Methyllallyl 

I 

y\i/H. 
H HH~

Position

111,0 

1.13

H(CH,) 
Hue 
Hs 
H,, 
1-1,0

H(CH,) 
11113 
HE 
FH,,, 
H,s

4$ constant 

Calcd."> Expti."'

-14 .19 (--) 14.81 
-13 .97 (--) 13.90 

  3.64 (+) 4.06

16.80 (+) 14.01 
-18 .87 (-) 14.17 

  4.49 (+) 3.83 
-13 .89 (-) 14.94 
-13 .64 (-) 13.52

 17.22 (-f-) 16.43 
-18.99 (-) 13.83 

  3.97 (-I-) 3.85 
-14.12 (-) 14.78 
-13.91 (-) 13.83

H(CH,) - 7.89 (-) 3.19 
H,,sa -13.97 (-) 14.68 
H,,,8 -13.74 (-) 13.82

ever. Kochi and Krtrict'' s±-111.•d this ascigrlrrr nt 
by observing the /fi constants of the n ettm-
substituted allyl radicals; they proved that the 
assignment by the present authors''.") was correct. 
Here, we calculated the proton !f5 constants of 
these methyl-substituted allyl radicals. The results 
arc summarized in Table 6. The assignments of 
the lifs constants of the H,,, and Hap proton of 
the cis- and trans- 1-methylallyl radicals agree with 
the experimental result*, although the differences 
in the calculated /fs constants of these two protons 
are rather small compared with the experimental 
values. In the 2-methylally1 radical, the methyl-

proton hfs constants arc calculated to be due 
only to the SP mechanism and to be negative in 
sign. The calculatcd hfs constants of the H,. proton 
of the cis-form and of the Hug proton of the train- 
form arc too large (absolute value) Compared with 
the experimental values. 

Otrigia of the Angular Dependence. Here. 
we *hail ~• a znoic . - orbital description of 
the angular dependence§ expressed by Eqs. (2). 

(3), and (4). For the present purposes the ton-
figuration interaction (CI) treats-tient may be 
most suitable. As has been tehowti previous- 
ly, the UHF wave-function is eitpressed by the 
following CI form to a first-order approxiiva=
tion:”

a) The calculated values are obtained by assuming 
   free rotation of tic methyl group about the C-C 

   single bond. 
b) J.K. Kochi and P.J. Krusic, J. Amer. (hem. Soc.. 

  90, 7157 (1968).

these effects, which are expressed by the weighted 
mean of the Iffs constants of the symmetric and 
antisymmetric electronic states, will improve the 
calculated hfs constants of the toluene aniotl.")'7-

  Since Fessenden and Schulerii) observed the 
different Ills constants for the terminal methylene 

protons of the allyl radical, the observed hfs con-
stants have been assigned theoretically by several 
investigators:Nu-1V This finding was of particular 
interest since the well-known McConnell rule cannot 
interpret the ob:erved difference. Recently, how-

 10) The observed hfs constant of t' c n shti? ,, 
of the toluene ani-'n is positive in si _ t; E. de Boer and 
J. P. Colpa, J. Phys. Chem., 71,21 (1967). 

 11) R. W. Fessenden and R. H. Schuler, J. Chem. 
Phys., 39, 2147 (1963). 

 12) T. Yonezawa, a, H. Nakatsuji, T. Kawamura and 
H. Kato, This B=+tictin, 40, 2211 (1967). 

 13) A. Iiinclifte ar..l H. M. Atherton, Mal. Phys.. 
1" 89 (1967). 

 14) J. A. Pope. D. 1:..• Beveridge and P. A> Dobosh, 
J. Amer. Chem. 5,..., 90, 4201 (1968).

to hC ~rr + Cis~(tE«\ ah(!!`'), l

where the second term is due to the spin polarization 
perturbation. 97-'f is the restricted function corn- 
posed of the natural orbital_a'R•'b) A4 and p, of 
the UHF wave-function and !V" (ii*) represents 
the normalized singly-excited configuration ex- 
pressed by the onc-elcetron jutnp fromA.‘to 

        44121 d'; 
r`^(fit) 

lAtza~fj...r„~t11nflIIi')..•i..,zlifft(zj (7)                    N' 2

2q-3- 1 is the number of electrons in the radical. 
The natural orbital, A, u. and r, correspond. 
respectively, to the doubly-occupied, singly-oc-
cupied, and unoccupied orbitals of the restricted 
function, fr-', and arc orthonortna1 to each oth r.11) 
Note that A4 and v( corraapond to the bOnding 
and antib- --.' t€ x: za-tn't M Ys of the alternant 
molecular orbital incthod.t'•") 

 From : (6), the SP and SD contributions too 
the UHF spin density are given by'4): 

(.Pyhr)sv _ `r.rl p1 *.t> _'12(t ) 

J. K. Kochi and P. J. Krusic. ibtd., 90. 7I.,"r (;9' tt). 
 16) a) A. T. Ames and C. C. Halt, Proi. Is ,r.:„ 

Ser..1. 263, 483 (1961): b) T. Anios and LC. Sey(t :r. 
J. Chem. Phys.. 41. 1773 (/'," 1,',
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 Semi-empirical Unrestricted SCF-MO ire 

TABLE 7. UHF NATURAL ORBITALS,

atment for Valence Electron Systems. 11 

A AND /1 OF THE ETHYL RADICAL

AO

A

1(00 2 (ei) 3(t1) 4(n,) 5(it=)

Y(IC) 
Z(1C) 
Y(2C) 
Z (2C) 
h(5H) 
h(6H) 
h(7H) 

Y(1C) 
Z(IC) 
Y(2C) 
Z(2C) 

h(5H) 
h(6H) 
h(7H)

0.000 

0.000 

 0.000 

-0.001 

 0.167 

 0.167 

 0.161 

 0.000 

 0.000 

 0.001 

0.000 

 0.163 

 0.163 

 0.169

Configuration') 

 0.000 0.310 

 0.000 0.000 

 0.000 0.340 

 0.000 0.000 
-0.118 -0.356 

-0.1180.356 

--0.115  0.000 

Configuration°) 

 0.000 0.310 

 0.000 0.000 

 0.000 0.340 

 0.000 0.000 
-0.116 -0.206 

-0.116 -0.206 

--0.119 0.411

 0.000 

 0.038 

 0.000 

 0.458 
-0.307 

--0.307 

     0.614 

 0.000 

 0.038 

 0.000 

 0.458 
-0.531 

 0.531 

 0.000

-0 .341 

 0.000 

0.3I2 

 0.000 
-0.410 

 0.410 

0.000 

-0.341 

 0.000 

 0.313 

 0.000 
-0.237 

-0.237 

 0.474

6(6a) 

 0.000 
 0.001 

 0.000 
 0.003 
 0.082 ° 

 0.082 
 0.089 

 0.000 
 0.000 

-0.003 

 0.000 
 0.086 
 0.086 
 0.079

7(7(2) 

  0.000 
  1.000 

 0.000 
 0.013 
 0.115 
 0.115 

-0 .229 

 0.000 
I.000 
 0.000 
 0.013 
 0.198 

-0 .198 
 0.000

a) Configuration I

b) Configuration II

 s• 

5~~

      /2 1 
            v 

 8. COEFFICIENTS OF 
Cie (ii*) OF

3

TABLE

y 

THE 

THE

 y
t   }

-+ x

SINGLY 

ETHYL

EXCITED 

RADICAL

CONFIGURATIONS,

Geometry)
Coefficients, Cee (ii*)

11* 22* 33*   44* 55*

Configuration I 

Configuration II

0.0013 

0.0015
0.0292 

0.0292

0.0043 

0.0042

0.0049 

0.0048
0.0031 

0.0032

66* 

0.0130 

0.0130

             a) See footnotes a and b of Table 7. 

and:
t (Pent)Sr=2TCsB(ii*) <VrtIPIVse(ii*)> 

           = 2~v Cee(ii*)/Vt,(9) 

where p is the spin-density operator. 
  Now let us enter upon a description of the angular 

dependence of the methyl group proton spin density. 
In Table 7 the natural orbitals, ) and p, of the 
ethyl radical, as calculated by the present method, 
are given for the two rotational configurations, 
and in Table 8 the coefficients of the singly-excited 
configurations, CSe(i *), arc summarized.') Table 
8 shows that the coefficients, Csp(ii*), are almost 
independent of the rotational angle, 0. Thus , we h

ave only to consider the angular dependence of 
the AO coefficients of the natural orbitals. 

 The local-group orbitals constructed from the 
three hydrogen Is AO's of the methyl group may 
be written as:

              ~o=hi-i'i2 hs, 
—h. (10) 

¢x=ht li,-2h,. 

Oa is totally symmetric about the rotation, while 
0,1 and 0 are the quasi-n-orbitals and are perpen-
dicular to each other. Thus , the angular dependence 
of the coefficients of the one particular hydrogen 
Is AO, h, in various molecular orbitals (i) may 
be grouped into the following three types: 

a-typc: ai.h, 
            it-type: bt sin 0•h,(j )) 

n-type: ct cos 0 . h, 

where at, bt, and ci are the AO coefficients of 
the molecular orbital , 4 at 0=90° or at 0=0°. I
n Table 7 the orbitals are divided into the above 

three groups. For the 7t-electron radicals
, the 

angular dependence of the coefficient of the methyl 
hydrogen is, of course , of the it-type. Hence, the
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SD contribution to the methyl-proton spin density 
is given by: 

 (Pubt)sa = c 0.5 cos2O •(12) 
From Eqs. (9) and (11) the SP contrib,.at ,n is 
similarly expressed by: 

(pvhr)sr = 2,./ a{Qi* 
bibn sin29 

-~-' Cte(ii*) c{c{s costOi 

(No)sa (P1)sr cos20,(13) 
where;; 

(P.
`)sr=2^'2{p Cue(ii*)Nate +*C"e(ii*) b{b{s} (i~l)sr= 2Y2 { * C"`(ii*) c c{s — CJe(ii*) 45{*1. 

E` denotes the summation over the it-type orbitals. 
Eqs. (12) and (13), and the sum of them, correspond 
to Eqs. (4), (3), and (2) respectively. 

 Note here that the conditions for the local sym-
metry orbitals expressed by Eq. (10) (the conditions 
for the definite grouping of MO's by Eq. (11)) 
are not satisfactorily fulfilled in cases of poor 
symmetry,i'l and that, in the usual CI treatment, 
the transitions other than i---si* (i and is have, 
of course, the same type of local symmetry) must 
be included.1s) (Compare this with Eq. (6)). In 

 17) For example, the condition of the local symmetry 
expressed by Eq. (10) is already broken in the ethyl 
radical (See Table 7). However, the relations (2), (3) 
and (4) are very satistactory as shown in the previous 
section. 

18) A. L. H. Chung, jr. Chem. Phys., 46, 3144 (1967).

these cases, Eqs. (12) and (13) may include types 
of angular-dependent terms other than cosze. One 
example of the poor symmetry is the n-propyl radical, 
where the ob -:t i by Eqs. (2), (3), and 

(4) deviate slightly from the calculated curves. 
Nevertheless, the relations (2), (3), and (4) arc 
still good approximations to the angular depend-
ences of the fl-proton spin density of the n-propyl 
radical (See Fig. 2). 

 The effects of the inclusion of the i--sj* (14j) 
transitions are not certainly determined numerically 
by the present study, but they can be estimated as 
follows. The i—sj* transitions may be grouped into 
two groups; one is composed of the transitions where 
i and j* have the same local symmetry, and the 
other is composed of the transitions where i and 

j* have different local symmetries. By including 
the former type of transition, the angular depend-
ence expressed by, Eq. (13) is not altered. Only 
the coefficients may be changed. For the latter 
type of transition, which may produce types of 
angular-dependent terms other than cos'O, their CI 
coefficients, C"(ij*), can be expected from sym-
metry considerations to be very small. Thus, the 
inclusion of the i--*j* (i $j) transitions will not 
much alter the type of angular dependence ex-

pressed by Eq. (13).

 One of us (H. N.) wishes to thank Dr. T. Kawa-
mura for his helpful discussions. The computation 
was carried out by a HITAC 5020E computer at 
the Computation Center of the University of Tokyo.

93





 PART  II, CHAPTER 4 

    CALCULATION 

O) THE FORCE CONSTANT 

    OF ETHYLENE





Calculation of Force Constants of Ethylene by a Semiempirical ASMO—SCF Method

           INTRODUCTION 

 In the SCF molecular orbital theory involving all 
valence electrons, the relative positions of all nuclei in 
a molecule are taken into account explicitly on evaluat-
ing the multicenter integrals. This theory provides 
accordingly a general and straightforward procedure to 

predict the equilibrium structure and the force con-
stants of polyatomic molecules through the calculation 
of ground-state energies for a variety of nuclear con-
figurations. The rigorous treatment of this sort of cal-
culation requires, however, so much labor even for the 
smallest molecules that the introduction of more or less 
approximations is inevitable to reduce the calculation 
to a tractable size. By using the approximation of the 
neglect of differential overlaps, Pople et al. have formu-
lated a  senliempirical ASMO-SCF theory for all valence 
electrons of molecules.' These authors' method has 
given, in spite of its simplicity, a fairly successful result 
in predicting correct valence angles and bending force 
constants of a number of simple polyatomic mdh 
cules 2,a The stretching force constants calculated by 
this method are too large, however, compared to those 
obtained from experimental data on vibrational spec-
tra 3 4 

 Since there are many ways of approximations in 
evaluating the atomic integrals involved in the ASMO-
SCF theory, further studies seem to be necessary in 
order to clarify the influence of various approximations 
on the reliability of the calculated force constants. It is 
also worthwhile to look for any systematic way of

 A semiempirial ASMO-SCF calculation involving ail valence electrons was carried out for a number 
of nuclear configurations of ethylene molecule. From the variation of the ground-state energy on the change 
of various structure parameters, all the diagonal quadratic force constants in the internal symmetry co-
ordinate system were calculated and compared with those obtained from vibrational spectra. A modification 
of the Dewar and Klopman's formula including two empirical parameters was used to represent the core 
repulsion energy. It gave reasonable potential energy curves for the stretching coordinates.

combining the approximations which can predict force 
constants and other properties of molecules simultane-
ously. With these points of view, we have carried out a 
semiempirical ASMO-SCF calculation of force con-
stants of ethylene based on the method of Yonezawa, 
Kato, and co-workers which has recently given reason-
able values of orbital energies, ionization potentials, 
electronic transition energies, and ESR hyperfine cou-
pling constants'," for molecules similar to those treated 
by Pople et al. This method is different from that of 
Pople et al. in adopting the one- and two-center elec-
tronic repulsion integrals evaluated semiempirically 
and in taking account of differential overlaps. In the 
present paper, the calculated force constants are com-
pared with those obtained from the analysis of vibra-
tional spectra and are discussed. 

         ATOMIC INTEGRALS 

 Since the detail of the procedure to evaluate the 
ground-state energy for a given nuclear configuration 
has already been reported,' we outline here only the 
evaluation of basic atomic integrals. The overlap inte-
grals, S,,, were taken to be the theoretical values for the 
Slater AO's, the effective nuclear charges being 1.00 
and 3.25 for hydrogen and carbon, respectively. The 
one-center electron repulsion integrals were calculated 
by the well-known approximation due to Pariser,7 

(rr rr)_ A,, (1) 

where I, and A,. represent the valence state ionization
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potential and the electron affinity, respectively, of the 
atomic orbital (AO) r.8 For the two-center electron 
repulsion integrals, we

tused the Ohno approximatibn,° (rrIss) =1[(a,2-P.Rn2)_1I2~-(dz+R„2)-4/2J, (2) 
where R,. is the distance between the nuclei on which 
the AO's r and s are centered. The multicenter electron 
repulsion integrals were then calculated by the Mulliken 
approximation,” 

(rs tu)=4SS,Stu[(rrI 10+ (rr uu) 
-1-(ss 10+ (ss i uu, i . (3) 

Let N, be the number of valence electrons on the 
AO r, and ZA be the net core charge of the nucleus A. Th

e core Harni ton.iln n-i trix e!g,,,,rtc,re kl..,  arr-r••::::imat;:,'_ 25 
uT — Urr± E (B I fY),(4) 

BoA. 

        (B rr) = — La N,(rr { ss), (3) 

U,r= —I,— (N,-1) (rr I rr) 

          — EA N,'[(rr I r'-') I .^1-1 '6 
r/per 

and 
Hr,= z Sr,[— P(ZA-I-Zn) (rr I ss) — (B I rr) 

                 — (A I ss) -FHrr+H ],(7) 
where P is an empirical parameter and is taken to be 1
.40.6 In Eqs. (4)—(7), it is implied that the AO's 

r and s are centered on the nuclei A and B, respectively, and the superscript on E in Eqs. (5) and (6) indicates 
that the sum is taken only over the AO's centered on th

at nucleus. The present treatment is different from 
the previous one& in the introduction of the one-center 
exchange integrals (re I rr') evaluated according to

Hinzeeand jaffe,'t and in the estimation of the off-
diagonal core matrix elements, H„ (rs), for which 
the previous treatments adapted the approximation by 
Wolfsberg and Helmholz i2 Furthermore, in order te. 
use the nonzero (rr' rr') without violat . g we invari-
ance of the basic integrals on the rotation of the co-
ordinate axes for p orbitals, the one-center integral 
(rr I r'r') for the two different p orbitals centered on 
the same nucleus, e.g., p, and pu, was calculated by 

(i'x z I Pyp,) = (P4'2 I P.M —2(P zPv  I pzp;). (8) 
 using the above integrals, the molecular orbital 

4,i waq nhraineri through the SCF calculation as the .. 
linear combination of atomic orbitals Xr, 

O,= E C,' ,,(9) 

and the ground-state electronic energy Eel was calcu-
lated by 

Eel= E P„Hr,-I`a E Py,P,u[(rs I tu) — (rt I su)J, 
t,u 

                         (10) 
where 

000 

P,,= 2 E C,'Ca'. (11) 

The ground-state energy for a given nuclear configura- 
tion is then given by 

E= Eei± r EABa„re, (12) 

where E"ABoore represents the core repulsion energy be-
tween the nuclei A and B, and the sum is taken over 
all possibl.- pairs of nuclei in the molecule.

        CORE REPULSION ENERGY 

  There have been several ways of estimating the core 
reua;&rn energy. in ibe literature. For the it-electron 
sy-stent, Parr and Pariser interpreted it as due to the 
positively charged holes vacated by the it electrons 
and evaluated it by the corresponding two-center eiec-, 
tron repulsion integrals." On the other hand, the core is 
just a nucleus for hydrogen ai'd a nucleus surrounded 
by a. r.&%d is,l";-iiti.-rr.nrF       ~'~~in the present treatment, 
aid .;t seems more reasonable , at first sight, to u c 
simply the point charge approxima tion, 

            LABoore=ZAZtie,IRAB,(13) 

where e is th2 elc redistance                        and Rns is the nistance 
between the nuclei A and B. Segal and Poole el al. 
adopted this approximation and obtained the equilib-
rium bond lengths agreeing well with the experiments 
for a number of rnoieeele„4 The -:iccess of Eq . (13) in 
these authors' method is, however, based on the use of 
the one- and two-center electron repulsion integrals 
evaluated theoretically-by the Slater is and 2s AO's. 
Since the semiempirical evaluation by Eqs . (1) and (2) 

gives much smaller values to these integrals than
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FORCE CONSTANTS OF  ETHYLENE

TABLE I. Internal symmetry coordinates.

Symmetry Coordinate Description Increment

ao

au 

bio

btu 

bxo

bou

Si = ( Ares +Ar24+Ar2s+Arta) /2 
Sx = Arix 
S8 = (4118 ' +4w218) /2 
S4 = (Ara12s+Ara124+ATa124+Aron.) /2 
Ss= (Aril— 19r24+Ar2s— 4r/o) /2 
So= (Avna—A0124+A4a12a-4C21s)/2 
Si = (L111125— 4r4124) /J2 
SO= (Ar3124— 4ron,) / 
So= (Ar,a+Ar,4—Ar2s— Arlo) /2 510 = ?An/2+A4'124— 44'125— 4rp21s)/2 
S,1=Aria—A/24—Ar26+Ar1s)/2 
S12= (A0213— Asoi24— A911,,+Aw,,^) /2

C—FI stretching 

C=C stretching 

CH2 bending 

torsion 

C—H stretching 

CH2 rocking 

CH2 wagging 

CH2 wagging 

C—H stretching 

CH2 rocking 

C—H stretching 

Cx2 bending

±0.1 A 
+0.03 A 
±0.1 rad 

0.2 rad 
0.1 A 
0.1 rad 
0.2/J1 rad 
0.2/ f2 rad 
0.1 A 
0.1 rad 
O.1A 
0.1 rad

 the theoretical values, the core repulsion energy in the 
 present method must also be smaller than that given by 
 Eq. (13), in order that its change on a nuclear displace-

 ment be just canceled by the corresponding change of 
Eat at the equilibrium nuclear distance. From this 

 reason we adopted initially an extended form of the 
 Parr and Pariser's expression, 

EABcore= LA LB N.N,(rr I ss). (14) 

r 

   On the calculation of force constants, the equilibrium 
 structure of ethylene was initially taken from Allen 

 and Plyler's data'4 From the internal coordinates shown 
 in Fig. 1, the internal symmetry coordinates were con-

 structed in the same way as in the previous analysis of 
 the vibrational anharmonicity.15 These coordinates are 

 defined to represent the actual changes of the given 
 structural parameters and are therefore related to the 

 Cartesian coordinates curvilinearly. They are listed in 
 Table I together with their symmetries and descrip-

 tions 16 Distorted configurations of the molecule were 
 then constructed by displacing the nuclei from the 

 equilibrium positions successively along each internal 
 symmetry coordinate, in terms of which the increments 

 were taken as given in Table I. From the ground-state 
 energies for these nuclear configurations, the potential 

 energy curve for each coordinate was obtained, and by 
fitting it to a polynomial of that coordinate, say Si, 

 by the least squares method, the quadratic diagonal 
 force constant, 

K~,= a (a2E/as;z), 

 was evaluated at the minimum of the calculated poten-
 tial. As the polynomial to be fitted, the quartic function 

 was used in general but the sextic function was also 
 used for the totally symmetric stretching coordinates, 

 S1 and S2. 
   Generally, the force constants are required by their 

 definition to be evaluated for the nuclear configuration 
 corresponding to the true minimum of the potential 

 function in the multidimensional space spanned over 
 all vibrational degrees of freedom. The force constant

obtained by the Taylor expansion of the potential func-
tion with respect to a single coordinate satisfies this 
requirement in the case either when the Taylor expan-
sion is carried out at the calculated equilibrium con-
figuration or when the contribution from interaction 
force constants to the potential energy is negligibly 
small. Since we cannot reZard the second of these condi-
tions to be a good approximation, the calculated equilib-
rium configuration is required to agree with the initially 
assumed one in order that the first condition is satisfied 
without the complicated transformation of the origin 
of the coordinate system. On the use of Eq. (14), the 
calculated potential minimum was found very close 
to the origin for the a,CH2 bending coordinate (S3),17 
whereas the potential functions for the C=C stretching 
(SO and the au C—H stretching (SO coordinates 
showed only monotonous increases on the increase of 
the bond distances within the investigated ranges. In 
the curvilinear internal coordinate system, the distance 
between bonded nuclei changes only on the change of 
stretching coordinates. Accordingly, the success for the 
S3 mode and the failure for the S, and S2 modes in 
predicting the correct equilibrium configuration suggest 
that the core repulsion energy estimated by Eq. (14) is 
appropriate for such comparatively large nuclear dis-
tances as those between nonbonded nuclei but is too 
small for such shorter distances as those between bonded 
nuclei. With the purpose to obtain reasonable core 
repulsion energies for both the cases of bonded and 
nonbonded nuclei, we interpolated Eqs. (13) and (14) 
by a two-parameter function, 

EABcore= LA EB NrN4(rr I ss)-{-[ZAZ$e2/RAB 
r • 

   — EA E0 N,N.(rr I ss)] exp(—aABRAB°), (15) 
r e 

where the parameter n was fixed to 1.0, 1.5, and 2.0 
after several trial calculations. When n=1, Eq. (15) 
becomes identical with that proposed by Dewar and 
TClopman in the calculation of the heats of formation 
of a number of hydrocarbon molecules.1B In the semi-
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empirical calculation used in this work, however, rea-
sonable values of the stretching force constants were 
obtained, as shown in the following, only for the cases 
where ns 1. After fixing n to the above values, the 
parameter aAB was adjusted independently for each of 
the coordinates S, and S, to reproduce the correct 
equilibrium bond distances. On using Eq. (15) with 
aAa fixed so as to reproduce the equilibrium length of 
the C-H bond, the contribution from the second term 
to EA$cora was found to be almost negligible at distances 
larger than 1.5 A. This result means that the equilib-
rium H-C-H angle obtained from Eq. (14) is not 
much changed on the use of Eq. (15) for both the 
bonded and nonbonded C• • •H distances, and that the 
difference between Eqs. (14) and (15) is not essential 
for the latter. Accordingly, by assuming a similar situa-
tion for the H. • •H repulsion, we simplified the calcula-
tion by using Eq. (14) for EABcore between nonbonded. 
nuclei. 

       RESULTS AND DISCUSSION 

 It has been pointed out that the values of force con-
stants calculated by the polynomial fitting of a poten-
tial curve are affected seriously by the spacing and the 
spread of the representative points of the coordinate." 
In the present calculation, the uncertainty due to this 
effect is estimated to be 0.1 and 0.05 mdyn/A for the 
G--C and the C-H stretching coordinates, respectively, 0
.01 mdyn• A/rad2 for the CH2 bending and the CH2

rad 

E (calculated);

     rod 

- - -, E (experimental) ;

rocking coordinates, and 0.001 mdyn• A/rad2 for the, 
CH2 wagging and the torsional coordinates. In Table 
II, the calculated force constants for the CH2 bending, 
the C1-12 rocking, the CH2 wagging, and the torsional 
coordinates are shown together with those obtained by 
the analysis of vibrational spectra za For the in-plane 
coordinates, the bending force constants Ku and K,2,,2 
were calculated to be larger than the rocking force 
constants K,5 and K,o,70, as expected from the experi-
ment, but the agreement between the calculated and the 
experimental values of individual force constants was 
not so good for K,,, K10,10, and Kam. From the diagonal 
force constants for the internal symmetry coordinates 
in Table II, the interaction force constants connecting 
the equivalent internal coordinates are obtained by 
the orthogonal transformation of the coordinates given

TABLE II. Angle deformation force constants (in mdyn• A./rad2).

Force constant Experimentalu Calculated

K„ (op CH, bending) 
K,2,72 (b,,, CH, bending) 
K55 (b,o CH2 rocking) 
K10,,0 (b2u CH2 rocking) 
K77 (b,. CH2 wagging) 
K, (b,o CH2 wagging) 
K44 (torsion)

0.765 

0.688 

0.319 

0.266 

0.0999 

0.0735 

0.0685

0.46 

0.50 

0.28 

0.10 

0.082 

0.058 

0.063
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FORCE CONSTANTS OF ETHYLENE

in Table  I. The trans and cis interaction constants for 
the C—C—H angles, ke and ke, are defined by the terms 
contributing to the potential energy, 

ki(142136012s+4124 216)+kc(42134124+A01254210 • 

From the normal coordinate analysis of ethylene mole-
cule,R° it has been established that kc is important but 
k, is not, and the origin of this trans interaction has 
been an interesting problem for the theoretical predic-
tion of force constants of ethylene. The presently calcu-
lated value of k, (0.07 mdyn• A/rad2) agrees well with 
the experimental value (0.065 mdyn • A/rad2), whereas 
the calculated k, (-0.11 mdyn• A/rad2) is much larger 
in magnitude than the experimental one (0.012 mdyn• 
A/rad2)T Thus it seems that any detailed discussion 
on the interaction force constants requires much more 
elaborate treatment than the present one. 

 The force constants for the CH2 wagging vibrations, 
K77 and K3s, were calculated to have reasonable magni-
tudes with the correct order, and the calculated and the 
experimental values of the torsional force constant 1(44 
agree well with each other. Since the first derivatives 
of any internuclear distance RAn with respect to the 
out-of-plane coordinates S4, S7, and 58 vanish for the 
equilibrium configuration, only the first derivatives of 
the core repulsion energy with respect to RAn contribute 
to the force constants K94j K77, and K38, whereas both 
the first and the second derivatives contribute to the 
in-plane force constants. In this respect, the satisfactory 
result obtained presently for the out-of-plane force 
constants is not surprising because the inadequacy of 
the functional form of EABeore (RAn) is supposed to be 
less manifested in the first derivatives than in the 
second derivatives. 

 Although the estimation of the cubic and quartic 
force constants by the polynomial fitting is much more 
difficult than the case of quadratic constants, the in-
spection of the energy curves along various coordinates 
may offer some information on the anharmonicity of a 
calculated potential function. Figure 2 shows the plot 
of the calculated potential energy and its components, 
E,1 and Eoore, against the four valence angle deforma-
tion coordinates, S2, Ss, S1o, and S12. The corresponding 
potential energies may be evaluated in the first approxi-
mation by multiplying the squares of the coordinates 
by the quadratic force constants obtained from vibra-
tional spectra.'° These are also shown in Fig. 2 for The 
sake of comparison. For the ao CH2 bending coordinate, 
S3, each of Eel and Eoore changes very steeply near the 
equilibrium position, but they almost cancel each other 
to give a reasonable energy curve. As expected from the 
dominant repulsion between the hydrogen nuclei at 
the geminal positions, the potential energy curve shows 
the larger curvature in the first quadrant (closure of the 
H—C—H angles) than in the second quadrant (opening 
of the H—C—H angles). Unfortunately, we cannot check 
the validity of the calculated anharmonicity, since the 
cubic and the quartic force constants for the valence

a,

                          rod 

Fie. 3. Potential energy curve 
coordinates: —, E (calculated);--
•—,Eaora.

 ^
X/
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! / 0.4
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0.1 /
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v
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S7 ^»m^ S8 (132g)
0.2
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for out-of-plane deformation 
-, E (experimental); •••, Eet;

angle deformation coordinates have not yet been esti-
mated from vibrational spectra. For the nontotally 
symmetric coordinates, S6, 510, and S12, it is seen that. 
Ed attains the maximum value at the origin, but is 
overcome by the stabilizing effect of Eeore to give the 
symmetrical equilibrium structure. In Fig. 3, the experi-
mental and the calculated potential energies and the 
components of the latter, Eel and Eeore, are plotted 
against the CH2 wagging coordinates S7 and 58. Since 
the quartic force constants for these coordinates were 
estimated to be very small," we calculated the experi-
mental potential energies in the same way as those in 
Fig. 2. From the difference in the change of the inter-
nuclear distances, it is expected that Ecore for a given 
value of S7 is much larger than that for the same value 
of 58, and the former is in fact more than twice the 
latter. However, the sign of Eel is negative for 57�0 
but positive for Sss O, and the net potential energies 
calculated for the displacements along these coordinates 
are not much different from each other in agreement 
with the experiment. 

 In contrast to the cases of the valence angle and out-
of-plane deformation coordinates discussed above, the 
potential curve along the torsional coordinate of ethy-
lene has been the subject of a number of theoretical 
investigations on the electronic structure'a,21_5 In com-
paring the theory with the experiment, however, most 
of the previous authors referred to the torsional force 
constant obtained only by applying the harmonic 
approximation to the indirectly estimated fundamental 
frequency, 1027 cm, in the a„ species. We constructed 
the experimental potential curve in this work by using 
the quadratic and quartic force constants obtained 
from the analysis of the vibrational anharmonicity of 
ethylene" as well as the barrier height for the internal 
rotation obtained from the reaction rate of the cis— 
trans isomerization of 1, 2-dideuteroethylene26 This 
barrier height has been referred to by Charney et al.
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 TABLE III. Parameters in core repulsion energy [Eq. (15) ] and stretching force constants..

Calculated

aAB (in kn)
Force constant 
(in mdyn/A) Experimental11 n=1.0 n=1.5 n=2.0

aee

acB

K2, (C=C)

K,, (dc C—H) 
Ku (b,, C—H) 
Ko4 (bs,. C—H) 
Ku,,, (b,, C—H)

5.861

2.658 

2.777 

2.676 

2.683

1.900 

3.5 

2.339 

2.15 

2.05 

1.95 
2.15

1.844 

4.6 

2.525 

2.70 

2.60 

2.50 

2.75

1.741 

5.8 

2.650 

3.35 

3.25 

3.15 
3.40

• The calculated and the experimental bond lengths are: Ro
c =1.337 A and Rex s' 1.086 A.

in their analysis of the vibrational structure of the ultra-
violet spectrum of ethylene." 

  The torsional potential of ethylene may be expressed 
in terms of the coordinate S4 as 

E(S4)=V1(1— cosS4)+V2(1— cos2S4) 

+V3(1— cos3S4) 
   = K44 S42+K4444S44•(16) 

The force constants K44 and K4444 and the barrier height 
B are then related to V1, V2, and 173 by 

         K44= z (VIm4 V2-T-9 V3) , 

K4444= — (Vl/24--2V2/3+27173), 
and 

B=2(VI+V3). 

From the numerical values K44=0.0685 mdyn. A/rad2, 
K4444= —0.0039 mdyn. A/rad4, and B=0.4486 mdyn• A, we obtained V,, V2, and V3 as 0.2239, —0.02253, and 
0.0036, respectively, in mdyn. A. The resulting experi-
mental curve is shown together with the calculated 
curves for E, Eel, and E00 in Fig. 4. As indicated by 
the relative magnitudes of the quadratic and the quartic

w

 

^
 ^

2.0

1.0

y

| --==^^^ 
/

 S4 tau) rod 

Fie. 4. Potential energy curve for the torsional coordinate: —,    E (calculated); --- , E (experimental); •.• E,,; •—• E„re•

force constants, the experimental potential energy curve 
is quite harmonic except near the top of the barrier, 
and shows an appreciably smaller curvature at the 

potential minimum than at the maximum. It is worth-
while to note that the simultaneous fit of the quadratic 
force constant and the barrier height also requires a 

potential function which is much less anharmonic than 
the simple sinusoidal potential which has the same 
curvature at the minimum and the maximum. On the 
other hand, the calculated curves for Ea and Ecore 
appear nearly parabolic and sinusoidal, respectively , 
and the magnitude of Ea increases far more rapidly 
than that of Eeore on the increase of the torsional angle . 
Hence the anharmonicity of the calculated potential 
function becomes very small, resulting in an excellent 
agreement between the calculated and the experimental 
energies over a wide range of the torsional angle . The 
calculated curve near the top of the barrier is not cor-
rect, however, since the interaction between the ground 
and the excited states is not taken into account in the 

present treatment. 
 For the C eC and the C—H stretching coordinates , Si, 5

2, S5, S9, and Su, Table III shows the quadratic 
force constants obtained from the vibrational spectrai6

Fm.

   2. 

0 

w

I.0

5.

.0

0

 J

 k

1.2 1.3 1.4
.51.6 I.?cc

Potential energy curve for the  C=C stretchin :coordinate: 
--, E (calculated) ; - - -, E_(experimental).
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and the corresponding constants calculated in this 
work. The parameters «Au and it in Eq. (15) are also 
given in Table ITT. It is seen that the force constants 
attain reasonable values when n is 1.5 and 2.0 for the 
C--H and the C=C bonds, respectively, but the equilib-
rium bond Iengths and the force constants cannot be 
fitted to the experimental values simultaneously by 
fixing n for the C=C and the C-I-1 bonds to the same 
value. The potential curves calculated by using the 
best values of n are compared with the experimental 
curves in Figs. 5 and 6 for the C=C stretching and the 
qQ C-1I stretching coordinates, respectively. The ex-
perimental curve for the C=C stretching coordinate 
represents a Morse-type function, 

E(S2) = (K22/a2) [1— exp( — aS2) J2, (17) 

where the parameter a is taken to be 2.0 kJ. This 
function has been assumed in estimating the cubic and 
quartic force constants from the spectroscopic data'4 
The effect of truncating the Taylor expansion of Eq. 
(17) at the quartic term becomes so large for S2> 
0.3 A that the curve based on a quartic function is 
not adequate as the experimental curve to be com-
pared with the calculated. For the;;a, C-H stretching 
coordinate, such the effect of truncation was found to 
be small in the range —0.6 A< S1<0.6 A, and the 
experimental curve in Fig. 6 was calculated by the 
quartic function • 

       E( SI) = -K11S12-{-Ku1S13+KnnSl4, 

where the value of K11 was that given in Table III, and 
according to the previous estimation of the vibrational 
anharmonicity,lb Km and Km/ were taken to be —2.159 
mdyn/A2 and 1.007 mdytl/A , respectively.

3.0

2.a 

0 

w

 a

 .0

a
T

r
9 .... .1.0 ... 1.I ,. 3 T. 0.9 1.0 1.1 l.; 1.3 - L< 

                     RCH CAI 

Ftc• 6. Potential energy curve for the a0 C–H stretching co-
   ordinate: —, is (calculated); • - -, .f (experimental).

  The agreement lJflweer' the exper•mcut. .tr 
calculated potential energies throughout the invcti11-

gated range of the bond length indicates that he use 01 
E°„,,, including two empirical parameter is fairly success-
ful for predicting the anharmonicity of the bond 
stretching potential. It may thus be interesting to see 
if the parameters used for ethylene can fit also the bond 
lengths and the force constants of other molecules, 
especially acetylene and ethane.
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                       CHAPTER 5 

                        CONCLUSION 

 • In Part II of the present thesis , the author aimed to extend 

 the applicability of the  semi,-empirical SCF-MO method for valence 

 electron systems to various molecular properties. From the 

 studies summarized in Chapter 2 and 3, explicit accounts of a-elect-

 rons (not like in n-electron theory) and of the electron-repulsion 

 terms (not like in the extended Mickel theory) are shown very impor-

 tant. a-electrons work generally to relax the localization of 

 charge in carbonium ions; the electrons on protons are found most 

 important for this role. In the studies of doublet radicals, 

 the empirical McConnell rule becomes unnecessary and direct calcula, 

 tion of the hfs constant becomes possible by including a-electrons; 

 thus, in allyl radical, different hfs constants are obtained for 

 the two terminal methylene protons, agreeing with experiment. 

 The explicit inclusion of the electron repulsion term is important 

 in carbonium ions, since there, the electron repulsion energy 

 diminishes by one electron, comparing with the neutral molecules. 

 This effect is shown most important in the<orbital energies and 

 transition energies. The importance of this term in doublet 

 radicals is obvious since the spin-polarization mechanism comes 

 from this term. 

     From the studies given in Chapter 3, Section 1, the method 

proposed in Part I, Chapter 2 to separate the UHF spin densities 

into mechanistic contributions is proved useful in the actual 

 calculations. From this it is shown that the spin-polarization 

(SP) mechanism is important even in cases where the spin-delocali-

 zation (SD) mechanism has been considered dominant. In methyl 
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and vinyl radicals, their hfs constants and mechanistic contribu-

tions are shown to be strongly angular dependent. From  the_exami-

nationsof this dependence and of the potential energy curve, the 

C-C-Ha angle of vinyl radical is predicted to be nearly 1350. 

Moreover, for the hydrogenated pyridine, similar treatment predict-

ed its preferable structure to be N-hydrogenated configuration. 

     From the study given in Chapter 3, Section 2, it is found out 

that the observed relation, Q(0) = Bo + B1 cos28 , for the angular 

dependence of the !3-proton hfs constant is explained as the sum of 

the following two equations, 

QSD) = (Bl)SD Cos2 e , 

QSp(0) = (BO)Sp + (B1)SPcos2, 

where 0 is the rotational angle about C-C bond . 

     From the study given in Capter 4, the present valence electron 

SCF-M0 method is proved applicable also to the calculation of 

force constant of ethylene by a small modification in the core -

repulsion energy. Since the core-repulsion energy becomes infinite 

when two cores approach , this modification is reasonable. The cal-

culated force constants agree satisfactorily with th
e experimen-

tal values. Note that this method can give rea
sonable potential 

curves even for the stretching coordinate .
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THE

            PART III 

 THEORETICAL STUDIES ON 

THE ANISOTROPY OF THE INDIRECT NUCLEAR 

    SPIN-SPIN COUPLING CONSTANT 

PROBLEMS IN THE STRUCTURE DETERMINATION OF 

MOLECULE DISSOLVED IN A NEMATIC SOLVENT





 CHAPTER 1 

                      INTRODUCTION 

    Since the experiment of Saupe and Englart,1 active investiga-

tions of the molecules dissolved in liquid-crystal solvents have 

been carried out by the nuclear magnetic resonance (NMR) technique. 

Anisotropy of the indirect nuclear spin-spin coupling constant 

(Janiso) is one of the informations obtained from the NMR spectra 

of the molecule dissolved in a nematic solvent. The relation bet-

ween J
aniso and the experimental NMR splitting is illustrated in 

Fig. 1.

NMR spectra in liquid crystal solvent

J*13)_anisol Cxr: 

          sensitive 

insensitive

[ Total anisotropic coupling I 

[ Direct coupling I

sensitive

 _a[Molecular geometry

Fig.

 Possible difference originates from; 

(i) gas liquid crystal 

   (ii) molecular vibration 

<1/r3> : NMR 

41/r2> : microwave 

<r>  : electron diffraction 

1. INFORMATION DIAGRAM 
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    As seen from Fig. 1, the value of (JAB)anisobetween nuclear 

 pair A and B cannot be determined without the supplemental data 

 on molecular  geometry. The reverse of this is also correct. The 

 data of molecular geometry usually used is that determined by the 

 microwave or electron-diffraction method in gas-phase, which may 

 be different from the geometry of the molecule under consideration 

 by the following two points; firstly, the states are different, and 

 secondly, the experimental techniques are different, causing dffer-

 ences in the vibrational averaging of the internuclear distance , r. 
     In Chapter 2, Section 1 (published in Chemical Physics Letters , 

, 607 (1967)), a molecular orbital study of the anisotropy of the 

 indirect nuclear spin-spin coupling constant is given . Since 
there was no theoretical study on this subject , the author firstly 

 formulated three mechanisms important to J
ani soby the usual sum- 

over-state perturbation method . They are Fermi-spin dipolar cross 

term, spin dipolar term and orbital term . Relative importance of 
these mechanisms is investigated . 

     In Chapter 2, Section 2 (published in Chemical Physics Letters
, 

6, 541 (1970)), another approach to this problem by the finite 

perturbation method is reported . Since the--nuclear spin-spin 

coupling is due essentially to the spin -correlation in closed-

shell electronic system2 , the finite perturbation method is useful 

as proved in Part I, Chapter 4 . This is also the first application 

of this method to this problem . From this study, the superiority 

of the finite perturbation method t
o the sum-over-state pertur-

bation method is proved in the act
ual calculations . 

    In Chapter 3 (to be published in th
e Bulletin of the Chemical 

Society of Japan) , the order of magnitude of (J
AB)is exten-                                                   aniso 
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sively calculated for various nuclear pairs, by using  INDO-MO's of 

Pople et al.3 From these numerical results and from the experi-

mental examination of the substituent effect on (3CH)aniso in CH3X" 

series,4 it is concluded that the experimentally estimated value 

of the 13C-H coupling anisotropy in CH3F as large as 1890 Hz5 is 

erronious and that these values still contain some other more 

important effects than the electronic one, such as those given 

in Fig. 1. The relative importance of these two effects is diss-

cussed by using the relevant data available at present and then, 

it is concluded that the change in the molecular geometry from gas 

state to the solute state in nematic solvent is the most natural 

origin for the differences between the theoretical and 'experimental' 

values.
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ANISOTROPY OF THE  INDIRECT  NUCLEAR SPIN-SPIN 

              COUPLING CONSTANT

  Various contributions to the anisotropy of the indirect nuclear spin-spin coupling constant in nuclear 
magnetic resonance are examined and order-of-magnitude calculations are reported for hydrocarbons 
and for methyl fluoride.

1. INTRODUCTION

  Recently, Krugh and Bernheim [1] reported the existence of very large anisotropy of the indirect nu-
clear spin-spin coupling constants of methyl fluoride dissolved in a nematic solvent. Their results 
show that the anisotropy is especially large for the coupling constants between directly bonded nuclei 
(C —F and C—H). In the present paper, the origin of the anisotropy in the indirect nuclear spin-spin 
coupling constant is examined and the orders of magnitude of various contributions are calculated for 
hydrocarbons and for methyl fluoride with rather crude approximations.

2. ORIGIN OF ANISOTROPY 

  The Hamiltonian for the indirect nuclear spin-spin coupling in nuclear magnetic resonance spectra 
is given by the sum of the following four terms E2]: 

i) Terms due to the magnetic shielding of the direct interaction of the nuclear spins by electron orbi-
tal motion. 

   94a) _ (ci10/c) A,,$,krAYBrkArkBA,B)(rkA. rkB)-('ArkB)(113' rkA)],(I) 
91(b) _ (2/3410AVAr-3'A•(rkAxVi) .(2) 

ii) (Electron-spin)-(nuclear-spin) dipolar interaction term. 
912 = 2flft rA[3(Sk• rkA)(1A• rkA)rjA - Sk "'ArkAJ.(3) 

iii) Term due to the Fermi interaction between electron-spins and nuclear-spins. 
g3 = (l6r311/3)ArA6(rkA)Sk'fA.(4) 

In the above equations, A and B denote nuclei and k refers to an electron. Since the indirect nuclear 
spin-spin interaction is a second-order property with respect to the Hamiltonians 91T) , 912 and 913, the 
various contributions to the anisotropy may be summarized as shown in table I. Among these contribu-
tions, the Fermi-spin dipolar cross term is expected to be an important source for the anisotropy of 
the coupling constant between light nuclei, although this contribution is averaged out to zero when the
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                           Table 1 
Origin of the  anisotropy of the electron-coupled nuclear spin-spin coupling constant

Interaction
Fermi 

CZ3

Spin dipolar 

912 gr (a)

Orbital

vIb) 
 I

Fermi
9(3 isotropic aniactropic 0 0

Spin dipolar 
9t2

isotropic and 

anisotrcpic
0 0

Orbitalisotropic and __  CrI)anisotropic' 
  'X(b)isotropic and° — 

                                                                       anisotropic

molecule is rotating randomly. Moreover, table 1 suggests that the anisotropy of the H—H coupling 
constant should be very small. 

  Now, it may be useful to develop these contributions in terms of molecular orbital theory , along 
similar lines to the treatment of Pople and Santry 131. By resorting to rather crude approximations 
((i) use of a single determinant wavefunction, (ii) LCAO MO approximation and (iii) retaining only one-
center integrals), the Fermi-spin dipolar cross term is written as

/,„(2. 3); 
VA$ la a

occ unocc 

= -(6402/15)((sA t 6( FA) (sA)(r-3)B E E (34Eij)-1 Ci
sACjsA(2CipaHCjpaB~CipSBC jp)+ 

occ unoc 

     + (sBI6(rg)Isg)(r"3)A2r;~3c (34Ei 9)-1 CisBCjsB(2CipaACjpaA L Cip13j CJPIIA)l, (5) 
where po.A denote the 2pa atomic orbital (a is x, y or z) of the A atom. ; means the sum over the di-
rections x, y and z except a. The other notations are the same as Pople and Santry's [3]. Further, if 
the average excitation energy approximation and the assumption of the orthogonality of the basic atomic 

((orbitals are made, one obtains (KAB3)aa=(l67$2/15)[($A15(rA) IsA)(r-3)8(34E)`1(21pa8r1sApsB) + 
                                                          (6)                + (581 6(rg) I sg)(r-34 (34E)-1(24BpaA _,~pBpaA)1 

where 

occ 

PsApa2 = 2CisA Cip
aB .(7) 

The other contributions shown in table 1 can also be formutated as above , but they are not given here for 
want of space. From the above equations and table 1, the Fermi-spin dipolar cross term is ex-

pected to make the dominant contribution to the anisotropy of the X—H coupling constant
, where X is a nucleus other than a proton.

3. APPLICATIONS

  Now it may be necessary to estimate the order of magnitude o; each contribution sho
wn'in table 1. Although the anisotropies of coupli

ng constants of 4ydrocarbons ars not yet known
, these are of basic
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                       Table 2 
Results ofKAB (cm-3 x 102Q) for hydrocarbons [directly bonded) a, b)

Bond

Isotropic, (KAB)iso c)

Cale. Exptl.

Anisotropic• )AB

Cale.

Fermi  Spin 
dipolar Orbital Total

Fermi-
 spin 
dipolar

 Spin 
dipolar

Orbital Total

-C-H 

=C-H 

svC-H 

C-C 
C=C 
CzC

44 
58 
87 

55 
97 

219

9.0 
0.0 

0.0 

1.3 

1.0 

5.0

0.0 
  0.0 
  0.0 

  0.0 
-12 .4 

  0.0

44 
58 
87 

56 
86 

224

 41.8 

 52.3 

 83.1 

 45.6 

 89.0 

225.9

11 

10 

 7.6 

29 

34 

38

  0.0 

  0.0 

  0.0 

  1.9 
 -1 .9 

-10 .1

 0.0 

 0.0 

 0.0 

0.0 

18.7 

84.0

11 
10 
  7.6 

31 
51 
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a) The molecular axis is parallel with the bond. 
b) The values of 4E are 15 eV for Fermi and Fermi-spin dipolar cross terms and 10 eV for the other contributions 

[see ref. [3]). 
c) See ref. [3]. 

interest from a theoretical standpoint. Some approximate calculations of these are summarized in ta-
ble 2. In these, we assumed i) homopolar bond, ii) localized sp3, sp2 and sp hybrids respectively for 
carbon in single, double and triple bonds, iii) zero overlap integrals and iv) average excitation energy 
approximation (eq. (6)). The values of the average excitation energies, AE are 15 eV for the excitations 
concerning s-AO (Fermi and Fermi-spin dipolar cross terms) , and 10 eV for the other excitations con-
cerning only 2p-AO's [3]. The one-center integral values are summarized in table 3.

        Table 3 
One-center integrals (au) a)

Nucleus (sA.S'b(rA) 1 sA) T-3,  A

H 

C 
F

0.550 b) 
2.767 

11.966

0.0 

1.692 
7.546

a) Ref. [5). 
b) Slater orbital with Z = 1.2.

  Table 2 shows that the Fermi-spin dipolar cross term is a very important source for the anisotropy 
of the coupling constant, although the orbital contribution becomes important for the coupling between 
triply-bonded carbons. Furthermore, the anisotropies of the C-H couplings are expected to be small 
compared to the isotropic couplings, while those of the (singly, doubly, and triply bonded) C-C cou-
plings are comparable in magnitude to their isotropic couplings. 

  At present, methyl fluoride is the only compound for which the anisotropy of the indirect nuclear 
spin-spin coupling has been observed fl}. Since the anisotropy in the indirect nuclear spin-spin cou-
pling was obtained by subtracting the direct coupling from the observed total anisotropy, some uncer-
tainty of the experimental value still remains owing to the uncertainty of the geometry and of the an-
harmonicity in vibration of the methyl fluoride [1}. Thus, an order-of-magnitude calculation of the ani-
sotropy of the indirect nuclear spin-spin coupling constant may be useful. The various contributions to 
the anisotropy are calculated by using the MO's obtained by the CNDO "2 method E41, without making the 
average-excitation-energy approximation (eq. (5)). The results are summarized in table 4 with the iso-
tropic coupling constants obtained by the same approximate method. 

  Table 4 shows that the Fermi-spin dipolar cross term is an important source for the anisotropy. 
For the C-F coupling constant, both the isotropic and anisotropic couplings are small if compared with 
experiment. (This is mainly due to the large value of the calculated .) The ratio of
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                        Table 4 
Results of KAB  (cm-3 x 1020) for the methyl fluoride with CNDO/2 method

Isotropic. (KAB)iso

Calcd. Exptl. b)

Anisotropic, (Kr - KJ)AB a)

Calcd. Exptl. b)

A-B

FermiSpinOrbital        dipolar Total

Fermi-  spin dipolarOrbital Total 
dipolar

C-F -20.6 
C-H 24.4 
H-F 0.79 
H-H 0.37

3.5 

0.0 

0.0 

0.0

-0 .9 
0.0 
0.0 
 0.0

-18.0 

 24.4 
  0.79 

  0.37

-56.99 

49.27 
 4.10 

 -0 .80

37.2 
-3 .6 
-1 .2 

 0.0

6.1 
0.0 
0.0 
0.0

-1 .1 
 0.0 

0.0 
 0.0

42.2 
-3.6 
-1 .2 

 0.0

246 *46 
626 *43 

 -1.6 t 4.8 

  0.0

a) The direction of the molecular axis is parallel with the C-F bond. 
b) Ref. [1). 

(K„ - Kl )CF/(KCF)iso is -2.3 for the calculated values and -4.3±0.8 for the experimental ones. For the 
C-H coupling, the calculated anisotropy is too small to compare with experiment. Moreover, within 
the present approximations, it is expected to be minus in sign if the molecular axis is taken to be par-
allel to the C-F bond. Thus, at present, it seems necessary to examine more carefully both the ap-

proximations introduced in the present calculations (see the next section) and the experimental values. 
For the coupling constants between non-directly bonded nuclei, the calculated anisotropy is small as 
may be expected from eq. (6). The anisotropy of the H-H coupling constant is expected to be zero with.-
in the present approximations.

4. DISCUSSION

  The large anisotropy of the C-H coupling constant of methyl fluoride reported by Krugh and Bern-
helm [1] cannot be interpreted from the present calculations. Of the previous approximations (section 
2), the one-center integral approximation seems most drastic. Then we examined the effect of the two-
center integrals of the type, (2s(C) ( 6(r H) I sH), (2pa(C) I (5(rH) I sH) and (2pr(C) I (5(rH) I sii). The correc-
tion due to these two-center integrals to the anisotropy of the C-H coupling is only 2% of the one-
center contribution. 

  It should be emphasized that the figures given in table 4 are results which are very sensitive to the 
approximations introduced in the molecular orbital calculations and are therefore subject to considera-
ble error. It seems necessary to use more reliable molecular orbitals. such as non-empirical molecu-
lar orbitals, and a more refined method. Further experimental study, especially for hydrocarbons, 
would be very valuable from the theoretical standpoint *. 

  The authors thank Dr. A. Imamura at the National Cancer Center Research Institute, who kindly car-
ried out the CNDO/2 calculation on methyl fluoride. They also thank Professor A. D. Buckingham, who 
kindly informed them that he and his collaborator, I. Love, have also reached very similar conclusions 
to the present ones.

. Experimental values of the anisotropy of 13C-H indirect spin coupling constants in some methyl derivatives have 

 recently been obtained by the present authors. The manuscript is now in preparation.
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ANISOTROPY OF THE INDIRECT 

 II. TREATMENT BY THE

NUCLEAR SPIN-SPIN COUPLING CONSTANT, 

FINITE PERTURBATION METHOD

  The finite perturbation method is applied to the calculation of the anisotropy of the indirect nuclear 
spin-spin coupling constants. For CH3F, all the elements of the calculated coupling tensors become 
larger than those reported in Paper I of this series. However, for the C-ff coupling anisotropy. the 
calculated value is stilt too small to compare with the experimentally estimated value as large as 1890 
Hz. It seems that the effects other than the electronic one is important.

  The finite perturbation method (FPM), theoretically equivalent to the coupled Hartree-Fock pertur-
bation method, has only been used for the calculation of the electrical polarizabilities [2,3j and shield-
ing factors [4] of atoms and molecules. However, more recently, Pople and his co-workers applied this 
method to the calculation of the isotropic nuclear spin-spin coupling constant, stressing many important 

advantages of this method [5]. We have investigated the possibility of applying it to the calculation of the 
other properties of atoms and molecules. In this communication, the FPM is applied to the calculation 
of the anisotropy in the indirect nuclear spin-spin coupling constant which has attracted attention be-
cause of the experimental studies of high resolution nuclear magnetic resonance (NMR) spectra in nem-
atic solvents [6]. 

  The t;:eory of the indirect nuclear spin-spin coupling constant, originally formulated by Ramsey [7] 
is based on the three types of interaction: 
1) an electron orbital-nuclear dipole interaction 

    `}a) _ (ea/c)
A,B,kvAYBYkAVkBtAfB) ( rkA•rk8) - (IA' rkH) (f B' rkA) )'

   7(1))_ (21a/i)A YArkA'A(rkAx Vk)' 
A,k 

ii) a magnetic dipole interaction 

   SLZ   
kyA[3(SkrkA) (1ArkA)rkA- SkAr-3                                                      kA. 

iii) a Fermi contact interaction

ge3 = (16n0?Z/3) kYAg(rkA)Sk•/A. 
  These one electron operators d4' be grouped into two classes: a spin independent operator, RI, and 
spin linear operators, 47C2 and 91.3. In the FPM, when the perturbation belongs to the former type, we 
use the restricted Hartree-Fock (RHF) wavefunction since Prf (SC F) is expressed to first order as a 
sum of the unperturbed wavefunction'Y1).f and the singly excited singlet wavefuncti'ns [eq. (1)]. This 
point may easily be understood from the I3rillouin's theorem. 

* Part II of ref . (II which is hereafter called P per 1.

111



     rf(SCF) _~of+ CikIS. ) , ISik) I...`Picok12(a~-(3a)...I.(1) 
               ik 

On the other hand, when the perturbation belongs to the latter type, the singlet wavefunction for the 
ground state gets mixed with the singly excited triplet wavefunctions. As shown by our previous study 
[81, the same can be done more easily by using the unrestricted Hartree-Fock (UHF) method, since 

 r1(2)       uhf-~I,4+GiCiITi)+... ,IT. I...Aiviv2(a13+,3a)...I, 
             i where ITi) is the triplet function. Thus the UHF method is applicable to the perturbation of the latter 

typ, 
  The origins for the anisotropy of the indirect nuclear spin-spin coupling constants have already been 
studied in the previous report of this series. (See table 1 of paper I.) Among those sources, we formu-
late here the Fermi-spin dipolar interaction term rather fully along the line of the FPM. Taking the 
fixed magnetic dipoles uA and AB oriented along the z direction, the total hamiltonian is given by 

9C = 910 + p ACKA + A B9CB-1-(3) 

where 

A 2f3 E [3(SkrkA)ZkArkA- SkzrkAJ'(4)

96B (161Tf3/3) 8(rkB)Skz •(5) 

In the FPM, the zz-component of the reduced coupling constant tensor KAB (the coupling constant per 
unit magnetic moments) can be written as 

(KAB)zz =[ a uA(*OIA, 0) I% *PA, 0))1u0,(6) 
where '(LA, 0) is the wavefunction when only the spin dipolar perturbation is present at nucleus A and 
can be calculated by means of the UHF method. The Fock operator for 'P(u.A, 0) is 

N    F(1) - hcore(1) +Ag( (1) _ E (X.(2)I~"12(1-P22)IXj(2)) .(7) 
                              7=1

where xiis the UHF spin orbital. On practical calculation, we adopted the one-center integral approxi- 

mationfor the atomic orbital (AO) matrix elements of 9CA and 9CB. Then we obtain from eq. (6) the fol-
lowing; 

    (KAB)zz = (16r/15)(32(r-3)AS2 (0)CahAp5~sB(hA)hA=O.hA = (2/5)3zA,3)A.(8) 
The spin density at the sB AO, psBsB(hA) is calculated by adding the small quantity hA to the diagonal 
2pxA, 2pyA and 2pzA elements of the Fa matrix in the ratio of -1:-i :2, respectively and at the same 
time, by subtracting the same quantities from the corresponding elements of F13. The physical meaning 
of eq. (8) is that adding the perturbation hA at nucleus A, the orbitals of atom A are spin-polarized and 
this effect propagates to nucleus B, resulting in the induced spin density at nucleus B, and the coupling 
is calculated by taking the derivative of the spin density psBsB(hA) with respect to the added perturba-
tion hA. The xx-, yy- components of the coupling tensor A AB are derived similarly by rotating the 
x,y,z suffixes. Note that the same interaction can be obtained by interchanging the terms ILAgtA and 
pBB in the above treatment. In this case, the result becomes 

(AA13).:z=(16/15)r~(r-3)AS(0)[t,2p:-AzA(1lB)-P~AtiA(hB)-RyAVA(hB)) ]11B0, 
 hB (8'3)7;Q1,4B4(0),(9)
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where  hB is added to the diagonal sB element of the Fa matrix and is subtracted at the same time from 
the corresponding $3-element. 

  The other spurces of the coupling constant tensor can easily be formulated as above by means of the 
FPM, and we give here only the resultant formulae. The spin dipolar contribution to the element of 
KAB is given by,

AB) -e2(r'3)A(r-3)B[HhA-PliB B(hA1)ihR1=0 
         + (8/25)i32(r'3)A(r"3)B[ahA2p~BSB(hA2) JhA20 

         + (4/25)lj2(r-3)A(r"3)B an~2RBB(hA3) ° RBr)B(hA33 "P$CB(hA3)) ]kA3=0, (10) A3 

    hAl= hA2= (3/5)/3AA(r-3)A'hA3= (2/516r1A(t'-3)A 

where the suffixes (, ri and C) appearing in the right-hand side of eq. (10) correspond to (2px, 2py and 
2pz). Practically, the above three terms in eq. (10) are calculated sepa ately. That is, ptil:3A1) is calculated by adding hAl (-hAl) to the FfrjAtAd''Ar1AtA4A andA0?A) elements,p4BsB(hA2) by 
adding1442(-hA2) to the FAA andFicA (_AkA andAgA) elements, and the third term, 
2ptBtB(hA3) - pBr)B(hA3) - jot BC/(hMis calculated in the same way as in the Fermi-spin dipolar 
cross term req. (8)}.For the orbital term, the RHF method i

lls employed and hA becomes imaginary [9].    (KAH)t4 = 16112(r-3)A(r3)B[Bf-rm(TC'.'BCir (hA))11A-0,hA= 213A (r-3)Ai 
where hA is added to 'F gAfA and -hA to F fA A. 

  In the present communication, the abo,, e treatment is applied to the calculation of the coupling con-
stants of CH3F and the results are su.mma.ized in table 1. In these we used the INDO method of Pople 
et al. [101, and the values of integrals introduced by perturbation are the same as those given in table 3 
of paper 1. The values in parentheses are those calculated by the method reported in paper I. As can be 
seen from this table, the Fermi and the Fermi-spin dipolar cross terms make the dominant contribu-
tions to the isotropic and anisotropic couplings respectively. Note however that, for the C-F coupling, 
the other terms make 10-15% contribution to the total isotropic and anisotropic coupling constants and 
are not negligible. As shown by Pople, McIver and Ostlund [5), the agreement of the calculated isotrop-
ic C-H coupling constant with the experimental value becomes fairly satisfactory in this FPNI treatment

Results of JAB a)

            Table 1 

(Hz) for the directly bonded nuclei in CH3F with INDO MO's 

Isotropic (7AB)iso

A-B Fermi Spin dipolar Orbital Total

0(0) 

15(9.4) 

Anisotropic

   0( 0) 

-15(-6.3) 

        J1) AB

145( 75) 

07(- 96)

Exptl. b)

C-H 

C-F

147( 75) 

- 97(-99)

14S.8 

-161.0

A-B
  Fermi 

Spin dipolar
Spin dipolar Orbital Total Exptl. b)

C-H 

C-F

- 19(-11) 

208( 94)

0(0) 

 26(16.2)

0( 0) 

27( 4.5)

19(- 11) 

261( 115)

. I3(3 

700 - 1'30

a) JA (h/2A)YAYBKAB. 
b) Het. [6). 
s) The axis is chosen to be par.ttte( with tho motccut::r symmetry axis.
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However, for the anisotropy of the C-H couplings, the disagreement between theory and experiment is 
still extraordinary even in the present FPM treatment as in the previous one reported in paper L A 

 uimilar discrepancy was also reported by Barfield by means of the valence-bond method [11]. It seems 
that these discrepancies between theory and experiment are far beyond the accuracy of the calculated 
values. Since the anisotropy of the indirect coupling was obtained experimentally by subtracting the di-
rect coupling anisotropy, calculated with the gas phase microwave geometry, from the observed total 
anisotropy, some uncertainty may still remain owing to the neglect of the vibrational effects and of the 
change in molecular geometry from the gas state to the solute state in nematic solvent [12J. Thus, at 
present we believe that this discrepancy may suggest that the experimental values of the coupling aniso-
tropy still contain some important effects other than the electronic one. In fact, the substituent effect 
to the C-H coupling anisotropies of the methyl derivatives, obtained from the NMR spectra by using gas 
pha'se microwave geometry [12}, was extraordinarily large to interpret only from the electronic effect, 
and then a possibility of change of molecular geometry in nematic solvent from that in gas phase was 
suggested previously [12J. For the C-F coupling constant considerably large anisotropy can be expected 
from the present calculation although it is still small to compare with experiment. 

  Now, compare the present results with those calculated by the method reported in paper I: the signs 
of coupling constants obtained by these two methods are the same, but the absolute values obtained by 
the FPM are about 1-5 times as large as the ones obtained by the method reported in paper I. Since the 
FPM is equivalent to the coupled Hartree-Fock perturbation method In the small perturbation limit, and 
since the previous method is almost equivalent to the alternative uncoupled Hartree-Foek perturbation 
method of Langhoff et al. [13J, this refinement in the FPM may be attributed to the inclusion of the self-
consistency requirement for the calculation of the coupling constant. In fact, a similar trend was also 
seen in the model calculations [131 of the properties which lay stress on the electron distribution near 
the nucleus, as the present coupling constant does. 

  More details of the present method and fuller examinations of the coupling anisotropy will be pub-
lished in the near future.
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THE

       PART  111, CHAPTER 3 

      FULLER EXAMINATIONS OF 

THE ANISOTROPY OF THE INDIRECT NUCLEAR 

    SPIN-SPIN COUPLING CONSTANT 

PROBLEMS IN THE STRUCTURE DETERMINATION OF 

MOLECULE DISSOLVED IN A NEMATIC SOLVENT -





Anisotropy of the Indirect Nuclear  Spin -Spin Coupling Constant 

III, Problems in the Structure Determination of the Molecule 

Dissolved in the Nematic Solvent .

Introduction

     Since the experiment of Saupe and Englert,1'2)active 

investigations of the molecules dissolved in the liquid-crystal 

solvents have been carried out by the nuclear magnetic resonance 

(NMR) technique.3-5 In these, the chemically fundamental data 

such as the molecular motion and the molecular geometry in 

liquid phase are now more and more accumulated, in addition to 

the more detailed knowledges of the NMR parameters than those 

available by the usual NMR measurements in isotropic liquid 

phase. However, some troubles exist in the determination of 

molecular geometry.- Namely, ,in order to calculate molecular 

geometry (more strictly, ratios of the geometrical parameters) 

from spectral splittings one needs the value of the anisotropy 

of the indirect nuclear spin-spin coupling constant (J),36) 

and the most frequent assumption has been to neglect the 

anisotropy of the indirect coupling constant. However, the 

molecular geometries obtained under this assumption have sometimes 

e 
differAd slightly from those obtained by the other measurements 
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gas  phase molecules (e.g. electron diffraction method, microwave 

method etc.).6,7) On the other hand, if one assumes that the 

geometry obtained by the other measurements in gas phase can be 

used without any corrections, one may ca'Lculate the anisotropy of 

the indirect coupling from the spectral splittings. This 

                                                      8) tr
eatment, however, has sometimes given extremely large anisotropy. 

     To settle.these situations, one must clarify the following 

prablems. (1) Is the assumption that the anisotropy of the 

indirect coupling is nearly zero valid? (2) If this assumption 

is valid, why the geometry obtained by the NMR in liquid crystal 

solvent differs from those given by the other measurements in gas 

phase such as the electron diffraction or microwave techniques? 

     The main purpose of this series of investigation9,10)is to 

settle the first problem above fromihe theoretical standpoint. 

In Paper I of this series,9)possible origin of the anisotropy of 

the indirect coupling constant has been examined with the, 

molecular orbital (MO) method. Among these, Fermi-spin dipolar 

cross ,term is shown to be an important source of the coupling 

anisotropy between singly-bonded nuclei. For doubly and triply 

bonded nuclei, orbital term ,is also found to make important 

contribution. However, for the directly bonded 13C-H coupling 

in CH3F, the calculated anisotropy was too small to compare 

with the experimentally estimated value as large as 1890 Hz, 

obtained by assuming the microwave geometry.8a) Similar results 

were also obtained in Paper II of this series10)by the more 

refined treatment, by Barfieldil) with the valence-bond method 

and more recently, by Buckingham and Love12)by the similar 

molecular orbital treatment. 
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     In the present paper, we  examine further the above problems 

(1) and (2). In the next section, the theoretical background of 

the coupling anisotrepy is described briefly and then it is applied 

to the various molecules by using the INDO M0's of Pople et ai..13) 

Especially for the directly bonded 13C-H coupling anisotropy, the 

substituent effect in the 13CH3X series41will be fully discussed. 

From this a conclusion about the 13C-H coariing anisotropy will 
P 

be:deduced. Another important aspect invoked experimentally is 

the coupling anisotropy between F-F nuclei.8b-8d1 Then we turn 

to this problem at the end of this section. In the last section, 

we examine the above problem (2). The im?lication of this 

problem is twofold; the vibrational effect and the effect due to 

the structural change from gas phase to the solute state in a. 

nematic solvent. The relative importance of these two possible 

effects is examined.

                   Theoretical Background 

    The important part of the theory of the anisotropy of the 

indirect nuclear spin-spin coupling has already givein 1a-per I 

                                                                                 ~ of this series and more recently by'Buckingham and Iove12)~•rith 

the similar molecular orbital treatment. Then we o`,ly summarize 

here the important aspects relevant to the following discussions. 

     As shown in Paper I, the anisotropy of the indirect coupling 

originates from the three mechanisms: Fermi-spin dipolar cross term, 

spin dipolar term and orbital term.. In these, the Fermi-spin 

dipolar cross term is averaged out to zero when a molecule is ran- 
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domly  rotating,15) These contributions can be developed in terms 

of the molecular orbital theory, along similar lines to the treat- 

ment of Pople and Santryl6, For notational convenience, we intro-

duce a reduced coupling constant CB defined by 

     (KAB=(2T;/1 B)`~AB(1) 

First we set the following three approximations (Level A approxima-

tion). (1) We use the sum-over-state perturbation method, making 

the'single Slater determinant built up from the SOF MO's as zero-th 

order wavefunction. An improvement over this sum-over-state 

perturbation method may be achieved by using the finite perturbation1'7) 

(coupled Hartree-Fock18~ method, wnich was the content of Paper II 
of this series. (2) LCAO-MO approximation. Actually the INDO 

SCF-MO's expanded'by all the valence atomic orbitals (AO's) will 

be used. (3) One-center integral approximation. This approxi-

mation may be crude especially for the coupling tensor between :. 

directly bonded nuclei. However, since all the Hamiltonians 

considered here (Eqs. (1)-(4) of Paper I) lay stress on the electron: Lc 

structure in the vicinity of nuclei, and since we use the INDO MO's 

based on the zero-differential overlap approximation (theoretically 

based on the orthogonalized AO's191), this approximation may be 

approved.9 Note that under this approximation, the anisotropy 

of the coupling constant between two protons becomes zero , which 

may be justified from the study of Bar _. .d,11 

     The elements of the coupling tensor obtained under the 
•                       

Level A approximationare given, for example, for the Fermi-spin 

dipolar cross term as; 

11R



            /occ YeCC    (146(23)>p(d_((42/52,,40(°)<r-3)2. C  34E. ~disA 

x(.2C.n C, fc a- (interchange term of A and B~ 

(2-a) 

                                                      cc vac 

   O/<AB(2.3))da =-(321W/')3 ,4(o)<r-3)a 2 2"C34EC~~)Gs C-5- 

   X (CiPotl3C~P~a+CiPOeGiPotB)+interchange term of A and133 
                                                                 (Z- b) 

).J: othor contributions are summarized in Appendix . In Eq. (2), 

SA (0)
A~c~C1Y'R)s),SAandoo are the s-type AO and ,2/90cAO 

 “Ais x, y or z) centered on the atom A.
)means the sum over                                                       cd 

the directions x, y and z except (W. The other notations are 

uhe same as Pople and Santry's.16) 

     In the following applications we use the equations obtained 

:_n(]er the Level A approximation. However, it is sometimes 

convenient to set further approximations, which enables us to 

aLe i.-:;,ii ,'ie d "chemical picture" about the mechanisms of the 

co=inc to teraction . These further approximations added to 

-:L 
v,=1 A approximation are as follows. 

 c.) ..vere,~e excitation energy (z13) approximation.20J21) 

   f='p i.5)  Zero-differentialrer~tia.loverla'ZDO) approximation.~ 

orcater we call this level of approximation as Level I  

Iplor oximation, where the elements of the coupling tensor for the 

Perri-spin dipolar cross term becomes 

 (/KAa(2 '?)=(/difit)s , (a)<r-3>5(34E71(2144po(e-'PA~                                          P~~ 

+ (interchange term of A and B) 

(3-o) 
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 CIKA8C2'3) =Ob94324-)54 (o)<r-3>8 (3ZE ml'°SAPa' 01313 
(of.) 

                       + [interchange term of A and B] 
(3-b) 

The other 'contributions are summarized in Appendix. In Eq. (3), 

PSAVdB denotes the bond order between sA and 212dB AO's. , 

PSAPatp ̀  .2 2GsACjP(1-) 

When the localized AO's illustrated in Fig. I are introduced, 

the chemical picture of the coupling mechanisms 

becomes clear. Namely, each contribution to the 6'a°-element of 

the coupling tensor, (J AB•orbecomes proportional to the 

following (sums of) squares and/or products of the AO bond orders. 

(Fermi term) oC P2 . 
                           ss, 

    (Fermi-spin dipolar cross term] cc P26, +tinterchange term] 

Spin U'....N.,iF;' r term j >,~~ CP` Pr,-~~ 

j Orbit al to rra 3 aoi

 A
Fig. 1.

 0-° 

:::) 11111( 
'SS 

B Localized AO model. 
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 These equations may be considered as s _os`:u r' the "paths" and their 

"width" along which two nuclear moments interact . Note, however, 

that although this chemical picture is very intuitive, it sometimes 

leads to the erronious results, especially for the coupling 

constants between nuclei in polar bond.15) 

     Thus, in the following applications, we use the Level A 

approximation. The basic hO's are calculated by the INDO method 

of Pople and his co-workers. In Table 1 , the values of the 

one-centerir~tegrele,sA(~i)and<rAused in the calculations 

are summarized. 

             Table 1 . One-center integrals (a.u.)a)

Nucleus sA(0) (r3> .

H 

C 

T 

F

0.550b) 

2.(6( 

 4.770 

11.966

0.0 

1.692 

3.101 

7.546

X-H 

As

    J. R. Morton, Chem. Rev's. 64, 453 (1964). 

° later orbital with Z=1 .2. 

                 Results and Discussions 

 Couplin-•s 

 In this section, we discuss the results obtained for the 

 couplings, where X is the nucleus other than the proton. 

set-3n from Eqs. (2), (A-1)-(A-3), the sources of the isotropic 
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 and anisotropic couplings between X and H nuclei are only Fermi 

and Fermi-spin dipolar cross terms respectively, under the one-

center integral approximation. 

     To begin with, it may be useful to see the general trends 

in the coupling tensors of the C-H bonds. In Table 2 the 

 Table 2 Directly bonded 13C--H coupling tensors (Hz) calculated 

  for methane, ethylene and acetylene

Molecule Fermib? Fermi-spin dipolar Total j .eV`" —

Methane 

Ethylene 

Acetylene

 64.6 

80.1 

141.9

 22.0 

 0 

0 

f16.4 
II 

-0.8 

0 

12.0 

0 

0

 O. 

-11.0 

 0 

^J.8 

-8.1 

 0 

0 

 0

0 

0 

^lI.^ 

0 

0 

-8.l . 

 0 

0

 86.5 

  0 

 0 

 96.6 

 -0.8 

  0 

(153.9

0 

0

 0 

53.6 

 0 

-0.8 

72.0 

 0 

 0 

135.9 

 0

 0 

 0 

53. 

 0 

 0 

72. 

 0 

 0 

135.

6 

0

 9

 33.0 

24.5 

15.0

tensor 
a)The x-axis is parallel with the C-H bond. In ethylene, the 

 molecular plane is on the xy-plane. 

b)The experimental values of the isotro
pic coupling constants 

 125.0, 156.2 and 249.0 Hz respectively for methane, ethylene 

acetylene. 
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coupling tensors of the directly bonded  13C-H nuclei in 

methane, ethylene and acetylene are summarized. The xes of 

these tensors are all parallel with the C-H bonds. From Table 

2 , we find the followings: 1) The sequence of change from 

methane to acethylene reflects those expected from changes in 

hybridization for both Fermi and Fermi-spin dipolar cross terms. 

This agrees with the previous results in Paper I calculated with 

the Level B approximation by using the localized AO model. 

2) For the isotropic couplings, the calculated values are almost 

the halves of"the experimental values. This disagreement may be 

due to the toxlarge value of the excitation energy calculated 
by the INDO method and to the neglect of the self-consistency 

requirement22)in the present perturbation treatment. An 

improvement of the latter defect can be achieved by using the 

finite perturbation method, as shown by Pople, McIver and Ostlund17) 

and as discussed in Paper II of this series. 

     In Table 3 , the calculated isotropic and anisotropic 

coupling constants between X-H nuclei in CH3Y (Y = H, CH3, F, I, 

CN, NC and OH) are summarized. As seen from this table, the 

calculated coupling anisotropic between non-bonded nuclei are 

very small in magnitude, comparing with those between directly 

bonded nuclei. This is not always true as will be seen later for 

the F-F couplings. Note that in the present approximation the 

coupling anisotropy between two protons becomes zero. 

     As seen, in Paper I and II of this series, the present 

result of the 13C-H coupling anisotropy of CH3F is also too 

small to compare with the experimentally estimated value, a) 

obtained by using its gas phase microwave geometry in the 
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Table 3 . X-H couplings in the methyl derivatives.

Molecule Nucleia)
 ̀ vX11i)is0 (JEi1aniso .

S

Exptl. Calcd Exptl. Calcd

zz

C2H6

CH4 

CH3CN

CH30H 

CH3NC

CH3F

CH3I

13C-H 

(13o -H) 
 13C-H 

13C-H 

(15N _a) 

(13c _H) 
13c -H 

13C-H 

(13c -H) 

(~5N-H) 
13C_H 

(19F-H) 

13C-H

124.9b) 

125. 0b) 

136.Oc) 

-1.75C) 

-10.Oc> 

141.0b> 

~45.2f)

3.8f) 

148.8i) 

46.3i> 

151.4j)

57.8 

 0.3 

64.6 

58.9 

-0.2 

1.4. 

68.9 

64.7 

-0.1 

-0.6 

75.2 

 7.3

 _50d) 

-108g)

(-401  +142) 
1890 
 +130 

  -'Si, 
  +54 

555k.

 -8.7 

  0.3 

 -9.9 

 -8.7 

  2.1 

1.1 

-10.7e) 

 -9.8 

 -1.8 

 -0.5 

-11.0 , 

 -9.0

0.1009d)

0.0050d) 

0.0997g)

0. 0166i)

0.0323k)

a>The nuclei in parentheses are non-bonding. 
b)N .-Muller and D. E. Pritchard, J. Chem. Phys. 31, 768, 1471 (1959). 
c>W. McFarlane, Mol. Phys. 10, 603 (1966): G. Englart and A. Saupe , 

 Mol. Cryst. 8, 233 (1969). 
d>A. Saupe, G. Englart and A. Povh, Adv. Chem. Ser. 63, 51 (1967). 
e)Pree rot

ation about the 0-0 bond is assumed. 
f)W

. McFarlane, J. Chem. Soc. 1967, 1660. 

g)H . Spiesecke, Z. Naturforsch. 23a, 467 (1968).
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  Table 3, continued 

 h1C . S. Yannoni, J. Chem. Phys. 52 , 2005 (1970). 
i>T

. R. Krugh and R. A. Bernheim, J. Am. Chem. Soc. 91, 2385 (1969). 
j)S . L. Miller, L. C. Aamodt, G. Dousmanis , C. H. Townes, and J. 

Kraitchman, J. Chem. Phys . 20, 1112 (1952). 
k)I

. Morishima, A. Mizuno, H. Nakatsuji , and T. Yonezawa, Chem. 

     Phys. Letters, to be published . 

Jciniro — Tj  (4142re. // uleanS `he ni"lecuict, sywor14-11a^ *S. 

analysis-of the NMR spectrum. Similar results to ours were 

also obtained by Barfield11) and by Buckingham and Love12) . 

These discrepacies between theories and experiments seem to be far 

beyond the accuracy of these calculated values . Moreover, fuller 

examinations of this discrepancy are now possible, since the 

substituent effects to the diretly bonded 13C-H coupling 

anisotropies in the methyl derivatives are obtained by analysing 

their NMR spectra with exactly the same way as in CH3F.14} They 

are also given in Table 3 . 

     First, let's examine the substituent effect on the isotropic 

lC -i couplings,(J
CH)isoe From the experimental values of the 

isotropic coupling constants, we can estimate the order of 

magnitude of the change in the electron distribution near the C-H 

bond induced by the substituent change. It is 2-6%. The=same 

order of change is also reproduced by the INDO MO's, although 

their absolute values are rather small and the details of the 

sequence are errone.ous. On the other hand, the order of magnitude 

of the substituent effect on the coupling anisotropy, (JCiz)aniso 

estimated from the experimental analyses is extraordinarily large 

and is far beyond the usual concept of the substituent effect on 
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the electronic structure. In fact, in order to  expia,%n, this 

substituent effect, extraordinarily large change in the electronic 

structure near the C-H bond must be supposed to accompany . the 

substituent change. However, this contradicts clearly to the 

above order of change seen in the substituent effect on the 

isotropic couplings. Whereas, the calculated substituent effect 

on the coupling anisotropy is the same order as those on the 

experimental and calculated isotropic couplings. 

     From the above discussions, we reached to the conclusions 

that the experimentally estimated values of the 13C-H coupling 

anisotropy given in Table 3 still contain some other more 

important effects than the electronic one and therefore that 

the experimentally assumed 13C-H coupling anisotropy of CH3F 

as large as 1890 Hz8& is erronious. Then, the next problem is 

"what are the more important effects?" This problem will be examinec 

in the next section. Note lastly that the substituent effect 

to the experimentally assumed values of the coupling anisotropy 
aim ost 

i Aparallel with that to the orientation parameters SzZin the 

nematic solvent. 

X-X' Couplings  

In this paragraph we discuss the results obtained for the X-X' 

couplings, where all the terms can contribute to the coupling 

tensor. The calculated values of these contributions for the 

C-C coupling tensors of ethane, ethylene and acethylene are 

summarized in Table 1-. The principal x-axis is parallel with 

the C-C bond. From this table, we find the followings: 1) For 

anisotropy, the Fermi-spin dipolar cross term contribute almost 
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H 
 PO

Table 4. Calculated  13C-~3C coupling tensors (Hz) of ethane, ethylene and acetylene

Molecule Fermi Fermi-spin dipolar 

 xx yy zz

Spin dipolar Orbital Total

Xx YY .7z XXX YY zz xx YY zz

(JCC)iso 

Exptl. b)

 Ethane 

 Ethylene 

Acetylene

6.6 

20.8 

56.1

8.4 

  0.0 

9.6 

  0.0 

9.5 

  0.0

-4.2 -4 .2 

c) (12 .7)d) 

-4 .8 -4.8 

  (14.4) 

-4.7 -4.7 

  (14.2)

0.9 

  0.4 

0.0 

  1.4 

0.2 

  4.2

0.2 ).2 

 (0.7) 

1.3 3.0 

(-2.2) 

6.4 6.4 

 (-6.2)

0.2 _--1.3 --1.3 

  -0.8 (1.5) 

 1.6 -16.3 -1.5 

  -5.4 (8.9) 

34.9 -8.3 -8.3 

   6.1 (43.2)

16 

32 

100

.1 

6,. 2 

.0 

16.8 

.6 4 

66.5

1.3 1.3 

(14.8) 

1.0 17.5 

 (22.7) 

9.5 49.5 

(51.1)-

34 

67 

171

.6 

.6 

.5

b) 

c) 

d)

The 

bond 

R. M 

The 

The

tencors are diagonal. 

. In ethylene, the 

•Lyndcn-Pell and N. 

contribution to the 

contribution to the

, where one of the princiwtl. axes (x-axis) is 

molecular plane is on the xy-plane. 

Shep-ard, Proc. Roy. Soc. A269, 385 (1962). 

isotropic coupling constant. 

anisotropy, J
xx-(Jyy~-J72)/2.

chosen parallel with the C-C



 important rapidly from ethane to acetylene. Thus, Fermi- 

   n ipolar cross term is dominant in ethane, both Fermi-spin 

dipolor cross term and orbital term are equally important in 

e t::,,-lenc, and orbital term is dominant in acetylene. This 

point may easily; be understood from the chemical picture 

obtained by the Level B approximation. 2) Different from the 

cases of the C-H bonds, the magnitudes of the anisotropic 

couplings are comparable to those .of the isotropic couplings in . 

these C-C bond cases. 3) Although the calculated isotropic 

couplings are small comparing with the experimental values 

(this is mainly due to the too large values of 4E1), note 

that even for the isotropic couplings, orbital contributions 

are not negligible for ethylene and acetylene. 

     In Table 5 , the calculated isotropic and anisotropic 

couplings between X-X° nuclei in the C3v-symmetry molecules are 

summarized. For the couplings between directly bonded nuclei, 

the above mentioned features seen in the C-C couplings apply 

without exceptions. However, the calculated value of the 

~3C-F coupling anisotropy is still small comparing with the 

experimental value,8a)although the value of 207 Hz is obtained 

in Paper IIld)by the finite perturbation method. For the 

coupling constants between non-bonded nuclei, their anisotropies 

are very small comparing with those between directly bonded 

nuclei for the compounds shown in Table ... However, this is 

not always true especially for the F-F couplings, which are the 

content of the next paragraph. 
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Table 5. x-x' coupling constants in the methyl derivatives (Hz).

Isotropic, (Jxx')iso Anisotropic (JXX' ) aniso

Molecule X-X'
Calcd

Exptl, Calcd. Exptl.

Fermi

Spin 
dipolar Orbital Total

Fermi-
  spin 

dipolar

Spin 
dipolar Orbital Total

C2H6 

CH3F 

CH3CN 

CH3NC

13"13   -C 

13C -19F 

13C_15N 

1313C 
 C- 

(13C-15N) e) 
?5N=13C 

13C-15N 

(1'~C-13C )

 6.6 

-99.2 

  1.8 

 15.3 

  0.0 

 10.5 

 -2.3 

1.2

0.4 

9.4 

-1.9 

 0.3 

-0.2 

-1.7 

-0.3 

 0.0

-0.7 

-6.3 

-0.2 

-0.5 

 0.0 

-0.3 

 0.4 

0.1

6.2 

-96.0 

 -0.3 

 15.2 

-0.2 

  8.5 

-2.? 

  1.3

34.6a' 

-161 .9b) 

-17.5e) 

57.3d) 

-10.7g)

12.7 

93.5 

-11.0 

16.7 

 -0.6 

-10.5 

-9.2 

1.1

0.7 

16.2 

 3.7 

0.1 

-0.2 

 3.4 

-0.3 

 0.3

1.5• 

4.6 

-27.7 

  1.9 

  0.8 

-25.5 

 -1.0 

  1.1

14.8 

114.2 

-35.1 

18.7 

  0.0 

-32.6 

-10.5 

  2.5

700130b)

'a) R
. 

b> T 

C),'
.

M. Lynden-Bell 

R. K_.rat;h and R 

McFarlane, Mel

and N. Sheppard, Proc 

 A. Bernheim, J. Am. 

Phys. 10, 603 (1966)

. Roy. Soc 

Chem. Soc.

. A269, 385 (1962). 

91, 2335 (1969).



Table 5,  continued 

d) K. Frei and H. J. Bernstein, J. Chem. Phys. 33, 1216 (1963) . 

e) The nuclei in parenth esis are non-bonding. 

t) 1
. Morishima, T. Yonezawa, and K. Goto, to be published. 

g)W . McFarlane, J. Chem. Soc. 1967A, 1660. 

h) J
13 l   CN0.713J13C15T                      ~

Cou . tensor•s of the Molecules Including Fluorine Nuclei

      In the previous section, we saw that the coupling 

anitropies between non-bonded nuclei are very small in magnitude 

comparing with those between directly bonded nuclei. However, 

this is not generally true. Experimentally, Snyder and Anderson 

pointed out that the anisotropy of the fluorine coupling in 

hexafluorobenzene might be considerably large. Similar suggestions 

were also given for symm-tetrafluorobenzene,8b)for 1,3,5-

trifluorobenzene,8b)for 1,1-difluoroethylene8f)and for tetra-

fluoroethylene.8g) 

     Thus we calculated here the coupling anisotropy of the 

several fluorine containing molecules and found that the F-F 

coupling anisotropy is indeed large inasmuch as they are non-

bonding and interestingly that the orbital term is the very 

important mechanism and in some cases makes decisive contribution. 

Moreover, the orbital and spin dipolar ternis are very important 

even to the isotropic F-F couplings. 
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     First,  let's _oonsider the coupling tensors of CH ,F and CH2F2' 

which are given in Table 6 . The folloWin: points a _Le rE.Tkabie: 

1) For the C-F couplings, the anisotropy becomes large (absolute 

value) by the fluorine substitution from CH,F to CH2F2chiefly 

                                                                                                                             . due to the increase in the orbital contribution. 2) The -F-F 

coupling anisotropy is very large comparing with the H-F coupling 

anisotropy in CH3F shown in Table +. This is mainly due to the 

extremely large contribution of the orbital term. 3) Even in 

the calculations of the isotropic couplings, the spin dipolar 

and orbital terms can never be omitted in these cae,,-..23) 7n 

fact, the change in the isotropic C-F coupling constants from 

CH3F to CH2F2 cannot be explained without orbital contributions. 

Loreover, the experimental positive sign of the F-F coupling 

constant of CH2-LTP2cannot be understood until both of the spin 

dipolar and orbital contribu7ions are included. 

     Next, let's comp,?re the 7.1tIoulated coupling tensors of the 

various difluoroethylene shown in Table G , from which we notice 

the followings: 1) For the C-C couplings, the isotropic Fermi 

contribution becomes very large comparing with that of ethylene 

given in table I-. This point may be understood from the s-

electron donating power of the fluorine atom. The other 

contributions are essentially the same in magnitude as those in 

ethylene. 2) For the F-F coupling tensors, the orbital 

contributions are indeed very large. Note furthermore that the 

spin dipolar contribution. is also important in the geminal F-F 

coupling in 1,i-difluoroethylene. The importance of these mechanisms 

is proved b:1 comparing the caLculated and experimental isotropic 

couling constants. Namely, the sign of the geminal F-F coupling 
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Table  6. Calculated coupling tensors (Hz) of the fluoromethanes and difluoroethylenesa.

Molecule Nuclei
Fermi   Fermi-

spin dipolar

Spin dipolar Orbital Total 1so 

Exptl.

CH3F

CHH2F2

F2 C

 F3 

H

C-Fbf

C1-F2

F,-F3

-99.1

-95.3

-103.9

62

 0 

 0

67 

11 

 0'

a 3

1 

8

-0.7 

~0

O 0 

-31.1 0 

 O -31.1 

r 0.0 (93.5) 

11.8 0 1 

-2.2 0 

 O -34.2 

0.0 (100.3)

_0.7 

32.3 

O -6 

0.0 (4

0 

0

 (48.7  )

 0.3 

0 

0

12.5 

0.4 

0

53.9 

13.6 

0

O0 

4.1 0 

O4.1i 
9.5 (16.2) 

..J.1 0 

 1.1 0 

O208) 
5.4 (10.6) 

3.6 0 

46.0 0 

O 9.2 

36.4 (26.3)

r

 f

 -3.2 

0 

0

 -0.4 

-0.7 . 

0

-24.4   4.+

71 

0

O 0 

-7.7 0 

O -7.7 

- G.2 (4.6) 

-2.6 0 

-1.4 . 0 

O -39.9 

-13.9(20.3) 

11.6 0 • 

-31.0 0 

O 286.1 

76.9(-152.

-19.8 

0 

0

-16.1 

 11.4 

 0

-42.1 

 24.9 

 0

0)

  0 

-133.9 

  0 

 -95.8 

8.1 

-127.7 

  0 

-103.7 

  14.5 

 -56.6 

  0 

9.2

0 

0

-133.9

8  (11y  .2_) 

1 0 

7 0 

 -167.1;) 

       7(131.5) 

5 0 

6 0 

126.4J 
2 '-77.0)
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d,

+(150)e)
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 (A) 
4°.

Tabl,-) 6,

cis- 

C2H2F2

/F3 
 cc, 

H /•'1-1

continued

  - .3F4

13.4

C1=C2 

      30.6

C1-F3

F
3

-F

-.70.7 

L).0

12.1 

35.5 

0

(10.2 

0 LO

-5.9 

48.6 

0

r_27.9 

  0

35.5 0 

11.8 0 

O -23.3 , 

0.0 (13.1) 

O 0' 

-5.0 0 

O .-5.2 

0.0 (15.3)

48.6 0 

41.9 0 

0 

0.0 (-8.9) 

O 0 

46.4 0 

O -.18.5 

0.0 (-41.9)

9.2 

 -0.8 

0

ro 

0.1 

`0

5.0 

3.6 

0

 -1.0

3.7 

0

-3.4 0 

7.7 0 

0 

4.2 (7.5) 

-0 11,_ 0 

1.-) 0 

0 2.6) 

1.2 (-1.8)

7.1  0 

7.9 0 

0  .8 

3.7 (?.0) 

-3,7 0 

-6.5 0

0  11~2

1.2  (-3.4)

r_92 .7 

95.6 

L 0

 1.? 

   2.1 

0

-12.6 

 0.6 

 0

5L *.2 

L}2.1

 95.6 0 

-118.2 0 

  O -7.7 , 

 -72.9 (-29.3) 

 -2.1 0 

-10.7 0 

o -0.8 

 -3.3 (7.5) 

  1.0 0 

-10.9 0 

  O --7.5, 

-10.3 (-3.4)

--42.1 

11.9 

 0 

- 2 .6

 0 

 0 

 39.7j

(-B0.0)

-58.1 

130.3 

 0

 42.5 

 2.2 

0

 g4.2 

 52.7 

0

-34.0 

45.8 

 0

127.8 0 

-85,3 0 

o -22.3 . 

-55.2 (-4.3) 

       0 

15.9 0 

0 27.2 

28.5 2l.0) 

56.6 0 

-31.8 0 

0' -1119 0  -115.9) 

-1+5.8 0 

100.8 0 

81.4) 

47.6 (-125.1)

 _124.8g)

-18 .7g)
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cannot be understood until both  of the spin dipolar and orbital 

contributions are included. This was al,::!) seen in CH2F2 above. 

Thus, this point may be generalized to the F-F couplings in C.,F 
fragment. -Likewise, in trans-C2H2F2, the orbital term is the 

dominant mechanism, which gives large negative contribution 

surpassing the small positive contributions due to the Fermi and 

spin dipolar mechanis-::s. In cis-C2H2F2, the calculated contributions. 

to t%..e isotropic F-F coupling due to the spin dipolar and orbital 

termb are very small and almost cancell to each other, resulting the 

positive coupling constant due chiefly to the Fermi contact term. 

However, in this case, the calculated sign contradicts to the experi-

mental negative sign. For the F-F coupling a.nisotropies, orbital 

term is the most ; D ? r rtant mechan.....,m, although Fermi-spin dipolar 

cross term is still important. The spin dipolar term seems less im-

portant in this case. Among the isomeric C2H2F2, the calculated 

anisotropy is large for cis- and l,l-difluoroethylene. That of the 

trans-C2H2F2 is small by cancellation. 

     Lastly in Table 7 ., we summarized the coupling. tensors 

obtained for mono- and di-fluoroacetylene. The following points 

are remarkable: 1) For the C-C couplings, the isotropic Fermi 

contribution increases from acetylene (Table 4) to mono- and 

di--'.T oroacetylene. This is due to the s-electron donating 

power of the fluorine atom. The other contributions are essentially 

the same in manitusde as those in acetylene. 2) For the directly 

bonded C-F coupling alisotropies, the Fermi-spin dipolar cross 

term is the dominant mechanism, while for the non-bonded C-F 

coupling anisotropies, orbital term is the most important 

~echanizm. 3) 202 the F-F coupling, the orbital term is the 
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Table  7  . Calculated coupling tensorAs (Hz) of the mono- and di-fluoroacetylene.

Molecule Nuc1_eib7
Fermi

 Fermi-

spin dipol',.r Spin dipolar Orbital Total

yYc~

J. so

YYc YYC)

Ja
niso

XX yyc~ XX XX XX

C -'3

C2HF

C2F2

C-C 

C-F 

C-H 

(C-F) 

 C-C 

C m Yi 

(C-F) 

(F-F)

71.4 

-64.8 

    153.7 

-18.1 

101.3 

-69.9 

-21.2 

17.7

 9.7 

127.5 

10.7 

6.o 

  8.1 

146.8 

 15.2 

-1.3

 -4.8 

-63.8 

5.,3 

- 2.0 

-4.0 

-73.4 

6 

0.b

0.4 

9.1 

0.0 

-1.2 

0.6 

 9.6 

 0.2 

'.6

5.6 

-1.6 

0.0 

 8.4 

 5.5 

-1.3 

 7.9 

-4.1

 30.3 -5.5 

-16.1 -12.5 

0.0 0.0 

50.0 -22.1 

 29.3 -4.0 

-.17 .3 -6.6 

 43.6 -11.3 

76.6-173.6

111.7 

 55.8 

164.4 

36.7 

139.2 

 69.2 

37.8 

62.5

 66.6 

-142.6 

148.4 

 -34.8 

 98.8 

-151.2 

-37.3 

-159.3

81 

-76 

153 

-10 

112 

-77 

 -8 

-85

7 

5 

7 

0 3 

7 

9 

4

45.1 

198.4 

16.o 

71,5 

 34.4 

220.3 

 70.1 

221.8

a} The 

b1  The 

c) j 
    zz

mclecular axis is parallel 

nuclei ih parenthesis are 

JYy

with the X-coordinate. 

non-bonding.



dominant mechanism for both isotropic and anisotropic couplings, 

as was seen in the F-F coupling of trans-02H2F2. 

     Although too  much confidence cannot lay on the details of 

the numerical values to this level of approximation, it may 

safely be concluded for the molecules studied here that the 

anisotropies of the F-F coupling constants are exceptionally' 

a.rge inasmuch as they are r.on-bonding, and that the orbital 

term is the most importari d,.::nan_ism, although the Fermi-spin 

dipolar cross term is still important. Note furthermore that 

the orbital and spin dipolar terms are very important even to 

the isotropic F-F couplings, and in acme cases, they (especially 

the orbital term) make the dominant contributions over' the 

Fermi term as exemplified abo ve . 24)

The Implication of the Discrepancy between Theory and 

Experiment 

     Now, we return to the 13G-H coupling anisotropy. From 

the above section, it becomes clear that the experimentally 

estimated anisotropies of the13C-H couplings .of the methyl 

derivatives still contain some other more important effects than 

the electronic one. Then, what are the more important effect's? 

To examine the implication of this problem is the purpose of 

this section. 

    First, let's examine ho;i the experimental value of the 

anisotropy of the indiroci, c.D pling constant is determined. 

It is calculated from the spectral splitting (A1)CH obtained 
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by the  NPTR measurement in nematic solvent by using tre following 

formula for the C3v-symmetry rnoleeules;3) 

(JCH)aniso =4(41)) )CH  (`iCH)' ;o - Dc`Ar r / (2335z), (5) 
where SZZis the orientation parameter of the molecular z-axis 

with respect to the applied magnetic field (z-axis is parallel 

with the molecular symmetry axis) and DCHis the anisotropy due 

to the direct couplint throagh nuclear-spin dipole-dip~le 
interaction. To obtain Szzfor the coipouids listed in Table 

3, one assumes that the anisotropies of the indireet couplings 

between non-bonded protons are zero.6'7) This is fully justified 

from the present study and frcm that of Barfield.`" Moreover, 

Krugh and Bernheim25) exa.mined the effects OA the isotropic coupling 

constant, (JCH)i 
sodue to thesolvent change and to the solvent 

phase change from the to I,ae isotropic phases and they 

reached to the conclusion tha these effects should not be 

major factors influencing their final results. Then, the most 

important should be the value of Dcz, on which the value of the 
                                                                           /1 

13C-Hcoupling anisotropy dependssensitively through Eq. '(,E').G5', 

To obtain the values of (JCH) , ., sogiven in Table 3 , Dreevalues 

were calculated from the gcs 'fhase molecular ge .etries 

determined by the microwave technique.However, since the IT R 

measurements of these molecules were carried out in their 

solute states in the nematic  solvents, the Deli ve lue s in Eq. (5) 

must correspond to this state and to this me hod of mcasurement, 

and then some corrections to the microwave g eometries should be 

necessary. Now designate this correction as ,~ (the suffix i1 
xia 

means a special molecule M), which i s given by, 
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  crc. 022: 

 where        Olin 

obtained 

are the diste 

aver 

are

= [NSR geometry in the solute state in nematic solventJ 

[Microwsve geometry in the gas phase3(S ) 
Then, the "apparent" substituent effect on. (JCH) aniso given in 
Table 3 is now reconsidered as representing the substituent 

effect essentially on 21m Possible origins ofQM are twofold: 

(a) The effect due to.the molecular (harmonic and enharmonic) 

vibrati.ons.7d, 8a, 25) In NMR, the measured value is approximately, 

say,i< 1/r3>, while in the microwave spectroscopy, it is 

appreximately <1/r2~.26a,aThus the effect (a) may become imFpor-

tant.26) (r is the internuclear distance and << means the 

statistical average.)27) (b) The effect due to the change in its 

molecular geometry (more rigorously the change in the molecular 

potential function) from its gas state to its solute state in 

nematic solvent.7a,7c) In the following we examine the relative 

importance of each effect above. 

     First, let's examine the effect (a) above. If we assume 

that the orientation parameter S is independent of the internal 

molecular vibration,6)and that the anisotropy of the indirect 

H-H coupling constant is negligible, then we obtain the following 

equation for methyl derivatives;28) 

l'rY'4 i/2m-)(<r2J/rti>-2<i/r3,>)+?6s.d„2 ,.
           Crm4i/2m)<1/~3''zz 

(?) 

and (THH)
zz are the total anisotropic couplings 

ined from the NMR spectra in nematic solvent. rCH and r                                                 HH 

the distances between two nuclei and< >means the vibrational 

         Since the values of (J. )given in Table , 3                                 uHaniso 

calculated by using the r0 structure determined by the



 microwave technique, it is convenient to introduce the  notation;  26a) 

r = ( rn>l/n 

• 

 As a special case, r_2 is ap roxi ,-_tely the rp structure obtained 
 by the microwave technique.26a) Ibers and Stevenson26a)gave the 

 expansion of rn; 

e 2re'(a . ) 

where r e is the equilibrium distance and x is the displacement 
 coordinate (x = r - r

e). From Eq. (12), we obtain 

   r3=r22<x~>/rt ..... 

ra(o.w.)-2 <x2,`/re + _____(9) 
which shows that, when we use the r'0determined by the 

microwave technique in En. (7.),' the main correction due to the 

molecular vibration comes only f 'ca the harmonic one, and thus 

we can eliminate the effect of anharmonicity to first 

approximation. Nate that the va1u ai r is always shorter 

than tha.;; of r -2. 

     For polyatomic molecules the displacement coordinate. xi 

introduced above is given by a ; : near combination of the normal 

coordinates Q,2617) 

By virtue of the separability of normal col-dinates in the 

harmonic oscillator trea.tn ent, the mean-square amplitude, 

<xi2> is given by,26b) 
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where the  mean-=square' amplitude . of a normal vibration, < Qk2 > 

is given by26 

2 hhail  Q
K GOt       8CU

x112KT(ij) 

 0; zero-point vibration) . 
Sn GUK 

In Eq. (ii) 1.1A, is the wave number given in cm-1 unit, T the 

absolute temperature. The values of Lik, PK of the methyl 

halides were summarized by Overend and his coworkers.29) 

     Now let's consider the effect of harmonic C-H stretching 

and H-C-H bending vibrations separately.29> By including these 

correction terms given in Eq. (9) to Eq. (7), we find that 

the value of the first term (D0 part) in numerator becomes 

smaller and the value of the denominator becomes larger. 

(Note that both of these denominator and numerator of Eq. (.'7 ) 

are positive.) Then, both of these corrections make the resultant 

value of (JCH) aniyolarger than the uncorrected one.30' Thus, 
the effect of harmonic vibration does not interpr'et. the 

discrepancy between theory and experiment seen in CH3F and CH3I. 

Moreover, this effect cannot explain the substituent effect to 

(JCh)anisogiven in Table 3. In fact, since the value of1160)2) 

is more sensitive than that of 1UcH 0)) to the substituent 

change, 29) we can expect that the most important change induced 

by the substitution is the change in the correction term to 

4 1/rHHin the denominator of Eq. (7 ). Prom the values of the 
wave number, 29) this correction tei---iri (positive) is larger in 

;7 tan in CH3F, and then the resultant correction (positive) 

to the value of (J)anisois larger in CH3I than in CH3F. 

This is reverse to the substituent effect shown in Table 3 . 
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 The effect of anharmonicity in molecala.r vibration is not 

so clear as that of the harmonic vibr ation , since tee experimental 

anharmonicity constants are not fully known, at present, for 

these compounds. However, since we can eliminate this effect 

approximately in the above treatment, and since the values of 

the "apparent" anisotropies of the 13C-H coupling constants of 

the methyl derivatibes given in Table 3 are most sensitive to 
                                   2S, } th

e :change in the H-C-H angle, the effect of anharmonicity and 

the substituent effect to it will not be so large as to be able 

to explain the large change shown in Table 3 . Thus, we believe 

that the effect (a) .cannot interpret the discrepancy between 

theory and experiment shown. in Table 3 . Similar opinion was 

also reported by Sackmann7b)in h4 s recent NMR study of the 

molecular structure of allene ih a nematic solvent. He stated 

that the shortness of the 0-C bond relative to thebond -C_Hona in 

comparison with the electron diffraction value cannot be 

,ompletely explained on the basis of the molecular vibr+ion.. 

     Next, we enter the examination of the second effect (b) 

above. It should be need first that the essentially  important 

chemical and/or phycicci. so lvr et-solute interactions must exist 

in the solute state of the methyl derivatives in nematic solvent. 
are 5 

This is obviousfrom tfat a.;t that these e.~leculesAorienton an 

average with their syrt:ieotry a::ec pa-2a11,21 with t ie longitudinal 
L _ 

axes of the nematic so .lver  

parameter Sz'Gindicateres'':r'i_4.1l.y the sti enh_o2 the solvent- 

solute interaction. iJpcah we fin & in Table 3 

approximate parallelism between the values of the "apparent" 

anisotropy (essentially proportional to L .7 above) and the values 
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 of S240 At present, the experiments showing this kind of 
        zz' 

parallellism31)are so few that we cannot stress too much to 

this finding. However, if this finding is-true more generally, 

 it will give a positive support to the importance of the effect 

 (b). Thus, from the above finding and from the discussions 

 given hitherto, we believe that the effect (b) should be the most 

 natural origin of4M above. There are further supports to the 
 above conclusion: , .Snyder and Meiboom32Jfound the distortion of 

molecular geometry in a nematic solvent for neopentane and 

tetramethylsilane,aid similar result was also found for teramethyl-

 tin.33) There are some experimental results showing that .the 

molecular geometries change from their gas phases to their molecular 

 crystal phases. For example, the I-As-I valtnce angle in As13 

is 100.2° + 0.4®(electron diffraction)34)in its gas phase and is 

102.0° + 0.1° (X-ray)35)in its crystal phase. Similar differences 

are also found for AsBr3, 36) SbC/337) and Sb13 , 38) The rotational 

potential curves of haloethanes change from gas state to liquid 

state, 39)and in biological systems it is well known that the 

conformation of high polymer changes from solvent to solvent . 

For methyl derivatives, the moat probable change in molecular 

geometry from gas state to the solute state in neniatic solvent 

may be a change in the H-C-H valence angle
,14)since this change 

is most.sensitive40)to the value of the "apparent" anisotropy 

shown in Table 3, and since the energy necessary to this ordm,. of 
change will easily be compensa- ed4D by the van der Weals force

s 

and by the other interaction energies .7a,7c) 

     If the above conclusion is correct, the next step will be 

the fuller examination of the implications of the effect (b) 
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above.  T/.is will lead us to clarify the relationship 

the molecular geometry in a.solvent and the nature of 

solvent-solute interaction.42-414This is certainly an 

field to chemists and physicists.

between 

the 

interesting

                       APPENDIX 

Hereaf&e4: we abbreviate 2pcm AO as o,A (a= , . y or z) , 

since only the 2p AO's appear in the following equations. 

(i) Spin dipolar term 

(a) 'evel A approximation 
                                               Gcc VQCr 

 (Aa2'10c;_(414/a.r!"p{r'~$(-3.4Pc-)4 )-1[4 (2 CedAC~«h 
 —

cC`dA cidA)(2 Ccoe0C0(41-X`• Cc~}8Cue) t-                                        (10O 
ci! (Ci

tgACi A t Cf C aA)(Ci j a ro * C(gs cliff, )3 (4.) - a) 
(KAi cl, s — (i2r/.2.5-) <Y'-.)A <r-3)e Z t (34Fr-06)-f CcicceciA ciaA 

r) -22
~Ciac'c'A)<ctacoo+C~,BC9~~)t(ced4cd'~~a 

Cee„ c10 A ) (4- Ccr9 Coe — 2  Cc4 C) t 3 ( CNACi d-A 
C(iACierA) (Cello Cito C`

¢s)3. (A, I e b~ 
i. = ve i B K.4,proximation 

(KA,)sgoc = (,paerar) c r-34% < r_Y)$ (34E)-' 

      [ 2 (1- F'•s„e4g f P + €' Ara) t  ReOes (P  + P4A) 2 (2 Pkea 
       PO4:X12F~A640t2P1;A0/sQ                       °Ais-a2a¶(P~+P        AQ~~A)~`A~B Pfl~cXS046'0 Pried] 

 (0�40'25„e  r' (4/ss) <P )ii (34E-1) [4 (PAot$ P6140*A~aF',f) 
coot0)                                                           C 

t 3 (Po(Aes Pr/4 ra t Ft(A ies Rahis.a) - (P eefs Ppeo PeAeo F,eeta 
     } ReAirs PfA4 + FfAcies Pd'Af P(A.4.-10 
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(ii) Orbital term 

     Under the one-center integral approximation, the contribution 

coming from  aer) of Eq. (1) of Paper I becomes zero, and then we 

have only to consider the contribution coming from de) of Eq. (2) 
of Paper I. 

 (a) Level A approximation 

OKi4i") = /412<r3)40--3>a ZNIcL-1.)-1(eit Cji$A- RaCir 
x (CA Ciro _ Cjre Ciledd(A .3 - a ) 

ooC^aa 

QK,413(i")48 =/ Cdi8,A. Ctrp,CA+) d ~ 

         x C~'iijgG'~p(8`CLA0C'd.re)CA.3 — b) 

 (b) Level B approximation 

CPKAntot = ? <Yj,~ <r'3>5 ('11 }-I(p4 P - - flpra P469) (A.4 -a) 

(//<c!) ; 32<r>A <r-3,>8 c'4E)4cPQAri P, dO_1 B p ) (A.4 - b) 

     Note that, although the tensor due to the Fermi-spin dipolar 

cross term is symmetric, those due to the spin dipolar and 

orbital terms are not necessarily symmetric. For isotropic 

Fermi contribution, its tensor is 'diagonal and is given in 

Eqs (3.3). and (3.6) of Pople and. Santry's paper16) s or the Level 

  and Level B approximat ns, ~~::~pectivei .
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    See also the discussions given above Eq. (7.). 
28) The dependence of the "true" value of (JCH)anisoon the 

molecular vibration is negligible. 

29)Th e values of 1) 1(a1) and Li2(a1) are respectively 2995 and 

   1493 cm-1 for CH3F, and 3048 and 1279 cm-1 for CH31. (S. 

   Reichman and J. Overend, J. Chem. Phys. 48, 3095 (1968).) 

Since the matrix {Lik2J is almost diagonal for the totally 
   symmetric al vibrations, V, and )) 2 represent approximately 

   the C-H stretching and H-C-H angular displacement frequencies, 

   respectively. .The values of L112 andL222 are respectively 

1.0167 and 1.9251 for CH3F. (J. W. Russell, C. D. Needham and 

   C. Overend, J. Chem. Phys. 45, 3383 (1966).) 

30tKrugh .and Bernheim obtained the same result by considering 

   the harmonicity in the C-H stretching vibration (Ref. 25). 

31)Buckingham
, Burnell, de Lange and Rest studied the structure 

   of 3,3,3-trifluoropropylene dissolved in the different nematic 

solventsat various temperatures (Ref. 7d). Their results show 

   the parallelism between SZZ and the molecular structures 
   calculated by neglecting the anisotropiaof the indirect F-F 

   couplings. Since the anisotropy of the geminal F-F coupling 

  is expected to be large(see Table 

   6 ), the molecular structure determined by them may have 

   some uncertainty. However, the above parallelism will not 

   be changed by this correction. 
-9) 3` L. C. Snyder and S. Meiboom, J. Chem. Phys. 44, 4057 (1966) . 
33)K , Hayamizu and 0. Yamamoto, Symposium on.Nuclear Maenetic  

  Resonance, 8, 88 (1969). (Written in Japanese.) 
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 34)  Y. Morino, T. Ukaji and T. Ito, Bull. Chem. Soc. .Jap. 39, 71 

   (1966). 
35)J . Trotter, Z. Krist. 121, 81 (1965). 
36)phase;K .Hedberg, Am. Cryst. B,g,ryst. Assocn. 2, 79 

   (1966). 

    b) Crystal phase; J. Trotter, Z. Krist. 122, 230 (1966) . 
37) a) Gas phase; P . K.*sliuk, J. Chem. Phys. 22, 86 (1954). 

':) Crystal phase;
:.I. Lindqvist and A. Niggli, J. Inorg. 

Nucl. Chem..2,'345 (1956). 

38)     a)Gasphase;S . M.Swingle;)p,~,quoted by P. W. Allen and L. E. 

Sutton, Acta Cryst. 3, 46 (19 50). 

b). Crystal. phase; J. . Trotter and T. Zobel , Z. ,Krist. 123, 

 67 (1966). • 

• 39)S . Mizushima, Structure of Molecules and Internal Rotation 

(Academic Press, New York, 1954). 

40) For CH
3F, the increase in the H-C-H angle about to is necessary 

   in order to settle the discrepancy between theory and 

exprimental esti:nation. F: r CH31, it is about 20' For the 

   molecules for which the values of the (JCH)anisoin Table .3 
   are negative, the r;! the H--i —i le is necessary. (Rif. 1'0. 

41) The energy necessaryr tp the above order of change ir. the H-C-H 

   angle is less than 20-,?0 alories. 

42)Saupe
, Fnglert and Povh 7a, 7c, 7h) studied the molecular 

  geometry of CH3CN dissolved in the three nematic solvents and 

observed slight differencce in the H-C-H angle. They •inter--

  pie ted these difference - due to the differences of the 

protonating abilities o °.these solvents. 
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 43)In the study of the molecular structure of CH
3CN dissolved 

   in the nematic solvents, E_n glert and Saupe (Ref. 7a) obtained 

   the C—N bond length considerably shorter than its microwave 
' geometry, and they suggested a possibility that this change 

  might be caused. by the solvent—solute 'interaction such as the 

  interaction of the polar 0-W bond with the electric reaction 

field induced by the nematic solvent molecules. 
44-?From this standp oint, the change of moledular geometry from 

  gas phase to the.molecular crystal phase is very interesting. 

  However, the data which ei2P,ble us to examine fully the nature 

  of the intermolecular interaction from this point . of view are 

  very lime at -- = -:set, (Private communication from K. Osaki, 

,Professor of Pharmaceutical Science, Kyoto Univ..)•
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                      CHAPTER 5 

                       CONCLUSION 

     The investigation summarized in Part III makes a stage in the 

growing current of the NMR studies of the molecules dissolved  in 

nematic solvents. 

     From the studies given in Part III, the impotant mechanisms 

to the anisotropy of the indirect nuclear spin-spin coupling cons-

tant is firstly clarified; Fermi-spin dipolar cross term is found 

important for every nuclear pairs studied, orbital term is import-

ant for the multiply bonded nuclear pairs such as CaC in acetylene, 

and for the fluorine-fluorine coupling constants, and spin dipolar 

term is less important. 

     From the comparative calculations by the sum-over-state per-

turbation method and by the finite perturbation method, the superi-

ority of the finite perturbation method is proved in the actual 

calculations of the isotropic indirect nuclear spin-spin coupling 

constants. This is a natural consequence of the study given in 

Part I, Chapter 4. 

     However, both of these calculations cannot explain the extra-

ordinarily large 13C-H coupling anisotropy of CH3F as large as 1890 

Hz obtained experimentally by Krugh and Bernheim. Then, in Chap-

ter 3,is examined the substituent effect on the anisotropy of the 

13C -H couplings in CH3X series. From this, it is concluded that 

the experimentally estimated values of the 13C-H coupling aniso-

tropy in CH3X series are erronious and that these values still 

contain some other more important effects than the electronic one. 

The implication of these important effects is analyzed and examined
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 by using the relevant data available at present, and then it IF 

deduced that the change in.:the molecular geometry fk'orn gas state to 

the solute state in nematic solvent' is the most natural origit 

for the de fferences between - theor.etical. and . " experimental ` values.. 

     For the directly bonded C_X couplings (!: is C, if or F), 

their anisotropies are not always .negligible,. They are in . the 

same order in magnitude as their isotropic .. couplings;,. The': 

coupling anisotropies between the non -bonded L-X nuclei seems 

negligible in magnitude . 

    For the F-F couplings, their anisotropies are exceptionally 

large inasmuch as they are non-bonding and the orbital term is 

a very important source of anisotropy. Furthermore, even to the 

isotropic F-F couplings, the orbital and spin dipolar- termE are 

very important and sometimes make decisive contributions over Fermi 

contact term.
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 GENERAL CONCLUSION 

     In the studies summarized in this thesis, the author have 

intended to have some insights on the electronic phenomena in atoms 

and molecules from theoretical standpoint. 

From the studies given in Part I, the interconnections of the 

orbital theories for open-shell electronic systems; the unrestricted 

Hartree-Fock theory, the projected unrestricted Hartree-Fock theory 

and the spin-extended Hartree-Fock theory, are clarified in con-

junction with the first-order-sum-over-state perturbation method 

starting from the restricted Hartree-Fock wavefunction. The spin-

correlation effects included in these th,;ories are compared by 

using their first-order spin densities. The accuracy of these 

wavefunctions in the calculation of the expectation values of the 

one-electron operators is also investigated for both closed-and' 

open-shell electronic systems. These results mean physically 

that the orbital model in open-shell electronic systems distorts 

to some extent the real spin-correlation correction, in order to 

include effectively the correlation correction due essentially to 

the two-electron correlation phenomena. Since both of the spin-

correlation and the two-electron correlation corrections are im-

portant in the open-shell electronic systems, it seems necessary 

for the theories of spin-correlation to include both of these 

correlation effects explicitly in a reasonable framework, or to 

exclude reasonably the effect due to the two-electron correlation 

corrections. This seems to provide a key to the future theoreti-

cal study on the spin-correlation phenomena in open-shell electro-

nic systems. 
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     In the course of this study, the author found a simple method 

to separate the UHF or PUHF spin density into the mechanistic 

contributions due to spin-polarization (SP) and spin-delocalization 

(SD) mechanisms. By using this method, more profound understand-

ings than before on the nature of spin density may be obtained 

because of the physical simplicity and visuality of each mechanism. 

This is exemplified in actual applications given in Part II,  Chap-

ter 3. The author also believes that this general treatment may 

put an end to the previous confusions seen on this subject. 

     From the studies given in Part II, a semi,-empirical SCP-M0 

method for valence electron systems developed in the laboratory 

to which the author belongs is proved to be useful in the studies 

of the electronic structures of carbonium ions and doublet radicals, 

and even to the calculation of force constants of ethylene after 

small modifications in core-repulsion energy. The importance of 

the explicit inclusions of a-electrons and of the electron repul-

sion, terms are found for these subject. Furthermore, the theore-

tical results obtained in Part I are successfully applied in the 

study of the hfs constants of doublet radicals, and threw a new 

light on this subject. For example, it is shown that the SP 

mechanism is important even in the cases where the SD mechanism 

has been considered dominant. The angular dependence of these 

mechanisms is also clarified. 

     From the studies given in Part III, the important mechanisms 

to the anisotropy of the indirect nuclear spin-spin coupling 

constant are firstly clarified; Fermi-spin dipolar cross term is 

found important for every nuclear pairs studied
, orbital term is 

important for the multiply bonded nuclear pairs and for the 
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fluorine-fluorine couplings, and spin dipolar term is  leas impor-

tant. Secondly, from the comparative calculations by tne two 

methods, namely by the sum-over-state perturbation method and by 

the finite perturbation method, the superiority of the finite 

perturbation method is proved in the actual calculation of the 

isotropic indirect coupling constants. Tnis is a natural consequ-

ence of tne theoretical study given in Part I, Chapter 4. However, 

both of these calculations cannot explain Lhe extraordinarily large 

13C -H coupling anisotropy of CH3F as large as 1890 Hz obtained 

experimentally by Krugh and Bernheim. After the detailed exarina-

tions of tne substituent effects on the anisotropy in CH3X series 

and of the geometries used in evaluating the lexperimental' aniso-

tropy, it is suggested that the molecular geometry may differs 

slightly between in its F'as state and in its selute state in nematic 

solvent. From this study it is expected that by means o tne 

NM R study of the molecule dissolved in a Thematic solvent, one 

may obtain the molecular geoilletry corresponding to that state. 

This is certainly an interesting point in the future study on the 

nature of the solvent-solute interactions in liquid.
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