
 /-0

          A STUDY ON 

CONSTITUTION OF AN ADDRESS 

      IN A COMPUTER UTILITY

SPACE

        Katsuo Ikeda 

Department of Information 

       Kyoto University 

          1977

Science





          A STUDY ON 

CONSTITUTION OF AN ADDRESS 

      IN A COMPUTER UTILITY

SPACE

         Katsuo Ikeda 

Department of Information 

       Kyoto University 

          1977

Science





          A STUDY ON 
CONSTITUTION OF AN ADDRESS 

    IN A COMPUTER UTILITY 

             by 

          Katsuo Ikeda

SPACE

 ABSTRACT 

     This thesis discusses the problem of constitution of 
an address space in a computer utility. An address space 
is the space where a programmer expresses his algorithm 
and runs the calculation when he wants to solve a 

problem, utilizing a computer system. Thus, its 
constitution affects greatly on the method of solving a 

problem, but it has not been discussed much so far.
Chapter 

space, gives 
its 

     Chapter 
constitution 
followings: 

         A 
     develop 

    being p

    constituent

     being puzzled 
algorith: 

configuration 
     location of in 
information 
"surface" world 

algorith: 
     address space in 

Information 
"group" 

should not be 
     capacity 

     freely during 
Reference 

referring 
     easy lest 

     the expression 
needlessly 

Sharing 

important 
         And 

    such as the b 
needed.

1 is an introductory remark on an address 
  its definition, and shows its history and 

nt elements. 
  2 indicates the points of issue for 

 of an address space. These points are the 

programmer should devote all his energy to 
 an algorithm to solve his problem, without 

uzzled by the system configuration, and an 

should not be influenced by the 
ation of a computer system, by the storage 

  of formation, or by the mechanism of 
ion protection. Further, the space of the 
" world where a programmer considers his 

m should be mapped in a natural way into the 
space in a computer system. 
ormation is characterized and managed as a 

 called a segment. The number of segments 
not be confined to a small number, and the 

  of a segment should be able to change 
uring ogram execution. 
erence to external segments, including the 

segment itself, should be flexible and 
st it should impose improper restrictions to 
ression of an algorithm or make an algorithm 

ly complicated. 
ring and protection of information are very 

m. 
mechanisms which support various structures 

  the lock structure,stack or queue are

I



 ABSTRACT 

     Chapters 3 to 5 discuss references of information. 
Reference of information is an essential function of an 

information processing system. Reference of information 
is made effective by "linking" it to the target. Chapter 
3 describes that the character of an address space, and, 
as a result of it, the character of a computer system, 
are basically changed by the method of linking. Chapter 4 
discusses typical three methods of linking comparing with 
each other, and introduces dynamic linking method which 
is discussed in Chapter 5. 

     Dynamic linking might be considered the most 
suitable method to link references in a computer utility. 
It is able to realize the direct addressing of 

information wherever the target information is stored. 
Chapter 5 discusses the mechanism of dynamic linking. 

     In order to be able to refer to information in a 
computer utility, sharing of information is required. And 
as the consequence of information sharing, the demand of 
information protection arises. Chapter 6 points out the 
issue of sharing and protection of information, and 
Chapter 7 discusses mechanisms of information protection. 

     Protection mechanisms in today's computer system are 

too simple to be incorporated in a computer utility. This 
chapter analyses and clarifies the logical structure of 
the ring protection mechanism, which was first contrived 
and implemented in Multics, and proposes its extension. 
Chapters 16 and 17 extend the discussion of protection 
mechanisms further. 

     Chapter 8 discusses the required structure of an 
address space and the mapping mechanism to realize such a 
space. Chapter 9 completes the discussion of Chapter 8 

and gives the conditions to establish an address space in 
a computer system. 

     Chapters 10 and 11 discuss concretely the problem of 
references of information. That is, intra-procedural 
communications within a procedure - references of the 
data area and the link areas - are discussed in Chapter 
10, and inter-procedural communications - a call, a 
return, a non-local go to, an interrupt and a fault - are 
discussed in Chapter 11. 

     So far, entirely different forms of "calls" have 

been employed in a computer system, and these have made 
the logics of the system needlessly very complicated and 

the understanding of the system difficult. Chapter 11 
shows a unified method of inter-procedural 
communications. This method would make the logics of the 
system clear and easy to understand. 

     Chapter 12 revisits the discussion of dynamic 
linking and develops it in order to remove the linker 
from the security kernel and to improve the integrity of 

the system. 

II



ABSTRACT

     Chapter 13 discusses constitution of an address 
space from the standpoint of the supervisor structure. 

    Chapter 14 shows other address spaces of 
sub-processes, which are associated with the main process 
of a calculation, such as file i/o or stream i/o 
sub-process, and it also shows some considerations about 
the databases in a computer network. 

     Chapter 15 discusses constitution of a programming 
system which is independent of the system configuration, 
and shows a very useful application of dynamic linking to 
a command system. 

     Chapter 16 extends the discussion of protection 
mechanisms and shows the requirements of them with 
multiple capability lists. 

     Chapter 17 discusses constitution of a  memoryless 
system which would be needed in a computer utility with a 
variety of competing users with each other.

III



CONTENTS

ABSTRACT

CHAPTER 1
 INTRODUCTION

1
2. 
3. 
4.

What is an Address Space?

History of Address Space Management
Definition of an Address Space
Constituent Elements of an Address Space

CHAPTER 2
POINTS OF ISSUE FOR CONSTITUTION OF AN ADDRESS SPACE

CHAPTER 3
REFERENCE OF INFORMATION

1
2. 

3.

Linking of Symbolic References
Time of Linking
Scope of Linking

CHAPTER 4
ALGORITHMS OF LINKING

1
2. 

3.

Pre-Linking Method

Linking under the Environment of Segmentation
Algorithm of Dynamic Linking

CHAPTER 5

MECHANISM OF DYNAMIC LINKING

1
2. 
3.

Access to a Link
Algorithm of the Linker
Comparison of Object Forms

CHAPTER 6

SHARING AND PROTECTION OF INFORMATION

1
2.

3
4.

5

Policies of the Information Protection
Mechanism of Information Protection
2.1 

2.2
Conventional Protection Mechanisms
Domain of Protection

Constitution of Domains
Kinds of Access Rights
4.1 
4.2

Access Rights for Usual Segments
Access Rights for Directory Segments

Contension of Access - Shared or Exclusive -

IV

I

1

2 

3 
4 
5

6

13

13 
14 
18

20

20 
21 
22

25

27 

29 
31

34

36 
36

39 
41

44



.

5.1 
5.2

CONTENTS

Process Data Segments

System Data Segments (Common Data Segments)
Mechanism of the  Domain Switching

CHAPTER 7

THE RING PROTECTION MECHANISM

1

2

3 
4.

5
6. 
7.

Domain Switching in the Ring Protection
Mechanism

CPU from the Viewpoint of the Ring Protection
Mechanism

Comment on Call and Return Instructions
Extension of the Ring Protection Mechanism
4.1

4.2

Constitution of Mutually Independent
Domains

Extended Domain Switching
Clustering of Domains
Capability of Ring i State
Additional Comments on the Ring Protection

CHAPTER 8

Mechanism

CONSTITUTION OF AN ADDRESS SPACE

1
2.

3
4. 
5. 
6. 
7. 
8.

File System

Connection of an Address Space and
the Information Space

Dimension of an Address Space
Recursion and Block Structure
Mechanism of Segmentation
Descriptor Segment and Descriptor Base Register
Three-Dimensional Address
Support of Lexical Levels

CHAPTER 9

ESTABLISHING AN ADDRESS SPACE IN A COMPUTER SYSTEM

1

2

3.

Conditions Which Specify an Address Space
1.1 
1.2 

1.3 
1.4 

1.5

To Show a Process in the System
The Minimum Information
Information Required to Execute a Process
Dispatching a Process

Initiation of a Process
Protection of Pointers and Data Segments
Address Space Switching

CHAPTER 10
INTRA-PROCEDURAL COMMUNICATIONS

1 Management of Process Data Segments

1.1 Stack Segment

V



CONTENTS

1.2 Static Data Segment
1.2.1 In Case that the Pointer is

Invariant in Every Ring
1.2.2 In Case the Linker is a Non-Privileged

Procedure
2 Constitution of a Linkage Segment 96

CHAPTER 11
INTER-PROCEDURAL COMMUNICATIONS

1

2
3. 
4. 
5. 
6.

Call and Return
1.1 

1.2

Call Instruction
Return Instruction

Elimination of SVC
Condition Handling
Non-Local Go To
Implicit Call
Invocation of Interrupt and Fault Handlers
6.1 Determination of an Interrupt or

97

97

101 
102 
104 
107 
110

a Fault Handler

7. 8. 

9.

10.

6.2 Status for Handler Execution
Interrupt and Fault Table
Masking Interrupts and Faults
Processing of Interrupt and Fault Status
9.1 
9.2

Point of Issue for the Saving of the Status

115 

117 
117

Point of Issue for the Restoration of the Status
Necessary Faults

10.1 Faults Caused by Errors in
121

Hardware and Software

11.

10.2 
10.3 
10.4 
10.5

Faults Caused by Arithmetic Operations
Faults Caused by Address Formation
Faults Caused by Access Control Functions
Faults Intended to be Used by a Process

Where to Set Fault Conditions 123

CHAPTER 12
MECHANISM OF DYNAMIC LINKING - IMPROVED  ALGORITHM -

 1. 
2. 
3.

Removing the Linker from the Security Kernel
Processing of the Entry Linker
Consideration on Performance

125

125 

129 
132

CHAPTER 13
STRUCTURE OF SUPERVISOR

1

2
3.

Address Space Manager
1.1 

1.2 
1.3

Dynamic Linker

Known Segment Manager
Directory Manager

Segment Manager
Memory Space Manager

135

137

139 
140

VI



CONTENTS

4
5. 
6. 
7. 
8.

Physical  I/O Subsystem
Process Manager

Processor Manager: Get Work
Interrupt and Fault Interface
CPU

141 
142 
142 
143 
144

CHAPTER 14
OTHER ADDRESS SPACES RELATED TO A PROCESS

1
2.

External World to the Address Space
Access of Databases in Computer Networks

146

147 
148

CHAPTER 15
APPLICATIONS OF DYNAMIC LINKING

 1. 
2. 
3.

To Switch Supervisors for Each Process
Toward System Independent Processing
Applications of Dynamic Linking to

a Command System

151

151 
152

155

CHAPTER 16

PROTECTION WITH MULTIPLE CAPABILITY LISTS

 1.

 2.

3

Constitution of Protection Domains
1.1 
1.2 
1.3 
1.4 
1.5 
1.6

Representation of Capability
The Ring Protection Mechanism
Constitution of Independent Domains
Owner's Capability
Capability for the Reference to the Arguments
Combination with the Ring Protection Mechanism

Use of Capability
2.1 
2.2

Designation of Capability Lists
Reference to the Arguments

Switching of Domains

159

160

169

177

CHAPTER 17
MEMORYLESS SYSTEM

1 
2. 
3.

4

Memoryless System
Gains and Losses in a Computer Utility
Protection with Multiple Capability Lists
3.1 
3.2 
3.3

Processe's Capability
Owner's Capability

Capability for the Reference to the Arguments
Towards Memoryless System

182

182 
183 
184

187

CHAPTER 18
CONCLUSION

ACKNOWLEDGEMENT

191

198

VII



CONTENTS

 REFERENCES

LIST OF PUBLICATIONS
199 
205

VIII



1

                    CHAPTER 1 

                    INTRODUCTION 

     In this thesis we are going to discuss the problems 

of an address space and its constitution in relation to 

computer system configurations and operating systems. 

     The history of electronic computer has been the 

history of pursuing big memory capacity and high 

processing speed. It is an undeniable fact that 
requirements of information processing increase so fast 

that one computing system often has more computations 

than it can process when it is installed and becomes 

operable. Average execution time of instructions such as 

Gibson mix is sometimes used to denote the performance of 

a computer. Or, comparison of total processing time, 

which is measured in so-called a bench mark test by 

processing a job stream prepared beforehand, is often 

tried to evaluate the performance of a computer system. 

     What is given to users of a computer by big capacity 

and by high speed? 

     Big capacity and high speed are certainly required 

for a computer system which processes daily routine works 

efficiently. They are, however, not the primary factors 

for those who are engaged in research and development 

works, in which case flexibility and ease in expressing 

and executing the algorithms to solve their problems are 

needed. And the constitution of an address space where a 

programmer expresses and executes his algorithm is an 
essential problem instead. So far, this problem has 

hardly been discussed from such a viewpoint, but some of



2INTRODUCTIONChap. 1 

the constituent elements have partially been discussed 

from the different angle in the course of the development 

of big capacity and high speed computer systems. It is 

significant to discuss this problem putting relevant 

things together as a total system. 

1. What is an Address Space? 

     A logical address space or a name space implies a 

logical information space, that is, a collection of 

programs and data, which one "calculation" refers to or 

operates. In this case, the method of its physical 

realization is not concerned in. 

     A physical address space implies a physical memory 

space where target information can be physically referred 

to or operated. It seems that the term "name space" or 
"address space" has been used since about 1965 . Dennis 

(1965) described that the concept of name space, the set 

of addresses a process can generate, is contrasted with 

the memory space, the set of physical memory locations 

[DNS1]. Donovan (1972) [DON1] described that a 

collection of programs and data to which one process 

 [RAP1]  , [VYS1] , [DAL2] refers forms an address space. 
Per Brinch Hansen andLeo J. Cohen didn't use such a 

term. Richard W. Watson (1970) [WAT1] defined that a 

logical address space is a set of abstract or logical 

locations addressed by processes. 

     The concept of an address space originated from 

memory allocation in a multi-programming computer system. 

In such a system, having no connection with the memory 

location, programs were composed starting at the fixed 

logical address. Such programs were transformed to be 

executed at the specific physical address by the



Chap. 1INTRODUCTION3 

relocation procedure, and then executed there. 

     Although the constitution of a logical address space 

is very important because it is the space for 

consideration and operation in order to manage and solve 

problems, the constitution of a logical address space has 
little been discussed in usual computer systems, while 

the constitution of a physical address space has largely 

been discussed. In discussing future computer systems or 

information processing systems, it is necessary to start 

off with this fundamental problem. 

2. History of Address Space Management 

     In the early days of electronic computers how 

skillfully he used the lacking memory space was 

considered  tie capacity of a programmer. Those days there 

existed little idea of a logical address space, but only 

a linear memory space was the subject of management. With 

the progress of computer architecture, 
"multi-programming" operation started being used , but 

only a linear memory space which was partitioned using a 

base and a bound register was still given to each user. 

As it was required to move programs in the assigned 

location at the beginning of execution, the user space 

always started from the fixed address (typically 0) 

[GIB1] , [COD1] , [CRS1] , [FOR1] , [COM1] , [CRT1] . It can be 

considered that the distinction between a logical address 

space and a physical address space started at that time. 

    Those days, however, the space was still 

one-dimensional, and programmers were busy, to manage the 
"memory space"

, planning overlay structures. As the 
result that multi-programming of high degree was required 

by time sharing systems [WIL1], [BOB1], technique of



4INTRODUCTIONChap. 1 

paging and segmentation that realized virtual memory, a 

memory space of large capacity "imaginarily", came into 

use, and the distinction between a logical space and a 

physical space became clearer. But in this case, as the 

name of virtual memory indicated, it was still a "memory 

space" and it was doubtful whether it was a logical 

address space on its original meaning. These were the 

direct consequences of how to multiplex memory equipment 

of actually existing capacity and how to make it 
"imaginarily" larger capacity

, but these were scarcely 
intended to create a logical space for thinking and 

solving problems. 

3. Definition of an Address Space 

     An address space is the collection of programs and 

data which one "process" refers to, or as another 

definition, the locus of execution point and the 

collection of data which one process refers to. Here a 
"process" means the substance which exec utes the 

calculation to work out a problem or a job. 

     Above-mentioned data includes all the information in 

the processor. A process is specified by the following 

two items: 

  1. An address space (including all the activation 

     records except the following), and 

  2. The execution point (a specific item in the 

     activation  records)  . 

     We will call the collection of information referred 

to by a process under some conditions as a "working 

space" of an address space. On the contrary, we can 

consider about the collection of all the information 

which "one process" refers to. The collection of



Chap. 1INTRODUCTION5 

information referred to within an observation period is 

called a "working set" [DNG3] of an address space. 

4. Constituent Elements of an Address Space 

     In general, each information which constitutes an 

address space is created separately (at a different time, 

at a different place). The minimun unit of information 

reference is a bit, but it is more often referred to in 

the units of a nibble, a byte, a word, etc.. 

    It is,  however, unusual that information 

constituting an address space is managed by such a unit 

of reference, and usually information is managed, 

regarding a group of information as one thing. Hereafter, 

we call this "group" a segment and give it a name [AND1]. 

The primary factor to constitute such a "group" is the 

nature of information called attributes such as: 

     The producer or the owner and the creation date of 

     information, 

     Kind of information (procedure or data), 

     Access privileges of information, etc. 

Attributes are all equal to every element in one segment. 

This paper dosen't treat a problem about catching the 

meanings of segments at all. A segment is registered and 

managed in a directory in a file system as described 

later.



6

                     CHAPTER 2 

 POINTS OF ISSUE FOR CONSTITUTION OF AN ADDRESS SPACE 

     A person, who is going to work out a problem and to 

manage data utilizing an information processing system, 

does not want to obtain knowledge about the structure of 

the computer system for his own pleasure.  However, 

actually, the more complicated or specific the problem 

becomes, the more knowledge about the computer system is 

required in order to master it for his application. Even 

though this may be unavoidable to a certain degree, it 

should be natural that one ought to concentrate more 

energy on considering an algorithm to solve his problem. 

     It has an immediate connection with reducing the 

complexity of software and elevating the productivity of 

software development. It depends upon the constitution of 

a space for thinking and upon the expression form of an 

algorithm whether or not a computer system would function 

effectively to solve problems. When one is solving a 

problem there might not exist an information space in a 

definite format. At the same time it may be admitted that 

a certain collection of data and a certain collection of 

information which indicate an algorithm do exist in this 

information space. When one is going to work out a 

problem using a computer, an information space cannot 

help taking clearer form. Even if one might not use a 

computer, this is also the same in case of making others 

work out the problem. Because it is required that the 

problem and the algorithm are at least expressed by words 

and a collection of data is also given in a clear form.



Chap. 2 FOR CONSTITUTION OF AN ADDRESS SPACE 7 

When we are going to make a computer work out a problem, 

we create a process in the machine and make it execute 

the necessary operations. That is, a process is an agent 

of a computer user for his activities in the computer 

system. Therefore, it is more natural and suitable for 

the way of thinking that the construction of an address 

space which a process uses has the same structure as the 

space of the "surface" world. Also as for the 

representation of an algorithm, it is natural that the 

nearest form to the model of consideration should be 

desired. In this ideal case where these things are fully 

satisfied, a person who uses such a computer can devote 

himself to working out his problem, without being 

puzzled at all about the configuration of the computer. 

Now, what does it mean that one makes the structure of 

an address space in a computer system have the same 

structure as the space of the "surface" world? 

     First, it has been pointed out that information is 

characterized and managed as a "group" called a segment. 

Some databases are fixed while there are various cases 

where their length or other attributes change with time. 

Its capacity ranges from greatly big to extremely small. 

     The requirements which occur here are the followings 

 [RAP1]  , [COR1] , [DNS1] , [DNG2] : 

  1. Number of segments should not be restricted to a 

      small number. 

  2. The capacity of each segment should be able to range 

     from fairly being big to extremely being small and 

     should freely be able to vary in the course of a 

     computation, without being influenced by the memory 

      capacity. 

     Second, all the information are not composed at the 

same time or at the same place. Thus, pertinent segments



8POINTS OF  ISSUEChap. 2 

which are separately composed constitute an address 

space. How are these segments referred to? Generally, a 

reference to a segment is made by name. Then, "linking" 

is necessary so that an actual computing process may get 

access to the object items referred to by name and 

execute operations successfully. Here arise the following 

questions: 
          Has any information already existed that 

     corresponds to the name by which one uses to refer 

     to it at the time of programming ? 

          Has it already existed, when one is actually 

     going to make reference? 
         Is that reference always uniquely and 

     statically defined? 

     All the answers to these questions are generally 
"no" . The demand arises here that one must provide a 
"powerful linking function for flexible reference" . This 

reference ought not to prevent a program from referring 

to itself so long as it doesn't fall into an endless 

loop. It is desirable that the realization of recursive 

expression of algorithms should become directly possible 

so as not to impose needless restrictions on the logical 

structure of a program. 

    Third, a call to a procedure that is one way 

referring to another "segment" causes problems. Several 

types of procedure calls which take completely different 

forms are found in today's computer system. For this 

reason the control logic of a computer system actually 

takes a very complicated structure. This is not 

desirable, and a systematic method is required for the 

unification of the logic and the structure of programs. 

     Forth, in case of referring to others' information, 

problems arise concerning about permission of reference.



Chap. 2 FOR CONSTITUTION OF AN ADDRESS SPACE 9 

One must also solve problems to share information,  and 

moreover, one should be able to take advantage of it in a 

natural way. 

Fifth, problems arise how to support these 

requirements physically and how to execute computing 

processes. 

     Sixth, supports for data structures such as the 

block structure or the list structure are also required. 

     Figure 2.1 shows these relations. 

ICOMPUTATION 
      user 

          (REFERENCE TO 

                 INFORMATION

operating 

system

     kernel 
     and 
      hardware 

     Figure 2. 

     In the 

requirements

1

SHARING AND 

PROTECTION

ADDRESS 

FORMATION

logical

physical

 MEMORY AND 
 PROCESS 

 MULTIPLEXING 

Constitution of an address space 

actual information processing system, 

cannot be enough filled up. These days

these 

, one



10POINTS OF  ISSUEChap. 2 

wastes his energy about the format and the location of 

information, according to the system configuration, to 

solve problems by a computer, and one is obliged to 

thread through terribly complicated sequences for the 

protection of information. 

     The followings are examples influenced by the system 

configuration. 

Examples influenced by the memory size 

     A programmer must control the overlay structure of 

     his program. 

     A programmer must control the overlay structure of 

     his database. 

These make a user aware of the working set for 

economizing the physical storage space. 

Examples influenced by the input/output system 

     The input/output access methods of adatabase 

     (sequential, random, index sequential, etc ) 

Examples influenced by the storage location of 

information 

     Those which have relation to the input/output 

     system: 

          Access of a file 

     Those which have relation to the working set: 

           Restriction on the access ordering of array 

           elements 

Examples influenced by the protection mechanism 

     A supervisor call: 

          It is carried out by a SVC instruction, which 

          is much different in its form from the usual 

           procedure call. 

     Interrupts and faults: 

          They are calls to the handling procedures in 

         the primary meaning, but they are much



Chap. 2 FOR CONSTITUTION OF AN ADDRESS SPACE 11 

          different in its form from the usual procedure 

            call. 

These make the configuration of a computer  system more 

complicated and the understanding more difficult. These 

problems are important not only for an ordinary user but 
also for those participating in system programming, and 

they must be improved at any cost to define algorithms 

clearly and to raise the productivity and the 

reliability of software. 

     To sum up, it is required to constitute an address 

space so as to make the configuration or the logical 

structure of programs independent from the followings: 

  A. System configuration, or type of machine 

  B. Storage location of information (without distinction 

     of main memory or secondary storage) 

  C. Protection mechanism (SVC, interrupt, or fault) 

In another word, addressing which has no relation to 

the physical location of information should be possible, 

and perfect yet flexible control should be enforced to 

information access. And information should be shared in 

its original form without making any copy for the sake of 

consistency. 

     In addition to the above, the reliability and the 

integrity of software system are a serious problem. In 

order to improve the integrity and the reliability of 

software system, it is profitable; 

  1. To reduce the size of each module, 

  2. To organize the system in a well structured manner, 

     to unify the structure of procedures - call and 

      return sequences -, 

  3. To confine damages due to the unnecessary access 

     privileges as small as possible, and to insulate the 

     parts that relate to the protection control from



12POINTS OF ISSUEChap. 2 

      other parts. 

     It is often experienced that there is a threshold 

value of program size above which tremendous time and 

efforts are needed in accelerating way to complete them 

due to the accelerated occurence of bugs. Eventually, few 

big software systems are bug-free. 

     It is fairly effective to reduce the size of each 

module for the clarification of the functions and the 

logics of each module and for the well structured 

constitution of the system. 

     Usually, control programs in an operating system are 

executed in the privileged state, and even a slight error 

in a control program often results in a fatal condition . 

Thus, it is  necessarytseparate and confine the parts 

which relate to the protection control from other parts
, 

and to give the least privileges for the execution of 

control programs in an operating system . So far, little 

attention has been paid to this point of respect
, that 

is, almost all the parts of an operating system have been 

executed in the privileged state . 

     It might be expressed that many not well structured 

programs with possible fatal bugs are currently run with 

surplus access privileges with the valor of ignorance .



13

                     CHAPTER 3 

              REFERENCE OF INFORMATION 

     Information is managed regarding a segment as a 

unit as stated before. Reference to information is 

carried out by designating one item in a segment. 

Therefore, two elements are necessary to identify 

information; a name of a segment, and a name or a 

location of an item within a segment. Segments are 

registered as the elements of file systems. Here, let us 

suppose that the name of a segment identifies one 

segment uniquely in the file system. (In fact, in order 

to identify one segment uniquely in the file system, it 

is necessary to present a path-name. Nevertheless, it is 

usually very lengthy, and the way which does not require 

it is  wanted. This problem will be treated later.) The 

constitution of the items which locate the required 

information within a segment is determined by the logical 

structure of this segment. What has an effect on the 

logical structure of a segment is a problem about lexical 

levels derived from the block structure [RANI]. The 

detailed argument is bypassed for further discussion, and 

for the present we use an identifier or the value of 

displacement to denote the location of the required item 

within a segment. 

1. Linking of Symbolic References 

     To get access to information is an essential 

function in information processing. Usually information



14REFERENCE OF INFORMATIONChap. 3 

is referred to by a symbol. When the symbol is defined, 

we can refer to the information by using the value 

assigned to the symbol. We call it "linking" to make the 

reference possible, searching or deciding the  va-ue of a 

symbol. If a reference is made to the information within 

a segment, linking is carried out when this segment is 

composed. But, it is seldom that we constitute all 

procedures and databases required in one computation as 

one segment at a time. 

     We usually proceed our work with library procedures 

or public databases which are composed by other persons 

in combination with segments of our own. More remarkable 

example is that there might be a case of doing works 

cooperatively with other persons. In these cases, 
"external" references from one segment to other segments 

are often made. In order to realize "external" references 

and to execute processing, it is necessary 

  1. to identify the referred segment, and 

  2. to "link" the referring segment with the target 

     object. 

Dynamic characters of an address space are determined by 

the way of "linking". 

2. Time of Linking 

     Linking may be accomplished at one of the following 

time: 

  1. The time of composing a program, 

  2. The time of language processing (compiling, 

assembling) , 

  3. The time of linkage editing, and 

  4. The time of execution. 

     At the time of composing a program references within



Chap. 3 REFERENCE OF INFORMATION15 

this program are logically linked. Moreover, in the early 

days of electronic computer, programmers performed 

linking of external references as well as memory 

allocation, and even today they are still doing the same 

thing in special cases. Symbolic references within a 

segment are resolved at the time of language processing. 

There even exist such systems that external references 

are linked at the time of language processing, handling 

related programs at a time. 

     It is the most widely used way that resolves 

external references at the time of linkage editing. All 

the symbolic references are, indeed, fixed before 

starting a program. 

     Linking at the time of execution is performed in the 

case of running a program interpretively or performing 

dynamic linking. 

     In order to link references at the  time of composing 

a program, we must make "determination" at the earliest 

time. Moreover, as the case may be, a programmer had 

frequently to do memory allocation as shown in the next 

example. 

        SIN EQU 400 

              CALL SIN

SIN ORG 400

     In systems which 

language processing, it

link references at the 

is impossible to handle

 time of 

programs



16REFERENCE OF INFORMATIONChap. 3 

which are written in different programming languages. 

Such systems do not exist except mini-computers equipped 

only with an assembler, or systems of early days, or 

systems for education or training such as  WATFOR. 

     In the linkage editing method it is necessary to 

link "statically" all the external references. As it is 

not possible to determine in this stage whether these 

references are really made or not, both processing time 

and memory capacity are apt to be wasted. Actually, in a 

big software system such as, for example, a compiler, 

there are rather more program modules which are used 

only under the most particular conditions. 

     In addition to the above, it is necessary to link 

previously all the external references to grandchild 

segments, great-grandchild segments, ... , etc. which 

have no direct connection with a programmer and about 

which he doesn't know whether or not they are actually 

made, the great effort for this is indeed discouraging. 

     Taking the method of linking at the time when a 

reference is actually made, neither processing time nor 

memory capacity are wasted. One of the problems is the 

trade off between the overhead making links dynamically 

at the time of references and the loss of processing time 

and memory space of static linking. But this problem is 

of little importance. 

     In research and development works, many cases arise 

in which it is impossible to make a priori determination, 

and it is frequently required to set forward works 

"heuristically"
. Isn't this rather an essential character 

of research and development? If it is so, there should 

exist uncomputable problems in the case of linking 

references "previously". For example: 

     READ SUB,ARG



Chap. 3 REFERENCE OF INFORMATION17 

    ANS  := SUB (ARG) 

In this example one intends to read in a function name 

and an argument and to compute the function value, but it 

is impossible to determine "previously" what function 

would be required. For that reason, there exist such 

kinds of problems as it is essentially required to link 

at the very instance of the reference. To solve these 

problems, a method is used which executes a program 

interpretively. A representative one is the LISP system. 

It is not, however, adequate to represent all the 

algorithms in LISP_ A big software system is more 

frequently written in other languages such as PL/I than 

in LISP. Moreover, interpretive execution of programs is 

extremely slow and inefficient. Therefore, the static 

method which establishes links in advance has been 

adopted. 

     If one forces a heuristic approach in such a system, 

it will become an extremely inefficient system. For 

example, one often carries forward his work in changing 

his algorithm or parameters little by little. Many of 

such routines are often only of the order of ten 

statements. It is the great sacrifice that one must try 

to link statically the whole programs again, even if only 

one such small routine is necessary to be modified. 

     Alternatively, in some systems one selects handling 

routines by console commands interactively and processes 

data. But in this case a man always ought to monitor the 

computation. 

     Here, the requirement of dynamic linking arises. One 

of the advantages which one gains from dynamic linking is



18 REFERENCE OF INFORMATION Chap. 3

that one can still use a system even in the midst of its 

modification. The number of modules that need pre-linking 

is limited, and the modules which constitute nost user 

interfaces are able to be supported in the environment of 

dynamic linking. Therefore, it is not necessary to 

interrupt the operation of the system for the great part 

of system modifications, and a new module becomes 

effective at once if one creates or updates a module. The 

system of dynamic linking doesn't prevent us from 

pre-linking by the linkage editing method in the case 
that higher execution speed which "static" linking 

attains is required. 

3. Scope of Linking 

     In the above argument , we didn't give any 
consideration about the storage place of information . If 
one is able to get off giving any consideration about the 

storage place of information , the addressing that has no 
relation to the storage place of information will be 

realized. Of course, the storage place of information is 

not determined statically , and one cannot always insure 
even its existence.  here, we will contrive a method to 
"link" external 

references in the scope of all the 

on-line information within a computer system [COR1] . This 
will unify the usual memory management and the usual 

information management and constitute more powerfull
, 

flexible and well suited memory management for our 

purpose. 

     The usual information management is called a file 

system and takes the responsibility for the management 

of, and the access to, files in secondary storage . Access 
to a file in secondary storage is carried out b

y the



 fts 

IR1 

se1 

of 

to 

~ar 

Ire! 

frrc 

:as; 

^1[. 

1111 

li 

S RI 

1k 

Serf 

suai 

ull, 

Oil 

fi1E 

16111 

ess 

the

Chap. 3 REFERENCE OF INFORMATION19 

function of IOCS which is called the access method, and a 

programmer has to use input/output statements in his 

program. This access method depends upon each system and 
moreover, programming sometimes depends upon devices in 

the system too, so, in addition to make programming more 

difficult, it comes to result in programming that is 

sensitive to the system configuration. 

     The new addressing method which has no relation to 

the physical location of information expands memory space 

which directly becomes the object of CPU operation to 

secondary storage, and yeilds a new powerful computer 

utility.



20

     CHAPTER 

ALGORITHMS OF

4 

LINKING

     In this chapter we are 

algorithms, comparing the methods 

     Pre-linking system, 

     Segmentation system, and 

     Dynamic linking system.

going 

 for:

 to study linking

1. Pre-Linking Method

     The pre-linking method is the most prevailing and, 

in fact, almost the sole one used in current computer 

systems. In linkage edit programs which link external 

references prior to the execution of a program, linking 

is accomplished in the following steps: 

  1. To allocate the memory space to segments. 

  2. To relocate segments so as to be able to execute 

     correctly in its place. 

  3. To determine the values of external symbols 

     (registering them in a symbol table), and to modify 

     programs and data so as to be able to refer to 

     external places correctly (linking). 

To accomplish this, it is necessary to search for a 

segment which defines the external symbol referred to in 

the file system, and determine the value of the symbol 

within the program being linkage-edited through the 

process of Step 1. External symbols are registered in an 

external symbol table for linking. There are two kinds of 

external symbols:



it

 d, 

 er 

al 

0g 

ite 

fy 

to 

a 

fo 

of 

he 

311 

)f

Chap. 4ALGORITHMS OF LINKING21 

     Segment name and entry name 

  4. To produce a program in executable form. 

This program may be placed directly or may be placed 

using a separate loader in the main memory. 

2. Linking under the Environment of Segmentation 

     Linking under the environment of segmentation 

[DNS1], [MCC1] requires the following steps corresponding 

to each step of Section 1: 

  1. Regarding allocation of the physical memory area as 

     a separate problem, allocation in this case is to 

     allocate a segment number to a segment. The 

     algorithm is simple enough to assign merely the 

     lowest unused number. But it is necessary to 

     allocate the identical number to the same segment, 

     because if it is treated as a separate segment, 

      A. a problem arises in the consistency of 

           information, and 

       B. sometimes one segment might be placed in the 

           main memory more than once. 

For this reason, names of segments which have already 

been "known" to a process are registered in the external 

symbol table. The segment number is used as an index to 

the segment map, called the descriptor segment, by the 

address formation mechanism of the CPU. The discussion of 

the descriptor segment is left below. 

  2. Relocation is not needed. 

This is also one of the distinctive characters of 

segmentation. 

  3. It is not necessary to determine the location of an 

     external symbol within the program that is composed 

     by the method of Section 1, but to determine the



22ALGORITHMS OF LINKINGChap. 4 

     location only within a segment. 

Therefore, it is not necessary to make an external symbol 

table in order to include all the names of external 

segments as in the case of Section 1. It is erough only 

to use the global external symbol definition table of the 

object segment as it is. 

  4. Segments in a program in the executable form where 

     linking has been completed are placed dynamically in 

     the main memory only when they are required (dynamic 

 loading)  . 

The information communion with other processes is 

possible in this method. At the time a segment is 
referred to the process must ensure whether or not this 

segment has already been incore from the active segment 

table. If it has already been active, all the process has 

to do is to set the segment descriptor table of this 

process with the location of the segment found in the 

active segment table. 

      A procedure segment must be pure, in this case, and 

must be linked by a link placed in an impure segment as 

the segment number is generally different for each 

process. The data segment for this purpose is composed at 

the linking time (see Figure 4.1). 

3. Algorithm of Dynamic Linking 

    The algorithm of dynamic linking [VSY1] is as 

follows: 

  1. The process assigns a segment number if it is an 

     unknown segment, looking up in the known segment 

     table of the process. 

  2. Relocation is not required just as in the case of 

     Section 2.



 Chap. 4

instruction

* indirect 

addressing

*

ALGORITHMS OF LINKING

 •"

link

target

entry

LINKAGE

SEGMENT

23

PROCEDURETARGET 
SEGMENT SEGMENT 

Figure 4.1 Linking to a target. A pure 
procedure refers to an external segment via a 
linking pointer (link) placed in a data 
segment. Address formation is undertaken by 
indirect addressing or by base register 
modification. In case that base register 
address modification is incorporated, the 
pointer in a link should be loaded to the 
base register prior to the operation. 

   3. The necessary things for linking are: 

        A. The external symbol table (This is the same as 

           Section 2.) 

        B. The place to hold links. 

 Links should be made in data segments because procedure 

 segments must be pure. In dynamic linking, a link is made 

 when the first reference is done. One can also give an 

 indication using a link whether it is the first reference 

 or not when the process makes a reference with this link. 

 Links which a procedure uses and their locations within 

 this procedure are determined in its language translation 

 stage (see Figure 4.2). 

      Therefore, when a procedure is referred to (called) 

 for the first time, what the process must do is only to



24 ALGORITHMS OF LINKING Chap. 4

PROC

 1p  '"""illi

linkage section

of PROC

1

c (lp

1

op 1p k *

pointer
to string
data

fault

flag

"TARGET" 4

"ENTRY"

    PROCEDURELINKAGE 
   SEGMENT SEGMENT 

      Figure 4.2 Reference to a linkage data. An 
     unsnapped link indicates that it has not yet 

     been linked, and gives the information which 
     is required to identify the target and to 

      complete linking. 

copy the pertinent links (linkage section) into a data 

segment which are used in the procedure and then to link 

when the procedure is actually executed and an unsnapped 

link is encountered. 

     The point of difference between Section 2 and 

Section 3 is: 

In the method of Sec.tion 3 a process copies linkage 

sections, and makes links dynamically while links in the 

method of Section 2 are made before the program is 

started. 

  4. A segment is placed dynamically in the main memory 

     only if it is needed to do so after the link to this 

     segment is snapped and this segment is referred to 

     just as in the case of Section 2.



 ek 

ed 

~ge 

Gs 

ori is 

tc

25

CHAPTER 5 

            MECHANISM OF DYNAMIC LINKING 

    This chapter discusses the mechanism for dynamic 

linking. The following functions are necessary for 

dynamic linking [BEN1] , [ORG1] , [MSP1] , [SIM1] , [DET1] : 

  1. To make and hold a link, 

  2. To find out that this link has not been made yet, 

and 

  3. To point to a symbolic name. 

1. and 2. must be included in the data which hardware 

circuitry uses to form the operand address in course of 

instruction execution. 3. is used in the processing of a 

linkage fault which will be detected when a referred link 

has not been snapped yet, and it is referred to by 

software. 

     When is it necessary to find out whether or not a 

link has been snapped? It should be indicated in a link 

itself whether or not this link has been snapped. 

Detection of an unsnapped link is possible while hardware 

refers to a link and forms address (see Figure 5. 1) . 

  A. The earliest time is when a link is referred to. It 

     requires the hardware function which immediately 

     occurs a fault condition according to the contents 

     of a link. 

  B. The latest time is when information of the next 

     level to the link is referred to. It will be 

     detected, for example, as an "exception of the 

     segment number" by the hardware of segmentation. 

A. requires a detecting function of the segmentation or



26 MECHANISM OF DYNAMIC LINKING

 instruction link

op 1p k * s eg ent fig

 fault

Chap. 5

PROCEDURELINKAGE 
SEGMENTSEGMENT 

(a) The eariest time (when a link is referred to)

instruction link segment

descriptor  f  au

op 1p k seg ent fault cond

DESCRIPTORPROCEDURE LINKAGE

SEGMENTSEGMENTSEGMENT 

  (b) The latest time (when a segment descriptor is referred to). 

 Figure 5.1 Detection of an unsnapped link. An 
 unsnapped link may be detected in several ways 

 according to the facilities in address mapping 
 mechanism. 

paging mechanism. In case of B. it is possible to be 

included as a small expansion of the segmentation or 

paging hardware when either has already been provided 

with. 

     Further, even if it is not obvious at the time of 

linking whether the value set to a register will be used 

as a pointer or merely as an operand for future use, it 

doesn't cause inconvenience and doesn't need to provide a 

special mechanism. 

     Dynamic linking is not possible at all in case that 

there are no mechanisms for segmentation, paging , or 
address modification by base registers, etc.. 

     Here is a comment about the usage of instructions . 
Access to external segments must be made through a base 

register. It is not admitted to place a description of



Chap. 5 MECHANISM OF DYNAMIC LINKING27 

 "segment
_number.displacement" in the operand address part 

of an instruction directly. This is because: 

  A. A procedure becomes impure, and 

 B. There is no room for a pointer to the link 

     definition in an instruction. 

1. Access to a Link 

     Access to a link is carried out by the following 

steps (refer to Figure 5.1): 

  1. The location of a link in the linkage section for 

     one procedure segment has been determined at the 

     compile time. 

  2. The location of a linkage section within a linkage 

     segment, which is the database gathering linkage 

     sections of one process, cannot be determined 

     beforehand. This is because one segment is not 

     always assigned the same segment number as it is 

     given dynamically. 

  3. The location of a linkage section within a linkage 

     segment is determined when the original template of 

     this linkage section is copied as the initial value. 

  4. The original template of a linkage section of a 

     segment is copied into a linkage segment when this 

     segment is first referred to, that is, when a 

     segment number is assigned to this segment. 

  5. Tabulating the location of a linkage section with 

     the segment number, it is very easy to get the 

     pointer to the linkage section (lp) when a procedure 
     segment is entered. 

  6. The process can refer to the necessary link, using 

     the pointer established in step 5. and the offset 

     established at the compile time.



28MECHANISM OF DYNAMIC LINKING Chap. 5 

     In a computer which has no facility for indirect 

addressing, a process must once establish a link in a 

pointer register and then gain access to the target 
segment. By doing so, however, the execution speed to 

refer to the target, at which the pointer register 

points, or to other targets, which have different offset 
values at most, is faster than that of indirect 

addressing (see Figure 5.2). 

    UNSNAPPED LINK

 special

seg no.

link

no.

offset pointer to link
definition

 SNAPPED LINK

segment 
no.

displacement pointer to 
 definition

linkage fault

LDB  bp 1p k

op bp m unsnapped

link

"TARGET"

"ENTRY"

PROCEDURE LINKAGE 
SEGMENTSEGMENT 

Figure 5.2 Base register and linkage data in 
case that there is no indirect addressing 
function. This figure shows a method which may 
be employed in a system which has no indirect 
addressing function.



 et 

to 

~Pf 

sP~ 

PI!

Chap. 5 MECHANISM OF DYNAMIC LINKING29 

     A program can be executed in the same speed as in 

the linking method which fills up address (this type of 

linking is the fastest though needs more linking time and 

makes procedures impure) in case that establishment of a 

pointer register is finished at a stretch. As a process 

can modify the value of the pointer by offsets in 

instructions or by index registers, it needs less links 

in comparison with an indirect addressing method which 

doesn't have this facility. 

     In case of an indirect addressing method, a process 

needs to make different links for every different value 

of offsets. 

2. Algorithm of the Linker 

     When a linkage fault occurs, the linker is "called". 

     The linker gets the target segment name from the 

link definition, compounds a path-name applying the 

search rules of the faulting ring, and requires the file 

system in the kernel to search for the target segment. 

     If the target segment is found (if necessary, the 

segment is made active, causing a segment fault), the 

linker begins to search for the entry name. 

     As soon as the required link in the faulting ring 

has been established, the linker's work is finished and 

the program execution resumes again. 

     Let's consider the case that a target segment is 

going to be executed by a call. In this case, the process 

must get the linkage pointer at first so as to be able to 

get access to the linkage section, which is the static 

storage area for this procedure. 

     The location of the linkage section within the 

linkage segment (provided in each ring independently) is



30 MECHANISM OF DYNAMIC LINKING

instruction

 op ip k

external symbol 

definition and 

link definition

"TARGET"

"ENTRY"

  PROCEDURE 

3. SEARCH RU

1. REFER
unsnapped link

LINKAGE SEGMENT 

snapped link

Chap. 5

2. LINKAGE FAULT

seg m

6. MAKE AND SET 

  LINK

 7. REFER

4.

SEGMENT

RULE

KEDA>TARGET"
 target$entry m

5. SEARCH

FOR

ENTRY

NAME

global symbol
definitionDIRECTORY

SEARCH

map
"ENTRY" = m

FILE SYSTEM

                                   TARGET SEGMENT 

           Figure 5.3 Mechanism of dynamic linking 

determined from the linkage offset table of the executing 

ring using the segment number as the index . In case that 

the linkage section has not been copied yet
, the initial 

value is returned as the value of the linkage pointer
, 

which causes a fault when the process is going to 
refer



Chap. 5 MECHANISM OF DYNAMIC LINKING31 

to the linkage section using this pointer [JAN1]. When 

such a fault occurs, the process copies the template of 

the linkage section for the first time. To copy a linkage 

section is not essentially the business of the linker 

and it is better to separate its management in order to 

make the logic of the linker clearer (see Figure 5.4). 

     In a system incorporating dynamic linking it is able 

to detect that some segments are referred to at the first 

time or every time. These functions can be used to 

account the system module usage, and are called a first 

reference trap and a reference trap respectively. These 

reference traps can be implemented by preparing trap 

flags in a link which is used to refer to a segment, and 

links which are used to refer to the corresponding trap 

 handler. 

     The information protection affects the processing of 

the linker, and this problem is left to the later 

chapter. 

3. Comparison of Object Forms 

     The following table compares the object form for 

dynamic linking with the one for static linking.

ha~ 

ial 

'
et



32  PMIECHANISM OF DYNAMIC LINKING Chap. 5

ENTRY

 0

 CALLER'S

LINKAGE SEC.CALL 1p k

link i
seg ent

CALLER PROCEDURE

CALLER's

1p

CAT.T.RT1' s
CALLED'S

LINKAGE SEC.
1p

1. STATIC

entry sequence

(set 1p)

T

m

seg ent
1,00J "STORAGE

FAULT

2. COPY

4. REFER TO

TARGET

op 1p  m *

template of
linkage

section

CALLED PROCEDURE

 3. SET

LINKAGE SEGMFNT

 CALLER'S 1p

CALLED'S 1p

    TARGET SEGMENTLINKAGE OFFSET 
                                      TABLE 

Figure 5.4 Call to a segment. If the linkage  section 
of the called procedure has not been copied in the 
linkage segment yet, a (no-)static storage fault 
occurs in the course of the execution of the called 
procedure. Once the linkage section is copied, the 
called procedure is executed in the usual manner.



Chap. 5 MECHANISM OF DYNAMIC LINKING 33

 

1 dynamic linking  pre-linking pre-linking

(before) (after)

PURE PROCEDURE PURE TEXT PROCEDURE BODY

LINKAGE SECTION IMPURE TEXT

(template for
links and static

variables)

STACK SEGMENT
(automatic

variables)

GLOBAL SYMBOL

DICTIONARY

GLOBAL SYMBOL

DICTIONARY

SYMBOL TABLE

FOR DEBUGGING

EXTERNAL SYMBOL

DICTIONARY

EXTERNAL SYMBOL

DICTIONARY

(segment names,
entry names)

J

LINK DEFINITION RELOCATING

(type, reference AND LINKING

traps) DIRECTORY

Table 5.1 Comparison of object forms.



34

                     CHAPTER 6 

        SHARING AND PROTECTION OF  INFORMATION 

     Sharing and protection of information is the area 

where high degree of interest is paid in modern computer 

systems. 

     Significance of information sharing in a computer 

utility is listed in the followings: 

     Utilization of common databases and procedures 

     Execution of one work by more than one process 

          Cooperative operation 

          Effective utilization of the space 

     If more than one process refer to the same segment 

at the same time to utilize common databases or 

procedures, the following problems arise [COR1], [GRA1], 

[DAT1] : 

     Consistency of information 

     Protection of information 

     Access privileges of information 

In case that one cooperative work is executed by more 

than one process, the consistency of information is an 

important problem. That is, modification to common 

information must be effective to other processes at the 

instance when one process modifies such information. This 

means that it is necessary for each process to use the 
"original" for its processing and that a process should 

not have its own "copy" of information. In most 

multi-programming operating systems in present computers, 

the same program, typically a language processor such as 

FORTRAN compiler, is often placed in the main memory



 Chap. 6 SHARING AND PROTECTION OF INFORMATION 35

twice or more at the same time and executed concurrently, 

and run-time library routines are also often copied in 

each executable binary program at the linkage-edit time. 

Routines of the elementary functions are "copied" in most 

programs of numerical analysis. Such copies, indeed, 

waste the space both in the secondary storage and the 

main memory as well as processing time. 

     Then, in order to share information effectively and 

efficiently, individual copies should not be made but it 

is required to constitute such a mechanism as to share 

and refer to the "original" itself. Next problem to be 

duly considered is information protection. Reference and 

utilization of information should not be admitted 

unconditionally. Among information which is placed in a 

computer utility there may exist such sensitive 

information that belongs to rivals in business or such 

information that is opened to the public with charge. 

Therefore, the protection mechanism of information that 

can control flexibly references of information as 

occasion demands becomes indispensable. 

     The protection of information is also required in 

order to ensure the reliability and the safety of a 

computer system as well as the privacy issues. That is, 

in the environment of a computer utility, the protection 

of information is necessary in order to confine the 

propagation of damage caused by a software, hardware, or 

operation error even in a system used by one person in 

addition to a safe plan for privacy or interests. 

     In a shared system, the protection of information is 

mandatory in order to keep fair operation and maintain 

the reliability of the system.



36 SHARING AND PROTECTION OF INFORMATION Chap. 6 

1. Policies of the Information Protection 

     The basic policies of the information protection 

[SAL3] are the followings: 
     Fail safe: 

           Information should not be exposed to risks even 

          by a defect of the protection mechanism. Fail 

          safe is a basic policy of a safety device or a 

           safety mechanism. 

     Need to know: 

          Access is permitted only to information which 

          is needed. It is the safety side that access to 

          information which is not required is forbidden. 

          And it is the safety side to confine the scope 

          of circulation of information as small as 

           possible. 
     The lowest level: 

          Basically, it is the part of the lowest 

          reliability of the protection mechanism that 

          determines the reliability and safety of a 

          system in the meaning of the information 

          protection. For example, the reliability of 
          data which is acquired from the data having 

           various levels of reliability cannot become 

          higher than the lowest. 

The reliability of the result which is computed by the 

data of reliability i cannot become higher than i. 

     Therefore, it may be admitted to judge things whose 

reliability is i by the data of reliability i, but not to 

judge things of higher reliability than i. 

2. Mechanism of Information Protection



fi

 [o~

ue: 

ai.

ICO, 

:0QF

iest 

;hat 

if a 

of 

the 

'ISO 

tt

Chap. 6 SHARING AND PROTECTION OF INFORMATION 37 

    The purpose of the mechanism of information 

protection ,is to fulfill the requirement mentioned above 
and to provide a number of users with flexible, but 

controlled, access to shared information. The design 

issues [SCH2], [SAL3], [NEE1] of protection mechanism 

are: 

     Functional capability, 

      Economy, 

     Simplicity, and 

     Programming generality. 

     The access control mechanism should have the 

functional capability to meet the requirement of 

information protection. 

     Economy is the well-known principle which applies 

any aspect of a system. Cost of protection should be 

proportional to the functional capability actually used. 
It is needed that users can easily and correctly apply 

the protection mechanism. Otherwise, the security of his 

information would be badly impaired from a misuse of the 

protection mechanism. In another word, the protection 

mechanism should be simple so that it may be completely 

understood, and users may have a high degree of 

confidence that it is safe. With regard to protection 

mechanism, lack of simplicity often implies lack of 

security. Thus, simplicity is essential both for safety 

and economy. 

2.1 Conventional Protection Mechanisms 

     The usual protection mechanism is composed of keys 

and locks of memory area, a mode switch and a limit 

register. (Privileged instructions can only be executed 

in the supervisory mode.) This policy is of "all or 

nothing". All rights are given if the execution mode once



38 SHARING AND PROTECTION OF  INFORMATION Chap. 6

becomes the supervisory mode, and it is too simple to be 

suitable for the environment of a computer utility. 

     Presentation of a pass word, etc. is sometimes 

adopted as another method. The methods that admit access 

to information regardless of a user and an execution 

state cannot accomplish the necessary protection well. 

     There is a requirement that one wants to control 

access differently accordingto the execution state or 

the user or the combination of both even if the same 

information is referred to.

2.2 Domain of Protection 

    The scope where access rights [DAL1] for 

information are equal to is called a domain. That is , a 
domain is characterized by a set of access rights , which 
is the capabilities to refer to the target segments . 
Elementary access rights are defined for each 

information. In this case access rights imply the 

capabilities which are required to refer to the target 

segment. While a process executes in one domain , it can 
refer to the information which can be referred to in this 

domain. Protection of information can be accomplished by 

organizing domains according to the kinds of access 

rights and by executing a process in a proper domain 

according to the requirements . The conditions that 
determine a domain in which a process executes are the 

execution status of the past and the present of this 

process. What must be taken into account to constitute a 

protection mechanism are: 

  1. Constitution of domains and 

  2. A mechanism of the domain switching . 
It is shown above that a domain is determined b

y a set of 
access rights . Followings are the elementary acce

ss



Chap. 6 SHARING AND PROTECTION OF INFORMATION 39 

rights given to processes for each information: 

     read, write, execute, append, directory search, 

     directory change, directory append, 

     sharable, exclusive (If there exist concurrent 

     processes.) 

A process can have the rights to get access to 

information only when its owner gives this process the 

necessary access rights. In order that a process may 

actually refer to information, the necessary access 

rights must be admitted and, moreover, the process must 

enter the domain in which these access rights are 

effective. In another word, it is required that a process 

can use the access rights effectively. 

3. Constitution of Domains 

     A domain is specified by a set of access rights. If 

one selects a set of access rights at one's option (but 

under only conditions which are not contradictory to 

themselves), one can constitute a general domain. But in 

this case, it is necessary to manage dynamically the 

activation records about return points, as stated 

earlier. These records are the ones to which a process 

cannot refer directly in the present domain, and it is 

desirable that hardware manages these pieces of 

information directly by executing return instructions. 

For this purpose, a special hardware function is 

required. In case of simulating the return action by 

software, as a matter of course, the process must enter 

into the domain which is prepared for this purpose and 

manage the return of control. 

     We should endeavour to make so simple present day 

protection mechanism as stated earlier more flexible and



40SHARING AND PROTECTION 

more available. Most protection 

in present day computers have 

rights are prescribed by the 

6.1):

OF INFORMATION Chap. 6 

mechanisms which are used 

 two domains whose access 

following two (see Figure

               DOMAIN OF 

               SUPERVISOR 

               MODE 

  ~ 

                  gate SVC 

         FAULjTlNTERRUPT 

               DOMAIN OF 
               PROBLEM MODE 

Figure 6.1 Protection domains of conventional 

 protection mechanism.

  1. Limited read, write, and execute, 

  2. Unlimited read,  write, and execute. 

As access rights of 1. are regarded as a subset of 2. , it 

is considered that domain 2. is included in domain 1.. If 

one generalizes such an inclusion relation (an ordering 

relation) a domain is prescribed by access rights which 

have the inclusion relation . If one constitutes domains 
in this way, concentric ring domains are constituted . 
Protection using such ring domains is called the ring 

protection mechanism. In the ring protection mechanism, 
information which can be gained access to only in an 

inner domain is protected from access in outer domains .



Chap. 6  SHARING AND PROTECTION OF INFORMATION

It seems to have scarcely been discussed so 

feature of constituting the ring protection 

the generalization of the inclusion relation 

6.2).

41

 far about a 

mechanism as 

 (see Figure

 Figure 

r = 0

6.2 Constitution of ring domains.

4. Kinds of Access Rights

     This section discusses the kinds of access rights 

and their effective combinations. It is supposed that a 

process is executing in a domain which is capable enough 

to employ its access rights. Here segments are classified 

either into directory segments or into non-directory 

segments from the viewpoint of access rights.

4.1 Access Rights for Usual Segments 

 The elementary access rights for usual segments are: 

 read, write, execute and restricted write (append).



42 SHARING AND PROTECTION OF INFORMATION Chap. 6

And these are combined with other attributes of the 

shared and the exclusive. The effective combinations of 

the access rights are listed below. Although some of them 

seem invalid or nonsense, they are reasonable and 

meaningful in different domains for different processes 

in the system. 

     read-only (database) 

     write-only (test paper) 

     read and write (usual data segment) 

     append-only (vote, sending message) 

     execute-only (pure procedure) 

     read and execute (pure procedure which is open to 

     the public) 

     read, write and execute (special impure procedure) 

Above rights combined with the shared and the exclusive 

attributes yield the following combinations: 

     shared read-only (database) 

     exclusive read-only (common database which is likely 

     to be changed but should not while a process is 

     using it.) 

     shared write-only (logging file) 

      exclusive write-only, etc.

4.2 Access Rights for Directory Segments 

     The followings are the elementary access rights for 

directory segments: 

     To create a directory, 

     To create a directory entry, 

     To change a directory entry, and 

     To search for a directory entry. 

     The hierarchical structure of file system affects 

every feature of management and control of information. 

This structure is mainly for the clustering of



Chap. 6 SHARING AND PROTECTION OF INFORMATION 43 

information. This structure also affects the management 

of access control and physical storage space. 

     Speaking of access  control, to be able to search for 

a directory implies to be able to search for the parent 

directory which holds the directory entry of the said 

directory, and so on. (See the later section of file 

system for the detailed discussion on the structure of 

file system.) This relation is recursive until the root 

directory which is the top directory in the file system 

is reached. Hence, in order to get access to a segment, 

it is required that all the directories on the path from 

the root directory to the target directory are accessible 

and the required access rights are given with regard to 

this segment. 

     A list of access rights for the users who are 

admitted to refer to a segment is prepared for a segment. 

Access rights are a kind of attributes of a segment, and 

are placed and managed in the directory entry just as the 

other attributes. If one could change a list of access 

rights in a directory entry, whose segment he is not 

allowed to gain access to, so that he may get access to 

this segment, and if thereafter he changed the contents 

of that segment, the security of the file system would be 

nullified. To avoid such sneak paths the write access to 

the target segment must be confirmed before the directory 

entry of this segment is changed. If one has no access 

rights to a segment, it is the safety side that even the 

existence of that segment should not be informed. 

     Therefore, the contents of the directory entries to 

whose segments he has no access rights should not be 

informed including the existence of them even if a user 

has the access rights to search in that directory. 

     Thus, access to a directory is restricted by the



44 SHARING AND PROTECTION OF  INFORMATION Chap. 6 

access rights of the segments registered in this 

directory. These relations are summed up as follows: 

     Directory search: 

           The directory search access and any but "none" 

           access rights to the target segment are needed. 

     Directory change: 

          The directory change access and write access 

           rights to the target segment are needed. 

     Registering a segment: 

          Only the register (append) access rights are 

           needed. No further access rights are needed 

           because he possesses the object segment of his 

              own. 

In a hierarchical file system a unified control over the 

segments by the manager of the upper level could be 

enforced systematically. This control includes such 

functions as the file space management and the access 

right management. For example , if access rights to a 

directory for a usual user are confined only to the 

directory search and register access
, he can create and 

register new segments but cannot delete his own segments
, 

because he is not allowed to change his directory . This 

is the same situation as employers and employees in a 

factory. Employees produce their products but are never 

permitted to destroy products, while employers have all 

rights to their products . 

5. Contention of Access - Shared or Exclusive - 

     When shared-write access is permitted for some data 

segments, it must be carefully controlled so that the 

consistency of information might not be impaired . This 

section discusses which data segments need to be paid



Chap. 6 SHARING AND PROTECTION OF INFORMATION45 

attention. 

5.1 Process Data Segments 

     Basically, there is no contention of access to 

processe's own data segments except the one between 
incremental dump operation of the file salvager and 

update action of the process. However, if the system 

enforces such logging rules that the record of the update 

time in a directory entry is set "after" update action 

and the record of the dump time is set "before" dump 

action, it is ensured that incremental dump will be taken 

once more again and this cycle continues until this data 

segment becomes quiescent, that is, there would be a 

chance that no update action is taken while dump action 

is going on. 

5.2 System Data Segments (Common Data Segments) 

     Access contention is caused to the system data 

segments which are shared among processes. Appropriate 

contention control is needed for the data segments for 

which shared write access is permitted. This contention 

control mechanism consists of a lock or a semaphore, for 

which hardware circuitry which controls access 

exclusively is needed. When a process wants to get access 

to such a data segment, it is required to lock this 

segment. If it is locked successfully, the process can 

operate on this segment. If locking fails, the process 

should wait to connect this resource, connecting a wait 

control block to this segment. 

6. Mechanism of the Domain Switching



46SHARING AND PROTECTION OF INFORMATIONChap. 6 

     The domain switching, that is, entering a different 

domain implies that access rights change - new rights 

which have not been permitted until then are given, or 

rights which have been permitted are lost -, hence the 

domain switching should be controlled with enough care. 

     The domain switching is carried out when control is 

transferred to a procedure which requires to be executed 

in a different domain.

DOMAIN 
 A

 ate CALL gate 

T RETURN

DOMAIN 

B

Figure 6.3 Switching of domains.

     Clearly, the domain switching should be confined 

only under the limited conditions . Otherwise, effective 

control becomes difficult. Things which can impose 

conditions when the domain switching occurs are as the 

followings: 

     Entry point, 

     Exit, 

     Return point (entrance to the original domain) , 
     Instruction to transfer control , 

     Pointer, and 

     Argument. 

Then, what conditions can be imposed for each item? 

Entry point: 

     The significance of restricting an entrance (gate)



Chap. 6 SHARING AND PROTECTION OF INFORMATION 47 

     is self-evident. A process can enter the domain only 

     at the entrance for which it has been declared 

    previously that it may be used at the time of the 

     domain switching. Also it is possible to set limits 

    to the state of a process which can use one 

     entrance. Or it is possible to require to show a 

     cryptograph at the time of entrance or to execute a 

     particular entry sequence. 

Exit: 

     It is not practical to set limits to the exit from 

     where a process goes out to another domain. Rather, 

     it is more practical to set limits to the place 

     where a process enters a domain as mentioned above. 

     But in case of a return for a call to a procedure, 

     an exit is a return point which will be stated 

      below. 

Return point: 

     A return point is also one of the entrances to one 

     domain. The difference between an entrance and a 

     return point is that an entrance is declared 

     statically at the time of composing a program while 

     a return point is declared dynamically at the time 

     of a call to a procedure. Moreover, in order to 

     manage return points dynamically, a stack is needed 

    if one doesn't set any limit to a call to a 

     procedure including recursion. 

Instruction to transfer control: 

     Various methods of a call to a procedure and a 

     return from it are possible. In order to simplify 

     and validate the logic of the protection mechanism, 

     it is practical to set limits to the kind of 

     instructions  which relate to the protection 

      mechanism.



48 SHARING AND PROTECTION OF INFORMATION Chap. 6 

Argument: 

     It is not desirable to set limits to arguments, as 

     it affects the program logic. However, limitations 

     based on access control sometimes happen to be 

      imposed. 

     The domain switching mechanism consists of a 

register which shows the current domain, domain 

indicators and mode flags in address pointers and segment 

descriptors, and a determination logic. 

     In the simplest case of two layered domains, domain 

switching mechanism can be constituted in the following 

 way: 

    1. Prepare a flag to denote the mode of execution in a 

     segment descriptor, which is set only by a 

     privileged instruction. 

  2. While a procedure whose mode flag is on is executed, 

     the execution mode is set to the privileged mode. 

  3. While a procedure whose mode flag is off is 

    executed, the execution mode is set to the 

     non-privileged mode. 

  4. Inhibit invocation of a non-privileged procedure 

     from a privileged procedure. 

The mode flag in a segment descriptor is set only in the 

privileged mode, thus, there is no fear that this mode is 

set unduly by a usual user program, and a privileged 

procedure which has been invoked by a SVC so far can be 

called by a usual call instruction. 

     A more elaborate example of a domain switching 

mechanism is found in the ring protection mechanism.



 li 

¢; 

~¢ is 

,Qdf

49

                    CHAPTER 7 

THE RING PROTECTION MECHANISM 

     In this chapter constitution of domains of the ring 

protection mechanism described in the previous chapter is 

explained more concretely_ 

     The ring protection mechanism is contrived and first 

implemented in Multics. The first version was implemented 

by software and became operable in 1969. The second 

version is implemented by hardware and currently being 

used [GRA1] , [SAL3] , [SCH3] . The ring protection 

mechanism is also adopted in several systems such as 

ITITAC 8800 and ACOS 700 [MOT1] , [ACOS] . 

     The purpose of the discussion in this chapter is to 

make the logical structure of this mechanism clear and to 

extend it a little in order to augment its applicability. 

     In the ring protection mechanism if some access is 

admitted in some domain, this access is also admitted in 

inner domains. In order to define domains in the ring 

protection mechanism, it is sufficient to define the 

kinds of admitted access and the largest ring numbers in 

which these references are admitted for each segment. The 

kinds of access which are commonly considered are: 

     read, write, execute, directory search, and 

     directory change. 

     To control these kinds of access, flags of five bits 

and five ring numbers are required for each segment. And, 

in addition to these, one must prescribe access control 

information to every user for each segment. Therefore, we 

must devise a method to prescribe access rights with less



50THE RING PROTECTION MECHANISM Chap. 7 

information. Here rings are numbered from 0 to some 

maximum, say 7, and the lower the ring number is, the 

greater the access capabilities are. 

     First, we will consider the access control 

information for non-directory segments. We may suppose 

r1< r2where r1 and r2 are the largest ring numbers in 

whose ring a process can write and read respectively. 

Moreover, it doesn't cause inconvenience practically that 

the largest ring number in whose ring a process can 

execute is fixed to be equal to  r2. And, if one 

considers the condition of "need to know", the smallest 

ring number may be set to be equal to r1 because a 

process can write, read and execute a segment in r1 but 

cannot in r where r > r1. 

Moreover, let us assume that the largest ring number 

in whose ring a process can call a segment is equal to r3 

and one can prescribe access rights by three access flags 

(r, w, ex) and three ring numbers (r1, r2, r3) for a 

non-directory segment. 

     A user cannot get access to a directory segment 

directly, and he must ask the supervisor to search for , 
create and modify a directory segment . In this case, 
appropriate access control can be accomplished , taking 
the caller's ring number as the validation level to refer 

to a directory segment. 

      Directory search corresponds to read-access, and



Chap. 7 THE RING PROTECTION MECHANISM 51

 0(1{2'3  4  5 6 7(ring number 

write bracket'

       read 

read flag 

write flag 

execute flag

bracket 

: on 

: on 

: off

I l l2l3l4l5l6l7lring number 

                      write bracket 
ti 
                      read bracket 

                             execute bracket call bracket 
              read flag : on 

              write flag : on 
               execute flag : on 

              Figure 7.1 Examples of access flags and 
              ring brackets. Bracket means the range 

              where some access is permitted. 

directory create- and modify-access correspond to 

write-access. There is no action which corresponds to 

execute-access. Thus, one can prescribe access rights by 

two access flags (r, w) and two ring numbers of the 

requester (r1, r2) for a directory segment. 

1. Domain Switching in the Ring Protection Mechanism 

     There are the following three cases of the domain 

switching in the ring protection mechanism: 

  1. Move to an inner ring 

  2. Stay within the same ring 

  3. Move to an outer ring 

As a move to an inner ring of 1. increases access rights 

of a process, it must be carefully controlled. In order



52THE RING PROTECTION MECHANISM Chap. 7 

to do this, there is a problem of establishing entry 

points. 

     There is no problem from the viewpoint of protection 

as for stay within the same ring of 2.. 

     As a move to an outer ring of 3. decreases access 

rights, there is no problem to be managed by the access 

control mechanism, except problems about program logic, 

because a process which is executing in an inner ring has 

a right to move to an optional outer ring. 

     Transfer of control is caused by the following three 

instructions: 

  A. Call to a procedure 

  B. Return from a procedure 

  C. Transfer other than call and return 

It is not taken into account here that the domain 

switching is required within the same  procedure. as the 

attributes are the same for the information within one 

segment. And execution of a call to and a return from a 

procedure is restricted to the call instruction and the 

return instruction respectively. Therefore, it is 

necessary to take account only of the following four 

cases shown in Table 7.1 from the viewpoint of 

protection.

direct.  inward outward

call
INWARD

CALL

OUTWARD

CALL

return
INWARD

RETURN
OUTWARD

RETURN

              Table 7.1 Ring-crossing call and return. 

These four cases are divided into the following two 

 pairs:



Chap. 7 THE RING PROTECTION MECHANISM53 

  1. Inward call and consequent outward return, and 

  2.  Outward call and consequent inward return. 

     In case of an inward call of 1. an entry is used 

which is fixed statically at the compile time of a 

program. 

     There doesn't exist any problem about an outward 

return. It is guaranteed that arguments accompanied by a 

procedure call which the caller can gain access to can 
also be referred to by the called procedure. 

     An inward call corresponds to the case that a 

procedure requires processing of higher ability which 
this procedure can't manage by itself to a higher 

authoritative procedure. 

     There is a problem of establishing a return point 

for an outward call of 2.. That is, one must manage an 
"entry point" for an inward return . As this return entry 

needs dynamic management, a return stack is necessary. 

Moreover, there is a possibility that the caller executes 

a call accompanying such variables that the called 

procedure cannot gain access to. As this is the case that 

a high authoritative procedure requires a low 

authoritative procedure to manage a problem, it is 

originally unreasonable that the caller uses the results 

of the processing as it is. As the reliability of the 

results of processing is the lowest one which occurs 

during its processing, which is stated in the section of 

the protection policy, such an algorithm of a procedure 

is often incorrect. Of course, it will not have any 

trouble if a caller never uses the results of processing 

but just lets it "process". 

     As the ring protection mechanism does not constitute 

domains which are mutually exclusive but constitutes ones 

which have the inclusion relation, mutually suspicious



54THE RING PROTECTION  MECHANISM Chap. 7 

information cannot be protected properly. In such a case, 

it is necessary to compose domains which are completely 

separate each other. 

2. CPU from the Viewpoint of the Ring Protection 

Mechanism 

     A CPU is a kind of hardware which interprets and 

executes instructions, that is, an instruction is a pure 

procedure implemented by a logical circuitry or by a 
microprogram for which only execution is permitted. There 

are two kinds of instructions, some are usual 

instructions and the others are privileged instructions. 

     A usual instruction is an execute-only utility 

routine whose ring bracket is (0, 7, 7). 

     By contrast, a privileged instruction affects the 

protection status of the system and is only executable in 

the qualified domain where the protection status is 

controlled. A privileged instruction is also an 

execute-only routine whose ring bracket is (0, 0, 0) and 

which is permitted to execute only in the supervisory 

mode. 

     Typically, a CPU has several registers which are 

used to hold control information to control over 

instruction execution, and intermediate results of 

operations. They are: 

  1. Registers to hold operands of operations 

     Data which are hold in these registers belong to 

     data segments of a process by nature . The stack 

     pointer and the linkage pointer are also included in 

     these data. The ring brackets of these data are 

     considered to be (n, n, n) where n is the executing 

      ring number.



ar. 

 o. 

ar 

;au 

aG 

;lp

Chap. 7 THE RING PROTECTION MECHANISM55 

  2. Registers to Control the Execution Status 

      2.1 Registers to Control Instruction Execution 

          The ring brackets of these data are (n, n, n) 

          where n is the executing ring number. 

      2.2 Registers to Control the Protection Status and 

          Address Space 

          Data which are hold in these registers belong 

        by nature to the data segments of the 

          supervisor, and the ring brackets of these data 

          are (0, 0, 0) 

3. Comment on Call and Return Instructions 

     Care must be taken as to saving or restoring the 

data in the CPU when an interruption or a procedure call 

and a return are taken place. 

     When a call or an interruption occurs, all data held 

in registers in the CPU are copied into the stack frame 

of the caller's procedure or the interrupted procedure. 

     When a return from the called procedure or the 

interrupt handler is taken place, the ring number should 

be the maximum of the executing ring and the ring of the 

stack frame, and the data which could be touched at this 

ring number should only be restored. (See Chapter 11 for 

further discussion.) 

     By doing so, there would be no fear that the 

protection mechanism of the system would be impaired, and 
we could unify the save and restore sequences of the 

status in the system. 

4. Extension of the Ring Protection Mechanism



56 THE RING PROTECTION MECHANISM Chap. 7 

     The ring protection mechanism mentioned above is the 

generalization of the simple two-layer mechanism which 
has the problem state and the supervisory state. It is 

rather easily realized with simple logic circuitry, and 

has an effect on wide applications. 

    However, two subsystems which are mutually 

suspicious cannot be protected by the ring protection 

mechanism because the ring protection mechanism implies 

inclusion while it is necessary to realize exclusion to 

protect two mutually suspicious subsystems [SCII1] 

[SAL3]. Schroeder (1972) [SCII2] proposed a scheme of a 

general protection mechanism which realizes mutually 
exclusive domains but it is much complicated and 

difficult to implement effectively in a usual computer 

system. 

     In this section we will discuss a method to realize 

mutually independent domains extending the ring 

protection mechanism. The points of issue are the 
followings: 

  1. What types of domains are necessary? 

  2. How to make domains mutually independent each other? 

  3. How to enter another domain? 

  4. Where to include or place segments and how to do so? 

4.1 Constitution of Mutually Independent Domains 

     This section discusses a method to extend the ring 

protection mechanism in order to augment its 
applicability. 

     The ring protection mechanism is realized and 

controlled by specifing the ring brackets and the access 

flags in the descriptor segment . Domains which are 
independent each other could be realized by providing 

each domain with a descriptor segment .



 P

II 

 l

IG

Chap. 7 THE RING PROTECTION MECHANISM57 

     Common system modules, mainly supervisory segments 

and utility segments, are shared among processes, which 

are all placed in commonly accessible inner rings. 

Conceptual diagram of such domains would be sketched as 

the following figure.

CLUSTER A

 cluster" 

crossing  common 

rings 

r = 0

CLUSTER 
   B

usual ring 

crossing

        Figure 7.2 Constitution of ring domains which can 
        separate mutually suspicious subsystems. 

In this figure, domains are clustered to form sub-spaces 

each of which constitutes concentric domains of the ring 

protection mechanism. A cluster of domains might 
correspond to a certain subsystem. Such a configuration 

has in fact already existed when we look at a 

multi-processing system from the system-wide angle 

instead of the process-wide. In this case, however, the 

switching of domains from one address space to another is 

never permitted. Here, it is necessary to separate 

mutually suspicious pieces of information, placing them 

in independent (cluster of) domains, and also necessary 

to enter an appropriate domain in a certain cluster when



58THE RING PROTECTION MECHANISM Chap. 7 

they are needed. So the protection mechanism which we are 

discussing has essentially different requirements from 

the one in a multi-processing system. 

4.2 Extended Domain Switching 

     As mentioned above, cluster of ring domains which 

are mutually independent may be realized by creating 

independent address spaces in a system. What is required 

is a mechanism to switch clusters. And this is nothing 

but the switching mechanism of address spaces . 

     The switching of domains is required when a "domain 

crossing" call and a  consequent return are executed . 

Calls in this case include hardware implemented calls
, 

that is, interrupts and faults.

ADDRESS  LENGTH TYPE
ACCESS

FLAG
RING

BRACKET
GATE CLUSTER

FAULT

FLAG

 Figure 7.3 Segment descriptor for the cluster 
 switching. The cluster field is newly added and is used 

 to determine the target clusters when the cluster 
 switching that is indicated by the fault field is 

 needed. The type field, the  access flag field , the ring  field
, and the gate field are used in the ring 

 protection mechanism. 

     There are two kinds of the domain switching
, one 

switches domains within a cluster
, and the other switches 

domains crossing the wall of clusters . If it is necessary 
to switch clusters of domains , a fault will notify this 
and the supervisor can change the setti

ng of the 
descriptor base register which specifies the selected 

cluster of domains . The condition that needs to switch 
clusters of domains when a call or a return oc

curs could 
be designated by specifying the identifier of 

a target 
cluster in a segment descriptor (see Figure 7

.3). (The



Chap. 7 

discussion on 

 segment, and 

behind.)

THE RING PROTECTION MECHANISM 59

the segment descriptor, the descriptor 

the descriptor base register are left

DESCRIPTOR 

BASE REG.

%

• 
•

I I I
segment descriptor

addr-

ess

 clus-

ter

fault

flag
E

DESCRIPTOR SEGMENT 

OF CLUSTER "0"
DESCRIPTOR SEGMENT 

OF CLUSTER "X"  ...

Figure 7.4 Constitution of clusters. One descriptor 
segment is associated with one cluster. One cluster 
constitutes the ring domains, which are controlled by 
the ring bracket fields in segment descriptors. 
Indication of cluster is placed in the cluster field 
as shown in Figure 7.3. 

Separate data segments are required to execute a 

process for each cluster. These data segments are linkage 

segments, stack segments and other data segments. When a 

procedure call is executed, the stack frame is pushed 

down. The old stack frame and the new one are chained by 

two pointers. If a procedure call which requires the 

cluster switching occurs, the stack frame is also pushed 

down, but in this case into a separate stack segment



60THE RING PROTECTION MECHANISM Chap. 7 

because the called procedure is executed in a different 

cluster where a separate set of data segments is used. 

The push-down sequence is executed by the gatekeeper 

routine when a cross cluster fault is detected. 

     When a return from the called procedure is taken 

place, the stack frame is popped up and the execution 

status of the caller is tried to be restored, using the 

chaining pointers. If a cluster crossing has not been 

taken place, this pop-up will be executed successfully in 

straightforward manner. If it has, access to the older 

stack frame is forbidden and a cross cluster fault occurs 

again. The gatekeeper can intercept this fault and 

switches the cluster back. The following figures show 

the  constitution of clusters and scheme of the cluster 

switching. 

     The segment identifiers which designate a segment 

are assumed to be identical in each cluster . In a 

multi-programming system segment identifiers , which are 

used by the processes in the system to designate the same 

segment, are independent. 

     The ring protection mechanism is still working in 

this extension. Hence, calls are restricted to those 

which do not change ring or call inward
, and this ensures 

that no contradiction is caused even if the original 

cluster is entered recursively . 

     The problem of arguments accompanied by a call is 

troublesome. Generally speaking , arguments placed in the 

caller's cluster cannot be referred to in the called 

cluster. Then, it is necessary to place them in common 

areas which can be referred to both in the caller cluster 

and in the called one. Further, the validity check of 

arguments should be undertaken by the procedures which 

use them. This check is carried out by the called



el~

fI

Pf'.

ff

Pf

Ipil
IIi

 f. 

ff~ 

 fP

Chap. 7 THE RING PROTECTION MECHANISM 61

DESCRIPTOR 

BASF REG.

PROC A

•
•

•

DESCRIPTOR SEG. 

OF CLUSTER "W"

•
•

•
•

CALL B

PROC B

CALL C

PROC C

CALL ?)

A

B

C

D

STACKW

STACKX

l.i

I•?

X

X

CC

CC

CALL

DESCRIPTOR SEG. 

OF CLUSTER "X"

RETURN

STACKW

cross 
   cluster 
  fault 

(GATEKEEPER)

A

B

C

D

STACKW

STACKX

T.?

W

W

X

W

X

CC

CC

CC

CC

CC: cross 

    cluster 

    fault

PROC D

RETURN

stack

frame of

A

of

 B

 II of

C

top

[CLUSTER  W]

STACKX 

 stack 

 frame of 
D

top

[CLUSTER X]

cluster 

field

Figure 7.5Mechanism of the cluster switching. Procedure 

A calls procedure B, B calls C, and so on. Procedure A, B 
and C are executed in cluster "iv" and procedure D should 
be executed in cluster "X". The cluster switching is 

caused when procedure D is called. The swapping of the 
descriptor segments, the stack segments, etc. is 

undertaken by the gatekeeper, which also chains the stack 
frames. Thus, when a return to C is tried, a cross 
cluster fault is caused and "calls" the gatekeeper again 
in order to complete the cross cluster return.



62THE RING PROTECTION MECHANISM Chap. 7 

procedure in the inner ring (more privileged one) when 
the ring protection mechanism is incorporated. The 

problem of constituting common areas is discussed in the 
next section. 

 S. Clustering of Domains 

     Next problem is where to put each segment. The 

access control information of a segment is stored in the 

directory entry for this segment. The access control 

information consists of a list of user names to whom 

access to this segment is allowed and their access 

rights. When the ring protection mechanism is used , 
access rights are designated by access flags which denote 

the kinds of access permitted and a ring bracket. In 

order to create independent clusters of domains , 
information for segment clustering is needed . The 
simplest way is to add subsystem identifiers to lists of 

access rights. Usual segments are not given such 

subsystem identifiers and are usually put into the 

cluster, say, "0". Those segments that are given 

subsystem identifiers are put into other clusters each of 

which correspond to a subsystem identifier , and fault 
conditions are set in the domain of the other clusters so 

that the cluster switching condition will be notified . A 
cluster of domains is assigned dynamically as a new 

subsystem identifier is encountered . 
     The problem of constituting common areas for 

argument passing is rather easy . To do this, the 
identifier of its own cluster is set in the cluster field 

of the segment descriptor for a common data segment (see 

Figure 7.6). 

    This scheme seems to work, but is still



IP;

If 

fa

I
'.

61

11

 Ch  ap  . 7 THE RING PROTECTION MECHANISM

-SS--

address cluster

63

address cluster

 i
 I

I

Ii
1
i
1

common

data

area

data A data B

DESCRIPTOR  SEG. 1DESCRIPTOR SEG. 
L----- -1 

DOMAIN "A"I  

 1DOMAIN "B" 

Figure 7.6 Common area to pass arguments. Common 

data segments may be utilized to pass arguments 
between procedures which belong to different 
clusters each other. To do this, the identifier of 
its own cluster is set in the cluster field of the 
segment descriptor for a common data segment.

insufficient. If all segments which are needed in a 

computation are properly sorted and given subsystem 

identifiers beforehand, above mentioned scheme would work 

successfully. In usual cases, however, many segments are 

borrowed from system libraries or other persons' 

directories, in which case, if it is wanted to create 

independent domains, additional information is needed to 

identify subsystems. Such information could be stored 

separately in linked entries to the directory entries 

which hold the attributes of the borrowed segments (see 

Figures 7.7 and 7.8) . 

Linked entries for this purpose cannot be created 

automatically. If segment clustering is not indicated at



64 THE RING PROTECTION MECHANISM  Chap. 7

user

 name

permitted
access

ring

bracket

subsystem

identifier

JHON RW 0,5,5

JACK R 0,5,5

BLACK none

Figure 

control

7.7 

list

Constitution of 

 (ACL).

access

DIRECTORY 

ENTRY FOR A

segment

name

subsystem

identifier

directory

entry ptr.

 i

ACCESS

CONTROL

LIST
A  W

B W

C W DIRECTORY

ENTRY FOR B
D X

     LINKED ENTRY TO THE BORROWED  OTHER'S DIRECTORY 
     SEGMENTS 

      Figure 7.8 Linked entry to hold subsystem identifiers. 

all, programs will be executed in the usual 

protection environment. 

6. Capability of Ring i State

ring



Chap. 7 THE RING PROTECTION MECHANISM65 

    In ring i it is able to: 

  1. Change ring number i to j where j is not less than 

 i, 

  2. Create segments which can be executed in ring j, 

  3. Create segments which can be read in ring j, 

  4. Create segments which can be written in ring j, 

  5. Create directory segments which can be searched for 

     in ring  j, and 

  6. Create directory segments which can be modified in 

     ring j, 

but it is not permitted to create a segment which can be 

executed in a ring whose number is less than i. That is, 

the ring brackets of segments which can be created are 

     (r1, r2, r3) where r1>ir2>i,and r3> i. 

It does no harm in itself to create such segments whose 

read or write brackets are less than i (r1 < i, or 

r2 < i), but this will have the following side effects: 

  1. The execute bracket becomes (r1, r2) by convention, 

     and this is not permitted. 

  2. It would be meaningless to create a segment which 

     cannot be read or written by the creator himself. 

  3. It would cause troubles in a computing system to 

     create a segment which the creator cannot control. 

     Thus, it is usually recommended that the read and 

     write brackets should include ring i. 

The initial ring number of a user whose authorized rights 

are the level of i is i.



66THE RING PROTECTION MECHANISM Chap. 7 

7. Additional  Comments on the Ring Protection Mechanism 

     Privileged instructions can be executed only in ring 

0. The processor status which controls access rig.its can 

be handled only in ring 0. Supervisory procedures can be 

created only in ring 0. 

     Users who have ring 0 rights can be registered only 

from the system console. 

     It is asked to show a special password to register 

users in the system. This password can be changed by the 

user himself freely after he has been registered in the 

system. The password table should not be stored in its 

original form but should be stored cryptographically
.



67

 CHAPTER 8 

CONSTITUTION OF AN ADDRESS SPACE

    This chapter 

an address space 

the system and to

  discusses the problem of constituting 

in relation to the information space of 

the structure of an address space.

1. File System

     On-line information is essential for a computer 

utility. Information is registered and managed in a 

directory in a file system, treating a segment as a unit. 

Thus, the structure of the file system affects greatly 

the characters of an address space in a computer system. 

     A directory itself is a segment, and as a matter of 

course it is registered in its "parent" directory. If a 

directory segment is registered in a directory in the 

same way as a non-directory segment, the structure of a 

file system inevitably becomes a tree structure [DAL1], 

[RAP1]. The origin of this tree structure, that is, the 

first directory is called the "root directory". It is 

supposed that the root directory always "exists" and its 

location is known. 

The structure of a file system generally becomes a tree 

structure as stated above, and moreover, this structure 

determines the characters of all elements which are 

necessary for the file management. That is, space and 

access are controlled by the hierarchical structure. One 

segment can be uniquely identified by a route in a file 

system which starts from the root and reaches the



68 CONSTITUTION OF AN ADDRESS SPACE  Chap. 8

root> a> b> c

root> a> b> h

 root>  a>  x>  b

directory segment 
root> d> x 

(2) nondirectory segment 
Figure 8.1 Hierarchical file structure. Two 
kinds of directory entries are shown in the 
figure, one is a branch which describes a 
segment, and the other is a link which points 
at a directory. The problem of aliases is 
resolved by using links. ">" connects node 
(directory or non-directory) names to form 
the path-name of a segment.

directory in which 

showing a sequence of 

on the route.

the required segment 

directory names which

is registered, 

 are the nodes



Chap. 8 CONSTITUTION OF AN ADDRESS SPACE 69

x

 quota  = 0 

used quota = 0

(25 pages)

(40 pages)

quota = 100 

used quota=85

move_quota10 pages to V 
30 pages to Z 

   -e~

quota = 0 

used quota = 60

quota = 0 

used quota = 20

(20 pages)

(40 pages)

 quota  = y0, 
su$e0'7'Gata y40,

,quofa~-3Q;:,..,. , 
us0.'quota*,2,0

0
directory segment

nondirectory segment

Figure 8.2 Management of the file space. This figure 
shows that the management of the file space is also 
enforced hierarchically under the hierarchical file 
structure. At first, all the quota - file space - is 
given to the root directory. Quota can be moved to 
lower directories. A directory which is given quota 
takes charge of the file space management of files 
under this directory except those which are managed by 
some directories under this one.



70CONSTITUTION OF AN ADDRESS SPACE Chap. 8 

     Thus, there doesn't occur a problem like a homonym 

in a general file system. A problem about an alias is 

nominal (see Figures 8.1 and 8.2). 

2. Connection of an Address Space and the Information 

Space 

     Generally, there are more than one directory in 

which segments contained in one address space are 

registered. In order to specify a segment required in a 
"computation" uniquely in a directory hierarchy, it is 

necessary to show a path-name. As the most direct method, 

this condition is satisfied with executing all the 

references of a segment in a "computation", showing a 

complete path-name. However, 

  1. A user doesn't sometimes want to  express clearly the 

     location of information which he requires, 

  2. He sometimes can't express clearly even if he wants, 

     and 

  3. It is not necessarily caused by rational reasons 

     that one segment is registered in some directory. 

Thus, this method is not proper for our purpose. 

     The logic of a program should be independent of the 

way of file search. For this reason the method in which 

one appoints directories and an order of directory search 

is generally used. One can completely locate a necessary 

segment by this method, grasping sufficiently a directory 

in which the required segment is registered. If one uses 

this method carelessly, there may happen a case in which 

one can't specify the necessary segment. As it occurs 

mainly in a case that one wants to use a part of special 

libraries in combination with his own library and system 

libraries, one must be careful in selecting directories



Chap. 8 CONSTITUTION OF AN ADDRESS SPACE71 

and an order of directory search. 

3. Dimension of an Address Space 

    We defined in the previous chapter that an address 

space is the collection of programs and data to which one 

process refers in a computation. Moreover, we stated that 

information becomes a "group" called a segment according 

to attributes and such segments are gathered to 

constitute an address space. 

     The next  problem is the logical structure of a 

segment. It can also be said from another viewpoint that 

the logical structure of a segment represents the method 

of addressing of information in a segment. Let us 

suppose, in the following, that address or location means 

a logical entity unless specified otherwise. That is, 

address or location in the discussion of this section has 

no relation to the physical storage location. 

     As an address space is a representation of the space 

for consideration it is necessary to analyze the logical 

structure of the space for consideration when one 

discusses the structure of an address space. An address 

space also exists even in conventional computers which 

pay little notice about the constitution of "logical 

address space". But in this case, a distinction between 

the program part and the data part is ambiguous and only 

linear addressing is often used. Such an address space is 

one-dimensional. In case that programs and data are 

divided into separate segments, an address space becomes 

two-dimensional at least. How many dimensions of "an 

address space" do we manage on earth in human activity of 

consideration, now? For example, a dictionary is an 

one-dimensional array whose element includes a key word



72CONSTITUTION OF AN ADDRESS SPACE Chap. 8 

and its meaning. If a key word has more than one 

different meaning, each item is regarded as 

one-dimensional array and an array with such 

one-dimensional array elements is regarded as 

two-dimensional space. If a literature is regarded as 

being only a string of words, it is considered to be 

one-dimensional space, and if it is regarded as an array 

of statements, it is considered to be two-dimensional 

space. As a picture, image and a table are 

 two-dimensional, collection of these things is 

three-dimensional. 

     The information space in a computer, which is 

composed of a complex of one or more than one subsystem, 

is considered to form the following tree structure (see 

Figure 8.3) . 

                       Directory of
                    a composite 

                     system 

         Directory of 

          a system 

Directory of 

a subsystem 

within a 

system

Usual 

segment

 \  I 
1

   Figure 8.3 General information space 

   for a computation.



Chap. 8 CONSTITUTION OF AN ADDRESS SPACE73 

The subject which refers to one unit of information (bit, 

byte or word) is a process and a process executes 

instructions on a processor. The object to be referred to 

is either an instruction or data. Various methods are 

considered in the methods of addressing, but each of 

array, structure, block structure and stack requires a 

characteristic addressing method to refer to their unit 

                                                                                                                                                                                                                    • information. 

4. Recursion and Block Structure 

     When recursion occurs, information which belongs to 

the domain of the previous level becomes invisible from 

the present level  [ORG2], [BUR1]. A stack is generally 

used to realize such domains, constituting a domain to 

place all the automatic variables, including the return 

pointer and current values of registers, as one element 
of the stack, which is called a stack frame. 

     A variable placed in a stack can be referred to by 

using the stack pointer that points at the base of the 

current stack frame which includes the required variable. 

By providing a stack pointer which is accompanied by an 

upper and a lower limit register, domains which belong to 

the previous levels are made invisible. (These limit 

registers are redundant because such limit registers are 

included in the mechanism of segmentation as shown 

later.) In case that there are nested domains created by 

the block structure, a process can get access to the 

domains below the current level (Such domains correspond 

to the levels in static meaning which appeared 

previously). Each currently "active" level is pointed at 

by a display register [RANI] (each relative location of 

the most recently appeared static-levels which are found



74CONSTITUTION OF AN ADDRESS SPACE Chap. 8 

in the active dynamic levels). 

5. Mechanism of Segmentation 

     Segmentation is employed in order to realize a 

two-dimensional address space and to make the followings 

possible  [RAP1]  , [GLA1] , [VSY1] , [MCC1] , [GIB1] : 
     The different access controls for each segment, 

     The dynamic change of segment size, 

     Dynamic linking, and 

     The efficient utilization of the memory space. 

           instruction 

Ioperation' seg. no.  displacement1

descriptor

           Figure 8 

The mechanism 

functions: 

    To map 

space,

D. SEG. BOUND 
FAULT 
SEG. BOUND 
FAULT 
ACCESS VIOLA-
TION FAULT 

MISSING 
SEG. FAULT

DFSCRIPTOR SFCMENT 

                                            TARGET SFG. 

.4 Mechanism of segmentation . 

  of segmentation requires the following 

fragmentary spaces to the contiguous memory



Chap. 8 CONSTITUTION OF AN  ADDRESS SPACE 75

/* The following lines illustrate the 
of segmentation in PL/I like notation 

mechanism of segmentation: proc; 

dcl 1 instruction based.

dcl

dcl

dcl

if 

/*

   2 operation, 
   2 address, 
      3 segment number, 

     3 displacement; 
1 base, 

   2 address, 
  2 length; 
 1 descriptor segment 

   2 segment descriptor 
     3 address, 

     3 length, 
     3 access rights, 

     3 flag; 
 ( seg des _pointer, 

target _ po 

base.length 
check bound of the desc 
then descrip 
else do; 

seg des _pointer 
   if seg _de /

* check missing seg 

     then m 
     else i 

then segment _b 
else 

instruct 

            then access 

else target

  end; 
return;

address 
. */

/* descriptor

ased (base), 
  (array),

formation

base

operation

register *1

inter ) hardware working register; 

egmentnumber 
           of the descriptor segment */ 
bound fault; 

dr(base.address + address.segment number); 
s_pointer -4-flag incore 

           missing segment */ 
issing _segmentfault; 

des _pointer -> segment_descriptor.length < 
address.displacement /*check segment length */ 
n segment bound _fault; 

                       s_pointer 4- accessrights 0 
instruction.operation /*check access rights */ 

           then access violation fault; 
else target _pointer = addr(seg des_pointer 

                  segmentdescriptor.address + 
                   address._displacement); 

                        /* finished */

Figure 8.4 Mechanism of segmentation (continued).



76CONSTITUTION OF AN ADDRESS SPACE Chap. 8 

     To enforce access control (validate access rights) 

     at each and every reference, 

     To detect access to a segment which doesn't exist 

     (activated) in the main memory, or 

     To detect access to a part of a segment which has 

     not been placed yet in the main memory. 

The hardware mechanism shown in Figure 8.4 is used in a 

large computer system. 

When segment descriptors are placed in the main memory, 
 "seg  des

_pointer ->segment_descriptor" 
implies that one memory reference is taken place. 

Therefore, in a segmentation mechanism, two memory 

references are at least required in order to refer to the 

object information. (HIere we do not touch a paging 

mechanism.) For this reason, associative memory is used 

to realize fast access [SCH1], [AND2], [HON1]. In a 

rather small scale computer system in which 

communications between the CPU and memory is executed 

synchronously and an indirect addressing mechanism is not 

provided with it is impossible to place segment 
descriptors in optional location in the main memory . 

     We are trying a method adaptable in a middle or 

small scale computer system . The basic principle of this 
method is the same as what we stated before , but the 
segment map, which is logically equivalent to the 

descriptor segment, is placed in special high-speed 

memory (a group of registers) and its address is fixed in 

the system. Thus, the base register which points at the 

base of the segment map is not needed . As we use a fast 
memory separately from the main memory , extra clock is 
not necessary for address mapping and a word in a segment 

can be referred to within the time of one memory access 

cycle. For this reason, the address mapping mechanism is



Chap. 8 CONSTITUTION OF AN ADDRESS SPACE77 

entirely transparent from the viewpoint of memory access 

time. Of course, functionally it does segmentation 

distinctly. 

    There are some  computer systems which have 

segmentation mechanism whose segment number is only of 

the order of sixteen to thirty two. Such systems cannot 

realize useful segmentation but only do "segment overlay" 

which is prepared and bound beforehand. This is because a 

big software system incorporates a great many segments 

whose number is the order of one hundred. Thus, the 

length of the segment number field should be long enough 

to match such a requirement. 

6. Descriptor Segment and Descriptor Base Register 

     The descriptor segment is an array of segment 

descriptors [GLA1], [ONI1]. It is used as a segment map 

to map fragmentary spaces to the contiguous memory space. 

That is, it is indexed by the segment number, and a 

segment descriptor in it is referred to by the address 

formation mechanism of the CPU. A segment descriptor has 

an address field for this purpose, which holds the start 

address (of the page table, if paging is used,) of the 

segment that corresponds to the segment number of this 

descriptor. The segment number is assigned at the linking 

time as described in the earlier chapter. 

     A segment descriptor holds some flags, one of which 

is used to detect whether or not the required segment is 

incore. The dynamic loading function of segmentation owes 

to this flag. Usually, the initial value of this flag is 

set to the not-incore condition. 

     A segment descriptor is set when a process requires 

access to the segment whose incore-flag denotes that the



 78CONSTITUTION OF AN ADDRESS SPACE Chap. 8 

 required one is not incore. This condition is notified by 

 a (missing) segment fault, and the segment fault handler 
 "connects" the segment in the information space in th

e 
 system to the address space of the process. This is done 

by searching in the file system as described in the 

 earlier section. 

     The descriptor segment is not only used for 

segmentation but also used for access control as well . A 
segment descriptor is referred to each and every time the 

target segment is referred to, thus the check of access 

rights is easily undertaken by placing and verifying the 

access control information in the segment descriptor . The 
access control information, which is obtained from the 

directory entry of the target segment and set at the 
"connection" time

, might include the followings: 
     Segment length and segment limit , 
     Kinds of access permitted , 

     Range of access permitted - ring bracket
, cluster, 

      gate of entry, etc. -, and 

      Kind of segment - privileged , non-privileged -. 
     To sum up, the descriptor segment plays the central 

role in segmentation as well as in information 

protection. It is an array of segment descriptors , and a 
segment descriptor has such fields as addre

ss, length, 
incore flag, access control flags

, and other access 
control information . 

7. Three-Dimensional Address 

     In a procedure which has the block structure
, 

information is located by a static lexical l
evel and a 

relative location in this level . In case that such 
allocation is used

, "displays", as shown in the following



Jp 

pu 

~N[

 Chap. 8 CONSTITUTION OF AN ADDRESS SPACE

DESCRIPTOR

seg 
fault

(processing of 
segment manager) 

jy1. missing       segment 

     fault 

  2. activate 

      segment 

   3. set 

      segment 

      descriptor 
       "connect" 

 4

 length

ACTIVE SEGMENT 

TABLE ENTRY

                                   TARGET SEGMENT 

Figure 8.5 Connection of an address space to 
the . information space of the system. The 
information space is managed by the hierarchical 
file system. Those segments which are currently 
beeing used are made active (open) and their 
directory entries are copied into the active 
segment table in the main memory. (1) When a 
process wants to refer to a segment for the 
first time, a missing segment fault will be 
caused. A missing segment fault is also caused 
by other reasons. (2) The segment manager looks 
up the active segment table if the required 
segment has already been active. If not, it 
makes the segment active. (3) Then, the segment 
manager "connects" the required segment to the 
address space of the process by setting the 
segment descriptor that caused the missing 
segment fault. (4) Now, the process can refer to 
the segment.

79



80 CONSTITUTION OF AN ADDRESS SPACE Chap. 8 

picture, are necessary in  order to indicate directly the 
dynamic execution status of a procedure as it is. 

Moreover, one additional dimension is needed in order to 

denote a segment in the environment of segmentation. 

     address = (segment _number, relative_location) 
= (segment number, lexical _level, 

                relative location inalevel) 

     A process is always accompanied with data segments. 

If one can assign this data segment a fixed segment 

number, there is no necessity to use a mechanism of 

general three-dimensional addressing. The problem is 
whether or not it is necessary to switch stack segments, 

that is, to make an environment of three-dimensional 

space and to use it. Then, is there any necessity to 

support a general multi-dimensional space by hardware? 

The conclusion is no. 

     A directory hierarchy constitutes a general 

multi-dimensional space as stated before. Therefore, 

there has already been no problem about the constitution 

of a multi-dimensional space itself. Design issues to be 

taken into account are as follows: 

   Overheadof hardware which supports 

     multi-dimensional segmentation will be big. 

    Hardware constitution to support a general 

     multi-dimensional space will become as the following 

     picture. 

    Addressing in a program: 

(seg name _0, seg_name_l,..., displacement)

Translation to a link:

seg. no 0 seg. no  1  displacement



Chap. 8 CONSTITUTION OF AN ADDRESS SPACE 81

lexical 

level

11=1

11=2

11=3

11=4

bottom 

 xl,y1

of stack

x2,y2

x31,y31

 x41  ,y41

at first 

  xdisplay 1

 display 2

display 3

Arrows 

chains

show dynamic 

of blocks.

 display 4

DISPLAY

 1=3

 1=4

x32,y32

11=34.

If
11=41

x33,y33

x42,y42 x43,y43

at second 
 X

      begin real  xl,y1; 

         begin real x2,y2; 

           proc Q3; 
            begin real x3,y3; 

               begin real x4,y4; 

                 X: zzzz 

             Q3; 

               end; 
          end Q3; 

         Q3; 

end; 
end; 

structure and lexical levels.

at third

REGISTERS

Figure 8.6 Block



82 CONSTITUTION OF AN ADDRESS SPACE Chap. 8

 d  seg
DESC

Figure 8.7 Realization of multi-dimensional space. The 
dseg flag in a segment descriptor indicates whether or 
not the segment which is described by this descriptor is 
a descriptor segment (dseg), thus address formation 
operation continues until a descriptor whose dseg flag is 
off is encountered.

     The problems are: 

     The segment number 0 is determined dynamically as 

     stated above. 

     How are the segment Numbers 1, 2,..., ? 

     How are they determined? 

    What is meant by the fact that they are determined 

    dynamically? 

    How to provide the space in which links are put? 

It is the case of a dope vector of a multi-dimensional 

array that the segment descriptors 1
, 2, 3,..., are 

fixed "statically". It is nothing but the hardware which 

supports a multi-dimensional array . In case that each 

level of segment fields corresponds to the directory in 

the hierarchical file system
, the mechanism of



Chap. 8 CONSTITUTION OF AN ADDRESS SPACE83 

multi-dimensional space directly maps the general 

hierarchical information space. 

    However, there are the following defects in an 

implementation of a multi-dimensional space by hardware: 

        A long address field is required in an 

     instruction. 

          The degree of indirections increases as the 

     number of dimensions increases. 

         The number of active segments will be a few for 

     each descriptor segment. 

         Overhead to maintain a number of small 

    descriptor segments will be big. 

One can utilize the hardware circuitry of segmentation by 

putting only active segments in the mechanism of usual 
segmentation. The necessity to constitute hardware 

circuitry which realizes general multi-dimensional 

segmentation doesn't seem to be caused for the moment. 

8. Support of Lexical Levels 

     In order to refer to information in one segment in a 

system where the  block structure as ALGOL or PL/I is 

employed, it is not enough merely to give a displacement 

but it is necessary to give a lexical level [ORG1], 

[BUR1], [RANI] and a displacement. It is for the 
activation records that requires such an access method, 

and a general three-dimensional segmentation mechanism is 

not necessary because the activation records of a process 

are stored in the limited number of data segments. But a 

special addressing mechanism becomes necessary in this 

part as to update the contents of display registers.



84      CONSTITUTION OF AN 

 instruction 

op I sp I disp 

' 

RASF PFGISTFR (sp/lp) 

seg IdiI 

s 4111 add
` I I  

                   DESCRIPTOR SEG. 

(a) Single indexing.

ADDRESS SPACE Chap. 8

STACK SEC.

 dis 

sp 

k

instruction

(b) Double 

Figure 8.8

disp

BASF RFGISTFn

dis

add

display

display

display

(sp)

       DESCRIPTOR 

indexing. 

Support for lexical

SEG. 

levels.

STACK SEG.

dis 

Sr 

11-1 

11-2 

k



 85

                    CHAPTER 9 

  ESTABLISHING AN ADDRESS SPACE IN A COMPUTER SYSTEM 

    This chapter discusses the conditions of 

establishing an address space in a computer system. 

1. Conditions Which Specify an Address Space 

    In this section conditions which specify an address 

space will be discussed. This argument makes it clear 

what information should be reserved when an address space 

is established or process switching is taken place. 

1.1 To Show a Process in the System 

     In order to establish an address space for a process 

it is necessary to show the existence of this process 

explicitly in the system. Usually, there is an active 

process table in a system, in which an entry is assigned 

to each active process. The minimum information which 

will be needed to establish the address space of a 

process is stored in an entry in the active process 
table. 

1.2 The Minimum Information 

    The minimum information required to establish an 

address space is: 

 A. The pointer to the descriptor segment (assuming that 

    the descriptor segment has already existed), 

 B. The stack pointer (assuming that the stack frame has 

    already contained the status of the process),



86 ESTABLISHING AN ADDRESS SPACE Chap. 9

APT header

name

state

priority

d.  seg. ptr.

stack pointer

etc.

ACTIVE 

TABLE

PROCESS 

ENTRY

: 

.

DESCRIPTOR SEGMENT

stack seg.

linkage seg.

STACK  SEGMENT

STAPT

STACK FRAMF

status of the 

process

PROCEDURE

LINKAGF 

SECTION

      ACTIVE PROCESS TABLELINKAGE SEGMENT 

 Figure 9.1 Active process table. Active process 
table' is logically an array of active process table 

 entries. Each active process table entry holds the 
 information which is required to select a process to 

 run, to establish the address space and to start it. 

1.3 Information Required to Execute a Process 

     Additional information is needed to execute a 

process: 

  C. The instruction pointer to the instruction to be 

     executed, 

  D. The linkage pointer to the linkage section, and 

  E. The ring number. 

These can be restored from the stack frame upon return,



Chap. 9IN A COMPUTER SYSTEM87 

given the stack pointer, in which case only the 
information A. and B. are enough to (re)start execution 

of a process. 

1.4 Dispatching a Process 

    When a process is dispatched from the ready state to 

the running state, it is enough to set the information 

shown in B. and to execute a "return".  These sequences 

are executed by the swapping procedure when a process 
"returns" from the block or the wait routine . 

1.5 Initiation of a Process 

     The following is the direct consequence of the 

earlier discussion: 

     When a new process is created, it is required that 

     initial values for the process are set in the stack 

     frame, and then this process is registered in the 

     system in the blocked state and is made alive by 
      "wake up" . 

2. Protection of Pointers and Data Segments 

     The ring brackets of pointers which specify an 

address space and of data segments of a process are 

considered as follows: 

  1. The descriptor segment and the pointer to it (the 

descriptor base register): 

         They are common to all rings. Their ring 

     brackets are (0, 7, 7). They are set only in ring 0 

     by privileged instructions and are referred to only 

     by the address formation mechanism. 

  2. Linkage segments and the linkage pointer: 

         There are two ways to manage the linkage



 88ESTABLISHING AN ADDRESS SPACE Chap. 9 

     segment. One is to use a linkage segment common to 

    all the rings, and in this case ring brackets of 

     linkage segments and the linkage pointer are (2, 7, 

    7). And the other is to use a dedicated linkage 

    segment to a ring, in this case their ring brackets 

     are (r, r, r) where r is the executing ring number. 

     Here, we assume that the procedures which relate to 

     the protection mechanism are executed in ring 0, and 

     that the other supervisory procedures are executed 

    in ring 1. 

 3. Stack segments and the stack pointer: 

         Each stack segment is dedicated to a ring and 

    its ring bracket is (r, r, r). The segment number 

    should be common to all rings and is added to the 

    ring number to be able to get access to the stack 

    segment in any ring if it is necessary to use 

    separate segment for each ring. This strategy 

    simplifies the calculation of the segment number of 

    the stack segment every time the ring changes, and 

    makes the protection independent of a computing 

    algorithm. 

 4. Static data area and the static area pointer: 

         Each area is dedicated to a ring and its ring 

    bracket is (r , r, r). The relative location of a 
    data area in a static data segment which corresponds 

    to a procedure is found in the linkage offset table 

    that is stored in the header of this static data 

     segment. 

         When a linkage segment is common to all rings , 
    a stack pointer , a linkage pointer and a static area 

    pointer are needed to specify an address space. When 
    a linkage segment is dedicated to a ring

, only a 
    stack pointer and a linkage pointer are needed .



Chap. 9IN A COMPUTER SYSTEM89 

3. Address Space Switching 

    The descriptor base register (dbr) holds the pointer 

to the descriptor segment which specifies the address 

space of a process, that is, the dbr points at the 

starting location of the descriptor segment and it is 

implemented as a  hardware register in the CPU. In this 

case the descriptor segment can be placed in any location 

in the main memory. The dbr is set by a privileged 

instruction which switches the CPU from one address space 

to another. 

     In some system the location of the descriptor 

segment may be restricted or fixed to a specific place, 

in which case, if address space switching is needed, the 

descriptor segment of the required process must be moved 

into this fixed place. In this case the dbr doesn't (or 

needs not) exist physically. 

    Address space switching is executed by the process 

exchange procedure "get work". In case of a system whose 

location of the descriptor segment is restricted, this 

procedure handles the descriptor segment in the absolute 

addressing mode. This procedure emulates dbr swapping. 

     To run a process in the newly switched address space 

the stack pointer in ring 0 (where address space 

switching is taken place) is set, and the machine 

conditions such as instruction counter (ic), the linkage 

pointer (lp) and other working registers are restored 

from this stack frame. The stack pointer is stored in the 

active process table entry. 

     Process switching needs such an instruction as 

SWAP PROCESS (register _setblockaddress). 
However, there remain some problems: 

  1. Conventional computers don't possess such an



90  ESTABLISHING AN ADDRESS SPACE Chap. 9

   instruction, hence several instructions are used to 

   accomplish process switching. 

2. To minimize the size of an active process table 

   entry, only the values of the dbr and the stack 

   pointer are stored in an active process table entry. 

3. Other values to run a process are stored in the 

   stack frame. 

  Thus, the procedure is coded like this:

SWAP PROCESS: 

LOAD_DBR 

LOADISPR 

LOADREG 

         END; 

where 

     apte denotes 

process in the active 

     dbr and stack _p 
the descriptor segment 

active process table 

     sp denotes the 

pointer in the entry 

     reg is the fie 

are restored in the

PROC; 

dbr(apte); 

stack _ptr(apte); 
reg(sp) ;

romwhere 



91

 CHAPTER 10 

          INTRA-PROCEDURAL COMMUNICATIONS 

    It is required that a procedure is pure as one 

condition for information sharing. For that reason, a 

process requires its own impure data segment for the 
execution of a procedure. There are two kinds of 

information which is stored in this segment. They are: 

    Static variables and links whose allocation is 

     static, and 

    Activation records and automatic variables whose 

     allocation is dynamic. 

In addition, a procedure should be able to share even 

itself in order not to impose an improper limitation on 

the expression of an algorithm, thus recursion is often 

resulted. Variable areas which have lexical levels in 

case of the block structure are also necessary. Then, it 

is required that a dynamic data segment is constituted as 

a stack in order to have such an ability. That is, a 

procedure can refer to variables relative to the base 

(lp) which points at the area provided statically and to 

the base (sp) which points at the area provided 

dynamically in the execution time (, and to the base (sp) 

and displays (111, 112,...,ll
n) in case that lexical 

levels are created). One element of a stack which we 

consider here is not one unit cell but a storage area 

which contains all of the activation records and the 

dynamic status of a process that relate to one procedure 

or a lexical level of a procedure. This unit is called a



92  INTRA-PROCEDURAL COMMUNICATIONS Chap. 10

stack frame. Dynamic status of a process is a kind of 

automatic variables as will be explained later. 

     The status which is concerned with the information 

protection should not be changed improperly. Apart from 

discussing the protection of the status information, we 

can discuss the problem of intra-procedural 

communications in a well formulated manner if we consider 

that all the current status of a process are stored in 

one stack frame.

1. Management of Process Data Segments

     In this section the management of process data 

segments is discussed in relation to their access rights . 

In principle it is required to isolate information whose 

access attributes are different . But the processing is 

rather "contiguous" in logical sense unconcerned with the 

discontinuity of access rights . Data segments which a 

process uses can be grouped into static data segments and 

dynamic data segments. A static data segment is used to 

hold static variables and a dynamic data segment is used 

to hold automatic variables .

1.1 Stack Segment 

     Automatic variables are the activation records of a 

process and it is desirable to store them in stack 
segments [BOC1], [BOB2] . Each time access rights of a 
process change, it is necessary to switch stack segments 

(as a rule) lest the activation records of a privileged 
state should be altered in a non or less privileged 

state. 

     It is, however , not necessary to do so if there is 
the inclusion relation among protection dom

ains as the



Chap. 10 INTRA-PROCEDURAL COMMUNICATIONS93 

ring protection mechanism has. This is because domains 

are generally switched when less privileged procedures 

require more privileged processing executed in a more 

privileged domain, and the inverse case happens in the 

most limited situations that the caller doesn't use the 

results of the processing for its decision. 

    Examples of such a case are found when the system 

creates a  new process and wakes it up, and when a teacher 

runs and marks programs of students in a less privileged 

and confined domain. The former is the case that the 

system gives control to a newly created process by 
"returning from the block procedure of the process 

exchange module" [STE1] which is executed in the 

privileged domain. However, this case can be reduced to 
"the return to the imaginary caller which called the 

block procedure before the process becomes alive". The 

latter is the very exceptional case which needs to 

prepare a separate stack by the software intervention. 

     Each stack frame is connected with its predecessor 

and successor by pointers and is maintained its logical 

contiguity even if it is placed in a separate segment. 

When a return instruction is executed and the previous 

stack frame pointer points at the caller's frame in a 

separate stack segment, this condition can be notified, 

as is previously mentioned, by an access violation fault, 

and then the gatekeeper, the domain switch handler, is 

invoked. 

    In case that there are stack frames which are 

created in different rings, care must be taken to 

restrict the scope of searching for a signal handler 

within the stack frames which are created in the same 

ring. The ring number is one of the activation records 

and stored in every stack frame, so such a check would be



94INTRA-PROCEDURAL COMMUNICATIONS Chap. 10 

carried out very easily. The discussion on the condition 

handling and a signal handler is left behind. 

1.2 Static Data Segment 

     Static data are as follows: 

     Variables which are allocated statically, 

     Accounting records for a procedure/entry, 

     Core of a pseudo random number, etc. 

Their area size is pre-assigned when they are declared. 

Static data do exist during the life of a process which 

created them, and data inherent to each ring exist 

concurrently. Thus, more problems arise concerning with 

their management, as compared with the management of a 

stack segment. It has already been mentioned that data 

whose access rights are different should be separately 

stored. 

     For static data inherent to a process, the number of 

data segments depends upon the clustering strategy of 

access rights. Static data inherent to a process are: 

  1. Data written and read by a procedure, 

  2. Data read by a procedure (read  only)  , and 
  3. Pointers which are used to refer to other segments 

     (read only data for a usual procedure, written by 

     the linker). 

                 Data 1. is managed per ring basis. The size of a 

data area for a procedure is determined at the time this 

procedure is created, thus dynamic allocation is not 

necessary for this area . A data area for a procedure is 
allocated in a data segment prepared for the current ring 

at the first time this procedure is executed . The offset 
value which shows the location of the data area within 

this data segment is registered in a table indexed by the 

segment number of the procedure associated with this data



Chap. 10 INTRA-PROCEDURAL COMMUNICATIONS95 

area. 

    A (pure) procedure refers to its data area, setting 

the pointer register the offset value within the data 

segment from the offset table. 

    Data 2. is usually included in the procedure body 

itself except less frequently referred data as a symbol 

table for debugging purposes, which is stored in a 

separate segment. 

    Such data may be shared in other rings as a 

procedure body itself. 
    There are several methods to manage pointers (links) 

of data 3.. 

1.2.1 In Case that the Pointer is Invariant in Every Ring 

    There is a case that different segments are required 

from the same procedure in different ring, but such a 

case is rather rare, that is, the pointer is invariant 

while the access rights are variant. In this case only 

one linkage segment is needed and the management of such 

a data segment is simplified, but 

 1. It is necessary to execute the linker in the 

     supervisory ring 0 or 1, 

  2. As mentioned above, the target segment is invariant 

     even if ring changes, and 

  3. A procedure needs a separate pointer to refer to 

    links in addition to the pointer to the data area. 

         The common linkage segment should not be 

     altered in non-privileged rings by 1.. But in order 

    to realize more reliable protection it is better to 

    minimize the size of the supervisory kernel which 

     relates to the protection mechanism. Method shown in 

    this section violates this policy. The problem of 

    removing the linker from the security kernel is



96 INTRA-PROCEDURAL COMMUNICATIONSChap. 10 

     discussed in the later chapter. 

1.2.2 In Case the Linker is a Non-Privileged Procedure 

    In case that the linker is a non-privileged 

procedure and is executed in the faulted ring, links will 
be made in various rings, therefore linkage segments 

should be prepared for each ring. It is also necessary to 

prepare linkage segments for each ring if different links 
are needed in different rings. (To make the linker a 

non-privileged procedure is discussed later in Chapter 

12.) 

     In such a case a linkage section related to a 

procedure can be merged with a read and write data 

section related to this procedure, and the management of 

a data segment can be included in the procedure for data 

1., that is: 

  1. Only one pointer is needed by a procedure to refer 

     to both the data area and the links, 

  2. Can minimize the layer of the protection, and 

  3. In many cases links are the same in different rings, 

     but linking is required in every ring where the 

     object segment is referred to. However, rather a few 

     segments are referred to in different rings and this 

     overhead can usually be neglected. 

2. Constitution of a Linkage Segment 

     A linkage section is small and may result a big page 

breakage if each linkage section constitutes a segment. 

By contrast, if linkage sections in the same ring are 

combined into a combined linkage segment, those linkage 

sections whose related procedures become disused cannot 

easily be eliminated from this linkage segment .



97

 CHAPTER 11 

          INTER-PROCEDURAL COPM4UNICATIONS 

     Inter-procedural communications are accomplished by 

a call to a procedure, a return from a procedure, a 

non-local go to from a procedure, and an implicit call 

caused by an interrupt or a fault. 

    One of the reasons which make the program logics 

needlessly complicated is that several entirely different 

forms of procedure invocation are employed in today's 

computer system. In addition to a usual procedure call, 

SVC (supervisor call instruction), interrupts and faults 

are, in fact, invocation of a procedure in their primary 

functions, and sometimes protection issues are raised by 

the contents of their processing. So far, these two 

points have hardly been separated, and each of them has 
been processed in an odd manner. And the size of the 

security kernel has unduly been big. 

     By unifying the various sequences of procedure 

invocation, the structure of software system would be 

much clarified, and the size of the security kernel would 

be minimized. Thus, the integrity and the reliability of 

the system would be improved much. 

1. Call and Return 

    A call and a return are discussed in the early 

section about the ring protection mechanism. This section 

only discusses the following cases: 

    A call and a return in the same ring, and



98INTER-PROCEDURAL COMMUNICATIONS Chap.  11 

     An inward call and a consequent outward return. 

A call is accomplished by a call instruction and a return 

is accomplished by a return instruction. 

     Automatic variables which are referred to in a 

procedure are allocated in a stack. The area of stack 
allocated to the variables for a procedure in the current 

activation level is called a stack frame [ORG1]. The 

status and the contents of the registers in the CPU are 

all automatic variables. By saving all the automatic 

variables in the stack frame upon call and by restoring 

them upon return, it is able to support the constitution 

of reentrant or recursive procedures by the fundariental 

framework of the system instead of a function of 

individual language processors. The call stack in ALGOL 

[RANI] corresponds to the stack frame. A few large 
computers are equipped with such an instruction that 

performs both stack push and procedure invocation. SKB 
instruction in IJITAC 8700/8800 is an example of such an 

instruction [SIM1] . By saving or restoring all the status 

of the CPU in one instruction with stack push/pop and 

call/return, the sequence of call to or return from a 

procedure is much simplified, and the execution speed 
would be improved much. 

1.1 Call Instruction 

     The followings are the sequences executed by a call 

instruction: 

A. Save all the status of the process into the stack 

frame. The status to be saved are: 

  1. Values of automatic variables including the contents 

     of the status registers and the general or working 

     registers in the CPU, 

  2. The return pointer to the caller's procedure ,



Chap.  11 INTER-PROCEDURAL COMMUNICATIONS99 

  3. The stack pointer, and 

 4. The linkage pointer. 

All are the activation records of the caller which are 

needed to be restored when control is returned to the 

caller. The minimum information required to restore the 

activation records is only the stack pointer, provided 

that the address space is set for this process. 

B. Push the stack frame. 

    This will set the stack pointer to the new stack 

frame to be used by the called procedure. If a call is to 

cross domain, switching the stack segments might also be 

needed. 

C. Transfer control to the called procedure in the proper 

domain (ring) . 

    The target domain (ring) is determined by the access 

control information shown in the segment descriptor of 

the called procedure. The check of the gate whether a 

correct entry is selected or not is also undertaken. 

D. Set the pointers to execute the called procedure. 

   In order to execute the called procedure, the stack 

pointer and the linkage pointer must be set. 

1.2 Return Instruction 

    The followings are the sequences executed by a 

return instruction: 

A. Pop the stack frame. 

     This restores the stack pointer to the previous 

stack frame which has been used by the caller. 

B. Restore all the activation records. 

     It is necessary to restore all the activation 

records except those that cannot be changed in the called 

domain of execution including the linkage pointer and the 

contents of other working registers from the popped stack



100

1. 

 2.

PROC A

INTER-PROCEDURAL

pop stack 
frame 
restore 
status 

 I PROC

2.

 COMMUNICATI ONS Chap . 11 

LINKAGE OFFSET

save  status 

push stack 
frame,' 
change 
domain 
enter/target

A's linkage 

section

B's linkage 

section

TAB.......

4. entry\----------J 
sequence 
           (get 
            linkage 
            pointer) 

                                                         LINKAGE SEGMENT 
     RETURN  

PROCEDURE SEG. 

                  Figure 11.1 Call and return 

frame. 

    The information for protection control in the 

process status saved in a stack frame is essentially the 

one which the most privileged procedures can process. 

Thus, such information cannot be restored without any 

restriction. Restoration of the process status is 

validated by imposing the following conditions: 

  1. Only return to the caller within the same domain or 

     in the less privileged domain is permitted, and 

     return to the caller in the more privileged domain 

    is needed to be processed by the software



Chap. 11 INTER-PROCEDURAL COMMUNICATIONS101 

     intervention. 

 2. The domain returned to is determined by selecting 

    less privileged one between the current one and the 

    one indicated in the process status. 

  3. Restoration of the process status is confined to the 

    information which can be processed in the called 

     domain. 

And there would be no fear that the protection status 

would be impaired unduly. Of course, the saving of 

surplus information wastes time and space and should be 

avoided. Thus, there is a difference in the amount of the 

saved status between a usual call and an interrupt or a 

fault. (Here, more privileged means that the domain has 

some access privileges which others don't have, and less 

privileged means that the access privilege of the domain 
is proper subset of others.) 

2. Elimination of SVC 

    A supervisor call (SVC) instruction switches 

protection domains and calls a privileged procedure. The 
domain of protection should be determined and switched by 

the domain switching mechanism according to the access 

rights of the target segment in the course of the 

execution of an instruction which transfers control such 

as a call or a return. In a computer system which is not 

equipped such a domain switching mechanism, programmers 

are obliged to use such instructions as SVC and LPSW 

(load program status word) to switch domains according to 

the contents of the processing. Thus, program  logics are 

affected by protection issue. SVC can be eliminated by 

connecting the function of transferring control with the 

domain switching mechanism (refer to Chapters 6, 7 and



102INTER-PROCEDURAL COMMUNICATIONS Chap.  11 

16). 

     By employing such a domain switching mechanism, 

programmers are freed from the business of switching the 

protection domains, which has nothing to do with the 
algorithms of programs, and the structure of programs is 

made clarified. All procedure invocation including one of 

supervisory procedures can successfully be executed by a 

usual call/return instruction. 

3. Condition Handling 

     "Interrupt handling" facilities in software can be 

found in the condition handling of PL/I [IBM3] , [COR3] , 

[MSPM]. These facilities are to declare a handling 

procedure for a predefined "condition" and to execute 

this handling procedure when the specified condition is 

notified, using a signal statement, or is detected by the 

hardware circuitry. 

     As a handling procedure is searched for in the 

dynamic descendant manner, handling procedures might be 

registered in the current stack frame when they are 

declared, and then signalling might be accomplished , 
searching for the required condition handler in stack 

frames from the top to the bottom when a signal statement 

is executed or a signal condition is detected by the 

hardware circuitry . 

      This handler searching must be carefully controlled 

lest protection violation should be caused . Condition 
handlers might happen to be registered in the stack 

frames whose access privileges are higher than those of 

the procedure currently executing a signal statement . 
Such condition handlers cannot be executed

, because if 
they can the result is that more access privileges are



 Chap. 11 INTER-PROCEDURAL COMMUNICATIONS 103

5.

PROC A

SIGNAL
"C,,

PROCEDURE 
SEGMENT

or hardware 
` 
   signal

SIGNAL

I 
1 

i

1.

search for
 condition

name "C"

CALL CHAND

^- RETURN

2

3

PROC CHAND

I

RETURN

bottom

4.

 'ICn
CHAND

nXn
XHAND

,,Y, l
YHAND

2.

I

I

5 , A's frame

name proc

Q"An
AHAND

1.7
4.

3.

SIGNAL's frame

CHAND's frame

found  :: 

then call 
"GRAND"

search for 

specified 

condition 

name

PROCEDURE 

Figure 1
statement 
required, 
condition 
and (3) 
invoked.

SEGMENT STACK SEGMENT 

     Condition handling. When a SIGNAL 
 is executed or a hardware signalling is 

 (1) SIGNALling handler is invoked, (2) the 
name is searched for in the stack frames, 

the handler procedure found in step (2) is



104 INTER-PROCEDURAL COMMUNICATIONS Chap.  11 

 given without any check of the validity. 
      In a system where only inward calls and outward 

 returns are permitted, such cases do not happen because 

no more privileged stack frame than the current one 

 exists. 

      Further, condition handlers might happen to be 

 registered in the stack frames whose access privileges 

 are lower than those of the signalling procedure. Such 

condition handlers should not be executed, because more 

privileged procedures should not rely on the results of 
less privileged ones and more privileged rings should 

prepare their own signalling environment. 
     It will, then, be reasonable to impose such a 

restriction that a condition handler should be searched 

within the same domain. That is , signalling should be 
accomplished without changing the domain . This 
restriction from the standpoint of the protection will 

not affect the program logic unduly . 

4. Non-Local Go To 

     When a return instruction is executed back tracking 

the chain of calls , the stack frame previously pushed 
down by the call instruction is popped up . 

     It sometimes happens that control is returned to 

another place other than the normal return point in the 

caller's procedure or to the procedures 
on the call 

chain, skipping the normal return sequence
s by a reason 

such as job aborting . A call is only permitted to enter a 
brand new procedure or a brand new l

evel if recursive 
call is executed

, and this non-local go to is a kind of 
returns, that is , control is returned to a procedure 
which previously called oth er procedure and then



 Chap. 11 INTER-PROCEDURAL COMMUNICATIONS 105

PROC A PROC BPROC C

CALL B CALL C •

RETURN

CALL  D

 .RETURN

PROC N

(a) Normal call and return.

PROC A  

CALL B 

 X:

PROC B

CALL C

 PROC C PROC N

COTO X

(b) Non-local go to. 

Figure 11.3 Normal call / return and non-local go to.

transferred control to it and to which control has not 

yet been returned. In contrast to a usual return which 

returns control to the point where the call is executed, 

this non-local go to returns control to a place other 

than the normal return point, and in this sense, it is 

sometimes referred as an "abnormal return". 

    A return point of a non-local go to is also 

designated, using a two-dimensional pointer . The problems 

to carry out a  non-  local go to are: 

 1. A non-local go to may skip the sequences to 

    disengage those segments which some previously 

    called procedures have created and used temporarily 

    as data segments instead of using the stack 

    segments, and such segments may remain as vagrants. 

 2. A non-local go to may leave some locks for common 

     resources locked. 

 3. It is necessary to pop up settings of condition



106

go

 INTER-PROCEDURAL COMMUNICATIONS

 PROC  A

CALL B

X: xxx

A's frame

PROC B,)

CALL C

B's frameI
[clean up] E—

PROC C

ca.

2)1
ca:

Al e

ca:

Ae

CALL D

y

C's frame

[clean up] 47---.--1110.

inter

n-local

to with

stination
inter and

ack PRO
.. N

•

•

•

•

4

ca:
At

not

'ego• GOTO X

N's frame

Figure

 PROCEDURE 

 SEGMENT 

11.4 Processing of

     STACK 

non-local go

Chap.  11

SEGMENT 

 to.

call

non-local 
go to

handlers. 

To solve these problems it is necessary to execute 

processing sequences, popping up the stack frames 

are to be skipped by this non-local go to one by one 

     Post processing procedures to disengage

 post 

which 

• 

data



Chap. 11 INTER-PROCEDURAL COMMUNICATIONS107 

segments or to unlock locks may be set in the stack frame 

of a procedure which needs such processings. On a 

non-local go to stack frames are popped up one by one, 

executing post processing sequences designated in stack 

frames, until the intended frame is reached. 

    Thus, in order to accomplish a non-local go to, not 

only the destination pointer but also the stack pointer 

which points at the stack frame been used when control is 

returned are needed. Further, if a system incorporates 

lexical levels, the value of level and the set of display 

registers are also needed. 

    As has already been mentioned, all the necessary 

status to resume execution of the returned procedure can 

be restored, using this stack pointer. Resetting (or 

reverting) condition handlers is automatically 

accomplished by popping up stack frames, so no more 

problems remain here. [ORG1] 

5. Implicit Call 

    There are another kinds of calls of which 

programmers are not explicitly conscious but which affect 

the structure of inter-procedural communications. They 

are interrupts and faults, whose handling is the most 

complicated and mysterious part in the modern, and 

especially large computer architecture. And it is true 

that this affects the structure of operating system 

greatly. The purpose of this section is to clarify the 

logical structure of them and to make the structure of 

operating system easier to constitute and to understand. 

    An interrupt is the hardware mechanism to notify an 

event relevant to asynchronous processing or an 

asynchronous action to a process. The interrupted



108INTER-PROCEDURAL COMMUNICATIONSChap.  11 

process generally has nothing to do with the event which 
caused the interruption, while the status of the process 

related to the event need to be changed. The alteration 

of the process status is executed by the process 

currently running on the CPU. 

     An interrupt is a hardware implemented "call" [0RG2] 

to a procedure which alters the process status, and upon 

completion of this processing control is "returned" to 

the interrupted place. Sometimes, control is once 

preempted by other processes, and then returned. Such a 
call and its consequent return are entirely transparent 

to the computation of a process which is interrupted . 
     A fault is the hardware mechanism to detect 

economically a condition or an event which is caused by 

the execution of some operation and is difficult to 

detect economically by software methods , or is caused by 
the internal status in the CPU or the memory . That is, a 
fault is logically a hardware implemented call [ORG2] to 

an event handling procedure by the currently running 

process itself, otherwise the detection sequences of 
these events need to be programmed . Slightly different 

point from other calls is that there are two types of 
event handling procedures , one is statically defined and 
the other is dynamically defined at the time of fault 

detection. The details are left behind . 
     Anyhow, an interrupt or a fault is , by their nature, 

a call to a procedure , and may result in a (normal) 
return or a non-local go to . 

     Therefore, pushing and popping a stack frame just 

the same way as a usual call and a return respectively
, 

processing of an interrupt and a fault can be 
accomplished in the same manner as a usual procedure 

invocation [ORG1] .



Chap. 11 

 PPOC ALPHA

INTER-PROCEDURAL COMMUNICATIONS

PROC (s)

CALL (s,d)

 T

 s

f

a

RETURNDESCRIPTOR

SEGMENT

CALLER CALLED

PROCEDURE 

  (a) Usual 

PROC ALPHA

call and return.

 PROCEDURE

PROC handler

RETURN

 handler .

interrupt
or fault

INTERRUPT/
FAULT TABLE

INTERRUPTEDV RETURN
I

HANDLER
PROCEDURE PROCEDURE

(b) Interrupt 

Figure 11.5

and fault 

Normal call

handling. 

 and interrupt or fault handling.

109

ALPHA'S

frame

 

I  (s)'sframe

l

STACK 

SEGMENT

 ALPHA's

frame

handler's

frame

STACK 

SEGMENT

    So far, interrupt and fault handling has 

indiscriminately been executed by privileged procedures 

in many computers. This method is not adequate in order 

to make the structure of operating system clear and to 

improve the integrity and the reliability of the system 

by minimizing the size of the security kernel. Based on 

the basic rule of information protection - need to know 

[SAL3] - , only the matter which has relation to the 

protection issue which can only be processed in the 

privileged domain should be processed in that domain. For



110INTER-PROCEDURAL COMMUNICATIONS Chap. 11 

example, a linkage fault used in dynamic linking has been 

processed by the supervisory procedure. Links are, 

however, the data which belong to the domain where the 

process is currently running. That is, as it is obvious 

that they are  processed in the usual non-privileged 

domain when they are linked by the static linker, there 

is no problem which has relation to protection, and no 

privileged processing is needed. 

     Anyway, by interpreting that both interrupt and 

fault are invocations of procedures without any 

exception, one can simplify and unify the structure of 

inter-procedural communications and further the structure 

of software systems. 

6. Invocation of Interrupt and Fault Handlers 

     When an interrupt or a fault occurs and its relevant 

handler is invoked, it needs some considerations to carry 

out Steps 1.1 A. to D. executed on a usual call . They are 

modified as follows: 

  A. To determine the target handler , and 

  B. To acquire appropriate status to run the target 

     handler. 

6.1 Determination of an Interrupt or a Fault Handler 

     There are two cases to determine an interrupt 

handler. One is given a pointer to an interrupt handler 

for an interrupt. The other is given a queue of processes 

which require to be notified an occurrence of an 

interrupt. 

     There are also two cases to determine a fault 

handler. For an event which the system is responsible for 

handling, a pointer to the handler is given . For an event



Chap. 11  INTER-PROCEDURAL COMMUNICATIONS111 

which a process is responsible for handling, it is 

necessary to search for a handler in the place relevant 

to this process, given an event name as a key [MSPM] . 

    These are principles; however, there are some 

exceptions. A quit signal from a console operator, for 

example, is an interrupt, but its meaning is that "an 

external cooperative process" of human being wants to 

cause a fault condition. A linkage fault is a process 

fault, but needs the processing on the system-wide 

conventions, thus the pointer to the linker is given. 

     In case that a pointer to an interrupt or fault 

handler is given beforehand, pointers may be listed in 

the interrupt and fault handler table. 

     If a queue of processes which require to be notified 

when some interrupt occurs is associated with its 

interrupt, such an interrupt is also handled in the same 

way as a usual procedure call, designating a queue 

handling procedure in the handler table described above. 

     Handlers for many process faults are often changed 

during the execution of a process. This is just the same 

situation that a condition handling procedure of PL/I is 

defined for a condition name by using an ON statement, 

and at another point such a pre-defined procedure is 

invoked by using a SIGNAL statement. That is, process 

fault handling is the generalization of the condition 

handling mechanism, and such fault handling is 

accomplished, designating a fault type as a condition 

name (see Figure 11.6) [MSPM] , [COR1] . The fault type is 

one of the process status and is saved in the stack frame 

of the faulted procedure. 

     The procedure "signal" searches for and invokes a 

handler registered in association with a condition name 

in the faulted domain.



112 INTER-PROCEDURAL COMMUNICATIONS  Chap. 11

PROC  ALPHA PROC-""AT.ppnr `--'lnano

search for

condition

handler

CALL handl

RFTURN RFTURN

process
fault

STCNAL

INTFRRUPT /
FAULTED PROC. FAUI T TABLFSTC"ALI.T"W, PROC. PAMDI FR PROC. 

Figure 11.6 Processing of process faults whose 

handler is determined at the time of execution. When 

such a process fault occurs, the pointer to the 

signalling routine is given by the interrupt and 

fault table. And the required condition handler is 

searched for in the stack frames of the faulted 

process in just the same way as a SIGNAL statement.

 Inamelhandl]

ALPHA' a

frame

SIGNAL's

frame

handl'a

frame

STACK  SFCMFNT

     Thus, putting the pointer to the signal procedure in 

the handler table, these faults can be handled just the 

same way as other interrupts and faults. 

     It may be considered that the interrupt and fault 

table is a fixed table except in a special case, thus 

only one table is enough even if the system is running in 

multi-programming operation. On the contrary, one 

descriptor segment which describes the address space of a 

process is needed for each and every process. 

     To get the required handler from the interrupt and 

fault table is logically equivalent to the situation that 

a usual procedure call is accomplished by referring to 

the descriptor segment . That is, the conventional 
segmentation mechanism can be applied for the



Chap. 11 INTER-PROCEDURAL COMMUNICATIONS113 

implementation of interrupt and fault handling by 

preparing an additional descriptor segment for interrupts 

and faults and a base register which points at the 

beginning of  that table, and by switching the base 

registers as the occasion demands. (See Figure 11. 5.) The 

interrupt handler table prepared in the stack trunk of 

Burroughs 6700 is one example which realized this 

function. 

6.2 Status for Handler Execution 

    It is also able to apply the decision function of 

the execution status and the domain in the segmentation 

mechanism for the execution of an interrupt of a fault 

handler. In this case, the usual descriptor segment and 

the one for interrupt and fault handling are pointed at 

by the separate base registers, and there is no fear to 

misuse these tables. Thus, the access rights can be 

assigned independently each other. Care must be taken 

from the viewpoint of protection not to invoke a less 

privileged handler when a process is interrupted or 
faulted. 

    In case that the ring protection mechanism is 

incorporated, the status to run an interrupt or fault 

handler is determined by the ring number rx and the kind 

of procedure, supervisory or non-supervisory procedure. 

The problem is the relation between the faulted or 

interrupted ring number r and the target executing ring 
                     Y 

number r
x.It is assumed that only inward calls are 

permitted. Therefore, the condition 

     r> r
x



114 INTER-PROCEDURAL COMMUNICATIONS Chap. 11 

is needed. Otherwise, a less privileged interrupt 

handling procedure is "called" from a more privileged 

ring. This is not agreeable from the viewpoint of the 

information protection. 

     The domain where a handler associated with some 

interrupt is executed is essentially independent of the 

priority of that interrupt; however, there would be no 
obvious inconsistency if an interrupt of higher priority 

is considered that it has higher protection level. All of 

the interrupt handling is executed in the supervisory 

mode in many systems, and there is only one protection 

level in this case. The above condition reduces the 

system to one level at the most limiting case. In case of 

an input and output interrupt which usually needs prompt 

attention, the protection level is also high because of 

the information protection. And there would be no obvious 

inconsistency when the value of r
x is associated with the 

priority of an interrupt. Even if interrupts whose ring 
number of execution are greater than the current ring 

number (r
y < rx) are inhibited, it would not cause any 

inconvenience. 

     Fault handling is a procedure invocation which is 

essentially executed by the current process itself and
, 

therefore, it is rather natural that the current ring is 

not less than the target ring , that is,yr> rx. 

     To summerize, the condition r > r can be assumed 
y = x 

for most interrupts and faults or can be impo-ed without 

inconvenience, and the problem of the executing ring is 

solved. Registering ring brackets in the handler table



Chap. 11 INTER-PROCEDURAL COMMUNICATIONS115 

just the same way as the descriptor segment, one can 

control the domain switching in the same way as the usual 

domain switching. 

     Here are some comments  about interrupt and fault 

handling. 

  1. The interrupt and fault handler table is referred to 

    by the address formation hardware only when an 

     interrupt or a fault is detected. Therefore, if a 

     different ring bracket from the descriptor segment 

     is given, it cannot be improperly used for other 

     purposes. 

  2. Usually, a call bracket in a ring bracket of an 

     interrupt or fault handler includes the maximum ring 

     number of the system. Thus, whatever executing ring 

     is interrupted or faulted, it is able to "call" the 

     required handler. Further, the ring bracket in the 

     descriptor segment is different from the one in the 

    handler table, but there is no danger to be 

     improperly used. 

  3. The signal handler is a utility procedure whose ring 

    bracket is (0, 7, 7), and is executed without any 

     ring change. This is natural because process faults 

     are logically just the extension of usual processing 

     of the currently running process. 

7. Interrupt and Fault Table 

    The interrupt and fault table acts as the descriptor 

segment only when an interrupt or fault handler is 
"called" . This table is indexed by interrupt and fault 

number assigned to each interrupt and fault. Each entry 

of this table holds the following items: 

    Pointer to the handling procedure,



116INTER-PROCEDURAL 

     Segment length, 

     Access privileges, and 

    Type of the handling 

     addressing mode. 

The following figure shows 

interrupt and fault table.

 COMMUNICATIONS Chap. 11

procedure including 

the construction of

the

an

 (base reg. ao
I

interrupt
or faultnumber

1____ handler descriptor

•

•

•

•

INTERRUPT AND 

TABLE

FAULT INTERRUPT 

OR FAULT 

 HANDLER

pointer length
access cont.

information
type

HANDLER 

Figure

DESCRIPTOR 

11.7 Interrupt and fault table.

A  supervisory procedure can only be run in ring 0, which 

can execute such privileged instructions as doing input 

and output or changing the ring number. 

     The absolute addressing mode is used to form address 

directly without using the descriptor segment in such 

special processing as machine malfunction or initiation 

fault handling. Switching to the two-dimensional 

addressing mode from the absolute addressing mode is 

taken place by executing a mode switching instruction, or



Chap. 11 INTER-PROCEDURAL COMMUNICATIONS117 

by an interrupt or a fault which is processed in the 

two-dimensional addressing mode. 

8. Masking Interrupts and Faults 

    It is necessary to inhibit and mask another 

interrupts and faults while the process status is 

reserved. In case that the hardware status reservation 

and stack pushing mechanism is incorporated, such 

inhibition is not necessary. But such an interrupt or a 

fault whose executing ring number is greater than the 

current ring number, can not be processed, because they 

would result an outward call which must be inhibited. 

Such an algorithm is implemented by hardware or firmware 

better than by software. 

9. Processing of Interrupt and Fault Status 

     There are  two kinds of processor status, one relates 

to usual processing and the other relates to protection 

control. Table 11.1 summarizes this relation. The saving 

of the contents of the instruction counter, the pointer 

registers, the general registers and the domain register 

is required upon a usual procedure call, andArestoration 

of them under the condition not to give surplus 

privileges is required upon return. 

     There remain other status in the CPU. They are the 

status of instruction execution, address formation and 

pipeline operation, the mask for interrupts, the 

interrupt register and so on. The larger the computer 

becomes the more delicate the control becomes. These 

status should also be saved and restored in case of 

interrupt and fault handling.



118 INTER-PROCEDURAL  COMMUNICATIONS Chap. 11

CALL/RETURN INTERRUPT and FAULT COMMENTUSAGE

 PROCESSE'S

OPERATION

PROTECTION SAVE RESTORE SAVE RESTORE

INSTRUCTION

COUNTER
* * * *

POINTER
REGISTER

* * * * *

OPERAND

REGISTER
* * * * *

INSTRUCTION
REGISTER

* * OCCASIONAL

DOMAIN
REGISTER

VERIFY
ONLY

* * CONDITIONAL * CONDITIONAL

DESCRIPTOR

BASE

REGISTER

* * * PRIVILEGED
MODE

*
PRIVILEGED

MODE

EXECUTION
MODE

*
INCLUDED

IN

SEGMENT
DESCRIPTOR

EXECUTION
PHASE

* * CONDITIONAL
CAN
RETRY

IADDRESSFORMATION
PHASE

FAULT

HANDLING
* * CONDITIONAL

CAN

RETRY

DOMAIN

SWITCHING
PHASE

FAULT

HANDLING
* * CONDITIONAL

PIPE-LINE
CONTROL (*) (*)

MAY

DISCARD

INTERRUPT

MASK

INT./FAULT
HANDLING

* *
PRIVILEGED

MODE

INTERRUPT

REGISTER

INT./FAULT
HANDLING

* *
PRIVILEGED

MODE

Table 11.1 Saving and restoring of the status in the CPU.



Chap. 11 INTER-PROCEDURAL COMMUNICATIONS119 

9.1 Point of Issue for the Saving of the Status 

    It is required to save the status of the CPU in a 

stack frame of the current process. In case that demand 

paging is employed, this saving might cause a page fault, 

and therefore, it is needed to take some countermeasures 

such as saving the status in the hardcore stack first 

which belongs to the process but is concealed from it 

 [MSPM], and then moving them to the stack frame, or 
allocating the stack in a contiguous area lest a page 

fault should caused. 

     Reception of an interrupt and a fault has been 

processed in the privileged domain so far because the 
most sensitive information that controls protection is 

also included in the status to be saved. This part is 

regarded as the interface between the hardware of the CPU 

and the system software. Assuming that the ring 

protection mechanism is employed, the ring bracket of 

this part is (0, n, 7), where n is the target ring number 

that the target handler has. Execution of this part 

begins in ring 0, the most privileged domain, saves the 

status, determines the target ring, and invokes the 

target handler in the target ring. Thus, this is an 

exceptional part from the viewpoint of usual procedure 

invocation. Such processing is permitted only because it 

is executed in the privileged domain; however, this 

violates the system convention of procedure invocation. 

Thus, this part should be regarded as a part of the 

processor, and then there would be no contradiction in 
the previous discussions. 

9.2 Point of Issue for the Restoration of the Status 

     If an interrupt or a fault which doesn't require the 

privileged processing is processed in the non-privileged



120INTER-PROCEDURAL COMMUNICATIONSChap.  11 

domain, how can the sensitive status be restored then? 

     One way to perform this is to ask a privileged 

procedure to restore or to validate them [JAN1] [MSPM] , 

but this method results in that the protection issue 

affects the program logic, and that the return sequence 

of handlers is also changed. These things are not 

favourable for our purpose. An interrupt or a fault 

handler processes within the privileges of the executing 

domain, and is permitted to restore the status within the 

scope of its ability, that is, it is not permitted to 

restore status which give more privileges to the process . 
On the contrary, the handler has the right to give less 

privileges to the process. 

     If such sensitive status which need more privileges 

to restore don't exist in the current domain , return from 
the handler would be performed successfully by the usual 

return sequence. We will study this situation individu- - 

ally in the following: 

     Input and output interrupts: 

        These process the raw information , and in many 
        cases, it is required to alter the process state . 

        These processing should be performed in the 

       privileged domain. 
    Operator interrupts: 

        The requirement of response time is not strict
, 
       thus it is able to delay such interrupts until no 

        sensitive status remain . 
Machine check faults: 

       Usually, they can be processed only in the 

       privileged domain. 
    Faults in the course of address formation: 

    (linkage fault) 

       It is only needed to retry the faulted operation .



Chap. 11  INTER-PROCEDURAL COMMUNICATIONS121 

    (Segment/Page fault) 

       They are processed in the privileged domain. 

    Access violation faults, and domain switching 

        faults: 

       They are processed in the privileged domain. 

     Faults caused by arithmetic or logical operation: 

       They have nothing to do with protection. 

Thus, return from the handler may be performed by the 

usual return sequences. 

10. Necessary Faults 

     Programs cannot efficiently be executed if the 

checking of all the conditions is needed in programs each 

time a statement is executed. Hardware implementation of 

such checking is necessary to ease programming and to 

execute programs efficiently. 

     This hardware facility is referred as a fault. This 

section discusses the kinds of faults and the processing 

policies which are desired to form an address space. 

10.1 Faults Caused by Errors in Hardware and Software 

     Faults caused by a machine malfunction, an illegal 

instruction, or an illegal operand imply that there 

happened an errorneous operation and it is meaningless to 

continue the current processing. 

     These faults would need no further explanation. 

10.2 Faults Caused by Arithmetic Operations 

     Some faults are caused in the course of arithmetic 

operations in the CPU. These faults would only need a 

short explanation. 

Faults caused by:



122INTER-PROCEDURAL COMMUNICATIONS Chap. 11 

     Accumulator overflow or  underflow by add, subtruct, 

     multiply, and divide operations, 

    Loss of digits caused by floating point add, 

     subtract operations, and 

     Zero divide 

are process faults, and it is needed to execute a 

procedure which is designated by the current process or a 
default handler which is designated by the system. 

10.3 Faults Caused by Address Formation 

     Some faults are caused in the course of address 

formation carried out by the CPU when an instruction is 

fetched or an operand is referred to. These faults are 

caused by the following reasons: 

  A. Access to a link which has not been snapped yet 

     (linkage fault) 
          This is a process fault but needs processing on 

     (sub-)system-wide conventions. (See the section of 
     dynamic linking.) 

  B. Access to an inactive segment (segment fault) 

          This is a system fault and it is necessary to 

     activate this segment and place (the page table of) 

     this segment in the main memory. 

  C. Access to a missing page (page fault) 

          This is a system fault and needs page loading. 

  D. Access to static storage which has not been 

    established yet (static storage fault) [JAN1] 

          This is used to initiate and establish a static 

     storage space needed to run a newly called pure 

     procedure. This is a process fault but needs 

     processing on (sub-)system-wide conventions. Its 

     processing is to copy the template of the static 
     area relevant to the procedure into a static data



Chap. 11 INTER-PROCEDURAL COMMUNICATIONS123 

    segment, and set the private pointer table. 

 E. Access to the stack bottom or the  bottom of the 

     queue 

10.4 Faults Caused by Access Control Functions 

    The following faults are caused by the access 

control functions which relate to the access rights of 

the target segments: 

 A. Access violation 

         This is a system fault, which requires to deny 

     the access and to halt the process execution. 

  B. Wall crossing for which software intervention is 

     necessary 

         This is a system fault which requires to switch 

     the domains. No SVC instruction is needed because 

    the domain switching is taken place when the call 

     instruction is executed. 

  C. First time / every time reference fault 

         This is used to detect first time or every time 

    a specified link is referred to. 

10.5 Faults Intended to be Used by a Process 

    Some faults are caused by a process itself 

intentionally in order to be used for its processing such 

as obtaining a check point dump in debugging. They are 

sometimes called simulated faults, which are detected as 

an exception of a certain condition such as a segment 

number. 

11. Where to Set Fault Conditions 

    Some faults are able to be detected when a pointer 

which needs to cause a fault is used. The followings are



124INTER-PROCEDURAL COMMUNICATIONS Chap. 

a list which shows where to set fault conditions 

various kinds of faults: 

A. In a segment descriptor 

     Segment fault 

     Access violation fault 

     Crossing wall fault 

B. In a link 

     First / every time reference fault 

     Linkage fault 

C.1 In a pointer in a linkage offset table 

     Static storage fault 

C.2 In a pointer in a page table 

     Page fault 

C.3 In a pointer in a queue 

     Bottom of queue fault

11 

for



125

                    CHAPTER 12 

 MECHANISM OF DYNAMIC LINKING - IMPROVED ALGORITHM - 

    The algorithm of dynamic linking has been discussed 

in Chapter 5. One of the reasons why it is difficult to 

implement dynamic linking is that it has been necessary 

to constitute the linker as a privileged procedure which 

has been related to fairly big parts of the supervisory 

kernel. However, as described in the previous chapter, it 

is desirable to execute the linker in the faulted domain 

in order to make the security kernel small and to improve 

the integrity of the system. That is, the processing of 

linking doesn't need the privileges of the security 

kernel, and the security kernel doesn't need the linker 

for its functions. This is obvious from the fact that 

conventional linking is performed in the non-privileged 

state by a service program such as a linkage editor. 

Therefore, dynamic linking should not be executed in the 

privileged state but in the non-privileged state. Here, 

the algorithm of the linker is developed to meet this 

requirement. 

1. Removing the Linker from the Security Kernel 

    It has been shown in Chapters 6 and 7 that problems 

with regard to information protection arise when a 

process gains more privileges than the current one. 

    A linkage fault which requires to switch domains is, 

in fact, caused only by a domain crossing call to a 

procedure which is required to execute in a different



126MECHANISM OF DYNAMIC LINKING Chap. 12 

domain. The kinds of access to a usual segment are read, 

write and execute. Read- or write-access to a segment to 

which it is not permitted to get access in the current 

domain is nonsense. And it is obvious that no linkage 

fault occurs when control is returned to the caller. 

     In case of the ring protection mechanism, an inward 

call is the only thing that may cause a linkage fault 

which needs special handling. That is, read- or 

write-access to a segment whose read or write bracket 

includes the current ring has no problem. The linker can 

 refert'o such a segment in the faulted ring. Further, an 

outward transfer of control is restricted to an outward 

return, which doesn't cause a linkage fault because the 

segment returned to is the "caller" itself. 

     Now, let's consider the case that causes a linkage 

fault when a segment is called crossing the domain walls . 

     When a linkage fault is caused, the linker is 

invoked in the faulted domain. The linker, then, obtains 

the segment name of the target procedure using the 

pointer in the link, and asks the file subsystem to 

search for this segment in the directory hierarchy . 

     Next thing to do is to get the entry offset looking 

up in the global symbol table of the target segment . The 

problem arises here. Because the intended call is a 

domain crossing call, the called segment cannot be 

referred to by the linker executed in the caller's 

domain. The most easy going way to solve this problem is 

to execute the linker in the privileged domain which has 

the capability to get access to the information which can 

be referred to in both the faulted domain and the target 

domain. It is, however , desirable to minimize the 

security kernel in order to improve the integrity and the 

reliability of the system . Thus, it is required that the



Chap. 12 - IMPROVED ALGORITHM -127 

linker itself should be executed in the called domain. 

    The problem of removing the linker from the security 

kernel is discussed by Janson  [JAN1], but the linker in 

the faulted domain calls the linker in the called domain 

via the gate prepared for this purpose in each domain in 

his method. However, taking account of the following 

facts: 

  1. Only a privileged procedure can determine the target 

     domain, and 

  2. The function that determines the target domain has 

    already been included in the mechanism which 

     controls the domain switching associated with 

     transfer of control, 

there is entirely no necessity to implement the same 

supervisory function for the linker over again. The 

program logic of Janson's linker is affected by the 

protection issue, and is unduly difficult to understand. 

Moreover, preparation of gates is needed. 

    The scheme proposed here utilizes the domain 

switching mechanism that the system has already had, and 

clarifies the algorithm of the linker further. 

    Here, the linker is divided into the following two 

functional modules: 

   1. Segment linker 

    A. To get the target segment name by the pointer in 

         the faulted link. 

     B. To ask the file system to search for the target 

         segment. And to assign a segment number to the 

          target segment. 

     C. To set only the segment field in the link. 

D.1 In case that an entry name is given, to set the 

        condition in the link to cause the second 

         linkage fault.



128MECHANISM OF DYNAMIC LINKING Chap. 12 

    D.2 In case that the value of entry displacement is 

         given, to establish the link. 

     E. To return control to the faulted place. 

  2. Entry linker 

    A. To get the entry name by the pointer in the 

         faulted link. 

    B. To get the value of entry displacement that 

         corresponds to the entry name by looking up in 

         the global  symbol table associated with the 

          target segment. 

     C. To set the displacement field in the link. 

     D. To return control to the faulted place. 

     When the first linkage fault occurs, the segment 

linker is invoked in the faulted domain. The segment 

linker executes the steps of 1., and then, control is 

returned to the faulted place. In case that an entry name 

is given, reference to the target segment via the link 

causes the second linkage fault because of step 1.D.1. 

     This time, however, the target segment has already 

been determined, and address formation process proceeds 

to the stage to determine the target domain and to switch 

the domains. Thus, if the second linkage fault is caused 

in this state, it results in that the entry linker is 

invoked and executed in the required domain to refer to 

the target segment, and there is no inconvenience to 

execute the steps of 2. That is, the required domain 

switching to refer to the target segment and to get the 

entry displacement is realized by causing the second 

linkage fault. 

    A linkage fault is considered as a hardware 

fabricated call [ORG2] to the linker, thus a link which 

causes a linkage fault corresponds to an instruction 

which invokes the linker . That is, the first linkage



Chap. 12 - IMPROVED  ALGORITHM -129 

fault invokes the segment linker, and the second linkage 

fault switches to the target domain and invokes the entry 

linker. 

    The return from the entry linker (2.D) switches back 

to the original domain, and resumes execution of the 

faulted operation again. Figure 12.1 shows the outline of 

this scheme, and Figure 12.2 shows the stack frame 

manipulation, assuming that call stack like ALGOL is 

used. 

     If the overhead of the domain switching is big, step 

2.D can be modified as the following because the domain 

has already been switched to the target domain: 

2.D.1 In case of a procedure call, to go to the 

         entry and to complete the required call. 

     2.D.2 In case of read- or write-access to a data 

         segment, to resume the execution of the faulted 

procedure. 

It is, however, favorable to constitute the linker 

procedure just in the same structure as the usual closed 
subroutine, which is invoked by a call instruction and 

returned by a return instruction, from the viewpoint of 

system integration. 

     The scheme described in this chapter is natural, and 

the algorithm of the linker is clear, as the domain 

switching problem is resolved by using the domain 

switching function included in the protection mechanism. 

To cause two linkage faults for a link might result in 

inefficient operation so long as the conventional fault 

handling is employed. This fact, however, stems from the 

defects in the current fault handling mechanism, and the 

fault handling mechanism discussed in the previous 

chapter resolves this problem.



130MECHANISM OF DYNAMIC  LINKING Chap. 12 

2. Processing of the Entry Linker 

     Links to which a procedure refers and their link 

definitions belong to the domain where this procedure is 

executed. The entry linker is sometimes executed in a 

separate domain from the one where the segment linker is 

executed, thus the problem arises about the reference to 

parameters for the processing of the entry linker. 

     In case that the ring protection mechanism is 

employed, such domain switching is required only when an 

inward call is executed. And there is no problem about 

the reference of parameters because all the information 

that belong to the outer ring can be referred to from the 

inner ring. 

     In case of a general protection mechanism, it is not 

permitted to refer directly to the information that 

belongs to other domains. This problem, however, can be

instruction

CALL 1p k

external symbol 

definition and 

link definition

"TARGET"

("ENTRY" 
CALLER 

Figure 
in the

1. REFER
unsnapped link

flag

pointer to def.

LINKAGE SEGMENT

2.

3. 

4.

SEGMENT 

12.1 Mechanism of 
faulted domain.

the linker which

LINKAGE FAULT 
(SEGMENT) 

GET TARGET 
SEGMENT 

SET SEG. NO. 
IN THE LINK 

4

executes



Chap. 12 - IMPROVED ALGORITHM - 131

instruction

CALL  1p k *

5. TRY

CALLER  SEGMENT

CALL 

AGAIN

^

partially 
snapped link

seg
spec 

cond

LINKAGE SEGMENT

6. LINKAGE 
  (ENTRY)

FAULT

WALL BETWEEN THE DOMAINS

I 
I 

1 
1 

1 
1 
1 
1 
1

target$entry

global symbol 
definition

"ENTRY" = k

k

7. SEARCH FOR 

   ENTRY NAME 

8. MAKE AND 

   SET LINK 

(9. GO TO THE ` 
CALLED ENTRY

TARGET SEGMENT •

1

Figure 12.1 (continued)



132  MECHANISM OF DYNAMIC LINKING Chap. 12

JI J- 1 1 
faulted faulted caller 

proc's proc's proc's 
frame frame frame 

         WALL ftETWEEN 'DOMAINS 
SEGMENT ENTRYcalled r 
LINKER's LINKER's proc's 
frame frame frame 

 TOPTOP TOP 

(a) Invocation of the (b) Invocation of the (c) Invocation of the 
   SEGMENT LINKERENTRY LINKERtarget procedure 

      Figure 12.2 Picture of stack frames. Three stages of 

      dynamic linking in case of domain crossing call.

ed

 e

 NT(
R'a

1 J-

~

easily resolved by the help of a supervisory function 

which simply transfers the necessary access capability 

for parameters. This problem is discussed later as the 

problem of the capability for the reference to the 
arguments. 

3. Consideration on Performance 

     In Multics dynamic linker occupies 5% of program 

steps, 5% of the number of program modules, and 11% of 

gates of the kernel  [JAN1]. Gates are the entrance into 

the security kernel and, thus, are the most sensitive and 

directly threatened part of the kernel. Reduction of 

program size of 5% and number of gates of 11% is a 

significant improvement for the reliability and the 

insulation of the security kernel.



Chap. 12 - IMPROVED ALGORITHM -133 

    The reasons why dynamic linking is not popular are 

the difficulty in the implementation and the 

batch-oriented method of system evaluation. Performance 

of many batch-oriented computer systems is evaluated 

solely by the executing speed of executable binary 

programs, and few of the excellent features that dynamic 
linking has are duly appreciated. On-line use of computer 

utility, however, enhances the excellent features that 

dynamic linking has. 

    To cause two linkage faults for a link might result 

in inefficient operation so long as the conventional 

fault handling is employed. This fact, however, stems 

from the defects in the current fault handling mechanism. 

Essentially, fault handling should be as handy as usual 

procedure invocation. This is the problem of the 
constitution of the interface between hardware and 

software rather than the problem of this scheme. These 

days, kernels of operating systems are sometimes tried to 

be implemented by firmware, and improvement of 

efficiency, especially in the part of hardware-software 

interface, can be expected in near future. 

     The excellent features of dynamic linking are never 

cancelled by the inefficiency of fault handling. The 

batch-oriented evaluation of computer systems gives 

little to on-line users. Dynamic linking excels static 

linking in the efficiency of program development and the 

efficiency of memory space. Dynamic linking delays 

linking of external references until they are actually 

needed to do so, thus it is able to realize flexible 

reference to the required information. Further, dynamic 

linking offers the direct addressing method independent 

of the physical storage location, and makes the program 

logics independent of system configuration, removing all



134MECHANISM OF DYNAMIC LINKING Chap. 12 

of the file  I/O instructions from programs. External 

references which need to be linked with other segments 

occupy only a small portion, comparing intra-procedural 

references. And the execution speed via a snapped link 

needs only one extra memory reference. Thus, performance 

degradation due to dynamic linking is nominal. Dynamic 

linking is strongly hoped and recommended to become 

widely used.



135

 CHAPTER 13 

             STRUCTURE OF SUPERVISOR 

    This chapter summerizes the method of constitution 

of an address space from the standpoint of the supervisor 

structure. Most of the early operating systems consisted 

simply of one big program. As system became larger and 

more comprehensive, this "brute force" approach became 

unmanageable. Eventually, the extended machine approach 

(Donovan) might be applied, that is, a computer system 
is considered as a layered computer. Each layer is the 

extension of the machine beneath its layer. The method of 

arguments is top-down, exhibiting layer by layer from the 

outermost to the innermost. The following is the list of 

the layers: 

          1. The address space manager 

  2. The segment manager 

  3. The memory space manager 

  4. Physical i/o subsystem 

  S. The process manager 

  6. The processor manager 

  7. The bare hardware interface 

  8. The bare hardware 

     The outermost layer accepts programs which refer to 

information symbolically and executes them directly. This 

layer is the very layer where programmers express their 

algorithms and operators require to the computer what 

they want. This layer is called the address space 

manager. The address space manager searches for the 

required segments in the file system, registers them in



136  STRUCTURE OF SUPERVISOR Chap. 13

USER 

PROCESS

           Figure 13.1 Layered computer system. 

the address space of a process and links them to 

references done by symbolic identifiers. 

     Next layer is the segment manager. When a 

segment is located, next thing to be done is 

(activate) this segment to place this segment in 

memory and to validate address formation 

segmentation hardware.

 resolve 

required 

 to open 

the main 

of the



Chap. 13STRUCTURE OF SUPERVISOR137 

    When a segment is made open, the pages which are 

required are not immediately placed in the main memory. 

As the result of actual access necessary space is 

allocated in the main memory and/or in the secondary 

storage. This layer is called the memory  space manager. 

The memory space manager manages the memory space in the 

main memory and in the secondary storage. 

     When all the conditions to execute a process are 

satisfied, the state of this process may be set from the 

ready state to the run state. This layer is called the 

process manager. The process manager has charge of all 
the state changes of the processes in the system lest 

there should be any contradictions. 

     Processes in the ready state are put into the ready 

queue, and one process is selected by appropriate 

criterions (mostly on the priority basis) and allocated 

the CPU to run. This layer is called the processor 

manager. 

     The innermost layer is the interface between the 

bare hardware and software. While the process executes 

the sequences described beforehand in the procedures, 

there would not be any extra problems. However, there 

happens such a situation that needs a special 

intervention of a software handler by an occurrence of an 

external asynchronous interrupt or an internal fault 

caused by an abnormal condition. The contents of such an 

intervention greatly differ according to the hardware 

used, but it is the common thing that at the time such an 

intervention is needed this layer touches directly the 

hardware status and then interfaces a handling procedure. 

1. Address Space Manager



138STRUCTURE OF SUPERVISORChap. 13 

     Programmers express their algorithms using symbolic 

references, and operators issue  commands to execute their 

jobs to a computer in this layer. This layer consists of 
the following modules: 

     The dynamic linker, 

     The known segment manager, and 

     The directory manager. 

1.1 Dynamic Linker 

    The dynamic linker is invoked by a linkage fault. 

Given a symbolic name, it invokes the known segment 

manager to check if the segment required has already been 

known to this process. If this segment has not been known 

yet, it invokes the file subsystem to search for a 
directory entry, assigns it a segment number, and makes a 

link to enable the CPU the required address formation. 

The dynamic linker is an execute-only procedure and has 

the ring bracket of (0, 7, 7). 

1.2 Known Segment Manager 

     The known segment manager determines whether or not 

the segment referred to by a symbolic name has already 

been linked logically to this process, that is, a segment 

number has already been assigned to this segment . If a 

segment number has not been assigned to this segment yet, 

the known segment manager requires the directory manager 

to search for a segment in the directory hierarchy. 

1.3 Directory Manager 

     The directory manager 

  1. Searches for a segment in the directory hierarchy, 

     given a path-name of the required segment which 

     uniquely identifies a segment in the file system,



Chap. 13STRUCTURE OF SUPERVISOR139 

     and returns the location of the required directory 

     or the directory entry, 

  2. Creates a directory entry in a directory, and 

  3. Deletes a directory entry from a directory. 

As the directory manager handles all the information in 

the system including the one of the top secret whose ring 

bracket is (0, 0, 0), the ring bracket of the directory 

manager must be (0, 0,  5)  . 

     This manager is invoked from the procedures which 

search for, create or delete, a segment, and from the 

linker. The directory manager has nothing directly to do 

with the physical input and output operations. 

2. Segment Manager 

     The segment manager activates a segment and connects 

it to the address space of a process, given a directory 

entry of a segment. The ring bracket of this manager is 

(0, 0, 0). The segment manager is invoked mainly when a 
segment fault is detected, and it is sometimes invoked by 

special modules of the directory manager in the address 

space manager. 

     After a segment is connected to the address space of 

a process, the memory manager is invoked. The segment 

manager itself may be put in the paging environment. It 

is determined from the standpoint of operation efficiency 

of the system whether the segment manager is placed in 

the main memory permanently or is put in the paging 

environment. 

     This module uses the active segment table as its 

data base and the active segment table includes page 

tables. Entries in the active segment table except the 

page table may be placed in the paging environment.



140STRUCTURE OF SUPERVISOR Chap. 13 

     A page table cannot be paged because the decision 

whether or not a page is missing is undertaken, using the 

page table itself. Furthermore, a page table must be 

physically contiguous in the main memory because there is 

no mapping mechanism for the page table reference. Hence, 

it is rather simple and efficient to make all entries of 

the active segment table resident in the main memory. The 

active segment table and a page table in the active 

segment table are addressed in the two-dimensional 

addressing mode when they are processed by the 

supervisory procedures. Further, a page table is referred 

to in one-dimensional absolute addressing mode by the 

hardware address formation mechanism. 

3. Memory Space  Manager 

     Today's computer system utilizes various kinds of 

memory devices which range from very high speed one at 

high cost to very slow speed one at low cost . If memory 
space allocation is scheduled well , memory space of very 
big capacity is realized at fairly low cost [KAR1] , 
[COR2 ] . 

     The memory space manager takes charge of the dynamic 

allocation of various kinds of memory spaces , and 
multiplexes the lacking main memory space among processes 

in the system. The memory space manager includes several 

memory managers, but only one of which is discussed in 

this section. 

    The main memory manager controls the resource 

allocation of the main memory , one of the fundamental 
resources in a computer system . The main memory manager 
uses the memory map , which is created when the system is 
started, as its working database , and selects a page



Chap. 13 STRUCTURE OF SUPERVISOR141 

swapping candidate according to the page replacement 

algorithm. 

     The actual page transfer from the secondary storage 

into the main memory or vice versa is left to the 

physical i/o subsystem beneath the main memory manager. 
The main memory manager invokes the process manager in 

order to minimize the idle time of CPU and to make 

maximum utilization of system resources. 

     The transfer of control between the main memory 

manager and the process manager must be efficient enough 

because this part is run quite frequently. The ring 

bracket of this manager is (0, 0, 0). This manager is 

invoked by a page fault and by special modules of the 

segment manager. The modules of this manager must be 

resident in the main memory because no manager except 

this one can resolve a page demand. 

4. Physical  I/O Subsystem 

     The physical i/o subsystem transfers a record from 

the main memory to the secondary file devices or stream 

devices and vice versa, given two record addresses or a 

record address and a device address of both the source 

and the destination. Physical data transfer is executed 

by the i/o processor of the input output subsystem, and 

the supervisory module of the physical i/o subsystem acts 

as an interlude to the i/o processor. The ring bracket of 

this module is (0, 0, 0). 

    The physical i/o subsystem is invoked by the memory 

space manager. This module must be resident in the main 

memory because no manager except the physical i/o 

subsystem can transfer a record from the main memory to 

the secondary storage and vice versa.



142STRUCTURE OF SUPERVISOR Chap. 13 

5. Process Manager 

     The process manager controls all the state changes 

of the processes in the system and maintains the ready 

list and the active process table. The process scheduling 

algorithm, which dispatches a ready process, is 

independent of the process managing algorithm but these 

two are often implemented together because of the system 

efficiency. The process manager assigns the processor to 

a process which is selected by the scheduling algorithm, 

invoking the processor manager. The ring  bracket of the 

process manager is (0, 0, 2). The entries of the process 

manager may be invoked directly from the supervisory 

modules, and indirectly from non-supervisory procedures 

via the gate procedures. The process manager is invoked 

by a process, by a timer interrupt and by an i/o 

completion interrupt. 

6. Processor Manager: Get Work 

     The processor manager gives a ready process the CPU 

and makes this process run. The ready process selected by 

the process scheduling algorithm is usually placed at the 

top of the ready list, assuming that this list is 

arranged in the order of priority. The layer of the 

processor manager comes beneath the layer of the process 
manager. The ring bracket of this module is (0, 0, 0). 

Let's consider the initiating process to analyze the 

relevant structure of the processor manager. 

     In the first step the "pre"-processor manager, which 

is usually a human operator himself, starts the hardware 

implemented bootloader routine to place the initiating



Chap. 13 STRUCTURE OF SUPERVISOR143 

module in the main memory. This initiating module is the 

loader of the system, and it initially controls all the 

system modules and places all the resident supervisory 

modules into the main memory. The resident parts of the 

supervisory modules may be bound beforehand or linked at 

the loading time. 

     Any  way these modules and a few specific supervisory 

processes created by the initiating modules are hereafter 

considered to have already "existed" in the system, and 

become the absolute root of the recursion. Modules and 

processes which are considered to have already "existed" 
in the system are the followings: 

     The processor manager and the memory area where this 

     manager is placed, and at least one process which 

      can create another process. 

     Thus, the processor manager may be regarded as the 

innermost layer except the following interface and the 

CPU itself. 

7. Interrupt and Fault Interface 

     The interrupt and fault interface, which saves the 

machine status and invokes an interrupt or fault handler, 

should be implemented by hardware circuitry, but part or 

all of the processing are beyond the scope of today's 

computer hardware, and usually these are executed by 

software. 

     The processing of this interface is just an 

interlude to an interrupt or fault handler, and should be 

treated as a special "hardcore" interface to the 

hardware. Hence, the interrupt and fault interface is the 

layer which adheres closely to the CPU hardware. The 

processor manager comes outside of this layer.



144STRUCTURE OF SUPERVISORChap. 13 

     As mentioned above, the primary function of an 

interrupt or a fault is a "call" to a handling procedure. 

And according to the contents of processing there may 

arise the problem of "protection". So far, these two 

points have scarcely been separated, and this has made 

the logics of programs complicated and inefficient 

needlessly. 

     It is necessary to unify and clarify the program 

structure no matter what a call, a call to supervisory 

procedures (so far a SVC instruction is  used), a hardware 
implemented call (an interrupt and a fault), or a call to 

a non-supervisory procedure, is executed. 

     When this requirement is satisfied, this layer is 

not necessary and will vanish at all. 

8. CPU 

     There are several processors such as the CPU and the 

IOP in today's computer. Usually, processors other than 

the CPU are hidden from users because they are directly 

related to the physical input and output. In this section 

only the CPU is discussed. 

     The CPU is considered as a set of "micro-procedures" 

which "emulate" the CPU instructions. And all the 

instruction executions call finally these "procedures". 

In this sense the CPU is placed at the innermost kernel . 

     The procedures in the CPU are execute-only. A 

non-privileged instruction is considered as a utility 

routine whose ring bracket is (0 , 7, 7), that is, it is 
executable in any domain without the domain switching . 

     A privileged instruction has a ring bracket of (0, 

0, 0) and has no call bracket. 

     A "micro-procedure" related to an interrupt handling



Chap. 13 STRUCTURE OF SUPERVISOR145 

has ring bracket of (0, n, 7) where n is determined by 

the execute bracket of the target interrupt handler. This 

implies that an interrupt handling instruction is a 

hardware implemented gate procedure and essentially acts 

as an interlude to a target handling routine. 

     The CPU also has several working registers which 

essentially belong to processe's data segments. The 

access rights of data contained in the general registers 

are read and write, and the ring brackets of them are (r, 

r, r) where r is the executing ring number. 

     The status registers relate to the protection 

control of the system and hold such data whose access 

rights are read and write restricted only in ring 0, 

that is, their ring brackets are (0, 0, 0).



146

                    CHAPTER 14 

      OTHER ADDRESS SPACES RELATED TO A PROCESS 

     Even in a computer system where the information 

management and the memory management are unified and most 

information are managed as on-line files, there remain 

some pieces of information which must be transferred 

through the "channel" of i/o processing. 

     An i/o process simply relates to a logical 

segment, and its processing algorithm is also very simple 

and straightforward. In due course, the realization of an 

i/o process is much simpler as compared with the host 

process. However, care must be taken to constitute the 

address space of an i/o process. The address space of an 

i/o process consists of a segment which is being 

processed by the host process, and generally the 

contiguity of physical location of the segment, and even 

the existence in the main memory are no longer insured . 

The desirable constitution of the address space for an 

i/o process is to share the page table of the target 

segment in the paging environment, given the location of 

the page table  and the offset in the segment as the 

arguments. In this case the paging facility may also be 

shared, that is, page fault conditions may be notified to 

the CPU and the relevant processing may be undertaken by 

the CPU. This will be easily realized only with small 

additional hardware circuitry. 

     This scheme is also applicable to the i/o process 

which supports page swapping. In this case, however, no 

notification of page faults is necessary.



Chap. 14 RELATED TO A PROCESS147 

1. External World to the Address Space 

    We assumed that all the information which was stored 

on-line in a computer system was able to be directly 

addressable. What else cannot be addressed directly? They 

 are: 

  1. Streams which are created or consumed outside a 

computer. 

     Typical examples of streams are: 

       A. Users at on-line terminals [SAL2], 

       B. Batch processing bulk i/o's, 

       C. Other terminals such as real time controllers, 

          and 

       D. Remote terminals or remote computers.

 COMMUNICATION

CHANNEL^

PROCESS PROCESS

c,
ADDRESS

SPACE

ADDRESS

SPACE

stream

 COMPUTER SYSTEM 

Figure 14.1 

communication 

processes. 
consumed at 
Human beeing

        COMPUTER/CONTROLLER/OPERATOR 

Stream i/o is required for the 
   between two independent 

Information is created and 
the time when it is created. 

is also a kind of process.

In case 

created 

it makes

of A 

or 

 no

., C. and 

consumed 

sense to

 some part of D. information is 

at the time it is processed, so 

make them directly addressable.



148 OTEIER ADDRESS SPACESChap. 14 

  2. Bulk media which are brought to, or from, the other 

     installations. 

     Typical examples are: 

          MT volume and dismountable disk volume. 

  3. Such information which is on-line but whose capacity 

     of communication channel is too small to refer to it 

     by direct addressing method. 

2. Access of Databases in Computer Networks 

     It is desirable also in a computer network to unify 

the information management and the memory management. 

This section discusses the conditions to realize such a 

network. The following two things are attained by the 

unification of the information management and the memory 

management: 

  1. The unified and consistent management of 

     information, and 

  2. Direct addressing to information independent of the 

     physical location where the information is stored. 

For the unified and consistent management of information 

unified control of segments must be enforced as explained 

earlier. Is it possible to force such control in a 

computer network? To do so it is necessary to be able to 

refer to the required information in comparable time and 

frexibility as if it is referred to in the main memory. 

     In a single system two or more processes are able to 

share the same segment. In a computer network also two or 

more processes which run in separate systems aie able to 

share the same segment if there is common memory 

accessible to every system in the computer network. 

However, in such a configuration there is a physical 

limit in the length of the common memory bus.



Chap. 14 RELATED TO A PROCESS 149

COMPUTER 

SYSTEM

Figure  14.2

COMPUTER 

SYSTEM

Closely coupled system.

COMPUTER 

SYSTEM

     In case of a computer network whose distance between 

two hosts is big, such information control is difficult, 

but in many cases the periods of modification of 

information are fairly long. In fact, there are many 

databases whose lives are almost permanent. In such cases 

direct addressing is realized by copying the necessary 

information beforehand. If the capacity of those segments 

is not so large, this approach can be employed in a 

computer network whose distance is very big. For example, 

it takes about twenty to two hundred seconds on forty 

eight kilo Baud communication line to move a segment 

whose size is one hundred kilo bytes to one mega bytes, 

but this movement is needed only once. 

     Another method is to process the required data in a 

distant system and to feedback only the results of the 

processing. This method works well if it is neither the 

case where two or more databases which are placed apart 

from each other are needed in a computation, nor the case 

where the capacity of the results of the computation is



150OTHER ADDRESS SPACESChap. 14 

bigger than that of the original database. This method 

is nothing more than a remote use  of computing 

facilities. 

     If a computation requires two or more databases 

which are placed apart from each other or if a 

computation produces more results than the original 

database in volume, it is necessary to determine whether 

all of the information should be transferred or only part 

of it should be transferred. In the latter case access to 

the information is dominated by the access method of the 

target system, and it might unhappily be a traditional 

and inconvenient one.



151

                    CHAPTER 15 

          APPLICATIONS OF DYNAMIC LINKING 

    This chapter suggests some application areas 

suitable for dynamic linking, and gives several design 

issues for these applications. 

1. To Switch Supervisors for Each Process 

     Sharing concurrently one computer system among more 

than one user began about 1963. What facility would be 

required in such a system? 

     In a system where development of operating systems 

or control programs is carried out, the bare machine is 

needed to each user. In a system where concurrent 

operation of different operating systems are required, 

the bare machine is also needed. 

     The virtual machines produced by such a system must 

simulate every feature of the bare machine up to the very 

details at the user's console. IBM's VS is such a kind of 

operating systems and has been contributing greatly to 

software development. Independent operating systems are 

used for each user in such a system; as the result, the 

efficiency of space utilization is not good. 

    What kinds of virtual machines are needed in a 

computer utility? In case of a computer utility the 

following conditions are strongly required: 

 1. To make it possible to execute an algorithm 

     independent of a system configuration, 

 2. To minimize the degradation of efficiency due to the



152APPLICATIONS OF DYNAMIC LINKING Chap. 15 

     process multiplexing, and 

  3. To be flexible enough to match with an indivisual 

      application. 

In this sense the important supervisory functions are not 

fundamental resources such as the CPU, the memory or the 

raw information but the command system and the file 

system on which user can freely build his own interactive 

systems or his own database systems. 

     If a computer system has dynamic linking facilities, 

these functions are operated under dynamic linking and 

can easily  and arbitrarily, be replaced or changed 

according to individual requirements of a user. 

2. Toward System Independent Processing 

     An algorithm of a computation should be independent 

of, and should not be unduly influenced from, the system 

configuration. This section discusses the scheme to 

construct algorithms independent of a system 

configuration. 

     In early day's computers or even in today's small 

scale computers, supporting systems for programming are 

poor and algorithms are influenced by system 

configurations and by the details of devices. In such a 

system a great part of programming efforts are devoted to 

managing the format and location of storage rather than 

to the essential algorithm. 

     As computer systems and especially high level 

operating systems and data management systems advance
, 

programmers are freed from a great many part of the 

problems with regard to the physical location and format 
when i/o operations are needed . However, problems about 
the allocation of programs and data in the main memory



 Chap. 15 APPLICATIONS OF DYNAMIC LINKING 153

    IO.~.CS.--minput from/               —.—
output to 

                                                             logical `, 
~Junit 

DIRECT ACCESSDEVICE CONTROL FILE CONTROL 
STORAGE DEVICE BLOCK (DCB) BLOCK (FCB)PROG

RAM  (DASD) 

    prepared at the time of assigned  produced at thetime 
  system generation~at the of programming-__4 

                                 time of 
                                      execution 

Figure 15.1 Device independent programming for 
sequential files. Logical units are allocated at the 
time of programming. Physical device definitions and 
driver routines are given at the time of system 
installation. Physical devices are assigned to logical 
units at the beginning of program execution .

 c
direct

address-
ing

DASD DCB SYSTEM

DE""-"

 prepared and

Figure 15.2 
files are 
main memory.

managed by the

 Direct 
referred

         "SPACE OF CALCULATION" PROGRAM 

system  >f< process action 
addressing method. All on-line 
to as if they were placed in the

are still remained. 

     Virtual memory systems realized by paging or 

segmentation have resolved this problem and program 

structures are made clarified further. 

     The remaining problems are those which are concerned



154APPLICATIONS OF DYNAMIC LINKING Chap. 15 

with access to various databases and calls to various 

procedures from a program. 

     First, we will discuss a problem about access to a 

database. The most commonly used access method to a file 

is that a record is copied and processed in a buffer 

whose format is declared by a structure or array 

declaration beforehand. The problem of this method is 

that the linkage between a file and a procedure is not 

processed automatically, that is, the linkage between a 

file and a procedure must be "programmed" before the 

program execution, and it has nothing to do with an 
algorithm of a program to get access to file records. 

     Access to a record which has logical relations to an 

algorithm is the one to a stack and a queue which are 

basically types of streams with storage spaces. 

     The most desirable way to eliminate "file access" to 

a record in a file from the description of an algorithm 

is to adopt the direct addressing method independent of 

the physical location of a record. For the realization of 

this method, it is not enough, as mentioned above , only 
to realize a virtual memory system but it is necessary to 

link automatically the reference to the required 

information. Dynamic linking enables a user to address 

directly the required information wherever it is placed , 
unifying the memory management and the information 

management. It also removes the unnecessary restriction 

to recursion, which is strongly required not to impose 

improper restrictions on the expression of an algorithm , 
as it needs to make procedure pure . 

     When a program is executed interpretively , problems 
relevant to recursion and dynamic linking are 

automatically resolved . This is because: 

     (Recursion) When an interpreter finds newly declared



Chap. 15 APPLICATIONS OF DYNAMIC LINKING 155

variables, it allocates them dynamically, and this is 

equivalent to pushing automatic variables into a stack, 

 and 

     (Dynamic linking) "Linking" of procedures are always 

done dynamically, and this is nothing more than dynamic 

linking. 

     However, interpretive execution of a program is not 

always possible nor preferable because: 

     Execution speed of a program is slow, 

     Memory requirement for a program is bigger than that 

     of compiler's object form, and 

Appropriate interpreter is not always available. 

     The stream access method to such storage areas as a 

stack or a queue has the logical relation to the 

algorithm itself, so it cannot be eliminated, and it is 

desirable to prepare operations combined with such an 

access method to operands, which are placed in a stack or 

a queue, for arithmetic or logical operations. 

Especially, they are strongly required in language 

processing.

3. Application of Dynamic Linking to a Command System

     In most command systems the menu of commands is 

fixed and it is difficult to add, change, and delete, 

some of them voluntarily. When addition, change, or 

deletion is required in a system which is constructed by 

the static linking method, it is necessary to link 

required procedures before the system is operated. This 

"preparation" process is called a system generation
, 

which needs both time and labor. 

     If a system operates under dynamic linking, no such 

system generation is needed. What is necessary for an



156  APPLICATIONS 

COMMAND

OF DYNAMIC LINKING Chap. 15

          (dynamic 
------- linking) 
 COMMAND  call  

HANDLER ----------- 
CALLER

call or 
"error"

----------------------------------------- fEND 

   Figure 15.3 Application of dynamic linking to a command system. 

operator to execute some program is only to show the 

system the program name as a command. The command system 

can execute this "command", just calling this procedure 

by the given name, and all the necessary linking is 

processed by the dynamic linking mechanism. 

     Thus, one subroutine which has just been created 

could be tested alone without completing all the 

programming that is required in case of a pre-linking 

system. Of course, this might cause a linkage fault for a 

segment which has not been created yet and then might 

pause execution until it is created.



Chap. 15 APPLICATIONS OF DYNAMIC LINKING 

PROC MAINtransactions at the  t erminal 
 EXTERNAL SUBsea. command line note 

               1 MAINsee (a) 

 CALL SUB CREATE SUBI, 11 
                     3 COMPILE SUB " (b) 

                 4 CONTINUE " (c) 

PROC SUB 

1~ 
I~ 
I 
L------- --1 

cot~rAND- - - - - - - -COMMAND 
SYSTEM'SSYSTEM's 
frameframe 

                                                  level 
                                           1

 sea. command line note

1 MAIN see (a)
2 CREATE SUB 11

3 COMPILE SUB (b)
4 CONTINUE (c)

A
COMMAND

SYSTEM's

frame

level

1

MAIN's

frame

 "CALL SUB"

linkage

fault

A
COMMAND 41'
SYSTEM's

frame
level

2

CREATF's (create
frame "SUB")

 COMMAND

SYSTEM's

frame

MAIN's

frame

COMMAND

SYSTEM' s

frame

COMPILE 's

frame

157

COMMAND 

SYSTEM's 

frame

MAIN's 

frame

 4^rL UPVIA NJJSUB'S    SYSTEM'sSYSTEM'sframe 
   frameframe 
 level 

2 
CREATF's (createCOMPILE's (compile (execute      f rame"SUB")frame "SUB") SUB") 

    (a) from 1 to 2(b) at 3(c) at 4 

Figure 15.4 Multi-level command system. (a) An operator 
gives a command, "MAIN", to the command system, and then 
program MAIN is started. This program calls program SUB 
which has not been created yet. Thus, a linkage fault is 
caused and the command system is called again (level 2). 
It has a conversation with the operator and gets a 
command, "CREATE SUB". Thus, CREATE routine is executed 
to create a subroutine named "SUB". (b) Program SUB is 
compiled and becomes ready to be executed. (c) CONTINUE 
command returns control at the place where the linkage 
fault occurred (level 1) and the execution of MAIN 
resumes. MAIN succeeds in calling SUB this time, and SUB 
is executed.



158APPLICATIONS OF DYNAMIC LINKING Chap. 15 

Further, all procedures are pure and recursive, so 

nesting the command system itself does not make any 

problem and results in a flexible interactive processing 
system. It would be very convenient that, when undefined 

data or procedure is required during processing, one can 

suspend the execution of the process, fulfill the 

required conditions and then restart the processing. 

     One way to make such an operation possible would be 

to invoke the command system recursively from the dynamic 

linker which is processing the linkage fault which has 

been caused by requiring undefined data or procedure. 

Such a system cannot be realized by conventional systems. 

The only example of such a system is Multics  [BON1] which 

realized dynamic linking.



159

                    CHAPTER 16 

      PROTECTION WITH MULTIPLE CAPABILITY LISTS 

    This chapter extends the discussions of Chapters 6 

and 7, and develops a protection mechanism which uses 

multiple capability lists. 

     A process can refer to the required information by 

the capability  [GRA2], [LAM1] that is defined for its 

state of execution. The scope within which the capability 

is the same is called a domain [GRAZ] , [SCH3] , [LAM1] , 

that is, a domain is defined by the capability. An 

address space of a process can be considered the closure 

of domains. 

     Usually, one calculation which a user intends is 

carried out by users own programs, by application 

programs or by service programs in some appropriately 

protected domains with proper capability. Generally, all 

the functions of the computer which these programs 

utilize are not created by these programs themselves, but 

some of them have already been prepared by the system 

modules or by other subsystems. Among these system 

modules there exist such manager modules that manage the 

system resources from the higher standpoints of 

management, and such superior modules in the kernel that 

supervise and control the state of execution and 

protection of processes in the system. 

     There exists the hierarchical relation between the 

capabilities of some protection domains. That is, the 

kernel that controls the protection essentially has the 

capability of the almighty, and can do everything. No



160PROTECTION WITHChap. 16 

part in the system which the kernel is not able to manage 

can become the object of processing. The modules that 

manage the system resources come to the next level. Two 

layered systems  uhich have had the supervisory mode and 

the problem mode have been employed to constitute such 

hierarchical protection domains so far, and the ring 

protection mechanism has been contrived and implemented 
in some computers as the generalization of the two 

layered system. 

     There also exists the exclusion relation between the 

capabilities of some protection domains. Lampson showed a 

case of two mutually suspicious subsystems [LAM1] . And 

proposals for realizing a protection mechanism which 

would satisfy such a requirement can be found [SCII2] , but 
few of them are fully implemented actually. 

1. Constitution of Protection Domains 

1.1 Representation of Capability 

     The access capability is defined like this: "Subject 

S is given access privileges X to object 0" . And such a 
relation can be represented as an access matrix A [GRA2] 

, 
with subjects identifying the raws and objects the 

columns (see Figure 16.1) . 

The entry A[S, 0] contains the access privileges X held 

by subject S to object 0. As there are usually numerous 

subjects and objects in a system , this matrix is too big 
in size with sparse entries to store and to maintain in a 

computer. 

     There are, however, four practical implementations 

three of which are suggested by Graham [GRA2] 

  1. To store the access matrix A by raws , that is, to 
     associate a capability list with each subject S (see



Chap. 16 MULTIPLE  CAPABILITY LISTS 161

object

subj ect

FORTRAN  ARCTAN CURVE PLOT SPECIAL DATA1 DATA2

JOHN EX EX EX R RW

MARY EX EX EX R RW

SMITH EX EX

PLOT EX RW

Figure  16.1 Access matrix.

     Figure 16.2). 

  2. To store the access matrix by columns, that is, to 

     associate an access-control list with each object 0. 

 3. To combine the capability list with the 

     access-control list, that is, to create a capability 

     list by storing entries (0, K) where 0 is an object 

     name and K a key, and to associate a lock list with 

     each object or the set of objects. 

  4. To combine the access-control list with the 

     capability list, that is, to create access-control 

     lists as in 2. and then to reorganize them into a 

     capability list with entries (0, X) extracted from 

     the access-control lists. 

Method 1 is the straightforward way, but revocation of 

access privileges with regard to an object is difficult. 

This is because access privileges with regard to an 

object are generally held in more than one capability 

list for an individual subject, and moreover, they are 

sometimes transferred to the capability lists for other 

subjects. Thus, there would be a problem of operating



162 PROTECTION WITH Chap. 16

Access control list

Capability 

list

 

-  v

ility

N

                            Access capability list 

      Figure 16.2 Implementations of access matrix. 

efficiency if this method is applied for the objects in 

the file system. This method is, however, efficient for 

the objects that are active and being processed within 

the scope of the CPU and the memory. Addressing by the 

CPU for reference to information is the use of the 

capability. The concept of capability-based addressing 

[FAB1] clarifies this situation. 
     There would be many ways to constitute a capability 

list in a computer. The segment table used in 

segmentation can be regarded as a capability list from 

the standpoint of protection  [FAB1]. 

     Method 2 is useful in the environment of a computer 

utility where many objects exist, and the revocation of 

access privileges given to other subjects is easily 

executed. This method is, however, "indirect" one; if 

subject S wants to refer to object 0, it is necessary to 

scan the access-control list for object 0 and to check 

the access privileges. Thus, it is not suitable to employ 

this method to validate the access privileges every time 

the object is referred to from the viewpoints of 

execution speed and memory capacity.



Chap. 16 MULTIPLE CAPABILITY LISTS 163

 0's access control list S's capability list capability list

 S-name rights

move

0-name rights 0-name rights

trailer

pointer

S X 0 X 0 X

trailer

pointer

             (segment map)(segment map) 

Figure 16.3 Transfer of access capability.

     Method 4 is practical in this respect. When object 0 

is referred to by subject S at first time, the 

access-control list of 0 is scanned, and then 0 is opened 

(activated). Once 0 is opened, the entry for S in the 

access-control list is moved to the capability list of S. 

and the entry in the capability list is chained and 

maintained the logical connection with the original 

access-control list of 0 so that revocation of access 

privileges is easily undertaken (see Figure 16.3). This 
method has been employed in Multics  [ORG1], [IKE4], that 

is, an access-control list is used to validate the access 

privileges at the first time when some object is referred 
to by a process, and then, the access privileges are 

moved to the segment table of this process. 

1.2 The Ring Protection Mechanism 

    The capabilities of the domains in the ring 

protection mechanism [SCH3] have the inclusion relation 

(see Chapter 7). The capability lists of the ring 

protection mechanism in the environment of segmentation



164PROTECTION  WITHChap. 16 

can be regarded as an array of segment maps, and in fact, 

a scheme which switches the segment maps is employed in 

the early version of Multics [ORG1] . (see Figure 16.4) . 

DB~~\

R= 0 R=2

     capability lists for each domain (segment maps) 

    Figure 16.4 Realization of domains. 

As the relation among the capabilities of the domains is 

rather simple, the array of segment maps can be reduced 

to the simplified mechanism as shown in Figure 16.5 by 

adding ring brackets in the segment map and a mechanism 

for limiting the capability. This limiting mechanism acts 

as a high-pass filter, and passes the access privileges 

whose ring bracket includes the current ring number. 

1.3 Constitution of Independent Domains 

     Independent domains can be realized by preparing 

separate capability lists, and this means that it is 

necessary to prepare separate segment maps in the 

environment of segmentation. In a computer where 

multi-programming operation is employed, separate domains 

are realized by associating one segment map for each 

process. The relation between two processes is, however, 

entirely independent of each other, except the limited



 Chap. 16 

      segment map

MUL TI PLE CAPAB IL ITY LI STS

 limiter

T
ring no. & mode

bracketsring

capability

165

      Figure 16.5 Ring protection mechanism. 

communications by the inter-process communication. 

     In order to make direct communication and transfer 

among independent domains possible, it is necessary to 

alter the capabilities by switching the domains. 

Schroeder proposed a scheme to employ an array of 

capability lists  [SCH2]. 

     Fabry showed several classes of schemes to implement 

capability lists [FAB1] ; however, there exists another 

class which will be shown below. Usually, segmentation 

mechanism uses one segment map for a process, and defines 

both the address space and the protection domain. By 

employing more than one segment map for a process, it is 

able to constitute more flexible domains, which satisfy 

more complicated requirements. 

1.4 Owner's Capability 

     The usual segment map shows the capability held by 

one process in this domain. On the other hand, there is 

such a kind of applications which permit the reference to 

the special database D only through the specified program 

P which is composed by the owner of D himself. This



166PROTECTION WITHChap. 16 

feature is called the set-user-ID feature in UNIX [RIT1], 

which gives the specified programs the privileges to use 

files inaccessible to other users. For example, a program 

may keep an accounting file which should neither be read 

nor changed except by this program itself. If the 

set-user-ID bit is on for this program, it may get access 

to the file although this access might be forbidden to 

other programs invoked by the given program's user. 

    We are going to employ this feature in the 

capability-based addressing system, which directly refers 

to objects as the operands of its processing, instead of 

files. This feature is called "owner's capability" below 

because the term "user" confuses the subject of 

capability.

capability of

process 
descriptorproc  P 
segment 
 (PDS) 

  Figure 16.6 Owner's

switch 
capability

capability

owner's capability of P

   descriptor 
   segment 
  (ODS) 

list.

     It is clear that access privileges X for object D 

should not be placed in the segment map of subject S 

because this segment map shows the capability of S
, and 

if privileges X for D is placed there , S can refer to D 
directly. What is permitted for S is only to execute P

.



chap. 16 MULTIPLE CAPABILITY LISTS167 

Access privileges X should be placed in a separate and 

private capability list for P. That is, process S can use 
D through the specified program P if the private 

capability list is used when P is invoked. This situation 

is shown in Figure 16.6, and hereafter, the capability 

list for a process is called a process descriptor segment 

(PDS), and the owner's capability list a owner descriptor 

segment (ODS), and these tables are pointed at by the 

process descriptor base register (PDBR) and the owner 
descriptor base register (ODBR) respectively. 

     Fabry also showed the use of multiple segment 

tables, but his scheme is the extension of the main 

table. The scheme shown in this chapter is not the mere 

extension of the main table, but describes the necessity 

for  separate capability lists. A scheme which employs 

more than one descriptor base register is found in the 

design of ACOS [ACOS], but its distinction between the 

subjects of the capability is not clear, and the usage of 

them is different. 

1.5 Capability for the Reference to the Arguments 

     The remaining capability is the one for the 

reference to the arguments accompanied by procedure 

invocation. The domain of execution is generally switched 

upon call to and return from a procedure. Thus, the 

capability for the reference to the arguments accompanied 

by procedure invocation is not generally guaranteed, and 

it is also necessary to pass the capability for the 

arguments to the called procedure. This capability list 

should be pushed down into a stack segment lest the 

generality of procedure invocation should be impaired 

(see Figure 16.7). 

Hereafter, this stack segment is called an argument



168

proc A 

• call B 

proc B 

'call C 

proc C

PROTECTION  WITH Chap. 16

 --:

 -- - - - - - - - ).

capability

for A

capability
for B

ASPR

l

capability

for C

I

11

                           argument arguments 
 descriptor 

                                              stack 
                             (ADS) 

     Figure 16.7 Access capability for arguments. 

descriptor stack (ADS), and it is assumed that the 

argument stack pointer register (ASPR) points at the 

current stack frame. The same contrivance seems to be 

employed in ACOS; however, it has not been released and 

its details have not been opened yet. 

     It might happen that the same segment is entered in 

different capability lists, and this is often the case 

for the argument capability list. This makes the 

management of the trailer pointers, which are used to 

maintain the logical connection with the original 

access-control list, complex. Alternative method is to



Chap. 16 MULTIPLE CAPABILITY LISTS169 

use the indirection scheme which reduces all the dynamic 

capability to the static one, but there is no change in 

the fact that more than one capability list is needed. 

1.6 Combination with the Ring Protection Mechanism

cluster

cluster

(a)

 r=MAX

cluster
(n 

 \\cana  it

               (b) 

Figure 16.8 Cluster of domains.

     The ring protection mechanism is useful though 

simple to be combined with the multi-segment map 

mechanism described above. The resulting domains consist 

of clusters of ring domains as shown in Figure 16.8. The 

security kernel is placed in the innermost domain, the 

managers of the system resources are placed in the next 

domain, and these domains are commonly used by the 

processes in the system. Figure 16.8a is drawn from the 

standpoint of protection, that is, inner domains are 

protected from the outer one. Figure 16.8b shows the same 

domains from the viewpoint of capability, and these two 

pictures are equivalent.



170PROTECTION WITHChap. 16 

2. Use of Capability 

2.1 Designation of Capability Lists 

     This section discusses how to use properly the 

capability lists. 

     Usual segmentation mechanism has only one capability 

list, and there is no need to discriminate two or more 

capability lists. Only the target segment number is 

needed to validate the capability. 

     If there are more than one capability list, it is 

necessary to differentiate them upon the addressing of an 

instruction. Two bits information is sufficient in the 

case of this paper as there are three kinds of lists for 

the process, the owner and the arguments. The number of 

bits would be increased if there are more kinds of lists 

which are required to show the capability in more 

complicated environment (see Figure 16.9).

                        process 
-----  own 

                        argument 

            Figure 16.9 Address pointer. 

    The problem is where and how to include such 

information. The requirements for this are as follows: 

  A. A procedure segment should be pure in order to make 

     it sharable. 

  B. The program logics should be independent of the 

     protection issue. 

Thus, it is not generally suitable to include the



Chap. 16 MULTIPLE CAPABILITY LISTS171 

indication of the capability list explicitly in the 

program body. Address pointers and address pointer 

registers can be used for this purpose. A mechanism is 

needed which transfers the same indication as the one 

that is used in the formation of effective address when 

the pointer is formed. One example of the usage of this 

function is shown in the section of argument list below. 

Of course, this indication should be included in some 

instruction; however, data segments are pointed at by 

pointer registers, which have the indication of the 

capability list, thus, it is not needed to include such 

an indication in usual instructions, and the program 

logics can entirely be made independent of the protection 

issue. And this is one of the excellent features of this 

 scheme. 

       When an external reference is linked to the segment 

which is placed in the capability list of the process, 

PDS, the indication in the address pointer is set to 

denote PDS. If the segment is placed in ODS, the 

indication is set to denote ODS. The discussion on 

arguments will be delayed. 

     The pointers that are used to link to external 

segments are stored in the linkage segment which is the 

data segment proper to the process. Address pointers and 

the contents of pointer registers except those which 

point at the capability lists are non-privileged data. 

Static variables can also be allocated in this segment, 

and of course the linkage segment is a non-privileged 

data segment. On the contrary, the capability lists and 

the pointer registers which point at these lists can only 

be processed in the privileged mode of execution. Thus, 

there is no fear that the protection violation is caused 

(see Figure 16.10) .



172 

procedure

   PROTECTION  WITH[ 

linkage section PDS

Chap. 16

 P

0

argument list

 ODS

A

1

ADS

ADPR

 arguments 

Figure 16.10 Protection with multiple capability lists. 

2.2 Reference to the Arguments 

     Usually, arguments are accompanied with procedure 

invocation, but information which is placed in other 

domains cannot generally be referred to from the current 

domain. One way to solve the problem of arguments is to 

use common buffers and to copy and to copy back all of 

the arguments. However, the overhead of this method is 

big, and further, address pointers cannot be transferred 

because the references via these pointers are not always 

permitted.



Chap. 16 MULTIPLE CAPABILITY LISTS173 

     The method which inhibits arguments is applicable 

only to limited cases, or the method which allows only 

those arguments that can be referred to in the called 

domain also affects the program logics unduly. 

     In the ring protection mechanism, an inner ring can 

refer to all the information placed in outer rings, thus, 

there is no problem with regard to the reference to the 

arguments if the cross-ring call is confined to an inward 

call [SCH3]. 

     The method to solve generally the problem of 

arguments is to give "dynamically" [SCH2] the called 

domain the necessary capability for the reference to the 

arguments accompanied by procedure invocation. The 

following requirements arise here: 

  1. Not to change the usual sequence of procedure 

      invocation. 

  2. To use a stack in order not to impose improper 

     restrictions to the program logics. 

  3. Not to make the program logics complicated, nor to 

     need tricky sequences. 

  4. Not to make sneak paths. 

     A procedure creates an argument list when it intends 

to invoke one procedure. This list generally consists of 

address pointers to the variables which are passed as 

arguments. Additional information as to the length and 

the kinds of access permitted are given besides the 

starting address. These can be created by the caller's 

procedure, and this processing has nothing to do with the 
domain of execution. Currently, it is assumed that the 

argument list is pointed at by the argument pointer 

register, and that the list is passed to the called 

procedure, which can refer to the arguments relative to 

this pointer register.



174PROTECTION WITHChap. 16 

     The next problem is how to give the necessary 

capability. The argument list itself is created by the 

caller procedure, and therefore, it cannot be a 

privileged database. Thus, it is necessary to create and 

to pass the capability list by validating the arguments 

against the capability lists given to the caller's domain 

if the domain switching is needed upon procedure 

invocation. This capability list should be created and 

pushed down into the argument stack automatically by the 

execution of a call instruction (see Figure 16.11). If 

the information of the return gate is included in this 

argument stack frame, all the necessary capability is 

passed to the called procedure. All the status of the 

caller is assumed to be saved in the stack frame of the 

caller, and the return gate implies the capability which 

is needed to restore the caller's domain and the status. 

     An alternative way to create the argument capability 

list is to generate capability descriptors directly 

instead of validating and converting the argument list 

into the capability list. For this purpose, an 

instruction which verifies the caller's capability, 

creates and pushes down a descriptor into the argument • 

capability stack given the address, the length and the 

kinds of access of the argument which is intended to be 

passed to the called procedure is needed. Such an 

instruction might be executed in any state of execution 

and creates a privileged capability descriptor; however, 

the place where this descriptor is stored is pointed at 

by the privileged stack pointer which the process cannot 

alter in the usual state of execution, thus there would 

be no fear that any access violation or trick is caused. 

And the argument capability list is created safely. 

     The arguments that can be passed are those for which



Chap. 

 caller'

16 

a proc

    MULTI PLE 

       argument

PDS

ODS

ADS

 CAPAB  IL  ITY LISTS 

           argument 
list descriptor 

   ADPR

 arguments

175 

proc

          Figure 16.11 Reference to the arguments. 

the caller has the necessary privileges to "transfer" as 

well as to refer. In addition to the usual privileges of 

read, write and execute, the privilege of transfer is 

needed. The concept of transfer is described by Graham 

[GRA2], but there are few implementations. 

     The validation of arguments can be undertaken by 

checking the proper capability list according to the 

pointers in the argument list created by the caller. 

     If an argument which is going to be passed has been 

passed as an argument by the previous caller, the pointer



176PROTECTION WITHChap. 16 

in the argument list created by the current caller has 

the indication to ASPR as is described in Section 2.1. A 

part of a segment is often passed as an argument, and the 
"confinement of the area" can easily be  realized by 

setting the start address, the length and the kinds of 

access permitted to the descriptor for the argument 

instead of using the original descriptor in the segment 

map. It seems that the shortening of a segment in ACOS 

[ACOS] corresponds to this processing though its 

algorithm is not opened to the public. Thus, the 

validation can be undertaken within the capability of the 

caller's domain and the called procedure can refer to the 

necessary arguments without any excess and deficiency. 

     The argument list passed to the called procedure is, 

in fact, the one created by this algorithm and is not the 

original one created by the caller itself. 

     The next problem is the revocation of privileges. It 

is necessary to chain the segment descriptor to its 

predecessor every time when it is passed as an argument 

capability so that the back-tracking procedure can crawl 

over the transferred capabilities to revoke them. 

     An alternative method is to pass the capability 

indirectly and to validate it in the originated domain . 

Schroeder proposed a scheme to employ a tag bit and a 

domain indicator which shows the domain that the 

validation should be executed [SCH2]. This method makes 

revocation process simple , but creates sneak paths 
because the validity check is done when the capability is 

really used not by checking the caller's privileges. If 

the caller sets the tag on for which the caller doesn't 

have the privileges in the caller's domain, but if the 

reference to this argument is permitted in the domain 

indicated as the originated one, the called procedure can



Chap. 16 MULTIPLE CAPABILITY LISTS177 

refer to this argument because the validity check is 

executed by checking the capability of the originated 

domain instead of the caller's privileges. This is, of 

course, improper thing. Then, he added the caller's 

indication instead of a single bit tag to prevent such a 

trick. However, the propagation of this indication is 

costly, and it is a little bit difficult to understand 

because of the indirection. 

     The switching of the capability upon call to or 

return from a procedure can easily be executed by pushing 

down or popping up the argument descriptor stack  [BfB2]. 

3. Switching of Domains 

     The switching of domains can be executed by 

switching the capability lists. This switching is 

required when control is transferred from one procedure 

to another, including the case of an interrupt or a 

fault. Here, such a case that a new lexical level is 

created is excluded as it is an internal thing within a 

procedure, and it is assumed that the protection 
condition doesn't change within a segment (this is one of 

the definitions of a segment). 

     One of the requirements as to the domain switching 

is that the program logics should be independent of the 

domain of protection. Thus, the call and the return 

instruction are used to invoke a procedure without 

exception. Further, the program logics should not be 

changed even if the domain switching is required. 

Therefore, a mechanism which is combined the call/return 

function with the domain switching mechanism is required. 

SVC instruction is not adequate for advanced computer 

architecture as described in the earlier chapter.



178PROTECTION WITHChap. 16 

      A hardware mechanism which executes both the domain 

switching and the transfer of control is realized for the 

ring protection mechanism  [SCH3]; however, there are few 

hardware mechanisms that can completely control more 

general protection schemes. 

     There are two kinds of domain switching in the 

mechanism of this thesis; one is the switching of the 

ring domains within a cluster of ring domains, and the 

other is the switching of domains crossing the wall of 

clusters. The switching of the ring domains has been 

described in Chapter 7. 

     The indication of domain switching can be placed in 

the flag of a segment descriptor which corresponds to the 

segment that needs the domain switching , and the domain 
switching may be executed by a hardware mechanism or by 

the intervention of software procedure invoked by a 

fault. The pointer to the new PDS may be placed 

economically in the address field of this descriptor . 
     Data segments are used to allocate the variables 

which are proper to the process , and these data segments 
should also be switched when the protection domains are 

switched. If the domain switching is executed within a 

cluster of the ring domains, and if the cross-ring 

transfer is restricted to an inward call and its 

consequent outward return [SCH3] , [ORG1] no such 
switching of data segments is needed . Hereafter, it is 
assumed that stack segments are used for the data 

segments. 

     When a procedure is called , all the automatic 
variables of the caller procedure and the process status 

are saved in the stack frame [ORG1] , the stack frame is 
pushed down, and a new stack frame is created and linked 
with the caller's frame . When a procedure invocation



Chap. 16 MULTIPLE CAPABILITY LISTS179 

which switches domains is executed, a new stack frame is 

created in a separate stack segment prepared in the newly 

switched domain. This push down sequence is executed with 

the domain switching operation. 

     When control is returned from the called procedure, 

the stack frame is popped up, and the process status is 

restored. If the domain switching was not caused upon 

call, this pop-up sequence is completed immediately. 

Otherwise, the domain is switched back by the domain 

switching mechanism, and the process status is restored. 

3.1 Switching of Owner's Capability 

     An external reference is linked by a pointer in a 

linkage segment. Pointers relevant to a procedure 

constitute a linkage section, whose location within the 

linkage segment can be obtained by looking up in the 

offset table [IKE4]. The processing of a linkage section 

is rather simple in case of the static linking, hence 

dynamic linking [ORG1] is assumed here. 

     When a procedure is started being executed, this 

procedure first intends to set the linkage pointer from 

the offset table. If this procedure is executed at the 

first time, the linkage section for this procedure has 

not been created yet, hence a static storage fault is 

caused  [JAN1], and the linkage section is created. If 

this procedure intends to refer to an external segment 

via an unsnapped link, a linkage fault is caused, and 

linking process is executed. If the target segment 

requires the owner's capability, its capability is placed 

in the owner's capability list, the domain switching 

condition is placed in the offset table, and then the 

owner's capability is switched (see Figure 16.12). It is 

enough to prepare an owner's capability list for each



180 PROTECTION WITH Chap. 16

 offset table

procedure body

set 
linkage 

pointer 

refer to 

external 

segment

 0ptr flag

linkage section

 ( static 

 1 switch

flag

storage fault condition 

owner capability cond.

ptr linkage fault condition

Figure 16.12 Switching of owner's capability lists.

owner. Some computations do not need such lists at all. 

It goes without saying that both the stack segment and 

the linkage segment should also be switched to the ones 

which are placed in the owner's capability list, too. 

Both the stack segment and the linkage segment are 

pointed at by the pointer registers in procedures, and 

therefore, it is not necessary to change the indications 

of the capability lists within the program, but to change 

the settings of these registers to point at the proper 

lists. Of course, it is necessary to copy the contents of 

the linkage section of the procedure, which has found 

that the target segment should be placed in the owner's 

capability list, in the old linkage segment to the new 

one and then to delete the old section. 

     It is able to switch back the owner's capability 

upon return from the called procedure if this condition 

is registered in the argument descriptor stack as the



Chap. 

return

16 

 gate

 MULTIPLE 

information.

CAPABILITY LISTS 181



182

                     CHAPTER 17 

 MEMORYLESS SYSTEM 

     Information systems which guarantee that no extra 

copies of procedures, data or results of processing are 

created against the intention of the user or the offerer 

are called memoryless systems [GRA2]. 

     Hereafter, many cases would be caused that mutually 

suspicious subsystems of users share resources of 

procedures and databases each other in a computer 
utility. The purpose of a memoryless system is to protect 

such mutually suspicious subsystems. 

     In order to fulfill the complicated requirements of 

information protection, it has been shown in the previous 

chapter that it is useful to employ multiple capability 

lists, and this chapter discusses the conditions to 

construct the capability lists, especially write access 

under the owner's capability, for a memoryless system. 

1. Memoryless System 

     There are various types of information sharing in a 

computer utility. Among them there are such mutually 

suspicious subsystems that user A permits user B to 

execute his program P with charge but A doesn't like that 

P is copied by B, and that B doesn't like that his data D 

which is going to be processed by P is copied by A 

without notice. In order to protect such mutually 

suspicious subsystems [LAM1], it is necessary to 

constitute a memoryless system which guarantees that no



Chap. 17MEMORYLESS SYSTEM183 

copy of submitted data and results of processing is 

taken. 

     The requirements for a memoryless system are 

summarized as follows: 

  A. A user permits others to execute his procedures but 

     doesn't like that they are copied by others. 

  B. A user permits others to refer to his databases 

     indirectly via his procedures but doesn't like that 

     they are directly copied by others. 

  C. A user who offers his procedures or databases wants 

    to collect accounting data for charging or 

     statistics. 

  D. A  user wants to process his database utilizing 

     other's procedures but doesn't like that his 

     database and the results of the processing are 

     copied by the borrowed procedures without notice. 

  E. A user doesn't want that the computer system makes 

     any copy or leaves any traces of data or results of 

     processing. 

2. Gains and Losses in a Computer Utility 

     It would be useful for the management of access 

capabilities to discuss what are gains and what are 

losses with regards to the sharing of procedures and data 

in a computer utility. The followings would be gains: 

  1. To get useful information, 

  2. To execute operations which produce useful results. 

And the followings would be losses: 

  3. To lose useful information, 

  4. To be disclosed secret information. 

1. corresponds to the read capabilities which make 

possible to read directly the target or to obtain



184

USER 

 processe

proc

MEMORYLESS SYSTEM 

        OWNER 

        DATA 1

read

Chap. 17

owner's c-list

 1

DATA R

 1

DATA 2

 

I gett operations           ge 

 I 

  Figure 17.1 Reference to a data segment by owner's 
  capability. 

indirectly results of processing based on the target 

information (see Figure 17.1). The execute capabilities 

relate to 2. Problems of sneak paths arise when a 

procedure itself owns the write capabilities to some 
segments which are independent of the capabilities of the 

user who is currently borrowing and executing this 

procedure. When information which is passed to a 

procedure is written into such segments and the intended 

communication to the others is carried out correctly, it 

becomes gains to the user. On the contrary, when 

information is written into such segments without notice, 

it might become losses to him (see Figure 17.2). 

     Thus, it is recommended to execute a procedure with 

minimum capabilities, and if there is such a fear that 

secret copies would be made, it is better to abandon such 

write capabilities.



Chap. 17 MEMORYLESS SYSTEM 185

USER 

processe's  c-list DATA 1

give data 
(disclosure)

OWNER 

owner's c-list

DATA 2

DATA 2

           get 

           get 

Figure 17.2

operations 

results

PROC A

read DATA1 

write DATA2 secret copy

Secret copy by owner's capability.

3. Protection with Multiple Capability Lists 

     A protection mechanism which incorporates multiple 

capability lists has been discussed in the previous 

chapter. This mechanism uses three types of capability 

lists at least, they are the lists of the capability of 

the process, that is, the user himself, the capability 

with regard to the owner of the procedure that is 

running, and the capability that is used to refer to the 

arguments accompanied by the procedure invocation. 

3.1 Processe's Capability 

     The processe's capability shows the capability of 

the user himself. This capability should be the least



 186

according to the 

privileges [SAL3] 

the chances which 

the disclosure of

MEMORYLESS SYSTEM Chap. 17

 general strategy of protection - least 

  -. The less the capabilities the less 

misuse the capabilities that result in 

secret information.

3.2 Owner's Capability 

     The owner's capability is the double edged sword. 

Read or execute operations allowed by the owner's 

capability bring obvious gains to the user. And at the 

same time, the owner's capability guards the rights of 

the owner effectively. The owner's capability is, 

however, not always profitable to those who borrow 

procedures which are executed under the owner's 

capabilities. Sometimes, it happens that a user might 

result in to write data into some segments which are not 

readable by the user himself through the use of borrowed 

procedures, and this means that the user's information is 

given to the other. And to make matters worse, such write 

actions might be executed while the user is not notified 

where his control cannot reach. 

     Such sneak paths are of little problem in the case 

of calculations of functional values given fragments of 

data as arguments. Sometimes, such paths turn to be 

useful in the case of interprocess communications which 

pass data by the write operations under the owner's 

capability or in the case of malice, though it is 

anti-social, which intends to interfere the activity of 

others.

3.3 Capability for the Reference to the Arguments 

     By abandoning the write capability in the owner's 

capability, it is possible to eliminate the sneak paths 

mentioned above. Thus, the processe's capability and the



Chap. 17MEMORYLESS SYSTEM187 

argument capability may be executed as the usual 

calculations. 

4. Towards Memoryless System 

     Here, we trust the system itself, and assume that 

the memory area where the process uses is cleared and 

that the temporary databases are deleted completely after 

the calculation of the process. 

     It is rather easy to satisfy requirement A. 

Procedures are made execute-only and are executed in 

separate domains from the caller's domain lest copies of 

data segments such as stack and linkage segments should 

be made. 

     Requirement B is satisfied by referring to the 

required segments through some procedures of the owner of 

the segments under the owner's capability. The degree of 

release of the database is entirely controlled by the 

 owner's will. 

             Requirement C seems to be satisfied by the use of 

the owner's capability that permits the write operations 

needed to log the accounting data; however, this method 

creates sneak paths, which are not suitable for 

requirement D. That is, borrowed procedures might copy 

the databases of the user that are to be processed into 

the ones of the owner. Thus, it is sometimes better to 

abandon the write rights of the owner's capability. 

     Stack and linkage segments are managed under the 

owner's capability in order to protect the owner's 

interest, but these segments cannot be reserved 

permanently by the will of the owner, thus copies of 

databases into these segments are of no use for later 

use.



188

processe's c—list

 MEMO  RYLE  SS

DATA 1

DATA 1 NOW

 I

 I

SYSTEM

can  read

 inhibit 
 write 
 access 

t 

Er

can read 

but not 

write

 Chap. 17

no write permitted 

except stack and 

linkage segments

* NOW : not owner 

writable

read 

read 

write

DATA2 

DATAl 

DATA2
access 

violation

Figure 17.3 Not owner writable access right.

     The decision whether or not the write operations of 

the owner's capability should be abandoned is left to the 

user. This condition might be notified to the security 

kernel prior to the call. This, however, violates the 

policy of protection [SAL3] - program generality -. An 
alternative way is to incorporate a "not owner writable"



Chap. 17MEMORYLESS SYSTEM189 

flag in a segment descriptor. If there is a segment 

descriptor whose "not owner writable" flag is on in the 

processe's capability list, the write actions in the 

owner's capability list are forbidden except to stack and 

linkage segments. This "not owner writable" right is a 

new type of access rights, and is registered in the 

access control list of the directory entry of the segment 

that requires such rights. When such a segment is 

activated the access rights are copied into the segment 

descriptor in the processe's capability list (see Figure 

17.3).

owner's c-list

DATA A AC 4

             DATA A 

 * 
                  account 

f ile

* AC : account channel

PROC

open account 

account 

close account

       write when account 

      channel is closed 

 / — security kernel

            Figure 17.4 Account channel. 

    Thus, it is not adequate to write 

information directly to some segments by

 accounting 

the owner's



190 MEMORYLESS SYSTEM Chap. 17

capability as is shown above. This might be resolved by 

negotiations of the user and the owner.  Generally, 

accounting facility, say an account channel, supported by 

the system is needed for this purpose. A procedure asks 

the system to log accounting information through the 

account channel into some pre-assigned databases of the 

owner (see Figure 17.4). Care must be taken not to convey 

the raw parameters but to pass only the results of 

processing by the account channel lest the direct copy or 

the "coding" of user's information should be done by the 

frequency of calls or by the time interval of calls of 

the account channel. The account channel should produce 

the degenerated information such as the total quantity or 

the number of operations, etc. from the raw parameters 

given by the procedure. It would be impossible to develop 
the original information from the degenerated one. Here, 

a requirement of a new type of access rights, "append 

through the account channel", arises which permits the 

appending of accounting information to a segment.



191

                    CHAPTER 18 

 CONCLUSION 

     This thesis has discussed the significance, the 

points of issue, the constitution, and the related 

problems of an address space of a computer utility. 

     An address space of a computer utility is the space 

where a programmer expresses his algorithm and runs the 

calculation when he wants to solve a problem, utilizing a 

computer system. Thus, its constitution affects greatly 

on the method of solving a problem. So far, this problem 

is only partially solved within the scope of programming 

languages and their processors, but it would not be 

satisfactory unless this problem is resolved as the basic 

framework of a computer system. This thesis has discussed 

the problem of constituting an address space from the 

viewpoint of expressing and executing the algorithm to 

solve a problem putting relevant things together as a 

total system, and has shown the framework for the 

constitution of a desirable address space. This thesis 

has clarified and developed the mechanism of dynamic 

linking, clarified and extended the mechanism of 

information protection, clarified the mechanism of 

constitution and connection of information space and an 

address space of a process, clarified the mechanism of 

intra-procedural communication of a process, developed a 

unified mechanism of inter-procedural communication of a 

process, shown the structure of supervisor, related world 

to the address space, and the effective applications, 

developed a protection mechanism incorporating multiple



192CONCLUSIONChap. 18 

capability lists, and discussed the constitution of a 

memoryless system. 

     The productivity and the reliability of software 

have been very poor, though great efforts have been 

devoted to improve them. Not only users but also system 

programmers themselves have had much trouble in this 

fact. One of the reasons why the productivity and the 

reliability are poor is that algorithms expressed in 

software are based on "super"-concepts and their concepts 

and logical structures are sometimes left unclarified, or 

conveyed erroneously. In addition to this, algorithms are 

often affected by the configuration of a computer system, 

which has nothing to do with the algorithms of programs. 

     A programmer should devote all his energy to the 

development of an algorithm to solve his problem, without 

being puzzled by the system configuration, and algorithms 

should not be influenced by the configuration of a 

computer system, by the storage location of information, 

or by the mechanism of information protection. 

     This thesis has discussed the constitution of an 

address space based on segmentation and dynamic linking 

where direct addressing independent of the location of 

the target information is realized. 

     An address space is constituted in the information 

space of a computer system, including all the on-line 

files. 

     When we are developing an algorithm to solve a 

problem, the space for consideration might not be so 

simple as the one-dimensional memory space of a computer . 

Thus, it is desired that the space of the  "surface" world 

should be mapped in a natural manner into the address 

space in a computer system . 

     Pieces of information , which include procedures and



Chap. 18CONCLUSION193 

data referred to in a computation, are separately managed 

according to their characters called attributes. Such a 

piece is called a segment, whose capacity or attributes 

are not fixed but happen to vary even in the course of a 

computation. It is also required that the number of 

segments which are referred to in a computation should 

not be confined to a small number. 

     Reference to the required segments should be carried 

out in a well formulated and easily understood manner 

lest it should make an algorithm needlessly complicated. 

And recursion should be supported by the basic framework 

of the system lest it should impose improper restrictions 

to the expression of an algorithm. In addition to above 

problems, supports of structures such as block structure, 

stack or queue are also needed. As a conclusion, 

segmentation supported by the two-dimensional address 

formation mechanism is suitable to form an address space 

in a computer utility, while a general three-dimensional 

addressing is not necessary for the moment. 

     Reference to information is an essential function of 

an information processing system. Reference to 

information is made effective by "linking" it to the 

target. The characters of an address space, and, as a 

result of it, the characters of a computer system, are 

basically changed by the method of linking. Linking of 

references in a computer utility should be delayed as 

late as possible. The method of linking when a reference 

is actually required - this is the last time of all - is 

called dynamic linking. Dynamic linking makes direct 

addressing of information independent of its storage 

location possible. And this implies that no input or 

output is required at all to refer to the information 

which is contained in on-line files, and a programmer can



194  CONCLUSION Chap. 18

refer to all the pieces of information he wants to use as 

if all were placed and referred to in the main memory. 

This will make program logics very clear and easy to 

understand and dev'lop, and improve the productvity and 

the reliability of software much. The mechanism of 

segmentation is also suitable to support dynamic linking. 

This thesis has developed a method to remove the linker 

from the security kernel, whose method would be 

considerably useful to improve the integrity of the 

system. 

     In order to be able to refer to information in a 

computer utility, sharing of information is 

indispensable, and as the direct consequence of 

information sharing, the demand for protecting of 

information arises. Effective sharing of information 

results in the ensuring of the consistency of information 

and the saving of physical space to hold information . 

These problems are resolved by using the "original" 

information itself wherever it is placed . Dynamic linking 

is also suitable for this purpose . In order to share the 
"original" information

, procedures must be pure, and 

processes use their own data segments to execute such 

pure procedures. Thus, the problem of recursion is 

resolved as well and a procedure can call itself so long 

as its static and automatic variables are definitely 

separated and properly allocated . 

     Protection of information is very important problem 

of today's computer system. Information protection in a 

computer utility demands that different access control be 

enforced in a natural way according to a process and the 

state of execution of this process even the same target 

is referred to, and such a control should be undertaken 

each and every time the reference is made . In addition,



Chap. 18CONCLUSION195 

information protection should not affect the logics of a 

program, and the mechanism of information protection 

should be simple enough to understand and to use; 

otherwise, erroneous usages would be caused and they 

would impair the security of the system instead. Further, 

the cost of utilizing such a protection mechanism should 

be proportional to the functional capability actually 

used. 

     The ring protection mechanism has solved many of 

these problems and realized useful protection  domains. 

The structure of the ring protection mechanism is 

clarified and extended by constituting the clusters of 

ring domains to augment its applicability. And the 

structure of CPU is analyzed from the viewpoint of the 

ring protection. The mechanism of segmentation is also 

suitable to support the mechanism of sharing and 

protection of information. 

     Next problem is to realize an address space to run a 

process. For this purpose, the mechanism to describe an 

address space and to enable the CPU to form address under 

segmentation is needed as well as the mechanism to switch 

address spaces. 

     A process executes a procedure, referring to the 

associated data area and link area. When a procedure 

refers to another procedure, it executes such an 

instruction as a call, a return, or a non-local go to. In 

addition to these instructions, an interrupt, a fault, 

and a SVC instruction are often used. Their primary 

function is to invoke a handling procedure, and sometimes 

protection issue is raised. So far, these two points have 

hardly been separated, and each of them has been 

processed in an odd manner, which is entirely different 

from the usual sequences of procedure invocation executed



196CONCLUSIONChap. 18 

by a call and a return instruction. As a result of such 

processing, the structure of a program becomes needlessly 
complicated, which is difficult to understand and to 

develop its algorithm. 

     The unified method of procedure invocation is shown 

in this thesis, which will be useful to simplify the 

structure of programs. 

     The problem of constituting an address space is also 

summarized from the standpoint of constitution of 

supervisor. A computer system may be considered as a 

layered computer. Each layer is analyzed one by one in a 

top-down way. 

     There exist one main process and related i/o 

sub-processes for a calculation. The world outside an 

address space is disclosed, including the stream i/o and 

databases in a computer network. 

     A strategy toward a programming system which is 

independent of the configuration of a computer system is 

discussed, and it is shown that dynamic linking method is 

useful for this purpose. And constitution of a command 

system is shown as one useful application of dynamic 

linking. 

     Finally, constitution of protection mechanisms which 

incorporate multiple capability lists is discussed and 

developed. In the complicated situation of a computer 

utility where there is a variety of competing users , more 
powerful protection mechanisms are required, and the 

necessity of the process capability list , the owner 
capability list, and the argument capability list is 

shown. In addition to this , constitution of a memoryless 
system is discussed. It is shown that a  certain kind of 

access capability sometimes produces harmful reactions on 

the information protection. This problem is resolved by



Chap. 18 

additional access

 CONCLUSION 

rights.

197



198 

 ACKNOWLEDGEMENT 

     The author would like to express hi; sincere 
gratitude to Professor Takeshi Kiyono for s'pervising 
this thesis with constant encouragement. Professor Kiyono 
was thoughtful enough to provide the author with the 
valuable chances for the study of the living large 
computer systems. 

    This research was first stimulated by the 
constitution work of InformationProcessing Center of 
Kyoto University, and advanced and developed by studying 
the structure of Multics at Project MAC in Massachusetts 
Institute of Technology. The mechanism of dynamic linking 
and the ring protection, which gave the basis of this 
research work, were first contrived and implemented in 
Multics. 
     Acknowledgement and special thanks go to Professor 

Fernando J. Corbato and Professor Jerome H. Saltzer who 
gave the author the chance and enthusiastic encouragement 
for the study of Multics. 

     The author wishes to express his thanks to Professor 
Shuzo Yajima for his encouragement and valuable 
discussions. 
     The author also wishes to express his thanks to 

staffs of Professor Kiyono's research group for helpful 
discussions and various conveniences for the research. 
This thesis is edited and ROFFed on the small scale 
computer utility in that group. Thanks go to the people 
who contributed to build the utility. 

     Professor Tsuneko Ikemiya of Tezukayama College read 
through the early version of the draft of this thesis and 
pointed out errors in English sentences. The author 
thanks for the errors in English that are not here .



 [ACOS] 

[AND1] 

[ARD1] 

[ BAK1]

[BEN1] 

[BOB1]

[BOB2] 

[BOC1] 

[BON1] 

[BUR1] 

[COD1] 

[CON1] 

[ COR1 ]

                                          199 

REFERENCES 

"ACOS-77 Systems Manual
," NEC/TOSHIBA. 

Andrew, J., Bash, J.L., Gondy, M.L., Hart, J.E. , "GE-645 Processor Reference Manual ," GE, 1970. 

Arden, B.W., Galler, B.A., et al., "Program and 
Addressing Structure in a Time-Sharing 
Environment," JACM Vol. 13, No. 1, pp. 1-66, 1966. 

Baker, H., Scheffer, L., Spencer, D., 
"Initialization and Shutdown on the Rise and Fall 
of Multics," Private communication with Project 
MAC, 1971. 

Bensoussan, A., Clingen, C.T., Daley, R.C., "The 
Multics Virtual Memory: Concepts and Design," CACM 
Vol. 15, No. 5, pp. 308-318, 1972. 

Bobrow, D.G., Burchfiel, J.D., et al., "TENEX, A 
Paged Time Sharing System for the PDP-10," Proc. 
Third Symp. on Operating System Principles, pp. 
1-10, 1971. 

Bobrow, D.G., Wegbreit, B., "A Model and Stack 
Implementation of Multiple Environments," CACM, 
Vol. 16, No. 10, pp. 591-602, 1973. 

Bock, R.V., "An Interrupt Control for the B5500 
Data Processor System," AFIPS Conf. Proc. Vol. 23, 
pp. 229-241, 1963 FJCC. 

Bonneau, R., Haas, R., Konig, D., "User Control: 
Command System: Error Handling," Private 
communication with Project MAC, 1971. 

"Burroughs B6700 Information Processing System: 

Reference manual," Burroughs, 1972. 

Codd, E.F., "Multiprogramming Stretch," IFIP Proc. 
pp. 574- , 1962. 

Confort, W.T., "A Computing System Design for User 
Service," AFIPS Conf. Proc. Vol. 27, pp. 619-626, 
1965 FJCC. 

Corbato, F.J., Vyssotsky, V.A., "Introduction and 
Overview of the Multics System," AFIPS Conf. Proc. 
Vol. 27, pp. 185-195, 1965 FJCC.



200 

 [COR2] 

[COR3] 

[CRS1] 

[CRT1] 

[DAL1] 

[DAL2] 

[DAT]] 

[DAV1] 

[DET1] 

[DON]] 

[DNG1] 

[DNG2] 

[DNG3] 

[DNS1]

REFERENCES 

Corbato, F.J., "A Paging Experiment with the 
Multics System," In Honor of P.M. Morse, pp. 
217-228, MIT Press, Cambridge, 1969. 

Corbato, F.J., "PL/I as a Tool for System 
Programming," Datamation Vol. 15, pp. 68-76, May 
1969. 

Crisman, P.A., "The Compatible Time-Sharing 
System," MIT Press, Cambridge, 1965. 

Critchlow, "Generalized Multiprocessing and 
Multiprogramming Systems," AFIPS Conf. Proc. Vol. 
pp. 107-126, 1963 FJCC. 

Daley, R.C., Neuman, P.G., "A General-Purpose File 
System for Secondary Storage," AFIPS Conf. Proc. 
Vol. 27, pp. 213-229, 1965 FJCC. 

Daley, R.C., Dennis, J.B., "Virtual Memory, 
Process, and Sharing in Multics," CACM Vol. 11, 
No. 5, pp. 306-312, 1968. 

Date, C.J., "An Introduction to Database System," 
Addison-Wesley, New York, 1976. 

David, E.E., Jr., Fano, R.M., "Some Thoughts About 
the Social Implications of Accessible Computing," 
AFIPS Conf. Proc. Vol. 27, pp. 243-247, 1965 FJCC. 

De Treville, J., Flower, R., Baron, R., "The 
Multics Dynamic Linking and Related Topics," 
Private communication with Project MAC, 1971. 

Donovan, J.J., "System Programming," McGraw-Hill, 
New York, 1972. 

Denning, P.J., "Resource Allocation in 
Multiprocess Computer Systems," MAC-TR-50, MIT, 
1968. 

Denning, P.J., "Virtual Memory," Computing 
Surveys, Vol. 2, pp. 153-189, 1970. 

Denning, P.J., "The Working Set Model for Program 
Behavior," CACM, Vol. 11, No. 5, pp. 323-333, May 
1968. 

Dennis, J.B., "Segmentation and the Design of 
Multiprogrammed Computer System," JACM Vol. 12, 
No. 4, pp. 589-602, 1965.



REFERENCES 201

 [EVAl]

[FAB1]

[FEI1]

[FOR1]

[GIB1]

Evans, D.C. 
the Control 
AFIPS Conf.

Fabry, R.S 
Vol. 17, No

LeClerc, J 
of Access in 
Proc. Vol. 30

.Y 

an

., "Address Mapping and 
 Interactive Computer," 

pp. 23-30, 1967 SJCC.

., "Capability-Based Addressing," 

. 7, pp. 403-412, 1974.

Feiertag, R.J., Organick, E.I 
Input/Output System," Proc. 
Operating System Principles, pp.

Forgie, J.W. 
Program for 
AFIPS Conf.

CACM,

., "The Multics 
Third Symp. on 

35-41, 1971.

, "A Time and Memory-Sharing Executive 
 Quick-Response On-line Applications," 

Proc. Vol. 27, pp. 599-609, 1965 FJCC.

Gibson, C.T. 
Model 67," 
1966 SJCC.

, "Time-Sharing 
AFIPS Conf. Proc.

with 
 Vol

IBM System 360: 

. 28, pp. 61-78,

[GLA1]

[GRA1]

[GRA2]

[HON1]

[IBM1]

[IBM2]

[IBM3]

[JAN1]

[KAR1]

Glaser, E.L., Couleur, J.F., Oliver, G.A., "System 
Design of a Computer for Time Sharing 
Applications," AFIPS Conf. Proc. Vol. 27, pp. 
197-202, 1965 FJCC. 

Graham, R.M., "Protection in an Information 
Processing Utility," CACM Vol. 11, No. 5, pp. 
365-369, 1968. 

Graham, G.S., Denning, P.J., "Protection - 
Principle and Practice," Proc. AFIPS, Vol. 40, pp. 
417-424, 1972 SJCC. 

"The Multics Virtual Memory ," Honeywell Manual, AG 
95, 1972. 

"IBM Operating System 360 : Concepts and 

Facilities," IBM Form C28-6535, 1965. 

"IBM System 360 Operating System: PL/I Reference 
Manual," IBM Form C28-8201, 1969. 

"IBM System 370 Principles of Operation Manual," 

IBM Form GA 22-7000, 1970. 

Janson, P.A., "Removing the Dynamic Linker from 
the Security Kernel of a Computer Utility," 
MAC-TR-132, MIT, 1974. 

Karger, P.A., Longtin, B.G., "Multilevel Memory 
Management Extended to Dismountable Disk Packs," 
Private communication with Project MAC, MIT, 1971.



202 

 [KUR1]

[LAM1] 

[LIN1]

[MAD1] 

[MCC1]

[MOT1]

[MPM1] 

[MSPM] 

[NAK1]

[NEE1]

[ONI1]

[ORG1]

[ORG2] 

[OSS1]

REFERENCES 

Kurtz, T.E., Lochner, K.M. Jr., "Supervisory 
System for the Dartmouth Time-Sharing System," 
COMPUTER and AUTOMATION, pp. 25-27, Oct. 1965. 

Lampson, B.W., "Dynamic Protection Structure," 
Proc. AFIPS, Vol. 35, pp. 27-38, 1969 FJCC. 

Linden, T.A., "Operating System Structure to 
Support Security and Reliable Software," Computing 
Surveys, Vol. 8, No. 4, pp. 409-445, 1976. 

Madnick, S.E., Donovan, J.J., "Operating System," 
McGraw-Hill, New York, 1974. 

McCullough, J.D., Speierman, K.II., "A Design for a 
Multiple user Multiprocessing System," AFIPS Conf. 
Proc. Vol. 27, pp. 611-617, 1965 FJCC. 

Motobayashi, S., Masuda, T., Takahashi, N., "The 
HITAC 5020 Time Sharing System," Proc. ACM 24th 
Nat. Conf., pp. 419-429, 1969. 

"Multics Programmer's Manual
," MIT Information P

rocessing Center, 1972. 

"Multics System Programmer's Manual
," Project MAC, MIT

, 1969. 

Nakazawa, K., et al., "Memory Control of IJITAC 
8700/8800," JOHOSHORI, Vol. 16, No . 4, pp. 
325-330, 1975. 

Needham, R.N. , "Protection Systems and Protection 
Implementation," AFIPS Conf. Proc. Vol . 41, pp. 
572-578, 1972 FJCC. 

Onishi, I., Noguchi, K., "Constitution of Virtual 
Space of Super High-Performance Computer System ," Conf

. Proc. of Information Proc. Society of Japan , No. 18, 1972. 

Organick, E. I . , "The Multics System: An 
Examination of Its Structure," MIT Press , C

ambridge, 1972. 

Organick, E.I., "Computer System Organization ," A
cademic Press, New York, 1973. 

Ossanna, J.F., "Communications and Input/Output 
Switching in a Multiplex Computing System ," AFIPS Conf

. Proc. Vol. 27, pp. 231-241, 1965 FJCC .



[OSS2]

 [RANI] 

[RAP1]

[RIT1]

[SAL1] 

[SAL2]

[ SAL3]

[SCH1]

[SCH2]

[ SCII3 ]

[SIM1]

[SPI1] 

[STE1]

RD FE RENCE S203 

                                                          Ossanna, J.F., Saltzer, J.H., "Technical and Human 
Engineering Problems in Connecting Terminals to a 
Time-Sharing System," AFIPS Conf. Proc. Vol. 37, 
pp. 355-362, 1970 FJCC. 

Randell, B., Russell, L.J., "ALGOL 60 
Implementation," Academic Press, New York, 1964. 

Rappaport, R.L., "Implementing Multi-Process 
Primitives in a Multiplexed Computer System," 
MAC-TR-55, MIT, 1968. 

Ritchie, D.M., Thompson, K., "The UNIX 
Time-Sharing System," CACM, Vol. 17, No. 7, 
PP.365-375,1974. 

Saltzer, J.H., "Traffic Control in a Multiplexed 
Computer System," MAC-TR-30, MIT, 1966. 

Saltzer, J.H., Ossanna, J.F., "Remote Terminal 
Character Stream Processing in Multics," AFIPS 
Conf. Proc. Vol. 36, pp. 621-627, 1970 SJCC. 

Saltzer, J.H., Schroeder, M.D., "The Protection of 
Information in Computer System," Proc. IEEE, Vol. 
63, No. 9, pp. 1278-1308, 1975. 

Schroeder, M.D., "Performance of the GE-645 
Associative Memory While Multics is in Operation," 
ACM Workshop on System Performance Evaluation, pp. 
227-245, 1971. 

Schroeder, M.D., "Cooperation of Mutually 
Suspicious Subsystems in a Computing Utility," 
MAC-TR-104, MIT, 1972. 

Schroeder, M.D., Saltzer, J.H., "A Hardware 
Architecture for Implementing Protection Rings," 
CACM, Vol. 15, No. 3, pp. 157-170, 1972. 

Simizu, H., Takeyama, H., Aoshima, K., "Dynamic 
Linking of OS7," Conf. Proc. of Information Proc. 
Society of Japan, No. 184, 1973. 

Spier, M., "Multics Standard Object Segment," 
Multics Staff Bulletin, No. 27, MIT, 1972. 

Stern, J., "Traffic Control Primitives," Private 
communication with Project MAC, MIT, 1971.



204 

[VYS1] 

[WAT1] 

 [WEB1] 

[WIL1]

REFERENCES 

Vyssotsky, V.A., Corbato, F.J., Graham, R.M., 
"Structure of the Multics Supervisor ," AFIPS Conf. 
Proc., Vol. 27, pp. 197-202, 1965 FJCC. 

Watson, R.W., "Timesharing System Design Concept," 
McGraw-Hill, New York, 1970. 

Webber, S.H., "Stack Header and Stack Frame 
Format," Multics Internal Document, 1972. 

Wilkes, M.V., "Time-Sharing Computer System," 
American Elsvier, 1968.



 205

[IKE1]

[IKE2]

[IKE3]

[IKE4]

[IKE5]

[IKE6]

[IKE7]

[IKE8]

[ IKE9]

[IKEA] 

[HOR1]

[NIS1]

          LIST OF PUBLICATIONS 

Ikeda, K., "Management of Address Space in 
Multics," Meeting Memo. No. 3, Dept. of 
Information Sci., Kyoto Univ., 1972. 

Ikeda, K., "Control of Interrupts and Faults in 
Multics," Seminar Report No. 4, Information 
Processing Center, Kyoto Univ., 1973. 

Ikeda, K., "Virtual Memory of Multics," 
Information Proc. Society of Japan, Kansai chapter 
Seminar Report, 1973. 

Ikeda, K., "Structure of a Computer Utility," 
Shokodo, Tokyo, 1974. 

Ikeda, K., "Structure and Constitution of an 
Address Space in Multics," JOHOSHORI, Vol. 16, No. 
4, pp. 369-372, 1975. 

Ikeda, K. , "A Few Problems on the Reference and the 
Protection of Information in a Computer Utility," 
Report No. 27, SIG Computer Architecture of IPSJ, 
1977.

Ikeda, Y., "A Scheme to Execute the Dynamic Linker 
as a Non-Privileged Procedure,"-Information 
Processing, Vol. 1, No. 1, 1978 (to apperar). 

Ikeda, K., "Unification of Sequences of Procedure 
Invocation," in subscription to *Information 
Processing. 

Ikeda, K., "Protection with Multiple Capability 
Lists," in subscription to-Information Processing. 

Ikeda, K., "Memoryless Protection Mechanism," in 
subscription toiInformation Processing. 

Hori, Y., Ikeda, K., Kiyono, T., "High Level 
Command System of Interactive Processing," 17 th 
Conf. Proc. of Information Proc. Society of Japan, 
No. 162, pp. 317-318, 1976. 

Nishikado, I., Ikeda, K., Kiyono, T., Hoshino, S., 
"A Study on a Computer Complex

," 12 th Conf. Proc. 
of Information Proc. Society of Japan, No. 3, pp. 
5-6, 1971. 

                              *(insert) Journal of



206  LIST OF PUBLICATIONS

[0KA1]

[OMU1]

Okajima, I., Ikeda, K., Kiyono, T., 
of Virtual Memory in a Mini-Computer 
Proc. of Information Proc. Society 
178, pp. 355-356, 1973.

"Construction 

," 14 th Conf. 
 of Japan, No.

Omura, S., Ikeda, K., Kiyono, T., "Construction 
of Computer Complex for Input/Output Processing," 
16 th Conf. Proc. of Information Proc. Society of 
Japan, No. 277, pp. 553-554, 1975.

[SRM1] Shimono, M., 
"Implementation 

Mini-Computer," 
Proc. Society of

  Ikeda 

   of 
18 th 
Japan,

    K., Kiyono, T., 
  Segmentation in a 

Conf. Proc. of Information 
No. 56, pp. 111-112, 1977.

[YAM1] Yamashita, K., Ikeda, 
"Constitution of Hierarchical 

Conf. Proc. of Information Proc 
No. 166, pp. 325-326, 1977.

K., Kiyono, 
File System," 

. Society of

T., 
 18 th 

Japan,





                                                                                                                                    k


