A STUDY ON
CONSTITUTION OF AN ADDRESS SPACE
IN A COMPUTER UTILITY

Katsuo lkeda

Department of Information Science
Kyoto University
1977

A STUDY ON
CONSTITUTION OF AN ADDRESS SPACE
IN A COMPUTER UTILITY

Katsuo Ikeda

Department of Information Science
Kyoto University
1977

A STUDY ON
CONSTITUTION OF AN ADDRESS SPACE
IN A COMPUTER UTILITY

by

Katsuo lkeda

ABSTRACT

This thesis discusses the problem of constitution of
an address space in a computer utility. An address space
is the space where a programmer expresses his algorithm
and runs the calculation when he wants to solve a
problem, utilizing a computer system, Thus, 1its
constitution affects greatly on the method of solving a
problem, but it has not been discussed much so far,

Chapter 1 1is an introductory remark on an address
space, gives 1its definition, and shows its history and
its constituent elements,

Chapter Z indicates the points of 1issue for
constitution of an address space. These points are the
followings:

A programmer should devote all his energy to
develop an algorithm to solve his problem, without
being puzzled by the system configuration, and an
algorithm should not be influenced by the
configuration of a computer system, by the storage
location of information, or by the mechanism of
information protection. Further, the space of the
"surface" world where a programmer considers his
algorithm should be mapped in a natural way into the
address space in a computer system,

Information 1is characterized and managed as a
"group" <called a segment. The number of segments
should not be confined to a small number, and the
capacity of a segment should be able to change
freely during program execution.

Refcrence to external segments, including the
referring segment itself, should be flexible and
easy lest it should impose improper restrictions to
the expression of an algorithm or make an algorithm
needlessly complicated.

Sharing and protection of information are very
important problem,

And mechanisms which support various structures
such as the block structure, stack or queue are
needed.

ABSTRACT

Chapters 3 to 5 discuss references of information,
Reference of information is an essential function of an
information processing system. Reference of information
is made effective by "linking" it to the target. Chapter
3 describes that the character of an address space, and,
as a result of 1t, the character of a computer systenm,
are basically changed by the method of linking. Chapter 4
discusses typical three methods of linking comparing with
each other, and introduces dynamic linking method which
1s discussed in Chapter 5.

Dynamic linking might be considered the most
suitable method to link references in a comrputer utility,
It is able to realize the direct addressing of

information whkerever the target information is stored.
Chapter 5 discusses the mechanism of dynamic linking.

In order to be able to refer to information in a
computer utility, sharing of information is required. And
as the consequence of information sharing, the demand of
information protection arises. Chapter 6 points out the
issue of sharing and protection of information, and
Chapter 7 discusses mechanisms of information protection.

Protection mechanisms in today's computer system are
too simple to be incorporated in a computer utility, This
chapter analyses and clarifies the logical structure of
the ring protection mechanism, which was first contrived
and implemented in Multics, and proposes its extension,
Chapters 16 and 17 extend the discussion of protection
mechanisms further.

Chapter 8 discusses the required structure of an
address space and the mapping mechanism to realize such a
space. Chapter 9 completes the discussion of Chapter 8
and gives the conditions to establish an address space in
a computer system,

Chapters 10 and 11 discuss concretely the problem of
references of information. That 1is, intra-procedural
communications within a procedure - references of the
data area and the link areas - are discussed in Chapter
10, and inter-procedural communications - a call, a
return, a non-local go to, an interrupt and a fault - are
discussed in Chapter 11.

So far, entirely different forms of 'calls" have
been employed in a computer system, and these have made
the 1logics of the system needlessly very complicated and
the understanding of the system difficult. Chapter 11
shows a unified method of inter-procedural
communications, This method would make the logics of the
system clear and easy to understand.

Chapter 12 revisits the discussion of dynamic
linking and develops it in order to remove the linker
from the security kernel and to improve the integrity of
the system,

I1

ABSTRACT

Chapter 13 discusses constitution of an address
space from the standpoint of the supervisor structure.

Chapter 14 shows other address spaces of
sub-processes, which are associated with the main process
of a calculation, such as file i/o or stream 1i/o
sub-process, and it also shows some considerations about
the databases in a computer network,

Chapter 15 discusses constitution of a programming
system which is independent of the system configuration,
and shows a very useful application of dynamic linking to
a command system.

Chapter 16 extends the discussion of protection
mechanisms and shows the requirements of them with
multiple capability 1lists.

Chapter 17 discusses constitution of a memoryless
system which would be needed in a computer utility with a
variety of competing users with each other.

II1

CONTENTS

ABSTRACT

CHAPTER 1
INTRODUCTION

1. What is an Address Space?

2. History of Address Space Management

3. Definition of an Address Space

4, Constituent Elements of an Address Space

CHAPTER 2
POINTS OF ISSUE FOR CONSTITUTION OF AN ADDRESS SPACE

CHAPTER 3
REFERENCE OF INFORMATION

1. Linking of Symbolic References
2. Time of Linking
3. Scope of Linking

CHAPTER 4
ALGORITHMS OF LINKING

1. Pre-Linking Method
2. Linking under the Environment of Segmentation
3. Algorithm of Dynamic Linking

CHAPTER 5§
MECHANISM OF DYNAMIC LINKING

1. Access to a Link
2. Algorithm of the Linker
3. Comparison of Object Forms

CHAPTER 6
SHARING AND PROTECTION OF INFORMATION

1. Policies of the Information Protection
2, Mechanism of Information Protection
2.1 Conventional Protection Mechanisms
2.2 Domain of Protection
3. Constitution of Domains
4, Kinds of Access Rights
4.1 Access Rights for Usual Segments
4.2 Access Rights for Directory Segments
5. Contension of Access - Shared or Exclusive -

1Y

[B SN FR I]

13
13
14
18
20
20
21
22
25
27
29
31
34
36
36

39
41

44

CONTENTS

5.1 Process Data Segments
5.2 System Data Segments (Common Data Segments)

0. Mechanism of the Domain Switching L
CHAPTER 7
THE RING PROTECTION MECHANISM £

1. Domain Switching in the Ring Protection
Mechanism !
2, CPU from the Viewpoint of the Ring Protection
Mechanism
Comment on Call and Return Instructions
Extension of the Ring Protection Mechanism
4.1 Constitution of Mutually Independent
Domains
4.2 Extended Domain Switching
Clustering of Domains
Capability of Ring i State ¢
Additional Comments on the Ring Protection
Mechanism ¢

Y

=
e

S
s s

CHAPTER 8
CONSTITUTION OF AN ADDRESS SPACE ¢

. File System (
Connection of an Address Space and
the Information Space
Dimension of an Address Space
Recursion and Block Structure
Mechanism of Segmentation
Descriptor Segment and Descriptor Base Register
Three-Dimensional Address
Support of Lexical Levels

0o~ U &N [
® s & s e .

CHAPTER 9
ESTABLISHING AN ADDRESS SPACE IN A COMPUTER SYSTEM

1., Conditions Which Specify an Address Space

1.1 To Show a Process in the System

1.2 The Minimum Information

1.3 Information Required to Execute a Process

1.4 Dispatching a Process

1.5 Initiation of a Process
2. Protection of Pointers and Data Segments .
3. Address Space Switching ;

CHAPTER 10
INTRA-PROCEDURAL COMMUNICATIONS !

1. Management of Process Data Segments !
1.1 Stack Segment

v

CONTENTS

1.2 Static Data Segment
1.2.1 In Case that the Pointer is
Invariant in Every Ring
1.2.2 In Case the Linker is a Non-Privileged
Procedure
2, Constitution of a Linkage Segment 96

CHAPTER 11
INTER-PROCEDURAL COMMUNICATIONS 97

1. Call and Return 97
1.1 Call Instruction
1.2 Return Instruction

2. Elimination of SVC 101
3. Condition Handling 102
4, Non-Local Go To 104
5. Implicit Call 107
6. Invocation of Interrupt and Fault Handlers 110

6.1 Determination of an Interrupt or
a Fault Handler
6.2 Status for Handler Execution

7. Interrupt and Fault Table 115
8. Masking Interrupts and Faults 117
9. Processing of Interrupt and Fault Status 117

9.1 Point of Issue for the Saving of the Status

9.2 Point of Issue for the Restoration of the Status
10, Necessary Faults 121

10.1 Faults Caused by Errors in

Hardware and Software

10,2 Faults Caused by Arithmetic Operations

10.3 Faults Caused by Address Formation

10.4 Faults Caused by Access Control Functions

10,5 Faults Intended to be Used by a Process

11. Where to Set Fault Conditions 123
CHAPTER 12

MECHANISM OF DYNAMIC LINKING - IMPROVED ALGORITHM - 125
1. Removing the Linker from the Security Kernel 125
2. Processing of the Entry Linker 129
3. Consideration on Performance 132

CHAPTER 13
STRUCTURE OF SUPERVISOR 135

1. Address Space Manager 137
1.1 Dynamic Linker

1.2 Known Segment Manager

1.3 Directory Manager

Segment Manager 139
Memory Space Manager 140

NN
. e

VI

CONTENTS

Physical 1/0 Subsystem
Process Manager

Processor Manager: Get Work
Interrupt and Fault Interface
CPU

o~ &
. e 8 s

CHAPTER 14
OTHER ADDRESS SPACES RELATED TO A PROCESS

1. External World to the Address Space
2. Access of Databases in Computer Networks

CHAPTER 15
APPLICATIONS OF DYNAMIC LINKING

1. To Switch Supervisors for Each Process
2. Toward System Independent Processing
3. Applications of Dynamic Linking to

a Command System

CHAPTER 16
PROTECTION WITH MULTIPLE CAPABILITY LISTS

1, Constitution of Protection Domains
1.1 Representation of Capability
The Ring Protection Mechanism
Constitution of Independent Domains
Owner's Capability
2., Use of Capability
.1 Designation of Capability Lists
2.2 Reference to the Arguments
3. Switching of Domains

[\ Rl el el
=M O B

CHAPTER 17
MEMORYLESS SYSTEM

1. Memoryless System

2, Gains and Losses in a Computer Utility
3.
3.1 Processe's Capability
3.2 Owner's Capability

3.3 Capability for the Reference to the Arguments

4. Towards Memoryless System

CHAPTER 18
CONCLUSION

ACKNOWLEDGEMENT

VII

Capability for the Reference to the Arguments
Combination with the Ring Protection Mechanism

Protection with Multiple Capability Lists

141
142
142
143
144
146
147
148
151

151
152

155

159
160

169

177

182

182

183
184

187

191
198

CONTENTS

REFERENCES 199
LIST OF PUBLICATIONS 205

VIII

CHAPTER 1
INTRODUCTION

In this thesis we are going to discuss the problems
of an address space and its constitution in relation to
computer system configurations and operating systems,

The history of electronic computer has been the
history of pursuing big memory capacity and high
processing speed. It is an undeniable fact that
requirements of information processing increase so fast
that one computing system often has more computations
than it «can process when it is installed and becomes
operable, Average execution time of instructions such as
Gibson mix is sometimes used to denote the performance of
a computer, Or, comparison of total processing time,
which 1is measured in so-called a bench mark test by
processing a job stream prepared beforehand, is often
tried to evaluate the performance of a computer system.

What is given to users of a computer by big capacity
and by high speed?

Big <capacity and high speed are certainly required
for a computer system which processes daily routine works
efficiently., They are, however, not the primary factors
for those who are engaged in research and development
works, in which case flexibility and ease in expressing
and executing the algorithms to solve their problems are
needed. And the constitution of an address space where a
programmer expresses and executes his algorithm is an
essential problem instead. So far, this problem has
hardly been discussed from such a viewpoint, but some of

2 INTRODUCTION Chap. 1

the constituent elements have partially been discussed
from the different angle in the course of the development
of big capacity and high speed computer systems, It is
significant to discuss this problem putting relevant
things together as a total system,

1. What is an Address Space?

A logical address space or a name space implies a
logical information space, that 1is, a collection of
programs and data, which one '"calculation" refers to or
operates. In this case, the method of its physical
realization is not concerned in.

A physical address space implies a physical memory
space where target information can be physically referred
to or operated. It seems that the term ''name space'" or
""address space'" has been used since about 1965. Dennis
(1965) described that the concept of name space, the set
of addresses a process can generate, is contrasted with
the memory space, the set of physical memory locations
[DNS1]. Donovan (1972) [DON1] described that a
collection of programs and data to which one process
[RAP1], [VYS1], [DAL2] refers forms an address space.
Per Brinch Hansen and Leo J. Cohen didn't use such a
term. Richard W, Watson (1970) [WAT1l] defined that a
logical address space is a set of abstract or logical
locations addressed by processes.

The concept of an address space originated from
memory allocation in a multi-programming computer system,
In such a system, having no connection with the memory
location, programs were composed starting at the fixed
logical address. Such programs were transformed to be
executed at the specific physical address by the

Chap. 1 INTRODUCT TON 3

relocation procedure, and then executed there.

Although the constitution of a logical address space
is very important because it 1is the space for
consideration and operation in order to manage and solve
problems, the constitution of a logical address space has
little been discussed in wusual computer systems, while
the constitution of a physical address space has largely
been discussed., In discussing future computer systems or
information processing systems, it is necessary to start
off with this fundamental problem.

2. History of Address Space Management

In the early days of electronic computers how
skillfully he used the 1lacking memory space was
considered the capacity of a programmer. Those days there
existed 1little idea of a logical address space, but only
a linear memory space was the subject of management. With
the progress of computer architecture,
"multi-programming'" operation started being used, but
only a linear memory space which was partitioned using a
base and a bound register was still given to each user.
As it was required to move programs in the assigned
location at the beginning of execution, the user space
always started from the fixed address (typically 0)
[GIB1], [COD1], [CRS1], [FOR1], [COM1l], [CRT1l]. It can be
considered that the distinction between a logical address
space and a physical address space started at that time.

Those days, however, the space was still
one-dimensional, and programmers were busy, to manage the
"memory space'", planning overlay structures. As the
result that multi-programming of high degree was required
by time sharing systems [WIL1], [BOB1l], technique of

4 INTRODUCT ION Chap. 1

paging and segmentation that realized virtual memory, a
memory space of large capacity "imaginarily', came into
use, and the distinction between a logical space and a
physical space became <clearer. But in this case, as the
name of virtual memory indicated, it was still a "memory
space" and it was doubtful whether it was a logical
address space on its original meaning. These were the
direct consequences of how to multiplex memory equipment
of actually existing capacity and how to make it
"imaginarily" larger «capacity, but these were scarcely
intended to <c¢reate a logical space for thinking and
solving problems,

3. Definition of an Address Space

An address space is the collection of programs and
data which one 'process" refers to, or as another
definition, the locus of execution point and the
collection of data which one process refers to. Here a
"process" means the substance which executes the
calculation to work out a problem or a job,

Above-mentioned data includes all the information in
the processor. A process is specified by the following
two items:

1. An address space (including all the activation
records except the following), and

2. The execution point (a specific item in the
activation records).

We will call the collection of information referred
to by a process under some conditions as a "working
space" of an address space. On the contrary, we can
consider about the <collection of all the information
which ""one process'" refers to. The <collection of

Chap. 1 INTRODUCTION 5

information referred to within an observation period is
called a "working set" [DNG3] of an address space.

4. Constituent Elements of an Address Space

In general, each information which constitutes an
address space is created separately (at a different time,
at a different place). The minimun unit of information
reference 1s a bit, but it is more often referred to in
the units of a nibble, a byte, a word, etc..

It is, however, unusual that information
constituting an address space is managed by such a unit
of reference, and wusually information 1is managed,
regarding a group of information as one thing. Hereafter,
we call this "group" a segment and give it a name [AND1].
The primary factor to constitute such a "group" is the
nature of information called attributes such as:

The producer or the owner and the creation date of

information,

Kind of information (procedure or data),

Access privileges of information, etc,

Attributes are all equal to every element in one segment.
This paper dosen't treat a problem about catching the
meanings of segments at all, A segment is registered and

managed in a directory in a file system as described
later.

CHAPTER 2
POINTS OF ISSUE FOR CONSTITUTION OF AN ADDRESS SPACE

A person, who is going to work out a problem and to
manage data wutilizing an information processing system,
does not want to obtain knowledge about the structure of
the computer system for his own pleasure. Illowever,
actually, the more complicated or specific the problem
becomes, the more knowledge about the computer system is
required in order to master it for his application. Even
though this may be unavoidable to a certain degree, it
should be natural that one ought to concentrate more
energy on considering an algorithm to solve his problem.

It has an immediate connection with reducing the
complexity of software and elevating the productivity of
software development. It depends upon the constitution of
a space for thinking and upon the expression form of an
algorithm whether or not a computer system would function
effectively to solve problems. When one is solving a
problem there might not exist an information space in a
definite format. At the same time it may be admitted that
a certain collection of data and a certain collection of
information which indicate an algorithm do exist in this
information space. When one 1is going to work out a
problem wusing a computer, an information space cannot
help taking clearer form. Even if one might not use a
computer, this is also the same in case of making others
work out the problem. Because it is required that the
problem and the algorithm are at least expressed by words

and a collection of data is also given in a clear form.

Chap. 2 FOR CONSTITUTION OF AN ADDRESS SPACE 7

When we are going to make a computer work out a problem,
we create a process in the machine and make it execute
the necessary operations, That is, a process is an agent
of a computer user for his activities in the computer
system, Therefore, it is more natural and suitable for
the way of thinking that the construction of an address
space which a process uses has the same structure as the
space of the "surface" world. Also as for the
representation of an algorithm, it is natural that the
nearest form to the model of consideration should be
desired. In this ideal case where these things are fully
satisfied, a person who uses such a computer can devote
himself to working out his problemn, without being
puzzled at all about the configuration of the computer.
Now, what does it mean that one makes the structure of
an address space in a computer system have the same
structure as the space of the "surface" world?

First, it has been pointed out that information 1is
characterized and managed as a '"group" called a segment.
Some databases are fixed while there are various cases
where their length or other attributes change with time.
Its capacity ranges from greatly big to extremely small.

The requirements which occur here are the followings
[RAP1], [COR1], [DNS1], [DNG2]:

1. Number of segments should not be restricted to a
small number,

2, The capacity of each segment should be able to range
from fairly being big to extremely being small and
should freely be able to vary in the course of a
computation, without being influenced by the memory
capacity.

Second, all the information are not composed at the
same time or at the same place. Thus, pertinent segments

8 POINTS OF ISSUE Chap. 2

which are separately composed constitute an address
space. How are these segments referred to? Generally, a
reference to a segment is made by name. Then, "linking"
is necessary so that an actual computing process may get
access to the object items referred to by name and
execute operations successfully. Here arise the following
questions:
Has any information already existed that
corresponds to the name by which one uses to refer

to it at the time of programming 7

Has it already existed, when one is actually
going to make reference?

Is that reference always uniquely and
statically defined?

All the answers to these questions are generally
"no". The demand arises here that one must provide a
"powerful linking function for flexible reference'". This
reference ought not to prevent a program from referring
to itself so long as it doesn't fall into an endless
loop. It 1is desirable that the realization of recursive
expression of algorithms should become directly possible
so as not to impcse needless restrictions on the logical
structure of a program,

Third, a call to a procedure that 1is one way
referring to another '"segment'" causes problems, Several
types of procedure calls which take completely different
forms are found 1in today's computer system. For this
reason the control logic of a computer system actually
takes a very complicated structure., This 1is not
desirable, and a systematic method is required for the
unification of the logic and the structure of programs,

Forth, in case of referring to others' information,

problems arise concerning about permission of reference,

Chap. 2 FOR CONSTITUTION OF AN ADDRESS SPACE 9

One must also solve problems to share information, and
moreover, one should be able to take advantage of it in a
natural way.

Fifth, problems arise how to support these
requirements physically and how to execute computing
processes.

Sixth, supports for data structures such as the
block structure or the list structure are also required.

Figure 2.1 shows these relations.

I COMPUTATION

REFERENCE
TO
INFORMATION

LINKING

operating FILE SYSTEM
Bysten SHARING AND
PROTECTION
y
d ADDRESS logical realization
FORMATION
\ / physical realization
v
kernel MEMORY AND
and PROCESS
hardware MULTIPLEXING

Figure 2.1 Constitution of an address space

In the actual information processing system, these
requirements cannot be enough filled up. These days, one

10 POINTS OF ISSUE Chap. 2

wastes his energy about the format and the location of
information, according to the system configuration, to
solve problems by a computer, and one is obliged to
thread through terribly complicated sequences for the
protection of information.
The followings are examples influenced by the systen
configuration.
Examples influenced by the memory size
A programmer must control the overlay structure of
his program.
A programmer must control the overlay structure of
his database.
These make a user aware of the working set for
economizing the physical storage space.
Examples influenced by the input/output system
The input/output access methods of a database
(sequential, random, 1index sequential, etc)
Examples influenced by the storage location of
information
Those which have relation to the input/output
system:
Access of a file
Those which have relation to the working set:
Restriction on the access ordering of array
elements
Examples influenced by the protection mechanism
A supervisor call:
It is carried out by a SVC instruction, which
is much different in its form from the usual
procedure call.
Interrupts and faults:
They are calls to the handling procedures in
the primary meaning, but they are nmuch

Chap. 2 FOR CONSTITUTION OF AN ADDRESS SPACE 11

different in its form from the usual procedure

call,
These make the configuration of a computer system more
complicated and the understanding more difficult. These
problems are important not only for an ordinary user but
also for those participating in system programming, and
they must be improved at any cost to define algorithms
clearly and to raise the productivity and the
reliability of software.

To sum wup, it is required to constitute an address
space so as to make the configuration or the logical
structure of programs independent from the followings:

A. System configuration, or type of machine

B. Storage location of information (without distinction
of main memory or secondary storage)

C. Protection mechanism (SVC, interrupt, or fault)

In another word, addressing which has no relation to
the physical location of information should be possible,
and perfect yet flexible control should be enforced to
information access. And information should be shared in
its original form without making any copy for the sake of
consistency.

In addition to the above, the reliability and the
integrity of software system are a serious problem. In
order to improve the integrity and the reliability of
software system, it is profitable;

1. To reduce the size of each module,

2. To organize the system in a well structured manner,
to unify the structure of procedures - call and
return sequences -,

3. To confine damages due to the unnecessary access
privileges as small as possible, and to insulate the
parts that relate to the protection control from

12 POINTS OF ISSUE Chap. 2

other parts.

It is often experienced that there is a threshold
value of program size above which tremendous time and
efforts are needed in accelerating way to complete them
due to the accelerated occurence of bugs. Eventually, few
big software systems are bug-free.

It is fairly effective to reduce the size of each
module for the «clarification of the functions and the
logics of each module and for the well structured
constitution of the system.

Usually, control programs in an operating system are
executed in the privileged state, and even a slight error
in a control program often results in a fatal condition.
Thus, it 1is necessary wseparate and confine the parts
which relate to the protection control from other parts,
and to give the 1least privileges for the execution of
contrel programs in an operating system., So far, little
attention has been paid to this point of respect, that
is, almost all the parts of an operating system have been
executed in the privileged state.

It might be expressed that many not well structured
programs with possible fatal bugs are currently run with
surplus access privileges with the valor of ignorance.

13

CHAPTER 3
REFERENCE OF INFORMATION

Information is managed regarding a segment as a
unit as stated before. Reference to information 1is
carried out by designating one item 1in a segment.
Therefore, two elements are necessary to identify
information; a name of a segment, and a name or a
location of an item within a segment. Segments are
registered as the elements of file systems. Here, let us
suppose that the name of a segment 1identifies one
segment uniquely in the file system. (In fact, in order
to identify one segment uniquely in the file system, it
is necessary to present a path-name. Nevertheless, it is
usually very lengthy, and the way which does not require
it 1s wanted. This problem will be treated later.) The
constitution of the 1items which 1locate the required
information within a segment is determined by the logical
structure of this segment, What has an effect on the
logical structure of a segment is a problem about lexical
levels derived from the block structure [RAN1]. The
detailed argument is bypassed for further discussion, and
for the present we wuse an identifier or the value of
displacement to denote the location of the required item
within a segment,

1. Linking of Symbolic References

To get access to information 1is an essential
function in information processing. Usually information

14 REFERENCE OF INFORMATION Chap. 3

is referred to by a symbol. When the symbol is defined,
we can refer to the information by wusing the value
assigned to the symbol. We call it "linking" to make the
reference possible, searching or deciding the va.ue of a
symbol., If a reference is made to the information within
a segment, linking 1is carried out when this segment is
composed, But, it 1is seldom that we constitute all
procedures and databases required in one computation as
one segment at a time.

We wusually proceed our work with library procedures
or public databases which are composed by other persons
in combination with segments of our own. More remarkable
example 1is that there might be a case of doing works
cooperatively with other persons. In these cases,
"external" references from one segment to other segments
are often made, In order to realize "external" references
and to execute processing, it is necessary

1. to identify the referred segment, and
2. to "link" the referring segment with the target
object.
Dynamic characters of an address space are determined by
the way of "1linking".

2. Time of Linking

Linking may be accomplished at one of the following
time:

1. The time of composing a program,

2, The time of language processing (cempiling,
assembling),

3. The time of linkage editing, and

4. The time of execution,
At the time of composing a program references within

Chap. 3 REFERENCE OF INFORMATION 15

this program are logically linked. Moreover, in the early
days of electronic computer, programmers performed
linking of external references as well as memory
allocation, and even today they are still doing the same
thing in special cases. Symbolic references within a
segment are resolved at the time of language processing.
There even exist such systems that external references
are 1linked at the time of language processing, handling
related programs at a time.

It is the most widely wused way that resolves
external references at the time of linkage editing. All
the symbolic references are, indeed, fixed before
starting a program.

Linking at the time of execution is performed in the
case of running a program interpretively or performing
dynamic linking.

In order to link references at the time of composing
a program, we must make '"'determination' at the earliest
time. Moreover, as the case may be, a programmer had
frequently to do memory allocation as shown in the next
example,

SIN EQU 400

CALL SIN

*

SIN ORG 400

In systems which 1link references at the time of
language processing, it is impossible to handle programs

16 REFERENCE OF INFORMATION Chap. 3

which are written in different programming languages.,
Such systems do not exist except mini-computers equipped
only with an assembler, or systems of early days, or
systems for education or training such as WATFOR.

In the 1linkage editing method it is necessary to
link '"statically" all the external references. As it is
not possible to determine in this stage whether these
references are really made or not, both processing time
and memory capacity are apt to be wasted. Actually, in a
big software system such as, for example, a compiler,
there are rather more program modules which are used
only under the most particular conditions.

In addition to the above, it is necessary to link
previously all the external references to grandchild
segments, great-grandchild segments, ... , etc. which
have no direct connection with a programmer and about
which he doesn't know whether or not they are actually
made, the great effort for this is indeed discouraging.

Taking the method of 1linking at the time when a
reference is actually made, neither processing time nor
memory capacity are wasted. One of the problems is the
trade off between the overhead making links dynamically
at the time of references and the loss of processing time
and memory space of static linking. But this problem is
of little importance.

In research and development works, many cases arise
in which it is impossible to make a priori determination,
and it 1is frequently required to set forward works
"heuristically'". Isn't this rather an essential character
of research and development? If it is so, there should
exist uncomputable problems in the <case of 1linking
references '"previously'". For example:

READ SUB, ARG

Chap. 3 REFERENCE OF INFORMATION 17

ANS := SUB(ARG)

.

In this example one intends to read in a function name
and an argument and to compute the function value, but it
is 1impossible to determine 'previously" what function
would be required., For that reason, there exist such
kinds of problems as it is essentially required to link
at the very instance of the reference. To solve these
problems, a method is wused which executes a program
interpretively. A representative one is the LISP system,
It is not, however, adequate to represent all the
algorithms in LISP. A big software system is more
frequently written 1in other languages such as PL/I than
in LISP. Moreover, interpretive execution of programs is
extremely slow and inefficient. Therefore, the static
method which establishes 1links in advance has been
adopted.

If one forces a heuristic approach in such a system,
it will become an extremely inefficient system, For
example, one often carries forward his work in changing
his algorithm or parameters 1little by little. Many of
such routines are often only of the order of ten
statements, It 1is the great sacrifice that one must try
to link statically the whole programs again, even if only
one such small routine is necessary to be modified.

Alternatively, in some systems one selects handling
routines by console commands interactively and processes
data. But in this case a man always ought to monitor the
computation,

Here, the requirement of dynamic linking arises. One

of the advantages which one gains from dynamic linking is

18 REFERENCE OF INFORMATION Chap. 3

that one can still use a system even in the midst of its
modification. The number of modules that need pre-linking
is 1limited, and the modules which constitute nost user
interfaces are able to be supported in the environment of
dynamic 1linking. Therefore, it 1is not necessary to
interrupt the operation of the system for the great part
of system modifications, and a new module becomes
effective at once if one creates or updates a module. The
system of dynamic 1linking doesn't prevent us from
pre-linking by the linkage -editing method in the case
that higher execution speed which "static'" 1linking
attains is required,.

3. Scope of Linking

In the above argument , we didn't give any
consideration about the storage place of information. If
one is able to get off giving any consideration about the
storage place of information, the addressing that has no
relation to the storage place of informatiorn will be
realized. Of course, the storage place cf information is
not determined statically, and one cannot always insure
even its existence. Here, we will contrive a method to
"link" external references in the scope of all the
on-line information within a computer system [COR1]. This
will unify the wusual memory management and the usual
information management and constitute more powerfull,
flexible and well suited memory management for our
purpose.

The wusual information management is called a file
system and takes the responsibility for the management
of, and the access to, files in secondary storage. Access
to a file 1in secondary storage is carried out by the

sl

Chap. 3 REFERENCE OF INFORMATION 19

function of IOCS which is called the access method, and a
programmer has to use input/output statements in his
program, This access method depends upon each system and
moreover, programring sometimes depends upon devices in
the system too, so, in addition to make programming more
difficult, it «comes to result 1in programming that is
sensitive to the system configuration.

The new addressing method which has no relation to
the physical location of information expands memory space
which directly becomes the object of CPU operation to
secondary storage, and yeilds a new powerful computer
wtility.

20

CHAPTER 4
ALGORITHMS OF LINKING

In this chapter we are going to study linking
algorithms, comparing the methods for:

Pre-linking system,

Segmentation system, and

Dynamic linking system,

1. Pre-Linking Method

The pre-linking method is the most prevailing and,
in fact, almost the sole one used in current computer
systems, In linkage wedit programs which link external
references prior to the execution of a program, linking
is accomplished in the following steps:

1. To allocate the memory space to segments,

2. To relocate segments so as to be able to execute
correctly in its place.

3. To determine the values of external symbols
(registering them in a symbol table), and to modify
programs and data so as to be able to refer to
external places correctly (linking).

To accomplish this, it 1is necessary to search for a
segment which defines the external symbol referred to in
the file system, and determine the value of the symbol
within the program being linkage-edited through the
process of Step 1., External symbols are registered in an
external symbol table for linking. There are two kinds of
external symbols:

Chap. 4 ALGORITHMS OF LINKING 21

Segment name and entry name
4, To produce a program in executable form.
This program may be placed directly or may be placed

using a separate loader in the main memory.
2. Linking under the Environment of Segmentation

Linking under the environment of segmentation
[DNS1], [MCC1l] requires the following steps corresponding
to each step of Section 1:

1. Regarding allocation of the physical memory area as

a separate problem, allocation in this case is to

allocate a segment number to a segment. The

algorithm 1is simple enough to assign merely the
lowest unused number. But it 1s necessary to
allocate the identical number to the same segment,
because if it is treated as a separate segment,
A. a problem arises in the consistency of
information, and
B. sometimes one segment might be placed in the
main memory more than once.
For this reason, names of segments which have already
been "known' to a process are registered in the external
symbol table. The segment number is used as an index to
the segment map, <called the descriptor segment, by the
address formation mechanism of the CPU. The discussion of
the descriptor segment is left below.
2. Relocation is not needed.
This is also one of the distinctive characters of
segmentation,
3. It is not necessary to determine the location of an
external symbol within the program that is composed
by the method of Section 1, but to determine the

22 ALGORITHMS OF LINKING Chap. 4

location only within a segment.

Therefore, it is not necessary to make an external symbol
table in order to include all the names of external
segments as in the case of Section 1, It is erough only
to use the global external symbol definition table of the
object segment as it 1is.

4. Segments in a program in the executable form where
linking has been completed are placed dynamically in
the main memory only when they are required (dynamic
loading).

The information communion with other processes 1is
possible in this method. At the time a segment is
referred to the process must ensure whether or not this
segment has already been incore from the active segment
table., If it has already been active, all the process has
to do 1s to set the segment descriptor table of this
process with the location of the segment found in the
active segment table.

A procedure segment must be pure, in this case, and
must be 1linked by a link placed in an impure segment as
the segment number is generally different for each
process. The data segment for this purpose is composed at
the linking time (see Figure 4.1),

3. Algorithm of Dynamic Linking

The algorithm of dynamic 1linking [VSY1l] is as
follows:

1, The process assigns a segment number if it is an
unknown segment, looking wup in the known segment
table of the process.

2. Relocation 1is not required just as in the case of

Section 2.

Chap. 4 ALGORITHMS OF LINKING 23

link entry

instructio_n 7 N I

/[J-
*

‘\\\\ltarget
* Indirect

addressing

LINKAGE

SEGMENT
PROCEDURE TARGET
SEGMENT SEGMENT

Figure 4.1 Linking to a target. A pure
procedure refers to an external segment via a
linking pointer (link) placed 1in a data
segment, Address formation is undertaken by
indirect addressing or by base register
modification. In <case that base register
address modification 1s 1incorporated, the
pointer 1in a 1link should be loaded to the
base register prior to the operation.

3, The necessary things for linking are:
A, The external symbol table (This is the same as
Section 2.)
B. The place to hold links.
Links should be made in data segments because procedure
segments must be pure. In dynamic linking, a link is made
when the first reference is done. One can also give an
indication using a link whether it is the first reference
or not when the process makes a reference with this 1link.
Links which a procedure uses and their locations within
this procedure are determined in its language translation
stage (see Figure 4.2).
Therefore, when a procedure is referred to (called)
for the first time, what the process must do is only to

24 ALGORITHMS OF LINKING Chap. 4

PROC
linkage section | c(1p)
of PROC 'L
1p T
1 k |*
op P I
pointer ERmLE
"TARGET" .3 to string
data flag
"ENTRY"
PROCEDURE LINKAGE
SEGMENT SECMENT

Figure 4.2 Reference to a linkage data. An
unsnapped 1link indicates that it has not yet
been linked, and gives the information which
1s required to identify the target and to
complete linking.

copy the pertinent 1links (linkage section) into a data
segment which are used in the procedure and then to link
when the procedure is actually executed and an unsnapped
link is encountered.

The point of difference between Section 2 and
Section 3 is:
In the method of Section 3 a process copies linkage
sections, and makes links dynamically while links in the
method of Section 2 are made before the program is
started,

4. A segment 1is placed dynamically in the main memory
only if it is needed to do so after the link to this
segment is snapped and this segment is referred to
just as in the case of Section 2.

25

CHAPTER 5
MECHANISM OF DYNAMIC LINKING

This chapter discusses the mechanism for dynamic
linking. The following functions are necessary for
dynamic linking [BEN1], [ORG1], [MSP1], [SIM1], [DET1]:

1. To make and hold a link,

2. To find out that this link has not been made yet,
and

3. To point to a symbolic name.

1. and 2. must be included in the data which hardware
circuitry wuses to form the operand address in course of
instruction execution. 3. is used in the processing of a
linkage fault which will be detected when a referred link
has not been snapped yet, and it 1is referred to by
software.

When 1is it necessary to find out whether or not a
link has been snapped? It should be indicated in a link
itself whether or not this 1link has been snapped.
Detection of an unsnapped link is possible while hardware
refers to a link and forms address (see Figure 5.1).

A. The earliest time is when a link is referred to. It
requires the hardware function which immediately
occurs a fault condition according to the contents
of a link.

B. The 1latest time is when information of the next
level to the 1link 1is referred to. It will be
detected, for example, as an 'exception of the
segment number" by the hardware of segmentation.

A. requires a detecting function of the segmentation or

26 MECHANISM OF DYNAMIC LINKING Chap. 5

instruction 1link
NVWMW fault

op|lp| k | * p—————>1seg | ent |flg

PROCEDURE LINKAGE
SEGMENT SEGMENT

(a) The eariest time (when a link is referred to),

instruction link segment

deseriptor fault
op|lp| k |* Pseg | ent }—————p{ fault cond.
PROCEDURE LINKAGE DESCRIPTOR
SEGMENT SEGMENT SEGMENT

(b) The latest time (when a segment descriptor is referred to).

Figure 5.1 Detection of an unsnapped link. An
unsnapped link may be detected in several ways
according to the facilities in address mapping
mechanism,

paging mechanism. In case of B. it is possible to be
included as a small expansion of the segmentation or
paging hardware when either has already been provided
with,

Further, even if it is not obvious at the time of
linking whether the value set to a register will be used
as a pointer or merely as an operand for future use, it
doesn't cause inconvenience and doesn't need to provide a
special mechanism.

Dynamic 1linking is not possible at all in case that
there are no mechanisms for segmentation, paging, or
address modification by base registers, etc..

Here is a comment about the usage of instructions,
Access to external segments must be made through a base
register. It is not admitted to place a description of

Chap. 5 MECHANISM OF DYNAMIC LINKING 27

"'segment number, displacement' in the operand address part
of an instruction directly. This is because:
A, A procedure becomes impure, and
B. There is no room for a pointer to the 1link
definition in an instruction,

1. Access to a Link

Access to a 1link 1is carried out by the following
steps (refer to Figure 5.1):

1. The location of a link in the linkage section for
one procedure segment has been determined at the
compile time.

2. The 1location of a linkage section within a linkage
segment, which 1is the database gathering linkage
sections of one process, cannot be determined
beforehand. This 1is because one segment is not
always assigned the same segment number as it is
given dynamically.

3. The 1location of a linkage section within a linkage
segment is determined when the original template of
this linkage section is copied as the initial value.

4. The original template of a linkage section of a
segment 1is copied into a linkage segment when this
segment is first referred to, that is, when a
segment number is assigned to this segment,

5. Tabulating the 1location of a linkage section with
the segment number, it 1is very easy to get the
pointer to the linkage section (lp) when a procedure
segment is entered.

6. The process can refer to the necessary link, using
the pointer established in step 5. and the offset
established at the compile time.

28 MECHANISM OF DYNAMIC LINKING Chap. 5

In a computer which has no facility for indirect
addressing, a process must once establish a link in a
pointer register and then gain access to the target
segment, By doing so, however, the execution speed to
refer to the target, at which the pointer register
points, or to other targets, which have different offset
values at most, is faster than that of indirect

addressing (see Figure 5.2).

UNSNAPPED LINK

special | link offset pointer to link
seg no. | no. definition

SNAPPED LINK

segment | displacement pointer to link
no. definition

linkage fault

LDB{bp[1p| k ko

op |bp m “‘ﬁ; unsnapped
link

"TARGET"

"ENTR "

PROCEDURE LINKAGFE

SEGMENT SEGMENT

Figure 5.2 Base register and linkage data in
case that there is no indirect addressing
function. This figure shows a method which may
be employed in a system which has no indirect
addressing function,

Chap. 5 MECHANISM OF DYNAMIC LINKING 29

A program can be executed in the same speed as in
the 1linking method which fills up address (this type of
linking is the fastest though needs more linking time and
makes procedures impure) in case that establishment of a
pointer register is finished at a stretch, As a process
can modify the value of the pointer by offsets in
instructions or by index registers, it needs less links
in comparison with an indirect addressing method which
doesn't have this facility.

In case of an indirect addressing method, a process
needs to make different links for every different value
of offsets,

2, Algorithm of the Linker

When a linkage fault occurs, the linker is '"called".

The 1linker gets the target segment name from the
link definition, compounds a path-name applying the
search rules of the faulting ring, and requires the file
system in the kernel to search for the target segment.

If the target segment is found (if necessary, the
segment is made active, causing a segment fault), the
linker begins to search for the entry name,

As soon as the required link in the faulting ring
has been established, the linker's work is finished and
the program execution resumes again,

Let's consider the case that a target segment is
going to be executed by a call. In this case, the process
must get the linkage pointer at first so as to be able to
get access to the linkage section, which is the static
storage area for this procedure.

The 1location of the 1linkage section within the
linkage segment (provided in each ring independently) is

30 MECHANISM OF DYNAMIC LINKING Chap. 5

instruction
op 1p Kk & 1. REFER S unsnapped link - 2. LINKAGE FAULT

external symbol
definition and
link definition

LINKAGE SEGMENT

n 1L
r’- TARCET snapped link
7. REFER
seg m
o " 6. MAKE AND SET
ENTRY LINK
PROCEDURE SEGMENT
3. SEARCH RULE R i
"XXX >IKEDA>TARGET" \) : - ¥
F::::::::::::> global symbol
4. DIRECTORY definition
SEARCH 5. SEARCH
ap FOR
ENTRY (T i
NAME ENTRY" = m

FILE SYSTEM

TARGET SEGMFNT

Figure 5.3 Mechanism of dynamic linking

determined from the linkage offset table of the executing
ring wusing the segment number as the index. In case that
the 1linkage section has not been copied yet, the initial
value 1is returned as the value of the linkage pointer,
which causes a fault when the process is going to refer

Chap., 5§ MECHANISM OF DYNAMIC LINKING 31

to the 1linkage section using this pointer [JAN1]. When
such a fault occurs, the process coples the template of
the linkage section for the first time. To copy a linkage
section is not essentially the business of the linker
and it 1is better to separate 1ts management in order to
make the logic of the linker clearer (see Figure 5.4),.

In a system incorporating dynamic linking it is able
to detect that some segments are referred to at the first
time or every time, These functions can be used to
account the system module usage, and are called a first
reference trap and a reference trap respectively. These
reference traps can be implemented by preparing trap
flags in a link which is used to refer to a segment, and
links which are used to refer to the corresponding trap
handler,

The information protection affects the processing of

the linker, and this problem 1is left to the later
chapter.

3. Comparison of Object Forms

The following table compares the object form for
dynamic linking with the one for static linking.

5 MECHANISM OF DYNAMIC LINKING Chap.
CALLER'S
CALL|1p| k |* CALLER's LINKAGE SEC.
’ T
k
link I
CALLER PROCEDURE o iy
CALLED'S
|
ENTRY CALLE? & o _LINKAGE SEC, ¥
entry sequence P n
(set 1p)
1. STATIC i
seg ent
e 1 = 24 STORACE :
A FAULT
template of R HGER
linkage
section
4. REFER TO
TARGET
CALLED PROCEDURE LINKAGF. SEGMFNT
CALLER'S 1p
3. SET =>» CALLED'S 1p
TARGET SEGMENT LINKAGE OFFSET
TABLE
Figure 5.4 Call to a segment, If the linkage section
of the called procedure has not been copied in the
linkage segment yet, a (no-)static storage fault
occurs in the course of the execution of the called
procedure, Once the 1linkage section is copied, the

called procedure is executed in the usual manner,

5

Chap. 5

MECHANISM OF DYNAMIC

LINKING

dynamic linking

pre-linking

pre-linking

(before) (after)
PURE PROCEDURE PURE TEXT PROCEDURE BODY
LINKAGE SECTION IMPURE TEXT

(template for
links and static
variables)

- - -

STACK SEGMENT
(automatic
variables)

GLOBAL SYMBOL
DICTIONARY

GLOBAL SYMBOL
DICTIONARY

EXTERNAL SYMBOL

EXTERNAL SYMBOL

DICTIONARY DICTIONARY
(segment names,

entry names)

LINK DEFINITION RELOCATING
(type, reference AND LINKING
traps) DIRECTORY

- wm wm mm e e e = e -

SYMBOL TABLE
FOR DEBUGGING

Table 5.1 Comparison of object forms.

33

34

CHAPTER 6
SHARING AND PROTECTION OF INFORMATION

Sharing and protection of information is the area
where high degree of interest is paid in modern computer
systems.

Significance of information sharing in a computer
utility is listed in the followings:

Utilization of common databases and procedures

Execution of one work by more than one process

Cooperative operation
Effective utilization of the space

If more than one process refer to the same segment
at the same time to wutilize common databases or
procedures, the following problems arise [COR1l], [GRA1l],
[DAT1]:

Consistency of information

Protection of information

Access privileges of information
In case that one cooperative work is executed by more
than one process, the consistency of information is an
important problem. That 1is, modification to common
information must be effective to other processes at the
instance when one process modifies such information. This
means that it 1is necessary for each process to use the
"original" for its processing and that a process should
not have its own '"copy" of information. In most
multi-programming operating systems in present computers,
the same program, typically a language processor such as
FORTRAN compiler, is often placed in the main memory

Chap. 6 SHARING AND PROTECTION OF INFORMATION 35

twice or more at the same time and executed concurrently,
and run-time library routines are also often copied in
each executable binary program at the linkage-edit time.
Routines of the elementary functions are ''copled" in most
programs of numerical analysis. Such copies, indeed,
waste the space both in the secondary storage and the
main memory as well as processing time.

Then, in order to share information effectively and
efficiently, individual copies should not be made but it
is required to constitute such a mechanism as to share
and refer to the "original" itself. Next problem to be
duly considered is information protection. Reference and
utilization of information should not be admitted
unconditionally. Among information which is placed in a
computer utility there may exist such sensitive
information that belongs to rivals in business or such
information that 1is opened to the public with charge.
Therefore, the protection mechanism of information that
can control flexibly references of information as
occasion demands becomes indispensable.

The protection of information is also required in
order to ensure the reliability and the safety of a
computer system as well as the privacy issues. That is,
in the environment of a computer utility, the protection
of information 1is necessary in order to confine the
propagation of damage caused by a software, hardware, or
operation error even in a system used by one person in
addition to a safe plan for privacy or interests,

In a shared system, the protection of information is
mandatory in order to keep fair operation and maintain
the reliability of the system,

36

SHARING AND PROTECTION OF INFORMATION Chap. 6

1. Policies of the Information Protection

The

basic policies of the information protection

[SAL3] are the followings:

Fail

Need

safe:

Information should not be exposed to risks even
by a defect of the protection mechanism. Fail
safe is a basic policy of a safety device or a
safety mechanism,

to know:

Access is permitted only to information which
is needed., It is the safety side that access to
information which is not required is forbidden.
And it is the safety side to confine the scope
of circulation of information as small as
possible,

The lowest level:

Basically, it 1is the part of the lowest
reliability of the protection mechanism that
determines the reliability and safety of a
system in the meaning of the information
protection. For example, the reliability of
data which 1is acquired from the data having
various levels of reliability cannot become
higher than the lowest.

The reliability of the result which is computed by the
data of reliability i cannot become higher than i.

Therefore, it may be admitted to judge things whose
reliability is i by the data of reliability i, but not to
judge things of higher reliability than i.

2. Mechanism of Information Protection

fh

th

|03t

Chap. 6 SHARING AND PROTECTION OF INFORMATION 57

The purpose of the mechanism of information
protection . is to fulfill the requirement mentioned above
and to provide a number of wusers with flexible, but
controlled, access to shared information. The design
issues [SCH2], [SAL3], |[NEE1l] of protection mechanism
are:

Functional capability,

Economy,

Simplicity, and

Programming generality.

The access control mechanism should have the
functional capability to meet the requirement of
information protection.

Economy 1is the well-known principle which applies
any aspect of a system, Cost of protection should be
proportional to the functional capability actually used.
It is needed that users can easily and correctly apply
the protection mechanism. Otherwise, the security of his
information would be badly impaired from a misuse of the
protection mechanism. In another word, the protection
mechanism should be simple so that it may be completely
understood, and users may have a high degree of
confidence that it 1is safe. With regard to protection
mechanism, lack of simplicity often implies lack of
security, Thus, simplicity is essential both for safety
and economy,

2,1 Conventional Protection Mechanisms

The wusual protection mechanism is composed of keys
and locks of memory area, a mode switch and a limit
register. (Privileged instructions can only be executed
in the supervisory mode,) This policy is of "all or
nothing". All rights are given if the execution mode once

38 SHARING AND PROTECTION OF INFORMATION Chap. 6

becomes the supervisory mode, and it is too simple to be
suitable for the environment of a computer utility.
Presentation of a pass word, etc., 1is sometimes
adopted as another method. The methods that admit access
to information regardless of a wuser and an execution
state cannot accomplish the necessary protection well,
There 1is a requirement that one wants to control
access differently according to the execution state or
the wuser or the combination of both even if the same

information is referred to.

2,2 Domain of Protection

The scope where access rights [DAL1] for
information are equal to is called a domain. That 185 @
domain is characterized by a set of access rights, which
is the capabilities to refer to the target segments,
Elementary access rights are defined for each
information. In this case access rights imply the
capabilities which are required to refer to the target
segment. While a process executes in one domain, it can
refer to the information which can be referred to in this
domain, Protection of information can be accomplished by
organizing domains according to the kinds of access
rights and by executing a process in a proper domain
according to the requirements., The conditions that
determine a domain in which a process executes are the
execution status of the past and the present of this
process. What must be taken into account to constitute a
protection mechanism are:

1. Constitution of domains and
2. A mechanism of the domain switching,

It is shown above that a domain is determined by a set of
access rights. Followings are the elementary access

Chap. 6 SHARING AND PROTECTION OF INFORMATION 39

rights given to processes for each information:
read, write, execute, append, directory search,
directory change, directory append,
sharable, exclusive (If there exist concurrent
processes,)
A process can have the rights to get access to
information only when its owner gives this process the
necessary access rights, In order that a process may
actually refer to information, the necessary access
rights must be admitted and, moreover, the process must
enter the domain in which these access rights are
effective. In another word, it is required that a process
can use the access rights effectively.

3. Constitution of Domains

A domain is specified by a set of access rights, If
one selects a set of access rights at one's option (but
under only conditions which are not contradictory to
themselves), one can constitute a general domain. But in
this case, it 1is necessary to manage dynamically the
activation records about return points, as stated
earlier, These records are the ones to which a process
cannot refer directly in the present domain, and it is
desirable that hardware manages these pieces of
information directly by executing return instructions,
For this purpose, a special hardware function is
required, In case of simulating the return action by
software, as a matter of course, the process must enter
into the domain which is prepared for this purpose and
manage the return of control.

We should endeavour to make so simple present day
protection mechanism as stated earlier more flexible and

40 SHARING AND PROTECTION OF INFORMATION Chap. 6

more available., Most protection mechanisms which are used
in present day computers have two domains whose access
rights are prescribed by the following two (see Figure
o -

DOMAIN OF
SUPERVISOR
MODE

N
FAULT NTERRUPT

DOMAIN OF
PROBLEM MODE

Figure 6.1 Protection domains of conventional
protection mechanism,

Limited read, write, and execute,
2., Unlimited read, write, and execute,
As access rights of 1, are regarded as a subset of 2., it
is considered that domain 2., is included in domain 1.,. If
one generalizes such an inclusion relation (an ordering
relation) a domain is prescribed by access rights which
have the inclusion relation. If one constitutes domains
in this way, concentric ring domains are constituted.
Protection wusing such ring domains is called the ring
protection mechanism., In the ring protection mechanism,
information which can be gained access to only in an

inner domain is protected from access in outer domains.

Chap. 6 SHARING AND PROTECTION OF INFORMATION 41

It seems to have scarcely been discussed so far about a
feature of constituting the ring protection mechanism as

the generalization of the inclusion relation (see Figure
b.20.

Figure 6.2 Constitution of ring domains.

4, Kinds of Access Rights

This section discusses the kinds of access rights
and their effective combinations. It is supposed that a
process 1is executing in a domain which is capable enough
to employ its access rights, Here segments are classified
either into directory segments or into non-directory
segments from the viewpoint of access rights,

4.1 Access Rights for Usual Segments
The elementary access rights for usual segments are:
read, write, execute and restricted write (append).

42 SHARING AND PROTECTION OF INFORMATION Chap. 6

And these are combined with other attributes of the
shared and the exclusive. The effective combinations of
the access rights are listed below. Although some of them
seem invalid or nonsense, they are reasonable and
meaningful in different domains for different processes
in the system.

read-only (database)

write-only (test paper)

read and write (usual data segment)

append-only (vote, sending message)

execute-only (pure procedure)

read and execute (pure procedure which is open to

the public)

read, write and execute (special impure procedure)
Above rights combined with the shared and the exclusive
attributes yield the following combinations:

shared read-only (database)

exclusive read-only (common database which is likely

to be changed but should not while a process is

using it.)

shared write-only (logging file)

exclusive write-only, etc.

4.2 Access Rights for Directory Segments

The followings are the elementary access rights for
directory segments:

To create a directory,

To create a directory entry,

To change a directory entry, and

To search for a directory entry.

The hierarchical structure of file system affects
every feature of management and control of information.
This structure is mainly for the clustering of

Chap. 6 SHARING AND PROTECTION OF INFORMATION 43

information. This structure also affects the management
of access control and physical storage space.

Speaking of access control, to be able to search for
a directory implies to be able to search for the parent
directory which holds the directory entry of the said
directory, and so on. (See the later section of file
system for the detailed discussion on the structure of
file system,) This relation is recursive until the root
directory which 1is the top directory in the file system
is reached. llence, in order to get access to a segment,
it 1is required that all the directories on the path from
the root directory to the target directory are accessible
and the required access rights are given with regard to
this segment,

A 1list of access rights for the wusers who are
admitted to refer to a segment is prepared for a segment,
Access rights are a kind of attributes of a segment, and
are placed and managed in the directory entry just as the
other attributes, If one could change a list of access
rights in a directory entry, whose segment he is not
allowed to gain access to, so that he may get access to
this segment, and if thereafter he changed the contents
of that segment, the security of the file system would be
nullified. To avoid such sneak paths the write access to
the target segment must be confirmed before the directory
entry of this segment is changed. If one has no access
rights to a segment, it is the safety side that even the
existence of that segment should not be informed,

Therefore, the contents of the directory entries to
whose segments he has no access rights should not be
informed including the existence of them even if a user
has the access rights to search in that directory,.

Thus, access to a directory is restricted by the

44 SHARING AND PROTECTION OF INFORMATION Chap. 6

access rights of the segments registered in this
directory. These relations are summed up as follows:
Directory search:
The directory search access and any but "none"
access rights to the target segment are needed.
Directory change:
The directory change access and write access
rights to the target segment are neecded.
Registering a segment:
Only the register (append) access rights are
needed. No further access rights are needed
because he possesses the object segment of his
own,
In a hierarchical file system a unified control over the
segments by the manager of the upper level could be
enforced systematically. This control includes such
functions as the file space management and the access
right management. For example, if access rights to a
directory for a wusual wuser are confined only to the
directory search and register access, he can create and
register new segments but cannot delete his own segments,
because he 1is not allowed to change his directory. This
is the same situation as employers and employees in a
factory. Employees produce their products but are never
permitted to destroy products, while employers have all
rights to their products.

5. Contention of Access - Shared or Exclusive -

When shared-write access is permitted for some data
segments, it must be carefully controlled so that the
consistency of information might not be impaired., This
section discusses which data segments need to be paid

Chap. © SHARING AND PROTECTION OF INFORMATION 45
attention,

5.1 Process Data Segments

Basically, there 1is no contention of access to
processe's own data segments except the one between
incremental dump operation of the file salvager and
update action of the process. However, if the system
enforces such logging rules that the record of the update
time in a directory entry is set "after" update action
and the record of the dump time is set "before'" dump
action, it is ensured that incremental dump will be taken
once more again and this cycle continues until this data
segment becomes quiescent, that 1is, there would be a
chance that no update action is taken while dump action
is going on.

5.2 System Data Segments (Common Data Segments)

Access contention is caused to the system data
segments which are shared among processes. Appropriate
contention control is needed for the data segments for
which shared write access is permitted. This contention
control mechanism consists of a lock or a semaphore, for
which hardware circuitry which controls access
exclusively is needed. When a process wants to get access
to such a data segment, it 1is required to lock this
segment, If it is locked successfully, the process can
operate on this segment, If locking fails, the process
should wait to connect this resource, connecting a wait
control block to this segment,

6. Mechanism of the Domain Switching

46 SHARING AND PROTECTION OF INFORMATION Chap. 6

The domain switching, that is, entering a different
domain implies that access rights change - new rights
which have not been permitted until then are given, or
rights which have been permitted are lost -, hence the
domain switching should be controlled with enough care.

The domain switching is carried out when control is
transferred to a procedure which requires to be executed
in a different domain.

Eate CALL gate
DOMAIN =" DOMAIN

b
A RETURN B

Figure 6.3 Switching of domains.

Clearly, the domain switching should be confined
only under the limited conditions. Otherwise, effective
control becomes difficult. Things which can impose
conditions when the domain switching occurs are as the
followings:

Entry point,

Exit,

Return point (entrance to the original domain),

Instruction to transfer control,

Pointer, and

Argument.

Then, what conditions can be imposed for each item?

Entry point:

The significance of restricting an entrance (gate)

Chap. 6 SHARING AND PROTECTION OF INFORMATION 47

is self-evident. A process can enter the domain only
at the entrance for which it has been declared
previously that it may be used at the time of the
domain switching. Also it is possible to set limits
to the state of a process which can wuse one
entrance. Or it 1is possible to require to show a
cryptograph at the time of entrance or to execute a
particular entry sequence,

Exit:
It 1is not practical to set limits to the exit from
where a process goes out to another domain. Rather,
it is more practical to set limits to the place
where a process enters a domain as mentioned above.
But in case of a return for a call to a procedure,
an exit 1is a return point which will be stated
below,

Return point:
A return point is also one of the entrances to one
domain, The difference between an entrance and a
return point is that an entrance is declared
statically at the time of composing a program while
a return point is declared dynamically at the time
of a call to a procedure. Moreover, in order to
manage return points dynamically, a stack is needed
if one doesn't set any 1limit to a call to a
procedure including recursion,

Instruction to transfer control:
Various methods of a call to a procedure and a
return from it are possible. In order to simplify
and validate the logic of the protection mechanism,
it is practical to set 1limits to the kind of
instructions which relate to the protection
mechanism,

48 SHARING AND PROTECTION OF INFORMATION Chap. 6

Argument:
It is not desirable to set limits to arguments, as

it affects the program logic. However, limitations
based on access control sometimes happen to be

imposed.

The domain switching mechanism consists of a
register which shows the current domain, domain
indicators and mode flags in address pointers and segment
descriptors, and a determination logic.

In the simplest case of two layered domains, domain
switching mechanism can be constituted in the following
way:

1. Prepare a flag to denote the mode of execution in a
segment descriptor, which is set only by a
privileged instruction,

2. While a procedure whose mode flag is on is executed,
the execution mode is set to the privileged mode.

3. While a procedure whose mode flag is off is
executed, the execution mode 1is set to the
non-privileged mode.

4. Inhibit invocation of a non-privileged procedure
from a privileged procedure.

The mode flag in a segment descriptor is set only in the
privileged mode, thus, there is no fear that this mode is
set unduly by a wusual user program, and a privileged
procedure which has been invoked by a SVC so far can be
called by a usual call instruction.

A more elaborate example of a domain switching
mechanism is found in the ring protection mechanism,

49

CHAPTER 7
THE RING PROTECTION MECHANISM

In this chapter constitution of domains of the ring
protection mechanism described in the previous chapter is
explained more concretely.

The ring protection mechanism is contrived and first
implemented in Multics. The first version was implemented
by software and became operable in 1969. The second
version 1is implemented by hardware and currently being
used [GRA1], [SAL3], [SCH3]. The ring protection
mechanism is also adopted in several systems such as
HITAC 8800 and ACOS 700 [MOT1], [ACOS].

The purpose of the discussion in this chapter is to
make the logical structure of this mechanism clear and to
extend it a little in order to augment its applicability.

In the ring protection mechanism if some access is
admitted in some domain, this access is also admitted in
inner domains. In order to define domains in the ring
protection mechanism, it 1is sufficient to define the
kinds of admitted access and the largest ring numbers in
which these references are admitted for each segment, The
kinds of access which are commonly considered are:

read, write, execute, directory search, and

directory change.

To control these kinds of access, flags of five bits
and five ring numbers are required for each segment, And,
in addition to these, one must prescribe access control
information to every user for each segment. Therefore, we
mist devise a method to prescribe access rights with less

50 THE RING PROTECTION MECHANISM Chap. 7

information. Here rings are numbered from 0 to some
maximum, say 7, and the lower the ring number is, the
greater the access capabilities are.

First, we will consider the access control
information for non-directory segments. We may suppose
rp T, where r and r, are the largest ring numbers in

whose ring a process can write and read respectively.
Moreover, it doesn't cause inconvenience practically that
the largest ring number in whose ring a process can
execute 1is fixed to be equal to r,. And, 1if one

considers the «condition of '"need to know'", the smallest

ring number may be set to be equal to Ty because a

process can write, read and execute a segment in T, but

cannot in r where r - .

Moreover, let us assume that the largest ring number

in whose ring a process can call a segment is equal to T,

and one can prescribe access rights by three access flags
(r, w, ex) and three ring numbers (rl, Th, r3) for a
non-directory segment,

A user cannot get access to a directory segment
directly, and he must ask the supervisor to search for,
create and modify a directory segment. In this case,
appropriate access control can be accomplished, taking
the caller's ring number as the validation level to refer
to a directory segment.

Directory search corresponds to read-access, and

Chap. 7 THE RING PROTECTION MECHANISM 51

0 , 1 2 3 4 5 6 7 ringnumber
1

g
-
o

write bracket’

-
read bracket

read flag lon
write flag - on
execute flag - off

0 1 2 3 4 5 6 7 ring number

-
write bracket

-
read bracket
W..A_.‘_..._.J
execute bracket call bracket

read flag lon
virite flag ion
execute flag : on

Figure 7.1 Examples of access flags and
ring brackets. Bracket means the range
where some access 1s permitted.

directory create- and modify-access correspond to
write-access. There 1is no action which corresponds to
execute-access. Thus, one can prescribe access rights by
two access flags (r, w) and two ring numbers of the
requester (rl, rz] for a directory segment.

1. Domain Switching in the Ring Protection Mechanism

There are the following three cases of the domain
switching in the ring protection mechanism:
1. Move to an inner ring
2. Stay within the same ring
3. Move to an outer ring
As a move to an inner ring of 1. increases access rights
of a process, it must be carefully controlled. In order

52 THE RING PROTECTION MECHANISM Chap. 7

to do this, there 1is a problem of establishing entry
points,

There is no problem from the viewpoint of protection
as for stay within the same ring of 2..

As a move to an outer ring of 3. decreases access
rights, there is no problem to be managed by the access
control mechanism, except problems about program logic,
because a process which is executing in an inner ring has
a right to move to an optional outer ring,

Transfer of control is caused by the following three
instructions:

A. Call to a procedure

B. Return from a procedure

C. Transfer other than call and return
It is not taken into account here that the domain
switching 1is required within the same procedure, as the
attributes are the same for the information within one
segment. And execution of a call to and a return from a
procedure 1is restricted to the call instruction and the
return instruction respectively. Therefore, it is
necessary to take account only of the following four
cases shown in Table 7.1 from the viewpoint of
protection,

direct. inward outward

INWARD | OUTWARD
CALL CALL

INWARD OUTWARD
RETURN | RETURN

call

return

Table 7.1 Ring-crossing call and return.

These four cases are divided into the following two

pairs:

Chap. 7 THE RING PROTECTION MECHANISM 53

1. Inward call and consequent outward return, and
2. Outward call and consequent inward return.

In case of an inward call of 1. an entry is used
which is fixed statically at the compile time of a
program.

There doesn't exist any problem about an outward
return. It is guaranteed that arguments accompanied by a
procedure call which the caller can gain access to can
also be referred to by the called procedure,

An inward <call corresponds to the case that a
procedure requires processing of higher ability which
this procedure can't manage by itself to a higher
authoritative procedure,

There 1is a problem of establishing a return point
for an outward call of 2.. That is, one must manage an
"entry point" for an inward return. As this return entry
needs dynamic management, a return stack is necessary,
Moreover, there is a possibility that the caller executes
a call accompanying such variables that the called
procedure cannot gain access to. As this is the case that
a high authoritative procedure requires a low
authoritative procedure to manage a problem, it is
originally wunreasonable that the caller uses the results
of the processing as it is. As the reliability of the
results of processing is the 1lowest one which occurs
during 1its processing, which is stated in the section of
the protection policy, such an algorithm of a procedure
is often incorrect. Of course, it will not have any
trouble if a caller never uses the results of processing
but just lets it "process".

As the ring protection mechanism does not constitute
domains which are mutually exclusive but constitutes ones

which have the 1inclusion relation, mutually suspicious

54 THE RING PROTECTION MECHANISM Chap. 7

information cannot be protected properly. In such a case,
it is necessary to compose domains which are completely
separate each other.

2. CPU from the Viewpoint of the Ring Protection
Mechanism

A CPU 1is a kind of hardware which interprets and
executes instructions, that is, an instruction 1is a pure
procedure implemented by a logical circuitry or by a
microprogram for which only execution is permitted., There
are two kinds of instructions, some are usual
instructions and the others are privileged instructions.

A usual instruction 1is an execute-only wutility
routine whose ring bracket is (0, 7, 7).

By contrast, a privileged instruction affects the
protection status of the system and is only executable in
the qualified domain where the protection status is
controlled, A privileged instruction is also an
execute-only routine whose ring bracket is (0, 0, 0) and
which is permitted to execute only in the supervisory
mode,

Typically, a CPU has several registers which are
used to hold control information to control over
instruction execution, and intermediate results of
operations, They are:

1. Registers to hold operands of operations

Data which are hold in these registers belong to
data segments of a process by nature. The stack
pointer and the linkage pointer are also included in
these data. The ring brackets of these data are
considered to be (n, n, n) where n is the executing
ring number.

Chap. 7 THE RING PROTECTION MECHANISM 55

2. Registers to Control the Execution Status

2,1 Registers to Control Instruction Execution
The ring brackets of these data are (n, n, n)
where n is the executing ring number.

2.2 Registers to Control the Protection Status and
Address Space
Data which are hold in these registers belong
by nature to the data segments of the
supervisor, and the ring brackets of these data
are (0, 0, 0)

3. Comment on Call and Return Instructions

Care must be taken as to saving or restoring the
data in the CPU when an interruption or a procedure call
and a return are taken place,.

When a call or an interruption occurs, all data held
in registers in the CPU are copied into the stack frame
of the caller's procedure or the interrupted procedure,

When a return from the <called procedure or the
interrupt handler is taken place, the ring number should
be the maximum of the executing ring and the ring of the
stack frame, and the data which could be touched at this
ring number should only be restored. (See Chapter 11 for
further discussion.)

By doing so, there would be no fear that the
protection mechanism of the system would be impaired, and
we could wunify the save and restore sequences of the
status in the system,

4. Extension of the Ring Protection Mechanism

56 THE RING PROTECTION MECHANISM Chap. 7

The ring protection mechanism mentioned above is the
generalization of the simple two-layer mechanism which
has the problem state and the supervisory state. It is
rather easily realized with simple logic circuitry, and
has an effect on wide applications.

However, two subsystems which are mutually
suspicious cannot be protected by the ring protection
mechanism because the ring protection mechanism implies
inclusion while it is necessary to realize exclusion to
protect two mutually suspicious subsystems [SCI1],
[SAL3]. Schroeder (1972) [SCH2] proposed a scheme of a
general protection mechanism which realizes mutually
exclusive domains but it 1is much complicated and
difficult to implement effectively in a usual computer
system,

In this section we will discuss a method to realize
mutually independent domains extending the ring
protection mechanism, The points of issue are the
followings :

1. What types of domains are necessary?

2, How to make domains mutually independent each other?
3. How to enter another domain?
4,

Where to include or place segments and how to do so?

4.1 Constitution of Mutually Independent Domains

This section discusses a method to extend the ring
protection mechanism in order to augment its
applicability,

The ring protection mechanism is realized and
controlled by specifing the ring brackets and the access
flags in the descriptor segment. Domains which are
independent each other could be realized by providing
each domain with a descriptor segment.

=

Chap. 7 THE RING PROTECTION MECHANISM 57

Common system modules, mainly supervisory segments
and utility segments, are shared among processes, which
are all placed in commonly accessible inner rings.
Conceptual diagram of such domains would be sketched as
the following figure.

CLUSTER A

CLUSTER

cluster B

crossing

usual ring
crossing

Figure 7.2 Constitution of ring domains which can
separate mutually suspicious subsystems.

In this figure, domains are clustered to form sub-spaces
each of which constitutes concentric domains of the ring
protection mechanism, A cluster of domains might
correspond to a certain subsystem, Such a configuration
has in fact already existed when we 1look at a
multi-processing system from the system-wide angle
instead of the process-wide. In this case, however, the
switching of domains from one address space to another is
never permitted, Here, it 1is necessary to separate
mutually suspicious pieces of information, placing then
in independent (cluster of) domains, and also necessary
to enter an appropriate domain in a certain cluster when

58 THE RING PROTECTION MECHANISM Chap. 7

they are needed. So the protection mechanism which we are
discussing has essentially different requirements from
the one in a multi-processing system,

4.2 Extended Domain Switching

As mentioned above, <cluster of ring domains which
are mutually independent may be realized by creating
independent address spaces in a system. What is required
is a mechanism to switch clusters. And this is nothing
but the switching mechanism of address spaces.

The switching of domains is required when a '"domain
crossing'" call and a consequent return are executed,
Calls in this case include hardware implemented calls,
that is, interrupts and faults.

ADDRESS LENGTH TYPE i KNG CATE CLUSTER kS

FLAG BRACKET FLAG

Figure 7.3 Segment descriptor for the cluster
switching., The cluster field is newly added and is used
to determine the target «clusters when the cluster
switching that is indicated by the fault field is
needed., The type field, the access flag field, the ring
field, and the gate field are used in the ring
protection mechanism,

There are two kinds of the domain switching, one
switches domains within a cluster, and the other switches
domains crossing the wall of clusters. If it is necessary
to switch clusters of domains, a fault will notify this
and the supervisor can change the setting of the
descriptor base register which specifies the selected
cluster of domains. The condition that needs to switch
clusters of domains when a call or a return occurs could
be designated by specifying the identifier of a target
cluster in a segment descriptor (see Figure 7,3), (The

Chap. 7 THE RING PROTECTION MECHANISM 59

discussion on the segment descriptor, the descriptor
segment, and the descriptor base register are left
behind.,)

DESCRIPTOR e
BASE REG. T~

N
N

| 1l |
segment descriptor

- addr-| ... |eclus-|fault
ess ter flag

\
NN

L

DESCRIPTOR SEGMENT
OF CLUSTER "0" DESCRIPTOR SEGMENT

OF CLUSTER "X" ...

Figure 7.4 Constitution of clusters. One descriptor
segment 1is associated with one cluster. One cluster
constitutes the ring domains, which are controlled by
the ring bracket fields in segment descriptors.
Indication of cluster is placed in the cluster field
as shown in Figure 7.3,

Separate data segments are required to execute a
process for each cluster. These data segments are linkage
segments, stack segments and other data segments. When a
procedure call is executed, the stack frame is pushed
down. The old stack frame and the new one are chained by
two pointers. If a procedure call which requires the
cluster switching occurs, the stack frame is also pushed
down, but in this case 1into a separate stack segment

60 THE RING PROTECTION MECHANISM Chap. 7

because the called procedure is executed in a different
cluster where a separate set of data segments is used,
The push-down sequence 1is executed by the gatekeeper
routine when a cross cluster fault is detected.

When a return from the called procedure is taken
place, the stack frame 1is popped up and the execution
status of the caller is tried to be restored, using the
chaining pointers. If a cluster crossing has not been
taken place, this pop-up will be executed successfully in
straightforward manner, If it has, access to the older
stack frame is forbidden and a cross cluster fault occurs
again., The gatekeeper can intercept this fault and
switches the cluster back. The following figures show
the constitution of clusters and scheme of the cluster
switching.

The segment identifiers which designate a segment
are assumed to be identical in each cluster. 1In a
multi-programming system scgment identifiers, which are
used by the processes in the system to designate the same
segment, are independent,

The ring protection mechanism is still working in
this extension. IHence, calls are restricted to those
which do not change ring or call inward, and this ensures
that no contradiction is caused even if the original
cluster is entered recursively.

The problem of arguments accompanied by a call 1is
troublesome. Generally speaking, arguments placed in the
caller's cluster cannot be referred to in the called
cluster. Then, it is necessary to place them in common
areas which can be referred to both in the caller cluster
and in the called one. Further, the validity check of
arguments should be wundertaken by the procedures which
use them, This check 1is carried out by the called

Chap. 7 THE RING PROTECTION MECHANISM 61

[CLUSTER W] [CLUSTER X]

DESCRIPTOR | -
BASF REG. il
..\
»
. I
~
~]
DFSCRIPTOR SEG. ~a | DESCRIPTOR SEG.
PROC A OF CLUSTER "W" N _ OF CLUSTER T
1 -
\— A 8 - I A | CC CC: cross
CALL B
-\’ = m N . B W |co cluster
l fault
04 - C W
PROC B & it ge
D X | CC ™AAAAA AAAAS D X -
CALL C- : | :
. RFTURN &
STACKW W | - 4‘\ﬂﬂ¢UT\NAﬁU\r~ STACKW | W | cC FROC D
RHOG € (sackx | x | cc cross STACKX | x | -
CALL D ?iﬁizer DETURY
(GATEKEEPER)
! [cluster
l field
& STACKU | STACKX
stack ' stack
frame of i frame of
A D
|
[
" " of |
’ |
" " Df '
C | top
top |

Figure 7.5 Mechanism of the cluster switching. Procedure
A calls procedure B, B calls C, and so on. Procedure A, B
and C are executed in cluster "W" and procedure D should
be executed in cluster "X", The cluster switching is
caused when procedure D is called. The swapping of the
descriptor segments, the stack segments, etc. 1is
undertaken by the gatekeeper, which also chains the stack
frames. Thus, when a return to C is tried, a cross
cluster fault is caused and 'calls" the gatekeeper again
in order to complete the cross cluster return,

62 THE RING PROTECTION MECHANISM Chap. 7

procedure in the inner ring (more privileged one) when
the ring protection mechanism 1is incorporated. The
problem of constituting common areas is discussed in the

next section.
5. Clustering of Domains

Next problem 1is where to put each segment. The
access control information of a segment is stored in the
directory entry for this segment. The access control
information consists of a 1list of user names to whon
access to this segment 1is allowed and their access
rights, When the ring protection mechanism is used,
access rights are designated by access flags which denote
the kinds of access permitted and a ring bracket., In
order to create independent clusters of domains,
information for segment clustering 1is needed. The
simplest way is to add subsystem identifiers to lists of
access rights., Usual segments are not given such
subsystem identifiers and are wusually put into the
cluster, say, 0", Those segments that are given
subsystem identifiers are put into other clusters each of
which correspond to a subsystenm identifier, and fault
conditions are set in the domain of the other clusters so
that the cluster switching condition will be notified., A
cluster of domains 1is assigned dynamically as a new
subsystem identifier is encountered.

The problem of constituting common areas for
argument passing 1is rather easy, To do this, the
identifier of its own cluster is set in the cluster ficld
of the segment descriptor for a common data segment (see
Figure 7.6).

This scheme seems to work, but is still

Chap. 7 THE RING PROTECTION MECHANISM 63

e —

address cluster =1 address cluster
I
1
data A common,-‘-‘\\”‘-— data B
data
area

— T R WSS —

DESCRIPTOR SEG. DESCRIPTOR SEG.

 S———

DOMAIN "A" DOMAIN "B"

--d

Figure 7.6 Common area to pass arguments. Common
data segments may be utilized to pass arguments
between procedures which belong to different
clusters each other. To do this, the identifier of
its own cluster is set in the cluster field of the
segment descriptor for a common data segment.

insufficient. If all segments which are needed in a
computation are properly sorted and given subsystem
identifiers beforehand, above mentioned scheme would work
successfully, In usual cases, however, many segments are
borrowed from system libraries or other persons'
directories, in which case, if it is wanted to create
independent domains, additional information is needed to
identify subsystems. Such information could be stored
separately in 1linked entries to the directory entries
which hold the attributes of the borrowed segments (see
Figures 7.7 and 7.8).

Linked entries for this purpose cannot be created
automatically. If segment clustering is not indicated at

64

all,

THE RING PROTECTION MECHANISM

user permitted|ring subsystem
name access bracket | identifier
JHON RW 0,5,5

JACK R 0,5,5

BLACK none

Figure 7.7 Constitution of access
control list (ACL).

segment | subsystem {directory
name identifier|entry ptr.
W —
B W ——
C W
D X

LINKED ENTRY TO THE BORROWED
SEGMENTS

Figure 7.8 Linked entry to hold subsystem identifiers.

programs

will

be

protection environment,

6.

Capability of Ring i State

executed 1in

DIRECTORY

ENTRY FOR A

Chap. 7

LIST

ACCESS
CONTROL

DIRECTORY

ENTRY FOR B

OTHER'S DIRECTORY

the

usual

ring

Chap. 7 THE RING PROTECTION MECHANISM 65

In ring i it is able to:
1. Change ring number i to j where j is not less than
i,
2. Create segments which can be executed in ring j,
3. Create segments which can be read in ring j,
4, Create segments which can be written in ring j,
5. Create directory segments which can be searched for
in ring j, and
6, Create directory segments which can be modified in
ring I
but it is not permitted to create a segment which can be
executed in a ring whose number is less than i. That is,
the ring brackets of segments which can be created are

(rl, Toy r3) where oz 15 r, >i, and r, 2 i,

3
It does no harm in itself to create such segments whose
read or write brackets are less than i (r1 <i, or

r, < i), but this will have the following side effects:
1. The execute bracket becomes (rl, rz) by convention,

and this is not permitted.

2, It would be meaningless to create a segment which
cannot be read or written by the creator himself,

3. It would cause troubles in a computing system to
create a segment which the creator cannot control.
Thus, it is wusually recommended that the read and
write brackets should include ring i.

The initial ring number of a user whose authorized rights
are the level of i is i.

66 THE RING PROTECTION MECHANISM Chap. 7
7. Additional Comments on the Ring Protection Mechanism

Privileged instructions can be executed only in ring
0. The processor status which controls access rigiats can
be handled only in ring 0. Supervisory procedures can be
created only in ring 0,

Users who have ring 0 rights can be registered only
from the system console,

It 1is asked to show a special password to register
users in the system. This password can be changed by the
user himself freely after he has been registered in the
system. The password table should not be stored in its
original form but should be stored cryptographically,

67

CHAPTER 8
CONSTITUTION OF AN ADDRESS SPACE

This chapter discusses the problem of constituting
an address space in relation to the information space of
the system and to the structure of an address space.

1, File System

On-line information 1is essential for a computer
utility. Information 1is registered and managed in a
directory in a file system, treating a segment as a unit.
Thus, the structure of the file system affects greatly
the characters of an address space in a computer system.

A directory itself is a segment, and as a matter of
course it is registered in its "parent" directory. If a
directory segment is registered 1in a directory in the
same way as a non-directory segment, the structure of a
file system inevitably becomes a tree structure [DAL1],
[RAP1]. The origin of this tree structure, that is, the
first directory 1is <called the '"root directory'". It is
supposed that the root directory always '"exists'" and its
location is known.

The structure of a file system generally becomes a tree
structure as stated above, and moreover, this structure
determines the characters of all elements which are
necessary for the file management. That is, space and
access are controlled by the hierarchical structure. One
segment can be uniquely identified by a route in a file
system which starts from the root and reaches the

68 CONSTITUTION OF AN ADDRESS SPACE Chap. 8

root>a>b>¢

root>a>b rw—-'*<::)
» C| branch

a

i / h| branch
b | branch

root>a>b>h
root / X | branch
a | branch y | branch
G Braih root>a> x
2 a| link
b | branch
root>a>x>b

root>a>y

root >d

a | branch
x | branch \moD d>a
f | link

D directory segment
root>d> x

O nondirectory segment

Figure 8.1 Hierarchical file structure. Two
kinds of directory entries are shown in the
figure, one 1is a branch which describes a
segment, and the other is a link which points
at a directory. The problem of aliases 1is
resolved by wusing 1links. ">" connects node
(directory or non-directory) names to form
the path-name of a segment.

directory in which the required segment is registered,

showing a sequence of directory names which are the nodes
on the route.

Chap. 8 CONSTITUTION OF AN ADDRESS SPACE 69

X X
move_quota (;gpages :o ;) e -
= pages to i
quota=100 qgintazﬁqa* bis
B AR used’wotmé;‘
L R
. / V

quota=0
used quota=0

A
Y

quota=0

(25 pages)
Pag used quota=60

(25 pages)

B 4 B
quota=10
(40pages) used quota=20 (40 pages) j.‘s‘sgcl quozaafzti
c c
(20 pages) (20 pages)

I: directory segment
O nondirectory segment

Figure 8.2 Management of the file space. This figure
shows that the management of the file space is also
enforced hierarchically under the hierarchical file
structure. At first, all the quota - file space - is
given to the root directory. Quota can bg moved to
lower directories., A directory which is given quota
takes charge of the file space management of files
under this directory except those which are managed by
some directories under this one.

70 CONSTITUTION OF AN ADDRESS SPACE Chap. 8

Thus, there doesn't occur a problem like a homonym
in a general file system. A problem about an alias is

nominal (see Figures 8.1 and 8.2).

2. Connection of an Address Space and the Information

Space

Generally, there are more than one directory in
which segments contained in one address space are
registered, In order to specify a segment required in a
"computation" uniquely in a directory hierarchy, it is
necessary to show a path-name. As the most direct method,
this condition is satisfied with executing all the
references of a segment in a '"'computation'", showing a
complete path-name. However,

1, A user doesn't sometimes want to express clearly the
location of information which he requires,
2, He sometimes can't express clearly even if he wants,
and
3, It 1s not necessarily caused by rational reasons
that one segment is registered in some directory.
Thus, this method is not proper for our purpose.

The 1logic of a program should be independent of the
way of file search. For this reason the method in which
one appoints directories and an order of directory search
is generally used. One can completely locate a necessary
segment by this method, grasping sufficiently a directory
in which the required segment is registered. If one uses
this method carelessly, there may happen a case in which
one can't specify the necessary segment., As it occurs
mainly in a case that one wants to use a part of special
libraries in combination with his own library and systen
libraries, one must be careful in selecting directories

Chap. 8 CONSTITUTION OF AN ADDRESS SPACE 71
and an order of directory search.
3. Dimension of an Address Space

We defined in the previous chapter that an address
space is the collection of programs and data to which one
process refers in a computation. Moreover, we stated that
information becomes a "group' called a segment according
to attributes and such segments are gathered to
constitute an address space.

The next problem 1is the 1logical structure of a
segment, It can also be said from another viewpoint that
the logical structure of a segment represents the method
of addressing of information in a segment. Let wus
suppose, in the following, that address or location means
a logical entity wunless specified otherwise. That is,
address or location in the discussion of this section has
no relation to the physical storage location,

As an address space is a representation of the space
for consideration it is necessary to analyze the logical
structure of the space for consideration when one
discusses the structure of an address space. An address
space also exists even in conventional computers which
pay 1little notice about the constitution of "logical
address space'". But in this case, a distinction between
the program part and the data part is ambiguous and only
linear addressing is often used. Such an address space is
one-dimensional. In case that programs and data are
divided into separate segments, an address space becomes
two-dimensional at 1least. How many dimensions of "an
address space" do we manage on earth in human activity of
consideration, now? For example, a dictionary 1is an

one-dimensional array whose element includes a key word

CONSTITUTION OF AN ADDRESS SPACE

Chap. 8

72

and its meaning. If a key word has more than one
different meaning, each item is regarded as
one-dimensional array and an array with such
one-dimensional array elements is regarded as
two-dimensional space. If a literature is regarded as
being only a string of words, it is considered to be

one-dimensional

space, and if it is regarded as an array

of statements, it 1is considered to be two-dimensional
space, As a picture, image and a table are
two-dimensional, collection of these things is
three-dimensional,

The information space in a computer, which is
composed of a complex of one or more than one subsysten,

is considered

Figure 8.3).

Directory of
a system

Directory of
a subsystem
within a
system

Usual
segment

to form the following tree structure (see

Directory of
a composite
system

Figure 8.3 General information space
for a computation.

Chap. 8 CONSTITUTION OF AN ADDRESS SPACE 73

The subject which refers to one unit of information (bit,
byte or word) is a process and a process executes
instructions on a processor. The object to be referred to
is either an instruction or data. Various methods are
considered in the methods of addressing, but each of
array, structure, block structure and stack requires a
characteristic addressing method to refer to their unit
information.

4, Recursion and Block Structure

When recursion occurs, information which belongs to
the domain of the previous level becomes invisible from
the present level [ORG2], [BUR1]. A stack is generally
used to realize such domains, constituting a domain to
place all the automatic variables, including the return
pointer and current values of registers, as one element
of the stack, which is called a stack frame,

A variable placed in a stack can be referred to by
using the stack pointer that points at the base of the
current stack frame which includes the required variable.
By providing a stack pointer which is accompanied by an
upper and a lower limit register, domains which belong to
the previous 1levels are made invisible. (These limit
registers are redundant because such limit registers are
included in the mechanism of segmentation as shown
later.) 1In case that there are nested domains created by
the block structure, a process can get access to the
domains below the current level (Such domains correspond
to the levels in static meaning which appeared
Previously). Each currently "active'" level is pointed at
by a display register [RAN1] (each relative location of
the most recently appeared static-levels which are found

74 CONSTITUTION OF AN ADDRESS SPACE

in the active dynamic levels).

5. Mechanism of Segmentation

Segmentation 1is
two-dimensional
possible [RAP1],

employed

[GLA1],

[VsYl],

in

order

to

[GIB1]:

Chap. 8§

recalize a

address space and to make the followings
(MCC1],

The different access controls for each segment,

The dynamic change of segment size,

Dynamic linking,

and

The efficient utilization of the memory space,

Instruction
operation| seg. no. | displacement
descriptor base reg. !

[address I length [-—P CHECK}

Y

segment descriptor

address

length

access
rights

flag

.

DFSCRIPTNR SFOMENT

Figure 8,4
The mechanism of
functions:
To map

space,

segmentation

Mechanism of segmentation,

requires

D. SEG. BOUND
FAULT

SEG. BOUND
FAULT

ACCESS VIOLA-
TION FAULT

MISSING
SEG. FAULT

TARGET SFG.

the following

fragmentary spaces to the contiguous memory

Chap. 8 CONSTITUTION OF AN ADDRESS SPACE 75

/* The following lines illustrate the address formation operation
of segmentation in PL/I like notation. */

mechanism of segmentation: proc;

del 1 instruction based,
2 operation,
2 address,
3 segment_number,
3 displacement;
dcl 1 base, /* descriptor base register */
2 address,
2 length;
dcl 1 descriptor_segment based (base),
2 segment_descriptor (array),
3 address,
3 length,
3 access_rights,
3 flag;
del (seg_des_pointer,
target_pointer) hardware working register;

1f base.length < address.segment number
/* check bound of the descriptor segment */
then descriptor segment bound fault;
else doj; - - -
seg_des_pointer = addr(base.address + address.segment_pumber);
if seg des pointer - flag # incore
/* check missing segment */
then missing_ segment fault;
else if seg des pointer - segment descriptor.length <
address.displacement /% check segment length */
then segment bound_fault;
else if seg des pointer - access rights P
instruction.operation /* check access rights */
then access violation_fault;
else target pointer = addr(seg des_pointer -
segment_descriptor.address +
address.displacement);
end;
return; /* finished */

Figure 8.4 Mechanism of segmentation (continued),

76 CONSTITUTION OF AN ADDRESS SPACE Chap. 8

To enforce access control (validate access rights)

at each and every reference,

To detect access to a segment which doesn't exist

(activated) in the main memory, or

To detect access to a part of a segment which has

not been placed yet in the main memory.

The hardware mechanism shown in Figure 8.4 is used in a
large computer system.
When segment descriptors are placed in the main memory,

"seg des_pointer -> segment_descriptor"
implies that one memory reference 1s taken place,
Therefore, in a segmentation mechanism, two memory
references are at least required in order to refer to the
object information. (lilere we do not touch a paging
mechanism.) For this reason, associative memory is used
to realize fast access [SCH1], [AND2], [HON1l]. In a
rather small scale computer system in which
communications between the CPU and memory is executed
synchronously and an indirect addressing mechanism is not
provided with it is impossible to place segment
descriptors in optional location in the main memory.

We are trying a method adaptable in a middle or
small scale computer system. The basic principle of this
method is the same as what we stated before, but the
segment map, which 1is 1logically equivalent to the
descriptor segment, is placed in special high-speed
memory (a group of registers) and its address is fixed in
the system. Thus, the base register which points at the
base of the segment map is not needed. As we use a fast
me€mory separately from the main memory, extra clock is
not necessary for address mapping and a word in a segment
can be referred to within the time of one memory access
cycle. For this reason, the address mapping mechanism is

Chap. 8 CONSTITUTION OF AN ADDRESS SPACE 77

entirely transparent from the viewpoint of memory access
time, Of course, functionally it does segmentation
distinctly.

There are some computer systems which have
segmentation mechanism whose segment number is only of
the order of sixteen to thirty two. Such systems cannot
realize useful segmentation but only do "segment overlay"
which is prepared and bound beforehand, This is because a
big software system 1incorporates a great many segments
whose number 1is the order of one hundred. Thus, the
length of the segment number field should be long enough
to match such a requirement,

6. Descriptor Segment and Descriptor Base Register

The descriptor segment is an array of segment
descriptors [GLA1l], [ONIl1], It is used as a segment map
to map fragmentary spaces to the contiguous memory space.
That is, it is indexed by the segment number, and a
segment descriptor in it is referred to by the address
formation mechanism of the CPU. A segment descriptor has
an address field for this purpose, which holds the start
address (of the page table, if paging is used,) of the
segment that corresponds to the segment number of this
descriptor. The segment number is assigned at the linking
time as described in the earlier chapter.

A segment descriptor holds some flags, one of which
is used to detect whether or not the required segment 1is
incore, The dynamic loading function of segmentation owes
to this flag. Usually, the initial value of this flag is
set to the not-incore condition.

A segment descriptor is set when a process requires
access to the segment whose incore-flag denotes that the

78 CONSTITUTION OF AN ADDRESS SPACE Chap, 8

required one is not incore. This condition is notified by
a (missing) segment fault, and the segment fault handler
""connects'" the segment in the information space in the
system to the address space of the process. This is done
by searching in the file system as described in the
earlier section,

The descriptor segment is not only wused for
segmentation but also used for access control as well, A
segment descriptor is referred to each and every time the
target segment 1is referred to, thus the check of access
rights 1is easily undertaken by placing and verifying the
access control information in the segment descriptor. The
access control information, which is obtained from the
directory entry of the target segment and set at the
"connection" time, might include the followings:

Segment length and segment limit,

Kinds of access permitted,

Range of access permitted - ring bracket, cluster,

gate of entry, etc, -, and

Kind of segment - privileged, non-privileged -,

To sum up, the descriptor segment plays the central
Tole in segmentation as well as in information
protection, It is an array of segment descriptors, and a
segment descriptor has such fields as address, length,

incore flag, access control flags, and other access
control information,

7. Three-Dimensional Address

In a procedure which has the block structure,
information 1is located by a static lexical level and a
relative location in this level. In case that such
allocation is used, "displays'", as shown in the following

Chap. 8 CONSTITUTION OF AN ADDRESS SPACE

(processing of

segment manager) | segment map
l. missing length
’;H' segTent connect list
address segl__ fault
fault P a— branch pointer
segment etc.
3. set
segment
descriptor ACTIVE SEGMENT
\\l “connect" TABLE ENTRY

DESCRIPTOR SEGMENT

TARGFET SEGMENT

Figure 8.5 Connection of an address space to
the ' information space of the system. _The
information space is managed by the hierarchical
file system. Those segments which are currently
beeing used are made active (open) and their
directory entries are copied into the active
segment table in the main memory. (1) When a
process wants to Trefer to a segment for the
first time, a missing segment fault will be
caused. A missing segment fault is also caused
by other reasons. (2) The segment manager looks
up the active segment table if the required
segment has already been active. If not, it
makes the segment active. (3) Then, the segment
manager ‘'connects" the required segment to the
address space of the process by setting the
segment descriptor that caused the missing
segment fault. (4) Now, the process can refer to
the segment.

79

80 CONSTITUTION OF AN ADDRESS SPACE Chap. 8

picture, are necessary in order to indicate directly the
dynamic execution status of a procedure as it is.
Moreover, one additional dimension is needed in order to
denote a segment in the environment of segmentation.
address = (segment_number, relative_location)
= (segment_number, lexical level,
relative_location_in_a_level)

A process is always accompanied with data segments,
If one can assign this data segment a fixed segment
number, there 1is no necessity to use a mechanism of
general three-dimensional addressing. The problem is
whether or not it is necessary to switch stack segments,
that 1is, to make an environment of three-dimensional
space and to wuse 1it., Then, is there any necessity to
support a general multi-dimensional space by hardware?
The conclusion is no.

A directory hierarchy constitutes a general
multi-dimensional space as stated before. Therefore,
there has already been no problem about the constitution
of a multi-dimensional space itself. Design issues to be
taken into account are as follows:

Overhead of hardware which supports

multi-dimensional segmentation will be big.

Hardware constitution to support a general

multi-dimensional space will become as the following

picture,

Addressing in a program:

(seg_name_0, seg_name_l,..., displacement)

Translation to a link:

seg. no. Ofseg. no. 1| displacemen*

Chap. 8

CONSTITUTION OF AN ADDRESS SPACE

bottom of stack

xl,vl
x2,y2

11=3
x31,y31

11=4
x41,y41
at first

X

Arrows show dynamic
chains of blocks.

11=3»
x32,v32 x33,vy33
1=4
x42,y42 x43,v43
at second at third
3. 4 ¥

11=1
11=2
11=3
¥

lexical

level 11=4

display 1

display 2

display &4 "

DISPLAY REGISTERS

Figure 8.6 Block structure and

begin real x1,yl;

begin real x2,v2;

" e

proc Q3;
begin real x3,y3;

begin real x4,y4;

X:

z2zzz
03;

LSt |

e

end;
end Q3;

n3;

end ;
end;

lexical levels.

81

82 CONSTITUTION OF AN ADDRESS SPACE Chap. 8

DESC. SEG. O DESC. SEG, 2

dseg flag

Y

desc. b.r.

DESC. SEG. 1

DESC. SEG. 2

Figure 8.7 Realization of multi-dimensional space. The
dseg flag in a segment descriptor indicates whether or
not the segment which is described by this descriptor is
a descriptor segment (dseg), thus address formation
operation continues until a descriptor whose dseg flag is
off is encountered.

The problems are:

The segment number 0 is determined dynamically as

stated above,

How are the segment Numbers 1, 2,..., ?

How are they determined?

What is meant by the fact that they are determined

dynamically?

How to provide the space in which links are put?
It is the case of a dope vector of a multi-dimensional
array that the segment descriptors 1 @, 3y5eiy are
fixed "statically", It is nothing but the hardware which
Supports a multi-dimensional array, In case that each
level of segment fields corresponds to the directory in
the hierarchical file system, the mechanism of

Chap. 8 CONSTITUTION OF AN ADDRESS SPACE 83

multi-dimensional space directly maps the general
hierarchical information space.
However, there are the following defects in an
implementation of a multi-dimensional space by hardware:
A long address field 1is required 1in an
instruction.
The degree of indirections increases as the
number of dimensions increases.
The number of active segments will be a few for
each descriptor segment.
Overhead to maintain a number of small
descriptor segments will be big.
One can utilize the hardware circuitry of segmentation by
putting only active segments in the mechanism of usual
segmentation. The necessity to constitute hardware
circuitry which realizes general multi-dimensional
segmentation doesn't seem to be caused for the moment.

8. Support of Lexical Levels

In order to refer to information in one segment in a
system where the block structure as ALGOL or PL/I is
employed, it is not enough merely to give a displacement
but it 1is necessary to give a lexical level [ORG1],
[BUR1], [RAN1] and a displacement, It is for the
activation records that requires such an access method,
and a general three-dimensional segmentation mechanism is
not necessary because the activation records of a process
are stored in the limited number of data segments. But a
special addressing mechanism becomes necessary in this
part as to update the contents of display registers.

84

CONSTITUTION OF AN ADDRESS SPACE Chap. 8

instruction
op [svl disp TN
f‘-‘-_-—-
__,,/’/ BASF FFGISTFR (sp/lp)
seg l dis J
dis
sp
add l I k
DESCRIPTOR SEG. STACK SEG.
(a) Single indexing.
instruction
op lsp H]disp \
display 1
— displav 2 '\
/— display 13 dis
sp
BASF REGISTFR (sp) 11-1
11-2

DESCRIPTOR SEG. STACK SEG.

(b) Double indexing,

Figure 8.8 Support for lexical levels.

85

CHAPTER 9
ESTABLISHING AN ADDRESS SPACE IN A COMPUTER SYSTEM

This chapter discusses the conditions of
establishing an address space in a computer system.

1. Conditions Which Specify an Address Space

In this section conditions which specify an address
space will be discussed. This argument makes it clear
what information should be reserved when an address space
is established or process switching is taken place.

1.1 To Show a Process in the System

In order to establish an address space for a process
it is necessary to show the existence of this process
explicitly in the system. Usually, there is an active
process table in a system, in which an entry is assigned
to each active process. The minimum information which
will be needed to establish the address space of a
process 1is stored in an entry in the active process
table.

1.2 The Minimum Information
The minimum information required to establish an
address space is:
A. The pointer to the descriptor segment (assuming that
the descriptor segment has already existed),
B. The stack pointer (assuming that the stack frame has

already contained the status of the process),

86 ESTABLISHING AN ADDRESS SPACE Chap. ¢

APT header
-z DESCRIPTOR SEGMENT
name
state
priority
stack sef. PROCEDURE,
d. seg. ptr.
linka eg.
stack pointer il
etc. STAPT
ACTIVE PRCCESS
TABLE ENTRY
STACK SFGMENT
STACK FRAMF
(r : 2:2222q°f the LINKAGF
1 | E T~ .| srcTin
ACTIVE PROCESS TABLE LINKAGE SFEGMENT

Figure 9.1 Active process table. Active process
table: is 1logically an array of active process table
entries. Each active process table entry holds the
information which is required to select a process to
run, to establish the address space and to start it.

1.3 Information Required to Execute a Process
Additional information 1is needed to execute a
process:
C. The instruction pointer to the instruction to be
executed,
D. The linkage pointer to the linkage section, and
E. The ring number.

These can be restored from the stack frame upon return,

Chap. 9 IN A COMPUTER SYSTEM 87

given the stack pointer, in which case only the
information A. and B. are enough to (re)start execution
of a process.

1.4 Dispatching a Process

When a process is dispatched from the ready state to
the running state, it is enough to set the information
shown in B. and to execute a '"return'", These sequences
are executed by the swapping procedure when a process
"returns'" from the block or the wait routine.

1.5 Initiation of a Process
The following is the direct consequence of the
earlier discussion:
When a new process is created, it is required that
initial values for the process are set in the stack
frame, and then this process is registered in the

system in the blocked state and is made alive by
"wake up".

2, Protection of Pointers and Data Segments

The ring brackets of pointers which specify an
address space and of data segments of a process are
considered as follows:

1. The descriptor segment and the pointer to it (the
descriptor base register):
They are common to all rings. Their ring

brackets are (0, 7, 7). They are set only in ring 0

by privileged instructions and are referred to only

by the address formation mechanism,
2. Linkage segments and the linkage pointer:
There are two ways to manage the linkage

88

ESTABLISHING AN ADDRESS SPACE Chap. 9

segment. One is to use a linkage segment common to
all the rings, and in this case ring brackets of
linkage segments and the linkage pointer are (2, 7,
7). And the other is to use a dedicated linkage
segment to a ring, in this case their ring brackets
are (r, r, r) where r is the executing ring number,
Here, we assume that the procedures which relate to
the protection mechanism are executed in ring 0, and
that the other supervisory procedures are executed
in ring 1.

Stack segments and the stack pointer:

Each stack segment is dedicated to a ring and
its ring bracket is (r, r, r). The segment number
should be common to all rings and is added to the
ring number to be able to get access to the stack
segment in any ring if it 1is necessary to use
separate segment for each ring. This strategy
simplifies the calculation of the segment number of
the stack segment every time the ring changes, and
makes the protection independent of a computing
algorithm,

Static data area and the static area pointer:

Each area is dedicated to a ring and its ring
bracket is (r, r, 7r). The relative location of a
data area in a static data segment which corresponds
to a procedure is found in the linkage offset table
that is stored in the header of this static data
segment,

When a linkage segment is common to all rings,
a stack pointer, a linkage pointer and a static area
pointer are needed to specify an address space. When
a linkage segment is dedicated to a ring, only a
stack pointer and a linkage pointer are needed.

Chap. 9 IN A COMPUTER SYSTEM 89
3. Address Space Switching

The descriptor base register (dbr) holds the pointer
to the descriptor segment which specifies the address
space of a process, that 1is, the dbr points at the
starting location of the descriptor segment and it is
implemented as a hardware register in the CPU. In this
case the descriptor segment can be placed in any location
in the main memory. The dbr 1is set by a privileged
instruction which switches the CPU from one address space
to another.

In some system the location of the descriptor
segment may be restricted or fixed to a specific place,
in which case, if address space switching is needed, the
descriptor segment of the required process must be moved
into this fixed place., In this case the dbr doesn't (or
needs not) exist physically.

Address space switching is executed by the process
exchange procedure '"get work". In case of a system whose
location of the descriptor segment is restricted, this
procedure handles the descriptor segment in the absolute
addressing mode. This procedure emulates dbr swapping.

To run a process in the newly switched address space
the stack pointer in ring 0 (where address space
switching is taken place) is set, and the machine
conditions such as instruction counter (ic), the linkage
pointer (1p) and other working registers are restored
from this stack frame. The stack pointer is stored in the
active process table entry.

Process switching needs such an instruction as

SWAP_PROCESS (register_set_block_address).

However, there remain some problems:
1. Conventional computers don't possess such an

90 ESTABLISHING AN ADDRESS SPACE Chap, 9

instruction, hence several instructions are used to
accomplish process switching.

2. To minimize the size of an active process table
entry, only the values of the dbr and the stack
pointer are stored in an active process table entry,

3. Other values to run a process are stored in the
stack frame.

Thus, the procedure is coded like this:
SWAP_PROCESS: PROC;

LOAD_DBR dbr(apte) ;
LOAD_SPR stack_ptr(apte);
LOAD_REG reg(sp);

END;

where

apte denotes the pointer to the entry of this
process in the active process table,

dbr and stack_ptr are the fields for the pointers to
the descriptor segment and to the stack frame in the
active process table entry of this process respectively,

sp denotes the pointer to the stack frame set by the
pointer in the entry in the active process table, and

reg 1is the field from where the values of registers
are restored in the stack frame,

91

CHAPTER 10
INTRA-PROCEDURAL COMMUNICATIONS

It is required that a procedure 1is pure as one
condition for information sharing, For that reason, a
process requires 1its own impure data segment for the
execution of a procedure. There are two kinds of
information which is stored in this segment. They are:

Static variables and 1links whose allocation is

static, and

Activation records and automatic variables whose

allocation is dynamic.

In addition, a procedure should be able to share even
itself in order not to impose an improper limitation on
the expression of an algorithm, thus recursion is often
resulted. Variable areas which have lexical levels in
case of the block structure are also necessary. Then, it
is required that a dynamic data segment is constituted as
a stack in order to have such an ability. That is, a
procedure can refer to variables relative to the base
(1p) which points at the area provided statically and to
the base (sp) which points at the area provided
dynamically in the execution time (, and to the base (sp)
and displays (11, 1l,,..., 11.) in case that lexical

levels are created). One element of a stack which we
consider here is not one unit cell but a storage area
which contains all of the activation records and the
dynamic status of a process that relate to one procedure
oT a lexical level of a procedure. This unit is called a

92 INTRA-PROCEDURAL COMMUNICATIONS Chap, 10

stack frame, Dynamic status of a process is a kind of
automatic variables as will be explained later.

The status which is concerned with the information
protection should not be changed improperly. Apart from
discussing the protection of the status information, we
can discuss the problem of intra-procedural
communications in a well formulated manner if we consider
that all the current status of a process are stored in
one stack frame,

1. Management of Process Data Segments

In this section the management of process data
segments is discussed in relation to their access rights.
In principle it is required to isolate information whose
access attributes are different. But the processing is
rather "contiguous" in logical sense unconcerned with the
discontinuity of access rights. Data segments which a
process uses can be grouped into static data segments and
dynamic data segments. A static data segment is used to
hold static variables and a dynamic data segment is used
to hold automatic variables,

1.1 Stack Segment

Automatic variables are the activation records of a
process and it is desirable to store them in stack
segments [BOCl], [BOB2]. Each time access rights of a
process change, it is necessary to switch stack segments
(as a rule) lest the activation records of a privileged
state should be altered in a non or less privileged
state,

It is, however, not necessary to do so if there is
the inclusion relation among protection domains as the

Chap. 10 INTRA-PROCEDURAL COMMUNICATIONS 93

ring protection mechanism has., This is because domains
are generally switched when less privileged procedures
require more privileged processing executed in a more
privileged domain, and the inverse case happens in the
most 1limited situations that the caller doesn't use the
results of the processing for its decision.

Examples of such a case are found when the system
creates a new process and wakes it up, and when a teacher
runs and marks programs of students in a less privileged
and confined domain. The former 1is the case that the
system gives control to a newly created process by
"returning from the block procedure of the process
exchange module" [STE1] which 1is executed in the
privileged domain. However, this case can be reduced to
"the return to the imaginary caller which called the
block procedure before the process becomes alive'". The
latter is the very exceptional case which needs to
prepare a separate stack by the software intervention.

Each stack frame is connected with its predecessor
and successor by pointers and is maintained its logical
contiguity even if it is placed in a separate segment.
When a return instruction is executed and the previous
stack frame pointer points at the caller's frame in a
separate stack segment, this condition can be notified,
as is previously mentioned, by an access violation fault,
and then the gatekeeper, the domain switch handler, is
invoked.

In case that there are stack frames which are
created in different rings, care must be taken to
restrict the scope of searching for a signal handler
within the stack frames which are created in the same
ring, The ring number is one of the activation records
and stored in every stack frame, so such a check would be

94 INTRA-PROCEDURAL COMMUNICATIONS Chap. 10

carried out very easily., The discussion on the condition
handling and a signal handler is left behind.

1.2 Static Data Segment

Static data are as follows:

Variables which are allocated statically,

Accounting records for a procedure/entry,

Core of a pseudo random number, etc.

Their area size is pre-assigned when they are declared.
Static data do exist during the life of a process which
created them, and data inherent to each ring exist
concurrently, Thus, more problems arise concerning with
their management, as compared with the management of a
stack segment., It has already been mentioned that data
whose access rights are different should be separately
stored,

For static data inherent to a process, the number of
data segments depends upon the clustering strategy of
access rights., Static data inherent to a process are:

1. Data written and read by a procedure,
2., Data read by a procedure (read only), and
3. Pointers which are used to refer to other segments

(read only data for a usual procedure, written by

the linker).

Data 1. 1is managed per ring basis, The size of a
data area for a procedure is determined at the time this
procedure is created, thus dynamic allocation is not
necessary for this area. A data area for a procedure is
allocated in a data segment prepared for the current ring
at the first time this procedure is executed. The offset
value which shows the location of the data area within
this data segment is registered in a table indexed by the
segment number of the procedure associated with this data

Chap. 10 INTRA-PROCEDURAL COMMUNICATIONS 95

area.

A (pure) procedure refers to its data area, setting
the pointer register the offset value within the data
segment from the offset table,

Data 2, 1is wusually included in the procedure body
itself except 1less frequently referred data as a symbol
table for debugging purposes, which 1is stored 1in a
separate segment.

Such data may be shared in other rings as a
procedure body itself.

There are several methods to manage pointers (links)
of data 3..

1.2.1 In Case that the Pointer is Invariant in Every Ring
There is a case that different segments are required
from the same procedure 1in different ring, but such a
case 1s rather rare, that is, the pointer is invariant
while the access rights are variant. In this case only
one linkage segment is needed and the management of such
a data segment is simplified, but
1. It 1is necessary to execute the linker in the
supervisory ring 0 or 1,
2, As mentioned above, the target segment is invariant
even if ring changes, and
3. A procedure needs a separate pointer to refer to
links in addition to the pointer to the data area.
The common linkage segment should not be
altered in non-privileged rings by 1.. But in order
to realize more reliable protection it is better to
minimize the size of the supervisory kernel which
relates to the protection mechanism, Method shown in
this section violates this policy. The problem of
removing the 1linker from the security kernel is

96 INTRA-PROCEDURAL COMMUNICATIONS Chap. 10

discussed in the later chapter.

1.2.2 In Case the Linker is a Non-Privileged Procedure

In case that the 1linker 1is a non-privileged
procedure and 1s executed in the faulted ring, links will
be made in various rings, therefore linkage segments
should be prepared for each ring. It is also necessary to
prepare linkage segments for each ring if different links
are needed in different rings. (To make the linker a
non-privileged procedure is discussed later in Chapter
12.)

In such a case a 1linkage section related to a
procedure can be merged with a read and write data
section related to this procedure, and the management of
a data segment can be included in the procedure for data
1., that is:

1. Only one pointer is needed by a procedure to refer
to both the data area and the 1links,

2, Can minimize the layer of the protection, and

3. In many cases links are the same in different rings,
but 1linking is required in every ring where the
object segment is referred to. However, rather a few
segments are referred to in different rings and this
overhead can usually be neglected.

2., Constitution of a Linkage Segment

A linkage section is small and may result a big page
breakage if each linkage section constitutes a segment.
By «contrast, if 1linkage sections in the same ring are
combined into a combined linkage segment, those linkage
sections whose related procedures become disused cannot
easily be eliminated from this linkage segment,

97

CHAPTER 11
INTER-PROCEDURAL COMMUNICATIONS

Inter-procedural communications are accomplished by
a call to a procedure, a return from a procedure, a
non-local go to from a procedure, and an implicit call
caused by an interrupt or a fault.

One of the reasons which make the program logics
needlessly complicated is that several entirely different
forms of procedure invocation are employed in today's
computer system. In addition to a usual procedure call,
SVC (supervisor call instruction), interrupts and faults
are, in fact, invocation of a procedure in their primary
functions, and sometimes protection issues are raised by
the contents of their processing. So far, these two
points have hardly been separated, and each of them has
been processed in an odd manner. And the size of the
security kernel has unduly been big.

By unifying the various sequences of procedure
invocation, the structure of software system would be
much clarified, and the size of the security kernel would
be minimized. Thus, the integrity and the reliability of

the system would be improved much.
1. Call and Return

A call and a return are discussed in the early
section about the ring protection mechanism., This section
only discusses the following cases:

A call and a return in the same ring, and

98 INTER-PROCEDURAL COMMUNICATIONS Chap. 11

An inward call and a consequent outward return,

A call is accomplished by a call instruction and a return
is accomplished by a return instruction.

Automatic variables which are referred to in a
procedure are allocated in a stack., The area of stack
allocated to the variables for a procedure in the current
activation 1level 1is called a stack frame [ORGl]. The
status and the contents of the registers in the CPU are
all automatic variables. By saving all the automatic
variables in the stack frame upon call and by restoring
them wupon return, it is able to support the constitution
of reentrant or recursive procedures by the fundamental
framework of the system instead of a function of
individual 1language ©processors., The call stack in ALGOL
[RAN1] corresponds to the stack frame, A few large
computers are equipped with such an instruction that
performs both stack push and procedure invocation. SKB
instruction in HITAC 8700/8800 is an example of such an
instruction [SIM1]. By saving or restoring all the status
of the CPU in one instruction with stack push/pop and
call/return, the sequence of call to or return from a

procedure is much simplified, and the execution speed
would be improved much,

1.1 Call Instruction

The followings are the sequences executed by a call
instruction:
A. Save all the status of the process into the stack
frame. The status to be saved are:
1. Values of automatic variables including the contents

of the status registers and the general or working
registers in the CPU,

2. The return pointer to the caller's procedure,

Chap. 11 INTER- PROCEDURAL COMMUNICATIONS 99

3. The stack pointer, and

4, The linkage pointer.
All are the activation records of the caller which are
needed to be restored when control is returned to the
caller. The minimum information required to restore the
activation records 1s only the stack pointer, provided
that the address space is set for this process,
B, Push the stack frame.

This will set the stack pointer to the new stack
frame to be used by the called procedure. If a call is to
cross domain, switching the stack segments might also be
needed.

C. Transfer control to the called procedure in the proper
domain (ring).

The target domain (ring) is determined by the access
control information shown in the segment descriptor of
the called procedure. The check of the gate whether a
correct entry is selected or not is also undertaken.

D. Set the pointers to execute the called procedure.
In order to execute the called procedure, the stack
pointer and the linkage pointer must be set.

1.2 Return Instruction

The followings are the sequences executed by a
return instruction:

A. Pop the stack frame.

This restores the stack pointer to the previous
stack frame which has been used by the caller.
B. Restore all the activation records.

It is necessary to restore all the activation
records except those that cannot be changed in the called
domain of execution including the linkage pointer and the
contents of other working registers from the popped stack

100 INTER-PROCEDURAL COMMUNICATIONS Chap. 11

LINKAGE OFFSET TAB

offset
PROC A
of fset
~
CALL B - A's '
A's linkage
activation sectdis
records

1 k 1. save stat B'e
s jpop Estac v RN TR H activation
frame 2, push stack
records
2. restore frame,l B's linkage
status change i
domain gection

3. enterytarget 5 N
PROC B STACK SEGMENT
4. entry

sequence
(get
linkage
pointer)

LINKAGE SEGMENT

+ RETURN
PROCEDURFE. SEG.

Figure 11.1 Call and return

frame.

The information for protection control in the
process status saved in a stack frame is essentially the
one which the most privileged procedures can process.
Thus, such information cannot be restored without any
restriction, Restoration of the process status is
validated by imposing the following conditions:

1. Only return to the caller within the same dorain or
in the 1less privileged domain is permitted, and
return to the caller in the more privileged domain
is needed to be processed by the software

Chap. 11 INTER-PROCEDURAL COMMUNICATIONS 101

intervention,

2. The domain returned to is determined by selecting
less privileged one between the current one and the
one indicated in the process status.

3, Restoration of the process status is confined to the
information which can be processed in the called
domain.,

And there would be no fear that the protection status
would be impaired wunduly. Of course, the saving of
surplus information wastes time and space and should be
avoided, Thus, there is a difference in the amount of the
saved status between a usual call and an interrupt or a
fault, (Here, more privileged means that the domain has
some access privileges which others don't have, and less
privileged means that the access privilege of the domain
is proper subset of others.)

2. Elimination of SVC

A supervisor call (SVC) instruction switches
protection domains and calls a privileged procedure. The
domain of protection should be determined and switched by
the domain switching mechanism according to the access
rights of the target segment in the course of the
execution of an instruction which transfers control such
as a call or a return. In a computer system which is not
equipped such a domain switching mechanism, programmers
are obliged to wuse such instructions as SVC and LPSW
(load program status word) to switch domains according to
the contents of the processing. Thus, program logics are
affected by protection issue. SVC can be eliminated by
connecting the function of transferring control with the
domain switching mechanism (refer to Chapters 6, 7 and

102 INTER-PROCEDURAL COMMUNICATIONS Chap. 11

16).
By employing such a domain switching mechanisnm,

programmers are freed from the business of switching the
protection domains, which has nothing to do with the
algorithms of programs, and the structure of programs is
made clarified. All procedure invocation including one of
supervisory procedures can successfully be executed by a
usual call/return instruction.

3. Condition Handling

"Interrupt handling" facilities in software can be
found in the condition handling of PL/I [IBM3], [COR3],
[MSPM]. These facilities are to declare a handling
procedure for a predefined 'condition" and to execute
this handling procedure when the specified condition is
notified, using a signal statement, or is detected by the
hardware circuitry.

As a handling procedure 1is searched for in the
dynamic descendant manner, handling procedures might be
registered in the current stack frame when they are
declared, and then signalling might be accomplished,
searching for the required condition handler in stack
frames from the top to the bottom when a signal statement
is executed or a signal condition is detected by the
hardware circuitry,

This handler searching must be carefully controlled
lest protection violation should be caused. Condition
handlers might happen to be registered in the stack
frames whose access privileges are higher than those of
the procedure currently executing a signal statement.
Such condition handlers cannot be executed, because if

they can the result is that more access privileges are

Chap. 11 INTER-PROCEDURAL COMMUN ICATIONS 103

PROC A bottom

SIGNAL "c" ~ 1.

5. ‘\
"C" |CHAND[®\\ 3. found !
Tyt then call
X" |XHAND "CHAND"

PROCEDURE

SEGMENT
"Y" | YHAND

or hardware e i (:/

signal \
A

SIGNAL /

<l

search for 2. 5
condition A's frame 2. search for
5 specified
name "C" name |proc P
L condition

"A” AHAND / fiatia

\ CALL CHAND =~ 3.

NN

Fe
“*~RETURN 1 SIGNAL's frame
4, 4
PROC CHAND KL
3. CHAND's frame
\" RETURN
PROCEDURE SEGMENT STACK SEGMENT

Figure 11.2 Condition handling. When a SIGNAL
statement is executed or a hardware signalling 1is
required, (1) SIGNALling handler is invoked, (2) the
condition name 1is searched for in the stack frames,
and (3) the handler procedure found in step (2) 1is
invoked.

104 INTER-PROCEDURAL COMMUNICATIONS Chap. 11

given without any check of the validity.

In a system where only inward calls and outward
returns are permitted, such cases do not happen because
no more privileged stack frame than the current one
exists,

Further, condition handlers might happen to be
registered in the stack frames whose access privileges
are lower than those of the signalling procedure. Such
condition handlers should not be executed, because more
privileged procedures should not rely on the results of
less privileged ones and more privileged rings should
prepare their own signalling environment.

It will, then, be reasonable to impose such a
restriction that a condition handler should be searched
within the same domain. That is, signalling should be
accomplished without changing the domain, This
restriction from the standpoint of the protection will
not affect the program logic unduly,

4, Non-Local Go To

When a return instruction is executed back tracking
the chain of calls, the stack frame previously pushed
down by the call instruction is popped up.

It sometimes happens that control is returned to
another place other than the normal return point in the
caller's procedure or to the procedures on the call
chain, skipping the normal return sequences by a reason
such as job aborting., A call is only permitted to enter a
brand new procedure or a brand new level if recursive
call is executed, and this non-local go to is a kind of
returns, that is, control is returned to a procedure
which previously called other procedure and then

Chap. 11 INTER-PROCEDURAL COMMUNICATIONS 105

PROC A PROC B PROC C PROC N

CALL D

CALL B = CALL C
-

-\‘h\“*-a.RETURN

(a) Normal call and return.

L RETURN

- RETURN

PROC A - PROC B PROC C PROC N

i,

/7
CALL D "/ rGOTO X

CALL B = CALL C -~

ol

(b) Non-local go to.

Figure 11.3 Normal call / return and non-local go to.

transferred control to it and to which control has not
yet been returned. In contrast to a usual return which
returns control to the point where the call is executed,
this non-local go to returns control to a place other
than the normal return point, and in this sense, it is
sometimes referred as an "abnormal return'.

A return point of a non-local go to 1is also
designated, using a two-dimensional pointer. The problems
to carry out a non-local go to are:

1. A non-local go to may skip the sequences to
disengage those segments which some previously
called procedures have created and used temporarily
as data segments instead of wusing the stack
segments, and such segments may remain as vagrants.

Z, A non-local go to may leave some locks for common
resources locked.

3. It is necessary to pop up settings of condition

106 INTER-PROCEDURAL COMMUNICATIONS Chap, 11

— O —T

PROC A
A's frame
CALL B~
X: xxx
PROC B call
—_— g
B's frame
—
CALL C [clean up] ¢——>
PROC C call
> &
C's frame
CALL D —

\ [clean up] «—>
non-local ‘{call
go to with .
destination 6
pointer and 't —>
stack peoc N call
pointer > &

N's frame
non-local
-
L coTO X Re 't
PROCEDURE STACK SEGMENT
SEGMENT

Figure 11.4 Processing of non-local go to.

handlers,
To solve these problems it is necessary to execute post
processing sequences, popping up the stack frames which
are to be skipped by this non-local go to one by one.

Post processing procedures to disengage data

Chap. 11 INTER-PROCEDURAL COMMUNICATIONS 107

segments or to unlock locks may be set in the stack frame
of a procedure which needs such processings, On a
non-local go to stack frames are popped up one by one,
executing post processing sequences designated in stack
frames, until the intended frame is reached.

Thus, 1in order to accomplish a non-local go to, not
only the destination pointer but also the stack pointer
which points at the stack frame been used when control is
returned are needed, Further, if a system incorporates
lexical levels, the value of level and the set of display
registers are also needed.

As has already been mentioned, all the necessary
status to resume execution of the returned procedure can
be rTestored, wusing this stack pointer. Resetting (or
reverting) condition handlers is automatically
accomplished by popping up stack frames, so no more
problems remain here. [ORG1]

5. Implicit Call

There are another kinds of calls of which
programmers are not explicitly conscious but which affect
the structure of inter-procedural communications. They
are interrupts and faults, whose handling is the most
complicated and mysterious part in the modern, and
especially large computer architecture. And it is true
that this affects the structure of operating system
greatly, The purpose of this section is to clarify the
logical structure of them and to make the structure of
operating system easier to constitute and to understand.

An interrupt is the hardware mechanism to notify an
event relevant to asynchronous processing or an

asynchronous action to a process. The interrupted

108 INTER-PROCEDURAL COMMUNICATIONS Chap. 11

process generally has nothing to do with the event which
caused the interruption, while the status of the process
related to the event need to be changed. The alteration
of the process status 1is executed by the process
currently running on the CPU.

An interrupt is a hardware implemented ''call" [ORG2]
to a procedure which alters the process status, and upon
completion of this processing control is "returned" to
the interrupted place. Sometimes, control is once
preempted by other processes, and then returned. Such a
call and its consequent return are entirely transparent
to the computation of a process which is interrupted.

A fault is the hardware mechanism to detect
economically a condition or an event which is caused by
the execution of some operation and is difficult to
detect economically by software methods, or is caused by
the internal status in the CPU or the memory., That is, a
fault 1is logically a hardware implemented call [ORG2] to
an event handling procedure by the currently running
process itself, otherwise the detection sequences of
these events need to be programmed. Slightly different
point from other calls is that there are two types of
event handling procedures, one is statically defined and
the other is dynamically defined at the time of fault
detection. The details are left behind.

Anyhow, an interrupt or a fault is, by their nature,
a call to a procedure, and may result in a (normal)
return or a non-local go to,

Therefore, pushing and popping a stack frame just
the same way as a usual call and a return respectively,
pProcessing of an interrupt and a fault can be

accomplished in the same manner as a usual procedure
invocation [ORG1].

Chap. 11 INTER-PROCEDURAL COMMUNICATIONS 109

PROC ALPHA PROC (s)

e =2 T]

7 T la=T
d
CALL (s’d)____—!—) — I ?:::2'5

<
(s)'s
DESCRIPTOR - RETURN frome
SEGMENT 4",/”—
CALLER CALLED STACK
PROCEDURE PROCEDURE SECMENT

(a) Usual call and return.

PROC ALPHA PROC handler

LT

it
handler = ALPHA's
frame
interrupt

g
"\ or fault
i handler's
. frame
FAULT TABLE
INTERRUPTED HANDLER STACK
PROCEDURE PROCFDURE SEGMENT
(b) Interrupt and fault handling.
Figure 11.5 Normal call and interrupt or fault handling.
So far, interrupt and fault handling has

indiscriminately been executed by privileged procedures
in many computers. This method is not adequate in order
to make the structure of operating system clear and to
improve the integrity and the reliability of the system
by minimizing the size of the security kernel. Based on
the basic rule of information protection - need to know
[SAL3] - , only the matter which has relation to the

protection issue which can only be processed in the
privileged domain should be processed in that domain. For

110 INTER-PROCEDURAL COMMUNICATIONS Chap. 11

example, a linkage fault used in dynamic linking has been
processed by the supervisory procedure. Links are,
however, the data which belong to the domain vhere the
process 1is currently running. That is, as it is obvious
that they are processed in the wusual non-privileged
domain when they are linked by the static linker, there
is no problem which has relation to protection, and no
privileged processing is needed.

Anyway, by interpreting that both interrupt and
fault are invocations of procedures without any
exception, one can simplify and unify the structure of
inter-procedural communications and further the structure

of software systems,
6. Invocation of Interrupt and Fault Handlers

When an interrupt or a fault occurs and its relevant
handler is invoked, it needs some considerations to carry
out Steps 1.1 A, to D. executed on a usual call. They are
modified as follows:

A, To determine the target handler, and
B. To acquire appropriate status to run the target
handler,

6.1 Determination of an Interrupt or a Fault Handler

There are two cases to determine an interrupt
handler. One is given a pointer to an interrupt handler
for an interrupt. The other is given a queue of processes
which require to be notified an occurrence of an
interrupt,

There are also two cases to determine a fault
handler, For an event which the system is responsible for
handling, a pointer to the handler is given. For an event

Chap. 11 INTER-PROCEDURAL COMMUNICATIONS 111

which a process 1is responsible for handling, it is
necessary to search for a handler in the place relevant
to this process, given an event name as a key [MSPM].

These are principles; however, there are some
exceptions. A quit signal from a console operator, for
example, 1s an 1interrupt, but its meaning is that "an
external cooperative process'" of human being wants to
cause a fault condition. A linkage fault is a process
fault, but needs the processing on the system-wide
conventions, thus the pointer to the linker is given.

In case that a pointer to an interrupt or fault
handler 1s given beforehand, pointers may be listed in
the interrupt and fault handler table.

If a queue of processes which require to be notified
when some interrupt occurs 1is associated with its
interrupt, such an interrupt is also handled in the same
way as a usual procecdure call, designating a queue
handling procedure in the handler table described above.

Handlers for many process faults are often changed
during the execution of a process. This is just the same
situation that a condition handling procedure of PL/I is
defined for a condition name by using an ON statement,
and at another point such a pre-defined procedure is
invoked by wusing a SIGNAL statement. That is, process
fault handling is the generalization of the condition
handling mechanism, and such fault handling is
accomplished, designating a fault type as a condition
name (see Figure 11.6) [MSPM], [COR1]. The fault type is
one of the process status and is saved in the stack frame
of the faulted procedure.

The procedure "signal' searches for and invokes a
handler registered in association with a condition name

in the faulted domain.

112 INTER-PROCEDURAL COMMUNICATIONS Chap. 11

/fﬂlfﬂ(

PROC ALPHA PROC STEMAL PRNC handl

search for
% process conditton / [name [hana1 r\
faule i o handler
STMNAL
b — CALL handl = ;
4—~‘\\\\\\“ H

|}
1\ |
I
|
RETURM PRFTURN ALPHA's |
INTFRRUPT /[frame
FAULTED PROC. FAUIT TABLF STEYALLTHG PROC, HAMDLFR PROC.)
Figure 11.6 Processing of process faults whose ostisole
handler is determined at the time of execution. When
. handl'
such a process fault occurs, the pointer to the Frome.

signalling routine 1is given by the interrupt and
fault table, And the required condition handler is
searched for 1in the stack frames of the faulted
process in just the same way as a SIGNAL statement.

STACK SFCMENT

Thus, putting the pointer to the signal procedure in
the handler table, these faults can be handled just the
same way as other interrupts and faults.

It may be considered that the interrupt and fault
table is a fixed table except in a special case, thus
only one table is enough even if the system is running in
multi-programming operation, On the contrary, one
descriptor segment which describes the address space of a
process is needed for each and every process.

To get the required handler from the interrupt and
fault table is logically equivalent to the situation that
a usual procedure call is accomplished by referring to
the descriptor segment. That 1is, the conventional
segmentation mechanism can be applied for the

Chap. 11 INTER-PROCEDURAL COMMUNICATIONS 113

implementation of interrupt and fault handling by
preparing an additional descriptor segment for interrupts
and faults and a base register which points at the
beginning of that table, and by switching the base
registers as the occasion demands. (See Figure 11,5,) The
interrupt handler table prepared in the stack trunk of
Burroughs 6700 1is one example which realized this
function.

6.2 Status for Handler Execution

It is also able to apply the decision function of
the execution status and the domain in the segmentation
mechanism for the execution of an interrupt of a fault
handler. In this case, the usual descriptor segment and
the one for interrupt and fault handling are pointed at
by the separate base registers, and there is no fear to
misuse these tables. Thus, the access rights can be
assigned independently each other. Care must be taken
from the viewpoint of protection not to invoke a less
privileged handler when a process 1is interrupted or
faulted.

In case that the ring protection mechanism is
incorporated, the status to run an interrupt or fault
handler is determined by the ring number r, and the kind

of procedure, supervisory or non-supervisory procedure,
The problem is the relation between the faulted or
interrupted ring number T, and the target executing ring

number r . It is assumed that only inward calls are

permitted. Therefore, the condition

r > T

y X

114 INTER-PROCEDURAL COMMUNICATIONS Chap. 11

is needed. Otherwise, a less privileged interrupt
handling procedure 1is 'called" from a more privileged
ring. This 1is not agreeable from the viewpoint of the
information protection.

The domain where a handler associated with some
interrupt 1is executed is essentially independent of the
priority of that interrupt; however, there would be no
obvious inconsistency if an interrupt of higher priority
is considered that it has higher protection level. All of
the interrupt handling is executed in the supervisory
mode in many systems, and there is only one protection
level 1in this case. The above condition reduces the
system to one level at the most limiting case, In case of
an input and output interrupt which usually needs prompt
attention, the protection level is also high because of
the information protection. And there would be no obvious
inconsistency when the value of T is associated with the

priority of an interrupt. Even if interrupts whose ring
number of execution are greater than the current ring
number (ry < r,) are inhibited, it would not cause any

inconvenience,

Fault handling is a procedure invocation which is
essentially executed by the current process itself and,
therefore, it is rather natural that the current ring 1s

not less than the target ring, that is, ry ® T

To summerize, the condition ry > T can be assumed

X"

for most interrupts and faults or can be impo-ed without
inconvenience, and the problem of the executing ring is
solved. Registering ring brackets in the handler table

Chap. 11 INTER-PROCEDURAL COMMUNICATIONS 115

just the same way as the descriptor segment, one can
control the domain switching in the same way as the usual
domain switching.

Here are some comments about interrupt and fault
handling.

1. The interrupt and fault handler table is referred to
by the address formation hardware only when an
interrupt or a fault is detected. Therefore, if a
different ring bracket from the descriptor segment
is given, 1t cannot be improperly used for other
purposes.

2, Usually, a call bracket in a ring bracket of an
interrupt or fault handler includes the maximum ring
number of the system. Thus, whatever executing ring
is interrupted or faulted, it is able to '"call" the
required handler. Further, the ring bracket in the
descriptor segment is different from the one in the
handler table, but there 1is no danger to be
improperly used,

3. The signal handler is a utility procedure whose ring
bracket is (0, 7, 7), and is executed without any
ring change. This is natural because process faults
are logically just the extension of usual processing
of the currently running process,

7. Interrupt and Fault Table

The interrupt and fault table acts as the descriptor
segment only when an interrupt or fault handler is
"called". This table is indexed by interrupt and fault
number assigned to each interrupt and fault. Each entry
of this table holds the following items:

Pointer to the handling procedure,

116 INTER-PROCEDURAL COMMUNICATIONS Chap. 11

Segment length,
Access privileges, and
Type of the handling procedure including the
addressing mode.
The following figure shows the construction of an
interrupt and fault table.

base reg. T

interrupt
or fault
number

l———— handler descriptor

INTERRUPT AND FAULT INTERRUPT
TABLE OR FAULT
HANDLER

access cont.

pointer length information

type

HANDLER DESCRIPTOR

Figure 11.7 Interrupt and fault table.

A supervisory procedure can only be run in ring 0, which
can execute such privileged instructions as doing input
and output or changing the ring number,

The absolute addressing mode is used to form address
directly without wusing the descriptor segment in such
special processing as machine malfunction or initiation
fault handling, Switching to the two-dimensional
addressing mode from the absolute addressing mode is

taken place by executing a mode switching instruction, or

Chap. 11 INTER-PROCEDURAL COMMUNI CATIONS 117

by an interrupt or a fault which is processed in the
two-dimensional addressing mode,

8, Masking Interrupts and Faults

It is necessary to inhibit and mask another
interrupts and faults while the process status is
reserved. In case that the hardware status reservation
and stack pushing mechanism is incorporated, such
inhibition 1is not necessary. But such an interrupt or a
fault whose executing ring number is greater than the
current ring number, can not be processed, because they
would result an outward call which must be inhibited.
Such an algorithm is implemented by hardware or firmware
better than by software.

9, Processing of Interrupt and Fault Status

There are two kinds of processor status, one relates
to usual processing and the other relates to protection
control, Table 11.1 summarizes this relation, The saving
of the contents of the instruction counter, the pointer
registers, the general registers and the domain register
is required upon a usual procedure call, and?}estoration
of them under the condition not to give surplus
privileges is required upon return.

There remain other status in the CPU. They are the
status of instruction execution, address formation and
pipeline operation, the mask for interrupts, the
interrupt register and so on, The larger the computer
becomes the more delicate the control becomes. These
status should also be saved and restored in case of

interrupt and fault handling.

118 INTER-PROCEDURAL COMMUNICATIONS Chap. 11
USAGE CALL/RETURN INTERRUPT and FAULT COMMENT
PROCESSE'S | PROTECTION|SAVE | RESTORE SAVE RESTORE
OPERATION
INSTRUCTION i % % * *
COUNTER
POINTER & " " * "
REGISTER
OPERAND -~ * * * *
REGISTER
;§g¥g¥§§10“ * * OCCASIONAL
EEE?E:ER ;ii;FY * * | CONDITIONAL x | CONDITTONAL
DE§CRIPT0R % % o | PRIVILEGED % PRIVILEGED
BASE MODE MODE
REGISTER
EXECUTTON N INCLUDED
MODE IN
SEGMENT
DESCRIPTOR
EXECUTTION N CAN
PHASE * CONDITIONAL | S
ADDRESS
FAULT CAN
FORMATION * * CONDITIONAL
Vi STRY
PHASE HANDLING RET
DOMATN
SWITCHING FAULEING * * CONDITIONAL
PHASE Rihp
PIPE-LINE) % MAY
CONTROL DISCARD
INTERRUPT INT. /FAULT N . PRIVILEGED
MASK HANDLING MODE
INTERRUPT INT. /FAULT i i PRIVILEGED
REGISTER HANDLING MODE
Table 11.1 Saving and restoring of the status in the CFU.

Chap. 11 INTER-PROCEDURAL COMMUNICATIONS 118

9,1 Point of Issue for the Saving of the Status

It is required to save the status of the CPU in a
stack frame of the current process. In case that demand
paging is employed, this saving might cause a page fault,
and therefore, it is needed to take some countermeasures
such as saving the status in the hardcore stack first
which belongs to the process but is concealed from it
[MSPM], and then moving them to the stack frame, or
allocating the stack in a contiguous area lest a page
fault should caused.

Reception of an interrupt and a fault has been
processed in the privileged domain so far because the
most sensitive information that controls protection is
also included 1in the status to be saved. This part is
regarded as the interface between the hardware of the CPU
and the system software. Assuming that the ring
protection mechanism is employed, the ring bracket of
this part is (0, n, 7), where n is the target ring number
that the target handler has, Execution of this part
begins in ring 0, the most privileged domain, saves the
status, determines the target ring, and invokes the
target handler in the target ring. Thus, this is an
exceptional part from the viewpoint of usual procedure
invocation. Such processing is permitted only because it
is executed in the privileged domain; however, this
violates the system convention of procedure invocation.
Thus, this part should be regarded as a part of the
processor, and then there would be no contradiction in

the previous discussions,

9.2 Point of Issue for the Restoration of the Status
If an interrupt or a fault which doesn't require the
privileged processing is processed in the non-privileged

120 INTER-PROCEDURAL COMMUNICATIONS Chap. 11

domain, how can the sensitive status be restored then?

One way to perform this 1is to ask a privileged
procedure to restore or to validate them [JAN1] [MSPM],
but this method results in that the protection issue
affects the program logic, and that the return sequence
of handlers 1is also changed. These things are not
favourable for our purpose. An interrupt or a fault
handler processes within the privileges of the executing
domain, and is permitted to restore the status within the
scope of its ability, that is, it is not permitted to
restore status which give more privileges to the process,
On the contrary, the handler has the right to give less
privileges to the process.

If such sensitive status which need more privileges
to restore don't exist in the current domain, return from
the handler would be performed successfully by the usual
return sequence. We will study this situation individu- -
ally in the following:

Input and output interrupts:

These process the raw information, and in many
cases, it is required to alter the process state,
These processing should be performed in the
privileged domain,

Operator interrupts:

The requirement of response time is not strict,
thus it is able to delay such interrupts until no
sensitive status remain,

Machine check faults:

Usually, they can be processed only in the
privileged domain.

Faults in the course of address formation:

(linkage fault)

It is only needed to retry the faulted operation.

Chap. 11 INTER-PROCEDURAL COMMUNICATIONS 121

(Segment/Page fault)
They are processed in the privileged domain.
Access violation faults, and domain switching
faults:
They are processed in the privileged domain,
Faults caused by arithmetic or logical operation:
They have nothing to do with protection.
Thus, return from the handler may be performed by the
usual return sequences.

10, Necessary Faults

Programs cannot efficiently be executed if the
checking of all the conditions is needed in programs each
time a statement is executed. Hardware implementation of
such checking is necessary to ease programming and to
execute programs efficiently.

This hardware facility is referred as a fault. This
section discusses the kinds of faults and the processing
policies which are desired to form an address space.

10.1 Faults Caused by Errors in Hardware and Software
Faults caused by a machine malfunction, an illegal
instruction, or an illegal operand imply that there
happened an errorneous operation and it is meaningless to
continue the current processing.
These faults would need no further explanation.

10.2 Faults Caused by Arithmetic Operations

Some faults are caused in the course of arithmetic
operations in the CPU. These faults would only need a
short explanation.
Faults caused by:

122 INTER-PROCEDURAL COMMUNICATIONS Chap. 11

Accumulator overflow or underflow by add, subtruct,
multiply, and divide operations,
Loss of digits caused by floating point add,
subtract operations, and
Zero divide
are process faults, and it 1is needed to execute a
procedure which is designated by the current process or a
default handler which is designated by the system.

10.3 Faults Caused by Address Formation
Some faults are caused in the course of address
formation carried out by the CPU when an instruction is
fetched or an operand is referred to. These faults are
caused by the following reasons:
A. Access to a link which has not been snapped yet
(linkage fault)

This is a process fault but needs processing on
(sub-)system-wide conventions. (See the section of
dynamic linking.)

B. Access to an inactive segment (segment fault)

This is a system fault and it is necessary to
activate this segment and place (the page table of)
this segment in the main memory.

C. Access to a missing page (page fault)
This is a system fault and needs page loading.
D. Access to static storage which has not been
established yet (static storage fault) [JAN1]

This is used to initiate and establish a static
storage space needed to run a newly called pure
procedure. This is a process fault but needs
processing on (sub-)system-wide conventions, Its
processing is to copy the template of the static
area relevant to the procedure into a static data

Chap. 11 INTER-PROCEDURAL COMMUNICATIONS 123

segment, and set the private pointer table,
E. Access to the stack bottom or the bottom of the
gqueue

10.4 Faults Caused by Access Control Functions
The following faults are caused by the access
control functions which relate to the access rights of
the target segments:
A. Access violation
This 1is a system fault, which requires to deny
the access and to halt the process execution,
B, Wall <crossing for which software intervention is
necessary
This is a system fault which requires to switch
the domains. No SVC instruction is needed because
the domain switching 1is taken place when the call
instruction is executed.
C. First time / every time reference fault
This is used to detect first time or every time

a specified 1ink is referred to.

10,5 Faults Intended to be Used by a Process

Some faults are caused by a process itself
intentionally in order to be used for its processing such
as obtaining a check point dump in debugging. They are
sometimes called simulated faults, which are detected as
an exception of a certain condition such as a segment
number.

11, Where to Set Fault Conditions

Some faults are able to be detected when a pointer
which needs to cause a fault is used. The followings are

124 INTER-PROCEDURAL COMMUNICATIONS Chap. 11

a 1list which shows where to set fault conditions for
various kinds of faults:
A. In a segment descriptor
Segment fault
Access violation fault
Crossing wall fault
B, In a link
First / every time reference fault
Linkage fault
C.1 In a pointer in a 1linkage offset table
Static storage fault
C.2 In a pointer in a page table
Page fault
C.3 In a pointer in a queue
Bottom of queue fault

125

CHAPTER 12
MECHANISM OF DYNAMIC LINKING - IMPROVED ALGORITHM -

The algorithm of dynamic linking has been discussed
in Chapter 5. One of the reasons why it is difficult to
implement dynamic linking is that it has been necessary
to constitute the linker as a privileged procedure which
has been related to fairly big parts of the supervisory
kernel. However, as described in the previous chapter, it
is desirable to execute the linker in the faulted domain
in order to make the security kernel small and to improve
the integrity of the system. That is, the processing of
linking doesn't need the privileges of the security
kernel, and the security kernel doesn't need the linker
for its functions. This is obvious from the fact that
conventional 1linking is performed in the non-privileged
state by a service program such as a linkage editor.
Therefore, dynamic linking should not be executed in the
privileged state but in the non-privileged state. Here,
the algorithm of the 1linker is developed to meet this
requirement,

1. Removing the Linker from the Security Kernel

It has been shown in Chapters 6 and 7 that problems
with regard to information protection arise when a
process gains more privileges than the current one.

A linkage fault which requires to switch domains is,
in fact, caused only by a domain crossing call to a
procedure which is required to execute in a different

126 MECHANISM OF DYNAMIC LINKING Chap. 12

domain, The kinds of access to a usual segment are read,
write and execute. Read- or write-access to a segment to
which it is not permitted to get access in the current
domain is nonsense. And it is obvious that no linkage
fault occurs when control is returned to the caller.

In case of the ring protection mechanism, an inward
call is the only thing that may cause a linkage fault
which needs special handling. That 1is, read- or
write-access to a segment whose read or write bracket
includes the current ring has no problem. The linker can
refeti*fo sgch a segment in the faulted ring. Further, an
outward transfer of control is restricted to an outward
return, which doesn't cause a linkage fault because the
segment returned to is the '"caller" itself,

Now, 1let's consider the case that causes a linkage
fault when a segment is called crossing the domain walls.,

When a 1linkage fault is caused, the 1linker is
invoked in the faulted domain. The linker, then, obtains
the segment name of the target procedure wusing the
pointer in the 1link, and asks the file subsystem to
search for this segment in the directory hierarchy.

Next thing to do is to get the entry offset looking
up in the global symbol table of the target segment. The
problem arises here. Because the intended call is a
domain crossing call, the called segment cannot be
referred to by the 1linker executed in the caller's
domain. The most easy going way to solve this problem is
to execute the linker in the privileged domain which has
the capability to get access to the information which can
be referred to in both the faulted domain and the target
domain, It is, however, desirable to minimize the
security kernel in order to improve the integrity and the
reliability of the system. Thus, it is required that the

Chap. 12 - IMPROVED ALGORITHM - 127

linker itself should be executed in the called domain.

The problem of removing the linker from the security
kernel 1is discussed by Janson [JAN1], but the linker in
the faulted domain calls the linker in the called domain
via the gate prepared for this purpose in each domain in
his method. However, taking account of the following
facts:

1. Only a privileged procedure can determine the target
domain, and
2, The function that determines the target domain has
already been included in the mechanism which
controls the domain switching associated with
transfer of control,
there 1is entirely no mnecessity to implement the same
supervisory function for the 1linker over again. The
program logic of Janson's 1linker is affected by the
protection issue, and is unduly difficult to understand.
Moreover, preparation of gates is needed.

The scheme proposed here wutilizes the domain
switching mechanism that the system has already had, and
clarifies the algorithm of the linker further.

Here, the 1linker is divided into the following two
functional modules:

1. Segment linker

A. To get the target segment name by the pointer in
the faulted link.

B. To ask the file system to search for the target
segment, And to assign a segment number to the
target segment.

C. To set only the segment field in the link.

D.1 In case that an entry name is given, to set the
condition in the 1link to cause the second

linkage fault.

128 MECHANISM OF DYNAMIC LINKING Chap. 12

D.2 In case that the value of entry displacement is
given, to establish the link.

E. To return control to the faulted place.

2. Entry linker

A. To get the entry name by the pointer in the
faulted link.

B, To get the value of entry displacement that
corresponds to the entry name by looking up in
the global symbol table associated with the
target segment.

C. To set the displacement field in the 1link.

D. To return control to the faulted place.

When the first 1linkage fault occurs, the segment
linker is invoked in the faulted domain. The segment
linker executes the steps of 1., and then, control is
returned to the faulted place. In case that an entry name
is given, reference to the target segment via the link
causes the second linkage fault because of Etep 1.D.1,

This time, however, the target segment has already
been determined, and address formation process proceeds
to the stage to determine the target domain and to switch
the domains. Thus, if the second linkage fault is caused
in this state, it results in that the entry linker is
invoked and executed in the required domain to refer to
the target