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                            Preface 

     It was when Heitler and London applied  quantum mechanical 

theory to hydrogen molecule in 1927 that quantum chemistry came 

into the world. Since then quantum chemistry has been proved 

not only to provide an effective strategy for the interpreta-

tions of a lot of chemical phenomena that had been explained 

unsatisfactorily by the classical theories in chemistry, but 

also to afford non-empirical nature to chemistry, thanks to 

ceaseless efforts of chemists and physicists. This should be 

regarded, however, as a reasonable consequence since the chem-

ical behaviours of atoms and molecules are ruled to a greater 

extent by the motions of electrons that are subject to what is 

described by quantum mechanics, on which quantum chemistry is 

grounded. 

     The field of intermolecular interactions, which plays im-

portant roles in a great deal of chemical and physical phe-

nomena, is one of the most significant branches in quantum chem-

istry. There are two main methods that have been established 

in the course of the study of these interactions by means of the 

quantum chemical approach. One is the perturbation theory 

based on the separate molecules in order to treat long-range 

intermolecular interactions. This theory is also applicable 

to the systems interacting with external field. The other is 

variational methods based on the Hartree-Fock approximation
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dealing with the intermediate- and short-range  interactions, 

where the interacting species should be regarded as a molecule. 

      Particularly, the applications of the molecular orbital 

(MO) theory to the latter interactions have been of routine 

work and yielded a great deal of results in the calculations of 

electronic structures of molecules and the interpretations of 

various chemical reactions. Varieties of fruitful theories of 

chemical reactivities have been also proposed on the basis of 

MO concepts and the important role of the particular orbitals 

in the orientation and stereoselection of many chemical reac-

tions has been pointed out. 

      However, recent developments of experimental techniques 

for determining weak interaction energies have caused an 

inevitable re-examination of theoretical treatment for long-

range interactions. Furthermore, the studies on the electron-

ic structures of molecules in the excited state and the inter-

molecular interactions in molecular aggregates are highly needed 

at present according to the recent explosive expansion of ex -

perimental works in photochemistry and low-dimensional coopera-

tive phenomena in condensed phases . 

     The main theme of this thesis is to study the elecronic 

structures and interactions in molecular systems and ag
gregates. 

It is composed of the studies on (i) long-range to short -range 

interactions in the ground state , (ii) deformations in molecu-
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lar geometries and reactions caused by the intramolecular in-

teractions in the excited state, (iii) treatment of local 

perturbations such as local defects or impurities in molecu-

lar aggregates, and (iv) electronic structures and interac-

tions in polymeric sulfur nitride,  (SN)x, and its precursors, 

which are of particular interest because of anomalous low-

dimensional metallic conductivity of (SN)x polymer. The 

present studies on the interactions in molecular aggregates 

would be regarded to involve a challenge by quantum chemistry 

to the field of solid state science.
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                           Introduction 

     A series of studies on several current problems in the 

field of intra- and intermolecular interactions is performed 

in this thesis. Nowadays, it admits of no doubt that one 

ought to analyze the wavefunctions of the concerned chemical 

systems on the basis of quantum chemistry in order to obtain 

theoretical interpretations for various chemical phenomena. 

An opportune utilization of quantum chemical methodology will 

permit us to obtain useful  informations on these interactions. 

     In Chapter 1 (published in Bull. Chem. Soc. Jpn., 47, 

1578(1974) ), a formulation of the upper and lower bounds of 

the exact second-order perturbation energy affording a theo-

retical ground for the study of the long-range interactions is 

presented. This formulation is applied to the polarizability 

of a hydrogen atom and the long-range force in H-H system. 

     In Chapter 2 (published in Bull. Chem. Soc. Jpn., 48, 

3500(1975) ), the long-range interaction in the anionic system 

is studied by means of the second-order perturbation theory, 

and the nature of the interaction operating in the system is 

discussed. 

     In Chapter 3 (published in Bull. Chem. Soc. Jpn., 48, 

1740(1975) ), intramolecular interactions and optimum config-

urations of several ion-molecule complexes (NH4+-CH4, H3O+-CH4, 

and NH4+-H2 systems) are examined. The contributions from
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the charge transfer configurations to the total  wavefunctions 

of the systems are also estimated by the configuration analy-

sis. 

     In Chapter 4 (submitted for publication), a concept of the 

cross-bicyclization complementary to that of the cycloaddition 

is defined concerning simultaneous bicyclization in a linear 

conjugated polyene. The stereoselective modes in thermal and, 

especially, photo-induced reactions are discussed. 

     In Chapter 5 (published in Bull. Chem. Soc. Jpn., 50, 

1391(1977) ), an interpretation is given on the characteris-

tics of singlet biradicals. Systematization of the reactiv-

ities of singlet and triplet biradicals caused by the intra-

molecular interactions is investigated as well. 

     In Chapter 6 (published in Chem. Phys. Lett., 48, 141(1977) 

), a theoretical method is developed in order to deal with 

non-periodical molecular aggregates such as having local de-

fects or impurities. An infinite polyene is employed there 

as a model system. 

     In Chapter 7 (submitted for publication; partly reported 

in Ann. New York Acad. Sci., (1977) in press) , the process of 

the dimerization of disulfur dinitride ,S2N2,into tetrasulfur 

tetranitride, S4N4, is investigated from the viewpoint of th
e 

frontier orbital interaction. 

      In Chapter 8 (published in J. Phys . Chem., 81, 727(1977)

-2-



), the initial stage of  polymerization  from S2N2 molecules to 

(SN)x polymer is examined with the use of the MO theory. The 

mechanism of polymerization at this stage is discussed based on 

the interactions in deformed S2N2 molecules. 

      In Chapter 9 (published in Bull. Chem. Soc. Jpn., 50, 

798(1977) ), one-dimensional (SN)
x and its isoelectronic system 

(SCH)x polymers are studied on the basis of the SCF-tight-

binding MO theory. The band structures and the electronic 

structures of them, and the possibility of electrical con-

ductivity in (SCH)
x polymer are discussed. 

      In Chapter 10 (Chem. Phys. Lett., in press), the inter-

chain interactions in (SN)x polymer are studied on the basis 

of the method similar to what is used in the previous Chapter. 

The crystallographic plane in which the significant interchain 

interactions operate is pointed out and the main reason of the 

interactions is discussed.

-3-



                          Chapter 1 

  Theoretical Ground for the Study of Long-range Interactions 

 I. Introduction 

     The second-order perturbation energy, E2, is given by: 

 E2 = - E IHli12/ei ,(1) 
            i>0 

where Hli=<~(1)IH1I~00)> and °i=E(i)-E~O), in which H1 is the 
           0 perturbation, and01)and Eo1) are the i-th eigenfunction and 

eigenvalue of the unperturbed Hamiltonian H0, respectively. 

In the following, zpo0)and Eo0) are denoted to be ,p0 and E0, 
respectively, since only the ground state is treated in this 

Chapter. 

     Generally it is difficult to calculate the summation of 

Eq.(1); therefore, many approximate methods have been devised. 

Among them, the most useful method is Hylleraas's variation 

condition for the second-order perturbation energy:1) 

411110-EOIul> + <11IH1-E1I4)0> + O1-E1lul> 

 > E2,(2)

-4-



in which  T1 is an arbitrary function corresponding to the 

first-order perturbation function. One of the effective forms 

which have been applied for is that of Goodisman,2) who, 

using Eq.(2), obtained the upper bound of the second-order 

energy for the case in which first n excited states of unper-

turbed system are known. On the other hand, neglecting 

energies of a higher order than the second-order, Prager and 

Hirschfelder3) found the lower bound of the second-order energy 

based on the Temple principle:4) 

<(H-E(0)) I(H-E(1))f> > 0 ,(3) 

where E(1)is the i-th eigenvalue associated with i-th eigen-

function, T(i), of the total Hamiltonian, H=H +Hif                                               0 1'and where 

is a variational function for T(0), which may be divided into 

4'041' 

     Other theories estimating the upper and lower bounds were 

developed by Lindner and L6wdin5) and subsequently by Miller.6) 

They utilized operator techniques in the direction of using a 

finite arbitrary basis set for I1.Especially Miller extended 

the theory of Lindner and Lowdin, who treated only the second-

order energy in the ground state, to a theory which can be 

adopted to the second-order energy in the arbitrary excited 

state.

—5—
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of 

by

  It seems, however, that the form  of used by Goodisman 

rather tractable for performing the calculation. Therefore„ 

this Chapter, we will try to improve both the upper bound 

Goodisman and the lower bound of Prager and Hirschfelder 

the use of a form of ~1 similar to that of Goodisman.

                   II. Formulation 

(i)Derivation of the Upper Bound 

     Let us consider the following first-order variational 

function: 

                 n 
iV       1(n,a,{11i1i>n+1}) = - EHli(1)/e0 

i>0 

                                 (1)                    + a

in+luHli~0'(4) 

where A and each pi are arbitrary real paramete
rs. Substi-

tuting this function into Hylleraas's condition i
n Eq.(2), one 

obtains: 

    E2p(n,A,{uili>n+1}) = ( Eu?IHI2 e)A2 
                        i=n+11 lii

- 6 ---



                      + 2( E uiIHl.12)a +  A. (5) 
i=n+1 

where: 

  An = - E IH1.12/Ei .(6) 
i>0 

E2p(n,A,{uili>n+l}) in Eq.(5) is a quadratic formula with 
regard to A and takes the minimum value: 

    E2p(n,{uili>n+l}) = An - ( E2)2/( IHi l 2ci 
i=n+1i=n+1 

                                              (7) 

when A is: 

    A =-(EuIHliI2)/( EuiIHlil2ei).(8) 
i=n+li=n+1 

After modifying pi into some more convenient form, as will be 

shown below, one can further optimize E24)(n,{uili>n+l}) with 
respect to {pi} for each n to get the desired upper bound, E2p 

(n). If the simplest form of ui is chosen, i.e., ui=1 for 

any i, the result is just that obtained by Goodisman. 

     It can easily be proved that the upper bound thus obtained 

really satisfies the relation that E2p(n-1)>E2p(n). In order 

-7-



to prove this, let us calculate the following  subtraction 

between E2p(n,{uili>n+1}) and E2p(n-1,{uili>n}) of Eq.(7), 

keeping (pi) in common for both: 

    E2p(n,{11iIi>n+1}) - E2p(n-1,{uili>n}) 

           -1141
n12/En-( Eui~Hli~2)2/(ilHli~2Ei) i=n+1i=n+1 

            + ( E uiIHl.12)2/(Eu.2                    'H (9) 
      i=ni=n 

The right-hand side in Eq.(9) becomes: 

   -1H
ln12{ E u. 11122                               (u.e.-une ) }                i=n+l 

                          co 

          {(E ui1 H1i12ei) (EuilHi 12Ei)En}_ 0, 
      i=ni=n+1 

and is always nonpositive, since all of values are non-

negative. Consequently, when n becomes infinite, E2p(n,{uiI 
i>n+l}); hence, E2p(n) also approaches to E2 in Eq.(1) from the 

 upper side. 

      Next, we set the modified form of ui as ui=1+PE(i)/EOto 

 get the optimal value, EZp(n).7) Substituting this u. into 
 Eq.(7) and optimizing with respect to u, one gets: 

—8—



    Er(n) = An - {<11)0IH1I11)0>  + (uopt/E0)<11)0IH1H0H1IIp0> 

      -n(l+uE(1)/E)IHI2}2/{<~IH(HE)HI~ 
i>0 opt00liO10010> 

         + (2uopt/E0)<IP0IH1H0(H0-E0)H1I4)0> 

        + (uopt/E~)<11/ H0(HO-EO) H~H1I10> 

               n 

         -E(1+11
optE01)/E0)2IH1i12Ei},(10) i>0 

where: 

     uopt =[-(a2e-b2c) - {(a2e-b2c)2- (a2d-2abc)(2abe-b2d) 

}1/2]/(a2d-2abc) = (bd-2ae)/(ad-2bc), (11) 

and where: 

n 
     a = <P0IH1H0H1I-0>/E0 -E(E01)/E0)IHliI2' 

i=0 

     b = <11)0IH12J4,0> - E IH1iI2, 
i=0 

n 

    c = <1p0IH1H0(H0-E0)H0H1I~0>/E0iE(Eo1)/E0)2IH1iI2Ei,

— 9 ---



     d = 2{<~IHH(H-E)HI>/E- E (E(1)/E)IHI2iE} 
     01000100i>000li 

and: 

 n 

    e = <1p0IH1(H0-E0)H1I11)0>
iE0IH11I2ei•(11') 

(ii) Derivation of the Lower Bound 

     If the variational function  , which is divided into 

*041,as has previously been mentioned, is orthogonal to the 

first several excited eigenfunctions of the total Hamiltonian, 

i.e.. 

< IY'(k)> = 0 (k=1,2,....,n) .(12) 

the following Temple-type inequality: 

<(H-E(0)) I(H-E(n+1))l> > 0 ,(13) 

is easily established and can be utilized as the base to get 

the lower bound. Employing the same form as in Eq .(4) for 
qi becomes: 

n 

       = 4)0 + 1l = 4)0 - 1E0H14 (i)/Ei+aIuiHli41) , (14) i=n+1

- 10 -



which satisfies  Eq.(12) as far as the second-order energy is 

considered.8) Substituting this qi into Eq.(13) and neg-

lecting the energies of a higher order than the second-order 

one, a lower bound for the second-order energy is obtained as 

follows: 

     E2> { E 11i1H1i12Ei(1-ei/En+1)}a2 
             i=n+1 

          + 2{ Eui1Hlil2(1-Ei/En+l)}~ 
i=n+1 

         + {An IHli2/en+11 
                      i=n+1 

      Elow(n,A,{uili>n+1}),(15) 

which takes the maximum value: 

     Elow(nr{11i1i>n+l}) = -{EuilHl.1 (1-ei/en+1)}2/ 
i=n+1 

               { EuijHlil2Ei(1-Ei/En+1)} 
                     i=n+1 

           + {An -E1H1i12/.E+1},(16) 
                           i=n+1 

when:

— 11 —



 X= -{ E uilHlii2(1-ei/En+1) )/ 
i=n+1 

            { E ui1Hli12ei(l-ei/en+l) }-(17) 
i=n+1 

E 
 low(n ,{uili>n+l}) can be further optimized with regard to {ui} 

2 to obtain E2ow(n)• If n=0 and ui=l, the result coincides with 
that obtained by Prager and Hirschfelder. 

     Furthermore, the relation that E2ow(n)>E2ow(n-1) can be 
proved by calculating the following subtraction with the use of 

Eq. (15) , keeping X and {ui} in common for both E2ow(n,X,{ui1 

i>n+1}) and E2ow(n-l,X,{11iii>n}) 

     E2ow(n,X,{U1Li>n+l}) - E2ow(n-1,X,{uili>n}) 

                                   2 

                                             2 

               { (En+l-En)
in+lu11Hl.12Ei/Enen+1}a 

+ 2{ (En+1-en) E ui~Hli~ 2Ei/EnEn+l}~ 
i=n+1 

+ {(En+l-en) E1H1iH2/Enen+11. (18) 
i=n+1 

Eq.(18) is a quadratic formula of X and is always positive, 

  since the coefficient of X2 is positive and since the discrimi-

  nant of Eq.(18):

-12-



 cc 

    D = (En+1—En)2{ ( E u1IH1iI2E1)2 
                        i=n+1 

 

(  EuiIH1iI2Ei) ( E IxliI2)}/(en+1En), 
 i=n+1i=n+1 

is always negative, which is ensured by the Schwartz inequality. 

Therefore, when n becomes infinite, Elow(n,A,{uili>n+1}); 

hence, Elow(n) also approaches to the true E2 value from the 

lower side. 

     As a special case, by substituting ui=l7) into Eq.(16) one 

gets the lower bound, Elow(n): 

Elow(n) = -{' E IHliI2(1-Ei/En+l)}2/ 
i=n+1 

{ E IHlil2Ei(1-Ei/En+1)1 
i=n+l

- + {A
n E IHli12/En+l} , (19) i=n+1 

which can then be rewritten by using the a, b, d, and e defined 

in Eq.(11'): 

     EZow(n)= _[b_(a-b)EO/En+1]2/[(a-b)E0-(d/2-2e+aE0-bE0)E0/ 

En+1] + (An-b/En+1) . (20) 

-13-



                  III. Results and Discussion 

(i)Polarizability of a Hydrogen Atom in the Ground State 

     The value of the polarizability,  a, is twice the absolute 

value of E2 caused by the perturbation, H1, which, in this case, 

is z (in a.u.), the coordinate of the direction of the electric 

field (throughout this Chapter the atomic unit is used). 

Then, 

a = -2E2 = 2 E 1<IP0(i)lz1J0>12/(E01)-E0) . (21) 
i>0 

In order to examine the usefulness of the present theory for 

the upper and lower bounds, we have to calculate Egs.(10), 

(11), and (20). In the calculation, the following values of 

integrals are required: 

<p01z10> = 0, 

<IP0lz214V0> = 1, 

<P01zH0zliP0> = 0, 

<1V01zHOzlPO> = 1/12, 
and

-14 -



uq

IC 

of

 <iI0IzHOz I>p0> = 5/12,(22) 

in which I0is the  ls-function of a hydrogen atom and in which 

E0is -1/2. 

      In Table 1, the results for n=0, 1, 2, 3, and 4 are shown. 

The values of X and u are also shown, since they are the 

parameters corresponding to 1/E0and E0/(E0-E(i)), respectively 

7) Compared with the results of the lower bounds of a re -

ported by Goodisman (ui=1), the present lower bounds are fairly 

well improved because of the existence of the ui parameter; 

the upper bounds are also better than that reported by Prager 

and Hirschfelder. For both the upper and lower bounds, the 

improvement from n=0 to n=1 is meaningful, but for n>2 the im-

provement does not seem to be substantial. 

(ii)The Dispersion Force between Two Hydrogen Atoms 

     When the internuclear distance, R, between two hydrogen 

atoms in the ground state is large enough, the overlap and, 

hence, the exchange are insignificant; one can take IpO=tpA(1)tpB 

(2) as the unperturbed wavefunction for this system, where 

IPA(1) and tpB(2) are the isolated atomic wavefunctions of the 

two hydrogen atoms. Besides, the perturbation, H1, in usual 

notations:10)

- 1 5 -



Table 1. The 

in

Upper and Lower 

the Ground State

Bounds for Polarizability of a Hydrogen 

 (Exact=4.5a))

Atom

  alow(n) b) 
n =-2E2p(n)

A u alow(n) c) 

(ui=1)

         b) 
aup (n) 

=-2Elow(n)

A {a
low

(n)+0tup(n)}/2

0 

1 

2 

3 

4

4.125 

4.363 

4.391 

4.415 

4.420

-2 . 

-1 . 

-1 . 

-1 . 

-1 .

063 

611 

499 

457 

435

0.09091 

0.07286 

0.06644 

0.06638 

0.06525

4.0000 

4.3162 

4.3636 

4.3800

4.762 

4.646 

4.623 

4.612 

4.607

*
-0.8571 

-0.7495 

-0.7156 

-0 .7007 

-0 .6929

4 

4 

4 

4 

4

.444 

.505 

.507 

.514 

.514

a) 

b) 

c)

Ref. 9. 

Present 

Ref. 2.

results (*; Ref. 3).



H1=  -1/rBl - 1/rA2 + 1/R + 1/r12 , (23)

can be expanded in 

second-order energy

an 

 is

inverse power series of 

generally represented

 R, 

by:

and the

-E2 = C6/R 6 + C
8/R8 + ..... , (24)

where:

C6= E I<~,(i) IHddI,yo>I2/(Eo(i)-Eo) , 
i>0 

Hdd = x1x2 + yly2 - 2z1z2 , (25)

and

C8= E I< 
i>0

Hqd

(i) 
0 IHgdI4'o>I2/(E

= (3/2) {r 2 

lz2-

(i 
0

)-E
O)

r2Z1 + (2x1x2 + 2y1y2 - 3z1z2)

(z1 - z2) } . (26)

In the 

kinds

 calculation 

of integrals,

of the 

 which

bounds for C6, 

are evaluated

 one needs 

as follows:

various
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 <1POIHddkUO> = 0, 

         2 

    <1,oIHddlvPo> = 6, 

<11)01HddHOHddk'O> 0' 

    <1pOIHddHOHddl~'0>1' 

and 

<1pOIHddHOHddIPO> = 5 • 

      In Table 2, the results for C6 using n=0, 1, 2, 3, 

6, and 7 are shown. As in the case of polarizability, 

improvement from n=0 to n=1 is remarkable, but for n>2 

effect is not so large. 

      When calculating the bounds for C8, the following 

are required: 

<4)0 
gdl111o> = 0 , 

<v)olH(24dlo> = 135 

<)OIH
gdHOHgdH)O> = 45/2 , 

— 1 8 —

(27) 

 4, 5, 

the 

the 

integrals



Table 2. The Upper and Lower 

between Two  Hydrogen 

=6.4990267a))

Bounds 

 Atoms

for 

in

 Dispersion Force 

the Ground State

Constant C6 

 (Reliable Value

n

C
low,n) 

-E2p (n)
b)

A u Clow(n) 

(ui=1)

c)
Cup,n)b)  6 

=_E2ow(n)
A {Clow  6 (n)+C6up(n) }/2

0 

1 

2 

3 

4 

5 

6 

7

6 

6 

6 

6 

6 

6 

6 

6

• 

• 

• 

• 

• 

• 

•

171 

302 

339 

345 

357 

360 

362 

364

-1 

-0 

-0 

-0 

-0 

-0 

-0 

-0

.029 

.9393 

.9049 

.8917 

.8853 

.8817 

.8794 

.8779

0.1667 

0.1445 

0.1365 

0.1335 

0.1321 

0.1313 

0.1308 

0.1304

6.000 

6.201 

6.256 

6.269 

6.284 

6.289

6.800 

6.709 

6.684 

6.674 

6.668 

6.665 

6.663 

6.662

-0 .6000 

-0 .5560 

-0 . 5412 

-0 .5345 

-0.5310 

-0 .5288 

-0.5274 

-0 .5264

6 

6 

6 

6 

6 

6 

6 

6

.486 

.506 

.512 

.510 

.513 

.513 

.513 

.513

a) 

b) 

c)

Ref. 5. 

Present 

Ref. 2.

results. 

  The values are recalculated in the present work.



 <4,OIH
gdH0HgdI)0> = 207/8 , 

and 

   <*oIHgdH3Hgdkbo> = 12501/160 .(28) 

In Table 3, the results for C8 are presented in the case of 

n=0 and 1. It can also be seen that the improvement of the 

lower bound is remarkable when variable parameters, ui, are 

used in comparison with that obtained by using a constant ui=1 

(u=0); moreover, the improvement for both bounds from n=0 to n 

=1 is appreciable. The present result for the upper bound for 

C8 is the best so far calculated in a non-empirical way. 

     From the above numerical results, it is clear that the 

present treatment is very tractable because of the convenient 

form of the variational function used. Although the numerical 

results are rather inferior to those in Refs. 5 and 11, the 

average of the both bounds for each n give good approximations 

to the exact or reliable values as may be seen in Tables 1
, 2, 

and 3. Hence the present treatment may be expected to be 

 effective for larger molecular systems .

IV. Appendix (A)
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Table 3. The Upper and Lower Bounds 

between Two Hydrogen  Atoms 

=124.3991a))

for 

in

 Dispersion 

the Ground

 Force 

State

Constant C8 

 (Reliable Value

n

Clow(n)b) C8 

= _E2p (n)
A U C8low(n) c) 

(ui=1)

Cup(n)b)  8 

=_E2ow(n)
A {Clow  8 (n)+C8p(n)}/2

0 

1

119.749 

120.035

-0 

-0

.9225 

.9136

0.2306 

0.2262

115.714 129.837 

127.368

-0 .6103 

-0 .5552

124 

123

.793 

.702

a) 

b) 

c)

Ref. 11. 

Present results. 

The value obtained in the present work.



     In deriving the upper bounds, the following form ofl 

was considered: 

       n (i) 

      1(n,X.u) = - E  (Hli/ei)*0 i>0 

                +A E (1+11E01)/E0)H1iw01)•(A-1) 
i=n+l 

Now, let us refer to the first-order function derived by 

Lennard-Jones in order to compare it with the 11/1of Eq.(A-1). 

The function derived by Lennard-Jones is:12) 

     = (H-E/E+ E E(1)H(i)(i)(A-2)     11
1)V~00i>001i~0/{EO(EO_EO)}~ 

which is reduced to: 

    ip1 = - E (Hli/ei)~UOi)+ (1/E0) E {l+E01)/ (E0-E01))} i>0i=n+1 

H4)(i)               l H.0(A-3) 

Comparing Eq.(A-1) with Eq.(A-3) , it may be seen that A and u 

are taken to correspond to 1/E
0 and the average of E0/(E0- 

E01)), respectively. If one also chooses(i) 
                                            ui=1+E0/E0for 

the derivation of lower bounds , there appears an integral such 

as <tpOIzH~z14)0> which diverges. Hence, the simplest form, u. 

i
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=1, is adopted for any i.

V. Appendix (B)

     The inequality in  Eq.(13) can be established not for a 

completely arbitrary function, but for a restricted one, under 

the conditions of Eq.(12). Since the present variational 

function satisfies Eq.(12) only approximately, there remains 

the necessity of estimating the resulting error. 

     Using an arbitrary T function, e, which strictly satis-

fies the next relation:

< e1 ,(k)> = 0 (k=1 , 2,,n) , (B-1)

may be rewritten as

Then,

n 

        i>0

instead of

follows:

<4/ (i) I T>w (i) .

Eq. (13) , the inequality;

(B-2)

<(H-E(0))

   n 

>E 

i>0

l(H-E(n+1))o>

<T(1) >I2(E( 1) -E(0)) (E(i -E (n+1) ) (B-3)
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may easily be obtained. Setting the exact  T(i) as: 

(1) = *(
ol) +(i) 

          ~V(i)+E{<~V(j)IHlilp(i)>/(E01)-E07))}~~7) + ....~ 
ji 

                                                          (B-4) 

and setting T as T in Eq.(14), one obtains: 

< Ti T (k) > = < 1/1`Y(k)>_<tpo kpok)> + <~~I~ik)> 

         +lItp(0k) > +4114k)>  + ......(k=1, 2, ...,n). 

                                                          (B-5) 

 It can be easily seen that the first term on the right-hand 

 side of Eq.(B-5) vanishes, and that the second and the third 

 terms cancel each other out using the form of in Eq.(14) and 

 that of i(.) in Eq.(B-4). As a result, the first non-van-

 ishing term in Eq.(B-5) is of the second-order of the pertur-

 bation. Therefore, the value of the right-hand side of 

Eq.(B-3) is of the fourth-order of the perturbation and can be 

  neglected as long as one considers the second-order energy .

- 24 -
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                          Chapter 2 

   Long-range Interaction between a Hydrogen Atom and 

   a Hydride Ion 

 I. Introduction 

     Generally, long-range forces among atoms and molecules 

are conveniently classified into two categories: the induction 

force and the dispersion force. The former is due to the 

long-range interaction energy between a neutral system and a 

cationic one, and the latter, to that between two neutral sys-

tems. Numerous theoretical studies have been devoted to these 

forces, particularly the systems composed of combinations of 

H+, H, and He; the perturbation theory or equivalent  variation-

al methods have been used.l) As a matter of course , the long-

range interaction between a cation and an anion is Coulombic . 

Now, then, what kind of interaction operates between a neutral 

system and an anionic one ? In order to clarify th
e nature 

of the interaction energy between such systems
, the long-range 

force between H and H is investigated in thi
s Chapter as the 

 simplest system. 

      The long-range force between H and H act
ually has an im-

portant role in the dissociation process of the H
2- molecule 

-26-



ion into H and  H in the solar  corona2) and is referred to as 

considerably strong in spite of its anionic nature.3) Theoreti-

cal investigations of the H-H long-range force have been done 

only by Dalgarno and Kingston4) and by Davison5) using the 

usual multipole expansion of the second-order perturbation en-

ergy. The latter has evaluated the coefficients of the R-4, 

R-6, and R-8 terms in the series expansion of the inverse pow-

ers of the internuclear distance, R, between H and H (hereafter 

the above quantities are briefly represented as C4, C6, and C8 

etc. and the atomic unit is used for energies and distances 

throughout this Chapter). The results, however, were too poor 

to get the interaction energy by means of the multipole expan-

sion, since the convergency of the series was bad, even in the 

asymptotic sense: 

                                   3 
     E2(Davison) = -( 2.5 93+ 7.80 ) •(1) 

           R4RR8 

For instance, the values of these terms are comparable at R=10; 

hence, one needs to estimate the higher-order terms at least in 

the region of ca. R=10. 

     In view of this inherent defect in the series expansion, 

an analytical form is desirable instead. The analytical for-

mulae for the second-order perturbation energies with respect 

to the H-H+, H-H, and He-He systems, neglecting exchange in the

- 27 -



framework of the Unsold approximation, have been already in- 

vestigated in the present author's laboratory.6a-6d) In this 

Chapter, we will try to obtain a closed form of the second-

order perturbation energy of the interaction between H and  H-, 

both in their ground states and, afterwards, to show an 

expansion form again derived from the closed one in order to 

discuss the nature of the force operating in this system.

                 II. Method of Calculation 

     As is well known, in the framework of the UnsOld approxi- 

mation,7) neglecting the exchange for a larger R, the second-

order perturbation energy caused by a perturbation , H1, can be 

represented by: 

         -2 
     E2(UnsOld) -                     <H12>00<H1>00        2(Unsold) _                                              (2) 

<AE>
AV 

where 0 means the eigenfunction , (Do, in the ground state with 

respect to the unperturbed Hamiltonian
, H0;<pE>AV is called 

an 'average excitation energy ,' after UnsOld. In the cases 

of the H-H system, neglecting the exch
ange, (Do appears as 

- 28 -



follows: 

 (I)0 = Y'
a(1)`"b(2,3) ,(3) 

where 4'a(1) is the ls-function of a hydrogen atom, a, and where 

Y'b(2,3) is a wavefunction of a hydride ion, b. In order to 

get an analytical form of E2(Uns8ld), one needs a wavefunction, 

Tb(2,3), simple enough to be used for but but also accurate 

enough to show the stability of H-. The simplest form is one 

for the ls2 1S state, but it gives no stabilization of H-.8) 

                                                               The form employed here is a linear combination of the product 

of the is-like functions with different orbital exponents, z 

and z', for different spins: 

                 1 
Tb(2,3) =---------------------------- [Y'b(2)'Yb1 (3) + "b(3) Tb' (2) 1, (4) 

               42(1+s")  

where: 

z3/2 
`Y

b(i) _ ~--- exp[-zri] ,(5-a)

-29-



and

yb' (j )
 z,3/2 

exp [-z'rj ] 

u

(5-b)

and where:

  C2 zz' 3 s = 

        z+z'

(6)

The notations in the H-Hsystem are shown in Figure 1.This 

wavefunction, which was first obtained by Chandrasekhar9j and 

was thereafter used by Dalgarno et aZ.3) and Fischer-Hjalmars 

10)for the calculation ofthe energy ofH
2 , predicts the 

stability of H when z'tiz/3; hence, it is assumed here that 

this wavefunction is the correct one for H-. Using this 

4'b(2,3),an unperturbed wavefunction is constructed as follows:

   zz'3/21  _/--------- [exP[_ri].{exP[_zr2]exP[_z'r31 
              V2(1+s2) 

                          + exp[-zr
3]exp[-z'r2]} • (7)

—30—
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1. 

and

 Notation 

nuclei a

 for 

and

 distances among electrons 1, 2, 

b in the  H-H system.
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     The perturbation, H1, between H and  H at an internuclear 

distance, R, is written by: 

 111 _1+1+1(8)          __    H1R r
a2 ra3 rbl r12r13 

which is then rearranged into three parts: 

1 1 1_ 11+1+111    H
1 -r12Rrblra2r13Rrblra3 

           - ( 1-
r1l=Hi(1,2) + H1(l,3) - H1(1) .(9)                  bl 

It can easily be seen that the first two terms and the last 

term furthest to the right correspond to the interactions 

between H-H and that between H-e, respectively. Using the 

wavefunction in Eq.(7), <H1>00and <H12>00may be rewritten as: 

      <H1>00 = <H1(1,2)>00 + <H1(1,3)>00 - <H
1(1)>00 

               = 2<H1(1,2)>
00 - <H1(1)>00 '(10) 

 and: 

      <H12>00<H12(l,2)>00 + <H
12(1,3)>00+<H12(1)>00 

— 32 --



               +  2<H1(1,2)H1(1,3)>00 - 2<H1(1,2)H1(1)>00 

                - 2<H
1(1,3)H1(1)>00 

    = 2<H12(1,2)>
00+ <H12(1)>00+ 2<H1(1,2)H1(1,3)>00 

      - 4<H
1(1,2)H1(1)>00.(11) 

It should be noticed that only the first two terms furthest to 

the right in Eq.(11) contain non-exponentially decreasing terms 

and therefore contribute to the origin of the long-range inter-

action. That is, the first term, <H12(1,2)>00,corresponds 

to the second-order interaction energy of H-H with the well-

known R-6  decay. while the second term, <H12(1)>00, corresponds 

to that of H-H+ giving the first leading term of R-4 in the 

Unsold approximation except for the factors of the 'average 

excitation energy.' 

     Using Egs.(10) and (11), Eq.(2) can be rewritten as: 

E2(Unsold) =-<
"E>AV22+—4<H1(2) >00-<H12(1)>00           AVR 

              2<H12(2)>00 + 4<  
rW(2,1)>00+ 2< 12 >00          a2r

12 

—3—



            +  2<H1(2)H1(3)>00 - 2<H1(2)W(1,3)>00 

            - 2<H
1(3)W(1,2)>00 + 2<W(1,2)W(1,3)>00 

            - 4<H1(1,2)>002<H1(1)>002 

          + 4<H1(1,2)>00<H1(1)>00 1'(12) 

where: 

W(1,i) =1-1 (i=2, 3) ,              r
bl rli 

W(i,1) =1-1(i=2, 3) . (13) r
ai rli 

      In order to avoid complexity arising from the presence of 

many terms, some further notations are introduced. For any 

hermitian operator, F, the expectation value, <F>00, in which 

 0 stands for the function defined as in Eq.(7), is decomposed 

 into three parts: 

    <F>00=12[{FIR,z,z'} + {FIRz'" 
          2(1+s2),z} + 2s2{FIR,z,z} 

'(14) 
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where s is defined as in Eq.(6), where z"=(z+z')/2, and where: 

 {FIR,z,z'} = <Ta*(1)'Yb*(2)%'*(3)IFI" a(1)Tb(2)`Yb'(3)> , 

     {FIR,z',z} = <1a*(1)Tb'*(2)Tb*(3) 1FITa(1)Tb' (2)Tb(3)> 

and 

     {FIR,z",z"} = <Ta*(1)Tb"*(2)Tb"*(3) IFIWa(1)Tb„(2)Tb„(3)>_ 

                                               (15) 

In Eq.(15), the asterisk indicates the hermitian conjugate, 

`Y
b (i) and Tb' (j) are defined by Eqs . (5-a) and (5-b) , and 

                „3/2 
y,b"(k) _ ---------exp[-z"rk] .(5-c) 

All the integrals used in Eq.(12) are shown in the Appendix. 

Thus, Eq.(12) may be evaluated exactly without resorting to a 

series expansion and can be given in a closed analytical form 

applicable to an arbitrary internuclear distance, R, and 

orbital exponents, z and z'. 

                III. Results and Discussion
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     In the calculation of  E2(Uns6ld), the values of the or-

bital exponents used by Fischer-Hjalmars10) are adopted, that 

is, z=1.00, z'=0.30, and hence z"=(z+z')=0.65. As to <AE>AV' 

three kinds of values can be considered: 1) the sum of the 

first ionization potentials of H and H , 0.5277511), which is 

reasonable and is usually adopted, 2) the sum of the first 

excitation energies, 0.40275, which gives an approximate lower 

bound of E2(Unsold), and 3) the sum of the ground state ener-

gies of H and H-, -1.02775, which gives an approximate upper 

bound.6c,6d) By substituting these values into Eq.(12), 

three kinds of E.2(Unsold) values for various R values are ob-

tained as is shown in Table 1. The first-order perturbation 

energy, E1, is equal to the expectation value, <H
1>00; it is 

also shown in Table 1 for each R. 

     On the other hand, Taylor and Harris have previously ob-

tained a potential curve for the 2E+ state of the H
2 system 

using a CI method until R=7.0:12) this seems to be the most 

reliable value at present. In Figure 2
, three kinds of total 

interaction energy curves , (A), (B), and (C) taken as far as 

the second-order between the H and H obtai
ned by means of the 

above criterion, are compared with the res
ults of the vari-

ational calculation done by Taylor and H
arris and also with 

the version modified here using the exact 
sum of the ground 

state energies of H and H- , -1.02775, as the standa
rd of the
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Table 1. Long-range Interaction Energy  4W between H and H in 10-3a.u.

R (a.u.) -E1
-E2(Unsold)a) OW=-E1-E2(Unsold)a)

(A) (B) (C) (A) (B) (C)

CIb) 

(D)

Modified 

CIc) (E)

co 

1

 4 

 5 

 6 

 7 

 8 

 9 

10 

11 

12

• 

• 

• 

• 

• 

• 

• 

•

0 

0 

0 

0 

0 

0 

0 

0 

0

5 

2 

1 

0 

0 

0 

0 

0 

0

• 

• 

• 

• 

• 

• 

•

8912 

6218 

2900 

67434 

36306 

19804 

10863 

059717 

032853

17.749 

8.4450 

4.3092 

2.3220 

1.2996 

0.74726 

0.43891 

0.26288 

0.16068

34 

16 

8. 

4. 

2. 

1. 

0. 

0. 

0.

.565 

.446 

3919 

5219 

5309 

4552 

85473 

51195 

31292

45.293 

21.550 

10.996 

5.9253 

3.3164 

1.9069 

1.1200 

0.67084 

0.41004

23 

11 

5. 

2. 

1. 

0. 

0. 

0. 

0.

.640 

.067 

5992 

9963 

6627 

94530 

54754 

32260 

19353

40.456 

19.068 

9.6819 

5.1962 

2.8940 

1.6532 

0.96336 

0.57167 

0.34577

51 

24 

12 

6. 

3. 

2. 

1. 

0. 

0.

.184 

.172 

.286 

5996 

6795 

1049 

2287 

73056 

44289

13 

11 

9 

8

• 

• 

•

3 

3 

3 

3

6 

4 

2 

1

25 

25 

25 

25

a) 

b) 

c)

<LE>AV=1 

Ref. 12. 

At R=00,

.02775, 0.52775 

E=-1.02775.

• and 0.402775 in the cases (A), (B) , and (C) , respectively.
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Figure 2. Long-range interaction energy AW 
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separated system. This modified version can afford a strict 

lower bound of the total interaction  energy.13) The poten-

tial curve (A) represents almost the lower bound of the inter-

action energy taken up to the second-order term, and (C), al-

most the upper bound. The exact one would lie in the zone 

between (A) and (C). The result of the original variational 

calculation, (D), lies above the zone obtained here. Howev-

er, the modified version, (E), lies below. 

     Now, discarding the terms attenuating exponentially with 

an increase in R in Eq.(12), a reduced formula is obtained: 

  E(Unsaid) ,L- --------------1 1 [V(r,z) + V(R,z')    2
<tE)AV 2(1+s2) 

                                         + 2s2V(R,z")] , (16) 

where: 

                                         2z4      V(R,z) = exp [-2R]Ei[2R] {-1 +2z22+ (-2+ 
                                       (1-z2)2 

                                    4(1 -z2               z)
1                                 )
R]                                    (1 -z2)3 

                                        2z4 
             + exp[2R]Ei[-2R] {-1 + + (                                                         1- 

                                        (1-z2)2 
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                                       z4 (5-z2)                               )R } 
                                    (1-z2)31 

                                             2z2 

            + exp(-2zR]ii[2zR] {-2z2 + ------------+ ( -z + 
                                           (1-z2)2 

z(1-5z2) 
-------------)R} 

                                  (1-z2)3 

                                           2z2 
            + exp[2zR]Ei[-2zR] {-2z2 + -------------+ ( z - 

                                           (1-z2)2 

z(1-5z2) 
---------)R}(17) 

                                    (1-z2)3 

In Eq.(17), i[x] is the usual exponential integral, defined 

as: 

i[x] _ - f exp[-t]  dt, and, Ei[-x] _ - f~ exp[-t]dt . 
 -xx 

Using the well-known asymptotic expansion, 

exp [-x]i [x] ,L E 
n=1 x(n-1) . , andexp [x] Ei [-x]-L   n -
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the

 t
2z8R12 

Using  Egs.(16) and (18), and substituting z=1.0 

z"=0.65, a form of series expansion is obtained 

the inverse powers of R, which can be compared 

result using Eq.(1), as follows: 

    E2(Unsold) _ -<LE>----------- (1+65.497 + 7118  
               AV R              R6R 

1.4302.106 4.4604 

R10+ Rl 

— 4 1 —

     7 (-1)n(n-1) ! 
  n=1 xn 

next formula is obtained: 

V(R,z) =1+ 3(8+3z2) 1 
      R4 2z2 R6 

         + 315(16+18z2+16z4+5z 
                   2z6 

14175(3z8+10z6+12z4

45(3+3z2+z4) 

     z4 

6) 1 

R10 

+12z2+10) 1

1 

R8 

      (18) 

    z'=0.30, and 

with respect to 

with Davison's 

-108 
+ .... ). 

      (19)



In this series, at  R=18, 14, and 10, the R-12 term is compara- 

ble with the R10term, the R10term with the R-8  term, and 

the R-8 term with the R-6 term. Adopting <pE>AV 0.52775, 

which gives the potential (B) in Figure 2, E2(Uns8ld) becomes: 

     E2(UnsSld) = - ( 1.8948+1.2411.102+ 1.3485.104 
                        R4               R1 R 

+ 2.7100.106  + 8.4517.108 + ). 
R10R12 

                                               (20) 

The results definitely show the divergent nature of the se-

quence C2n (n=2, 3, 4, 5, 6, and so on). On the contrary, the 

use of the closed form obtained in this Chapter easily affords 

the value of E2(Unsold) at any given R. It can easily be 

 seen that the R-4 term comes from the first term of the induc-

 tion force in the H-H+ system:14) 

      E_ (  2.25 +7.50 + 65.625 + 1063.12527286.875     2
R4 R6 R8 R10+ R12 

+) •(21) 

 The other terms in Eq.(21) contribute little to Eq .(20). In 
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order to clarify this, we have calculated another series expan-

sion with regard to the perturbation H1: 

   H1 =  H1(1,2) + H1(1,3),(22) 

which involves no H-H+ interaction, in contrast with Eq.(9). 

The results of expansion are as follows: 

                               60.998 7071.8 1.4294.106           1     E
2(Unsold)_-<D1(6+8+10       AVRRR 

+  4.4601.108 + ..... ). (23) 
R12 

In this case, V(R,z) as defined in Eq.(16) becomes: 

     V(R,z) =12 1135(1+z2).  12520(1+z4)+2835z2.  1  
       z2R6+z4 R8+ z6R10 

                70875(1+z6)+85050(z4+z2) 1        + 

z8R12 + .... 

                                               (24) 

If one substitutes unity into z, this V(R,z) is clearly reduced 

to twice the value of the well-known H-H long-range interac-
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tion previously obtained by Dalgarno and Lewis.15) comparing 

Eq.(19) with Eq.(23), the terms of higher-order than R-4, 

therefore, prove to be mainly due to the dispersion force. 

     In Figure 3, some E2(Unsold) curves obtained by the par-

tial summation of the series in Eq.(20) are shown along with 

the result by Davison's series expansion in Eq.(1). It 

should be noticed that his expansion may be rather near to 

the present closed form at R values less than 6.0, while at 

larger R values there appears an underestimating tendency. 

On the other hand, the series expansion until the R10or R-12 

term leads to an overestimation of the interaction energy at R 

values less than ca. 9.0. 

     In conclusion, it turns out that the closed form obtained 

above is effective for describing the long-range interaction 

for the H-H system. Although the values of the second-order 

interaction energy predicted here have some ambiguousness be-

cause of the arbitrariness of the 'average excitation energy
,' 

the upper and lower bounds obtained are reliable to a consider -

able extent. The series expansion described here shows that 

the dispersion force contributes to the natu
re of the interac-

tion: when R is much larger , the R-4 term comes to be domi-

nant, and hence the induction force begins t
o prevail over the 

dispersion. The former extraordinay la
rge magnitude of the 

dispersion force mainly comes from the q
uantity of z' in Eq .
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(7) -namely, the orbital exponent of the outer orbital in H  . 

In other words, the weakly bound electron plays an important 

role in the origin of the large dispersion force in the sys-

tem. Generally speaking, a weakly bound electron, which 

exists also in such anions as  F or Cl-, or the electron in 

frontier orbital with a similar physical nature, will main-

tain its importance when the system interacts with other dis-

tant species. 

IV_ Appendix 

     The miscellaneous integrals used in Eq.(12) are shown in 

the form of {FIR,z,z'} in Eq.(15). 

{H1(1)IR,z,z'} = fexp[-2rl](R-r)dT(1) 
-mbl 

                = ( 1 + R ) exp [-2R] .(A-1) 

                          3 {H1(2)IR,z,z'} = / exp[-2zr21( R r
a2)a (2) 

                 = ( z + R ) exp [-2zR] .(A-2) 
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     3 1  1 

{H1(1,2)IR,z,z'} = f -~2exp[-2(r1+zr2)](R+ r12 

                                  - 1- -1-) d T ( 1 ) d T ( 2 ) 
                             rbl ra2 

             1
3exp[-2R]{(2z4-3z2+1) +--1(-3z2+1)}           (1-z2) 

           z3                                 4+3z2-2) +R(-z2+3)}, (z�1) 
(1-z2) 3 

                                                        (A-3) 

if z=1, 

                                             2 

     {H1(1 , 2) , R, 1, z' } = exp [-2R] (—R+8-4R-6).(A-3' ) 

   {H2(1)~R,z,z'} = f1exp[-2r1] (1-2+12 
     _)dT(1)       1-coR r

blR rbl 

        _-R2 +R(1+—1R) exp [-212] + (1 +2R) exp [-2R] ii [ 2R] 

       + (1 -2R)—)exp [2R] Ei [-2R].(A-4) 

co 3 

{H12(2) R,z,z'} = f exp[-2zr2] ( 12- -------2+ -------12) 
R ra2Rr

a2 
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{l 

r 

  a2

 dT(2) = - R2 + R(z + R)exp[-2zR] 

       + ( z2 + 2R ) exp [-2zR] ii [2zR] + 

        + (z2-2R)exp[2zR]Ei[-2zR]. (A-5) 

                     3 W(2,1)IR,z,z'} =f-~~2 exp[-2(rl+zr2)](---------ra2 

                                        2 

                                             a2 

          1  )di- (1)dT (2) 
       ra2r12 

    = exp [-2zR] [_z2iog..j~  z2+R2 2                                           ( -z2 
1-z(1-z ) 

        z-11 2       -2log l z+1()]+z 2 2 exp [-2R] 
                         (1-z ) R 

       + ( z2+2R) exp [-2zR] Ei [-2 (1-z) R] 

       + (z2-2R)exp[2zR]Ei[-2(1+z)R], (z#1) 

                                               (A-6) 
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if  z=1, 

{r1 W(2,1)IR,1,z'} = exp[-2R] -4+2+ (1 +2R)(Y 
       a2 

       + log4R)+ exp [2R] Ei [-4R] (1 -4, ,(A-6') 

where Y is Euler's constant, 0.5772156649-- 

co 3 

     { 12IR,z,z'} _ fz2 exp[-2(r1+zr2)] --------12dT(1)dT(2) 
 r12r12 

        44 _2               z22+ z(23) ]exP[_2R1i[2R1-R 
               (1-z)2(1-z)R 

              42            + z22-z(2-3) exp [12R1E_2 R] 
(1-z ) 2 (1-z)R 

            + z2 + z (1-5z2) ]exP[-2zR]i[2zR] 
                (1-z2)2 2(1-z2)3R 

            + z2 - z (1-Sz2) ]exP[2zRIEi[_2zRIi(z1) 
(1-z2) 2                              2(1-z2)-R 

                                                            (A-7) 

 if z=1, 
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 {?-
r12

2IR,l,z'}
   7 _ -
12

5                2 (16R826)exp [-2R] ii [2R]

+ ‘-16R + 8-2+ R2 

6
)exp [2R] Ei [-2R] . (A-7')

{Hi (2)H1(3)IR,z,z'} =1
CO

z3,3
-00

Tr
2--exp[-2(zr2+z'r3)]

1   1    11  ( 

R2ra2R ra3R + ra2ra3
)dT(2)dT(3)

__1   ( 

R2
+—z+—z'   +zz') exp [-2 (z+z') R] .

(A-8)

{H1(2)1\7(1,3)IR,z,z'} = {H1(2)IR,z,z'}{W(1,3)IR,z,z'}

(1-z'-)

1 2(z + R)[-_' + 3z'
2)+( -1 +2z'21

exp [-2 (1+z) R] +. 1( 

  (1-z'2)2
z + R) z' + 1-3z'2  

(1-z' 2) R

exp [-2 (z+z') R] , (z'�l) (A-9)

if z'=1,
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                                                2      {}11(2)W(1,3)IR,z,1}= exp[-2(1+z)R] (z+R)(6+7,-/-R+8). 

                                                             (A-9') 

 {H1(3)W(1,2)IR,z,z'} = {Hi(3)IR,z,z'}{W(1,2)~R,z,z'} 

                         1
22(z'+R)R(-1+ 3z2)+(-1 + 2z2)                       (1-z2)2 

                        exp [-2 (1+z' ) R] 

                                  2          +122(z' +rR)z + ------------1-32exp[-2(z+z1)R]. (z#1) 
       (1-z)(1-z) R 

(A-10) 

if z=1, 

     {H1(3)W(1,2) IR,1,z'} = exp[-2(1+z1)R] (z' + R) ( 
62 +3R 

                           + 8)"(A -10') 

co 3 ,3 {W(1,2)W(1,3)1R,z,z'} f z3                                          exp [-2 (ri+zr2+z 'r
3) ] -co
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1  _ 1 ) ( 1  _ 1 
rbl r12 rblr13 

exp[-2R] -loglz+z~-1 
                 z+z +1 

+R[21ogz----------I               +z'+1 

    + (z+z'){(z+z')4 

)dT(1)dT(2)dT(3) 

1+ (z+z'){(z+z')
2+zz' -1

(z+z' )

{1- (z+z') 2}2

{1-(z+z')2}3

2+zz'(z+z')2+zz'}
]

+ exp [-2 (z+z') R] -zz' -
                  {1-(z+z')2}2 

(z+z')3-(z+z')2-2(z+z')-2zz'+1}

     z+z'  

(z+z')2}3R

+ exp [2R] Ei [-2 (z+z'+1) R] ( 1 ----)                             2 

+ exp (-2R] Ei [-2 (z+z' -l) R] (1 +2R ) . (Iz+z'I 1) 

(A-11)
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                         Chapter 3 

           Interactions in Ion-Molecule Complexes 

 I. Introduction 

     In the field of intermolecular forces, there has been 

recent progress in the theoretical development of weak inter-

actions, such as hydrogen bonds or ion-molecule bonds, based 

on ab initio calculations or fairly reliable semi-empirical 

 calculations.1'2) 

     Of these, ion-molecule bonds consist of interaction be-

tween ions and neutral molecules in the singlet ground state. 

Such bonds have usually been investigated in order to compre-

hend the solvation process of ions in polar solvents, such 

as H2O and NH3,la,lb) In contrast with the extensive 

studies of these ion-polar molecule complexes, there have been 

only a few studies of ion-non polar molecule complexes. 

     Recently it has become possible to obtain direct thermo-

dynamical data on some ion-non polar molecule complexes in the 

gaseous state through the mass spectrometry of ion beams at 

low temperatures. Bennett, Field, and Beggs have obtained 

the equilibrium constants and thereby evaluated the AG300, 

AH°, and AS0 values of the following reactions:3-5) 
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 CH5 + CH4-----4CH5-CH4 AH0 = -4.14kcal/mol 
NH4 + CH4F---NH4-CH4 AHO = -3.59±0.11kcal/mol 
CF3 + CH4 E---- u3-CH4 AH = -4.55±0.05kcal/mol 

H3O + CH4H3O+-CH4 EH° = -8.0kcal/mol 

The -AH0 means the interaction energy needed to stabilize such 

an ion-molecule complex. They have also calculated the clas-

sical electrostatic interaction energy in order to discuss the 

stable configurations of these complexes. 

     Geometries suggested by the popular semi-classical 

electrostatic model6) are often consistent with the experimen-

tal results or those calculated by MO method7) for small ion- 

non polar molecule complexes, such as H5 and HeH3. It is, 
however, questionable whether this method yields reliable re-

sults for larger complexes such as the NH4-CH4 system, since 
it quite neglects the effect of charge transfer , which seems 

to play an important role in stabilizing these complexes . 

Indeed, the models proposed by the experimentalists are far 

from those conjectured from the reliable geometries of the H
30+ 

-H
2O and NH3-NH3 systems.la,lb) 

      It may, therefore, be worthwhile to discuss the ge
ometries 

of some typical ion-non polar molecule syst
ems. In this Chap-

ter, we will calculate the interaction ene
rgies in order 

to predict the stable configurations of the NH4-1.4 H304-
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 -CH4, and, additionally, NH4-H2systems by means of the CNDO/2 
method.8) This method has yielded considerably reliable re-

sults on the interaction energies and stable configurations 

for neutral molecule systems and for cationic systems as well.9j 

Furthermore, we will carry out the configuration analysis by 

expanding the MO of the optimized configuration in order to 

show the contributing factors which stabilize each complex. 

II. Method of Calculation 

     The bond distances and angles in the isolated cations and 

molecules are optimized individually by the CNDO/2 calculation; 

they are shown in Table 1. For the NH4-CH4 system, in which 
both NH4and CH4 have the C2 axis and the C3 axis, ten differ- 
ent kinds of configurations within the probable symmetries have 

been selected. The optimized configuration is determined for 

each interacting system by changing the intermolecular distance 

between NH4 and CH4;subsequently, several prominent parameters 
are optimized in the order of their magnitudes for the inter-

action energy. 

     For the H3O+-CH4 system and the NH4-H2 system, details 
will be described later. 

     The method of configuration analysis10) is applied to the 

most optimized configuration of each complex. A CI wavefunc-
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Table 1. Bond Distances and 

Isolated Systems

Angles Used for

Species Bond
               0 

Distance (A) Angle Size. deg

CH4 

 H2 

NH4 

H30+ b)

C-H 

H-H 

N-H 

 0-H

1. 

0. 

1. 

1.

115 

741a) 

077 

045

H-C-H 

H-N-H 

H-O-H

109°28' 

109°28' 

114°45'

a) 

b)

Assumed. 

Pyramidal form.

- 60 -



tion is briefly outlined here: 

 occ unoocc uno 

Y = C0Yp+ E1Ci'1Yi ~'1+kE Ck+jY'k+j 

j occ unoocc uno              + E jCi ~jYi+j+k1Ck~lYk;1+.... 

i 

                                              (1) 

where i, j, k, and 1 represent the i-th occupied MO of an iso-

lated system, A, the j-th unoccupied of A, the k-th occupied 

of B, and the 1-th unoccupied of B, respectively, and where 

the sign i-*l indicates the one-electron shift from MO i to MO 

1 and so on. One can thus make the CI wavefunction of the 

complexes if the coefficients are known. In order to see the 

contributing factors to the stabilization of the complexes, 

we construct a wavefunction: 

                   occ uno 
     `Y= C

DY'0+ [ E E (Ci+1) 2] 1/2T(A+•B_) i 1 

     occ uno _occ uno                                 .B+) + [ E E(Ci
~j)211/2           kj 

       *occ uno2l'2*           •Y'(A • B) + [ E E (C
k~l)]Y'(A•B ) + • ... , (2)               k 1 

where, for instance, T(10-.13-)                                  and T(A •B) represent all of the 
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one-electron transferred configurations from A to B, and all 

of the one-electron excited configurations in A, respectively. 

 III. Results and Discussion 

(i)The  NH4-CH4 System 
     The selected configurations are shown in Figure 1, while 

the changes in the interaction energies with varying the dis- 

tance between NH4 and CH4 are drawn in Figure 2. The opti-
mized configuration turns out to be (A). The starred hydrogen 

atom in (A) , (B) , and (C) seems to play an important role in 

binding the systems. The values of the net charge of the hy-

drogen atoms are as follows: (A)+0.300, (B)+0.296, and (C) 

+0.289. It can easily be seen that the (A) configuration is 

the most advantageous for bonding, since the positively charged 

hydrogen contributes to bind the system as a bridging centre 

through Coulomb interaction with the carbon atom in CH
4. 

Henceforth, it may be said that the optimized configuration for 

the ion-molecule complex is mainly guaranteed by the existence 

of a positively charged hydrogen atom in the cation situated 

on the bonding axis of the complex as a bridging centre . 

Furthermore, the neutral molecule retains its highest 
symmetry 

and avoids the form in which a hydrogen atom i
n the molecule 

confronts the positively charged hydrogen 
atom in the cation.
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Figure 1. The selected configurations for the NH4-CH4system.
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Such a tendency coincides with the previous calculation results 

as to, for instance, the  H3O+-H2O and the H2O-H3O+-H
2O systems. 

la) 

     The (A) configuration is next treated so as to be opti-

mized with other parameters. The optimized (A) configuration 

in Figure 3 shows that R6N7H stretches toward 1C as far as 1.1 

17A and that z3H1C4H etc. open a little to be 112°. Thus, 

the optimized energy of this system is 14.49kcal/mol (experi-

mental: 3.59kcal/mol). One needs not further optimize the 

(B) configuration and those following in Figure 1, since they 

would not exceed the optimized (A) in Figure 3 in interaction 

energy. Interestingly, the configuration in Figure 4 pro-

posed by Bennett and Field5j is converse in the direction of 

the CH4 and NH4 from the optimized configuration predicted 

here. The EAB analysis in the CNDO/2 method shows that the 

      and E6N7H-attractive energies have the largest effect E1C7H 

in stabilizing the complex among the other attractive and 

repulsive energies. In fact, the eclipsed form yields the 

same -OW as that of the staggered form in Figure 3. There-

fore, in this configuration, CH4 and NH4 seem to rotate along 
their bonding axis. The values of atomic net charge are also 

given in Figure 3; the quantity of the transferred charge from 

CH4 to NH4 is estimated to be -0.071. 
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Figure 4. Bennett and Field's model for the NH4-CH
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system.
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(ii)The  H30+-CH4 System 

     For this system, five kinds of configurations are treated. 

The (A) configuration in Figure 5 is selected by the criterion 

noted above, and others that have C3v geometries in both frag-

ments are compared with (A). In Figure 6 the optimized con-

figuration is shown to be (A), as was expected. The other 

configurations are far less stable than (A) in spite of their 

symmetries. A further optimized form of (A) is shown in 

                                                                                    0 Figure 7, where R6O7H stretches toward 1C to be 1.115X and 

where 43H1C4H etc. in CH4 open until 114°. This is also 

quite the same pattern as in the NH4-CH4 system in Figure 3. 
The calculated interaction energy gives 31.56kcal/mol (ex-

perimental: 8.0kcal/mol). The configurations in Figure 8, 

previously proposed by Bennett and Field,4) are quite different 

from the most optimized one predicted here. 

      As to the EAB values, E1C7H and E6O7H are the dominant 

attractive energies, and the 90° or 180° rotation of either 

 fragment along the C-H-O axisyields no energy change as in the 

NH4-CH4 system. Therefore, this system should also rotate 
 freely along the C-H-O axis. The quantity of the transferred 

 charge from CH4 to H3O+ is -0.166, which is considerably 

 larger than that in the NH4-CH4 system. 

 (iii)The NH4-H2 System

-68- -



          ,H 

  ~H 11----C~ 

        H 

       (A) 

 H CH 

(B) 

H 

  /CH 
H///C / 

(C)

H

,H

H~ 
HZ

H C

---H

,H 

NH

(D)

(E)

H

dN

Figure 5. 

system.

The selected configurations for the H30 -CH
4

- 69 -



 tw 
(Kcal/mo

 -4 .0 

-a( 

-2( 

-16,1 

20J 

-24.

2.0 2.5

(E)

(B)

(A)

3.0---------------

(C)

3.5 RCO 

(A)

Figure 6. 

for the H 

fragment 

within an

   Potential curves of 

30+-CH4 system. The 

along the C-0 axis in 

 error.

the 

90° 

(A)

 selected 

or 180° 

yields no

configurations 

rotation of either 

 energy change

-70-
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This system is considered to be a simple model of the ion-

molecule complexes, although there are no previous experimental 

data available. Therefore, it seems that it would be inter-

esting to predict the interaction energy and the optimized 

configuration for this system by MO theoretical treatment. In 

order to do so, four kinds of configurations were selected 

and their maximum interaction energies were calculated. The 

selected configurations and the potential curves are shown in 

Figure 9 and Figure 10, respectively. The interaction energy, 

-AW, of the optimized (A) configuration is  3 .07kcal/mol, while 

that of the secondary optimized (B) configuration is 2.13kcal/ 

mol. Since these values are very close, both (A) and (B) 

should be further optimized. The results, presented in 

Table 2, show that the -AW in (A) remains unchanged, while 

that in (B) becomes 2.26kcal/mol. Therefore, the (A) con-

figuration is still most stable. In Figure 11 the detailed 

form of the (A) configuration is presented. The quantity of 

the transferred charge from H2 to NH4 is -0.013, much less than 
those of the NH4-CH4 and the H3O+-CH4 systems, and it produces 
less stabilization energy. The result that the difference in 

-AW values between (A) and (B) is only 0.81kcal/mol, which is 

the same order as kT at room temperature, implies that H2 ro- 

tates in the space near NH4. Furthermore, the experimental 

data of -AHO of this system, if any, would be about 0.5'\0.75
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Figure 9. The selected configurations for the NH4-H2system.
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Table 2. The Interaction Energy of the  NH4-H2System

Configuration Parameters Interaction energy(kcal/mol)

    a)_ R
6H7H-0. 

         0. 

         0.

641R 

    0 741A 

    0 841A

-7.45(Repulsive) 

 3.07 

 2.45

(A)

      _ 

R1N2H-0.977A 

                 0 
      1.077A 

1.117A

-9.98(Repulsive) 

3.07 

-3.70(Repulsive)

R6H7H-0.721A 

0.741A 

0.761A 

0.781A

1.57 

2.13 

2.13 

1.51

(B)

R1N2H=1' 

         1. 

        1. 

         1.

    0 

067A 

077A 

087A 

097A

1.88 

2.13 

2.26 

2.20

a) 7H is fixed.
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Figure 11. 

system.

The optimized configuration for the NH4-H2
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kcal/mol, referring that the calculated -AW values for both the 

 NH4-CH4 and the H30+-CH4 systems are four times the respective 
experimental values. If so, the -AW values for the (A), (B), 

(C), and (D) configurations will become closer, and (A) may 

change into (B), (C), or (D) in rapid succession, at least in 

the range of room temperature. 

     Thus, the NH4-H2 system is far from being a rigid complex. 
The two fragments, NH4 and H2, retain most of their individual 
integrity in the cluster. H2 should be considered as distrib-

uted on a sphere about NH4, with only a slight maximum prob-
ability at the calculated equilibrium configuration. 

(iv)Configuration Analysis 

     Table 3 shows the results of the configuration analysis 

for the optimized configurations of the above systems . The 

values represent the weights (i.e. , the square of the coef-

ficients in Eq.(2)) of the wavefunctions of various configu-

rations. It can easily be seen that the more the weights of 

the charge transfer terms increase and that of the ground 

state decreases, the larger the stabilization energy appears
, 

namely, the NH4-H2, the NH4-CH4, and the H30+-CH4system, in 
order. The percentage contribution of the charge t

ransfer 

term from the neutral molecule to the catio
n is particularly 

remarkable-that is, 1.47%, 7.22%, and 15.44% in the NH4-H2, 
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Table 3.  The 

Each

Weights of 

 System

Various Configurations for

Configurations NH4-CH
4

H3O -CH
4

NH4-H2

Ground State 

Neutral--Cation 

Charge transfer 

Cation-*Neutral 

Charge Transfer 

Polarization of 

Neutral Molecule 

Polarization of 

Cation 

Sum of the above 

Values

0.9130 

0.0722

0.0049

0.0031

0.0044

0.9977

0 

0 

(0 

0

.8048 

.1544 

.0074)a) 

.0058

0.0089

0.0140

0.9964b)

0. 

0.

9797 

0147

0.0022

0.0030

0.0002

0.9999

a) 

b)

Two-electron transfer configuration. 

All contributions from two-electron transfer are added.



 NH4-CH4, and H30+-CH4 systems, respectively, compared with the 
contributions from the other configurations. The weight of the 

polarization term of the cation is larger than that of the neu- 

tral molecule in the NH4-CH4, and H30+-CH4 systems, while for 

the NH4-H2 system the weight in H2 is 0.0030, surpassing that 
of NH4. 

     In conclusion, it turns out that the previous results for 

these complexes obtained by the classical electrostatic method 

are deficient, since that method apparently neglects the 

charge transfer, which has a significant effect in stabilizing 

the complexes. On the contrary, the MO treatment allows us 

to predict the optimized configurations and display the essen-

tial factors which stabilize the complexes, as has been men-

tioned above. Lastly, it is interesting that the ion-mole-

cule complexes investigated here are held by a kind of 

hydrogen bond, X••H-Y, in which X represents a carbon atom, and 

Y, a nitrogen or an oxygen atom. Since the H bears most of 

the positive charge in the cation, this X••H-Y bond is strong 

enough to hold the complex, and it yields a larger interaction 

energy than those of the ordinary hydrogen bond systems
. 

Either fragment of the systems treated here is able to rotate 

freely along the axis of the X••H-Y because of the dominance 

of the EXH and E
HY-attractive energies, which are isotropic 

with regard to this type of rotation . Furthermore, in the
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NH4-H2 system H2 would rotate three-dimensionally near NH4, 
according to the CNDO/2 calculation. In the present calcu-

lation the convenient semi-empirical MO method has been used. 

An ab initio MO treatment for  these complexes would be further 

expected.
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                         Chapter 4 

              Stereoselection in Cross-bicyclization 

                   I. Introduction 

     The stereoselective rules from the concept of the con-

certed cycloaddition reactions by Woodward and  Hoffmann1) or 

those from the orbital interaction approach, particularly 

among the highest occupied (HO) MO, the lowest unoccupied (LU) 

MO, and the singly occupied (SO) MO, by Fukui2) have clearly 

interpreted steric control modes of both thermal and photo-

induced (2+2) or (4+2) cycloadditions and so on. These rules 

have also been applied to most of the intramolecular cases 

without hesitation. Some of the recent experimental infor-

mations, however, have shown discrepancies with the predic-

tions issued from the above rules with regard to the stereo-

selections in photo-induced (2+2) and (4+2) cycloadditions in 

the conjugated dienes and trienes, respectively . For in-

stance, Padwa et aZ. have essentially provided (4
s+2a) photo-

isomerizations of (1) and (2) in accordance with the rules of 

cycloadditions,3)
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while, on the contrary, Courtot 

served disfavoured  (4a+2a) modes 

(5) with monitoring by NMR.4)
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Ph
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Me
     MePh 

             hV  
Ph/ Ph 

 4 

 Me 

           Ph
hV  P 

 Ph — 

     5                       5 

Other examples of disfavoured modes in photois 

dienes or trienes have also been found out5-8) 

shown later. Almost all of these "troublesom 

within the category of the usual cycloaddition 

cluded out from the concerted reactions. But 

in (1) and (2), and non-concerted in (3), (4), 

Can we not interpret the concertedness and the 

modes of these bicyclizations in conjugated po

Ph

e

Ph

es in photoisomerizations of 

found  out5-8) as will be 

e "troublesome" reactions 

cycloadditions have been ex-

ctions. But why concerted 

 in (3) , (4) , and (5) ? 

dness and the stereoselective 

conjugated polyenes ? The

-86 -



answer is yes. At first it should  be  pointed out that the 

stereoselective rules of the cycloaddition mentioned above are 

suitable for merely cyclic additions between two separate con-

jugated polyene parts whichever they are in different mole-

cules or in a molecule. Therefore, from the theoretical 

point of view, one had better distinguish the nature of the 

bicyclizations in a conjugated polyene from the usual cyclic 

additions. In this Chapter, we will present a new theoreti-

cal interpretation, which is complementary to the concept of 

the concerted cycloaddition reactions, so that one might com-

prehend the concertedness and the stereoselective rules of the 

above reactions with "disfavoured" mode. 

     We define a simultaneous bicyclization between the r-th 

and the s-th and between the t-th and the u-th carbons ((6)4-

(7)) in a linear conjugated polyene containing 2n TT elec-

trons as a [r,s/t,u] cross-bicycZization under the condition 

that r and s are odd and t and u are even or vice versa, 

where the numbering of carbons is counted from the end of 

conjugated carbon chain and r<t<s<u holds. In the cross-

bicyclization thus defined, the conjugation between the s-th 

and the t-th carbons generally exists throughout the process 

of reaction. This is the point of essential importance. If 

this conjugation does not exist, the reaction would turn out 

as a usual cycloaddition. In what follows, we try to es-
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tablish a simple but reasonable method in such reactions em-

ploying the perturbation theory in the scheme of the  Huckel 

MO approach.9) Similar method has been used successfully to 

treat the stereospecific ring-closure of conjugated polyenes. 

10) Then the predicted stereoselective rules will be ap-

plied to interpret the latest several experimental results. 

II. Formulation 

     Consider two simultaneous conjugations, kR and I13, ap-

pearing as a perturbation as indicated in (6'). 

          1 

                     2n 

r ̀ ~ 

u 

t

6'

 -  8  9  -



The quantity  S is the resonance integral between two adjacent 

2prr atomic orbitals (AC's). Hence, ks, for instance, is 

adopted to be the resonance integral between O
r and (Ps when 

c-like overlapping of these two AO's in the distorted it elec-

tron system occurs, where (Pr denotes 2prr AO of the r-th carbon. 

The sign of kR and la concerns the mode of overlap stabiliza-

tion as indicated below.

+ ., PO 
r' 

       0s 
ks<0 (k>0); Disrotatory 

Letting a be the Coulomb integral 

secular determinant in the present

 r 

kR>0 

of 2p 

 case

 2p7

Po 
r ~ 

I 

(k<0) ; 

 AO, the 

become

S

nrotatory 

he perturbed 

  as follows
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 U----

a-s a 

a a-s a0 

a .. 

0. 

. 

---------- ka 

0 0 
------------ la 

0 0 
r t

s 

  0 ka----- 

0 0

0 

0

a -e

s 

a

0

a 

a-e

--r

-t
= 0 . (1)

According to the procedure previously reported ("method 

perturbed secular determinant"),11) we get the following 

mula within the second-order perturbation treatment.

of 

 for-

AE - 
a-

2kP
rs

+ 2ZPtu + k2H
rs,rs

+ 2kZI1
rs,tu

+ Z2Ht
u,tu ' (2)

Here 

Prs 

and

DE represents the change in the Tr-electronic energy, and 

and Hrs
,tu are the same quantities as the usual bond-order 

bond-bond-polarizability, respectively, defined as
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      all 

P = E n.01C 1  , 
rs i1 r s

(3)

all all 
=1EE n. (2 - n.) 

rs,tu 2 j(i) 1 J

(Cr1CSJ+CrJCs1) (Ct1CuJ+CtjCu1)
(4)

xi-X.

E.-a 

(Xi-

where n and Cr1 represent the occupation number, the or-

bital energy, and the coefficient of cpr, respectively, of the 

i-th MO of the unperturbed system (6). Since the sign of 

is negative, the overlap stabilization is brought about in the 

system when the sign of right hand side in Eq.(2) becomes pos-

itive. We have only to judge the sign of the next formula, 

because the required values of P
rsand Ptu vanish in the case 

of the present 2n conjugated polyene.

AE  

   _ 

     k2~rs
,rs + 27alIrs,tu + 121-1tu,tu (2')
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 It is easily shown that this quadratic form is positive 

the Cauchy-Schwartz' inequality. According to the sign 

the 11rs
,tu value, the mode of cross-bicyclization may be 

sified into the following four types of rotation in the 

tion of increasing value of AE/S. 

Rrs
,tukZRotating Mode

positive

negative

No  distinction 

from D within 

However, in so 

circumstances, 

bicyclizat 

mode. 

III.

by 

 of 

clas- 

direc-

positive positive A(disrotatory-disrotatory) 

negative negative B(conrotatory-conrotatory) 

positive negative C(disrotatory-conrotatory) 

negative positive D(conrotatory-disrotatory) 

 tion can be made of mode A from B, nor of mode C 

hin the present second-order perturbation treatment 

some favourable cases, consideration of steric 

     which is important in such cases as the cross-

     may assist in predicting the more probable

Stereoselective Modes 

and Cycloaddition

of Cross-bicyclization
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     For the cases of diene, triene, and tetraene, we show all 

kinds of rotating modes in thermal and photo-induced cross-bi-

cyclizations in Table 1 along with the numerical values of 

           Inphoto-induced cases,nrs
,tuis calculated in re- 11rs,tu' 

gard to the first excited configuration. It is clearly seen 

that the predicted modes make no difference in both thermal 

and photo-induced reactions in each cross-bicyclization. 

These predictions are remarkably different from those issued 

from the concept of the cycloaddition by Woodward and Hoffmann 

or from the frontier orbital interaction approach. It should 

be also emphasized that mode A and B are favoured when (s-r)+ 

(u-t) is equal to 4m+2, while mode C and D are favoured when 

it is 4m in the polyenes. The cases of longer polyenes 

could be also treated by a simple extension of the present cal-

culations, with which we will not further deal in this Chapter. 

     Let us treat here some of the usual cycloadditions with 

our formulation for the sake of comparison . In the case of 

the (4+2) cycloaddition, for instance , the triene is divided 

into a diene and an olefin and thus the conjugation between C
2 

and C3 are cut off as shown in Figure 1(A) . In this case, the 

amplitudes of the frontier orbitals on  C
l, C2, C3, and C6 are 

large and the orbital energy differences among th
em are small 

as a matter of fact, so 11
rs,tu defined in Eq.(4) mainly depends 

on the expansion terms of (i ,j)=(2,4) and (3,5) in the thermal
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cD 

 01

Table 1. Rotating Mode in Cross-bicyclization

polyene [r,s/t,u] Thermal (0rs
,tu)

Photo-induced
rs,tu)

diene [1,3/2,410 C, D (-0.3578) C, D (-0.1789)

triene

[1,3/2, 

[1,3/2, 

[1,5/2, 

[3,5/2,

6]b 

4] 

6] 

4]

A, B 

C, D 

C, D 

C, D

( 0.2352) 

(-0.2906) 

(-0.3597) 

(-0.0274)

A, B 

C, D 

C, D 

C, D

( 0.0762) 

(-0.0694) 

(-0.1661) 

(-0.2072)

tetraene

[1, 

(1, 

[1, 

[1, 

[1, 

[1, 

[1, 

[1, 

(3, 

[3, 

[3, 

[3,

3/2,4] 

3/2,6] 

3/2,8]0 

5/.2,6] 

5/2,81 

5/4,6] 

5/4,8]d 

7/2,8] 

5/4,6] 

5/2,4] 

7/2,6] 

7/2,4]

C, D 

A, B 

C, D 

C, D 

A, B 

A, B 

C, D 

C, D 

C, D 

C, D 

C, D 

A, B

(-0.2659) 

( 0.2013) 

(-0.1809) 

(-0.2998) 

( 0.2359) 

( 0.1863) 

(-0.1685) 

(-0.3548) 

(-0.2270) 

(-0.0311) 

(-0.0515) 

( 0.0054)

C, D 

A, B 

C, D 

C, D 

A, B 

A, B 

C, D 

C, D 

C, D 

C, D 

C, D 

A, B

(-0.0410) 

( 0.0053) 

(-0.0029) 

(-0.1269) 

( 0.0725) 

( 0.0830) 

(-0.1135) 

(-0.1965) 

(-0.0878) 

(-0.1626) 

(-0.1649) 

( 0.0801)

a, b, c, and 

respectively,

d have 

 up to

been 

now.

classified into (2+2), (4+2), (6+2) , and (4+4) cycloaddition,



6 

5 

4 

 3 

 2 

i=1

 

1  2  3  4  5 6 

4 6 

J2 

1 

             (A) 

Figure 1. Orbital patterns of the systems composed of (A) 

olefin and a diene, and (D) a triene. (B) and (C) show the 

frontier orbital interactions in (A) in thermal and photo-

induced processes, respectively. It should be noted that o 

bond between C2 and C3 may remain in (A). 
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process, while of  (i,j)=(2,3) and (4,5) in the photo-induced 

process. In other words, the HOMO-LUMO interactions in the 

former process and the HOMO-SOMO and the SO'MO-LUMO interac-

tions in the latter between a diene and an olefin shown in 

Figures 1(B) and (C), respectively, are essentially important 

in order to predict the distinct stereoselective mode in each 

process of the cycloaddition. On the contrary, in the case 

of the cross-bicyclization in a triene, the same criterion 

would no longer serve because of the alterations of the ampli-

tudes in the MO's with i=2, 3, 4, and 5 on the concerned 

carbons as shown in Figure 1(D). In this sense one can not 

expect a conspicuous difference of the stereoselective mode 

between the thermal and photo-induced processes and has to sum 

up extending over all MO's such as in Eq.(4) in order to judge 

the signs of the 1
rs,tu's in the cross-bicyclization apart 

from the cycloaddition. 

     The values of 1rs
,tu along with the contributing terms 

arising from the frontier orbital interactions and the pre-

dicted stereoselective modes in thermal and photo-induced 

cycloadditions for the cases of (2+2), (4+2), (6+2), and (4+4) 

are listed in Table 2, where IIrs
,tu's are formally evaluated 

with setting the resonance integrals at the concerned posi-

tions to be zero in Eq.(1). In photo-induced (2+2) and (4+4) 

cases, the degeneracies between the HOMO and the SOMO and be-
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Table 2.  Stereoselective 

the Treatment of the Present

Mode in Cycloaddition 

 Formulation

through

  Type of 

Cycloaddition

Thermal (IIrs 

          main

tu;its 

 terma)

Photo-induced (nrs
, 

main

tu; its 

 term

2+2

4+2

6+2

4+4

C, D (-0.5000; 

(2s+2a or 2 

A, B ( 0.3416; 

(2s+4s or 2 

C, D (-0.2588; 

(2s+6a or 2 

C, D (-0.2683; 

(4s+4a or 4

-0 

a+2 

 0 

a+4 

-0 

a+6 

 -0 

a+4

s 

a 

s 

s

5000) A, 

4472) C, 

3759) A, 

4236) A,

B (+m; 

(2+2  ss 

D (-0. 

(2s+4a 

B ( 0. 

(2s+6s 

B (+m, 

(4+4  ss

+o) 

or 2a+2a) 

8292; -0.9472) 

 or 2a+4s) 

4185; 0.4893) 

 or 2a+6a) 

+m) 

 or 4a+4a)

aContribution 

two separate 

bCo
ntribution 

interactions

 to II        rs
, 

polyene 

 to fl        rs
, 

between

tufrom the 

parts. 

tu from the 

two separate

HOMO-LUMO 

HOMO-SOMO 

 polyene

 interactions between 

 and the SO'MO-LUMO 

parts.
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tween the SO'MO and the LUMO invalidate to evaluate the re-

quired  11rs,tu' Actually, however, these degeneracies would 

be reduced by the energetical splittings between these MO's on 

account of the presence of the electron correlation as illus-

trated in Figure 2.12) Therefore, we tentatively set here 

the values of (xH0-xS0) and (xSO,-xLU) in Eq.(4) to be infi- 

nitely small positive, from which the concerned IIrs
,tu's are 

positive infinite. This means that photo-induced [1,3/2,4] 

cross-bicyclization of diene or [1,5/4,8] case of tetraene 

might rather favour the (2+2) or (4+4) cycloaddition, respec-

tively, from the viewpoint of the energetical stabilization, 

as will be seen in the next section. 

                    IV. Application 

(i)[1,3/2,4] Cross-bicyclization of Diene 

     Dauben and Ritscher have early obtained the photoprod-

ucts (9), (11), and (12) from ethylidenecyclooctenes (8) and 

(10) .5)

Me‘( 

Hg 3) 
H^

8

 hV 
3 

H~ 

Q

 14 

Me 

 9
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  Me 

 HA 

 HB  % 

    Hc

hV HB +H\I He

  ricX He Me HA 
              Me HA 

-11 75% 12 25% 

Both (9) and (11) are the results of mode B and compatible 

with the usual (2a+2
a) cycloaddition. However, (12) is the 

result of the disfavoured mode C or D ((2
s+2a) or (2a+2s)), so 

they have supposed an anomalous concerted reaction from a vi-

brationally relaxed singlet having an electronic configuration 

composed of an allyl anion and a methyl cation. While, from 

a standpoint of the cross-bicyclization, (12) is a reasonable 

product but (9) and (11) are not. The reason why these reac-

tions rather favour these products can be explained by not a 

little energetical stabilizations in the photo-induced (2+2) 

cycloadditions as has been stated above. Furthermore, some 

steric hindrance in connection with the cyclooctene ring 

might play a role in separating the C2-C3 conjugation. There-

fore, photo-induced [1,5/4,8] case of tetraene, which has not
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been reported, would be also of interest because of the possi-

bility of the competition with (4+4) cycloaddition. 

 (ii)[1,3/2,6] Cross-bicyclization of Triene 

     In photo-induced [1,3/2,6] case of triene, mode A or B is 

favoured, which predicts exactly the products from (3), (4), 

and (5) provided by Courtot et al.4) The products from (1) and 

(2) by Padwa et aZ.,3) however, show the opposite mode of 

stereoselection in the sense of the cross-bicyclization. In 

order to examine these discrepancies, we have evaluated H13 
,26 

values as functions of the resonance integrals between C2 and 

C3 023) of 1,5,6-triphenylhexatriene, (1) or (2), and 1,5-

diphenylhexatriene, (3), (4), or (5), in their first excited 

configurations as listed in Table 3. It is evidently seen 

that the 1113
,26 of (3), (4), or (5) used by Courtot et al. is 

less sensitive to the weakening of 523, while that of (1) or 

(2) by Padwa et aZ. is the smaller at (323=13 and changes its 

sign at a23=0.6a. That is, the stereoselective modes in 

photo-induced [1,3/2,6] cases of (1) and (2) will more easily 

change into that issued from the (4+2) cycloaddition than 

those of (3), (4), and (5), according to the weakening of the 

conjugation between C2 and C
3, if it takes place for some rea-

son. We infer that these situations are reflected i
n the re-

actions of Padwa et al. to a certain extent
, although more de-
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Table 3. The Values of 

 1,5,6-Triphenylhexatriene 

hexatriene, (3) , (4) , or 

Configurations

n13
,26as Functions of 323 in 

, (1) or (2), and 1,5-Diphenyl-

(5), in Their First Excited

a23 (1) (2) (3) (4) (5)

0 

0 

0

.7S 

.6s 

.5S

 0.0382 

0.0042 

-0 .0219 

-0 .0599

0.0859 

0.0822 

0.0686 

0.0391
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tailed calculation including a electrons is requisite to pro-

vide a definite information on this species. An example as 

to the hexatriene free from the conjugated substituents has 

also been shown. Dauben and Kellogg have obtained the photo-

product via (4a+2a) cycloaddition from  1,3,5-cycloundecatriene, 

6) 

            HA 
    11 HA 

       4 IhV 5N HB> H4 2 

6 

   64`s . H
C  H

e5

and supposed that the cyclization is initiated from the vi-

brationally relaxed first excited singlet state like the above 

case of ethylidenecyclooctene. But this stereoselective mode 

is easily explained by the cross-bicyclization of triene. 

     There have been other examples of the cross-bicyclizations 

that are found out in the photoisomerizations of benzohexatri-

enes reported by  Seeley,7

   3

 hV_.> 
-70°

 /1 
 \/4 

100%
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and by Sieber et  ca.8)

Me

hV  39% + 
-70°

01 1 
16%

hV  

Me

ji, 
12%

 ('p 
     Me 

6 Me 

,----Me 

—Me
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Since the major products of these reactions are not controlled 

by the stereoselective modes from the cycloaddition, these 

authors have ascribed these results to non-concerted reactions. 

But we are now in a position to tell that these reactions are 

concerted as well with the aid of the concept of the cross-bi-

cyclization. It is also interesting that the result of the 

thermal [1,3/2,6] case of triene (Mode A or B) is equivalent 

to that of (4+2) cycloaddition ((4
s+2s) or  (4a+2a)), so that 

the theory of the usual cycloaddition has not had a trying 

experience in thermal case. 

                   V. Conclusion 

     We have defined the concept of the cross-bicyclization 

complementary to that of the cycloaddition and pointed out 

the essential difference between these two. The predicted 

stereoselective modes from the cross-bicyclization are in rea-

sonable agreement on the whole with the experimental observa-

tions that have been discarded from the category of the con-

certed reactions because of the faith in the cycloaddition 

rules. However, one should pay attention to the application 

of the rules to photo-induced [1,3/2,4] case of diene or [1,5/ 

4,8] case of tetraene as well as to the case of polyene with 

conjugated substituents. To the author's knowledge, any
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stereospecific bicyclizations in a conjugated polyene treated 

by the concept of the cycloaddition up to the present have 

been probed in this study. 

     It is also an important conclusion, at least in diene, 

triene, and tetraene, that the thermal and photo-induced proc-

esses yield identical results and that there occurs a dis-

tinct difference in the stereoselective mode according as 

(s-r)+(u-t) is equal to 4m+2 or 4m. A simple calculation of 

~
rs,tuis requisite at present to make use of the stereoselec- 

tive rules in the cross-bicyclization apart from the cycload-

dition, but more concise rules without resorting to calcula-

tions would be hoped and further experimental observations 

are desirable in order to assess the utility of the present 

concept of the cross-bicyclization.

 -  1  1  0  -
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                        Chapter 5 

                   Interactions in Biradicals 

 I. Introduction 

     In a chemical sense, the word  "biradical" makes us think 

of a species such as one having an odd electron on each of 

two sites of a molecule. This conforms to the interpretation 

of a biradical in the triplet state. However, problems may 

arise in the case of a singlet biradical. 

     The conversion of biradical species along the path of 

ground- and excited-state reactions has been treated theoret- 

ically.1-4) Salem et al. discussed the nature of a singlet 

biradical by taking ionic states into account and explained 

a number of experimental results in regard to various reaction 

intermediates in photochemistry.5-10) The present work gives 

some new material. 

II. Stabilization of Singlet Biradical by a 

                 Correlated Motion of Electrons 

     Consider a pair of two independent normalized one-elec-

tron space functions a and b whose overlap integral is s.
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In the case of biradical problems these two orbitals can be 

made to represent the two "unpaired"-electron orbitals 

essentially localized at each radical site. The following 

three configurations are here taken into consideration to 

treat the problem as a two-electron system:

 —e— b

(D1(1,2) _ __  

           2V +2s`

a --9--

{a(1)b(2) + b(1)a(2)} 

   b
a -9-9-

02(1'2) = a(1)a(2)

-e-e- b
a

03(1.2) = b(1)b(2) 

(1)

— 1 1 4 —



 It is assumed that orbitals a and b are real and their signs 

are chosen in such a way that s becomes positive. 

     The electronic states of this two-electron system are 

then given by 

     =1 (C1(I)1 + C2cl)2 + C3(I)3)(2) V 

where C1, C2, and C3 can be obtained by solving the eigenvalue 

problem of the Hamiltonian matrix, and 1/(17 is the normaliza-

tion factor. They are the usual energy-extremized wave-

functions in which the effect of correlation in electron mo-

tion is taken into account. 

     Direct consideration of the correlated motion of elec-

trons might also be considered. The extent of correlation 

in orbital motion could roughly be represented by the aver-

aged reciprocal interelectronic distance, 

1   2 
             r12 v(v-1) p(1,211,2)r1dv(1)dv(2)(3)                               12 

(v: number of electrons) 

where r12 is the distance of electrons l and 2, and
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 p  (1' ,2'11,2) =  v (v-1)  J4,*2 (r1'al,r2'a2,r3a3,

•T(r
lal,r2a2'

r3a3,

is the second-order spinless 

two-electron problem, we have

..... )da1do2dr3da3••••

density matrix. For the

(4) 

present

Y=
 1 = 1J `Y* (1,2)— 

r12r

1 

12

T(1 , 2)dv(1)dv(2) . (5)

The extremization of 1/r12 is 

tionary values satisfying

achieved by obtaining the sta-

dy = 0 . (6)

The variation with 

secular equation,

respect to C1, C2, and C3 leads to the

Y11 

Y21 

Y31

- Y 

-S
21y 

-S
311

Y12 - S121 

Y22 - Y 

Y32 - S32y

Y13 

Y23 

133

S131 

S231 

Y

=0 , (7)
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where

Yjk =  ff~j(1,2) rl
12(1)k(1,2)dv(1)dv(2) ,

and

Sjk = ff e3(1,2)(Pk(1,2)dv(1)dv(2) (j, k =1, 2, and 3).

The coefficient of (Dj in Eq.(2) can be obtained simultaneous-

ly, giving correlation-extremized wavefunctions {`Y(1)} which 

are always mutually orthogonal. Both energy-extremization 

and correlation-extremization give wavefunctions with an 

essentially parallel trend in nonpolar species.11) Thus in 

such favourable cases, we can use correlation-extremized wave-

functions as an approximate substitute of the usual energy-

extremized functions. Such a consideration of the interac-

tion of at least three configurations as mentioned above is 

essential in the theoretical interpretation of biradicals. 

              III. Bonding Character between Two 

                     Radical Sites
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     The bonding character between two radical sites each 

containing essentially one electron can be discussed by using 

 ' of  Eq.(2). A most reasonable scale of bonding character12) 

might be the magnitude of accumulation of electron population 

in the intermediate region between two radical sites.13-15) 

     The distribution of electron density is given by 

p(1) = 2f'1* (1,2)`Y(1,2)dv(2) .(8) 

The density p(1) is divided into three terms as 

p(1) = A11a(1)2+ 2Al2a(1)b(1) + A22b(1)2 .(9) 

     The bonding strength can be determined by the second term 

of r.h.s. since the coefficient A
l2 of the cross term a(1)b(1) 

contributes to the accumulation of electrons in the interme -

diate region. 

     It follows from Eq.(2) that

where

   __its2/ 1+s2 C1(C2 + C3) + 2sC2C3l Al2 N 1+s2C1+J1

(10)
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N =C12 
     2+ C22+ C32+ l+s2C1(C2+ C3) + 2s2C2C3                      V---f

In general,C.jmay be complex. However, for the sake of 

simplicity, Eq.(9) is written for the real values of C .
]. If 

we allow C1,  C2, and C3 of Eq.(2) to take any real values, the 

maximum and minimum values which Al2 can take are 1/(l+s) and 

-1/(1-s) corresponding to the wavefunctions

and

I,(B)=1 11 
      V l+s

(11)

 1, (AB)_G11{^1+s2(D1 -(q2+ (D3) } , 
e2 1-s 

respectively. Thus we see that the most bonding state (T(B)) 

or the most antibonding state (lY(AB)) is obtained in the case 

of moderate mixing of three configurations (Dl, 4)2, and 4)3. 

This implies that admixture of the ionic configuration '2 or 

(I)3 with the covalent configuration (I)
l' or the delocalization 

of each odd electron to the other radical site, serves as an 

effective origin of bonding character between two weakly in-

teracting radical sites. The importance of such electron 
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delocalization in the bond formation between molecules or  rad-

icals was early pointed out,16-19) In particular, special 

importance of a cross term arising from two configurations, 

corresponding in the present case to the terms of C1C2 or 

C1C3 in Al2, was stressed.20-22) 

     The bonding character of a singlet biradical is thus 

represented by sAl2. In the light of the relation 

     A11 +•2sAl2 + A22 = 2 , 

we can also measure the less bonding character by the quantity 

1/2(A11+A22). 

            IV. Polar Character of Two Radical Sites 

     The density P(1) also provides information as to what 

extent the two radical sites are polar . Evidently, polarity 

parallels 1A11-A221. We tentatively define the polar char-

acter of a singlet biradical by means of 

    -rf~ =A11 - A22   ~l ,A
11 + A22(12) 

in which
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   __~ A11 
N

    __1 A22 N

 

(  1 
 1+s  

(  1 
l+s

2 cl2 + 211s c1C2 + 2c22 ) ~l+
s 

2 cl2 + 2~s-----c        lY +
s21C3+2C32 ) .

(13)

These are the coefficients of a(1)2 and b(1)2 terms in p(1) of 

Eq.(9) which is derived from a wavefunction I already correZa-

tion-extremized according to the procedure in previous section. 

     By this definition, we have 

7t(4)1) = 0,(02) = TC(03) = 1 , 

provided that 0l'2' and 03 are correlation-extremized states. 

     A change in electron distribution can be expected to 

arise causing bonding stabilization through a moderate mixing 

of ionic structures. In this connection the work of 

Wulfman and Kumei,23) who first pointed out the high possibil-

ity of polarization in singlet excited states of alkenes, is 

of interest. 

                V. Biradical Character of 

                      Singlet Biradicals
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     Since the bonding character between two radical sites  be-  . 

comes maximum only in the case of moderate admixing of ionic 

configurations with a covalent configuration, the less ionic 

character can not be adopted for the measure of biradical 

character. 

     We must take into account the following requisites which 

qualify a biradical: 

 1) The bonding character between two radical ends should be 

small since a species with too large bonding character might 

be called a molecule, but not a biradical. The value l/2( 

A11+A22) should not be small. 

 2) The polar character should not be large since a species 

with a strong inequality in electron density at the radical 

ends should be called a zwitterion . Namely, (1- T[,) should 

not be small. 

     A conventional but reasonable definition of the bi
radical 

characters may therefore be given by 

= 1 (A + A 2 1122)(1 - )=2—11 + A22 - IAll - A220)

       = (the smaller of A
11 and A22) (14) 

Thus, the maximum possible biradi
cal character in a bonding
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state is unity  ( =1/(l+s)), and the maximum biradical charac-

ter in an antibonding state is larger than unity ( =1/(1-s)) . 

We also have,

~(J (41)1 2            1+
s

((i)2) = 0 I (4)3) = 0

in which (D1, 4)2, and 4)3 are the functions of 

that they are correlation-extremized ones. 

    The discussion is easily extended to the 

wavefunctions.

Eq.(1), assuming

case of complex

VI. Nonbonding Biradicals

     It may happen that each odd electron occupies each of two 

orbitals orthogonal to each other so that the overlap integral 

s in Eq.(9) disappears. Hence, the maximal biradical charac-

ter is unity. 

     An example is perpendicular ethylene in which two orthog-

onal radical orbitals a and b are (2px)A and (2py)B, respec-

tively, A and B denoting two carbon atoms. In this case, it 

follows from symmetry relations that

Y12 = Y13 = 0 S12 = S13 = 0 ,
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in  Eq.  (7)  . Thus, 4)1=1/5{a(1)b(2)+b(1)a(2) 1 is already a 

correlation-extremized wavefunction with which 4)2 or c3 of 

different symmetry does not mix. From the definition of Eq. 

(14), the state T(1)=4)1 has the .6 value of unity and can be 
called "purely" biradical. The other two states 0'(2)=1/f2 

(4)2+4)3) and T(3)=1/1-i(02-03)) also have the, - value of uni-

ty. Such a biradical species may be called a nonbonding 

biradical. 

     The level situation of three correlation-extremized 

states is given below, together with the value of y. The 

result is qualitatively consistent with that of numerical cal-

culations.24) 

is (i)7 

h{a(1)a(2)+b(1)b(2)} 1A1 (4. b).(a .) (aalaa)+(ab!ab) 
"0 .89120(a.u.) 

j{a(1)a(2)-b(1)b(2)} 1132 (°)—(' °°)(aalaa)-(ablab) 
.0.88969 

4{a(1)b(2)+b(1)a(2) } 1B1 (4._ ~') (aalbb)+(ablab) 
ti0.39420 

illia(1)b(2)-b(1)a(2)) 3A2 (+)(aaibb)-(ablab)111 
                                                ~0.39268// 
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 It is to be noted that the level gap hetween 1B1 and 3A2 

states is very small (ca. 1 kcal/mol) in this example. The 

small S-T separation is characteristic of nonbonding biradi-

cals. From an energetic point of view, they are expected to 

interchange easily between singlet and triplet states. 

               VII. Biradical with Cyclic Orbitals 

(i)Singlet Oxygen 

     Let two (lJTg) orbitals of oxygen molecule be 

x= --------1{(21)x)1  - (2Px) 2} 

0 =------1'Ty;{(210y)1- (2PY)2} 

Y where 01-02 axis is parallel to the z-axis and s is the over-

lap integral of (2p
x)1 and (2px)2 or that of (2py)1 and (2py)2. 

Three configurations are specified by 

1 = 4:{71-(1)7-(2) (2) + (1)7+(2) } 
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 0 

 0 

where

 01' 

ized 

Y•

4)1 

[4)2'

2  =  ff+(1)7 

3  (1)  r

+(2) 

-(2) 
, 

+_       1 
nVP", 

    = 

           (x -  IT

21 and (I)3 of 

 wavefunctions

i(Py) 

i(Py)• 

different symmetries 

 corresponding to the

=774x(1)(Px(2)+4)y(1)(Py(2) ) 

3] 
   = [i7{$x(1)(0x(2)-4)y(1)4)y(2) }, 

     7ii4)x (1)4x(2) 1]

*4)x(1)4)y(2)-cpy(1),x(2))

are correlation-extrem-

 stationary values of

1E +

to

g

   - 

 g

      Y 

(xxlxx)+(xylxy)

1 
2( xxIxx )+2xxIyy)

(xxlyy)-(xylxy)
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(  (xylxy), etc., denote 

4x(1)y1(1)x(Py), etc. )

The uppermost level corresponds to 1E + excited singlet state 

and the lower degenerate level to 1Ag state. The former 

stands for the configuration 

IL Tt 
$- $ 

with =1. The species can thus be called purely biradical. 

     In the latter state, the correlation-extremized wavefunc-

tions consist of purely doubly-occupied configurations 

ILnn+- IL 

and -e-e-

with S- =0. 
     It should be noted that we have to employ the symmetry 

orbitals 7+ and 7- to construct wavefunctions with definite 

angular momenta. 

       Such cyclic orbitals, however, do not reflect the 

 concept of radical site. The interpretation of 

4-values in this case should be made with certain reservation.
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(ii)Cyclobutadiene (Planar Square) 

     The orthogonal nonbonding orbitals can be taken as 

       =1-----------
'  {(2Pz)4 - (2pz)2} 

     (1)2 = -------------1{(2Pz)1 - (2P
z)3} 2-2s' 

where (2pz)j (j=1, 2, 3, and 4) are the four 2p
z orbitals and 

s' is the overlap integral of (2p
z)1 and (2pz)3. The three 

states are as follows. 

(i) 
                                           Y 

  ii-{01(1)01(2)+02(1)02(2)11A1g (11111)+(12112) 

  2{01(1)01(2)-02(1)02(2)}1B1g(11111)-(121l2) 

  2{01(1)02(2)+02(1)41(2)}1B2g(11122)+(12112) 

241(1)02(2)-02(1)01(2)}3A2g (11122)-(12112) 

( (11122), etc., denote (0101 k 202) , etc.)
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The level situation is consistent  with  the 

elaborate calculations.25) 

(iii)Singlet Planar Trimethylenemethane26) 

     The two orthogonal orbitals containing 

trans are written as

results of

nonbonding

 more

x3

elec-

4)1 

cP2 =

2

where X.7(j=1, 

is the overlap 

states are 

     1A
1'       1

1E'

 tX1 
 3(1-s') 

     _ 1  

2(1-s')X2

1, X
2 + 

- X
3)

x3)}

2, 3, and 4) are the four 2pz orbitals 

integral of xi and x2. The resulting 

{$1(1) $1(2) +$2 (1) $2 (2) } 

r
77-1{( 1(1) $2 (2)+$2 (1) $1(2) } 

    1724(1)1(1)(1)1(2)-(02(1)(1)2(2)1

, and s' 

three
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     3A
2'       2 

The density of 1E' 

   P(1) =2_ 
 3(1-s') 

                   - (X1(1 

showing that this is 

-s'). The antibond 

non planar geometry of 

27) 

         VIII. Gen 

      The correlation 

vious section is con 

ture, but it can not 

tential field is par 

sites. In such cas 

cedure. viz._ the cc

 {1(1)X2(l)

antibonding

 {x1(1)2 + X2 (1) 2 + x3(1)2} 

X2(1) + X1(1)X3(1) + X2(1)X3(1)1 

an antibonding biradical with 

ng character might primarily cal. 

singlet ground-state trimethyler

cal with  ,&=1/(1 
imarily cause the 

trimethylenemethane.

  VIII. General Characterization of Biradicals 

7e correlation-extremization approach developed in pre- 

aection is convenient for grasping a qualitative fea- 

Dut it can not be used in polar species where the po-

L field is partial to either one of the two radical 

   In such cases, the usual energy-extremization pro-

, viz., the configuration interaction (CI) approach,
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must be taken. 

     We use a CI wavefunction of n electron system  TY(l, 2,••••, 

n) to construct the density distribution p(1), which is de-

composed in such a way as 

p(1) = A11a(1)2+ 2Al2a(1)b(1) + A22b(1)2 

           + 2 E {B
aja(1) +Bbjb(1) }Xj(1) +E Bjkx3(1)xk(1) . jj

,k 

                                               (15) 

The set of orbitals, a, b, and x , in principle atomic hybrids 

or usual atomic orbitals, are obtained by a relevant trans-

formation of the set of valence-shell atomic orbitals in such 

a way that orbitals a and b are appropriately associated with 

essentially located radical sites. 

     The bonding character and polar character can be repre-

sented by sAl2 and IC of Eq.(12), respectively. We define 

a new concept, the delocalized character of a biradical, 

by 

       = 2 - (A11 + 2sAl2 + A22) .(16) 

The biradical character of Eq.(14) can then be modified as
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 A11+A22 
(1 -

 2- JD 

2  

   =• (the 
2-D

)

smaller of A11 and A22) (17)

      IX. Bonding Deformation of Singlet Biradicals 

     In the following examples, where the polar character 

can be put equal to zero, the biradical character ' depends 

only upon the overlapping between radical sites. Thus sin-

glet biradicals stabilize with increasing overlapping between 

radical sites, which is in accordance with the direction of 

decreasing biradical character 6". In contrast, the trip-
let species tend to decrease overlapping to stabilize.29,30) 

     A molecular deformation in singlet biradicals to raise 

overlapping may even take place when stabilization overcomes 

destabilization, if it arises, due to the deformation. It 

may happen that a triplet biradical with minimal overlapping 

shifts to the singlet state through intersystem crossing to 

cause stabilization by bonding deformation. Let us discuss 

the bonding deformation in the direction of decreasing S-
with regard to several examples of singlet biradicals. 

     The dependence of energy on the torsional angle 0 in
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perpendicular ethylene discussed in previous section is shown 

 below.24) The lowest singlet has a deformation-instability 

in addition to the triplet-instability near O=Tr/2. The 3A2 

ground state of perpendicular geometry once formed may tend 

towards the planar form through the intersystem crossing to 

produce 1Ag ground-state ethylene.

3B
lu
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1B1 
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2

The 

is

0

 direction of bonding 

simply represented by
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 n
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the following orbital phase 
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      I (e=o) 
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     Similarly, 

cyclobutadiene 

lapping of two

 the direction of deformation 

is given by the direction of 

odd-electron orbitals.

of square 

in-phase over-

+

the

Also planar octagonal 

following way:
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 methylenecyclopropane
31)

MO

methylenecyclobutane

 1,2-dimethylenecyclobutane

32)

 DMO 

O33)

0

SOMO denotes a singly occupied molecular orbital. 

     The bond alternation in carbon 2prr chains can be ex-

plained by the following. The highest occupied (HO) and the 

lowest unoccupied (LU) MO's of a chain of equally distanced 

four p orbitals result approximately from the combination of
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the following two orbitals a and b.

In this 

mation 

form a

a  b

fictitious singlet biradical, 

is also caused by the bonding 

butadiene molecule, shown by

 h(a  -  b) 

a  o ;o----b 

(a + b) 

 the direction of defor-

overlapping of a and b to

___

The lower occupied  7 orbital has hardly any connection with 

this deformation owing to its less nodal property. 

     Similarly, the difference in bond lengths in hexatriene, 

fulvene, naphthalene, etc., is explained by considering the 

next HOMO's which contribute to the deformation less than 

HOMO because of their less nodal character. 

     An interesting application of the bonding deformation ap--
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proach 

states. 

highest 

orbital

may be the prediction 

                   * 
   In the  --ff excited 

 half-occupied orbital 

 (b') are represented

In order 

orbital a 

following

of the reaction path in excited 

 singlet state of hexatriene , the 

 (a') and the lowest unoccupied 

by

 ab 

to consider bonding stabilization 

'
, let us construct in the place 

 quasiorthogonal orbitals.

+

 of 

of

 the electron in 

a' and b' the

 1(a + b,)1(a~_  by               F( 

Combinations of these orbitals lead to orbitals a' and b', the 

former becoming occupied by a single electron to contribute to 

the bonding stabilization, and the direction of ring closure, 

if it occurs simultaneously, should be conrotatory. The con-

clusion is unchanged in the excited state with doubly occupied
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a'. In contrast, in the excited butadiene, the 

hypothetical 1,4-bonding would be  disrotatory.

+

direction of

The lower singly occupied orbitals would contribute less by a 

similar discussion in terms of their less nodal properties. 

     The simple approach is useful since it can be applied to 

a rough estimation of the direction of bonding in higher ex-

cited singlet states of a known electron configuration. The 

configuration might have several  SOMO's. The general pro-

cedure is as follows: 

 i) By a linear combination of the HOMO (singly or doubly 

occupied) and the LUMO, say a' and b', we construct two MO's, 

a and b, which are mutually orthogonal and spatially separated 

from each other to construct a fictitious singlet biradical 

species. 

 ii) The direction of maximal overlapping of a and b to de-

crease the biradical character .6 , obtained by the usual 
procedure in the orbital interaction approach,28) leads to a 

favourable reaction path.
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     In some cases, an excited state of 

deformation may correlate to the ground 

after deformation, as in the following ,

the species 

state of the

before 

 species

 S2

 S~

So

 52

 Si

So

  initialfinal 
                deformation 

     An example is the hypothetical disrotatory cyclization 

of S2 excited butadiene to S0cyclobutene in the Longuet- 

Higgins-Abrahamson state correlation diagram.34) The direc-

tion of such processes can be discussed by the method men-

tioned above.
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              X. Unpaired-Electron Isolating Deformation 

                  or Bonding in Triplet Biradicals 

     Once a triplet state is formed photochemically or  ther-

mally, a deformation or bond formation may be liable to take 

place to acquire stabilization in such a way that each of the 

two unpaired-electrons enters each of two orthogonal orbitals 

or they become separated from each other by the newly formed 

bond as far away as possible.9'30) In this connection 

Michl's conception of "loose" and "tight" biradicaloids is 

useful.30c) The followingexamplesare                    gpgiven for illustra -

tion. 

      Consider a 7-7*                    -7 triplet hexatriene molecule. Twisting 

of the carbon chain would certainly diminish the overlapping 

of the two unpaired-electron orbitals . Two possibilities 

exist in regard to the twisting .

 (I)  (II)  (III)
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The sum of conjugation stabilization in the two separated 

parts in (I) is greater than in (II). The resulting geome- 

try is shown in (III). Courtot and Salaun35a) showed that 

sensitized photoreactions of hexatrienes preferentially cause 

the cis-trans  isomerization of the central double bond , and 

that the singlet reaction causes isomerization of the terminal 

double bonds. The results are consistent with the theoreti-

cal prediction by Baird and West35b) that the twisting of in-

ner bonds should be preferred in the lowest triplet excited 

state of polyenes. In the singlet reaction a structure 

essentially like

may be prevalent on account of the bonding nature of singlet 

biradicals, which will favour the terminal bond isomerization. 

     Geometries in which the planes associated with two 

unpaired-electron orbitals are perpendicular to each other 

might be expected more  widely.35c)
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(Similar reactions are considered in chemiluminescent 

position of 1,2-dioxetanone derivatives.37))
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benzene
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orbitals by deformation. 
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 anism.
28)

CH3

OMO

 W' UMO 
LUMS 

It appears that combination of the principle of unpaired-elec-

tron isolation in the triplet state with that of bonding de-

formation in the singlet state brings about a plausible mech-

anism occasionally prevalent in photochemical processes in 

which biradicaloid intermediates play an important role. 

     Suppose that the lowest triplet state (T1) is produced, 

in some cases from higher excited singlet states (S
n) via S1, 

through radiationless (triplet biradical formation by a non-

sensitized photoprocess). A possible deformation path 

might be composed of stages (I) and (II) as shown in Figure 1. 

     Stage (I) involves separation of unpaired-electron or-

bitals by orthogonally twisting deformation or bond formation, 

occuring in the first triplet state. Stage (II) is that of 

bonding deformation or bond formation in the singlet ground
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state, S0. 

     By considering intermediate T1, stereoselective phenom-

ena can be explained by the augmenting chance to undergo fur-

ther conversion due to the long lifetime of the triplet state. 

     This mechanism of the intermediation of triplet state is 

supported by Kushick and Rice42~ as regards the effectuation 

of the S-T transition by dynamical coupling of the torsion-

al motion around the  C1-C2 bond in the cis-trans photoisomeri-

zation of butadiene. 

     Let us consider excited-state reactions of benzene, six 

7 MO's of which are given below.

 00 00

00

b2g

e2u

eg

a2u
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Then, Dewar benzene 

singlet (1B1u),43a)

+.

might be produced from  el
g+e2u excited

                          Dewar benzene 

and the formation of benzvalene, prismane, and Dewar benzene 

would be favoured by triplet intermediation. 

                           43b) 

      (_)-   7,~                          (T)  Dewar  benzene B2u------I SC 3B1u~
. 

           (T)prismane 

                        ISC44)                                                        43c) 

/to
gether 

          ~•~            ("1,  with 

                      (S) benzvalene fulvene 

     The mechanism involved might control the direction of re-. 

action, giving a new principle of orientation or stereoselec-

tion in excited-state reactions.
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                         Chapter 6 

    Electronic Structures of an Infinite Polyene under Local 

 Perturbations 

I. Introduction 

     In the last decade, there has been a considerable progress 

in the quantum chemical treatment of the electronic structures 

of one-dimensional polymers based on Bloch's tight-binding 

LCAO-MO (BMO) method.1) It is, however, unfeasible to treat 

a non-periodical system, such as having local defects or impu-

rities, within that scheme, since it is based on the Bloch 

theorem2) which is applicable to polymers composed of an infi-

nite repetition of unit cells. 

     Recently, a method to treat polymers with aperiodic ar-

rangements of monomers has been proposed by Ladik and Seel,3) 

but it still requires a periodicity with a repetition of ar-

rangements of several monomers as units. On the other hand, 

simple models of the local chemisorption on the surface of 

solid have been discussed rather qualitatively using the Green 

function technique by Schrieffer and by Kouteck2.4'5) In 

this Chapter, we show a treatment of locally perturbed linear 

polymers employing the Wannier function6) as localized MO
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 (LMO) of the unperturbed system  similar to Schrieffer and 

Koutecky but in a more quantitative way . 

II. Formulation 

     An LMO of the p-th level localized at the j-th cell is 

defined by the Wannier transformation from the BMO as follow-

ing, 

                      BZ 
     ap(r-ja)= ---------lE exp(-ikja]cl)

p(k,r), (j= 0, +1, +2,••••    2k— 

+N) (1) 

where (I)p(k,r) is the BMO of the p-th level with wavenumber k, 

a is the unit vector of the translational symmetry along the 

chain, BZ represents the summation over the Brillouin zone, 

and (2N+1) means the number of unit cells. Each of (I)
p(k,r) 

is spread into the (2N+1) LMO's localized at each unit cell. 

     Now, provided that a perturbation is applied to the 0-th 

cell, it will influence only those LMO's, ap(r-ja), which are 

localized at the unit cells near the centre of perturbation, 

causing the correction terms Sap(r-ja). Generally j is in the 

range from 0 to +M, where M indicates the number of neighbour-

ing LMO's still having a significant decaying tail of amplitude 

in the 0-th cell. Since BMO and LMO are connected by a uni-
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tary transformation, the total energy, the electron density,  and 

the bond order of the perturbed system can be obtained by the 

summation of the quantities evaluated from the perturbed LMO's 

(a(r-ja)+Sap(r-ja), -M<j<M) and from other unperturbed LMO's. 

In other words, the correction terms of these quantities owing 

to the perturbation are issued from nothing but the presence of 

6ap(r-ja). Thus the local perturbation problem of polymers is 

reduced to the estimation of the correction terms of a rather 

small number of perturbed LMO's. 

     The change of the unperturbed LMO of the p-th level lo-

calized at the j-th cell (6ap(r-ja)), that of its orbital en- 

ergy (6ep
,j), and that of the total energy of the polymer (6E) 

by the perturbation V applied to the 0-th cell is described as 

follows using the notations V
gr,j=<aq(r-ja)IVIar(r-ja)>, and 

V'gr ,j=<aq(r-ja)IV'Iar(r-ja)>,where V'=V-VPP.j:

6a (r-ja)
  all V 

= E  

q (#P) 

 V' rq
,jV

gp,jaq(r-ja)

E-e 
 P,jgrj 

gp,jar(r-ja)

all all 
 E  E 

q(p)r(p)

 (E-e   P
,Jq,J 

1all V      E 
 2 q(

p)

 (EP
,J-Er,j) 

Pq,JVgP,jaP(r-ja)
         2 (e

p,j-E)       q,j 
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+

 all 

 q  (P)

 all 

r (#P)

all V' 

s(#P) (s.-e

;r,J
V'rq

,3qp^jaS(r-ja)

1 

2

 all 

q (#P)

all V 
pc  E 

r (#p)(e

P,J

.V 
[^J

q,j)(eP,j-er,j) (eP^j-~S,j

gp,jVrp,jar(r-ja)
   2 

q,j)(EP,j-Er,j) 

Va (r-ja)  qP
,j q

   all 
- E 

q (#P)

all V 
 E — 

      r (#P)

P.3 -E

Pr,jVrp,j

   all 
- E 

q (#P)

 all 
E 

r (#P)

  eP
^j-Er,j) (E-e               P,j 

VPq
,3qr,3rP,jaP

2 
q,j)

(r-ja)

         2 (e
p,j-Eq,j)(~P,j-er,j)

(2)

deP
^J

 =  V
  all V 

+ E 

q(p) e

)q,JV GIP, j
PP,3

P^J—eq,J

  all all 
+ E E 

q (�P) r (P)

    VPJqr
,     V3      q^ rp,j  + .... 

(£P
,j-eq,j)(cP,j_er,j)

(3)

and

       +M 

dE = 2 E 
       j=0

ocC 
 E de 

P
P,j

(4)
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where the interelectron potentials are neglected. The changes 

of the electron density and the bond order are also easily de-

rived from dap(r-ja) by the summation with respect to j as in- 

dicated in  Eq.(4). 

III. Application to Infinite Polyene 

     Let us consider here three types of local perturbations 

toward an infinite polyene without bond alternation as shown in 

Figure 1 in the frame of the Huckel MO approach where the 

Coulomb integral of a carbon atom and the resonance integral 

between adjacent carbon atoms are denoted as a and a, respec-

tively, in the unperturbed polyene. 

     First, when the carbon atom C1(0) in Figure 1(A) is re-

placed with a heteroatom X, the Coulomb integral of that atom 

will become a+da (Case I), where C
u(j) means the u-th carbon 

atom in the j-th cell. Next is the case where the resonance 

integralSbetween C1(0)and C2(0) is increased by dR with the 

change of the bond length between them (Case II). The third 

case is the infinite polyene perturbed by another carbon atom 

Cx through a weak bond with C1(0) whose resonance integral is 

Sy (Case III). Prior to the treatment of these examples, 

the unperturbed system should be examined. Neglecting all 

but the nearest neighbour atom interaction (Huckel approxima-
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tion), the occupied BMO of unperturbed polyene,  cyk,r), the 

unoccupied (1)2(k,r), and their orbital energies have been ob-

tained as follows,7) 

            1 +N 

     1(k,r) =E exp[ikja]{r1X1(r-ja) +exp[ika/2]     2N+1j=0~IL2 

                     •x2 ir- (i+i) al  },(5-A) 

            1 +N 

   02(k,r) =E exp[ikja]{1~1-f                                     X1(r-ja) -explik2] 
2N+1j=0V2 

•X2 [r-(j+2)a] }.(6-A) 

e1(k) = <c1(k,r)IHI01(k,r)> = a + 2Scos(ka/2),(5-B) 

e2(k) = <02(k,r)IHIO2(k,r)> = a - 2Scos(ka/2),(6-B) 

where Xu specifies a 2p7 AO of the u-th atom in the unit cell 

and H is the Hamiltonian of the system. The unit cell of the 

polyene is assumed to be composed of two carbon atoms. The 

occupied and the unoccupied LMO's localized at the 0-th cell 

are, respectively, 
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have already been formulated by Fukui et al.9,10) for the 

finite molecule. Therefore, one has only to replace the un-

perturbed MO in their treatment by the LMO localized at the 

perturbed site. 

     The changes of  al  (r) (5a1()), E1 ,0(6E1,0) , total energy 

of polyene (SE), bond order between arbitrary carbons in the 

polyene (6Puv), electron density (SPuu), created bond order 

between C1(0)and CX(SPlX),electron density of CX(SPXX) , 

and charge transfer from CX to the polyene (SQ) are directly 

derived from the formulae in Ref. 10 for the present each 'case 

of perturbations. 

     In Case I, denoting dui as the coefficient of xu in ai(r), 

2 
    Sal(r)=16a(Sa)a2(r) - ----------2(6002a1(r)+ o(Sa)3, (9-A) 

512R 

   SE1, 0 =2(Sa)+32Q(Sa)2 (9-B) 

SE = Sa + 1613(Sa)2,(9-C) 

                  Tr  
     SP

uv 8S(duldv2+ du2dv1) (Sa) + ------------2(du2dv2 - duldv1)                                     128~ 

          -Oa)+ o (5c)3,(u=v or u#v)(9-D) 
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where 

of the

the third-order terms 

 symmetries of  a1(r)

da1(r) = 0 ,

6e1,0=-(6a)

          and SE drop of de1
,0 

and a2(r). Likewise

out 

in

 because 

Case II,

(10-A)

(10-B)

dE =4TT(6s) , (10-C)

In 

and 

out

S Puv= 0 .

the present case, 

 the second- and 

  Furthermore, in

(u=v or uv)

Sa1(r) and SP
uvas far as the 

the third-order terms of Se 1
,0

Case III,

(10-D)

third-order 

and SE drop

da1(r) = 8S (SY)x

de1
,0 8S(SY)

2

   2 
+ 

6452 (6Y) 2 (a2 (r) - a1 (r) )

+ o(6y)4 ,

+ o (SY) 3 , 

   (11-A)

(11-B)
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 dE = 74-(6Y)2 2 + o(5y)4 ,(11-C) 

2 

     5Puv
32s = -------2(du2dv2 - duldv1)(Sy)20(6.Y)3(u=v or•v) 

                                                         (11-D) 

    5P1X=4s(S y) + o (5y) 3        ,(11-E) 

BPXX = o(8y)3 ,(11-F) 

  dQ = o (6y)3 ,(11-G) 

where xX is 2prr AO of CX. It is to be noted that SPuu, SPXX' 

and 8Q are equal to zero, namely the electron densities of ev-

ery carbon atom in the polyene and CX remain unity, because 

of the symmetries of al(r) and a2(r). The treatment of Case 

III can easily be extended to the system perturbed by another 

conjugated molecule instead of CX, although it is omitted 

here for the sake of simplicity. 

     It has been shown that the formulations in the SCF-MO is 

quite similar to those in the Huckel MO for the finite molecule 

for Cases I and II.11) Also the formulations of Bacon and 

Santry12) may be available to the Case III for the SCF-MO 

treatment. Therefore, the present treatment of local pertur-
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 bation toward polymers within the Hickel MO approach 

basic as a starting point of the following approaches 

empirical or semi-empirical Hartree-Fock theory.

would be 

 by non-

-166-



1)

2) 

3) 

4)

5)

6) 

7) 

8) 

9) 

10) 

11)

                References and Notes 

For example, see "Electronic Structure of Polymers and 

Molecular Crystals," ed. by J. M.  Andre and J. Ladik, 

Plenum Press, New York (1975). 

F. Bloch, Z. Phys., 52, 555(1928). 

J. Ladik and M. Seel, Phys. Rev., B13, 5338(1976). 

J. R. Schrieffer, "Proc. 2nd International Congress of 

Quantum Chemistry," D. Reidel Publ. Co., Dordrecht-

Holland (1976), p.305; also see: J. B. Danese and J. R. 

Schrieffer, Intern. J. Quant. Chem., S10, 289(1976). 

J. Koutecky, "Proc. 2nd International Congress of 

Quantum Chemistry," D. Reidel Publ. Co., Dordrecht-

Holland (1976), p.279; also see references therein. 

G. H. Wannier, Phys. Rev., 52, 191(1937). 

See p.9 and p.55 of Ref. 1. 

K. Fukui, "Theory of Orientation and Stereoselection," 

Springer-Verlag, Berlin (1975). 

K. Fukui, C. Nagata, T. Yonezawa, H. Kato, and K. Morokuma, 

J. Chem. Phys., 31, 287(1959). 

K. Fukui, K. Morokuma, T. Yonezawa, and C. Nagata, Bull. 

Chem. Soc. Jpn., 33, 963(1960). 

G. Diercksen and R. McWeeny, J. Chem. Phys., 44, 3554 

(1966) .

- 167-



12) J. Bacon and D. P. Santry, J. Chem. Phys., 55,  3743(1971). .

J.

11

11

- 168-



                         Chapter 7 

  Orbital Interaction in the  Dimerization of S2N2 into S4N4 

     In recent years, disulfur dinitride, S2N2, and tetrasulfur 

tetranitride, S4N4, shown in Figure 1 have been of much inter-

est in that they are the precursors of polymeric sulfur ni-

tride, (SN)x,1) which is a low-dimensional metallic conductor 

and even becomes a superconductor at 0.3°K.2) On the other 

hand, it has been also reported that S2N2 rapidly dimerizes, 

in certain organic solvents with a trace of alkali, to S4N4'3) 

which is known to have a geometry with coplanar N atoms from 

the X-ray diffraction analysis.4) Then it would be an inter-

esting problem to explain the process of the formation of 

S4N4 from S2N2 by using the consideration of orbital interac-

tion.5) 

     From the atomic arrangement of S4N4 and the principle of 

maximum overlap of the highest occupied (HO) MO and the lowest 

unoccupied (LU) MO between two S2N2 molecules, two kinds of 

S2N2 stacking interaction models (A) and (B) are considered as 

shown in Figure 2. They are of essentially different configu-

rations to be stacked onto when S2N2 approaches each other. 

The HOMO and the LUMO of S2N2 employed in this Chapter are ob-

tained with the use of the ASMO-SCF method.6) The shape of 
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the HOMO is consistent with that analyzed by the photoelectron 

spectroscopic  study7) and the shape of the LUMO is the same 

with those obtained by other MO calculations under various 

versions.8) 

     The HOMO-LUMO interactions of S1-N3 and N2-S4 are "bond-

ing" in model (A), and thereby two new pa type bonds are ready 

to be formed between them, accordingly as the Tr bonds of S1-N2 

and N3-S4 are weakened. On the contrary, interactions of 

N1-S3 and S2-N4 are "antibonding" and, therefore, do not con-

tribute to form new bonds. The intermediate-range interaction 

of S2-S3, which is favourable for bonding, should be taken 

into account even though the interaction is weak, since Tr AO 

of S diffuses and then the overlap of S2-S3 is not negligible. 

     On the other hand, following the stacking interaction in 

model (B), merely S2-S4 bond formation is favourable. This 

type of orbital interaction is disadvantageous to bring about 

the subsequent process of the dimerization, so model (B) 

could be discarded. It is to be noted that the way of stack-

ing in model(B) coincides with that in S2N2 crystal along the 

b-axis.lc) 

     Hence one can explain the process of the formation of S
4N4 

with coplanar N atoms with the use of model (A) as follows: 

the main bonds to be formed are S1-N3 and N
2-S4 pa bonds while 

the previous S1-N2 and N3-S4 cleavage along the formation of

- 172-



new bonds as shown in Figure  2(A). In the framework of this 

dimerization model, the reaction proceeds quite easily only 

through bond interchange without large dislocation among nuclei 

and, therefore, without going over large potential barrier. 

Succeedingly a slight deformation may take place until the 

most stable geometry in Figure 1 is accomplished along S2-S3 

bond which plays a role of fulcrum as illustrated in Figure 3. 

The most stable geometry is then expected to be completed 

when the weak S1-S4 bond is formed. The existence of these 

transannular S-S bonds has also been suggested by the MO cal-

culations for S4N4 molecule itself.8b,8c,9) 

     Another geometry of S4N4 with coplanar S atoms which had 

been proposed by the IR and Raman spectroscopic analyses10) is 

denied at least in the present orbital interaction treatment 

on the direct dimerization of S2N2 into S4N4. The extended 

Huckel MO9c) and the CNDO/BW MO9g) calculations have also sup-

ported the geometry with coplanar N atoms from the viewpoint 

of the total energy of S4N4. Howeder, there still may be a 

possibility of the interconversion of S4N4 between the geome-

tries with coplanar N atoms and with coplanar S atoms making 

use of some appropriate vibrational modes each other. In 

this point, further investigation on these geometries taking 

also the vibrational analysis into account would be desirable.
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                         Chapter 8 

      The Initial Stage of Polymerization from (SN)
2  Moleculw; 

      to (SN)X Polymer 

I. Introduction 

     There has recently been considerable interest in the 

covalent polymer, polymeric sulfur nitride, (SN)
X, since the 

discovery that it is a low-dimensional metallic conductor.1'2) 

The theoretical treatment for (SN)
X has also been carried out 

to reveal the metallic character of the (SN)X in its band 

structure.3) Recently, MacDiarmid et al. have reported that 

the crystalline monomeric S2N2 polymerizes thermally in the 

solid state to form the (SN)X polymer.4) They have also de-

termined the structure of (SN)X as well as S2N2 shown in Fig-

ures 1(A) and (B) by X-ray diffraction. The initially colour-

less tabular monoclinic crystal of S2N2 turns intense blue-

black and becomes paramagnetic giving a weak free radical sig-

nal at g=2.005. This substance then changes to golden-col-

oured, diamagnetic crystals of (SN)X polymer. 

     For the mechanism of the solid state polymerization, they 

have also proposed, particularly at the first step, the thermal 

opening (widening) of one of the S-N bonds in S2N2 to form a
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biradical species. This radical can then link up with another 

S2N2 molecule in the crystal to give the partly polymerized, 

paramagnetic (SN)2 of blue-black colour, and finally the golden 

 (SN)x polymer. Moreover, Baughman et al. have studied the 

polymerization including defect structures crystallographically. 

5) 

     In this Chapter, we try to elucidate the polymerization 

reaction, particularly at the initial stage, and to confirm 

the mechanism proposed above by MO calculations. At 

first, the electronic structure of the precursor S2N2, and 

then, those of the several "deformed" structures of (SN)2 as 

shown in Figure 1 are calculated and the thermal initiation 

reaction is investigated. The calculations are performed 

with the use of the semi-empirical INDO-type ASMO-SCF method 

for valence electrons including sulfur 3d orbitals,6a) and the 

stability of the triplet state (open-shell) is examined by the 

sign of the transition energy from the lowest singlet state 

(closed-shell).6b) This method has given fairly reasonable 

results, especially for the transition energies6c-6e) because 

of good parametrization for Coulomb repulsion integrals.7) 

Examined further are the electronic structures of the dimeric 

unit (SN)4 and the trimeric unit (SN)6. 

II. Electronic Structure of S2N2
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      The molecular structure of S2N2 employed here is shown in 

Figure 1(B), which has been determined by MacDiarmid et  al,4a) 

This is square planar (D2h) with 90° of the S-N-S angle8) and 

almost equal bond lengths, 1.654QA.9) The calculation of the 

electronic structure of S2N2 has been carried out by using 

the SCF-Xa-scattered wave method, which gives rather highly 

polar S-N bond (S+0.48-N-0.48).10) This is probably because 

the method overestimates the contribution from the ionic struc-

ture. 

   The atomic net charges and 7 electron densities calculated 

here are also shown in Figure 1. This molecule has six 7 elec-. 

trons - two 71" from each sulfur atom and one 7 elec-

tron from each nitrogen atom. In consequence of the planar 

D2h structure, the occupied orbitals are separated into a and 

n orbitals. In the S-N bond, the charge densities of a elec-

trons are 4.180 and 3.820 on S and N , respectively, whereas 

those of 71 electrons are 1.619 and 1.381, respectively . This 

means that the charge transfer of 7 electrons from S to N 

0.381) exceeds that of a electrons from N to S (0 .180). Con-

sequently, the net charges on S and N are +0 .201 and -0.201, 

respectively, as is usual for S-N bonds in other moleculesll) 

reflecting the fact that sulfur is less electronegative than 

nitrogen. As a matter of course , the highest occupied mo-

lecular orbital (HOMO) is of typical it MO, following another

— 180 —



 7 and two a MOs close together as shown in Figure 2
. It 

should be noticed here that there are two extraordinary low 

lying unoccupied MOs with negative eigenvalues and large S -N 

antibonding characters, i.e., 11 and Q* being very close each 

 * other. Such low lying a MO may often induce bond-cleavages 

or drastic re-arrangement among MOs. 

III. Electronic Structures of "Deformed" (SN)
2 

     According to the mechanism of the polymerization reaction 

proposed by MacDiarmid et al., S2N2 is considered to be de-

formed thermally (near 0°C) at the first step to open one S-N 

bond, giving biradical character. In this section, how the 

biradical character appears according to the deformation is in-

vestigated. The geometries of (SN)2 chosen here are shown in 

Figures 1(C), (D), and (E). In (C) and (D), the bond lengths 

of the sides opposite to the opened S-N bond are taken as being 

equal to the S-N bond length in the precursor, S2N2, (B), 

since shortening of them is unfavourable from the view point 

of nuclear repulsion as found in this calculation. (E) is 

employed from the fragment of the (SN)x polymer in structure 

(A). Sulfur 3d orbitals are requisite for the SCF conver-

gence in the calculations for the open forms even though 

their contribution is not significant. As previously men-
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tioned, the possibility of the triplet biradical is investi -

gated through examining the transition energy from the lowest 

singlet state to the triplet state in each structure . 

     In the cases of the precursor (B) and the slightl
y deformed 

 (C), the ground states are, not unexpectedly , singlet, although 

the triplet  7-i transition energy (43E*) and the triplet7T 
                                                    IT  

* .7T 
-Q transition energy (43E

7,G*) of the latter are positively 

small as shown in Table 1. Next, the case of a little more 

deformed structure (D) was examined. A3E
7,7* remains posi-

tive and almost the same value, while 43E
7,-* is found to be 

negative. Hereafter, the signs 7 and 7-are defined to rep- 

resent the Tr-type MO perpendicular to the molecular plane 

and that in the molecular plane, respectively. The above re-

sult means that the ground state of such a structure is a 

triplet formed from two singly occupied (SO) MOs, i.e., 7 SOMO 

and Tr SOMO, as shown in Figure 2. The same result was ob-

tained for the structure (E). Furthermore, these results 

were improved by the configuration interaction (CI) method in-

cluding one electron excitations for the triplet states and 

pairing excitations for the singlet states within all the ranges 

from (HO-3)MO to (LU+3)MO. The situations are essentially 

not altered after CI as shown in Table 1. Thus, it is proba-

ble that the triplet state is energetically favourable for the 

ground state of such deformed structures rather than the sin-
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Table 1. Transition 

the Triplet States

 Energies and the CI 

of the Deformed (SN)2

Improvements for the 

(in

Stability of 

eV)

Structure  A3E7r 

(11th

* 

. 7r 

MO-0-13th MO)

A3E 

(11th

* 
7r,a 

MO+12th MO)

3 E
ir,a 

(after

* 

CI)

(B) 

(C) 

(D) C 

(E)a

1 

1 

1 

1

.922a 

.401 

.060 

.876

 2 

1 

-0 

-0

.514b 

.223 

.693 (A3E*) 
     11 

.544 (A3E~-*)

 2.867 

 1.627 

-0 .068 (A3E 

-0.153(t3E
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7r,1T

aIn this case
, llth MO-0-l2th 
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orbital crossing occurring 

the text) .

 MO. 

 MO. 
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glet state. The atomic net charges and  Tr electron densities 

of each structure are also shown in Figure 1 , where the values 

of (D) and (E) are those of the triplet states . It is assumed 

here that the open-shell MOs in the triplet state are occupi
ed 

with two more electrons of a spins. The a spin densities of 

_* 
the if MO and the Tr MO are shown in Table 2 . As a whole, one 

can not find a large change of the atomic net charges even in 

the triplet states of (D) and (E). This implies that the 

transition from the singlet state to the triplet state is not 

due to the intramolecular charge transfer . On the other hand, 

such a transition would be expected to cause a drastic change 

of the number of Tr electrons from 6 to 5, as one of the Tr elec-

trons is transferred from the Tr MO (11th) perpendicular to the 

_* 

molecular plane to the Tr MO (12th) in the plane in the 

biradicals of the structures (D) and (E). The large spin 

densities of both the Tr electrons and the T electrons are main-

ly on S4 and on N1. The Tr radical electron may be more re-

active than Tr radical electron because the orbital energy of 

_* 
Tr SOMO is much higher than that of Tr SOMO. Interestingly, 

_* 
the dominant component of such Ti SOMO are p x and as such are 

consistent with the direction of the polymerization as shown 

in Figure 1(A). 

     To understand such singlet-triplet transition in detail, 

the correlation diagrams of the orbital energy levels for each
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Table 2. The a Spin Densities in (SN)2 of the Structures (D) and (E)a

Atom s px Py -Tr spin density Pz Tr spin density

(D)

N1 

N3 

S2 

S4

0.000 

0.008 

0.001 

0.000

0. 

0. 

0. 

0.

272 

081 

069 

469

0.000 

0.036 

0.005 

0.026

0. 

0. 

0. 

0.

273 

125 

092 

510

0.187 

0.145 

0.036 

0.572

0.187 

0.145 

0.082 

0.586

(E)

N1 

N3 

S2 

S4

0.000 

0.009 

0.000 

0.000

0. 

0. 

0. 

0.

214 

067 

046 

364

0.000 

0.098 

0.004 

0.172

0. 

0. 

0. 

0.

215 

175 

052 

559

0.168 

0.171 

0.008 

0.584

0.168 

0.171 

0.060 

0.601

a AO spin 

The values

densities 

of it and

of 3d 

IT spin

orbitals are of small 

densities, however,

values and 

contain the

hence omitted here. 

3d contributions.



structure are given in Figure 2 and pictures of some of  these 

MOs of both (C) and (D) in Figure 3. The 10th MO and the 12th 

MO in (C) are of bonding (pa) and antibonding (pa*) character, 

respectively, to both the N1-S4 and the S2-N3 bonds, and are of 

_* 
antibonding (pnr ) and bonding (p7r) character, respectively, to 

both the N1-S2 and the N3-S4 bonds. Thus, if the p;r bond 

should be stronger than the pa bond by the elongation of the pa 

bond, there may be a possibility of level crossing between the 

10th MO and the 12th MO. In fact, when the structure of (SN)2 

changes from (C) to (D), the occurrence of the level crossing 

* between the 12th MO (a ) and the 10th MO (a) is seen as shown 

in Figure 2. Namely, the 10th MO and the 12th MO in (C) are 

                                                                            * transformed to give bonding (p7) and antibonding (pTr) charac-

ter in (D), respectively, mainly with respect to the N3-S4 bond, 

and somewhat less with respect to the N1-S2 bond. These de-

tails are clarified by examining the values of the main Fock 

matrix elements, C10rC10s<riFls>, where r and s are the compo- 

nent atomic orbitals (AOs) of the 10th MO, and C is the AO co-

efficient. It is seen from Table 3 that, in (C), the N1(2px) 

-S
4(3px) matrix element contributes to stabilization for the 

orbital energy, and that the N1(2px)-S2(3px) and N3(2px)-S4 

(3px) matrix elements contribute to destabilization. However; 

in (D), the Ni(2px)-S4(3px) element leads to less stabilization 

and the N3(2px)-S4(3px) to stabilization. Since the orbital
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Table 3. 

Energies

  The 

of (C)

Values of 

 and (D)

Fock Matrix 

    (in eV)

Elements Influencing 10th Orbital

r AO s AO (C) C10rC10s<r1F1s>a (D) C10rC10s<rIFfs>

N1 

N1 

N3 

N3

2px 

2px 

2p
x 

2p Y

S2 

S4 

S4 

S4

3px 

3px 

3p
x 

3p
x

0 

-1 

0 

-0

.373 

.461 

.372 

.088

-0.147 

-0 .556 

-0.439 

 0.133

a See
the text about the notations C

10

rand C
10

s



   level crossing in going from (C) to (D) is caused mainly by the 

   changing of the sign of the  3px orbital on S4 and the larger 

   contribution of the 3s orbital on S2, it would not be so dif-

   ficult to bring about such a triplet transition, if the widening 

   of the N1-S4 bond takes place easily. 

         In fact, according to the IR spectrum of the solid S2N2,12) 

   the strong bands at 476.2cm-1 and 785cm-1 are assigned to 

   be B2
u and B3u modes, respectively, which correspond to the 

   widening of one of the S-N bonds (and hence shortening of the 

   opposite S-N bond). These extraordinary low frequencies imply 

   the shallow potential of the S-N bond for such vibrational 

   modes and therefore the widening may easily be induced, even 

   thermally, because, e.g., 476.2cm-1 is equal to 1.36kcal/mol, 

   which is the same order of RT at room temperature (ca. 0.6kcal 

   /mol). This consideration leads that the polymerization may 

   be accelerated by applying the appropriate IR ray. 

        Thus it is expected that, at the point where the level 

   crossing occurs, the N1-S4 pa bond vanishes and the N
3-S4 pu 

   bond prevails, and that the triplet state emerges in the course 

   of the deformation probably due to the vibrational motion . 

   Furthermore, it is attempted to estimate the mixing of the 

   triplet configuration with the singlet closed-shell configu -

   ration for (C), and the mixing of the singlet (original closed - 

   shell) configuration with the triplet (biradical) confi
guration
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for (D) and (E) through spin-orbit coupling. Considering 

the perturbation  correction,13) the state function, required 

at present,l(3)(I)i, is given by;

                      <1(3)0~H0~ l(3)
~=l(3)~0+ iSO13(1)1'k 3(1)~0 11k3k 

                                   4Ei
,k 

where 1(3)(I)i0 and 3(1)(1)k0 are the unperturbed i-th singlet 

(triplet) ASMO and the unperturbed k-th triplet (singlet) 

ASMO, respectively. HSOis usual spin-orbit coupling opera- 

tor, and 43Ei
,k is the energy difference. In the case of 

(C), 1(1)i0 refers to the closed-shell configuration and 3$k0 

to the Tr->a (11th M0+12th MO) triplet configuration, whereas 

in (D) and (E) , 30i0 refers to theTr-->Tr* (11th M0-*12th MO) 

triplet configuration and 1(Dk0 to the original closed-shell 

configuration. These 3(1)~k0 states seem to contribute 

mainly to the second term in the above correction rather 

than to other configurations, because the energy differences 

43E
7,0* (A3E7,-*) are considerably smaller. The matrix ele- 

ment in the numerator is further reduced to <`Y111H*>                                      SOIT1Q 
(<T11IHSOIT -*>) , where`'andY'16* (~11,2*) denote the llth 

TrMO and the 12tho*Tr                          (*) MO, respectively. Taking only one-

centre terms into account as to the matrix element and em-

- 191 -



ploying the spin-orbit coupling constants of  74.2cm-1 and 

363cm-1 for nitrogen and sulfur, respectively,14) one ob-

tains; 

     14
i= 14i0 + 0.009 3(I)k0 for (C), 

3(I)
i = 3(I)i0 - 0.019 1(I)k0 for (D), 

and 

3(I)
i = 3(I)i0 - 0.006 1cl)k0 for (E). 

The orders of the mixing coefficients are considerably larger 

than those in usual organic hetero compounds15) on account of 

the heavy atom (sulfur) effect. Moreover, the llth rr MO and 

         * _* 

the 12th c (ii ) MO are advantageous, considering the charac-

ter of the orbital angular momentum operator involved in H
SO. 

Thus, in (SN)2, the degree of mixing of the singlet state is 

essentially remarkable. In particular, the biradical re-

sulting from the rr-Tr* triplet transition, would be easily 

formed from the singlet state. It should be stressed here 

that the energy difference between the triplet and the sin-

glet state is small (approximately 1 kcal/mol) and hence it 

would not be unreasonable if the population of the singlet
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state, even if it were energetically higher, should increase 

with increase of temperature according to the Boltzmann dis-

tribution. In this respect, it is interesting to note that 

the ESR spectrum of blue-black, partly polymerized (SN)2de- 

creases in intensity with increase in the temperature at 

which it is measured,  e.g., -100°C vs. 25°C.16) 

          IV. Electronic Structures of (SN)4 and (SN)6 

     In order to understand further steps of the polymeri-

zation, we calculated the electronic structures of linear 

(SN)4 and (SN)6.The geometries employed are those from ap- 

propriate fragments of the polymer in Figure 1(A). The cal-

culated atomic net charges and Tr electron densities are shown 

in Figure 4 and the orbital energy diagram for these molecules 

are shown in Figure 5. It is seen that Tr electron densities 

are distributed less on N1 and S8 in (SN)4,and on N1 and S12 

in (SN)6,and that (SN)4and (SN)6have a total of 107 and 

167 electrons, respectively. Furthermore the ground states 

of these molecules are found to be singlet rather than triplet 

states. The HOMO (a) in (SN)4 is considerably stabilized by 

the SOMO (7 ) -SOMO (7 ) interaction between two (SN) 2 biradi-

cals. The (HO-1)MO (7) is almost unchanged from the original 

7 MO in structure (E) and then, these two are nearly degener-
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ate. In (SN)6, however, the HOMO  (7) is somewhat separated 

from the (HO-1)M0 (a). These results and their HOMOs and 

(HO-1)MOs suggest that (SN)4 is derived from two (SN)2 mol-

ecules in the triplet state (5rr+57) , and that (SN) 6 is de-

rived from (SN)4 and square S2N2 in the singlet state (lOTr+ 

67). 

      Thus from the results of these calculations, the para-

magnetism is expected to vanish as the polymerization pro-

ceeds, which is in agreement with the experimental re-

sults. 

                   V. Conclusion 

     The electronic structures of the square S2N
2 molecule and 

several deformed (SN)2molecules,and of (SN)
4 and(SN)6mol- 

ecules have been examined. 

     In the deformed (SN)2, the triplet biradical nature be-

gins to emerge as one of the S-N bonds opens. The appearance 

of the triplet state seems to correspond to the interaction 

of the opened S-N pa bond with the adjacent S-N pF bond in 

the molecular plane. 

     From a simple estimation of the spin-orbit coupling in 

the deformed (SN)2 molecules, there appears to be consider-

able mixing of the singlet state with the triplet state or of
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the triplet state with the singlet state. The opening of the 

S-N bond might be expected to occur easily,  i.e., thermally, 

in view of the IR spectroscopic data of the appropriate vibra-

tional modes. 

     (SN)4 and (SN)6, however, do not show triplet ground 

states. (SN)4is believed to result through the dimerization 

of two (SN)2biradicals,whereas (SN)6may be regarded as 

being formed by the addition of singlet (SN)4 to singlet S2N2. 

Analogous processes would then lead to higher polymers.
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                        Chapter 9 

       Electronic Structures of  (SN)
x and (SCH)x Polymers 

I. Introduction 

     There have been considerable experimental and theoretical 

interests in low-dimensional metallic conductors such as 

tetracyanoquinodimethane (TCNQ) charge-transfer salts and 

K2[Pt(CN)4]Br0 .3.3H2O mixed valence complex.1) Recently, the 

third member, polymeric sulfur nitride, (SN)
x, has been 

revealed as a low-dimensional metallic polymer,2) which does 

not show the Peierls transition unlike the above two, and even 

becomes a superconductor at 'A .3K.3) 

     The theoretical band structure calculations of (SN)x have 

been performed with the OPW method4) and several non SCF-tight-

binding techniques such as the extended Hiickel method.5) In 

these tight-binding MO calculations, however, the electron-

electron interaction potential is not taken into account ex-

plicitly, and hence these methods would be only reliable on the 

non-polar polymers such as polyethylene.6) Since the sulfur-

nitrogen bond in (SN)x has been estimated experimentally to be 

of rather polar character,7) it would be suitable to calculate 

the MO including the electron repulsion integrals for this
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polymer. The SCF-tight-binding MO calculation including these 

repulsion integrals has been carried out only by Zunger and by 

Merkel and  Ladik8) for the one-dimensional structure of (SN)x 

in the crystal structure proposed by Boudeulle and Michel 

(Lyon structure)9) based on the electron-diffraction analysis 

as shown in Figure 1(A). The band structures obtained by them 

clearly show the metallic nature of (SN)x, and the possibility 

of the occurrence of the Peierls transition has been denied by 

the former. 

     More recently, however, the more reliable structure of 

(SN)x has been proposed by MacDiarmid et aZ. (Pennsylvania 

structure)10) based on the X-ray diffraction analysis as shown 

in Figure 1(B). In this Chapter, the result of electronic 

structures of the one-dimensional Pennsylvania structure of 

(SN)x by the SCF-tight-binding MO calculation including the 

electron repulsion is presented, and, furthermore , the calcu-

lation for an assumed structure of (SCH)
x polymer is made so 

as to study an isoelectronic system with the (SN)
x polymer. 

II. Method of Calculation 

     In order to avoid the complicated calculations of the all 

matrix elements by ab initio methods , the CNDO/2 approximation 

by Pople and Segall') is employed . The SCF iteration process
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is accelerated by the density matrix method previously intro-

duced by Imamura and Fujita to calculate biopolymers.12) 

The formalism of the calculation has been described thoroughly 

in thier article, so the details will not be mentioned here 

again. All valence AOs and 3d orbitals for sulfur atom were 

considered since it has been pointed out that the contribution 

from 3d orbitals is not negligible for  (SN)
x.8) For the 

parametrizations were adopted those of spd set by Santry and 

Segal,13) and the number of representative wave vector K was 

chosen as 21 at regular intervals (7/10a; a is the length of 

the unit cell) in the Brillouin zone. 

     The structure of (SCH)
x analogous to that of the 

Pennsylvania structure of (SN)
x was assumed as shown in Figure 

1(C). The angle at sulfur was chosen as 106 .2° after that in 

(SN)x, and that at carbon as 120° after ordinary sp2 

hybridization. The two kinds of S-C distances , 1.81A and 1.61 
A, are employed from the data for dimethyl disulfide14? and 
thioformaldehyde,15) respectively . The C-H bond distance , 1.09 

0 A, also from the latter . Each of SN and SCH units consists of 

11 valence electrons and , hence, an open-shell structure . 

Since the (SN)
x crystal, however, does not show10))                                                         paramagnetism, 

the system could be treated as a closed -shell system . In the 

MO calculation of the (SN)
x polymer, (SN)2was employed as a 

unit cell. In the (SCH)
x polymer, (SCH)2was assumed as well. 
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Since the polymer chains possess a two-fold screw rotation as 

a symmetry operation, all pairs of bands stick together at the 

edges of the Brillouin  zone,16) and, in this case, the highest 

occupied (HO) (Tr) and the lowest unoccpied (LU) (Tr*) bands 

also degenerate there. At such points, it is, in principle, 

unreasonable to describe the system with a single Slater deter-

minant. Thus the density matrix elements were extrapolated 

at K=+9Tr/10a and +Tr/10a for the evaluations of those at K=+Tr/a 

and 0, respectively. The values of overlap integrals between 

the central unit cell and the N-th nearest neighbouring cell 

rapidly decrease to 0 where N=3ti4 (9til3.5A from the central unit 

cell). But as those of electron repulsion (Coulomb) integrals 

slowly decrease, they were considered as far as the 7-th nearest 

0 
neighbours (ti31A from the central unit cell). 

III. Results and Discussion 

     The calculated results of AO densities, atomic net charges, 

and the total energies per unit cell are shown in Table 1 along 

those of the Lyon structure of (SN)x. As the direction of the 

polymer chain is set along the Z-axis and the polymer plane 

is perpendicular to the X-axis, the Tr orbitals are of 2p ,                                                               x 

            and 3dXZAOs.Both of (SN)2and (SCH)2units have 3px, 3dxy, 

six Tr electrons, supplied two Tr electrons from the sulfur atom 
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Table 1. AO 

and

Densities, 

 (SCH)x

Atomic Net Charges, and the Total Energies of (SN) x

(SN)
x

: Pennsylvania structure (SN)x: Lyon structure

S N S N S

(SCH)x 

C H

AO

s 

px 

py 

pz 

dxz 

xy 

yz 
d 2 2 

 x -y 
dz2

1 

1 

0 

0 

0 

0 

0 

0 

0

• 

• 

• 

• 

• 

• 

•

810 

407 

822 

728 

242 

133 

290 

087 

250

1 

1 

1 

1

• 

•

550 

218 

235 

228

1 

0 

0 

1 

0 

0 

0 

0 

0

• 

• 

• 

• 

• 

• 

•

824 

714 

784 

497 

308 

219 

044 

326 

098

1 

1 

1 

1

• 

• 

•

549 

163 

315 

153

1 

1 

0 

0 

0 

0 

0 

0 

0

• 

• 

• 

• 

• 

• 

•

768 

478 

923 

929 

296 

091 

202 

065 

160

1 

1 

0 

0

• 

•

114 

135 

962 

964

0.912

  electron 

densities
1.782 1.218 1.947 1.153 1.865 1.135

atomic net 

charges

+0.231 -0 .231 +0.186 -0 .186 +0.087 -0. 175 +0. 088

total energies 

per unit cell 

 (in eV)

-1230 

(-1218 

(-1227
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a) 

b) 

c) 

d)

Ref. 8. For this structure,  pZ, dxz, dyZ, and dZ 

of Tr orbitals. 

The total energy of (SN)2 or (SCH)2 molecule with 

the unit cell in (SN)X or (SCH)X, respectively. 

The total energy of the most stable configuration 

molecule (Ref. 10). 

The value calculated in the present treatment on 

Pennsylvania structure.

2 AOs are the components 

the same configuration of 

(square form) of (SN) 2 

the same basis for the

IND
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and one from the nitrogen or the carbon atom. In  (SN)X cal-

culated here, the densities of 3px and 2px AOs on S and N are 

1.407 and 1.218, respectively, and the contribution from 3dxy 

and 3dXZAOs is totally 0.375, the magnitude of which is not 

negligible. The atomic net charge on S is +0.231, and it is 

somewhat larger than that estimated for the Lyon structure, 

+0.186,8) but somewhat less than that estimated by XPS method, 

+0.30ti0.42.7) In (SCH)
X, although the 7 electron densities on 

S and C are not so different from those on S and N in (SN)
X, 

the atomic net charge on S is +0.087 which is by far less than 

that in (SN)
X. This would be direct reflection of the 

electronegativity of each atom, namely S<C<N in order. It is 

also interesting that the atomic net charge on H is very close 

to that on S. It is clearly shown, from the difference in 

the total energies of a unit cell and isolated (SN)2 molecules, 

that the polymeric state is more stable than the isolated mol-

ecules. Moreover, the comparison of the total energies per 

unit cell of the two structures of (SN)
X definitely shows that 

the Pennsylvania structure is favourable . For (SCH)
X, it is 

similarly predicted that the polymeric state is stable in com -

parison with the isolated (SCH)2 molecule. 

   The energy bands and the densities of states of the p olymers 

are shown in Figures 2(A) and (B) . The curves of the densi-

ties of states are obtained with the Brust's meth
od17) summing
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over 300 points sampled in the Brillouin zone for each energy 

band. The valence bands consist of three  rr bands and eight a 

bands, and the HO and the LU bands are of  7 natures mainly com-

posed of sulfur 3px AO in both (SN)x and (SCH)x. These energy 

bands of (SN)x and (SCH)x are seen to be of rather similar 

shape and the Fermi energies (EF) are obtained as -4.996eV and 

-4 .340eV, respectively. EF of the Lyon structure of (SN)
x 

has been reported to be -5.714eV.8) The shape of the densi-

ty of states of (SN)
x agrees qualitatively with those obtained 

previously by ESCA spectroscopy.7'18) The density of states 

at EF (D(EF)) is small but finite for (SN)
x,namely, 0.04states 

/eV spin-molecule, which shows the metallic nature of (SN)x_ 

Experimental value of D(EF) is 0.120.18states/eV spin-molecule 

18,19) 
which agrees quantitatively with the present result but 

is somewhat larger, showing perhaps the reflection of the 

actual three-dimensional structure of (SN)x crystal. For 

(SCH)x,the shape of the density of states again resembles 

that of (SN)x but the peaks are more sharpened than in (SN)x, 

and D(EF) is 0.06states/eV spin-molecule. This value encour-

ages us that (SCH)x may become also a metallic conductor if 

it should be successfully synthesized, and unless any inter-

ference such as Peierls transition should occur to break down 

the metallic state of (SCH)
x_ 

     The EAB analyses in the scheme of the CNDO/2 method are
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shown in Figure 3 for  (SN)x and (SCH)x. It is shown that 

N1-S4 in (SN)x and S1-C6in (SCH)x are both attractive. More- 

over, it should be noticed that, both in (SN)x and in (SCH)x, 

S2-S4 and S1-S4 are considerably attractive, while N1-N3 and 

C3-C6 are weakly repulsive, and hence the skeleton of each unit 

cell is held rather tightly. This would cause interesting 

effects to the force constant of the lattice displacement and 

to the Debye frequency of the system. 

     It is also noticed that much attention should be paid to 

the description of the system at K=+Tr/a, since there occurs a 

degeneracy of the HO and the LU bands. In order to overcome 

such a situation, some appropriate linear combination of the 

Slater determinants (Configuration Interaction) should be 

adopted. 

     The possibility of the interaction between two (SN)
x 

chains or the highly anisotropic two- or three-dimensionality 

of (SN)x crystal has also been pointed out from some experi-

mental aspects,10,20) The SCF-tight-binding calculation in-

cluding two chains is desirable.
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                         Chapter 10 

          Interchain Interaction in  (SN)
x Polymer 

     The importance of interchain interaction in the low-di-

mensional metallic polymer (SN)
x has been pointed out by 

several investigators1-18) with a view that it"wodtd be a 

main cause to suppress a metal-insulator transition at low 

temperature. This kind of interaction has been discussed 

explicitly only by Messmer and Salahub,19,20) who performed 

MO calculations with the use of the SCF-Xa-SW method on two 

interacting S4N4 units taken out from the original (SN)
x 

crystal structure and two-dimensional band structure cal-

culations with the use of the extended Huckel method on (102) 

and (100) crystallographic planes. According to the shape of 

the band structure, they have inferred that the interchain 

interaction in the (100) plane would be important to the na-

ture of the conduction band of (SN)x.But their conclusion 

about the shortest interchain S-S and S-N interactions seems 

to be rather vague because of the finite cluster model they 

employed. In this Chapter, we will discuss on the inter-

chain interaction in a more quantitative way on the 

basis of the one-dimensional tight-binding SCF-MO calcula-

tions of two chains of (SN) x in the (102) and the (100)
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crystallographic planes taken out from the data of the X-ray 

diffraction analysis4) as shown in Figure 1. The CNDO/2 

 approximation21) including 3d orbitals of sulfur atoms was 

employed and for the parametrizations were adopted those of 

spd-set by Santry and Segal.22) This approximation has given 

reliable results on the interaction energies especially for 

polar molecules23) as well as polar biopolymers such as poly- 

glycine24) and poly-L-alanine,21) although it has a tendency 

towards underestimation of the effect of the interatomic 

charge transfer.23) The intercell interactions were consid-

ered as far as the 7th nearest neighbouring cell 0,30A from 

the central unit cell). 

     In Figure 2, the band structures and the densities of 

states of two interacting chains in the (102) and the (100) 

planes are illustrated along with those of the infinitely 

separated chains.25) Owing to the one-dimensional model em-

ployed here, the highest occupied (HO) and the lowest unoccu-

pied (LU) bands are split off at the Brillouin zone boundary 

in the (102) and the (100) cases lacking in the symmetry of a 

two-fold screw rotation such as in theeinfinitely separated 

case. The degree of this split, however, will become a mea-

sure of these two kinds of the interchain interactions . In 

the (102) and the (100) cases, the widths of HO-LU split are 

0.040eV and 2.027eV, respectively. Furthermore , the density

- 218 -



(A)

    ,--i 

  N--5\Ng- \N- 
-SN;'-5N\S 

     5~; 

   ,, 

     ,,

,5-   /SN/5r-~3/  -Ns--\-N154N 
 ,.------------- J

(B)

   i7 

  S` N  

      \57"--118\3'/ N--5N5S~ N 5 
/ \,/;/   N~Ny S54r-5 

>Z

Figure 1. The geometries of two chains 

the (102) plane; (B) In the (100) plane. 

planes of the two chains are separated by 

unit cell employed in the calculation is 

broken line in each case.

of (SN)X. (A) In 

  Note that mean 

       0 
 3.25A in (B). The 

indicated by the

- 219 -



0 

-10 

-20 

-30

       0WAVE VECTOR a DENSITY OF STATES 

    (A) In the (102) plane 

Figure 2. The band structures and the densities of states 
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of states of the (102) case is not a little similar to that of 

the infinitely separated case. These results suggest the 

larger influence of the interchain interaction in the (100) 

plane than that in the (102) plane on the HO and LU bands 

which serve as the conduction band in the  (SN)
x polymer in ac-

cordance with the result of Messmer and Salahub.19,20) Both 

in the (102) and the (100) cases, the (H0-1), HO, LU, (LU+1) 

bands mainly consist of almost equal weight of 3p
x AO's of S2, 

S4, S5, and S7 in the neighbourhood of K=0 (K is the wave 

vector), but as approaching the Brillouin zone boundary, 3p
x 

AO's of S2 and S5 become main components of (HO-1) and (LU+ 

1) bands, whereas those of S4 and S7 of HO and LU bands. 

Therefore, the stabilizations of (HO-1) and HO bands in the 

(100) case are due to S2-S5 and S4-S7 interchain (pa+pir) 

bonds. Thus there will be different types of interactions 

between HO-LU, (H0-1)-LU, HO-(LU+1), or (H0-1)-(LU+1) bands 

at the Brillouin zone boudary, which suggests that some large 

interaction among them would have an effect on the tempera-

ture-sensitive properties of this polymer. 

     The AO densities, 7 electron densities, and the atomic 

net charges of the above three cases are shown in Table 1 

along with the total energies per unit cell. The atomic net 

charges on sulfur atoms in both the planes are +0.173',+0.180 

being rather smaller than the experimental values from the X-
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Table  1. 

AO densities, n electron densities, atomic net charges, and the total energies per unit cell

atom
AO densities

s px Py pz dxz d
xy

                         n 
                     a) 

                   electron d

yz dx2-y2 dz2 density

atomic 
  net 
charae

total 
energy(eV)

in the 

(102) 

plane

N11N6 1.539 1. 

N3,N8 1.537 1. 

S2,S5 1.809 1. 

S4,S7 1.810 1.

187 

198 

432 

438

1. 

1. 

0. 

0.

233 1. 

229 1. 

837 0. 

842 0.

214 

211 

746 

745

0.246 0.128 

0.242 0.129

0.287 

0.285

0. 

0.

091 

087

0.249 

0.249

1.187 

1.198 

1.806 

1.809

-o 

-0 

+0 

+0

.173 

.175 

.175 

.173

-2457. 028

IND

in the 

(100) 

plane

N1,N6 1.540 1. 

N3,N8 1.538 1. 

S2,S5 1.809 1. 

S4,S7 1.810 1.

202 

192 

426 

427

1. 

1. 

0. 

0.

231 

229 

841 

844

1. 

1. 

0. 

o.

211 

211 

745 

748

0.246 0.131 

0.244 0.130

0 

0

.285 

.286

0. 

o.

088 

088

0.249 

0.249

1.202 

1.192 

1.803 

1.801

-0 

-0 

+0 

+0

.184 

.170 

.180 

.174

-2457 .010

infinitely 

separated 

case

N 

S

1.546 1. 

1.807 1.

192 

441

1. 

0.

239 

839

1. 

0.

218 

741 0. 242 0.126 0 .280 0. 085 0.244

1.192 

1.809

-0 

+0

.195 

.195

-2456 

(-2455

812 

462)b)

a) In 

  of 

b) The

the (100) case, 

comparison. 

 total energy of

2px 

 two

AO of N and 

 infinitely

3px, 3dXZ, 

separated

 and 3dxy 

monomers

AO's of S 

(the most

are considered

stable square

for the sake

form) of S2N2.



ray photoemission (XPS) measurements, that is  +0 .30%+0.42 by 

Mengel et aZ.10) and +0.5 by Salaneck et aa.26'27) The 

present underestimation of these quantities may be due to the 

CNDO/2 version as previously mentioned. 

     The contributions from 3d AO's uniformly increase in the 

(102) and the (100) cases more than in the infinitely separated 

case. It is also seen that the polarities of S-N bonds in the 

former cases decrease comparing with those in the latter case 

as a whole, showing a delocalization tendency of the electrons 

in two interacting chains, and that 3p
xAO densities of sulfur 

atoms in the (100) case changes more than in the (102) case 

under the influence of interchain (pa+pTr) bonds in the (100) 

plane. The discrepancies of the atomic net charges between 

N1, N6 and N3, N8 or between S2, S5 and S4, S7 in the (100) 

case are due to the two-chain model employed here and will be im-

proved by considering more numbers of parallel chains in this 

plane. On the other hand, in the (102) case, the atomic net 

charges turn out to be of almost the same values among nitro-

gen atoms and sulfur atoms. The values of the total energies 

indicate that there are stabilizations in both the (102) and 

the (100) cases, but a little more in the former. This is 

probably because of the difference in the distance between 

two chains. For instance, some remarkable interatomic dis- 

tances of S2-S5 (3.721A), S2-N8(3.459A), and N3-N8(3.363A) in
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the (100) case are a little larger than those of  S2-S5(3.4761 

), S2-N8(3.257A), and N3-N8(3.356A) in the (102) case as a 

0 whole. Since the approximate van der Waals radii are 3.70A 

and 3.351 for S-S and S-N contact, respectively, the above 

interatomic interactions are of much interest. These in-

teraction energies were analyzed by decomposing them into the 

core-resonance terms, the exchange terms, and the electro-

static terms after Imamura and Fujita21) as shown in Table 2. 

It is indicated that, in both of the cases, N-N interactions 

are repulsive and that S-S and S-N are attractive, among which 

S-S interactions are dominant. According to the values of the 

partitioned terms, the core-resonance terms and the electro-

static terms are important to S-S and N-N interactions, re-

spectively. It should be noticed that these S-S core-reso-

nance terms are mainly due to the interactions between 3p
x 

AO's of S2 and S5, and that the interchain interactions among 

lone-pairs of S and N formed by sp2 hybridizations on the 

plane of a single chain of (SN)x are rather small. That is, 

the pir-type interaction in the (102) case and the (pa+pTr)-

type interaction in the (100) case by the interchain S-S cou-

pling are of importance. 

     In Table 3 are listed the intracell- and intercell (be-

tween the central and the N-th nearest neighbouring cells)-

interchain interaction energies as illustrated in Figure 3.
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Table 2. 

The contributions of 

energies (in eV)

decomposed terms of the interatomic interaction

in the (102) plane in the (100) plane

S2-S5 S2-N8 N3-N8 S2 -S
5

S2-N8 N3-N8

Core-resonance term 

               -0 .392 

Exchange term 

               -0 .062 

Electrostatic term 

              0.144 

Total 

                -0 .310

-0 .136 

-0 .017 

-0 .129 

-0 .282

 0.010 

-0 .002 

 0.132 

 0.140

-0 

-0 

0 

-0

.303 

.087 

.131 

.259

-0 . 

-0 . 

-0 . 

-0 .

053 

012 

125 

190

0. 

-0 . 

0. 

0.

026 

010 

125 

141



Table 3. 

Intracell- and  intercell-interchain interaction energies (in eV)

intercell

I 
NO 

00 

1

intracell
1st 2nd 3rd 4th

total

in the (102) 

in the (100)

plane 

plane

-0 .595 

-0 .651

-0 

-0

.247 

.333

0. 

-0 .

003 

013

0 

0

.005 

.003

0. 

0.

004 

005

-0. 

-0 .

825 

979

a)
Summation of the 

the 7th nearest

 intracell-

neighbouring

and the 

 cell.

intercell-interchain interaction energies as far as



 (A)  (B)

 L__

 —T-

Figure  3.  Schematic  representation,of  interchain  interac-

tions. (A) Intracell case; (B) intercell case (between the 

central and the 2nd nearest neighbouring cells, for example). 

The block surrounded with the broken line is the unit cell 

employed in the calculation,
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The interaction energies turn to be repulsive with the in-

crease of  N,because of the dominance of the electrostatic 

terms. In the case of N>4, the interaction energies in both 

of the cases are all repulsive and very small decaying with 

Coulomb tails. The total interchain interaction energies 

indicate also that the interchain interaction in the (100) 

case is the larger in spite of the reverse situation for the 

total energies. These interchain interactions, especially 

those in the (100) plane, may be sufficient to relax the 

metal-insulator transition in the actual (SN)
xcrystal as has 

been observed.6)
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                            Conclusion 

     Theory of intra- and intermolecular interactions has been 

re-examined and extended in some directions. An extension is 

a theory of intramolecular interactions in the excited state 

concerning biradical and photoisomerization in a conjugated 

polyene. Another is a theory of local perturbation in molec-

ular aggregates. Application of MO theory  for molecular ag-

gregates is also made to the electronic structure of (SN)x 

polymer on which current interest in the field of solid state 

physics and chemistry is focused. 

     In Chapter 1, a method of calculation for the upper and 

lower bounds of the second-order perturbation energy is in-

vestigated as a theoretical ground for the study of long-range 

interactions. The expression for the upper bound is based on 

Hylleraas's variation perturbation condition and is an improved 

version of that obtained by Goodisman. The lower bound is 

based on the Temple-type inequality and is an improved version 

of that by Prager and Hirschfelder. The result is numerically 

tested for examples of the polarizability of a hydrogen atom 

and the coefficients of R-s and R-8 terms (C6 and C8, respec-

tively) in the multipole expansion of the dispersion force 

between two separate hydrogen atoms, yielding fairly good re-

sults. Particularly, the result of the upper bound for C8 is 

the best so far calculated in a non-empirical way.
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    In Chapter 2, the long-range  force  between a hydrogen atom 

and a hydride ion has been studied by means of the second-order 

perturbation theory. This H-H system has been chosen as the 

simplest example of a system composed of a neutral atom and an 

anion. The results seem to suggest that the analytical closed 

form of the second-order energy under the framework of the 

Unsold approximation is desirable for any discussion of the 

long-range interaction between H and H in place of the usual 

multipole expansion. According to the multipole expansion 

until R-12 term, the nature of the long-range force operating 

in this system seems to be dispersive, and it seems to become 

inductive at a much larger R because of the existence of the 

leading R-4 term. 

     In Chapter 3, intramolecular interactions and optimum 

configurations of several ion-non polar molecule complexes 

(NH4+-CH4, H30+-CH4, and NH4+-H2) have been discussed with the 

use of the semi-empirical MO (CNDO/2) method. The configu-

rations of NH4+-CH4 and H30+-CH4 turned out to be quite dif-

ferent from those previously proposed by the calculations based 

on the classical electrostatic model. It has been shown that 

these systems are stabilized by a kind of hydrogen bond where 

charge transfer effect from a neutral molecule to a cation 

plays an important role, according to the configuration anal-

ysis. 
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     In Chapter 4, a concept of the cross-bicyclization com-

plementary to that of the cycloaddition was defined concern-

ing simultaneous bicyclization in a linear conjugated polyene, 

and the stereoselective modes in thermal and photo-induced 

reactions were discussed. It was shown that the prediction 

of the stereoselection in cross-bicyclization recalls the 

"symmetry-disfavoured" reactions from the usual cycloadditions 

into the category of the concerted ones. 

     In Chapter 5, an interpretation was given on the charac-

teristics of biradicaloids, such as the bonding, polar, and 

biradical characters of singlet biradicals. Systematization 

of the reactivity of singlet and triplet biradicals was shown 

on the basis of the principle that (i) deformation takes place 

in the direction of bonding in singlet biradicals, and (ii) 

deformation or bond formation occurs to separate unpaired-

electrons from each other in triplet biradicals. Combination 

of the two principles was applied to the theory of orientation 

and stereoselection in excited-state reactions. 

     In Chapter 6, a perturbation theory method was developed 

in the tight-binding LCAO MO treatment of a one-dimensional 

polymer under local perturbation with the aid of the Wannier 

function. As the first step, electronic structures of an 

infinite polyene under a few of significant cases of pertur-

bation were formulated in the scheme of  Huckel MO approach,
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giving the changes in total energies, electron densities, and 

bond orders of the perturbed systems. 

     In Chapter 7, the process of the dimerization of S
2N2 into 

S4N4 was studied with regard to two essentially different 

types of stacking interaction models of S2N2. It was shown 

from the viewpoint of orbital interaction consideration that the 

stacking model of S2N2 in such a way that S and N approach to 

stack together and the geometry of S4N4 with coplanar N atoms 

are favoured. The latter geometry is in agreement with exper-

imental result. 

     In Chapter 8, concerning the initial stage of solid state 

polymerization of  (SN)x, the semi-empirical MO (INDO-type ASMO-

SCF) calculations were performed for the precursor S2N2, and 

several "deformed" structures of (SN)2, the dimeric unit (SN)4, 

and the trimeric unit (SN)6. According to the results of 

calculations, the triplet biradical nature emerges in appro-

priately "deformed" structures of (SN)2. This agrees well 

with the experimental results wherein paramagnetism was 

observed at the initial stage of polymerization. (SN)4 and 

(SN)6,however, show no triplet nature probably corresponding 

to the fact that the system gradually becomes diamagnetic as 

the polymerization proceeds. The mechanism of polymerization 

at the initial stage was discussed based on the calculated re-

sults.
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In Chapter 9, one-dimensional  (SN)x and its isoelectronic sys-

tem (SCH)x polymers were treated on the basis of the SCF-tight-

binding MO theory. The Pennsylvania structure of (SN)x was 

shown energetically favourable comparing the Lyon structure. 

Judging from the density of states at the Fermi level of (SCH)
x, 

it may be expected to be a metallic conductor under some fa-

vourable condition. 

     In Chapter 10, the interchain interactions in (SN)
x polymer 

were discussed. It has been concluded that the interchain 

interaction in the (100) crystallographic plane is more signif -

icant than that in the (102) plane and that these interactions 

are mainly caused by the shortest interchain S-S coupling in 

both the planes.
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