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Abstract

The problems of controllability and optimal control for a wide

class of nonlinear stochastic lumped parameter systems and linear

distributed parameter systems with stochastic coefficients are studied

in the framework of stochastic calculas and functional analysis.

The purpose of this dissertation is to give mathematical developments

for the theory of controllability and optimal control.

This dissertation is divided into two major parts. Part 1 is

devoted to the theory of stochastic controllability and the methods

of generating the practical control signal for nonlinear stochastic

lumped parameter systems described by the Ito-stochastic differential

equation, and Part 2 to give the new mathematical models of distrib-

uted parameter systems with stochastic coefficients and to study the

optimal control and controllability problems.

In Part 1, defining the stochastic controllability, based on

notions from stochastic Lyapunov stability theory, sufficient condi-

tions and/or necessary and sufficient conditions are studied. Part 1

is divided into three categories: the first is to establish the

new definitions of stochastic controllability, the second to

derive the new conditions for the stochastic controllability by

using the Lyapunov function like approach, and the third concerned

with finding the feasible method of generating the practical control

signal which transfers the system state to the neighborhood of a given

point for stochastic nonlinear lumped parameter systems within the

preassigned time interval.

In Part 2, establishing the mathematical models of distributed
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parameter systems with stochastic coefficients with the aid of the

theory of functional analysis, the optimal distributed control, opti-

mal boundary control and controllability problems are solved for

various types of stochastic distributed parameter systems. Part 2

is divided mainly into four categories: the first is concerned with

the mathematical aspects of the newly established system models, the

second the optimal distributed control problem, the third the opti-

mal boundary control one and the final the stochastic controllability

for stochastic distributed parameter systems with stochastic coeffi-

cients.

Throughout Parts 1 and 2, various kinds of numerical computa-

tions are performed in order to show the feasible computer implemen-

tation.



General Notation

V

According to many published researches in the field of the

stochastic systems, the most familiar symbolic conventions are used.

In Part 1, we use the standard notations, referring to the well-known

stochastic system theory. On the other hand, symbols used in Part 2

are basically due to those appearing in the Lions' excellent book

"Optimal Control of Systems Governed by Partial Differential Equations".

Consequently, it shoud be noted that there happen many cases in Parts

1 and 2 where the same symbol has different meanings. For example, in

spite of the fact that the symbol T expresses the time interval [tn,

tf] in Part 1, this is turned into the open time interval ]tn,tf[

in Part 2. Furthermore, the symbol x is the n-diminsional state

vector in Part 1 but, in Part 2, this denotes the spatial variable.

The symbol u(t) denotes the m-dlmensional control vector in Part 1

and the infinite dimensional state variable in Part 2, respectively.

In order to avoid confusion, the mathematical preliminaries in Parts

1 and 2 involve respectively clear .definitions of all the symbols so

that the reader can carefully follow the symbolic conventions in

Parts 1 and 2.

In Chapter n, Section n.m,the theorems, conditions and hypotheses

are indexed by n.m.k. When we refer to such a Condition (Theorem,

Hypothesis)-n.m.k, we sometimes designate it by C (T,H)-n.m.k.
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General Introduction

XI

One of the most challenging areas In the field of modern system

theory Is the optimal state estimation and control taking into

account the fact that the system exhibits various kinds of nonline-

arities and operates in the random environments. From this point of

view, it is the opinion of great majority of researchers in the.

field that the following two important aspects in the dynamical cha-

racteristics of systems and the nature of environment must be devel-

oped as fundamental studies: (1) The first aspect in considering the

dynamical characteristics of systems is that actual systems are not

linear. In fact, we may see many nonlinear characteristics in

practical systems such as saturation, relay and etc. There are

no general methods for the analysis and synthesis of nonlinear

systems. It is, in fact, only a trick of semantics which causes

one to assume that there is .any unity at all in the field. (2) The

second which comes up in considering nonlinear systems is the fact

that actual behaviors are usually random due to changes of environ-

ment and/or system parameters.

The method of organization of this thesis consists of two parts:

In Part 1, the stochastic controllability problem is studied for non-

linear stochastic lumped parameter systems. In analogy with the con-

cept of deterministic controllability, new definitions of stochastic

controllability are established corresponding to various kinds

of stochastic measures. By using the Lyapunov function like approach,

sufficient conditions and/or necessary conditions are derived for the

stochastic controllability. Finally, for the purpose of showing
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roles of stochastic controllability theorems in practical

applications, a feasible algorithm is established for finding the

generating method of the practical control signal which transfers

the system state to a neighborhood of the given terminal point within

the preassigned control time interval, including various kinds of

numerical examples. In Part 2, our attention is focused on distrib-

uted parameter systems with stochastic coefficients contained in the

partial differential operators. Within the framework of functional

analysis, distributed parameter systems with the Markov chain and

white Gaussian coefficients are respectively well modeled by the

stochastic evolution equation in Hilbert spaces. The first half of

Part 2 is concerned with the optimal distributed and boundary control

problems. The optimal distributed and boundary control signals for

the parabolic and hyperbolic type systems are derived by the Dynamic

Programming and Stochastic Maximum Principle, respectively. The

remainder is devoted to the extension of the theory of stochastic

controllability established in Part 1 to the case of distributed

parameter systems with white Gaussian coefficients by using the

Lyapunov function like approach in Hilbert space.



PART 1

CONTROLLABILITY AND CONTROL

FOR

NONLINEAR STOCHASTIC LUMPED PARAMETER

SYSTEMS





CHAPTER 1. INTRODUCTION

1 ―

One of the important problems that arise often in control system

is to answer a question: is it possible to find the control signal

so as to transfer the system state to the desired one within the

preassigned final time? This belongs to the context of controlla-

bility. The controllability concept of a class of deterministic

system is introduced in order to answer the question: Does any con-

trol policy exist that will permit the desired terminal state to

be achieved? If we can give an affirmative answer, then the system

considered is said to be controllable. For deterministic linear

systems, since the system trajectry can be determined provided that

the initial state is given, it is easy to examine whether a control-

lable control signal exists or not. However, recognizing that many

physical systems exhibit various kinds of nonlinearities and operate

in random environment, the system considered is reasonably modeled

by a class of nonlinear differential equations and the system state

becomes a stochastic process. For stochastic systems, because of

the existence of random perturbations, the exact trajectory of sto-

chastic system is not available in advance. For this reason, in order

to extend the concept of deterministic controllability to the sto-

chastic version, we must introduce a new measure to evaluate stochas-

tic system behaviors. With random circumstance, a possible analog

to the controllability problem is to transfer the initial state to

a target state within the final time under a prescribed probability

or mean square sense. The most important consideration of sto-

chastic controllability is that " In what stochastic sense is the
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system state guaranteed to be at the desired state?", while the

deterministic system state is perfectly guaranteed.

Furthermore, due to nonlinearities of system dynamics,the target

region relates strongly to the states of the system and the preas-

signed time interval. Thus, it is important to investigate the ex-

plicit relation between the initial region and the desired target

one with some help of probability appraisal. To do this, first of

all the computational algorithm should be established for realizing

the control signal for nonlinear stochastic systems whose states can

be transferred to the desired target region.

1.1. Historical Background

For convenience of the present description, the historical back-

grounds are separately retrospected in two versions; one is the

controllability of deterministic systems and the other is its

stochastic version.

1.1.A. Controllability and optimal control of

deterministic systems

The optimal control problem for deterministic systems has been

discussed for many years and various optimization techniques related

to some performance criterion have been developed by many investiga-

tors,[Bl] [B2] [DlJ. According to the development of optimization

theory, the basic problem in control theory was generated by Kalman,

[Kl], [K2], with the terminology of the controllability. During the

past decade, the controllability theory for deterministic linear

systems has already been established including an extensive princi-

ple of duality between observability and controllability, [K3], [K4],
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In analogy with the concept of controllability for linear systems,

Lee and Markus studied the local controllability of nonlinear systems

in the neighborhood of the critical point, and discussed the exist-

ence of optimal controls, [LI], [Ml], [M2], The global control-

lability for nonlinear systems was investigated by Hermes [HI]. The

mutual relation between global controllability and local one was also

studied by Davison [Dl] and Lukes [L2]. Using the Grownwall's

inequality, Aronsson studied the bang-bang controllability theorems,

[Al]. In recent advance of the Lie algebra theory of vector fields,

various types of global controllability conditions for a class of

nonlinear systems were investigated by Brockett [B3], Haynes [H2],

Hirshorn [H3], and many other researchers.

On the other hand, from the practical point of view, by using

the Lyapunov stability approach [L3], the practical controllability

theory for nonlinear systems was presented with the method of con-

structing the practical control signal and the explicit relation

between the initial state and the nonllnearity of system dynamics,

[Gl].

of

According to the theoretical development of stochastic differ-

ential equation [II], the deterministic control theory was extended

to.the stochastic control version mainly in the field of linear opti-

mal control problems, i.e., Dynamic programming technique has been

applied to linear stochastic systems for quadratic performance

criterion, [Wl]. For nonlinear stochastic systems, various kinds of

optimization techniques have been discussed by Kushner, [K5], [K6]3
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Fleming, [P1],[F2] and Stratonovich,[SI]. Despite the Increasing

interest in controllability problem, little interest has been shown

in stochastic controllability of nonlinear systems. Aoki, [A2] and

Connors, [C1],[C2] studied the stochastic controllability in the mean-

square sense for linear discrete systems with the aid of Dynamic

programming concept. By using the same approch as Connors, Bertsekas

discussed the stochastic controllability problem for nonlinear dy-

namical systems, [B4]. In [B4] he obtained for one special case that

the unknown disturbances of system dynamics belong to the known

bounded set. Applying Ito-Dynkin's formula, the stochastic controlla-

bility of nonlinear systems was discussed by Gershwin, [G2]. The

results of Gershwin are direct extensions of deterministic nonlinear

controllability theorems,[Gl] to stochastic ones. In spite of his

success in stochastic nonlinear controllability theorem, the relation

between the preassigned target state and the stochastic appraisal of

achieving the target state is not explicitly studied.

Recently, taking into account both the preassigned desired tar-

get state and finite time interval, the concepts of complete con-

trollability and e-controllability were established. Sufficient

conditions were given for a general class of nonlinear stochastic

systems, [S2],[S3]. The motivation stated in [S2] is somewhat similar

to that in [B4], [D2] and [K7]. However in addition to mathematical

characteristics of stochastic e-controllability of nonlinear dynamical

systems, a number of qualitative studies have been developed, regard-

ing the hitting probability which guarantees a given system state be

transferred into the desired target domain within the preassigned

terminal time. The proposed technique in [S2] is applicable to the

study of the stochastic observability, [S4],[S5],[S6] and furthermore
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the mutual relation between stochastic observability and stochastic

controllability, [S3].

1.2. Problem Statement

We consider the problem of the stochastic controllability for

a class of nonlinear stochastic dynamical systems and derive the

control signal which transfers the given initial state to the desired

target domain within the preassigned terminal time. A dynamical sys-

tem under consideration is described by the n-dimensional vector

nonlinear differential equation:

(1.2.1)

dx^≫a)) = f(t,x,u) + G(t,x)Y(t,u)
at

x(t0) = x0

In Eq.(1.2.1), x(t,o>) is an n-dimensional vector stochastic process

representing state variable, f(t,x,u) and G(t,x) are respectively an

n-vector and an nxp-matrix nonlinear functions, Y(t,u))is a p-vector

white Gaussian noise, and u(t,x) is an m-dimensional control vector

where n>m.

We assume that the system state can completely be observed. As

will be pointed out in Chap. 2, the system model (1.2.1) is mathe-

matically formal because of the existence of white Gaussian noise

term. According to the theory of stochastic differential equation

[II],[SI], we rewrite Eq.(1.2.1) by the stochastic differential equa-
t

tion of Ito-type:

(1.2.2)

t

dx(t,o>) = f(t,x,u)dt + G(t,x)dw(t)

x(t0) = x

The revised term due to the existence of state dependent noise term
is neglected, [W2].
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where w(t) is a p-vector Brownian motion process.

Important aspects in stochastic controllability are as

follows:

(i) The system state x(t) is completely observed.

(ii) Only a finite time control interval [to,tf] is considered.,

(iii) A set of the initial states is preassigned.

(iV) Sets of the desired target domain are preassigned in some

stochastic sense.

The aspect (iii) is highly important with respect to the con-

trollability for nonlinear systems because this aspect keeps in touch

with inherent characteritics of nonlinearities i.e., input dependence.

It is thus desirable to know the relation between the region of in-

itial sets which can be transfered to the desired target domain and

the nonlinearity of system dynamics. The problem of "What stochastic

sense can we adopt?" depends on the situation of system designers.

In this thesis, we adopt two stochastic sense i.e., the mean square

sense and in probability one.

1.3. Summary of Part 1_

Description in Part 1 is outlined in the sequel. In Chapter

2, some of general fundamental works required in the context of con-

trollability are reviewed as mathematical preliminaries. The math-

ematical model of the system is also established by the theory of

Ito stochastic differential equations with the ItS stochastic

calculas. In Chapter 3, new definitions of stochastic controllability

are given. As the stochastic sense of controllability we adopt first

in the mean square sense and next in probability sense. Prom the
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mathematical point of view, the concept of e-controllability is

first introduced and extended to the complete controllability.

Furthermore the mutual relations between the mean square sense

and in probability one, and between e-controllability and

complete one are also discussed. Applying the stochastic

Lyapunov stability theory, [K8], sufficient conditions for sto-

chastic controllability for a general class of nonlinear systems are

demonstrated, and choosing the quadratic Lyapunov function, ex-

plicit sufficient conditions for stochastic controllability reflect-

ing precisely nonlinearites of system dynamics are also given. For

linear systems, it is found that sufficient conditions for nonlinear

systems fall into necessary and sufficient conditions for linear

systems with showing the explicit relation between stochastic con-

trollability and deterministic one. Chapter 5 is devoted to an

algorithm of deriving the control signal which transfers the given

initial state to the preassigned desired target domain in the sense

of stochastic hitting problem including numerical examples for the

purpose of interpreting the general theory.

The remainder of Part 1 is devoted to the discussion of the

summary of results and to the suggestions of possibility of showing

the duality theorem for stochastic controllability and stochastic

observability.
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CHAPTER 2. MATHEMATICAL PRELIMINARIES

2.1. Symbolic Conventions and Basic Definitions

Let JTn^ denote an n-dimensional Euclidean space. If x is an

element of R
(n) (X£R(n) ), then x' denotes the transpose of the

vector x with the norm || x || = x'x. Similarly- if M is a matrix,
p

then M1 denotes its transpose with the norm || M || = tr.[M'M].

According to the standard notation and terminology, lower case letters

a,b and c,..^ denote column vectors with i-th real components a., b.

and c ...... Capital letters A.B and C,... denote matrices with

elements a.., b.. and c...... respectively. Certain algebraic

quantities such as algebras, fields, etc. are expressed by F,/,...etc.

We collect some of standard knowledges of the probability theory.

Probability space: Let P be a probability measure on £2,where fi

denotes the set of all events. Let F be the smallest a-algebra of

subsets of fi. The triplet (n,F,P) is called a probability space.

Random variable: A real-valued function x(u>) (uefi) defined on fiis

called a random variable if>for every Borel set 8 in the.Euclidean

space R , the set {to; x(w)eB} is in F.

Expectation: If x(≪) is integrable on ft, then the expectation of x,

denoted by E{x}; is given by

E{x} = /fixdP .

Conditional expectation: Let C be a Borel field with CcF and let x(-)

be integrable on fi. The conditional expectation of x relative to

C. denoted by E{x|C}, is a random variable such that

＼
＼
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E{x|C}dP

for all AeC.

Stochastic process: A stochastic process {x(t,u), tg<tst≪} is a

family of random variables, with a real parameter t and defined on

the probability space (£J,F,P).

For economy of description, we omit to write the symbol u>in the

sequel because no confusion will result.

When a probability statement is true almost sure on 0 or true

with probability 1, then the abbreviation a,s, or w.p.l is used. A

limit in the mean square sense is denoted by l.i.m.

The principal symbols used here are listed below;

t:Time variable, particularly present time

t_:The initial time at which control action starts

t_:A preassigned terminal time

x(t):An n-dimensional vector stochastic process

representing the system state xeR

u(t,=):An m-dimensional control vector taking its value

in a convex compact subset UcR
(m)

w(t):A p-dimensional standard Brownian motion process

f(t,x):An n-dimensional vector-valued nonlinear function

G(t,x):An nxp dimensional parameter matrix whose

components depend on t and x

2.2. Stochastic Differential Equation of It6-type

In this section we summarize important properties of the solution

process of It3-stochastic differential equations [II],[W3]. Important
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phases of the relation between system dynamics and Ito-stochastic

differential equation will be stated in the next section.

2.2.1. Ito-stochastic integral: Before describing the precise

statement of It8-equation, we need the following definition of Ito-

stochastic integral.

[Definition-2.2.1] (Ito-stochastic integral)

Let w(t) be a scalar standard Brownian motion process, and let

<f>(t,<i>)be a scalar function such that

(i) d>= {(f>(t,o))}.
J

is measurable to F. , where F. is a minimum
t2t0 t t:

a-algebra generated by {w(t)}
t;>t0

(ii) E{/^|| <(.(t,a))||2dt } < =0 .

The stochastic integral I(<)>)is defined by

(2.2.1) I(*)(t) = f＼ (B,u)dw(s)

n-1
= lim [I<J>(t.,u))(w(t.+,,u) - wCt^u)))

+ <()(tn,u))(w(t,a))- w(tn,to))] a.s.

The generalized definition of Ito-stochastic integral for the

vector valued Brownian motion process is easily obtained from the

definition-2.2.1 (see Watanabe [W3])

[Proposition 2.2.1]: Let I(<(>)(t)be the Ito-stochastic integral

defined by Eq.(2.2.1). Then we have the following properties;

(i) I(*)(t0) = 0

(ii) For any t and s, (tQis<t), we have

(2.2.2) E{ I(4>)(t) - I(<(>)(s)|Fs} = 0 a.s.

and
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Fs> = E{/J <$>(T,u)dT I F_} a.s
s

2.2.2. Ito-stochastic differential equation: Let {w(t)}

p-dimensional Brownian motion process defined on (fi,F,P).

Consider the following integral equation;

(2.2.4) x(t) = x(tQ) + j＼ f(s,x(s))ds + /£ G(s,x(s))dw(s)

for to<t<t

be a

It is well-known that, with the following conditions, there exists a

unique continuous solution satisfying Eq.(2.2.4).

(C-2.2.1) There exists a positive constant K,, such that

(2.2.5) ||-f(t,x) ||2 + || G(t,x) ||2 < K1(l + || x ||2) for any xeR(n)

and any t.

(C-2.2.2) f(',*) and G(-,≪) satisfy a uniformly Lipschitz condition,

that is, for any t and any x,,x2eR^

(2.2.6) || f(t,x-,_)- f(t,x2) ||2 + || GCt^) - G(t,x2) ||2

< K2|| x± - x2 ||2.

A stochastic process {x(t)} which satisfies Eq.(2.2.4) is
t stg

called an Ito-process with respect to the Brownian motion process

{w(t)} .
t>t0

[Proposition 2.2.2]: Let {x(t)}. . be the solution process of

Eq.(2.2.4). Then, {x(t)} has the following properties;
tst0

(i) If the initial condition satisfies E{||x(to)||
m}

< ≪ for

m>l, we have for any t,
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2m,

} < 00
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(ii) x(t) is sample continuous w.p.l

(iii) x(t) is a Markov process.

In remainder of this section, the analytic tool of studying the

control problem will be presented. Prom the definition and propositions

mentioned above, the Ito's stochastic differential rule (so called

"Ito-calculus" ) is directly derived.

2.2.3. Ito-stochastic differential rule: Let x(t) be the solution

of Eq.(2.2.4) and let V(t,x(t)) be a scalar-valued real function^

which is continuously differentiable in x. Then the continuous

stochastic process V(t,x(t)) becomes an Ito-process and satisfies;

(2.2.8) V(t,x(t)) - V(to,x(to))

= f* E 9V(S'X(S)) + f(.fx(B))iI^f2!

Jt0 3s 3x

+ itr.[G'(s>x(s))L[9V(S>X(s)>]'G(s>x(s))]]ds

2 3X 3x

r

Jto
[3V(SjX(s))]'G(s,x(s))dw(s) w.p.l

8x

2.2.4. Ito-Dynkin's formula: Prom Eq.(2.2.8), the averaged value of

V(t,x(t)) conditioned by x(tn), satisfies the following equation:

(2.2.9) EXQ{V(t,x)} - V(to,xQ) = EXq{/J: LV(s,x) ds } ,

where L(-) is the differential generator;

(2.2.10) L(-) = i^+ f (b.x)I^ +itr,[G'(Sjx)jL[4ll].G(s,x)]
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In this section a brief summary has been given of the Ito-theory

of stochastic differential equations and this will be one of main

analytical tools for studying the stochastic control problem.

2.3. Mathematical Modeles of Dynamical Systems

Guided by the well known state space representation concept, the

dynamics of an important class of dynamical systems can be described

by a nonlinear vector differential equation,

(2.3.1)
dX^t>ai) = f(t,x(t,u),u(t)) + G(t,x(t,(o))Y(t,u),

X(t0,0)) = Xq((ji)) ,

where f(t,x,u) is an n-vector-valued nonlinear function, u(t) is an

m-vector control signal to be specified later, and y(t,u)) is a p-

vector system noise.

Prom the fact that the spectral density of the physical system

noise has the finite frequency domain, the model of system noise must

be identified by the colored noise. However, by introducing the

shaping filter technique, the situation of colored noise is easily

converted into that of white noise case. Then, we assume that y(t,<jj)

is a p-vector white Gaussian noise process with zero mean and covariance

martix

(2.3.2) E{Y(t,a))YI(sJa))} = I6(t - s)

Noting that the white noise process {y(t≫w)}. has a delta

correlation, Eq.(2.3.1) has no mathematically precise meaning.

Recalling the white Gaussian noise related to [G3],[S7],[H4]

(2.3.3) w(t) = j＼ Y(s,a))dB,
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Eq,(2.3.1) can be Integrated and replaced by the following

integral equation;

(2.3.4) x(t) = xQ + /^of(sjXju)ds + /^QG(s3x)dw(s)
.

Extending the conditions (C-2.2.1) and (C-2.2.2) to Eq.(2.3.4),

it is fairly stated that Eq.(2.3.4) has a unique continuous solution,

if the following conditions are satisfied,

(C-2.3.1) There exists a positive constant Ko such that, for any

xeR^11) and any ueU (convex closed subset of R ),

(2.3.5) || f(t,x,u) ||2 + || G(t,x) ||2 < K3(l + ||x ||2 + ||u ||2)

for any te[t ,tf] .

(C-2.3.2) f(-,*,*) and G(≪,-) satisfy a uniformly Lipschitz

condition, that is, for any x ,x cR'n' and u1(u eO,

(2.3.6) ||f(t,x1,u1) - f(t,x2,u2) ||2 + ||G(t,Xl) - G(t,x2) ||2

< K4(||Xl - x2 ||2 + || U]_ - u2 ||2) ,

for any te[tQ,t^.J .

With the statement mentioned above, we formally write Eq.(2.3.4) by

(2.3.7)
dx(t) = f(t,x,u)dt + GCt,x)dw(t)

x(tQ) = xQ.

Then, in what follows, we adopt Eq.(2.3.4) as the mathematical

model of dynamical systems.

Remark: For a general class of control problems, the restriction of

the nonlinear function f(t,x,u) cannot always be satisfied in the

Lipschitz condition (C-2.3.2). (For example, in the case where u(t)
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becomes the Bang-Bang form.) However, it has been proved that,

with the condition (C-2.3.1), Eq.(2.3.4) has an only one weak

solution, w.p.l. (For details, see Refs.[W3] and [B5])
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CHAPTER 3. DEFINITIONS OF STOCHASTIC CONTROLLABILITY FOR

NONLINEAR LUMPED PARAMETKR SYSTEMS

In deterministic dynamical systems, the concept of controllability

may roughly be stated as the answer for the basic question, "Can the

initial state of a dynamical system under consideration be transferred

to any desired state within a preassigned time interval by some control

operation?" For stochastic dynamical systems, the concept of stochastic

controllability becomes different from that of deterministic

controllability. That is, the most important difference is to show,

"With what stochastic sense can the initial state be transferred to

the desired state?"

In this chapter, valuable definitions of stochastic controllability

will be presented. First we adopt the "mean square sense" as the

stochastic measure, and then the concept of controllability in

probability is introduced towards useful applications.

3.2. Definitions of Stochastic Controllability

Before presenting precise definitions of stochastic controllability,

the admissible control class must be defined. Noting that the

considered dynamical system is nonlinear, the admissible control class

is defined, which includes the feed-back control low.

Admissible Control Class:

solution process {x(t)}

control class U , by

t*tn

Let Ft be the a-algebra generated by the

of En.(2.3.7). We denote the admissible



Uad

- 17 -

= {u(t,x)eJrm＼ and is Ffcmeasurable for
vt

(tQ<;t<tf)

and E{/^f || u(t,x) ||2 dt} < °°}

In analogy with the concept of deterministic controllability,

definitions of stochastic controllability are listed below;

[Definition-3.2.1](e-controllability in the mean square- sense)

An initial state xQ of the system is said to be stochastically

e-controllable in the mean square sense with respect to the specified

target domain e(tf,x0) within the time interval [to,tfj, if there

exists a control u(t,x)eU d such that

B -C11x(tf) ||2} < e(tf,x0)
XO

[Definition-3.2.2](Complete controllability in the mean square sense)

The system under consideration is said to be completely controllable

in the mean square sense within the time interval [t
Ojtf ], if there

exists a control u(t,x)eU such that for any e>0, and any x^eX-cR

(x *0 and XQ denotes the uniformly bounded subset in R )

EY {|| x(tf) || } < e .

In the definitions -3.2.1 and *-3.2.2 , as a representative of

measures corresponding to the expression, "stochastic measure", the

mean square sense, Ev {II x(t_) II
XO *

2
} < e was reasonably taken into

(n)

account from the mathematical viewpoint. For convenience of practical

treatments, we slightly modified the above definitions by using the

"another stochastic measure", that is, "in probability".
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[Definition-3.2.3](e-controllability in probability)

An initial state x of the system is said to be stochastically

e-controllable. in probability p, in the normed square sense, with

respect to a specified target domain with the norm /E within the

time interval [tn,tf.J, if there exists a control u(t,x)eU , such that
u i * ad

Pr{|| x(tf) ||2 > e| x(tQ) = x0} s 1 - p(tf,x0)

where 0<p<l .

[Definition-3.2.4](Complete controllability in probability)

The system under consideration is said to be completely controlla-

ble in probability .p, with respect to.a. specified target domain

with the norm /i", within the time interval [tQ,tf J, if there exists

a control u(t,x)eUad such that, for any e>0, any p(O<p<l) and any

WR(n)(xo*o)

Pr{||x(tf) ||2 > e| x(tQ) = xQ} i 1 - p.

Mutual relation between definitions -3.2.1 , -3.2.2 , "3-2.3 ,

and ―3.2.4 can be easily obtained, i.e.,

1) If the system under consideration is completely controllable in the

mean square sense, then the initial state of the system is e-

controllable in the mean square sense. In other words, the definitioi

-3.2.2 includes the definition-3.2.1 .

2) If the system under consideration is completely controllable
in

probability, then the initial state xQ of the system is e-

controllable in probability. In other words, the definition-3.2.4

includes the definition-3.2.3 .

3) If the system under consideration is completely controllable
in the

mean square sense, then the system is completely controllable in
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probability. In other words, definition-3'.2. 4 includes the

definition-3.2.2.

Prom the relations (1) to (3) and noting that the conditions

based on the mean square sense are involved in those in probability,

we may find that the stochastic measure " in the mean square sense "

plays an important role to study the stochastic structure of dynamical

systems in the version of stochastic controllability from the mathe-

matical point of view, while the stochastic measure " in probability "

shows various kinds of advantages for the purpose of generating the

control signal, because the concept of " in probability " directly

relates to the sample behavior. Furthermore, from the conclusion that

the conditions for complete controllability are involved in those for

e-controllability, the definition of complete controllability requires

the stronger conditions than those of e-controllability with respect

to the system dynamics, in particulary, its nonlinearity. However,

from the fact that the definition of e-controllability depends on

the initial state xQ and the terminal time tf, we can show the explicit

relation between the initial state X- and the system nonlinearity,

that is, if the e-controllability is adopted, we may find the control-

lable region with respect to both the initial state and the desired

target domain. In Chap. 5, the hitting problem as one of applications

of the e-controllability in probability will be discussed.



- 20 -

CHAPTER 4. CONDITIONS ON CONTROLLABILITY FOR

NONLINEAR LUMPED PARAMETER SYSTEMS

In this chapter, according to the new definitions of stochastic

controllability introduced in the previous chapter, various sufficient

conditions of stochastic controllability for a general class of sto-

chastic nonlinear lumped parameter systems are first derived by using

the Lyapunov-like approach [K8],[G2]. Furthermore, concrete forms of

valuable sufficient conditions for semi-linear stochastic lumped param-

eter systems are also demonstrated. In order to compare the stochastic

controllability theory with the deterministic one, sufficient conditions

for stochastic nonlinear systems are shown to fall into the necessary

and sufficient conditions in the case of stochastic linear systems.

Finally, the relation is Investigated between stochastic

controllability theory and deterministic controllability one [G2],

for nonlinear systems.

In this section, the dynamical system Eq.(2.3-7) is considered

and the mathematical development follows on the basis of discussions

In Spn.?.^. Rhfln.?. that. 1s

(4.2.1)
dx(t) = f(t,x(t),u(t,x))dt + G(t,x)dw(t)

x(tn) = xn.

The following theorem gives sufficient conditions for e-

controllability in probability.

[Theorem-it. 2.l](e-controllability in probability): The initial state

xQ of the system(4.2.1) is e-controllable in probability p(tf,xQ)
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with respect to the terminal state /i", within the time interval

[t.,tfj, if the following conditions are satisfied;

(Condition-4.2.1) In the time interval [tQ,tf], a scalar function

V(t,x) is defined and has bounded continuous first and second

derivatives with respect to every component of x and a first

derivative with respect to t.

(Condition-4.2.2) V(t,x) satisfies the terminal and initial

conditions for given p and e ,

(4.2.2) V(tf,x) > J x'x

and

(4.2.3) V(tQ,x(t0)) < (1 - p(tf,x0))j
m

(Condition-4.2.3) A control u(t,x)eU , exists such that, along the

trajectory obtained by the solution of Eq.(4.2.1), the following

inequality holds,

(4.2.4) LV(t,x) < 0,

where '･.(･)is the differential generator defined in Sec. 2.2, Chap. 2,

such that

(4.2.5) U-) =
4^

+ f'(t,x,u)^-+ |tr.[G'(t,x)|I(4r")'G(tJx)]

Proof: Using Conditions-4.2.1 and-4.2.3, and applying the Ito-Dynkin's

formula defined by Eq.(2.2.9) in Sec.2.2,Chap.2, we have

(4.2.6) E{V(tf,x(tf))|x(t0) = xQ} - V(to,xo)

= E{/tJ LV(s,x)ds|x(t0) = x0} < 0 .

It follows that

(4.2.7) E{V(tfJx(tf))|x(t0) = x0} < V(tQ,x0) .

Equation(4.2.7) implies that
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(4.2.8) Pr{V(t ,x(t )) * A|x(tQ) = xQ} £
V(t°^X")

^

From Condition-4-2.2 and replacing X=e/a. we obtain

(4.2.9) Pr{x'(tf)x(tf) £ e|x(tQ) = xQ} <
Jv(tQ>x0)

Prom Eq.(4.2.3), the inequality (4.2.9) becomes

(4.2.10) Pr{|| x(tf) ||2 > e|x(t0) = xQ} < 1 - p(tQjxo) .

The proof has been completed.

[Corollary-4.2.1](e-controllability in the mean square sense): If

in Theorem-4.2.1, in stead of Eq.(4.2.3), the initial condition xQ

satisfies for given e

(4.2.11) aV(to,xo) < e ,

the initial condition xQ becomes e-controllable in the mean square

sense.

The proof can be carried out similarly as that of Theorem-4.2.1

In order to compare the sufficient conditions stated in Teorem-

4.2.1 with conditions for linear stochastic systems, we shall consider

a class of linear systems determined by

(4.2.12)
dx(t) = A(t)x(t)dt + B(t)u(t,x)dt + x(t)a(t)dw(t)

x(t ) = x

where B(t) is an n*m parameter matrix and a(t) is a p-dimensional row

vector.

Regarding the e- controllability in probability of the system

(4.2.12), the following theorem is useful.

[Theorem-4.2.2](e-controllability in probability): The initial state

of the system (4.2.12) is e-controllable in probability p(tf,xQ)
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with respect to the terminal state with the norm /£",within the time

interval [t ,t J, if the following conditions are satisfied:

(Condition-4.2.4) There exists a bounded, symmetric and positive

definite P(t) defined in the time interval [t ,t J, which satisfies

(4.2.13) -7T- + A'(t)P(t) + P(t)A(t) - P(t)B(t)B'(t)P(t)

+ tr.[a'(t)a(t)]P(t) = 0 ,

with the terminal condition (a>0)

(4.2.14) P(tf) = I/a .

(Condition-4.2.5) The initial state xQ of the system (4.2.2) and the

initial condition P(tQ) defined by Eqs.(4.2.13) and (4.2.14) satisfies

(4.2.15) xo'P(to)xQ < (1 - p(tf,xQ))^ , for given p and e.

Proof: Let a scalar function V(t,x) be

(4.2.16) V(t,x) = x'(t)P(t)x(t).

Suppose that relations (4.2.4), (4.2.5) and (4.2.12) hold and noting

that, in this case, the differential generator L(-) is given by

(4.2.17) L(≪) =
^T

+ U(t)x + B(t)u(t,x)]'^-

+ itr.[[xa(t)]'|_(-^ll)'[xa(t)]] ,
2 dX dX

and choosing u(t,x) = -^B1(t)P(t)x, we have

(4.2.18) LV(t,x) = x'[d^t} + A'(t)P(t) + P(t)A(t) - P(t)B(t)B'(t)P(t)

+ tr.[a'(t)a(t)]P(t)]x .

Applying Condition-4.2.4 to Eq.(4.2.18), It follows that

(4.2.19) LV(t,x) = 0 .

Then, from Condition-it. 2 .5, all conditions stated in The or em- 4. 2.1 are
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satisfied. The proof has been completed.

[Corollary-4.2.2](Complete controllability in probability): The

system (4.2.12) is completely controllable in probability, if the

following condition is satisfied:

(Condition-4.2.6) There exists a positive definite matrix W(to,tf)

such that

(4.2.20)
'x, A
W(t t ) =

where, for tss

(4.2.21)

and

at

C/^f$(tfJs)B(s)B'(s)$'(tfJs)ds]"1

= [A(t) + -tr.[a'(t)a(t)]]$(t,s)

(4.2.22) *(s,s) = I .

Proof: For an arbitraly constant ct>0, define

(4.2.23) P(t) = f(tf,t)[a + /^f$(tfJs)B(s)B'(s)$'(tfJs)ds]"1$(tfJt).

It is easy to show that P(t) is a solution of Eq.(4.2.13) with the

same terminal condition as given by Eq.(4 .2 .14) . Through the proof of

Theorem-4.2.2, for any xQ,e and p, we must show Eq.(4.2.15). Then, from

Eqs.(4.2.20) and (4.2.23), for any a>0 we have

(4.2.24) xo'*'(tf,to)[a + V~1(tQttf) ]"^(tf ,to)xQ

s xo'$'(tf,to)W(to,tf)$(tf3to)xo .

Prom Condition-4.2.6 and noting that a is an arbitrary constant, we

can choose a such that

(4.2.25) x ･≫'(tf,tn)W(tQ,t )#(tf,t )x s
(1 - p)e/o ,

for any x0, e and p. The proof has been completed.
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C/tJ$(tf)s)B(s)B'(s)$'(t ,s)dsj~

Theorem-4.2.2 and Corollary-4.2.2 may easily be extended to the

following theorem giving conditions for the complete controllability

in the mean square sense.

[Theorem-4.2.3](Complete controllability in the mean square sense):

The system (4.2.12) is completely controllable in the mean square

sense, if and only if the following condition is satisfied;

(Condition-4.2.7) There exists a positive definite matrix W(t ,tf)

such that

(4.2.26) W(t O'V

where for t>s

A

^%^=A(t)*(t,s)

(4.2.28.) $(s,s) = I.

Proof: (Sufficiency) Define

(4.2.29) P(t) = *'(tf,t)[a + /Jj*(tf,B)B(B)B'(B)#l(tf,s)dsJ *(tf,t),

where a is an arbitrary positive constant.

According to the results of Theorem-4.2.2 and Eq.(4.2.29), define

(4.2.30) V(t,x)= exp[-/*0[a'(s)a(s)]dsJx'P(t)x.

It is easily shown that P(t) defined by Eq.(4.2.29) satisfies the

following differential equation.

(4.2.31a) + A'(t)P(t) + P(t)A(t) - P(t)B(t)Bf(t)P(t) = 0
dP(t)

dt
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with the terminal condition

(4.2.31b) P(tf) = I/a .

Suppose that, for the preassigned terminal time t , a control signal

is

(4.2.32) u(t,x)= -|B'(t)P(t)x .

By using the same approach as that in Theorem-4.2.2, we have

(4.2.33) LV(t,x) = exp[-/* tr.[a' (s)a(s) ]ds ]x≪[
^^1 + A'(t)P(t)

+ P(t)A(t) - P(t)B(t)B'(t)P(t) + tr.[a'(t)a(t)]P(t)]x

- exp[-/totr.[a'(s)a(s)]ds]tr.[a'(t)a(t)Jx'P(t)x

= exp[-/J tr.[a'(s)a(s)]dsjx'[^im + A'(t)P(t)
^0 dt

+ P(t)A(t) - P(t)B(t)B'(t)P(t)]x .

Prom Eq.(4.2.31a), it follows that

(4.2.34) LV(t,x) = 0 .

Applying the Ito-Dynkin's formula, we have

(4.2.35) exp[-/^CT'(s)a(s)ds]iE{|| x(tf) || |x(tQ) = xQ} = xo'P(tQ)xo<

From Eq.(4.2.29), the initial condition P(tQ) becomes

(4.2.36) P(tQ) = *'(tf,t0)[a + /t^(tf,s)B(s)B'(s)$'(tf,s)ds]"1$(tf,t0;

Noting that W(tn,tf) is a positive definite matrix from Condition-

4.2.7, for any xQeKQ^n＼ we have

(4.2.37) VP(to)xQ s V^W^VV^VV^

Then, Eq.(4.2.35) becomes
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|x(tQ) = xQ} < a*exp[/tfa'(s)a(s)ds]

xxo'≪'(tf,to)W(t ,tf)*(tf,t )x * 0 (cn-O).

Bearing in mind that a is an arbitrary positive constant and that W

is positive definite, we can choose a such that, for any e>0,

(4.2.39)
a =

e-exp[-/^tr.[a'(s)a(s)]ds]

x0'≫'(tf,t0)W(t0,tf)*(tfft0)xo .

From Eqs.(4.2.38) and (4.2.39), we have

(4.2.40) E{|| x(tf) ||2|x(t0) = x0} < e.

Then, we find that Condition-4.2.7 is a sufficient condition of

complete controllability in the mean square sense.

The next step is to show the necessity version of the proof.

(Necessity) From Eq.(4.2.12), we can easily show that the averaged

process E{x(t)|x(tQ)=xQ} conditioned by Xq satisfies

(4.2.41)

dE{x(t)|x(tQ)=x }
= A(t)E{x(t)|x(to)=xo}

Q t
+ B(t)E{u(t,x)|x(to)=xQ}

E{x(tQ)|x(to)=xQ} = xQ

Now suppose that Condition-4.2.7 is not satisfied and the averaged

control E{u(t,x)|x(tQ)=x0} is an arbitrary element of R . Then,

from the deterministic controllability theory [Kl], Condition-4.2.7

is a necessary and sufficient condition of deterministic controllability

for the averaged system(4.2.41). In the version of necessity, as we

assume that Condition-4.2.7 is not satisfied, that is, the averaged

system (4.2.41) is not controllable, there exists some positive constant
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5, such that, for any E{u(t,x)|x(to)=xo}eR
m ,

(4.2.42) ||E{x(tf)|x(t0)=x0} ||" > 6 > 0.

By using the Schwartz's inequality, it follows that

(4.2.43) E{||x(tf) ||2|x(t0)=x0} > || E{x(tf)|x(tQ) =x0} ||2 > 6 > 0.

Then, Eq.(4.2.43) means that, if Condition-4.2.7 is not satisfied,

the system (4.2.12)is not completely controllable in the mean square

sense. The necessity version of the proof: has been completed.

Theorem-4.2.3 may be extended to the following nonlinear stochastic

lumped parameter system:

(4.2.44)
dx(t) = [A(t)x(t) + h(t,x)]dt + B(t)u(t,x)dt + x(t)a(t)dw(t)

x(tQ) = x0^

where h(t,x) is an n-dimensional vector valued nonlinear function.

[Theorem-4.2.4](Complete .controllability in the mean square sense):

The system (4.2.44) is completely controllable in the mean square

sense, if in addition to Condition-4.2.7 stated in Theorem-4.2.3

(or Condition-4.2.6) the following condition is satisfied;

(Condition-4.2.8) A nonlinear function h(t,x) satisfies

(4.2.45) B(t)q(t,x) + h(t,x) = -p(x)R(t)x ,

where q(t,x) is an m-dimensional vector valued nonlinear function

for te[to,tfj, p(x) is a nonnegative scalar-valued function and R(t)

is an nxn matrix such that

(4.2.46) P(t)R(t) + R'(t)P(t) >_ 0, for ＼te[t0,tf],

where P(t) is defined by Eq.(4.2.31) (or Eq.(4.2 .22)).

Proof: Let a scalar function V(t,x) be given by Eq.(4.2.30). Suppose

that, for the preassigned terminal time t~, a control signal u(t,x) is

t It is obvious that if the conditions of Theorem-4.2.4 are satisfied,
the system (4.2.44) is completely controllable in probability.



- 29 -

(it.2.47) u(t,x) = --B'(t)P(t)x + q(t,x).

Using the relations (4.2.4), (4.2.5) and (4.2.44) and noting that,

in this case, the differential generator L is given by

(4.2.48) L(-) =

we have

+

+

[A
3(≪)

(t)x + B(t)u(t,x) + h(t,x)]'
3 x

3

3

( 3(O
)'[xa(t)]]

5

dP(t)
+ A'(t)P(t)

3(-)

at

x 9x

t
(4.2.49) LV'(t,x) = exp[-/t tr. [a' (s)a(s) ]ds Jx' [

dt

+ P(t)A(t) - P(t)B(t)B'(t)P(t)] X

+ 2exp[-/ tr.[a'(s)a(s)]dsJx'P(t)[B(t)q(t,x)

+ h(t,x)] .

Applying Eq.(4.2.3D and Condition-4.2.8 to Eq.(4.2.49), it follows

that

(4.2.50) LV(t,x) = -exp[-/£ tr.[a*(s)a(s)]dsJp(x)x'[P(t)R(t)

+ R'(t)P(t)]x < 0.

The proof has been completed.

Instead of Condition-4.2.8, the following condition is considered

with respect to the nonlinear function h(t,x).

[Corollary-4.2.3] The system (4.2.44) is completely controllable in

the mean square sense, if Condition-4.2.7 and the following condition

hold:

(Condition-4.2.9) There exists a constant y such that 3(t,x)<y/2,

where $(t,x) is a scalar function given by h(t,x) = (3(t,x)x.

Proof: We shall suppose that
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(4.2.5D u(t,x) = ~B'(t)P(t)x ,
2

where P(t) is defined by Ea.(4.2.31). Define

(4.2.52) V(t,x) t expC-/* (y + tr.[a'(s)a(s)])dsJx'P(t)x..

Prom Eqs.(4.2.3D and (4.2.48), we have

(4.2.53) LV(t,x) - exp[-( (u +tr.[a'(s)a(s)])ds]

x{2x'P(t)h(t.x) - ux'P(t)x}

Applying Condition-4.2. 9 to the equality (4.2.53). we have

(4.2.54) LV(t,x) < 0 .

The proof has been completed.

[Corollary-4.2. 4] The system(4.2.44) is completely controllable in

the mean square sense, if Condition-4.2.7 and the following condition

hold:

(Condition-4.2.10) There exists a scalar function y(t,x) and a vector

valued function q(t,x) such that

(4.2.55) B(t)q(t,x) + h(t,x) = y(t,x)x .

and

(4.2.56) y(t,x) <･
y

2

Proof: Let the control signal u(t,x) be given by Eq.(4.2.47) and

define the scalar function V(t,x) by Eq.(4.2.52).

From Condition-4.2.10, we have the inequality (4.2.54). The proof

has been conroleted.

4.3. Stochastic Uncontrollabilit Theorem

In this section, a theorem is presented, stating sufficient
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conditions of uncontrollability with probability one for the following

dynamical system ,

(4.3.D
dx(t) = f(t,x,u)dt + G(t,x)dw(t)

x(tQ) = xQ .

[Theorem-4.3.U If the scalar function exists satisfying the

following conditions:

(Condition-4.3.1) Within the time interval [to,tf), the scalar

function V(t,x) has bounded continuous first and second derivatives

with respect to every component of x and a first derivative with

respect to t and V(t,x) > 0 for any xeR 'and x*0.

(Condition-4.3.2) V(t,x) satisfies, for any ueR ,

(4.3-2) LV(t,x) < 0,

where !(･) is the differential generator defined by Eq.(4.2.5).

(Condition-4.3.3) For all continuous n-vector functions a(t) such

that lim a(t) = 0,
t->-tf

(4.3.3) lim V(t,a(t)) = - ,
t-≫-tf

then the system(4.3.1) is not stochastically controllable with

probability one, that is, PrUim || x(t) II" * 0|x(tn)=xn} = 1
t+t-f u u

Proof: Prom Condition-4.3. 2, it is easy to show that [K8],

V(to,xo)
(4.3.4) Pr{ sup V(t,x) > A|x(to)=xo} < ,―^

tost<≫ X

On the other hand, the following relation is obvious:

(4.3.5) Pr{ sup V(t,x) > X|x(tn)=xn>
rO c f

< Pr{ sup V(t,x) > X|x(t )=xn}
to<t<≫ °

t In this chapter, we don't restrict the admissible control class and
(m)

in the sequel assume the control signal takes any value in R
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Prom Eqs.(4.3.4) and (4.3.5),it follows that

V(t x )

(4.3.6) Pr { sup V(t,x) > X|x(t )=x } s ―-
tQ<t<tf 0 0 A

The inequality (4.3.6) can be written as

(4.3.7) PH lim V(t,x) < ≫|x(tn)=x } = 1 .
t-*tf

u u

Consequently, from Condition-*!. 3. 43 we have

(4.3.8) Pr{ lim ||x(t) ||2* 0|x(tn)=xn} = 1.
t-M;f

u u

This completes the proof.

[Example-4.3]: Consider the system given by

(4.3.9) dx(t) = Ax(t)dt + Bx(t)u(t,x)dt + h(x)dt +x(t)adw(t)

where
r a c

(4.3.10) A =
L b d J ,

0 g '
(4.3.11) B =

-g 0

3
xl

(4.3.12) h(x) = 5

X2

and

(4.3.13) a = [e.f]

2 2 ~^-
Letting V(x)=(x1 + x2) , then we have

(4.3.14) LV(x) = (xf + x|)~3{(3e2 + 3f2 - 2a)xJ + (6e2 + 6f2 - 2a

- 2d)x2x| + (3e2 + 3f2 - 2d)x5 - 2(b + c)(x^ + x|)

xx-^ - 2xJ - 2x^}

Consequently, if

(4.3.15) 3(e2 + f2) < 2a, 3(e2 + f2) <; 2d, b = c ,
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The system is thus not stochastically

controllable with probability one.

Controllability

In this section, the influence of random perturbation on the

controllability of nonlinear systems is considered. It is sufficient

to establish the relation between sufficient conditions for stochastic

controllability presented here and those for deterministic controlla-

bility stated in [Gil.

(4.4.1)

dx(t)

dt
= f(t.x.u)

x(tQ) = x0 .

[Theorem-4.4.1](Deterministic Controllability)[Gl]: If a scalar

function V(t,x) exists with the following properties:

(Condition-4.4.1)

Cto,tf).

9V(t,x)

3X

and 3V(t,x)

at
exist for all x and all te

(Condition-4.4.2) For all continuous, n-dimensional vector functions

a(t) such that lim a(t) * 0, lim V(t,a(t)) = °°.
t-*-tf t+tf

(Condition-4.4.3) A control u(t,x) exists such that, along the

trajectory obtained by the solution of Eq.(4.4.1), for all te[t

the following inequality holds:

(4.4.2)
dV(t,x) 9V(t,x)

dt 8t
+ f'(t,x,u)

3V(t,x)

3x

< M < °°

o'tf)

then the system (4.4.1) is controllable in the deterministic sense,

that is, lim x(t) = 0.
t->-tf

Proof: For all te[tQ ,tf)3 we have the Identity,



(4.4.3) V(t,x) = V(t x ) +
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t dV(s.x)

tO ds

ds

The inequality (4.4.2) implies

(4.4.4) V(t,x) s V(to,xo) + M(t-t0).

Taking limits of both sides of Eq.(4.4.4), we have

(4.4.5) lim V(t,x) i V(tQ,x ) + M(tf - tQ) < ■≫.

Condition-4.4. 3 implies that lim x(t) = 0 and the theorem is proved.
t->-tf

The following theorem stated the precise relation between Theorem-

4.2.l(e-controllability in probability) and Theorem-4.4.1(Deterministic

controllability).

[Theorem-4.4.2] If the system (4.4.1) is controllable in the sense

of Theorem-4.4.1, and if there exists an n*p matrix G(t,x) and a

quadratic scalar function V(t,x) such that

dt 3t 8x
1 i 8 3V(t,x)
< -itr.[G'(t,x)_( '. )'G(t,x)]

2 3x 9x

then the system described by Eq.(4.2.1) is e-controllable in proba-

bility in the sense of Theorem-4.2.1.

Proof: From Eq.(4.4.6), it follows that

(4.4.7) 3V(t,x)

at
+ f'(t.x.u)

Hence

(4.4.8) LV(t,x) s 0

3V(t,x) 1

8x 2

9

8x

+ -tr.[G'(t,x)_(

< 0

3V(t,x)

3x
)'G(t,x)]
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Let the terminal time of deterministic systems denoted by t~

which corresponds to the symbol t in Theorem-4. 4.1[G1 J, As shown

in Fig.4.4.1, taking the e-controllable region into account, the

terminal time of stochastic systems tf defined by the Sec.4.2 is

considered to be

(4.4.9) tj - 6 A tSr ,

where 6 is an arbitrary, and this can be determined by preassigning

the controllable region.

Prom Eq.(4.2.2), set as

(4.4.10) a =
i tf i

2

s
and tf

v(t|, x)

Fig. 4.4.1 Relation between t



Since, from Eq.(4.4.6),

(4.it.11) V(t£,x) = V(tQ,x ) +
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t|dV(s,x)
― ds < V(t ,x ) < - ,

t ds 0 0

the value of a Is nonzero. Thus the conditions in Theorem-4.2.1 hold

and the proof has been completed.

The explicit relation between complete controllability in the

mean square sense and deterministic controllability for linear systems

is listed in Table-4.4.1.

Table 4.4.1 Comparision of stochastic controllability
and deterministic controllability for
linear systems.

I

I
Deterministic Controllability Stochastic Controllability

System, dynamics
x(t) A(tJxCt) + B(t)u(t)

x(tQ) x

dx(t) = A(t)x(t)dt + B(t)u(t,x)dt
+ x(t)a(t)dw(t)

x(t0) = xQ

Necessary and
sufficient
condition

ftf
*(tf,s)B(s)B>(s)*'(t ,s)ds>0

l^ii!i-A(t)t(t..)

3 t

#(s,s) = I

≪(tf,s)B(s)B'(s)*'(t ,s)ds>0

"^hll= A(t)≪(t,s)
a t

*(s,s) - I

Control signal open-loop / feed-back feed-back

Prom Theorem-4.4.1[G1], we can easily obtain the same sufficient

conditions as stated in Theorem-4.2.4, Corollary-4.2.3 and Corollary-

4.2.4 for the following deterministic nonlinear system,



(4.4.12)

(4.5.1)

dx(t)
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= A(t)x(t) + h(t,x) + B(t)u(t,x)

0

4

dt

x(tQ) = xQ

4.5. Examples for Nonlinear Controllable Systems

In this section, consider the 2-dimensional nonlinear stochastic

systems with constant coefficients,

dx(t) = Ax(t)dt + h(x)dt + Bu(t,x)dt + x(t)odw(t)

x(tQ) = x ,

where the matrices A and B are respectively assumed to satisfy

Condition-4.2.7. Then, if the nonlinear term h(x) is vanished, the

system (4.5.1) is completely controllable in the mean square sense.

[Example-4.5.1] Consider the following forms of nonlinear function

h(x) and coefficient matrix B given by

(4.5.2) h(x)

and

(4.5.3) B =

respectively. In this case, choosing the q(t,x)-function stated in

Condition-4.2.8 of Theorem-4.2.4 by

(4.5.4) q(t,x) = -X,**! ,

we have

(4.5.5) Bq(t,x) + h(x) = -x?

Then, we may find

(4.5.6) p(x) = xj > 0
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and

(4.5.7) R = I .

From Eqs.(4.5.6) and (4.5-7), Condition-4.2.8 is satisfied. Hence it

is apparent that the system (4.5.1) is completely controllable in the

mean square sense and in probability.

[Example-4.5.2] Consider the following nonlinear function h(x) with

the same coefficient matrix B as in F.n.( 4 .H .3 ).

0
(4.5.8) h(x) =

-x2(tanh(x2) + 1)

Choosing the q(t,x) function as

(4.5.9) q(t,x) = -x1(tanh(x2) + 1)

we have

xl
(4.5.10) Bq(t,x) + h(x) = -(tanh(x?) + 1)

x2

It follows that R(t) = L and

(4.5.11) p(x) = (tanh(x2) + 1) > 0.

Then, from Eq.(4.5.11), all conditions stated in Theorem-4.2.4 are

satisfied.

[Example-4.5.3] With the same coefficient matrix B as in Example-

4.5.1. the following nonlinear function is considered.

xl
(4.5.12) h(x) = tanh(x1)

xp .

It is apparent that the nonlinear function h(x) given by Eq.(4.5.12)

satisfies Condition-1). 2.9 in Corollary-4.2.3, that is, in this case,

we find

(4.5.13) 3(t,x) = tanh(x ) < 1.
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Then, the system (4.5.1) with the nonlinear function h(x) defined by

(4.5.12) is completely controllable in the mean square sense and in

probability.

4.6. Discussions and Summary

In analogy with the deterministic version of deterministic con-

trollability, the stochastic complete controllability and the stochas-

tic e-controllability have respectivrly been defined and necessary

and /or sufficient conditions for stochatic controllability defined

here have also been exploited including comparative discussion on

mutual relations between those two controllability concepts. Four

theorems of the above mentioned stochastic controllability were estab-

lished which gave the sufficient conditions for nonlinear stochastic

systems and the necessary and sufficient condition for linear stochas-

tic systems. Furthermore, a uncontrollability theorem w.p.l has been

presented, showing sufficient conditions for nonlinear stochastic

systems. In order to show the influence of system noise disturbances

to the stochastic controllability, a theorem has also been established

stating the relation between the stochastic controllability and deter-

ministic one, by introducing Lyapunov like function approach.

For the purpose of better understanding, three examples of

completely controllable nonlinear systems in the mean square sense

were demonstrated.
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CHAPTER 5. APPLICATION OF STOCHASTIC CONTROLLABILITY THEOREM TO

PRACTICAL CONTROL PROBLEM

Prom the stochastic complete controllability theorems given in

Chap.4, Sec.4.2, we may learn that there exists some control signal

which transfers the initial state into the arbitrary small target

region with the norm /t. However, different from deterministic

systems, we have to examine the problem "Can we generate an exact

control signal which transfers the initial system state to the desired

target domain?". The e-controllability theorems stated in Chap.4,

Sec.4.2 give the profitable answer for the above mentioned problem.

In this chapter, from the notion of deterministic reachability[D2],

the stochastic hitting problem of control systems is discussed.

In this section, for the purpose of better understanding, the

system dynamics is limitted to

(5.2.1)
dx(t) = A(t)x(t)dt + h(t,x)dt + B(t)u(t,x)dt + x(t)a(t)dw(t)

x(tQ) = xQ>

Stochastic Bitting Problem: We assume that the a priori given

parameters are the initial condition xQ, the terminal time tf and the

target domain e. Furthermore, the hitting probability p, defined by

(5.2.2) p = Pr{||x(tf) ||2 < e|x(to)=xo} ,

is preassigned. The stochastic hitting problem is to generate a

control signal which transfers the initial state xQ into the desired

target domain with the radious /e at the terminal time tf with a

hitting probability larger than p given by Eq.(5.2.2).
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Recalling the results given in Theorem-4.2.4, if the system

(5.2.1) is completely controllable in the mean square sense, we may

find that there exists a control signal satisfying the stochastic

hitting problem. Then, from the relation between complete controlla-

bility in the mean square sense and e-controllability in probability,

the results of Theorem-4.2.4 are applicable to the hitting problem.

Under the assumption that "The considered system (5.2.1) is

completely controllable in the mean square sense.", we discuss how

to design the practical control signal which satisfies the hitting

problem.

With Theorems-4.2.1, -4.2.2 and the assumption that the system

(5.2.1) is completely controllable in the mean square sense, we choose

the control signal,

(5.2.3) u(t,x) = -
iB'(t)P(t)x

+ q(t,x),
2

where

(5.2.4)

dP(t) + A'(t)P(t) + P(t)A(t) - P(t)B(t)B'(t)P(t)
dt

+ tr.[a'(t)a(t)]P(t) = 0

P(tf) = I/a

and where the value of a must be determined so as to satisfy the

hitting problem.

From the results of Theorems-4.2.1, -4.2.2 and -4.2.4, we have

(5.2.5) x
.P(t

)xn < (1 - p)~
u a

It should be noted that the control function u(t,x) determined by Eq

(5.2.3) depends on P(t) whose terminal state is given by a choice of

a Consequentry, the value of a may be determined in terms of the

values p,xo,e and t_, satisfying the inequality (5.2.5)



- 42 -

(With the completely controllable assumption, it is obvious that

there exists the value of a which satisfies Ea. (5.2.P5).)

Use of the following graphical procedure is practical and

convenient in determing the value of a.

(i) Given the initial state xQ,the target domain e and the terminal

time t_.

(ii) Compute the solution process P(t) of Eq.(5.2.4) with the various

terminal values of a and obtain the initial value of P(tn).

(iii) Compute the value of p which satisfies

(5.2.6) p = 1 - -xo'P(to)xo

and drow the relation between p and a with the value of t_ as

the parameter.

The procedure stated above will be applied to practical examples

in Sec.5.3 .

5.3. Numerical Examples

In this section, we shall consider the 2-dimensional stochastic

system whose sample path is determined by

(5.3.1)
dx(t) = Ax(t)dt + h(x)dt + Bu(t,x)dt + x(t)adw(t)

x(t ) = x .

[Exampie-5.3.1] We set all parameters of Eq.(5.3.1) as

r-i o i
(5.3.2) A =

L "I "2.

1
(5.3.3) B =

0

(5.3.4) a = [0.6 0.6]



and

(5.3.5) h(x) =

0

■

4

-

Prom Eq.(5.2 3)
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in Sec.5.2, the control is chosen as

1

(5.3.6) u(t,x) = ―(p (t)x + pn0
2 -Li 1 ±£

where

(t)x ) - xx2
2 12 '

p,,(t) p,p(t)
(5.3.7) P(t) = L1 "

P (t) p (t)
_21 22

and from Eq.(5.2.4), each element is obtained by solving the following

differential equations;

(5.3.8) p

(5.3.9) P12

and

(5.3.10) p

(t) - 1.28p

(t) - 2.28p

(t) - 2p (t) - p

12 (t) - p22

(t)2

(t) - pn(t)p

= 0, pu(t ) = a~

(t) = o, p

(t) - 2.28p22(t) - p12(t)2 = 0, p22(t ) = a"1

(t J-o

Prom Eqs.(5.3.2) and (5.3.3), we have

(5-3.11) rank[B,AB] = 2.

Eqs.(5.3.11) and (5.3.5) imply that the system (5.3.1) Is completely

controllable in the mean square sense, that is, there exists a value

of a which satisfies the hitting problem.

Following the general procedure mentioned in Section 5.2, the

values of p and a can be determined by the following manner:

(i) Set the initial state variables as, for instance, x,(0)=x (0)

= 10 and the circle with the radius /F = /6.8 as the target

domain, where tQ = 0.
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0.008 0.010 0.015

a

Pig. 5-3.1 Relation between p and a in Example-5.3.1

(ii) Preassign the value of tf as t = 1.0 . Solve the differ-

ential equations (5-3.8), (5.3-9) and (5-3-10) simultaneously

and obtain the initial values p,,(0), p-^O) and P22(0) with

respect to the various values of a.

(iii) Applying the relation between a and

(5.3.12) P(0) =
pll

_p21

to the equality

(5.3.13) p = 1 - ^xo'P(to)xo ,

the relation between p and a is obtained.

Figure 5.3.1 shows the relation between p and a with the value

of tf as a parameter. Thus, the value of a may easily be found in



p

10

0-5

0 0.5

45 -

1.0

Pig. 5.3.2 Relation between p and t

1.5 2.0

in Example-5.3.1

terms of the hitting probability p. Por convenience of discussions

the relation between p and tf is shown in Pig. 5.3.2 with the value

of a as a parameter.

By using Eq.(5.3-6) ≫the controllable regions are determined

on the (xl3Xp)-plane as shown by the shaded area in Pig. 5.3.3 with

the value of a as a parameter, in Pig. 5.3.4 with the value of p as

a parameter, in Fig. 5.3.5 with the value of e as a parameter and in

Pig. 5.3.6 with the value of tf as a parameter.

A variety of sample runs is simulated. The results presented

below are representative of the simulation experiments. In all

experiments, the simulation procedure followed by the. method in [S8]

with a constant partition time 0.001s. The result of a sample

trajectory of the system (5.3.1) driven by the control signal (5.3.6)

is shown in Pig. 5.3.7 where the value of p and a are, respectively,
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20 30

Xi

Pig. 5.3.3 Controllable region with the value of a as
a parameter in Example-5.3.1
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20 30

Pig. 5.3.5 Controllable region with the value of e as
a parameter in Example-5.3-1

x,
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20 30

Fig- 5.3.6 Controllable region with the value of tf as
a parameter in Example-5.3.1

Xi



50 -

Pig. 5.3.7 Sample trajectories of nonlinear systems in

Example-5.3.1 (e-controllable initial state)

0.5 and 0.001. Prom this result, we may find that a trajectory

whose initial state was (25,25) reached the target domain with the

radius /F = /0.8 within the preassigned time tf = 1.0s. Thus the

initial state (25,25) is e-controllable with probability 0.5. Al-

though it is difficult to examine the e-controllability with proba-

bility 0.5≫ many simulation experiments brought corrobolating results.

Prom Plg.5.3.8, it is apparent that both the initial state (26,7) and

(2,26) are not controllable. If h(x) = 0, then the following control

is adopted



51 -

Pig. 5.3.8 Sample trajectories of nonlinear systems in
Example-5.3.1 (e-uncontrollable initial states)

1
(5.3.14) u(t,x) = -_(p11(t)xi + p12(t)x2),

where both p1]L(t) and P12(t) are the solutions to Eqs. (5.3.8) and

(5.3.9). Two sample runs are shown of linear systems with controlla-

ble initial states (25,25) and (10,10) driven by the control signal

u(t,x) given by Eq.^.S.l1*) in Pig.5.3.9. In Fig.5.3-10, two sample

runs are shown in the case of e-uncontrollable initial states (2,26)

and (26,7), respectively.
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Linear system

Pig. 5.3.9 Sample trajectories of linear

Example-5.3.1 (e-controllable

systems

initial

in
states)
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Linear system

Pig. 5.3.10 Sample trajectories of linear

Example-5.3.1 (e-uncontrollable

systems

initial
in
states)
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Controllable region

Pig. 5.3-11 Sample trajectories of nonlinear systems in
Example-5.3.2

[Example-5. 3.2] Consider once again the system given by Eq.(5.3.1),

where all parameters are the same as in Example-5. 3.1 but

(5.3.15) h(x) =
0

Xp(tanh(Xp) +

adoDted is

1)

The control signal adopted is

1
(5.3.16) u(t,x) = ―(p (t)xl + p (t)x >-xl (tanh(x ) + 1)

where P-,-,(t)and P-jp^) are respectively determined by solving Eqs.

(5.3.8) and (5-3.9).

A result of the digital simulation studies is shown in Fig.5.3.11

The principal purpose of this experiment is to show the influence of

the preassigned control interval tf on the e-controllability. Two
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sample trajectories are shown with the same initial state (25,25)

and P(0.5) = I/O.001, where p = 0.5, e = 0.8 and a = 0.001. In the

case where tf = 0.5sec, the initial state was not controllable.

5.4. Discussions and Summary

With the aid of e-controllability theorems in probability pres-

ented in Chap.4, the stochastic hitting problem has been formulated,

guaranteeing a transfer of a system state into the target domain

within the preassigned terminal time t . In Sees.5.2 and 5.3> the

computer aided numerical algorithm for generating the exact control

signal has also been presented with a wide variety of digital simula-

tion studies.

The proposed approach in this chapter gives a feasible way to

solve the inequality constrained control problem, that is, to find

the control signal which satisfies the following constraint, for the

preassigned function M(t),

(5.4.1) E {|| x(t) ||

XO

} < M(t) . for Vte[t0,t J

In order to solve the problem mentioned above, using the same control

signal as in Eq.(5.2.3)≫ we have

(5.4.2) E {|| x(t) ||

XO

2} s
xo P(to

P(t)

xo

min '

where ||P(t) II denotes the minimal eigenvalue of P(t). Then, with
mm

the aid of the numerical algorithm presented in this chapter, we can

easily find the value of a which satisfies

(5.4.3)

xo'P(to)xo

H^HUn

V
< M(t) , for te[to,t J
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In this chapter, for the purpose of better understanding, the con-

sidered system is assumed to be completely controllable in the mean

square sense. However, the algorithm stated in Sec.5.2 is applica-

ble for the dynamical systems which are completely controllable in

the mean square sense or not. However the numerical method of

determing the controllable region of initial states presented in

numerical examples gives the powerful tool to generate a practical

control signal.
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6.1. Discussions
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It is well known that, in linear deterministic systems, there

is an interesting principle of the duality between the controllability

and observability. In stochastic systems we can examine the rela-

tion between the stochastic controllability and stochastic observa-

bility. For example, consider the following dynamical systems;

(6.1.1)
i(t) = f(t,x)

dy(t) = h(t,x)dt + R(t)dw(t).

The problem of stochastic observability, which has already been defined

by the auther [S33,[S4],[S5],[S6] and [A2], for the system described

by Eq.(6.1.1), can be solved by using the same approach presented as

in Part I. For linear stochastic systems, the duality like relation

has also been obtained in [S3].

Although Part I will contribute to the study of stochastic control

lability for nonlinear systems, the study of stochastic controllability

under noisy observations will be one of the topics of current reserches

New definitions of the e-controllability and the complete control-

lability has, in Part I, been established for a general class of

nonlinear stochastic systems. Theorems were also stated giving suf-

ficient conditions and/or necessary and sufficient conditions for

the stochastic complete controllability. In particular, influences

of nonlinearities exhibited in stochastic systems on the stochastic

controllability have been exploited by the stochastic Lyapunov func-
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tion-like approach. However, we pause for a moment to remark that

a large body of stochastic controllability results depends on a choise

of the V(t,x) function based on a type of nonlinearities as in the

deterministic situation.

We shall close Part I by discussing briefly some results on a

rather significant probrem of stochastic controllability theory.

Which of all the controllability concepts we have mentioned is most

useful, or most significant? This must depend on the problem on a

possibility of establishing a feasible algorithm for generating the

control signal which transfers the initial system to the target

domain within the preassigned time interval. From this point of

views, the stochastic e-controlability concept may be concluded as a

useful concept in connection with the hitting probrem described in

Chap. 5.



PART 2

OPTIMAL CONTROL AND CONTROLLABILITY

FOR

STOCHASTIC DISTRIBUTED PARAMETER SYSTEMS
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In view of the recent trend of rapidly advanced technology in

particular, industrial, biological environmental and social sciences,

it is more adequate that partial differential equations are introduced

to describe the dynamical behaviors of system rather than ordinary

differential equations. In practical problems, one or more coeffi-

cients of distributed parameter systems are random because measurement

of physical properties of the system considered intrinsically exhibits

various kinds of uncertainties. Thus, in order to solve problems of

finding the optimal control and controllability of stochastic dis-

tributed parameter systems, our attention should be placed on a general

class of stochastic partial differential equations whose differential

operator contains random coefficients. Considering the distributed

parameter systems modeled by a stochastic differential equation of

Parabolic type and Hyperbolic type, in Part 2, the optimal control

and controllability problems are solved by using the notion of the

well-known function space analysis, where statistics of random coef-

ficients are considered to be the Markov chain process and the white

Gaussian noise process.

The main body of Part 2 is concerned with the distributed optimal

control, the boundary optimal control and controllability of stochastic

distributed parameter systems.

1.1. Historical Background

The historical background is divided into the following two

aspects.
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1.1.1. Optimal Control

A valuable work for distributed parameter systems was initiated

by Butkovskii [B6]. His work was concentrated on problem formulation

and the derivation of a maximum principle for a certain class of dis-

tributed parameter systems governed by a set of nonlinear integral

equations. Subsequently, Brogan [B7] and Wang [W4] studied in detail

the optimal control problem with various performance indices. Recent-

ly, using the function space representation technique, Lions [L4] de-

veloped a general discussion of various aspects of optimal control

of linear deterministic distributed parameter systems with the aid of

variational inequality. In analogy with the stochastic lumped parame-

ter systems, significant contributions to the stochastic distributed

parameter systems were made by Kushner [K9] and Tzafestas [Tl], In

both [K9] and [Tl], only the additive noise disturbances were considered

and very complex calculations were demanded. From the recent advance

of semi-group and generalized function theory [Yl],[K10],[Kll],[G3],

Balakrishnan [B8], Bensoussan [B9>[B11] and Curtain [C3],[C4] have

been succeeded in establishing the total theory of optimal control and

estimation problem for stochastic distributed parameter systems with

additive noise disturbances. However, in the excellent works by

Bensoussan and Curtain, the randomness of coefficients in the partial

differential operator was not considered. For a class of stochastic

distributed parameter systems with random coefficients, first Boyce

challenged to study the stochastic properties of solution process

behaviours by introducing the honest and dishonest methods [B12] and

Tsokos [T2] and Sunahara [S9] discussed about the optimal control

problem with the aid of random eigenvalue problems. in these works,
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the randomness of coefficients was restricted to the class of ran-

dom constants. Recently, Sunahara and the author made an effort to

formulate the mathematical system with stochastically varying coef-

ficients and studied various types of optimal control problems,

[S10] -v.[S15],[P1].

1.1.2. Controllability Problem

For the deterministic controllability problem of distributed

parameter systems, first, Wang has established in analogy with the

well-known Kalman's theory, [W2*]. However, since the fundamental

solution stemmed by the semigroup associated with the system operator

can not easily be obtained, it is difficult to examine the controlla-

bility conditions by Wang. Pattorinii considered another controlla-

bility definition and obtained the necessary and sufficient condition

for complete controllability with the aid of spectral representation

theory, [P3]^[F5],[T3]. Recently, many investigators pay their atten-

tions to generalize the Fattorinii's works. Russell [R1]^[R4] and

Trigianii [T4]^[T6] have studied for various types of deterministic

distributed parameter systems. For stochastic distributed pa-

rameter systems, Sunahara and the author [Sl6] presented a new defi-

nition of stochastic controllability and obtained the sufficient con-

ditions for nonlinear stochastic distributed parameter systems with

additive noise disturbances.

1.2. Problem Considered

In Part 2, we consider problems of optimal control and con-

trollability for a class of distributed parameter systems with sto-

chastic coefficients.
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The dynamic behaviour of a large number of distributed parame-

ter systems can be described by the following two types of stochastic

partial differential equations:

i) Parabolic type

(1.2.1)

3u(t,x) + A(t,x,ujDv)u(t,x) = B(t,x)f(t,x)
at x

for (t,x)≪TxG

u(to,x) = uQ(

u(t

x) for xeG

,x) = g

ii) Hyperbolic type

(1.2.2)

,.(t,x) for (t5x)eTx3G and j = 1,2,≪≪≪|

82v(t,x) + A(t,xJw;DY)v(t3x) = B(t,x)f(t,x)
2 xat

v(t ,x) = vQ(x) for xeG

8 (t,x;Dx )v(t,x) = g.

for (t,x)eTxG

In Eqs.(1.2.1) and (1.2.2), the operator A(t,x,a>;D ) contains the sto-

chastlc coefficients whose principal part is of order n.

{B j(t,x;Dx)} are deterministic boundary operators and f(t,x) and

,, n/2
tg.(t,x)| are respectively distributed and boundary control

signals.

Characterizing the stochastic coefficients by Markov chain and

white Gaussian process, Eqs.(1.2.1) and (1.2.2) are represented as

stochastic evolution equations in the hilbert space. In Part 2, we

consider the following three important problems, i.e.,

(1) Optimal distributed control problem

(2) Optimal boundary control problem

and

(3) Stochastic controllability problem.
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For the purpose of studying the optimal control problem, first

the precise mathematical model of dynamic systems is formulated by

knowledge of function space representation. The optimal control

problems and stochastic controllability problems are discussed in view

of various kinds of stochastic coefficients and related informa-

tion.

Part two is outlined as follows:

In Chap.2, establishing the operator valued stochastic integral,

the precise mathmatical model of dynamical systems is costructed on

the well-known Sobolev spaces.

In Chap.3, the optimal control for the system with Markov chain

coefficients is first derived under sample information of stochastic

coefficients. Secondly, introducing the stochastic eigenvalue problem,

the suboptimal control scheme is exploited without sample information

of stochastic coefficients.

Chapter 4 contains the boundary optimal control for distributed

parameter systems with Markov chain coefficients. From the Green's

formula, the infulence of boundary control to the interior domain of

state variable is precisely investigated.

In Chap.5, for systems of Parabolic type with white Gaussian

noise coefficients, the optimal control problem under quadratic per-

formance criteria is studied by using the dynamic programming approach,

and various kinds of numerical examples are also demonstrated.

In Chap.6, by invoking Maximum principle, the optimal control

under perfect and noisy observations for systems of Hyperbolic type

with white Gaussian noise coefficients is derived.
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Chapter 7 involves the general theory of boundary optimal con-

trol for systems of Parabolic type with white Gaussian noise coef-

ficients. Corresponding to the boundary operators, the optimal

boundary control gain is obtained associated with various types of

operator Riccati equations. In the final section, giving precise form

of boundary operators, i.e., Dirichlet, Neumann and mixed type bound-

ary conditions, the exact optimal boundary controls are shown by an

numerical example.

In Chap.8, in analogy with the results of Part 1, the new

definitions of stochastic controllability are presented. Suf-

ficient conditions of stochastic controllability are derived for

systems of Parabolic type with white Gaussian noise coefficients.

Using the eigenvalue expansion method, easily checked conditions

are also demonstrated.
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CHAPTER 2. MATHEMATICAL PRELIMINARIES

In order to study the optimal control of distributed parameter

systems, it may not be allowed to bypass the basic knowldge of the

functional analisis. Consequently, several important results estab-

lished already in the framework of functional analysis, are summarized,

including related symbolic conventions.

Let G be an arbitrary open set in R (x={x-L,x2, ･･･xn>eG, dx=

dX]_'dXp*･ *dxn) and 3G be the boundary of G. D^ denotes a linear

partial differential operator on G such that

(2.1.1) DP =
3IPI

1 n

where |p|= p_L + p^ +･･･+ pn

We need the following background knowledges of the well-known

Sobolev space,[L5].

o 2
(1) L (G)-Spaaes: We denote by L (G) the space of (classes of) func-

tions u which are square inteerable on G. i.e.. measurable and

(2.1.2) ||u|| 2
J_J(G)

= ( / u dx ) < °°

We shall often set as

(2.1.3) L2(G) = H(G).

2
It is a classical result that L (G) is a Hilbert Space for the

scalar product,

(2.1.4) (u,v)L2(Q) = /Q u(x)v(x) dx ,

associated with the norm (2.1.2).
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(2) Hm(G)-Spaces: Let m be an integer

t

> 1. Briefly speaking the

Sobolev space Hm(G) of order m on G is defined by

(2.1.5) Hm(G) = {u| D^u c L2(G) for
＼a , |a|sm}.

We provide Hm(G) with the norm:

≪.i.≪ii-nAo)- %"DK2^
1/2

[Proposition 2.1]: With the norm (2.1.6), Hm(G) is a Hilbert space,

the scalar product of two elements u.v e Hm(G) being given by

(2.1.7) <u,v) -I (≫>>D1V)L2
^ ; |a|<m

(G)

Remark 2.1.2: If m.,>m>0, we have the strict inclusions

m-, m 2
(2.1.8) H X(G) c H (G) c L (G) = H(G) .

(3) HS (3G)-Spaces^] Let 6., j=l,2,≪≪≪ube a family of open bounded

sets in R , covering 9G, such that, for each j, there exists

an infinitely differentiate mapping

x^j (x) = y

of 6. ■*iF={y| y={y')yn}, |yf | <la -Kyn<l } such that ipj has an

inverse

y - ^j1 (y) = x

which is also an infinitely differentiate mapping of H ■*･6 ,
J

i|j1mapping 6.nG ■>H = {y| yell, y >0 }.

The hypothesis "m Is an integer" is not essential. For the
definition of Non-Integer order Sobolev space, see Ref.[L5].

ft We assume that the boundary 3G of G is a (n-1) dimensional
infinitely differentiable variety. G being locally on one side of
G. (i.e. we consider G a variety with boundary of class C
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Furthermore,let the following compatibility conditions hold:

if Q.nB±*(＼>,there exists an infinitely differentiable homeomorph-

ism J. . of t|j.(e.ne.) onto ^.(9-ne.), with positive Jacobian, such

that

^.(x) = j±.(^(x))
vx

e eine .

Let {a.} be a partition of unity on dQ having the properties:

a. e P(3G)= space of infinitely differentiable functions on 9G,
3 v

a, with compact support in 9.n8G,.2 a-=l on SG.

If u is a function on 9G, then we decompose

u =

V

and define

Ju)

!(a.u)(y≪,O) = (a.u)(4-T1(y',0)), y' e ln{y =0}
j j J J n

Since a. has compact support in 8Gn6., the function i(j(a u) has

compact support in Hn{y =0} and therefore we may also consider

<"j(aj u) to be defined in

Hn{y = 0} A mapping

R
(n)

y
1 by extending it to zero out of

u -≫■ty.(a.u)
i i / ^

is a continuous linear mapping of L (8G)-*L (R , ), of P(3G)->-

V(R , ) and extends by continuity to a continuous linear mapping

( ~＼＼
of 0'(3G)-*-P'(R , ).

a

Now, we define

s *

(2.1.9) H (3G) = {u|. ty.
J

s (n-1)
(a u) e H (R , ), j=l,2,---v }

which is valid for any real s.
s (n-D

By invoking the local charactor of H (Ry, ), we see that
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the definition of (2.1.9) is independent of the choice of the

system of local maps {6.,＼p.} and of the partition of unity {a.}

We may take the norm

v
* 2 1/2

(2.1.10) Hu||Hs(3G) - ^1ll*JCaJU)|!HB(R^-1>)) '

which, of course, depends on the system {6-,iJj.,a }. We easily
J J j

verify that with Eq.(2.1.10), HS(3G) is a Hilbert space and that

the different norms (2.1.10) with respect to a^ are equivalent.

(4) Hq(G)-Spaces: Since the mapping

3J'u 1

vanishes on V(G) and is a surjection of

where

. 1

HS(G) - n HS~J~2OG)S

1 0<j<s-i

―3- = normal j-order derivative on 8G, oriented toward the

injector of G, it follows that, if s>

dense in H

2 '
the space V(G) is not

(G). In general, we shall set:

(2.1.11) Hq(G) = closure of 0(g) in HS(G).
-s

(5) H (G)-Spaoes: For any real s>0, we define

(2.1.12) H"S(G) = dual of Hq(G),

and furthermore if m is a positive integer, then every fcH

may, in non-unique fashion, be represented by

(2.1.13) f = I Djf , f £L2(G).

~m(G)

For convenience of the present description, the principal symbols

used here are listed below:

t: time variable, particulary present time
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T: open time interval, ]tQ,tf[

u(t,x), v(t,x): scalar functions representing the state variable

of the system, respectively

L(X;Y): family of bounded linear mappings from X to Y

(･≫･) , || *|| : the inner product and the norm in the space " ",
* * *

respectively

(･): adj oint of (･)

We shall consider a topological probability space (fi,F,P;F,)

where F is the minimal a-algebra of Borel sets of ft, P the stochastic

measure defined on fi and {Ft} the monotone increasing and right
r£to

continuous family of sub-Borel sets of F. For the purpose of studying

the stochastic process, based on the notion of field, we need the

following new concepts of Hilbert spaces.

Let X and Y be two Sobolev spaces.
2 2

(6) L (n,P;X)-Spaces: In analogy with the definition of L (G) space,

we define

2 2
(2.1.14) L (fi,P;X) = {u| E{|| u| |x}<°°}-

? 2
(7) L (T:L (n,P:Y))-Spaces: From Eq.(2.1.14), we define

2 2
(2.1.15) L (T;L

(8)

(9)

L2

L2

Ft

L2

L2

(n,P;Y)) = {u={u(t)} | / E{||u(t)||y}dt<- }

(n,P;X|F. )-Spaces: The space of functions u(t) is denoted by

(fi,P;X|F.), whose elements belong to L

-measurable.

(T;L2

2
(J2,P;X) and furthermore

(fi,P;Y)|Ft)-Spaoes: All functions u(t) are elements of

(T;L2(n,P;Y)) and F -measurable.

2.2. Mathematical Models of Stochastic Distributed Paramet er Systems

In analogy with the lumped parameter system, a class of the
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physical systems is modeled by the stochastic partial differential

equations with additive noise disterbances [C3],[BIO],[K9]. For

nonlinear stochastic distributed parameter systems with additive

noise, Sunahara and the author established the mathematical model

in Hilbert space with the aid of the method of functional analysis,

[S16].

In this chapter, we concentrate our attention on more practical

distributed parameter systems, that is, stochastic distributed pa-

rameter systems with stochastic coefficients.

i) Parabolic type: Consider a distributed parameter system described

by

(2.2.1a)

where B.
J

+ A(t,x,(o;D )u(t,x) = 0 for (t,x)e TxG

) + AS(t,x,a);D )

a
*
p|(t,x)w|p|(t)D^

8u(t,x)

9t
with the initial condition.

(2.2.1b) u(to,x) = uQ(x) for x e G

and the boundary conditions

(2.2.1c) S.(t,x;D )u(t,x) = 0, for (t,x) e T*3G and j=l,2,≪≪≪,-
J x 2

(t,x;D ) is a deterministic boundary operator and A(t,x,u;Dx)

is a linear elliptic partial differential operator with stochastic

nneffi ^I onf a enpVi +■Vio f".

(2.2.2) A(t,x,w;D ) = A (t,x,tu;D

(2.2.3) AM (t,x,uj;D ) = I a.pi (tJxJw)DP

|pIsn x

and

(2.2.4) AS(t,x,u;D ) = £ n

lp|s-
2
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sure uniformly bounded Markov chain processes and w

n

･ j-
2

((t) (|p|=l,2,

) are white Gaussian processes. In order to guarantee the exist-

ence and uniqueness of the solution process to Eq.(2.2.1), we need

the following hypotheses.

M
(Hypothesis-2.2.1) : a. .(t,x,(o) (|p|= l,2,≪"}n) are right continu-

ous Markov chain fields in t.

(Hypothesis-2.2.2): a. .(t,x) (|p|= 1,2,･･･,_) are deterministic

and sufficiently smooth functions in t and x.

(Hypothesis-2.2.3): w. ,(t) (|p|= 1,2,･･･,_) are mutually independ-
IPI 2

ent standard Brownian motion processes.

(Hypothesis-2.2.4): The Brownian motion processes w
Ipl

(t) (lp|=l,2.

･･≪,_) are independent of the Markov chain processes a (t,x,w)

(|p|= l,2,---,n).
n _ri

Guided by the notion of Sobolev spaces, H2(G) and H~2(G), we

shall denote Vnby+

(2.2.5) V = H^(G) or H?(G) c V c_ H^G)

and V is the dual of V. Furthermore} according to definitions stated

in the previous section, we summarize two spaces which are useful to

define a new operator valued stochastic integral.

(1) L
2
step

(T;L (fl,P;V)|Ft)

= { v={v(t)} |v(t)eL2(T;L2(fi,P;v)|F. ), v(t) is a t-
t*t0 ＼

step function on T and /TE{||v(s)|| }ds < M }

If the boundary conditions {B.(t,x;D )} "'c are stable,[L5], we

n/2 n/2
J" X j-1

set V=Hq (G) (i.e. HQ (G) contains the boundary conditions

{B.(t,x;D )} ." ), and on the other hand, we set h"/2<=Vc Hn/2(G).
J X J―X U

The precise selection of the space V will be shown in numerical
examples.
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= { v={v(t)} ! v(t) is measurable relative to Ft for
tstn'

all teT, E{[| v(t) II
h> < °°

and E{ v(t) | Ft }=v(t)

for t > t }

By the knowledge of Sobolev spaces mentioned previously, we can

formulate the precise mathematical description of considered dynamical

systems. Before stating the detailed concept, the operator valued

stochastic integral is defined.

[Definition-2.2.1]: For v

(2.2.6)
s

dA (s,u)[v
n

0

(s

(t) e L
2

n'

)]

(T;l/~(fi,P;V) IF ), we define
step t

-I
＼

nafp,(t,x)DPvnt(t1,x)[w]p|(t1+1)
i=l|p|<2

wipi(ti)]+iL!ia'p|(t5X)DPxV"'(tn'>x)[wipi(t)

2

-"lPl(tn.)] ･

The following proposition is a direct consequence of the strong
2 2

measurability of all elements of L (T;L (J2,P;V)|Ft).

2 p
[Proposition 2.2.1]: If v(t) is an element of L (T;L (fi,P;V)|Ft),

2 2
there exists a subsequence v ,(t) e Lstep(T;L (fi,P;V) |F.), n'= 1,2,

, , n 2
･･･ such that for any |a|<T and any z e L (ft,P;V),

(2.2.7) lim /t0E{(D°v(s) - D^v (s),z)H}ds = 0.
n'+≫

Prom Proposition- 2.2.1, we have the following definition:

t o
[Definition-2.2.2]: The stochastic integral /t dA (s,u)[v(s)] is

2 2 ?
defined by the mapping from v e L (T;L (fi,P;V)|F ) to L^ar(fi,P;C(T;

H|F )), as follows :

(2.2.8) fl dAS(t,a))[v(s)] = lim/t dAS(s,o))[v (s)] .
Jt0 n'->oo;to n'



- 73 -

From Definition-2.2.2, we obtain the following proposition

[Proposition 2.2.2]: For t>x, it follows that

(2.2.9) E{/ dAS(s}o))[v(s)]|F } =
C

dAS(s,u,) [v(s) ],

and

(2.2.10) E{(/, dAS(s,o))[v(s)]
t0

,fl dAS(s,a>)[v(s)]) }
t0 H

= E{/t 7 n(a^p|(B,x)Dxv(B,x),a° (B,x)D^v(8,x))Hds}

= E{/t (AS(s)v(s),AS(s)v(s))ds} .

For convenience of descriptions we set

AS2
p

IPl

A (t) = I (-1) DP(a

IPI£
2

X
?p,(t,x)) DP(-) e L(V;V)

The Proposition 2.2.2 can easily be obtained from Definition-

2.2.1.

For the purpose of describing the existence and uniqueness theo-

rem for the dynamical system considered, we need the condition for

M s
the partial differential operators A (t,x,w;D ) and A (t,x,u;D ),

i.e., the so-called stochastic Coercivity condition. We assume that
M M
A (t,w) = A (t,x,uj;D ) e L(V;V) w.p.l .

Coeroivity condition 2.2.1: For any v e V, and all t e T, there

exists a positive constant a such that

M ~s2 2
(2.2.11) 2<A (t,u)v,v> - <A (t)v,v> > a|| v || w.p.l,

where <･,･> denotes the duality between V and V･

According to the new operator valued stochastic integral in

Definition-2.2.2, the existence and uniqueness of solution u(t) to
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Eq.(2.2.1) is stated in the following theorem.

[Theorem-2.2.1]: Under the Coercivity condition-2.2.1, Eq.(2.2.1)

can be rewritten by,

t M t s
(2.2.12) u(t) + /tnA (s,u)u(s)ds + / dA (s,co)[u(s)J = u a.s.

Furthermore, Eq. (.2.2.12) has a unique solution with the initial

condition u(tQ) = uQ s. H, such that

(2.2.13) u e L2 (ft,P;L2(T;V)) n L2(fi,P;C(T;H)),

and we have the energy Inequality which will be useful to prove the

stochastic property of the solution u(t),

2 t 2 ,?
(2.2.14) E{|| u(t) ||,} + a/t E{||u(s) ILJds < E{|| u(0)|l }.

n 0 V n

Proof will be shown in Appendix-A.

ii) Hyperbolic type: We shall consider a physical system described

hv

(2.2.15a)
32v(t,x)

~2 + A(t,x,(D;D )v(t,x) = 0, for (t,x) e TxG
at, a

with the initial and boundary conditions

(2.2.15b) v(t ,x) = vQ(x) for x e. G

(2.2.15c) v(tQ,x) = v (x) for x e G

and

n
(2.2.15d) B (t,x,;D )v(t,x) = 0, for (t,x) e Tx9G and 3=1,2,"-,-,

j x n 2

where 8.(t,x,Dx) (3=1,2,･･･,j) are deterministic boundary operators

and A(t,x,w;D ) is a linear elliptic partial differential operator

such that

D s
(2.2.16) A(t3x,(o;D ) = A (t,x;D ) + A (t,x,uj;D )

XX X



D

(2.2.17) A (t,x;D )
X

and

-I
p

(2.2.18) AS(tjXju);DY) =

D
a

|<n P

I
p
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(t,x)D* +

s ･
jpl(t>x)w Ipl

(t )dp
x

We need the following hypotheses on the above mentioned opera-

tors .

(Hypothesis-2.2.5): aD (t,x) (|p|= l,2,≪≪≪,n)are sufficiently

smooth deterministic functions in t and x, and differentiable

in t and x.

(Hypothesis-2.2.6): The operator defined by Eq.(2.2.18) satisfies

the Hypotheses-2.2.2 and -2.2.3.

As in the Parabolic type model, we shall work with the Sobolev

spaces, H (G) and H (G). Let V and V be respectively"*"*"
n u n n

(2.2.19) V = Hq(G) or H^(G) <= V £ H2(G)

and

(2.2.20) V = dual of V .

Guided by the notion of Sobolev spaces V and V, Definition-

2.2.2 and Hypothesis-2.2.6, it is easily found that the following

stochastic integral is defined:

(2.2.21) /todAS(s,uO[v(s)] = /t

and

I n a

|P|S2

*

p(s,x)D*v(s,x)dw
(s)

＼ p 2
for v e L (T;L (fl,P;V)|Ft)

t For convenience of the description, we assume the principal
part of AD(tjX;Dx) is symmetric

tt See comments in pp.71.



(t,x)) DP e L(V;V) .

In order to support the existence and uniqueness of the solution

process v(t), the following Goercivity conditions are useful.

Coeroivity condition 2,2.2: There exist a1>0 and g-,eR such

that

D 2
2 v v

(2.2.25a) <A (t)v,v> + &±＼| v || ^ a±＼＼v 11 , for veV and teT,

and furthermore Y-^0 >

.D 2 t
(2.2.25b) <A (t)v,v> < Yi|| v ||

V ' (1)
Coercivity condition 2.2.3: There exist a?eR (a?>0) and y?>0 such

that
2 2 ?

| v| |y < <AS (t)v,v> < y ||v|| v , for veV and ＼teT.

Vt
e T(t,x;D ) £ L(V;V) for

~s , IPl P, s
(2.2.24) A(t)= I n(-D D (a

|p|s- X

(t,x)DP and we assume AD(t)eL(V;V)
x

t AD(t) denotes .1
Ip

(2o2.26) a2

For convenience of theoretical development, Eq.(2.2.15) is rep-

resented by the vector notation in the following theorem.

[Theorem-2.2.2]: With Coercivity conditions-2.2.2 and -2.2.3, Eq.(

2.2.15) can be rewritten by

(2.2.27) z(t) + ft 2(D(s)z(s)ds + /, dAS(s,u>)[z(s) ] = z , a.s.,
0 t0 °

where z(t)=[v(t), v(t)]' and

･D

I
^

I <n
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t t s
(2.2.22) E{(/t dA (s,u) Cv(s) ] ,/tQdA (s,o))Cv(s) ] )R}

£ E{f* (AS(s)v(s),AS(s)v(s))Hdsk

We shall further assume that

(2.2.23) AD

and

(t) = AD



(2.2.2&)

t

d&s(s,cd)[z(s) ] =
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At). [°D

.AD(t)

-I

0_

J
Furthermore, Eq.(2.2.27) has a unique solution with the initial con-

dition z(t_)

(2.2.29) z e L2

= z neV*H such that

(fl.P; C(T;V)) x L2(fi,P; C(TjH))

Proof will be demonstrated in Appendix-B.

2.3. Mathematical Models of Dynamical Systems

In this section, several types of mathematical models for the

dynamical systems to be controlled are established:

1) Parabolic type systems with stochastic coefficients

Let u(t,x) be a scalar process of dynamical system given by

x)
+ A (t,x,a>;D )u(t,x) = B(t,x)f(t,x), for (t,x)eTxG

with the initial condition u(tQ,x) = uQ(x) for xeG and the boundary

conditions B,(t,x;D )u(t,x) = 0 for (t,x)eTx8G and j= l,2,*≪≪ij-.
J x

M
For the partial differential operator A (t,x,u;D ) with Markov

chain coefficients, Coercivity condition-2.2.1 in. Sec.2.2 is

considered.

(Condition-2.3.1) The control signal f(t,x) takes the value in a
2

convex subset U of a fixed Hilbert space, that is, E{/ || f(s)|| yds}

< oo
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(Condition-2.3.2) B(t,x) is restricted as follows

(2.3.2) B(t) = B(t,x) e L°°(T;L(U:H)) .

≫/

With Theorem-2.2.1, the dynamical system (2.3.1) is represented

(2.3.3) E-,

du(t)

dt

+ AM

u(tQ) = uQ

signals

(t,u)u(t) = B(t)f(t) , for teT

Let u(t.x) be a solution process of dynamical system given by

(2.3.4a)
3u(t,x)

3t
+ A (t,x,u;D )u(t,x) = 0, for (t,x)eTxG

with the initial condition u(tQJx) = uQ(x) for xeG and the boundary

conditions

(2.3-4b) 8

where g.

(t,x;D

n
)u(t,x) = g.(t,x), for (t3x)eTx9G and j= 1,2}≪-,-,

(t,x) (j= 1,2,･･･,―) are boundary control signals.

Coercivity condition-2.2.1 for the partial differential

M
operator A (t,x,o);D ) is considered:

(Condition-2.3.3) The boundary controls g

belong toL2(T;ft), where -,

n
(t,x) (j= 1,2,･･･,5')

(2.3.5) W = n L2(fi,P;Hn
"j 2(8G))

for j= 1,2,"≪,| and n.<n-l .
J J

t As Eq.(2.3.1) does not contain the partial differential operator
with Gaussian coefficients, the differential equation form Eq.(2.3.3)
has the precise mathematical meaning.
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(i) Natural Boundary Condition Case [order{E (_t}}>n/2+l for any jj
J

Prom Theorem-2.2,1, Eq.^.S,1!) can be represented by

(2.3.6a) I

^~- + AMCt3co)u(t) =
0, for teT

uCt = uo

with the boundary conditions B.(t)u(.t)Ln= g.Ct) Cj =l,2, ･･･ ,n/2) in

the spaces H,V and V .

(ii) Stable (Mixed) Boundary Condition Case [See Ref.[L5]J

In this case, the solution of system J_ is considered as a weak

solution of the corresponding stochastic equation;

(2.3.6b) I | f(uCt), [-f|+ AM* (t,w)ifi])dt = (uQ3 ip(tQ)) -

f(g Ct), T^Ct,o))^)3Gdt

for any iM≫H i(j£Hn(G) and B. (t )ip = 0 on 8G for j =l,2, ･･ ･ ,n/2}, i|ieC(T;H)
+

and KtJ = 0 and where {T^(t .oi)}I?/^? is selected as the system {B.(t).and <Ktf) = 0 and where {T.(t,ai)}"^ is selected as the system {B.

T.(t,o))}._ becomes a Dirichlet system. (The precise form of

{T. (t ,co)}1?^? will be shown In Chap. 4 with the aid of Green's formula.)

Let u(t.x) be a scalar process determined by

(2.3.7) + [AD(t,x;D ) + AS(t,x,a);D )]u(t,x) = B(t,x)f(t,x)
X X

for (t.x)eTxG .

D(t,x;Dx ) and A (t,x,a);D )

3u(t,x)

3t

with the initial condition u(tQ,x) = un(x) for xeG and the boundary

conditions B.
J
(t,x;Dx)u(t,x) = 0, for (t3x)eTx8G and j = 1,2,･･･,",

where the partial differential operators A

are defined by Eqs.(2.2.17) and (2.2.18) respectively

+
T denotes the closure of T, i.e. T = [tQ,tfJ
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(t,x,U;D ), the operators AD(t)^AD(t,x;Dx)eL(V;V)

2
and AS (t) associated with As(t,x,oj;D ) are assumed to satisfy

Coercivity condition-2.2.1 and furthermore
f(t,x) and B(t,x) to satis-

fy Conditions -2.3.1 and -2.3-2, respectively.

Theorem-2.2.1 guarantees that, with the precise mathematical

meaning, for teT, Eq.(2.3-7) can be represented by

(2.3.8) Ei u(t) + / AD(s)u(s)ds + / dAs(s,w)[u(s)J
^ t0 to

= n + f ■RCc･^■PCc!^r^c･

in the spaces V,H and V.

[Definition-2.3.4](System L) White Gaussian noise coefficients model

Tpouridary control signals

Let u(t,x) be a scalar process of dynamical systems given by

(2.3.9a) 3u(t,x)

at
+ [AD(t,x;Dx) + AS(t,x,co;Dx)]u(t,x) = 0

for (t,x)£TxG ,

with the initial condition u(tQ,x) = uQ(x), for xeG and the bounda-

rv conditions :

(2.3.9b) 8

where g

(t,x;D )u(t,x) = gj
x J

) (j= 1,2,.-.,^) ar

D

n
(t,x), for (t,x)eTx9G and j= 1,2,'≪,2"

(tjX) (j= 1,2,* ･･jp-) are boundary control signals

For the operators A (t,x;D ) and A

■A.

s
(t,x,w;D ), Coereivity

condition stated in Definition-2.3.3 is considered and for the bounda-
n

ry control signals g^Ct.x) (j= l,23≪'-,2"), Condition-2.3.3 is assumed.

(i) Natural Boundary Condition Case £order{B .(.t)}>n/2+l for any jj
J

With the same procedure as in Definition-2.3,3, we can rewrite

Eq.(2.3.9) by the following stochastic evolution equation built



on the spaces y.H. and y

(2.3.10a) £4 | uCtl +

*;

81 -

t t

ADCs)u(s)ds + (

tQ
Jt

dAsCs,a))ru(s)J

0

= uQ, for teT,

with the boundary conditions B.(t)uCt) = g,Ct) (J=l,2 ,･･･,n/2),

(ii) Stable Boundary Condition Case [ order{B, (_t)}<n/2 for any jj

In this case, the weak solution to J＼is defined by

(2.3.10b) ^ I f CuCt), [-■§£ + AD*(t)^])dt

= (u(t0)

+ f f(u(t), dAS*Ct,o))I≪)
Jto

n/2 rtf
+Ct0)) +1 CgjCt), ^.Ct)^)3Gdt

j-1 t0

for any fe{4> | 4>eHn(G) and B?(t)iji= 0 on 3G for j=l,2,･･･,n/2},

iJieC(T;H) and i(i(tf)= 0 and where {ft (t)}1?^ is a subset of a

Dirichlet system {B*(t), ^.(t)}1?^.

(iii) Mixed Boundary Condition Case

As is mentioned in Definition-2.3.2, a weak solution must be

considered. The precise formulation is demonstrated in Appendix C.

Furthermore from Definitions-2.3.1 to -2.3.4, we can define the

dynamical systems with both Markov chain and white Gaussian noise

coefficients, which are called here mixed coefficients model.

[Definition-2.3.5](System E_

buted control signals.

) Mixed coefficients model with distri-

Let u(t,x) be a scalar stochastic process represented by
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(2.3.H) Eel u(t) + / AM(s,")u(s)ds + / dAS(s,w)[u(s) ]
tO fcO

= u + / B(s)f(s)ds ,
0 tO

in the spaces V,H and V.

For Eq.(2.3.11), Coercivlty condition-2.2.1 and Conditions-2.3.1

and -2.3.2 are considered:

Equation (2.3-11) with Conditions-2.2.1, -2.3-1 and -2.3.2 is speci-

fied by Ig.

[Definition-2.3.6](System Zc) Mixed coefficients model with boundary

Let u(t,x) be a scalar stochastic process represented by

(2.3.12) Z u(t) + /
tO

A (s,u)u(s)ds + / dA (s,a))[u(s)J = u

with the boundary conditions B

the spaces V,H,W

<=0

J<t)u<t)lSG-sJ

0

(t) (j= 1,2,･･･,2.) in

and V, where Coercivity condition-2.2.1 and Con-

dition-2.3-3 are considered. Equation (2.3.12) with Conditions-2.

2.1 and -2.3.3 is specified by £,, In this model, the boundary con-

trol signals {g
J

n/2 " 2 2 %
(t,x)},=1 are contained in the space L (T;L (fi,P;W)),

ii) Hyperbolic type systems with stoahastio coefficients

As we may easily observe from the theoretical development in

the preceding section, it is almost impossible to assert precisely the

existence and uniqueness of a solution process to Hyperbolic type partial

differential equation with stochastic coefficients in the partial

differential operator whose statistics of stochastic coefficients

are specified by Markov chain process. Regarding the mathematical

version mentioned above, we are limited ourselves to consider a dis-



- 83 -

tributed parameter system modeled by the stochastic partial differ-

ential equation of Hyperbolic type with white Gaussian noise coef-

ficients.

[Definition-2.3.7] (System l-j) White Gaussian noise coefficients model

with distributed control signals

Let v(t,x) be a scalar stochastic process given by

(2.3.13)
82v(t>x) + [AD(t,x;Dx) + AS(tJxJa>;Dx)Jv(t,x) = B(t ,x)f (t ,x)

8t2

for (t,x)eTxG

with the initial conditions v(tQjX)=Vq(x) and v(to,x)=vo(x), for

xeG and the boundary conditions B,(t,x;DY)v(t,x)=0 (j=l,2,･･･,n/2),

D s
where the partial differential operators A (t,x;D,,) and A (t,x,io;Dv)

are defined by Eqs.(2.2.17) and (2.2.18), respectively.

Considering Coercivity conditions 2.2.2 and 2.2.3, and Condi-

tions- 2. 3.1 and-2.3.2, Theorem-2.2.2 allows us to write Eq.(2.3.13)

in the form.

(2.3-lt) S z(t) + /t AD(s)z(s)ds + jt dAs(s,w)[z(s)]

= zo
t ^

+ /. B(s)f(s)ds

in the spaces, V*H, V*V and V, where all terms of the left hand side

of Eq.(2.3.14) are determined by Eqs.(2.2.28) and (2.2.29) and, fur-

thermore j

(2.3.15) L B(s)f(s)ds =
^0

r t

<s)f(s)_
|ds
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signals (Natural Boundary Control Case)

Let v(t,x) be a scalar stochastic process given by

(2.3.16a)
82v(t

~7?

,x)
+ CAD (t,x;D ) + AS(t,x,w;D )]v(t,x) = 0 ,

■A- X

for (t,x)eTxG

and the initial conditions v(to,x)=vo(x) and v(to,x)=VQ(x), for xeG

and the boundary conditions

(2.3.16b) B.(t,x;DY)v(t,x) = g,(t,x) , for (t5x)eTx8G and J =l,2,≫≪,2.

where g.(t,x) (j=l,2,･･･,―) are boundary control signals which satis-
≪J i^

fy Condition-2.3.3 in Sec.2.3. From Coercivity conditions-2.3.1

and-2.3.2, Eq.(2.3.16) can be rewritten by the following stochastic

evolution equation built on the spaces V*H, VxH, ~Wand V,

t "Vin t ^s
(2.3.17) ^81 z^fc) + /t0A (s)z(s)ds + /t dA (s,o))[z(s)J = zQ , for teT

with the boundary conditions B .(t )v(t )=g.(t) (j =l,2, ･･･ ,-^) .
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CHAPTER 3. THE OPTIMAL CONTROL FOR DISTRIBUTED PARAMETER

SYSTEMS WITH MARKOV CHAIN COEFFICIENTS

Various aspects of the, problem of determining the optimal control

for stochastic linear distributed parameter systems have been treated

with some degree of success. However, many physical examples of dis-

tributed parameter systems in engineering,biological and environmental

sciences require to consider uncertainties of system parameters. In

such problems, from the differential operator with stochastic coef-

ficients, there arises a difficulty in finding stochastic properties

of a solution process to the partial differential equation. Given

the mathematical description of the system and stochastic properties

of system parameters, it is desired to determine precisely or ap-

proximately the stochastic properties of the system state. In this

chapter, a type of finite Markov chain processes is introduced to de-

scribe the stochastic property of system coefficients. Even though

this is a more general form than the system treated in [S9l and

great difficulty would be encountered in handling certain problem of

estimating the system behaviour, it is not necessary for making any

further restriction on the mathematical model of the system.

In Sec. 3.2, we shall begin with the mathematical model of sys-

tem parameters considered here which is specified by Markov chain with

finite stages. Preassigning the transition probability of Markov

chain process, the original partial differential equation is con-

verted into the equation of stochastic evolution equation in the

Sobolev spaces stated in Definition-2.3.1. In Sec. 3.3, the differ-
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ential rule which plays an important role to study the optimal con-

trol problem is derived from the process determined by the solution

of a partial differential equation with Markov chain coefficients.

Section 3.4 is devoted to the derivation of optimal control given in

terms of a known sample value of the stochastic system parameter.

In practice, since the exact information of system parameters may not

be obtained, it may be desirable to generate the suboptimal control

on the information of parameter estimate and the entire past of the

generated suboptimal control signal. In Sec.3.5* with, the three

basic assumptions on the eigenvalues and eigenfunctions reflecting

stochastic properties of system parameters, the computational algo-

rithm of the suboptimal control is shown. As an illustrative example,

the suboptimal control scheme is considered for a class of stochas-

tic distributed parameter systems modeled by the one-dimensional

heat equation with a Markov chain coefficient in Sec.3.6.

Let the state variable u(t,x) of a stochastic distributed pa-

rameter system be determined by

(3.2.1a)
3u(t,x)
at

M
+ A (t,x,uj;D )u(t,x) = B(t,x)f(t,x)

for (t.x) TxG

with the initial condition

(3.2.1b) u(tQ)x) = uQ(x) for x e G

and the boundary conditions

(3.2.1c) B

where 8. (t.x

t.x

;d
X

;Dx)u(t,x

(J- 1,2,

0 for (t,x) e T*8G and j= 1,23≪≪≪,- ,
2

n
･･*,pO are deterministic boundary operators
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M
and A (t,x,w,D ) is the partial differential operator as is defined

in Definition-2.3.1,

M M p
(3.2.2) A (t,x,(u;D ) = I a. ,(t,x,u))D .

|p j<n IVI

In Eq.(3.2.2), we assume that the coefficients ai i(t,x,(o) (|p|= 1,

2}#<*,n) are modeled by the right-continuous Markov chain processes

with finite stages defined on (JJ,F,P). Associated with a^ ,(t,x,u)),

we shall define two vectors.

(3.2.3) a(t,x,u>) = [a;L

and

(3.2.4) M = [a

M M
(t,x,co),a2(t,x,u)),≪≪',a(t,x,<≫))]'

(x),a (x),≪･･,a (x)]'
12 n

where ""' expresses the transpose as usual and where

(3.2.5) a

1
(x) = [a1(x)Ja2(x),'≪≪,a^(x)]

and a.:(x) (i= 1,2, ･･',111,j= 1,2, ･･･Jn) are assumed to be sufficiently

smooth functions. By two kinds of vectors a(t,x,co) and M defined above,

realizations are right-continuous piecewise-constant functions over

T defined on the probability space (fi,F,P) and those are elements of

the vector process M. We denote realizations of a(t,x,co) at time t

and t + At by a (x) and a (x) (j,k= l,23*≪≪,n) respectively. Thus,

for a sufficiently small At,

(3.2.6) Pp[ a(t+At,x,u>) = ak(x) | a(t,x,u>) = <*j(x) ]

q.k(t)At + o(At), for j * k

1 + q (t)At + o(At)

where the initial probability is Pr[ o(tg,x,u) = a,-(x) 1 = Pj
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(x) (i= 1,2,･･･Jn) of a(t,x,o)) are assumed

to satisfy Coercivity condition-2.2.1

M
(3.2.7) <A1(t)v,

M
where A

) i.e. .

2. if ＼
v> > a|| v ||v for v e V and i (i= 1,2,* ･･ ,111)

(t) = £ af ,(x)DP c L(V;V )

|p|<n IPl

Based on the conditions of Definition 2.3.1, Eq.(3.2.1) can be

rewritten by the following equation of random evolution in the spaces

V,H and V;

(3.2.8) e

Wad>

ii) f e L2

du(t)
+ A (t,a))u(t) = B(t)f(t) for teT

z
is a a-algebra gener-

and {a(t,x,o))} ,i.e. .

_≪st}.+

dt

U(V = uo

Before considering the cost functional, we must describe the

precise statement of admissible control class.

Admissible Control Class: We denote the admissible control class

If all elements of W , satisfy the following conditions1

M

i) f(t) is Ft-measurable for all teT, where

ated by {u(s)}

M
s>t0

(3.2.9) Ft = a{ u(s), a(s,x,u>), t
2

(J2,P;L (T;U)), where U is a convex subset of H

Consider the quadratic cost functional

(3.2.10) L(t,x,f) = (M(t)u(t),u(t)) + (Q(t)f(t),f(t))
H H

where M(t) and Q(t) are bounded semipositive and positive self adjoint

operators, respectively. The problem is to find the feedback opti-

mal control f (t) in such a wav that the functional

t If Ffcbecomes a{u(s), tD<s<t},i.e. , the exact information of system
parameters is lacked, the optimal control problem is fallen into the
version of sub optimal control. (See Sec.3.1*;
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(3.2.11) J(f) = E{/ L(t,x,u) dt| u(t ) = u , a(tn,x,u) = an(x)}
°g U U u U

becomes minimal with respect to feW
ad

To simplify the mathematical derivation, without loss of gener-

ality, set f(t) = 0 in Eq.(3.2.8) and define the quadratic functional

y(t,u,a) by

(3.3.1) 7(t,u,a) = (u(t),P(t,a)u(t))
ri

where P(t,a) is a bounded operator from V to V w.p.l which depends

on both time t and the realization of a(t}x,u)).

Let realizations of u(t) and a(t,x3u)) be u(t) and a.(x),respec-

tively. An expression of the differential rule associated with the quad-

ratic functional F(t,u,a) defined by Eq.(3.3.1) is obtained in the

following theorem.

[Theorem-3.3.1J: With the conditions of Definition-2.3.1, the follow-

ing limit exists and this is given by

(3.3.2) lim

6->-0

E{F(t + 6,u,a) |u(t)=u,a(t,x,ai)=a1(x)} - V(tt＼x,a±

6

)

= (u,C^i(t) + Zqj_.(t)?( (t)]u)H - <A^(t)u,?i1(t)u> - <£*(t)u,A^(t)u>

% M
where the superscript "*" denotes the conjugate and P.(t) and A (t )

are respectively defined by

(3.3.3)

and

pi(t) = E{P(t,a)|a(t,x,w)=a (x)}

(3.3.4) AM(t) = E{A (t,u) | a(t,x,w)=a.(x)} = I a, ,(x)D?
1 |p|sn lp|
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Proof: From Eqs.(3-2.8) and (3-3.1), it follows that

du(-t) dP(t,a)
(3.3.5). F(t +6 ,u,a) = <u(t) + ― 6,[P(t,a) + ―~ 6](u(t)

at ut

du(t)
+ 6)>

dt

dP(t.a)
= F(t,u,a) + (u(t),[

2<AM

dt
Ju(t))

(t,u))u(t),P(t,a)u(t)>6 + 0(6)

Noting that the time evolution of a(t,x,u)) is independent of

the system state u(t)3 we have

(3-3.6) E{7(t+6,u,a) |u(t)=u, a(tJx,a))=a. } -F(t,u,a,)

= (u,[E{
dP(t,a)

dt

|a(t,x,o))=a }]u)w

l n

- C<A^(t)u,^i(t)u> + <K(t)u,A^(t)u>]6 + 0(6)

The conditional expectation in the right hand side of Eq.(3-3.6) is

a(t ,x,co)=a. } = lim -[E{P(t+6,a) I a(t,x,u>)=a }
S+0 6

Recalling Eq.(3.2.6). it follows that

(3.3.8) E{P(t + 6,a) |a(t,x,ai)=a }

m

= I P

k=l k
(t+6)P

- E{P(t,a)|a(t,x,u)=a,}]

{ a(t+6,x,a))-alj,(x) I a(t,x,a))=a.(x) }

= P (t + 6) + I P1_(t + 6)qjM (t)6 + 0(6)
1 k=l K ik

Substituting Eq.(3.3.8) into Eq.(3.3.7), we obtain



dPCt.a)
(3.3-9) E{

at
a(t ,x,(o)=a.
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(t) m -＼,

k=l
k(t)q.k(t)

With the results (3.3-6) and (3.3-9), the proof has been completed.

The optimal control problem will be solved by using the method

of dynamic programming. For Eq.(3.2.11), define the functional

F(t,a.a.O bv

(3.4.1) 7(t,a,w) = min E{/ fL(s,u,f) ds| Fjj1}
feWad t

Then, from Eq.(3.2.9), it is apparent that

tf
(3.4.2) F(t,a,w) = min E{( L(s,u,f) ds|u(t)=u, a(t,x,u)=a

feWad
i}.

Since Theorem-3.3.1 may be assumed to extend to the case where

f(t)*0, we shall write a bounded operator n(t,a) for P(t,a) in

Eq.(3.3.1) and apply Theorem-3.3.1 to find the optimal control.

Bearing Eq.(3.3.1) in mind, we have

(3.4.3) 7(t,a,a>) = (u,n .(t)u)
H '

where

(3.4.4) n±(t) = E{n(t,a3to) |a(tJxJa))=a1}

and n(t,a,u>) is a stochastic operator depending on a. Prom Eq.(3.4.2),

by applying the principle of optimality and by Theorem-3.3.1S the

following basic equation is derived;

(3.4.5) min [(M(t)u,u)u + (Q(t)f,f) + (u,[

feWad
H

n

m

(t)nk(t)]u)H
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- <AM(t)u,n1(t)u> - <nJ(t)u,Aj(t)u>

+ (c,n.Ct)B(t)f) + Cf,B*(t)n, (t)u) J = o.

The optimal control is thus given by

(3.4.6) f°(t) = - Q~1Ct)B*(t}niCt)u

provided that a(t,x,u) = a.(x) (i= l,2,≪≪-,m), where II1(.t) satisfies

(3.4.7a) n (t) - Aj*(t)njL(t) - n±(t)Aj(t) - ni(t)B(t)Q"1(t)B*(t)n.(t)

m
/v

+ M(t) + I q (t)n (t) = 0
k=l lK K

and

(3.4.7b) n±(tf) = 0 .

We now obtain the equation for the kernel Tr.(t,x,y) of n.(t) by

using the Schwartz Kernel-Theorem [L4].

In Eq.(3.4.7a), assuming that Q(t) = cl, where c is a constant

and I an identity mapping, the version of ^1-^ >x>V' yields that

(3.4.8a)
3TT1(t,x,y)

3t

1
c

- (A^*(x;Dx) + Aj*(y;D ))u±(t,x,y)

Tr(t,x,z)B(t5z)B(t,z)ir(tJz3y)dz

z
m

+ m(t,x,y) + I q (t)ir.(t,x,y) = 0 ,
k=l 1K K

for (t,x,y) TxG xG ,
･x y

with the terminal condition

(3.4.8b)
^1(tfJx,y) =

0, for (x,y) e Gx*Gy

and the boundary conditions ,



(3.4.8c) C

(3.4.8d) C

whe re { C

= n

(t,y;D }ir
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1CtJx,y) = 0 , for (t,x,y) <■TxSG^xQ

^(t,x,Y)
= 0 , for (.t,jc,y) e TxGxx8G

.}I?^1is an adjoint boundary system of {B.}1?^ and -n^(t,x,y)

(t,y,x)

timal control f°(t) given by Eqs.(3.4.6) and (3.4.7), it is required

to introduce a relization c^Cx) of a(t,x,u) which is a set of the

stochastic coefficients in the differential operator A (t,(o). Unfor-

tunately, it is,in practice, seldom possible to measure precisely

realizations of stochastic coefficients. In this section, an approx-

imate method is developed for a sample estimate of Markov chain pro―

cess under the past value of the state variable u(t,x) and control

signal f°(t). For this purpose, mathematical aspects of stochastic

eigenvalues and eigenfunctions are first developed by invoking the

knowledge of stochastic eigenvalue problems.

3.5.1. Stochastic Eigenvalues and Model of Markov Chain Processes

For convenience of discussions, suppose that the uncertainty of

coefficients contained in A"(t,w) depends only on t, i.e.,

(3.5.1) AM (t.o)) = I af ,(t,a))DP

|p|<n |p| X

We need the following assumptions:

(A-3.5.I): The Hilbert space V is separable

basis of H may be made up with elements of V

<f>2>' ''

Then the orthonormal

We denote these by <j>,
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(A-3,5.2); There exists a sequence { ?^(t,w) ^cjk;i= 1,2,"≪} of

stochastic eigenvalues and deterministic eigenvectors such that,

for any regular function if,

(3.5.2a) (AM* Ct.ul^^Jjj = CAi(t,a))<f)iJiJ;)H

(3.5.2b) (C (t)<f>.,*) ? = 0 .
J x L2(3G)

(A-3.5.3): The relation between stochastic eigenvalues X.(t,u>) and

Markov chain coefficients in A (t,w) is linear. Thus

(3.5-3) X1(t,u) = 3f±(t)+ Mi'(t)N(t,u)) ,

where X.(t) is a scalar deterministic function, y.(t) is a r-dimen-

sional vector (r<n) and N(t,w) corresponds to the Markov chain coef-

ficients su 1(t,ai),([S17])

(A-3.5.^): For all teT, the eigenvalues X.(t,a)) has the following

relations;

(3-5-4) 0<A1(t3a))<A2(t,a))<---< lim ＼±(t,u)= °° a.s.

With the assumptions (A-3-5.1) to (A-3.5-1*), the weak solution

to Eq.(3.2.8) is given by

00
(3-5.5) u(t) = I h.(t,wH.

i=l 1 1

and E{|| u(t) || H| u(to)=uQ} < °°,where

(3-5.6) h^t.w) = (u(t),*±)H .

Prom (A-3.5,3), it can easily be seen that the h.(t,oO-process is

determined by



95 -

dh,(t,u)
%(3.5.7a) ―^ + X1(t)h1(tJu) + ti1'(lt)N(t,a))h At,a) = f.(t)

and

(3.5.7b) h1(to,to)= (u(t ),

where f. (t) = (B(t)f°(t),
i

3.5-2 Observations of Markov Chain Coefficients

Since the solution given by Eq.(3-5.5) is computed in terms of

deterministic eigenvalues $ .,<p･+m^(K-+2m>' "' and *i +(r-l)m in such a

wav that the r*r matrix.

(3.5-8) ^(t) = [ ^･(t)syl+-(t)5y'+2.(t)J..-,y!+(r_1)S(t)]-

becomes positive definite, where m denotes the multiplicity of eigen-

values. Prom the given information u(t,x) and f°(t,x), the observa-

tion data are acquired in the form,

(3-5.9) y(t) = [y.(t),y

and

j+^t).---.yJ+(r-i)^t)j

(3.5.10) £(t) = Cyj(y)5yj+-(t),---,yj+(r.1)-(t)]'

where

(3-5.11) y

and

(3-5.12) y

j+r-(t)
=

(GU(t5xH.+r-(x)dx

j+ (t)
=

I
B(t,x)fO(t3x)d)j+r^(x)dx

From Eq.(3.5.7a), it is easy to show that the y(t)-process is a so*
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lution to the differential equation,

(3.5.13) ly(t) + U(t)y(t) + y(t)y(t)N(t,u)} = y(t) ,

dt

where

(3.5.14) X(t)

and

0

■

0

(3.5.15) y(t) =

(t) 0
. . . . 0

m
,Mt) o... o

0

y (t)

J

o y

o

0

0

.Mt)

0

0

･

･ ･ 0 X

･ ･ ･ ･

0

･ ･

･ ･ ･

0 y

0

j+(r-l)m

0

0

0

J+

)

t)

Furthermore, the deterministic eigenfunctions <)>.■,^ may be chosen in

such a way that y(t) becomes invertible. Consequently, from Eq.(3.5

13), it follows that

(3.5.16) N(t,u>) = y

<t

dy(t)
(t)y-1(t){ - ― - X(t)y(t) + y(t) }

Let the time interval ]tQ,t^[ be discretized by tg<t,<t <,･･･,

k^^n = *

t as Vi

f In the right hand side of Eq.(3.5.16), we shall set

and try to compute Eq.(3.5.16). An assumption that, for

a sufficiently small interval At = t - t ,

(3.5.17)
dy(t)

dt

y y(tk) - y(tk_!
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allows us to compute Eq.(3.5.l6) in an approximated form expressed

bv

(3.5.18)
y(tk-i^W

Atk

I - y(tk) + y(tk_1) - AtkU(t )y(t

0.
y(t

k-1
)}] = N(t ).

k-1

By computing N(tk), the following decision is made at time t. :

(3.5.19) N(t,u) = N

2 - 2 _ 2
if |N(tk) - N | = min.{|N(tk) - N | ,|N(tk) - N,| ,

where I･I denotes the Euclidean norm

･･･,|N(tk)
2

- N I }
m1

3.5.3 Configuration of Suboptimal Control Scheme

In this section, by using the estimation method of Markov chain

coefficients, in what follows, the suboptimal control scheme is pro-

posed.

i) With the terminal condition (3.4.7b), the gain operator equations

defined by Eq.(3.4.7a) for all i are a priori, solved by using

the digital computer.

ii) By using the estimation method of Markov chain process stated in

Sec. 3.5.2, we can obtain the approximated value for the reali-

zation of a(t,x,a)) as N..

iii)If from the above mentioned decision rule, we obtain the approxi-

mated value N^ for the realization of a(t,x,w), we take the gain

operator n.(t) at every time tk(k= 1,2,**≪) .

The configuration of the suboptimal control system is shown in

Fig. 3.5.1 .

t At initial time t=tQ, we assume that the information of N(to,u))

is given.



r
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Markov chain N(t,w)

System Dynamics

Pig. 3.5.1 Configuration of the suboptimal control system

3.6. AriIllustrative Example

Consider the one dimensional heat equation:

(3.6.1a)
3u(t,x)

at

32u(t,x)
{a(t) + g(t)a(t,(o)} = b(t)f(t,x)

9x2

for (t,x) £Tx]o,l[

with the initial and boundary conditions

(3.6.1b) u(tQ,x) = uQ(x) = sin ttx, for x e ]0,l[

and

(3.6.1c) u(t,0) = u(t,l) = 0 , for teT ,

where a(t,ui) is a Markov chain coefficient with finite states whose

Rt-.nc.hast.1phphavinr1 is SDecifled hv

(3.6.2a) Pr{a(t + At,u))=ak| a(t,u)=a, } =
q,k(t)At + o(At) for j*k

1 + qJj(t)At + o(At)



and

(3.6.2b) Pr{ a(to,u>)=a.} = p.
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In this example, choosing V = Hq(G), from Coercivity condition-2.2.1,

we assume that, for all j= l,2,≫",in and teT, the following inequality

holds :

(3-6.3) a(t) + g(t)a. > 0 .

The quadratic cost functional is preassigned by

(3.6.4) J(f) = E{/ fj} [u2(t,x) + f2(t,x)J dxdt | u(t x)=sin2irx5
tQ u u

a(to,a)) = a.} .

Using Eq.(3.4.6), the optimal feedback control f°(t) minimizing Eq

(3.6.4) is obtained in the form,

1

(3.6.5) f°(t,x) = b(t)ir
0

.(t,x,y)u(t,y)dy
J

where from Eq.(3.4.7), the II.(t)-process is determined by

(3.6.6)
3tt,(t,x,y)

3t

+ U(t) + g(t)a

32 32
TTj(t ,X,y )

b (t)/%.(t,x,z)TT.(t,z,y)dz + 6(x-y)

m
+ I

k=

ir,(t,x,y)q..(t) = 0, (j= 1,2, ･･･,m)

with the terminal and boundary conditions

(3.6.6b) TrJ(tf5x3y) = 0

and

(3.6.6c) it.(t,x,y) = tt (t,x,y) - 0
J at x=O,x=l J at y=O,y=l

ye]O,l[ xe]O,l[
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Taking into account the result in Sec.3.5, in this example, it

is easily seen that a(t ,a))=N(t,w) . Furthermore, it is a simple exer-

cise to show that the deterministic eigenfunction and eigenvalues are

respectively given by

(3.6.7) <f>

and

(3.6.8) A

.(x) = i/2sin(iirx)

1(t,to)
= -(iir)

2{a(t) +
g(t)N(t ,0))}

Noting the assumption that the multiplicity of eigenvalues is

limited to only one, we choose one eigenfunction in Eq.(3-6.7). The

following observation data y(t) and y(t)' can thus be obtained by

(3.6.9) y(t) =
M

and

(3.6.10) y(t) =
M

1
u(t,x)sinixdx

0

1
b(t)f°(t,x)simrxdx ,

0

respectively. From Eqs.( 3-6.9) and (3.6.10), the estimate of reali-

zations of the Markov chain coefficients N =a is performed by

l

(3-6.11) N = [y(t ) - y(t )
k At,,2g(t1,_1)y(tv_1) k"! k

+ At kU aCt^yU^) - y(t. ,)}] .

We set the four stages for the Markov chain process a(t,co) =

N(t,a>) as N =-2,-1,1 and 2 and the transition matrix §=£q..] is

assumed to be

(3.6.12) Q =

-it
1
2
1

1

-3
1
1

2
1
5
2

1
1
2
4
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Pig. 3.6.2 A sample run of the system state u(t,x)
without control

Simulation experiments follow the following steps:

Step 1: Equation (3-6.6a) is simulated on a digital computer and

solved together with Eqs.(3-6.6b) and (3.6.6c).

Step 2: By using Eqs.(3.6.9) and (3.6.11), the observation data

sequences y(t ) and y(t ) are respectively generated and these are

used for computing N by Eq.(3.6.11). The estimate of realizations

of the Markov chain coefficient is performed by using the values of

N at time t, . Based on the estimate for N., one of the control gain

"iT.(t,x,y) (j= l,2,≪≪',m) is selected and the suboptimal control sig-

nal f°(t) is generated by Eq.(3.6.5). The state variable u(t,x) is

simultaneously obtained by solving Eq.(3.6.1a) with Eqs. (3.6.1b) and

(3.6.1c) and f°(t).

Throughout the simulation experiments, parameter values were set

as a(t)=3, g(t)=l and b(t)=5. The partitioned time interval and spa-
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Fig. 3.6.3 A sample run of the system state u(t,x)
with suboptimal control

tial variables were taken to be At = 0.0001 and Ax= 0.05 respectively.

Among them, Pig. 3.6.2 shows a representative of system state runs

u(t,x) without control and,in Fig. 3-6.3, the u(t,x)-run derived by

the suboptimal control is plotted. In this experiment, the true value

of N(t,io) is exactly same as N .

3.7- Discussions and Summary

In this chapter, the optimal control problem for the distributed

parameter systems with Markov chain coefficients has been studied for

two types of observed information., i.e., F!_={u(s,x), a(s,x,w), t <

s<t } and F ={u(s,x), tn<s<t}.

The estimate for the true value of Markov chain coefficients

introduced in Sec. 3-5 represents only one procedure for generating

the suboptimal control signal associated. Although this technique is
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in fact, feasible to realize our final goal in the version of subopti--

mal control, its usefulness for particular applications must be com-

pared with alternatives that may be considered by other observation

mechanism.

The method presented here is directly applicable with a slight

modification to solve the problem of assuming a linear relation

between the stochastic system coefficients and the stochastic eigen-

value .
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CHAPTER 4. THE OPTIMAL BOUNDARY CONTROL FOR DISTRIBUTED

PARAMETER SYSTEMS WITH MARKOV CHAIN COEFFICIENTS

It is well-known that, in the optimal control problem for

distributed parameter systems, it is a more practical and applicable

situation that control inputs are applied at the boundary of the

spatial reagion than distributed control inputs stated in Chap.3.

In this chapter, we study the optimal boundary control problem for

distributed parameter systems with Markov chain coefficients. As

mentioned in the previous chapter 3, if a realization of Markov chair

coefficients is not precisely known, we must adopt the suboptimal

control version with an estimation mechanism for the true value of

stochastic coefficients. Then, in this chapter, the stochastic

eigenvalue problem is introduced in advance.

In Sec.4.2, the mathematical model of the system with boundary

control signals Is re-formulated with the aid of the stochastic

eigenvalue problem. By using the Green's formula, the differential

rule stated in Sec.3.3 of Chap.3 is extended to the case of the sys-

tem with boundary inputs, and the infulence of boundary inputs to

the interior domain of the system state is investigated in Sec.4.3.

Section 4.4 is devoted to derive the optimal and suboptimal bounda-

ry control with the estimation scheme of the true value of Markov

chain coefficients.

4.2. Model Formulation and Stochastic Eigenvalue Problem

Consider a dynamical system described by



(4.2.1a)

3u(t ,.x)

3t

105 -

M
+ A (t,x,u)jD )u(t,x) = 0 , for (t,x) e TxG

with the initial condition

(4.2.1b) u(tQ,x) = uo(x) , for x e G

and the boundary conditions

(4.2.1c) Bj(t;Dx)u(t,x) = g.(t,x) , for (t,x)e Tx3G and j =l,2,･･･,n

In this chapter, for the purpose of better understanding of the prob-
(1) M

lem, we assume that G is a open domain of R and the operators A (
n

t,x,a>;Dx) and {Bj(t;Dx)}._ are self-adjoint, i.e.,

M A " M 2p
(4.2.2) A (t,x,a);D ) = I a2 (t,a>)D

x p=0 dV x

and

(4.2.3) 8J(t; V
A

^ 2h
A
= I b< 2h(t)DY

>
for x G and j=l,2,≪≪≪,n

h=0
x

M
where a2c)(t,w) (p= 0,1,2,･'･,n) are Markov chain processes as defined

in Sec.3.2 in the previous chapter, and the deterministic operator

{8 .}._? is assumed to be a Dirichlet system of order n on 3G. As
J J -L

we assume the boundary controls g.(t,x) (j =l,2,･･･,]!) satisfy Condi-
J

tion-2.3.3 in Sec.2.3 of Chap.2, from the results of Definition-2.3.2

in Sec.2.3 of Chap.2, we define the solution process u to Eq.(4.2.1)

2 2
as the unique element in L (Q;L (T;H)) such that

(4.2.4a)z2 |
i;

f(u(t), [ - || + AM*(t,u>H])dt = (uQ, *(tQ)) +

0

+ .Ij!f(gj(t)' *J(t'u)*)L2(≫Q)dt

for any <M<H YeH2n(G) and B?(tH=0 on 9G for j =l,2, ･･･ ,n},＼|≫eC(T;H)
J

and ^(t_)=0 and where
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n i+j-1 M * 2k-1
(4.2.4b) *"(t,u>) = I I a2i(t>u)a(2i-2k),jDx

J i=jk=l
2k n *

and where **{2i-2k) ,3 satlsfles Dx =i =la2n, iBi(t'Dx

In order to examine the relation between the boundary control

signal and the system state u(t), we introduce the stochastic eigen-

value problem. From the results of Sec.3.5 of Chap.3, we need the

following assumptions;

(A-4.2.1): The Hilbert space H
n

is separable.Then, the orthonormal

basis of H may be made up with elements of H . We denote these by

(A-4.2.2): There exists a sequence {＼±{t,uu),<|>; i= 1,2,≪≪≪}of

stochastic eigenvalues and deterministic eigenvectors such that, for

any regular function ty,

M*
(4.2.5a) (A (t.oO^.iiO = (xf(t,u)<j>1,i≫≫)H

and

(4.2.5b) (C At)*.,*) 2 = 0

where, in this chapter, from Eq.(4.2.3) it is easily found that {B,}

={C.} for j= 1,2,≪≪≪,n.

(A-4.2.3): The relation between stochastic eigenvalues {X. (t,ui)} ._,
M l J i

and Markov chain coefficients in A (t.w) is linear. Thus

(4.2.6) X1(t,u) = X±(t) + yi'(t)N(tJu))J

where X.(t) is a scalar deterministic function, y.(t) is a r-dimen-

sional vector (r<2n) and N(tj(o) corresponds to the Markov chain co-

M r＼
efficients a~(t,u>)(p=0,l, ･･･ ,n). X.(t,uj) satisfies Assumption

(A-3.5.2*) in Sec.3.5 of Chap.3.

n+l-l, 1-1,2,'･･} of stochastic eigenvalues for same <bA defined by



Eq.(1.2.5) such that.

(4.2.7) (gj(t,x),
n
I

i =

i +l-l

I k

I

where S.
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4(t'u)o(2i-2*USfc(Dx)^(x))L2(8Q)

n +l-Z.
= 1 A° . fe(t,u))g7 . fe(t) ,

(Dx) = D ~ and a^ ･ 2fe) Z ls a deterministic function

which satisfies

n
I

1=
a*2n,l*l (t;Dx)

(A-4.2.5): The stochastic eigenvalue A.1?. ,

(4.2.9) A

(t,u)) can be rewritten as

L',*(t'u)
"

*L,*(t) +
≫£j,*(t)N(t'w> '

where X7 . j,(t) is a scalar deterministic function, and p7 . ,(t) is

a r-dimensional vector function.

Before constructing the weak solution of the system equation (4

2.k), we need the following lemma.

[Lemma-4.2.1]: For any ucC2n(G) and ve{ £; £eC2n(G) B.(t;D )C=0,

for ,i= 1,2, ･･･,!! }, we have

M
(4.2.10) (A (t

M*
,uj)u,v) = (u,A

I (Bj(t;

1=1 "

^ 2k-1
where St,(Dy) = D

(t,(D)v)
n

n i+l-l
M * ^

D )u, I I a1?.(t,u)af2i_2k) ,Sfc(D )v) 2
x i=Z k=l 2t U l >' L^(3G)

f It is evident from Eqs.(4.2.6) and (4.2.7) that X^j.^(t,aj)

satisfies Eq.(4.2.9)･
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Proof: Integrating by parts, we have

(4.2.11) (AM(t,a))u,v) = (u,AM* (t,oi)v)

+ I a^Ct.o)) I (-1)" (D u,D v) 2
i=l ^ fe=i x x L (3G).

■＼,
On the other hand, from the definition of the operator Sj,(D ), it

is easy to find that {8

S (D
n x

1
(t;Dx)>52(tjDx),...|Bn(tjDjl(Dx)1...,

)} is a Dirichlet system. Then.

(4.2.12) D
x

and

2k+l
(4.2.13) D

x

m
1

1=
≪J*,zVt;V

･X.

(Dx

for 0<k^n-l, we have

The second term of the right hand side of Eq.(4.2.11) becomes

n m 2i k-1 2i-k k-1
(4.2.14) I ay.(t,(o) I (-1) (D u.D v) 2

i-1 2v k=l x x LOG)

" M i 2k-l 2i-2k 2k-±
= I a2i(t,o))[ I (-1) (D u,D v) p

*=1 k=l x x L (3G)

i
VI (-1)

1
(D

2k'-2 2i-2k'+l 2k'-2

X
u,D

Noting that v is an element of { E,; £eC (G), B

2.*≪≪.n on 8G}, we have

(4.2.15)
n

X
(-1)

J(t'

v) 2 J.
L (3G)

D )5=0 for j=l,

2k'-2
u,D v)

2 = 0.

Then,from Eqs.(4.2.12) and (4.2.13), Eq.(4.2.14) becomes



(4.2.16) I aj.
i

(t,u>) I

n

= I

i=

(-1)

1

■"*<*

2k-l
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, 2i-2k 2k-1
(D u,D v) _

x x
l/(9G)

,<･>)I (-1)
k=l

2k-l i-k+1
{tl

1a(2i-2k)JlBl(t>＼)≫>

Sfc(D )v) 2
* x LOG)

n n+l-l n
M

l=lk=l
x

i=k+l-l [&i.-iK.)ti>

(r> )v) 2

X L (3G)

The proof has been completed.

[Theorem-4.2.1]: From the Assumptions (A-4.2.1) to (A-4.2.5), and

Lemma-4.2.1, the weak solution of Eq.(4.2.4) becomes

CO
(4.2.17) u(t) = I

i=
h1(tJu)(j)1 ,

where the Fourier coefficients {h.(t,x)> satisfy

(4.2.18)

dhi (t ,oj) ^d
+ A1(t)h1

dt

+
d1

[h (t,uj)u1

(t.u) -

(t) -

n

I

n
I

n+l-Z^

Z=lk=l

n+l-Z

Z=lk=l

H.i.^H,!,*

≪zJi.k(t)ii?;i,k(t)3N(t'u) ■ °

h^tQ.u) = (u(to),<fr±)

Proof: The variational form of Eq.(4.2.4) is

du(t) M
(4.2.19) ( ,4>±) + (A (t,u)u(t),(|≫1)H= 0.
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By using the Green's formula [L5] and Lemma-4.2.1, Eq.(4.2.19)

becomes

(4.2.20) (

(4.2.21) (

du(t) M*

≫*1}H
+ (u(t)'A (t≫u)*i)H

n l+l-l M
^S^t^uCt^J^ a2.(t)U)a(2Wk))J

xl(DH.) 2 = 0
* x i l^OQ)

00 j
cj>.,4).) + ( I h (t,to)<|> ^(tjUiH )
1 J H i=l i ! d J H

(t,u)h.

J

n n+l-l >,

(t,u) - I I ＼1 . , (t,u)g. (t)= 0.

dt

n

Prom the Assumptions (A-4.2.1) and (A-4.2.2), we have

CD
1

n
- I

1=

dh^Ct,u)

1 dt

n l+l-l M ■tj

(g7(t,x), I I a21(t,u0a* ,
t

S (D )4 )
2/

= °
1 l i=Zk=l dl ut ^'^ k x J L(3G)

By using the orthogonality of eigenvector, and the assumption

(A-4.2.4), h.(t,u) satisfies,

dh.,(t,u>)
(4.2.22) J

dt

≫;

Then, from the assumptions (A-4.2.3) and (A-4.2.5), it is easily

found that Eq.(4.2.21) can be rewritten as Eq.(4.2.18). The proof

has been completed.

In this section^ with the aid of stochastic eigenvalue problem,

we assume N(t,a>) is a set of Markov chain coefficients defined

by Eq.(4.2.6) and has the same transition probability low as stated

in Sec.3.2 of Chap.3.
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Define the quadratic functional V(t,usN) by

(4.3.D 7(t,u,N) = (u(t),P(t,N)u(t))
H

where P(t,N) is a bounded operater from H to H, w.p.l. For conven-

ience of the present description, for any iJieH,the following partial

differential operators are assumed to be constructed;

M* ^d
(4.3.2) (A (t)*.,*) = (X-CtH.iJj)

J H J J H

(4.3.3) (G*(t)≪|) ,*)H= (yj
'
Ct)N±4>j≫*)H

^* n+l-K
(4.3.4) (B7(t)<|>.,i|/) ? = ( I Xy

1 J
L2(8G) k=l

^

and

(1.3.5) (H

' (t)S (D U *)
,j}k K x j L (9G)

n+l-l , '＼,
,*(t)<|>,,i|O 2 = ( I V? , kN±Sk(D )* ,*)
1 J L2(3G) k=l *,j,K i K x j l^OG)

where N denotes the i-th stage of the Markov chain N(t,u).

[Theorem-4.3.1]: With the conditions of Definition-2.3-2 in Sec.2.3

of Chap.2, the following limit exists and this is given by

(4.3.6) lim
6+0

E{y(t + S,u,N) |u(t)=u, N(t,aj)=N } - 7(t,u,N

= (u,{

- (

pi (t)

[AM* t)

[AM*

*
+ G.

1

(t)

(t)

6

+ G

]P

+ I {(E{g(t,x)|u(t)=
1=1

xp ,(t)u) 2
1 LOG)

i

u

i

*(t)]*i

* m
(t)) + I

k=

,N(t,u))=N.

t)

qii(
1 ^

)

t)Pk(t)}.u)H

'w i
},[8 (t) - H

+ ([B*(t) - Hj*(t)]P±(t),

E{g(t,x)|u(t)=u,N(t,u))=Ni>) 2
L

}
(3G
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where P＼(t) is defined by

(4.3.7) P±(t) = E{P(t,N)|N(t,u)=N1} .

Remark-4.3.1: Without using the stochastic eigenvalue problem, the

differential rule for quadratic functional can be reduced for the

general form of system dynamics with boundary inputs. Detailed

discussions will be stated in Chap.7.

Remark-4. 3.2; In spite of the fact that the considered boundary

operators are deterministic, the influence of the boundary controls

to the interior domain of the system state is perturbed by the Markov

chain coefficients. Prom this fact, the term H^*(t) appears in Eq

(4.3.6) .

Proof: From Eq.(4.2.17), Eq.(4.3.1) can be rewritten as

(4.3.8) 7(t,u.N) =

where p. .

I I

(t,N) is defined

h1(t,a))p1J(ttN)h (t.u),

by

(4.3.9) P (t,N) = (1,P(t,N)*J) .

By using the same procedure as in Sec.3.3 of Chap.3 and noting that

the hi(t,w)-process satisfies Eq.(4.2.18), we have

(4.3.10) E{7(t+6,u,N) |u(t)=u,N(t,(o)=N1} - 7(t,u,N )

_ dP(t,N) _ ≪ co oo ^d
= (u,E{ |N(t,u)=N1}u) 6 + ( Ih. ,1 I {-[A.(t)

dt H il=1 it ±. J=lkSi J

+ y N1]E{p

<v,d
x[A,(t) + y

]E{pJk(t,N)|N(tJ(o)=N1> - E{p
k(t,N)|N(t,a))=Ni}

;-, ]}*
00

i k j, =1VV}hV



n

+ I

n+l-Z

Z=lk

oo
I

00

113 -

( J_ E{gZji,
jk(t)|u(t)=u,

N(t,o))=N1}(|)1,,

I tf?
1 k,(t)

-
j =lk=l

oo oo

I I

j =lk=i

b'

00

j,k- (t)N }E{p1J(t,N)|N(t,aj)=N1}

n n+l-l °° _

n Z=lk'=l i'=l x x

E{p1J(t,N)|N(t>U)-N1}[):b
k,(t)

- ^;k5k,(t)N.j

00

E{g^j,jk,(t) |u(t)=u, N(t,u)=N1}≪(≫jl)H)H6

+ o(6) ,

CO
where £ h±<$,±= (u,*^ .

From Eq.(3.3-7) in Sec.3.3 of Chap.3 and Eq.(4.2.7), we have

(^3.11) E{

and

(4.3.12)

dP(t,N)

dt

n+l-Z
I

k'=l

N(t,u)=N. } =
dP1(t)

dt

i

m

k=l * 1K

CO
= (E{gj(t,x)|u(t)=U, N(t,u)=N1}, I (B*(t) - H^*(t))<)>k

±C―X

CO
x I E{p (t5N)|N(t,u))=N, }(*,,u)H) ?
j =l JK l J tl l^Oq)

= (E{gl(t,x)|u(t)=u,N(t,a))=Ni},[Bj - H^*(t)]^1(t)u) 2

1j
OG)*
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With the results of Eqs. (4.3.11) and (4.3.12) and the relations be-

tween operators and eigenvalue defined by Eqs.(4.3.2), (4.3.3), (4.2

4) and (4.3-5), it follows that

(4.3-13) E{V(t+6,u,N)|u(t)=u, N(t,o))=N±} - 7(t,u,N1)

= (u,[-4t [£M*(t) + G*(t)]P＼(t)
dt i i

- ([F*(t) + G*(t)]P*(t))* +
|

qik(t)＼(t)]u)H6

m _
i,* i *+ I {(E{g(t,x)|u(t)=u, N(t,a))=Ni},[Bl(t) - H^ (t)l

x?.(t)u) p
1 L OG)

+ (CB*(t) - H^*(t)?i(t)u,

E{g(t,x)|u(t)=uJN(t,u)=N1})

The proof has been completed.

L2OG)
}6 + 0(6)

4.4.1. Optimal Boundary Control

We define the following admissble control class W , by

(4.4.1) W^d = {gj; g.e L2(T;%), gj(t) is

time t for j= l,2,≪≪≪,n} ,

n measurable at the present

where ft-space is defined by Eq.(2.3.5) in Sec.2.3 of Chap.2, and F

is the a-algebra generated by the random variables u(s) and NCo.u) for

fco<s<t.

Consider the quadratic cost functional

(4.4.2) L(t,u,g) = (M(t)u(t),u(t))H +
n

I (Q7(t)g7(t),g7(t)) _
1=1 L L L L^(3G)≫
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where M(t) and ^QiC^)} *-. are bounded semipositive and positive self

adjoint operators, respectively. The problem is to find the feed-

back optimal boundary controls (g^Ct)},1? in such a way that the func-

+-.-inr＼a1

(4.4.3) J(g(t)) = E{( L(t,u,g) dt|u(tQ)=u0> N(to,a))=No }

tO

becomes minimal with respect to {g,(t)}7 !? e W , .
t- t-―_L a.ci

In this case, by using the same approach as stated in Sec.3.^ of

Chap.3, and the result of Theorem-4.3.1, the following basic equation

of optimal boundary control is derived:

_ _ n _ *.
(4.4.4) min t(M(t)u,u)H + £ (Q7(t)g (t),g (t)) p + (u,[n (t)

geW|d
H

1=1
l l l

L2OG) X

+

[£M*(t) + G*(t)]n (t) - ([XM*(t) + G*(t)]ni(t))*

m
I

k=l

q,. (t)II. (t)]u)H + I (g7,[%!(t) - H^*(t)]n (t)u) 2
ik k H l=1 I I I I l/(9G)

n
+ I

1=1

<[≫; (t) - H- (t)]n

With vector notation, Eq.(4.4.4) becomes

(4.4.5) min

S Wad

] = o

(3G)

[(u,[n.(t) - lln*(t) + G*(t)]n.(t) - (tfM*(t) + Gj(t)]

n.Ct) > *
m

/＼
+ Y q (t)n, (t)]u)H + (M(t)u,u)

+ (g'(t),§f(t)g(t)) 2 + (g'(t)5^*(t)il1(t)u) 2

+ ((S*nJ(t))V(t),u)HJ = o

OG)



where &(t) and £(t

(4.4.6) $(t) =

(4.4.7) £*(t)

and
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) are the following n-dimensional vector operators

Ql
0

_6

(t) 0

Q2 (t)

6 o q

0

0

n
(t)_

[$*(t) - H**(t),&
*

2
(t) - 4*(t),..-,^(t) - Hj*(t)T

(4.4.8) g(t) = [g1(t),g2(t),---,gn(t)]'

and where II.(t) denotes the operator,

(4.it.9) n°At) =
f ^,(t,x,y)(.)dy,

for xeG and ye8G .
1 j 3Q 1 ^ jr

y

The optimal boundary control g°(t) is given by

(4.it.10) g°(t) = -^"1(t)?J*(t)ni(t)u , for N(t,a))=N1

where for i= 1,2,･･･,m, n.(t) satisfies

(4.4.11a) n (t) - [XM*(t) + G*(t)]n.(t) - ([F*(t) + G?(t)]II.(t))*

+ M(t) + I qlk(t)nk(t) - (^ (t)n±(t)) Q"1(t)?J*(t)nJ(t) = o

1C~~-L
with the terminal condition,

(4.4.11b) IL (t f) - o

4.4.2. Observation of Markov Chain Coefficients and Suboptimal Control

As shown in the previous section in Sec.3-5 of Chap.3, for the

purpose of generating the optimal boundary control g (t) given by Eqs.

(4.4.10) and (4.4.11), it is required to obtain a realization N± of

the N(t,o)) process. By using the same procedure as in the Sec. 3-5

of Chap.3 and the result of Theorem-4.2.1, we can construct the ob-

servation mechanism of Markov chain coefficients.

By using the same approach of Sec.3.5 of Cha.3≫ we select
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the deterministic eigcnfunctions <|> ,
J

such a way that rxr matrices

(4.4.12) 7^ =
0

0

(t) 0

xd.-(t)
j+m

0 A

(4.4.13) X? v =

d
i

0

*

0

k
(t) 0

Ms

'(t),yd:

I ,j+m,k

<j> ^,<i) -vj, ･ ･ ･ and <j)

0

0

j+2m

t)

(t)

0

^ in
j+(r-l)m

■ ･

･
^h

°

0 A, . . _.-＼,, (t)
Z,j+(r-l)m,k

(4.4.15) y* v = Cm,'. ,(t),y^ % (t),-..^' * (t)]'
i,K J>J>k Z*j+m,k £,j+(r-l;m,k

become positive definite} where m denotes the multiplicity of

eigenvalues. Prom the given information u(t,x) and g°(t,x), the

observation data are acquired in the form,

(4.4.16) y(t) = [y (t) ,y <＼,(t),･･･ ,y . ^(t)J'
j J+m j+(r-l)m

and

(4.4.17) z7 (t) = [z . (t),z ^ (t),-..jZ .o (t)]'
l>^ 1,3 ,k Zsj+m3k £.j+(r-l)m,k

where

(4.4.18) y

and

%(t) = u(t,x)<j> %(x)dx , for k= 0,1,2,･･･,r-l
j+km j+km

) b
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(^･^ zZ,j+^,k(t) =
IGSI(t)X)S%(DxHjHfe(x)dX

'f°r
*=°>1>'->r-1

From Eq.(4.2.21) in Sec.4.2, it is easy to show that the y(t)-process

is a solution to the r-dimensional vector ordinary differential equa-

tion,

(4.4.20)

where

(4.4.21)

and

(4.4.22)

dy(t) n n+l-l .

+ CXdy(t) - I [ A* £t
kj

dt l=lk=l
L>K U'K

, n n+l-l
+ [y(t)yd - I I z

Z=lk=l

0

y(t) = ;

o

(t) 0

Z7

0

0

-b
1,^1

0

･

k]N(t,a>)
= 0 ,

t)

0

･

t)

yJ+fo(t)

° V(r-l)5h(

0
j ,k

(t)

7 "^
Z,j+m,k

(t)

0
U ZZJ +(r-l)m,k(

Consequently, from Eq.(4.4.20) , it follows that

, n n+l-Z. , .
(4.4.23) N(t,a>) = [y(t)pd -II z7 .vh7 . T1

^=lk=l tjK tjl<;

x{ _ MAI _ cXdy(t) _ x j xb * }
at z=ik=l

' ij

Let the time interval It
0,t [ be discretized by to<ti<t2<"''<tk<
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･ ･<t = t~, where the time interval At,=t. -t, , is assumed to be suffi
n I K K K ―_L

Atk

Equation (4.4.23) is approximately computed from Eq.(4.4.24) as

(4.4.25) Cy(tk_1)ild(t ) -
n
I

1=

n+l-l
J

=1
^)k(Vi^)k(Vi)]

x{[ - y(tk) + y(tk_x)]/Atk - CAd(tk_1)y(t )

By computing N(tk) at time tk+, the following decision is made;

(4.4.26) N(t,(o) = N± ,

if |N(tk) - Nj2 = min{|N(tk) - N1|2,|N(tk) - N.,|2, ･･･

|N(tk) - Nj2}

where |･| denotes the Euclidean norm.

Prom the decision mechanism defined by Eq.(4.4.26), we can con-

struct the suboptimal control proposed in Sec.3-5 of Chap.3.

4.5. Discussions and Summary

In this chapter^ the suboptimal boundary control problem has

been studied with the aid of the stochastic eigenvalue problem. The

estimation procedure for Markov chain coefficients is the same as

those defined by Sec.3.5 of Chap.3. However, since the randomness

of Markov chain coefficients strongly affects the boundary control

signal, the estimation mechanism given by Eqs.(4.4.25) and (4.4.26)

t At the initial time t=tn, we assume that tine information ;J(tn,cj)
is given. u u
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becomes complexed.

Without using the stochastic eigenvalue problem, the stochastic

differential rule and the optimal boundary control can be derived from

the well-known Green's formula. The general form of optimal boundary

control for the stochastic partial differential equation with white

Gaussian noise coefficients will be presented in Chap.7.
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CHAPTER 5. THE OPTIMAL CONTROL FOR DISTRIBUTED PARAMETER

SYSTEMS GOVERNED BY PARABOLIC EQUATIONS WITH WHITE

GAUSSIAN NOISE COEFFICIENTS

In Chaps. 3 and 4, we identify the stochastic charactor of random

coefficients with Markov chain process with finite stages. The

Markov chain assumption is easily applicable to various kinds of

physical systems with random coefficients without considering the

precise modeling of random coefficients. On the other hand, the state

variable of the system dynamics with Markov chain coefficients is

out of the framework of the theory of Markov process. From this

fact, we must construct the estimation mechanism of Markov chain

processes .

Based on the fact that there are also many physical examples

whose uncertainties of random coefficients can be well modeled by the

white Gaussian noise, in this chapter,the mathematical model of the

system considered is given in a form of partial differential equation

of parabolic type whose differential operator contains the white

Gaussian noise.

In Section 5.2, the formulation of the system model considered

here is reviewed within the framework of the functional analysis.

In Section 5.3, a differential rule in Hilbert space is derived which

plays an important role to determine the optimal control. The optimal

control low is derived within the framework of dynamic programming

under the criterion that a quadratic cost functional becomes minimal

in Sec. 5.4. Section 5 is devoted to show two examples for the purpose
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of interpreting the general theory.

We shall consider a dynamical system described by

(5.2.1a)

3u(t,x)

at
+ :ad (t,x;D ) + A

with the initial condition,

(5.2.1b) u(tQ,x) = uQ(x), for xeG

and the boundary conditions,

(5.2.1c) B (t,x;D

(t,x,w;D )]u(t,x) = B(t,x)f(t,x)

for (t,x) e TxG

)u(t,x) = 0 , for (tsx)eTxaG, and 3=1,2,---,-
D s

where we assume the operators A (t,x;D ), A

2

and B(t,x) satisfy the conditions described in Definition-2.3.4 in

Sec.2.3 of Chap.2.

From the Definition-2.2.2 in Sec.2 of Chap.2, the stochastic

integral is constructed by the partial differential operator with

white Gaussian coefficients A

can be represented by

(5.2.2) E3 | u(t) + /t A°

(t,x,a);D ). Then, for teT, Eq.(5.2.1)
X

t

(s)u(s)ds + /, dA
s

= uo

s,u))[u(s) J

+ / B(s)f(s)ds
0

in the spaces V, H and V.(For detail, see Chap.2.)

In Eq. (5.2.2), the control signal is an element of the admissible

control class W ,
ad

Admissible Control Class: We denote the admissible control class W ,
ad

if all elements of W satisfy

i) f(t) is F,-measurable for all teT, where F^ is a a-algebra gen-
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erated by {u(s)} ,i.e.,

(5.2.3) Ft = a{ u(s) ; tQ<s<t} .

ii) feL2(n,P;L2(T;U)), where U is a convex subset of H.

In this chapter, the quadratic cost is given by

(5.2.4) L(t,u,f) = (u(t),M(t)u(t)) + (f(t),N(t)f(t))R

where M(t) and N(t) are bounded semipositive and positive definite

and self adjoint operators, respectively- The problem is to find

the optimal feedback control in such a way that

(5.2.5) J(f) = E{

tf

L(t,u,f)dt|u(t0)=uo}

becomes minimal with respect to feW ,.

5･ 3- Differential Rule for Quadratic Functional

Define the quadratic functional F(t,u) by

(5.3.1) 7(t,u) = (u(t),P(t)u(t)) ,

where P(t) is a deterministic symmetric bounded operator.

[Theorem-5.3.1]: With the conditions of Definition-2.3.3 in Sec.2.3

of Chap.2, we have

(5.3.2) F(t,u) - 7(t0Ju0) =

+ AS*

(t

+ 2
Jt

(s)P(s)AS s

tf

<u(s),[P(s) - AD*(s)P(s) - P(s)AD(s)
fcO

ftf

)Ju(s)>ds + 2l (B(s)f(s),P(s)u(s)) ds
)t0 H

(dAs(s,a))[u(s)],P(s)u(s))H

0



Proof: Let Vm

(5.3.3) V(t)

where e.

[ex

a ?
i≫l

>e2 3 *
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,e ] and A (t) be defined by

<AD(t)('),e1>e±,

is an orthonormal basis of H

Furthermore, define

s A
(5.3.4) dAm(t,u0 =

and

(5.3.5) uOm=

in
I

i=

m
I

1=

(dAS(t,u>)(-),e ) e

-i -1-n ->-

^O^iVi

We can approximate the stochastic equation (5.2.2) by

(5.3.6) u (t) +

where

(5.3.7)

f

c

Jto

ft

^(S)Um(s)dS + |t dAj(BfU)Culn(B)]

(B(s)f(s)) ds =
m

= u + (B(s)f(s)) ds
Om J. m

150

t m

I

tQi=

(B(s)f(s),e1) e±ds

By using the solution process u (t) of Eq.(5.3.6), we approximate

the quadratic functional by

(5.3.8) y(t,u(t)) = (u (t),P(t)u_(t)) .

Noting that Eq.(5.3.6) is an ordinary differential equation of Ito-

type [II] and applying the Ito-stochastic differential rule, we have

(5.3.9) y(t,um(t)) - mo,uOm) =

t

{(u (s),P(s)u (s))

t m m H
0



+

2<AD(
in

2( (B
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s)um(s),P(s)um(s)> + (um(s)3?*(s)P(s)?(s)urn(S))H

s)f(s)) m,P(s)um(s))H}ds

+ 2C (<(^-)[um(s)J5P(s)uni(s))H

Prom the results of Appendix-A, passing to the limit, it follows

that

(5.3.10) 7(t,u) - F(to,uQ) =

+ A8*

u(s),[P(s)

(s)P(s)As(s)Ju(s)>ds + 2

+ 2

i:

AD*(s)P(s) - P(s)AD(s)

(B(s)f(s),P(s)u(s))Hds

n

fco

(dAs(sjU)[u(s)J,P(s)u(s))H
n

The proof has been completed.

5.4. Derivation of Optimal Control

The optimal control problem is solved by using the method of

dynamic programming.

For Eq.(5.2.5). define a minimal cost functional.

(5.^.1) F(t,u) = min E{
feW

ad

i:
fL(s,u,f)ds I u(t)=u }

Bearing in mind the feedback optimal control, the minimal cost

functional V(t,u) is defined,

(5-1.2) 7(t,u) = (u,n(t)u)H .

Applying the principle of optimality to the cost functional and using

Theorem-5.3.1, the following basic equation is derived,

The justification of Eq.(5.4.2 ) will be demonstrated in Chap.6 by using
the stochastic maximum principle.



*(t3y;Dy)AS*(t,x;Dx)Tr(t,x,y) +
m(t,x,y) = 0
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(5.4.3) min {(u,M(t)u)H + (f(t),N(t)f(t))R +<u,[n(t) - A

ad

D*
(t)n(t)

n(t)AD(t) + As*(t)n(t)As(t)]u > + (B(t)f(t),n(t)u)H

+ (u,n(t)B(t)f(t))H> = o .

Minimization in the left-hand side of Eq.(5.4.3) with respect to f

gives the optimal control

(5-4.4) f°(t) = - N"1(t)B*(t)n(t)u ,

where TI(t) satisfies the following operator Riccati equation,

(5.4.5a) n(t) - A
D*

(t)n(t) - n(t)AD(t) + As*(t)n(t)As(t)

+ M(t) - n(t)B(t)N~1(t)B*(t)n(t) = o

with the terminal condition,

(5.4.5b) n(tf) = 0 .

For the purpose of application to the practical control problem,

the control signal and the associated gain operator equation are re-

written in the original form.

In Eq.(5-4.4), assuming that N(t)= cl, where c is a constant and

I an identity mapping, tne version of f°(t,x) yields

(5.4.6) f°(t,x) = - -B (t5x)/Grr(tJx)y)u(t3y)dy

where ir(t,x,y) is a kernel of the operator n(t), which satisfies for

(t,x,y)eTxG xG
A V)

(5.4.7a)
8ir(t,x,y)

3t

1

c

(AD* (t,x;D + A
D*

(t,y;D ))ir(t,x,y)

J
GTr(t,x3z)B(t,z)B*(t,z)iT(t,z,y)dzz

+ As
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with the terminal condition,

(5.4.7b) TT(tf,x,y) = 0, for (x,y)eGxxG

and the boundary conditions,

(5.4.7c) C.

(5.t.7cl) C

where {C.}
J

= ir(t,y,x)

(t,x

(t,y

;Dx)Tr(t,x,y) = 0 , for (t ,x,y) eTxSG^G and j=l,2,-≪,|

;Dy)ir(t,x,y) = 0 , for (1,x,y) eTxGxx3Gy and j =l,2,--,|

.J^ is an adjoint boundary system of {B.}1?^-. and 7r(t>x5y)

5.5･ Digital Simulation Studies and Illustrative Examples

In this section, first we shall consider the one dimensional

stochastic heat equation.

[Example-5･5･1J Consider the following system of parabolic type de

scribed by,

(5-5-la)
8u(t,x)

8t
+ a2(t)

8x2

,x)
+ a (t)n(t3u)

8u(t,x)

3x
= b(t)f(t,x)

for (t,x)eTxG=]0.1[

with the initial condition,

(5-5-lb) u(tQ,x) = uQ(x) , for xeG

and the boundary condition,

(5.5.1c) u(t,0) = u(t,l) = 0 ,

where n(t,tu) is a white Gaussian noise with zero mean and unit vari-

ance From the Coercivity condition-2.2.1 in Sec. 2.2 of Chap.2,

as V = Hn(G), the deterministic coefficients ao(t) and a-.(t)

are assumed to satisfy

(5-5.2) 2a2(t) + a^(t) < 0 ,for VteT .

where (･) denotes the closure of (･)



128 -

For instance, consider a particle which is being transferredin

a moving stream. If a particle is heavy, i.e., the ratio of its

density to that of the density of the fluid is much less than unity,

gravitational forces play an important role in its transport, and we

may consider a random field which is expressed by the term of

a,(t)n(t,w)―――*-^-. From the fact mentioned above, its randomness in
J- 3x

the coefficient of 3u(t?x) exhibits the force field.
3x

In this example, we can easily find

(5-5.3) AD(t) = a2(t

and

(5.5.4)

>■*

As(t) = a1(t)D^

The quadratic functional is preassigned by

(5.5.5) J(f) = E{
i; f f1 2 ?

J [u (t,x) + f (t,x)Jdxdt|u(to,x)=uo(x)}

0 0

By using the results of Sec.5-4, the optimal feedback control f°(t)

i s nhf.ainpH :

(5.5.6) f°(t,x) = -
f1

b(t)Tr(t,x,y)u(t,y)dy
0

where, from Eq.(5.4.7), the kernel Tr(t,x,y) is determined by

(5.5.7a)
3ir(t,x,y)

8t

32

a9(t)(―- +
3jc

2
^

―pMt,x,y) + a,(t) Tr(t,x,y)
9y 3x3y

p r1
+ 6(x-y) - t> (t) Tr(t

J0
,x,z)Tr(tJz,y)dy = 0 ,

for (tJxJy)eTx]OJl[x]o,l[

with the terminal condition,

(5.5.7b) Tr(tf,x,y) = 0 , for (x,y)e]0,l[x]0 ,1[
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(5-5- 7c) 7r(t,x5y) = 7r(t,x,y)
at x=0 or 1 at

ye]o.i[
y=0 or 1
xe]0,l[

= 0

[Example-5.5･2] We shall consider a somewhat artificial but impor-

tant class of the 4-th order system of parabolic type described by

(5.5.8a)
8u(t,x)

at
+ a4 (t) j- + (a-(t) + c(t)n(t5w))

3x4 2 8x2

= b(t)f(t,x) , for (t,x)eTxG=]0.1[ ,

with the initial condition,

(5.5.8b) u(tQ,x) = uQ(x) , for xeG

and the boundary conditions,

(5.5.8c) u(t,x) = 0 , for (t3x)eTx8G

OO.ocu ― = 0 , for (t,x) Tx8G
3x2

where n(t,w) is a white Gaussian noise process with zero mean and unit

variance, and a^Ct), a (t), c(t) and b(t) are scalar functions, respec-

tively. Furtnermore, from Coercivity condition-2.2,1 in Sec.2.2 of

1 2
Chap.2, setting V=H0(G)nH (G), it is assumed that

(5-5.9) 2aiJ(t) - c2 (t) > 0 and a2(t) < 0 , for

It follows that

(5-5.10) AD(t) = a4(t)DjJ + a2(t)D^

and

(5.5.11) AS(t) = e(t)U2

＼t,T .

In this example, the cost functional is given by Eq.(5.5-5).

Prom the results of Sec.5.H, the optimal control f°(t,x) is given by
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1
b(t)ir(t,x,y)u(t ,y)dy

0

where ir(t,x,y) satisfies

(5.5.13a)
8ir(t,x,y)

at a4(t)(

2

3
a
P(t)(―p

8x

+ 6(x-y) - b

―IT + ―ir)7r(t,x,y)

3x 9y

+ ―p)Tr(t,xJy) + c

8y

2<t)f
Jo

3 ir(t,x,y)
(t)―2―5

3x 3y

7r(t,x,z)Tr(t,z,y)dz = 0 ,

for (t,x,y)eTx]05l[x]0,l[

with the terminal condition

(5.5.13b) ir(tf,x,y) = 0 , for (x,y)e]0,l[x]0,l[

and the boundary conditions}

(5.5.13c) Tr(t5x,y) = Tr(t,x,y)
at x=0 or 1 at y=0 or 1

ye]0,l[ xe]0,l[

at

= 0

y=0 or 1

xe]0.1[

= 0

In this example, Eq.(5.5.8) was simulated on a digital computer

and the optimal control f°(t3x) was determined by Eq.(5-5.12) with

the solution to Eq.(5.5.13)- A wide variety of sample runs was simu-

lated. The results presented below are representative of simulation

experiments. In all experiments, the values of a., a? , c and b were

respectively set as a^O.OC^, a2 =-0.1, c=0.015 and b =0.5. The initial

condition (5.5.8b) was given by uf(x)=sin ttx. Throughout the experi-

ments, the partitioned time interval and spatial variable were taken
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0.1 t

Pig. 5.5.1 A sample run of the system state u(t,x)

without control

-n
as At=2.5x10 and Ax=0.05. respectively.

Figure 5-5.1 shows a representative of sample runs of the system

without control. A sample run of the system deriven by the optimal

control signal f (t,x) is shown in Fig.5.5.2.

5.6. Discussions ana Summary

In this chapter, the optimal control problem for distributed

parameter systems governed by Parabolic equation with white Gaussian

noise coefficients has been stidied. First, establishing the stochas--

tic differential rule in Hilbert spaces, the optimal feedback

control was derived by using the well-known dynamic programming

approach. Although, in illustrative examples, the simulated control



u

1.0

0.5

0

0.05

132 -

0.1 t

Pig. 5.5.2 A sample run of the system state u(t,x)

with optimal control.

signals are spatially distributed, the theory presented here may be

applicable to the case of point wise controlers,i.e., B(t)(-) =

f
6(x-a)(-)dx.

1(t
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CHAPTER 6. THE OPTIMAL CONTROL FOR DISTRIBUTED PARAMETER

SYSTEMS GOVERNED BY HYPERBOLIC EQUATION WITH WHITE

RATJSSTAN COKFFTCTRNTS

In the preceding chapters, the distributed parameter system has

been considered modeled by a general class of stochastic partial dif-

ferential equation of Parabolic type. However, in practice, we may

find that many physical systems can be described by a class of par-

tial differential equation of Hyperbolic type. For a wave travel-

ling in a random mediam and a vibration of prismatic bar with a ran-

domly vafying axial compressive force, the second derivative term

with respect to time variable must be taken into account the system

dynamics, which we briefly call the Hyperbolic system. In particular,

a stochastic Hyperbolic system is receiving considerable attention

in the field of the structure response analysis of building subjected

to the earthquake force. As mentioned in Chap.2, by invoking the

theory of stochastic evolution equation, the original Hyperbolic sys-

tem is represented by the two dimensional stochastic equation in

Hilbert space, and the method for deriving the optimal control pre-

sented in the previous chapters is directly extended to Hyperbolic

case.

In Sec.6.2, the mathematical model of Hyperbolic system is

given and the associated differential rule is also derived. By

using the stochastic maximum principle and the decoupling theory,

the optimal feedback control is derived under the quadratic cost

functional in Sec.6.3. Section 6.4 is devoted to show the possibili-
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ty of finding the optimal control under noisy observations

6.2. Review of Mathematical Model and Stochastic Differential Rule

Let the state variable v(t,x) of a stochastic distributed pa-

rameter system satisfy

(6.2.1a) 8 v(t>x) + [AD(t,x;D) + As(t,x,u;Dv)]v(t,x) = B(t,x)f(t,x)
9t2 X X

for (t,x)eTxG

with the initial conditions>

(6.2.1b) v(tQ, x) = vQ(x) , for xeG

(6.2.1c) v(tQ,x) = vQ(x) , for xeG

and the boundary conditions*

(6.2.Id) B.

where B.

(t,x;Dx)v(t,x) = 0 , for (t,x)£Tx8G and j=l,2,---,|

(t,x;Dv) (j =l,2, ･ ･ ,7jO are deterministic boundary operators.

AD(t,x;D ) is the deterministic partial differential operator which

satisfies Coercivity condition-2.2.2, and As(t,s,io;D ) is the partial

differential operator with white Gaussian coefficients whose variance

operator satisfies Coercivity condition-2.2.3-

From Theorem-2.2.2, Eq.(6.2.1) can be rewritten as the two dimen-

sional stochastic evolution eauation.

(6.2.2) Z? z(t) + 2fD(s)z(s)ds + dAs(s,u))[z(s) ]
Jto ＼

= zQ +
I S(s)f(s)ds

,

tO



where z(t)=[v(t),v(t)]',

0 -I

(6.2.3) AD(t) = _
Au(t) 0
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(6.2.4) dAs(s,u))[z(s)] = [ o , dAS(s,w)[v(s)] ]

and

(6.2.5)

t t

B(s)f(s)ds = [ 0 ,
(

B(s)f(s)ds 1'

*0
H0

Noting that the system E_ contains the stochastic integral term

given by Eq.(6.2.4), the stochastic differential rule for the quad-

ratic functional can be easily derived.

[Theorem-6.2.1]: Define

(6.2.6) T/(t,z) = [ z(t), Q(t)z(t)JH

where Q(t) is a 2x2 dimensional deterministic bounded self-adjoint

operator, and [ifi, Q( t)ippJH denotes

(6.2.7) [$,, Q(t)$2JH = (i|≫J,Q11(t)^)E + (^, Q22(t)l|'2)H

+ <Tl>
],

Q (t)^> + <^2 Q (t)lJjl

for iL =[>:[, >J^]' and I2=[*2≫ ^

With the conditions of Definition-2.3.7, we have

(6.2.8) r(t,z) - ^(to,zo) =
f

[z(s), (Q(s) - AD*(s)Q(s) - Q(s)AD(s)

+ G s*(s)Q(s)GS(s))z(s)] ds



+ 2

+ 2
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t

[B(s)f(s), Q(s)z(s)JHds

t

[dAs(s,a))[z(s) , Q(s)z(s)JR ,

tO

where

(6.2.9) [z(t), Gs*(t)Q(t)Gs(t)z(t)JH = (v(t), AS*(t)Q22(t)As(t)v(t))R

Proof: By using the same approach as in the proof of Theorem-5.3-1,

we first assume Sobolev space V is separable. Then, the orthonormal

basis of H can be made up with element of V. We denote these by e,,

e2,-...

Let Vm-[e ,e2,...fe ], A°(t) eL(V Y) and

(6.2.10) dA*(t,u>)[-] =_I (dAs(t3U)[.J, e1)He±

Then, the system E can be approximated by

(6.2.11) z (t) + A°(s)z (s)ds + d^(s,ai)[zTn(s)J
ill I . ill 111 1j 111 111

m

where z =1 Z (v e

(6.2.12) AD(t) =
m

0

= z

m

Hei'

(t)

m

i£i<

[B(s)f(s)J ds ,

0

vo ,e.

>ei

0

Heil'> sm<t)≪Lzi(t), z*(t)]

}Hei

(6.2.13) d>(t,u))[z (t)] = [ 0 , dAs(t
mm m 5a))[z^(t)]]'

and

% m
(6.2.14) [B(t)f(t)Jm= [ 0

JlE1(B(t)f(t), e±)He ]
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By using the solution process Zjn(t) to Eq. (6.2.11), the quadrat-

ic functional given by Eq.(6.2.6) is also approximated by

(6.2.15) F(t,zm(t)) = [zm(t), Q(t)z (t)] .

From the fact that the Sobolev space V is finite dimensional,

Eq.(6.2.11) is an ordinary differential equation of It6-type. Then,

we have

t

(6.2.16) 7(t,z (t))

Q

v(t

･>*:

ft
+ 21

Jto

where

+ 2

(6.2.17) GS(t) =
m

O'W
=

L
Czm(s)> ^Q(s) - P*(s)Q(s)

tO

s) + G^*(s)Q(s)c£(s)Jz (s)]Hds
"i in m n

[[B(s)f(s)]m, Q(s)zm(s)]Hds

! ^(s>")[zra(s)],
Q(s)Vs)]H

>

0

m

i£i< As(t)(-)5 ei)e1

0

0

Prom Eq.(6.2.16), passing to the limit (m-*≪

Eq.(6.2.8). The proof has thus been completed.

) , we can derive

6.3- Derivation of Optimal Control (Stochastic Maximum Principle)

In this section, consider the following quadratic cost:

(6.3-1) L(t,v,f) = |(M(t)v(t), v(t)) + i(N(t)f(t), f(t))R ,

where M(t) and N(t) are deterministic bounded semipositive and pos-
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itive definite self-adjoint operators, respectively, and v(t) is a

solution process to Eq.(6.2.1), i.e., v(t) is the first component of

z(t)-process. The problem is to find the optimal feedback control

in such a way that the functional*

fir
(6.3.2) J(f) = E{ 1L(t,v,f)dt},

Jto

becomes minimal with respect to feW ., where W , denotes the follow-

ing admissible control class,

Admissible Control Class:

i) f(t) is F -measurable for all teT, where F, is a a-algebra with

respect to which {v(s), v(s)} becomes measurable for s>to,i.e.,

(6.3-3) Ft = a{[v(s), v(s)]'; tQss<t}

= a{z(s); tQ<sst}

ii) feL2(fiJP;L2([t0,tfJ;U))J where U is a convex subset of VxH .

For the purpose of theoretical developments, the cost functional

is rewritten in the following form with the aid of the representation

of the system !,,

(6.3.4) L(t,v,f) = L(t,z,f)

= |[M(t)z(t), z(t)J +
i(N(t)f(t),

f(t))H

where

(6.3-5) M(t) =

M(

0

0

0_

Then, the optimal control problem at hand is converted into that of

finding the control so as to minimizing the new functional J



(6.3.6) J(f) = E{ L(t,z,f)dt}
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becomes minimal with respect to f£W ,.
' ad

By using the varlatlonal inequality theorem[L4], we can easily

find that it is necessary and sufficient that f°is the optimal con-

trol which satisfies

(6.3.7) (6J(f°), f - f°)H > 0 , for all feW&d

where 6(･) denotes the Gateaux-differential in L ([tQ
9t≪J;U).

(6.3.8) E{J ([M(t)z(t)3 Z(t;f - f°)U

+ (N(t)f°(t), f(t) - f°(t))H)dt} > 0 , for all feW&d

where z(t;f - f°) satisfies

(6.3.9) z(tjf - f°) +
^

AD(s)z(s-f - f°)ds +
f

dA (s,a))[z(s
*0

=
f

B(s)(f(s) - f°(s))ds .

;f - f°)l

Let us now introduce <J>(t) as the solution of stochastic adjoint system

equation :

(6.3.10) $(t) +

+

J

t

tfF*(s)$(s)ds
= -

{
fM(s)z(s)ds

t

tf t
n(s)dAs(s3to)[z(s)] +

(

t >t

GS (s)n(s)Gs(s)z(s)ds ,
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where, with a 2x2 dimensional operator

and $(t)=n(t)z(t).

Define

(6.3.11) V(t,z) = [|(t),z(t)]H .

n(t),
J(t)

=[<|>1(t), <f)2(-fc)J,

Using the stochastic differential rule given in Theorem-6.2.1,

Eq.(6.3.11) becomes

(6.3.12) E{[$(t ),z(t ;f - f°)]H> - E{[$(to),z(tojf - f°)JH}

[M(t)z(t),z(t;f - f°)Judt}

*0

+ E{ [<t>(t),B(t)(f(t) - f°(t))

0

Noting that, from Eqs.(6.3.9) and (6.3.10), $(tf)=0 and z(tQ

=0, Eq.(6.3.12) becomes

ftf

(6.3.13) E{ [
Jt0

M(t)z(t),z(t;f - f0)!
n

ftf

= E{
Jto

dt}

JHdt}.

f - f°)

[J(t),B(t)(f(t) - f°(t))]udt}.

Prom Eq.(6.3.13), Eq.(6.3.8) is rewritten as

(6.3.14) E{ ([d)(t),B(t)(f(t) - f°(t))]

Jtn

+ (N(t)f°(t),f(t) - f°(t)) u)dt} > 0 for all feW ,
n ad

Noting that

(6.3.15) [(t),B(t)(f(t) - f°(t))]H = (*2(t),B(t)(f(t) - f°(t)) ,



it follows that

(6.3.16) E{

*0

(B*(t)<|>
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(t) + N(t)f°(t),f(t) - f°(t))

for all feW

dt} > 0
H

ad

Since all elements of Wad are Ft measurable, Eq.(6.3.16) can be re-

written as

,tf

(6.3.17) E{ (B*(t)E{*2(t)|Ft} + N(t)f°(t),f(t) - f°(t))Hdt} > 0

it0

Then, the optimal control is given by

for all feWad

(6.3.18) f°(t) = - N-1(t)B*(t)E{<|> (t)|Ft}

In order to generate the optimal control signal, the condition-

al expectation E{<|>2(t)| F. } must be calculated. Noting that the Prop-

osition 2.2.2 of stochastic integral,

(6.3.19) E{ dAs(s,U)[z(s)]|Ft} = 0
Jt

and

(6.3.20) E{

we have

,tf

n(s)dAS(s,a))[z(s)]|Ft} = 0 ,

-t

(6.3.21a)

(6.3.22a)

dzt(x)
+ AD(x)z

t(x)
= - B(x)N

1(t)B*(t)$2(t)

dx

(6.3.21b) zt(t) = z(t)

and

^
t(T) _ }[D*(T)it(T,

= _ fo(T)zt(T) - GS*(T)S(T)GS(T)zt(T)

dx
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(6.3.22b)
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l

t(t)
= |(.t) with lt(tf) = 0 ,

where we denote

(6.3.23) z.(t) = E{z(t)|F.}

and

(6.3-24) |t(T) = E{|(T)|Ft> = [E{<|)1(T)|Ft},E{(|.2(T)|Ft}] .

Prom Eq.(6.3.10), we have <L(t) = I[(t)z. (t). Then it is easy to show

that n(x) satisfies,

(6.3.25a)
^T1

"
^D*(t)S(t) - S(t)AD(t) + M(x)

+ GS*(x)f(T)GS(T) - ff(x) , 'ff(T) = 0
0 B(t)N~1(t)B*(t)

with the terminal conditions

(6.3.25b) if(tf) = 0

Therefore, the optimal control signal f°(t) becomes

(6.3.26) f°(t) = - N-1(t)B*(t)[n21(t)z1(t) + n22(t)z2(t)]

where n?-.(t) and n?2(t) are elements of the 2x2 dimensional operator

n(t), which satisfy

(6.3.27) n
11 (t) - AD*(t)n21(t) - n

+ As*(t)n22(t)As(t) _

(t

(6.3.28) n

n12(t

(t) - ad (t)n2 (t) + n (t

AD(t

B

+ M(t)

t)N"1

ni2

(t)B*(t)n21(t) = o

(t)B(t)N"1(t)B*(t)n22

= 0
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and

(6.3.29) n22(t) + n12(t) + n2l(t) - n22(t)B(t)N~1(t)B*(t)n22(t) = o

with the terminal conditions

(6.3-30) n (tf) = n12(t ) = n21(tf) = n22(tf) = o

Remark 6.3: The Riccati equation given by Eq.(6.3.27) has not been

studied except for the case of losing the term As*(t)II22(t)As(t) by

Lions [L5]. However, with the aid of computer calculation, we can

solve the operator Riccati equation (6.3.24), and construct the feed-

back control.

6.4. On the Optimal Control under Noisy Observations

In this chapter, in order to derive the optimal control, a use

is made of the method of stochastic maximum principle. Different

from the dynamic programming approach, the stochastic maximum princi-

ple demands the complex calculation to derive the explicit feedback

control gain. In spite of this fact, an extension to the control

problem under noisy observation is possible.

Prom the results of the previous section 6.3-> in order to design

the optimal feedback control, we must obtain the information about

z,(t) and zp(t)-processes. From the practical point of view, there

are many situations that only the v(t) process information is obtained,

and furthermore we must consider

(6.4.1) dy(t) = ! h(t,x)v(t,x)dxdt + R(t)de(t) ,
G

where e(t) denotes the observation noise, which is assumed to be

modeled by the Brownian motion process independent of the white
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noise coefficients.

Based on the 0-algebra F =o{y(s);t <s<t} with respect to which

y(s) (t <s<tf) becomes measurable, consider the optimal control prob-

lem that the functional defined by Eq.(6.3≫l) becomes minimal with

respect to feWy,, where Wy, is an admissible control class. In this

case we assume all elements of Wy, are F - measurable. Applying the
ad yt

stochastic maximum principle, we have from Ea.(6.3.17).

(6.4.2) E{ (B*(t)E{*_(t)|F } + N(t)f°(t), f(t) - f°(t)) }dt > 0

j t ^ y-fc

for all feW^

where <|>2(t)satisfies Eq.(6.3.10). Then, the optimal control under

noisy observations becomes

(6.4.3) f°(t) = - N"1(t)B*(t)E{*p(t)|Fv } .
yt

Using the same approach stated in Sec.6.3, we may find that the cal-

culation of the conditional expectation of <t>p(t)is equivalent to

calculate the minimal variance estimate E{z(t)|F }. Hence, the
yt

stochastic maximum principle shows that if the minimal variance

estimate E{z(t)|F
yt

} is obtained, we can construct the optimal con-

trol signal under noisy observations. The estimation problem is out

of consideration. (For estimation problem for distributed parameter

systems with stochastic coefficients, please refer Refs.[S12] and [Sl4].)

6.5. Discussions and Summary

In this chapter, based on the stochastic maximum principle, the

method has been developed for finding the optimal control for the

Hyperbolic type partial differential equation with white Gaussian

noise coefficients. Comparing with the dynamic programming approach
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the stochastic maximum principle requires the complex calculation to

derive the optimal control. However, an extention is straightforward

to the version of the optimal control under noisy observations. The

optimal state estimate and control are performed by using the suffi-

cient statistics, E{z(t)|F } in the configuration of feedback control
yt

system.

The construction of the minimal variance estimation mechanism

becomes difficult problem because of uncertainties exhibited in co-

efficients. The Radon-Nikodym theorem in the Hilbert space, [D3],

[Bl4] plays a key role to explore the estimation problem.
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CHAPTER 7. THE OPTIMAL BOUNDARY CONTROL FOR DISTRIBUTED

PARAMETER SYSTEMS OF PARABOLIC TYPE WITH WHITE

GAUSSIAN NOISE COEFFICIENTS

Considering the control problem of distributed parameter systems,

the boundary control problem is a peculiar one of distributed param-

eter systems. Such a problem does not have an analogy with a class

of ordinary differential equations. Because of the randomness of

coefficients in the partial differential operator modeled by the

white Gaussian noise process, the influence of the boundary control

to the interior domain of the spatially distributed state variable

becomes random. As mentioned in Chap.4, the boundary control is

being perturbed by stochastic coefficients contained in the par-

tial differential operator and transmitted to the interior domain of

the system state. Generalizing the well-known Green's formula to the

case of partial differential operator with stochastic coefficients,

the aspect mentioned above is figured out. The purpose of this chap-

ter is to find the optimal boundary control for the distributed param-

eter systems with white Gaussian noise coefficients circumventing

difficulties due to the stochastic eigenvalue problem.

In Section 7.2, the mathematical model of the system considered

here is given through a new definition of stochastic integral defined

in Sec.2.2. The differential rule given in Chap.5, in Sec.7.3., is ex-

tended to the process determined by the solution process to the par-

tial differential equation with white Gaussian noise coefficients

and with boundary inputs. Furthermore, by using the Green's formula,



147 -

the influence of boundary inputs to the interior domain of the solu-

tion process is investigated for various types of boundary conditions.

Section 7-^ is devoted to the optimal boundary control in a form of

depending the stochastic coefficients with the aid of dynamic pro-

gramming approach. In Section 7.5, the optimal control strategy de-

veloped in Sec.7.^ is shown for a class of stochastic distributed

parameter systems. Finally- in order to examine contributions of the

boundary control to the interior domain of the system, results of sim-

ulation experiments are demonstrated.

7.2. Review of Mathematical Model

Consider a dynamical system described by

(7.2.1a) 8u^>x) + [AD(t,x;Dx) + As(t ,x,a>;Dx) Ju(t ,x) = 0

with the initial condition,

(7.2.1b) u(tQ,x) = uQ(x) , for xeG

and the boundary conditions>

(7.2.1c) 8,

where 8

and A

for (t.x)eTxG ,

(t,x;D )u(t,x) = g.(t,x) , for (t,x)£Tx9G and J-l,2,≪-,|,
X J

j(t,x;Dx)
(j=lJ2,≪≪≪J

(t,x;D ) and As(t,x,w

2^)
are deterministic boundary operators

;D ) are deterministic and stochastic
X

partial differential operators which satisfy Coercivity condition-

2.2.1, respectively and boundary control signals g.(t,x) (j =l,2 ,･･ ,-■)

are elements of admissible control class W ,.

Admissible Control Class: We denote the admissible control class

Wb if all elements of Wb, satisfy the following conditions:
ad aa
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i) g.,(t) is Ft-measurable for all teT, where Ft Is a a-algebra

generated by {u(s)} , i.e.,
t>s>tg

(7.2.2) Ft = a{u(s); to<s<t}.

ii) g.eL (T; U, ), where Ub is a convex subset of W = nL (n,P;

Hn-nj_l(3G)) for j =lj2,≪",S, n.<n-l.
d. J

From Theorem-2.2.1 and Definition-2.3-4, Eq.(7.2.1) can be

rewritten as

ft ft

(7.2.3) E^| u(t) + AD(s)u(s)ds +

with B.

dAs(s,w)[u(s)] = uQ

for teT

(t)u(t)=g.(t) on Tx3G. Prom now on, in order to treat the

J

stable and mixed types of boundary conditions, we formally assume

that ueL2(ft,P;L2(T;VnHn(G))) . (The precise treatment of weak

solution is shown in Appendix-C.)

Theorem-5.3.1 in Chap.5 may easily be extended to the boundary

control class. Our principal purpose in this section is to examine

contributions of boundary inputs to the Interior domain of the solu-

tion process. The following theorem states the Ito-Dynkln's formula

in Hllbert space.

[Theorem-7.3.1]: Define the quadratic functional,

(7.3.1) 7(t,u) ^ (u(t), P(t)u(t))H ,

where P(t) is a deterministic bounded self-adjoint operator and is

differentiable in t.

It follows that
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(7.3.2) E{7(t,u)|u(s)=u } - F(s,U ) = E{
s s

rt

, s

Ay(T,u)dT|u(s)=u } ,

where A is the differential generator such that

(7.3-3) A7(t,u) = (u(t),
dP(t)

dt
u(t)) - (A

n

(u(t), P(t)AD(t)u(t))u
n

D(t)u(t),
P(t)u(t))u

rl

+ (As(t)u(t), P(t)AS(t)u(t))
H

Proof; By using the same approach as in Theorem-5.3.1, Eq.(7.3.2)

can easily be obtained. In this section, the intuitive proof is

presented.

Formally we write

(7.3.4) du(t) = - AD(t)u(t)dt - dAs(t,o))[u(t)] .

Noting that

(7-3.5) d7(t,u) = (u(t+dt), P(t+dt)u(t+dt))H - (u(t), P(t)u(t))R

= (u(t),dP(t)u(t))H + (du(t), P(t)u(t))H

+ (u(t), P(t)du(t))R + (du(t), P(t)u(t))H + o(dt) ,

and taking into consideration that the order of dA (t}w) is equal to

(dt) , from Proposition 2.2.2, we have

(7.3.6) dF(t,u) = (u(t), dP(t)u(t))H - (AD(t)u(t)dt, P(t)u(t))R

(dAs(t,w)[u(t)], P(t)u(t))H - (u(t), P(t)AD(t)u(t)dt)H

(u(t), P(t)dAs(t,a))[u(t)])H

(dAs(t,w)[u(t)], P(t)dAs(t,u))[u(t)])H + o(dt) .

1/2
From Eq.(7.3.6) , neglecting higher order terms than (dt) , the

following equality is formally obtained,
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E{7(t+dt,u) |u(t)=u■} - E{F(t,u)|u(t)=ut}
lim ■" ―

dt+O dt

= lim

dt+O

E{d7(t,u)|u(t)=ut>

dt

= E{(u(t), dP(t)u(t)) - (AD(t)u(t), P(t)u(t))H
H ndt

(u(t), P(t)AD(t)u(t))

+ (AS(t)u(t), P(t)A (t)u(t)) |u(t)=ut}

Thus, the proof has been completed.

In Theorem-7.3.lj boundary controls in Eq.(7.2.1) are not ap-

peared explicitly In Eq.(7.3.3). In order to study the boundary

optimal controls, the following corollary is useful.

[Corollary-7.3.1J: Using the Green's formula, Eq.(7.3.3) becomes

(7.3.8) AV(t,u) = (u(t),
^^

n
- I

j =

u(t))R - (u(t), AD*(t)P(t)u(t))H

(S (t)u(t), T (t)P(t)u(t))
?1 J J LOG)

+ (u(t), As*(t)P(t)AS(t)u(t))u - (u(t), P(t)AD(t)u(t))
H H

n/2
+ I (G (t)u(t), H,(t)-P(t)u(t))

9j=l J J L(3G)

n/2
I

k=l
(Gj(t)u(t), S

where the symbol Pb(t) denotes

(7.3.9) Pb(t) =

(t)-P (t)G (t)u(t))

P(t,x,y)(O<iy ,
8Gy

L2OG)
3
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and where p(t,x,y) Is the kernel of the operator P(t). In Eq.(7.3.8)

S,(t), T.(t) and G.(t) are partial differential operators formally
J J J
defined on 9G. The system (S.Ct)} " is a Dirichlet system of order

J j -1
n on 8G and the system {T.

J

{SJ (t)}
J=
!? relative to the

(t)}._, becomes the adjoint system of

operator A (t). Furthermore, {G.(t)}. ,
J j―i

is one of subsets of a Dlrichlet system of order n/2 on 3G. and
n/2 n/2

{H.(t)≪( )}._, and {5 (t)≪( )} _ are boundary systems which

depend on the determination of the system {G. (t)}
n/2

Proof: Since a complete mathematical generality is not the object of

this section, we assume the spacial domain G is R1. The following

results can easily be extended to the case of the n-dimensional

Euclidean domain. (See Ref.[L 5], for more details) For any <j>and i|i

eH (G), by integrating by parts, the second term of the right hand

side of Eq.(7.3.3) becomes

(7.3.10) (AD (t)<j>, P(t)i|OH = ( I a?(tjX)D*<|>, P(t)i|Ou
H isn x H

= I (*, (-l)Va?(t,x)P(t)i(;)

i<n
x H

+

3

I

<n

i
I

j =

(vi~U> (-dj V"V(t,X)p(t)t)
1 x xi l/(8G)

(<D, AD*(t)P(t)^)H

n n *]_ i-1+1 i-j+1 n
+ I I (DJ <(,,(-1) DY a,(tsx)P(t)tJ;)
j=l i=j x

xx l^(3G)

Noting that {S.(t)}.=" is a Dirichlet system, we can always

express the partial differential operator Di. for any j by the linear

combinations of {T
J
(t)}

n
.

1.
(See Ref.[L5]) Then, in the Corollary-
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7.3.1, choosing the operator S.(t) such that

(7.3.11) (S (t)<j>, T.
J L2OG) X i=j X

L

we have

(7.3.12) (AD(tH, P(t)*)H = (<t>,
n

+

AD*

n
I

j =

By using a

(7.3.13) (As(t)

+

(t)p(t)*)

(tH, t

OG)

H

.(t)P(t)i|i) _

similar method mentioned above, we obtain

>

OG)

, P(t)As(t)<Mw = I (a*(t,x)DV P(t)a?(t,y)Dji|))

I

h<n/2

h

I (D

U, (-l)hD＼^(tsx)P(t)s^(t,y)D%)
a 11 " y n

h-j

h<n/2 j=l x
<t>,(-1)

x

(<f>,As*(t)P(t)AS(t)*)R

n/2 n/2 h-j j-1 j-1 s s h
+ I I (D *, (-1) DJ aJ(t,x)P(t)af(t,y)D t)

2
j=i h=j x x h h y L^(3G)

Noting that the operator P(t) can be expressed by

(7-3.14) P(t) = p(t,x,y)(')dy ,
G

from the second term of the right hand side of Eq.(7-3.13), by

integrating by parts with respect to y, it follows that

(7.3.15)
n/2
I

n/2
I

h=l

<°r 4>, (-D
X

1DJ"1a^(t,x)P(t)aS(tJy)D%)

x h n y L2(3G)



OQ)

Defining,

and
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n/2 n/2 f

n/
2

1

x^dy)
L2(3G)

T<CJ≫, [
(-i)J-vx-v/^(t.x)(j (-d'-v-1

G (t) t 4"1

H-(t)-P(t) A
f n/2

I

JGh=l
(-1)

xa^(t,y)p(tJx;y)Dh-^dy)
y

L2(3G)

~JDj"Ja^(t,x)DV(t,y)p(tJxJy)(.)ciy

Ot.D,) A
(-l)k-J+1D^+1(aS(t3x)(.))

"ij
(t).p. (t)

A

(i,j)

k+l k+l

xP(t,x,y)(-)dy ,

from Eqs.(7.3.13), (7.3.14) and (7.3.15), we have

(7.3.16) (As(t)d>, P(t)As(t)i|;)H = (<fr,As*(t)As(t)*)

n/2

+ I (G, (tH, h.

n/2 n/2

+ I I (G.(t)

j=l k=l J

(t)-P(tH)

<f>,

"jk

L

(t)-Pb

2OG)

(t)G
k(t)＼) 2

The proof has been completed.
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If concrete forms of the boundary operators defined by Eq,(7.2.1c]

are given, then we can easily find the relation between the abstract-

ly defined operators S,(t), T.(t) and G.(t), and boundary operators

{B-(t)}j=1 given in Eq.(7.2.1c) from Corollary-7.3.1. However, in

this chapter, because of the fact that boundary operators given in

Eq.(7.2.1c) are abstract fashions, the relation between the operators

appearing in Eq.(7.3.8) can not precisely be discussed. Roughly
n

speaking, we can only say that some of G.(t) (j=l,2, ･･･ ,7") are equal

to boundary operators {8.(t)}.
^

and furthermore there are many cases

such that
n/2 n/2

i) All of {G.(t)}.-, are equal to boundary operators {8 ･(t)}._-,.

ii) Some of {G,(t)}._ are equal to some of {8-(t)}._-,.

iii) Any of {G.(t)}.=1 is not equal to boundary operators {8.,(t)}._-,.

In the following corollary, the most interesting situation is

considered, that is, some of {G.,(t)},_, are equal to some of {8,-(t)}?_-,
n/2

[Corollary-7. 3. 2]: With boundary operators {8. (t)}._-, given by Eq.

(7.2.1c) and their adjoint operators {Cj(t)}-=1, operators {S-(t)}.=n

and {T.(t)}j=1 are assumed to be represented respectively by

(7-3.17) {Sj(t)}J=J = {-81(t),-B2(t),---,-8n(t),S1(t),S2(t), ,Sn(t)}

2 2"

and

(7.3.18) {Tj (t)} " = {T

J -^
1(t),T2(t)1---,Tn(t)JC1(t),C2(t)J---JCn(t)}

2 2

Puthermore we assume the system {G.(t)}^=1 relative to the operator

The concrete forms of operators {&.

shown in examples in Sec.7.5.

(t)}"=^ and {T (t)}" will be



A e
A ' t) becoraes

(7.3.19) {G
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(t)}"^ = {B1(t),82(t),---,8_e(t),o1(t)Ja2(t),---,a
J-*

Equation (7-3.8) can be changed into

(7.3-20) A7(t,u) = (u(t), L^f^- - AD*(t)P(t) - P(t)AD(t)
dt

+ AS*(t)P(t)AS(t)]u(t))

n/2

+ I (g

j = l

n/2
- I
j =l

(&

.(t),ft.(t)P(t)u(t))
9J J l/(9G)

.(t)u(t),C.(t)P(t)u(t))
?J J L2OG)

I
+ I (g,(t), H.(t)-P(t)u(t)) ?i=i J J roo

n/2
+ I (a. ,(t), H.(t)-P(t)u(t))

?

+
Jl Jl(gSU)'^<t)'P"<t)g''<t))L2<3G)

I n/2
+ I I

j=l k=£+l

(g,(t), E

n/2 I
+ I Z C≪
j=£+l k=l

n/2 n/2

1=1+1 k=£+l

(t)-p. (t)ak_£(t)u(t)) 2

(t)}

OG)

j._£(t)u(t)J
yt).Pb(t)gk(t))

(a._£(t)u(t), V^-P^t^CtMt))^^

Proof: From Eqs.(7.3.17) to (7-3.19), we have

(7.3.21)

n

j = l

.(t)u(t), T, (t)P(t)u(t)) 2

n/2

j =l

(3G)

(8J
(t)u(t), * (t)P(t)u(t)) 2



(7.3.22)

and

(7.3-23)

n/2

I (G

j = l J

- 156 -

n/2 <v
+ 1 #

J-l

(t)uCt), Hj(t

I

n/2 n/2

j=l k=l J

= I

= I (B

J = l

･P(

.Ct)u(t), C.(t)P(t)u(t)) ?
J J ITOG)

t)u(t))
?

it

(t)u(th H

OG)

(t)-P(t)u(t)) ?
L OG)

n/2
+ I (ex. ,(t)u(t), H.(t)-P(t)u(t)) p
1=1+1 2~l J l/OG)

(t)u(t), 5.. (t)-P, (t)G, (t)u(t)) p
jic D K L (3G)

I
I (B.(t)u(t), = (t)-P, (t)B, (t)u(t))

?1 k=l J JK D L^OG)

I n/2

+ I I (B

j=l k=£+l J
(t)u(t), E ･k(t)-Pb(t)ak_£(t)u(t))

L2OG)

n/2 I
+ I I (a. -(t)u(t), H.,(t)-P.(t)B (t)u(t))
j =£+l k=l ^~L jk d k L^OG)

n/2 n/2
+ I I (a .(t)u(t),
j=£+l k=£+l J

~ (t)-P (t)a .(t)u(t)) 2
JK D K―l L (9G)"

Prom Eqs.(7.3.21) to (7-3.23) and Corollary-7- 3-1, the differential

generator defined by Eq.(7.3.3) is rewritten by

(7-3.24) AK(t,u) = (u(t), C^^- - AD*(t)P(t) - P(t)AD(t)

+ AS*(t)P(t)As(t)Ju(t))R



OG)

where P(t) is a bounded semi-positive definite self-adjoint operator

and R(t) and g(t) denote
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n/2
+ I (B.(t)u(t), T.(t)P(t)u(t))

0J*l J J L^

n/2

- I (S.(t)u(t), C.(t)P(t)u(t))
0j=l J J L^

(3G)

OG)

+ I (B,(t)u(t), H.(t)-P(t)u(t)) o
J=l J J L2(3G)

n/2
+ I (a. .(t)u(t), H (t)-P(t)) -
j =l+l J~L 3 LOG)

I I
+ J I (B.(t)u(t), H,, (t)-P.(t)B (t)u(t))

?.1= 1 k=l J jk b k LOG)

+1
n/2
I (S (t)u(t), E (t)-P (t)a /t)u(t)) ,

k=£+l J Jk b k-l L2(9G)j=l k=£+l

n/2 I
+ I I (a, .(t)u(t), H -P (t)a, .(t)u(t))

9j=£+l k=l J"^ Jk b R~-t L2(3G)

n/2 n/2
+ I I (a, .(t)u(t), H (t)-P (t)a .(t)u(t))

?i=£+l k=£+l J~'c JK D ^"^ L^OG)

Then, noting that B.(t,x;D
J x

proof has been completed.

)u(t,x) = g (t,x) (j=l,2,≪･･,n/2), the
J

7.4. Derivation of Optimal Boundary Control

Consider the following quadratic cost functional,

(7.4.1) L(t,u,g) = (u(t), P(t)u(t))H + (g(t), R(t)g(t))
2



(7.4.2) R(t) =

and

＼

0.

0

(t) 0 ･･

*

n/

0

･

2
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(t)

(7.4.3) g(t) = [g1(t),g2(t),---,gn(t)] ,

2

where {ft.(t)}?_? are bounded positive definite self-adjoint operators

and igsit)}1}^-. are boundary control signals. The problem is to find

the feedback optimal boundary control signal g (t) in such a way that

the functional

ftf

(7.4.4) J(g) = E{ L(

Jto
t,u,g)dt| u(to)=uQ}

becomes minimal with respect to geW ,.

In this case, from the results of Chaps.3, 4 and 5, we may find

the minimal cost functional 7(t,u, ) is expressed by

(7.4.5) 7(t,st) = (ut, n(t)ut)H.

From Eq.(7-4.5), by applying the principle of optimality and by Corol-

lary-7-3.2, the following basic equation of optimal boundary control

is derived,

(7.4.6) min [(u P(t)u.)H + (g(t), R(t)g(t)) ,
b

z
T d

gewad
OG)

+ (ut, L^^- - AD*(t)n(t) - n(t)AD(t) + As*(t)n(t)As(t)nt)H

n
+
j

I2 n/2 *
I (g,(t), c.(t)n(t)u.) - X (T.(t)U., S,(t)n(t)u.)

9=1 J J r L^OG) j =l J t J t L^OG)



I
+1

I
+1

J=l

+

j

n
+

J

n

+

I

(gJ
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(t), Htt).n(t)u.) .
J V IT(3G)

{a5-l (t)u h (t)-n(t)u.)
J Z l/OG)

I

I (g,(t), s (t)-n (t)g (t))
?

k=l J jk b k L2(9G)

n/2

I (g.(t), H (t)-n (t)a .(t)TT ) p
k=£+l J Jic b ^"^ * l/(3G)

/2 I
I I (a At)TX ≫ (t)-n (t)g (t))

=1+1 k=l J *■ z JK D K L^(3G)

/2 n/2
I I (a At)u , 5 (t)-n (t)a .(t)u.)

?
] = 0

=1+1 k=l+l 3~l t Jk b k~-t fc L^OG)j=£+l k=£+l

or in a vector form

(7.4.7) mln [(u,, P(t)u ) + (g(t), R(t)g(t))
?

b
* t H

L2(3G)

+ <v cdiiUl _ AD*(t)n(t) - UD*(t)n(t))*
at

+ As*(t)(As*(t)n(t))*]ut)H

+ 2(g(t), T(t)n(t)u )
L2(3G)

+ 2(Kg(t), H(t)n(t)u )

2(s(t)ut, c(t)n(t)ut) 2
(30)

+ 2(QG(t)u., H(t)n(t)u ) 5
L2OG) t

t L2OG)

+ (Kg(t), H(t)nh(t)Kg(t)) 2
D L(3G)

+ (Kg(t), S(t)nh(t)QG(t)u.) ?

+ (QG(t)u., 5(t)n, (t)Kg(t)) ?



a (t)]
2 L

- 160 -

+ (QG(t).u HCt)n (.t)QG(t)u. )･, ] = 0 ,
t b t

L2OG)

where C(t), S(t), T(t), H(t), G(t) and 5(t) are the following
n

2
di-

mensional vectors and ―x―matrix operators, whose components are bound-

ary partial differential operators, respectively,

(7-4.8) C(t) = [C (t). C2(t),.--, C

(7.^.9) T(t) = [T

(7.^.10) S(t) = [S

(7.4.11) H(t) = [H

(7.4.12) 5(t) =

1(t),
T2(t),..., T

1(t), s2(t), , s

n(t)l

2

(t)]'

2

2

x(t)-( ), H2(t).( ),･･･,

iUM ) s12

Hn(t)-( )]

2

(t)-( )

(t).( )

(t)-( )
1

2

･

t)-( )

2 2

and

(7.4.13) G(t) = [81(t), B2(t),--.,B_e(t),o1(t),a (t),---,

and K and Q are respectively
p-xjjy.

square matrices,

I

(7.4.14a) K =

0

0

･

･ 0

0 1

0

0
0

0



and

(7-4.14b) Q =

From Eq.(7

(7.4.15)

0
0

0

0

2

4.7), it follows that
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2- - I
2 c

I

min [({R(t) + K*E(t)IL(t)K}g(t) + (T(t)n(t) + K*H(t)n(t)

+ K*E(t)nb(t)QG(t)}ut, {R(t) + K*H(t)nb(t)K}~1[{R(t)

+ K*=(t)nb(t)K}g(t) + {T(t)n(t) + K*H(t)n(t)

+ K*E(t)nb(t)QG(t)}ut]) 2
L OG)

({T(t)n(t) + K*H(t)n(t) + K*=(t)n (t)QG(t)}ut,

{R(t) + K *5(t)nb(t)K}"1

x (T(t)n(t) + K*H(t)n(t) + K*5(t)nb(t)QG(t)}ut)

- 2(s(t)ut, c(t)n(t)ut)
2

L

+ 2(QG(t)u, , H(t)n(t)u. )
t t L

(3G)

2

OG)

+ (QG(t)u, , E(t)n (t)QG(t)u,) ?
t b t L2OG)

+ (ut, {MSi
^ at

AD*(t)n(t) - (AD*(t)n(t))*

L2(3G)

+ As*(t)(As*(t)n(t))* + P(t)}ut)HJ = o

Then, noting that the first term of the left hand side of Eq.(7.4.15)
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is a quadratic form, the optimal boundary control g°

(7.4.16) g°(t) = -{R(t) + K*H(t)nb(t)K}

(t) is given by

1{T(t)n(t)
+ K*H(t)II(t)

+ K*S(t)nb(t)QG(t)}ut

where, for %eHn(G) and %eHn(G), n(t) satisfies

(7.4.17) (<t>,{Mill _ AD*(t)n(t) - (AD*(t)n(t))*
dt

+ As*(t)(As*(t)n(t))* + p(t)H)

({T(t)II(t) + K*H(t)H(t) + K*S(t)II (t)QG(t)H,

H

{R(t) + K*5(t)nb(t)K}~

x {T(t)n(t) + K*H(t)n(t) + K*≫(t)n,(t)QG(t)}ip) P
D l/(9G)

2(s(t)<|), c(t)n(t)*)
L2 OG)

+ 2(QG(t)<J>, H(t)II(t)t|>) P

L

+ (QG(t)4>, E(t)nb(t)QQ(t)ip)
2

L

with the terminal condition

(7.4.18) ($, n(t )*) = 0.

= o ,
OG)

OG)

7.5. Illustrative Examples

In this section, the explicit form of the optimal boundary con-

trol is shown for the one dimensional stochastic heat equation with

the non-homogeneous Dirichlet and Neumann conditions.

[Example-7.5.1]:(Non-homogeneous Dirichlet condition)

Consider the same equation as Example-5.5･1 in Sec.5.5 of Chap.

5, that is.
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(7.5.la) M^*I + a2(t)^ii^il+ , (t)n(t,u>)Mt**l = 0

for (t,x)eTxG(]to,tf[x]o,l[)

with the initial condition

(7.5.1b) u(tQ, x) = u (x) for xeG

and the boundary condition

(7.5.1c) u(t,x) = g(t,x) for (t,x)eTx3G

where g(t,x) is a boundary control input and n(t,(o) is a white

Gaussian noise with zero mean and unit variance, which denotes the

random velocity of the moving rod in the x-direction. Prom

Coersivity condition-2.2.1, the deterministic coefficients a2(t) and

a-i(t) are assumed to satisfy

(7.5.2) 2a2(t) + a^(t) < 0 for
＼e1

In this example, we can easily find

(7.5.3) A°(t) = a2(t)D^

(7.5.4) As(t) = a1(t)D1

and, for xe3G, the boundary operator B(t) can be rewritten by

(7.5.5) 8(t) = D° .

2
Using the Green's formula, for any <j>eH(G), we have

(7.5.6) (AD(t)<j>,n(t)*)H = (<t>,AD*(t)n(t)((.)H

+ (D1*, ao(t).D°(t)4>) P - (D°*, a?(t)Djn(t)*) P
x 2 x L2(3G) x 2 x L2OG)
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Noting that the boundary operator of the system considered here is

8(t)=D , it is sufficient to choose another boundary operator S(t)

defined by Eq.(7.4-9) as follows:

(7.5.7) S(t) = D^ .

Prom Eqs.(7-5-5) and (7-5-7), we can easily choose boundary operators
a.

C(t) and T(t) defined by Eqs.(7-4.8) and (7.4.10) such that

(7-5-8) C(t) = a2(t)D°

and

(7.5-9) T(t) = a2(t)D^ .

Then, Eq.(7.5-6) can be rewritten by

(7.5.10) (AD(tH, iKtH) = u, AD*(t)n(t)<|>)

+ (set)*, c(t)n(t)<i>)
51/ OG)

(8(t)<f>, T(t)n(tH) ?
if OG)

2 1*
Furthermore, for any <|>eH(G), we have the following relation

(7-5.11) (As(tH, n(t)AS(t)(|))H = U, AS*(t)n(t)AS(t)c())H

+ (dV a,(t)D°a,(t)D*n(tH) _
x 1 x 1 y L2(3G)

+ (dV a (t)D°a1(t)D°Hb(t)D°d,)
x 1 x 1 yt) y

l^(3G)

In this example, for xe3G, boundary operators defined by Eqs.(7-^ ･12)

and (7.4.13) become

t In this section we use the symbol

DV>(tH =
J

DV＼(t,x,y)<i,dy.



(7.5-12) G(t) = B(t) = DQ

(7-5.13) o(t) = 0
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(7.5.14a) H(t)-n(t) = a*(t) D^-rrCt,x,y) (･ )dy

(7.5-14b) 5(t)-n(t) = &＼{t) ir(t,x,y)( ≪)dy
8G

Then, Eq.(7.5.11) can be rewitten in the form,

(7.5-15) (As(t)cJ>, n(t)As(t)(f,)H = (*, As*(t)n(t)As(t)(J.)H

+ (B(t)<j>, H(t)-n(t)<|>) ,
OG)

+ (B(tH, =(t)-nb(t)B(t)<t>)
2

L OG)

Prom Eqs.(7.5-ll) and (7-5-15), the matrices K and Q defined by Eq.(

7.4.14) are K=l and Q=0, respectively.

Considering the relation between boundary operators in Corollary

7.3.2 and those of the system considered in this example, the optimal

boundary control given by Eq.(7.4.l6) is obtained to be

(7.5.16) g°(t) = - {R(t) + =(t)-nb(t)}~1{T(t)n(t) + H(t)-n(t)}ut

＼ 2
and furthermore, from Eq .( 7. h.17) , for <j),ipeH(G), n(t) satisfies

(7.5.17a) U, { AD*(t)n(t) - (AD*(t)n(t))* + As*(t)(As*(t)n(t))*dll(t)

dt

*p(t)H)H - ({T(t)n(t) + H(t)-n(t)}<t>,

{R(t) + s(t)-n. (t)}~1{T(t)n(t) + H(t)≪n(t)}i|i)9

- 2(s(t) , c(t)n(t)t) ? = °
tog)



with the terminal condition.

(7.5.17b) (4>, n(t )i|0 = 0

I n
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By using the kernel theorem, the optimal control g°(t) given by

Eq.(7.5.16) can be expressed by the original notation,

(7.5.18) g°(t,x) = - [r
1(t,x,y)

where r

1
a (t)^(t,y,z)u. (zjdz/"1

o 2 3y t y=0

(t.x.y) is the kernel of the inverse operator R (t), and

the kernel equation of the operator II(t) defined by Eq.(7.5.17) be-

n.ninfis

(7.5.19a) a*(t,x,y) - a (t){52^(tJxJy) +

3t 2 3x2 3y2

2
+ ai

xr

(t)a2*<t.i,y) + p<tfx,y) - [a2(t)!!^l!^

8x3y 3Zl

-1(tjZi>zg)a2(t)8^t^2>y)f2=11Zl=1 = o

dz2
2=0 z =0

with the terminal and boundary conditions,

(7.5.19b) Tr(tf,x,y) = 0, for (xsy)eGx><Gy

and

(7.5.19c) ir(t,x,y) = 0, for (t ,x,y) eTxSG^G

(7.5.19d) ir(t,x,y) = 0, for (t,x,y)eTxG *9G
x y

3

where p(t,x,y) denotes the kernel of the operator P(t).

In the Dirichlet boundary condition, the terms S(t)-nb(t) and
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Fig. 7-5-1 A sample run of the system state u(t,x)
with homogenious boundary in Example-7-5.1

H(t)≪n(t) become zero from the boundary condition of the kernel

ir(t,x,y) of n(t), i.e., Eqs.(7. 5･19c) and (7-5.19d).

In simulation studies, Eq.(7-5.1) was simulated on a digital

computer and the control gain ir(t,x,y) was determined in advance by

solving Eq.(7.5.19) with the help of the implicit formura of differ-

ence method. Then, the optimal boundary control g (t) was given by

Eq.(7.5.l8) with the control gain ir(t,x,y). The results presented

below are representatives of simulation experiments. In all experi-

ments, the value of a, and a2 were respectively set as a1=-0.5, a^=

0.9. The initial condition (7-5-lb) was given by uQ(x)=13.56x(/3 -

(x - 0.5)2 - /2.75) and P(t) and R(t) were respectively given by

1

(7.5-20) P(t) = p(t,x,y)C')dy =

JO >

1

35exp(-2((x-0.5)2+(y-0.5)2))(-)dy

0
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Fig. 7.5.2 A sample run of the system state u(t,x)
with optimal boundary control in Example-7.5･1

(7-5.21) R(O,O) = 1, R(O,1)=RU,O)=O, R(l,l) =l

Throughout the experiments, the partitioned time interval and spacial

variable were set as At=0.0001 and Ax=0.1, respectively.

Pigure-7.5.1 shows a representative of sample runs of the system

with homogenious boundary (g(t,x)=0). A sample run of the system de-

riven by the optimal boundary control signal g°(t,x) is shown in Pig.

-7.5.2. In order to show the difference between the controlled pro-

cess and the uncontrolled process, the system state u(t,x) at the

fixed spatial points is shown in Pig.-7-5.3.



0.5

0
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u(t,): sample run of the system
without control

u(t,): sample run of the controlled system

" ＼
A V' "■-

･-'■i A . MKt.0.2)
V ＼a

＼.,/＼;＼ ';u(t,0.3)
G＼ ^2 ＼I ＼.03

Pig. 7-5.3 Sample runs of the system state u(t,x)
at the fixed spacial points in Example-7-5.1

[Example-7.5.2]:(Non-homogeneous Neumann condition)

Consider the Neumann problem in stead of Dirichlet condition (7

5.1c) in the same system as in Example-7-5■1. (In this example we

choose V=H1(G).)

(7.5-22) 3u^t?x) = g(t,x) , For (t,x)eTx3G .

Noting that the boundary operator of the system considered here is

1 ^ 0
B(t)=D , it is sufficient to choose S(t)=D . By using the same pro-

cedure as in Example-7-5･1, a concrete form of boundary operators C(t),
･＼,
T(t), G(t). H(t) and 5(t) can be shown by

(7-5.23) T(t) = -a2(.t)D° 3



(7.5.24) CCt) = -a2(t)D^ ,

(7.5-25) G(t) = a(t) = D° ,

(7.5.26a) H(t)-n(t) = a^Ct)

and

(7.5.26b) H(t)-H (t) = a^(t)
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D^u(t,x,y)(-)ciy

G

■n(t,x,y) (≪)dy .

) 3G

Then, from Eqs.(7-5.6) and (7-5.11)

(7.5.27) (AD(t)4., n(t)*)H = U, ad*

for
V
d>eH2

(t)n(t)<j))H

(G), we have

- (B(tH, T(t)n(t)<j))
?

+ (set)*, c(t)n(t)<|>)
PLOG) LOG)

and

(7.5.28) (As(tH, n(t)As(t)<|))H = (<!>,As*(t)n(t)As(tH)H

+ (a(t)<t>, H(t)≪n(t)(())
0
(9G)

+ (a(t)(|≫, 5(t)-n (t)a(t)<j>)

L2(3G)

Then, Eqs%(7-4.14) and (7-5,28) yield that K=0 and Q=ls and, from Eq.

(7. h.16), we have

(7.5-29) g°(t) = - R"1(t)C(t)n(t)ut ,

where we may find from Eq.(7.4.17) thatj for ＼<j>,i)jeH2(G),n(t) satisfies

(7.5.30) (<(,,{Mill _ AD*(t)n(t) - (AD*Ct)n(t))* + As*(t)(As*(t)n(t))*

+ P(t) >*) - (T(t)n(t)4>, R"1(t)T(t)n(t)iJ;) _

OG)
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2(S(t)<j>, C(t)II(t)i|O
?

+ 2(a(t)*, H(t)≪n(t)*)
9

L (3G) L^OQ)

(a(t)<)>5 5(t)-H. (t)a(t)i|j) 0 =0
D i/UG)

with the terminal condition,

(7.5-31) U, n(tf)*)H = 0.

With the aid of the kernel theorem, the original form of optimal

control K°(t) can be expressed by

(7-5.32) g°(t,x) = [r"1(t,x,y)

where

1

a2(t)ir(t,y,z)ut(z)dz]^~Q ,

0

(7.5.33) 8*<W> - a?(t){a2ir(t-'x>y) + ≫2≫(t,x,y)} + &2(t) 9^(t ?x?y)
3t 2

8x2
2 1 8x8y

+ p(t,x,y) - [a2(t)ir(tJx,z1)[r ^t.z^z^

z?=l z,=0
xa (t)7r(t,z2,y)J =QJ = 0 ,

with the terminal condition,

(7.5-34) ir(tf,x,y) = 0 , for (x,y) eGx*Gy

and the boundary conditions,

(7.5.35a) a2(t)^(t,x?y) + &2(t) 3tt(t
,x,y)

= Q
^

f(jr (t jX,y) eTx3GyxGx

(7.5.35b) a2(t)-3ir^'x>y) + a2(t)^^il- 0 , for (t,x,y) £TxGxx3Gy

and

(7.5-36) ir(t,x,y) = 0 , for (t,x,y)eTx3Gxx3G
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In the Neumann boundary condition, it should be noted that the

randomness of the coefficients causes the boundary conditions (7.5.35)

and (7.5.36).

In the following example, we obtain the interesting result where

the control signal directly depends on random coefficients of the par-

tial differential operator.

[Example-7.5 ･ 3]: We shall consider a somewhat artificial but impor-

tant class of the 4-th order svstem of Darabolie tvDe described bv

(7.5.37) 3U^'X) + aJt)3"^;^ + (a?(t) + c( t)n (t ,a>))
^^x)

= 0 ,

with the initial condition*

(7.5.38) u(tQ,x) = uQ(x) , for xeG ,

and the boundary conditions,

(7.5.39) h1
18^t'x)

= g(t,x) ,

and

for (t3x)eTxG (]tQ ,t [x]0 ,1[)

(7.5.40) b ≫u(t,,) + b ijj^fl . Q for (taX)eTx5G
f3,1 8X 3,3-

3x3

where b, -.'b,o*0, and g(t,x) is a boundary input, and n(t,u) is a white

Guassian process with unit variance and zero mean, and a^Ct), a?(t)

and c(t) are scalar functions, respectively. Furthermore, from

Coercivity condition-2.2.1 in Sec. 2,2 of Chap. 2, it is assumed

that

(7.5.41) 2a4(t) - c2(t) > 0, for VteT
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Prom Eq,(7,5.37); we find that

(7.5-42) AD(t) = a,(t)Dj + ao(t)D2 ,

(7.5.32) As(t) = c(t)D2 ,

and,for xe 3G ,

(7.5.44) 8

and

(7.5-45) 8

1(t) = b1,1 Di >

2(t) = b3 dJ t b

from which we have

>

(7.5.46) Dx = y^U) ,

and

(7.5.47) D^ = Y3j382(t) + Y3
1B1(t)

, for (t3x)eTx8G ,

where

(7.5.48) Y =
J-,^.

bl,l b

1

3,3

and y3 =
"b3,l

b3,3'bl 1

Using the Green's formula and Eq. (7-5 ･ 48), for <j)eH(G). we have

(7.5.49) (AD(tH, iKtH) = U, AD* (t)n(t)<j>)H

+ (dV a1,(t)D°n(t)≪(i)
Px 4 x

l/(3G)

(B1(t) , ((y3

(8 (tH, y* ,a,(t)D*n(t)<|)) ,
1 JjJ 4 X L2(3G)

^(t) + Ylala2(t))D^ + Yl 1a4(t)D^)
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xnttH)
3

+ (D^,(a5(t)D° + an(t)D^)n(t)<(≫)
2IT(.3G) ^ ^ X L'(DG)

Prom Corollary-T.i)^ and Eq. (.7-5･^9) , we can define another set of

boundary operators,

(7.5.50a) T At) =-(y 3,la4
(t) + Y?

1a2(t))D°
- Tjflai|(t)D2 ,

(7.5.50b) T2(t) =- a4(t)D^ ,

and from Eqs.(7-5 ･ 46) and (7-5.47), we set

(7.5.51a) S = D°

(7.5.51b) S = V2

(7.5.52a) C1(t) =-a2(t)D£

and

ait(t)D3 ,

(7.5.52b) C2(t) =-a4(t)Dx .

Consequently, from Eqs.( 7 -5 -^9) to (7-5-52), for <)>eH (G), we have

(7.5.53) (AD (tH, n(t)<t>)H = (<j>, AD*(t)n(t)<())H

+ (s5<j>, c_(t)n(t)<f>) - + (s <(.,c (t)n(t)<t>) 9

- (8?(t)tj>, t (t)n(t)<f>)
?

- (8-,(t)<|>, t (t)n(t)4>)
?d r(3G) X X L^(9G)

The term (As(t) cj),II(t)A3(t) <(>),can also be represented by the

Green's formula in the form

(7.5.54) (As(t)<(>, n(t)As(t)c|)) = (<(,,As*(t)n(t)As(t)(|>)H

+ (D^tf., c(t.)D°c(t)D2II(t)<j>) ,
x x y

l/(8G)
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+ (D->, c(t)D"c(t)D n, (t)D-1-*
x x y d y

(D*. c(t)D°c(t)D
-A A.

(DA, c(t)D* c(t)D

X
y b

L2(3G)

(t)D%)
y l2og)

2n(t)<j>)

y l2 (30)

- (D"≪>,c(t)D;c(t)D"n (t)D <j>)
x x y b y l^oq)

+ (D°≪.,c(t)Djc(t)Dynb(t)D°<D)
2

In this example, the concrete forms of boundary operators defined by

Eq.(7.3-19), become

(7.5.55a) G1(t) = 8]_(t) = b1 j_D^ ,

(7.5.55b) G2(t) = Ol(t) = Dx ,

(7.5.56a) H.(t)-n(t) = Y^ -,c2(t) D^7r(t ,x,y) (･ )dy
i i>1 jG y

(7.5.56b) H2

and

(7.5.56c)

(t)-n(t) =-c2

~£k
(t)-n

(t) DV^(t,x,y)(-)dy
Jg x y

(t) = (-1) c
-4+£+k [ o i k_i

(t)Yn
i

(t) D^
X

ir(t,x,y)(')dy.
1≫1

3G X
y

Prom Eqs.(7.5.55) and (7-5.56), Eq.(7.5.54) can be rewritten by

(7.5.57) Us(tH, n(t)As(t)*)H = (*, As*(t)n(t)As(t)<D)H

+ (B.(t)4., H,(t)-n(tH) .
11 if- OG)



+

+

+

+

(B1

<v

<≪,

<≪1

Then, from Eqs.(7.5.54) to (7-5

(7.5.58) K =

"1 0

0 D

and Q =

t
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+ (a (t)<J>, H (t)-n(t)<j))

*

t)<j>

t)<j>

t)*

.5

"o

_o

J

J

9

7),

L2 OG)

T,(t)≪n (t)B, (t)<t>)
11 b 1 L2(8G)

1P(t)-n.(t)a1(t)*) 212 b X L^OG)

21 b 1 L^OG)

o.(t)-n (t)an(t)cf,) 2
22 b 1 LOG) .

it is easy to show that

By using the boundary operators (7.5.5) and (7.5.6), the optimal

boundary control defined by Eqs.(7.4.16) and (7.4.17) becomes

1 ^
(7.5.59) g°(t) = - {R(t) + H11(t).nb(t)} {Tx(t)n(t) + H1(t)-n(t)

+ h (t)-n (t)a1(t)}u ,

where,for ＼ 4
(G). n(t) satisfies

(7.5.60) (, l**l*l _ AD*(t)n(t) - (AD*(t)II(t))* + AS*(t)(As*(t)n(t)f
dt

+ p(t)H)H - ({T1(t)n(t) + h (t)-n(t)

x{T

12(t)-nb(t)a1(t)}<|), {R(t) + Hi;L(t)-nb(t)}

1(t)n(t) + H1(t)-n(t) + 512(t)-nb(t)ai(t)}^) 2
L OG)

2(S <)>,CAt)Jl(t)^) p - 2(Sp<j>, Cp(t)n(t)i|)) p
1

L^(aG)
2 2

L2OG)



}
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+ (a Ct H, {H (t)-n(t) + E. (t)≪II. (t)an(t)}i|;)
0

= 0..
" ° 1 L2OG)

with the terminal condition,

(7.5.61) (<(,,II(tfH) = 0 .

Equation (7.5.59) can be expressed by th-e following kernel

equation,

(7.5-62) g°(t,x) = [e(t,x3y)

1

{(Y3 i^t) + Yi 1a2(t))ir(t,y,z)
J0

+ y* a (t)22v(t,y,z)
Yl,lVt;2

ay

Yl,lc u;
?8z

y=i
}u(t,z)dz]

0

where e(tsx,y) is the kernel of the inverse operator E(t),

y=i
(7-5.63) E(t) = [e(t,x,y)(-)]y=0

and for ＼d>eH(G), E(t) satisfies the following relation:

(7.5-64) (c|>,(R(t) + H,,(t)-n. (t))E(t)<(>) 9 = (*, 4.) -
11 b L2(8G) L2(3G)

and the kernel Tr(t,x3y) of the operator n(t) satisfies

1) i| 2 2
(7.5-65) 8iT^?x?y) - a,(t)(-^ + 3 ),r(t,x,y) - a (t)(^ + K.)

a^tt^ y) + p(tjXjy)XTT(t,X5y) + C (t) ^
3x^ 9y

[< -(y*3 xa4(t) + Y*ljla2(t))Tr(tJxJz1)

3
2

TT( t ,X,Z-,)

n,rVt)-^
32Tr(t)x,z-L)

+ Yl ,cc(t) p
1)1 9z^



- 178 -

x£e(.tJz1J(z2X_(Y3 j^a^Ct) + Y1}1a2(t) )ir(t,z2>y)

82Tr(t,zOJy) ? 32Tr(t,z ,y) z =1 z =1

with the terminal condition,

(7.5-66) Tr(tf,x,y) = 0

and the boundary conditions ,

(7.5-67)

and

(7-5.68)

Tr(t,x,y) = 0

92Tr(t,x,y) = 0
Bx2

ir(t,x,y) = 0

32Tr(t,x,y) = 0

3y2

for (t,x,y)eTx3G xG

for (t,x,y)6TxGxx3G

where p(t,x,y) is the following integral kernel of P(t) ,
1

(7-5.69) P(t) = p(

0

t,x,y)(≪)dy ･

It should be noted that the terms ~12(t)･11^(t), H2(t)≪n(t) and

522(t) *n.(t) in Eqs.(7.5-59) and (7.5.60) become zero, respectively,

due to the boundary conditions (7-5.67) and (7-5.68) of ir(tjX,y).
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7.6. Discussions and Summary

In this chapter, the optimal boundary control problem for a

general class of partial differential equation of Parabolic type with

white Gaussian noise coefficients has been solved by using the dynamic

programming approach and the well-known Green's formula.

The results obtained in this chapter, can easily be extended to

the case of Hyperbolic equation,i.e., System En in Definition-2.3. 8

of Sec.2.3 of Chap.2, by using the stochastic differential rule given

in Chap.6. In order to study the boundary control problem, it should

be noted that the influence of boundary control to the interior domain

of the system state is disturbed by the randomness of coefficients.
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CHAPTER 8. CONTROLLABILITY FOR STOCHASTIC DISTRIBUTED PARAMETER

SYSTEMS GOVERNED BY THE PARTIAL DIFFERENTIAL

EQUATION OF PARABOLIC TYPE

In analogy with lumped parameter systems, the controllability

problem for distributed parameter systems has, up to the present

time, been studied by many researchers. [W4], [Sl6],[T4],[R2].

Comparing with the lumped parameter systems, it is difficult to

check conditions of the controllability for distributed parameter

systems because of the infinite dimension of system states.

Recently, by using the generalized canonical representation technique,

Triggiani derived the easy-to-check conditions for deterministic

distributed parameter systems. For stochastic distributed parameter

systems, Sunahara and the author present sufficient conditions of

stochastic controllability for distributed parameter systems with

additive noise disturbances by using the same procedure as stated in

Part 1,[S2].

In this chapter, we pay an attension to the stochastic control-

lability problem for distributed parameter systems with white Gaussian

noise coefficients. (The stochastic controllability for distributed

parameter systems with additive noise disturbances is included in

the case of this chapter.)

In Section 8.2, first of all, the mathematical model of system

dynamics is given by a form of evolution equation in the Sobolev

spaces, and two definitions for the stochastic controllability are

presented in analogy with the lumped parameter systems. In Section

8.3, four theorems are stated, giving sufficient conditions, which
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are useful to check the stochastic controllability. Section 8.4 is

devoted to show two examples for the purpose of verifying the suffi-

cient conditions obtained in Sec.8.3. Furthermore, in the third

example, the boundary controllability is also examined.

Controllability

Consider the following stochastic evolution equation in the

spaces V.H and V

(8.2.1) z u(t) +

.tn

AD(s)u(s)ds +

t

dAs(s

to

u fco +

,≪)[u(s)]

f*

B(s)f(s)ds,
Jtn

where the conditions for the operators A (t) and dAS(t,u>) are the

same as those stated in Chap.5, B(t) is a linear operator from U

(Some Hilbert space) to H and f(t) is a Ft~measurable+ control

signal which is an element of U.

As mentioned in Part 1, in order to study the stochastic control-

lability, we must consider the following two important items:

i) What stochastic measure shall we adopt?

ii) How to construct an exact control signal.

In this chapter, for convenience of discussions, the following

definitions are first stated:

tt
[Definition-8.2.1](Stochastic e-controllability)

An initial state uQ of the system Z~is said to be stochastically

e-controllable in probability p with respect to the specified target

t denotes the a-algebra generated by the u(s) process for tQ<s<t.

t+ The definition of Controllability in this chapter is the same as
the stochastic controllability in probability. For convenience
of descriptions, we omit,in the sequel, to write the term "in

probability".
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domain e within the time interval T=[tQ)tfJ, if there exists a

control signal feWad+ such that

(8.2.2) Pr{ ||u(tf) llg * e I u(to)=uQ }s 1 - p ,

where 0<p<l.

[Definition-8.2.2](Stochastic Controllability)

An initial state Uq of the system Eo is said to be stochastically

controllable within the time interval "r, if the inequality (8.2.2)

holds for any e>0 and any p, where 0<p<l.

Remark-8. 2.1: If the system considered is stochastically controllable,

then the system becomes stochastic e-controllable.

8.3. Sufficient Conditions of Stochastic Controllability

In this section, a theorem is first stated, giving sufficient

conditions for the stochastic e-controllability.

[Theorem-8.3.1](Stochastic e-Controllability): An initial state uQ

of the system Eo, is stochastically e-controllable in probability

p, with respect to the specified target domain e within the time

interval T, if the following conditions are satisfied:

(Condition-8.3.1) There exists a partial differential operator K(t)

such that, for any ifieH(G) and any symmetric positive operator Q

(8.3.1) (*, AS*(t)Q(t)AS(t)i(OH * (*, [K*(t)Q(t) + Q(t)K(t)]i|0H

for VteT.

where AD(t) - K(t) satisfies Coercivity condition-2 .2 .1. '>r

(Condition-8.3.2) For the given initial state uQ and the preasigned

parameters e,p, there exists a positive constant af>0 such that

tt
The symbol W d denotes the admissible control class defined in Chap.5-

See Eq.(8.3.3) of Condition-8.3.2.
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where , for t>s ,

3$(t,s)

(8.3.3)
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p.

Jt0
(tf,t

x$

B(t

tf,t

B*(t )$*(tfJt)dt]~1

>VH * i(1 - p> ≫

= -(AD(t) - K(t))$(t,s) and $(s,s) = I
at

Proof: Define

(8.3.4) P(t) = 3> (tf,t)[afl +

Prom Eq.(8.3.

(8.3.5) P(t)

1

Jt
fJs)B(s)B*(s)$*(tf,s)ds]"1

*$(tf)t) .

4). we can easily find that P(t) satisfies

(AD(t) - K(t))*P(t) - P(t)(AD(t) - K(t)) -

- P(t)B(t)B*(t)P(t) = 0 .

with the terminal condition P(tf) = I/af.

Setting f(t) = - -B*(t)P(t)u(t) and applying the stochastic

differential rule stated in Theorem-5.3.1 in Sec.5.3 of Chap.5, we

have

(8.3.6) E{(u(tf 3 P(tf)u(tf))H|u(t0)=u0} - (u0, P(to)uo)H

ftf

< E{ (
J
t0

u(s). [P(s) - (AD(s) - K(s))*P(s) -

P(s)(A D(s) - K(s)) - P(s)B(s)B*(s)P(s)]

u(s))Hds| u(to)=uQ} = 0.

From Eq.(8.3.4), the initial state P(tQ) becomes

ftf
1

(8.3.7) P(tQ) = $x(tf,tQ)[afI + | $(tf,s)B(s)B*(s)$*(tf,s)ds]

JtQ
x$(tf)t0).
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Prom Eqs. (8.3.6), (8.3.7) and Condition-8.3-2, we have

(8.3.8) E{(u(tf), P(tf)u(tf)) | u(to)=uQ}

< ($(tf>t0)u , [afl +

£ -( 1 - p)

Using the terminal condition P(t

r
*(t.,s)B(s)B*(s)≫*(tf,s)dsJ

x$(t f's )uo
H

)=I/af, Eq.(8.3.8) becomes

(8.3.9) E{ ||u(tf) || |u(to)=uo} < e(l - p) .

Equation (8.3.9) implies that

(8.3.10) Pr{||u(tf) ||jj> e | u(to)=uo> < 1 - p.

The proof has been completed.

Theorem-8.3.1 is easily extended to the following stochastic

controllability.

[Theorem-8.3.2](Stochastic controllability): In addition to

Condition-8.3.1, the initial state un of the system E-,is stochas-

tically controllable within the time interval T, if the following

condition is satisfied,

(Condition-8.3.3) For the given initial state u , there exists a

constant M such that
,tf

(8.3.11) (*(tf,t )u , [| 4(t

Jt0

,s)B(s)B*(s)$*(tf,s)ds] $(tf,t0)u0)

<; M .

Proof: With Eq.(8.3.4), setting f(t)=-~B*

Condition-8.3.1, we obtain,

(8.3.12) E{(u(t ), P(tf)u(t ≫H uCt

(t)P(t)u(t) and applying

)=uo } s (u0. p(to )u_)
0 H



<; ($(tf,t0)u0, [

2 ($(t

afl +

tf

*(tf

to

f,t0)uQJ[ *(tf 9
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tf

4(t ,s)B(s)B*(s)≫*(tf,s)dB]

to
x$(tf,

s)B(s)B*(s)$*(tf,t0

Using Condition-8.3.3, it follows that

)ds]~

-1

(tf,t0)u0)

(8.3.13) E{(u(tf), P(tf)u(tf)) } < M.

Since M does not depend on ot , we can choose a≪ such that, for e>0

(8.3.14) E{(u(tf), u(tf))H| u(to)=uQ} < e(l - p).

The proof has been completed.

In the following theorem, we assume that the control signal is

an element of H (G) for each teT.

[Theorem-8.3.3](Stochastic controllability): The initial condition

un of the system E^ is stochastically controllable within the time

interval "T, if the following conditions are satisfied,

(Condition-8.3.4) There exists a constant M>0 such that* for the

given initial state uQ,

(tf
(8.3.15) ($(tf)t0)u0, [ ^(tf5s)B(s)B*(s)$*^f,s)ds]"1^(tf,t0)u0)H

< M ,

where, for t>s,

3$(t,s)
(8.3.16) = - AD (t)$(t.s) and 4>(s,s) = I

%sH (iJj*O),the operator B(t) satisfies

3t

(Condition-8.3.5) For

(8.3.17) (*, B(t)B (t)*)H * ° for
*t£T



Proof: Define, for ＼a>0

(8.3.18) P(t) = **(tf,t)[al +

186 -

Then, it can easily be shown that

(8.3.19)
<#(t)

s)B(s)B*(s)$*(tf,s)ds]

x$(tf,t) .

- AD*(t)P(t) - P(t)AD(t) - P(t)B(t)B*(t)P(t) = 0 ,

(u(s), [P(s) - AD*(s)?(s) - P(s)AD(s)

- P(s)B(s)B*(s)P(s)]u(s))Hds|u(t0)=u0}

dt

with the terminal condition P(tf) = I/a. Since, from Condition-8.

3.5, for u(t)*0, we have

(8.3-20) (u(t), P(t)B(t)B*(t)P(t)u(t))H* 0 ,

we set

1 * - (u(t), As*(t)I<(t)As(t)u(t))H
(8.3.21) f(t) = - -B (t)2*(t)u(t)[l + 1_J

2
(u(t), ?<(t)B(t)B*(t)P(t)u(t))H

By using the same approach as in Theorem-8.3.1> we have

(8.3.22) E{(u(tf), P(tf)u(tf))H|u(t0)=u0} - (u0, P(to)uo)

ftf

= E{|

Jt0

= 0

Using Condition-8.3.4 and the terminal condition P(tf) = I/a, it

follows that

(8.3.23) E{ ||u(tf) ||^|u(to)=uo} =s aft .

Noting that ais an arbitrary positive constant and M does not depend
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on a, for any e>Q and any p (_0^p<l), we have

(8.3-24) E{|| u(tf)|| jj |u(to)=uQ} < e(l-p) .

The proof has been completed.

The conditions stated in Theorem-8.3.1 can not he easily checked

without the aid of computer. If the explicit forms of evolution oper-

ators $ and $ are obtained, the conditions stated in Theorems-8.3.2

and -8.3.3 can be examined. Then, setting some restrictions on the

operators B(t) and A (t), we obtain the following theorem, giving

easily checked sufficient conditions for the stochastic controlla-

bility.

[Theorem-8. 3. 4](Stochastic controllability)+: We assume that B(t) =

b(x)≪I (identity operator). The initial state uQ of the system E

is stochastically controllable within the time interval T, if the

following conditions are satisfied:

(Condition-8.3.6) There exists a sequence {^,4^; i=l,2,≪≪≪} of the

eigenvalues and eigenfunctions such that

(i) (AD(t)()>l3 <|0H = (3^, *) for Vh .

(id o<3;1<');2<---<'L<---<iim');1=°°.

(iii) {4>.; i=l,2,"≪} is complete orthonormal in H.

(Condition-8. 3. 7) B±.=(<$>±,BB*<i>.)E can be partitioned in a form of

(8.3-25) B.. = B.-B-.

which satisfies B＼ * 0 for all i.

(Condition-8.3.8) The initial condition satisfies

(8.3.26a) Vu0, <)'1)H* 0 for all i

+ As was mentioned in Part 1, i.e.the stochastic controllability
theorem contains the stochastic E-controllability theorem, we
consider oSly Problem of stochastic controllability.
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(8.3.26b) %±(mq, 4>1)h ^ 0 for all i .

Proof: Since the proof is similar to that of Theorem-8.3.3, from

Condition-8.3.7, we may show only that there exists a constant M

satisfying Condition-8.3.4. From Condition-8.3.6 the fundamental

solution $ relative to A (t) is expressed by

(8.3.27) S(tf,s) ^ e-＼(tf-s)<j,.(*.3OH .

Using Eq.(8.3-27), for ipeR(%(tf ,t))+ we have

(8.3-28) (i|), W(tf,t0)tp)H = (t|), %
1(t

,t )

>

*f

tf

ft*"s)BB*^*(tf,s)ds

xV-1(tf5t0)^)H

[ I
M*-*0*&

(,,, * ) ]2dB

1

1

^A^-VS.U, Vnds}2
0

OO

fco
a

If iJjsatisfies Condition-8. 3. 7, we have

(8.3.29) (*, W(tf3t0)^)H > r_
I

tf ~

1

V

oo

I

1

*iUf - to) _

*i(tf-t0)_ , 2

Ai

±(*. O)2

}2(D<, *±)h

min^
^ftQ)-

1
-! 1 *̂1

}2]|| *IIh
fcf - *o 1

Since from Eq.(8.3.28) it may be observed that the operator W(t_,tQ)

R(-) denotes the range space of the operator (.≪)
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is positive definite, it follows that

(8.3-30) (V W-1ttf,tQluolH = (uQ, % (tf,t0)[[

<

min
i

< ft

*f

s?<
e i(tf

The proof has been completed.

f^(tf.5s)BB*^*(t.5s)ds]"1

f

x*(t f,t

toL i

oVh

l|uo||2

)2

8.4. Examples of Stochastic Controllability

8.4.1. Evamples of Stochastic Controllability with Distributed Input.

[Example-8.4.1] A somewhat artificial but typical example is consid-

ered. The mathematical model is given by the one-dimensional parabol-

ic partial differential equation with white Gaussian noise coefficient,

(8.4.ia) 8uj^x) + a/u(^x) + cn(t ,u>)
^^x)

=
f
6(x-y)f(t,y)dy ,

3t M 8x4 dx JG

for (t,x)eTxG=]0.1[

with the initial condition,

(8.4.1b) u(tQ,x) = uQ(x) e L°°(G) a.s

and the boundary conditions,

(8.4.1c) u(t,0)=u(t,l)= 0 , for teT

and

to
h

,,,> 32u(t,x) _ 82u(t,x)
(8.4.Id) 2~^―I - 2

3x 1=1 ^ x=0

= 0 , for teT ,
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where a^, and c are constants which satisfy a^ -
_ c > 0 and ri(t3u>) is
2

a white Gaussian noise with zero mean and unit variance.

The partial differential operaors A

expressed by

(8.4.2) A = a4
3x

and

and A are respectively

(8.4.3) As = cl―
3x2

Noting that B(t) = /Q6(x-y)( )dy, from Eq,(8.3.1) we have

1 2 8

(8.4.4) K(t) = -c

4

i?f

Prom Eq.(8.3.3), the evolution operator $(t ,tQ) becomes

4
(8.4.5) $(t,,,tn) = I exp{ -(±tt)

1 u i=l

where <(>j= /2sin{iirx) .

(a4 - ic2)(tf - tQ)}d>1(*1,-)H

Prom Eqs.(8.3.11) and (8.4.5), it follows that

(8.4.6) **(tf,t0)[ 4(tf,t)≫*(tf,t)dtJ *(tf,t0)

0

≪ 2(iir)
- I
i=l

4

exp{2(iir) (a4 " 2° )(tf - t0)} - 1

Prom the fact that uoeL°°(G),Eq.(8.4.6) yields

(8.4.7) (*(t

Jt0

■l<*I.->H.

4(tf,t)BB***(tf,t)dt] *(tf≫t0)u0) =s M .

Therefore, since Condltions-8.3.1 and -8.3.3 are satisfied, the

initial condition u of the system Eq.(8.5.1) is stochastically

controllable in the time interval T.
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[Example-8.4.2] Consider the following heat equation

(8.4.8a)

2^?-
3x

for (t,x)eTxG=]0,l[

together with the initial and boundary conditions,

(8.4.8b) u(to,x) = 2sin(2TTx)cos(Trx) , for xe]0,l[

and

(8.4.8c) u(t,0) = u(t,l) =0 , for teT ,

where ri(t,u>)is the white Gaussian noise with zero mean and unit

variance, which denotes the random velocity of a fluid medium in

the heat conduction.

Prom Coercivity condition-2.2.1 in Sec.2.2.of Chap.2, it

is assumed that
1 2

(8.4.9) a2 + -c < 0 .

Since the partial differential operator A

given by

D 32
(8.4.10) A = a0―T

^8x^

and As are respectively

and

(8.4.11) As = ci-
9x ,

the eigenfunction satisfied in Condition-8.3.6 becomes

(8.4.12) <|>.(x) = /2sin(iirx) , for 1=1,2,"

In this example, noting that B = 6(x - v), then, from Condition-8.3-7=

B. . bee ome s

(8.4.13) B±J = ($., B2<j>.) = /2sin(iviT)sin(jviT)
i J H
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Prom Eq.(8.4.13), if v is an irrational number in G, then Condition-

8.3.7 is satisfied. From the fact that the initial condition u(to,x)

can be expanded by

(8.4.14) u(to,x) = sin(Trx) + sin(3irx) ,

if the irrational number v satisfies

(8.4.15) 0<v<i , -<v<l ,
3 J

then, Condition-8.3.8 is satisfied, i.e., the initial condition uQ

given by Eq.(8.4.8b) is stchastically controllable.

Boundary Input

In the following example, the results obtained in Sec.8.3 are

extended to the boundary controllability.

[Example-8.4.3] Consider once again the heat equation given by the

previous example-8.4.2,

(8.4.16a)
3u(t,x)

at
+ a

82u(t,x)

2 2
9x^

+ cri (t ,to)
3u(t,x)

8x

= o ,

for (t,x)eTxG=]0,l[ ,

with the initial condition,

(8.4.16b) u(tQ,x) = uQ , for xe]0,l[,

and the boundary condition,

(8.4.16c)
M!L^

= f(t) , and
Mt.01

= ^ fQr t£T
5

where f(t) is a boundary control and parameters in Eq.(8.4.16) are

assumed to be same as in Example-8.4.2.

In this example, denoting

(8.4.17) A° = aj_
2 -w2
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and

(8.4.18) As = c2―
3x ,

we can construct an evolution operator $(t,s) such that

00
(8.4.19) *(t,s) = I exp{-(lTT)2a0(t - s) }#.(*.,･) ,

i=l l i ! H

with the homogeneous Neumann condition, where <|>.(x)= /2cos(iTrx).

In order to examine the stochastic controllability, using the

same procedure as in Theorem-8 .3.4 , for iJjeR(^(tf,tQ)) , we have

ftf

(8.4.20) (*; W(tf,t0)i|≫)H= (ty, % 1(tfJtQ)[ B[^(tf,s)]B[$(tfjs)]dsJ

Jto

x$~(tf,t0)ljj) ,

where

(8.4.21) BLSCt^s)] = $(tf,s)i
1 x=*=l

= I exp{-(iTT)2ao(tfl - s)}^cos(iir)(4>,,OH
1=1 d 1 H

Equation (8.4.20) becomes

(8.4.22) (i|≫,W(tf,t0H) =

>

V'1

*f

1
[

V

oo
I

=1

/2 (iTr)2a2(tf - tQ)

(ufi
2

xcos(iir)((t)lJ*) ]

If $ satisfies (cos(nr))(*, *±)R * 0 for all i (or (cos(Itt))(i|>,*±>H

> 0 for all i), then it follows that
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(＼, W(tf,t0)*)H * 1 i {exp(i2a2(tf - tQ)) - 1}|| *|||

Consequentry, if uQ satisfies (cos(iir))(u0≫<f11)H* ° for a11 1 (°r

(cos(iir))(uOi(|>) s 0 for all i), we have

≪...≫> <u0, "-1(tf,t0)u0)H ≪
^(>

Jtf2Jt°f

, . 1)2H
VI

H
･

2

Hence, the initial condition un becomes stochastically controllable.

8.5- Discussions and Summary

In this chapter, according to the definitions of both the stocha-

stic E-controllability and the stochastic controllability, four theo-

rems have been developed, which give sufficient conditions. As men-

tioned in Part 1, one of significant defferences between the determi-

nistic thory of controllability and stochastic one is the fact that

the control signal must be obtained in a concrete form, which transfer

the given initial state to the desired target domain, because of the

randomness of the system state caused by the stochastic coefficients.

Prom this fact, in order to show explicit conditions of the stochastic

controllability for distributed parameter systems without the computer

implementation, the controllable initial state accompanies with some-

what severely restricted conditions. However, if the graphical pro-

cedure of hitting problem mentioned in Chap.5 of Part 1 is introduced,

a wide class of stochastically controllable initial states derived by

milder conditions stated in Theorem-8.3.3 can be examined.

For stochastic distributed parameter systems with the additive

noise disturbances, Condition-8.3.1 is always satisfied. Then, from

the results of Part 1, checking Conditions-8.3.2 or -8.3-3, the stocha-
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stic controllability problem can be examined CSee ref.[Sl6J).

The controllability problem for Hyperbolic systems with white

Gaussian coefficients is easily investigated from the same method

as described in this chapter.
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In Part 2, chracterizing the randomness of coefficients by white

Gaussian process and Markov chain process, the mathematical models

of distributed parameter systems with stochastic coefficients have

been formulated on the well-known Sobolev spaces. Furthermore, two

types of stochastic partial differential equations governed by Par-

abolic and Hyperbolic types were considered in order to establish

the common precedure to find the optimal control of stochastic sys-

tems which will hopefully be of a generalized mathematical model of

physically existing systems.

By using the Dynamic programming and Maximum principle ap-

proches, the optimal distributed and boundary control signals were

derived. It should be emphasized that the boundary control signal

depends on the randomness of coefficients and then the optimal

boundary control becomes complicated.

For the system with white Gaussian noise coefficients, the op-

timal control problem can be solved, because of Markov property

of the state space. However, in the case of Markov chain coeffi-

cients, we can only obtain the sub-optimal control signal from the

information of the state variable with the aid of stochastic eigen-

value problem. The proposed methods in Part 2 will contribute to

obtain a feasible solution to the practical design of feedback con-

trol for stochastic distributed parameter systems.

9.2. Discussions

The optimal control problem for systems with the mixed coeffi-

cients given by Definitions-2.3.5 and -2.3.6 in Sec.2.3 of Chap.2
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was not discussed in this thesis. From the results given in Chap.3,

it is easily found that the optimal control signal for the mixed

coefficients type can not be attained without the information about

the Markov chain coefficients. However, the stochastic eigenvalue

problem proposed in Chap.3 suggests us to construct the approximation

method of generating the sub-optimal control signal with the aid of

the estimation theory for Poisson process,[S6], [S17] ･

Furthermore, there are many cases where coefficients in a

system operator have the random property in the spatial variable x.

How to characterize the randomness for the spatial reagion and how

to formulate the mathematical model are further problems.
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APPENDIX A- (Proof of Theorem-2,2.1)

We assume the Sottoley space V is separable. Let e ,e?,'"e ,'･･

be an or'thonormal basis of H, Let V =[e
in

approximated operators by

(A-l) AM(t,w) = I

i=l

and

<AM(t,≪)(･), ei>e1

, 3e2,≪--,e J and define the

(A-2) dA*(t,u>)[-] =J(dAs(tjU)[.J, e±)He1

From Coercivity condition-2.2.1, we may find

(A-3) A^Ct.u) e L(Vm;Vm ) w.p.l .

M s
Using Am(t,u)) and dAm(t,o)), we can approximate Eq. (2.2.1) by

tf

(A-*) um(t) +
(

Aj(s,oOum(s)ds +
{

where

(A-5) "om-

m
I

i=l
<v

Prom Proposition 2

t

(A-6) E{(( dA*Cs

2

ei

,u)

Vi

2, it

<(s,u)[um(s)j = uQm ,

m

>
I (uq) ei^Hei

"* UO ln H as m"*"°°

follows that

t

Cum(s)]

m
= I E{[

1

= E{

s E{

≫

|p|<n

t

(As(s
t m

<(s,")[um(s)])H}

t

/?J f
(a p|(t>x)Dxum(s)> el>Hdw|p|<B>l2>

(
CA>)u (s), A>)u (s))Hds}

ft ,

t
<A

s

s)um(s ), AS?(s)u(s))Hds}
in n
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<A (s)um(s), u (g)>ds} .

tQ

Noting that Eq.CA^.1) is an m-dimensional ordinary Ito-stochastic

equation and using the well-known stochastic calculas, we have

t

(A-7)
§E{||

um(t)|| 2} + E{| <AM(s,a))ura(s), um(s)>ds}

t
- Ht (*m(B>V8>. ^s>um(s>>Hds>

= IE^II uOm|g >

From the inequality (A-6), Eq.(A-7) becomes

t
(A-8) |e{|| um(t)||

*}
+ E{j [

tO

<A (s,o))um(s) , um(s)>

2!<AS (s)um(s),
um(s)>]ds} * |E{||uOra||2}

Using Coercivity condition-2.2.1, we have

(A-9) E{|| u (t) ||
I)

+ aE{

t

( Hum(s)||>} ,E{||uOm||2}

From Eq.(A-9), there exist some constants C1 and C^ independent of m

such that

(A-10) E{|| u (t)|| I) i C , for VteT

tf

(A-ll) E{f || u (s)||
Jds}

< C
J ' m V I

From Eqs.(A-lO) and (A-ll), it is easily shown that we can ex-

tract a subsequence u + u in L (fi,P;L2 (T;V)). Then, let e± be

an arbitrary but fixed element of the basis. For m>i, we have
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(A-12) (um(t), e.)H - (uom, e.)H +

and passing to the limit, we have

(A-13) (u(t), e±)H ^ CuQ, e±)H +

+

CdA

A (s,(jj)u (s), e.>ds

sCs,oi)[u
(s)J, e ) = 0 ,

M
<A (s,w)u(s), e.>ds

t
(dAS(s,u))[u(s)J, e±)H = 0 ,

tO

from which it follows that there exists a solution which belongs to

the class

(A-lM) L2(n,P;L2(T;V))ftL°°(TjL2(fi,P;H)) ,

Furthermore, from the weak convergence of u ■+u, we obtain the ener-

gy inequality

(A^15) E{|| u(t)||
h +

aE{

t

||u(s)||
2ds}

< E{|| uo||
2}

tO

On the other hand, from Eq,CA^4), we have

CA-16) |l|u(.t)||2 +
ft

<AilCs,u>)u Cs), u Cs)>ds
j j_ in in

t °
- k＼. ^Cb)%U)- ^(s)um(s))Hds = ||| u0J|H2

+
[

(dA^(s5a))[um(s)j,um(s))H

tO
Usine Coercivitv condition-2.2 .1. it follows that

(A-17) iE{sup|| um(.t)|| 2} + aE{ftf|| um(s)|| ^ds}
teT )tQ

lE{||uOm||2} +EUup|J* (MjlB^^s)], Vs))HI}
tei tQ
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Applying the martingale inequalitylPlJ, we have for some C >0

(A-18) E{sup|f
teT >

Cs,u)IumCs)J, u Cs))Hl}

< lE{sup|| umCt)|| 2} + C E{J*f|| um(s)|| 2ds} .
tel JtQ

From Eqs.(A-ll) and (A-18), (A-17) becomes

(A-19) E{sup|| umCt)||
2}

<_C^ for some CZ)>0 .
t£X

The inequality (A-19) implies that

(A-20) um e L2(fl,P;C(f;H)).

Consequently, we can show that

(A-21) u e L2(Q,P;C(T;H)).

1 2Now suppose that there exist two solutions u (t) and u (t)

which satisfy Eq.(2.2.1) with the same initial condition u . Defin-

ing u(t) = u (t) - u (t), it is easy to show that u(t) also satisfies

Eq.(2.2.1) with zero initial condition. Then, from Eq.(A-15) we have

E-C11u(t)|| 2} = 0. This shows that Eq.(2.2,1) has a unique solution.

Thus proof has been completed.
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APPENDIX B, (Proof of Theorem-2.2,2)

As in Appendix A, let e^eg, ･ ･･,em, ･･･ be a basis of V. We con-

sider

and

m
J^O' ^H6! vOm - vQ in H as m ^ -

m
I (vo,e1)He1 vQm- vQ in V as m--

By using the same approximation procedure as in Appendix A, we can

define an approximation solution z (t) of Eq.(2.2.27) by

(B-3) Zm

where

(t) + F(s)zm(S)ds + j

(B-4) zOm " [vOm> W

(B-5) 2£(t) =

and

0 ~I

a£u) o_

t

eAJU.oOCzjB)] = zOm,

t0

(B-6) d^(t,a))[zm(t)] = [ 0, dA^(t5a))[vm(t)]]'#

Noting that z (t) is a solution to an ordinary Ito stochastic

equation and using the stochastic caluculus, we obtain

t

(B-7) E{[zm(t), zm(t)JR} + 2E{j [Xin(s)Zm(s)5 Zm(s)]Hds}

= E{[z
Om' zOm-lH } +E{f [S;(8)Zn(B)f S^(s)Zm(s)]HdS}!

f See Eq.(6.2,9) for definition of the operator Gg(t)
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Noting that the definition of inner product C*,'JHJ Eq.(B-7) becomes

(B-8) E{|| v (t)||2} + E{||va(t)||2} = E{＼＼vQJ2R} + E{ || vQm|g }

+ 2E{ft (vm(S), vm(s))Hds} - 2E{ft (A°(s)vm(s), vm(s))Hds}

tO tO

+ 2E{

r

CAj(B)Vffl(8),
^(B)Vm(s))Hds} .

tO

From Eqs.(B-l) and (B-6), it follows that

(B-9) E{|| v (t)|| 2} + E{|| vm(t)||2} < E{ || vOm||
＼
> + E{ || vQJ＼

＼}

+ 2E{ft (v (s), vm(s))Hds} - 2E{f <AD(s)vm(s), vm(s)>ds}
Jto *o

+ E{ <AS (s)vm(s), vm(s)>ds}.

From the relations

(B 10) 2

and

*
<Va)> vm(s))Hds " II vm(t)HH "

(B-ll) - 2
i;

<AD

0

(s)v (s), vm(s)>ds = <A

<AD

II VrJI H '

^O)vOm≫

(t)vm(t), vffl(t)> +
{

vOm>

<AD(s)v (s), vm(s)>ds,

the inequality (B-9) becomes

(B-12) Et|l vm(t)|l
g>

+E{<AD(t)vm(t); vm(t)>}
,E{||vOm||^

+ E≪AD(t0)v0m5 vom≫ + E{f' <As2(s)vm(s),
vm(s)>ds>

tO

t

+ E{| <AD(s)vm(s)J vm(s)>ds} .

tO
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Prom Coercivity conditions -2.2.2 and -2.2.3, we have

(B-13) E{|| v(t)|| 2} + OlE{|| vm(t)||
J}

< EC || vOm||
2}

+ V<Hvomllv} + E{＼1̂ ill%(s)Hvds}
to

t
+ E{( y2II vm(s)|| ^ds}

For some positive constants C1 and c2, the inequality (B-13) becomes

(B.lH) E{|| v (t)|| 2} + EC || vm(t)|| 2} < Cl[E{|| vOm||
^ + EC || vOmll^}]

+ c

t

J [E{|| vm(s)|| 2} + E{|| vm(s)||
2}]ds

tO

Setting as

(B-15) YmCt) £ E{|| vm(t)|| 2} + E{|| vm(t)||
2} ,

it follows that

(B-16) Y (t) s ClYm(t0 ) + c Y (s)ds .

Prom Gronwall's Inequality, we have

(B-17) Y (t)<M = constant independedt of m, for WteT .

The inequality (B-l6) yields that there exist subsequences v + v in

L2(T;L2(fi,P;V)) and vm > v in L2(T;L2(ft,P;H)).

Furthermore, from Eq.(B-3), we easily obtain

t

From Eq.(2.2.25a), we can easily find that there exists y>0

satisfying Eq.(B-13).
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teT

- 205 -

1 C1IE{H -0,X} + E{|1 XJ£}] + ^^'Ul vm(t)|| I

? ft
+ II v (t)|| ]dt} + E{sup| [dA^(s,U)[zm(s)]3z (s)jj}

^.prpji. m in in Li.

Using the martingale inequality, it follows that

rt
CB-19) E{sup| CdA^Cs,a>)[z|n(s)], z (s)]J}

teT jtn m m m H

< lE{sup||vm(s)|g} + C3E{{tf||vm(s)||2ds}

From the ineaualities (B-17) and (B-19) , (B-l8) becomes

(B^20) |E{sup|| v (t) |g} + E{sup||
0 .teT m h teT

where M_ is independent of m.

p
Consequently, we also have z e L

vm(t)|g} < M2

(n,P;C(T;V))xL2 (n,P;C(T;H)).

The remainder part of this proof is the same as in Appendix-A.

Thus proof has been completed.
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APPENDIX C, CWeat Solution of System ^)

1) Stable Boundary Condition Case

Let e,,e2,≪≪≪,e,e ,-,,≪･･be an orthonormal basis of H made up

with elements of tKAD*) = -Cxp|YeHn(G) and B%=0 on 3G for j=l,2,--,

n/2}. We take Kx,t) = <f>Ct)e.where (^eC1^) and <|)(t)=0. From

Eq.(2.3-10b), we introduce the following finite dimensional approx-

imation system

m

(C-l) u

where

m(t) £ I y

i=l 1
Ct)e±

(C-2a) y±(t) +

and

(C-2b) AJ

m
I

k=

t

{ Cek, AD*CS)e.)Hyk(s)ds

1 tO

m

+ I
n/2rt
I Ce

U-lJt0

n/2

(s) = I

IpIU
aJS(s3x)DP

k> A^s)e1)Hyk(s)dw.(s)

ft

(s),
*j(s)e1)Ij2(aQ)d8

From Eq.(C-l), we have the following system in the sense of Eq.(2.3

10b):

r p. n/2 /-t *≫_
(C-3) um(t) + A^(s)um(s)ds + H A?

) f m -?=-iJ -i- J

(s)um(s)dw.
m j

(s)

where
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(C-t) A°(.s)(.) =
f

(., AD*(.s)eklHek

AC*"_L

<C-5) A^C) -j^., A^s)ek)Hek

and

m

(0-6) g^Cs) = I (g Cs), ^,Cs)e, ) 2 e,
J k=l J J k LOG) k

For the system (C-3) , by using the Ito's formula defined by Pardoux[Pl],

(C-7) EC || um(t)|| ^} + E{ [2<AD (s)um(s), um(s)>

n/2 * ,
- I (A^(s)um(s), A^(s)um(s))H]ds}

o n/2 f
< E{|| u ||

1} +
2lE{ (g (s), um(s))ds} .

Un H j=l Jt J

On the other hand, we introduce the following system:

(C-8) zm(t) + C
n/2

[AD(s) - | I A?

J=l J
fs)A^(s)]zm(s)ds

n/2 rt

with the boundary condition B .(t) zm(t)=0 on Tx3G for j =l,2,"- ,^

From Eq.(C-8), it is easy to show that

(C-9) E{|| >(t)＼＼ 2} + E{J
t

[2<AD(s)zm(s), "zm(s)>
*0

"f (A?(s)zm(s), ^(s)^m(s))H]ds}
J=l J J

? H2 ＼t
(g (s), zm(s))Hds}
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Consequently, with the aid of comparison theorem, we have

(.C-10) E{|| umCt}|| ^ < E{||^Ct)|| 2} ,

Then, in the remainder half, we must show that

(C-ll) E{| f || zm(t) || ^dt} <_ M (M is independent of m)

Prom (C-10) and (C-ll) , we get

(C-12) E{J f|| um(t)||
*dt}

< E{

tf||

Zm(t)||
^dt}

< N
4- n

From the fact that there exists an analytic semigroup $(t,s)

with the infinitesimal generator AD(t) _ 1 L=^2A^t)As(t) whose

domain is V(A )･ Then, the solution to Eq.(C-8) becomes

≪＼, n/2 rt
(C-13) zm(t) = $(t3tn)unm + I $(t,s)gI?(s)ds

U Um j =ljto J

By using the well-known semigroup property and reversing the order

of integration, it is easy to show that, K>0,

(C-14) E{
rt n/2rt
I fH I

Then, noting that g.

(C-15) E{

$(t,s)g (s)ds|| jjdt}

e L2

< K

n/2 rt_
I E{ f||g

(n,P;L2(T;L2

,(t)||2Gdt} .

OG))) , we have

|| um(t)|| 2dt} < E{|tf||^m(t)|| Jdt} < M

(C-15) implies that we can extract a subsequence um + u in

L (fi,P;L (T;H)) weakly. By using the same procedure mentioned in

Appendix-A, we may show that u e L2(fi,P;L2(T;H)) .
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2) Mixed Boundary Condition Case

In this appendix, we restrict ourselves to the following simple

but interesting mixed boundary condition

(C-16) {8 (t)}.{

and

= {C9/3v)^ }

(C-17) ≪ (t)} J/2 = {(3/3v)

n, . ,

I
J=l

i n/2

where v is the exterior normal derivative on 9G and we further assume

(C-18) I < x

By using Green's formula, it is easy to show that the adjoint

I
n/2

boundary condition of {B.(t)}._, becomes {C.(t)}. n ≫ -,
n/2 J J"1 J J~2~"

= {O/3v)n~'e~J} ._n .., . Then, for any ip eHn/2(G), t(;eHn(G) and C. (t)^,

= 0 on Tx9G for j =l,2,･･･,n/2, there exists a boundary system

{T n ≫(t)}._£≫_n.-, such that

n/2 ^ n/2. -
(C-19) I (A^(t)ip, , i|)p)H- (*,, I A^ (t)K≫2)H

j =l J ± ^ n -l J = 1 j

j

L

-n^V^l'
Vj-£(t)VL2(3G)

[Theorem-C] : For any i>eV(A ), i|>eC-(T;H) and i(j(t )=0, we define the

following weak sense solution:

(C-20) f f

Jto
CuCt), -

+

3t
+ AD*(tH)Hdt +

, (tf(e
j(t),T

I
t

j = l 0

(u(t) Aj?t)i|i)Hdw (t)

.,n ≫(t)i|>)
0

dw,(t)
J + 2~l L2(9G) J
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= (v*(to))H +T|ttfcgjct),^.ct)^)L2(9G)dt

If,in addition to the conditions of Theorem-^2 ,2.1, Eq.(C-l8) is

2
satisfied,there exists a unique weak solution ueL

Eq.(C-20).

(fi,P;L2(T;H)) to

Proof; By using the same approach as mentioned in stable condition

case, the approximated system to Eq.(C-20) is given by

n/2-l

(C-21) um(t) + A°(S)umCs)ds + I

where

＼＼A>)um(s)dw.

0
n/2 t

+ I
f

EA^ Cs)um(s) + gr?(s)]dw.(s)

n/2rt

= ^ + l＼t ^3)dS ,
J--L tQ

(s)

(C-22)^(s) =
j1CBj(3),T.+n_,(s)ek)L2(3G)ek

(C-23) gj<s> =
ji(Sj(S)^j(s)ek)L2(3G)ek

D '"'s
and Am(s) and Ajm(s) are defined by Eqs.(C-4) and (C-5), respectively.

Then, by using the Ito's formula, we have

(C-24) E{|| um(t)|| h + E{( [2<AD(s)um(s), um(s)>

n/2-£ A
- I (A5(s)um(s), A^(s)um(s))H

1=1 3 J H

n/2

j=n/2-£+l J J J j H
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H2

+ 2 I

ft

E{ C
Cgjcs), iAs))HdS} .

Furhtermore, it follows that,for any e>0 and some C(e)>o,

CC-25) 2|(A^(s)um(.s), g Cs))H|

< e|| Ajs(s)um(s)||
g

+ C(e)||^m(s)|| ^

Prom Eq.(C-25), we have

(C-26) EC || um(t)|| ^} + E{| [2<AD(s)um(s), um(s)>

tO

n/2-£ n/2
C I + (1+e) I )(A^(s)um(s), A^(s)um(s))H]ds}
j=l j=n/2-£+l J j H

n/2 ft
- I C(e)E{ (^(s), g^s))^}

j=n/2-£+l JtQ J J H

9
n/2 (t

- E{|1 uOm"
H}

+ 2} E{J (S^(s)' um(s))Hds}

On the other hand, we introduce the following system:

(C-27) Zm(t) + [AD(s) - J( I + (1+e) I )A^[s)A^(s)]zm(s)ds

JtQ
2 j=l j=n/2-£+l J J

+ nf /cnyf g"1(s)dw(s)
j=n/2-£+l >t J J

unm

n/2/-t
+ I g (s)ds .

with the boundary condition B.(t)zm(t)=0 on Tx9G for j=l,2,･･･,n/2.

As is mentioned in the stable condition case, from the well-known
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comparison theoreju? we haye

(C-28) EC || um(t)|| 1) £ E{|rzm(t)|| 2} ,

Choosing e as a sufficiently small constant such that there exists

an analytic semigroup $ Ct,s) with the infinitesimal generator A (t)-
, n/2-l n/2 % - A
=■(I + Cl+e) I )A.(t)A.Ct) whose domain is P(A ), Eq.(C-27)
^ j=l j=n/2-£+l J J

becomes

(C-29) zm
n/2 ft

(t) = *eCt,to)uOm+ I *e(t,s)gJ(s)ds
j-1 t0

n/2 ft
- I v'cTFn $.(t,s)g?(s)dw.(s)
j=n/2-£+l JtQ J J

By using the semigroup property, it follows that, for K,>0,

(C-30) E{( f|| (

Jto J
*eCt,s)g°(s)dw (s)|| ^dt}

rtfrt

< K E{ M |t - s|

J t J f

Noting that max
n/2-l+l<_ j<n/2

E{|tfr ||
$£(t,3)^(3) |gdsdt}

tO tQ"0 "0

order{T1+n/2^} +l

n

order{T /2^><*-l,

(C-31) order{Vn/2-£} + 1 < L
<

1
^_ - n - 4

Consequently, it follows that for,K

(C-32) E{f f||
Jto

2>o,

we have from Eq.(C-18)

H 2 Jto
*e(t,s)g"1(s)dw (s)|| I II 8,(1011 %

J L2
at} .
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Then, we can easily show tha.t 1/1 -> u e L Cft?J?}L2(.TjH)) weakly, by

using the same approach as in Appendix-A.

The proof has been completed.
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