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Abstract

Descriptions are concerned with the static bearing

characteristics such as the pressure distribution, load

capacity, and volume rate of flow of the externally pressuri-

zed gas-bearings for some bearing configurations.

The complex potential theory is applied to the thrust

gas-bearings with multiple supply holes to yield the bearing

characteristics, and the thrust collar gas-bearings with slit-

supply are also investigated as well.

Externally pressurized thrust and journal gas-bearings

with porous bearing surface are analyzed with consideration

of the gas-flow in the porous material by applying an ex-

tension of Darcy's law.

These theoretical results are compared with experimental

ones and good agreements are observed between them.
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Introduction - *

The externally pressurized gas-bearings are recently-

investigated and applied to many devices especially for sup-

porting high speed rotors owing to their advantages of smal]

static and dynamic friction.

The externally pressurized bearing has a restrictor

generally such as a capillary or an orifice at the fluid

supply so that large bearing stiffness may be achieved. In

order to design the most reasonable restrictor, one should

know the bearing characteristics such as load capacity and

volume rate of flow.

In the followings, these characteristics are investigai

theoretically in connection with bearing clearance and supp]

pressure for various bearing configurations.

Externally pressurized thrust gas-bearing is rather

disadvantageous for its small load capacity. The recess to

hold high supply pressure is apt to make the operation less

stable because of self-excited vibration.

A simple method to improve the load capacity is to

arrange multiple supply holes on the bearing surface so thai

the average pressure may increase fairly well. For the thn

collar type of gas-bearing, multiple supply holes must be

required because of the bearing construction. These types <

t
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thrust gas-bearings are investigated in Part I by means of

the complex potential theory to yield the pressure distribu-

tion, volume rate of flow, and load capacity., which are com-

pared with experimental results.

The technique of complex potential theory is also applied

to the rectangular pad-type thrust gas-bearing with multiple

supply holes.

The load capacity may increase with increase of number

of supply holes which are spaced circumferentially in the

thrust collar bearing surface. This leads to a gas-bearing
innumerable

with slit-supply which is considered as
4

supply holes
A

arranged in a line.

In Part II, externally pressurized thrust collar gas-

bearing with single or double slit-supply is analyzed theo-

retically to obtain a design chart concerning load capacity

and volume rate of flow.

In Part III, externally pressurized porous gas-bearing

is investigated theoretically. The porous bearing can be

assumed to consist of a mesh structure incorporating in-

numerable tubes of fluid supply, hence it may be a limiting

bearing structure where infinite supply holes are arranged

on the entire bearing surface. The porous bearing surface

serves to restrict the gas flow and also to dissipate the
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energy of vibrations. So this type of gas-bearing is ex-

pected to have comparatively large load capacity and to make

stable operation.

Externally pressurized porous gas-bearing is analyzed

fundamentally for two cases of journal and thrust bearings.

The analysis can be applied to the other types of porous

bearings, namely;, porous thrust and journal gas-bearingswith

flat and solid parts, porous thrust collar gas-bearing, and

so on.

The theory may be verified with experimental results

with very good qualitative agreement and fairly good quan-

titative agreement.
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Part I Analysis of Externally Pressurized Gas-Bearing by

Means of the Complex Potential Theory

Chapter 1 Introduction

In practical applications of externally pressurized gas-

bearings, it is desirable to obtain the exact pressure dis-

tribution in the bearing clearance in order to determine the

volume rate of flow, which in turn leads to a determination

of the size of the restrictor (such as a capillary or an

orifice), and in order to calculate the load capacity.

The complex potential theory is one of the most appli-

cable methods to obtain these characteristics of the ex-

ternally pressurized bearing, and it has been applied to the

journal bearing^ ' and to the thrust bearing with several

(2)
bearing shapesv ;. The theoretical pressure distribution

coincided well with experimental results, but the load

capacity was hard to determine analytically because of dif-

ficulty of mathematical integration of the pressure over the

bearing area.

In Part I, externally pressurized thrust bearings are

analyzed by means of the complex potential theory for several

bearing configurations, namely, circular thrust gas-bearing,

thrust collar gas-bearing, rectangular pad-type thrust bearing,
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and iome modifications of them as well. The bearings have

multiple supply holes and no recess since the recess causes

the instability of the bearing.

By using the suitable potential function which satisfies

the boundary conditions of the particular bearing, pressure

distribution and volume rate of flow are obtained theoretically

for both an incompressible and a compressible fluid, while

load capacity is obtained theoretically for an incompressible

fluid.

Experiments are made to be compared with theoretical

results and very good agreements are observed between them.

Chapter 2 General Theory

2-1 Basic Equations

Upon applying the usual assumptions in gas-bearing theory,

Navier-Stokes equations reduce to the Reynolds equation for

compressible viscous flow:

The

act
/U

ax^a^l/ji 2#J-6(U^T "H^r^-j (1-2.1)

symbols are notated in page 203-209-

Assuming that the gas flow is polytropic with index n

and that u. is constant, Eq. (1.2.1) becomes
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If Ux― I7u =■0 or the sliding speed is very small com-

pared with gas flowing velocity due to the pressure gradient,

then the right-hand side of Eq. (1.2.2) vanishes. With the

assumption of -ft,=const.,Eq. (1.2.2) becomes

■3/ l+JLv32(p― 32(P^)

≫2r
'^-^r-1- = 0 (1.2.3)

For the case of an incompressible fluid, Eq. (l.2.l) be-

comes as follows with the same assumptions,

= 0 (1.2.4)

These are represented by the following Laplacian equation,

33C2 ^ ?>%* U

where P = p for an incompressible fluid

p_ fi^y^- for a compressible fluid

(1.2.5)

}

(1.2.6)

Eq. (1.2.5) is also expressed by the cylindrical co-

ordinates

(1.2.7)

The problem of solving Eq. (1.2.5) or (1.2.7) can be

-6-



transformed into the problem of finding a suitable complex

potential in the plane of complex number Z~ oc+ i.u= rete.

If a complex potential is obtained, the real part of the
of

potential function gives the form the pressure distribution

for an incompressible fluid case, and the imaginary part

gives the stream function. The pressure distribution must

satisfy the boundary conditions of the actual bearing.

2-2 Transformation to Compressible Fluid

The compressible solution can be easily obtained from

■^heincompressible solution by transformation through Eq.

(1.2.6). If the letterP is substituted for p of the

solution, p satisfies Eq. (1.2.5) or (1.2.7) and gives the

t-t-n.
pressure distribution in the form of p n where p is the

real pressure for the compressible fluid case. But K's, which

are constants determined by the boundary conditions mentioned

in later sections, must satisfy the boundary conditions for

the real pressure. Considering the relation between p and

P in Eq. (1.2.6), p and p in K's must be changed to

Po and ■R > respectively, through the relations

R = p5＼ p.-^ (1.2.8)

where n and p correspond to the boundary pressures for

-7-



a compressible fluid case. Thus the solution for a compres-

sible fluid can be expressed by

p = pirn: (1.2.9)

where P is corresponding solution obtained for the incompres-

sible fluid case using the correct boundary conditions.

Chapter 3 Analysis of Externally Pressurized Circular

Thrust Gas Bearing with Multiple Supply Holes

3-1 Complex Potential and Pressure Distribution

In this Chapter, such an externally pressurized circular

thrust bearing is analyzed that has multiple supply holes

spaced circumferentially as shown later in Fig. 1.3*2.

At the first step, an analysis is made on a bearing with

single supply hole located anywhere in the bearing as shown

in Fig. 1.3.1: A variety of multiple supply holes can be

obtained by the proper use of superposition.

In Fig. 1.3-1, we put a point source at radius a. and a

sink with the same strength q at radius r,z/o.ty the mirror

image principle so that the solution may satisfy the boundary

condition everywhere on the bearing periphery.

The complex potential function for this case can be

given by

-8-



Supply Hole

e

Pig. 1.3≪1 Configuration of a circular thrust bearing
with single supply hole

w-4Wz^)-^(z-|)) (1-5.1)

By separating the complex potential w into real and imaginary

parts, the pressure distribution p for an incompressible

fluid can be obtained from the real part in terms of di-

mensionless variables,

p = K, ha B^±LziMC£se_ (1.3.2)

where R= r/r, and Ra= CX/r,

K＼ and K2 are constants determined by the following boundary-

conditions:

V

-9-



Then

p=pa at R=r/r, = l (1.3.5)

P = p0 at R= Ra-Rs= (a-rsyr,,6 = 0 ■

K2 = Pa

I
(1-3-4)

It should be noted th^vt the boundary conditions are

satisfied only at one point of the inner edge of the supply

hole. However, if 2 is near to CL in Eq. (1.3.1), the curve

of constant pressure is given as a circular form so that this

pressure distribution may satisfy the condition of the supply

hole when Rg is small enough compared with unity.

In the above boundary condition, the value of the pres-

sure p just after the inlet hole is used. The p is not

constant but varies as the change of the bearing clearance

because of the pressure drop across the inlet restrictor,

such as a capillary or an orifice if one is used. However

it should be noted that the inlet pressure p , when the

bearing load is given, is determined by the bearing load and

is independent of the bearing clearance. Thus, the results

below may be applied to obtain gas flow, bearing clearance,

and .stiffness when the external restrictor is used.

For the case with multiple supply holes, the pressure

-10-



distribution can be obtained by a proper superposition of

the solution for a single supply hole. When there are Je

supply holes, each of which has radius fo and is located

at r= CLJ., 0 = 9j.(-&--O, J,...,h-＼), the resulting pressure

distribution for an incompressible fluid is

P = £ Kg fog****+' - ^Rcos(6-8^ (1.5.5)

where ≪,;and K^ are determined by the following boundary

conditions:

P * Pa ^

p=ftj At

R≪ I

(1.3-6)

When all of the fe supply holes have the same dimensions

Supply Hole

Fig. I.3.2 Configuration of a circular thrust bearing
with multiple supply holes
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and are located at the same radius (|?a) with equal angular

spacing of TJc/^fi,as shown in Pig. 1.3*2, all of K|i become

equal to be Kick)> a^d the pressure distribution is

[(1.3-7)

This reduction is shown in Appendix I.

The constants Kioy and Kz(k)are determined by the same

boundary conditions as Eq. (1.5-3) ≫then

t/
fo Pa,

lfe ofca i-*R?(Rl-R≫)fc
3 Rafe-(Ra-Rs)fe

K2fcj= Pa

(1.3-8)

Later on, this symmetrical case is analyzed; the results

for an asymmetrical case may be obtained by modifying the

results.

3-2 Examples of Theoretical Pressure Distribution

Figures 1.3.3 a-n(i1.3-4 show examples of theoretical

pressure distribution for the following bearing:

Number of supply holes,

Radial position of supply hole,

-12-
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Radius of supply hole,

0.9

0.8

0.7

0.6

a: 0.5

0.4

0.3

0.2

O.I

0

Rs = 0.01

Incompressible Fluid

k = 6
Ra = 0.5
Rs= 0.01

Pig. 1.3*3 Constant pressure curves with an incompressible

Figure 1.3-3 shows the constant pressure lines on the

bearing surface for an incompressible fluid. The pressure

at central clearance space within the circle of the supply

holes is kept at a considerably high value so that load

-13-



capacity can be much greater than that of the bearing with

a single central supply hole.

The pressure distributions for radial and circum-

ferential directions are shown in Fig. 1.3-4 for both an in-

compressible and a compressible fluid. For the latter, it is

assumed that the gas flo?raisothermally and that po- p

is taken to be 1 kg per square centimeter.

2

Q.

1.0

0.8

0.6

DA

0.2

V k = 6, Ra=l/2,Rs=l/IOO
V Po-Pa=' kg/cm*
v^ i i
＼v

} 0.25
}0.5

} 0.6

}0.75

V

Incompressible Fluid

―- Compressible Fluid

0.2 0.4 0.6 0.8 10

R

fa;

10 20

e°

(b)

30

Pig. 1.3.4 Example of pressure distribution for an incompressible
and a compressible fluid .

3-3 Load Capacity with an Incompressible Fluid

First, the load capacity of the bearing with a single

supply hole is calculated. Denoting <±>as

-14-
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then, Eq. (I.3.2) can be written as

p2 i$zMk?*case + te=±±&)i-(£fH≪ (1-3-n)

Equation (I.3.IO) shows the equipotential line for a given

P ･

It should t>enoted that this is the equation of a circle

in polar coordinates, where the center and the radius of the

circle are given by, respectivelyj

/- p 2
"^#-70 r,

6=0

(1.3-11)

The load capacity can be obtained by integrating the

pressure over the bearing area. Consequently the load

capacity is given by the volume of a three-dimensional figure

with the coordinates (x^.p) as shown in Fig. I.3.5, so that

it can also be obtained by integrating the area Sip) enclosed

by a constant pressure line with respect to the pressure,

that is,

ZTC
(P-Pa)r<jrde =

o

-15-
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X

Fis. 1.3.5 Schematic figure of pressure distribution

The constant pressure lines are circular as mentioned

above, hence

S(pJ=H-i^H2 (1.3.13)

then, the load capacity Wnj for a single supply hole is

w'≫-**$■£&'**

fa (1.3-14)

= 7C r,2K, C ! - R≪2)[|-(Ror Rsfytl - Ra(Ra-2Rs)]

as shown in Appendix II.
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For the case -with multiple supply holes, the load capacity-

is calculated by using Eq. (1.3.14),

WfW = ^r,2kKIOi)(＼-^)d-(RarRsfy[hHJRA-2Rs)) (1.3.15)

This reduction is shown in Appendix III.

3-4 Volume Rate of Plow

The volume rate of flow can be calculated from the out-

flow from the bearing periphery.

For an incompressible fluid, it becomes

-ft3
Qificoimp.

- - -g-Tj-r*

W-cowzp. -

Po"Pa

_de =

dP

-17-
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stfetf3

Kkjo

Winamp,

(1.3.16)

(1.3.17)

w

For the case of a compressible fluid, the pressure gradient

is given by

Substituting this into Eq. (I.5.I6), the volume rate of flow,

Qeowp which corresponds to the pressure p , has the follow-

ing relationship with Q*≪.conu).

i-t-n itn.

P "- ― Rl *^ n -―
IQ 10.

#
ft- y. y^

――― ･ D
l + n. "a

where K|(Win G;aamp should again be modified by changing

p0 and pa to Po and R. as indicated by Eq. (1.2.8),



3-5 Some Examples of Theoretical Bearing Characteristics

Load capacity and volume rate of flow are calculated

theoretically from Eqs. (1.3.8), (1.3.15), and (1.3-16) for

an incompressible fluid for several numbers and radii of

supply holes.

Figs. 1-3.6 and 1.3-7 show the dimensionless load

capacity ( Woo/Vc D2(P ―Pa.)'} an<*v°lume rate of flow

CQincomfc/n^CPo- Pc,)(3^)~{'] for the case of fc,- 6

versus radial position of supply holes for several numbers

and for several radii of supply holes, respectively.

Volume rate of flow increase with increases of R.a, f^g ,

and h but load capacity takes the largest value for the

optimum radial position of supply holes for given fe and

Rs- This optimum position is given in Pig. 1.3-8 for several

values of Rs . At the calculation for Fig. I.3.8, the volume

rate of flow and the angular stiffness of the bearing are

not taken into consideration. When the bearing is designed

with less value of Ra, one may obtain less volume rate of

flow, while with larger value of Ra, larger angular stiffness

may be obtained.
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0.8

0.7

0.6

iko.4

0.3

0.2

0.1

a.

O1 > ' 1 1―^J 0
0 0.2 0.4 0.6 0.8 1.0

Fig. 1.5*6 Bearing characteristics for several numbers

of suDnly holes

0.7

0.6

0.5

~c£o.4

°t0.3

0.2

0./

0

k = 6

Rs'0.05 _j
" 0.01 ~7

0.005 /

i i i /

/,
1.2

1.0

0.8

0.6

OA

0.2

Wfk) y/
Y^. &.:>C

^ ^ /N ＼＼

'y
≪§T Qincomp.

＼

/

I I I

0 0.2 0.4 0.6 0.8 10

Ra

a1?

Fig. 1.3*7 Bearing characteristics for several radii
of supply holes
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1.0

0.8

0.6

0.4

02

0/2 4 6

k

8 10 (2

Pig. 1.3*8 Optimum radial position of supply holes

3-6 Boundary Condition at Supply Hole

Eq. (I.3.3) represents the real boundary condition only

at an inner point of the supply hole. The following boundary

conditions could also be used instead of Eq. (1.3.3):

p = pa at R= I |

p= po at R-Ra-f-Rs, 6=0 J

which gives the real pressure at an outer point of the supply

hole.

When the radius of the supply hole is small, the differed

between the results is negligible. But the pressure distribu-

tion deviates from the real one when there are more supply

-20-



holes with larger radius.

~Forexample, Fig. 1.5*9 shows theoretical constant pres-

sure curves for the value of p with these boundary conditions,

which should correspond to the form of large supply hole

with rs/Tx= 0.05 and fiL/)7=0.5. Condition (1.3*3) satisfies

fairly well the real condition but gives the solution with a

smaller supply hole located at inner radial position, while

condition (l.3≫18) seems not to be such a reasonable boundary

condition to be applied because the deviation becomes larger.

However, though their radial positions and sizes are

different from the real one, it should be noted that these

shapes are almost circular. So the deviation maybe corrected

approximately by modifying the position of source in the com-

plex potential function.

If the source is put in the bearing surface (Z-plane) at

radius R£( <=O?/r,) instead of Ra ( = d/r,), and the sink

is put at R.= l/^by the mirror image principle, then the

pressure distribution becomes

The radius R* is chosen to give the pressure po at both

inner and outer edges of the supply holes. Then R<xmust be

-21-



p*fe
=

I+(Rg-^Rs)ft(Rfl-Rs)fe

{£I-(R*+ Rs)2k)(l~(Ra- Rs)2^}^

as shown in Appendix IV.

The constants K^ and K2cw are determined by the

boundary conditions (1.3-3) or (l≫3-18) to be

＼s * _ P°~ P*

K≪6 - W
+ (Ra+f?s>fe

]

(1.3-21)

Either of conditions (1.3.3) and (l-3≪18) gives the same

value of KiflO and ^20?) Then

We* = Kr?kK£(i-R*2)O-C^-̂ ^/O^R^-^-h

(1.3-22)

The chain line in Fig. 1.3-9 is the form of supply-

hole for this case, which is seen to satisfy the real con-

dition very well.

Figure 1.3-10 shows the effect of boundary conditions on

load capacity and volume rate of flow in dimensionless form

for Rs = 0.01 and 0.05. For small values of Rs (such as O.Ol)

-22-



R

k=6 , Ro = 0.5 . Rs = 0.05

h

Fig. I.5.9 Theoretical shapes of supply holes with various
boundary conditions

O1 ! ' ' ' ' O
0 0.2 0.4 0.6 0.8 1.0

Fig. 1.3-10 Bearing characteristics depending on various
boundary conditions
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there is little difference between the results with con-

ditions (1.3,3) and (1.3.18), but for Rs = 0.05 the difference

becomes appreciable, which could have been predicted from the

data in Pig. 1.3-9･ For the latter case, the modified func-

tions (l.3≪19)-(l≪3≪22)seem to be reasonably good.

3-7 Experimental Investigation

(a) Experimental Apparatus

Fig. I.3.H shows the apparatus of the experiments for

the pressure distribution and volume rate of flow (Apparatus

i). The upper plate (No.2) and the bearing plate (No.l) are

fixed parallelly by adjusting screws to compose a bearing

clearance" which is measured by three dial gages. The com-
behind

pressed air is fed to the annular groove the bearing plate,
A

and then to the bearing clearance through the supply holes

spaced circumferentially. The pressure in the bearing clea-

rance is measured by a U-tube mercury manometer connected to

the clearance through a small hole of 0.5mm diameter drilled

in the upper plate. The under bearing surface can be rotated

and slided by fine screws to measure the pressure distribution

on the entire bearing surface.

This apparatus is used for measuring the pressure dis-

tribution and volume rate of flow because the bearing clea-

rance is fixed.

-24-



(T Bearing Plate
Z Jpper Plate

3.1Air Supply
4, To the Manometer

51 Dial Gage

Fig. I.5.II Experimental apparatus (i)

The experiments are made on the static condition.

For investigating the load capacity experimentally, the

apparatus shown in Fig. 1.3.12 is used. (Apparatus II). The

rotor has a thrust bearing with multiple supply holes through

which the compressed air is supplied into bearing clearance.

-25-



Air
Supply

Dial Gage

Fig. 1.3-12 Experimental apparatus (il)

The pressure just after the supply holes is measured by a

TJ-tube mercury manometer connected with a small hole of 0.2mm

diameter drilled in the stator. The roter is guided in the

liner by an externally pressurized journal air-bearing in

order to prevent their contact.

-26-



The load is put on the top of the rotor by a lever and

load weights.

The bearing clearance is measured by a dial gage placed

on the top of the apparatus,

(b) Pressure Distribution

The pressure distributions are measured by the apparatus

I. The configurations of the bearings employed in the ex-

periments are shown in Fig- 1.3*15*

r

2rs

No. 2.r,(mm) 2a (mm) 2rs(mm) k

I 120 60 1.2 6

2 120 60 1.2 4

3

4

120 _60

60

1.2 8

120 6

5 120 1.2 6

6 1.2 6

Fig.l,3,13Bearings employed in experiments for pressure
distribution and volume rate of flow

The typical bearing dimensions are

2r = 120 mm

a = 30 mm

2r = 1.2 mm
s

k = 6

-27-



h - 15 fi

2
Po - Pa = 0-5 kg/cm

■^igs.1.3≪14-1-3≪18are the experimental results of the

pressure distribution. In each group of figures, there are

three kinds of pressure distributions which are

(a) On the position of c = 0 (radial direction through

the supply hole)

(b) On the position of c = 3C/k (radial direction just

between the supply holes)

(c) On the position of R = Ra (circumferential direction

through the supply hole)

Pig. 1.3-14 is the pressure distribution for the typical

bearing of Fig. 1,3.13. No.l under p - p =0.5 kg/cm and
O £1

for several bearing clearances. (h = 15, 30, 40 and 50 mic-

rons).

Pigs. 1,3,15-1･3-18 are for various values of p , vari ous

numbers of supply holes, various radii of supply holes, and

for various radial position of supply holes, respectively.

In these figures, the thick lines are the theoretical

pressure distributions calculated from the above theory with

polytropic index n = 1.0 (isothermal condition is applied).

The experimental results coincide very v--ellwith theore-

tical one which confirms the theory especially for the case

with low supply pressure with small bearing clearance.
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But, for the cases with large bearing clearance or high

supply pressure, the experimental results fall somewhat from

the theoretical ones. These deviations are larger as the

values of supply pressure and bearing clearance increase.

These pressure falls are considered to be due to the inertia

effects of the lubricant so that the adiabatic condition may

be applied.

When the clearance becomes very large, for example h =

50 microms, the pressure fall develops to the pressure de-

pression as shown in Fig. I.3.I4 (a)≪ (in Fig. I.3.I4, the

thin lines are only experimental). This phenomenum can be

observed also for an externally pressurized circular thrust

gas-bearing with a central single supply hole.O/ It may be

explained by a flow model that the choked condition is achieved

at the supply hole, and then, the supersonic flow region and

the shock wave may follow. After the shock wave the pres-

sure can be recovered as shown in figure. The theory^)

also shows that the large bearing clearance and high supply

pressure may cause the pressure depression, which can be

observed also in these experimental results.

The pressure loss at the supply holes will be investi-

gated later concerning the load capacity.
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(c) Load Capacity

Load capacity is investigated experimentally by using

the apparatus II. The fluid is compressed air.

The "bearings employed in the experiments are shown in

Pig. 1.3-19-

Supply Hole

2rs

No. 2r,(rnm)2a(mm) 2rs(mm) k

/ 60 , 30

60 | 30

1.2 6

2 1.2 4

3 I 2 8

4 60 . 30 3.0 6

5 20 1.2 6

6 1.2 6

Pig. 1.3≪19 Bearings employed in experiments for load capacity

Pigs. 1.3.20 and 1.3-21 are the experimental results of

the load capacity for various values of the bearing dimen-

sions, radius of supply holes, radial position of supply

holes and so forth, respectively. Experimental load capacity

is shown in dimensionless form S'w- VV/ 7t T＼2CP- p) versus

the bearing clearance h.

Fig. 1.3≪20is typical results which are measured by-

using the bearing No.l under several values of load. The

thin terdkenline in the figure is the theoretical one for an

-35-
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Fig. 1.3.20 Typical results of load capacity

incompressible fluid.

For a small bearing clearance, experimental results

of fw take higher values than the theoretical one because

of the compressibility of the fluid. But, for larger clea-

rance, the pressure fall after the supply holes becomes con-

siderably effective so that the values of ~§wmay fall down

even under the compressible theoretical one. These in-

clinations become remarkable as the load, and then the supply

pressure increases.

For the clearance of 30-60 microns, which seems to be

used practically, these effects cancel each other so that

the theoretical incompressible solution may be an approximate

value of -fw .
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(c)-(i) Effect of Compressibility of the Fluid

The pressure distribution with consideration of the

compressibility of the fluid can not be easily integrated

theoretically on the bearing area.

In order to estimate the load capacity of the gas-

bearing of this type, an approximate solution is introduced

as reduced in Appendix V, resulting

vvcomp. ― 2p vVfnxom.p#
(1-5.23)

which may be valid when the supply pressure is not so high.

When the pressure fall at supply hole is taken into account,

this equation must be

(1.3-23)'

where p" is modified pressure after supply hole which is

mentioned in the following section,

(c)-(ii) Pressure Fall at Supply Holes.

The pressure fall at supply holes maybe explained by

considering the flow pattern in the bearing clearance.

At the practical bearing, the stream lines are presumed

as shown in Pig. 1.3.22, in which the flow from the supply

hole may turn into the direction of the bearing clearance,

and there the energy loss must occur- because of the entrance

-40-



Supply

Port

Fig. 1.3.22 Flow pattern in the practical bearing

Supply
Port

Fig. 1.3.23 Assumed schematic flow pattern in the bearing
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effects as separation or contraction of the effective flow

area.

To analyze the flow, the flow pattern as shown schema-

tically in Pig. I.3.23 is assumed approximately, in which the

lubricant flows into bearing clearance from supply holes

(section A), then it flow? out to the bearing periphery

(B-F). B is the stagnation point with no flow velocity

towards the bearing clearance. At section C, the velocity

distribution is uniform as shown in the figure. From sec-

tion G, the boundary layers begin to develop to section F

which refers to the fully developed profile of flow velocity

At the supply holes, the pressure fall may occur on

account of two causes; one is due to the accelerating energy

of the lubricant from the stagnation point (B) to the bearing

lubricant flow (section C), and the other the energy con-

sumption for the development of the boundary layers and the

change of velocity distribution profile.

For the former, the acceleration of the lubricant,

Bernoulli's theorem aan be applied between B and C in the

figure neglecting the friction loss, resulting the follow-

ing pressure fall;

po- p:- 4-^*

-42-
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where p : pressure at the stagnation point B

p ': pressure at section C

Po : density of the fluid at section C

u : average flow velocity at section C

For the latter, the change of velocity distribution,

one can estimate approximately the pressure fall assuming

that the friction on the bearing wall is very small so that

the entrance length for the development of the velocity pro-

file may be neglected, resulting

This equation is reduced in Appendix VI

(1.3.25)

The further investigation is made in Appendix VII with

consideration of the friction loss at the entrance length.

The pressure fall at the supply holes can be estimated

from the total effects of Eqs. (1.3-24) and (1.5-25), then

%-?:- *if^2 -*-£-p.(5EEk)2 (1'3-26)

where % is coefficient of pressure fall and is taken as

%, - 1.4 by the above investigations, and Q,ois volume vate

of flow corresponding to pressure p'^is the density of the

fluid corresponding to pressure p " approximately.
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The pressure distribution, which includes the secondary

effects of compressibility and pressure fall, is shown in

Pig. 1.3.24 schematically.

Fig. 1.3.24 Schematic pressure distribution with con-
sideration of secondary effects

Fig. I.3.21 shows the experimental results of load

capacity for various bearing parameters such as radius of

supply holes, radial position of supply holes and number of

supply holes.

In these figures, the theoretical curves are drawn with

consideration of both effects of compressibility and pres-

sure fall at supply holes.

The theoretical values show a good conformity with the

experimental results both qualitatively and quantitatively

even for comparatively large bearing clearance and high

-44-



supply pressure though the above compensation terms do not

concern the shock or pressure depression near the supply

holes.

(d) Volume Rate of Flow

The volume rate of flow is also experimented by using

the experimental apparatus I in which the bearing clearance

is fixed to be constant by fine screws. The bearings em-

ployed are the same that used in the above experiments con-

cerning the pressure distribution.

30
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CM CM
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V6

i
^
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0 1
-- 0.2
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(a)

Fig. 1.3.25
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Fig. 1.3.25 Results of volume rate of flow for various

bearing parameters
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Fig. I.3.25 is the experimental results of volume rate

of flow for various bearing configurations such as the radial

position and number of supply holes. In these figures the

/p2― p2-
volume rates are arranged in the form of Q/ ° r<* against

the bearing clearance h, because a compressible flow rate

with n = 1.0 is expressed theoretically from Eqs. (1.3*16) and

(1.5.17) as

^comp. ― ―2p Uiiacomp.

where ^(Ra-Rs> 0) is such a function as given in Appendix

V, then Qcotnp.is proportional to (p02 ―Pj)/2PA or

/ P2_ p2
Q/_ue L£l_ is considered theoretically to be independent

with po or pa .

The thick lines in the figures are the theoretical

curves which is proportional to -ft,.

The pressure fall at supply hole is also taken into

account which lessens the flow rate. When the pressure

falls down to p " as obtained in the above section, the volume

rate of flow hefinmias
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in which the pressure fall is estimated as

Then

Q

The theoretical curves with consideration of the pres-

sure fall effect are also drawn by thin lines in the figures

The experimental results coincide very well with theo-

retical ones qualitatively and fairly well quantitatively,

but pressure fall effect is not so obvious in the experimen-

tal results.

The bearing clearance is very hard to be kepx constant

because of the bearing elastic deformation fey

be
the gas film

pressure so that the volume rate of flow may affect

siderably, which may cause the quantitative errors in

edA

it
con-

Chapter 4 Analysis of Externally Pressurized Thrust Collar

Gas-Bearing with Multiple Supply Holes

4-1 Complex Potential and Pressure Distribution

In this Chapter, externally pressurized thrust collar

-48^



gas-bearings with several gas supply holes are investigated

by using the complex potential theory. The gas supply holes

of these bearings are spaced circumferentially and com-

municate directly with the film without feeding into recesses,

(a) Single Supply Hole

For the first step, an externally pressurized thrust

collar bearing with only one supply hole as shown in Fig.

1.4.l(a) is analyzed; the bearing with multiple supply holes

as shown in Fig. 1.4-l(b) investigated by an appropriate

superposition of the results.

(a)

Supply
hole

Pa

~2rs

Supply
hole

Pa

(b)

Pig. 1.4-1 Configurations of thrust collar bearings
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Now consider the following analytic function on g-

plane;

* - W(Z)=|^|MMI -^JjgMgp.^

where r

rl

: radius to inner periphery

: radius to outer periphery

a : radius to supply hole

q : strength of source

Substituting Zo(- To 6 ) which represents the inside

circle of the bearing edge, the analytic function vanishes

its real part and only has imaginary part as follows;

ujo = vy(roeie) = L J^jMAcB-j)

where

B
-XiQ+ZTC)) ,

7*0+2*6) u^Q+t +2

in which !?.=ro/r,.Ra = a/r,.

as shown in Appendix VIII.

Similarly substituting 2|(= P.e'9) , which designates

the outside circle of the bearing edge, into Eq. (1.4.l),

w becomes

20-,= wfneLe)-l-^f-(A,,JB^) (1.4.5)



where

Ml - 2.SLo§(Xo/r,) 2JLogn.0

as shown in Appendix IX.

Thus the real parts of VJ0and UT(become zero so that thc

analytic function given by Eq. (1.4.l) can satisfy the boun-

dary conditions at both edges of the bearing, and gives a

suitable complex potential function for the bearing.

Dividing hj-into two parts of iJ1 and ttrz,and substitut-

ing <Z= T(il&into Eq. (1.4.l) to obtain the real part of &T

which gives the pressure distribution,

2**^*"- 2i0gC fi≫/r,)

- 27Dl%stn2t£atrc/rlfmZi%(rB/r,>

Real part of zo*is

(1.4-4)

M(U1) =^%(5i^Acosh2Bifoos^sinfi2B<jj=^^^+s/nh2B^) (1.4.5)

where

in which f£= p/T,

Now

wl=^^flff£-

-51-
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Real part of U1 becomes

where a" -
*l<2≪*r/ri2) _ 7z£oaCRR≪/Ro2)

Where A ~ 2l^iTo/r,) ~ 2JbaK0

(1.4-7)

Therefore, the pressure distribution for an incompressible

fluid can be expressed as

where K＼and /<£are constants to be determined by the follow-

ing boundary conditions;

p = po at r-a-rs,e = o

P= P^ at r=r0 or r,

(1.4.9)

where )s is rudius of the gas supply hole.

Using the boundary conditions into Eq. (1.4-8), K|

and K? are given by

where

i=-J°sin2As+si fihz3$

As
=

^%Ca-rs)/x
_7t£Joct(＼-fls/Ra)

2to%(r0/r,) 2logR≫

-52-
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in which Rs = n/r{

It should be noted that the boundary conditions are

satisfied only at one point of the edge of the gas supply

hole. However, if Z is near to 0.in Eq. (1.4.1), the curve

of constant pressure is given by a circular form so that

this pressure distribution may satisfy the condition of the

gas supply hole, if rs is small enough compared to the bear-

ing dimensions.

In the summation of Eq. (1.4.8), since the terms of

£^ 0 are negligibly small in comparison with the term of

1=0, the pressure distribution can be expressed by

P = Kl0{fcg(sin2A'+-sinhzB0)

- ty(sin.zA+sinh*B0)}+K2 (1'4#11)

Kij) -
Po-P*

22o$ (sin As/sin A$)

(b) Multiple Gas Supply Holes

When there are several gas supply holes in each sector

which are equally spaced circumferentially, as shown in

Pig. 1.4.2, the pressure distribution is obtained by super-

posing the solution which corresponds to the case of one

supply hole in each sector.

If there are k arrays of supply holes circumferentially
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Supply Hole

Pig. 1.4*2 Configuration of the bearing with multiple supply
holes

and k supply holes in each array in radial direction, the

pressure distribution is given by

where

k' k

P=Z£

o<=l/3=|

k' k.

+
K2(altp

(1.4-12)

(<y=i, 2,...,fe';>
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q. = ^ : angular interval

The boundary conditions to determine the constants Kiw.e)

and K2(*jB) are

P = Po 0* r = &≪-£*, e = (e-i;ete

p= p^ at r = r0 or r,

( Of= 1,2,..., M'; y9 = 1,2,..., k)

(c) The Bearing with Radial Grooves

If the bearing has radial grooves between the gas supply-

holes, as shown in Pig. 1.4*3≫ the pressure distribution on

one sector can be obtained by taking alternate sources and

sinks spaced 0% as shown in Pig. 1.4≪4≪

Supply Hole

＼>-Groove

rig. 1.4≪3 Thrust collar bearing with radial grooves
between supply holes



Source

Fig. 1.4*4 Arrangement of sources and sinks in the case
of ek = 6o°

The angle 0^ can be taken as the angle of real sector

in a particular bearing, so that k may be an arbitrary real

number.

The pressure distribution obtained similarly as Eq.

(1.4.12) is

Eq..(1.4-13) is valid for a sector bounded by Te^T^Ti

and ^'= 0s-^-. The boundary conditions to determine

the constants K|(o/>^; and K2fvy≪) are

p = c- )
/" 'f0

at r * CU - Ow, 9 ≪(/8-09b

p - pa ≪t r≪ro or r,
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4-2 Some Examples of Theoretical
Pressure Distribution

The bearing dimensions are chosen for calculations
as

follows;

Ti/n = Ro = ＼/3

rs/J7 = Rs = I/75

fe-fc = 1 kg/cm2

The number of supply holes is taken to one as shown ii

Pig. 1.4.l(a) and six as shown in Fig. 1.4-l(b) or Fig.

1.4.3≪ The case of one supply hole is fundamental since

the case of multiple supply holes is obtained by super-

position of it.

IncompressibleFluid

ComryessihteFI11W
1.0

0.8

L.0A

0.2

e-s;~4

A

-6:0'

I
/

'

jrO-XT

＼

k

2/3
R

(a)

2

£

IQ.

0 20

e°

(b)

40

Fig. 1.4-5 Pressure distributions for the case of one

supply holes
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Fig. 1.4≪5(a) shows the pressure distribution calculated

on the circle of radii with R. - T/V＼=3/6, 4-/6, and S/6

and Fig. 1.4.5(b) shows the pressure distributions on the

radii locating on 6 =0°, 50 and 30°for the case of one

supply hole.

IncomareasMeFluid

Q.

＼

Q.

ComprassibteFluid

2/3
R

(a)

1£ 0.6

rf1

I
Q.

0.

0 10 20 30
/

e°

(b)

Pig. 1.4≪6 Pressure distributions for the case of six
supply holes

Fig. l-4≪6 shows the pressure distribution for the case

of six supply holes spaced equally in the circumferential

dirfifit.-inn.

4-3 Load Capacity with Incompressible Fluid

(a) Potential .Function in Series

The pressure of Eq. (1.4.8) is hard to be integrated
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with respect to the bearing surface in order to yield the

load capacity, though Eq. (1.4.8) can be conveniently used

for the evaluation of the pressure distribution.

In the followings an externally pressurized thrust

collar bearing with single supply hole as shown in Fig.

1.4*7 is analyzed concerning the load capacity.

#

Supply

Hole

Pig. 1.4-7 Schematic diagram of a thrust collar bearing

At the first step, a single point source of strength q

is put at Z = a, where 2 represents a complex plane con-

taining the bearing surface. The complex potential function

is

w.cz>= ^E-A*('--i->

-59-
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This point source function cannot satisfy the boundary con-

ditions, or the potential cannot be constant at bearing

peripheries Co and C≫. For the first correction of potential,

two point sinks of strength -q are put; one is at the in-

verse point of a with Co (Z=ro5/G.)in order to cancel the

potential Wi(Z) and to make constant, the other at Z = Ti2/(X

in order to cancel Wi(Z) on the peripfery C,, resulting

iflb<z)=~fe%('--^-) (1.4.15)

WaCZ)=- 4^(1--%) ―4＼'-^)2(f))d.4.l6)

respectively.

WzqCZ) compensates the function W/(2)on Co, but its

effect on C( is not considered; in order to cancel WT20(Z)

on Ci , the following potential must be added

**,w=4*sfl-■!£) = £≪≪[■-(■&)*(#] f1-*-")

Similarly in order to cancel iO^ifZ)on Co , a source must

be added

^ra=4%(i-^S-)=-^%0-(lf(f)j <i-4-">

An array of infinite sources and sinks must be put

according to the similar reduction so that the potential
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may be canceled by each other to be constant on the bearing

peripferies Co and C＼, that is

^a-l^l'-f) =-4%[H£f (#)) (1-4.19)

U4j(Z)=-JF&3(f *fr) =-4*≫[H-£i1fffl (1-4-20)

and so forth. Denoting Wn.(Z)as summation of these sources

and sinks, namely

(1.4.21)

^Hfj^im-khljHWm
When m tends to infinity, one can obtain the potential

function which may be constant on both of Co and C, .

Complementary solution of Eq. (1.2.5) may be added by

the boundary condition that the pressure at the bearing

edges is p (ambient pressure):

Then, potential function WZ) is obtained as

bT(Z)= lint f&WZ) + wy,(z)]

(1.4.22)

(1.4.23)

Eq. (I.4.23) may be considered as an expansion of Eq. (1.4.8)

in series, and is used for the calculation of load capacity
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instead of Eq. (1.4.8).

The pressure distribution can be obtained from the real part

of Eq. (1.4.23) as

where

p
=jg;m,jJLf d

I -2Ro*i(R/folcase+ Rt*(R/Rgf

R=r/n, Rft= fl/r,, an.d Ro=ro/r,

(1.4.24)

When the boundary condition of Eq. (l.4≫9) is applied,

the strength q has the following relation with Kf of Eq.

K, A.
Alt

aad K2 = p

(b) Evaluation of Potential Function on the Bearing

Peripheries

The real part of function TOm.(Z) is

(1.4,25)

(1.4.26)

Substituting r= r0 , one can obtain the potential on bearing

nericherv Co as

^u.-Mv-s-jW (1-4.27)

The potential is constant everywhere on Co because this

equation is independent of 9;
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In the other hand, by substituting T=r, into Eq. (1.4.26

the potential on C* becomes

*^=JfJ≪wW
'(1.4.28)

The first term is independent on 0 to be constant, and the

potential deviates from the real bearing boundary condition

by the second term, which contains the variable 0 . But

the deviation becomes negligible for sufficiently large

number of m because ( T＼/To) can be neglected compared with

(T＼/fo) . Now, the complementary solution "HJ≫(Z)is added

to make the potential to match the ambient condition both on

inner and outer bearing peripheries. Then the real part of

Wo(Z) > Aoi^r+/Afl2,should satisfy the following conditions:

AolloaT<,+ Ao2 +W& = 0 (OK Co) )
f (1.4-29)

where

** ~*{^r.,=Szij^imr

+"2K
fog1 (rJ ＼ rp;

-6V

I

(1.4.30)

(1.4-31)



For sufficiently large number of rn W^ becomes

^ = -Jb <*.+ /)4*8-£■ (1.4-51)'

Obtaining Aotand Ao2 from these equations, the complementary

solution becomes

£ ftaaff/P
}･(1.4.32).

(c) Load Capacity^Incompressible Fluid Case)

Now consider the following potential function which

represents a single source at Z = (X ,

Denoting

≫-:sf**r'-i-

p to be the potential

(1.4.33)

of this source resulting

P =aWi = J^|(-ff~2(^)a>se + ＼} (1.4-34)

Then, p is integrated on the region inner than a circle of

radius r , that is

W = ＼ ＼ P rdirdB

=^riT^i(TB2-2(-*)cose+i|ded
r

(1.4.35)

The integration with respect to Q can be calculated as
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a

W

Source

in

Fig. 1.4.8 Positions of source for obtaining load capacity

-65-

FbgHif-X-if'*30*'!* = 0 (rsa) )
>(1.4.36)

=4zQo$(r/&) j

(r>a.)
This is reduced in Appendix X .

Then Eq. (1.4.35) becomes as follows:

W = 0 (r<a) (1.4-37)

The integration of p on the annular region as shown in

Pig. I.4.8 is obtained from the results of Eqs. (l.4≫37)

and (1.4-38) as follows:

I

Source

E



(i) when the source locates in inner region (i)

(ii) when the source locates in the annular region (il)

W* = %1^^^-^^-Tf)} (1.4-40)

(iii) when the source locates in outer region (ill)

＼Nm=0 (1.4.41)

Lastly, the integration of the term of complementary

function
Pc = Jg{u}0} = Aa, &0%r + A02 , in the

region II is

Wc = ＼ 2icr(A0llb$r+A<*)dir

=Z7c(Al>,{^ll^^iLo^0}-(f-f)(rlz-r0z))

}

(1.4-42)

The pressure distribution of Eq. (1.4-24) can be in-

tegrated within the annular bearing surface for each term

of it by using Eqs. (l.4≪39)-(l≪4≫42),resulting

"'-i^-tf'-g^-tf-tf'} (1-4.43)

The pressure distribution is truncated at the supply

hole so that its effect must be subtracted from the load

capacity of Eq. (1.4.43). The pressure distribution of
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truncated part can "be approximated by

p

(1.4-44)

where the boundary condition of p=p at r=Tj is applied, and

assuming that the coordinates are taken for the supply hole

to locate at the origin. Then, the effect of truncated part

is

Wtr.
c

27cr(p-po)dr
si

8

The load capacity VV is obtained as

W = W' - VVtr.

'-U*-rt%g%-i*-#+-fii

(1.4-45)

(1.4-46)

For the case with multiple supply holes, the load

capacity can be obtained by the appropriate superposition;

for the bearing- with k*tisupplyholes, the load capacity is

where

W(i,.ur--?t-|>(n-r0; ftL^/rj ^ 2 " (1-4.47)

$ttp=~4T£Kl(ft,p> (1.4-48)

4-4 "Volume Rate of Flow

The quantity of flow can be calculated from the outflow

from the bearing edges.

For the incompressible fluid, it becomes

-67-



Wirucomf, W*w**f r*L->
(,,49,

_ 7tfe£3£
fer

in the case of the bearing without radial grooves,

n b*3f f^U^PJ a* fi4fU*"<Hll≫f≪r}

(1.4-50)

in the case of the bearing with radial grooves.

For the case of a compressible fluid, the pressure

a-radient is e-ivfinbv

Substituting this into Eqs. (1.4.49) and (1.4.50), the

volume rate of flow, Q , which corresponds to the pressure

p has the following relationship with Q,. ,r* ox mcomp/

4-5 Some Examples of Theoretical Bearing Characteristics

Fig. 1.4-9 shows some theoretical characteristics of

the bearings, load capacity and volume rate of flow, with

some bearing parameters, such as number of supply holes,

radius of supply holes and ratio of bearing radii, respecti-

vely.In these figures, the bearing characteristics are shown
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in dimensionless forms:

fc'is taken to be one.

For any bearing, the supply holes must locate at inner

position than the middle of the thrust collar in order to

maximize the load capacity. The volume rate of flow may also

vary with the value of f?a but this is not so conclusive at

the bearing design because the value of fQ is almost constant

as long as the supply holes are arranged near the middle of

the thrust collar.

Ro 1/3, k =6
Rs=I/3OO

I/I 00

30.2

if

%0>

1/60

l

i

n i -r- -

! I Olncomp
＼Y Th*(P0-pa)/3v /
＼ ＼ j _―.

■

Ax x-

/ 7t(r,2-ro2)(po-pa)

//,
<

* ＼/

＼V,

＼

2/3

Ro

(a)

Fig. 1. 4-9

/
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Fig. 1.4*9 Bearing characteristics for various bearing

parameters



4-6 Experimental Investigations

In order to verify the foregoing theory, the pressure

distributions, load capacities, and volume rates of flow

are investigated experimentally by using the same apparatus

as in Chapter 3≫

(a) Pressure Distribution

Pressure distributions of the thrust collar gas-bearings

are measured experimentally by using experimental apparatus

I for three bearing configurations which are with a single

supply hole, with 6 supply holes without radial grooves

between supply holes, and with 6 supply holes with grooves,

respectively as shown in Fig. 1.4-10.

Mo. I

Supply Hole

Mo. 2

Supply Hole

No. 3

< 1.6+

Supply Hole

Pig. 1.4.10 Bearings employed in experiments for pressure
distribution anr) volume rate of flow
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Fig. 1.4.11 Results of nressure distributions
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Pig. 1.4.11 is the experimental results for some bearing

parameters. In these figures, the thick lines show the theo-

retical curves calculated by the foregoing theory assuming

n = 1.0 (isothermal condition).

For the particular case with a large bearing clearance

or high supply pressure, the pressure loss at the supply

holes may occur as also mentioned in Chapter 3* Furthermore

the pressure depressions are also observed near the supply

holes for the case of larger bearing clearance (for example

h≫50 microns) such as shown in Fig- 1.4-ll(a) in which

thin lines are only experimental.

However, for the whole, the experimental results coin-

cide very well with theoretical ones for any case of the

bearings especially for a small bearing clearance and com-

paratively low supply pressure where a fully viscous flow

may be presumed.

(b) Load Capacity

Load capacity is also investigated experimentally by

using the experimental apparatus II mentioned in Chapter 3*

Configurations of the employed bearings are shown in Fig.

1.4.12, all of which have no radial grooves between supply

holes.
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-Supply Hole

rs

Mo. 2r,(mm)
2r0

(mm)
2a

(mm)
2rs

(mm)
k

I 90 30 60 1.5 6

2 90 30 60 15 4

3 90 30 60 1.5 8

4 90 30 70 I 5 6

5 90 | 30 : 50 t.5 6

6 90 3.0 6

7 60 30 45 15 6

Fig. 1.4.12 Bearings employed in experiments for load
capacity
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> o
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Fig. 1.4.15 Typical results of load capacity

80

Figs. I.4.I3 and 1.4≪14 are the results of experiments

in which the dimensionless load capacity ＼N/Tt{Ttz-T^){po-pa)

is shown versus the bearing clearance with some bearing
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parameters such as bearing load, radial position, radius and

number of supply holes, and ratio of inner and outer bearing

radii, re spectively.

Fig. 1.4.13 is a typical results of experiments using

the bearing specimen No.l. The load capacity is larger than

the theoretical one (thin broken line) for a small bearing

clearance but it falls down as the clearance increases, which

is the same tendency as observed for the circular thrust

gas-bearing in Chapter J. It can be explained by the con-

sideration of the compressibility of the fluid and the pres-

sure fall at the supply holes.

Figs. 1.4.14 are the experimental results of the load

capacity with various bearing parameters. In these figures,

the theoretical curves are shown by thick lines with consider-

ation of both effects. They are taken into account quite the

N
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Pig. 1.4-14 Results of load capacity for various
bearing parameters
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same way as mentioned in Chapter 3 . Thin lines are for

the incompressible solution without the inertia effect of

the fluid.

Theoretical curves show a good conformity with the ex-

perimental ones especially for a small bearing clearance for

any bearing configurations,

(c) Volume Rate of Flow

The volume rate of flow is investigated experimentally

by using the experimental apparatus I with fixed bearing

clearance.

Three types of thrust collar bearings are employed which

are with single supply hole, with six supply holes without

radial grooves, and with six supply holes with radial grooves.

The bearing configurations are the same that are used in the

experiments concerning pressure distribution.

Figs. I.4.I5 are the experimental results in which

theoretical curves are drawn by thick line. The experiments

are made under various values of p . The volume rate of

°
/b2_p2

flow is arranged in the form of Qj fi7^ against the

bearing clearance h, because this is independent on pD or

Px theoretically.

When the pressure fall at supply holes is taken into

account, the volume rate of flow decreases as shown by thin
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Fig. 1.4.15 Results of volume rate of flow

lines which are calculated by the same account as mentioned

in Chapter 3-7 concerning the circular thrust bearing with

multiple supply holes.

The experimental results show a good agreement with the

theoretical ones qualitatively and quantitatively. The pres-

sure fall effect at supply holes is, however, not so obvious

in the experimental results.
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4-7 Application to the Conical Bearing with Multiple

Supply Holes

The foregoing theory concerning an externally pressu-

rized thrust collar gas-bearing can be applied to the

conic£.igas-bearing with multiple supply holes as shown in

Fig. 1.4.l6(a).

SupplyHole Pq

(a)

2xsinOv
k

Supply Hole

2rs

Pa

(to)

Fig. I.4.I6 Configurations of conical bearing.

Denoting the coordinates ( r, Z, 0 ) on the bearing sur-

face as shown in the figure, namely

T i radial ordinate

Z : ordinate normal to the bearing surface

0 : ordinate normal to r- and Z-axis
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and letting -ftbe bearing clearance normal to the bearing

surface, then, the bearing surface can be developed in a

plane as Fig. 1.4.l6(b) on which Reynolds equation as Eq.

(l.2.l) is valid. Hence the pressure distribution can be

obtained by the same form as Eq. (1.4.12), that is

r '^o1^1 2loyr0/n) ztytro/ro
(1.4.55)

Ufcinz'lth%(T/(X> i drtf K(e~$ek) i K

where the angular spacing of the supply holes is

9fc = 27LSlrvQv/k

2.QV : vertical angle of the conical bearing

(1.4-54)

and radii To and T) are the distances from the top of the

conical surface.

The load capacity can he ohtained by integrating the

axial component of the pressure on the projected bearing

area, then

Wc - (r' f*(p-pa)sln9v rdedcrsinej

= sin26v＼ ＼(p~pa)rdrdte
(1.4-55)

- * teK,frt'-r/)laUgSL-tf-rf + g))***,
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where We is load capacity of the conical bearing.

The volume rate of flow can be obtained quite the same

eauation as Bq. (1.4.49) or Eq. (1.4.51).

Chapter 5 Analysis of Externally Pressurized Rectangular-

Pad Type Thrust Bearing

5-1 Complex Potential and Pressure Distribution

The technique of applications of the complex potential

theory to externally pressurized thrust bearing with multiple

supply holes is also useful to analyze the other thrust-pad

type gas-bearings.

In this section, a rectangular-pad type thrust bearing

is analyzed theoretically. The bearing has multiple supply

holes without recess located anywhere on the bearing surface.

This type of thrust bearing is fundamental of rectangular

or square thrust-pad, and of externally pressurized journal

bearing with multiple supply holes as well when the ec-

centricity ratio of the journal is small enough to assume

that the bearing clearance is constant. For the application

to the journal bearing, a transformation has been obtained

with consideration of an approximate bearing clearance

variation.^
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Analyses are made on the rectangular thrust pad with

multiple supply holes, assuming that the "bearing clearance

■ft.is constant.

For the first step, rectangular thrust pad with only

one supply hole located anywhere on the bearing surface is

investigated; an appropriate superposition will give the re-

sults of the cases with multiple supply holes.

Denote the bearing surface as the complex plane (Z-plane)

with X and U-coordinates parallel to the rectangular bear-

ing edges, and with the origin,-'at the center of the bearing

as shown in Fig. 1.5*1. The supply hole locates at 2 = CL

(ctis also a complex number), where a source of strength

should be put on the complex plane. This single source,

however, could not satisfy the boundary conditions which is

that the real part of potential function is constant at

x= ±B/2 and also ^= + L/2 as well, where B and L are

breadth and length of rectangular bearing, respectively.

In order to satisfy this condition, infinite arrays of

infinite sources and sinks are put as shown in Fig. 1.5*1

by the principle of inverse point method. In Fig. 1.5*1≫ the

bearing peripheries are shown by the thick solid lines. But

now take a group of 4 segments as enclosed by the thick broken

lines, then the infinite sources and sinks are equivalent
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Pig. 1.5-1 Configuration of rectangular-pad thrust bearing

and arrangement of sources and sinks

with infinite arrays of inifinite sets of these groups.

The complex potential function of the set is given by

ujo(Z>= ^ £03(z - a)-t-Jc i2og[Z - (B+i U + a)

(1.5.1)

where 3C is the conjugate complex number of (X.. Then the

complex potential of infinite sets with spacings of 2B and

2L in x and y-direction, respectively, which satisfies the

boundary conditions at the bearing peripheries, is
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w(2) = f f x,(7,-20LB-2LbL) (1.5.2)

+jog<BA!^!2£S-b9c0ASfe^S^L| (1.5.3)

The deduction is shown in Appendix XI.

The pressure distribution p for an incompressible fluid

can he obtained from the real part of the complex potential

function of Eq.(1.5.3)5 that is

where Q* and O.u are x and ^-components of Q., respectively,

that is

a = ax-hia-% (1-5.5)

K, and K2 are constants determined by the boundary con-

ditions which are

p

p

at Z = a-rs

at the bearing peripheries

where rs is the radius of supply hole.
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The pressure distribution for the case of multiple

supply holes can be obtained by the superposition of the forms

of Eq. (I.5.4) for each supply hole. For the case with

fcsupply holes, k K＼$ and K2 can be obtained by the con-

/"̂i■+*"!one rst

p p0 at Z = a^- ns H= i,2,...,fe)

P ~Pa at the bearing peripheries

where ^'represents the position of each supply hole.

(1-5.7)

5-2 Load Capacity with Incompressible Fluid

For the first step, a potential is fundamentally con-

sidered in which a point source of strength + 8 locates at

x= 5i and i£=CLy.,that is

UJCZ) -kHli-fy

whose real part p is

p^%[a^ff^J

(1.5-8)

(1.5-9)

Now consider a double integration of p with respect to

X and ^ within the rectangular region bounded by

2. ■> 2.-4*2.

as shown in Pig. 1.5.2; namely
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,q

Pig. 1.5.2. Arrangement of source at obtaining load capacity

B. L,

"2" "2

H f- + fix)2j W
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in which Tan"

*･(#･-a*£ +a,)^[(| - a/ +# ^f] 1.5.11)

represents the principal value of arctangent

for the arguments. The deduction of this result is shown in

Appendix XII.

In order to satisfy the boundary conditions at bearing

peripheries, infinite sources and sinks are put according

to the potential function of Eq. (l.5≫2). Hence the load

capacity supported by a rectangular pad can be obtained by

summation of the values W , the positions of whose sources

and sinks are those of each term of the potential function.

Then, load capacity for an incompressible fluid is given by

the following equations for single supply hole case by using

the results of Eq. (1.5.11);
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~ W f~Ax + <20t+ ≫B, Qy + 2/3JJ

- W[flx+ 2offi,-ft +̂ ^+UL}

+ W C-fix+(20f+ 0.B,-%+G£+ijL] }

(1.5.12)

For the case with multiple supply holes, the load

capacity can be obtained by summing up the load capacities

shared by each of supply holes.

5-3 Volume Rate of Plow

The volume rate of flow can be obtained by the out-flow

from the bearing peripheries, which is also obtained from the

strength of the source, that is for an incompressible fluid

Qinoomfc = (1.5.13)

This is for the case with single supply hole: for the case

with k.supply holes located symmetrically, volume rate of
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flow,Q^ncomp0 can be obtained by multiplication by k though

the value of K| must be rewritten to satisfy the boundary

conditions at supply holes.

For a compressible fluid case, the volume rate of flow

corresponding to the ambient pressure is

i-nq t+n
__^_^L^__n_--1 (1.5-14)

W,a>mp.~ po_p h-h, ra *W,ncomp. v

which can be obtained with consideration of the transfor-

mation of Eq. (1.2.6).

5-4 Experimental Investigations

Some experiments are made to investigate the theory-

concerning the pressure distribution. This is fundamental

for the load capacity and volume rate of flow because they

may be derived from the integration or the gradient of it.

The configurations of the bearings employed are the

square-pad type with only one, two or four supply holes

located symmetrically as shown in Pig. 1.5≫3≪

-Pigs.I.5.4 are the typical results of experiments for

the pressure distribution measured along to x-direction

(parallelly to the bearing edge) at some ^-positions. The

theoretical curves are shown by thick lines which are cal-

culated under the isothermal condition (n=1.0).
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Supply Hole

1.8*

Supply Hole

1.8*

Supply Hole

1.8*

Fig. 1.5-5 Bearings employed in experiments for pressure

distributions

For all cases, a good conformity is observed between

experimental and theoretical results. The pressure fall,

however, may occur at supply holes for the case with higher
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"3

7f

0.5

(c)

Fig. 1≪5≪4 Results of pressure distributions

supply pressure or larger bearing clearance. But under the

practical condition as experimented here, the complex

potential theory can be justified to be applicable with good

accuracy for the rectangular-pad type thrust bearings with

multiple supply holes as well.
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Chapter 6 Conclusion

In Part I, the complex potential theory is introduced

to analyze theoretically the externally pressurized thrust

gas-berrings for some "bearing configurations such as circular

thrust bearings, thrust collar bearings, and rectangular

pad-type thrust bearings with multiple supply holes, which

has no recess to increase the bearing stability.

The appropriate complex potential functions can be

found for each cage, which satisfy the boundary conditions of

the bearings. Then, the pressure distributions and volume

rates of flow can be obtained for both of an incompressible

fluid and a compressible one. The load capacity is calcu-

lated by particular method to each bearing for an incompres-

sible fluid case. The bearing characteristics of volume

rate of flow and load capacity, then, are shown in theoretical

charts for the bearing designs.

The experiments are made to investigate the theo-

retical results,yielding good agreements between the results

of them both qualitatively and quantitatively with the con-

sideration of secondary effects owing to the compressibility

of the fluid and pressure loss at supply holes. Pressure

loss takes place at supply holes especially for the case

with higher supply pressure and largerbearing clearance,
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because of the energy loss for acceleration of the fluid

after the supply holes, and the change of the flow velocity

profiles, whose effects are estimated by assuming a flow

pattern.

The good conformity of the results verifies the theory

and it is found that the complex potential theory may be

applicable conveniently to the analyses of various bearing

configurations with multiple supply holes.
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Part II Analysis of Externally Pressurized Thrust Collar

Gas-Bearings with Slit-Supplies

Chapter 1. Introduction

There are many useful applications of the thrust collar

bearings because of their configurations of the devices.

In these thrust collar bearings, the lubricant is fed either

through some supply holes arranged circumferentially on the

thrust surface or through the annular slit-supply.

The recesses after the supplies are useful for the load

capacity but they often cause the instability of the bearing

performance for the case with the compressible fluid lubri-

cant.

The thrust collar bearing with slit-supply is con-
innumerable

sidered as a limit case of the bearing with /^ ･ supply

holes arranged circumferentially, and has rather large load

capacity, and they need not have the recesses especially for

the double slit-supply case which means their stable per-

formance .

In the followings, the thrust collar bearing with single

or double slit-supply is analyzed and the volume rate of

flow and load capacity can be obtained as the functions of

the radial positions of the slits.
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In the analysis, it is assumed that the lubricant is

incompressible; one can apply the results for the compres-

sible fluid case if the supply pressure is not so high.

Chapter 2 Single Slit-Supply Case

Pig. 2.2.1

Ox

Pa

Configuration of thrust collar bearing with
single slit-supply

Pig. 2.2.1 illustrates a thrust collar "bearing with

single slit-supply. The lubricant is fed under the supply

pressure p , and restricted by the slit into the bearing

clearance, where the pressure is p . Then it flows out
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towards inner and outer bearing peripheries. p is the
･a

ambient pressure. The slit locates at radius a and is

assumed that its width is negligible compared with the inner

bearing diameter 2r<, or outer diameter 2r, .

The flow is symmetrical, hence it can be reduced to one-

dimensional case. When the bearing clearance % and coef-

ficient of viscosity j.xare constant, and if the effect of

bearing rotation can be neglected, the following equations can

be obtained,

d(ru)

r ar
0

u
＼2jxdr

where U. is mean velocity in radial direction.

Then the pressure distribution is given by

p = C,ha r + C2

(2.2.1)

(2.2.2)

(2.2.3)

By using the boundary conditions to determine the constants

Ci and C?≫it becomes

Region I : p =
H T/r"

(p - pj + p

Region II : p _
%^^r

(p-p)-*-n
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The volume rate of flow is

Region I : Qr = 2lCf^(-U) =|i^A_k__

Region II : Q, ^ffKU} =
^-^^

(2.2.6)

(2.2.7)

The flow through the slit is considered as that between two

parallel surfaces, hence

r> --M&L. Ps~p°
^~~6U IT"

where bs : width of slit

L; : length of slit

By the condition of continuity
}

Qj +Qjr = Q5

Eqs. (2.2.6), (2.2.7) and (2.2.8) reduce to be

Po-P* =
Ps-Pa

The load capacity W is

w = 2Xr(p-p.)dr

(2.2.8)

(2.2.9)

(2.2.10)
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The condition to maximize the bearing stiffness is

32W _
0

Then from Eq. (2.2.10)'

As " 0-

( ! + ! )

v lo§a/r0 %%r,/ii 1 (2.2.11)

This gives the condition of optimum slit dimensions. Then

Eq. (2.2.9) becomes

Po-Pa ―f-te-P.) (2.2.12)

The load capacity can be obtained from Eq. (2.2.10) with

this condition as

= 5t cr,2- r/)Cps - pa)-Fjv

(2.2.15)

where Fw is dimensionless load capacity factor with respect

to ps-p given by

Fw ≪
w

7C(r,2-r02)(p-po)

) / n2-az az-nz

wv .~re

Ro, = 0/r, , Ro = n/r,
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' iWBP";

While, the volume rate of flow is given by

xft3
lo%a./r<>

+
iog r,/a.'^s ^

(PS-P*)'F*

-105-
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(2.2.14)'

(2.2.15)

where Ra.is dimensionless flow rate factor with respect to

Fq ≫T72£>&a./rB
+

loQ,r,/a.
a o

The minimum value of flow rate is acheived for the

following radial position of slit &M given by the condition

of oQ/dO. = 0 ;

&m ― J Tor.

These dimensionless factors are shown in Fig. 2.2.2-

against the radial position of slit for various ratios of

Re (- To/n). In this figure, the curve of ro/n = 0 corres-

ponds to the case of the circular thrust bearing with recess

of radius & .

The single-dotted chain line shows the minimum flow rate

condition (a = ft^)and the double-dotted chain line shows the

limit where the slit is arranged imaginarily at the inner
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Pig. 2.2.2. Bearing characteristics with single slit-supply

periphery of the bearing (a=r0).

Then the following conclusions can be obtained theore-

tically for the load capacity and the volume rate of flow

concerning the design of thrust collar bearing with single

slit-supply:

(i) The maximum bearing stiffness is obtained by the

condition of Eq. (2.2.12).
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(ii) Tie load capacity increases when slit position (X

approaches to the outer bearing periphery r, , so the optimum

value of a can not be determined from the load capacity

condition.

(iii) The volume rate of flow increases when the slit

approaches either of bearing peripheries.

(iv) Then the slit position must be recommended with

considering the working condition of load and flow rate.

(v) The minimum flow rate condition is given by Eq.

(2.2.15)

(vi) It is meaningless to design the slit position

inner than &m, because, for this case, the flow rate in-

creases while the load capacity decreases than for the case

with 0.= &m ･

Chapter 3. Double Slit-Supply Case

Fig. 2.3.I is the schematic figure of the thrust

collar bearing with double slit-supplies. The lubricant

is fed under the supply pressure p , and flows through

the slits into bearing clearance, then to the bearing

peripheries. The slits are arranged at Ch>and a, .

Denoting the pressure just after the slits as p

and p , then the pressure distribution can be obtained as
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Pa

Pig. 2.3.1. Configuration of
thrust collar
bearing with
double slit-
supplies

follows similarly as the single slit-supply case:

(2.3-1)

Region II: p
^Jml―^-o^X''^^

^'^'^

Region III , p =^a^.(pof_PJ+Ri (2.3.3)

These pressure distributions can be considered as the

result of superposition of two bearings with single slit-

supply which are;

one having a slit at r= ≪≪,with an inlet pressure

fe=l^^(p-V'/r-P^g≪o/r0) + Pa (2-3.4)
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the other having a slit at r= a. with an inlet pressure

Considering that these imaginary bearings may be

analyzed individually, the pressures p6g and p0| must have

the following relation using the maximum bearing stiffness

condition similarly as the single slit-supply case.

f>≪.-p,L-Po,-ftt--r<&-ft) (2.3-6)

It mearns that the pressures p^ and po must be equal to

each other. Then denoting po as

the pressure distributions are

Region II : p ― p

Region III : p = -^L-(po - p&)+p^

The volume rates of flow are

Region I s a =
ctt

Region II : Q3 = Q
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Region III : Q =

The volume rates of flow through the slits are

(2.3-9)

(2.3-10)

(2.3-11)

The slit dimensions must have the following relation-

ships by the condition (2.3.6):

hso _

The load capacity W is

ot / r,z- p,f at - To2

3 1 logn/a-i bogac/rB

= 7cCr(2-roz)(ps-pjFw

(2

2

3

3

12

13)

)(h

Xft-

Pa)

Pa)

(2.3.14)

where Fyyis the dimensionless load capacity factor given toy

F -iff-a.2 fl?-tf ＼ f

where R*, = a,/r, , Rao=fto/r,

The total volume rate of flow is
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Q-Q.r+QlS.

~~Tpr(hftOu/r0+ty^/a.^Po &

)(Ps-PJ

(2.2.16)

where Fb is the dimensionless flow rate factor given by

r<5 -^a0/r0 n/a,

1

(2.2.17)

Fig. 2.5.2 show? these factors for the case R-c=ri/r,

= 1/2 ; the solid lines correspond to the constant Fw values

and the dotted lines to the constant Fi}.values.

o
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The bearing is desired to have larger load capacity
certain

under a.volume rate of flow or to give the maximum value

of Founder the condition of FQ=constant. The optimum

positions 0.0and Cl|can be obtained from the condition

where

dOt> d&,

5 = Fw +^Fa

I / r,2-a,2 al-roz ] i ,_± j_ ＼(? ,
18x

3'lMn/a, tyat/rjrf-y* ^Scaaoko^A'

The above conditions are

2§ _ r 2(a./r,)%(a./re)H-0-(fl0/r0;?3/(Q≫/ro)/ref g _nf2

safl~3 rcr^(Q0/r0)]2
lr,^ aof^(Q,/ro>^ ^

ffj>
=

, 2(ai/l7)

9a, ~ 3

U≫i/n)-G-tai/fi)aJ/(ai/fi)

3-19)

-,)-U-lal/rlma,/r,) t
=Q (2.3.20)

Eliminating § from these equations, one obtains

or

I

(2.3-21)

This gives the optimum relation between the radial posi-

tions of the slits.

This is drawn by the chain line (AB) in Fig. 2.3.2

on which the sets of curves of F^ =constant and F^=

constant contact tangentially with each other.
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In Fig. 2. J.2, the straight line CD means that &<,*<2,,or

two slits approach each other and make a single slit-supply.

Then cross point B is a limit of design of double slit-

supply "becausethe point B is on the curve AB, which shows

the optimum relation between two slits positions, and also

on this line CD. In the other hand, the minimum flow rate

can be obtained on the point M according to the analysis

of single slit-supply bearing. The radial position CLm

locates inner than &b which corresponds to the point B.

Hence, one should design the slit-supply bearing with the

dimensions on the line A-B-M. (B-M corresponds to the

single slit-supply bearing).

Q.3can be calculated by substituting CL0=G.i=(XB into

Eq. (2.3.21) resulting

or

(2.3-22)

(2.3-22)'

■fig. 2.5*3 illustrates the optimum relations between

a,/rl(=Rctj) and 0^/r,(=Rtl)with parameter ro/r, {- R,,)
>
in

which the chain line /shows the limit case to the single

slit-supply.

Fig. 2.3-4 shows Fw and Fa with parameter ro/r, , in

which Oo/r, takes the value calculated in Fig. 2.3.3.
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Pig. 2.3.4- Bearing characteristics with double slit-
supplies (with optimum radial positions of slits)
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The double-dotted lines are for the case of limiting

single slit-supply (B), and the results of the single

slit-supply case of Chapter 2 are added for inner region

than this point (0-m<&< &s).

Then the followings are concluded concerning the

design of the double slit-supply bearing.

(i) In order to get the maximum bearing stiffness,

the pressure just after the slits satisfies Eq. (2.3*6),

and then the bearing should be designed as Eq. (2.3.12) and

(2.3.13) are satisfied.

(ii) Both of the load capacity and the volume rate

of flow increase as the slits position become nearer to

the bearing peripheries. Then the bearing should be de-

signed with considering the working condition of these

bearing factors.

(iii) To maximize the load capacity under a constant

flow rate, slits positions should be determined by Eq.

(2.3.21) or Fig. 2.3-3.

(iv) Eq. (2.3.22) or Eq. (2.3.22)1 shows the limiting

case of the double slit-supply to the single one. In order

to lessen the flow rate than this case, the single slit-

supply bearing must be used.
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(v) In the above analysis, the pressure is constant

to be j^ in region II, which means that the results of it

can be applied to the single slit-supply bearing with an

annular recess by substituting Q.0=Tp0 and &,= Tp{ where

Tpo and Tp are the radii to the inner and outer edges

of the annular recess respectively.

Chapter 4 Experimental Investigations

Experiments are made to investigate the foregoing

theory for the fundamental single slit-supply case concern-

ing the pressure distribution, load capacity and volume

rate of flow by using the compressed air as the fluid,

(a) Pressure Distribution

The pressure distributions in the bearing clearance

are investigated experimentally by using the same experi-

mental apparatus (i) as in Chapter 3-7 in Part I.

Configurations of the employed slit-supply thrust

collar bearings are shown in Pig. 2.4≪1- In these ex-

periments, pressure distribution is measured to compare

with theoretical one assuming that the bearing stiffness

is considered to be secondary so that the restriction by

the slit need not be taken into account.

Fig. 2.4.2 are the experimental results of the
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Mo. 2r,(mm) 2ro(mm) 2a (mm) bs(mm)

/ 90 30 60 1.5

2 90 30 50 1.5

3 90 30 , 70 15

4 60 30 46 I 5

Fig. 2.4≪1 Bearings employed in experiments

thrust collar tearing with slit supply with various bearing

parameters such as supply pressure, bearing clearance,

radial position of slit-supply and ratio of inner and

outer bearing radii, respectively. In these figures, the

thick lines are theoretical ones calculated with polytro-

pic index n=1.0 (isothermal condition) by using Eqs.

(2.3"l)'-(2.3≪3)' which are for the double slit-supply

case, substituting Q.o to be inner radius of slit, and CLi

to be outer one. This is because the width of slit is

fairly large to be neglected compared with the other

bearing dimensions.

The experimental results conform very well with

theoretical ones even for comparatively large bearing
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Fig. 2.4-2 Results of pressure

distribut ions
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Fig. 2.4.2

clearance and high supply pressure. For the bearing of

this type, the lubricant is supplied through a slit into

bearing clearance, hence the flow of it just after the slit

supply is such as one-dimensional flow "between two parallel

surfaces rather than a radial flow such as from a point
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supply hole. Then, less energy is needed for acceleration

of the lubricant after the slit supply, which means the

pressure loss is comparatively small even at a large volume

rate of flow. These effect is discussed later concerning

load capacity.

(b) Load Capacity

Load capacity is experimented by using apparatus II

for the same bearings as shown above.

1.0

0.9

0.8

0.4
0 10 20 30

h (microns)

Fig. 2.4.3 Typical results of load capacity

40

Fig. 2.4.3 is an experimental result for bearing No.l,

in which the incompressible theoretical line is drawn by a

thin line. The dimensionless load capacity W/7C(n2'- fi?Xpo-fy)

of experimental data is almost independent on the bearing

-120-



clearance h, which means that the pressure fall at the

slit-supply is not effective. But, the load capacity in-

creases with increase of specific load ＼N/ic(f,2―To)

(or supply pressure) because of the effect of compressi-

bility of fluid.

The load capacity considering the effect of compres-

sibility can be given by the following approximation for

the thrust gas-bearing with slit-supply:

w ~^(p°+pa)(Pw" PJ^
pft

~
Pa - w C2.4.1)

rw to.

where V＼/ '･load capacity with compressible fluid

Wincomp.: load capacity with incompressible fluid

pw : specific load W/X LY,2-^2)

This equation is reduced and studied in detail in Appendix

XIII.

When the pressure fall at supply hole is taken into

account, p in the above relation must be substituted by

Po* where po"is the modified pressure just after supply

hole as mentioned in the below.

The thick curves in the figures are theoretical ones

considering of both effects of this and pressure fall at

slit supply;
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_ a_l,Pf Q* f (2.4.2)

where Qois volume rate of flow corresponding to pressure p"

They coincide very well with each other as shown, which

verify the foregoing theory and presumptions of secondary

effects for this type of bearing.
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Pig. 2.3.4 is the experimental results of load

capacity for other bearing dimensions such as various slit

positions and ratios of inner and outer bearing radii. The

theoretical ones are shown by the thick lines which are

calculated with consideration of the secondary effects men-

sioned above.

The results have quite the same property as observed

in Fig. 2.3.3. The vibrations are observed for all bear-

ings of this type when the bearing clearance increases

more than about 30 microns. The slit for supply may

serve as a recess because it is comparatively wide so that

the bearing vibrations may be caused.

(c) Volume Rate of Flow

The volume rate of flow is investigated experimentally

by using the experimental apparatus I with fixed "bearing

clearance.

Several bearings are employed with various bearing

configurations such as with various values of Vta.orR<,.

Fig. 2.4≫5is "the experimental results in which theo-

retical curves are shown in thick line. The volume rate

ui now is arranged in the form of WA/――― against the

bearing clearance -ft, because this is independent theoreti-

cally on the values of p or D .
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A good conformity is shown between the experimental

results and theoretical ones, which may justify the re-

sults of theory very well.

Pressure fall at supply slit is also taken into

account but this effect is very small so that the deviation

by it may be negligible.

Chapter 5 Conclusion

The externally pressurized thrust collar bearing with

single or double slit-supply is analyzed. In both cases

of the bearing types, considering the flow as that of twe-

dimensional one between the parallel surfaces, the pres-

sure distribution is obtained theoretically, and then,

the load capacity and volume rate of flow as well from the

integration and gradient of it. The condition to maximize

the bearing stiffness is applied to yield the optimum

dimensions of the supply-slits. The design charts of the

bearing with slit supply can be obtained from these theo-

retical values of bearing characteristics.

Results of experiments agree very well with theore-

tical ones concerning the pressure distribution, volume

rate of flow and load capacity, taking into account the

effect of compressibility of fluid. For this type of

bearing, the pressure fall after slit-supply seems to be



negligible even for considerably high supply pressure and

large bearing clearance, which is because the flow is such
rone-dimensional flow between two parallel plates^

that-> <-rather than a radial ~

flow from a point supply source which means less energy is

needed for the acceleration of the flow,,
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part III Analysis of Externally Pressurized Porous Gas-

Bearings

Chapter 1 Introduction

Externally pressurized thrust gas-bearings are very

advantageous owing to their small static and dynamic fric-

tion, and their load capacity can be increased by making

a proper recess on the bearing surface. The recess, how-

ever, is apt to make the operation less stable because of

self-excited vibration(4). if the bearings have a rela-

tively smaller gas-supply hole without recess against high

supply pressure or large bearing clearance, the pressure

depression takes place in pressure distribution of the

bearings and lessens their load capacity greatly.(3)

These disadvantages have called forth the recent re-

searches on the externally pressurized thrust porous gas-

bearing through which the gas is supplied over the entire

bearing surface. The porous bearing can be assumed to

consist of a mesh structure incorporating innumerable

tubes which serve to restrict gas flow and absorb vibration.

Such a type of externally pressurized porous gas-

bearing so far has not been analyzed theoretically, except

for some reports in U.5.S.R., ' in spite of its application

to a number of practical devices. Even in these studies,
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analysis were considered only the normal gas flow to the

bearing surface in the porous bearing.

In this Part, the externally pressurized porous gas-

bearing are analyzed theoretically, considering both axial

and radial gas flows in porous bearing with the following

assumptions.

When the compressibility of fluid is taken into account,

the load capacity cannot be obtained analytically and the

calculation of pressure distribution becomes complicated,

so the assumption of incompressibility of fluid is applied

as mentioned later for the first step of the research on

this bearing. The pressure distribution and the load

capacity are obtained theoretically and they were compared

with the experimental results.

Assumptions

The assumptions made for the analysis are as follows:

(l) Porous media are homogeneous with permeability coef-

ficient k. Coefficient k is defined by Darcy's law con-

cerning the flow in porous media as:

iil = - -4

where U, vx : flow velocity in r
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p : pressure

a s coefficient of viscosity

(2) Porous material can be substituted by an assumed thin

layer with so-called equivalent clearance h' so that the

characteristics of flow through it can be equivalent to

that through the porous material concerning the quantity

of flow.

If the quantity of flow parallel to the bearing sur-

face through the porous bearing is equal to that of the

flow through the assumed clearance ~?C,-R.is to be called

the equivalent clearance, thereby

. 3,

t : actual thickness of the porous bearing

(5-1.2)

(3) The flow of fluid in the porous material consists of

two components: one is parallel to the bearing surface and

the other vertical to it.

(4) The bearing clearance -ft,and the equivalent clearance

& are so thin that pressure does not change normally in

each clearance. But the pressure p in the bearing clearance

differs from the pressure p' in porous material.

(5) The flows from porous bearing into bearing clearance

and from supply port to porous bearing is proportional to
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the pressure difference ( p'―p ) and ( ps- p'),respectively,

and permeability coefficient k,, and is inversely proportio-

nal to t, which is the actual thickness of porous bearing. - Th?

assumption is applied as an extension of Darcy's law.

(6) There is no parallel flow on the very surface of bearing.

(7) The fluid is incompressible. This assumption may be

appropriate for the flow through the porous media and the

bearing clearance with low pressure. When compressibility

of the fluid must be taken into consideration, one can

obtain the pressure distribution by the following substitu-

tion in which absolute pressure P gives the solution for

the case of incompressible fluid.'1'

P = p n,

where n, is the polytropic index.

(3-1.3)

(8) The rotating speed of the bearing is so small compared

with the gas flow velocity due to the pressure gradient

that the static condition can be applied. This static con-

dition may be essential for the study of the externally

pressurized gas bearing.

Chapter 2 Analysis of Externally Pressurized Circular

Thrust Porous Gas-Bearing

2-1 Theoretical Analysis
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supply
hole

Porous
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Pig. 3≪2.1 Construction of
externally pressurized
circular thrust p orous
gas-bearing

Pig. 3-2.1 illustrates the construction of the ex-

ternally pressurized circular thrust porous gas-tearing

to be analyzed. The compressed gas is fed into the gas

supply hole and after being restricted through the porous

bearing, the gas flows out into the bearing clearance in

radial direction. Some part of the gas also flows through

the porous bearing in radial direction. Fig. J.2.2 is the

schematic diagram of this bearing.

The average velocities of flow in r-direction in the

bearing clearance and the porous bearing are, respectively,

as follows:

v- JL.4SL- £LJeL

"■ " V- dr i2)ULt dr
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The continuity conditions are

27LT-R.U =
5

%-Z7crdr
o

ft

Fig. 3-2.2 Schematic diagram
of the bearing

(3-2.5)

zicrtw - Q-＼%-zxr&r (rar^r,) (3.2.4)

fr r *
= ＼a'zxrdr- ＼q-2icrdr (0&r<rs) (3.2.4)1

where Q. is the volume rate of flow, and Q and g' are the

velocities of the flow-out from and flow-in to the porous

bearing respectively. Q and 0' are given by the following

equations according to the assumption (5).
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where rj>and y' are the effective restricting thickness, and

are given by:

r? = ct y= eft (5-2.7)

C and c' should be determined experimentally but they are

presumed to be approximately

c - c - (3.2.8)

Eliminating u and g from Eqs. (3.2.1), (3.2.3) and

(3*2.5), and differentiatingit by r , one obtains

(a) Region I ( rs ^ T % Tf )

From Eqs. (3.2.3) and (3.2.4)

27CT(-RH+ tllO - Q

(5-2.9)

(3.2.10)

Eliminating u and u' by substitution of Eqs. (3.2.1)

and (3≪2.2) into Eq. (3.2.10), and integrating it with T ,

one obtains

where C/ is the constant of integration.

(3-2.11)

In Eq. (3.2.11), p and p' should satisfy the following

boundary condition
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Then,

p - P' = P≪ at r = r,

Substituting Eq. (3-2.ll) into Eq. (3.2.9)

(5-2.12)

(3.2.13)

T-i'r^'l4ti(*3+*'> + ^i08r-c'] (3-2'14)

This equation can be expressed as

where

Ti?(r#)-t*≫P = Bfc>ar+c

-d g^-Q r Ci

13 7r£3?t -&3?t

The solution of Eq. (3-2.15) is given by

P = EIMor) + FKjo^-^^Jogr + -^fi~s

(3-2.16)

(3-2.16)

where L> and Ko are the modified Bessel functions of the

first and the second kinds respectively, and E and F are

the arbitrary constants which should be determined by bound-

ary conditions.

Substituting Eqs. (5.2.13) and (3.2.16) into Eq.

(3-2.ll), the pressure distributions p and p' in the region

I are obtained as follows.
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Pj. = El. (our) + FKofotoD * rcftffU) feg
f

･>-Pa

00 Region II ( 0^ r S rs)

Prom Eqs. (3-2.3) and (3-2.4)',

27CrOUl + *u.';≪[ %'*27crdr
"'O

(5-

(5.

2

2

17)

18)

(5-2.19)

Eliminating U, It'and p' from Eqs. (3.2.1), (3.2.2),

(3.2.6) and (3.2.19), and differentiating it by r , one

obtains,

where

Eqs.

i
T

I
r

+■

-TW'-W^'-^^Yi^-P'^o (5.2.20)

(5.2.9) and (3-2.20) can "berewritten as follows.

irO-^-A'V-^P-c"

A' -~yi+Tt B' ~~7t C~yt

1

d'z―£-

The solution of Eqs. (5.2.21) are

P = 'vf,r.(a≫r)+M2I0(of?r)4-M9K(,(Qf1rj-fM4Ko(^r)+ ps

P= M(r0(≪ir)+ N2il)(o(2r)+M3K0(o(/r;+-N4Ko≪2r)+ps

(3.2.21)

(5 2.

(3.2

22)

23)
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where

OLi =
A!2-2* ±/(A2-JX2f+4 l£'z- X*)V*

2
(3.2.24)

The signs in the right-hand side of Eq. (5.2.24) are

to be taken as follows

+ for subscript I = 1

for subscript 1=2

Mi and Nj ( j= 1≫2, 3, 4) are constants of integ-

ration and they should satisfy the following relation;

(3-2.25)

where j = 1 or 3 when £= 1, and ft= 2 or 4 when -0=2.

These deductions are shown in Appendix XTV-

Using the following "boundary condition

then

dp dp'

dr ~ dr
0 at f = o

N3-fy= M3= M<= 0

(5-2.26)

(5.2.27)

The pressure distributions in the region II are obtained

as follows.

Pz = M,I0(a,r)+ M2l0(ofan+p

P'K = N,I0(ot,r)-t-N2I0(a2r) +p

-136-

(3-2.28)

(3-2.29)



The volume rate of flow is

1

(5.2.30)

The boundary conditions to determine the constants N, , N2 ,

(or Mi, M2) E and F are:

(iii) Pi=P*

^1V') dr ~ dr"

^v^ dr dr

at

at

at

at

at

r

r

r

n

n

= rs

r = rs

(3-2.31)

Among them, conditions (iv) and (v) are not mutually-

independent , so the unknown constants are determined by

the conditions (i), (ii), (iii)≫ and (iv) or (v). The

pressure distributions p and p' are given by putting these

constants into Eqs. (3.2.17) and (3.2.18) and (3.2.28)

and (3.2.29) in each region.

The load capacity for the case of an incompressible

fluid is obtained by integrating the pressure in each area.

W =
r(p-PJ2xrdr

]
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Y(5.2.32)

Since it is difficult to obtain analytically the load

capacity with considering the compressibility, the load

capacity obtained by Eq. (3.2.52), which is approximate for

compressible fluid, will be used to compare with experimen-

tal results.

2-2 Permeability Coefficient of the Porous Material

It has been reported that the permeability coefficient

of porous media is not constant as the authors assumed in

the analysis above.

Gross** ' describes in his book that Robinson and

(7)
Sterry^ ' observed that the permeability coefficient is a

function of both bearing clearance pressure and Reynolds

number. Fig. 3.2.5 illustrates this variation after them.

Because of this variability, the permeability coef-

ficient to be used for the calculation in the above analysis,

should be determined based on the conditions of pressure,

Reynolds number, etc. under which bearing will actually
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Pig. 3.2.5 Variation of per-
meability coefficient
(after Robinson and
Sterry(7))

Pig. 3*2.4 Apparatus for
measuring the permeability
coefficient
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work.

Fig. 5.2.4 shows the apparatus for measuring the per-

meability. The compressed gas is supplied into the space

formed with the porous material and the side wall as shown

in illustration. The undersurface of the porous material

is covered with the packing of synthetic elastic sheet

so that the gas is forced to flow through the porous mate-

rial in the radial direction.

The permeability coefficient can be calculated from the

pressure in the space and the volume rate of flow. In this

case, the volume rate of flow can be obtained by considering

the bearing clearance -ftto be zero in the above analysis,

so that the following equation is obtained

where

27c rs i,fars)
(3-2.35)

Fig. 3*2.5 shows a few examples of the permeability coef-

ficient determined for some porous materials by this method.

2-5 Comparison with the Experimental Results

The dimensions of the bearing used for the experiments

are as follows.
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measurement of the per-
meability coefficient

Diameter of the bearing 2r; = 60. Omm

Diameter of the gas supply hole 2TS = 10.0mm

Thickness of the porous bearing t = 5.0mm

The porous bearings employed are shown in Table

5-2.1 The surfaces of them should not be machined because

minor maching causes non-homogenety on the porous surfaces

so that their characteristics of flow may be varied. So

.the porous plates are made carefully to hold their flat-

ness of the surfaces. The permeability coefficient is the

average of the values shown in Pig. 3*2.5*
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Table 3≪2.1 Porous materials employed in experiments

Bearing
no.

Material
Dia.of
grain

(microns)

Permeability
coefficient

(cm2)

Equivalent
clearance
(microns)

I
Sintered
powder
brass

5 435xlO'9

I 10 7.09xl(J9

hi 9.73xlO"9 39

Load

Air
Fig. 3.2.6 Apparatus for

measuring the pressure
distribution

Fig. 3-2.6 shows the apparatus for measuring the pres-

sure distribution and the load capacity. The rotor has a

porous bearing of 60mm diameter on its undersurface through

which air is supplied into the bearing clearance. The pres-

sure in the bearing clearance is measured by U-tube mercury
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manometer connected with the small hole of 0.2mm diameter

drilled in the stator which can be slided to desired posi-

tions by operating a fine screw.

The rotor is guided in the liner by an externally pres-

surized journal air bearing in order to prevent their con-

tact.

The load is put on the top of the rotor by the lever

and the load weights.

The pressure p' in the porous material is not measured

but the analysis is verified by comparing the pressure

distribution p in the bearing clearance, though it would be

better to investigate the pressure p'.

Now, let (3 be a parameter to be defined by

(3.2.34)

Then the pressure distribution and the load capacity are^

for an incompressible fluid.identified by only the value

of jS , so that they do not depend directly upon h or k' .

Pig. 3≪2≪7shows the pressure distributions measured by

keeping the value of S constant for some porous bearings.

In this figure, the solid line is the theoretical curve for

an incompressible fluid obtained for the case of v= ≫?'=0.5t.
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The assumption of incompressibility of fluid is appro-

priate for the flow through the porous media and the bearing

clearance under low supply pressure. When the compressi-

bility of fluid is taken into account, the theoretical line

varies with the values of supply pressure when ambient pres-

sure is fixed. While the experimental data are put in order

fairly well in the form of ( p-pa)/(ps-pa) as shown in figures,

which may certify the assumption within the range of supply

pressures of the experiments.

The experimental results showed a good agreement with

the theoretical values both qualitatively and quantitatively.

When p takes smaller values, in case of Fig. 5-2.7 (a),

for example, some difference is observed, which is con-

sidered to be due to the deviation of the effective restrict-

ing thicknesses ( 7 and y' ) from 0.5t. This deviation

may be caused by the variety of the permeability in it.

Fig. 3*2.8 shows the relation between the supply pres-

sure and the air film thickness (bearing clearance) under

the constant load. In this figure, the dotted line shows

the limits against the vibration when the bearing encounters

some disturbance. But in the experiments the bearing worked

without any vibration when it was not disturbed. The values

of the film thickness are measured statically before the
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I

bearing is disturbed. The stable working region extends

with the increase of the permeability coefficient. More-

over it has been observed that the stable working region

extends much when the diameter of gas supply hole is made

larger though the effects of the diameter is not die-

cussed here. The stable work of the porous bearing is

considered to be due to its structure. Porous material

can be assumed to consist of the meshy structure of in-

numerable tubes which serve to dissipate the energy of

vibrations.

Pig. 3*2.9 shows the relation between the load and

the air film thickness (bearing clearance) under the con-

stant supply pressure.

190
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i

Fig. 3.2.9
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The load capacity is shown in Pig. 3.2.10 with respect

to the value of l/p which corresponds to the air film thick-

ness. The solid line shows the theoretical curve obtained

from Eq. (3.2.32). The experimental results coincide with

the theoretical curve except when l/j3 is so very large or

small. The variability of the effective restricting thick-

ness is considered to cause these differences.

2-4 Boundary conditions at the Periphery of Porous Bearing

In the above sections such a porous thrust gas-bearing

is analyzed that the gas flows out from the bearing clearance

and also from the periphery of the porous bearing, because

of the simplicity of the theoretical calculation. For the

practical usage of this bearing, however, it is naturally

desirable that the bearing needs less rate of compressed

gas-flow. This leads to the idea to close the outer peri-

phery of the porous bearing so that the pressurized gas

may be kept in the bearing clearance without escaping from

porous edge.

Theoretical analysis for this closed-edge type of

porous circular thrust bearing is mentioned in this section.

The pressure in the bearing is obviously governed also

in this case by the same equations (3≪2.l)-(3≪2.6) yielding

the pressure distributions of Eqs. (3.2.16) and (3.2.1l),
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and Eqs. (5.2.28) and (3.2.29) in Region I and II, res-

pectively.

But the boundary condition to determine the value of

Q. in these equations should be as follows instead of con-

dition (3.2.12); namely

and

P = pa at r^r,

＼ q> 27rrdr = Q

By using Eq. (3.2.4), Eq. (3.2.36) becomes

(-^-)r.r, " 0

(3-2.35)

(3.2.36)

(3.2.56)'

Then the unknown constants Nh NZ} E, f , and C, must be

determined by the conditions of (3-2.35) and (3-2.36)'

instead of codition (3-2.3l)-(i).

The load capacity and volume rate of flow can be

obtained easily by the same reductions as used for Eq.

(3.2.32) and Eq. (3.2.30), respectively.

Fig. 3*2.11 shows an example of the difference of

theoretical pressure distributions between open- and

closed-boundary conditions. The boundary-closed bearing

has higher pressure distribution of p so that the load
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capacity may increase fiarly well than the otherwise case.

･For the practical design, closed-type bearing is re-

commended on account of its better bearing static charac-

teristics.

10

t

S 0.6

2 0.4

i

i 0.2
a.
t≪_

0

Bearing side

is open

Bearing side

is closed

20
r (mm)

Fig. 3.2.11 Theoretical pres-

.sure distributions under
open- and closed-boundary
conditions

Chapter 5 Applications to the Other Configurations of

Externally Pressurized Thrust Porous Gas-Bearing

3-1 Introduction

In Chapter 2, the externally pressurized porous thrust
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gas-bearing is analyzed theoretically for such type of

bearing that has a circular porous material all over its

bearing surface. Hence, the bearing performance depends

very much upon the roughness and flatness of the porous sur-

face at the time of its manufacture. For example, it has

been reported^-*/ that the roughness of 2 or 3 microns

on the porous surface makes the bearing clearance not to

be uniform, which lessens the load capacity very much.

In order to avoid this disadvantages, investigations

are made for the porous thrust gas-bearing with flat and

solid ring part, so-called 'flange', around the porous part

in Section 3-2.

In the practical applications, the thrust collar-type

gas-bearing with porous bearing is also used because of

the bearing configuration. Some of them are analyzed in

this Chapter as well.

The above theory is applied under the same assumption

as made in Section 3-1 to these of the porous thrust gas-

bearing to obtain theoretical pressure distribution, volume

rate of flow and load capacity.

3-2 Externally Pressurized Porous Thrust Gas-Bearing with

Flat and Solid Ring Surface

3-2-1 Theoretical Analysis
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Fig. 5*5･1 illustrates the construction of the ex-

ternally pressurized porous thrust gas-bearing with flat

and solid ring surface to be analyzed. The gas is supplied

from the supply port, and restricted through the porous

material, then it is fed into brearing recess (H), and then

flows out through the 'flange' part with clearance h.

Fig- 3≪5≫2is a schematic figure of this bearing, where

r, Z : cylindrical coordinates

Tj t radius of porous material

T, t radius of bearing

The other notations are the same as defined in Chapter 2.

(a) Region I (0 i r<i})

In this region, the previous theory obtained in Chapter

2 can be easily applied. Using the fundamental equations

Gas

Porous
Material
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Pig. 3-3*1 Construction of
externally pressurized
porous thrust gas-
bearing with flat and
ring surface



(3-3.3)

Region IT

Pig. 3-5*2 Schematic
figure of the
bearing

(5.2.1), (3-2.2), (3.2.3), (3.2.4)', (3-2.5) and (3-2.6), the

pressure distributions p and p' in the bearing clearance and

in the porous bearing, respectively, are governed by the

following differential equations:

where

-f^^'V-s-Vc

T-arirpl'Ve-f"

(5-5-1)

A/Z- ' + ― -R'2 ' r'
Ps

t/2 "&*
r^ * ?^

Solving these equations under the condition

-^_=_dPL _ o at r = o
dr dr ~

u

yielding



px = Mi io ≪ir) + m2i0 ≪xzr) + ps

p' -Nil, ^≫r) t W2l0(a2r) + ps

(3- 3-4

3-3 ･ 5

where Mi , N2, M, and M2 are integral constants, and l0 is a

modified Bessel function. 0Ctand QLZ are constants determined

by design parameters as

<Xi

/ A/2 - D"+J(A* - D'*f + 4(.B/2- A/?;D/2
7 2

GC2 =
A/Z-lf- -4(B/Z-A'2)D'2

2

The volume rate of flow is given by

<*-(Y^-^aW

]

1

(5.3-6)

+^pl(w2rf)} (3.3.7)

The symbols in these equations are the same that defined

in Chapter 2.

(b) Region II (rf £r S r,)

In this region, the flow can be considered as that be-

tween two parallel surfaces. Then the following equations

can be obtained from equations of motion and equation of

flow continuity,

U ~£&-*Ol-z)

P = Co ioa r + Co
3

(3-3.8)

(3-3.9)

In Order to determine the constants Co and C'o, the

boundary condition is used as

-155-



then,

p

p

≫>f

Pa

at

oi.

r-rf

p.-M-^£)+ft

(3-3-1O)

(3-3.11)

The volume rate of flow out of bearing periphery is

(c) Connection of Regions I and II

(3-3.12)

The unknown constants N,, Nz , M,, Mz and pr in Eqs.

(3.3.4), (3.3-5) and (3.3.II) are determined by the follow-

ing boundary conditions:

(l Pr=Pf
at

at

y =

r ■^

rf

rT (5-3.13)

N,, Kl2, M, , and M? must satisfy the following relations:

M, A'2-ft? _M?
=

N, JB'2 5 M2 (3-3.14)

The unknown constants can be determined by conditions

(3-3*13) and (3.3.14). Then, the pressure distributions are

obtained from Eqs. (3-3.4), (3-3≫5)and (3.3,11) with these

contants.
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(d) Load Capacity

The load capacity Wi in region I is

Wi= ■
f1

(pt-pa)2*rdr

= ^p-L(^rf) + ^pi,(a2rf)+7rr/rfe-pa) (3-3.15)

The load capacity Wj in region II is

(P1L-{>a)2xrdr

_7C(pf-pa)
2

-2Tf)

The total load capacity W is given by

W = Wi + Wi

(5-3.16)

(3-3.17)

3-2-2 Experimental Apparatus

(a) Measurement of Permeability Coefficient

Pig. 3.3°3shows experimental apparatus for measuring

the permeability coefficient. It consists of two plates, a

ring and the measured porous material, and they compose a

closed space into which the compressed air is supplied to

flow through the porous material in axial direction. The

pressure in th^t space is measured by a manometer.

The permeability coefficient can be calculated from the

supply pressure and the volume rate of flow by using the

following equations
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Mir
oufpiy rio me
C V Manometer

c ^n vnare , r
7＼ r

u, nm u

i YH

r
Lfling packing

1
r- 'PorousMaterial

u

I I ^ Plate I J

Pig. 3.3≪3 Experimental
apparatus for measuring
the permeability
coefficient

n__r2 k ft-ft _^2 fe Ps-P≪

fc - fet

)

(3.3-18)

It should be noted that the permeability coefficient

of porous media is not constant as assumed in the analysis

above. Gross^ ' states that the permeability coefficient

is a function of both bearing clearance pressure and

Reynolds number. Because of this variability, the permea-

bility coefficient to be used for the calculation in the ＼

above analysis should be determined on the condition of pres-

sure, Reynolds number, and so forth, under which the bearing

will actually work,

(b) Measurement of Pressure Distribution

The experimental apparatus for measuring the pressure
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distribution and load capacity is quite the same that used in

Chapter 2 as shown in J?ig. 3.2.6. The method of experiments

is also the same. They are made under the static condition.

The dimensions of the bearing used for the experiments

are as follows:

Diameter of bearing

Diameter of porous material

Thickness of porous material

Zr, = 80.0mm

2Tf = 60.0mm

t = 5≪0mm

3-2-3 Experimental Results

The porous materials used in experiments are listed in

Table 3.3.1.

Table 3.3.1 Porous materials employed in experiments

Bearing
No.

Material
Dia. of
Grain

(microns)

Permeability

Coefficient
(cm*)

Equivalent

Clearance
(microns)

/ Sintered
Powder
Brass

10 8.39xlO"8 79.6

I 5 427x/0"8 67.5

Now, let B a parameter to be defined by

a - # -MIL (3-3.19)

Then, the pressure distribution and the load capacity are

identified by only the value of fl , so that they do not
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depend directly upon H or -ft'.

Fig. 5-5*4 shows the pressure distributions for these

bearings. The solid line shows the theoretical one. The

experimental results coincide well with the theoretical pres-

sure distribution for a large value of £ or a small

bearing clearance; but for the contrary case (a large bearing

clearance), there are some differences between them. The

reason for this difference seems to be that the flow in the

recess may not be fully viscous when the depth of recess

becomes larger.

Fig' 5-3*5 shows the relations between the supply

03
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a
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0

1.0

r＼

＼Bearing No.I

h'fuJ,79.6 iJu 1.37
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io zo SB a
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Fig. 3.3.4 Results of pressure distributions

Bearing No.I

A /.85 kg G 8.45J<!L

1055 kgB 3.20 kg

C 4.25 kg

H
[

/-
/

r
/

/

sA

D 5.3(3kg

E 635 kg

F 7.40 kg

s
s

-s

y

c

:D E

Fs

I I// / ' /,*;' ?

11/ ///I'-'

Ml
Fig- 3.3.5 Relation between supply pressure and bearing

clearance under constant loads
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f

pressure and the bearing clearance ^t under the constant

loads. Fig. 3.3.6 shows those between the load and the

bearing clearance ft under constant supply pressure.

250

ZOO

ISO

too

SO

Bq ＼
BeannaNaI

A I 40 kg/cm*<*s
C3

0 a
E ≪

＼＼

&
B I 35 k(vfcm2*s
c I 30 ka/fcm*abs

D 1.25kQ/<m*<±>s

^
E f20 ka/fcm^abs

＼ ;＼

＼
V

~>>

a 2 4 s s 10
Load W

la)

Fig. 3.3.6

(≪･)

25O

1200

| 150

1100

50

A,,
B

BearingNo I

& 1.40ko/cm2*s

Do l＼
B 1.35koton^ds
c l30kQ/cm*abt

D 1.25In/cm**!
Ea vX

^c^

E I 20 kg/cnAte.

r―.

―o

0 2 4 6 8 I6
Load W (kg)

(b)

Relation between load and bearing clearance
under constant supply pressure

The dimensionless load capacities My/XT]2(ps - pa)

are shown in *nig.3･ 3･7- with respect to l/ft which cor-

responds to the bearing clearance. The experimental re-

sults coincide with the theoretical curve (solid line) very

well qualitatively and fiarly well quantitatively with a

small value of load capacity. The deviation of experimental

results at a small value of l/{3 is considered to be due

to the errors in measurements of the bearing clearances.
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Fig, 3-3-7 Relation between load capacity and l/p,

3-3 Other Applications

Investigations are made for the externally pressurized

porous gas-bearings of the thrust collar type, which are

also applicable to the practical devices because of their

configurations.

(i) Thrust Collar Gas-Bearing with Full Porous Surface

The thrust collar gas-bearing with full porous surface

is analyzed: the bearing configuration is such as shown in

Fig* 3≪3-8 where ro and r, are inner and outer bearing

radii respectively. The gas is fed under pressure ps through
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L,

Pa

Pig. 5-5*8 Schematic diagram
of thrust collar gas-
bearing with full porous

the annular supply slit, inner and outer radii of which are

r50 and Tsi , respectively.

Dividing the bearing surface into three regions (Region

I, II and III), the pressure p and p' in the bearing

clearance and in the porous material may be obtained in each

region from the following differential equations, which are

reduced as Eqs. (3.2.9), and (3.2.21) in Chapter 2:

Region I ( r0 ^ r^rso) and Region III ( rSî r ^ r, )

Region II (Tso^P ^ rsi)

-F-aMr^tfV-tfVc'

i-farm-Vtp-fO
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f-W+yc. *"-ie, c-k.x'-Sr ^-22)

where ft'= </IZk~t is equivalent clearance of porous material.

The general solutions of them are

Region I : Pr = E,I* (BoH + R Ko f≪of) + Cr,log r + Q-2

p; = ―|k[^I0W.r)+RK.foCn] + &#1^ r + G-2

(3.3-23)

(3.3-24)

Region II : p^ = MJDW,r) +Mzl,^2r) + M3Ko(≪1r)+ M4.Ko(<Xar)+£ (5- 3-25)

Pi = N,Vof,r)+N2i0{flfer)+N3KoWir)+N4K.(Of≪r) + ^ (3-3-26)

Region III: pH = E2IBft&r)+FeK≪.r) + Q>#r + ^

Pi=-^fel.^.r)-t-F2K,W.r)]+&alogr+ ^

(3.5.27)

(3.3-28)

where Io and Ko are modified Bessel functions, and Ofo,Of,,

and Of? are Constants determined by design parameters as

0*0 = JB'2+I>'Z

a'
7 2

a2 =/ _

I

(3-3.29)

E's,F's,G's, M's and N'sare integral constants which have the

following relations between themselves,

M.
=

M3 _ A'*- tt,2

The volume rate of flow can be given by

-16 5-
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The pressure distributions and volume rate of flow can be

obtained from the above equations with using the determined

(3.3.32)

constants.

The load capacity is
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W = ＼'(p-pa)2itrdr

+^[^,1, (air;,)- ktffliry]+^[ftilifofeG,)- G.≪oraK≫3

crsi,
j

rr3' -£'3

=~-sp^ti^5'1 l*'rsi)-^'^^^^XWa^j-ru^j (3.5.51)

-
^fe

K.ftr,rs,)-rye,fly.isjj- -^feKrfoys.)-^Kifcra&jjJ

The boundary conditions to determine the constants are

Pi-^ Pl= Pa at r r.

Pi = Pi
'

Pr = Pi at r = r≪>

dr or } dr " dr c rso

dr

fjr ,

P*=Pa, P≫≪P≪ at r=r^



+
|ffrl.≪W

-r^l.ftf.r^J-gfr.K.ftftn)-rS)K,≪V7)]

(3-3.33)

(ii) Thrust Collar Porous Gas-Bearing with Solid and Flat

Ring Part

In order to avoid the disadvantages due to roughness and

waviness of the porous bearing surface, thrust collar porous

gas-bearing with solid and flat ring part is introduced here

to be analyzed.

u

Pa
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Fig* 3-3･9 Schematic dia-
gram of thrust collar
porous gas-bearing
with solid and fait
ring part



Fig. 3.5.9 shows the schematic configuration of the

bearing, in which ft and r, are inner and outer bearing

radii, respectively, and Tf0 and fj, are those of porous

bearing, -ftis the bearing clearance and H is the depth

of the recess of porous bearing part. The compressed gas

is supplied through porous bearing into recess and flows

out to atmosphere through bearing clearance with the solid

bearing part so-called 'flange1.

The solutions of pressure distributions can be obtained

from the following equations for each region in the figure

by the same reduction as in Section 5~2.

In region I ( ro = r = ty), and region III ( f},̂ r

= r, ), the flow is considered as that of between two

parallel solid surface, then, the pressure distributions can

be obtained as follows:

In region I, from the continuity equation,

or

27crftu = 2td)>Hu!

where U is the mean flow velocity.

Integrating this equation under the condition of

p = pa at r= ro

(3.3.34)

(3-3.35)



resulting

Similarly in region III,

*-*#-&!,/≫£+*

where the boundary condition used is

P = P. at r=r,

(3.3.36)

(3-3.57)

(3.3-38)

In region II ( n = p ― ＼f,)≫"tnepressure distribution

is governed by the following differential equations for

the fundamental equations (3.2.l)~'(3.2.6) are valid for this

region;

-fyfr-fJ-AV-s-P-cr

T＼(4)-^P-P;'

(3.3-39)

AHr£,*--£,e-£,*･--$, (3.5.40;

where ■&'is the equivalent clearance of porous material.

Solving Eq. (3-3.39),

P,.= MlI(>WIr;+M2l(,(azr)+M3K;(≪lr)+M4.Ko(a2r)+ps(3-3.41)

Pi = Nilo≪*.r)+N2IoCo(ar)+NsK;(Wir)+N4K,≪.n+p;r (3-3-42)

where !, and Ko are modified Bessel functions. &,.and 0^
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are defined by Eq. (3.3.29) in which A'2
}

B'*, and $*

are given by Eq. (3.3.40). Integral constants M; and

Nj (^'=1,2,3,4) have the relationships of Eq. (3.3.30)

between themselves.

The volume rate of flow is given by

Qff-^T^"2?Crfft"p/)dr

-^K,{^-rfrK,^--g(rf,Kl^1)-ir|,K,(Obrfe))j(5.5.43)

The load capacity can be obtained by the integration

of pressure p with respect to the bearing area, resulting

where

W = Wr + Wi +Wi

W:= ^627cr(pr-pa)dr
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Wi= I^2*r(p,-R,)dr

- Z^ -V
£U2*≫T?- +<*-<)}

(5-5.47)

Chapter 4 Analysis of Externally Pressurized Porous Journal

Gas-Bearing

4-1 Theoretical Analysis

Externally pressurized porous journal gas-bearing is

also analyzed here theoretically under the same assumptions

as made in Chapter 1.

There could be various bearing configurations of it,

but in this chapter,a porous journal gas-bearing with cir-

cumferential slit gas-supply as shown in fig. 3.4-1 is

analyzed fundamentally, and later with some varieties of

bearing configurations.

In the followings, it is assumed that the eccentricity

ratio is comparatively small so that the secondary cir-

cumferential gas-flow may be neglected and, hence, the flow

of gas may be two-dimensional.

The bearing configuration to be analyzed is shown in

Pig. 3.4.2 schematically. The compressed gas is fed from

a slit supply of width b under the supply pressure ps into

the porous bushing, then, restricted by it, the gas flows

/

/
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Porous Bushing

･ b *

Region I Region I

･ 7^
h n ' P ―-U

Fig. 3-4≪l Construction of
externally pressurized
porous journal gas-
bearina1

Fig. 3.4.2 Schematic diagram
of the bearing

into the bearing clearance in axial direction. Some part

of the gas also flows through the porous bushing in axial

direction.

The average velocities of flows in the x-direction in
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the bearing clearance and the porous bushing are, respectively

as follows:

LL =
-ft,2dp

I2U dx

u'=-44e
dx

The continuity conditions are

ftu-fgdx

=fYdx-[Vx

(3-4.1)

(3-4.2)

(3.4-3)

(-f-SxS-f-) °*4'4)

(oixg}) (3.4=4)'

where Q is the volume rate of flow per unit bearing width,

and Q and Q' are the velocities of the flow-out from and

flow-in to the porous bushing, respectively; Q and 9' are

given by the following equations according to the assumption:

=
fe P'-P KB

% H ? /2^/yt

, te , R-p' -T3

(p'-p)

(ft- p')

(3-4.5)

(3-4.6)

where y and y' are the effective restricting thickness,

and are given by

7 = ci , n' = c't
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c and C should be determined experimentally but they are

presumed to be approximately

C = C = ~2" (3-4.8)

Eliminating u and g from Eqs. (3.4.I), (3.4.3), and

(3.4.5)≫and differentiating by X , one obtains

"d3?~~^/?t (p p)

Region I (j-Sx^l)

Krom Eqs. (5.4-3) and (3.4.4)

(5-4.9)

(3-4.10)

Eliminating u and u' by substitution of Eqs. (3-4≪l)

and (3.4.2) into iCq. (3.4.10), and integrating it with * ,

one obtains

where C, is the constant of integration.

(3-4.11)

In Eq. (3.4.II), p and p' should satisfy the following

boundary condition:

Then

p = p' = pa at x

c, = 3|u£Q+<:-{i3+-npa

-17A-
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where

Substituting Eq. (3.4.II) into Eq. (3.4.9)

£-*>-!£■*-*w

tfo -

(3.4-14)

(5-4.15)

The solution of Eq. (3.4.14) is given by

p = Esinh,uex + Fcosh otBx-
£f^/3 x

+ -jr^Ti (3-4.16)

where E and F are the arbitrary constants which should be

determined by the boundary conditions.

Substituting Eqs. (3.4≪13) and (5.4-11) into Eq. (3.4.16),

the pressure distributions p and p' in the region I are

obtained as follows.

pz=Es＼riko6,x + Fcx>sh.o& + -^Ls(-2r-x)+pa (3-4.17)

P'x≪--^(E5inlio&x + Fcosna.x|+-^^(i--r) + pa (3.4.18)

(b) Region II (0 = X^-|)

From Eqs. (3-4.5) and (5'4-4)f

-flu+ lu' = ( g'dx (5-4.19)

Eliminating U , W ; and g' from Eqs. (3.4.1), (3.4.2),

(3.4.6) and (3.4.I9),and differentiating it by X , one

obtains
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H=^(P'-P)-^(PS-P')
(3-4.20)

Eqs. (3-4-9) and (3.4.20) can be rewritten as follows:

2
[ (3-4.21)

where

A'2 =

The solutions of Eqs. (3.4≪2l) are

where

(3-4.22)

p = M1co3h,Oflx+M2Cosh,a2x+M3sin/!/a,x+-M<.sirihctx+ps (3-4-23)

p'=/＼/(cos)tO(,x-i-N2cos/ior2x+|＼i3sinh.a,x + N/43irih C6X + p (3.4.24)

ai = /-=―= '"" ~z : , u=i,2) o-4

v

The signs in the right-hand side of Eq. (3.4.25) are to be

taken as follows:

+ for subscript i = 1

- for subscript i = 2

M^' and Nj (^ = 1, 2, 3, 4) are constants of integ-

ration and they should satisfy the following relation:
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where j = 1 or 3 when L = 1, and a = 2 or 4 when Z = 2.

These dudections are quite the same as shown in Appendix XIV-

Using the following boundary condition:

then

£"£-0
at cc = O

M3 = M+ = N3 = N≪.- 0

(3-4.27)

(3.4-28)

The pressure distribution in the region II are obtained as

follows:

p^ = NJ,cosho(,x ■)-N2co5ha2x + ps

The volume rate of flow is

2
#3

Of-＼-&**＼]

at x=-|r-

at x =-|-
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(3-4.29)

(3-4.30)

(5-4.31)

(3.4-32)

l2jUp't

The boundary conditions to determine the constants N,,

N2 (or M,, M2 ) E and F are

(i) P1 = P'1=O

(ii) PI = P1



(iv) *&=*£*

(v) M=M.

v ' OX dx

at

at

TC =
b

2

Among them, conditions (iv) and (v) are not mutually in-

dependent, so the unknown constants are determined by the

conditions (i), (ii), (iii) and (iv) or (v). The pressure

distributions p and p' are given by putting these constants

into Eqs. (3.4.17), (3.4.18), (3-4.29) and (3.4-30) in each

region.

The load capacity per unit bearing breadth for the case

of an incompressible fluid is obtained by integrating the

pressure in each region:

i
AW =2＼2(p-pa)dx

= f^*f+f's≪tif +b(p5-ft)f| [ashf -co*^)

tS≪f^^^,!l-}f
(5.4.35)

The load capacity is obtained by the integration of

load-applied direction component of this value of ^W

with consideration of the eccentricity of the journal and

hence the bearing clearance variation. As it is very hard

to obtain it analytically, an approximate method to cal-

culate the load capacity is discussed later in Section.4~4≪
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4-2 Experimental Investigations

(a) Experimental Apparatus

The experiments are made for the pressure distribution.

The porous journal bearings and shafts employed in the

experiments are shown in Pig. 3.4･3･ The dimensions are

as follows:

34*

I-1― ― 66
-100-

D

T

(NJCO
<NJ(O

!

- 11 -9-1 h

- 31 -i

*

Pig. 3≪4°3 Bearings and shafts employed in experiments

Diameter of shafts

Shaft Wo. 1

No. 2

No. 3
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29.940mm

29.951mm

29.770mm



Inner diameter of porous bushings

Bushing No. 1 50.070mm

No. 2 5O.O74mm

Outer diameter of porous bushings 54･0mm

Length of porous bushing ( H )

Width of air-supply slit ( b)

31≫0 mm

9.0 mm

The pressure in the bearing clearance is measured by

a U-tube mercury manometer connected with a small hole of

0.5mm diameter drilled in the shaft.

For the pressure distribution in the axial direction,

the bearing is slided axially along the static shaft, while

the shaft is rotated for continuous measurement of the cir-

cumferential pressure distribution.

(b) Permeability Coefficient and Eccentricity Ratio

Because of the valiabilitjr of the permeability coef-

ficient of porous media, it should be determined based on

the condition of pressure, Reynolds number, and so on,

under which the bearing will actually work.

In the following experimental study, the permeability

coefficient fe and eccentricity ratio are presumed by

another method mentioned in later, because of the difficulty

of measuring them experimentally.

Denoting p to be
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a _ -ft'_7l2kt

and the bearing clearance H can be given by

ft = Crfl+ecosO)

where cr : radial clearance

6 : eccentricity ratio

0 : angle

then Eq. (5.4.36) becomes

(3-4.35)

(3-4.56)

(3.4-37)

On the other hand, the theoretical curve of Cpo~Pa)AP^~P)

versus l/p can be obtained identically when the bearing

dimensions are given even if the permeability coefficient
not

is^,known, where p is the pressure at X= 0.

Fig. 3≫4°4shows theoretical relation between (Po-pa)

~HPs~Pa)and l/fi calculated for the porous bearing with the

dimensions shown in the above. By using this figure, one

can obtain the value of l/j-} which corresponds to the ex-

perimental data of p0 . Pig. 3-4-5 shows the values of

l/p at the circumferential positions of every 30 in the

bearing clearance. The permeability coefficient k and

eccentricity ratio £ are presumed by the minimum square

method to match these experimental data of 1/p to Eq. (3-4≪

37). In Fig. 3.4.5 the data of Bushing No.l at 9=60°
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(Q.

N

?°

0
I

2

l/p

6 (degj

(a)

3 4 5

3

Pig. 5≪4≪4Theoretical re-
lation between (pc-pa)
■HR-&) and 1/6

'-180 -90 0

e (dog)

(b)

90 180

Pig. 3.4.5 The values of l/p at circumferential positions
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and those of Bushing No.2 at 0 =-50° are excluded because

they may be bad due to the fault of manufacture of bushings.

The presumed results of them are shown in Table 3.4.1. The

permeability coefficients are reasonably constant which may

justify this method. The thick lines in the figures are the

theoretical ones by using these results.

Table 3.4*1 Presumed, results of permeability coefficient
and eccentricity ratio

No.

Shaft

No.

Bearing

Clearance
(microns)

Supply

Pressure
(kg/cm?)

EccentricityPermeability

_ .. Coefficient
Ratl° (cm*)

/ / 130 ! 1.8 0.281 2/Ox/O'9

I 2 119 1.8 0.258 2.2ixlO'9

/ 3 100 1.7 0.277 i2.42x!0~9

2 _/

2

134 2.5 0.266 l.96xlO'9

2 123 2.0 , 0.287 2.57xlO"9

2 3 104 1.5 0.342

Eccentricity ratio could be also obtained directly by

measuring the clearance or eccentricity, but the accuracy

of the direct measurement seems to be doubtful, hence the

above method is applied here to yield these values of fe

and £ , which are used for the theoretical calculation of

pressure distribution for comparison with the experimental

one.
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(c) Experimental Results of Pressure Distribution

Figs. 3≫4≫6and 3≪4≪7show the experimental results of

pressure distributions in the bearing clearance. In the

figures, the theoretical curves are drawn calculated with

the values of k, and obtained by the above method.

The experimental pressure distributions agree fairly

well with theoretical ones qualitatively, but for some cases,

they show rather poor quantitative agreement. If one cal-

culates the pressure distribution curves with the value of

n just at the middle of the bearing clearance, quantitative

05

^0.3

^0.2
a

0 I

0

0.5

04

?0.3

I

tf0.2

a

0.1

0<

Shaft No I

Bearing No. I

/ ･

-10

x (mm)
(a)

G

-5 o
x (mm)

(c)

5

i>0.3
|

o,

O.I

-120°

･ 120°

10 15

0.5

0.4

5 0.3

|02

~0 /

0

-5 0 5
x (mm)

15 10 5 0
x (mm)

Id)

5

"1

10 15

Fig. 3.4.6 Results of pressure distributions (shaft No.l
and bearing No.l)
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＼

＼

＼
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Pig. 3-4-7 Results of pressure distributions (shaft
No.l and bearing No.2)

agreement would be also obtained between theoretical and

experimental results. The pressure distributions at the

opposite circumferential positions (that is, at 9 = 60°

and -60°, and at 0 = 120° and_i20°) have some deviations

between each other, which seems to be due to the poor

roundness of the porous bushings at manufacture.

4-3 Externally Pressurized Porous Journal Gas-Bearing with

Solid Sleeve-Part

The externally pressurized porous journal bearing is

^85-



very advantageous owing to its large load capacity and good

stability of performance, but, in the other hand, dis-

advantage exists in manufacturing it within tolerable rough-

ness and roundness of porous bearing surface. Several microns

of these defects may cause to lose the good performance of

the bearing.

In order to avoid this disadvantage without losing the

good characteristics of porous wall, the externally pres-

surized porous journal gas-bearing with solid ring so-called

'sleeve' part is introduced in this section to be analyzed.

Supply Port

＼a＼

Fig. 3≪4≪8 Construction of
porous journal gas-

bearing with 'sleeve'

part

Fig. 3.4.8 illustrates schematically this type of

porous journal gas-bearing. Assuming that the eccentricity

of the journal is so small that two-dimensional flow may be

considered with neglecting the circumferential flow, unit

_1Q<_



width of the bearing is analyzed fundamentally. Fig. 5.4.9

shows the cross-section of the bearing in which the compressed

gas is supplied under pressure ps from the back of porous

bushing of breadth b and thickness t , restricted through

it into recess part of clearance H , then flows between

'sleeve1 part of clearance ft to atmosphere. The pressures

in bearing clearance and in porous material are p and p' ,

and average axial velocities are U and TZ , respectively.

9 and of are the flow velocities from porous material to

bearing clearance and from supply port to porous material,

respectively.

-187-
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(a) Region I ( 0 ^ X < -|)

In this region, the fundamental equations (3^4≪l)-

(3.4.6) are valid, hence the pressure distributions p and p'

are governed by the following differential equations,

-H-A-p'-B"p-C

d2P _ Ty2/n _n/>

}

(3.4o38)

where

A/2 I , l__ -r,/2 | rl
Ps

-pjZ ft (* A -ZO)

Solving these equations under a boundary condition of

£~£-
0 at x = 0

resulting

px = M, cosh ax +M2coshQ(sx-hp5

pL = |＼|,cosh,a, x + N2co5ha2x+/|

(5-4.40)

(3.4-41)

(3.4-42)

where #, and (y2 are constants determined by design para-

meters and given by Eq. (3.4.25). Mi, M2, Mi and N2 are

integral constants having the relationships of

M, A'2 - (X?

N,

2

_MZ _ A/2- og

M2 &
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(3-4.43)
3/Z ■>

The volume rate of flow is

b

Jo



≪&(£-*#-£**#)
(3.4-44)

(b) Region II (-JMxS-J.)

In this region, the flow is considered as that between

two-parallelsurfaces. Then, from the continuity condition,

-§-=-#& (3-4.45)

Integrating this by X ,

p = J-^C, - 6pQx) (3-4.46)

where1C( is integral constant determined by a boundary con-

dition of

p - pa at X =

resulting

C, = 3MQH + *＼

2

The pressure distribution p becomes

*-W-*)+p.

(3-4.47)

(5-4.48)

(3.4-49)

(c) Connection of Region I and II

The unknown constants M, and M2 (or N, and N2 ) can be

determined by the following boundary conditions

(i) pI=pI at x--jjh

(ii) _g&.0 a* x=4
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The pressure distributions can be given by Eqs. (3.3.41),

(3.4.42) and (3.4.49) for each region with determined

constants.

(d) Load Capacity

Load capacity 2＼Wfor unit breadth of the bearing is

obtained by the integration of pressure p with respect t<

where

Z＼W= AWr +AWj

A)NT = 2
t
(Pr-PJdX

0<| 2. ' 0(2

4W, =2＼l(P7r-p(>)dx

2

tf l 2 2 )

(3-3.51)

a≪M£+b<a-w (3.3-52)

(3.4.53)

4-4 Load Capacity

The load capacity supported "byan externally pressurized

porous journal gas-bearing is obtained by the integration

of the vertical component of &]sjof Eq. (3.4-53) or (3≪3≪5l)

around the bearing surface assuming that the eccentricity

ratio is small so that the circumferential flow may be neg-

lected.
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The load capacity for a small breadth, of bearing, AW,

can be given by Eq. (3≪3≪33) or (3.3.51) which is a function
directly

of l/|3 and .independent on the values of "ftand "ft-. The cal-

culation of AW versus l/p is fairly complicated, but it

is found that AW may be expressed by the following equation

a.Tinrnyimatfiiv.

aW a, as

Ps-Pa b, + (!/p)3 b2-M≫/£)2
(3-3-54

where al(ft2)b( and fc>2are constants particular to each

bearing configuration obtained from A＼N/(ps―po)~＼/pfigures

l/fi is expressed as

p
= -£-(> +£cos 9)

Pa
(5-4.55

where £ is eccentricity ratio and c is circumferential

angle from the position of maximum bearing clearance. po

shows the value of f3 at £= 0 and it corresponds to the

radial bearing clearance.

Total load capacity W can be obtained by

W = (Ps- Pa)i"lFV '" C°Se)r'ie

where f is journal radius.

By using Eq. (3.3.55),
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where
b2 3 32+(/+£cos9)2J

(i) Integration of the First Term

By the transformation of variable of

tan-§-= t

and hence

dt

)

(3-4.57)

(3-3.58)

(3.4-59)

then the integration of the first term of Eq. (5･3*57) becomes

/It[ cose
de =

Jo3, + n+£cos8)3
(1 2(l-tz)(Kt2)

t2)3+[l+t2 + EO-t2)j
dt (3-4.60)

The.integrand can be separated into the following partial

fractions

2q-Ls)O+t2j

where

2f T, , js.tH-7; -gt+~n | ,, , ,,x

K, = Bo3+0-8)3

L" 3, +(i-e>
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in which

R,

Q<

s,

,2-0+£) + (i + e

i-eJBo + ci-e

Pi + Ti + 1
2Q,

T,=

a*

f +(3-£)£B0-K)-£sj

6£BCR,

3^ B> =Wtp0

The integrations of each term with t are as follows

I =

I,

c dt It
2JU,

(3-4.63)

(3.4.64)

tE*U

r" tdt
l(£-Q/2)2+R,-Q,74

T
r tdt

r _ r-__d£ = ' ＼% . tan'! Q|/2 1
X3 Jo (ib -Q,/2)a+R,-0,e/4. VR.-Q,2/4.<-2 JW-QW

T
_ r___dt ' fi w- Q./2 ]

^ " 30(t tO,/2)21R, -Of/4 ^Q!4 12 /RFO^I

Then, the integration of Eq.. (3.4.6O) is

3

0B1(.i+f)3+[i+t2+e(i-te33<n:



=
^[P,I. + S,(I,-Ia)-≫-T1(&

+ l4))

= Jtf_R_ Q,ff,+2T, ~|
K,!/u JR,-Q.2/4-J

(3.4.65)

(ii) Integration of the Second Term

-Byusing the same transformation of variable, tan^- = t,

the integration of the second term of Eq. (3≪4≪57)becomes

C cose
de =

)oBz+u+ecose)z

i 2(i-t2)
C!+t2+£Cl-t2))2

4t (3-4.66)

The denominator of integrand has no terms of t. and t3,

and its characteristic value with respect to t2 is minus,

then the integrand can be separated into the following partial

fractions

2(1-tz)

where

Ks " I K2Bf + a -e)2 J

S2"~2Q2(I+ T?2)

"^2
2R2

in which

(3.3-67)

(5-4.68)

-194-



or

>c =
B2±

(3.3.69)

By using the same integrations of each term of Eqs.

f^.4.67). the integral of En. ("5.4.66) is

f* £c£6
aq - K < £zQz±2Te)

1 Bz+o+ecose)2 aa s2+o-£?Wr~-qi/4 J (3.4-70)

Then, the total load capacity is obtained as follows;

^ CPs R)l b, ^+(/-£)4/U +yR,-Q,V4j

The symbols are notated in the above.

The load capacity can be calculated for any eccentricity

ratio 8 bv usinsr the design -parameters 3. and )C .

The load capacity for a small width of bearing 4W

may be generally approximated by Eq. (3.4.54) with two

terms. In the followings, two special cases are calculated

in which AW is approximated by only one term of cubic or

square fractional expression of l/p as

-1.95-



4W2= (ps- P) Q*―, (3.4.72;

respectively- Then the load capacities of journal bearing

IV.=-27crrp-P)-^- & fp| i QA+2T,)

･(3-4.73)

In these equations, the terms of (-p^-pj-di/b,and

(Ps~Po)'Q?/bzare ^ne values °£AWi and AW2 respectively at

l/p = 0 or no radial clearance. The load capacity are cal-

culated in dimensionless forms of load capacity as

rW(
2Krcps-pa).a,/bl

p Vjfe
(3-4.74)

in which 27cr(ps-PJ-OLj/bj are the load by the above A＼Nt

or AW2 at no radial clearance all over the journal.

Pigs. (3.4.IO) and (3.4.11) shows the theoretical load

capacity against the accentircity ratio £ for various

values of J3O or >CB0 for each case respectively.

The bearing stiffness near non-eccentric state is im-

portant at the bearing design. The stiffness is defined by

dW/dE > hence it can be obtained as the tangent of the curves

on W (orFw)-£ plane. The case of JB0= 1.0 or icBo = 1.0

has maximum tangent or maximum stiffness near the origin
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Fig. 3.4.IO Theoretical load
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pression of l/fi

Pig. 3.4-11 Theoretical load
capacity by approximatior
of square fractional
expression of l/p
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in both of the figures. This can be also derived theoretica.

ly as shown in Appendix XV.

In the practical porous Journal bearings, ASM can be

approximated by Eq. (3.4.54), and hence the characteristics

of them may be between of these special cases. At the

bearing design, l/pe , which corresponds to the radial clea-

rance, should be chosen so that 30 and KB0 may be nearly

unity.

Chapter 5 Conclusion

In Part III, the externally pressurized porous thrust

and journal gas-bearings are analyzed theoretically which

may have a good bearing performances of large load capacity

and stable working owing to the mesh structure of bearing

surface.

The analysis yields theoretical pressure distribution,

volume rate of flow and load capacity. The permeability

coefficient which identifies the characteristics of the

porous material is used assuming that Darcy's law may be

applicable to the flow in it. Then the equivalent

clearance -ft'and effective restricting thicknesses y and

v' are introduced so that the flow in porous gas-bearing

may be considered as two fundamental parallel flows in the
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porous material and in the bearing clearance connected with

each other.

These results are applied to the investigation of ex-

ternally pressurized porous thrust and journal gas-bearings

with solid part so-called 'flange' or 'sleeve', which are

introduced to avoid the disadvantage due to the roughness

of the porous wall at the manufacture, without losing their

good characteristics of performance.

Experiments are made to investigate theoretical re-

sults. The results of experimental pressure distribution

have shown very good conformity to the theory not only

qualitatively but quantitatively for several gas-bearing

configurations. The permeability coefficient used in the

calculation of theoretical curve can be measured for the

thrust bearing based on the condition of pressure, Reynolds

number and so on, under which the bearing will actually work.

But, for the journal bearing, the coefficient as well as

eccentricity ratio is presumed from the results of cir-

cumferential pressure distribution.

Load capacity for the thrust bearing is also experimented

resulting good agreement with theoretical one.

These results may verify the theory very well.

It should be noted that the theory with the effective
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restricting thicknesses 7 and r(' to be about 0.5t coin-

cide well with ones from an analytical solution on a theo-

retical standpoint in which the flow condition in the bearing

clearance is taken into consideration as a boundary value

(d)
of the "three-dimensional flow in porous media

These factors of ^ and ij>', and permeability coeffi-

cient, however, may involve several problems yet to be

studied.
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Conclusions

The externally pressurized gas-bearings of several con-

figurations are investigated theoretically.

The complex potential theory is applied conveniently to

analyze the thrust gas bearing with multiple supply holes

of circular thrust type, thrust collar type and rectangular

thrust pad type. Pressure distributions are obtained from

the appropriate complex potential functions which satisfy

the boundary conditions for each configuration, then in-

tegration and gradient of it result in theoretical load

capacity and volume rate of flow. The bearing characteris-

tics are shown in design charts.

Externally pressurized thrust collar bearings with

single and double slit-supplies are investigated theoretically

yielding the optimum dimensions of slit-supplies, load

capacity and volume rate of flow.

A new concept of the flow model is applied to the

analysis of externally pressurized porous gas-bearings of

thrust and journal types. Equivalent clearance and effec-

tive restricting thickness are introduced so that the flow

in the porous media may be considered as two parallel flown

connected each other. Then the pressure distribution, load

capacity and volume rate of flow are obtained theoretically.
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Theoretical results are investigated experimentally,

and good conformity observed between them verifies the theory
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Notation

Part I

A, A' : functions of r defined in the body

AoA^X* constants defined in the body

CL i position of supply hole

(Xx,CHu ' X-and ^-component of a, respectively

£ : "breadth of rectangular bearing

J3- : function of c defined in the body

-fQ : coefficient of volume rate of flow with respect
to (pr-pj

yw

J

K

le

te.'

L

U

m,

P

: coefficient of load capacity
to (po-PD)

: tearing clearance

: unit of imaginary number

t momentum of fluid

s integer

, ≪2: constants

: number of supply holes

: number of supply holes in an array

: length of rectangular bearing

: entrance length

: integer

: polytrotic index

: modified pressure

-205-

with respect



p

Pa

ft

: pressure, absolute

; ambient pressure, absolute

: pressure .iust after sup~plyhole, absolute

Pa Pa '■pressure just after supply hole with consideration

nf m~pc!P!T>T>p fall

Q

%

R

: volume rate of flow

: strength of source and sink

: dimensionless radius with respect to r, fr/n)

Ra,T^,7^: a/r^ ro/r,
i

rs/r,, respectively

f?e : Reynolds number

r : radius

To : radius to bearing inner periphery

r, ! radius to bearing outer periphery

Tj : radius of supply hole

S : area enclosed by a constant pressure line

Uc, t% : sli(iing velocity in x and j directions

u

u

W

w

: flow velocity

t flow velocity from supply hole to bearing
clearance

: flow velocity at the middle plane of "bearing
clearance

: average flow velocity

s load capacity

: complex potential function

x, u, ~z ' coordinates
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z

a

: complex number

: integer

p, B' : integer

s

0

f

cr

0

* thickness of boundary layer

: argument

: angular spacing

: vertical angle of conical bearing

: coefficient of pressure fall at supply hole

: coefficient of

: density

= r/o.

viscosity

: frictional stress at bearing wall

: function

: function of p defined in the body

jj/p ^ : functions

Subscripts

0

(fe)

s

: inner edge of thrust collar

: outer edge of thrust collar

: k, supply holes

: supply

Superscripts

* : modified

: conventional for obtaining load capacity



/V

: conjugate

'}" : with considering secondary effects at supply ho

a. : radius to slit-supply

bs : width of slit

Ci, C2 ' constants

F^tf^ : dimensionless volume rate of flow with respect
to (ps-Pa)and (po-pa), respectively

F^,,fw : dimensionless load capacity with-respect to

(Ps~Pa) and (Po~Pa)1 respectively

£

P

p

Pa

Po

: bearing clearance

: length of slit

: Modified pressure

: pressure, absolute

: ambient pressure, absolute

: pressure just after slit-supply, absolute

Q

R

supply pressure, absolute

specific load

: volume rate of flow

: dimensionless radius with respect to T"i(T/n)

R^fo : ro/r,
t

a/r, , respectively

r

r,

: radius

: radius to bearing inner periphery

: radius to bearing outer periphery



s

u

W

X

/*

I

f

: area enclosed by a constant pressure line

: average flow velocity

: load capacity

: coefficient of pressure fall at supply-slit

: coefficient of viscosity

: arbitrary constant

: density

Subscripts

I

0

B

M

,1,1 : at region I, II and III, respectively

: inne r

: outer

: with considering secondary effects at supply-slit

: corresponding to point B (limiting case of double
slits to single one)

: corresponding to point M (minimum flow rate)

Part III

A' : constant defined in the body

Q-i.CU: constants

/ ' ': constant defined in the body

Bo i design parameter defined in the body

B,,32 . b,(303and b2^2 , respectively

b : width of supply slit

t>i,b2 : constants
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Ci : constant of integration

c,C i effective restricting thickness
coefficients

Cr ' radial clearance

~* 'V : constants
of integration

Li a "V＼/-＼ri-v^-i-≪^r≫>rtl on
t≫≪!≫v^r>ri CtT "T≫Ô*O C!O

･ft, : bearing clearance

-ft' : equivalent clearance

I K - modified Bessel function

I,~I4' integration

K,.K-,i constants

fe : permeability coefficient

L,(Lz - constants

£ j length of journal bearing

n.

p1

Pa

Q

*

N : arbitrary constants

: polypropic index

J?2

T,

: constants

: pressure in bearing clearance, absolute

: pressure in porous bearing, absolute

: ambient pressure, absolute

: supply pressure, absolute

: volume rate of flow

s flow velocity from porous bearing into bearing
clearance
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%' : flow velocity from supply port into porous bearing

r : radius

To i radius to bearing inner periphery

>7 : radius to bearing outer periphery

r^ : radius to flange

Ts : radius to supply port

t j actual thickness of porous bearing

t : variable (in Section 4-4)

U i average velocity of radial flow in bearing
clearance

Vl' : average velocity of radial flow in porous bearing

W : load capacity

4W : load capacity for unit breadth of journal bearing

(Vo.o/,,^*constants defined in the body

p : -ft'/ftor £'/H

B s value of £ corresponding to non-eccentric state

g : eccentricity ratio

r>v' t effective restricting thicknesses

K

p-

: parameter

: coefficient of viscosity

Subscripts

IE UTs at region I, II, and III, respectively

0 : inner

: outer
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Appendices

Appendix I

By de Moivre!s theorem, the following equation can be

obtained

where

fe-l
= TT

i =°
(x-≪^e"Le

oia-= eL~te'-e1^ : rootacf Xte-≫= 0

Square of absolute value of Eq. (A.l) is as follows:

= x.2*+tf*-2x*$kcoskd

|x-Wjae-tor=|a:-a^-≪|e

= X2^y2-2X^cos (9-9jJ

Thus

(A.I)

£og[x2fe+^-zyf'^coske] = r^[^a2-2xacos(e-0j)] (A.2)

Substituting x=f?ttR and ^= j , or x=Rand ^ = R≪> then

Eq. (I.3.6) can be obtained.
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Appendix II

Prom Eq. (1.3.9)

(A.3)

Then, letting <P0= exp{^-^) Jl^L^Z^lf the load capacity

is

- % if K,(＼- Tit)(<PO- i)/{$- Ri)

= 'fcn2K,(/-R.a)lri-f^-Rs>≫}///-Ra(Rft_2R>)| (A.4)

Appendix III

Rrom Eqs. (I.5.2), 1.3.12), and (l.3≫H)

Wfl)= ['f (p-pjrdrde

C J(j

rR=＼fQ-*■*,,._F^R£+I-2R.R cose
^AD p

.A

= Ttr,2 K, (I - F?ft2jrI - (Ra- Rs)2J/Cl - Ra(F?a~2Rs)J (A. 5 )

The load capacity for the case with multiple supply

holes is obtained by using the relation of Eq. (A.5)
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... (R-l re=2!C

+

'+＼-2RaRcos(6-

-2RaRC0S(Q-8j')
rrcfe-nRde

-xn2teK[fH(i-^)[!-fpa-fts)i]/[i-^(Ra-2f?s)] (A-6)

Appendix IV

In order to satisfy the condition described in the

body, the pressure at fc= R.a-R5j6 = 0 must be equal to that

at R.- Ra+ R.s, 0=0. Using these conditions in Eq.

(1.3.19), R* must satisfy the following equation,

Let

or

Kuw %
■Rt^lRt-Rsf*-? (Ra- f+ I

(R.*~Rs)*+(Ra-Rs)2
+ K?*w

- Knw tog (Ra + Rs)2*-2Ryk(ra|+Rs)k+Rj;

Of* = ^-Rs)b , 16*= (HR+Rs)fc

] -ayRfl*fe i-p*Rgfe

R*-tf* P*-r*

(RW-sjgs3≪'+'-≫

-212-
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Solving this equation with respect to F?*feunder R* < 1>

we can obtain Eq. (I.3.20).

Appendix Y

Assuming the isothermal expansion of gas in the bearing

clearance (n,=l), the relations of Eqs. (1.2.8) and (1.2.9)

rtp yfiwritten as

P = ?*, Po= V , Pa=?a* (A.9)

respectively, where Vs represent incompressible pressure.

Using the pressure distribution for an incompressible fluid

of Eq. (I.3.7), the compressible solution can be obtained

as follows;

p=JK,to§(R.B) + K*≫

where

(po+p≪xp-p≪) +

£<R,e>-*og*
?kR*+ -2R≪VcO3

R*cosl?9

(A.10)

(A.ll)

and P is incompressible solution.

When the pressure (P - f>Jin the bearing clearance is small

enough compared with pa , the pressure p can be expanded

in series as
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P-Pa≫ (Po + ftHP-pJ+fi.2 Pa

'a nx

Neglecting the terms with higher order than [T*~pa)＼one

can approximate the compressible pressure distribution as

h- o =
*3°"1"Pa

(V ― ft,)
P Pa 2p ( al (A.13)

Then, the load capacity with a compressible fluid is

= ―57; x ^lacowp.

3 ^p -pjrdrde

(A.14)

The error of approximation of Eq. (A.13) increases

with increase of P . But, the externally pressurized thrust

gas-bearing as analyzed here has the point supply holes so

that higher bearing pressure may be bounded in comparatively

small region near the supply holes, which shows that the

approximation of load capacity of Eq. (A.14) is rather

reasonable as long as the supply pressure is not so high.

Appendix "VT

At section C, the momentum of the fluid for a unit

breadth is as follows by considering that the flow velocity

profile is uniform;



Jc = f*puadz = ?ul% (A.15)

where J : momentum of the fluid

H : bearing clearance

f : density of the fluid

U : velocity of the fluid

Um : average velocity at section C

Z ･ ordinate normal to bearing surface

At section P where the fully developed flow profile

may be expected, that is U =■4.U0 0 - ~^-)(-^-)

where u0 is flow velocity at the middle of bearing clearance,

TVio mmtionbim nf t.Yit*f~lT]"iri1 R

Jr=jV2d3=fp{4U0(l-^-)-f}2dZ

= JL?u?ti,

From the continuity of the flow,

("■ft r& -_ ~7

(A.16)

(A.17)

where density change between sections C and F is neglected.

Then

Uc = -f- Un
(A.18)

Using this equation and the momentum equation, the

pressure loss for the change of velocity profile is
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k-p:~
%
(Jf-X)

= -^f>ul (A.19)

Appendix VII

The pressure loss at supply holes due to the flow

profile change is obtained in the followings with consider-

ation of the friction loss at the entrance length. It is

assumed that the fluid is incompressible because the pres-

sure change may be comparatively small, and that the flow

may be such as between two parallel surfaces though it is

a radial flow from a point supply hole.

X

-216-
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partly

In Fier. A.I a -developed flow pattern is shown in

which

Z " ordinate normal to bearing surface

-ft,: bearing clearance

S i thickness of boundary layer

XI : flow velocity of fluid

LU : flow velocity at the middle plane of bearing

clearance

Now, assuming the flow velocity distribution in the

boundary layer as

(A.20)

then, the frictional stress Zb at the tearing surface is

Letting XL be average flow velocity,

then,

uft = 2 ＼2udz

= 2 fVdz-f- Uo(*-2^)

≪u≪*ri―§+&)]
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u= u,D―f-C-^-)] (A.23)

Denoting J to be momentum of the fluid which flows

through any section of unit width of bearing clearance in

iini+. -H ttip.

J = f

=2f

r
u2dz

u2dz + fUcz(^-zS)

.pu≪*[,-j^4)] (A 24)

From the momentum theory along the flow direction (x-axis ),

(A.25)

Considering that the flow in the central part has a

uniform velocity distribution so that the effect of viscosity

may be neglected, Bernoulli's theorem can be applied

?' dx ' Uo dx.
(A.26)

From Eqs. (A.2O)-(A.26) and assuming f = constant,

one can obtain the following differential equation:

£imn-^M-ikmi-)
where Re = 2ftUjVJU : Reynolds number

Integrating Eq. (A.27) by using Eq. (A.23),
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These results are shown in chart in Pig. A. 2.

When this theory is applied, the coefficient of pres-

sure loss at supply holes is

%= 1.623

-219-

-we- ^T^V-fTHrfe:-2-7 (A-28>
3 ft

where the following boundary condition is used:

<T- 0 at x = 0 (A.29)

The entrance length He can be obtained by substituting

cT=･-fl/2into the above solution, resulting

-J^-= 0.01297 (A.30)

For the region of X>He , the fully viscous flow can

be formed, then

n- -fc2dP
12/Udx

g this under the cor

ftt-P _ 48(X-le)
^pu2 -flRe

U " 12/Udx
(A-5l)

Integrating this under the condition that p=p at X-^JU,

(A.33)

Then

The equivalent pressure fall at the entrance length is

= 0.6226
(A.54)



For practial bearing dimensions, for example

VL = 340 m/sec

ft = 40 microns

o

I

k
obzzg/

Oe

x/hRe

Fig. A-2. Pressure drop in
entrance region with
consideration of develop
ment of boundary layer

Reynolds number is

Re = 1810

The entrance length is

le = 0.94mm

This length is fairly small compared with the diameter of

supply hole so that the assumption of one dimensional flow

may be reasonable.

The compressible and radial flow with consideration

of the development of the boundary layer is analyzed in
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Reference (9), but the entrance length cannot be calculated

numerically so easily, hence this theory can be approximately

Appendix YIII

Logarithmic function of complex number is calculated as

■fnT1 nws :

or

a

(A.35)

tyCre^) - fyr + Ke + zj*) (3 = o,±＼,±z,...)(A.36)

Using equation (A.36),

where

w0 = io(roeue)

+icosA,sinh

27Co sieA0coshz3j+a>s*A^ntiBt lMfj

. _Tck^T0/a, _ 7c(8+2i7c)
0 zioan/r, , -°i~ ztegn/r,
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Using equation (A.35)≫ real part of function ttrDis as

follows.

/ 2sinAacosA0s'mh£jcaskBj j^l

i s)a^A0co5h?B;+cos2A,sifiii25i' J
4 O

=&feg<≫> = o (A.38)

Thus uj0 has only imaginary part determined by Ao and Bj .

Appendix IX

Similarly

Iff.= rt(r,eie)

C0s'zi<^ro/r, ~ C05 2i^to/r{

Putting A, to be

Al" 2%(ro/r,)

Using Eq. (A.35) and the above equations, one obtains
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1 27t ^ SiaA,cosfuB^ -icosA, sinh.3;

~2?.^ sin?A,cosi2Bj+ coszA,si/i|i.2JBj

Appendix X

(i) <r.^>,

i^f,(A(,Bj)

or r> a

Consider the complex integral of

shown in Fig. A.3, where

iJCZ) - ^%~T)

(A.40)

W(Z) on the contour F as

(A.41)

Pig. A.3 Contour of complex
integral (U>|)
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ICrfZ)is analytical in the domain ≪& enclosed by the circ

except at the origin, where 2J(Z)has an isolated singulari

whose residue is calculated as

2-0 °

Then, by the theorem of complex integral

<j>W(Z)dZ. = 2TlihQ (T

The left-hand side of this equation is

(A.42

(A.43

Prom the imaginary part of this equation, one can obtain

(-27C
＼ Xoq (cr2- 2Tcos e +1) de = 4%-fog <r (A.45

(ii) or = -£=-<I or r<a
a.

Now, consider the complex integral of W(Z) along the

contour shbwn in Fig. A.4. Similarly as the above section

£ OJ(Z)dZ = ZTClHooO-

The left-hand side of this equation is

-224-
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Pig. A.4 Contour of complex
integral C(T<1}

r Jr Z

-zx^r+i^ii-tqft-qrcosQf+vsiMf)

-Hcpc--' i-crcose , _, .

Then from the imaginary part
of this equation, one can

rZK,
] b§ fcr2-2crcose+1j de = o

(A.48)

Appendix XI

Using the formulae concerning the infinite product,



namely

Then

ncZ
00 ^.2

= sinhTrZ

f-7i^TF) = c^＼ (A.49)

2 {faa[Z-20(B-2lpL- aJ-iflg(z-fay+l)B-2LpL+Q)

Similarly,

-tgCZ-^DB^-lJ'-^^'-l]

p*0

= fegsiniL^^-gg- a^ -Ayai^g-fi^g* g3 (A.50)

|^itog[z-{20i+i)B-t(2p+/)L+a}-iog[z-2Dffi-U2pH-L)-a)

-IcgcosH^-^'^ -^cosk^f '^ (A.51)

Summing up these terms with respect to (Y from minus in-

finity to infinity, one can obtain Eq. (l.5≪3).
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Appendix XII

Transforming the coordinates so that the source may-

locate at the origin, namely

X-* X + 5i , 9―*# + %

Then the integration of Eq. (l.5≪ll) becomes

where

w =

3 _ L -r

2 2 3

'KZ*$$**

*≪≫=―§-- Or , X,--| a*

*---^--aH , ^(=-^--Qu

For the first, the integration with X is

＼'£03(X2+f)dx =＼xbaU＼tf)-2X+2titart^T'

(A.52)

(A.53)

(A.54)

Each term of this equation, now, is integrated with

respect to U. from ue to ty,, namely
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where

3≫

i

f

- 0 or I

2(*- xjdy = 2(z,-x^Xty-y.)

By using the formula of

then,

fc^f--tor* +f

Xj 2

xi
*o)

≪r0)

a
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Substituting the results of Eqs. (A.55)-(A.57) into Eq. (A.5,

then.

W =^^2(tan-l-|-tan-||)-≪!(ta≫i-'|-&R-'^}

+tfft≪f-g- tm->f)-tf(tm'fo-t*n<fj

- 3(x,-^,- %.)-a,-xx$rpty(*£+zf)] (A- 58)

Substituting the relations of Eq. (A.53), one can obtain

Eq. (l.5.1l)≪ In these equations, the value of arctangent

should evidently take its principal one.

Appendix XIII

Before the reduction of Eq. (2.4≫l)≫the approximations

of Eq. (I.3.23) in Chapter 3 in Part I, and Eq. ( A.13 ) in

Appendix V are studied here again in order to know the

meaning of the approximation of pressure distribution and

load capacity.

At the first, the transformation from an incompressible

solution P to a compressible solution p is as follows (see

Appendix V):

P~Pa = ipo+PJCP-rtf+p? -ft (A.59)

where the isothermal condition is assumed. This is shown
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0 P. p.

L

p, p

Fig. A.5 Transformation of P

into p

in chart in Fig. A. 5.

The approximation of the bearing pressure by Eq. (A.13)

in Appendix V is represented by the tangent of this curve at

"P=pftbecause Eq. (A.lj) is the first terraof Taylor ex-

pansion of the pressure near the ambinet pressure pa .

Now, denoting S(P) as the projected area enclosed by

a constant pressure line of P , then, the load capacity can

be obtained by the following calculation by using Fig. A.6:

W=( (p-P.)dS-fVft)(-a|-)clP (A.60)
Jbearlnaarea ＼ Mr^

where minus sign represents that SlV) decreased when P

increases. ―-=- in the last term of the integration can be

considered as a distribution function or a density function
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a°b

i
5

0
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4

r-Circularthrustbearing
/ withsinglesupplyhole

Thrustcollarbearing

withslitsupply
＼ I

0.5
(P-Pa)/(Po-Pa)

p i.o
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Pig. A.6 Schematic ex-
pression of obtaining
load capacity

Fig. A.7 Distribution
function in integ-
ration of load capacit;



of the bearing pressure F at the calculation of load

capacity, while the term of(p-g)is to be a weight function.

The load capacity can be obtained by the integration of the

product of weight function(p-f2,)anddensity function (--gs)

with resnect to the nressure ranse.

In Fig. A.7, the distribution functions are shown in

dimensionless form; one is a circular thrust bearing with

single supply hole with dimensions of T^,=l/2 and R5 =

l/lOO as shown in Fig. 1.3.13 in Chapter 3 in Part I, the

other a thrust collar bearing with single slit supply with

dimensions of R0=l/3 and ^=2/3. $(P0)represents the

bearing area according to the difinition of SIP)-

For the former bearing, the circular thrust bearing

with single supply hole, ° *―――takes very large
<S(Po)dr

value for lower pressure, while for higher pressure (near

the pressure Po) it falls down very much nearly to zero,

which means that most of the bearing area is occupied by

J_OW61*
comparatively pressure than Po. Then for the calcula-

A
tion of the compressible load capacity of this bearing,

the accurate approximation of the compressible pressure,

which is considered to be the weight function, is demanded

especially for lower pressure region, because this part

may be main for the load capacity. This is the reason
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why the approximation of Eq. (1.3.23) is used accurately

for the presuaption of compressible effect.

In the other hand, for the thrust collar bearing with

slit-supply, the density or distribution of the pressure is

formed to be almost uniform as shown in Fig. A. 5- Then,

compressible pressure, which is the weight function, must

be fairly accurate even for higher part.

Wow, the following function may be considered as the

weight function p instead of Eq. (A.13) t

n = ^Po-≫-fc)(Pw-fo)+P/-pfl /p _
D
,+

D
(A.61)

This equation represents a straight line I which inter-

sects with the real transforming function Eq. (A.59) at

two points of p = p (ambient pressure) and V= pw in the P~p

plane of Fig. A.5, where pw [= W/iEOY- To2)]is the specific

load of the bearing. The load capacity can be obtained by

this approximation of the weight function in integration

of Eq. (A.60), resulting

W=f . (p-po)dS
Jbeanng area

^bearingarea P＼nr&

_/(Po+faXPw-fe) + P/-Pa C

r＼u Fa -'bearingarea

―― ■―XWincomp.

-2^53-

(A.62)



This pressumption of compressible effect may be fiarly

accurate as shown in the experimental results in the body.

Appendix XIV

The complementary functions of Eq. (3.2.21) is given

by the following forms.

P = N,t,far) + M2Ie(oyr;+ M9K0(a,r> + M4Ma2r)

p'= N,Io(of,r)+ NzI0fo(zr) +M3Kc(of.r) + M.Kofer)

(A.63)

These functions can be made to satisfy Eq. (3.2.21)

by substituting it into the differential equations and

equating the coefficients in Io and Ko to zero. Prom this,

the following equations are obtained

(0(f- A'Z)Ni +B'2M^ = 0

(A.64)

where i = 1 or 3 when I = 1, and i = 2 or 4 when A- = 2

Both of M| and N; are not zero in Eq. (A.64), hence

of - A'2 3'*

33'2 tf- V'2

0
(A.65)

This determinant yields Eq_.(3-2.24)^

Then, from Eq. (A.64), one can obtain the relation of Eq.

(5.2.25). Since the particular solution of Eq. (3.2.21) is
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P = ?' = Ps (A.66)

the general solutions are obtained as Eqs. (3-2.22) and

(3.2.23).

Appendix XT

For the former case of A% , the load capacity is

or

W, = fps- ft)
c -2ra.co5e

de

2ra,(Ps-pa) r* jocose .

Fwi~
f* ^O3cose

X 303+(i+ecose;9 de

The bearing stiffness is

0Fw,_
3£

r
fBf-t-d-i-eco^e)3]2

de

(A.67)

(A.68">

At the design, the bearing stiffness near non-eccentric

state is important, that is

0FWl _
r^BJWe.

=_37tB^_ (A.69)

In order to obtain the appropriate design parameter

which maximizes the stiffness,

d_fdFw, )
=

^XJBog0-£f)
=
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Thus the maximum bearing stiffness can be obtained when

Bo - 1.0 .

･For the case of AWz , the similar deductions are applied

resulting

Then

de =

(A.71)

The maximum bearing stiffness for this case can be

obtained when XIBO = 1.0.
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