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Abstract

Descriptions are concerned with the static bearing
characteristics such as the pressure distribution, load
capacity, and volume rate of flow of the externally pressuri-
zed gas-bearings for some bearing configurations.

The complex potential theory is applied to the thrust
gas-bearings with multiple supply holes to yield the bearing
characteristics, and the thrust collar gas-bearings with slit-
supply are also investigated as well.

Externally pressurized thrust and journal gas-bearings
with porous bearing surface are analyzed with consideration
of the gas-flow in the porous material by applying an ex-
tension of Darcy's law.

These theoretical results are compared with experimental

ones and good agreements are observed between them.
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Introduction ’ :

The externally pressurized gas-bearings are recently
investigated and applied to many devices especially for sup-
porting high speed rotors owing to their advantages of small
static and dynamic friction.

The externally pressurized bearing has a restrictor
generally such as a capillary or an orifice at the fluid
supply so that large bearing stiffness may be achieved. In
order to design the most reasonable restrictor, one should
know the bearing characteristics such as load capacity and
volume rate of flow.

In the followings, these characteristics are investigai
theoretically in connection with bearing clearance and suppl
pressure for various bearing configurations.

Externally pressurized thrust gas-bearing is rather
disadvantageous for its small load capacity. The recess to
hold high supply pressure is apt to make the operation less
stable because of self-excited vibration.

A simple method to improve the load capacity is to
arrange multiple supply holes on the bearing surface so thail
the average pressure may increase fairly well. For the thnm
collar type of gas-bearing, multiple supply holes must be

required because of the bearing construction. These types ¢

!
{
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thrust gas-bearings are investigated in Part I by means of
the complex potential theory to yield the pressure distribu-
tion, volume rate of flow, and load capacity, which are com-
pared with experimental results.

The technique of complex potential theory is also applied
to the rectangular pad-type thrust gas-bearing with multiple
supply holes.

The load capacity may increase with increase of number
of supply holes which are spaced circumferentially in the
thrust collar bearing surface. This leads to a gas~bearing

innumerable
with slit-supply which is considered as A supply holes
arranged in a line.

In Part II, externally pressurized thrust collar gas-
bearing with single or double slit-supply is analyzed theo-
retically to obtain a design chart concerning load capacity
and volume rate of flow.

In Part III, externally pressurized porous gas-bearing
is investigated theoretically. The porous bearing can be
assumed to consist of a mesh structure incorporating in-
numerable tubes of fluid supply, hence it may be a limiting
bearing structure where infinite supply holes are arranged
on the entire bearing surface. The porous bearing surface

serves to restrict the gas flow and also to dissipate the

.



energy of vibrations. So this type of gas-bearing is ex-
pected to have comparatively large load capacity and to make
stable operation.

Externally pressurized porous gas-bearing is analyzed
fundamentally for two cases of journal and thrust bearings.
The analysis can be applied to the other types of porous
bearings, namely;, porous thrust and journal gas-bearinggwith
flat and solid parts, porous thrust collar gas-bearing, and
SO on.

The theory may be verified with experimental results
with very good qualitative agreement and fairly good quan-

titative agreement.



Part I Analysis of Externally Pressurized Gas-Bearing by

Means of the Complex Potential Theory
Chapter 1 Introduction

In practical applications of externally pressurized gas-
bearings, it is desirable to obtain the exact pressure dis-
tribution in the bearing clearance in order to determine the
volume rate of flow, which in turn leads to a determination
of the size of the restrictor (such as a capillary or an
orifice), and in order to calculate the load capacity.

The complex potential theory is one of the most appli-
cable methods to obtain these characteristics of the ex-
ternally pressurized bearing, and it has been applied to the
journal bearing(l) and to the thrust bearing with several
bearing shapes(z). The theoretical pressure distribution
coincided well with experimental results, but the load
capacity was hard to determine analytically because of dif-
ficulty of mathematical integration of the pressure over the
bearing area.

In Part I, externally pressurized thrust bearings are
analyzed by means of the complex potential theory for several
bearing configurations, namelyﬂ circular thrust gas-bearing,

thrust collar gas-bearing, rectangular pad-type thrust bearing,
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and :ome modifications of them as well. The bearings have
multiple supply holes and no recess since the recess causes
the instability of the bearing.

By using the suitable potential function which satisfies
the boundary conditions of the particular bearing, pressure
distribution and volume rate of flow are obtained theoretically
for both an incompressible and a compressible fluid, while
load capacity is obtained theoretically for an incompressible
fluid.

Experiments are made to be compared with theoretical

results and very good agreements are observed between them.

Chapter 2 General Theory

2-1 Basic BEquations

Upon applying the usual assumptions in gas-bearing theory,
Navier-Stokes equations reduce to the Reynolds equation for

compressible viscous flow:

(}’___ ) (Fﬁ op { 36”%) a(f’ﬁ\)} (1.2.1)

= 65) =6
The symbols are notated in page 203 -209.
Assuming that the gas flow is polytropic with index n

and that u is constant, Fq. (1.2.1) becomes

=t



30p ™, 2P - DRP™) - JRPT)
2 (R5: }-2 ﬁ?.__)_—_gy{—'ﬁ'—‘){t& fi’ +U, N } (1.2.2)

If U.= Uy = O or the sliding speed is very small com-
pared with gas flowing velocity due to the pressure gradient,
then the right-hand side of Eq. (1.2.2) vanishes. With the
assumption of f, =const., Eq. (1.2.2) becomes

H(pF), P
2°% 2%y -

Q (1.2.3)

For the case of an incompressible fluid, Eq. (1.2.1) be-

comes as follows with the same assumptions,

%P, ¥p _,

=t ez (1.2.4)

These are represented by the following Laplacian equation,

P %P

3%z -+ 352 =0 (1.2-5)
where P =p for an incompressible fluid
(1.2.6)
e

P= pm- for a compressible fluid

Eq. (1.2.5) is also expressed by the cylindrical co-

ordinates

| B%P
‘aaF‘(YQ;)*"F'an = (1.2.7)

The problem of sotving Eq. (1.2.5) or (1.2.7) can be

-



transformed into the problem of finding a suitable complex
potential in the plane of complex number Z=x+L5=rei9_

If a complex potential is obtained, the real part of the
potential function gives the forgf;he préssure distribution
for an incompressible fluid case, and the imaginary part

gives the stream function. The pressure distribution must

satisfy the boundary conditions of the actual bearing.

2-2 Transformation to Compressible Fluid

The compressible solution can be easily obtained from
the incompressible solution by transformation through Eq.
(1.2.6). 1If the letter P is substituted for p of the
solution, P satisfies Bg. (1.2.5) or (1.2.7) and gives the
pressure distribution in the form of pl%¥ where p is the
real pressure for the compressible fluid case. But K's, which
are constants determined by the boundary conditions mentioned
in later sections, must satisfy the boundary conditions for
the real pressure. Considering the relation between p and
P in Eq. (1.2.6), p and P, in K's must be changed to
P, and B, , respectively, through the relations

+n [ +n

BE=p~, TP=p" (1.2.8)

where @)

and p correspond to the boundary pressures for
o a
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a compressible fluid case. Thus the solution for a compres-

sible fluid can be expressed by
p = Pwn (1.2.9)

where P is corresponding solution obtained for the incompres-

sible fluid case using the correct boundary conditions.

Chapter 3 Analysis of Externally Pressurized Circular

Thrust Gas Bearing with Multiple Supply Holes

3-1 Complex Potential and Pressure Distribution

In this Chapter, such an externally pressurized circular
thrust bearing is analyzed that has multiple supply holes
spaced circumferentially as shown later in Fig. 1.3.2.

At the first step, an analysis is made on a bearing with
single supply hole located anywhere in the bearing as shown
in Fig. 1.3.1l: A variety of multiple supply holes can be
obtained by the proper use of superposition.

In Fig. 1.3.1, we put a point source at radius g and a
sink with the same strength q at radius v,2/. by the mirror
image principle so that the solution may satisfy the boundary
condition everywhere on the bearing periphery.

The complex potential function for this case can be

given by



Supply Hole

Fig. 1.3.1 Configuration of a circular thrust bearing
with single supply hole

w =2 (gog (2~ )~ og (z- 1) (1.3.1)

By separating the complex potential w into real and imaginary
parts, the pressure distribution p for an incompressible
fluid can be obtained from the real part in terms of di-

mensionless variables,

RQR2+I'°2 RCoSO
P=K Eg R2 + R2 zichose +Ke (1=5uE)

where R= Y/ and Rqe= &7
K, and K, are constants determined by the following boundary

conditions:



B = pa ot R=r/I=1I (1-3-3)
P=P ot R=Ra-Rs=(a-ny%,0=0

Then
K _ po - pa_
| = 2203 I—Rgzza—-Rs) (1.3.4)

Kzzpa.

It should be noted th~t the boundary conditions are
satisfied only at one point of the inner edge of the supply
hole. However, if Z is near to @ in Eq. (1.3.1), the curve
of constant pressure is given as a circular form so that this
pressure distribution may satisfy the condition of the supply
hole when Ry is small enough compered with unity.

In the above boundary condition, the value of the pres-
sure p just after the inlet hole is used. The P, is not
constant but veries as the change of the bearing clearance
because of the pressure drop across the inlet restrictor,
such as a capillary or an orifice if one is used. However
it should be noted that the inlet pressure Pys when the
bearing load is given, is determined by the bearing load and
is independent of the bearing clearance. Thus, the results
below may be applied to obtain gas flow, bearing clearance,
and stiffness when the external restrictor is used.

For the case with multiple supply holes, the pressure

-10-



distribution can be obtained by a proper superposition of
the solution for a single supply hole. When there are [
supply holes, each of which has radius Qé and is located
st Y=0;, ©=6; (4=0,1,...,k~|), the resulting pressure

distribution for an incompressible fluid is

(1.3.5)

-39 2 o
- ~ — 2Raj 6-8i)
P=5K:lp Raj R°+ | — 2RajReos( 8k
égo 343 R?+Ra: — 2Ra;RCOS(6-6;) -
where ’<@ and K, are determined by the following boundary

conditions:

p=p at R=|

i 3.6
P=PR; at R=Ra—Rsj, 6=6;(G=1,2..k-1)} (La5+6)

When all of the k supply holes have the same dimensions

- Supply Hole

Fig. 1.3.2 Configuration of a circular thrust bearing
with multiple supply holes

=] ] s



and are located at the same radius (R,) with equal angular
spacing of 2ﬁy4€, as shown in Fig. 1.3%.2, all of PQ} become

equal to be Kjk), and the pressure distribution is

212 5
p KJ&)Z QﬂgP&R e f = ZRQRCOS(Q“B&)

+ K;
R® + RE—2RaRcos(9-g;) | 2%

(1.3.7)

2kp2ky |_o2pkrRcosko
R2k+ Rl Rl choske

= Kick) ﬂog + Kotk

This reduction is shown in Appendix I.

The constants Kim and Kyg) are determined by the same

boundary conditions as Bq. (1.3.3); then

K o P Pa,
" 2ppg L= R (Re= R
3 RE — (R~ Rs)* (1.3.8)
Katey= Pa

Later on, this symmetrical case is analyzed; the results
for an asymmetrical case may be obtained by modifying the

results.

3-2 Examplesof Theoretical Pressure Distribution

Figures 1.%.% and 1.3.4 show examples of theoretical
pressure distribution for the following bearing:

Number of supply holes, k =6

Radial position of supply hole, Ra= 0.5
-12-



Radius of supply hole, Rs = 0.01

08
o7

06

04
Incompressible Fluid

03 k- 6
Ra=05
02 Rs= 00l
0.
0

Fig. 1.3.3 Constant pressure curves with an incompressible
fluid

Figure 1.3%.3 shows the constant pressure lines on the

bearing surface for an incompressible fluid. The pressure

at central clearance space within the circle of the supply

holes is kept at a considerably high value so that load

=5



capacity can be much greater than that of the bearing with
a single central supply hole.

The pressure distributions for radial and circum-
ferential directions are shown in Fig. 1.3.4 for both an in-
compressible and a compressible fluid. For the latter, it is

assumed that the gas flows isothermally and that F%__EQ

is taken to be 1 kg per square centimeter.

1.0
k=6, Ra=1/2 1.0
Rs= 17100 k=6, Ra=l/2 Rs=1/100
08 e -Pg=! kg/cm2 \ Py~ pa=’ kg/c
} | __(_/’/ | | 08 \~ R-
i N 6-=0° > :
<06 WY Q } 025
X / < P06 I —— o5
& 6=36>$\ X _“\\\\:::::::: ‘
204 L o4 ___1los
| ] W o TP ——— ]
0.2|- ~ Incompressible Flid\\, 5.5 T } 075
——Compressible Fluid \ ' —— Incompressible Fluid
J | ! ’ 3 - Compn?ssible Flluid
o) 02 04 06 08 10 0 10 20 30
R eo

(a) (b)

Fig. 1.3.4 Example of pressure distribution for an incompressible
and a compressible fluid .

3-3 Load Capacity with an Incompressible Fluid

First, the load capacity of the bearing with a single

supply hole is calculated. Denoting ¢ as

(1.3.9)

¢ e:cp ( KZ)

= e



then, Eq. (1.3.2) can be written as

2
R2- —————(%QQR“ 2Rcose+[————d;:';§“J [¢ z" ]qb (1.3.11)

Equation (1.3.10) shows the equipotential line for a given
p.

It should be noted that this is the equation of a circle
in polar coordinates, where the center and the radius of the

circle are given by, respectively:

- R“ (1.%.11)
| = Rao  —
PRt (P

The load capacity can be obtained by integrating the
pressure over the bearing area. Consequently the load
capacity is given by the volume of a three-dimensional figure
with the coordinates (x,y,p) as shown in Fig. 1.3.5, so that
it can also be obtained by integrating the area S(P) enclosed

by a constant pressure line with respect to the pressure,

that is,

Tir2mw )
Wm=g g (P- B, rdrde =S S(pydp (1.3.12)

~1 5=



Fig. 1.3.5 Schematic figure of pressure distribution

The constant pressure lines are circular as mentioned

above, hence
[~ Rd’ z
SP) =z|l——=z /o N (1.3.0%)
¢'_ Ra
then, the load capacity W, for a single supply hole is

R s 2 .2
@ Rx[¢— Raz] $dp (1.3.14)

= 212K (1= RE)([1- (Ra~Rs )/ [1 - Ra(Ra-2R5))

as shown in Appendix IT.

=16~



For the case with multiple supply holes, the load capacity

is calculated by using Eq. (1.3.14),
Wiy = TN RKiceo (1= Ra) [l = (Ra~ Rs)z:y[’*' Ra(RrZRs)J {1.3.15)

This reduction is shown in Appendix III.

3-4 Volume Rate of Flow

The volume rate of flow can be calculated from the out-
flow from the bearing periphery.

For an incompressible fluid, it becomes
£ R

3
Qincomp, = Rs% ='d8 - Tkft Kick (1.3.16)

3K
For the case of a compressible fluid, the pressure gradient

is given by

YL

RIRJW‘%

2R

Substituting this into Eq. (1.3.16), the volume rate of flow,
Clm"ﬂ which corresponds to the pressure P, o has the follow-
ing relationship with Cthomp.

+1n '+YL

mepl:Pa”"Pa n

ReBal
;%"FZ r+rL’FL 'Cguuqu ( 5 7)

where K\ in Clbuomp should again be modified by changing

p, and P to P, and P, as indicated by Eq. (1.2.8),

T =



3-5 Some Examples of Theoretical Bearing Characteristics

Load capacity and volume rate of flow are calculated
theoretically from Egs. (1.3.8), (1.3.15), and (1.3.16) for
an incompressible fluid for several numbers and radii of
supply holes.

Figs. 1.3.6 and 1.3.7 show the dimensionless load
capacity [Wm)/'JC 2 (Py— Pl and volume rate of flow
[ Qincomp,” TR (Po— P) (3™ for the case of k = 6
versus radial position of supply holes for several numbers
and for several radii of supply holes, respectively.

Volume rate of flow increase with increases of Ry, Rs
and k but load capacity takes the largest value for the
optimum radial position of supply holes for given k and
Rs. This optimum position is given in Fig. 1.3.8 for several
values of Rg. At the calculation for Fig. 1.3.8, the volume
rate of flow and the angular stiffness of the bearing are
not taken into consideration. When the bearing is designed
with less value of Ra, one may obtain less volume rate of
flow, while with larger value of Ra, larger angular stiffness

may be obtained.

= B



L 1.6
8 Re-001 | ]
k=12 \
o7t —— 8 | 1.4
———— 6| /
oef T 4 /_74 12
/
B Wik : ;
[2° v,z(po-pam\/ 018
x 4 1 a ™=
s|Loaf - —~FA AHH08 §
2L ALY i
03— 2 /\>\ 06 |E
j// ’:’\<\\‘\ 04
‘/bin N \ )
2h3(Ps-Pa)/3H 02
HeePal/ 3 o
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~l o

OO 02 O.4R 06 08 10

a

Fig. 1.3.6 Bearing characteristics for several numbers
of supply holes

07 1.4
k=6 ‘
—— Rs=005 !
06 —___ 7507 1.2
—— 0005 /
. ' 1.0
05 Wik //// //
2(n .~
=l o . /)(
=5 03 = ‘X/ ' 06
=\ % N
" ////; ’/X,\\\
02 / /',,’/ N\ o4
\
ol k Qincomp. \ﬁ\"OZ
: Th3(Py-Pqa)/ 3p :
| I | 0

OO 02 04 06 08 |0

Ra

Fig. 1.3.7 Bearing characteristics for several radii
of supply holes
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FPig. 1.3.8 Optimum radial position of supply holes

3-6 Boundary Condition at Supply Hole
Eq. (1.5.3) represents the real boundary condition only
at an inner point of the supply hole. The following boundary

conditions could also be used instead of Eq. (1.3.3):

p=ph at R=]|
} (1.3.18)

p=p o R=RatRs, 6=0
which gives the real pressure at an outer point of the supply
hole.

When the radius of the supply hole is small, the differen
between the results is negligible. But the pressure distribu-

tion deviates from the real one when there are more supply

-20-



holes with larger radius.

For example, Fig. 1.%.9 shows theoretical constant pres-
sure curves for the value of R with these boundary conditions,
which should correspond to the form of large supply hole
with r;/Yi= 0.05 and @/f;= 0.5. Condition (1.3.3) satisfies
fairly well the real condition but gives the solution with a
smaller suppiy hole located at inner radial position, while
condition (1.3.18) seems not to be such a reasonable boundary
condition to be applied because the deviation becomes larger.

However, though their radial positions and sizes are
different from the real one, it should be noted that these
shapes are almost circular. So the deviation maybe corrected
approximately by modifying the position of source in the com-
plex potential function.

If the source is put in the bearing surface (Z-plane) at
radius Ry ( = a*/r,) instead of Ra(=a/r), and the sink
is put at R =% by the mirror image principle, then the
pressure distribution becomes

REZeR2Ry | —oRERRR sk
R + RE2R — 2RXRRFcoskd

P = K fog + Kado (1.3.19)

The radius R, is chosen to give the pressure p, at both

inner and outer edges of the supply holes. Then szmust be

%



| + (Ra+ Rs)E(Ra — Rs)®
(Rq+ Rs)k +(RA“‘R5)R

RER =
(1.3.20)

L
{1 (Ra+R)*I(| — (Ra— Ro)Z*J}Z
(RQ+RS)E+(RQ—Rs)k

as shown in Appendix IV.
The constants Kk% and K};, are determined by the

boundary conditions (1.3.3) or (1.3.18) to be

K * Ps = Pa
Ik = | — Rf®R(Ro — Rs®
RE*— (Ra— Re)k - (13.21)
- pa" P«
B — RAR (Rat+ Rs)®
oo Ra
. P R (Rerro® )

KZU‘&)=PQ

Either of conditions (1.3.%) and (1.%.18) gives the same

*
value of K;(ﬁ) and K2® . Then

Wi = B2k, (1-RE) 1= (R R/ (-2 RiGReR)+RE)

rl.a.zz)
3
Qincomp, = %ﬁ— Kiw

The chain line in Fig. 1.3.9 is the form of supply
hole for this case, which is seen to satisfy the real con-
dition very well.

Figure 1.3.10 shows the effect of boundary conditions on
load capacity and volume rate of flow in dimensionless form

for Rg = 0.01 and 0.05. For small values of Rs (such as 0.01)

=30



~Modified
Function 045

_~ By Condition
(1.3.3)

Circle of

By Condition (1.3.18)

=6, Rq=05

, Rs=0.05

Radius Rs=005

Fig. 1.3.9 Theoretical shapes of supply holes with various
boundary conditions

086 e
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Fig. 1.%.10 Bearing characteristics depending on varlous

boundary

conditions
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there is little difference between the results with con-
ditions (1.3.3%) and (1.3.18), but for Rs = 0.05 the difference
becomes appreciable, which could have been predicted from the
data in Fig. 1.%.9. For the latter case, the modified func-

tions (1.3.19)-(1.3.22) seem to be reasonably good.

3-7 Bxperimental Investigation
(a) Bxperimental Apparatus

Fig. 1.%.11 shows the apparatus of the experiments for
the pressure distribution and volume rate of flow (Apparatus
I). The upper plate (No.2) and the bearing plate (No.l) are
fixed parallelly by adjusting screws to compose a bearing
clearance which is measured by three dial gages. The com-

behind

pressed air is fed to the annular groove A the bearing plate,
and then to the bearing clearance through the supply holes
spaced circumferentially. The pressure in the bearing clea-
rance is measured by a U-tube mercury manometer connected to
the clearance through a small hole of 0.5mm diameter drilled
in the upper plate. The under bearing surface can be rotated
and slided by fine screws to measure the pressure distribution
on the entire bearing surface.

This apparatus is used for measuring the pressure dis-
tribution and volume rate of flow because the bearing clea-

rance is fixed.
]



‘I Bearing Plate

2 Jpper Plate

3 Air Supply

4 To the Manometer
5 Dial Gage

Fig. 1.3%.11 Experimental apparatus (I)

The experiments are made on the static condition.

For investigating the load capacity experimentally, the

apparatus shown in Fig. 1.3%.12 is used. (Apparatus II). The

rotor has a thrust bearing with multiple supply holes through
which the compressed air is supplied into bearing clearance.

25



Dial Gage

Steel Ball

[ ==
‘ {

Load %E
Air § .
&Jpp’y i <-_L‘ner
] Rotor
= Bearing
L |
"g Adjusting
M ‘ - Screw
f]‘: i “To the

Manometer

Fig. 1.3.12 Experimental apparatus (II)

The pressure just after the supply holes is measured by a
U-tube mercury manometer connected with a small hole of O0.2mm
diameter drilled in the stator. The roter is guided in the
liner by an externally pressurized journal air-bearing in
order to prevent their contact.
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The load is put on the top of the rotor by a lever and
load weights.

The bearing clearance is measured by a dial gage placed
on the top of the apparatus.
(b) Pressure Distribution

The pressure distributions are measured by the apparatus
I. The configurations of the bearings employed in the ex-

periments are shown in Fig. 1.3.13.

No. |2r,(mm){2a (mm)|2rs(mm)| k
I 120! 60 | 12 | 6
2 | 120 60 12 | a4
3 |120 60 12 | 8
4 | 120 60 60 | 6
5120 40 | 12 | 6
6 | 120 80 | 12 | B

Fig.1.3,13Bearings employed in experiments for pressure
distribution and volume rate of flow

The typical bearing dimensions are

2r1 = 120 mm

a = 30 mm

2r = 1.2 mm
s

k =6

AP



h = 15 M
p, = D, = 0.5 kg/cn’

Figs. 1.3.14-1.3.18 are the experimental results of the
pressure distribution. 1In each group of figures, there are
three kinds of pressure distributions which are

(a) On the position of 8 = 0 (radial direction through

the supply hole)

(b) On the position of © = I /k (radial direction just

between the supply holes)

(c) On the position of R = Ra (circumferential direction

through the supply hole)

Fig. 1.3.14 is the pressure distribution for the typical
bearing of Fig. 1.3.1%. No.l under . =B, = 0.5 kg/cm2 and
for several bearing clearances. (h = 15, 30, 40 and 50 mic-
rons).

Figs. 1,3%3,15-1.3.18 are for various values of Py various
numbers of supply holes, various radii of supply holes, and
for various radial position of supply holes, respectively.

In these figures, the thick lines are the theoretical
pressure distributions calculated from the above theory with
polytropic index n = 1.0 (isothermal condition is applied).
The experimental results coincide very well with theore-
tical one which confirms the theory especially for the case

with low supply pressure with small bearing clearance.
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Fig. 1.3.14. Results of pressure distribution for
varicus values of h

=T



10 Ra=a/r, o T
-05 Kk 6
- Rs=re/r, 091" Re=a/n-05 |
-00I! Re=te/r =001
08 i 08— o . 300 |
i
Po-Py |
o7 x 0755 5oooSC] 10kg/om?
g‘aGOﬂﬂgmqﬁ' \ € 0
S 051~ 9 S o5,
< g A‘- §°§ x o.75k|g/cmz”<<\@
¢ N A
04 . ° 0. ,
2 % (WY e %
! Q
o o3[ O2kelom ‘a‘-} 03 : Q‘
KR\ N
02 N 0.2-0.25 kg/cm2 p.
SRS O N 102 LY
025kg/cm?2 ‘6%\“ \fk ¢ *&“&ea‘%\\g‘
0.l ' LY ol < ng
!1 R Y .
0 05 10 05 1.0
R R
(a) (b)
10 = 7
k- 6
09 ga= a/"=o.5
s =rs/r; = 0.0l
08 R =r/r'=05 —_
-p.=1.0kg/cm2
07 ’?\ Mol o
\@\
g 06[A
§ 05k = O75kg/cm?
= 3 '®-@-—(
o4l |
= ™ 0.5 kg/cm2
Q03 -
iiﬁ\
F—e— |
off— | R
o 10 20 30
90
(c) +
Fig. 1.3%.15

-30-



P,-P,=0.5 kg/cm2

P,-Ps=0.5 kg/cm2

h 15y h I5p
Ra=a/r =05 Ra=a/r, =05
Rs =rs/r =0.01 Rs=rs/r, =0.0]
05 - — 05 [ ;
6=0° ’ 6=30°
N (O e — 04k -
/ = &
% 0.3 A}/ % 5
g : r—tr‘fT/ (g E, 03 '_'0""0177,.0% .
o2 o ~
a » k4 o 02
ol ° g __ “ >k 4
' e 8 Olf— o 6
L ° 8
O
0 05 1.0
R o 05
(a) (b)
P,~P,=0.5 kg/cm?
h = I5p
Ra=a/r = 05
Rs =rs/n = 00|
05 i e I B
R=r/r,=0.5
~ 04 g -
5 Nl 1
§ 03 \‘:.\a\'\ 20,0 O O e ety — ]
= "’\E!.L
& ) 2
o 02 —
o k 4
OlF— @ 6
= 8 ‘
| |
0 10 20 30 40

ea
()

Fig. 1.%.16

]



p,~p,=0.5 kg/cm? Py-P,=0.5 kg/em?

h 15 h 15y
K 6 k= 6
Ra=a/rn =05 Ra=a/r =05
e o0° 6 - 30°
05
Rt
04 &
[N A 4
£ 4 N
303 ]
2 %
- %
F0O2 A
© Re=r/m=001 Ry & | o Renm 001 N
¢ 005 o © 005
oY of 1
% Y
0 05 1.0 ) 05 (o)
R R
(a) (b)
Q;ngSRQsz
h 15yp
k 6
Ra= a/r, =0.5
R =r/n=05
N o
04 AN
M“"Q'ﬁr
N
Al
s 02
& © Rs=ts/r =0.0I
. ¢ 005
0.l
0] 10 20 30
eo
(c)

Fig. 1.3.17

B



Po™Pa=0.5 kg/cm? Py-P=0.5 kg/cm?

h 15 h-15u
kK 6 k - 6
R$=@/h =0.0I Rs=rt =001
05 < 6 = 30°
05 .
04
. 04( B sk ¢ W -
t a3 Ho—d%
N & N
kS g 03 —
£ =N o _ i Q__O_
" oz S &\%
a ' Ra=a/t,=0333 s 92
Ol}-o 05 L ¢ Ra=a/, =0333
o 0667 ) Ol o 05
{ ] 0 0667
0 05 Xe) ? I A\
R o} 05 1.0
(a) R
(b)
P,-P,=0.5 kg/cm?
h 15 u
K 6
Rs=rs/r, =0.0]|
R = rh =05
&
£
O
N
je)]
=
oy
Q ¢ Ra=a/r=0333
Oll— o 05 -
) o 0667
] 1 ] l |
o 10 20 30
eo

Fig, 15,18 ()
Fig. 1.3.15-1.3.18 Results of pressure distributions for

various values of bearing parameters
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But, for the cases with large bearing clearance or high
supply pressure, the experimental results fall somewhat from
the theoretical ones. These deviations are larger as the
values of supply pressure and bearing clearance increase.
These pressure falls are considered to be due to the inertia
effects of the lubricant so that the adiabatic condition may
be applied.

When the clearance becomes very large, for example h =
50 microms, the pressure fall develops to the pressure de-
pression as shown in Fig. 1.3.14 (a)s: (In Fig. 1.3.14, the
thin lines are only experimental). This phenomenum can be
observed also for an externally pressurized circular thrust
gas-bearing with a central single supply hole.(3) It may be
explained by a flow model that the choked condition is achieved
at the supply hole, and then, the supersonic flow region and
the shock wave may follow. After the shock wave the pres-
sure can be recovered as shown in figure. The theory(3)
also shows that the large bearing clearance and high supply
pressure may cause the pressure depression, which can be
observed also in these experimental results.

The pressure loss at the supply holes will be investi-

gated later concerning the load capacity.
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(c) Load Capacity

Load capacity is investigated experimentally by using

the apparatus II.

The fluid is compressed air.

The bearings employed in the experiments are shown in

Fig. 1.3.19.

— Supply Hole

Fig.

Figs.

No. (2r(mm)|Z2a(mm)|2rs(mm)| k
I |60 30 | 12 | 6
| 2 |60 30 12 [ 4
3|60 30 | 12 | 8
4| 60 30 |30 | 6
5 160 | 20 | 12 | 6
6 |60 40 |12 | 6

1.3.19 Bearings employed in experiments for load capacity

1.3.20 and 1.3%.21 are the experimental results of

the load capacity for various values of the bearing dimen-

sions, radius of supply holes, radial position of supply

holes and so forth, respectively.
is shown in dimensionless form

the bearing clearance h.

Experimental load capacity

Sw= W/’JC Y‘.Z(Po-,%) versus

Fig. 1.3.20 is typical results which are measured by

using the bearing No.l under several values of load.

thin ®roken line in the figure is the theoretical one for an

b35_
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Fig. 1.3.20 Typical results of load capacity

incompressible fluid.

For a small bearing clearance, experimental results
of §, take higher values than the theoreti¢al one because
of the compressibility of the fluid. But, for larger clea-
rance, the pressure fall after the supply holes becomes con-
siderably effective so that the values of f“, may fall down
even under the compressible theoretical one. These in-
clinations become remarkable as the load, and then the supply
pressure increases.

For the clearance of 30-60 microns, which seems to be
used practically, these effects cancel each other so that
the theoretical incompressible solution may be an approximate

value of fw .
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Fig. 1.3.21 Results of load capacity for various
values of bearing parameters
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(c)-(i) Bffect of Compressibility of the Fluid

The pressure distribution with consideration of the
compressibility of the fluid can not be easily integrated
theoretically on the bearing area.

In order to estimate the load capacity of the gas-
ﬁearing of this type, an approximate solution is introduced

as reduced in Appendix V, resulting

o tFPa T e 5 2
v&nmp, = F)gﬁif X—vvﬂummp_ (1.3.23)

which may be valid when the supply pressure is not so high.
When the pressure fall at supply hole is taken into account,

this equation must be

p//+ p .
mep.= e Wa‘ncomg (1.3.23)
20,
where p” is modified pressure after supply hole which is
o

mentioned in the following section.
(c)-(ii) Pressure Fall at Supply Holes.

The pressure fall at supply holes may be explained by
considering the flow pattern in the bearing clearance.

At the practical bearing, the stream lines are presumed
as shown in Fig. 1.3.22, in which the flow from the supply
hole may turn into the direction of the bearing clearance,

and there the energy loss must occur because of the entrance
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effects as separation or contraction of the effective flow
area.

To analyze the flow, the flow pattern as shown schema-
tically in Fig. 1.3%.23% is assumed approximately, in which the
lubricant flows into bearing clearance from supply holes
(section A), then it flows out to the bearing periphery
(B-F). B is the stagnation point with no flow velocity
towards the bearing clearance. At section C, the velocity
distribution is uniform as shown in the figure. From sec-
tion C, the boundary layers begin to develop to section F
which refers to the fully developed profile of flow velocity.

At the supply holes, the pressure fall may occur on
account of two causes; one is due to the accelerating energy
of the lubricant from the stagnation point (B) to the bearing
lubricant flow (section C), and the other the energy con-
sumption for the development of the boundary layers and the
change of velocity distribution profile.

For the former, the acceleration of the lubricant,
Bernoulli's theorem can be applied between B and € in the
figure neglecting the friction loss, resulting the follow-

ing pressure fallj

P, =B = QUm (1.3.24)
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where P, : pressure at the stagnation point B
p_': pressure at section C
¢, : density of the fluid at section C

u_ : average flow velocity at section C

For the latter, the change of velocity distribution,
one can estimate approximately the pressure fall assuming
that the friction on the bearing wall is very small so that
the entrance length for the development of the velocity pro-

file may be neglected, resulting

/

{
Fo ri

4 ! 2
-0 == flm (1.3.25)
This equation is reduced in Appendix VI.
The further investigation is made in Appendix VII with
consideration of the friction loss at the entrance length.

The pressure fall at the supply holes can be estimated

from the total effects of Egs. (1.3%.24) and (1.3.25), then

“ [ 2 Qo 12
P-R= % Rln =24 Rigmeryg) 3%

where A is coefficient of pressure fall and is taken as
A = 1l.4 by the above investigations, and ,is volume vate
of flow correspending to pressure ps;ﬁ;s the density of the

fluid corresponding to pressure po" approximately.
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The pressure distribution, which includes the secondary

effects of compressibility and pressure fall, is shown in

Fig. 1.3%.24 schematically.

p
23
1o, 2
p(; R~ 2 ? oUm
p: Supply Port
y Bearing
Periphery
P

Fig. 1.3.24 Schematic pressure distribution with con-
sideration of secondary effects

Fig. 1.3.21 shows the experimental results of load
capacity for various bearing parameters such as radius of
supply holes, radial position of supply holes and number of
supply holes.

In these figures, the theoretical curves are drawn with
consideration of both effects of compressibility and pres-
sure fall at supply holes.

The theoretical values show a good conformity with the
experimental results both qualitatively and quantitatively

even for comparatively large bearing clearance and high
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supply pressure though the above compensation terms do not
concern the shock or pressure depression near the supply

holes.

(d) Volume Rate of Flow

The volume rate of flow is also experimented by using
the experimental apparatus I in which the bearing clearance
is fixed to be constant by fine screws. The bearings em-
ployed are the same that used in the above experiments con-

cerning the pressure distribution.

S e R
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P .
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o/ kL
|
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(a)

Fig. 1.3.25
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Fig. 1.3.25 Results of volume rate of flow for various
bearing parameters
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Fig. 1.3.25 is the experimental results of volume rate

of flow for various bearing configurations such as the radial
position and number of supply holes. In these figures the

2 2
volume rates are arranged in the form of @ —pg-z—-p—E“— against
a

the bearing clearance h, because a compressible flow rate

withn = 1.0 is expressed theoretically from Egs. (1-3-16) and

(1.%.17) as
Qcomp. = f"-zi;){é" Qin.comp.

_ Pt P k¥

- TRR (P +RXB— P
3“§(R4‘R5,0) Zpa

where $H(Rs~Rs, 0) is such a function as given in Appendix
V¥, then chm,p, is proportional to (/3,;2~I-"¢:L2)/2PoL or

2 2
Q/—p_pé—_ﬁ-%— is considered theoretically to be independent
(-}

with p, or p, .

The thick lines in the figures are the theoretical
curves which is proportional to &2.

The pressure fall at supply hole is also taken into
account which lessens the flow rate. When the pressure
falls down to po" as obtained in the above section, the volume
rate of flow becomes

Q= kR’ PP’
3pE(Ra-Rs, 00  2p,

..47...



in which the pressure fall is estimated as

— _?o - _E-
Po= P’ =23 Uun = 2 emmﬁ,
Then
Q. kR PP
PZ—PF ~ 3UE(Ra-Rs.0) poz_pa
2p,

The theoretical curves with consideration of the pres-
sure fall effect are also drawn by thin lines in the figures.

The experimental resultis coincide very well with theo-
retical ones qualitatively and fairly well quantitatively,
but pressure fall effect is not so obvious in the experimen-
tal results.

The bearing clearance is very hard to be kept constant
because of the bearing elastic deformation by the gas film

be by it

pressure so that the volume rate of flow mayAaffectedAcon-

siderably, which may cause the quantitative errors in

experiments.

Chapter 4 Analysis of Externally Pressurized Thrust Collar

Gas-Bearing with Multiple Supply Holes

4-1 Complex Potential and Pressure Distribution

In this Chapter, externally pressurized thrust collar
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gas-bearings with several gas supply holes are investigated
by using the complex potential theory. The gas supply holes
of these bearings are spaced circumferentially and com-
municate direetly with the film without feeding into recesses.
(a) Single Supply Hole

For the first step, an externally pressurized thrust
collar bearing with only one supply hole as shown in Fig.
l.4.l(a) is analyzed; the bearing with multiple supply holes
as shown in Fig. 1.4.1(b) investigated by an appropriate

superposition of the results.

(a) (b)

Fig. 1.4.1 Configurations of thrust collar bearings
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Now consider the following analytic function on Z-

plane;

_ 8 o mhg(Z/e) . Teleq (AE/TS) )
w = wZ)=grllogsin g my I8 nhg sy ) (L4

where Tt radius to inner periphery
r, : radius to outer periphery
a : radius to supply hole

strength of source

Yol
(1)

Substituting Z (= n)ei-e) which represents the inside
circle of the bearing edge, the analytic function vanishes

its real part and only has imaginary part as follows;
6 .
Wo = W (1) = i £ (Ao, B5)

where

A, = TLoa(o/0) _ 7 98(Ro/Ro)
© 7 Zlog (Yo/1) 2 og Ro

. HOR2TP O +2%s) -
Bé - 22‘3(7"0/”‘.) - 2203. R, (}"—‘O,I‘,t?,...)
in WhiCh Ro=ro/1\" Ra =a/n.

(1.4.2)

as shown in Appendix VIII.
Similarly substituting Z,(= ne'®) , which designates
the outside circle of the bearing edge, into Eq. (1.4.1),

w becomes

w, = w(neie)ﬂ%@m.,%) (1.4.3)
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where

_ pwleg(n/o) __ mlogRa

A= 2 fog (vo/13) 2log Ro

as shown in Appendix IX.

Thus the real parts of W, and W; become zero so that the
analytic function given by Eq. (1.4.1) can satisfy the boun-
dary conditions at both edges of the bearing, and gives a
suitable complex potential function for the bearing.
Dividing wr into two parts of wland w%, and substitut-
ing Z=re® into Eq. (1.4.1) to obtain the real part of w

which gives the pressure distribution,

wr ____8__ + Tﬂoa(Z/a)
= oz dog sin 2004 (Fa/1)

i

ES - wlim(r/a) ., 4 T(B+27F)
27 Q"S{S‘”mgmm)@m 20g e/} (1.4.4)
+eps Tlg(70} o (O +27c4‘)]

2L0g (Va/13) 200q (Vs/17)
Real part of w¥is g o bog (Yo/T

R = £ tog[sirPAcosh’B; + ossinkBy) = & g BinA+ sinkB) (1,4.5)

T 2fgve/ri T 200g Ro

where A = xhog /& _ 7 hogR/Ra
in which R=r/1
Now

wk - £ . 7 00aaZ/15?
oC ﬁagsm, 2203 ey (1.4.6)
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Real part of WI becomes

R =;§5£o3[5in2A’+ sinh®By ] (1.4.7)
s _ logar/n?) _ 7 hog(RRa/RA)
where A = 2103()(:,/,/;) - ZlogRa

Therefore, the pressure distribution for an incompressible
fluid can be expressed as
o
P=K2 ilog (5in2A+Sinh? B; ) ~fog (SiPA+ sinkBj)[{ 1. 4.8)
J=-0

where K, and K, are constants to be determined by the follow-

ing boundary conditions;

p=p at r=a-rz, 6=0

(1.4.9)
p=f at r=Y, orn

where )3 is rudius of the gas supply hole.
Using the boundary conditions into Eq. (1.4.8), K,

and Kz are given by

K‘ — Po - pg
SinAL +Sink°B 3 (1.4.10)
i=-0 9 SiN?As+sinh?Bj
K= p,

As = nlog(o-r5)/a. 7 log(1-Rs/Ra)
2Log (ro/T7) - 2log Rs
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nlog 0(0-TY1? _ mlogRalRo-Re)/RZ
200g(o/M) 24g R,

in which Rs=13/1}

s

il

It should be noted that the boundary conditions are
satisfied only at one point of the edge of the gas supply
hole. However, if Z is near to G in Eq. (1.4.1), the curve
of constant pressure is given by a circular form so that
this pressure distribution may satisfy the condition of the
gas supply hole, if 13 is small enough compared to the bear-
ing dimensions.

In the summation of Eq. (1.4.8), since the terms of
j x O are negligibly small in comparison with the term of
é = 0, the pressure distribution can be expressed by

p= K,,o{llog (sin?A’ + sinh?B,)

— fog (sin?A +5inh?Bo)} +K, 4+

- p o™ p&
zlag (sin As/sin As)

10

(b) Multiple Gas Supply Holes

When there are several gas supply holes in each sector
which are equally spaced circumferentially, as shown in
Fig. 1.4.2, the pressure distribution is obtained by super-
posing the solution which corresponds to the case of one

supply hole in each sector.

If there are k arrays of supply holes circumferentially
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Supply Hole

Fig. 1.4.2 Configuration of the bearing with multiple supply
holes

and K supply holes in each array in radial direction, the

pressure distribution is given by

kR k > n2Al + sk B
- SIPAL +sin” B e
p=22 ,K'@ﬁ’fi:.,. Eog SINfAy +Sinie 18 t KZ("‘"F)

d=’P=
, . (1.4.12)
5 B g SO ST B
=gy '(d'F) SIN2Ax + sinh.?BP' Z(d'P)
where
A _mehog(r/0y) _ T log R/Rau
X7 Zlog(o/r.)  2Meg Ro
‘ =7t&aﬂhﬂ/n3)__w:&a(RmAQ/Rﬁv p
Aal ijgcro/n) = ZﬂogRa ((Y=L 2,...,k)
g, =EO2Ti-(B-10e] _ (0 +27i~(B-1)6]
4p 24og (Yorri) 2 fog Reo
By = ELO-1F-new) _ =0~ (F~1)6g

2Jog (Yo/13) 2409 Ro
..54..



2T . o
9"=T : angular interval

The boundary conditions to determine the constants Kump

and Kz(u,F) are

p=p, at r=Q-r,, e_—_(fa—:)ek
P‘—‘- pll a:t r = T\g or f}

(0(-.:(,2,...,[%';/5:_—;,2,..., k)

(c) The Bearing with Radial Grooves

If the bearing has radial grooves between the gas supply
holes, as shown in Fig. l.4.3, the pressure distribution on
one sector can be obtained by taking alternate sources and

sinks spaced O, as shown in Fig. 1.4.4.

ig. 1.4.3 Thrust collar bearing with radial grooves
between supply holes
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Source

Fig. 1.4.4 Arrangement of sources and sinks in the case
of ek = 60°

The angle €, can be taken as the angle of real sector
in a particular bearing, so that k may be an arbitrary real
number.

The pressure distribution obtained similarly as Eq.

(1.4.12) is

Rl ki 7 % o s
ST P! sin?A& +Sinh“Bg .
P=22 =0 Kw’f” 2ogsc'nzA,, +5inh® By +K2(°’*P’ (1.4.13)

d= | Bzm00
Eq. (1.4.13) is valid for a sector bounded by ro<rs<T;
and —%—§ Qg%_ The boundary conditions to determine
the constants K| .g) and Kz{“"P’ are

p =(-1)F/“‘po at r=0«—Tw, 0=(p~N6
P=p at Y=Y, or v,
(x=1,2,...,6; p/= O, 21,2 ... )
-56-



4-2 Some Examples of Theoretical Pressure Distribution

The bearing dimensions are chosen for calculations as

follows;

o/Vi = Ro=1/3

o/N = Ra=2/5

s/h = Re= 1/75

p,-p, = 1 ke/cn®

The number of supply holes is taken to one as shown in

Pig. 1.4.1(a) and six as shown in Fig. 1.4.1(b) or Fig.
1.4.%. The case of one supply hole is fundamental since
the case of multiple supply holes is obtained by super-

position of it.

Incompressible  Fluid
—-— Compressible Fluid

(@]
@®

AT

Incompressible Fluid
—-— Compressible Fluid

o
o
(O]
n
o
o
(0]
"
(@]
o
o
®
/

\—R=4/6

AN

(P~Pa)/ (Po~Py)
()
N
|
SSmd
(P-Po)/ (Po=Pa)
o
(o)}

T~ R=3/6

.

=D~

/'//[e=30° N o $\. M

R -
(b)

Fig. 1.4.5 Pressure distributions for the case of one

supply holes

-
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Fig. 1.4.5(a) shows the pressure distribution calculated

on the circle of radii with R =71/N =3/6, 4,6, and 5/6

and Fig. 1.4.5(b) shows the pressure distributions on the

radii locating on © = OO, 50 and 500 for the case of one

supply hole.

Incompressible Fluid

—-— Compressible Fluid
10
e=0°
08
»
a 06
i‘f Grooves
N 0\
¢0_4 ,/ \ l
& /)
[
02 Vi ooves
// (6x=60°)
. |
173 2/3
R

(a)

T

RrR=2/3

A

—— Incompressible Fluid

ompressible Fluid

06 \\ — S
\~ \ /»Wirhou'r Grooves
04 S :
\,\\‘\_\
é;>\\\\\\ —
02
Z With i
Grooves
(6x 6vO°) %‘-
| |
0 10 20
eo

Fig. 1.4.6 Pressure distributions for the case of six

supply holes

30

Fig. 1.4.6 shows the pressure distribution for the case

of six supply holes spaced equally in the circumferential

direction.

4-3 Load Capacity with Incompressible Fluid

(a) Potential .Function in Series

The pressure of Eq. (1.4.8) is hard to be integrated
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with respect to the bearing surface in order to yield the
load capacity, though BEq. (1.4.8) can be conveniently used
for the evaluation of the pressure distribution.

In the followings an externally pressurized thrust
collar bearing with single supply hole as shown in Fig.

1.4.7 is analyzed concerning the load capacity.

Pig. 1.4.7 Schematic diagram of a thrust collar bearing

At the first step, a single point source of strength q
is put at Z = a, where Z represents a complex plane con-
taining the bearing surface. The complex potential function

is

w,(Z)=—2%-t—£og(i—-——§—) (1.4.14)

_59..



This point source function cannot satisfy the boundary con-
ditions, or the potential cannot be constant at bearing
peripheries Co and Ci. For the first correction of potential,
two point sinks of strength -q are put; one is at the in-
verse point of a with Co (Z:=B§QU in order to cancel the
potential ) (X) and to make constant, the other at Z=nZa

in order to cancel w,(Z) on the peripfery C,, resulting

W () = — £= log (1 — 42 (1.4.15)
=2
1y (2) %) = £ gl (T (1.4.26)
respectively.

W(Z) compensates the function wi(Z)on Co, but its
effect on C,; is not considered; in order to cancel Wg(Z)

on C; , the following potential must be added

Wsy(2) = Qmﬂ"ﬁ(' “E’Fé - —Zg_iﬁog[’ B (_%)_2{%)] (1.4.17)

Similarly in order to cancel Wzi(Z) on C,, a source must

be added

wso(2)=E fog (1 — 2 )= 2 gog(i—(LF(Z)] (1.4.18)

An array of infinite sources and sinks must be put

according to the similar reduction so that the potential
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may be canceled by each other to be constant on the bearing

peripferies Cp and C;, that is

o(Z) =~ tog 1~ 40E) =~ L aog 1 -(RP(52)) (1.4-29)

w«(Z)-—nﬂog(I—““ )=——2%,-;ﬂog[!—(-{;—)%%§)] (1.4.20)

and so forth. Denoting Ww(Z)as summation of these sources

and sinks, namely

W (Z)= Wi(Z)+ WaolZ)+ W2 (Z) + Wac(Z) + -+ Wagnsyp (F)
£ 1wl 21 )

_% n 2
=2elogll (1-(ZP(E)]- £yl [1-(F 1))

When m tends to infinity, one can obtain the potential

function which may be constant on both of (, and Lo
Complementa}y solution of Eq. (1.2.5) may be added by

the boundary condition that the pressure at the bearing

edges is p, (ambient pressure):
Wo(Z) =A,, Log Z +Apz (1.4.22)
Then, potential function wI{Z)is obtained as
W(Z) = Lim [Wmn(Z) +W,(2)] (1.4.25)
memots

Eq. (1.4.23) may be considered as an expansion of Eq. (1.4.8)

in series, and is used for the calculation of load capacity
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instead of Eq. (1.4.8).
The pressure distribution can be obtained from the real part

of Bq. (1.4.23) as

[ —2RA(R/Ra) 056 + RIE(R/RaF
E'm{%z fog 8] ~2RZHRaR/Ro)CoSO+RE(RAR/R, P

+Aslogr + A, |+ K,
where R=r/ri, Ra= asr,, and Ro=T13/n

(1.4.24)

When the boundary condition of Eq. (1.4.9) is applied,

the strength q has the following relation with K; of Eq.
(1.4.10)
Ki -2 and Kzzpa (1.4+25)

(v) Evaluation of Potential Function on the Bearing

Peripheries

The real part of function W, (Z) is

fg ) cosB +| ) H}z
a

R e T Sy AT )

Substituting r=r, , one can obtain the potential on bearing

periphery C, as

R{wn} . =z%—z§nzog (L 2y (1.4.27)

The potential is constant everywhere on C, because this

equation 1is independent of &
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In the other hand, by substituting r=7Y; into Eq. (1.4.26

the potential on C; becomes

Rfwn), = Fe T Iag( L) (L)

S 120 4m, yv2 (1.4.28)
g , =20 " (Weso+ (%) ()
AT Yy an 1\ 2
=2t5) Rese " (52

The first term is independent on © to be constant, and the
potential deviates from the real bearing boundary condition
by the second term, which contains the variable © . But
the deviation becomes negligible for sufficiently large
number of m because (r,/n)zm can be neglected compared with
(ri/re)*™,  Now, the complementary solution wW,(Z) is added
to make the potential to match the ambient condition both on
inner and outer bearing peripheries. Then the real part of

We(ZX) » AO,QOQY+ADZ, should satisfy the following conditions:

Au0gTo+ Aoz + Wi = 0 (on Co) .
(1.4.29)
Ao Logli+Ag +Wn =0 (on Cy)
where
e =R{w"}r=”’zzg"—‘5§mﬂog s (1.4.30)
::i%E(Znt+l)£og{—§?z |
Ok =R oo =S Aoyl B) ]
¢ , -y 0
+'§££Dg, _(_E_Zm((f,ﬂ)
ro Y‘DZ J
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For sufficiently large number of m, w,,; becomes

W ’—‘-—i%(mﬂ)iog—gi (1.4.%1)°

Obtaining A, and A,; from these equations, the complementary

solution becomes

% ﬂog A/ Yo - r amt

Ao; 2067‘ + Aoz = 2% Qog 5/ 2 T,2M¥Z
2  Jog Ra/Ro (1.4.32)
T ZOg(R/R 2m.+2)

c) Load Capacity(Incompressible Fluid Case)
Now consider the following potential function which

represents a single source at Z = Q ,
Eog(l —3—) (18335}
Denoting ﬁ to be the potential of this source resulting
P - ol - 98 T (2 r
D =Riw} = Zclogl (L) —2(L)os6+ 1} (1.4.34)

Then, p is integrated on the region inner than a circle of
p gr

radius r , that is

W SFﬁn“ rdrde
=% 5P (1.4.35)
2 Y 2 ro\2 r
:—4-%-—)0 Y‘S ﬂOg{(—-—&—') “2(“5—’)(.'03 9+I}d6d
0
The integration with respect to © can be calculated as
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o
So bg{(%—)z—z(—%—fcose+f }de =0 (r=a)

(1.4.%6)
=41 log (v/2) }

r>a
This is reduced in Appendix X . (r>a}

Then Eq. (1.4.35) becomes as follows:

W =0

2§

a
:g{—-z’fug%— - L) (Fea (1.4.38)

(rea) (1.4.37)

bl

=
I

rl&ogl%\ dr

The integration of p on the annular region as shown in

Fig. 1.4.8 is obtained from the results of Egs. (1.4.37)
and (1.4.38) as follows:

Fig. 1.4.8 Positions of source for obtaining load capacity
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(i) when the source locates in inner region (I)

i} i BECRES

(ii) when the source locates in the annular region (II)

WI _8{ %___(rZ 2)} (1.4.40)

(iii) when the source locates in outer region (IIT)

W= 0 (1.4.41)

Lastly, the integration of the term of complementary

function p \;g{wo} Bay Qog,r + Apa , in the
region II is

We = {25 (Ao logr+ A dr
1 (1.4.42)

2 rz
=27 (A 5 log i - L pog 1 } —(%'—%)(nz—mz)]
The pressure distribution of Eq. (1.4.24) can be in-
tegrated within the annular bearing surface for each term

of it by using Egs. (1.4.39)-(1.4.42), resulting

Qoz (a/7p)

—(a%-1F 1.4.
Tog (/1) (@~ %2} (1.4.43)

Wo=— 2 (rz-12)

The pressure distribution is truncated at the supply
hole so that its effect must be subtracted from the load

capacity of Eq. (1.4.43). The pressure distribution of
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truncated part can be approximated by

p =:f%5bg-%+po (1.4.44)

where the boundary condition of p.—.a at r=v; is applied, and
assuming that the coordinates are taken for the supply hole
to locate at the origin. Then, the effect of truncated part
is

i 2
W, =So 2wr (p-p,)dr :_g;; (1.4.45)

The load capacity W is obtained as

W = W - Wy,

__® Qog(a/ro)_ 2_ o2, T2
[(r eogw/rc) (@= o ﬂ

(1.4.46)
2

For the case with multiple supply holes, the load
capacity can be obtained by the appropriate superposition;

for the bearing with k«ksupply holes, the load capacity is

, _"_‘?_3‘: 2y Log(@/10) _ (42 pe, %7
W= -7 fog /1) ("= 15+ ](l 4.47)

where %@‘F)z—-471; K”‘*’P) (1.4.48)

4-4 Volume Rate of Flow
The quantity of flow can be calculated from the outflow
from the bearing edges.

For the incompressible fluid, it becomes

s



Q('n,com.p' gﬁl {S ! 5rrrde+5 ’7" 6} (1.4.49)

3 K
7tk€ Z" K:up

in the case of the bearing without radial grooves,

Qincomp, =~ & { Flr’—’%_ do + ﬁ’”ar %8 +2§:l—'r§§ 9,%’” }

_ kR K
-2 «§K;(u (1.4.50)

in the case of the bearing with ra=dial grooves.
For the case of a compressible fluid, the pressure

gradient is given by

I"%)E;‘r:ﬂ,r N H—n,) P IBY‘ r=r, Y

Substituting this into Egs. (1.4.49) and (1.4.50), the
volume rate of flow, Qcomp’ which corresponds to the pressure

P, has the following relationship with Q.
incomp.’

by

v 7":

i+n
Z i D "— Qmoomp (1-4-51)

QQcomp,z I+YL

4-5 Some Examples of Theoretical Bearing Characteristics
Fig. 1.4.9 shows some theoretical characteristics of
the bearings, load capacity and volume rate of flow, with
some bearing parameters, such as number of supply holes,
radius of supply holes and ratio of bearing radii, respecti-

vely.In these figures, the bearing characteristics are shown
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in dimensionless forms;

- W(k) _ Qincom.p,
5W k(nz—nz)(po— pa) 2 &Q - E‘ﬁ-s(Po_pA) (SP)—' (1'4'52)

k" is taken to be one.

For any bearing, the supply holes must locate at inner

position than the middle of the thrust collar in order to

maximize the load capacity. The volume rate of flow may also

vary with the value of Ra but this is not so conclusive at
the bearing design because the value of ﬁQ is almost constant

as long as the supply holes are arranged near the middle of
the thrust collar.

Ro 1/3, k=6

Rs=1/300
———— 1/100
———— | /60
03 \{ I e 7’[— 1.5
| I

o
N
\ T
\
\
1
1
4
v 4
/
\\1
~
o

= .
3 R
| g ©
£[3 g
. ol
= s
ol o5 18

71-(,,‘2 "’02)(

PoRy)

0
1/3 2/3 |
Ra

(a)

Fig. 1.4.9
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Ro =1/3, Rs=1/300

—— k=4
— 6
————— 8
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\\ ancomp, /
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02 L' : / 1.0 5
e N
£ HIe
o 8|5
3e Sl
0.1 & ] \
I/ _ W A\
/o TrBr@iPoPa) N
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%93 2/3 I
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—— Ro /2
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) Qincomp. |
__&,_ Ihs (po _pa )/3“
T~

/- _\ \/

e ———

Wik)
I(r,Z_ 792)(po‘pa)

o
Ya 2/4 3/4 e
Ra
(e)

Fig. 1.4.9 Bearing characteristics for various bearing
parameters
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4-6 Experimental Investigations

In order to verify the foregoing theory, the pressure
distributions, load capacities, and volume rates of flow
are investigated experimentally by using the same apparatus

as in Chapter 3.

(a) Pressure Distribution

Pressure distributions of the thrust collar gas-bearings
are measurdd experimentally by using experimental apparatus
I for three bearing configurations which are with a single
supply hole, with 6 supply holes without radial grooves
between supply holes, and with 6 supply holes with grooves,

respectively as shown in Fig. 1.4.10.

|69
Supply Hole

169

6% _
Supply Hole

Subply Hole
No. | No. 2 No. 3

Fig. 1.4.10 Bearings employed in experiments for pressure
distribution and volume rate of flow
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Fig. 1.4.11
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Fig. 1.4.11 Results of pressure distributions
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Fig. 1.4.11 is the experimental results for some bearing
parameters. 1In these figures, the thick lines show the theo-—
retical curves calculated by the foregoing theory assuming
n = 1.0 (isothermal condition).

For the particular case with a large bearing clearance
or high supply pressure, the pressure loss at the supply
holes may occur as also mentioned in Chapter 3. Furthermore
the pressure depressions are also observed near the supply
holes for the case of larger bearing clearance (for example
h=50 microns) such as shown in Fig. 1.4.11(a) in which
thin lines are only experimental.

However, for the whole, the experimental results coin-
cide very well with theoretical ones for any case of the
bearings especially for a small bearing clearance and com-
paratively low supply pressure where a fully viscous flow
may be presumed.

(v) Load Capacity

Load capacity is also investigated experimentally by
using the experimental apparatus II mentioned in Chapter 3.
Configurations of the employed bearings are shown in Fig.
1.4.12, all of which have no radial grooves between supply

holes.
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Fig. 1.4.12 Bearings employed in experiments for load
capacity
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Fig. 1.4.1% Typical results of load capacity

Figs. 1.4.1% and 1.4.14 are the results of experiments
in which the dimensionless load capacity W/ (N2=Y2)(Ps— Pa)

is shown versus the bearing clearance with some bearing
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parameters such as bearing load, radial position, radius and
number of supply holes, and ratio of inner and outer bearing
radii, respectively.

Fig. 1.4.13%3 is a typical results of experiments using
the bearing specimen No.l. The load capacity is larger than
the theoretical one (thin broken line) for a small bearing
clearance but it falls down as the clearance increases, which
is the same tendency as observed for the circular thrust
gas-bearing in Chapter 3. It can be explained by the con-
sideration of the compressibility of the fluid and the pres-

sure fall at the supply holes.

Figs. 1.4.14 are the experimental results of the load
capacity with various bearing parameters. In these figures,
the theoretical curves are shown by thick lines with consider-

ation of both effects. They are taken into account guite the
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Fig. 1.4.14 Results of load capacity for various
bearing parameters
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same way as mentioned in Chapter 3 . Thin lines are for
the incompressible solution without the inertia effect of
the fluid.

Theoretical curves show a good conformity with the ex-
perimental ones especially for a small bearing clearance for
any bearing configurations.

(c) Volume Rate of Flow

The volume rate of flow is investigated experimentally
by using the experimental apparatus I with fixed bearing
clearance.

Three types of thrust collar bearings are employed which
are with single supply hole, with six supply holes without
radial grooves, and with six supply holes with radial grooves.
The bearing configurations are the same that are used in the
experiments concerning pressure distribution.

Figs. 1.4.15 are the experimental results in which
theoretical curves are drawn by thick line. The experiments
are made under various values of Pye The volume rate of

2 a2
flow is arranged in the form of C%/{£555§L— against the
bearing clearance h, because this is independent on p, or
P, theoretically-

When the pressure fall at supply holes is taken into

account, the volume rate of flow decreases as shown by thin
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Fig. 1.4.15 Results of volume rate of flow

lines which are calculated by the same account as mentioned
in Chapter 3-7 concerning the circular thrust bearing with
multiple supply holes.

The experimental results show a good agreement with the
theoretical ones qualitatively and quantitatively. The pres-
sure fall effect at supply holes is, however, not so obvious

in the experimental results.
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4-7 Application to the Conical Bearing with Multiple
Supply Holes
The foregoing theory concerning an externally pressu-
riged thrust collar gas-bearing can be applied to the
conice.l gas-bearing with multiple supply holes as shown in

Fig. 1.4.16(a).

Supply Hole Py Supply Hole

Fig. 1.4.16 Configurations of conical bearing.

Denoting the coordinates ( 1, Z, € ) on the bearing sur-
face as shown in the figure, namely

v : radial ordinate

z : ordinate normal to the bearing surface

© : ordinate normal to r-and Z-axis
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and letting # be bearing clearance normal to the bearing
surface, then, the bearing surface can be developed in a
plane as Fig. 1.4.16(b) on which Reynolds equation as Eq.
(1.2.1) is valid. Hence the pressure distribution can be

obtained by the same form as Eq. (1.4.12), that is

k-1 2 ]
_K sin2 Telog A/ %7) | iz m(©0-488)
P =K. X {tog 2hog(frr) | 2g (el (1.4, 53)

e [sin2Tlg (/0 2 T(0-46k)
Loy [oin 2logGmy ST 200q o/ 1 T2

where the anguler spacing of the supply holes is

8, = 2Tsindy, & (1.4.54)

26, : vertical angle of the conical bearing
and radii 1, and Y3 are the distancesfrom the top of the
conical surface.
The load capacity can be obtained by integrating the
axial component of the pressure on the projected bearing

area, then

2
W, = gr, gz (p-p,)sin®, yde d(sinéy)
Yo 0

¥ 1. L 2
=3m28\,5r527?p~ p,) rdrde L)
Yo ‘0
= RK, [0 -7 £ Fol —(a*—anr—’;s:)]szev

beg (1/75)
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where W. is load capacity of the conical bearing.
The volume rate of flow can be obtained quite the same

equation as Eq. (1.4.49) or Eq. (1.4.51).

Chapter 5 Analysis of Externally Pressurized Rectangular-

Pad Type Thrust Bearing

5-1 Complex Potential and Pressure Distribution

The technique of applicaticns of the complex potential
theory to externally pressurized thrust bearing with multiple
supply holes is also useful to analyze the other thrust-pad
type gas-bearings.

In this section, a rectangular-pad type thrust bearing
is analyzed theoretically. The bearing has multiple supply
holes without recess located anywhere on the bearing surface.
This type of thrust bearing is fundamental of rectangular
or square thrust-pad, and of externally pressurized journal
bearing with multiple supply holes as well when the ec-
centricity ratio of the journal is small enough to assume
that the bearing clearance is constant. For the application
to the journal bearing, a transformation has been obtained
with consideration of an approximate bearing clearance

variationd1)
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Analyses are made on the rectangular thrust pad with
multiple supply holes, assuming that the bearing clearance
# is constant.

For the first step, rectangular thrust pad with only
one supply hole located anywhere on the bearing surface is
investigated: an appropriate superposition will give the re-
sults of the cases with multiple supply holes.

Denote the bearing surface as the complex plane (Z—plane)
with ¢ and %-coordinates parallel to the rectangular bear-
ing edges, and with the o;éinﬁ at the center of the bearing
as shown in Fig. 1.5.1. The supply hole locates at Z=Q
(ais also a complex number), where a source of strength
should be put on the complex plane. This single source,
however, could not satisfy the boundary conditions which is
that the real part of potential function is constant at
X= 4 B/2 and also Y=z L/2 as well, where B and L are
breadth and length of rectangular bearing, respectively.

In order to satisfy this condition, infinite arrays of
infinite sources and sinks are put as shown in Fig. 1.5.1
by the principle of inverse point method. In Fig. 1.5.1, the
bearing peripheries are shown by the thick solid lines. But
now take a group of 4 segments as enclosed by the thick broken

lines, then the infinite sources and sinks are equivalent
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+d ‘g +q 'q
e g

Fig. 1.5.1 Configuration of rectangular-pad thrust bearing
and arrangement of sources and sinks

with infinite arrays of inifinite sets of these groups.

The complex potential function of the set is given by
2 ;
W, () =2 hog (2- 0) + Sz log [Z- (B+iL) + @]
2 TR S e & -8 -8 1.5.1
— Sglog (Z-d.-0a] £ dog[Z-B- Q] (1.5.1)
where @ is the conjugate complex number of A . Then the
complex potential of infinite sets with spacings of 2B and

2L in x and y-direction, respectively, which satisfies the

boundary conditions at the bearing peripheries, is
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w(z)=i‘ f ﬁo(z—ZaB-zépL) (1.5.2)

dz-aojs =-00
fog s,mw fog S,M_ML)B@

-2 8

thh-oo

TZ-(24+1)B+0) -20B- QA
+£ogcosh——————2‘: * -—lpgcosh7dZ v J} (1.5.:3)

The deduction is shown in Appendix XI.

The pressure distribution p for an incompressible fluid

can be obtained from the real part of the complex potential

function of Eg.(1.5.3), that is
21:[1—0.:‘20131 2Ly - ay]
+$|ﬂ. 2L

p= K*«gmzog‘[ nﬂzx{x-p-q;b(zxﬂ)B) . E['J”‘ Qy]

s 7tEx+a,;:2d+a)BJ 3 'rc[ﬁ+ab;:—bj
J*‘Kz (1.5.4)

X
Tfx~0x- 2aB) ., mlY+ay-1,)
sink? 2 Y
20 rem 2L
where 0= and ag are x and g—components.of o, respectively,

that is
Q = Qx+ily (1.5.5)

K, and K, are constants determined by the boundary con-

ditions which are

P=p at Z=a-Ts 7
P= P, at the bearing peripheries
> (1.5.6)
=22 ad z=% %J

where y3 is the radius of supply hole.
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The pressure distribution for the case of multiple
supply holes can be obtained by the superposition of the forms
of Eq. (1.5.4) for each supply hole. For the case with

k supply holes, k Kis and K; can be obtained by the con-

ditions of

p=p at Z=05-nr (§=1,2,.

=2

(1.5.7)
P =P, at the bearing peripheries
where @j represents the position of each supply hole.
5-2 Load Capacity with Incompressible Fluid
For the first step, a potential is fundamentally con-

sidered in which a point source of strength +g locates at

x=0x and y-= Qy, that is
w(Z) =2imﬂog(l——%—) (1.5.8)

whose real part p is

_ 3 (e = 020+ (4 - 0)° 1,59
p = 47 Bog[ B Egz (

Now consider a double integration of p with respect to

x and Y within the rectangular region bounded by

A
A
A

- y= = (1.5.10)

_B B
z 2

|
N‘L‘
JIN

?

as shown in Fig. 1.5.2; namely
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Fig. 1.5.2. Arrangement of source at obtaining load capacity
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HZ — O + By g2 - T He + @] p(1.5.12)

~ 3Bt —BL log (G’+0y) J

in which Tan-1 represents the principal value of arctangent
for the arguments. The deduction of this result is shown in
Appendix XIT.

In order to satisfy the boundary conditions at bearing
peripheries, infinite sources and sinks are put according
to the potential function of Eq. (1.5.2). Hence the load
capacity supported by a rectangular pad can be obtained by
summation of the values UV , the positions of whose sources
and sinks are those of each term of the potential function.
Then, load capacity for an incompressible fluid is given by
the following equations for single supply hole case by using

the results of Bq. (1.5.11);
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W = K;i i\ {W(@C"'ZO{B, 05+2pb) 3
o

=00 P:-oo

= W[»ax +{20+1)B, Oy +2p8t ]

11.59.02)

- Wlax+ 208, -0y +2g+)L]

+ W Flx+(200+ NB,-0y+(2p+ I)L]}

For the case with multiple supply holes, the load
capacity can be obtained by summing up the load capacities

shared by each of supply holes.

5-3 Volume Rate of Flow
The volume rate of flow can be obtained by the out-flow
from the bearing peripheries, which is also obtained from the

strength of the source, that is for an incompressible fluid

TR K, (La5.2%)

Q@ incomp, = 3K

This is for the case with single supply hole: for the case

with R supply holeslocated symmetrically, volume rate of
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flow,Qincomp., ca@n be obtained by multiplication by k though
the value of K, must be rewritten to satisfy the boundary

conditions at supply holes.
For a compressible fluid case, the volume rate of flow

corresponding to the ambient pressure is

1+7 |+

P, —p n 4
Q comp, = PO—P: T Fa " *Qincomp, (1.5.14)

which can be obtained with consideration of the transfor-

mation of Eq. (1.2.6).

5-4 BExperimental Investigations

Some experiments are made to investigate the theory
concerning the pressure distribution. This is fundamental
for the load capacity and volume rate of flow because they
may be derived from the integration or the gradient of it.

The configurations of the bearings employed are the
square-pad type with only one, two or four supply holes
located symmetrically as shown in Fig. 1.5.3.

Pigs. 1.5.4 are the typical results of experiments for
the pressure distribution measure@ along to x-direction
(parallelly to the bearing edge) at some y-positions. The
theoretical curves are shown by thick lines which are cal-

culated under the isothermal condition (n=1.0)°
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No. | —

No. 3

Fig. 1.5.3 Bearings employed in experiments for pressure

distributions

For all cases, a good conformity is observed between
experimental and theoretical results.

however, may occur at supply holes for the case with higher
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Fig. 1.5.4 Results of pressure distributions

supply pressure or larger bearing clearance. But under the
practical condition as experimented here, the complex
potential theory can be justified to be applicable with good
accuracy for the rectangular-pad type thrust bearings with

multiple supply holes as well.
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Chapter 6 Conclusion

In Part I, the complex potential theory is introduced
to analyze theoretically the externally pressurized thrust
gas-berrings for some bearing configurations such as circular
thrust bearings, thrust collar bearings, and rectangular
pad-type thrust bearings with multiple supply holes, which
has no recess to increase the bearing stability.

The appropriate complex potential functions can be
found for each casge, which satisfy the boundary conditions of
the bearings. Then, the pressure distributions and volume
rates of flow can be obtained for both of an incompressible
fluid and a compressible one. The load capacity is calcu-
lated by particular method to each bearing for an incompres-
sible fluid case. The bearing characteristics of volume
rate of flow and load capacity, then, are shown in theoretical
charts for the bearing designs.

The experiments are made to investigate the theo-
retical results,yielding good agreements between the results
of them both qualitatively and quantitatively with the con-
sideration of secondary effects owing to the compressibility
of the fluid and pressure loss at supply holes. Pressure
loss takes place at supply holes especially for the case

with higher supply pressure and largerbearing clearance,
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because of the energy loss for acceleration of the fluid
after the supply holes, and the change of the flow velocity
profiles, whose effects are estimated by assuming a flow
patfern.

The good conformity of the results verifies the theory,
and it is found that the complex potential theory may be
applicable conveniently to the analyses of various bearing

configurations with multiple supply holes.

_99-



Part ITI Analysis of Externally Pressurized Thrust Collar

Gas-Bearings with Slit-Supplies

Chapter 1. Introduction

There are many useful applications of the thrust collar
bearings because of their configurations of the devices.

In these thrust collar bearings, the lubricant is fed either
through some supply holes arranged circumferentially on the
thrust surface or through the annular slit-supply.

The recesses after the supplies are useful for the load
capacity but they often cause the instability of the bearing
performance for the case with the compressible fluid lubri-
cant.

The thrust collar bearing with slit-supply is con-

innumerable
sidered as a limit case of the bearing with A supply
holes arranged circumferentially, and has rather large load
capacity, and they need not have the recesses especially for
the double slit-supply case which means their stable per-
formance.

In the followings, the thrust collar bearing with single
or double slit-supply is analyzed and the volume rate of

flow and load capacity can be obtained as the functions of

the radial positions of the slits.
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In the analysis, it is assumed that the lubricant is

incompressible; one can apply the results for the compres-

sible fluid case if the supply pressure is not so high.

Chapter 2 Single Slit-Supply Case

Fig. 2.2.1 Configuration of thrust collar bearing with
single slit-supply
Fig. 2.2.1 illustrates a thrust collar bearing with
single slit-supply. The lubricant is fed under the supply
pressure p , and restricted by the slit into the bearing

clearance, where the pressure is P, * Then it flows out
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towards inner and outer bearing peripheries. pa is the
ambient pressure. The slit locates at radius @ and is
assumed that its width is negligible compared with the inner
bearing diameter 2¥; or outer diameter 27, .

The flow is symmetrical, hence it can be reduced to one-
dimensional case. When the bearing clearance f and coef-
ficient of viscosity }~ are constant, and if the effect of
bearing rotation can be neglected, the following equations can

be obtained,

a0l

|
+ 3 =0 (2.2.1)
— _ _RZp

where U is mean velocity in radial direction.

Then the pressure distribution is given by

p=Clogr+ Cz (2.2.3)

By using the boundary conditions to determine the constants

C, and C,, it becomes

Region I : p:%z_z(po_pa).;_pa (2.2.4)

Region IT : p =_£".c°r_ﬁ_/_[_(p AR (248.5)



The volume rate of flow ig

s . _ bard _%‘E/B Po—'pu
Region I : Qr=2mri(-0) = U Tgarn (2:246)
3 —
Region II : Qy =27%rf(ll)= ggﬁ" Fo Y‘,%a {2.2.7)

The flow through the slit is considered as that between two

parallel surfaces, hence

_ %ab3 Ps—po,
Re = s;us' Ti (2.2.8)

where b, : width of slit

s : length of slit

By the condition of continuity , Qp+Qy= Qs,

Egs. (2.2.6), (2.2.7) and (2.2.8) reduce to be

ps"pa
B- P = ;4-(—’{—)3(—21)( I ) (2.2.9)
bl VA g asrs T Rog vi/a
The load capacity W is
"
w={"2xrp-pydr
e
T rz_az az__ Y.cz
=?(Po—pa)(20ér;/a - 1030./)'},) {2.2.10)
_mr2-a? _ o%-rf B =p
_T(Qog)’./a._ﬁoga/r;)l 3,3(123)( T , (2.2.10)
Hy)la eo%a/n,Jrlogn/a)
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The condition to maximize the bearing stiffness is

*W
oR?

Then from Eq. (2.2.10)!

=0

by 2&3( I

:
bs — a “legasrs * Oggn/a) (2.2.11)

This gives the condition of optimum slit dimensions. Then

Eq. (2.2.9) becomes

Po - pa 2—%-(ps~Pa) (2-2-12)

The load capacity can be obtained from Eq. (2.2.10) with

this :ondition as

r2-a2 ~ 0.2~f32)

s E L
W =5 =R Sog T /0. log A/ T

(2.2.13)
=% (2 —~ &R =g Fy

where F,, is dimensionless load capacity factor with respect
to P P given by

_ W
T2 = 2Py~ Fy)

Fw

(Z.2.13)?
nz_az 02__ r\z

. _ o l
- 3(105:0‘/« zoga/r,,) -2

fI

! (_l——Rf__qu-—Rez) !
3 .&@Hh ﬂ%Rmn% l"Rf

whare

Ra:'a/f‘., R = Ta/ 1
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While, the volume rate of flow is given by

Q =Q;*+Qg
TR 1 |
T (1’.08 - Jog 1170, )(PS‘PA) (2.2.,14)
ﬂ3
:%F"(pS_Pa)‘FQ

where Fy is dimensionless flow rate factor with respect to
(p--p) given by

Qog war * Qo?fr./a

(2.2.14)"

i

| |
Qog'ﬁa/Ro EDgR-O\
The minimum value of flow rate is acheived for the

following radial position of slit &y given by the condition

of 2Q/%0 =0 ;
Opa = f 1LY} (2:2:15)

These dimensionless factors are shown in Fig. 2.2.2.
against the radial position of slit for various ratios of
Ro (= re/7y), In this figure, the curve of Y,/fi = O corres-
ponds to the case of the circular thrust bearing with recess
of radius a .

The single-dotted chain line shows the minimum flow rate
condition (a=ay)and the double-dotted chain line shows the

limit where the slit is arranged imaginarily at the inner
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Fig. 2.2.2. Bearing characteristics with single slit-supply

periphery of the bearing (a=13 ).

Then the following conclusions can be obtained theore-
tically for the load capacity and the volume rate of flow
concerning the design of thrust collar bearing with single
slit-supply:

(i) The maximum bearing stiffness is obtained by the

condition of Eq. (2.2.12).
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(ii) The load capacity increases when slit position Q4
approaches to the outer bearing periphery r, , so the optimum
value of o can not be determined from the load capacity
condition.

(iii) The volume rate of flow increases when the slit
approaches either of bearing peripheries.

(iv) Then the slit position must be recommended with
considering the working condition of load and flow rate.

(v) The minimum flow rate condition is given by Eq.
(2:2.15)

(vi) It is meaningless to design the slit position
inner than Om, because, for this case, the flow rate in-
creases while the load capacity decreases than for the case

with O = Qu .

Chapter 3. Double Slit-Supply Case
Fig. 2.3.1 is the schematic figure of the thrust
collar bearing with double slit-supplies. The lubricant
is fed under the supply pressure P, » and flows through
the slits into bearing clearance, then to the bearing
peripheries. The slits are arranged at Qo and a, .
Denoting the pressure just after the slits as p

and Rn s then the pressure distribution can be obtained as

10T



————2n— Pig. 2.3.1. Configuration of

p——2a thrust collar

< 200 4
e 2r— bearing with
w7, a double slit-
} ‘ 7 supplies
h OI"_ Poo Poy — Om

*.pa ‘\‘ bSl Pa

follows similarly as the single slit-supply case:

flog /1y

Region I : =
g p Qogao/fo

(poo'_Pa)"‘pa (2'3'1)

Region II : .__._E_oﬁ.i__ . Poolog 8~y dog Qo (5 3 o
P = Togr7s P P g 0/ (2.3.2)

. Lbogri /1
Region IIT : p :Z%W(P°’—p“)+Pa (2.3.3)

These pressure distributions can be considered as the
result of superposition of two bearings with single slit-
supply which are;

one having a slit at r=a, with an inlet pressure

_ fog ri/a,
h = Oag(a./a,,)ﬂogm/m (o ﬂﬂga:/n—g,ﬂog Qo/Te)+ 1, (2.3.4)
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the other having a slit at r=q, with an inlet pressure

- QOg a.l/ro
Qog(a./ao)ﬂoam/m

P, (R, dog i/ =By S0g 11 /) + P, (2.3.5)

Considering that these imaginary bearings may be
analyzed individually, the pressures R, and P, must have
the following relation using the maximum bearing stiffness

condition similarly as the single slit-supply case.

Po— B™ B —hR, =*§—({JS-PQ) (2.3.6)

It mearns that the pressures Poo and pm must be equal to

each other. Then denoting p, as

po = poo & Po,

the pressure distributions are

. log Y/'T
Region I : p =Tog—a;/—;o—(po—r>a>+pa (2.3.1)"
Region IT : p = P, (2.3.2)"
Region III : P =—%"”'l(l!3‘,—F’a)+pﬂL (2.3.3)!

los iy

The volume rates of flow are

) . _ 2% p-np,
Reglon I : QI = 6“ bgaa/ro . (203-7)
Region IT : Q, = 0 (2.3.8)
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%8’3 pa'
6l Log1i/Q, (2.3.9)

Region III : Q=

The volume rates of flow through the slits are

Qso_%:;f:: (ps=P,) (2.%.10)
Qst = 7':6‘;55‘ (p—"Pr,) (2.3.11)

The slit dimensions must have the following relation-

ships by the condition (2.3.6):

3 3
boo __# I
Qo 200 Rogao/fa (2-3.12)
b _ A j -
s, 2a, Qogr‘,/a,, (2.3.1%)

The load capacity W is

_ T N0y e =T
W= ( Ql)g r;/a., Qog ao/ro)(P P )

_my n-gf a6

-3 ( I.Dg /0, Eogae/r) P~ Fa)

E?C(r,z__Y‘oZ)(PS“ Pa,)F‘W (2.3.14)

where F, is the dimensionless load capacity factor given by

_Ur-a? @y 11 Ral R -Re

where R, =Q1/Y, Rap=Qo/T

The total volume rate of flow is
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Q =QI +Q‘mj
3
_ 7(?‘3,( | n | )(po_pa)

Y fog 0o /1o logﬁ/a,

(zagao/ro Rogr/a )(P Ra)
_ Wﬁ3 . 0.2 16
:-—q—p—"(Pg k) Fa ( )

the dimensionless flow rate factor given by

I !
Fa =ﬂogao/n,+ Qogn/a. (2.2.17)

where [ 1is

| _ !
AaaRa,/Ro 203 Ra,
Fig. 2.3.2 shows these factors for the case Ro=1/n

=]/2 ; the solid lines correspond to the constant Fw values

and the dotted lines to the constant FQ_ valuese.
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The bearing is desired to have larger load capacity
certain
under aAvolume rate of flow or to give the maximum value
of Fy under the condition of F,=constant. The optimum

positions Qo and @; can be obtained from the condition

8 _ %2 _
20 ~ 204

where $ = f:w +§F.Q_

_LnP-0f _ ad-vE oy
3 (Qogn/a.. Ilogao/n,/r?-—rl §(ﬂoga 7 logr,@,)(z .3.18)

The above conditions are

@i:=_LZMMﬁﬂ@mw%%+U~(m/nfl«mﬂ;(Gf T
o0, ~ 3 Y‘o“lbg(ao/ﬁ))jz N aOMO%(Qo/Yo)]Z

2% _ o zlynogla/n)-li-/h))/a/n) £ o (2.3.20)
o0 3 i o (/1) 12 0\ Thog (/73 )1

Bliminating % from these equations, one obtains

(5 {Rmgl e =1} -2 = () {log 271} +

ot (2.3.21)
(15 {og (o)1 JRZ = Rur {fog Rof— 1+

This gives the optimum relation between the radial posi-

tions of the slits.
This is drawn by the chain line (AB) in Fig. 2.3.2
on which the sets of curves of F, =constant and Fa=

constant contact tangentially with each other.
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In Fig. 2.3.2, the straight line CD means that 4,=a, or

two slits approach each other and make a single slit-supply.

Then cross point B is a limit of design of double slit-
supply because the point B is on the curve AB, which shows
the optimum relation between two slits positions, and also
on this line CD. In the other hand, the minimum flow rate
can be obtained on the point M according to the analysis
of single slit-supply bearing. The radial position am
locates inner than Qg which corresponds to the point B.
Hence, one should design the slit-supply bearing with the
dimensions on the line A-B-M. (B-M corresponds to the
single slit-supply bearing).

Op can be calculated by substituting 0Q,=0;=0g into

Eq. (2.3.21) resulting
Qg _ /1=(ro/1)

L 2Log (T3/1;) (2:3.22)
_ /RI-1

Ree ‘/zzogﬁ“,, (2.3.22)!

Fig. 2.3.% illustrates the optimum relations between

or

/Y (=Rp,) and Qu/f(=R,) with parameter To/rj(= R,) , in
which the chain 1inejshows the 1limit case to the single
slit-supply.

Fig. 2.3.4 shows Fw and Fq with parameter ro/r; , in

which Qo/Y) takes the value calculated in Fig. 2.3.3.
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Fig. 2.3.4. Bearing characteristics with double slit-
supplies (with optimum radial positions of slits)
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The double-dotted lines are for the case of limiting
single slit-supply (B), and the results of the single
slit-supply case of Chapter 2 are added for inner region
than this point (OQm < QA < Qp),

Then the followings are concluded concerning the
design of the double slit-supply bearing.

(i) 1In order to get the maximum bearing stiffness,
the pressure just after the slits satisfies Eq. (2.3.6),
and then the bearing should be designed as Eq. (2.3.12) and
(2.3.13) are satisfied.

(ii) Both of the load capacity and the volume rate
of flow increase as the slits position become nearer to
the bearing peripheries. Then the bearing should be de-
signed with considering the working condition of these
bearing factors.

(iii) To maximize the load capacity under a constant
flow rate, slits positions should be determined by Eq.
(2.3.21) or Fig. 2.3.3.

(iv) Eq. (2.3.22) or Eq. (2.3.22)' shows the limiting
case of the double slit-supply to the single one. In order
to lessen the flow rate than this case, the single slit-

supply bearing must be used.
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(v) In the above analysis, the pressure is constant
to be p, in region II, which means that the results of it
can be applied to the single slit-supply bearing with an
annular recess by substituting a@,=Yp, and a,=Tp, Wwhere
Yp, @nd Tp are the radii to the inner and outer edges

of the annular recess respectively.

Chapter 4 Experimental Investigations

Experiments are made to investigate the foregoing
theory for the fundamental single slit-supply case concern-
ing the pressure distribution, load capacity and volume
rate of flow by using the compressed air as the fluid.
(a) Pressure Distribution

The pressure distributions in the bearing clearance
are investigated experimentally by using the same experi-
mental apparatus (I) as in Chapter 3-7 in Part I.

Configurations of the employed slit-supply thrust
collar bearings are shown in Fig. 2.4.1. 1In these ex-
periments, pressure distribution is measured to compare
with theoretical one assuming that the bearing stiffness
is considered to be secondary so that the restriction by
the slit need not be taken into account.

Fig. 2.4.2 are the experimental results of the
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2r, (mm), 2ro(mm)| 2a (mm)| bs(mm)
90 30 | 60 15
90 30 @ 50 15
90 30 . 70 | 15
60 . 30 45 5

Fig. 2.4.1 Bearings employed in experiments

thrust collar bearing with slit supply with various bearing
parameters such as supply pressure, bearing clearance,
radial position of slit-supply and ratio of inner and
outer bearing radii, respectively. In these figures, the
thick lines are theoretical ones calculated with polytro-
pic index n=1,0 (isothermal condition) by using Eags.
(2.3.1)'-(2.3.3)! which are for the double slit-supply
case, substituting G, to be inner radius of slit, and o
to be outer one. This is because the width of slit is
fairly large to be neglected compared with the other
bearing dimensions.

The experimental results conform very well with

theoretical ones even for comparatively large bearing
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Fig. 2.4.2
clearance and high supply pressure. For the bearing of
this type, the lubricant is supplied through a slit into
bearing clearance, hence the flow of it just after the slit
supply is such as one-dimensional flow between two parallel

surfaces rather than a radial flow such as from a point
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supply hole. Then, less energy is needed for acceleration
of the lubricant after the slit supply, which means the

pressure loss is comparatively small even at a large volume
rate of flow. These effect is discussed later concerning

load capacity.

(b) Load Capacity
Load capacity is experimented by using apparatus II

for the same bearings as shown above.

1.0
09 W/r(r,2-rg?)
-r,
Ro=1/3 (kg/cm?)
08— Rg=2/3 — 00563
- 00855 ————
& 01165 ——0——
:fO? O I440 —— i o ¢ e
gl ol17256 - ~o--eee
06 §i--— Incomp. (theor.) ————
? [ %) [
T B e e A R N R SR SRR il
RO5— + — | | [
© Vibration occurs
04 L ! '
0 10 20 30 40
h (microns)

Fig. 2.4.3 Typical results of load capacity

Fig. 2.4.3%3 is an experimental result for bearing No.l,
in which the incompressible theoretical line is drawn by a
thin line. The dimensionless load capacity W/m(rZ¢- :2Xp,~B,)

of experimental data is almost independent on the bearing

-120~-



clearance h, which means that the pressure fall at the
slit-supply is not effective. But, the load capacity in-
creases with increase of specific load W/ (12 = 1)
(or supply pressure) because of the effect of compressi-
bility of fluid.

The load capacity considering the effect of compres-
sibility can be given by the following approximation for

the thrust gas-bearing with slit-supply:

_ 2" __
Wcomp_ = \/(po+Pa)(gw - %\)"' P’ — Fa X Wincomp (2.4.1)
w @&

where W : load capacity with compressible fluid

comp
Vvincomp,: load capacity with incompressible fluid
Pw : specific load W/ (¥Z-1)

This equation is reduced and studied in detail in Appendix

XI1T.

When the pressure fall at supply hole is taken into
account, R)in the above relation must be substituted by
P/ where P, is the modified pressure just after supply
hole as mentioned in the below.

The thick curves in the figures are theoretical ones
considering of both effects of this and pressure fall at
slit supply;

P,— P =2t EUn
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2
- 2% (Fmew) (2.4.2)

where Q,is volume rate of flow corresponding to pressure po".
They coincide very well with each other as shown, which
verify the foregoing theory and presumptions of secondary

effectsi for this type of bearing.

l l ;
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Fig. 2.4.4 Results of fosd capac sgy
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Fig. 2.3.4 is the experimental results of load
capacity for other bearing dimensions such as various slit
positions and ratios of inner and outer bearing radii. The
theoretical ones are shown by the thick lines which are
calculated with consideration of the secondary effects men-
sioned above.

The results have quite the same property as observed
in Fig. 2.3.3. The vibrations are observed for all bear-
ings of this type when the bearing clearance increases
more than about 30 microns. The slit for supply may
serve as a recess because it is comparatively wide so that

the bearing vibrations may be caused.

(¢) Volume Rate of Flow
The volume rate of flow is investigated experimentally
by using the experimental apparatus I with fixed bearing
clearance.
Several bearings are employed with various bearing
configurations such as with various values of Rgor Rs.
Fig. 2.4.5 is the experimental results in which theo-
retical curves are shown in thick line. The volume rate
of flow is arranged in the form of Q/—g’z—;;é
a

bearing clearance # , because this is independent theoreti-

against the

cally on the values of p, or pu .

A .
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A good conformity is shown between the experimental
results and theoretical ones, which may justify the re-
sulté of theory very well.

Pressure fall at supply slit is also taken into
asccount but this effect is very small so that the deviation

by it may be negligible.

Chapter 5 Conclusion

The externally pressurized thrust collar bearing with
single or double slit-supply is analyzed. In both cases
of the bearing types, considering the flow as that of twe-
dimensional one between the parallel surfaces, the pres-

sure distribution is obtained theoretically, and then,
the load capacity and volume rate of flow as well from the
integration and gradient of it. The condition to maximize
the bearing stiffness is applied to yield the optimum
dimensions of the supply-slits. The design charts of the
bearing with slit supply can be obtained from these theo-
retical values of bearing characteristics.

Results of experiments agree very well with theore-
tical ones concerning the pressure distribution, volume
rate of flow and load capacity, taking into account the
effect of compressibility of fluid. For this type of

bearing, the pressure fall after slit-supply seems to be
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negligible even for considerably high supply pressure and

large bearing clearance, which is because the flow is such

one-dimensional flow between two parallel plates,
S Crather than a radial

that
flow from a point supply source which means less energy is

needed for the acceleration of the flow.
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Part III Analysis of Externally Pressurized Porous Gas-

Bearings

Chapter 1 Introduction

Externally pressurized thrust gas-bearings are very
advantageous owing to their small static and dynamic fric-
tion, and their load capacity can be increased by making
a proper recess on the bearing surface. The recess, how-
ever, is apt to make theloperation less stable because of
self-excited vibration(4). If the bearings have a rela-
tively smaller gas-supply hole without recess against high
supply pressure or large bearing clearance, the pressure
depression takes place in pressure distribution of the
bearings and lessens their load capacity greatly.(3)
These disadvantages have called forth the recent re-
searches on the externally pressurized thrust porous gas-
bearing through which the gas is supplied over the eniire
bearing surface. The porous bearing can be assumed to
consist of a mesh structure incorporating innumerable
tubes which serve to restrict gas flow and absorb vibration.

Such a type of externally pressurized porous gas-
bearing so far has not been analyzed theoretically, except
for Some meporke in T.5.8.R.,5%) dn spite of its applicstion

to a number of practical devices. Even in these studies,
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analysis were considered only the normal gas flow to the
bearing surface in the porous bearing.

In this Part, the externally pressurized porous gas-
bearing are analyzed theoretically, considering both axial
and radial gas flows in porous bearing with the following
assumptions.

When the compressibility of fluid is taken into account,
the load capacity cannot be obtained analytically and the
calculation of pressure distribution becomes complicated,
so the assumption of incompressibility of fluid is applied
as mentioned later for the first step of the research on
this bearing. The pressure distribution and the load
capacity are obtained theoretically and they were compared

with the experimental results.

Assumptions

The assumptions made for the analysis are as follows:
(1) Porous media are homogeneous with permeability coef-
ficient k. Coefficient k is defined by Darcy's law con-
cerning the flow in porous media as:

op U =R 9P (3.1.1)

.
W=z, uar

where W, w : flow velocity in T or z direction
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p : pressure

Pt coefficient of viscosity
(2) Porous material can be substituted by an assumed thin
layer with so-called equivalent clearance h' so that the
characteristics of flow through it can be equivalent to
that through the porous material concerning the quantity
of flow.

If the quantity of flow parallel to the bearing sur-
face through the porous bearing is equal to that of the
flow through the assumed clearance ®, % is to be called

the equivalent clearance, thereby

R -ViZrt (3.1.2)

t : actual thickness of the porous bearing
(3) The flow of fluid in the porous material consists of
two components: one is parallel to the bearing surface and
the other vertical to it.
(4) The bearing clearance f and the equivalent clearance
f are so thin that pressure does not change normally in
each clearance. But the pressure p in the bearing clearance
differs from the pressure p’ in porous material.
(5) The flows from porous bearing into bearing clearance

and from supply port to porous bearing is proportional to
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the pressure difference (p'— p ) and (pPs-p’), respectively,
and permeability coefficient k , and is inversely proportio-
nal to t, which is the actual thickness of porous bearing. . Th®
assumption is applied as an extension of Darcy's law.

(6) There is no parallel flow on the very surface of bearing.
(7) The fluid is incompressible. This assumption may be
appropriate for the flow through the porous media and the
bearing clearance with low pressure. When compressibility
of the fluid must be taken into consideration, one can
obtain the pressure distribution by the following substitu-
tion in which absolute pressure P gives the solution for

the case of incompressible fluid.(l)

+n

P— pT (3-103)

where n is the polytropic index.

(8) The rotating speed of the bearing is so small compared
with the gas flow velocity due to the pressure gradient
that the static condition can be applied. This static con-
dition may be essential for the study of the externally

pressurized gas bearing.

Chapter 2 Analysis of Externally Pressurized Circular
Thrust Porous Gas-Bearing

2-1 Theoretical Analysis
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as Fig. 3.2.1 Construction of
supply externally pressurized
hole circular thrust parous

Porous gas-bearing
bearing

Fig. 3.2.1 illustrates the construction of the ex-
ternally pressurized circular thrust porous gas-bearing
to be analyzed. The compressed gas is fed into the gas
supply hole and after being restricted through the porous
bearing, the gas flows out into the bearing clearance in
radial direction. Some part of the gas also flows through
the porous bearing in radial direction. Fig. %.2.2 is the
schematic diagram of this bearing.

The average velocities of flow in r-direction in the
bearing clearance and the porous bearing are, respectively,

as follows:

oo dp

U =mpar (3.2.1)
3 % ,3 .

we-k . _f O (3.2.2)

TTTRTdr T T zp dr
-1%21-



o 29— ——————

Fig. 3.2.2 Schematic diagram

=] of the bearing

Region I Region I
Q1 ps
| d

The continuity conditions are
r
2 rRi :S g-2mrdr (3:2.3)
2rriw =Q-§:g'27crdr (z=r=m) (3.2.4)
T r ’
= S %’-27crdr—5 g-2rrdr (0% rsrg) {3}V
/] [}

where Q is the volume rate of flow, and 2 and @’ are the
velocities of the flow-out from and flow-in to the porous
bearing respectively. £ and g’zue given by the following

equations according to the assumption (5).

__k P-p g
3= “ auyt (PP (3.2.5)
__k Pk-p g ;
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where » and ®’ are the effective restricting thickness, and

are given by:

7= ct 7’: C’t (3°2'7)

¢ and ¢ should be determined experimentally but they are

presumed to be approximately

(3.2.8)

113

=c' =t
c=¢' =
Eliminating § and ¢ from Bgs. (3.2.1), (3.2.3) and

(3.2.5), and differentiating it by r , one obtains

d ; 13 2
L) = - p) (3.2.9)

(a) Region I ( 3 =r =1, )

From Egs. (3.2.3) and (3%.2.4)

2y (RU+t) = Q (3.2.10)

Eliminating U and W by substitution of Egs. (3.2.1)
and (3.2.2) into Eq. (3%.2.10), and integrating it with r,
one obtains

-3,3;3 + ‘H:BP’= Ci - 6¢CQ 108 r

(%3.2.11)
P = (C oy r - 2%p)

where (, is the constant of integration.

In Eq. (3.2.11), p and p’ should satisfy the following

boundary condition
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(3.2.12)

‘1
1l
)

B = p’::;h at

Then,

G =S4 pog 1+ (£2+£7)P, (3.2.13)

Substituting Eq. (3.2.11) into Eq. (3.2.9)

rdp.

e r )= ﬁsr;t{(ﬁa“'*’fg)P*—P(—ﬂogr Cp (3.2.14)

This equation can be expressed as

~::-~ac%(rg$)-dfp =B£ogr + C (3.2.16)

£ +€a __6pQ G
%o =/t B-Zwpt  CT e

The solution of Eq. (3.2.15) is given by

where

P=EL, (") +FK,(@¥)~ m%a*ﬁ,s)ﬂogm L e (3.2.16)

where [, and K, are the modified Bessel functions of the
first and the second kinds respectively, and E and F are
the arbitrary constants which should be determined by bound-
ary conditions.

Substituting Eqs. (3.2.13) and (3.2.16) into Eq.
(3.2.11), the pressure distributions p and p' in the region

I are obtained as follows.
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P, =EL @r) + FKy06r) *%(ﬁffﬁ?) Qog B [52.57)
P, =- B [EL@r +FKor] + ot et Dip  (3.2.10)
(b) Region IT (0= Y =r3)
From Egs. (3%.2.3) and (3.2.4),
2Tr (R + W) = g:‘g’.zmrdr (3.2.19)

Eliminating U, U and p from Egs. (3.2.1), (3.2.2),
(3.2.6) and (3.2.19), and differentiating it by r , one

obtains,
| N I
ae T A e PR p-p) =0 (3.2.20)

Egs. (3.2.9) and (3.2.20) can be rewritten as follows.

.' d dDI 2 12 ’
e Bl PR, = B B = ]
ar \"dr) J» (3.2.21)

( d dp _ .2 /

7:;ﬁj(r'aFJ =D (p"P)

where

a1 e B e B

A - Vt+ )?t B )?t C —?/t D -—ﬁayt

The solution of Egs. (3.2.21) are

P = MI, (@r)+ ML, 02r) + Mg Ko () +My Ko (0or) + P (%, 222}

p= MLW)+NzIn(dzP)+N3Ko(0<,r)+N4Ko(o(2r)+g (%.2.23)
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where

i, =/ A/Z _D,z ‘_tﬂA«Z_JZJ/Z)2+4[‘B,2_AaZ)D/z (3‘2.24)

The signs in the right-hand side of Eq. (3.2.24) are

to be taken as follows

+ for subscript L =1

- for subscript L 2
A% and Nj (§== 1, 2, 3, 4) are constants of integ-

ration and they should satisfy the following relation;

; 2 '2.
%:.é%_zoi_ (3.2.25)
3

where j = 1 or 3 when L =1, and 4 = 2 or 4 when {= 2.
These deductions are shown in Appendix XIV.

Using the following boundary condition

ﬁ%:c‘i_}‘f:o at r=20 (3.2.26)
then
N3:N4= M3= M4= 0 (3'2'27)

The pressure distributions in the region II are obtained

as follows.

Pr = M I, @)+ M,T, ©6r) +p, (3.2.28)
Pr = NiTo@r) + NoLo(0r) +p, (3.2.29)
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The volume rate of flow is

Y%, Ys ﬁ/s
—‘—“‘{ N'EI (1) + NZE L (oczm}

The boundary conditions to determine the constants N,, Ng,

(or My, M;) E and F are:

(1) p=p;= B B =5

(ii) P =P at P= 5

(iii) Pr=p; at r=rs , (3.2.31)
(iv) d—p=d~— at r=r

(v) ?ﬂiz—f}h at r=r b

Among them, conditions (iv) and (v) are not mutuvally
independent, so the unknown constants are determined by
the conditions (i), (ii), (iii), and (iv) or (v). The
pressure distributions p and p’ are given by putting these
constants into Egs. (3.2.17) and (3.2.18) and (3.2.28)
and (3.2.29) in each region.

The load capacity for the case of an incompressible

fluid is obtained by integrating the pressure in each area.

in
W g (p~p)2xrdr 1

0

s
= [T {ML©r + M, Loer + (p - pyj 2mrdr

Y
+ S {EL> (o) +F Ko (ol + E%b%mzog —?} 2mrdr

Ts
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= 2m s {SE Lo + 52 L@ o)+ 2(Ps - By)

r(a-z.zz)
ng{rI i) - GI,(%@)} {rK,(a.r) -1:K; low}
g i roR
e i ’

Since it is difficult to obtain analytically the load
capacity with considering the compressibility, the load
capacity obtained by Bq. (3.2.32), which is approximate for
compressible fluid, will be used to compare with experimen-

tal results.

2-2 Permeability Coefficient of the Porous Material

It has been reported that the permeability coefficient
of porous media is not constant as the authors assumed in
the analysis above.

Gross(6) describes in his book that Robinson and
Sterry(7) observed that the permeability coefficient is a
function of both bearing clearance pressure and Reynolds
number. Fig. 3.2.3 illustrates this variation after them.

Because of this variability, the permeability coef-
ficient to be used for the calculation in the above analysis,
should be determined based on the conditions of pressure,

Reynolds number, etc. under which bearing will actually
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work.

Fig. 3.2.4 shows the apparatus for measuring the per-
meability. The compressed gas is supplied into the space
formed with the porous material and the side wall as shown
in illustration. The undersurface of the porous material
is covered with the packing of synthetic elastic sheet
so that the gas is forced to flow through the porous mate-
rial in the radial direction.

The permeability coefficient can be calculated from the
pressure in the space and the volume rate of flow. 1In this
case, the volume rate of flow can be obtained by considering
the bearing clearance f to be zero in the above analysis,

so that the following equation is obtained

CBLE® g

. U watan W71Q
2n 15 L) o
Ly o T el

(3.2.33)

where

|
O, e
7T
Fig. 3.2.5 shows a few examples of the permeability coef-

ficient determined for some porous materials by this method.

2-3 Comparison with the Experimental Results
The dimensions of the bearing used for the experiments

are as follows.
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Diameter of the bearing 2r; = 60.0mm

10.0mm

Diameter of the gas supply hole 27s
Thickness of the porous bearing t = 5.0mm

The porous bearings employed are shown in Table

3.2.1 The surfaces of them should not be machined because

minor maching causes non-homogenety on the porous surfaces

so that their characteristics of flow may be varied. So

. the porous plates are made carefully to hold their flat-

ness of the surfaces. The permeability coefficient is the

average of the values shown in Fig. 3.2.5.
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Table 3.2.1 Porous materials employed in experiments

o Dia. of | Permeability |Equivalent
Bearing | material | grain | coefficienf | clearance
fa. (microns) (cm2) (microns)

1 | sritemen 5 435x10°° 30

I powder | [0 | 7.09xI0°° 35

i brass 20 9.73x107° 39

Dial gage
Steel ball
i

Load Sl// i Tﬂr Fig. 3.2.6 Apparatus for
Ar §% - measuring the pressure
supply \/ ..... N, Liner distribution

"\\‘//’ Rotor

"::, ,,,,

Porous
— bearing

Ly ]
Adjustment
thread
To the
I_'IL ﬂ manometer
S

Fig. 3.2.6 shows the apparatus for measuring the pres-
sure distribution and the load capacity. The rotor has a
porous bearing of 60mm diameter on its undersurface through
which air is supplied into the bearing clearance. The pres-

sure in the bearing clearance is measured by U-tube mercury

]



manometer connected with the small hole of 0.2mm diameter
drilled in the stator which can be slided to desired posi-
tions by operating a fine screw.

The rotor is guided in the liner by an externally pres-
surized journal air bearing in order to prevent their con-
tact.

The load is put on the top of the rotor by the lever
and the load weights.

The pressure p’ in the porous material is not measured
but the analysis is verified by comparing the pressure
distribution P in the bearing clearance, though it would be
better to investigate the pressure p’.

Now, let B be a parameter to be defined by

7 3
ﬁz..%.;”z’;f (3.2.34)

Then the pressure distribution and the load capacity are,
for an incompressible fluid,identified by only the value

of ﬁ y 80 that they do not depend directly upon h or K.
Fig. 3.2.7 shows the pressure distributions measured by
keeping the value of P constant for some porous bearings.
In this figure, the solid line is the theoretical curve for

an incompressible fluid obtained for the case of 7= v =0,5t,
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The assumption of incompressibility of fluid is appro-
priate for the flow through the porous media and the bearing
clearance under low supply pressure. When the compressi-
bility of fluid is taken into account, the theoretical line
varies with the values of supply pressure when ambient pres-
sure is fixed. While the experimental data are put in order
fairly well in the form of (p—pa)/(ps—Pa) as shown in figures,
which may certify the assumption within the range of supply
pressures of the experiments.

The experimental results showed a good agreement with
the theoretical values both qualitatively and guantitatively.
When B takes smaller values, in case of Fig. 3.2.7 (a),
for example, some difference is observed, which is con-
sidered to be due to the deviation of the effective restrict-
ing thicknesses (® and %’ ) from 0.5t. This deviation
may be caused by the variety of the permeability in it.

Fig. 3.2.8 shows the relation between the supply pres-
'sure and the air film thickness (bearing clearance) under
the constant load. In this figure, the dotted line shows
the limits against the vibration when the bearing encounters
some disturbance. But in the experiments the bearing worked
without any vibration when it was not disturbed. The values

of the film thickness are measured statically before the
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Air tilm thickness ' h (miorons)

bearing is disturbed. The stable working region extends
with the increase of the permeability coefficient. More-
over it has been observed that the stable working region
extends much when the diameter of gas supply hole is made
larger though the effects of the diameter is not die-
cussed here. The stable work of the porous bearing is
considered to be due to its structure. Porous material
can be assumed to consist of the meshy structure of in-
numerable tubes which serve to dissipate the energy of
vibrations.,

Fig. 3.2.9 shows the relation between the load and
the air film thickness (bearing clearance) under the con-

stant supply pressure.

8
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The load capacity is shown in Fig. 3.2.10 with respect

to the value of l/ﬁ which corresponds to the air film thick-
ness. The solid line shows the theoretical curve obtained
from Bq. (3.2.32). The experimental results coincide with
the theoretical curve except when l/ﬁ is so very large or
small. The variability of the effective restricting thick-

ness is considered to cause these differences.

2-4 Boundary conditions at the Periphery of Porous Bearing

In the above sections such a porous thrust gas-bearing
is analyzed that the gas flows out from the bearing clearance
and also from the periphery of the porous bearing, because
of the simplicity of the theoretical calculation. For the
practical usage of this bearing, however, it is naturally
desirable that the bearing needs less rate of compressed
gas-flow. This leads to the idea to close the outer peri-
phery of the porous bearing so that the pressurized gas
may be kept in the bearing clearance without escaping from
porous edge.

Theoretical analysis for this closed-edge type of
porous circular thrust bearing is mentioned in this section.

The pressure in the bearing is obviously governed also
in this case by the same equations (3.2.1)-(3%.2.6) yielding
the pressure distributions of Egs. (3.2.16) and (3.2.11),

o



and Eqs. (3.2.28) and (3.2.29) in Region I and II, res-

pectively.

But the boundary condition to determine the value of

C, in these equations should be as follows instead of con-

dition (3.2.12); namely
P="h at ref

and

gng-zkrdr==Q

0
By using Bg. (3.2.4), Eq. (3.2.36) becomes

=0

dp’
(dr)r=n

Then the unknown constants N, N, E, F, and

(3.2.35)

(3.2.36)

(3.2.36)!

C, must be

determined by the conditions of (3.2.35) and (3.2.3%6)!

instead of codition (3.2.31)-(i).

The load capacity and volume rate of flow can be

obtained easily by the same reductions as used for Eq.

(3.2.32) and Eq. (3.2.30), respectively.

Fig. 3.2.11 shows an example of the difference of

theoretical pressure distributions between open- and

closed-boundary conditions. The boundary-closed bearing

has higher pressure distribution of p so that the load

w1 B



capacity may increase fiarly well than the otherwise case.
For the practical design, closed-type bearing is re-
commended on account of its better bearing static charac-

teristics.

2r =60 mm
2t 1Omm
o8 t - 31 mm
B p -243
—— (PR R))
06— - __(DLWs'pa
- Bearing side Fig. 3.2.11 Theoretical pres-
5 Elesdd _sure distributions under
04— open- and closed-boundary
L conditions
Bearing side
02— is open
I
0 10 0 30

r (mm)

Chapter 3 Applications to the Other Configurations of

Externally Pressurized Thrust Porous Gas-Bearing

3-1 Introduction

In Chapter 2, the externally pressurized porous thrust

-]_51..



gas~-bearing is analyzed theoretically for such type of
bearing that has a circular porous material all over its
bearing surface. Hence, the bearing performance depends
very much upon the roughness and flatness of the porous sur-
face at the time of its manufacture. For example, it has
been reported(5) that the roughness of 2 or 3 microns

on the porous surface makes the bearing clearance not to

be uniform, which lessens the load capacity very much.

In order to avoid this disadvantages, investigations
are made for the porous thrust gas-bearing with flat and
solid ring part, so-called 'flange', around the porous part
in Section 3%-2.

In the practical applications, the thrust collar-type
gas-bearing with porous bearing is also used because of
the bearing configuration. Some of them are analyzed in
this Chapter as well,

The above theory is applied under the same assumption
as made in Section 3-1 to these of the porous thrust gas-
bearing to obtain theoretical pressure distribution, volume

rate of flow and load capacity.

3-2 Externally Pressurized Porous Thrust Gas-Bearing with
Flat and Solid Ring Surface

3-2-1 Theoretical Analysis
B



Fig. 3.3.1 illustrates the construction of the ex-
ternally pressurized porous thrust gas-bearing with flat
and solid ring surface to be analyzed. The gas is supplied
from the supply port, and restricted through the porous
material, then it is fed into brearing recess (H), and then
flows out through the '<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>