

波の回折と港内波高分布に関する研究

昭和56年4月

高 山 知 司

波の回折と港内波高分布に関する研究

昭和56年4月

高 山 知 司

目

1
~

要		É	3
1.	緒	論	5
参	考考	∮文献 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯	6
2.	港	口部における波の回折	7
2	.1	概	7
2	.2	防波堤開口部における波の回折の厳密解	8
2	.3	任意防波堤配置に対する波の回折の近似解	18
2	.4	実験による理論の妥当性の検証	32
2	.5	結 語	39
参	考考	б文 献 ·····	39
3.	島	堤による波の回折	41
3	. 1	概	41
3	.2	島堤による波の回折の厳密解	41
3	.3	島堤による波の回折の近似解	44
3	.4	実験による理論の妥当性の検証	55
3	.5	結 語	62
参	多考	今 献	63
4.	不	規則波の回折と反射	64
4	.1	概	64
4	.2	不規則波に対する反射・回折の計算法	64
4	.3	海の波の方向スペクトル・・・・・	66
4	.4	不規則波の回折特性と方向スペクトルの関連	68
4	.5	単一方向不規則波実験による理論の検証	75
4	.6	護岸および防波堤による反射波高の推定法	88
4	.7	結 語	93
参	考考	∮文献 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯	93
5.	港	内波高分布の計算	95
5	.1	概 説	95
5	.2	港内波高の計算法・・・・・	96
5	.3	港内波高分布の計算例」	00
5	.4	模型実験による数値計算法の検討」	02
5	.5	港内波浪観測による数値計算法の検討」	08
5	.6	港内静穏度解析への応用例」	12
5	.7	結 語」	17
参	考考	∮文 献 ⋯⋯⋯⋯⋯⋯⋯	18
6.	不	規則波による砕波の回折」	19
6	.1	概	19
6	.2	実験装置および実験条件」	19
6	.3	入射波の特性」	21
6	.4	回折波に関する計算値と実験値の比較」	123
6	.5	砕波の回折計算における入射波のスペクトル形と回折波の最高波	133

2000	6.6	結		吾	
	参考	文	献 ··		136
7.	結		論		
謝		辞			138
È	要記·	号一	覧表		138

波の回析と港内波高分布に関する研究

要 旨

港内に静穏な水域を確保することは、新しい港の建設や既存の港の拡張・改良の際に、港湾技術者が常 に念頭に置いておかなければならない重要な問題の一つである。港内の静穏に影響する要素として、波浪 や風、流れなどがあるが、特に重要な要素としては、港口部からの進入波がある。この進入波は港口部で 回折されて波高が減少するけれども、港内の岸壁などで反射されて、期待するほどその波高が低下しない 場合がある。そのため、港内波高の算定には、港内での反射を考慮した計算が必要となる。しかし、現状 では、海の波のような不規則波に対する港内波高の計算法は確立していない。

そこで,まず開口防波堤および島堤による波の回折について厳密解と近似解を導き,厳密解と比較す ることによって近似解の適用性を明確にするとともに,規則波による模型実験によって,これらの理論解 の妥当性を確認した。そして,計算が容易な近似解を用いて,海の波のような不規則波に対する回折波の 計算法を示し,単一方向不規則波による模型実験でこの方法の適用性を確認した。

以上の結果を参考にして,港内における多重反射も考慮した港内波高の計算法を提案した。この計算法 では,複数の港口部でも,港内に開口部があっても計算できる。不規則波や規則波による模型実験結果や 現地における港内波浪観測結果と本計算法による結果とを比較することによって,平均的には約 30%の 誤差の範囲で港内波高が推定できることが明らかになった。

砕波が来襲する場合について波の回折の模型実験を行い、計算と比較した結果,砕波の場合には,港口 部における実測スペクトルをそのままの形で用いるのではなく,まず Bretschneider 型のスペクトルに直 したのちに,このスペクトルを用いて計算する必要があることがわかった。

Wave Diffractian and Wave Height Distribution inside a Harbor

Synopsis

In constructing a new harbor, expanding or modifying the existing port facilities, one of the great concerns for port engineers is to secure calm water inside it, among other problems. The calmness in water condition inside a harbor may be influented by waves, winds, currents and other factors, the waves intruding through its entrance being the most influential one. Though wave heights generally decrease through diffraction in the presence of breakwaters at the entrance, the degree of the decrease is sometimes contrary to our expectation due mainly to the wave height amplification by reflection from seawalls or quays in a harbor. Therefore, a computing method with due consideration on wave reflection is necessary in estimating wave height inside it. However, no suitable approaches have yet been established for irregular waves.

In this report, as a fundamental study, both the exact and an approximate solutions of wave diffraction through a breakwater gap or by a detached breakwater are rederived by applying the Mathieu functions and Sommerfeld's solution, respectively. The accuracy of this approximate solution is clarified upon comparing with the exact one, and good agreement is also confirmed in the result from both these solutions and experiments. The approximate solution, which is more time-saving in computation than the exact one, is then tentatively applied to the diffraction of irregular waves, exhibiting sound applicability to practical problems when compared with the experimental result of diffraction for unidirectional irregular wave.

A new computing method is developed for wave heights inside a habor, taking the multireflection from seawalls or quays into consideration. The computation method is applicable to a harbor with complex boundary layout and/or with multi-entrances and inner harbors. This method can reasonably estimate wave heights to about 70% or more of the result from model tests for several existing harbors as well as that from field observations at Akita Harbor and Niigata West Harbor.

Model tests are also carried out for wave diffraction of irregular breaking waves beyond a breakwater gap. The linear wave diffraction theory is proven practical even to the diffraction of breaking random waves, if Bretschneider's spectrum is employed as the incident wave condition instead of the real spectrum measured at the gap.

1. 緒 論

港内に静穏な水域を確保することは,新しい港の計画 や既存の港の改良および拡張計画の際に港湾技術者が常 に念頭に置いておかなければならない重要な問題の一つ である。ここでいう「静穏な水域」とは,船舶が安全に 避泊・係留することができ,かつ荷役作業を支障なく行 える水域のことである。

港内を静穏に保つためには,i)港口幅に比して港内幅 を広くとること,および ii)港口からの進入波のエネル ギーを速やかに消散するように消波海浜を設けること, が重要であるといわれてきた¹⁾。i)と ii)は,古くから 港湾技術者の常識であり,港湾計画を策定するに当って は,港内水域を十分広くとった上で,港内に自然海浜を 残すとか,進入波が直接当る部分は棧橋構造にするなど の個々の港の実情に合った工夫がなされてきた。

近年における急速な経済の発展は,出入港隻数を増大 させ,バース待ちによる輸送経費の増大を招き,既存の 港においては, 接岸施設の絶対量が不足し, バースの増 設が余儀無くされた。これに対処するため、旧来の消波 海浜を温存しつつ, 港域のみの拡張でバースを増設する ことは、すでに周辺の海岸線に人口が集中している状況 では、非常に困難であった。そこで、既往の港の港域の 大幅な拡張は諦め,港内水域を高度に利用する方向に向 い,その結果として,港内における旧来の自然海浜は埋 立てられ,港内は直立岸壁で取り囲まれるか,突堤式ふ 頭を並べた細長い矩形水面の集りになってしまった。こ れに伴い、港口からの進入波のエネルギーを港内で容易 に消散することは困難となり、したがって岸壁の反射波 で港内波高が増大するという、従来では発生しなかった ような問題が起ってきた2),8)。そのため、防波堤の延長 や消波岸壁の建設など、港内波高を低減する方策が取ら れてきた。

一方,水域の高度利用として,単にバース数の増設だ けではなく,バースの有効利用という観点から港内水域 の静穏が見直されるようになった。これは,年間数回起 るような荒天時以外は常時荷役が可能なように港を改良 し,バースの利用効率を上げようとする思想である。こ のような考えから,水域の静穏の度合いを示す指標とし て,「港内静穏度」という言葉が広く用いられるようにな った。「港内静穏度」には,波浪および風や流れなどの 気象・海象条件ばかりでなく,荷役効率という経済的条 件も絡み,その判定は非常に困難であるため,現在通常 の港では,水域の静穏という面から,波高 50~70 cm 以下の日数が年間 95% 以上あることとして,基準化さ れている⁴⁾。また荷役という面から考えると,船舶の動 揺が重要な役割を演じるため,波高ばかりでなく,周期 に関しても考慮しなければならないが,これについては 不明な点が多く,今後の研究を待たざるを得ない。この ような問題はあるにしても,港内静穏度という考えの下 に港が見直され,建設・改良されてゆく方向にある。し かし,この方向で港を見直すためには,港内の波高を正 確に推定することが,従来に増して重要な問題となって きている。

港内波高を推定する方法としては,模型実験による方 法と数値計算による方法とがある。模型実験による方法 は、わが国では 1930 年代から広く用いられてきた方法 で、非常に有効な方法ではあるが、i)多くの経費がか かること、および ii)時間的余裕が必要であること、iii) あらゆるケースについて実施することが困難であるこ と、などの欠陥がある。

一方,数値計算については,1944 年に Penny および Price⁵⁾ が半無限板による光の回折に関する Sommerfeld の解が水の波の回折にも適用できることを示して以来, その結果が単純な配置の防波堤に適用され,反射波を無 視した場合の港内の波高分布の計算に利用されるように なった⁶⁾。しかし,この方法では,港内における岸壁や 護岸による反射波が計算できないため,波の運動方程式 をそのまま差分で解いて,港内の反射波も考慮する方法 が提案された⁷⁾。

数多くの海の波の観測結果から,それが方向スペクト ルを有する不規則波であることが明らかにされると同時 に,防波堤背後の波浪の現地観測によって,海の波を規 則波として取り扱ったのでは観測値がうまく説明できな く,海の波を方向スペクトルを有する不規則波として取 り扱う必要があることが示された⁸⁾。 このようにして, 模型実験にも数値計算においても不規則波が導入される ようになった。しかし, 模型実験では, 海の波のような 方向スペクトルを有する不規則波を発生する装置がない こともあって,わが国ではいまだ単一方向の不規則波に よる実験しか行われていない。方向スペクトルを有する 不規則波を用いた数値計算を行うためには, 不規則波を 数多くの成分波に分割して行わなければならないため, 前述の運動方程式を差分で解く方法では計算時間が非常 に長くかかり,実用的な面から考えると,適用が非常に 困難である。そのため, Sommerfeld の解析解を用いる のが有効であり,単純な防波堤配置については解析され ている⁹。しかし、この方法では港内の岸壁や護岸によ る反射波の計算ができないため,港内波高の算定にはそ のままの形では応用できない。そこで,不則則波の回折 図を用いて,反射波も考慮した計算法¹⁰⁾も提案されては いるが,その算定法では,岸壁への入射波より反射波が 大きくなる場合もあり,適用上いくつかの問題がある。

以上のように,不規則波を用いた港内波高の計算法 は,いまだ十分とはいえず,港湾の建設および改良の ためには,実用的に有用な港内波高の数値計算法の早急 な開発が望まれている。このような現状を考えて,著者 は実用的な港内波高計算法の開発ということを前提にし て,波の回折に関する基礎研究を実施してきた。本論文 は,これらの研究成果をまとめるとともに,新しい港内 波高の数値計算法を提案したものである。以下各章の研 究方法と内容を概述すれば,次の通りである。

まず, 2. においては, 防波堤開口部による波の回折 に関して理論的な解析を行い, 一直線上に配置された両 翼防波堤に対する厳密解と任意配置の防波堤に対する近 似解を導き, 近似解の精度およびその妥当性を検証する ために厳密解および数値波動解析法と比較を行う。そし て, 模型実験を行って, 厳密解および近似解の精度を検 討する。

3. においては,島堤による波の回折に関して厳密解 と近似解を理論的に導き,厳密解と比較することによっ て,近似解の適用範囲を示す。そして,模型実験によっ て理論解の妥当性を検討する。

4. においては,不規則波に対する回折計算法を示し, 2. および 3. で求めた近似解を用いて,不規則波に対す る回折計算を行って,不規則波による回折計算の必要性 および波浪の方向集中度の変化による波高比の変化特性 を明らかにする。さらに,不規則波に対する計算法の妥 当性を調べるために,模型実験結果と比較を行う。この 結果に基づいて,島堤による不規則波の反射計算法を応 用して,護岸や防波堤による反射波の算定法を提案す る。

5. においては,4. の成果に基づいて,港口からの進入波が岸壁などで反射されることを考慮した港内波高の

計算法を提案し,模型実験結果および現地観測値を用い て,その精度を検討する。港内静穏度の判定にこの港内 波高の計算法をどのように適用するか,その方法を仮想 の港を例にとって示す。

6. においては, 砕波が来襲するときの港内波高の算 定法を検討するために, 不規則波を用いた模型実験を行 い, 4. で示した計算法による結果と比較を行い, 砕波 の回折計算法について検討する。

最後に, 7. においては, 本論文で得られた主要な研 究成果を要約して結論とする。

参考文献

- Minikin, R. R.. Winds, Waves and Maritime Structures, Charles Griffin & Company Limited, 1950, pp. 135~145.
- 2) 尾崎 晃・猿川 弦: 港内波浪の問題について, 港の形と静穏度との関係について一第2報一,第 10回海岸工学講演会講演集,1963, pp. 42~46.
- 3) 尾崎 晃: 消波構造論, 1965 年度水工学に関する 夏期研修会講義集, B. 海岸・港湾コース, 水工学 シリーズ 65-17, 1965, 26 p.
- 運輸省港湾局監修: 港湾の施設の技術上の基準・ 同解説,日本港湾協会,1979, p. 6-12.
- Penny, W. G. and A. T. Price: Diffraction of Sea Waves by Breakwater, Dire. of Misc. Weapons Develop., Tech. His., No. 26—Artificial Harbours, Sec. 3D., 1944.
- 高井俊郎: 防波堤開口部に斜めに入射する波の回 折図,港湾技研資料, No. 66, 1969, 42 p.
- 7) 谷本勝利・小舟浩治・小松和彦: 数値波動解析法 による港内波高分布の計算,港湾技術研究所報告, 第 14 巻,第 3 号, 1975, pp. 35~58.
- 各田良実・永井康平・伊藤正彦: 名古屋港における波浪観測 第3報――現地波浪の回折現象ならびに統計的性質について――,港湾技研資料, No. 120, 1971, 24 p.
- 9) 永井康平: 不規則な海の波の屈折および回折の計
 算,港湾技術研究所報告,第11巻,第2号,1972, pp. 47~119.
- 佐藤昭二・合田良実: 海岸・港湾,土木学会編集, 彰国社刊, 1972, pp. 72~77.

2. 港口部における波の回折

2.1 概 説

防波堤開口部を通って侵入してきた波が防波堤背後で どのように変形してゆくかという水の波の回折の問題 は,港湾計画に携る技術者にとって非常に興味ある問題 である。しかし,その回折現象の解明は,港湾技術とは 関係のない,光や音波あるいは電磁波の回折現象の解析 を出発点としてしる。

半無限直線板による光の回折に関する Sommerfeld の 解析解が、半無限防波堤による水の波の回折にも適用で きることを最初に示したのは 1944 年における Penny お よび Price1) によってである。この Penny および Price の指摘に基づいて, Puttnam および Arthur²⁾ は Sommerfeld の解を計算し, また, 模型実験を行って比較検 討している。かれらは Sommerfeld の解析解を完全解と 呼び,この解の中に含まれる Fresnel 積分を近似的に表 わすことによって求めた解を簡略解と呼んで、これら両 解の適用性を,水深 1.5 ft,周期 0.7~0.76 sec の波 を用いた実験によって検討している。その結果による と,防波堤の幾何光学的な陰の部分では,簡略解は実験 値とよく一致するが,完全解は実験値より大きな値を示 す。この傾向は防波堤に近い, 完全解が成立すると思わ れる領域でもみられる。また,入射波直進領域では完全 解および簡略解ともに実験値より大きな値を示す。この ように実験値が完全解よりむしろ簡略解によく一致した のは,防波堤の厚さが有限なためであろうと述べてい 3.

この半無限堤による回折波の理論が直接に港湾の設計 に応用できるようにするために、Wiegel³⁾ や森平およ び奥山⁴)は各種の波向に対して回折図を提示している。

Blue および Johnson⁵⁾ は、半無限堤に対する Sommerfeld の解を、2 つの防波堤が一直線状に配置された いわゆる両翼防波堤による波の回折に応用している。両 翼防波堤の相互の干渉がなければ、半無限堤による回折 波の式を重ね合わせることによって求まると考えて、防 波堤に対して 90°の角度で波が入射する場合について解 を求め、実験によって理論の妥当性を検討している。こ れによると、実験で求めた回折係数は理論値より少し小 さく、また入射波の波形勾配にはほとんど関係しないこ とがわかった。さらに、実験で求めた波峯は開口部中心 線上では理論より先に進み、この傾向は波形勾配が大き いほど著しく、また小さな回折係数の領域では、波峯線 が不連続になることを指摘している。森平ら⁶⁾は Blue および Johnson の式を用いて,各種の開口幅に対する 回折図を示している。

Blue および Johnson が求めたのは波が防波堤に対し て直角に入射する場合であるが,斜めに波が入射する場 合については、 Johnson⁷⁾ が波の入射方向から見通した 防波堤の開口部の幅を仮想開口幅とみなして、その仮想 幅の開口部に波が直角入射する場合の回折図を用いれ ば,近似的に斜め入射波に対する回折図が得られること を指摘している。一方,高井*)は防波堤先端間での波の 位相のずれを考慮した上で、半無限防波堤による回折波 の解を重ね合わせて計算する方法を示し, 実用上有用な 各種の回折図を提示している。また, Lacombe⁹⁾は, Huyghens の原理を応用して, 斜め入射波の場合につい て解折し、実用的な解を得ている。しかし、これらの解 法は防波堤における境界条件を完全には満足しておら ず,特に,開口部の幅が波長に比して小さくなると,防 波堤相互の干渉が強くなり,半無限防波堤による回折波 の解の重ね合わせが実用的にも成立しなくなると考えら れる。

Carr および Stelzriede¹⁰) は、スリットを通る音波お よび電磁波の回折に関して Morse および Rubinstein¹¹) が提案した Mathieu 関数を用いた解析解を両翼防波堤 による水の波の回折に適用し、また実験を行って、この 解の適用性を明らかにしている。 Carrおよび Stelzriede は Mathieu 関数の計算において数表を用いているため、 その数値計算は非常に困難であったと推察されるが、こ の解は防波堤面での境界条件を完全に満足している厳密 解であるため、半無限堤に対する Sommerfeld の解の重 ね合わせで求める解法の適用範囲を算定するには非常に 有効なものである。

通常の港の防波堤配置を調べてみると,前述したよう な,二本の防波堤が一直線状に並んでいる両翼防波堤の 場合は非常にまれなケースで,その配置は千差万別であ る。このような防波堤配置に対しては,一般に解析解が 得られないため,各種の手法が応用されている。

Barailler および Gailland¹²) は Green 関数を用いて解 析する方法を提示し,模型実験との比較を行って,その 妥当性を示している。山本他¹³⁾もこの方法によって数値 計算を行っている。この方法によると,水深変化による 波の屈折や浅水変形も計算されるので,非常に有効な方 法ではあるが,積分方程式を解かなければならないた め,広領域の計算を行うためには,多くの記憶容量と計 算時間を要するという欠点を有している。

波の運動方程式を差分法で解いて,港内の波高を推定

する方法が伊藤および谷本¹⁴⁾や Abbott ら¹⁵⁾によって行 われている。伊藤らは運動方程式中の非線型項を無視 し,線型項のみを考慮して数値計算を行っているが,一 方 Abbott らは非線型項までも考慮して計算している。 しかし,これらの解析も計算に当って多くの記憶容量と 計算時間を必要とする。

このように任意の防波堤配置に対して波の回折計算が できる方法が提示されてはいるが,防波堤の配置計画を 実際に行うに当っては,数多くの防波堤配置に関して数 値計算しなければならないし,またこれらの結果を海の 波のような不規則な波に対しても適用しようとすると, 計算時間とそれに伴う経費面で問題が生じる場合が少な くない。そのため,厳密な意味では精度は若干劣るが, 実用的には十分な精度を有していて,不規則波に対して も十分適用可能な解析法が要望される。

本章では,一直線上に防波堤が配置されている両翼防 波堤に関する回折波の厳密解を求めて波の回折計算を行 い,さらに任意防波堤配置に対して回折波が計算できる 近似解を提示する。また,これらを厳密解や数値波動解 析法と比較するとともに,実験によって理論の妥当性を 検証する。

2.2 防波堤開口部における波の回折の厳密解

(1) 仮定と楕円座標への変換

理論を展開するに当って,流体および流体運動,境界 条件に関して次のような仮定を設ける。

- a) 流体は非圧縮性である。
- b) 流体運動は非回転運動である。
- c) 相対波高および水面勾配は十分小さい。
- d) 水深は一様で,水底での水の流出入はない。
- e)構造物表面での水の流出入はない。

仮定 b) によって、任意方向の水粒子速度成分がその 方向の偏微分で表わせる1つの関数が存在することにな る。この関数は速度ポテンシャルと呼ばれ、これを ϕ で 表わすと、x、y および z 方向の水粒子速度成分 u、vおよび w はそれぞれ次式で与えられる。

$$u = \frac{\partial \Phi}{\partial x}$$
, $v = \frac{\partial \Phi}{\partial y}$, $w = \frac{\partial \Phi}{\partial z}$ (2.1)

ここで、x および y は静水面上で、またzは鉛直上方 を正とする直交座標である。

仮定 a) によって得られる連続方程式

$$\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} + \frac{\partial w}{\partial z} = 0$$
(2.2)

に式 (2.1) を代入すると,速度ポテンシャル ϕ は次式 の Laplace の方程式を満足しなければならない。

$$\frac{\partial^2 \phi}{\partial x^2} + \frac{\partial^2 \phi}{\partial y^2} + \frac{\partial^2 \phi}{\partial z^2} = 0$$
 (2.3)

水面変動量を $\eta(x, y, t)$ とすると,水面におけるいわ ゆる運動学的条件は次式のようになる。

$$\frac{\partial \eta}{\partial t} = w_{z=\eta} - u_{z=\eta} \frac{\partial \eta}{\partial x} - v_{z=\eta} \frac{\partial \eta}{\partial y}$$
(2.4)

仮定 c) によって $u_{z=\eta}$, $v_{z=\eta}$, $\frac{\partial \eta}{\partial x}$ および $\frac{\partial \eta}{\partial y}$ は 1 次の微 小項となり, これらの積は 2 次の微小項となって,式 (2.4) の右辺第 2 項および第 3 項が無視できることにな り,式 (2.4) は次式のように簡略化される。

$$\frac{\partial \eta}{\partial t} = w_{z=0}$$
$$= \frac{\partial \Phi}{\partial z} \Big|_{z=0}$$
(2.5)

ここに, t は時間である。ただし,式(2.5) で z=0 と したのは η が十分小さいとする仮定 c) による。

一方, 運動方程式から求まる Bernoulli の式

$$\frac{\partial \Phi}{\partial t} + \frac{1}{2} \left\{ \left(\frac{\partial \Phi}{\partial x} \right)^2 + \left(\frac{\partial \Phi}{\partial y} \right)^2 + \left(\frac{\partial \Phi}{\partial z} \right)^2 \right\} + gz + \frac{p}{\rho} = 0$$
(2.6)

は水面上においても成立しなければならない。とこに, g は重力の加速度, p は圧力, ρ は水の密度である。水 面上では圧力 p は大気圧に等しくなるが, 圧力として 大気圧からの変動分を考えると, 水面上で p=0とおく ことができる。また, 式 (2.4) に関して述べたように仮 定 c) によれば式 (2.6) の左辺第2項は2次の微小項と なり, 微少量として無視できるので, 水面上でのいわゆ る力学的条件は式 (2.6) から次式のようになる。

$$\eta = -\frac{1}{g} \left. \frac{\partial \Phi}{\partial t} \right|_{z=0} \tag{2.7}$$

水底における条件は, 仮定 d) から

$$w_{z=-\hbar} = \frac{\partial \Phi}{\partial z} \Big|_{z=-\hbar} = 0 \tag{2.8}$$

となる。ここに, h は水深である。

仮定 e) によって,防波堤壁面での境界条件は,境界 面における法線方向の軸を n とすると,

$$\frac{\partial \Phi}{\partial \boldsymbol{n}} = 0 \tag{2.9}$$

で表わされる。

$$\frac{\partial \varphi}{\partial z}\Big|_{z=0} + \frac{1}{g} \frac{\partial^2 \varphi}{\partial t^2}\Big|_{z=0} = 0$$
(2.10)

となる。

未知関数である速度ポテンシャル Φ は,式 (2.8)~ (2.10)の条件のもとで,式 (2.3)の Laplace の方程式 を解けば求まるが, Ø の初期条件が与えられていないの で,完全には解くことはできない。しかしながら,波の 回折の問題では,定常状態の波高が対象となるため,速度 ポテンシャルの振幅が定常であるものを考えればよい。 そこで,条件式がすべて線型であることを考慮して,水 底における条件式 (2.8)を満足する速度ポテンシャルと して,次式のような複素関数表示を考える。

			0	
$\Phi =$	$\phi_0\phi(x,y)\cosh k(h+$	$\cdot z)e^{i\sigma t}$		(2.11)
ここに, <i>o</i>	・は波の角周波数で,	波の周期を	Τ	とすると,
$\sigma =$	$2\pi/T$			(2.12)
		-		

であり、k は波数で、波長を L とし、 $k=2\pi/L$ (2.13)

となる。また、�o を求めるためには、 波高に関する条 件を与える必要がある。

式 (2.11) を式 (2.10) に代入して, 波の分散関係式 として次式が求まる。

$\sigma^2 = qk \tanh kh$	(2.14)
	(/

式 (2.11) を式 (2.3) に代入すると, いわゆる Helmholz の方程式が求まる。

$$\frac{\partial^2 \phi}{\partial x^2} + \frac{\partial^2 \phi}{\partial y^2} + k^2 \phi = 0 \tag{2.15}$$

図-2.1 で示すような両翼防波堤に入射波が防波堤に 対して α の角度から進入する場合を考えると,図-2.2

図-2.1 開口防波堤と入射波の進入角度

図-2.2 楕円座標

のような楕円座標に変換することが,防波堤面上の境界 条件式 (2.9) を表現するのに都合がよい。この座標変換 は,次式で与えられる。

$$\begin{array}{c} x = \frac{B}{2} \cosh \xi \cos \theta \\ y = \frac{B}{2} \sinh \xi \sin \theta \end{array}$$
 (2.16)

ここに、Bは防波堤開口部の幅を示し、(ξ , θ)は 図-2.2 で示される座標である。図-2.2 で点(x, y)を通る楕円 の長軸は $B \cosh \xi$, 短軸は $B \sinh \xi$ で与えられるから、 Bは楕円の焦点距離でもある。楕円を表わす式

$$\sqrt{\left(x - \frac{B}{2}\right)^2 + y^2} + \sqrt{\left(x + \frac{B}{2}\right)^2 + y^2} = b$$
 (2.17)

に式 (2.16) を代入し整理すると,次式が得られる。 cosh *ξ=b/B* (2.18)

ここに、b は定数であるから、 ξ =const. の点の軌跡は 楕円を表わす。

式 (2.16) を式 (2.15) に代入すれば, 次式が得られ る。

$$\frac{\partial^2 \phi}{\partial \xi^2} + \frac{\partial^2 \phi}{\partial \theta^2} + 2k_1^2 (\cosh 2\xi - \cos 2\theta)\phi = 0 \quad (2.19)$$

ここに,

$$k_1 = Bk/4 = \pi B/2L$$
 (2.20)

関数 ϕ が ξ のみの関数 $H(\xi) \ge \theta$ のみの関数 $Q(\theta)$ に分離されるとして,

$$\phi = H(\xi)Q(\theta) \tag{2.21}$$

で表わすと、式 (2.19) は次式のように変形される。 d^2H

$$\frac{Hd\xi^2}{Hd\xi^2} + 2k_1^2 \cosh 2\xi$$
$$= -\frac{d^2Q}{Qd\theta^2} + 2k_1^2 \cos 2\theta$$
$$= a$$

ここに, a は ξ , θ に 無関係な 定数となり, いわゆる 固有値と 呼ばれている。 この 固有値を 媒介として, 式 (2.22) は次のような 2 つの 微分方程式に分けられる。

$$\frac{d^2Q}{d\theta^2} + (a - 2k_1^2 \cos 2\theta) = 0 \qquad (2.23)$$
$$\frac{d^2H}{d\xi^2} - (a - 2k_1^2 \cosh 2\xi) = 0 \qquad (2.24)$$

(2.22)

すなわち式 (2.23) は Mathieu 方程式で,また式 (2.24) は変形 Mathieu 方程式である。

(2) Mathieu 方程式の解とその特性^{16),17)}

両翼防波堤による波の反射および回折の理論解を誘導 する前に,式(2.23)の Mathieu 方程式と式(2.24)の 変形 Mathieu 方程式の解とその特性について概述する。

式 (2.23) の $\theta \gtrsim \theta = \theta^* + n\pi$ とおいて変換しても, *n* が整数である限り,式 (2.23) は $\theta = \theta^*$ で変換したの と同じ形になる。このことは,式 (2.23) の関数 *Q* が π および 2π を周期とする周期関数になることを示して いる。そこで, π および 2π を周期とする奇関数をそれ ぞれ se_{2n+2}(θ ; k_1^2), se_{2n+1}(θ ; k_1^2) で表わし,偶関数を ce_{2n}(θ ; k_1^2), ce_{2n+1}(θ ; k_1^2) で表わすと,これらの関数 は正余弦の Fourier 級数によって,次式のように展開す ることができる。

$$\begin{array}{c} \operatorname{ce}_{2n}(\theta; k_{1}^{2}) = \sum_{r=0}^{\infty} A_{2r}^{(2n)} \cos 2r\theta \\ \operatorname{ce}_{2n+1}(\theta; k_{1}^{2}) = \sum_{r=0}^{\infty} A_{2r+1}^{(2n+1)} \cos (2r+1)\theta \\ \operatorname{se}_{2n+1}(\theta; k_{1}^{2}) = \sum_{r=0}^{\infty} B_{2r+1}^{(2n+1)} \sin (2r+1)\theta \\ \operatorname{se}_{2n+2}(\theta; k_{1}^{2}) = \sum_{r=0}^{\infty} B_{2r+2}^{(2n+1)} \sin (2r+2)\theta \end{array} \right\}$$
(2.25)

$$\lim_{\substack{k_{1} \to 0}} \operatorname{ce}_{n}(\theta; k_{1}^{2}) = \cos n\theta \quad (n = 0, 1, 2, \cdots)$$
$$\lim_{\substack{k_{1} \to 0}} \operatorname{se}_{n}(\theta; k_{1}^{2}) = \sin n\theta \quad (n = 0, 1, 2, \cdots)$$
$$(2.26)$$

となる。ここで,固有値 a は $k_1 \rightarrow 0$ では $a=n^2$ とな る。これより, $k_1 \rightarrow 0$ では式 (2.25)の係数 $A_r^{(n)}(k_1^2)$ および $B_r^{(n)}(k_1^2)$ は

$$\lim_{k_1 \to 0} A_r^{(n)}(k_1^2) = \lim_{k_1 \to 0} B_r^{(n)}(k_1^2) = \delta_{nr}$$
(2.27)

を満足しなければならないことになる。ここに、 δ_{nr} は クロネッカーのデルタで、n=rのとき $\delta_{nr}=1$ 、 $n \neq r$ の とき $\delta_{nr}=0$ となる。

式 (2.23)の解で, k_1^2 が一定の数値で, 固有値 aの みが異なる周期解を Q_1 , Q_2 とすると,

$$Q_{1}'' + (a_{1} - 2k_{1}^{2}\cos 2\theta)Q_{1} = 0$$

$$Q_{2}'' + (a_{2} - 2k_{1}^{2}\cos 2\theta)Q_{2} = 0$$

$$(2.28)$$

$$(2.29)$$

となり、式 (2.28) と (2.29) から次式が得られる。

$$Q_1''Q_2 - Q_1Q_2'' = (a_1 - a_2)Q_1Q_2 \tag{2.30}$$

ここに、 a_1 および a_2 はそれぞれ Q_1 および Q_2 に対応する固有値である。式(2.30)の両辺を0から 2π まで、積分すると、式(2.25)によって

$$(a_1 - a_2) \int_0^{2\pi} Q_1 Q_2 d\theta = 0 \tag{2.31}$$

となるが, 仮定によって $a_1 \neq a_2$ であるから,

$$\int_{0}^{2\pi} Q_1 Q_2 d\theta = 0 \tag{2.32}$$

となり, Q_1 と Q_2 はいわゆる直交関数となる。したが って式 (2.23)の解は直交関数になることがわかる。一

$$\int_{a}^{2\pi} Q_1 Q_2 d\theta = \pi \tag{2.33}$$

を満足するように正規化すると,式(2.25)の各関数の 係数は,次式を満足することになる。

$$2[A_{0}^{(2n)}]^{2} + \sum_{r=1}^{\infty} [A_{2r}^{(2n)}]^{2} = 1$$

$$\sum_{r=0}^{\infty} [A_{2r+1}^{(2n+1)}]^{2} = \sum_{r=0}^{\infty} [B_{2r+1}^{(2n+1)}]^{2} = \sum_{r=0}^{\infty} [B_{2r+2}^{(2n+2)}]^{2} = 1$$

(2.34)

式 (2.25) の第1式を式 (2.23) に代入すると, A²²ⁿ に関する次のような漸化式が求まる。

$$\left.\begin{array}{c} aA_{0}^{(2n)}-k_{1}^{2}A_{2}^{(2r)}=0\\ (a-4)A_{2}^{(2n)}-k_{1}^{2}\{A_{4}^{(2n)}+2A_{0}^{(2n)}\}=0\\ (a-4r^{2})A_{2r}^{(2n)}-k_{1}^{2}\{A_{2r+2}^{(2n)}+A_{2r-2}^{(2n)}\}=0 \quad (r\geq 2) \end{array}\right\}$$

$$(2.35)$$

固有値が与えられれば,式(2.34)の正規化の式と式 (2.35)の漸化式によって, $A_{37}^{(2n)}$ が求まる。式(3.35)と同 じような漸化式が式(2.25)の他の関数についても求まる ので,式(2.34)を考慮すれば,式(2.25)の各係数の値 が決定できる。著者ら¹⁸⁾は固有値 aの算定法について, その詳細を検討している。なお, $k_1=\pi$ における式(2.25) の各関数を図示すると,図-2.3 (a)~(d)のようになる。

式 (2.23) の Mathieu 方程式は, 同一の固有値に対 して,式 (2.25) の周期解の他にもう一つの独立解を持 つ。しかし,その独立解は本論では重要でないので,そ の特性については非周期解であることだけを述べて,そ れ以上は言述しない。

次に,式 (2.24)の解について考える。式 (2.24)は 式 (2.23)の $\theta \ge Q$ をそれぞれ $\xi/i \ge H$ に変換する ことによって求めることができるから,式 (2.23)の解 で,式 (2.25)に対応する解が次式のように与えられる。 ただし,この単なる変換では式 (2.25)の第 3,4 式が 虚数になるので, $i=\sqrt{-1}$ を乗じて,実数化してある。

$$Ce_{2n}(\xi; k_1^2) = \sum_{r=0}^{\infty} A_{2r}^{(2n)} \cosh 2r\xi$$

$$Ce_{2n+1}(\xi; k_1^2) = \sum_{r=0}^{\infty} A_{2r+1}^{(2n+1)} \cosh (2r+1)\xi$$

$$Se_{2n+1}(\xi; k_1^2) = \sum_{r=0}^{\infty} B_{2r+1}^{(2n+1)} \sinh (2r+1)\xi$$

$$Se_{2n+2}(\xi; k_1^2) = \sum_{r=0}^{\infty} B_{2r+2}^{(2n+2)} \sinh (2r+2)\xi$$

(2.36)

式 (2.36)の形で式 (2.24)の解を表わすと,他の独 立解は非常に複雑な形になるので,Bessel 関数の級数形

図-2.3 Mathieu 関数の図示

で表わすことを考える。 $q=2k_1\cosh\xi$ とおいて、式 (2.24)を変換すると、次式となる。

$$(q^2 - 4k_1^2) \frac{d^2H}{d\xi^2} + q \frac{dH}{d\xi} + (q^2 - f^2)H = 0 \quad (2.37)$$

ここに, $f = a + 2k_1$ である。式 (2.37) は Bessel の方 程式と類似の形をしているので,式 (2.37) の解を k_1 のみの関数である係数 d_{2r} を用いて,

$$H = \sum_{r=0}^{\infty} (-1)^r d_{2r} J_{2r}(q)$$
 (2.38)

で表わすと,式(2.37)は,

 $\sum_{r=1}^{\infty}$

$$\sum_{r=0}^{\infty} (-1)^r d_{2r} [(q^2 - 4k_1^2) J_{2r}'(q) + q J_{2r}'$$

+
$$(q^2 - f^2)J_{2r}(q)$$
]=0 (2.39)
となる。Bessel 関数 $J_{2r}(q)$ は,

$$q^2 J_{2r}'(q) + q J_{2r}'(q) + (q^2 - 4r^2) J_{2r}(q) = 0$$
 (2.40)
の解であり、また次の漸化式を満足する。

$$4J_{2r}^{\prime\prime}(q) = J_{2r-2}(q) - 2J_{2r}(q) + J_{2r+2}(q)$$
(2.41)

式 (2.40) および (2.41) の関係式を用いると, d2r に 関して, 次のような漸化式が求まる。

$$\left.\begin{array}{c} ad_{0}-k_{1}^{2}d_{2}=0\\ (a-4)d_{2}-k_{1}^{2}(d_{4}+2d_{0})=0\\ (a-4r^{2})d_{2r}-k_{1}^{2}(d_{2r+2}+d_{2r-2})=0 \\ \end{array}\right\}$$

$$(r\geq 2)$$

$$(2.42)$$

式 (2.42) は $A_{2r}^{(2n)}$ に関する式 (2.35) の漸化式と同 じ形を示しているので,

$$d_{2r} = \kappa A_{2r}^{(2n)} \tag{2.43}$$

とおくことができ、式 (2.25)の第1式に対応する解は、

$$\operatorname{Ce}_{2n}(\xi; k_1^2) = \kappa \sum_{r=0}^{\infty} (-1)^r A_{2r}^{(2n)} J_{2r}(2k_1 \cosh \xi)$$

の形で与えられる。ここに、定数 κ は $\xi=(1/2)\pi i$ とお くことによって、

$$\kappa = \operatorname{ce}_{2n}\left(\frac{1}{2}\pi; k_1^2\right) / A_0^{(2n)}$$
 (2.45)

-11 -

となる。これから、
$$\operatorname{Ce}_{2n}(\xi; k_1^2)$$
は、
 $\operatorname{Ce}_{2n}(\xi; k_1^2)$

$$= \frac{\operatorname{ce}_{2n}\left(\frac{1}{2}\pi; k_1^2\right)}{A_0^{(2n)}} \sum_{r=0}^{\infty} (-1)^r A_{2r}^{(2n)} J_{2r}(2k_1 \cosh \xi)$$
(2.46)

で与えられる。

 $Ce_{2n}(\xi; k_1^2)$ に対応するもう一つの独立解 $Fey_{2n}(\xi; k_1^2)$ は,式 (2.38) 中の $J_{2r}(q)$ の代りに第2種の Bessel 関数 $Y_{2r}(q)$ を用い, $Ce_{2n}(\xi; k_1^2)$ を求めたのと同じよう な操作を行うことによって,次式のように求まる。

 $\operatorname{Fey}_{2n}(\xi; k_{1}^{2})$

$$=\frac{\operatorname{ce}_{2n}\left(\frac{1}{2}\pi\,;\,k_{1}^{2}\right)}{A_{0}^{(2n)}}\sum_{r=0}^{\infty}\left(-1\right)rA_{2r}^{(2n)}\,Y_{2r}(2k_{1}\cosh\,\xi)$$
(2.47)

同様にして,式(2.24)の他の解も求めることができ て,次式のようになる。

$$\left. \begin{array}{l} \operatorname{Ce}_{2n+1}(\xi;\,k_{1}^{2}) \\ = - \frac{\operatorname{ce}_{2n+1}^{\prime} \left(\frac{1}{2}\pi;\,k_{1}^{2}\right)}{k_{1}A_{1}^{(2n+1)}} \\ \times \sum\limits_{r=0}^{\infty} (-1)^{r}A_{2r+1}^{(2n+1)}J_{2r+1}\left(2k_{1}\cosh\xi\right) \\ \operatorname{Fey}_{2n+1}(\xi;\,k_{1}^{2}) \\ = - \frac{\operatorname{ce}_{2n+1}^{\prime} \left(\frac{1}{2}\pi;\,k_{1}^{2}\right)}{k_{1}A_{1}^{(2n+1)}} \end{array} \right\}$$

$$\times \sum_{r=0}^{\infty} (-1)^r A_{2r+1}^{(2n+1)} Y_{2r+1}(2k_1 \cosh \xi) \bigg)$$

$$Se_{2n+1}(\xi; k_1^2) = \frac{se'_{2n+1}(0; k_1^2)}{k_1 B_1^{(2n+1)}} \times \sum_{r=0}^{\infty} B_{2r+1}^{(2n+1)} J_{2r+1}(2k_1 \sinh \xi)$$

$$Gey_{2n+1}(\xi; k_1^2)$$

$$=\frac{\mathrm{se}_{2n+2}^{\prime}(0;\,k_{1}^{2})}{k_{1}^{2}B_{2}^{(2n+2)}}\coth\xi$$

$$\times\sum_{r=0}^{\infty}(2r+2)B_{2r+2}^{(2n+2)}J_{2r+2}(2k_{1}\sinh\xi)$$

$$Gey_{2n+2}(\xi; k_1^2) = \frac{se'_{2n+2}(0; k_1^2)}{k_1^2 B_2^{(2n+2)}} \coth \xi \times \sum_{r=0}^{\infty} (2r+2) B_{2r+2}^{(2n+2)} Y_{2r+2}(2k_1 \sinh \xi)$$

$$(2.50)$$

第1種と第2種の Bessel 関数から第1種および第2 種の Hankel 関数が得られるように,式(2.46)と (2.47)を用いて,次式のように新しく独立な解

$$Me_{2n}^{(1)}(\xi; k_1^2) = Ce_{2n}(\xi; k_1^2) + i Fey_{2n}(\xi; k_1^2) Me_{2n}^{(2)}(\xi; k_1^2) = Ce_{2n}(\xi; k_1^2) - i Fey_{2n}(\xi; k_1^2)$$

$$(2.51)$$

を定義すると,第1種および第2種の Hankel 関数に対応した $\operatorname{Me}_{2n}^{(1)}(\xi; k_1^2)$ および $\operatorname{Me}_{2n}^{(2)}(\xi; k_1^2)$ が次式のように求まる。

$$\begin{split} \mathsf{Me}_{2n}^{(1),\,(2)}(\xi\,;\,k_{1}^{2}) \\ &= \frac{\mathsf{ce}_{2n}\left(\frac{1}{2}\pi\,;\,k_{1}^{2}\right)}{A_{0}^{(2n)}} \\ &\times \sum_{r=0}^{\infty} (-1)^{r} A_{2r}^{(2n)} H_{2r}^{(1),\,(2)}(2k_{1}\cosh\xi) \ (2.52) \end{split}$$

ここに, $H_{2r}^{(2)}(2k_1 \cosh \xi) \geq H_{2r}^{(2)}(2k_1 \cosh \xi)$ はそれぞれ 第1種および第2種の Hankel 関数であり, $Me_{2n}^{(1)}(\xi; k_1^2)$ と $Me_{2n}^{(2)}(\xi; k_1^2)$ はそれぞれ第1種および第2種の Hankel 関数に対応する式 (2.24)の解である。

同様にして,式(2.48)~(2.50)の解に対しても,第 1種および第2種のHankel 関数に対応する式が求まり, 次式のようになる。

$$\begin{split} \mathsf{Me}_{2n+1}^{(1)+1^{(2)}}(\xi;k_{1}^{2}) \\ &= -\frac{\mathsf{ce}_{2n+1}^{\prime}\left(\frac{1}{2}\pi;k_{1}^{2}\right)}{k_{1}A_{1}^{(2n+1)}} \\ &\times \sum_{r=0}^{\infty} (-1)^{r}A_{2r+1}^{(2n+1)}H_{2r+1}^{(1),(2)}(2k_{1}\cosh\xi) \\ \mathsf{Ne}_{2n+1}^{(1),(2)}(\xi;k_{1}^{2}) \\ &= \frac{\mathsf{se}_{2n+1}^{\prime}(0;k_{1}^{2})}{k_{1}B_{1}^{(2n+1)}} \\ &\times \sum_{r=0}^{\infty} B_{2r+1}^{(2n+1)}H_{2r+1}^{(1),(2)}(2k_{1}\sinh\xi) \\ \mathsf{Ne}_{2n+2}^{(1),(2)}(\xi;k_{1}^{2}) \\ &= \frac{\mathsf{se}_{2n+2}^{\prime}(0;k_{1}^{2})}{k_{1}B_{2r+2}^{(2n+2)}} \coth\xi \\ &\times \sum_{r=0}^{\infty} (2r+2)B_{2r+2}^{(2n+2)}H_{2r+2}^{(1),(2)}(2k_{1}\sinh\xi) \end{split}$$

$$(2.53)$$

(3) Mathieu 関数と変形 Mathieu 関数による入射波の表示

図-2.1 で示したように, x 軸と α の角度をなす方向 から波が進入してくる場合,入射波の表面波形 η_i は

$$\eta_i = \frac{H_i}{2} \exp\left\{i[k(x\cos\alpha + y\sin\alpha) + \sigma t]\right\} \quad (2.54)$$

$$\Phi_i = \phi_0 \phi_i(x, y) \cosh k(h+z) e^{i\sigma t} \qquad (2.55)$$

で表わすと,式(2.7)によって

$$\phi_0 = \frac{igH_i}{2\sigma\cosh kh} \tag{2.56}$$

 $\phi_i(x, y) = \exp \{ik(x \cos \theta + y \sin \theta)\}$ (2.57) となる。ここに、 H_i は入射波の波高である。

 $\phi_i(x, y)$ は式 (2.15)の Helmholtz の方程式を満足 しているので,式 (2.16)の楕円座標で式 (2.57)を変 換した式

 $\phi_i(\xi, \theta) = \exp \left\{ 2ik_1(\cosh \xi \cos \theta \cos \alpha + \sinh \xi \sin \theta \sin \alpha) \right\}$ (2.58)

は,式(2.23)と(2.24)で表わされる Mathieu 方程 式と変形 Mathieu 方程式の解で表示することができ る。しかし,式(2.58)は θ に関して 2π の周期関数で あるから, θ に関しては式(2.23)の解のうち周期関数 のみを用いることになる。そこで、 $\phi_i(\xi, \theta)$ が次式のよ うに展開されると仮定する。

$$\phi_{i}(\xi,\theta) = \sum_{n=0}^{\infty} \{M_{2n}(\xi,\alpha) \operatorname{ce}_{2n}(\theta; k_{1}^{2}) + M_{2n+1}(\xi,\alpha) \operatorname{ce}_{2n+1}(\theta; k_{1}^{2}) + N_{2n+1}(\xi,\alpha) \operatorname{se}_{2n+1}(\theta; k_{1}^{2}) + N_{2n+2}(\xi,\alpha) \operatorname{se}_{2n+2}(\theta; k_{1}^{2})$$
(2.59)

ここに, $M_{2n}(\xi, \alpha)$, $M_{2n+1}(\xi, \alpha)$, $N_{2n+1}(\xi, \alpha)$ および $N_{2n+2}(\xi, \alpha)$ は未知関数である。

これらの未知関数を求めるために,次のような積分定 理を応用する¹⁹⁾。

K(θ,θ') が偏微分方程式

$$rac{\partial^2 K(heta, heta')}{\partial heta^2} - rac{\partial^2 K(heta, heta')}{\partial heta'^2}$$

 $-2k_1^2(\cos 2\theta - \cos 2\theta')K(\theta, \theta') = 0 \qquad (2.60)$

を満足する関数であり、 $w(\theta)$ が式 (2.23)の解で、 θ に 関して恒等的に、

$$\left[w(\theta')\frac{\partial}{\partial\theta'}K(\theta,\theta') - K(\theta,\theta')\frac{\partial w(\theta')}{\partial\theta'}\right]_{\theta'=0}^{\theta'=2\pi} = 0$$
(2.61)

を満足するならば,

$$f(\theta) = \int_{0}^{2\pi} K(\theta, \theta') w(\theta') d\theta' \qquad (2.62)$$

は, w(0) と同様に同一の k₁² に対する式 (2.23) の解 である。

ξ=−iξ* を式 (2.58) に代入すると,

 $\phi_i(-i\xi^*,\theta) = \exp\left[2ik_1\cos\xi^*\cos\theta\cos\alpha\right]$

$$+2k_1\sin\xi^*\sin\theta\sin\alpha] \qquad (2.63)$$

となる。式 (2.63) は式 (2.60) を満足するから, $K(\xi^*, \theta)$ = $\phi_i(-i\xi^*, \theta)$ とおくことができる。したがって,式 (2.59) から次式が得られる。

$$\begin{split} K(\xi^*, \theta) &= \sum_{n=0}^{\infty} \left[M_{2n}(-i\xi^*, \alpha) \operatorname{ce}_{2n}(\theta; k_1^2) \right. \\ &+ M_{2n+1}(-i\xi^*, \alpha) \operatorname{ce}_{2n+1}(\theta; k_1^2) \\ &+ N_{2n+1}(-i\xi^*, \alpha) \operatorname{se}_{2n+1}(\theta; k_1^2) \\ &+ N_{2n+2}(-i\xi^*, \alpha) \operatorname{se}_{2n+2}(\theta; k_1^2) \end{split}$$

$$(2.64)$$

この両辺に $ce_{2n}(\theta; k_1^2)$ を乗じて, θ に関して $0 \sim 2\pi$ の区間で積分すると, Mathieu 関数の直交性によって,

$$\int_{0}^{2\pi} K(\xi^*, \theta) \operatorname{ce}_{2n}(\theta; k_1^2) d\theta$$
$$= \pi M_{2n}(-i\xi^*, \alpha)$$
(2.65)

となる。 $ce_{2n}(\theta)$ は式 (2.23) の解であり,式 (2.63) で表わされる $\phi_i(-i\xi^*,\theta)$ は $K(\xi^*,\theta)$ に等しいから, $K(\xi^*,\theta)$ と $ce_{2n}(\theta; k_1^2)$ は式 (2.61) を満足する。これ によって,上記の積分定理を応用すると, $M_{2n}(-i\xi^*,\alpha)$ は式 (2.23) を満足する解となる。 $K(\xi^*,\theta)$ は ξ^* に関 して周期関数であり,また $ce_{2n}(\theta; k_1^2)$ と同じ固有値を もつために,

 $M_{2n}(-i\xi^*, \alpha) = A \operatorname{ce}_{2n}(\xi^*; k_1^2)$ (2.66)

となる。式 (2.63) でわかるように, ξ^* と α は全く同 じ形をしているので, $A = \nu_{2n} \operatorname{ce}_{2n}(\alpha; k_1^2)/\pi$ とおくこと ができ,式 (2.65) と (2.66) から,

 $\nu_{2n} \operatorname{ce}_{2n}(\alpha; k_1^2) \operatorname{ce}_{2n}(\xi^*; k_1^2)$

$$= \int_{0}^{2\pi} K(\xi^*, \theta) \operatorname{ce}_{2n}(\theta; k_1^2) d\theta \qquad (2.67)$$

となる。 $K(\xi^*, \theta)$ として式 (2.63) を用い, $\alpha = 0$ および $\xi^* = \pi/2$ とすると,

$$\nu_{2n} = 2\pi A_0^{(2n)} / \operatorname{ce}_{2n}(0; k_1^2) \operatorname{ce}_{2n}\left(\frac{\pi}{2}; k_1^2\right)$$
 (2.68)

となり、したがって、式 (2.65) から

$$M_{2n}(-i\xi^*, \alpha) = \frac{2}{p_{2n}} \operatorname{ce}_{2n}(\xi^*; k_1^2) \operatorname{ce}_{2n}(\alpha; k_1^2)$$

で $M_{2n}(-i\xi^*, \alpha)$ が表わされる。ここに、

$$p_{2n} = \frac{\operatorname{ce}_{2n}(0; k_1^2) \operatorname{ce}_{2n} \left(\frac{\pi}{2}; k_1^2\right)}{A_0^{(2n)}}$$
(2.70)
である。 $\xi^* = i\xi$ として、 ξ^* を ξ に変換すると、
 $M_{2n}(\xi, \theta) = \frac{2}{p_{2n}} \operatorname{Ce}_{2n}(\xi; k_1^2) \operatorname{ce}_{2n}(\alpha; k_1^2)$

(2.71)

となる。

 $M_{2n+1}(\xi, \alpha), N_{2n+1}(\xi, \alpha)$ および $N_{2n+2}(\xi, \alpha)$ について も同様にして求めることができ、その結果、 $\phi_i(\xi, \theta)$ は Mathieu 関数および変形 Mathieu 関数によって展開さ れて,次式のように表示することができる。

$$\begin{split} \phi_{i}(\xi,\theta) &= \sum_{n=0}^{\infty} \left[\frac{2}{p_{2n}} \operatorname{Ce}_{2n}(\xi; k_{1}^{2}) \\ &\times \operatorname{ce}_{2n}(\theta; k_{1}^{2}) \operatorname{ce}_{2n}(\alpha; k_{1}^{2}) \\ &+ \frac{2}{s_{2n+2}} \operatorname{Se}_{2n+2}(\xi; k_{1}^{2}) \\ &\times \operatorname{se}_{2n+2}(\theta; k_{1}^{2}) \operatorname{se}_{2n+2}(\alpha; k_{1}^{2}) \\ &+ i \left\{ \frac{2}{p_{2n+1}} \operatorname{Ce}_{2n+1}(\xi; k_{1}^{2}) \\ &\times \operatorname{ce}_{2n+1}(\theta; k_{1}^{2}) \operatorname{ce}_{2n+1}(\alpha; k_{1}^{2}) \\ &+ \frac{2}{s_{2n+1}} \operatorname{Se}_{2n+1}(\xi; k_{1}^{2}) \\ &\times \operatorname{se}_{2n+1}(0; k_{1}^{2}) \operatorname{se}_{2n+1}(\alpha; k_{1}^{2}) \right\} \right] \end{split}$$

$$(2.72)$$

ここに,

$$p_{2n+1} = -\frac{\operatorname{ce}_{2n+1}^{\prime, -} \left(\frac{1}{2}\pi; k_{1}^{2}\right) \operatorname{ce}_{2n+1}(0; k_{1}^{2})}{k_{1}A_{1}^{(2n+1)}}$$

$$s_{2n+1} = \frac{\operatorname{se}_{2n+1}^{\prime}(0; k_{1}^{2}) \operatorname{se}_{2n+1} \left(\frac{\pi}{2}; k_{1}^{2}\right)}{k_{1}B_{1}^{(2n+1)}}$$

$$s_{2n+2} = \frac{\operatorname{se}_{2n+2}^{\prime} \left(\frac{1}{2}\pi; k_{1}^{2}\right) \operatorname{se}_{2n+2}^{\prime}(0; k_{1}^{2})}{k_{1}^{2}B_{2}^{(2n+2)}}$$

(2.73)

(4) 防波堤開口部における回折波の式

図-2.1 で示したような防波堤開口部に波が入射する 場合,図-2.4 に示すように海域を 2 つに分けて取り扱 うのが解析上都合がよい。領域Iは防波堤前面の海域 で,防波堤による反射波が生じる領域である。また,領 域Ⅱは防波堤背後の海域で,開口部で回折した波が伝わ る領域である。

防波堤面上での境界条件,式(2.9)は波が防波堤によ って完全に反射されることを意味している。式(2.9)の 境界条件によって,式(2.16)の楕円座標で表わされた

図-2.4 領域分割

速度ポテンシャル Φ は、次式を満足しなければならな V'a

> (2.74) $(\xi > 0)$ =020 B=0.7

領域 I の速度ポテンシャル ØI を式 (2.11) のような 形に表わし、定数 Øo として入射波の展開で求めた式 (2.56) を採用すると、 ØI は次式で与えられる。

$$\Phi_{\rm I} = \frac{igH_i}{2\sigma} \phi_{\rm I}(\xi, \theta) \frac{\cosh k(h+z)}{\cosh kh} e^{i\sigma t} \qquad (2.75)$$

ここに、 $\phi_1(\xi, \theta)$ は表面波の波高変化を示す式で、楕円 座標で示してある。

領域Iの速度ポテンシャルは、 \$→∞, つまり開口部 から無限に離れるにしたがって開口部の影響は消え,入 射波と反射波だけになる。したがって, 開口部から無限 遠点では,領域Iの速度ポテンシャルは入射波の速度ポ テンシャルと反射波の速度ポテンシャルの和となって, 次式で表わされる。

 $\Phi_1 = \Phi_i + \Phi_r$ $(\xi \rightarrow \infty)$ (2.76)ここに、 ϕ_i は入射波の速度ポテンシャル、 ϕ_r は反射波 の速度ポテンシャルである。

一方,開口部近傍では,開口部の存在によって開口部 から遠ざかってゆく波が発生する。この波は、開口部か ら遠ざかるに従って波高を減じ、無限遠点では消滅する 波で, 散乱波と呼ぶ。この散乱波の速度ポテンシャルを

 $\varphi_1 = \varphi_i + \varphi_r + \varphi_s$ (2.77)で表わすことができる。ただし、 φ_I および φ_i がそれぞ れ式 (2.3) の Laplace の式および式 (2.8) の水底での 条件式を満足するため, Ør も式 (2.3) と (2.8) を満足 することになり、次式で表わすことができる。

$$\Phi_r = \frac{igH_i}{2\sigma} \phi_r(\xi, \theta) \frac{\cosh k(h+z)}{\cosh kh} e^{i\sigma t} \qquad (2.78)$$

ここに、 $\phi_r(\xi, \theta)$ は反射波の表面波の式で、Helmholzの 方程式 (2.19) を満足する。

また, 散乱波の速度ポテンシャル Φ_s も同様に,

$$\Phi_{s} = \frac{igH_{i}}{2\sigma} \phi_{s}(\xi, \theta) \frac{\cosh k(h+z)}{\cosh kh} e^{i\sigma t} \qquad (2.79)$$

で表わされ, φ_s(ξ, θ) は式 (2.19) を満足する。

 $\phi_{t}(\xi, \theta)$ は反射波を示すから、入射波の $\phi_{i}(\xi, \theta)$ の式 (2.72)中の α を $-\alpha$ と置き換えることによって、次 式のように求まる。

$$\phi_{r}(\xi,\theta) = \sum_{r=0}^{\infty} \left[\frac{2}{p_{2n}} \operatorname{Ce}_{2n}(\xi; k_{1}^{2}) \times \operatorname{ce}_{2n}(\theta; k_{1}^{2}) \operatorname{ce}_{2n}(\alpha; k_{1}^{2}) - \frac{2}{s_{2n+2}} \operatorname{Se}_{2n+2}(\xi; k_{1}^{2}) \times \operatorname{se}_{2n+2}(\theta; k_{1}^{2}) \operatorname{e}_{2n+1}(\theta; k_{1}^{2}) \operatorname{e}_{2n+1}(\alpha; k_{1}^{2}) + i \left\{ \frac{2}{p_{2n+1}} \operatorname{Ce}_{2n+1}(\xi; k_{1}^{2}) \times \operatorname{ce}_{2n+1}(\theta; k_{1}^{2}) \operatorname{ce}_{2n+1}(\alpha; k_{1}^{2}) - \frac{2}{s_{2n+1}} \operatorname{Se}_{2n+1}(\xi; k_{1}^{2}) \times \operatorname{se}_{2n+1}(\theta; k_{1}^{2}) \operatorname{se}_{2n+1}(\alpha; k_{1}^{2}) \right\} \right]$$

$$(2.80)$$

散乱波の $\phi_s(\xi, \theta)$ は,式 (2.19) すなわち Helmholtz の方程式を満足するので,式 (2.23) と (2.24) の Mathieu 方程式と変形 Mathieu 方程式で表わされるが, $\theta=\theta+2\pi$ では基の位置に戻るので, θ に関して周期解 でなければならない。また、 $\phi_s(\xi, \theta)$ は開口部から散乱 する波であると同時に,遠ざかるにつれて波高が減衰す る波,すなわち radiation 条件を満足する波でなければな らない。このような波は円筒座標の Hankel 関数に対応 する形を有しているものでなければならない。Hankel 関 数に対応する関数としては,式 (2.52) および (2.53) の関数がある。 ξ が十分大きいところでは式 (2.52) の 漸近形²⁰)は,

$$\operatorname{Me}_{2n}^{(1)}(\xi; k_1^2) \approx p_{2n} \left(\frac{2}{\pi k_1 e^{\xi}}\right)^{1/2} \exp\left\{i\left(k_1 e^{\xi} - \frac{\pi}{4}\right)\right\} \\
\operatorname{Me}_{2n}^{(2)} \approx p_{2n} \left(\frac{2}{\pi k_1 e^{\xi}}\right)^{1/2} \exp\left\{-i\left(k_1 e^{\xi} - \frac{\pi}{4}\right)\right\} \\
(2.81)$$

となるので, e^{ist} との関係から,式 (2.81)の第1式は 開口部に近づく波を示し,第2式は開口部から遠ざかる 波を示す。このことは式 (2.53)の関数についても同じ である。そのため、 $\phi_s(\xi, \theta)$ は第2種の Hankel 関数に 対応する関数で展開されることになり、次式で表わされ る。

$$\phi_{s}(\xi,\theta) = \sum_{n=0}^{\infty} \left[E_{2n} \operatorname{Me}_{2n}^{(2)}(\xi; k_{1}^{2}) \operatorname{ce}_{2n}(\theta; k_{1}^{2}) \right]$$

$$+ E_{2n+1} \operatorname{Me}_{2n+1}^{(2)}(\xi; k_1^2) \operatorname{ce}_{2n+1}(\theta; k_1^2) + F_{2n+1} \operatorname{Ne}_{2n+1}^{(2)}(\xi; k_1^2) \operatorname{se}_{2n+1}(\theta; k_1^2) + F_{2n+2} \operatorname{Ne}_{2n+2}^{(2)}(\xi; k_1^2) \operatorname{se}_{2n+2}(\theta; k_1^2) \bigg]$$

$$(2.82)$$

ここに, E_{2n} , E_{2n+1} , F_{2n+1} および F_{2n+2} は未知定数で, 領域 I および領域 II の間の接続条件と防波堤での境界条 件から求まる。

以上のことから,領域 I 内の表面波の式は,式(2.77)~ (2.79)によって,次式で与えられる。

$$\begin{split} \phi_{1}(\xi,\theta) &= \sum_{n=0}^{\infty} \left[\frac{4}{p_{2n}} \operatorname{Ce}_{2n}(\xi; k_{1}^{2}) \\ &\times \operatorname{ce}_{2n}(\theta; k_{1}^{2}) \operatorname{ce}_{2n}(\alpha; k_{1}^{2}) \\ &+ \frac{4i}{p_{2n+1}} \operatorname{Ce}_{2n+1}(\xi; k_{1}^{2}) \\ &\times \operatorname{ce}_{2n+1}(\theta; k_{1}^{2}) \operatorname{ce}_{2n+1}(\alpha; k_{1}^{2}) \\ &+ E_{2n} \operatorname{Me}_{2n}^{(2)}(\xi; k_{1}^{2}) \operatorname{ce}_{2n+1}(\theta; k_{1}^{2}) \\ &+ E_{2n+1} \operatorname{Me}_{2n+1}^{(2)}(\xi; k_{1}^{2}) \operatorname{ce}_{2n+1}(\theta; k_{1}^{2}) \\ &+ F_{2n+1} \operatorname{Ne}_{2n+1}^{(2)}(\xi; k_{1}^{2}) \operatorname{se}_{2n+1}(\theta; k_{1}^{2}) \\ &+ F_{2n+2} \operatorname{Ne}_{2n+2}^{(2)}(\xi; k_{1}^{2}) \operatorname{se}_{2n+2}(\theta; k_{1}^{2}) \\ \end{split}$$

$$(2.83)$$

$$\sum_{n=0}^{\infty} \{F_{2n+1} \operatorname{Ne}_{2n+1}^{(2)}(\xi; k_1^2) \operatorname{se}_{2n+1}^{\prime}(0; k_1^2) + F_{2n+2} \operatorname{Ne}_{2n+2}^{(2)}(\xi; k_1^2) \operatorname{se}_{2n+1}^{\prime}(0; k_1^2)\} = 0$$

$$\sum_{n=0}^{\infty} \{F_{2n+1} \operatorname{Ne}_{2n+1}^{(2)}(\xi; k_1^2) \operatorname{se}_{2n+1}^{\prime}(\pi; k_1^2) + F_{2n+2} \operatorname{Ne}_{2n+2}^{(2)}(\xi; k_1^2) \operatorname{se}_{2n+2}^{\prime}(\pi; k_1^2)\} = 0$$

となる。しかし、 $se'_{2n+1}(\pi; k_1^2) = -se'_{2n+1}(0; k_1^2)$, $se'_{2n+2}(\pi; k_1^2) = se'_{2n+2}(0; k_1^2)$ であるから

$$F_{2n+1}=F_{2n+2}=0$$
 (2.86)
となる。したがって、式 (2.83) は次式で表わされる。

$$\begin{split} \phi_{1}(\xi,\theta) &= \sum_{n=0}^{\infty} \left[\frac{4}{p_{2n}} \operatorname{Ce}_{2n}(\xi; k_{1}^{2}) \\ &\times \operatorname{ce}_{2n}(\theta; k_{1}^{2}) \operatorname{ce}_{2n}(\alpha; k_{1}^{2}) \\ &+ \frac{4i}{p_{2n+1}} \operatorname{Ce}_{2n+1}(\xi; k_{1}^{2}) \\ &\times \operatorname{ce}_{2n+1}(\theta; k_{1}^{2}) \operatorname{ce}_{2n+1}(\alpha; k_{1}^{2}) \\ &+ E_{2n} \operatorname{Me}_{2n}^{(2)}(\xi; k_{1}^{2}) \operatorname{ce}_{2n}(\theta; k_{1}^{2}) \\ &+ E_{2n+1} \operatorname{Me}_{2n+1}^{(2)}(\xi; k_{1}^{2}) \operatorname{ce}_{2n+1}(\theta; k_{1}^{2}) \right] \end{split}$$

$$(2.87)$$

— 15 —

次に、領域 II の波は領域 I 内の散乱波と同じ条件を持っため、領域 I の散乱波と同じような形に表わされる。 そこで、領域 II の波の速度ポテンシャル ϕ_{II} を

$$\Phi_{\rm II} = \frac{igH_i}{2\sigma} \phi_{\rm II}(\xi, \theta) \frac{\cosh k(h+z)}{\cosh kh} e^{i\sigma t} \qquad (2.88)$$

のように置くと、 $\phi_{II}(\xi, \theta)$ は式 (2.74)の境界条件によって、次式のように表わされる。

$$\phi_{\mathrm{II}}(\xi,\theta) = \sum_{n=0}^{\infty} [C_{2n} \operatorname{Me}_{2n}^{(2)}(\xi; k_1^2) \operatorname{ce}_{2n}(\theta; k_1^2) + C_{2n+1} \operatorname{Me}_{2n+1}^{(2)}(\xi; k_1^2) \operatorname{ce}_{2n+1}(\theta; k_1^2)] (2.89)$$

ここに, C_{2n} および C_{2n+1} は未知定数である。領域 I と IIの接続部,つまり $\xi=0$ となる防波堤開口部では, 圧 力および水粒子速度が連続していなければならない。こ れらの条件は, それぞれ次式のように表わすことができ る。

 $\Phi_{\rm I}|_{\xi=0} = \Phi_{\rm II}|_{\xi=0} \tag{2.90}$

$$\frac{\partial \Phi_{\mathrm{I}}}{\partial \xi}\Big|_{\xi=0} = -\frac{\partial \Phi_{\mathrm{II}}}{\partial \xi}\Big|_{\xi=0} \tag{2.91}$$

式 (2.90) および (2.91) に式 (2.75) および (2.88) を それぞれ代入すると,次式が得られる。

$$\sum_{n=0}^{\infty} \left[\frac{4}{p_{2n}} \operatorname{Ce}_{2n}(0; k_{1}^{2}) \operatorname{ce}_{2n}(\theta; k_{1}^{2}) \operatorname{ce}_{2n}(\alpha; k_{1}^{2}) + \frac{4i}{p_{2n+1}} \operatorname{Ce}_{2n+1}(0; k_{1}^{2}) + \frac{4i}{p_{2n+1}} \operatorname{Ce}_{2n+1}(0; k_{1}^{2}) + \operatorname{Ce}_{2n}\operatorname{Me}_{2n}^{(2)}(0; k_{1}^{2}) \operatorname{ce}_{2n}(\theta; k_{1}^{2}) + E_{2n}\operatorname{Me}_{2n}^{(2)}(0; k_{1}^{2}) \operatorname{ce}_{2n}(\theta; k_{1}^{2}) + E_{2n+1}\operatorname{Me}_{2n+1}^{(2)}(0; k_{1}^{2}) \operatorname{ce}_{2n+1}(\theta; k_{1}^{2}) \right]$$

$$= \sum_{n=0}^{\infty} \left[C_{2n}\operatorname{Me}_{2n}^{(2)}(0; k_{1}^{2}) \operatorname{ce}_{2n+1}(\theta; k_{1}^{2}) + C_{2n+1}\operatorname{Me}_{2n+1}^{(2)}(0; k_{1}^{2}) \operatorname{ce}_{2n+1}(\theta; k_{1}^{2}) \right]$$

$$(2.92)$$

$$\sum_{n=0}^{\infty} \left[E_{2n}\operatorname{Me}_{2n}^{(2)}(0; k_{1}^{2}) \operatorname{ce}_{2n}(\theta; k_{1}^{2}) \right]$$

$$+E_{2n+1}\operatorname{Me}_{2n+1}^{(2)\prime}(0; k_{1}^{2})\operatorname{ce}_{2n+1}(\theta; k_{1}^{2})$$

= $-\sum_{n=0}^{\infty} [C_{2n}\operatorname{Me}_{2n}^{(2)\prime}(0; k_{1}^{2})\operatorname{ce}_{2n}(\theta; k_{1}^{2})$
+ $C_{2n+1}\operatorname{Me}_{2n+1}^{(2)\prime}(0; k_{1}^{2})\operatorname{ce}_{2n+1}(\theta; k_{1}^{2})]$
(2.93)

これらの両式の両辺に $ce_{2n}(\theta; k_1^2)$ を乗じて, θ に関し て $0 \sim 2\pi$ の区間で両辺を積分すると、Mathieu 関数の 直交性によって、次式のような連立方程式が求まる。

$$\frac{4}{p_{2n}} \operatorname{Ce}_{2n}(0; k_1^2) \operatorname{ce}_{2n}(\alpha; k_1^2)
+ E_{2n} \operatorname{Me}_{2n}^{(3)}(0; k_1^2)
= C_{2n} \operatorname{Me}_{2n}^{(2)}(0; k_1^2)
E_{2n} = -C_{2n} \\$$
(2.94)

この連立方程式を解いて, C_{2n} と E_{2n} が次式のように 求まる。

$$C_{2n} = -E_{2n}$$

= $\frac{2}{p_{2n}}$ Ce_{2n}(0; k₁²)ce_{2n}(α ; k₁²)/Me⁽²⁾_{2n}(0; k₁²)
(2.95)

また,同様に両辺に $ce_{2n+1}(\theta; k_1^2)$ を乗じて, θ に関して $0\sim 2\pi$ の区間で積立して,連立方程式を解くと, C_{2n+1} と E_{2n+1} が次式のように求まる。

$$C_{2n+1} = -E_{2n+1}$$

= $\frac{2}{p_{2n+1}}$ Ce_{2n+1}(0; k_{1^2})
 \times ce_{2n+1}(α ; k_{1^2})/Me⁽²⁾_{2n+1}(0; k_{1^2}) (2.96)

以上のように未知定数が求まったので、各領域の表面 彼の式 ϕ_I および ϕ_n は、次式のように与えられる。

$$\begin{split} \phi_{I}(\xi,\theta) &= \sum_{n=0}^{\infty} \left[\frac{2}{p_{2n}} \left\{ 2 \operatorname{Ce}_{2n}(\xi;k_{1}^{2}) - \frac{\operatorname{Ce}_{2n}(0;k_{1}^{2})}{\operatorname{Me}_{2n}^{(2)}(0;k_{1}^{2})} \operatorname{Me}_{2n}^{(2)}(\xi;k_{1}^{2}) \right\} \\ &\times \operatorname{ce}_{2n}(\theta;k_{1}^{2}) \operatorname{ce}_{2n}(\alpha;k_{1}^{2}) \\ &+ \frac{2i}{p_{2n+1}} \left\{ 2 \operatorname{Ce}_{2n+1}(\xi;k_{1}^{2}) - \frac{\operatorname{Ce}_{2n+1}(0;k_{1}^{2})}{\operatorname{Me}_{2n+1}^{(2)}(0;k_{1}^{2})} \operatorname{Me}_{2n+1}^{(2)}(\xi;k_{1}^{2}) \right\} \\ &\times \operatorname{ce}_{2n+1}(\theta;k_{1}^{2}) \operatorname{ce}_{2n+1}(\alpha;k_{1}^{2}) \right] (2.97) \\ \phi_{II}(\xi,\theta) &= \sum_{n=0}^{\infty} \left[\frac{2}{p_{2n}} \frac{\operatorname{Ce}_{2n}(0;k_{1}^{2})}{\operatorname{Me}_{2n}^{(2)}(0;k_{1}^{2})} \operatorname{Me}_{2n}^{(2)}(\xi;k_{1}^{2}) \\ &\times \operatorname{ce}_{2n}(\theta;k_{1}^{2}) \operatorname{ce}_{2n}(\alpha;k_{1}^{2}) \\ &+ \frac{2i}{p_{2n}} \frac{\operatorname{Ce}_{2n+1}(0;k_{1}^{2})}{\operatorname{Me}_{2n+1}^{(2)}(0;k_{1}^{2})} \operatorname{Me}_{2n+1}^{(2)}(\xi;k_{1}^{2}) \\ &\times \operatorname{ce}_{2n+1}(\theta;k_{1}^{2}) \operatorname{ce}_{2n+1}(\alpha;k_{1}^{2}) \right] \end{aligned}$$

$$(2.98)$$

防波堤開口部の周りの波高分布を入射波高 H_i に対す る比の形で表現することを考える。各領域の速度ポテン シャルがすでに求まっているので,式 (2.7) で表面波形 を求めると,波高はこの波形の振幅の2倍の大きさにな る。したがって,この波高を入射波高 H_i で割って波高 比 K_a を求めることができ,波高比 K_a は次式で簡単 に表わされる。

$$K_d = |\phi(\xi, \theta)| \tag{2.99}$$

この φ(ξ,θ) に式 (2.97) あるいは式 (2.98) を代入す ることによって各領域の波高比が求まる。

波高比 K_a は回折係数とも呼ばれている。また、 K_a の分布を平面的な等波高比線で示した図は、回折図と呼ばれている。

式 (2.97) と (2.98) を比較してわかるように,開口 部による散乱波の式は *x* 軸,つまり防波堤法線軸に対 して逆対称であるが,波高に直すと対称となる。

防波堤開口部上,つまり $\xi=0$ では,

$$\phi_{I}(0,\theta) = \phi_{II}(0,\theta)$$

$$= \sum_{n=0}^{\infty} \left[\frac{2}{p_{2n}} \operatorname{Ce}_{2n}(0; k_{1}^{2}) \times \operatorname{ce}_{2n}(\theta; k_{1}^{2}) \operatorname{ce}_{2n}(\alpha; k_{1}^{2}) + \frac{2i}{p_{2n+1}} \operatorname{Ce}_{2n+1}(0; k_{1}^{2}) \times \operatorname{ce}_{2n+1}(\theta; k_{1}^{2}) \operatorname{ce}_{2n+1}(\alpha; k_{1}^{2}) \right]$$

$$= \exp \left[ikx \cos \alpha \right] \qquad (2.100)$$

となって, 波高比 Ka は次式で与えられる。

 $K_d = 1$

このことは,防波堤開口部上では入射波の波向に関係な く,常に入射波の波高に等しい波高になることを示して いる。

(5) 防波堤開口部付近の波高比の計算

防波堤開口部付近の波高比は,式 (2.97) あるいは式 (2.98) を式 (2.99) に代入して,数値計算を行えば求ま るが,これらの式中の変形 Mathieu 関数 $Ce_{2n}(\xi; k_1^2)$ や $Ce_{2n+1}(\xi; k_1^2)$, $Me_{2n}^{(2)}(\xi; k_1^2)$, $Me_{2n+1}^{(2)}(\xi; k_1^2)$ を式 (2.46)~(2.48) や式 (2.52),(2.53) のような形で表わ (して計算したのでは非常に収束が悪い。そのため、変形 Mathieu 関数として、次式で示されるような Bessel 関 数の積の級数で表わされる収束のよいもの²¹⁾を用いるこ とにする。

 $Ce_{2n}(\xi; k_{1}^{2}) = (p_{2n}/A_{0}^{(2n)}) \times \sum_{r=0}^{\infty} (-1)^{r} A_{2r}^{(2n)} J_{r}(v_{1}) J_{r}(v_{2}) \\Ce_{2n+1}(\xi; k_{1}^{2}) = (p_{2n+1}/A_{1}^{(2n+1)}) \times \sum_{r=0}^{\infty} (-1)^{r} A_{2r+1}^{(2n+1)} \{J_{r}(v_{1})J_{r+1}(v_{2}) + J_{r+1}(v_{1})J_{r}(v_{2})\} \\Me_{2n}^{(2)}(\xi; k_{1}^{2}) = (p_{2n}/A_{0}^{(2n)}) \times \sum_{r=0}^{\infty} (-1)^{r} A_{2r+1}^{(2n)} J_{r}(v_{1}) H_{r}^{(2)}(v_{2}) \\Me_{2n+1}^{(2)}(\xi; k_{1}^{2}) = (p_{2n+1}/A_{1}^{(2n+1)}) \times \sum_{r=0}^{\infty} (-1)^{r} A_{2r+1}^{(2n+1)} \{J_{r}(v_{1})H_{r+1}^{(2)}(v_{2}) + J_{r+1}(v_{1})H_{r}^{(2)}(v_{2})\}$ (2.102)

ここに、 $v_1 = k_1 e^{-\epsilon}$ および $v_2 = k_1 e^{\epsilon}$ である。

数値計算を行うに当って,計算結果が十分な精度を有 するように,式 (2.25) および (2.102) 中のr に関す る項数の上限値 N_r および式 (2.97) や (2.98) 中のnに関する項数の上限値 N_n を決定しておかなければなら ない。

式 (2.25) の Mathieu 関数および式 (2.102) の変形 Mathieu 関数は,係数 $A_{SP}^{(2n)}$ および $A_{SP}^{(2n+1)}$ の値に直 接影響を受けるので,これらの係数が十分小さくなる項 までとる必要がある。表-2.1 は $A_{SP}^{(2n)}$ と $A_{SP}^{(2n+1)}$ の値 を B|L=2,4 および8について示したものである。こ

表-2.1 Mathieu 関数の係数の変化

	B/L=2				B/L=4				<i>B</i> / <i>L</i> =8			
	$A_{2r}^{(2n)}$		$A_{2r+1}^{(2n+1)}$		$A_{2r}^{(2n)}$		$A_{2\tau+1}^{(2n+1)}$		$A_{2r}^{(2n)}$		$A_{2r+1}^{(2n+1)}$	
r	<i>n</i> =0	n=2	n=0	n=2	n=0	n =2	n = 0	n=2	n=2	n=4	<i>n</i> =2	n=4
0	0.4887	0.3012	0.5728	0.3161	0.4043	0.2894	0.3268	0.5183	0.2194	0.2041	0.2735	0.3362
2	-0.2419	0.4992	0.2970	0.6958	0.4128	-0.5006	0.5709	-0.5078	-0.3466	-0.3691	-0.1215	-0.4023
4	-0.0063	0.0917	0.0070	0.0663	0.0593	0.5851	0.1007	0.5507	0.0053	0.3200	-0.1658	0.3573
6	0.0000	0.0009	0.0000	0.0005	0.0028	0.1283	0.0049	0.1088	0.5031	-0.3629	0.4904	-0.3693
8	0.0000	0.0000	0.0000	0.0000	0.0001	0.0053	0.0001	0.0039	0.2066	0.4164	0.2334	0.4020
10	0.0000	0.0000	0.0000	0.0000	0.0000	0.0001	0.0000	0.0000	0.0307	0.2556	0.0357	0.2463
12	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0022	0.0385	0.0025	0.0356
14	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0001	0.0025	0.0001	0.0022
16	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0001	0.0000	0.0001

x/L=0, y/L=-0.2 $x/L=0, y/L=-0.4$
al part imag. part real part imag. part
.5808 -1.2908 -0.9183 -1.0158
.0187 -0.8459 -1.0191 -0.3659
.3088 -0.9250 -0.8328 -0.5180
.2758 -0.9241 -0.8507 -0.5157
-0.9241 - 0.8504 - 0.5157
.2767 -0.9241 -0.8504 -0.5157

表-2.2 項数 n による収束性 (B/L=2)

の表からわかるように, これらの係数の値は n の値に よって変るけれども, r がある値以上になると急激に小 さくなる。このことを考慮して, r の項数 N_r を種々変 えて計算した結果, n の項数 N_n を用いて,

$$N_r = N_n + 8$$
 (2.103)

とすれば、十分であることがわかった。

つぎに, N_n の値については, N_n を変えて波高比を 計算した結果,

 $N_n = [11(B/L)/9] + 2 \tag{2.104}$

とすれば,実用上十分な精度であることがわかった。こ こに,[]はガウスの関数で,[]内の値を超えない最 大の整数である。実際の計算では, $N_n \ge 3$ として,最少 の項数を設定している。表-2.2 は,B/L=2における 波高比の収束状態を示したものである。B/L=2では式 (2.104)から $N_n=4$ となる。表-2.2 を参照してわかる ように, $N_n=4$ で十分な精度になっている。著者²²⁾は, すでに Mathieu 関数の項数について検討を行ってお り,そこでは式 (2.104)で求まる項数より1項少なく推 定している。

式 (2.103) と (2.104) で求めた項数を用いて,防 波堤開口部付近の波高分布を計算した例を 図-2.5 に示 す。これは, B/L=2の開口部に,防波堤法線に対し て $\alpha=30^{\circ}$ の角度で波が入射してくる場合の計算であ る。その計算は 4x/L=4y/L=0.1間隔に行っている。 開口部のない直線防波堤の前面の領域では,等波高比線 が防波堤に平行に現われることになるけれども,開口部 が存在すると,図-2.5 でわかるように,等波高比線は 防波堤に平行でなくなる。たとえば,図-2.5 において $K_a=1$ の線をみてみると,開口部付近では反射波の方 向から開口部に進入してくるような形にこの等波高比線 は曲る。この等波高比線の曲りは開口部から離れるに従 って緩やかになり,y/L>1.5ではこの等波高比線は防 波堤にほぼ平行になって,開口部の影響がほとんど現わ れなくなる。また,開口部の存在によって防波堤前面沿 いの波高は一定ではなくなり, $K_a=2$ の重複波の波高 より大きい部分やそれより小さい部分が現われる。この ような防波堤前面沿いの波高分布は,背後の波の位相と も関連して,防波堤に働く波力の場所的変化を引き起 す。この波力の場所的変化が防波堤の蛇行災害を起す原 因であると伊藤ら²³⁾は述べている。

一方,港内側における等波高比線は,入射波の方向よ り約 8°右側にずれた方向に延びている。これは,入射 波が α =30°の方向から入射するため,右側領域は防波 堤で強く遮蔽されるので,この領域の波高 が小さくな り,波のエネルギーが右側へ流れ易くなることによると 推察される。この回折波の軸の方向ずれについては著者 ら²⁴⁾によって後述の近似解を用いて検討 されている。 K_a =0.8 の線は $x/L \approx -1.5$, $y/L \approx -1$ まで入り込 み, K_a =0.6 の線は $x/L \approx -2.5$, $y/L \approx -2$ まで入 っている。 K_a の値が小さくなればなるほど,等波高比 線は港内の奥深くへ入るようになる。しかし, K_a の減 衰率は開口部からの距離が大きくなるほど小さくなる。 この計算条件では $K_a > 1$ になる領域は開口部のすぐ近 傍に現われるだけである。

2.3 任意防波堤配置に対する波の回折の近似解

(1) 半無限防波堤による波の回折

図-2.6 で示されるような、半無限防波堤に α の角度 をなして波が入射してくる場合の防波堤付近の速度ボテ ンシャルを式 (2.75) と同じ形で表わすと、

$$\Phi = \frac{igH_i}{2\sigma}\phi(r,\theta)\frac{\cosh k(h+z)}{\cosh kh}e^{i\sigma t} \qquad (2.105)$$

となり、半無限防波堤面での境界条件を満足する表面波の式 $\phi(r, \theta)$ は、次式のようになる。

$$\phi(r, \theta) = \frac{1}{\sqrt{2}} \exp\left[i\left\{kr\cos\left(\theta - \alpha\right) + \frac{\pi}{4}\right\}\right]$$
$$\times \left[\left\{C(\gamma_1) + \frac{1}{2}\right\} - i\left\{S(\gamma_1) + \frac{1}{2}\right\}\right]$$

— 18 —

 $\times \left[\left\{ C(\gamma_2) + \frac{1}{2} \right\} - i \left\{ S(\gamma_2) + \frac{1}{2} \right\} \right]$

(2.106)

ここに、 (r, θ) は 図-2.6 に示されるような防波堤先端 を原点とする極座標で、C(r)およびS(r)は次式のよう な Fresnel 積分を表わす。

$$C(\gamma) = \int_{0}^{\gamma} \cos \frac{\pi}{2} \chi^{2} d\chi$$

$$S(\gamma) = \int_{0}^{\gamma} \sin \frac{\pi}{2} \chi^{2} d\chi$$

$$(2.107)$$

また,
$$r_1 \ge r_2$$
 は次式で与えられる。

$$\gamma_1 = \sqrt{4kr/\pi} \cos(\theta - \alpha)/2$$

$$\gamma_2 = \sqrt{4kr/\pi} \cos(\theta + \alpha)/2$$
(2.108)

式 (2.106) が Sommerfeld によって求められた解析

る。しかし,この解を応用して開口防波堤による回折波 の近似解を求めようとする場合,式(2.106)の物理的意 味を明らかにしておくことが重要である。そこで、以下 においては式 (2.106) の各項の物理的意味を調べる。

まず, $0 \le \theta < \pi - \alpha$ となる 図-2.6 の領域 I を考える と, 式 (2.108) によって $\gamma_1 > 0$ かつ $\gamma_2 > 0$ となる。そ の結果, $C(\gamma_1) > 0$, $S(\gamma_1) > 0$, $C(\gamma_2) > 0$ および $S(\gamma_2) > 0$ となるので, 式 (2.106) を次式のように書き直して考え ることができる。

$$\phi(r, \theta) = \exp\left[ikr\cos\left(\theta - \alpha\right)\right] + \frac{1}{\sqrt{2}} \left[i\left\{kr\cos\left(\theta - \alpha\right) + \frac{\pi}{4}\right\}\right] \\ \times \left[\left\{C(\tau_1) - \frac{1}{2}\right\} - i\left\{S(\tau_1) - \frac{1}{2}\right\}\right] \\ + \exp\left[ikr\cos\left(\theta + \alpha\right)\right] \\ + \frac{1}{\sqrt{2}} \exp\left[i\left\{kr\cos\left(\theta + \alpha\right) + \frac{\pi}{4}\right\}\right] \\ \times \left[\left\{C(\tau_2) - \frac{1}{2}\right\} - i\left\{S(\tau_2) - \frac{1}{2}\right\}\right]$$

$$(2.109)$$

式 (2.109) で右辺第1項は入射波を示し,第3項は反 射波を示している。また,第2および第4項の絶対値は, $C(\gamma_1)>0, S(\gamma_1)>0$ および $C(\gamma_2)>0, S(\gamma_2)>0$ の条件に よって 1/2 より一般に小さく, $r \to \infty$ になると, Fresnel 積分は 1/2 に収束するため,第2および第4項は消える。 これによって,式 (2.109) は $r \to \infty$ では入射波と反射 波だけになることがわかる。このことは,式(2.109)の 第2項および第4項が radiation 条件を満足する散乱波 を表わしていることを示す。また,式(2.106)の右辺第1 項から式 (2.109)の右辺第1 および第2項が導かれ,式 (2.106) の第2項から式(2.109)の右辺第3 および第4 項が導かれることから,式(2.109)の右辺第2項は入射 波に伴う散乱波,同じ式の右辺第4項は反射波に伴う散 乱波を表わしていることがわかる。

つぎに, $\pi - \alpha \le \theta \le \pi + \alpha$ となる 図-2.6 の領域 II を 考えると,式 (2.108) によって, $\gamma_1 > 0$ および $\gamma_2 < 0$ と なり,式 (2.107) から $C(\gamma_1) > 0$, $S(\gamma_1) > 0$ および $C(\gamma_2)$ <0, $S(\gamma_2) < 0$ が導かれる。そこで,式 (2.106) を次式 のように書き直して考える。

$$\phi(r, \theta) = \exp\left[ikr\cos\left(\theta - \alpha\right)\right] + \frac{1}{\sqrt{2}} \exp\left[i\left\{kr\cos\left(\theta - \alpha\right) + \frac{\pi}{4}\right\}\right] \\ \times \left[\left\{C(\gamma_1) - \frac{1}{2}\right\} - i\left\{S(\gamma_1) - \frac{1}{2}\right\}\right] \\ + \frac{1}{\sqrt{2}} \exp\left[i\left\{kr\cos\left(\theta + \alpha\right) + \frac{\pi}{4}\right\}\right] \\ \times \left[\left\{C(\gamma_2) + \frac{1}{2}\right\} - i\left\{S(\gamma_2) + \frac{1}{2}\right\}\right]$$
(2.110)

式 (2.110)の右辺第1項と第2項は式 (2.109)に関す る考察と同様にして,それぞれ入射波と入射波に伴う散 乱波であることがわかる。そこで,右辺第3項について 考察してみる。

領域 II では $C(r_2) < 0$ および $S(r_2) < 0$ であるから,式 (2.110)の右辺第3項の絶対値は 1/2 より小さく, $r \rightarrow \infty$ になったときにこの項は消滅する。式 (2.110)の右辺第 3 項のこの特性は式 (2.109)の右辺第4項と全く同じ特 性を示す。このことから,式 (2.110)の右辺第3項はこ の形のままで反射波に伴う散乱波を示していることがわ かる。

最後に, $\pi + \alpha < \theta \le 2\pi$ となる 図-2.6 の領域 田 を考 えると,式 (2.108) によって $\gamma_1 < 0$ および $\gamma_2 < 0$ とな り,式 (2.107) から $C(\gamma_1) < 0$, $S(\gamma_1) < 0$, $C(\gamma_2) < 0$ お よび $S(\gamma_2) < 0$ となる。この領域では,式 (2.110) の 右辺第 3 項に対する考察と同様の考察過程によって,式 (2.106) の右辺第 1 および第 2 項がそのままの形でそれ ぞれ入射波および反射波に伴う散乱波を示していること がわかる。

以上のように,式(2.106)の物理的意味に対する考察 から,次のような条件を設定することによって式(2.106) が半無限消波堤による波の回折の問題に応用できること がわかる。

- 消波堤による波のエネルギーの逸散機構について は考えないことにして、反射波の波高は消波堤の反 射率 K_r に対応する波高になる。
- 2) 消波堤による反射波の位相は、完全反射堤の場合 と変わらない。
- 消波堤で波のエネルギーが逸散されるときに生じる短周期波は反射率に大きく影響しないとして、無視する。

これらの仮定は完全反射堤による回折波の解,式 (2.106)の右辺第2項に消波堤の反射率 K_rを乗ずれ ば,消波堤による回折波の解になることを示している。 その結果,半無限消波堤による回折波の表示は,次式で 与えられる。

$$\phi(r, \theta) = \frac{1}{\sqrt{2}} \exp\left[i\left\{kr\cos\left(\theta - \alpha\right) + \frac{\pi}{4}\right\}\right] \\ \times \left[\left\{C(\gamma_1) + \frac{1}{2}\right\} - i\left\{S(\gamma_1) + \frac{1}{2}\right\} \\ + \frac{K_r}{\sqrt{2}} \exp\left[i\left\{kr\cos\left(\theta + \alpha\right) + \frac{\pi}{4}\right\}\right] \\ \times \left[\left\{C(\gamma_2) + \frac{1}{2}\right\} - i\left\{S(\gamma_2) + \frac{1}{2}\right\}\right]$$

$$(2.111)$$

-20 -

式(2.111)で K_r=1 の完全反射堤を考えると,式 (2.111)は式(2.106)の完全反射堤の式に一致する。式 (2.111)で K_r=0の完全消波堤を考えると,式(2.111) の右辺第2項は消え,第1項のみが残り,式(2.111)は 入射波と入射波に伴う散乱波だけを表わすことになる。

図-2.7 は、半無防波堤に直角に入射する規則波による 防波堤近傍の波高比 K_a の値を式 (2.111) で計算した ものである。この図において、破線および実線はそれぞ れ完全反射堤 (K_r =1) と完全消波堤 (K_r =0) による波 高比を示している。

防波堤の前面 y/L=2の線上では, $K_r=1$ の完全反射 堤の場合, x/L>0の反射領域であっても防波堤が存在 しない部分の影響で波のエネルギーが左方に流れるた め, 波高比は小さくなっているが, x/Lが大きくなるに したがって波高比は増加し, x/L>1では波高比は K_a =2 のまわりを小さく変動するようになる。この変動 は, また散乱波の影響が少し残っているためである。一 方, $K_r=0$ の完全消波堤の場合, 波高比は $K_a=1$ のま わりを非常に小さく変動するだけで, ほぼ入射波だけに なっていることがわかる。この小さな波高比変動は入射 波に伴う散乱波の影響であるが, y/L=2 では散乱波の 影響が非常に小さいことがわかる。

防波堤前面沿い (y/L=+0) では,完全反射堤 $(K_r=1)$ の場合,x/L<0で波高比は $K_a=1$ で,x/L=0か ら波高比は急激に大きくなり,x/L>0.2では波高比は $K_a=2$ のまわりを変動するようになる。この変動は散 乱波の影響によるもので,y/L=2のときより散乱波の 影響は強く,変動振幅が大きくなる。一方,完全消波堤 $(K_r=0)$ では,x/L=0で波高比が $K_a=0.5$ と極端に小 さくなる部分を除けば,波高比は $K_a=1$ のまわりを完 全反射堤の場合より小さな振幅で変動している。この変 動は入射波に伴う散乱波によるものであって,完全反射 堤の場合には入射波および反射波の散乱波によって波高 比の変動が起るため,完全消波堤の場合より変動振幅が 大きくなる。

以上のように、完全消波堤の場合、防波堤前面で波高 比が $K_a=1$ のまわりを小さく変動しており、ほぼ入射 波だけになっていることから判断して、式 (2.111) で消 波堤による回折波を表わしても問題はないと 推定され る。

防波堤背面沿い (y/L=-0)の波高比は,完全反射堤 ($K_r=1$)の場合の方が完全消波堤の場合より大きく,両 者の差は防波堤先端において最大で, $K_a=0.5$ の差があ る。しかし,この差はx/Lが大きくなる,つまり防波 堤の遮蔽域深く入り込むにつれて小さくなる。防波堤背 後のy/L=-2の線上では,完全反射堤の波高比がy/L=-0の場合と同様に完全消波堤のものより大きいが, この差はy/L=-0の場合より小さく,0.1以下である。 さらに,y/L=-4になると,波高比の差はさらに小さく なり,この程度の差では実用上両者の間に差がないと考 えてもよいように思われる。このように,消波堤である ことによる波高比への影響は防波堤すぐ背後で大きく, y/L=-2にもなれば実用上無視することができる。防 波堤背後の遮蔽域での波高比はx/Lが大きくなるほど, またy/Lが小さくなるほど小さくなる傾向にある。

(2) 港口部における回折波の近似解

既存の港の防波堤の配置を調べてみると, 2.2 で解析 したような 2 本の防波堤が一直線上にある両翼防波堤 の場合や 2.3 (1) で解析したような半無限防波堤1本で 波の進入を防いでいる場合は非常にまれなケースで,通 常は,主防波堤と副防波堤の2本の防波堤が配置されて いる。主防波堤は,年間を通じて最も高い発生頻度を示 す波向の波かあるいは来襲波の中の高波浪を効果的に遮 蔽すると考えられる方向に建設される。また,副防波堤 は,一般に波向が季節的に変化するため,主防波堤1本 では港内静穏度の確保が十分でない場合に補助的に建設 される。このように,主防波堤は港内静穏度をこの防波 堤1本で大きく改善すること,あるいは高波来襲時に港 内船舶を被災から守ることを目的としており,一方,副 防波堤は港内船舶の被災を防ぐというより港内静穏度の 向上を図ることを主目的としている。そのため,主防波 堤は延長も長く,副防波堤をその遮蔽域内に抱え込むよ うに配置される。しかし,港によっては波の来襲方向が 広く分布するために,主および副防波堤の機能がこのよ うに明確に区別できない場合もある。

図-2.8 は新潟東港の計画平面図と来襲波の方向別発 生頻度を示したものである。新潟東港では,来襲波の 61% は NW 方向から入射しており,その他では NNW の波向で 6.7% の波が来襲するけれども,N 方向で 1.4%, WNW で 0.9% と来襲波の発生頻度は非常に小 さい。また, 残りの 30% は来襲波が非常に小さい静穏 日の発生頻度を示す。新潟東港ではこのような波の方向 別発生頻度分布を示しているため, 主防波堤となる西防 波堤は NW~NNW の波を遮えぎるようにほぼ NNE 方向に長く延びている。そして,副防波堤となる東防波 堤が西防波堤の遮蔽域内に計画されている。

図-2.8 で示したように,防波堤の配置は単純でない うえに,入射する波の波向は常に一定ではない。そのた め,港口部における波の回折計算を行う場合には,2本 の防波堤のあらゆる配置に適用できるように計算法が工 夫されていなければならない。

防波堤の配置と波向から考えて,次に示す5つのタイ プについて回折波の計算法を確立しておけば,この計算 法はあらゆる防波堤配置および波向に対して適用可能に なる。

1) 防波堤による反射波が港外方向に反射されて,港内 に入らない場合(図-2.9 (a))。

図-2.8 新潟東港の計画平面と波の方向別発生頻度

(a) 入射波が港外へ反射される場合

(b) 防波堤 I による反射波が防波堤 Ⅱ で再度反射 される場合

(c) 防波堤 I による反射波が直接港内に進入する 】 場合

(d') 入射波が直接港内に進入する場合

(d) 入射波が防波堤 II によって反射される場合

(e) 防波堤 I による回折波が再度防波堤 Ⅱ によっ て回折される場合(二次回折)

- 防波堤によって反射された波がもう一方の防波堤によって再度反射されて港内に進入する場合(図-2.9 (b))。
- 3) 防波堤によって反射された波がもう一方の防波堤によって回折されることなく,港内に直接進入する場合 (図-2.9 (c))。
- 4) 港口を通った波が一方の防波堤の背後で反射される 場合(図-2.9(d))と、反射されることなく、港内に進入する通常の回折波の場合(図-2.9(d'))。
- 5) 防波堤によって回折された波が再びもう一方の防波 堤によって回折(二次回折)される場合(図-2.9(e))。 この5つの分類に対して,境界条件を満足する解析解 を求めることは非常に困難であるが,数値解析法¹²⁾⁻¹⁵⁾ を用いれば,数値的に解くことは可能である。しかし, 実際の海の波のような方向スペクトルを有する不規則波 の回折に適用しようとすると,これらの数値解析法で は,計算時間や計算機の容量を多く必要とするため,実 用という面では問題がある。そこで,精度的には少し落 ちても実用上十分な精度を有する近似解を求めることが 非常に重要となる。以下においては,実用的な近似解の 誘導を試みる。

図-2.9 (a)~(e) に示したように,防波堤 I と II の先端 を結んだ線と防波堤 I の法線とのなす角を α_B ,防波堤 II の法線が防波堤 I の法線となす角を β ,入射波の進入 角度(入射波の方向と防波堤 I の法線とのなす角度)を α とする。このように定義することによって,前述した 5 つの分類の条件は,以下のようになる。

- 1) 図-2.9 (a) の条件 $0 \le \alpha < \pi/2$, $\alpha_B < \pi/2$, $\beta < \pi/2$
- 2) 図-2.9 (b) の条件 *π*/2<*α*<*π*-*α*_B
- 3) 図-2.9 (c) の条件

 π-α_B<α<π

- 4) ③ 図-2.9 (d) の条件 *π*<α<π+α_B, β>π-α

 ⑤ 図-2.9 (d') の条件 *π*<α<π+α_B, β<α-π

- 図-2.9 (e) の条件
 π+α_B<α<2π

ただし、上記の条件においては、 $0 < \beta \le \pi$ であり、 $\alpha_B > \pi$ となる場合については、防波堤 I を防波堤 II に 置き換えることによって、これら 5 種類のどれかに対応 づけることができるので、ここでは $\alpha_B \le \pi$ としている。 近似解として、半無限防波堤による回折波の式を応用 することにする。しかし、上記分類でもわかるように、 条件によっては防波堤による反射波も考えなければなら ないため、半無限防波堤による回折波の式としては、式 (2.111)の消波堤に対する式を用いることにし、防波堤 I および IIの反射率をそれぞれ K_{rI} と K_{rII} とする。防 波堤 IIが存在しないと考えると、図-2.10 で示される港

Breakwater I 図-2.10 防波堤の配置と座標

内任意の点 *p* では防波堤 I による 回折波は, 次式で与 えられる。

$$\phi_{I}(r_{I},\theta_{I}) = \frac{1}{\sqrt{2}} \exp\left[i\left\{kr_{I}\cos\left(\theta_{I}-\alpha\right)+\frac{\pi}{4}\right\}\right] \\ \times \left[\left\{C(\gamma_{I1})+\frac{1}{2}\right\}-i\left\{S(\gamma_{I1})+\frac{1}{2}\right\}\right] \\ + \frac{K_{rI}}{\sqrt{2}} \exp\left[i\left\{kr_{I}\cos\left(\theta_{I}+\alpha\right)+\frac{\pi}{4}\right\}\right] \\ \times \left[\left\{C(\gamma_{I2})+\frac{1}{2}\right\}-i\left\{S(\gamma_{I2})+\frac{1}{2}\right\}\right] \\ (2.112)$$

ここに、(γ_1 , θ_1) は防波堤 I の先端を原点としたときの 極座標であり、 γ_{11} および γ_{12} は次式で与えられる。

$$\gamma_{11} = \sqrt{4kr_1/\pi} \cos\left(\theta_1 - \alpha\right)/2$$

$$\gamma_{12} = \sqrt{4kr_1/\pi} \cos\left(\theta_1 + \alpha\right)/2$$

$$(2.113)$$

また,防波堤 I が存在しないとすると,防波堤 II による点 p の回折波は,防波堤 II の先端における入射波の位相が防波堤 I の先端への入射波に対して $kB\cos(\alpha_B - \alpha)$ だけずれていることを考慮に入れると,次式のように表わすことができる。

$$\phi_{II}(r_{II}, \theta_{II}) = \frac{1}{\sqrt{2}} \exp\left[i\left\{kr_{II}\cos\left(\theta_{II} - \alpha + \beta\right) + \frac{\pi}{4} + kB\cos\left(\alpha_B - \alpha\right)\right\}\right]$$

— 24 —

$$\times \left[\left\{ C(\gamma_{111}) + \frac{1}{2} \right\} - i \left\{ S(\gamma_{111}) + \frac{1}{2} \right\} \right]$$

+ $\frac{K_{r11}}{\sqrt{2}} \exp \left[i \left\{ kr_{11} \cos \left(\theta_{11} + \alpha - \beta\right) \right\}$
+ $\frac{\pi}{4} + kB \cos \left(\alpha_B - \alpha\right) \right\} \right]$
$$\times \left[\left\{ C(\gamma_{112}) + \frac{1}{2} \right\} - i \left\{ S(\gamma_{112}) + \frac{1}{2} \right\} \right]$$

(2.114)

ここに, B は防波堤 I と II の先端間の距離, r_{II} と θ_{II} は 図-2.10 で示すようにそれぞれ防波堤 II の先端から点 p までの距離と防波堤 II に対する点 p の角度を示し, γ_{III} と γ_{II2} は次式で与えられる。

$$\gamma_{\text{III}} = \sqrt{\frac{4kr_{\text{II}}}{\pi}} \cos \frac{\theta_{\text{II}} - \alpha + \beta}{2}}{2}$$

$$\gamma_{\text{III2}} = \sqrt{\frac{4kr_{\text{II}}}{\pi}} \cos \frac{\theta_{\text{II}} + \alpha - \beta}{2}}{2}$$
(2.115)

防波堤 I による反射波が防波堤 II によって回折される 場合,この反射波が防波堤 II に入射する角度は,防波堤 II に対して $(2\pi - \alpha - \beta)$ となる。また,この反射波は, 防波堤 I への入射波に対して $kB\cos(\alpha_B + \alpha)$ の位相の ずれを持つ。このような入射角度および位相のずれを考 慮すると,防波堤 I の反射波による防波堤 II の回折波は, 点 p では次式のように表わされる。

$$\begin{split} \phi_{\mathrm{III}}(r_{\mathrm{II}},\theta_{\mathrm{II}}) \\ &= \frac{K_{r\mathrm{I}}}{\sqrt{2}} \exp\left[i\left\{kr_{\mathrm{II}}\cos\left(\theta_{\mathrm{II}}+\alpha+\beta\right)+\frac{\pi}{4}\right. \\ &+ kB\cos\left(\alpha_{B}+\alpha\right)\right]\right\} \\ &\times\left[\left[C(\gamma_{\mathrm{IIII}})+\frac{1}{2}\right]-i\left\{S(\gamma_{\mathrm{IIII}})+\frac{1}{2}\right\}\right] \\ &+ \frac{K_{r\mathrm{I}}K_{r\mathrm{II}}}{\sqrt{3}}\exp\left[i\left\{kr_{\mathrm{II}}\cos\left(\theta_{\mathrm{II}}-\alpha-\beta\right)+\frac{\pi}{4}\right. \\ &+ kB\cos\left(\alpha_{B}+\alpha\right)\right]\right\} \\ &\times\left[\left\{C(\gamma_{\mathrm{III2}})+\frac{1}{2}\right\}-i\left\{S(\gamma_{\mathrm{III2}})+\frac{1}{2}\right\}\right] \\ &\left(2.116\right) \end{split}$$

ここに,

$$\gamma_{I III} = \sqrt{\frac{4kr_{II}}{\pi}} \cos \frac{\theta_{II} + \alpha + \beta - 2\pi}{2} \\ \gamma_{I III2} = \sqrt{\frac{4kr_{II}}{\pi}} \cos \frac{\theta_{II} - \alpha - \beta + 2\pi}{2}$$
(2.117)

である。ただし,式(2.116)では,防波堤Iによって入 射波が反射されるときに発生する散乱波は反射波に比較 して小さいので,この散乱波の防波堤Ⅱによる反射は考 慮していない。

つぎに、防波堤 I によって回折された波が再度防波堤 II によって回折される場合を考える。この場合、防波堤 I によって回折された波で、防波堤 II の先端に到達した 波と同じ波高および位相のずれを持つ波が防波堤 I と II の先端を結ぶ線上の方向から防波堤 II に入射してくると 仮定する。防波堤 I による回折波で防波堤 II の先端に到 達する波は、式 (2.112) において $\gamma_I = B$ および $\theta_I = \alpha_B$ とおくことによって求まり、この式は次のように書き直 すことができる。

$$\phi(B, \alpha_B) = A_d \exp(i\phi_d) \tag{2.118}$$

ここに、 A_a および ϕ_a は防波堤 II の先端での波の振幅 と位相のずれを表わす。式 (2.118) を入射波とすると、 防波堤 II による点 p の回折波は、次式で表わされる。

$$\begin{split} \theta_{1\,IId}(r_{II},\theta_{II}) &= \frac{A_{d}}{\sqrt{2}} \exp\left[i\left\{kr_{II}\cos\left(\theta_{II} - \pi + \beta - \alpha_{B}\right) + \frac{\pi}{4} + \psi_{d}\right\}\right] \\ &+ \frac{\pi}{4} + \psi_{d}\right\} \\ &\times \left[\left\{C(\gamma_{1\,II\,d1}) + \frac{1}{2}\right\} - i\left\{S(\gamma_{1\,II\,d2}) + \frac{1}{2}\right\}\right] \\ &+ \frac{K_{rII}A_{d}}{\sqrt{2}} \exp\left[i\left\{kr_{II}\cos\left(\theta_{II} + \pi - \beta + \alpha_{B}\right) + \frac{\pi}{4} + \psi_{d}\right\}\right] \\ &\times \left[\left\{C(\gamma_{1\,II\,d2}) + \frac{1}{2}\right\} - i\left\{S(\gamma_{1\,II\,d2}) + \frac{1}{2}\right\}\right] \\ &\times \left[\left\{C(\gamma_{1\,II\,d2}) + \frac{1}{2}\right\} - i\left\{S(\gamma_{1\,II\,d2}) + \frac{1}{2}\right\}\right] \\ &\qquad (2.119) \end{split}$$

ここに,

$$\gamma_{1 \text{ II} d_{1}} = \sqrt{\frac{4kr_{\text{II}}}{\pi}} \cos \frac{\theta_{\text{II}} - \pi + \beta - \alpha_{B}}{2}$$

$$\gamma_{1 \text{ II} d_{2}} = \sqrt{\frac{4kr_{\text{II}}}{\pi}} \cos \frac{\theta_{\text{II}} + \pi - \beta + \alpha_{B}}{2}$$

(2.120)

しかし,式 (2.119) は,式 (2.118) の波が一様な方向から入射してくる場合であるから,点 p がこの入射波に対して防波堤 II の遮蔽域に入っていれば,点 p での波は,式 (2.119) で表わされるが,遮蔽域外では式 (2.119) から式 (2.118) で表わされる入射波を取り除かなれけばならない。入射波を取り除くためには,式 (2.119) の右辺第1項の[]内の式を $\left[\left\{C(\gamma_{111d})-\frac{1}{2}\right\}-i\left\{S(\gamma_{111d})-\frac{1}{2}\right\}\right]$ のように書き直せばよい。

以上のようにして,基本式が求められたので,これら の式を用いて前述の5つの分類に対する近似解を求める

図-2.11 港内領域の分割

ことができる。しかし,これらの分類のすべてに対して 近似解を求めると非常に煩雑になるので,ここでは,図-2.9 (b) の分類に対する解を示す。この場合,図-2.11 に示すように A~B の5つの領域に分けて考える。

1) 領域 A

この領域は図-2.11のようにさらに A'と A"の2つ に分けて考える。領域 A'は,防波堤 I に対する入射波 と防波堤Iによる反射波と散乱波で成り立っているの で,式(2.112)のそのままの形でよいが,防波堤Ⅱによ る入射波の回折に関しては, すでに防波堤 Iの場合に入 射波を考えているので,式(2.114)から入射波成分を取 り除いておくことが必要である。つぎに,領域 A"では, 防波堤 I に対する入射波が存在しないので,式 (2.112) から入射波成分を差し引いておかなければならない。一 方,防波堤Ⅱによる入射波の回折に関しては,式(2.114) がそのまま成立する。また,領域Aでは,防波場Iによ る反射波が防波堤Ⅱで回折されるから,式(2.116)が成 り立つが,式(2.116)の入射波となる防波堤 I による反 射波は,式(2.112)内で考慮されているので,式(2.116) から差し引いておく必要がある。防波堤 IとⅡへの入射 波は同一の波であるから,防波堤 I およびⅡのどちらの 極座標で表わしても同じになる。以上のことから, A領 域内の波は,

$$\phi_A = \phi_I(r_I, \theta_I) + \phi_{II}(r_{II}, \theta_2) + \phi_{III}(r_{II}, \theta_{II})$$
$$- \exp\left[ikr_I\cos\left(\theta_I - \alpha\right)\right]$$
$$- K_{rI} \exp\left[i(kr_{II}\cos\left(\theta_{II} + \alpha + \beta\right)\right]$$

+*kB* cos (*αB*+*α*)}] (2.121) で表わされる。この式の右辺第4項は入射波,第5項は 防波堤Iの反射波を示している。

2) B領域

B領域では,防波堤 I への入射波と防波堤 I による反 射波が存在しないので,式(2.112)から入射波と反射波 を差し引かなければならない。一方,防波堤 II による回 折波は式(2.114)で表わされる。また,防波堤 I による 反射波が防波堤 II で回折される場合,この領域では防波 堤による反射波が存在しないので,式(2.116)の入射波 が存在しないことになり,式(2.116)から入射波を差し 引かねばならない。その結果,領域 Bの波は次式のよう になる。

> $\phi_{B} = \phi_{I}(r_{I}, \theta_{I}) + \phi_{II}(r_{II}, \theta_{II}) + \phi_{III}(r_{II}, \theta_{II})$ $- \exp\left[ikr_{I}\cos\left(\theta_{I} - \alpha\right)\right]$ $- K_{rI}\exp\left[ikr_{I}\cos\left(\theta_{I} + \alpha\right)\right]$ $- K_{rI}\exp\left[i\left\{kr_{II}\cos\left(\theta_{II} + \alpha + \beta\right)\right. + kB\cos\left(\alpha_{B} + \alpha\right)\right\}\right]$ (2.122)

3) 領域 C

防波堤 I による散乱波は防波堤 I の先端から円筒状に 進み,防波堤 I による散乱波の回折波は非常に小さく, 無視できると仮定すれば,防波堤 I による波としては反 射波だけになる。しかし,この反射波が防波堤 II によ って回折されるときの波の式(2.116)中にはこの反射波 がすでに含まれているので,防波堤 I による回折波の式 (2.112)はこの領域では考慮する必要はない。ただ,防 波堤 I の反射波が防波堤 II で回折される場合には,防波 堤 I への入射波として防波堤 II の先端において推算した 防波堤 I による反射波を考え,この波が一様に防波堤 II に入射するとしているため,厳密な意味では,防波堤 I の反射波を考慮していることにはならない。しかし,そ れに伴う差は小さいと考えられる。また,この領域には 港外からの入射波による防波堤 II による回折波が存在す るので,領域 Cの波は次式で表わされることになる。

 $\phi_{\sigma} = \phi_{\rm II}(r_{\rm II}, \theta_{\rm II}) + \phi_{\rm III}(r_{\rm II}, \theta_{\rm II})$ (2.123)

4) 領域D

この領域では,3)の領域Cと異なるのは,防波堤Iの 反射波が存在しないことだけであるので,領域Dの波は 次式で与えられる。

$$\phi_{D} = \phi_{II}(r_{II}, \theta_{II}) + \phi_{III}(r_{II}, \theta_{II}) - K_{rI} \exp \left[ikr_{II}\cos\left(\theta_{II} + \alpha + \beta\right) + kB\cos\left(\alpha_{B} + \alpha\right)\right]$$
(2.124)

5) 領域E

この領域が存在するのは、 $0 \le \beta < \pi - \alpha$ の場合であっ

て、 $\beta \ge \pi - \alpha$ の場合にはこの領域は存在せず、領域 A ~ D だけとなる。

この領域では,港外からの入射波に対する防波堤 II に よる回折波と防波堤 I による反射波が防波堤 II によって 回折された場合の散乱波だけとになるので,この領域内 の波は次式で表わされる。

$$\phi_{B} = \phi_{II}(r_{II}, \theta_{II}) + \phi_{III}(r_{II}, \theta_{II}) - K_{I\tau} \exp \left[i\left\{kr_{II}\cos\left(\theta_{II} + \alpha + \beta\right)\right. \\+ kB\cos\left(\alpha_{B} + \alpha\right)\right\}\right] - K_{rI}K_{rII} \exp \left[\left\{kr_{II}\cos\left(\theta_{II} - \alpha - \beta\right)\right. \\+ kB\cos\left(\alpha_{B} + \alpha\right)\right\}\right]$$
(2.125)

以上のようにして,図-2.9 (b) の港内波が算定できる。 この方法を他の分類にも適用すれば,あらゆる防波堤配 置と波の入射角度に対して求まる。しかし,これらの近 似解の誘導では,港内を幾何光学的条件で分割してお り,そのため各領域の境界線上での波の連続の条件は十 分には満足されていないので,このような近似解の適用 精度については,実験および他の数値計算法との比較に よって十分検討しておく必要がある。

(3) 厳密解と近似解との比較

防波堤が一直線状に並んでいる,完全反射の両翼防波 堤の場合,2.2 で求めた式(2.98)は防波堤における境 界条件を完全に満足する厳密な解である。そこで,この 解を厳密解と呼び,2.3(2)で求めた解を近似解と呼ん で,両者の比較を行う。

完全反射の両翼防波堤の場合には,図-2.12 に示す港 内の点 p における回析波の近似式は,次式で表わすこ とができる。

> $\phi_{p} = \phi_{I}(r_{I}, \theta_{I}) + \phi_{II}(r_{II}, \theta_{II})$ $- \exp\left[ikr_{I}\cos\left(\theta_{I} - \alpha\right)\right]$ (2.126)

ここに,座標 (*r*_I, *θ*_I) および (*r*_{II}, *θ*_{II}) と波向 α は図-2.12 に示されている。この場合,式 (2.112) で表わさ

れる $\phi_{I}(r_{I}, \theta_{I})$ 中の防波堤反射率を $K_{rI}=1$, また, 式 (2.114) で表わされる $\phi_{II}(r_{II}, \theta_{II})$ 中の防波堤反射率, 防波堤先端間を結ぶ線の角度, 副防波堤の傾き角をそれ ぞれ $K_{rII}=1$, $\alpha_{B}=\pi$ および $\beta=\pi$ とおけばよい。こ のように置くと, 式 (2.126) は次式のようになる。

$$\begin{split} \phi_{p} &= \frac{1}{\sqrt{2}} \exp\left[i\left\{kr_{1}\cos\left(\theta_{1}-\alpha\right)+\frac{\pi}{4}\right\}\right] \\ &\times \left[\left\{C(\gamma_{11})-\frac{1}{2}\right\}-i\left\{S(\gamma_{11})-\frac{1}{2}\right\}\right] \\ &+ \frac{1}{\sqrt{2}}\exp\left[i\left\{kr_{1}\cos\left(\theta_{1}+\alpha\right)+\frac{\pi}{4}\right\}\right] \\ &\times \left[\left\{C(\gamma_{12})+\frac{1}{2}\right\}i-\left\{S(\gamma_{12})+\frac{1}{2}\right\}\right] \\ &+ \frac{1}{\sqrt{2}}\exp\left[-i\left\{kr_{11}\cos\left(\theta_{11}-\alpha\right)-\frac{\pi}{4}\right. \\ &+ kB\cos\alpha\right\}\right] \\ &\times \left[\left\{C(\gamma_{111})+\frac{1}{2}\right\}-i\left\{S(\gamma_{111})+\frac{1}{2}\right\}\right] \\ &+ \frac{1}{\sqrt{2}}\exp\left[-i\left\{kr_{11}\cos\left(\theta_{11}+\alpha\right)-\frac{\pi}{4}\right. \\ &+ kB\cos\alpha\right\}\right] \\ &\times \left[\left\{C(\gamma_{112})+\frac{1}{2}\right\}-i\left\{S(\gamma_{112})+\frac{1}{2}\right\}\right] \\ &\times \left[\left\{C(\gamma_{112})+\frac{1}{2}\right\}-i\left\{S(\gamma_{112})+\frac{1}{2}\right\}\right] \end{split}$$

(2.127)

図-2.13 と図-2.14 は,式(2.98)の厳密解と式(2.127) の近似解とを比較したもので,厳密解は実線,近似解は 破線上に×印で示されている。図-2.13 は開口幅Bが波 長Lに等しい B=L の場合で,図-2.14 は B=0.5L の 場合である。

図-2.13 (a) は入射波が防波堤に直角に入射する場合 の比較図である。この図からわかるように, 直角入射で は開口幅が B=L と狭い場合でも近似解は厳密解と非常 によく一致し, 両者の差は最大でも 0.01 程度である。 図-2.13 (b)は, 入射波の進入角度を α =15°と大きく傾 けた場合の比較図である。 α =15°のように波の進入角 度を小さくすると, 近似解は厳密解からずれてくる。こ の図からわかるように, 波の入射方向に近い防波堤(こ の図では左防波堤)の遮蔽域では, α =15°でも近似解 と厳密解との差はほとんどないが, もう一方の防波堤の 遮蔽域では, 両者の差が顕著である。y/L=0.1 にお ける波高比の分布をみると, 波高比が最も高い x/L=0.3 では, 近似解は厳密解よりわずか 0.02 程度小さく, x/L=0.5 では厳密解より大きくなり, x/Lがさらに大きく

図-2.13 B/L=1 における近似解と厳密解の比較

なると、この差は次第に拡大する。 そして、x/L=3 で は近似解による値は $K_a=0.55$ 、厳密解による値は K_a =0.36 と、両者の差は 0.19 にもなる。しかし、防波堤 から離れるに従って、両者の差は急激に小さくなる。た とえば、x/L=3 では、近似解と厳密 解 との 差は y/L=0.1 で 0.19 であるが、y/L=0.5 では 0.06、y/L=1ほとんど 0 に近い。

図-2.14 (a)~(c) は,防波堤開口幅をB=0.5Lに狭く したときの近似解と厳密解との比較図である。図-2.14 (a) は,入射波が防波堤に直角に入射する場合の比較図 で,この図からわかるように,防波堤開口幅をB=0.5Lに狭くしても近似解は厳密解と非常によく一致してい る。波の進入角度を $\alpha=30^{\circ}$ に傾けた 図-2.14 (b) の 場合,近似解は厳密解からずれてくる。近似解と厳密解 との差は,図-2.13 (b) と同じように,右側防波堤の遮 蔽域で著しく,防波堤から離れるほど小さくなる。また, 近似解は波高比のビーク付近では厳密解より小さく,そ れから離れると大きくなる傾向を示しているが,ビーク 付近での差は 0.02 程度と小さい。x/L=1.5 で,y/L=0.1 では近似解は厳密解より約 0.1,y/L=0.2 では 約 0.05 大きいが,比較範囲が x/L=1.5 までであるた め,はっきりとはしないが,x/Lがさらに大きい範囲で 比較すれば,この差はさらに大きくなると予測される。 図-2.14 (c)は,波の進入角度を $\alpha=15^{\circ}$ と小さくした 場合の比較図である。波の進入角度を $\alpha=15^{\circ}$ のように 小さくすると,近似解と厳密解との差はさらに大きくな るが,この差の傾向は 図-2.14 (b)の場合とほとんど同 じである。y/L=0.1でx/L=1.5において,近似解に よる波高比は $K_a=0.6$ であるのに対し,厳密解では $K_a=0.36$ と,近似解は厳密解の約 1.7 倍にも達する。 y/L=0.5でも,x/L=1.5では近似解は厳密解の約 1.2 倍の値を示す。

以上,近似解と厳密解を比較した結果,次のようなこ とが明らかになった。

- ⑩ 波が斜めから進入すると、近似解は波の進入方向 に近い防波堤の遮蔽域では厳密解とよく一致する が、遠い防波堤での遮蔽域では両者の差が顕著にな

る。

① つで述べた近似解と厳密解の差は、波の進入角度が小さくなるほど、また B/L が小さくなるほど、 著しくなる。

このように、近似解と厳密解との間に差が現われるの は、近似解では防波堤上における境界条件を満足してい ないためと考えられる。ここで、図-2.12 における防波 堤Ⅱ上での境界条件を式(2.127)を用いて調べてみる と、

$$\begin{aligned} \frac{\partial \phi_{\mathcal{P}}}{r_{1}\partial \theta_{1}}\Big|_{\theta_{1}=\pi} \\ &= \frac{1}{\sqrt{2}} \left\{ ik \sin \alpha \right\} \exp\left[i \left\{ -kr_{1} \cos \alpha + \frac{\pi}{4} \right\} \right] \\ &\times \left[\left\{ 1 - 2C(\gamma_{11}) \right\} - i \left\{ 1 - 2S(\gamma_{11}) \right\} \right] \\ &- \frac{1}{\sqrt{2}} \sqrt{\frac{4k}{\pi r_{1}}} \cos \frac{\alpha}{2} \exp\left[i \left\{ \frac{\pi}{4} - kr_{1} \right\} \right] \\ &\qquad (r_{1} > B) \qquad (2.128) \end{aligned}$$

となる。境界条件としては $\frac{\partial \phi_p}{r_1 \partial \theta_1}\Big|_{\theta_1 = \pi} = 0$ を満足しなけ ればならないのに対して,式 (2.128)のように境界条件 を満足していない。近似解と厳密解との比較から, 波の 進入角が小さいほど両者の差が大きいことがわかってい るので,極端な場合として,図-2.12 の α が $\alpha = \pi$ と 2π の 2 つの場合について考えてみる。 $\alpha = \pi$ では, 波 は防波堤沿いに,防波堤IIから防波堤Iの方向に進行す る。このとき, $\theta_I = \pi$ の防波堤II上では,式(2.128)に よって

$$\frac{\partial \phi_{p}}{r_{1}\partial \theta_{1}}\Big|_{\theta_{1}=\pi} = 0 \tag{2.129}$$

となる。一方, $\alpha=2\pi$ で波が $\alpha=\pi$ とは逆の方向から 進入する場合, 次式となる。

$$\frac{\partial \phi_{\mathbf{p}}}{r_{1} \partial \theta_{1}} \Big|_{\theta_{1}=2\pi} = \frac{1}{\sqrt{2}} \sqrt{\frac{4k}{\pi r_{1}}} \exp\left[i\left\{\frac{\pi}{4}-kr_{1}\right\}\right]$$
(2.130)

これからわかるように、 $\alpha = \pi$ の場合には防波堤 II 上の 境界条件を完全に満足しているのに対し、 $\alpha = 2\pi$ では境 界条件を満足していない。このことは、 $\alpha = \pi$ の波向で は境界条件を完全に満足しているので、防波堤 II の背後 の近似解は厳密解とよく一致し、 $\alpha = 2\pi$ の波向では境界

図-2.14(1) B/L=0.5 における近似解と厳密解の比較

条件を満足していないので,防波堤 II の背後の近似解は 厳密解からずれることを暗示している。図-2.12 で, α = π で波が進入してきた場合を考えると,防波堤 I は α = 2π で波が進入してきたときの防波堤 II に対応するの で,防波堤 I 上では境界条件は満足されず,近似解は厳 密解からずれる。 $\pi < \alpha \le 3\pi/2$ では,防波堤 II 上での境 界条件は完全には満足されないが,満足の度合は防波堤 I 上よりよい。そのため,近似解は防波堤 I より防波堤 II の背後で厳密解とよく一致することになる。これが上 述の ⑤ の現象の現われる原因である。

また,式 (2.128) において $r_1 > B$ であるから,B が 大きくなると,式 (2.128) は 0 に近づき,境界条件を 満足する度合がよくなり,その結果近似解は厳密解に近 い値を示すようになる。

以上のように、近似解は波の進入角度および B/L が 小さい場合,防波堤近傍では厳密解からかなりずれる が,防波堤近傍を除けば厳密解との差はそれほど大きく ない。港内の波高分布を考える場合,防波堤から離れた 場所を対象としているので,波の進入角度および B/L が 小さくても,ある程度の誤差を許容すれば,この近似解 は港内波高の計算に適用することが可能である。

(4) 近似解と数値波動解析法との比較

近似解は,一直線上に防波堤が配置されている両翼防 波堤の場合だけでなく,任意の防波堤配置に対して適用 できるので,近似解の適用性に関しては,各種の防波堤 配置に対して検討しておかなければならない。そこで, 任意の防波堤配置に関して適用でき,その精度に関して も実験的に検証されている数値波動解析法²⁵⁾との比較を 行う。

数値波動解析法 (numerical analysis of wave propagation) は, 次式のような線型化された表面基礎方程式 を, 与えられた境界条件のもとに静水面の初期状態から 出発して, 差分法によって解くものである。

$$\frac{\partial u_{0}}{\partial t} = -g \frac{\partial \eta}{\partial x}$$

$$\frac{\partial v_{0}}{\partial t} = -g \frac{\partial \eta}{\partial y}$$

$$\frac{\partial \eta}{\partial t} = -\frac{1}{k} \left(\frac{\partial u_{0}}{\partial x} + \frac{\partial v_{0}}{\partial y} \right) \tanh kh$$
(2.131)

ここに、 η は水位変動量、 u_0 および v_0 はそれぞれ xおよびy 方向の表面水粒子速度である。

図2.15~2.17 は, 近似解と数値波動解析法によって求 めた波高比を比較したものである。図中の実線は数値波 動解析法による値であり,O印が近似解による値である。 近似解は港内側の部分だけを計算するようになっている ので, 港外の値は計算できない。計算では開口幅は *B/L* =4 と一定にしている。

図-2.15 は、防波堤の開口部を通って直接港内に波が 進入する場合のもので、防波堤は互に平行になっている が,両者の位置は一方が港内側にずれていて,防波堤先 端間を結んだ線と防波堤法線とは 150°の傾きをなして いる。計算は,図中の図に示した直線上で行っている。 この図からわかるように,防波堤の遮蔽区域内の線上 (x/L=-4, 0.8, 2.4) では, 近似解と数値波動解析法 によって求めた値は比較的よく一致している。特に, x/L=0.8, 2.4 上では両者が非常によく一致している。 x/L=-4では近似解が厳密解より最大で 0.1 程度大き い。一方,波が直接入射する線上 (x/L=-2, -1.6, -0.8) では両者は比較的大きくずれている。特に, x/L=-2 においては、数値波動解析による値は y/L < 3 で は $K_a=1$ 付近を変動しており, y/L>3 では y/L が大 きくなるにつれて減少し, y/L>5 では $K_a=0.75$ とほ ぼ一定値を示すが,近似解による値は,常に Ka=1 付 近にあり,数値波動解析法のような減少する傾向は現れ

図-2.15 波が直接進入する場合の近似解と数値波 動解析法による解との比較

ない。その結果,近似解は 0.3 程度数値波動解析法よ り大きくなる。X/L=-1.6 および -0.8 では,近似解 は数値波動解析法とほぼ似た傾向を示すが,波高比の値 としては,両者の値はずれ,最大で 0.3 程度の差を生ず る。

図-2.16 は、図-2.15 と同じように防波堤は互に平行 であるが、一方の防波堤の先端がもう一方の防波堤の遮 蔽域内に入っている場合のものである。この場合、前面 の防波堤で回折された波が再度もう一方の防波堤で回折 される二次回折の場合に対応する。両者の比較は、図中 の図に示した線上で行われている。x/L=1.6 および 2.4 では、近似解も数値波動解析法も y/L < 3 で大きな 波高変動を示している。この波高変動は背後防波堤によ る反射波のために起ったものと考えられる。近似解と数 値波動解析法とがずれる箇所がいくつか存在するけれど も、全体的にどの計算線上でも両者は比較的よい一致を 示している。

図-2.16 一方の防波堤の先端が他方の防波堤の背 後に入り込んでいる場合の近似解と数値 波動解析法による解との比較

図-2.17 二次回折を起す場合の近似解と数値波動 解析法による解との比較

図-2.17 は、図-2.16 の背後防波堤をもう一方の防波 堤に直角になるように配置した場合のものである。この 場合は、図-2.17 でわかるように、近似解は数値波動解 析法と非常によく一致し、両者の差はほとんどない。

なお,数値波動解析法との比較を前述の3つの防波堤 置について行った結果,半無限防波堤の解を重ね合わせ て用いる近似解でも,比較的精度よく港内波高を推定で

図-2.18 実験水路の諸元

きることがわかった。

2.4 実験による理論の妥当性の検証

(1) 実験水路と実験装置

実験水路は,運輸省港湾技術研究所大型水工実験所内 に仮設したブロック積み水路で,図-2.18 に示すように 内側幅 5.03 m,長さ 30 m および深さ 1 m である。水 路には片側側壁から 60 cm 離した位置に長さ 23 m の 仕切壁が設けてあるので,本実験で使用した水路の実験 幅は約 4.3 m である。水路床は,造波板の運動中心か ら 5.1 m の間を水平とし,これから岸側では 1/50 の一 様斜面になっている。水路終端部には消波装置として, 勾配 1/10 の碎石斜面が設けてある。

造波装置としては、大型水工実験場に付設する可搬式 造波機を用いた。この造波機はビストン型造波機で、幅 5 m,高さ 1.3 m の造波板をミナーシャモータとボール ネジで駆動するようになっている。造波板の最大振幅は 300 mm,最大速度 500 mm/sec であり、入力信号の波 形に追随して運動する。実験は規則波について行ったの で,造波機の入力信号として超低周波発信器による正弦 波形を用いた。

防波堤の模型としては,写真-2.1 に示す逆 T 字型の 鋼製模型を用いた。模型防波堤として長さ 0.45 m, 0.9 m および 1.8 m のものを用い,不足部分は木製の防波堤 で継ぎ足した。波による防波堤の転倒を防ぐために,亜 鉛メッキを施した鋼鉄製の直方体重錘(約 10 kg/個)を 防波堤張出し部に数個設置した。ただし,重錘は防波堤

写真-2.1 堤体模型

背後に置いた。

波高計としては波高 10 cm 用の容量式波高計を3台 用いた。波高計はそれぞれ自動昇降装置に取り付けられ ていて,検定が容易にできるようになっている。

本実験では,規則波の回折を取り扱っているので,波 高はペンレコーダで記録した。

(2) 実験条件

ー様水深の仮定のもとに厳密解や近似解を誘導しているので,理論解の妥当性を検証するための実験としては,一様水深の仮定が成立するような条件で行わなければならない。しかし,実験に用いた水路は1/50の一様勾配になっているため,波高の測定区間内では水深変化による波高変化が生じない程度に水深を深くする必要がある。このことを考慮して,防波堤開口部中央での水深
を 40 cm と一定にした。

有効水路幅が狭いので,防波堤開口幅は B=0.5 m と 1 m の 2 種類とし,波の周期は T=0.7 sec と短くし た。波高は線型理論が成り立つ程度に小さくすることに して,2 cm を目安とした。しかし,防波堤を設置しな い状態で防波堤開口部の設置予定地点付近の波高を測定 した結果,図-2.19 に示すように,波高は測点によって

図-2.19 入射波の波高の平面分布

異なり,波の進行方向に向って左側の波高が高く,右 側の波高が低い傾向を示している。水路幅方向に対する このような波高変化は波の浅水変形では説明できず, Harms²⁶⁾が指摘しているように cross wave の発生によ るものと推定される。波高測定区間の水深波長比は h/L =0.47~0.57 の範囲であるため,水深変化に伴う波高 変化はほとんど考えられない。このことは,図-2.19 の 波高測定結果でも波の進行方向に波高変化しているよう な傾向がみられないことからも判断できる。実験データ の整理上必要な入射波高としては,図-2.19 に示す一点 鎖線で囲まれた領域内の測点の平均波高で与えることに した。一点鎖線で囲まれた領域は,模型防波堤の開口部 を囲う範囲になっている。その結果,入射波の諸元は

表-2.3 入射波の諸元

Wave	Wave	Wave	B/L	
H [cm]	T [sec]	L [cm]	B=50 cm	<i>B</i> =100 cm
2.32	0.7	76	0.66	1.31

表-2.3 のようになった。

実験に用いる防波堤の配置は、図-2.20 (a)~(c) の 3 種類とした。これらの図中の〇印は波高測点の位置を示 している。図-2.20 (a) は防波堤が一直線上にあり,入 射波が防波堤に直角に進入する場合で、図-2.20(b)は、 防波堤に対して 60°の角度で波が進入する場合である。 また,図-2.20 (c)は、防波堤が一直線上になく、一方 の防波堤が入射波の進行方向に直角で,他方が 60° 傾い ている場合である。これら3種類の防波堤に対してそれ ぞれ防波堤開口幅が 0.5 m と 1 m の 2 種類について実 験を行った。図-2.20(a)の場合は、開口部の中央線 に対して対称であるので、測点は片側だけに配置した。 回折波が側壁で再反射することも考えられたが、水路有 効幅が狭いため消波工を設置することができなかったの で、側壁は直立壁になっている。ただし、図-2.20 (b), (c) に示すように,防波堤前面の一部には水路側壁から の反射波を除くために消波工を取り付けた。

(3) 理論値と実験値との比較

1) 港外波高

両翼防波堤に関しては、防波堤前面波高である港外波 高を測定したので、理論値との比較を行う。しかし、半 無限堤の重ね合わせで求める近似解については、港内波 高を対象にしているので、港外波に関して実験値と比較 ができないため、理論値としては Mathieu 関数による 厳密解を用いて実験値との比較を行った。

図-2.21 は,防波堤開口幅が B=0.66L で,波が防波 堤に直角に入射する場合の比較図である。開口部の中央 を通る x/L=0の測線では,y/L が小さい開口部付近に おいては波高比は $K_a=1$ の周辺を小さく変動している が,開口部から離れるに従って,両側の防波堤による反 射波の影響で波高比の変動は大きくなる。この傾向は 実験値でもよく現われている。しかし,波高の変動の位 相は厳密解による理論値と実験値とでは少しずれてい る。そのため,理論値と実験値とが波高比にして0.3程 度異なる点も生じている。x/L=-0.66の測線は,防波 堤前面に当るので,防波堤による反射波で重複波が生じ ているが,この測線は防波堤先端部の近くにあるため, 波のエネルギーが開口部の方に流れるので,防波堤から

 図-2.21 B/L=0.66 の場合の港外における実験値 と理論値の比較(α=90°)

離れるにしたがって波高の変動は小さくなる。この傾向 は実験値でもよく現われている。実験値は,理論値より 波高比で 1.0 程度低くなる $y/L\approx0.6$ の点を除けば, 理論値と比較的よい一致を示している。x/L=-1.33の 測線でも,実験値は最大で 0.5 程度の差を示す場合もあ るが,全体として理論値とよく一致している。

図-2.22 は開口部の幅が B=1.31L と 図-2.21 の 2

図-2.22 B/L=1.31 の場合の港外における実験値 と理論値の比較(α=90°) 倍の広さになった場合の比較図である。図-2.21 の場合 と傾向は非常によく似ているが, x/L=-0.66の測線は 防波堤の先端部に位置しているため, 図-2.21 の x/L=-0.66 の測線の場合より波高変動は小さい。実験値 は, x/L=-1.31の測線上では理論値とよく一致してい るが, x/L=0および -0.66 の測線上では波高の変動 の位相が理論値とずれているため,差が大きくなる箇所 が現われる。しかし,全般的にみて,理論値は実験値と よく一致している。

図-2.23 B/L=0.66 の場合の港外における実験値 と理論値の比較 (α=60°)

図-2.23 は,波高に対して防波堤が 60° 傾き,開口幅 が B=0.66L の場合である。防波堤が波向に対して 60° 傾いているため,波高変動の繰り返し間隔は長くなり, 90° の進入角度の 図-2.21 や 図-2.22 では 0.5L 間隔で あったものが, 0.57L になり,無限に長い版に 60° の進 入角度で入射する波の理論計算値である 0.577L とよく 一致する。実験値と理論値とは 0.5 程度ずれる箇所があ るけれども,両者は比較的よく一致しており,理論は実 験値の波高変動特性をよく表わしている。

図-2.24 は、図-2.23 の開口幅を 2 倍に広げた場合の比較図である。x/L=0.66の測線上では、実験値と理論値とは波高変動の位相がずれていて、波高比は両者の間で大きな差がある。特に、y/L=1.8付近で実験値の波高が理論値の 1.5 倍にもなっている。x/L=0の場合も、実験値は理論値と大きな差を示すが、理論値は実験値の

図-2.24 B/L=1.31 の場合の港外における実験値 と理論値の比較 (α=60°)

図-2.25 B/L=0.66 の場合の港内における実験値 と理論値の比較(α=90°)

波高変動の特性はよく表わしているように思われる。し かし、x/L = -0.66になると、理論値との差は大きく、 理論値は実験値の波高変動特性もよく表わしていない。 特に、y/L > 1.2では、実験値は理論値の約2倍の値を 示している。このように港口幅が広くなったときに理論 値と実験値との差が大きくな理由については明らかにで きなかった。

以上のように,防波堤前面波高においても理論値は実 験値と比較的よく一致し,理論値は防波堤前面,つま り港外波浪の推定にも適用できることがわかった。しか し,理論値は実験値と大きな差を示す場合がある。

2) 港内波高

港内波高については,近似解による計算が可能である ので,理論値としては厳密解および近似解による値であ る。

図-2.25 は,開口幅が B=0.66L (50 cm), 波が防波 堤に直角に入射する場合の図である。すでに 2.3 (3) で 述べたように直角入射の場合の近似解は B/L が小さく

図-2.26 B/L=1.31 の場合の港内における実験値 と理論値の比較 (α=90°)

ても厳密解とよく一致する。図-2.25 は B/L=0.66 と開 口幅が相対的に小さいが,近似解は厳密解と非常によく 一致しており,このことを裏付けている。実験値は近似 解や厳密解から求めた理論値の傾向とよく一致している が, y/L=2.95 の測線上で, x/L=0 となる開口部中央 線上の実験値だけが理論値より極端に小さく,理論値の 半分以下である。その他の測点では,理論値との差がせ いぜい0.1程度であるのに対し、なぜこの点で実験値が 小さくなったのか原因を究明することはできなかった が,考えられる原因としては,水路の両側壁が消波され ていないので,防波堤先端から放射された回折波が側 壁で反射され、ちょうどこの点で開口部で回折された波 と反射波の位相が 180° ずれ, 打消し合う形になって波 高が減少したのではないかと思われる。この点を除い て考えれば、理論は実験値をよく表わしているといえよ う。

図-2.26 は、波向が防波堤に直角で、開口幅が2倍に 広がった場合の図である。開口幅がB=1.31Lと広くな っているため、近似解と厳密解はさらによく一致するよ うになる。実験値も、図-2.25 のx/L=0およびy/L

図-2.27 B/L=0.66 の場合の港内における実験値 と理論値の比較(α=60°)

=2.95 の点のように極端に理論値と異なる点は現われ ず,理論値との差があってもせいぜい0.1程度である。 実験値が理論値のように滑らかに変化せず,凹凸が現わ れているのは,水路側壁からの反射波によるものと思わ れる。

図-2.27 は,防波堤開口幅が B=0.66L で,波が防波 堤に対して 60°の角度をなして入射する場合の 図であ る。このケースでは B/L=0.66 と小さく,波が $\alpha=60°$ と傾いて進入するけれども,近似解と厳密解は防波堤に 近い y/L=0.33 で 0.05 程度異なるだけで非常によく一 致している。実験値は厳密解と近似解から求めた理論値 の分布傾向を非常によく表わしているが,測点毎に調べ てみると,実験値と理論値がずれている点もある。しか し,このずれはそれほど大きくはなく,最大で 0.15 程 度である。

図-2.28 は防波堤の開口幅が 図-2.27 の2倍になった ときの図である。開口幅が大きくなっているため,近似 解は厳密解と非常によく一致している。実験値は理論値 から最大で約0.1 ずれるだけで,理論値とかなりよい一

図-2.28 B/L=1.31 の場合の港内における実験値 と理論値の比較 (α=60°)

致を示している。ただし、y/L=1.64 と 2.95 の測線上 で水路側壁に最も近い x/L=3.3 の点では、実験値は理 論値から大きくずれているけれども、これは水路側壁に よる反射波の影響であると考えて、理論値との比較では 除いている。

図-2.29 は、波向に対して防波堤の一方が直角で、他 方が 60° 傾いており、防波堤開口部が B=0.66L の場 合の図である。このような防波堤配置に関しては厳密な 意味での解析解を求めることができないが、2.3 (2) で 示したように半無限防波堤に対する解の重ね合わせによ る近似解を用いると計算できる。そこで、図中にはこの 近似解で求めた値と 図-2.27 のような両防波堤が波向に 対して 60° 傾いている場合の厳密解とが示されている。 この厳密解は、このような防波堤配置に対しては厳密解 とはいえないが、図-2.29 でわかるように非常によく近 似解と一致している。このことは、このような配置の防 波堤に対しては近似解で計算しなくても、同じ開口幅を 持ち、両防波堤が波向に対して 60° 傾いている厳密解に よる値を適用してもよいと思われる。実験値は、近似解 や両翼防波堤に対する厳密解で求めた理論値から最大で 0.2 程度ずれている点があるけれども,相対的に理論値 は実験値とよく一致しており,近似解でこのような防波 堤配置に対する港内波高が推定できることがわかる。

図-2.30 は、図-2.29 と同じ防波堤配置で、単に開口 幅を2倍に拡げた場合である。この図にも両翼防波堤が 波向に対して 60° 傾いた 図-2.28 の厳密解が参考として 示してある。開口幅が相対的に広くなっているため、両 翼防波堤に対する厳密解は,図-2.29の場合より近似解 とのずれが大きくなるが,近似解とのずれは防波堤に近 い, y/L=0.33の測線上で最も大きくて 0.05 程度であ る。この程度の差では両翼防波堤が波向に対して 60° 傾 いている場合の厳密解で近似できる。実験値は近似解や 両翼防波堤に対する厳密解で求めた理論値の波高分布の 傾向とよく一致しているが、各測点の波高比に関して実 験値と理論値とを比較してみると,実験値が理論値から 0.1~0.2 ずれている 測点が 見出される。 ただし, y/L =1.64 および 2.95 の測線で, x/L=3.3 の点の実験値 は水路側壁からの反射波のために理論値から大きくずれ たと考えられるので、この点は実験値と理論値との比較

図-2.29 B/L=0.66 の場合の港内における実験値 と理論値の比較 (α=60° および 90°)

図-2.30 B/L=1.31 の場合の港内における実験値 と理論値の比較 (α=60° および 90°)

では除いた。この2点で実験値が大きくずれる傾向は 図-2.28 と全く同じである。では,なぜ 図-2.27 や 図-2.29 で実験値と理論値の差が 図-2.28 や 図-2.30 と同 一の点で現われないかという理由としては,防波堤の先 端の位置が異なるので,水路反射波と直接回折波との位 相のずれが 図-2.29 と 図-2.30 とは異なることと,開口 部の幅が狭いと,水路反射波が直接回折波に比して小さ くなることが考えられる。

以上述べた実験値と理論値の比較から,近似解および 厳密解は実験値とよく一致し,理論解析の妥当性を確認 することができた。

2.5 結 語

本章においては,開口防波堤による波の回折に関し て,理論的な解析を行い,実験によってその妥当性を検 討した。まず,2.1 では,開口防波堤による波の回折に 関する従来の研究成果とその経緯について概説し,残さ れた問題を明らかにすることによって本章の研究目的を 明確にした。2.2 では,一直線上に配置された両翼防波 堤による波の回折の厳密解を誘導し,実際に計算を行っ て,防波堤開口部のまわりの波高分布を例示した。2.3 では,任意の防波堤配置に対する回折波の近似解を誘導 し,近似解の精度および妥当性について厳密解および数 値波動解析法の結果と比較した。最後に,2.4 では厳密 解および近似解の妥当性を検証するために,模型実験を 行って実験値と理論値とを比較した。以上の内容から主 要な結論は以下のように要約される。

- 実際の港の防波堤配置や海の波が方向スペクトルを 有する不規則波であることを考慮すると、容易に数値 計算ができ、任意の防波堤配置に対して計算できる解 析解が必要となる。
- 2) 一直線上にある両翼防波堤による波の回折の厳密解は、防波堤前面では式(2.97)、防波堤背後では式(2.98)で与えられる。この解を用いて実用上十分な精度の波高比を計算するための項数は式(2.103)と(2.104)で求められる。
- 3) 半無限防波堤による回折波の式の物理的意味を考察し、半無限消波堤に対する回折波の解を式(2.111)のように求めた。
- 4) 半無限消波堤に対する回折波の解を用いて、任意配置の開口防波堤による回折波の解を導いた。これによって、防波堤の反射率も考慮した回折波が計算できる。
- 5) 両翼防波堤に関して,近似解と厳密解とを比較した 結果,近似解は波向に対して防波堤が直角に配置され

た場合, B/L=0.5 までは厳密解とよく一致する。し かし,波向に対する防波堤の傾き角が小さくなるにつ れて,厳密解からずれるようになる。このずれは,波 の入射する方向に防波堤の先端が向いている防波堤の 背後で顕著で,また,防波堤に近いほど大きい。この 原因としては,近似解が防波堤面上での境界条件を満 足しておらず,斜め入射になるにつれて境界条件の不 満足の状態が強くなるからである。

- 6) 近似解と数値波動解析法による値とを3種類の防波 堤配置について比較した結果,近似解は比較的よく数 値波動解法の結果と一致し,近似解の適用性が検証さ れた。
- 7) 実験によって近似解と厳密解の妥当性について検討した結果,港外の波については厳密解としか比較できなかったけれども、実験値は比較的よく理論値と一致しており、厳密解によって港外の波高分布が推定できることがわかった。また,港内の波については、近似解と厳密解とは非常によく一致し、これらの理論解と実験値との対応はよかった。これによって,理論解は実際の水の波の回折にも適用できることが判明した。

参考文献

- Penny, W. G. and A. T. Price: Diffraction of sea waves by breakwater, Dire. Misc. Weapons Develop., Tech. His., No. 26, —Artificial Harbours, 1944.
- Puttnam, R. C. and R. S. Arthur: Diffraction of water waves by breakwaters, Trans. AGU, Vol-29, No. 4, 1948, pp. 481~490.
- Wiegel, R. L.. Diffraction of waves by semiinfinite breakwater, Jour. Hydraulic Div., Proc. ASCE, Vol. 88, No. HY1, 1963, pp. 27~44.
- 森平倫生・奥山育英: 海の波の回折計算法と回折
 図,港湾技研資料, No. 21, 1966, 45 p.
- Blue, F. L. and J. W. Johnson: Diffraction of water waves passing through a breakwater gap, Trans. AGU, Vol. 30, No. 5, 1949, pp. 705~718.
 前出文献 4).
- 7) Johnson, J. W.: Generalized wave diffraction
- diagrams, Proc. 2nd Conference on Coastal Engineering, Houston, Texas, 1951.
- 高井俊郎: 防波堤開口部に斜めに入射する波の回 折図,港湾技研資料, No. 66, 1969, 42 p.
- Lacombe, H.: The diffraction of swell—A practical approximate solution and its justification—, Proc. Symposium on Gravity Waves, National Bureau of Standard, 1951, pp. 129~140.
- Carr, T. H. and M. E. Stelzriede: Diffraction of water waves by breakwaters, Proc. Symposium on

Gravity Waves, National Bureau of Standard, 1951, pp. 109~125.

- 11) Morse, P. M. and H. Feshbach: Methods of the theoretical physics, part II, McGraw-Hill Book Company, Inc., 1953, pp. 1407~1432 による.
- 12) Barailler, L. and D. Gailland: Evolution récente des modéles mathèmatéques d'agitation due a lahoule: Calcul de la diffraction en profondeur non uniforme, La Houille Blance, No. 8, 1967, pp. 861~869.
- 13) 山本隆一・横田基紀・滑川伸孝: 数値波高シミュ レーションについて,第22回海岸工学講演会論文 集,1975, pp. 259~263.
- 伊藤喜行・谷本勝利:新しい方法による波動の数 値計算——防波堤周辺の波高分布への適用——,港 湾技術研究所報告,第10巻,第2号,1971,pp. 97~111.
- Abbott, M. B., H. M. Peterson and O. Skovgaad: Computations of short waves in a shallow water, Proc. 16th Conference on Coastal Engineering, Vol. I, 1978, pp. 414~432.
- 16) McLachlan, N. W.: Theory and application of

Mathieu functions, Dover Pub. Inc., 1964.

- 17) 寺沢寛一: 数学概論 (応用編), 岩波書店, 1963, pp. 146~174.
- 合田良実・吉村知司: 海中に孤立した巨大構造物 に働く波力の計算,港湾技術研究所報告,第10巻, 第4号,1971, pp. 3~52.
- 19) 前出文献 17).
- 20) 前出文献 16).
- 21) 前出文献 16).
- 22) 前出文献 18).
- 23) 伊藤喜行·谷本勝利: 混成防波堤の蛇行災害,港 湾技研資料, No. 112, 1971, 20 p.
- 24) 合田良実・鈴木康正・高山知司: 不規則波に対す る防波堤の回折図について,第23回海岸工学講演 会論文集,1976, pp. 401~405.
- 25) 谷本勝利・小舟浩治・小松和彦: 数値波動解析法 による港内波分布の計算,港湾技術研究所報告,第 14 巻,第3号,1975, pp. 35~58.
- Harms, V. M.: Diffraction of waves by shoreconnected breakwater, Jour. Hydraulic Division, Proc. ASCE, Vol. 105, No. HY12, 1979, pp. 1501~1519.

3. 島堤による波の回折

3.1 概 説

島堤, すなわち島状防波堤は防波堤の一つの形式とし て実際の港でもしばしば用いられている。また,海岸浸 食防止のために築造される離岸堤も島堤の一形態と考え られる。

こうした島堤に波が作用すると、島堤の前面には反射 波が生じるが、島堤が消波堤である場合には、反射波高 は島堤の反射率に比例して減少し、島堤によって反射波 のエネルギーは一部消散される。一方、島堤背後には回 折波が廻り込んでくる。島堤によるこのような波の反 射・回折は海中構造物による波の散乱現象と本質的には 同じものである。島堤による散乱波は島堤背後では回折 波となって、その波高を減じるため、背後海域は静穏に なるが、島堤前面ではその散乱波は反射波となって、前 面海域を大きくじょう乱させる。このように島堤の周辺 海域では、場所的に波高が大きく異なるため、島堤を実 際の港に設置する場合には、島堤周囲の波高分布を的確 に推定したうえで、島堤の長さおよびその方向を決定し なければならない。

また,近年,防波堤の延長や埋立護岸の建設に伴って, 反射波で小型船舶の航行が危険になったり,港内に反射 波が進入するようになって,係留船舶が被害を受けたり する問題が発生している。そこで,防波堤を建設あるい は延長した場合や埋立護岸を建設した場合に,反射波が 前面海域でどのように減衰しながら伝播するかを推定す ることが重要になってきている。この場合,防波堤や護 岸の反射面を島堤と考え,島堤前面の反射波を計算する ことによって反射波の影響度を近似的に推定することが 考えられる。

このように島堤による散乱波の解析は,島堤そのもの による反射・回折の問題ばかりでなく,防波堤や護岸か らの反射波の推定にも重要となる。島堤による波の散乱 の問題はこのように重要であるにもかかわらず,これに 関する研究は少ない。

田中¹)は半無限堤に対する Sommerfeld の解析解を重 ね合わせることによってその近似解を提案している。ま た,和田^{2),3)}は,Helmholz の方程式に関連する境界値問 題を Wiener-Hopf 法で解く解法のうち Jones の方法を 用いて,島堤による波の回折の問題を解いている。この 結果によると,島堤の長さが5波長以上では,半無限堤 に対する解の重ね合わせによる近似解が成り立つが,島 堤がこれよりも短くなると,両端よりの相互干渉が強く なり,近似解を補正する必要があることを示している。 しかし,和田の解法は,島堤近傍では計算の信頼度が低 く,島堤沿いの波高分布あるいは波圧の算定には利用で きない。

伊藤および谷本⁴⁾ は数値波動解析法で島堤沿いの波高 分布を計算している。しかし,数値波動解析法では数値 計算上島堤面上の計算ができないので,島堤沿いの波高 分布として島堤近傍の値を用いている。

Stiassinie および Dagan⁵⁾ は,著者と同様に Mathieu 関数を用いて島堤による回折波を計算しているが,エネ ルギー比で回折波高を整理しており,計算結果は実用的 でない。

Harms⁶) は, Green 関数を用いて孤立構造物による回 折波の波高を計算しているが,薄い構造物では計算時間 が非常に長くかかるため,薄い構造物の背後の波高分布 が半無限堤の解の重ね合わせによる結果と非常によく一 致することから,薄い構造物では重ね合わせ法で計算し ている。

以上のように、各種の方法で島堤による波の散乱の問 題が解かれているが、実際の海の波のような、方向スペ クトルを有する不規則波の回折計算に応用することを考 えると、半無限防波堤に対する解の重ね合わせによる近 似解が非常に有効である。しかし、この近似解の適用性 およびその範囲については十分な検討がなされていな い。そこで、本章においては、島堤に対する厳密解を導 き、厳密解と近似解とを比較することによって近似解の 適用範囲を明らかにすると同時に、実験によって厳密解 および近似解の妥当性を検討する。

3.2 島堤による波の回折の厳密解

(1) 楕円柱体による波の散乱の厳密解

流体および流体運動,境界条件に関して,2.2 (1) で 仮定した a)~e)の仮定を設けることによって微小振幅 波理論が適用できる。島堤は,短軸が無限小になった楕 円柱体と考えることができるので,式(2.16)で表わさ れる 図-2.2 のような楕円座標を考え,まず,楕円柱体 による波の散乱の解を求める。

入射波の速度ポテンシャルを ϕ_i , 楕円柱体による散 乱波の速度ポテンシャルを ϕ_s とすると, 仮定によって 楕円柱体の境界面では

$$\frac{\partial}{\partial \varepsilon} (\phi_i + \phi_s)|_{\varepsilon = \varepsilon_0} = 0 \tag{3.1}$$

となる。ここに, ち は楕円座標による楕円境界面を示し ている。入射波の速度ポテンシャルを

$$\Phi_i = \frac{igH_i}{2\sigma \cosh kh} \phi_i(\xi,\theta) \cosh k(h+z)e^{i\sigma t} \quad (3.2)$$

で表わすと, $\phi_i(\xi, \theta)$ は Mathieu 関数および変形 Mathieu 関数によって式 (2.72) のように表わすことができる。

楕円柱体から無限に遠ざかった領域では,楕円柱体の 存在による影響は失なわれ,入射波のみが存在すること になって、 $\boldsymbol{\theta}_s$ はいわゆる radiation 条件を満足しなけれ ばならないことになる。そこで、 $\boldsymbol{\theta}_s$ を

$$\Phi_s = \frac{igH_i}{2\sigma \cosh kh} \phi_s(\xi,\theta) \cosh k(h+z)e^{i\sigma t} \quad (3.3)$$

のように式 (3.2) と同じ形で表わすと、 $\phi_s(\xi, \theta)$ が radiation 条件を満足することになり、Mathieu 関数およ び変形 Mathieu 関数によって、次式のように表わすこ とができる。

$$\begin{split} \phi_{s}(\xi,\theta) &= \sum_{n=0}^{\infty} [C_{2n} \operatorname{Me}_{2n}^{(2)}(\xi; k_{1}^{2}) \\ &\times \operatorname{ce}_{2n}(\theta; k_{1}^{2}) \operatorname{ce}_{2n}(\alpha; k_{1}^{2}) \\ &+ S_{2n+2} \operatorname{Ne}_{2n+2}^{(2)}(\xi; k_{1}^{2}) \\ &\times \operatorname{se}_{2n+2}(\theta; k_{1}^{2}) \operatorname{se}_{2n+2}(\alpha; k_{1}^{2}) \\ &+ C_{2n+1} \operatorname{Me}_{2n+1}^{(2)}(\xi; k_{1}^{2}) \\ &\times \operatorname{ce}_{2n+1}(\theta; k_{1}^{2}) \operatorname{ce}_{2n+1}(\alpha; k_{1}^{2}) \\ &+ S_{2n+1} \operatorname{Ne}_{2n+1}^{(2)}(\xi; k_{1}^{2}) \\ &\times \operatorname{se}_{2n+1}(\theta; k_{1}^{2}) \operatorname{se}_{2n+1}(\alpha; k_{1}^{2}) \end{split}$$
(3.4)

ここに, α は 図-3.1 に示されているような入射波の進

図-3.1 楕円柱体による波の散乱の座標系

入角度であり, $k_1=Bk/4=\pi B/2L$ で, B は楕円の焦点 距離である。また, C_{2n} , S_{2n+2} , C_{2n+1} および S_{2n+1} は つぎのように決定される未知定数である。

式 (3.2) および (3.3) を式 (3.1) の境界条件に代入 し, Mathieu 関数の直交性を利用すると, 未知定数は次 式のように定まる。

$$C_{2n} = -\frac{2\operatorname{Ce}_{2n}'(\xi_0; k_1^2)}{p_{2n}\operatorname{Me}_{2n}^{(2)}'(\xi_0; k_1^2)}$$

$$C_{2n+1} = -\frac{2i \operatorname{Ce}_{2n+1}^{\prime}(\xi_{0}; k_{1}^{2})}{p_{2n+1}\operatorname{Me}_{2n+1}^{(2)}(\xi_{0}; k_{1}^{2})} \\ S_{2n+1} = -\frac{2i \operatorname{Se}_{2n+1}^{\prime}(\xi_{0}; k_{1}^{2})}{s_{2n+1}\operatorname{Ne}_{2n+1}^{(2)}(\xi_{0}; k_{1}^{2})} \\ S_{2n+2} = -\frac{2\operatorname{Se}_{2n+2}^{\prime}(\xi_{0}; k_{1}^{2})}{s_{2n+2}\operatorname{Ne}_{2n+2}^{(2)}(\xi_{0}; k_{1}^{2})} \right)$$
(3.5)

楕円柱体周囲の速度ポテンシャルを
$$\phi$$
 とおくと,
 $\phi = \phi_i + \phi_s$

$$=\frac{igH_i}{2\sigma\cosh kh}\phi(\xi,\theta)\cosh k(h+z)e^{i\sigma t} \quad (3.6)$$

となり、 $\phi(\xi, \theta)$ は

$$\begin{split} \phi(\xi, \theta) &= \phi_i(\xi, \theta) + \phi_s(\xi, \theta) \\ &= \exp\left[2ik_1(\cosh\xi\cos\theta\cos\alpha \\ +\sinh\xi\sin\theta\sin\alpha)\right] \\ &- \sum_{n=0}^{\infty} \left[\frac{2\mathrm{Ce}_{2n}'(\xi_0; k_1^2)}{p_{2n}\mathrm{Me}_{2n}^{(2)}'(\xi_0; k_1^2)}\mathrm{Me}_{2n}^{(2)}(\xi; k_1^2) \right. \\ &\times \mathrm{ce}_{2n}(\theta; k_1^2)\mathrm{ce}_{2n}(\alpha; k_1^2) \\ &+ \frac{2\mathrm{Se}_{2n+2}'(\xi_0; k_1^2)}{s_{2n+2}\mathrm{Ne}_{2n+2}^{(2)}(\xi; k_1^2)}\mathrm{Ne}_{2n+2}^{(2)}(\xi; k_1^2) \\ &\times \mathrm{se}_{2n+1}(\theta; k_1^2)\mathrm{se}_{2n+2}(\alpha; k_1^2) \\ &+ i\left\{\frac{2\mathrm{Ce}_{2n+1}'(\xi_0; k_1^2)}{p_{2n+1}\mathrm{Me}_{2n+1}^{(2)}(\xi; k_1^2)}\mathrm{Me}_{2n+1}^{(2)}(\xi; k_1^2) \right. \\ &\times \mathrm{ce}_{2n+1}(\theta; k_1^2)\mathrm{ce}_{2n+1}(\alpha; k_1^2) \\ &+ \frac{2\mathrm{Se}_{2n+1}'(\xi_0; k_1^2)}{s_{2n+1}\mathrm{Ne}_{2n+1}^{(2)}(\xi_0; k_1^2)}\mathrm{Ne}_{2n+1}^{(2)}(\xi; k_1^2) \\ &\times \mathrm{se}_{2n+1}(\theta; k_1^2)\mathrm{se}_{2n+1}(\alpha; k_1^2) \\ &\left. \times \mathrm{se}_{2n+1}(\theta; k_1^2)\mathrm{se}_{2n+1}(\alpha; k_1^2) \right\} \right] (3.7) \end{split}$$

となって, 楕円柱体周囲の波高比 Ka は, 次式で与えられる。

$$K_a = |\phi(\xi, \theta)| \tag{3.8}$$

また, 楕円柱体に働く波圧は, Bernoulli の定理から 次式で計算できる。

$$p = -\frac{w_0}{g} \frac{\partial \Phi}{\partial t} - w_0 z \tag{3.9}$$

ここに, *p* は楕円柱体に働く水圧, *w*₀ は水の単位体積 重量である。式 (3.9) を用いた楕円柱体に働く波圧につ いては,著者らの研究^{7),9)}がある。

(2) 円柱構造物による回折散乱波の解

楕円柱体は,長軸と短軸の長さが等しくなれば円柱体 になるので,楕円柱体による散乱波の解は円柱の場合も 包含しているはずである。そこで,楕円柱体に対する解 を用いて,円柱体の解を求め,すでに得られている解と 比較する。

式 (2.16) から, $r = \sqrt{x^2 + y^2}$

$$=\frac{B}{2}\sqrt{\cosh^2\xi - \sin^2\theta} \tag{3.10}$$

 $\tan \theta_r = y/x$

 $= \tanh \xi \tan \theta \tag{3.11}$

のように, r および θ_r を定義すると, (r, θ_r) は極座標 になる。境界上では, 式 (3.10) から,

$$r_0 = \frac{B}{2} \sqrt{\cosh^2 \xi_0 - \sin^2 \theta} \tag{3.12}$$

となり,式 (3.12)の両辺に波数 k を乗じて, r_0k =const. とした状態で ξ_0 を大きくすると,楕円を円に 漸近させることができる。これは波長に対する構造物の 大きさを一定に保って,円柱に近づけることを意味す る。その結果,

$$\left.\begin{array}{c} \cosh\xi_0 \approx \sinh\xi_0 \\ \tanh\xi_0 \approx 1 \end{array}\right\} \tag{3.13}$$

となる。 さらに, kr_0 は一定であるから, kB は ξ_0 の 増大に伴って減少し,

$$k_1 = kB/4 \approx 0 \tag{3.14}$$

である。
$$k_1 \rightarrow 0$$
の場合,式 (2.26) から,
 $\operatorname{ce}_n(\theta; k_1^2) = \cos n\theta_r$
 $\operatorname{se}_n(\theta; k_1^2) = \sin n\theta_r$ $(n \ge 1)$

$$(3.16)$$

$$ce_0(\theta; k_1^2) = A_0^{(0)} = \frac{1}{\sqrt{2}}$$
 (3.17)

となる。同様に、 ϵ の関数は、 $kr \approx 2k_1 \cosh \epsilon \approx 2k_1 \sinh \epsilon$ の関係を用いると、

$$\begin{array}{c} \operatorname{Ce}_{2n}(\xi; k_1^2) \approx (-1)^n p_{2n} J_{2n}(kr) \\ \operatorname{Ce}_{2n+1}(\xi; k_1^2) \approx (-1)^n p_{2n+1} J_{2n+1}(kr) \\ \operatorname{Se}_{2n+2}(\xi; k_1^2) \approx (-1)^n s_{2n+2} J_{2n+2}(kr) \\ \operatorname{Se}_{2n+2}(\xi; k_1^2) \approx (-1)^n s_{2n+2} J_{2n+2}(kr) \\ \operatorname{Me}_{2n}^{(2)}(\xi; k_1^2) \approx (-1)^n p_{2n} H_{2n}^{(2)}(kr) \\ \operatorname{Me}_{2n+1}^{(2)}(\xi; k_1^2) \approx (-1)^n s_{2n+1} H_{2n+1}^{(2)}(kr) \\ \operatorname{Ne}_{2n+1}^{(2)}(\xi; k_1^2) \approx (-1)^n s_{2n+1} H_{2n+1}^{(2)}(kr) \\ \operatorname{Ne}_{2n+1}^{(2)}(\xi; k_1^2) \approx (-1)^n s_{2n+2} H_{2n+1}^{(2)}(kr) \\ \operatorname{Ne}_{2n+2}^{(2)}(\xi; k_1^2) \approx (-1)^n s_{2n+2} H_{2n+1}^{(2)}(kr) \end{array} \right)$$

$$(3.18)$$

となる。また,

$$\frac{\partial}{\partial \xi} \approx kr \frac{\partial}{\partial r} \tag{3.19}$$

であるから, 式 (3.16)~(3.19) を式 (3.7) に代入して 整理すると,

$$\phi = \exp\left[ikr\cos\left(\theta_r - \alpha\right)\right] - \frac{J_0'(kr_0)}{H_0^{(2)'}(kr_0)} H_0^{(2)}(kr)$$

$$-2\sum_{n=1}^{\infty} i^n \frac{J_n'(kr_0)}{H_n^{(2)'}(kr_0)} H_n^{(2)}(kr) \cos\left(\theta_r - \alpha\right)$$
(3.20)

となる。この式 (3.20) は,田中^{9)や} MacCamy および Fuchs¹⁰⁾ が求めた円柱による回折散乱波の式に一致す る。このように,楕円柱体による波の散乱の式は,円柱 構造物に対しても適用できることがわかる。

(3) 島堤による回折散乱波の解

式 (2.16) において、 50→0 とすると、 楕円柱体は

$$x_0 = \frac{B}{2} \cos \theta$$

$$y_0 = 0$$

$$(3.21)$$

で表わされ,長さ B,厚さ 0 の島堤に変換できる。 $\xi_0 \rightarrow 0$ の場合,式 (2.46) と (2.48) から, $\lim_{\xi_0 \rightarrow 0} Ce'_{2n}(\xi_0; k_1^2) = \lim_{\xi_0 \rightarrow 0} Ce'_{2n+1}(\xi_0; k_1^2) = 0$

となり、式(3.7)は次のように簡単になる。

 $\phi = \exp \left[2ik_1 (\cosh \xi \cos \theta \cos \alpha + \sinh \xi \sin \theta \sin \alpha) \right]$

$$+ \sin \xi \sin \theta \sin \alpha]$$

$$- \sum_{n=0}^{\infty} \left[\frac{2 \mathrm{Se}'_{2n+2}(0; k_1^2)}{s_{2n+2} \mathrm{Ne}_{2n+2}^{(2)}(0; k_1^2)} \mathrm{Ne}_{2n+2}^{(2)}(\xi; k_1^2) \right]$$

$$\times \mathrm{se}_{2n+2}(\theta; k_1^2) \mathrm{se}_{2n+2}(\alpha; k_1^2)$$

$$+ i \frac{2 \mathrm{Se}'_{2n+1}(0; k_1^2)}{s_{2n+1} \mathrm{Ne}_{2n+1}^{(2)}(0; k_1^2)} \mathrm{Ne}_{2n+1}^{(2)}(\xi; k_1^2)$$

$$\times \mathrm{se}_{2n+1}(\theta; k_1^2) \mathrm{se}_{2n+1}(\alpha; k_1^2) \left] \qquad (3.23)$$

式 (3.23) において
$$\theta=0$$
 あるいは π とおくと,
sen(0; k_1^2)=sen(π ; k_1^2)=0 (3.24)

となり、式 (3.23) は次式のように散乱波の項が消える。 $\phi(\xi, \theta)|_{\theta=0,\pi} = \exp[\pm 2ik_1 \cosh \xi \cos \alpha]$ (3.25)

ここに,式 (3.25)の右辺の正負の符号は $\theta=0$ とき正, $\theta=\pi$ のとき負である。その結果, $|\phi(\xi,\theta)|_{\theta=0,\pi}|=1$ となる。これは x 軸上, つまり島堤の延長線上では島堤の前面での散乱波と背面での散乱波が逆位相になって,互に打ち消し合い,入射波の項だけが残るためである。また, x 軸方向から波が入射してくる $\alpha=0$ または π の場合も,

 $\phi(\xi, \theta) = \exp \left[\pm 2ik_1 \cosh \xi \cos \theta \right]$ (3.26) となって、この場合は全海域で島堤の影響は現われない。このことは実際現象からも当然予想されるところである。

次に,島堤に対して直角方向から波が入射する場合に ついて考えると,この場合,α=π/2 であるから

$$\operatorname{se}_{2n+2}\left(\frac{\pi}{2};k_{1}^{2}\right)=0$$
 (3.27)

となり,式 (3.23) は次式のように簡単になる。

$$\phi = \exp\left[2ik_{1}\sinh\xi\sin\theta\right] \\ -i\sum_{n=0}^{\infty} \frac{2\mathrm{Se}_{2n+1}^{\prime}(0;k_{1}^{2})}{s_{2n+1}\mathrm{Ne}_{2n+1}^{(2)\prime}(0;k_{1}^{2})}\mathrm{Ne}_{2n+1}(\xi;k_{1}^{2}) \\ \times \mathrm{se}_{2n+1}(\theta;k_{1}^{2})\mathrm{se}_{2n+1}\left(\frac{\pi}{2};k_{1}^{2}\right)$$
(3.28)

ここで, $\operatorname{se}_{2n+1}(\theta; k_1^2) = \operatorname{se}_{2n+1}(\pi - \theta; k_1^2)$ の関係があるから,

$$\phi(\xi, \pi - \theta) = \phi(\xi, \theta) \tag{3.29}$$

となって, y 軸に関して波高分布は対称となることがわかる。

式 (3.23) において、散乱波の項のみ取り出すと、 $\phi_s(\xi, \theta)$

$$= -\sum_{n=0}^{\infty} \left[\frac{2\mathrm{Se}_{2n+2}^{\prime}(0; k_1^2)}{\mathrm{s}_{2n+2} \operatorname{Ne}_{2n+2}^{(2)\prime}(0; k_1^2)} \operatorname{Ne}_{2n+2}^{(2)}(\xi; k_1^2) \right. \\ \left. \times \mathrm{se}_{2n+2}(\theta; k_1^2) \mathrm{se}_{2n+2}(\alpha; k_1^2) \right. \\ \left. + i \frac{2\mathrm{Se}_{2n+1}^{\prime}(0; k_1^2)}{\mathrm{s}_{2n+1} \operatorname{Ne}_{2n+1}^{(2)\prime}(0; k_1^2)} \operatorname{Ne}_{2n+1}^{(2)}(\xi; k_1^2) \right. \\ \left. \times \mathrm{se}_{2n+1}(\theta; k_1^2) \mathrm{se}_{2n+1}(\alpha; k_1^2) \right]$$
(3.30)

となり, sen(θ ; k_1^2)は奇関数であるから,次の関係が求まる。

 $\phi_{s}(\xi, -\theta) = -\phi_{s}(\xi; \theta)$ (3.31) 両辺の絶対値を取ると $|\phi_{s}(\xi, -\theta)| = |\phi_{s}(\xi, \theta)|$ となるの で,散乱波のみの波高は島堤の法線に関して対称とな り,位相は *ⁿ* だけずれることがわかる。

(4) 島堤付近の波高比の計算

実際の数値計算に当っては,収束のよい次の関数形¹¹⁾を用いた。

$$Se_{2n+1}(\xi; k_{1}^{2}) = (s_{2n+1}/B_{1}^{(2n+1)}) \sum_{r=0}^{\infty} (-1)^{r} B_{2r+1}^{(2n+1)} \times [J_{r}(v_{1})J_{r+1}(v_{2}) - J_{r+1}(v_{1})J_{r}(v_{2})]$$

$$Se_{2n+2}(\xi; k_{1}^{2}) = (s_{2n+2}/B_{2}^{(2n+2)}) \sum_{r=0}^{\infty} (-1)^{r} B_{2r+2}^{(2n+2)} \times [J_{r}(v_{1})J_{r+2}(v_{2}) - J_{r+2}(v_{1})J_{r}(v_{2})]$$

$$Ne_{2n+1}^{(2)}(\xi; k_{1}^{2}) = (s_{2n+1}/B_{1}^{(2n+1)}) \sum_{r=0}^{\infty} (-1)^{r} B_{2r+1}^{(2n+1)} \times [J_{r}(v_{1})H_{r+1}^{(2)}(v_{2}) - J_{r+1}(v_{1})H_{r}^{(2)}(v_{2})]$$

$$Ne_{2n+2}^{(2)}(\xi; k_{1}^{2}) = (s_{2n+2}/B_{2}^{(2n+2)}) \sum_{r=0}^{\infty} (-1)^{r} B_{2r+2}^{(2n+2)} \times [J_{r}(v_{1})H_{r+2}^{(2)}(v_{2}) - J_{r+2}(v_{1})H_{r}^{(2)}(v_{2})]$$

$$Se_{2n+2}(\xi; k_{1}^{2}) = (s_{2n+2}/B_{2}^{(2n+2)}) \sum_{r=0}^{\infty} (-1)^{r} B_{2r+2}^{(2n+2)} \times [J_{r}(v_{1})H_{r+2}^{(2)}(v_{2}) - J_{r+2}(v_{1})H_{r}^{(2)}(v_{2})]$$

ここに, $v_1 = k_1 e^{-\epsilon}$, $v_2 = k_1 e^{\epsilon}$ である。

計算に用いた級数項の数については,式(2.103)およ び (2.104) から決めた。図-3.2 は, B/L=2, a=30°の 場合の厳密解による島堤周辺の波高の平面分布を示して いる。図中の数字は入射波高に対する波高比を示す。こ の図でわかるように,島堤前面では波高の大きい部分と 小さい部分が交互に現れ、入射波と反射波が互いに重な り合っているのがわかる。波高の大きい部分 ($K_a > 1.5$) と小さい部分(Ka<0.5)が島堤付近で反射方向に交互に 並んでいるけれども,島堤から遠ざかるに従って,これら の部分は幾何光学的な反射領域から右側入射波直進領域 に移動する傾向を示している。島堤背後では、波高の小 さい部分はほぼ入射波方向に流されたような形状を示し ているが,島堤から離れるに従って幾何光学的な陰の部 分から右側入射波直進領域に拡がる傾向を示している。 島堤すぐ背後では波高の小さい部分がx方向に交互に現 われ,特に波高の小さい,Ka<0.1の部分は島堤の左端か ら0.3波長程度離れた防波堤すぐ背後に現われている。

3.3 島堤による波の回折の近似解

近似解の誘導

図-3.3 に示すように,島堤に対して α の角度から波 が入射してくる場合を考える。この場合,島堤の両端で 波は回折されて背後に廻り込んでくるが,この回折が島 堤の両端で独立に起り,相互に干渉しないと仮定すれ ば,島堤の左端を堤端とし,右側に半無限に延びた防波 堤による回折波と,島堤の右端を堤端とし,左側に半無 限に延びた防波堤による回折波とを相互の位相のずれを 考慮して重ね合わせれば島堤による回折波の解が近似的 に求まることになる。

半無限堤による回折波の解,式(2.111)を応用すれ ば,島堤の左側を堤端する半無限堤による表面波は,次 式で与えられる。

$$\phi_{1} = \frac{1}{\sqrt{2}} \exp\left[i\left\{kr_{1}\cos\left(\theta_{1}-\alpha\right)+\frac{\pi}{4}\right.\right.\\\left.\left.\left.\left.\left\{C(\gamma_{11})+\frac{1}{2}\right\}-i\left\{S(\gamma_{11})+\frac{1}{2}\right\}\right]\right.\\\left.\left.\left.\left.\left\{K_{r}\right\}\exp\left[i\left\{kr_{1}\cos\left(\theta_{1}+\alpha\right)+\frac{\pi}{4}\right.\right.\\\left.\left.\left.\left.\left.\left.\left.\left\{C(\gamma_{12})+\frac{1}{2}\right\}-i\left\{S(\gamma_{12})+\frac{1}{2}\right\}\right\right]\right.\right.\right.\\\left.\left.\left.\left.\left.\left.\left\{C(\gamma_{12})+\frac{1}{2}\right\}-i\left\{S(\gamma_{12})+\frac{1}{2}\right\}\right\right]\right.\right.\right]\right.$$

$$\left.\left.\left.\left.\left.\left\{C(\gamma_{12})+\frac{1}{2}\right\}-i\left\{S(\gamma_{12})+\frac{1}{2}\right\}\right\right]\right.\right]$$

$$\left.\left.\left(3.33\right)\right.\right.$$

ここに, (r1, θ1) は 図-3.3 に示す極座標, Kr は島堤の

— 44 —

図-3.2 島堤周辺の波高の平面分布

反射率, $(kB/2)\cos \alpha$ は島堤中央での入射波に対する左 側島堤端の入射波との位相差を示す。また, C(r)および S(r)は式 (2.107) で与えられる Fresnel 積分であり, また r_{11} および r_{12} は次式で与えられる。

$$\gamma_{11} = \sqrt{4kr_1/\pi} \cos \frac{\theta_1 - \alpha}{2}$$

$$\gamma_{12} = \sqrt{4kr_1/\pi} \cos \frac{\theta_1 + \alpha}{2}$$
(3.34)

さらに,島堤右側端による回折波の解は,次式のよう になる。

$$\phi_{2} = \frac{1}{\sqrt{2}} \exp\left[i\left\{kr_{2}\cos\left(\theta_{2}-\pi+\alpha\right)+\frac{\pi}{4}\right.\right.\\\left.\left.\left.\left.\left.\left\{C(\gamma_{21})+\frac{1}{2}\right\}-i\left\{S(\gamma_{21})+\frac{1}{2}\right\}\right\right]\right.\\\left.\left.\left.\left.\left.\left\{C(\gamma_{21})+\frac{1}{2}\right\}-i\left\{S(\gamma_{21})+\frac{1}{2}\right\}\right\right]\right.\\\left.\left.\left.\left.\left.\left.\left.\left.\left.\left\{kr_{2}\cos\left(\theta_{2}+\pi-\alpha\right)+\frac{\pi}{4}\right.\right.\right.\right.\right.\right.\right.\right.\\\left.\left.\left.\left.\left.\left.\left.\left.\left\{kr_{2}\cos\left(\theta_{2}+\pi-\alpha\right)+\frac{\pi}{4}\right.\right.\right.\right.\right.\right.\right.\right.\right]\right.\\\left.\left.\left.\left.\left.\left.\left[\left\{C(\gamma_{22})+\frac{1}{2}\right\}-i\left\{S(\gamma_{22})+\frac{1}{2}\right\}\right\right]\right]\right]\right]\right]\right]\right]\right]$$

ここに, (r₂, θ₂)は 図-3.3 に示す極座標, γ₂₁ および γ₂₂ は次式で与えられる。

$$\gamma_{21} = \sqrt{4kr_2/\pi} \cos \frac{\theta_2 - \pi + \alpha}{2}$$

$$\gamma_{22} = \sqrt{4kr_2/\pi} \cos \frac{\theta_2 + \pi - \alpha}{2}$$
(3.36)

島堤背後の海域については,幾何光学的な陰の部分で は散乱波だけが存在し,その両側は散乱波と入射波が存 在するので,表面波の式 ϕ_b としては

 $\phi_b = \phi_1 + \phi_2$ (3.37) で与えられる。しかし、島堤前面では、表面波の解を式 (3.37)のように単に加え合わせたのでは、入射波と反 射波が重複するので、それらを差し引いておく必要があ る。その結果、島堤前面の表面波の近似解 ϕ_f は次式で 与えられる。

$$\begin{split} \phi_{f} &= \phi_{1} + \phi_{2} - \exp\left[ikr\cos\left(\theta - \alpha\right)\right] \\ &- K_{r} \exp\left[ikr\cos\left(\theta + \alpha\right)\right] \\ &= \frac{1}{\sqrt{2}} \exp\left[i\left\{kr_{1}\cos\left(\theta - \alpha\right) + \frac{\pi}{4}\right. \\ &- \frac{kB}{2}\cos\left.\alpha\right\}\right] \\ &\times \left[\left\{C(\gamma_{11}) - \frac{1}{2}\right\} - i\left\{S(\gamma_{11}) - \frac{1}{2}\right\}\right] \\ &+ \frac{K_{r}}{\sqrt{2}} \exp\left[i\left\{kr_{1}\cos\left(\theta + \alpha\right) + \frac{\pi}{2}\right. \\ &- \frac{kB}{2}\cos\left.\alpha\right\}\right] \\ &\times \left[\left\{C(\gamma_{12}) - \frac{1}{2}\right\} - i\left\{S(\gamma_{12}) - \frac{1}{2}\right\}\right] \\ &+ \frac{1}{\sqrt{2}} \exp\left[i\left\{kr_{2}\cos\left(\theta_{2} - \pi + \alpha\right) + \frac{\pi}{4}\right\}\right] \end{split}$$

$$+\frac{kB}{2}\cos\alpha\}]$$

$$\times\left[\left\{C(\gamma_{21})+\frac{1}{2}\right\}-i\left\{S(\gamma_{21})+\frac{1}{2}\right\}\right]$$

$$+\frac{K_{r}}{\sqrt{2}}\exp\left[i\left\{kr_{2}\cos\left(\theta_{2}+\pi-\alpha\right)+\frac{\pi}{4}\right.$$

$$+\frac{kB}{2}\cos\alpha\}\right]$$

$$\times\left[\left\{C(\gamma_{22})+\frac{1}{2}\right\}-i\left\{S(\gamma_{21})+\frac{1}{2}\right\}\right] (3.38)$$

ここに、 (r, θ) は島堤中央を原点にしたときの極座標で、 θ は θ_1 と同じ方向にとっている。

 $K_r=1$ の場合, $|x| \leq B/2$ の島堤面上では式 (3.37) お よび (3.38) は境界条件を完全に満足している。一方, 島堤の延長線上 (|x| > B/2, y=0) で式 (3.37) および (3.38) が一致しなければ 波の 連続性が 保たれないが, 両式を比較すると, この線上では不連続になる。これに ついては, **3.3** (3) で詳細に検討する。

(2) 近似解と厳密解との比較

比較は, 厳密解の成り立つ, 完全反射堤についてなさ れた。

1) 島堤前面での比較

島堤前面の波高に関して近似解と厳密解とを比較する ために、図-3.3 に示す座標系で x 軸上の (x_0 , 0) 点か ら反射波の進行方向に向って 1/8 波長毎に 10 波長まで 波高比の分布を計算した。計算によって得られた近似解 と厳密解の波高比は、図-3.4 および 3.5 に比較して示 す。比較を行ったケースは、B/L=1 では波の進入角度 が $\alpha=30^\circ$, 45° および 90° の 3 ケース, B/L=3 では $\alpha=30^\circ$ の 1 ケースである。各図とも、厳密解は実線、 近似解は点線で示されている。図中の l は (x_0 , 0) から 反射波方向に測った距離である。

図-3.4 (a) は B/L=1, $\alpha=30^{\circ}$ の場合の図である。 近似解と厳密解とでは,極大波高および極小波高の現わ れる位置はほとんど同じであるが,l/L が小さいときに 極大波高と極小波高の付近で両理論解の差が顕著にな る。特に,この差は $x_0/L \le -0.5$ となる線上で大きく, $x_0/L=-0.5$ で,l/L=0.5 の点では近似解は厳密解の 1.2 倍になっている。両理論解の差は l/L が増大する につれて小さくなる傾向を示す。また、両者の波高分布 形は非常によく類似しており、近似解の適合性はよい。

図-3.4 (b) は B/L=1 で, $\alpha=45^{\circ}$ の場合の図である。波の進入角度が大きくなったため、近似解と厳密解との一致は, $\alpha=30^{\circ}$ の図-3.4 (a) より非常によくなっている。特に, l/L>4 では両理論解の差はほとんどな

- 46 -

図-3.4 B/L=1 における島堤前面の波高分布

い。この場合も $x_0/L < -0.5$ では他に比して差が大き い傾向を示す。 $\alpha = 45^{\circ}$ と大きくなったので,波高の変 動間隔,つまり極大あるいは極小波高間の距離は小さく なっている。

図-3.4 (c) は, B/L=1, $\alpha=90^{\circ}$ の場合の図である。 α が大きいので,近似解と厳密解との一致はさらによく なり, l/L>1 では両者はほとんど差がない。また,波 高の変動間隔は 0.5L になっている。

α を変化させたこれら3つの図から,近似解はαが 90°になるにつれて厳密解に一致するようになり,その 精度が向上することがわかる。

図-3.5 は, α =30°で, B/L=3 と島堤の長さを相対 的に大きくした場合の図である。この図と B/L=1 の 図-3.4 (a) とを比較してわかるように, B/L が大きく なると,近似解と厳密解との差は小さくなり,近似解の 精度は向上する。

2) 島堤沿いの波高分布

図-3.6 (a)~(d) は、島堤沿いの波高分布を比較した ものである。比較は B/L=1 と 3、 $\alpha=15^{\circ}$ 、30°、60° および 90° についてなされた。これらの図で、前面沿 いの波高分布は上に、背面沿いの波高分布は下に示して ある。

前面沿いの波高分布は、 $0.5 \sim 1.0L$ 間隔で波を打った 形をしており、 $\alpha = 90^{\circ}$ のときに最大間隔になっている。

図-3.5 B/L=3 における島堤前面の波高分布 (α=30°)

図-3.6(1) 島堤沿いの波高分布

— 49 —

波高の変動量は,最大のもので入射波高程度であるが, 同一進入角度では B/L が小さいほど大きい。最大波高 は, $\alpha=30^{\circ}$ の場合, B/L=1 で $(K_d)_{\max}=2.2$, B/L=3 で (Ka)max=2.8 となって, B/L が大きい方が 大きい。しかし, α=60°の場合, 最大波高は B/L=1 で $(K_a)_{\max}=2.8, B/L=3$ で $(K_a)_{\max}=2.6$ となる。この ように最大波高は α および B/L の値によってかなり変 動する。背面での波高の位相のずれも考慮しなければな らないが,このように(Ka)max>2となる点が現れること は,島堤には二次元的な重複波の波力以上の力が作用す ると考えられる。著者らの研究12)によると、波の准入角

-3 0

-1

-2

-3

0.8

ž

度によっては島堤の堤端から0.2波長付近において重複 波の波力強度の1.8倍の波力が働くことがある。

最大波高の生じる位置は, B/L=1の $\alpha=90^{\circ}$ で島堤 中央部,他の場合は島堤の左端付近に生じて, α および B/L によってその位置を移動している。

3) 島堤背後の波高の平面分布

島堤背後の波高の平面分布を図-3.7~3.9 に示す。 図-3.7 および 3.8 は B/L=1, 図-3.9 は B/L=3 の 場合である。 各図の(a) は厳密解による波高分布を示 し,(b)は近似解による波高分布を示している。

図-3.7 は B/L=1, α=30°の場合である。厳密解

12

B/L = 1.0 01 = 30°

10

10 1.0

ιó

×'n

10

:Approximate Sol

10

2

図-3.7 B/L=1 および α=30°の場合の回折図

と近似解とを比較してみると,島堤によって遮蔽されて いる領域外で,x/L < -1の領域で大きな差が両理論 解の間に現われるけれども,その他の領域では,波高の 分布形状は非常によく似ている。遮蔽領域外のx/L<-0.5の領域では,厳密解では $K_a=0.8\sim1$ の間に あるのに対し,近似解では $K_a=0.8 \approx 1.2$ の等波高比 線が現われている。また,島堤直背後で厳密解では, K_a =0.2の線が現われているが,近似解では現われていな い。 $K_a < 0.2$ の領域は非常に小さく,ここでの差は問題 にするほど大きくないと考えられる。 図-3.8 は B/L=1, $\alpha=60^{\circ}$ の場合である。波の進入角度が $\alpha=60^{\circ}$ と大きくなった関係で,近似解の近似精度はかなりよくなってはいるが, $\alpha=30^{\circ}$ の場合と同様に,島堤遮蔽領域外の x/L<-0.5 の領域では近似精度がやや落ちる。例えば,厳密解では $K_a=1.2$ の線がx/L=-2.5, y/L=-0.9 の点までしか延びていないのに,近似解では島堤の延長線まで達している。また,x/L=-0.5 の島堤端付近に近似解では $K_a=0.4$ の線が現われているのに,厳密解ではない。この領域外でも近似解と厳密解との間には波高の分布形に微妙な差はあ

(a) 厳密解
 図-3.8 (1) B/L=1 および α=60°の場合の回折図

るが、問題にするほど大きくはない。

図-3.9 は B/L=3, $\alpha=30^{\circ}$ の図である。島堤の長さ を 3L と,長くとったので、図-3.7 の B/L=1 と比較 していくらか近似解は厳密解に近くなったようである が、図を比較しただけでは驚くほど向上したとはいえな い。この場合も、島堤遮蔽領域外の x/L<-1.5の領域 においては両理論解の差が大きい。

図-3.7~3.9 から,島堤背後では波高の低い部分,例 えば $K_a < 0.4$ の部分は非常に限られた狭い範囲にのみ 存在し,その位置は α や B/L の値によって変るうえ に, K_a>1.2 にもなる波高の高い部分も島堤背後に現わ れてくるので,港口部前面に島堤を建設して港口部に入 射する波の波高を減少させようとする場合,波高と周期 に十分配慮して島堤の長さおよび傾きを決定しないと, かえって波高の高い波を港口部から進入させることにな りかねない。

(3) 近似解の適用範囲

島堤による回折波の近似解は,厳密解との比較によっ てつぎのような特性をもつことがわかった。

① 波の進入角度 a が小さいと精度が悪くなる。

(a) 厳密解

(b) 近似解

図-3.9 B/L=3 および α=30°の場合の回折図

- ② 波長に対する島堤長 B/L が小さくなると、近似 精度が悪くなる。
- 近似精度の悪くなる部分は、島堤の遮蔽領域外の x<-B/2 の領域である。

このような特性を持つ近似解に関してその適用範囲を 明確にしておくことは,近似解を用いて計算した結果の 精度を検討するうえで重要である。

3.3 (1) で述べたように, $K_r=1$ の完全反射の島堤 の場合,式 (3.37) および (3.38) は島堤上での境界条 件は完全に満足しているが, |x| > B/2, y=0の島堤延 長線上での波高の連続条件は保たれていない。一方,厳 密解は |x| > B/2, y=0の線上では $K_a=1$ となること が, 3.2 (3) でわかっている。そこで, |x| > B/2, y=0における近似解の波高比が $K_a=1$ からどの程度ずれて いるか検討すれば,近似解の適用範囲が明確になると考 えられる。まず, $K_r=1$ の完全反射堤について検討す る。

i) *x*<-*B*/2, *y*=0 の線上

島堤前面の式 (3.38) は,この線上では $\theta_1=\pi$, $\theta_2=0$, $r_1=|x|-B/2$, $r_2=|x|+B/2$ とおくことによって,次式 のようになる。

$$\phi_{f|x < -B/2, y=0} = [\{C(\gamma_{21}) + S(\gamma_{21})\} \\ + i\{C(\gamma_{21}) - S(\gamma_{21})\}] \\ \times \exp[-k|x|\cos\alpha]$$
(3.39)

ここに,

$$\gamma_{21} = \sqrt{4k\left(|x| + \frac{B}{2}\right)/\pi} \sin\frac{\pi}{2} \tag{3.40}$$

である。

一方,島堤背面の式 (3.37) は, $\theta_1 = \pi$, $\theta_2 = 2\pi$, $r_1 = |x| - B/2$, $r_2 = |x| + B/2$ とおくことによって,

$$\begin{split} \phi_{b|x < -B/2, y=0} &= [2 - C(\gamma_{21}) - S(\gamma_{21}) \\ &- i \{ C(\gamma_{21}) - S(\gamma_{21}) \}] \\ &\times \exp\left[-ik|x| \cos \alpha \right] \quad (3.41) \end{split}$$

となる。

式 (3.39) および (3.41) からわかるように, この線 上では,

 $\times \exp[ikx \cos \alpha]$

となる。ここに,

$$\gamma_{11} = \sqrt{4k\left(x + \frac{B}{2}\right)/\pi} \cos\frac{\alpha}{2} \tag{3.44}$$

である。

また,島堤背後の式 (3.37) は,

$$\phi_{b|x>B/2,y=0} = [2 - C(\gamma_{11}) - S(\gamma_{11}) - i\{C(\gamma_{11}) - S(\gamma_{11})\}]$$

× exp [*ikx* cos α] (3.45)

となる。したがって,

 $\phi_{f|x>B/2, y=0} \neq \phi_{b|x>B/2, y=0} \tag{3.46}$

となり, 両式が等しくなるのは *x*=∞ のときだけであ る。

Fresnel 積分 $C(\gamma)$ と $S(\gamma)$ は, γ が大きくなるにつれ て単調増加し, ある γ の値から 1/2 の周りを振動しな がら 1/2 に収束する関数である。このような Fresnel 積 分の特性から γ が大きいほど速く 1/2 に収束する。式 (3.40) と (3.44) を比較すると、 0<α<π/2 では、 同 じ |x| で $\gamma_{21} < \gamma_{11}$ である。たとえば、 $\alpha = \pi/6$ の場合、 γ_{11} ≈3.7 γ_{21} となる。 $\gamma_{21} < \gamma_{11}$ であるため, k(|x|+B/2)の 少しの増加で,式(3.43)および(3.45)の絶対値は急 速に1に収束するが,式(3.39)および(3.41)の絶対 値はゆっくりと1に収束する。また, 721<711 であるた め、式 (3.39) および (3.41) の絶対値は式 (3.43) およ び(3.45)の絶対値より1から大きくずれることになる。 以上のことから、 $0 < \alpha < \pi/2$ の範囲では、近似解の精度 は式 (3.39) と式 (3.41) の値に大きく支配されることに なり、このことが前述の近似解の特性③の原因である。 そこで、近似解の誤差を最大 20% 以内に抑えようとす れば、|x| > B/2 に対して常に $1-0.2 < \phi_{b|x < -B/2, y=0}$, *φ*_{f|x<-B/2,y=0} <1+0.2 を満足する B/L にすればよ い。設定した誤差の範囲を満足する最小の B/L を限界 島堤長と呼んで (B/L)。で表わすことにすると、 $\alpha = \pi/2$ のときの (B/L)。は 10% の誤差で 4.4, 20% の誤差で 1.0 と計算される。 $\alpha = \pi/2$ のときの $(B/L)_0$ を $(B/L)_{90}$ で表わすと、 $0 < \alpha < \pi/2$ における (B/L)。は式 (3.40) から,

$$(B/L)_{c} = (B/L)_{90} \sin^{2} \pi/4 / \sin^{2} \frac{\alpha}{2}$$
$$= \frac{1}{2} (B/L)_{90} / \sin^{2} \frac{\alpha}{2}$$
(3.47)

となる。これを図示したのが 図-3.10 の実線である。また,図中の破線は従来用いられている仮想島堤長による 方式で求めた限界値を示し,次式で与えられる。

— 54 —

(3.43)

図-3.10 近似解の適用限界

 $(B/L)_{0}=(B/L)_{00}/\sin \alpha$ (3.48) 最大の誤差を 20% 以内に抑えるためには,近似解は $\alpha=30^{\circ}$ の場合 B/L>7.5の島堤にしか適用できないこ とになる。しかし,図-3.10 で与える (B/L)。は最大の 誤差を 10% あるいは 20% に抑える場合の限界の島堤 長を示したものであって,島堤遮蔽域あるいは x>B/2の入射波直進領域ではこの誤差より小さくなっている。

島堤が捨石や消波ブロックから成っていて消波堤と考 えられる場合,これについては厳密解が与えられないの で,推定するだけであるが,完全反射の島堤に対する厳 密解から判断して,|x|>B/2,y=0では $K_a=1$ と 推定される。一方,近似解については誤差の大きい x<-B/2,y=0の線上を考えればよいことが,完全反射 堤の場合からわかっているので,例として式(3.37)の 島堤背後のものを考えると,

$$\begin{split} \phi_{b|x < -B/2, y=0} \\ = & \left[1 + K_r + \frac{1 - K_r}{2} \{ C(\gamma_{11}) + S(\gamma_{11}) \\ & + i(C(\gamma_{11}) - S(\gamma_{11})) \} - \frac{1 + K_r}{2} \{ C(\gamma_{21}) + S(\gamma_{21}) \\ & + i(C(\gamma_{21}) - S(\gamma_{21})) \} \right] \exp\left[-ik |x| \cos \alpha \right] \\ & (3.48) \end{split}$$

となる。ここに, 721 は式 (3.40) と同じであるが, 711 は次式のようになる。

$$\gamma_{11} = \sqrt{4k\left(|x| - \frac{B}{2}\right)/\pi} \sin\frac{\alpha}{2} \tag{3.49}$$

式 (3.48) の絶対値は式 (3.41) の絶対値より厳密解 で求まる $K_a=1$ の値に近い。このため、消波堤の場合 の限界島堤長は (2)-3.10 で与えられる限界島堤長より小 さくしてもよいと推定される。

- 3.4 実験による理論の妥当性の検証
- (1) 実験装置

実験水槽は港湾技術研究所水工部の中型平面水槽(図-3.11) である。この水槽は長さ 30 m,幅 20 m,深さ 1

図-3.11 中型平面水槽の諸元と模型島堤の設置位置

m のコンクリート造で,水槽側壁に長さ 25 m のレー ルが敷かれ,台車が設置されている。この台車はスパン 20 m,幅 1 m で,1/2 馬力のモータが取り付けてあり, 定速度 2 m/min で自走できる。

消波装置としては、高さ0.5m,幅1m,長さ2mの ステンレス切断片を入れたかごを図−3.11のように側壁 沿いに設置し,奥壁には 1/10 勾配に砕石を敷いた。

造波装置は, 200 V, 20 Hp のモータを用い, 2 段減 速を行った後に変形フラップ型の造波板を駆動する方式 である。造波板は 5 m づつ4枚に分れている。

実験波の周期設定には光電式のタイムカウンターを用 い,波高計としては抵抗線式波高計,増幅器として4チ ャンネルの水位測定増幅器,記録には同じく4チャンネ ルの直線書きペンオシログラフを用いた。この水位測定 増幅器は直線性がよく,また相互干渉を起しにくいた め,抵抗線式波高計を 20 cm 程度まで互いに近づけて 使用することができる。

堤体は, 写真-2.1 に示したものと同一のもので,逆 T字型断面をしている。この場合も堤体の転倒を防ぐた め約 10 kg/個の長方形重錘を張り出し部に置いた。

- (2) 実験条件
- 入射波および水深は,
- i) 水槽底面の凹凸による波形および波高変化を避け る,
- ii) 水槽が屋外にあるために起る風の影響を小さくする,
- iii) 線型理論が十分適用できる範囲の波とする,
- iv) 堤体長と波長の比 (*B*/*L*) を 0.5~5 内におさえる,

の4点を考慮して,周期 $T=0.9 \sec$,波高 $H=4 \operatorname{cm}$,水深 $h=40 \operatorname{cm}$ と決めた。しかし,入射波を検定した結果では、図-3.12 のような分布を示し、入射波の波高分布は必ずしも一様でない。これは、模型堤体からの反射波が側壁によって再度反射されるのを防ぐために設置し

図-3.12 入射波の波高の平面分布

た側壁沿いの消波工や水槽の幅方向に発生する cross wave の影響だと思われる。この 図-3.12 に基づき,側 壁から十分離れていて,波高が比較的一様になっている 場所に堤体を設置した。その位置は 図-3.11 に示されて いるように,造波板から 15.5 m の水槽中央部である。 入射波高としては堤体設置位置付近の平均波高を用い た。その結果,入射波の諸元は 表-3.1 のようになった。

表-3.1 入射波の諸元

Wave	Wave	Wave	Relative	Wave
height	period	length	depth	steepness
H [cm]	T [sec]	L [cm]	<i>h/L</i>	<i>H</i> / <i>L</i>
4.1	0.9	120	0.333	0.0342

表-3.2 実験ケース

Length of breakwater B [m]	Wave approaching angle α	B/L
0.9	90°	0.75
1.8	90°	1.5
1.8	30°	1.5
3.6	30°	3.0
3.6	15°	3.0
3.6	7.5°	3.0
	Length of breakwater B [m] 0.9 1.8 1.8 3.6 3.6 3.6 3.6	Length of breakwater B [m]Wave approaching angle α 0.990°1.890°1.830°3.630°3.615°3.67.5°

実験は 表-3.2 に示す6ケースについて行った。ケー ス1と2は波の進入角度が堤体に直角で,B/L がそれぞ れ 0.75 と 1.5 である。ケース 3 は波の進入角度が α =30°で,B/L=0.75 と小さく,近似解と厳密解の差が 大きくなると予想される場合である。これによって実験 値がどちらの理論解に近いか検討できると予想される。 ケース 4,5 および6 は波の進入角度を漸次小さくして, 沿い波の現象が現われるかどうか調べるために行った。

ケース 1,2 および3の波高測点は 図-3.13~3.15 に 示してある。図中の点は各測点,実線は台車に波高計を セットし,台車を動かしながら波高を測定した測線を示 す。

ケース 4~6 は堤体沿いの波高分布のみを 10 cm 間 隔に測定した。堤体沿いの測点は堤体から 0.5 cm 離れ た点である。

(3) 実験値と理論値の比較

堤体を設置して波を作用させると,波向に直角な堤体 では堤体の両端から,また,堤体が傾いている場合には 造波板から遠い堤端から二次じょう乱波が生じているの が観測されたが,このじょう乱波はその振幅が小さく,

波形記録上にはほとんど現われなかった。

実験値を整理する都合上,図-3.16 に示すような2種類の座標系を用いた。すなわち(x, y)座標では島堤沿いの方向にx軸を取り,それに直角な方向にy軸をとっており,また(x', y')座標では,波の入射方向とは逆方向にy'軸をとり,それと直角な方向にx'軸をとっている。

i) ケース 1 (B/L=0.75 および α=90°の場合)

図-3.17 は,堤体前面の波高分布を x=0.15 m および 0.65 m 線に沿って示したもので、図-3.18 は堤体沿いおよび堤体背後の波高分布を y=0 m, -0.5 m および -1.0 m の線上に沿って示したものである。

実線の厳密解と点線の近似解は,島堤前面および島堤 沿いでは x=0.65 m, y/L=0 の点近くで 0.25 だけ異 なる部分を除けば, 0.1 以内の差で非常によく一致して

図-3.17 島堤前面の波高に関する実験値と理論値の比較(ケース 1)

図-3.18 島堤沿いおよび背後の波高に関する実験 値と理論値の比較 (ケース 1)

いる。しかし,島堤背後の y = -0.5 m および -1.0 m の 線上では x/L = 0.5 付近で両者は大きく異なり,近似解 による値が y = -0.5 m の線上では最大 0.3, y = -1.0m の線上では最大 0.6 だけ厳密解による値より大き い。x/L = 0.5 の点は島堤端から外側に 27.5 cm 離れた 点であることや B/L = 0.75 と小さいことを考えると, **3.3** (3) で述べた理由によってこの大きな差の原因が説 明できる。

島堤前面の実験値は、台車移動による連続測定のうち 波高が極大あるいは極小となる地点での波高比を示して いる。図-3.17 に示すように、極大および極小波高の現 われる位置は理論によるものと非常に近いが、y/L が増 大するにつれて少しずつずれてゆく傾向にある。これ は,理論に用いた波長を微小振幅波理論で計算している のに対し,波の有限振幅性のため実際の波長は少し長く なっていることによるものと推定される。極小波高の値 は理論と実験とでよく一致しているが,極大波高につい ては実験値は理論値の 1.2~1.4 倍程度高い。このよう に大きな差が極大波高に関して現われた原因として,

- i) 図-3.12 に示すように入射波高が一様でない,
- ii) 風の影響で入射波高が変動する,
- iii) 造波機を連続駆動しているため、造波板による再 反射波の影響が入る、

などの諸点が考えられるが,iii)が主要な原因だと思われる。

図-3.18 に示す島堤沿いと背後の波高に関しては,島 堤前面沿いの波高は実験値が大きく,理論値の約1.2倍 になっているが,島堤背面沿いでは実験値は理論値によ く一致している。また,y=-0.5mおよび -1.0mの 線上では,実験値は厳密解とよく一致しており,明らか に厳密解の妥当性を示している。

2) ケース 2 (B/L=1.5 および α=90°の場合)

島堤前面の波高分布は 図-3.19 に示してある。この図 において,実線の 厳密解と点線の近似解は $x=2\sim5$ m の線上で y/L<1 のとき 0.1 に程度の差があるけれど も、よく一致した分布形を示している。実験値について は、記録紙上で極大波高と極小波高が明らかにわかる部 分はその波高を,明らかでない部分は L/4 毎に波高を プロットしている。実験値の極小波高は理論値とよい一 致を示しているが,極大波高は理論値より大きく,理論 値の 1.5 倍近くにもなる場合がある。実験値の増大の原 因としては,前述の i)~iii) のうち iii) が最も主要な原 因であると推測される。

図-3.20 には,堤体沿いの波高分布と背後 y=-0.5 m, -1.0 m および -2.0 m の線沿いの波高分布が示し てある。この堤体沿いの波高分布の測定では、造波板によ る再反射波の影響を除くため,再反射波が堤体に達する 以前に実験を終えた。その結果,堤体沿いの波高分布の 実験値は,前面でも背面でも理論値とよく一致した。こ のことから考えても,島堤前面の波高分布で実験値が理 論値より大きくなる主要な原因が造波板による再反射波 だと推測される。実験値は y=-0.5 m および -1.0 m の線上では理論値によく一致しており,厳密解と近似解 との差はほとんどない。しかし,y=-2.0 m の線上で は厳密解と近似解の差は他の測線に比して顕著になり,実験値は厳密解に近いことがよくわかる。

図-3.19 島堤前面の波高に関する実験値と理論値 の比較 (ケース 2)

図-3.21 に堤体背後の波高分布の平面形状が示してあ る。図中の実線は厳密解,破線は実験値による等波高比 線を示している。入射波直進領域では,実験値で K_a =1.4 の線が現われるのに対し,理論値では K_a =1.2 の 線しか現われないというように,実験値と理論値とでは 大きな差が現われる。また,島堤による遮蔽域では少し 実験値が大きくなる傾向を示している。しかし,図-3.12 に示したように入射波の波高でも大きく場所的に変化し ていることを考慮するなら,実験による波高分布は厳密 解による波高分布とよく一致しているといえよう。

高橋¹³⁾はこのケース2と同じ B/L=1.5の捨石堤に関 して波の回折の問題を実験的に検討しているが、その実 験結果は本ケースの平面分布とは異っている。この原因 としては、島堤が砕石によって築造されているため、砕 石内を通過する伝達波があるためだと考えられる。 iii) ケース 3 (B/L=1.5 および $\alpha=30^\circ$ の場合) このケースでは、堤体が入射波に対して 30° 傾いてい

図-3.20 島堤沿いおよび背後の波高に関する実験 値と理論値の比較(ケース 2)

るため,堤体による反射波は側壁に設置した消波装置に よって吸収され,再反射の影響は少ないと考えられる。

図-3.22 は堤体前面の波について y'方向の波高分布 を $y'=-2\sim 6$ m の範囲で示したものである。厳密解と 近似解は -1 < y'/L < 1 の範囲で特に大きな差を示し, その分布形そのものも非常に異なっている。波の進入角 度が $\alpha = 30^\circ$ の場合,近似解が厳密解に対して 20% の誤 差の範囲に入るためには, 図-3.10 によって B/L < 7.5でなければならないが,本ケースでは B/L = 1.5 と非常 に小さいために両者の差が大きくなったものと考えられ る。また,波高を測定した x'=-0.6 m, 1.0 m および 2.0 m の線は 3.3 (3) で述べたように,特に両理論解の差 が顕著に現われる部分に対応している。実験値は厳密解

図-3.22 島堤前面の波高に関する実験値と理論値の比較 (ケース 3)

と非常によく類似した波高分布形を示し,値そのものも よく一致している。ただし,実験値は厳密解よりわずか に大きい傾向を示している。このように厳密解の妥当性 が実験によって検証されたが,近似解も-1 < y'/L < 1の部分を除けば,厳密解とは大きな差はないので,この 部分を除くと近似解と実験値とは比較的よく一致してい るといえる。

図-3.23 は堤体沿いの波高分布を示したものである。 近似解と厳密解との差は最大で0.2 程度であり、互によ く一致している。また、実験値はこれらの理論解に非常 に近く、特に島堤背面での一致がよい。

図-3.23 島堤沿いの波高に関する実験値と理論値 の比較 (ケース 3)

図-3.24 は堤体背後の y'=-1.0 m および -2.0 m の 線上における波高分布を示したものである。近似解と厳 密解とは x'/L < -0.5 で大きな差を示している。堤体の 端が x'/L = -0.65 の線上になることを考えると, x'/L<-0.65 の領域で差が大きいことになる。この部分で 近似解と厳密解との差が大きくなる原因については,3.3 (3) で述べた通りである。実験値は, y'=-1.0 m では x'/L < -0.2 で, y'=-2.0 m では x'/L < 0 で厳密解 とよく一致しているが, y'=1.0 m では x'/L = 0 付近,

 $y'=-2.0 \,\mathrm{m}$ では x'/L>0 では理論値より 1.2~2 倍 程度大きくなる。

iv) ケース 4,5 および 6

入射波の波向と防波堤のなす角 α が小さい場合には 沿い波現象が起るといわれている^{14),15)}。本実験に用い た 表-3.1 の入射波で, α を小さくした場合この沿い波 現象が起るかどうか調べてみた。ケース 4, 5 および 6 は B/L=3.0 で, それぞれ $\alpha=30^\circ$, 15° および 7.5° である。

図-3.25 (a) にケース 4 の島堤沿いの波高分布が示し てある。堤体前面沿いでは、近似解と厳密解とは極大波 高で 0.2 程度異っているが、傾向としてはよく一致して いる。また、堤体背面では両理論解は x/L=-1.5 付近

図-3.25 島堤沿いの波高に関する実験値と理論値 の比較

で0.3 程度の差を示すが,他の部分ではよく一致している。実験値は島堤前面では厳密解より0.5 程度小さくなっているが,波高の分布形はよく一致している。島堤背面の x/L<0 では,実験値は理論値より少し大きく,x/L>0 ではよく一致している。

図-3.25 (b) のケース5の場合もケース4と同様の傾 向を示しているが,島堤前面の実験値は厳密解より 0.2 程度小さく,ケース4よりその差は小さくなっている。

図-3.25 (c) はケース6の波高分布を示したものであ る。このケースでは α =7.5° と非常に小さくなってい るため,近似解は厳密解から大きくずれ,最大0.4程度 の差になっている。ケース 4 および 5 と同様に,前面 の実験値は厳密解より約0.2小さい。また,背面でも実 験値は厳密解より小さい傾向がある。実験値の分布形状 から判断して、実験値は厳密解に近い。

このように α が小さくなっても,島堤前面における 実験値の傾向が,島堤背面では実験値そのものが厳密解 とよく一致することは,沿い波現象が生じていないこと を意味している。この原因としては h/L=0.33 と深海 波に近い条件で実験を行ったことが考えられる。

3.5 結

語

以上,本章においては島堤による波の回折に関して理 論的な解析を行い,実験によって理論の妥当性を検証し た。初めに3.1では,島堤による波の回折現象の解明の 重要性と従来の研究成果について概述し,本章の研究意 義を明確にした。3.2 では,完全反射の島堤による波の 回折の厳密解を導き,島堤周辺の波高分布特性を示し た。3.3 では,消波構造の島堤による波の回折の近似解 を導き,完全反射堤の場合について厳密解と比較するこ とによって近似解の適用範囲を明らかにした。最後に 3.4 では,規則波による水理実験を行って,理論解析の 妥当性について検討した。以上の内容から結論的に言え ることの主な点を述べれば,以下のようになる。

- (1) 楕円柱構造物による波の回折散乱の厳密解が求められた。この厳密解は楕円柱の極限としての円柱に対する解も包含することを理論的に証明した。
- (2) 島堤による波の回折散乱の厳密解が,楕円柱に関する厳密解の一つの極限として求められた。
- (3) 半無限消波堤に対する波の回折の解を重ね合わせる ことによって、島堤による波の回折に関する近似解を 求めた。この近似解には島堤の反射率 Kr が導入され ているので、Kr の値を与えることによって任意の反射 率の島堤による回折波が計算できる。
- (4) 近似解と厳密解とを完全反射堤に関して比較した結

- 果,次のようなことがわかった。
- 波の進入角度が小さくなると近似解の精度が悪くなる。
- ② 波長に対する防波堤長 B/L が小さくなると近似 解の精度が落ちる。
- ③ 近似解の近似精度が悪くなる領域は、島堤の遮蔽 領域外の x<-B/2 の領域である。</p>
- (5) 近似解の適用範囲を完全反射堤に関して図-3.10のように明示した。
- (6) 実験によって理論解の妥当性を検討した結果,厳密 解は実験値と十分な精度でよく一致し,厳密解の妥当 性が確認された。その結果,近似解は厳密解とよく一 致する部分では実験値ともよく一致することになり, このような部分に対しては近似解も適用できることが わかった。
- (7) B/L=3 の島堤に関して α=30°, 15° および 7.5° と α を小さくして実験を行っても沿い波現象は起ら なかった。これは h/L=0.33 と深海性の波に近いた めだとも考えられる。

参考文献

- 石原藤次郎・本間 仁 編; 応用水理学中 Ⅱ,丸 善, 1965, p. 536, による.
- 2) 和田 明: 回折問題の解法について,第11回海 岸工学講演会講演集,1964, pp. 19~28.
- Wada, A.: On a method of solution of diffraction problem, Coastal Engineering in Japan, Vol. 8, 1965, pp. 1~9.
- 4) 伊藤喜行・谷本勝利: 新しい方法による波動の数

値計算——防波堤周辺の波高分布への適用——,港 湾技術研究所報告,第 10 巻,第 2 号,1971,pp. 97~120.

- Stiassnie, M. and G. Dagan: Wave diffraction by detached breakwater, Jour. Waterways Harbors and Coastal Eng. Div., Proc. ASCE, Vol. 98, No. WW2, 1972.
- Harms, V. W.. Diffraction of water waves by isolated structures, Jour. Waterway Port Coastal and Ocean Div., Proc. ASCE, Vol. 105, No. WW2, 1979, pp. 131~147.
- 7) 合田良実・吉村知司: 海中に孤立した巨大構造物 に働く波力の計算,港湾技術研究所報告,第10巻, 第4号,1971, pp. 3~52.
- 8) 合田良実・吉村知司: 島堤および大型楕円柱体に よる波の散乱と波力について,土木学会論文報告 集,第 205 号,1972, pp. 71~80.
- 9) 田中 清: 円形島による波浪の回折,第3回海岸 工学講演会講演集,1956, pp. 33~35.
- MacCamy, R. C. and R. A. Fuchs: Wave force on piles: diffraction theory, Tech. Memo, No. 69, BEB, 1954, 17 p.
- McLachlen, N. W.: Theory and application of Mathieu functions, Dover Pub. Inc., 1964, pp. 243~258.
- 12) 前出文献 7).
- 高橋昭七: 離岸堤による漁港の波浪遮蔽効果について,第17回海岸工学講演会論文集,1970,pp. 91~96.
- Wiegel, R. L.: Oceanographical Engineering, Prentice Hall, 1964, pp. 72~74.
- Wiegel, R. L.: Waterwaves equivalent of Machreflection, Proc. 9th Conference on Coastal Engineering, Lisbon, 1964, pp. 82~102.

4. 不規則波の回折と反射

4.1 概 説

2. では港口部における波の回折, 3. では島堤による 波の反射と回折について解析を行ったが, ここで取り扱 った波は波高および周期が一定の規則波である。しか し,実際の海の波はこのような規則波ではなく, 1 波 1 波の波高および周期がそれぞれ異なる不規則波であると 同時に,平面的に見ても波峯線が短く切れた不規則波に なっている。前者の時間的な不規則性については海の波 の波形記録を見ればわかるし,後者については海面を撮 った航空写真を見ればわかる。海の波の不規則性につい ては数多くの研究が行われて,波の方向スペクトルの標 準形が提示されるような段階まで解明されてきている。 海の波の反射・回折の問題を考えてみると,方向スペク トルを有する不規則な海の波を規則波で代表させて計算 したのでは実際の海の波の反射・回折の状況をよく表現 できないのではないかという疑問が生じてくる。

Mobarek および Wiegel¹⁾ は, 風洞水槽内で起した風 波が半無限堤によって回折される場合について模型実験 を行い,不規則波を数個の成分波に分け,それぞれについ て規則波の回折計算を行った後にエネルギー的に重ね合 わせる方法によって求めた波高が実用上十分な精度で実 験値に一致することを示している。合田・永井および伊 藤2)は、名古屋港高潮防波堤内外の波浪の同時観測記録 を用いて防波堤内外の波浪の周波数スペクトルを求め, 両周波数スペクトルを比較した結果,港内の波浪のスペ クトルは波を規則波として計算したのでは小さくなりす ぎ,波の方向スペクトルを考慮して計算しないとうまく 説明できないことを示している。この結果を考慮して, 永井^{3),4)}は, 波の周波数スペクトルとして Bretschneider 型と Pierson · Moskowitz 型を用い, 波の方向分布関数 として $\cos^{2l} \theta$ 型を用いて不規則波の回折計算を行って いる。合田および鈴木5)は,現在最も信頼できる波の方 向スペクトルとして Bretschneider・光易型を採用し, 永井のプログラムを修正して計算を行い,実用的な数多 くの不規則波の回折図を提示している。Raissi および Wiegel⁶)は、風洞水槽内で防波堤開口部による風波の回 折実験を行い,回折後の波の周波数スペクトルに関して 計算と実験によって求めたものを比較して,開口幅が B/L=1.0と小さい場合には両者の一致は悪く、B/L=1.4 ではよく一致し, B/L=1.56 と 1.92 では計算に よって求めたスペクトルが実験によるものよりも小さく なることを示している。

以上のように,不規則波の回折に関する研究は数少な く,また,対象としている防波堤は半無限堤や一直線上 に配置されたいわゆる両翼防波堤の場合だけで,開口部 から直接進入してきた波が防波堤の裏側で反射された り,あるいは一方の防波堤で回折された波が他方の防波 堤で再度回折されるような実用的にも重要な防波堤配置 については実験的にも理論的にも全く検討されていな い。また,島堤による不規則波の反射・回折についても、 不規則波で検討されていない。

以上は主として波の回折に関する問題であるが、近年 防波堤の延長が長くなったり, 埋立が広範囲に渡って行 われるようになると,防波堤や護岸による反射波によっ て,防波堤や護岸の前面海域が荒れて航行船舶が危険に なったり,反射波が遠方まで伝わり,思わぬ箇所で越波 が起きたりする問題が生じてきている。このような問題 を解決するためには,防波堤や護岸を消波構造にして, 反射波をできるだけ減少させるようにすることが考えら れるが、すべての延長に渡って消波構造にすることは経 費が重み、実際上対応が困難である。そこで、最も有効 な部分のみを消波構造にし,反射波の波高をなるべく軽 減することが考えられる。このためには,反射波の影響 がどのように拡がってゆくのか定量的に算定することが 重要となる。特に、防波堤や護岸の延長は有限であるた め,有限な幅で反射された波は反射壁から離れるに従っ て、そのエネルギーを横方向に拡散させると同時に、方 向スペクトルを有する不規則波では成分波の波向が異な るため反射波の方向は成分波によって異なり、その波高 は急速に減少するとともに反射波の影響範囲も拡がると 考えられる。このような反射波の推定法として、小舟 ら"は不規則波の回折図を用いる方法を提案している。 この方法によると,反射面を仮想の開口部と考え,反射 面に関して対称な入射波の波向からこの仮想開口部に波 が入射するときの回折図が反射波高の分布になるとする ものである。しかし、この方法の妥当性についてはまだ 十分に検討されていない。

本章では,不規則波に対する反射・回折の計算法を示 し,この計算法を用いて不規則波の反射および回折の計 算を行い,不規則波による計算の必要性について検討す る。さらに,単一方向の不規則波を用いて,開口防波堤 による波の回折および島堤による反射・回折の実験を行 って理論計算の妥当性を検討する。そして,最後に防波 堤および護岸による反射波高の推定法を提示する。

4.2 不規則波に対する反射・回折の計算法

港口部の一点 (xo, yo) における海面変動 ŋ(xo, yo, t)

は,無数の成分波の線型重ね合わせとして表現できると 仮定すると,次式のように表わせる。

$$\eta(x_0, y_0, t) = \sum_{n, m} \sqrt{S(f_n, \alpha_m)} \delta f_n \delta \alpha_m$$

$$\times \exp\left[i \left(k_n x_0 \cos\left(\alpha_p + \alpha_m\right) + k_n y_0 \sin\left(\alpha_p + \alpha_m\right) + 2\pi f_n t + \varepsilon_{nm}\right)\right] \qquad (4.1)$$

ここに、 $S(f_n, \alpha_m)$ は波の方向スペクトル、 f_n は n 番 目の周波数分割区域内の中心周波数、 α_m は m 番目の 方向分割区域内の中心方向角で、波の主方向(波のエネ ルギーが最も集中している方向) α_p からの偏角、 δf_n お よび $\delta \alpha_m$ はそれぞれ n 番目の周波数分割区間幅と m番目の方向分割区間幅、 ϵ_{nm} は nm 番目の成分波の位 相角である。波数 $k_n(=2\pi/L_n)$ は f_n に対して次に示 すような分散関係を持つ。

$$4\pi^2 f_n^2 = gk_n \tanh k_n h \tag{4.2}$$

2. および 3. で示したように波の回折は線型理論が成 り立つので, 港内の一点(*x*, *y*)における海面変動は次 のように表わすことができる。

$$\eta_{d}(x, y, t) = \sum_{n, m} \sqrt{S(f_{n}, \alpha_{m})} \delta f_{n} \delta \alpha_{m}} \phi(x, y; f_{n}, \alpha_{p} + \alpha_{m}) \exp \left[i \{k_{n} x_{0} \cos \left(\alpha_{p} + \alpha_{m}\right) + k_{n} y_{0} \sin \left(\alpha_{p} + \alpha_{m}\right) + 2\pi f_{n} t + \varepsilon_{n} m\}\right]$$
(4.3)

ここに、 $\eta_a(x, y, t)$ は点 (x, y) における海面変動を示 し、 $\phi(x, y; f_n, \alpha_p + \alpha_m)$ は式 (2.98) の $\phi_{II}(\xi, \theta)$ のよ うな回折波の式である。

 $\eta_a(x, y, t)$ の周波数スペクトル $S_a(f_n)$ は容易に求ま り、次式のようになる。

 $S_{d}(f_{n}) = \sum S(f_{n}, \alpha_{m})\phi(x, y; f_{n}, \alpha_{p} + \alpha_{m})$

$$\times \phi^*(x, y; f_n, \alpha_p + \alpha_m) \delta \alpha_m \qquad (4.4)$$

ここに、 $\phi^*(x, y; f_n, \alpha_p + \alpha_m)$ は $\phi(x, y; f_n, \alpha_p + \alpha_m)$ の 共役複素関数である。

波向が $(\alpha_p + \alpha_m)$, 周波数が f_n のときの回折係数を $(K_a)_{nm}$ と表わすと,

 $(K_d)_{nm} = |\phi(x, y; f_n, \alpha_p + \alpha_m)|$ (4.5) で与えられるから,式(4.4)は次式のように書き直すこ ともできる。

$$S_d(f_n) = \sum_m \{ (K_d)_{nm} \}^2 S(f_n, \alpha_m) \delta \alpha_m \qquad (4.6)$$

不規則波の波高分布が Rayleigh 分布に従うとするなら、有義波高 $H_{1/8}$ と周波数スペクトル S(f) の間には、 次式のような関係が理論的に導かれる。

$$H_{1/3} = 4\sqrt{\int_{-\infty}^{\infty} S(f)df}$$

$$\tag{4.7}$$

ただし,式(4.7)の誘導の過程には海面変動が正規分布 するという仮定が導入されている。

合田^{6),9)}によると,数値シミュレーションによる解析 結果では zero-up crossing 法によって波高を定義する限 りでは波高分布は Rayleigh 分布によく一致するし,ま た,現地波浪の解析でも海の波の波高分布は Rayleigh 分布によく一致する。他の研究者¹⁰⁾による現地波浪の解 析でもこのことを裏付けている。海の波の統計解析から 式(4.7)の比例定数は4よりも深海域においては3.8 に近く,浅海域では4に近くなると合田¹¹⁾は述べている し,山口および土屋¹²⁾は3.9になるとしている。不規則 波の回折係数を入射波の有義波高(H_i)1/3 に対する回折 波の有義波高(H_a)1/3 の比として定義すると,この比例 定数の値に関係なく,不規則波の回折係数は次式によっ て与えられる。

$$K_{a} = \frac{(H_{a})_{1/3}}{(H_{i})_{1/3}}$$
$$= \sqrt{\sum_{n} S_{a}(f_{n})\delta f_{n} / \sum_{n,m} S(f_{n}, \alpha_{m})\delta f_{n}\delta \alpha_{m}}$$
(4.8)

不規則波の回折係数を定義する際に不規則波の代表波 高として有義波高を採用したのは,有義波高が不規則波 の代表波高として一般によく用いられていることと, 有義波高が統計的に最も安定した量になる¹⁸⁾からであ る。

Rice¹⁴⁾の理論によると、不規則波の平均周期は \overline{T} 次のように周波数スペクトルから計算することができる。

$$\bar{T} = \sqrt{\int_{-\infty}^{\infty} S(f) df} / \int_{-\infty}^{\infty} f^2 S(f) df$$
(4.9)

しかし,式 (4.9) によって計算された波の平均周期は zero-up crossing 法によって求めた平均周期より小さく なるという報告¹⁵⁾もあるが,現実問題として波のスペク トルから平均周期を推測する有効な方法がないこともあ って,本計算では式 (4.9)を用いることにした。

多くの波浪データの解析から平均周期と有義波周期 $T_{1/3}$ の間には $\bar{T}=0.9T_{1/3}$ の関係が平均的に成り立つこ とがわかっている¹⁶⁾ので周期比 K_{ar} を回折波と入射波 の有義波周期の比として定義すると,

 $K_{dT} = (T_d)_{1/3} / (T_i)_{1/3}$

$$= \sqrt{\frac{\sum\limits_{n} S_d(f_n)\delta f_n}{\sum\limits_{n} f_n^2 S_d(f_n)\delta f_n}} \left| (T_i)_{1/3} \right| (4.10)$$

となる。ここに、 $(T_a)_{1/s}$ は回折波の有義波周期、 $(T_i)_{1/s}$ は入射波の有義波周期である。

4.3 海の波の方向スペクトル

(1) 方向スペクトル S(f, α)

回折係数 K_a と周期比 K_{ar} を計算するためには, 式 (4.6) に示されている回折波の周波数スペクトルを求 めなければならないが,これを得るためには入射波の方 向スペクトル $S(f, \alpha)$ の形がわかっていなければならな い。

海の波の方向スペクトルは,通常次式のような形で表 わされる。

$$S(f, \alpha) = S(f)G(f, \alpha) \tag{4.11}$$

ここに, $S(f, \alpha)$ は波の方向スペクトル, S(f) は波の周 波数スペクトル, そして $G(f, \alpha)$ は方向関数である。先 の **4.2** では波のスペクトルが $-\infty < f < \infty$ で定義される いわゆる two-sided スペクトルとしたが, これ以降にお いては, 通常用いられる, $0 < f < \infty$ で定義される onesided スペクトルとする。

方向スペクトル $S(f, \alpha)$ と周波数スペクトル S(f) との間には、

$$S(f) = \int_{-\pi}^{\pi} S(f, \alpha) d\alpha \qquad (4.12)$$

なる関係が存在するため,波の方向関数は次式の条件を 満足しなければならない。

$$\int_{-\pi}^{\pi} G(f,\alpha) d\alpha = 1 \tag{4.13}$$

式(4.12)は一点で観測された海面の変動量が異なった 方向からの不規則波群の重ね合せとして表現できること を意味している。

海の波の周波数スペクトルや方向分布関数について以 下に述べ,不規則波に対する回折計算に用いる方向スペ クトルの形を決定する。

(2) 周波数スペクトル S(f)

海の波の周波数スペクトルに関しては数多くの研究が なされ,その標準的な形も提示されている。ここでは, 提案されている周波数スペクトルのうちからその代表的 なものを示す。

Pierson および Moskowitz¹⁷⁾ は,波が十分発達した状態における風波の周波数スペクトルとして次式のような形を提示している。

$$S(f) = 0.0081 \frac{g^2}{(2\pi)^4} f^{-5} \exp\left[-0.74 \left(\frac{w_0}{2\pi f}\right)^4\right]$$
(4.14)

ここに, $w_0 = g/U_{19.5}$, $U_{19.5}$ は海面上 19.5 m での風速 (m/sec) である。永井¹⁸⁾は,式(4.14)の形では実用的 でないとして,式(4.7)の関係と Rice の理論を用い τ,

$$S(f) = 0.121 \frac{H_{1/3}^2}{T_{1/3}^4} f^{-5} \exp\left[-0.485(T_{1/3}f)^{-4}\right]$$
(4.15)

の形に変換している。

Bretschneider¹⁰⁾ も実測波浪 データの 解析から 周波数 スペクトル形を提案しているが、そのスペクトル形は海 の波のスペクトルが満足すべき条件 $\vec{r}^2 = \int_0^{\infty} S(f) df$ を満 足していないので、光易²⁰⁾はこの条件を満足するように、 定数項の値を修正して、次式の形のものを示している。

$$S(f) = 0.257 \frac{H_{1/3}^2}{T_{1/3}^4} f^{-5} \exp\left[-1.03(T_{1/3}f)^{-4}\right]$$
(4.16)

Hasselmann ら²¹⁾は 1969 年における北海での波浪観測 結果から周波数スペクトルとして次式の形のものを提案 している。

$$S(f) = 0.0081g^{2}(2\pi)^{-4}f^{-5} \\ \times \exp\left[-\frac{5}{4}\left(\frac{f}{f_{p}}\right)^{-4}\right]\gamma^{\exp\left[-(f-f_{p})^{2}/2\sigma^{2}f_{p}^{2}\right]}$$

$$(4.17)$$

ここに、 $\sigma = \begin{cases} \sigma_a & (f \leq f_p) \\ \sigma_b & (f > f_p) \end{cases}$ であり、パラメータ γ はス ペクトルのビーク周波数 f_p におけるこのスペクトルと Pierson・Moskowitz のスペクトルとの比である。また $\sigma_a \ge \sigma_b$ はそれぞれ $f \leq f_p \ge f > f_p$ におけるスペク トルの幅を示すパラメータである。第一次近似として、 γ および σ_a , σ_b の値はそれぞれ 3.3, 0.07 および 0.09 を用いてよいとしている。

その他に,波浪推算の PNJ 法に用いられている Neuman²²⁾のスペクトルや造船関係で用いられている ISSC のスペクトル²³⁾がある。

実際の回折計算で与えられる波の諸元は、港口部にお ける有義波高および有義波周期,主波向であり、この波 が完全発達状態にあるかどうかわからないし、風の情報 も入手し難い。このことを考慮すると、式(4.16)の Bretschneider型のスペクトルが工学的に応用し易い形を 示していると同時に、実測の波浪スペクトルともよく一致 することが報告されている²⁴⁾。そこで、回折計算に用いる 不規則波のスペクトルとして、式(4.16)の Bretschneider 型の周波数スペクトルを採用することにする。

(3) 方向関数 G(f, α)

Cote ら²⁵)は同時撮影した海面の航空写真をステレオ 解析して得たいわゆる SWOP の方向関数として知られ. ている次式の形の方向関数を提案している。

$$G(f, \alpha) = \begin{cases} \frac{1}{\pi} \left\{ 1 + \left[0.5 + 0.82 \exp\left(-\frac{1}{2} \left\{ \frac{2\pi f}{w_0} \right\}^4 \right) \right] \cos 2\alpha \\ + 0.32 \exp\left(-\frac{1}{2} \left\{ \frac{2\pi f}{w_0} \right\}^4 \right) \cos 4\alpha \right\} \\ \left\{ \begin{array}{c} \left(|\alpha| \le \frac{\pi}{2} \right) \\ 0 \\ \end{array} \right\} \\ \left\{ \begin{array}{c} \left(|\alpha| > \frac{\pi}{2} \right) \\ \left(|\alpha| > \frac{\pi}{2} \right) \\ \end{array} \right\} \end{cases}$$

$$(4.18)$$

ここに, $w_0 = g/U_s$, U_s は海面上 5 m の点における風速である。

また,次に示す式はしばしば波浪推算などに利用され ている経験式である。

$$G(f, \alpha) = \begin{cases} \frac{(2l)!!}{(2l-1)!! \alpha_{\max}} \cos^{2l} \left(\frac{\pi}{2} - \frac{\alpha}{\alpha_{\max}}\right) \\ & (|\alpha| < \alpha_{\max}) \\ 0 & (|\alpha| > \alpha_{\max}) \\ & (4.19) \end{cases}$$

ここに、l は波の方向集中度の度合によって決まる整数 値で、 α_{\max} は主波向 α_p から測った成分波の最大偏角 である。また、 $(2l)!!=2l\cdot(2l-2)\cdot \cdots 4\cdot 2, (2l-1)!!$ = $(2l-1)\cdot(2l-3)\cdot \cdots 3\cdot 1$ である。

光易²⁶⁾はクローバ型のブイを用いて波の観測を行い, 次式に示す方向関数を提示している。

$$G(f,\alpha) = \frac{1}{\pi} 2^{2S-1} \frac{\Gamma^2(S+1)}{\Gamma(2S+1)} \cos^{2S} \frac{\alpha}{2}$$
(4.20)

ここに, $\Gamma(S)$ は Gamma 関数であり, S は波の方向集 中度を示すパラメータである。パラメータ S は次式に よって与えられる。

$$S = \begin{cases} S_{\max}(f|f_p)^{-2.5} & (f > f_p) \\ S_{\max}(f|f_p)^5 & (f \le f_p) \end{cases}$$
(4.21)

ここに、 S_{\max} はビーク周波数 f_p (=1/1.05 $T_{1/3}$)における S の値であり、方向関数の方向集中度を決める パラ メータでもある。風波の発達状況を表わすパラメータの 一つである $2\pi f_p U_{10}/g$ の値が減少するにつれて、 S_{\max} が増大するという観測結果から、光易は S_{\max} を次式の ように与えている。

$$S_{\max} = 11.5(2\pi f_p U_{10}/g)^{-2.5} \tag{4.22}$$

ここに, U_{10} は海面上 10 m での風速である。しかし, 式 (4.22) の形には入手困難な U_{10} の風速のパラメータ が含まれているため,工学的に適用が難しいとして,合 田および鈴木²⁷⁾は Wilson²⁸⁾ の波の発達の関係式と多く 研究者の実験および観測データを用いて, S_{max} と沖波

図-4.1 波形勾配による Smax の推定図

波形勾配 H_0/L_0 との平均的な関係を 図-4.1 のように 示している。ただし, $H_0/L_0 < 0.026$ では, Wilson の式 が適用できないと同時に,波浪データもないので,それ までの曲線の勾配で延長して示している。

以上の方向関数の形のうち,式(4.18)の SWOP 型 は入手困難な風速のパラメータが含まれるし,式(4.19) では方向集中度パラメータである *l* の値が経験的にしか 与えられない。しかし,式(4.20)の光易型の方向関数 は合田および鈴木によって沖波波形勾配で一義的に決ま り,工学的に有用な形をしているので,この光易型方向 関数を不規則波の回折計算に用いることにする。

(4) 光易型方向関数の特性

光易型方向関数では,式(4.21)中の S_{max} の値が重要な役割を演じ, S_{max} の値が大きくなると,波の主方向に集中する波になる。合田および鈴木は,上述のように S_{max} の値を沖波波形勾配に対して図-4.1のように示しているが,実際の海の波ではこの推定曲線をはさん

で上下に相当ばらつくので,このばらつきを考慮して, 方向スペクトルの性質が詳しくわかるまでは Smax の値 として次のような値を暫定的に用いるとこができるとし ている。

- i) 風波 : S_{max}=10
- ii) 波衰距離の短いうねり: S_{max}=25 (波形勾配が比較的大)
- iii) 減衰距離の長いうねり: S_{max}=75 (波形勾配が小)

この S_{max} の値や 図-4.1 の推定値は沖波に対するも のであるため,浅海域にあるような港に対してはこのま まの値を用いて回折計算することはできない。なぜなら 浅海域においては,たとえば平行等深線海岸の場合を考 えると,屈折の影響で波向がそろい,波峰線が長く連り 易くなって,見掛け上 S_{max} の値が増大するからである。 一方,複雑な等深線海岸では,屈折によって波の方向ス ペクトルは単一の S_{max} では推定できないほど複雑にな る可能性がある。図-4.2²⁹⁾ は,海底地形が直線状平行等

図-4.2 屈折による Smax の変化図

深線で表示される場合の方向スペクトルの変化を S_{max} の見掛け上の増大として表わしたものである。図中の L_0 は沖波の波長, (α_p) のは等深線に対する垂線からの偏角で表した入射波の主方向である。

4.4 不規則波の回折特性と方向スペクトルの関連

(1) スペクトル分割法

4.2 で示したように,不規則波の回折計算を行うとす ると,入射波の方向スペクトルを細分し,その細分区間 のエネルギーと等しいエネルギーを持つ成分波に分割し なければならない。

波の周波数スペクトルの分割数を N, 方向関数の分割 数を M として, まず, 周波数スペクトルの分割につい て検討する。

周波数スペクトルに関しては, N 個に分割された区間

のもつ波のエネルギーが各々等しくなるように次式で分割する。

$$S(f_n)\delta f_n = \int_0^\infty S(f)df/N \tag{4.23}$$

このように分割すると, n 番目の分割区間内の中心周波 数 fn は,

$$f_n = \frac{1}{0.9T_{1/3}} \left\{ 2.9124N \left[\operatorname{Erf}\left(\sqrt{2\ln\left(\frac{N}{n-1}\right)}\right) - \operatorname{Erf}\left(\sqrt{2\ln\left(\frac{N}{n}\right)}\right) \right] \right\}^{1/2}$$
(4.24)

となる。ここに, Erf(*)は誤差関数で,次式で与えられる。

$$\operatorname{Erf}(*) = \frac{1}{\sqrt{2\pi}} \int_{0}^{*} \exp\left(-\frac{t^{2}}{2}\right) dt \qquad (4.25)$$

式 (4.24) は Bretschneider 型の周波数スペクトルに関 して,永井³⁰⁾が求めた式である。

次に,方向関数の分割については等分割することにして,分割幅 $\delta \alpha$ は,

$$\delta \alpha = (\alpha_{\max} - \alpha_{\min})/M \tag{4.26}$$

とした。ここに、 α_{max} と α_{min} は主方向 α_p からの最大と最小の偏角である。

計算時間は NM に比例するため, N および M の値 については精度的に許容できる範囲内でできるだけ小さ な値にすることが望ましい。通常,周波数スペクトルの 分割数は N=5 とすれば,計算は実用上十分な精度であ る。また,方向関数の分割数については,港口部からの 距離が増大するにつれて, M の値を大きくしなければ ならないが, M の値は,通常, R/L < 30 であれば 20, 30 < R/L < 80 では 36 程度, R/L > 80 ではこれより大 きな値となることがわかっている³¹⁾。

Smax の値が増大すると,波は主方向の周りに集中し, 主方向から離れた方向の波のエネルギーは非常に小さく

図-4.3 S_{max} に対する α_{max} と α_{min}
なる。このため、 S_{max} の大きな値については $\pm 90^{\circ}$ の 範囲の計算を行う必要はない。そこで、 S_{max} に対する 計算範囲を決めたのが、 図-4.3 である。この線は、波 のエネルギーの 99.5% が入っている波向範囲を定めた ものである。この範囲は、この図から $S_{max}=10$ の場合 約 $\pm 90^{\circ}$ 、 $S_{max}=100$ になると $\pm 48^{\circ}$ となる。

(2) 不規則波の回折の特性

開口防波堤あるいは島堤による不規則波の回折計算 を行う場合,式(4.4)中の回折波の式, $\phi(x,y;f_n, \alpha_p + \alpha_m)$ として,2.あるいは3.で示したように実験 値とよく一致する厳密解を用いるのがよいが,厳密解は B/L>8では計算が容易でなく,また計算時間も非常 に多く必要とすると同時に,防波堤が完全反射堤でない 場合には厳密解では計算できない。さらに,港口部での 波の回折を計算しようとすると,厳密解では防波堤が一 直線上にある両翼防波堤の場合にしか適用できない。ま た,2.および3.で示したように近似解は,進入角度 α およびB/Lが小さくなければ,厳密解と実用上許容で きる範囲の差である。このような理由によって,不規則 波に対する回折計算には2.および3.で示した近似解 を用いることにする。

ここでは,方向スペクトルを有する不規則波を用いて, 半無限堤や開口防波堤,島堤に対する回折計算を行い, 不規則波に対する波高比の分布特性を調べる。

図-4.4は、半無限堤による回折波の波高比分布を示し たものである。用いた不規則波は風波に対応する Smax =10 の波で, 波の主方向は防波堤に直角である。計算 では周波数分割数 N=10, 方向分割数 M=36 としてい る。図中の実線と破線は、それぞれ完全反射堤(Kr=1) と完全消波堤 (Kr=0) としたときの波高比を示してい る。防波堤前面の y/L=2 の線上では, $K_r=0$ の防波 堤の場合 $K_a=1$ となって入射波高と一致するが、 $K_r=1$ の防波堤になると、 $K_a=1.1$ から $K_a=1.4$ に漸変して いる。このときの $K_a=1.4$ の値は, 入射波と反射波の 波高の自乗和の平方根として求めた波高比 Ka=1.41 に 非常に近い。合田・鈴木および岸良³²⁾は、二次元水路の 実験と理論から反射壁から1波長以上離れると,入射波 と反射波との間の位相がランダムになり, 自乗和の平方 根として反射壁前面の波高が表わされることを示してい る。y/L=+0の防波堤前面沿いでは, $K_r=0$ の防波堤の 場合,防波堤先端(Ka=0.5)付近を除いて Ka=1となっ ているが、 $K_r=1$ の防波堤になると、 $K_a=1$ から2に 防波堤先端付近で急変している。 $K_r=1$ で $K_d=2$ とな るのは,防波堤前面上では入射波と反射波の位相が揃う

図-4.4 半無限防波堤による不規則波の回折

ためである。防波堤背後では, $K_r=0$ と 1 との差は, y/L=-0の防波堤背面沿いに少し現われる程度で,y/L<-2 では両者の差は無視できるほど小さい。

図-4.5 は、図-2.10 の記号で $\alpha_B = 45^\circ$ 、 $\beta = 60^\circ$ 、B = 5Lの港に $S_{max} = 10$ の不規則波が x軸上にある、

反射率 KrI の防波堤に平行に入射してきたときの波高比 の平面分布図(回折図)である。ここでは周波数分割数 N=10, 方向分割数 M=30 で計算している。図中の実 線と破線は、それぞれ両防波堤が完全反射堤(KrI=KrII =1) の場合と一方が完全消波堤 (KrI=0, KrII=1) の場 合の等波高比線を示している。 $K_{rI} = K_{rII} = 1$ の場合,入 射波が ±90°の範囲に方向分散している不規則波である ため、 $K_{rI}=1$ の防波堤による反射波の影響で港内波高 が $K_{rI}=0$ および $K_{rII}=1$ の場合よりも大きくなってい る。特に, K_{rI} の防波堤近傍では $K_{a}=1$ の線が港内奥 深くまで続いており,防波堤沿いの波高が非常に高い。 しかし, この波高は KrI の防波堤から離れるに従って急 激に小さくなるが, y/L>1 では波高減少はゆるやかに なる。沿い波とは通常,防波堤に沿って進行する波高の 高い波のことであるが, ここに示したように防波堤によ る波の反射を考えることによって防波堤沿いに波高の高 い波を出現させることができることから、沿い波は実在 する波ではなく,防波堤による反射で単に波高が高まっ て見えるだけではないかと考えている。 $K_{rI}=0$ と完全 消波堤にすることによって, 港内波高は波高比にして 0.2程度改善される。特に, K_{rI} の防波堤沿いの波高は 低下する。図-4.5 のような条件の場合は KrI の防波堤 の反射率を下げて,港内に反射波が進入するのを防止す ることが防波堤の設計上必要となる。

永井33)も開口部における不規則波の回折計算を行って いるが,永井の計算法では防波堤による入射波の直接反 射や二次回折の現象は考慮されていないため,入射波の 波向範囲をしぼって,反射波や二次回折が生じないよう にしたうえで計算するようになっている。そこで、この ように波向の範囲を狭めて計算する永井の方法と反射波 や二次回折波が計算できるようにした近似解を用いる著 者の方法との比較を行った結果が図-4.6に示してある。 この図は、図-2.10の記号で α_B=120°, β=45°, B=4L の港に Smax=25 の不規則波が 図-4.6 に示すように 30° の傾きを持って入射してくる場合の回折図を示してい る。計算では周波数分割数 N=5, 方向分割数 M=32 で,両防波堤は完全反射堤としている。図中の破線が永 井による方法,実線が著者による方法で計算した等波高 比線を示している。破線は,防波堤による反射波が生じ る波向が除外されているので,両翼防波堤に対する回折 図に非常に近い波高分布形を示している。一方,実線は, 防波堤による反射波のため,両防波堤の近傍では港奥に 入り込む傾向があり,このため防波堤沿いの波高が高く なっている。この傾向は x 軸に平行な防波堤近傍で特

図-4.6 永井の方法と著者の方法による波高比の比 較 (α_p=30°)

に強い。永井の方法による波高比は著者のものより港内 中央部で高くなっているが、この原因としては次のよう なことが考えられる。永井の方法では、反射波や二次回 折が起きない範囲に波向を限定した上で、この波向範囲 のエネルギーが入射波のエネルギーに等しいとおいてい るため、波のエネルギーから推定した入射波高は実際の 入射波高より小さくなる。この小さな入射波高を用いて 回折計算を行っているので、入射波の有義波高に対する 港内波の有義波高の比で定義される波高比は必然的に大 きく計算される。図-4.6 の条件では、永井の方法によ る入射波高は実際の入射波高の 0.91 倍の値となるの で、図-4.6 における破線の等波高比値を 0.91 倍した

図-4.7 永井の方法と著者の方法による波高比の比 較 (α_p=90°)

のが実際の入射波高に対する波高比になる。たとえば 図-4.6 の破線の $K_a=0.8$ は実際は $K_a=0.73$ になる。 このように、永井の方法では波高比の推定法に問題があ ると同時に、港内直接進入波が防波堤で反射されないた め、波高比の平面分布が大きく歪んでくる。その結果、 永井の方法を実際問題に適用する場合は、港内直接進入 波が防波堤によって反射されない条件あるいは反射され るとしてもその波のエネルギーが非常に小さい条件に限 定する必要がある。図-4.7 のような場合には、もはや 永井の方法は適用できない。図-4.7 は図-4.6 と波向だ けが異なる場合について計算したもので、波は一方の防 波堤に直角に入射するようにとっている。

図-4.8 は, 長さ B=3L の島堤に Smax=25 の不規 則波が島堤に対して 60° 傾いた方向から進入してきたと

— 71 —

きの島堤周辺の波高分布を示したものである。計算では 周波数分割数 N=5, 方向分割数 M=20 で, 完全反射堤 としている。 波向範囲を ±90° にとっているため, 波 の主方向から時計回りに測って 60°以上の波向をもつ 成分波は島堤背後で反射を起している。しかし、この 反射波を起す波のエネルギーはこの計算条件では全体の 10% 程度であるので、この影響は無視することができ ると考えられる。この図と 3. で示した規則波の波高分 布図(図-3.2)とを比較すると、島堤前面では規則波の 場合,入射波と反射波が重なり合い,波高比が Ka>1 の部分と Ka<1 の部分とが交互に現われ,重複波現象 を起しているが, 方向スペクトルを有する不規則波では 全体に $K_a > 1$ となっている。ただし、 $y/L = 1/(4 \sin 60^\circ)$ =0.29 で $K_a < 1.2$ と他に比して波高は極端に小さく, また y/L がさらに大きくなると, 波高は反射波の方向 に小さく振動しながら減少している。 y/L=0.29 で波 高が小さくなるのは、島堤に近いため位相のずれが小さ く, 波のエネルギースペクトルのピーク周波数付近の波 による重複波の節の影響が強く残っているためである。 この現象は無限長の壁面に単一方向の不規則波が直角に 作用したときの合田ら84)による二次元的な解析と同じも のである。島堤から遠ざかるにしたがって波高が小さな 変動を示しながら減少するのは、この重複波としての影 響がわずかながら残っているためである。

島堤背後では、規則波の場合 Ka<0.2 となる波高の 非常に小さい部分が局所的に現われていたり、島堤に平 行な線上では波高比が波状形を示していたが、不規則波 になると,波高比の分布は非常にならされた形になり, 図-4.8 では $K_a < 0.35$ となるような箇所はない。B/L=3 の 図-4.8 でも Ka<0.4 の部分は島堤背後1波長 以内, Ka<0.5 の部分にしても2波長以内であり, 島堤 の遮蔽効果は非常に狭い範囲に限られる。このため、港 口部に島堤を設けて波を遮蔽しようとすると,港口部と 島堤との距離を長くとることは得策ではない。また, Smax の小さな風波の遮蔽に島堤を利用しようとすると, 波の方向分散が大きいため,斜め入射の場合,当然島堤 背面で反射波が生じ,遮蔽効果が落ちる。そこで,島堤 の遮蔽効果を増すためには波の主方向がほぼ一定で、方 向集中度の高い、つまり Smax の大きな海域に設置する のがよい。この意味では,水深が波長に比して相対的に 浅く,波の方向集中度が波の屈折で高くなる港に建設す るのが効果的である。

(3) 不規則波の回折と方向スペクトルとの関連

時間的にも空間的にも不規則な海の波が防波堤によっ

て回折される場合,海の波を一つの代表波,たとえば有 義波で代表させ,この波の周期および波向を用いて計算 した回折係数が方向スペクトルを有する不規則波として 計算した回折係数と実用的な精度の範囲内で一致するの であれば,一つの代表波で計算するだけで済み,計算が 非常に容易になる。しかし,合田および永井³⁵⁾や合田 および鈴木³⁶⁾が示したように,防波堤背後の波高観測 値を説明するためには,海の波を方向スペクトルを有す る不規則波として計算する必要があり,一つの代表波 (有義波)で代表させて,規則波として計算したのでは波 高を小さく見積ることになる。そこで,ここでは入射波 の形によって波高比の分布がどのように変化するか調べ てみた。

- まず,入射波として海の波を,
- i) 有義波で代表させる規則波,
- ii) 単一方向の不規則波,
- iii) 単一周期の波で,波向だけが分布する不規則波,
- iv) 周期および波向とも分布する方向スペクトルを 有する不規則波,

の4つの形に分類して,それぞれについて回折係数を計 算して,回折係数の平面分布の相違を検討する。海の波 を i)のように考えて計算する方法は,古くから行われ ている方法で,有義波の周期および波の主方向を用いて 規則波の回折係数を求め,この回折係数に有義波高を乗 じて港内波高を推定する方法である。ii)のように考え て計算する方法は,波の周期の不規則性,つまり周波数 スペクトルのみを考慮し,波向を主方向の一方向に限定 して港内波高を算定する方法である。iii)のように考え る方法は,周期の不規則性は考えず,有義波周期の単一 周期のみとし,波向の分布のみを考慮する方法で,最後 の iv)のように考える方法は,周期および波向ともに分 布する海の波の不規則性を忠実に再現して計算する方法 である。

図-4.9 および 4.10 にこれら 4 つの入射波の形に対す る回折図を比較している。これらの図の計算条件は, *B*/*L* =3 で,防波堤に対する入射波の波向(波の主方向)は 60°である。図-4.9 の実線と点線は,海の波をそれぞ れ i)と ii)のように考えて計算した等波高比線を示し, 図-4.10 の実線と点線は,海の波を iii)と iv)のよう に考えて計算した等波高比線を示している。

図-4.9 で有義波による回折図と単一方向で周波数分 散のみを示す不規則波の回折図を比較してみると、後者 の点線は前者の実線より細長く港内に延びている。ま た、前者で屈曲した等波高比線(たとえば K_a=0.2 の

図-4.9 規則波と単一方向不規則波の回折図

図-4.10 単一周期方向分散波と方向スペクトルを 有する不規則波の回折図

線)は、周波数分散を考えることによってならされ、その結果、後者の点線は単調な形となる。このような差を 等波高比線の分布形では示すが、波高比の値でみると両 者の差は大きくなく、0.1以下である。この程度の差で あれば、周波数分散を考えずに周期として有義波周期で 代表させても大きな問題はなさそうである。

つぎに,図-4.10の波の方向分散のみを考慮した場合 と方向スペクトルを用いた場合とを比較してみると,前 者の実線が後者の点線より細長く港内に延びているけれ ども、両者の間には大差はない。たとえば、x/L=2、 y/L=6の点について波高比 K_a を比較してみると、前 者では $K_a=0.63$ 、後者では $K_a=0.57$ となって、たか だか 0.06 の差である。このことは、上述の 図-4.9 の 場合と同様に、周期としては有義波の周期で代表させて もよさそうである。

以上によって、周波数分散は回折係数にそれほど大き な影響を与えないことがわかった。そこで、つぎに方向 分散の影響を調べるために 図-4.9 と 4.10 を比較して みると、等波高比線は大きく異った形を示している。 K_a =0.8 の線は、図-4.9 の有義波の回折図では x/L=3.5, y/L=8.5 付近まで延びているけれども、図-4.10 の方 向スペクトルをもつ波では x/L=0, y/L=2.7 付近まで しか延びていない。また、x/L=2, y/L=6 の点での波 高比についてみても、前者で $K_a=0.93$ であったもの が、後者では $K_a=0.57$ と差が 0.36 にもなる。このこ とは、回折係数には方向分散が非常に重要な要素になる ことを示している。

上述のように、波の回折係数には方向分散が非常に重要な要素となることがわかったので、波の方向分布形によって、つまり波の方向集中度によって波高比がどのように変化するか調べてみた。計算条件は 図-4.9 および 4.10 と同じであるが、方向集中度を示す パラメータ S_{max} の値を 10, 25, 75, 200, ∞ の5 種類に変えて計算した。ここに、 $S_{\text{max}} = \infty$ は単一方向不規則波に対応する。式 (4.20)の光易型方向関数は S 値が式 (4.21)のように周波数の関数であるため、周波数によってその形を変える。しかし、 $\cos^{2l} \alpha$ 型方向関数の l と光易

図-4.11 Smax の値の変化による波向分布の変化

-73 -

型方向関数との間には平均的にみて, $l=0.115S_{max}$ の 関係があることが示されている³⁷⁾ので,この関係式を用 いて, $S_{max}=10$,25,75,200におけるlの値を推定 し,光易型方向関数を $\cos^{2l} \alpha$ 型に変換したときの方向 関数形を図-4.11に示す。図中の $\bar{G}(f, \alpha)$ はfに関する $G(f, \alpha)$ の平均値である。この図でわかるように S_{max} の 増大とともに方向関数は主方向に集中するようになる。 90%以上の波のエネルギーが集中する波向範囲は, S_{max} =10では $-60^{\circ} < \alpha < 60^{\circ}$, $S_{max}=75$ になると $-30^{\circ} < \alpha$ $<30^{\circ}, S_{\max}=200$ では $-15^{\circ} < \alpha < 15^{\circ}$ となる。

図-4.12 は S_{max} の値を変えたときの波高比の変化を 示したものである。図-4.12 (a) は y/L=2, (b) は y/L=6 上での波高比の分布を示す。 S_{max} の値を増加させ ると、当然のことながら単一方向不規則波の分布形に近 づく。 S_{max} の値による波高比の変化は、波高比分布の ビーク付近と防波堤による遮蔽域で大きく、波高比の値 はビーク付近では S_{max} の値が小さいほど小さく、遮蔽 域では S_{max} の値が小さいほど大きくなる。図-4.12 (a)

図-4.12 Smax の変化による波高比の変化

と (b) を比較してわかるように, S_{max} の値による波高 比の変化は y/L=2 より y/L=6 の線上で大きく, 防波 堤から離れるに従って S_{max} の値による波高比の変化が 顕著になる。 しかし, $S_{max}=10\sim200$ と大きく変えて も, $S_{max}=10$ と 25 では差は最大で 0.1 程度であり, $S_{max}=25$ と 75 でも両者の差はほぼ同じ値の 0.1 程度に なるように, 回折計算では S_{max} の値を細く決定する 必要はなく, S_{max} の大まかな数値さえわかれば, 実用上 十分である。

4.5 単一方向不規則波実験による理論の検証

(1) 実験水槽と実験装置

実験水槽は,港湾技術研究所の大型水工実験場内に設けた仮設水槽で,図-4.13 に示すような諸元を有している。また,水槽側壁には砕石による斜面を設けて,側壁からの反射波を除いた。

造波機は, 2.4 で述べたものと同じピストンタイプの 造波機で,本実験では本造波機2台を図-4.13のように

配置して使用した。実験に使用した波は単一方向の不規 則波で,その発生方法は概略以下のようになっている。

- 白色雑音発生器2台によって発生された雑音信号を 10 チャンネルのバンドパスフィルターに通して,所 要のスペクトルを有する不規則波信号を発生させる。 この場合,バンドパスフィルターの出力設定ダイヤル は予め計算によって求めておく。
- 2) この不規則波信号をまずデータレコーダに集録す る。この不規則波信号をそのままの形で造波機に入力 したのでは周波数が高過ぎるので、データレコーダの テープスピードを 1/10~1/20 に落して、造波機に入 力する。
- 3) 周波数を落した信号を造波機に入れると、この信号

に従ってミナーシャモータが回転し,この回転が直接 ボールネジに伝わり,造波板を前後に駆動する。

この方法で発生する不規則波は Bretschneider 型のスペクトル形を持つようにしてある。

波高計としては容量式の波高計を3台使用した。波形 はデータレコーダに集録し, A/D 変換した後に大型計 算機で統計解析した。

防波堤模型としては島堤実験に用いた模型を利用し, 消波防波堤とする場合は模型周囲に 1:1.5 勾配の砕石 マウンドを築いた。

(2) 実験条件

有義波高および有義波周期がそれぞれ $H_{1/3}=2$ m, $T_{1/8}=10$ sec の不規則波が 15 m の一様水深の場所に設 置された開口幅 B=300 m の港口部および長さ B=270m の島堤に入射することを想定して, 縮尺 1/100 で実 験することを考えた。その結果,実験では $H_{1/3}=2.0$ cm, $T_{1/8}=1.0$ sec,開口幅 B=3 m および島堤長 B=2.7 m となる。

 $H_{1/3}$ =2.0 cm, $T_{1/3}$ =1.0 sec の波を目標にして,開口 部あるいは島堤を設置する予定の位置を囲む 28 点で入 射波を測定した結果,28 点の平均値は 表-4.1 のように

表-4.1 入射波の諸元

1/10 max.	Significant	Mean	Significant	$\begin{array}{c} {\rm Mean}\\ {\rm wave}\\ {\rm period}\\ \bar{T} \ [{\rm sec}] \end{array}$
wave	wave	wave	wave	
height	height	height	period	
H _{1/10} [cm]	H _{1/3} [cm]	Ĥ [cm]	T _{1/3} [sec]	
2.27	1.82	1.11	1.08	0.96

なった。しかし,波高はこの平均値のまわりをばらつき, 平均値に対する波高比で示した波高の平面分布が図-4.14 である。この分布形からわかるように波高は平均 値の 0.9~1.2 倍の範囲にある。この図を参照して,開 口部および島堤の位置を決定した。

入射波の諸元としては,表-4.1の平均値を用いるこ とにした。この表の有義波高および周期を用いて計算し た式(4.16)の Bretschneider 型のスペクトルと実側ス ペクトルとを比較したのが図-4.15である。この図でわ かるように,Bretschneider 型のスペクトルは,f>1Hz の高周波側で実測スペクトルより大きく,f<1Hzの低 周波数側で小さくなっている。高周波数側における実測 不規則波のエネルギー低下は水面の汚れによる波高減衰 のためではないかと推定される。

防波堤としては完全反射堤と考えられる直立堤と防波 堤のまわりに砕石を積んだ消波堤の2種類について実

図-4.14 防波堤設置付近の入射波高比の分布

験を行った。数値計算を行う場合,防波堤の反射率を与 えなければならないので,図-4.16 に示すような状態に 消波堤を配置し,その前面に 20 cm 間隔に 2 台の波 高計をセットして,入・反射波を分離する⁸⁸⁾ことによっ て不規則波の反射率 K_r を求めた。反射率 K_r は不規則 波中の成分波の周期によって変わるけれども,ここでは 各周期毎に求めるのではなく,入射波に対する反射波の エネルギー比の平方根として平均的な反射率を求めた。 この実験に用いた不規則波は 表-4.2 のような 3 種類の

Significant wave		Wave steeppees	Deflection of	
Height H _{1/8} [cm]	Period T _{1/3} [sec]	$H_{1/3}/L$	Keneettoin coent. Kr	
1.81	1.12	0.0145	0.48	
1.06	1.12	0.0085	0.54	
0.29	1.09	0.0024	0.63	

表-4.2 波形勾配による反射率の変化

不規則波である。その結果,反射率は $\mathbf{表}$ -4.2 に示すような値になり,波形勾配が小さくなれば増加する傾向を示す。この実験結果を参照にして,数値計算に用いる反射率として K_r =0.5 と決めた。この反射率は防波堤に 直角に波が進入する場合の反射率で,斜め入射の場合は この値とは異なる可能性があるが,ここでは斜め入射波 の場合でも, K_r は直角入射時のもので代表されると仮

図-4.15 実測スペクトルと Bretschneider 型のス ペクトルとの比較

定した。

(3) 実験ケースと波高測点

実験ケースは,表-4.3 にまとめられているように開

表-4.3 実験ケース

	Experimental case	Alignment of breakwater	B/L	K_r
Breakwater gap	G-1	Fig. 4.17		1.0 and 0.5
	G-2	Fig. 4.18	1.65	
	G-3	Fig. 4.19		1.0
Detached breakwater	D-1	Fig. 4.20		1.0 and
	D-2	Fig. 4.21	1.48	
	D-3	Fig. 4.22		0.5

図-4.16 反射率の算定実験

ロ防波堤に関して3ケース,島堤に関して3ケースの計 6 ケースである。それぞれのケースについて防波堤が完 全反射堤 (K_r =1)の場合と消波堤 (K_r =0.5)の場合に ついて行った。各ケースの条件を示すと以下のようにな る。

- i) ケース G-1: 図-4.17 に示されている防波堤配置
 では開口部を通過した波は一方の防波堤の背面で反射されて港奥に進入する場合である。
- ii) ケース G-2: 図-4.18 の防波堤配置は開口部を通って直接波が港内に進入する通常の配置である。
- iii) ケース G-3: 図-4.19の防波堤配置では造波板に 近い方の防波堤によって回折された波が再度他方の 防波堤で回折される二次回折が起る場合である。
- iv) ケース D-1: 図-4.20 のように島堤に直角に波が 入射する場合である。
- v) ケース D-2: 図-4.21 のように島堤に波が α =60° 傾いて入射する場合である。
- vi) ケース D-3: 図-4.22 のように島堤に波が α =45°傾いて入射する場合である。

波高測点は,各図中に小円で示されている。島堤の場 合は島堤前・後面の両方で測定しており,ケース D-1 と

図-4.17 ケースG-1 における防波堤配置と測点

図-4.18 ケース G-2 における防波堤配置と測点

D-3 では前面の波高測点は島堤に直角方向の測線上に あるが,ケース D-2 では反射波方向にとっている。ま た,島堤背後では入射方向に測点は並んでいる。

図-4.19 ケース G-3 における防波堤配置と測点

図-4.21 ケース D-2 における防波堤配置と測点

図-4.20 ケース D-1 における防波堤配置と測点

図-4.22 ケース D-3 における防波堤配置と測点

(4) 開口防波堤に関する実験値と計算値との比較

写真-4.1 は開口防波堤に関する実験状況を示したものである。

写真-4.1 開口防波堤に関する実験状況

i) ケース G-1

本ケースは、図-2.9 (c) に対応する防波堤配置で,防波 堤の背面での反射波が港奥に進入するケースである。完 全反射堤に関して実験値と計算値を比較したのが図-4.23 である。図-4.23 (a) は波高比 Ka,図-4.23 (b) は周期比 Kar に関して比較したものである。図中の実 線と点線はそれぞれ入射波の $H_{1/8} \ge T_{1/3}$ で求めた Bretschneider 型のスペクトルと実測スペクトルを用い て計算した波高比であり,小円は実験による波高比であ る。図-4.15 に示したように入射波の実測スペクトルと Bretschneider 型のスペクトルとでは多少差があるけれ ども,波高比として計算した結果ではy/L < 1.5 でわず かな差を示すだけで,両者による波高比はよく一致して

いる。このことは、この程度の入射波のスペクトルの差 では波高比には大きな影響を与えないことを示してい る。実験値は x=2m および 4m では比較的よく実験 値と一致しているが、x=8 m では $y/L=1.0 \sim 2.5$ の間 で計算値が実測値より大きく、最大で実測値の1.5倍程 度になる。この原因としては,計算では反射波の影響範 囲を幾何光学的な反射領域として決め、この領域からの 波のエネルギーの流出入はないと仮定していることが考 えられる。たとえば、x=8m で y/L=1 付近で計算値 は急激に波高が増大しているが、実験値はゆるやかに増 大している。このような波高の急激な変化を示す部分は 丁度領域の境界上になっており、計算では急激な波高変 化を示すが、現実には波のエネルギーが境界を通って流 れ出し、実験値のようになる。計算値と実験値と差が大 きく現われる部分は計算値の波高比が急変する部分だけ であることが 図-4.23 (a) からわかる。

図-4.23 (b) に示される周期比 Kar は、実測スペク トルを用いたものと Bretschneider 型のスペクトルを用 いたものとでは波高比の場合より差が顕著になっている が、差としては0.1程度で小さい。この原因としては周 期比は式(4.10) に示したように周波数の自乗に関係す るため、図-4.15 に示された両スペクトルの差が顕著に 現われたためだと考えられる。実験値は実測スペクトル を用いた周期比によく一致しているのがわかる。

図-4.24 は、防波堤周囲を砕石で巻いた消波堤に関して実験値と計算値とを比較したものである。図-4.24 (a) と(b)とはそれぞれ波高比と周期比に関する比較図であ

図-4.23 ケース G-1 における実験値と計算値の比較 (Kr=1)

図-4.24 ケース G-1 における実験値と計算値の比較 (Kr=0.5)

る。図-4.24 (a) の波高比の計算値は, Bretschneider 型の スペクトルを用いても実測スペクトルを用いても,両者 ともほとんど差がない。防波堤を消波堤にすることによ って波高比 Ka は全般に小さくなる。特に,防波堤の背 面での反射波が強く影響する部分, x=8m における 1 <y/L<2 では Ka は完全反射堤の場合の約 6 割程度 に波高が下る。実験値は,計算値と比較的よく一致し, 完全反射堤の場合に一致の悪かった, x=8m, 1.0<y/L <2.5 でも計算値に近づいている。しかし,波高比が急 変する部分では計算値と実験値の間には最大で0.3程度 の差がある。消波堤にすることによって計算値と実験値 が比較的よく一致するようになった理由としては、消波 堤にすることによって港内波高が全体的に低下し,各領 域間の波高の急激な変化が緩和されるため領域間の境界 を流出入する波のエネルギーが少なくなるためだと考え られる。

図-4.24 (b) の周期比は、実測スペクトルを用いた場 合と Bretschneider 型のスペクトルを用いた場合とで 0.1 以下の差で、実験値は実測スペクトルを用いたもの によく一致している。ただし、x=2m における y/L>3.5 では実験値は実測スペクトルで計算したものより 0.2 程度大きくなって、この部分では差が他の測線に比 して大きい。しかし、この差が何に起因するか明らかに できなかった。

ii) ケース G-2

本ケースは、防波堤の開口部を通った波が直接港内に 進入する場合である。完全反射堤に関して実験値と計算 値とを比較したのが 図-4.25 である。図-4.25 (a) は波 高比 K_a , 図-4.25 (b) は周期比 K_{aT} に関する比較図 である。図-4.25 (a) の波高比は、Bretschneider 型のス ペクトルを用いても、また実測スペクトルを用いてもほ とんど差がない。実験値は、波高分布のビーク付近で

図-4.25 ケース G-2 における実験値と計算値の比較(Kr=1)

図-4.26 ケース G-2 における実験値と計算値の比較 (Kr=0.5)

0.1 程度計算値より小さくなっているが、その差はわず かで実験値と計算値の一致は非常によい。

図-4.25 (b) の周期止は,ケース G-1 で述べたと同じ 理由によって実測 スペクトルを用いた場合と Bretschneider 型のスペクトルを用いた場合とでも波高比の場合 より差が顕著になっている。実験値は実測スペクトルを 用いたものに非常によく一致している。

図-4.26 は、防波堤を消波堤にした場合の実験と計算 値の比較図である。図-4.26 (a)の波高比 K_a について みると、実測スペクトルを用いても Bretschneider 型の スペクトルを用いても両者の間にはほとんど差がない。 図-4.25 (a)と図-4.26 (a)とを比較してわかるように 計算値は防波堤を消波堤にしても完全反射堤の場合とほ とんど同じ波高比を示すが、実験値は消波堤にすること によって完全反射堤の場合よりも K_a の分布のビーク付 近で小さくなる。その結果、実験値は K_a のピーク付近 で計算値より最大で 0.4 程度小さくなる。一方, Ka の 分布のピーク付近からはずれた防波堤の遮蔽領域では計 算値と実験値の一致は非常によい。

図-4.26 (b) の周期比に関しては, Bretschneider 型ス ペクトルの場合と実測スペクトルの場合とではすでに述 べた理由によって両者の差は顕著になる。実験値は実測 スペクトルを用いた計算値によく一致しており,波高比 のように消波堤にすることによって計算値と大きな差を 示すことはない。

iii) ケース G-3

このケースは、造波板に近い防波堤によって回折され た波が再度背後の防波堤で回折される二次回折の現象が 起る場合である。このケースについては消波堤にするこ との効果が非常に小さいと想定されたので,消波堤につ いては実験を行わなかった。図-4.27 に実験値と計算値 の比較が示してある。図-4.27 (a) は波高比,図-4.27

図-4.27 ケース G-3 における実験値と計算値の比較 (Kr=1)

(b) は周期比に関する比較図である。

図-4.27 (a) の波高比についてみると, 2回回折され るため波高比は K_a =0.1~0.2 と非常に小さくなってい る。計算値は実測スペクトルを用いても Bretschneider 型のスペクトルを用いてもほとんど差がない。また,実 験値は計算値と非常によく一致している。

図-4.27 (b) の周期比は,他のケースの場合と同様に 実測スペクトルを用いた場合と Bretschneider 型のスペ クトルを用いた場合とで0.1程度の差が現われている。 実験値は実測スペクトルを用いた計算値に非常に近い。 このケースでは,計算値も実験値も Kar>1 であり,周 期の長い波が進入し易くなっていることがわかる。

以上,開口防波堤による波の回折に関して単一方向の 不規則を用いた実験と近似解による数値計算との比較に よって得られる結果は以下のように要約される。

- i) 近似解を用いた数値計算でも実験値とよく一致して おり、近似解による数値計算は実際問題に適用できる ことがわかった。ただし、ケース G-1 のように数値 計算された波高が急変するような部分では計算値をそ のまま用いるのではなく、滑らかにすりつけ、急変を 避けるようにするのがよい。
- ii) 開口部を通って直接波が進入するケース G-2 の場合, 消波堤にすることによっても波高比の計算値はほとんど変化しなかったが,実験値は波の直接進入領域では低下することがわかった。このことは,ケースG-2のような防波堤配置でも消波堤にすることによって波の直接進入領域では波高を低下させることができることを意味している。
- iii) 実測スペクトルと有義波の波高および周期から求めた Bretschneider 型スペクトルとは図-4.15 で示すような差を示すが、波高比は両者ともにほとんど変わらず、この程度のスペクトルの差は波高比の計算に影響しないことがわかった。しかし、周期比に関しては周波数の自乗できくため、両者のスペクトルで差が顕著になる。
- iv) 周期比に関しては、実験値は実測スペクトルを用いた計算値によく一致する。このことは、入射波のスペクトル形が正確に表わせるなら、数値計算はかなりの 精度で周期比を推定できることを示している。
- v) 周期比の変化は小さく、0.8<Kar<1.2の範囲であるが、周期に敏感に反応する浮体の運動を考える場合、 周期の変化に注意を払う必要がある。
 - (5) 島堤に関する実験値と計算値との比較

写真-4.2 は、防波堤に波が直角入射するときの実験

写真-4.2 島堤に関する実験状況

状況を示したものである。砕石マウンドで囲んで消波堤 とした島堤背後に波が回折してゆく様子がよくわかる。 i) ケース D-1

本ケースは、島堤に直角に波が入射する場合のもので ある。完全反射堤に対する波高比の計算値と実験値の比 較が図-4.28に示してある。図-4.28(a)は島堤前面, 図-4.28 (b) は島堤背後の波高比を示したものである。 図-4.28 (a) の前面波高の計算値は,島堤面では Ka>2 となり、完全重複波以上の波高を示し、島堤の反射領域 内の測線 (x=0mと1m) では島堤から L/4 度離れた 地点で Ka≈1 の極小値を示す。この極小値の発生する 原因は 図-4.8 で説明したように入射波のスペクトルの ピーク周波数付近における成分波の重複波による節の影 響が強く現われているためである。 y/L<3 までは, x =0m では $K_a=1.5$, x=1m では $K_a=1.25$ 付近 を Ka は小さく変動している。 一方, 島堤から離れた 測線 (x=2m) では, y/L<3 までは Ka≈1 で反射 波の影響はほとんどなく、 y/L>3 で反射波の影響が現 われ,波高が小さく変動するようになる。y/L<3では, Bretschneider 型のスペクトルを用いても実測スペクト ルを用いても両計算値は最大で0.2程度の差はあるもの のほぼ同じ傾向を示しているが, y/L>3になると実測ス ペクトルを用いた波高比は大きく波打つ形を示している のに対し, Bretschneider 型のスペクトルを用いた波高 比では、波打つ形は顕著になるものの実測スペクトルを 用いたものよりもその変動振幅は小さい。この傾向はど の測線でも同じである。実測スペクトルを用いたときに このような波状傾向が顕著になるのは、図-4.15 でわか るように実測スペクトルのエネルギー集中度が高いため だと思われるが, y/L>3 においてだけこの傾向が現わ れる理由についてはよくわからなかった。

実験値は, $x=1 \text{ m} \ge 2 \text{ m}$ の測線上では実測スペクト ルを用いた計算値に近いようであるが, x=0 mの測線 でははっきりした傾向はない。実験値は計算値と比較的

図-4.28 ケース D-1 における完全反射堤の場合の波高比に関する実験値と計算値の比較

よく一致しており,近似解による計算であっても実用上 問題はないように思われる。

図-4.28 (b) の島堤背後になると,両計算値の差はほ とんどなくなり,たかだか 0.05 である。このように 島堤背後の回折波で両計算値の差が極端に小さくなる原 因としては,島堤前面では入射波と反射波が重なるため スペクトルの相違が顕著になるが,島堤背後では成分波 の回折係数が 1.0 以下となりスペクトルの形の相違が 目立たなくなるためである。実験値は非常によく計算値 と一致し,それらの差は0.2以下である。特に, x=2m の測線で実験値が計算値より大きくなったのは、この測線が島堤の外側にあるため、図-4.14 で示すような入射 波の波高の変動がこの測線では大きな影響を与えたため だと考えられる。

図-4.29 は,島堤が完全反射の場合の周期比について 実験値と計算値を比較したものである。図-4.29 (a) は 島堤前面,図-4.29 (b) は島堤背面での比較図である。 図-4.29 (a) の島堤前面における周期比の計算値は, Bretschneider 型のスペクトルを用いた場合が 0.7<Kar <1.2,実測スペクトルを用いた場合が 0.85<Kar<1.1

図-4.29 ケース D-1 における完全反射堤の場合の周期比に関する実験値と計算値の比較

となって、Bretschneider 型のスペクトルを用いた場合の 周期比の変動が大きい。島堤による反射波の影響の強い 測線 (x=0 m と 1 m) では、島堤から約 L/4 だけ離れ た点で周期比が最も小さくなる。この原因としては、ス ペクトルのピーク付近の成分波はこの点で重複波の節を 形成し、波高比を小さくするのに対し、スペクトルのピ ーク周波数からずれる波の波高比は大きく、また短周期 の波は長周期の波よりそのエネルギーが大きいため、全 体としては周期が短くなったものと考えられる。x=2 m の測線では、島堤からの反射波の影響が小さく、入射波 の周期に支配されるため、 $K_{aT} \approx 1$ である。実験値は 0.95< $K_{aT} < 1.05$ の範囲の変動で、周期比の変動は小さ く、実測スペクトルを用いた計算値に近い値を示す。

図-4.29 (b) の島堤背後の周期比は、実測スペクトル を用いた計算値では $0.95 < K_{ar} < 1.1$, Bretschneider 型 のスペクトルを用いた計算値では $0.9 < K_{ar} < 1.2$ とな って、やはり前者の変動が小さい。x=0 m の測線では 実測スペクトルを用いた計算値は Bretschneider 型のス ペクトルを用いたものより一様に 0.1程度小さく、また 両計算値ともに $K_{ar} > 1$ である。x=1 m の測線では, 両計算値ともに y/L < 2.5 で $K_{aT} > 1$ であるが、実測 スペクトルを用いたものより小さい。両計算値とも に回折波の影響の強い、x=0 m や x=1 m の測線で 期の長い波が島堤背後に回り込み易くなっていることが わかる。実験値は、実測スペクトルを用いた計算値とよ く一致しており、精度よく周期比を推定するためには実 測スペクトルを用いる必要がある。

図-4.30 は、島堤の周囲に砕石マウンドを設けて消波 堤にした場合の波高比に関する計算値と実験値とを比較 したものである。図-4.30 (a) は島堤前面,図-4.30 (b) は島堤背後における比較図である。図-4.30(a)の島堤 前面の波高比は,図-4.28(a)の完全反射堤の場合に比し て、x=0mの測線では約0.4、x=1mの測線では約0.1 小さくなっているが、両計算値とも変動の形態は完全反 射堤の場合と同じである。その結果、両計算値同志の差 は完全反射の場合より小さくなっている。 x=2 m の測 線では反射波の影響を受けにくい線上にあるため、完全 反射の場合と大きな差はなく、Ka≈1 である。実験値 は x=0 m の測線では計算値より全体的に 0.1~0.2 小 さくなっているが, x=1m の測線では計算値と比較的 よく一致している。しかし、x=1m で実験値と計算値 がよく一致しているように見えるのは, Ka≈1 であるた め反射波の影響が小さく,差が顕著に現われなかったこ とによるものである。 x=2 m の測線上で実験値が計算 値より0.15程度大きくなっている点があるが,これは前 述のように入射波の波高変動によるものと思われる。こ の点を除けば,実験値は計算値とよい一致を示している。

図-4.30 (b) の島堤背後では,図-4.28 (b) と比較し て計算値は島堤近傍で0.1程度の差があるだけでほとん ど変化がない。4.3 (2) で述べたように,これは回折波 に関しては堤体の反射率は堤体近傍を除いてほとんど影 響を与えないことを示している。また,実測スペクトル を用いても Bretschneider 型のスペクトルを用いても波 高比はほとんど同じである。つまり,回折波の波高に対

図-4.30 ケース D-1 における消波堤の場合の波高比に関する実験値と計算値の比較

しては入射スペクトルの多少の違いは大きな影響を与え ないことを示している。実験値は全体的に計算値より大 きい傾向を示しているが,両者の差は最大で 0.2,平均 的には 0.1 以内である。また,実験値の変動傾向は計算 値とよく一致しており,計算で波高比を推定しても実用 上問題はないように思われる。

周期比については,消波堤でも完全反射堤とほぼ同じ 傾向を示すため,ここでは消波堤に関する周期比につい ては図示していない。

ii) ケース D-2

本ケースは波向に対して防波堤を 60° 傾けた場合のケ ースである。測線は 図-4.21 に示すように島堤中央と中 央から両側 1 m 離れた島堤上の点から,島堤前面では 反射方向,島堤背後では入射方向に取っている。

図-4.31 は完全反射の島堤に関して波高比の実験値と 計算値を比較したものである。図-4.31 (a) は島堤前面, 図-4.31 (b) は島堤背後における比較図である。島堤前 面の測線 x=0 m と 1 m 上では, 図-4.21 でわかるよう に造波板の端から波の進行方向に取った線より外側およ びこの線の近傍に測点が存在する。実験では導波板を設 けなかったので,これらの測点の入射波は波のエネルギ ーが波峯線方向に流れ出すため小さな波高になる。入射 波の波高がこのような現象を起こさなければ生じた波高 の λ 倍に低下したとすると,この地点の波高比 K_a' i,

$$K_{d'} = \sqrt{\lambda^2 H_i^2 + (K_d^2 - 1) H_i^2 / H_i}$$

= $\sqrt{\lambda^2 + (K_d^2 - 1)}$ (4.27)

で表わせる。ここに, K_a は入射波の波高が低下しない ときの波高比である。 K_a' を算定するためには, K_a の 値はすでに島堤に対する反射・回折計算で求まっている 値を用いればよいが, λ については推定しなければなら ない。 λ の推定値としては, 造波板面の延長線上に造波 板の端を堤端とする仮想の半無限堤を考え, これに波が 直角入射してきたときの回折波の波高比で与えることに した。このようにして計算した結果, x=0 m では y/L>3.8, x=-1 m では y/L>3 で波高比が低下するこ とになった。

計算値は、防波堤上で $K_a > 2$ であった値が y/L=0.3 付近では $K_a = 1$ 近くまで低下し、さらに少し増 大して、全振幅が 0.2 程度の小さな変動を示してはい るが、平均的にみればほぼ一定値で、 x = 1 m では K_a ≈1.2, x = 0 m では $K_a \approx 1.6$, x = -1 m では $K_a \approx 1.25$ となって、島堤中央を通る測線上の値が大きい。 y/L=0.3 付近で小さな K_a を示すのは直角入射の場合と同 じ理由によるが、島堤が 60° 傾いているため直角入射の y/L = 1/4 より大きくなっている。Bretschneider 型のス ペクトルを用いた計算値が実測スペクトルを用いたもの より K_a の変動が激しい傾向を示す。

実験値は, x=1 m では計算値に比較的よく一致する が, x=0, -1 m では計算値より小さい傾向があり, 差 が大きい場合には 0.3 程度も小さくなる。式 (4.27) で 計算した波高比は x=0 m の y/L>3.8, x=-1 m の y/L>3 で実験値と比較的よく一致しており, 半無限堤

図-4.31 ケース D-2 における完全反射堤の場合の波高比に関する実験値と計算値の比較

図-4.32 ケース D-2 における完全反射堤の場合の周期比に関する実験値と計算値の比較

に対する回折係数を λ の値として与えて,入射波の波高 が変化する場合の波高比を推定する方法は実用的には有 効な方法であることがわかる。

図-4.31 (b) の島堤背後では,両計算値は非常によく 一致し,両者の差は0.05 程度である。実験値と計算値は 差があっても0.1 程度と小さく,よい一致を示している。

図-4.32 は周期比に関して計算値と実験値とを比較したものである。図-4.32(a)の島堤前面では、Bretschneider型のスペクトルを用いた計算値は 0.75 $< K_{aT} < 1.3$ の間にあって、約 0.28L 周期で $K_{aT} = 1$ のまわりを小さく変動しているが、実測スペクトルを用いた計算値は 0.85 $< K_{aT} < 1.1$ とその変動は小さく、前者の計算値のような周期変動は顕著に現われない。実験値は常にほぼ K_{aT}

=1 で、実測スペクトルを用いた値に近い。

図-4.32 (b) の島堤背後では、明らかに周期比の計算 値の間には差があり、特に x=0 m の測線上では両者の 差が顕著で、y/L<1 では Bretschneider 型のスペクト ルを用いた値が実測スペクトルを用いた値より常に 0.2 程度大きい。このように防波堤背後の周期比に関して両 計算値の間に顕著な差が現われた原因としては、島堤背 後では K_a の値が小さく、そのため両スペクトルの高周 波側における差が著しく現われたことによるものと思わ れる。島堤背後の波高の小さい部分では $K_{ar}>1$ となる 部分が多く、長周期波の影響が強いことがわかる。実験 値は全体に実測スペクトルを用いたものに近い。このこ とは、周期比の計算では入射波の正確なスペクトルを与

える必要があることを示している。

図-4.33 は,消波堤にしたときの計算値と実験値を比較したものである。図-4.33 (a)の島堤前面では,消波堤にすることによって波高比は小さくなっている。x=1mや-1mの測線では,y/L>1において $K_a\approx1.05$ で,ほぼ入射波だけの波高のようになっているが,反射波の波高だけを取り出すと,0.32 H_i となって反射波高としては小さくないことがわかる。x=0mの測線ではy/L>1において $K_a\approx1.2$ と波高比が高い。両計算値は,一部で0.2程度の差を示す場合もあるが,比較的よく一致しているといえよう。実験値は,x/L=0上で0.2程度計算値より小さくなっている箇所もあるが,全体としては比較的よく一致する。

図-4.33 (b) の島堤背後では,両計算値は 0.05 以内 の差でよく一致する。また,これらの計算値は島堤が完 全反射である場合とほとんど変わらない。計算値は実験 値の変化特性をよく表現しておると同時に,値において も0.1以内の差で一致している。

iii) ケース D-3

本ケースは島堤の傾斜角を大きくし,波向に対して 45°傾けた場合のものである。このケースでは,島堤前 面の波高は島堤に直角な測線上で測っており,ケースD-2のように反射方向にはとっていない。一方,島堤背後 については前述したケースと同様に入射方向に測線をと っている。

図-4.34 は完全反射の島堤に対する計算値と実験値との比較図である。図-4.34 (a)の島堤前面では、波高測

線を島堤に直角にとっているため、島堤による反射波の 影響の強い部分では波高比の変動は大きいが、その影響 が弱くなると、波高比は $K_a=1$ に近づく。 x=1 m で t y/L > 1, x=0 m $\tau t y/L > 2$, x=-1 m $\tau t y/L$ >3 で $K_a \approx 1$ となって, ほぼ入射波だけになる。x=-1 m上の y/L>3.8 で波高比が減少するのは、ケー ス D-2 と同様に造波板の長さが有限であることによっ て造波板の端の影響が現われ、入射波高が減少している ためである。ここでも式(4.27)を用いて波高比を修正 している。反射波の影響領域は幾何光学的な反射で推定 した領域よりも広く、たとえば、x=0mでは幾何光学 的な反射領域は y/L < 1.1 であるのに対し、計算では y/L<2 となっている。 このような反射波の影響範囲の 拡大は反射波のエネルギーが波峯線方向にも流れてゆく ためである。Bretschneider 型のスペクトルを用いた計算 値は細かく変動しているが,実測スペクトルを用いたも のは滑らかな変動になっている。両計算値の差は島堤前 面付近で大きく,遠ざかるに従って,つまり反射波の影 響が小さくなるに従って小さくなっている。実験値は計 算値と 0.15 以内の差であり、両計算値のうちのどちら に近いとも判断できかねる。

図-4.34 (b) の島堤背後では両計算値の差は 0.05 以 内で非常によく一致している。また,実験値は,x=-1m の 2 < y/L < 2.5 で計算値より 0.3 程度大きくなって いることを除けば 0.1 以内の差で計算値とよく一致して いる。

図-4.35 は島堤の反射率を 0.5 にした場合の波高比の

図-4.34 ケース D-3 における完全反射堤の場合の波高比に関する実験値と計算値の比較

図-4.35 ケース D-3 における消波堤の場合の波高比に関する実験値と計算値の比較

比較図である。図-4.35(a)の島堤前面では反射率が下 ったために計算値の波高変動は小さくなっている。両計 算値の差は、図-4.34(a)と同じ傾向を示すが、波高比 が小さいために、その差は小さくなっている。実験値は 0.1 以内の差で計算値と一致している。

図-4.35 (b) の島堤の背後では両計算値の差は, x=-1m 上で顕著で一様に 0.1 程度の差を示すけれど も,他の測線ではその差は 0.05 以下である。実験値は Bretschneider 型のスペクトルを用いた計算値に近い傾 向を示すが,両計算値の差は小さいためどちらの計算式 を用いても実験値との差は 0.1 以下である。

以上の,島堤に関する実験値と計算値とを比較した結 果は,つぎのように要約される。

- 島堤前面では、Bretschneider 型のスペクトルを用いたものと実測スペクトルを用いたものとでは、反射波の影響が強い箇所で差が顕著になるが、波高の変化特性は両計算値ともによく一致している。前者の計算値では波高比に細かい変動が生じているのに対し、後者の波高比はゆっくり変化している。実験値は両計算値の中間にあり、どちらの計算値に近いか判断し難い。
- 島堤の反射率を小さくすると前面の波高比は減少し、両計算値の差は完全反射の場合より小さくなる。
 実験値は比較的よく両計算値に一致する。
- 3) 島堤背後の計算値および実験値の波高比は、島堤が 完全反射堤であっても消波堤であっても島堤付近を除 いてはほとんど変化しない。
- 島堤背後では両計算値の差は非常に小さく、入射波のスペクトル形の差は計算ではほとんど現われない。

また,実験値は計算値に非常によく一致している。

- 5) 周期比は周波数の自乗で効くので, Bretschneider 型 のスペクトルと実測スペクトルの高周波側での差が顕 著に現われる。
- 6) 島堤前面の周期比は、Bretschneider 型のスペクトル を用いた場合は細かく変動するが、実測スペクトルを 用いた場合はゆっくりした変動になる。実験値は実測 スペクトルを用いた計算によく一致する。
- 7) 島堤背後の周期比は波高比に比較して両計算値の差 が顕著に現われ、実験値は実測スペクトルを用いた実 験値に近い。
- 8) 島堤背後では Bretschneider 型のスペクトルを用いても実測スペクトルを用いても波高比に関してはほとんど差がなかったけれども、周期比ではその差が顕著になる。実験値が実測スペクトルを用いた計算値に近いことから判断して、線型理論の成立する範囲の波の条件では周期比を精度よく推定するためには入射波の実測スペクトルを用いることが必要である。

4.6 護岸および防波堤による反射波高の推定法

(1) 反射波高の算定法

隅角部を有する護岸前面の波高分布については,三 井^{39),40)}が護岸延長が半無限に長い場合について理論と 実験によって検討している。三井の計算結果によると, 凸型隅角部の場合,隅角部の近傍を除けば護岸沿いの波 高は他方の護岸の存在による影響をほとんど受けておら ず,それぞれを独立に半無限堤と考えて,波高分布を計 算しても大きな差はない。しかし,凹型隅角部の場合に は,両護岸からの反射波が互に影響し合うので,独立に 半無限堤として計算することはできなくなる。通常の護 岸や防波堤ではその延長は有限な長さであるため,有限 な幅で反射された波は反射面から離れるに従ってその波 高を減少させ,凹型隅角部であっても他方の反射壁の影 響を全延長に渡って受けるとは限らない。

小舟および大里⁴⁰は Green 関数を用いて, 隅角部を有 する有限長の防波堤の前面沿いの波高を算定している。 ただし,計算時間との関連もあって有限な厚さの防波堤 であることを無視し, 隅角部を有する有限長の護岸とし て計算する近似解法を提案している。防波堤の背後に波 が回り込むことを考えなくても,この近似解法で実用上 十分な精度を有するとして,近似解法を用いて不規則波 に対する計算を行っているが,この近似解法でも不規則 波に対して適用すると多くの計算時間を要し,実用的で ない。そこで,隅角部から離れた地点に対する反射波は 反射面を仮想の開口部としたときの回折図で表わされる と考えて,防波堤沿いの波高を計算している。この方法 による防波堤沿いの波高は上記の近似解法による計算値 と実用上十分な精度で一致している。

小舟および大里は、反射面を仮想の開口部として回折 図を用いて反射波を推定しているが、島堤背後に波が回 り込むことによる反射波への影響が少ないことを考える と、仮想開口部と考えるより反射面を島堤と考え、島堤 による反射波で推定するのが合理的だと思われる。特 に、凸型隅角部を有する防波堤や護岸では他方の反射面

(a) S_{max}=25 の場合

による反射波の影響が,三井の計算結果でも隅角部付近 を除いてほとんどないことを考えると,反射面を島堤と 想定するのが妥当だと考えられる。そこで,反射面を島 堤と仮定した場合と開口部と想定した場合とでどの程度 反射波の推定値が異なるか比較を行ってみた。

図-4.36 はこの比較を示したものである。開口部による回折波および島堤による反射波の計算はそれぞれ 2.3 (2) および 3.3 (1) で示した,半無限堤による波の回 折の解の重ね合わせで求める近似解を用いた。島堤による反射波は,式(3.38) から入射波を取り除けばよく, 図-3.3 の記号を用いて,次式のように表わされる。

$$\begin{split} \phi_r &= \frac{1}{\sqrt{2}} \exp\left[i\left\{kr_1\cos\left(\theta_1 - \alpha\right) + \frac{\pi}{4}\right. \\ &\left. - \frac{kB}{2}\cos\left(\alpha\right)\right] \\ &\times \left[\left\{C(\gamma_{11}) - \frac{1}{2}\right\} - i\left\{S(\gamma_{11}) - \frac{1}{2}\right\}\right] \\ &\left. + \frac{K_r}{\sqrt{2}}\exp\left[i\left\{kr_1\cos\left(\theta_1 + \alpha\right) + \frac{\pi}{4}\right. \\ &\left. - \frac{kB}{2}\cos\left(\alpha\right)\right\}\right] \\ &\times \left[\left\{C(\gamma_{12}) - \frac{1}{2}\right\} - i\left\{S(\gamma_{12}) - \frac{1}{2}\right\}\right] \\ &\left. + \frac{1}{\sqrt{2}}\exp\left[i\left\{kr_2\cos\left(\theta_2 - \pi + \alpha\right) + \frac{\pi}{4}\right. \\ &\left. + \frac{kB}{2}\cos\left(\alpha\right)\right\}\right] \end{split}$$

(b) Smax=75 の場合

図-4.36 反射壁を島堤とみなした場合と仮想開口部とみなした場合の反射波高の平面分布の比較

$$\times \left[\left\{ C(\gamma_{21}) - \frac{1}{2} \right\} - i \left\{ S(\gamma_{21}) - \frac{1}{2} \right\} \right]$$

+ $\frac{K_r}{\sqrt{2}} \exp \left[i \left\{ kr_2 \cos\left(\theta_2 + \pi - \alpha\right) + \frac{\pi}{4} \right\}$
+ $\frac{kB}{2} \cos\alpha \right\} \right]$
$$\times \left[\left\{ C(\gamma_{22}) + \frac{1}{2} \right\} - i \left\{ S(\gamma_{22}) + \frac{1}{2} \right\} \right]$$
(4.28)

この式 (4.28) を用いて,不規則波の計算を行えばよい。

図-4.36 では、島堤の長さを B/L=3 および入射波の 進入角度を $\alpha_p=60^\circ$ としている。図-4.35 (a) は S_{max} =25, 図-4.36 (b) は $S_{max}=75$ の方向スペクトルを有 する不規則波における比較図である。島堤として計算し た等波高比線 (実線) は、仮想開口部として計算した点 線より両図とも y/L が大きい地点まで達しており、反 射波の減衰が小さくなっている。両計算値の差は、両図 ともに y/L が小さい部分で顕著であり、また $S_{max}=75$ と方向集中度の高い場合に著しくなる。しかし、波高比 の値としてみると、y/L<2 の防波堤近傍を除けば、両 計算値の間に著しい差はなく、せいぜい 0.05 程度であ るので、仮想開口部として推定してもよいことがわか る。

(2) 反射壁の分割による反射波高の推定法

反射壁が有限な長さであっても、反射壁の長さが波長 に比して長くなれば、入射する波高および波向は地形の 影響で場所的に異なる可能性がある。このような場合に は反射壁の長さを適当に分割し、その分割区間内では波 高および波向が一様の波が入射するとして計算すること が必要となるが、反射面を分割し、それぞれを島堤とし て計算することが可能かどうか検討しておくことが重要 である。そこで、B/L=4 の島堤をそのままの状態で計 算したときの反射波高と B/L=2 の 2 つの島堤に分割した場合の反射波高を比較してみた。

図-4.37 は、波が島堤に直角に入射する場合の比較図 で、図-4.37 (a) は $S_{max}=25$ 、図-4.37 (b) は S_{max} =75 の場合である。両図ともに実線が一つの島堤とし て計算した波高比を示し、点線が島堤を2つに分割した ときの波高比を示している。分割した場合の合成波の波 高比としては、

 $K_{a} = \sqrt{K_{a1}^{2} + K_{a2}^{2}}$ (4.29) として、それぞれの波のエネルギー和として求めた。こ こに K_{a1} と K_{a2} は 2 つに分割したそれぞれの島堤によ る反射波の波高比である。これらの図でわかるように、 B/L=4 を一つの島堤として計算した実線は島堤を分割 したときの点線より島堤中心線 (x/L=0)付近で大きく、 島堤中心線より離れた領域では小さくなる。特に、y/Lが大きいほど、実線が点線より大きくなる領域 が広が

島堤に近い y/L=2の線上では島堤を2つに分割する と、それぞれの島堤中央部(|x|/L=1) にビークが現わ れ、x/L=0の反射壁中央部では反射波の波高が小さく なる傾向がある。反射面をひとつの島堤とみた場合には このような傾向は現われず、その結果、x/L=0の島堤 の分割線上で両計算値は大きな差を示す。x/L=0での 両計算値の差は、 $S_{max}=25$ で0.07、 $S_{max}=75$ で0.15 となり、波の方向集中度が大きいほど差が大きくなる。 これは S_{max} が大きいと方向が1方向に集中するように なるためと、波のエネルギーがy/Lが小さい箇所では 横方向にあまり流れ出していないことによる。

y/L=5 および 10 になると、点線には 2 つのピーク が現われず一山型の分布形になり、また実線との差も小

3.

図-4.37 島堤の分割による反射波の波高変化

さくなる。両計算値の差は, y/L=5 の線上では S_{max} =25 で 0.05, S_{max} =75 で 0.07, また y/L=10 の線 上では S_{max} =25 で 0.03, S_{max} =75 で 0.06 となる。

このように反射面を2分割してそれぞれの区間を島堤 とすると、反射面近傍では反射面を一つの島堤として計 算した反射波の波高分布とは異った分布形を示し、2山 型の分布形となる。また、反射面の分割は、波の幾何光 学的な反射領域の波高を小さく見積る傾向を示し、この 傾向は S_{max} が大きい、つまり方向集中度の強い波ほど 著しくなる。反射面から離れるに従って両計算値の差は 小さくなり、y/L>5 では実用上両者の差は無視しても よいように思われる。

以上のようなことから考えると、反射面の分割は一様 な波向であっても、入射波高が S_{max} =75 では 20% 以 上、 S_{max} <25 では 10% 以上異なる場合には反射面を 分割して計算するのがよい。また、波向が異なる場合に ついてはどの程度の波向変化で分割するかは対象とする 地点によっても異なるけれども、y/L=2の線上で考え ると、 $S_{max} \leq 75$ では、波向が 10° 以上異なる場合には 島堤に分割するのがよい。対象地点が遠くなれば、波向 が 10° 以下でも島堤に分割して考える必要があるようで あるが、そのような地点では K_a の変化がゆるやかであ るので、遠い対象点でも 10° を目安にすればよいと考え られる。上記の波高と波向に関する条件のうちどちらか の条件を満足すれば、島堤に分割して計算を行うのがよ い。

(3) 防波堤による反射波高の計算例

防波堤あるいは護岸による反射波は,前述の三井の方 法や小舟および大里による方法あるいは数値波動解析法 で計算できる。しかし,三井の方法では反射面の反射率 を変えることが困難であるし,数値波動解析法では不規 則波に適用することや反射波のみを算定することが困難 である。また,小舟および大里による方法は実用的な方 法ではあるが,仮想開口部を用いており,反射面近傍の 値の精度が落ちる。不規則波の反射波が容易に計算で き,広領域の計算も容易で,実用上十分な精度を有する 方法としては,反射面を島堤と考えて計算する方法がよ い。

この方法はすでに述べたように反射面を島堤と考え, 島堤前面の反射波だけを計算する方法である。数個の反 射面がある場合にはそれぞれの反射面を島堤として,反 射波の波高を次式で算定する。

$$H = \sqrt{\sum_{i=1}^{N} (H_{\tau})_i^2}$$
(4.30)

ここに, $(H_r)_i$ は i 番目の反射面による反射波高, H は反射波の合成波高で, すべて有義波高で示されている。

このような方法で、2つの隅角部を有する防波堤について計算したのが、図-4.38 である。計算条件は、波高1m,周期8sec, $S_{max}=25$ の不規則波が防波堤II(長さ200m)に直角に入射する条件である。ただし、防波堤IIの両側にはそれぞれ隅角120°と150°を有する長さ100mの防波堤IとIIが配置されている。本計算では防波堤前面の海域は20mの一様水深としている。各防波堤の中央に入射する波は、防波堤によって波向範囲が制限されるので、入射する波向範囲内の波のエネルギーに相当するような波高をもつようにしている。その結果、防波堤I,II,IIIにはそれぞれ0.95m,0.99m,0.99mの波が入射することになる。図中の実線はすべての防波堤が完全反射堤であるとしたときの反射波高の分布を示し、点線は防波堤IIの反射率を0.5に下げたときの反射波高の分布を示し、

すべての防波堤が完全反射堤である場合、三井の計算 によると, 隅角点では隅角 120°の場合, 反射波高は H =2m, 150°の場合 H=1.4m にならなければならない が、本計算ではどちらも H=1.2 m 程度で隅角点の反射 波高が小さい。これは合成波を求めるときにエネルギー 和の平方根で反射波高を推定しているのに対し, このよ うな隅角点近傍では反射波の位相が揃うためこのエネル ギー和で求める方法が成立しないことと、本計算では防 波堤間の多重反射を考えていないことによるものと考え られる。しかし、本計算の場合、隅角が大きいので多重 反射による影響は小さく, 主として前者の原因によるも のと思われる。防波堤 IとⅢの反射波が高い部分では防 波堤Ⅱの反射波と重って,防波堤Ⅱの前面で波高が増大 している。反射波の等波高線は防波堤Ⅱによる反射波の 方向に長く延びており,防波堤から離れた地点では防波 堤Ⅱによる反射波が卓越することがわかる。本計算では 最大の反射波高 1.4 m が防波堤 II のすぐ前面で右側隅 角点から 40 m の位置に現われている。この波高は防波 堤Iの反射波によるものである。また,防波堤Ⅲの反射 波によって 1.3 m 以上の波高が防波堤Ⅱの前面の右半 分に現われている。

防波堤Ⅱの反射率を0.5 に下げると,防波堤から離れ た地点では反射波高は完全反射堤の場合の約6割の値に 下がる。反射波高が半分にならないのは,防波堤Ⅰと Ⅲ,特に防波堤Ⅲの反射波の影響が強いためである。反 射波高の分布は,防波堤Ⅲの反射波の影響で左方に傾い

Breakwater II (200m) KrI

た形になっている。防波堤 Ⅱの反射率を下げると,防波 堤 I とⅢの反射波の影響が顕著に現われ,これらの防波 堤前面の波高が反射方向に高くなる。

以上のように反射壁を島堤と考えることによってどの ような平面形状の反射壁に対しても計算でき,また,反 射壁の一部が消波堤になっていても,消波堤の部分のみ を別個の島堤と考えることによって,反射率を変えるだ けで計算できる。しかし,本計算法では前面の海域を一 様水深と仮定しなければならないため,反射波が大きく 屈折する海域での反射波高の算定には誤差が含まれるこ とに注意する必要がある。また,凹型隅角部を有する反 射面では,隅角部付近での反射波高の算定値は信頼でき ないので,反射面に働く波力の計算に本計算法を利用し ないのが望ましい。

4.7 結 語

本章においては,開口防波堤および島堤による波の反 射・回折の計算を方向スペクトルを有する不規則波で行 う方法を提示するとともに、その方法の妥当性を実験に よって検討した。また, 護岸や防波堤による反射波の算 定法を示した。まず, 4.1 では, 不規則波を用いた従来の 研究成果を概述し,本章の研究目的を明確にした。4.2 で は,不規則波による波の反射・回折の計算法を示した。 4.3 では、海の波の方向スペクトルに関する研究成果を 示し, 波の反射・回折の計算に用いる方向スペクトルを 決定するとともに、その特性について概述した。4.4 で は,不規則波で計算するときの方向スペクトルの成分波 への分割法,不規則波で計算したときの波高比の変化特 性および不規則波による計算の必要性や波向の集中度の 変化による波高比の変化特性について述べた。4.5 では 単一方向の不規則波を用いて行った実験によって, 開口 防波堤や島堤による不規則波の反射・回折に関する理論 計算の妥当性を検討した。最後に、4.6 では、護岸や防 波堤による反射波の算定法を示した。以上の内容から主 要な結論は、以下のように要約される。

- 1) 半無限防波堤による不規則波の反射・回折計算を行った結果では、防波堤の反射率の低減は反射波の波高を下げる効果はあるが、回折波高にはほとんど影響を与えない。また、完全反射の場合、防波堤から2波長も離れると、前面波高は入射波と反射波のエネルギー和で求まる波高になるが、防波堤前面沿いでは波の位相が揃うため、波高は先端から離れるに従って、急速に入射波高の2倍の波高に近づく。
- 2)開口部における波の回折では、波の主方向が開口部 から港内に直接進入する方向を向いているとしても、 防波堤の背面で不規則波の成分波が反射される場合に はこの反射波の効果も考慮して計算しないと、港内波 高を小さく見積る可能性がある。
- 3) 不規則波による島堤周辺の波高分布は規則波のもの とは大きく異なり,規則波で起きていた島堤前面の重 複波現象は島堤近傍を除いて現われず,波高比は1以 上になる。また,島堤背後では規則波のように波高の 小さい部分が局所的に現われることはなくなり,非常 に平滑化された形になる。
- 4)開口防波堤の回折波に関して、規則波、単一方向の 不規則波、単一周期の波向分布波および方向スペクト ルを有する不規則波を用いて計算した結果では、不規 則波の回折には周波数分散より方向分散の効果が非常 に強く影響することがわかった。波の方向スペクトル

を考慮すると,開口部を通って波が直接進入する領域 の波高は規則波の場合より小さくなり,防波堤の遮蔽 域では逆に波高が高くなる。

- 5) 波の方向集中度を示す S_{max} の値を変えて計算した 結果では,方向集中度が強くなるほど波が直接進入す る領域で波高が高くなり,遮蔽域では逆に波高が下が る。特に, $S_{max}=10 \ge 200$ では波高が2倍以上異な る領域があるので, S_{max} の値の適切な選定が重要に なる。
- 6) 単一方向不規則波を用いて行った開口防波堤に対す る模型実験の結果では、数値計算値は実験値と比較的 よく一致しており、計算法の妥当性が検証できた。た だし、防波堤の背面で反射波が生じる場合には、計算 値の波高が急変する部分で実験と若干の差を示すの で、計算結果を滑らかにすりつけるようにすることが 必要である。また、消波堤にすると、計算値はほとん ど変化がないのに対し、実験値は直接波が進入する領 域で波高が低下することがわかった。
- 7) 単一方向不規則波を用いた島堤の反射・回折実験では、島堤前面でも背後でも、また、完全反射堤でも消 波堤でも数値計算値は実験値とよく一致する。
- 8) 周期比については、有義波の諸元を用いて求めた Bretschneider型のスペクトルより実測スペクトルを 用いて計算した値が実験値によく一致した。これは、 開口防波堤の場合でも島堤の場合でも同じである。
- 9) 護岸や防波堤による反射波を推定する方法として、 反射面を仮想開口部として算定する方法と島堤として 計算する方法とを比較した結果では、反射面近傍を除いてほとんど差がないことがわかった。
- 10) 反射面の延長が長い場合,場所的に入射波の波高および波向が異なる場合がある。この場合の反射波は、反射面を島堤に分割して計算する必要があり、そのときの分割条件を定めた。
- 11) 隅角部を有する反射面での反射波の算定法を求め, その算定法の適用条件を示した。

参考文献

- Mobarek, I. E. and R. I. Wiegal: Diffraction of wind generated water waves, Proc. 10th Conference on Coastal Engineering, Vol. 1, Part 1, pp. 185~ 206.
- 合田良実・永井康平・伊藤正彦: 名古屋港における波浪観測,第3報――現地波浪の回折現象ならびに統計的性質について――,港湾技研資料, No. 120,9,24 p.
- 3) 永井康平: 不規則な海の波の屈折および回折の計

算,港湾技術研究所報告, Vol. 11, No. 2, 1972, pp. 47~119.

- Nagai, K.. Diffraction of the irregular sea due to breakwaters, Coastal Engineering in Japan, Vol. 15, JSCE, 1972, pp. 59~67.
- 合田良実・鈴木康正: 光易型方向スペクトルによる不規則波の屈折・回折計算,港湾技研資料, No. 230, 1975, 45 p.
- Raissi, H. and R. L. Wiegel: Wing-generated wave diffraction by breakwater gap, Proc. 16th Conference on Coastal Engineering, Vol. 1, 1978, pp. 607~627.
- 小舟浩治・大里睦男: 防波堤隅角部付近の波高分 布に関する研究, 港湾技術研究所報告, Vol. 15, No. 2, 1967, pp. 55~88.
- Goda, Y.: Numerical experiments on wave statistics with spectral simulation, Rept. of the Port and Harbour Research Institute, Vol. 9, No. 3, 1970, pp. 3~57.
- 合田良実・永井康平: 波浪の統計的性質に関する 調査・解析,港湾技術研究所報告, Vol. 13, No. 1, 1974, pp. 3~37.
- 10) 例えば, Collins, J. I.: Wave statistics from Huricane Dora, Proc. ASCE, Vol. 93, No. WW2, pp. 59~77.
- 合田良実・高山知司・岸良安治: 有義波高指示計の理論および実用化について,港湾技研資料, No. 238, 1976, 12 p.
- 山口正隆・土屋義人; 有限風域場における風波の 統計的性質について, 愛媛大学工学部紀要, 第9 巻, 第2号, 1979, pp. 349~367.
- 13) 前出文献 11).
- 14) Rice, S. O.: Mathematical analysis of random noise, reprinted in Selected Papers on Noise and Stochastic Processes, Dover, Pub. Inc., 1954, pp. 133~294.
- 15) 前出文献 8).
- 16) 前出文献 8).
- 17) Pierson, W. J., and L. Moskowitz: A proposed spectral form for fully developed wind seas based on the similarity theory of S. A. Kitaigorodskii, JGR, Vol. 69, No. 24, pp. 5181~5190.
- 18) 前出文献 3).
- Bretschneider, C. L.: Wave variability and wave spectra for wind-generated gravity waves, Tech. Mems., BEB, No. 118, 1959, 192 p.
- 20) 光易 恒: 風波のスペクトルの発達(2),第17回

海岸工学講演会論文集, 1970, pp. 1~7.

- 21) Hasselmann, K., et al.: Measurements of wind wave growth and swell decay during the Joint North Sea Wave Project (JONSWAP), Deutsches Hydrographisches Institute, 1973.
- 22) Neumann, G.: On ocean wave spectra and a new method of forecasting wind-generated gravity waves, Tech. Mems., BEB, No. 118, 1959, 42 p.
- 23) Goda, Y.: A review on statistical interpretation of wave data, Rept. Port and Harbour Research Institute, Vol. 18, No. 1, 1979, pp. 5~32.
- 24) 前出文献 8).
- 25) Cote, L. J. J.: The directional spectrum of a wind generated sea as determined from data obtained by the stereo observation project, Meteorological Press, Vol. 2, No. 6, New York Univ., pp. 1~88.
- 26) 光易 恒・水野信二郎・本多忠夫・力石国男: 海 洋波の方向スペクトルについて(続),第 21 回海 岸工学講演会論文集,1974, pp. 261~265.
- 27) 前出文献 5).
- 28) Wilson, B. W.: Numerical prediction of ocean waves in the North Atlantic for December, 1959, Deut. Hydro. Zeit., Jahrg., 18, Ht. 3, 1965.
- 29) 前出文献 5).
- 20) 前出文献 3).
- 高山知司・横田慎二・河内隆秀:新しい波の回折 計算法とスペクトルの最適分割数,港湾技研資料, No. 303, 1978, 42 p.
- 32) 合田良実・鈴木康正・岸良安治・菊地 治: 不規 則波実験における入・反射波の分離推定法,港湾技 研資料, No. 248, 1976, 24 p.
- 33) 前出文献 3).
- 34) 前出文献 32).
- 35) 前出文献 2).
- 36) 前出文献 5).
- 37) 前出文献 5).
- 28) 前出文献 32).
- 39) 三井 宏・村上仁士: 海岸構造物不連続部の波高 分布について(第2報)——隅角付近の波高分布 ——第14回海岸工学講演会講演集,1967, pp. 53~ 59.
- 40) 三井 宏・筒井茂明: 海岸構造物不連続部の波高 分布について(第4報),第16回海岸工学講演会 講演集,1969, pp. 301~308.
- 41) 前出文献 7).

5. 港内波高分布の計算

5.1 概 説

新しい港の建設や既存の港の拡張あるいは改良の際に 港湾技術者が常に関心を注ぐ問題の一つは,港内に十分 静穏な水域が確保できるか否かということである。前述 したように,ここでいう「静穏な水域」とは,船舶が安 全に避泊・係留することができ,かつ荷役作業を支障な く実施できる水域を意味する。水域の静穏の度合いを示 す言葉として港内静穏度という言葉が用いられている が,港内静穏度の判定基準についてはいまだ十分な検討 がなされているとはいえない。

港内静穏度を荷役という観点から考えてみると,係留 船舶の動揺が港内静穏度を判定する重要な要素となる。 係留船舶の動揺に影響する要素としては,波浪,風およ び係留船舶の諸元や係留状態がある。これらの要素のう ち波浪が最も重要な要素であるが,一口に波浪といって も,港内には種々の原因で発生する波が複合している。 これらを分類すると,一般に以下のような波から成り立 っている。

i) 港口進入波

港口進入波とは,沖合いから港口に到達した波が港口 部で回折され,防波堤の背後海域に廻り込んで,港内奥 深く進入する波のことである。つまり,通常の回折波を 意味している。この波は,防波堤の配置によってその波 高を変化させ,港内波の中で最も重要な波である。

ii) 港内伝達波

港内伝達波とは,沖合いから防波堤に到達した波が防 波堤を越波し,港内側に落下して発生する波と防波堤の マウンドを通過して港内に伝わる波の総称である。しか し,港内伝達波は,港外波浪が大きい場合を除いては港 内波に対する影響度は低い。

iii) 航 走 波

航走波とは,港内を航行する船舶が発生する波で,縦 波と横波の2種類の波から成り立っているが,その伝播 および波高変化については不明な点が多い。この航走波 の影響は航行する船舶の速度,形状,位置および航行する 方向によって変わるが,港内の場合,船舶の航行速度は 小さいため,波高および周期は大きくない。その結果, 航走波は小型船舶にしか影響を与えないと考えられる。 iv) 港内発生波

港内発生波とは,港域を風が吹いたときに発生する風 波のことで,港域が広く,風も強い場合には波高は比較 的高くなるので,港内波への影響は強くなる。しかし, 波の周期は比較的短く,影響を与える船舶は小型船舶に 限られる。

v) 港内反射波

港内反射波とは, i)~iv)の波が港内の防波堤や岸壁, 護岸などで反射される波のことである。港内が反射率の 高い構造物で囲まれている場合,この反射波は港内で多 重反射を起し,港内波高を増幅させることになる。その ため,この反射波は港内静穏度の算定に重要な役割を演 じている。

vi) 副 振 動

副振動とは,港外の長周期波によって起される港内の 長周期水面変動で,一種の強制振動である。この水面変 動は港内水の固有周期に密接に関連する。そのため,港 内の形状によって副振動の振幅は異なると同時に,通常 の港内波とはその解析方法を異にする。その結果,副振 動については,他の波とは別個に取り扱うことが必要で ある。

i)~vi)の波によって港内の波浪状況は定まるが,港内 波の算定に最も重要となるのが,i)とv)の波である。 ii)~iv)の波については必要に応じて解析し,i)とv)の 波に加えてゆけばよい。また,vi)については,他の波 とその性質を異にするので,別途検討することが必要で ある。以上によって,本章では,i)とv)の波,つまり 港口進入波と港内反射波を用いて港内波高を算定する方 法を示す。

港口進入波と港内反射波を解析する方法としては, Barailler および Gailland¹⁾ による Green 関数を用いる方 法や波の運動方程式を差分法で解く,谷本ら2)や Abbott ら³⁾の方法があるが、これらの解は規則波を対象として おり,不規則波として解析するためには非常に多くの計 算時間と記憶容量を必要とする。4. で述べたように,港 口部における波の回折には,波を不規則波として取り扱 わないと,防波堤の遮蔽域における波高を小さく見積る ことになる。入射波を不規則波として取り扱う方法とし ては折返し回折図法4)がある。この方法は、反射壁を鏡 面と考えて,反射壁前面の点の反射波高を反射壁に対す る対称点の回折係数に対応する波高として求めるもので ある。この場合,回折図としては不規則波の回折図を用 いる必要がある。この方法は図式解法であるが,奥山ら5) はこの方法を電子計算機で解析できるようにしている。 折返し回折図法では,港の形状によっては反射波が反射 壁への入射波より大きく計算される場合もあって、適用 上注意を要する。

椹木および広畑⁶⁾は,数値波動解析法, Barailler およ

び Gailland の Green 関数法, Lee の方法"および折返 し回折図法の4種類の方法を用いて,モデル港湾に関し て港内波高の比較を行うと同時に,現地港内波の観測値 を用いて,計算法の妥当性を検討している。これによる と,数値波動解析法は時間ステップの増加による離散誤 差が累積し,それによって波高を大きく見積り,また, 折返し回折図法は,規則波を用いた他の手法による計算 値の1波長内の平均波高に近い。また,実測波高とGreen 関数法および折返し回折図法との比較では,Green 関数 法は,規則波を対象としているので,波高比の分布が場 所的に変動しているが,平均的にみると実測値によく一 致しており,折返し回折図法も,実測値と比較的よい一 致を示す。

以上のように,いくつかの手法が港内波の算定のため に開発されているけれども,まだ,海の波のような不規 則波についても容易に計算でき,実用上十分な精度を有 する算定法はない。

本章では,新しい港内波高の数値計算法を提案すると ともに,この手法を模型実験および現地観測値と比較し て,その精度を検討する。また,本手法を用いて港内静 穏度の解析法を示す。

5.2 港内波高の計算法

(1) 港口進入波

外海から港口部に到達した波は,まず,港口部の防波 堤によって回折され,港内に進入してゆく。港口部にお ける防波堤配置は,2.で示したように対象とする港によ って異なり,防波堤の背後で成分波の一部が反射される 場合もあれば,二次回折を受ける場合もある。そのため 港口進入波の計算には,2.で示した近似解を用いて,不 規則波として計算することにする。不規則波の方向スペ クトルとしては,Bretschneider・光易型を用い,港口部 の波高と周期および方向集中度パラメータ Smax の値を 与えることによって方向スペクトルの形を定める。ただ し,港口部前面に島や岬などが存在して,入射波の波向 の範囲が制限を受ける場合もあるので,そのような場合 も想定して,波向範囲が入力データとして与えられるよ うにしている。

(2) 港内反射波

港口部で回折されて,港内に進入してきた波は,港内 の岸壁や護岸などの構造物によって反射され,港内の波 高を増大させる。この反射波の推定法としては,反射壁 を島堤と考えて式(4.28)を用いて,不規則波として計 算することにする。しかし,この計算を行うためには, 島堤に入射する波高および周期,波の主方向,波向の範 囲を設定しなければならない。

まず波高と周期については、すでに港口進入波の計算 で島堤とみなす岸壁の前面波高と周期の値が求まってい るので、岸壁前面近傍の波高と周期の平均値を岸壁への 入射波の諸元とする。この平均波高および平均周期は有 義波の諸元で与えられているので、これらの値を用いて Bretschneider 型の周波数スペクトルを求めることがで きる。計算においては、このスペクトルを岸壁への入 射波のスペクトルと仮定した。しかし、実際の入射波の スペクトルは、港口部の防波堤で回折されているので、 Bretschneider のスペクトル形とは異なっていることが 考えられるが、実際のスペクトル形は場所的に変動して いるため、平均的なスペクトル形を求めることは計算上 非常に煩雑になる。そのため、有義波の平均値で入射波 の周波数スペクトルを求めることにした。

港口部の防波堤で回折された波は,防波堤の先端から 円弧状に進行する回折波と開口部から直接進入する波と によって,規則波の場合,図-5.1のような波峯線を形

成する。Puttnum および Arthur⁵⁾ は,半無限堤に関す る規則波の実験によって波峯線が防波堤の遮蔽域では円 弧状より少しずれることを示しているが,このずれはそ れほど大きくなく,円弧状になると考えてもよいようで ある。しかし,方向スペクトルを有する不規則波が入射 してくる場合,成分波は 図-5.1 のように進行すると考 えられるが,不規則波としての方向分布は簡単には計算 できない。そこで,岸壁による反射波を計算するときの 波の主方向としては,島堤と考える岸壁の中点と港口部 の中点とを結んだ方向とした。そして,波向の範囲とし ては,岸壁の中点と港口部の防波堤の先端とを結んだ範

図-5.2 岸壁へ入射する波の波向

囲とする。これを図示すると、図-5.2 のようになる。 角度 α_p が波の主方向を示し、 α_{max} と α_{min} が波向範 囲を示す。しかし、方向スペクトルを有する不規則波と して計算する場合、方向関数形を決めなければならな い。成分波の波向変化を示す 図-5.1 を参照して、方向 分布形を決めることはできるが、非常に煩雑である。そ こで、回折後の波の方向分布形は、回折前の分布形を維 持していて、ただ波向範囲だけが上記のように制限され るとした。この波向範囲を狭く制限するほど、計算では 見掛け上方向集中度の高い波となる。

港の形によっては、岸壁の中点と港口部の中点とが防 波堤によって遮ぎられて結べない場合が起る。このよう な場合には、図-5.1 を参照して、見通しのきく防波堤 の先端と岸壁の中点とを結んだ方向から単一方向の不規 則波が入射してくると仮定した。図-5.2 にこのような 場合の岸壁への波向も示してある。

岸壁を島堤とみなして計算する場合,岸壁が波長に比 して長くなると,岸壁前面波高が大きく変化する。この 場合でも,岸壁を一つの島堤として,岸壁前面の平均波 高を用いて反射波を計算すると,反射波を過大に計算し たり,過小に計算してしまう領域ができるので,岸壁を 適切に分割し,それぞれを島堤として計算するようにし ている。

以上のような岸壁による反射波が再度他の岸壁で反射 される場合が起る。このような反射波の多重反射によっ て港内波高が高くなる場合があるので,これについても 計算できるようにしておく必要がある。図-5.2 のよう な,岸壁 ab による反射波が岸壁 cd によって再度反射 される場合を考える。岸壁 ab による反射波はすでに計 算されているとすると,岸壁 cd への入射波としては, 前述と同じ方法で岸壁 cd の近傍における岸壁 ab の 反射波高および周期の平均値を求める。この値を用い て、Bretschneider型のスペクトルを計算し、入射波の 周波数スペクトルとする。また、波の主方向は両岸壁の 中点を結んだ方向と考え、波向範囲は岸壁 cd の中点と 点 a および b を結んだ線で囲まれる範囲とする。方向関 数形については、港外と同じ分布関数とし、波向範囲だ けが異なると仮定する。この方法を何回も繰り返せば、 反射波の多重反射が計算できることになる。

(3) 岸壁などによる回折波

港口部から進入してきた波が,港内の岸壁や突堤ある いは波除堤で遮ぎられて,直接到達できない領域が港内 には存在する。このような領域内には,岸壁などによっ て回折された波が進入してゆくことになる。そのため, この回折波の計算をしておかなければならない。図-5.3

図-5.3 半無限堤と考えたときの入射波の波向

で示すような岸壁 ab で回折される場合を考える。この 場合,港口部で回折されて港内に進入してきた波は,点 a を半無限堤の先端とする ab で回折されると考えると, その回折波は次式で表わされる。

$$\phi(x', y') = \frac{1}{\sqrt{2}} \exp\left[i\left\{kr\cos\left(\theta - \alpha\right) + \frac{\pi}{4}\right\}\right]$$

$$\times \left[\left\{C(\gamma_1) \pm \frac{1}{2}\right\} - i\left\{S(\gamma_1) \pm \frac{1}{2}\right\}\right]$$

$$+ \frac{K_r}{\sqrt{2}} \exp\left[i\left\{kr\cos\left(\theta + \alpha\right) + \frac{\pi}{4}\right]\right\}$$

$$\times \left[\left\{C(\gamma_2) + \frac{1}{2}\right\} - i\left\{S(\gamma_2) + \frac{1}{2}\right\}\right]$$
(5.1)

$$\gamma_{1} = \sqrt{4kr/\pi} \cos \frac{\theta - \alpha}{2}$$

$$\gamma_{2} = \sqrt{4kr/\pi} \cos \frac{\theta + \alpha}{2}$$
(5.2)

で、 α は成分波の進入角度である。式 (5.1)中の右辺第 1 項の符号は、 $\theta < \pi + \alpha_p$ のとき負、 $\theta > \pi + \alpha_p$ のとき 正となる。ここに、 α_p は不規則波が入射すると考えた ときの波の主方向である。 $\theta < \pi + \alpha_p$ のときは、図-5.3 中の点 pが港口部による回折波が直接進入するとして、 すでに計算されているため、負号となる。

この式 (5.1) を用いて不規則波の計算を行えばよい。 しかし,不規則波で計算する場合,入射波の周波数スペ クトルと方向関数を定めなければならない。入射波の周 波数スペクトルは,図-5.3 の点 a 近傍の波高と周期の 平均値から求まる Bretschneider 型のスペクトルを用い ることにする。入射波の主方向は点 a と港口部の中点と を結んだ方向とする。また,波向の範囲は点 a と港口部 の防波堤の先端とを結んだ線で囲まれる範囲とする。そ して,方向関数形は,岸壁などによる反射波の場合と同 様に港外波浪の方向関数と同じ形を保ち,波向範囲だけ が制限されるものとした。

点 a と防波堤開口部の中点とが防波堤で遮ぎられ,点 a からは直接見通せない場合は,点 a から見通せる防波 堤の先端と点 a を結んだ線の方向から単一方向の不規則 波が入射すると考えた。

以上は港口部の防波堤で回折された波の岸壁などによ る再回折の場合であるが,この方法は岸壁からの再反射 波が岸壁や波除堤で回折される場合にも適用できる。

このような岸壁による回折波は一般に波高が小さいの で,港内波高の計算においては,この回折波が岸壁で反 射されることは考えず,この回折計算で打切っている。

(4) 港内開口防波堤による波の回折

港によっては、港内に旧港があって、旧港そのものも やはり防波堤で遮蔽されている場合がある。たとえば、 横浜港では、港の拡張に伴って旧い港の防波堤が港内に 併呑されて、防波堤が3段構えになっている。このよう な港内に開口部を有する港においては、この旧港内の波 高分布も算定する必要がある。

このような港の港内波高分布の算定法を 図-5.4 の場 合について考える。岸壁による反射波と同様に,港内開 口部前面近傍の有義波の波高と周期の平均値を用いて求 めた Bretschneider 型のスペクトルが入射波の周波数ス ペクトルになると考える。そして,入射波の主方向は港 内開口部の中点と港口部の中点とを結んだ方向とし,波 向範囲は港内開口部の中点と港口部の防波堤先端を結ん だ線で囲まれる範囲とする。また,方向関数形は今まで と同様に港口部での入射波の方向関数形がそのまま保た れ,波向範囲だけが異なるものとする。

図-5.4 港内開口部への入射波の波向

港内開口部への入射波をこのように設定した後に,港 口進入波と同じ計算法で港内開口部内の波高分布を計算 する。ただし,港内開口部内での岸壁による多重反射に ついては岸壁による反射波と同じ考えで計算を行う。

(5) 合成波の計算方法

以上の(1)~(4)の方法によって得られた波高と周期 を用いて合成波を計算しなければならない。この合成波 は以下のようにして求める。

港内回折波や岸壁による反射波あるいは港内回折波に、 対応する n 番目の波群の有義波高を H_n , 有義波周期を T_n とすると, 合成波の有義波高 $H_{1/3}$ は, エネルギー 和として次式で求めた。

$$H_{1/3} = \sqrt{\sum_{n=1}^{N} H_n^2}$$
(5.3)

ただし,波高比 Ka で表わす場合は,港口入射波の波高 Hi に対する港内波高の比として次式で求める。

$$K_d = \sqrt{\sum_{n=1}^{N} H_n^2} \Big/ H_i \tag{5.4}$$

ここに, N は港口進入波や岸壁による反射波などの波群 の数である。

合成波の有義波周期 *T*_{1/8} については, Rice の理論⁹⁾ を準用して

$$T_{1/3} = \sqrt{\sum_{n=1}^{N} H_n^2 / \sum_{n=1}^{N} \frac{H_n^2}{T_n^2}}$$
(5.5)

で求め, 周期比 Kar は次式で求めた。

$$K_{dT} = \sqrt{\sum_{n=1}^{N} H_n^2 / \sum_{n=1}^{N} \frac{H_n^2}{T_n^2} / T_i$$
(5.6)

ここに、T₁は港口部への入射波の有義波周期である。

4. で述べたように、岸壁沿いの波高は入・反射波の位 相が揃うため、エネルギー合成ができないので、このよ うなエネルギー合成によって波高を算定すると、岸壁近 傍の波高を小さく見積ることになることに注意しておく 必要がある。

(6) 計算の流れ

(1)~(4)の計算を適切に組み合わせると,港口部が数 個ある港でも,また港内に開口部を有する港でもほとん どあらゆる港について港内波高の計算ができる。ただ し,本計算では計算可能な港の形状は,港口部も直線で 結ぶとして,港内水域が一筆書きできる港の形状に限ら れる。そのため,港内に島状の陸地がある場合には計算 できないことになる。そこで,島状の陸地の背後水域を 直線で2つの水域に分けるなどの操作を行い,一筆書で 港内水域が描けるようにする必要がある。このような操 作をしなければならないけれども,大部分の港では適切

な処理を施せば計算可能になる。

本計算の流れを示すと、図-5.5 のようになる。まず、 タイトルカードを読んで、それが END であれば計算は 終了し、END でなければ、第 1 外郭開口部の港口進入 波が直接到達する領域の計算を行う。そして、港内開口 部および岸壁などによる反射・回折の計算を、入力デー タとして挿入されている反射次数まで計算する。この反 射次数とは、岸壁による反射を1回だけ行う場合が反射 次数1で、その反射波が他の岸壁で再反射される場合が 次数2となる。反射次数は本計算では最高4までとして いる。第1外郭開口部の計算が終れば、つぎに第2外郭 開口部の計算に移り、同様の計算を行う。

岸壁による反射波の計算では,岸壁を分割してそれぞ れの区間を島堤として考えるようになっているが。この 区間長については岸壁前面の波高分布によってその長さ を決めるのが最もよい方法である。しかしながら,この ようにすると計算プログラムが非常に煩雑になるので, 入力データでその長さを決め,場所毎に変化させず,一 つの港では一定の長さとしている。

5.3 港内波高分布の計算例

(1) 仮想の港における波高分布

図-5.2~5.4 に示した仮想の港について港内波高の数 値計算を実施した。図-5.6 は,港の形状と計算メッシュ

図-5.6 仮想の港の形状と計算メッシュ

を示したものである。計算メッシュ間隔は $\Delta x = \Delta y = 100$ m で, 波高および周期は港内水域内における各メッシュの交点で計算される。岸壁および防波堤の反射率は 図-5.6 中に示してある。

計算条件としては, $S_{max}=25$ で, 有義波周期が 8 sec の不規則波が x 軸の正方向から反時計回りに 225°の 方向から進入してくると考えた。波向範囲は主方向から ±90°の範囲とし,岸壁による反射波を計算するときの 島堤長としては2波長の長さとした。また,不規則波の 周波数および方向分割数はそれぞれ3と30で,周波数 分割数は4. で述べたように影響が小さいので,小さな 値にしている。反射次数は1および2,3と変えている。 図-5.7 は,反射次数を2にしたときの反射波の波向べ

図-5.7 回折および反射波の波向ベクトル(反射次数 2)

クトルを示したものである。この場合,反射次数が2で あるため,港口部から進入してきた波が岸壁で反射さ れ,その反射波が他の岸壁で再度反射される状態で計算 は打切られる。

図-5.8 は,以上の条件で計算したときの港内の波高 分布を示している。回中の数値は,波高比で,入射波高 に対する港内波高の比を示している。回中の実線は反射 次数が1のときの等波高比線を示し,点線と一点鎖線は 反射次数がそれぞれ2と3のときの等波高比線を示して いる。この図でわかるように,港口部付近の波高比は反 射次数を変えてもまったく変化がなく,反射次数1の場 合と同じである。しかし,港奥の岸壁で囲まれた部分や

図-5.8 反射次数による港内波高分布の変化 (Smax=25)

港内開口部内では、反射次数を変えると等波高比線が港 奥に向って移動しており、波高は高くなっている。反射 次数を2から3に上げても、港内波高の変化は小さく、 本仮想の港では、反射次数を2に設定しても実用上問題 はないと考えられる。しかし、本計算プログラムを用い て港内波高を算定する場合には、特に反射率の高い岸壁 で周囲がとり囲まれている港では、反射次数による波高 変化に十分注意しておくことが重要である。

(2) 実際の港への適用例

図-5.9 は、有義波周期 6 sec の風波がほぼ SSE の方 向から入射してくるときの横浜港内の波高分布を波高比 の形で示したものである。入射波としては Smax=10 の 方向スペクトルを有する不規則波を考え、港内は水深 12 m の一様水深としている。反射率が図中に示してな い港内の岸壁はすべて反射率0.8を有するものとし,反 射次数は3にとっている。入射波の波向範囲は±90°の 範囲として,港外の陸上部の影響は考えていない。

横浜港の場合,港の拡張によって港内に旧い防波堤が 存在し,港口部の防波堤を含めると、3段構えの開口部で 港が守られている。また,港口部が西側と東側に2ケ所 存在していると同時に,港内には島状の埋立地が存在し ていて,本計算法の適用性を検討するのに非常に都合の よい形状をしている。横浜港内には島状の埋立地が存在 するので,このままの形では計算できないため,図-5.9 の島状埋立地の背後で領域を分け,それぞれの領域では 互の干渉が起らない独立の領域としている。また,複雑 な横浜港をそのままの形で計算すると,水域の辺の数が 100 以内とするプログラム上の制約条件を超えるので,

計算が不可能になる。 そこで, 図-5.9 のような形に簡 略化している。

図-5.9 でわかるように、両港口部の間の防波堤背後 では、両港口部からの進入波が重なり合うので、防波堤 から少し離れた水域では $K_a > 0.5$ となる。港内開口部 を有する西側水域の港内防波堤背後では、岸壁からの反 射波によって $K_a > 0.8$ になる部分が存在するけれども、 大部分が $K_a < 0.6$ で、港内防波堤の前面水域の波高に 比して小さくなっている。このようなことを考えると、 港内静穏度に対して港内の開口部は重要な役割を演じて いることがわかる。このような港内開口部は、港外から の進入波を妨げるばかりでなく、吹送距離を短くして港 内発生波を小さくする効果もある。しかし、港内防波堤 の建設には、船舶航行の安全性も考慮して決定すること が必要となる。

5.4 模型実験による数値計算法の検討

5.3 で示したような,本計算法によって任意形状の港 内の波高分布が計算できるが,計算結果がどの程度の精 度を有するものか検討しておく必要がある。そこで,本 計算法の精度を検討するために,本節では,単一方向不 規則波および規則波を用いて行われた港内静穏度の水理 模型実験結果と比較を行う。しかし,この比較には次の ような問題がある。模型実験では,海底地形が忠実に再 現されているので,海底地形変化に伴う波の変形が起る けれども,本計算法では港内水深を一様と仮定している ため,港内での水深変化に伴う波の変形は計算できな い。しかし,港内の海底地形が変化する実際の港に本計 算法を適用して,港内波高を算定することを考えると, このような模型実験結果と比較を行って,本計算法の精 度を検討することは,非常に意義があると思われる。

(1) 御前崎港の模型実験との比較

御前崎は,静岡県のほぼ中央部の最南端にあり,駿河 湾と遠州灘を分割する御前崎台地として突出している岬 である。御前崎港はその岬の東部水面を港湾区域とし, 地方港湾としてその拡張および整備がなされている。本 模型実験は,御前崎港の拡張計画に伴う防波堤の配置を 決めるために行われたものである¹⁰。

図-5.10 は,模型実験当時の御前崎周辺の海底地形と 防波堤の配置計画を示したものである。東防波堤は,ES 方向のうねりを遮蔽するように配置されていて,港口は NNE 方向を向いている。模型実験では,SE 方向の台 風時の波による港内伝達波と NE 方向の風波による港内 回折波が検討されている。本計算法との比較は,NE 方 向の風波に対する模型実験に関して行った。

図-5.10 御前崎港周辺の地形

図-5.10 に示すように、御前崎港の水深は港口で 12 m, 港奥で 5m であるが, 計算では 10m の一様水深と した。実験では有義波周期 8.6 sec の単一方向の不規則 波が用いられているので,計算でも同じ周期の不規則波 を用いたが、計算では Bretschneider 型のスペクトルを 用いているので,実験波のスペクトルとは若干異なって いる。しかし, 4.5 で述べたように, 入射波のスペクト ルの少しの相違は波高比に大きな変化を与えないため, 計算と実験とで入射波のスペクトルが少し異っても問題 はないと考えられる。図-5.10の西側護岸と南側護岸は, 砕石を設置して消波構造になっているが、その反射率が 不明であるので、計算では一応その値を0.3とした。ま た, 東防波堤の付根の部分に幅の狭い開口部があるが, 計算では無視し、開口部なしとした。西防波堤は島堤で あるが、半無限防波堤として計算している。計算では反 射次数3とした。

図-5.11 は、東防波堤が NNE 方向に真直ぐ延びてい る場合 (ケース1)の計算値と実験値の比較図である。図 中の+印での数値は実験値,実線は計算値の等波高比線 である。この図からわかるように,防波堤開口部から波 が直接進入するような開口部付近の領域では,計算値は

図-5.11 ケース1における御前崎港の港内波高に 関する実験値と計算値の比較

1.0 付近にあるが,実験値は 0.8~0.95 となって,計算 値が実験値の 1.1 倍程度大きい。一方,港内奥深く入る に従って,計算値は実験値より小さくなる傾向があり, 港奥の東防波堤付近では実験値の 0.8 倍程度となる。最 港奥では計算値は実験値の半分程度になる。ただし,西 防波堤背後で計算値が実験値よりかなり小さくなってい るのは,西防波堤が実験では島堤となっているのに対 し,計算では半無限堤としたためである。

図-5.12 ケース2における御前崎港の港内波高に 関する実験値と計算値の比較

図-5.12 は、東防波堤の先端から 300 m 入った地点で 30° 西側へ防波堤を傾けた場合(ケース 2) である。港 口部付近では図-5.11 と同様に計算値は実験より大きく なるが、他の水域では計算値と実験値の一致が非常によ い。東防波堤の付根の開口部付近で実験値が少し大きく なっているのはこの開口部の影響だと思われる。ただ し、計算ではこの開口部は考慮していない。

図-5.13 は, 東防波堤を 図-5.12 の場合と同じ地点で 40° 西側に傾けた場合 (ケース 3) である。この場合も

図-5.13 クーへるにおける時前間にの活行及間に 関する実験値と計算値の比較

港口部では計算値が実験より大きくなる。しかし,他の 水域では計算値はかなりよく実験値と一致している。西 側防波堤背後の計算値と実験値の不一致は,図-5.11 に ついて述べたのと同じ理由による。港口部を西側に移動 するほど港内の波高は小さくなる。

以上の結果,御前崎港の実験に関しては,本計算値は 港口部付近を除けばかなりよく実験値と一致していると 考えることができる。

(2) 田後港の模型実験との比較

鳥取県の東端に位置する田後港は,防波堤および岸壁 等の整備にもかかわらず港内静穏度についてはいまだ十 分でない。そのため,将来5ケ年計画において港内静穏 度向上のための改良工事が行われようとしている。本実 験は,5ヶ年計画完了時にどの程度静穏度が向上するか を調べたものである¹¹⁾。

図-5.14 田後港周辺の地形

図-5.14 は、改良工事前の田後港と周囲の海底形状を 示したものである。しかし、この図には現われていない けれども, 沖側ではかなり複雑な海底形状を示してお り、港口入射波は屈折の影響を強く受けているものと思 われる。そこで, まず港口部までの屈折計算を行って, 港口部付近の波向を求め,この平均波向を計算における 入射波の波向とした。港内水深は、図-5.14 に示すよう に大きな変化はなく,平均で 5m 程度である。そこ で、計算では港内水深を 5m の一様水深とした。計算 値と実験値の比較は 2 ケースについて行った。このと きの沖波の波高と周期は $H_0=4$ m, $T_0=10$ sec である が,港口入射波は屈折および浅水変形によって沖波とは 異なるので, 補正を施している。計算では, Bretschneider 型のスペクトルを用いているので,実験スペクトルとは 異なっている。比較を行ったケースには消波岸壁となっ ている部分があるが, この岸壁の反射率は Kr=0.5 と した。反射次数は1である。

図-5.15 田後港における計算値と実験値の比較

図-5.15 は, 現在の防波堤を延長すると同時に, 海岸 線の一部に消波岸壁を設けた場合の計算値と実験値の比 較図である。港口部付近では, 計算値は実験値より大き く, 実験値の 1.5~2.0 倍にもなっている部分がある。 この原因としては, 計算では入射波の波高および波向が 一様であるとしているのに対して, 実験では港口部前面 の海域で屈折の影響を受けて, 波高および波向が場所毎 に異なることが考えられる。一方, 港奥では逆に計算値 が実験値より 30% 程度小さくなっている。この原因と しては反射次数が1と小さいことにもよると思われる。

図-5.16 防波堤延長後の田後港における計算値と 実験値の比較

図-5.16 は、防波堤をさらに延長し、波除堤と岸壁の 一部を消波構造とした場合の比較図である。この図では 計算値と実験値の等波高比線が複雑に入り組んでいては っきりしないが、計算値と実験値は、図-5.15 よりよく 一致しているようである。図-5.15 とは逆に、港口部で は計算値が小さくなっている。これも港口部前面の波の 屈折の影響だと思われる。全体的にみて、計算値は 30% 以内の誤差で実験値に一致すると考えられる。

以上,田後港の模型実験に関して,計算値と実験値を 比較した結果では,港口部の前面水域で実験波は屈折の 影響を強く受けるため,港口部付近で両者の差は大きく なる。港奥では両者の差は30%程度かそれ以下である。 この結果,港口部前面水域の海底地形が複雑に変化し, 波が屈折の影響を強く受ける場合には,予め模型実験で 本計算法の適用性を確認したうえで,方向スペクトルを 有する不規則波に対する計算を行うことが肝要となる。

(3) 伏木富山港漁船だまりの模型実験との比較

富山港は,富山市中心部から北へ約 5 km 離れたところに位置する港であり,大型船と小型漁船の両方に利用されている。漁船だまりを港の外側に建設し,大型船と小型漁船の航路を分離して,航行上の危険を低くするとともに,現在の漁船だまりである水路内の木材運搬を円滑にすることが計画されている。この模型実験は,新しい漁船だまりの防波堤配置を決定するために行われたものである¹²⁾。

図-5.17 富山港漁船だまりの計画とその周辺の地 形

図-5.17 は新しい漁船だまりの防波堤の配置と周囲の 海底地形を示したものである。この図からわかるよう に、新しい漁船だまりの港口前面には、アイガメと呼ば れる富山湾特有の海谷が迫っている。その結果、北から 東寄りの波はかなり屈折を受け、この漁船だまりの沖合 いで波向線が交差する。そのため、これらの波の港口部 での波高および波向の推定が困難となり、本計算法によ る結果と実験値とを比較しても、計算法の適用性を検討 することにはならない。そこで、NW と NNW の2つ の波について比較することにした。NW の波は、沖波と して $H_0=1.8 \text{ m}$ で $T_0=5.5 \text{ sec}$ 、また、NNW の波は $H_0=2.0 \text{ m}$ で $T_0=6 \text{ sec}$ である。実験では単一方向の不
規則波が用いられているので,計算でも単一方向の不規 則波を用いた。しかし、計算では Bretschneider 型のス ペクトルを用いているので,港口部における実験波のス ペクトルと若干異なる可能性がある。港口部付近の等深 線はほぼ海岸線に垂直になっているので、防波堤の先端 が水深10mと深くても、かなり屈折の影響を受けて、 港内に波が入り易い方向に曲る可能性が強い。図-5.17 の等深線は、港口部ではほぼ平行になっているので、平 行等深線として波向変化を計算してみると, NW の波で は約 10°, NNW の波では約 15° 港口部付近で西に傾 むくことがわかった。そこで, 計算では, NW の波は 10°, NNW の波は 15° 西寄りに入射波の波向を傾け た。このような屈折を起すと, 当然港口部の波高は沖波 波高とは異なる可能性もあるが,港口部付近の等深線の 形状からみて、波向線の幅は沖合いとほとんど変化がな いことから, 波高については修正を行っていない。港内 水深は 5m として計算した。また,港内には船揚げ場 として斜路が設けてあるので,この部分の反射率は0と し, 岸壁の反射率は 0.9 とした。

主防波堤が一直線状に WNW 方向に延びている場合 について計算値と実験値を比較したのが 図-5.18 であ る。図-5.18 (a) は NW の波, 図-5.18 (b) は NNW 方向の波に対する比較図である。図中の+印における数 値は実験で求めた波高比を示し,実線の等波高比線は計 算値によるものである。NW の波の 図-5.18 (a) の場 合,実験値では0.5以上の点が港口部から港内に向って 現われているのに対し、計算値では 0.5>Ka>0.4 とな って,計算値が小さい。また,副防波堤の背後では,計 算値は $0.1 < K_a < 0.2$ であるのに対し,実験値では K_a >0.3 の点が現われている。このような差が局所的に現 われてはいるものの,全体的にみれば,かなりよい精度 で計算値は実験値を表現している。 また, 図-5.18 (b) の NNW の波向の場合,波の進入方向が北に寄るため, 港内波は非常に小さくなる。計算では港口部付近に Ka >0.2 になる部分があることを除けば、ほぼ全領域で $K_d < 0.2$ となるが、実験値では、 $K_d > 0.2$ となる部分 が港内のいくつかの点に現われている。また、計算値で は Ka<0.1 の部分が副防波堤の背後に現われているが, 実験値では、Ka<0.15 で、Ka>0.1 の点も多く存在す る。しかし,計算で波高が小さい部分では,実験値も小 さく,両者の対応はよい。また,計算精度も悪くない。

図-5.19 は、主防波堤の先端部の 150 m 区間を海岸 線にほぼ平行に曲げた場合の計算値と実験値の比較図で ある。図-5.19 (a) の NW の波の場合、計算では Ka

図-5.19 富山港漁船だまりにおける屈曲防波堤の場合の実験値と計算値の比較

-105-

=0.6 や 0.5 の線が港内奥深くまで侵入してきている が、実験値では、Ka>0.5になる点はほとんどなく、Ka <0.5 である。このように港口部の波高が大きく異なっ たのは,計算では入射波が単一方向から進入してくると しているのに対し、実験では港口部の位置で水深が大き く異なるため,場所的に波高が大きく変化することによ るものと思われる。たとえば、この防波堤の配置では、 主防波堤の先端が水深10m付近にあるのに対し、副 防波堤先端では水深 5 m と,水深が約半分になってい る。その結果、等深線の形状からして、副防波堤には計 算で用いた波向■よりさらに西に傾いていると推測され る。このことは、副防波堤の背後で計算値の波高が実験 値より大きくなることからも推測される。このような原 因で計算値は港口部で大きな波高は示すものの、実験値 の波高変化をかなりよく表わしている。図-5.19 (b) の NNW の波の場合でも、図-5.19 (a) ほどではないが、 港口付近でやはり計算値の波高は実験値より大きい。ま た, 副防波堤の背後でも計算値は実験値より大きくなっ ている。しかし、全体的にみれば、計算値は実験値の傾 向をよく表わしている。

以上,富山港漁船だまりの横型実験結果との比較で, 全体として計算値は実験値の傾向をよく表わしており, 港口部のような局所的な部分を除けば,計算値は 30% 程度の誤差を示しているといえる。また,富山港漁船だ まりのような,港口部付近の水深が大きく変化する港で は,港口部の波向を正確に把握して計算することが非常 に重要であるが,これを行っても,本計算法では港口部 近傍の港内波高が比較的大きい誤差を含むことは避けら れない。

(4) 小木新港の模型実験との比較

小木港は,能登半島北部,富山湾に面した天然の良港 であるが,近海や遠洋漁業の基地として小木港に停泊荷 揚げする漁船数は年々増加してきているため,現在の泊 地面積では十分といえなくなりつつあり,小木港の新港 が計画された。本模型実験は,新港計画の一環として, 港内静穏度の観点から外郭防波堤の配置を決定するため に行われたものである¹³。

小木新港の計画とその周辺の等深線を示したのが図-5.20 である。本実験は規則波による実験であるため, 港内で重複波が発生し,港内波高は場所的に大きく変化 する。そのため,実験値をそのままの値で計算値と比較 することはできない。そこで,港内を図-5.21 に示すよ うに7 ブロックに分割し,そのブロック内の平均波高に ついて実験値と計算値とを比較した。実験は全部で 27

図-5.20 小木新港の計画とその周辺の地形

ケース行われているが,計算値と比較ができる 19 ケース について計算値と実験値を比較した。その 19 ケースを 表にまとめると,表-5.1 のようになる。各ケースの防波 堤配置および消波構造の位置は 図-5.21 に示している。 実験は規則波であるので,計算も規則波を用いている。

実験値と計算値は 表-5.1 にも示してあるが, これを プロットしたのが 図-5.22 である。図中の縦軸が実験値 $(K_a)_e$ で, 横軸が計算値 $(K_a)_o$ である。また, 実線は $(K_a)_e = a(K_a)_o$ の比例関係が成立するとして, 最小自乗 法で求めた関係式を示したもので, 点線で挾まれた区域 は計算値と実験値の差が 30% 以内の範囲を示す。

 $(K_d)_e = (0.9 \sim 1.1)(K_d)_e$ となって、実験値と計算値が 平均的にみて、10% 程度しか異ならないのは ブロック A および C, D, E, F である。しかし、実験値と計算 値がよい一致を示している ブロック でも、詳細にみる と、実験値と計算値が大きく異なる波向がある。たとえ

Case	Case Wave Wave		bre	East eakwa	ater	bre	West	t ater	West re-	Count (wave a	ter p absor	lan ber)		Me (upp low	ean wa ber rov er rov	ve he w: con v: exj	ight r nputa perime	atio tion mt	
No.	direc- tion	period [sec]	E-1	E-2	E-3	W-1	W-2	W-3	claimed land	front of Moto- ogi	A-1	A-2	A	В	С	D	E	F	G
1	S	7	0				0						0.331 0.341	0.428 0.159	0.293 0.244	0.284 0.307	0.191 0.161	$0.163 \\ 0.114$	0.120
2				0			0						0.324 0.346	0.432 0.194	0.264 0.235	0.438 0.409	0.260 0.236	0.176 0.167	0.192 0.217
3					0		0						0.285 0.304	0.435 0.154	0.255 0.231	0.212 0.192	0.202 0.106	0.167 0.060	$0.063 \\ 0.148$
4					0		0			0			0.285 0.278	0.435 0.156	0.255 0.232	0.212 0.210	0.202	0.167	0.063
5	ESE	8			0		0			0			$0.665 \\ 0.624$	0.607 0.390	0.246 0.404	0.149 0.217	0.109 0.123	0.106 0.113	0.054 0.232
6				·	0	0				0			0.654 0.623	0.600 0.430	0.322 0.455	0.180 0.196	0.115 0.110	0.097 0.109	0.054 0.226
7					0			0		0			0.668 0.583	0.622 0.365	0.248 0.360	0.153 0.175	0.142 0.088	0.106 0.093	0.054 0.167
8					0			0	0	0		0	0.656 0.617	0.694 0.485	0.331 0.504	0.148 0.217	0.161 0.131	0.124 0.172	0.046 0.105
9					0			0	0	0	0	0	0.656 0.548	0.694 0.449	0.324 0.492	0.146 0.179	0.151 0.118	0.118 0.137	0.046 0.131
10	ESSE	7			0		0			0			0.461 0.552	0.463 0.411	0.423 0.408	0.246 0.268	0.155 0.100	0.126 0.106	0.118 0.142
11					0	0			0	0			0.604 0.612	0.681 0.509	0.530 0.515	0.287 0.360	0.173 0.232	0.117 0.186	0.126 0.170
12					0		0		0	0			0.541 0.621	0.567 0.508	0.504 0.524	0.263 0.339	$0.167 \\ 0.244$	0.134 0.212	0.119 0.154
13					0			0	0	0			0.539 0.617	0.519 0.519	0.534 0.553	0.264 0.321	0.166 0.261	0.133	0.119 0.199
14					0			0	0	0		0	0.512 0.534	0.486 0.407	0.504	0.273 0.334	0.156 0.229	0.126 0.178	0.129 0.173
15					0			0	0	0	0	0	0.512 0.534	0.486 0.460	0.504 0.479	0.277 0.254	0.150 0.155	0.124 0.143	0.129 0.137
16	wssw	6			0		0			0			0.281 0.141	0.555 0.293	0.243 0.291).157).221	0.177 0.129	0.130 0.129	0.042 0.018
17					0		0		0	0			0.284 0.179	0.565 0.356	0.273 0.296).151).222).178).181	0.132 0.170	0.037 0.044
18					0			0	0	0			0.225 0.139	0.324 0.163).144).124).103).102).087).118	0.054 0.108	0.037 0.036
19					0			0		0		1	0.219 0.124	0.321 0.157).139).109).112).101).083).110	0.052 0.086	0.042 0.031

表-5.1 小木新港の実験ケースおよび実験値と計算値

図-5.22 小木新港における実験値と計算値の比較

ば, ブロック A では $(K_a)_c=0.97(K_a)_c$ となって, 実験 値と計算値は平均的にみて, 3% 程度しか異なっていな いが, WSSW の波では実験値が計算値の約 60% と小 さく, また, ESSE の波では実験値が計算値より 10% 程度大きい。また, ブロックFでは, 実験値と計算値の 平均的な関係は $(K_a)_c=1.03(K_a)_c$ と非常によい一致を 示すが, ブロットした点はこの線のまわりに大きくばら ついている。計算値と実験の一致のよいこれらのブロッ クでは大部分の点は, 両者が 30% 以内の差の領域に入 っている。

ー方,実験値と計算値とはブロックBとGで一致が悪 い。プロックBでは,(K_a) $_e$ =0.67(K_a) $_e$ となって,実験 値は計算値の約7割と小さい。この原因としては,計算 では両開口部とも同じ波高の入射波が回折されるとして いるが,実験では西側開口部の波は屈折によって波高が 減少していて,西側開口部による回折波が小さいことに よると考えられる。また,プロックGでは,港内開口部 内の領域であり,波高比が実験値および計算値ともに小 さいため,両者の差が著しくなったのではないかと思わ れる。

以上,規則波による小木新港の模型実験値と計算値と を比較した結果では,波高比が大きい場合には,計算値 と実験値の相対誤差は小さく,波高比が小さくなると大 きくなる傾向がある。領域によっては,平均的にみて 50%以上異なる場合もあるが,全測点数の2/3が±30% の誤差の範囲に入っており,全体としてみれば,数値計 算の推定値は 30% 以内の差で実験値をよく表わしてい るといえる。

(5) 模型実験との比較による数値計算の精度

御前崎港および田後港,富山港漁船だまり,小木新港 に関する模型実験と数値計算とを比較することによっ て,次のようなことが判明した。

- i) 数値計算は、平均的にみると、30%の誤差の範囲で 実験とよく一致する。しかし、入射波の波向や計算領 域によっては局所的に差が大きくなる場合がある。
- ii) 港の形状によって異なるけれども、一般に開口部す
 ぐ近傍では計算値は実験値より大きい傾向を示し、港
 奥では小さい傾向を示す。
- iii)数値計算値は、波高比が大きい場合には実験値との 相対誤差が小さいし、波高比が小さい場合には相対誤 差が大きくなる傾向を示す。
- iv)港口部前面の海底地形が大きく変化している港においては,港口部へ入射する波向を正確に推定して計算しないと,計算精度が落ちる。ただし,波向が港口部で場所的に異なる場合には,平均的な波向を入力すればよい。しかし,これによって局所的に計算精度が落ちる場合があるので注意を要する。
 - 5.5 港内波浪観測による数値計算法の検討
 - (1) 港内波浪観測地点

港内静穏度を確保するための各種計画の樹立に当って

は,港内波浪を的確に把握することが必要であるが,港 内波浪と一口に言っても,港内波浪には港口進入波や港 内反射波,港内発生波などが含まれ,その実体は非常に 複雑である。そこで,第一港湾建設局では,今後の港湾 整備計画の策定に資する目的もあって,港内波浪の実体 を把握するために港内波浪観測を実施し,その解析を行 っている¹⁴⁾。

港内波浪の観測は, 日本海側で波高が高くなる冬期が 選ばれ, 1979年 12月~1980年1月の2ケ月間, 新 潟西港と秋田港で行われた。港内波浪観測は、図-5.23 (a) と (b) に示されているような港内中央部の岸壁前面 から 2m 離れた地点で行われた。港内波浪は簡易型の 容量式波高計を用いて観測され、港内波浪との比較に重 要な港外波浪としては、図-5.23 に示すように、新潟西 港では水深 22.7 m, 秋田港では水深 26 m の地点に設 置されている超音波式波高計による定常観測値を採用し ている。定常観測は、毎日2時間毎に 20 分間行われて いる。また,港口付近における入射波の波向は,両港で 行われているミリ波レーダの観測値が採用されている。 波向観測は,毎日10時と16時の2回定常的に観測さ れているが, 波向線が明瞭でない場合や天候が悪い場合 には,読み取り誤差が大きくなると同時に,読み取りが 不可能になる場合もあり,その測得率は低い。

(2) 波向および周期による港内波高の変化

港内波浪観測期間中の港外波浪の観測では,周期は 8 secを中心にして,6 sec から 10 sec の間にあり,波高は荒 天時に新潟西港で $H_{1/3}=5$ m,秋田港で $H_{1/3}=6$ m に達 する場合もあった。また,波向は,新潟西港では NNW~ NW, 秋田港では W~SW の範囲にほとんどの波が入っている。

周期8 sec で, 波向が新潟西港で NW, 秋田港で W の 波に対する港内波高分布の計算結果が, 図-5.24 (a) と (b) に示してある。計算では, 港内の反射次数を4 と し, 周波数および方向分割数はそれぞれ5 と 30 にした。 港内のメッシュ間隔は 100 m で, 水深は, 新潟西港で 10 m, 秋田港で 12 m の一様水深としている。方向集中 度 S_{\max} は, 沖波で S_{\max} =10 とすると, 両港ともに港 口部では S_{\max} =20~30 の範囲にあるので, S_{\max} =25 として計算した。岸壁の反射率は K_r =0.8 を標準とし, この値と異なる部分については 図-5.24 中に示してあ る。

図-5.24 (a) の新潟西港では,波向 NW の波は防波 堤で強く遮蔽される状態にあるが,西防波堤の2箇所の 点に 70 m 程度の開口部が存在しているため,港口付近 の波高比は比較的大きい。一方,港内奥では $K_a < 0.3$ で ある。図-5.24 (b) の秋田港では,波向 NW の波は西 防波堤で遮蔽されてはいるが,それほど強い遮蔽ではな いため,港奥でも波高比は大きく, $K_a < 0.4$ である。

観測期間中の波は前述のように、新潟西港では NNW ~NW,秋田港では W~SW の波向で、周期は 8 sec 前 後であるので,波向と周期の変化によって港内波浪観測 地点の波高がどのように変化するか、数値計算によって 調べたのが 図-5.25 である。計算に用いた波の周期は 6 と 8,10 sec の 3 種類,波向は、新潟西港では NNW~ W の 4 方向、秋田港では NN~SSW の 7 方向である。 方向集中度としては、 $S_{max}=25$ に加えて、 $S_{max}=75$ に

ついても行っている。その他の条件は 図-5.24 と同じで ある。波高比としては港内波浪観測点近傍の3点の平均 値を用いた。

図-5.25 (a) の新潟西港の場合,港口が NE 方向に開 いているので,計算では W~NNW の範囲しか計算し ていないけれども,波向が北寄りになるほど港内波高比 が大きくなる傾向を示しているのがわかる。周期の変化 による港内波高比の変化はほとんどなく,6~10 sec の 波ではほぼ同一の波高比を示す。方向集中度 $S_{max}=25$ と 75 では,この計算範囲の波向においては, $S_{max}=25$ の場合が大きな波高比を示し,W から NNW に波向が 変化するに従って,両波高比の差が開く。この差は,W では 0.01 程度であるのに対し,NNW では約 0.07 に なる。

図-5.25 (b) の秋田港の場合,港口がほぼ NNW の方 向にあるため,港内波浪観測点の波高比は、NNW のと きが最大で, $S_{max}=75$ で $T_{1/8}=6 \sec$ では $K_a=0.67$ にもなる。波向が S に向うに従って,港内波高比は小さ くなり、SSW では周期および S_{max} にほとんど関係な く, $K_a=0.03$ と非常に小さくなる。港内波高比は WNW~WSW の範囲で最も変化が大きく、この間で約 0.3 変化する。WSW より S 寄りの波向では、周期によ る波高比の変化はほとんどないが、Wより N 寄りの波向 では、 $S_{max}=25$ でも 75 でも、周期 6 sec の波の波高 比が大きく,他の周期の波高比と大きい場合には 0.1 程 度異なる。しかし,周期 8 sec と 10 sec では 10 sec の波 高比が大きい傾向は示すけれども,その差は小さく,両者 の波高比はほとんど変わらない。 $S_{max}=25$ と 75 では, WNW より N 寄りの波では $S_{max}=75$ の波高比が大き く,これより S 寄りの波では $S_{max}=25$ の波高比が大き くなる。しかし,SSW では S_{max} の値によって波高比 はほとんど変らない。この原因としては,4.4 (3) で述 べたように,方向集中度の高い波ほど波の直接進入領域 で波高比が大きく,遮蔽域で小さくなるため,N寄りの 波では $S_{max}=75$ の場合が港内の奥まで大きな波高の波 が入り易くなるためだと考えられる。

(3) 港内波浪の観測値と計算値の比較

港内波浪は1979年12月から1980年1月までの2ケ 月間,毎日2時間毎に観測されているが,港外波浪の波 向が不明なものは除き,ミリ波レーダによる観測で波向 が読み取れたものだけを取り出し,港内波浪と港外波浪 の関係を調べてみた。また,港内波浪の波高の計算結果 も示されているが,この計算では,防波堤の越波による 港内伝達波や港内を吹く風による港内発生波は考慮され ておらず,港口での回折波と港内での反射波のみが考え られている。計算値としては,方向集中度が Smax=25 で,周期 6~10 sec の波に対する平均的な波高比を用い ている。

-111-

新潟西港について整理したのが,図-5.26 である。図-5.26 (a) は,港外波浪が NNW の波向に対するもの で,図-5.26 (b) は NW の波向に対するものである。 NNW および NW の波向としては,NからW方向に 測って,波向がそれぞれ 20°~30°と 30°~40°の範囲 にあるものを採用した。また,これらの図中には,港外 波浪の波向が NNW および NW,WNW の3種類の 波向に対する計算値が直線で示してある。計算は線型解 析であるので,港内波高は港外波高と比例関係になる。 図中の $H_{out} \ge H_{in}$ はそれぞれ港外波高と港内波高を示 している。

波向 NNW の 図-5.26 (a) の場合,大部分の観測値 は NNW と NW の波向に対する計算値の間にあり, 平均的にみると,WNNW 方向となっている。N20°~ 30°W の波向を NW にとっていることを考えると,港 外波浪の浪向が NNW といっても NW 寄りの波が多 くあったのかもわからない。しかしながら,個々の観測 値の港外波浪の諸元が不明であったので,詳細な検討は できなかった。

波向 NW の 図-5.26 (b) の場合,港内波高の観測値は, 港内波高が大きく観測されている4点を除けば, NW の 波向に対する計算値に近いけれども,港内外波高の平均 的な関係は,計算値の波向を NW より WNW 寄りに とるとよいようである。港内波高が大きく観測されてい る4点については,港内発生波が比較的大きく,そのた め,港内波高が大きく観測されたのではないかと推測さ れるが,港内での風速と風向がはっきりしていないの で,港内発生波を定量的に見積ることができなかった。

図-5.27 (a) および (b), (c) は, 港外波浪の波向が それぞれ W と WSW, SW に対する, 秋田港における 港外波高と港内波高の関係を調べたものである。これら の図中には, WNW~SSW の 5 種類の波向に対して計 算した港内外波高の関係が直線で示してある。

図-5.27 (a)のW方向の波としては、港外波浪の波向 がN80°~100°Wの範囲にある波を採用している。ただ し、同じW方向の波であってもN80°~90°WとN90°~ 100°Wの2つに分け、それぞれを黒丸と白丸で示して いる。黒丸はWNWに近い方位にあるため、平均的に みると、白丸より港内波高比が大きい傾向にあるが、こ の傾向は、白丸と黒丸が大きく入り混じっており、それ ほど明瞭ではない。観測値は大きくばらついてはいるけ れども、W~SWの計算値の直線内にほとんどの点が入 っており、港外波の波向をW方向と考えるよりWSW とした方が計算値は観測値の港内外波高の平均的な関係 によく一致する。観測値が計算値の W~SW の範囲に あることは, 観測値の波高比が $K_a=0.07\sim0.25$ である ことを示している。

図-5.27 (b) の WSW の波向としては、N100°~ 120°W の範囲の波を用いている。同じ WSW でも N100°~110°W は黒丸、N110°~120°W は白丸で示さ れている。黒丸は白丸より港内波高比が大きい傾向を示 し、図-5.25 (b) で示したように波向が N 方向に向う ほど港内波高比が大きくなる傾向と一致している。しか し、観測値は全般に計算で求めた、WSW の波向の港内 波高より小さく、WSW~SSW の範囲にある。 波高比 に直すと、観測値は K_a =0.03~0.13 の範囲にあるこ とになる。観測値の平均的な関係を表わそうとすると、 計算においては WSW の波向を用いるのでなくて、 WWSW 方向にとるのがよいと思われる。

図-5.27 (c) の SW の波向としては,N120°~130°W の波が用いられている。この範囲の波向の波は少なく, 2 点しかないので,はっきりとはいえないが比較的よく 計算値と一致しているようである。

以上,新潟西港および秋田港について港内波浪観測値 と計算値とを比較したけれども、平均的な周期と波向お よび方向集中度を用いて計算していることや港内発生波 の効果が観測値から取り除くことができないこともあっ て、計算方法の妥当性について詳細な検討はできなかっ た。しかしながら、計算値は、波向が N から W あるい はS方向に傾むくに従って港内波高比が小さくなるとい う観測値の変化傾向をよく表わしている。また、ミリ波 レーダで得られた波向をそのまま用いるのではなく,W あるいはS方向に少し変化させて計算すれば、計算値は 観測値の平均的な関係とよく一致させることができる。 本計算では、沖波を風波と考えて、 $S_{\text{max}}=10$ を採用し、 水深変化による波向集中度の増大を考慮して Smax=25 として計算した。その結果, 観測値は計算値より少し小 さくなった。計算した波向の範囲では Smax が大きいほ ど波高比は小さくなるので、 $S_{\max}=25$ より大きい S_{\max} の値に実際の波はなっていたのかもわからない。しか し、これについては Smax の値が不明であるので、単な る推測に過ぎない。

5.6 港内静穏度解析への応用例

前節までは,港内波高計算法の妥当性を検討するため に,模型実験結果や現地波浪観測結果と数値計算値とを 比較してきたが,本節では港内波高計算法を適用して, どのように港内静穏度を解析するか,その手法について 検討する。ここでは,港内静穏度の判定において重要な

— 113 —

要素である港外からの進入波に対する解析であって,港 内発生波や航走波,あるいは風については考慮していな い。

(1) 港内静穏度を判定する港の形状と沖波の条件

図-5.28 に示すような仮想の港を考え,この港に関して港内静穏度を調べる。この港は掘込み港湾で,港の東

図-5.28 仮想の港

側に工業基地, 西側と北側水路にコンテナバースと一般 荷役用バースが配置されている。この港の形状から考え て,北および東・西水路内の港内静穏度はほとんど問題 にならない考えられるので,図-5.28 に示すように中央 水路とその近辺を I ~IV の 4 領域に分けて,これらの 4 領域についてのみ港内静穏度を判定することにした。 領域 I 内にはタンカー接岸用シーバースがあり,領域 II には工業用バース,領域Ⅲにはコンテナバースがある。

この港の沖波は,表-5.2 (a) および (b) で示すよう な波高の出現頻度になっているとする。港内静穏度解析 には波向毎の波高・周期の出現頻度の形で沖波が与えら れていることが必要であるが,通常の港では 表-5.2 の ような形でしか沖波のデータが与えられていないので, 一応現状に合わせることにした。表-5.2 (a) は波高・周 期の出現率を示し,表-5.2 (b) は波向・波高の出現率を 示す。これらの表からわかるように,周期 8~10 sec の 波が非常に多く,波向は半分近く SW の波向である。 表-5.2 (b) 中の N および NE, NW の波は沖波では 存在していても,この港では海岸方向からくる波になる ので,静穏度解析では考慮しないことにした。

表-5.2 波高の出現率(%)

Period		Significant wave height $H_{1/3}$ [m]											
$T_{1/3}$ [sec]	0-0.6	0.6-1.2	1.2-1.8	1.8-2.4	2.4-3.0	3.0-3.6	3.6 plus	Total					
0-6	2.9	2.8	0.1	0.0	0.0	0.0	0.0	5.8					
6-8	10.5	16.7	6.3	1.8	0.4	0.1	0.0	35.8					
8-10	10.1	19.5	10.9	4.9	1.2	0.4	0.1	47.1					
10-14	2.3	6.3	2.1	0.6	0.0	0.0	0.0	11.3					
Total	25.8	45.3	19.4	7.3	1.6	0.5	0.1	100.0					

(b) 波 向 别

(a) 周 期 別

Direction	Significant wave height $H_{1/3}$ [m]										
Direction	0-0.6	0.6-1.2	1.2-1.8	1.8-2.4	2.4-3.0	3.0-3.6	3.6 plus	Total			
N	1.1	0.8	0.2	0.0	0.0	0.0	0.0	2.1			
NE	1.3	0.7	0.0	0.1	0.0	0.0	0.0	2.1			
E	1.9	0.6	0.1	0.0	0.0	0.0	0.0	2.6			
SE	2.5	2.4	0.7	0.2	0.1	0.0	0.0	5.9			
S	6.3	9.9	3.6	1.1	0.3	0.1	0.0	21.3			
SW	7.9	22.6	11.2	4.6	0.9	0.3	0.0	47.6			
W	3.0	7.2	3.2	1.2	0.3	0.1	0.1	15.0			
NW	1.8	1.1	0.4	0.1	0.0	0.0	0.0	3.4			
Total	25.8	45.3	19.4	7.3	1.6	0.5	0.1	100.0			

Period	Significant wave height $H_{1/3}$ [m]											
T _{1/3} [sec]	0-0.6	0.6-1.2	1.2-1.8	1.8-2.4	2.4-3.0	3.0-3.6	3.6 plus	Iotai				
0-6	0.89	1.40	0.06	0.00	0.00	0.00	0.00	2.35				
6-8	3.27	8.34	3.64	1.13	0.22	0.06	0.00	16.61				
8-10	3.09	9.72	6.30	3.09	0.68	0.24	0.10	23.22				
10-14	0.70	3.14	1.20	0.38	0.00	0.00	0.00	5.42				
Total	7.90	22.60	11.20	4.60	0.90	0.30	0.10	47.60				

表-5.3 波向 SW における周期別波高の出現率

前述のように港内静穏度を解析するためには波向毎の 波高・周期の出現率が必要となるが、この出現率が求ま っていないので、表-5.2 (a) および (b) を利用して、 以下のような方法で求めることにした。表-5.2 (a) の波 高・周期の出現率は波向が異っても同じ波高階級では同 じ出現率であると仮定して、次式で求める。

$$(p_{ij})_{k} = (p_{i})_{k} (p_{j})_{k} / \sum_{k} (p_{j})_{k}$$

$$(5.7)$$

ここに, k は波高階級の順番で,波高の小さい方から数 える。また,i は波向,j は周期階級で 表-2.5(a) の上段 から数える。p は出現率である。例えば,波高階級 0.6~
1.2 m で,波向 SW, 周期 8~10 sec の波の出現率は, (p_{6,3})₂=0.226×0.195/0.453=0.0972

となる。このようにして得られた波向毎の波高・周期の 出現率の一例を示すと,表-5.3のようになる。

(2) 港内波高計算

港内波高の計算を行うためには、港口部における波の 周期および波向、さらには方向集中度を与えなければな らない。そこで、波の周期については各周期階級の中 央値を用いることにして, 4 および 7, 9, 12 sec とし た。波向については、この海岸がほぼ平行等深線海岸に 近いので、屈折による波向変化図¹⁵⁾を用いて算定した。 また、方向集中度 Smax については、図-4.1 で示す波 形勾配による S_{max} の推定図から沖波の S_{max} を求め, 屈折による Smax の値の変化を考慮して, 沖波の Smax から港口部における Smax の値を 図-4.2 で算定する。 Smax>100になる場合は、Smax=100として与え、 $S_{\max} < 100$ の場合は、求まった S_{\max} の値をそのまま用 いるのではなく, Smax=10, 25, 25, 100 のうちで近い値 を用いることにした。これは, 4. で示したように Smax の値の少しの変化では,回折係数が大きく変化すること はないことから,上記のように Smax の値を用いること にした。 このため, 同一周期の波でも波高が異なれば Smax も変わることになる。

図-5.29 仮想の港の港内波高分布 (T_{1/8}=9 sec, S_{max}=100, 波向 SE)

図-5.29 は SE の波向で,周期 9 sec の波による港内 の波高分布を示したものである。このときの方向集中度 は $S_{max}=100$ で,港内の反射次数は 3,防波堤および 岸壁の反射率はすべて $K_r=0.9$ とした。図-5.29 のよ うに計算された図から各領域内の平均波高比 \bar{K}_a を計算 した結果が 表-5.4 に示してある。この表からわかるよ うに,波向が E から W に向うにしたがって,各領域内 の平均波高比は小さくなり,また S_{max} が大きくなるほ ど,平均波高比は小さくなる傾向を示す。

(3) 港内波高の超過出現率

表-5.4 に示した波高比は,港口部の波高に対する港 内波高の比であるから、この \bar{K}_a をそのまま沖波の波高 に乗じて,港内波高を求めることはできない。港口部で の波高 H_{out} を波の屈折および浅水変形を考慮して、次 式で求める。

 $H_{out} = K_{re}K_{s}H_{0}$ (5.8) ここに, K_{re} は屈折係数, K_{s} は浅水係数, H_{0} は沖波波 高である。そして, この H_{out} を用いて, 港内波高 H_{in} は,

Direction	Period	Smar	Mean	wave h	eight rat	tio \overline{K}_a
Direction	[sec]	Umax	I	п	II	IV
Е	4	10 75	0.467 0.786	0.723 0.867	0.773 0.912	0.486 0.600
	7	10 25 75 100	$\begin{array}{c} 0.471 \\ 0.446 \\ 0.367 \\ 0.347 \end{array}$	$\begin{array}{c} 0.579 \\ 0.596 \\ 0.586 \\ 0.569 \end{array}$	$\begin{array}{c} 0.630 \\ 0.657 \\ 0.646 \\ 0.631 \end{array}$	$\begin{array}{c} 0.389 \\ 0.394 \\ 0.370 \\ 0.349 \end{array}$
	9	25 75 100	0.361 0.304 0.289	$0.495 \\ 0.439 \\ 0.419$	$0.547 \\ 0.464 \\ 0.428$	$\begin{array}{c} 0.311 \\ 0.246 \\ 0.219 \end{array}$
	12	100	0.261	0.291	0.320	0.150
SE	4	10 75	$\begin{array}{c} 0.466 \\ 0.393 \end{array}$	0.591 0.580	$\begin{array}{c} 0.635\\ 0.611\end{array}$	0.386 0.331
	7	10 25 75 100	$0.454 \\ 0.417 \\ 0.370 \\ 0.356$	$\begin{array}{c} 0.513 \\ 0.504 \\ 0.450 \\ 0.431 \end{array}$	$0.558 \\ 0.545 \\ 0.464 \\ 0.428$	$\begin{array}{c} 0.341 \\ 0.326 \\ 0.231 \\ 0.227 \end{array}$
	9	25 75 100	0.350 0.304 0.294	$0.435 \\ 0.375 \\ 0.358$	$0.485 \\ 0.396 \\ 0.364$	0.272 0.201 0.178
	12	100	0.240	0.263	0.289	0.132
S	4	4 10 75		0.289 0.110	$0.327 \\ 0.117$	$0.165 \\ 0.042$
	7	10 25 75 100	0.220 0.139 0.076 0.067	0.296 0.221 0.123 0.107	$\begin{array}{c} 0.321 \\ 0.233 \\ 0.126 \\ 0.112 \end{array}$	$\begin{array}{c} 0.180 \\ 0.122 \\ 0.053 \\ 0.044 \end{array}$
	9	25 75 100	$\begin{array}{c} 0.177 \\ 0.099 \\ 0.086 \end{array}$	0.203 0.118 0.105	0.225 0.127 0.113	$\begin{array}{c} 0.115 \\ 0.053 \\ 0.048 \end{array}$
	12	100	0.106	0.108	0.120	0.054
SW	4	10 75	0.060 0.009	$\begin{array}{c} 0.081\\ 0.014\end{array}$	0.082 0.017	0.025 0.005
	7	10 25 75 100	$\begin{array}{c} 0.063 \\ 0.033 \\ 0.014 \\ 0.014 \end{array}$	0.097 0.055 0.023 0.023	$\begin{array}{c} 0.086 \\ 0.051 \\ 0.027 \\ 0.026 \end{array}$	$\begin{array}{c} 0.032 \\ 0.021 \\ 0.012 \\ 0.011 \end{array}$
	9	25 75 100	$\begin{array}{c} 0.053 \\ 0.024 \\ 0.024 \end{array}$	$\begin{array}{c} 0.062 \\ 0.031 \\ 0.029 \end{array}$	$\begin{array}{c} 0.062 \\ 0.036 \\ 0.033 \end{array}$	$\begin{array}{c} 0.024 \\ 0.015 \\ 0.015 \end{array}$
-	12	100	0.034	0.040	0.047	0.022
W	4	10 75	0.007 0.006	0.013 0.010	0.017 0.012	0.008 0.002
	7	10 25 75 100	$\begin{array}{c} 0.057 \\ 0.027 \\ 0.014 \\ 0.014 \end{array}$	$\begin{array}{c} 0.066 \\ 0.039 \\ 0.019 \\ 0.019 \end{array}$	$\begin{array}{c} 0.064 \\ 0.041 \\ 0.021 \\ 0.021 \end{array}$	$\begin{array}{c} 0.024 \\ 0.016 \\ 0.009 \\ 0.009 \end{array}$
	9	25 75 100	$0.046 \\ 0.023 \\ 0.021$	$\begin{array}{c} 0.052 \\ 0.027 \\ 0.025 \end{array}$	$0.044 \\ 0.028 \\ 0.028$	$0.021 \\ 0.014 \\ 0.013$
	12	100	0.034	0.036	0.044	0.020

表-5.4 各領域内の平均波高比

$$H_{\rm in} = \bar{K}_a H_{\rm out} \tag{5.9}$$

となる。

このようにして求めた港内波高の超過出現率 *P* を, S の波向に対して周期毎に示したものの一例が 図-5.30

である。周期毎の港内波高の超過出現率を加え合わせれ ば,波向Sに対する港内波高の超過出現率が求まる。こ れを各波向毎に示したのが図-5.31である。この波向毎 の波高出現率を加え合わせれば,港内波高の超過出現率 が図-5.31の実線のように求まる。このようにして求め た各領域内の波高超過出現率を示したのが図-5.32であ る。この図から領域Ⅳが最も静穏になることがわかる。 現行の港内静穏度の基準¹⁶⁾では50 cm以上の波高の出現 率が5%以下になるようにするとなっているが,図-5.32 でわかるように,この仮想の港では十分この条件を満足 している。

このように港内静穏度が港内波高の超過出現率で判定 できるとしている根底には、港内波高が高くなれば高く なるほど係留船舶の動揺が大きくなり、動揺が大きくな れば、荷役に支障をきたすようになるという思想があ る。しかし、船舶の動揺ということになると、港内波高 ばかりでなく、その周期も非常に重要な要素になると考 えられる。例えば、巨大な船舶では周期の短い波が来襲 しても大きな動揺は起さないけれども、同じ波でも小さ い船では動揺が大きくなり、荷役が難しくなる。このよ うな周期の影響を導入するためには、係留船舶の荷役限

界動揺量を明確にし,船舶と波高および周期の間の関係 が求められていなければならない。しかし,現状では, まだここまで研究が進んでいないため,周期の影響は無 視し,港内波高の超過出現率で判断せざるを得ない。将 来,周期の影響を見積ることができるようになれば,周 期別の港内波高の超過出現率という形で表わすことが必 要になる。周期別の港内波高超過出現率は 図-5.30 を 利用して,周期毎に全波向について波高の出現率を加え 合わせれば求まる。

5.7 結 語

本章においては,港口からの進入波が岸壁で多重反射 されることを考慮した港内波高の計算方法を提案し,模 型実験あるいは現地観測によってその精度を検討した。 まず,5.1 では,港内静穏度に強く影響を与える諸要素 について述べ,現在使用されている港内波高の算定法に ついて概述し,簡便な新しい計算法の必要性を示した。 5.2 では,港内波高を計算する新しい手法を提案し, 5.3 では,この計算法を用いて,仮想の港や実際の港の 港内波高分布を計算した。本計算法の精度を検討するた めに,5.4 では模型実験結果,5.5 では現地観測値と比 較を行った。最後に5.6 では,港内静穏度の判定に本計 算法をどのように利用するかを,仮想の港を例にとって 示した。以上の内容から主要な結論は,以下のように要 約される。

- (1) 港口部からの進入波が岸壁で反射される場合,反射 波は岸壁を島堤と考えたときの反射波と同じになると 仮定して,新しい港内波高計算を提案した。
- (2) 本計算法では、開口部が数個ある場合でも、また港内にもう一つの港がある場合でも、港内波高を容易に計算することができる。
- (3) 反射率の高い岸壁で囲まれている港では,港内波高が高くなるので,港内波高を正確に算定するためには,反射次数の設定に十分注意を払うことが必要である。
- (4) 本計算法による計算値と模型実験結果とを比較する ことによって、数値計算値は、平均的には約 30%の 誤差の範囲で実験と一致するが、入射波の波向や計算 領域によっては局所的に計算値と実験値との差が大き くなる場合がある。また、港の形状によって異なる が、一般に開口部すぐ近傍では計算値は実験値より大 きく、港奥では逆に小さい傾向を示す。
- (5) 港口部前面の海底地形が複雑な港では,港口部へ入 射する波の波向を正確に算定して計算しないと,計算 精度が悪くなる。
- (6) 現地観測値と計算値とを比較した結果では,現地観 測値は港内発生波も含んでいることもあって,非常に 大きくばらつき,計算値の精度を詳細に検討すること はできなかったが,計算値は波向の変化による港内観 測値の変化の傾向をよく表わしている。
- (7) ミリ波レーダによる波向をそのまま入射波の波向として計算したが、現地観測値とよく一致させるためには、この波向を少しずらす必要がある。
- (8) 仮想の港を用いて,港内波高計算法を港内静穏度の

判定にどのように利用するかの具体例を示した。

参考文献

- Barailler, L. and D. Gailland: Evolution récente des modéles mathèmatéques d'agitation due a lahoule: Calcul de la diffraction en profondeur non uniforme, La Hauille Blance, No. 8, 1967, pp. 861~969.
- 谷本勝利・小舟浩治・小松和彦:数値波動解析法 による港内波高分布の計算,港湾技術研究所報告, 第 14 巻,第 3 号, 1975, pp. 59~106.
- Abbott, M. B., H. M. Peterson and O. Skovgaad: Computations of short waves in shallow water, Proc. 16th Conference of Coastal Engineering, 1978, pp. 414~433.
- 佐藤昭二・合田良実: 海岸・港湾,土木学会編集, 彰国社刊, 1972, pp. 72~77.
- 奥山育英・寺内 潔・吉田行秀・中辻 隆: 折り 返し回折計算プログラムの開発,港湾技研資料, No. 288, 1978, 15 p.
- 6) 椹木 亨・広畑彰一: 港内波高の数値シミュレーション手法の検証について,第26回海岸工学講演 会論文集,1979,pp.109~113.
- Lee, J. J.: Wave induced oscillation in harbours of arbitrary shape, Calif. Inst. of Tech., 1970,

130 p.

- Puttnum, R. C. and R. S. Arthur: Diffraction of water waves by breakwaters, Trans. AGU, Vol. 29, No. 4, 1948, pp. 481~490.
- Rice, S. O.. Mathematical analysis of random noise, reprinted in Selected Papers on Noise and Stochastic Processes, Dover Pub. Inc., 1954, pp. 133~294.
- 合田良実・鈴木康正・蜂須賀和吉: 不規則波を用いた港内静穏度解析,港湾技研資料, No. 271, 1977, 53 p.
- 12) 運輸省港湾技術研究所・富山県土木部: 伏木富山 港(富山地区) 岩瀬船だまり水理模型実験報告書, 1979, 110 p.
- 石川県港湾課:小木港新港計画に関する水理模型 実験報告書,1979,105 p.
- 運輸省第一港湾建設局企画課: 港内擾乱要因分析 調査報告書(新潟西港・秋田港), 1980, 115 p.
- 合田良実・鈴木康正: 光易型方向スペクトルによる不規則波の屈折・回折計算,港湾技研資料, No. 230, 1975, 45 p.
- 運輸省港湾局監修: 港湾の施設の技術上の基準・ 同解説,日本港湾協会,1979, p. 6-12.

6. 不規則波による砕波の回折

6.1 概 説

港内波浪の問題は,港内波高の適用対象によって大き く2つに分類することができる。一つは船舶の荷役効率 に関連する港内静穏度の問題であり,他の一つは荒天時 における港内避泊や港内構造物の設計の問題である。前 者は,5.で示したように年間に起る港内波高の平均的な 発生頻度を問題にしているため,その対象とする波浪は 常時波浪が主体となる。一方,後者は,港内に発生する 最大級の波を問題にしているため,荒天時,つまり異常 時の波浪が主体となる。

港内静穏度で対象にする常時波浪の波高は,一般に小 さく,2.~5.で示した港内波浪の計算式を適用すること によって推定することができる。しかし,港内避泊や港 内構造物の設計で対象にする異常波浪は数十年に1回発 生するような非常に波高の大きい波であるため,非線型 性が非常に強く,2.~5.で示した線型理論による解析 で,そのときの港内波高が推定できるかどうか疑問であ る。特に,港口部の水深が浅く,港口部が異常波浪時に は砕波帯内に位置するようになる場合には,この疑問が 非常に強くなる。

砕波による波の変形や砕波帯内の波のスペクトル変形 に関しては、数多くの研究がなされているが、砕波の回 折のように砕波現象と回折現象が同時に起る問題につい ては解析された例を見ない。この主たる原因としては、 砕波の回折も線型理論解析の結果を準用することによっ て算定できると考えられていたことが挙げられる。ま た、砕波現象そのものについてもまだ十分に解明されて いないことも一つの遠因になっていると思われる。

本章では,砕波の回折に関して従来慣用的に用いられ ていた線型解析の準用が十分に妥当なものであるかどう かを不規則波を用いた回折実験によって検討すると同時 に,砕波の回折の算定法に関して考察する。

6.2 実験装置および実験条件

(1) 実験装置

実験に用いた水路は、2.4 で述べた規則波実験に使用 した水路(図-2.18)と同じである。防波堤模型は、2.4 や3.4の実験と同じく、逆T字型の鋼製の防波堤であ る。本実験は不規則波を用いた実験であるため、数分間 連続して波を作用させるので、防波堤と造波板との間で 多重反射が起り、入射波が増大する可能性が強い。この 多重反射による入射波高の増大を避ける目的で、防波堤 前面に法面勾配1:1.5の砕石マウンドを設置した(写

写真-6.1 防波堤前面の砕石マウンド

真-6.1)。ただし,砕石だけでは防波堤先端部付近のマ ウンドが崩れるため,この部分にはマウンド上に模型消 波ブロックを積んだ。また,防波堤開口部で回折された 波が水路側壁で反射され,開口部内の回折波高を増大さ せることが予想されたので,開口部内の水路側壁には模 型消波プロックを設置した。

波高計としては 20 cm 用容量式波高計を3台用い, 波高はデータレコーダに集録し,A/D 変換した後に,電 子計算機で統計解析を行って求めた。ただし,データレ コーダによる集録と平行して,波形をペンレコーダにも 記録した。しかし,ペンレコーダによる記録はモニター 用としてのみ活用した。

(2) 実験条件と実験ケース

開口中央部は、図-2.18 に示すように造波板から 15 m の地点に設置することにし、その地点の水深を 15 cm と 決めた。その結果、造波板から 5 m の区間の水平水路 床部の水深は 35 cm になる。不規則波を発生させたと き、最高波が水平水路床部で砕波しないという条件を設 定して、水平水路床部の有義波高を $H_{1/8} < 13$ cm にす ることにした。また、開口部に入射するときには、すで に砕波の影響を受けて波高が低下しているという条件を 設定し、合田¹⁾ による砕波変形の図を参考にして、水平 水路床部の波の諸元を表-6.1 のように決めた。ただし、 波の周期は、風波を対象にすることにして、沖波波形勾 配が $H_0/L_0=0.035$ 程度になるように決めた。表-6.1 に 示すように実験では 2 種類の波を用い、 $H_{1/8}=7$ cm の

表-6.1 水深 h=35 cm における目標波高と周期

	Wave height	Wave period		
Kun	H _{1/8} [cm]	T _{1/8} [sec]		
I	7	1.1		
П	10	1.3		

Run I は,開口部に達するまでに波群中の最高波に近い 波だけが砕波し,波高の減衰が小さい波である。また, $H_{1/3}=10$ cm の Run II は,砕波によって波高が大きく 減衰する波である。実験では同一の有義波諸元を持つ波 群に対して,異なる波列で2回実験を行っている。

実験に用いた防波堤配置は、開口幅(防波堤先端間の

距離)を 1m と固定し,図-6.1 (a)~(c) に示すよう な3種類の配置とした。図-6.1 (a)~(c)の配置をそれ ぞれケース 1~3 とする。

入射波の波高変化を調べるために,防波堤を設置しない状態で,水路水平部と 1/50 一様勾配部で波高を測定した。一様勾配部では,防波堤開口部の中点から沖測

-120 -

Run	h=3	5 cm	h > -	$\frac{1}{2}L_0$	h=15 cm (at the opening)					
	H _{1/3} [cm]	T _{1/3} [sec]	<i>H</i> ₀ ′ [cm]	H_0'/L_0	<i>H</i> _{1/3} [cm]	T _{1/3} [sec]	h/L	B/L		
I	6.96	1.16	7.57	0.036	6.92	1.25	0.106	0.704		
п	9.44	1.34	10.26	0.037	8.78	1.48	0.088	0.585		

表-6.2 実験波の諸元

1.5 m (水深 18 cm) の位置から岸側 2.5 m (水深 10 cm) の区間を 50 cm 間隔に, また,水路幅方向には水路中 心線の両側 1 m の区間を 50 cm 間隔に波高を測定し た。防波堤を設置した状態での回折波は,図-6.1 (a)~ (c)中の小円で示すような点で測定した。

波形は,最初の数分間は除き,定常状態に達してから約4分間データレコーダに集録した。この記録を 1/7.5 sec 毎に A/D 変換し,得られた 1536 個のデータを用いて波の統計解析を行った。

6.3 入射波の特性

(1) 入射波の波高変化

表-6.1 に示す波を目標にして実際に波を発生させた 結果,入射波の諸元は 表-6.2 のようになった。表中の 数字は異なる波列に関する 2 回の実験の平均値を示した ものである。表-6.2 でわかるように水深 35 cm におけ る有義波高は目標波高に非常に近い。水深 15 cm の開 口部では,水深 35 cm における波高に比して, Run I の波高はほとんど変化していないけれども, Run II の 波高は $H_{1/3}$ =9.44 cm から $H_{1/3}$ =8.78 cm に,約 0.7 cm 低下する。波の周期は, どちらの波でも水深が 35 cm から 15 cm に浅くなることによって,約 1 割程度 増大している。

図-6.2 は、防波堤を設置しない状態における入射波 の波高変化を有義波高の変化で示したものである。図中 の実線および点線で示される計算値は、合田²⁾の砕波変

形理論を用いて計算したものである。波高の低い Run I では計算値が実験値より 3 mm 程度大きくなっているだ けで,波高の減衰傾向はよく一致している。また,波 高の高い Run II でも計算値と実験値はよい一致を示 す。この図でわかるように,開口部に当る水深 15 cm の位置は,Run I では波高が浅水変形で増大してきて, 砕波の影響で波高が減衰し始めようとする地点に当り, Run II では波高が砕波の影響でかなり減衰している地 点に対応している。

(2) 入射波のスペクトル特性

図-6.3 (a) と (b) は,水深変化によるそれぞれ Run Iと II のスペクトル変化を示したものである。図-6.3 (a) の Run I では,水深 35 cm における波のスペクト ルは f=1.2 Hz 付近で Bretschneider 型のスペクトル より少し小さいけれども、全体として Bretschneider 型 のスペクトルに非常に近い形をしている。ただし、実験 波のスペクトルは、高周波側では f^{-4.5} に比例して減衰 し, Bretschneider 型のスペクトルの f-5 より少し勾配が 緩やかである。水深が浅くなると, f<0.5 Hz の長周期 側の波のエネルギーが増大する。Run I では,図-6.2 に 示すように砕波による波高減衰が小さいため、スペクト ルのピーク周波数 f=0.8 Hz 付近の波のエネルギー低 下は,水深が 12 cm と浅くなっても少ない。 f>1.5 Hz の高周波側では,水深が浅くなると,波のエネルギーは 増大する傾向を示し、そのため、高周波側でのスペクト ルの減衰勾配は緩やかになる。たとえば、高周波側の波 のスペクトルは,水深 35 cm で $f^{-4.5}$ で減少していた のが、水深 12 cm では $f^{-3.8}$ で減少するようになる。

図-6.3 (b) の波高の高い Run II でも, Run I とほ ぼ同じスペクトルの変化傾向を示す。Run II の波高は Run I より大きいため, f < 0.5 Hz の低周波側ではサー フビートによる波のエネルギー増大が Run I の場合よ り強い。ビーク周波数 f=0.7 Hz 付近のエネルギーは 砕波によって Run I より大きく減少するが, f>1 Hz の高周波側では逆に増大する。f>1.2 Hz の高周波側に おける波のスペクトル減衰は,水深 35 cm でほぼ $f^{-4.5}$

図-6.3 水深変化による波のスペクトルの変化

であったものが, 浅くなるにつれて $f^{-3.5}$ と, その勾配 は緩やかになる。

浅海域における波のスペクトルの高周波側での平衡勾 配にいつては、井島ら³⁾や Thornton⁴⁾、椹木および岩田⁵⁾ などが研究を行っている。井島は、高周波側の平衡勾配 が深海域で f^{-5} で、水深が浅くなるにつれて勾配が緩や かになり、長波域では f^{-1} に連続的に変化する平衡スペ クトル形を提案している。Thorntonは実測値によって浅 海域では平衡勾配が f^{-3} になることを示し、椹木および 岩田は次元解析によって長波域で f^{-1} 、浅海域で f^{-3} 、 深海域で f^{-5} となる三段階の平衡勾配を提案している。

水深 35 cm における波のスペクトルでは f>1.5 Hz で深海域になり、今までの研究によると、この領域では f^{-5} でスペクトルが減少することになるが、本実験では $f^{-4.5}$ となり、 f^{-5} より少し緩やかである。 f^{-5} より緩 やかになったのは、平衡勾配を f>1.2 Hz と、浅海域 の部分も含めて求めたことによると思われる。水深 12 cm では、f<2 Hz は浅海域になり、Thornton や椹木 および岩田によれば f^{-3} でスペクトルが減衰することに なるが、実験では Run I で $f^{-3.8}$, Run II で $f^{-3.5}$ と 少し急になっている。また、水深が 35 cm と 12 cm の 中間にある場合には平衡勾配も $f^{-4.5}$ と $f^{-8.5}$ の間にあ る。

(3) 開口部における実測スペクトルと Bretschneider 型のスペクトル

数値計算を行う場合,水深 15 cm の開口部におけ る入射波のスペクトルを設定しなければならない。そこ で,実測スペクトルとしては,図-6.3 (a) と (b) に示 した水深 15 cm における波のスペクトルを用い,理論 スペクトルとしては,表-6.2 で与えられる水深 15 cm

図-6.4 実測スペクトルと Bretschneider 型のスペ クトル

での有義波の諸元から式 (4.16) で求まる Bretschneider 型のスペクトルを用いることにした。これらのスペクト ル形を示したのが 図-6.4 である。

この図でわかるように、Run I の実測スペクトルは、 Bretschneider 型のスペクトルとピーク値ではほぼ一致 するが、f < 0.5 Hz と f > 1.4 Hz では大きい値となる。 しかし、両スペクトルの差が強く現われる低周波側と高 周波側のスペクトル値はピーク値の 1/10 以下であるた め、両スペクトルの差は回折計算結果に強く影響すると は思われない。また、高周波側でのスペクトル減衰は、 Bretschneider 型のスペクトルで f^{-5} に比例するのに対 し、実測スペクトルは $f^{-4.3}$ と少し緩やかではあるが、 それほど大きな差はない。

一方, Run II の場合,実測スペクトルはピーク付近 で Bretschneider 型のスペクトルより小さく,また f<0.45 Hz と f>1.1 Hz では大きくなっている。Run II は砕波の影響を強く受けるため,実測スペクトルのピ ーク値が 図-6.2 (b) で示したように水深 35 cm のと きの値よりかなり小さくなっている関係上,f<0.4 Hz の低周波側と f>1.1 Hz の高周波側の波のエネルギー の比重が相対的に高くなっている。特に、高周波側では、Bretschneider 型のスペクトルが f^{-5} で減衰るすのに対して、実測スペクトルは $f^{-3.6}$ で減衰し、明らかにBretschneider 型のスペクトルとは大きく異なったスペクトル形を示している。

6.4 回折波に関する計算値と実験値の比較

(1) 波高比の比較

不規則波の波高比 Ka は, 4. で定義したように開口 部における入射波の有義波高に対する回折波の有義波高 の比として与えることによって求めた。計算による波高 比としては,開口部における入射波の諸元から求まる Bretschneider 型のスペクトルと開口部における入射波 の実測スペクトルを用いて求めた。ただし,数値計算で は 4. で述べたように近似解を用いている。実験による 波高比は, zero-up crossing 法で求まる有義波高の比で 与えている。

i) ケース 1 (図-**6.1** (a))

ケース1に関して実験値と計算値とを比較したのが, 図-6.5 (a) と (b) である。図中の実線は Bretschneider 型のスペクトルによる計算値,点線は実測スペクトルに よる計算値を示している。また,小円は実験で求めた波 高比を示している。各図の破線より右側は防波堤の遮蔽 域である。

図-6.5 (a)の Run I に関しては、実測スペクトルを 用いた計算値は、Bretschneider 型のスペクトルを用い た計算値より、波の直進領域で大きく、波の遮蔽域に入 ると、逆に小さくなる。しかし、両計算値の差は最大で 0.02 程度と非常に小さく、両者はよく一致している。 実験値は、開口部を通って波が直進する領域で両計算値 より小さく、特に、開口部から遠ざかると、計算値から のずれが大きくなり、最大で 0.15 程度の差を示す。し かし、防波堤の遮蔽域では、特に遮蔽域の奥では、実験 値は両計算値とよい一致を示している。

図-6.5 (b) の Run II の場合,図-6.5 (a) と同様に, 実測スペクトルによる計算値は,Bretschneider 型のス ペクトルを用いた計算値より波の直進領域で大きく,遮 蔽域に入るに従って小さくなる。両計算値の差は,波の 直進領域で特に大きく,また開口部から遠ざかるに従っ て大きくなり,y=2.25 m では最大 0.15 程度の差にな る。一方,遮蔽域では,両計算値の差は,最大でも 0.05 と,小さい。両計算値のこの差は,計算に用いた入射波 のスペクトル形が実測スペクトルとBretschneider 型の スペクトルとの間で Run II の場合大きく異なるために 生じたと考えられる。一方,実験値は,実測スペクトル

図-6.5 ケース1における波高比に関する実験値と計算値の比較

を用いた計算値より Bretschneider 型のスペクトルを用 いた計算値に近く,後者の計算値とでは0.1以下の差し か示さないが,前者の計算値とでは最大0.25も異なる。 実験値と計算値との間のこのような大きな差は,波の直 進領域で,開口部から離れた測線上に現われ,遮蔽域で は差は小さく,後者の計算値と実験値とは非常によい一 致を示す。

ii) ケース 2 (図-6.1 (b))

ケース2に関して計算値と実験値とを比較したのが, 図-6.6 (a) と (b) である。このケースは,入射波が防 波堤に対して 60° 傾いて進入してくるため,図-6.1 (b) で示すように座標をとると,防波堤の遮蔽域の位置は y座標の値によって変わる。

図-6.6 (a) の Run I の場合,両計算値の差は,0.02 以内で,非常に小さい。実験値は,右側遮蔽域(*x* 軸の 正方向の領域)では計算値と非常によく一致し,両計算 値と 0.03 以下の差である。しかし,左側遮蔽域では, y=0.25 m や 0.75 m の測線上で実験値は計算値と比 較的大きな差を示し、最大で 0.12 の差にもなる。ま た,波の直進領域においては、 y=0.25 m や 0.75 m の 開口部に近い測線上では、波高分布のピーク部分より左 側で、一方、y=1.25m や 2.25m の開口部から遠 い測線上では全般的に実験値が計算値より小さい。この ように,開口部に近い測線上で波高分布のピーク部分よ り左側において実験値が特に小さくなったのは、図-6.1 (b) で示すように, 左側防波堤前面に設置した砕石マウ ンドが、波の進入方向からみて開口部の方向に突き出し ており、そのため左側防波堤への入射波がこのマウンド で砕波し、その波高を下げたことによると推測される。 後述するように、ケース3では実験値と計算値との間に このような差が現われていないことから判断して、この 推測はかなり妥当なものと思われる。開口部から離れた y=1.25 m および 2.25 m の測線では, 砕石マウンド による波高減少の影響が均された形になって, ピーク波

図-6.6 ケース2における波高比に関する実験値と計算値の比較

高の左側で特に実験値が計算値より小さくなることはな くなったものと思われる。ただし、この均しによって、 y=1.25 m および 2.25 m の測線でも、波の直進領域で は実験値は計算値より最大で 0.15 程度小さくなってい る。このことは、防波堤の先端部に消波工が設置してあ り、波の入射方向からみて、この消波工が開口部の方向 に突き出している場合、単に防波堤先端間の距離を開口 幅とするのではなく、消波マウンドの効果も考慮して、 開口幅を決める必要があることを示している。

図-6.6 (b) の Run II では,実測スペクトルによる 計算値は,Bretschneider型のスペクトルを用いた計算 値より波の直進領域で大きく,遮蔽領域で小さい。波の 直進領域では,両計算値は大きな差を示し,この差は, 図-6.5 (b)と同様に開口部から離れた測線で大きく,最 大で 0.15 程度になる。一方,波の遮蔽域では,両計算 値の差は比較的小さく,0.08 以内である。前述のよう に,この両計算の差は,用いた入射波のスペクトル形の

相違によるものと考えられる。実験値は,右側遮蔽域で は Bretschneider 型のスペクトルを用いた計算値とよく 一致するが,波の直進領域と左側遮蔽領域では,全般的に 両計算値より小さい傾向を示す。波の直進領域では、実 測スペクトルを用いた計算値は, Bretschneider 型のスペ クトルを用いた計算値より大きな値を示すため、実験値 との差が大きくなる。たとえば、y=2.25 mの測線では, 前者の計算値は、実験値と最大で 0.22 程度の差を示す のに対し、後者の計算値は最大で0.1程度の差しか示さ ない。特に、 y=0.25 mの測線上では、両計算値の間の 差は 0.05 と小さいにもかかわらず,実験値は両計算値 より0.2程度小さくなっているのは,前述の左側防波堤 先端の砕石マウンドの影響によるものである。左側遮蔽 域では,実測スペクトルを用いた計算値が Bretschneider 型のスペクトルを用いた計算値より小さくなっている関 係もあって、実験値は前者の計算に近い傾向を示すが、 上記の砕石マウンドの影響もあるので、実験値が実測ス

ペクトルによる計算値に近いとは即断できない。

iii) ケース 3 (図-6.1 (c))

ケース3は、ケース2の左側防波堤を波の入射方向に 対して直角に配置換えした場合である。このケースに関 して、実験値と計算値とを比較したのが、図-6.7(a)と (b) である。

図-6.7 (a) の Run I の場合,両計算値の差は,0.03 以内と非常に小さく,波高の分布形は 図-6.6 (a) とほ とんど変わらない。実験値は両計算値と非常によい一致 を示しており、y=2.25 m の測線上で 0.1 程度の差を 示す数点を除けば,両計算値との差は0.05以内である。 この図の場合,計算値は 図-6.6 (a) のように実験値と 大きな差を示すことはなくなっている。これは,左側防 波堤が入射波の波向に対して直角に延びており,入射波 が砕石マウンドで大きく変形されることがなくなったた めだと推察される。y=2.25 m の測線上の x/L>1.5で,実験値が計算値より約 0.1 大きくなったのは,水 路側壁からの反射波によるのではないかと思われるが, それを明らかにすることはできなかった。

図-6.7 (b)の Run II 場合も両計算値の特性は,図-6.6 (b)の場合と同じで,波高の分布値までほぼ等し い。本ケースの場合,左防波堤先端部の砕石マウンドの 影響を受けないので,実験値は,図-6.6 (b)の場合より 計算値に近く,特に Bretschneider 型のスペクトルを用 いた計算値とは 0.08 以内の差で,よい一致を示してい る。この場合でも,実験値は実測スペクトルを用いた計 算値と大きな差を示し,最大で0.2小さい。

以上,3つのケースについて実験値と計算値とを比較 した結果は,次のように要約される。

i) Run I のように波群中の波高の高い波だけが砕波を 起すような波であっても、計算値は実験値とよく一致 し、線型理論による計算が十分適用できる。この場合、 計算における入射波のスペクトル形については、開口 部における有義波の諸元から求めた Bretschneider 型

図-6.7 ケース3における波高比に関する実験値と計算値の比較

のスペクトルを用いても,実測スペクトルを用いても 計算結果における両者の差はほとんどなく,実用上ど ちらを用いてもよい。

- ii) 防波堤前面に砕石マウンドがあり,波の進入方向か らみて、このマウンドが開口部に突き出した形になる 場合には、開口部内の波高はこのマウンドの影響を受 けて小さくなる。そのため、単に防波堤の先端間を結 んだ距離を開口幅にとると、開口部内の波高を過大に 見積ることになる。特に、防波堤の近傍では、波高が 過大になる。
- iii) Run II のように砕波による波高減衰が大きい波で は、両計算値の間の差は、波の直進領域で特に大きく なる。これは、計算に用いた入射波のスペクトル形が Run II の場合では大きく異なるためである。
- iv) Run II による実験値は,実測スペクトルを用いた 計算値より Bretschneider 型のスペクトルを用いた計 算値に近く,その差は最大0.1程度であるので,開口 部の有義波の諸元から求めた Bretschneider 型のスペ クトルを入射波のスペクトルとして線型解析解で波高 を求めても実用上は十分な精度を示す。

(2) 周期比に関する計算値と実験値の比較

不規則波の周期比 Kar は, 4. で定義したように入射

波の有義波周期に対する回折波の有義波周期の比として 求めた。図−6.1 (a)~(c) に示す3ケースについて実験 を行っているが,ケース3の結果はケース2とほとんど その特性が変わらないので,ケース1と2について述 べる。

i) ケース 1

ケース1に関して周期比の計算値と実験値とを比較し たのが、図-6.8 (a) と (b) である。図-6.8 (a) の Run I の場合,両計算値はともに,波の直進領域では $K_{ar} < 1$ となり,遮蔽域では $K_{ar} > 1$ となって,遮蔽域では長周 期波が入り易くなっている。実測スペクトルを用いた計 算値は,波の直進領域では Bretschneider 型のスペクト ルを用いたものとほとんど変わらず、図面上では差が見 出せないほど小さいが,遮蔽域に入ると,前者の計算値 は後者の値より大きくなる。実験値は,計算値と同様に 波の直進領域では $K_{ar} < 1$ で,遮蔽領域では $K_{ar} > 1$ と なる傾向は示しているが、 $0.9 < K_{ar} < 1.2$ となって、 $0.8 < K_{ar} < 1.3$ となる計算値ほどは大きな周期変動は 示さない。また、実験値は Bretschneider 型のスペクト ルを用いた計算値に比較的近い。

図-6.8 (b) の Run II の場合も, 図-6.8 (a) の Run I と計算値は同じ傾向を示す。 しかし, Run II のように

図-6.8 ケース1における周期比に関する実験値と計算値の比較

砕波による減衰の大きい波では, 遮蔽域における両計算 値の差が大きくなり、y=0.25 m の測線上では、Bretschneider 型のスペクトルを用いた計算値が最大で K_{aT} =1.2 であるのに対し,実測スペクトルによる計算では Kar=1.5 にも及ぶ。このような大きな違いは、図-6.4 で示した開口部における入射波の相違のうち、低周波側 での違いが遮蔽域では強い影響を与えたためと考えられ る。つまり,遮蔽域では高周波側の成分波の波高比は非常 に小さいので,回折波のスペクトルは高周波側で急激に 減衰するため,高周波側での両入射波スペクトル差の影 響は相対的に小さくなるのに対し,低周波側では波高比 が相対的に大きいので,低周波側のスペクトル減衰は小 さくなり,低周波側における両スペクトルの差の効果が 強まったためである。実験値は周期変動が小さく, 0.85 <Kat <1.2 である。その結果, 実験値は Bretschneider 型のスペクトルによる計算値に近いようにみえるが、実 験値の大部分は Kar≈1 であるため、周期はほとんど変 化しないと考えてもよさそうである。特に、開口部から 離れた地点での実験値の変化は小さい。

ii) ケース 2

ケース2に関する周期比の比較が 図-6.9 に示してあ る。図-6.9 (a)の Run I の場合,両計算値ともに 図-6.8 (a) と同様に, 波の直進領域では Kar < 1 で, 遮蔽域で は Kar > 1 となる。実測スペクトルによる計算値は, 波 の直進領域では Bretschneider 型スペクトルによる計算 値とほとんど同じ値であるが,遮蔽域では差が現われる。 しかし, 両計算値の差は, 最大で 0.1 程度と小さい。実 験値は, 計算値と同様に, 波の直進領域で Kar < 1 で, 遮蔽域で Kar > 1 になる傾向は示すが, その変動は小さ い。周期は,入射波の周期と変わらないとみても,実用 上問題なさそうである。

図-6.9 (b) の Run II の場合もやはり波の直進領域 では計算値は, $K_{ar} < 1$ で, 遮蔽域では $K_{ar} > 1$ になる が, 実測スペクトルを用いた計算値が Bretschneider 型 のスペクトルを用いたものよりもかなり大きくなる。特 にこの傾向は遮蔽域の奥で強まる。たとえば, y=0.25m の測線上では, x/L>1 で, 前者の場合 $K_{ar}=1.5$ で あるのに対し,後者の場合 $K_{ar}=1.2$ である。実験値の 変動は小さく,ほとんど $K_{ar} \approx 1$ にあって,計算値のよ うな大きな変動は示さない。

周期比に関する計算値と実験値を比較した結果は,次 のように要約される。

 i) 両計算値は,波の直進領域で Kar<1 で,波の遮蔽 域では Kar>1 となって,遮蔽域では長周期波が入り

図-6.9 ケース2における周期比に関する実験値と計算値の比較

込み易くなっている。

- ii) 実測スペクトルを用いた計算値は、波の直進領域で は Bretschneider 型のスペクトルを用いた値とほとん ど同じ値を示すが、遮蔽域では大きくなる。遮蔽域で の両計算値の差は、砕波による減衰の大きい Run II になるほど大きくなる。
- iii) 実験値は,波の直進領域では Kar<1 で,遮蔽域
 では Kar>1 となる傾向を示しているが,計算値ほど
 大きな変動は示さない。
- iv) 実験値は、少しは変動するけれども、Kar≈1 であり、砕波の回折の場合には回折波の有義波周期は変化しないと考えても、実用上問題はないと考えられる。

(3)回折波の実測スペクトルと計算スペクトルの比較 波高比に関して実験値と計算値とを比較した結果,開 口部前面で砕波による波高減衰が著しい Run II の場合 に特に,実験値は,波の直進領域で実測スペクトルを用 いた計算値より Bretschneider 型のスペクトルを用いた 計算値に近く,一方遮蔽域では両計算値の間の差は小さ く,両計算値ともに実験値に比較的近い値を示すことが 明らかになった。では,なぜ開口部における実測スペク トルを用いて計算した値が波の直進領域で実験値と大き く異なるのか,これについて検討するために,開口部に おける入射波の実測スペクトルを用いて,次式で求めら れる回折波の計算スペクトルと回折波の実測スペクトル とを比較してみた。

$$S_e(f) = K_d^2 S(f) \tag{6.1}$$

ここに, K_a は周波数 f の成分波に対する回折係数, S(f) は開口部における入射波の実測スペクトル, $S_c(f)$ は計算スペクトルである。

図-6.10 は、ケース1の防波堤配置に対して、防波堤

から 0.75 m 離れた測線上におけるそれぞれ波の直進領 域(x=0m)と遮蔽域(x=0.75m)での計算スペクトルと 実測スペクトルとの比較図である。図-6.10(a)の波の 直進領域の場合,計算スペクトルは f>1.2 Hz では波 高比 Ka>1 となるため、開口部における入射波のスペ クトルより大きくなっている。特に,周波数が高くなる と, 波高比は Ka=1.2 近くまで増大するので, 計算ス ペクトルは入射波のスペクトルの 1.4 倍程度の値にな る。一方,実測スペクトルは,f=0.7 Hzのピーク周波 数付近では計算スペクトルより少し小さく, f>1.15 Hz では開口部における入射波のスペクトルに近く,計算ス ペクトルよりは小さくなる。両スペクトルの全エネルギ ーは、低周波側での両スペクトルの差より高周波側での 差が大きく影響し,計算スペクトルのエネルギーが実測 スペクトルのものより大きくなる。実際、この点での不 規則波としての波高比は、実験値が Ka=0.8 で、計算 値が Ka=0.98 となり、計算値が 20% 程度大きい。

一方,図-6.10 (b)の遮蔽域では、全周波数において 成分波の波高比が Ka<1 となるので、計算スペクトル は入射波のスペクトルより小さくなっている。実測スペ クトルは,低周波側で計算スペクトルより小さくなる部 分がある。実測スペクトルのピーク周波数は f=0.5 Hz となって、入射波のピーク周波数より低周波側に移動し ているため,この部分では計算スペクトルより大きいが, 計算スペクトルのピーク周波数 f=0.7 Hz 付近では計 算スペクトルが逆に大きくなる。f>1.3 Hz の高周波側 では,実測スペクトルが計算スペクトルより大きく,そ のため,両スペクトルの全エネルギーとしては実験値が 大きくなると思われる。実際、この点における不規則波 の波高比は,実験値が Ka=0.47で,計算値が Ka=0.44 と、わずかに実験値が大きい。実測スペクトルのピーク 周波数が f=0.5 Hz に移動する原因として,水路幅方 向の水面変動だと考えて,この水面変動の周波数を計算 してみたけれども,モードが4程度にならないと,f=0.5Hz の運動は現われないため、水路幅方向の水面変動と は考えにくく,この原因を明らかにすることはできなか った。

図-6.11 (a) と (b) は、図-6.10 と同一ケースに関し て、防波堤から 2.25 m 離れた測線上における、それぞ れ波の直進領域 (x=0 m) と遮蔽域 (x=0.75 m) のスペ クトルを比較したものである。図-6.11 (a) の波の直進 領域では、周波数が高くなるほど、成分波の波高比が大 きくなるため、計算 スペクトルは周波数の増大に伴っ て、入射波スペクトルに近づく。f>2 Hz では両者はほ

ぼ一致した値となる。そのため、高周波側での計算スペ クトルの減衰勾配は緩くなり, f⁻² 程度になる。一方, 実測スペクトルは, f=0.5 Hz および 0.8 Hz において 2つの極大値をもち、2山型のスペクトルになっている。 f=0.8 Hz での極大値は入射波のピーク周波数に対応す るが, f=0.5 Hz で極大値が現われる原因については, 前述のようにはっきりしない。f>1Hzの高周波側で は,実測スペクトルは計算スペクトルのように入射波の スペクトルに近づくことはなく,入射波のスペクトルと ほぼ同じ勾配 f-4 程度で減衰する。その結果, f>1Hz では,計算スペクトルと実測スペクトルとが大きく異な り、この差が両スペクトルの全エネルギーの差の大部分 を占め、不規則波の波高比を大きく異なるものにしてい る。実際,実験値と計算値の波高比は,それぞれ Ka. =0.49 と 0.75 となって、約 1.5 倍計算波高比が大き V'o

図-6.11 (b) の遮蔽域では,全周波数で成分波の波高 比が $K_a < 1$ であるため,計算スペクトルは入射波スペ クトルより小さく,実測スペクトルと大きな差はない。 その結果,不規則波の波高比においても計算と実測波高 比の間に差はほとんどなく,それぞれ $K_a=0.45$ および 0.47 である。図-6.11 (a) では f=0.5 Hz で実測スペ クトルは顕著な極大値を示していたが,図-6.11 (b) で は f=0.5 Hz で顕著な極大値はない。f=0.5 Hz にお ける極大値の出現は,水路幅方向の水面振動によるので はないかと推測されるが,図-6.10 においては,x=0 m の点では実測スペクトルはf=0.5 Hz で極大値を示さ ず,x=0.75 m の点で極大値が顕著になり,図-6.11 と は極大値の起る地点が異なるため,単に水路幅方向の振 動だけでは説明できない。

図-6.10 および 6.11 は波が防波堤に直角に入射する 場合であったが,図-6.12 は波が防波堤に対して 60°の 角度をなして入射するケース 2 の場合である。図-6.12. (a)と(b)はそれぞれ波の遮蔽域と直進領域におけるス ペクトルの比較図を示している。

図-6.12 (a) の波の遮蔽域においては,全周波数で成 分波の波高比は $K_a < 1$ であるので,計算スペクトルは 入射波のスペクトルより全体に小さい。実測スペクトル は f=0.8 Hz 付近と 1.1 Hz < f < 1.8 Hz で計算スペク トルより小さくなっている。そのため,不規則波の波高 比は実験値と計算値でそれぞれ $K_a=0.39$ および 0.51 となって,約 30% 計算値が大きい。f > 1.2 Hz の高周 波側における実測スペクトルの減衰勾配は f^{-4} 程度で, 入射波のスペクトルの減衰勾配とほぼ同じであるが,計

図-6.11 ケース1における測線 y=2.25 m 上での実測スペクトルと計算スペクトルの比較

算スペクトルはこの値より大きいようである。

図-6.12 (b) の波の直進領域では,計算スペクトルは ケース1の場合と同様に高周波側になるほど,成分波の 波高比は大きくなるので,入射波スペクトルに近くな る。一方,実測スペクトルは,f=0.5 Hz および 0.76 Hz で極大値をもち,2 山型のスペクトルになっている。 また,f>1 Hz の高周波側における実測スペクトルの減 衰勾配はやはり f^{-4} 程度で,入射波のスペクトルのもの とほぼ同じで,計算スペクトルの f^{-2} よりは急勾配であ る。その結果,高周波側で計算スペクトルと実測スペク トルとは大きな差を示し,この差が波高比にも現われ, 実測値と計算値の波高比はそれぞれ $K_a=0.37$ および 0.60 となって,計算値が実測値より 1.6 倍程度大き い。 ケース2の場合,波の進入方向からみると,防波堤前 面の砕石マウンドが開口部方向に突き出した形になるの で,この部分で砕波され,防波堤の遮蔽域であっても不 規則波の波高比の実験値は計算値よりかなり小さくな る。図-6.13 はこれを調べたものである。点(-0.25 m, 0.75 m)は、図-6.1 (b) でわかるようにこのマウンドの 影響を受ける地点である。実測スペクトルは,計算スペ クトルより f=0.7 Hz のビーク付近で非常に小さく, 1/3 程度の値である。図-6.10~12 では、このようにビ ーク周波数付近のエネルギーが計算スペクトルより大き く減少することはなく、この減少は防波堤前面の砕石マ ウンドで波が砕波したことによると考えられる。

以上,回折波の計算スペクトルと実測スペクトルとの 比較によって,計算値と実験値の波高比の間に大きな差

(a) 波の遮蔽領域内の点 (0.75 m, 2.25 m)

(b) 波の直進領域内の点 (1.5 m, 2.25 m)

図-6.12 ケース2における測線 y=2.25 m 上での実測スペクトルと計算スペクトルの比較

が現われるときは、防波堤前面の砕石マウンドの影響が ある場合を除けば、高周波側において両スペクトルが大 きくずれることが明らかになった。このずれは、高周波 側における計算スペクトルが f^{-2} 程度の緩勾配で減少す るのに対し、実測スペクトルでは常に f^{-4} 程度と急勾配 で減少することによる。このように計算スペクトルが緩 勾配で減少する原因としては、開口部における入射波の スペクトルの高周波側に含まれる波の非線型成分は自由 波ではないため、波の回折には直接関係ないにもかかわ らず、計算では非線型成分も含めたスペクトルに対して K_a^2 を乗じて回折波のスペクトルを求めている結果、高 周波側の波のエネルギーを大きく見積り過ぎることにな ったためだと考えられる。このように考えると、開口部 におけるスペクトルを用いた計算値と実験値の波高比が 波の直進領域で大きく異なり,遮蔽域で比較的よく一致 する理由が以下のように説明できる。

波の直進領域では,成分波の波高比 K_a は短周期の波 になるほど大きくなるため,高周波側の波のエネルギー を特に大きく見積り過ぎることになり,計算波高比が大 きくなる。一方,波の遮蔽域では全周波数に対し, $K_a < 1$ となって,計算スペクトルは全体的に開口部のスペクト ルより低下する。その結果,高周波側のエネルギーは, 非線型成分を含んでいたとしても全エネルギーに対する 割合が小さくなって,波高比に大きな影響を及ぼさな く,計算波高比が実験値と一致するようになると考えら れる。また,開口部に近い直進領域では,常に $K_a \approx 1$ と なって,ほぼ入射波のスペクトルと同じ減衰勾配 f^{-1} 程 度で計算スペクトルは減少するため,波高比の計算値は

図-6.13 砕石マウンドの影響を受ける測点(-0.25 m, 0.75 m) での実測スペクトルと計算ス ペクトルの比較

実験値に比較的よく一致することになる。

- 6.5 砕波の回折計算における入射波のスペクトル形 と回折波の最高波
- (1) 砕波の回折計算における入射波のスペクトル形

6.4 で述べたように、砕波が入射する場合には、開口 部における入射波のスペクトルをそのままの形で用いた のでは、波の直進領域では波高を大きく見積り過ぎるこ とがわかった。これは、開口部における入射波のスペク トルが高周波側で直接回折に影響ない非線型成分を大き く含んでいることによる。その結果、開口部における入 射波のスペクトルをそのままの形で用いるのではなく、 このスペクトルを求め、この自由波のスペクトルに対して 回折計算を実施して得られた回折波のスペクトルに非線

型効果を考慮した上で、波高比を計算することが必要と なる。非線型成分がどの程度含まれるかについては、深 海波に対する光易ら6),7)の研究があり, 浅海波について は Hasselmann ら^{8),9)}の研究がある。しかし, 砕波のよ うな場合には、非常に複雑で、これらの研究をそのまま 適用することはできないと思われる。そのため上記の 方法による回折波の計算は現状では不可能に近い。そこ で、6.4 で示したように、開口部における入射波の有義 波高と周期を用いて求めた Bretschneider 型のスペクト ルを入射波のスペクトルとすれば,計算波高比は実験値 に比較的近い値を示すので,現状では,開口部における 入射波のスペクトル形が求められているとしても, これ を用いず,有義波高および周期を用いて,まず Bretschneider 型のスペクトルに変換してから波高比を計算する のがよいと思われる。Bretschneider 型のスペクトルを用 いると,実験値と計算値が比較的よく一致する理由とし ては、Bretschneider 型のスペクトルは非線型成分を含ん だ形ではあるが,高周波側では f⁻⁵ で減衰しているた め、開口部における入射波のスペクトルのように f-4 で 減衰するものよりは高周波側のエネルギーの割合は小さ いので,高周波側で成分波の波高比が大きくなっても, 開口部におけるスペクトルを用いたほどには高周波のエ ネルギーを過大に見積ることはないことが考えられる。 将来,波の非線型性に関する研究が進み,自由波のスペ クトルの標準形が提案されるまでは, Bretschneider 型の スペクトルを入射波のスペクトルとして用いるのがよい であろう。

(2) 回折波の波高分布と最高波

開口部における有義波の諸元を用いて求めた Bretschneider 型のスペクトルを入射波のスペクトルとすること によって回折後の波の有義波高および周期は求めること ができるが、回折後の波を用いて港内構造物を設計しよ うとすると、最高波の諸元を算定することが重要とな る。そこで、回折後の波の波高分布と最高波*の諸元に ついて調べてみた。

i) 回折波の波高分布

図-6.14 は、ケース1の防波堤配置に対する回折後の 波の波高分布を Run I について示したものである。図-6.14 (a) は、開口部中央線上で、防波堤から 0.25 m 離れ た地点の波高分布であるため、この点では砕波の影響が まだ強く残っていると予想される。実験値の波高分布は、

^{*}本論文における最高波とは,波群中で最大の波高を 有する波を意味している。ただし,論文によっては, この波を最大波とも呼んでいる。

1 < H/H < 1.5において理論曲線の Rayleigh 分布より波 高の発生頻度が高く,H/H > 2では逆に理論より小さい。 合田¹⁰⁾が示しているように,砕波後の波高分布はやはり 1 < H/H < 1.5で発生頻度が高くなっている。ここに, Hは平均波高である。これによっても、この点ではまだ

 奇の発
砕波の影響が残っていることがわかる。図-6.14

 (b) および (c) は, 遮蔽域内にあるため, 砕波の影響
 が薄れ Rayleigh 分布に比較的近い形を示している。

図-6.15 (a), (b) および (c) は, 図-6.14 のそれぞ れと同じ地点の波高分布を Run II について示したもの

波の波高分布

である。図-6.15 (a) は, 砕波の影響が残っているため, 図-6.14 (a) と同様に $1 < H/\overline{H} < 1.5$ で実験値の波高の 発生頻度が Rayleigh 分布より非常に大きく, 図-6.14 (a) よりもこの区間での波高の発生頻度が高い。このこ とは, Run II の方が砕波の影響を Run I より強く受け ていることを示している。図-6.15 (b) および (c) は, 遮蔽域内にあるため,少しは砕波の影響が残っているも のの, Rayleigh 分布と比較的よく一致する。

以上のように、開口部であっても、波の直進領域での 波高分布は、開口部に近い部分では砕波の影響が残り、 1 < H/H < 1.5においても波高の発生頻度が Rayleigh 分 布とは大きく異なるが、遮蔽域では波高分布は比較的よ く Rayleigh 分布と一致する。

ii) 最高波の諸元

構造物の設計に重要な最高波高は一つの統計量であっ て,確定値として決定することはできない。特に,波高 が水深に比して小さい場合には,ある波群中で得られた 最高波高と有義波高の比は,同じ母集団(同一の統計値 を持つ波高の集合)でも他の波群を用いれば,変わる。 しかし,水深が浅くなると,波群中の波高の高い波は砕 波し,その波高を低下させるため最高波高は水深によっ て規制され,最高波高の上限値が定まる。

砕波が開口部に入射する場合,開口部近傍では回折に よる波高減衰が小さいので,最高波高は水深によって規 制された値になると思われる。また,防波堤の遮蔽域で は回折によって波高が減衰し,波高は水深に比して小さ くなるので,最高波高は統計的に取り扱わざるを得な い。そこで,砕波限界波高を Ho として,

 $H_b=0.8h$

(6.2)

で求め、この H_b が有義波高 $H_{1/8}$ に対して $H_b/H_{1/8} > 1.8$ の関係を満足する地点だけを選び出し、最高波高 H_{max} と有義波高 $H_{1/8}$ の比を実験値で調べてみると、表-6.3 のようになった。各ケースともに、波の種類に関係なく、 $H_{max}/H_{1/8}$ の平均値は 1.50 程度である。波高分布が

Run	Case	Mean value of $H_{\rm max}/H_{1/3}$	Standard deviation σ		
	1	1.52	0.125		
I	2	1.52	0.097		
	3	1.49	0.083		
	1	1.50	0.117		
П	2	1.58	0.182		
	3	1.51	0.177		

表-6.3 最高波高と有義波高の比

Rayleigh 分布すると仮定すると,同じ母集団から N波の 波を取り出す試行を繰り返したときに,最多 $H_{\max}/H_{1/s}$ の比は,理論的に次式で与えられることを Longuet-Higgins¹¹⁾ は示している。

$$H_{\rm max}/H_{1/3} = 0.708 \left\{ \sqrt{\ln N} + \frac{\gamma}{2\sqrt{\ln N}} \right\}$$
 (6.3)

ここに、N は波数、 γ は Euler 定数で、 $\gamma=0.5772$ である。実験データの解析では、波数は $N=150\sim200$ 波であるので、

 $1.68 < H_{\rm max}/H_{1/3} < 1.72$ (6.4)

となる。実験値が求めた値 1.50 はこの値より少し小さ い。この原因については,砕波後の波の回折によって生 じるのかはっきりしないけれども, $H_{max}/H_{1/3}$ が波数 によって変化することを考慮して,実用的には H_{max} =1.8 $H_{1/3}$ を用いればよいであろう。ただし, H_{max} =1.8 $H_{1/3}$ としたのでは,開口部付近では砕波限界波高 より高くなる場合があるので,この場合も考慮して最高 波高は,

H_{max}=min {0.8*h*, 1.8*H*_{1/3}} (6.5) で求めればよい。ここに, min { }は { }内の最小値 を示す。砕波限界波高の算定の比例定数は, 孤立波の理 論では 0.78 であり, また海底勾配によっても変わるけ れども,港内では水深変化が小さいため,海底勾配が緩や かになることを考慮して,ここでは 0.8 の一定値とした。 最高波高の周期 T_{max} も確定できないので, T_{max}/T_{1/8}

の各ケースについて計算してみると,表-6.4のようにな

Run	Case	Mean value of $T_{\rm max}/T_{1/3}$	Standard deviation σ
	1	1.16	0.343
Ι	2	1.04	0.178
	3	1.03	0.123
	1	1.16	0.278
п	2	1.22	0.532
	3	1.17	0.381

表-6.4 最高波の周期と有義波周期の比

った。Run I では $T_{\max}/T_{1/s}$ の平均値は 1.0 付近にあ るが, Run II では $T_{\max}/T_{1/s} \approx 1.2$ であり, 波高減衰の 大きい波による $T_{\max}/T_{1/s}$ の値が大きくなる。波高に比 して周期の影響は小さいので, 実用的には, $T_{\max}/T_{1/s}$ =1.1 とすればよいと思われる。

6.6 結 語

本章においては,開口部に砕波が来襲するときの回折 波の波高を実験値と計算値で比較を行い,砕波の回折計 算法について検討した。まず, 6.1 では砕波の回折計算 の必要性について述べ,本章の研究の目的を明確にした。 6.2 では実験装置および実験条件について述べ, 6.3 で は砕波による入射波の波高変化とスペクトル変化の特性 を調べた。6.4 では,回折波に関する実験値と計算値と を,波高比および周期比,さらには回折波のスペクトル 形について比較検討した。そして,最後に 6.5 では, 砕波の回折計算に用いる入射波のスペクトル形および回 折波の波高分布と最高波の諸元について検討を行った。 以上の内容から,本章の主要な結論は以下のように要約 される。

- (1) 1/50の一様勾配斜面上での入射波の波高変化は、合 田による砕波変形理論による計算値と非常によく一致 する。
- (2) 1/50 の一様勾配斜面での砕波のスペクトルの高周 波側における平衡勾配は、水深が浅くなるほど緩やか になる傾向を示す。
- (3) 波群中の最高波高に近い波だけが砕波するような不 規則波では,開口部における実測スペクトルあるいは 開口部における有義波の諸元で求めた Bretschneider 型のスペクトルを入射波スペクトルとして用いても波 高比については大きな差がなく,どちらも実験値とよ く一致する。
- (4) 砕波による波高減衰の大きい波では、開口部における実測スペクトルを用いた波高比の計算値は、波の直進領域で実験値より大きく、波の遮蔽領域では比較的よく実験値と一致する。一方、Bretschneider型のスペクトルを用いた波高比の計算値は、波の直進領域でも遮蔽領域でも比較的よく実験値と一致する。
- (5) 防波堤前面に消波マウンドがあり,波の進入方向からみて、このマウンドが開口部に突き出した形になる場合には、開口部内の波高はこのマウンドの影響で小さくなる。そのため、単に防波堤先端間を結んだ距離を開口幅とすることはできない。
- (6) 開口部における実測スペクトルを用いた周期比の計 算値は,波の直進領域では Bretschneider 型のスペク トルを用いた値とほぼ同じ値を示すが,遮蔽域では Bretschneider 型のスペクトルを用いた値より大きく なる。遮蔽域での両計算値の差は,砕波による減衰の 大きい波ほど大きくなる。
- (7) 周期比の実験値は,波の直進領域では $K_{ar} < 1$,遮 蔽域では $K_{ar} > 1$ となって,計算値と同じ傾向を示す が,計算値ほど大きな周期比変動はなく, $K_{ar} \approx 1.0$ である。そのため実用上,砕破の場合は有義波周期は

回折によって変化しないと考えることができる。

- (8) 開口部における実測スペクトルを用いた波高比の計算値が波の直進領域で実験値と大きく異なるのは、スペクトルの高周波側に含まれる非線型成分を自由波の成分として計算するためである。そのため、実用的には開口部における有義波の諸元を用いて求めたBretschneider型のスペクトルを入射波のスペクトルとして波高比を計算すればよい。
- (9) 回折波の最高波は式(6.5)で算定すればよく,最高 波の周期は、入射波が砕波の影響を強く受けるほど長 くなる傾向にあるが、実用的には T_{max}=1.1T_{1/3} と考 えればよい。

参考文献

- 合田良実: 浅海域における波浪の砕波変形,港湾 技術研究所報告,第14巻,第3号,1975,pp. 59~106.
- 2) 前出文献 1).
- Ijima, T., T. Matsuo and K. Koga: Equilibrium range spectra in shoaling water, Proc. 12th Conference on Coastal Engineering, 1970, pp. 137~149.
- Thornton, E. B.: Rederivation of the saturated range in the frequency spectrum of wind-generated gravity waves, Jour. Physical Oceanography, Vol. 7, 1977, pp. 137~140.
- 5) 椹木 亨・岩田好一朗: 浅海砕波帯における不規 則波のパワー・スペクトル形状について――特に高 周波数域のスペクトル勾配について――,第26回 海岸工学講演会論文集,1979,pp.105~108.
- 6) Mitsuyasu, H., Yi-Yo Kuo and A. Masuda: The dispersion relation for wind waves in decay area, Turbulent Fluxes through the Sea Surface, Wave Dynamics and Prediction edited by A. Favre and K. Hasselmann, 1978, pp. 221~233.
- Yi-Yo Kuo, H. Mitsuyasu and A. Masuda: Experimental study on the phase velocity of wind waves. Part 1. Laboratory wind waves, Report of Research Institute for Applied Mechanics, Kyushu University, Vol. XXVII, No. 83, 1979, 19 p.
- Hasselmann, K.. On the nonlinear energy transfer in gravity-wave spectrum. Part 1. General theory, Jour. Fluid Mech., Vol. 12, 1961, pp. 481~500.
- Herterich, K. and K. Hasselmann: A similarity relation for nonlinear energy transfer in a finitedepth gravity-wave spectrum, Jour. Fluid Mech., Vol. 97, Part 1, pp. 215~224.
- 10) 前出文献 1).
- Longuet-Higgins, M. S.: On the statistical distributions of the heights of sea waves, Jour. Marine Res., Vol. IX, No. 3, 1952, pp. 245~266.

7. 結 論

以上,実用的に有効な港内波高の計算法を確立するた めに,防波堤開口部や島堤に対する波の回折について基 礎研究を行い,その成果に基づいて実用的には十分な精 度を有する港内波高の計算法を提示するとともに,砕波 が回折される場合についても,その計算法を示した。本 論文で得られた主要な研究成果を述べて結論とする。

まず, 1. においては, 新しい港の建設や既存の港の 拡張および改良にとって非常に重要な港内波高の計算法 は, 方向スペクトルを有する不規則波を用いて行わなけ ればならないけれども, 不規則波を用いた港内波高の計 算法はまだ確立されてないことを述べ, ついで本研究の 目的および内容について概述した。

2. においては,防波堤開口部における波の回折につい て理論的な解析を行い,実験によって理論の妥当性を確 かめた。まず,一直線上に配置された両翼防波堤による 波の回折の厳密解を求めるとともに,任意防波堤配置に 対する近似解を半無限防波堤に対する解析解の重ね合わ せとして求めた。そして,両翼防波堤に関して近似解と 厳密解とを比較した結果,近似解は波向が防波堤に直角 な場合, B/L=0.5 でも厳密解とよく一致するが,波の 進入角度が小さくなるにつれて,厳密解との差が大きく なることが明らかになった。また,3種類の防波堤配置 について近似解と数値波動解析との比較を行った結果で は,両者は比較的よく一致し,近似解の適用性が確認でき た。また,模型実験によって厳密解と近似解の妥当性を 調べた結果では,両者とも実験値とよく一致し,これらの 理論解は実際の波の回折に適用できることがわかった。

3. においては、島堤による波の回折の厳密解と近似解 とを求め、実験によってそれらの妥当性を検討した。ま ず、楕円柱体による波の回折の理論解を導き、楕円の短 軸を無限小に漸近させることによって、島堤による波の 回折の厳密解を求めた。楕円柱体に対するこの理論解 は、楕円の短軸と長軸とを等しくした場合には、円柱に よる波の回折の理論解とも一致することを示した。ま た、半無限堤による波の回折の解析解を重ね合わせるこ とによって島堤に対する近似解を求め、厳密解と比較し て近似解の適用範囲を明らかにした。模型実験によって 厳密解と近似解の妥当性を調べた結果、厳密解は常によ く実験値と一致するが、近似解は、実験条件が上記の適 用範囲外にある場合には、実験値との一致が悪かった。

4. においては,開口部および島堤による波の反射・回 折の計算を方向スペクトルを有する不規則波で行う方法

を提示するとともに、その方法の妥当性を実験によって 検討した。また, 護岸や防波堤による反射波の算定法を 示した。まず、不規則波による波の反射・回折の計算法 を示し、2. および3. で求めた近似解を用いて計算を行 い、不規則波の反射・回折の特性を調べた。これによる と,防波堤の反射率は,防波堤前面の反射波高を下げる 効果はあるが,回折波高にはほとんど影響を与えないこ とがわかった。また、開口防波堤による波の回折では、 周波数分散より方向分散の効果が強く影響し、規則波に よる計算値とは大きく異なり,波の回折計算では,方向 スペクトルを有する不規則波で計算しなければならない ことが明らかになった。不規則波による波の反射・回折 計算法の妥当性を検討するために、単一方向不規則波を 用いた模型実験値と比較した結果、数値計算値は実験値 と比較的よく一致しており,計算法の妥当性が検証でき た。ただし,防波堤の背面で反射波が生じる開口防波堤 の場合,計算値の波高が急変する部分で,実験値と計算 値は若干の差を示すため、計算値を滑らかにすりつける ことが必要である。護岸や防波堤による反射波を算定す る方法として,反射面を島堤と考え,島堤による反射計 算を行って算定する方法を示し,その適用条件を明らか にした。

5. においては, 港口からの進入波が岸壁や護岸で多重 反射されることを考慮した港内波高の計算法を提案し, 模型実験および現地観測によってその精度を検討した。 まず,港口部からの進入波が岸壁で反射される場合,反 射波は岸壁を島堤とみなしたときの反射波と同じ波高減 衰パターンを示すと仮定して,新しい港内波高計算法を 提案した。この計算法は, 開口部が数個ある場合にも, また港内にもう一つの港がある場合にも適用することが できる。この方法による計算値を模型実験値と比較した 結果,計算値は平均的にみて約 30% 以内の誤差の範囲 で実験値と一致することがわかった。しかし,入射波の 波向や計算領域によっては,局所的に計算値と実験値と が大きくずれることがある。また、港口部前面の海底地 形が複雑な港では、港口部へ入射する波の波向を正確に 算定して計算しないと,計算精度が悪くなる。現地観測 値と計算値とを比較した結果では, 観測値は港内発生波 を含んでいることもあって,非常に大きくばらつき,計 算値の精度を詳細に検討することはできなかったが、計 算値は波向変化による港内波高観測値の変化傾向をよく 表わしていることがわかった。

6. においては,開口部に砕波が来襲してくるときの回 折波の波高について実験値と計算との比較を行い,砕波

の回折計算法について検討した。まず、実験値と線型理 論による計算値とを比較した結果,次のことが明らかに なった。波群中の最高波に近い波だけが砕波するような 不規則波では,開口部における実測スペクトルあるいは 開口部における有義波の諸元で求めた Bretschneider 型 のスペクトルを入射波のスペクトルとして用いても,波 高比については大きな差がなく, どちらも実験値とよく 一致するが、砕波による波高減衰の大きい波では、開口 部における実測スペクトルを用いた波高比の計算値は、 波の直進領域では実験値より大きく, 波の遮蔽領域では 比較的よく一致する。一方, Bretschneider 型のスペクト ルを用いた計算値は,波の直進領域でも,遮蔽領域でも 比較的よく実験値と一致する。このように、実測スペク トルを用いて計算される波高比が波の直進領域で実験値 と大きく異なるのは,実測スペクトルの高周波側に含ま れる非線型成分を自由波として計算するためであること が,回折後の波のスペクトル形を比較することによって 明らかになった。そのため、実用的には、開口部におけ る有義波の諸元を用いて求めた Bretschneider 型のスペ クトルを入射波のスペクトルとして用いて, 波高比を計 算することを提案した。

以上,本論文では,方向スペクトルを有する不規則波 に対する港内波高の計算法を確立することを目的とし て,波の回折について系統的な基礎研究を実施し,不規 則波に対する実用的な港内波高計算法を提案するまでに 到ったけれども,本計算法の精度についてはなお検討す べき点が少なくなく,現地波浪観測によってその精度を 検討することが今後の重要な課題である。

本論文で提案した港内波高の計算法は,港湾技術研究 所においてマニアル化され,すでに各港湾建設局で活用 されていることを附記しておく。

謝 辞

著者が波の回折に関する研究を始めたのは,運輸省港 湾技術研究所の現水工部長 合田良実博士の指導の下 に,同所元波浪研究室員 鹿内正彦(旧姓伊藤)技官お よび笹田 正技官の協力を得て,島堤による波の反射・ 回折の実験とその理論解析を行ったときである。その 後,元波浪研究室員 神山 豊技官および元研修生 杉浦 秀之氏(東亜建設工業株式会社),波浪研究室員 菊地 治技官,西田一彦技官の全面的な協力を得て,規則波お よび不規則波の回折実験と計算を実施した。港内波高計 算プログラムの作成に当っては,同所計算センターのプ ログラム開発室 横田慎二技官の協力を得た。この間, 水工部長 合田良実博士からは終始有益な御助言と御指 導をいただいた。以上の諸氏に甚大なる謝意を表する次 第である。

また,本論文をとりまとめるに当っては,京都大学防 災研究所 土屋義人教授からは暖かい御指導と御助言を いただいた。さらに,京都大学工学部 岩垣雄一教授か らは懇切な御指導を受けた。ここに記して,深く感謝の 意を表する次第である。

主要記号一覧表

A_d	:	二次回折時における防波堤Ⅱへの入射
		波の片振幅
$A_{2r}^{(2n)}$	8	周期 π の Mathieu 関数を余弦級数で
		表わしたときの係数
$A_{2r+1}^{(2n+1)}$:	周期 2π の Mathieu 関数を正弦級数
		で表わしたときの係数
a	;	Mathieu 方程式の固有値
В	•	開口幅あるいは島堤長
$B_{2r+1}^{(2n+1)}$	ŝ	周期 2π の Mathieu 関数を正弦級数
		で表わしたときの係数
$B_{2r+2}^{(2n+2)}$;	周期 π の Mathieu 関数を正弦級数で
		表わしたときの係数
b	:	2 つの焦点から楕円上の点までの距離
		の和
$(B/L)_c$:	近似解の適用限界島堤長
$C(\gamma)$:	余弦に関するフレネル積分値
C_{2n}	:	未知定数
C_{2n+1}	:	未知定数
$\operatorname{Ce}_{2n}(\xi; k_{1}^{2})$:	$ce_{2n}(heta; k_1^2)$ に対応する変形 Mathieu
		関数
${\rm Ce}_{2n+1}(\xi; k_{1}^{2})$:	$ce_{2n+1}(heta;k_1^2)$ に対応する変形 Mathieu
		関数
$\mathrm{ce}_{2n}(heta;k_{1}^{2})$:	周期 π の Mathieu 関数
$\operatorname{ce}_{2n+1} heta$; $k_{1^{2}}$)	:	周期 2π の Mathieu 関数
d_r	:	変形 Mathieu 関数を Bessel 関数の級
		数で表わしたときの係数
E_{2n}	•	未知定数
E_{2n+1}	:	未知定数
F_{2n+1}	6	未知定数
F_{2n+2}	÷	未知定数
$\mathrm{Fey}_{2n}(\xi;k_{1}{}^{2})$;	変形 Mathieu 方程式の解
$Fey_{2n+1}(\xi; k_{1}^{2})$;	変形 Mathieu 方程式の解
f	:	波の周波数
fn	:	n 番目の成分波の周波数

f_p	•	スペクトルのピーク周波数			$k_1 A_1^{(2n+1)}$
$G(f, \alpha)$:	波浪の方向関数	Q(heta)	·	Helmholz の方程式を楕円座標に変換
$Gey_{2n+1}(\xi; k_{1}^{2})$:	変形 Mathieu 方程式の解			したときの θ のみの関数
$\mathrm{Gey}_{2n+2}(\xi;k_{1}^{2})$:	変形 Mathieu 方程式の解	q	•	$q=2k_1\cosh\xi$
g	;	重力の加速度	r	:	項数あるいは防波堤先端からの距離
H	:	波高	rI	:	防波堤Iの先端からの距離
$H(\xi)$		Helmholz の方程式を楕円座標で変換	r_{II}	:	防波堤Ⅱの先端からの距離
		したときの & のみの関数	$S(f, \alpha)$:	波の方向スペクトル
$H_{1/8}$	ł	有義波高	S(f)	:	波の周波数スペクトル
H_0	;	沖波の波高	$S(\gamma)$:	正弦に関する Fresnel 積分値
H_b	:	砕波波高	$S_{c}(f)$	•	計算スペクトル
H_i	÷	入射波高	$\operatorname{Se}_{2n}(\xi; k_{1^2})$	•	$se_{2n}(heta; k_1^2)$ に対応する変形 Mathieu
H_{ln}	ł	港内波高			関数
H_{\max}	ł	最高波高	${ m Se}_{2n+1}(\xi;k_{1}^{2})$:	$se_{2n+1}(heta;k_1^2)$ に対応する変形 Mathieu
$H_{ m out}$	÷	港外波高			関数
$H_r^{(1),(2)}(q)$;	Hankel 関数	S_{2n}	:	未知定数
h	:	水深	S_{2n+1}	:	未知定数
$J_r(q)$:	第1種 Bessel 関数	S_{\max}	:	方向集中度を示すパラメータ
K_{a}	÷	波高比	S_{2n+1}	:	$s_{2n+1} = se'_{2n+1}(0; k_1^2) se_{2n+1}(\pi/2; k_1^2)/$
K_{d}'		入射波高が低下したときの回折係数			$k_1B_1^{(2n+1)}$
K_{dT}		周期比	S_{2n+2}	:	$s_{2n+2} = se'_{2n+1}(\pi/2; k_1^2) se'_{2n+2}(0; k_1^2)/$
K_r	:	反射率			$k_1^2 B_2^{(2n+2)}$
K_{re}	:	屈折率	$\operatorname{se}_{2n+1}(heta;k_{1}^{2})$:	周期 2π の Mathieu 関数
K_{rI}	:	防波堤Iの反射率	$se_{2n+2}(heta;k_1^2)$		周期 π の Mathieu 関数
K_{rII}	:	防波堤Ⅱの反射率	Т	:	波の周期
K_s		浅水係数	$T_{1/3}$:	有義波の周期
\boldsymbol{k}	:	波数 (2π/L)	T_0	:	沖波の周期
k_1	:	$k_1 = \pi B/2L$	t	•	時間
k_n	:	周波数 fn に対応する波数	U_{5}	:	海面上 5m における風速
L	:	波長	$U_{19.5}$	•	海面上 19.5m における風速
M	:	方向分割数	и	:	x 方向の水粒子速度
${ m Me}_{2n}^{\scriptscriptstyle (1),\;(2)}(\xi;k_1{}^2)$:	変形 Mathieu 方程式の解	\mathcal{U}_0	:	水表面における x 方向の流速
$\mathrm{Me}_{^{(1)},^{(2)}}^{_{(1)},^{(2)}}(\xi;k_{1}{}^{2})$:	変形 Mathieu 方程式の解	v	:	y 方向の水粒子速度
M_n	ŝ	未知定数	v_0	;	水表面における y 方向の流速
m	;	方向分割の番数	w	·	z 方向の水粒子速度
Ν	:	周波数分割数	Wo	:	$w_0=g/U_{19.5}$ あるいは g/U_5
N_n	:	n の項数あるいは未知定数	x	:	静水面上に原点をもつ平面座標
N_r	i	r の項数	$Y_r(q)$		第2種 Bessel 関数
n	:	境界面の垂直方向の座標	y	:	静水面上を原点にもつ平面座標
n	:	項数	Z		鉛直上方を正とする座標
Р	:	波高の超過出現率	α	:	波の進入角度
p	:	水圧あるいは波高の出現率	αB	•	防波堤先端間を結んだ線の x 軸に対
p_{2n}	1	$p_{2n} = \operatorname{ce}_{2n}(0; k_1^2) \operatorname{ce}_{2n}(\pi/2; k_1^2) / A_0^{(2n)}$			する傾角
p_{2n+1}	:	$p_{2n+1} = -\operatorname{ce}_{2n+1}^{\prime}(\pi/2;k_1^2)\operatorname{ce}_{2n+1}(0;k_1^2)/$	α_m	:	成分波の進入角度

α_{\max}	. 成分波の進入角度の最大偏角	ξo	:楕円筒の境界
α_{\min}	: 成分波の進入角度の最小偏角	ρ	:水の密度
α_p	: 波の主方向	σ	: 波の角周波数 (2 <i>π</i> / <i>T</i>)
β	: x 軸に対する副防波堤の傾角	${\Phi}$: 速度ポテンシャル
r	: Fresnel 積分の範囲	\varPhi_{I}	: 領域 I 内の速度ポテンシャル
δ_{nr}	: クロネッカーのデルタ関数	\varPhi_{II}	: 領域Ⅱ内の速度ポテンシャル
Enm	. 位相のずれ角	Φ_r	: 反射波の速度ポテンシャル
η	: 水面変動量	Φ_s	: 散乱波の速度ポテンシャル
ηa	: 回折波による水面変動量	ϕ	: 平面波形を表わす式
θ	: 楕円座標	ϕ_{I}	: 領域 I 内の平面波形を表わす式
θ_{I}	: 防波堤 I の先端を原点としたときの円	ϕ_{11}	: 領域 II 内の平面波形を表わす式
	筒座標	ϕ_{III}	: 防波堤 I で回折あるいは反射された波
θ_{II}	: 防波堤Ⅱの先端を原点としたときの円		が防波堤Ⅱで再度回折されるときの平
	筒座標		面波形を示す式
θ_1	: 島堤の左側先端を原点としたときの円	ϕ_i	: 入射波の平面波形を表わす式
	筒座標	ϕ_r	: 反射波の平面波形を表わす式
θ_2	: 島堤の右側先端を原点としたときの円	ϕ_s	: 散乱波の平面波形を表わす式
	筒座標	ϕ_0	: 定数
ν_n	: 入射波を Mathieu 関数で表わすとき	ϕ^*	: 🛉 の共役複素数
	の係数	ψ_a	: 二次回折波の位相のずれ角
ξ	: 楕円座標		
