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ABSTRACT

In this dissertation, some classes of stochastic problems are
studied for nonlinear dynamical systems subjected to a white Gaussian
random noise.

The existence of stationary response and theilr behaviors are
firstly considered for nonlinear systems subjected to random inpgts.
Two new approaches are developed to give sufficient conditions of
the existence of the stationary probability density function for
the response of nonlinear dynamical systems. The principal line of
attack is directed to show existence conditions of an invariant
measure related to the stationary probability density function.
Furthermore, in order to explore stochastic behaviors of nonlinear
dynamical systems of non-degenerate type, two theorems are demon-
strated giving sufficient conditions for the existence of the sta-
tionary response and for the convergence of sample trajectories to
the stationary state with a certain probability appraisal, based on
the knowledge of sample properties of positive recurrent type.

Secondly, emphasizing the influence of the initial state on
dynamic behaviors of a general class of nonlinear systems, a new
approach to analyze the asymptotic behavior is deﬁeloped. A new
type of stochastic Lyapunov function which plays a key role to
solve the problem 1s constructed, taking the dependence on the ini-
tial states into account. Several theorems are stated giving suf-

ficient conditions of the asymptotic stability. The approach pre-

sented here is directly extended to a class of nonlinear stochastic



systems involving a random parameter modeled by a finite state
Markov chain process.

Thirdly, we mainly discuss the noise stabilization of a gener-
al class of second order nonlinear dynamical systems. The theoret-
ical method is the application of the averaging principle due to
Khas’minskii as well as the properties of the singular points of
Markov process generated by the Ito0’s nonlinear stochastic differ-
ential equation. By choosing the stabilizing noise term in an ap-
propriate form, the singular point is obtained and sample path be-
haviors around the singular point are examined. Thus, the possi-
bility for realizing the noise stabilization on Duffing-type non-
linear dynamical systems is theoretically concluded. Furthermore,
based on the classification of the singular points, the general
rules are established for realizing the noise stabilization of a
general class of second order nonlinear dynémical systems.

Finally, a probabilistic approach is developed for the purpose
of exploring the jump phenomena occurring in the response of a gen-
eral class of nonlinear dynamical systems subjected to a narrow-
band random input. The key notion is to derive the relation be-
tween probability density functions with respect to the squared
values of the magnitudes of the response and the related narrow-
band input. Through the variational averaging principle, the multi-
valued response of the system is evaluated, including the theoret-

ical examination of generating mechanism of jump phenomena.
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CHAPTER [ INTRODUCTION

1.1 Introduction

Recent developments of dynamical and control system sciences
have given rise to new problems in mechanical and structural vibra-
tions and control system responses. The system response always
fluctuates in a random manner and contains a wide spectrum of fre-
quencies that may result in unwanted vibration in dynamical systems
or structural ones. For example, measurements of a ship motion on
the sea or an aircraft flying through turburent air reveal that
such motions may be described only by the stochastic method.
Earthquakes are also examples of random processes that can excite
severe vibration and failure in buildings. Many physical systems
encountered in the fields of aeronautical and ocean engineering and
the response of structures to earthquakes, etc. show the following
two aspects in common; (a) they involve a system response to random
excitation; (b) in general, they exhibit various kinds of nonlinear
behaviors such as 1limit cycles, jump phenomena, etc., because almost

all real systems exhibit nonlinear characteristics. Behaviors of



nonlinear systems under random excitation are of considerable im-
portance to those engaged in studies of system analysis and design

in structural fatigue and control engineering.

1:2 Scope of Problems

This thesis consists of some important problems of interests
in the response of nonlinear dynamical systems subjected to a ran-
dom excitation.

[Problem 1] Existence of Stationary Responses and Their Behaviors

In practical problems related to nonlinear stochastic systems,
an important topic is the analysis of the steady state behavior of
the system. This is the case in which, as time goes on, the transi-
tion probability density function or the conditional probability
density function tends to a stationary probability density function.
For the analysis of steady state behaviors, generally, the Fokker-
Planck equation for the transition probability density can be used,
which plays an important role to explore the behavior of Markov
processes. However, exact solutions are rarely known except for
simple systems under white Gaussian noise excitation. The purpose
of the reseach is directed to obtaining the condition for the exis-
tence of the stationary probability density function. New approach-
es to the analysis of nonlinear stochastic systems are developed,
based on the concept of an invariant measure related to the station-
ary probability density function.

[Problem 2] Asymptotic Stability

The problem of great importance is the asymptotic behavior of
nonlinear stochastic systems dependent on thelr initial states,

which shows an inherent characteristics due to the existence of



nonlinearities. As the procedure for examining the system stability,
the stochastic Lyapunov function approach has become well known. A
difficult step in the application of Lyapunov theory to analyse the
stability of stochastic systems 1s the construction of a suitable
Lyapunov function. There is indeed no general systematic procedure
for generating Lyapunov functions. This thesis 1s concerned with
developing a realizable approach to solve stochastic asymptotic sta-
bility for nonlinear systems, by constructing the stochastic Lyapu-
nov function taking into account the effect of the initial states,
associated with (1) a random parameter modelled by white Gaussian
random process and (2) two random parameters modelled by a white
Gaussian and a finite state Markov chain processes respectively.

[Problem 3] Noise Stabilization

The problem of stabilization of nonlinear dynamical systems
through the introduction of noise sources appears to be of great
practical significance. It is well known that unstable systems can
be stabilized by the introduction of a deterministic signal, in
particular, a sinusoidal one of sufficiently high frequency[36].

It has also been observed that deterministic systems operating in a
random environment possess stable characteristics and yet, when the
randomness is taken out of the environment, the system becomes un-
stable. From the viewpoint mentioned above, our final goal is to
clarify the situation in order to allow us to predict when an arbi-
trary random environment will stabllize an otherwise unstable state
of a nonlinear system, or under what conditions an unstable state
will be made stable by the introduction of noise.

[Problem 4] Jump Phenomenon

In nonlinear dynamical or control systems, it is well known



that the jump resonance may often occur with a consequent worsening
of control performances. Hence, in analysis and synthesis of non-
linear dynamical or control systems, it is very important to find
whether jump resonance can occur or not.

In deterministic systems, the jump phenomenon implies that the

amplitude and phase angle of the output exhibit jump response, as

the amplitude or frequency of the input is varied. On the other
hand, for systems with random inputs, in the past publications, the
jump phenomenon occurs between the input and the output variances
of the system response and the theoretical approach to analize the
jump phenomenon was based on the statistical linearization method
to stationary random input. However, the approach described above
can not give enough explanation of the response when jump phenome-
non occurs, because it becomes difficult to comprehend stochastica-
1ly sample path behaviors of the response. The main purpose of the
study is to clarify the generating mechanism of jump resonance
occurring innonlinear dynamical or control systems by evaluating
the probability density functions of input and output, in which
sample path behaviors will be shown with a digital simulation ex-
periment. Here, 1t is assumed that the random input to nonlinear
systems is a narrow-band random process whose signal power is re-
stricted to a very narrow frequency range. The results are com-
pared with the jump phenomenon in nonlinear dynamical systems sub-
jected to a sinusoidal input which has been already investigated

in detail.

1.3 Historical Background

For convenience of present descriptions, the historical back-



ground is separately retrospected into the four versions.

1.3.A On the Stationary Response of Nonlinear Stochastic Systems

The investigation of evaluating the response‘of dynamical or
control systems subjected to random inputs was first developed by
the statistical theory. Many studies have appeared on responses of
linear systems with random noise by Laning & Batten[1l], Crandoll[2],
Davenport & Root[3] and Lee[4], et al. On the other hand, in the
case of nonlinear systems, such approximate methods as the perturb-
ation and the statistical linearization have been developed in
order to extend a linear method of analysis to certain systems con-
taining small nonlinearities by Booton[5], Caughy[6], Pervonzvanskii
[7] and Sawaragi, Sugai and Sunahara[8]. These studies were made
by computing various response statistics such as mean-square res-
ponse, correlation function and response spectral density.

An area where more results are expected 1s the Fokker-Planck
equation associlated with nonlinear stochastic systems. Although
there are a few papers with respect to the analysis of Fokker-
Planck equation by Fuller[9], Stratonovich[10], et al., it is diffi-
cult to solve directly the Fokker-Planck equation for nonlinear
systems. The analysis of stationary responses of nonlinear dynami-
cal systems is to explore the existence of the stationary probabil-
ity density function of the Fokker-Planck equation. Recently, as a
useful analytical method for the existence of stationary responses,
the concept of an invariant probability measure[11],[12],[13] was
introduced which was related to the stationary probability density
function. Using the concept of an invariant measure, necessary and

sufficient conditions for the existence of a unique invariant mea-



sure were first given by Khas’>minskii[11] with respect to recurrent

s 5 . : T n in-
diffusion processes. Existence and uniqueness conditions of a

variant measure of the solution process to a scalar stochastic dif-
ferential equation of It&-type were shown by Itd and Nisio[1L4].
Following the results by Khas’minskii, Wonham[15],[16] established
existence conditions of an invariant measure of vector stochastic
differential equations of Itd-type, where the solution process was
restricted to the strongly Feller process. An extensive study was
reported by Bene§[12] and Foguel[13] on the existence of an invari-
ant measure of Markov processes. Following the results of Bene§
and the mean ergodic theorem, Zakai[17] established the condition
for the existence of an invariant probability measure for Feller
process. From the practical point of view, Sunahara, the Author
and Morital[18] has developed two new approaches to give sufficient
conditions of the existence of the stationary probability density
function for the response of nonlinear dynamical systems, based on
the concept of an invarilant measure.

The stochastic stability[19] has been studied by many investi-
gators. Pinsky[20] has given various conditions for the asymptotic
stability of the origin for a linear stochastic differential equa-
tion in both degenerate and non-degenerate cases, with a slight
different concept of the stochastic Lyapunov stability. For nonli-
near stochastic systems in the non-degenerate case, Wonham[16] de-
fined the weak stochastic stability corresponding to Lagrange sta-
bility[21] in the deterministic system, based on the concept of
positive recurrent for the diffusion process. He showed that suffi-
cient conditions for recurrence and positivity were given through

the existence condition of an invariant measure for the diffusion



process defined by the stochastic differential equation of Itd-type.
It8 & Nisio[1l4] showed that the conditions for the diffusion proc-
ess to be a positive recurrent type can be characterized in terms
of Feller’s probability measures[22],[23] and developed some gener-
al properties of the diffusion process of non-degenerate type in
the non-singular intervals on which Feller’s probability measures
are given. Sunahara and the Author[24] has established a new ana-
lytical method for exploring stochastic behaviors of nonlinear dy-
namical systems of non-degenerate type, based on the knowledge of
sample properties of the diffusion process of positive recurrent

type.

1.3.B On the Asymptotic Stability of Nonlinear Stochastic Systems

In this section, we will survey studies on stochastic stabili-
ty problems for systems governed by continuous time Markov process-
es. Our concern will mainly be with the asymptotic behavior of
sample processes. Gihman & Skorohod[25] considered the asymptotic
stability of solutions in the mean of second-order moments of lin-
ear stochastic differential equations and their asymptotic behav-
iors. Khas’minskii[26] gave necessary and sufficient conditions
for stability in probabilility of an equiliblium solution to a class
of linear stochastic differential equation of ItS6-type. Based on
Khas’minskii’s theory, Kozin[27],[28] established some theorems
concerning necessary and sufficient conditions for almost sure
sample stability of second-order linear stochastic systems.

On the other hand, for the stability analysis of nonlinear
stochastic systems, the most useful technique is an extention of

the deterministic Lyapunov theory[21] to nonlinear stochastic sys-



tems. Bucy[29] recognized that stochastic Lyapunov functions
should have the super-martingale property and proved a theorem on
"with probability one" convergence for discrete parameter process-
es. Bucy’s work is probably the first one to treat a nonlinear
stochastic stability problem by the extension of deterministic
Lyapunov theory. Some results, of the Lyapunov form, were given

by Khas’minskii[30]. Kushner[31],[32] extended the idea of Bucy

to the continuous parameter systems and thus the range of applica-
bility of the stochastic Lyapunov function results of Khas’minskii.
Also, Wonham[16] derived a weaker sufficient condition than
Khas’minskii’s sufficient condition of the stochastic stability.
Furthermore, for the construction of a suitable Lyapunov function,
Kushner[33] proposed a method for construction of stochastic
Lyapuncov functions. The stochastic stability theory untill now

was mainly developed only in the e-neighborhood of an equiliblium
point. However, the asymptotic stability of nonlinear stochastic sys-
tems depends strongly on the initial conditions. Taking into ac-
count the influence of initial conditions to stochastic stability,
Sunahara, the Author & Morital[34] have developed a new stochastic
Lyapunov function approach to explore the asymptotic stability for
a general class of nonlinear dynamical systems with a random para-
meter modelled by a white Gaussian random process.

In the case of nonlinear dynamical systems with a random para-
meter involving a finite state Markov chain process, the concept of
random evolutions by Griego & Hersh[35],[36], Hersh & Papanicclau
[37] and Hersh & Pinsky[38] is introduced instead of the averaging

principle because of the existence of parameters of a Markov chain

process. Based on the concept of random evolutions, Sunahara, the



Author & Morital[39] investigated asymptotic stability of nonlinear
dynamical systems with two kinds of random parameters modelled byva

white Gaussian and Markov chain process respectively.

1.3.C Stabilization of Nonlinear Dynamical Systems

In this section, we shall briefly discuss some results on sta-
bilization of nonlinear dynamical systems as a rather significant
problem than the stochastic stability theory. A study of the sta-
bilization of unstable dynamical or control systems originated in
1956 by Ordenburger[40]. Oldenburger[40] has discovered that the
amplitude of the sustained oscillation which can be observed in an
unstable nonlinear control system either decreases or disappears by
applying a sinusoidal signal with the high frequency and the suffi-
ciently small amplitude. Lowenstern[41] has given suggestions for
the stabillization of unstable dynamical systems through the statis-
tical analysis of oscillations in a parametrically excited linear
dynamical system for a restricted class of random excitations. A
theoretic ascertion of the stabilization of nonlinear control sys-
tem has already been established by Sawaragi, Sugail & Sunahara[8]
and Oldenburger & Sridhar[42] through the use of the statistical
linearization technique. The statistical linearization technique
is essentially a stochastic counterpart of the describing function
method which is commonly used for studying the characteristics of
nonlinear deterministic systems.

Furthermore, Bogdanoff & Citron[43] has reported on experimen-
tal results of stabilizing an inverted pendulum with vertical, al-
most periodic base motion. Theoretical conclusions that verify the

experimental results were investigated through the use of averaging



method established by Bogoliubov[4L4] for systems with almost peri-
odic time-varying parameters, in order to achieve approximate
moment stability results. Afterwards, the principle of averaging
was extended to parabolic and elliptic differential equations and
to Markov processes with a small diffusion by Gikhman[ 457,
Khas’minskii[46] and Mitropol’skii & Kolomiets[47]. It was clear
that the method of averaging as applied to stochastic systems was

related to [43]. Using the extended averaging method[46], Mitchell
[48] has studied noise signals of an almost periodic type in con-

nection with stabilization of an inverted pendulum. Binia, et al.

[49] has treated the problem associated with nonlinear oscillators
driven by noise and Samuels[50] associated with the stabilization of
deterministic, linear. unstable RLC circuit by the introduction of
a white Gaussian noise to system parameters.

From theoretical viewpoints which we should examine sample
path behaviors instead of moment properties, Sunahara, Kozin & the
Author{51],[52] have shown the possibility of noise stabilization
for unstable nonlinear dynamical systems by applying the extended
averaging principle[46] and, furthermore, has established a general
rule for realizing the noise stabilizatiin of a general class of

second-order nonlinear systems.

1.3.D On Jump Phenomenon of Nonlinear Dynamical Systems

In the case of periodic input signals, using the describing
function method, rigorous conditions for generating jump resonance
have been completely studied by Sandberg[53], Hatanaka[54] and
Hayashi[55], et al. On the other hand, for systems with random

inputs, the method of statistical linearization due to Booton[56],



et al. has widely been used for the reseach of Jjump phenomenon.
Kyong[57] presented the statistical linearization criteria for
unique response for several common nonlinearities and showed that
an idealized saturation and an idealized deadzone yield jump phe-
nomenon among a restricted class of nonlinearities. Sawaragil &
Sunahara[58] recognized the jump phenomenon in the relation curves
between the standard deviation of stationary random input and that
of error signal, using the equivalent linearization technique and
also verified the validity of the above theoretical investigation
through experimental studies of an analog computer.

Lyon, et al.[59] demonstrated analytically and experimentally
that jumps can occur when the oscillator is subjected to a narrow-
band random noise. The analytical work of Lyon, et al. is based on
a linearization method for which the necessary condition is that
the magnitude of fluctuations must be restricted. Using the associ-
ated Fokker-Planck equation, Sunahara & the Author[60] has develop-
ed a probabilistic approach to explore the generating mechanism of
the jump phenomenon occurring in a general class of nonlinear dynam-

ical systems subjected to a narrow-band random input.

1.4  Summary of Contents

In this dissertation, some classes of stochastic problems of
nonlinear dynamical systems subjected to white Gaussian random
noise are studied, i.e., (1) Existence of stationary responses and
their behaviors, (2) Asymptotic stability, (3) Noise stabiliza-
tion and (4) Jump phenomenon.

Chapter 2 is devoted to mathematical preliminaries related to

the theory of stochastic processes which will be used in the suc-



is es-
ceeding developments. The mathematical model of the system 18
- . =1 a_
tablished by the theory of Itd-type stochastic differential equ

tions.

In Chapter 3, two new approaches are developed to give suffi-

cilent conditions for the existence of the stationary probablility

density function for the response of nonlinear dynamical systems.

The principal line of attack is directed to show existence condi-

tions of an invariant measure related to the stationary probability

density function. Two approaches are presented one is to choose

a suitable Lyapunov-like function and another to find out an arbi-
trary function satisfying the martingale property of Markov proc-
esses. A new analytical approach is developed in Chapter 4 to ex-
plore stochastic behaviors of nonlinear dynamical systems of non-
degenerate type. The key problemis to examine the existence of an
invariant measure for stochastic systems with the differential
generator of non-degenerate points. Two theorems are demonstrated
giving sufficient conditions for the existence of the stationary
response and for the convergence of sample trajectories to the sta-
tionary state with a certain probability appraisal, based on the
knowledge of sample properties of positive recurrent type.

In Chapter 5, emphasizing the influence of the initial state
on dynamic behaviors of a general class of nonlinear stochastic
systems, a new approach to analize the asymptotic behavior is
developed, where a new type of stochastic Lyapunov function plays
a key role to solve the problem, taking the dependence on the ini-
tial states into account. The mathematical model of a dynamical
system is given in the form of a general class of nonlinear differ-

ential equations with a state dependent random parameter. Several



theorems are stated giving sufficient conditions of the asymptotic
stability in the case where the random parameter 1s modeled by a
white Gaussian noise process multiplied by a nonlinear function.
Furthermore, the approach presented here is directly extended to a
class of nonlinear stochastic systems with a random parameter
modeled by a finite state Markov chain, dsing the concept of random
evolutions.

Chapter 6 develops the noise stabilization of a class of
second-order nonlinear dynamical systems. The analytical method
is based on the application of the averaging principle established
by Khas’minskii. The noise stabilization term added to the system
is selected in the modified form of the white Gaussian noise pro-
cess. The determination of a stabilizing signal can be performed
through the procedure that the singular point at where the diffu-
sion disappears is obtained and sample path behaviors around the
singular point are examined. Thus the possibility for realizing
the noise stabilization on Duffing type nonlinear dynamical sys-
tems 1s theoretically shown. Chapter 7 is concerned with exten-
sions of the method in Chapter 6 to a general class of nonlinear
dynamical systems. In this Chapter, general conditions are ob-
tained through an application of the averaging principle due to
Khas’minskii as well as the properties of the singular points of
Markov process generated by the It6—tybe nonlinear differential
equation. The classification of singular points is established in
terms of relative relations of both the drift and diffusion terms.
Applying the general rules established here, stabilization studies
are performed in a number of classical cases for various noise co-

efficients.

—18—



In Chapter 8, a probabilistic approach is developed for the
purpose of exploring the jump phenomenon occurring in the response
of a general class of nonlinear dynamical systems subjected to a
narrow-band random input. The response of nonlinear dynamical sys-
tems considered is related to the narrow-band input generated as
the output of a lightly damped linear system excited by a white
Gaussian signal. The relation is derived between probability den-~
sity functions with respect to the squared values of magnitudes of
the response and the related narrow-band input. The multi-valued
response of the system is evaluated, including the theoretical exa-
mination of generating mechanism of jump phenomenon.

Throughout all chapters, digital simulation studies are demon-

strated to show the validity of the theories presented.



CHAPTER 2 MATHEMATICAL PRELIMINARIES

2.1 Diffusion Process

2.1.A Definition of Diffusion Process

Let (E,B) be an arbitrary measurable space, E a finite or
countable set and B the o-algebra of the measurable sets generated
by the open sets of the space (E,B). Let us consider a given
Markov transition function P(t,x,A), xeE, AeB, t>0. Together with
the fundamental properties of the function P(t,x,A)[61], we shall
assume that P(t,x,E)=1 for all t>0. That is, the corresponding
Markov process is not cut off. Furthermore, the following condi-
tions (C-1)~(C-3) will be assumed to be fulfilled.

(C-1) For any arbitrary e-neighborhood Ue(x) of the point x,
l—P(t,x,UE(x)) = o(t) uniformly in x in an arbitrary com-

pactum KcU.

(C-2) For an arbitrary bounded B-measurable function f and for



each £>0, T f(x) = [ P(t,x,dy)f(y) defines a continious
E

% 1

function of x,  where T, 1s the semi-group of linear oper-

ators.
(C-3) For an arbitrary xe¢E, t>0, and for any open set U, the rela-
tion P(t,x,U) > 0 holds.

Then, it is known[61] that there exists a homogeneous Markov
process x(t) satisfying
(C=L4) For any compactum K and any s>0,
Px[{x(t)eK,Oftfs} n {x(t) has a discontinuity for O0<t<s}]
=0
(c-5) x(t) is a strong Markov process.
A process x(t) for which conditions (C-1)~(C-5) are satisfied
is called a diffusion process.

%2
2.1.B The Kolmogorov Equations for Diffusion Processes

Let {x(t),t:O} be a continuous stochastic process of the
Markov type defined on the real line ; that is, x(t) is a Markovian
random variable, depending on a continuous parameter t, which
assumes values in the state space R = {x;-«<x<w}. 1In this section,
we derive and study the Kolmogorov diffusion equations associlated

with continuous Markov processes on the real line. Let

#1  This property has been studied in detail by Girsanov in [62].
Processes for which (C-2) is satisfied are called strongly Feller
in [62]

*¥2  For studies on Kolmogorov equations for diffusion processes,
we refer to the books of Fuller[9], Dynkin[61], Friedman[63], Ito

[64] and Bharucha-Reid[65], e.t.c.



(2.1) P(t,x;T,y) = Pr{x(r)<y[x(t)=x}, >t

denote the transition probabilities of the process {x(t),t>0}.
Naturally, it can be also written that

(2.2) Ploaxstsy ) = Plosbyxs¥)s

For t and x fixed, P(t,x;1,y) is a continuous function of t. In
addition, P(t,x;t,y) 1s a (conditional) distribution function in y
satisfying the usual conditions,

(2.3) 1im Pl sxiryy) = 0, 1lim P(t,x31,y) = 1.

yor— yore
If the mean and variance of the change in x(t) during the time

interval At are defined by the following truncated moments,

(2.4) lim f% f (y—x)dyP(t—At,x;t,y) = bt x)
At>0 ly-x]|<s
and
¢ 1l 2
{2.5] lim 5= f (p-x)"d _PUe~8E,%:5,%) = alf.x)s
At->0 Iy—xl<5 y

the backward Kolmogorov equation is obtained by [60]

2
OP(t,x3T,y) _ 1 3 P(t,x3T,¥) oP(t.xs7.,¥%)
NGNS S = e MO R o
(2.6) T 2a(t,x) BX2 + b(bsx) ™ .

Similarly, the density function p(t,x;T,y) satisfies

) . 2 . ;
(2.7) _ ap(téﬁzT’Y) - %a(t’x)a E(tzxérzz) & b(t,x)ap(tsi’sz)_

9X
We can also derive the so-called Kolmogorov’s forward
equation, which 1s also called the Fokker-Planck equation, as given

by

(2.8)  3B(t,x31,y) | 10°Talt,y)p(t,x31,5)7 , 30b(r,3)p(t,x;51,5)]
: ot 2 8y2 oy '

The forward equation is the formal adjoint of the backward equation,

and it will be of interest in this thesis.
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Equations (2.7) and (2.8) are rewritten respectively by

(2.9) -2y
where
{2.10) Tf#} = %a(t,x)ajié> * b(t’X)géél
and
ap *

(2.11) 5? =1 P

where

2 ) .
ey Brey = %a [a(ngg( )], 3[b(15§)( )]

The operator L is called the differential generator of the diffu-
sion process and the quantities a(t,x), b(t,x) are called respec~
tively the diffusion coefficient and the drift coefficient. Also,
L* is the conjugate differential operator of L.

Let both a(t,x) and b(t,x) in Eq.(2.10) depend on x, and not
on t. For the term a(x) in (2.10), if there exists a point X=X

satisfying a(x)=0, the differential generator L of (2.10) is said

to be degenerate type. Otherwise, if a(x) %0 for all x, (2.10) is

said to be non-degenerate type.

2.1.C Diffusion Process on the Real Line

Let x(t,w) be a Markov process in E(l) starting at the point
¢ in the half-infinite interval [0,») with the differential gener-

ator,

2
" 9 9
(2.173) L =10 (X)g;§ + V(X)g;

where both the drift coefficient V(x) and the diffusion coerffi-

cient Ug(x) are polynomials in x and these satisfy Lipschitz and



uniform growth conditions. Since diffusion processes are defined
to be Markov processes with continuous trajectories, this leads in
a natural way to a discussion of x(t) as a diffusion process on the

interval I=[rl,r2] where -« frlfr2<w.

Interesting situations arise when the diffusion i1s singular

for which the following relation holds,

(2.14)  U%(x) = 0.

A point X=rg for which U2(rs)=0 is called the singular point, where

r <r <r,..
1-"s-"2

value of the drift coefficient V(x) at the singularity.[66]

There are two types of singular points depending on the

[Definition 2.1] A point T for which U2(rs)=0 is called a trap,
provided that V(rs)=0.

[Definition 2.2] A point ry for which Uz(rs)=0 is called a right
(left) shunt, provided that V(r )>0 (<0).

From the physical viewpoint, it may be observed that a sample
process of the diffusion process is obviously singular at the point

x=rs, because, if there is no diffusion there, the process becomes

Fig.2.1 A sample process x(t) in the case where U2(rs)=0.



deterministic at that point as shown in Fig.2.l. Tt is also obvi-

ous that a sample process does not move any more at the point X=rg,

provided that there are no diffusion and no drift at that point.

This situation expresses the trap. A positive (negative) drift at

the singularity causes the particle to be shunted to the right

(left). These heuristic discussions are stated in probabilistic

terms by the following lemma.

[Lemma 2.1] [67],[68]

Let P_{-} be the probability of the event "." associated with
r
the trajectory x(t) with the initial value x(0)=x0.

(1) If a point rg is a trap, then
(2.15) Pr{ x(t)=rs for all t>0 } = 1.

In this case, almost all trajectories which originate at ¢ remain
at that point. Also, almost all trajectories which originate to
one side of the trap will never cross it. Either the trap is never
reached or if it 1is reached, the trajectory stays there.

(2) If a point r is a left shunt, then

(2.16) Pr{ X(t)<rs for all t>0 } = 1.

In this case, almost all trajectories originating at a point ry
instantaneously leave that point to enter the neighborhood to the
left side of a point ro- Therefore, a trajectory never returns to

ry with probability one. A similar statement holds to a right

shunt.

Lemma 2.1 gives a considerable amount of knowledges about

sample trajectories at or near singularities. However, this is not

sufficient to determine the stability of sample processes. In



order to make the sample stability more clear, we shall classify
the boundaries of the interval I=[r1,r2j formed by the singulari-
ties on the r-direction. Detailed aspects of the classification
may. be found in References[22],[23]1,[68] to the present case. For
the classification of boundaries, we shall consider the differential

generator (2.13) on the interval [rl,r2j and define the function,
- i
(2.17)  B(x) = [, 2V(E)U™“(&)aE
0

where r, is a fixed value in I. Also, the canonical scale and the

canonical measure are introduced, which are respectively defined by

(2:18) ds(x) exp{-B(x) }dx

(2.19)  dm(x) = 2U0"°(x)-exp{B(x)}dx,

where s(x) is a continuous to the right and increasing function on

[rl,r2j and m(x) a continuous and increasing function. We shall

denote,

(2.20a) oy = JI am(x)ds(y),
r, <x<y<r,

(2.20b) ny = ff ds(x)dm(y),
r, <x<y<r,

(2.20¢) ¥y = f/ dm(x)ds(y),
P, SYSRIE,

(2.204) By = [f .ds(x)am(y).
r2>y>x>r2

The boundaries of the interval [rl,r2J are classified according to
the behaviors of the speed and scale measures near rl’and r, via
the functions oy and My (i=1,2).

-The boundaries are first classified as to whether they are ac-

cessible or inaccessible and then further subdivided into regular

=21—



. 5 s s % ible
or exit if accessible and entrance or natural if inaccessib

[Definition 2.3] The boundaries r., i=1,2 are classified as

follows:
regular 1if p;<*

r. is accessible if o, ,<= { i
* exit if py=e

entrance if Ui<w

r. is inaccessible if o.== { _
= natural if p,=e-

A boundary is accessible if there is some probability that it will

be reached in a finite time [68]. Otherwise it is inaccessible.

However, the explanation of the inaccessibility is not sufficient

for the behavior of the process in the interval [rl,r2J because, as
was discovered by Doob [68], a natural boundary can be asymptoti-
cally approached with probability one although it is never reached.

This leads to a further subdivision of inaccessible (natural)

boundaries.

[Definition 2.4] An inaccessible (natural) boundary r, will be

called locally attractive if s(ri) is finite and locally unattrac-

tive if s(ri) = +o.

The asymptotic behaviors of x(t) trajectories in the interval
[rl,rgj can now be determined in terms of these difinitions 2.1,
2.2,2.3 and 2.4. As examples: (1) {rl,rz} = {exit, entrance}. As
shown in Case 1 in Fig.2.2, the probability is zero that the x(t)-
process can reach the boundary r2 and almost all trajectories leave

the interval [rl,r2J at ry. The boundary r; is either 'trap' or

'absorbing boundary' and the boundary conditlons must be imposed.



I = [rl,r2j

g r
o ~t s 02
gl<co’ul=oo g2=oo’u2<eo
exit entrance
Case 1
M 5
—— i o)
O'l<oo,ul<co 02=oo,u2=oo
regular natural
(locally unattractive)
Case 2
e
A - 2
— - -0
01=®, U < U™ ghy==
entrance natural
(locally attractive)
Case 3

Fig.2.2 TIllustrative Examples of the x(t)-trajectories

by Classification of Boundaries.

(2) {rl,r2} = {regular, natural (locally unattractive)}. As shown
in Case 2 in Fig.2.2, the process can reach the boundary rl with
some probability in a finite time and the behavior after reaching
rl can be determined by imposing boundary conditions. Also, the
process can not go to the boundary r, because T, is locally un-
attractive natural boundary. (3) {rl,rz} = {entrance, natural (
locally attractive)}. As shown in Case 3 in Fig.2.2, almost all
trajectories originating within the interval [rl,r2J approach the

boundary r, asymptotically as t=+~ without ever reaching r2, since

2

r2 is locally attractive natural boundary.



2.2 Averaging Principle

The averaging principle has been established for partial dif-

ferential equations of the form, du/dt = eL(t,x)u, where L is the

second-order elliptic or parabolic differential operator and €

sufficiently small constant.

The averaging principle is stated as follows,

[Theorem] (Khas’minskii)[46]
The solution of the Cauchy problem for the partial differen-

tial equation of the form du(t,x)/dt = eL(t,x)u(t,x) as e>0 may

uniformly be approximated over an interval of time which is 0(1/¢)
by the solution of the equation dv(t,x)/dT = eLo(x)v(T,x) where

T is 0(t/e) and LO is an operator whose coefficients are obtained
from those of L(t,x) by averaging with respect to time, where

19(x) 1s described by

T
(2.21)  1%(x) = 1im & [ L(t,x)dt.
0

Tooo

More concisely, the following relation holds:

(2.22)  1im P _{ sup (t,x)-v(&,x)| = 0} = 1
cao T [t,x]eE(l)xI;u x)-v(Z,x)|
where IT = [0,T).

2.3 Symbolic Conventions

Principal symbols used here are listed below:
t : Time variable, particularly present time

to : The initial time at where the system trajectory

starts

x(t) : A scalar or vector stochastic process representing



£(t,x),g(t,x)

E(t)
w(t)
E{-}
u(r)
s(r)
m(r)
L(-)
V()

P(t,x;T,F)

p(t,x)

o(t)

z(t)
g(n)

the system state

A scalar or vector nonlinear function with respect
to x

A white Gaussian random process

A one-dimensional standard Brownian motion process
The mathematical expectation

An invariant measure

A canonical scale measure

A canonical speed measure

The differential generator

A stochastic Lyapunov function

The transition probability which the x(t1)-process
with x(t)=x is included within Borel sets T, i.e.,
Pr{x(T)eFIX(t)=X}

The joint probability density function with res-
pect to t and x

A Markov chain process

A narrow-band random process

An n-dimensional Euclidean space



CHAPTER 3

EXISTENCE OF STATIONARY RESPONSE FOR NONLINEAR
DYNAMICAL SYSTEMs oF DEGENERATE TYPE

3.1  Introduction

In recent years, considerable interests have arisen in the
response of nonlinear dynamical systems subjected to random excita-
tion. Among many practical problems related to nonlinear stochas-
tic systems, extensive researches have been directed toward finding
the existence of the stationary response for randomly excited non-
linear second-order systems. In many cases, exact solutions are
not availlable and then methods of approximate analysis must be well
developed for nonlinear systems. In spite of mathematical diffi-
culties of nonlinear system analyses, the analysis of stationary
responses has been developed through the evaluation of mean-square
responses by utilizing such approximate methods as the perturba-
tion and the statistical linearization and furthermore by measure-
ments of autocorrelation function or spectral density.[1]~[5],[8]

On the other hand, another useful technique for exploring the

stationary response of nonlinear stochastic systems is the applica-



tion of the Fokker-Planck equation with respect to the probability
density function of the solution processes. The exposition of the
Fokker-Planck equation will be given, with emphasis on steady state
solutions.

Let r(t) be the n-dimensional random process whose components

are denoted by xl,x ---,xn. We may now define the Markov process

23
to mean that the conditional probability density function that r

lies in the interval from r. to r,+dr. at time t from r, to r +

1 i1 1 e 2 2
dr2 at time t2,---, from rn-l to rn_1+drn_l at tn—l’ depends only
on sample values of r at t_ and t 5 1:€s s

n n-1

(3'1) p(rn’tnlrl’tl;r2’t2; cte ;rl’l—l’tn—l) = p(rnﬁtnl rn“l’tn—l)'

We shall write a general expression of the conditional probability
density function by using a form of the transition probability
density function p(r,t;r(t+At),t+At). The transition probability
density function p(r,t;r(t+At),t+At) means a sample movement from
r to r(t+At) during a time interval At, based on the assumption
that the sample value was r at time t.

With background knowledge of the Markov process theory, a
parabolic partial differential equation can be derived in the form,

2

9p 3p 1 3
(3.2) - == = IV, + = X U, .
at i 13xi 2i,j 1,33xiaxj

where i,j=1,2,-+-,n. 1In deriving Eq.(3.2), the following assump-
tions must be made. The first and second incremental stochastic
moments of the movement in an infinitesimal period of time are pro-

portional to At so that the following limits exist:

(3.32) Vv, = i%inoﬁ IE(n)(mipd(Ax)



and

= i L ' A

)/
where [(AX)(Ax)' Jij is the (i,j)-th element of (Ax)(Ax). A further

assumption has been introduced in which the higher moments are of

the order of (At).
Our problem is to examine whether or not there exists station-

* n o
ary solution p (r) of Eg.(3.2) as t»w. If the stationary probabi-

lity density function p*(r) exists, this implies the existence of
stationary responses in nonlinear stochastic systems. Then, by
letting t-~ and setting 9p/9t=0 in Eq.(3.2), the probability densi-
ty function p*(r) may be obtained from the Fokker-Planck equation.
However, it is generally difficult to find out the existence of the
stationary probability density function p*(r) for nonlinear stocha-
stic systems.

Now, we shall consider the one-dimensional r(t)-process with
the following differential generator,

2 = .
(3.1)  L(-) = U2<1~>ddl+2) + vy

This differential generator Lr plays an important role to analize
the stationary responses, that is, the stationary probability
density function p*(r), of noniinear dynamical systems. Both the
coefficients U2(r) and V(r) in (3.4) imply that, in the representa-
tion of Itd-type stochastic differential equation, the former cor-
responds to diffusion based on the stochastic movement and the
latter to drift based on the deterministic one respectively. From

the description of Section 2.1.B, for the diffusion term U2(r) in



Fig.3.1 System Behavior of Degenerate Type

(3.4), if there exists a singular point (st 8 satisfying U2(r)=0,
the dynamical system 1s said to be of degenerate type. Otherwise,
if U2(r)#Q for all r, the dynamical system is said to be of non-
degenerate type.

In this Chapter, we shall consider behaviors of the r(t)-
process only in the degenerate type dynamical system<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>