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Abstract

In this dissertation, some classes of stochastic problems are

studied for nonlinear dynamical systems subjected to a white Gaussian

random noise.

The existence of stationary response and their behaviors are

firstly considered for nonlinear systems subjected to random inputs.

Two new approaches are developed to give sufficient conditions of

the existence of the stationary probability density function for

the response of nonlinear dynamical systems. The principal line of

attack is directed to show existence conditions of an invariant

measure related to the stationary probability density function.

Furthermore, in order to explore stochastic behaviors of nonlinear

dynamical systems of non-degenerate type, two theorems are demon-

strated giving sufficient conditions for the existence of the sta-

tionary response and for the convergence of sample trajectories to

the stationary state with a certain probability appraisal, based on

the knowledge of sample properties of positive recurrent type.

Secondly, emphasizing the influence of the initial state on

dynamic behaviors of a general class of nonlinear systems, a new

approach to analyze the asymptotic behavior is developed. A new

type of stochastic Lyapunov function which plays a key role to

solve the problem is constructed, taking the dependence on the ini-

tial states into account. Several theorems are stated giving suf-

ficient conditions of the asymptotic stability. The approach pre-

sented here is directly extended to a class of nonlinear stochastic
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systems involving a random parameter modeled by a finite state

Markov chain process.

Thirdly, we mainly discuss the noise stabilization of a gener-

al class of second order nonlinear dynamical systems. The theoret-

ical method is the application of the averaging principle due to

Khas'minskii as well as the properties of the singular points of

Markov process generated by the Ito's nonlinear stochastic differ-

ential equation. By choosing the stabilizing noise term in an ap-

propriate form, the singular point is obtained and sample path be-

haviors around the singular point are examined. Thus, the possi-

bility for realizing the noise stabilization on Duffing-type non-

linear dynamical systems is theoretically concluded. Furthermore,

based on the classification of the singular points, the general

rules are established for realizing the noise stabilization of a

general class of second order nonlinear dynamical systems.

Finally, a probabilistic approach is developed for the purpose

of exploring the jump phenomena occurring in the response of a gen-

eral class of nonlinear dynamical systems subjected to a narrow-

band random input. The key notion is to derive the relation be-

tween probability density functions with respect to the squared

values of the magnitudes of the response and the related narrow-

band input. Through the variational averaging principle, the multi-

valued response of the system is evaluated, including the theoret-

ical examination of generating mechanism of jump phenomena.
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Chapter I

1.1 Introduction

Introduction

Recent developments of dynamical and control system sciences

have given rise to new problems in mechanical and structural vibra-

tions and control system responses. The system response always

fluctuates in a random manner and contains a wide spectrum of fre-

quencies that may result in unwanted vibration in dynamical systems

or structural ones. For example, measurements of a ship motion on

the sea or an aircraft flying through turburent air reveal that

such motions may be described only by the stochastic method.

Earthquakes are also examples of random processes that can excite

severe vibration and failure in buildings. Many physical systems

encountered in the fields of aeronautical and ocean engineering and

the response of structures to earthquakes, etc. show the following

two aspects in common; (a) they involve a system response to random

excitation; (b) in general, they exhibit various kinds of nonlinear

behaviors such as limit cycles, jump phenomena, etc., because almost

all real systems exhibit nonlinear characteristics. Behaviors of
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nonlinear systems under random excitation are of considerable im

portance to those engaged in studies of system analysis and design

in structural fatigue and control engineering.

This thesis consists of some important problems of interests

in the response of nonlinear dynamical systems subjected to a ran-

dom excitation.

[Problem 1] Existence of Stationary Responses and Their Behaviors

In practical problems related to nonlinear stochastic systems,

an important topic is the analysis of the steady state behavior of

the system. This is the case in which, as time goes on, the transi-

tion probability density function or the conditional probability

density function tends to a stationary probability density function.

For the analysis of steady state behaviors, generally, the Fokker-

Planck equation for the transition probability density can be used,

which plays an important role to explore the behavior of Markov

processes. However, exact solutions are rarely known except for

simple systems under white Gaussian noise excitation. The purpose

of the reseach is directed to obtaining the condition for the exis-

tence of the stationary probability density function. New approach-

es to the analysis of nonlinear stochastic systems are developed,

based on the concept of an invariant measure related to the station-

ary probability density function.

[Problem 2] Asymptotic Stability

The problem of great importance is the asymptotic behavior of

nonlinear stochastic systems dependent on their initial states,

which shows an inherent characteristics due to the existence of
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nonlinearities. As the procedure for examining the system stability,

the stochastic Lyapunov function approach has become well known. A

difficult step in the application of Lyapunov theory to analyse the

stability of stochastic systems is the construction of a suitable

Lyapunov function. There is indeed no general systematic procedure

for generating Lyapunov functions. This thesis is concerned with

developing a realizable approach to solve stochastic asymptotic sta-

bility for nonlinear systems, by constructing the stochastic Lyapu-

nov function taking into account the effect of the initial states,

associated with (1) a random parameter modelled by white Gaussian

random process and (2) two random parameters modelled by a white

Gaussian and a finite state Markov chain processes respectively.

[Problem 3] Noise Stabilization

The problem of stabilization of nonlinear dynamical systems

through the introduction of noise sources appears to be of great

practical significance. It is well known that unstable systems can

be stabilized by the introduction of a deterministic signal, in

particular, a sinusoidal one of sufficiently high frequency[36].

It has also been observed that deterministic systems operating in a

random environment possess stable characteristics and yet, when the

randomness is taken out of the environment, the system becomes un-

stable. From the viewpoint mentioned above, our final goal is to

clarify the situation in order to allow us to predict when an arbi-

trary random environment will stabilize an otherwise unstable state

of a nonlinear system, or under what conditions an unstable state

will be made stable by the introduction of noise.

In nonlinear dynamical or control systems, it is well known
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that the jump resonance may often occur with a consequent worsening

of control performances. Hence, in analysis and synthesis of non-

linear dynamical or control systems, it is very important to find

whether jump resonance can occur or not.

In deterministic systems, the jump phenomenon implies that the

amplitude and phase angle of the output exhibit jump response, as

the amplitude or frequency of the input is varied. On the other

hand, for systems with random inputs, in the past publications, the

jump phenomenon occurs between the input and the output variances

of the system response and the theoretical approach to analize the

jump phenomenon was based on the statistical linearization method

to stationary random input. However, the approach described above

can not give enough explanation of the response when jump phenome-

non occurs, because it becomes difficult to comprehend stochastica-

lly sample path behaviors of the response. The main purpose of the

study is to clarify the generating mechanism of jump resonance

occurring in nonlinear dynamical or control systems by evaluating

the probability density functions of input and output, in which

sample path behaviors will be shown with a digital simulation ex-

periment. Here, it is assumed that the random input to nonlinear

systems is a narrow-band random process whose signal power is re-

stricted to a very narrow frequency range. The results are com-

pared with the jump phenomenon in nonlinear dynamical systems sub-

jected to a sinusoidal input which has been already investigated

in detail.

1.3 Historical Background

For convenience of present descriptions, the historical back-
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ground is separately retrospected into the four versions.

1.3･A On the Stationary Response of Nonlinear Stochastic Systems

The Investigation of evaluating the response'of dynamical or

control systems subjected to random inputs was first developed by

the statistical theory. Many studies have appeared on responses of

linear systems with random noise by Laning & Batten[l], Crandoll[2],

Davenport & Root[3] and Lee[4], et al. On the other hand, in the

case of nonlinear systems, such approximate methods as the perturb-

ation and the statistical linearization have been developed in

order to extend a linear method of analysis to certain systems con-

taining small nonlinearities by Booton[5], Caughy[6], Pervonzvanskii

[71 and Sawaragi, Sugai and Sunahara[8]. These studies were made

by computing various response statistics such as mean-square res-

ponse, correlation function and response spectral density.

An area where more results are expected is the Fokker-Planck

equation associated with nonlinear stochastic systems. Although

there are a few papers with respect to the analysis "of Fokker-

Planck equation by Fuller[9], Stratonovich[10], et al., it is diffi-

cult to solve directly the Fokker-Planck equation for nonlinear

systems. The analysis of stationary responses of nonlinear dynami-

cal systems is to explore the existence of the stationary probabil-

ity density function of the Fokker-Planck equation. Recently, as a

useful analytical method for the existence of stationary responses,

the concept of an invariant probability measure[ll],[12],[13] was

introduced which was related to the stationary probability density

function. Using the concept of an invariant measure, necessary and

sufficient conditions for the existence of a unique invariant mea-
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sure were first given by Khas'minskii[ll] with respect to recurrent

diffusion processes. Existence and uniqueness conditions of an in-

variant measure of the solution process to a scalar stochastic dif-

ferential equation of Ito-type were shown by It6 and Nisio[14].

Following the results by Khas'minskii, Wonham[15]>[163 established

existence conditions of an invariant measure of vector stochastic

differential equations of It8-type, where the solution process was

restricted to the strongly Feller process. An extensive study was

reported by Benes[12] and Foguel[13] on the existence of an invari-

ant measure of Markov processes. Following the results of Benes

and the mean ergodic theorem, Zakai[17] established the condition

for the existence of an invariant probability measure for Feller

process. From the practical point of view, Sunahara, the Author

and Morita[l8] has developed two new approaches to give sufficient

conditions of the existence of the stationary probability density

function for the response of nonlinear dynamical systems, based on

the concept of an invariant measure.

The stochastic stability[19] has been studied by many investi-

gators. Pinsky[20] has given various conditions for the asymptotic

stability of the origin for a linear stochastic differential equa-

tion in both degenerate and non-degenerate cases, with a slight

different concept of the stochastic Lyapunov stability. For nonli-

near stochastic systems in the non-degenerate case, Wonham[l6] de-

fined the weak stochastic stability corresponding to Lagrange sta-

bility[21J in the deterministic system, based on the concept of

positive recurrent for the diffusion process. He showed that suffi-

cient conditions for recurrence and positivity were given through

the existence condition of an invariant measure for the diffusion
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process defined by the stochastic differential equation of It6-type

It6 & Nisio[l4] showed that the conditions for the diffusion proc-

ess to be a positive recurrent type can be characterized in terms

of Feller's probability measures[22],[23] and developed some gener-

al properties of the diffusion process of non-degenerate type in

the non-singular intervals on which Feller's probability measures

are given. Sunahara and the Author[24] has established a new ana-

lytical method for exploring stochastic behaviors of nonlinear dy-

namical systems of non-degenerate type, based on the knowledge of

sample properties of the diffusion process of positive recurrent

type.

1.3･B On the Asymptotic Stability of Nonlinear Stochastic Systems

In this section, we will survey studies on stochastic stabili-

ty problems for systems governed by continuous time Markov process-

es. Our concern will mainly be with the asymptotic behavior of

sample processes. Gihman & Skorohod[25] considered the asymptotic

stability of solutions in the mean of second-order moments of lin-

ear stochastic differential equations and their asymptotic behav-

iors. Khas*minskii[26] gave necessary and sufficient conditions

for stability in probability of an equiliblium solution to a class

of linear stochastic differential equation of Ito-type. Based on

Khas'minskii's theory, Kozin[27],[28] established some theorems

concerning necessary and sufficient conditions for almost sure

sample stability of second-order linear stochastic systems.

On the other hand, for the stability analysis of nonlinear

stochastic systems, the most useful technique .is an extention of

the deterministic Lyapunov theory[21] to nonlinear stochastic sys-
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terns. Bucy[29] recognized that stochastic Lyapunov functions

should have the super-martingale property and proved a theorem on

"with probability one" convergence for discrete parameter process-

es. Bucy's work is probably the first one to treat a nonlinear

stochastic stability problem by the extension of deterministic

Lyapunov theory. Some results, of the Lyapunov form, were given

by Khas'minskii[30]. Kushner[3U,C32] extended the idea of Bucy

to the continuous parameter systems and thus the range of applica-

bility of the stochastic Lyapunov function results of Khas'minskii.

Also, Wonham[l6] derived a weaker sufficient condition than

Khas'minskii's sufficient condition of the stochastic stability.

Furthermore, for the construction of a suitable Lyapunov function,

Kushner[33] proposed a method for construction of stochastic

Lyapunov functions. The stochastic stability theory untill now

was mainly developed only in the e-neighborhood of an equiliblium

point. However, the asymptotic stability of nonlinear stochastic sys-

tems depends strongly on the initial conditions. Taking into ac-

count the influence of initial conditions to stochastic stability^

Sunahara, the Author & Morita[34] have developed a new stochastic

Lyapunov function approach to explore the asymptotic stability for

a general class of nonlinear dynamical systems with a random para-

meter modelled by a white Gaussian random process.

In the case of nonlinear dynamical systems with a random para-

meter involving a finite state Markov chain process, the concept of

random evolutions by Griego & Hersh[35],[36], Hersh & Papanicolau

[371 and Hersh & Pinsky[38] is introduced instead of the averaging

principle because of the existence of parameters of a Markov chain

process. Based on the concept of random evolutions, Sunahara, the
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Author & Morita[39] investigated asymptotic stability of nonlinear

dynamical systems with two kinds of random parameters modelled by a

white Gaussian and Markov chain process respectively.

1.3･C Stabilization of Nonlinear Dynamical Systems

In this section, we shall briefly discuss some results on sta-

bilization of nonlinear dynamical systems as a rather significant

problem than the stochastic stability theory. A study of the sta-

bilization of unstable dynamical or control systems originated in

1956 by OrdenburgerC'IO]. 01denburger[40] has discovered that the

amplitude of the sustained oscillation which can be observed in an

unstable nonlinear control system either decreases or disappears by

applying a sinusoidal signal with the high frequency and the suffi-

ciently small amplitude. Lowenstern[4l] has given suggestions for

the stabilization of unstable dynamical systems through the statis-

tical analysis of oscillations in a parametrically excited linear

dynamical system for a restricted class of random excitations. A

theoretic ascertion of the stabilization of nonlinear control sys-

tem has already been established by Sawaragi, Sugai & Sunahara[8]

and Oldenburger & Sridhar[42] through the use of the statistical

linearization technique. The statistical linearization technique

is essentially a stochastic counterpart of the describing function

method which is commonly used for studying the characteristics of

nonlinear deterministic systems.

Furthermore, Bogdanoff & Citron[43] has reported on experimen-

tal results of stabilizing an inverted pendulum with vertical, al-

most periodic base motion. Theoretical conclusions that verify the

experimental results were investigated through the use of averaging
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method established by Bogoliubov[44] for systems with almost peri

odic time-varying parameters, in order to achieve approximate

moment stability results. Afterwards, the principle of averaging

was extended to parabolic and elliptic differential equations and

to Markov processes with a small diffusion by Gikhman[45]3

Khas'minskii[46] and Mitropol'skii & Kolomiets[47]- It was clear

that the method of averaging as applied to stochastic systems was

related to [43]. Using the extended averaging method[46], Mitchell

[48] has studied noise signals of an almost periodic type in con-

nection with stabilization of an inverted pendulum. Binia, et al.

[49] has treated the problem associated with nonlinear oscillators

driven by noise and Samuels[50] associated with the stabilization of

deterministic, linear; unstable RLC circuit by the introduction of

a white Gaussian noise to system parameters.

Prom theoretical viewpoints which we should examine sample

path behaviors instead of moment properties, Sunahara, Kozin & the

Author[51],C52] have shown the possibility of noise stabilization

for unstable nonlinear dynamical systems by applying the extended

averaging principle[46] and, furthermore, has established a general

rule for realizing the noise stabilizatiin of a general class of

second-order nonlinear systems.

1.3-D On Jump Phenomenon of Nonlinear Dynamical Systems

In the case of periodic input signals, using the describing

function method, rigorous conditions for generating jump resonance

have been completely studied by Sandberg[533, Hatanaka[54] and

Hayashi[55], et al. On the other hand, for systems with random

inputs, the method of statistical linearization due to Booton[56],

-10-



et al. has widely been used for the reseach of jump phenomenon.

Kyong[57] presented the statistical linearization criteria for

unique response for several common nonlinearities and showed that

an idealized saturation and an idealized deadzone yield jump phe-

nomenon among a restricted class of nonlinearities. Sawaragi &

Sunahara[58] recognized the jump phenomenon in the relation curves

between the standard deviation of stationary random input and that

of error signal, using the equivalent, linearization technique and

also verified the validity of the above theoretical investigation

through experimental studies of an analog computer.

Lyon, et al.[59] demonstrated analytically and experimentally

that jumps can occur when the oscillator is subjected to a narrow-

band random noise. The analytical work of Lyon, et al. is based on

a linearization method for which the necessary condition is that

the magnitude of fluctuations must be restricted. Using the associ-

ated Fokker-Planck equation, Sunahara & the Author[60] has develop-

ed a probabilistic approach to explore the generating mechanism of

the jump phenomenon occurring in a general class of nonlinear dynam-

ical systems subjected to a narrow-band random input.

In this dissertation, some classes of stochastic problems of

nonlinear dynamical systems subjected to white Gaussian random

noise are studied, i.e., (1) Existence of stationary responses and

their behaviors, (2) Asymptotic stability, (3) Noise stabiliza-

tion and (4) Jump phenomenon.

Chapter 2 is devoted to mathematical preliminaries related to

the theory of stochastic processes which will be used in the sue-
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ceeding developments. The mathematical model of the system is
es

tablished by the theory of Ito-type stochastic differential equa-

tions .

In Chapter 3, two new approaches are developed to give suffi-

cient conditions for the existence of the stationary probability

density function for the response of nonlinear dynamical systems.

The principal line of attack is directed to show existence condi-

tions of an invariant measure related to the stationary probability

density function. Two approaches are presented : one is to choose

a suitable Lyapunov-like function and another to find out an arbi-

trary function satisfying the martingale property of Markov proc-

esses. A new analytical approach is developed in Chapter 4 to ex-

plore stochastic behaviors of nonlinear dynamical systems of non-

degenerate type. The key problem is to examine the existence of an

invariant measure for stochastic systems with the differential

generator of non-degenerate points. Two theorems are demonstrated

giving sufficient conditions for the existence of the stationary

response and for the convergence of sample trajectories to the sta-

tionary state with a certain probability appraisal, based on the

knowledge of sample properties of positive recurrent type.

In Chapter 5, emphasizing the influence of the initial state

on dynamic behaviors of a general class of nonlinear stochastic

systems, a new approach to analize the asymptotic behavior is

developed, where a new type of stochastic Lyapunov function plays

a key role to solve the problem, taking the dependence on the ini-

tial states into account. The mathematical model of a dynamical

system is given in the form of a general class of nonlinear differ-

ential equations with a state dependent random parameter. Several

-12-



theorems are stated giving sufficient conditions of the asymptotic

stability in the case where the random parameter is modeled by a

white Gaussian noise process multiplied by a nonlinear function.

Furthermore, the approach presented here is directly extended to a

class of nonlinear stochastic systems with a random parameter

modeled by a finite state Markov chain, using the concept of random

evolutions.

Chapter 6 develops the noise stabilization of a class of

second-order nonlinear dynamical systems. The analytical method

is based on the application of the averaging principle established

by Khas'minskii. The noise stabilization term added to the system

is selected in the modified form of the white Gaussian noise pro-

cess. The determination of a stabilizing signal can be performed

through the procedure that the singular point at where the diffu-

sion disappears is obtained and sample path behaviors around the

singular point are examined. Thus the possibility for realizing

the noise stabilization on Duffing type nonlinear dynamical sys-

tems is theoretically shown. Chapter 7 is concerned with exten-

sions of the method in Chapter 6 to a general class of nonlinear

dynamical systems. In this Chapter, general conditions are ob-

tained through an application of the averaging principle due to

Khas'minskii as well as the properties of the singular points of

Markov process generated by the It6-type nonlinear differential

equation. The classification of singular points is established in

terms of relative relations of both the drift and diffusion terms.

Applying the general rules established here, stabilization studies

are performed in a number of classical cases for various noise co-

efficients.
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In Chapter 8, a probabilistic approach is developed for the

purpose of exploring the jump phenomenon occurring in the response

of a general class of nonlinear dynamical systems subjected to a

narrow-band random input. The response of nonlinear dynamical sys-

tems considered is related to the narrow-band input generated as

the output of a lightly damped linear system excited by a white

Gaussian signal. The relation is derived between probability den-

sity functions with respect to the squared values of magnitudes of

the response and the related narrow-band input. The multi-valued

response of the system is evaluated, including the theoretical exa-

mination of generating mechanism of jump phenomenon.

Throughout all chapters, digital simulation studies are demon-

strated to show the validity of the theories presented.
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Chapter 2 Mathematical Preliminaries

2.1 Diffusion Process

2.1. A Definition of Diffusion Process

Let (E,B) be an arbitrary measurable space, E a finite or

countable set and B the a-algebra of the measurable sets generated

by the open sets of the space (E,B). Let us consider a given

Markov transition function P(t,x,A), xeE, AeB, t>0. Together with

the fundamental properties of the function P(t,x,A)[61], we shall

assume that P(t,x,E)=l for all t>0. That is, the corresponding

Markov process is not cut off. Furthermore, the following condi-

tions (C-l)~(C-3) will be assumed to be fulfilled.

(C-l) For any arbitrary e-neighborhood U (x) of the point x,

l-P(t,x,U (x)) = o(t) uniformly in x in an arbitrary com-

pactum KcU.

(C-2) For an arbitrary bounded B-measurable function f and for
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each t>0, T.f(x) = / P(t,x,dy)f(y) defines a continuous
Z E

function of x/1 where Tfcis the semi-group of linear oper-

ators.

(C-3) For an arbitrary xeE, t>0, and for any open set U, the rela-

tion P(t,x,U) > 0 holds.

Then, it is known[6l] that there exists a homogeneous Markov

process x(t) satisfying

(C-4) For any compactum K and any s>0,

P [{x(t)eK,0<t<s} n {x(t) has a discontinuity for 0<t<s}]

=0 .

(C-5) x(t) is a strong Markov process.

A process x(t) for which conditions (C-l)~(C-5) are satisfied

is called a diffusion process.

*2
2.l.B The KolmoKorov Equations for Diffusion Processes

Let {x(t),t>0} be a continuous stochastic process of the

Markov type defined on the real line ; that is, x(t) is a Markovian

random variable, depending on a continuous parameter t, which

assumes values in the state space R = {x;-≫<x<<≫}- In this section,

we derive and study the Kolmogorov diffusion equations associated

with continuous Markov processes on the real line. Let

sl This property has been studied in detail by Girsanov in [62].

Processes for which (C-2) is satisfied are called strongly Feller

in [62] .

*2 For studies on Kolmogorov equations for diffusion processes,

we refer to the books of Fuller[9], Dynkin[6l], Friedman[63], Ito

[64] and Bharucha-Reid[65], e.t.c.
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(2.1) P(t,x;t,y) = P {x(-r)<y|x(t)=x}, T>t

denote the transition probabilities of the process {x(t),t>0}

Naturally, it can be also written that

(2.2) P(t,x;t,y) = P(x-t,x,y).

For t and x fixed, P(t,x;ir,y) is a continuous function of t. In

addition, P(t,x;-r,y) is a (conditional) distribution function in y

satisfying the usual conditions,

(2.3) lim P(t,x;T,y) = 0, lim P(t,x;T,y) = 1.
y-*_co y+oo

If the mean and variance of the change in x(t) during the time

interval At are defined by the following truncated moments,

(2.4) lim A. /
At-K) Z

and

(2.5) lim

At-KI
is I

(y-x)d P(t-At,x;t,y) = b(t,x)
|y-x|< 6 y

(y-x)2d P(t-At,x;t,y) = a(t,x)
y-x|<6 y

the backward Kolmogorov equation is obtained by [60]

(2.6) - 3P(tsx;T,y) = l&(t
>x)

82P(t ,x;t
?y) + b(t,x)3P(t,x;t,y)

Similarly, the density function p(t,x:x,y) satisfies

(2.7)
3p(t,x;-r,y) _ 1 , v32p(t,x;T,y) ., v8p(t ,x;t ,y)

o X

We can also derive the so-called Kolmogorov's forward

equation, which is also called the Pokker-Planck equation, as given

by

to R^ 8p(t,x;x,y) _ 182[a(x,y)p(t,x;x,y)] 8[b(x,y)p(t3x;x,y)]
C2-a) 3t " 2 ,2 + 8y

°y

The forward equation is the formal adjoint of the backward equation,

and it will be of interest in this thesis.
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Equations (2.7) and (2.8) are rewritten respectively by

(2.9)

where

9p

3t

(2.10)

and

= Lp

L(;) = Ja(t,x)^-y- + b(t,x)-^-

oX

(2.11) ff-l/p

where

(2.12) LV) - l92[a(T?y)(-)] +

3y

9[b(T,y)(-)]
3y

The operator L is called the differential generator of the diffu-

sion process and the quantities a(t,x), b(t,x) are called respec-

tively the diffusion coefficient and the drift coefficient. Also,

*
L is the conjugate differential operator of L.

Let both a(t,x) and b(t,x) in Eq.(2.10) depend on x, and not

on t. For the term a(x) in (2.10), if there exists a point x=x
s

satisfying a(x)=0, the differential generator L of (2.10) is said

to be degenerate type. Otherwise, if a(x) * 0 for all x, (2.10) is

said to be non-degenerate type.

2.1.C Diffusion Process on the Real Line

Let x(t,(jj)be a Markov process in E starting at the point

C in the half-infinite interval [0,≫) with the differential gener-

(2.13) L = U2(x)^ + V(x)f-

where both the drift coefficient V(x) and the diffusion coeffi-

cient U2 (x) are polynomials in x and these satisfy Lipschitz and
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uniform growth conditions. Since diffusion processes are defined

to be Markov processes with continuous trajectories, this leads in

a natural way to a discussion of x(t) as a diffusion process on the

interval I=[r,,r ] where -<=°<r <r <°°.

Interesting situations arise when the diffusion is singular

for which the following relation holds,

(2.14) U2(x) = 0.

2
A point x=r for which U (r )=0 is called the singular point, where

s s

rn<r <ro. There are two types of singular points depending on the

value of the drift coefficient V(x) at the singularity.[66]

[Definition 2.1] A point r s

provided that V(r )=0.
s

for which U2

[Definition 2.2] A point r for which
s

(left) shunt, provided that V(r
s

u2

)>0 (<0).

(r )=0 is called a trap,
s

(r )=0 is called a right

Prom the physical viewpoint, it may be observed that a sample

process of the diffusion process is obviously singular at the point

x=r , because, if there is no diffusion there, the process becomess

r2

2
Pig.2.1 A sample process x(t) in the case where U (r )=0
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deterministic at that point as shown in Pig.2.1. It is also

ous that a sample process does not move any more at the pom s

provided that there are no diffusion and no drift at that point.

This situation expresses the trap. A positive (negative) drift at

the singularity causes the particle to be shunted to the right

(left). These heuristic discussions are stated in probabilistic

terms by the following lemma.

[Lemma 2.1] [67],[68]

Let P {･} be the probability of the event "･'" associated with

the trajectory x(t) with the initial value x(0)=xo.

(1) If a point r is a trap, then

(2.15) Pr{ x(t)=rs for all t>0 } = 1.

In this case, almost all trajectories which originate at z,remain

at that point. Also, almost all trajectories which originate to

one side of the trap will never cross it. Either the trap is never

reached or if it is reached, the trajectory stays there.

(2) If a point r is a left shunt, then
s

(2.16) P { x(t)<r for all t>0 } = 1.

In this case, almost all trajectories originating at a point r~

instantaneously leave that point to enter the neighborhood to the

left side of a point r . Therefore, a trajectory never returns to
s

r with probability one. A similar statement holds to a right
s

shunt.

Lemma 2.1 gives a considerable amount of knowledges about

sample trajectories at or near singularities. However, this is not

sufficient to determine the stability of sample processes. In
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order to make the sample stability more clear, we shall classify

the boundaries of the interval I=[r.,r_J formed by the singulari-

ties on the r-direction. Detailed aspects of the classification

may.be found in References[22],[23],[68] to the present case. For

the classification of boundaries, we shall consider the differential

generator (2.13) on the interval [r,,r?j and define the function,

(2.17) B(x) = / 2V(C)U"2(C)d?
0

where r. is a fixed value in I. Also, the canonical scale and the

canonical measure are introduced, which are respectively defined by

(2.18)

(2.19)

ds(x) = exp{-B(x)}dx

dm(x) = 2U~2(x)-exp{B(x)}dx,

where s(x) is a continuous to the right and increasing function on

[r,,v ,] and m(x) a continuous and increasing function. We shall

denote,

(2.20a)

(2.20b)

(2.20c)

(2.20d)

al

wl=

°2 =

y2 =

// ,dm(x)ds(y),
r-,<x<y<r-,

// ,ds(x)dm(y),
r1<x<y<r1

// ,dm(x)ds(y),
r2>y>x>r2

// ,ds(x)dm(y).
r2>y>x>r2

The boundaries of the interval [r, ,r~] are classified according to

the behaviors of the speed and scale measures near r,

the functions a. and y. (1=1,2).

and r? via

The boundaries are first classified as to whether they are ac-

cessible or inaccessible and then further subdivided into regular
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or exit if accessible and entrance or natural if inaccessible.

[Definition 2.3] The boundaries r±, 1=1,2 are classified as

follows:

ri
is accessible if a.<°°

regular if y .<°°

exit if y.=°°

entrance if y.<0°

natural if y±=°°

A boundary is accessible if there is some probability that it will

be reached in a finite time [68]. Otherwise it is inaccessible.

However, the explanation of the inaccessibility is not sufficient

for the behavior of the process in the interval [r^r,,] because, as

was discovered by Doob [68], a natural boundary can be asymptoti-

cally approached with probability one although it is never reached.

This leads to a further subdivision of inaccessible (natural)

boundaries.

[Definition 2.4] An inaccessible (natural) boundary r± will be

called locally attractive if s(r.) is finite and locally unattrac-

tive if s(r. ) = +°°

The asymptotic behaviors of x(t) trajectories in the interval

[r,,r J can now be determined in terms of these difinitions 2.1,

2.2,2.3 and 2.4. As examples: (1) {r,,r?} = {exit, entrance}. As

shown in Case 1 in Pig.2.2, the probability is zero that the x(t)-

process can reach the boundary r~ and almost all trajectories leave

the interval [r ,r J at 1^. The boundary r±is either 'trap1 or

'absorbing boundary' and the boundary conditions must be imposed.

-22-



r

r

I = Cr1,r2J
2

2

al<oo'yl=o°

exit

rl

Case 1

a2=°°'y2<0°

entrance

r2

CT1<O°'M1<O°

regular

Case 2

02=C°'U2=CO

natural
(locally unattractive)

al=00'lil<<x>

entrance

a2=°°'y2=°°

natural
(locally attractive)

Case 3

Pig.2.2 Illustrative Examples of the x(t)-trajectories

by Classification of Boundaries.

(2) {r,,r } = {regular, natural (locally unattractive)}. As shown

in Case 2 In Pig.2.2, the process can reach the boundary r with

some probability in a finite time and the behavior after reaching

r. can be determined by imposing boundary conditions. Also, the

process can not go to the boundary r~ because r_ is locally un-

attractive natural boundary. (3) {r,,r2} = {entrance, natural (

locally attractive)}. As shown in Case 3 in Fig.2.2, almost all

trajectories originating within the interval [r,,r~] approach the

boundary r? asymptotically as t->-°°without ever reaching r , since

r is locally attractive natural boundary.
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2.2 Averaging Principle

The averaging principle has been established for partial dif-

ferential equations of the form, 3u/3t = eL(t,x)u, where L is the

second-order elliptic or parabolic differential operator and e

sufficiently small constant.

The averaging principle is stated as follows,

[Theorem] (Khas'minskii)[46]

The solution of the Cauchy problem for the partial differen-

tial equation of the form 3u(t,x)/9t = eL(t ,x)u(t ,x) as e-≫-0may

uniformly be approximated over an interval of time which is O(l/e)

by the solution of the equation 8v(t,x)/3t = eL (x)v(t,x) where

t is O(t/e) and L is an operator whose coefficients are obtained

from those of L(t,x) by averaging with respect to time, where

L (x) is described by

(2.21) L°

More concisely, the following relation holds:

(2.22) lim P { supm |u(t,x)-v(-,x) | = 0} = 1
e+0 r [t,x]eEu;xi £

where I_, = [0,T)

Principal symbols used here are listed below:

t : Time variable, particularly present time

tQ : The initial time at where the system trajectory

starts

x(t) : A scalar or vector stochastic process representing
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the system state

f(t,x),g(t,x) : A scalar or vector nonlinear function with respect

to x
k

E{

S(

m(

t) : A white Gaussian random process

t) : A one-dimensional standard Brownian motion process

･} : The mathematical expectation

r) : An invariant measure

r)

r)

: A canonical scale measure

: A canonical speed measure

L(-) :

P(t.x:-r,r

)

)

The differential generator

A stochastic Lyapunov function

: The transition probability which the x(x)-process

with x(t)=x is included within Borel sets T, i.e.,

Pr{x(T)er|x(t)=x}

p(t,x) : The joint probability density function with res-

pect to t and x

a(t) : A Markov chain process

z(t) : A narrow-band random process

E : An n-dimensional Euclidean space
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Chapter 3

Existence of Stationary Response for Nonlinear

Dynamical Systems of Degenerate Type

3.1 Introduction

In recent years, considerable interests have arisen in the

response of nonlinear dynamical systems subjected to random excita-

tion. Among many practical problems related to nonlinear stochas-

tic systems, extensive researches have been directed toward finding

the existence of the stationary response for randomly excited non-

linear second-order systems. In many cases, exact solutions are

not available and then methods of approximate analysis must be well

developed for nonlinear systems. In spite of mathematical diffi-

culties of nonlinear system analyses, the analysis of stationary

responses has been developed through the evaluation of mean-square

responses by utilizing such approximate methods as the perturba-

tion and the statistical linearization and furthermore by measure-

ments of autocorrelation function or spectral density.[lj~[5],[8]

On the other hand, another useful technique for exploring the

stationary response of nonlinear stochastic systems is the applica-
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tion of the Pokker-Planck equation with respect to the probability

density function of the solution processes. The exposition of the

Pokker-Planck equation will be given, with emphasis on steady state

solutions.

Let r(t) be the n-dimensional random process whose components

are denoted by x ,x~,･･･,x . We may now define the Markov process

to mean that the conditional probability density function that r

lies in the interval from r, to r,+dr, at time t , from r? to r_+

dr2 at time t,,･･･, from r ,
n-1

to r ,
n-1 n-1

at t , ,
n-1

depends only

on sample values of r at t and t .., i.e.,

(3.1) P(^n5tn|r1,t1;r2,t2;...;rn_13tn_1) = P( r^n I V-l'Vl^

We shall write a general expression of the conditional probability

density function by using a form of the transition probability

density function p(r,t;r(t+At),t+At). The transition probability

density function p(r,t;r(t+At),t+At) means a sample movement from

r to r(t+At) during a time interval At, based on the assumption

that the sample value was r at time t.

With background knowledge of the Markov process theory- a

parabolic partial differential equation can be derived in the form,

(3.2)
2

IE = yv 3P + I y ii 3 P

3t i i3x± 2iLj.i,j8x13xj.

where i,j=l,2,･･･,n. In deriving Eq.(3.2), the following assump-

tions must be made. The first and second incremental stochastic

moments of the movement in an infinitesimal period of time are pro-

portional to At so that the following limits exist:

(3.3a) V, = llm jr f , v(Ax) pd(Ax)
1 At->-OAt E('n; X
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and

(3-3b) U = lim ^r / , ,[(Ax)(Ax) ] pd(Ax)
3 At->0 EV ; J

where [(Ax) (Ax)' J. . is the (i.J)-th element of (Ax) (Ax). A further

assumption has been introduced in which the higher moments are of

the order of (At).

Our problem is to examine whether or not there exists station-

ary solution p*(r) of Eq.(3-2) as t-≪°.If the stationary probabi-

lity density function p*(r) exists, this implies the existence of

stationary responses in nonlinear stochastic systems. Then, by

letting t+°°and setting 9p/9t=O in Eq.(3.2), the probability densi-

ty function p (r) may be obtained from the Pokker-Planck equation.

However, it is generally difficult to find out the existence of the

stationary probability density function p (r) for nonlinear stocha-

stic systems.

Now, we shall consider the one-dimensional r(t)-process with

the following differential generator,

(3-4) L (■) = U2(r)^-^ + V(r)^-.
dr

ar

This differential generator L plays an important role to analize

the stationary responses, that is, the stationary probability

density function p (r), of nonlinear dynamical systems. Both the

2
coefficients U (r) and V(r) in (3-4) imply that, in the representa-

tion of It6-type stochastic differential equation, the former cor-

responds to diffusion based on the stochastic movement and the

latter to drift based on the deterministic one respectively. Prom

the description of Section 2.1.B, for the diffusion term U (r) in
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r(t)

fc

r=rs

0
t

Pig.3-1 System Behavior of Degenerate Type

p
(3.4), if there exists a singular point r=r satisfying U (r)=0,s

the dynamical system is said to be of degenerate type. Otherwise,

2if U (r)*0 for all r, the dynamical system is said to be of non-

degenerate type.

In this Chapter, we shall consider behaviors of the r(t)-

process only in the degenerate type dynamical system. The system

response of degenerate type is shown by the trajectory I in Pig.3.1,

where r=r is a singular point. In the stationary response of de-
s

generate case, only the deterministic behavior appears, based on

the drift term V(r), because the stochastic movement disappears at

a singular point r=r .
s

In practice, the dynamical system with state-dependent noise,

that is,

(3.5) x + w2x + eg(x,i) = x£(t)

may be considered to be of degenerate type, because the differen-

tial generator of (3.4) is, though the derivation is shown after-

wards, obtained by
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(3.6) Lr(O 4V^ + V(r)^
dr

and then has a singular point r =0. Generally, the existence of

x£(t) effects as an unstable component which obstructs the stabili-

ty condition L V < 0.

The purpose of this Chapter is concerned with the condition

for the existence of the stationary probability density function

p (r) and to deal with two new approaches to the analysis of non-

linear stochastic systems of degenerate type, based on the concept

of an invariant measure.

In Section 3.2, as a mathematical preliminary, the relation

between the transition probability density function and the invari-

ant measure is briefly explained. The condition for the existence

of an invariant measure is described in Section 3･3 by two differ-

ent methods: i.e., one is Lyapunov-like function approach and

another martingale approach. As examples, in Section 3-4, we show

the behaviors of two kinds of nonlinear dynamical systems subject-

ed to random excitation, including the results obtained by digital

simulation studies.

3.2 Mathematical Preliminary

For convenience of discussion, let r(t) be the scalar Markov

process with the differential generator.

2
(3.*0 L (･) = U2(r)^-^- + V(r)^-

The definition of an invariant measure is stated as follows:
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[Definition 1](Dynkin[69]): For AeB(Borel set), if y*0 and if

(3-7) v(A) = / my(dr)P(t,r,A),

then the measure p is invariant for the r(t)-process where the

transition probability P(t,r,A) is defined by

(3-8) P(t,r,A) = P{r(t)eA|r(0)=r}.

The equality (3-7) shows the relation between the transition

probability and the invariant measure.

With an additional but simple condition, it is known that

there exists a probability density function p (r) associated with

P(t,r,A) such that [16]

(3-9) y(A) = / mp*(r)dr .

Furthermore, the probability density function p (r) is the nor-

malized positive solution of

(3-10)
2 * *

U2(r)^-E=- + V(r)|§- = 0 ,

9r dr

which corresponds to the one-dimensional expression of Eq.^-1*).

From the equality (3.9), the invariant measure is strongly

related to the stationary probability density function. In the

sequel, our major attention is focussed on the invariant measure y

rather than the transition probability or the stationary probabili-

ty density function.

3.3 Existence Conditions of an Invariant Measure

Two approaches are developed in this section, stating suffi-

cient conditions for the existence of an invariant measure. We

shall consider again the one-dimensional Markov process r(t) which

is called the diffusion process. In Eq.O.^I), the points r satis-s
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fying

(3-11) U2 (rB) = 0

are called the singular points at which the diffusion motion dis-

appears. Thus the singular points are those specified to be

treated in the following discussion.

Approach

We need the following two lemmas.

[Lemma 3-U (Khas'minskii[ll]) If the one-dimensional diffusion

process r(t) satisfies ; (a) for every initial state, any bounded

region preassigned on the real line [0,≪0 is hit eventually w.p.l,

(b) the hitting time has a finite expectation, then there exists

a unique invariant measure y on the Borel sets of E .

Before the statement of Lemma 3-2, we introduce a real-

valued function V (r) with the following properties;
J_i

(P.I) V is defined for reD where D ={r:r^R}- and where R is an
Lt V V

arbitrary positive constant.

(P.2) VL is continuous in 5 and is twice continuously differen-

tiable in D .
v

(P.3) VT(r)>0, reD and VT (r)-≪°as r-≪o.
Ir ＼7

With the properties (P.I) to (P.3), the following lemma holds:

[Lemma 3-2] (Wonham[l6]) If there exists a function VT(r) with

the properties (P.I) to (P.3) and if

(3-12) L VT(r) < -1, reD .

then the r(t)-process satisfies Lemma 3-1 and has an invariant

measure.
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However, Lemma 3.2 can not give the condition for the exist-

ence of an invariant measure y(A) to the nonlinear dynamical sys-

tem with the differential generator (3-^), because it is still un-

known whether the condition (3.11) holds for any conditions of co-

efficients U (r) and V(r) in (3.4) and furthermore for any func-

tions of V (r) with properties (P.I) to (P. 3). In particular- as
o

mentioned by Eq.(3.10), when the diffusion term U (r) in Eq.O-^)

has the singular points, it is, in general, difficult to establish

the condition for the existence of an invariant measure. Then, in

this chapter, we propose an extensive approach to determine condi-

p
tions of coefficients U (r) and V(r) for the existence of an in-

variant measure y(A), through the construction of a Lyapunov-like

function VT(r).

Suppose that, within the semi-infinite interval 0<r<o°,the

differential generator (3.6) has only one singular point for which

Eq.(3-11) holds.

(i) Define a new process c(t)=r(t)-r for r <r<°°and write the
s s

differential generator L by

(3-13) Lr = uj;(?)^p + Vr(?)-f ■

(Jl) Similarly, define a new process n(t)=r -r(t) for 0<r<r and
s s

write the differential generator L by

(3.14) S = u2(n)_^ + vn(n)4

For the c(t)-process defined, the following theorem holds:

[Theorem 3-U If the coefficients of the differential generator
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(

3.13) satisfy the following conditions

(C.I) U^U) * 0 for ?>0

(C.2) Y(O = ≫(5)exp{ L°-^^ > ls mtegrable,
5 u£(z)*(z)

,5oVz)

where $(?) = exp{ / ―?
? u£(z)

dz }

and £0 is an arbitrary positive constant, then, the ?(t)-process

has an invariant measure in the neighborhood of ?=0.

(Proof) Define the function V (?) by

(3-15) VT(?) = ( exp[/ °-£ d
L

0 y Uj(n)

W5°
y U^(z) z

Prom Eq.(3.15) and the property (C.I), since

(3-16)

the function VT

function V

= exp[/ u-^ dn
5 U^(n)

? U^(z)

U-§ dn>dz]dy
U^(n)

z

ov (n)
u-| dn>dzj > 0,

(?) is a monotone increasing function. Hence, the

U) satisfies the properties (P.I) to (P.3). With the

conditions (C.I) and (C.2), it follows that

(3.17)
5 L ? y2( }

(O -

xexp[/
? U (z) z

-34-
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= -exp[/ 0 1

U*(z)

For 0<c<£0, it is apparent that

xp{-/?
z

(3.18) / U / cxp{-/ °-§ dn}dz > 0

c u^(z) z u£(n)

ov.(n)
U-§ dn>dzj < 0
u£(n)

Hence, it is obvious that

(3-19) ＼＼U)
~~1'

Consequently, by using Lemma 3.2, the s(t )-process has an invariant

measure within the interval 0<£<£_.

For the interval 0<n<r
3 by

using the differential generator
~ s

(3.1*0, the same result as shown by the inequality (3-19) is

easily obtained.

Thus the sufficient conditions for the existence of an invari-

ant measure with respect to .the r(t)-process are established within

the semi-infinite interval 0<r<°°.

On the other hand, for any Borel-measurable continuous func-

tion f, recognizing the fact that the equality (3-7) is equivalent

to

(3-20) / (1) f(r)y(dr) = ./ (1) Ttf(r)y(dr),

it can be stated that if there exists a measure satisfying (3-7),

then it is equivalent to P(t,r,A),[11] where, for all t,

(3.21) Ttf(r) = / (1) f(x)P(t,r,dx),
E

where T, is a linear operator which forms a contraction semi-group
t

such that, for each fixed r, the function T.f(r) is continuous in
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t, and.then has the following properties; (1) positive preserving,

(2) || T || < 1 . This fact stimulates us to originate another
ap-

proach termed the martingale approach.

3-3-B Martingale Approach

This approach is based on the following lemma. First of all,

our attention is directed to the z(t)-process with the differential

generator L defined by Eq.(3-13) ■

[Lemma 3-3] (Benes[12]) If

(3-22) '.< 1)
T f(?)v(cl?) = /

(1)
f(?)T*y(d?) < - ,

E

the c(t)-process has an invariant measure, where T is the adjoint

operator of T,.

Furthermore, we need the following lemma.

[Lemma 3.4] (Doob[70]) Let the ^(t)-process be an Itd-type stocha-
p

stic process with bounded diffusion coefficients, 0<U (O<°°.

Suppose that

(3-23)

If

(3.24)

£{exp k(0) I } < °°

L f = 0,

then the corresponding stochastic process {f[?(t)], t^O} is a

martingale.

However, it is, in general, difficult to construct the martin-

gale function f[^(t)J satisfying the condition (3.24) in Lemma 3.4.

The method proposed here is to find sufficient conditions for the

existence of an invariant measure y(A), through the construction
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of a martingale function f[c(t)]. The following two theorems are

stated, based on lemmas mentioned above.

[Theorem 3-2] Let ?(t) be a stochastic process of It6-type and

£{t(0)}<°°.If the function f(c) defined by

0 z

is bounded and continuous for 0<£<°°,then f[c(t)] is a martingale.

(Proof) The <;(t)-process is a stochastic process of It6-type with

the differential generator (3.13). From the definition (3.20), it

is apparent that f[?(t)] is a continuous and twice continuously

differentiate in 0<c<°°.Furthermore, using (3.13). it follows

that

(3.26) L f = u2(?)[―I exP{/ °-| dn}]

+ ＼
rnv (n)

U)exp{/ -§ dn> = 0
5 u^(n)

Then, with the help of Lemma 3-^, it is obvious that f[?(t)] is a

martingale.

[Theorem 3-3] If Theorem 3-2 holds and

5(0) rnVr(n)
(3.27) f[?(0)] = / exp{/

u-|
d

0 z U^(n)

r|}dz < ≪>

then, there exists an invariant measure n(A) for the ^(t)-process.

(Proof) Set

-37-



(3-28) T*y(A) = P(t,r,A).

Then, from (3.22), we have

(3-29) /
(1)

f(C)Tj(dC) = / (1) f(e)p(t,c,ciO.

If the function f(O is given by Eq.(3-25), it is obvious that

(3-30) 5{f[c(t)]|c(0)=5} = f[?] < ≫≫

because f[?(t)] is a martingale. This implies that the inequality

(3.22) holds. Hence, the 5(t)-process has an invariant measure

y(A).

For the n(t)-process with the differential generator (3.14),

an analogous theorem to Theorem 3-3 is easily stated.

3. 4 Illustrative Examples

We shall consider the second-order nonlinear stochastic dif-

ferential equation,

(3.3D x + o)2x + eg(x,i) = <5h(x,x)£(t)

Equation (3-3D may be considered to be a generalization of a mathe-

matical model of dynamical systems, where g(x,x) expresses the

system nonlinearity, ?(t) is a Gaussian white noise process, and

h(x,x) is a nonlinear function by which various kinds of excita-

tion h(x,x)5(t) are generated. The nonlinearities g(x,x) and

h(x,x) contain both velocity and displacement terms and may depend

on the past history of the system. It is assumed that u , e and 6

are constants and that both e and 6 are small in some sense such

that the system is lightly damped, weakly nonlinear and that the

system response is related to a random excitation with a relative-

-38-



ly small magnitude.

Let the state variables be x=x, and x =x? respectively. Then,

Eq.(3-3l) is expressed by the nonlinear stochastic differential

equation of It6-type[66],[71],

(3.32a) dX;L = x2dt

(3.32b) dx2 = -{a)2Xl + egtx^x^Mt + 6h(xl3x2)dw(t)

where the w(t)-process is a Brownian motion process and this has

been introduced through the relation[72],

t
(3-33) w(t) = / ?(s)ds.

0

Naturally, the following properties are well-known ; £'{dw(t)}=0,

£{(dw(t))2} =c?2dt.

In order to convert the two-dimensional stochastic process

(x-^Xp) determined by Eqs.(3.32a) and (3.32b) into the one-

dimensional stochastic process r(t), letting

(3-31*) x1 = ^sin(4i-cot), x? = -rcos(i|)-ut),

then,

(3-35) r2(t) = o)2x2(t) + x2(t)

and after somewhat tedious calculations using the averaging prin-

ciple^] (for more detail, see Ref.[51]), the following differ-

ential generator can be obtained;

(3-36) Lp = U2

where

<"4 + V(r)A 5

-3 9-



(3-37) U2 (r) =
2 n 2tt

tsf' h

2
r

2 i 2ir ?
(3-38) V(r) = %^-/ h (-

2
os6,rsin6)sin 9d6,

os9,rs

2
m6)―-―a 9

2tt
+ 5-/ g(-cos6, rsin9)sined6

d-n Q to

and ili-wt = 6+1T/2, and where it has been assumed that <5
= £ .

3.4.A Example-1

Let the nonlinear functions g(x,x) and h(x,x) be given by

(3-39) g(x,x) = g(xl5x2) = x^ + 2ax2

and

(3.40) h(x,x) = h(xl3x2) = y

respectively, where a and Y are constants. With Eqs.(3-39) and

(3.40), we have

(3.4la) dx± = x2dt

(3.4lb) dx = -{co2x1 + e(x^ + 2ax2)}dt + Sy&w.

Equation (3.4l) is a mathematical model of dynamical systems

with the nonlinear restoring force of cubic order and excited by

a Gaussian white noise. We set y as a positive constant. When

£(t)=0, i.e., dw=0, it is already known that the system is stable,

provided that a>0, while the system is unstable, if a<0.

From (3-37), it can easily be shown that

(3.42) u2(r) =
^/27r

Y2Bln2ed0 =
oV

0

Hence, no singular points exist. Furthermore, the fact that the
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system (3-^1) has no invariant measures is a direct consequence of

the application of Theorem 3.1 and 3.3. In fact, since

(3.43) V(r) =
22^o Y

2 2

it follows that

2cos26,Q
――d9 - ar

ar,

(3-44) f $(r)dr = / Anr~1exp(^^r2)dr = ≫
0 0 ° ay

and

(3-45) / Y(r)dr = / A r-1exp(-4＼r2)
0 0 U aV

where AQ=?0

x exp{/ °-^Texp(=|^x2)dx}dr = ≫
ray a y

3.4.B Example-2

Instead of (3-40), letting

(3.46) h(x,x) = h(x15x2) = yx1,

then, it may happen that there exists a singular point. Thus, we

can clearly understand the behavior of sample trajectories of the

system, based on the existence of an invariant measure and the

related stationary probability density function. The system equa-

tion is

(3.47a) dx = x^t

(3.47b) dx2 = -{u>2x, + e(2ax2 + x^)}dt + Syx^w
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Equation (3-^7) is a mathematical model of dynamical and/or control

systems excited by a random noise which is proportional to displace-

ment of the system. Another practical example is considered to be

a mathematical model of nonlinear systems containing a random co-

efficient because, from (3.47), we may write

(3-^8) x + 2eax + {w2 - Syk(t)}x + ex3 = 0.

Prom (3-^7) and (3.48), the diffusion and the drift coeffi-

cients are respectively computed to be

O q ^
(3-49) U2(r) = i-i/ I2rcos2esln2ede

0 u

o2Y2 2

16a

(3-50) V(r) =

o2v2
= (a y

0 u,2 r

a)r

Prom Eq.(3.49), the singular point is r =0, i.e., the origin. In

particular, this point is a trap because V(0)=0. With the help of

(1.H9) and (3.50). $fr1 and V(r) are resoectivelv

0
(3-51) $(r) = exp{/ [(

r

and

―^j - a)/ ^-xjdx}
I6u ' I6a)^

(3.52) ＼(r) = A0r-1+l6aa)2/CT2Y2eXp{l6^/r0x-l+l6aa,2/a2Y2dx}

ay r

where An
=r> l-l6cx(02/a2Y2

0
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2 2 2
(A) The case where (l6aw /a y )<0 (a^O)

With the help of (3-51) and (3-52), examinations of (C.2) and

(3.27) become respectively,

(3.53) /C $(r)dr = k/ r-l+l6au)2/a2Y2dr = ,,

and

£

(3-54) / ＼(r)dr = AQ/

r

x /

r

0

0 -1-16c≪d2
.A. /^2dx}dr = oo

Then, Theorems 3.1 and 3-3 do not hold. Consequently, in this case,

since the stationary probability density function does not exist

and Eq.(3-10) may not be applicable.

(B) The case where (l6aco /a y )>0 (a>0)

In this case, we have

(3-55) / Y(r)dr = °°
0

and

(3-56) f[c(O)] < - .

Thus, although Theorem 3.1 does not hold, Theorem 3.3 holds. This

implies that Theorem 3-1 gives a sufficient condition and strongly

depends on a choice of Lyapunov-like functions. However, bearing

2 2 2in mind Lemma 3.3, it can be concluded that if l6aw /ay >0, then

the system has an invariant measure and sample trajectories ap-

proach the origin. This is also examined by digital simulation

studies in the sequel. Thus, the existence of the stationary

-4 3-



probability density function p*(r) depends on whether the value of

K=l6aw2/a2Y2 is positive or not. However, it should be noted that,

from (3.5D3 we have

(3.57) lim /S(r)dr = lim a/ r"1+l6aU /a Y dr

a2-*-0"0 a2-*00 0

― 00

It is obvious that , as the value of a or y becomes larger, the

value of k becomes smaller. The digital simulation studies are

performed on Eq.(3.47). Naturally, the value of < does not indi-

cate a critical value but gives an estimate guaranteeing the exist-

ence of an invariant measure, i.e., the stationary solution p (r)

of the Fokker-Planck equation. It is worthwhile to show the

sample trajectories obtained by digital simulation studies. A wide

variety of sample runs determined by Eq.(3.47) were simulated on a

digital computer. Figure 3-2 shows a representation of sample

runs where, through the experiments, a constant step-size of time

intervals was taken as At =0.01(sec). A set of parameter values

was preassigned as w =0.1, e=0.1 and 6=0.3. Figure 3.2(a) shows

a sample run in the case where a<0 for which the existence of the

stationary probability density function p'(r) can not be expected

and the system without an exciting force is inherently unstable.

Three sample runs are plotted in Fig.3.2(b). The dotted line, Y=0,

corresponding to the deterministic trajectory with initial value

r =0.52. The initial state in the case in which the system was

2
excited by a random input with a variance a =1 was also r =0.52.

Through the simulation experiments, in the case in which the system

was excited by a random force with a small magnitude, the sample

-4 4-



5uO

3D

1.0

0
50

Example I (the case where a<0)

dx, = Xjdt

dx,= -
[o.1x,.ai(-Q5vx?)j

dt-0.1x,dw

x,(0)= x/0)=:a5, r(O)= o.52

r= JO.1xf.xi

(time)

(a) Damping coefficient a = -0.5

zo

1.0

0.52

0

Example 2

dx,= Xidt

dx,= -[o.lvO.l(x..x!)]dt-0.1x.dw

xf.0UxA0) = 05. r(0)=052

r = jaixj.xj , a = I.O

o2=5

50 100

I

150

(b) Damping coefficient a = 1.0

Pig.3-2 Sample path behavior of the system given by

Eq.(3.47).
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runs converge to the singular point rs=0. On the contrary, as the

magnitude of a random exciting force becomes larger, sample runs

do not bring any information to conclude the existence of a sta-

tionary probability density function. This can be seen in

Eq.(3.57), stating the fact that as the magnitude of an exciting

force becomes larger, the possibility of the existence of the sta-

tionary probability density functions becomes remote.

Two examples presented above have a singular point at the ori-

gin r=0. However, there exist many other cases where the system

has a singular point at r=r *0. Practical examples have already
s

been shown by the authors associated with studies on the noise

stabilization of nonlinear systems[51],[52]. For example, we shall

consider again the nonlinear dynamical system given by

(3-58) x + u2x + e(ax + 3x3) = -6h(x,x)£(t)

where

(3-59) h(x,x) = h(r) = ar|r - r | .

When 5(t)=0, the system behavior shows the limit cycle which is

regarded as the unstable state. Our purpose is to eliminate the

limit cycle by using the influence of the additional term h(x,x)

x£(t). In this study, a key assumption is the existence of the

at
stationary probability density function p . It becomes possible

to justify this assumption by applying the approach presented here.

The system has a singular point r=r where r is the preassigned
s s

location of a singular point for the purpose of realizing the sta-

bilization. Then, we shall examine the behavior of the processes
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in the two intervals I = [0,r

interval I
V Eq.(3-13) becomes

1 and I =[r ,°°). First, in the
5 Co

(3-60) Lc =
^U+

rB)5^l +
4^4

.

According to the same procedure as cases of 3.4.A and 3.4.B, we have

(3.61) / $(n)dn = /
o o

and

(3-62) / Y(n)dn = /
0 0

where K,=£

K2-?0
(Va 2a2(r

Tl < ≫,

00

s

2 2
, a= Va a K^^ and 0<a<l and where

0+1>8≫.

Prom the results of Eqs. (3.6-1) and (3.62), it is obvious that

Theorems 3.1 and 3-3 hold. Furthermore, it is a simple exercise to

obtain the. same result in the I interval as in the interval I .
n ?

Consequently, it can be concluded that the behavior of the r(t)-

process converges to the singular point r=r
s

results were already shown in [51].

w.p.l. Simulation

3- 5 Summary

In this chapter, two new approaches have been developed to

examine the existence of the stationary probability density func-

tion for the response of nonlinear dynamical systems. One is to

choose a suitable Lyapunov-like function and another to find out

an arbitrary martingale function. Both approaches presented here
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give sufficient conditions of guaranteeing the existence of the

stationary solution of the Fokker-Planck equation. Naturally- a

choice of a type of Lyapunov-like functions depends on the non-

linear characteristics contained in the dynamical system consider-

ed. However, the present methods provide an exploration of the

asymptotic behavior of a wide class of nonlinear dynamical systems

around the singular points. There is an additional advantage to

the present methods, which can be used to find out the possibility

of realizing the noise stabilization of unstable nonlinear dynami-

cal systems, which will be described in Chapter 6.

-4 8-



Chapter 4

Stochastic Behaviors of Nonlinear Dynamical

Systems of Non-degenerate Type

4.1 Introduction

We shall again consider the r(t)-process with the following

differential generator.

2
(4.1) L (･) = U2(r)^-^- + V(r)^-,

r
dr

ar

which was obtained by the nonlinear stochastic differential equa-

tion (3-3D or (3.32). (for more detail, see Section 3･4) In

Chapter 3 already presented, for the nonlinear dynamical system of

p
degenerate type with U (r )=0 in (4.1), sufficient conditions were

s

shown that the r(t)-process converges to a singular point r in
s

the stationary states.

In this Chapter, we shall consider stochastic behaviors of

2
nonlinear dynamical systems of non-degenerate type with U (r)*0

for all r in (4.1). The system behavior of non-degenerate type is

shown by the trajectory I in Pig.4.1, where a point r=r satisfies
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r=

r(t)

ro

re

0
t

Pig.4.1 System Behavior of Non-degenerate Type

V(r )=0 but U2 (r )*0 and the trajectory H represents the determi-

nistic behavior converging to a point r=r . Accordingly, since

there is always U2(r)*0 for all r, the system behavior of non-

degenerate case is that the stochastic movement is added to the

deterministic dynamics H , whether the system is stable (in this

case, the r(t)-process converges stochastically at r=r

unstable.

as t･+･<*>) or

In practice, as the structure of dynamical systems with

an external noise, there exist a lot of systems of non-degenerate

type. For example, the dynamical system with an additive noise as

h(x,x)=c(=constant) in Eq.(3.31), that is,

(4.2) x + to2x + Eg(x,i) = c?(t)

may be considered to be of non-degenerate type, because the dif-

ferential generator of (4.1) is, using Eqs.(3-37) and (3-38),

obtained by
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(4-3) Lr(-) = Jc2a + V(r)^i

and then (4-3) has no singular points.

Comparing with the case of a state-dependent noise x£(t), the

additive noise c£(t) operates as an undeterministic component to

the system dynamics. Accordingly, in the non-degenerate case, it

is an important problem how these dynamical systems, corresponding

to the level of random noise, converge stochastically to some

domain under any conditions in the stationary states.

In Section 4.2, the description of the problem to be solved

here is explained. In Section 4.3, for behaviors of nonlinear dy-

namical systems of non-degenerate type, two main theorems are

demonstrated giving sufficient conditions for the existence of the

stationary response and for the convergence of sample trajectories

to the stationary state with a certain probability appraisal. As

illustrative examples, in Section 4.4, we show the behavior of two

kinds of nonlinear dynamical systems subjected to random excitation,

including the results obtained by digital simulation studies.

4.2 Problem Statement

As a mathematical preliminary, the relation between the tran-

sition probability density function and the invariant measure was

already explained in Chapter 3. The purpose of this chapter is to

examine both the existence of the stationary response and the

asymptotic behavior of nonlinear stochastic systems that the r(t)-

process which starts from the given initial states converges to

some domain with a certain probability when t-≪°.Figure 4.1 illus-

trates the analytical procedure which will be developed in the
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tern

2/
＼

2 2, 2
r (t)=0) x1+x2

Differential Generator

L=U2

dr

U2(r)Jf0

ds, dm

Existence of Stationary
p.d.f. of Fokker-Planck Eq.

dr
p(t,r)-*p*(r)

Positive Recurrent

Existence of an Invariant Measure

y(A)= /
(1 P(t,r0>A)dp(r),

y(A)= / p*(r)dr

Pig.4.2 Illustration of Analytical Procedure

sequel. First, as shown in Pig.4.2, the differential generator L

of the r(t)-process will be found by applying the averaging princi-

ple by Khas'minskii to the Kolmogorov equation derived by using the

polar coordinate transformation. Secondly, the concept of positive

recurrent related to the knowledge of sample properties is intro-

duced, by which the sufficient conditions for the existence of an

invariant measure y(A) will be obtained. This result implies that

there exists the stationary probability density function p (r) with

respect to the r(t)-process. Finally, applying the relation that

the canonical measure m(r) is equivalent to an invariant measure

y(A), the probability appraisal P(t,r,A) that sample behaviors

converge to some domain will be examined.
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Conditions of an Invariant Measure and Analysis of

We shall consider the one-dimensional Markov process r(t) of

non-degenerate type. In Eq.(4.1), the sets of all non-singular

points satisfying

(4.4) U2 (r) * 0

are particularly called the non-singular intervals which are either

semifinite or finite. Now we take any non-singular interval I =

[r.,r.J on which Feller's scale ds and the speed measure dm are

given as [65],[73]

(4.5) dm(r) = ^-exp{/ -J^4n}dr
U (r) aU (n)

and

(4.6) ds(r) = exp{-f p(n)dn}dr,
ralT(n)

where r is an arbitrary point assigned in I , s(r) a right-

continuously increasing function and m(r) continuously increasing

function.

Using Eqs.(4.5) and (4.6), the following two lemmas hold,

which are already known.

[Lemma H.I] (K.It6 and M.Nisio[l4]) If the canonical scale ds and

the speed measure dm are characterized by

CO OQ OO
(H.f) / ds(r) = °°,/ ds(r) = ≫ and / dm(r) < °°

0 r. 0

where rQ is an arbitrary point in I=ro,≪). then the r(t)-process

is positive recurrent
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[Lemma 4.2] If there exists a non-singular finite interval I -

[r±,r.J such that, for the drift term V(r) of the differential gen-

erator (4.1), V(r.)>0 and V(r.)<0, then the r(t)-process is positive

recurrent.

Since the proof is straightforward by [14], the description of

the proof is omitted here. Prom the lemmas 4.1 and 4.2, the follow-

ing fact is already known. [14],[74]

[Lemma 4.3] If the r(t)-process is positive recurrent in the non-

singular interval I or I there exists an invariant measure y(A).

Based on the lemmas 4.1 and 4.3, the following theorem holds.

[Theorem 4.1] Let the r(t)-process be with the differential gener-

ator (4.1). For Eq.(4.1), It is assumed that

(C.I) U2(r)=a(=constant)>0 in re[O,°°)

(C.2) V(r) is a continuous and bounded function for all r except

for r=0.

■,r
(C3) The function exp{―/ V(n)dn) is continuous and bounded in

a

re[0,°°),has O(l/rn) as t->-°°and, furthermore,

, r
lim exp{^/ V(n)dn} = 0.
r->≪> a

Then, there exists an invariant measure y(A).

(Proof) First, the speed measure dm is examined. The integral in

Eq.(4.7) may be

OO |p 00
(it.8) / dm(r) = / L dm(r) + / dm(r)

0 0 r.
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where r=rT is sufficiently large and r <rT. Prom the conditions
Li a Li

(C.1),(C.2) and (C.3)5 it is obvious that dm(r) is continuous and

bounded in [0,r ] and then the following result is obtained;

(4.9) /^

0

dm(r) = / L -exp{-/ V(n)dn>dr < °°
0 a ara

Nextly, we shall consider the second term of the R.H.S. of the

integral (4.8). As any function ＼＼>(r)which is positive in the

interval rT<r and integrable at r=≪>5 we set

(4.10) Mr) = l/rn (n>l)

Then, it is obvious that

OO 00
(4.11) / ij)(r)dr = / -^dr =

rL rLr

where K is positive const-ant.

(n-l)^"1
= K

If the following relation,

(4.12) jexp{i/ V(n)dn} < ^r (r £ r)

holds for a sufficiently large r, it becomes that

(4.13)

= K < °°.

Accordingly, we shall examine whether Eq.(4.12) holds or not. Now,

letting

a

r a sufficiently large r, it be

<=°. , r °°-,
/ ^exp{i/ V(n)dn}dr < / -±&r

(4.14) P(r) = n
r

^-exp{i/ V(n)dnl

a

and using the condition (C.3)5 it can be obtained that
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(4.15) lim F(r) = lim [

= 0

1,

n
v

1 1
r

- ±exp{-/ V(n)dn>]
a a'

and

(4.16) dP(r)/dr = 0.

Prom Eqs.(4.15) and (4.16), F(r)>0. Then, Eq.(4.12) holds. Prom

the results of Eqs.(4.9) and (4.13), it follows that

oo oo r
(4.17) / dm(r) = f -exp{-/ V(n)dn>dr < °°.

0 ° a
a ra

Nextly, Peller's canonical scale ds is examined similarly as in the

case of dm. Applying (C3) to the calculation of ds, we obtain

00 00 1"
(4.18) / ds(r) = / exp{-/

0 0 r

n)dr = °°.

Also, it is obvious that

oo
(4.19) / ds(r) = <*>.

ra

Prom the results (4.17), (4.18) and (4.19), since Lemma 4.1 holds

and the r(t)-process is positive recurrent, we may conclude from

Lemma 4.3 that there exists an invariant measure u(A).

Theorem 4.1 reveals that there exists an invariant measure y(A)

within the interval I=[0,°°). Consequently- we may conclude that

the stationary sample trajectories of the r(t)-process exist with-

in the interval I. As shown in Fig.4.3, we shall consider behav-

iors of the r(t)-processes in detail. In the case of a determin-

istic system, the sample trajectory converges to the point r=r as

shown in Pig.4.3(a), provided that the system is stable and the
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(a)

(b)

r=0

r=0

rc

ri ve

V(r)>0 ―|― V(r)<0

V(re )=o

Pig.4.3 Concept of Positive Recurrent

p = oo

r = oo

point r is the equilibrium point. On the other hand, in the case

of stochastic systems, this equilibrium point r=r represents a sta-
c

2
ble singular point corresponding to both U (r )=0 and V(r )=0. How-

ever, in the case of nonlinear stochastic systems of non-degenerate

type considered here, there exists only a point r which satisfies

U (r)＼0 but V(r)=0.. Let this point be r=r , as shown in Pig. H. (b).

Naturally, if no random excitation exists, then r =r . We shall
C ' C

t
consider a finite non-singular interval I =[r.,r.J including the

point r=r . If there exists a point r=r satisfying V(r )=0 and

if, in the neighborhood of r=r , V(r.)>0 at r=r. and V(r.)<0 at r=

r., it follows from Lemma 4.2 that sample trajectories converges to

i
to r=r in I as shown in Pig.4.3 (b), wherever they start with any

initial values. In this case, by giving the probability appraisal

which sample trajectories of the r(t)-process converge to the inter-

t
val I , nonlinear system behaviors of the non-degenerate type can

be examined clearly within the non-singular interval I. In the

present chapter-, through the relation between the canonical measure
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m(r) defined by (4.5) and an invariant measure y(A) given by (3-7),

an approach has been developed to obtain the transition probability

P(t,r ,1 ) which the r(t)-process converges to the interval I .

We need the following; two lemmas, fll 1,F751. F761

[Lemma 4.1] If y(E(1)

(4.20) P(t,rQ,A) =

where E^ =[0,°°).

)<<*>, then for any AeB,

3
)

ro e E^

it holds that

[Lemma 4.5] The speed measure m(A) is equivalent to an invariant

measure y(A), that is,

(4.21) y(A) = / P(t,rr.,A)dm(r) = m(A)

Based on the lemmas 4.2, 4.4 and 4.5, the following theorem

holds :

[Theorem 4.2] Take any finite non-singular interval I =[r.,r.]el.

If Theorem 4.1 holds and if, for V(r) of Eq.(4.1), the following

assumptions hold :

(C.4) there exists only one point r=r such that V(r )=0 in the

!
interval I .

T
(C5) for any point r<r in I , V(r) >0 and for r>r , V(r)<05e e

!
then, the r(t)-process converges to the point r=r within I . The

t
probability that the r(t)-process converges within I is given as

(4.22) Pr(r(t)el |r(O)=ro)

-58-



3?

v± U^(r) raU (n) / 0 U^(r) r U^(n)

(Proof) By Theorem h.l, in the non-singular interval I=[Q,°°),the

r(t)-process has an invariant measure y(A). From (C.4) and (C5)5

the r(t)-process satisfies Lemma 4.2. Then, the r(t)-process is

positive recurrent in the non-singular finite interval I =[r.,r.J

t
and then converges to I . Using Lemma 4.4, the probability

P(t,rn,I ) which converges to I is given by

(4.23) Pr(r(t)el'|r(0)=r0) =y(l')/y(I).

Furthermore, using Lemma 4.5 and Eq.(4.5), it follows that

(4.24) Pr(r(t)el'|r(O)=ro) = m(l')/m(I)

= / , dm(r) / / dm(r)
I / I

= /^ ^-^xp{/r ^dn}dr/f -2^exp{/r -|^dn}dr
t± U2(r) raU^(n) ' 0 U^(r) r&U (n)

*t.4 Illustrative Examples

h.H.k Example-1

Let the nonlinear function e(x,x) and h(x,x) be given by

(4.25) g(x,x) = g(xl3x2) = x^ + 2ax2

and

(4.26) h(x,x) s h(xl5x2) = 1

respectively, where a is a constant. With (4.25) and (4.26), the
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system equation is

(4.27a) dx1 = x2dt

(4.27b) dx2 = -{"^ + e(x^ + 2ax2)}dt + 6dw.

Equation (4.27) is a mathematical model of dynamical systems with

the nonlinear restoring force of cubic order and excited by white

Gaussian noise. When dw(t)=0, it is already known [771 that the

system is stable, provided that a>0, while the system is unstable,

if a<0.

Prom Eq.(4.27), the r(t)-process is the scalar Markov process

with the differential generator,

(t.28) L ( ) = u

dr

where, using Eqs.(4.2) and (4.3), the diffusion and drift coeffi-

cients are respectively computed as

(4.29) n2oi = ° 1 {
U KV) 2 2TT-1

and

(4.30) V(r) =

sin2
2

ede = ＼-

2
Prom Eq.(4- 29), since a=a /4, there exists no singular point

because U2(r)*0. With the help of Eqs.(4.29) and (4.30), we shall

examine the conditions of Theorem 4.1 ;

(i) (4.29) and (4.30) satisfy the conditions (C.I) and (C.2) res-

pectively.

(iD Examinations of (C.31 become,
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(4.3D Hm exp{/ -^^dn} = llm R rexp(-^r2)
r-0 r&U*(n) r+0 U a1

= 0 (for a>0)

and furthermore

(4.32) lim exp{/ g(n)dn} = 0 (for a>0)
r->-oo r u (n)

a.

2
where R =exp(2ar /a

U 8l
2>/v

= ≫ (for a<0)

These results imply that the condition

(C3) is satisfied only when a>0. Consequently, the system of

Eq.(4.27) has an invariant measure y(A) if and only if a>0 and then

Eq.(4.27) has the stationary response.

In order to clarify the characteristics of the stationary

response, we shall apply Theorem 4.2 to Eq.(4.27)- Prom Eq.(4.30),

V(r )=0 holds only when

(4.31*) r = re = /a2/4a .

t
Considering the non-singular interval I =[r.,r.J with r=r in

i .1 e

(4.34) where r1<rg and r. *re this interval I satisfies the condi

tion (C.5) of Theorem 4.2. Furthermore, with the help of (4.29)

and (4.30), the calculation of Eq.(4.22) becomes,

(4.35) Pr(r(t)el' |r(O)=rQ) = exp(-^fr^){l-exp[-^|(rj-r^)]}

If the values r. and r. are fixed, then the probability P (-) can
i J

r

be evaluated which the r(t)-process converges to the non-singular

T
interval I in the stationary states.

The validity of the theoretical results obtained above is
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shown through digital simulation studies. Figures 4.4 and 4-5

show a representative of sample runs determined by Eq.(4.27), in

the case where r = 0.16 In Pig.4.4, while a sample run in Pig.4.5

is in the case where r =0.25, respectively. Through the experi-

ments, a constant step-size of time interval was taken as At=0.01

2
(sec) and the variance of a white Gaussian noise was a =1.0. A set

2
of parameter values in Pig.4.4 was preassigned as 0^=1.0, a=10, e=

0.01 and 6=0.1 and in Pig.4.5 as a=4, e=0.02 and 6=0.14. Both of

the initial values in Pigs.4.4 and 4.5 were set as ro=2.O, respec-

tively. The solid line I represents the behavior of the determin-

istic system, which converges to the stationary state r=0 after t=

50 sec and the solid line U shows a representative of sample runs

of the stochastic systems. In Fig.4.4, the sample trajectory r(t)

converges to I, with r =/a /4a=0.l6 and, from Eq.(4.22), we have

the summarized results,

(4.36) Pr(r(t)e[0,0.32]|r(0)=2.0) = 0.86

under the conditions r.=0 and r.=0.32 in Eq.(4.35). Similarly,

Pig.4.5 shows a sample run which converges to Ip=[0,0.50] with P

=0.86 where re=0.25. It is confirmed that both Figs.4.4 and 4.5

demonstrate the sample behaviors to show the validity of the theo-

4.4.B Example-2

Let the nonlinear function g(x,x) and h(x,x) be given by

(4.37) g(x,x) s g(xl5x2) = -(l-x^)x2

and

(4.38) h(x,x) = h(xn,x_) = y
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'2

r

2.0

1.0

0.32
0.16

0 50 100 t

Pig.4.4 Sample Behavior of the System given by Eq.(4.27)

( The Case of l|= [0,0.32])

r

2.0

1.0

0.50

Q25

Deterministicsystem

dX|/dt=x2

dx2ybt=-(U|2x,*e(xl3+2ax2))

Stochasticsystem

dx,=x2dt

dx2=-((j,2x1+e(x,3+2ax2))clt*6dw

nmn 77 nrrrriTin

a=4.0, £=0.02,6=0.14

x,(O)=2.O,x2(O)=O

rnn n m n ifvrm r

0 50 100 t

Pig.h.5 Sample Behavior of the System given by Eq.(4.27)

(The Case of I = [0,0.50])
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respectively, where y is a constant. Then, we have

(4.39a) dx1 = x2dt

(4.39b) dx2 = -{x1 - e(l - x^)x2>dt - Sydw.

Equation (4.39) is a mathematical model of nonlinear dynamical sys-

tems of Van der Pol type when dw=0. Using Eqs.(4.2) and (4.3), the

diffusion and drift terms are respectively computed to be

(4.40) U2

and

a2v2

(4.41) V(r) =
4j^

+ J(2 - ＼)

Since no singular points exist from (4.40), an application of

Theorem 4.1 brings the following results,

(i) It is obvious that Eqs.(4.40) and (4.4l) satisfy (C.I) and

(C.2), respectively.

(H) With the help of Eqs.(4.40) and (4.4l), the calculations of

r

(4.42) lira exp{/

r-+0 r
a

and furthermore

(4.43) lim exp{/
p-≫-oo

r

h 2
n) = lim Rrexpt-^ij-d -£)}] = 0

r->0 1 ay 4 6

2 2 2
where R = exp{r (r -6)/6a y }/r ･

-L 3. 9. &

Equations (4.AI2) and (4.43) imply that there exists an invari-

ant mfiasure ＼i(k)in Kn.fil.^QV
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Similarly as in Example-1, we shall clarify the system behav-

iors by applying Theorem 4.2 to the system (4.39). From Eq.(4.4l),

it is obvious that V(r )=0 holds only when

(4.44) r = r = [2 + A + 2a2y2~＼1/2.
e

We shall consider the non-singular interval I = [r.,r.J including

r=r obtained by Eq.(4.44). It is obvious that i' satisfy (C.5) of

Theorem 4.2. Furthermore, with the help of Eqs.(4.40) and (4.41),

the computation of Eq.(4.22) becomes,

(4.45) P (r(t)el'|r(0)=r )

r

4.0

3.0

2.56

2.06
2.0

1.56

0

n

Deterministicsystem

dx,/dt=x2

dx2/dt=-(x1-e0-x12)x2)

Stochasticsystem

dX)=x2dt

dx2=-(xl-e(1-x12)x2)dt*6Ydw

Y=0.71, e=0.1 ,6 = 0.32

x,(O)=A.O, x2(0)=0

13

7' n n n n n nnumin nrn rr

/jL

Fig.4.6

LI LI LI LI ±1111.

200 t100

Sample Behavior of the System given by Eq.(4.39)

(The Case of l'= [1.56,2.56])
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= / Jrexp{-^(r2-^-)}dr/rrexP{^2(r2-^-)}dr
r. ay ' 0 ay

exp{_(l_HV)exp(^_(r2_2())}_exp{_(1_a_]L)exp(_^_(r2_it))}

exp{-(l-^1!L)exp(―J^)}
a y

A result of simulation experiments is shown in Pig.4.6. Parameters

of £0.(4.39) were set as a2=l, y=0.71 and e=0.1. The initial value

was r =4.0. The solid line I shows- the limit cycle with the radius

/~2 ?
r=/x1 + X2=2.0 in the stationary state after t=50 sec. The solid

line H represents a sample trajectory of the r(t)-process which

converges to the interval I_ including a point r=r =[2+/n-2a2Y2]1/'2

=2.06 with the probability P =0.96. This value is easily obtained

by Eq.(4.45), letting r±=1.56 and r.=2.56.

Detailed aspects of stochastic behaviors of the nonlinear

Table 4.1 Comparison of Convergence Point between

Deterministic and Stochastic Systems

＼^ystem State

Examples ^-＼

Convergence Point

Deterministic
system

Stochastic
system

Example 1

Eq.(4.27)
r = 0

c
r = / a2/ka
e

Example 2

Eq.(4.39)
r = 2.0

c
r = [2+/4+2a2Y2l1/2
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dynamical systems considered in Examples 1 and 2 are summarized in

Table h.l. In these two numerical examples, it is interested in

observing that the stationary state of the deterministic dynamical

system is shifted by the application of random excitations, for

instance, in Example-1, the steady state r = 0 of the r(t)―process

shifted into ro= / a /ha by the existence of random noise with the
2

variance a The steady state in Example-2 is also shifted from

r =2.0 for the deterministic system to r = [2+/l+2a y ] for the

st-.nf.hflRf-.ip.nnfi.

4.5 Summary

In this chapter; new analytical approaches have been develop-:

ed to explore the asymptotic behaviors of nonlinear stochastic

dynamical systems with the differential generator of non-degenerate

type. Two theorems were demonstrated giving sufficient conditions

for the existence of the stationary response and for the conver-

gence of sample trajectories to the stationary state with a certain

probability appraisal. As the result, it was verified that the

stationary state of the deterministic dynamical system is shifted

by the application of random excitations. The validity of the

methods presented here was shown through sample trajectories per-

formed by digital simulation studies.
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Chapter 5

Stochastic Stability of Nonlinear Dynamical

Systems consideringInitial States

5.1 Introduction

One of remarkable features in behaviors of nonlinear dynamical

systems is the system response to be dependent on initial con-

ditions, which is an inherent characteristics due to the existence

of nonlinearities. Then, the initial value as strong as nonlinear

characteristics effects on the asymptotic stability of solution

processes. In the version of nonlinear stochastic systems, based

on the background knowledge of the stochastic process theory; there

are some investigations [25],[31],[33],[71] of stochastic stability,

considering only the nonlinear characteristics in their dynamics.

However, none has established any new generalized method, which

clarifies the effect of initial states on the system behavior.

This is because the stability analysis until now has been concerned

with the asymptotic stability for the sufficiently small initial

state near the origin and then the general analytical approach has

not yet been established to a global asymptotic stability for
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every initial states.

Now, let x(t,rQ) be the solution process of the stochastic

system starting at the initial state r , where x(t,r ) is the n-

dimensional state vector and where x(t,0)=0 an equilibrium point.

If the solution process x(t,rQ) starting at the neighborhood of the

equilibrium point takes a finite value for all t, the equilibrium

solution is said to be stable. The definition of the asymptotic

stability is stated as follows:

[Definition 5-1] (Stochastically asymptotic stability)

The equilibrium solution is said to be asymptotically stable

with probability more than e., if the equilibrium solution is

stable and, for en=en(rn)>0,

P{ lim sup || x(t,rQ)|| = 0 } > eQ, eQ = 1 as rQ-> 0
t~*"°°

holds. Here, || ･ || denotes the absolute value norm.

[Definition 5.2] (Stochastically asymptotic stability in the large)

The equilibrium solution is said to be asymptotically stable

in the large, if the equilibrium solution is stable and, for every

initial value r eE^,

P{ lim sup || x(t,rn

holds.

)|| = 0 } = 1

The concept of stochastic stability described above is shown

in Pig.5.1. Now, we shall consider trajectories of the x(t)-

process starting at the initial state r_. The x(t)-processes

starting at rm show the case that the behaviors are dependent on
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0:Equilibrium

point

Asymptotic stability

Asymptotic stability

in the large

Pig. 5-1 Concept of Asymptotic Stability and.

Asymptotic Stability in the Large

the initial states by effects of the nonlinear characteristics.

Accordingly, the x(t)-processes are asymptotically stable with pro-

bability en. On the other hand, the x(t)-process originating at rQ2

is asymptotically stable in the large which reaches to the equilib-

rium point w.p.l for every initial states.

This chapter is concerned with a realizable approach to solve

stochastically the asymptotic stability for nonlinear systems with

(1) a random parameter modeled by a white Gaussian random process

and (2) two random parameters modeled by a white Gaussian and a

finite state Markov chain processes respectively. Figure 5-2

illustrates the analytical procedure which will be developed in the

sequel. In the former case, for the purpose of finding the differ-

ential generator of the r(t)-process, the averaging principle by
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Fig.5.2 Orientation of Analytical Procedure

Khas'minskii is applied to the Kolmogorov equation derived by using

the polar coordinate transformation. On the other hand, in the

latter case, the concept of random evolutions is introduced instead

of the averaging principle because the system involves the parame-

ter of Markov chain type. The system stability is finally examined

by using the differential generator in terms of stochastic behav-

iors of the r(t)-process.

A stochastic Lyapunov function approach to explore the asym-

ptotic stability is demonstrated in Sections 5-2 and 5-3, taking

into account the influence of the initial conditions. In Sections

5-4 and 5.5, a general class of nonlinear dynamical systems with

two random parameters is considered. For the purpose of examining

the asymptotic behavior, the concept of random evolution is intro-

duced. Section 5.6 is devoted to demonstrating illustrative examples.
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with Basic Equation

We shall consider a nonlinear dynamical system modeled by

(5.1) x + o)2x + eg(x,x) = 6h(x,x)|(t)

with the given initial values x(0)=xn and x(O)=x where e and 6

are small constants, g and h nonlinear functions respectively and

i(t) a white Gaussian noise and where "'" expresses the differen-

tiation with respect to time t. Equation (5-1) may be considered

as a generalization of mathematical models of dynamical systems

such that the system is lightly damped, weakly nonlinear and that

the system response is related to a random excitation with rela-

tively small magnitude [51],[521.

With x=x
1'

x=x
2' Eq.(5.1) is expressed by the following sto-

chastic differential equation of It8-type [79],

(5-2a) dx1 = x2dt

(5.2b) dx2 = -{co2Xl + eg(x1,x2)}dt + Sh(x13x2)dw(t)

where the w(t)-process is the Brownian motion process with the

2 2following properties; S＼{dw(t)} =0 and 2?,{(dw(t)) }=a dt, where

a is a constant.

It can easily be expected that the two-dimensional dynamical

system given by (5-2) is converted into the one-dimensional systerr

along the relation,

(5-3) xn = ―sine, x_ = rcosG.
J. to i.

Naturally, the converted one-dimensional process r(t) is
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After somewhat tedious calculations using the averaging prin-

ciple[80], it may be found that the r(t)-process is Markovian with

the differential generator (see Chapter 4).

(5-5) Lr = U2(r)

where

7? + T(-'^ ･

(5.6) U2(r) =
2 2u ,

£― /
h (-sin6,rcos9)cos 6d9 ,

2 2n . 20
(5-7) V(r) = fc /' h^(^Sine3rcos9)^pAae

1 ,2t: r
+ p~-/ g(-sin9,rcose)cosede

2and i|>-oit= 8+t:/2, and where it has been assumed that 6 =e

5-3 A New Lyapunov Function

We need the following lemma associated with the asymptotic

stability criteria of the r(t)-process.

[Lemma 5.1] For a fixed m, assume the following conditions (A.I)

to (A.3):

(A.I) WT(r) is non-negative and continuous in the open set Q =
j_/ m

{ r ; WT(r)<m }-
Li

(A.2) r(t) is a right continuous strong Markov process with the

weak infinitesimal operator A defined in Q

(A.3) A W (r) = -k(r) < 0.

Letting R = Q n { r ; k(r)=0 }, then
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(b.8) Pq{ lim r(t)eRm } > 1

t->-t≫

where P_

process starts with r(0) =rQ

(5.9) PQ { lim r(t)eR } = 1

(5-10) p { lim r(t)=0 } = 1

t->-°°

WL <v
5

m

{･} is the probability of {･}, provided that the r(t)-

at the initial time t = 0

Furthermore, assume that the assumptions (A.I) to (A.3) hold

for vm>0. Letting Rlu °°,R, then
m=l m

Since the proof is straightforward by using the super-

martingale property of WT(r), we shall omit to write here.

The following theorem gives sufficient conditions of the

asymptotic stability with probability one.

[Theorem 5.1] For an arbitrarily fixed initial value r(0)=r_3

assume that the coefficients of L in (5.5) satisfy the following

conditions:

(C.I) U2(r) = 0 if and only if r = 0, and V(0) = 0.

ro
(C.2) lim |-Jini|exp{/ -^W < -

r+0 U (r) r ITU)

(C3) /" -V^Z < -･
r0U2(?)

Then, for any initial value rne[0,≫), the following equality holds:

(Proof) Let ijj(t)be an arbitrary positive smooth function such
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CO

(5-11) / i|)(r)dr < ≪

0

Define WT(r) by

(5.12) W

r ro

(r) i / eXp{ / (-UH + *(5))d5 }dn

0 n U^(c)

Prom (5.12). it follows that

dW (r) rO ,,.
(5.13) ―^― = exp{ / (-Jill + M?) )d?}.

r U2(?)

and

d2W (r) , rO ... .
(5.14) ^― = -[-ml + 4,(r)Jexp{ / (-HSl + *(S))dC}.

dr U (r) r U (O

Hence, it can easily be examined that

(5.15) L W (r) = -U2(r)^(r)exp{ / (-^£l + *(e))dt}
L r U^(r)

£ 0.

The assumptions (A.I) to (A.3) are thus satisfied and WT(r)

becomes a Lyapunov function, if the following conditions (c.i) and

(c.ji) are satisfied:

(c.i) W (r) ■* <>°as r ■* °°.

Li

(c.ji ) For any bounded r,

dWT(r)

WL(r) < ~, -^-
< CO

d2WT(r)
I S―I < -

dr

With the definition (5.12), the first condition (c.i) is

ro

V,M
(5.16) lim exp{ / ( gU; + i()(c))d?} * 0

r-*≫ r U (£)
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or equivalently

(5.i7)
r

(
0

+ iKC))dC < <*>･

From (C.3), (5-11) and (5-17), the condition (c.i) holds.

Since it is apparent that, if |d2＼L(r)/dr | < ≫, then WL(r)

< <=°and dWT (r)/dr < co,it is sufficient to show that the third

Inequality of the condition (c.±L) holds. From (C.I), the origin

r=0 is the only one singular point. Consequently, with the condi-

tions (C.I) and (C.2) and the inequality (5.11), we have

(5.18) lim

r-*0 IT(r) r U^(c)

from which the condition (c.ii ) holds. Thus the proof has been

completed.

We shall proceed to state sufficient conditions for the asym-

ptotic stability with the probability appraisal.

[Theorem 5-2] Assume that the following condition holds together

with the conditions (C.I) and (C.2).

(C.4) There exists a positive constant M such that, for any re

(0,M), the drift term V(r) given by (5-7) is negative.

Then, we have

(5.19) Po
W (r )

Uim r(t)=O} > 1 - ^f .

(Proof) Define

(5.20) Qm A { r ; re[O,M)} = { r ; WL(r)<m},

where m=WT (M). Furthermore, for reQ , let <}>(r)be an arbitrary
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smooth and positive function related to the function V(r) by

(5.21) Y(r) 4 -V(r)d)(r),

where

M
(5.22) / {-V(r)<}>(r)}dr < °°.

From (5-12) and (5-15), the Lyapunov function W (r) and its

differential generator are respectively expressed by

(5.23) WL

and

(5.24)

r rO

(r) = / exp{ / (-!!£! - V(?)4>(?))dc }dn
o n ud(r)

L W (r) = V(r)U2(r)<Kr)exp{ / (-J^- - V( ? )<j)(?) )d? }

< 0

for r, ro£Qm .

We shall examine the conditions (c.i) and (c.ii.) in the proof

of Theorem 5.1. By the conditions (C.I) and (C.2)j it is obvious

that the condition (c.ji ) holds. Furthermore, it is a direct con-

sequence from (5.23) that WT(r) is monotone increasing with res-

T
pect to r in Q . Consequently, using the inequality (5.8), the

asymptotic stability is concluded with the probability appraisal

1-WT (ro)/WL (M)

5･4 Extension to Dynamical Systems with Random Coefficients

In this section, an extension of the results obtained in the

previous section is demonstrated to the dynamical system modeled by

(5.25) x + u2x + eg(x,x,a(t)) = Sh(x,x)?(t)
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with the given initial conditions, x(0)=xQ and x(0)=xQ, where a(t;

is a parametric noise process expressed mathematically by an

ergodic Markov chain with finite n-stages and a(0)=ai(i=l,2,■･･,n)

Equation (5.25) may be considered as a mathematical model of a

class of lightly damped nonlinear dynamical systems excited by a

random input, whose parameter changes with time taking n modes ac-

cording to a continuous-time Markov chain with the infinitesimal

generator Q.

The stochastic differential equation of It6-type associated

with Eq.(5.25) is easily derived as

(5.26a) dx = Xpdt

(5.26b) dx2 = -{id x-. + eg(x x ,a(t))}dt + /Fh(x1,x2)dw(t)

where, for convenience of discussions, we set as S= /e.

Noting that a Markov chain process may be regarded as a spe-

cial class of Poisson processes, it can easily be understood that

the joint process (x,,x_,a(t)) is a pair Markov process perturbed

randomly by both the Brownian motion and Poisson processes[8lj,[82].

Hence, defining the probability density of a transition from the

state X =(x,,x2,

Y.
J

a±) to another state Y,=(y1,y2,a,) by p±=pi(X1;t

), the probability density p.

(5.27)
3t

for the fixed Y.
J

= -X

+

3pi 2
28^ - {a) xl + ES(xl'X2'ai

e22 32pi n
2°h (xi'x2) 2 + ^ qikPk

-1 d 8X2 k=1

with the initial condition p. (X±;O;Y
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q is the (i,k)th element of an nxn matrix Q, 6.. the Kronecker

delta and 6 the Dirac delta function. It is well-known that

(5.28a) lim P
At+O

and

(5.28b) lim P
At-K)

r
{a(t+At)=a

k

r{a(t+At)=a

a(t)=a ±} = qlkAt + o(At)

a(t)=a±} = 1 + q At + o(At),

where Qlk^0 for i*k, Q±1<0 and Z "q =0 for i=l,2,---sn

We shall convert the (x,,x?,

process along the relation,

(5.29a) x± =

and

^sme,

1 + 4

Xp = rcose

a(t))-process into the (r,63a(t))-

Noting that the zero solution x =x =0 to Eq.(5.26) implies r=0 which

is a reflecting barrier, the r(t)-process may be considered within

the semi-infinite interval re[0,°°). With the relation (5-29), we

write v(r,6,a1;t;r1,ei,a,) for p±(x1,x2,a±;t;y1,y2,a ) and abbre-

viate it by v.(r,6,t) for a set of fixed values, r^B, and a..

Letting 6=<b-a>t,then, after somewhat tedious caluculations, we have

(5.30)
3vi

~3t~= e^Ccos2^)^ - Bln2^-"t)^ + Sln2^2-"t}

2

xsin(i=o3t)!li _ g(Oi)co8(,_ut)!^} +
?qikvk3

( i = 1,2,...,n )
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with the initial condition v1(r,<f>,0)= SjL.Str-r^cf)-^), where g(a±)=

g{rsin(<j)-a)t)/a)3rcos((j)-ut),a1}and 4>1=61. The limiting behavior of

v.(t) is investigated by tending e to zero and t to infinitive under

the condition that et is constant. To do this, changing the time

scale t for t and writing v. (x) for v.(x/e), where x =et,

Eq.(5-30) is written by

(5.3D

8v^e) 22 _ . 32v(.£) sin2(<j>-^-)32v(e)

= ^h [cos (*-―)―-2 ^r^―

2

+

(-^)32v{e> sin2(<J>-^)3v{e) sin2^)
e

2
v 8<J>2 2 8(f) + r

dv[e) sin(<D-^)9v^) 9v^e)

*-g^- + g(ttl)
r

£
3^ - g(a. )cos(^)-^-

+
U^ikvke)'

(i-l,2,-..,n).

1

T

T

by

0 £ e

(r,4>――) is periodic with respect to <f)-(u)T/e)=i|;,
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Let A.(r,<)>-―)be the differential generator of the right hand

side in Eq.(5-31). Equation (5.31) is written by

(5-32)
^-

= A.v^ + £j Qlkv£*>, (1-1,2,...,,)

Assume that the value of c is sufficiently small and, for any

fixed t>0, define L .

(5.33) La. A lim

T->°°

Noting that A.

then, from (5-33), L . is computed to be



1 21T

a2r,r2iT,2 2.,,.32 , r2ir, 2sin2ijj, ,. 32
^[(/ h cos *d*)~2 - (/ h -_J^^)g-^

0 r 3d> 0 r dt(J 0
r

"& + 'sV"i'T*≪≪S " <

Although Eq.(5-3*0 plays a basic role to explore stochastic

behaviors of the nonlinear dynamical system (5-25) ≪ our attention

is focussed on the asymptotic aspect of Eq.(5-26) with an averaged

differential generator rather than v. themselves. Now, let P. be

(5-35) P. = lira P {a(t)=a.}
1 t-≪° x

for any a(0)=a.3 where £.P.=l. Furthermore, define

(5-36) a

n

= I

i=

and

(5.37) L =

/i0!

n

i=l x ai

Then, from (5.34), the averaged differential generator L can be

obtained by

(5-38) L= (^/2Voos2W)^ - (w//2^*^
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+ 4iy^^ 4iy^* **v(^

xd*)^ + (
2 2ir , . 2, . 2u ≪

( for more details, see Reference [97] )

In this section, asymptotic behaviors of the stochastic nonlin-

ear system given by Eq.(5.25) are examined. Our main concern is

the asymptotic behavior of the zero solution x =x =0 which implies

r=0. Our attention is thus directed to the r(t)-process whose dif-

ferential generator is given by (5-38). However, if there exists

a stationary density p(r,<|>)for the process described by (5.38),

then it will apparently be independent of <J>. This fact allows us

to write (5-38) in a simpler form as

(5.39) Lp = U2(r)^2 + Vr>a)^

where

(5.40) Vr(r,a) = faf h^simKrcos^^J^

" Ptt-' s(-sini|j,rcos^3a)cost(Jdi() .
^ir 0 to

It can thus be understood that theoretical considerations run

on the same line as described in Section 5.3. The following theo-

rem gives sufficient conditions for the asymptotic stability in the

1ATCrp.
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[Theorem 5-3] Assume that, for any fixed initial value r(0)=r ,

2 _
the coefficients U (r) and Vr(r,a) in (5-39) satisfy the following

conditions:

(C5) U2(r)=03 If and only if r=0 and V (0,a)=0

V (r,a) OV (s,a)
(C.6) lira ＼~ |exp{/ -£= d?} < .

r-0 U^(r) r IT(?)

≫ V (C,o)
(C.7) / -^o d? < oc.

rQ U2(O

Then, for any initial value r~ e[0,°°) and a. (i=l,2, ･ ･ ･ ,n), we have

(5.41) P { lim r(t)=O|r(O)=rn, o(0)=a, } = 1.

The following theorem gives also sufficient conditions with

the probability appraisal.

[Theorem 5-4] Assume that the following conditions are satisfied

together with the conditions (C.5) and (C.6):

(C.8) There exists a positive constant M such that, for any re

(0,M), the drift term V (r,o) in (5-39) is negative.

(C.9) The initial value a(0)=a. satisfies that, for any fixed r,

Vr(r3a)>Vr(r,a1)

Then, we have

(5-42) Pp{ lira r(t)=0|r(0)=rQ<M3 a(O)=a± } > 1 - wa(M° ,

where

0 V (c,a)r o vi£,a;

(5.43) W(r) = / exp{/ (-^ V (? ,cO4>U) )cU>dn
a on

iT(r)
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Since proofs of Theorems 5.3 and 5 .4 are essentially the same as

those of Theorems 5-1 and 5.2 except for the condition (C9), de-

scriptions are omitted here. For the condition (C.9), in the

neighborhood of t=0, it is necessary to assume that the r(t)-

process does not go out of the domain 0<r<M. To do this, bearing

in mind the fact that the initial value aCO^c^ is considered so as

to satisfy

(5.44) u
(0)

(0) =

n
I

i=l
P.fCa.)

where

(5-45) f(a±) = u1(r,9,a1;0;rlJ91,aJ)

the initial value a(O)=a. lies on the domain such that the inequal-

"y v (r,a)>V (r,a.) holds for any fixed r

5.6 Illustrative Examples

5.6.A Example-1

We shall consider a nonlinear dynamical system given by

(5-46) x + {2e3 - fi£(t)}x+ w2x + ex3 = 0.

Equation (5.46) may be considered as a mathematical model of dynam-

ical systems whose damping coefficient is white Gaussian and re-

storing force is a nonlinearity of the cubic order. From Eq.(5-46),

both the nonlinear functions g and h are respectively identified by

(5.47) g(x,x) = g(xl5x2) = x3 + 23x2

and

(5.48) h(x,x) = h(x ,x ) = x2 .
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The precise interpretation of Eq_.(5.^6) is made by the following

stochastic differential equation of It6-type;

(5.^9a) dx = x dt

(5.49b) dx2 = -{o2x + e(2gx x3 )}dt + 6x dw(t).

Prom (5-6) and (5.7), the diffusion and drift coefficients are res-

npf.tivelv comnuted to be

(5-50)

and

(5.51)

U2(r) = 3oV

2
V(r) = % - 3)r

Using (5-50) and (5.51), the conditions (C.I) to (C.3) in

Theorem 5-1 are examined as follows:

(1) The condition-(C.1) is obviously satisfied.

(2) The condition (C.2) holds for $>o2/k.

(3) The condition (C.3) holds for 6>a2/l6.

Consequently; we may conclude that the origin of the system

(5-^9) is asymptotically stable in the large under the condition

(5.52) 6 > a2/4

On the other hand, choose the function WT(xn,

Li -L

(5.53) WL (x ,x ) = x2 + 2/ (u2y + ey3)dy .
id d 0

x2) as [83]

Let L be the differential generator of Eq.(5.^9). Then, from the

relation.

(5.54) LW
3fW

? o
8WT
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― -y 2(He& - 62a2)

and the assumption, S2=e, it follows that, for 3>a /H,

(5.55) LWL < 0.

It is obvious that the function W

that

(5-56) P { llm x0
r t-≪°

(t) = 0 } = 1

is the Lyapunov function and

Since the result (5-56) brings P { lim x (t)=0 }=1{83],

for any initial value r , we have the summarized result:

(5-57) P { lim xn(t)=x (t)=0 } = 1
r t+°°

under the condition given by (5.52).

5.6.B Example-2

We shall consider a nonlinear dynamical system with a random

coefficient given by

(5-58) x + {2ea(t) - <s£(t)}x + w2x + ex3 = 0,

where the parameter a(t) is considered to be a Markov chain dis-

cussed in the previous section. From Eq.(5-58), the stochastic

differential equation of It6-type becomes

(5.59a) dx± = x2&t

(5.59b) dx2 = -[u2Xl + e{2a(t)x2 + x^}Jdt + 6x2dw(t).

Bearing the relation (5.4) in mind and using (5.6) and (5-^0),

it foiln＼s that
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(5.60) U2(r) = Y$32r2

and

(5-61)
2

Vp(r,a) = (^ - a)r

Prom (5.60) and (5.61), the conditions (C.5) to (C.7) in Theorem

5.3 are examined as follows:

(i) The condition (C5) is satisfied.

(ii.) It can easily be seen that the condition (C.6) holds for
2

a>a A
p

fffl) For a>a /l6, the condition (C.7) is satisfied

Hence, from Theorem 5.3, the equality (5.4l) holds for any initial

values r~ and a(O)=a.
2

under the condition that a>a /k

5.6.C Example-3

Consider a dynamical system modeled by the nonlinear differ-

ential equation of-Rayleigh's type:

(5-62) X + X + £(1 - X2)X = Sx£(t).

where x(O)=xo and x(O)=xn as usual. It is well-known that, if <5=0,

then the system exhibits an unstable limit cycle and is asymptotic-

ally stable with respect to the origin.

Converting Eq.(5-62) into

(5.63a) dx1 = x2dt

(5.63b) dx2 = -{x± + e(l - x2)x2}dt + 6x1dw(t);,

and letting r2=x^ + x^, the r(t)-process is the scalar Markov pro-

cess whose diffusion and drift coefficients are respectively com-

puted to be
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(5.64) U2

and

, , a2 2
(r) = ^r

(5.65) V(r) = ^ r

2 (1 tt-)

By using (5.64) and (5.65), the conditions (C.I), (C.2) in Theorem

5.1 and (C.4) in Theorem 5-2 are examined as follows:

(i) The condition (C.I) holds.
2

(jl ) The condition (C.2) holds, provided that a

(m) Prom (5.65), since V(r) is negati

<2.

ve for r</(8-3cr2)/6, the

domain satisfying the condition (C.4) is

(5.66) Q^ = { r ; r<M=/(8-3ct2)/6 }

Thus, from Theorem 5.2, it may be concluded that, for the

r(t)-process initiating at r e Q ,

(5.67) P n{ lim r(t)=O } > 1
u t-≫-co

WL(rQ)/W
(/£2)

5.6.D Example-^

The same system as in Example-3 is considered, besides the

system parameter is modeled by a Markov chain, i.e.,

(5.68) x + x + e{l - a(t)x2}x = 6x£(t),

where a(O)=a.

(5.69a) dx±

(1=1,2,･･･,n). Equation (5.68) is converted into

(5.69b) dx

= x2 dt

Lx, + e{l - a(t)x2>x2Jdt + 6x1dw(t).

Hence, from (5.^0), we have



(5-70) Vr(r,a) = r (r 8 - 3o2)

6a

By examining the conditions (C.5),(C.6).(C.8) and (C.9) and using

Theorem 5.4, the sufficient condition for the asymptotic stability

2
is found to be a <2. Furthermore, it can easily be found that

/ 2~
(5.7D Q' = { r ; r<M=/^£- },

m 6a

where we assumed that a > 0, because the system is easily shown to

be asymptotically stable in the large, if a=0.

The condition (C9) shows

(5-72) V (r,o) > Vr(r,a.),

that is , in this example, a>a.. Hence, for the r(t)-process

starting at the initial value r_ < /(8-3ct )/6a and a,.< a, it may be

concluded that

(5.73) Pr { lim r(t)=O | r(O)=ro,a(O)=a1 }

* 1 - Wa <v/v/^>

5-7 Summary

In this chapter, a new approach has been developed to analyze

the asymptotic stability of nonlinear dynamical systems with a ran-

dom parameter behaving as a white Gaussian process. The basic

notion presented here was a choice of the stochastic Lyapunov func-

tion with an advantage that influences of initial values of the
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system states came out.

Introducing the concept of random evolution associated with

the limit theorem, the stability analysis was extended to a general

class of nonlinear dynamical systems involving two kinds of random

parameter modeled by a white Gaussian and a Markov chain processes

respectively.

Throughout this chapter, the relation between the asymptotic

behavior of nonlinear stochastic systems and the domain of their

initial values was examined by using the useful Theorems giving

sufficient conditions for the asymptotic stability with the prob-

ability appraisal.
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Chapter 6

Noise Stabilization of Nonlinear Dynamical

QVCTCMC

6.1 Introduction

The idea of noise stabilization originates from the interest

ing fact that the inverted pendulum can be stabilized whose base

is subjected to a periodic vertical displacement with a zero mean

That is, as shown in Fig.6.1, we shall consider a simple pendulum

of length I, mass m and damping coefficient c, and let q be the

Pig.6.1 Schematic Representation of an Inverted Pendulum
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angular displacement from upward vertical. Then, the equation of

motion of the pendulum becomes

(6.1) q + (2c/m)q - I 1(f + g)sinq = 0

where g is the acceleration of gravity and f(t) is the imposed

base displacement.

When the base motion f(t) is sinusoidal, the stability of the

inverted pendulum is determined from the Mathieu equation [84].

Hemp and Sethna[84] obtained additional results when the base

motion f(t) is almost periodic and periodic forcing terms appear

in the right-hand side. As an extension, it is the problem whether

or not the pendulum can be stabilized with a base motion that f(t)

is a sample function from some type of stochastic process.

Bogdanoff and Citron[i)3] derived conditions for stability when the

base motion f(t) was a second-order stationary, random parametric

excitation having a discrete-power spectral density and demonstrated

their results with a physical experiment. MitchellE^S] derived

sufficient conditions for the sample stability of the linear

inverted pendulum equation together with a base motion that is a.

sample function from a stochastic process with a continuous power

spectral density function.

However, these studies were restricted to the stability of the

inverted pendulum and a noise stabilizing signal was given as the

forcing function. Prom the fact that there are, in practice, many

inherently unstable nonlinear control or dynamical systems and

these have to operate in random environment, in this chapter, we

shall explore the possibility of noise stabilization for a more

general class of nonlinear dynamical systems. Thus, if sufficient-
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Pig.6.2 Illustration of Noise Stabilization





ly comprehensive conditions can be ascertained for which an unsta-

ble state can be made stable, then it is conceivable that the

introduction of noise generated by various components in a system

may be used for its own stabilization. Hence, a class of self-

stabilized system may be possible.

We shall consider the second-order nonlinear stochastic dif-

ferential equation,

(6.2) x + (d2x + eg(x,x) = -6h(x,i)f (t).

Equation (6.2) may be considered as a generalization of mathe-

matical model of dynamical systems. The simplest example is an

2 ･inverted pendulum of Eq.(6.1) where w x + eg(x,x) = (2c/m)x -

(g/£)sinx and h(x,x) = -sinx. Taking into account practical ex-

amples, in Eq.(6.2), the coefficients 3, e, 5 might be constants,

X

Pig.6.2 Illustration of Noise Stabilization
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g(x,x) and h(x,x) are nonlinear functions respectively and f(t)

a white Gaussian noise process.

Now, suppose that the deterministic system with f(t)=O,

(6.3) x + u2x + eg(x,x) = 0

is unstable. As shown in curves I and I of Pig.6.2, the solution
a, D

process of Eq.(6.3) diverges or shows a limit cycle behavior.

Then, the problem is, as shown in the curve IE of Pig.6.2, to sta-

bilize the system described by Eq.(6.3) through the addition of a

random noise term -6h(x,x)f(t). Hence, the form of the function

h(x,x) must be found out.

Let state variables be x=x and x-,=x? respectively. Equation

(6.2) is expressed by the nonlinear stochastic differential equa-

tion of It6-type,[66]

(6.4a) dx1 = x2dt

(6.4b) dx2 = -{u2x1 + eg(x1,x2)}dt - Sh(xl9x2)dw(t),

where the w(t)-process Is the Brownian motion process with the

following properties; #[dw(t)]=0, £[{dw(t)}2]=a2dt.

Equation (6.4) is the basic equation .of the present study.

It is apparent that the two-dimensional solution process of Eq.

(6.4), x=(x,,x2) , is a uniform Markov process. Let p (x.,x~;t;

x, ,x≫) be the probability density of a transition from the point

(xi3x?) to the point (x1,x?) in time t for the trajectory of the

X

p

(t)-process. It is also well-known that the probability density

£
satisfies

(6"5) "^ =
^

+ t-≫＼
~eS<*i'*2≫fe

+
^h2(xl5x2)i^

1 ^ 8x2
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Letting 6 =e and rearranging Eq.(6.5), we have

8pe 8p£ 2 9p 8P
(6-6) -tt = X2^;-U xi^"+ e[-^xrx2)^7

2 82p
+ W(x ,xp) 1

8x^

with the initial condition

(6.7) Pe(x1,x2;0;xJ,x°) = fi^-xJ.Xg-Xg),

where S is Dirac's delta function. With the help of basic knowl-

edge in probability theory, it may easily be shown that the densi-

ty for the stationary distribution of the x(t)-process, p (x,,xJ,

■iq rlpfi nc*rthv

(6.8a) p°(x°

where it is

(6.8b) / /

OO 00
Xo) = / / P

―00 00

obvious that

oo

― 00 _ CO

p°

E(x1,x2;x;x1,x2)dx1dx2

0

2
= 1

Assuming the existence of the stationary probability density func-

tion in Eq.(6.6), it can be written that

3p° a2
2 82P° 3P£° 2

9P£°
(6.9) -^-S(xl3x2)^ + ^h2(Xi,x2)-^] -x2^ + ≪＼^ = 0

Introducing the polar coordinate (r,<|0 instead of the rectan-

gular coordinate (x ,x ) along the relation,

(6.10) x = -sin(^-wt), x2 = -rcos(^-wt),

#1
This assumption is very important for realizing the noise sta-

bilization. The existence of the stationary probability density

can be examined based on the existence theorems of stationary re

sponses described in Chapter 3-
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Eq.(6.6) becomes

8u
3u£

(6.H) -^ = -e[g{^sin(*-(ot),-rcos(i|;-a)t)}{-cos(*-a)t)-gF-

+ siiUf-ort)3^) +
^h2(Jsln(t,_ut),_I,cos(+_l8t)}

4.
sin2(i|)-oit)8ue , sin2 (ip-ut)

3uen

2 8^T r 3r
*J

where u denotes the porbability density function of a transition

with respect to the new coordinate (r.ilO, i.e.,

(6.12) u£

r,

(rl≫*l;T;r0≫*0) S Pe^17sln^i-(i)t)'-rcos('l'l~a)t);T;

―sin(ij;n-a)t ) ,-rncos (i|>-tot )}

T
where t+t=t

6.3 Application of Averaging Principle

Let pn(r,i|j;T;rn,TjJn)be the probability density of a transi-

tion from the point (r,i|i)to the point (rn,^n) in time t for the

trajectory of the (r,^)-process. The application of the averaging

principle in Section 2.2 to Eq.(6.11) brings us the result,

9po rr2 g2Pn l 8pn ] s2Pn
(6.13) ^"-^(D-j+^^W-f

l s2Pp 8pn 1 8pn

where, with the symbol i|>-ujt= 6+Tr/2.
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h2
2

,rsin9)sin

-97

ede

(6.14a) A(r) = ~j h (-cos6 ,rsin9 )sin29d6
^ 0 u

(6.14b) B(r) = ^-＼ h2(-cos6,rsine)cos26d6
d-n 0 w

, 2tt ?
(6.14c) C(r) = -±-＼ h (-cos6,rsin9)sin26de

2tt
(6.1i|d) $(r) = -~-＼ g(-cos93rsine)sined9

^ 0

2T7
(6.lite) Y(r) = -^-＼ g(-cose,rsin9)cos6de.

According to the relation (6.12), it may be concluded that

(6.I5) lira sup |u (r,i|>;T;rn,i|O - p (r,f;T;r ,i|i)| = 0.
e-K) teIT e u 0 u u u

For the process whose probability density of a transition is deter-

mined by Eq.(6.13)3 if there' exists a stationary probability densi-

ty p(r,ij;)3 then it is evidently independent of ty. Thus the sta-

tionary probability density is a solution of the differential equa-

tion.

2
(6.16a) U2(r)^2-

dr
+ V(r)|£ = 0

with the condition,

00
(6.16b) / p(r)rdr = 1

0

where

o 2 2it
(6.17) U2(r)=^-/



if
2irJ

2ir

0

h2
2Q

r> . , s COS t), A
-cose5rsin9)―-―d9

0) I

, 2iT
+ o^/ g(-cose5rsin6)sin9de

^ 0 w

and where r>0.

Prom Eq,(6.16a), the r(t)-process is obviously Markov process

with the differential generator,

2
(6.19) L = U2(r)^ + V(r)^

dr

where both the drift coefficient V(r) and the diffusion coefficient

2
U (r) are polynomials with respect to r and satisfy Lipschitz and

the uniform growth conditions. Thus the sample process of the

r(t)-process exists, is unique and is continuous with probability

one.

6.4 Stability Criteria associated with Singularities

With the help of knowledges described in Section 2.1 of

Chapter 2, new theorems of stability are established based on the

classification of singularities of the one-dimensional diffusion

process with the differential generator (6.19). Before the state-

ment of Theorem 6.1, we need the following Lemma 6.1 which is a

slight extension of the lemma by Ito and McKean[85l.

[Lemma 6.1] Consider the regular interval I=[r,,r_J such that

s(r ) and s(r ) are finite. Let P (a;r ,r ) denote the probability

that the process r(t) originating at a fixed ael reaches the point

r before reaching the point r?. Then the canonical scale s(a) in

I is uniquely determined bv
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s(a) - s(r )
(6.20) Pr(a;r1,r2) =

b( ^^ ■

The proof is omitted because this lemma is only an extension

of the lemma by It6 and McKean[85],

[Theorem 6.1] Let be the r(t)-process with the singular point r

2
=r, satisfying U (r)=0 in (6.19). The singular point r=r on the

interval I=[r
l'r2 1 where rl<r2 is stable in probability, if the

following two conditions are satisfied:

(1) r=r. Is 'exit boundary' (r *0)

(2) r=r? is 'natural boundary' and s(r )=+°°,or 'entrance

boundary'.

Thus, (6.19) has a stable singular point.

(Proof)

<r2

(6.21)

We shall first show the sufficiency. Letting a=r (r <rQ

it follows from Lemma 6.1 and the condition (11 that

lim P r(rO;rl'r 2> =1

The equality (6.21) implies that

(6.22) lim P { sup |r(t;r ) -r | > e } = 0
v^v^ r t>0

Thus, the point r=r, is a trap. Prom the properties of diffusion

processes described in Definitions 2.1,2.2,2.3 and 2.4 of Section

2.1 in Chapter 2, the probability that sample paths of the r(t)-

process stay on the interval [r ,rj is zero. Similarly, by the

condition (2), the sample process r(t) can not reach r=ro. There-
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fore, for the singular point r=r, to be stable in probability, it

is sufficient that the conditions (1) and (2) are satisfied.

Next, we shall prove the necessity. For the singular point

r=r to be stable in probability, it must hold that

(6.23) Pr{ lim |r(t;rQ) - r1| = 0 } = 1

It is obvious that the equality (6.23) holds if and only if the

point r=r, is the exit boundary and the point r=r is the locally

unattractive natural boundary or entrance boundary.

Then, Eq.(6.19) has a stable sineular point.

[Theorem 6.2] Suppose that Theorem 6.1 holds. If the point r=r1

approaches to the neighborhood of the origin and r^ , then the

system (6.4) is asymptotically stable in probability.

(Proof) By Theorem 6.1, the conditions (1) and (2) are given.

Since the point r=r is the exit boundary and the point r=r? is the

locally unattractive natural boundary or entrance boundary, the

sample process r(t) reaches the point r=r within a finite time and

after that, they stay forever at r=r with probability one. This

situation implies that

(6.2H) lim P { sup |r(t;r ) -r | > e } = 0

t-≫o t>x
u j.

Furthermore, if the point r=r approaches to the neighborhood of

the origin r=0, then, from the equality (6.2*0, we have

(6.25) lim P { sup r(t;r ) > £ }

t>T
u

0

From Theorem 6.1 and the equality (6.25), it is obvious that the
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r(t)-process is asymptotically stable in probability. This shows

that the system (6.4) is asymptotically stable in probability.

6.5 Selection of_ Stabilizing Signals

Let g(x,x) in Eq.(6.2) be given by

(6.26) g(x,i) = g(x1,x2) = ax± + px3

where a and p are constant values. Then, it is well-known that the

system,

(6.27) x + ci)2x+ e(ax + px3) = 0

is a mathematical model of Duffing-type nonlinear system which has

a stable limit cycle. Also, the response of the system,

(6.28) x + u2x + e(ax + px3) = -S£(t)

shows unstable behavior such that the noise term |(t)addsto a sta-

ble limit cycle of Eq.(6.27). Based on the fact that the systems

described by Eqs.(6.27) and (6.28) have unstable characteristics,

we shall look for a stabilizing signal 6h(x,x)£(t) in such a way

that the unstable systems (6.27) and (6.28) become stable. A few

trials which will be mentioned in this section lead the reader to

interesting results in which the unstable systems become stable.

6.5.A Biased Sinusoidal Signal

Let the stabilizing term h(x ,xj be chosen by

(6.29) h(x
. r . / 2 2, 2 // 2 2^ 2 , -,1/2

,x?) = a[ cosb/u x,+x2 //uj x-,+x2 - It J 5

or, in the polar coordinate (r.iM, by using Eq.(6.10),
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(6.30) h(r) = a/|^r - k| ,

where a,b and k are constants. Then, with the help of (6.26) and

(6.30), Eq.(6.4) becomes

(6.31a) dx, = x2dt

(6.31b) dx = -{<A + e(aXl + px^)}dt + 6a/|^f^ - k|dw

From Eqs.(6.17) and (6.18), the diffusion and the drift coeffici-

ents respectively have the form.

(6.32) U2(r) =^L/2V|^-

2 2
a a icosbr

- u I r k|,

(6.33) V(r) - ^/""a2|S2|br

k|

kl sin 26d6

k|cosfede + Hr)

Our first task is to find the singular point r=r satisfying
s

U2(r)=0, i.e.,

(6.34) |S2p kl = 0

Prom Eq.(6.3i*)5 it is obvious that there are a lot of singular

points along the line of r. In order to realize noise stabilization,

it is necessary to obtain only one stable singular point at or

near the origin. This implies that the spectral density of white

Gaussian noise may be transformed to the spectral density with the

finite band-width to stabilize the system. To do this, we select
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a parameter k by the graphical method as shown in Pig. 6. 3. According

to Pig.6.3, it may numerically be observed that, for k£.0.l6b,

there exists a singular point. However, it is very difficult to

proceed the calculations of Eqs.(2.20a) to (2.20d) at this singu-

lar point by applying Eq.(6.3O) directly. Then, we shall demon-

strate an approximation method for the calculations of Eqs.(2.20a)

to (2.20d). For this purpose, the relation between 4TJ2(r)/a2a2

and ? (=br) is examined by using Eq.(6.32). The result is shown

in Pig.6.4 where the point P is a singular point. Here, the value

of k was set as k=0.2 from the result of Pig.6.3. Observing that

the singular point P is closely located at the origin in Pig.6.4,

the following approximation can be performed by the least square

method,

^ b
~ 6

{(? - 3T - 2}

This approximation allows us' to evaluate approximately the location

of singular points. Substituting the approximation (6.35) into

Eq.(6.32). it follows that

2 2
(6.36) U2(r) = °-*-＼*{(s - 3)2 - 2} - k|

Prom Eqs.(2.l4) and (6.36), the singular point is

(6.37) r = k3 - v^T^)

In order to classify the singular point, the following two

cases should be considered:

[1] Interval [ r .<*>)
s

Substituting (6.35) into Eqs.(6.32) and (6.33), we have,
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1.0

k

0

-1.0

1.0

0

-1.0

Pig.6.3 Determination of a parameter k to realize one

singular point.

Pig.6.4 Approximation to cosbr/r in the neighborhood

of a singular point P(=r ).
s
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(6.38) U2(r)

and

2 2
= CT a [_

b

6 {(C - 3)2 - 2} + k]

(6.39) V(r) =
^|i[_|{(c

_
3)" - 2} + kl

Application of Eqs.(6.38) and (6.39) to Eq.(2.17) gives

(6.40)
br

Bs(r) = / v(?)U dU)dz = log^
bro r°

From Eqs.(2.18),(2.19),(6.38) and (6.hO), the canonical scale and

the canonical measure are respectively

(6.41) ds(r) = ―°d£

and

(6.42) dm(r) =
P

f^ %
･ ･ dg

where

(6.43) k1 = 2 + 6k/b.

Prom Eqs.(6.4l) and (6.42), the calculations of Eqs.(2.20a) and

(2.20b) give the result,

(6.44) a = / / dm(c

brs<CZ<?y<bri

)dsU
z

= ^ (l―2-)Uog{Jk: +(z -3)UOfl|―g―
aabj /k^ x z /i^-3

,/ri+(gz-3)

{/kT + U -3)}2 {/k>(c -3)}3 br'
+―l―^^ + ―-―^-t―+･･･] 1 +

^ii-T(i+^-)
^(v^T-3) 9(^-3):S brc a^a^b^ ^ET

X _L o 1.
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x[£O3{/F1-(Sz-3)}'eog|―^-

{/F-(c -3)}3 brr
+ ± -―=―+･･-!

x

I +

/k^+3 M/k^+3)2

9(/kT+3)3 br a^a^b^
x ^ 1

where

(6.45) A1 = £og{k1- (br^-3)2

/k~+(br'-3)
(6.46) A, = -^-£og―-

d /k^ /k^-(br^-3)

and

6 47) v, =
br <c

/

z

'I

}5

5

)dm(t )
z

hl+-L-)l-logzlog＼-^ -
^ /k^+ 3

4 ?rI
1,,

^(/i^+3)2 9(/k:+3)3

/k>U
xlogl―^

+ [

/k^-3

3)
-is―
･ET-3

S 1

1(/E[-3)2 9(/E[-3)3 t>r

Ul-―)log＼/k:-U-3)＼logbr! -kl+-2-)

- s

Prom the results of Eqs.(6.44) and (6.47), it may be found that the

singular point r=r is the exit boundary,s

Furthermore, we shall consider the property of the boundary
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P = oo pIn this case, since cosbr/r
converges to zero

as r->-<≫, U (r)

and V(r) are respectively approximated by

(6.48) U2(r) =

and

k

2 2
(6.49) V(r) = njf-k ･

Therefore, the calculation of Eq.(2.17) gives,

(6.50) Bs
(r) =

^

r
7'dI" = l°af
o °

Using the approximations (6.48) and (6.49), we have

(6.51) a_ = / / ds(y)dm(z) = ≫
r'<y<z≪*>

(6.52) y = / / dm(y)ds(z) = ≫,
r' <y<z<°°

and it is easily obtained that

(6.53) s(r=<=°)= ≫.

Then, based on Feller's classification criteria of boundaries in

Section 2.1, it may be concluded that the point r=°°is a locally

unattractive natural boundary.

[2] Interval [ 0 , r ]
s

In the case when r=r , it is obvious, from the discussion
s

mentioned above, that the singular point r=r is the exit boundary.
s

We shall now examine the property of the boundary r=0. In the

2
neighborhood of r=0, as shown in Pig.6.4, the approximation h (r)

^a2k Q/r (where kn is a constant) is introduced. Prom this approxi-
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mation, we have

(6.54) U2(r) = ^―°

2 2k

(6.55) V(r) = %a
2"

r

Hence, from (6.5*0 and (6-55), we have

(6.56) ds(r) = -2-

(6.57) dm(r) =
4r2

2 2
a a k r

Therefore, when r=0, it is a simple exercise to obtain

(6.58) a (0) =≫ and y (0) < °°

Then, it follows that the origin r=0 is the entrance boundary.

The results obtained in 6.5.A are summarized in Table 6.1.

Also, the illustration of sample behaviors based on Table 6.1 is

shown in Pig.6.5-

Table 6.1 Classification of boundaries

r the r(t)-process determined by Eg.(6.3D ･

ai yi Classification of boundaries

a = co y < oo "entrance" at r=0

for [03r J
s

a < oo v2 = °° "exit" at r = r
s

a < °°
1

y, = °° "exit" at r = r
s

for [r. ,°°)
s

Qp = °° u2 = °° "natural" (locally unat-

tractive ) at r = oo
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Then, with Theorem 6.1 and Theorem 6.2, the process which

originates at a point in the interval [0,≫) arrives at the singular

point r in a finite time with probability one and stays on r for-s s

ever.

Prom Eq.(6.37)5 as the value of b increases, the location of

the singular point comes near the origin. This implies that an

application of the stabilizing signal with sufficiently high fre-

quency results a smaller amplitude of the limit cycle.

entrance exit exit

r=0 r (trap)
s

natural

^_―

CO

Fig.6.5 Illustration of Sample Behaviors of Eq.(6.31)

based on Tabifi 6.1 .

6.5-B Biased Polynomial Type Signal

As another type of stabilizing signal, let hCx-^x,,) be chosen

by

(6.59) h(Xl,x2) = h(r) = a/r | r - c |

where a and c are constants. Then, with the help of Eq.(6.26),

Eq.(6.4) becomes

(6.60a) dx1 = x2dt

(6.60b) dx2 = -{ai2Xl + e(aXl + px3)}dt + 6a/r |r-c|dw.

Prom Eqs.(6.17) and (6.18), the diffusion and the drift coeffi-

cients are respectively,
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(i) Interval [0,c]

(6.61) U2(r) = (a2a2/4)r(c-r)

(6.62) V(r) = (a2a2/4)(c-r)

(±L) Interval [c,ro)

(6.63) U2(r) = (cr2a2/4)r(r-c)

(6.64) V(r) = (a2a2/4)(r-c).

Consequently, from Eqs.(6.6l) and (6.63), the singular points are

found out to be

(6.65)
rsl

= 0 and r , = c
s2

Then, from Eq.(2.17), we obtain

I*
(6.66) B (r) = / -£-,dr' = log^- .

r0 °

[1] Interval [c,≪>)

Using Eqs.(6.63) and (6.66), the canonical scale and canonical

uifiasiir'eare rpsnontivpi v.

(6.67) ds(r) = (rQ/r)dr

a nrl

(6.68) dm(r) =
2＼ pr^dr.

a a rQ

Substituting (6.67) and (6.68) into (2.20a) and (2.20b), it follows

that

(6.69) o = / / dm(x)ds(y)

r <y<x<r:
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and

lira

4
r

/
v ->c a a r

c

lim

{1 r{
1

y('v ^^

c ■*

2-^ilog(r^-c)log-
r ->-c a a

c

< oo

c

+ Uoa(y-c)log^ + 2=5. + ilz£l?+ . . . jr
C c He r

(6.70) y = / / ds(x)dm(y)

rc<y<x<r^

lira -£-~{logr'log-±―
r -≫-ca a c

= CO

+ [logylog^ +
2 r'

4c r

1

c

Hence, the singular point r
?=c

is the exit boundary. We shall

classify the case of r=°° Prom the results of the calculations of

Eqs.(2.20c) and (2.20d), we have

(6.7D a2 / / dm(x)ds(y)

r2<x<y<<=°

■^CK^*"--

(6.72) y = / / ds(x)dm(y) = ≫

r2<x<y≪≫

and
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00 xo
(6.73) s(r=≫) = / =-dx = °°

r2

Hence, it follows that r=<=°Is the natural boundary (locally unat-

tractive) .

[2] Interval [0,c]

In the case where the singular point r =c, it is obvious,s

from the results of [1], that r =c is the exit boundary. We shall
s

classify the property of sample behaviors on r=0. Prom Eqs.(6.6l)

and (6.66), we obtain,

(6.7*0 ds(r) = (rQ/r)dr

and

UU'O

Applications of Eqs.(6.74) and (6.75) to Eqs.(2.20a) and (2.20b)

give the result;

Table 6.2 Classification of boundaries

by Eg.(6.60)

a± yl Classification of boundaries

a = oo P < co "entrance" at r=0

for [O.c]
a < °° y2 = °° "exit" at r=c

a, < °° y-, = °° "exit" at r=c

for [c,°°)
a~ = <≫ Vo = °° "natural" (locally unat-

tractive) at r=°°
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(6.76) a = / / dm(x)ds(y)

0<y<x<r'

and

lim

entrance

n

c y

^idx)dy
= ≪

natural

(6.77) U-, = / / ds(x)dm(y) < co

0<y<x<r'

Consequently, the singular point r =0 is the entrance boundary.
s

The results obtained in 6.5.B are summarized in Table 6.2.

Also, the illustration of sample behaviors based on Table 6.2 is

shown in Fig.6.6.

Then, with Theorem 6.1 and Theorem 6.2, the process which

starts at a point in the interval [0,°°)arrives at the singular

point r =c in a finite time interval with probability one and stays
s

on r =c forever.

exit exit

r=0 c(trap) CO

Fig.6.6 Illustration of Sample Behaviors of Eq.(6.60)

based on Table 6.2.

Demonstrating the validity of the theoretical viewpoint de-

scribed above, results of digital simulation studies are shown.

First, the sample behavior of the deterministic system will be
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given, whose process approaches to a stable limit cycle or diverges

starting from some initial states. Nextly, introducing the stabi-

lizing noise term at some instant, it may be clarified that the un-

stable system can be stabilized.

The simulation study was performed in the case of biased sinu-

soidal stabilizing signal (6.29). We shall suppose that the incre-

ment of the state variables of the physical system (6.27) is taken

at discrete time t. and 6. = t. ,-t. (j=0,l,2,･･･ ), where 6. is suf-

ficiently short, i.e.,

(6.78a) x1(j+l) = x2(j+l)6. + x (j)

(6.78b) x (j+1) = -[<■) X (j+1) + e{ax1(j+l) + pXl(j+l)3}](S +x2(j)

/' 2 2"
,. _ , .,. x-j^j) +x2(j)

determined by Eq.(6.78) is unstable and shows the limit cycle.

Applying the stabilizing signal (6.29), the increments of the

state variables are approximately determined by

(6.79a) x 1(j+l) = x2(j+l)6 + X;L(j)

(6.79b) x2 (J+l) = -[o)2Xl(j+l) + e{ax1(J+l) + px1(j+l)3}]6j

where 6w

+ 6a
cosb/co2x (j+1)2 + x9(j+l)2

k
/w2x1(j+l)2 +x2(j+l)2

1.

6w.
J

t

+ X2 (j)

.=w(j+l)-w(j). Recalling the relation w(t)=/ Y(s)ds, 6w.

is approximated by 6w.=y(J)6.. , where y(j) is the discrete form of

white Gaussian noise. We shall use the Gaussian random number

n1(j) with N[0,1], where- n^j )=y(j )6 .[86] . Equation (6.79) can
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thus be written by

(6.80a) x^j+1) = x2(j+i)fi + x^j)

(6.80b) x (J+l) = -[o)2X;L(j+l) + e{ax1(3+l) + pX;L(J+D3}]6J

+ 6a
cosb/io2x.,(j+l)2+xo(j+l)2 ＼

X d -k ^(j)
+ x2(J)

/co2x-,(j+l)2+Xo(j+l)2

Equation (6.80) was simulated on a digital computer, with a

constant step-size <5.=0.01(sec). A set of parameter values was pre-
J

assigned as a=-l, p=l, w =0.4, e=0.01 and 6=0.1. The results pre-

sented below are representative of the simulation experiments.

A single run of the r(t)-process is shown in Fig.6.7- In

Fig.6.75 the dotted line represents unstable behaviors of the sys-

tem determined by Eq.(6.78) such that the process shows the limit

cycle behavior of r~=1.2, with the initial values of sample process-

es, x (0)=1.0 and x2(0)=1.0 or r(0)=1.2. At time t=50(sec), the

stabilizing signal was applied to the system with the form of the

second term of the right-hand side in Eq.(6.80), where a=4, b=2 and

k=0.8. The sample path of the stabilized system is shown by the

solid curve in Pig.6.7- As stated in 6.5, the r(t)-process arrives

at the singular point r =0.58. This implies that, by the choice ofs

the value of b, the r(t)-process approaches to the different singu-

lar point. Prom this fact, it can easily be understood that the un-

stable system was stabilized by applying the stabilizing noise and

that the process converges to a limit cycle with a smaller amplitude.

Secondly, a similar simulation study was performed in the case

of biased polynomial stabilizing signal (6.59). In this case,
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1.0

0

1.0

Q5

0.1

0

r(t)

fc21._2

Deterministicprocess

4f"=x2 ,-^|2-=-^x1+E(ax1+px13)j

Stochastic process

dx1=x2dt r. r- r
dx2=- |<A<i≪(oxi*pxi3)Jdt+8<yp^-k]dw

a=-1,p=1,u>2=0A,e=0.01

6=0.1,a=A,b=2,k=o.8

x1(0)=1.0,x2(0)=1.0

t

t

(sec)

Fig.6.7

rtt)

roS0.54

r = = 0.1

50 100 (sec)

A Stabilized Sample Path Behavior of Nonlinear

Dynamical System described by Eq.(6.31)

Deterministic process

a?=X2
■ gfi=-fu)'x'+e(ax'+px?)}

r=/u)lxf+x5

Stochastic process

a=-iV=0.1, p=1, 5=0.1
e=0.01,a=3.0, c=0.1

50

x,(0)=0.5, x,(0)= 0.5

150

dx, =x2dt
dx,=-Kx,+e(ax,+ px,3))dt+iaynr-cidw

100

(a) e= 0.01

Pig.6.8 A Stabilized Sample Path Behavior of Nonlinear

Dynamical System described by Eq.(6.60)
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increments of the state variables are computed by

(6.8la) x1(j+D x2U+D6 + X (j)

(6.81b) x2(j+l) = -[(A-^j+D + e{

1

xn

(j+1)

(3)≪j

2≪2

+ x2 U)

(j+1)

ax.

1
2>2I

(j+1) + px (j+1)

1
(J+l) 2≪2

3}]S.

(j+1)

1 1

2)2-e＼f

Sample path behaviors of the r(t)-process is shown in Pig.6.8.

Here, the dotted curve with the initial conditions x;L(0)=0.5 and

x?(0)=0.5 is the unstable run with the limit cycle of the amplitude

1.0

0.5

0.1

0

r(t)

r = rs = 0.1

Stochastic process

dx,= x2dt

dx^-jc^x, +e(ax,+px,3)}- 6 dw

Stochastic Process with Stabilizing Signal

dx,=x2dt

dx2=-{(jj2xl+e(ax1+pxl3)} -6h(x,,x2)dw

h(xi1xo)=h(r)= a/rlr-d

<x= -1, p=i 0)2=0.4, £= 0.01

5=0.1,

50

a=3, c = 0.1

x,(0) = 0.5, x2(0) = 0.5

100

t

150 (sec)

Fig. 6. 9 A Stabilized Sample Path Behavior of Nonlinear

Dynamical Systems Eq.(6.8l) by applying the

Stabilizing Noise Term Eq.(6.59)
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ro=O.54 determined by Eq.(6.78). At time t=50(sec), the stabiliz-

ing signal was added , expressed by the second term of the right-

hand side of Eq.(6.8l). Evidently, the r(t)-process is stabilized

and converges to a limit cycle with the smaller amplitude r =0.1,
s

as shown by the solid curve in Pig.6.8. In this case, a set of

parameter values is shown in Pig.6.8 and, in particular, the singu-

lar point is r =c=0.1.s

Now, as described in Section 6.2, the key notion of the theo-

retical development is that the value of e should be sufficiently

small in order to guarantee the application of the averaging

principle. Hence, an expected question is how the stabilizing be-

havior of nonlinear systems depends on the value of e. This ques-

tion is examined on Eq.(6.8l) by simulation experiments as shown

in Pigs.6.8(b) and 6.8(c) where e=0.05 in Pig.6.8(b) and e=0.1 in

Fig.6.8(c). It is reasonably concluded that the smaller value of e

gives a pleasant behavior of stabilization.

As stated in 6.2, noise stabilization of the unstable nonlin-

ear system described by

(6.82a) dx = x dt

(6.82b) dx2 = -{(o x1 + e(ax1 + px^)} - 6dw

was also examined by simulation experiments. The result is shown
2

in Pig.6.9- A set of parameter values was set as o=-l, p=l, w =0.4.

e=0.01 and 6=0.1. In Pig.6.9, the dotted curve gives the unstable

sample path behavior of the r(t)-proeess determined by Eq.(6.82)

with the initial condition r(0)s0.59- At time t=50(sec), instead

of 6dw in Eq.(6.82), the stabilizing noise term 6h(xn,xn)dw was
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applied to Eq.(6.82) with the form of Eq.(6.59) where a=3･0 and c=

0.1. The solid curve shows the stabilized sample path behavior

which converges to the trap r =c=0.1.

6.7 Summary

A method of noise stabilization for second order nonlinear

dynamical systems has been developed. On the basis of stability

criteria established, two possible types of noise terms have, intu-

itively, been found out; one is biased sinusoidal signal and an-

other biased polynomial type signal. Throughout these studies

mentioned above, it was clarified that the selection of stabilizing

signals depends on both the nonlinear system characteristics g(x,x),

and the stabilizing function h(x,x). In examples considered here,

there were excellent agreements between the theoretical aspects

and the results of digital simulation experiments.

Although the study in this chapter is limited to the stabili-

zation for a specified nonlinear dynamical systems described by

Eq.(6.2), the noise stabilization technique developed above will

be a guide to the stabilization of other types of nonlinear sys-

tems .
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Chapter 7

General Conditions for Noise Stabilization of

NnNI TMFflRTlVNAMTrAI SVSTFMS

We shall consider again the second order nonlinear stochastic

differential equation,

(7.1) x + u2x + £g(x,x) = -6h(x,x)C(t)

which was already treated in Chapter 6.

The motivation of the present chapter fori noise stabilization

mav be outlined as follows:

Considering the case where h(x,x)=l, Eq.(7.1) expresses the

mathematical model of unstable system subjected to a white

Gaussian random input. Consequently, as shown in Pig.7.1, the

problem is to design a compensator h which makes the total system

stable under given noise condition.
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Considering an unstable nonlinear dynamical system which op-

erates in random environment, the purpose of the present study is

to investigate the stabilizing conditions due to environmental

noise parameters. Thus it may clearly be understood that the noise

stabilization technique is more attractive in the practical aspect

of applications than the sinusoidal signal stabilization one.

From viewpoints of (1) and (2) described above, a method of

noise stabilization has already been developed in Chapter 6 for

nonlinear dynamical systems of Eq.(7.1). The principal line of

attack is either to choose intuitively the stabilizing noise term

h(x,i) for g(x,x) determined already or to examine the possibility

of stabilization on the existing term h(x,x)?(t). However, this

method can never give the whole aspect with respect to the possi-

bility of noise stabilization, though it may be applied to piece-

v=o

Fig.7.1 Block Diagram of a Control System with a

Mm' ffp―mnriiiia f.inn Rhahil 1 7PT".
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vise examples. Then, in this chapter, a general rule has been es-

tablished to realize noise stabilization of unstable nonlinear dy-

namical systems.

7.2 Problem Statement

As the basic equations were already derived in detail in

Sections 6.2 and 6.3, we shall review only the description which

becomes necessary in understanding this chapter.

Instead of the rectangular coordinate (x,x) in (7.1), intro-

ducing the polar coordinate (r ,＼p)along the relation; x=(r/u))

xsin(ijj-u)t)and i=-rcos (ijj-wt)and furthermore applying Khas'minskii's

principle of averaging, the differential generator L of (7.1) was

(7.2) Lr = U2(r)^+ V(r)A ,

where

? 2 2ir(7.3) tr(r) = £-/ ti(^cos6,rsine)sin 6d6 ,

(7.4) V(r) =
^/2V(^cose3rsine)^!ide

+ ≫(r)

and where $(r) is given by Eq.(6.l4d) in Section 6.3.

In order to establish a general rule of noise stabilization,

a principal line of attack is to apply the Feller's classification

criteria of boundaries. Here, especially both the coefficients

(7.3) and (7.4) in Eq.(7-2) will play an important role to the

noise stabilization problem. The interesting situations arise when

the diffusion is singular for which, in Eq.(7.3K the relation

2
U (r=r )=0 holds. Then, the singularity configulations are out-s
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-lined at or near singularities. To do this, we shall clarify the

boundaries of the interval I=[r1 ,rp] formed by singularities on the

r-direction at r and r
2'

introducing the canonical speed and scale

measures defined by Eqs.(2.l8) and (2.19) and furthermore using the

properties of a pair (o.,＼i.)in 2.I.C. Through these studies,

the general rule for noise stabilization will be established to

clarify how the stabilizing function h(x,x) should be selected

corresponding to any properties of the nonlinear system character-

istics g(x,x) in Eq.(7.1).

7.3 Derivation of General Conditions

Before proceeding to show direct applications of the mathe-

matical classification rule described in the preceding section,

sample path behaviors are theoretically examined in the neighbor-

hood around a singularity.

Although an excellent classification rule has been reported in

Reference[87] from the viewpoint of noise stabilization, our atten-

tion is placed on the function h(r). We shall assume here that a

choice of the function h is performed so as to be independent of 6.

This choice allows us to write

(7.5) U2(r) = U2(r)

and

(7.6) V(r) = hhZ(r) + $(r).

The functions h2 (r) and $(r) may respectively be expanded around a

singular point r=r
s

into

(7.7) h2(r) = h2(rs) + h2 '(ra )(r-r ) + k2 " (r

-124-
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and

(7.8) $(r) = $(rg) + $'(r )(r-r ) +

U t 5)
where

|*B(rB)(^r)2 + ...

denotes the derivative with respect to r. Substituting

(7-7) and (7-8) into (7.5) and (7.6), we have

(7.9) U2(r) =

and

2
Tr{h2'(rs)(r-ra) + |h2"(rs)(r-r )2}

(7.10) V(r) = ^{h2'(rs)(r-rs) + |h2"(rs)(r-r )2}

+ {$(r
s)

+ $ (r )(r-r ) +V(r )(r-r )2}

where higher order terms than (r-rR)3 in the expansions (7.7) and

(7.8) have been deleted. Prom (2.14) and (7.5), h2(r )=0.
s

Using (7.9) and (7.10), the function (2.17) may be computed

on

(7.11) Bs

where

and

h2'

(r) = £03^- +

o

(rB)≪'(ra )-h

4*"(r )(r-r
)

H S S

o2 hd (r )

2'
(r_)≫"(r

£og|h2'(r )4h2"(rs)(r-rs)|

(vv

)$" (r
)

4$(r

(7.12) A

2|$≫(r

xlog|h2'

r-r

+ ―≪p-; tog | p ,
aV (r ) h^ (rs

^s* v 0 s'
0=

a2h2"(r)

) + (h

.J.
c2

h2"

s

(r )/2)(r-r )

)$' (r
)

(r ) +|h2"(r_)(ro-r8)|

-12 5-
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4*(r ) r -r
(7-13) B =

s -EogHn
T

0 a2h2 (rs) h2 (rs) +(h2 (rs)/2)(rQ-rs)

With Eq.(7.11), Eqs.(2.18) and (2.19) become,

( 7-1^) dm(r) = zmdr

and

(7.15)

where

(7-16)

ds(r) = z dr
s

#'(v )fr-r )
z - -1―Re-Y-i(r_r )Y-iexp{4^V!LiV}
m Vo°2 S °2 h ^s)

and

(7.17) zs =
^Ve+Y(

}-Yexp{_
u )(r-r

)

s s_
on

h <V

}

In Eqs.(7.l6) and (7.17), the parameters are given by

(7-18)
2'

R = h (r ) + (h2"(r
5

)/2)(r-r ), Ac = exp(A +B )

8h2 (r )*'(r )-h2 (r )*"(r ) 4 *(r )
(7-19) 3 = -^ s P,, s p § §- and y = A, ?,

s

s s

Using (7.1*0 and (7.15)> we shall proceed to make the general

classification of the boundaries.

a singular point r=r,. is the trap (In
s

Eq.(7.2), U2(r )=0 and V(r )=0)
s s

(A) h2'(r ) * 0

In this case, from Definition 2-1, (7.6) and (7-8). it is

apparent that *(r
s
)= 0 or, from (7-19), Y = 0. Hence, Eqs.(7;l6) and

(7-17) are respectively
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(7>20) Zm = 777(r"r-rlexp{

c 0

and

H *"(r )(r-r )

≫ h^ (r )

Acr0 -B 4 *"(r )(r-r ) ･
(7.21) z = -f^R Bexp{-^ |tt ^-} -

a^ h2 (r )
s

In order to classify the boundaries, using Eqs.(7.20) and (7.21),

Eqs.(2.20a) and (2.20b) are respectively examined in the forms,

(7.22) ff(r) = /

and

1z (r
r s y

(7.23) p(r) = / 1z

r

where r.

)dr

y

r

(r )dr / xz (r )dr

y

is a constant. A general rule can be obtained by applying

Eqs.(7.22) and (7.23) to properties of a pair (a,＼i)described in

Section 2.I.C.

(B) h2'(r ) = 0

Letting h2'

(7.24) Ba

(r_)=0,

(r) = log^r- +

(2.17) may be computed as

4$"(r

a2
≪ir

h2"(r)
+ A"^77y£o9|r"rsl'(A°1+Boi)

s

where

h *"(r ) R $'(r )

Hence, we have

(7.26) z, = r )31-2exp{4!iV-p pti r(r-r
CTA01r0h <rB>

a2h2 (r )
s
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and

Amrn a 4*"(rs)
(7.27) zal - ^(r-rsrhexvi-

f2^^

s

where

(7.28) B1 = 8$'(rs)/a2h2"(rs), AQ1 = exp(A01+B01).

Instead of z and z given by (7.20) and (7.21) respectively, using
m s

(7.26) and (7.27) to (7.22) and (7.23), classification of the

boundaries are made. The results are summarized in Table 7.1.

Table 7.1 Classification of the trap

No.
Conditions of

coefficients
a li Classification

1

h2(r )=0,r *0
s s

h2' (r HO
s

h2"(r.)%0 or =0
s

<oo 00
accessible exit

boundary

2

h2(rs)=0,rs=0

h2'(r )*0
s

h2"(r )*0 or =0
s

CO <oo
inaccessible

entrance boundary

3

h2(rs)=0

h2'(r )=0
s

p"
Yi (rs)*0

r ≪

s(r )=°°
CO oo

inaccessible

natural boundary

(locally unattractive)

3^1/2

S(l> )<oo
s

oo 00

inaccessible

natural boundary

(locally attractive)

4

h2(r )=0

h2'(r )=0

?"
h (ra)^0

s

r =0

13^0

s(0)=°°

00 oo

inaccessible

natural boundary

(locally unattractive)

s(0)≪≫

oo 00

inaccessible

natural boundary

(locally attractive)
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7-3-B

Eq.(7.2), U2(rs)=0 and V(rR )*0)

(A) h2'(r ) * 0, y(N0) < -
o

In this case, since 4>(r )*0, z and z- become respectively

irR3^-1 Y-l 4*"(r)(r-r )
(7.29) zm = ― 5-Cr-r )Y 1exp{4 In ―}

Vo° ° h ^s}

Vo -B+y -y n$"(r )(r-r )
(7.30) zs = ^R 3+Y(r-r ) Yexp{-4 It. ―> -

3 r s a2 h2 (r )

Classifications of the boundaries are made by (7.29) and (7.30) tc

(7 OO＼ a-nr＼(1 O^.＼as cshown in Tohle 7.9

2'
in the case where r is a singular point (I) (h (r )^0)

―- ―a ―
S

No.
Conditions of

*
coefficients

a y Classification

1
h2(r )=0

5

h2'(rs)*0

h (r )*0
s

or =0

for all g

rs≪

Y>1 00 <oo
inaccessible

entrance boundary

2 H <oo <oo
accessible

regular boundary

3 Y<0 <<x> oo
accessible

exit boundary

l＼
h2(r )=0

h2'(r )*0

oon
hi (r )＼0

or =0

for all 3

r =0s

Y>0 CO <oo
inaccessible

entrance boundary

5 t-4 <oo <oo
accessible

regular boundary

6 Y<-1 <00 CO
accessible

exit boundary
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* It is extremely difficult to classify the boundaries with

respect to 1/2<y<1, 0<y<1/2, -l/2<Y<0 and -1<y<-1/2-

(B) h2 (r ) = 0, Y = °°

In this case, the mathematical situation is somewhat compli-

2
cated. Letting h

we have

(r )=0 In (7.9) and (7.10), instead of (7.11),

(7.31) B,(r) ■1*^ T^Vr'^
s

+ |≫"(r )r}-- cQ

where

(7.32) c

+ $'(rg)log|r-rg|

-$(r )

s

Hence, it follows that

Table 7-3 Classification of the boundaries

in the case where r is a singular point (H) (h (r )=0)s s

No.
Conditions of

coefficients
a M Classification

1

h2(rs)=0

h2'(r )=0
s

pit
hd (rs)*0

s

n>o

s(r )=≫

oo CO

inaccessible

natural boundary

(locally unattractive)

2

n<0

s(r )<°°

00 CO

Inaccessible

natural boundary

(locally attractive)

(Note)
n=8$(r

S

0 9"
)/a h2

<PB
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(7-33) zm = -g
8~^

r(r-r )ei-2exp{-5-L (l!^
a2c0r0h2 (rfl) s a2h2'(rs) ^s

and

(7.34) z^ =

(7.35)

A choice

(7-37)

dx~

is

+ |$"(rs)r)}

c
0

(r-r
ft H -$(r )

a h (r ) s
fa

(1-x2 )x2}dt - 6h(xl9x2)dw

i
2 2

| r -c

( r^c>_0 )

-131
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of

r

Combining (7-33) and (7.34) with (7.22) and (7.23), classification

of the boundaries is summarized as shown in Table 7.3.

7.4 Examples of Noise Stabilization

General considerations developed in the previous section are

applied to realize the noise stabilization of unstable nonlinear

dynamical systems.

7.4.A Nonlinear Dynamical System of Van der Pol-type with

Polynomial Stabilizing Term

As the first example, we shall consider the dynamical system

whose sample path is determined by

dx., = x_dt

= -{x,-e

made on h(x-,,x2) of the form,

(7-36) h2(r) = r2

where c is an arbitrary constant.

Prom (6.l4d) in 6.3, (7-3) and (7.4), we have

4(r) =
4^(2-^),



2 2
(7.38) U2(r) = ^-(r2-c2), ( r >.c > 0 )

and

(7.39) V(r) =^(r2-c2) + f(2-^).

Set as U (r)=0. Then, we have two singular points, i.e., rST=R>rS2=c

(i) The singular point r -=0: Prom (7-39), it is apparent that

since V(0)=0, the origin is the trap.

(xL) The singular point r =c: Apparently, the point r ?=c=2 is the

trap provided that c=2. If c*2, then r , is a singular point which

is not the trap.

Prom (7-7) and (7-36), it follows that

(7-40)

and

h21

Oil
(7.41) ti

(r) = 2r(2r2-c2)

(r) = 2(6r2-c2

(A) The case where c*2.

(a) The interval (c,°°)

(7.42) h2(r) = r2 (r2-c2)

In this case, (7.36) is rewritten as

Prom (7.40) and (7.41), we have h2'(c)=2c3*0, h2"(c)=10c2*0.

Also, since

(7.2)3) Y = 40(c)/a2h2'(c) = (4-c2)/4c2a2,

we have that y<0 for c>2 and y>0 for c<2. Thus, according to the

general rules in Table 7.2, it is concluded that

[I] r =c (c>2) is the accessible exit boundary
s

o
[H] r =c (c<2) is the accessible regular boundary provided that a

=(4-c2 )/2c2 and If a <_(H-c )/4c2, then rs =c is the inaccessible
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entrance boundary.

On the other hand, it follows that

(7.44) dm(r) =

and

(7.45) ds(r) =

r
<f

(r2_c2)(c2-4)/4

(2-c 2/2)/2
dr

It is a simple exercise to show that a =+°°and y <°°and to con-

clude that the boundary r=°°is the inaccessible entrance boundary.

(b) The interval (0,c): In this case, since (7.36) is

(7.46) h2(r) = r2(c2-r2),

we have h (c)=-2c *0 and h (c)=-10c *0. Furthermore, by a simi-

lar consideration to (7.43), we have conclusions y<0 for c<2 and

Y>0 for c>2. Thus, it is concluded that

[HE] r =c(c>2) is the accessible regular boundary, provided that
s

2)/2c2 If a2<(lj_c2 )/4c , then r =c is the inaccessible en-
s

trance boundary.

[IV] r =c(c<2) is the accessible exit boundary,
s

2 2'
On the other hand, it is obvious that h (0)=0, h

h2" (0)*0. With a computation of (7.19). i.e.

(0)=0 and

(7.47) 3 = -4-x > 0
a c

and with the application of general rule to the present example,

the trap r=0 is inaccessible natural boundary (locally unattractive)

(B) The case where c=2
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(a) The interval (2,°°):Noting that (7.36) is given by

(7.48) h2(r) = r2(r2-4),

it follows that h2'(2)*0 and h2'(2)^0. Thus r=0 is the accessible

exit boundary, (attractive trap) Furthermore, using the same pro-

cedure as in the case (A), it is easily concluded that r=°°is the

inaccessible entrance boundary-

(b)

2'
and h

The interval (0.2): Noting that h2
O 9 O !

(r)=r (4-r ), hd (2)*0

(0)*0, from Table 7.1, it may be concluded that r=2 is the

Interval Value of
c

a y Classification of the

boundaries

r=0

c<2

c=2

c>2

<oo

<co

<oo

CO

oo

00

<oo

inaccessible natural boundary

(locally unattractive)

accessible exit boundary

accessible exit boundary

accessible regular boundary

r=c

I

y≫=oo

c<2

c=2

c>2

<oo

<co

<oo

GO

<oo

CO

oo

<oo

accessible regular boundary

accessible exit boundary

accessible exit boundary

inaccessible entrance boundary

natural exit exit entrance
c=2 ―― ≫-o-≪ ― ≪

r=0 2

i

exit regular

r≫=oo

c<2

c>2

I

I

I

regular exit

Pig 7.2 Sample Path Behaviors of the System described by

F.n.r7. 3R1
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exit boundary. The origin r=0 is the inaccessible natural boundary

(unattractive trap). This is easily concluded by the same proce-

dure as in the case (A). The results of classification of the

boundaries are summarized in Table 7.4. Also, based on the results

of Table 7-4, the sample path behaviors of the system described by

Eq.(7.35) are shown in Fig.7.2.

As already pointed out in (ii), the point r
2=c=2

ls the trap

where c=2 for which V(2)=0 and, from (7.6), $(r)I -n-o=0･ zt can

be easily observed that the point r=c=2 shows the stable limit cy-

cle of the system modeled by

(7.49a) x + x + eg(x,x) = 0

where

(7.49b) g(x,x) = -(l-x2)x

and, for convenience of discussions, a simple case where 3=1 and ui

=1 has been considered. According to Ref.[77], the condition of

existence of the stable limit cycle of the system (7.49) is as

follows .

Let r.

1°

2°

be a root of $(r)=0. Then,

if d$(r.

if d$(r.

)/dr±<0, then the stable limit cycle exists at r=r.

)/dr.>0, then the limit cycle at r=rj_ is unstable.

Since, from (7.6) and (7.49b),

(7.50) $(r) = fd-^p)

and $.'(r)| _2<0j the limit cycle at r=2 is stable. Thus, in the

choice of the function h as given by (7.42), the value of c such

that V(r)=0 eives the stable limit cvcle without noisy background.
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r(t)

7.0

5.0

3.0

1.0

0.1

0

c =

Van. der Pol type Nonlinear System

Deterministicprocess

dx1/flt= x2

dx2/tlt = -{x,-e(1-xl2)X2}

Stochastic process

dxj= x2dt

dx2=-(x1-£(1-x12)X2}dt-6h(xl,x2)dw

h(x1lx2)=h(r) = /|r2-c2|

c=0.1. e = 0.01 , 5 = 0.032

t

50 100 150 (sec)

Pig.7-3 A Stabilized Sample Path Behavior of Nonlinear

Dynamical System described by Eq.(7-35)

Figure 7-3 shows the sample path behavior of the system

(7.35) with the stabilizing noise term of the form (7-36). Simu-

lation experiments were performed by a similar procedure as de-

scribed in Section 6.6. A set of parameter values is preassigned

as c=0.1, e=0.01, 6=0.032. The dotted line represents the deter-

ministic behavior starting with the initial value r(0)=7.0. At

time t=50(sec), the stabilizing noise signal was applied to the

system, whose sample path was shown by the solid curve. It can be

easily understood that the system was stabilized by applying the

stabilizing noise and that the r(t)-process converges to the trap

rs=Op1' Thls implies the sample path behavior in the case where

c < 2 in Pig.7.2.
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Polynomial

Nextly, we shall consider the dynamical system

(7.51a) dx1 = x2dt

(7-51b) dx2 = -{x1 + e(ax2 + px2 - nx2)}dt - <Sh(xl3x )dw

with the stabilizing noise term given by (7-36), where a, p and n

are constants and a>0, p<0, n>0. From (6.l4d) in 6.3, (7.9),(7.10)

and (7.5D, we have

(7-52)

(7-53) IT(r) = Vlr - c 1

and

(7.54) V(r) =||r2-c2| t W -
£>

2
Letting U

and r 2=c-

(r)=0, then we have two singular points, i.e.,r =0

(i) r =0 : From (7-54), since V(0)=0, the origin is the trap.
S X

<*> rs2 =c : The point r
9=c

is the trap, provided that c=/W3n-

If c*/W3^, then v&2 is not the trap for which further examination

is required.

(A) The case where c * Aa/3n
2'

(a) The interval (c,≪) : From (7-36), it follows that h

h2"(c)*0. Since, -from (7-19),

(7-55) Y = (3nc2 - 4a)/4a2c2,

(c)*0 and

we have the conclusions that Y<0 for c < Aa/3n and y>0 for c >
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/4a/3n- Then, following Table 7.2,

[I] r = c < /4a/3ri is the accessible exit boundary.
Sc.

[IE] r = c > Aa/3n is the accessible regular boundary, provided
Sid

that 02 = 2(4a - 3tic2)/c2 and if a2 < (4a - 3nc2)/c2, then vq2=c

is the inaccessible entrance boundary.

We shall proceed to classify the sample path behavior at r-*°°

From (7-52), (7-53) and C7 -5^), the calculations of (7-14) and

(7-15) become,

iir.2
(7.56) dm(r) = ^(f-

a rQ

and

-1+2? 2 2
) (r ~C )

r -c

2 2 s(l-A) _
(7-57) ds(r) = i^^) r 1 ^

r -c

SU-2)
dr

dr,

where

(7.58) X = 3nc2/ila and x, = a/a2c2.

Prom the viewpoint of noise stabilization, the value of c must be

small so that we shall assume here that O<X<1 and C<1. With the

results of computations a _a>=°°and u =oo< °°jit may easily be con-

eluded that r -≫-°°is the inaccessible entrance boundary.

(b) The Interval (0,c)
2'

and that h (r)*0 and h2"

2
In this case, noting that h

(r)if0, it is concluded that

(r)=r2 (c
2 2,
-r )

[HI] r ?= c > /4a/3n is the accessible exit boundary.

[IT ] r ,= c < /4a/3n is the accessible regular boundary.
Si―

Finally, we shall classify the origin. Since h (0)=0, h (0)

= 0, h (0)*0 and 3>0, the origin is the inaccessible natural

boundary.

-138



(B) The case where c = /4a/3n

(a) The interval (c,≪≫): The stabilizing noise term is given by

(7.59) h2(r) = r2 ( r2 - ^ ) .

2
Hence, we have h

2"
(c)*0 and h (c)*0. Thus, according to Table 7.1,

it may be concluded that r =c is the accessible exit boundary. On

the other hand, the conclusion that r-><≫is the inaccessible en-

trance boundary is the direct consequence of the case (A),

(b) The interval (0,c) : According to the similar procedure men-

tioned above, it follows that h (c)*0, h (c)*0 for r=c. Thus,

r ~=cis the accessible exit boundary. On the other hand, since
Sc.

h2'f0)=0, h2"(0)*0 and B>0, using Table 7.1, the origin is the in-

accessible natural boundary.

The whole aspect of sample path behaviors of the system con-

sidered is shown in Pie. 7. H. Piscure 7.5 shows one of simulation

r=c =

r=c <

r=c >

3n

3n

3n

natural

r=0

I
I

exit!exit

I
I
I

regular exit!

entrance

Deterministic

system

Stochastic

system

s

*

r=0

! exit regular

T≫= 00

r=0 T>=o°

Pig.7.4 The Whole Aspect of Sample Path Behaviors

of the System described by Eq.(7-51)

( The case where a > 0, p<0, n > 0 )
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r<t)

43

20

1.0

0.1

0

/
/

/

Froude type NonlinearSystem
DeterministicSystem
dx,/dt=x,

/
/

/
/

rs=c=o.i

dXj/dt=-{X,*e(aX2*PX|-ilX23)}

Stochastic System

dx, =x2dt

dX2 = -U*e(aX2*PX22-TlXj:>)}dt

-5h(x,,x2)dw

(a>0, P<0,ti>0 )

h(x,,x2)=h(r) = r/ir'-cJl

a=3.0, P=-1,il = l ,6=1

e = 0.0^ ≪== 0.1

X,(0) = X2(0)=2.0

t

unstable_limit_ cy_cle_

50 100 150 (sec)

Pig.7-5 A Stabilized Sample Path Behavior of Nonlinear

Dynamical System described by Eq.(7.51)

experiments in the case where c < Aa/3n in Fig.7.4. A set of system

parameters was preassigned as a=3, p=-l, n =l and e=0.01. It is well-

known that the system without noisy background is unstable starting

with the initial value r(0)=/8", as shown by the dotted curve in

Pig.7-5 (see Ref.[77])- The stabilizing noise signal (7-36) was

applied at t=50(sec) with the values of 0=1 and c=0.1. The "Stabi-

lizing behavior is shown by the solid curve.

In the case where a < 0, p < 0, n<0 in (7.51), the system con-
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sidered has the stable limit cycle[77]. Consequently, the whole

aspect of sample path behaviors of the system differs from that as

shown in Pig.7.4. By the same procedure as in Pig.7.4, the

boundaries are classified as shown in Pig.7.6. Simulation experi-

ments are also shown in Pig.7.7- With the help of Ref.[77], it can

be explored that the system has the limit cycle with the value of

r=2.0 under a set of parameter values indicated in Pig.7.7- Figure

7.7 shows the stabilized sample path of the system with the appli-

cation of stabilizing term given by (7-36) where the initial values

of the system state were x,(0)=x?(0)=4.0, i.e., r(O)=5-65. As

shown by the dotted curve, the deterministic behavior without noisy

background initiated at r(0)=5-65 approaches to the limit cycle

with r=2.0 as time goes on. As usual, the stabilizing noise term

was applied at time t=50(sec). The system was stabilized and the

sample path of r(t)-process approaches to the singular point i" =0.:i

r=c =

r=c <

r=c >

3n

3n

natural

I

I

I

exit!exit

I

I

exit regular

entrance

Deterministic

^System

Stochastic

r
System

//

//

r=0 I
I
I

regular exit

p=oo

r=0 J>= 00

Fig.7.6 The Whole Aspect of Sample Path Behaviors

of the System described by Eq.(7-51)

( The case where a<0, p<0, n < 0 )
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r(t)

20

0.1

0

"･^

Froude type Nonlinear System

Deterministic System

dx/dt = xl

dxz/dt =-(x,*E{ax2*Px22-Tix23)]

Stochastic System

dx,= x2dt

dx2=-{x,*E(ox2*px22-TiX23)}dt

-6h(x,,Xi)dw

( o<o , p<o .-n<o )
V

h(x,,x2)=h(r)=r/iTM?T

c(= -3, P=-1,T1=-1, 6 = 1

e=QOJ , c = 0.1

X,(0) = X2(0)=4.0

c

t

Biased-

50 100 150 (sec)

Pig.7-7 A Stabilized Sample Path Behavior of Nonlinear

Dynamical System described by Eq.(7.51)

as shown by the solid curve. Conversely, the sample path behavior

initiated at the inside of the limit cycle is shown in Fig.7-8. It

can be easily concluded that the system was stabilized and the

sample path approaches to the singular point r =c = 0.05-s

Let g(xl3x2) in Eq.(7-D be given by
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1.0

Q05

0

rs=c=o.O5

Froude type Nonlinear System

limit

Deterministic System

dx,/dt=x2

dXv^dt=-{Xi*E(otXi*pXj -nx'>}

Stochastic System

dx, = x2dt

dX2=-{X,*E(ax2*pX22-TlX23)}dt

-eh(x,,x2)dw

( a<0, P<0i T)<o )

h(x,,x2)=h(r) =i/ir2-c2|

a=-3, P=-l, "n=―l,6=1

e= 0.0I , c =0.05

Xi(O) = X2(O)= 1.0

50 100 150

t

(sec)

Pig.7-8 A Stabilized Sample Path Behavior of Nonlinear

Dynamical System described by Eq.(7-51)

(7.60) g(x,x) = g(xl3x2) = ax1+px^

where both a and p are arbitrary constants respectively. Also, as

the stabilizing noise term, let the function h(x, ,x ) in Eq.(7.1)

be chosen by

(7.61) h(xl5x2) = h(r) = a
/S°|5E_

- k ,

where, for convenience of description, the polar form has been
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used and where a, b and k are arbitrary constants respectively.

Hence, with (7-60) and (7-61), Eq.(6.4) becomes

(7.62a) dx, = x?dt

(7.62b) dx2 = -{w xx+e(ax1+px^)}dt -
. /cosbr 7~,
8af―£ k dw

Although this example was already treated in Chapter 6, we shall

consider again the noise stabilization by applying a general rule

developed in the previous section.

Computations of (6.l4d) in 6.3, (7-9) and (7-10) by using

(7-62) bring

(7.63) $(r) = 0,

(7-64) U2

and

kl

*l

Thus, the singular point is determined by solving U (r)=0. In

Eq.(7.64), provided that k>0.l6b as shown in Fig. 6.3, we obtain

one singular point. Then, noting that V(r )=0, the singular point
s

r=r (=*0) is the trap,
s

(a) Interval [r ,°°): First of all, from (7-7), we have
s

(7-66) h2(r) = a

+

t cosbr
21 s

r
s

a£

2

- k| +a2

b cosbr

rs

bsinbr
s

2bsinbr

s

Since it is obvious that h2'(r ) =0
s
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cosbr
+ ―2-*)Cr-rB)

2eosbr

s

)(r-rg)
2

+ ･ ･ ･

(r

s

) = 0 from Table 7.1, it
s



is concluded that the point r=r is the attractive trap or the ac-

cessible exit boundary. Next, we shall examine the case of r=°°

Since U2(r) | oo^Oj this situation does not allow us to apply

directly the general rule. The stabilizing noise term h(r) given

by (7.6l) may be approximated by h(r)| =k. Thus, from (7.64)

2
and (7.65), U (r) and V(r) are approximately expressed by

(7.67) U2(r)|r^, = ^p,

Hence, it follows that

V(r)|r_ =

2 2.
oak

(7.68) dm(r) = -^f dr3 ds(r) = -^dr.
uakr0

Applying (7-68) to (7-22) and (7-23), we have

(7.69) o(r) = lira /

y u

and

rl rlr

(7-70) y(r) = lira -5-J5 / r dr /
^r =

≪

r^-oo (,Vkr0 r y y r x

Furthermore, from (7-68), we have

(7.7D

r

s(r) = lim /

p->-00 I≫ rx
dr = °°

x

This fact implies that the point r-><=°is the inaccessible natural

boundary (locally unattractive).

(b) Interval (0,r ) : According to discussion in (a), it is obvi-
s

ous that the singular point r=rg is the accessible exit boundary.
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Instead of (7.6l), we shall suppose that, as r-s-0,h(r) is approxi-

mated by h(r)=k /r, where k is an arbitrary constant. Using this

approximation, from (7.64) and (7.65), it follows that

(7-72) U2(r)=4f^ir> V(r)=4f^-

Hence, we have

Hr2
(7-73) dm(r) = -g-jF dr,

a a k r

ds(r) = -?dr.

It is a simple exercise to conclude that, at r+0, a(0) is not inte-

grable but y(0) integrable and that the origin r=0 is the inaccessi-

ble entrance boundary. The whole aspect of sample behaviors on the

interval (0,°°)is summarized in Fig.7.9. This implies entirely the

same result as already described in Section 6.5.

entrance exit exit natural

r=0 rs (trap)
r≫=oo

Fig.7-9 The Whole Aspect of Sample Path Behaviors

for r(t)-process determined by Eq.(7-62)

of Stabilizing Signals and Unsuccesses of

In the previous section, successes of noise stabilization were

reported by choosing stabilizing term of biased sinusoidal type or

polynomial type. However, at the present stage, although the

general rule was established, the choice of stabilizing noise term

is still ad hoc. In order to emphasize the stabilizing noise terms

146



adopted here, in this section, examples of unsuccesses are con-

sidered, including the effect of nonlinearities exhibited in dy-

namical systems to the noise stabilization.

Stabilization

White Gaussian noise stabilization implies that, in Eq.(6.4),

the function h(x ,x ) does not depend on the state variables x and

X2 As an example, let h(x1,x0)=a in Eq.(6.4)5 Then, with the

help of Eq.(7.60), we have

(7.74a) dx± = xdt

(7.74b) dx2 = -{u2x1 + e(cxx2 + px^)}dt - 6adw.

Classification of the boundaries is listed in Table 7.5

Table 7.5 Classification of the boundaries of

the system described by Eg.(7･7*0

Interval a y s(r) Classification of the boundaries

r=0

I

T*= 00

CO

00
00 <00

inaccessible entrance boundary

inaccessible natural boundary

Prom Table 1-5, it may be concluded that the r(t)-process which is

determined by Eq.(7-7^) and originated at a point in the interval

(O,00) does not arrive at the origin and diverges infinitely with

probability one. In general, the white noise stabilization may

not be realized.
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Letting h(x ,x )=ax a similar procedure to Eq.(7.7^) brings

(7.75a) dx1 = x2dt

(7.75b) dx2 = -{a)2Xl + e(ax2 + px^)}dt - Sax^w.

Table 7-6 shows the results of classification of the boundaries.

of the boundaries of

by Eg.(7-75)

Interval a y s(r) Classification of the boundaries

r=0

Y>= 00

00

<oo

00

<oo

CO inaccessible natural boundary

accessible regular boundary

Prom Table 7.6, it is easily concluded that the r(t)-process deter-

mined by Eq.(7-75) diverges infinitely with probability one and the

noise stabilization may not be realized.

7.6 Summary

A general rule of noise stabilization for second order non-

linear dynamical systems has been established. On the basis of

general consideration of boundary classification, several possible

types of stabilization have intuitively been found out. The key

notion of approach to realize the noise stabilization is to unify

the averaging principle with the Feller's classification criteria

of boundaries in which computations of canonical scale and speed

measures are required. To realize the stabilization easily^ it is

the first step to make a trar> bv a suitable choice of the stabi-
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lizing function hCx^x,,). However, it is another important aspect

to be noted that a selection of stabilizing noise term depends on

both the nonlinear system characteristics g(x, ,x?) and the stabi-

lizing function h(x, ,Xp). Prom this viewpoint, the general rule

developed in Chapter 7 will play an important role to predict the

possibility of realizing the noise stabilization.
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Chapter 8

Jump Phenomenon of Nonlinear Dynamical Systems

subjected to narrow-band random inputs

8.1 Introduction

It is well-known [56] that the jump phenomenon can occur in

certain nonlinear dynamical or control systems subjected to sinusoi-

dal inputs, in which, as shown in Pig.8.1, the output amplitude AQ

has a discontinuous jump, as the input amplitude AT changes. Simi-

larly, in the case where the input to nonlinear systems is station-

ary random signal, the jump phenomenon occurs between the input

variance ＼_ and the output variance ＼ of the response, as shown in

Pig. 8.1, in which the response varies as l->-2->-3->-4-≫-5as the input

variance increases and otherwise changes as 5->-4-≫-6->2->-las the output

variance decreases[88]. Accordingly, the dotted line from 3 to 6

does not occur in the practical response. The theoretical approach-

es up to now were performed based on the describing function method

to a sinusoidal input[56] and also the statistical linearization

method for stationary random inputs[88]. Furthermore, by these

methods, it has been already clarified that the response correspond-
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ing to the curve from 3 to 6 in Pig. 8.1 is unstable and then does

not appear as the real phenomenon[57][09]. However, the approaches

described above are first-order approximation methods and then,

especially for the stationary random input, we can not give enough

explanation of the response by only the fact that, "the response

from 3 to 6 is unstable by applying the statistical linearization

method." This main reason is based on the fact that, although the

statistical linearization method makes possible to evaluate approx-

imately the statistics such as the output variance of the response,

it becomes difficult to comprehend stochastically sample path be-

haviors of the response. Therefore, in order to explicate the

generating mechanism of jump phenomenon, it is necessary to obtain

other probabilistic informations associated with sample path be-

haviors. In this chapter, through the evaluation of probability

9T <

a, a>
o T3
c d
m r

is
Input amplitude

(Input variance
AI
V

Pig.8.1 Illustration of Jump Phenomenon
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density functions of both the input and the output, we shall clari-

fy the generating mechanism of jump phenomenon occurring in the re-

sponse of nonlinear dynamical systems. Supposing that the random

input to nonlinear systems is a broad-band random signal, it will

be possible to evaluate the probabilistic response[58] but, on the

other hand, it will need fairly complex calculations to examine

the jump phenomenon of sample path behaviors. Then, we shall con-

sider narrow-band random input which signal power is confined to a

narrow-band of frequencies. Since such processes are represented

as a sinusoidal wave with a randomly varying amplitude and phase,

we can proceed the theoretical developments, comparing with the

jump phenomenon in nonlinear dynamical system subject to a sinu-

soidal input which has been already investigated in detail.

In Section 8.2, the stationary probability density of narrow-

band random input can be evaluated, which is generated by applying

white Gaussian process to lightly damped linear system. In Section

8.33 the stationary response curve can be obtained between the out-

put response of nonlinear systems and the related narrow-band input,

through the variational averaging technique. Utilizing this rela-

tion between input and output, the stationary probability density

function of output response can be derived. Based on the evalua-

tion of the stationary probability density of output response co-

rresponding to the one of input, in Section 8.4, the generating me-

chanism of jump phenomenon can be verified theoretically by consi-

dering the existence area of stationary response. Finally, in Sec-

tion 8.5, digital simulation studies are demonstrated, showing the

validity of the theoretical approach developed here.
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White Gaussian
noise

(t) Linear system

z+ea- Z+U).

Narrow-band
random input

z(t)

z=/eg(t)

Nonlinear system

Pig.8.2 Nonlinear Dynamical Systems subjected to

Narrow-Band Random Input.

x(0

Input

Suppose that the narrow-band random excitation z(t) can be

generated as the solution process of the system dynamics,

(8.1) z + eo^z + co^z = Jz %(t)

where t,(t) is a white Gaussian noise and where "'" is differenti-

ation with respect to t, e and a~ positive constants and a)~natural

frequency. Also, a? is damping ratio and ea~≪1 in order that the

spectrum of z(t) will be appreciably narrow-band with central fre-

quency o)p for £(t) with the spectral density S-(co)=N .

Letting z=z , z =z2 in Eq.(8.1), Eq.(8.1) is rewritten by It6-

type stochastic differential equation,

(8.2a) dz = z dt

(8.2b) dz .= -{ea z +o)2Z,}dt + /edw(t)

where the w(t)-process is the Brownian motion process with the

following properties; #{dw(t)}=0, E{(dw(t))2}=a2dt, where a is a

constant.
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Prom Eqs.(8.2a) and (8.2b), the following Kolmogorov's back-

ward equation of the z(t)-process is derived:

3p(t,z ,z ) apCtjZ^z ) ? 3p(t,z ,z )
(8.3) ztJ^ = *2 dr-^―^fr + W ^f―

e 282p(t,zl3z2)
+ 2a 7^

dZp

where p(t,z,,z_) is the transition probability density function

from (z ,z ) at time t to (z ,z ) at time t.(>t) for any fixed

(z1Q3z ) and t . Introducing the new coordinates z = Asin(u2t+i}j )

and z = to Acos(wpt+iJ> ) in Eq.(8.3), the transformation from the

(z ,z )-process to the (A,if))-process (where A and ty are random

processes) becomes,

(8.4)
3u

3t
= e[-a

2
x{cos

3^2

+

pAcos
g 8ln2(M2t-H|, ) a2

(u2t+^2)8A + 2 8^ + ^T

.2 uosin2(a)-t+iju) .2 sin2(u t+ijO

sAgt+y^ sin2(0)2t+ij;2)32u

A 8A
+

A 3lj;2>J

where u=u(t, A,iJJ2)=p{t,Asin(u)2t+^2),u)2Acos(a)2t+iJJ2)} .

After somewhat tedious calculations applying averaging princi-

ple[i≫6]to Eq.(8.4), the following; equation can be obtained[51]:

(8.5>
r-c<-?≫+

where p*=p*(t,A,i|i ).

e

? 9 ? 0 0
a )3p* + a d p* + g^ 8^p*-j

As already mentioned, for a sufficiently small

it is known that p*(t,A,ip2) is uniformly approximated as[90]
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(8.6) lim sup |u(t,A,i|O -p*(t,A,i|O | = 0.

Noting that Eq.(8.5) represents Kolmogorov's backward equa

tion, the system dynamics corresponding to A(t) and ^?(t) in

Rn.fS.^) are respectively eiven by

a2
(8.7) dA = e(--£-A

4o)2A 2(02

<8-8) ^2 = 4^-

2
Now, through the relation that a(t)=A (t), the following equation

of the a(t)-process is derived by applying Ito's differential rule

r90l to Eq.(8.7):

(8.9) da = e(-a 2a + l±2l
2,1

)≪ ^w

where A=N/a~since A is a positive. Then, the Kolmogorov's forward

equation of Eq.(8.9) is

2 2 2
(8-10) at = "e3^(-a2a + ~^^)p + T-T2(-2-p)

2(02 2

Prom Eq.(8.10), the stationary probability density function p*(a)

(if there exists,[67]) can be obtained by

(8.11) p*(a) = (-^2

a

＼(l+o2)/2a2 /
2

(1-a2

2
a2o)2

xexp( p~a^'
a

Therefore, from Eq.(8.11), the mean value of square amplitude a is
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(8.12) E{&} = (1 + a2 )/2a
2

8.3 Stationary Response Characteristics of Nonlinear Systems

As shown in Pig.8.2, we shall explore the stochastic behavior

x(t) of second-order nonlinear dynamical systems subject to narrow-

band random input z(t) modeled by

(8.13) X + 0)
2

1x
+ £g(x,x) = nz

where g is a nonlinear function, u, natural frequency and e and n

are small positive constants. Equation (8.13) may be considered to

be a general expression of mathematical model of nonlinear dynami-

cal systems. However, as it is well-known, it is impossible to

treat Eq.(8.13) in the strict sense of mathematics. So, when the

solution z(t) of Eq.(8.1) is represented for a sufficiently small e

by

(8.14) z(t) = A1(t)sinu2t + A2(t)cosai2t, A2 = A^ + A2,

it is assumed that the solution x(t) of Eq.(8.13) may be approxi-

mated bvflOl

(8.15) x(t) = B (t)sinvt + B2 (t)cosvt, B2 = B^ + B2

where the parameter v is given by

(8.16) v = a)- - eAv, Av ≪ 1

Now, in order to examine the property of the stationary res-

ponse x(t) related to narrow-band random input z(t), the variation-

al averaging method C911,r92l is applied to Eq.(8.13) which is
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described in Appendix A. Substituting Eqs.(8.13) and (8.14) into

Eq.(A-10) in Appendix A, it becomes

(8.17)

t±+2TT/v

/ C-v2B-,(t)sinvt - v2B
t. l

2(t)cosvt + to^{B (t)sinvt

+
B2(t)cosvt} + eg(B,(t)sinvt+ B_(t)cosvtjVB,(t)cosvt

vBp(t)sinvt) - n(A,(t Jsinoipt + Ap(t )cosco2t)]

x(6B 1(t)sinvt - v6B2(t)sinvt)dt = 0

However, the calculation of Eq.(8.17) is impossible, because A (t)

and B (t) (r=l or 2) are unknown parameters. Then, we propose the

two-step approximation technique.

First, as already mentioned, the auto-correlation function of

z(t)-process may be regarded as the harmonic function. Accordingly,

(Proposition-l)For any t with t. < t < t .+(2ir/v), we let

A (t) = A .(=constant), B (t) = Brl(=constant).

Using Proposition-1, after somewhat tedious calculations, Eq.(8.17)

leads to the two algebraic equations :

(8.18a) (u)2- v2)B11 + I1(B11,B21) = c^^ + c2A21

(8.18b) (u^_ v2)B21 + I2(Bu,B2i) = c3A11 + c4A2±

where

t

1
+ 2l7/V

(8.19a) I1(B1.,B21) = ^/ g(B11slnvt+B2icoBvt,vB11cosvt
fci

-157-



t.+2ir/v

g

vB2.sinvt)sinvtdt

(8.19b) I2(Bii'B2i) = ^ g(B11sinvt+B21cosvt,vB11cosvt

vB?.sinvt)cosvtdt

and also, using Eq.(8.l6), from (8.17) and (8.18), it follows that

cl=c4==n and c2=c =0.

If the nonlinear function g is given concretely in Eq.(8.19),

the second terms of Eqs.(8.l8a) and (8.l8b) becomes polynomial type

with respect to B . and B . respectively. Therefore, adding both

the square values of Eqs.(8.l8a) and (8.l8b) respectively and
2 2 2 2

furthermore, using the relations of a. =A. =A, . +A~. and b. =B.

">A + B
2

2i
, we obtain the following equation,

I

(8.20) a = f(b ) = I K bm, m=l,2,---,£
1 1 m=l m 1

where K is a real value. Now, letting be a.=y (arbitrary positive

constant), we consider, from Eq.(8.20), the polynomial equation,

(8.21) f(b±)-a1 = K£b^ + K£_1b^~1+ ･･■ + K1b± - y = 0.

In order to assume the existence of jump phenomenon (or multi-

valued response) between a. and b., the following conditions must

be satisfied for Eq.(8.21);

(C-l) K^ > 0 and £> 3.

(C-2) There exist more than three positive roots. This condition

can be satisfied from Descartes Sign Rule[93], if the sign change

of the coefficients of F.n.ffi.2"!}is above three times.
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(C-3) The solution of df(b.)/db, = 0 has at least over two positive

roots.

In the following, through the relation of Eq.(8.20), we shall

examine the stationary probability density p(b.) of Eq.(8.13).
Sup-

posing that the a(t)-process is slowly varying and its period 2v/(n^

sufficiently small, the following proposition is introduced for

the aaraDle value a. taken in the everv course of period 2ir/v,

(Proposition-2) P*(a) = p(a.).

Then, from the stationary ergodic hypotheses of the a(t)-process,

the following relation holds for a.,

(8.22) J ap*(a)da = lira ^/ a(t)dt s iim y a-/N
0 T-x≫dl _T N+≪>i=l 1

Furthermore, the following relation holds,

(8.23) lim I a.
oo

/N = / a p(a )da
0 x 1 ±

As the result, from Proposition-2, the stationary probability den-

sity p(b.) for b. can be obtained by

(8.24) p(b ) = p(a )|
df(b±)

a±=f(b ) db7~

Evaluating the stationary probability density p(b.) given by

Eq.(8.24), we can clarify the stochastic behavior of the stationary

response for the system dynamics of Eq.(8.13).

8.4 An Illustrative Example

Based on the general theory established in Section 8.3, we

159



shall consider the nonlinear dynamical system of Duffing-type such

that the nonlinear function g in Eq.(8.13) is given by

(8.25) g(x,x) = a1x + 3x ,

which is subjected to narrow-band random signal z(t) of Eq.(8.1)

Applying Eq.(8.25) to Eqs.(8.19a) and (8.19b), Eqs.(8.l8a) and

(8.18b) become,

(8.26a) (u^-v2

and

)B11-ea1vB21+(3/4)eeB11(B12. +B*±) = nA^

(8.26b) (o)^-v2)B2±-ea1vB11+ (3/4)eeB21(B11+B21) =nA2±.

On squaring both sides of Eqs.(8.26a) and (8.26b) and calculating

the addition of them, we obtain the following result,

(8.27) A2 = cob2{((3/4)eBbJ + m2 - v2
2

+ (ec^v)2}

2where cq=1/t＼. Equation (8.27) can be expressed in the form of

Eq.(8.20) by

(8.28)

where

a. = f(b. ) = cQ{K b^ + K2b2 + Klb.}

. 3e3(^-v2)
(8.29) K =(^e3)S K = ^ and K = (u)2-v2)2 + (eo^v)2

For the polynomial of Eq.(8.28), we shall examine the conditions

for generating jump phenomenon (or multi-valued response) based on

the conditions (C-l), (C-2) and (C-3) in Section 8.3.

(i) (C-l) is satisfied since K >0 and 1 = 3.

(ji) (C-2) is satisfied, because the change of coefficients is
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three times such that K_ > 0, K^ < 0, K, > 0 and -y < 0 if a) < v.

(ffi) If the coefficients of Eq.(8.28) satisfy K2 < 0 and SI^K- < K^

2 2
< 4KnK^ or equivalently, co1- v + /3"ea-.v< 0, df(b. )/db. = 0 has two

real positive roots, b±d= (-K2 - /K^ - 3K,K_)/3K_ and b. = (-K2

+
Ap

- 3K-]K^)/3K?. Then, it is obvious that (C-3) holds. As the

result, the following inequality holds:

(8.30a) df(b

and

1)/db±
> 0, 0 < b± < b and b± > b±d

(8.30b) df(b1)/db±< 0, blu^bi^ bid-

Then, the response given by Eq.(8.28) represents the multi-valued

characteristics as shown in Fig.8.3- The values of a.. and a.

b;

b;d

b;u

0

a＼ = f(b;)
5

^£^-
> 0 stable

abj

iv.

i
|2

^y

I

I
13

I

I

I

df(b.)
―-77―J― < 0 unstable

ab:

df(

u

b'}
>0 stable

db.

aid
a

i u ai

Pig.8.3 Stationary Response Characteristics
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corresponding to b.& and b±u are given by

(8.31a) a.d = (-K2 - A＼ - SK^) [-K* + 6X^3 - k/k^ - SK^l^Tn

and

(8.31b) a. = (-K + A＼ - 3KXK )l-YL＼+ 6^X3 + K^
_ 3K;LK j/27n

2 2
K

2 2

K3

Nextly, through the relation of Proposition-2, the stationary prob-

ability density function of a± can be obtained from Eq.(8.11) as

aou>o (1+ff
(8.32) p(a±) = (-^)

o

)/2a (1-a2
i

2

xexp(-―g

a

a.)

Accordingly, through the relation of Eq.(8.28), it follows from

Eq.(8.24) that the stationary probability density function p(b.)

becomes.

(8.33) P(b1) = c {f(b1)}

where c.

(l-a2)/2a2 uoui df(b.)
exp[^y-f(b1)]-aE^

a i

is a normarized constant. However, the expression of

Eq.(8.33) is unreasonable since p(b.)<0 in the interval t>j_£̂bj_

<b. . On the contrary, it can be proved [9*0 that the response

of b. is unstable in this interval, as shown in the response curve

3 to 6 of Pig. 8.3 (referring to Appendix B). Then, the stationary

probability density function p(b.) becomes,

(8.3^) P(b±) = 0, bi£^bi^blu-

Consequently, the probability density function p(b.) of Eq.(8.33)
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can be rewritten in the following modified form

(8.35a) p(b1) = c]_{f(b±)}

(8.35b) p(b ) = 0

(l-a2)/2a2 a a)2, df(b.
exp[-^f(b.)]-^

bi
< b.

1U

bid
< b.

and b. ,
id

< b.
~ iu

<bi

where e1 is a normarized constant. Prom Eq.(8.35), the jump phe-

nomenon occurs at the both points of (a. ,b. ) and (a. ,b. ) in

Fig.8.3 according to the transition of p(a.) given by Eq.(8.32),

based on the change of E{a±}. In other words, since the point 3 is

unstable one and otherwise the point 4 stable one in Pig.8.3, the

jump of magnitude b1 occurs from 3 to 4. Furthermore, the similar

jump phenomenon occurs from the unstable point 6 to the stable

point 2.

Here, we shall explain the occurrence of the phenomenon describ-

ed above in detail using the stationary probability density func-

tions p(a. ) and p(b. ). Now, the system parameters of Eqs.(8.1) and

(8.13) are set as

(8.36a) e = 0.01, o)2= 5-276, a2 = 0.1, (^ = 5, n = 1 and v = 5-27,

where parameters of the nonlinear function g in Eq.(8.25) are given by

(8.36b) a1 = 20 and B = 500

2
and also the variance of the white Gaussian noise £(t) is a =0.1.

In this case, the stationary response curve of Eq.(8.28) was

obtained as shown in Fig.8.4. Figure 8.5 represents the stationary

probability density functions p(a±) of Eq.(8.32) which are shifted

from A-l to A-6 successively by changing the initial condition aQ.

Here, the initial values aQ are set as 0, 0.3, 0.59, 0.8, 0.95 and

-163-



1.0

0.87

b;d=0.68

0.5

biu=0.3

0.12

0

aFkK3brK2t}+K,b;)

＼

I-
I

I

05 *;d =0.79 1.0 aiu=1.15

Parameters

e=001
≪r20
3=500

"■f5
v = 527
T|=1

1.5 a:

Pig.8.4 Stationary Response Curve of Eq.(8.28)

5.0

0

P(ap

A-l

0.5 1.0 1.5

Pig.8.5 Transition of p(ai) with the Change of

Initial Conditions.
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40

20

0

0

15

0

0.68 1.0

0.68

0

1.0 0 0.3

0.68 1.0

0.68 1.0

Pig.8.6 Transition of p(b.) corresponding to the

Transition of p(a.).

1.1. The figures of the transition of p(b.) were obtained, through

the calculations of Eq.(8.35) as B-l to B-6 in Fig.8.6 respectively

corresponding to A-l to A-6 in Pig.8.5. In Fig.8.6, it should be

noted that the interval 0.3 <b. <0.68 shows an unstable region.

Now, we shall consider the case where p(a.) increases in the

sense of mean value by changing the initial condition aQ. When

p(a1) is shifed to A-l, A-2 and A-3 successively, the b1(t)-process

shows the stationary response corresponding to the curve PQ in

16 5-
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Pig.8.4 and then the jump from the point Q to R does not occur prac-

tically, as known by p(b±) of B-l to B-3 in Pig.8.6. However, as

shown by p(b.) of B-4 and B-5 when shifted to A-4andA-5, it can be

possible that there exists the stationary response corresponding to

the curve ES in Fig.8.4. This implies that the stationary response

corresponding to PQ jumps at the point Q and shifts to the station-

ary states ES. Furthermore, when p(a.) shifts to A-6, there exists

only the stationary response to the curve ES and a jump does not

occur-

On the other hand, the similar phenomenon can be illustrated

in the case that p(a.) decreases in the sense of mean value of a..

That is, we shall consider the case where p(a.) moves from A-6 to

A-l in Fig.8.5 successively. Then, from p(b.) with the transition

of B-4 and B-3 corresponding to A-4 and A-3, it follows that the

stationary response to the curve ES jumps at the point E and shifts

to the stationary state to PQ.

0.|3 Digital Simulation Studies

In this section, the experiments can be performed, to verify

the occurrence of jump phenomenon in the nonlinear stochastic sys-

tems by observing the sample path behaviors. Letting be z=z,,

^1=Z2' x=xl and X1=X2' Eqs^8-1) and (8.13) can be transformed as

(8.37a) dz

(8.37b)

,/dt = z
2'

dz2/dt = -ea2z2 - u^z, + /e£(t)

and

(8.38a) dx^/dt = x2,



(8.38b) dx 2/dt = -ea,x
2 3

2 ~ a)lxl ~ e^xl + T]Z

Numerical calculations were performed by Runge-Kutta-Gill

Method[95] to obtain the values z and x at time t from the
r.n r,n n

values zr,jn_1 and x^ n_1 at time tn_1 where r=l or 2 and n=l,2,---

Using the sample values z, , z , x and xo obtained above,

a(t ) and b(t ) can be computed respectively as

(8.39) a(tn

and

(8.40) b(t

= z

= X

l!n + ^2jn/u2^

2
l,n + (x2,n

In these experiments, the parameters of Eqs.(8.37) and (8.38) were

set as (8.36). Also, the variance of |(t) were given by a =0.1

and 0.8.

First, the solution process z(t) of Eq.(8.37) has the proper-

ties such that the spectral density S (to) and the auto-correlation

function R (t) become respectively

(8.41) S (co) = 0.1a2 /{(a)2 5-2762)
2

+ (O.OOlco)2}

and

(8.42) R (t) = £{A(t)A(t+T)}(cos5.276T)/2,
z

which are shown in Pigs.8.7 and 8.8. Furthermore, from Eq.(8.8)

the stationary probability density function p(ai) is obtained as

shown in Fig.8.9.

Nextly, the stationary response characteristics was already
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2.0

1.0

0 A cu26 8

(=5.276)

Pig.8.7 Spectral Density of the z(t)-process

R(T) Eq.(8.A2)

Experiment

Pig.8.8 Auto-correlation function of the z(t)-process

obtained in Pig.8.k as the relationship between the input and out-

put amplitudes. Thus, along the line of the response curve ob-

tained above, the main problem is to examine the occurrence of jump

phenomenon at the points Q or E for the b.(t)-processes in-the case

where the a.(t)-processes increase or decrease in the sense of mean

value E{a.}. By the way, it is sufficient if each one data of
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P(oj)

5.0

2.5

0 0.2 0.4 0.6 a,

Fig. 8. 9 Stationary Probability

Density Function of z(t).

sample values a.

**1

and b.

Pig
8 10

t(n)
xl+1

Sample Values a.

b..

is taken in the each interval t. £ t

and

+2tt/v. However, in this simulation, we confirmed that the Prop-

osition-1 holds by picking up and comparing with six data in the

interval t±< t <.t±+2i＼/v,as shown in Pig.8.10. Here, a =a(t^) and

bi=b(t^) and also t±=t^n' represents t^ =tn> n=6i-5, 6i-4,･･･,6i.

In all experiments, the time interval of sample values was set as

^n+l^n-0-2-

The results of digital simulation studies are shown in Figs.

8.11 and 8.12. Figure 8.11 shows the sample runs of the a(t) and

b(t) processes in the case of a2 = 0.1, in which (A) is the case where

the a(t)-process increases and where (B) the case that the a(t)-

process decreases. In Fie;.8.11(A), the increase of the a(t)-proc-
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Fig.8.11 Sample Runs of the
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of the a(t) and b(t) processes
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ess was performed by changing the initial value in every 60 sec. And

the first initial value was set at the point P = (a(0),b(0)) = (0.2,

0.02) in Pig.8.4. In the case where the magnitude of the a(t)-proc~

ess is smaller than a± =1.15 (in the time interval 0<;ts;240),

the b(t)-process increases gradually along the stationary response

curve P + F-s-Q in Fig.8.4. Once the a(t)-process is over a±u= 1.15

(t>240), the b(t)-process varies abruptly from the point Q to R

in Fig.8.4 and then yields the jump to the value of b = 0.87-

Afterwards, the b(t)-process converges to the response curve

ES in Fig.8.4. In Fig.8.11(A), the overshoots of the b(t)-process

show the transient phenomenon at each initial time . On the other

hand, Fig.8.11(B) shows the sample run of the b(t)-process in

which the a(t)-process is slowly decreasing. The initial value was

set at the point D= (0.93,0.75) in Fig.8.4. When the sample values

of the a(t)-process are over the value of a. =0.79 (in the time

interval 0<t<75), the b(t)-process moves along the response curve

DE in Fig.8.4. However, once the a(t)-process is smaller than the

value of a., = 0.79 at time t = 75, the b(t)-process changes suddenly

from the point E to F and then occurs the jump to the value of b=

0.12. After the time t = l40, the b(t)-process converges to the

response curve FP in Fig.8.4. Figure 8.12 shows the simulation

2
results"in the case of a =0.8. As well as the case of Fig.8.11,

it can be observed that there exist jump phenomena at the points

alu = 1.15 in (A) and ald=0.79 in (B). From the experimental re-

sults of Fig.8.11 and 8.12, it was verified that there exist the

jump phenomena as the practical behaviors, which was already clar-

ified theoretically. Furthermore, in the interval a., <a. < a. ,

it was ascertained that the response in the interval EO shows un-
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stable behaviors

8.6 Summary

The past analytical studies of jump phenomenon in the stocha-

stic systems had been developed by evaluating approximately the

relationship of variances between the input and the output ampli-

tudes[90]. In this section, we shall consider the analytical re-

sults mentioned here from this viewpoint of the variance evalua-

tion. First, let

1 T
(8.43a) £ = lim ^j

T-m≫ x -T

and

(8.43b)

a(t)dt

The relation between a and b can be obtained as follows by replac-

ing a. and b. in Eq.(8.28) with a and b,

(8.44) a = f(b)

= [(iEg)253+|eB(a)2_v2)52 + {(a)2_v2) + (eaiV)2}b]/n2

The relationship of Eq.(8.44) is shown in the curve I of Pig.8.13,

On the other hand, using both Eqs.(8.32) and (8.33), we shall ex-

amine the relation between a.=#{a.} and b1=E{bi>- Referring to

the characteristics of the stationary response in Pig.8.4, notic-

ing that the interval of 0.3 < b. < 0.68 is the unstable region and

p(b.) =0 in this interval, the b. can be obtained by
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Fig.8.13 Evaluation of the Stationary Response

by the Mean Value.

oo 0.3 °°
(8.45) b. =/ b p(b )db =/ b p(b )db +/ b P(b )db

101 0 0.68 x x

From the stationary hypothesis of the a. process described in Prop-

osition-2 and furthermore the stationary hypothesis of the b.

process, it can be regarded as a. =a and b. =b. Accordingly, the

calculation result of Eq.(8.45) yields the response curve H in

Pig.8.13- Since, obviously from Eq.(8.45), the curve H was calcu-

lated by excluding the unstable region, it can be considered that

the value W of the curve IE is the average of the sample values U

and V. Then, from this stationary response curve H , the existence

of .jump phenomenon can not be verified.
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Chapter 9

Discussion and Conclusions

A comprehensive study of the dynamics of the nonlinear stochas-

tic differential equations has been performed and applied to the

second order nonlinear dynamical systems subjected to random inputs.

The results and conclusions of this study will be discussed in this

section.

In Chapter 3 and 4, three new approaches has been developed

to examine the existence of stationary probability density func-

tions for nonlinear dynamical system response. The first was con-

cerned with a choice of a suitable Lyapunov-like function, the

second was concerned with the application of an arbitrary martin-

gale function and the third was concerned with the construction of

conditions for some stochastic model based on the classification

criteria of the boundaries. These three approaches presented here

gave sufficient conditions for guaranteeing the existence of the

stationary solution of the Fokker-Planck equation. The first two
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approaches are applied to nonlinear stochastic systems with singu-

lar points and the third is suitable for nonlinear systems with no

singular points. Naturally, a choice of the type of Lyapunov-like

functions depends on the nonlinear characteristics contained in the

dynamical system considered. However, the present methods provide

a new light in the exploration of the asymptotic behavior of a wide

class of nonlinear dynamical systems around singular points.

In Chapter 5, a realizable approach was presented to analyze

the asymptotic stability of a general class of nonlinear stochastic

dynamical systems. The basic notion presented here was a choice of

the stochastic Lyapunov function with an advantage that influences

of initial values of the system states came out. Introducing the

concept of random evolution [35][36], the stability analysis was

extended to a general class of nonlinear dynamical systems involv-

ing two kinds of random parameters modeled by a white Gaussian and

a Markov chain processes respectively. Throughout this study, the

relation between the asymptotic behavior of nonlinear stochastic

systems and the domain of their initial values are examined by

using the useful theorems giving sufficient conditions for the as-

ymptotic stability with the probability appraisal.

In Chapters 6 and 7, a method of noise stabilization for the

second order nonlinear dynamical systems has been developed. On

the basis of stability criteria established, two possible types of

noise terms have, intuitively, been found out ; one is a biased

sinusoidal signal and another a biased polynomial type signal. The

principal line of attack to realize the noise stabilization was to

unify the averaging principle with the Feller's classification cri-

teria of boundaries in which the computation of canonical scale and
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speed measures was required. To realize the stabilization easily,

it was the first step to make a trap by a suitable choice of the

stabilizing function h(x,i). However, it is important aspect to

be noted that a selection of stabilizing noise term depends on both

the nonlinear system characteristics G(x,i) and the stabilizing

function h(x,i). From this viewpoint, the general rule for noise

stabilization of unstable nonlinear dynamical systems was estab-

lished. The general rule developed in Chapter 7 will play an im-

portant role to predict the possibility of realizing the noise

stabilization.

In Chapter 8, a new approach has been developed to analyze

the jump phenomenon occurring in the nonlinear dynamical systems

subjected to a narrow-band random input. Throughout the variation-

al averaging technique, the multi-valued response curve was obtain-

ed approximately in the stationary state. Based on the relation

(8.28), the stationary probability density function of the output

amplitude was derived, by which the generating mechanism of jump

phenomenon was clarified. The main result of this study is that

the analysis of jump phenomenon has been performed by evaluating

the probability density function of the input and output amplitudes,

in order to examine sample path behaviors of jump phenomenon.

It was shown that, through digital simulation studies, the occur-

rence of jump phenomenon was obviously explained by the observation

of sample path behaviors.
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Appendices

[91],C92]

The variational averaging method is based on the principle of

virtual work which may be expressed in the form of Hamilton's

Modified Principle,

fc2
n

(A-l) / I [-

txj=l

_d_
dt

3L

3*J

+ 3L
9S-

+ QJ(t)]6q dt = 0, 3=1,- ･ ･ ,n

where L is the Lagrangean function, the q. are generalized coordi-
J

nates and Q.(t) are generalized forces given by random input proc-
J

esses. Since the 6q. are independent variations in the coordinates,
J

the term in the brackets must be equal to zero individually. This

normally results in the set of second order differential equations,

(A-2) G

where G .
J

[ q-L'- ■･ ,qn ; ･ ･ ･; qis- ･ ･ ,qn ; Qj(t) ] = o, j=i, ･ ･ ･ ,n

[■] represents the dynamics describing the system.

It is assumed that q

(A-3) q,(t) = 9,
J J

.(t) in Eq.(A-2) are approximated by

(t) = q. (B.±(t),---,B z(t) ; t)

In Eq.(A-3), the function q.(t) is chosen to be a known function of

time and the parameters B.≫(t) are random processes which are to be

determined in such a way as to make the assumed solution a best fit

to the exact solution. We must explore a criteria for the selec-

tion of the B.^(t) so that the approximated solution is as good as

possible. The criteria selected here is that Eq.(A-l) is satisfied

17 8-



over a specified time interval of interest te[t ,t ]. We then

require that

"2
(A-4) / Gj[ ql3'--,qn 5 Qj(t) ] 6q＼.dt = 0 , j=l>- ･-.n.

Since

(A-5) 5q = I I I1 SB ,

and B.≫(t) may be varied independently, we obtain the following

variational equation from Eq.(A-4),

3q (B ,)2 K. aq.CB.

where G.

G.
3

(t)=G.

H
dt = 0

[q13---,qn; Qj(t)]

･

Now, considering the system equation (8.13), the q., Q.(t) and

(t) mentioned above are given as follows:

(A-7) q1(B1,B2) = x(t) = B1(t)sinvt + B2(t)cosvt,

(A-8) Q]_(t) = z(t) = A1(t)sinco2t + A2(t)cos<o2t

and

(A-9) Gx (t) = $ + u?Z + eg(x,x) - nz(t),

where 1=2 and n=l. Therefore, letting t^ = t±, t2 = t± + 2ir/v,

Eq.(A-6) is rewritten by

t.+2ir/v

(A-10) / [x + 4£ + eg(x4)-ng]{|^-6B1 +
|f-6B2}dt = 0

t. 12

and then Ea.(8.171 can be obtained.
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Response[10]

Introducing the rotating coordinates, the solution process of

the system (8.13) is represented by

(B-l) x(t) = B(t)sinc|)1(t), x(t) = vB(t )oos(|)1(t)

where <|>,(t)= vt + ty (t). In Eq.(B-l), the random variable B(t)

satisfies the relation (8.27) in te[t1,t1 + 2ir/v]. Prom (B-l), it

is easily shown that

(B-2) B2
2 , -2

= x + x

Letting b = B2

that

/v , ＼i> = tan
-1

(vx/x) - vt

arid differentiating with respect to time, it becomes

(B-3) b = 2x(v2x + x)/v2, i>±= -x(v2x + x)/vb.

Substituting Eqs.(8.1)- (8.13) and (B-l) into (B-3) and deleting

the terms of higher harmonics, the following truncated equations

are found to be

(B-4a) t>=K lb,ty ] =-ea b + r}/^5 sln(≫2 - if-,),

(B-4b) i> =H
2[b,i|> 1J=

1≫ +

i^-i^f-^-V

Since the fluctuation x(t) of the system (8.13) is the narrow-band

random process, the amplitude b and the phase ty of the response

process manage to take the quasi-stable values causing that b and

^n in Eqs.(B-4a) and (B-4b) make zero. Let 6b and 6^ be the small

deviations of b and ^ from their stable values. Then, using

Eqs.(B-4a) and (B-4b), the following linearized equations for fib

and 6i|/,are obtained by
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(B-5) 6b = ai:L6b + a.^6^, 6^ = a216b + a^Si^,

where

3H [b,ip ] ea 3H [b;* ]
<B"6) all = 3b =-^- ai2= 3≫ =-^{^-v24JcBb},

3H [b,i|iJ ± , to2-v2 3H [b.^J
a21= 3b = ^{＼e6+^b―} and a22= 3≫ 2

Then, the characteristic equation is

2
(B-7) X - ^n + a22^ + aHa22 ~a12a21 = °"

By Routh-Hurwitz method, it is easily seen that necessary and suf-

ficient conditions for the stability of Eq.(B-5) are obtained as

(B-8a) a.,,+a22 = -ea < 0

(B-8b) a11a22-a12a21--M3<|e

+ (eva1) + (

g)2b2 + 2{|ef3(u)2-v2)}b

2 2
CO-, - V 2] > o

Note that the first condition is always fulfilled for a >0. The

second condition can be expressed by

(B-9)
i df(b.)
± ±- > o
/^ ＼2 db.

cQ(2v) 1

where fCtu) is given by Eq.(8.28). Therefore, the stability of the

amplitude b can be evaluated by examining the sign of df(b.)/db..

The following result can be obtained with respect to the stationary

response curve of Eq.(8.28) in Fig.8.3 ; the amplitude re-

sponses on the branches 23 and 64 in Fig.8.3 correspond to stable

values of b, since the derivative of f(bJ.) with respect to the
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amplitude b. is positive, whereas the response on the branch 36 is

unstable because the derivative of f(b.) is negative. Then, a jump

of the output amplitude b occurs from the point 3 to the point H,

because the point 3 is unstable and the point 4 is stable. Simi-

larly, a jump of the output amplitude occurs from the unstable

point 6 to the stable point 2.
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