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INTRODUCT ION

This paper is devoted to the study of nonlinear oscillations in certain
types of physical systems. The systems under consideration are concerned with
electric eircuits and are described by nonlinear differential equations. The
ma;had of analysis presented in the paper may also be applicable to other phys=
ical systems which are described by differential equations of the like form.
The subject of investigation is mostly limited to the field of forced oscilla-
tions,

The text consists of five chapters., Analytical methods and graphical pro-
cedures for solving nonlinear differential equations are described in the first
two chapters, The three chapters that follow are concerned with the analysis
of certain phenomena in nonlinear systems, Complementary remarks are provided
in four appendices to the text,

Chapter I is concerned with the analytical methods of widest utility, i.e.,
the perturbation method, the iteration method, and the method of harmonic bal=-
ance, The argument in this chapter is confined to the analysis of the harmonic
solutions of nonautonomous equations, There is usually considerable advantage
in obtaining an enalytical solution for a differential equation when this is
possible, It is recognized that nﬁ exact solution probably cannot be found for
a nonlinear differential equation, and that en approximate solution of suffi-.
cient accuracy may be possible.

According to the principle of the perturbation method for solving a none-
linear differential equation, we develop unknown quantities in powers of a small
pareameter of the equation and determine the coefficients of the developments

stepwise, The author desoribes a method in which the emplitude and phase of
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the desired solution are sought in powers of the small parameter. This method

may be naturel and practical as compared with the method in which the amplitude
of the solution is first prescribed and the frequency of the external force is

obtained as a function of that amplitude [29, 32].

A mothod of solving nonlinear differential equations based on the process
of successive iteration is called the. iteration method. Iteration may be per-
?ofmud in a number of ways. We present a method in which the amplitude and
phase of the oscillation are determined by the process of successive iteration.

A perlodic solution may be developed in a Fourier series, According to
the principle of harmonic brlonce, the term of the fundsmental frequency and
one or two additional components of predominant amplitudes are assumed to a
first approximation, In Chepter I a method is described where we start with
a first approximation of very simple form and then improve the accuracy of the
approximation by adding correction terms stepwise,

The analytical methods described in Chapter I are legitimate mathematically
only for equations of small nonlinearity. However, they may still be applicable
even to the solution of equations with large nonlinearity to some extent. We
examine the applicability of the methods by solving numerical examples where
large nonlinearity is associated with them. The accuracy of the numerical solu-
tion is estimated by inserting the solution into the original equation and evalu-
ating the residual produced. -

Chapter II describes graphical methode for solving certain types of non-
linear differentisl equations, An analytical method, though it has considerable
advantage, is restricted to the solutlion of rather simple equation. A graphical
method is usually simple to utilize and may be effective as an exploratory tool

when a nonlinear characteristic is lmown in the form of a curve, We are partic-



ularly concerned with the investigation of the following graphical methods,
i,e., the slopeline method and the delta method. Both of them are based on
the step-by- step integration procedure and are useful to find a single solue
tion curve with a given initial condition,

No claim is made as to the originality of the principles of the methods,
inasmuch as the basic notions have been in use for some time. The author sys-
tematizes the use of the methdds and clarify the possible range of their appli-
cability., Various modifications and extensions of the basic methods are de-
scribed in the present investigation. Nemely, a modiflcation of the slopeline
method enables its application to the grephical solution of nonautonomous e-
quations, A modification of the delta method improves the accuracy of the so-
lution. The double-delta method, an extension of the delta method, is present-
ed, It is epplicable to the solution of differential equations of a complicat-
ed type. Errors produced in each procedure of the graphical constructions are
evaluated by making use of Taylor's expension., The results of the graﬁhical
solutions for several numerical examples, including van der Pol's equation and
Duffing’s equation, prove the excellency of the methods,

Chapter III deals with subharmonic oscillations which occur in nonlinear
syatems under the action of a periodic force. A subharmonic oscillation is an
oscillation whose fundamental frequency is a fraction of that of the applied
force, In this chapter is studied the subharmonlic oscillations of order one
half in the system represented by Duffing's equation. The 1/2-harmonic oscil-
lations have been discussed by Prof, C, Hayashi [11, 30] and the present author
[8]. A more detailed investigation is described in this chapter. The phase-
sepace enalysle is used for the investigation of the oscillations, The phase-

apace analysis is based on an approach through the methods of harmonic balance
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and variation of parameters. The response of the system is developed in a
Fourier series in which the coefficients are assumed to be slowly=-varying func-
tions of time. These coefficients constitute the coordinates of & representae
tive point in the phase space. The pericdic solutions in the steady state,
which are correlated with singular points in the phase space, are first sought
for various combinations of the system parameters. The stability of the peri-
odic solutions is investigated by meking use of the Routh-Hurwitz' criterion,
The transient state of the oscillations is discussed by illustrating the geo-
metrical configuration of the integral curves in the phase space, [

Particular attention is directed toward obtaining the relationship between
the initial conditions and the resulting subhermonic responses, It is a dis-
tinctive feature of nonlinear systems that various types of steady=-state re-
sponses may teke place even in the same system depending upon different values
of the initial conditions. Several patterns of initial conditions leading to
different types of subharmonic responses are shown on the phase plane., Theo-
retrical results are compared with the solutions obtained by analog-computer
enalysis and found to be in satisfactory agreement with them.

Chapter IV is concerned with the relationship between the initisl condi-
tions and the resulting periodic responses in the system governed by Duffing's
equation, A different method of analysis from that used in Chepter III is de-
veloped, The phase-space (or phase-plane) method, as described in Chapter III,
has been used extensively for the study of cscillations in the transient state
(11, 30]. However, it has the following drawbacks, First, if the initial con-
ditions are prescribed at values which are far different from those of the steady
atate, the assumption that the emplitude and phase of the oscillation vary slow-

ly does not hold. The second drawback is that, if a number of steady state re-
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sponses are to be expected, this method is practically inapplicable, since the
analysis is compelled to resort to the grapﬁical solution in a higher-dimensional
phase=spacse,

Chapter IV describes the method of analysis which is applicable under such
situations [12]. The phase-plane analysis, where the coordinates are the de-
pangant variable V and the first derivative of Vv with respect to the independ-
ent variable T, is used. The mapping, which transfers a representative point
on the phase plane at T = T, to & representative point at T=To+ T (T refers
to the period of the applied force), plays an essential role in the analysis,
Then a periodic solution will be correlated with a fixed point of the mapping.
We may determine the location of a directly unstable fixed point by using the
method of harmonic bealance, Through the directly unstable fixed point there
is a invarisnt curve of the mapping, which is the locus of the images that ap-
proach the unstable fixed point with increasing time. This invariant curve is
e boundary betwsen domains of attraction, in each of them any initial conditione
leading to a particular stable fixed point with increasing time [4 ]. In the
neighborhood of the unstable fixed point, we may locate the small segment of
the invariant curve by making use of the solution of the variational equation
from the unstable periodic solution, Then the whole configuration of the bound-
ary curve is obtained by integrating the original equation from a point on the
segment for decreasing time,

W Two examples of the domains of attraction are 1llustrated, The first deals
with the domains of attraction leading to the harmonic and subharmonic oscilla-
tion of order 1/3 in a symmetricel system, The second éxample is concerned with
the domains of attraction for the harmonic oscillation, the subharmonioc oscil-

lations of order 1/2 and of order 1/3 in an unsymmetrical system,
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Chapter V deals with the so-called quasi-periodic oscillation where the
amplitude and phase of the oscillation vary slowly but periodically even in the
steady state [18]., Since the waveform of the csecillation ie not uaually repeat-
ed, the quasi-periodic oscillation is in generel nonperiodic. The phase-space
analysis such as usa; in Chapter III is also applicable to the enalysis of the
ogcillation of this type. A periodic cscillation is correlated with a singu-
1a§ point in the phuse space; while a quasi-periodic oscillation is represent-
ed by a limit eyele., Since the quasi-periodic oscillation is affected by am-
plitude and phase modulation, the representative point does not tend to & sin-
gular point but keeps on moving along the limit cyecle with increasing time.

The period required for the representative point to complete one rsvolution a-
long the limit cycle is not an integral multiple of the period of the external
force; the ratio of these periods is in general irrationeal.

Two representative cases of the quesi-periodic oscillation are studied in
Chapter V, The first is the case in which 2 harmonic oecillation in a resonant
nonlinear circuit becomes unstable and changes into a quesi-periodic cscillation.
The second case deals with the quasi-periodic oscillation which develops from
a subharmonic oscillation of order 1/2 in a parametric excitation circuit. The
numerical analysis is carried out for these cases; thus two distinctive types
of the limit cycle as well as the location of the singular points in the phase
space are determined for particular sets of the system parameters., The theoret-
ical results are compared with the solutions obtained by analogecomputer anal-
yeis and found to be in satisfactory agreement with them,

As has been mentioned earlier, four appendices are annexed to the text,
Appendix I describes one of the iteration method, which is somewhat different

from that of Chapter I. Appendix II is concerned with error analysis of the
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graphical construction procedures, Appendix I1II shows the regions of the param-
eters of Duffing's equation in which the oscillations of'different types are
sustained. Appendix IV describes the solutions of the variational equations
associated with the unstable fixed points of the numerical exemples in Chapter

Iv,
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CHAPTER I

ANALYTICAL METHODS FOR SOLVING NONLINEAR DIFFERENTIAL EQUATIONS

1.1 Introduction

There is usually considerable advantage in obtaining an snalytical solu-
tion for a differential equation when this is posaible, The analytical solu-
tion is obtained in algebraic form without the necessity of introducing numer-
ical values for parameters. Once the sclution is obtained, any desired numer-
ical values can be inserted., Because of this flexibility, it is often worth
while expending considerable effort to find a solution i»n analytical form.

It is recognized that an exact solution probably cannot be found for a
nonlinear differentieal equation, but an approximate solution of sufficient ac-
curacy may be possible. In this chapter we are concerned with the analytical
methods, i.e2., the perturbation method, the iteration method, and the method
of harmonic balance, which are of general widest utility, The argument ﬁill
be confined to the enslysis of nonautonomous equations.

According to the principle of the perturbation method for solving a non-
linear differential equation, we develop unknown quantities in powers of a small
parameter of the equation' and determine the coefficients of the developments
stepwise. The author describes a method in which the amplitude and phase of
the desired solution are sought in powers of the small parameter. This method
may be natural and practical as compared with the method in which the amplitude
of the solution is first preecribed and the frequency of the external force is
obtained as a function of that amplitude [29, 32].

A method of solving nonlinear differential equations based on the process



of successive iteration is called the iteration method, In earlier days, G.
Duffing applied this method to the solution of the equation nemed after himself
[33). Prof. J, J, Stoker has also referred to this method [32]. 1In his de-
ecription, however, the frequency of the external force is not considered to
be prescribed in advance, but rather to be determined depending upon the value
of the amplitude of the solution. The author will present a method in which
the amplitude and phese of the solution are determined by the process of suc-
cessive iteration.

A periodic solution can be defeloped in a Fourier series of sine and cosine
components, According to the principle of harmonic balence, the component of
the fundamental frequency and one or twe additional components of predominant
amplitudes are essumed to a first approximation, Ooefficients of the Fouriler
series are adjusted to satisfy the equation so far as termes of the coneidered
frequencies are concerned. In this chapter we shall describe a metﬁod where
we start with a first approximation of very simple form and then improve the
accuracy of the approximation by adding correction terms stepwise,

The analytical methods described in the present chaﬁter are legitimate
mathematically only for equations in which the degree of nonlinearitj is suf-
ficiently emall, However, they may still be applicable even to the solution
of equations with large nonlinearity to some extent, We shall examine the ap-
plicability of them by solving numerical examples where large nonlinearity ie
associated with them. The accuracy of the numerical solution will be estimated
by inserting the solutlon to the original equation and evaluating the residual

produced.

1.2 Perturbation Method
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One of the well-known methods for solving nonlinear equations is the per-
turbation method. This method is epplicable to the solution of equations where
@ small parameter is associated with the nonlinear terms, We develop the de-
sired quantities in powews of the small parameter and determine the coefficients
of the developments stepwise, usually by solving a sequence of linear equations,

We shall explain the use of the method for obtaining the harmoniec solution,
which has the same frequency as the external force, of second-order differential

equatiens of the type

d?
d't";(z + X _/uf(x, dt ? ), (1.1)

where M 1s @ small parameter and F is a periodic function in time T with pe-
ried 2, If the period of the function f is different from 2n only in order
of M, it may be reduced to 2r by changing the scale of the time appropriately,

For example, let us consider the equation of the form

dt,_+x ,af(x, .wt), (1.2)

where # is a periodic function in w? with the period 2n, and w is different
from unity in order of 4. Introducing the variable defiﬁed by T= wl , this
equation is transformed into a equation of the form (1.1). Therefore the pe-
riod of time functions is always set to be 2rnt in what follows,

Equation (1.1) may be rewritten as

a3
—=r P X = pMf (X, 5, 1:+o’)

where - (1'3)
T=t-4.
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The unknown phase angle 4 is introduced to permit choice of the initial condi-

tion such that'
xX(t)=0 st T=0, (1.4)

The perturbation method consists in developing the desired solution X(T) in
a power series with respect to small paremeter M. In addition to X it is
also necessary to develop the unknown quantity § with respect to 4., Thus a
solution for (1.3) is sought in the series
X(T) = Xo(T) + MX)(T) + M2 Xa(T) +=- -,
§ =Jo+}1dl + M2zt e, R

The functions Xo(T), Xi(T) ,e.. and the coefficients dp, d71 ,... are to be
determined stepwise,

Substituting Egs, (1.5) into (1.3), we obtain a power series iﬁ M which
must venish identically in M ; hence the coefficients of the successive powers
of J must vanish, Equating these coefficients separately to zero, we o!:t.ain

a set of second-order differential equationss

Mo Xot Xe=0, (1.6)
ml: X+ x=0f], (1.7)
M2 et Xe=(fx1X+(f23X + (f) 61, (1.8)
M XatXs=C(f) %o+ (F2)% + (<) 42

+§tf)‘11)1|2 +~2'—f2(ii33;-'!a+?’ (feeddf

+ (Fxx ) xi X + (Fxe ) X610 + (Fxe]x; 61, (1.9)

. :
Here and throughout this chapter dots over a quantity refer to differen-

tiations with respect to T.



etc,, where ()(Ja-'.f(:(o, Jl(o, 'C+Jo), )

(f1]=‘éa%'(x°y J'(o, t"'Jo)’ 4

(fex)= S5 xo, %o, T+62),
ete.

The solution of (1.6), i.e., so-called the generating solution, is found

to be
Xo(T)=AocosT, (1.10)

with the initial condition

Xo(0)=Ao, and Xo(0)=0.

Substituting (1.10) into (1.7) leads to

X; 4+ X; = £(A0c0ST, —AoSinT, T+do). ‘ (1.11)
The right-hand side of (1.11) may be developed in a Fourier series, If the
terms containing COST and SinT were not zero in the Fourier series, the solu-
tion of (1.,11) would contain terms of the type T cOST and TSINT , i.e., the

seculer terms. The condition for periodicity of Xi requires thet these coef-

ficients vanish, i.e., the following relation holds

F (Ao, 80) = 0,

@ (Ao, 6o) =0, (1.12)

where

Pi (Ao, do =-.,'?_-/:n(fj costdt ,
Q@1 (Ao, bo =—Tlc—/:x[f]5in'tdt.

The values of Ao and 60 are to be determined from (1.12).
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The general solution X (T) of (1.11) may now be obtained with the initial
condition X;(0) = 0. The solution contains one arbitrary constant A; of in-
tegration. It is determined so as to satisfy the condition for periodicity of

the second order term Xz(T).

As an example of differential equations of the form (1.1), let us consider

Duffing's equation without terms for dissipations

_:_g+(|+#q)x+/ulax3=ﬁFcost. (1.13)

Introducing the unknown phase angle é , equation (1,13) is rewritten as

d?x 3
+X=m(-AxX ~B8x*+ Fcos(t+6))
dt? M ’ (1.14)
A T=t-§, x(0)=0.
A solution of (1.14) is sought in the form :
X(T) = Xo(T) + MX(T) + péXa(T )+ -+,
(1.15)

5 = éo +/ud'; + midat -

Substitution of (1.15) into (1.14) and collection of like powers of M give a

set of simultaneous equationsi

/"O: £o+10=0, (1.16)
Mt X 4x) =—0Xo - BXs’ + Feos(Ttéo ), (1.17)
b Xt Xz =-0X) ~38X5X—F & 5in(T+4o), (1.18)

01;.0. Terms of order zero in M ylelds

d?Xe
AT?

+ Xo= 0. (1.19)



Solving (1.19) with the initisl condition Xo(0)= O, we obtain

Xo(T)=Ao0cOST. (1.20)
Substitution of (1.20) into (1.17) gives the differential equation

d®x
‘,,T%TI*‘ X =—(cho+;;3—ﬂA3— Fcoséo) cosT~F sinbosinT

-ZLpAg 0s3T. (1.21)

If the coefficients of COST and SINT were not zero in the right-hand side of
(1.21), secular terms would appear in the solution Xj(T), The periodicity

condition for Xi(T) requires that these coefficients vanish, namely

Ao +%ﬂAg~FCOSJu =0,
sindo =0,

Hence we obtain do= 0 and

O‘A°+43'ﬂA3—F=0- (1.22)

Equation (1,22) determines the amplitude Ao, Then, with the initial condition

x1(0) = 0, the general solution of (1.21) may be written as

- l 3
Xi(T)=A ST +358A0COS3T. (1.23)
Substitution of (1.20) and (1.23) into (1.18) gives

d2x;
aT?

+Xo= = (&A1 + - pAG A+ -3 B7AT ) cosT - FéisinT

—4—',9A§( 3A,+?'qu+% pAo-")cosat——,-g’Tﬂ‘Aa"'cass-c.
(1.24)



The periodicity condition for Xz(T) requires that the coefficients of COST an|d

SINT 4n the right-hand side of (1.24) be zero. Thus we obtain §) = 0 and
~3824,°
A= 2P (1.25)
128(“1‘ ﬂAa)
Using (1.25) the general solution of (1.24) may be written as
3
X2(T) = Az coST +?12-,6A5 (3A1+4 dAt <2 A7 ) cos3T
H 1.26
+—-30,?2 BEAS cos5T, (1.26)
The condition for periodicity of X3(T) will lead to
\
A, = =3BAs (ABAG + 2B%Ac+ 40BACAI+ 768 A% )
1024 (a+ 3 pA°) '
? (1.27)
62 = Q.
! ) .
Proceeding analogously, one may determine X3(T), X4(T) ,... and 43, o4 i

ses Buccessively.

Summarizing the above results the solution X(t) of (1.13), up to terms

of order M%, 1s
x(t)= (Ao HMAFA®A2) cost + 3 ,M/BAo (Ao + 3uA; + 3/101,4” |5/“/3A° ) cos3t

3
+5pms MAB2 A cos 5, (128)

where the amplitudes Ao, A;, and A: are determined from (1.22), (1.25), and
(1.27), respectively. The phase angle & 1is known to be zero in this case.

The harmonic solution of Duffing's equation with term for dissipation

dt, +/ufc + (14 M) X+MEX3 = UF cost (1.29)



may be determined in much the same way. Equation (1.29) is rewritten in the

form

X —ul—ox — Bx3 g dX

Tae tX=pl-0x—px=£ 2 +FC°5(HJ')J’ (1.30)
with T=t—-46, XxX(0)=20.

A solution of (1.30) is sought in the series

X(T) = Xo(T) Xi(T) + U2X(T) 4o+ - ]
° + MU X MEXz J o

§ = o+ MS1 + U202t 0 -,
The first approximation is found to be
Xo(T)=AocosT, (1.32)

The amplitude Ao, and the phase angle do are to be determined by the periodice
ity condition for Xi(T), namely

oo + 3 BAS ~Feosbo = 0,

(1.33)
ﬁAo —Fsind, = O.
From (1.33) we may derive the equations
((a+28A2)%+ B2)AS = FF,
(1.34)
€03 §o = (q+§ﬁA§)7§_° , Sinde = "ég.

which are more useful to determine Ao and do then (1.33).
It is worth while noting that the first approximation Xo(t) may be written

in terms of the original variable t , by virtue of (1.34), as followa:

Xo(t) = Ao cos(t-do) 1
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= A; cost + Bo’ sint ’ (1.55)

where ) 3 ) A2 > A2
As= (G+I'8A0)F’ Bo‘_'ﬁ'l?_

The solution Xy(t), i.e., the correction term of order U is found to be

x1(t)ﬂA|C05t+"§%ﬂAadCOS3t- . (1.36)

The amplitude A; and the phase angle 61 are determined by the perindicity

condition for Xz2(T) , namely

_ -3,521%5
28 (& +-BAS + R tands) ’

At

(1.37)
;= —3ﬂ2A051E .
128 F cos do (o + 1 BAF+ R tano) -
Summarizing the above results the solution X(t) of (1.29), up to terms

of ordar U, is

X(t)= (Aot MA1)Cos (t-bo -,uJ;)+§!é-,u,aA3w53ft*6o M), (.1'58)

whero the amplitudes and phase angles Ao, & and A1, & are determined from

(1.34) and (1.37), respectively.

l.3 Itsration Method

This ie & method which is based on the process of successive approximation.
In earlier days, G. Duffing applied this method to the solution of the equation
named aftsr himself [33]. Iteration may be performed in & number of ways. Here
we describe one of them for obtaining the harmonic solution of Duffing's equa-

tion. hothor way will be presented in Appendix I. These are somewhat differ=-

o,
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ent from each other, In our methods the amplitude and phase of the solution

are determined in the process of successive iteration.

We consider Duffing's equation of the form

AZx
gz T (1Hpa) X+ ppx3= MF ost.

This equation may be rewritten as

X _ _x (ol X 3 - Fcost)
e = XM +£xX7-Fcost ).

(1.29)

Firast we explain the basic notion of the method. Let Xaobe an approximate

solution of (1.39). Inserting Xao into (1.39) we obtain

d?Xao

oz tfao = — Xao— JA(AXao + B Xad’~ FosSt ), (1.40)

where the term a0 erises from the inaccuracy of Xao. Upon integrating (1.40)

twice with respect to t, we have

Xai = nw[[m:dtdt

=~ [ Xao + M(0Xa0 + BXao - Fcast)] dtdt - (1.41)
Constants of integration are set to be zero in order to ensure the periodicity

of Xaj , Insertion of Xaj into (1.39) ylelds

z
Va ==-Xo.1—/uf0t’xcu +ﬂ1:1—FCO.StJ— ‘;::"

=~ [f Fao dtdt+ (emall terms of higher order in i) (1.42)

The quantity Va; arises from the inaccuracy of Xaj.

If Xao is chosen such that [fao contains only terms of higher harmonic free

o-
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Yai
quency, must be, by virtue of (1.42), a smaller quentity then fae . That is

to say, Xaj must be a closer approximation than Xas . By equating the hdrmoniec
components of Xao and Xar , fas i8 let to contain no harmonic component.
We shall explein this process concretely in what follows, For the solu-

tion of (1.39) we start with the first approximation*

Xo(t) = Ao cost. (1.43)

Substituting (1.43) into the right hand-side of (1.39) we obtdin

%z_(lqaf_ﬂ(am.f%ﬁ,qf_y:)]cost—zl_-ﬂﬁAgCOSBt. (1.44)

Upon integrating twice (l.44) we have
X(t) =+ (Aot p(0Ao + 2 A3 ~ F )] cost + L upA cos 3t. (1.45)

Constants of integration are set to zero in order to ensure the periodicity of

the solution. The coefficients of coSt in (1.45) is taken equal to Ao 3

aA#;%,eA?— F = o0. (1.46)

The value of Ao is determined from this equation,

The solution X as given by (1.45) or

X(t) = Ao cost +3—L-}L,6Ao3 s 3t, (1.47)

itself, may be considered as the second approximation. It is, however, more

* A term Bosint should be added, but o would turn out to be zero in the

next step of the iteration procedure,
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reasonable to reassume the second approximation of the form

X; () = Aq cost + 5%,“/5/4:%05315, (1.48)

where the amplitude A;{ is to be determined in the next st>p. Substituting

(1.48) into the right-hand side of (1.39) and integrating it twice leads”
xXt) = (A +/LL(0(A,+4_/6’A, F)"’ /“'ﬂaAl ?;4/13%3}(\;?)&1‘51'

+3g MM (G + 5 M(204 3BAR ) + e B AT ] 053t

I 5 | 2
+ 1200 /-la;BaAl E]+‘3—6}u}3ﬂ, J cos5t. (1.49)
Integration constants are again set to be zero in order to ensure the periodic-

ity of the solution. The coefficients of <0St in (1.49) is taken equal to Ajs

oA+ 2 BA-F + S5 ABAAC+ ar pBA = 0, (1.50)

This determines the value of A;. Equation (1.50) is similer to (1.46), except
for the last two additive terms,

Further iteration of the procedure may allow a more accurate soclution to
be found, but it is rather troublesome for actual computaion, Therefore we may
regard X of (1.49) with A; furnished by (1.50) as the third epproximation.

In like manner, the harmonic solution of Duffing's equation with term for

dissipation

:t’i L +({+/m)x+/u/8x3-/.tiost (1.51)

*
Terms of frequency 7 and 9 are omitted in this equation, since they are

sufficiently small.
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may be obtained. It is reasoneble to start the iteration process with the

first approximatioﬁ

Xo(t)= Ao cost + Bosint. (1.52)

Substituting (1.52) into the right-hand side of (1.51) and integrating it twice
leads to
X(¢)= (Ao 4 (Ao + £Bo + 28A+ 28RBS~ F )] cost
+ (Bo M (~%Ac +&Bo +'33-/9A§Bo +;f—,58¢3)] sint
+ 55 MAAo (Ao*- 3B,°) cos 3t + 3¢ MBBo(2AS-B&) Sin 31 (1.53)

Intégration constants are set to zero, Equating the coefficients of COSt and

sint to Ao end Bo respectively, we obtain

Ao= (d+38RE) R,

, (1.54)
Bo=ARE,
where Rs = As + B 1is determined from
((a+2pR7)*+ 82 IR = F? (1.55)
The solution
X(t)= Aocost + Bo sint
| +53§/L’6A9(A.}— 3802)0053154-5'3-/968@(3;43— Bs?) sin3t (1.56)

is & oloser approximation than (1.52),
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1.4 Method of Harmonic Balance

The periodic solution mey be developed in a Fourier series of sine and co-
sine components. In meny cases, the component of the fundamental frequency and
one or two additional components are of predominant amplitudes. According to
the method of harmonic balance, such few terme are assumed to a first approxi-
mation, Ooefficients of the Fourier series are dete}minad to satisfy the equa-
tion so far ag terms of the considered frequencies are concerned. Terms of
frequency other than those considered are certain to be present also but ere
igﬁorod to this order of approximation. In theory, the more terms are taken
into consideration, the closer approximation may be obtained. However, numer-
ical computations will be cumbersome too much. In the following description,
we shall start with a first approximation of very simple form and then improve
the accuracy of the approximation by adding correction terms step=by=step.

Let us consider the same equation as in the preceding sections:

g_?:+(,+/lo().r+/u/5x3=/ﬂ-'mst. (1.57)

Firet we mssume the approximation of the form
Xo(t) = A cost. (1.58)
Substitution of (1.58) into (1.57) leads to
3
(o + 2 pAS - F) o5t + L ppAo cos3t = 0. (1.59)
Equating the saplitude of the fundamental component to zero we obtain

olAo + qa_-ﬁAios—F‘-“-‘ 0. (1.60)
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Equation (1.60) takes the same form as (1,22) obtained by the perturbation
method or (1.46) obtained by the iteration procedure. That is to say, any of
the methods gives the same solution of the first approximation.

Next we essume the second approximation of the form

X (t)=(Aw+ €An) cost+ EAs cos3t (1.61)

taking into consideration the third-harmonic component. Correction terms as=-
sociated with EA_n and E£A31 are condidered to be relatively small, i.e., the
first-order quantities in a small parameter €. The use of £ 1is not indispen=-
sable, but make it convenient to clarify the orders of small quantities. We
substitute (1.61) into (1.57) and equate the coefficients of COSt and Sint

separately to zero. Ignoring terms of order higher than the first in £, we

have
Mo+ 3a )(EAn)+Ma(EA3 ) =0,
_/ua(EA..)+(8—;Aa—;ua)(EAav)=§'ﬂaAw; [ (i.sz)
where
a= I3 ﬂAri . ]

The emplitudes. €Ay and EA3) are readily determined by solving these linear

simultaneous equations.

The third spproximation is assumed in the form

Xa2(t)= (At EAnt EaAla )oost + (EAz1+ Eeﬁsa) cos3t +£%As2 cos5t. (1.63)

Oorrection terms associated with E%A;2, £°Asz, and £%A52 are considered to be
still smaller than those associated with E&An and €Az . Substituting (1.63)

into (1.57) and equating the coefficients of COSt , COS3t, and coSS&t ”i,.nt._
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ly to zero, we obtain the linear simultaneous equations in EaAla , E%A32 , and
£2As5z

«

—p(d+3a)(€%Aiz )-MA(EFA32) =;f—,u,eAm (3¢ EAn)*+2(EAn)(EAs )+2(EA31)2J)

- M (€2A)+ (?—/AG-E/UQ)(EEAR}—}AQ(EZASH -%uﬁﬂao[(if]n)ﬁ 4(EA:1)(EA31)J,

- Ma (EaAsa) +(24 —/ua"z,ﬂa-)(EeAsa ) =33'}"ﬂAlofAm(EAirJ +2(EA11)(EA91)+ (EASI)EJ,

where Q=‘4§'/BA120 ) )

(1.64)
Terms of order higher than the second in £ are discarded in this step.

In like manner, we can obtain the harmonic solution of Duffing's equation

with & term for dissipation
d?x dax 3.

We start with the first spproximation

Xo(t) = Awcost + Biosint. (1.66)

The amplitudes Ao and Bio are determined to satisfy (1.65) so far as terms con-

teining <0ST and Sint are concerned. Thus we obtain

2
Rio

Ao = (+ %/@Rma) =0,

RZ (1‘67)
B]O = ﬁ_F__IG’

where sz-mfnsrg is to be determined from

((x+2BRi0)% 2 JRé = F2 (1.68)
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We readily see from (1.35), (1.54), and (1.67) that any methods give the same
solution of the first approximation for Duffing's equation (1.29).

The second approximation is assumed in the form
X%(t)=(Ajo+ EAn)cost +(Bio+EBu)sint + €Az cos3t + EB3sin3t. (1.69)

We substitute (1.69) into (1.65) and equate the coefficients of COSt , Sl'n? 5
coS3t , and Sin3t seperately to zero. Ignoring terms of order higher than the

first in £ , we obtain

/J-(OHECIJ:G)(EAn)+}4(ﬁg+b)(83n)+/uc(EA3|)+/U~b(EBSI) =0,
M(B—b)(EAn) - (0+2a~C)(EB 1) +Mb(EA3) — MC (€B3) = 0,
—UC(EAn)+Mb(EBy )+ (8-MA~24a)( EAs1) - 3t (EBa) = Luh(2c~pAK?), ((1.70)

~pb(€An)-puc (EBu)+ 3/47%(5/%1)'!" (Z-pMd~2ua)(€ 531)=2iﬂ8m(2(:+ﬁ813 )

where a=§ﬂ(A1§1‘B:3), b=§‘ﬁAwB]a; C’-fﬂ (Atg"Btg')-

The amplitudes EAn, EBn , EA3r, and EB3; of the correction terms are de-
termined by solving the linear simultaneous equations (1.70).

The method of improving the epproximation described in this section is par-
ticularly useful when the amplitude of each harmonlc component decreases with

increasing order of the harmonics.

1.5 Comparison of the Three Methods

As mentioned in Section 1.4, any of the three methods give the same approx:
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imate solution of the first order. Higher-approximate solutions are not exactly
the same. For example, we consider the second approximations for Duffing's
equation

LX 4 (140 ) X+ pBX>= MF 051,

The first approximation takes the form

Xo(t) = Aocost.

The second approximations yielded are as followa:

3
Perturbation : Xp(t)=Ap 05t + Asp cos3t,
2 uprAS
where AIP =A0_ﬂ'¥—% > (1-71)
d+4ﬂAo
— 1 3
Asp = z5MBA; - ]
Iteration : X1(t) = Ayr cost +Astcos3t,
| 2p %
SR x
where Air = Ao— 4% + Q2(M), § 1.72
1 cﬂ+~i—,ﬂAf' s ( )
AaI = -?3[6—}“/3/4031“ 02 (/u)-

Harmonie
Balance Xy (t) = Alu oSt +Aan C{133f, “

X
Oz2(4) refers to terms of order higher than the first in u .
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T
where =A _iif_’.“f;"_.f_o ()
B He o+ LAl s (1.73)
Asn =5 BA+ Oz (M)
Thus, we obtain
5
A =Rip=—=LB0e__ 4
B~ 384 (a+ 2B AZ) e
(1.74)
Ast~Asp = — g As+ 02(M),
and
A=A = 02(M),
(1.75)

Asn—Asp = 02(M).

That is to say, the perturbation method and the method of harmonic balance give
the same second spproximation up to terms of order M, while t.hg result of the
iteration method slightly differs from that in terms of order u .

Further we can see that the perturbation method and the method of harmonic
balance give the same third approximation up to terms of order M, while the
third approximate solution of the iteration method differs from that in terms
of order U .

' The same is also true in the case of the solution of the equation with a
term for dissipation. From the above results, we may conclude that the itera-

tion method is somewhat inferior to the other methods.

l.6 Numerical Exemples

Analytical methods described in the preceding three sections are legitimat

mathematically only for equations in which the degree of nonlinearity is suffic
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ly small. However, they maey still be applicable even to the solution of equa-
tions with large nonlinearity to some extent. We have not seen much of numer=
ical examples of large nonlinearity.

In this section we shall deal with the numerical examples of Duffing's

equation
2
::z +x?= 0.2 cost, (1.76)
and
d?x

=t 0.2%-!-3(3: 0.3 cost,

where the restoring terms are of cubic characteristic.

1,6.1 Equation without Term for Dissipation
(a) Perturbation Method
Equation (1.76), i.e.,

d?x

dtz +x3= O-ECDSt (1_77J

is obtained by setting the parameters of (1.13) as
M=1, K =-1l, B =l, and F = 0.2, (1.78)

The first opproximate solution (1.20) is obtained by using (1.22). Equation
(1.22) has three real roots for the numerical parameters of (1.78); there are
three harmonic solutions having different amplitudes. For each of them, the
correction terms (1.23) end (1.26) are determined by using (1.25) and (1.27).
The numerical velues of the approximations up to the third order are listed in

Table 1.1.



Table 1.1 Harmonic Solutions for Eq. (1.76) obtained by

the Perturbstion Method

Approximate Solution
Ha o]
Soiﬂtgiz App:::Im:£ion X(t)=a,cost + agcos3t + Ascos5t
23] as as
1 2 «0,207 -0.000 e
> =0,207 -0,000 0.000
1 1.244 _— S
2 2 1.216 0,060 S
3 1.211 0.066 0.003
1 '1 t057 —_—
5 2 -1.017 -0.0%5 —
2 -1.016 -0.036 -0.001

(b) Iteration Method

Equations (1.43), (1.48), and (1.49) give approximate solutions of the ord
first, second, and third, respectively. Numerical values of the system param-
eters ar; given by (1.78). The amplitudes Ao and A1 are determined from

(1.46) and (1.50) respectively. The solutions are listed in Table 1.2.

Table 1.2 Harmonic Solutions for Eq. (1.76) obtained by

the Iteration Method



Approximate Solution
Harmonic Order of
= t+as cosst
Solution Approximation K{E ik BOST £ Ry a8 Bk bl 0010
Ay a3 as
1 =-0.207 —— s
1 2 -0,207 -0,000 —_—
3 =0.207 =0.000 0.000
1 1.2% —— ——
2 2 1.219 0.050 —_
5 1.219 0.063 0.002
1 -1.037 s —
> 2 -1.020 ~0.029 g
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(¢) Method of Harmonic Balance

Equations (1.58), (1.61), and (1.63) give approximate solutions of the
order first, second, and third, respectivoly. The amplitudes of the solutions
are determined from (1.60), (1.62), and (1.64). The solutions are listed in

Table 1.5.

Table 1.5 Harmonle Solutions for Eq. (1.76) obtained by

the Method of Harmonie Balance

Approximate Solution
Order of
Approximation

Hermonic

Solution X(t)= @ cost + Qacos3t + Ascos5t

a, as ag
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1 -0,207 S I
5 -00 207 -O‘ 000 0. 000
1 1.244 — _

2 > 1.213 0.067 —
3 1,212 0,066 0,003
1 -1.057 — —

3 > -1.017 -0.036 R
3 -1.016 ~0.0% 0,001

(d) Accuracy of the Solutions
Unless we know the exact solution of (1.76), it ie impossible to evaluate
the errors of the approximate solutions shown in Table 1.1 through 1.5. Here
we consider a practical way for estimating accuracy of the approximate solutions.
Let Xa(t) be an approximate solution of the equation

d?x
Ty + (140 )X +uBx® = MFcost.

Insertion of Xa(t) into the equation yields

A*Xa 2
s L2241 (14 ) Xa+ A8 X4 =~ pFeost=r(t)

The function F(t) may be called the residusl function. It is, in general,
found in the form

rct) = Z(anCﬂsnt*f‘brn smnt)
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We make the quantity

E=/3(arm+brm) - (1.79)

This will give a measure of the inaccuracy of Xa(t).
The numerical values of € for the approximate solutions of (1.76) are

listed in Table 1.4.

Table 1.4 Values of £ for the Approximate Solutions of (1.76)

- Method
Harmonile Order of
Solution Approximation
Perturbation Iteration Harm. Bal,
h | 0.002 0.002 0.002
1 2 0.000 0,000 0.000
3 0.000 0.000 0.000
1 0.481 0.481 0.481
2 2 0.082 0.129 0.078
3 0.010 0.042 0.011
1 0.279 0.279 0.279
3 2 0.028 0.055 0.029
3 0.007 0.009 0.004

1.6,2 Equation with a Term for Dissipation

(a) Perturbation Method



. Equation (1.77), i.e.,

a?x
at2

aAX | x3 _
+02-7+X3 = 0.3 cost
18 obteined by setting the parameters of (1.29) as
Mel, $ =02, o w=1l, AB=1, and F = 0.3 (1.80)

There are three harmonic solutions having Jifferent amplitudes and phases for
these particular values of the parameters. By making use of Eqs. (1.32) through
(1.%37) found in Section 1.2, approximate soiutions are calculated up to the

second order. The numerical values are listed in Table 1.5.

Table 1.5 Harmonie Solutions for Eq. (1.77) obtained by

the Perturbation Method

Approximate Solution
Harmonic Order of - t+bsint+a s3t+ basinat
Solution Approximation R4 6 = oS o Dreia - RasIsSir Suet
a, by as b3
1 =0.310 0,067 —_— o
1
2 =0, 310 0.067 =0,001 0.001
1 0.703 1.012 —_— SR
2
2 0.717 0.972 =0,055 0.019
1 -0.748 0.699 A N—
3
2 =0.745 0.669 0.020 0.027
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(b) Iteration Method
By making use of Eqs. (1.52) through (1.56), approximate solutions are

calculated up to the second order. The numerical values are listed in Table

1!6‘
Table 1.6 Harmonic Solutions for Eq. (1.77) obtained by
the Iteration Method
Approximate Solution
Harmonie Order of . .
Solution | Approximation xX(t)= acost +bysint + @3cos3t + bysin3t
i by as bs
1 =0, 310 0.067 _— _
1
2 -0.310 0.067 -0.001 0.001
1 0.703 1.012 —_
2
2 0.703 l.012 -0.050 0.013
1 ~0.748 0.699 — —_—
3
2 =0.748 0.699 0.019 0.023

(e) Method of Harmonic Balance
By making use of Eqs. (1.66) through (1.70), approximate solutions are

calculated up to the second order. The numerical values are listed in Table

1.7.

Teble 1.7 Harmoniec Solutions for Eq. (1.77) obtained by

the Method of Harmonlc Belance
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Approximate Solution
Harmonic Order of - : t +bzsin3t
Solution Approximation X(t)= aicost+bysint +A3coS3t +basin
a by EN bs
1 =0.310 0.067
1
2 =0, 310 0.067 =0, 001 0.001
1 0.703 1.012
2
2 0. 68}4' 0‘988 -0- %1 3 Oc 021
1 -0,748 0.699
>
2 -0. 744 0.671 0.022 0.026

(d) Accuracy of the Solutions

In the like manner as in the preceding section, the value of £ as defined

by (1.79) is calculated for each solution.

Refer to Table 1.8.

Table 1.8 Values of £ for the Approximate Solutions of (1.77)

Method
Harmonie Order of
Solution Approximation
Perturbation | Iteration Harm. Bal.
1 0.008 0.008 0.008
1
2 0.001 0.001 0,001
1 0.468 0.468 0.468
2
2 0.087 0.152 0.082
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1 0.268 0.268 0.268

2 0.032 0.051 0.033

1.7 OConclusion

The methods described in this chapter are useful tools for finding an
snalytical solution of a nonlinear nonautonomous differential equeation. The
amplitude and phase of the golution have been found as functions of the system
parameters. For Duffing's equation without term for diesipation, the approx=
imate solutions have been calculated up to the third order; for the squation
with a term for dissipation, up to the second order. If the degree of non-
linearity is sufficiently small, these approximations are of sufficient accu=-
racy and the three methods yield almost the same results. Even if the degree
of nonlinearity is rather large, the methods may be useful to some extent.
The results of the numerical examples in Section 1.6 have shown the practical
applicability of the methods to equations of extremely large nonlinearity.

The iteration procedure seems to be somewhat inferior to the other methods.



CHAPTER II

GRAPHICAL METHODS FOR SOLVING NONLINEAR DIFFERENTIAL EQUATIONS

2.1 Intreduction

An enalytical method, though it has considerable advantage, is only appli-
cn§lo to the solution of rather simple esquations. A graphical method applies
to much more varieties of nonlinear differentiaml equations. A graphical meth-
od is usually simple to utilize end may be particularly effective ms an explor-
atory tool when nonlinear characteristic is lknown only in the form of a curve,
e.g2., & experimentally determined curve. Such a curve can be incorporated di-
rectly into a graphical solution, and this may be & matter of considerable con-
venience,

There are many kinds of graphical methods developed. In this chapter we
are particularly concerned with the following methods, i.e., the slopeline methe
od and the delta method. Both of them are based on the step-by-step integra-
tion procedure and are useful to find a single solution curve with a given in-
itiel condition.

No claim is made as to the originality of the principles of the methods,
inasmuch as the basic notions have been in use for some time [21, 23], The au-
thor systematize the use of the methods and clarify the possible range of their
applicability., Various modifications and extensions of the basic methods will
be described in this chapter., Namely, a modification of the slopeline method
enables its application to the graphical solution of nonautonomous equations.

A modification of the delta method improves the accuracy of the solution. The

doudble-delta method, a extension of the delta method, will be developed which

20
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is applicable to the sclution of differential equations of & complicated type.
Errors produced by each procedure of the graphical constructions are evaluated
by making use of Taylor's expansion formula, The results of the solutions for
several numerical examples, including van der Pol's equation and Duffing's e=

quation and Duffing's equation, prove the excellency of the methods,

2.2 Slopeline Method

Thie section describes the slopeline method of graphical construction for
lolfing certain types of nonlinear differential equations including van der Pol's
equation and Duffing's equation., The basic notions have been in use for some
time by several investigators [ 1, 2 , 25, 26], The author is particularly in-
debted to H. M. Paynter for his contribution to this method and its application
to the hydraulic transient studies [23]. A modification of the basic method
enables its application to the solutlion of nonautonomous equations, The sub-

harmonic oscillations of order 1/2 will be studied by this modified method.

2,2,1 Development of Method
As a preliminary example, let it be desired to determine the solution of

the first-order differential equation

with the initial condition that X =Xoat t = ts. The incremental relation of

the variables may be written as

AX = [(F(t) ) ave - A,
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where

[;‘(t)JM¢=Zl;/;'fft)dt, (2.2)

At =ty - tos small change in ¢,

AX= Xy ~Xo1 small change in X during the increment At ,

The basic assumption of the slopeline method lies in the use of the arithmetie

mean for (£(t)])ave, i.e.,

(Ft))ave =5 (fotf1),
where (2.3)

fo = f(to), and fi=F0t).
Then an approximation AXs for /4x 1is given by

Axs = (F(to) +f(to+at)] 9 (2.4)

This implies that the trapezoidal method of integration has been employed.

The appror;imate increment AXs 4is graphically determined as shown in Fig,
2.1. It shows the X , f#(t) plane, where the initial points Fo(Xo, f(to))
and (), (Xo,0) are first located. Starting from the point Fo , make the angle
9 with the vertical line and draw the straight 1line, 1,e., the slopeline

to intersect the X axis at the point M , The angle & is chosen such that
tan 6= 3 (2.5)

for a predetermined value of At . From M draw another elopeline, making the
seme angle © with the vertical line, to the point P| whose ordinate FiQi is
f(tl) ° Then

PoQ1 = QoM + MQ1 = f(to) tan @+ f(t1) tanb
= (fotF)4E.

o
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This gives the increment AXs of (2.4),

A practical arrangement for carrying out this procedure is illustrated in
Fig. 2.2. The function f(t) is first plotted on the right-half plane, the co-
ordinates being t and f(t) . The left-half of the figure shows X , £(¢) plane,
The straight 1ine with the inclination of 45° (chain line) plotted in the left-
half plane merely serves to permit the graphical transfer of the X -values from
the horizontal to the vertical scale and vice versa, The procedure of graphical
work is as follows:
1. Locate the point Fo(to,Xo) , the initial point, in the right-half plane,
2, From FPo draw the lines shown dotted in parallel with the coordinate axes,
and locate the point o (Xo,fo).
3. Starting from the point (o, make the angle 6 with the vertical line and
draw the slopeline (oM to intersect the X axis at the point M .,
4, Draw the second slopeline from M to @1 whose ordinate is f! a F(totdt) ,
5. From @ draw the lines shown dotted in parellel with the coordinate axes,
and locate P (t1,X1) which is the point on the solution curve at t; =to+ 4t .
6. Find the successive points P ,F3 ,... on the solution curve by repeating
the above procedure.

The accuracy of this method corresponds to the precision of the trapezoi-
dal approximation. The errors may be not so esmall if the curvature of £(t)
is large and the increment At 1s inappropriately chosen. By making use aff
Taylor's expansion of the increments, we obtain the general expression for the

local error, i.e., the error committed at each step by

£s = Axs - 0x = 75 fo* (0t)*+ O4(At), (2.6)

where the prime refers to differentiation with respect to t and O4(4t) rep-
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resents the terms of order higher than the third in At ., Equation (2.6) gives
a measure of the appropriate increment in the independent variable t , If en

allowable error Ea is given in advance, the interval At may preferably be

chosen as

wl—

at<(’§fﬁ)
o

The details of error analysis will be described in Appendix I1I,
2,2,2 Second-Order Equations of the Autonomous Type.

We can obtain graphical solutions for the simultaneous equations of the

form

d

X +9x0-y =0,
(2.7)
Ly Ry +x = 0.
Equations (2.7) may be transformed into the second-order equation
A2 dg dx
dt§+d§ dt +ﬂ( F+g)+x=0. (2.8)

Some of the well-known types of differential equations may be represented
by Eq. (2.8); namelys
1. Linear equation of the second order
dai

(2.9)
for

G(X) =C (4 constant), A(Y) =RY (% s constant).
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2. Van der Pol's equation

ac?"x

,u,(:—x?-J +x 0,

for (2.10)

g(x)= ‘/ux‘*‘g‘ﬂ-xs (M s constant), ﬁ'(f.“ = 0.

3, Rayleigh's equation

25 -(a-BE ) 1+ x =0,
for (2.11)
g(x)=10, ﬁ-(y):"*ay‘fﬂffa(o(,ﬂ + constants),

4, Nonlinear equation of the second order

déx  dgq dx

a2 tax ae TG(x) = 0,

2.12
for ( )

G(xX)=9gx)+X, h(y)=Y-.
F;igure 2.3 shows tha method of graphical construction of the solution curve
in the X, y plane for (2.7). The curves 9J(X) along the X axis and - AA(Y)
along the Y axis are to be plotted beforehand. The procedure of graphical con-
struction is as follows:
1. Locate the initial point Fo(Xo, Y») at ¢ = to .
2, Starting from F , make the angle 0 = ta.n__'%‘t with the vertical line and
draw the slopeline SL1 to intersect the curve 9(X) st the point M, From
M draw the slopeline SlLa .
3, Starting again from F, , make the angle € with the horizontal line and

draw the slopeline SL3 to intersect the curve - #f(Y) at the point N . From

N draw the slopeline SL4 . The intersection P (Xi,41) of SL4 with Sl



gives the point P, on the solution curve at t; = to+ At .

4, Repeat the above procedure to find the successive points s Pa goens

It is clear. from the figure, that

AXSzJ(l —-Xo = (I|-1mj+ ( Xm - Xp)
‘_—.[Ho—-g(x“:)]%"}‘[HI“H(XMJJ%) (2'15)
Dys=—[Xo+ {(y.d)ﬁat— (xi+ ﬂ(ynJ}%t—.

These values give & good epproximation for the increments AX  and ﬂy » Bince
29(Xm) = g(Xo)t (X1) and 2R (Ya)=R(Y)+A(Y;) .

The local errors in this procedure are estimated to be

S

L) (90~

Ex=‘_{[3(xo) Ho]'l'(dﬁ”)y y(ﬂ(yo)+.?(g]+ (

_2(5 x=xo LA(H) X0 ] - [(—-—1 2] (9(3‘0)"59}}(&)3

+ 04 (df), " (2.14)

{fﬂ(yo)uaj (dx ) ex, (900 - 9]+ L (dy_,_)y_yo[ﬁ(%)”,}
+2(% ), 90 (900) =901~ ( (55 %) - 4] (R (Y011 X0} (0E)°

+ 04- (At}, J

vhere €; and Ey are the local errors of the increments Ax end Ay respect-

ively.

Numerical Example

Let us consider van der Pol's equation as a typical example. T&king the
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parameter A = 1.0 in Eq. (2,10), we have

2 (-x)E =0, (2.15)
or

4X — x-Lx3+y,

w (2.16)

dt

The curve J(X) = -x+x3/3 1s plotted elong the X axie in Fig, 2.4, An
initial point is prescribed at X = 0, Y = 0.05 near the origin of the X,
plane. Construction then proceeds from this point with O = tan—?%{: = f:an_T—o—Z'g 3
Few slopelines, from the point 1 to 4, are shown by fine lines in ; part of the
figure. The integral curve, on account of the negative damping for small values
of X , spirals outward and finally moves onto the limit cycle trajectory. Sim-
ilarly, an initial point outside the limit cycle would lead to e curve spiraling
inward until it would coalesce with the same limit cycle. As the points graph-
ically determined are equally spaced in time t , data from these points are read-
ily transferred to the axes of t and X of Fig. 2.5. The time required for
the representative point to complete one revolution elong the limit cycle is

6.64, end the amplitude of X is 2,01, These values agree well with the velues

6.687 and 2,009 which were correctly calculated to three decimal places by M,

Urabe [28] »

2,2,3 Second-Order Equations of the Nonautonomous Type [7]
A modification of the method for autonomous systems enables its extended

application to the graphical sclution of nonautonomous systems such as

-;%+9;(x)—y“= 0, ]



+-ﬁ(y)+—gz(xJ F(t), T

or

d2x
dtz

ag ax

-+

Among equations of this type, we have, for example:

1. Equation with nonlinear damping

2
A+ 9500 B g, 00) = f(2),

for

gx=22,  fyp-o.

2, Duffing's equation

dta +£dt +92(1) )C(t-),

for

G1(X)=RxX(#s constant), A (Y)=0.

T TR AL+ G100+ () = £(t).

(2.17)

(2.18)

(2.19)

(2.20)

FPigure 2,6 shows the graphical construction of the solution curve in the

X ,Y plane for (2.17). The functions $(X) along the X axis end - A(Y)

along the Y axis are to be plotted beforehand, The procedure is as followss

1, Starting from the initial point P, , draw the slopeline SL1 to intersect

the curve (X)), From the intersection draw the slopeline SL> .

2, Calculate the value of 92(X) for the abscissa X of each point on the slope-

line SlLz ,. Plot the curve J:(X) on which the abscissa of each point is $,(x)

calculated above.

3. On one hand, locate the point (o(Gz(Xo), Yo) . Shift it to the left by

f(to) to locate the point Ro.
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4, Starting from Ko draw the line SL3 to intersect the curve - A(Y) at the
point N . From N draw the line SL4 ,

5. Shift SL4 to the right by F(t1) to obtain the line SlL4 . It intersects
the curve Jz2(X) at @ V

6. Passing through @y draw the horizontal line as shown dotted., Its intersec-
tion with SL2 locates the point P, on the solution curve at £y = to + At .
7. .Repeat the above procedure to find the successive points on the solution
curve,

The construction ylelds the approximate increments in X end Y as given by

x5 = (Yo - fm)) 4E + (- grxm) ) 4E

) (2.21)
AYs = (f(to) =9, (xo)- ﬁ.(&fnJ]?_,—t + (F(t1)-92(x1) —ﬁfflnﬂ%t ’

for the change At in t . The local errors are of order higher than the second
in At .

Numerical Example

"
We deal with Duffing's equation

* For practical purpose, reproduce the slopeline SL2 and the curve 92(x)
on mnother sheet of paper as illustrated in Fig., 2.6 (b), Putting the Y eaxis
and the 1ine SL2 4n (b) of the figure upon those lines in (a), we can locate
the intersection @, of the line SL7% with the curve §z(X) .

** We shall deal with Duffing's equation in the following two chapters, Par-

tioularly as for the subharmonic oscillations of order 1/2, refer to Chapter

III,
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azx
dtz +ﬁ-g‘.§+'1‘x -"—"-BCOSEt‘i'BO,

with (2.22)
‘)% B 0.20, B = 1.50, and Bo = 0-50;

or in the equivalent simultaneous form of equations

dx
aE =9
(2.23)

gti——"-—éy—‘.'([x‘f' BC052t+BO-

Figure 2.7 shows the integral curve with the initiml condition X = O, %xf:- =
Y=0att =0, The time interval At is m/12. Also plotted in the figure
the curve obtained by ueing an analog computer for the sake of comparison.
After a sufficiently long period of time, the integral curve ultimately tends
to the closed curve shown in Fig. 2.8, 8ince the time required for the.repre-
sentative point to complete one revolution along the closed curve is 2n or equal
to twice the period of the external foroe, a subharmonic oscillation of order
1/2 occurs. The time response curves are shown in Fig. 2.9. These curves graph-

ically obtained agree well with the curves shown dotted which are the results

of enalog-computer analysis.

2,5 Delta Method

The delta method or § -method for solving second-order differential equa-
tions 1s described in this section, This method was formulated by L. S. Jacobsen
and is a generalization of Lidnard's method. The double-delta method, & exten-

sion of the basic method, devised to deal with equations of a more complicated
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type will be described also.

2.3.1 Development of Method [5, 21]
The delta method applies to the solution of differential equations of the

type

dex
Atz +7((%" X, t)ﬂo.v (2.21‘_)

where the function JC(%: X,t) 1is continuous and single-valued but may be non-
linear. In applying the method, the equation is rewritten by adding and subtract-
ing a term WEX to give

aix

=T +(.Uozi+][(g%, Xt)-wix = 0. (2.25)

The term WX may be separated out of the term ;‘(é‘%,x,t) ; if not, it is
of a fictitious nature, The constant Wor may be determined by the form of Eq.
(2.24) or may have to be chosen from other information, Introducing the new

variables T and U defined by
T=wot, and u*=% s (2.26)

Eq. (2.25) may be written as

d X+ §(v, x,T)
where | T \_
J(U‘,I,r)=a:;_f(wou':1’w;) x. (2.28)

The function & (V,X,T), in general, depends upon all the variables V' , X , and

T , but for emall change in these variables it may be regarded to remain con-
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stant. This is the basic essumption of the method. If & is constant, the

variables of (2.27) can be separated and integrated to give

V&4 (x+6)%=r2 = constant, (2.29)

Thie is the equation for a circle of radius r centered at the point ( X = = §,
V= 0); therefore & corresponds the displacement of the center of the circle

in the negative direction of the X axis. This displacement § gives the method
its name. Thus, for a small increment of T, the solution curve may be approx=- -
imeted by a small arc of this circle,

The delta method is most immediately applicable to equations with oscille-
tory solutions. The constant Wo in (2.26) may preferably be chosen equal to
the frequency of the oscillation, or more generally, Wo should be chosen such
that the change in 6(V,X,T) should be ma small as possible during the process
of graphical computation, Figure 2,10 shows the graphical construction of this
method. The procedure is as follows: -

1, Locate the initial point Fu(Xo,Vs)at T = To in the X, U plane,

2, By making use Eq. (2.28), calculate the initial velues of § . Fix the point
@o(=6 , 0) on the X axis,

5. Starting from Po draw a short circular arc with its center at Qo. The

arc [bP1 represents a portion of the solution curve, The arc must be short
enough so that the change in 6 1is relatively small,

4, Repeat the above procedure to find the successive polnts on the solution

curve.

The local errors in this procedure are estimated to be

d 3
(2.30)
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B = (52),(00)" (52, (400 04(00), |

where (d6)° and (2‘.;52)0 stand for (i—f) and (i—fg—) at T=Tp respectively,
and A@ 1is the incremental angle of the radius line F for the individual
gircular arc.
The increment in time T is remdily found in this method, Since T in-
creases in a clockwise direction in the X , V' plane, the positive increment
AQ 1is likewise taken in the same direction, Then we obtain the following

relation

d‘c=%x—= a8. (2.31)

By using this relation, AO in (2.30) may be replaced by AT which is the

time increment corresponding to the individual ecircular arg,

2.3.2 Modification of Method

In the process of the construction above mentioned, the value of § cal-
culated at the beginning of each step is used throughout that interval, Actu-
ally, it is more desirable to use the average values of V', X , and T existing
during the increment for calculating the value of § .

Figure 2.11 shows the graphical construction of higher epproximation which
takes care of this consideration. The point Fo indicates the initial condition
( Xe, Vo ) at T=To, The procedure is as followss
1. By using (2.28) calculate the initial value of § , and locate the point Qo
(=80, 0 ) on the X axis,

2. Draw the circular arc PoPi with ita center at Qo , the incremental angle

being chosen equal to AT /2,

!
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3, MAgain calculate fy=4 ( Uu, X4, To+ AT /2), where Xu, Uy are the coordinates
of the point Fu. Locate Q,(-6y, 0).

4., Draw the circular arc F,P; with its center at {DH, the incremental angle
being equal to AT . The arc F%Fﬂ represents the solution curve during time
interval AT .

5. Repeat the above procedure to find the successive points on the solution
cur%e.

The local errors in this procedure are estimated to be

Il

Ex -'%Z 71——) (AIJ i‘04(ﬂtj ]

(2.32)
24 ), (0T)> + 04 (). I

1
Ev=r
24
In comparison of (2.32) with (2.%0), it is clear that the errors, particularly
error of U, are reduced fairly well, The modified procedure may still be ad-

vantageous as compared with the basic procedure using the halved interval AT /2,

Numerical Example

We consider an example of Duffing's equation

21‘21- x +0.25x3= 0.2cos].2t. (2.33)

In the equivalent & -form this becomes

dy __ xté
ax v "

where
§ = 0.306+0.174 X3 -0.137c05T, [ (2.34)

T=1.2%t, v=%—.—cx—
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Figure 2.12 shows the phase-plane solution curve with the initial condi-
tion X=0, U = 0 at T = 0, Using the relation (2,31), the phase~-plane trajec-
tory may readily be converted to the time-response curve shown in Fig. 2.13.

The curves obtained by aralog-computer analysis are shown dotted in the figures,

They well agree with the curves obtained by the graphical method.

2.3.3 Double-Delta Method

Let us consider second-order differential equations of the type

dx a?
3('&'%—:1:1'& -a:tig”l-f 'g—f':x:t)=of (2.55)

where Q(Ed-:—,x,t) is a continuous and single-valued function as well as )C(%x%-,
X,t ), Dividing throughout this equation by 9 , we obtain the equation of
the type (2.24); hence we can apply the delta method to its solution. However,
the graphical construction becomes impractical owing to the presence of the com-
plicated term f'/g "
We describe a somewhat different way of graphical construction for solving
dix

equation (2.35). Through addition and subtraction of the terms 2 end wex ,

the equation is rewritten as

(1+9-1) %5 + wix + f - wx = 0.

Introducing the variables T and UV as defined by (2.26), we have

R

dv _ _ _x+4
dx V+éz ’

where

(2.36)
61=wl§7‘rwamx,ﬁa)—x, f |

5;,_=(g(wav,x,w1;)—ljuz



46

If those 4§ -functions, §; and 4, , are assumed to be constant, (2.35) may be

integrated to give

(U+62)%+ (x+8;)% = r2 = constent, (2.37)

Thie is the equation for a circle of radius I centered at the point ( X = = dj,
V= -82); hence there is no longer the restriction that the center of the cir-
cular arc has to be located on the X axis, See Fig., 2,14, The use of two § -
functions will save the labour.of calculation as a whole. In this method of
construction, however, it should be noted that the simple relation between AT

and AB as given by (2.31) does not hold.

Numerical Exeample
We consider the response of the [_ -C-K series circuit as shown in Fig.
2.15. Following the notations in the figure, the circuit equation may be

written as

n

a
w5

FRivE < E, (2.38)

where ¢ is the magnetic flux in the core L and 7 is the number of turns of

the coil wound around the core. The nonlinear characteristic of the core is

assumed to be

¢=¢ (tanhni+ ceni), (2.39)

where C; and C; are constants dependent on the nature of the core. Letting the

numerical values of the parameters

n_:.—-...‘], R:O.ZO. C=2.503
(2.40)

C;=0.40, C2_= 0-20n
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we obtain the differential equation

2
(1.2 - tanh? X ggg +O.5%+x =2.5E,

(2.41)
where X=g.
Equation (2.41) is rewritten in the double-delta form as
Ay X+t 1
ax v+éz
where (2.42)

8= 05uv-25E, JzZO.ZU'—U'taﬂLth—,

—

'C‘—'-t, U-=;(._.§'.

The phase-plane trajectories starting from the origin ( X = 0, V' = 0) are shown

in Fig. 2,16 for various values of E . Also plotted in the figure the trajec-

tories obtained by using an analog computer, They show excellent agreement,

2.4 Conclusion

The results obtained in thie investigation are summarized as followst
l. The methods have extensive applications to eutonomous and nonautonomous
differential equations. Nonlinearity in the equations can be dealt with as
readily as linearity.
2. First-order equations are solved by the slopeline method as well as certain
second-order equations; by the delta method only second-order equations are
dealt with,
3. In theory, any differential equations of the second order can be solved by
the delta method or the double-delta method. However, numerical oompuxa;ions

are needed in finding the value of § . On the other hand the slopeline methe
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od, in which the procedure of integration contains only grephical works, is
restricted to equations of the types as deseribed in Section 2.2,

4, The methods sre relatively simple to apply, even to complicated equations,
The drafting instruments needed are a scale and a protractor in the slopeline
method; in addition to them, a compass in the delta method.

5. The solution in graphical form is obtained fairly quickly, while the degree
of Qccuracy ie meintained satisfactorily high for practicable eize of steps,
However, small unavoidable errors at each step tend to accumulate, and the lat-
ter portion of a solution involving long duration is likely to become inaccurate,
6. The phase-plane trajectory is readily converted to the time-response curve,
a8 the time inerement for one step of trajectory construction is predetermined

or measured at once,
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Fig. 2.7 Phase-plane trajectories of the 1/2-harmonic oscillation in

the transient state.
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Fig. 2.8 Phase-plane trajectories of the 1/2-harmonic oscillation in
the steady state,
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Fig. 2.10 Short arc of the solution curve constructed by
the delta methed.
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Fig. 2.12 Phase-plane diasgram for Eq. (2.34).
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Fig. 2.14 Graphical construction for double-delta method.
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Fig. 2.15 L - C - R series circuit with d-c voltage applied.
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CHAPTIR IITX

SUBHARIIOKIC OSCILLATIONS CFf ORDER ONE HALF

Z.1 Introduction

Under the mction of a periodic force a subharmonic oseillation, whose
frequency is a fraction of that of the applied force, may occur in o non-

linear system, 1In this chapter we shall deal with the system described by

:J(I~ +7€ ff(U)-—Bco:;Eti-Bo (3.1)

where {-(v') characterizes the nonlinearity of the system, and subharronie
oscillations of order one helf with period 27 will be investigated [8].
The steadyestate oseillations have besen discussed previously by malting use of
Hill's eq_uation as a stability criterion [30, pp. 58-80], An example of the
transient stete has alsc been reported [11]. In the present investigation,
particular ettention is directed toward obtaining the relationship between the
initial econditions end the resulting subharmonic responses,

Subharmoniec oscillations of order 1/2 may occur also in linear systems
if their parameters vary periodically with time [22]. In a system governed
by Mathieu's equation

d®r
dre

+[Bot 261 coset)u =0, (3.2)

where the coefficient of VU varies periodically with the period 7T, an oscil-
lation having the period 2TL will be excited provided that the paremeters Go
and O are appropriately chosen. The term "parametric excitation" is ap-

plied to this kind of oscillation [ 31, pp. 308=313, %355=377]. A practical

. 65
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system designed to approximete (%,2) must contain a nonlinear term which will
limit the final emplitude of the oscillation, but this need not alter the
mechanism of buildeup at low amplitude,

The mechanism of build=up of the 1/2-harmonic oscillation in ths none
linear system deseribed by (%,1) is, to some extent, similar to that in a
linear system with parametric excitation, IHowever, subharmoniz oscillations
in nonlinear systems are usually much mnre complicated than those in linear
systems, Depending on different values of the initial conditions, there
may be various types of the steady-state responses aven-in the same system;
under certain special cases of importance, quasi=-periodic oscillations may
occur where the ammplitude of the ocscillations vary pericdically with time,

An investigation on quesieperiodic oscillations will described in Chapter V,

2.2 The Fundamental Cquations

From a number of experimental observations and a simplified analysis of
subharmonic oscillations [ 30, pp. 49-51], it is conecluded that a certain re=-
lationship may exist between the nonlinear characteristic and tue order of
subharmonics. In order to produce the subharmonic oscillation of order 1/V
with V odd, for instance, it is to be desired that the powereseries expansion

of f(U) contains the term U, so that the differential equation takes the
form

da(j" +ﬂ T

ac? = QU+ C U2 teee + Gl ee o= BeoSuT. (3.3)

When 1) is even, the term sign v |UY| 1is considered instead of UY. The
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differential equation ig then writien as
+ﬁ——~+°:‘gnvlv“’!+"- =Bcosvz +Bo. (3.4)

where the unidirectional component By is superposed on the periodic force
Bcos vt .* These statements do not necessarily imply that the forn of the
nonlinearity has to be so chosen in order to producz the desired subhaimonic -
oscillation. Subharmonics with M even, for instance, may be found when the
gysten is governed by (3.3) [%0,v. 80]. However, the oscillation thus produced
ig stable for only limited ranges of the system parameters,

Sinece we are concerned with subharmonic oscillations of order 1/2,

putting V= 2 and omitting the dispensable terms in (3.4), we obtain

aqr fidtr

.drlf == -{-]U[J:B-_Jagt'f'Ba. (5-5)

The expression ||V is, however, difficult te handle analytically, so expand=
ing this into the power series in U and talking only the first two terms for

simplicity's sake, we have
- ri= 2T (3.6)
zir¢ . ﬁ - R C1U Sl Bcos2T+Bos. 3
The solution of this equation is assumed to take the form

U(T) = Z(T) + X(T)SInT + Y(TICOST + wcos2tT, (3.7)

The term Bo can be eliminated by rendering the nonlinear term a non-

-

odd function.
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where only the non-oscillatory term Z(TJ), the subharmonic oscillation X(T)sinT
+ Y(Tlecos T, and the oseillation having the applied frequency Wcos &T , are

*
considered to be of prime importance. The amplitude W is further approx

imated by

W= —— B=~%8. (3.8)

This approximation is legitimate in the case when the nonlinearity is small.
However, this is still e permissive znoroximation even when the derarture
from linearity is lar~ [30, n. 75].

Substituting (3.7) in (3.6) and equatinz the coefficients of the terms
containing cosT and sinT end of the non-oscillatory term separately to zero,

| kx
we obtain

i:—é—[Ay" ﬁx—BCawyZJE/\'(I’ ';(,2.’4), I

g =4 (FAX - Ry -3cswxz]=Y (X, 45 Z),

with

I

B":C‘“C{f%wa*%f“%ﬂz“?fwc'xe—.‘/‘)JsZ(x,y,::J,} (3.9)

‘ |

A-—-'(]-'C;)-Cg{'%w':+%rz+5.za)’ l
E

ré=x=+ys,

- It is tacitly assumed that the demping coefficient ﬁ is so small that
the term containing sin2T is discarded in (3.7). The non-oscillatory term
Z(T) appears when we deal with the subharmonic oscillation of even order
(¥ : even).

*r

Here and throughout this chapter dots over a quantity refer to differ-

entiations with respect to the time T .



69

under the assumptions that X(T), Y(T) , and Z(Z) arc slowly variable functions

of T so that X 5 fj » and Z may be neglected, and that # is a sufficiently

small quantity and, therefore, X , ‘%j , and %2 may elso be discarded.
Equations (3.9) play a significant role in the following investigation,

since they serve as the fundamental equations in studying the itransient state

as well as the steady state of the oscillaticns,

3,3 Subharmonic Oscillations of Order 1/2 in the Steady State

In order to obtain the relationship between the initial conditions end
the resulting responses, we have first to investigate the {ypes ol the steady=-
state oscillations under various combinations of the system parameters; and
g0 the 1/2-harmonic oscillations in the steady state will be studied in this

section.

3.3.,1 Periodic Solutions

Ve consider the steady state in which X(TJ), U(T), and Z(T) in (3.7)

are constent, so that

x=0, y¢y=0, ead Z=0. (3.10)

Substituting these conditions in (3.9), the steady-state components Vo

(= V.‘(aaf"-fpz) and Zo ol the periodic solution U(T) are determined by

A2+ £2 = (3cswin)f,

} (3.11)
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3+ 3 : Ar= - !
; j |

C[Zofc&k(:“f‘ &)hf‘ i_ },". [ ‘7',5jz_'. : :__—-__-

and the components Xe, Uo, of the amplitude I? are found to be

Xo =15 2068, e (8+7C), \
M= s 5ind, P"J.ulr\'gv—u.),
|
( (3.12)
where E
A e
co5280=- —1 $iA3=——Te |
3C3WZQ ’ Sined 3G wis |
4

We see from (3.,11) and (3.12) that, if the sign of Bo is reversed, the sign
of Zo and consequently those of cos2? and sin’9 are also reversed, result-
ing in the shift in & by 7</2 radians, Hence, by reversing the sign of Bo,

the comnonents Xo, > are given by

i N
Xo =L {I+R, &,, Ff0 . 9tIr/3),
. L e Do B ( (3.13)
Y,=rmsin v, fasm It o, </, .
J

When Bo= 0 in particular, four types of the 1/2-harmonic oscilletions exist,

each differing in phase by [T /2 radians from the other,

34342 Stability Investigation
In order to investigate the stabiliiy of the periodic solutions as given
by (3.11), (3.12), and (3.13), we consider sufficiently small variations & ,
7, and § from the equilibrium state defined by
E=X-Xo, N=Y-Y5, L=2-Zo. (3.14)
~

= - I 3
Then, if these variations 5, %, and ~ tend to zero with increasing [,

the solutions are stable. Substituting (3.14) in (3.9), we obtain



with 5
Q=1 22} _ 1
n=(92 !
coe(3) 4
a—"3:(§)_‘§- = -
0
(oY) _
ta={ il ~
~[3YY) _3
a=($Y) =32
_[(2Z) _ 3
aa]"—(hé_f)o__é—
oz

a':: e _““i <
Hm=l=m ) it (Sh0

where (E)i)a ,...,(—gg—)a stand for

ox

rol— pojw

3o [-urt 270 ],

O

C3Xo[-w+220],

C3_E/o[llf+ 22.0],

]

{
|
|
|
i
|

uf"’-+3zoJ, J

at.&ﬂxo,yﬂyo

The characteristic equation of the system (3.15) is

or

7l

(3.15)

and £ = Lo

(3.16)
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lanais | lazsa } Ay Qz Qs |
2_ 23
b !IO-BJ a&.ﬁj+ ’13-.1,}/\-}-’ Ui Qzz Q3 : = O' (5-17}
| @21 A3z Rz )

By making use of the Routh-Hurwitz's criterion, the system (2.15) and conse-

quently the periodic solutions are stable provided that

Q33 >0, )
An @z F Az Rz ! A
axn as| (@2 asz| " |
r (3.18)
! @y Az Qi | f
Gz Q22 o5 = /A > 0, |
A3 A3z O-3 J

The first and the second conditions of (%,18) are fulfilled from the outset,

because, by (2.15),

3
a'33"' C:-I'Ca[”-ﬂ, ‘|‘ 3 “frz'f BLOJ > \3,

- l £ (3.19)
Ay Az || Qzp Qo3 | ; B 5

5 e “Fd{CI“PCsL_?'rb* -§w2+325'J} <0,
A3 A33 | | Asz 33 - - J

Hence the third inequality A >0 is an essential condition for the stability
“of the periodic solutions. Substitution of (3.15) in the determinant A
leads to a lengthy exvression; however, by virtue of (3.11) and (%.12), the

stability condition ultimately leads to

A=663522a(]‘c1‘£‘c35 3c3zo);‘—-r§ >0, (3.20)
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It is, therefore, clear that the charccteristic curve ( 1o versus Bo ) has

vertical tangente at the stability limits dBs/df=0,

5e3e7 Tunmerical Exempleg
In order to present a more concrete description of the 1/2-harmoniec
oscillations, some reoresentative exemples will be given in what follows,

The nonlinearity in (3.6) is fixed by

G + S3u3 2 0,3r+0.7y 3, (3.21)

The constants Cj, C3 are so chosen that the difference between |V and C,Ur
+C3U7° is small encugh for the interval of U in which the 1/2-harmonics
oceur., These characteristics esre compered in Fig, =.1.

By making use of (3.11), tlic amplitude tharacteristics ( o versus B, )
are computed for several velues of B aud B, and illustreted in Fige 3.2,
The stability of the periodiec solutions is investigated by (3,20), and the
result is shown in the figure by distinguishing the characteristic curves with
full lines and dotted lines corresponding to the stable and the unstable states
respectively, I+t will be noticed that, since X = O and Y = 0 satisfy (3.9),
V(T)=Zo+ WCO-2C 4is another periodic selution. .e see in Fig. 3.2 that
various types of the 1/2-hermonic oscillations oxist aceording to the different
values of the system paremeters. They are as follows:

Case 1 - 72=0.20, E =1.50, and Bo= 0.50 [Fig. 3.2(b)]

There are two l/2-harmonic oscillations, differing only in phase by 7
radians, The periocdic solution without 1/2-harmonic (i.es, Yo = 0) is readily
found to be unstable. Therefore all initial conditiona lead to the 1/2-

harmonic response.
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Case 2 - % =0.,20, B =0.60, and Bo=0.40 [Fig. Z.2(a)].

ks .regards the 1/2<harmonic oscillations, the situation is the same as
in Case 1. However, the periodic solution with /> = 0 is stable; therefore
the 1/2-harmonic oscillation oceurs only when the initial condition is proper-
1y chosen.

Case 3 - To=0.20, B =1,50, end Bo= 0.25 [iig. 3.2(b)].

There are two different values for I» ; and, for each of these, two 1/2-
harmonic oscillations exist, differing in phase by T radians. The periodic
solution with Fo = 0 is unstable; therefore all initial conditions lead to
the 1/2-harmonic response.

Case 4 - £ =0.10, B =2.00, and Bo=0 [Fir. 7.2(c)].

There are, as mentioned in Scetion 3.3.1, four l/2-harmonic oscillations,
each differing in phase by /2 radians from the other, The periedie solu-
tion with /o = 0 is steble; therefore the 1/2-harmonic oscillation ocecurs
only when the initial condition is properly chosen,

Case 5 - £ =0,01, B =1,60, amud Bo=0.15 [Fig. 3.2(d)].

There are three different values for 1 ; and, for each of these, two
1/2-harmonic oscillations exist, differing in phase by 7T radiane. The peri-
odic solution with /o = 0 is unstable; therefore all initial conditions lead

to the 1/2-harmonic response.

3.4 Subharmonic Oscillatiors of Order 1/2 in the Transient State

3.4,1 Phage-Plane Analysis

As mentioned before, our objcet is to study the solution of (3.6) in the

transient state, which, with the lapse of time, ultimately yields the periedic
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solution. For this purpose it is useful to investigate the integral curves of

the following equations derived from (3.9), i.e.,

3

dy _ Y(x4 %)
ax X (X 4,2) |
with r (3.22)
Z(i.:yr Z-‘) = BO.
J

One will readily see from the third equation of (3,9) that Z is uniquely
deternined once the values of X and Y are given., Since the time T does

not appear explicitly in (3,22), we can draw the integrel curves in the xX,Y
plane, The periodic solutions satisfy the conditions (%,10) and are, therefore,

expressed by the singular points of (3,22), i.e., by the points at whiech X(X,Y,
2) and Y(X,4,Z) botn vanish,

Now suppose that an initisl condition for the solution of (3,6) is pro=
scribed by U(0) and U(0) ; then X(0), 4(2), and 2(0) corresponding to

this initial condition are determined by (3.7) end (3.9), i.e.,

U(0) = Z(0)+Y(0)t W,

or(0) = 2(0) + x(0) fj(o)'éxm), ? (3.23)

;. 2(0)= Ca{( -‘%wﬂ- g-r‘E(O) + ZZ{O)JE(O)‘,}? wr{xX5(0) -gﬁ'O}'U’ =B,
J

An initial condition is thus prescribed by & point whose coordinates are

given by X(0) end Y(0) in the X,y plane. Then the representative point
X(T) , Y(T) moves, with increasing T, ealong the integral curve which starts
from the initial point X(0), Y(0) , and tenda ultimately to a stable singular
- 'point.' Hence the transientestate solutions are correlated with the integral

curves of (3,22), and the time response of U(t) in the transient state
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is obtained by the line integral

ds AP——
, ds=\[(dx )2 (dy)?, (3.24)

fn/Xz(X.-y..z,"f ;:7";’1_.3.z)
where A5 is the line element along the integral curve,

The character of the sinpular point reveals the behavior of the oscil-
lation in the vicinity of the equilibrium state and consequently determines
the stability of the periodic solution. The statle solution is correlated
with the stable singular point such that & point X(T), Y(T) on the neigh-
boring integral curves tends to it with increasing T.

The types of singular pointe are classified according to the roots A's
of the characteristic equation (2.17). By use of (3.19), the discriminant

D of (5.17) becomes

12
DE( ;. Az + Az ﬂaalr ~4sa = a33(a33fé2—4¢£). (3.25)

I+ ies also noted, from (3.19), that

* If the integral curve leads to a limit cycle with increasing T, the
representative point X(T), Y(T) moves along the linit cycle repeatedly,
so that the amplitude and the phase of the oscillation keep on varying
periodically, resulting in a quasi-periodic oscillation, However, it will
be verified without difficulty that tue integral curves of (3.22) have no

limit cycle provided that X(X,4,2) and Y(%,4,2) are given by (3.9).
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'
Qs QAze {125!
. < ’j, and 33 > 0. (3.26)

=

.+.
Az 33| i qa;
: 1

Hence the sinmular points of the systew (3.22) will be classified as followss
(1) 12 D20, and A > O, the characteristic roots A are both real and of
the negative sign, so that the singularity is a stable node.

(2) 1 D> 0, and A< 0, the characteristic roots A are real but of
opposite signs, so that the singularity is a saddle point which is intrinsi-
cally unstable,

(3) 1r D< 0, the characteristic roots .\ are conjugate complex, so that

the singularity is a stable spiral.

3.4.2 lNumerical Examples

Since the transient state of the oscillation is correlated with the inte=-
gral curve of (3,22), it will be useful and illustrating to show the geo-
metrical configuration of integral curves for representative cases,

Case 1 - We first consider the example corresponding to Case 1 in Section

3.3.3, where the system parameters are given by
£ = 0.2, B =1.,50, and Bo = 0.5C.

As explained in 3ection 3.5.35, there are two 1/2=harmonic oscillations having
the same amplitude but of opposite phases. The integral curves for this
partiecular cosc are plotted in Fig. 3.5. As ecxpected, there are three sin-

gularities 1, 2, and 3, the details of which arc listed in Table 3,1,

Table 3,1, Singular Pointe of Fig. 7.3
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Singular *

Point Xo Ho Za A1, A2 My Mz Classification
1 0.2 0.900 | 0.441 | -0.10ct 0,770 Stable spiral
2 <0.204 | 0,900 | 0,441 -(.100t 0, 3704 Stable spiral
5 0 0 0.6C3 | ©,171,-0.371 1,306,-1,806 | Saddle (unstable)

*
M1, M2 are the tengential directions of the integral curves at the singu-

lar points,.

3y (3.9) a representative point X(TJ, Y(T) mnoves, with increasing T ,
along the integral curve in the direction of the arrows and tends ultimately
to one of the stable gingularities 1 and 2, G5ince tae distance between ihe
gingular point and the origin shows the aznlitude o , the singularities 1 and
2 represent the 1/2-harmonic oscillations having the same amplitude but of
opposite phases, The singularity 7, i.,e.,, the origin is a saddle point which
is intrineiecally unstable; the corresponding periodic state cannot be sustain-
ed, because any slight deviation from the saddle point will lead the ocscil=-
lation to one of the atable spirals, The separatrices, i.e., the integral
curves which enter the saddle point, divide the whole plane into two regiona
as indicated with different hatches. All integral eurves in one of these
regiona tend to the stable singularity which ie contained in that region.
Hence the relationship existing between the initial condition X(0), Y(0)
and the resulting 1/2-harmonic oscillation will be made clear, Since the

origin is an unstable singularity, all initial conditions lead to the 172

harmonic response.
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Case 2 - We consider the second example corresponding to Case 2 in Section

3455, where the system parameters are given by
% = 0.20, B = 0.60, and Bo = 0.40,

As explained in Section 3.3,3, there are, as in Case 1, two 1/2-harmonic osecil=
lations. The integral curves for this particular case are plotted in Fig. 3.
L, As expected, there are five singularities, 1 to 5, the details of which

are listed in Table 3.2.

-

Table 3,2, Singular Points of Fig. 3.4

ngﬁ&r s Y, - Aty Na s, g Classification
1 0.410 | 0,384 | 0477 | -0.100% 0,1831 Stable spiral
2 -0.,410 | -0.384 | 0,477 | -0.100%0,1831 Stable spiral
3 0,088 | 0,186 ] 0.617 0.014,-0,214 | 1,579,-2.016 | Saddle (unstable)
4 =0,088 | =0,186 | 0,617 0.0l4,-0.214 | 1.,579,-2.016 | Saddle (unstable)
5 0 0 0.638 | =0.009,-0.191 | 2.555,-2.555 | Stable node

*,ﬂl,/ug are the tangential directions of the integral curves at the singu-

lar points,

In Fig. 3.4 we see that the singuler points 1 and 2 represent the stable
states of the 1/2-hermonic oscillations which have the seme amplitude but
differ in phase by X radians, while the singular points 3 and 4 represent

the unstable states. Contrary to Case 1, the singular point 5, 1.€., the



origin is a stable spiral.
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Therefore the conclusion follows that any osecil=

letion starting from a point (which preseribss an initial condition) in the

shaded regions leads ultimetely to one of the singulsrities 1 and 2

-2

result-

ing in the 1/2-harmenic response; and thet any osecillation which starts from

the unshaded region leads ultimetely to the origin, resulting in no 1/2-

harmonic response.

Case > = The third example corresponds to Case 2 in Section Z.3.3, where

, the system parsmeters are given by

% = C.20,

B

= 1.50,

end

Bo= 0.25.

As explained in 3ection 2.%.7, theres are two kinds of the 1/2-harmonic oscile-

lations with different amplitudes.

cage are plotted in Fi-. 3.5.

details of which are listed in Teble 3.7,

The integral curves for this particulsr

There are seven sincularities, 1 to 7, the

Teble 3.3 3ingular Points of Fir. Z.5

3 *

a;.zf\;iar Xo So Zo Aly, A2 M, Az Classification
1 0.376 | 0.88% | 0.265 | =0.100 £ 0.0904 Stable spiral
2 =0.376 | -C.88% | ¢.265 | =0.100 £0,090i Stable spiral
3 0.586 | €.586 | C.190 | .098,-C.298 | 0.156, 5.322 | G3addle (unstable)
4 -0.586 | =0.586 | c.190 | €.098,-0.298 | C.156, 5.322 | S3addle (unstable)
5 0.407 | 00176 | Ge263 | -C.1001 0.0551 Stable spiral
6 ~0.407 | -0.176 | 0.263 | -0.100 L 0,0551 Stable spiral
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B
— lo I C
-

CaZ75 | 0e086,=0e286 | 0.696,=0.696 | Gaddle (unstable)

*®
M1, M2 are the tangential directions of the integral curves et the singu=-

lar points.

In Fige 3.5 we see that the singular points 1 and 2 represent the stable
states of the 1/2-harmonic oszilletions having the same amplitude but of op=-
poeite phases; the same is true for the sinpulsrities 5 and 6. The sinpula=-
rities 3, 4, and 7 are saddle points. The separatrices divide the whole plane
into four regzions 2s indicated with iifferent hatches. 3Since the origin is
an unstable singularity like as in Case 1, all initial conditions lead to the
1/2=harmonic response.

Thus far, the behavlior of the nonoscilletory component Z(T) has not
been illustrated. 3ince Z(T) also varies =s the values of X(T) and Y(T),
the integrsl curves are really on the surface which is determined by the third
equation of (3.5). Fig. 3.6 shows the geometrical configuration of the in-
tegral curves in the X, Y , £ spece. Their projections on the X, Y plane
ere, as & matter of course, the same as the integral curves in Pig. 3.5.

By making uss of (3.2%), the rzgions of initial conditions and the stable
sinpularities in Fi~. 7.5 ere reproduced on the v(0), t'(?) plene as illust~-

reted in Fir. 3.7. 3Since, in tae ateady state,

I

XoSiNT + Yo CIET + W eos 2T r Lo, [

vi(T) (3.27)
(

UriT) = XoCOSC — J22iNT -2 4r5ineT,

-

the periodic¢c solutions correlated with the stabls singularities 1, 2 and o .

in Fig. 3.5 are. shown by the closed curves 1 and 1I, respectively, where the



coordinates are to be considered V(r) and U7(z) instead of U(0) and U(0) .
The time required for a point VI(z) , *(T) +to complete one revolution along
the curve I or II is 271, or twice the period of the external force, A trajec=
tory which starts from an initial point V(0), U(0) in one of these regions,
®+ge, the region containing the point 1 (or 2), will tend to the closed curve
I; the representative point V(T), U(T) in the steady state will then pass

- through the point 1 (or 2) when T =2nm, N being a sufficiently large posi=
tive integer. Similarly, initial conditions in the region containing the

_point 5 (or 6) will lead the oscillation to the steady state represented by
the closed curve II, and the representative point V(T) , U(T) in the steady
state will pass through the point 5 (or &) when T =2n.

Case 4 = The fourth example corresponds to Case 4 in Section 3,3.3, where

the system parameters are given by
% = 0,10, B = 2,00, and Bo= 0.

As explained in Section 3.3.3, there are four 1/2-harmonic oscillations, each
having the same amplitude but differing in phase by /2 radians from the
other, The integral curves for this particular case are plotted in Fig. 3.C.

There are nine singularities, 1 to 9, the details of which are listed in

Table 3.4,
Table 2,4, Singular Points of Fige 3.6
Séggiﬁiu Xo Yo Zo Aly Az /M],}LZ* Classification

1 0.229 | 0.789 | 0.134 «0,050 £ 0,1401 Stable spiral




2 =0,229
-C.789
0.769
0.320
=0 4320

0,683

® =~ O " W

0.683
g 0

-0.050% 0,1404

-0,050t 0,1401
-0.050 £0,1401
0.095,0,195
0.095,-0.195
04095, 0,195
0.095,=0,195

0,050+ 0,117i

C.2C1, 2,434
0.3C1, 2,434
=34322,=0,411

-3,322,=0,411
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Stable spiral
Stable spiral
Stable spiral
Saddle (unstable)
Saddle (unstable)
Saddle (unetable)
Saddle (unstable)

Stable spiral

* :
Mi, Mz are the tangential directions of the integral curves

lar points,

at the singue

In Figse 3.6 we see that the singuler points 1, 2, 3, and 4 represent the

stable states of the 1/2-harmonic oscillations, and that they are equidistant

and equiangular about the origin.

singular points corresponds to one=half cycle, of the cxternal force.

The angular distance between the adjacent

The

singular voints 5, 6, 7, and ¢ ere saddle points; therefore the correspond-

ing periodic solutions are unstable,

i.e., the origion is a stable spiral,

Like as in Case 2, the singular point 9,

Therefore sny oscillation starting

from & point in the shaded regions leads ultimately to one of the gingularities

1, 2, 3, and 4, resulting in the 1/2~harmonic response; however any oscillation

vwhich starts from the unshaded region leads ultimately to the origin, result=-

ing in no 1/2-hermonic response.

By making use of the third equatien of

(3,9), the integral curvee in the X, Yy , = space are calculated and illus=

trated in Fig. 3.9.

The regions of initial conditions and the stable singularities in Fig,
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5«8 are reproduced on the (), r(0) plane as illustrated in Fig, 3,10,
The periocdic solutions correlated with the singularities 1, 2 and 3, 4 are
also shown by the closed curves I and II respectively, where the coordinates
are U(T/, 7(T) instead of (), U(0), Since these oscillations are the
1/2«harmonics, the time required for a point U(C), 7(T) to complete one
revolution along the curve I or II is 2. The singularity 9, i.e., the ori=
gin of Fig, 3.8 is correlated with the oscillation without 1/2-harmonic rse
sponso; the periodic solutlion corresponding to it is represented by the
closed curve III, The time required for a point U(T/, 7T/ to complete
one revolution along the curve III is 77, or equal to the period of the ex-
ternal force,

Cagse 5 = The fifth example corresponds to Case 5 in Section 3,3.%, where

the system parameters are given by
£ = 0,01, B = 1,80, and Eo = 0,15,

As explained in Section 3.3,3, there are three kinds of the 1/2~harmonic
oscillations with different amplitudes, The integral curves for this partice
ular case are plotted in Fig. 3.11. There are eleven singularities, 1 to 11,

the details of whieh are listed in Table 3,5.

Table 3.5, OSinpgular Points of Figs 3.1l

S *
ngoin“lt“ Xo Ys | Ze Kok My, Mg Classification
1 0,000 0,984 0,261 | «0.,005% 00,4071 Stable spiral
2 «0,000 | =0.984 | 0,261 | =0.005% 0,4071 Stable spiral
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3 -0,850 | 0,066 |-0,053 -0.005%0,2561 Stable spiral
4 0.850 [=C,066 |=0,053 =0,005%0,23C1 Stable spital
5 0.705 | 0,284 | 0,012 0,161,«C,171 [=0,1432,-93,44 | Saddle (unstable)
6 «0,705 | =0,284 | 0,012 0.161,=0,171 | =0,143,-93,44 | Seddle (unstable)
7 «0,765 | €.225 |-0,015 0,121,=0.131 1.134, 19,60 | Saddle (unstable)
8 0.769 | 0,225 | «0.015 0.121,=0,131 1.134, 19,60 | 3addle (unstable)
9 0.209 | 0.005 | 0,182 -0,0051%0,142i 3table spiral
10 0,209 | =0.005 | 0.182 -0.005t0,1421 Stable spiral
11 0 0 0.211 0,063,-0,073 Saddle (unstable)
‘}ﬁ,‘MQ are the tangential directions of the integral curves at the singu-

lar points.

In Fig. 3,11 we see that the singular points 1 and 2 represent the stable

states of the 1/2-harmonic oscillations having the seme amplitude but of op-

posite phases; the game is true for the pairs of

9, 10,

ratrices divide the whole plane into six regions

hetches,

The singularities 5, 6, 7, 8, and 11 are

saddle points,

3 all initial conditions lead to the 1/2-harmonic response,

3.5 Analog-Computer Analysis

3,5.1 The Fundamental Equation and the Computer Elock Diagrem

the singularities 3, 4 and

The sepa=

gs illustrated with different

Since the origin 1s an unstable singularity, like as in Case 1 and

As mentioned in Section 3,2, the fundamental equation for subharmonic

oscillations of order 1/2 is considered in the form



d.zU‘ 12} dU = ~
2zt Rgr bivis =Beost rBo. (5.26)

The phase trajectories on the "z, , oriz) plane and the time-response curves
(V ve T ) will be sought and compared with foregoing analysis,

Fige 3.12 shows the schematic diagram of the computer connection. The
synbols in the figure follow the conventional notation.* The nonlinear cha=
racteristic |V/U is readily obtained by the servomultiplier as indicated in

the figure,

3e5+2 Computer Solutions

Among the numerical examples in Section 3,4,2, two ceses will be investie
gated by the analog computer,

Case 1 = £ = 0,20, B =1.50, and Eo = 0,25,

Fig, 3.13 is obtained by the following procedure, A point !7(0), 7(0),
i.es, one of the initial conditions, is first preseribed on the U(7), U (T)
plane of the computer recorder. Then the solution curve, i.e., the trajectory
of the point U(T), (%) which starts from the initial point U (0), U0,
will’ ultimately tend to one of the closed curves I and II, By repeating
this process for different values of the initial conditions, the whole plane
is divided into four regions; the region containing the point MM (= 1, 2, 5,
or 6) is so determined that the representative point U(T), U(7, which has

started from this region vasses through the point 1. when T=2Ini, 1 being

* The integrating amplifiere in the block diagram integrate the inputs

with respect to the machine time ¥ (in seconds), which is, in thie particular

case, two times the dimensionless time T, i.e., L= 2T,



T

a sufficiently large positive integer.t

Fige 3.1% shows a satisfactory agreement with the theoretical result as
given in Fige 3.7. Therefore the assumptions used in deriving (3.9) may be
accepted, The time-response curves of the 1/2-harmenic oscillations are
shown in Fig, 3,14, The calculated curves in Fig, 3,14(a) are obtained by
substituting the steadyestate values X, , Yo » and Zo of Table 3,3 into
(3¢27)s The curves in Fig, 3.14(b) are obtained by meking use of the analog
computer, As indicated in the figure, there are four 1/2<harmonics having
two different waveforms, and for each of these, iwe cscillations differing
in phase by 7= radiens,

Case 2 = £ = 0,10, B.= 2,00, and Bo = 0.

Procesding snalogously to a consideration of the first case, we obtain

Fige 3.15, which again shows an agreement with the theoretiecal result ss given

in Fig. 3.10. Contrary tc the preceding case, an initial conditicn prescribed

in the unshaded region results in the oscillation without 1/2-harmonic. The
time-respense curves are illustrated in Fige 3.16, Curves 1, 2, 3, and 4
show the 1/2-harmonic oscillations; curve ¢, the oacillation without 1/2-

harmonic response,

3.6 Conclusion

Subharmonic oscillations of order 1/2 have been investigated, The differ-

ential equation which governs the systom takes the form

*
A eycle indicator which countes every two cycles of the external force

Bcos2T 1s used for this purpose,



d."'u' u .
1—t: + f:é '-a{:‘ +f(ur) =86a32t+80,

where the nonlinear term F(V) is given by

f¥1U = |Ufr for analog=-computer analysis,

ZCU+C3.7° for phase=plene analysis,

Particular attention has been directed to the relationship existing between

the initial conditions and the resulting 1/2-harmonic responses, and the

examples illustrating this relationship have been given, 1In addition, Fig.

3,17 shows a list of representative patterns of the initial conditions which

lead to the 1/2-harmonic responses,

(a)

(b)

(e)

(d)

All initiel conditions lesd to one of the two 1/2-harmoniec csclllations

having the same amplitude but differing in phase by 7T radiens.
Initial conditions lead either to the 1/2-harmenic ;esponse or to the
oscillation without 1/2-harmonic. The 1/2-harmonic oscillationa have
the same amplitude but differ in phase by T radians,

All initisl conditions lead to the 1/2-harmonic response, The 1/2-
harmonics have two different amplitudes, and, for each of these, two
oscillations exist, differing in phase by /T radians,

Initinl conditions lead either to the l/2«harmonic response or to the
oscilletion without 1/2-harmonic., The 1/2-harmonic oscillations have
the same amplitude, but each differs in phase by T /2 radians from the

Othe T,

All initisl conditions lead to the 1/2-harmonic response, The 1/2-

e)

These patterns are explained as follows:



harmonics have three different amplitudes, and, for each of these, two

oscillations exist, differing in prhase by /T radians.

B



oy

0.5 17

Fig. 3.1 Mlonlinear characteristic ||_r]1,r ond fta approximation by

pover=eeries cxpansion.

L5

90



91

+ = 0,20
1.0k B = 0.60

£ = 0,20
B = 1050

g ——

T

1.0

0.5+ 0.5+
Bom o .
0 1.0 0
_ . e
T £ = 06,30 T £ = 0,01
10ke B = 2,00 1.01:° B = 1,80

0 0.5 1.0
(c)

"

Fig. 3.2 Amplitude characteriotica of 1/2-harmonic oscillatiouns,
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0.125B,

11100

6.25|v|V I i| :

—p— -0

Integrating Summing Potentiometer
Amplifier Amplifier

Fig. 3.12 Computer block dlagram for (3.20),
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FPigs 3.15 ﬂrzgi011n of Initial conditicno londing to the 1/2=herwonic
reaponscs mnd the trajectories of the periodic eolutions,

both obtaincd by snnlog~computer annlynis (See Fig, 3.10),
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CHAFTER IV

INITIAL CONDITIONS LEADING 10 DIFFRRZRT TYPi3 OF FIRI0DIC SOLUTIONS

4,1 Introducticn

In the preceding chapter, we investigated the subharmonic ocscillationa
of order 1/2 and particular attentlon was directed toward obtaining the ree
lationshin between the initial conditions end the resulting 1/2e<harmonic oscile
lationa, Now we are concerned with investieetion of such reletiecnsahip for
various types of periodic oscilletlons in aysteams governed by Duffing's

equation
asyr
dc=

I ﬁ%;—r +f(v) = g(z), (4.1)

whers % i3 & constent, f(u) is a polyncriel of UV, end J(T) is periodic

in the time T [ &, 11, 12, %01].

The method of analysls is/quite different from the method which was used
in the preceding chapter, The lattier has been extensivcly.ﬁsad for the study
of harmonic end subharmonic oscillations in the transient state [30, pp. 81-124;
11 ]. Let us take a glance at this method before going intc present investigae
tion, For simplicity we confine the problem to the analysis of haruwonic re=
sponse under the imoression of the external force g(T)= BcosT, We write

the solution of (4.1) as
U(T) = X(T)sint + Y(r)cosT,

where it 1s aesuned thet the amplitudes X(T) and Y(T) are slowly varying

functions of the time T . Under this condition we may derive a set of simule

taneous equations of the form

107
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Eti?—:" L 2 g‘%= Yix.y), (4.2)
where )\'{/.&’,g) and Y('A,_lj) are the polynomiale of X and 3( that may readily
be found. Upon elimination of T in (4,2), the integral curves, i.e., the
trajectories of the representative point ( X, Y ), ars plotied in the X, Y
plane. A singuler point, for which (X, |f)= C end Y (X, Y)= 0, is correlated
with a pericdic solution of (4.1), For certain values of % and E, there
exlst three singularities, i.e., two stable spirals and one zaddle point which
is directly unstable. The integral curve which tends to the saddle point with
increasing T is the separatrix which divides the coordinates plane into two
domains, such that any initial conditione prescribed in ezch of them will lead
to a particular type of harmonic oscillation. These domains will be called
the domains of attraction,

This method of analysis is very effective for the study cof harmonic and
subharmonic oscillations in the transient state, However it hes the folloﬁing
drawbacks, First, if the initial conditions are prescribed at values which
are far different from those of the steady state, the assumption that the amp-
litude and phase of the oscillation vary glowly does not hold; therefore the
result obtained by this method is not quite accurate, The second and more
serious drawbacl: is that, if a number of steady-state responses are to be ex=
pected, this method is practically inapplicable, since the analysis is com=
pelled to resort to the graphical solutlon in a higher=-dinensional ohase space,

The present chapter deacribes the method of analysis which is applicable

under such situation.* le consider the behavier of a point whose coordinates

are given by U((/) ond () in the Lr,ﬁr plane (dots over U refer to dif-

ferentiation with respect to L ). 4n initial conditien is then defined by a
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point prescribed at T = 0, Speccial attention is directed toward location of
the points at the instants of T=27, 4/, 67 ,se.. lathematically, these
points will be obtained as the successive images of the initial point under
iterations of the mapping from T = _nTto 2(N+i)7, where 1= 0, 1, 2,400
As expected from the foregoing analysis for harmonic response, there exist
three fixed points, f; , f , and f}, of the mapping corresponding to the peri=
odic solutions of (4,1) (see Fig. 4.1). R and f2 are stable, while Fj is
directly unstable, Through F% there are two curves, C; and Cz, which are ine
variant under the mapping., Points on C: approaci E% under iteratione of the
mapping, while points on C; approach 3 under iterations of the inverse map=-
ping, Hence the successive images of an initisl point will tend either to
P or to 2, depending on which side of C, is the initial point, Thus the
curve C} is the boundery between the demains of mttraction, in each of them
any initial conditions leading to a particular type of hermonic oscilletions,
The behavior of the loci of imeges is analogous to that of the integral curves
in the neighborhood of the saddle point in the X, f plane.

The domains of attraction leading te different types of perledic eolutions
may be determined by the following procedurc.
l, A periodic solution may be expanded into Fourier series, assuming the har-
monic or subharmonic frequency as its leost frequency. If the periodic solue-
tion, either stable or unstable, does existi, the coefficients of the orinci-

pal terms of the Fourier series may Le determined by the method of harmonic

¥ A similar method of analysis has elso been studied by K. W, Blair and

Wo S, Loud [ 4]. The reeder is suggested to refer to their paper for the

methematical consideration of the enalysis.
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balance,
2. 4 small varietion & from the periodic solution ia governad by the varia=

tional equation of (4,1), i,e.,
2c E , :

R [2 s =0, (4.3)
where U is the periodic sclution, Equation (4,%) takes the form of Hill's
equation and may be solved by an apvroximate method. Thus we can distinguish
between the stable and unstable fixed points and elso determine the slope of
the invaeriant curve (: at the unetable fixed point 2 (see Fig, 4.1).

5« The boundary between the domains of attraction is invariant curve Cs,
which is the leccus of the imapes that approasch the umstable fixed point from
both sides, These curves are obtained by starting just on either side of the
unstable fixed point and integrating the original equation (4.1) for decrea=-
ging time, i.e., by using nepative time in (4,1). A digital couputer may be
used for numerical integration, It is found that, if two initiel points are
prescribed not exactly on Cc but on both sides of C. sufficiently close to
each other, the loci of the images which have started these points nearly co-
in¢ide with each other after several iterations of the mapping.

Two examples of the domains of attraction are illustrated in the present
chapter., The first deals with the domains of attraction leading to the har=
moniec oscilletion and the subherronic oscillations of order 1/3. The second
exmmple is concerned with the domains of attraction for harmonic oscillation,
the subharmonic oscillations of order 1/2 and of order 1/3.

The domains of attraction calculated by the above procedure agree well

with those obtained by analog-computer analysis.
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L,2 Synmetrical System

As an example of (4,1) we shall concider Duffing's ecustion c¢f the form

d“r g L
(e tRyp TV EBane, (4a4)

This equation is unchanged if the sion of U is reversed and T is shifted by
T radians., Therefore ithe systen governed by (4.4) will be ecalled the syranet -
rical sysiem. 3Since the nonlinearity ic cubic in L7, one may expect & periocde

ic solution with harmenie frequcncy or subharmonic frequency of order 1/3 as
.
*®

its least frequencv, I the system parameters, f% and fﬂ, are appropriately

chosen, the verisdic solutien might be assumed te take the form

Vot T) = XiSINT + Y Cas ¢ (4.5)
for harmonic resronse, and
1B(C) =Xy3 ‘.3[:!:' C tY,, CoS %trx.—sm Tt £,€5 T (4.6)
for subharmonic response, Terms of frequency other than those that apnear in
(45) and (4.2) are ignored to this order of approximation, It devends on the
initial conditiong that which resnonsc, (4,5) or (4.6), will actually occur.

This problem will be studied in the following sections.

* .
A subharmonic oseillation of order 1/2 may exist over a smaller range of

the system paremcters, oee Appendix 111, However, gince this iype of ascile

lation is apt to occur when the system is unsymmetrical, this case will be

deferred to _ection 4.%.
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4,2,1 Determinetion of the Coefficients of the Periodic Selutions
The coefficients of the veriodic solutions, (4.5) end (4.,6), may be
determined by the method of harmonic balance, Substituting (4.6) into (4.4)

and equating the coefficients of the terms coataining sinT , cos8C , Sin-L-t
-~

?
a

and cos %t geparately to zero, we obtain

Al X "@5, \A'J .xji,j)/ vy =0,
ﬁxl 'H|yl _.:T(\.;:Jtlfc; _5&:’/‘31/:} -b = Ij

7

‘gfifj-_gf;_,)fwfj?«kwj:/_«, j.‘fﬂﬂjxujrgji/j = O, |
> (5.7)
%A{«Jgﬁ,_ﬂl] = ;{'(/«.fi _3‘:_-3/'3’ i {EAIJ_; “A',_;;fy_j = O,

. Where

= 5 = -
A= |“;lhah.h;3), Al "_;,—-4_'\2*";?1'(1/_-),

|
|
) = = g Z - - 2 o e 2
K= h< =X 'I'y[r hr,fj'—r}:j - Apz f}f;_,, [
from which one may derive the relations to determine Ri and Ky nemely,

(QAJHJ Ay;h.r‘g) JE ‘.L?leh't_j) t hf’ ]

T (4.8)
C p 2 Iéf' 7 T =
[AL; t 7% "fé‘ﬁ’lﬁujﬁ'f,g = 0. )
Through use of (4.7) end (4..) the coefficients of the periodic solutions are
found to be
Xy = ﬁ_iqﬁifﬁ"u)_ g
=" i . .
' r (49)
Y, = (- Auaitvs)
=
- 96 )
and

oy |
Xiy3="0ys cosFy4, O cos (Qug +- fL) ﬁ,aCOSfar,, fj R),
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yvj.:f“db’in E;PJ, K,JSt'msbuff;'}ti, ﬁ,_j.ijT(Bt;_ﬂ-}ft), (“'4.10)
where
555 5 r““é*;_a;ﬂ R s, - SHER T AGY)
FYH";,__-; 9k, OF )

From the second equation of (4,8) one sees that either
2 .
lqaijffé —igR'ﬁI/J -O or RDJ :._O_

When R)3= O there will be no subharmonic response, and (4,2) with Kys= © gives

the coefficients of the harmonic oseillation (1405).*

4,2,2 Gtability Investigation of the Periodie Solutions

The stability of the veriodic solution will be investigeted by considering

the behavior of a small variation §(T, from the periodiec solution Up(l/)., If

* then the amplitude of the harmenic oscillation is not small, the zccompa-
nying thirdeharmenic component is to be considered as well, ceveral methods
of improving the apvroximation were described in Chapter I, In this chapter,
the following procedure is carried out for improvement if necessary.

The harmonic oscillation of the second epproximation is writlen as

Uo(T) = (A +EX1)SIAT + U rodY)COLT +X38INIT+J3c053T,
where the correction terms asscciated with 3K éj, , X3, and Y4 ore cone
eldered to be reletively small., Proceedin; in the same manner as before and
discarding terms of order higher than the first in 20Xy, 8Y)y X5, and Yy,

e obtain o set of linecar algebraic equations to determine these correction

terus,



=

114

the veriation &£(7) tends to zerc with increasing 7, the periodic solution is

gtabley if £(r,) diverges, the periodic solution 1s unstable, The variation

E(T) is defined by

ULZ) = Ubit) i+ $(c). (4.11)

Substituting this into (4.4) and introducing o new varinble 7(C) defined by

§iC)-=G'$£E-’ZnCJ, (4,12)

we obtain

acq < 3
{_ i’.J":;_)rZ :::.'. (‘!{‘015)

I
L ") T

(o VIR

Inserting Us(z) as piven by (4.6) into (4,13) leads to a Hill's equation of the

forn

B Fs o pedes ‘
dtl’.’ {'L»:‘:f‘)"-délaa \.x);_;l,_‘f)_‘;:‘_._ ;IL)J[:O,

=

o —

where
; ) |
90:_Iéd+§(h/ffh)’td/o :'

Qrff- Ons + 9aC, En = tarL'j 15/ Onc,

(ca.m)
] 2 5 \i r “ ' Ny L8
8]5 = %()(-l jbd—:/l J-—L’J +Al.r3_/'.ra/; :’:’.)'l“ :f_-— LAEALS rj“f"" _“éhAvJ-"Ejb )’ |

Gzs = %('J’(rjuj "‘j,-Al,_-,): B ::f'- —AAvs T fyz,
2 - PR T TN (g
635 :z-.(;yi, : SJL _(_,__-'\."‘,_TAl r‘_'_jl A

By Floquet's theory the sclution of (4.14) may be written in the form

nic) = e e re.c i), (4.15)
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where /u( »1) is the characteristic exponent dependent upon the parameters -95,
@(T) and ./ are periodic in T s G and .z are arbitrary constents. From

(4.12) and (4.15) one sees that the variation 5(CJ) tends to zero with increase
ing T, provided that the damping ® /2 is greater than M, Hence the stability
condition for the periodic solution a0/ is given by i—fré—M/O. Upon comput=

ing M to a first approximation, this condition leadz o {17 ;%0 , pp. 3-22]

-~

[Go—( bhjcf;[eﬁf(Q}hjlf}hrigj*/'a&; Belded, (4416)

(_n]w

Substituting the narameters 0% as given by (4.14) into (4.16), we obtain

(Rl*”!u L%)‘_k”l ri’”‘f&»rc‘;—"b)ﬁtar;—éh?ur for n

= ],
+ 8; e _ “ife'w- I i
(f?l f‘\';j-zr/) _rﬂn"'-’f-ﬁ} # ol for N =2; (14..17)
> o5 i | & Y. @
[mrnu-&—) ‘_;nﬂ f,:/-fg"/l), for n =3,

If the condition for /1 =M is not satisied, the periodic solution, (4.5) or

(446), becomes unstable owing to the build-up of a self-excited oscillation
having the fregueney M/3,
(a) Harmonic Response

Since fly5= O in this case, the first and second conditions of (4.17) are
satisfied, The thiri condition 1s reduced to

&
&S

Ri“-smithori- 0. (4.18)

This is the stability condition for the periodic solution (4.5).

(b) Subhermonic Reaponse (1/3=Harmonic)

For any combinations of Hj and hi, caleulated from (4.8), one can verify

that the second and third conditions of (4.17) are satisfied, By virtue of
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(4+8) the first condition leads to

RitZRva-g 0. el

This is the stability condition for the periodic solution (4.6).

See Apvendix III as for the regions in which the harmonic and 1/3=

harmonic oscillations are sustained,

4,2,3 Domains of Attraction leading to Harmonic and 1/3-Harnonic Responses
As mentioned earlier in Section 4.1, the boundary between the two domains

of attraction for harmonic resnonse is the locus of the images [up(2nm ,
Us(2n% )] that approach the directly unstable fixed point with increasing time.,
This locus may be obtained by integrating the Duffing's equation (4.4) for de=
creasing time, 1l,e., by using ncgative time in the ecuation. The initial con=-
ditions, i.,e.,, the initial points of integration should be on the invariant
eurve C; and may preferably be cloase to the unstable fixed point Fﬁ (see Fig,
4.1). The location of the fixed points may readily be determined from the
periodic solutions, (4.5) and (4.6), in. which the coefficients are to be found
by using (4.8) through (4,10), The stability of the fixed points will be
studied by conditions (4.18) and (4.19). We are particularly interested in
the fixed points that are directly unstable. The slope of the invariant curve
C; at the unstable fixed point may be determined by the following procedure.

From (4,12) and (4.15) the variation 5(T) from the periodic solution Uo((/ is

given by

E(r)=cel R Tp)t coet R4 e, (4.20)
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In the neighborhood of the unstable fixed point, the images on the invariant
curves C1 and (2 satisfy the condition that

E(0) &) _ §weT)

§(0) &) _gh." r) *** (= slope of the invariant curve),

where [ = Z/C for harmonic response and | =6/ for subharmonic response. Hence
it follows that either C; or C. must be zero, On the invarisnt curve (7 the
successive images approach the unstable fixed point with increasing time,
Therefore these images are represented by the points [g('nr), é(‘n'r)J, where

§(Z) is given by
g

_La _
E(r) = Coe TR MT g,

Hence the slope of the invariant curve (., i.e., the direction of the boundery
& x

&t the unstable fixed point is given by

W)

~(Leru)s o) * (4.21)

I

Thus the initial point of integration may be located on the line sepment which

pasgses through the unatable fixed point with slope A .

Numerical Example

We consider the Duffing's equation

* The reader is suggested to refer to Reference 30, ppe. 127=137 for the

caleulation of the characteristic exponent (/ and the periodic function {(T)

in the solution (4.15). The results of the numerical calculation for the

particular examples will be shown in Appendix IV.
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d?ur
are

av ;
+ 0.} aTrU‘3=O.f5COSC. (4422)

‘For these particular values of the parameters, i.e., % = 0,1 and B = 0,15
*
in (4.4), the periodic solutions, (4.5) and (4.5), are determined from (448),

(4.9), and (4,10), Their stability is studied by conditions (4.18) and (4.19).

The result is shown in what fellows., For harmonic response,

Vor = 0.011sinT -0.153¢coST,
Voz = 0.9605inT + .68 c0SC +0.0i175in3¢ - 2.040 0052 T,

Vos = 0.8065inT—0.To < T F 0.02351n 3T+ 0037 05IT,

Vo; , Vo2 being stable, while Uos unstable. For subharmonic response,

Vos = 0.065uin+C2+0.358 s 5 +0.032sinT-0.180¢0ST,
= ]

Vog = - 0.3425In LT —0.24 05 3T +0.0325in2--0.180005T,

i

Vsg = 0,28 sin T - 0.234cos 3 C +0.032510T =0.180 ST,

i

Uag = 0.149 sinz ¢ t 0.226 0s3T +0.0e5sinT-0.17] cosT,

Vog = - 0.211 5;”57_ +0.016 coS!;C + 0.0¢95in T -0.17]cosT,

1

. ——— s g e
Uoq O.|aasm_;~c—0.£4a055t +0.0235inT — 0.1'1]cosT,

* These parameters ere chosen such that both types of periodie solutions,

. (4.5) and (4.6), exist for (4.,22) depending on different values of the ini-

;. tial condit ions.
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Vo4 s Vos » Uos Dbeing stable, while Uoy , Usg , Uby unstable,
By use of these valucs one may readily locate the fixed points in the U,
' r plane. For harmonic response, the fixed voints are invariant under itera-
tions of the mapping from T=~Zn1to 2(n+i)x ; while, for subharmonic re=-
?'aponse, the fixed points are invariant under every third iterate of the mape
; ping. We are particularly interested in the fixzed points that are directly
: unstable, since the boundaries between domains of attraction contain such
points, The direction of the boundary curve at the unstable fixed point may
be calculated through use of (4.21), The fixed points and the related prop=-

erties thus calculated are listed in Table 4,1,

Table 4,1 Fixed Points and Related Propertiea correlated

with the Periodic Solutions of (4.22)

Fixed Point Response v ir o Stability
1 Harmonic -0.153% 0,011 Stable
2 Harmoniec 0,646 1,016 Stable
3 Harmonic =0,679 0.876 -0,020 Unstable
4 1/%=Harmonic 0.178 0,053 Stable
5 1/3=Harmoniec =0, 304 -0,082 Stable
6 1/3=Harmonic =0.413 0.124 Stable
7 1/3=Harmonic 0.056 0,075 «0,644 Unstable
8 1/%=Harmonic =0.155 -0,065 -0,164 Unstable
9 1/3-Harmonic 0,413 0,066 0.263 Unsteble

* X 4is the directlon of the boundary curve between domains of attraction
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at the unsteble fixed point,

The trajectories, i,e,, the loci of the points be(thﬂmftL], of the sta-
ble solutions are shown in Fig. 4,2, The small circles in the figure indicate
the location of the fixed points of the mapping, It 1s noted that the fixed
pointe, 4, 5, and 6, correlated with the subharmonic oscillation lie on the
same trajectory and that, under iterations of the mapping, these fixed points
are transferred successively to the points that follow in the direction of
the arrows, Following the procedure as deseribed in Section 4.1, successive
imapges of the mapping for harmonic response are shown in Fig., 4,3. The bound-
ary between the two domains of attraction is shown in thick line, on which
the image points apnroach the unstable fixed point 3 (in the direction of the
arrows) with incremsing time. Also plotted in Fig. 4.4 is the whole diagram
of the domains of attraction leading to the harmonic and subharmonic responses,
The boundaries between the domains of attraction were obtained by starting
just on both sides (in the direction of * ) of the unstable fixed points and
integrating (4.22) for decreasing time. Both anelog and digital computers
were used for this purpose, The domains of attraction for subharmonic ree
sponse have narrowing tails as they extend to infinity or as they come close
to the domain of harmenlec responae containing the fixed point 2, These ex-

tremely narrow tails are omitted in the figure, since the computation becomes

too laborious,

4,32 Unsymmetrical Systenm

We shall consider en wnsymmetrical system governed by
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a=.r dr L N
aret E—E+V’=Bcosrrdo, (4.23)

where the unsymmetry sppears as the unidirectional component of the external

L 3
force, In addition to the responses as mentioned in Section 4,2, the subhar=
monic oscillation of order 1/2 may also be expected in this case. The perioda

ic solution of (4.23) might be assumed to take the form

. Z) = X1SinT + Y,coST + 2 (b4o24)

for harmenic response, and

Vo(T) = Kuz smf'—z“ t e cosé'~ T+ 4SINT+YCST+ (4.25)
or

Va(Tl=Xyssinte + Yt cos,_q-ji Tt ASinT rycos5ctz (4e26)

for subhermonic responce. Since the system is unsymmetrical, the constant term
Z of zero frequency is added to the solution. If the system parameters,'ﬁ ¥
B » and E,, are eppropriately chosen, the resulting response will be one of
the types as given by (4.24), (4.25), snd (4.26), depending on different values

of the initial conditions.

4,35,1 Periodic Solutions and Conditions for Stability
Proceeding enalogously to Section 4,2,1, the coefficients of the periodic
solutions are determined. The conditions for stability of the periodic solua=

tions are also derived by solving the variational equations of the Hill's type.

* Equation (4.1) with unsymmetrical nonlineerity may readily be transforme

ed to one with symmetrical nonlinearity but with unsymmetrical external force.
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(a) Harmoniec Response

The coefficients of the periodic solution (4.24) are found to be
xi:ﬁﬁr 31::&m

8 » | B »

vhere
; { 4 *
A= 1-2 (Ryr42), (427

3

Ri=nc=xfty?, 2Z=z%

Fd

in which the unlmown quantities Ai and 2 may be determined by solving the sin-

ultaneous equations

(Af+£€°)Ri =82
i (4.28)

(2Ri+2 )< = Bo. J-r

The stability condition of the same kind as (4,16) may be derived, from
which we obtain

(’f?lf'f *é‘)z*‘-ﬁf'rz ft‘;‘éz}’os for n =1,
(4.29)

n

(Rir2Z-5)LR5 v 2R 70,  2or  n

If the condition for M =m is not satisfied, the periodic solution (4.24) be-

comes unstable owing to the build-up of a self-excited oscillation having the

frequency m/2,
(b) Subharmonic Response (1/2<Harmonic)
The coefficients of the perlodic solution (4,25) are found to be

= _é(’-“'[’! r'h)ff'.l)
4B

b

X



_ ~Har-A R,
= 20 sl

+b

Y
J
Xy =Py, o Byd , M 205 ( B 1-;1))

,!jb._ l,.,v}l]@!/a’ ﬁ:.:.u]fl(fav__+ﬂ),

where

A== 7Rt 2Ry + 4205 Ay, =

L
& &

Ri=r*=xi"r yr Rio=h.=aptdy., L=2%
(2 ! '
24 - XitA. R LY AR
co528y; = lﬁ% % }), oingBuz =-Ai":f—f—’¢—‘i'-
6RiZ oz

the simultaneous equations
(45mi-Ay o, )+ BE(4R v Ry ) - 18R, =0,
Al;fﬁd‘JﬁRlZ = O) .

Z)Z#- “é,‘g} -Eas = .

_"( Ritily t+
The stability conditions may algo be written as

A pe
(Ri+Ri * 2% =330 “t (Ri+Rv - iRt 30 8%~ 0,

)= (4R

0~|—-

(}Iﬂ T RP‘; *22-

i . Lpa .
) ‘mf‘ivcr_;_‘ﬁ;, -0,

R LER

(Rl *H{._- tLls =

)‘J‘-:izt{ﬁ'fq‘tfé"' > J,

(SUT

(erﬁh; # 2 =

L (cRithyet 44,

S T
bRt T AR FT RS20,

123

(50
|

J

in which the unlknown quantities R, Rug , and 71 may be determined by solving

(4.31)

for rn. = l,

for = 2,

forn =3,

forn = 4.

(4.3

2)
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If the condition for 7N =m is not satisfied, the periodic solution (4.25) be=
comes unstable owing to the buildeup of a selfeexcited oscillation having the
frequency i/, The condition for n=4 is superfluous in this particular
case, since it is always satisfied by the coefficients of (4.25). Therefore
the conditions for 11 =1, 2, and % must be ascertained for stability of the
periodic solution,

(¢) Subharmonic Response (1/3-Harmonic)

The coefficients of the periodic solution (4.26) are found to be

x; = B3R tRvs) ]
9E |
LGt - Aus s, I
= e |

. |
Xus = lyz €050z, Yz cIS(Fus r;‘—fr.j, fiis L-J.S(ﬂuu+§—-;tj) [

-

g 4,
Jus = FussinBus, FysSin i us + STy, i SIY][Qfofii'C), $ (4.53)
where !

. 3 ; " =\ -_I__.CL(E +H ) 4’ |
Ar=l-F(Riterst4%), Aus =3~ g (Rt Rzt 4y

> £ =3 LS w , < - ¢
R,I o !'pr-a, — J_'"'-f- J[ s K3 = nf;_ = Ay ‘f‘j”j’ Z "4‘,

» 5!(?.53;,_., — ‘+(ﬁxlfﬁfféyl)’

F‘f—]—(/‘*\bdli'é.&fl{ Ky
L?ffi rll{.a'

9H, 13

C0S 33y, =

in which the unknown quantities Ky, Husy and ’, may be determined by solving

the simultaneous squations
(94~ Aus Rz )¢ B G+ Rus) - B1e*Ri = 0, |

Al == S RiRus = 05 (4.34)
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3 g 2 . =
—é-(h)l t Ry *%Z)Z"BS = 0.
The stability conditions are

]

2D ner L \E i_pe
(f\’nrRu_-Jrcz..~5;) “"rRl;ang"_Fd >0, for n. =1,

(RI*HI/.: *'EZ'L-T*!)._-Lhﬂ f‘;:;_‘r(l,af ?h!}j)f{j,_.‘ fé%,-ﬁ_‘-; 0, for n=2,

7 [ r DL /
(Rit Rus t2Z-5)%- 4%+ j8% - 0, for n= 3,
;s ; ¢ (4.35)
S pe 4] =~ 3 = FA
(leﬁbjrdz..“gv,‘ ’fﬂfﬁ,,fé}'fé ?JJ for n = 4,
(Ri Tl:\.:ug +.;,Z’. - Sf)di' ;‘; I‘I;L 7 ’J, for ].f‘Lr..- 5,
(Hlle«g"r(.'Z_"_'(—/d‘L:;"'njdr;;—fi:h? 7: for n= 6,

J/

If the condition for jL=n is not setisfied, the periodic solution (4.26) be=
comes unstable owing to the -build-up of a self=excited oscillation having the
frequency M /6, The conditions for L= 4, 5, and 6 are superfluous in this
particular case, since they are always satisfied by the coefficients of (4,26).
Therefore the conditions for /L= 1, 2, and 3 must be ascertained for stability

of the periodic solution.

See Appendix IIIas for the regions in which the harmonic, 1/2<hagmonic,

and 1/3-harmonic oscillations are sustained,

4,3,2 Domains of Attraction leading to larwonic, 1/2-Harmonic, and 1/3¢

. Harmonic Responses
Proceeding analogously to Section 4,2,3 we may determine, in the U, U

plene, the domains of attraction leading to the respective types of oscil-
' ]
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-||"5,

""" lations,.

Numericﬁl Example

We consider the Duffing's equation

~i?nghk3§g-+ujsz4Ub:rﬂlOJS_ (4.36)

For these particuler values of the parancters, i.e., ﬁ.= 0.05, E = Oelk, and
Bo= 0,005 in (h.23),* the periodic sclutions are first sought by using the
relations in Section 4,%,1, Then their stability is investigated also. The
fixed points of the mepping in the U’,:? plane and the related properties are

listed in Table 4,2,

Table 4,2 Fixed Points and Related Fropsrties correlated

with the Periodie Solutions of (4.36)

Fixed Point | Response | v % o | stability
1 Harmonie =0,036 0.008 Stable
2 Harmonic 1,111 0.665 Stable
3 Harmonic =0,996 0.513 1.054 Unstable
4 1/2=-Harmonic 0.415 0080 Stable
5 1/2-Harnonic ~0,6%8 -0,001 Stable
6 1/2aHarmonic 0.235 0,166 -C.601 Unstable

* These paramoters are chosen such that three types of periodic solutions,

(4,24), (4.25), and (4,26), exist for (4,36) depending on different values of
. » . »

the initial conditions.
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7 1/2-Harmonic =0.597 -0,088 2,994 Unstable

8 1/?=Harmonic 0.241 0.027 Stable

9 1/3=Harmonic =0.313 -0,102 Stable
10 1/3=Harmonic =0,571 0,123 Statle
11 1/3=Harmonic 0,045 0,071 =0.674 Unstable
12 1/3=Harmonie -0,187 =0,066 0,194 Unstable
15 1/5-Harmonic =0.357 0.030 0.199 Unstable

* %
X is the direction of the boundary curve between domains of attraction

at the unstable fixed point.

The trajectories of the stable solutions are shown in Fig, 4.5. The
small circles in the figure indicate the location of the fixed points of the
" mapping. The domsins of attraction leading to harmonic, 1/2-harmonic, and 1/3-
harmonic responses are also shown in Fig. 4,6, The boundaries between the
domains of sitraction were obtained by starting just on both sides (in the
directior of & )'of the unstable fixed points and integrating (4.36) for de=-

creasing time, Similarly to the case of Fig. 44,4, the domain of attraction

leading to the fixed point 2 exist outside of those domains, but is omitted

in the figure,

b4 GConeclusion

The domeins of attraction leading to the different types of the periodic

solutions have been detesrmined by making use of the mapping theorem in the

phase plane. This method of anslysis does not resort to the method of varia-
tion of parameters which azsums the slowly varying amplitude and phase of the
oscillation during the transient state. Thersfore the results obtained in this

e superior to those described in the earlier reports [11, 30].
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Fige 4.1 Fixed points and invarient curves

under the mapping,
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Fig. 4,3 The loci of image points undcr iteretions of

the mapping (harmonic response).
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Fig, 4.4 Domains of attraction leading to harmonic and 1/3-harmonie

responsges,
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CHAI'TER ¥

QUALT-PERIZDIC oCILLATIONG

5.1 Introdustion

When o porlodie force is spplied to a nonlinanr syatew, the steadv-state
reaponss aT the system may usunlly, but not rocasasarily, he periodiec. When
it 13 perlodic, as deszcribed in the two chapters preceding, the Hmdamantal
perlod of the response is the zems e&s the period of the applied force or equal
to an integral nultiple of that period. There are also cartaln special cases
in whlch the reaponne of a nonlinear zystem is not periodie even when subjected
to a perlodic applied foree. This chapter desls with the go-called "quasi-periodic
oscillation” where the amplitude and phase of the ozeillation vary slowly but
perlodically in the steady-state [27, 30, 18]. The rutio between the period
for amplitude veriation and the perind of the applied force ir in genernl ir-
retionnl, and thus there is no perlndiecity in the quasi-periodie opcillation.

An experimental investigation hes beon reported by W. T. Thomaen [27 ]
concarning the quasl-periodir osgselllation in a mametic amplifier clircult.

Thioc kind of oscillation al=zo occurs in & logleal elreuit with paremetric ex-
eitation ~nd in varicus systems with nonlinear elemsnts [24; 30, pp. 105-118;

6; 3, pp. 287-294]. Two reprecentative cmses of the quasi-perlodic oscil-
1ation eres studled in the present chapter. The flrst is the case In which a
harmonle oseillation in a resonant nonlinsar clreuit becomes unstable and chagos
into a qunsi-periodic osecillation. The second case deunls with the quasi-periodle

oseilletion which devslops {rom B subharmonic naeillatlion of order 1/2 in a

paramstric excltation circuit.

134
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2+2 Quasi-Periodic Oscillations in e Resonant Cireuit with D~C Superposed

The circuit schematie is shown in Figzse 5.1, Under the impression of a
simusoidal voltage E15inwt, the resulting harmonic oseillation may have one
of two different amplitudes, depending on the initiml conditions. This pheno=
menon is known by the name ferroresonance which ocecurs owing to the nonlinearity
of the saturable iron cores LJ and 1.2. Furthermore, when a D=0 bias is su=

perposed as in the flgure, a quesi-periodie oscillation may also occur.

5.2.1 The Circuit Equations

Following the notations in Fig. 5.1, the circuit equations may be written

es follows:
.
" %(¢'+ b. )t Rk =E)sinwt,
g ()t Rete=Eo, g (5.1)

R1ﬁﬂ=é—ficdf, i1= irtic,

where ¢'T and ¢2 are the magnetic fluxes in the cores L] and [ respectively,
end "L is the mumber of turns of the coilsg wound around the cores (the same
number of turns is sssumed for each coll). The nonlinear characteristics of

the cores are assumed to be

C3¢13= ﬂ_i,,f'ﬂi.z, Cgfpaa =n.f,r'—r?_iz, (5.2

where (3 is s constant dependent on the nature of the cores. Introducing the

dimensionless variables W;, WUz, Vi, Vz, ﬁh ’ ﬁg s and T defined by

(y=Inthh, iz=Inlz, pr=2nty, P2=$nlz,
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ﬁa:WCRa, t=wt~tdn—,ﬁ_,

and fixing the base quantities In and %n in (5.3) by

Equationsa

and

where

nw?*Cep=In, C3¢2=nln, (5.4)

(5.1) and (5.2) may be written in normalized form as followa:'

A+ Hyd+u; =Bcost,

° (5'5)
b +ﬁ2u2=80,
U]3=u'.1+£lz, L§3=u_,_u_2, (5.6)
Ui“"u-z :a-) W-Ua=b-
Eo (5.7)

-_EB 07 - _FEo
B= nw $n ]+ﬁ' ’ Bo = nwén *

Substituting (5.6) into (5.5), we obtain the simultaneous equations with res-

pect to the varlables @ and b, 1,e.,

A+ #id+3(a%+3b*)a = Beost,

) (5.8)
b+ 3 Re(3a2+b*)b = Bo.

Since we are concerned with the harmonic oscillation which has the seme fre-

quency as the impressed voltage, the variables (L and b may be assumed to

. Here and throughout this chapter dots over a quantity refer to differen-

42mitang with respect to T .
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take the form

li

a =X(T)sintT +y(r)cosStT,

b (5.9)

1]

ZATd,
J

where X(T), Y(T), and Z(T) are slowly-varying functions of the time T .
Substituting (5.9) into (5.8) and equating the coefficients of the terms

ecntaining COST and SINT and the nonoscillatory terms separately to zero,

ve obtain
X = —2-'-[ RIXtAYytB]=X(x,y4,z),
1
==[-Ax - ﬁ‘[j] rex, 4,z ),
2 . (5.10)
i:Bo~,—i>r1%3(3r2+22"-)212Z(J‘:y:z),
with
A= -5 (rﬂﬂtz?—) rEw e Eye,

under the assmnpt.ions that X(T), Y(T), and Z(T) ere slowly-varying functions
of the time T so that X(T) ; j(’t’) , and Z(t) may be neglected, and that #;
is a sufficiently small quantity and hence f,X(Z), ﬁ,g’(tj, and #;2(Z) are

also discarded. The results which will be obtained from (5.10) may not account
for the occurrence of o pronounced higher harmonic or subharmonic oscillation.

But, as far as we deal with the haymonic oscillation, (’j.lO) may be considered

to be legitimate.

5.2.2 Periodic Solutions and Conditions for Stability

We conslder the prriodic state in which X(T), Y(T), and Z(T) in (5.9)

are constont, na Lhat

X =0, % =0, z = 0.
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Substituting these conditions in (5.10), thz components Xe, Yp » and Ly of

the periodis solution are determined by

ﬁlxa"’qffo =8,

AXot 1Yo =0,

[ | 1 (5.11)
I %2(3rk%+ 228 )ze = Bo,

with

A: ]‘“3%("'02'*4'2;), fba=x¢2+ffoa-
J

Elininating Xo and Yo from the first and gecond squations of (5.11) leads to

( A%+ A2 ) n? = B (5.12)

Equation (5.12), together with the third equetion of (5.11), determines the
values of Yo and Zp, and the components Xo , Yo , of the amplitude Flo are

found to be

-

_f:‘!”_a A

o= B ’ 50:— B y (5.13)

The pericdic solution, i.,, *he equilibrium state of the system (5.10)
is correlated with the asingular point ( Xo, Yo, Zo) in the X, Y , Z phease
space, If the singular point is stable, the corrosponding perlodic solution
is elso steble; if not, it is unsteble. The stebility of the singular point
is studied by the behavior of intepral curves in the neighborhood of that sine
gular point. To this end we conaider sufficiently smnll variations £ 2 7,

and & from the equilibrium state derinad by

= x—)(o, rz:yu &(o, =4 Be, {5.14)
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Then, if these variations & , 7, and & tend to zero with inerecsing T, the

solutions are stable, Substituting (5.14) into (5.10), we obtain

!_::,:a.,gﬂra,a?z{amg, 1
'2 =Qa & +Qe2 N + 235,
S =03 § + Q327+ Q33 5,
with
or=(3) - o)
ae=(55), = (A4,
o (] s -
o
Ae) '—:(gl:-)of—-%-(—/\ 1-—%)53), ? o
A2p == (-g;—)oz —2]—{1—‘2.:- Xo Yo ""gel),
a23=(“g£~)0:: —gIoZo,
gy s (‘3%”)0: « g- 230 Zo s
as; :_-(g?-)a == Yoo,
a33.—:.(-gg)o::———%ﬁz(ghng),J
T _63_3(_)0 (‘f%)o stond for -f%(_ — g_:_ at X=Xo, Y= Y, , and

Z = Zo, The choracteristic equation of the syetem (5.15) le
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]
A=A Ay, Q13
Az Qaz=A Az =0,
QA 3; A3z A3z~
or
/\3 T b]i’\a+ b,:/\ + b3 - 0,
where
an ag Qn a; Ras s
bz = ¥ 3 + 22 £3
aZl' a?l a ) a33 azz aga ’
a,g Qi Q3
b3 =—| Qa1 dz Q23 |= /.
A3; @32 Aaay
J

By maldng use of the Routh~-Hurwitz's critsrion, ths system (5.15), and conse~

quently the periodic solutions, are stable provided that

-

by > 0,

bibe -bsz > 0, ¢ (5.17)

b; > 0. J

The first condition of (5.17) is fulfiled from the outset, beceuse, by (5.15)

by =-(ant @zt as3) = féw% k2(r"t2z8) > 0. (5.18)
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By virtue of (5.15) and (5.16), b, end b3 are written as

_1 B 3
Ba_a—t-ﬁ—.:_'T‘é‘*‘Ana ftf; (l"o 1'2341)}
. (5.19)

A D 8* 5
bsz=-4 "g;'ag[-gg(ﬁaf._)zf) Alra.“(rb +6Zo )J
Substituting (5.18) and (5.19) into the second condition of (5.17), we obtain
Ba \3 £ d ’) 2 3 a ] Z
ﬁ[(ﬁ*—rgﬁ“’od) f;,;f?‘;iz{fz;{f&+g4jféz(md+c’2a‘);l
(r*+228)-3ARZE | > 0. (5.20)
The third condition of (5.17) is rewritten es

3/ 3 dBo _ [ B B> R
T““E’E""a 22 )2z (Ei 2 A? ) Zo %22 > 0, (5.21)

3 A e A 7E

After 2ll, the conditions for stabillity are given by the inequalities
(5.21) and (5.22).

MNunerical analysls of' the pericdiec solutiona shows that various types of
the oscillations exist according to the different values of the system para-
mnetera, They sre sz follows:

Cage 1 = Thare exists only cuo unstable perlodic solutlon.
Cage 2 = There exists only one stable perlodic solution.
Cage 7 = Thers oxist three periodic solutions; one of them is stable and

the others are unatabls,

Cagse 4 - There exigt thres perlodic aolullons; iwo of themn are stable and

the other one ia unalnble.
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Case 5 - Tiwre exist Dive oeriodiae aoluticnas two of them aree <table and

the others nre unstabls.

50243 Quasli-Periodiec Oseilletivua

As mentioned in the prec.lise aection, whenan oscillation i represent-
ed by & stable siungmlor point in X, ¢ , Z epose, the oceillation has invare
iable amplitule and phass ancis.  In contens! with this, whon a reprasentative
point, whosa coordinates aen X(CT) , Y(T) , wnd Z(T) , tuens on moving along
a limit eyecle with incrensine tine T, the amplituds sand phase of the oszcll-
lation vary al: 1y butl veriodicsllr; i.e., o quasi-periodie ossillation occurs.
betwery Lhe period for peplitude wvarintion snd Lha perind of the
soplied force is in  norel ireationsl, end thue thare le no periodicity in
the quegleporiodic oncillotion.

It is vory diffienlt to discana rigorcusly the axistence nnd the atabi-
lity of limit eycles in pomnenlas  But, if thers is no atnble sinpular point
in a system, ng in Care 1 in the nreeceding seckion, we may premms thnt there
exists at len~t rpne otalile limit eycle. In orsder to nfxnlain the oecurrence of
the miagi-periodic oeaillstion in such a gystem, now we conaider a gnocial case
in which ﬁz and Bo are muel lean than f_{[. Unid~» thias eondition, one obtains
Z<« X and ;:;_',c:\g , g2 thnt the behavior of thr roprassonbtative point (x,y,

ZJ is firat mpoverned hy

).:T-'-'L —EIXFAJ'I'EJj 3‘“;1?[‘?13&-,*;:;};{};
ehnpnalariastio enpys defined by X = ¢ and g = 0,

and tho point approsches fhe

or
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During this transient Z(T) is held nearly constant. After this period X , y ,
and Z will all he of the same order in mapnitude. In fige 5.2 ia shown the

characteristic curve (5.22) for which ﬁ,o.?_o and B =0.50. Also plotted in

the figure is the curve represonted by

Z = Bo- - f.(3re+ 222)2 =0, (5.23)

for a particular case of [Bo= l@z. The intersection P of these curves repre=
sonts an equilibrium state, since the point P is satisfied by (5.11). How=-
over, it will readily be verified by (5.20) that this equilibrium stete is un-
asteble. Since Z is negative in the repion above the curve (5.23) end positive
below the curve, the representative point, will gradually move in the direction
of the arrows with incremsing T . Hence, discontinuous jumps oceur a£ the
limiting points @ and R » and the representative point keeps on moving near
the limit cyecle represented by the thick line in the figure.

The desecription so far explains the occurrence of the limit cycle for the
vase in which the =zystem parcvaeters ﬁ.g end Bo are very small. The shape of
the 1imit cycle in an actunsl system wlll be different more or less from that
1llustrated in Fig. 5.2. Further, the time required for the representative
point to eomplete one revolution along the limit cycle decreeges with the in~-
creoage in ﬁ'z ond Bo . A more concrete example of the limlt cycle will be
given in the following section.

We confined the conslderation to the system whars only one unstable equi-
1ibrium state oxiste. However we con oxpect tha evlstunece of limit cycles
also in the system where the stable equilibrium slates exist in addition to

the unsteble ones. We obtnined several axmenlos of uuch enczs by making use
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of en analog computer.

5¢2.4 Numerical Exemples

A numerical analysis of the system (5.10) wos carried out for the parame-

ters as given by

{] -'-’0.20; ﬁAﬂO.in 8 =|Do50, and Boa0,05. (5.24)

In thls case there are no stable equilibrium state. After a sufficiently long
period of time T, & representative point moves along the limit cycle as illug=
trated in Fig. 5.3 or 5.4. Figure 5.3 shows the projections of the limit cycle
on the X, ¥ and X, Z phase plenes, while Fig. 5.4 shows the 1limit cycle in
the X, Y , Z gpace. The time intervals between two successive points on the
curves are 2r or equal to one cycle of the applied force. The time required
for the representative point to complete one revolution along ths limit cyecle
is 2rX15.5...; thua a nonperiodie oscillation occurs. 3ince the projection

of the limit cycle on the X, Y plene does not contain the origin in its inte-
rior, the quasi-periodic oscillaticn is synchronized with the applied force,
even though the waveform is affected by amplitude and phase modulation. The
projection of the limit cycle on the Y2, Z2 plene is shown dotted in Fig. 5.2,
and compared with the limit cycle theoretically obtained under the condition

that %2—> 0.

54245 Analog-Computer Analysis

Corresponding to the numorical analysis in the preceding section, the

case when

£1=0.20,  #3=0.0%, B =0.50, and Bo~0.03,
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was investigated. The waveforms of @ and b in (5.7) are shown in Fip. 5.5.

The successive points on the curves show the instants when T=2nm, N being
1, 2, 350ees We seo in the fipure that the amplitude and phase of @ , as well
as the quantity b , vary slowly with the period 211X 17.1ees. This fact assures

the assumption in Section 5.2,1 that the responses may teke the form ns

Q@ = X(T)sinT + y(T)cosT,

b

il

ZAEL 5

where X(T), Y(T), and Z(T) are slowly varying functions of time T.

These quantities X(T) , Y(T) , and Z(T) aro evaluated from the waveforms

of A and l) s thus we obtemin the liuit cycle as shown in Fig. 5.6. The nume-
rical solution described in the preceding section is found to be in satisfactory

agreement with the solution obtained in the present section.

Y3 Quasi-Poriodic Oscillations in a Parametric Excitation Circuit

The circuit schemstie is shewn in Fip. 5.7. Under the impression of a
ginucoidal voltapge [E;ShIEujf, this circuit produces sn oscillation whieh has
the fundamental frequency W , l.e., a subharmonic oscillation of order 1/2.
The mechanism which produces this kind of oscillotion is known as parametric

excltation, snd this principle is applied to logical cireuits in digital com=

puters.

5,%3,1 The Circuit Zquations

Following the nototions in Fig. 9.7, the circuit equations are written as

n%((ﬁl + ¢a)f Rii; =E1sin2mt,
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A , .
n;‘?(% - ¢a)=—~é~ftcdt'ﬁ*rfztﬁ, 05,559

Lo =1lr+ic,

It is assumed that the current 7, is kept conastent owing to the high induc-

tance Lo, Proceeding analogously to Section 5.2.1, Eqs. (5.25) are trans-

formed into

a + #uy = Bsin2t,

b + .Eab.fu.z = 0,

where

G=lns, t2=Iue, $1=8nvi, ¢=3nls, [ s
vitlv=a, vi-Uz=b, T=wt,
#, =wCRi, Hp=—odI -_EB__

wCRp ? nwen ’

and the base quantities In and ¢, are fixed by the same equations as (5.4).

The nonlinearlities of the cores Li enl L are expressed, efter normalization,

by

UVid= U+ Wit Uz, Up’=UotUy-Usz, (5.27)
where Lo=Inlo. By virtue of (5.27), Eqs. (5.26) lead to
dj“%ﬁ{hﬁ+3§)a—8uﬁ::Bﬁn2t,

o ’ (5.28)
b+ #:b +4-(302+b2)b = 0.

We consider the case in which Ry is smell, The first equetion of (5.28)

then hes an approximate solufion
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[l=-§'COS2C+Qu, (5.29)
Qo being an integrating constant, The pecond equation of (5.26), upon sub-
stitution of (5.29), leads to a form of Hill's equation with terms for damping
and nonlinearity, The solution may have the fundamentel period 2, i.e.,
twice the period of the applied force, Hence, an approxinate solution for
(5.28) may be expected to have the for

2 -

(5.30)

Q@ =-wcosit+z(t), w=-—, l
b =X(t)sinT ¢ Y(t)cost, ]

where X(C), Y(T) , and Z(T) are slowly varying functions of time T . Sub-
gtituting (5.320) into (5.28) and equating the coefficients of the terms con-
taining €OST end 5iM7T and the noncscillstory terms separately to zero,

we obtain

%= [- Bax+AytTwyz)=X(x, 4,2),
y :%[—Ax— fry + g‘ wxz]z=Y (. 4,2),
3

. : ' (5.51)
= - -%—1%1 f(grefg-ur‘ffza)z +;§~(ﬂ-52)wf8'uo]z A A (

where

A==l~§3§ rev2w?edz?), rI=x24y2

It should, however, be remombered that the some sssumptions as those mentioned

in Section 5.2.1 must be made for the derivation of (5.51).

5.3.2 Periodlc Solutions and Conditions for Stability
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The periodic solution for which the components X(T) , y(t) , and Z(T)

ape constant is determined by

X =0, g'-_-(), and z = 0.

Substituting these conditions in (5.31), the components l’b(=fxff—£5) and Zo

of the periodic solution are piven by

A% + ‘ﬁ; % (%WZa)z,

3 2,3 2AK2 (328)
(Fr*+5w2+2d)zo t 237 = Qu,.

The components Xo, Yo , of the amplitude Vo are found to be

Xo=rcos6, rcos(O+7),
Yo =rosing, rosin(0+tm),
; (5.33)
where
3A : 8f2
g =L L
coz e 3wz, '’ 5inzé 3wZe }

Weo see from (5.33) thet there are usually two 1/2-harmonic periodic solutions
differing in phage by n rediens with the same amplitude, if determined. Such
two solutions will be celled a pair of the 1/2-harmonie solutions.

Proceeding analogously to Section 5.2.2, the stebility conditions for the

periodic solution are given by

- fzfoh” *ﬁl{ﬁz[‘%ﬁlfﬁ +wit2z8) +2R )+ w2 +225 )

_?16_(32 -3raz+f2202)ﬁof62"‘g;f(2%zz£ “Ifjoz)wz} >0,
(5.34)

and

323

3 Ao we Zﬂ);{.(‘ ?OJ

{] 3? —ZO)Zr)dirZ 4_(I—j—2~ra 16
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Numerical analysis of the periodic soclutions shows that various types of
the osecilletions exist according to the different values of the system para-
meters. They are as follows:

Case 1 - There ere two unstable stutes of the 1/”~harmonic periodie solu~-
tions, differing in phase by n rndirns. The periodic solution without 1/2-
harmonic (i.e. 1o = 0) is resdily found to be unatable.

Case 2 = There are two pairs of the unstnble states of the 1/2-harmonic
periodic solutions with different smplitudes. The periodic solution with
fo = 0 is stable.

Case 3 = There are two pairs of the 1/“=harmonic periodic eolutions with
different omplitudes; among them only one pair is steble. The periedic sclu-~
tion with Jo = O is stnbla.

Case 4 - There are three pairs of the 1/2-harmonic periodic solutions with
different emplitudes; among them only one pair is stable. The periodic solu~-
tion with Io = O is unsteble.

Cape 5 = There are four peiras of the 1/2-harmonic periodic solutions with
different omplitudes; among them only one pair is stable. The periodic solu-

tion with Jo = 0 is stable.

5.%.3 Quasi-Periodic Oscillations

A similar procedure to that mentioned in Section 5.2.3% is also applieable
to the pressnt investipgatlon. lic see from (5.31) that Z<X and i((g for
a spufficiently small value of ‘ﬁ]. The representative point of the system

(5.31) approaches the sharacteriotic eurve defined by X = 0 nnd Y = 0, or

pE+ g2 = (Zwz),; (5.35)
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and then moves in its neighborhood. Figure 5.0 shows the characteristic curve
(5.35) for fez= 0.20 and B = 1.00. The points P} and F, represent the
equilibrium states which are satisfied by (5.3%2). Both of these states, ref-
ferring to the stability conditions (5.%4), are unstable. Investigating the
sign of Z elong the characteristic curve, the representative point graduslly
moves in the direction of the arrows with ineressing T. Hence, discontinuvus
jumps oceur at the limiting points @ and R , and the representative point

keeps on moving near the limit cycle represented by the thick line in the figure.

5.5.4 Numerical Exsmples

(a) When the system parameters are given by
£} =0.20, f2=0.20, B =1.00, and Uy=0,80. (5.7%6)

A numerical analysis was carried out for the system (5.31) by using these
values of the parameters. The representative point keeps on moving aleng one
of thes two limit cycles of Fig. 5.9(a) or Fig. 5.10(a). Figure 5.9 shows the
projections of the limit cycles on the X, Y and X,Z plenes, while Fig.
5,10 shows the limit cycles in the X, Y, Z space. The time intervals bet-
ween two successive points on the 1imit cycles are 2r or equal to one cycle of
the 1/2-harmonic oscillation. The time required for the representative point
to complete one revolution along the limit cycle 1s X 14.8....

(b) When the system perameters are given by
2;=0.10, fp=0.20, B =1.00, and  do=0.80. (5.37)

The limit cycle saluculated with these values of the parnmeters is shown

in Fig. 5.9(b) or Fig. 5.10(b). The period of one revoluticn along tho limit
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cycle is mXxs4 .2, ..
(¢) Comparison of the lwo Examples

There are two distinctive types of the quusi-periodic oscillation as il-
lustrated in Fig, 5.v(a; and (b) or 5.10(a) end (b}, The type (8, nes iwo
separatelimit cycles which are symmetrically lucated aovuc the Z axis, The
projections of these limit cycles on the ., Y plane do not couuvaia one origin
in their interiors. In this case the quasi-periodic osciitlation is synchronized
with the @nplied torce, even thougnh the waveforr is affected by amplitude and
phase modulation, In fig, 5.2(b) two limit cycles are jointed, resulting in
a single loor; the projection on the .., Y plane conteins the origin in its
interior., The cuasi-periodic oscillation in this case is not synchronized
with the applied force, since one revolution along the limit cycle results in

the phase shift by Zn radians or two cycles of the applied force,

5.%.5 Analog-Comnuter Analysis

The waveforms of [ (=, -, ) are shown in Fig. 5.11. The successive
noints on the curves indicate the instants when T = 2nmw, N being 1, 2, 3,
.e.. Figure 5.11(a) is obtained for the system parameters as given by (5.36);
the time marks on the curve appear only on the nesgative side of b. In Fig.
5.11(b) the system pareueters are given by (5.%7); the time marks appear al-
ternately on both sides of b . The quantities Atc) , 41z}, and Z(T) in
(5.20) are eveluated from these waveforms and shown in Fig. 5.12. These limit

cycles agree well with those obtained in the preceding section,

6, Conclusion

The two representative ceses of the quasi-periodic oscillations have been
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studied in this chapter. The first is the case in which a hermonic oscillation

in a resonant nonlinear circuit becomes unstable and chenges into a guasi-

periodic oscillation. The second case deals with the quasi-periodiec oscillation

which develops from s subharmenic oscillation of order 1/2 in a parametric
excitation circuit. In short, quasi-periodic oscillations are considered to
occur due to the interference between oscillaetions in & circuit with en applied
force end cscillations in & circuit with low impedance elements.

The phase-srace analysis has been used for the Investigstion, A periodic
oscillation is correleted with & singular point in the phase space, while a
quasi-periodic oscillation is represented by a limit cycle, The occurence of
the quasi-periodic oscilletion has been explained qualitatively with limiting
values of the system parameters, The neriod required for the representative
point to counrlete one revolution aleng the limit cycle has been celculated for
several numerical examples, It is very difricult in general to distinguish
with mathematical rigor between s quasi-periodic oscillation and a p;riodic
oscillation with large period. However it might be reasonable to expect =
quasi-periodic oscillation provided the period of the amplitude variation varies
continuously with change in the system parameters while the period of the applied

force is kept constent.
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Fig, 5.1 Resonant circuit containing saturable core reactors

with secondary d-c windings,
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(A2+k?)r?=B?

Fig. 5.2 Limit cyecle with discontinuities for #, -» O,
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Fig. 5.4 Limit cycle in the X, Y , Z phase space. The system

parameters zre given by Iqs. (5.24).
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Pig. 5.6 Limit cycle reproduced from the waveforms of Fig: 5.5.
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Fig. 5.7 Parametrie excltation circuit in which the subharmonic

poscillation of order 1/2 occurs,
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Pir. 5.8 Limit cycle with discontinuities for ‘}g: —* 0,
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Fig. 5.9 Projections of the limit cycles on the X,y end X, Z phase
planes, (a) The system parameters arc given by Eqs, (5,36).

() The system parameters are given by Eqa. (5.37).
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Fige 5.10(a) Limit cycles in the X, Y , Z phase space.

parameters are given by Egs. (%.36).

162a

The system



162b

_:I 2 %/
B
g PFOW //
| //"
Pl
Hmr N /"fj/ LV
il il LHATITITITA , JJJI 1'-—-,.
Y AT J)A ~1 o 1
’ g i
: JJJJJJJ ; A |

Fig. 5.10(b) Limit cycle in the X, Y + Z phese space. The system

paremeters are given by Bgs. (5.27).
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Fig. 5.11 Weveforms of the quasl-poriodic oscillations obtained by
analog-computer wnalysis, (a) The system parameters ore
the samc as in the causs of Fig. 5.9(a). (b) The system

paramctors are the same ns in the case of Fig. 5.9(b).
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Fig. 5.12 Limit cycles reproduced from the waveforms of Fig. 5.11.



APPENDIL I

A

COLrLEMERTARY RIFARES TO ITERATICHN METHOD

There may be a number of ways of the iteration precedure for obtaining a
periodic solution of a differentiel ecuation. One of them were explained in
Section 1.3, Here we describe another way which is somewhat different from
thet of Section 1.3, Let us consider again, as en example, the harmonic solu-

tion for Duffinz's equation

’I%T-f'i+m,»1+uﬁx3=chast. (I.1)

where « is a small para_.eter, fquation (I.1) is rewritten in the form

. _‘% + X :_u{'l‘.(r;-x‘a—-f:x.J_:f). (1-2)

t 3
We stert with the ssluticn

Xolt,=Ascat. (1.3)

as a first approximation., Since this solution is obtained by ignoring the
right-hand side of (I.2), the difference between Xo(t) and the exact solution
X(t) would be of order M.

Inserting xo(t) into the right-hand side of (I.2) we obtain the differen-

tial equation to find the second approximation X (¢, ; namely,

® 3 tery Hadad esund b added, but £ would turn out to be zero in the

next step of the iteration process., One could, in fect, show that only terms
Ancnsnt  with 1 odd would appear in the solution. We shall therefore

ignore all the sine terms in what follows,

165
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atx ' ,
‘Ii—al == U (AAq + -‘f-_.DA_oJ— F)cast - ;!-f.tsAi cas 3t. (1.4)

Since the right-hend side of this equation may differ from that of (I.2) by the
amount of order M?, one may expect a second approximation Xitt) thet must be
correct up to the order of 4, The periodicity condition for Xj(t) requires

that no seculer terms should appear in the solution X;(t) ; hence,

aAo+ FBAS-F =0, (1.5)
which determines the amplitude An. Once the relation (I.5) has been satisfied,
the general solution of (I.4) is found to be

I] 21:” ¥ 14 5 .'.3-1? u’éﬂg u353f. (Icé)

where the amplitude A; may be expected to differ from Ao only by the amount
of order A,
Inserting (I.6) into the right-hand side of (I.2) gives

2y i .j - | \3 » 2] i< o
g;z.i.xzz — U 2A + -‘r,ﬁﬂ.’—r_) rioF YEHA, Jcost

_:t_Mg [Aff- ]-j-: w( ca+384:2) Ao Jeos3t

— 3 ueg?AF Af cos5t., (I.7)
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Terms of order higher then Ut are omitted in the right-hand side of this equa-

tion. Since the right-hand side of (I.7) way differ from that of (I.2) by the

smount of order «?, the third approximation X.(t) must be a correct solution

up to the order of ﬂz. The periodicity condition for Xe(t) requires that
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3 :
dAlf-‘%ﬁAi-F+—]§? uﬁ‘AadAfao (1.8)

Bearing in mind that the difference between Az and A1 is of order M, we

solve (I.8) for Al and obtain

| 3USH;
A =ro=—— — (1.9)
J;U\a+%ﬁH5}

Therefore we write

w32, 5 ’
1|lt)=LAo-“ Feely G 1y ok | ' UBA~ o53t, {1:10)

:cr(*uf&dé‘;) 32¢

The results obtained by the above procedure agree with the solutions

obtained by the perturbation method. Refer to Section 1l.2.



APPENDIX II

ANALYSIS OF mRRORS OF GRAPHICAL INTEGRATION METHODS

Leaving aside incidental mistekes on the part of the constructor, there
are essentially several sources of errors in the graphical methods themselves,
Here we consider the local truncation error, i.e., the error committed at each

step by use of the epvrcximation, of the methods described in Chapter 1I.

I1I1.1 Errors of the Slcpeline Mellied

In the first place, let us consider the graphical process for the first-
order ecuation described in Section 2,2,1. The change Ax for the time intervel

At  nay be expanded in Taylor's series
Ax = 2 Ex) AL + ;i—; ”kt;)mt)”+t‘74""(r~'mtj3 + 23 14t). (I1.1)
Substitution of Zg. (2.1) into (II.1) leads to

Ax = fobt + 2 fr(at)*+ & £o7148)2+ aldty. (11.2)

On one hand, the arproximatc increment AXs , which is graphically obtained,

is written as
Ax, =~ (bt )t

]

= fordt + .‘!‘Tf,’- (!jt)zf'i' £ o (At P34 i (AL, (11.3)

Then we obtain the general expression for the local error

Es = das-AK =& AR+ Oplit) . (11.4)
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Next we consider ths graphical method for the second=order differential

equation described in Section 2.2.2. By maing use of Taylor's expansion for the

increments, we have
Ex=]0Xs-ia

=\ Sm~- z )k Ix )x =Xo [Q(Ia) aoj(dt) 'l"éib [j(-fo) Yo J“H-Jn——*f

(:13) sy (Kot Rtye)) - (S""“(dﬂ)z MECUN ‘Ja)‘fsm-gﬂjﬁ)xu:'

. o 5
(- o) =X (5 xwxo 32+ o) x 200 9120} ) (01 )3+ 04,

., |
i f (11.5)
:(Sn l)l )3 50(’1‘39)1'13]{Jt} T "1—{ﬂlja)+xnj—'l>m"—‘-) |
~dg £ TR - 1. 1 | AR |
(G ) 2 =xe 1K)~ 45 ]~ tsn—g)(ay;_ﬁ,ln‘w“d (Sd=3HGF)y-90
= i ,’d = 4-4( E % ; |
(j(Io)“jafk'E?/H:jhAv‘f'k {E}_}!s;yaﬁijﬁjf\fjt)j}- 01-({]5), |
with
Im :X\to‘f'/_itlﬂ), L]tu] =Jrr|-]t- i
: !
3n==Jgto+dtnj, ﬂﬁn==¢”ﬂt- }
The coefficients 3Sm and Sn are found to be
. 1
szi_.L_ftiﬂd°!+(. Faanld0l 7S] 00,00, |
2 B Y(xz) -Yo |
(I1.6)

AR
| - o #9000 ~( a7 )3 lhip3e)

—

- At + 02(4t).
A Yo} r Lo :

C

=
il
R —
x

-

Substitution of Eq. (1I.5) into (11.5) lesds to the expression of (2.14).

Errors of the graphical process in Section 2.2.3 are estimated similarly.
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II.2 Errors of the Delta Method

We consider the graphical construction procedure illustrated in Section

2.3¢1l. The exsct increments AX and AV may be written in Taylor's series

Ax= Vs (AT)- L (xokbo){aT)?- L (vm(ﬁ—i}‘,)mma 1‘

+'.J4id:;} :L
P ‘f (11.7)

AV =~ (Xo+60)(4T) -4 (Yot { g}, (4TI *+5 - |

% | :

Ex=+5a—(§;‘£)a]mr)3+04(Ar). )

Construction of Fig. 2.10 makes the mpproximste increments AXs and AVs as

Axs = Vo (40) - %(xo £60)(00)% V5 (43)°+ 04 (49),

|

5 (11.8)
ﬂvs=—n'xo+6o)ma)—~é—uo (dﬂ)‘+6i(xo+ §2)(A48)3+ (49, [
)

By virtue of the relation (2.%31), which shows the equivalence of At and 00 %
the local errors are expressed in the forms of (2.%0).

In the modified method of Section 2.3.2, the constructed increments are

found to be

. cd -
AxXs = U'a'(ﬂt}“zl'thf50)(012)"-;;‘0”+%lf{ﬂﬁj(dt)‘”’ 04(dT),

|
|
Jh ¥ . 4 (11‘9)
A =~ (Xot Goitdt) =4 (o G T J1T)? (
) ¢ e

Thus we obtain Eqs.(2.32).



APPENDIX ITI
AEGIONS OF PARAMITERS OF DUSFING'S ZLUATION IN WHICH THE OSCILLATICNS

OF DIFFER:NT TYFzS ARE SUSTAINED

It might be worthewhile illustrating the regione of the parasmeters of
Duffing's equation in which harmonic and subhermonic oscillations are obtained
for the particular exsmples described in Chapter IV,

ts mentioned in Section 4.2, the periecdic solutions (4.5) end (4.6) are
to be expected for Duffirg's equation (4,4). Figure 1II,1 srows the regions
of the system perameters, 8 and £, in which harmonic and suthermenic oscil-
laticns are obteined, 1In the area hatched by full lines, one obtains two dif-
ferent types of harmeonic oscillations, resonani and nenresonent u::aci].lzsict.it'rrw,’.L
which one will occur depending on the initiel conditions, tside this region
the harmonic oscillation is uniguely obtained., The dotted area is the region
of 1/3-harmonic oscilletion. The locaticn of the system parameters in Eq. (4.
22) is indicated by voint P in the figure.

Figure II1.,2 shows the region of 1/2-harmonic oscillation for Eq. (4.4).

In this narrow region 1/2-harmonic response is obteined in spite of the symmetri-

cal characteristic of the system.

Figurees III.% and 11I.4 show the regions of harmonic and subharmonic solue

tions for Eq. (4.23) respectively., The variatle parameters are 8 and Bo,

* Both of the oscillations have the same frequency as the driving frequen=-
cy; for convenience' sake, we distinguish between them by the terms resonant

and nonresonant oscillations according as the amplitude of the oascillation is

larger or smaller.
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while £ is kept comstant, It will be obvious from the form of Eq. (4.23) that

the regions of those periodic solutions also appear for negative values of Bo

symmetrically about the B -axis. Point () in these figures shows the locatlon

of the parameters as given in Eq, (4.3€).
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Fig. III.1 Regions in which the oscillations of different
types are sustained.
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Fig. 1I1.2 Region in which the 1/2-hermonic oscillations are sustained.
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Fig. 111.4 Regions in which the subharmonic oscillations are sustained.



APPENDIX IV
SOLUTIONS OF THE VARIATIONAL EQUATIIONS ASSOCIATED wITH

THE UNSTABLZ FIXED POINTS

he mentioned in Chapter IV, the boundery between the domains of attraction
is the leocus of the images that approach the directly unstable fixed point with
increasing time, The locus may be obtained by integrating Duffing's equation
for decreasing time. The initial points of integration should be on the line
segment which passes through the unsteble fixed point with slope X of (4,21).
In order to compute the direction X of the boundary curve, one must determine
the characteristic exponent M and the periedic functicen ¢(¢/(T, of the sclution
(4.15), These guantities, M and %(T) , were calculated by maiking use of the
formulas in Reference 30, pp, 127=1%7. The resulis cf the computation are shown
in what follows.
(1) For the unstable fixed peint 3 in Table 4,1

The periodic solution is given by .

Ih, = 0.8065inT - 0.7i6LusT +0023sin3t +0.037¢cos53T.

Yoz

The varistional equation leads to a Hill's equation of the form

__% {-[9 fa&‘ GQCJJ(CHC EI’l)J‘Z O

where Qo 1,755, g_ .
91 = 0.943, £ = -1.692,"
82 = 0.071, E2= 2,881, |
P3= C.00L, E3= 1,123, J
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A particular sclution of (IV,1) is given by

)
(T) = e™" gy(t),
where
= 0.1%1, i? (1v.2)
$:(T)= Sin(t+i.040) - 0.1215in{37t-0.307) ‘
~0.005sin(5T +1.494 ) + 0.203sin(¥T -0.123).

s

Substituting «, ¢3(0), end {,0)as given by (IV,2) into (4.21) we may readi-
ly find the direction o of the boundary curve at the unstable fixed point 3;

thus we have

o == 0.020.

(2) For the unstable fixed point 7 in Table 4.1:

The periodic solution is given by
Vay = 0.149sin Lo +0.226 ws Lo p0.025sinT - 0171 oS T,

The varistional equation leads to =2 Hill's equetion of the form

AN 4050 Bucos(onT -En)ln =0 ]

dre TLIT e (g =Eallt =0,

where 3o = 0.153, |
B = 0,102, &1 = L.875, ( Il
Q. = 0.07C, Ez = =2.707,
85 = C.022, £3 = =0.295.

———

* The arguments &'s are measured in radians,



A particuler solution of (IV,%) is given by

n(t) =e™ M gq(t),

where

0.i37, (

=
i

$r(T) = sin{+T-0.485)-0.1025in(T+i4i7)

+0.033sin (2T+0.618)+0.004sin(LT+0617).

’

Substituting (IV.4) into (4.21) we obtain finally
=-0.64%.

(3) For the unstable fixed point & in Table 4,1:

Since

Vos (T) = Upg(T+2IL),
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(IV.4)

a particular solution of the Hill's equation assoclated with Uos(T) is given

by
n(t) = €™ ¢a(T).
where }L = 0.139,
Y (T) = Yp(T+ 2T ).
Hence
A =-0.164.

(4) For the unstable fixed point 9 in Table 4,14

Since
Vog(T) = Vor (T t41),
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a particuler solution of the Hill's equetion assoclated with Upq(T, 13 given

by
(ti=e""%yti,
where
= 0,139,
We(T)= ¥yl t4r.
Hence
of = 0.283,

(5) For the unstable fixed point % in Table 4.2:

The periodic sclution is given by

Uay = 0.023 + 0.3995inT —0.983¢0ST + ). 228 Sin 5T - 2. 0ie O3 L.

The variational equation leads to a Hill's equation of the form

,g:él: [ 9o f_éianm;(anf_&n}'jrz =0, T
where

Ba = 1,627, |
8i = 0,009, € = 2,1%, i
8, = 0.923, &, = =0.757, (
85 = £.0004, E3 = 1,966,
94 = C.066, 4 = =1,550,
A5 = ,
Pe = 0.C01, €6 = 2,349,

A particular solution of (IV.5) is glven by

() = € “% pity,

(1Iv.5)
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whers ,

= s 2
u 38!’ ( (I'J.é)

YUl = 0096 + 50 (c+20l1)~-0.004sit(dTtrI5ic)

]
tddduin a9 =03 oin(5T-0.982). J
Substitutine (IV.£) ints (L,01) we obtain finelly
A = [,204.
(6) For the unstable [ixei peint 6 in Table 4,23

The pericdis sclution is glven by

Vos = J. 039 + J.LJJuirli‘i’f’O.%f@\-?Jé‘f + AdITeint = D25,

The variatiornal equation leads to a "“1l1l's eguation of the form

a® + o )
—1—;2“_-‘l‘Lw-}':T.:;‘.’__J'aq-_c).';(,:tl‘%-c_d))q:O’ :
where
Fp = 0.436, |
91 = 0.125, €1 = 2,78, r (1v.7)
f2 = c.1:2, Bz = 1.i1%, i
93 = 0.16!'}, &3 - _’).768’ 5
B4 = Coli7, &4 = 0,312,
4
n particular solution of (iv.7) is given ity
1

R(t) - € 1% psltl,

where
M= 0.196,



Yelr) = =~ 0.c45 rsin(r-0.227) -0.294-5in(T+1.074 )

P 0.0345in( 21 -1.134) - 0.04Tsinl(2c-0.401)

by

£-0.5£6,+0.0025in(3T+i.168) |

[(1

+0.JO:abeL('E
ART cin F L7 ~ 1 2% ]
+0.00sin(zT-i.203). J

Substituting (IV.8) into (4.21) we obtain fineslly
oa =-0.601.

(7) For the unstable fixed point 7 in Table 4,2:
Since

Ua:;\('.; = Jos (T f.:'-.'f'[..f",
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(1v.8)

a particuler solution of “le Yill's equeticn associated with Voq(T) is given

by
n(t) =& "5 yqit),
here wo= 0.i96,
Ya(T) = P (T + 2T,
£ERG &= 2.97%-

(8) For the unstable fixed point 11 in Table 4,21

The periodic sclution is riven by

Lo

The variational equation leeds to a Hill's eguation cf the form

duf (-——60 o] 1 _C__, : ==
dtz + L@o*‘d&’—;Ja“wﬂC’lﬁ trl}JQ = Or

o b s F m
o = 0.039 + 0.1775ia $ T +2.16505 3T +0.0i25inT - 0.160c05T,
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where !
7> & 0,131, !
|
91 = c.025, € = 0,20, |
P o 7 (IV.9)
2 = 'L.L:k;"f.'.«, t& P 1, ) iy '
93 = O.L'l'-', tJ = 2.‘: vy
Fy = 0,05, Eip o il THT
95 = C, }
B \
B = 0,21, Le = (192, |
]
i particular solution of (IV.9) is civer by
4 — - ‘
e = € ey, }'

whers |
w = J. 149,

= - . J!——-—. _." ( L= -“__J ) !
‘P”kfl J.II? T wlfL [J L ).‘f‘..lf‘f t J.O"f‘...i ol!l[jf O-?-!//r {IV.IO)
| |
~ .0998in L+ 46, - L0i5oin(tc-0.653)

o

FO.Q01oin, _:—: Fodoek D).

|
~ 0,052 2C -0, FQ.00EiN( 2T + 1,547 ) l
|

Substituting (IV,10) into (4.21) we obtain finelly

(9} For the unstable Tixed peoint 12 in Table 4,23

Since

U’oh_-\‘t) Upectam),

o particular solution of the Hill's equation smssocisted with Un.AT) is «iven
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by
M) s e 4% g k),
where
M= %140,
#,Etl“)= (P“{E'I".:JT.J.
Henes

a =-Q.14+.
(10) For the unstable fixed zoint 1% in Table 4.2:
Since
Vo st 8 =Uop T+ 4L,

& particular solution of the Hill's ecuation ssscciated with Uoi3(T) is given

by
Y[('CJ = i 4% "FI..‘-“C)}
where B = J0%Y,
‘P‘J(t)z‘)‘/”{Cf‘-@-h:).
Hence

o o= D097,
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