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 INTRODUCTION 

    This paper is devoted to the study of nonlinear oscillations in certain 

types of physical systems. The systems under consideration are concerned with 

electric circuits and are described by nonlinear differential equations. The 

method of analysis presented in the paper may also be applicable to other phys-

ical systems which are described by differential equations of the like form. 

The subject of investigation is mostly limited to the field of forced oscilla-

tions. 

     The text consists of five chapters. Analytical methods and graphical pro-

cedures for solving nonlinear differential equations are described in the first 

two chapters. The three chapters that follow are concerned with the analysis 

of certain phenomena in nonlinear systems. Complementary remarks are provided 

in four appendices to the text. 

    Chapter I is concerned with the analytical methods of widest utility, i.e., 

the perturbation method, the iteration method, and the method of harmonic bal-

ance. The argument in this chapter is confined to the analysis of the harmonic 

solutions of nonautonomous equations. There is usually considerable advantage 

in obtaining an analytical solution for a differential equation when this is 

possible. It is recognized that an exact solution probably cannot be found for 

a nonlinear differential equation, and that an approximate solution of suffi-

cient accuracy may be possible. 

According to the principle of the perturbation method for solving a non-

linear differential equation, we develop unknown quantities in powers of a small 

parameter of the equation and determine the coefficients of the developments 

stepwise. The author describes a method in which the amplitude and phase of 
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the desired solution are sought in powers of the small parameter. This method 

may be  natural and practical as compared with the method in which the amplitude 

of the solution is first prescribed and the frequency of the external force is 

obtained as a function of that amplitude [29, 32]. 

     A method of solving nonlinear differential equations based on the process 

of successive iteration is called the. iteration method. Iteration may be per-

formed in a number of ways. de present a method in which the amplitude and 

phase of the oscillation are determined by the process of successive iteration. 

     A periodic solution may be developed in a Fourier series. According to 

the principle of harmonic br.la.rice, the term of the fundamental frequency and 

one or two additional components of predominant amplitudes are assumed to a 

first approximation. In Chapter I a method is described where we start with 

a first approximation of very simple form and then improve the accuracy of the 

approximation by adding correction terms stepwise. 

    The analytical methods described in Chapter I are legitimate mathematically 

only for equations of small nonlinearity. However, they may still be applicable 

even to the solution of equations with large nonlinearity to some extent. We 

examine the applicability of the methods by solving numerical examples where 

large nonlinearity is associated with them. The accuracy of the numerical solu-

tion is estimated by inserting the solution into the original equation and evalu-

ating the residual produced. 

    Chapter II describes graphical methods for solving certain types of non-

linear differential equations. An analytical method, though it has considerable 

advantage, is restricted to the solution of rather simple equation. A graphical 

method is usually simple to utilize and may be effective as an exploratory tool 

when a nonlinear characteristic is known in the form of a curve. We are partic-



 v 

ularly concerned with the  investigation of the following graphical methods, 

i.e., the slopeline method and the delta method. Both of them are based on 

the step-by- step integration procedure and are useful to find a single solu-

tion curve with a given initial condition. 

    No claim is made as to the originality of the principles of the methods, 

inasmuch as the basic notions have been in use for some time. The author sys-

tematizes the use of the methods and clarify the possible range of their appli-

cability. Various modifications and extensions of the basic methods are de-

scribed in the present investigation. Namely, a modification of the slopeline 

method enables its application to the graphical solution of nonautonomous e-

quations. A modification of the delta method improves the accuracy of the so-

lution. The double-delta method, an extension of the delta method, is present-

ed. It is applicable to the solution of differential equations of a complicat-

ed type. Errors produced in each procedure of the graphical constructions are 

evaluated by making use of Taylor's expansion. The results of the graphical 

solutions for several numerical examples, including van der Polls equation and 

Duffing's equation, prove the excellency of the methods. 

    Chapter III deals with subharmonic oscillations which occur in nonlinear 

systems under the action of a periodic force. A subharmonic oscillation is an 

oscillation whose fundamental frequency is a fraction of that of the applied 

force. In this chapter is studied the subharmonic oscillations of order one 

half in the system represented by Duffing's equation. The 1/2-harmonic oscil-

lations have been discussed by Prof. C. Hayashi [11, 30] and the present author 

[8].  A more detailed investigation is described in this chapter. The phase-

space analysis is used for the investigation of the oscillations. The phase-

space analysis is based on an approach through the methods of harmonic balance
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and variation of parameters. The response of the system is developed in a 

Fourier series in which the coefficients are assumed to be slowly-varying func-

tions of time. These coefficients constitute the coordinates of a representa-

tive point in the phase  apace. The periodic solutions in the steady state, 

which are correlated with singular points in the phase space, are first sought 

for various combinations of the system parameters. The stability of the peri-

odic solutions is investigated by making use of the Routh-Hurwitz' criterion. 

The transient state of the oscillations is discussed by illustrating the geo-

metrical configuration of the integral curves in the phase space. 

     Particular attention is directed toward obtaining the relationship between 

the initial conditions and the resulting aubharmonic responses. It is a dis-

tinctive feature of nonlinear systems that various types of steady-state re-

sponses may take place even in the same system depending upon different values 

of the initial conditions. Several patterns of initial conditions leading to 

different types of subharmonic responses are shown on the phase plane. Theo-

retrical results are compared with the solutions obtained by analog-computer 

analysis and found to be in satisfactory agreement with them. 

    Chapter IV is concerned with the relationship between the initial condi-

tions and the resulting periodic responses in the system governed by Duffing's 

equation. A different method of analysis from that used in Chapter III is de-

veloped. The phase-space (or phase-plane) method, as described in Chapter III, 

has been used extensively for the study of oscillations in the transient state 

[11, 30]. However, it has the following drawbacks. First, if the initial con-

ditions are prescribed at values which are far different from those of the steady 

state, the assumption that the amplitude and phase of the oscillation vary slow-

ly does not hold. The second drawback is that, if a number of steady state re-
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 sponses are to be expected, this method is practically inapplicable, since the 

analysis is compelled to resort to the graphical solution in a higher-dimensional 

phase-space. 

    Chapter IV describes the method of analysis which is applicable under such 

situations [12]. The phase-plane analysis, where the coordinates are the de-

pendent variable V and the first derivative of tT with respect to the independ-

ent variable t , is used. The mapping, which transfers a representative point 

on the phase plane at t = to to a representative point at -C=  t,+ T ( T refers 

to the period of the applied force), plays an essential role in the analysis. 

Then a periodic solution will be correlated with a fixed point of the mapping. 

We may determine the location of a directly unstable fixed point by using the 

method of harmonic balance. Through the directly unstable fixed point there 

is a invariant curve of the mapping, which is the locus of the images that ap-

proach the unstable fixed point with increasing time. This invariant curve is 

a boundary between domains of attraction, in each of them any initial conditions 

leading to a particular stable fixed point with increasing time [4 ]. In the 

neighborhood of the unstable fixed point, we may locate the small segment of 

the invariant curve by making use of the solution of the variational equation 

from the unstable periodic solution. Then the whole configuration of the bound-

ary curve is obtained by integrating the original equation from a point on the 

segment for decreasing time. 

     Two examples of the domains of attraction are illustrated. The first deals 

with the domains of attraction leading to the harmonic and subharmonic oscilla-

tion of order 1/3 in a symmetrical system. The second example is concerned with 

the domains of attraction for the harmonic oscillation, the subharmonic oscil-

lations of order 1/2 and of order 1/3 in an unsymmetrical system.
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     Chapter V deals with the so-called quasi-periodic oscillation where the 

amplitude and phase of the oscillation vary slowly but periodically even in the 

steady state  [18]. Since the waveform of the oscillation is not usually repeat-

ed, the quasi-periodic oscillation is in general nonperiodic. The phase-space 

analysis such as used in Chapter III is also applicable to the analysis of the 

oscillation of this type. A periodic oscillation is correlated with a singu-

lar point in the phase space; while a quasi-periodic oscillation is represent-

ed by a limit cycle. Since the quasi-periodic oscillation is affected by am-

plitude and phase modulation, the representative point does not tend to a sin-

gular point but keeps on moving along the limit cycle with increasing time. 

The period required for the representative point to complete one revolution a-

long the limit cycle is not an integral multiple of the period of the external 

force; the ratio of these periods is in general irrational. 

     Two representative cases of the quasi-periodic oscillation are studied in 

Chapter V. The first is the case in which a harmonic oscillation in a resonant 

nonlinear circuit becomes unstable and changes into a quasi-periodic oscillation. 

The second case deals with the quasi-periodic oscillation which develops from 

a subharmonic oscillation of order 1/2 in a parametric excitation circuit. The 

numerical analysis is carried out for these cases; thus two distinctive types 

of the limit cycle as well as the location of the singular points in the phase 

space are determined for particular sets of the system parameters. The theoret-

ical results are compared with the solutions obtained by analog-computer anal-

ysis and found to be in satisfactory agreement with them. 

    As has been mentioned earlier, four appendices are annexed to the text
. 

Appendix I describes one of the iteration method, which is somewhat different 

from that of Chapter I. Appendix II is concerned with error analysis of the

                          ia



graphical construction procedures. Appendix III shows the regions 

eters of  Duffing's equation in which the oscillations of different 

sustained. Appendix IV describes the solutions of the variational 

associated with the unstable fixed points of the numerical examples 

IV.
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                          CHAPTER I 

     ANALYTICAL METHODS FOR SOLVING NONLINEAR DIFFERENTIAL EQUATIONS 

1.1  Introduction 

     There is usually considerable advantage in obtaining an analytical solu-

tion for a differential equation when this is possible. The analytical solu-

tion is obtained in algebraic form without the necessity of introducing numer-

ical values for parameters. Once the solution is obtained, any desired numer-

ical values can be inserted. Because of this flexibility, it is often worth 

while expending considerable effort to find a solution in analytical form. 

     It is recognized that an exact solution probably cannot be found fora 

nonlinear differential equation, but an approximate solution of sufficient ac-

curacy may be possible. In this chapter we are concerned with the analytical 

methods, i.e., the perturbation method, the iteration method, and the method 

of harmonic balance, which are of general widest utility. The argument will 

be confined to the analysis of nonautonomous equations. 

    According to the principle of the perturbation method for solving a non-

linear differential equation, we develop unknown quantities in powers of a small 

parameter of the equation and determine the coefficients of the developments 

stepwise. The author describes a method in which the amplitude and phase of 

the desired solution are sought in powers of the small parameter. This method 

may be natural and practical as compared with the method in which the amplitude 

of the solution is first prescribed and the frequency of the external force is 

obtained as a function of that amplitude [29, 32]. 

    A method of solving nonlinear differential equations based on the process 
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of successive iteration is called the iteration method. In earlier days, G. 

Duffing applied this method to the solution of the equation named after  himself 

[33]. Prof. J. J. Stoker has also referred to this method [32]. In his de-

scription, however, the frequency of the external force is not considered to 

be prescribed in advance, but rather to be determined depending upon the value 

of the amplitude of the solution. The author will present a method in which 

the amplitude and phase of the solution are determined by the process of suc-

cessive iteration. 

    A periodic solution can be developed in a Fourier series of sine and cosine 

components. According to the principle of harmonic balance, the component of 

the fundamental frequency and one or two additional components of predominant 

amplitudes are assumed to a first approximation. Ooefficients of the Fourier 

series are adjusted to satisfy the equation so far as terms of the considered 

frequencies are concerned. In this chapter we shall describe a method where 

we start with a first approximation of very simple form and then improve the 

accuracy of the approximation by adding correction terms stepwise. 

    The analytical methods described in the present chapter are legitimate 

mathematically only for equations in which the degree of nonlinearity is suf-

ficiently small. However, they may still be applicable even to the solution 

of equations with large nonlinearity to some extent. We shall examine the ap-

plicability of them by solving numerical examples where large nonlinearity is 

associated with them. The accuracy of the numerical solution will be estimated 

by inserting the solution to the original equation and evaluating the residual 

produced. 

1.2 Perturbation Method
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    One of the well-known methods for solving nonlinear equations is the per-

turbation method. This method is applicable to the solution of equations where 

a small parameter is associated with the nonlinear terms. We develop the de-

sired quantities in  powers of the small parameter and determine the coefficients 

of the developments stepwise, usually by solving a sequence of linear equations. 

    We shall explain the use of the method for obtaining the harmonic solution, 

which has the same frequency as the external force, of second-order differential 

equations of the type 

sdx 

              t-2+x-/uf(X'dt't),(1.1) 

where /U is a small parameter and f is a periodic function in time t with pe-

riod 2n. If the period of the function f is different from 20 only in order 

of fit[, it may be reduced to 2n by changing the scale of the time appropriately. 

For example, let us consider the equation of the form 

soCK 

          dt -l-X =~(l f (X,' dt^ w*)(1.2) 

where f is a periodic function in cut with the period 2n, and w is different 

from unity in order of ,IX . Introducing the variable defined by Z-111  wt , this 

equation is transformed into a equation of the form (1.1). Therefore the pe-

riod of time functions is always set to be 2n in what follows. 

    Equation (1.1) may be rewritten as

where

z 

dT2 +x Ati(X'dZ, 

Z=t-6.

 (1.3)



The unknown phase angle  6  is introduced to permit 

tion such that* 

X(Z) Q at = O. 

The perturbation method consists in developing the 

a power series with respect to small parameter Ott. 

also necessary to develop the unknown quantity 6 

solution for (1.3) is sought in the series 

X(t) = Xo(t) +/ tX1(t) +,14.2X2(e) +. • . 

6 = do + µdt +/uZdz + • • - . 

The functions Xo(t) , X, (t) ,... and the coefficient 

determined stepwise. 

    Substituting Eqs. (1.5) into (1.3), we obtain e 

must vanish identically in At;  hence the coefficient 

of A must vanish. Equating these coefficients sepe 

a set of second-order differential equation s 

µ° . Xo+Xo=O, 

JA' : x+X,=Cf), 

,u2: xZ+x2 =Cfx3x/ Cfx)z, + (1r)d1, 

µ3 : X3 + X3 = (fz) X2 + CTX )X2 + Uri (f2 

              +1fixx)Xi+2(Ili)Xta+ 2 

+Cfxz)X,z,+(fxr)X161 +

                 4 

choice of the initial condi-

                (1.4) 

desired solution X(t) in 

 In addition to X it is 

with respect to At. Thus a

coefficients  ao, 61 ,... are 

we obtain a power series in AL 

coefficients of the successive 

cients separately to zero, we

- art )dj 

(fu3x161

(1.5) 

to be 

which 

 powers 

obtain

(1.6) 

(1.7) 

(1.8)

(1.9)

     Here 

tiations

 and 

with

throughout 

respect to

this chapter 

Z.

dots Over a quantity refer to differen-



5

etc., where  ~f)= f(X o,;co, t-i-b0), 

(fx) = az (xo, i o, z+ad ), 

                                 t 

            (fxx)=z(xo, JCo, Z+60), 
                                            etc. 

    The solution of (1.6), i.e., so-called the 

to be 

Xo(C)=Aocost, 

with the initial condition 

Xo (0) = A o , and Xo (0) =O. 

                                     Substituting (1.10) into (1.7) leads to 

+ Xi = f (Ao cost, — Ao lint, c 

The right-hand side of (1.11) may be developed 

terms containing COST and Sint were not zero 

tion of (1.11) would contain terms of the type 

secular terms. The condition for periodicity o 

ficients vanish, i.e., the following relation h

where

The values

P(Ao,6o)=0, 

Q~ (Ao, 6o) = 0 , 

P,(Ao,(5a)=,tf ZCf) 
Ql (Ao, 6o) = fz,t(f 1 

of Ao and do are to b4

 (j)cost t 

(f) sinzdc 

:o be deter.determined

generating solution, is found

(1.10)

 t  c50).(1.11) 

 in a Fourier series. If the 

 in the Fourier series, the _solu- 
 'OcoSt and tsirit , i.e., the 

of X1 requires that these coef-

holds 

                    (1.12)

from (1.12).
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    The general solution  XI(t) of (1.11) may now be obtained with the initial 

condition ;MO) = 0. The solution contains one arbitrary constant AI of in-

tegration. It is determined so as to satisfy the condition for periodicity of 

the second order term X2(r). 

As an example of differential equations of the form (1.1), let us consider 

Duffing's equation without terms for dissipation: 

                ceK 

o t + (t +ha()x+/coX3=µFrost.(1.13) 

Introducing the unknown phase angle 6, equation (1.13) is rewritten as

with 

A solution of (1.14) is sought in the form 

X(t) = Xo(t) +/AXI(L) +/u2X2(Z)+ ... 1 

             6 = do + +/2d2 + .. . 

Substitution of (1.15) into (1.14) and collection of 

set of simultaneous equations: 

Ott.° : Xo+Xo = O, 

: zk +X, =—IXXo — flXo + F cos (-tt6o), 

Buz : X2tX2 =-o(X1 -318xox1_F61 sin e+6o) 

, etc. Terms of order zero in )L yields 

                  d2X2 Xo= O. 
                 dz

dz2 +x="u(--dx -,8X3+ Fcos(e+6)), 

(1.14) is sought in the form

 like  powers of

(1.14) 

(1.15) 

give a 

(1.16) 

(1.17) 

(1.18) 

(1.19)
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Solving  (1.19) with the initial condition Xo(0)= 0, we obtain 

Xo(t)=Ao cos t. (1.20) 

    Substitution of (1.20) into (1.17) gives the differential equation 

         di'+ X, =-(aqo+4,BAo- Fcos6o) cost- FSin6o sirtt 
                                         -

4-1-AA:  cos3z. (1.21) 

If the coefficients of coSt and sin'L were not zero in the right-hand side of 

(1.21), secular terms would appear in the solution X,(t). The periodicity 

condition for Xi(t) requires that these coefficients vanish, namely

o(Aot4AAo—F COS 60=0, 
sindo = 0, 

Hence we obtain do = 0 and 

               aAo +4fAo-F = 0. 

Equation (1.22) determines the amplitude Ao. 

X4(0) = 0, the general solution of (1.21) may 

xi(t)=Aicos-c+IpsAgcoszi 

    Substitution of (1.20) and (1.23) into (1. 

t 

      dtz+X2=-(acA,+4AA:A~+i2sfi2Ao 
               - 4,BAo(3A,+$aAo+

 o amplitude Ho. Then, with the 

ion of (1.21) may be written as 

1 cost +32,8Aa coS3z. 

nd (1.23) into (1.18) gives 

4,BAoA,+128/82Ao)cost-F6isini 

;8Ao (3A,+ 8 aAo+ t6 8Ao) cos3z--

       (1.22) 

initial condition 

       (1.23) 

T57/32Aocos 5 t . 
        (1.24)



The periodicity condition for  X2(t) requires that the coefficients 

Sint in the right-hand side of (1.24) be zero. Thus we obtain 61 

-3/32405                          A
l 128(a

+ 3,eAo) • 

Using (1.25) the general solution of (1.24) may be written as 

X2(t) = A2 COST + 32 f9Ao ( 3A1 + 8 A0~ 16 Mo) cos3Z' 

+3072AZAo cos 5z. 

The condition for periodicity of X3(t)will lead to

       A2 

62 

 Proceeding s 

 successively. 

  Summarizing 

order /, is 

X(t)= (Ao-

-30o (afAo + 2,82Ao + 4o,6AoAl +768A,2) 

of  c05Z 

. 0 and

8 

and

(1.25)

(1.26)

`1024 (c;(+ 4,9A04 ) 

,= o. 

analogously, one may determine 

the above results the solution

    Proceeding analogously, one may determine X3(t), X4(t) ,... and 63 , 

... successively. 

    Summarizing the above results the solution X(t) of (1.13), up to terms 

of order ,2, is 

X(t)_ (Ao+JAA,+lAZAz) cost + 32,uMAa (Ao+ 31uA1+ + 6,y3Ao) cos3t 

J.(1.28) 

where the amplitudes Ao, A,, and AZ are determined from (1.22), (1.25), and 

(1.27), respectively. The phase angle 6 is known to be zero in this case. 

    The harmonic solution of Duffing's equation with term for dissipation 

             dt2+ltd- (1 a)+,U19XX 3 =/u F cost(1.29)

(1.27)



may be determined in much the same way. Equation (1.29) is rewritten 

form 

 dT  +x --=71/(—(xx—fX3 ~~ + F WS( T+6)), 
witht=t — 6, X(0) = O. 

A solution of (1.30) is sought in the series 

7((t) = Xo(t) + pxt(t) +,a2Xz(z)+ • • -, 

d = do guar -FAO 62+ • • • . 

The first approximation is found to be 

Xo(t')=Aocost. 

The amplitude Ao and the phase angle do are to be determined by the 

ity condition for )4T), namely

o(Ao + 4 /3Ao — Fco5'do = 0, 
£^o — Fsin 60 = 0. 

From (1.33) we may derive the equations 

          ((a-f,3TM )2+k2)A°2 =F2, 

          COS bo=(dt4,BAo)F°,sinbo= 

which are more useful to determine Ao and oo 

    It is worth while noting that the first ap 

in terms of the original variable to by virtue 

Xo(t) = Ao cost-60)

0 Ao 

  F than 

proxi 

of

( 

 .11 

1

o than  (1.33)  . 

approximation 

ue of (1.34),

 Xo(z) may 

as follows:

     9 

in the 

  (1.30) 

(1.31) 

  (1.32) 

periodic-

  0-33) 

(1.34) 

be written



 =  Aocost+ a: Sint 

where22 

            AO= ((x+,;:-.1.3Bo=F 
    The solution X)(r), i.e., the correction term of order 

Xi(t) =Ai costt 32,8fd cos3-e. 

The amplitude Al and the phase angle bl are determined by 

condition for X2(t) , namely

Al = 

_ Summarizing th 

of order eft , is 

Xa)= ( 

where the amplitude 

(1.34) and (1.37), 

1.3 Iteration Meth 

    This is a meth 

In earlier days, G. 

named after himself 

we describe one of 

tion. Another way

-3 ,e2Ao

             10 

 (1.35) 

it is found to be 

(1.36) 

the periodicity

128(0(+4fAa+ tan 4)

          -3 ,e2A0  
      = d, 128Fcosbo(a+4,BA0 + tambo) • 

rizing the above results the 

I , is 

X(t) = As +AtAl) cos (t - bo - 

amplitudes and phase angles 

(1.37), respectively. 

tion Method 

is a method which is based on 

days, G. Duffing applied this 

r himself (33]. Iteration may 

e one Qf them for obtaining the 

ther way will be presented in

Lon X(t) of 

      ,a~ggo cos 3 (t 

      and Ai , 6;

          (1.37) 

(1.29), up to terms 

-ô- ,5i), (1.38) 

are determined from
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ent from each other, In our methods the amplitude and phase of the solution 

are determined in the process of successive iteration. 

    We consider Duffing's equation of the form 

               ex+(1+J ,t0)X+,uex3=/AFcoSt. 

This equation may be rewritten as 

d2X =—X—/u'(dx                 X+3-Fcost).(1.39) 
     d+2 

    First we explain the basic notion of the method. Let Xao be an approximate 

solution of (1.39). Inserting Xao into (1.39) we obtain 

             dt2°+ran = —Xaa—iA(c4Xao+13Xao— Fcost ),(1.40) 

where the term rao arises from the inaccuracy of Xao. Upon integrating (1.40) 

twice with respect to t ,.we have 

Xal = Xao + ff rao dtdt 

                —/J Xao +#(o(Xao + Xao — F cost ))dtalt • (1.41) 

Constants of integration are set to be zero in order to ensure the' periodicity 

of X41 . Insertion of X41 into (1.39) yields 

                    3G~ =z41 
rai Xao—/tL1 Xa1+fXai—Fcost)- dt2 

              _ — ff rao dtdt+(small terms of higher order inA4) (1.42) 

The quantity Ya1 arises from the inaccuracy of Xa.i. 

    If Xao is chosen such that no contains only terms of higher harmonic fro-
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 rat 

quency,, must be, by virtue of (1.42), a smaller quantity than rao . That is 

to say, Xao must be a closer approximation than Xao . By equating the harmonic 

components of Xao and Xai , rao is let to contain no harmonic component. 

    We shall explain this process concretely in what follows. For the solu-

tion of (1.39) we start with the first approximation* 

Xo(t) = Ao cost.(1.43) 

Substituting (1.43) into the right hand-side of (1.39) we obtain 

        ex              --(Ao+iu(aAot4,BA(P—F)) cost —4iu,8Ao cos 3t.(1.44) 

Upon integrating twice (1.44) we have 

          X(t) =+(A0+JA(0Ao+ —F))cost+36 f,8Ao COS 3t (1.45) 

Constants of integration are set to zero in order to ensure the periodicity of 

the solution. The coefficients of Cost in (1.45) is taken equal to /1411 

o(Ao+ 4 fAo — F = o.(1.46) 

The value of Ao is determined from this equation. 

    The solution X as given by (1.45) or 

          X(t) = Ao cost +36µf3Ao cis 3t,(1.47) 

itself, may be considered as the second approximation. It is, however, more

next

A term 

step of

Bosint should be added, but 30 would turn out to be zero in the 

the iteration procedure.
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reasonable to reassume the second approximation of the form 

 Xi(t) = Al Cost + 367b1,8A13CO53t, (1.48) . 

where the amplitude Al is to be determined in the next stop. Substituting 

(1.48) into the right-hand side of (1.39) and integrating it twice leads* 

7((t) = (A1 +/a(«At+4/3A13-F)+41-#.2j82A15+ 864/3183A1'J t 

              +36hpA13(9 + *µ(20(+3,8Al2)+ 15552 JA/ 3A16) cos3t 

+ 100I2/32A,5(1+ 36! Al2) coS5t.(1.49) 

Integration constants are again set to be zero in order to ensure the periodic-

ity of the solution. The coefficients of cost in (1.49) is taken equal to Al: 

aA, + 4,8A,3- F +48µp2,115+ $6~,u2/33A, 1= 0.(1.50) 

This determines the value of Equation (1.50) is similar to (1.46), except 

for the last two additive terms. 

     Further iteration of the procedure may allow a more accurate solution to 

be found, but it is rather troublesome for actual computaion. Therefore we may 

regard X of (1.49) with Al furnished by (1.50) as the third approximation. 

     In like manner, the harmonic solution of Duffing's equation with term for 

dissipation 

eX 

dt 2 +/` d t + (1 +,u a) X -V93x 3 =,/u. F cos t(1.51)

* T
erms of frequency 7 and 9 are omitted in this equation, since they are 

sufficiently small.



 1`r 

may be obtained. It is reasonable to start the iteration process with the 

first approximation 

Xo(t) = Ao cost+ BoSint.(1.52) 

Substituting (1.52) into the right-hand side of (1.51) and integrating it twice 

leads to 

X(t)= (Ao +/u.(a(Ao+.Bot1 ,8Ao+q—.8AoBo - F)3 cost 
+ (Bo +At(-4Ao 60+33Ao Bo+4,BBo )]sint 

         +31-3802) cos 3t +36iU,880(3A02-8o ) sin 3t (1.53) 
Integration constants are set to zero. Equating the coefficients of cost and 

lint to Ao and 60 respectively, we obtain

                                      2 

        Ao=(a+4~BRo)F~, 

Bo=F00 

where Roe • Ao + Bo is determined from 

((a+?FM: ) 2+  2)R02= 

The solution 

x(t) = Ac cost + Bo lint 

         +36Mj8Ao (Ao38o)co53 

is a closer approximation than (1.52).

 F2

) cas3t + 36JILf380 (3Ao-502 )  sin3t

(1.54) 

(1.55)

(1.56)
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1.4 Method of Harmonic Balance 

    The periodic solution may be developed in a Fourier series of sine and co-

sine components. In many cases, the component of the fundamental frequency and 

one or two additional components are of predominant  amplitudes. According to 

the method of harmonic balance, such few terms are assumed to a first approxi-

mation. Coefficients of the Fourier series are determined to satisfy the equa-

tion so far as terms of the considered frequencies are concerned. Terms of 

frequency other than those considered are certain to be present also but are 

ignored to this order of approximation. In theory, the more terms are taken 

into consideration, the closer approximation may be obtained. However, numer-

ical computations will be cumbersome too much. In the following description, 

we shall start with a first approximation of very simple form and then improve 

the accuracy of the approximation by adding correction terms step-by-step. 

    Let us consider the same equation as in the preceding sections: 

x (1+
)4a)X+7498z3=JAF"'St•(1.57) 

First we assume the approximation of the form 

xo(W) = Aio cost.(1.58) 

Substitution of (1.58) into (1.57) leads to 

         (aAb+3fl-F) cost4/uiBA10cos3t = O.(1.59) 

Equating the amplitude of the fundamental component to zero we obtain 

d4o+PAW—F= 0.(1.60)
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    Equation (1.60) takes the same form as (1.22) obtained by the perturbation 

method or (1.46) obtained by the iteration procedure. That is to say, any of 

the methods gives the same solution of the first approximation. 

    Next we assume the second approximation of the form 

 X1(t)=  (Aio+ EA,i) cost+EA31 cos3t(1.61) 

taking into consideration the third-harmonic component. Oorrection terms as-

sociated with E A,t and 6/131 are considered to be relatively small, i.e., the 

first-order quantities in a small parameter 6 . The use of E is not indispen-

sable, but make it convenient to clarify the orders of small quantities. We 

substitute (1.61) into (1.57) and equate the coefficients of cost and Slpt 

separately to zero. Ignoring terms of order higher than the first in 6 , we 

have

It (a+ 3a)(EAit)+1ca (EA31) = 0, 

— jAa(EA,n)+(8-1ta-2~ua)(EA3t) = 3µaAto, 

where a=4 i9A10 • 

The amplitudes, EAt1 and 6/131 are readily determined by 

simultaneous equations.. 

    The third approximation is assumed in the form 

X2 (t)= (A1otEA1t+EZAl2 ) cost +(EA3I+E2A32)cos3t+EA 

Correction terms associated with EeAtz , F?Asz, and 00452 

still smaller than those associated with 6A11 and E431 

into (1.57) and equating the coefficients of cost , cos;

(1.62)

 solving these linear

(A1otEA11tEM Ala ) cost +(EA31+E2A3e)coS3t+VA52 cos 5t. (1.63) 

.erms associated with EeAl2 , F?A32, and 0A52 are considered to be 

11" than those associated with EA11 and E431 . Substituting (1.63) 

and equating the coefficients of cost , cOS3t • and cOSSt separate-



 17 

ly to zero, we obtain the linear simultaneous equations in E2/lt12 , E2A 32 , and 

E2/152 

     —,cc lac+34)(f2At2) a(E2A32)=4 /ufiAlo.(3(EA,1)z+2(EAliKEfi31)+2(EA31)9, 

 Via(€2412)+(8 a-2144)(E2A32) ,ua(E2As2) Q4,u/3Aio((EAnn)2+4(EA»)(EA3I)), 
-Act (E2A32)+(24 qua-2,ua)(E2A52)=4, aAJo(A,o(EA31)+2(EA11)(EAn)+(EA31)2), 

where =4~A2 
                     io • 

                                                         (1.64) 
Terms of order higher than the second in E are discarded in this step. 

     In like manner, we can obtain the harmonic solution of Duffing's equation 

with a term for dissipation 

          dt+d/uk+ (1+,Mc0X+,4/3xL4                        3=,Fcost.(1.65) 

We start with the first approximation 

xo(t) = Ala cost+ 370 lint.(1.66) 

The amplitudes Ato and B10 are determined to satisfy (1.65) so far as terms con— 

taining COSt and s111t are concerned. Thus we obtain

where R10

 A,o = (a +49Rio2)Fro , 
Rio B

10 = re F 

22 
A1o+ Bic is to be determined 

((o(+ fAR120 ) + fez2 ) R10 =

 from 

F2.

(1.67)

(1.68)
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We readily  see from (1.35), (1.54), and (1.67) that any methods give the same 

solution of the first approximation for Duffing's equation (1.29). 

    The second approximation is assumed in the form 

)qt)=(A10+EAn)cost+(3,o+E81,)sint+EA3,cos3t+EB3,sin3t. (1.69) 

We substitute (1.69) into (1.65) and equate the coefficients of cost , Sint , 

co53t , and S^r13t separately to zero. Ignoring terms of order higher than the 

first in E , we obtain

`(c +2c +c)(EAn)+,M(k+b)(E811)+,1ACCEA31)+jab(EB31) = 0, 

,u(&-b)(EAn) ,u(a+2a-c)(E811)+µb(EA3,)-/uc(EB31)= 0, 

-,cc(EAn)+Aub(E6,,)+(8µa-2/44(€A31)-3/(,tf (E 831) a21uA,o(2c—BAloz) (1.70) 

--/ub(EA11) ,uc(a811)+3/uk(EA31)+(8 pa-2/ua)(E531)=2,UB,o(2c+,8B4), 

where Q=4~(A1o1-8),b=2,0A10B1o,C=4~8(A10—Blo)- 

The amplitudes EA11 , LBn , EA31, and E831 of the correction terms are de-

termined by solving the linear simultaneous equations (1.70). 

     The method of improving the approximation described in this section is par-

ticularly useful when the amplitude of each harmonic component decreases with 

 increasing order of the harmonics. 

1.5 Comparison of the Three Methods 

As mentioned in Section 1.4, any of the three methods give the same approx.



 imate solution of the first order. Higher-approximate solutions 

the same. For example, we consider the second approximations for 

equation 

              dt + (1+,10()x+ jex3= fFcast. 

The first approximation takes the form 

x0 = AocOSt. 

The second approximations yielded are as follows: 

Perturbation : O(t)= Aga cOSt t A3P C0S3t 

                           ZA 
    where Alp = Ao—                           128!"s                                       °  

                    4/BAo 

         A3P = *A84

Iteration s 

     where

Harmonic 

Balance s

x1l(t) 

- A31 

x1 H (t)

 =Auu cost+A31 COS 3t , 

     48JA/B2A 05.* Ao 
9 2 + OZ (u),     d + 4AAa 

36~BAo + Oe Cu). 

= AIN cost -I-A3N cos 3t ,

       19 

are not exactly 

 Duffing's

(1.71)

(1.72)

* 0
2(p) refers to terms of order higher than the first



 ZU

Thus,

whereAiu = Ao 19 A°+ 02/), 
 /3Ao 

          A3H =-,AAJ Ao + 020). 

we obtain 

A,I-A1p=  A82A0  020) 
            3g4(d+4,3Ae) 

A3I—A3P = — 288 rAo + 029),

and 

AIH —Arp = 020), 

A3H —A3P = 02V). 

That is to say, the perturbation 

the same second approximation up 

iteration method slightly differs 

    Further we can see that the 

balance give the same third appro 

third approximate solution of the

(1.73)

(1.74)

 (1.75)

That is to say, the perturbation method and the method of harmonic balance give 

the same second approximation up to terms of order /A, while the result of the 

iteration method slightly differs from that in terms of order p. . 

    Further we can see that the perturbation method and the method of harmonic 

balance give the same third approximation up to terms of order it, while the 

third approximate solution of the iteration method differs from that in terms 

of order I4. 

    The same is also true in the case of the solution of the equation with a 

term for dissipation. From the above results, we may conclude that the itera— 

tion method is somewhat inferior to the other methods.

1.6 Numerical 

    Analytical 

mathematically

Examples 

methods 

only for

described 

equations

in 

in

the preceding three 

which the degree of

sections are 

nonlinearity

legitimate 

is euffic
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ly small. However, they may still be applicable even to the solution of equa-

tions with large nonlinearity to some extent. We have not seen much of numer-

ical examples of large nonlinearity. 

    In this section we shall deal with the numerical examples of Duffing's 

equation 

        dtz+X3=  0.2 cost,(1.76) 
and 

              d2z + 0
.2 dz +x3= 0.3 cost, dtz dt 

where the restoring terms are of cubic characteristic. 

1.6.1 Equation without Term for Dissipation 

(a) Perturbation Method 

    Equation (1.76), i.e., 

               d2z + x3 — 0.2 cost    dtz(1.77) 

is obtained by setting the parameters of (1.13) as 

At - 1, 0( - -1, fi . 1, and F - 0.2.(1.78) 

The first approximate solution (1.20) is obtained by using (1.22). Equation 

(1.22) has three real roots for the numerical parameters of (1.78); there are 

three harmonic solutions having different amplitudes. For each of them, the 

correction terms (1.23) and (1.26) are determined by using (1.25) and (1.27). 

The numerical values of the approximations up to the third order are listed in 

Table 1.1.
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Table 1.1 Harmonic  Solutions for Eq. (1.76) 

the Perturbation Method

obtained by

Harmonic
Solution

Order of

Approximation

Approximate Solution

 X(t)=alcost  1-  as cos3t+ as cos  5t

al 0.3 as

1

1

2

3

-0.207

-0.207

-0.207

-0.000

-0.000 0.000

2

1

2

3

1.244

1.216

1.211

0.060

0.066 0.003

3

1

2

3

-1.037

-1.017

-1.016

-0. 035

-0.036 -0.001

(b) Iteration Method 

 Equations(1.43), (1.48), and (1.49) give approximate solutions of the ord 

first, second, and third, respectively. Numerical values of the system param-

eters are given by (1.78). The amplitudes Ao and AI are determined from 

(1.46) and (1.50) respectively. The solutions are listed in Table 1.2. 

        Table 1.2 Harmonic Solutions for Eq. (1.76) obtained by 

                  the Iteration Method
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Harmonic

Solution

Order  or

Approximation

Approximate Solution

X(t) = al cost t 23 COS3t+a5- cOSSt

Q-3 as

1

1

2

3

-0.207

-0.207

-0.207

-0.000

-0.000 0.000

2

1

2

3

1.244

1.219

1.219

0.050

0.063 0.002

3

1

2

3

-1.037

-1.020

-1.020

-0.029

-0.035 -0.001

(c) Method of Harmonic Balance 

    Equations  (1.58), (1.61), and (1.63) give 

order first, second, and third, respectively. 

are determined from (1.60), (1.62), and (1.64). 

Table 1.3.

approximate solutions of the 

The amplitudes bf the solutions 

 The solutions are listed in

Table 1.3 Harmonic Solutions for 

the Method of Harmonic

Eq. (1.76) 

Balance

obtained by

Harmonic

Solution
Order of

Approximation

Approximate Solution

 X[tl=al cost  +a3cos3tt0.scos5t

a, a3 as



~,~

1

1

2

3

 -0.207

-0.207

-0.207

-0.000

-0.000 0.000

2

1

2

3

1.244

1.213

1.212

0.067

0.066 0.003

3

1

2

3

-1.037

-1.017

-1.016

-0.036

-0.035 -0.001
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(d) Accuracy of the Solutions 

    Unless we know the exact solution of (1.76), it is impossible to evaluate 

the errors of the approximate solutions shown in Table 1.1 through 1.3. Here 

we consider a practical way for estimating accuracy of the approximate solutions. 

    Let  Xa(t) be an approximate solution of the equation 

dta + (1 t/uoc)x÷/493X 3  =1AFcost. 

Insertion of AA(t) into the equation yields 

          e
ta+(                  rho )-%4+,u/exa—jA Feastr(t) 

The function r(t) may be called the residual function. It is, in general, 

found in the form 

r(t) =E (arn.oasnt+brn sin nt). 

n



We make the quantity 

 E=J/(arn+bran) • 

This will give a measure of the inaccuracy of Xa(t) 

    The numerical values of E for the approximate 

listed in Table 1.4.

solutions of (1.76)

25

(1.79)

are

Table 1.4 Values of E for the Approximate Solutions of (1.76)

Method

Harmonic Order of

Solution Approximation

Perturbation Iteration Harm. Bal.

1 0.002 0.002  0.002

1 2 0.000 0.000 0.000

3 0.000 0.000 0.000

1 0.481 0.481 0.481

2 2 0.082 0.129 0.078

3 0.010 0.042 0.011

1 0.279 0.279 0.279

3 2 0.028 0.055 0.029

3 0.007 0.009 0.004

1.6.2 Equation with a Term 

(a) Perturbation Method

for  Dissipation

•1.
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, Equation (1.77), i.e., 

       ~z              t22 +0.2~t+X3— 0.3cost 

is obtained by setting the parameters of (1,29) as 

     ill is 1, - - 0.2, d - -1, ft - 1, and F - 0.3. (1.80) 

There are three harmonic solutions having different amplitudes and phases for 

these particular values of the parameters. By making use of Eqs. (1.32) through 

(1.37) found in Section 1.2, approximate solutions are calculated up to the 

second order. The numerical values are listed in Table 1.5. 

         Table 1.5 Harmonic Solutions for Eq. (1.77) obtained by 

                   the Perturbation Method

Harmonic

Solution

Order of

Approximation

Approximate Solution

 X(t)=alcast  +b, sin  t+a3cos3t+ basin  at

a, b1 a3 b3

1

1

2

-0.310

-0.310

0.067

0.067 -0.001 0.001

2

1

2

0.703

0.717

1.012

0.972 -0.055 0.019

3

1

2

-0.748

-0.745

0.699

0.669 0.020 0.027
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(b) Iteration 

    By making 

calculated up 

1.6.

Method 

 use of 

to the

Eqs. (1.52) 

second order.

through (1.56), 

 The numerical

approximate 

values are

solutions 

listed in

 are 

Table

Table 1.6 Harmonic Solutions for 

the Iteration Method

Eq. (1.77) obtained by

Harmonic

Solution

Order of

Approximation

Approximate Solution

 x(t)= al cost  +b,sint +a3cos3t+b3 sin  3t

a.' I), 12.3 1,3

1
1

2

-0.310

-0.310

0.067

0.067 -0.001 0.001

2
1

2

0.703

0.703

1.012

1.012 -0.050 0.013

3
1

2

-0.748

-0.748

0.699

0.699 0.019 0.023

 (c) Method of Harmonic Balance 

    By making use of Eqs. (1.66) 

calculated up to the second order. 

1.7.

Table 1.7

through (1.70), 

 The numerical

Harmonic Solutions for 

the Method of Harmonic

approximate 

values are

Eq. (1.77) 

Balance

solutions 

listed in

obtained by

are 

Table
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Harmonic

Solution
Order of

Approximation

Approximate  Solution

X(t)= at cost tb,sint+c 3cos3ttbasinat

a, b1 a3 b3

1
1

2

-0.310

-0.310

0.067

0.067 -0.001 0.001

2
1

2

0.703

0.684

1.012

0.988 -0.061' 0.021

3
1

2

-0.748

-0.744

0.699

0.671 0.022 0.026

(d) 

by

 Accuracy of the  Solutions 

 In the like manner as in the preceding section, the value 

(1.79) is calculated for each solution. Refer to Table 1.8. 

   Table 1.8 Values of E for the Approximate Solutions of

of C as 

(1.77)

defined

Method

Harmonic Order of

Solution Approximation

Perturbation Iteration Harm. Bal.

1 0.008 0.008 0.008

1

2 0.001 0.001 0.001

1 0.468 0.468 0.468
2

2 0.087 0.152 0.082



3

1

2

0.268

 0.032

0.268

0.051

0.268

0.033
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1.7 Conclusion 

    The methods described in this chapter are useful tools for finding an 

analytical solution of a nonlinear nonautonomous differential equation. The 

amplitude and phase of the solution have been found as functions of the system 

parameters. For Duffing's equation without term for dissipation, the approx-

imate solutions have been calculated up to the third order; for the equation 

with a term for dissipation, up to the second order. If the degree of non-

linearity is sufficiently small, these approximations  are of sufficient accu-

racy-and the three methods yield almost the same results. Even if the degree 

of nonlinearity is rather large, the methods may be useful to some extent. 

The results of the numerical examples in Section 1.6 have shown the practical 

applicability of the methods to equations of extremely large nonlinearity. 

The iteration procedure seems to be somewhat inferior to the other methods.



                          CHAPTER II 

     GRAPHICAL METHODS FOR SOLVING NONLINEAR DIFFERENTIAL EQUATIONS 

2.1 Introduction 

    An analytical method, though it has considerable advantage, is only appli-

cable to the solution of rather simple equations. A graphical method applies 

to much more varieties of nonlinear differential equations. A graphical meth-

od is usually simple to utilize and may be particularly effective as an explor-

atory tool when nonlinear characteristic is known only in the form of a curve, 

e.g., a experimentally determined curve. Such a curve can be incorporated di-

rectly into a graphical solution, and this may be a matter of considerable con-

venience. 

    There are many kinds of graphical methods developed. In this chapter we 

are particularly concerned with the following methods, i.e., the  slopeline meth, 

od and the delta method. Both of them are based on the step-by-step integra-

tion procedure and are useful to find a single solution curve with a given in-

itial condition. 

    No claim is made as to the originality of the principles of the methods, 

inasmuch as the basic notions have been in use for some time [21, 23]. The au-

thor systematize the use of the methods and clarify the possible range of their 

applicability. Various modifications and extensions of the basic methods will 

be described in this chapter. Namely, a modification of the slopeline method 

enables its application to the graphical solution of nonautonomous equations. 

A modification of the delta method improves the accuracy of the solution. The 

double-delta method, a extension of the delta method, will be developed which 

                         30



                                                    31 

is applicable to the solution of differential equations of a complicated type. 

Errors produced by each procedure of the graphical constructions are evaluated 

by making use of Taylor's expansion formula. The  results,of the solutions for 

several numerical examples, including van der Polls equation and Duffing's e-

quation and Duffing's equation, prove the excellency of the methods. 

2.2 Slopeline Method 

    This section describes the slopeline method of graphical construction for 

solving certain types of nonlinear differential equations including van der Polls 

equation and Duffing's equation. The basic notions have been in use for some 

time by several investigators [ 1, 2 , 25, 26]. The author is particularly in-

debted to H. M. Paynter for his contribution to this method and its application 

to the hydraulic transient studies (23]. A modification of the basic method 

enables its application to the solution of nonautonomous equations. The sub-

harmonic oscillations of order 1/2 will be studied by this modified method. 

2.2.1 Development of Method 

    As a preliminary example, let it be desired to determine the solution of 

the first-order differential equation 

      dtflt),(2.1) 
with the initial condition that X : Xo at t is to. The incremental relation of 

the variables may be written as

QX = (f' (t) ) aye • At,



where  f(t)) aye — at f of f(t) dt, 
zit = t t - to s small change in t , 

LIX = X1 - Xo s small change in X during the increment dt . 

The basic assumption of the slopeline method lies in the use of the an 

mean for (f(t))ave, i.e., 

(f(t))ave = 2 (to +fr), 
where 

fo =f(t.), and ft =f (ti ). 

Then an approximation QXs for 1x is given by 

ilXs = Cf(to)+ f (to+dt)) dt                                       2 . 

This implies that the trapezoidal method of integration has been employ 

    The approximate increment L1Xs is graphically determined as shown 

2.1. It shows the X , f(t) plane, where the initial points Po(Xo) f( 

and Qo (Xo, 0) are first located. Starting from the point P0 , make t 

e with the vertical line and draw the straight line, i.e., the alopeli 

to intersect the X axis at the point M . The angle a is chosen such 

tang= 2t 

for a predetermined value of At . From M draw another elopeline, mak 

same angle e with the vertical line, to the point P1 whose ordinate F 

(t t) . Then 

QoQ1 = Q0M + MQ1= f (to) *cute + Jar ) tan 0 

=(fott)2. 

                                                   •
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(2.2)

arithmetic 

   (2.3)

       (2.4) 

 jn employed. 

as shown in Fig. 

Po (xo, f (to)) 

  make the angle 

1 elopeline 

,sen such that 

(2.5) 

.ine, making the 

•dints P Q1 is
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 This gives the increment d XS of (2.4). 

     A practical arrangement for carrying out this procedure is illustrated in 

Fig. 2.2. The function f(t) is first plotted on the right-half plane, the co-

ordinates being t and f(t) . The left-half of the figure shows X , f(t) plane. 

The straight line with the inclination of 450 (chain line) plotted in the left-

half plane merely serves to permit the graphical transfer of the X -values from 

the horizontal to the vertical scale and vice versa. The procedure of graphical 

work is as followss 

1. Locate the point Po(to,Xo) , the initial point, in the right-half plane. 

2. From Po draw the lines shown dotted in parallel with the coordinate axes, 

and locate the point Qo (Xo, f o) . 

3. Starting from the point 190, make the angle e with the vertical line and 

draw the slopeline Qo M to intersect the X axis at the point M 

4. Draw the second slopeline from M to Qi whose ordinate is fi = i(tot d t) . 

5. From Qt draw the lines shown dotted in parallel with the coordinate axes, 

and locate Pi(t,,Xi) which is the point on the solution curve at t1 = to+ at . 

6. Find the successive points P2 , P3 ,... on the solution curve by repeating 

the above procedure. 

     The accuracy of this method correspdhds to the precision of the trapezoi-

dal approximation. The errors may be not so small if the curvature of f(t) 

is large and the increment Qt is inappropriately chosen. By making use of 

Taylor's expansion of the increments, we obtain the general expression for the 

local error, i.e., the error committed at each step by 

Es=QXs—dX= 12to'(503+04(109(2.6) 

where the prime refers to differentiation with respect to t and 04(6t) rep-

                                                                                                                                                                                                                   -...
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resents the terms of order higher than the third in  At . Equation (2.6) gives 

a measure of the appropriate increment in the independent variable t . If an 

allowable error Ea, is given in advance, the interval Lit may preferably be 

chosen as 

            (I2E.yk 

The details of error analysis will be described in Appendix II. 

2.2.2 Second-Order Equations of the Autonomous Type. 

    We can obtain graphical solutions for the simultaneous equations of the 

form 

             rt+9(X)-y=0, 
                                                     (2.7) 

dy +4
.(y)+x = 0. 

                dt 

Equations (2.7) may be transformed into the second-order equation 

       dt+ dxclth~dt+9)+x = O.(2.8) 

    Some of the well-known types of differential equations may be represented 

by Eq. (2.8); namelys 

1. Linear equation of the second order

for

d_x ax 
dt2+ dt 

c (s constant), 9(X)

+x +fc = 0, 

4(y) = ky (- content).

(2.9)
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2. Van der Polio equation 

            dt2 2  Ot  -4-  X 
for 

3. Rayleigh's equation 

for 

4. Nonlinear equation of the second order 

cdx d.x +G(x) = 0, 
          670dXdt 

for 
4(x). g(X)1-X, Acy) = /. 

    Figure 2.3 shows the method of graphi 

in the X, y plane for (2.7). The curves 

along the y axis are to be plotted before 

etruction is as followss 

1. Locate the initial point Po(Xo, yo) a 

2. Starting from Po , make the angle 0 

draw the slopeline SL1 to intersect the 

M draw the slopeline S L 2 

3. Starting again from Po , make the angl 

draw the slopeline S L 3 to intersect the 

N draw the slopeline 3L 4 . The inters

graphical co 

curves  3(X) 

beforehand. 

yo) at t= 

e 0 = ta'L        rt 

t the curve 

Bangle 0 w 

t the curve 

intersection

(2.10)

                      (2.11) 

 ,B s constants). 

                      (2.12) 

ii construction of the solution curve 

3(X) along the X axis and --k(y) 

and. The procedure of graphical con-

t= to. 

trtt2with the vertical line and 
irve 6(X) at the point M . From 

6 with the horizontal line and 

Lrve - -k(y) at the point N . From 

;tion pi (Xi, y, ) of 5L4 with Si- a



36

gives the point  P, on the solution curve at t1 - to+ 

4. Repeat the above procedure to find the successive points fl , 

It is clear, from the figure, that 

            QXg=x~—xo= (xi —xm)+(Xm—xo) 

            _(&o-9(Xm))2t401-9(Xm))zt, 
and' 

          Qys=—(xo+4.(yn)) 1—(xi+fi.(yn))Zt. 

These values give a good approximation for the increments QX at 

 2g(Xm)= 9(Xo)+9(X1) and 2A(yn)2-1= PL(ys)+ A(yi) • 

     The local errors in this procedure are estimated to be 

 f(z 
                                                                      x=xo     EX= 12il9(Xo)-yo)+(dy)yo`A(yo)+Xo)+1(d9)(g(Xo)—t                        2dx 

         -2(6~)x=Xo (4 (ge) +Xo) - C(dx /X =XO) 2C9(Xo) - yo) J (dt 

          + 04 Mt), 

     y-- 12 1(A(yo)txo)-ta—)x=XoC9(xo)-yo)+—z~                                   2L(yo)+      9dP                               Z1ovayyo 
        +2(dy)y=yoC9(Xo)—y0)—C(dy)yo) 2((yo)+xo)}(A6 

+ 0+(dt), 

where Ex and Ey are the local errors of the increments &X and 

ively. 

Numerical Example 

    Let us consider van der Polls equation as a typical example.

Ax and

(2.13)

ay  .

0)+2z     dx~xxo(90Xa~-y,)2 

X _z,   )2(9(x0)- yoj j  (6t)3

yo)+  dyjy°yoCklyo)+X032 

yo)2( (yo)t;oh (at)3 

Ax and Ay

since

(2.14)

respect-

Taking the
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parameter /fk = 1.0 in Eq. (2.10), we have 

            dt2 - (i -x2)dt +z = 0,                                                      (2.15) 

or 

             dt—X-3X3+y, 
                                                      (2.16) 

at 

     The curve 9(X) = -X +X3/3 is plotted along the X axis in Fig . 2.4. An 

initial point is prescribed at X = 0, y = 0.05 near the origin of the X ,,y 

plane. Construction then proceeds from this point with e = tan i ft = tart-112_ 
Few slopelines, from the point 1 to 4, are shown by fine lines in a part of the 

figure. The integral curve, on account of the negative damping for small values 

of X , spirals outward and finally moves onto the limit cycle trajectory . Sim-

ilarly, an initial point outside the limit cycle would lead to a curve spiraling 

inward until it would coalesce with the same limit cycle. As the points graph-

ically determined are equally spaced in time t , data from these points are read-

ily transferred to the axes of t and X of Fig. 2.5. The time required for 

the representative point to complete one revolution along the limit cycle is 

6.64, and the amplitude of X is 2.01. These values agree well with the values 

6.687 and 2.009 which were correctly calculated to three decimal places by M. 

Urabe [28]. 

2.2.3 Second-Order Equations of the Nonautonomous Type[7] 

    A modification of the method for autonomous systems enables its extended 

application to the graphical solution of nonautonomous systems such as 

dg, 0,



           dy  +  (y)+  92(x)  =  f(t), 
or 

       1VX
+d9idx+r"+9~(xt92(X)=f(t).       dt2dxdtC57 

Among equations of this type, we have, for examples 

1. Equation with nonlinear damping

e 

         dt+93(x)t+92(x)_f(t), 
for 

93(x)= dX', (y)=0. 
2. Duffing'e equation 

        dtz              adct+92(x) =fit), 
for 

9,(X)= kx (t s constant), f (y) = 

    Figure 2.6 shows the graphical construct 

x my plane for (2.17). The functions 9i(X 

along the y axis are to be plotted beforehan 

1. Starting from the initial point Po , draw 

the curve 91(X). From the intersection draw 

2. Calculate the value of 92(x) for the abet

line SL2 .. Plot 

calculated above. 

3. On one hand, 

f(to) to locate

the curve 1(9 

locate the point 

the point Ro .

  (y) = 0. 

construction 

ions  9l  (x) a 

beforehand. 

Pte. draw th

 

actions gip() along tt 

d beforehand. The pr 

t Po , draw the 

action draw the 

or the abscissa 

on which the abscissa 

Qo (92 (xo), go)
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(2.17) 

(2.18)

(2.19)

                 (2.20) 

of the solution curve in the 

ong the X axis and -)t(Y) 

The procedure is as follows* 

slopeline S L1 to intersect 

slopeline SL2. 

X of each point on the slope- 

soissa of each point is 92(X) 

Shift it to the left by
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4. Starting from Ro draw the line SL3 to intersect the curve  -fay) at the 

point N . From N draw the line SL4  . 

5. Shift SL4 to the right by fat) to obtain the line 5L4 . It intersects 

the curve 92(X) at Qi• 

6. Passing through Qt draw the horizontal line as shown dotted. Its intersec-

tion with S L2 locates the point Pj on the solution curve at tt = to + at . 

7. .Repeat the above procedure to find the successive points on the solution 

curve. 

The construction yields the approximate increments in X and y as given by

a•s "".= C yo 9,(xn()) 6- + C yt - 9i (Xm)) 2 , 

Ys =(f(-to)-92(Xo1-4(yn)) Zt+Cf(ti)-92(xi)— (yn)) Z 

for the change At in t . The local errors are of order higher 

in Qt . 

Numerical Example 

    We deal with Duffing's equation**

     (2.21) 

than the second

 e For practical purpose, reproduce the  alopeline 51-2 and the curve 92(x) 

on another sheet of paper as illustrated in Fig. 2.6 (b). Putting the y axis 

and the line 5L2  in (b) of the figure upon those lines in (a), we can locate 

the intersection Qi of the line SL 4 with the curve 92(X) 
 ** W

e shall deal with Duffing's equation in the following two chapters. Par-

ticularly as for the subharmonio oscillations of order 1/2, refer to Chapter 

III.



with 

or in the equivalent simultaneous form of  el 

d -=-ky-Ixlx+ Bcos2t +Bo . dt 

    Figure 2.7 shows the integral curve wit 

y a 0 at t = 0. The time interval /fit is 

the curve obtained by using an analog compu1 

After a sufficiently long period of time, ti 

to the closed curve shown in Fig. 2.8. Sin( 

sentative point to complete one revolution E 

to twice the period of the external force, E 

1/2 occurs. The time response curves are st 

ically obtained agree well with the curves E 

of analog-computer analysis. 

2.3 Delta Method 

    The delta method or 6 -method for solvi 

tions is described in this section. This me 

and is a generalization of LiJnard's method. 

sion of the basic method, devised to deal wi

dtz+ dt +1x1x = Bcos2t t-Bo, 

B0=0.50, 

equivalent simultaneous form of  equations

 ve with th 

t is n/12 

computer f 

me, the in 

 Since th 

tion along 

roe, a sub 

are shown 

rues shown

  40 

(2.22)

^(2.23) 

h the initial condition Xs0,---t 

 n/12. Also plotted in the figure 

er for the sake of comparison. 

e integral curve ultimately tends 

e the time required for the•repre-

long the closed curve is 2n or equal 

 subharmonic oscillation of order 

own in Fig. 2.9. These curves graph-

hown dotted which are the results

solving second-order differential equa-

is method was formulated by L. S. Jacobsen 

thod. The double-delta method, a exten-

al with equations of a more complicated
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type Will be described also. 

 2.3.1 Development of Method [5, 21] 

    The delta method applies to the solution of differential equations of the 

type 

       azX 
rtttdXt)~(2.24) 

where the function f(d ,X,t ) is continuous and single-valued but may be non-
linear. In applying the method, the equation is rewritten by adding and subtract-

ing a term WA to give 

         dtz+wox+f(d,X,*)-wox = 0.(2.25)               ct 

The term wo X may be separated out of the term f (dt , )C, t ) ; if not, it is 
of a fictitious nature. The constant Wo may be determined by the form'of Eq. 

(2.24) or may have to be chosen from other information. Introducing the new 

variables 't• and 1r defined by 

Z=wot, and U"=dXt(2.26) 

Eq. (2.25) may be written as 

dU' _ x + 6(ir, x, z)(2.27) 
    dXU 

where 6(U,x,t)= J #(wor,X, w)—x.(2.28) CUoz 

The function d (tr, X, t) , in general, depends upon all the variables V, X , and 

  , but for small change in these variables it may be regarded to remain con-



                                                     42 

 etant. This is the basic assumption of the method. If d is constant, the 

variables of (2.27) can be separated and integrated to give 

vet (X+ 6-) 2 = r = constant.(2.29) 

This is the equation for a circle of radius r centered at the point (X = - 6, 

tr.  0); therefore 6 corresponds the displacement of the center of the circle 

in the negative direction of the X axis. This displacement 6 gives the method 

its name. Thus, for a small increment of T, the solution curve may be approx- ' 

imated by a small arc of this circle. 

    The delta method is most immediately applicable to equations with oscilla-

tory solutions. The constant Wo in (2.26) may preferably be chosen equal to 

the frequency of the oscillation, or more generally, Wo should be chosen such 

that the change in 6(11",X,z) should be as small as possible during the process 

of graphical computation. Figure 2.10 shows the graphical construction of this 

method. The procedure is as follows; 

1. Locate the initial point P, (Xo, Uo) at T = To in the X, T plane. 

2. By making use Eq. (2.28), calculate the initial values of 6 . Fix the point 

Q0(- 6 , 0) on the X axis. 

3. Starting from Po draw a short circular arc with its center at Qo. The 

arc Po P1 represents a portion of the solution curve. The arc must be short 

enough so that the change in 6 is relatively small. 

4. Repeat the above procedure to find the successive points on the solution 

curve. 

    The local errors in this procedure are estimated to be

ex=(db)o(ae>3+ 04me),    6di

 (2.30)
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 ttr +-)oO)2~_(_)o(dO)3+  04(A61), J 
   2z) where (1)0 and (di)o stand for (db) and (d-dzz1 at t to respectively, 

and Q9 is the incremental angle of the radius line r for the individual 

circular arc. 

    The increment in time T is readily found in this method . Since T in-

creases in a clockwise direction in the X ,1/- plane , the positive increment 

LO is likewise taken in the same direction. Then .we obtain the following 

relation 

di = — = d0.(2 .31) 

By using this relation, Q9 in (2.30) may be replaced by az which is the 

time increment corresponding to the individual circular aro . 

2.3.2 Modification of Method• 

     In the process of the construction above mentioned, the value of 6 cal-

culated at the beginning of each step is used throughout that interval. Actu-

ally, it is more desirable to use the average values of IT, X , and T existing 

during the increment for calculating the value of 6 . 

    Figure 2.11 shows the graphical construction of higher approximation which 

takes care of this consideration. The point Po indicates the initial condition 

( Xo, Uo ) at Z = To . The procedure is as followss 

1. By using (2.28) calculate the initial value of 6 , and locate the point Qo 

(-6o , 0 ) on the X axis. 

2. Draw the circular arc Po PH with its center at Qo, the incremental angle 

being chosen equal to dt /2.
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3.  Again calculate •C„=& ( IIH, XH, To+ QL/2), where XN, UN are the coordinates 

of the point P14. Locate QN (-6H, 0). 

4. Draw the circular arc P0P1 with its center at PH, the incremental angle 

being equal to ,d t . The arc POPS represents the solution curve during time 

interval dz . 

5. Repeat the above procedure to find the successive points on the solution 

curve. 

    The local errors in this procedure are estimated to be 

EX \               12"00-03+04 far), 1 
                                                     (2.32)           Ev=24\zdzIo(AT)3+04(dZ).f 

In comparison of (2.32) with (2.30), it is clear that the errors, particularly 

error of U7,  are reduced fairly well. The modified procedure may still be ad-

vantageous as compared with the basic procedure using the halved interval it /2. 

Numerical Example 

We consider an example of Duffing's equation 

                      z 

             d.t2+ x + 0.25x3=0.2cos1.2t•(2.33) 

In the equivalent 6 -form this becomes 

du-   xt 6  
dx  u ' 

where(2 ,34) 
6=-0.306x+ 0.114-x3- 0.13? cos z, 

          z=1.2±,v-=GO( .
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    Figure 2.12 shows the phase-plane solution curve with the initial condi-

tion  ):=  0, U = 0 at T = 0. Using the relation (2.31), the phase-plane trajec-

tory may readily be converted to the time-response curve shown in Fig. 2.13. 

The curves obtained by analog-computer analysis are shown dotted in the figures. 

They well agree with the curves obtained by the graphical method. 

2.3.3 Double-Delta Method 

    Let us consider second-order differential equations of the type 

9(d , x,t)dtz+x,t)=0,(2.35) 

where 9 (d7,x,t) is a continuous and single-valued function as well as f(1-, 
x, t ). Dividing throughout this equation by 9 , we obtain the equation of 

the type (2.24); hence we can apply the delta method to its solution. However, 

the graphical construction becomes impractical owing to the presence of the com-

plicated term f/9 • 

    We describe a somewhat different way of graphical construction for solving 

equation (2.35). Through addition and subtraction of the termsdt2 and W0X , 
the equation is rewritten as 

                 Wiz +w°z+f - w2X = 0. 

Introducing the variables 'C and V an defined by (2.26), we have

where
_ 

b2 —

dy _ x+61  
U+ 62 

Woe T (W U', x, o ) - X, 
C9(woV,x,wo)-1)U

 (2.36)
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If these 6 -functions,  Si and 6Z, are assumed to be constant, (2.35) may be 

integrated to give 

(v+ 62)z + (X + 6-1 ) 2 =r2=constant.(2.37) 

This is the equation for a circle of radius r centered at the point (X = 

r= - 62); hence there is no longer the restriction that the center of the cir-

cular arc has to be located on the X axis. See Fig. 2.14. The use of two b - 

functions will save the labour-of calculation as a whole. In this method of 

construction, however, it should be noted that the simple relation between Lit 

and LO as given by (2.31) does not hold. 

Numerical Example 

We consider the response of the L -C-.R series circuit as shown in Fig. 

2.15. Following the notations in the figure, the circuit equation may be 

written as 

      ndt+Rt+ C E,(208) 

where 4 is the magnetic flux in the core L and t is the number of turns of 

the coil wound around the core. The nonlinear characteristic of the core is 

assumed to be 

c, ( tank nt. + c2nt),(2.39) 

where C1 and C2 are constants dependent on the nature of the core. Letting the 

numerical values of the parameters

72=1, 

C,=0.40,

R = 0.20, 

Ca= 0.20,

C= 2.50,
 (2.240)
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we obtain the differential equation 

         (1.2- tank' dX d2XdX 

where X= 4.. 

Equation (2.41) is rewritten in the double-delta form 

dir __ x+61  
dXU+ 62 ' 

where 
Si = 0.5ir-2.5E, 62= 0.211-U•tciotkt r, 

z=t, v-= d. 

The phase-plane trajectories starting from the origin 

in Fig. 2.16 for various values of E. Also plotted 

tories obtained by using an analog computer. They eh 

2.4 Conclusion 

    The results obtained in this investigation are a 

1. The methods have extensive applications to autonoi 

differential equations. Nonlinearity in the equations 

readily as linearity. 

2. First-order equations are solved by the elopeline 

second-order equations; by the delta method only secoi 

dealt with. 

3. In theory, any differential equations of the secoi 

the delta method or the double-delta method. However 

are needed in finding the value of 6 . On the other 1

 EIS

(2.41)

(2.42)

 e origin  (X = 0, V = 0) are shown 

plotted in the figure the trajec-

They show excellent agreement. 

                                                                                                           • on are summarized as follows* 

o autonomous and nonautonomous 

equations can be dealt with as 

lopeline method as well as certain 

nl y second-order equations are 

the second order can be solved by 

However, numerical computations 

e other hand the elopeline meth-
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od, in which the procedure of integration contains only graphical works, is 

restricted to equations of the types as described in Section 2.2. 

4. The methods are relatively simple to apply, even to complicated equations. 

The drafting instruments needed are a scale and a protractor in the slopeline 

method; in addition to them, a compass in the delta method. 

 g. The solution in graphical form is obtained fairly quickly, while the degree 

of accuracy is maintained satisfactorily high for practicable size of steps. 

However, small unavoidable errors at each step tend to accumulate, and the lat-

ter portion of a solution involving long duration is likely to become inaccurate. 

6. The phase-plane trajectory is readily converted to the time-response curve, 

as the time increment for one step of trajectory construction is predetermined 

or measured at once.
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 CHAPT  1 III 

                                     SUB: ARIIO IC OSCILLATIONS Of ORDER ONE HALF 

3.1 Introduction 

    Under the action of a periodic force a subharmonic oscillation, whose 

frequency is a fraction of that of the applied force, may occur in a non-

linear system. In this chapter we shall deal with the system described by 

dz + dz+f(1I)=B cos 2ZtBog(3.1) 
where f(y) characterizes the nonlinearity of the system, and subharmonic 

oscillations of order one half with period 27L will be investigated [8]. 

The steady-state oscillations have been discussed previously by making use of 

Hill's equation as a stability criterion [30, pp. 68-80]. An example of the 

transient state has also been reported [11]. In the present investigation, 

particular attention is directed toward obtaining the relationship between the 

initial conditions and the resulting subharmonic responses. 

Subharmonic oscillations of order 1/2 may occur also in linear systems 

if their parameters vary periodically with time [22]. In a system governed 

by Mathieu's equation 

            dz+(Bo t 281 cos2z-J tr = 0,(3.2) 
where the coefficient of IT varies periodically with the period 1L, an oscil-

lation having the period 27E. will be excited provided that the parameters 90 

and 81 are appropriately chosen. The term "parametric excitation" is ap-

plied to this kind of oscillation [ 51, pp. 308-313, 355-377]. A-practical 
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system designed to approximate (3.2) must contain a nonlinear term which will 

limit the final amplitude of the oscillation, but this need not alter the 

mechanism of build-up at low amplitude. 

    The mechanism of build-up of the 1/2-harmonic oscillation in the non-

linear system described by  (3.1) is, to some extent, similar to that in a 

linear system with parametric excitation. however, subharmonic oscillations 

in nonlinear systems are usually much mcr complicated than those in linear 

systems. Depending on different values of the initial conditions, there 

may be various types of the steady-state responses even in the same system; 

under certain special cases of importance, quasi-periodic oscillations may 

occur where the amplitude of the oscillations vary periodically with time. 

An investigation on quasi-periodic oscillations will described in Chapter V. 

3.2 The Fundamental Equations 

     From a number of experimental observations and a simplified analysis of 

subharmonic oscillations (30, pp. 49-51], it is concluded that a certain re-

lationship may exist between the nonlinear characteristic and the order of 

subharmonics. In order to produce the subharmonic oscillation of order 1/1) 

with 10 odd, for instance, it is to be desired that the power-series expansion 

of f(0) contains the term 111), so that the differential equation takes the 

form 

d2U ~_Zr 
       dzZ + c,Vt U3+... U'r ... E3 cos (3.3) 

When 0 is even, the term sign lI I U 1)I is considered instead of 1/41. The
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 differential equation is then written as 

  dzz')I+•-•_(3.4)          +cur+signtl(vBcosuZ+Bo. 

where the unidirectional component Bois superposed on the periodic force 

BCOS Pz . These statements do not necessarily imply that the form of the 

nonlinearity has to be so chosen in order to produce the desired subharmonic - 

oscillation. Subharmonics with 1) even, for instance, may be found when the 

system is governed by (3.5) [50,7. 80). However, the oscillation thus produced 

is stable for only limited ranges of the system parameters. 

     Since we are concerned with subharmonic oscillations of order 1/2, 

putting V = 2 and omitting the dispensable terms in (3.4), we obtain 

       dzUtat"               +1UILr=[~L3)<z+Bo .(3.5) 
        dZZd"L 

The expression WIT is, however, difficult to handle analytically, so expand-

ing this into the power series in U and taking only the first two terms for 

simplicity's sake, we have 

          clztr 
       dt (3.6)                     dzCirr 03Lr3= 8COS2't+Bo. 

The solution of this equation is assumed to take the form 

V(z)= Z(t) t z(z)sinz ty(t) cost +tecos2t,(3.7)

    The term Bo can be eliminated by rendering the nonlinear term a non-

odd function.



                                                       68 

where only the non-oscillatory term  Z(Z), the subharmonic oscillation X(T)sini 

t y(t)cost, and the oscillation having the applied frequency tffcos 2-C , are 

considered to be of prime importance. The amplitude Uf is further approx 

imated by 

UT=-------B —,6.(5.8) 

This approximation is legitimate in the case when the nonlinearity is stall. 

However, this is still a permissive approximation even when the departure 

from linearity is lar re [ 30, r). 75) 

substituting (5.7) in (5.6) and equatins the coefficients of the terms 

containing cost" and sint and of the non-oscillatory term separately to zero, 
           ** 

we obtain 

      x=2(Ay -1'ex-3c3wyz_I=A(x,J,zi), 

            C-AX-y-3csulxz)=Y(x,y,~-), y-

with

Bo= ciztc3l teat_rz-f- z2-) -  (x,Y,z), 

A=(1—c1)—c3(2tt`t¢rx+.Z2), 

rz xatyz,
 J

(3.9)

     It is tacitly assumed that the damping coefficient is so small that 

the term containing  sin  2t is discarded in (3.7). The non-oscillatory term 

Z(Z) appears when we deal with the subharmonic oscillation of even order 

(0 : even) . 
  ** 

     Here and throughout this chapter dots over a quantity refer to differ-

entiations with respect to the time r.
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under the assumptions that  X(Z),  y(t) , and Z(r) are slowly variable functions 
.. 

of Z so that A:,  y , and Z may be neglected , and that k is a sufficiently 

small quantity and, therefore, f ,.k , kg , and Z may also be discarded. 
    Equations (3.9) play a significant role in the following investigation , 

since they serve as the fundamental equations in studying the transient state 

as well as the steady state of the oscillations. 

3.3 Subharmonic Oscillations of Order 1/2 in the Steady State 

    In order to obtain the relationship between the initial conditions and 

the resulting responses, we have first to investigate the types of the steady-

state oscillations under various combinations of the system parameters; and 

so the 1/2-harmonic oscillations in the steady state will be studied in this 

section. 

3.3.1 Periodic Solutions 

    ''de consider the steady state in which X(Z) , y(Z) , and Z(Z) in (3.7) 

are constant, so that 

        X = 0, y = 0, and Z = 0.(3.10) 

Substituting those conditions in (3.9), the steady-state components re 

(_ tb:oZt,ffo) and Zo of the periodic solution U(Z) are determined by 

A2+ a = (3C3UlZ,o)Z, 

                                                    (3.11)



                                                           70 

                          A~'°        c
jzotC3.( ro`tt7-r0"),:f_- 0 

and the components Xo, uo , of the amplitude re are found to be 

xo=r 9, r (81-7C), 

                                                      (3.12) 
where 

co528=- tiry 
         vzo3 cj urzo 

We see from (3.11) and (3.12) that , if the sign of Bo is reversed, the sign 

of Zo and consequently those of cost 9 and sin20 are also reversed , result-

ing in the shift in 8 by 1/2 radians. Hence, by reversing the sign of Bo, 

the components )Co, are given by 

            yo=rsinai-~z/2;,r~in;at~~.,=~,                            i'(3.13) 

When Bo = 0 in particular, four types of the 1/2-harmonic oscillations exist , 

each differing in phase by 7E/2 radians from the other. 

3.3.2 Stability Investigation 

     In order to investigate the stability of the periodic solutions as given 

by (3.11), (3.12), and (3.13), we consider sufficiently small variations F, , 

17, and ; from the equilibrium state defined by 

          X—Xo, 17=y-y>> s -z- o. (3.14) 

Then, if these variations ;, j, , and /. tend to zero with increasing r , 

the solutions are stable. Substituting (3.14) in (3.9), we obtain
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with

  =  all t a 7~ C ~~i~ J , 

 -.- rC t ass, 

0r = a31 , a32 ~' f(3 , 

a ~=—1(3C3xo .yo                      t")   CX)a2 
c~x!-T3z a  12=~.y(~c2A-2C3 Y02-3ctvzol 

  ax3 0(43h_=-2c3oC r±2zoJ, 
a21_C4)^ [A--2C3xo t3C3wzo3, 
a2z=( Jo =  C2 C3xoyo— )7 
a23 , (aZ)o=2c.3)(0 (- Le- t 2 zo,~ 
a31 —    (3Z)Q=2c3xo (- ur+ 2 z o 3, 
a32—(aZ _3c3 yo(uz+ 2zo), 

   `ay",2 

a33 == ~ aZ — C1 t C3 ` 1 i'o` + Z + 3 zoj,    c~Z)0

 r7    ( wherelaX)o'...,(4)o stand forjx,...,  at X = Xo , J = yo 
The characteristic equation of the system (3.15) is

all - A Q1,2.213 

a21 ct-%tCZ::3 = 0 , 

 a3 i a32 a-33

(3.15)

and .Z = Zo .

(3.16)

or
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        2 _Qilai3 }  I  aza a23ail a1a a13 I  Q3a~ f~-;!/ J~             1 a81 a:73 f iQ32a,33 ,itii ~22Laz3{l'(3.17) 
ail f.z -z .a 

By making use of the Routh-Hurwitz's criterion
, the system (3.15) and conse-

quently the periodic solutions are stable provided that 

a33 > o, 

0.11 1213                        a22a2.3! 
           aQ.313tL a32 a33'n' 

                                                    (3.18) 

an '212 ai3 

az' a22 Q231= L > 0, 
       a31 a32. a_73

J 

The first and the second conditions of (3.18) are fulfilled from the outset , 
because, by (3.15), 

    a33= Cr + c3 C3 rot+ z urz 1- 340j >3,l          

1          I+j  Q22 a23±_---k{c,+c3L3ro2t3w2+3zpJ} <0. a3/ a33 iI a32. a33 IJ 

Hence the third inequality Q > 0 is an essential condition for the stability 

of the periodic solutions. Substitution of (3.15) in the determinant Q 

leads to a lengthy expression; however, by virtue of (3.11) and (3.12), the 

stability condition ultimately leads to 

                                     dBo 6=6c3 r02z01—C1-4C3ro2-3C3zo2)aroz>0,(3.20)
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 It  is, therefore, clear that the characteristic curve ( ro versus Bo) has 

vertical tangents at the stability li:i is d Bootra- 0. 

3.3.3 Numerical Examples 

     In order to present a more concrete description of the 1/2-harmonic 

 oscillations, some representative examples will be given in what follows . 

The nonlinearity in (3.6) is fixed by 

C f-3Cr3 = 0 .31+0.'; U6•(3 .21) 

 The constants Cl, C3 are so chosen that the difference between lulu- and cell-

 +c30 is small enough for the interval of U in which the 1/2-harmonics 

 occur. These characteristics are compared in Fig. 3.1. 

     By making use of (3.11), the amplitude characteristics ( ro versus Bo) 

 are computed for several values of ' and B, and illustrated in Fig. 3.2. 

The stability of the periodic solutions is investigated by (3.20). and the 

result is shown in the figure by distinguishing the characteristic curves with 

full lines and dotted lines corresponding to the stable and the unstable states 

respectively. It will be noticed that, since X = 0 and d= 0 satisfy (3.9), 

VC-0 = Zot W C% 2C is another periodic solution.'de see in Fig. 3.2 that 

various types of the 1/2-harmonic oscillations exist according to the different 

values of the system parameters. They are as follows: 

   Case 1 - = 0.20, b = 1.50, and Bo = 0.50 [Fig. 3.2(b)] 

    There are two 1/2-harmonic oscillations, differing only in phase by 7L 

radians. The periodic solution without 1/2-harmonic (i.e., ro = 0) is readily 

found to be unstable. Therefore all initial conditions lead to the 1/2-

harmonic response.
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    Case  2  - = 0.20, 8 = 0.60 , and 80=0,40 [Fig. 3.2(a)]. 

As.regards the 1/2-harmonic oscillations , the situation is the same as 

 in Case 1. However, the periodic solution with ro = 0 is stable; therefore 

 the 1/2-harmonic oscillation occurs only when the initial condition is proper-

                                               ( 

 ly chosen. 

    Case 3 - = 0.20, 8 = 1.50, and Bo= 0.25 [;ig. 3.2(b)). 

      There are two different values for re ; and, for each of these, two 1/2- 

 harmonic oscillations exist, differing in phase by TC radians. The periodic 

 solution with r0 = 0 is unstable; therefore all initial conditions lead to 

 the 1/2-harmonic response. 

Case 4 - = 0.10, 8 2.00, and Bo= 0 [Fire. 3.2(c)]. 

      There are, as mentioned in Section 3.3.1, four 1/2-harmonic oscillations, 

 each differing in phase by 7E/2 radians from the other. The periodic solu-

 tion with Y = 0 is stable; therefore the 1/2-harmonic oscillation occurs 

 only when the initial condition is properly chosen. 

   Case 5 - = 0.01, B = 1.60, and B0= 0.15 [Fig. 3.2(d)]. 

      There are three different values for r0 ; and, for each of these, two 

 1/2-harmonic oscillations exist, differing in phase by iC radians. The peri-

 odic solution with r = 0 is unstable; therefore all initial conditions lead 

 to the 1/2-harmonic response. 

3.4 Subharmonic Oscillations of Order 1/2 in the Transient State 

 3.4.1 Phase-Plane Analysis 

     As mentioned before, our object is to study the solution of (3.6) in the 

 transient state, which, with the lapse of time, ultimately yields the periodic
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solution. For this purpose it is useful to investigate the  integral curves of 

the following equations derived from (3.9), i.e., 

dy    Y(x, y, 
IA- — X(x,y,z) 

with(3.22) 
             2(1,y,z)=B0. 

One will readily see from the third equation of (3.9) that Z is uniquely 

determined once the values of X and y are given. Since the time Z does 

not appear explicitly in (3.22), we can draw the integral curves in the X , y 

plane. The periodic solutions satisfy the conditions (3.10) and are, therefore, 

expressed by the singular points of (3.22), i.e., by the points at which )((X,y, 

z) and Y (x, y, z) both vanish. 

    Now suppose that an initial condition for the solution of (3.6) is pre- 

scribed by U(0) and 140) ; then X(0) , y(0) , and 2,(0) corresponding to 

this initial condition are determined by (3.7) and (3.9), i.e., 

u(0) = z (0) t 3(0) u,I 

U(o) = 2(0) + x(0) t j(0)=---- x(0), (3.23) 

c,z(0) _ c3 f l 2 wZ+ 2 r2(0)+ 22(0)) z(0)- ''f(x'(0) -yz(0))} = Bo. 

An initial condition is thus prescribed by a point whose coordinates are 

given by X(0) and y(0) in the X,y plane. Then the representative point 

X(Z) ,y(c) moves, with increasing I:,  along the integral curve which starts 

from the initial point X(0), y(0) , and tends ultimately to a stable singular 

point.* Hence the transient•etate solutions are correlated with the integral 

Curves of (3.22), and the time response of U(t) in the transient state



                                                       76 

is obtained by the line integral 

  z= (ds----_.__~  J
X2--------------------(X,zJ-t-,`X, y,Z),cts =~'(4X)Z+(dy)Z(3.24) 

where dS is the line element along the integral curve. 

    The character of the singular point reveals the behavior of the oscil-

lation in the vicinity of the equilibrium state and consequently determines 

the stability of the periodic solution. The stable solution is correlated 

with the stable singular point such that a point X(t), y(t) on the neigh-

boring integral curves tends to it with increasing T. 

    The types of singular points are classified according to the roots A's 

of the characteristic equation (3.17). By use of (3.19), the discriminant 

   of (3.17) becomes

0
ail a13 

a31 a33

     1,2 
az2al 

      (t331 J

a33 (a33 ka 4L). (3.25)

It is also noted, from (3.19), that

     If the integral curve leads to a limit cycle with 

representative point X(t), y(t) moves along the limit 

so that the amplitude and the phase of the oscillation 

periodically, resulting in a quasi-periodic oscillation 

be verified without difficulty that the integral curves 

limit cycle provided that )((x, N, Z) and Y(X,y, Z) are

increasing t , the 

 cycle repeatedly, 

keep on varying 

. However, it will 

of (3.22) have no 

given by (3.9).
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 all a13 a22 a23 

f /y< 0, and a33 > 0. (3.26) Z31a33C -i;32u33 

Hence the singular points of the system (3.22) will be classified as followss 

(1) If D ? 0, and LI > 0, the characteristic roots A are both real and of 

the negative sign, so that the singularity is a stable node. 

(2) If E)›  0, and LI < 0, the characteristic roots A are real but of 

opposite signs, so that the singularity is a saddle point which is intrinsi-

cally unstable. 

(3) If 1:)<  0, the characteristic roots A are conjugate complex, so that 

the singularity is a stable spiral. 

3.4.2 Numerical Examples 

     Since the transient state of the oscillation is correlated with the inte-

gral curve of (3.22), it will be useful and illustrating to show the geo-

metrical configuration of integral curves for representative cases. 

   Case 1 - We first consider the example corresponding to Case 1 in Section 

3.3.3, where the system parameters are given by 

           = 0.20, B = 1.50, and Bo = 0.50. 

As explained in Section 3.3.3, there are two 1/2-harmonic oscillations having 

the same amplitude but of opposite phases. The integral curves for this 

particular case are plotted in Fig. 3.3. As expected, there are three sin-

gularities 1, 2, and 3, the details of which are listed in Table 3.1. 

               Table 3.1. Singular Points of Fig. 72.3
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 Singular

Point xa
Ja z. A<i)liz Classification

 ing
Poi

1

2

3

0.204

-0.204

0

0.900

-0.900

0

0.441

0.4+1

0.603

-0.100 t 0.3701

-0.100 t 0.70i

0.171,-0.371 1.806,-1.806

Stable spiral

Stable spiral

Saddle (unstable)

 ACI,  µ2 are the tangential directions of the integral curves at the singu -

lar points. 

     By (3.9) a representative point X(r),,y(z) moves, with increasing z , 

along the integral curve in the direction of the arrows and tends ultimately 

to one of the stable singularities 1 and 2. Since the distance between the 

singular point and the origin shows the amplitude r0 , the singularities 1 and 

2 represent the 1/2-harmonic oscillations having the same amplitude but of 

opposite phases. The singularity 3, i.e., the origin is a saddle point which 

is intrinsically unstable; the corresponding periodic state cannot be sustain-

ed, because any slight deviation from the saddle point will lead the oscil-

lation to one of the stable spirals. The separatrices, i.e., the integral 

curves which enter the saddle point, divide the whole plane into two regions 

as indicated with different hatches. All integral curves in one of these 

regions tend to the stable singularity which is contained in that region. 

Hence the relationship existing between the initial condition X(0),f(0) 

and the resulting 1/2-harmonic oscillation will be made clear. Since the 

origin is an unstable singularity, all initial conditions lead to the 1/2 

harmonic response.
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 Oase 2 - We oonsider the second example corresponding to Case 2 in Section 

3.3.3, where the system parameters are given by 

=0.20, 8=0.60, and Bo= 0.40. 

As explained in Section 3.3.3, there are, as in Case 1, two 1/2-harmonic oscil-

lations. The integral curves for this particular case are plotted in Fig. 3. 

4. As expected, there are five singularities, 1 to 5, the details of which 

are listed in Table 3.2. 

              Table 3.2. Singular Points of Fig. 3.4

Singular

Point
 Xo y. Zo  A1, A2 µ1, AA2*

Classification

1 0.410 0.384 0.477 -o.loo t 0.183i Stable spiral

2 -0.410 -0.384 0.477 -0.1001.0.183i Stable spiral

3 0.088 0.186 0.617 o.o14,-0.214 1.579,-2.016 Saddle (unstable

4 -0.088 -0.186 0.617 O.o14,-0.214 1.579,-2.016 Saddle (unstable

5 0 0 0.638 -0.009,-0.191 2.555,-2.555 Stable node

 SILT,  2 are the tangential directions of the integral curves at the singu-

lar points. 

    In Fig. 3.4 we see that the singular points 1 and 2 represent the stable 

states of the 1/2-harmonic oscillations which have the same amplitude but 

differ in phase by 7t radians, while the singular points 3 and 4 represent 

the unstable states. Contrary to Case 1, the singular point 5, i.e., the
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origin is a stable spiral. Therefore the conclusion follows that any oscil-

lation starting from a point  (which prescribes an initial condition) in the 

shaded regions leads ultimately to one of the singularities 1 and 2
, result-

ing in the 1/2-harmonic response; and that any oscillation which starts from 

the unshaded region leads ultimately to the origin, resulting in no 1/2- 

harmonic response. 

  Case 3 - The third example corresponds to Case 3 in Section 7.3.3 , where 

the system parameters are given by 

C.20, 8 = 1.50, and Bo=  0.25. 

As explained in Section 3. there are two kinds of the 1/2-harmonic oscil-

lations with different amplitudes. The integral curves for this particular 

case are plotted in Fi. 3.5. There are seven singularities, 1 to 7, the 

details of which are listed in Table 3.. 

               Table 3.3. Singular Points of Fi7. 3.5

 Singular

Point )Co Zo A, A2 A44.02 Classification

1 0.376 0.883 0.265 -0.100 ± 0.0901 Stable spiral

2 -0.376 -0.88, 0.265 -0.100 ± 0.0901 Stable spiral

3 0.586 0.586 0.190 0.098,-0.298 0.156, 5.322 Saddle (unstable)

4 -0.586 -0.586 0.190 0.098,-0.298 0.156, 5.322 Saddle (unstable)

5 0.407 0.176 u.263 -0.100 t 0.055i Stable spiral

6 -0.407 -0.176 0.263 -0.100 t 0.0551 Stable spiral

'



81

 &.Z 0 0 0.37 0.086,-0.286 o.696,-o.696 Saddle (unstable)

   µ   ~Gl.~,2 are the tangential directions of the integral curves at the singu-

lar points. 

    In Fig.  5.5 we see that the singular points 1 and 2 represent the stable 

states of the 1/2-harmonic oscillations having the same amplitude but of op-

posite phases; the same is true for the singularities 5 and 6. The singula-

rities 3, 4, and 7 are saddle points. The separatrices divide the whole plane 

into four regions as indicated with different hatches. Since the origin is 

an unstable singularity like as in Case 1, all initial conditions' lead to the 

1/2-harmonic response. 

    Thus far, the behavior of the nonoscillatory component Z(z) has not 

been illustrated. Since Z(t) also varies as the values of X(t) and '(c) , 

the integral curves are really on the surface which is determined by the third 

equation of (3.9). Fig. 3.6 shows the geometrical configuration of the in-

tegral curves in the X, y , Z space. Their projections on the X, y plane 

are, as a matter of course, the same as the integral curves in Fig. 3.5. 

     By making use of (3.23), the regions of initial conditions and the stable 

singularities in Fi-. 3.5 are reproduced on the U(0), NO) plane as illust-

rated in Fir. 5.7. Since, in the steady state, 

ll(')=xos + -t Zo,                                                      (3 .27) 

the periodic solutions correlated with the stable singularities 1, 2 and 5, 6 

in Fig. 3.5 are. shown by the closed curves I and II, respectively, where the
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 coordinates are to be considered V(t) and O(z) instead of U(0) and 1.7(0) 

 The time required for a point V(t) , ti-(t) to complete one revolution along 

the curve I or II is 27L, or twice the period of the external force . A trajec-

tory which starts from an initial point v-(0) , U(0) in one of these regions, 

 e.g., the region containing the point 1 (or 2) , will tend to the closed curve 

 I; the representative point V(T), 1f(T) in the steady state will then pass 

through the point 1 (or 2) when T = 2nit , l2 being a sufficiently large posi-

tive integer. Similarly, initial conditions in the region containing the 

.point 5 (or 6) will lead the oscillation to the steady state represented by 

the closed curve II, and the representative point V(t) , iT(Z) in the steady 

state will pass through the point 5 (or 6) when T = 2rut. 

   Case 4 - The fourth example corresponds to Case 4 in Section 3.3.3, where 

the system parameters are given by 

= 0.10, B = 2.00, and Bo= 0. 

As explained in Section 3.3.3, there are four 1/2-harmonic oscillations, each 

having the same amplitude but differing in phase by 7L/2 radians from the 

other. The integral curves for this particular case are plotted in Fig. 3.8. 

There are nine singularities, 1 to 9, the details of which are listed in 

Table 3.4. 

               Table 3.4. Singular Points of Fig. 3.8

 Singular

Point zo do zo hi, ha /u1 O t2 Classification

1 0.229 0.789 0.134 -0.050 f 0.140i Stable spiral
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 Pan-
2 .0.229 -0.789 0.134 -0.050± 0.140i Stable, spiral

3 -0.789 0,229 -o.134 -0,050 t o.i4oi Stable spiral

4 0.789 -0.229 -0.134 -0.050 ± 0.140i Stable spiral

5 0.320 0.683 0.093 0.095,-0.195 0.301, 2.434 Saddle (unstable

6 -0.320 -0.6s3 0.093 0.095, -0.195 0.301, 2.434 Saddle (unstable

7 -0,683 0,320 -0.093 0.095,..0.195 -3.322,-0.411 Saddle (unstable

8 0,683 -0.320 -0.093 0.095,-0.195 -3.322,-0.411 Saddle (unstable

9 0 0 0 -0.0501- 0.1171 Stable spiral

T 

   /u1,,2 are the tangential directions of the integral curves at the singu-

lar  points. 

     In Fig. 3.8 we see that the singular points 1, 2, 3, and 4 represent the 

stable states of the 1/2-harmonic oscillations, and that they are equidistant 

and equiangular about the origin. The angular distance between the adjacent 

singular points corresponds to one-half cycle, of the external force. The 

singular points 5, 6, 7, and 6 are saddle points; therefore the correspond-

ing periodic solutions are unstable. Like as in Case 2, the singular point 9, 

i.e., the origion is a stable spiral. Therefore any oscillation starting 

from a point in the shaded regions leads ultimately to one of the singularities 

1, 2, 3, and 4, resulting in the 1/2-harmonic response; however any oscillation 

which starts from the unshaded region leads ultimately to the origin, result-

ing in no 1/2-harmonic response. By making use of the third equation of 

(3.9), the integral curves in the X , y , ; space are calculated and illus-

trated in Fig. 3.9. 

    The regions of initial conditions and the stable singularities in Fig.
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3;8 are reproduced on the U(0), 7r(0) plane as illustrated in Fig. 3.10. 

The periodic solutions correlated with the singularities 1, 2 and 3, 4 are 

also shown by the closed curves I and II respectively, where the coordinates 

are U(Z) , ) c) instead of 110.1) , U(4),. Since these oscillations are the 

1/2-harmonics, the time required for a point LT(C) , (At) to complete one 

revolution along the curve I or II is Zit. The singularity 9, i.e., the ori-

gin of Fig. 3.8 is correlated with the oscillation without 1/2-harmonic re-

sponse; the periodic solution corresponding to it is represented by the 

closed curve III. The time required for a point Lr(zl , 71(r) to complete 

one revolution along the curve III is 7r, or equal to the period of the ex-

ternal force. 

   Case 5 - The fifth example corresponds to Case 5 in Section 3.3.3, where 

the system parameters are given by 

= 0.01, 6 = 1.80, and Bo=0.15. 

As explained in Section 3.3.3, there are three kinds of the 1/2-harmonic 

oscillations with different amplitudes. The integral curves for this partic• 

ular case are plotted in Fig. 3.11. There are eleven singularities, 1 to 11, 

the details of which are listed in Table 3.5. 

               Table 3.5. Singular Points of Fig. 3.11

 .No Lo fit, Az Classificationingular
Point XO

1

2

0.000

-0.000

0.984

-0.981+

0.261

0.261

-0.005 ± 0.4071

-0.005 ± 0.407i

Stable spiral

Stable spiral
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3 -0.850 0.066 -0.053  -0.005  ± 0.2381 Stable spiral

4 0.850 -0.066 -0.053 -0.005 ± 0.2381 Stable spital

5 0.705 0.264 0.012 0.161,-0.171 -0.143f-93.44 Saddle (unstable)

6 -0.705 -0.284 0.012 0.161,-0.171 -o6143,-93.44 Saddle (unstable)

7 -0.769 0.225 -0.015 0.121,-0.131 1.134, 19.60 Saddle (unstable)

8 0,769 -0.225 -0.015 0.121,-0.131 1.134, 19.60 Saddle (unstable)

9 0.209 0.005 0.182 -0.005 t 0.1421 Stable spiral

10 -0.209 -0.005 0.182 -0.005 t 0.1421 Stable spiral

11 0 0 0.211 o.063,-o.073 Saddle (unstable)

 A4,)1.42 are the tangential directions of the integral curves at the singu-

lar points. 

    In Fig. 3.11 we see that the singular points 1 and 2 represent the stable 

states of the 1/2-harmonic oscillations having the same amplitude but of op-

posite phases; the same is true for the pairs of the singularities 3, 4 and 

9, 10. The singularities 5, 6, 7, 8, and 11 are saddle points. The sepa-

ratrices divide the whole plane into six regions as illustrated with different 

hatches. Since the origin is an unstable singularity, like as in Case 1 and 

3, all initial conditions lead to the 1/2-harmonic response. 

3.5 Analog-Computer Analysis 

3.5.1 The fundamental Equation and the Computer Block Diagram 

    As mentioned in Section 3.2, the fundamental equation for subharmonic 

oscillations of order 1/2 is considered in the form
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         7I-+d  JJjI — BcosL -rE;O.(3.28) 

The phase trajectories on the LICe) , U(C) plane and the time-response curves 

( U vs L ) will be sought and compared with foregoing analysis . 

     Fig. 3.12 shows the schematic diagram of the computer connection. The 

symbols in the figure follow the conventional notation .* The nonlinear cha-

racteristic huJIr is readily obtained by the servomultiplier as indicated in 

the figure. 

3.5.2 Computer Solutions 

     Among the numerical examples in Section 3.4.2 , two cases will be investi-

gated by the analog computer. 

  Case 1 - = 0.20, B = 1.50, and 8o = 0.25 . 

    Fig. 3.13 is obtained by the following procedure. A point 1r(0) , Jr(Q) , 

i.e., one of the initial conditions, is first prescribed on the U-(t), U(t) 

plane of the computer recorder. Then the solution curve, i.e., the trajectory 

of the point V(Z) , NT) which starts from the initial point V(0) , 0-(0) 

will ultimately tend to one of the closed curves I and II. By repeating 

this process for different values of the initial conditions, the whole plane 

is divided into four regions; the region containing the point T11 (= 1, 2, 5, 

or 6) is so determined that the representative point V(r), tI(Ti which has 

started from this region passes through the point )ii when T = 2n1L, i2 being

with 

case,

The integrating amplifiers in the 

respect to the machine time t (in 

two times the dimensionless time

block diagram integrate the inputs 

seconds), which is, in this particular 

Z, i.e., t = 2L.



                                                         87 

a sufficiently large positive integer .* 

     Fig. 3.13 shows a satisfactory agreement with the theoretical result as 

given in Fig.  3,7. Therefore the assumptions used in deriving (3.9) may be 

accepted. The time-response curves of the 1/2-harmonic oscillations are 

shown in Fig. 3.14. The calculated curves in Fig. 3.14(a) are obtained by 

substituting the steady-state values X0, go, and Ze of Table 3.3 into 

(3.27). The curves in Fig. 3.14(b) are obtained by making use of the analog 

computer. As indicated in the figure, there are four 1/2-harmonics having 

two different waveforms, and for each of these, two oscillations differing 

in phase by 7C radians. 

   Case 2 - .. = 0.10, B= 2.00, and 8o=  0. 

     Proceeding analogously to a consideration of the first case, we obtain 

Fig. 3.15, which again shows an agreement"with the theoretical result as given 

in Fig. 3.10. Contrary to the preceding case, an initial condition prescribed 

in the unshaded region results in the oscillation without 1/2-harmonic. The 

time-response curves are illustrated in Fig. 3.16. Curves 1, 2, 3, and 4 

show the 1/2-harmonic oscillations; curve 9, the oscillation without 1/2-

harmonic response. 

3.6 Conclusion 

    Subharmonic oscillations of order 1/2 have been investigated. The differ-

ential equation which governs the system takes the form

* 
A cycle indicator which counts every two cycles of the external force 

B cos 2 Z is used for this purpose.



 6u

                  2           ~z rn 
dU tf(v)=Bcas2ttBo, 

where the nonlinear term j-(LT) is given by 

(,r) _ T J t.rfor analog-computer analysis , 

C1 Uf C. I" for phase-plane analysis. 

Particular attention has been directed to the relationship existing between 

the initial conditions and the resulting 1/2-harmonic responses, and the 

examples illustrating this relationship have been given. In addition, Fig. 

3.17 shows a list of representative patterns of the initial conditions which 

lead to the 1/2-harmonic responses. These patterns are explained as follows; 

(a) All initial conditions lead to one of the two 1/2-harmonic oscillations 

    having the same amplitude but differing; in phase by 7E radians. 

(b) Initial conditions lead either to the 1/2-harmonic response or to the 

    oscillation without 1/2-harmonic. The 1/2-harmonic oscillations have 

    the same amplitude but differ in phase by 7C radians. 

(c) All initial conditions lead to the 1/2-harmonic response. The 1/2-

    harmonics have two different amplitudes, and, for each of these, two 

    oscillations exist, differing in phase by it radians. 

(d) Initial conditions lead either to the 1/2-harmonic response or to the 

    oscillation without 1/2-harmonic. The 1/2-harmonic oscillations have 

    the same amplitude, but each differs in phase by 7t/2 radians from the 

    other. 

(e) All initial conditions lead to the 1/2-harmonic response. The 1/2-



89

harmonics have three 

 oscillations exist,

different 

differing

amplitudes 

in phase by

, and, for each of 

11 radians.

these, two



90

 ‘11°.•••

2.5
 I

 I
 I
I

f
I

• I
r2.0

I
I

0.3v+0 .7v3N I
I

15 I
• II

I
I

;4\
Ivly

1.0

0.5
s

0
0 0.5 1.0 .1.5

 v

Fig. 3.1 Plonlinoar characteristic IUIU and its 

power-series expansion.

approximation by



91

1.0

0.5

(a)

0.5

 0,20 

0.60

1.0

1.0

0.5

0

 11

 8  =

(b)

0.5

iQ

0,20 

1.50

1.0

1.0

 i 

 / 

 1  0.5

0

a L
_

(c)

0.5

0.10 

2.00

Bo --,---

1.0

 tea_

0.5

0

(d)

0.5

0.01 

1.80

Bo

1.0

Fig. 3.2 Amplitude characteristica of 1/2-harmonic occillationa.



92

 II

2.0

 LS

1.0

r -;

0

 zz-) 

   -0 .5

-1 .0

-1 .5

) L)

    \\N 
     \\\\ 

\ .\\\ \\\\ . ‘.\\s„s:\‘‘..\\

           \‘-``\
\ ,.-'        \‘‘‘\‘---.\\\',:\       •'\''\\‘\ ,' '''‘\ 

\ X\\'\''' \`\\\ \     \\\,/ 
\,\,-:‘\‘\,,,‘-' 

  /

N

\\\\I 
\\A \ 

 \\\ 
    \'\

2

 .  i.5 0.5 0 0.5 

X---------v^

1.0 '.5 2.0

Fig. 3.3 Integral curves of ('.22) in the X. y plane, the system 

parameters being k=-0.20, 8=1.50,  and Bo= 0.50.



93

 2.0

'1
.

1.0

(0.c

0 

-CO.5

-1;1.0

-11.5

-22.0
-Z .0

Fig. 3.4

c-0.0- 

Inte ,ri l curves of (3.22) in the X , cJ 

parameters being 1=0.20,  B=0.60, and

plane, the 

B0=0.40.

1.5

system

L.0



 94

2.0

1.5

1.0

0.5

0

 --0 .5

--1 .0

--1 .5

--2 .0

• / 

.//f 

/// 

///

       ,,,,„„„/„• \`‘ \ \ \\\ 

'/;Z/:/// 7/ 
/////////': 

    ///////\
\\\\\ \\\\\ 

   ///
//// \\s\                 \\„

, \\\\ 

///////,,//2;\\.\\.:\\N\s•,‘ //////////\\\\\\ ,\\\..,` 
://///// 7///,\\\\‘••••,\\\\\> 

               \\

/ // 

\./ 

. 

           /'/, 
   ,\\-   /\\\ 

               \\\\\N\\\\
\-\\„,\:\•                     „\\ 

      ////\\\\\. •\• 

                \\."

t,',/;;       ,// ///i/1/7 

,,,/,•„-",„ 7,

/ / // 

   \\• ,\ \,\ \     \ \ 
\\•\\ \ \\\        \\ • \*‘• \\•\' \\ 

,\\ \ \ • \ \ \\ \ \\\ 
\\\N \\\\ \\\ ••.\ 
\\ ‘‘‘ \ \ ,\ \\ •‘\

7///z/z//. `s\\.;‘,,\\•:\'\•\\N 
, //'//,,,Ø,//\`‘,.^ \.`''‘‘••‘‘ 

• 

 ,,7 
77 ,//<,/ 

                             '
..\\\\<;\•\,‘ 

      /1%/,''-; -.,//,• ,,, ••;\\\'‘ 
           /%:\:\;/(:,/,////:  // ' '7/ :',1 V ////' % , (/' /A^,\\ \ • 

:‘,:•\‘, \‘‘. \ \•••• , •• _ / /// %.,///                                      / , ,,t „,• ,

                 //jr; ,,4",=•\\\\‘<\\•\\‘`'.‘.2••‘,•             / s. ‘› •^

‘
\\ "\\\ \ \\ \\• '. \ \ , \ \\ ' \ \ •\\ \ ,„) \ \ •• . •\,,, \\\'‘, , \ , \\ \,•\\ \ 'Cs \\‘\‘`..„‘ r— \ \\\\\\ \\''\.\‘‘ D \''`\\\\\N ..,.\\•.\\•\.,:, JZ \\\.\\,,,, \:\::\• ' ,,\'`.C.H.. \\\ \\\\\\       •, , ,,,,), \\\\\\\\\ 

  , \ \\•, '`..\\, \\ ,\., \\ \ \ \\ \ ' \       •• \ • \ \ \ \ \ \ 
L \ : ‘,: ..•, ‘,,, \ • \\ \s --•-•\4.,‘—,-\

         5 \,w\s‘s:..:.\\:.\\ 
     ‘

‘„\.-C,?2\\\\:.\\`‘`,"‘\\\‘`‘'‘‘`,',:- 
                 \\,,‘„,..\\\\\

        

• \ 
\\\ \ \\ \\\\ ///' , , ‘,.\\\:•,‘ \ \ \,••.\\\•:\                       ••>'• ̀ •,‘•      //j/ , \\ ‘\‘‘‘‘‘‘,:s.\ \\ \\.\\\\ -

//////r////%//////'>',C\\\\\\ s\ •\\\\•\\\ r
i%/%//"./. \\N \\\•, \                             \ \ \

  \ \ 
\\ \\ 

\\\\ \\\.\ \\\ 

\\ \\\

\\ \

//
/'',/, v\

      '/// /// , 7•1'. 
           ,///„/":77' \\ 

               /;

    /,;-',;',/,',///71,/'6///// %/: 
                       ',

/,/,,/,;„// 

                                  / 2ft,/\,/

                 •\ .-\

////"//1/;N\\                 ,, 

<<„,•/"://://,//1//:// /1////// /

                         \ \ \ 

                       ‘.\‘ 
                      :*2\•\

\

      // 

////://„;•;;;;,/%//;,/,-) 
\%„/;;/;;;/%,    (///////:'',•;;;/, 
   )///'///////,/';/,-/://-;//,,/     /„///%%;;;////:4

\\\ \ t, \‘`‘ \' \\•\

                             7/ 

      ,'/-';,;//, "/;!,///;'//';;;;////;%/7/ 
                   ;,

     \Ns\ \ \\‘\\

                              \\\‘\\\\‘\\ \s"                         
•\\\ \ \\\ \\' 

                                  ,‘ \•s\ \\\ \ ...„ „v:,                           \ ' \\ \ • 
\\\ •,:, . 

                          V\‘‘\\,\\.‘‘f,,,`\ \\.x:\\\\\                    •\\ \ '' \\ )

;-',1';';';';',;%;///,//- ‘.‘‘\/''t 
„„„,/ ,

„/„,,/„; 

                 .„ ../;;:,:-.:.,... „,//,/,     ,,,,,,, . ‘,..„,\,,,, ,,,..,/,,,  ///'1';//1,\\\// 
;//,//„/:„,//,'',•.,\\\-\,\;',,\O 
‘''''':•\\.\\::,;\:‘,••\\.\\\%<,/,/,/.7-

                              .\\„,• ,,,` \\RN\ /                                           \
, \\.\\\‘‘‘,„\\                   •„.s. • \ „.> / 

                                      ,\\\\\\‘‘,"‘‘ 

                  :^,\\‘'\:\\ //                           • / // 
                       ‘‘s ‘//

/                                                        /
7 

                                 \\\ 

                                     \\\ 

                                      ‘,\ 
\\\

r\s‘.

—2.0 —1.5 —1.0 —0.5 0 0.5 1. 0 1.5 2.0

 Y —

Fig. 3.5 Integral curves of (3.22) in the X , y plonna the system

parri,JA t:.ro being acid Bo 25



0.5

0.4 7

       •. //// 

                / 

  ////~; 
  .,,.,/! ,.

/,/. 
//, 

    //// 
 %//s         7-7/

  \0.3 

    s5;

       \\

\..• 

  \\•,\\\'';%i:;~;;;;'i;,,~,~~//„`\\`\\\\,\\•       \\\\// /~i//i'///////\``\\\~ \

1

//
..,...\___)5////

, •.,

\\

//

%//

1-3//!
~\\-\

i        \\

0
,

 \\\ 1
.0/ A

                      •

^

\ / 

\ 

           \\\\ 
          \\\.\\

\\\\\\\\\\\\              \\\` 
   \ \\\\ \\`\\\\\` 

   \\\\\\\\ \\\' 

   \\ \\\\\\\\\\ 

 ,'\„
\\\\\\\\\\ 

      2.0,E

  \\\ ~\\\\\\\\ 
\\`\\\\

             \'$\\‘'\\\\ \\ '''\<W / / /// 

                           \‘ /y/ ' 
                  --- Pt7\\ .//./

X

j~
\\r

          •

    //, 
\ //,

'//
, 

\\‘‘`• ///           // 
\\\ 

\`\\\///

r

/

z

 /,

2.0

Fig. 3.6 Integral

being

curves

I =0.20,

of (3.22) in

B= 1.50, and

the x

Bo =0.25.

space, the system parameters

Y

'0



96

22.0

11.5

11.0

(0.5

0

 --0 .5

 ----1.0

--1 .5

--2 .0

\\\\ \, 
vv1

'
, / / " ' ///>'777.// 

2,//,';',4//1 

2

 /ice, 

////

/////%//////'//

\\\

//
//// ,,/;I 

(,,/,////

//////7/77//, 

   ////

N'\

  \ \
VA' • \ S\;

///

\\\N\\7 .

j//

A

`•

\\

-2 .0 -1 .5 -1 .0 -0 .5

V

O 0.5 1.0 1.5 2.0

Fig. 3.7 Regions of initial conditions leading to the 1/2-harmonic

responses, and the trajectories of the periodic solutions

correlated with the stable singularities in Fig. 3.5.



97

 

:  ?>

-1

2.0

1.5

1.0

0.5

0

0.5

1.0

1.5

 2.0

.

.•
.•

.••

3. 7

41P.,

• ••

•
•••

1111 '~

N\6.

1

8.4,

v://''./iir

1

2.0 -1.5 -1.0 -0.5 0 0.5 1.0 1.5 2.J

 X

Fig.  3.8 Integral curves 

parameters being

of (3.22) in the X 

         B =2.00,

, g plane, 

and B0=0.

the system



 x

 tz 
0.3

\''''':

0.2

 1,

2

1.0 

4

6

2.0

9

5

c,,

 I1i

/7

{

_
0___

(!

)
|^ 

^

|i 

^ 1
1 I 1

. 

|

i j

 '|| {

}

)

.||(}/|

 Fig. 3.9 Integral curves of (3.22) 

being k x.10, 8 =2.00,

in 

and

the X , y , Z 

6o =0.

space, the system parameters

li 

Y

I+~IiI 
ffl

 ‘0 
Co



99

2.0

1.5

1.0

0.5

 0

 .> 

—0
.5

—1.0

--1
.5

—2.0

a /

2

9

c3'

     

....„,„ ,.......„,  ....,,, 
\\\ \\

I

II

—2.0 —1.5 —1.0 — 0
.5 

  V

I

vh 

\\\

I]

/

.,

III

1  

0 0.5 1.0 1.5

Fig.  3.10 Regions of 

responses, 

correlated

initial 

and the 

with the

conditions leading to the 1/2-harmonic 

trajectories of the periodic solutions 

stable singularities in Fig. 3.8.



100

 f

 2.0

1.5

1.0

0.5

0

: ?, 

-0 .5

-f .0

-1 .5

-2 .01-
  - 2 .0

 //

 / 

 T

.171

 J

11 I

11
.--=1=rxi3=zziz=

( \N\s'. \ \ ,`.\\ - \ s \ \ I I III! _1111h1— I - —4

– 1!
---------4

;rITT'illl^11I11

' \-..\\-,'1 __--11 .
.ka

. ,,, , 1 161 _ IN, ,
‘'‘ \ '' \ , \''\ -;\` 's's
\\\ , \\\ ,, \\ ,`•:-‘,.,,,\ •

\,,, ,\•,:'
,\\‘ --,\\,,,, ,,\ \\\,,,,,\ \s‘ ,*

\\ .;,\\;

II I

I 11
IllillMmum.mumwo

\ ‘`,\, \\\\\ \

\\'` \\\s'

\ \

\\`, \ \
\\ '

\\\ '

\N‘\N`\• `, \\<j

A-1-1

‘
,1 I
•)/_

9

\\,; \,,\\\\\

\k‘

-1 .5 -1 .0 -0 .5   0  0.5 

x
 to 1.5 2.0

Fig. 3.11 Integral curves of (3.22) in the X, 

parameters being {z=0.01, B =1.80, and

plane, the system 

80=0.15.



 11100

0.125 Bo
2.5v(0) 

—25C/

0.5

 -gj

0.5

     Multiplier 

100

0.125B

-100

25v

25v

-25v(0) 

     25v

6.25 M v

;..

 Integrating!, 

Amplifier

—100

-03>-
Summing 

Amplifier

-o-

Potentiometer

Fig. 3.12 Computer block diagram for (3.23).

101



cr  O 

c+ 

O 
CY 
fi 

CD 

m 

0 
sA 

n 0 

'LS 

c+ 
O 
'i 

CD 

1- 
r 

U1 
1.4 
CI 

(D 
O 

• '1J 

W 
• 

•

O 
C] 

0 
0 m 

CD 

c+ 

0 

c+ 

m 
n 

0 
•i 

W 

0 

c+ 

0 

"S 
••• 

0 O 

CD 
0 

w O

oQ 
• 

•

QR 
F'-
O 

m 

0 

r^~ 
I- 
r 

A 
0 

W 
c+ 
i+ 
O 

Cf 

CD 

Oct 

c+ 
0 

C+ 

CD 

N 
1 

>a 

r 
n

N 

O (—Ti O

I v 
O O 

•

O 01

N 

O

N 

O

(j1

  0 

   01 

i

/ / ////

I 
t.;/./ 
,, , ///

.. 
 v..,. t„, 

://
/7/ 
 /^ 

,

                  NJ

     \\\ 

   \\\\\ 
     \\

\\\\ \\\~ \\• 
  \\\w\ 

    \iy

////,j///'i 

\\' ,'////// 7/ 

\\\\\\\~\\~\\/ii //7,/7„iii, /      •\\\\
\\\\\\\\\/~,///iii,/,/,,   \\
\\\\\\\•\\\\ii//////, 
\\\\ \\\\\\\ ////////// / ///////// 

          \\\\\\\.\ 7////l,j/

,      //.

/ ;\\\\\\\\\
 / 
/,/,/ / //- 
/i.///// 
     //,

7////////, 
, //// //// /77/'7'7/i 

                //,',,// /

-   \ \ \1

                    // 

               ///

CT ; r /,

v \

   //„ 

 r\,\/ ./,% 
    \///. /'/` 'i ' 

  j 

     ',//\/}\\
„i

\\\\` ~~' / 
\\ \///// 

   \ \\ \\l/// 7///7, 

   \

  //// - 

/               -~, 

v/i//j//// 

                                / 

                                                /

,

N.)~ 
CD

 \\\\ 

           /

/

  \\\  

        /i:%//////.''.i'/ 

   ,// /// ///, •\ 

     \\ 
., // i/,'.I/ 

      \\\\\// //!•iii//r// 
      5.:.\\:"-\\,...\

i//
i

\   / I 
  \\`

 NT \ \
\\\/7//'/..; 

    ,•.\//7 77/ •\ 
/// /// 

     ‘ , , 7.7 •• 1 
      ,'//\\`.`,'.,q                                           ?;          ///r//

, , \\\ \'.; /

,

..... // /1/ //mss

i

N



 103s .

U 
L 
O 

Ll_ 

ca 

N 

X 
W

 2.0 

 1.0 

  0 

-1 .0 

 -2
.0 

 1.5 

 1.0 

 0.5 

  0 

-0 .5 

-1 .0 

-1 .5

Fig.

0

 J

3.11E

o

6

Q~ 
U 

0 
LL. 

ca 

X 
W

 2.0 

 1.0 

  0 

 -1
.0 

-2 .0 

 1.5 

 1.0 

 0.5 

 0 

-0 .5

-1
.0 

-1 .5

 i 
 i 

i 

6

 'fTTT0 TT 211- 

(a)(b) 

Waveforms of the 1/2-harmonic oscillations in the case when 

i =0.20, B =1.50, and B0=0.25. (a) Obtained by phase-

plane analysis. (b) Obtained by analog-computer analysis.



 104

2.0

1.5

1.0

0.5

0

 •> 
   -0

.5

-1
.0

-1 .5

-2
.0

l

ice"` l 

/1////

%//
;;/

e..<,n N
\ Vil

h......,,,,,s.,
''
''8\N' 'N.)., .`•

/ i''

 /

9
 i,;(.. \ 

.\:,

_ II 1

V:.\)\'
 •

1[ 11

1 - - - H - ' Tj
.:Z---deeL

_'may=
--fi

r

U--

fl

I I

-2 .5 -2 .0 -1 .5  --1 .0 -0 .5 0 0.5 1.0 1.5 2.0

Fig. 3 .1j Regions of initial conditions 1,:Jsdiu to the 1/2-harliLonie 

reoponse and the trajectories of the periodic solutions, 

both obtainsd by rs riosy-coma Bator n r'1y-sis (See Fig. 3.10).



1
 CU 
U 
1— 
0 

LL 

ca 
C 
L 
v— 

X 
W

>

2.0 ^

1.0  I

 0
 I 1

1.0 i i

2.0

1.5
3

1.0

0.5

0

1
rI

gIi
I~

I/
r!

1
1

11.

1

~

I'

0.5

1.0
r

II~C ~~;i\'£
.1

\\

I
I \/

\/

\

\ 
A

1..5

 Fig.

0

3.16

Tr2-rr 

T----0-

   (a) 

Waveforms of the harmonic 

the case when 1 =0.10, B 

phase plane analysis. (b)

0) 
V 

0 
L 

Q.~ 

x 
uJ

-1

 1O5

-1 .5 

0Tr2ir 

T---=°sa 

        (b) 

and the 1/2-harmonic oscillations in 

•
.00, and Bo (a) Obtained by 

Obtained by analog-computer analysis.

2.0

 1.0

0
I a

1.0

2.0

1.5 - 4 _

I

3,,

I

I
6.

I

1.0

0.5

0

~ 1
I 1

1

2
IIe

1 1~
!!
/

I

0.5

1.0

v 1 I;
1 ,

\1,~\e
1

II y~11
I I

e
1 1
1 1

v 1'

i\. i1

1.5



106

      

./i,'//%!i 
      //q~ 

v,~A,.y~.'1/~', 

\~:\\\\\///// ./,..,., 
       ..j/, 

 (a)

 ‘ \ 2s \‘'‘:1:'1:I  ''.).'  s. ' '''' \ \ ' \ 

( 

               )' ": >'''''' • ,:::// '',. 

( b )

\ ~~

  e)-t"

 (d)

16, 
--,--'

/, 
,:', -4 

\ 

     (c)

 %i             ,., __:, ,,,.,,,,,,,,,...,„.....,:„... 

  ':. , ' : ,-,-7,;',1; , ',..,ti_i_)- - - ' ''i 
       li1 ~~ r1-__- il       ;1I_4.(tl11111

__ 

  1  

     iy 

     (e)

Fig. 3.17 Patterns of 

re.iren::e

Initial conditions leading to the l/?-h.^rmonio



 CHAPTER IV 

INITIAL CONDITIONS LEADING TO DIF ri R: TYPL.6 OF F7'SIODIC SOLUTIONS 

4.1 Introduction 

     In the preceding chapter, we investigated the subharruonic oscillations 

of order 1/2 and particular attention was directed toward obtaining the re-

lationship between the initial conditions and the resulting 1/2-harmonic oscil-

lations, Now we are concerned with investigation of such relationship for 

various types of periodic oscillations in systems governed by Duffing's 

equation 

      d2          z-1- zd~ 1 (U) = 9(Z),(4.1) 

where is a constant, f (u-) is a polyr;c!'iiie1 of U , and 9(t) is periodic 

in the time 'C ( 8, 11, 12, 30 ] . 

     The method of analysis is quite different from the method which was used 

i in the preceding chapter. The latter has been extensively used for the study 

of harmonic and subharmonic oscillations in the transient state (30, pp. 81-124; 

11]. Let us take a glance at this method before going into present investiga-

tion. For simplicity we confine the problem to the analysis of harmonic re-

sponse under the impression of the external force 9(e)= Boost, We write 

the solution of (4.1) as 

tr~z) =Y(t)sinz+y(z)cost, 

where it is assumed that the amplitudes X(t) and ;f(t) are slowly varying 

functions of the time 17. Under this condition we may derive a set of simul-

taneous equations of the form 

                            107
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          z=h~-~,j)d=Y(x,y),                                                       (4.2) 
where  )  (X,  y) and Y(x, y) are the polynomials of X and that that may readily 

be found. Upon elimination of in (4.2) . the integral curves, i.e., the 

trajectories of the representative point ( x, y ) , are plotted in the X,/ 

plane. A singular point, for which ,flX,,) = C and )'(X, 0, is correlated 

with a periodic solution of (4.1). For certain values of and 8, there 

exist three singularities, i.e., two stable spirals and one saddle point which 

is directly unstable. The integral curve which tends to the saddle point with 

increasing r is the separatrix which divides the coordinates plane into two 

domains, such that any initial conditions prescribed in each of them will lead 

to a particular type of harmonic oscillation. These domains will be called 

the domains of attraction. 

    This method of analysis is very effective for the study of harmonic and 

subharmonic oscillations in the transient state. However it has the following 

drawbacks. First, if the initial conditions are prescribed at values which 

are far different from those of the steady state, the assumption that the amp-

litude and phase of the oscillation vary slowly does not hold; therefore the 

result obtained by this method is not quite accurate. The second and more 

serious drawback is that, if a number of steady-state responses are to be ex-

pected, this method is practically inapplicable, since the analysis is com-

pelled to resort to the graphical solution in a higher-di_.iensional phase space. 

    The present chapter describes the method of analysis which is applicable 

under such situation. consider the behavior of a point whose coordinates 

are given by U(c) and U(t) in the U , U plane (dots over U refer to dif-

ferentiation with respect to C ). An initial condition is then defined by a
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   point prescribed at  z-.  0. Special attention is directed toward location of 

   the points at the instants of T = 2i , 41c, GTE. ..... h:athematically, these 

   points will be obtained as the successive images of the initial point under 

   iterations of the mapping from "C-,-  L nrt to 2(11+1)7r, where /2 = 0, 1, 2..... 

   As expected from the foregoing analysis for harmonic response , there exist 

   three fixed points, Pj , , and P3, of the mapping corresponding to the peri-

   odic solutions of (4.1) (see Fig. 4.1). P and Pa are stable, while P3 is 

   directly unstable. Through P3 there are two curves, C1 and C2, which are in-

   variant under the mapping. Points on C2 approach e3 under iterations of the 

mapping, while points on CI approach P3 under iterations of the inverse map-

   ping. Hence the successive images of an initial point will tend either to 

Pj or to PZ, depending on which side of C2 is the initial point. Thus the 

    curve C2 is the boundary between the domains of attraction, in each of them 

    any initial conditions leading to a particular type of harmonic oscillations. 

    The behavior of the loci of images is analogous to that of the integral curves 

   in the neighborhood of the saddle point in the X, j plane. 

        The domains of attraction leading to different types of periodic solutions 

   may be determined by the following procedure. 

    1. A periodic solution may be expanded into Fourier series, assuming the har-

   monic or subharmonic frequency as its least frequency. If the periodic solu- 

   tion,either stable or unstable, does exist, the coefficients of the princi- 

   pal terms of the Fourier series may be determined by the method of harmonic

    A similar method of analysis has also been studied by K. W. Blair and 

W. S. Loud [ 4]. The reader is suggested to refer to their paper for the 

mathematical consideration of the analysis.
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 balance. 

2. A small variation g from the periodic solution is governed by the varia -

tional equation of (4.1), i.e ., 

   44,; 
//x            Ctr4qrci;tj 1r=lro0,(/4.3) 

where 170 is the periodic solution. Equation (4.3) takes the form of Hill's 

equation and may be solved by an approximate method. Thus we can distinguish 

between the stable and unstable fixed points and also determine , the slope of 

the invariant curve Ci at the unstable fixed point F3 (see Fig. 4.1). 

3. The boundary between the domains of attraction is invariant curve C2, 

which is the locus of the images that approach the unstable fixed point from 

both sides. These curves are obtained by starting just on either side of the 

unstable fixed point and integrating the original equation (4.1) for decrea-

sing time, i.e., by using negative time in (4.1). A digital computer may be 

used for numerical integration. It is found that, if two initial points are 

prescribed not exactly on C2 but on both sides of C2 sufficiently close to 

each other, the loci of the images which have started these points nearly co-

incide with each other after several iterations of the mapping. 

     Two examples of the domains of attraction are illustrated in the present 

chapter. The first deals with the domains of attraction leading to the har-

monic oscillation and the subharmonic oscillations of order 1/3. The second 

example is concerned with the domains of attraction for harmonic oscillation, 

the subharmonic oscillations of order 1/2 and of order 1/3. 

    The domains of attraction calculated by the above procedure agree well 

with those obtained by analog-computer analysis.
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4.2  Symmetrical system 

     As an example of (4.1) we shall consider Duffing's equation of the form 

               gic.r aU 

iz~.zrU. = 8 c )s --.(4.4)) 

This equation is unchanged if the sign of U is reversed and C is shifted by 

7E radians. Therefore the system governed by (4 .4) will be called the symmet-

rical system. Since the nonlinearity is cubic in ?r , one may expect a period-

ic solution with harmonic frequency or subharmonic frequency of order 1/3 as 

its least frequency. If the system parameters, and B, are appropriately 

chosen, the periodic solution might be assumed to take the form 

uo, c) _= x, S i n r t u, co 3 -c(4.5) 

for harmonic response, and 

=Xi/313;it~ c t c_i CO3 7-ItXT5ir1rt j~c~~~Z (4.6) 

for subharmonic response. Terms of frequency other than those that appear in 

(4.5) and (4.6) are ignored to this order of approximation. It depends on the 

initial conditions that which response, (4.5) or (4.6), will actually occur. 

This problem will be studied in the following sections.

    A subharmonic oscillation of order 1/2 may exist over a smaller range of 

the system parameters. wee Appendix I:I. However, since this type of oscil-

lation is apt to occur when the system is unsymmetrical, this case will be 

deferred to Section 4.5.
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4.2.1 Determination of the Coefficients of the Periodic  Solutions 
    The coefficients of the periodic solutions, (4.5) and (4.6), may be 

determined by the method of harmonic balance. Substituting (4.6) into (4.4) 

and equating the coefficients of the terms containing sinT , cost , sin ? e , 

and cos3Zseparately to zero, we obtain 

2 x1 -Aiyi -y~,;; y1,, -e - 

Di 
               fix;;-y;,~~`~r ,i/JJiti,~i;j/2y~~3 =0, 

                                                     (4.7) 
9xy ~1a~-~~—-~a,-y, 0, 

 where 

A,=1- (k~+L.nj~),~,~,=3-i2R,rf~~i y-                                            i 

R; = -0+ yi`, K1i3 = rpJ - X171,1" 3 

 from which one may derive the relations to determine R, and ho3, namely, 

(9F11n; Av k rf2`l9NT+h'~,~) 
                                                     (4.8) 

           —~~= 0. ~2 ~2 +~1Rik~~{)Ri,~J 
Through use of (4.7) and (4.~) the coefficients of the periodic solutions are 

 found to be 

(cRi r/;1,3) 

                     - (']iiii? -Aujev3) 

 and 

        Xv3=6/3 COS Or,.i,r,~                       ,cos(C~i,~*3ft),43cos(d~;jt7l)I 

                                                         ~



                                                          113 

 .5113 = ll r,5in(9v TC), r~~Sir) (a,,3+ TZ), (4.10) 
where 

     cos3C~,,~ =4(A,,,:t,-ki,1~Sin38~,~ -4(~ext-Avj~,) 9k
,r,,s9R, ru3 

From the second equation of (4,8) one sees that either 

A t-`- $ R,K~~ = 0 or ~i = Q_ 

When F3v3= 0 there will be no subharmonic response, and (4.9) with Rua= 0 gives 

the coefficients of the harmonic oscillation (405).* 

4.2.2 Stability Investigation of the Periodic Solutions 

    The stability of the periodic solution will be investigated by considering 

the behavior of a small variation (c) from the periodic solution V(C). If

 then the amplitude of the harmonic oscillation is not small, the accompa-

nying third-harmonic component is to be considered as well. Several methods 

of improving the approximation were describe? in Chapter I. In this chapter, 

the following procedure is carried out for improvement if necessary. 

    The harmonic oscillation of the second approximation is written as 

uo(z) = (n) tbA r y,/co;z +X; sin 3ctyjco53t, 

where the correction terms associated with R) , by, , x3 , and yj are cony 

sidered to be relatively small. Proceeding in the same manner as before and 

discarding terms of order higher than the first in thx(, , ey) , xy , and y, , 

we obtain a set of linear algebraic equations to determine these correction 

terms.
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the  Variation (Z) tends to zero with increasing r , the periodic solution is 

stable; diverges, the periodic solution is unstable. The variation 

(t) is defined by 

U^:) = U,(Z) r (c) .(4.11) 

Substituting this into (4.4) and introducing a new variable (c) defined by 

<<) e 'r• 2( c),(4 .12) 

we obtain 

         lc-1+iz`r3 ri,`)'L=0.(4.13) 

Inserting Uo(z) as given by (4.6) into (4.13) leads to a Hill's equation of the 

 form 

d`PZ , 

drz +1;0+2 ' ea J (La - :,t)J'~ = 0, 

 where 

     ," ,----(7rL$t Oati-i J e                              ~,2-toll~1~iBnc,'> 
                                                       (4.14) 

els 2(Xl y)/J—Jl'(Ii3+A1,3~1i~%,~~,c=G l~IA1 tyf~li~  ~~~+Zjk3 

Oes = 2 (X1yvj t jlxl,3),0,L _  k-J ,ylJ1/3), 

  035 =0.3C- Al-Jr ). 

By Floquet's theory the solution of (4.14) may be written in the form 

                                                 _a 

            7(Z)cr e;utq (c)(cameCP(C),(4•15)
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where )4( > 0) is the characteristic exponent dependent upon the parameters 3'S
, 

(t) and ,^k Ci are periodic in z , C1 and (-2. are arbitrary constants. From 

(4.12) and (4.15) one sees that the variation (C) tends to zero with increas-

ing Z-,  provided that the damping WE /2 is greater than ,U. Hence the stability 

condition for the periodic solution 7,(z) is given by Upon comput-

ing /'t to a first approximation, this condition leads to [ 17 ;30 , pp. 3-22] 

                        L 

                                                                                        i 

      o -(n`~roo+(~i)J()r(-)8r~,11-=],-, J.(4,16) 

Substituting the narameters (9"5  as given by (4.14) into (4 .16), we obtain 

 (LL     IR~trt4,L"i11- (K1  n~3 t tj >0, for n= 1, 

    (etrsb.~-8)`- nirtu, * l ` 3,for n = 2,(4.17) 
   K~t1(y,-)`—~ f-for n = 3, 

If the condition for IL =rk is not satisfied, the periodic solution, (4.5) or 

(4.6), becomes unstable owing to the build-up of a self-excited oscillation 

having the frequency n/3. 

(a) Harmonic Response 

    Since HI, J= 0 in this case, the first and second conditions of (4.17) are 

satisfied. The third condition is reduced to 

2i/  Ld
1~~-it~2`ti-0.(4.18) 1h 

This is the stability condition for the periodic solution (4.5). 

(b) Subharmonic Response (1/3-Harmonic) 

    For any combinations of ul and hi,, calculated from (4.8), one can verify 

that the second and third conditions of (4.17) are satisfied. By virtue of
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(4.8) the first condition leads to 

 R'i  f  Rv3  -  q > 0.(4.19) 
This is the stability condition for the periodic soluti on (4.6). 

    See Appendix III as for the regions in which the harmonic and 1/3- 

harmonic oscillations are sustained. 

4.2.3 Domains of Attraction leading to Harmonic and 1/3-Harmonic Responses 

    As mentioned earlier in Section 4 .1, the boundary between the two domains 

of attraction for harmonic response is the locus of the images ( Uo(2 n,t 
0-0(2^ti0J that approach the directly unstable fixed point with increasing time. 

This locus may be obtained by integrating the Duffing's equation (4 .4) for de-

creasing time, i.e., by using negative time in the equation. The initial con-

ditions, i.e., the initial points of integration should be on the invariant 

curve Ca and may preferably be close to the unstable fixed point P3 (see Fig. 

4.1). The location of the fixed points may readily be determined from the 

periodic solutions, (4.5) and (4.6), in which the coefficients are to be found 

by using (4.8) through (4.10). The stability of the fixed points will be 

studied by conditions (4.18) and (4.19). We are particularly interested in 

the fixed points that are directly unstable. The slope of the invariant curve 

Czat the unstable fixed point may be determined by the following procedure. 

From (4.12) and (4.15) the variation ,5(Z) from the periodic solution Ub(C) is 

given by 

g(t) = c,e(-` 4*'u)zp(t) t C2e(e-µ)tw(z).(4.20)
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In the neighborhood of the unstable fixed point, the  images on the invariant 

curves C1 and CZ satisfy the condition that 

g(0) .==.5(T) Slc'T)                                ="'( = slope of the invariant curve) , 

where T. 2rr. for harmonic response and T =611 for subharmonic response. Hence 

it follows that either CI or C must be zero. On the invariant curve Q. the 

successive images approach the unstable fixed point with increasing time. 

Therefore these images are represented by the points (5 (n r) , S (n r)) , where 

S(T) is given by 

             g(C)_ ~zC-u)zor). 

Hence the slope of the invariant curve , i.e., the direction. of the boundary 

at the unstable fixed point is given by 

=~~_-1~2t-^.l)(4.21)                                                       (4.21)       x
(01 yo) 

Thus the initial point of integration may be located on the line segment which 

passes through the unstable fixed point with slope D( . 

Numerical Example 

    We consider the Duffing's equation

* 
The reader is suggested to refer to Reference 30, pp. 127-137 for the 

calculation of the characteristic exponent /A. and the periodic function (,(2) 

Lathe solution (4.15). The results of the numerical calculation for the 

particular examples will be shown in Appendix IV.



      

• d-----+0.1~~ fiU3=0.l5cost. 

 For these particular values of the parameters, i.e., it=  0.1 and /3 = 

in (4.4), the periodic solutions, (4.5) and (4.6), are determined from 

(4.9), and (4.10). Their stability is studied by conditions (4.18) and 

The result is shown in what follows. For harmonic response, 

Vol =0.011 sin c-0.15.3 cost, 

voZ=0.9605iaz+ .bNbco5ir0.0195i113c-0.04-0 cos:, , 

11'03 = 0.8065irtt- 0.7 id c* t t- 0.037Lo53Z, 

U01 , 1T02 being stable, while tio3 unstable. For subharmonic response, 

Lr04 0.06.J;;n Lit 0.358co5- c t-0.032siriz-0.180 cost, 

       U05--0.3425 r1kt-0.124co, z+0.o3L5;n2--0.180cost, 

Vo6 = O.ii`18Sin t- O.Z34cos& c t 0.032.sioz —0.180 cast, 

J flog= 0.14i sink 1-0.226 cos z t0.0rhs;nr-0.1111cosz, 

llo8=-0.2111sir1J~-t0.'016cos kCt0.0 sir1 -D.171cost, 

Vo9 = 0.122 -0.242. cos z +0.0255inZ-o.l'llcost,

118

(4.22) 

0.15 

(4.6), 

(4.19).

(4.5) 

tial

These parameters are chosen such that both types of periodic 

and (4.6), exist for (4.22) depending on different values of 

conditions.

solutions, 

the ini-
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 Vibf, uos , Lrofi being stable, while Voq , Jog , iIo9 unstable. 

By use of these values one may readily locate the fixed points in the V, 

jr splane. For harmonic response, the fixed points are invariant under itera-

 tions of the mapping from T = 2rut to 2(nti)z ; while, for subharmonic re-

 sponse, the fixed points are invariant under every third iterate of the map- 

 ping. We are particularly interested in the fixed points that are directly 

;° unstable, since the boundaries between domains of attraction contain such 

,points. The direction of the boundary curve at the unstable fixed point may 

 be calculated through use of (4.21). The fixed points and the related prop-

 erties thus calculated are listed in Table 4.1. 

       Table 4.1 Fixed Points and Related Properties correlated 

                with the Periodic Solutions of (4.22)

Fixed Point Response  Cr a Stability

1 Harmonic -0.153 0.011 Stable

2 Harmonic 0.646 1.016 Stable

3 Harmonic -0.679 0.876 .0.020 Unstable

4 1/3-Harmonic 0.178 0.053 Stable

5 1/3-Harmonic -0.304 -0.082 Stable

6 1/3-Harmonic -o.413 0.124 Stable

7 1/3-Harmonic 0.056 0.075 -0.644 Unstable

8 1/3-Harmonic -0.155 -0.065 -00164 Unstable

9 1/33-Harmonic -o.413 o.o66 0.263 Unbtable

   * a i
s the direction of the boundary curve between  domains

of attraction
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at the unstable fixed  point. 

     The trajectories-, i.e., the loci of the points (u,(t),110(z).), of the sta-
ble solutions are shown in Fig. 4.2. The small circles in the figure indicate 

the location of the fixed points of the mapping. It is noted that the fixed 

points, 4, 5, and 6, correlated with the subharmonic oscillation lie on the 

same trajectory and that, under iterations of the mapping, these fixed points 

are transferred successively to the points that follow in the direction of 

the arrows. Following the procedure as described in Section 4.1, successive 

 images of the mapping for harmonic response are shown in Fig. 4.3. The bound-

ary between the two domains of attraction is shown in thick line, on which 

the image points approach the unstable fixed point 3 (in the direction of the 

 arrows) with increasing time. Also plotted in Fig. 4.4 is the whole diagram 

 of the domains of attraction leading to the harmonic and subharmonic responses. 

 The boundaries between the domains of attraction were obtained by starting 

 just on both sides (in the direction of of ) of the unstable fixed points and 

 integrating (4.22) for decreasing time. Both analog and digital computers 

 were used for this purpose. The domains of attraction for subharmonic rep 

 sponse have narrowing tails as they extend to infinity or as they come close 

 to the domain of harmonic response containing the fixed point 2. Those ex-

 tremely narrow tails are omitted in the figure, since the computation becomes 

 too laborious. 

4.3 Unsymmetrical System 

     We shall consider an unsymmetrical system governed by
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 des dU 

           dzz + fe + 11.3 = B cos 7 t Lao,(4.23) 

 where the unsymmetry appears as the unidire ctional component of the external 

 force. In addition to the responses as mentioned in Section 4.2 , the subhar-
monic oscillation of order 1/2 may also be ex

pected in this case. The period• 
is solution of (4.23) might be assumed to take the f orm 

        Uo1/4t)=XtSinr ty,cosz+z(4
.24) 

for harmonic response, and 

Vo(r)=Xi2 slit 2Zt COS2 z+x,sinz+,9,c'?szt(4.25) 
or 

Uo(t) =X143 S^n i t y els- r 1- xi sin r y, cos-r t- Z.,(4.26) 

                                                                         - for subharmonic response. Since the system is unsymmetrical , the constant term 
Z of zero frequency is added to the solution . If the system parameters, 

8 , and a/, are appropriately chosen, the resulting response will be one of 

the types as given by (4.24), (4.25), and (4.26), depending on different values 

of the initial conditions. 

4.3.1 Periodic Solutions and Conditions for Stability 

    Proceeding analogously to Section 4.2.1, the coefficients of the periodic 

solutions are determined. The conditions for stability of the periodic solu-

tions are also derived by solving the variational equations of the Hill's type.

ed to

Equation 

one with

(4.1) with unsymmetrical 

symmetrical nonlinearity

nonlinearity may readily 

but with unsymmetrical

be transform-

external force.
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(a)  Harmonic Response 

     The coefficients of the periodi
c solution 

       gR,-                    ,~,=BrK^  
where 

AI = 1- ( R, -+- 4.Z ), 

                 R~=r,,Z=Xta1- , Z=L; 

in which the unknown quantities R, and Z may be 

ultaneous equations 

(A,2tft`)R,-(;~ 

    The stability condition of the some kind as 

which we obtain

(4.24) are found to be

determined by

(4.16) may

solving

be derived,

(R, t 2Z -6) 2- 4-kr Z t 4 4 2 0, for n= 1, 

(R, t2Z-3 )2 R` > 0, for rc = 2, 

If the condition for fl =17L is not satisfied, the periodic solution 

comes unstable owing to the build-up of a self-excited oscillation 

frequency M/2. 

(b) Subharmonic Response (1/2-Harmonic) 

    The coefficients of the periodic solution (4.25) are found to

(4fj'r r Kt~~ )

(4.27)

the  sim-

(4.28)

from

(4.29)

(4.24) 

having

be

be-

the

4-E3
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              yl==i+h,rt~_H~,~R~,~_ 

X r4,_ Lo:.) eye , r,;` (4 k  10, 

Y1, .- r)Ova, llj~~ln(V ~~), 

where(4.30) 

Ai= 1- (ICI+Lft,,:+4Z), HI,` =G -(~RItKI~~1-4Z), 

F17 = r _ ~Cly r !it"' 111` _ — .C(;` t J~~, Z _ .Z~f 

COS 20y` —  —( xi rAa~11)= AkLx'/t„!`       6K
I6Rr z 

in which the unknown quantities R1 , Rva , and Z may be determined by solving 

the simultaneous equations 

       (4hI RI -Nye rk )2+ k4(4KI t Ky— 16 L' ̀K, = 0, 

   ti3,;_L4 j6RIZ = O,i(4.31) 

    The stability conditions may also be written as 

! a1 

     (R^tk,,*L%-)~+(K1tK~~_:Krzt36t~,font_, 

    (RI rt 2Z,-I)`-(4-KI4:Kka,+,pAi,4/4„_t-q~),for rZ=2, 

    (RItb:-) 1-ir<r)°Z`0~forrL= 3,          Kr~L, 

          ,~_2. `~~>J,for12=4. 
    (RIt~~W*2U-~l

(4.32)
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If the condition for Yi = n'1, is not satisfied, the periodic solution (4.25) be-

comes unstable owing to the build-up of a self-excited oscillation having the 

frequency rn/4. The condition for n = 4 is superfluous in this particular 

case, since it is always satisfied by the coefficients of (4.25). Therefore 

the conditions for 11. = 1, 2, and 3 must be ascertained for stability of the 

periodic solution. 

(c) Subharmonic Response (l/3-Harmonic) 

    The coefficients of the periodic solution (4.26) are found to be 

          X~ _i  (9Ri tR~;.3) 
             9B 

           y~=-C9"„1r1_;,,~K,,,)~ 9B 

Xv3 = rv.5 X0143 Yjj L.)5(91/..; +n)s 1113 t-36Ouj iL 

           j,,3= (Ili sinA,,s,11,3 Sir) i9,,srr;43 sir)4'),(4.33) 
where 

         Ai = 1-4.iR,t2n~,r4Z), A1i33- 4C2K,+R1l34L 1, 
        z f

in 

the

         -- -.3
p-- 

cos 3:a,,; _-----------------------------9K, ri3                    dlK
, r;s 

which the unknown quantities Kt, 114i, andmay be determined by 

 simultaneous equations 

                                                     1 

      (9A~R~-A,,R,_.)`+-9K1tR,,3)2-81 C./ - 

   A,3-d~1?i/J - 0,r

solving

(4.34)



  If  the 

   comes unstable c 

frequency 

particular 

Therefore 

  of the periodic 

      See Appendi 

  and l 

4.3.2 Domains o 

Harmonic 

       Proceeding 

*plan _ , the doma
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        2(RI  Z) z -13, = O. 
The stability conditions are 

(iiitR^3t2Z- /`-4R~,.~Zt'-2>0 b4-rIfor a = 1, 

 (Rp     I+R~,3+Z-<11—(Ki i—4-t/J 1. liis)fli/J t t31 f Q, for YL = 2, 

(Hi + Kv3 +2Z -4-)2- 4t 1Z + , 0.for rt.= 3, 

    ~2i6(4.35)   f(iKv
st«.-,;-~~4:t8J~i~for n = 4, 

 (HRV3Z-L~)r+j~`>0,forn.=5  t+ 5 1 

(Kt+kb tc:li -a-n~z-LIFc.``~,for n.= 6. 

conditionle  for J2_pt is not satisfied, the periodic solution (4.26) be-

          >wing to the build-up of a self-excited oscillation having the 

tency in/60 The conditions for a.= 4, 5, and 6 are superfluous in this 

.cular case, since they are always satisfied by the coefficients of (4.26). 

Ifore the conditions for IL = 1, 2, and 3 must be ascertained for stability 

Le periodic solution. 

See .x IIIas for the regions in which the harmonic, 1/2-harmonic, 

            oscillations are sustained. 

  Domains of Attraction leading to Harmonic, 1/2-Harmonic, and 1/3Q 

nic as 

Proceeding analogously to Section 4.2.3 we may determine, in the 1,tr 

e. the ins of attraction leading to the respective types of oscil-
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 lations. 

Numerical Example 

We consider the Duffing's equation 

'J.US d r + U3 _ 0.14 cos : r ,).Ov5.(4.%) 
C dZ 

For these particular values of the parameters, i.e., f2 = 0.05, 6 = 0.14, and 

Bo= 0.005 in (4.23),* the periodic solutions are first sought by using the 

relations in Section 4.5.1. Then their stability is investigated also. The 

fixed points of the mapping in the V, L./  plane and the related properties are 

listed in Table 4.2. 

    Table 4.2 Fixed Points and Related Properties correlated 

             with the Periodic Solutions of (4.36)

 **

Fixed Point Response v iI a Stability

1 Harmonic -0,036 0.00 Stable

2 Harmonic 1.111 0.665 Stable

3 Harmonic -0.996 0.513 1.054 Unstable

4 1/2•Harmonic 0.415 0.080 Stable

5 1/2-Harmonic -0.638 -0.001 Stable

6 1/2-Harmonic 0.235 0.166 -0.601 Unstable

     These  parameters are chosen 

(4.24), (4.25), and (4.26), exist 

the initial conditions.

such 

for

that three types of 

(4.36) depending on

periodic 

different

solutions, 

values of
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7 1/2-Harmonic  -0.597 -0.088 2.994 Unstable

8 1/3-Harmonic 0.241 0.027 Stable

9 1/3-Harmonic -0.313 -0.102 Stable

10 1/3-Harmonic -0.371 0.123 Stable

11 1/3-Harmonic 0.045 0.071 -0.674 Unstable

12 1/3-Harmonic -0.187 -0.666 -0.194 Unstable

13 1/3-Harmonic -0.357 0,030 0.199 Unstable

  ** 0( i
s the direction of the boundary  curve between domains of attraction 

at the unstable fixed point. 

    The trajectories of the stable solutions are shown in Fig. 4.5. The 

small circles in the figure indicate the location of the fixed points of the 

mapping. The domains of attraction leading to harmonic, 1/2-harmonic, and 1/3-

harmonic responses are also shown in Fig. 4.6. The boundaries between the 

domains of attraction were obtained by starting just on both sides (in the 

direction of C( ) of the unstable fixed points and integrating (4.36) for de-

creasing time. Similarly to the case of Fig. 4.4, the domain of attraction 

leading to the fixed point 2 exist outside of those domains, but is omitted 

in the figure. 

4.4 Conclusion 

    The domains of attraction leading to the different types of the periodic 

solutions have been determined by making use of the mapping theorem in the 

phase plane. This method of analysis does not resort to the method of varia-

tion of parameters which assume the slowly varying amplitude and phase of the 

oscillation during the transient state. Therefore the results obtained in this 

chapter are superior to those described in the earlier reports 111, 30].
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 CHAP  FCC V 

QUA4-PER1ODIO e,CILLATIONC 

5.1 Introduction 

     When a periodic force is applied to a nonlinear syateLa , the steady-state 

response et-' the system may usually, but not necessarily , be periodic. When 

it is periodic, as described in the two chapters preceding , the fundamental 

period of the response is the same as the period of the applied force or equal 

to an integral multiple of that period. There are also certain special cases 

in which the reeponee of a nonlinear system is not periodic even when subjected 

to a periodic applied force. This chapter deals with the so-called "quasi-periodic 

oscillation" where the amplitude and phase of the oscillation vary slowly but 

periodically in the steady-state [27; 30, 18]. The ratio between the period 

for amplitude variation and the period of the applied force is in general ir-

rational, and thus there is no periodicity in the quasi-periodic oscillation. 

     An experimental investigation has been reported by W. T. Thomson (27] 

concerning the quasi-periodic oscillation in a magnetic amplifier circuit. 

This kind of oscillation also occurs in a logical circuit with parametric ex-

citation and in various systems with nonlinear elr'rn. nts (24; 30, pp. 105-ll6; 

 6; 3 , pp. 283-294). Two representative eas©s of the quasi-periodic oscil-

lation are studied in the pre ent chapter. The first is the case in which a 

harmonic oscillation in a resonant nonlinear circuit becomes unstable and chages 

into a quasi-periodic oscillation.The second case deals with the quasi-periodic 

oscillation which develops from a subharmonic oscillation of order 1/2 in a 

parametric excitation circuit. 

                           134
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 5:2 Quasi-Periodic Oscillations in a Resonant Circuit with D-C Superposed 

    The circuit schematic is shown in Fig . 5.1. Under the impression of a 

sinusoidal voltage Eisinuit, the resulting harmonic oscillation may have one 

of two different amplitudes, depending on the initial conditions . This pheno-

menon is known by the name ferroresonance which occurs owing to the nonlinearity 

of the saturable iron cores LI and L2. Furthermore, when a D-0 bias is su-

perposed as in the figure, a quasi-periodic oscillation may also occur. 

5.2.1 The Circuit Equations 

    Following the notations in Fig. 5.1, the circuit equations may be written 

as follows: 

           d          nca (p,+Oa)fRio? =Elsinwt, 

  d.
(5.1)           ndt~~1-~2)tRzLz=Eo, 

           Ri ER = CfLc at, Li = ER +Le, 

where 0, and 42 are the magnetic fluxes in the cores L, and L2 respectively, 

and It is the number of turns of the coils wound around the cores (the same 

number of turns is assumed for each coil). The nonlinear characteristics of 

the cores are assumed to be 

          c3~13=nL,tni2, c3/2= ail •-nLZ,(5.2) 

where C3 is a constant dependent on the nature of the cores. Introducing the 

dimensionless variables U7 , u2 , VI , UZ , f , , ka , and Z defined by 

t1 = In U.1, Lz =Inu2, 01 - nL1 , 42 =.15nll2 

(5.3)



                         CRz 

and fixing the base quantities ra and i n. in 

Equations  (5.1) and (5.2) may be written in  

Qt-fe,c +a, =Bcost, 

6 + is u2 = Bo, 

and 

trj3= ttie1r23= GCS-6(2 

where 

V+V2 =0., U —V2 =b, 

B=-------nwsin/1+*Bo 
Substituting (5.6) into (5.5), we obtain the s 

peat to the variables Q and b, i.e., 

(L + if et + $ (a2+3b`)Q = B 

t g2(3az+ba)b = Bo. 

Since we are concerned with the harmonic oscil: 

quenoy as the impressed voltage, the variables

 

I  L ' 

=6, 

E0  B
o— nu)I n 

the s imul tan 

I = B cos'c, 

Bo. 

oscillation I 

ables CL and

 simultaneous e! 

    J.3 cos z, 
dation which h 

t and b may
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 (5.4) 

^m as follows:* 

(5.5) 

(5.6) 

(5.7) 

equations with res-

          (5.8) 

has the same fre-

LV be assumed to

     Here and 

4"4"'"3 with

throughout 

respect to

this chapter dots over a quantity 

Z' .

refer to differen-
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take the form 

 a  =  x(z)  sin  z  +  y(z)  cos  z, 

          b = zit), 

where X (2') , 1(r) , and z(r)  

Substituting (5.9) in- to 

 COS Z and Sint  

we obtain 

                                 •  

           X=r-~Xt~ 

        y = C-Ax-1 

with 3 

A= 1- 32(rz. 

under the assumptions that 

of the time Z so that );(e)  

is a sufficiently small quantity 

also discarded. The results which will be o 

for the occurrence of c pronounced 

But, as far as we deal with the harmonic osc 

to be legitimate. 

5.2.2 Periodic 3olutione and 

     We consider the periodic 

are constant, ;n that 

.;(= 0, a - 01 z

(5.9), 

C)areslowly-varying functions of the time C. 

ing the coefficients of the terms 

llatory terms separately to zero, 

               ~,1), 

), 
                                (5.10) 

Zocy,z), 

              ztyz , 

                 ;ZCZ) are slowly-varying functions 

z(C) may be neglected, and that fe1 

ntityandhenceEiit), ki . (r), and ttZ(2) are 

swhichwillbeobtained from (5.10) may not account 

flouncedhigherharmonic or subharmonic oscillation. 

.theharmonicillation, (7.10) may be considered 

ndConditionsforStability 

odicstateinwhich X(t) , y(t), and Z(z) in (5.9)
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Substituting  those conditions in (5.10), th,3 components X0, yo , and 2u of 

the periodic Solution are determined by 

                12,x0-Ayo=B, 

Axo+ yo = ©, 

(5.11) 
16 ke(31-02+ 2zo )zo = Bo, 

with

)            A= 1-~(ro2+4-zo/, rot=X02+'J~/                                       o. 

Eliminating )(o and yo from the first and second equations of (5.11) leads to 

(A2+ , 1z) roa = 62.(5.12) 

Equation (5.12), together with the third equation of (5.11), determines the 

values of ro and Zo, and the components Xo , ''o , of the amplitude ro are 

found to be 

        ~Co ryoA ro2(5.13) 

     The periodic solution, i.e., the equilibrium state of the system (5.10) 

is correlated with the singular point (X0, i0, z0) in the X, y, Z phase 

space. If the singular point is stable, the corresponding periodic solution 

is also stable; if not, it is unstable. The stability of the singular point 

is studied by the behavior of integral curves in the neighborhood of that sin-

gular point. To this end we consider sufficiently small. variations , , 

and G from the equilibrium, state dei i_nod by 

          X-)Col;Z=y_'o,S=.vic.(5.1h)



Then, if 

 solution

with

these variations 
, , and C, tend 

are stable. Substituting (5.14) into 

          + 11 aT35 , 

     = azi lj t a 2.2 1(t a23 5, 

   S = a31S a32 Ili- Q 35, 

      DX  all—13X-)= xoyd iet), 
  a12 ~y )° (A -~6ya), 
  6Z:3=~ax-)3 

a a2]_~Xto=(~A6 X°„ 
azz(-ay)o= 2 (1-3- x°y°- ), 

 a23„(az)= fxozo, 
                      a3f'

\63,/o=-if-f2XoZo, 

  a31==(32 )0--8~xyozo, 
     a2l 

                                  3 

               6 (roa*2z, ),

to zero 

(5.10),

with increasing 

we obtain

 139 

V, the

(5.15)

where 

z.

k ax 
zo.

)n,..., 67)n stand for 7X 
The characteristic equation of

az 

the systems

at X 

(5.15)

Xc, 

ie

7 a y0 , and
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or

where

 an -A 

azl 

a31

61

ba_

a-1z 

a22 -A 

ct32

biA2+

(ail 

all 

a2,

0-13 

 a23 

a33 -)1

bzAtb3=0,

t a22 t a33), 

a12 an a13 

a22 a3, Q33

0,

a22 

'232

a23 

a33

all a12 af3 

         b3 = - a-21 Q22 a23 Q . 

                  a31 a32 a33 

By making use of the Routh—Hurwitz's criterion, the system 

quently the periodic solutions, are stable provided that 

             b1 > 0, 

b,b2-b3>0, 

b3 > 0. 

The first condition of (5.17) is fulfiled from the outset, 

b1=` (alit a22ta33)  2(ro f'2z ) > 0

( 5  15),

because,

and

(5.16)

conse-

(5.17)

by (5.15)

(5.18)
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By  virtue of (5.15) and (5.16), 1)2 end b3 are written as 

        lEz3      6a 4(-f6re{ ,jez(roat-2zo) , 
                                                  (5.19) 

                  r t73.2  b3 =—Q4k2l2(ro21- -~bAro`(roa+6zA)3. 
Substituting (5.18) and (5.19) into the second condition of (5.17) , we obtain 

       ---Ara)d-k fk f 2 ajf 

             2 

                (r2t2zo )-Arazz}>0.(5.20) 

The third condition of (5.17) is rewritten es 

     3~~_!re_Zo)razo462— (_823Aroz/io—P-2 > 0. (5.21) 
  -r328dr62Z_16dza 

    After all, the conditions for stability are given by the inequalities 

(5.21) and (5.22). 

     Numerical analysis of the periodic solutions shows that various types of 

the oscillations exist according to the different values of the system para— 

meters. They are as follows: 

   Case 1 — There exists only on unstable periodic Solution. 

   Case 2 — There exists only one stable periodic solution. 

   Case i — There exist three periodic solutions; one of them is stable and 

the others are unstable. 

   Case 4 — There exist three periodic solutions; two of them are stable and 

the other one is unstable.
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   Case 5 -  `ier€' ~''i . l~i,'t fr'rioilc so1utien ; two of them tire:" .,tlable and 

the others are, unstable. 

5.2.3 Quasi-Periodic Oscifl.etcq,:, 

     As mentioned in the pr ce.,,la ; ; .11~c' ie n, wht n an o_:ci nation iv represent-

ed by a stable sinculnr ie X , cf , Z s7,.,': , the oscillation has invar-

iable amplitude land phaer• anr;i-. in crmtr,i,rl - •.ri th this, ',then 0. representative 

                                       7 point, whoseacoordinate:;~:roXty(t) ,ar,il~-.(.7, icFera s on moving along 

a limit cycle '. ith incrensin,' tii.l' z , the amplitude and phase of the oscil-

lation vary 01' •'1 y but period i cal 1:,; i.e., a qu;' s i -periodic osol nation occurs. 

The ratio betwe-"-.a `.iii' period for l-,plitude vnr.i.r.ticon and the period of the 

applied force is in irrational, and thu.+ there in no periodicity in 

the quasi-p: rio,1 is o^cil.l oti.on. 

     It is very diffieiil I. to disc_ns ri ,orously the existence and the stabi-

lity of limit cycles in gorc.,c01. But, if thero is no stfebl.e singular point 

in a system, no in Case 1 in the precedin.rr section, sae' may presume t there 

evLct-, at 1en.,t ;;t.1•)lo .limit cycle. In order to explain the occurrence of 

the r; Iasi-periodic o:zel? intion in such a system, now we consider a. o1,ecia1 case 

in which re2 end bo 'err, much. less than . Un,t•this condition, one obtains 

Z << X end. Z <:  , so that the behavior of the r(.•pre,:,.n tat Lye point. C x, y, 

z) is first governed by 

       z = Zr-CIXF-/a]+EJ1                                      • =Ll—,`~:t.-IJ ~, 

and the point t"ij~re7~5~')Il,~~ 1}~ nh me en Lie riirr' iiC'Vtn,-el by X - C sad l{0, 

or`//
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During this transient 2'('t) is held nearly constant . After this period X , f 

and Z will all be of the same order in magnitude. In Fig. 5.2 is shown the 

characteristic curve (5.22) for which kj.0 .20 and (3 ..0.50. Also plotted in 

the figure is the curve represented by 

Z = Bo - 16  (3Y44- 222)z = 0,( .5.23) 

for a particular case of B0=. 2. The intersection F) of  these curves repre-

sents an equilibrium state, since the point P is satisfied by (5.11). How-

ever, it will readily be verified by (5.20) that this equilibrium state is un-

stable. Since Z is negative in the region above the curve (5.23) and positive 

below the curve, the representative point will gradually move in the direction 

of the arrows with increasing T. Hence, discontinuous jumps occur at the 

limiting points Q and R , and the representative point keeps on moving near 

the limit cycle represented by the thick line in the figure. 

     The description so far explains the occurrence of the limit cycle for the 

uase in which the system parameters 14 and fro are very small. The shape of 

the limit cycle in an actual system will be different more or less from that 

illustrated in Fig. 5.2. Further, the time required for the representative 

point to complete one revolution along the limit cycle decreases with the in-

crease in2 and (o . A more concrete example of the limit cycle will be 

p.ven in the following section. 

     We confined the consideration to the system where only one unstable equi-

librium state exists. However we cnn expect the wdett_'nce of limit cycles 

also in the system whore the stable equilibrium n at.es exist in addition to 

the unstable ones. We obtained several ololontns of ,,,:ch erases by elaking use
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of an analog  computer . 

5.2.4 Numerical Examples 

    A numerical analysis of the system (5 .10) was carried out for the parame-

ters as given by 

1C1=0.20, ~2mQ.03 B .0.50 , and B0=0.03.(5.24) 

In this case there are no stable equilibrium state. After a sufficiently long 

period of time 2-,  a representative point moves along the limit cycle as illus-

trated in Fig. 5.3 or 5.4. Figure 5.3 shows the projections of the limit cycle 

on the A:,  y and X , Z phase planes, while Fig. 5.4 shows the limit cycle in 

the X, y , Z space. The time intervals between two successive points on the 

curves are 2n or equal to one cycle of the applied force. The time required 

for the representative point to complete one revolution along the limit cycle 

is 20X15.5...; thus a nonperiodic oscillation occurs. Since the projection 

of the limit cycle on the X , s plane does not contain the origin in its inte-

rior, the quasi-periodic oscillation is synchronized with the applied force, 

even though the waveform is affected by amplitude and phase modulation. The 

projection of the limit cycle on the r2, Z2 plane is shown dotted in Fig. 5.2, 

and compared with the limit cycle theoretically obtained under the condition 

that A22. --> 0. 

5.2.5 Analog-Computer Analysis 

     Corresponding to the numerical analysis in the preceding section, the 

case when 

f o .0.20, 2 mO.O j, B •0.50, and 80-0. 05,
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Has investigated. The waveforms of Q. and b in (5.7) are shown in Fig. 5.5. 

The successive points on the curves show the instants when 17.2rLlc, T2 being 
1, 2, 3,•••• We see in the figure that the amplitude and phase of Q , as well 
as the quantity b , vary slowly with the period 2 .)( 17.1.... This fact assures 

the assumption in Section 5.2.1 that the responses may take the form as 

            a = X(z) sin z+y(z) cos z, 

b-z(z), 

where X(t) , y(Z) , and Z(C) are slowly varying functions of time V. 

These quantities X(e) , y(Z) , and Z(t) are evaluated from the waveforms 

of 0. and b , thus we obtain the linit cycle as shown in Fig. 5.6. The nume-

rical solution described in the preceding section is found to be in satisfactory 

agreement with the solution obtained in the present section. 

5.3 Quasi-Periodic Oscillations in a Parametric, Excitation Circuit 

     The circuit schematic is shown in Fig. 5.7. Under the impression of a 

sinusoidal voltage Eisin 2cut, this circuit produces an oscillation which has 

the fundamental frequency U) ,i.e., a subharmonic oscillation of order 1/2. 

The mechanism which produces this kind of oscillation is known as parametric 

excitation, and this principle is applied to logical circuits in digital com-

puters. 

5.3.1 The Circuit Equations 

Following the notations in Fig. 5.7, the circuit equations are written as 

            n~(~~~z).tR1Li=E1sin2~,%~,
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              n(Wi--P2)=- fictt=-R2Ll,  I  >(5 .25) 

i2- Li? +t,C . 

It is assumed that the current to is kept constant owin
g to the high induc-

tance L0. Proceeding analogously to Section 5.2.1, Eqs. (5.25) are trans-

formed into 

a + Bsin 2r, 

b+-k2btu.2=o, 

where 

      L~ = Inu,, iz = Inu2, = Oa = n Ja,(5.26) 

U,+lr2-0., u -U-2—b, t cut, 

wCRi,1  
                                    n uuEr  

                 7~2-w C R
2'B~n 

and the base quantities In and in are fixed by the same equations as (5.4). 

The nonlinearlities of the cores LI an4 L2 are expressed, after normalization 

by 

U3= (to +ultu2, U~ = 1401-ur-1.12,(5.27) 

where io.InUo. By virtue of (5.27), Eqs. (5.26) lead to

    We 

then has

à,+ 8 1ilUa2+ 3b2) a- 8uo) = 

b + fe2b + g (3a2+b2)b =0. 

consider the case in which ki is small. 

an approximate solution

 8s  n2Z, 

 The first

 (5.28) 

equation of (5.28)
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 a=--2cos 2ctao(5.29) 

ao being an integrating constant . The second equation of (5.28), upon sub-

stitution of (5.29), leads to a form of Hill's equation with terms for damping 

and nonlinearity. The solution may have the fundamental period 2n
, i.e., 

twice the period of the applied force. Hence
, an approximate solution for 

(5.28) may be expected to have the ford 

Q=-ur cos 2ttz(-t), w • B ~ (
5.30) 

b =x(r)sirtrty(T) cost , 

where X(C) , y(r_) , and z(t) are slowly varying functions of time T. Sub-

stituting (5.30) into (5.28) and equating the coefficients of the terms con-

taining coS Z and Si^1 r and the nonoscillatory terms separately to zero, 

we obtain 

       x=2-,...2x+ Ay 

y= +$ wxz)`y(x,y,z,), 
(3.31) z._-8 i((3r2t2 ur2tz2)zt¢(x2-y2)ur-8uo7~Z(X,Y,z), 

where
l           A==1 -3z(r2+2ur2f4-z2), r2 xat a. 

It should, however, be remembered that the same assumptions as those mentioned 

in Section 5.2.1 must be made for the derivation of (5.31). 

5.3.2 Periodic Solutions and Conditions for $tabi?tty



     The periodic solution for which the components  X(z) , 4; 

are constant is determined by 

=0, y -O, and Z O. 

Substituting these conditions in (5 .31), the components r0(= A 

of the periodic solution are given by 

A2 .t =($wzo)2, 

                                                2 

            (2roe+2ur2+zo)zot2--r°= 8uo. 
The components Xo, yo , of the amplitude ro are found to be 

x,=ro cos 0, rocps(0+it), 

yo= rosin°, ro sin( OfIt), 

where 

         cos 29 =811,sin 29 =8Fe2.          3
wzo3urzo 

We see from (5.33) that there are usually two 1/2-harmonic perio 

differing in phase by rt radians with the same amplitude, if dete 

two solutions will be called a pair of the 1/2-harmonic solution 

    Proceeding analogously to Section 5.2.2, the stability coed: 

periodic solution are given by 

     iY2Aoro2+lPe~~a~gi(rxtw-2t2z4)+2~e2)(r2+u12+2zo 
        -'6(32-3ro2+12zo)Aor2-&(2rzzo-zpyo)urz} 

and 

   (1-3roe-8zo)zod.'rc~-(1._r2~~ Zzc) 2° 0-121

 • y( r) • and

 148 

z(e)

Yo (-x;tyz) and Zo

(5.32)

'(5 .33) 

rZo 

1/2—harmonic periodic solutions 

amplitudes, if determined. Such 

-harmonic solutions. 

the stability conditions for the

0, 

> O. 1

 (5.34)
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    Numerical analysis of the periodic  solution: shows that various types of 

the oscillations exist according to the different values of the system para-

meters. They are as follows: 

   Case 1 - There are two unstable states of the 1/2-harmonic periodic solu-

tions, differing in phase by n radians. The periodic solution without 1/2-

harmonic (i.e. ro e 0) is readily found to be unstable. 

   Case 2 - There are two pairs of the unstable states of the 1/2-harmonic 

periodic solutions with different amplitudes. The periodic solution with 

ro - 0 is stable. 

   Case 3 - There are two pairs of the 1/2-harmonic periodic solutions with 

different amplitudes; among them only one pair is stable. The periodic solu-

tion with TO = 0 is stable. 

   Case 4 - There are three pairs of the 1/2-harmonic periodic solutions with 

different amplitudes; among them only one pair is stable. The periodic solu-

tion with ro = 0 is unstable. 

Case 5 - There are four pairs of the 1/2-harmonic periodic solutions with 

different amplitudes; among them only one pair is stable. The periodic solu-

tion with Yo A 0 is stable. 

5.3.3 Quasi-Periodic Oscillations 

     A similar procedure to that mentioned in Section 5.2.3 is also applicable 

to the present investigation. We see from (5.31) that Z«.X and Z«y for 

a sufficiently small value of The representative point of the system 

(5.31) approaches the characteristic curve defined by X = 0 and Y. 0, or 

A2 {- kz = ( wz),(5.35)
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and then moves in its neighborhood. Figure 5.8 shows the characteristic curve 

(5.35) for f2.. 0.20 and 8 = 1.00. The points f j and P2 represent the 

equilibrium states which are satisfied by (5.32). Both of these states, ref-

ferring to the stability conditions (5.34), are unstable. Investigating the 

sign of Z along the characteristic curve, the representative point gradually 

moves in the direction of the arrows with increasing Z. Hence, discontinuous 

jumps occur at the limiting points Q and F , and the representative point 

keeps on moving near the limit cycle represented by the thick line in the figure. 

5.3.4 Numerical Examples 

(a) When the system parameters are given by 

-C =0.20,11z =0.20, 8 .1.00, and U0.0.80.(5.36) 

     A numerical analysis was carried out for the system (5.31) by using these 

values of the parameters. The representative point keeps on moving along one 

of the two limit cycles of Fig. 5.9(a) or Fig. 5.10(a). Figure 5.9 shows the 

 projections of the limit cycles on the ):,,y  acid X, Z planes, while Fig. 

 5.10 shows the limit cycles in the XC, y ,z space. The time intervals bet-

 ween two successive points on the limit cycles are 2n or equal to one cycle of 

 the 1/2-harmonic.oscillation. The time required for the representative point 

 to complete one revolution along the limit cycle is rr X 14.8... . 

 (b) When the system parameters are given by 

z 0.20, 8 =1.00, and uo =0.80.(5.37) 

      The limit cycle caluculated with these valuer of the parameters is shown 

 in Fig. 5.9(b) or Fig. 5.10(b). The period of ono revolution along tho limit
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cycle is rtx54.2... 

(c) Comparison of the Two Examples 

     There are two distinctive types of the quasi-periodic oscillation as il-

lustrated in Fig. 5.'Yia) and (b) or 5.10(a) and (b). The type (a1 naa ~.o 

separatelimit cycles which are symmetrically located iOuuc the Z axis. The 

projections of these limit cycles on the ~, , y plane do not origin 

in their interiors. In this case the quasi-periodic oscillation is synchronized 

with the applied force, even thougn the waveform is affected by amplitude and 

phase modulation. In Fig. 5.9(b) two limit cycles are jointed, resulting in 

a single loop; the projection on the ),, y plane contains the origin in its 

interior. The quasi-periodic oscillation in this case is not synchronized 

with the applied force, since one revolution along the limit cycle results in 

the phase shift by 21 radians or two cycles of the applied force. 

5.3.5 Analog-Computer Analysis 

     The waveforms of L,; = iTi -ore) are shown in Fig. 5.11. The successive 

points on the curves indicate the instants when Z = 207L, TL being 1, 2, 3, 

.... Figure 5.11(a) is obtained for the system parameters as given by (5.36); 

the time marks on the curve appear only on the negative side of b . In Fig. 

5.11(b) the system parameters are given by (5.37); the time marks appear al-

ternately on both sides of b . The quantities A(C) , , and Z(L) in 

(5.30) are evaluated from these waveforms and shown in Fig. 5.12. These limit 

cycles agree well with those obtained in the preceding section. 

6. Conclusion 

     The two representative cases of the quasi-periodic oscillations have been



•
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 studied in this chapter. The first is the case in which a harmonic oscillation 

 in a resonant nonlinear circuit becomes unstable and changes into a quasi-

 periodic oscillation. The second case deals with the quasi-periodic oscillation 

 which develops from a  subharmonic oscillation of order 1/2 in a parametric 

 excitation circuit. In short, quasi-periodic oscillations are considered to 

 occur due to the interference between oscillations in a circuit with an applied 

 force and oscillations in a circuit with low impedance elements. 

      The phase-space analysis has been used for the investigation. A periodic 

 oscillation is correlated with a singular point in the phase space, while a 

 quasi-periodic oscillation is represented by a limit cycle. The occurence of 

 the quasi-periodic oscillation has been explained qualitatively with limiting 

 values of the system parameters. The period required for the representative 

 point to complete one revolution along the limit cycle has been calculated for 

  several numerical examples. It is very difficult in general to distinguish 

  with mathematical rigor between a quasi-periodic oscillation and a periodic 

  oscillation with large period. However it might be reasonable to expect a 

  quasi-periodic oscillation provided the period of the amplitude variation varies 

  continuously with change in the system parameters while the period of the applied 

  force is kept constant.
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                            APPENDIX I 

                 CO.LL~L 1yTARY  R1RK3 TO ITERATION 
,METHOD 

      There may be a number of w
ays of the iteration procedure for obt

aining a 

 periodic solution of a differential ecuation
. One of them were explained in 

 Section 1.3 . Here we describe another way which is somewhat different from 

that of Section 1 .3. Let us consider again , as an example, the harmonic solu-

tion for Duffir -'s equation 

t`X 

           It-:l+u'')X+41dX3=urcast,(I.1) 

where iU is a small para .eter . Equation (I.1) is rewritten in the form 

  ~it(1.2) 

We start with the solution* 

as a first approximation. Since this solution is obtained by ignoring the 

right-hand side of (I.2), the difference between Xo(t) and the exact solution 

X(t) would be of order ,U . 

     Inserting xo(t) into the right-hand side of (I.2) we obtain the differen-

tial equation to find the second approximation Xitt) ; namely,

     A term S .'it could be added, but L would turn out to be zero in the 

next step of the iteration process. One could, in fact, show that only terms 

An Lnj rtt with r2 odd would appear in the solution. We shall therefore 

ignore all the sine terms in what follows. 
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    atz  +A,=-/1  /o -!  t&3Aocas3t.(1.4) 

 4 Since the right-hand side of this equation may differ from that of (I .2) by the 

amount of order A(Z, one may expect a second approximation Xi(t) that must be 

correct up to the order of AX. The periodicity condition for X1(t) requires 

that no secular terms should appear in the solution X,(t) ; hence , 

        aAo+4r3Aa-F =0,(1.5) 

which determines the amplitude Ao . Once the relation (I.5) has been satisfied, 

the general solution of (I.4) is found to be 

X~ =  a:XI cos 3-t(1.6) 

where the amplitude A; may be expected to differ from Ao only by the amount 

of order Al. 

     Inserting (I.6) into the right-hand side of (I.2) gives 

        dt2+x2=_u<<ixA,+,aA,j-r)f7Tub`A0A,4)cost 

_,us(A~+hIA( cat~~.1o)COsat 

               j u`B ̀"A /412 c0S St .(I.7) 
                                                          127 

Terms of order higher than ,UZ are omitted in the right-hand side of this equa-

tion. Since the right-hand side of (I.7) may differ from that of (I.2) by the 

amount of order U_3, the third approximation X,(t) must be a correct solution 

up to the order of At. The periodicity condition for x.(9 requires that
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 3-F-r   a/3'1416A,  =0(1.8) 

Bearing in mind that the difference between Ao and Al is of order At
, we 

solve (I.8) for Ai and obtain 

r -(1 .9) 
                  12:? loc+  7 

Therefore we write 

Ui.32~~51 s 
AI( t)=Ao—!L:)_,tt 3VA/3A, COS 3t(1.10) 

     The results obtained by the above procedure agree with the solutions 

obtained by the perturbation method. Refer to Section 1.2.



 APPrENDIX II 

           ANALYSIS OF ERRORS OF GRAPHICAL INTEGRATION METHODS 

     Leaving aside incidental mistakes on the part of the constructor, there 

are essentially several sources of errors in the graphical methods themselves. 

Here we consider the local truncation error, i.e., the error committed at each 

step by use of the approximation, of the methods described in Chapter II. 

II.1 Errors of the Slcpeline Method 

     In the first place, let us consider the graphical process for the first-

order equation described in Section 2.2.1. The change AX for the time interval 

Ai may be expanded in Taylor's series 

/Ix = A'(t))At tL,A"lt,)(3t)`+ti .("(tr,)('ib)3t 04(a).(II.1) 

Substitution of Eq. (2.1) into (II.1) leads to 

A = ¢ovt+2 ~/,'(iit)4+J-0"•(dt)3±04(At).(II.2) 

 On one hand, the approximate- increment it Xs , which is graphically obtained, 

 is written as 

)~]t 

            = + L, ~,'(Lit)2+ 4 t,, • tiit)3+ 0.4.0t).II.3) 

 Then we obtain the general expression for the local error 

            Es — /Jxs—aX = 12j-,"t)~.~(L                       !-~it)•(1I.4) 
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    Next we consider the graphical method for the second-order differential 

equation described in Section 2.2.2. By maing  use of Taylor's expansion for the 

increments, we have 

Ex=iXs-tiA 

= Sm "_ )~ 731(1)x=X0 C9(Xo) -30)(8t)2+ 2 1 fi [ (x))-yo)+(5n - f )• 

           Jlo.(-Sm--3o_S-_      (am)C~~o)y)(~')(d29)-C~~)yo)2(m~')(~~)• 

( (-Mx x.y~ti l ~:x.9cXo)) (at)+ 04(zik), 

Fy - 1-115-1
(II.S) 

     =(sn— 2)tcy)y=yo~ lyo)+x0,k)>G+af6(t)2+-(sm-)• 

(61A-9 )=.c.(3(Xo)—y,)- 5:- f)(dj~)1=y.X°)2 (301— i)(1141 y=yo. 
3(X0)-'Jc,-1-(X,-{-' (1°i 1fit )))r003f 0+Olt. 

with 

Xm =X(to+,JC=m), l~t,~ = >rn fit, 

1L 

yn = Jl,to+LItrl), .'tn = ::,n 

 The coefficients Sm and Sn are found to be 

             Xot)~1Qy1(yf~~)--'°~dt                         ticJs-xa------ 
     =2-8 ---------9cx o)-yo 

(II.6) 

                           C(j~)+Xoj 
          }_yaty(x,)-(dy )y_y°_At+Ozl3t).     ~

n+ e--—~.__$t (yo) t -xo 

 Substitution of Eq. (II.6) into (II.5) leads to the expression of (2.14). 

      Errors of the graphical process in Section 2.2.3 are estimated similarly.
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 IIo2 Errors of the Delta Method 

    We consider the graphical construction procedure illustrated in Section 

2.3.1. The exact increments d X and 617 may be written in Taylor's series 

6X= uO(at)- 2 (Xo+6o)(v c)2-6 (Ua+())o)(az)31 

(II.7) 

         dU=-(Xo+bo)(dt)- 2 (V0+(-do) )(Qr12+6. 

 ( 

            (Xot90i)0 mri3}o¢(hZ)• 
Construction of Fig. 2.10 makes the approximate increments Q XS and Q s as 

Q Xa = Uo (60) - 2 (x o f 5o)(Q9)2— 6 Uo (L10) 3+ 04 (da ), 
(11.8) 

AUs=—(xetSo)(d9)— 1- Uo00)2t 6 (X0+6o)(10)3- (80). 

j By virtue of the relation (2.31), which shows the equivalence of Lc and Le 

the local errors are expressed in the forms of (2.30). 

     In the modified method of Section 2.3.2, the constructed increments are 

found to be 

Qxd = troidt}--24xo+Go)(a-02-6 (vo+4(ab)Jo-cp.+04(At), 

A,(II.9)     UU6=—(Xo+6o)(dO'(To i'(dt)oi(Qt)~ 

CA)0(d di+ 04(6-0. 

     Thus we obtain Egs€(2.32).



 APPENDIX III 

   REGIONS OF PAR =ERS OF DUFFING'S Ec
,,U,TION IN WHICH THE OSCILLATIONS 

                   OF DIFFERENT TYPES ARE SUSTAINED 

     It might be worth-while illustrating the regions of the parameters of 

Duff ing's equation in which harmonic and subharmonic oscillations are obtained 

for the particular examples described in Chapter IV. 

As mentioned in Section 4.2, the periodic solutions (4.5) and (4.6) are 

to be expected for Duffing's equation (4.4). Figure I11.1 shows the regions 

of the system parameters, B and ft., in which harmonic and subharmonic oscil-

lations are obtained. In the area hatched by full lines, one obtains two dif-

                                                                                               * f
erent types of harmonic oscillations, resonant and nonresonant oscillations, 

which one will occur depending on the initial conditions. Outside this region 

the harmonic oscillation is uniquely obtained. The dotted area is the region 

of 1/3-harmonic oscillation. The location of the system parameters in Eq. (4. 

22) is indicated by point P in the figure. 

     Figure I1I.2 shows the region of 1/2-harmonic oscillation for Eq. (4.4). 

In this narrow region 1/2-harmonic response is obtained in spite of the symmetri-

cal characteristic of the system. 

Figures I11.3 and II1.4 show the regions of harmonic and subharmonic solu-

tions for Eq. (4.23) respectively. The variable parameters are B and 80,

* 
     Both of the oscillations 

cy; for convenience' sake, we 

and nonresonant oscillations 

larger or smaller.

have the same frequency as the driving frequen-

 distinguish between them by the terms resonant 

according as the amplitude of the oscillation is 
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while  t is kept constant. It will be obvious from 

the regions of those periodic solutions also appear 

symmetrically about the B -axis. Point Q in these 

of the parameters as given in Eq. (4.36).
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the form of Eq. (4.23) that 

for negative values of 8, 

figures shows the location
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                           APPENDIX IV 

 SOLUTIONS OF THE VA2IATIONA1 , EQUAT I IONS ASSOCIATED 

                      THE UNSTABL FIXED POINTS 

    As mentioned in Chapter IV , the boundary between the domains of attraction 

is the locus of the images that approach the directly unstable fixed point with 

increasing time. The locus may be obtained by integrating Duffing's equation 

for decreasing time. The initial points of integration should be on the line 

segment which passes through the unstable fixed point with slope tX of (4.21). 

In order to compute the direction 0( of the boundary curve, one must determine 

the characteristic exponent At and the periodic function (,0(z) of the solution 

(4.15). These quantities, µ and qi(t) , were calculated by making use of the 

formulas in Reference 30, pp. 127-137. The results cf the computation are shown 

in what follows. 

(1) For the unstable fixed point 3 in Table 4.lt 

    The periodic solution is given by 

t7a3 = 0.8?6 5inT - 0.'116c-0 5r t0.0035/n3c t 0.03g7cos3z. 

The variational equation leads to a Hill's equation of the form 

        +10t2                0L9zc~s(2az-i^n)3 =0, 
       d_z-n_, 

where G
o= 1.745,(IV.1) 

et = 0.94,a, = -1.692, 

02 = 0.071,E2 = 2.861, 

03= 0.001,6i= 1.123. 
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A particular solution of  (I1 .1) is given by 

~(t) = e-'". `cs(L), 

where 

          ,cc = 0.18 1 , 

(1,3(z)= sinfr+i .040) -0.121sin(3r-0.307) 

-0 .005sin(5z+1.494) t 0.003sin('iz-0.123). 

Substituting A., (P3 (0) , and X3;0) as given by (IV.2) into (4.21) we 

ly find the direction 0( of the boundary curve at the unstable fixed 

thus we have 

p(;-0.020. 

(2) For the unstable fixed point 7 in Table 4.1: 

     The periodic solution is given by 

Uo7 _ 0.149 sin IT, 0.22.6 cos k 0•025sift - 0.1'71 cost. 

The variational equation leads to a Hill's equation of the form

where

d`^i,  
dT' 

130 = 

04 = 

0d

e,+ 2z: 

0.153, 

 0,102, 

0.070, 

0,.022,

Ga. cos (2n3- 

       a,

-EJjZ . =0, 

= 1.875, 

= -2.707, 

-0.295.

i 

J
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  (IV.2) 

may  readi-

point 3;

(IV.3)

* Th
e arguments E's are measured in radians.



A particular solution of  (IV.3) is given by 

V-C) = ~ ~~ CC), 

where 

         ~cl = 0.131, 

y'7(t) = Sirtj- i-0.485)-0.1025in(t+i.417) 

           f0.0335in.(3zt 0.618) t 0OQ4s;n(3 1+0.617). 

Substituting (IV.4) into (4.21) we obtain finally 

a =-0.644_ 

(3) For the unstable fixed point 8 in Table 4.1: 

     Since 

Uos(t) - 1/'07(tt27L), 

a particular solution of the Hill's equation associated with Vol(r) 

by 

tZ(Z) = E µ ( (t). 

where 
                          = 0.439, 

q'8(t) = (I)7(z+2a.J. 

Hence 

a--0.164. 

(4) For the unstable fixed point 9 in Table 4.1: 

     Since 

u09(z) = Uo7(z t4n.),

is
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 (1v.4)

given



a particular  solution of the Hill's equation associated with U-01(r) is 

by 

                          7(c) = e-"r• 4)/(t), 

where 

                          AL Q-13q, 

4,9(ti = Y',( r f-4gti. 

Hence 

                              of = 0.263. 

(5) For the unstable fixed point 3 in Table 4.2: 

     The periodic sclution is given by 

0-03 = 0.003 0.399 in.=-0.983c05r-  e5in. t--O.0i6co i. 

The variational equation leads to a Hill's equation of the fore 

         dam? 
t e0 t ` An  - 6n. ) J 7 = 0, 

drn._c. 

where 
Ao = 1.6r 7, 

Ai = 0.009,6r = 2.756, 

ez = 0.923,62 = -0.757, 

Ai _ !'.00014, 6j = 1.966, 

A4 = 0.066,6+ = -1.560, 

195- = 0, 

06 = 0.001,E6 = -2.349, 

A particular solution of (IV.5) is given by 

7(z) = e p3(z), 

1
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given

(1v.5)



where 

 r 
 (y~(L) = 0.006 t Si ,4 (r*3.0,3'i)-0.0.)+ sit ( rr0.5121) 

t 0.I0.,i1(,;,z+I.L5r/)-3.))'/,iit(5r-o.988). J 

Substitutinc (IV. ti) illt• (1,.,'1) we obtain finally 

a - I. vJ4. 

(6) For the unstable fix: rcint 6 in Table 4.2: 

The nericdi.: solution is given by 

                                       i)          bat> = 3.')JI t 3.LJ.JkIa .1:1-0.416,.3.)�1-Z y10.0.J.3,1„ir{.y~                                                                                       1, - 9.L2 

The variational equation leads to a Y111's equation of the form 

  e4            d74 Z, en_o3(eft -Ga))'2 07 

where 
90 = o.436, 

01 = 0.126, a = 2.-'4e, 

             02 = 0.1.:2, E2 = 1. - 2, 

            03 = 0.164,E3 _ .2.768, 

94 - 0.07, 8.4 = 0.312. 

i h particular solution of (IV.7) is given ty 

12(r) - e-1._ 46(-x), 

where 

J4 = 0.196,

 181 

(Iv.6)

1)C~.)Z.

(IV.7)



        4,6fzi = - L).,:.45 r sin (G--0.227)-0.294sin(z+1.074) 

              + 0.334sin(l z-i.134) -0.047si,2(2c-0.400 

               +O.JO.)yin(                          . -c-  0.~,26)+O.0026in(3t+1.168) 

               +-3.301 sin. ( t-1.200. 

Substituting (N.8) into (4.21) we obtain finally 

of = - 0.601. 

(7) For the unstable fixed point 7 in Table 4.2: 

     Since 

1/09i r, = j06( C. + LTL.), . 

a particular solution of tile Hill's equation associated with Uoq(t) i 

by 

^Z(Z) _e_ut•cYq(L), 

where
,LL = 0.i96, 

(i t) = (P6(Z +21.1. 

Hence 
0( = 2.q74- 

(8) For the unstable fixed point 11 in Table 4.2: 

    The periodic solution is Fivon by 

Limon = 0.039 r 0.1`7'is123 L+O.I65cos t+O.9i2Sir2T-0.160cosz 

The variational equation leads to a Hill's equation of the form 

h 

          di-+Leo1-2i~iO,_co5(2a._En))r1=0,
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 (IV.8)

is given
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where 

 = 0.131, 

 81 = 0.028 ,El = 0. 20 

e2 = 0.093,~ 1. `,, I> 

      93 = 0. 1 a,~ 3,1 )70, 

95 _ C, 

                  8e _ 0.:21,t6 = -C.192. 

t: particular solution of (1V.9) is _jiver, by 

%( C) = C; 'P111 0), 

where 
u = 3.14), 

                                               ,I           ~Illc)= - 0.11t:)irt-3.4-J`/) t (1-r - 

                                              - ) .073sirtic )- c-0.653) 

- 0.0-L3 ir< < c  ja(2C+ 1."47) 

i-0.00l k C t-~J.~~I,

Substituting

(9) For the 

     Since

a particular

(iv.io)

unstable

solution

into (4.21) we obtain finally 

                                 = - 

fixed point 12 in Table 4.2: 

   Uo l ~ Cr) L-511( } 2 R) . 

of the Hill's equation associated with

I

U5 .kc) is

(iv.9)

(Iv.lo)

Jiven



by 

 where 

Henc 

(10) For the 

     Since 

a particular 

by 

where 

Hence

unstable 

solution

ice= :?.i40, 

P,2('z)= (pia( +211). 

= -- O. N-1+. 

fi::ed in Table 4,2: 

Uo,S(c)=Lr0 (t+ +2), 

of the Hill's eeuation associated 

Y/(t) 

UGC = 

   ~i~ (Z) = (Po(t+/~) . 

           =

with lfou(c) is

184

given



1. 

2. 

 3. 

4. 

5. 

6. 

 70 

8. 

9.

REFERENCES 

                      A. SCIE TIFIC PHPERS 

Angus, R. 'W.: Waterhammer in pipes , Inst. of Mech. Eng. Proc., Vol. 136, 

p. 245 (1937). 

Bergeron, L.: Du coup de belier en hydraulique au coup de foudre en elec- 

tricitd, Dunod, Paris (1950). 

Bessonov, L. A.: Auto-oscillations in electric circuits containing iron 

cores, Goeenergoizdat, ioscow (1958, in Russian). 

Blair, K. 'w., and W. S. Loud: Periodic solutions of X"+ CX'+9(X) = F f (t) 

under variation of certain parameters, J. Soc, Indust. Appl. Math., Vol. 8, 

pp. 74-101 (1960) . 

Buland, R. N.: Analysis of nonlinear servos by phase-plane-delta method, 

J. Franklin Inst., Vol. 257, pp. .7-48 (1954). 

H&c's, L. V.: Beitrag zur Frequenzanalyse von nichtlinearen Systemen, Fach-

tagung Regelungstechnik, Beitrag Nr. 65, Heidelberg (1956). 

Hayashi, C., and Y. I\ishikawas Graphical solution of nonlinear differential 

equations by slopeline method, Reports of ooc. for the study of Elec. Machines 

for Automatic Control (195, in Japanese). 

Hayashi, C., Y. Nishikawa, and M. Abe: Subharmonic oscillations of order 

one half, IRE Trans. of the Professional Group on Circuit Theory, Vol. CT-7, 

pp. 102-111 (1960). 

Hayashi, C., Y. Nishikawa, and M. Abe: Subharmonic oscillations of order 

one half, Reports of the Annual Meeting of JIEE, No. 48 (1958, in Japanese). 

                       185



10.

11.

12.

13. 

14.

15.

16.

17. 

18.

                                                   186 

Hayashi,  C., Y. Nishikawa, and M. Abe: Subharmonic oscillations of order 

one half, JIECE Reports of the Professional Group on Nonlinear Theory 

(1958, in Japanese). 

Hayashi, C.: Initial conditions for certain types of nonlinear oscillations 

Symposium on Nonlinear Circuit Analysis , Polytechnic Institute of Brooklyn, 

Brooklyn, N. Y., Vol. 6, pp. 65-92 (196). 

Hayashi, C., and Y. Nishikawa: Initial conditions leading to different 

types of periodic solutions for Duffing's equation, International Symp. 

on Nonlinear Vibrations, Academy of Ukrainian 3SR, Kiev (1961). 

Hayashi, C., and Y. Nishikawa: Initial value problem of Duffing's equation 

I, Reports of the Annual Meeting of JIs', No. 30 (1960, in Japanese). 

Hayashi, C., and Y. Nishikawa: Initial value problem of Duffing's equation 

II (unsymmetrical system). Reports of the Annual Meeting of JIEE, No. 31 

(1961, in Japanese). 

Hayashi, C., and Y. Nishikawa: Initial value problem of Duffing's equation 

III (mapping method), Reports of the Annual Meeting of JIEE (1962, in 

Japanese). 

Hayashi, C., and Y. Nishikawas Initial conditions leading to different 

types of periodic solutions for Duffing's equation, JIECE Reports of the 

Professional Group on Nonlinear Theory (1960, in Japanese). 

Hayashi, C.: Stability investigation of the nonlinear periodic oscillations 

J. Appl. Phys., Vol. 24, pp. 344-348 (1953). 

Hayashi, C.: Quasi-periodic oscillations in non-linear control systems, 

International Federation of Automatic Control Congress, pp. 12-16, Moscow, 

(1960).



19. 

20. 

21. 

22. 

 23. 

24. 

25. 

26. 

27. 

28.

                                                   187 

Hayashi, C., and  Y. iishikawa: Quasi-periodic oscillations in nonlinear 

circuits, Reports of the Annual ivieeting of JIEE, No. 6 (1959, in Japanese). 

Hayashi, C., and Y. i'ishiicawa: quasi-periodic oscillations in nonlinear 

circuits, JIECr. Reports of the Professional Group on Nonlinear Theory 

(1959, in Japanese). 

Jacobsen, S. S.: On a general method of solving second-order ordinary 

differential equations by phase-plane-delta displacements, J. Appl. tech, 

Vol. 19, pp. 543-553 (1952). 

Ludeke, C. A.: Nonlinear phenomena, Trans. ASME, Vol. 79, pp. 439-444 

(1957). 

Paynter, H. Ni.: Methods and results from i.. I. T. studies in unsteady 

flow, J. of the Boston Soc. of Civil r.ngineers, Vol. 59, pp. 120-165 

(1952). 

Rjasin, P.: Einstellungs- and Bchwebungsprozesse bei der Mitnahme, J. 

Technical Physics, USSR, Vol. 5 (1935) in Russian). 

Schnyder, 0.: Druckst$sse in Pumpensteigleitungen, Schweizerische Bauzeitung, 

Vol. 94, No. 22 and 23 (1929). 

Sorensen, K. E.: Graphical solution of hydraulic problems, ASCE Proc., 

Vol. 78, Separate No. 116 (1952). 

Thomson. W. T.: Resonant non-linear control circuits, Trans, Amer. Inst. 

Elec. cingrs., Vol. 57, pp. 469-476 (193t). 

Urabe, M.s Periodic solutions of van der Polls equation with damping coef-

ficient A= 0 - 10, IRE Trans. of the Professional Group on Circuit Theory, 

Vol. CT-7, pp. ,62-386 (1960).



29. 

30. 

31. 

32. 

33.

                                                        188 

                        B. BOOKS 

Cunningham, W. J.: Introduction to nonlinear analysis,  McGraw-Hill Book 

Co., New York (1958). 

Hayashi, C.: Forced oscillations in nonlinear systems, Nippon Printing and 

Publishing Co., Osaka, Japan (1953). 

Minorsky, N,: Introduction to nonlinear mechanics, J. W. Edwards, Ann Arbor 

(1947). 

Stoker, J. J.: Nonlinear Vibrations, Interscience Publishers, New York 

(1950) . 

Duffing, G.1 Erzwungene Schwingungen bei vertinderlicher Eigenfrequenz and 

ihre technische Bedeutung, Sammlung Vieweg, Braunschweig (1918).




