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ABSTRACT 

     Nonequilibrium effects in supersonic nozzle flows are 

important in various technical applications such as propulsion, 

hypersonic wind tunnel testing, and simulation of streamtube 

flows occuring about a body in hypersonic flight. This report 

discusses such effects with emphases on analysing subsonic 

regions and on investigating roles of entropy in analyses of 

nonequilibrium nozzle flows. 

     The scope is limited to homogeneous gas-phase nozzle flows. 

Effort is mainly devoted to investigation of the effects of 

departure from thermochemical equilibrium  arising from col-

lisional relaxation of internal degrees of molecular excitation 

and from chemical reaction, including ionization. 

     Since the phenomena to be discussed in this report often 

involve considerable algebraic complexity. the description of 

the purely gasdynamic aspects of the flow is made as simple 

as possible. And the flow is treated as a continuum, and the 

equations of steady, quasi-one-dimensional adiabatic flow are 

used throughout. 

      In the gas-phase continuum regime, inviscid flows are con-

sidered, and nonequilibrium phenomena associated with classical 

viscous effects, condensation, rarefied gasdynamic effects, 

radiation are not investigated. 
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INTRODUCTION 

     Expansion nozzles are used in many types  of equipment to 

accelerate gases to high velocity or high Mach numbers. A 

very wide range of physical and chemical processes may be in- 

duced in a gasas a result of its rapid expansion through a 

nozzle, and departure from thermodynamic equilibrium can occur 

in any of these processes. Nonequilibrium effects in nozzle 

flows have long been investigated in the propulsion field be-

cause of the thrust loss resulting from chemical nonequilibrium 

occurring in the nozzle expansion process. 

     Nonequilibrium phenomena in a nozzle flow are also of im-

portance in connection with hypersonic wind tunnel testing. Re-

cently the conventional experimental tools such as supersonic 

and hypersonic wind tunnels have been used extensively for 

investigating many special problems arising in various fields 

such as chemistry, physics, fluid dynamics and astrophysics. 

These tools make use of nozzle expansions of gas from high-

tempetature conditions where the gas is often highly dissociated 

or ionized. Usually some degree of freezing may occur in the 
           1) 

nozzle expansion, which produces a test gas-flow which is not 

in an equilibrium state. In almost all cases, it is quite un-

desirable as it complicates interpretation of test data and may 

prevent proper simulation. 

     Furthermore the significance of nonequilibrium nozzle 

flows is emphasized by the fact that the thermo-gasdynamic en-

vironment occurring along the nozzle axis is representative of 

that occurring along stream tubes undergoing expansion about a 

body in hypersonic flight. However the available experimental 
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data on the expansion of dissociated or ionized gases in a 

nozzle or over a body are still not enough. 

     Since the phenomena to be discussed in this article involve 

considerable algebraic complexity, the description of the purely 

gasdynamic  aspects of the flow is made as simple as possible. 

Therefore the flow is treated as a continuum, and the equations 

of steady, quasi-one-dimensional adiabatic flow are used through-

out. 

     Three types of solution to nonequilibrium flow problems 

will be discussed in this report, namely, analytical, numerical, 
                   1) 

and semiempirical solutions. Each type has the merits for the 

study of some aspect of the problem, and each has its own limi-

tations. Analytical solutions can be found only for the sim-

plest possible nonequilibrium processes. The purpose of these 

laborious analytical solutions is usually not to solve practi-

cal engineering problems, which are generally much more readily 

solved numerically. The most important task is to obtain a 

physical picture of the nonequilibrium flows through a nozzle. 

Limiting solutions such as very fast nonequilibrium processes, 

or conditions very far downstream, which may not be easily 

accessible numerically, can also be obtained. Another useful 

contribution of the analytical methods is to investigate the 

accuracy and regime of validity of semi-empirical methods. The 

simplest and most successful of the semiempirical methods is 
                         1) 

the "sudden freezing" approximation, which is probably the most 

widely used in practice. Because of its empiricism, however, 

it cannot be extrapolated to new situations without uncertainty. 

      In nonequilibrium nozzle flows, the nonequilibrium pro-

cesses inevitably increase the entropy of gases in nozzles. 
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This increased entropy in turn affects flowfields and relaxation 

phenomena themselves. The analyses of nonequilibrium phenomena 

in nozzle flows are, in almost all cases, equivalent to those 

of flowfields themselves. It is regretful, however, that in 

spite of the large number of researchers, few good studies on 

this problem have been done because of the difficulties in ana-

lysing theoretically these flowfields. In light of such cir-

cumstances, our effort is partly devoted to investigation of 

the roles of entropy in the analyses of nonequilibrium nozzle 

flows. 

      The contents of this report are arranged as follows. 

Chapter I deals with the problem of predicting critical mass 

flows in nozzle flows of a vibrationally relaxing diatomic gas, 

an ideal dissociating diatomic gas and a singly ionizing mon-

atomic gas. Analytical and numerical solutions of nonequi-

librium flows of vibrationally relaxing diatomic gases are 

obtained under various reservoir conditions in Chapter II. 

Chapter III discusses the roles of entropy in the analyses of 

nonequilibrium nozzle flows. Especially, detailed discussions 

are made on the equilibrium-frozen (E-F) flow approximation 

 which  is one of the most important approximations to a nonequi-

librium nozzle flow. Finally the problem of solving the non-

equilibrium flows of an ideal dissociating diatomic gas is treat-

ed analytically by the method of strained coordinates in Chapter 

IV. 
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CHAPTER I CRITICAL MASS FLOWS 

1. Introductory Remarks 

     There are two things which complicate the analyses of 

nozzle flows with physical-chemical rate processes. The one is 

the complexity of the rate equations which govern the relaxation 

phenomena of vibration and electronic excitation, chemical re-

actions of neutral species, and ionization, and the uncertainty 

and uncompleteness of mathematical description of various physi-

cal-chemical rate processes. The other is the difficulties in 

the determination of position of the critical (sonic) point near 

the throat in connection with the critical mass flow. 

     Though there is no simple definition of a speed of sound in 

a nonequilibrium, relaxing gas, so far as the relaxation time 

does not tend to zero, the frozen speed of sound is the reference 

one in fluid mechanics. In the flow which starts from the equi-

librium reservoir conditions, in general, the sonic point is 

just downstream of the throat, and it is a saddle-type singular 
 1)  2) 

point of the flow equations. 

      In a usual convergent-divergent supersonic nozzle, the 

critical mass flow of a general nonequilibrium flow is permitted 

to take only such one value that the regularity condition at the 

sonic point of the flow equations is satisfied. 

      In the past, much research has been directed at solving 

problems associated with the determination of the sonic point. 

Various approaches to the problem have already been presented; 
1)3)4) 

for example, equilibrium-throat-assumption method, equilibrium-
       1)1)5) 

frozen-flow approximation method, direct try and error method, 
       6)7) 

inverse try and error method, iterative method, transonic approxi-

                       4



        8) 
mation method and so on. In the actual analysis of the nozzle 

flow of a nonequilibrium, relaxing gas, the choice of method to 

be applied, mainly depends upon two conditions; the ratio of the 

energy stored in the lagging mode to the total enthalpy of the 

gas and that of the relaxation length to the reference nozzle 

length. 

     Two conditions must be satisfied if the relaxation of a 

particular degree of freedom is to affect the flow through a 

nozzle; the relaxation time must be comparable in magnitude with 

the time for the flow to pass through the nozzle, and the change 

in energy associated with the relaxation mode must form a sig-

nificant part of the total change of the enthalpy of the gas. 

The latter depends entirely upon the given reservoir conditions, 

while the former depends in addition upon the rate equation and 

the nozzle geometry. 

      It must be noticed that the entropy rise due to the non-

equilibrium processes will also affect the critical mass flow. 

Here the effects on the critical mass flow of the degree of 

departure from thermo-chemical equilibrium of the relaxation 

modes with the rotational-translational mode of the gas particles 

and of the entropy rise in the subsonic region from the  reser-

voir to the sonic point will be investigated in detail. 

2. Nozzle Flow Equations for a Single Nonequilibrium Process 

      For a steady, adiabatic, quasi-one-dimensional flow through 

a nozzle, the equations of continuity, momentum, energy, relax-

ation rate are respectively 
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 pV(1+A)=p*V*(1+A*)=ptVa=m=const.  ,(1) 

 pl'dz-d(2) 

h+ 1 Vz=ho,(3) 

 Vdq=U(p,p,9)(4)       d
xL(p, p, q) ' 

in the gas-phase continuum regime, where p, p, V, h and (1+A) 

are, respectively, the density, pressure, velocity, enthalpy 

of the gas and nozzle area ratio with respect to the cross 

section of the throat; and x is the distance measured from the 

nozzle throat along its axis. The quantity q is a progress 

variable which may denote, for example, the vibrational energy, 

dissociated mass fraction or ionized mass fraction, and m is 

the critical mass flow. L(f, p, q), U(p, p, q) and h are 

functions of state, e. g., of p, p and q. It is also assumed 

that the nozzle cross-sectional area distribution is given, so 

that 

A = A(z) .(5) 

Subscripts 0, t and * represent, respectively, the stagnation 

point, throat and critical or sonic point. 

     In order to solve the above system of equations under the 

given reservoir conditions, the functions U, L (or U/L) and h, 

and the relation among 5o, p and q, namely the equation of state 

must be known. For the diatomic gas at a relatively low temper-

ature where the dissociation phenomenon does not yet take place 

appreciably, the enthalpy per unit mass is 

RB 
L .1,(6) 

2 vv 

              Lexpo\T°)-11. 
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where T,  Tv, g, R and W are, respectively, the rotational-

translational temperature, vibrational temperature, character-

istic temperature of vibration, universal gas constant and 

molecular weight of a molecule. The subscript 2 denotes the 

molecule. 

     For the diatomic gas in which the dissociation and recombi-

nation reactions are most predominant, the so called ideal dis-
                      9)10) 

sociating gas model approximation can be made and the enthalpy 

is 

  h= (4+a)-----R• T+RDa ,(7) 
        w2 w2 

where 0( and D are, respectively, the dissociated mass fraction 

and dissociation energy. It must be noticed that for the di-

atomic gases given above translational-rotational equilibrium 

is assumed. 

      For the singly ionizing monatomic gas such as N or 0 at 

high temperature, one has 

    h-K4a) +(2+b) ¢1----R • T+W~10 1(8) 

where 0 and I are, respectively, the ionized mass fraction and 
                                 10) 

ionization energy, and a and b are constants. The subscript 1 

denotes an atom. 

     Though Eqs. (6) and (7) can be used in the general non-

equilibrium state, Eq. (8) is valid only in the equilibrium 

state. For the singly ionizing monatomic gas, there has been 

no simple way in order to improve Eq. (8) so as to become valid 

even in the general nonequilibrium state. 

     According to Eqs. (6-8), the equations of state are, 
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respectively, 

     pWzpT, 

                                                     9 

                                           (10)  p  
Ytiz  pT(1+a) 

  W-p T(1+5)•(11) 
The rate equation for a diatomic gas which governs the relax-

                                2) 11) 
ation of the vibrational mode takes the form 

                         11 B Vdd°=L=exp(1T')[1 -exp(--91)1rWzB—EV•(12)                L[exp (+)-T>-1~ 

where EV is the vibrational energy and given by 

            R 

 Ems=W2B(13) 

     [exp11')-11 

and where T', w, Q and s are constants and depend upon the kind 

of a gas. For the ideal dissociating gas, we have 

 Vdx=-=rD—re ,(14) 

where rp and rR are functions which represent the absolute dis-

sociation rate and recombination one, and given by 

    rD=(Wz)(1-a)[kf,(1-a)+2kf,a] , 
 z(15)      rx=(Wz)a2[k,,(1-a)+21z„a] , 

where 

kr,kf2(16)      k
r,=K(T) > k,z=K(T) 

and where k11, kf2 and K(T) are the functions of temterature 

only. Unfortunately, for the ionization and neutralization 

phenomena, there has been no satisfactory rate equation for 
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the analyses of nozzle flows under a wide range of stagnation 
 13)  14) 15) 

conditions. 

     A limiting form of the rate equation implies the equi-

librium relation. For the vibrating diatomic gas, it is 

E 8 
YV2    Ev=E=

-, or TJ=T,(17) 

           L 

        exp(B)1 

and for the ideal dissociating diatomic gas, it is 

a2-----= CD . T -d . VT-J(18) 
1—a p\ 

where CD is a constant and d can be taken to be almost constant. 

For the singly ionizing monatomic gas, in spite of the uncer-

tainty of the rate equation it is known to be 

952   CIrexpl/•—T(19) 
1-¢ p 

where CI is a constant and i is also taken to be almost constant. 

This has often been called as "Saha Equation"_ 

3. Singular Points 

     Since the enthalpy of the gases considered here is gener-

ally represented as a function of the pressure p, density J3 and 

progress variable q, it can be written generally in the form, 

h=h(p,p,4)•(20) 

Substituting it into the momentum equation with the aid of the 

equations of energy and continuity yields 

1ah( ahdAl 
1p—\a p.o VZ_1dV+ \a9 /p.n  dq=(dx/ (21)                                                    Voo^hdx

p(ah\ dx (1+A) ap /po8p JJp.a 
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 By the definition of speed of sound, the equilibrium speed of 
2) 16) 

sound and the frozen one are given as follows 

            ah'\+ah 1
/aq,  

        a,2 = 
      C(22)         aPr/Pn9,ae,/Pe.P,Caftc,   

-----l l9,           P.CaP, /P,.9,—C aq, /P,.P, C aPe P~ 

            ah 

      _ CaP  aft—1ahl9  (23) 
P  aP /P.9 

where subscripts e and f denote, respectively, the equilibrium 

flow and the frozen one. With these definitions of speeds of 

sound the equilibrium and frozen Mach numbers are defined by 

 M,=Q`.M1=Q.(24) 

Substituting these Mach numbers into the corresponding momentum 

equations yields finally, for the general nonequilibrium flow, 

    -(M,-1).dV+ C4h/P.P d4= \dx/  

Y 

     dx(dx (1+A)'(25)            PCaP 

for the equilibrium flow 

(dA 

 V,dx ,1)dx (1+A)'(26) 

and for the frozen flow 

     C 

             d
x)  

                      Vidx(dx'(1+A)27) 

From these equations the following can be concluded with respect 

to the critical point; for the general nonequilibrium flow, it 
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is at x  = x* where Mf= 1, and 

 1 dA'\ _ (aq ,,,dql   1+A dx/*P(ah)(dx)'(28) 
laP)o.9 

for the equilibrium flow, it is at x = x
e*= xt= 0 where Me= 1, 

and for the frozen flow, it is at x = xe*= xt= 0 where Mf= 1. 

It must be noticed that the positions of the critical points of 

the equilibrium and frozen flows coincide. 

     Some attention must be paid about the sonic speeds in the 

nozzle flow problems. Though the equilibrium speed of sound is 

of significance only in the gas in the equilibrium state, the 

frozen one is significant not only in the completely frozen flow 

but also in the general nonequilibrium one. 

     There is some difference in meaning between in saying that 

a flow in a nozzle is in equilibrium and in saying that a common 

uniform flow is in equilibrium. Namely the equilibrium state 

for the uniform flow means that the internal mode of a molecule, 

dissociated mass fraction or ionized mass fraction is in the 

thermal or chemical equilibrium with the rotational-translational 

temperature. In such a uniform flower there can be both the equi-

librium and frozen speeds of sound. In the nozzle flow analyses, 

however, the equilibrium means the infinitely large vibrational 

relaxation, dissociation-recombination'or ionization-neutrali-

zation rate. Clearly in the equi1iibriam flow through a nozzle, 

the frozen speed of sound is of no more physical meaning and 

become the quantity defined only mathematically, though it is 

significant not only in the nonecq}Qii1iibrimm flow but also in the 

completely frozen one. It must /zee emphasized that these two 

TT



quantities by no means coincide even in the equilibrium limit. 

The frozen Mach number in the equilibrium limit is denoted by 

Mfe from now on in this paper. 

4. Critical Mass Flows 

      In a supersonic convergent-divergent nozzle in which the 

gas flows from subsonic region to supersonic one through the 

sonic point, the only one value of the critical mass flow with 

which the regularity condition  of the flow equations at the sonic 

point is satisfied, can be taken, and to which only the real 

flow can corresponds. The effect of the relaxation phenomena on 

the critical mass flow is considered in this section. 

     In the real flows, the relaxation phenomena of vibration, 

dissociation and recombination, and ionization and neutralization 
2) 3) 10) 17) 

can not strictly be separated as has been done in our treatment. 

(In the ideal dissociating gas, the effect of vibrational exci-

tation is taken into account approximately.) Nevertheless, it 

is the case that there are rather clear distinctions among the 

conditions under which the each phenomenon takes place predomi-

nantly. Furthermore it must be emphasized that it is not neces-

sarily required for us to treat these phenomena separately in 

order to develop our discussions, and of course these phenomena 

can be taken into consideration altogether. It is more prefer-

able, however, to consider separately than to do altogether in 

order to investigate the effect of the each phenomenon on the 

critical mass flow. 

4. 1 Critical Mass Flows of Vibrating Diatomic Gas 

     As the dependent variables, next quantities are considered, 
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     Tv=v and  Mf  ,(29) 

and a parameter so is introduced by 

Co=hoWZ• e.(30) 

If the quantity q is taken to be 4V, required quantities can be 

obtained as follows: 

    5° P=m ------ 
            7hocp (1+A)Mf 

 afz=5how—1( 31) 
                7 +  ez • exp e  

      asz=hoop [2 (exp e-1)2  
             er5+z•exp 

     L~                e2(expe-1)zJ 

The equations of energy and momentum become, respectively, 

2ev-1+OMfz= - .(32 )            exp 

                                                      dA 1  (Mfz_ 1) dMf—1 (Mf2-1)dg—_2  C exp Cv  dCv-I-\\dx  Mfdx 2gdx 7•(exp gv-1)z dx(1+A) •(33) 

Combining these two equations, one has 

  (m12+513= const • exp—(exSv 1_30 1----------- d~v() 
  1v Pj    (1+A) • MfP~o(expCv-1)z7(5~ Mfz)J34 

From the density equation, we get 

                         5  me0t/z  
    stagnation7h60 Po 

This yields 

     const. =125 J -hoop • ----------Po z 
5 mgot/z 

with which Eq. (34) yields finally 
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  Fv(Mf) (1+A)  =FvoexpGv,(35) 

m where 

              Mf 
    Fv(Mj)=ss            (Mf+) 

        1 Fvo=1I(36) 
        1257hoso Po 

Gv—ffv  eexpev  r1-30•  1 ds"v• 4
c, (exp ev-1)2 L 7 (M?+5) 

Now, we have 

dMjFv(Mf)=0, at Mj=1 

and then 

Fv(Mi)max=Fv(1)=2M'(37) 

which yields 

   [dx(Fv(MJ)ImA/J*—Fv(1)Ldx( ImA/J*-Ldx(FvoexpGv)]•(38) 

This relation implies that the curve for yl= FV(1)(1+A)/m with 

x as an independent variable must be tangential to that for y2 

= FVOexp GVat Mf= 1 in the xy plane (Fig. 1). 

           +      lk 
                       \`v(1)1 e ma <m < mf 

                         FV(1)1m 

       aFV(1)fmf'/ 
                                                              Fvo"P GVe 

LL>. ~ ~/ _FvoexpGv 
                  ~-• FVO 

Fvo 

      0X 
                                      throat 

        Fig. 1 Curves for yl= FV(1)(1+A)/m and 

y2= FVOexp Gv. 
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     It is easy to understand that a difficulty must be expected 

when the nozzle throat is reached because the prescrived mass 

flow may not be able to pass through the throat, or in the case 

of a convergent-divergent nozzle, the flow decelerates instead of 

accelerates downstream of the throat(Fig. 2). Since the maximum 

 A  `m large 

         E1pm too large/©            ~_ \~ Q2 m correct m too small // 
    \/ \ t 

              0>                   Fv(1)lm~~~$ 

j FvO¢xpGv 
I m large I I 

I I  
            0x,x               A m large i , m large 

                   

I I I I ~\ 

(--                                         m large i m large 
0 x„ 

                                           throat critical point 

        Fig. 2 Mass flows and their corresponding 

                  distributions of frozen Mach number. 

flow rate that can just pass through a given throat satisfies 

the regularity condition Eq. (38) and then depends on the re-

laxation processes, the correct mass flow cannot be accurately 

prescribed beforehand. Mass flows and their corresponding 

distributions of the frozen Mach number are illustrated in Fig. 

2. 

     It can be verified that an inequality 

Gv>Gvf=O ,(39) 

is satisfied in general for nonequilibrium nozzle flows, and 
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this yields 

 m  <r/~  f. (40) 

For almost all flows, 

crfe> cv (41) 

is also satisfied. From these relations an important conclusion, 

me<m<mf,(42) 

can be drawn. 

     However the inequality Eq. (41) is not always satisfied for 

general nonequilibrium flows in nozzles with an arbitrary shape 

and size even under the equilibrium reservoir conditions. To 

account for this situation clearly, the entropy rise due to the 

nonequilibrium processes in the flow must be taken into account. 

     The equation of entropy for a diatomic gas with the vib-
                 2) 

rational energy mode is 

  dS=R  (e—e0exp ev• d v(43)   W2 (exp 6v-1)2 

where S denotes the entropy of the gas. From this we can obtain 

eve= , dSe=O ,(44) 

for the equilibrium flow, and 

devf=O, dSf=O,(45) 

for the frozen flow. 

     Since the equilibrium-frozen flow, which was first proposed 
1) 

by Bray, is composed of the upstream equilibrium branch and the 

downstream frozen one joined together at the freezing point, we 
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have 

 dSer=O , 
(46) 

                                                                    for this flow, where the subscript of denotes the E-F (equi-

librium-frozen) flow. Detailed discussion of this flow model 

will be given later in this paper. 

     For general nonequilibrium flows, Eq. (43) can be integrated 

formally to give 

     (S—So) _exp ev l( sv/ expE l 
      ( R`—ln(expv— 1 /\expev-1)—In1exp e-1 

-----------1 fF exp e-1/—Jgoede( exp ev-1 expo-1----------)dd.(47) 
Using this relation, Gv can be represented in the somewhat simple 

form, 

I 1 _  1  
Gv=31nCo expeo-1 +lnr expeo  (  expgv-1             1 1L( exp eo —1) \ exp ev ), 

               \ co exp ev-1 I 

          ev   exp go-1 exp sv-1 )+RZ(S— So) .(48) 

It must be noticed that the quantity GV can be expressed com-

pletely in terms of the vibrational temperature and entropy of 

the gas. 

     As can easily be understood from the process through which 

Eq. (48) has been derived, it is generally valid without respect 

to the kind of a gas. At any point in the nozzle, only if the 

entropy rise is neglected, we can conclude that 

Gv max =Gv< ,(49) 

under the fixed reservoir conditions. In fact, at least theo-

retically there can be the case in which Eq. (49) is broken 
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 down, and then the inequality m
e< m also can never be obtained. 

 In almost all flows through nozzles with ordinary  shapes studied 

 in many laboratories, the increase in entropy due to nonequi-

 librium processes is in general so small that its effect on the 

 flow field can reasonably be neglected. This gives one of the 

 most powerful supports to the validity of the approximation by 

 the equilibrium-frozen flow model. 

      The critical mass flows of the equilibrium, frozen and equi-

librium-frozen flow are considered. For the equilibrium flow
, 

the isentropic relation 

  dh—p< • dp<=O t( 50) 
can be integrated to give 

e512 exp e<-1  exp(—Pp<=SOS 2expso-1ex_ eo           exp e< •(exp 5<-1 )exp eo(exp go-1) p0 
=C<= const.(51) 

Using the condition M
e= 1 at the throat, the velocity there is 

given by 

I2+                            7E€exp e l t/z JV<*=Y«=17hopp'(exP~<,-1)2()          r
+ eexp e„  152                              L2 (exp e,,-- J 

Combining Eqs. (51) and (52) , we get 

    m<='^ hose Po exp s"0-1 /o                 eeo'i2 expeoexp(—expsgoo-1 )\SeE<f ) 

            exp7e!, exp e„  1)1/2 
           «-1eXp(12(exps~«—I)z              exp             exp g«—1/i expVie,(53) 

112+(exp e„-1)2j) 

The value of ' et can be calculated from the energy equations 
at the reservoir and throat , which are, respectively, 
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 7  +
eeo eo  (54  ) • 2xp so-1~ 

             r„7
+eer +1L2+(expee,-1)2J=eer(55) 

      2exp ee, —125
+ eexp                     reerrP                     ~e"2 (expect-1)2I• 

     Similarly for the frozen flow, the isentropic relation 

 dh—1 dpf=0,(56) 
PI 

can be integrated to give 

e fsiz . P f=e05/2p0=Cf= const..(57) 

Using the condition Mfg 1 at the throat, we have the velocity 

there as follows, 

  Vf*=Vfr=V5hoAO • _uz(58) 
                                 fr 

Eqs. (57) and (58) are combined to yield 

     _Poe°ll   mf
5ho`Peo'~z\ef,)(59) 

where Oft satisfies the energy equation at the critical point, 

21+ eft
= S~fr  (60) 5exp eo —1 cp 

or 

                                             (61) 

       Considering the fact that the equilibrium-frozen flow is 

made of the equilibrium branch and the frozen one joined together 

at the freezing point which is determined by the freezing cri-

terion first proposed by Bray, we can easily obtain 

met= ̂  2hocp ' Po expeo-1 ,exp— soexpfr-----                                Sweexevefr                                                      •expeoCexpeo-1/expevef,-1p\exp eve f,-1 

          ( o5/2(17__ 1 Z         eefrI \ So 2SefreXp eVef, — 1(62) 
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where 

 eVef=  ,e<-6q,                                                  (63) e
Vf= const., e>evf• 

and where ~Vf denotes the frozen vibrational temperature, and 

Se  eftis obtained also from the energy equation at the throat, 

        21+ eeft = eeft  
    5 exp eveft-1 cp if eVeft=evfseet •(64) 

      The above discussions provide us with the relations among 

the three critical mass flows, m
e, mf and mef' 

mef=mf, , eVf=eo . 

memef<mf, eo<evfseet ,(65) 

mef; unobtainable, ee,<ev!<ef, 

mef =me , eftseVf • 

The reason why m
ef is impossible to obtain in the case sketVf 

‘' is that there are two speeds of sound, the equilibrium 
speed of sound and the frozen one, in the real-gas flow . 

     The relation 

     me _ (  me        mf/mjo.uo\m!)' (66) 

  is easily found, and this yields
, with the aid of the energy 

equation, 

 (me ~0.9706....(67)           m!m,o. 

The ratio m
e/mf is shown in Fig. 3. 

     Next, the investigation of the critical mass flow rate of 

the general nonequilibrium flow is made, and especially for the 

nearly equilibrium flow, the numerical calculations of it are 

carried out. 

     Here we consider the nozzle geometry given by 

A _g.XZ 
(68) 
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Fig. 3 Critical-mass-flow ratios of a vibrating 

                  diatomic gas. 

where K is a positive constant
. Then the regularity condition 

at the critical point can in general be 
written as 

1  dA_1/z       1+.Adx )*-2^K'1+ A* 7Cgdx(expev-1)~*'(69) 

while the rate equation is 

    d 1 l m zj ()( 11---------- 
    dxexpgv-1/(1+A)expev-1 exile-1(70) 

where 

   (e)_(51'O'\ (expe-1))          7hosoJM~z~w+iexp (IBse—s) •(71 

Combining Eqs. (69) and (70), we get 

  A_mz11 z 
49K''*z(e*)z•—                exp Qv* —1 exp e*— 1)•(72) 

Eq. (48) is substituted into Eq. (35) to give 

                            &*5'2 exP £v*-1 eXpr --------------     (1fA*)=(--------m`2)'/2•(m)expv*L exP eVRz(S*—So)](73) 
       2ho~oC zm~1

_7_ 1 1/z,73                           (co 2e*expev*-1) 
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which yields, with the aid of Eq. (72), 

 m211  )z• 49Kexpgv*-1expf*-1 

                   *5J2exp ev*-1 expL—ev* +Wz (S*—So)l        mexpgv*LexP~v*-1 ~/R +1=0 ,(74)      -_ 

     ^2hosPCez1_7 1                          ( 2e* exp ev*-1 
where 

21+ e* 
_e* 
      5 expgv*-1 C 

                                            (75) 
eosev* see* 

Eq. (74) indicates that the critical mass flow depends not only 

on the departure of vibrational temperature from the equilibrium 

value or the rotational-translational temperature at the critical 

point but also on the increase in entropy in the subsonic region 

from the reservoir to the critical point. It is important that 

the critical mass flow is evaluated completely from the vibra-

tional temperature and the entropy of the gas at the critical 

point, which is not always the case for the ideal dissociating 

gas or the singly ionizing gas. 

     Now, since Eq. (74) is a quadratic with respect to m, at 

least the next condition must be satisfied, 

        *5jz   expgv*-1 ex[ev* Wzl(1_7 1 l-t/z        -^2hocpCez expgv*Pexpgv*-1+R(S*—So)JIY~2~sexpgv*-1) 

     2(e *)*(11     7^Kexpgv*-1 expg*-1(76) 

     The value of the term about m2 is usually much smaller than 

all others in Eq. (74) , which yields the next approximate re-

presentation for m, 

m=2hoyCe  1'/zme//1 _ 7 1 1/2 exp ere*\                J*5/2•\\\2e* expv*-1)(expgv*-1) 
           Xexp ev* _Wz11j*z 

e*'exp expe*— 1               expgv*-1R*o)Jll+49KhoSoCez,(~)( 1 — 1 )z 

                                          \ 

         1—7—11 exp ev*  X Izr 2~v*  w2                 2 * expgv*— Iexpgv*—i)exp[exp6v*-1-2 R (S*—So)1+...1' (77) 
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At a glance, it may easily be understood that the increase in 

entropy decreases the critical mass flow, and also the increase in 

radius of curvature of the nozzle wall at the critical point 

near the throat decreases it. The latter fact has already been 

verified numerically.) 

     Especially, if a flow near the throat is almost frozen, 

all terms except the first in the curly bracket on the right 

hand side in Eq. (77) are negligibly small and can be omitted 

within an acceptable error. When the E-F flow model is employed 

for the approximation to this flow and the freezing point is 

determined so as to  give 

t=eV*(78) 

we get 

       ~f2hocoC2 l1/2 m, (1_ 7 _ 1 \'/Z exp ev* exp(79                           ( ev*)       m=(met/e*5I2\cP2e* exp ev*-1J•exp ev*-1expev*-1 

From Eqs. (77) and (79), we can obtain 

W2    = exp — x —(S*—So),(80) 
                                                                                           mgt 

Finally it can be concluded that 

m <m,t .(81) 

for the flow in which the vibrational relaxation is almost frozen 

near the throat. 

     A numerical calculation of the critical mass flow is carried 

out for the nearly equilibrium flow. Determining the critical 

mass flow is equivalent to doing the corresponding flow field 

itself in the subsonic region, which may be understood from the 

aforementioned discussions. In general, the analytical treat-
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ment of this problem is almost impossible except in special 

cases. Furthermore even when an analytical treatment is possible 

to some degree, it is usually more or less numerical. 

     Here an iterative method applies to analysing the flow 

which remains nearly equilibrium at least to the critical point. 

Transforming the independent variable from x to yields 

     ddh(e)=G(        der, ,Ev,h(e); e),(82) 

2 +S • Ev+O•• M'2=,(83) 
  del,e\

(84)de 

x=-----~K[h(e)-1p/2,8—1 e«r(85)                      —11 C>eP 
where 

1  
expev-1 ' 

       _  1           E 
expe-1 ' 

G(E)  --l7rP 
                •(--EV/LS(S,—EV/e-211-2L(—EV)e-8e• de h(e)[2 (PP—Ev) e-7] 

 rr(86)             L5(rP— ') —3I 
          2e - 

           864 5 -^ horn•^K         17(e)-=1-2-5-~7 • pre'"po go'/2 

.gw+P(—2—EV)ZIh( )-1]'/2expo~l----------- • e(p (-1O'e-') 
          151_21\`1_71der •              2(y9 5e-EV)—L so 2e-EV) 2 j•de 

        m 12=--• 
m, 

Again the nozzle which is given by Eq. (68) is considered. 

     When the flow is kept in nearly equilibrium, the first term 
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on the left hand side in Eq. (84) is so small compared with the 

others that it can be neglected to the first approximation. 

Then the rate equation becomes the equilibrium relation. Sub-

stituting this into the remaining flow equations, we can determine 

the all flow variables to the first approximation. When the 

solution of the first approximation is used in  7T in the rate equ-

ation, the distribution of the vibrational temperature along the 

nozzle axis can be determined to the second approximation. Using 

this distribution of~Vor 4 ' the remaining flow equations of 

the second approximation can be solved quite easily. Repeating 

this process, we can obtain the solution of any higher approxi-

mate problem. 

      It must be emphasized that in this method the rate equation 

which govern the vibrational relaxation is completely uncoupled 

from the remaining flow equations, and then it can be integrated 

alone. Obviously this simplifies greatly the analysis, because 

the position of the critical point and the state of the gas 

there, and then the critical mass flow has already been determined 

strictly to each approximation before the flow equations are to 

be solved. 

     When Vof the i-th approximation is written as follows, 

Ev;=E I dEVf, i=1 or e,2,3,4,..., 
(87) 

the corresponding solution of the i-th approximation can be 

obtained in the forms, 

      QEV;= 14hoyoV kM!` exp e r exp e —d Q     re'EVi~            5rm;_"expe-1 L(expe-1)2 de 

+i  [h'fx)1,"2exp (—IBse—s) ,(88)                                                        88 
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           z,/z~sz   expo-1  expF ---------d —,                                                 expJ oCC•d~(dev;)d~           me 1mr p e Lexpo—1LL  )=(ex  2hosocez ) me(1 —7 ----------\,/z 
                                              2e expo-1-dEVil 

                                             (89) 

   —'+e • (e+dev;)+--7Mf,=g(90) 
  210w 

where 

Gi(C)   5 Mfi-1  (1e—dEVi) Mf,-1 
      n(e)=e'h

i(e) 7Mf,\rD/2C 

            7Mj;25 •
LeXp-----------C  +e(dEV         z—d(91)    Li)(                7M

f,(expe-1)de 

     In order to determine the critical mass flow to the i-th 

approximation, the regularity condition at the critical point 

of flow equations of the i-th approximation must be considered 

with the aid of the solutions of the (i-1)-th approximation. 

It must be noticed that the critical point of exact flow equ-

ations occurs in general downstream of the geometric throat, 

while that of the i-th approximation always occurs just at the 

geometric throat in the iterative method. 

     Using the conditions 

h(e) =1 and dh(e)=0,(92) 

at the geometric throat, we get from the momentum equation 

      5 J(1— 1 —devr,)g;r-511 
     2,pexpg,r-1/J 

        =EL Lit(1------------1-'IEvii)-4J • [d( 1       exp+dEVr)].(93)            \rP,r-1de exp Q;-1     / 

This is rearranged to yield 

                         [7+  eirexp Crr  1       e„ __7 err, 1[2 (expCu-1)z1        ++—•+~u • dEVir rp 2 exp 6;r-1 2 r 5 +  Cir exp C,r  l 
L2 (expCu-1)z 
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       I_( 1P—EV;r)eert-4I ----(  d _ 2I_4Ev;)Z                                                             Jr  +5
+expIde          ei,e;,(dE')j,5.+  e,,exper,(94) L2 (expjI_2 (eXpe;,-1 )2 

If d evi= 0, the above relation becomes that for the equilibrium 

flow, and if .devi- 60— 6, that for the frozen flow. With the 

solution it of the above equation, the critical mass flow of the 

i-th approximation can be obtained finally as follows 

m;   2hoeoC2 '/Z e
r5/2expert1 7 —----------1 —devrr~/2 me me2/\expe,,-1 )\c2e;,expert-1) 

       X exp r;, +r~;,ed(dev;)deI.(95) 
               L exp e;,—1,o de 

1.00------------------------------------------------------------ 
N2 

    0.99------------ 
  mm2534'  ~I~z\~ 

 0.98------------------------------------------------------------¢~ 

EIEm\ 
mff=0 97a 

0-97------------4
o=0.8728-
                       Qt=1.000 
         0.96                       S`tt=1.047 

     00.20.4 as 0.8 1.0 

                              ((42t-~at)(2rt-~at)                             A( .k~at 'ft -set 

  Fig. 4 Critical mass flows of nearly equilibrium and 

           equilibrium-frozen flows of a vibrating diatomic 

             gas. 

     As was already pointed out, the last term in the square 

bracket under the exponent in Eq. (95) can be integrated alone, 

because ,Mvi has already been determined from the solution of 

the (i-1)-th approximation. Finally, an investigation must be 

made about the solution at the throat. The conditions at the 

geometric throat are written again as 
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 h,(e0=1, f,(,;,)=o ,(96) 

which make it impossible to obtain the value of di'Vi+ft at the 

throat numerically. Taylor's expansion of functions hi(c) and 

fi(4) about 4= fit are given by 

h;(~)=t+[d                hi(11)1(--11)-1-Z[dezh1(~;2)]•(e—ei,)2+...(97) 

    f,(e)=[deft(su)1 (e—e )+2[dgzf,(e;,)](e—~tr)Z+[dg,-----ft(e12)1(ee—eit)3+... .(98 ) 

Taking a relation 

h,(e)= me) • me) , 

into consideration yields 

lm rO-1]1/z —[2~;rdftu)1-1/z 
  t-~~„ f(0)de, 

                                             (99)          h,(se)-1]' z__1dl1/2. [!_+ 2                                                   f,(e,r) 

  s~~d [        ~dme) 3[2e, •df,(~;t)1rr f;(g„) 

          etc.. 

Using these results, the solution of each approximation at the 

throat can be calculated numerically. The characteristic values 

of N2 and 02 gases are listed in Table 1. 

N2Oz 

B3336°K2228°K 
I8.878 x 108 me/°K kg sec8.300x 100 m8/°K kg sec 
w11 
s—1/31/3 
l—181°K0.6464°K-'/3 

                                        3) 11) 
     Table 1 Characteristic values of N2 and 02 gases. 

     Now it is convenient to introduce a "nonequilibrium para-
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   meter"  P
e by 

  Pe= -Ie' 
E • de'(100) 

  in order to calculate and to determine the freezing 

   point in the E-F flow approximation, which is usually the point 

   where the value of this parameter becomes about unity. Distri-

   butions of P
e along the nozzle axis are shown in Fig. 5 for N2 

   gas. 

  102II  
N2 

        100—eo=4.222t=5.000 
                                             3.402                                                         4.000 

     102—2.5763.000 
                                   1.7332.000 

        Ylgo-4      10087281.000 — 

           CL(9 -6 
          10 

           108 

    1010I I  ___J---------- 
        0 0.2 0.4 0.60.8 1.0 

        stagnation
(Sc_-------- )throat                  point 
Set-So 

     Fig. 5 Distributions of nonequilibrium parameter of a 

              vibrating diatomic gas along the nozzle axis. 

   4. 2' Critical Mass Flows of Ideal Dissociating Diatomic Gas 

        The analysis can be carried out in almost the same manner 

   as in the previous section. A parameter y› is introduced by 

• ho W2 D.(101) 
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   If the quantity q is taken to be  01, the density and the speeds 

   of sound are given by 

            m(6 z1/z 
              1+a-----+Mf/          P__ -^2ho • (1+A)Mf(1—sba)112 ' 

                                                                l+aez 
          ho (1-0«e) _+ ho(1-0ae) S~(4+ae)(1+6Mfe11 

 (jet=—•—----- 
                     l+ae3(1-0ae)1+ae 3(1+1a1+6GMfe) [(4+a(1+ 6 Mfe) 

                   {3(1-0«e)+(1+ae)[d(1—Sae)-0(4+ae)(1+ 16a• Mfe/J) 
     {0(4+ lll(1—i1ae)(2—a0l '              1—o«aee/(1+16ae Mfe)[cb(4+ae)(1+16«e Mfe)—d(1—cbae)J+3• cre(1—ae) ) 

(1—%a)(102 )     afz=2ho-----------------
6  

( 1+a +Mfz) • 
   The equations of energy and momentum become 

      D (1-0a)     T__~) 
(4+0(1+-----16aMfz) '(103) 

2(1—Mf2) 1 dMf
+ 1  dA = [3+ (4+a)Mfz]  

         (2+ 1+a  Mfz)Mf dx 1+A dx [6+(1+a)Mf2]        3J 

              3  _3(1 —Mil)  —0  [6+(1+a)Mfz]c/a (4+a)(1+a) (4+a)[3+(4+a)Mf2] 6(1-0a)}(dx)• (1o4)          .{
In quite a similar way to the previous, integrating Eq. (104) 

   yields after some manipulation, 

   FD(Mf, «) •1+A=FDO• exp GD,(105) 

   where 

FD(Mf,«)=----------Mf  
                                 6 1/b(7+a)/(1+a))                 Mfz+1+a) 

(  1 +ao)•3/(1+ao) 

6 

    Fm=j                                                  (106)               •^ 2ho • Po(1— 0ao )" 

                    (7+a) GD= -------          Idl+az]n(M12+ l+6 )+ 1+a — [3+(4+a)Mf2]          ao()a(M fz+6[6++a)Mfz]                               l+a)(1 
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        (1+az         `1+6M~+ (1—Mf2) _ 3         •da.             (1—~'a)(4+a)~1+4+a Mf2)0+00+a)3 
  It is easy to prove that 

          a  

•  

           aMfFD(Mf,a)=0, at Mf=1 , 

  which yields 

FD(Mf, a)SF13(1, a)(107) 

   The following is valid at Mf- 1 

1+ A*  FDo  
             m FD(1,a*)' expGD* 

I+ao 3f(1+«o) 7+ao 1/2'(7+«d/(1+«0) 
       _ 6l +aol exp 3  

                     A/2ho Po • (1-0ao)1/2—~ao(1+a)z 

/ 7+a  

               X In1+a _(1 +a)(1—M12)daf[3+(4+a)Mf2]  
                        z 6 1.6+(1+a)Mf2]Jao [6+(1+a)Mf2] 

                    \Mf+1+a/ 

 00(1+l+a2 

X 

             6Mf+  (1—M12)  —-----------------3 Ida}                    (1—~a) (4+a)(1+43a Mf2\(4+a)(1+a)(108 ) 

   For the frozen flow, the conditions 

A*=0, a*=ao at Mf=1,(109) 

   give the critical mass flow by 

                               6 3/(i+ao)(1+ao r2 (7+ao)/(1+«0)(mf=^2hoPo(1-~ao)1)2' 1+ao/ \7+ao) 3(110) 

   with which Eq. (108) can be rewritten in the form, 

  1 +A*  - 1(111) 
            m m fexp Gip* 

   where 
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 / 7+a  

 Gp ---   f3—In1+a (1 +a)•(1—M 2)~                                                     •da—[3+(4+a)MI2]  
           J„ (1+a)2Z 6 [6+(1+a)MIZ]Qo[6+(1+a)MI2] 

                      EMI+1+a~ 

                  l+az 

     (--Iz X1+6M—(1—MI) —3 da. (112)                (1-0a)(4+ a)(1+43aMI2) (4+a)(1+a) 

Except in cases where the temperature of the gas is extremely 

high, GD always satisfies an inequality 

GDS>o.(113) 

It is quite reasonable to consider that the above inequality is 

valid in general for nozzle flows of an ideal dissociating gas, 

because the temperature of the gas, in which the dissociation 

phenomenon is taking place predominantly, is never so high as 

to make the relation Eq. (113) broken. 

     At any point in the nozzle, it is satisfied that 

1+A  _  FD(1,a) 1----- expGD',(114)                  • m FD(MI, Cr) M 

Eq. (107) implies 

         FD(1,a)  >1 . 
  FD(A~II,a)-(115) 

From these relations, we get 

1+A> 1  expGD',(116) 
M mI 

at any point except the sonic one in the nozzle, which indicates 

that 

  m~ 
            < exp (—GD,) <1 . "'

I(117) 

at the throat. 

     Now the equation of the entropy for an ideal dissociating 
              2) 

gas can be written as 
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                           2 

  dS=Ni-Inc1—a da(118) 
 R  1—c a2 

where the quantity c satisfies 

                                   u 

  lcc=CD•Texp(—~).(119) 
It is easy to prove that both the equilibrium and frozen flows 

are isentropic. 

     For general nonequilibrium flows the entropy equation is 

formally integrated to give 

    Wz(S-So)=(a-ao)(1+InCD)+In11-ao ]-2 In(----as)+aln(T-------)   R(1—a)('-a)aoaop 

                              3l ('+ao)              —ao InTo 1 D da—fa  3 In T •da—dIn T da(120)                     Po—Jao(1+a)(T)1a° (1 +a)2~ao 
while the right hand side of the third equation of Eqs. (106) 

is also integrated formally to give 

    GD=In(1—cba°)1/2+in{[ (1—cao) ]3/u+ao)L(4+a)(1 +a) ]3/(Ia) 
         1—cba(4+ao)(1+ao)(1—~a) 

         1 _1 31nT1 D(121)        —31nOD)(1+a 1+ao )-•1fao(1+a)2da—fao(1+a) •(1-)da • 

Substituting the entropy equation into Eq. (121), we get 

Go=  Wi(Copa1(i+a) (S-So)-Jln(Td)da+ In(\Wao)—In 1 --------------T3a                                                      7"03/(1÷a07"03/(1÷a0)     Rao 

             (1-")\zao\\ — In~11aa°(i a).(a°za)]—(a—ao)—(3 -----3 )•In(62)      ()1+a1+ao 

         +In(1—Cbao)1/Z+ln{r(1—cao) ]3/('+ao)r (1+a)(4+a) ]3/(i+a)I(122)             1—;allllLL(l+ao)(4+ao)L (1—Oa) I1 

Especially when d is equal to zero, the integr.tion of the second 

term on the right hand side in Eq. (122) can be carried out ana-

lytically. 

     Using the isentropic relation for an equilibrium flow, we 

obtain 

                      dz     Coe=ln(Te)+(D—D_)+ln(1—ao)+ln( ae )— (In 6) ( 3 3—         ToTe Toaoz 1—ae 1+ae t +ao) 

                              lq



     1—~ao1/2 ----------3 3(1+ae)   +I n '/'In (1+ao)+-(123)       1—y~ae(]n- (1+ao)(1 +a,) (1+ 1+6ae Mzel 
Finally for the equilibrium flow, Eq. (105) becomes 

MIe 1+A  =FD0-(Teld (1—ao/\aez------y\l—Oao \1/z 6--------V' (z+ae)/(1+ae)mTo ) ao1—ae1-0ae ) 
(MI`+ 1+ae) 

                                     (1 +ao)-31(1+ao) • (1 +a.)31(1+ae) 6 31P+a~)+3/p+ao) 

                         6  3/(1+ae>D D                                         exP(—).(124) 
                       6+(1+ae)M3e\e To 

The fact that the critical point is located at the throat yields 

the critical mass flow by 

     me=2         ^hOCD1—ae* MIe* 1— tae 1 /zTe* • expI—D(125) 

                                                1 

--------z*
\/        a4Mz e+ 6T.                                  I*1+ ae* 

where the quantities od
e* and Mfe* must be determined as follows. 

From the isentropic relation for the equilibrium flow, we can 

obtain, after the suitable manipulation, an ordinary differential 

equation with respect to oc
e (or, Mfe ) with Mfe (or p(e) as an inde-

pendent variable, which is usually integrated numerically and 

analytically only if d is equal to zero, with the boundary values 

oce0= 0c0and Mfe0= 0 at the reservoir. The regularity condition 

at the throat yields 

      71—ae*0(1—cae*) ------                          1 1=0ae*+ 6
*+ae+—-----—-                     z3 (4-1-a,*) (1+ ae*l 1+- 6MIe*)(1+ae*) (4ae*) (1+ 6 MIe*) 

            '/,11(126)                     r *) (1+ae*z/J}                  3(1—tae*)+(1+ae*)•[d(1—Y'ae*)—S~(4+ae1+6MIe* 

    0 

      4+ae*)( 1 +ae*ll\) —d(~/~ae*)(2—ae*)~.    1—yae*/\1+6M16~1—Y                      I`*/~~(4+ae*)(1+1%4ft*1-0ae*)]+3 ae*(1 — ae*) 

As a result, the solution ode* and Mfe* of the equilibrium isentro--

pic relation which satisfy the above regularity condition are 

substituted into the right hand side of Eq. (125) in order to 

obtain the value of m
e. 
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    Fig. 6 Critical mass flows of an ideal dissociating 

              diatomic gas. 
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Fig. 7 Critical mass flow of equilibrium frozen flows 

        of an ideal dissociating diatomic gas. 

                    35



      Next the critical mass flow of the E-F flow is considered. 

The values of  Oc, Mf and T at a freezing point are denoted, re-

spectively, by ocf' Mf
eff and Teff' In the region from the reser-

voir to the freezing point, the equilibrium state is maintained 

and then the equilibrium isentropic relation holds. Downstream 

of the freezing point, the flow freezes suddenly and completely 

and then the value of GD remains constant. The conditions at 

the throat 

A=O, and Mf.ef.r=1 ,(127) 

yield 

--- 1—af,/•(11-al 1'/Z.(7+a!)/U+a!)           mel=^2/10CD2 • a!Z• (1—Oaf)112 ••7-Fa J

D  

             6  

        X l+af+Mfef.f)TQ!! exp1 — T /'(128). 

where T
eff is related to Mfeff and Ocf by 

    Te!!—) 41-aff)(1f16af------M!e!!)•(129) 
It can easily be proved that the minimum value of m

ef is given 

for 0(7--eby        f
me  =L(7+ae*)  11/2'(7+Qe.)/(1+ae.) 

    mef•min.(1+ae*)!N%e*-F6• M!`* •(130) 

It indicates that the ratiom
e/mef min can never exceed unity, 

namely 

Me Gme! • min. 

                                               (131) 

However Eq. (128) indicates directly that 

me! • max. = m! 

                                              (132) 
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From these considerations, it can be concluded that 

 me<mef<mf(133) 

     The critical mass flow of the general nonequilibrium flow 

is obtained. Considering the nozzle geometry given by Eq. (68), 

we get from the momentum equation and the regularity condition 

at the critical point 

mil-x*•g*•exp(  Gn* )12—mr*'g*'-.J*3•c.p( =G/*)+K*zg*2D*zexp(2 Gn* )=0>(134) 
   1+a*\1+a*`1+a* 

where 

     12V2  1a z 
W2h01/2 K(T•*) (1 —a*2) (1—cIa*)1/2 

GD*=GD*—a*•In p*                                                 (135) 

  D2(1—a*) (7+a---------*)------------------3  3    *_K'z hovK••(7+a*) (1+a*)3/2(1—~a*)(4+a*)(1+a*) 6(1—pia* /1 
[kf1*(1—a* )+2kfz*a*] 

1/ 1+a7+a* 1l2. (7+a.)I (1+r.)z 320+a+a 
1+a*L ho(l+a)(1-0a ) • 

When d = 0, which is the case, for example, for the nitrogen gas 

approximately, GD
* becomes the function of ot* and S*. only. In 

such a case this quadratic relates the critical mass flow with 

the dissociated mass fraction and entropy at the critical point. 

Since the term about m2 is in general much smaller than all 

others in Eq. (134), m can be given approximately by 

   =1 exp(— Go*){1+11—*S*eXP(1+ m)Jz _*l         ll-ex(3Go1}(136 ) 
g* l +a**ag*aD*sp1+a*                                                                                        +.. . 

From this it can be concluded that the increase in entropy de-

creases the critical mass flow, and the minimum value of it 

under the fixed reservoir conditions is given by the equilibrium 

one only if the increase in entropy is neglected. 
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                                N2 

 D=113260°K 

d=0 

k11=3.0X 1018 T-312 exp ) m3/k•mol-sec 

kf2=1.5X1019T-3/2 exp (y)m3/k•mol sec 

                          D 

                 K(T) =CD exp (—7•) k• mol/m3 
CD= 1.26 X 105 k • mol/m3 

        Table 2 Characteristic values of N2 gas.18) 

1.000-------------------------------------------------- 
N2 

                     chi =1.0 

ao=o.4 

  EIS 
0.995 

To=15444°K 

let =12802 °K 
Tft =12523 °K 

 0.990--------------------------------------------- 
    0.4 0.60.8 1.0 

T2t -Tft) 
Tet Tft 

    Fig. 8 Critical mass flow of nearly equilibrium flows 

             of an ideal dissociating diatomic gas. 

      In all the same manner as in the analysis of the vibratio-

nally relaxing gas, the problem of predictin
g the critical mass 

flow can be treated analytically to some degr
ee, if the flow is 

kept in the near-equilibrium at least up t
o the critical point . 

Of course the solution of the first approxim
ation is the equi-

librium one. Here only the calculated r
esult is presented in 

Fig. 8, where the subscript 2 denotes the 
second approximation . 
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Characteristic values of N2 gas which was used in this numerical 

calculation are listed in Table 2. 

 4. 3 Critical Mass Flows of Singly Ionizing Monatomic Gas 

     If q is taken to be 0, next relations are yielded 

         m2ho(1-72q1)
ll1/2 P=(1+A)Mf {(M12+3+2.-------1+¢/J, 

       z 2ho•(1-7295)  of
(l137   Mf2+3+2.------1+O)') 

/ 

                al            ho(1-77~e)—+b¢<)        (3+2
,/,/                     1+95e _ 9%0-950      ae2— 

5+2• a+ b0< l (M!+3+2 a+b¢e l1(1+0) (2-0e)      (1+4 Af1+56e 

       +[1 +  ¢e(1—fie) (i+I/J[(1+95<)+(+b+            (1+40(1)72M             1+¢)(2-0<)\TieTi<23)0((21-095:))1                                                 
           [3(]+ye)+(a+b~<)+i+Ib+Il.4(1-00          2(Te) •(-2+T</ (2-0e) 

where the parameter Q is defined by 

1 R 

ho • W7 • I '(138) 

and the equations of energy and momentum are expressed in the 

forms, 

           (1—vO)[3+2(-------1+~)]  
T=2I(139) 72 (1+0(5+21

+0 /(Mf2+3+2-------l 1+95 ) 

     M(3a+b~  \        f•+2 1+95 )1 
1ldMf 1 dA 

(M12+3+2           i+1(Mf2/dx1+Adx 

(b—a)

1+z(b—a)     di3a+145(1+~7) 2(1+0)22lMf(1+0)22+1+¢) (1+95)(1-0)~)+(5+2----1+.)(3+21------+y4/(Mf2+3+2-------c ) 
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        1 a+by1(b)(172¢)              r,r'(1/2+3+2---1+2— 
    + \1+Y/ (1+02 +b+1   d0(140)             2(1i~~)(M-+3.21+0)                       ,—(312 T)(1+0) dx• 

                           et

The last equation is formally integrated to give 

  F(M>O)•1-f-A=Fio•expGI  1(141) 

             m where 

                  MIT    Fi (Mh ¢) = 

            (Mf2+3+2i+~) (2-1-0+4M1+0) 
-~

/boo(3/2+(a-I-boo)/(1+4&)1      Fro= ~^2ho •Po(1—~I~o),23+2a+-——1
J) , l+Oo / 

  ( {1 (1+)(142)     Gi=1 yol—T• (1+0) (1+0) (+0)2ln(Mf2+3+2i--+0)142 

                                          2 (b—a)            +3 +a+b0)_  (1+~) + (1+0)2i ----(b—a) 2 1+0)(1+0)(1-22¢)a+by5+2 1-0ld~' 

     At the first glance of these equations, it is easily under-

stood that the results obtained previously are also valid in 

this case. So the final results only are presented here. The 

critical mass flows of the three limiting flows are 

Q+bOo (3/2+(a+40)l(1+¢0)) 

   mf=F1(1,Oo)=,V2ho •Po•(1-7/00)'/2' /1+¢o  
     Flo(4+2 a+ 14.0+                                   0'(2+(ab95o)/(1+md) '(143) 

                                                       1+¢o ) 
' 2. 1 _1-7.10e*(3+2 a+b0eri(1+/e*)\1+¢e* )  

    me=-^2hoC,'-•(1—fie*- •,               0e* (5+2 • a+beOe*). (MJe*+3+2 a+ bye* 1 
1 I-¢e*1+0e* J(144) 

                      uz(5+2 a+60, (m~e*+3+2 a+b0e*_1                               r1 +96* l                                   1+95„*l+(e*       ~/1—r~56e**(MJe*+3+2eXpl(3+2)J ' 

(3+2a+6950(3/2+(a 1n,luf0d)  1+u) 
   n1=-V2ho • Po(1— /Of )Il2•  a+

1 ib5bfia+(a+b9f)nl+vf))' exp(—G1e;.f) ~      (4+2—l(145 ) 

                                  / 

    40•



where 

       

.  / Li  
        ~f(goed _ \Tef+1.±+b/  (b—a)za+b¢eI Gwf=f— ,/InMe+3+2--1 40 (1+Cbef)                              (1+95,f)2(ff1+ref/ 

                                                 (b—a)  
               +(3+  a+bef 1 (1+~) + 2(1+56,A2+1  27 — (b—a) 1                   `2 1+cef J (l+oef) (1-7195ef)5+2 (a+b~ef)2 1-724f(l+cf)zJd¢ef                                            (1

+#,j) 

(146) 

        1.00 
             J°°.102 kg/m3N 

                 10 

1p°'=W
11/ho 

0.95^`.1~~ 
      —o 

N>>O"cQ10-2 
b c3` N 3 

a, V- 10 

EIE 
10 4 5 

       0.90 

IL' 
                      —10 

 10 

       0.85 

 0.80I  
      00.2 0.4 0.6 0.8 1.0 

A 

    Fig. 9Critical mass flows of a singly ionizing 

              monatomic gas. 
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and it can be obtained 

 a+b0er \ (2+(a+bgC1)IU+6er)) 
    me  Fi(Mferrcer)`1'-F2 1+95er• Mfer < 1 

mef.min. F1(1/~er)(147 )                         Mf rf3~21 -F~errl 

From these results it can---- -- -—------— 
N 

finally be concluded thatI=1.683X105°K 
i=1.25 
a=0.35 4000°K<T<40000°K 

me<mefsmf•(148)b=-0 .20 
C1=1.989 X 10-6 lc-  mol/m3 

Calculated values of ratios—---- 

me/mf and mef/mf are shownTable 3 Characteristic values 
in Figs. 9 and 10, respectively.of N9as.0) 

1.00---------------------------------------------------- 
N 
                -1-0 

0o- 0.6 

Cbet= 0.553 

ME  0.951 

=0.9113 -- 

                                               m =0.9017 
0.90mf. -----

0 0.2 0.4 0.6 0.8 1.0 

( So  ) 'P
o-(Pet 

    Fig. 10 Critical mass flow of an equilibrium-frozen 

               flow of a singly ionizing monatomic gas. 

      Because of the uncertainty of the rate equations which 

govern the ionization and neutralization, the critical mass 

flow for the nearly equilibrium flow is not obtained. 

5. Concluding Remarks 

      Critical mass flows have been obtained numerically and in 

part analytically for the flows of three kind of gases under a 
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Fig. 11 Frozen critical mass flows of a vibrating diatomic 

                      gas, an ideal dissociating diatomic gas and a 

                      singly ionizing monatomic gas. 
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wide range of reservoir conditions. For frozen flows, the cri-

tical mass flows of these gases are shown in Fig. 11. 

     For the vibrating diatomic gas, the values of ratio  me/mf 

are in a range from 1.0 to 0.9706, for the ideal dissociating 

diatomic gas from 1.0 to about 0.97, and for the singly ioniz-

ing monatomic gas from 1.0 to about 0.90. 

     It must be emphasized that it is very difficult to treat 

numerically the nearly equilibrium flow, because the numerical 

integration of the rate equation together with the flow ones by 

the digital electric computer requires the more consuming time 

for the nearer equilibrium flow. Therefore the analytical 

treatment of nearly equilibrium flows is very important. 

     There is one thing which is definitely unfavourable for 

the approximate analysis of the nozzle flow problem by the E-F 

flow model, in connection with the definitions of the speed of 

sound in nonequilibrium relaxing gases. It has already been 

argued that for an equilibrium flow the reference velocity is 

the equilibrium speed of sound and the critical point of flow 

equations is located at the throat where M
e= 1, and that for a 

frozen flow the former is the frozen speed of sound and the 

latter is located at the throat where Mf= 1. The value M
feof 

Mf in the equilibrium limit does not coincide with M
e, and 

furthermore the inequality M
e> Mfe is generally satisfied in the 

relaxing gas. If the transition from an equilibrium flow to a 

frozen one occurs at some point in the region where M
e> 1 and 

Mfe< 1, then the flow which has already passed through the throa 

where M
e= 1 must again pass through it where Mf= 1, which is 

clearly a contradiction. Therefore it can reasonably be conclud 

that the E-F flow approximation cannot be applied very well to 
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 such a case in which the transition from the equilibrium to the 

frozen takes  place  at c in the range of 4'et < 4 < eft for a di-
atomic gas with the vibrational energy mode only, and at Ote in 
the range of Gee* < ore < Die* for an ideal dissociating diatomic gas, 

and at ¢e in the range of ?ie*< 5e < si,e* for a singly ionizing 
monatomic gas, where « e* and *are, respectively, the value of 

pe and $e at the point where Mfe= 1. 

     Furthermore it must be noticed that the curve for the 

solution in which the transition from the equilibrium to the 

frozen occurs at i" < het differs in its pattern from that in 
which the transition occurs at > ~èt. This is wholly due to 
the exictence of two reference speeds e and of defined quite 

differently. Fig. 12 shows qualitatively these situations for 

a vibrationally relaxing diatomic gas. The freezing point in a 

Mf ,Mf, 
 MeMeMe¢f Me Mf of 

    Vf <etMfe fMe•/~~Mfe          iMfe0\•i        met * me          Me`~ti 
i'~1------V--/Mfe 1 ----~• 

                 • 

  %.,\Vfft  ~~I'/~~\met = me 
 /\ 
 r I 

  f0Xf X       X throatXthroat 
     (a)(b) 

Fig. 12 Distributions of Mf and Me along the nozzle axis 

                in a equilibrium-frozen flow. 
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nozzle is denoted by  xf, and the shaded regions are the broken-

down ones of validity of the E-F flow approximation. The quanti-

ties Meef' Mfef and Mfeef denote, respectively, the equilibrium 

Mach number in the equilibrium branch, the frozen Mach number in 

the frozen branch, and the frozen Mach number in the equilibrium 

branch of the E-F flow. 
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CHAPTER  II NONEQUILIBRIUM FLOWS OF VIBRATIONALLY RELAXING 

            DIATOMIC GASES 

1. Introductory Remarks 

     One of the simplest cases of nonequilibrium phenomena in 

nozzle flows of real gases is the vibrational relaxation of a 

molecule. However even for this relaxation phenomenon, the ana-

lytical treatment of nozzle flow problems is almost impossible 

except in a few special cases. Though a few discussions about 

its reasons are already presented in the previous chapter, the 

closer investigation makes it clear that another one of the 

most important reasons exists in the great width of range of 

variation of the thermodynamic state of a gas in a nozzle. 

     In a flow through a nozzle, three flow regions, the nearly 

equilibrium region, nearly frozen one and transition one from 

the former to the latter, can in general be found. Furthermore 

the boundaries between these regions are found to be somewhat 

sharp and the width of the transition region is, in almost all 

cases considered previously, by far smaller than those of others. 

To such a flow, so called Bray's E-F flow approximation can 

often be made with sufficient reasonableness and accuracy. 

     Complete analytical solutions can be obtained only for the 

equilibrium, frozen and E-F limiting flows. Notwithstanding for 

such gases as the N2 gas and the 02 gas considered here, the fact 

that the energy stored in the vibrational mode is much smaller 

than the total enthalpy of the gas, yields us ways for approaches 

to the analytical treatment of nonequilibrium nozzle flows. 

Such an idea has already been applied to the problem, for ex-

ample in Ref. 7 where an iterative method is used on the basis 
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of the completely frozen flow. Conversely, our analysis is done 

by using an approximate rate equation on the basis of the com-

pletely equilibrium flow. It will be made clear that the latter 

treatment is far superior to the former in the theoretical 

reasonableness and accuracy. The greatest merit of our method 

investigated in this chapter exists in the possibility of solv-

ing the rate equation and the corresponding flow equations 

separately. Furthermore our method in combination with a mathe-

matical technique  of"the steepest descent method can yield a 

very powerful way for the analysis of whole flow fields in non-

equilibrium nozzle flows. 

     A problem of determining the entropy rise due to the non-

equilibrium process in a nozzle, which has scarcely been studied 

in earlier papers, is also investigated. 

     Calculations of distributions of the vibrational temper-

ature and entropy along the nozzle axis are carried out for the 

N2 and 02 gases by the electric digital computer HITAC 5020 at 

the computing center in Kyoto Univ.. 

     Finally discussions on the validity and accuracy of the equi-

librium-throat-approximation method, which has been widely used 

in analysing nonequilibrium nozzle flows, are given. 

2. Analytical Solutions 

      Notations used in this chanter are the same ones that was 

used in CHAPTER I, unless otherwise defined. Considering the 

nozzle geometry given by A = Kx2, we again get the basic equations 

Eqs. (82-86) in the previous chapter governing a nonequilibrium 

flow of a vibrationally relaxing diatomic gas through a nozzle. 
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It must be noticed that in this system of equations the inde-

pendent variable is not x but  t. The characteristic values used 

in this chapter are also given in Table 1 in Ch. I for the Na 

and 02 gases. 

2. 1 Solutions of Equilibrium, Frozen and Equilibrium-Frozen 

      Flows 

     In the rate equation, letting 

                                          (1) 

yields an equilibrium relation, 

6V=6Ve=6 or v=SVe=e •(2) 

                                                                   Using this equilibrium relation, the equation of momentum can 

easily be integrated to give 

       14 (0=125—125~7Fe  expo  exe0  exp e-1                                                            —21610£03 expeo-1p\expea-1/ expo 

             expt\— e e512.(1—7 1-'/2 (3)                                                                       exp£-1co 2e expe-1 

On the contrary, letting 

II=~,(4) 

in the rate equation, yields 

    dEV =0 or ev=evf=60 or ev=evr=e0 ,(5) de 

Using this, the equation of momentum can also be integrated to 

give 

            125 7152( ---,a-1)-v2l    hf(f)=216~10 e03•gze(6) 
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     An upstream equilibrium branch and a downstream frozen one 

are joined together at the freezing point to yield the  E-F flow, 

and then the solution of this flow is given by 

eyv=E , 

           for esevf 3(7) 
      hef(e) -

\l?eflh,(e) ,            \uel 

and 

        1  EVef=EVf= 
exp evf-1 

          125fief  exp go( e0  1    h`f()-216 ea, expeo-1 exp( expeo-1 ifor 
exp evf-1 exp( •err/l5,2(1_  1 7\1/2(f3)              exp evf\exp evf-1 /g\Co exp Cvf-1 2C' 

where ~Vf denotes a frozen vibrational temperature. 

     The numerical results obtained by using the analytical 

solutions of these three limiting flows are shown in Figs. 1 

and 2. These results well illustrate appreciable effects of 

the molecular vibration and the freezing of its relaxation on 

       30 
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    Fig. 1 Distributions of area ratios he(4) and hf(4). 
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    Fig. 2 Distributions of area ratios he(4), hf() 

           and hef(~). 

the flow fields. Obviously, however, for values of ~ greater 

than or equal to about 4, the real gas effects on the flow fields 

are almost negligibly small. It is quite easy but very signifi-

cant to notice that the effects on a flow field of the part of 

the vibrational energy which has been released into the flow-

field and of the freezing of the vibrational relaxation become 

more and more significant, though quite slowly, as the flow pro-

ceeds more and more downstream through a nozzle. 

     Fig. 2 shows the result of a sample calculation of hef(4) 

in which a condition Vf < 
et is satisfied. It must be noticed 

that in this case even the equilibrium part of the E-F flow 
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does never coincide with the corresponding part of the completely 

equilibrium flow under the same reservoir conditions. We can 

easily find that the reason exists in the discrepancy in the 

values of m
e and m 

 2 Solutions of  Nonequilibrium Flows: Approximate Rate Equation 

     For the convenience of the later analysis, it may be assumed 

without loss of generality that the flow starts from the equ-

librium reservoir conditions, passes through a sonic point near 

the throat, and expands into vacuum infinitely downstream. 

Then TT in the rate equation Eq. (84) in Ch. 1 is zero at the 

reservoir and increase monotonically to infinity as the flow 

proceeds downstream, so that we can put 

0<II<co . 

The flow field splits into three regions corresponding to the 

magnitude of the quantity17: 

( i ) near equilibrium region sv=E 17,11 , for II<1 
,(9) 

                                       e— 

 (ii) transition regionevs =0(1) > for 11=0(1)(10) 

  (iii) near frozen region1 der, <1 , evfor t7»1(11) d~ 

As was already pointed out, each boundary between the succesive 

regions can be found to be somewhat sharp. 

     It should be naturally expected that there can be some way 

for predicting beforehand, even though roughly, the position and 

width of each region in a nozzle. For this purpose , it is quite 

convenient to introduce Bray's nonequilibrium parameter Eq . (100) 

in Ch. 1. Using the fourth equation of Eqs . (86) in Ch. 1, this 
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can be written down as 

 1   deve exp e • lie=8645 -^hoop'^Keoiiz Pe=—He •—_ 
edeexp e-1 1257 pPO"' po 

             e"+t eXPe  exss-s)1_7_ 1 lz(                                              [140-n112 exp e-1P(—leCCo 2e expe-1/  (12) 
5121 1 eexpe  r (1 7  1 1 

               2\co5e expo-1) (expe-1)2L\cP2e exp e-1)2] 
      It can be seen from the above relation that for values of 4' 

  greater than or at least equal to about unity, 

O(Pe)=O(17) •(13) 

For flows in which the vibrational relaxation takes place most 

predominantly among all possible relaxation phenomena, the values 

of 4 are at least about unity even at the reservoir, and then the 

relation Eq. (13) is valid in almost all flows considered. The 

condition Eq. (9) specifying the nearly equilibrium region can 

therefore be rewritten in terms of P
e instead of TT. Similarly 

the transition region can be defined interms of Pe by 

Pe=O(1),(14) 

which is directly derived from Eq. (13) under an assumption 

Pe~P or I7in the transition region,(15) 

This assumption can not only be seen quite plausible from Eqs. 

(9) and (10) but also actually be verified from the numerical 

results a posteriori. Moreover this is, in general, the case 

for almost all flows ever considered in many previous papers. 

     Now it is very useful and of importance for our purpose to 

know the behaviour of TT as precisely as possible. However it is 

known only after determining the flow field. Nevertheless we 

can estimate it to some degree by invesigating the behaviours 

of TT in the frozen, equilibrium and equilibrium-frozen flow 
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limits. We can easily obtain 

 1_72 5(1_21lEexpE r(171 
 11f_ rhf(e)-1  ]hieco2g—EO 2\co 5e)+(expo-1)ZLkco2—E/2 (16) 

 17 —ueL he(e)-1 J 1 7
2(_21_           —ElEO J                   coze

I! f--(----/r hef(e)-1'/2 for s5~vf,  ffe\Pef/Lh,(0-1J'(17) 

                                                 1r/1-7 5(1_21l eexpg  ---- (1_71   He—\/me)-11]'/212~Evf2(yo Sg—E/+(Sexpl-21Z\(P2g—E~2   flfiefL  
                 so 2e—E2 \So 5e—Evf/ 

                               for e_evf 

It must be noticed that the distributions of j
e,flf and fief are 

already known before the system of equations of the real non-

equilibrium flow is solved. From the above relations, it can 

be seen that 

fff< Ifef < II 

Furthermore from the fact that the R-F flow can usually be a 

very good approximation to the corresponding real nonequilibri-

um flow, it may reasonably be guessed that 

77- Ilf , 

so that 

IIf<f7<IIe •(18) 

This will also be confirmed from the numerical results for flows 

considered here. The distributions of P
e and Pf are shown in 

Fig. 3, where the latter is defined by 

1 dE 
Pf - Iff• E de •(19) 

Perhaps the maximum effect of the internal energy released into 

the flow on the rate equation under the fixed reservoir con -

ditions may be estimated from Fig, 3 by comparing the curves for 
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          Fig. 3 Distributions of Pe and Pf. 

the two limiting cases with each other. The most important infor-

mations which can be drawn from these results are described in 

terms of mathematical expressions: 

 (i)dP>> 17 orat least dB.— 0(1) ,(20) 

                      a (ii) de(171)Ici(21) 
throughout a nozzle. Since 

11-1L''1<1 ' for '<< 1 , 
we can get, considering the above relations, 

     1-i`I<<1 , for 17«1, or at most 71=0(1).(22) 
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Here the analyses will be carried out only for the flows which 

satisfies the conditions Eqs. (20 - 22). It must, however, be 

emphasized that for flows of such gases as N2 and 02, these are 

in almost all cases ever considered well satisfied. 

     The rate equation may be written in the form 

   er=exp(—Jde 1 JEexp(  f d)de(23) 
         \\g,H  go  n  g H 

where 4.r is a reference value of greater than 0. Integrating 

it by parts yields 

EV=exp\—f~ 17lLsexp(fer 17E,Jeodeexp\J4. 17)de} 

Using the boundary condition n-= 0 at = 40,we can rewrite it 

as follows 

Ev=E+dev(24) 

where 

    Elev.=—expf —J -)•faEeXp\I)de= rdEVm(25) 

and where 

dsvm= Jg m exp[-~m(~?,end,7, 
to(26) 

0.07, e)=m77+Jgdil 
   a 17(27) 

and Q is a dummy variable. When c is fixed , the functions 

m (Z) take their minimum values for the values of ' which satis-

fy 

   17(71)=m,m=1, 2, 3... ,(28) 

It can easily be seen that the term Q E
Vl is the largest one in 

the series Eq. (25). Moreover, seeing Eqs . (26) and (27), we 
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can find that the region of  p satisfying 

H(72)=0(1)(29) 

makes a principal contribution to the integral deal. Thus, the 

contribution to deal from the other part of integral over 2 out-

side this small region may be small and insignificant. Similarly 

the contribution to 41(i=2, 3, 4,...) from the part of integral 

over 2 outside the region satisfying i11(c) = 0(1) is very small. 

If, therefore, we consider an integral defined by 

    4 v=-expl -~~)Sodgexp\~. ~e/d(30) 

 this can be used as a good approximation to d(V, that is 

 .(31)          dsv=dev 

This is also justified by the condition Eq. (22). The greater 

becomes the value of 4' which satisfies f"(W = 1 (or 77 (4) = 1) , 

the closer the integral Ell approaches 6v. 

     We can easily find that calculating Ev is strictly equi-

valent to solving the ordinary differential equation 

   dEvf!'
de-F Ev,(32) 

  with the boundary value at 60at a reservoir, which is clearly 

linear and decoupled from the remaining flow equations. The 

solution can be represented in the form 

Ev=E+dev, ,(33) 

Then the approximate rate equation is transformed into the form 

     d DES (34) 
          dsEv-_ lle 

Since 'ne is a known function of , QCV or can be calculated 
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only by the integration procedure. By using the solution  deV 

or Ev, the corresponding nozzle area ratio 13(4) and frozen Mach 

number FA(4) are given, respectively, by 

           5mho'zexp soe0         1-2(0=7hoco Po exp 6o-1exp( exp so-1 

             ()'/expE-11exp(—--------expl—eddsvder(35)           Alfe0`expe l\exp e-1)goa 

       MIz=-7199 —E—zler)E-5 (36) 

where m is the critical mass flow corresponding to the approxi-

mate distribution of vibrational energy 4. Since h(C )= 1 at 

the throat, the critical mass flow m is obtained from Eq. (35) 

as follows 

          ( --------- 

            Po exp so-1 _ ~011t711
11/z 

    m= ^2ho~P'eoi/zp/exp soexexp so-1)L\.o—JEVrIS,—2 
3 so ppsr exp(----------                    p)exP(Jgre(4- )d0(37)         srexSir-1exes-1)exp 

where t is determined from the regularity condition of the flow 

equations at the throat, 

                      7 +  sfz exp sr  
sr-7+  et  +1  2 (exp es-1)2  +e r • JEvt co 2 exp sr-1 2 5+ srzexpe,  

                     L2(exp es-1)2j 

            {e/2[G1—-----1——4—evrJEVf_exp es        _ 1expr3J              rl)}[~er(exp el-1)2J(38) 
5+st2 exp sr  

                          L2(exp es-1)2 J 

By using Eq. (37), m can be calculated for all possible nonequi-

librium flows. Since the corresponding equation of entropy is 

written in the form, 

Wz Wz •JS=  (S—So) 

       =r1n( exp-)+-Sv LI—fln(  exp )I ---------1—fdde                                                  JEV(39 )            LLexpsv -1exp;v-1Jexp e-1expe-1J ,<od 
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with which  Eqs. (35) and (37) can be rewritten as follows, re-

spectively, 

            Rom/----me0112 expEo • exp(/ e0 

             7h0co Poexp Co-1\ exp Eo-1 

             1t l3( expv-1p( — sE prWz              Mf\Co/\expCv/eX\exps"Vv-1)exIRdSJ'(40) 

        ^2110q)Co'12eepp°Co1exp\—exp Co-1 /\eor /3L\cPexp C,-1-----------—Qsv, Jar—21'/z 
            expsvr p(exper 1p— Wz1        X expCvi-1exexyr-1ex`(R4S(41) 

The last equation indicates clearly that the increase in entropy 

decreases the critical mass flow, which has already been pointed 

out. 

    Especially for a nearly equilibrium flow, repeating the 

integration of 4( by parts yields an asymptotic expansion 

deV=—E (-1)"-'(1I<D)n•E 
n=1 

        +(-1)n-'exp(-1getlf~or<(77<D)N.Elexp(fdg~rl7<de, 
where(42) 

         \/L 

    d 
       de ) 

 ~/(43)        (IhlL <           D)"=D • (1ILD)n-1 

and n is a positive integer. If there is an integer N greater 

than or equal to two satisfying the condition 

(1I<D)N•e‹(II<D)•e(44) 

then for such an integer N, 4717 can be approximated by 

   dEV=— E (-1)'-' (IID)n•e ,(45) 
                       n=l 

in the sense of the asymptotic approximation. Using this ap-

proximation, we can represent d S() and h(4) in the forms, re-

spectively, 
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       JS^IIn( erp v1+----v —Iin(expo-1/eXpe-------)+—exP—1e--------1+"jede\17`dEe/de+•••             \\exp ev—I// exp—11         L\go 

                                             (46) 
       1~(t)  5_  m  ol/2  _  expeo exp(_eo V

7h09' Po expeo-1 expe0-1 

s                  1~l                     expe—l
eXp(—? lexpJ(ediid+...(47) M/\eo/ exp e\exp e-1/de de 

In the nearly equilibrium region, the integral terms on the 

right hand side of Eq. (46) and in the square bracket in Eq. (47 

are sufficiently small and negligible within an acceptable error 

In such a case, of course, zEv can be approximated by 

     .1svnDs=exile  l7=---------                    (exp—1)2exp e-1.                                              (48) 

2. 3 Solutions of Nonequilibrium Flows: The Saddle Point 

      Method 

     When the value of c which satisfies Fre= 1 is much greater 

than unity, 4jv can easily be evaluated by the saddle point 

method. Denoting the values of 4• which satisfy the conditions 

         I!()=1, m=1, 2, 3— - , 
                                             (49) 

by arm, we can introduce three new quantities by 

         —?7e 
           e,,„'eme.m' 

                                             (50) 
              fim(Y1(gym,d~lm' e        0n,(YIm', em')=g=, C) gym,J,m[I'(Yi ,,')                    mg—                                                        nm 

where 

11/0m')=IMYl)• (51) 

                                                                   Tt is easy to prove that 

    Y1t(~'mdm'     0,/07.1,Sm')min•=~m'(1,em')=1+J--(52) 
                                mII/ 

with "m fixed, so that the asymptotic expansion of , E
vm can be 
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   obtained by the saddle point method as 

                   ratrr+i         &v.—Zm•SPm'(1, Cmr)~0„,az/m2).(1 )!,                   m rao) h1`/ (53  )                      .Z.(2) 

   where 

Zm=mCrm , 

aom= 1azm  -15  Aim3Az,,,(54)                                                              
        ,~oiz—               maom 8 AL A,1„, 

e 

   and where 

       Aom=imerm•(dlle) 
            2\deE=E m , 

  1zz         Alm=6S mCrm\dee)E=frm—2mzerm[(-----dC)=4rm i}(55) 

       Azm=24{mCrm(dde-----e)E=Erm (WI'de )E=Erm•\de)E=Erm+6m3Crm[( dee)=Erm]3} , 

..... • 

   Especially in the case of
rl.>> 1,QFVis satisfactorily ap- 

   proximated by 

               2~r 1UzE de      dev---4EV'—~(d~)
JeXp—Er1—56            (~E,,ne) ,() 

                       dCE=E 

   and then infinitely downstream 

                                     ~~z       44'(00)~
LdC(dll)----------~exp(—e l-1W-d,4).(57)     LErg                                     E=E 

   Obviously the accuracy of this solution will closely be con-

   cerned with the behaviour of TTe near the point where T1e= 1, and 

  with the magnitude of Z1= 4rl• 
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 3. Numerical Solutions 

     With the intension of estimating the accuracy and reason-

ableness of our results obtained in the previous section, exact 

reference solutions are needed, and so the equilibrium-throat-

approximation method is applied. 

3. 1 Solutions by the Equilibrium-Throat-Approximation Method 

     This method can be used only for flows which are kept near-

ly equilibrium at least up to the critical point near the geo-

metric throat. In this method, the flows are assumed to be com-

pletely equilibrium up to points somewhat downstream of the 

critical points, from which the flows are analysed numerically 

as nonequilibrium flows. 

     Though this method is in many cases very convenient and 

powerful for the numerical analysis of nozzle flow problems of 

real gases, there is only one disadvantage in it. It is the 

fact that there is no strict criterion for determining the start-

ing points of the downstream nonequilibrium branches. Namely 

there is only one condition that must be satisfied by these 

starting points, which is 

I!«1, or P,<1.(58) 

So far it has inevitably led to the result that there can always 

be some ambiguity and unreliability about the accuracy of the 

numerical results obtained by this method. 

From the foregoing, it will be natural to consider that 

some estimation of accuracy and validity of this method is 

urgently needed. At first, for this purpose , our calculations 

are carried out for several starting points of the nonequilibrium 

branches satisfying Eq. (58) under fixed reservoir conditions 
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and for a fixed nozzle shape and size, and the results are com-

pared with each other. 

     Three numerical solutions are illustrated in  Fig. 4. In 

these calculations, the nonequilibrium branchese start from the 

points where fl are, respectively, 0.00620, 0.02918 and 0.09696. 

0.6------------------------------------------------------------------------------------- 
   ^1T=0.006201      •------ 6 (expf-1)

dd                                      E -Tfa 

        \\ ---- - 7Ta -77a(iTa ) 

6y calculated by equilibrium-throat-
   ; 0.5 approximation method K •E

v 
 Na°2918. 

             N2 

  0.40.323        ~
p=Q872780 .096960 • 23Ev(3);O'323 
et=1.0\ Ev(ro)=0.3/6 

            JK =102 m2/kg 
Po 

0.3------------------------------------------------------------------------------------------ 
1.0 1.11.2 1.3 1.4 1.5 

6 Fig. 4 Distributions of vibrational energy calculated by 

            several methods. 

The first two curves rapidly approach with each other as soon as 

they start from their corresponding starting points, and furthere-

more their final values of EV(co) almost coincide. The last 

curve, however, does not converge to the others. These clearly 

indicate that in order to assert that the results calculated by 

the equilibrium-throat-approximation method is sufficiently accu-

rate and can be taken as the exact reference solutions, some 

additional condition must be imposed on the condition Eq. (58). 

From the numerical results, we can draw an empirical criterion 
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 for the validity of this method, which can be said as follows: 

The magnitude of IT at the starting point of a nonequilibrium 

branch must be at most 0(lO-2) for N2 and 02 gases. By using 

the solutions satisfying this criterion as the reference ones, 

we can estimate the validity and the accuracy of the analytical 

solutions obtained in the previous section. The possible regions 

of the equilibrium-throat-approximation method are shown in Fig. 

5 for reservoir conditions. 

102------------------------------------------------------------------- 

                                          N2 
   .•pt'1070

2 

A 

    o5 e -70 100  (N.10 \ ...10.-- -...— 
                    10~  t.+: /4 \ \ Nti%...‘_,,,, ,.____... ^ '... 

                                        ^ 

          \\~N2 possible regionzK,.N^       —ofequilibrium -throat-~/^`N^~N 

         2'~/02 approximation •4N4%. /   -4method a
cN` 10<(//,  

101100101 

co 

Fig. 5 Possible regions of the equilibrium-throat-approxi-

          mation method for. N2 and 02 gases. 

     Distributions of eV are shown in Figs. 6 and 7 under a wide 

variety of boundary conditions. Only those for Iiip
0= 103 and 

102 are the solutions of approximate rate equation , and the 

others are those calculated by the equilibrium-throat -approxi-

mation method. On each curve , the location of the point where 
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           N2,v Co=0.87278 

103 

                               • 102 

                                 • 

                 101 
~
> {cr 

      a 

      x101- 
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( 

101 
                                       • 
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1 

1 

            ~-2                          -102m/kg 
OIre=1.0 1 )0 

  10-2I -------------------------------------------------------------------- 
  0510 15 

  Fig. 6 Distributions of for various values of ratio 

TK/pD and a fixed reservoir temperature. 

Tfe=1 is indicated, which is found to be located about at the 

center of the transition region. 

    Also distributions of h(4) and TT(4) calculated by the equi-

librium-throat-approximation method are shown in Fig. 8 being 

compared with, respectively, he(4) and hf(c), and Tle(c) and 11 

M. These show well that our approach is quite reasonable and 

accurate. Because of the artificially imposed boundary values 
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of  ? and e
V at the starting point of the nonequilibrium branch, 

our results indicate a contradictor
y tendency to our theoretical 

estimations only near the starti
ng point of the nonequilibrium 

branch. 

10°------------------------------------------------ 

103  

                         • 

             102  

                        • 

       101  

n. 

      0 

         1  10 —10°- 

                                • 

1 
1 1 1 

1a=.10-1 m2/kg 02 

         o We =1.0 1 4=0$7278 -- 6v 
 102 111  

  0 510 15 

Fig. 7 Distributions of e
V for various values of ratio 

/K/po and a fixed reservoir temperature . 
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    Fig. 8 Distributions of ratios TT/hf, 1/rrf' h/hf 

             and he/hf. 

3. 2 Solutions Far Downstream of the Throat 

     Asymptotic Behaviours of nonequilibrium flows far downstream 

of the throat are investigated. Letting 

e>i, M1»1,(59) 

in Eqs. (82) and (86) in Ch. I and Eqs . (3), (6), (8), (12), (16), 
and (17), yields 

      he 2257/-4exp go (o i~z•s~• 
           216               10&•            expo-1expz               (expeo-1)W(60) 
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 _exp  Eo  —1r Eo  1 .hi()1 exp eoexpL—expeo-1 J=const.,(61) 
MOv lieSo i/2 

               C1exp so-1) 
exp evf-1( Svf                                •exp- 

    her(~)fpe/ exp Sv/ \ exp evf-1  =const. ,(62 )     me)~Ce)(1 —W  )'/2 
                         \exp Cvf-1 

                 exp Cv-1exp
\(_ CV + W2  

                     As) 
         _ h(E)(pexpCvexp Cv-1 R(63) 

he(S)~\lie/ep1/2 

                  (1expCv-1) 
hOCO  

         He v 
         288!le1e(w+s)<) - exp (—l8SC_S) ,(64)           125\/2520 re-

coo'Co 

III3/4exp Co-1i/21  Co       =~.(1—co )•()•exp(—)=const .,(65) 
     17,\\exp Co-1\exp Co\2 exp eo-1 

IIe/ _ 'V!l pe • (1Co 3/4( exp Cvf-11/21  ev f _(66)        17Po.—exp evf-1)^ exp Cvf)expI/—2 exp evf-1)—const. , 

      H  , (1 —  Co )3/a\exppv-1)'/2ex(_ 1 ev  + W2 As).(67)      17,`expCv-1exp6,p2 expeV-1 2R 

Especially the values of ratios 

h/(0O) and//f(')moo)IL(OO) 

are of importance in estimating the effects of molecular vib-

ration on the limiting behaviours of a flow and the relaxation 

phenomenon itself. From Eqs. (63) and (67), it can well be seen 

that the increase in entropy due to the nonequilibrium process 

plays important roles in analyses of nonequilibrium nozzle flows. 

The increase in entropy due to the vibrational relaxation is not 

large in our sample calculations. It is significant, however, 

to notice that wheather an real nonequilibrium flow can well be 

approximated by the E-F flow or not depends strongly upon the 

behaviour of entropy as 4-).co. 
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     Now for a nonequilibrium flow, the rate equation may be 

rewritten in a form 

  d dsv_  expe  _   Av(68)       de (
expe-1)z17 

For sufficiently large value of 4, it can be approximated by 

dedsv~-co.(69) 

Furthermore the followngs hold 

dsv=oandd gdsv=o,(70) 

at 4 = 4o.By virtue of Eq.(69),these mean thatziehas the 

maximum value for the value of 4 satisfying 

AV=  expe(71) 
ZI(expg-1)Z 

From these considerations, it can be concluded that in general 

   4Evmax4 H exep     [,(exps-1)Zmaz•(72) 

for every flow, and similarly 

     rH           expo  Pe    AEV max • �[17L(expo-1)Z~maxexp-1imax.(73) 

Since the second term or the last in Eq. (73) is easily calcu-

lated in advance, we can obtain some significant informations 

on the features of distribution of ZE V and then ArEV from these 

in advance. 

      Again for extremely large value of 4•, we have 

dsvaexp(-1 H(74) 

LSale•  V de.(75) 
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According to the limiting values of  deV and ZS which are re-

presented by, respectively.216v(oo) anddS(oo), four types of 

flow patterns can be identified at least theoretically: 

     ( i ) dev (co)=finite, 
4S(co)=finite,frozen-isentropic flow 

     (ii) dev(co)=finite, f rozen-nonisentropic AS(co)=co, 

      (iii) dev(co)=0, 
          AS( co) =finite,self-limiting-isentropic flow 

      (iv) Aev(o0)=0, self -limiting-nonisentropic flow , 
AS(co)=co, 

Which flow can occur in a nozzle entirely depends upon the values 

of integrals Eqs. (74) and (75). In our sample calculations, 

only the frozen-isentropic flow is possible at infinitely down-

stream, which can also be verified analytically from the from of 

IT 

3. 3 The Maximum Entropy Flows 

     Some discussions on the entropy rise in nonequilibrium flows 

are given. As has already been mentioned, the entropy rise 

vanishes both in the equilibrium limit and the frozen one. 

Since in the limit T/f)0->00 the frozen flow is given while in 

the limit r/pow0 the equilibrium flow is given, the flow of 

the maximum entropy rise can occur for some finite value of rK/f0 

when the value of d0 is fixed. To know the magnitude of the 

entropy rise is very significant for the theoretical analysis of 

nonequilibrium nozzle flows. For instance, it gives an estimation 

of the validity of the E-F flow approximation to a nonequilibrium 

flow. 
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4. Concluding Remarks 

     A distribution of eV,which is calculated from the approx- 

imate rate equation Eq. (32), is also shown in Fig. 4. The most 

important conclusion that can be drawn from it is that the so-

lution of the approximate rate equation Eq. (32) is quite accu-

rate and can be taken almost as an exact solution. It indicates 

that our approximation to the rate equation based upon the theo-

retical inspections may be judged to be quite reasonable and 

accurate. Furthermore it must be emphasized that the greatest 

merit expected by using this approximate rate equation is to be 

able to exclude out the difficulties in connection with the 

singularity of the flow equations at the sonic point, which is 

usually unavoidable in nonequilibrium nozzle flow problems. 

     The distributions of entropy along the nozzle axis are shown 

in Fig. 9. Detailed discussions of the entropy rise are also 

given in Chs. III and IV. 

 0.06 
                                               =101 rr?/kg•-~-8 0.05____       N2 1-T3.05ii 01 

                 -0.87278            002 x102.0444
a                      ",001.99--10„.0            01    0 .04—

/10 5x1020.0358 

Acc —"111711111101611111111W0.0285 10a 

0.02—//0.65 

. 

                                                          101 

             (Jordirrippv104 2S(0))=0.0084 
012 345 

             Fig. 9 Distributions of entropy. 

                       71



     The solutions of the first, second and third approximations 

to  EV are illustrated in Fig. 4. These are good approximations 

at least in the nearly equilibrium region. An extremely nearly 

equilibrium region is very difficult and laborious to analyse, 

because the closer the flow is to equilibrium, the more time it 

takes to compute the flow field. The approximate solutions ob-

tained here are therefore of much value. 
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   Fig. 10 Distributions of TT
e(dv/d) and (1 /Tre) (dTTe/d') • 
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                                Fig. 11 Distributions of vibrational energy.



      In order to confirm the validity of our assumptions made 

in deriving the approximate rate equation, distributions of 

 d(lnfl  )/dc and T^"e(de/d4) are presented in Fig. 10. the latter 
can also be used for calculating Bray's nonequilibrium parameter 

and the first approximate solution toeV. 

     Solutions by the saddle-point method illustrated in Fig. 11 

show the satisfactory accuracy, which has been expected theo-

retically at least for large value of 4-
0. 
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CHAPTER III ROLES  OF ENTROPY 

1. Introductory Remarks 

     In nonequilibrium nozzle flows of vibrationally relaxing 

or chemically reacting gases, the nonequilibrium processes in-

evitably increase the entropy of gases in nozzles. This increased 

entropy affects not only flowfields but also relaxation phenomena 

themselves. It is regretful that in spite of the large number 

of researchers, few good studies on this problem have been done 

because of the difficulties in analysing theoretically these 
19)20) 21) 

flowfields. For example in Ref. 19, Conner, L. N. and Erickson, 

W. D. studied the entropy production in the vibrational-nonequi-

librium nozzle flows. They calculated it for convenient evalu-

ation of the total pressure of nonequilibrium flows. However, 

their approach is completely numerical and then it cannot suf-

ficiently clarify and appreciate the effect of entropy production 

on the flow fields and the relaxation phenomenon itself. There 

are obviously two kinds of nonequilibrium effect on the flow 

parameters in a nozzle, one of which is due to the entropy pro-

duction and another of which is due to the departure from the 

thermo-chemical equilibrium. Though Conner and Erickson do not 

distinguish these two effects, it is quite necessary and sig-

nificant to consider seperately these two effects. In this 

chapter, our efforts are mainly devoted to investigation of the 

roles of entropy in the analyses of nonequilibrium nozzle flows. 

First the maximum and minimum critical mass flows for vibration-

ally relaxing diatomic gases under the fixed reservoir conditions 

are obtained. Next a new criterion for the validity of the equi-

librium-frozen flow approximation is proposed. Finally the 
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effects due to increasing in entropy on the asymptotic behaviours 

of flows far downstream of the throat are examined. All these 

analyses are based upon the new system of basic equations which 

has been derived by the author. 

2. Entropy and Critical Mass Flows 

     It has already been pointed out that the difficulty in de-

termining critical mass flows is one of the most significant 

reasons which complicate greatly the analyses of nonequilibrium 

nozzle flows. Nevertheless, there are only a few theoretical 

works of this  problem!) In practice, this difficulty has usually 
been overcomed purely numerically by using the high speed electric 

digital computer. In almost all cases, obtained results have 

indicated that the critical mass flows of general nonequilibrium 

flows are smaller than the frozen one and greater than the equi-

librium. This tendency, however, is rather empirical and has 

never been proved theoretically. 

     For vibrationally relaxing diatomic gases, it is fairly 

favourable to use the independent variable 4 instead of x. Here 

again rearranging the basic equations,Eqs. (1) to (6), (9), (13), 

(23), (24), (29), (30) and (43) in Ch. I, we have 

   '1,0,)(1+A)  =Fvo exp Gv(ev ;E),(1) 

  10Mr2—\~P—EV),2,(2) 

 17(A, Ev; 0  .(3) 

                                                        m gl/2  (4)      P = 5hoip\ li2 (1+A) Mf, 
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         71/2      m (5hop )"2      p—(1+A)Me112(5) 

  Rz (S—So)=JEO(v—)(d/ag'(6) 

where 

_6 0 ev= T
v '(7) 

   1----------- E_,1  
    (exp C-1)Ev=(exp ev —1) `(8) 

 Fv(Mf) = Mr()     (111
f2 + 5)8 •(9) 

           ff Gv(ev; e)__J[3p  ~(dEVlde,(10 )             fo(1—cov)deJ 

  11(A,ev; e)(11) L\ a/\aA/\dv(11) 
and 

                                                 t/z 

   ho WzFv0 7 po(12 )                    125(
5hoop) 

     Eq. (1) in conjunction with Eqs. (2), (6), (9) and (10) can 

also be rewritten in the form 

   (1+A)=125 (-7112(ml exp Co  exp -----------Co          216\10/\mr)Co9(exp Co— 1) (exp eo-1 

          ie5~z[(expev—1)1 exp_ Cv  
x . 

                exp°J1 —(7xp2v—1)expr(S —So)~• (13)            1iL 
[ w (exp ev —1) 2e J i 

Eq. (13) shows that the degree to which the flow parameters in 

nozzles are affected by the existence of nonequilibrium is com-

pletely determined by the entropy and the vibrational. temperature. 

Thus, an algebraic equation is obtained, relating A(x), 4, 4V, 

and S, which in conjunction with the remainders of basic equations 

77



yields very simple analytical solutions not only for the frozen 

 (V- and S - S0= 0) flow but also for the equilibrium (4V= 

and S - S0= 0) one. With it, we can calculate all the flow 

quantities for these limiting flows without carrying out the 

tedious numerical calculations on the electronic digital computer. 

It must be emphasized that using Eq. (1) or Eq. (13) as one of 

the basic equations describing a nonequilibrium nozzle flow, we 

can expect considerable merits in investigating analytically non-

equilibrium effects on the flowfields, especially in determining 

the critical mass flow, in estimating the validity or accuracy 

of the equilibrium-frozen flow approximation, and in analyzing 

the asymptotic behaviours of nonequilibrium flows far downstream 

of the throat. 

     Now imposing a condition 

x(dA/dx) > 0(14) 

on the nozzle geometry, we can reasonably assume 

d v/dk?0
(15) 

                                            (16) 

for the flows considered here. Assuming (15) and (16) under the 

condition (14), from the discussions given in Ch. I we can obtain 

the next relation under the fixed reservoir conditions 

mmin m<mmax=mJ(17) 

where 

     me Fv(M,,) ---------- exp(—G) a(18) 
MI F

v(1) 

           min = __ —exp{—&,*(10—/ pder       m,, (1+Ar*)expEer)—[In(exp~-1)+ 
                                            (19) .* )1+IIn(expo l+ 'o J~                     (expSer —tL`expo-1J (exp0-1) 
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where  4et andfie*are determined from energy equations, respective- 

ly, at the throat and the critical point (Mf= 1). The result 

(17) is very significant not only physically but also practically 

in numerical analysis of the subsonic region, in which it often 

happens that the value of critical mass flow must be guessed be-

forehand for the given reservoir conditions and nozzle shape and 

size. Figure 1 shows the critical-mass-flow ratios me/mf and 

mmin/me and the maximum entropy at the critical point. The ex-

plicit solution which gives the critical mass flow of a general 

nonequilibrium flow can also be easily obtained. It shows that 

the critical mass flow is completely determined by the entropy 

increase in the subsonic region and the vibrational temperature 

at the critical point. 

•015--------------------------------------------------------------------------------------------1 1 1 1 1 1 1 11I I I 11.00 
                                                                       mmin 

                                        me 

                                                        me        V22( s 4 - So)maxmf 

6 •010 -—0.99 

3mmin 
me 

N •005 —— 0.98 

me 

     0 I I 1 III 1 1 I I I X0,97 
10100101 

so 

Fig. 1 Critical mass flow and the maximum entropy 

               at the critical point. 
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 3, Entropy and Equilibrium-Frozen Flow Approximation 

     The simplest and most significant approximation to a real 

flow is the equilibrium-frozen flow model, in which an upstream 

equilibrium branch and a downstream frozen branch are joined 

together at the freezing point. Many works on this problem have 

already been made by many authors, some of whome have supported 

the validity of this approximation for vibrationally relaxing 
4) 22)23) 

gases as well as chemically reacting gases and others have not. 

Some proofs that this flow model cannot always well match the cor-

rect solution have been given numerically, but these are not suf-

ficient in physical meaning. The freezing criteria for the approx 

imate measure of the vibrational energy and the dissociated mass 

fraction being proposed by Bray et al., are rather empirical and 

moreover there is certain arbitrariness in their applications. 

     The equilibrium-frozen (E-F) flow approximation is com-

pletely based upon the freezing phenomenon of the relaxing energy 

at infinity and the flow concerned must be obviously isentropic. 

In practice, however, whether the real flow finally freezes or 

not entirely depends upon the form of rate equation and upon the 

nozzle shape and size. Furthermore, there can be two cases: In 

one, the entropy of the gas converges to a finite value and in 

another it diverges to infinity. In the latter case, the equi-

librium-frozen flow approximation breakes down far downstream 

even when the flow does finally freeze. Hence we need a general 

and precise criterion for the validity of this approximation. 

Our efforts are in part devoted to proposing this new criterion. 

However the principal purpose of this section exists in investi-

gating the physical meanings of this approximation as generally 

and precisely as possible. Our new type of a system of basic 
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equations can provide us with a completely analytical solution 

for the equilibrium-frozen flow. 

     At first the problem of obtaining the approximate measure 

of state at a point P(4,  4) (Fig. 2) in a real nonequilibrium 

flow (corresponding to the path OCP) by using the equilibrium-

frozen flow (corresponding to the path OFP) approximation is 

investigated. However, it must be noted that this equilibrium-

frozen flow is not the so called "equilibrium-frozen flow" first 

proposed by Bray. The former here gives the approximate measure 

of the state at the only one point P(c, 4) and is denoted by 

the subscript OFP in this paper. The conventional equilibrium-

frozen flow proposed by Bray is denoted by the subscript ef. 

4v 

         A 
4 ---------------------- •A(4, ) 

F ('v. p( 4
v) 

                                C I 

0 

       Fig. 2 Flow path in the — plane. 

      Without much effort, the followings can be found from the 

 system of basic equations,Eqs. (1) to (6) 

(1+ Aorr) =  mo F exp [ —117(S— (S— So)] ,(20) 
(1+A) 
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 Mf°  F  P   _  1  ,(27) 
 Mf1 

P°"   = exp[RZ(S —So)],(22 ) 

p p p = exp [11-72-  (S— So)](23) 

It is significant to point out that the difference between the 

flow histories of the real flow and its corresponding equilibrium--

frozen one is completely represented in terms of the entropy and 

the critical mass flow appearing on the right hand side of Eqs. 

(20), (22) and (23). These indicate well the importance of roles 

of entropy in the analyses of nonequilibrium nozzle flows. 

     For the equilibrium-frozen flow in the conventional sense, 

corresponding to these equations one has 

       (1+A.f)_m.f(expEv.f-1)6vf lexpev  (1+A) m expv.f exp(                                     —exp Ev.f-1/(expCv-1)        

1 ------------                                           711/2 
                  v  )[co2(exp ev —1) 2E             x expexp o-1 r 1_  1  7 72 exp [—R(S —So)], (24 )                      /rSo (exp Cv.f-1)2Q]L 

1 _  1   7 72 M1,f—  c) (expCv.t-1) 2E]  Mf—r1—  1  _7]~/z (25) 
L'(exp Cv —1) 2g 

       At er =efor C<Cvf     ~~vr,for C>Cvf ,(26) 

p.f _  exp gv.fIever\(exp Cv —1) — £v           P (exp Cv.f-1) exP`exp Cv.f-1 exp£vexp`rexpeev—1/ 

    exp LRE(S —Sod,(27) 

      per = Per 
p p(28) 

Based upon our discussions, a criterion for the validity of the 
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E-F flow approximation may be given and, at the same time, the 

pysical meaning of this approximation can be made  clear. In 

order that the E-F flow matches well the exact solution in the 

whole of the flow region with an acceptable error, the following 

three conditions must be satisfied: 

Qi = 6Vef—sv <<1 (29) 
                                                                                                ev max 

      Q2—imef—m<1 (30) 

                                         Qs={ exprRQ(S„—So)]-1} <1,(31) 

L where the subscript 03 denotes the downstream limit. We can 

reasonably expect that the set of these three quantities Q1, Q2 

and Q3 serves as a new type of a criterion for the validity of 

the E-F flow approximation. Of course it is obvious that the 

less values of Q1,Qand Q3 indicate the better approximation. 

Therefore it is easily seen that there are at least two necessary 

conditions for the validity of this approximation: 

v„=const.>0 ,(32) 

S.=const.<co ,(33) 

which means that the real flow concerened must be a frozen-is-

entropic flow in the downstream limit for this approximation. 

We have already proved that for all flows of vibrationally re-

laxing diatomic gases the following is always satisfied: 

Q2<1.(34) 

Then the remaining two quantities are important actually. 

     The distributions of vibrational temperature, vibrational 

energy and entropy along the nozzle axis are illustrated, re-

spectively, in Figs. 3, 4 and 5. Fig. 3 shows a flow path in the 
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         Fig. 3 Sample calculation of flow path. 

      plane corresponding to Fig. 2. The nozzle geometry used 

in these sample calculations are given by Eq. (68) in Ch. I. 

The final flow pattern of all these flows in the limit —DO is 

frozen-isentropic for both the N2 and 02 gases. The entropy 

rise in a flow of the N2 gas is much smaller than that of the 

02 gas under the same reservoir conditions, which means that 

the width of transition region from the upstream near-equilibrium 

region to the downstream near-frozen one in the flow of the 

former is smaller than that of the latter. From this point of 

view to the entropy only, it can be concluded that the real flow 

of the N2 gas may be matched much better by the E-F flow than 

that of the 02 gas. The limiting values of S and~Vare shown 

in Figs. 6 and 7. These yield one of the powerful supports to 

the validity of the E-F flow approximation to the flows of these 

gases. 
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       Fig. 7 Limiting value of vibrational energy. 

4. Entropy and Asymptotic Behaviors of Flows Far Downstream 

     Our discussions given in the last section suggest the im-

portance of investigation of the final flow patterns. Further-

more it is very interesting purely theoretically as well as 

practically to know how the increasing entropy affects the re-

laxation phenomenon. 

     Consider the region far downstream of a throat in a nozzle 

and consider the nozzle geometry described by 

A=Kx" (35) 

where K and n are positive constants and the latter is less than 
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or equal to 2. Then the rate equation can be reduced finally 

to the form 

                            d6          ;" expl-10`s')O-ISZ(fv-f) ------v  (f f) 
     ds(36) 

for N2 and 02 gases, where 

exp[(1- n)R2(S-So)](37) 

Parameters L, s, and K are constants characteristic to each gas, 

and T is nearly constant depending upon the reservoir conditions, 

nozzle shape and size, vibrational temperature, and kind of a gas. 

It is surely worth noting that when n>l, an increase in entropy 

has negative effect on the vibrational relaxation phenomenon, 

when n<1  positive effect and when n = 1 no effect. 

5. Concluding Remarks 

     The effects of increasing entropy on the flowfields in non-

equilibrium nozzle flows of vibrationally relaxing diatomic gases 

have been studied in detail. 

     A conclusion can be drawn that, in general at least theo-

retically under the fixed reservoir conditions, the maximum 

critical mass flow is the frozen one, while the minimum is the 

one which is somewhat smaller than the equilibrium. 

     A new criterion for the validity of the equilibrium-frozen 

flow approximation have been suggested mainly in terms of the 

entropy. The quantities and Q2, and 03 defined here are not 

always independent with each other and usually the second is so 

small that it is less important than the others. Up to the 

present, almost all attempts to estimate the accuracy of this 

approximation have been done by using the values of Q1 only. 
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     It may be worth noting once again that the most important 

result in the last section is the fact that when  n  >  1, increasing 

entropy has negative effect on the vibrational relaxation phe-

nomenon, when n<1  positive effect and when n = 1 no effect. 

The increase in entropy often affects seriously distributions 

of translational-rotational temperature and then the vibrational 

temperature. It is the case above all for the flows far down-

stream of a throat. When n # 1, the interaction between the 

entropy and the relaxation phenomenon is essential in the analy-

ses of nonequilibrium flows at least far downstream of the throat. , 

     It must be noticed that it is quite possible to repeat the 

above analyses for nonequilibrium flows of a dissociating gas 

or an ionizing gas. 
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CHAPTER IV ANALYTICAL TREATMENT BY THE METHOD  OF STRAINED 

COORDINATES 

1. Introductory Remarks 

     There have been many studies of nonequilibrium nozzle flows 

of vibrationally relaxing or chemically reacting gases, almost 
4) 22) 

all of which have been numerical and only a few analytical. 

From the practical point of view, the numerical solutions them-

selves are valuable, but they are not always sufficient for de-

veloping general and theoretical discussions. The main reason 

lies in the "ambiguity" in the accuracy of the numerical results. 

This is particularly the case for the determination of critical 

mass flows in nonequilibrium nozzle flows. Therefore it is de-

sirable and useful to obtain, if possible, an analytical solution 

for the subsonic region in nonequilibrium nozzle flows. 

     The author has already made some discussions of the problem 

of determining critical mass flows. Here the discussions will 

be taken further, and for an ideal dissociating diatomic gas, a 

new attempt at solving analytically the subsonic region of non-

equilibrium nozzle flows will be made. 

     Up to the present, many devices for simplification of the 

analysis have been introduced for this problem. Among them, we 
                                               24) 

will use Lighthill's gas model, the Freeman-type rate equation 
22) 23) 

and the assumption 6<<. 1, where the parameter E is the ratio of 

the temperature at the critical point to the dissociation energy. 

All physical quantities are assumed to be capable of being ex-

pressed in the form of perturbation expansions in powers of E. 

These expansions are, however, not always permitted without any 

restriction on the boundary conditions and nozzle shapes and 
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sizes. Qualitative study on regimes of the subsonic region for 

the two limiting cases of equilibrium and frozen flows will make 

it clear that, at least when K  = 0(1) Or (1 - EK)/ K = 0(1), 

where the parameter K is the ratio of the dissociated mass 

fraction to the parameter E, it is natural and reasonable to 

assume tentatively that perturbation expansions in powers of E 

are possible for all flow variables. This also suggests that it 

may be possible to expand the flow variables in such perturbation 

expansions even for general nonequilibrium flows which are not 

markedly deviated from equilibrium at least in the subsonic 

region considered. 

     When the perturbation method is applied to the first approx-

imation, a singularity appears near the throat. The method 

of strained coordinates, or the P. L. K. method, must therefore 

be applied in order to obtain a uniformly valid solution in the 

                25) 
whole subsonic region. The solution constructed by this method 

finally contains only the two parameters E and K, the values of 

which are estimated beforehand as precisely as possible . This 

is applied to the stagnation point to determine the exact values 

of E and K. Once these are determined, the solution is valid 

not only in the subsonic region but also in the supersonic region 

up to some point downstream of the throat. However , the solution 

cannot always be applied to an arbitrary region downstream of 

the throat. In order to improve the solution so that it is valid 

in any supersonic region, a few more difficulties must be over -

                                         22) 23) corned
, and in this point, the studies by Cheng and Lee are 

significant and instructive . However, considerations on the 

supersonic region will not be made here . 
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2.  Basic Equations 

     The governina equations for an ideal dissociating diatomic 

gas may be written as 

puA == put = p*u*A* = m , const.(1 ) 

2u2±h ho(2) 

 dh—pdp=0(3) 

   udx =CT-sp[(1—a)Tde-DIT— P a2J(4) PD 

h= (4 -f- a)  T-I----Da(5) 
         W2W2 

p= WZpT(1+a),(6) 
where A is the cross-sectional area ratio (equal to (1+A) in the 

previous chapters) and the parameters pp, C, d and s in the rate 

equation (4) are constants characteristic to each gas. The other 

notations in this chapter are the same as those in Ch. I, unless 

otherwise defined. For an equilibrium flow, Eq. (3) can be re-
                                         2) 26) 

placed by an equation expressing the constancy of entropy, which 

becomes algebraic when d = 0, namely 

  (DT)+0(7) 

and Eq. (4) can be replaced by the law of mass action 

In this chapter, we consider only the case of d = 0 for brevity. 

Here we introduce nondimensionalized quantities 

 Aa1 
    A*'a*P*



 T*~dA)I(dA)(9) 
=

uB=  Tg(a) =dxdx 

and parameters

2K        c=D, K=-a*=a*•r= M*z 

     /j ,1(10) 
                    LL 

where 

 M*=u*/ ,
2----T* ,(11) 

P  L A* \--dol * \/*J/[_T*P*za*z],(12 ) 
  z/   c*-------- 

p**expl—-----).(13)        1-c*p*\ T* 

Substituting these into the basic equations, we have 

pia =1,(14) 

  Oda=IK}ealapIK--BO,(15) 
/p 

   =1+Pj(1—a)+KI1—B)+E(1—all ,(16) 
     _der------ ((1—EKaex10 -1a     daKQg~\1—EKop)P(E(j)—p-zl(17) 

Especially, for equilibrium flows, Eqs. (15) and (17) are re-

placed, respectively, by 

(0-1)+eK(aO-1)-3E In O-+-E2K(a-1)+2c In a-1-2E In (1Ems) = 0, (18 ) 

     a2( 1—€K _1r1              1—€K 
            PLEex_     J.(19) 

Now, for general nonequilibrium flows, combining Eqs. (14), (15) 

and (16) yields 

Q



      3 1+E( 11 do-6 But 1\du     B 1-4  1d"+K+eaQ—KT4(K+ea)u •(20) 
    \i±4: Ka~rK+Eal/ 

The regularity condition of Eq. (20) at the sonic point yields 

            6 

   _ K  r -  (4
+fK)(1+eK) '(21) 

     (_1 (1+eK)(4+EK)     ddaie)* K [1+e(K-3)] '(22) 
The equation defining C' yields, with Eq. (21), 

M*2=3(1 +eK)(4+EK) . 
(23) 

                                                                      3. General Discussions 

     In our analysis in this chapter, the parameter E plays a 

very important and indispensable role, since every discussion 

is made under the assumption 

E<<1.(24) 

The Arrhenius factor with small E makes the composition oc very 

sensitive to perturbation in the temperature or in O. The next 

most important parameter is K, which is the ratio of the energy 

stored in dissociation to the energy associated with the trans-

lational motion. 

     Now Eq. (16) at the critical point can be written in the 

form 

  a*2+(11+6)a*+(28-6P)=0,(25) 

where 

 13=W2----)D.(26) 

1 Equation (25) can be taken as a quadratic with respect to 0(1. 
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and can be solved as follows 

      a*= Ze{-(6+110+ X36+(132+2413)€+9E2} , 
or 

K= 2E2{-(6+11e)+ 4/36+(132+24p)e+9e2 } .(27) 

In Fig. 1, the parameter K is shown as a function of the para-

meter E and the gas density at the critical point for equilibri-

um flows. In Figs. 2 and 3, the parameters 6 and K for equi-

librium flows, determined purely numerically, and those for 

frozen flows, which are determined from the following equations, 

     6(60-a0er__(7
±ao)(4+ao) '(28) 

                10 

                   N2 0 

                      ~ 

                  o '' 

0 o~~F 

                  Ke 

             1 o 

                                                                    A 
                                                           •^O 

           010 0.04 0.08 0.12 0.16 

                              Ee 

     Fig. 1 Parameter K as a function of the paramet
er E 

             and density p
* for equilibrium flows. 

oa



  aoR+cro)(4±cro)
29  Kr  = 60-ao) 

are presented as functions of «0andf3 , the values of which are 

specified at the reservoir. It is quite easy to see that 

    0.15 -~\  
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UT 0.05 -\\ 
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as 

Fig. 2 Parameter 6 for equilibrium flows and frozen 

              flows as a function of the degree of dissoci-

              ation 0(0 and the parameter/3. 
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     Fig. 3Parameter K for equilibrium flows and frozen 

              flows as a function of the degree of dissoci-

             ation 0(0 and the parameter j3. 
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 Ef<E<Ee(30) 

Ke<K<Kr.(31) 

These help considerably in roughly determining the values of 6 

and K beforehand in our analysis, as discussed below. 

     It may easily be seen that both the parameters P and so 

indicate the degree of departure of the flow from equilibrium, 

and they are related to each other by the relation 

  P={1-(1 EKso)` ).(32) 

     For equilibrium flows, the equations of energy and entropy 

becomes as follows at the stagnation point 

 [(143-_w411 a01()       )+K(1-ao)JfEKI6B)+62K2 = 0.(33)              \o 

      (00-1)+EK(a000-1)-3€ In 0o+E2K(ao-1)+2E Ina0+2€ In(1-EK = 0 .                      1-EKa0(34) 

We can easily understand that the most significant flow regimes 

practically and theoretically are those in the cases of K_4(:)(1) 

                                                                 and (1 -6K)  = 0(1). With Eqs. (33) and (34), under the con-

dition of Eq. (24), we obtain the results in these cases as 

follows: 

    (i) the case of EK=O(1) and (1-EK)=0(1) 
                             ao =1 +0(E) , 
8o =1+0(E) ,}(35) 

    (ii) the case of EK=0(E) or K=0(1) 

ao - (1 +----3K)+0(€), 
(36) 
                                                                          00=1+0(E). 

In Figs. 4 and 5, the nondimensionalized degree of dissociation 

and inverse temperature at the reservoir (obtained purely nu-
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merically) are presented as functions of  c' and 13
, and it can 

be seen that these illustrate well the features which h
ave been 

discussed. The characteristic values of N
2 gas used in these 
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calculations are shown in Table 1. 

         Table 1 Characteristic values of N2 gas. 

               W2 = 28.0  (kg/kmol)C = 3.0x 108/W2 (m8/kg•sec) 
               D = 113260.0 (°K)p p = 1.26 x105 (kg/me) 

s = 1.5 

4. Solution by the P. L. K. Method 

4. 1 Nonequilibrium Solution 

     We consider the case where the nozzle geometry is given, 

for example, by 

A----= (1 +kx2) ,(37) 
A, 

where k is a positive constant. Then the function g(0-) which 

was introduced in the process of nondimensionalization is de-

termined in the form 

------11~2_    b'(Q)—b1—Qe/(5=1<x>0 .(38) 

The following analysis is carried out under the conditions 

=0(1)(39) 

K=O(1)                                              (40) 

in addition to that of Eq. (24). The condition of Eq. (39) 

means that the flow at the critical point does not deviate 

markedly from equilibrium. Then it is natural and reasonable 
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to assume that the flow variables can be expressed in the form 

of perturbation expansions in powers of  E as follows 

        a = a-cal+E2a2+O(E3) , 

0 = t+E01+E2O2+O(E3), 

                                             (41) u = Y1+Cu1+E2u2+O(E3) , 

         = eEal+E2a2+OW) , 

where .2,0/1,0(2 ..., t, Olt , u
l, u2 ..., and O'1, P2 ... 

are all functions of a new independent variable ~, and satisfy 

the boundary conditions 

a*=t*=72*=*=1 , 

                                             (42)            at*=Ba*=u*=a*=O ,(i=1,2,...). 

Q Furthermore the parameters K, j', ?and Q can also be expanded 

in power series of E as 

       K = K+EKI+E2K2+0(E3) , 

r = r+EP1+E2P2+(xE3) , 
                                              (43) 

        v)= f +Ew1+E2502+O(E3) 

 Q,        Q = 4+EQ1+E2Q2+O(E3) 

The justification for expanding the parameters in such forms as 

Eq. (43) comes from the assumption of Eq. (41), since the values 

of these parameters can be finally determined after solving the 

whole flowfield in the subsonic region, as carried out with 

Eq. (41). 

     Substituting Eq. (43) into Eq. (21), and considering the 

condition of Eq. (40), we have 

         3 ,r1=8K2+23 = K1 , 

       63 153    r2 =(44)32~2—4KK1 { 2 K2i ... . 
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Similarly substituting Eq. (43) into Eqs. (22), (32) and the 

last equation of Eq. (10), and considering the condition of 

Eq. (39) as well as that of Eq. (40), we have 

 4=4(1—f2), 

Q1 =—4f~P14x(1—f)f2—1(3+ 4x)(1—f2), 

    Q2 =—4412+4x(2-3f)fsol+2(3+4x)fspl (45) 
        _-(3+x)[(1— f f)f2x—(3+4K)(1—f2) 

         —4(1-4x)(1—f2)+4(1—f)fax2 • • ' ' • 

where it is assumed that 

(1—co2)=0(1),(46) 

in addition to the condition of Eq. (39). Systematic analysis 

requires that the function g(a-) can also be expanded in power 

series, for example, as 

  g = G+Egl+E2g2+O(0)(47) 

where 

     G =b(e—E  )1~2 
            1—gc ' 

g1 _ 1 a1—a1e + alt    G2(e—E, 1—gt'(48) 
       g2 — 1 a2—a2c+ a2t + a11(al—au)  +(                                          a1c 2l 

                                c)       G 2[ £—e 1—et (1—et)(e—e1—E,)] 
_ 1 of— + au 12             [alie—e,1—etJ  

It is clear that these expansions are possible only when the 

two conditions 

e?Et,(49) 

  doi = finite = 0(1) ,(50)    a 
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are satisfied. Combining  Eq.  (12) and the last equation of Eq . 

(10) with Eqs. (49) and (50), we have 

   2 ^     1I/z11r       k c(fc—1)=[CgPn eXP(__2/JIL2R-----D1/2+8E1/2+B(fz,)2 ]                           ^3W2 

      u1c1  ale  __Q1-2 fx-4991-2 K1  — 5 K 
   et 2 e,(1—et)q f x 8' 

azt 1  a2t1 0'112
__Q2 Q1 K/Kz f2z(51 )      ~

t—2
/et(1—Ec)`_8e2(1—et)2q+q~—2+,r      +6fKI`1,—F—I+10(11+K1)2-4(1Kilr  41 _ 55          \.fK/\f\f+Soz cpf~+x\128`48) 

    +8c(2fs+f+3K1)-2K1IfIc+2W1+2K1) 
                        \f 

    —(KI+QI)(2..K+t+3K1+8.),.... 

These are used in order to determine the values of f , ~l,cp2,..,. 

    Substituting Eqs. (41), (43) and (47) into Eqs. (14) to 

(17), we obtain 

t=1, 

qz 1+r[(1—a)+ (1— t)J' 
1 tda= - ~(de+\4_dt 1 (52) 

               r 

                       a2    81=21nf-14—. +~4~~IzG(d~) 

  rrr\    277/4 =I'IL(1—a)+4 (1—t)]+_r[(1t)—a1+82 —(1—tl 4K11,             /
(53) 

    Blcia+td1[(dui uidi)dalaide)]Kldryde        al=—K 112)+(e2—(afc2)(q+e) 
       3 d01 B12dt)-3K1dt     +Kt—K2[ 

02=2f a 
     (ra2"22G)L(----ddl)+(4)(QgI+Kl+G+2 1+3 1-20'1—set ddai)J     Kge2)13 G(da )

J [1+ a2 de 

                      103



                 4 B
tz2;22\I ala0101 4K1 4K12 K2 

       

.u12 +2r2u2 =r{K-I—a2t t2t2 62'C(/C2'C) 

            x(1t/+riR1-I-alt2—I1—t)4K11(54) 
               (1           +r2[-a)+t(1-71)1, \/ 

                  1 r(  dug uldul  l (u2 242\41+  r(da2a1da1  
     62da+eldal+tda2 =-I

L\12)—\q'I2)'7L\ e e2 / 

             

(----e e2ieeJl-~a1/L 7,u~72~/~~del aegyi 
K12 _ K2dry de3del_0,d01\—~t e02_elldt                 —(al+ 63 K2 K2\dry                     >2 + e )+,2Lktt2/)t i 

             +3r/K212K2\dt\`K11d01-O1d2JJt\] 

                                    With the boundary conditions of Eq. (42), Eq. (52) yields 

           t=1, 

          1 „22=1±r(1—a), (55) 

  a=1—i ln(el])•J 
                   ti 

It can be found that 

(da) =0, at a=,^3e 116,(56) 

and so the condition of Eq. (49) is satisfied by setting 

         2  

    ee=4/-3-1~6. 771=2,al=11+4J.(57) 

                                   r With Eq. (55) and the boundary conditions of Eq. (42), Eq. (63) 

yields 

                          2 

     01= 21f - Ine17+er72Gde/ J , 

1a- 
=-K\eJ-Jlelda-fl(aK1Ias(Ine)7)da+ 4B1(58) . 

   1
\// 

   1 -2e ul(I1 l4 r _ _17_ _\r+1l(1-a)+0l 
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Letting 

 1  1 

_1= 2—(rr~—),(59)             1 —
r'22r 

we have 

d=0 at e=27, or 6=et .(60) 

Then it follows that 

          )1— fate,da— flt(a—K1)da(1nEi1)da+3e11K 
                                                 =061 

            (rl+1)(1—ac)+ _dlcr~Ic2() 

which hives one of the conditions that must be satisfied by the 

straining function 0-1. Hence we consider the function al in the 

form 

      62KZ(a2-1)+K(1+Y1)(a-1)—el—K f elda—K1(a-1) 

—722(1 — 7,2)(1 - r)O1(a) ,(62) 

where °1(a) is an arbitrary regular function of Q. It is easy 

to confirm that Eq. (62) satisfies the boundary conditions of 

Eq. (42). Since, moreover, the function al must satisfy the 

condition of Eq. (50), the regular function (91(a) must satisfy 

             +K1+(KBK--KO(a       alt( t=K2a`1l\da)c—lE—181C)=0,(63) 

which is not the sufficient condition but the necessary one for 

Eq. (50). By choosing such we we obtain 

ul = 212(1 —'! )ei(a) 

    \)(rl)4(64) T~ 
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     Similarly Eq. (52) in conjunction with the boundary con-

ditions of Eq. (42) yields 

 al ul al 

          Kgea 

(z7)3Glr(dal+(daQ1+Ki+gl+2al+3ul—gal—sBl—dal _ \az/Lldg/\dEl\4~cGer~ad~  

             L1+a2-----G(d)] 
      U2 = 772(1—V2)92(a) , 

     2u2rlul1zit2 44K1(65) 
az=

7722\~I/+2]2722\~7/]")2z\~//±-(602-012)-aid-a01-                  X2 Bl 

       +7z(1—a)—(r1)20 —a) 

                zdai  =I—~cf 1 B2da—~cf1011-----Ida—Klam (— Ida+ic2 f  alda 
Kl            (0.1+K(KZK2)(a-1)-02 {2\812Kl----Bi+i(al—a#1)         (12 112)1(ul)2K(111)2—2K11(u1)+Kl (u1)        +K7—72(a-1)+2v

/+7~2vr2r~2v- —K f
la(1Ida-7)2(1—V2)I1— —772)ez(), 

where the function 62(q) is also an arbitrary function of Q, 

which satisfies 

      da\ s"2)1c—x021—KB1a+K2auc+K(1-01c)(~1)c—(da----)c+(5e+----1 _Ka) 
                                         X (dal)+K(K212 K2)+K(r2 rz2)+K[27 +3(r)](el(ac)~()         trrL25632KJ66 

             flrKl -311_13                +K
2K28r2racel(ac)—8ez(ac) = 0. 

We can obtain the solutions of the i-th approximation (i = 1, 2, 

3, ...) by repeating the same procedure, but these are not pre-

sented here. 

4. 2 Equilibrium Solution 

      For equilibrium flows, the solution obtained above can be 
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considerably simplified, since the rate equation, Eq. (17), is 

replaced by the law of mass action, Eq. (19), and then the 

function  g(a) does not appear in the basic equations. In this 

case, we may put 50 = 1 and the expansion of the function g(01 

in powers of E becomes unnecessary. Hence the conditions of Eqs. 

(49) and (50) can be omitted, and the position of the nozzle 

throat may be determined as the point where the function C7-() 

takes its minimum value. The retention of the conditions of 

Eqs. (49) and (50), however, even for the equilibrium flows 

would be convenient and useful in order to compare the equilibri-

um solution with the nonequilibrium one having the same reservoir 

conditions. The equilibrium solution are given below. 

t=1, 

722 = 1+r(1—a), (67) 

a=1-1ln(go, 

        01=K(1—a)-21na,

11       1=!2(a-1)[(1+1)—a181(a), 

        1)8ul)        al=S+ 7(1—a)— ~In a--2>22(> 
                                              (68) K2(a2-1)+K(1—K—K!)(a-1)+2Ka In a+2 In a 

       +2T)22(1—N' 

      ©1(at) =8{K2(2a,-1)+K(2+~i-1)+a+2K Ina~—Kl} 

a1 (1
e1- —111±,2 

       =i2(a-1)1+1)—alez(a)e 

                        J 

                1z4      az=—77z(Vi2)+2YTuz r~2~1)-Y~2(u~1)+402 _12, 
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                                      2          —4K1e1+72(1—a)-7z(1—a), 

        =2/             Ig3Iz—KT O2da—Kf1811i1Ida—K f lads(gl)~ 
           +K2 f 1 a1da+ K1  ( 1)+K(!.—K2)4(a——ez+ 2 g12 

                         2(69) 
          K1B1+K(a1—aB1)+K(I2—I2)(a-1)+11(1)2          r

Jr       +e2(7/1)2-2-----rda                                                     ad 
                                                I 

_2(1-112)(1— r e)e2(a), 

02(ac) =8j—Kett—Ke1t+KZa1c+K(1—eic)(d1)c—(-----8)t+(5seit 
                          Kat Kll1)(da)c+K ----z(K2Kz)(r2r2L27      +----—+K-----z+256 

32(11rll              K101(ac))z+KI2rK1—3 11—2 rat101(ac)J 
where the subscript e is omitted for brevity. 

4. 3 Determination of Parameters e and K. 

     Though our analysis has been carried out as if the values 

of the two parameters E and K were known in advance, these are 

actually determined only after solving the whole subsonic region. 

Finally, these parameters must be determined from the reservoir 

conditions, which can be described in terms of the two parameters 

ar0 and f3. The condition of Eq. (40) implies 

=E)9o>(70) 

where go is a constant of order unity. Then Eq. (27) yields 

for small 6 

    K= ()9o- )()9o- 7)6+1( 3 )- 6 ()9o— 3 )2}€2+ow),(71) 

from which the parameters ,1<1, K2 ... can be determined as 

follows 
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 14 
           K= 190— 
3 

K         1          l =11(1_0_14    61903)(72) 
      l̀ 6)2(13)6(3)2,     KZ=so-~o- 

The solution of the degree of dissociation yields at the reser -

voir 

a0=EKao. 
                                             (73) 

Hence for the zeroth approximation, we have 

ao = EKao •(74) 

K=K,
(75) 

where 

  ao=1+1=1+3K,(76) 

which yields 

  4(p—ao),(77) 

            4~ 14   K=13—a03).(78) 

For the first approximation, we have 

«0=6(K -FEKIXao-Feal) EKao+E(Kalo+Klao)1 ,(79) 

K=K}EKI,(80) 

where

/\   alo=gtn\
a0/f1/5+T1,(81)         Kr \7.1 

                        and the values of E and K must be determined numerically in this 

case. Similarly, for the second approximation, we have 

a0 = E(K 4-EK1+E2K2)(a0+Ealo +€2a20) 
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 e[aao+E(Kato+Klao)+e2(K2ao+Klaio+Ka2o))( 82 ) 

K = Iv+eKi+€2K2 ,( 83) 

where 

/\        810=21n(I—, 
               \aor' 

       020 = 2-91+K(.fao+2ie2(a02-1)+Kf/1+ —\I(ao-1) 
     /\/(84)          +(K—Ki)(ao-1)-21nIf)-Kf'eIda, 

                                      ao 

     44K12(
1"112 azo = ~(B2o — Blo2) — alo+aoelo—------K2Blo +—(1 —ao)—`J0 —a0). 

As in the first approximation, the values of E and K must be 

determined numerically. 

5. Sample Calculations and Comparison with Numerical Results 

     In the basic equations, Eqs. (1) to (6), the independent 

variable is x, while in Eqs. (14) to (17), 0-is chosen as an 

independent variable instead of z. However, in the analysis by 

the P. L. K. method, the new independent variable 4- is intro-

duced. In the actual calculations, it is more convenient to 

consider Q = a(4) as an independent variable instead of , be-

cause 4- decreases upstream from the sonic point to the throat, 

where 4'_ fi and then increases upstream from there to the 

reservoir, which leads to complications in the numerical pro-

cedure. On the contrary. the variable Q increases monotonically 

from the critical point to the reservoir, and moreover the re-

lations 

a*=1 at E=g*, at=1+ ate=Et and ao=1+2 at e=00, 

remain valid in the any higher approximation. 

     The actual numerical procedure is described below. For 

the given reservoir conditions, the values of the two parameters 
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     Fig. 6 Distribution of degree of dissociation o for 

               an equilibrium flow along the nozzle axis. 
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     Fig. 7 Distribution of temperature T for an equilibrium 

               flow along the nozzle axis. 

E and K are obtained from Eqs. (77) and (78), and it is confirmed 

that the conditions 

e«1, and K-0(1), 

are really satisfied by these parameters. These are substituted 
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Fig. 8Distribution of velocity u for an equilibrium 

               flow along the nozzle axis. 

into the first equation of Eq. (51) and the value of f is calcu-

lated, which will give the approximate measure of f for the 

first approximation. Next it is confirmed that the condition 

(1-f2)/f2= 0(1) is really satisfied. From Eqs. (79) and (80) and 

the first equation of Eq. (51), the new values of f, E and K for 

the first approximation are determined, and with these values of 

the parameters, the solution of the first approximation is com-

pletely determined. In a similar way, we can get the solution of 

any higher-order approximation. For the comparison with these 

solutions, the exact numerical solutions have been obtained by the 

R. K. G. method on a digital computer and are shown in Figs. 6, 7, 

and 8. In these sample calculations, the constants Y1 and y2 are 

chosen as the regular functions )1(a) and 02(a), respectively. 

6. Concluding Remarks 

     The analytical solutions of the subsonic region for equi-

librium and nonequilibrium flows have been obtained by the P. 

L. K. method. Though the solutions are constructed under the 
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conditions  E  G< 1, K = 0(1) and (1 - T2)/T2= 0(1), it can be 

modified so as to be valid even under the conditions 

      (1) E < 1 , K = 0(1) , (1-cp2) = 0(e°") , m = 1, 2, 3, ... , 

                   1-eK -0(1),90-00).(ii)e « 1 ,
eK 

The conditions (i), (ii) and those considered in our analysis 

cover reasonably well almost all the important conditions under 

which the dissociation and recombination phenomena take place 

predominantly, and the ionization and neutralization phenomena 

does not appreciably in the expanding flows. The sample calcu-

lations are carried out only for an equilibrium flow of N2 gas, 

but of course the same calculations may be done for equilibrium 

flows of 02 gas and other diatomic gases. The main purpose of 

this work, however, lies in obtaining the analytical solution 

for nonequilibrium flows. The sample calculations for nonequi-

librium flows are thus very important in order to evaluate the 

results obtained here, and will be carried out in the near 

future by the author. One of the most important merits of our 

method is that it yields exact distributions of flow parameters 

even near and at the critical point within the accuracy of the 

order of the approximation cosidered. 

      As mentioned in the introduction, once the values of 50, e and 

K are determined, our solution is valid as far as some point 

downstream of the critical. point. It is quite desirable for the 

solution to he valid at any point even downstream of the throat. 

Unfortunately, this is not possible, because on the downstream 

side, the quantity Into/Sr7 + nic?2G(da/dse')] becomes negatively 

infinite at the location defined by 

[1 +Kge27)3 G(da )] = 0 . 
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In the vicinity of this location and downstream of it, other 

forms of perturbation expansions, if possible, must be devised. 
 22)  23) 

The studies by Cheng and Lee would be very instructive. This 

remains to be treated as well as the problem in the cases J2 

= O(E"), where m = 1, 2, 3... . 
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SUMMARY 

     The nonequilibrium effects arising from the rate processes 

in nozzle flow expansions of real gases have been discussed in 

detail. Emphasis is placed upon the analyses of subsonic region 

and effects of entropy on the flowfields and relaxation phe-

nomena themselves. 

     The problem of predicting critical mass flows in nozzle 

flows of the vibrationally relaxing gas, ideal dissociating gas 

and singly ionizing gas is treated in Ch. I. A conclusion is 

drawn that, in general, at least theoretically under the fixed 

reservoir conditions, the maximum critical mass flow is the 

frozen one, while the minimum is the one which is somewhat 

smaller than the equilibrium. 

     Analytical and numerical solutions of nonequilibrium flows 

of vibrationally relaxing diatomic gases through nozzles are 

obtained under the various reservoir conditions in  Ch. II. Some 

appropriate approximations are made for the rate equation, which 

enables us to treat the rate equation and the corresponding flow 

equations seperately. It can exclude the difficulties in con-

nection with the singularity of the flow equations at a sonic 

point. The proof of validity and reliability of the equilibrium-

throat-approximation method is also given. 

      In Ch. III, the investigation of roles of entropy in the 

analyses of nonequilibrium nozzle flows is made. In the flows 

of vibrationally relaxing and chemically reacting gases, the 

nonequilibrium processes inevitably increase the entropy of 

gases. The effects of the increase in entropy on the critical 

mass flow, flow variables and relaxation phenomena themselves 
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are discussed. 

     The problem of solving the flows of an ideal dissociating 

diatomic gas is treated analytically by the method of strained 

coordinates (the P. L. K. method) in Ch.  IV. The solution is 

constructed in the form of perturbation expansions in powers of 

E, the ratio of the temperature at the critical point and the 

dissociation energy. The sample calculations are carried out 

and compared with the exact numerical results for the equilibrium 

flow. 

     The numerical technique which has been used to integrate 

the system of ordinary differential equations in this work is 

the R. K. G. method, and the numerical calculations are carried 

out on a digital computer HITAC 5020 at the computing center at 

Kyoto University. 
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 SYMBOLS 

Symbols for Ch. I 

Q Constant in Eq. (8) 

e Equilibrium sound speed 
Qf Frozen sound speed 

1+A Nozzle cross-sectional-area ratio 

b Constant in Eq. (8) 

c Local equilibrium value of oc corresponding to local 

           values of T and f 

Ce Constant in Eq. (51) 

Cf Constant in Eq. (57) 

CD Constant in Eq. (18) 

CI Constant in Eq. (19) 

d Constant in Eq. (18) 

D Molecular dissociation energy of diatomic gas 

D* Quantity defined in Eq. (135) 

E Local equilibrium value of Ev corresponding to local 

           value of T 

EVVibrational energy 

fi() Function of c defined in Eq. (91) 

FD(Mf,ac) Function of Mf and a defined in Eq. (106) 

FDOQuantity defined in Eq. (106) 

FI (M f, 0) Function of Mf and 0 defined in Eq. (142) 

F1OQuantity defined in Eq. (142) 

Fv (Mf) Function of Mf defined in Eq. (36) 
FVOQuantity defined in Eq. (36) 

g*Quantity defined in Eq. (135) 

GDQuantity defined in Eq. (106) 
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 GD' Quantity defined in Eq. (112) 

GD"Quantity defined in Eq. (135) 

GI Quantity defined in Eq. (142) 

GVQuantity defined in Eq. (36) 

G(4) Function of defined in Eq. (82) 

h Enthalpy per unit mole 

h(4) Function of defined in Eq. (86), equal to 1+A 

i Constant in Eq. (19) 

I Ionization energy 

           Forward rate coefficients kfl' kf2 

           Reverse rate coefficients kr1, kr2 

KNozzle constant 

K(T) Equilibrium constant 

QConstant in Eq. (12) 

L(p,p,q) Function of p, p and q defined in Eq. (4) 

mCritical mass flow 

MeEquilibrium Mach number 
MfFrozen Mach number 

pPressure 

PeBray's nonequilibrium parameter 

qProgress variable 

rDDissociation rate 

rRRecombination rate 

RUniversal gas constant 

sConstant in Eq. (12) 

SEntropy per unit mole 

TTemperature 

TVVibrational temperature 

U(p,p,q) Function of p, p , and q defined in Eq. (4) 
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 V Flow velocity 

 w Constant in Eq. (12) 

 WlMolecular weight of monatomic gas 

W2 Molecular weight of diatomic gas 

x Distance along nozzle axis 

OC Dissociated mass fraction 

°le*Dissociated mass fraction at Mf= 1 in equilibrium 

           flow 

T' Constant in Eq. (12) 

-1 for < 4
t and 1 for > t 

6E/W9 

              2 EV EV/ILO 
              2 

CVf Frozen value of ~V in equilibrium-frozen flow 

d V 6v-6 

2 W1I/h0 
9 Characteristic vibrational temperature 

          Quantity defined in Eq. (135) 

U m / me 

Sr 0 / T 

~V 0 / TV 

TT(') Function of 4 defined in Eq. (84) 

f Density 

YW 26/ h0 
0Ionized mass fraction 

~e*Ionized mass fraction at Mf= 1 in equilibrium flow 

        W2D / h0 
 (~)Function of defined in Eq. (71) 

Subscripts 

eequilibrium 
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 fFrozen flow 

 ofEquilibrium-frozen flow 

ii - th approximation 

tNozzle throat 

OReservoir or stagnation conditions 

           Sonic or critical point 

Symbols for Ch. II 

alm Quantity defined in Eq. (54) 

Alm Quantity defined in Eq. (54) 

m Positive integer in Eq. (49), also critical mass flow 

N Positive integer satisfying Eq. (44) 

.6S S - SO 

Zm Quantity defined in Eq. (54) 

            Dummy variable 

~m 7 /' rm 

Sim arm 

 rm 
          Value of 4 satisfying Eq. (49) 

m (2 , 4') Function off and defined in Eq. (27) 

Ca( 2', ti) ~m(7,sr)~m~irm 

( )Quantity ( ) corresponding to approximate rate 

            equation 

Subscripts 

^Reference value 

coFar downstream , (1 + A) -. co 

Symbols for Ch. III 

K Nozzle constant defined in Eq. (35) 

n Constant in Eq. (35) 
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 X21Quantity defined in Eq. (29) 

Q2 Quantity defined in Eq. (30) 

Q3 Quantity defined in Eq. (31) 

   ~-" exp L(1 - n) (S - SO)] 
A Constant in Eq. (36) 

    Subscripts 

   OFF Flow path in Fig. 2 

    Symbols for Ch. IV 

QThe zeroth approximation of a 

    ANozzle cross-sectional-area ratio, equal to (1 + A) 

               in Chs. I, II and III 

c. Equilibrium value of pr corresponding to local value 

               of T and P at critical point 

CConstant in Eq. (4) 

g() Function of g' defined in Eq. (9) 

gl' g2 Quantities defined in Eq. (48) 

GThe zeroth approximation of AO 

fThe zeroth approximation of 

kNozzle constant 

Ka*/E 

K1, K2 Quantities defined in Eq. (43) 

M, u /F771: 

              T 

                   2 
PQuantity defined in Eq. (12) 

qThe zeroth approximation of Q 

QQuantity defined in Eq. (10) 

Q~~ Q2Quantities defined in Eq. (43) 

uFlow velocity 

uu / u* 
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 u1, u2Quantities defined in Eq. (41) 

t The zeroth approximation of 9 

5 Q'/a4( 

°I1' 0(2Quantities defined in Eq. (41) 

/3 h0/WD, 1/ 
               2 

00 Constant defined in Eq. (70) 

/ The zeroth approximation of r 

2K / M* 

11' r2 Quantities defined in Eq. (43) 
& T*/ D 

7 The zeroth approximation of u 

6 T*/ T 

91, 02 Quantities defined in Eq. (41) 

01(a), 4(a) 
           Arbitrary regular functions of a 

yc The zeroth approximation of K 

J/1, )/2 Constants chosen as regular functions 

           Independent variable defined in Eq. (41) 

J°P/ p* 

Pn Characteristic density for dissociation, equal to 

           CD in Ch. I 

G` A / A
* 

0-1, 0-2 Quantities defined in Eq. (41) 

.Pc*/ a* 

Ti.' 502 Quantities defined in Eq. (43) 
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