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ABSTRACT

Nonequilibrium effects in supersonic nozzle flows are
important in various technical applications such as propulsion,
hypersonic wind tunnel testing, and simulation of streamtube
flows occuring about a body in hypersonic flight. This report
discusses such effects with emphases on analysing subsonic
regions and on investigating roles of entropy in analyses of
nonequilibrium nozzle flows,

The scope is limited to homogeneous gas-phase nozzle flows,
Effort is mainly devoted to investigation of the effects of
departure from thermochemical equilibrium arising from col-
lisional relaxation of internal degrees of molecular excitation
and from chemical reaction, including ionization,

Since the phenomena to be discussed in this report often
involve considerable algebraic complexity, the description of
the purely gasdynamic aspects of the flow is made as simple
as possible, And the flow is treated as a continuum, and the
equations of steady, quasi-one-dimensional adiabatic flow are
used throughout,

In the gas-phase continuum regime, inviscid flows are con=-
sidered, and noﬁequilibrium phenomena associated with classical
viscous effects, condensation, rarefied gasdynamic effects,

radiation are not investigated.
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INTRODUCTTON

Expansion nozzles are used in many types of equipment to
accelerate gases to high velocity or high Mach numbers., A
very wide range of physical and chemical processes may be in=
duced in a gas ;s a result of its rapid expansion through a
nozzle, and departure from thermodynamic equilibrium can occur
in any of these processes. Nonequilibrium effects in nozzle
flows have long been investigated in the propulsion field be=-
cause of the thrust loss resulting from chemical nonequilibrium
occurring in the nozzle expansion process.

Nonequilibrium phencmena in a nozzle flow are also of im-
portance in connection with hypersonic wind tunnel testing. Re=
cently the conventional experimental tools such as supersonic
and hypersonic wind tunnels have been used extensively for
investigating many special problems arising in various fields
such as chemistry, physics, fluid dynamics and astrophysics.
These tools make use of nozzle expansions of gas from high-
tempetature conditions where the gas is often highly dissociated
or ionized. Usually some degree of freezing may occur in the
nozzle expansiogz which produces a test gas-flow which is not
in an equilibrium state. In almost all cases, it is quite un-
desirable as it complicates interpretation of test data and may
prevent proper simulation,

Furthermore the significance of nonequilibrium nozzle
flows is emphasized by the fact that the thermo-gasdynamic en-
vironment occurring along the nozzle axis is representative of

that occurring along stream tubes undergoing expansion about a

body in hypersonic flight. However the available experimental



data on the expansion of dissociated or ionized gases in a
nozzle or over a body are still not enough,

Since the phenomena to be discussed in this article involve
considerable algebraic complexity, the description of the purely
gasdynamic aspects of the flow is made as simple as possible,
Therefore the flow is treated as a continuum, and the equations
of steady, gquasi-one-dimensional adiabatic flow are used through-
out,

Three types of solution to nonequilibrium flow problems
will be discussed in this report, namely, analytical, numerical,
and semiempirical solutions. Each type has the merits for the
study of some aspect of the problem, and each has its own limi-
tations, Analytical solutions can be found only for the sim-
plest possible nonequilibrium processes. The purpose of these
laborious analytical solutions is usually not to solve practi=-
cal engineering problems, which are generally much more readily
solved numerically. The most important task is to obtain a
physical picture of the nonequilibrium flows through a nozzle,
Limiting solutions such as very fast nonequilibrium processes,
or conditions very far downstream, which may not be easily
accessible numerically, can also be obtained. Another useful
contribution of the analytical methods is to investigate the
accuracy and regime of validity of semi-empirical methods, The
simplest and most successful of the semiempirical methods is
the "'sudden freezing" approximation? which is probably the most
widely used in practice., Because of its empiricism, however,
it cannot be extrapolated to new situations without uncertainty,

In nonequilibrium nozzle flows, the nonequilibrium pro=-

cesses inevitably increase the entropy of gases in nozzles,
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This increased entropy in turn affects flowfields and relaxation
phenomena themselves. The analyses of nonequilibrium phenomena
in nozzle flows are, in almost all cases, equivalent to those

of flowfields themselves, It is regretful, however, that in
spite of the large number of researchers, few good studies on
this problem have been done because of the difficulties in ana~
lysing theoretically these flowfields. In light of such cir-
cumstances, our effort is partly devoted to investigation of

the roles of entropy in the analyses of nonequilibrium nozzle
flows.

The contents of this report are arranged as follows,.
Chapter I deals with the problem of predicting critical mass
flows in nozzle flows of a vibrationally relaxing diatomic gas,
an ideal dissociating diatomiec gas and a singly ionizing mon-
atomic gas. Analytical and numerical sclutions of nonequi-
librium flows of vibrationally relaxing diatomic gases are
obtained under various reservoir conditions in Chapter TI.
Chapter III discusses the roles of entropy in the analyses of
nonequilibrium nozzle flows, Especially, detailed discussions
are made on the equilibrium-frozen (E-F) flow approximation
which is one of the most important approximations to a nonequi-
librium nozzle flow, Finally the problem of solving the non-
equilibrium flows of an ideal dissociating diatomic gas is treat-
ed analytically by the method of strained coordinates in Chapter

Iv.



CHAPTER I CRITICAL MASS FLOWS

1. Introductory Remarks

There are two things which complicate the analyses of
nozzle flows with physical-chemical rate processes. The one is
the complexity of the rate equations which govern the relaxation
phenomena of vibration and electronic excitation, chemical re=-
actions of neutral species, and ionization, and the uncertainty
and uncompleteness of mathematical description of various physi-
cal-chemical rate processes, The other is the difficulties in
the determination of position of the critical (sonic) point near
the throat in connection with the critical mass flow.

Though there is no simple definition of a speed of sound in
a nonequilibrium, relaxing gas, so far as the relaxation time
does not tend to zero, the frozen speed of sound is the reference
one in fluid mechanics. In the flow which starts from the equi-
librium reservoir conditions, in general, the sonic point is
just downstream of the throat, and it is a saddle-type singular

1)2)
point of the flow equations.

In a usual convergent-divergent supersonic nozzle, the
critical mass flow of a general nonequilibrium flow is permitted
to take only such one value that the regularity condition at the
sonic point of the flow equations is satisfied,

In the past, much research has been directed at solving
problems associated with the determination of the sonic point.
Various approaches to the problem have already been presented;

1)3) 4)

for example, equilibrium-throat-assumption method, equilibrium-
1) 1)5)

frozen-flow approximation method, direct try and error method,

6 7
inverse try and error method, iterative method, transonic approxi-
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8)

mation method and so on, In the actual analysis of the nozzle
flow of a nonequilibrium, relaxing gas, the choice of method to
be applied, mainly depends upon two conditions; the ratio of the
energy stored in the lagging mode to the total enthalpy of the
gas and that of the relaxation length to the reference nozzle
length,

Two conditions must be satisfied if the relaxation of a
particular degree of freedom is to affect the flow through a
nozzle; the relaxation time must be comparable in magnitude with
the time for the flow to pass through the nozzle, and the change
in energy assaociated with the relaxation mode must form a sig-
nificant part of the total change of the enthalpy of the gas.
The latter depends entirely upon the given reservoir conditions,
while the former depends in addition upon the rate equation and
the nozzle geometry.

It must be noticed that the entropy rise due to the non-
equilibrium processes will also affect the critical mass flow,
Here the effects on the critical mass flow of the degree of
departure from thermo-chemical equilibrium of the relaxation
modes with the rotational-translational mode of the gas particles
and of the entropy rise in the subsonic region from the reser=-

voir to the sonic point will be investigated in detail,

2. Nozzle Flow Equations for a Sinale Nonequilibrium Process
For a steady, adiabatic, quasi-one-dimensional flow through
a nozzle, the equations of continuity, momentum, energy, relax-

ation rate are respectively



oV (14 A)=p: Vi(1+Ax)=p Vi=m=const. , (1)

4V _ _dp :
el dr dx’ (=
h+-12—V2:hu, (3)
dg_Ulp. 0.0 4
de Lig,p,q) (4)

in the gas=-phase continuum regime, where @, p, V, h and (1+A)
are, respectively, the density, pressure, velocity, enthalpy
of the gas and nozzle area ratio with réspect to the cross
section of the throat; and x is the distance measured from the
nozzle throat along its axis. The quantity g is a progress
variable which may denote, for example, the vibrational energy,
dissociated mass fraction or ionized mass fraction, and m is
the critical mass flow. L(P, p, q), U(f, P, q) and h are
functions of state, e. g., of £, p and q. It is also assumed
that the nozzle cross-sectional area distribution is given, so
that

A= Ax) . (5)

Subscripts O, t and = represent, respectively, the stagnation
point, throat and critical or sonic point,

In order to solve the above system of equations under the
given reservoir conditions, the functions U, L (or U/L) and h,
and the relation among @, p and q, namely the equation of state
must be known, For the diatomic gas at a relatively low temper-
ature where the dissociation phenomenon does not yet take place

appreciably, the enthalpy per unit mass is

. W
O e (6)



where T, TV' g, R and'w are, respectively, the rotational=-
translational temperature, vibrational temperature, character-
istic temperature of vibration, universal gas constant and
molecular weight of a molecule, The subscript 2 denotes the
molecule.,

For the diatomiec gas in which the dissociation and recombi=-
nation reactions are most predominant, the so called ideal dis-
sociating gas model approximat?ggncan be made and the enthalpy

is
R R
h=(4 —_— —_ 7
ek ThpeDia (7)

where (X and D are, respectively, the dissociated mass fraction
and dissociation energy. It must be noticed that for the di-
atomic gases given above translational-rotational equilibrium
is assumed.

For the singly ionizing monatomic gas such as N or O at

high temperature, one has

P S SR TE SUAT I T LS O (8)
[GrapGeo)elw -

where ¢ and I are, respectively, the ionized mass fraction and
ionization enerqgy, and @ and b are constangg{ The subscript 1
denotes an atom,

Though Eqs. (6) and (7) can be used in the general non-
equilibrium state, Eq. (8) is valid only in the equilibrium
state, For the singly ionizing monatomic gas, there has been
no simple way in order to improve Eq. (8) so as to become valid

even in the general nonequilibrium state,

According to Egs. (6-8), the equations of state are,

7



respectively,

p:%pT, (9)
_R (10)
p= Wa PT(1+G'} '
p-:»;f;pmw). (11)
1

The rate equation for a diatomic gas which governs the relax-

2) 1)

ation of the vibrational mode takes the form

R
—f
dEv _U —8 W (12)
V—=—=FpT"'exp(1T‘)[1 —exp( = ] B,
dx L (T) exp(:‘_)_ 1]
T
where EU is the vibrational energy and given by
X,
B We (13)

[exe(7)-1]

and where 7, w, § and s are constants and depend upon the kind

—

P ; : 12
of a gas, For the ideal dissociating gas, we have

du_ U (14)
v
dx L FOTIR,

where r; and rg are functions which represent the absolute dis=-

sociation rate and recombination one, and given by

mz(%)u—a)fknuHa)+2k;.‘a1 :

ﬂiz(ﬁ) a’lk,(1—a)+2k a] ,
where
i o M 16
krl—WTT 2 krz‘-K(T’ v ( )

and where kfl’ kfz and K(T) are the functions of temterature
only, Unfortunately, for the ionization and neutralization

phenomena, there has been no satisfactory rate equation for

8



the analyses of nozzle flows under a wide range of stagnation
13) 14) 15)

conditions.
A limiting form of the rate equation implies the equi-

librium relation, For the vibrating diatomic gas, it is

R,
W

and for the ideal dissociating diatomic gas, it is

or Tv=T, (17)

o =Ch.T”.ﬁp(‘§> ) (18)

where CD is a constant and d can be taken to be almost constant,
For the singly ionizing monatomic gas, in spite of the uncer-

tainty of the rate equation it is known to be

$? —-E’. i ._,.l_.
T “"P( r> " (19)

where CI is a constant and i is also taken to be almost constant.

This has often been called as "Saha Equation'.

3., Singular Points
Since the enthalpy of the gases considered here is gener-
ally represented as a function of the pressure p, density £ and

progress variable q, it can be written generally in the form,
h=h(p, p,q). (20)

Substituting it into the momentum equation with the aid of the

equations of energy and continuity yields

,l_(,@’f’,) (ﬂ) (.d_f!)
Ve \Noples yo @V 9 /o 49 _ \dx, (21)

% (ﬁ@) dx p(éi) dx  (1+A)°
90 /p.q 3¢ /pa



By the definition of speed of sound, the equilibrium speed of

2) 16)
sound and the frozen one are given as follows

dh_ oh 0g.

o0 e o0 o (o)

€ /S Poe e S Pe Py £ ¢ 22
RS .
Pe ap' Pede aq’ PerPe Pe

ape
(
i P
: (
0

where gsubscripts e and f denote, respectively, the equilibrium
flow and the frozen one,

=

—tF T

) (23)

'qlg'-.}-—/

With these definitions of speeds of

sound the equilibrium and frozen Mach numbers are defined by

(24)
Substituting these Mach numbers into the corresponding momentum

equations yields finally, for the general nonequilibrium flow,

':—,(Mﬂ—l ( ). dg _ x)

( dx  (1+4) '
9 /p.q

(25)
for the equilibrium flow
TR ¢
v, dx T (44 (26)
and for the frozen flow
(%)
1 a_ydVy_ \dx
A T (27)

From these equations the following can be concluded with respect

to the critical point; for the general nonequilibrium flow, it

10



is at x = x, where MfB 1, and
(3c)..
1 dAN | _\dgley (da
(1+A.JLL_ (M) (dx) > (28)
p___
9 Jpa ¥
for the equilibrium flow, it is at x = Xy X ® 0 where Me== 1,

and for the frozen flow, it is at x = Xy, = X T O where Mf= 1,
It must be noticed that the positions of the critical points of
the equilibrium and frozen flows coincide,

Some attention must be paid about the sonic speeds in the
nozzle flow problems. Though the equilibrium speed of sound is
of significance only in the gas in the equilibriun state, the
frozen one is significant not only in the completely frozen flow
but also in the general nonequilibrium one,

There is some difference in meaning between in saying that
a flow in a nozzle is in equilibrium and in saying that a common
uniform flow is in equilibrium, Namely the equilibrium state
for the uniform flow means that the internal mode of a molecule,
dissociated mass fraction or ionized mass fraction is in the
thermal or chemical equilibrium with the rotational-translational
temperature. In such a uniform flow there can be both the equi-
librium and frozen speeds of sound. Im the nozzle flow analyses,
however, the equilibrium means the imfimitely large vibrational
relaxation, dissociation-recombinatiom or ionization-neutrali-
zation rate, Clearly in the equilibwriwm flow through a nozzle,
the frozen speed of sound is of no more physical meaning and
become the quantity defined only mathematically, though it is
significant not only in the nonequilibrium flow but also in the

completely frozen one, It must e emphasized that these two

11



quantities by no means coincide even in the equilibrium limit,
The frozen Mach number in the equilibrium limit is denoted by
Mfe from now on in this paper,
4, Critical Mass Flows

In a supersonic convergent-divergent nozzle in which the
gas flows from subsonic region to supersonic one through the
sonic point, the only one value of the critical mass flow with
which the regularity condition of the flow equations at the sonic
point is satisfied, can be taken, and to which only the real
flow can corresponds. The effect of the relaxation phenomena on
the critical mass flow is considered in this section,

In the real flows, the relaxation phenomena of vibration,
dissociation and recombination, and ionization and neutralization

: 2) 3)10)17)

can not strictly be separated as has been done in our treatment,
(In the ideal dissociating gas, the effect of vibrational exci=-
tation is taken into account approximately.) Nevertheless, it
is the case that there are rather clear distinctions among the
conditions under which the each phenomenon takes place predomi-
nantly. Furthermore it must be emphasized that it is not neces=-
sarily required for us to treat these phenomena separately in
order to develop our discussions, and of course these phenomena
can be taken into consideration altogether. It is more prefer-
able, however, to consider separately than to do altogether in
order to investigate the effect of the each phenomenon on the

critical mass flow,

4, 1 Critical Mass Flows of Vibrating Diatomic Gas

As the dependent variables, next quantities are considered,

12



o
g gy=?—; and My, (29)

introduced by

(30)

1 R
= —— . .
fp }Io Wz

If the quantity q is taken to be fv, required quantities can be

obtained as follows:

\/ 5 51!2
a=m —_— ——
Thop  (1+A)M;

Tl
ar 5 DS"’ E 3 (31)
7 E2.expé J
.—+ S
S [2 (exp£—1)?
= [ tome ]
2 (expé—1)

The equations of energy and momentum become, respectively,

Ao £ o Toma &

2 exp&r—1 i~lClM o’ (32)

1 dM; 1 (M7 (iﬁ)

——mp-n e L M) 48 2 fexpéy | dev  \dx

My dx 2 ¢ dx 7 (expér—1)?  dx +(1+A) ; (33)
Combining these two equations, one has

(MPA+5) ) {_ & Sexpér [1-£] 1 ] }

U] B, 08 exp Ln (exp &r—1)? 7 G |4 (34)

From the density equation, we get

lim (14 M=y 2
Thogp %o

stagnation

This yields
1 Py
const. =125\/'§f:o -?_ﬂ-vf_o”i >

with which Eq. (34) vields finally

13



p,,(MJ,)J,I&"ﬂ:F,,n exp Gy
m

where

Mp
Fv(Mr)= '(Ez_}_ﬂa

1 \/,L.,fs‘i 5 (36
Fr=125 "N The o0 )

B e’y_fe_\p{:y [1_30- 1 7'*]d$ .
&r={ tombr—1 |7 p+n %

Now, we have

d

—— Fp (M) = =

dM; v(Mp)=0, at M;=1,
and then

1

FV(MI)maazFV(l) =216 »

(37)

which yields

[0 0] =mof (2

d
el =[5z Eewen ] (38)
This relation implies that the curve for ¥y Fv(l)(1+A)/m with
X as an independent variable must be tangential to that for Yo

= Fvoexp GV at Mf= 1 in the xy plane (Fig. 1).

148
m

o
=

F,0expGy . R(1)

n
<
(=]

throat

Fig. 1 Curves for y;= Fv(l)(1+A)/m and

Y,= Fvoexp GV'
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It is easy to understand that a difficulty must be expected
when the nozzle throat is reached because the prescrived mass
flow may not be able to pass through the throat, or in the case
of a convergent-divergent nozzle, the flow decelerates instead of

accelerates downstream of the throat(Fig. 2). Since the maximum

J(/{nlqrge

< \ @ m too lar

vIE \ ge

b \\\ @ m correct //
= @ m too small

W

@':

2

)

.

Fig. 2 Mass flows and their corresponding

distributions of frozen Mach number,

flow rate that can just pass through a given throat satisfies
the regularity condition Eq. (38) and then depends on the re-
laxation processes, the correct mass flow cannot be accurately
prescribed beforehand, Mass flows and their corresponding
distributions of the frozen Mach number are illustrated in Fig,
2,

It can be verified that an inequality

Gv>Grp=0 , (39)
is satisfied in aeneral for nonequilibrium nozzle flows, and

15



this yields
m<_my. (40)

For almost all flows,

Gr,>Gr , (41)

is also satisfied. From these relations an important conclusion,

me<m<lmy, ( 42 )

can be drawn,

However the inequality Eq. (41) is not always satisfied for
general nonequilibrium flows in nozzles with an arbitrary shape
and size even under the equilibrium reservoir conditions. To
account for this situation clearly, the entropy rise due to the
nonequilibrium processes in the flow must be taken into account.

The equation of entropy for a diatomic gas with the vib-

2)

rational energy mode is

R (E—&v)expér

d.S':fnZ —u—m_(exp 6 1) -déy, (43)

where S denotes the entropy of the gas. From this we can obtain

Ey,=f.,  dS.=0 , (44)

for the equilibrium flow, and

déy =0, ds;=0, (45)

for the frozen flow.
Since the equilibrium-frozen flow, which was first proposed
1)

by Bray, is composed of the upstream equilibrium branch and the

downstream frozen one joined together at the freezing point, we

16



have

for this flow, where the subscript ef denotes the E-F (equi=-
librium-frozen) flow. Detailed discussion of this flow model
will be given later in this paper.

For general nonequilibrium flows, Eq. (43) can be integrated

formally to give

(Csigo)) ) (e::gf:l ) (expfv—l )_ n(ex;ng1 )

225
! 5__ » £ i 1 B 1
(CXP‘S_l) LD-E dE(expEy—l expE—1 )ﬂ‘:‘ (47)
Using this relation, G, can be represented in the somewhat simple
form,
3 1
Gy=31n |2 _expfo—1 [( exp £o )(expfw—] )]
! . o 1 s exp &o—1 exp &y
» expfy—1
o W
(up&—l ;ﬁg;:r) - (5-%). (48)

It must be noticed that the quantity GV can be expressed com=-
pletely in terms of the vibrational temperature and entropy of
the gas.

As can easily be understood from the process through which
Eq. (48) has been derived, it is generally valid without respect

to the kind of a gas. At any point in the nozzle, only if the

entropy rise is neglected, we can conclude that

GVma)t:GVt] (49}

under the fixed reservoir conditions. In fact, at least theo-

retically there can be the case in which Eq, (49) is broken

17



down, and then the inequality me< m also can never be obtained.
In almost all flows through nozzles with ordinary shapes studied
in many laboratories, the increase in entropy due to nonequi=
librium processes is in general so small that its effect on the
flow field can reasonably be neglected. This gives one of the
most powerful supperts to the validity of the approximation by
the equilibrium-frozen flow model,

The critical mass flows of the equilibrium, frozen and equi-
librium-frozen flow are considered, For the equilibrium flow,

the isentropic relation

1
dlz—;- ~dp.=0 {50)

e

can be integrated to give

spexp&e—1 & ) .0, =& s28xp So—1 O S | )
s exp & EXP( exp &—1 Pa =S8 exp &o 5 exp Eo—1,"
== const. (51)

Using the condition Me= 1 at the throat, the velocity there is

given by
‘_7 (:-, BHD ‘Erl ] J
B B e 2 (EXD 'Ser_I)
Vr*errﬁ"/hﬂs’o l 5 u eXp ! E" JV (52)
2 (o:*q:nfu—l)Z

Combining Eqs. (s51) and (52), we get

me=4/ Jiyep o expbo—1 . ex (k,,, fo ( _.E_"_)s

£ exps, expéo—1 &

7 , ot CXP §e §er ] 12
exp &, {[ +— :
_ cxné,_,{ Exp( Eee ) JL2 " (expt.—1)? J
' C‘U”Q‘n —] ( _5 'Su Exp Ef" - 5
2 (expcﬂ—l)z

(53)

The value of éet can be calculated from the enerqgy equations

at the reservoir and throat, which are, respectively,

18



e R s 8
-2 expfh—1 ¢’ (54)

. Efr exp Eer I
o L P SEE
I 2

7 Eer (exp £.,—1)7 Eur

S b, s — Ser 55

2 expfo—1 2 |'5 £ expLu ] P (55)
(exp&—1)2

Similarly for the frozen flow, the isentropic relation

dh—-f;dp;:ﬁ, (56)
can be integrated to give

&/ - py=Ed*’po=Cy= const. . (57)

Using the condition M_= 1 at the throat, we have the velocity

b

there as follows,

PR U |
Vf*—fo—x/?-"o‘}ﬂ'@ ) (58)

Eqs. (57) and (58) are combined to yield

Z. N3
m;—\/ fmso E ”2 % ( ;o ) ; (59)
where éft satisfies the energy equation at the critical point,

;!+_Ef' —= ‘fr

sft
5 expf—1 @ ! (60)

or

Eff:l-zfu. (61)

Considering the fact that the equilibrium-frozen flow is
made of the equilibrium branch and the frozen one joined together
at the freezing point which is determined by the freezing cri=-

terion first proposed by Bray, we can easily obtain

mep=+" 2hop * po o -exp(f— iﬁ) _explverc exp ( Everr = )

exp &o e;pé"c—l exp &rep—1 exp Evess
vE;g_)Sf! (-1 _ _?_ﬁ_, 1 i )1;’2
’ ( et © 2840  explresi—1 ? (62 )
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where

£, ELEr,

(63)
Evy= const., E>Evr,

r?wr:{

and where éVf denotes the frozen vibrational temperature, and

d;ft is obtained also from the energy equation at the throat,

21 E(_,"r ﬁlf.—f:
o Ppe— L L C—L LR
5 exp&l’r}'r—] P

» if Ereri=8pr=&e. ( 64)
The above discussions provide us with the relations among
the three critical mass flows, m,s Mg and Mgt
Meg=mys,  Eyp=& ,
Metmey<mr,  Ea<byySbu | (65)
Mes; unobtainable , Ear<<by <ty
Mef=rm, , Efrggyf.
The reason why m,. is impossible to obtain in the case éét‘ ébf
<é}t' is that there are two speeds of sound, the equilibrium
speed of sound and the frozen one, in the real-gas flow,

The relation

(2e),, = tim (Y (66)

is easily found, and this yields, with the aid of the enerqgy

equation,

(i>m;n. PR e (67)

my

The ratio me/mf is shown in Fig., 3.

Next, the investigation of the critical mass flow rate of
the general nonequilibrium flow is made, and especially for the
nearly equilibrium flow, the numerical calculations of it are
carried out.

Here we consider the nozzle geometry given by
A=Kt (68)
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Fig, 3 Critical-mass-flow ratios of a vibrating

diatomic gas,

where K is a positive constant. Then the regularity condition

at the critical point can in general be written as

1 d4 =2 .o _ 2 Ei(—1—>
1+4 dx 1+ 4, 7L dx\ expér—1 ]*’ (69)

while the rate equation is

d | m 1 1
L - V=™ ey — 1
dx(exp g —1 > (1+A4) (E)< exp&y—1 expf—1 ) ! (70)
where
576% (exp&—1)
g __\exps—1) spes
€)= ( Thep J ME¥+1 . exp & " exp (10°6~). (71)

Combining Egs. (69) and (70), we get

2
xS ()
49K °* «) expére—1 expfy—1 /" (72)

Eq. (48) is substituted into Eq. (35) to give

£,502 exp &v EXPEys— exp __E_V*_~ Wz
(1+44)= ( )w( ) exp &y expéra—1 R (S*_S"}]
ZkoS-"Cg me i_i_. ; 72 ~ (73)
¢ 2% eXPEV*_'])
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which yields, with the aid of Eq. (72),

m_ 2, z( ! - : )z
49K U(E)* - Ex exp Erx—1 E-XDE*_I
£, explra—l o [——'ﬂ“+ﬂ (S*—Sn}]
m Y explra expéra—l _R +1=0 , (74)
T Vgl ;. N A
o 28, expbra—l
where
21 b _%»
5 expéra—1 ¢’
(75)
-’3055&'*5&*

Eg, (74) indicates that the critical mass flow depends not only
on the departure of vibrational temperature from the eguilibrium
value or the rotational-translational temperature at the critical
point but also on the increase in entropy in the subsonic region
from the reservoir to the critical point. It is important that
the critical mass flow is evaluated completely from the vibra-
tional temperature and the entropy of the gas at the critical
peint, which is not always the case for the ideal dissociating
gas or the singly ionizing gas,

Now, since Eq. (74) is a quadratic with respect to m, at

least the next condition must be satisfied,

. E*Sﬂ EXPEV*_I [ E!"* W T 1 —i2
>r __ _OEDCva) x| —— SV e W B
v 2hpC exp §vy 2 exp &py — * SD}] 28, expé‘:r*—l)
T S I P R—
TV K expfrs—1 expéy—1 /" (76)

The value of the term about m2 is usually much smaller than

all others in Eq, (74), which yields the next approximate re=

presentation for m,

[ 2hpCAN
) i ) (228

® 28y expére—1 exp Epye—1
Sy W,
Xc"p[e—;:p_s;*j —R—z (S*HSn)]{l+~Lhu@C‘Z-E(§m g (#_.. ; y
* 49K £2 explra—1  exp&y—1

1
wll__7 _ expre \? 25 -
@ 28, CXPEV*‘f)<€J(pEV*-—1) xp[;;lf::“l_-l_Rl(S*ﬁSD)]+.--}' (77)
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At a glance, it may easily be understood that the increase in
entropy decreases the critical mass flow, and also the increase in
radius of curvature of the nozzle wall at the critical point
near the throat decreases it. The latter fact has already been
verified numerically,

Especially, if a flow near the threocat is almost frozen,
all terms except the first in the curly bracket on the right
hand side in Eq. (77) are negligibly small and can be omitted
within an acceptable error, When the E=F flow model is employed
for the approximation to this flow and the freezing point is

determined so as to give

Evr=Erx (78)

we get
2ot C me i__?____l_)""__@fv_:,exp( e\ (79)
( ) £ '(go 26, explie—1 exp Evs—1 exp S 1

From Eqs. (77) and (79), we can obtain

m_o_ W e s,

;:;e-exp[ R (S%—Sc )]: (80)
Finally it can be concluded that

m<ey . (81)

for the flow in which the vibrational relaxation is almost frozen
near the throat.

A numerical calculation of the critical mass flow is carried
out for the nearly equilibrium flow., Determining the critical
mass flow is equivalent to doing the corresponding flow field
itself in the subsonic region, which may be understood from the

aforementioned discussions, In general, the analytical treat-
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ment of this problem is almost impossible except in special
cases., Furthermore even when an analytical treatment is possible
to some degree, it is usually more or less numerical.

Here an iterative method applies to analysing the flow
which remains nearly equilibrium at least to the critical point,

Transforming the independent variable from x to & yields

d dev
e 4 p(&)=6 e h(E); s) (82)
TR AR
2+§ 5V+m M/z—;o', (83)
1(% e, ) €) L ter=s, (84)
__ 3 i —-1 £<g,
x=——[h(§)—1]"2, a:{
VK 1 &> (85)
where
e b
expér—1 "~
. 1
T expt—1 "
2 1 1 dey
£ i - 21 |-2|(—— 8
G(E):{'i (v ey)[s(w i E I [( ,c,,,)g ] dE}
E
(86)
1
——ey J&—3
sG)e]
2 )
ey =564 5 Ve VK £

125 N7 " Turer "

i R e

Again the nozzle which is given by Eq. (68) is considered.

When the flow is kept in nearly equilibrium, the first term
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on the left hand side in Eq. (84) is so small compared with the
others that it can be neglected to the first approximation.

Then the rate equation becomes the equilibrium relation, Sub=
stituting this into the remaining flow equations, we can determine
the all flow variables to the first approximation, When the
solution of the first approximation is used in 7T in the rate equ-
ation, the distribution of the vibrational temperature along the
nozzle axis can be determined to the second approximation, Using
this distribution of ¢V or 6V’ the remaining flow equations of
the second approximation can be solved quite easily. Repeating
this process, we can obtain the solution of any higher approxi-
mate problem,

It must be emphasized that in this method the rate equation
which govern the vibrational relaxation is completely uncoupled
from the remaining flow equations, and then it can be integrated
alone, Obviously this simplifies greatly the analysis, because
the position of the critical point and the state of the gas
there, and then the critical mass flow has already been determined
strictly to each approximation before the flow equations are to
be solved.

When EV of the i-th approximation is written as follows,

er; =&+ deyi =1 6f &2 3,%wss 5

(87)

the corresponding solution of the i=th approximation can be

obtained in the forms,

14y v/ K 2 exp € exp & d
A=V K i 6 [ expé d,
Y s M exp =i [(expE-lP g der ']

, gevr L (8) 11"

T i (88)
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si2 €XPE—1 [——-ff —]ex [_ ‘e L4 ;)d&]
O e T i TN b B PN
ST Zhuﬁ’icez

. Me 1___”L _____ | ——dz;»-)m
(S‘J 26 expé—1 ;
(89)
%-E-E (e+dev.)+ Mh i i (90)
where
_s. Gu&) ,;’_Mi,-;_l(li =% i)_ﬂgﬁ_l_
f-(f)—-f /i'](l:") 77 M}' 0 ] Ey Z,E
+ j‘tszﬁz_5 _[W)EXPE 2__( )] (gl)
TM s (exp&—1)* df

In order to determine the critical mass flow to the i-th
approximation, the regularity condition at the critical point
of flow equations of the i-th approximation must be considered
with the aid of the solutions of the (i-1l)-th approximation.
It must be noticed that the critical point of exact flow equ~
ations occurs in general downstream of the geometric throat,
while that of the i-th approximation always occurs just at the
geometric throat in the iterative method.

Using the conditions

R(E)=1  and dh(&)=0, (92)

at the geometric throat, we get from the momentum equation

HG gz 2o )en— 2

=%, [En(-gp-— expf;]:TI——dW“> J I exp&,—l -I-dt‘w)]' ' (93)

This is rearranged to yield

[1_+ £l exp &ie ]

£ _ 7 i 1 2 (expéu—1)?

YA - +&u - Loy

¢ 2 expfu—1 2 [i Ef,expfu] e
(exp&i,—1)2
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. I/ 1 N L .. [d
‘f;r & l_(;;_ﬂ’“)g”_J*] E‘ A Q?,[ds (JEW)Q‘I,

d
. devi) | — -
5, & EXD“fgr_] l dE( v )], I\S_l* 5?Lexp$.-._l
| 2 (expé&u—1)? 2 (exp&u—1)*

+ (94)
If.dgvi= 0, the above relation becomes that for the equilibrium
flow, and if 4&,,;= 60-¢f, that for the frozen flow. With the
solution dit of the above equation, the critical mass flow of the

i-th approximation can be obtained finally as follows

i 2hypC.2 N2 : 1/2
m :( 'ﬁ’i?) g ( exp & _) . (l._ Z B ,,dﬂ,”)
@ 25, exp&i—1

M. m. exp&;—1
& e 4 e,
Xexp[expsi,—l + Ln R )dé]' (95)
1-00, Na
\
09 > .
© e
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Fig., 4 Critical mass flows of nearly equilibrium and

equilibrium-frozen flows of a vibrating diatomic

gas.

As was already pointed out, the last term in the square
bracket under the exponent in Eq, (95) can be integrated alone,
because-dfvi has already been determined from the solution of
the (i-1)-th approximation, Finally, an investigation must be
made about the solution at the throat. The conditions at the

geometric throat are written again as

&7



(&) =1, fildi)=0 , (96)

which make it impossible to obtain the value Of‘46V£+ft at the
throat numerically,., Taylor’s expansion of functions hi(¢] and

£,(&) about &= &;, are given by

h,(e)=1+[i£m(e., ](e—ww 1‘,—52&(& )] (600"t (97)

f.(s}=[£ﬂ(eu)](s—e;.w;[ it | e+ [dE3f('$fr Je—er+-- (o8)

gt

Taking a relation
d 1
Ek.-(f)z?ﬁ(f) -hi(§)

into consideration vields

o [(E) =112 _ ]

d

=| 25 - —;

i fl(&) [ € dE
(99)

ﬂ(En)
X

it -4 (&) 1117 =_1[2..i, ,]“’2_ L
e]-[-?},{df £i(8) } 3| 2 g P Eu ‘.Ef“g“)

etc..
Using these results, the solution of each approximation at the

throat can be calculated numerically. The characteristic values

of N2 and 02 gases are listed in Table 1.
Ny Oz

# 3336°K 2298°K

I 8.878 x 10®* m%/°K kg sec 8.300 % 100 m3/°K kg sec

W 1 1

5 -1/3 1/3

1 ~181°K 0.6464°K - 1/3

_— 3)11)
Table 1 Characteristic values of N, and 0, gases,

2 2

Now it is convenient to introduce a '"'nonequilibrium para-
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"
meter Pe by

1 de
P=—1I - v (100)

€
in order to calculate 4i.=P/(expt—1) and to determine the freezing
point in the E-F flow approximation, which is usually the point
where the value of this parameter becomes about unity, Distri=-
butions of P, along the nozzle axis are shown in Fig, 5 for NE

gas.

2
10 I r I

109

10°

| [ I |

02 0.4 0.6 0.8 10
Stﬂgr_iﬂttion (¢ o throat
pab zfet' $o

Fig. 5 Distributions of nonequilibrium parameter of a

vibrating diatomic gas along the nozzle axis,

4, 2 Critical Mass Flows of Ideal Dissociating Diatomic Gas
The analysis can be carried out in almost the same manner

as in the previous section, A parameter % is introduced by

gl .

R
W (101)
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If the quantity q is taken to be (¢, the density and the speeds
of sound are given by

6 /2
oy ( 1+a +M’)
v (L A)M(1—ga) 2’

+G’e i
s 1:_}1'_0“ i (1—¢pa,) + ho( 1 —e.) lf(f“j“ch](l‘l‘ Mfe) a 1 J
. (1-:-1—'2“4]«45:) (4+a‘)(1+ijéﬂ M},) Hi~fa) e

{3(1~¢a,)+<1+a,)[d(1—¢a,)—¢(4+a.)(1+ 1:“‘ M},)]}

- {;{,(14;9';;)(”' l:a‘ Mfa)[ﬁf'(tl-i-a,)(l-l- Ll M2, —d(1—¢ae)]+3-%i} !

lo2
af=2hg— ﬁf’a‘) ( )

+M;)

1+«

The equations of energy and momentum become

T=(§)_(4 +a)((11+_ qliij'“F)rx.m )_ (o2

_2A=Mp) 1 dMp, 1 d4 _ 3+ (4+a)M/
(}+l+a ) My dx 144 dx T 16+ (1+a)M

(4+a)(I+a) (4+a)[34+ (4+a) M2 6(1—ga)

{ 3 3I(1—-M) —y [6+(1+a)Mﬁ]}(dx) P

In quite a similar way to the previous, integrating Eq. (104)

vields after some manipulation,

14+ A4
BolMy. o) -t g,
b( My, e) p= Fp,-expGp, (105)
where
M
FolM;, a)=— 6 \VrGra/ira !
sz-l-—-*—)
14+
(]‘F’ﬂ'n -3/(1 +ag)
VZHD Po(] fﬁd’n)lz } (106)
(Fiﬂ_)
Go=|" {—2—|in (M 24 )+ Ita/ | B+@+aM
a | (1+a) l+a (Mfz_i_rifj_) [6+(1+H)Mfzj
14e
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: 1+a-
SB(H' 6“— M;’)

T (1=da)

. O—MFf 2
g VT a1+
(4+a)(1+4—"{3i1wf=) Ghalit e

It is easy to prove that

a
—— -« Fp(M;,a)=0, at M;=1,

aM

which yields

Fo(Mpa)ZFp(l, a)

The following is valid at Mf= 1

14+ Ay

m

;(

140 )BI(Hao] T4 grp N2 T+ /{1 +ag)
) (iia)

) 140 ——— _J’“‘ 3
v 2k po- (1—gag)' 2 P17 ), (e
Ita
selin 1+a _ Oda)(i=MA) | _r‘_[a_+(4+a)Mﬁ]
Aﬁl+1i (64 (1+a)M/?] ap [6+(1+a) M)
@

-gb(l +'i—:g‘Mﬂ)

i (=M 3
(1—9a)

(4+a{1+5%£ﬂh0 Padd)

For the frozen flow, the conditions

Ay=0,

Xy = p at Mi=1,

give the critical mass flow by

my=~/Zho - po(1—paeg)'1? (J yo (1+au)m-w+awﬂ+aol
- — 0 i o ——

with which Eq. (108) can be rewritten in the form,

where

| 4 Ax
m

1+a T+ao '

1

’
" ex
my DGD:& ]

3

(107)

(108)

(109)

(110)

(111)



T+a

G‘"—*j'u B I+a _ (+a)-(1-M7) | “I“ 3+ (4+a)MA
T e Qe e 6 [6+(1+a)M/) w0 [6+(1+a)M/]
g 1+a
7"‘(I+'*+EM1>
i S P (1—M7) T 3 11
(1= ¢a) + da . ( 2)

(4%&)(1+HTQM;3) (4+a)(1+a)

Except in cases where the temperature of the gas is extremely

s

D always satisfies an inequality

high, G

G >0, (113)

It is quite reasonable to consider that the above inequality is
valid in general for nozzle flows of an ideal dissociating gas,
because the temperature of the gas, in which the dissociation
phenomenon is taking place predominantly, is never so high as
to make the relation Eq. (113) broken.

At any point in the nozzle, it is satisfied that

l+4  Fall,a)

1 r
o FalMeaa)  my P08 (114)
Eq. (107) implies
VF[J(I,Q’)_
F'n(lw,f,r‘() 21 (115)

From these relations, we get

]-I~»4__>_1_ expGo', (116)

m my

at any point except the sonic one in the nozzle, which indicates

that

2 2 exp (—Gh)<1.
my (117)

at the throat.

Now the equation of the entropy for an ideal dissociating

2)

gas can be written as
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d.S':-H‘,;l m(r i ' 1:1&')‘1,&, (118)

1-¢ o

where the quantity c satisfies

,,gzi: Co L p—a _,D,

1—e 0 4 CXP( T>- (119)
It is easy to prove that both the equilibrium and frozen flows
are isentropic,

For general nonequilibrium flows the entropy eguation is

formally integrated to give

W " (1—a0) (=20 o T2ute
g (§=80=(a—a)(1+InCo)+ In| <~ " |- 21n %%)Jm!n —_

Tty « | /p @ 3T «
R 1 =Ny [ =T e ; 120
: < P ) Jau(1+a)(T) “ Ln(tﬂz)l “d LD]“T 4, (120)

while the right hand side of the third equation of Eqs, (106)

is also integrated formally to give

GD: In (J;@Ko_)”’z_’_ ]n { ) (l—gban) I].ﬂ'(l-r-uoj ) [—S‘M) 3/U+u)}
1—dha 1 (4+a0) (1 +ao) (1—da)

6 I 1 s 3InT @] 'D
~3ln{=D)——m————)— = da—] -——— = 121
n(sf’ )( l+a l-i-aru) L,, (14a)t o La{l-{-a’) (T)d“‘ { )
Substituting the entropy equation into Eq. (121), we get
[,Vz 4 Co ,0“ Tied (1+a)
Gp=—— = == T S L _—
o= (S=S) jnum< = )da+ in(pnﬂo) (i )

“n| S ()| e (T i) m(e2)

_llgbﬂ u/z‘ B (lr—fl'ﬂ’o) ] 3/ +ag) _(1+n’)(4+(\’_')_- J»‘(I+=-)1
il =y R e i - (122)

Especially when d is equal to zero, the integr .tion of the second
term on the right hand side in Eq, (122) can be carried out ana=-
lytically.

Using the isentropic relation for an equilibrium flow, we

obtain

TN, /D D° 1—ao e 3 g
oo (Y (2= 2 Yo m(A= Y in () gy (3D
? To T. To a@o? I ln( 1—a. (In &) e

1 +ap

EX]



1=bayE_ 3 3 (ke 123
H“(,l—m) el Ty ]“[(HH&M )] (123)
6

Finally for the equilibrium flow, Eq. (105) becomes

Mye d+4 _ 1 —"a'n ( f‘«'ciﬁ)(lﬁj‘ﬁ'ﬁuv)m
i -_6' 2 Oaf(+ag | ( 1 —a. 1—da,
==

1+a.

. (1+a6)—3“1+0'0) . (I_i_“’)y[l-in‘) . 6—]!(l+a,)+3i{l+an]

6 31+ D D
'[6+(1+a,)M},] it € (124)

The fact that the critical point is located at the throat yields

the critical mass flow by

SR, — /2
PN 1oy s TV SO (R . T exp( D—-) (125)
ek M}r*'*_ _677 _ Tex
1’+ac*
where the quantities . - and Mfe* must be determined as follows,

From the isentropic relation for the equilibrium flow, we can
obtain, after the suitable manipulation, an ordinary differential
equation with respect to aE(or Mfe) with Mfe(orgye) as an inde-
pendent variable, which is usually integrated numerically and
analytically only if d is equal to zero, with the boundary values

0%0=(70 and MfeO= 0 at the reservoir. The regularity condition

at the throat yields

=¢ l (l—¢ar*) er 'E'_____ (]vd’ﬂ'e*)
ISt e 1 Y i S Ttae,
(1—1 6‘7M“*) (l+a‘*J-(4+ar*)-(!+ﬁ‘““ Mfr*)
(126)
{3(]_¢a‘*)+(I+°’ﬂ*) '[5(1—‘%&* —‘.1’(4+m*)(1+l2"_‘=tMﬁ*)]}
. 4+, i+ " ]+ .
{(‘j (T?' ey )( Bgs Gﬂ. ‘Mjr*)[(b(4+af#)(l s = *Mfz*) d(l ‘9”“’:*’] 3 :::;T)—(i *T!*)}

As a result, the solution «,, and Meey ©F the equilibrium isentro--:

pic relation which satisfy the above regularity condition are

substituted into the right hand side of Eq. {125) in order to

obtain the wvalue of m_ .
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Fig., 7 Critical mass flow of equilibrium frozen flows

of an ideal dissociating diatomic gas.
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Next the critical mass flow of the E-F flow is considered,
The values of (x, Mf and T at a freezing point are denoted, re=-

i i from the reser-
spectively, by a%, Mfeff and Teff‘ In the region er
voir to the freezing point, the equilibrium state is maintained
and then the equilibrium isentropic relation holds. Downstream

of the freezing point, the flow freezes suddenly and completely

and then the value of G_ remains constant, The conditions at

D

the throat

A=0, and Myr..=1 , (127)
vield

ey = TGl - I;}ff_. (l—gba;)'”-(;—i—:’?)m'm”m”d‘r)

x<jf¢{+Mimy”mw-Kﬁ'mp(—ggr)» (128)

where Teff is related to Mfeff and 0% by

=(B) () () 29)

It can easily be proved that the minimum value of m_ e is given

for o%= aé* by

ELM_[ﬁ”Qjmoir]mﬂwmmmm -
Mef . min. (14 @) M7er+6 e (130)
It indicates that the ratio : i
i me/rnef min €3N never exceed unity,
namely
?Tf¢<m¢,l' min.
(131)

However Eq. (128) indicates directly that

s . max. = RIS

(132)
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From these considerations, it can be concluded that
e itter =iy (133)

The critical mass flow of the general nonequilibrium flow
is obtained., Considering the nozzle geometry given by Eq. (68),
we get from the momentum equation and the regularity condition

at the critical point

) 6%« \F y G 2 G
M1l—rfgfcn(——9tjl-ﬂmsw* ﬁ-mpké~£i>+nﬁgﬁﬂfcw(2—4~*)=0= (134)
5 14-ay 1+ay 14 as
where
KEg= 121/ 2 . .___I,, = n’*l
Wahe'?  K(Ty) (1 -aed)(1—gay)'?
Ghs=GCou—as-Inpy (135)
Dy= % WbV .= (T+as) [_L_..?’.__k, _(T+ay) &
(I+ae)  (1—dos) L@ +a)(1+as) 6 (T_ﬁ*ﬂ

[k,’r#“_m&)+2kﬁaﬁ’*] )

ge=Fpgli{1+as), (lia_'#s_)m'n“‘”"“"? [ 3 av/2(1+as)
l+ay mu+mxb4wﬂ

When d = 0, which is the case, for example, for the nitrogen gas

approximately, G . becomes the function ofcx* and S, only, In

D
such a case this quadratic relates the critical mass flow with
the dissociated mass fraction and ertropy at the critical point,
Since the term about m2 is in general much smaller than all
others in Eq. (134), m can be given approximately by

l = ,

; 1—x 2 ( % )I ‘

1 #8% CXP : r o

m=-1 cxp(_ iy )]I + ]."r:i‘ CXP(* 296 \Jr---k- (136)
£+ 4o, . [Pl s ey 14+ay / ‘

From this it can be concluded that the increase in entropy de=-
creases the critical mass flow, and the minimum value of 1t
under the fixed reservoir conditions is given by the equilibrium

one only if the increase in entropy is neglected,
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N:

D=113260°K
d=0

D
k;1=3.0X10% T-32 exp (7 ) m?/k- mol-sec

D
kpy=1.5%10" T-32 exp(?) m?/k-mol-sec

D
K(T)=Cp exp(—?)k-mol/mi‘

Cp=1.26x 105 k-mol/m?

13)
Table 2 Characteristic values of N2 gas,
000
100 Ny
¢ =1.0
O(O:O-d
o] o
Ele
0.995
Tp =15444 °K
Tet =12802 °K
Tft =12523 oK
0890
0.4 0.6 0.8 1.0
( Tot —Tft)
Tet Tit

Fig. 8 Critical mass flow of nearly equilibrium flows

of an ideal dissociating diatomic gas,

In all the same manner as in the analysis of the vibratio-
nally relaxing gas, the problem of predicting the critical mass
flow can be treated analytically to some degree, if the flow is
kept in the near-equilibrium at least up to the critical point,
Of course the solution of the first approximation is the equi-
librium one. Here only the calculated result is presented in

Fig., 8, where the subscript 2 denotes the second approximation,
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Characteristic values of N, gas which was used in this numerical

calculation are listed in Table 2,

4, 3 Critical Mass Flows of Singly Ionizing Monatomic Gas

If q is taken to be ¢, next relations are yielded

o= 2ho(1—7¢) -2
(1+A I(n!2+3+2 a+b¢)] ’
I 2ho- “:’Z?)__
ar=— a-+bg (137)
(M!1+3+2 1+¢ )

a+b¢c
(1 =np)- (34277 ) )

) a+ b, a+bp. (1+¢.) (2—o)
(5+2 e )(M +asalp )

=

ae

[Hufm(f‘ g+ 1.)][(”‘6‘”( Sar) ¢Z(zl @f; ]

Foverscesmn(oF) oo E) S

-

where the parameter 2 is defined by

e (138)

and the equations of energy and momentum are expressed in the

forms,
ol “_”@[Hzﬁfj)] , (139)
7 (:+¢)(5+2“}—J:L%‘5> : (M,=+3+z%‘f—)
M;- (3+2i’1~f-’£—5- i\ @A
(M:-2+3+2a11f> (Mf ) dx T1rd  d
afb"‘f‘) (147) ‘((f)ﬂ?))'z 2 My ((1b+¢))=
2 1+¢ (1+¢)(1—7¢) (5+2a14+!:ﬂ) (+2"11‘!f (M2+3_L2a-:_b;>
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. 4 b ) (1 3¢)
[ (u +1F244jf)+zi“(1+;yv ] (2 T) _dg (140)

, Ju (1+¢) [ dx "
TRRICETNY

+

The last equation is formally intearated to give

F('M ‘j) ";——~F:a expG: » (141)
where
: M
Fi( My, ¢)=- a—J—bfsz‘) (2t tatog)04g) )
( M2 +3+2° )
N 1T¢

N (124 a+bdphl (1+¢gh) Y 1
F,az{‘\f%u (1 =) (3425100 ) )

1+ ¢
(3 ) (142)
Gz'{ 1 ( a+bg¢
! Ln T-(0+8)  (1+4) ”+¢,)z“‘ i +¢)
, (b—a)
3aregN| a4 Pagey 1 (b—a)
+ + i e eI { N S, = 2 ) S —
(z 1+.d) (14+¢)(1—7¢) (5|_7alb¢_ Ty 1—5¢ (1+¢)2}d¢'
T4

At the first glance of these equations, it is easily under-
stood that the results obtained previously are also valid in
this case, So the final results cnly are presented here., The

critical mass flows of the three limiting flows are

(3 2 “"i-bfﬁn)-tsmtubw:(naun
+2-——

Fi(1, ) Sy oAz 14
my= '——F:J';—- =+"2hy - po- (1 —7¢h0)’ {4+2 a—l—bgﬁu) ErTEToTaT ( 143)
1+
z.i .(_1'_’??':’”)_(3+2 aﬂ'ffbgif*.) ¥
A 2hsCi ‘;f'e# 7 149 1+ Pex ;
"= el b al by @+ bex
E A(se2- 3100 (Mies42 e (144)
f -+ b, > e
(5422100 (Mh*+3+2“+bf*)
) ( 1- ﬁ".ﬁw \‘IHZE‘(p _ % ( 1+ ) ) | 4+ 0.y 1+ (e s
A b ’ l 2 \1~704 a+bges | [
e g ER 4 \ I 2
%M,*+3+1 e ) (3+ ) '
(34_2 ‘Ili-_bgén_\ 124 =i i kigh)
X + iy -
S e A, - -exp(—Grery)
ny=~2hy * Bo(l-700} (24 A@bg )i 4o ) )
(4+sz'11;’;‘_“ (145)
gy
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where

. 1.3
msw[ <}_+5+b> (6—a)
Gy pr== T e o1 A Y a 2 at+bdey
wrr={ Ty gy (Mt 342 mﬁ.f)
2.7&‘])
_;_(.3_4“‘1‘{""4) (1+7) U+¢) [ 1 5 (b=a) ]#
20 40 /) (A=) o (atbber) | 2 1—nfey (146 [0
(l+¢tf)
(146)
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Ly
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23

Fig, 9 Critical mass flows of a singly ionizing

monatomic gas,
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and it can be obtained

a+bpes
g i
_me _ Fi(Mjea,$a) _ 1+ e
B 4
S min. Fi(1, $er) M?J""3+2i;_'!_‘::bﬂ

From these results it can

finally be concluded that

me < Mey = my .

(148)
Calculated values of ratios
me/mf and mef/mf are shown

in Figs. 9 and 10,respectively,

2+ (asbd M (1,

'Mje|<l . (147}

1=1.683X10°°K
i=1.25
a=0.35
h=—0.20
C;=1.989% 10~ k-mol/m?

} 4000°K < T« 40000° K

Table 3 Characteristic values

1
of N gas.,

1.00 |
N
? -1.0
‘po =0-6
iy Pey= 0-553
| -
EIE 095 }
Mot . 0.9113
i il
-0.9017
0.90 - <R900_ |
0 02 0-4 0-6 0.8 1-0
( ‘PD_ ¢f )
Po - Pet

Fig., 10 Critical mass flow of an equilibrium-frozen

flow of a singly ionizing monatomic gas.

Because of the uncertainty of the rate equations which

govern the ionization and neutralization, the critical mass

flow for the nearly equilibrium flow is not obtained.

5, Concluding Remarks

Critical mass flows have been obtained numerically and in

part analytically for the flows of three kind of gases under a
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Fig, 11 Frozen critical mass flows of a vibrating diatomic
-gas, an ideal dissociating diatomic gas and a

singly ionizing monatomic gas,.
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wide range of reservoir conditions. For frozen flows, the cri-
tical mass flows of these gases are shown in Fig. 11.

For the vibrating diatomic gas, the values of ratio me/mf
are in a range from 1,0 to 0,9706, for the ideal dissociating
diatomic gas from 1,0 to about 0,97, and for the singly ioniz-
ing monatomic gas from 1.0 to about 0,90,

It must be emphasized that it is very difficult to treat
numerically the nearly equilibrium flow, because the numerical
integration of the rate equation together with the flow ones by
the digital electric computer requires the more consuming time
for the nearer equilibrium flow, Therefore the analytical
treatment of nearly equilibrium flows is very important,

There is one thing which is definitely unfavourable for
the approximate analysis of the nozzle flow problem by the E-F
flow model, in connection with the definitions of the speed of
sound in nonequilibrium relaxing gases., It has already been
argued that for an equilibrium flow the reference velocity is
the equilibrium speed of sound and the critical point of flow
equations is located at the throat where Me= 1, and that for a
frozen flow the former is the frozen speed of sound and the
latter is located at the throat where Mf= 1. The value Mfe of
M. in the equilibrium limit does not coincide with M_, and
furthermore the inequality Me> Mfe is generally satisfied in the
relaxing gas. If the transition from an equilibrium flow to a
frozen one occurs at some point in the region where Me>-1 and
Mfe< 1, then the flow which has already passed through the throa
where Me= 1 must again pass through it where Mf= 1, which is
clearly a contradiction, Therefore it can reasonably be conclud

that the E-F flow approximation cannot be applied very well to

44



such a case in which the transition from the equilibrium to the
frozen takes placeat & in the range of ﬁét‘:é < 4ft for a di-
atomic gas with the vibrational energy mode only, and at o in
the range of aé*<£ye<:&é* for an ideal dissociating diatomic gas,
and at qbe in the range of Fbe*(?e‘?‘s;a* for a singly ionizing
monatomic gas, where a;* and ;Z' are, respectively, the value of

o/ and ¢b at the point where M

e fe 1.

Furthermore it must be noticed that the curve for the
solution in which the transition from the equilibrium to the
frozen occurs at & < ¢, differs in its pattern from that in
which the transition occurs at & > ¢ét’ This is wholly due to

the exictence of two reference speeds &é and g_ defined quite

f

differently, Fig. 12 shows qualitatively these situations for

a vibrationally relaxing diatomic gas., The freezing point in a

the nozzle axis

Fig. 12 Distributions of Mf and Me along

in a equilibrium-frozen flow.
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nozzle is denoted by Xey and the shaded regions are the broken-

down ones of validity of the E-F flow approximation. The quanti-

i respectively, the equilibrium
ties Meef’ Mfef and Mfeef denote, resp Vv, q
Mach number in the equilibrium branch, the frozen Mach number in
the frozen branch, and the frozen Mach number in the equilibrium

branch of the E=F flow,
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CHAPTER ITI NONEQUILIRRIUM FLOWS OF VIBRATIONALLY RELAXING

DIATOMIC GASES

i [ Introductory Remarks

One of the simplest cases of nonequilibrium phenomena in
nozzle flows of real gases is the vibrational relaxation of a
molecule, However even for this relaxation phenomenon, the ana-
lytical treatment of nozzle flow problems is almost impossible
except in a few special casesf) Though a few discussions about
its reasons are already presented in the previous chapter, the
closer invesfigation makes it clear that another one of the
most important reasons exists in the great width of range of
variation of the thermodynamic state of a gas in a nozzle.

In a flow through a nozzle, three flow regions, the nearly
equilibrium region, nearly frozen one and transition one from
the former to the latter, can in general be found, Furthermore
the boundaries between these regions are found to be somewhat
sharp and the width of the transition region is, in almost all
cases considered previously, by far smaller than those of others,
To such a flow, so called Bray’s E-F flow approximation can
often be made with sufficient reasonableness and accuracy,

Complete analytical solutions can be obtained only for the
equilibrium, frozen and E-F limiting flows. Notwithstanding for

such gases as the N, gas and the 02 gas considered here, the fact

2
that the energy stored in the vibrational mode is much smaller
than the total enthalpy of the gas, yields us ways for approaches
to the analytical treatment of nonequilibrium nozzle flows.,

Such an idea has already been applied to the problem, for ex-

ample in Ref. 7 where an iterative method is used on the basis
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of the completely frozen flow. Conversely, our analysis is done
by using an approximate rate equation on the basis of the com-
pletely equilibrium flow., It will be made clear that the latter
treatment is far superior to the former in the theoretical
reasonableness and accuracy. The greatest merit of our method
investigated in this chapter exists in the possibility of solv-
ing the rate equation and the corresponding flow equations
separately, Furthermore our method in combination with a mathe-
matical technique of the steepest descent method can yield a
very powerful way for the analysis of whole flow fields in non-
equilibrium nozzie flows,

A problem of determining the entropy rise due to the non-
equilibrium process in a nozzle, which has scarcely been studied
in earlier papers, is also investigated.

Calculations of distributions of the vibrational temper-
ature and entropy along the nozzle axis are carried out for the
N2 and 02 gases by the electric digital computer HITAC 5020 at
the computing center in Kyoto Univ,,

Finally discussions on the validity and accuracy of the equi-
librium-throat-approximation method, which has been widely used

in analysing nonequilibrium nozzle flows, are given,

2, Analytical Solutions

Notations used in this chapter are the same ones that was
used in CHAPTER I, unless otherwise defined. Considering the
nozzle geometry given by A = sz, we again get the basic equations
Egs. (82-86) in the previous chapter governing a nonequilibrium

flow of a vibrationally relaxing diatomic gas through a nozzle,
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It must be noticed that in this system of equations the inde-
pendent variable is not x but €, The characteristic values used
in this chapter are also given in Table 1 in Ch, 1 for the Nz

and 02 gases,

2, 1 Solutions of Equilibrium, Frozen and Equilibrium-Frozen
Flows .

In the rate equation, letting

=0, (1)

yields an equilibrium relation,

er=ere=e of &r=E&y.=%&. (2)

Using this equilibrium relation, the equation of momentum can

easily be integrated to give

he(£)=

125 [7 e _expé ex( &o )expE—l
216 V 10 & exp §o—1 expfo—1/ expé

S )su_(_l_._l_ 1 =1
cxp( expé—1 ¢ @ 2& exp&—l) : (3)

On the contrary, letting

I=co, (4)
in the rate equation, yields

%—:‘0 or er=ery=en O EV=$VI='SO, (5)

Using this, the equation of momentum can also be integrated to

give

_125 i,,L, m(l_ _1)—1!2
MEO=6 Vi e P (o7 2e) - (6)
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An upstream equilibrium branch and a downstream frozen one
are joined together at the freezing point to yield the E-F flow,

and then the solution of this flow is given by

EVef=¢,

} for  £=&, | (7)
h.;(e):(‘f’)h,(m ,

¢

and

1

- e L e
exp&rr—1

f:.f(E)=L25 Hey_ XPRy exp( £ )

216 & exp&o—1 expéo—1 for E>Evi '
exp&yr—1 ( Evy ) 1 1 b e
=t exp( —— > ¥ _;3:5!2 e - S .
exp vy expérs—1 ¢ explrs—1 25) 3 ( B )
where éVf denotes a frozen vibrational temperature,

The numerical results obtained by using the analytical
solutions of these three limiting flows are shown in Figs. 1
and 2, These results well illustrate appreciable effects of

the molecular vibration and the freezing of its relaxation on

30 7
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Fig. 1 Distributions of area ratios h_(&) and h.(J).
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Fig. 2 Distributions of area ratios he(¢), hf(ﬁ)

and hef{é).

the flow fields, Obviously, however, for values of 50 greater
than or equal to about 4, the real gas effects on the flow fields
are almost negligibly small, It is quite easy but very signifi-
cant to notice that the effects on a flow field of the part of
the vibrational energy which has been released into the flow-
field and of the freezing of the vibrational relaxation become
more and more significant, though quite slowly, as the flow pro-
ceeds more and more downstream through a nozzle.

Fig. 2 shows the result of a sample calculation of hef(é)
in which a condition éVf‘:éét is satisfied. It must be noticed

that in this case even the equilibrium part of the E=F flow
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does never coincide with the corresponding part of the completely
equilibrium flow under the same reservoir conditions. We can
easily find that the reason exists in the discrepancy in the
values of m, and moge
2. 2 Solutions of Nonequilibrium Flows: Approximate Rate Equation
For the convenience of the later analysis, it may be assumed
without loss of generality that the flow starts from the equ-
librium reservoir conditions, passes through a sonic point near
the throat, and expands into vacuum infinitely downstream,
Then TT in the rate equation Eq. (84) in Ch, 1 is zero at the
reservoir and increase monotonically to infinity as the flow

proceeds downstream, so that we can put

0<fl<oo.

The flow field splits into three regions corresponding to the

magnitude of the quantity TT:

(i) mear equilibrium region e, =T, for <t (9)
(ii) transition region —EVS;E=O(1) ) for m=0(1), (10)
1 de
(iii) near frozen region ; ¥ ng— £1, for >»1. ( 11 )

As was already pointed out, each boundary between the succesive
regions can be found to be somewhat sharp.

It should be naturally expected that there can be some way
for predicting beforehand, even thouagh roughly, the position and
width of each region in a nozzle. For this purpose, it is quite
convenient to introduce Bray'’s nonequilibrium parameter Eq. (100)

in Ch. 1. Using the fourth equation of Eqs. (86) in Ch., 1, this
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can be written down as

g, Ldwe _ _expt o 864 [5 Ve VE .,
’ df  exp&—1 7 125 7 plem " e

2 1 7 1 2
Ew-rl(ﬂ) —IgSe-s (__ £ 7) () —17'12
exp&—1 exp (= 16°%) P 28 expé—1 [A(6)—1]

. i(l.ﬁ!, 1 >+, Eexpé [E(}"vl_ 1 >_l ‘ (12)
2\¢ 58 expi—1/ (expé-—1)? ¢ 26 exp&—1 2]‘

It can be seen from the above relation that for values of &

greater than or at least equal tc about unity,
O(P)=0(IL) . (13)

For flows in which the vibrational relaxation takes place most
predominantly among all possible relaxation phenomena, the values
of & are at least about unity even at the reservoir, and then the
relation Eg. (13) is valid in almost all flows considered, The
condition Eq, (9) specifying the nearly equilibrium region can
therefore be rewritten in terms of Pe instead of TT. Similarlﬁ

the transition region can be defined interms of Pe by

P.=0(1), (14)
which is directly derived from Eq. (13) under an assumption

poap or Jesil, in the transition region, (15)

This assumption can not only be seen quite plausible from Egs.
(9) and (10) but also actually be verified from the numerical
results a posteriori, Moreover this is, in general, the case
for almost all flows ever considered in many previous papers.
Now it is very useful and of importance for our purpose to
know the behaviour of |T as precisely as possible, However it is
known only after determining the flow field. Nevertheless we
can estimate it to some degree by invesigating the behaviours

of T in the frozen, equilibrium and equilibrium-frozen flow
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limits. We can easily obtain

1 7 _ \5/i_21 gexpé [.(1_T_ _l]
lh:#[kﬂE%*]]m e 2 (w 5¢ *kapewlﬁl°(w 2% s) 24, (16)
e 'L h(e)—1 1.7 5(3_2_%)

» 28 2\p 5S¢
ALy _( _pte {kdwr4]w G E
. (m;) a(g)—1 ] " RS (17)

1 7\ E(LJLS) 4 fexpl [ ( ) J
=r ( )[fw(-s)—l]'ﬂ g 26 7Y [2\p st (exp&—1)? ,
per /"L he(8)—1 1_7_, é(___‘”O '
p 28 ¥ S5E
for  £=2&;.

It must be noticed that the distributions OfTTé»TTf and]Tef are
already known before the system of equations of the real non-

equilibrium flow is solved.

From the above relations, it can

be seen that
Iy <l s < 1T,

Furthermore from the fact that the E-F flow can usually be a

very good approximation to the corresponding real necnequilibri-

um flow, it may reasonably be guessed that

= Hff,
so that

m<n<i. , (18)

This will also be confirmed from the numerical results for flows

considered here. The distributions of Pe and P_ are shown in

T
Fig. 3, where the latter is defined by

1 de
ﬁ=—m-:&w

(19)

Perhaps the maximum effect of the internal energy released into

the flow on

ditions may

the rate equation under the fixed reservoir con-

be estimated from Fig, 3 by comparing the curves for
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Fig., 3 Distributions of P and Pf.

the two limiting cases with each other. The most important infor-
mations which can be drawn from these results are described in
terms of mathematical expressions:

. dil
(i) E > I or at least i;,g = 0(1) , (20)

@ [H(-5)

throughout a nozzle, Since

<l (21)

1.
I‘HVEI«]’ for g1,

we can get, considering the above relations,

[l—-%l(ﬂ , for <1, or at most H=0(1), (22)
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Here the analyses will be carried out only for the flows which
satisfies the conditions Egqs., (20 - 22), It must, however, be

emphasized that for flows of such gases as N2 and O these are

2!
in almost all cases ever considered well satisfied,

The rate equation may be written in the form

& :exp(—jér-ﬁ‘ Ln.;i exp(Lr %) ds (23)

where &, is a reference value of & greater than éo, Integrating

it by parts yields

wmon(=f TN eew (0, 2L, oo (0, )l

Ulsing the boundary condition TT = 0 at é = 50, we can rewrite it

as follows
e =c+ dev (24)

where
dey= —exp(—L f;:* . Lﬂ% exp(Lr %—>d5= mi:; dey m (25)

and where

¢
= —@m(n, £)1dn,
Aey !égmexp[ (?? (26)

]
P (7, E)-m’?‘l’gﬂn (27)

and 7 is a dummy variable. When & is fixed, the functions 3,

(2, &) take their minimum values for the values of » which satis-

fy

1 .
H(?;)—m.m—l,z,s . (28)

It can easily be seen that the term;ﬂgvl is the largest one in

the series Eq. (25). Moreover, seeing Eqs., (26) and (27), we
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can find that the region of » satisfying

mn=0o(1) (29)

makes a principal contribution to the integral A&Vl. Thus, the
contribution to Acvl from the other part of integral over 7 out-
side this small region may be small and insignificant. Similarly
the contribution to.AEVi (i=2, 3, 4,...) from the part of integral
over 7 outside the region satisfying ill(£) = O(1l) is very small.

If, therefore, we consider an integral defined by

A€y=—exp<—5er—‘;~i) . L;Z—Zexp([fr t;i)d-. , (30)

this can be used as a good approximation tojdfv, that is

Aey = Ay . (31)

This is also justified by the condition Eq. (22). The greater
becomes the value of & which satisfies T7(§) = 1 (or'ﬂ;(ﬁ) =1),
the closer the integral Eb approaches £ .

We can easily find that calculating Eb is strictly equi-

valent to solving the ordinary differential equation

. dEV+EV=E (32)

11,
e dE

with the boundary value E§= 60 at a reservoir, which is clearly
linear and decoupled from the remaining flow equations. The

solution can be represented in the form

a=s+ i, (33)

Then the approximate rate equation is transformed into the form
I - 4 (34)

I~

Since 7T, is a known function of &y dE, or Eb can be calculated
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oniy by the integration procedure. By using the solution JEV
or Eg, the corresponding nozzle area ratio h(&) and frozen Mach

number M (cS) are given, respectively, by
wey=. ] 3 M explo ( Eu,__)
hm_\/‘fhusv o expEa—1  T\expdo—1

() (TR oxn(— g ey oo [ 8 g vt | (35)

3 g
M= (= e s Ve
i (? ) “05 : (36)
where fl is the critical mass flow corresponding to the approxi=-

mate distribution of vibrational energy EV' Since'ﬁ(¢£)= 1l at

the throat, the critical mass flow m is obtained from Eq. (35)

as follows

m=v/Zhgp. L b=l ( ) 1. _ﬁ“ H L
&n exp <o CXp L.l: -1 2 =
SV expé z
\ E;) exp&i—1 p(c\cp _) Ap( (JWMG) (37)

where ¢t is determined from the regularity condition of the flow

equations at the throat,

(T_L Elexpé, ]
Se_T, & 11 (exp&,—1)2

+& - dive

?D- 2 expff*' 2 [5+77=I2\R€f__
2 (exp&.—l)z]
wal 7 ey, exps,
| (= —4 e
_ {c [(‘:ﬂ exp-;,ﬂl )5 J & dem}[[!ﬂ (exp & —1)2 ] (38)

3 £l exp e

[ * (ch=ﬁ1)z]
By using Eq. (37), M can be calculated for all possible nonequi-
librium flows. Since the corresponding equation of entropy is

written in the form,

W

g ‘__ug -
R 8= (85— S0)

sl i exnsv.+_ & J_[ (jaceé__) B W P
l Exl’w—l exp sy —1 In exp§—1 +cxpE—l Lngdgdsrdé (39)
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with which Eqs. (35) and (37) can be rewritten as follows, re-

spectively,
R S
F (B ool ol ] m)
v =it on - G- smrsede 1]
x;xe;gfv_:] exp(ex;é:—l \)exp(ﬂ%idg')' (41)

The last equation indicates clearly that the increase in entropy
decreases the critical mass flow, which has already been pointed
out.

Especially for a nearly equilibrium flow, repeating the

integration of A@b by parts yields an asymptotic expansion

foy=— 3 (=1 '(ILD)"-¢
a=1

+(_1)n—1exp(_Lr%E)Lo[-é:(H:D)h'.s]exp(jer%e:)dE , (42)
where
d
P
(43)

({L.D)y"=1I.D-(II.D)"! 5

and n is a positive integer, TIf there is an integer N greater

than or equal to two satisfying the condition
(I.D)Y" e (1.D) ¢ , (44)
then for such an integer N, Afb can be approximated by
N
Aoy = — Z (—1)" V-([I.D)"-¢ N (45)
=1
in the sense of the asymptotic approximation. Using this ap-
proximation, we can represent 45(4&) and h(&) in the forms, re-

spectively,
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exp &y & '( up{) & ] (ﬂde).
= £ = = ||IT= ] + = + €
In(ﬁXpef‘r—l)+ expfvwl] ln expé—1/ expé—1 j dé

/5. m&'? expé 3
Mgy~ ., M5e” expén ( Lo )
L They  po  exp&—1 . exp &o—1

(46)

r\;? (&) exii;“”(_'é?i—ﬂe‘pl.j *de (” d )dH ] L%

In the nearly equilibrium region, the integral terms on the
right hand side of Eq. (46) and in the square bracket in Egq. (47
are sufficiently small and negligible within an acceptable error

In such a case, of course, gﬁ} can be approximated by

OpE i (48)

Soy ~— II.De=- :
e e (exp & 1)"’ exps—1

2. 3 Solutions of Nonequilibrium Flows: The Saddle Point
Method
When the value of & which satisfie517;= 1 is much greater
than unity,,dfv can easily be evaluated by the saddle point

method. Denoting the values of & which satisfy the conditions

me)=2, m=1,2, 3 ,
m

(49)
by & ., we can introduce three new quantities by
= __’;_ f—_-‘l’:_
r“m 5!‘)}! gni &IIJ!
; (50)
’ ’ F; __(bm(-";": E) - 4 L - drr\”’ "
D, (70’y &m )= -JI'HE-rm—- = T +I'ﬁm' )‘HI'I (7 IJ
where
11 (ns')=11(n) - (51)
Tt is easy to prove that
Erm an.’
@, m s Sm Jmin- _(Dm 1 E S
(in's ') (L &=+ " o (52)

with é; fixed, so that the asymptotic expansion ofdﬁng can be
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obtained by the saddle point method as

il 3 rt+5)
devm~Zm eXP[ Zp-Du’ (I & )]’\/ & (ﬂlim) - _'2_ ¢ 4 : (53)
Zn =0\ ao f'(v];\ Zn /)’
2)
where
Zm=m6rm
a2m _I_S AEm 3 A
dom A,‘,’,,‘}' aam-—szg':-“z‘ A;: F) (54)
L I - . ,
and where
1 dlil.
A m— Fm *
=gk (de )e-;,m’
1 2 dzﬂc 2 dll, e
A== rm 3 e f =
"6 {'"'E dgt )e=£m. 27 [( dg )szem]} (55)

1 /AN a‘IL) _dﬂn,) +633[(Lﬁe) ]’}
e 24{m5’”(d53 ).s =trm 6m2£,,,.( d€ Ject,m \ dE* Ji=t,n W a8 Je=trn ”

Especially in the case of &, >1, AEQ is satisfactorily ap=-

proximated by

5 dé
dsy—-deri~|: dH. ] exp( —&n— ~.‘|}£) , (56)

f Erl

and then infinitely downstream

JEV(MJ”I_T{;EW]UE"‘F(_E”_Szl% . (57)
(JE )e o

Obviously the accuracy of this solution will closely be con-
cerned with the behaviour of'né near the point where ﬂ;= 1, and

with the magnitude of Z = éfl'
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3s Numerical Solutions

With the intension of estimating the accuracy and reason-
ableness of our results obtained in the previous section, exact
reference solutions are needed, and so the equilibrium-throat-

approximation method is applied.

3., 1 Solutions by the Equilibrium-Throat=-Approximation Method

This method can be used only for flows which are kept near=-
ly equiliﬁrium at least up to the critical point near the geo-
metric throat. In this method, the flows are assumed to be com-
pletely equilibrium up to points somewhat downstream of the
critical points, from which the flows are analysed numerically
as nconequilibrium flows,

Though this method is in many cases very convenient and
powerful for the numerical analysis of nozzle flow problems of
real gases, there is only one disadvantage in it, It is the
fact that there is no strict criterion for determining the start-
ing points of the downstream nonequilibrium branches. Namely
there is only one condition that must be satisfied by these

starting points, which is
<1, or P. €1, (58)

So far it has inevitably led to the result that there can always
be some ambiguity and unreliability about the accuracy of the
numerical results obtained by this method.

From the foregoing, it will be natural to consider that
some estimation of accuracy and validity of this method is
urgently needed. At first, for this purpose, our calculations
are carried out for several starting points of the nonequilibrium

branches satisfying Eq. (58) under fixed reservoir conditions
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and for a fixed nozzle shape and size, and the results are com-

pared with each other.

Three numerical solutions are illustrated in Fig, 4, In

these calculations, the nonequilibrium branchese start from the

points where T, are, respectively, 0,00620, 0,02918 and 0,09696,

0.6
Te=0-00620 1
------ ¢ tEpETy
—— G Tk
—— &y €% TR
= &y cdlculated by equilibrium-throat-
Y 0.5 _ approximation method
F%{ Ev
X
2
n
W) N2
0.4
&, 087278
éet=1-0
K 102 m2/kg
fo
0.3
1.0

&

Fig. 4 Distributions of vibrational enerqgy calculated by

several methods,

The first two curves rapidly approach with each other as soon as
they start from their corresponding starting points, and furthere=-

more their final values of gv(oO) almost coincide. The last

curve, however, does not converge to the others, These clearly

indicate that in order to assert that the results calculated by
the equilibrium-throat-approximation method is sufficiently accu=-
rate and can be taken as the exact reference solutions, some
additional condition must be imposed on the condition Eq. (58).

From the numerical results, we can draw an empirical criterion

63



for the validity of this method, which can be said as follows:
The magnitude of M, at the starting point of a nonequilibrium

branch must be at most 0(10-2) for N, and 02 gases, By using

2
the solutions satisfying this criterion as the reference ones,

we can estimate the validity and the accuracy of the analytical
solutions obtained in the previous section, The possible regions

of the equilibrium-throat-approximation method are shown in Fig.

5 for reservoir conditions.,

possible region
) . of equilibrium-throat-
7,77, O2 approximation

164 ’ method KS%& \
10" 10° 10
¢o

Fia, 5 Possible regions of the equilibrium-throat-approxi-

mation method for N? and O2 gases.

Distributions of &y are shown in Figs., 6 and 7 under a wide
variety of boundary conditions. Only those for fE/Fb= 103 and
102 are the solutions of approximate rate equation, and the

others are those calculated by the equilibrium-throat-approxi-

mation method. On each curve, the location of the point where
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&,-0.87278

15

Fig. & Distributions of EV for various values of ratio

JE[Fb and a fixed reservoir temperature,

M= 1l is indicated, which is found to be located about at the
center of the transition region.

Also distributions of h(¢&) and TI(4) calculated by the equi-
librium-throat-approximation method are shown in Fig. 8 being
compared with, respectively, he(ﬁ) and hf(¢), and T%(f} and e
(&), These show well that our approach is quite reasonable and

accurate. Because of the artificially imposed boundary values
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of ¢ and fv at the starting point of the nonequilibrium branch,
our results indicate a contradictory tendency to our theoretical
estimations only near the starting point of the nonequilibrium

branch,

100 T T

Fig, 7 Distributions of ¢y for various values of ratio

JK{Pb and a fixed reservoir temperature.
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Fig., 8 Distributions of ratioslT/T%, ﬂ;/ﬂ}, h/h

and he/hf.

3. 2 Solutions Far Downstream of the Throat
Asymptotic Behaviours of nonequilibrium flows far downstream

of the throat are investigated. Letting

Epl, Mryl, (59)

in Egs. (82) and (86) in ch. I and Egs. (3), (6), (8), (12), (16),
and (17), yields

125 /7 p. exp o &o ‘
he :_f“_ 50 —=0 N2, gsiz
)= 16V 10" &0 Texp £o—T e’(p( a1 )‘P s (60)
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L. et S [___§n__
) 1 exp &o expbo—1 |
ha($) e ) (l o o ):,fz =const. , (61 )
exp Ep—1

expérs—1 ( S )
SR~ L ex|
hep(5) H(#_:;:) exp vy & \ expéys—

he(g) N\ g (1_ sv_#)""
exp ry—1

expér—1 . &v W2 )
JIELZ(-E_> cxpEv exp( expi,-'yfl+ R , (63)

he(€) e (1 o )"”
exp Er—1

(62)

=const. ,

.
o 153‘2/882520'W$'« & « BN . exp (—10°65) , (64)
! 0
Iy e ( [ i expfufl)'fz 1 65
= a2 e | 1 — - o =
A # exp Eu—l) ( exp £o exp( 2 exPEn— ) OIS (63)

ﬂr{ \/ ( _ e ‘)3..’4 exp &ry—1\12 1 &
= P o 27 et R - fi = 66
frey exp &yr—1 ( exp £y ) . ( 2 expérs—1 ) SR (69)

R/ ,&( e )’f*(expév—l)'ﬂ 1w
. ‘/# I exp&y—1 exp &v e lexpEy—l 2R AS) (67)

Especially the values of ratios

(o) 1Iy()
he(eo) ()’

are of importance in estimating the effects of molecular vib-
ration on the limiting behaviours of a flow and the relaxation
phenomenon itself. From Eqs, (63) and (67), it can well be seen
that the increase in entropy due to the nonequilibrium process
plays important roles in analyses of nonequilibrium nozzle flows.
The increase in entropy due to the vibrational relaxation is not
large in our sample calculations., It is significant, however,

to notice that wheather an real nonequilibrium flow can well be
approximated by the E-F flow or not depends strongly upon the

behaviour of entropy as €@ »
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Now for a nonequilibrium flow, the rate equation may be

rewritten in a form

d gop—_ & Moy

de " lexpe—1 I * (68)

For sufficiently large value of &, it can be approximated by

d Y =
Edf&r'—k 'Ij”<D. (69)

Furthermore the followngs hold

o d
Aey=0 and 73 der =0, (70)

at & = {,. By virtue of Eq. (69), these mean that gy, has the

maximum yalue for the value of & satisfying

Moy expf
I (exp&—1)*" (71)

From these considerations, it can be concluded that in general

__expf&
dsym’g[ﬂ(expf—]}z_ - (72)

for every flow, and similarly

1
. expg b _ P, l
dw"'"é[m (exp &—1)* ]m [expf—l,mus- (73)

Since the second term or the last in Eq. (73) is easily calcu=-
lated in advance, we can obtain some significant informations
on the features of distribution of‘4€V and then g€, from these
in advance,

Again for extremely large value of &, we have
JE;JKSKD(_Iié), (74)

Asocjs-—s‘f ds . (75)
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According to the limiting values of g, and JS which are re=-
presented by, respectively,‘afv(cn) and 4S(c0 ), four types of
flow patterns can be identified at least theoretically:

(i) dev (co)=finite, ‘ -
48(c0) =finite, frozen-isentropic flow

(ii) dev(oo)=finite, ) )
frozen-nonisentropic

48(e0) =00,
(iii) dev(e0)=0, S i ic A
A5(oo) =finite, sellClimiting-isentropie. Tow

(iv) dev(o0)=0,

self-limiting-nonisentropic flow
45(eo) =00,

Which flow can occur in a nozzle entirely depends upon the values
of integrals Egs. (74) and (75). In our sample calculations,
only the frozen-isentropic flow is possible at infinitely down-
stream, which can also be verified analytically from the from of

T,

3. 3 The Maximum Entropy Flows

Some discussions on the entropy rise in nonequilibrium flows
are given. As has already been mentioned, the entropy rise
vanishes both in the equilibrium limit and the frozen one,
Since in the limit fﬁ/fbe»OOthe frozen flow is given while in
the limit fﬁ/ﬁb%ﬁ 0 the equilibrium flow is given, the flow of
the maximum entropy rise can occur for some finite value of Ji/fé
when the value of éb is fixed. To know the magnitude of the
entropy rise is very significant for the theoretical analysis of
nonequilibrium nozzle flows, For instance, it gives an estimation
of the validity of the E-F flow approximation to a nonequilibrium

flow.
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4, Concluding Remarks

A distribution of EV’ which is calculated from the approx=-

imate rate equation Eq. (32), is also shown in Fig, 4. The most
important conclusion that can be drawn from it is that the so-
lution of the approximate rate equation Eq, (32) is quite accu-
rate and can be taken almost as an exact solution, It indicates
that our approximation to the rate equation based upon the theo-
retical inspections may be judged to be quite reasonable and
accurate, Furthermore it must be emphasized that the greatest
merit expected by using this approximate rate equation is to be
able to exclude out the difficulties in connection with the
singularity of the flow equations at the sonic point, which is
usually unavoidable in nonequilibrium nozzle flow problems.

The distributions of entropy along the nozzle axis are shown
in Fig. 9. Detailed discussions of the entropy rise are also

given in Chs. III and IV.

656 | I o
N2 %=m'ﬁh9 TeaT]
5x10 ) 085m
- £,-0.87278
10 2x102 0.0444
o} 3 =
0.04— 19 5 %102 0.0358
W)
g
%“: 103
O'OEF_ 10_1
' y WoAS(®)=0.0084
. : 0 il
0] 1 2 3 4 5

Fig. 9 Distributions of entropy.



The solutions of the first, second and third approximations
to EV are illustrated in Fig, 4, These are good approximations
at least in the nearly equilibrium region, An extremely nearly
equilibrium region is very difficult and laborious to analyse,
because the closer the flow is to equilibrium, the more time it
takes to compute the flow field, The approximate solutions ob-

tained here are therefore of much value.,

10° i I 104
N
&,-0.87278
sl —ho?
(3]
£
~
(=)
>
Yg 1oL o
e -
[eX o]}
g e
I
10'1_ ‘IO1
10+ 10°
-3 <1
10 10
0 5 10 15

&

Fig. 10 Distributions of ﬂ'e(dé/di) and (1/77;)(drré/d"3).
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Fig., 11 Distributions of vibrational energy.



In order to confirm the validity of our assumptions made
in deriving the approximate rate equation, distributions of
d(1nTy)/ds and'ﬁ;(dﬁ/d&} are presented in Fig, 10, the latter
can also be used for calculating Bray’s nonequilibrium parameter
and the first approximate solution to Eye

Solutions by the saddle-point method illustrated in Fig, 11
show the satisfactory accuracy, which has been expected theo-

retically at least for large value of 60.
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CHAPTER TIII ROLES OF ENTROPY

1. Introductory Remarks

In nonequilibrium nozzle flows of vibrationally relaxing
or chemically reacting gases, the nonequilibrium processes in-
evitably increase the entropy of gases in nozzles, This increased
entropy affects not only flowfields but also relaxation phenomena
themselves. It is regretful that in spite of the large number
of researchers, few good studies on this problem have been done
because of the difficulties in analysing theoretically these

19)20) 21)

flowfields. For example in Ref, 19, Conner, L., N, and Erickson,
W. D. studied the entropy production in the vibrational-nonequi-
librium nozzle flows, They calculated it for convenient evalu-
ation of the total pressure of nonequilibrium flows. However,
their approach is completely numerical and then it cannot suf-
ficiently clarify and appreciate the effect of entropy production
on the flow fields and the relaxation phenomenon itself, There
are obviously two kinds of nonequilibrium effect on the flow
parameters in a nozzle, one of which is due to the entropy pro-
duction and another of which is due to the departure from the
thermo-chemical equilibrium. Though Conner and Erickson do not
distinguish these two effects, it is quite necessary and sig=
nificant to consider seperately these two effects. In this
chapter, our efforts are mainly devoted to investigation of the
roles of entropy in the analyses of nonequilibrium nozzle flows,
First the maximum and minimum critical mass flows for vibration-
ally relaxing diatomic gases under the fixed reservoir conditions
are obtained. Next a new criterion for the validity of the equi~

librium-frozen flow approximation is proposed, Finally the
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effects due to increasing in entropy on the asymptotic behaviours
of flows far downstream of the throat are examined. All these
analyses are based upon the new system of basic equations which

has been derived by the author.

2. Entropy and Critical Mass Flows

It has already been pointed out that the difficulty in de-
termining critical mass flows is one of the most significant
reasons which complicate greatly the analyses of nonequilibrium
nozzle flows, Nevertheless, there are only a few theoretical
works of this problenhs In practice, this difficulty has usually
been overcomed purely numerically by using the high speed electric
digital computer. In almost all cases, obtained results have
indicated that the critical mass flows of general nonequilibrium
flows are smaller than the frozen one and greater than the equi-
librium., This tendency, however, is rather empirical and has
never been proved theoretically,

For vibrationally relaxing diatomic gases, it is fairly
favourable to use the independent variable & instead of x. Here
again rearranging the basic equations,Eqs. (1) to (6), (9), (13),

(23), (24), (29), (30) and (43) in Ch, I, we have

Fv(M:)(—I%;fq)— =Fy exp Grlév; &), (1)
TMp=( e Ji g (2)
(A, &; e)‘%’}(ev—e) . (3)
W - (4)

(Zhop )" A+AM;"
5
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/ 1/2
m ( —g huog )

b=t apger k=)
Wg g de
— (8= 8= —_ 25V N e
s, otz B
where
b g
g — T 1 Ev—'*j,;:. (7)
" W 1
(expé—1)’ ¥ (expév—1)° )
M,
Fv(M;)=m: (9)
r 2 = ¢ — 350 st—v
Grteri ==, e~ 2oy [(E) i
H(A ev: ) =—(ev—ey V(L) [ (GA\( 82 \( dev.
Wtritl=—ie QV(U)/[(dE)(dA)(dEv)]’ (11)
and
_1 R . oom & ig
9‘7—‘&0 Ws 0, Fv, 7z . ( )

15 (—;‘;hoso) P

Eq, (1) in conjunction with Eqs. (2), (6), (9) and (10) can

also be rewritten in the form

(1+A)=@(l)'f’(—’l) exp & exp( o )

216 \10 my /Edlexp Eo—1) expéo—1
(exp&vr—1) v
P“[—————fl XP[—“———:fl
x xper_— L DN exp [% (s -*Sn)] : (13)
[; h (exp &v '—1}_§J

Eq. (13) shows that the degree to which the flow parameters in
nozzles are affected by the existence of nonequilibrium is com=-
pletely determined by the entropy and the vibrational temperature.
Thus, an algebraic equation is obtained, relating A(x), &, &y

and S, which in conjunction with the remainders of basic equations
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yields very simple analytical solutions not only for the frozen
(&,= &, and S = Sy= 0) flow but also for the equilibrium (&= '3
and S - S5,= O) one. With it, we can calculate all the flow
quantities for these limiting flows without carrying out the
tedious numerical calculations on the electronic digital COWPPtEY-
It must be emphasized that using Eg. (1) or Eq. (13) as one of
the basic equations describing a nonequilibrium nozzle flow, we
can expect considerable merits in investigating analytically non-
equilibrium effects on the flowfields, especially in determining
the critical mass flow, in estimating the validity or accuracy

of the equilibrium-frozen flow approximation, and in analyzing
the asymptotic behaviours of nonequilibrium flows far downstream

of the throat.

Now imposing a condition
XldAjdx) 20 (14)

on the nozzle geometry, we can reasonably assume

dg,fdg 2 0
(15)

L=t st , (16)
for the flows considered here, Assuming (15) and (16) under the
condition (14), from the discussions given in Ch., I we can obtain

the next relation under the fixed reservoir conditions

M ein ém gmmn"-' m{ ) (17)
where
m F.V(Mll)
— = BXP[—GVﬂ) 3 ( 18)
i Fy(l)
Moo _ 1 _ B eXpC.,
Al Ty f”“'['" = ‘. —T) =
(19)

aaizeal [ i)
(expé,,—1) expi,— 1) (expéo—1) L
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where £et and é.e* are determined from energy equations, respective-
ly, at the throat and the critical point (Mf= 1), The result
(17) is very significant not only physically but also practically
in numerical analysis of the subsonic region, in which it often
happens that the value of critical mass flow must be guessed be-
forehand for the given reservoir conditions and nozzle shape and
size. Figure 1 shows the critical-mass-flow ratios me/mf and
mmin/me and the maximum entropy at the critical point. The ex-
plicit solution which gives the critical mass flow of a general
nonequilibrium flow can also be easily obtained. It shows that
the critical mass flow is completely determined by the entropy
increase in the subsonic region and the vibrational temperature

at the critical point.

015 T T T TTT] T T 1.00
Mmin
Me
m
(S~ Solmax ™y
ﬂ-__“‘--
5 Mrin
Me
A
'am.oos— —0.98
Me
L | I I |
[ & 0.97

Fig. 1 Critical mass flow and the maximum entropy

at the critical point.
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3. Entropy and Equilibrium-Frozen Flow Approximation

The simplest and most significant approximation to a real
flow is the equilibrium-frozen flow model, in which an upstream
equilibrium branch and a downstream frozen branch are joined
together at the freezing point. Many works on this problem have
already been made by many authors, some of whome have supported
the validi£y of this approximation for vibrationally relaxing

4) 22)23)

gases as well as chemically reacting gases and others have not.
Some proofs that this flow model cannot always well match the cor-
rect solution have been given numericalli{ but these are not suf-
ficient in physical meaning, The freezing criteria for the approx
imate measure of the vibrational energy and the dissociated mass
fraction being proposed by Bray et al., are rather empirical and
moreover there is certain arbitrariness in their applications,

The equilibrium-frozen (E-F) flow approximation is com-
pletely based upon the freezing phenomenon of the relaxing energy
at infinity and the flow concerned must be obviously isentropic.
In practice, however, whether the real flow finally freezes or
not entirely depends upon the form of rate equation and upon the
nozzle shape and size. Furthermore, there can be two cases: 1In
one, the entropy of the gas converges to a finite value and in
another it diverges to infinity., In the latter case, the equi-
librium-frozen flow approximation breakes down far downstream
even when the flow does finally freeze. Hence we need a general
and precise criterion for the validity of this approximation,
Our efforts are in part devoted to proposing this new criterion,
However the principal purpose of this section exists in investi=-
gating the physical meanings of this approximation as generally

and precisely as possible. Our new type of a system of basic
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equations can provide us with a completely analytical solution
for the equilibrium-frozen flow.

At first the problem of obtaining the approximate measure
of state at a point P(4&, §V) (Fig. 2) in a real nonequilibrium
flow (corresponding to the path OCP) by using the equilibrium-
frozen flow (corresponding to the path OFP) approximation is
investigated. However, it must be noted that this equilibrium-
frozen flow is not the so called "equilibrium-frozen flow" first
proposed by Bray. The former here gives the approximate measure
of the state at the only one point P(4&, év) and is denoted by
the subscript OFP in this paper. The conventional equilibriume-

frozen flow proposed by Bray is denoted by the subscript ef,

B(&, &)

=&

Fig. 2 Flow path in the ¢-¢y plane.

Without much effort, the followinags can be found from the

system of basic equations,Egqs. (1) to (6)

(1+Aorr}: Morr exPl:_lV_g(S_ Sn)] , (20)
(1+A) m R
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Mrorr _
o o T (21)
Porr _ [ W o :| 22
2 expL A ( o) |, ( )
borr _ W
o= exp[ 5= Lo

It is significant to point out that the difference between the
flow histories of the real flow and its corresponding equilibrium- -
frozen one is completely represented in terms of the entropy and
the critical mass flow appearing on the right hand side of Eqgs.
(20), (22) and (23). These indicate well the importance of roles
of entropy in the analyses of nonequilibrium nozzle flows.

For the equilibrium-frozen flow in the conventional sense,

corresponding to these equations one has
(1+ Aey) _mer (exp éves—1) ( Ever expév
0+A) ~ mexp Ever P\ exptyes —I)E&Tl)

[L__L_l*_i o

& \Le (expév—1) 2¢ Wi

g (expEv—l :’[L_ 1 I exp[——R%(S—S.)] ' (24)
¢ (expéves—1) 2¢

[1 = 4 T
Mur_ Lo  (expéver—1) 2-?:|
M; [1 ] 7]"2 . (25)

v (exp&v—1) 2¢

—_ ={.§-‘ ; for é<Evs.
E Evs, for £=6vr, (26)
Pef __€Xp ver Ever  \lexpér—1) Ev
e (expé&ver—1) exD (expfv.fﬁll exp év exp (_expEv —-l)
exp[l;}(s —s.,)} : (27)
P _ pos
» e (28)

w

Based upon our discussions, a criterion for the validity of the
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E-F flow approximation may be given and, at the same time, the
pysical meaning of this approximation can be made clear. In
order that the E-F flow matches well the exact solution in the
whole of the flow region with an acceptable error, the following

three conditions must be satisfied:

leeniv—sv €1, (29)
QE:”";;m <1, (30)
Qa=<lexp|:%(3m-5ﬂi|—l} <1, (31)

.

where the subscript oo denotes the downstream limit., We can
reasonably expect that the set of these three quantities Ql' Q2
and QB serves as a new type of a criterion for the validity of
the E-F flow approximation. Of course it is obvious that the
less values of Ql’ 92 and Q3 indicate the better approximation,

Therefore it is easily seen that there are at least two necessary

conditions for the validity of this approximation:
eve=const. >0 , (32)
Se=const, <= , (33)

which means that the real flow concerened must be a frozen-is-
entropic flow in the downstream limit for this approximation,
We have already proved that for all flows of vibrationally re=

laxing diatomic gases the following is always satisfied:
@1, (34)
Then the remaining two quantities are important actually.
The distributions of vibrational temperature, vibrational

energy and entropy along the nozzle axis are illustrated, re=-

spectively, in Figs. 3, 4 and 5, Fig, 3 shows a flow path in the
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Fig. 3 Sample calculation of flow path.

¢__¢V plane corresponding to Fig., 2. The nozzle geometry used
in these sample calculations are given by Eq. (68) in Ch. I.
The final flow pattern of all these flows in the limit & =00 is

frozen-isentropic for both the N, and 02 gases., The entropy

2
rise in a flow of the N2 gas is much smaller than that of the

0, gas under the same reservoir conditions, which means that

the width of transition region from the upstream near-equilibrium
region to the downstream near-frozen one in the flow of the
former is smaller than that of the latter., From this point of
view to the entropy only, it can be concluded that the real flow
of the N2 gas may be matched much better by the E~«F flow than
that of the O2 gas., The limiting values of S and EV are shown

in Figs. 6 and 7. These yield one of the powerful supports to

the validity of the E-F flow approximation to the flows of these

gases,
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4, Entropy and Asymptotic Behaviors of Flows Far Downstream
Our discussions given in the last section suggest the im=-
portance of investigation of the final flow patterns, Further~
more it is very interesting purely theoretically as well as
practically to know how the increasing entropy affects the re=
laxation phenomenon,
Consider the region far downstream of a throat in a nozzle

and consider the nozzle geometry described by

A=Ke (35)

where K and n are positive constants and the latter is less than
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or equal to 2, Then the rate equation can be reduced finally

to the form

dé
[22expl—0Pi 90— 3328, —6)]) —% &~ —(6. _«
3 ¥ i x =4, by (36)
for N2 and 02 gases, where
S = 1\ W
O=¢ = & ) o
exp [(1 ")RIS 5. (37)

Parameters { , s, and k are constants characteristic to each gas,
and A is nearly constant depending upon the reservoir conditions,
nozzle shape and size, vibrational temperature, and kind of a gas,
It is surely worth noting that when n>1, an increase in entropy
has negative effect on the vibrational relaxation phenomenon,

when n<1 positive effect and when n = 1 no effect,

5. Concluding Remarks

The effects of increasing entropy on the flowfields in non=
equilibrium nozzle flows of vibrationally relaxing diatomic gases
have been studied in detail,

A conclusion can be drawn that, in general at least theo-
retically under the fixed reservoir conditions, the maximum
critical mass flow is the frozen one, while the minimum is the
one which is somewhat smaller than the equilibrium,

A new criterion for the validity of the equilibrium-frozen
flow approximation have been suggested mainly in terms of the
entropy. The quantities Ql, Qz, and Q3 defined here are not
always independent with each other and usually the second is so
small that it is less important than the others, Up te the
present, almost all attempts to estimate the accuracy of this

approximation have been done by using the values of 2, only.,.
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It may be worth noting once again that the most important
result in the last section is the fact that when n>1, increasing
entropy has negative effect on the vibrational relaxation phe-
nomenon, when n<1l positive effect and when n = 1 no effect,

The increase in entropy often affects seriously distributions

of translational-rotational temperature and then the vibrational
temperature. It is the case above all for the flows far down-
stream of a throat, When n # 1, the interaction between the
entropy and the relaxation phenomenon is essential in the analy-
ses of nonequilibrium flows at least far downstream of the throat, ,

It must be noticed that it is quite possible to repeat the
above analyses for nonequilibrium flows of a dissociating gas

or an ionizing gas.
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CHAPTER IV ANALYTICAL TREATMENT BY THE METHOD OF STRATINED

COORDINATES

1. Introductory Remarks

There have been many studies of nonequilibrium nozzle flows
of vibrationally relaxing or chemically reacting gases, a%mgst
all of which have been numerical and only a few analyticil?)
From the practical noint of view, the numerical solutions them=
selves are valuable, but they are not always sufficient for de-
veloping general and theoretical discussions., The main reason
lies in the "ambiguity" in the accuracy of the numerical results.
This is particularly the case for the determination of critical
mass flows in nonequilibrium nozzle flows. Therefore it is de=-
sirable and useful to obtain, if possible, an analytical solution
for the subsonic region in nonequilibrium nozzle flows,

The author has already made some discussions of the problem
of determining critical mass flows. Here the discussions will
be taken further, and for an ideal dissociating diatomic gas, a
new attempt at solving analytically the subsonic region of non=
equilibrium nozzle flows will be made.

Up to the present, many devices for simplification of the
analysis have been introduced for this probleﬁ. Among them, we

9) - 24)
will use Lighthill’s gas model, the Freeman-type rate equation

and the assumption Et@il%zﬁﬁire the parameter ¢ is the ratio of
the temperature at the critical point to the dissociation energy.
All physical quantities are assumed to be capable of being ex-
pressed in the form of perturbation expansions in powers of €.

These expansions are, however, not always permitted without any

restriction on the boundary conditions and nozzle shapes and
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sizes, f{ualitative study on regimes of the subsonic region for
the two limiting cases of equilibrium and frozen flows will make
it clear that, at least when K = O(1) Or (1 - €K)/ K = 0(1),
where the parameter K is the ratio of the dissociated mass
fraction to the parameter €, it is natural and reasonable to
assume tentatively that perturbation expansions in powers of €
are possible for all flow variables. This also suggests that it
may be possible to expand the flow variables in such perturbation
expansions even for general nonequilibrium flows which are not
markedly deviated from equilibrium at least in the subsonic
region considered.

When the perturbation method is applied to the first approx-
imation, a singularity appears near the throat. The method
of strained coordinates, or the P, L. K. method, must therefore
be applied in order to obtain a uniformly valid solution in the
whole subsonic region%m The solution constructed by this method
finally contains only the two parameters ¢ and K, the values of
which are estimated beforehand as precisely as possible. This
is applied to the stagnation point to determine the exact values
of € and K, Once these are determined, the solution is valid
not only in the subsonic region but also in the supersonic region
up to some point downstream of the throat. However, the solution
cannot always be applied to an arbitrary region downstream of
the throat. 1In order to improve the solution so that it is valid
in any supersonic region, a few more difficulties must be over=-

. . . ) 22)23)

comed, and in this point, the studies by Cheng and Lee are

significant and instructive. However, considerations on the

supersonic region will not be made here.
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2. Basic Equations
The qovernina equations for an ideal dissociating diatomic

gas may be written as

pud = pu, = pyupAdy = m, const. (1)
B s
Sut+h= (2)
cﬂz—ltf =0
5 b= (3)
w2 12| —ayTeenir— £ g3
dx 2 on | (4)
R R
h=(+a) g T+ Da (5)
R

where A is the cross-sectional area ratio (equal to (1+A) in the
previous chapters) and the parameters PD, C, d and s in the rate
equation (4) are constants characteristic to each gas. The other
notations in this chapter are the same as those in Ch, I, unless
otherwise defined, For an equilibrium flow, Eq. (3) can be re-
placed by an equation expressing the constancy of entrogafsihich
becomes algebraic when d = 0, namely

T D
3In (}j-)+(1 +a}-T—+a+2]n(}%{J:const-, (7)

and Eq., (4) can be replaced by the law of mass action

at  pp D
T P e"p(‘fr)' (8)

In this chapter, we consider only the case of d = 0 for brevity,

Here we introduce nondimensionalized quantities

J:?I*' 5’%' Px

a3



ek 0n T o= (4))(4). } (9)

_ D 2K
E-_.D_. K= I';'*—G*— p F_M*2
(10)
_ __ de
p=are 0=—PuilK(3) ].
where
M, =u,} —,;‘%T*, (11)
 [ux (de\ (AN C o,
P (&) [ reever]. (12)
Ly
-1—5*_.0* exp( T*)- (13)
Substituting these into the basic equations, we have
dig =1, (14)
1 dsg 3 d
8d&=(1€+6a)—p~+k~é—, (15)
m=1+40_@+i0_i_ﬁlﬁa
K\ & a/]’ (16)
d& 0 [ [1—eKa 1 )
g = Kop P (1meky) 2 (—0-0) e (17)

Especially, for equilibrium flows, Egs. (15) and (17) are re-

placed, respectively, by

o (18)

(0 —1)+cK(@h—1)—3¢ In 0+ K (@—1)+2¢ In &-+2¢ In ( L )

1—eKa

f1—eK\ 1 1
#(eka) = 5 o [c0-9)- (19)

Now, for general nonequilibrium flows, combining Eqs. (14), (15)

and (16) yields

Qa



3 [ _ 1 N\ da 6 Ot 1 dia
ol1=2 — 7 SN [ N LS S i e
i I - tﬁl+(F:.+CCI) = T TE ; (F_,+m) o (20)
14 ZFKC! (*F:—}- Eﬂ)

The regularity condition of Eg. (20) at the sonic point yields

i 6K
T K1 +eK) * (21)

(jg) _ 1 (A+eK)d+eK)
L EY

K [+eK-3] * (22)

The equation defining [~ yields, with Eq. (21),

1
Mf:“j'(1+fK)(4+FK)' (23)

3. General Discussions
In our analysis in this chapter, the parameter ¢ plays a
very important and indispensable role, since every discussion

is made under the assumption

eg1. (24)

The Arrhenius factor with small € makes the composition & very
sensitive to perturbation in the temperature or in §. The next
most important parameter is K, which is the ratio of the energy
stored in dissociation to the energy associated with the trans=-
lational motion,

Now Eg. (16) at the critical point can be written in the

form
2 6 ﬁ =
g +(11+:—)a*+(28—6—5— =iy, (25)
where

ﬁ:hoj(—v—?;)D. (26)

Equation (25) can be taken as a quadratic with respect to &
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and can be solved as follows

ay= %;{—(6+11£)+ V36 -(1321248)+ 9 ),

or

1
K= 5 4 [=(6-+110)+ V3o F (T2 24B) +9¢) - (27)

In Fig., 1, the parameter K is shown as a function of the para-
meter ¢ and the gas density at the critical point for equilibri=-
um flows, In Figs., 2 and 3, the parameters ¢ and K for equi-
librium flows, determined purely numerically, and those for

frozen flows, which are determined from the following equations,

— 6(8—ap)
1= T teitay) (28)

Fig. 1 Parameter K as a function of the parameter ¢

and density P, for equilibrium flows.



a7 +arg) (4 -+ )

K= ey (29)

are presented as functions of g and 3, the values of which are

specified at the reservoir. It is quite easy to see that

Fig. 2 Parameter ¢ for equilibrium flows and frozen
flows as a function of the degree of dissoci-
ation (o and the parameter 3.

102 —T

Fig, 3 Parameter K for equilibrium flows and frozen
flows as a function of the degree of dissoci-

ation ® and the parameter 3.
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ep<e<e (30)

K,<K<K,;. (31)
These help considerably in roughly determining the values of €&
and K beforehand in our analysis, as discussed below.

It may easily be seen that both the parameters P and &
indicate the degree of departure of the flow from equilibrium,

and they are related to each other by the relation
1—eK
P={i-(Z )7 [32)

For equilibrium flows, the equations of energy and entropy

becomes as follows at the stagnation point

14 4 1 &\ 1
|(F—5) o]t —5)+gare=o, (33)
(Bo—1) +eK (@fo—1)— 3¢ In 8y +K (@ —1)+2¢ In &o+2¢ In (i -0

. T—eKay )~ " (34)

We can easily understand that the most significant flow regimes
practically and theoretically are those in the cases of K 20(1)
and (1 -gK) = O(1). With Egs. (33) and (34), under the con-
dition of Eq. (24), we obtain the results in these cases as
follows:
(i) the case of eK=0(1) and (1—eK)=0(1)
& = 1+0(), }

0o =1+0(), (35)
(1) the case of eK=0(e) or K=0(1)
_ 2
= (145 1000, } (36)
802 1+q€).

In Figs. 4 and 5, the nondimensionalized degree of dissociation

and inverse temperature at the reservoir (obtained purely nu-
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merically) are presented as functions of &y and 3, and it can
be seen that these illustrate well the features which have been

discussed. The characteristic values of N2 gas used in these

1-6 I

12~ i
1-0

1.0 |
001 01 1

X

Fig, Ratio of the degree of dissociation at the reservoir
to that at the throat, ab/oa, as a function of Ol

and.ﬁ.

Tw
Te

Tex
To

Ten/ To ™~
———— T/ To

0.7 '
0-01 01 1

o,

Fig. 5 Ratio of the temperature at the throat to that at

the reservoir, T*/TO, as a function of'ab and 3,
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calculations are shown in Table 1,

Table 1 Characteristic values of N2 gas.

W, = 28.0 (kg/kmol) C = 3.0x10°/W; (m®kg-sec)
D = 113260.0 (°K) pp=1.20% 10° (kg/m®)
s=1.5 -

4, Solution by the P, L, K. Method

4, 1 Nonequilibrium Solution
We consider the case where the nozzle geometry is given,

for example, by
A
*{'47:(1“}‘;'32}; (37)

where k is a positive constant. Then the function g{(g) which
was introduced in the process of nondimensionalization is de-

termined in the form

o—a, \1? 1 x<0
=4 3= ’ 38
&) (1—0'.:) ’ ® {—1 x>0. ( )

The following analysis is carried out under the conditions
¢ =0(1) (39)

K =0(1) (40)

in addition to that of Eq. (24), The condition of Eq. (39)
means that the flow at the critical point doces not deviate

markedly from equilibrium, Then it is natural and reasonable
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to assume that the flow variables can be expressed in the form
of perturbation expansions in powers of ¢ as follows

@ = a-cap+etay+0(8)

0 = t-+ell; +5202+U{E3) o
(41)
T = p-kcuty 421y +0(e?)
¢ = {teo -+ +0(e)
where @, a’l, C{E seey t, 91, 92 ceey ?; ul’ U2 teay andO”l; Oé s

are all functions of a new independent variable &, and satisfy

the boundary conditions

) (a2)
=l =uy=04=0, (i=1,2 ).
Furthermore the parameters K, [7, ¢ and () can also be expanded
in power series of £ as
K= r+eK +2K, +0(e%),
= r+d‘1+e2i’“a+0(c3),
(43)
¢ = ftepr+etp+0(eh),
Q = q+e01 420y +0(e%) .
The justification for expanding the parameters in such forms as
Eq. (43) comes from the assumption of Eq. (41), since the values
of these parameters can be finally determined after solving the
whole flowfield in the subsonic region, as carried out with
Eq. (41).
Substituting Eq. (43) into Eq. (21), and considering the

condition of Eq. (40), we have

3 15 3

T=mE F1=—-§52+§K1.
(44)
63 15 3
Pg = vsz.h-s_-erlﬂl“sz’ eees
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Similarly substituting Eq. (43) into Egs. (22), (32) and the
last equation of Eq. (10), and considering the condition of

Eq. (39) as well as that of Eq. (40), we have

a=0-17,
1
0=~ font =D — g (F+efa-1,

1 1
0s= — L fp—tpt b =3 ot 3 () fon (45)

{3+ ko) [a- e (34 ge)a-1]

9 1 1 eepilfi
~ 1= ge)a-rga-nre.

where it is assumed that

(1—¢% = 0(1), (46)
in addition to the condition of Eq. (39). Systematic analysis
requires that the function £(c) can also be expanded in power
series, for example, as

g=G+egi+em+0(), (47)

where

A
G"é(i_—e[) ’

g{ _ l( gy — 01 9'1:__)
G-\ = 1-6/ (48)

7gg:l|:iz_:ﬂz_{ T 71(01—01,) ( 71 \?
63l e tTn e (i) ]

i T—0y e |?
8[ s +1~5?] P

It is clear that these expansions are possible only when the

two conditions

£ Bus (49)
—ci:—":ﬁnite = 1), (50)

102



are satisfied,

(10) with Eqs. (49) and (50), we have

28 e (2 o]

a1 1 oy

a1 _O K5
T EAE ¢ Mg

f}l__l ot 1 a1t Qz O K, K,
& 280-6) BEA-EF g @ r;t/%

K, K \2 K 41 55
el ) )

+£x(2fx+4~£;—+3 = ) 2—(f +2T+2—)

(B ey

Combining Eq.(12) and the last equation

of Eq.

(51)

These are used in order to determine the values of f Prr Porecee

Substituting Eqs. (41), (43) and (47) into Eqs. (14) to

(17), we obtain

t=1,

P= 1+r[c1—a)+%(1—%)] :

wn i),

LR

dt
t

~2lnf—In [—E—+ £aéy G( dg )]

Dy = r,[(l-—a)+ (1—1)]+7[(1—-_) “‘*i i (l-%)‘”{‘].

2

{80 8) (-] ) 21

7 £
3 dﬂl 0ldt K dt
+7(T_“z=—)_372 I

—2¥1 el S B2
0y = 255 el f )~ 3 +)?+E

()G gz oy )

1+ (d—e)]
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4 [93 02 ay 091 3[ 4K1 4 ng Kg
wnn=ry—\ g )5 ) e tol e "o

<(r(-5) -t -(-2)] (54)

crfa-a+ -1

_ 1 dl‘g u;dul - E%M}l;? ﬁ @g 0’1(10’1
s oudncidm= = (=23 (55 ) T (T %)
_(f%_ii,,) dﬁ]] !(a Kl)[(ﬁﬁﬂ@) J,(E’EL_ "14{)]
£ &/¢ #* 7 U 3 &
Kl Kz d?? dl'.: 3 daz 1d0| 32 dt
e B ), S (5 )

"'SI:(KI Kz)dt K,(dﬁ, ﬁldt)].

e\ et " k)t e\t #

«2 £/t £

With the boundary conditions of Eq. (42), Eq. (52) yields

t=1, 1

7)2 = 1-}.]’{1—6},

] (55)
1
a=1-—In(n).

It can be found that

()= w ey (50

and so the condition of Eq. (49) is satisfied by setting

=2 _v3 1
&= v’—:!—e e, %_T‘ at=(1+Tr‘)~ (57)

With Eq. (55) and the boundary conditions of Eq. (42), Eq. (63)

yields

2 d
$=2ln f—In [—a- 1—xq$r;2G(dg)] 3

&
1t = ] [- ("1) J.&‘ida j(——) < (in e:;)dwhat (58)
1 %r,ﬂ 1‘7' (F—‘-H)U —ay+ g,
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Letting

2 1
J= ==t
2 (.‘rri2 5)’ (59)
1 =
T
we have
4=0 at =g or £=¢. (60)

Then it follows that

1 0y L Gt K\ d 3 1
) [ o ) w2,

=0
r ’ 61
(7}+1y1—a0+%#u Eyﬁ (el

which aives one of the conditions that must be satisfied by the
straining function 0+ Hence we consider the function ¢y in the
form

1 i
% = -z—n:?-(az-ﬂ»l-ﬁ(l+Tl)(a—‘1)—8,—rflﬁlda—Kl(a—i)

s (e YO (62)

where(@l(a) is an arbitrary regular function of @. It is easy
to confirm that Eq. (62) satisfies the boundary conditions of

Eq. (42). Since, moreover, the function ¢, must satisfy the

1
condition of Eq. (50), the regular functiontjh(g) must satisfy

d I dg 3
[ (2] = 2)-(2) e mir=s. (65

which is not the sufficient condition but the necessary one for
Eq. (50). By choosing such *yy we obtain

" pl—Bya),
7

2 . fui r, 4 (64)
w= =22+ (14 2 )a-a+ 2o,
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Similarly Eq. (52) in conjunction with the boundary con-

ditions of Eq. (42) yields

gy

8, = —";}+x(f—a)-2—?~+-ﬁ+ﬁ—

7 €
rg€P [ ( day m)(_: Uy g, ,ﬁz)]
( G)[(ds)+(ds e
a W?f
[ G(de)]
i; = 21— )8x(a)
_ 2 F[ 1251 1 Uy 2 4 4K‘1 \ (65)
ST (1) )+2 Jz( m )—‘T-vz(—v') +:(5z—5|’)—al+aﬁz—7-ﬂ1

+ 20— (22) -0

%= 2~ af o f oo Gt )da— fa ;(%)ma [ csda

K,
(A s B

ey s o RrL Ol 2"—’“’7’( e
— L a%( “‘) —7(1— 2)(1 ———773)92((1) .

where the functhn1cg(a) is also an arbitrary function of g,

which satisfies

ET I A
NEORNL I NE BT W

1y, 31, 1 3
+5[§ rzal "‘g‘ ?‘l —jrag:le]_(a;)—fﬂeg(ag) =0.

We can obtain the solutions of the i-th approximation (i =1, 2,
3, ++s) by repeating the same procedure, but these are not pre-

sented here.

4, 2 Equilibrium Solution

For equilibrium flows, the solution obtained above can be
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considerably simplified, since the rate equation, Eq. (17), is
replaced by the law of mass action, Eq. (19), and then the
function #(o) does not appear in the basic equations. Tn this
case, we may put # = 1 and the expansion of the function §(¢)

in powers of ¢ becomes unnecessary, Hence the conditions of Eqs,.
.{49) and (50) can be omitted, and the position of the nozzle
throat may be determined as the point where the function ¢o-(¢)
takes its minimum value. The retention of the conditions of

Egqs. (49) and (50), however, even for the equilibrium flows

would be convenient and useful in order to compare the equilibri=-
um solution with the nonequilibrium one having the same reservoir

conditions, The equilibrium solution are given below.

t=1,
7t =1+47(1—a), (67)
a—1—l]n(E

=L L 1),

#, =(l—a)-2lna,
(5% _ " l _al®
8ot

r 8 2 (u
= (5o Fma=2o(5).

(68)
9 _ 52(422*1)+5(£1*—E— .{cl)(a—n-l-z.m Ina+2lna
3 r &

K 1y Uy
reof2)-(2)
+ Tﬁ 7 7
I
T

2
Bia) = -f;{xﬁ(zaﬁ—iw(uf’) +2 4% a,le} ,

Ty

3

:3 = ¥a— 1)[(1 +%) —a

2 Ug .[1[ Uy 1 Uy 2 4
w= =252y )35 ) om0 -aran

ay Uy
02 — K(l*—d)—z’a + & 7 1

6y(a),
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2
—‘*—"‘-‘m—(l— a— -;-(1—a).

_";_ = .;_(.%I_)Z—IJ. O.da—x .rl 6{%‘;‘-)@—;:]103%—(%)@

2
+K2I oy da4-- -——(61)+x( I{__l _EE_)(Q—])—gz‘i‘%alz

e

+£9;+c{a1—091)+x(£ﬁ_7){ 1yt 2( ) (69)

e fw\t _«l u K, d fu
o) ) ()
7\ 7y T\ "k 7 leada 7 )

—a*(l—u*)(b%ﬂez(a),

da df,
@l(af) = TSE‘{_ ‘gh—ﬁfﬁlc'i'lfatru'{'x(] —3::)('3;)1—‘(7;'1‘{'(501:
F ool i, K¢ K ry I\ [27
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where the subscript e is omitted for brevity.

4, 3 Determination of Parameters ¢ and K,

Though our analysis has been carried out as if the values
of the two parameters ¢ and K were known in advance, these are
actually determined only after solving the whole subsonic region.
Finally, these parameters must be determined from the reservoir
conditions, which can be described in terms of the two parameters

o

(, and 3. The condition of Eq. (40) implies

B =cpo, (70)

where Ao is a constant of order unity. Then Eq. (27) yields

for small &€
_ 14 11 14 11)\2 14 1 14\2
K—_(ﬂo—- 3*>—"6—(ﬁn- 3-)5-1-[(*6*) (ﬁo_—j—) —‘“g(ﬁu— 3") }f2+0(53): (71)

from which the parameters x, K&, kb +es can be determined as

follows
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The solution of the degree of dissociation yields at the reser-

voir
fl'u=(Kti'0. (73)

Hence for the zeroth approximation, we have

g = €xdg ,

(74)
K=«x,
' (75)
where
1 2
ao=1+?=1+-§» (76)
which yields
= L (p—a0)
£ = 7y &o)y (77)
54( 48 14
-(Za3) (78)
For the first approximation, we have
ag = e(e+ekK Y@ +ear) = e[rag+e(ea+Kiap)], ( 79 )
K=I+€Kl, (80)
where
o= Eia(£)-1(s4.11) (81)
£ a 7 r/’

and the values of ¢ and K must be determined numerically in this

case, Similarly, for the second approximation, we have

ay = e(x+e K+ Ko Xay+eagg+elag)
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= f[fan+€(m'm+Kiﬂo)+52(Kzau+Ksﬂ'm+tﬂzn}] s ( 82 )

K = s+eK 4Ky, (83)

where

3]_0 =2In (C{,)_$ 1

—9%1 a0 1o o LA T
0 =22 4R —a) =22 o 1)“(14- - )(a., 1

o E e (84)
e —K;)a—1)—21n (Z)—xj-i byda,

3 2
az =T(’an“‘ﬁluz}—am'i‘ﬂoam—%}910+%(1*au)*(%) (1—ap). /

As in the first approximation, the values of € and K must be

determined numerically,

5, Sample Calculations and Comparison with Numerical Results
In the basic equations, Eqs. (1) to (6), the independent
variable is x, while in Eqgs. (14) to (17), o is chosen as an
independent variable instead of x. However, in the analysis by
the P, L, K, method, the new independent variable & is intro-
duced, In the actual calculations, it is more convenient to
consider @ = a(4) as an independent variable instead of &, be-
cause & decreases upstream from the sonic point to the throat,
where & = é%, and then increases upstream from there to the
reservoir, which leads to complications in the numerical pro-
cedure, On the contrary, the variable Q increases monotonically
from the critical point to the reservoir, and moreover the re-

lations

a,,:lat&:&,,, at:l'i‘"l

4

at §=Et and a0=1+% at 5:00,

remain valid in the any higher approximation.
The actual numerical procedure is described below. For

the given reservoir conditions, the values of the two parameters
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€ and K are obtained from Eqs. (77) and (78), and it is confirmed

that the conditions
e<l, and K =01),

are really satisfied by these parameters. These are substituted
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into the first equation of Eq. (51) and the value of f is calcu-~
lated, which will give the approximate measure of f for the

first approximation. Next it is confirmed that the condition
(l-fz)/f2= 0(1) is really satisfied, From Eqs. (79) and (80) and
the first equation of Eq. (51), the new values of f, ¢ and K for
the first approximation are determined, and with these values of
the parameters, the solution of the first approximation is com-
pletely determined., In a similar way, we can get the solution of
any higher-order approximation. For the comparison with these
solutions, the exact numerical solutions have been obtained by the
R. K; G. method on a digital computer and are shown in Figs., 6, 7,
and 8, 1In these sample calculations, the constants y, and Vo are

1
chosen as the regular functions @E(a) and C%(Q), respectively.

6. Concluding Remarks
The analytical solutions of the subsonic region for equi-
librium and nonequilibrium flows have been obtained by the P,

L. K. method. Though the solutions are constructed under the
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conditions g¢«< 1, K = O(1) and (1 = ?2)/T23 0(1), it can be
modified so as to be valid even under the conditions

(i) e<1, K=01), (1—¢2) = Nem™), in=1,2,3, .4

)y e<l, 1:§K=0(1), e =0(1).

The conditions (i), (1ii) and those considered in our analysis
cover reasonably well almost all the important conditions under
which the dissociation and recombination phenomena take place
predominantly, and the ionization and neutralization phenomena
does not appreciably in the expanding flows, The sample calcu=-

lations are carried out only for an equilibrium flow of N, gas,

2
but of course the same calculations may be done for equilibrium
flows of 02 gas and other diatomic gases., The main purpose of
this work, however, lies in obtaining the analytical sclution
for nonequilibrium flows. The sample calculations for nonequi-
librium flows are thus very important in order to evaluate the
results obtained here, and will be carried out in the near
future by the author. One of the most important merits of our
method is that it yields exact distributions of flow parameters
even near and at the critical point within the accuracy of the
order of the approximation cosidered.

As mentioned in the introduction, once the values of ¢, & and
K are determined, our solution is valid as far as some point
downstream of the critical point. It is quite desirable for the
solution to be valid at any point even downstream of the throat.
Unfortunately, this is not possible, because on the downstream
side, the quantity ln[a?/§?4~ﬁﬁ§?2G(da/d§J] becomes negatively

infinite at the location defined by

wgéy® fda\] _
[”‘ aﬁ’G(Tie)]'o'

T3



In the vicinity of this location and downstream of it, other

forms of perturbation expansions, if possible, must be devised.

22) 23)

The studies by Cheng and Lee would be very instructive. This

remains to be treated as well as the problem in the cases 3’2

= 0(e™), where m = 1, 2, 3... ,
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SUMMARY

The nonequilibrium effects arising from the rate processes
in nozzle flow expansions of real gases have been discussed in
detail. Emphasis is placed upon the analyses of subsonic region
and effects of entropy on the flowfields and relaxation phe=-
nomena themselves,

The problem of predicting critical mass flows in nozzle
flows of the vibrationally relaxing gas, ideal dissociating gas
and singly ionizing gas is treated in Ch, I, A conclusion is
drawn that, in general, at least theoretically under the fixed
reservoir conditions, the maximum critical mass flow is the
frozen one, while the minimum is the one which is somewhat
smaller than the equilibrium,

Analytical and numerical solutions of nonequilibrium flows
of vibrationally relaxing diatomic gases through nozzles are
obtained under the wvarious reservoir conditions in Ch, II. Some
appropriate approximations are made for the rate equation, which
enables us to treat the rate equation and the corresponding flow
equations seperately. It can exclude the difficulties in con-
nection with the singularity of the flow equations at a sonic
point, The proof of validity and reliability of the equilibrium-
throat-approximation method is also given.

In Ch. IITI, the investigation of roles of entropy in the
analyses of nonequilibrium nozzle flows is made. In the flows
of vibrationally relaxing and chemically reacting gases, the
nonequilibrium processes inevitably increase the entropy of
gases., The effects of the increase in entropy on the critical

mass flow, flow variables and relaxation phenomena themselves
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are discussed,

The problem of solving the flows of an ideal dissociating
diatomic gas is treated analytically by the method of strained
coordinates (the P, L. K., method) in Ch. IV. The solution is
constructed in the form of perturbation expansions in powers of
€, the ratio of the temperature at the critical point and the
dissociation energy. The sample calculations are carried out
and compared with the exact numerical results for the equilibrium
flow.

The numerical technique which has been used to integrate
the system of ordinary differential equations in this work is
the R. K. G. method, and the numerical calculations are carried
out on a digital computer HITAC 5020 at the computing center at

Kyoto University,
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SYMBOLS

Symbols for Ch, I

a Constant in Eq. (8)

q} Equilibrium sound speed

af Frozen sound speed

1+A Nozzle cross-sectional-area ratio

b Constant in Eq. (8)

c Local equilibrium value of « corresponding to local

values of T and f

Co Constant in Eq. (51)

Ce Constant in Eq. (57)

¢y Constant in Eq. (18)

Cy Constant in Eq. (19)

d Constant in Eq. (18)

D Molecular dissociation energy of diatomic gas

D uantity defined in Eq., (135)

E Local equilibrium value of EV corresponding to local
value of T

EV Vibrational energqgy

fi(¢) Function of & defined in Eq. (91)

FD(Mf,a) Function of Mf and o defined in Eq. (106)

FDO Quantity defined in Eq. (106)

FI(Mf,é) Function of M, and ¢ defined in Eq. (142)

FIO Quantity defined in Eq. (142)
Fv(Mf) Function of M. defined in Eq. (36)
FVO uantity defined in Eq. (36)
&y (uantity defined in Eq. (135)
G Quantity defined in Eq. (106)

D
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Keps Kep

k

krl’ r2

K

K(T)

'
L(p,f£q)

Quantity
Quantity
Quantity
Quantity
Function
Enthalpy
Function

Constant

defined
defined
defined

defined

in
in

in

Eq.
Eq.
Eq.
Eq.

(112)
(135)
(142)

(36)

of & defined in Eq.

per unit mole

of & defined in Eq.

in Eq.

(19)

Ionization energy

Forward rate coefficients

Reverse rate coefficients

Nozzle constant

Equilibrium constant

Constant

in Eq.

(12)

(82)

(86), equal to 1+A

Function of p, P and q defined in Eq. (4)

Critical mass flow

Equilibrium Mach number

Frozen Mach number

Pressure

Bray’s nonequilibrium parameter

Progress variable

Dissociation rate

Recombination rate

Universal gas constant

Constant

in Eq.

(12)

Entropy per unit mole

Temperature

Vibrational temperature

Function of p, P, and q defined in Eq. (4)

118



Flow velocity

w Constant in Eq., (12)
wl Molecular weight of monatomic gas
w2 Molecular weight of diatomic gas
x Distance along nozzle axis
o Dissociated mass fraction
a;* Dissociated mass fraction at M.= 1 in equilibrium
flow
r Constant in Eq. (12)
d -1 for & < §¥ and 1 for & > §;
o} 1-:/—5— 7]
2
R
¢ Ey/ w29
Eve Frozen value of‘fv in equilibrium-frozen flow
dé‘v EV-C
? %’I/ hO
1
g Characteristic vibrational temperature
X, Quantity defined in Eq. (135)
/} m / m
e
S e/ T
S B/ T,
m(¢) Function of & defined in Eq. (84)
r Density
R
g —©e / h
W2 0
¢ Ionized mass fraction
?i* Ionized mass fraction at M= 1 in equilibrium flow
R
¥ w2D / h0
¥(&) Function of & defined in Eq. (71)
Subscripts
e equilibrium
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f Frozen flow

ef Equilibrium-frozen flow

i i - th approximation

t Nozzle throat

o] Reservoir or stagnation conditions
* Sonic or critical point

Symbols for Ch, II

Quantity defined in Eq. (54)

A1m

Alm Quantity defined in Eq. (54)

m Positive integer in Eq. (49), also critical mass flow
N Positive integer satisfying Eq. (44)

AS S - SO

Zn Quantity defined in Eq. (54)

H Dummy variable

?m 2/ grm

&h $/ ¢m

& Value of & satisfying Eq. (49)

@mfj,gj Function of & and 7 defined in Eq. (27)

F1(228) B (228 /m&

(_} Quantity ( ) corresponding to approximate rate
equation

Subscripts

r Reference value

O Far downstream, (1 + A) — o

Symbols for Ch., III
K Nozzle constant defined in Eq. (35)

n Constant in Eq. (35)
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fJuantity defined in Eq. (29)

(Juantity defined in Eq. (30)

{luantity defined in Eq. (31)
1, Wz

exp [(1 - 7 R (S - 8]

Censtant in Eq. (36)

Subscripts

OFP

Flow path in Fig, 2

Symbols for Ch, IV

9]

cl

The zeroth approximation of &
Nozzle cross-sectional-area ratio, equal to (1 + A)
in Chs. T, II and IIT
Equilibrium value of v corresponding to local value
of T and f at critical point
Constant in Eq. (4)
Function of ¢ defined in Eq. (9)
Quantities defined in Eq. (48)
The zeroth approximation of &(§
The zeroth approximation of <
Nozzle constant
0/ €
Quantities defined in Eq. (43)
IET—'
uy/ sz;
Quantity defined in Eq. (12)
The zeroth approximation of ()
Quantity defined in Eq, (10)
fuantities defined in Eq. (43)
Flow velocity

u o
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u Quantities defined in Eq. (41)

F Ya

t The zeroth approximation of ©

& o/,

oy Oy Quantities defined in Eq. (41)
R

3 h,/ Wzn, 1/ ¢

By Constant defined in Eq., (70)

Y The zeroth approximation of [~

2
7 2K / My

fi, T QQuantities defined in Eq. (43)

= T,/ D
7 The zeroth approximation of U
e Ta/ T
el; 9, Quantities defined in Eq., (41)

@, (a) B, (a)

Arbitrary regular functions of a

w The zeroth approximation of K

Vs yb Constants chosen as regular functions

f Independent variable defined in Eq. (41)

# fr P,

I Characteristic density for dissociation, equal to
CD in Ch. X

o- A/ A,

o O {luantities defined in Eq, (41)

N e/ o,

P11 Fo (Juantities defined in Eq. (43)
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