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CHAPTER 1 

INTRODUCTION

1.1 Pusating Pipe Flow

     Pulsating pipe flow appears in several practical 

situations, for example, when fluid is pumped through 

a channel by a reciprocating device, or when flow insta-

bilities are present that give rise to oscillatory mo-

tions. 

     The situation that is chosen for this study is a 

general case of a fully developed flow in a cylindrical 
tube with a periodical pulsation under the condition 

that the pulsating component of flow rate is kept less 

than the time-averaged value. 

     Pulsating laminar flow was studied analytically by 

 Sexi [19] and the frequency response curves were shown 

by Uchida [23]. 

     For the pulsating turbulent flow, however, there 

have been only a few experimental studies, because it 

is very difficult to study a turbulence structure that 

varies during the cycle of pulsation. Qualitatively, 

some features have been shown. Schulz-Grunow [18] in-

dicated that velocity profiles for pulsating turbulent 

flow were similar to the profiles for steady flow through 

a gradually convergent or divergent pipe. Recently, 

Gerrard [5] suggested that the turbulence intensity 

diminished during acceleration, and that in decelerating 

flow the turbulence intensity increased. 

                       1
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 1.2 Heat or Mass Transfer in Pulsating laminar flow 

      Interphase heat or mass transfer in pulsating flow 

is of interest in many areas of application including 

chemical reactor design, studies on the fluctuation in 
velocity gradient at a wall using heat transfer probes 

or mass transfer probes, and studies on transport in 

the cardiovascular system. 

     There have been a number of experimental investi-

gations [20, 24] concerning only the effect of pulsation 
in flow rate on the time-averaged rate of heat or mass 

transfer. However, these results are in conflict with 

each other. 

     An analytical approach to the problem was first 

made by Siegel and  Perlmutter [21]. Using characteris-

tic method they obtained a solution for heat transfer 

of pulsating slug flow between parallel plates , and 
clarified that the time-averaged heat-transfer rate was 

not appreciably changed by the pulsation. Simultaneous-
ly, they pointed out that a node in wall temperature or 

heat flux variation might exist. A further elaborated 

numerical calculation was made by Mochizuki and Hatta 

[13] by including the effect of the transverse velocity 
distribution. 

     Recently, from the viewpoint of dynamic response , 
some analytical approaches to frequency response of 

transfer coefficient to wall shear stress were made . 
Alabastro and Hellums [1] made a calculation by straight -
forward numerical integration and , for the cases of very 
high and low frequency by a perturbation method similar 

to that used by Lighthill [11] . Lebouche [9] also used
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a perturbation method, but his results comprised a simi-

larity relation which is used in analysis of the steady-

state problen. Since his results represented only the 

low-frequency region, the validity of the similarity 

relation is not clear. In the results of both Alabastro 

et  al. and Lebouche the node did not appear. 

     On the other hand, no experimental approach to the 

frequency response of transfer coefficient has been made, 

because of the difficulty of experimental technique. 

1.3 Dynamic Process of Bursting 

     There has been found no literature in which the tur-

bulence structure has been studied in pulsating flow. 

     For steady turbulent flow, the importance of the 

wall region in the transport phenomena and the generation 

and maintenance of turbulence is well known. Recently, 

visual studies have shed new light on the study of the 

turbulence structure of the wall region. 

     Applying a combined dye-injection and hydrogen-

bubble technique to an artifically tripped turbulent 

boundary layer, Kline et al. [8] observed that the wall 

area (0 < y+ < 100) showed a distinct pattern character-

ized by a deterministic sequence of events occurring 

randomly in both space and time. They described the 

sequence as being composed of three stages: (i) the 

appearance of a relatively low-speed region of fluid near 

the wall: (ii) the 'lift-up' of this 'low-speed streak' 

from the wall followed by some form of 'oscillatory 

growth' and (iii) ultimately, the 'breakup' of any signs 
of coherency in the visual representations of this struc-
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ture. These entire three-stage process was called 'burst-

ing'. From estimates made from the hydrogen-bubble data, 

they observed that practically all the turbulence produc-

tion occurred during bursting. In addition they strongly 

suggested that the cycle was intermittent but had a de-

finite preferred range of period of occurrence and a well-

defined mean period, i.e. mean burst period. 

     Corino and Brodkey [3], using a dark-field illumi-

nation technique in successive strips of the flow, ob-

served a deterministic sequence of events which is in 

essential agreement with those reported by Kline et al.. 

Corino and Brodkey suggested that an interaction between 

accelerated and retarded flow was fundamental to the 

lift-up process. The first event of this stage was the 

deceleration  of ,the axial velocity characterized by the 
essential disappearance of the velocity gradient and by 

a velocity defect as great as 50 % of the local mean 

velocity. The second event was an acceleration; i.e. a 

mass of fluid coming from upstream and entering at a 

layer of y+ ti 15 was directed toward the wall and in-

teracted with the fluid in the decelerated region. The 

third event was a lift-up. 

     Rao et aZ. [17] measured the burst period over the 

wide Reynolds number range using a hot-wire anemometry 

technique in a turbulent boundary layer. Their measure-

ments indicated that the mean burst period scaled with 

the variables of the outer flow instead of the inner 

variables. 

     More recently, Nychas et aZ. [14] and Offen and 

Kline [15] using the same visual techniques as those 

used by Corino and Brodkey and by Kline et al. respect 
-ively, observed the outer region of turbulent boundary
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layer and suggested that the transverse 

part of the bursting process. 

     However, deterministic sequence of 

to the entire burst  period has not been

vortex

events 

known

 was a 

 related 

yet.

1.4 Purpose and Outline of This Study 

     One objective of this study is to investigate the 

dynamic behaviour of momentum, heat and mass transfer 

from a view point of frequency response. Another 

objective is concerned with the dynamic behaviour of 

turbulence. Of special interest is an investigation of 

bursting phenomena in pulsating turbulent flow. 

     In Chapters 2 and 3, the frequency responses of 

momentum, heat and mass transfer are discussed. 

     Chapter 2 deals with the frequency response of 

momentum transfer. For pulsating laminar flow, Sexl's 

analysis [19] is verified experimentally. For pulsating 

turbulent flow, a contribution of Reynolds stress to the 

frequency response is discussed. 

     In Chaper 3, the frequency response of heat or mass 

transfer in pulsating laminar flow is studied. Detailed 

discussion is made about the discrepancy from the 

similarity relation under three heating conditions over 

the wide range of frequency, analytically and experimen-

tally. 

     In Chapters 4 and 5, the dynamic behaviour of tur-

bulence is discussed. 

     Chapter 4 deals with the dynamic behaviour of 

pulsating turbulent flow. The relation between the 
burst period and the pulsation period is clarified
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through the measurements of the dynamic change of veloc-

ity and turbulence characteristics, by using a phase 

averaging technique and correlation functions. 

     In Chapter 5, dynamic process of bursting in reso-

nant pulsating flow is discussed. The turbulence gener-

ation and propagation are examined by using a phase-

averaged correlation function. Of interest is the 

relation between the burst period and the propagation 

time.

1.5 Fluid Mechanical Apparatus 

     The flowsheet of the pulsating tube-flow system is 

shown in Fig. 1.1. Liquid from the storage tank was 

pumped at a steady rate to a loop of  P-V.C. tube (12 m 
long and 4.45 cm internal diameter) by a centrifugal 

pump made of stainless steel. The forerunning and test 
sections are single straight tube of 5 m long and three 

different inside diameters, i.e., 0 .9, 2 and 5.16 cm. 
     Two bellows pumps, in which the fluids pulsate 

with a phase difference Tr to each other, were connected 

to the tube line at the inlet of the forerunning section 

and at the outlet of the test section, respectively; 

thus the pulsation was superimposed on a steady flow . 
The pulsation period could be altered within a range 

of 0.76 - 7.9 sec by means of a stepless variable 

speeder, and the amplitude of pulsation could be ad-

justed by varying the stroke of the pistons.
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CHAPTER 2 

FREQUENCY RESPONSE OF MOMENTUM TRANSFER

2.1 Introduction

     In this chapter, the frequency responses of flow 

rate and wall shear stress to pressure drop are studied 

experimentally. Discussions are made for both laminar 

and turbulent flows. 

     In pulsating turbulent flow in which the pulsation 

period is the same order as those of turbulence, it can 
be inferred that the structure of turbulence changes 

according to the flow pulsation; all the more so when 

the amplitude of pulsation is large enough to produce 

an appreciable effect on the generation of turbulent 

energy. Detailed discussions for the turbulence struc-

ture will be made in Chapters 4 and 5. The study in 

this chapter is restricted to the pulsating flow with 

the small amplitude; the amplitude of pressure drop is 

less than the time-averaged value. 

     First, frequency response curves for laminar flow 

were drawn experimentally and the results were compared 

with  Sexl's analysis. Next, for turbulent flow an eddy 

viscosity contribution to the pulsating component was 

discussed by comparing experimental results with an 

analytical estimation based on the Prandtl's mixing-

length theory.

2.2 Test Section and Measuring Equipment 

                  9
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     For the test section, two pipes of different inside 

diameter (0.9 cm and 2 cm) were used. 

     At the inlet of these pipes, the flow rate was 

measured by an electromagnetic  flowmeter (Yokogawa Model 

MFP-0.4). At the test section, the pressure drop be-

tween two points 200 cm apart was measured by a pressure 

transducer (Shinkoh Model DP 100) and the wall shear 

stress by the electrochemical method [12]. The test 

electrode consisted of a cathode of platinum film 

(length of mass transfer section R = 0.002 cm) and an 
anode of nickel pipe. Both surfaces of cathode and 

anode were carefully made flush to form a single tube. 

(see Fig. 3.4) From the mass transfer variation at the 
cathode, the variation of wall shear stress can be 

analytically calculated with high accuracy. The working 

fluids with their physical properties are listed in 

Table 2.1. 

     The electrical signals of wall shear stress and 

flow rate were amplified using a d.c. amplifier (Dana 

Model 3400) and then, each signal was recorded with that 

of pressure drop on a chart of photocorder (Yokogawa 

Model EMO-62). 

     The time constant of pressure transducer is negli-

gible small (Ca. 0.002 sec), while those of electro-
magnetic flowmeter (0.1 sec) and wall shear stress meter 

(see Section 3.4.4) can not be neglected. Accordingly, 
corrections for the measurements of flow rate and wall 

shear stress were made by using the time constants. 

2.3 Results and Discussion
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Table 2 .1. Test fluids

 D
[cm]

Re test fluids and their

 properties

physical

Laminar for flow rate
flow

glycerol

<2 x 103 water
0-70 wt .%

at 20 oc

for wall shear stress

2N KOH
0.9

0.01 mole K4Fe(CN.Ib
0.01 mole K3Fe(CN) 6

P = 1.081 Lo/cm3]
u = 0.01211 [g/cm•sec]
Sc = 1846

at 20 oC

turbulent
flow

3N KOH

5 x l03 0.01 mole K4Fe(CN)6

1 x 104 0.01 mole K3Fe (CN)
6

1 x 104 P = 1.132 [g/cm3 ]
2 X 104 u = 0.01404 [g/cm•sec]

2
5 x 104 Sc = 2390

1 x l05 at 20 oC
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  2.3.1 Experimental curve in pulsating flow 

       One example of experimental curve are illustrated 

  in Fig. 2.1. The three curves of pressure drop, wall 

 shear stress and flow rate are nearly sinusoidal, and 

 the latter two as output signals show apparent ampli-

 tude attenuations and phase shifts to that of pressure 

 drop as input signal. 

 2.3.2 Frequency response for laminar flow 

      The amplitude ratio and phase lag of each output 

 signal to the input signal were obtained from the first 

 harmonics of the oscillating components . The harmonic 
 analysis was made by using 20 values within one cycle . 

      Figures 2.2 and 2.3 show the experimental result s 
of frequency response of wall shear stress and flow 

rate. In thses figures the amplitude ratio is normal -
ized by that for quasi-steady state (w = 0) . They are 
correlated well on Stokes number Sn , i.e. nondimensional 
frequency, and agree well with Sexl's analysis shown by 

rigid lines. Comparison of two response curves shows 

that  wall shear stress responses more quickly than flow 

rate at higher frequency . 

2.3.3 Frequency response for turbulent flow 

     In turbulent flow, there exists large nonlinearity 

between flow rate and pressure drop. Therefore an as -
sumption of linearity within a limited range around the 

steady value was made to use the same procedure as that 

for laminar flow. 

     From the experimental results, it was clarified 

that the attenuations and phase shifts of both wall sh
ear
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stress and flow rate decreased as Reynolds number in-

creased. This Reynolds number dependency is attributed 

to the unsteady-state Reynolds stress. 

     To correlate the results with a variable similar 

to Sn for laminar flow, a rough estimation was made. 

The momentum equation for this system takes the form:

 DU  _ 1 aP y aaU  
atAr ar(rar)            —77c--77c—

1  a   
 r ar(ruv) (2.1)

For simplicity of calculation an eddy viscosity model 

based on the Prandtl's mixing-length theory is used as 

    uv = pc
DU=2 au 2 -p 

     ~u -A m(~) (2.2)

where E is the eddy viscosity and tin is the mixing 

length. 

     Similar to the case of pulsating laminar flow, 

time-dependent variables were divided into steady com-

ponents and pulsating components as follows.

  -
p ax(pax)s{ 1 + aP exp(iwt)}(2.3) 

 U = Us + U exp(iwt)(2.4) 

where aP is a real number but Up can be a complex number. 

Substituting Eq. (2.4) into Eq. (2.2) and neglecting the 

second-order term, one finds the pulsating component of 

eddy viscosity to be twice of steady component. 

DU 
-puv = 2pea—

rexp(iwt)(2.5)
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substituting Eqs.  (2.3)—(2.5) into Eq. (2.1) and 

subtracting the equation of steady component yield the 

expression for pulsating component as an ordinary 

differential equation with the parameter Sn 

   i Sn U  _ _ 2  + {1 +  1 d(2es/v) } 
1+2es/v1+2es/v R 1+2es/v dR 

                  2 

 x dU------ + dU+(2.6) 
dR2() 

                 2Uv 
where U = 21 aPand R = r/r0 , aP r0(-

p 3x )s 

and boundary conditions are 

U = 0atR = 1 
(2.7) 

dU/dR = 0 atR = 0 

     With an application of the principle of superposi-

tion, the numerical solutions of Eq. (2.6) for the ex-

perimental conditions were obtained by the Runge-Kutta-
Gill method. The eddy viscosity in steady state are 

referred to those by von Karman [7] for the wall region 

and that by Hinze [6] for the core region. First, an 

accuracy of numerical calculation was confirmed by com-

paring the calculation for laminar flow with Sexl's anal 

ysis. They were coincident within an accuracy of 0.1 %. 
     Figures 2.4 and 2.5 show both analytical and experi-

mental results plotted against a combined variable Sn/ 

(1 + 2ec/v), which is obtained from Eq. (2.6) by assuming 
that the eddy viscosity is constant and equal to that 

for the core region, i.e. 

ec/v = 0.07 R+
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In both figures, only two calculated curves for maximum 

and minimum values of Reynolds number of the experimental 

conditions, i.e. Re = 5 x  103 and 105, are indicated, as 

the other curves for Re = 104, 2.5 x 104 and 5 x 104 

exist in the narrow zone between the two curves. Because 

of the radial distance dependency of an eddy viscosity, 

the calculated results are not universally represented by 

a single curve. However, the experimental results over 

the wide range of Reynolds number are well correlated 

with the combined variable Sn/(1 + 2ec/v) within an ex-

perimental accuracy, and in good agreement with analyti-
cal curves. Thus, the contribution of Reynolds stress 

to the frequency response can be estimated by the eddy 

viscosity model similar to that for steady turbulent 

flow.

2.4 Conclusion 

1. The frequency response of momentum transfer for 

laminar flow depends only on Stokes number, and measure-

ments are well correlated with Sexl's analysis. 

2. In turbulent flow, the amplitude attenuation and 

phase shift of wall shear stress and flow rate to 

pressure drop decreases as Reynolds number increases 

because of the unsteady-state Reynolds stress. This 

contribution of Reynolds stress to the frequency response 

is estimated by Prandtl's expression for eddy viscosity 

over the following ranges of parameters: 

          5 x 103 < Re < 1 x 105, 10 < Sn < 800 and 

           0 < a < 1.0.
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3. The eddy viscosity for the core region of the 

is main cause of the Reynolds number dependency of 

quency response, so the modified parameter  Sn/(1 + 
2ec/v) is useful for the rough estimation.

tube 

fre-



CHAPTER 3 

FREQUENCY RESPONSE OF HEAT OR MASS TRANSFER

3.1 Introduction 

     In this chapter, the frequency response of heat or 

mass transfer in pulsating laminar flow is studied. 

The situation that is chosen for this study is the 

entrance-region heat transfer, because at fully devel-

oped region of heat transfer the transfer rate is in-

dependent of flow rate. 

     For the steady-state heat transfer at the entrance 

region of constant wall temperature,  Leveque [10] showed 

analytical results using the similarity variable. This 

similarity variable was applied to the other two heating 

conditions, i.e. constant wall heat flux and linearly 

varying wall temperature, by other investigators [2]. 

     This section deals with the transfer under those 

three heating conditions. First, the frequency re-

ponses of transfer coefficients over the wide range of 
frequency were charified analytically by using the 

similarity variable. Next, the results were compared 
with the exact numerical solutions and experimental 

results ; the validity of similarity relation and the 

existence of node were discussed. In the last part of 

this chapter, an effect of pulsating flow on the time-

averaged transfer coefficient was discussed.

3.2 Analysis

22
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     Assuming that the similarity variable is applicable 

not only to steady flow but also to pulsating flow, the 

auther made an analysis as follows. 

     The thickness of the temperature boundary layer is 

assumed to be thin enough so that the curvature of the 

tube wall is negligible and the velocity profile may be 

considered as a linear function of distance from the 

wall with a slope equal to the actual slope at the  wall. 

Hence, unsteady energy equation can be written nondimen-

sionally as 

ar  +  Tw(0) ar  =  a2r(3 .1)   aAT
wsaX aY2 

where 0 = At/Cp p r02 , Y = y/r0 and X = x/DRePr 

     Input and output signals can be divided into time-

averaged and oscillating components as 

Tw(e) 
= 1 + a exp(iSnPrO)(3 .2) 

TWS T 

  r = rs(x , Y) + rp(x , Y) exp(iSnPrO)(3.3) 

where aT is a real number but r can be a complex number. 

Substituting Eqs. (3.2) and (3.3) into Eq. (3.1), 

neglecting second-order terms and comparing the terms of 

the same family, one obtains differential equations for 

the two components as 

ar a2r 
Y  ax 

aY2(3.4) 

                                                  2 

        ararar 
  iSnPrr+ a s + yP =p(3.5) 
aX aX ay-2
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3.2.1 Solution for steady flow 

     Using the method of combination of variable, 

[10] and Bird [2] obtained the solution of Eq. (3. 
which similarity variable, Eq. (3.6) was used. 

    n  = Y/(9X)1/3 

The three heating conditions are 

  [A] constant wall temperature. 

  [B] constant wall heat flux. 

  [C] linearly varying wall temperature. 
The following dependent variable correspond to the 

conditions, respectively. 

           ((r' -  r'b)/(r'w - rib)

F(n) =
 ar, 

 aY

a 

ax

ar' 

r, - r,

Y=0 

b
J

Leveque 

4) in

(3.6)

C

above

(3.7)

(3.8)

(3.9)

Then partial differential equation, 

ordinary differential equations. 

For conditions [A] and [C], 

    d2 Fs + 3 n2dFs= 0 
d n2d 

and for condition [B],

d2Fs
+ (3 n3- 1)

d Fs
= 0

Eq. (3.4) becomes

(3.10)

n

thus 

as

  d2    n 

boundary conditions

do 

become equal in all three

(3. 11)

cases
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 Fs  =  0 at n -' 
                                              (3.12) 

F5=1 at n= 0 

Accordingly, the solution of condition [C] is equal to 

the space-averaged value of the solution of condition 

[A]. As shown in Fig. 3.1 the Nusselt number as func-
tions of X in steady laminar flow are similar for the 

three heating conditons. 

3.2.2 Solution for pulsating flow 

     Now it is assumed that the similarity relation 

between X and Y which is valid in steady flow is pre-

served in pulsating flow. That is, the function F can 

also be applied to the oscillating components. Equation 

(3.5) becomes ordinary differential equations: for 
conditions [A] and [C] 

d2F ---------P 
         + 3x12 FP - 92/3i(SnPrX2/3) F 

d ndp 
      9an2 

    r(1/3) ----------- exp(-n3)(3.13) 

and for condition [B] 

d3Fd2F 2/3 rld3—+ (3X13- 1) dp - 9''i(SnPrX2/3) 
                            n dF9a4 X (T)----------Fp) =r (2/3)exp (-13) (3.14) 

where 

Fp = f Fp do(3.15)



10 

 3 z 

 10(

 104

(C) 

(A) 

(B) 

(C)

Fig.

103 

3.1. Local

   102 X 

Nusselt number in

developed 

  region

10i 

steady flow

0

N 

U



                                             27 

and boundary conditions become 

 dF 
   Fp = 0(dn—= Fp= 0) at i--co 

                                             (3.16) 
Fp = 0 CF = 0) at n = 0 

     Note that there appears variable X in both Eqs. 

(3.13) and (3.14). Therefore, the similarity relation 

does not hold for unsteady temperature profiles in 

pulsating flow. However, if SnPrX2/3 is regarded as a 

parameter, these ordinary differential equations are 
easily treated as first approximations. Hence the 

numerical solutions of Eqs. (3.13) and (3.14) were ob-

tained by using the Runge-Kutta-Gill method with an 

application of the principle of superposition. As the 

upper boundary, n = 2 was selected instead of the in-

finite value because at rl = 2, Fs and dFs/df are less 

than 1.5 x 10-3. 

     The amplitude ratio and phase lag were calculated by 

       amplitude ratio = ̂  Re2(Z) + Im2(Z) (3.17) 
and 

       phase lag = -tan-1 {Im(Z)/Re(Z)}(3.18) 

where 
          Nu Z = Nup /3aT(3.19 ) 

              s for pseudo-steady state 

Nup 
_ _ 1 a(3.20)    N

us 3T 

     The results for these three heating conditions are 

shown in Fig. 3.2. For conditions [A] and [B], the
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variations of amplitude and phase lag with respect to 

 SnPrX2/3 are similar. While for condition [C] the 

tendency of variation differs from the other two heating 

conditions. Especially at large values of SnPrX2/3 the 

phase lag approaches Tr/2 for condition [C] but 3ff/4 for 
the others. Concerning the frequency response under 

heating condition [A], Fig. 3.3 shows a comparison 

between the solution of Eq. (3.13) and those calculated 

from Lighthill's approximation [11], which is valid for 

high frequency, and those of Lebouche's approximation 

[9] and those of Fortuna and Hanratty's calculation [4]. 
They are in good agreement with each other within a 

limited region. 

     For each experimental condition, the numerical 

solutions of Eq. (3.5) are also obtained, which does not 

comprise the similarity relation, and as well as for the 
following equation 

            2Upe                        iwt 

   ae(12R +4<U>s) axR DR(R aR)(3.21) 

where the pulsating velocity profile Up was calculated 

from Eq. (2.6) in Section 2.3.3. Equations (3.5) and 

(3.21) were calculated by using a finite difference 
method. Several solutions of varying grid size were used 

in the usual way to determine that satisfactory accuracy 

was obtained. 

3.3 Test Section and Measuring Equipment 

     The experiments of frequency response were conducted 

for local value of heat transfer coefficient under heating
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condition [B] and for space-averaged value of mass 

transfer coefficient under heating condition [A]. 

     The test section was a round tube of smooth surface 

of 2 cm inside diameter. To measure the wall temperature 

under heating condition [B], as shown in Fig. 3.4, the 

copper-constantan thermocouple sheets were embeded in 

the plastic inner wall; the surface was made flush, and 

nickel film was coated on the whole surface by chemical 

plating. Its thickness was about 0.5  p and its length 
was 50 cm. The terminals at both ends of this film 

were jointed to copper rings which were connected to a 

variable transformer stepped down from a 100-V., a.c. 

electrical source. The cold junction of the thermocouple 

was located upstream of the heated section so that the 

readings of the thermocouple indicate the difference 

between bulk and wall temperatures. The difference 

between bulk and wall temperatures was maintained within 

 50 C by changing the wall heat flux with a variable 

transformer to suppress the temperature dependency of 

fluid properties. The circulated liquid was water (Pr = 

7.87 at 16°C) or a solution of 55 wt.% glycerol and 45 

wt.% water (Pr = 70.9 at 16°C). The pressure drop as 

input signal was measured by a pressure transducer. The 

distance between the two pressure taps was 200 cm. 

     For heating condition [A], an experiment of mass 

transfer in a diffusion-controlled electrolytic reaction 

[12] was conducted. The circulated liquid was an aqueous 
solution of 0.001 - 0.01 mole of K4Fe(CN)6 and K3Fe(CN)6 

per litre with 2N KOH (Sc = 427 at 50°C), 3N KOH (Sc = 
2390 at 20°C), 5N KOH (Sc = 3130 at 20°C) or 5N NaOH 

(Sc = 16020 at 17°C) as a supporting electrolyte. The 
test section (2 cm I.D. circular tube) consisted of
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nickel ring and an anode of nickel pipe, the surface area 

of which was larger than that of the cathodes. All sur-

faces of cathodes and anode were carefully made flush to 

form a single tube. The variation of mass transfer co-

efficient was recorded as the variation of electric 

current density in diffusion-controlled electrolytic 

reaction at limiting current. The change of wall shear 

stress as input variation was measured with a very small 

cathode (length of mass transfer section  t = 0.007 cm) 

located at the entrance of the test section.

3.4 Experimental Results and Discussion 

3.4.1 Transfer coefficient in steady flow 

     Prior to running the experiments in pulsating flow, 

the local heat-transfer coefficients and space-averaged 

mass-transfer coefficients in steady flow were measured. 

As shown in Fig. 3.5, the experimental results for heating 

conditions [A] and [B] are correlated well with Leveque's 

solution [10] and Bird's solution [2], respectively. 

These results show the similarity relation between X and 

Y is valid over the whole region of the experimental 

condition of this study. 

3.4.2 Experimental curve of transfer coefficient in 

        pulsating flow 

     On a steady flow of Pr = 7.87, 70.9 and Sc = 427, 

2390, 3130, 16020, a pulsating flow of pulsation period 

T = 0.76 - 7.9 sec (T = 7.9 sec only in local heat 

transfer measurements) was overlapped and the local 

transfer coefficients at positions of x = 2.5 cm, 5cm,
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10 cm and 20 cm, and the space-averaged transfer coeffi-

cients on surfaces of  k = 0.4 cm and 1 cm, were measured. 

Examples of experimental curves are shown in Figs. 3.6 

and 3.7. Figure 3.6 showes that there are apparent phase 

shifts between the variation of pressure drop and that of 

reciprocal of temperature difference (which corresponds 

to Nusselt number). In Fig. 3.7, there can be seen the 

same trend between the variation of wall shear stress and 

that of mass flux (which corresponds to Sherwood number). 

3.4.3 Frequency response of local Nusselt number 

     By the same method as that described in Section 2. 

3.2, the amplitude ratio and phase lag of output signal 

to the input signal were calculated. The results for 

local Nusselt number are shown in Figs. 3.8 and 3.9. In 

these diagrams, as Eq. (3.19) suggests, the variations of 

wall shear stress are used as input signal. The amplitude 

and phase of wall shear stress were calculated from the 

amplitude and frequency of the measured pressure drop by 

using Sexl's analysis (see Section 2.3.2). 

     Numerical calculations of Eqs. (3.5) and (3.21) at 

the value of SnPr of these experimental conditions were 

also shown in these figures. The curves are almost 

coincident with each other. Therefore, up to the region 

where X is nearly equal to 10-2, the approximation of 

linear velocity profile seems to be valid as in the case 

of steady state. In addition, these calculations corre-

late the experimental data fairly well; discrepancy found 

in the phase lag is supposed to be caused by an experimen-

tal error. On the other hand, it is clear that the first 

approximation, Eq. (3.14) is only valid at very high 

and low frequencies.
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 3.4.4 Frequency response of space-averaged Sherwood 
         number 

     The local values of Sherwood number for maximum and 

minimum values of SnSc of the experimental condition were 

calculated numerically from Eq. (3.5). These were coin-

cident within an accuracy of 1 Integrating the local 

values gives the space-averaged values. In Fig. 3.10, 

these results are compared with the first approximation. 

The local values represent the same trends as in the case 

of constant wall heat flux. With respect to the space-

averaged value, osillation on bode diagram is reduced and 

the deviation from the first approximation is smaller 

than the cases of local value. 

     Together with these lines of space-averaged values, 

experimental results are plotted in Fig. 3.11. Though 

the amplitude ratios of experimental results are a little 

larger than the analytical values, the experiments are 

well correlated by the analytical solutions. 

3.4.5 Resonance point 

     Siegel et aZ. [21] pointed out that a node in wall 

temperature or heat flux existed at every integer nultiple 

of the length X = Tr/2SnPr which is the distance that the 

fluid travels during a complete oscillating cycle. 

Mochizuki et al. [13] showed that the node existed at each 

integer of multiple of X = 3rr/4SnPr, which is the distance 

that the fluid at centreline of the tube travels during a 

complete oscillating cycle. 

     The minimum points of amplitude ratio in Figs. 3.8 — 

3.10 show that there also exist nodes in the entrance 

region of heat transfer. The points of node can be called
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resonance points, because the 'resonance' reported in the 

study of heat exchanger dynamics [22] with approximation 

of constant transfer coefficient is essentially the same 

as the phenomenon of the node appearance in the transfer 

coefficient. The numerical results in this work reveal 

that the resonance point does not scale with above men-

tioned SnPrX but with  SnPrX2/3 which was obtained from 

similarity relation: SnPrX2/3= 7.5 under heating condi-

tion [A] and SnPrX2/3= 4.6 under heating condition [B]. 

This means that a characteristic velocity which controls 

the resonance is the velocity at one postion which is 

expressible by using the similarity variable (n= 0.56 

and n = 0.34, respectively). 

3.4.6 Effect of flow pulsation on time-averaged 

        transfer rate 

     It has been clarified from the analytical point of 

view that the time-averaged rate of heat transfer was 

not appreciably changed by flow pulsation, in the devel-

oping region by Siegel et al. [21], in the entrance 

region by Alabastro et aZ. [1]. However, some experi 

mental studies showed that there was an increase of 

heat transfer coefficient in pulsating flow. This seems 

to be due to the following facts. 

     The analytical studies were made under the condition 

that the amplitude of pressure drop or wall shear stress 

as input is less than the steady component. On the other 

hand, in most experimental studies, the pulsating com-

ponent of the flow rate was kept less than the steady 
component. So when the pulsating component of flow rate 

is large, the wall shear stress goes beyond zero, that
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is, reverse flow occurs near the wall, because wall 

shear stress changes more quickly than flow rate with 

increasing frequency as described in Section 2.3.2. 

During the period of reverse flow, however, the mass 

transfer rate or temperature difference in the entrance 

region of heat transfer is still positive. As a result 

the integration of the oscillating curve of transfer 

coefficient with respect to time, i.e. the time-averaged 

value fo transfer coefficient becomes larger than the 

steady-state one. 

     The experimental verification of this consideration 

was conducted by measuring the variations of pressure 

drop, flow rate and space-averaged mass-transfer rate in 

pulsating flows of large amplitude. The flow rate was 
measured by electromagnetic flowmeter. Figure 3.12 

illustrates one example of such experimental results. 

The amplitude of flow rate is one half of the steady 

value and so the fluid as a whole does not flow reversely 

in any instance, while the amplitude of wall shear stress, 

which was calculated from the measurement of pressure 

drop, is larger than the steady-state value and so the 

fluid near the wall flows reversely at about wt =  ff. 

Nevertheless, the mass transfer coefficient is consist-

ently positive, indicating the distortion of the curve 

by reverse flow near the minimum value. The greater the 

amplitude and smaller the steady flow rate, the more 

noticeable this phenomenon became. The tendency is 

similar to the experimental results of time-averaged 

mass-transfer rate by Shirotsuka [20]. 

     However, this effect is of little use for practical 

application, because as seen in Fig. 3.11 the amplitude 

ratio of transfer coefficient decreases rapidly with
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increasing transfer length and increasing frequency at 

which the reverse flow becomes  conspicuous.

3.5 Conclusion 

1. Over the region where steady-state transfer is 

subject to the linear velocity gradient near the wall, 

the same linear profile can be used in analysis of 

unsteady-state transfer. 

2. The similarity relation between X and Y which is 

valid in steady-state transfer does not exist in unsteady-

state transfer. 

3. The amplitude ratio and phase lag oscillate around 

the first approximations obtained from assuming the 

similarity relation owing to the history of the fluid 

from the inlet section of transfer. 

4. The resonance point which appears explicitly in the 

local value is characterized by SnPrX2/3. This parameter 

is obtained from the similarity relation and it means 

that the characteristic velocity of the resonance is 

determined by the steady thermal condition. 

5. In the space-averaged value, the nonsimilarity 

between X and Y is reduced, and the amplitude ratio and 

phase lag change smoothly with respect to frequency. 
6. The phase lag of space-averaged values approaches 

7/2 at large value of SnPrL2/3, while that of the local 

value approaches 37/4. 

7. The increase of time-averaged value of transfer rate 

is mainly due to reverse flow near the wall at large 

amplitude of the flow rate.



CHAPTER 4 

DYNAMIC BEHAVIOUR OF PULSATING TURBULENT FLOW

4.1 Introduction

     This chapter deals with the experiments on the 

dynamic behaviour of velocity and some turbulence 

characteristics in pulsating turbulent flow. 

     In chapter 2, the eddy viscosity of pulsating tur-

bulent flow was assumed to be similar to that of steady 

flow, and this assumption was verified to be useful for 

the prediction of frequency response of momentum trans-

fer. However, actual behaviour of turbulence is infer-

red to be changed by flow pulsation; especially when 

the amplitude of pulsation is large and the pulsation 

period is the same order as those of bursting, an essen-
tial change of structure and production of turbulence 

may occurs. On the other hand, even in steady turbulent 

flow the bursting phenomenon [3, 8] shows a periodicity 

and large axial velocity change, i.e. deceleration and 

acceleration. Accordingly, it is believed that an in-

vestigation of the periodicity of bursting in pulsating 

turbulent flow can reveal the essential aspects of tur-

bulence generation in pulsating flow as well as in steady 

turbulent flow. Thus the condition that is chosen for 

the study is the pulsating turbulent flow in which the 

amplitude of velocity pulsation is larger than that of 

turbulent fluctuation near the wall. 

     First, under constant Reynolds number (Re =  104), 

the profiles of velocity and some turbulence character-

istics were examined dynamically over the wide range of 
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pulsation period. Secondly, the burst period of both 
steady and pulsating flows were measured and the relation 

between the burst period and that of pulsation was made 

clear. Finally, such relations were obtained at other 

Reynolds numbers for a systematic treatment of pulsating 

turbulent flow. 

4.2 Test Section and Measuring Equipment 

     The test section is a circular tube of smooth 

surface, 2 cm internal diameter and 2 m in length; it is 

located downstream of a forerunning section of 150 

diameters long. At the test section, a pressure drop 

between two points 175 cm appart was measured by a 

pressure transducer, and an instantaneous velocity 

profile was measured by the electrochemical method  [12]. 

The working fluid is an aqueous solution (p = 1.046 g/cm3, 

p = 0.0112 g/cm.sec at 200 C) of 0.01 mole of K4Fe(CN)6 
and K3Fe(CN)6 per litre with 1N KOH as a supporting 

electrolyte. 

     The electrical circuitry being used is shown in Fig. 

4.1. The instantaneous velocity was converted into 

electric current by using the electrochemical method. 

Its voltage drop across a standard resistor was amplified 

with a d.c. amplifier. The electrical signal from this 

amplifier and that from the pressure transducer mentioned 

above were recorded on separate channels of a magnetic 

tape using a tape recorder (Teat Model R-400) . For 
analog-digital conversion, a hybrid computer (Hitachi 

Cloap 2000) was used. 

     Concerning the time between bursts, a correlator
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(Teac Model  C-100) was used to determine the time delayed 
auto- and cross-correlations. The original signal is 

separated by cut-off high- and low-pass filters (Kanomax 

Model 21-1211) into the fluctuating component and the 

pulsating component, from which the cross-correlation is 
calculated. 

     Figure 4.2 shows the probe used (a cathode of 

electrochemical method; this is not a hot-wire anemometer) 

and its calibration curve. The probe consists of a 

platinum wire (diameter 0.1 mm, length 1.1 mm) and glass 
fusing supports which are connected with a stainless-

steel support.

4.3 Results and Discussion 

4.3.1 Profiles in steady flow 

     Prior to running the experiments of pulsating flow, 

the characteristics of steady turbulent flow, namely the 

mean velocity and the r.m.s. fluctuation profiles, were 

determined. The turbulence intensity profile shown in 

Fig. 4.3 and the velocity profile are in sufficiently 

good agreement with the measurements of other investiga-
tors [16] . 

     Taking into account of the fact that the frequency 

of the pulsation of velocity is an order of magnitude 

lower than the frequency of turbulent fluctuation, it 

may be concluded from Fig. 4.3 that no correction for 

the measured value of the pulsating velocity is necessary, 

although the dynamic response of this kind of probe has 

not yet been clarified.
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4.3.2 Velocities in pulsating flow 

     Figure 4.4 illustrates one example of velocity 

variation with respect to time. Apparently, the deter-

mination of pulsating comporent from only one cycle is 

not accurate enough. Accordingly, the phase average, i.e. 

an average of the corresponding value from several diff-

erent cycles at the same phase angle, was made: 

 N 
 U(t)= 1): Ui(t + nT)(4.1) 

n=1 

where Ui = U + u , and N = 20 were chosen. The same 

averaging procedure was used to determine the change of 

pressure drop. 
     For calculating the turbulence intensity by extract-

ing the turbulent component, however, a procedure of this 

kind would require a longer recording time and a higher 

exactness in the hybrid computer than are available, in 

order to do enough subtractions of U from Ui at exactly 

the same phase angle. On the other hand, the experiments 

reveal that the frequencies of turbulent fluctuations, 

which contribute the essential part to the intensity, are 

an order of magnitude higher than those of pulsation. 

Hence the pulsating component was removed with a high-

pass filter and the small effect of amplitude attenuation 
by the filter was corrected using an attenuating ratio 

measured in the steady flow; thus the error caused by the 

filtration could be eliminated satisfactorily. 

     The calculation of turbulence intensity were made by 

using

u' (t)
N M 

 E E  {u(t 
n=1 m=1

mLT) }2 (4.2)
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where M = 7, N = 20 and  MST/T = 1/32 were chosen to 

avoid too long recording and calculation times, based 

on the experimental fact that the intensity of turbu-

lence changes continuously and smoothly. 

     As for analog-digital conversion, it required very 

high accuracy to adjust an external clock to the pulsa-

tion period T. Hence, it was always checked whether 

the autocorrelation coefficient of AP/Ax at T took a 

maximum value. 

     The calculations of AP/ox, U and u' were made for 

11 radial points and at 16 phase angles within one cycle, 

starting from a time when the pressure drop had the same 

value as in steady-state flow, i.e. wt = 0. The curves 

for the pressure drop and for the velocity U in pulsating 

flow were nearly sinusoidal. Using above-mentioned phase 

angle, the pulsating profiles of velocity and of turbu-

lence intensity were obtained. 

     From the measurements at various period of pulsation 

ranging from 0.76 to 7.9 sec, it is found that the results 

can be clearly classified into two groups by a critical 

period of pulsation Tc. Those two groups will be dis-
tinguished by calling them Profiles I (T > Tc) and 

Profiles II (T < Tc), respectively. Detailed discussions 

will be found in the following sections, where two typi-

cal results normalized with Tw, u* and R+ (determined in 

the steady-flow condition) are shown. 

4.3.3 Profiles I (T > Tc) 

     Figure 4.5 shows the velocity profiles in pulsating 

flow, where the plots indicate the measurements and the 

curved lines indicate the approximated biquadratic equa-
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tions obtained by the least squares method. The profile 

for steady flow is also included. The parameter varied 

in this diagram is the phase angle (based on one cycle 

of the pressure-drop curve). 

     The velocity profiles in pulsating flow are similar 

to that in steady flow, but mostly their radial gradients 

are a little larger, as can be seen from Fig. 4.5. 

     Figures 4.6 and 4.7 show the shear stress profiles 

and the Reynolds stress profiles, respectively. These 

were calculated by the integrated equation of motion, 

i.e. 

 r 
  -r -rp

p 3x  at(J2Trr' U dr'/irr2) } 

 0 (4.3) 

Both results point out the similarity to those in steady 

flow. 

     Eddy viscosity profiles are shown in Fig. 4.8. The 

values in pulsating flow in most parts are smaller than 

those in steady flow, so the variation of the Reynolds 

stress is not so large as the variation of the velocity 

gradient. 
     Figure 4.9 shows the profiles of intensity of 

turbulence. Unlike the velocity pulsation, the intensity 

of turbulence does not vary so much. It seems that the 

turbulent fluculations are not affected by the pulsating 

flow. 

     As the velocity profiles in pulsating flow are 

similar to that for steady flow, the system seems to 

reach its equilibrium state at every moment. But this 

cannot be concluded; as the intensity of turbulence does 

not change with the flow pulsation, the system does not
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really reach its equilibrium, and the structure of 

turbulence is not affected remarkably by the pulsation. 

4.3.4 Profiles II (T < Tc) 

     The velocity profiles in pulsating flow shown in 

Fig. 4.10 are different both from those shown in Fig. 

4.5 and from the profiles for steady flow. They are 

smooth in the acceleration period but they show the 

velocity defect and the decrease of velocity gradient 

near the wall in the deceleration period. 

     The profiles of shear stress and Reynolds stress 

shown in Figs. 4.11 and 4.12 also differ from the steady-

state ones and those shown in Figs. 4.6 and 4.7, respec-

tively. Different trends are obvious in the accelera-

tion and in the deceleration period. The shear stress 

and the Reynolds stress take large negative values during 

a considerable time interval. This was confirmed by the 

measurement of wall shear stress using a probe mounted 

flush with the wall. In the flow section where the 

velocities could be measured with a probe, they do not 

take negative values, as a reverse flow occurs only very 

near the wall. 

     Since the Reynolds stress takes negative values, 

while the velocity gradient is positive, the eddy vis-

cosity profile shown in Fig. 4. 13 include negative 

values. Therefore one cannot apply the simple eddy 

viscosity model to the case of Profiles II. 

     Figure 4. 14 shows the profiles of intensity of 

turbulence. They also change around the steady-state 

curve, and rise considerably in the zone  37114 < wt < 

37r/2 but not elsewhere. Gerrard [5] observed the similar
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variation of turbulent fluctuation, so his experiment 

was apparently done within the same region. 

     According to the results of Profiles II, there 

obviously is a fundamental change in the structure of 

turbulence: Profiles II show many similarities to the 

profiles of velocity and turbulence intensity of steady 
turbulent flow during the bursting. 

     Detailed studies of the bursting phenomena have 

been made by Kline et al. [8] in a turbulent boundary-

layer flow. They pointed out that the production of 

turbulence occurred essentially during bursting times 

in the zone 0 <  y+ < 100, and showed the profiles of 

turbulence intensity during bursting and non-bursting 

periods, which were similar to those at wt = Tr and at 
wt = 0 in Fig. 4. 14, respectively. If we take into 

account simultaneously the above-mentioned facts and 

the facts of local acceleration and deceleration of 

fluid described by Corino and Brodkey [3] for steady 

turbulent flow, we can say that there are similarities 

between the bursting process (changing the instantaneous 

velocity and the intensity of its fluctuation) and the 

behaviour of the flow represented by Profiles II. 

     Moreover, Kline et al. [8] suggested that the 

bursting had a definite 'preferred range of period of 

occurrence'. By paying attention also to the relation 

between the pulsation and the burst period, a quantitative 

study for tube flow will be made as described below. 

4.3.5 Time between bursts in steady flow TB 

     Since detailed measurements of TB in steady turbulent 

tube flow have not been reported, such measurements were
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made, prior to measurements in pulsating flow. 

     As shown in Fig. 4. 15, the value of TB were meas-

ured by the delay time of the location of the maximum 

in the autocorrelation curve of velocity fluctuations. 

Many studies using an autocorrelation have been made 

assuming that all the information is included between 

      1 and Ruu = 0; however this is not so. Kline  Ruu = 

et  al.[8] have shown that the mean value of TB obtained 

by the visualization method agreed well with the delay 

time required to obtained the second mild maximum of 

autocorrelation functions of longitudinal velocity 

fluctuations in the viscous layer. 

     Figure 4. 16 shows a histogram of TB from 100 

measurements which were obtained while keeping the time 

constant of the averaging circuit of the correlator at 

its minimum. The value of TB are largely spread around 

the mean value, and they nearly obey a log-normal dis-

tribution proposed by Rao et al. [17] according to meas-

urements in a turbulent boundary-layer flow. The follow-

ing mean value of TB are the results obtained while 

keeping the time constant of the averaging circuit of 

the correlator at its maximum. 

     According to the studies by Kline et aZ. [8] it has 

been assumed that TB does not change, at least in the 

zone of 0 < y+ < 100. This was checked and is shown in 

Fig. 4. 17. Within the Reynolds number range of 

accomplished measurements, a peak value of autocorrela-

tion at constant delay time TB clearly appeared in the 

region between the wall and about y+ = 100-200. 

However, the upper limit of y+ depends on Reynolds number, 

this dependency was not determined precisely. 

     All available measurements of TB shown in Fig. 4. 18
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 were converted into dimensionless terms by using the 

 bulk parameters U and D; the results  TB <U>/D are shown 

 in Fig. 4. 19. From Fig. 4. 19 it can be said that the 

 bursting repeats at a distance from 10 to 20 times the 

 diameter D if the fluid is convected with the mean 

 velocity <U>, although this scaling shows some Reynolds 

 number dependency. 

 4.3.6 Time between bursts in pulsating flow 

      In the same manner as in the measurements in steady-

state flow, T was measured in pulsating flow. First, 

as shown in Fig. 4. 20, its constancy within a limited 

region from the wall was confirmed. 

     Figure 4. 21 shows TB
pplotted agaist T. At large 

value of T, the values of TB
pare constant and agree 

well with TB shown by a rigid line. The smallest value 

of T in such a region is called the critical period Tc. 
In the region of T > Tc, pulsation does not affect the 

mean value of the burst period, so the turbulence can 

be considered as being unchanged , as mentioned before. 
     Next we will discuss the other region, i .e. T < Tc. 

As shown by a broken line in Fig . 4. 21, the delay time 
TBpdetermined by the maximum value of the autocorrela- 

tion agreed well with the pulsation period . However, 

from this result alone , it cannot be said that the 

value of TB
pis equal to T, because the pulsating 

component itself might show this maximum . 

     Therefore, to confirm that TB
p= T in this region, 

the cross-correlation coefficient between the fluctuating 

component and the pulsating component was measured . As 

a result, where T is greater than Tc, the cross-correla-

tion does not exist, i.e. it is zero at any delay time
,
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but where T is less than  Tc, the cross-correlation is 

generally not equal to zero, obviously because of the 
same periodicity. 

     Figure 4. 22 shows that the maximum correlations 

are independent of the cut-off frequency of n of the 

high-pass filter, if n has a value above 50. 

     Figure 4. 23 shows the maximum correlation Ruj(T) 

plotted against T. From the facts mentioned above it 
can be concluded that if T is less than Tc, the value of 

TBpis equal to T; that is a resonance (note that this 
resonance is not the 'reconance' in heat transfer!) 

occurs between the pulsation and the bursting. Accord-

ingly, as shown in Figs. 4. 10 and 4. 14 the velocity 

and turbulent fluctuation pulsate in a manner similar 

to the bursting in steady-state flow. 

     Moreover, a comparison of Fig. 4. 23 with Fig. 4. 

16 shows that Tc agrees with the maximum time between 

bursts of steady-state flow. So, the region where 

TBp= T is the region where TB exists, i.e., the pre- 
ferred range of the burst period of steady-state flow. 

     From the results of bursting in pulsating flow, it 

becomes clear that the preferred range of burst periods 

is not changed by the flow pulsation and that it also 

controls the pulsating turbulent flow. That is, when 

the pulsation period is higher than the upper limit of 

this range, the mean burst period is equal to that of 

steady-state flow, but when the pulsation period is 

included in the region, the resonance occurs , i.e., 
bursting of the same period as the pulsation period 

dominates. 

4.3.7 Classification of pulsating turbulent flow
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    Figure 4. 24 shows Tc (together with  TB and the 
later mentioned Tq) plotted against the Reynolds number. 
The value of Tc, which is obtained from the correlations 
mentioned above, seems to be coincident with TB at Re = 
2300, but this is not so at other Reynolds number. The 

dependency of Tc on Re seems to be very complex, maybe 

even stepwise, but, as a rough approximation, the 

relation may be written as 

  T<U>    c----------- 
ti 0.19 Re2i3 (2300 < Re < 105) (4.4) 

Using the Tc<U>/D versus Re curve, we may classify the 

pulsating turbulent flow over a wide range of Reynolds 
number: the critical period of pulsation Tc separates 

the range of Profiles I from the range of Profiles II. 

The range of Profiles II including the profiles of 

Gerrard [5] lies below the Tc curve and the range of 

Profiles I lies above the Tc curve. The observation by 

Gerrard was made at a very large pulsation period (T = 

12.19 sec) but the dimensionless term fits in the range 

of Profiles II. 

     Finally, the upper and lower limits of both regions 

(Profiles I and II) will be described. It is reasonable 
to expect that at a large value of T there exists a region 

where TB smoothly with the pulsation, and that 

the structure of turbulence changes according to the 

turbulence structure of steady flow at a corresponding 

value of velocity. Such a state is a pseudo-steady 

state, where the amplitude ratio of flow rate is close 

to unity. The dotted line for Tq in Fig. 4. 24 is 

obtained from the analysis in Section 2.3.3 so as that 

the amplitude ratio is equal to 0.95. The upper limit
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may be estimated to exist near this line. 

    The lower limit may be the smallest value of TB, 

below which it is assumed that the pulsation does not 

affect the bursting but interacts with the turbulent 

fluctuation and distort it directly. The smallest 

value of TB may be estimated from  TB , T and the log-
normal distribution.

4.4 Conclusion 

1. The time between bursts of steady turbulent flow 

in a tube was determined in a satisfactory way. 

2. The preferred range of burst periods of steady flow 

control the bursting phenomena in pulsating turbulent 

flow. 

3. By means of the critical pulsation period Tc, 

which is equal to the maximum time between bursts, two 

types of behaviour of pulsating turbulent flow can be 

distinguished. 

4. If the pulsation period T is longer than the critical 

pulsation period Tc, the pulsation does not affect the 

mean time between bursts, so the turbulence intensity 

does not pulsate and the velocity pulsates smoothly. 

5. If T is shorter than Tc, the resonance occurs, i.e., 

the bursting of the same period as that of pulsation 

dominates, so the velocity and turbulent fluctuation 

pulsate in a manner similar to those in the bursting 

phenomenon of steady flow.



CHAPTER 5 

DYNAMIC PROCESS OF BURSTING IN PULSATING TURBULENT 

 FLOW

5.1 Introduction 

     In this chapter, the dynamic process of bursting 

is studied experimentally. 

     As shown in Section 4.3.5, the occurrence of the 

bursting has a well-defined mean frequency which scales 

on the bulk parameters rather than the wall parameters. 

While, according to Kline et al. [8], the time period 

of the observed bursting process near the wall is only 

a part of the whole burst period and the process from 

the last stage, so called 'breakup' to the first stage 

of the next bursting has not been clarified. Therefore, 

a sequence of events subsequent to the breakup is imag-

ined to occur in the core region. However, it seems 

very difficult to make clear the entire cycle of burst-

ing in steady turbulent flow, because the generation of 

turbulence near the wall occurs randomly in space and 

time. 

     On the other hand, as was clarified in Section 4.3. 

6, the bursting phenomenon in the pulsating flow shows 

the same periodicity as the pulsation period, i.e. the 

resonance occurs, if the pulsation period is within a 

preferred range of burst period. It is expected that 
the detailed study of spatial and temporal relation 

between events in resonant pulsating flow will show the 

entire cycle of events of bursting phenomenon. Thus 

                        84
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the study in the resonant pulsating flow is worthwhile. 

     First, under constant Reynolds number (Re =  104) 

some characteristics of resonance were examined in the 

whole range of burst period. Next, the turbulence 

generation and its propagation to radial direction were 
made clear by using a correlation function. Especially, 

detailed studies were made for the propagation process 

and its time period. Finally, a relation between the 

burst period and the propagation time was discussed. 

5.2 Test Section and Measuring Equipment 

     In the present work, the same test section and 

fluid as those mentioned in Section 4.2 were used for 

the bulk of measurements. For short pulsation period 

T < TB , however, measurements were made in a tube of 

5.16 cm inside diameter, at a position 78 diameters 

downstream from the entry. 

     The analog-to-digital conversion and data reduction 
were done with a hybrid computer using several assembly 

language programs. To avoid too long recording time 

and difficulty to adjust an external clock to the pul-

sation period, the electrical signals of velocity and 

time pulse were directly connected to the analog input. 

The time pulse was generated by a photo-transister at 

32 phase angles per cycle according to the flow pulsation. 

5.3 Results and Discussion 

5.3.1 Region of burst period in steady flow
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     In order to confirm a flow being fully developed 

in the tube of 5.16 cm inside diameter, turbulence 

characteristics in steady flow were measured first. 

Figures 5. 1 and 5. 2 show the turbulence intensity 

profile and the mean burst period  TB, respectively. The 
mean burst period was determined from the delay time 

required to obtain the second mild maximum in the curve 

of the autocorrelation coefficient. They are sufficient-

ly in good agreement with the measurements in the 2 cm 

I.D. circular tube. 

     The minimum burst period TBmin is also shown in Fig. 

5. 2, which was obtained by the same method as that used 

in Section 4.3.5. As was pointed out in Section 4.3.7, 

the value of TBmin is nearly symmetric to the maximum 

burst period Tc with respect to TB on a log scale. 

     In the following sections, discussions will be made 

on the pulsating flow of pulsation period within the 

preferred region of burst period, i.e. TBmin < T < Tc. 

5.3.2 Resonant pulsating flow 

     At various periods of pulsation ranging from TB
min 

to TB the velocity and the turbulence intensity profiles 

were measured in the circular tube of 5.16 cm inside 

diameter. The phase averaging were made at 32 phase 

angles within one cycle by using the instantaneous values 

of 100 pulsation cycles: 

for velocity 

              N 
    U(t) =            1E Ui(t + nT) 

n=1 

and for turbulence intensity
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 u'  (t) =NE { Ui(t + nT) -U(t)}2 (5.1) N                     

where N = 100. 

     From the measurements, it was clarified that the 

resonance between pulsation and turbulence generation 

occurred in the whole region of TBmin < T < Tc. In 

addition, it was found that the characteristics of 

resonance which were pointed out in Section 4.3.4 

became more obscure with decreasing pulsation period. 

These detailes will next be described. 

    Figure 5. 3 shows a typical set of velocity profiles. 

The parameter varied in this diagram is the phase angle 

wt (started from the time when the flow rate had the 

minimum value). The velocity profiles in the pulsating 

flow are similar to those of the steady flow with an 

exception that the profiles near the wall are somewhat 

contorted in the acceleration period. 

    Figure 5. 4 shows normalized profiles of intensity 

of turbulence. The friction velocity u* was determined in 

the steady-flow condition. Near the wall they vary 

around the profile of steady flow, and rise considerably 

at about wt =Tr. This violent change of intensity of 

turbulence is apparently caused by the resonance. In 

the core region of the tube, however, these profiles 

are different from Profiles II (see Section 4.3.4) and 

similar to those for steady flow. 

    The area in which this similarity persists expands 

to the wall continuously as pulsation period decreases 

from TB to TBmin" Figure 5. 5 illustrates several 

examples of velocity signal at y/r0 = 0.05. The period-

icity of turbulent fluctuation appears distinctly at long
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pulsation period  (T<U>/D > 20.4) but it becomes obscure 
with decreasing pulsation period. 

     Above mentioned results strongly suggest that the 

pulsation affects only the generation of turbulence and 
that another factor controls the bursting process subse-

quent to the generation of turbulence. Detailed discus-
sions will be made in the following section by using a 

correlation function measured in the region of TB < T < T.c, 
where the periodical change of turbulence is detectable 

at the core region of the tube. 

5.3.3 Phase-averaged correlation coefficient 

     The correlation function for u, Ruu(t, t') is defined 

by the equation 

   Ruu(t, t') =u(t) u(t + t')(5.2) 
10(t) u'(t +t') 

where t' is delay time and u'(t) is not equal to u'(t +t') 

with an exception when t' is equal to T , because the tur-
bulence intensity varies with respect to phase. An over-

line in Eq. (5.2) means the phase average ; so Eq. (5.2) 
is rewritten as 

               N 
E u(t + nT) u(t + nT + tf) 

Ruu(t, t') = n=1  

    4/NN                nEl{u(t + nT)}2nEl {u(t + nT + t')}2 
(5.3) 

where N = 100 and -T/2 < t' < T/2. 
     Measurements were conducted at T<U>/D = 20.4 by 

using the 2 cm I.D. circular tube. Under this condition,
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both profiles of velocity and turbulence intensity shown 

 in Figs. 5. 6 and 5. 7 are similar to Profiles II. 

      Figure 5. 8 shows the correlation curves at  y/r0 = 

0.05 or y+ = 15.7, where the generation of turbulent 

energy near the wall is supposed to be detected. As can 

be seen, there occurs a periodical change of time scale: 

a large scale of turbulence decreases during the phase 

0 < wt < n/2 and increases slowly during n/2 < wt < 2R. 

Note that they are not always symmetric with respect to 

the axis of t' = 0, although an usual correlation curve 

in steady flow is assumed to be always symmetric, i.e. 

an even function of delay time. Especially, a distinct 

asymmetry at wt = R/4 indicates that the time period of 

scale change to the smaller one is very short in com-

parison with time scale of the turbulent fluctuation. 
This fact and nonexistence of corresponding reversed 

change in the cycle strongly suggest that the turbulence 

generates at wt = n/4. 
     Figure 5. 9 shows the energy spectra , which are 

obtained by using a Fourier transformation of the corre -

lation function at wt = 7/4. They correspond to the 

two region, i.e. t' > 0 and t' < 0 , of the correlation 
coefficient. Different from a steady-flow spectrum

, 
which decreases with a gentle slope as the frequency 

increases, they show a selectivity of frequency n , and 
selective frequencies of the two spectra are complemen-

tary to each other. Thus at the instance of generation , 
the turbulence which consists of selective components 

of frequency changes to the complementary constitution . 

5.3.4 Propagation of generated turbulence
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     Next, propagation process of the generated  turbu-

lence will be studied. The asymmetrical correlation 

curve, which represents a rapid change of scele, was 

also found at y+ > 15.7. Figure 5. 10 shows the most 

asymmetrical correlation curves at different radial 

points. It occurs at the later phase but less conspic-

uously with increasing radial distance from the wall; 

the difference of phase is indicated in the same figure 

as the time period At. 

     Figure 5. 11 shows a variation of intensity of 

turbulence from the instance of the rapid change of 

scale at each radial point. Although maximum value 

decreases as the distance from the wall increases, a 

similar variation appears throughout the cross-section 

of the tube and the phase difference of the maximum 

intensity is nearly equal to that of the rapid change 

of scale. 

     From the above results, it is clear that decreasing 

its coherency the generated turbulence propagates to the 

centreline of the tube. 

     Figure 5. 12 shows the change of medium frequency 

during the propagation. It becomes high at y/r0 = 0.1 

and then decreases lower slowly. So it can be said that 

the propagation process is not monotonously diffusive 

one but affected by some discrete events occurring in 

sequence. 

     In fact, the changes of the propagation time and 

the medium frequency indicate that the process is made 

up by three stages: (i) the generated turbulence prop-

agates slowly to y/ro ti 0.1 or y+ •, 31.4; (ii) it 

changes to high frequency and propagetes quickly to 

y/ro ti 0.3 or y+ ti 94.3 and then, (iii) becoming lower
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frequency slowly, it propagates to  y/r0 = 1.0. It is 

apparent that the 'appearance of a relatively low speed 

region of fluid' occurs in the first stage and the 
'lift-up' in the second stage . However, the 'oscillatory 

growth' and the 'breakup' do not appear in the propaga-
tion process. The variation of intensity of turbulence 

suggests that the breakup subsequent to the oscillatory 

growth occurs near the wall at t 0.35 sec, when the 

generated turbulence propagates to y/r0 ti 0.6 or y+ ti 188. 
Thus it is clear that the turbulence which propagates is 

not the one associated with the lifted-up fluid which 

shows the oscillatory growth and the breakup of turbulence 

in the wall region (0 < y+ < 70); the propagation is con-

sidered to be associated with the large-scale vortex 

which was observed by Nychas et al. [14] and Offen and 

Kline [15] . 

5.3.5 Mean propagation time At 

    The radial distributions of mean propagation time 

for four pulsation periods are shown in Fig. 5. 13. As 

can be seen, they are independent of pulsation period; 

that is, they are not affected by the change of axial 

velocity. 

    Moreover, it is worth noting that the value of mean 

propagation time at the centreline of the tube is nearly 
equal to the mean burst period (0.53 sec at Re = 104). 

This was confirmed at other Reynolds numbers. Figure 

5. 14 shows the mean propagation time elapsed from the 

generation instance at y+ = 15.7. They decrease rapidly 
with increasing Reynolds number, and each value at y/r0 
= 1 agrees well with the mean burst period. Accordingly,
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 if the pulsation period is shorter than the mean burst 

period, the propagation does not reach the centreline of 

the tube during one pulsation period, and so the period-

ical change of intensity of turbulence is presumed to 

appear only in the limited region near the wall, as 

mentioned in Section 5.3.2. 

     Further the facts that the mean propagation time 

is not affected by the pulsation and that its value at 

the centreline of the tube is equal to the mean burst 

period strongly suggest that the propagation process is 

consistent not only in pulsating flow but also in steady 

flow. 

5.3.6 Mean burst period 

     Figure 5. 15 shows the mean propagation time nor-

malized by the wall parameters v and u* as a function of 

 y+. As can be seen, there is an excellent correlation 

of results for all Reynolds numbers , i.e., a law of the 
wall is applicable to the propagation time , and the 
values of T+ are in good agreement with those of TB+ 

which are plotted against dimensionless radius R+ . 

     Accordingly, it can be said that the entire cycle 

of bursting is characterized by the propagation process 

and that the bulk parameter dependency of mean burst 

period is attributed to the propagation distance , which 
is nearly equal to pipe radius . 

     Further, the explanation of the periodicity of 

bursting will be completed , if the last stage of prop-
agation is linked to the first stage or generation of 

turbulence. To this end , as already mentioned, the 
rapid change of the selective frequencies to the comple -
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mentary values at the instance of generation is consi-

dered to be one of useful clues. At the same time, 

however, it must be noted that there may be clear dif-

ference between the generation of turbulence in steady 

flow and that in resonant pulsating flow where the 

generation is ruled directly by the pulsating velocity.

5.4 Conclusion 

1. In the preferred range of burst period, the turbu-

lence is generated near the wall by the flow pulsation 

and at the instance of generation, the frequencies of 

turbulence become selective and change to the complemen-

tary values. 

2. Decreasing its coherency, the generated turbulence 

propagates radially to the centreline of the tube. The 

mean propagation time is independent of the pulsation 

period and scales on the wall parameters. 

3. The mean propagation time in which the turbulence 

propagates from its origin to the centreline of the tube 

agrees well with the mean burst period of steady turbu-

lent flow. This fact strongly suggests that the entire 

cycle of bursting is characterized by the propagation of 

generated turbulence to the radial direction and that the 

bulk parameter dependency of mean burst period is attrib-

uted to the pipe radius. 

4. Due to this constant time of propagation, the peri-

odical change of intensity of turbulence becomes to be 

localized within near the wall with decreasing pulsation 

period in the region TBmin                              <T < TB.



CHAPTER 6 

CONCLUSION 

6.1 Frequency Response of Momentum, Heat and Mass 

      Transfer 

     The dynamic behaviours of flow rate, wall shear 

stress and heat transfer coefficient were expressed by 

the frequency response curves over the wide range of 

frequency. 

     For momentum transfer in pulsating laminar flow, 

measurements are well correlated with  Sexl's analysis. 

For flow rate and wall shear stress in pulsating turbu-

lent flow, the amplitude attenuation and phase shift 

decrease as Reynolds number increases because of the 

unsteady-state Reynolds stress. This contribution of 

Reynolds stress to frequency response is estimated by 

the eddy viscosity model similar to that for steady 

turbulent flow. 

     For heat or mass transfer in pulsating laminar 

flow, the similarity relation between X and Y does not 

exist but it can be used as a first approximation for 

the frequency response. 

6.2 Resonance Phenomena in Pulsating Flow 

     Two resonance phenomena were clarified. They are 

very important for understanding dynamic mechanism of 

the transport phenomena in pulsating flow. 

     For heat or mass transfer, the resonance results 
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from the history of fluid from the inlet section of 

transfer and the resonance point appears in the frequency 

response curve of local value. The resonance point in 

the entrance region of transfer scales with  SnPrX2/3, 

and so the characteristic velocity of the resonance is 

determined by the thermal condition of steady flow. 

     The resonance in pulsating turbulent flow is related 

to the periodicity of bursting; when the pulsation period 

is within the preferred range of burst period of steady 

flow, the bursting of the same period as the pulsation 

period dominates, so the turbulent fluctuation pulsates 

in a manner similar to the bursting in steady flow, 

while mean burst period does not change, if the pulsation 

period is longer than the maximum value of burst period.

6.3 Dynamic Process of Bursting

     From the measurement in resonant pulsating flow , 
one clue for the clarification of periodicity of bursting 

was given. 

     The resonance in pulsating flow affects only the 

generation of turbulence. Another important factor, 

which characterizes the dynamic behaviour of turbulence 

in pulsating flow, is the coherency of the propagation 

of generated turbulence: changing its frequency
, the gen-

erated turbulence propagates to the centreline of the tube 

with the unique propagation time , which scales on the 
wall parameters, and the propagation time in which the 

turbulence propagates from the position of origin to the 

centreline agrees well with the mean burst period . This 
fact strongly suggests that the entire cycle of bursting



is characterized by the propagation of generated 

lence to the radial direction and that the bulk 

dependency of burst period is attributed to the 

radius.

 111 

 turbu-

parameter 

pipe

6.4 Recomendation of Future Work

     An important avenue for continuing research would 

seem to be more datailed investigation of bursting 

process in resonant pulsating flow. For example, the 

variation of spatial correlation coefficient in the 

transverse direction will give many additional infor-

mations to the generation and propagation of turbulence, 

and so the implication of the spatial coherence of 

structure in the sublayer of steady flow will be inter-

pretted properly.
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NOMENCLATURE

 ap 

aT 

C 

Cp 

D 

D 

E (n) 

F 

F 

f 

h 

I 

Im (Z) 

k 
<k> 

L 

k 

km 

M 

N 

N(TB) 

Nu 

n

amplitude of pressure drop[—] 

amplitude of wall shear stress[—] 

constant in Eq.(3.9)[—] 

Heat capacity at constant pressure[cal/g.°C] 

pipe diameter[cm] 
molecular diffusivity[cm2/sec] 

one-dimensional energy spectrum [cm2/sec] 

dimensionless temperature, 

Eqs. (3. 7) - (3. 9)[-] 

average of dimensionless temperature, 

given by Eq.(3.15)[—] 
friction factor[—] 

heat transfer coefficient [cal/cm2-sec•°C] 

electric current[A] 

imaginary part of complex quantity Z [—] 

mass transfer coefficient[cm/sec] 

space-averaged mass-transfer coeffcient 

[cm/sec] 
dimensionless length (=k/D Re Pr, 

k/D Re Sc)[—] 

length of transfer section[cm] 

mixing length[cm] 

number of data per cycle evaluated for 

each value of u'(t)[-] 

number of cycles evaluated for each 

value of U(t) and u' (t)[-] 

Number of occurrence of bursting at 

burst period TB[—] 

Nusselt number (=Dh/a)[-] 

Frequency[1/sec]



nM 

 P 

Pr 

 R 

 R+ 

Re 

Re (Z) 

RuU (T ) 

Ruu (t' ) 

Ruu(t,t')

r 

r0 

Sc 

Sh 

<Sh> 

Sn 

T 

TB 

TB 
TB 
TBmin 

Tc 

Tq 

t 

t' 

At 

At

medium frequency 

static pressure 

Prandtl number (=Cpp/X) 

dimensionless radial distance (r/r0) [—] 

dimensionless radius (=r0u*/v) [—] 

Reynolds number (=D<U>s/v)[—] 

Real part of complex quantity Z [—] 

maximum of time delayed autocorrelation 

coefficient[—] 

autocorrelation function[—] 

phase-averaged autocorrelation function, 
Eqs. (5.2) and (5.3)[—] 

radial distance from tube axis [cm] 

radius of circular tube[cm] 

Schmidt number (=v/D)[-] 

Sherwood number (=D k/D)[—] 

Sherwood number averaged over the 

transfer section (= D<k>/D)[—] 

Stokes number (=r02w/v)[—] 

period of pulsation[sec] 
burst period[sec] 

mean value of TB[sec] 

dimensionless period (=TB(u*)2/v) [—] 

minimum value of TB[sec] 

critical period of pulsation[sec] 

approximate upper limit of period for 

the region of Profiles I[sec] 

time[sec] 

delay time[sec] 

time interval of propagation of 

generated turbulence[sec] 
mean value of At[sec]
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 U 

<U>

Ui 

 U

 u

u' 

u*

v

X

x 

Y 

y 

y+ 

Z

<Greek 

a 

r 

r^ 

rb' 

r' w 

r(x) 

E, eM

= dimensionless time (=ot(u*)2/v) 

= local velocity in axial direction 

= velocity obtained by averaging the 

  value U over the cross-section 
= instantaneous value of U 

= dimensionless velocity (=-2Upv/ap 

= fluctuating component of velocity 

  axial direction 
= root-mean square of u 

= friction velocity in steady flow 

(=/ Tw/P) 
= fluctuating component of velocity 

  in radial direction 
= dimensionless distance (=x/D Re Pr 

 x/D Re Sc) 
= distance in axial direction 

= dimensionless distance (=y/r
0) 

= normal distance from wall 

= dimensionless distance (=y u*/v) 

= transfer function , Eq.(3.19)

letters>

experimental constant 

experimental constant 

dimensionless temperature 

temperature 

temperature of bulk fluid 

temperature at wall 

gamma function of x 

eddy viscosity

[—] 

[cm/sec]

  [cm/sec] 

  [cm/sec] 
r02) 

[—] 
in

[cm/sec] 

[cm/sec]

[cm/sec]

[cm/sec]

[—] 

[cm] 

[—] 

[cm] 

[—] 

[—]

[—] 

     [—] 

[—] 

[°C] 

[°C] 

[°C] 

     [—] 

[cm2/sec]
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 ec

T1 

e 

x 

p 

T 

Tw

w

= eddy viscosity for core region

= similarity variable , Eq.(3.6) 
= dimensionless time (=Xt/cppr62) 

= thermal conductivity 

= viscosity 

= kinematic viscosity 

= density 

= shear stress 

= shear stress at wall in steady 

  flow 
= angular frequency

[cm2/sec] 

[—] 

[—]
:al/cm•sec•°C]

[g/cm•sec] 

[cm2/sec] 

   [g/cm3] 

[g/cm•sec2]

[g/cm•sec2] 

   [1/sec]

<Subscripts> 

p= 

s=

pulsating component 

steady component
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