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 ABSTRACT

     The problem of state estimation and control for a wide class of 

nonlinear stochastic lumped or distributed parameter systems under 

noisy observations is studied in the framework of Ito stochastic 

calculus. The purpose of this dissertation is to describe two impor-

tant phases: to give mathematical developments for the theories of 

signal detection, filtering, parameter identification and control, and 

to show the algorithm of computer implementations for the scheme of 

control systems. 

     This dissertation is divided into two major parts. Part One is 

devoted to the approximate methods of state estimation and control 

for nonlinear systems described by the Ito stochastic differential 

equation, and Part Two is devoted to provide methods of state and 

parameter estimation and control for stochastic systems modeled by 

partial differential equations. 

     The basic notion of the proposed methods developed in Part One

IX



 is a use of the stochastic linearization technique to the field of 

 nonlinear control systems . With this technique, a joint scheme of 

 estimation and control is presented , emphasizing that the stochastic 
 linearization method plays a useful role in realizing a stochastic 

 optimal control system . Part One is divided mainly into four 

 chapters: the first is concerned with the mathematical aspect of the 

 models, terminology and a review of stochastic linearization technique 

 which is necessary to understand the treatment of problems
, the second 

 a possible solution to the signal detection in Gaussian noise, the 
 third some approximate versions of nonlinear filters in various 

 situations, and the final a practical scheme for estimation -control, 

including the important aspect of sufficie nt statistics for the purpose 
of observation data reduction . 

      In Part Two, based on an extended version of  Ito stochastic 
equation to the distributed parameter sy stems, the model of a control 
system is described by a stochastic nonlinear pa rtial differential 
equation. By using such approximation tech niques as Taylor series 
expansion and stochastic linearization extended t o the distributed 

parameter system, estimation and control problems are solved . Part 
Two is divided into three main chapters: the fi

rst is concerned with 
the filtering problem , the second the parameter identification , and 
the third the problem of optimal control for a general class of linear 
distributed systems and extensively for a class of 

nonlinear distributed 
parameter systems. 

     Throughout the two parts of the dissertation
, various kinds of 

numerical computations are performed in orde r to show the practical 
computer implementation .

X



I. PART ONE. 

 AND CONTROL

APPROXIMATE METHODS OF 

FOR NONLINEAR LUMPED

STATE ESTIMATION 

PARAMETER SYSTEMS





CHAPTER 1. INTRODUCTION

     Physical systems are, in general, designed and built to perform the 

minimization or the maximization of a preassigned cost functional. For 

example, aircrafts, spacecrafts, submarines and some vehicles must navigate 

in their respective environments to accomplish their missions. In order 

to know whether or not a system is performing suitably, and ultimately to 

control the system performance, the system designer must recognize the 

"state" of the system at any instant of time
, where in navigation systems 

the state consists of position, velocity, acceleration, etc., of the craft 

in question. Physical systems are often subjected to random disturbances, 

so that the system state may itself be stochastic.* When the designer 

wishes to know the state at hand, he will take measurements or observations 

on the system through a measuring device. These measurements are generally 

contaminated with noise which is called as observation noise. 

     It is also an inevitable feature that a dynamical system to be 

controlled often exhibits various kinds of nonlinear characteristics.

 * The word "stochastic" comes from Greek  "UToxaaTuc6s/' (to aim or to 

guess) and is used synonymously with the word "random."
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  Thus, for the system designer , the general problem to be solved is to 
  find the control of a noisy nonlinear dynamical system in some optimal 

  fashion, given only an incomplete knowledge of the system . Under such 

  coupled constraints as the linearity of dynamical systems , noisy 
  observations and desired criterion given by quadratic cost functionals

, 
 it has already been shown that the optimal control and estimation problem s 

 of the system state may be independently solved by the version s of the 
  "separation  th

eorem." However, this is not the case in general for 

 the optimal control of nonlinear dynamical systems
, but the combined 

 problems of optimal control and estimation must be treated simultaneously . 
       Since the establishment of the pr ecise scheme for the state estimatiol 

 and the optimal control of nonlinear d
ynamical systems is almost impos-

 sible, in Part One , the author will establish an approximate method which 
 will be shown to play an import ant role to realize a broad class of 

 stochastic optimal control . 

      The part one will be divided i nto three major parts: first a part 
 on the mathematical aspects is devel oped of the system models and termi-
 nology and some concepts necessary to understand the treatment of problems 
 secondly, some approximate versions of a no nlinear filter in various 

situations, and the nonlinear filtering probl em as well as relations of 
filtering to control theory; and finally

, a practical schemes of estima-
tion-control, including the aspect of signal d

etection problem and also 
the data reduction problem . 

     The part one is devoted to describe two impo rtant phases: first , to 
give detailed stochastic methods suitable for re search workers who are 
interested in controlling a nonlinear system under noisy observations , 
and secondly, to show the algorithm of the whole 

scheme of the optimal 
control systems. 

1.1. Historical Background  

     The historical background of this resear
ch is divided into three 

parts. 

1.1.A. Filtering Problem 

     The problem of estimating a random signal 
process based upon inform -
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ation contained in an observation process is itself one of the basic 

contexts of classical and, still, of modern system theory. In the early 

1940's, Kolmogorov[73] and Wiener[155] developed a systematic approach 

for providing an estimate of a random signal process on the basis of 

observation of the signal process additively corrupted by noise. Their 

key notion was dependent on the assumptions of stationarity, ergodicity, 

and knowledge of the entire past of observed process. Kolmogorov solved 

the discrete-time problem by "pre-whitening" of the data, while Wiener 

solved the continuous-time problem in the frequency domain employing 

 "spectral factorization ." The result of their investigations was the 

specification of the weighting function of the optimal estimator as a 

solution of the Wiener-Hopf equation, and these early works in filtering 

theory were responsible for many advances in the statistical design of 

control systems. 

     The next substantial development in the (linear) filtering was the 

work of Kalman (1960) [64], and Kalman and Bucy (1961) [69], under weaker 

assumptions than those made in the original Wiener problem — that is, 

nonstationary, observations known within only a finite time interval in 

the past, and vector observations of vector processes. The theory is 

known as the Kalman-Bucy filtering, and has provided numerous applications 

in the mid-1960's. Such major applications of the theory are in the 

field of satellite orbit determination, submarine and aircraft navigation, 

and space flight, including the Ranger, Mariner, Pioneer and historical 

Apollo missions in the U.S.A.[18] However, the Kalman-Bucy filter is 

rigorously valid only for linear filtering, even though, heuristically, 

nonlinear extensions were developed successfully for orbit determination, 

fire control and space navigation programs. 

     Since the work of Kalman and Bucy, there have been many variations 

on the Kalman-Bucy theme; these variations and the relation of the Kalman-

Bucy theory to the Wiener-Kolmogorov theory are summarized in the tutorial 

article of Kailath[57] and in the textbook of Sunahara[127]. 

     Although the Kalman's filtering theory found immediate applications 

to the problems of orbital determination, navigation, etc., it was soon 

apparent from these applications that the linear assumption was not 

adequate for many situations. The original investigations in nonlinear 
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  filtering were undertaken independently by  Stratonovich[121] in the Soviet 

  Union and by Kushner[74,75] in the U.S.A., using descrete-time approxima-

  tions, Bayes rule and limiting the arguments to obtain the stochastic 

  equation for evolution of the conditional density of the message (signal) 

  process relative to the observation process. Much of the subsequent 

 theoretical work in nonlinear continuous filtering was done by Kushner[78, 

79] using Ito stochastic calculus. Bucy[16] introduced a representation 

 theorem from which Kushner's result[74] can be derived and has provided 

 significant generalizations of the theory of nonlinear filtering . This 

 approach to continuous filtering was also taken by Wonham[158] . The 

 results of Stratonovich[121] and Wonham[158] should be interpreted in the 

 sense of Stratonovich for the stochastic calculus . 

      In the Soviet Union, since the early work of Stratonovich
, several 

 investigations have also worked on the theory of nonlinear filt
ering, 

notably Liptser and Shiryaev[88 ,89,115,116]. These works have been 

concerned with finding the stochastic equations for the conditi onal 
density function, similar to those by Wonham[158] and Kushner[78]. 

     The probabilistic approach to nonlinear filtering which was used 
by Stratonovich, Kushner and by Wonham is based on the so -called Bayesian 

approach. Zakai (1969) [185] has introduced a method of nonlinear filtering 
with use of the transformation of a certain class of stocha

stic processes 
by absolutely continuous substitution of measures due to Gir sanov[45] and 
has given a rigorous proof of the Bucy's representation theorem . In the 
Soviet Union, Ershov[34] also treats the related the oretical work. 

1.I.B. Approximate Filter 

     Recognizing the importance of nonlinear filtering problem s, various 
studies have been made by many investigators as survey ed in the previous 
subsection. The result reveals that an exact 

realization of optimal 
nonlinear filters requires infinite -dimensional filters which are practi -
cally almost impossible . In nonlinear filtering problems as well as in 

the linear ones, we are interested in computi ng the conditional mean and 
covariance matrix (these are the first - and second-moments respecti

vely). P
hysically, the conditional mean is the minimum variance estimate , and th

e covariance matrix measures the unce rtainty in the estimate .
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     Up to the present time, approximate schemes have been suggested on 

the physical realization of optimal nonlinear filters in an approximate 

form of finite dimensional filters; these trials are summarized in the 

textbook of Jazwinski [54, Chap.9]. The ideas of Kalman filter were 

extended to the estimation of the states of nonlinear dynamical systems 

using the so-called first-order, or extended Kalman filter (see, Ho and 

Lee[47],  Cox[23], Mowery[99], Friedland and Bernstein[42], and others). 

In all of these papers different techniques such as least-squares, 

maximum-likelihood, etc., have been used to drive filter equations. 

Most of these techniques use a Taylor series expansion up to second-

order terms, and derive linearized equations to compute the covariance 

matrix and the filter time-varying gains. 

     Using the stochastic calculus, the exact filter equations have been 

approximated to suboptimal finite-dimensional filters. Typical papers 

along this line of approach are those of Kushner[80], Bass et al.[6], 

Sorenson and Stubberud[120], etc. An suggestive approach was presented 

by Kushner[80] for approximation to the exact filter via moment sequences. 

The truncated second-order filter* was developed by Jazwinski [53], and 

independently by Bass et al.[6] Schwartz[111] and Fisher[36] independ-

ently developed the Gaussian second-order filter. In many of these works, 

second-order terms are retained in approximating the nonlinear functions. 

Sunahara[126] proposed to replace the nonlinear functions by quasi-linear 

functions via stochastic linearization. In this dissertation, such 

technique proposed by Sunahara will be extensively used to establish an 

overall system of estimation and control. 

1.1.C. Control Problem 

     Starting about 1958, a new trend became established, stimulated 

partly by the rapidly increasing accessibility of digital computers 

and partly by the developing interest in particularly aerospace 

optimization problems. A branch of control theory has evolved largely 

within the framework of Bellman's "Dynamic Programming"[8] and "Adaptive

* The approximate filter, which is derived under the assumption that 

third- and higher-order central moments are negligible, is called 

the "truncated second-order filter." 
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  Control  Processes"[9] which present a computer-oriented formulation of 

  a large class of Markovian decision problems. By a series of celebrated 

  papers by Kalman[64-69,71]], fundamental and essential researches were 

  done on the concepts of state estimation, optimal control, system stability, 

 controllability and observability in the control system theory. After 

  these works by Kalman, using the stochastic calculus, the stochastic 

 control theory has been developed mainly in the U.S.A. by Kushner[77 ,83], 
Wonham[161], Flemming[38,39] and many other researchers . 

      Because of the widespread use of linear filter and the demands for 

 a construction of control systems , numerous papers have been written in 

 a framework of the so-called linear-quadratic-Gaussian (LQG) context , 
 celebrated by the "Separation Theorem" of Wonham[160] . Therefore it seems 

 that the linear control theory has almost been established[70 ,77,83,161]. 
 The excellent survey of the LQG problem is Ref .[971 in the special issue 

 of IEEE Transaction on Automatic Control on the "Linear-Quadratic -Gaussian" 

 Estimation and Control Problem" (vol .AC-16, no.6, Dec. 1971). 

     Although the LQG problem have reached a certain degree of maturity 

with respect to theoretical and algorithmic advances
, on the other hand, 

there have been very few investigations to date of th e problem of 
optimizing nonlinear stochastic systems . The control problem of nonlinear 
system is a current topics . Toward this, some of papers have appeared . 

Kushner[76] presented a method of computing cor rection to the optimal 
deterministic control for the nonlinear systems where the effects of 
disturbance are small. Later , Kushner and Kleinman[84] considered several 
aspects of the numerical solution of the Bell man's optimization equation 
of nonlinear degenerate elliptic-type . A systematic procedure was given 

by Wonham and Cashman (1969) [162] for digital computation of a suboptimal 
nonlinear feedback control which is obtained by a 

combination of dynamic 
programming and statistical linearization for a class of tim e-invariant 
linear systems with amplitude bounded control . Alternatively, Smith and 
Man (1969) [119] developed a successive app roximation technique based on 
statistical linearization for nonlinear ti

me-invariant process under 
complete observations , and applied the technique to a chemical proce ss 
example. 

     Independently, in 1969-1970 , Sunahara and the author[129-131] developed 
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an approximate method of estimation-control for a wide class of nonlinear 

stochastic systems via the stochastic linearization technique in Markovian 

framework. Shapiro and Mon[114] obtained the necessary conditions for 

the optimality of feedback gains for the one-dimensional nonlinear process 

whose dynamics and control are finite-degree polynomials with respect to 

the random variables via the method of expansion of the density function 

in an infinite series. Raja Rao and Mahalanabis discussed in  [103] the 

results of application of the purturbation technique along with stochastic 

approximations, where the purtubation technique is combined with the 

statistical linearization in order to derive suboptimal solution. Also, 

in [104], by approximating nonlinear functions by second-order polynomials, 

Raja Rao and Mahalanabis obtained the suboptimal control for discrete-

time systems with a special performance criterion function. A combined 

method of estimation and control was proposed by Dressler and Tabak[29], 

using the extended Kalman filter, and applied to satellite tracking 

system with the steady-state approximation. 

     Based on the Gaussian sum approximation to the a posteriori density 

function, Alspach[1] calculated certain suboptimal controls for discrete-

time nonlinear systems. Recently, Tse et al.[146] considered the use of 

second-order terms and pertubation controls. The resulting control 

procedure is, however, too complicated to apply this technique to 

practical problems. 

     The above researches may be classified into the following major five 

categories: 

     (i) Statistical linearization method [104,119,162] 

     (ii) Stochastic linearization technique [29,129-131] 

    (iii) Approximation of probability density function [1,114] 

     (iv) Perturbation method [76,103,146] 

(v) Numerical approach [84]. 

1.2. Problem Considered  

    We consider the problem of finding an optimal control for a class of 

nonlinear stochastic dynamical systems under noisy observations, and 

establish an approximate method of optimal control in a form of computer-

oriented feedback control systems as might be expected. Our situation to 
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SYSTEM

 Fig.l.l.

NOISE 

y(t,w)

DYNAMICAL 

 SYSTEM

x(t,w)

OBSERVATION NOISE 

rl e (t,w)

OBSERVATION 

MECHANISM

z(t,w)

     CONTROLI I 
           COMPUTER 

           (?) 
ONTROLOBSERVED SIGNAL 

              L J PERFORMANCE CRITERION 

 Problem illustration of optimal control under 
noisy observations.

control problem is shown in Fig.l.l. The dynamical system to be controlled 

under a given performance criterion is described by a vector nonlinear 

differential equation of dimension n. 

(1.1)dx(t,w)= f[t,x(t,w)] + c[t,u(t)] + G[t,x(t,w)]y(t,w), 
                                      te[t0,T]. 

In (1.1), x(t,w) is an n-vector state variable; f[t,x(t,w)] and G[t,x(t,w)] 

are respectively an n-vector and an nXdl-matrix nonlinear function; y(t,w) 

is a dl-vector white Gaussian noise with constant spectral density 

function*; c[t,u(t)] is an n-vector forcing term; u(t) is an m-dimensional 

control vector (n>m); and w is the generic point of the probability space 

c. 

     The states of the system may not be able to be "completely" observed

* In most cases of the practical problems the system noise may not be 
"white" but "colored ." However, for convenience of discussions and with-
out loss of generality, we consider the white noise because the colored 
noise is easily whitened by introducing a suitable shaping filter.
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because the output observation is sometimes corrupted by noise which is 

referred to the observation noise. The observation mechanism  is given 

by 

(1.2) z(t,w) = h[t,x(t,w)] + R(t)A(t,w). 

The output z(t,w) is an Z-vector, where Z<n; h[t,x(t,w)] is an Z-vector 

nonlinear function; R(t) is an Zxd2 parameter matrix; and 9(t,w) is a d2-

vector white Gaussian noise with unit power spectral density. 

     As will be pointed out in Chap.2, Sec.2.l, the mathematical models 

of both the dynamical system (1.1) and the observation mechanism (1.2) 

are purely formal because of the existence of white Gaussian noise terms. 

In order to make these models precise, we rewrite them as a couple of It6 

stochastic differential equations, 

(1.3) dx(t,w) = f[t,x(t,w)]dt + c[t,u(t,w)]dt + G[t,x(t,w)]dw(t,w) 

(1.4) dy(t,w) = h[t,x(t,w)]dt + R(t)dv(t,w), 

where newly introduced processes w(t,w) and v(t,w) are mutually independent 

Brownian motion processes, and y(t,w) is an Z-vector observation process 

which is related to z(t,w) by the intuitive relation, 

(1.5) z(t,w) = y(t,w), 

where the dot " • " denotes the differentiation with respect to time t. 

     In practical terms, our problem is to find a control vector u(t) in 

such a way as to minimize the cost functional (performance criterion), 

(1.6) J(u) = E{F[x(T),xd(T)] + f L[t,x(t),u(t)]dt}, to 

based on the a priori probability distribution of the initial state x(t0) 

where F and L are nonnegative scalar functions of the class C(2) and xd(T) 

is the desired state at final time T. 

     As already known, in order to solve the optimal control problem under 

noisy observations we must first solve the optimal filtering problem and 

then present the solution for the optimal control problem. Such a situation 

may be schematically shown as in Fig.1.2. 

     The important items to be emphasized in Part One are as follows: 

     (i) When we take the observation data, the data are always corrupted 

                                     —9—
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                               CONTROL COMPUTER 

        Fig.1.2. Overall configuration of optimal control for nonlinear 
                  dynamical systems under noisy observations. 

         additively by a random noise, 

    (ii) There exist various kinds of nonlinear characteristics in 

         both the dynamical system and the observation mechanism. 

     Taking the item (i) into account, it is required to establish a 

procedure to solve the nonlinear filtering problem. Furthermore, from 

the item (ii) the possibility is no longer expected that the separation 

theorem[16O] holds between state estimation and optimal control. 

1.3. Summary of Contents  

     In constructing the physical control system, the avenue taken in 

this dissertation is first to establish a possible method of detection of 

signals in noise, and then to provide the approximate method of estimation 

based on the stochastic linearization technique, and finally to construct 

an overall scheme of joint estimation and control under a certain cost 

functional. 

     The outline of the part one is as follows. 

     In Chapter 2, some of general groundworks required in this study are 

presented as mathematical preliminaries. The precise mathematical models 
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for the system are also established by the stochastic differential 

equations in the senses of  Ito and Stratonovich. 

     As the stochastic linearization technique proposed by Sunahara[126] 

in Markovian framework is extensively used in the study, in Chapter 3 

a brief review of the technique is given for better understanding, 

emphasizing an error evaluation and the discussions of relations between 

such a technique and the classical statistical equivalent linearization. 

     In Chapter 4, a new type of signal detection problem is formulated 

and its positive solution is proposed via a modified likelihood-ratio 

function. The signal detection problem in this chapter is to detect the 

true initial time from which the signal is surely present in the obser-

vation data to know what signal is transmitted. This situation leads us 

to the simultaneous signal detection and estimation problem. 

     Chapter 5 contains the development of the approximate filter equations, 

based on the stochastic linearization, for a wide class of nonlinear 

systems with state-independent and/or state-dependent noise or under 

state-dependent observation noise, respectively. A variety of digital 

simulation studies are also given with an analytical study for performance 

evaluation of the approximate filter dynamics. 

     Using the filter dynamics derived in Chapter 5, in Chapter 6 a suc-

cessful and effective scheme to optimal control is presented, discussing 

some aspects of numerical approach. 

     In Chapter 7, in terms of the information state the important concept 

of sufficient statistics is discussed for the purpose of observation data 

reduction in stochastic control systems. 

     The remainder of Part One is devoted to discuss a summary of the 

results and some suggestions for areas of future researches.
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CHAPTER 2.  MATHEMATICAL PRELIMINARIES

2.0. Basic Definitions and Symbolic Conventions  

     Before presenting the key aspect of this dissertation, several 

basic definitions and symbolic conventions are presented. 

     Let E(n) denote an n-dimensional Euclidean space. If x is an 

element of E(n)(xeE(n)), then x' denotes the transpose of the vector x. 

Similarly, if M is a matrix, then M' denotes its transpose and IMI denotes 
its determinant. As a rule, vector and matrix notations follow the 

usual manner, that is, lower case letters a, b and c,••• denote column 

vectors with i-th real components ai, bi and ci,.... Capital letters 

A, B, C and D,..• denote matrices with elements ai~, b~.,cijand d..,••• 

respectively. Certain algebraic quantities such as algebras, fields, etc. 

are expressed by the symbols, S, V,..•, etc. 

     The following background knowledges are important.[28,31,90,156] 

(1) Probability space: Let S2 be a space of points w, where S2 and w are 

     called the sample space and the generic point, respectively. Let 
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    S be a a-algebra of subsets of  0. And let P be a probability 

     measure on 0, that is a measure which is normed, positive and 

     a-additive. The triplet (0,S,P) is called a probability space. 

     The pair (0,S) is often referred to as a measurable space, and the 

    pair (S,P) is called a probability field. 

(2) Measurable function: Let (01,S1) and (522,S2) be two measurable 

     spaces, and let f be a function with domain 01 and range in R 2. 

     The function f is said to be a measurable function or a measurable 

    mapping of (0S1) into 022,S2) if for every set A in S
2, the set 

f-1(A) = {w: f(w)eA} 

     is in S 1. The set f-1(A) is called the inverse image of A. 

(3) Random variable: A real-valued function x(w) defined on S2 is 

     called a random variable if for every Borel set B in the Euclidean 

     space E(n) the set {w: x(w)cB} is in S. 

(4) Expectation: The expectation of the random variable x defined on 

     a probability space (0,S,P) is given by 

E{x} = f 0xdP. 

(5) Conditional expectation: Let (52,S,P) be the basic probability space. 

     Let C be a sub a-algebra of S. Let x be an integrable random 

     function on 0. The conditional expectation of x with respect to C, 

     denoted by E{xIC}, is defined as any C-measurable random variable 

     satisfing 

f CxdP = f cE{xlC}dP 

     for all CeC. 

(6) Stochastic process: A stochastic process {x(t,w), teTC} is a family 

     of random variables, with a real parameter t and defined on the 

    probability space (S2,S,P). 

     For each t, x(t,w) is an S-measurable function. For each w, {x(t,w), 

teT0} is a function defined on the parameter set T0and is called a 

sample function of the process. For economy of description, we omit to 

write the symbol w in the following chapters in order to cause no confusion. 

    When a probability statement is true almost surely or true with 

probability 1, then the abbreviation a.s. or w.p.l is used. A limit in 
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the mean square is denoted by  l.i.m. 

     A symmetric matrix A is positive definite if there exists a positive 

constant k such that for all xcE(n) 

                  x'Ax > kx'x. 

The Euclidean norm of an n-vector x is given by 

            llxII = ( G xi2)1/2 = (x'x)1/2 
i=1 

and for an nxm-matrix A 

IIAN = ( I I a.2)1/2 = (tr.{AA'})1/2, 
                      1=1 j=1 lj 

where "tr." denotes the trace of the matrix. If A is a symmetric, non- 

negative definite matrix, then we writeIIxIIAx'Ax to denote the generalized 
Euclidean norm. The identity matrix is I. Notation [•]. expresses the 

(i,j)-component of a matrix. A real function f(x) is said to satisfy 

a Holder condition with respect to A, if for some constant k and all x 

and y, 

II f (x) -f (y) II < kJI x-y e , 0<a<1. 
     The symbol yt denotes the smallest o-algebra of w sets with respect 

to which the random variables y(T) with T<t are measurable. The conditional 

expectation of a random variable x(t) conditioned by yt is simply expressed 

by "." such that E{x(t)IVT}=*(tIT), where T<t. 
     For convenience of the present description, the principal symbols 

used here are listed below: 

                    t: Time variable, particularly present time 

                    :The initial time at which observations start  t0 

                   T: A preassigned terminal time for optimal control 

          x(t), y(t): n- and Z-vector stochastic processes representing 

                       the system states and the observations respectively, 

                    where xeE(n) and yeE(1) 

                 u(t): An m-dimensional control vector taking its values 

                       in a convex compact subset UCE(1Il) 

          w(t), v(t): d1- and d2-dimensional Brownian motion processes 

                        respectively 
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    C(t), G(t), R(t): nxm, nxd1 and  Zxd2 parameter matrices whose 

                       components depend on t 

f[t,x(t)], h[t,x(t)]: n- and Z-vector-valued nonlinear functions, respec-

                     tively 

x(tlt): Optimal estimate of x(t), i.e. f2(tIt)=E{x(t)ly
t} 

P(tlt): Error covariance matrix in optimal estimate of 
                    x(t) conditioned by yt, i.e. P(tlt)=cov.[x(t)Iyt]. 

2.1. Stochastic Integral of Ito-type and Stochastic Differential  

    Equation  

     Guided by the well-known state space representation concept, the 

dynamics of an important class of dynamical systems in the field of 

engineerings can be described by a nonlinear vector differential equation 

of the following form, 

(2.1)dxat,w)= f[t,x(t,w)] + c[t,u(t)] + G[t,x(t,w)]y(t,w), 
                                          te[t0,T], 

where x(t,w) is an n-vector, the state of the system; f[t,x(t,w)] is an 

n-vector nonlinear function; c[t,u(t)] is an n-vector forcing term; u(t) 

is an m-vector control signal to be specified in the later chapters; 

G[t,x(t,w)] is an nxm matrix; and y(t,w) is a d1-vector white Gaussian 

noise process with zero-mean and covariance matrix 

E{Y(t,w)Y` (T,w) } = IS(t-T) • 

    Much of the difficulty in the initial work in the area of optimal 

nonlinear estimation centered around certain ambiguity that arose in 

the interpretation of Eq.(2.1).* The white Gaussian noise process 

{Y(t), te[t0,T]} was introduced as a means of expressing random disturbances. 

Such a type as Eq.(2.1) is sometimes called a Langevin equation.

* In the early development of nonlinear filtering , there were differences 
between results obtained by Kushner[74,75] and by Stratonovich[121]. It 
was shown that the differences were due to the differences in the 

 interpretation of equations of the type given in Eq.(2.1). An excellent 
 discussion of these differences can be found in Jazwinski [54]. 

                                         —15—



      Now the  {y(t)} process is delta-correlated and its sample functions 

 are delta functions, and as a result, y(t) is neither mean square 

 Riemann integrable, nor is integrable w.p.l. Consequently, (2.1) loses 

 its mathematical meaning. Recalling that white Gaussian noise is the 

formal derivative of Brownian motion process, let us introduce a dl-

 process of independent Brownian motions through the relation,[54,127,157, 

163] 

 (2.2) w(t) = ftY(s)ds. 

      Once the Brownian motion process has been defined, the formal 

 equation (2.1) can be integrated and replaced by the integral equation , 

(2.3) x(t) = x(t0) + ft f[s,x(s)]ds + ft c[s,x(s)]ds 
    00 

                          + ft G[s,x(s)]dw(s). 

                              0 With appropriate restrictions placed on the functions f[s
,x(s)] and 

c[s,u(s)], the first two integrals in the above equation are the ordi
nary 

Riemann integrals for the sample functions . Since the Brownian motion 

process is of unbounded variation, the last integral which is specified 

as stochastic integral cannot be interpreted in the Lebesgue -Stieltjes 

sense. In order to give Eq.(2.3) a precise meaning, we must modify the 

usual definition of the integral . In this section we summarize the basic 

elements of the Ito theory of the stochastic integral . With this theory 
Eq.(2.3) can be given a precise interpretation .[28] 

(7) Brownian motion process: Let (Q,S,P) be the basic probability space . 
    Let S

s be a monotone family of a-algebras from S. The stochastic 
    process {w(t), te[t0,T]}is called a Brownian motion (Wiener) process 

    with respect to S
s, if 

(i) w(t) is St-measurable for each te[t
0,T]       (

ii) w(t) is a process with independent increments 

     (iii) the random variables w(t)-w(s) (s<t) are real-valued and 

    normally distributed with 

E{w(t)-w(s)ISs} = 0 
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 E{[w(t)-w(s)][w(t)-w(s)PIS  s} = I(t-s) 
     (iv) P{w(t0)=0} = 1. 

(8) Ito stochastic integral: Let {w(t), te[t0,T]} be a scalar Brownian 

    motion process and let gt,w) be a scalar function such that 

(i) 4(t,w) is jointly measurable in (t,w) 

      (ii) for each t, ¢(t,w) is measurable with respect to St 

   (iii) f tE{I$(t,w)I2}dt < o* 

           0 

     The stochastic integral is defined as 

  Tn-1 (2.4)ft4)("6"/"=1-1-1" ~(t(n),w)[w(t~n))-w(t(n))], 
   0n- i=0 

    where lim max (t(n)-t.(n))=0. 
n4.0. i 1+1 1 

    The definition of the scalar Ito integral can be easily generalized 

to the vector case. 

    Now the third integral in (2.3) is well defined as (7), and therefore 

Eq.(2.3) can well be interpreted in a meaningful way. 

     In the remainder of this section, the principal concepts of the It6 

theory of stochastic differential equation are presented; this theory is 

used throughout this dissertation as a model for stochastic dynamical 

systems. 

(9) Itb process: Let w(t) be a Brownian motion process. A stochastic 

    process {x(t), te[t0,T]} is called an Ito process with respect to 

    the Brownian motion process w(t), relative to the pair of functions 

    f(t,w) and G(t,w) if 

(2.5) x(t) - x(t0) = f t f(s,w)ds + ftG(s,w)dw(s). 
00 

    From the definition of Ito stochastic integral, the following

* The definition 
functions which 

instead of (iii) 

and McKean [91])

of the 

are L2 

•P{ft 
    0 ^The

stochastic integral can be generalized to the 

a.s., that is, the functions which satisfy, 

(4(t,w)I2dt<0.}=1 (see Ito [50], Skorokhod [118] 
condition (iii) is sufficient for our work. 
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conditions are sufficient to insure that the  right.-hand side of (2.5) 

is well defined and continuous in t. 

(A2.1) f(t,w) and G(t,w) are nonanticipating functions, that is these 

      have properties (i) and (ii) in (8). 

(A2.2) ftE{If(s,w)I}ds<00 and ft
0t0 

(A2.3) x(t0) is independent of w(t) for t>t0. 

In later, the formal description 

(2.6) dx(t) = f(t,w)dt + G(t,w)dw(t) 

will be used to denote the Ito process (2.5). A special case of practical 

importance is the Ito process with 

f(t,w) = f[t,x(t,w)] 

and 

         G(t,w) = G[t,x(t,w)]. 

(10) Diffusion process: Let w(t) be a Brownian motion process. A vector 

    Ito process {x(t), te[t0,T]} is called the diffusion process with 

     respect to the Brownian motion process w(t) relative to the drift 

    vector f[t,x(t)] and the diffusion matrix G[t,x(t)] if 

(2.7) dx(t) = f[t,x(t)]dt + G[t,x(t)]dw(t) 

        x(t0) = x0 

     where 

    (A2.4) The process {w(t), te[t0,T]} is a Brownian motion process 

            of dimension d1. 

    (A2.5) x(t0) is a random variable independent of{w(t),te[t0,T]}, 

         and E{II x(t0)II2}<oo. 
    (A2.6) Component of the drift and the diffusion vectors f(...) 

            and G(=.•) are Baire functions with respect to the pair 

(t,C) for te[t0,T] and -oo<C<o, where x(t)=C. 

     (A2.7) (Growth restriction) There exists a positive constant k
l, 
            independent of C, such that, 

II f(t,C)IIkl(1+IIc112)2 
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           tIG(t, E) HH <k2(1-111EH2) 2. 

     (A2.8) (Lipschitz condition)  f(•,-) and G(•,.) satisfy a uniform 

          Lipschitz condition in E, that is 

IIf(t,E1)-f(t,E2)II < k211E1 C211 

11G(t, El)-G(t, E2)11 k2D E1-E211 

     (A2.9) The functions f(•,•) and G(',•) are uniformly Holder 

             continuous in t. 

     Equation (2.7) with assumptions (A2.4)-(A2.9) are referred to as 

     the diffusion process.* 

Proposition 2.1. Let {x(t), te[t
0,T]} be the diffusion process of (2.7). 

    Then {x(t)} has the following properties: 

(i) for each t in [t0,T], x(t) is Sr-measurable 

    (ii) ftOE{fx(t)I~2}dt 

     (iii) x(t) is sample continuous w.p.1 

      (iv) the process is uniquely determined by x(t0) w.p.1 

       (v) x(t) is a Markov process. 

    This proposition will be important in this dissertation for making 

sure the stochastic differential equations which model the dynamics of 

the systems. 

     In the following chapters, an extensive use is made of the notion of 

the Ito differential of an Ito process. 

(11) Ito's differential rule: Let x(t) be the unique solution of the 

    n-vector Ito stochastic differential equation (2.7). Let 4(t,x) 

     be a scalar-valued real function, continuously differentiable in t 

    and twice continuously differentiable in x. Then the (stochastic) 

    differential d4 of cp is

* More strictly 

with continuous 

guarantee that

speaking, a diffusion process is a strong Markov process 
sample paths[77,p.4]. The assumptions (A2.4)-(A2.9) 

{x(t), te[tp,T]} is a diffusion process[77,p.15]. 
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(2.8) dcp =[a+f'a+2tr.{G'-----Bx~ZG}]dt + (a)'Gdw, 
                       22 

     where a(•)/ax denotes the gradient (column) vector and a(•)/ax 

      denotes the Hessian matrix of cross partials. 

(12)  Ito-Dynkin's formula:[31,vol.l,p.133] Given the diffusion process 

     (2.7) and let z(t,x) be a real twice continuously differentiable 

     scalar function. Then the conditional expectation of z conditioned 

     on x0satisfies 

(2.9) Ex {z(t,x)} - z(t0,x0) = Ex{JtLz(s,x)ds}, 
  00 0 

     where L is the differential generator, 

                                                      2 
(2.10) L(•) =               at+f'(t,x)ax(•)+2tr.{G'(t,x)a(-)G(t,x)}. 

     In this section a brief summary has been given of the Ito theory of 

stochastic differential equations and this will be one of the main 

analytical tools for deriving representations for both the optimal 

estimation and the optimal control problems. 

2.2. Alternative Stochastic Differential Equation  

     In the previous section, the dynamical system equation (2.1) is 

represented by the precise version of the Ito sense as (2.7) where the 

forcing term c[t,u(t)] is dropped out. It is well-known that there is 

another type of versions to Eq.(2.1); i.e. if the stochastic equation 

(2.1) is interpreted in the sense of Stratonovich, then the equivalent 

Ito equation is represented by 

                              d1 

(2.11) dx.(t) = [fi(t,x) +-1X X [G(t,x)]8[G(t,x)] „]dt 
k=1 j=1 kj axk'3 

                         d1 

                         X +c [G(t,x)]ijdw.(t). 
                           j=1 

The Stratonovich-type stochastic integral is "symmetrically" d
efined by 
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      Tn-1 tin)+t1+l w(t1+1)-w(tin)) 
(2.12) It 4(t,w(t))dw(t) = 1.i.m. G ~( , 

   0n40,  i=022 

                               x[w(ti+1)-w(tin))], 
wherenmmax(ti+1tin))=0. Excellent discussions of the relation 
between Ito and Stratonovich stochastic integrals are found in [54,Chap.4]. 

It is obvious that the difference between (2.7) and (2.11) is the existence 

of the term in (2.11), 

1n dl2 (2
.13)2[G(t,x)]kjax

kLG(t,x)]... k=1 j=1 

    Such a model of (2.11) is used in Chap.5, Sec.5.3 for deriving the 

filter equation of stochastic system with state-dependent noise. 

2.3. Mathematical Models of Dynamical System and Observation  

    Mechanism  

    As the models given by (1.1) and (1.2) are formal because of 

the white Gaussian noises, the following couple of stochastic differential 

equations of the Ito-type are introduced as the precise ,mathematical 

models for the system and the observation, based on the rigorous 

mathematical background of the Ito theory reviwed in Sec.2.1: 

(2.14) dx(t) = f[t,x(t)]dt + c[t,u(t)]dt + G[t,x(t)]dw(t), 

         x(t0) = x0 

(2.15) dy(t) = h[t,x(t)]dt + R[t,x(t)]dv(t), 

y(to) = O. 

     In this section, several types of the models for the dynamical 

system and the observation process which are used in Part One are defined. 

Definition 2.1. (System E0) Let the dynamical system and the observation 

    processes satisfy respectively the stochastic differential equations 

     (2.14) and (2.15). The processes x(t) and y(t) are n- and Z-dimen-

     sional vector processes respectively (n>Z). In (2.14) and (2.15), 
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      the following assumptions are made: 

 (CO.1) The component of the functions f[•,-], h[•.•],G[•.]and 

R[.,•] are Baire functions[28] with respect to the pair 

(t,E) for t0<t<T and -W<E<,,,,, where x(t)=E. 

(CO. 2) The functions f[,}, h[-,-], G[-,-]  and R[ • , - ] satisfy 

             a uniform Lipschitz condition and a growth restriction in 

             the variable E. 

      (CO.3) The functions f[.,.], h[•,•], G[•,-] and R[•.•] are uniform-

             ly Holder continuous in t. 

     (CO.4) The processes w(t) and v(t) are independent Brownian motion 

             processes of dimensions d1 and d2 respectively. 

     (CO.5) x(t0) is a random variable independent of both w(t)- and 

              v(t)-processes. 

     Equations (2.14) and (2.15) with assumptions (C0.1)-(C0.5) are 

     referred to collectively as the system equations E0. 

     The control term c[t,u(t)] in (2.14) is specified later in Sec.6.2, 

defining the class of admissible controls. 

     Some other systems which are used in the nonlinear filtering 

problems are defined by slightly modifying the system model E0. 

Definition 2.2. (System Ely) Let x(t) and y(t) be n-vector dynamical 

     system and Z-vector observation processes represented by 

(2.16) dx(t) = f[t,x(t)]dt + G(t)dw(t), x(t0) = x0 

(2.17) dy(t) = h[t,x(t)]dt + R(t)dv(t), y(t0) = 0, 

    where the assumptions (C0.4) and (C0.5) are made and 

(C1.1) the nonlinear functions f[•,-] and h[-.-] are Baire functions 

           with respect to the pair (t,E), and satisfy a uniform 

Lipschitz condition and a growth restriction in the variable 

E and are uniformly Holder continuous in t, 

(C1.2) the parameter matrices G(t) and R(t) are nxd1- and Zxd2-

            dimensional, measurable and bounded on the finite time 

            interval [t0,T], 

(C1.3) {R(t)R'(t)} is nonsingular and is bounded on [t0,T]. 

    Equations (2.16) and (2.17) are collectively specified as E1
F. 
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Definition 2.3. (System E2F) Let x(t) and y(t) be n- and Z-vector 

     stochastic processes represented by 

(2.18) dx(t) = f[t,x(t)]dt + G0(t)dw1(t) + G[t,x(t)]dw2(t) 

          x(t0) = x0 

(2.19) dy(t) = h[t,x(t)]dt + R(t)dv(t) 

y(t0) = 0, 

    where the assumption (C1.1) in Def.2.2 is made and 

(C2.1) wi(t), w2(t) and v(t) are mutually independent d1-. d2-

             and d3-vector Brownian motion processes, 

     (C2.2) x(t0) is independent of the Brownian motion processes, 

     (C2.3) G0(t) and R(t) are nxdl and ixd3-matrices which are 

           measurable and bounded in t, and {R(t)R'(t)} is nonsingular, 

    (C2.4) G[t,x(t)] is given by 

                                  n
C                   G[t ,x(t)] =G G.(t)x. 

i=1 

            where the G.(t) are continuous bounded matrix-valued functions 

            of t with dimension nxd2. 

    Equations (2.18) and (2.19) with (C2.1)-(C2.4) are specified as E2F. 

     Further the following system E3F is defined. 

Definition 2.4. (System E3F) Let x(t) and y(t) be n- and Z-vector 

     processes represented by 

(2.20) dx(t) = f[t,x(t)]dt + G0(t)dw1(t) + dW2(t)x(t) 

          x(t0) = x0 

(2.21) dy(t) = h[t,x(t)]dt + R0(t)dvl(t) + dV2(t)r[t,x(t)] 

y(t0) = 0, 

    where (C1.1), (C2.2) are made and 

(C3.1) wl(t), v1(t), W2(t) and V2(t) are mutually independent dl 

             d2-vector and nxn-, Zxj-matrix Brownian motion processes with 

             zero mean, and 
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           E{dw1(t)dw11(t)} = Idt 

           E{dv1(t)dv1t(t)} = Idt 

                               Oijdt for i=k and  j=Z 
           E{(dw2i.)(dw2kZ)} _ 

                             0 for i#k or j#Z 

A. dt for i=k and j=Z 
          E{(dv2i

~)(dv2kZ)}13                              0 for i#k or j#Z 

             where 0ij and Aij are the (i,j)-elements of the matrices 0 

              and A respectively, 

     (C3.2) r(t,x) is an n-vector-valued Baire function which satisfies 

            a uniform Lipschitz and a growth restriction conditions. 

     (C3.3) G0(t) and R0(t) are nxdland Zxd2-matrices and {R0(t)R0'(t)) 

              is nonsingular. 

     Equations (2.20) and (2.21) with (C3.1)-(C3.3) are specified as E3F. 

     The systems EiC (i=1,2,3) are defined which correspond to the above 

defined systems EiF as follows. 

Definition 2.5. (Systems EiC) The systems EiC for i=1,2,3 are specified 

    by adding the control term c[t,u(t)]dt in the right-hand side of 

     (2.16), (2.18) and (2.20) respectively such as, for instance,

E1C'

dx(t) = 

 dy(t) =

f[t,x(t)]dt + 

h[t,x(t)]dt +

c[t,u(t)]dt + G(t)dw(t) 

R(t)dv(t) .
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CHAPTER 3. REVIEW OF STOCHASTIC LINEARIZATION 

        IN  MARKOVIAN FRAMEWORK

3.1. Introductory Remarks  

     In the nonlinear filtering and control theory, the approximation of 

the nonlinear function by some linear one will play an important role as 

might be expected. Limiting discussions to the filtering theory, 

several approximation techniques are presented as stated in Sec.l.1.B. 

A familiar technique is the expansion of the nonlinear function into 

a Taylor series up to the suitable order terms. Such a technique was 

used by Schwartz[111]. However, anoter powerful technique was suggested 

by Sunahara[126], and the filtering problem was solved. 

     The author reviews briefly the stochastic linearization technique 

in the following sections in order to use such linearization technique 

for realizing an overall configuration of the optimal nonlinear control 

system subjected to the observation noise.
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   3.2.  Stochastic Linearization in Markovian Framework[126] 

       The system function f[t,x(t)] in (2.16) is expanded into 

  (3.1) f[t,x(t)] = a(t) + B(t){x(t)-St(tJt)} + ef(t), 

  where ef(t) denotes the collection of n-dimensional vector error terms 
  and a(t), B(t) are an n-dimensional vector and nxn matrix , respectively. 

  The linearization coefficients a(t) and B(t) are determined in such 
  a way that the conditional expectation of the squared norm of c
f(t), 

 (3.2) E{11£f(t)II2IVt} = E{pf[t,x(t)]-a(t)-B(t){x(t)-X(tJt)}II2Iyt}, 
  becomes minimal. The necessary and sufficient conditions to minimize 

  (3.2) are 

 (3.3a) a(t) = E{f[t ,x(t)]IYt} A fjt,x(t)] 

 and 

(3.3b) B(t) = E{[f[t ,x(t)]-f[t,x(t)]][x(t)-it(tIt)]'IY
t}P-1(tIt), 

 where 

 (3.4) P(tjt) = cov.[x(t)Iy
t]. 
     In evaluating a(t) and B(t) , we have two problems at hand. One is  to compute the state estimate 1Z(tit) and the error covariance P(tjt) 

and the other is to evaluate the conditional expectation E{•IY
t}. For evaluating the conditional probability density function p{x(t)Iyt}, this is assumed to be Gaussian with the mean value R(tit) and the 

covariance matrix P(tJt) , i.e. 

n1 

(3.5)p{x(t)Iy
t} =(2n)2IP(t1t)1 2 

                xexp{ z px(t)-R(tJ t)112} .                                                    -1 
                                P(tit) 

With the help of this Gaussian assumption , both a(t) and B(t) can be 
obtained in the form, a(t)=a(t,it(tIt),P(tIt)) and B(t)=B(t,R(tIt),P(t(t)). Futhermore, the (i ,j)-th element of the matrix B(t) i

s simply obtained b
y
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 aa.(t) 

(3.6) bij(t) = eX
3(tlt). 

A striking fact is that the random variables a(t) and B(t) are not 
independent but dependent mutually on the state estimate x(tIt) and the 
error covariance matrix P(tlt). From this point of view, more precise 
symbols, a(t,X(tIt),P(tIt)) and B(t,X(tlt),P(tlt)) should be introduced. 
However, for economy of descriptions, we merely denote these by a(t) and 
B(t) without indicating the dependence on both x(tlt) and P(tlt). 

    Using a(t) and B(t) obtained in (3.3a) and (3.3b). the nonlinear 

function f[t,x(t)] is replaced by the quasi-linear function, 

a(t)+B(t){x(t)-X(tlt)}, and then the nonlinear differential equation 

(2.16) is approximated by 

(3.7) dx(t) = B(t)x(t)dt + {a(t)-B(t)x(tlt)}dt 
                        + G(t)dw(t). 

     In the following analysis of this dissertation, the stochastic 

linearization technique just reviewed shows to be very attractive and 

plays an important role. 

3.3. Error Evaluation of the Stochastic Linearization  

     In order to evaluate the stochastic linearization, let us consider 

the following n-dimensional stochastic differential equation, 

(3.8) dx(t) = f[t,x(t)]dt + G(t)dw(t), t0<t<T. 

In (3.8), the state x(t) is completely observable and the nonlinear 

function f(t,x) satisfies a uniform Lipschitz condition and is uniformly 

bounded, (see Sec.2.1, Chap.2) 

(A3.1) IIf(t,x)-f(t,z)II < clix-z11 

                         1 (A3.2) IIf(t,x)II < c0(l+x'x)2, 

where, in (A3.1) and (A3.2), x,zeE(n) and c, c0are real positive constants 

and independent of both t and x. 

    A precise interpretation of (3.8) is 

(3.9) x(t) = x(t0) + ft f[s,x(s)]ds + f t G(s)dw(s). 
    00 
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  In the sequel, the solution of (3.9) is written as x°(t) in order to 

  discriminate it from the quasi-linearized solution x
a(t) which is 

  generated by the quasi-linearized stochastic differential equation 

  described later. 

       The stochastic linearization technique reviewed in the previous 

  section is modified where the state variable is completely observable 

  as follows. Expand the function  f[t,x°(t)] into 

  (3.10) f[t,x°(t)] = a(t) + B(t){x°(t)-x a(t)} + ef(t) 

 where a(t) and B(t) are determined under the criterion, 

 mina(t),B(t)E{iie f(t)II2ix°(t0)=x0}, as 

(3.11a) a(t) = E{f[t,x°(t)]Ix°(t0)=x0} f[t,x°(t)] 

(3.11b) B(t) = E{[f[t,x°(t)]-f[t,x°(t)]][x°(t)-X
a(t)]'lx°(t0)=x0} 

xP-1(t) , 
 where 

 (3.12) P(t) = cov.[x°(t)Ix°O(t0)=x
0]. 
 Then the sample path x°(t) determined by (3.8) is approximated by 

(3.13) dxa(t) = B(t)xa(t)dt + {a(t)-B(t)xa(t)}dt + G(t)dw(t), 
whose interpretation is given by 

(3.14) x (t) = x(t) +t aa0ft[a(s)+B(s){xa(s)-xa(s)}]ds 

0 

                      + ftG(s) dw(s) . 

                         0 

                                        In (3.10) to (3.14), x
a(t) is a solution of the differential equation 

          dx (t) _ (3
.15)d

t=f[t,x°(t)], xa(t0) = E{x(t0)}. 

     We evaluate the expected squared error , 

(3.16) x
0{~~x°(t)-xa(t)II2}, 

where E
x{.} denotes the conditional expectation conditioned by x(t0)=x0       0 

In the evaluation of (3.16) , the following assumption and lemmas are 
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needed: 

(A3.3) The parameter matrix G(t) is bounded; that is, there exists a 

       constant y such that 

             tmff<T II G(t)II <  y. 

Lemma 3.1.  Assume (A3.2). Then there exists a nonnegative constant 

     such that 

             max E{IIf(t,x)-1(t,x)II2}<2. 
t <t<Tx0 0—— 

Proo f. Note that 

(3.17) IIf(t,x)II2 = Ill (n)f(t,x)P{t,x1x0}dxII2 

< f
E(n)IIf(t,x)II2p{t,xlx0}dx 

                  < f
E(n)co (1+x'x)p{t,xlx0}dx 

                   = c
02[1+Ex{x'x}],                         0 

where (A3.2) was used. Hence by (A3.2) and (3.17). we have 

   E {II f(t,x)-f(t,x)II2} < 2E {IIf(t,x)II2} + 2E{IIf(t,x)II2} 
 x0x0x0 

           < 2E{c0
x0+ 2Elc,2[1+E{x'x}]}    —000 

              = 4c
02[1+Ex {x'x}],                       0 

which shows that there exists a constant S such that* 

(3.18) max E{IIf(t,x)-1(t,x)II2}< 62 < co. 
t <t<Tx0 0—— 

( Q . E . D . ) 

Lemma 3.2. The linearization coefficients a(t) and B(t) are bounded; i.e.,

* Actually , Ex {IIx112}<M 

 0

(const.) on [t0,T]. See 
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[54, p.106].



      there exist some constants  a and  a such that 

          max I`a(t)II2 < a2, max IIB(t)112 < 02. 
    t0 —t0- 

Proof. The fisrt boundedness of a(t) is obvious since from (3.17) m 

the footnote on p.29; 

        max ll a(t)ll 2 = max Il f(t,x )ll2 
      t0<t<Tt0<t<T 

                    < c02[1 + max E{l12112}]<a2. 
                                  t0<t<Tx0 

    Next, by (3.11b) 

(3.19) 1IB(t)I12 = IIE{[f(t,x°O)-f(t,x°)](x-Xa)'}P-1(t)112 
                      x0 

         < IIE{ [f(t,X)-f(t,x) ] (x -xa)'}11211P-1(t)II2                  x0 

           < Ex(llf(t,x°)-f(t,x°)112}Ex{Ilx°-1(0112-1(t)112 
  00 

           < S2Ex0{llx°-xa1I2}IIP-1(t)112, 

where the Cauchy-Buniakovskii inequality and Lemma 3.1 were used. 

    Now evaluate Ex {112-xa12} in (3.19). From (3.9) and by (3.15), 

0 (3.20) Ex{llx°(t)-xa(t)112) 

          0 

           = Ex0{II x°(t0) - xa(t0) + f![f(s,x°)--i(s,x°) ]ds 

+ f t G(s)dw(s)II2} 

0 

          < 2E{112(t0)-x a(t0)ll2}                  x0 

                 + 2E{liftt[f(s,x°)-f(s,x°) ]ds + ftG(s)dw(s)II2) 
    x000 

where the relation (x+y)2<2x2+2y2 was used. Here, 

(3.21) Ex{px°(t0)-xa(t0)12} = tr.{cov.[x°(t0)]} 

          0 

                                = tr. P(t0) 

                                    -30-



and 

(3.22)E{Ilft[f(s,x)-f(s,xr)]ds +lG(s)dw(s)II2} 
 0 0 0 

 < 2Ex{ftxIIf(s,x°O)-f(s,x)~2ds}  + 2E{~ ftG(s)dw(s)g2}.    0 000 

In (3.22), note that by Lemma 3.1 and (A3.3) 

(3.23)ExfitIIf(s,x)-f(s,x°)II2ds} < 62(t-t0) 
0 0 

and 

(3.24)E{1ftG(s)dw(s)II2} =ftIIG(s)II2ds<y2(t-t0). 
   0to0 

Then, combining (3.20)-(3.24) and rearranging terms, we have 

(3.25) Ex{IIx°(t)-xa(t)II2} < 2tr.P(t0)+4{62+.1,2){t-to.
0 

Hence from (3.19) and (3.25) , 

(3.26)IIB(t)12 < 2d2[tr.P(t0)+2(62+Y2)(t-t0)]IIP-1(t)II2. 

From (3.26) it is obvious that there exists a constant S such that 

(3.27)max IIB(t)II2<S2. 
           t0<t<T 

(Q.E.D.) 

    With hypotheses (A3.1)-(A3.3) and Lemmas 3.1 and 3.2, we have the 
following theorem. 

Theorem 3.1. Suppose that the hypotheses (A3.1)-(A3.3) hold. Then 

(3.28) Ex{IIX(t)-xa(t)II2} < (t-to)gt 

          0 

    and 

(3.29) P{ supIIx°(s)-xa(s)II>s} <e(t-t0)gt, 
0 t <s<t a-- 

where P{.} denotes the conditional probability given x0, and            x0 
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                     2 

  (3.30) qtA2(S2-T-------t
0)(t-t0)  

1---------- [2t r.P(t )  +Y2  ][e4s2(T-t0)(t-t0)- 1]. +2(T-t
0)0sL(T-t0) 

Proof. The proof of the theorem is straightforward. Viewing (3.9) and 

 (3.13) and noting x(t0)=x a(t0)=x0, it follows that 

 (3.31) Ex{llx°(t)-x a(t)II2} 

           0 = E{Ilft[f(s ,X(s))-[a(s)+B(s){x a(s)-xa(s)}]]ds112} 
         E

xt0 

        < Ex{[ftIlf(s,x°(s))-[a(s)+B(s){xa(s)-xa(s)}]Ilds]2}         x00 

       < Ex{ [fttll f(S,X(s))-f(S,x°(S))iI+IIB(S)IIIlxa(S)-xa(s)II ]dsl2} 

        < (t-0t
0)Ex0{ft[IIf(s,x°(s))-f(s,x°(s))II+IIB(s)IIIlxa(s)-xa(s)II ]2d 

            00 

        < 2(t-t 0)[EXO{ft011f(s,x°(s))-1(s,X(s))II2ds} 

+ ft                    tEx{11B(s)11211xa(s)-xa(s)112}ds], 
                    0 0 

where the Cauchy-Buniakovskii inequality was used . Now, by Lemma 3,1 an 

(A3.3), the relation (3.23) also holds; and by Lemma 3 .2 the second 
integrand of the right-hand side of (3 .31) is evaluated as 

(3.32) Ex0{IIB(s)II2IIxa(s)-xa(s)I12} < 02E{{ilxa(s)-xa(s)112}. 

                                    0 

    Let us tern our eyes to evaluate E{Ilx
a(s)-Xa(s)I12}. A similar 

                                  0 method to Lemma 3.2 is applied. From (3 .14) and (3.15) , we have 

(3.33) Ex0{Ilxa(s)-xa(s)112} = Ex
0{pxa(t0)-xa(t0) 

                                s 

                    + JS B(T) {x
a(T)-xa(T) }dT + f s G(T) dw(T)112} 

0 

   <2E{IIx(t)-x(t)112}+2E {IllsB        x0a0a0x
0 t0(T) {xa(T)-xa(T) }dT+ fstG(T) dw(T 

                                                    0 
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Here, 

(3.34) E{Ilxa(t0)-; (t0)112} = tr.{cov.Ixa(t0)Ix0]} 

            x 

          0 

 tr.{cov.[x°(t0)]} = tr.P(t0) 

and 

(3.35) Ex
0{IIItOB(T){xa(T)-xa(T) }dT +ftOG(T)dw(T)II2} 

       < 2E{[ftIIB(T){xa(T)-xa(T)}IIdT]2} 
       00 

                    + 2E{IIf tG(T) dw(T)II2}                    x00 

< 2(s-t0)Ex0{ftollB(T)II2IIxa(T)-Xa(T)II2dT} 

+ 2Exo{II fsOG(T)dw(T)II2} 

< 2S2(s-t0)f t Ex {11xa(T)-xa(T)II2}dT + 2y2(s-t0). 
0 0 

In (3.35), Lemma 3.2 and (A3.3) were used. Then combination of (3.33)-

(3.35) and rearrangement of terms yield 

(3.36) Ex{Ilxa(s)-xa(s)II2} < 2tr.P(t0) + 4y2(s-t0) 

           0 

                         + 4R2(s-t0) f s E{Ilx a(T)-Xa(T)Il2}dT 
                                   00 

        < 2tr.P(t0) + 4y2(s-t0) + 462(T-t0)ft EX 
0 0 

    We need the following lemma. 

Lemma 3.3. (Gronwall-Bellman Lemma[21; 44,p.393]) Let a(t) denote 

    a nonnegative integrable function that is defined for te[t0,T] 

    and that satisfies the inequality 

(3.37) a(t) < 6(t) + kfta(s)ds, 

                      0 

    where k is a nonnegative constant and 8(t) is an integrable function. 
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    Then 

(3.38)  a(t) <8(t)+ kftek(t-s)8(s)ds. 

0 

    Applying Lemma 3.3 to (3.36), we have 

(3.39) E{llxa(s)-xa(s)ll2} < 2tr.P(t0) + 4y2(s-t0)            x0 

                +882(T-t0)fte482(T-tO)(s-T)[tr.P(t0)+2y2(T-to)]dt 

                           0 

          [2tr.P(t ) +zy2 ]e482(T-t0)(s-t0) Ly2                0                02(T2              (T-t0)8(T-t0)' 

Therefore, combining (3.23), (3.32),(3.39) with (3.31) and performing the 

integration, we have the result (3.28). 

     In the followings, let us evaluate the probability, 

P{ sup 112(s)-x (s)11>e}. In view of (3.31), we have 
x0 t <s<ta 

0- -

(3.40) P { sup 112(s)-x(s)II>e}        x0 t <
s <ta                0 - - 

        < P {ft IIf(s,x°(s))-[a(s)+B(s){x(s)-x(s)}]Ilds>e} 
  - x

0 t0aa 

        = P
x {[f t IIf(s,X (s))-[a(s)+B(s){xa(s)-xa(s)}]Ilds]2>e2}. 

       0 0 

By using the Chebychev inequality and further the Cauchy-Buniakovskii 

inequality, it follows that 

        P{ supIlx°(s)-x a(s)ll>e} 
            O t <s <t                0 - - 

           Ex{[ftlIf(s,X (s))-[a(s)+B(s) {xa(s)-xa(s) }]Il ds]2} 
        00 

< E (t-t0)Ex01ft011f(s,x(s))-[a(s)+B(s){xa(s)-xa(s)}]Il2ds} 

        <(t-to)[d2(t-t o) +132iEx{Ilxa(s)-xa(s)ll2}ds]. 
                            00 

Substitution of (3.39) into (3.41) yields (3 .29). This completes the 

proof. 
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3.4. Relations between  Stochastic Linearization and Classical  

   Statistical Equivalent Linearization  

    Although the stochastic linearization technique reviewed in Sec.3.2 

allows us to assume that the additive random noise is nonstationary 

Gaussian, we shall assume, in this section, the additive noise to be sta-

tionary Gaussian in order to examine some relations between the stochastic 

linearization and the classical statistical equivalent linearization. 

     Consider an n-dimensional nonlinear dynamical system 

(3.42) dx(t) = f(x)dt + Gdw(t). 

where w(t) is a Brownian motion process with covariance a2I. The quasi-

linearized system is given by 

(3.43) dx(t) = [a+B{x(t)-x(t)}]dt + Gdw(t). 

In (3.43), a and B are the linearization-coefficients and x denotes the 

conditional expectation of x(t) conditioned by the initial state x(t0), 

i.e. x(t)=E{x(t)Ix(t0)=x0}. The covariance of x(t), P(t)=E{(x-x)(x-x)') 
x(t0)}, satisfies the equation, 

(3.44)att)= BP(t) + P(t)B' + a2GG'. 
     The basic concept of the classical statistical linearization which 

was examined in detail by Sawaragi and Sunahara[107,108] can be shown in 

Fig.3.1.

x(t) NONLINEAR 

ELEMENT

EQUIVALENT 
  GAIN 

 K

 z=f(x)

KX(t)

ERROR 
e(t)=f(x)-Kx(t)

Fig.3.1. Basic concept of statistical linearization.

—35—



     The output of the nonlinear element z(t) is evaluated by the  approxi----

mated signal 

(3.45) z(t) = Kx(t), 

where K is known as the (nxn-dimensional matrix) statistical equivalent 

gain of the nonlinear function f(x). The coefficient K is determined so 

as to minimize the criterion 

(3.46) E{II f(x)-Kx(t)II 2}. 

In the case where x(t) is stationary, the gain K yields to 

(3.47) K = [f
E(n)f(x)x'P(x)dx][fE(n)xx'P(x)dx]-1, 

where p(x) is the stationary probability density function(pdf) of x(t). 

Equation (3.47) may be represented as 

(3.48) K = E{f(x)x'}' 1, 

where !
x is the covariance of x(t) defined by 

(3.49)Tx0 (n)xx'p(x)dx. 
              E 

If the pdf of x(t) is assumed to be Gaussian with zero-mean and the 

covariance Tx, 
                        1 

(3.50) P(x) = (2102I''I 2exp{2 xlx}~ 
the equivalent gain K becomes a function of the covariance matrix T

x:                                                                           x 

(3.51) K = K('Yx). 

On the other hand, it is well-known that the covariance 'Yis given as 
                                                         x 

a function of K for a given system, 

(3.52) Tx = Tx(K). 

The values K and T
x are determined by solving (3.51) and (3.52) simul-

taneously via the graphical procedure[107 ,108]. The fact that K and 'F 
x are determined by the simultaneous equations corresponds t

o the situation 

that the linearization-coefficient B is a function of th
e covariance 

matrix P which is determined by a differe
ntial equation. 
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    In order to expect the desired relation between the classical 

statistical and stochastic linearizations, we consider the  second-

order system, 

(3.53)x + ci + kx + f(x) = y(t), 

where y is a stationary Gaussian random process with the following 

properties: 

    (i) mean value: mY 0 
   (ii) auto-correlation function: * (T)= exp(-(31T1) 

   (iii) spectral density: S1(A)_---------z z, 

where a and a are positive constants and A is the angular frequency. 
The block diagram of the system (3.53) is illustrated in Fig.3.2. For 
the system (3.53), since the random disturbance y(t) is stationary 
Gaussian, we can replace the nonlinear element f(x) of zero-memory type 
by an equivalent gain K. Then the equivalent system with equivalent 
gain K is given by the equation, 

(3.54) x + cx + (k+K)x = y(t) . 

The corresponding equivalent linear system to Fig.3.2 is shown in Fig.3 
Using the equivalent gain K, the spectral density Sx(A) of the output 
x(t) is calculated by 

                                2 
(3.55) S(A) =1S (A).          x 

(jA)2+c(jA)+(k+K) I 

Then the variance xof x(t) is evaluated by using the well-known 

                                y(t) stationary Gaussian 
                                          disturbance

NONLINEAR 
ELEMENT 
 f(x)

+cs+k

x(t)

.3.

Fig.3.2. Nonlinear system subjected to a stationary 
Gaussian disturbance. 
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 y(t) stationary Gaussian 

disturbance

EQUIVALENT 
  GAIN 

 K

1  

+cs+k

 x(t)

         Fig.3.3. Equivalent linear system corresponding to 

Fig. 3.2. 

Wiener-Khintchin's formula 

(3.56)x=2wfS x(a) dA, 
which yields, after somewhat complicated calculations, 

(3.57)1 °° 1 2 2          ~x2w J-00 
(j a) 2+c (j A)+(k+K) a2+132 

             a (s+c)  
c(k+K)I(k+K)+S(s+c)]. 

Keeping s/a with a constant, if a,8-' in (3.57), then we have 

(3.58)= a                 2            x 2c(k+ K)' 

where a2=2a/8* which equal to the variance parameter of the Brownian 

motion process w(t)=fty(r)dT. Equation (3.58) gives the stationary value 
of the variance of x(t) when the system is subjected to a st ationary white 
Gaussian disturbance. 

     Alternatively, the variance of x(t) can be evaluated b
y the stochastic 

linearization technique. By letting x=x
1 and x=x2, Eq.(3.53) is given b

y

* The variance parameter a2 is given by 
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(3.59) 

where  w 

Replacing 

(3.60) 

Define 

(3.61) 

Then the

(3.62) 

If the 

=dp
22/d 

(3.63) 

Therefore 

simly as p 

(3.64) 

In 

tical o

    dxl = x2dt 

dx2 = 1-kx1-cx2-f(x1)]dt + dw(t), 

   process is related to y(t) by the relation dw(t)=y(t)dt. 

ng f(xl) by [a+b{xi-x1}], we have the equivalent system, 

  {dxl = x2dt     dx2 = [-(k+b)xl-cx2]dt - (a-bxl)dt + dw. 

the covariance p., by 

    p..= E{(x.-xi)(x.-.)} (i,j=1,2).  Jx J J 

covariance equations are 

dp l l 
_ 
     dt- 2p12 

    d

dt2 ddti = -(k+b)p11cp12 + p22 

    d

dt2 = -2(k+b)p12 - 2cp22 + a2. 

cess x is assumed to be stationary, then dpii/dt=dp12/dt=dp21/dt 

    and 

           2 
    pll 2c(k+b) 

4 p12 = p21 = 0 

         2 

p22 2c' 

re the stationary value of variance p11 is given, denoting it 

    by 

         2 

P 2c(k+b). 

comparing the stochastic linearization with the classical statis-

    we can observe from (3.64) and (3.58) that two lineari-

coefficients b and K plays the same role with each other. In 
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Therefore the stati 

 simly as p, by 

2 
(3.64) P = 2c(k 

     In comparing i 

tical one, we can c 

zation-coefficients



order to investigate 

more detail, we need 

     If the nonlinear 

 function, as

(3.65) 

then the 

for p(x) 

(3.66) 

From (3. 

(3.67)

f(x) _

then the equivalent gain K  is  obtained  by  rne  

for p(x),i.e., 

      1x2 (3
.66) p(x) _ "27, 

From (3.48) and (3.66), 

   1x2 (3.67) K 

             1 

           1  -i/2
~      TXvx 

where the last equality 

denotes the differentiation 

(3.67) , we have 

                          2 

(3.68)K =^2~r~---------~Al•exp{2,}dx 
   XX 

A  

             2^2                            A  _J
o x exp(-~2)d*aerf(,/2.,).* 

                                           X Parameters K and *x are simultaneously determined by (3 

     On the other hand, the linearization-coefficients 

determined by (see Appendix A, Table A.1)

to the relation between the two linearizations in 

d a further discussion. 

ar function f(x) in (3.53) is given, say a saturat: 

A for x>A 

x for lxl<A 
-A for x<A, 

 gainK - - - .. the   --.._...pt .,,,. of Gaussian 

7117- 2*
x 

ality follows by the integration by arts and "" 

entiation with respect to x. ting (3.65) int(

.58) and (3.68). 

a and b are

* Error function:
             2 

erf x =J0e-A dA. 
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Table 3.1. Comparison of Stochastic-

    Equivalent-Linearizations

 and Statistical

Statistical Equivalent 

Linearization
Stochastic Linearization

Linearization f(x) = KX(t) + e(t) f(x) = a + B{x-x} + e (t)

Criterion E{Ile(t)II2} E{ lle (t) I121 x(t0)=x0 }

Coefficient(s)

K = E{f(x)x' }TY
x-1 

where 'Yx=cov. [x]

a = E{f(x) Ix0} 

B = E{(f-f)(x-x)'Ix0}P-1 
 where P=cov.[xlx0]

  pdf 
(assumed)

(21T)

P(x) ti N[O,`Yx] 

n 1 
21T

x1 2} 
     2eXP{-211xji-1 (2ir)

p{ t,xl x0} ti 

n 1 

21p1 2eXp{

N [x,P ]

211X-X IIP_l}

Example 1.

f (x)
A

 45°

0
-A

 x

K =  erf  (
A)

a =2[(A+x)erf(A2x)-(A-x)erf(A2x 
   PP 

+a[exp{-(A2px)2}-exp{ (A-x)2 

b =2[erf(7'P)+erf(AP) ]

)]

}]

Example 2.

A

f (x)

0
-A

x
K=A ,[7:1 

             1.3C

 a=Aerf(  X) 

-2 b=Ajexp{X} 
   TrP 2p
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(3.69a)a =2j(A+x)erf(AP)-(A-x)erf( )] 

 +  p[exp{_ (A2P)2}-exp{-(A2P)2}] 

 (3.69b) b = 2[erf(AA=)+erf()]. 
     If we assume as a matter of convenience that the mean x is identica 

zero, then we have from (3.69) that 

(3.70a) a0alx-0= 0 
(3.70b) b0=bI .0= erf(-). 
Since in this case p=11,

x, this means that the coefficient b0is the same 
as K and so that the stochastic linearization "degenerates" to the class 

statistical linearization. 

     From the above investigation, we conclude that: 

     (1) If the additive Gaussian disturbance is stationary and if we 

         can assume that the pdf, p{t,x1x0}, is Gaussian with zero-mean, 
         then, for the nonlinear element which is of the zero-memory typ 

        and is the odd function, the coefficient a identically equals 

         to zero and b becomes the same form as the statistical-equivale 

          gain K. 

     (2) The stochastic linearization technique is an extension of the 

         statistical equivalent linearization technique to the non-

         stationary Gaussian process and to the nonlinear function whict 

          is not necessarily odd. 

     (3) The stochastic linearization technique degenerates formally 

         to the statistical equivalent linearization technique if we set 

x=0 in the coefficients. 

     The correspondence of the two linearization techniques are listed 

in Table 3.1.
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CHAPTER 4. SIGNAL DETECTION AND ESTIMATION 

         IN GAUSSIAN NOISE

4.1. Introductory Remarks  

     Up to the present time, most part of the current researches of 

filtering theory assumed a priori that the waveform of the received 

signal is perfectly known as a function of time and/or that the signal 

is generated by a class of dynamical systems whose  initial time is 

preassigned. In practical applications, however, there are many cases 

where the presence of signal in up-dated observed data may be uncertain 

or the initial time of the signal may not perfectly be known at the 

beginning of the estimation process. 

     The work presented in this chapter is motivated by such applications 

as the tracking of missiles or airplanes, the orbit determination of 

spacecrafts, and the estimation of land and/or sea traffic flows. Its 

objectives are twofold: to solve some specific signal detection problems 

and to establish a coupled scheme of detection and estimation from the 

detection-theoretic point of view. The objectives are associated with 
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the problem of extraction of the signal from noise corrupted observed 

data, where the signal is formed as the output of a stochastic dynamical 

system whose initial time is unknown. 

     The signal detection problems are solved in general by computing 

the well-known likelihood-ratio function in detection theory, accompanied 

by the state estimation  problem[24,154]. In order to solve this 

estimation problem, it is required to establish an exact mathematical 

model including its initial time. Even though a mathematical model of 

dynamical systems is specified by empirical relations, it is almost 

impossible to compute a likelihood-ratio function unless the initial 

time of the systems is a priori preassigned. It is well-known that the 

computation of the likelihood-ratio function requires the computation of 

the state estimation and that these two computations are mutually 

interrelated. When we compute the state estimation by using filter 

dynamics, it is indeed a prerequisite to know about the initial time of 

the dynamical systems. Therefore we need to know the exact initial 

time of the systems. 

     However, it goes without saying that errors are inevitable in 

assigning mathematical models as well as its initial time and that 

a filter model derived from the inexact dynamical model will degrade the 

filter performance. In order to see this , let T0(w) be an initial time 

of the dynamical system and take its value at one of possible times , 
{t0, t1,•••, tN _l}. Furthermore, let the symbol Hibe the hypothetical 
event such that 

          H. = {w: T0(w)=t
i}, (i=0,1,...,N-1) 

where w is the generic point of the probability space I . Then the error 

covariance matrix definedbyQ(tIAE{[x(t)-xi(tIt)][x(t)-xi(tIt)]'IYO,H]) is greater than or equal to the covariance matrix P
j(tIt)=cov.[x(t)IYO,H]] =E{[x(t)-x.(tIt)][x(t)_ . (tIt)]'IYt,H.},i.e.Q.(tlt)>P~(tIt), where           Ji xi(tIt)=E{x(t)Iy0,H.} is an estimation conditioned by the observed data 

up to time t, Y0,provided that theinitialtime is T
0(w)=ti. This fact 

means that when the hypothesis H. is actually true the misled error 
covariance is always greater than or equal to the covarianc e based on 
the true hypothesis. Consequently , in order to perform the detection 
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and estimation procedure, we have to guess the initial time as precise 

as possible. 

    Up to the present time, concepts and methods of detection theory 

have been applied to the signal detection coupled with estimation of 

signals by many  researchers[30,51,52,58-61,85,124,128], forcing us to 

look deeper into the mathematical aspects of the detection and estimation 

problems. For example, Lainiotis[85] has established a joint method of 

Bayesian detection, estimation and identification for nonlinear systems. 

Jaffer and Gupta[51,52] have developed a Bayes optimum theory of joint 

detection and estimation of signals in white Gaussian noise by using cost 

functions that reflect the coupling between the operations of detection 

and estimation, and established certain explicit relations between the 

procedures of detection and estimation. Recently, several efforts have 

been made for the detection problem that are somewhat different from 

the references [30,51,52,58-61,85,124,128]. Prabhu[165] has proposed 

a method of detection of a change in system parameters whose probability 

densities are completely known. In [165], the dynamics is not found 

which represents possible physical phenomena. Sanyal and Shen[167] and 

Sanyal[166] have discussed the problem of detection and estimation of 

an unknown impulse applied at unknown time. 

     In this chapter, based on the likelihood-ratio concept in the 

detection theory, a procedure of detection and estimation is proposed 

which will be shown to be a practical computer implementation for detection 

strategies, and describe the joint method of detection and estimation. 

     The problem is briefly stated in Sec.4.2. In Sec.4.3, defining 

a combined risk, a possible solution is given for a signal detection 

problem. The solution needs the state estimation procedure. The relations 

between signal detection and estimation are stated in Sec.4.4. Simulation 

results are shown in Sec.4.5 to illustrate the proposed method of detection. 

4.2. Problem Statement  

    The observation model is given by 

              R(t)dv(t)0<t<T0(w) 
(4.1) dy(t) = 

                 s(t)dt + R(t)dv(t) T0(0<t. 
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 In (4.1), s(t) is an  Z--vector signal process; v(t) is a d
l-vector 
 additive noise which is considered to be a Brownian motion process with 

 unit covariance; y(t) is an Z-vector observed signal; and R(t) is an , 

Zxd1 known matrix . The time T0Oil)is the random and unknown time at 

 which the signal s(t) becomes to be observed . The problem is to decide 

 from the observed signal y(t) at which time and what signal is actually 

 transmitted. The model (4 .1) is fairly good for a variety of situations 

 of practical applications to the problems of tracking
, orbit determination 

 and traffic control , and it also will serve as an archetype for various 
 realistic models. The major oversimplification for many appli cations is 

 that the time TOand/or signal s(t) are assumed to be known . 

      The signal process s(t) is given as the output of a d
ynamic system, 

 i.e. 

(4.2) s(t) = H(t)x(t) 

and 

(4.3) dx(t) = A(t)x(t)dt G(t)dw(t) , 

where x(t) is an n-vector state process (n>Z); 
w(t) is a d2-vector Brownian 

motion process with unit covariance
, and is independent of v(t)-process; 

and H, A and G are respectively Zxn
, nxn and nxd2 matrices. 

     The essential subject of our problem is to construct the method of 
detection and estimation in order to know whether the signal is really 

present or not, and to know what is the best estimate of the signal, if 
it presents. For such a method

, it may be required to consider a certain 
joint detection-estimation procedure[52] . 

     For further development , the following assumptions are made . 

(H4.1) For TO(w)<t, equation (4 .3) is valid and its solutio n exists 
             and unique w.p.l. 

    (H4.2) {R(t)R'(t)} is nonsingular . 

    (H4.3) Given the preassigned interval [0
,T], the time T(w)is the 

           0             random variable such that 

                  T0(W)EI w.p.l , 
           where I is a finite set of th

e a priori known time inst ants, i.e. I={t .; i=O,l,...N-1} (0=t
0<tl<...<tN-1<tN=T), and 
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           satisfies the conditions of the separability  definitions[28]. 

(H4.4) The a priori probabilities are uniform that the signal s(t) 

            to be observed begins with any one of ti's. In other words, 

            if Hi is the hypothesis that T0010=t(i=0,1,••-,N-1), then 

P(H0)=P(H1)=...=p(H-1)=1/N. 

     In the following section, the discussions are forcussed on the 

detection-estimation method. 

4.3. A Multiple Alternative Hypothesis Approach to Signal Detection  

    and Detection Rule 

     In order to determine if a signal s(t) is present, and if so, to 

determine which one is the true hypothesis among H
i's (i=0,1,•••,N-1), 

we take an approach of multiple alternative hypothesis test (cf.[154]). 

At the present time t, based on the observed data YD {y(s), 0<s<t}, the 
hypotheses are 

H-1: dy(T) = R(T)dv(T)O<T<t 

                R(T)dv(T)O<T<ti 
         H.

1 dy(T) _                         s(
T)dT + R(T)dv(T), ti<T<t 

where i=0,1,2,•••,k-1 and t.k-l<t<tk. The hypothesis H-1 is the null 

hypothesis that T0(w) is not in [0,t . 

     The hypothesis test is performed by the following two steps: 

          Step I. Decide whether the signal is already present or 

                      not, 

          Step II. If the signal is present, accept the likeliest 

                   hypothesis among Hi's. 

To fix the idea, consider the likelihood-ratio comparing the i-th hypothesis 

with the null one defined by 

p{Y01Hi} 
(4.4) A(t,ti) = --------------, i=0,1,•-•,k-1 

p{YOIH-1} 

where p is the conditional probability density function(pdf). If none of 
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these is greater than a  threshold,* we accept H_l (Step I). Otherwise, 

we accept the hypothesis corresponding to the maximum A(t,ti) (Step II). 

The detection rule can be stated in terms of the A as follows: accept 

H. if the largest A is greater than the threshold and accept H_1 otherwise 

Thus the hypothesis test terminates at the first time at which the 

hypothesis H_1 is rejected in Step I, and the likeliest hypothesis which 

corresponds to the maximum likelihood-ratio is accepted. Otherwise, if 

the hypothesis 11_1 is accepted in Step I, then the test is continued with 

the further observation. 

     According to the Bayes test, consider the following combined risk 

of detection and estimation for tk_i<t<tk:[98,52] 

               k
c-1kc-1 (4.5)x=LG4f5fxD[x(s),xi(sls)'11j] 

i=-1 j=-1 1 i3 

x p{x(s),Y0,Hj}dxdsd4, 

where D[-,-,Hj] is a scalar-valued cost reflecting the coupling between 

detection and estimation when actually hypothesis Hj is true; xi(sls) in 
the cost D is the optimal estimate of x(s) given that Hi is true, i.e. 

xi(sIs) E{x(s)IYg,Hi}; p{•,•,Hj} is a joint pdf of the state and the 
observation accompanied with the hypothesis Hi; Sij is the time interval 

over which D is considered; X is the sample space of x; and Zi is such 

the family of Y8 in which Hi is accepted that Zt=Z_1eZ00•••40Zk_1, where 
Zt is the observation data space of YDand • is the direct sum. 

     Defining 

 (4.6) f1(') - fs..fxD[x(s),Xi(sls),H1]p{x(s)IYt,Hj}dxds 
                        i~ 

               = IsE{D[x(s),xi(sls),Hj]IYt H.)ds 
                    ii 

 and using the Bayes rule to (4.5), equation (4.5) becomes

* The threshold is given later in this section, depending on the 

 costs and the a priori probabilities of the hypotheses. 

-48-

preassigne



 k-1 k-1 

(4.7) R = E [fZX P(H.)f..(YO)P{YOIH.}dYt. 
             i=-1i j=_i 

     We adopt the two-step procedure for the hypothesis test by minimizing 

the combined risk given by (4.7). 

   (i) Step I. Rewrite (4.7) as follows. 

k-i 

(4.8) R = fZ-/ E(11-)f                   1 j=-1 

k-1        + fZ
iP(Hj)fij(Y0)p{YOIH3}dY0  j=-1 

k-1 k-1 
+ X [fzy P(H.)f (Yt)p{YtIH.}dYt] 

1=0Z j=-1 j ij 0 0 3 0 
Z#i 

k-1         = fZ-1P (Hj){f-lj (Y0)-f1,, 0,}pOIH3}dY0  j=-1 

k-1 
+ fZtP(H.)fi.(Yt)P{Ytill.my0 

j=-1 

k-1 

           fX P(H.)f..(Yt)p{YtIH.}dYt          Z-(i-1) j=-1i~ 0 00 

k--ik--i 
        + c [fzG P(H.)fZj(Y0)p{YOIHj}dY0],              1=01j=-1 

l#i 

where Z-(1-1)=Zt-(Zi®Z-1). In (4.8), if Z-(1-1) is determined to be 

constant, then the terms except the first term are considered to be 

constant. Then 

k-1 

(4.9) R = fZ-y P(Hj){f-1j(Y0)-fij(Y0)}p{YOIH.}dY0                   1j=-1 

                                            + const. 

By inspection of (4.9) it follows that the detection rule for Step I is
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stated as 

      accept  H-1, if for all i=0,1,•••,k-1 

            k-1 
            C (4.10) 

         jG1P(H.){f-lj(Y0)-fij(Y0)}p{ytIH}}< 00 

      reject H-1, otherwise. 

Assume that {f.1 -1(Yt)-f-1 -1(Yt)}>0. Then (4.10) is modified as 

        k-1 P(Hi) {f-lj(Y~)-fij(Y~)} p{YIHj} 
(4.11)--------------- <1, 

j=0 
             P(H {f

i-1(Y0)-f-1-1(Y00)} p{Y01H-1} 

where the addend in (4.11) is a kind of cost likelihood-ratio[154]. 

N-1 
Since H-1U Hv* it follows by the assumption (H4.4) that 

          v=k 

          P(H -1) N-1 P(Hv) 
(4.12)P(H .)=                      v =kP(H.)= N-k = pk. 

Noting (4.4), write the term in (4.11) as 

k-1{f-lj(Yt)-f.. (Yt)} 
(4.13) A(t,ti) = =tA(t,ti). 

                   j=0{fi-1(YO)-f-1-1(Y)} 

Combining (4.12) and (4.13) with (4.11), the condition (4.11) is expre: 

as 

(4.14) A(t,ti) < pk. 

   (ii) Step II. Write (4.7) as 

k--i 
(4.15) R = IZtGP(H)fv.(Yt)p{YtjH.}dYt + 

j=-1jJ 0 
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          k-1 k--1 

        +X[1Z • EP(Hj){fij(Yt)-fyj(YD)}p{Yt1Hj}dY0] 
 i=-1  1 j=-1 

i#v 

Then, since the first term is independent of Zi, R is a minimum when 

Z. (i=-1,0,•••,k-1; i#v) is chosen as the integrand of the second integral 

is negative for all v. This corresponds to choosing the hypothesis H. 
i 

whenever, for all v, 

k-1 

(4.16) P(H.){fij(Yt)-fyj(Yt)}p{Y~IHj} < 0. 
j=-1 

Rearranging terms in (4.16), we have (see Appendix B) 

(4.17) II(t,ti) >II(tsty), 

where 

(4.18) n(t,t.) - [A(t,ti)-Pk]{fi -l(Yt)-f-1 -l(YO)} 

and ll(t,t
y) is defined as a similar relation to (4.18). 

     Then we have: 

          accept the hypothesis H. which gives maxII(t,ti) (i=0,1,•••, 
                                        11 

k-1), and decide that the initial value exists in the interval 

[0,t) and that T0(w)=ti where ti corresponds to the maximum H. 

     Combining the two steps, the detection rule is stated as follows: 

Detection Rule. At the present time t (tk -1<t<tk), according to the 

     following two steps the hypothesis test is performed. 

          Step I. Accept H-1, if 

(4.19a) max A(t,ti) < pk (i=0,1,•••,k-1) 
ti 

     or alternatively 

(4.19b) max II(t,ti) < 0. 
           ti 

    If H-1 is rejected in Step I. Then 

Step II. Accept H. which gives max
iII(t,ti). 

1 

    If the cost function f..(Yt) is preassigned as 
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(4.20a) f-li(yt)-fii(yt)= f.-1(yO)-f-1-1 (YO)  (i=O,l,...,k-1) 

and 

(4.20b) f -1j0 = fij(yt) (j#i, j=091,—,k-1), 

then A(t,ti) given by (4.13) becomes simply A(t,ti), so that the above 

hypothesis test reduces to the test given by the principle of maximum 

likelihood. 

Detection RuZe.(Special Case) If the cost functions fij(Yt) are 
     preassigned as (4.20a) and (4.20b), then 

          Step I. Accept H_1, if 

(4.21) max A(t,t.) < pk (i=0,1,•••,k-1) 
ti 1 

          Step II. Accept Hi which gives max
tA(t,t.). 

                                                      i 

     If once the decision is made that the hypothesis, say H
i, is true, 

then the other hypotheses H
v (v=0,1,—,N-1; vii) are rejected. This 

situation implies that the estimation xi(tIt) is true and the other 
estimations, xv(tlt), are rejected by virtue of Hi, and that after the 
time tD where the decision was made, xi(tit) is adopted as the optimal 
estimation to the control scheme. Therefore the obtained estimation is 

a kind of detection-directed estimation with estimate rejection in the 

sense of Middleton and Esposito[98]. 

    With the help of Fig.4.1, the detection procedure is as follows: 

(i) Preassign the cost D in (4.5). 

  (ii) Obtain a newly observed data dy(t), and compute the likelihood-

      ratio function A(t,ti) and fl(t,ti) by (4.22) or (4 .23) (to be 

      given below) and by (4.18). Check, in Step I of Detection Rule, 

      whether II(t,ti) is negative or not. If II is negative , decide 
       that the signal is not yet present, and repeat the calculations 

      of A and H. 

 (iii) If otherwise, proceed to Step II and accept the hypothesis Hi 

       that maximizes the corresponding n(t,ti) with respect to ti . 

 (iv) Choose xi(tlt) by virtue of Hi in the step (iii) , rejecting 
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ii (t l t) 

Fig.4.1. Flow diagram for signal detection. 

the other estimates xv(tlt) (v#i). 

4.4. Relation between Detection and Estimation  

     For the computation of X(t,ti) or II(t,ti) in Detection Rule, 

required to compute the likelihood-ratio A(t,tj) defined by (4.4). 

Starting with the definition (4.4), it is verified that A(t,tj) is 

by 

(4.22)A(t,t~)=exp{jtx~'(s~s)H'(s){R(s)R'(s)}dy(s) - 
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it is 

given



 It  II  H(s)Aj  (s  I  s)1I  {R(s)R,  (s)  )-lds}, 

                    ( 

                                   tj -<tk-1<t<tk; j=O,l,...,k-l) 

where Rj(t.ltj)=x0(preassigned const.). It also verified that (4.22) is 

the unique solution of the following stochastic differential equation: 

(4.23)dA(t,tj)=A(t,t.)R~(tIt)H'(t){R(t)R'(t)}-1dy(t) 

A(tj,tj) = 1. 

The detailed aspect of deriving (4.22) is carried out in Appendix C. 

    It is noted that in order to calculate A(t,tj), R1(sIs) (tj<s<t) 
is required which is the solution of the well-known Kalman-Bucy filter[69], 

(4.24) d*.(sls) = A(s)R.(sIs)ds + P.(sls)H'(s){R(s)R'(s)}-1 

x{dy(s)-H(s)xj(sis)dt} 

         dP.(sIs) 
(4.25) ds ------------ = A(s)P.(sls) +P.(sIs)A'(s) + G(s)G'(s) 

- P.(sls)H'(s){R(s)R'(s)}-1H(s)P(sjs), 

where Pj(sIs)=cov.[x(s)IYD,Hj]. This situation tells us that the two 
operations, detection and estimation, are not separated but are "strongly' 

coupled (cf. Middleton and Esposito[98]; Jaffer and Gupta[51,52]; 

Lainiotis[85]). 

4.5. Simulation Results  

     In order to examine the proposed method of the detection rule, let 

us study an example of digital simulations. 

     System modeis. Let us consider the one-dimensional case where the 

observation process is given by 

            rdv(t)0<t<T0 
(4.26) dy(t) = 

                   s(t)dt + rdv(t), TO<t 

and where s(t)=hx(t) and x(t) is generated by 
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  dy(t)=rdv(t)Ost<s0       is(t)dt.rdv(t) t0st 
r2=0.1 t0=0.75

(a) x0= 0.0 

(b) x0 = 0.25 

(c) x0=0.5 

(d) x0 = 0.7
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(c) 

(b) 
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t (sec)

                Fig.4.2. Sample processes of observation y(t). 

(4.27)dx(t) = ax(t)dt + gdw(t), x(c0) = x0 (To<t). 

In digital simulation studies, the true value of To was set T0=0.75(sec), 

and the time interval in which To exists was [0,T]=[0,1.25] (sec) which 

was equi-divided into 25 intervals (N=25) by the times ti (i=0,1,•••,25). 

Each parameter was set as r2=0.1, g2=0.2, a=1.0 and h=3.0, and the step-

size of time was taken to be dt=0.005(sec). Figure 4.2 shows sample 

values of the observation process y(t) for the four different initial 

values: (a) x0=0.0, (b) x0=0.25, (c) x0=0.50 and (d) x0=0.70. 

    The estimationx.J(tIt) which is necessary to compute the likelihood- 
ratio A is recursively obtained by 

(4.28) da.(tlt) = a*.(tIt)dt + p.(tIt)hr{dy(t)-hxj(tIt)dt} 

~~lt~) 
= R

o(J=0,1,...) 

(4.29) dp(tlt)/dt = 2ap}(tlt)+g2-h2r-2p~2(tit) 
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 p.(t.It.) = cov.[x0IH] = pj0, 

where the initial values were given as x0=1.0 and pj0 1.0 for all j. 
     Cost assignments. The cost function D and the interval Sij in (4.5) 

are defined in Appendix D. Hence, fij(Yt0) given by (4.6) were 

        f-1-1(Yt)0 f-lj(YO) = cl(t-tj){xj2(tIt)+Pj(tIt)} 

        fi -1(Yt) =2[(T-t)xi2(tit) + (T+t){p0+[*0-Xi(tIt)]2}] 

        fij(Yt) = c3Tlgij (tit), 

where 

        gij(tlt)=p.(tIt) + [X.(tIt)-1.(tIt)]2. 

In the simulation experiments, c1=60, c2=c3=1 and T1=T=1.25. 

 • Simulation results. Equations (4.26) to (4.29) were simulated on 

a digital computer. Solving (4.23) for the likelihood-ratio A(t,ti), 

II(t,ti) which is defined by (4.18) was calculated with use of the costs 

assigned above. Figures 4.3(a) and 4.4(a) illustrate the results of 

II(t,ti) for x0=0.25 and x0=0.70. In Fig.4.3(a), only three typical runs 

are shown for II(t,0.1), H(t,0.75) and II(t,0.85) which correspond to 

respective hypotheses H0.1,H0.75and H0.85.In the figure, by tracing 
the history of maxti l(t,ti) (shown by a dotted line), it is observed 

that (Step I) it becomes positive at time 0.90(sec), that is, the decision 

was made at tD 0.90(sec), and further that (Step II) the hypothesis H0.85 
can be accepted because II(t,0.85) gives the maximum of H. As the true 

value of TOwas 0.75, the detection error was 0.10(sec). 

    Figures 4.3(b) and 4.4(b) shows the runs of log-likelihood ratio 

In A(t,ti),corresponding to the parameters x0 as Figs.4.3(a) and 4.4(a). 

For these runs, the detection rule for special case was used . In the 
figures the shaded line shows the threshold lnp

k.*

* The detection rule A(t ,ti)'c pk is equivalent to In A(t ,ti)k In pk.
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Table 4.1. Detection Results of Hypothesis Test*

 (S/N)  I
Detection 

  Rule

Accepted Decision 

Hypothesis Time tD

Detection 

  Error

Delay of 

Decision

(a) 0

(b) 2.5

(c) 5

(d) 7

max II 

max A 

max II 

max A 

max II 

max A 

max II 

max A

H0
.85 

H0
.85 

H0
.85 

H0
.85 

H0
.80 

H0
.85 

H0
.75 

H0
.75

0.905 

0.905 

0.900 

0.895 

0.875 

0.885 

0.855 

0.875

 0.100 

 0.100 

 0.100 

 0.100 

 0.050 

 0.100 

no error 

no error

0.155 

0.155 

0.150 

0.145 

0.125 

0.135 

0.105 

0.125

* In the digital simulations, the true hypothesis was H0
.75.

     Comparative aspects are given in Table 4.1 for the two detection 

rules given in Sec.4.3, with the other simulation results. For convenience 

of discussions, let us define the following ratio similar to the signal-

to-noise ratio by 

A s(T0)dt ,L bx0 (4
.30) (S/N)1 = ---------- 

              (rdv)2r2 

Several facts are pointed out from Table 4.1. First, in order to make the 

decision sufficient informations are needed regardless of the ratio (S/N)1. 

Second, the detection error becomes smaller as (S/N)1 becomes large. 

This means that the larger the ratio becomes, the more detectable does 

the signal become. Moreover, it is seen that the detection rule for 

max II gives better consequences for all ratios than one for max A; that is, 

the detection errors are less smaller than the other. This is due to 
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the fact that the detection rule using II considers the costs reflecting 

detection and estimation and the other does not. 

     From the results obtained it is concluded that the proposed  detection 

rule performs well and is useful for detection of the signal which is 

generated by a class of dynamical systems with unknown initial time. 

4.6. Discussions and Summary 

     Formulating a multiple alternative hypothesis test, a solution of the 

method has been presented for signal detection generated by the dynamical 

system whose initial time is unknown. The estimation of the signal is 

performed by the detection-theoretic approach; i.e. only the estimation 

for which the decision is made is accepted and rest are rejected. An 

example is given of the application of the proposed detection rule to 

the signal detection, indicating its feasibility to engineering problems. 

     In this chapter, for the purpose of better understanding of the 

problem, dynamics of the system and observation are limitted to the linear 

case. When one or both of the dynamics are nonlinear, then the nonlinear 

filtering theory is required.. The filtering problem of nonlinear systems 

is the topics in the following chapter.
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CHAPTER 5. STATE ESTIMATION FOR NONLINEAR DYNAMICAL 

        SYSTEMS

5.1. Introductory Remarks  

    When we want to design a control system, the designer has to establish 

first a procedure to nonlinear filtering as pointed out in  Chap.l, Sec.1.2. 

In Sec.5.2 to Sec.5.4, the author establishes the approximate filter 

dynamics based on the stochastic linearization technique reviewed in Chap.3 

for the nonlinear systems with state-independent and/or state-dependent 

noise or under state-dependent observation noise whose models are given 

in Chap.2, Sec.2.3.[126,129-133,135,136,140,143] Some comparative 

discussions of the approximate filter dynamics obtained here with another 

approximate filter dynamics based on the Taylor series expansion[111] are 

demonstrated, including numerical aspects performed by digital simulation 

studies. Futhermore, in Sec.5.5, an analytical study for performance 

evaluation is developed in order to provide deeper insight into the 

ramifications of approximation techniques with a variety of digital 

simulationsj134], and the proposed method of state estimation is particu-

larly emphasized. 
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5.2. State Estimation for Nonlinear Systems with State-

    Independent Noise  

     In this section, an approximate filter dynamics is given for nonlinear 

 systems with state-independent noise. The mathematical model is specified 

by the system iF defined in Def.2.2 (Chap.2, Sec.2.3),.that is, the dynami 

cal system and the observation processes are respectively represented by

(5.1) dx(t) = fjt,x(t)]dt + G(t)dw(t), x(t0) = x0 

(5.2) dy(t) = h[t,x(t)]dt + R(t)dv(t), y(t0) = 0.E11 

Expanding the nonlinear function f in (5 .1) and using the stock 

linearization reviewed in Sec.3.2, Chap.3 , we have 

(5.3) f[t,x(t)] = a(t) + B(t){x(t)-X(tft)} + e(t) , 
where e(t) denotes the collection of n-dimensional vector terms 

a(t) and B(t) are coefficients of the expansion determined by t 

way that the conditional expectation of the squared norm 
of e( 

tioned by yt, E{lle(t)II2Iyt}, becomes minimal with respect to a( 
The necessary and sufficient conditions for minE{IIe(t) 

                                       a(t),B(t) 
given by 

(5.4a) a(t) = E{f[t,x(t)]Iyt} A f[t,x(t)] 

(5.4b) B(t) = E{ [f [t,x(t) ]-f jt,x(t) ] ] [x(t)-x(t I t) ]' I y
t}P-1( 

where 

(5.4c) P(tit) = cov.[x(t)Iyt]. 

Using a(t) and B(t) determined by (5.4) , (5.1) can be approxima 
following quasi-linear stochastic differentials of Ito -type: 

(5.5) dx(t) = B(t)x(t)dt + {a(t)-B(t)x(tft)}dt + G(t)dw(t) . 
     The same procedure of the linearization is applic

able to tt 
tion process given by (5.2) . Through the exp ansion of the funci 
the form, 

(5.6) h[t,x(t)] = hl(t) + H
2(t){x(t)-x(tJt)} + eh(t), 

the following conditions can easily be obt
ained so as to minimiz

 1F 

stochastic

nat vector terms. In (5.3) , 

determined by the specific 

uared norm of e(t) condi-

th respect to a(t) and B(t). 

a(t) ,B(t)E{pe(t)I21yt} are

-1
(tit),

be approximated by the 

Ito-type: 

} G(t)dw(t). 

licable to the observe-

of the function h in

e

—62—



 E{peh(t)12lyt} with respect to h1(t) and H2(t): 

(5.7a) h1(t)= E{hjt,x(t)]Iyt} = hit,x(t)] 

and 

(5.7b) H2(t) = E{IhIt,x(t)]-h[t,x(t)]][x(t)-i(tit)]'IYt}P-1(tIt). 

For the observation process (5.2), we have 

(5.8) dy(t) = H2(t)x(t)dt + {hl(t)-H2(t)11(tlt)}dt + R(t)dv(t). 

    We assume that the conditional pdf p{x(t)lyt} is Gaussian with the 
mean value i(tit) and the covariance matrix P(tlt), i.e. 

                               1 (5.9) p{x(t)lyt} = (2w)21P(tlt)l 2eXp{2llx(t)X(tlt)fl2-1}. 

With the help of (5.9), both a(t) and B(t) can be obtained in the form, 

(5.10) a(t) = a(t,4(tlt),P(tlt)) 

and 

(5.11a) B(t) = B(t,x(tlt),P(tlt)) 

or 

aai(t) 
(5.11b) bi](t) a (tlty 

Similarly, (5.7a) and (5.7b) become 

(5.12a) h1(t)= hl(t,i(tlt),P(tlt)) 

and 

(5.12b) H2(t) = H2(t,i(tlt),P(tlt) . 

    A striking fact is that the random variables a(t) and B(t) are not 

independent but depend mutually on the state estimate x(tlt) and the error 
covariance matrix P(tit). From this point of view, in reality, more precise 
symbols, a(t,x(tlt),P(tlt)) and B(t,x(tlt),P(tlt)) should be introduced. 
However, for economy of description, we merely denote these by a(t) and 

B(t) without indicating the dependence on both x(tlt) and P(tlt). Both 

h1(t) and H2(t) also follow this symbolic convention. 

—68—



    The  problem considered in this section is to find the minimal variance 

estimate of the state variable x(t) , provided that the process y(s) for 

tOSS'ct is acquired as the observation process. This has already been 

solved in Ref.[126]. The result is 

(5.13a) dx(tlt) = f[t,x(t)]dt + P(tlt)H2'(t){R(t)R'(t)} 1 

x {dy(t)-h[t,x(t)]dt} 

with 

(5.13b) x(t0lt0) = Elx(t0)1, 

w_ie re 

(5.14) P(tit) = cov.[x(t)lyt]. 

This is the solution to the differential equation, 

(5.15a)~dIt)= B(t)P(tIt) +P(tlt)B'(t)+ G(t)G'(t) 
                - P(tlt)H

2'(t){R(t)R'(t)}-1H2(t)P(tIt) 
with 

(5.15b) P(t0It0) = cov.[x(t0)]. 

Equations (5.13) and (5.15) describe the dynamic structure of a quasi-

linear estimator for generating a current estimate X(tlt) with the preas-
signed initial values, x(t0It0) and P(t0It0). 

5.3. State Estimation for Nonlinear Systems with State-Dependent  

     Noise  

     In this section, an approximate filter dynamics is established for 

the system whose intensity of the stochastic disturbance depends on the 

system states. Such systems stated above are called systems "with state-

dependent noise." Physical examples of state-dependent noise are found 

in [94]. 

     For stochastic systems with state-dependent noise, McLane[92] solved 

a filtering problem of linear dynamical systems with state-dependent noise 

in a framework of linear filtering theory. 

      The general structure of the system is the system E2F defined in 
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Def.2.3: 

(5.16) dx(t)  = fft,x(t)]dt + G0(t)dw1(t) 

                          + Git,x(t)]dw2(t), x(t0) = x0 

(5.17) dy(t) = h[t,x(t)]dt + R(t)dv(t), y(t0) = 0. 

                                                                                                                                                                                                          • 

     In particular, the state-dependent noise term considered 

(5.18) G[t,x(t)] = xi(t)Gi(t), 
                             1...:41 

where G.(t) is an nxd2 parameter matrix. The type given by (5 

extensively used in [159], [92] and [93]. 

    Although the system equation (5.16) is the version of the

 E2F

is given by

where G.(t) is an nxd2 parameter matrix. The type given by (5.18) was 

extensively used in [159], [92] and [93]. 

    Although the system equation (5.16) is the version of the Ito sense, 

it is well-known that there is another version to (5.16); i.e. if the 

stochastic equation (2.1) is interpreted in the Stratonovich sense, then 

the equivalent Ito" equation is presented, in a component-wise one, by 

(see Sec.2.2, Chap.2) 

d2 

(5.19) dxi(t) = [fi(t,x) + 2 
k~l 1 [G(t,x)]kj57[G(t,x)]ij]dt j= 

    d1d2 

+ / [G0(t)]..dwl.(t) + [G(t,x)]i.dw (t) 
j=1j=1 

    Excellent discussions of the relation between Ito and Stratonovich 

stochastic integrals are found in [54, Chap.4]. It is obvious that the 

difference between (5.16) and (5.19) is the existence of the term in (5.19) 

n d2 
(5.20a)2 [G(t,x)]ki a--[G(t,x))1.. 

k=1 j=1 

    For convenience of discussion, with the help of (5.18), we shall 

write (5.20a) as 

                    nd                              n 
(5.20b)(G2x)i - y2 [Gk(t)]ij[GZ(t)]kix (t), 

k=1 j=1 Z=1 

and define an n-vector by 
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(5.21) (G2x) = I(G2x)1,...,(G2x)nj!. 

Using the relation, 

        CC         nd2  n 
            G (5.20c)G G [Gk(t)]ij[G2(t)lkjx1(t) 

            k=1  j=1 1=1 

                CCG                      nd2cn                      =GG [G
Z(t)]ik[G.(t)]Zkxj(t), j=1 k=1 1=1 

write (5.21) as 

ti 

(5.22a) (G2x) = Gx, 

where 62 is an nxn-matrix whose (i,j)-th element is given by 

tid2 n 

(5.22b) IG2144 = X X CGZ(t)]iklGj(t)]Zk• 
                    k=1 1=1 

     Bearing in mind (5.22a) , it is convenient to express (5.16) and (5.19) 

in the following form, 

(5.23) dx(t) = (f(t,x) +2G2x]dt + G0(t)dwl(t) 

n 

              + Xxi(t)G.(t)dw2(t),     i=1 

where is a parameter taking its values 0 or 1 and indicates whether the 

presented stochastic equation might be interpreted in the sense of Ito or 
of Stratonovich according to x=0 or x=1. 

    Note that if x=0, then (5.23) is equal to (5.16), or if x=1, 
then (5.23) is equal to (5.19). Equation (5.23) is used for presenting 
the two different models, (5.16) and (5.19). 

     The initial condition, x(t0), for (5.23) is assumed to be a random 
variable having a zero mean and a covariance matrix P (t

0 l t0)=E{x(t0)x' (t0)}• 
     Applications of the stochastic linearization technique to the 

functions f and h in (5.19) and (5.17) yield the quasi -linearized 

stochastic differentials, 
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(5.24) dx(t) =  111(t)x(t) + {a(t)-B(t)IN to + 2 G24dt 

              + G0 (t) dwl (t) + Ixi (t) G. (t) dw2 (t) , 
                                  i=1 

                                         (5.25) dy(t) = [h1(t)+H2(t){x(t)-x(t1t)}]dt + R(t)dv(t). 

    We shall proceed to solve the problem including computation of the 

state estimate x(tI t) and the error covariance P (tl t) . 
                                                  ti     By a simple calculation, the term, B(t)x(t)+2G2x, in (5.24) is 

rewritten as follows, 

(5.26a) B(t)x(t) + 1NG2x = 31X(t)x(t) , 
     ti 

where1x(t) is an nxn-matrix whose (i,j)-th component is defined by 

(5.26b) CBX(t)]. 0[B(t)]..+2-(IG2lij- 

   ti 

Let~(t,t0) be the formal fundamental matrix associated with the homoge-

neous differential equation, dx(t)/dt=BX(t)x(t). Although (5.24) involves 

the state-dependent noise term, it is a simple exercise to show that (5.24) 

is precisely interpreted by 

(5.27) x(t) = '(t,t0)x(t0) +ft'i(t,^){a(s)-B(s)X(sIs)}ds 

                           0 n 

            + fti(t,^)G0(s)dw1(s) + ft i(t,^)xi(s)Gi(s)dw2(s). 
    00 i=1 

    Let the second term on the right-hand side of (5.27) be 

(5.28)(t) = -It-B(s)x(sls)}ds. 

                0 Introducing a new stochastic process t(t) defined by 

(5.29) E(t) = x(t) + c(t) , 

and combining (5.27) with (5.29), it follows that 

(5.30) t(t) = '(t,t0)x(t0) + f ''‘(t,^)G0(s)dw1(s) + 

0 
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 n 

             + ft X(t,^)IEi(s)-i(s)]Gi(s)dw2(s), 
                   0  i=1 

where the relation x(t0)=E(t0) has been used. Then the E(t)-process is 

of an Its-type and the stochastic differential is 

                  ti 

(5.31)dE(t) =BX(t)E(t)dt + G0(t)dw1(t) 

nn 

              + XFi(t)Gi(t)dw2(t) -
l~l~i(t)Gi(t)dw2(t).    i=1 

     On the other hand, it follows from (5.25) that 

(5.32) y(t) = ftH2(s)x(s)ds + ft {hl(s)-H2(s)x(sIs)}ds 
   00 

+ ftR(s) dv(s) . 

                0 Let the second term of the right-hand side of (5.32) be t
y(t) and define 

n(t)4),(t)- (t). Then it follows that 

(5.33) dny(t) = H2(t)x(t)dt + R(t)dv(t), n
y(t0) = 0. 

Furthermore defining a new stochastic process by its stochastic differential, 

(5.34a) dn(t) = dn(t) + H2(t)(t)dt, n(t0) = 0, 

equation (5.34a) becomes 

(5.34b) dn(t) = H2(t)E(t)dt + R(t)dv(t), 

where (5.29) and (5.32) have been used. Since the r(t)-process is Yt 

measurable, it follows from (5.29) that 

(5.35) Z(tIt) A E{ (t)Iyt} = cc(tit) + t(t). 

Let Ht be the o-algebra of m sets generated by the random variable n(s) 
for t0<s<t. Since the n(t)-process is {-

t-measurable and the y(t)-process 
yt measurable, it follows that 

(5.36) Ewt) I yt} = E{(t) I fr
t} = l(tI t) . 

     We shall consider that the E(t)-process is the fictiti ous state 
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variable  determined  by (5.31) and that (5.34) denotes the observations 

which are made on the E(t)-process. This situation implies that the 

problem is to find the best estimate, t(tlt), of E(t) based on the a-
algebra Ht. 

    In order to obtain the current estimate t(tIt), let the optimal 
estimate of E(t) be generated by 

(5.37) dE(tI t) = F(t)i(tI t)dt + K(t)dn(t), k(t0l t0) = 0. 

    The solution of the above-mentioned class of linear filtering problems 
is achieved by use of the well-known Wiener-Hopf equation, i.e. [69,17] 

(5.38) E{ (E(t)-t(tI t) ]dp' (s)} = 0 

for all t0<s<t. Computing the stochastic differential of E(t)4(tit) 
in (5.38) and using the relation E{•}=E{E{.lyt}}, it suffices to show 
that 

(5.39) E{dE(t)dn'(s)lyt} = E{dk(tlt)dn'(s)lyt}, t0<s<t. 

Using (5.31) and invoking the fact that wl(t) and w2(t) are independent 

of dn(s) for se[t0,t), the left-hand side of (5.39) becomes 

(5.40) E{dE(t)dn'(s)IV } = E{BX(t)E(t)dn'(s)Iyt}dt. 

    On the other hand, by using (5.34) and (5.37), the right-hand side of 

(5.39) becomes 

(5.41) E{d'e(tlt)dn'(s)lyt} = E{F(t)E(tlt)dn'(s)lyt}dt 

                       + E{K(t)H2(t)E(t)4'(s)1yt}dt, 
                                                                    ti 

because v(t) and dn(s) are mutually independent for se[t0,t]. Since BX(t), 

H2(t),F(t) and K(t) are ytmeasurable, it follows from (5.40) and (5.41) 

that 

(5.42) (Bx(t)-F(t)-K(t)H2(t)]E{k(tIt)dn'(s)Iy0 = 0. 

    Consider the integral form of (5.37). 

(5.43) e(tit) = f!A(t,^)dn(s), 

                 0 where A(t,^) is an nxn-matrix associated with F(t) and K(t). Combining 

(5.42) with (5.43), we have 
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(5.44)  f;  iBx(t)=F(t)-K(t)H2(t)]A(t,T)E{dn(T)dn'  (s)  l  yt} = 0, 

 0 or equivalently, 

            ti 

(5.45) [BX(t)-F(t)-K(t)H2(t)]A(t,T) = 0 

for t <T<t. Thus 

(5.47) dk(tlt) = BX(t)e(tlt)dt + K(t){d11(t)-H2(t)i(tit)dt}. 

     It is a simple exercise to show that the optimal filter gain is given 
by [69] 

(5.48) K(t) = P (tlt)H2'(t){R(t)R'(t)}-1, 

where P (t1t)=cov.[E(t) yt] 
     Bearing in mind (5.35) and the definition of P (tit), it follows that 

(5.49) P(tlt) = cov.[x(t)lyt] = P (tit). 

Substituting (5.34) and (5.48) into (5.47) and using (5.26) , (5.28) , (5.29), 
(5.35) and (5.49), we have 

(5.50a) dx(tlt) = [f[t,x(t)] +2G2x]dt 

                + P(tl t)H2' (t) {R(t)R' (t) }-1{dy(t)-fi[t,x(t) ]dt}, 

(5.50b) x(t0lt0) = E{x(t0)} = 0, 

where the relations (5.4a) and (5.7a) have also been used. The associated 
error covariance P(tit) is determined by 

(5.51a)dPd(t~t)= BX(t)P(tlt) + P(tlt)BX'(t) + G0(t)G0t(t) 

                + G[Q] - P(tlt)H 2.(t){12(t)R'(0}-1H2(t)P(tlt), 
(5.51b) P(tolto) = cov.[x(t)], 

where G[Q] is an nxn-matrix defined by 

(5.52) G[Q] - E{( xi(t)Gi(t))( X x.(t)G.'(t))ly} 
i=l j=1 3t 

n n 

             = X X [Q(tlt)] ..G.(t)G.'(t). 
j=1 i=1 
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The  nxn-matrix Q in (5.51) is defined by 

(5.53) Q(tI t) = E{x(t)x' (t) yt} 

and determined by 

ti ti 
(5.54a)-= BXQ + QBX' + ax' + xa' - Bii' - 

            + GOGO'+ G[Q], 

(5.54b) Q(t01t0) = E{x(t0)x'(t0)}. 

     Equations (5.50), (5.51) and (5.54) describe the dynamic structure 
of an approximate filter for generating a current estimate X(tIt) with 
the given initial values, x(t0It0),P(t0It0) and Q(t0It0). From the 
results obtained it is learned that if the system dynamics is linear 

and the observation mechanism is also linear, then the filter dynamics 

coincide with ones obtained in [92] where the stochastic integral is 

interpreted in the Stratonovich sense. 

5.4. State Estimation for Nonlinear Systems under State-Dependent  

    Observation Noise  

  5.4.1. System Models and Filter Dynamics  

     This section is concerned with an approximate filter dynamics for 

nonlinear stochastic systems under noisy observations, where the 

intensities of the system and observation noises depend on the system 

state. Physical examples of state-dependent noise can be found in the 

operation of radar sevo systems, aerospace systems and chemical process 

control systems (for more details examples, see [94]). 

    We consider first the system dynamics of the type E
3F in Def.2.4, 

that is the system dynamics is a nonlinear vector stochastic differential 

equation of the form, 

(5.55) dx(t) = f[t,x(t)]dt + G0(t)dw1(t) +dW2(t)x(t), 

          x(t0) = x0. 

    The observations are made at the output of the nonlinear system 

with additive Gaussian disturbances. The mathematical model is given by 
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(5.56) dy(t) =  h[t,x(t)]dt + RD(t)dvl(t) + dV2(t)r[x(t)], 

y(t0) = 0, 

where r(x) is an n-vector valued nonlinear function of x. 

     The essential aspect of the problem considered here is the existence 

of the third term of the right-hand side of (5.56) which is regarded as 

a term of the "state-dependent observation noise." If the state-dependent 

noise is not involved in an observation channel the nonlinear filtering 

problem has already been solved in Refs.[115], [78] and [165] and several 

methods of establishing approximate filter dynamics have been proposed 

[4,80,111,126]. However, the existence of the state-dependent noise 

term brings a difficulty to compute the time evolution of conditional 

pdf of the system state, based on the Bayesian approach. Furthermore, 

undoubtedly, the resulting filter dynamics does not suffice to realize 

only the first two moments even if the functions f(t,x) and h(t,x) are 

linear. 

     Up to the present time, a few papers deal with the filtering problem 

of linear dynamical systems[92]. In [92], McLane considered the filtering 

problem of linear dynamical models with both the state-dependent system 

and observation noises and reduced the problem to solve the Wiener-Hopf 

equation under the assumption that the intensity of the state-dependent 

noise is not so large as the process becomes non-Gaussian. 

     In the sequel, for convenience of theoretical development, the case 

where the influence of the state-dependent observation noise is propor-

tional to the system state. In (5.56), this situation implies 

(5.57) r(x) = x. 

Thus, instead of (5.56), the following model is given: 

(5.58) dy(t) = h[t,x(t)]dt + RD(t)dv1(t) + dV2(t)x(t). 

     The problem is to find the minimal variance estimate of the state 

x(t), provided that the process y(s) for t0<s<t is acquired as the 

observation process. 

    With the applications of the stochastic linearization to the 

functions f and h, the original processes (5 .55) and (5.58) are
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approximated by 

(5.59) dx(t) B(t)x(t)dt +  {a(t)-B(t)x(tIt)}dt 

             + G0(t)dw
1(t) + dW2(t)x(t) , 

(5.60) dy(t) = H2(t)x(t)dt + {h1(t)-H2(t)x(tl t)}dt 

             + R0(t)dv1(t) + dV2(t)x(t). 

    Although both the nonlinear functions f(t,x) in (5.55) and h(t,x) 

in (5.58) are respectively approximated by the linear functions, the 

state-dependent noise terms dW2(t)x(t) and dV2(t)x(t) are still remained 

and these render the processes non-Gaussian. However, when the intensity 

of the state-dependent noises is small, the stochastic linearization is 

plausible and we may still assume that the conditional pdf is approximated 

to be Gaussian with the mean value x(t I t) and the covariance matrix 
P(tl t) as given by (5.9) . 

    Equations (5.59) and (5.60) are the basic stochastic differentials 

of Ito-type for the development of the following discussions. 

     In the case where the state-dependent noise terms dW2(t)x(t) and 

dV2(t)x(t) in (5.55)and (5.58) are identically zero, the suboptimal 

filtering problem is solved in Sec.5.2, via the stochastic linearization 

technique, and further the filtering problem of the special case where 

the state-dependent term is given by (Z7=1xiGi)dw2(t), instead of 
dW2(t)x(t), is solved in Sec.5.3. 

     Based on these researches and the Gaussian approximation (5.9), we 

may assume that 

(5.61) dx(tlt) = f[t,x(t)]dt + K(t){dy(t)-~i[t,x(t)]dt}, 

where the nxl-matrix K(t) is determined so as to minimize the conditional 

expectation of square-norm of the estimation error, E{llx(t)-X(t1t)1121Vt}. 
Combining equations (5.59), (5.60). (5.61) with (5.14), it follows that 

the associated error covariance matrix P is the solution determined by 

(5.62)dt= BP + PB' - KH2P - PH2'K' + GOGO^ 
            + ''[Q] + K{ROR0 t+A[Q] }K' , 

where CO and A[Q] are n xn- and ZxZ-matrices whose respective (i,j)-
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element is

(5.63)

given by 

      lj

(5.64)  {A[Q]}.. =  lj 

and where q.. is an (i 
1J 

(5.65) Q(tIt) E{ 

and this satisfies the 

(5.66a) dt= BQ + 
              + GOG0' 

(5.66b) Q(t0lt0) 

     Here consider the 

(5.67) E{Iix(t)-x(t 

or equivalently, tr.{P 

is obvious that, in (5 

and P(t0I t0) are assum 
will depend upon the c 

and that, minK(
T) tr.{ 

question is that, for 

to minimize the "cost 

made on a linear time-

the dynamic programmin 

     To do this, at pr 

we shall define a mini 

(5.68) V(T,P) = m 
     T K 

where P=P(Tk). Appl

 (i,j)-element of 

E{x 

he 

+ Q

E{Iix(t)-x(tl .. ' L

 /(l'ikgkk for i=j 
kl 

0for i¢j , 

klAijgfor i=j       kk 

0for i¢j, 

 D-element of the matrix 

differential equation, 

'B' + aX' + 

                                 . VV 

scalar quantity

xa'

tly, tr. {P (t I t) } as a measure of the filter performance. It 
hat, in (5.62), if the matrices B, H2, G0, R0, 4[Q], A[Q] 

 are assumed to be preassigned, then the value of tr.{P(tjt)} 
upon the choice of the filter gain matrix K(T) for t0<7<t, 

nicer) tr.{P(tIt)} can be evaluated. Thus, the expected 
that, for t0<T<t, how the matrix K(T) should be chosen so as 

the "cost functional" (5.67). Although a trial has been 

near time-varying dynamical system[3], use will be made of 

programming method in the sequel. 

his, at present time t, for every fictitious time T (t0<T<t), 

ine a minimum cost functional, 

(T,P) a min tr. {P (t I t) } , 
K(T) 

IT). Applying the principle of optimality to the functional, 
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we have 

(5.69)  V(T,P ) = min {V(T+dT,P +dP )}. T 
K(T)T T 

Expanding the right-hand side of (5.69) into a Taylor series and neglect-

ing the higher-order term than 0(dt2), it follows that 

(5.70) V(T,PT) = min {V(T,PT) +aTT+tr.f-PT}}, 
               K(T) 

where 

                  CnCn (5.71) tr.{aPP}°=Gspdpi 
i=1 j=1ij 

Cancellation of the same term V(T,P
T) from both sides gives 

(5.72) -aaT=min tr.{--[BP+PB'-KHP-PH'K' 
K(T)aPTTTTTT2TTT2TT 

                           +GO
TGOT'+4.[Q]T+KTROTROT'KT'+KTA[Q]TKT'] , 

where the subscript T indicates the values at time T. Therefore, with 

the concept of a gradient matrix[3], from (5.72), we have 

(5.73)K(T) = P(TIT)H2'(T){R0(T)R0'(T)+A[Q]}-1,to-<T<t. 

Then, by letting T=t, the optimal filter gain in (5.61) becomes 

(5.74) K(t) = P(tit)H2'(t){R0(t)R0'(t)+A[Q]t}-1. 

Therefore, combining (5.61) and (5.62) with (5.74), the optimal filter 

dynamics and the associated error covariance matrix equation are 

respectively given by 

(5.75a) dx(tl t) = f[t,x(t) ]dt + P(tl t)H2' (t){R0(t)R0' (t)+A[Q]}-1 

x{dy(t)-fi[t,x(t) ]dt}, 

(5.75b) x(t0lt0) = E{x(t0)}, 

(5.76a) dPatl t) = B(t)P(tit) + P(tl t)B' (t) + G0(t)G0' (t) + t[Q] 
               - P(tl t)H' (t){R (t)R ' (t)+A[Q]}1H(t)P(tl t) . 

       20 02 
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(5.76b)  P(t01t0) = cov.[x(t0)]. 

Equations (5.75), (5.76) and also (5.66) describe the dynamic structure 
of an approximate filter for generating the current estimate i(tit) and 
the associated error covariance P(tit) with the given values, i(t01t0), 
P(t01t0) and Q(t01t0) as initial conditions. 

  5.4.2. An Illustrative Example and Comparative Discussions  

     For the purpose of exploring the quantitative aspect, we shall 

consider the one-dimensional case where the nonlinear dynamical system 

and observation process are respectively given by the following stochastic 

differential equations: 

(5.77) dx = (ax+c x3)dt + xdw2, 

(5.78) dy = xdt + xdv2, 

where a and a are constants and e is a sufficiently small parameter, and 

where, in this example, the portions of state-independent system and 

observation noises are assumed to be zero. An application of (5.4a) and 

(5.4b) to the present case gives us (see also Appendix A, Table A.1) 

(5.79a) a(t) = ax + esx(x2+3p), 

(5.79b) b(t) = a + 3c (x2+p). 

Using (5.79a) , (5.79b) , (5.75a) and (5.76a) the approximate filter 

dynamics and the associated covariance are determined by 

(5.80) di = {ax+esx(i2+3p)}dt + p(Aq)-1(dy-idt), 

and 

(5.81) dt= 2{a+3cR(x2+p)}p-p2(aq)-1+ 4q. 
Furthermore, from (5.66a), it follows that 

(5.82) d=2{a+3e8(i2+p)}(q-x2) + 2{ci+esx(x2+3p)}x+ 4q. 
    Equations (5.77) to (5.82) are simulated on a digital computer with 

the subroutine for the generation of random disturbances w2(t) and v2(t). 

The computer program for the simulation follows completely the description
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given later in Sec.6.6, where the simulation method is described in 

detail associated to an  optimal control, with a constant partitioned 

time d .=0.01(sec) . 

    The results of simulation studies are shown in Fig.5.1, 5.2 and 5.3 

with a variety of parameters, where both the values of a and s were fixed 

to be -1.00 and 1.00 respectively. The state-dependent system noise 

covariance was 02=0.20 for all the experiments and the observation noise 

covariance was A2=0.10 for the experiment shown in Figs.5.1 and 5.2, and 

X2=1.00 for the experiment shown in Fig.5.3. The initial value of the 

state are approximately assumed to be Gaussian random variables. The 

true run of the system state and the quasi-linearized run are shown in 

Figs.5.1(a), 5.2(a) and 5.3(a). The associated p(tlt)- and q(tlt)-runs 

in these three experiments are also shown in Figs.5.1(b), 5.2(b) and 

5.3(b). 
    Figures 5.4, 5.5 and 5.6 show the results of another possible 

method of approximation based on the Taylor series expansion up to the 

second order[111,126]. The filter equation and the associated covariances 
are shown in the figures. From a variety of runs shown in these figures, 

the accuracy of the filter derived by the stochastic linearization 

method contends with one of the other filter obtained by the Taylor 
series expansion method. 

    From these experiments, it can be obtained that as the intensity 
of the observation noise becomes large the accuracy of the estimation 

becomes poor (Figs.5.1, 5.3, 5.4 and 5.6) and that as the quantity of 
the nonlinearity becomes large the accuracies of the estimation and quasi-

linear process become wrong (Figs.5.1, 5.2, 5.4 and 5.5). These 
experiments reveal that the estimation accuracy depends on both nonlinear-

ities and the intensity of observation noise. 

    We shall proceed to develop comparative discussions of the evaluation 
of the filter performance by using the Monte Carlo trials. As a 

qualitative measure of the performance evaluation, we shall consider 

(5.83) c(t) =1y {x(1)(t)-x(1)(tlt)}2, 
                    i=1 

where x(1)(t) andx(1)(tlt) denote the i-th true sample run of the system 
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state and that of the estimate respectively, and N is the number of 

sample runs to be averaged. Both figures 5.7 and 5.8 show the c(t) run, 

where the values of parameters correspond to those of figures 5.2, 5.5 

and figures 5.3, 5.6. In the figures, the performances cs(t) of the 

approximate filter dynamics derived by the stochastic linearization 

method and cT(t) of the approximate filter dynamics derived by the 

Taylor series expansion method are compared with each other. It can be 

observed that the filter dynamics derived by the Taylor series expansion 

shows a slightly better performance than that derived by the stochastic 

linearization technique. However, it should be noted that the stochastic 

linearization method requires the expansion of a nonlinear function up 
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to the first order of the error x-x as shown in (5.3) while the Taylor 

series method requires the expansion up to the second order of x-x. 

Consequently, it may be emphasized that the approximate filter dynamics 

derived by stochastic linearization method can compete with another 

filter dynamics through the first order expansion in the system dynamics. 

5.5. Performance Evaluation of Approximate Filter Dynamics  

    This section is concerned with an analytical study on the performance 

evaluation for the purpose of providing deeper insight into the ramifi-

cations of approximation techniques to nonlinear filtering problems. 

    Concretely speaking, the problem considered here is to evaluate the 
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filtering error defined by  e(t)=x(t)-i(tIt). From practical viewpoints, 

it is useful to compute the first, the second and more higher order 

moments of e(t). However, the result of theoretical contributions to 

nonlinear filtering problems reveals that an exact realization of optimal 

nonlinear filters requires infinite dimensional filters which are practi-

cally impossible to realize those[16,78,115,123,158,185]. This implies 

that the precise evaluation of the filtering error is almost impossible 

and that both the construction and the related performance evaluation 

of approximate filter dynamics are highly important. In [7], a trial 

has been reported on the approximate evaluation of the filtering 

performance by assuming an approximate filter dynamics. In this section, 

however, the approximate filter dynamics will be established first and 

then the approximate evaluation of the filtering error will be performed. 

In order to evaluate the filtering error c(t), the two approximate 

estimation processes are considered, which are respectively generated by 

the filter dynamics derived by (1) the method of stochastic linearization 

and (2) the method of Taylor series expansion. 

  5.5.1. System Models and Filter Dynamics  

     The mathematical models are chosen to be 1F defined in Def.2.2, i.e.

(5.84) dx(t) = f[t,x(t)]dt + G(t)dw(t), 

(5.85) dy(t) = h[t,x(t)]dt + R(t)dv(t). 

     Throughout this section, two Greek lette 

in vectors or matrices are used to distinguic 

and matrices of the same genre. For example, 

the approximate estimation process and the ae 

matrix derived by the method of stochastic li 

these symbols are used to distinguish from tb 

X(tIt) and the error covariance P(tIt). On t 
P0(tit)are respectively the same quantities 
derived by the method of Taylor expansion. 

     The method of stochastic linearization t 

sections is also introduced for the purpose o 

filter dynamics. Expand the nonlinear functi 
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(5.86)  f[t,x(t)  J = a(t) + B(t){x(t)-xa(ti t)} + ef(t) 

where ef(t) denotes the collection of n-dimensional vector error terms, 
and where a(t) and B(t) are respectively the coefficients of expansion 
determined under the criterion, mina(t) ,B(t) E{II a f(t)II 2I yt} • These 
coefficients are respectively given by (see Sec.3.2) 

(5.87a) a(t) = E{f[t,x(t)Jlyt} f[t,x(t)] 

(5.87b) B(t) = E{ [f (t,x)-f(t,x) ] (x-xa)' I Yt}P-1(tI t) , 

where 

(5.88) P(tI t) = cov. [x(t) IYt]. 

Then the sample path x(t) determined by (5.84) may be approximated by 

(5.89) dxa(t) = B(t)xa(t)dt + {a(t)-B(t)fa(tit)}dt + G(t)dw(t). 

    The same procedure is applicable to the observation process given 

by (5.85). Through the expansion of the function h[t,x(t)] in the form, 

(5.90) h[t,x(t)] = hl(t) + H2(t){x(t)-ia(tIt)} + eh(t), 

the coefficients are determined by 

(5.91a) h1(t) = E{h[t,x(t)]Iyt} A h[t,x(t)] 

(5.91b) H2(t) = E{[h(t,x)-11.(t,x)](x-i0)'Iyt}P-1(tIt). 

    The quasi-linear stochastic differential associated with (5.85) is 

(5.92) dya(t) = [h1(t)+H2(t){x(t)-ia(tIt)}]dt + R(t)dv(t). 

    As the author pointed out in Sec.3.2, in order to calculate the 

coefficients a(t), B(t), hl(t) and H2(t), the conditional pdf of the 

x(t)-process, p{t,x(t)Iyt}, is assumed to be Gaussian with the mean 
value fa(tIt) and the covariance matrix Pa(tIt). By invoking this 
assumption, each coefficient listed above may be computed as a function 

of t, xa(tIt) and Pa(tIt). Consequently such more precise symbols as 
a(t,ia,Pa), B(t,xa,Pa), etc., should be used. Use of these precise 
symbols will begin with the next subsection. 

    Based on (5.89) and (5.92), the approximate filter dynamics is given 
by
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(5.93)  dxa(tl  t) = flt,x(t)]dt + Pa(tl t)H2' (t){R(t)R' (t)}-1 

x{dy(t)-h[t,x(t)]dt}, 

where Pa(tit) is the solution of 

         dPa(tit) 
(5.94)dt------------ = B(t)Pa(tI t) + Pa(tlt)B' (t) + G(t)G' (t) 

                 - Pa(tl t)H2' (t){R(t)R' (t)}-1H2(t)Pa(tI t) 
with xa(toIt0)=x(t0It0)=E{x(t0)} and Pa(t0It0)=P(t0It0)=cov.[x(t0)]. 

  5.5.2. Performance Evaluation of the Filter Dynamics  

     The aim of this subsection is to investigate the possibilities and 

ramifications of obtaining a useful analytical method for evaluating the 

performance of the approximate filter. To pose the problem for analysis, , 

equation (5.84) is rewritten by combining it with (5.87), 

(5.95) dx(t) = [a(t,xa,Pa)+B(t,xa,Pa){x(t)-xa(tlt)}+ef(t)]dt 

                          + G(t)dw(t). 

     The error process e(t) for the filtering process x
a is defined by 

a usual way: 

(5.96) e(t) = x(t) - xa(tIt), 

where e(t) is an n-vector. Combining (5.93) with (5.95), it follows 

that 

(5.97) de = [a(t,xa,Pa)+B(t,Xa,Pa)e+ef f(t,x)]dt + Gdw 

              - PaH
2'(t,xa,Pa)(RR')-1{dy-h(t,x)dt}. 

The innovation process (dy-hdt) in (5.97) is expressed by 

(5.98) dy - fi(t,x)dt = [111(t,ica,Pa)+H2(t,xa,Pa)e+eh-h(t,x)]dt 

                                       + Rdv, 

where the relations (5.85), (5.90) and (5.96) have been used . Substitut-
ing (5.98) into (5.97), we have 

(5.99) de = [B-PaH2'(RR') 1H2]e dt + (a+ef-f)dt -
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             -  PaH2'(RR')-1(hl+eh  h)dt + Gdw - PaH2'(RR')-1Rdv. 

Bearing in mind the relations (5.87a) , (5.87b) , (5.91a) , (5.91b) and 
the fact that the terms of and eh in (5.86) and (5.90) are of 0(e2) 
respectively, equation (5.99) is approximately expressed by 

(5.100) de = L(t,Xa,Pa)edt + Gdw - K(t,la,Pa)dv, 

where 

(5.101) L(t,xa,Pa) B - PaH21(RR')-1H2 

and 

(5.102) K(t,ia,Pa) 0 PaH2'(RR')-1R. 

     As the measures of performance evaluation, we shall compute the 
mean value and covariance of the e(t)-process, i.e. 

(5.103a) m(t) E{e(t)Ix(t0)=x0} 

(5.103b) Q(t) cov.[e(t)Ix(t0)=x0]. 

    From (5.100), it is easily shown that 

           dm (5.104) dt = E0{L(t,xa,Pa)e}, 

where EO is an abbreviated symbol of the conditional expectation 
E{. x(t0)=x0}. 

    Define the X(t) -process and the covariance matrix by x(t)=E0{x(t)} 
and P(t)=cov.[x(t)Ix(t0)=x0] respectively. Both the time evolution of 
x(t) and f (t) are precisely computed by (5.84) . i.e. 

(5.105) di(t)= E0{f(t,x)} - f(t,x) 

(5.106) df(t) = E0{[f(t,x)-f(t,x)](x-x)'} 

             + E0x)                    {(x-[f(t,x)-f(t,x)]'} + G(t)G'(t). 

    Instead of the conditional expectation E{.Y } in the relations 

(5.87a) and (5.87b), if we consider the conditional expectation E0, then, 

from (5.105) and (5.106), by a similar method to the stochastic lineari-

zation, it is a simple exercise to show that[132] 
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 a 

(5.107)dtt)= f(t,x) - a(t'xa'Pa) =dt— 
da 

(5.108) dt - B(t,Xa,Pa)Pa + PaB'(t,xa,Pa) + GG', 

where 

(5.109a) xa(t) = x(t) = E0{x(t)} 

(5.109b) Pa(t) = cov.(x(t)Ix(t0)=x0] 

and 

(5.109c) B(t,xa,Pa) = E0{(f-f)(x-x)'}pa-1. 

    Noting that Eo{e(t)}=E0[E{e(t)Iyt}], both the X(t) -process and Q(t) 
are respectively observed as the deterministic process. Then expanding 

the (i, j)-th component of L(t,xa,Pa) in (5.104) into 

                    _n 31.. 
(5.110)Zij(t,xa,Pa) = l..(t,x,Q) +8X _ (Xakxk)                              ij k =1ak x ,Q 

                 Cn_Li_ +G 
a-

x (p_qqkm)+...' k,m=1pakm,Q 

where x
ak' xk'pakm' qkmand Ili are components of xa, x, Pa, Q and L, 

respectively. Deleting the higher-order terms than O(e) in (5.110), 

a component-wise expression of (5.104) becomes 

dm. cn_1;LL _(5.111)EO{G[Zi.(t,x,Q) + akxk)]ej}. 
j=1k=1 ak x,Q 

Performing the expectation operation in (5.111), and noting the relation 

(5.101), it follows that 

(5.112a) = L(t,x,Q)m 

(5.112b) = [B(t,x,Q)-QH2'(t,x,Q)(RR') 1H2(t,x,Q)]m. 

    On the other hand, from (5.100). (5.103b) and (5.112a), it is 

easily shown that 
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(5.113)dt=ED(L(t,x,Pe)e(e-m)'+(e-m)e'L'(t,xa,Pa) 
             +  GG' + EO{K(t,~ca,P a)K' (t,xa,Pa)1. 

                                              Expanding again L and K about x and Q, and neglecting the higher-order 

terms of 0(c2) in (5.113) , it follows that 

(5.114) dt= L(t,x,Q)Q + QL'(t,x,Q) + GG' + K(t,x,Q)K'(t,x,Q) 
            +2<K(t,x,Q)a2K(t,x,Q) : Pa-Q> 

             +2<K(t,x,Q)a2K(t,x,Q) : Pa-Q>' 

             + <(8K(t,x,Q))2:Pa-Q>, 

where <K(t,x,Q)a2K(t,x,Q) : Pa-Q> and <(aK(t,x,Q))2 : Pa-Q> are nxn-

matrices whose (i,j)-th component are respectively given by 

        d2 n a2
ki (5.115) X Xax------------axI-(paZmgZm)kj(t,x,Q) 

v=1 Z ,mlaZamx,Q 

and 
        d2 n ak

ivakjv 

          vL1 Z,m1exal x,Qam x,Q(paZm qZm), 
and where pai m is an (Z,m)-component of the matrix In In the one-

dimensional case, equation (5.114) becomes 

(5.116)-d-q-= 2Z(t,x,q)q +g2+k2(t,x,q) 

      2 _                + CI _k(t,x,q)+(ak1_x)2](Pa-q) axa x ,qxa,q 

              = 2b(t,x,q)q + g2- q2r-2rh
22 

           _a2h_eh                   + q2r2[axa2 x,gh2(t,x,q)+(Ix,q)2~(Pa-q)• 
Equations (5.112) and (5.114), or (5.116), are the basic equations for 

the evaluation of the filter performance. Since x(t0jt0) E{x(t0)}, the 

initial condition of (5.112) is m(t0)=0. With this condition, it may 
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easily be concluded that  m(t)_0. The initial value of filtering erro 

 covariance Q is given by Q(.t0)=cov.[e(t0)]. 

      So far, the performance evaluation covered up to the second-orde] 

moment. Computations of more higher order moment than the second or& 

are obviously required in the case of nonlinear filtering problems. 

Although the same procedure as described in this section is applicabic 

to evaluate higher order moments, an expected difficulty is tedious 

calculations. From the viewpoint of practical application, we shall 

expect to have so many cases where the performance is almost completec 

by evaluating up to the second-order moment or, at best, up to the 

third order. 

5.5.3. An Illustrative Example with Comparative Discussions  

     Let us consider a nonlinear dynamical system whose sample process 

is approximated by a scalar nonlinear stochastic differential equation 

(5.117) dx = - sinxdt + gdw. 

     The observation process is simply given by 

(5.118) dy = xdt + rdv. 

     Based on a couple of equations (5.117) and (5.118), the approxima 

filter dynamics and the related error variance equation are respective 

determined by 

(5.119)dxa= - sinxaexp(                             Pa + par2(dy-xadt) 

(5.120)dta= - 2pacosxexp(Pa+ g2 - pa2r2. 

The variance equation corresponding to (5.116) becomes 

(5.121) dt= - 2qcosxexp(~) + g2 - q2r-2, 
where x is a solution of the following differential equation

,

* It is supposed that the noise level is not so high as t o satisfy the 
existence condition of the solution of (5.117). 
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                                 Pa. 

(5.122)d= - sinx, 

where  Pa is given in Table 5.1. 

     For the purpose of comparative discussions, another approximate 

filter dynamics is taken into account which is based on the Taylor series 

expansion for nonlinear function.[111,126] For the approximate filter, 

the same procedure as mentioned in the preceding section is applicable 

and somewhat tedious calculations bring 

       _ahl1a2f_ahla2h (5.123)dtdm-{ofaxl__(axxs)2r-2q+2[ax2I- ax -ax2 -r-2q]m}mxa               xa
(5.124) as=2afl-q+g2-g2r2(axl-)2 

    xsxs 

                   + q2r2[ax3-ai+(a_)2](PS-q),                     xaxSxa 

where xsis the solution corresponding to (5.105), i.e. 

                 Table 5.1. Comparison of filter dynamics. 

                                  System Dynamics : dx ̂  - sinxdt + gdw 
                             Observation Mechanism : dy ̂  xdt + rdv

Stochastic Linearization Taylor Series Expansion

Estimation 

 Process 

 Variance 

Equation

dnn - - sinimesp( Zo)dt + por 2 
dPa - - 2pacosi,e:p( Z°`) + g2 -

(dy-4ndt) 

pa2r 2

dfg ̂ (- sin$g + j8sinlg)dt + par 
dp6 

- 2pcos4+g2p2r2  ^ 
dt9B-B

-2
(dy-46dt)

Equation 

    for 
Performance 

Evaluation

    - 2qcosi exp( 2)+2g-q2r-2 
dt

where 

  dt-         -sinzexP(- ) 

d
dt - 2Pacost exp(Za) +2 

                          g

    - 2gcosaa + g2 - q2r 2 
dt 

where 

    dis--sinxp +-2pSsinia 
   dip 

dt-2pgcosig + g2
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 _2 _ (5.125)ds= f(t,xs) +2 a2pa, 
8x 513 

and where the one-dimensional case is again considered. Apparently, 

both equations (5.112) and (5.116) correspond to (5.123) and (5.124) 

respectively, where the symbols m and q were not distinguished by adding 

the subscript a and S because no confusion will result. From (5.123) 

and m(t0)=0, it also follows that m(t)=0. 

     The results of application of the Taylor series expansion method 

to (5.117) and (5.118) are listed in Table 5.1. 

     Comparison of two filter dynamics is found in Table 5.1. Numerical 

results are shown in Figs.5.9 and 5.10. In these figures, the solid 

curves depict the q(t)-runs computed respectively by (5.121) and the 

equation in Table 5.1. Simultaneously, the results of digital simulation 

are shown by dotts. In Fig.5.l, the dotts were obtained by computing 

                N 
(5.126)q=NL(x(1)(t)-xa(i)(tlt))22 

                   1=1 

where x(1) andxa(1)(tlt) are respectively the i-th sample process 
determined by 

(5.127) dx(i) _ - sinx(i)dt + gdw 

and 

                           (1) 

(5.128) dx(1) =inx(1)exp(pa)p                                    dt+(1)r2{dy(i)-x(i)dt},    a- sa2aa 

and where N=100. In Fig.5.10, the dotts were also obtained by replacing 

xa(1) by xs(1) and using Table 5.1. In the example, the system noise 

and the observation noise variance were g2=0.20 and r2=0.10. The initial 

value of the state variable was assumed to be Gaussian and that of the 

estimation was x(t0it0)=0. 
     It should be noted that the Taylor series expansion of the nonlinear 

function requires at least the expansion of up to the second order, while 

in the case of the stochastic linearization technique, the expansion 

requires only up to the first order of a=x-i. Then, from the numerical 

results, it can be said that the approximate filter dynamics derived by 
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the stochastic linearization has a pleasant performance and competes 

with another approximate filter based on the Taylor series expansion. 

5.6. Discussion and Summary  

     In this section, the approximate filter dynamics has been established 

for  several classes of systems of ElF' E2F and E3F defined in Sec.2.3 , 
Chap.2. Since the state variables are non-Gaussian stochastic processes 

because of nonlinearities of the system dynamics and of the state-

dependent noises for E
2Fand3F' the precise formulation of the optimal 

filter dynamics becomes also nonlinear. The basic notion of the 

approximation developed is the linearization technique outlined in Chap .3. 
In the case where the state-dependent noise is proportional to the 

system state, the basic notion mentioned above implies that the infinite 

dimensional filter is approximated by the two-dimensional filter consist -

ing of the first- and second-order moments . However, if the state-

dependent noise term is a type of nonlinear function with respect to 

the system state, then the approximation procedure will become more 

complicated. 

     In Sec.5.5, an analytical study of performance evaluation has been 

developed in order to justify the accuracy of the approximate filter 

dynamics. With the help of numerical studies , it can be observed that 

the approximate filter dynamics derived by the stochastic linearization 

method shows a pleasant performance in comparison with another approximate 

filter based on the Taylor series expansion. 

     In the following chapter, it will be shown that the approximate 

filter derived in this chapter plays a useful role to an extensive 

application to the scheme of estimation-control for nonlinear stochastic 

systems.
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CHAPTER 6. OPTIMAL STOCHASTIC CONTROL FOR NONLINEAR  SYSTEMS 

        UNDER NOISY OBSERVATIONS

6.1. Introductory Remarks  

     During the past decade, the problem of finding the optimal control 

has received a great deal of interests as results of the ever-complicated 

demand to controls and ever-increasing complexity of the operation of 

modern systems. However, most of this work has concentrated on completely 

linear dynamical systems, neglecting the effects of nonlinear characteris-

tics exhibited in practice. 

    There is no need to say that dynamical systems to be controlled 

exhibit various kinds of nonlinear characteristics and may operate in 

a random environment whose stochastic characteristics undergo drastic 

changes. Thus, the general problem to be solved is to find the control 

of a noisy nonlinear dynamical system in some optimal fashon, given only 

partial and noisy observations of the system state and, possibly, only 

an incomplete knowledge of the system. Under such conditions as linearity 

of the dynamical system, noisy observation and performance criterion
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given by a quadratic cost functional, it has already been shown that 

the optimal control  problem and optimal estimation problem of the system 

state from the noise-corrupted observations may independently be solved. 

[40,55,109,160] However, this is not the case in general for the optimal 

control of nonlinear dynamical systems, and the overall problems of 

optimal control and estimation must be carried out simultaneously. 

     Since the establishment of a precise technique for the optimal 

control of nonlinear stochastic systems is almost impossible, in this 

chapter the author introduces an approximate method which is shown to 

play an important role in the realization of a broad class of stochastic 

optimal control. 

     As is well-known, the optimal control is, in general, nonlinear 

for the problem of designing controls of nonlinear systems. An exact 

solution of the optimal control problem for nonlinear systems requires 

the formulation of the stochastic Hamilton-Jacobi-Bellman equation---a 

quasilinear partial differential equation---whose solution is almost 

unobtainable without any suitable numerical method. Problems of any 

significant order lead to obviously intractable computational problems. 

     One approach to solve such an optimal control problem of nonlinear 

systems will be approximations to nonlinear functions in some sense by 

a certain equivalent linear ones and developments in the linear-quadratic-

Gaussian (LOG) context. The author thus may find a suboptimal control 

with use of stochastic linearization technique to approximate the system 

by an equivalent linear system. Then the computational technique is 

used associated with linear optimal control design, and the computa-

tional difficulties which will arise in solving the stochastic Hamilton-

Jacobi-Bellman equation are by-passed. The resulting control reveals to 

be a linear feedback control which is realistic from the viewpoint of 

application. 

     In this chapter, the mathematical formulations for the systems E
1C 

and E2C are developed to the cost functional , 

(6.1) J(u) = E{F[x(T),xd(T)] + ft L[t,x(t),u(t)]dt}, 

0 which is given in (1.6) (Chap.l, Sec .1.2). The definition of admissible 
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controls is  stated  in Sec,6.2, and the basic stochastic Hamilton-Jacobi-

Bellman equation is derived for the functional (6.1) in Sec.6.3. 

Sections 6.4 and 6.5 are devoted to obtain suboptimal controls by an 

admittedly heuristic approach for nonlinear systems with state-independent 

noise and with state-dependent noise respectively. Some aspects are 

considered in Sec.6.6 for numerical computations of suboptimal controls 

with illustrative examples. In the final section, the prevalence of 

stochastic linearization technique is emphasized from the viewpoint of 

the computer-oriented optimal estimation-control systems. 

6.2. Definition of Admissible Controls[130] 

    In this section, let us consider the system EO defined in Def.2.1 

(Chap.2, Sec.2.3):

(6.2) dx(t) = f[t,x(t)]dt + c[t,u(t)]dt + G[t,x(t)]dw(t), 
: EO 

(6.3) dy(t) = h[t,x(t)]dt + R[t,x(t)]dv(t), 

where tc[t0,T]. 

    Following [160], we proceed to establish the solution of the 

stochastic differential equations (6.2) and (6.3). 

    Let G denote the class of continuous functions g(t) defined on 

[to,T] with values in E(n), and Ft denote a functional operator in E(n). 

Clearly, if geG, then FtgcG. Furthermore, let 4, denote a mapping of 

[t0,T]xG onto U with the following properties: 

    (P6.1) For each geG, the functional ip(t,g) is Holder continuous 

            in t (exponent a) , i.e. 

(6.4) llv,(t,g)-v^(s,g)II < Kollt-spa, t,se[t0,T]. 

     (P6.2) For te[t0,T], the functional 4, satisfies a uniform Lipschitz 

            condition 

(6.5)114(t,g1)-1P(t,g2)II < Killgl-g211sup, 

           where the functions g1,g2cG and K0,K1 are real positive 

            constants, and where 11-11supexpresses sup norm in G. 

     Let ,(t,•) be an m-dimensional vector stochastic process, such that
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for each  te[t0,T], * (t,•) is measurable and 

(6.6) ft E{II p(t,.)I 2}dt < 

where II • II expresses the norm in E(m). Let T be the class of the *(t,.)-
process. For some *e'Y, we call u(t) admissible and write ueU, if u(t)= 
*(t,•), tsjto,T]. 

     Let J be a mapping of [t0,T]xE(n) onto U and let T be a class of 
functions 11), where is Holder continuous (exponent a) in t and satisfies 
a uniform Lipschitz condition. We write ueUGU, if, for te[t0,T], 

(6.7) u(t) = 114t,X(tl t) ] 

for some *e'. In the case where the system states are corrupted by 
observation noise, we call the control u(t) given by (6.7) admissible. 

     With the hypotheses described in Def.2.l and the additional hypotheses 
(6.6) made on the control term in (6.2), it has already been verified 
that (6.2) has exactly a unique continuous solution x(t). A precise 
interpretation of (6.2) and also (6.3) are respectively given by Ito 
who writes them as the stochastic integral equation: 

(6.8) x(t) = x(t0) + ft f[s,x(s)]ds + ft c[s,u(s)]ds 
00 

                      + ft G[s,x(s)]dw(s) 

0 and 

(6.9) y(t) = y(t0) + fth[s,x(s)]ds + ftR(s)dv(s). 
    o0 

6.3. Stochastic Hamilton-Jacobi-Bellman Equation  

     The problem in this section is to derive the basic stochastic 

Hamilton-Jacobi-Bellman equation in order to find the optimal control 

which minimizes the cost functional (6.1). In this section and in the 

sequel, we shall consider the case where the control term in (6.2) is 

c[t,u(t)]EC(t)u(t). 

     Along the line of attack on the linear regulator problem in the case 
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of observation noise free, we suppose that  u(t)=*[t,x(t)]. Bearing 

this in mind, we proceed to a generalization of the quasi-linear filtering 

equation derived in Chap.5. The problem is stated as follows: Given 

that x(t) and y(t) have the stochastic differentials, (6.2) and (6.3) 

respectively, we derive the stochastic differential of the state estimation 

i(tIt)=E{x(t)Iyt}, for tc[t0,T]. This problem is easily reduced to that 
in the previous chapter. The result becomes 

(6.10a) dx(tl t) = f[t,x(t) ]dt + C(t)114t,x(t) ]dt 

                + P(tl t)H2' (t) {R(t)R' (t) }-1{dy(t)-fi[t,x(t)dt}, 

(6.10b) x(t0It0) = E{x(t0)}, 

where 

(6.11a) P(tl t) = cov. [x(t) l yt] 

(6.11b) P (t0l t0) = cov.[x(t0) ] . 

Equation (6.10) reveals that the optimal estimator dynamics differs from 
(5.13) only by the addition of the Vt-measurable drift term C(t)ip[t,x(t)]dt. 

    It can easily be shown[31] that the filtering process determined 
by (6.10a) is a diffusion process with the differential generator, 

(6.12) LfV(t,v) = Vt(t,v) + {f[t,x]+C(t)p[t,x]}'Vv(t,v) 

                 + Ztr.{E'(t)V vv(t,v)E(t)} 

whenever V is a function defined and of class C(2) on the state space E(n), 
where 

(6.13) E(t) = P(tlt)H2`(t){R(t)10(t)} LR(t). 

    Bearing in mind the estimator dynamics given by (6.10), we shall 

proceed to obtain the optimal control strategy. 

    Let the function F[x(T)] in (6.1) be 

(6.14) F[x(T) ] = II x(T)II F, 

where F is a positive semi-definite, real, constant symmetric matrix. 

Furthermore, let the function L[t,x(t),u(t)] in (6.1) be
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(6.15)  LIt,x(t)  ,u(t)  ] =Hx(t)IIM(t)+411(06(t) , (a>0) , 

where M(t) and N(t) are respectively measurable, locally bounded, positive 

semi-definite and positive definite symmetric matrices. From (6.1), 

the control problem becomes the minimization of the functional, 

(6.16)J(u) = E{IIx(T)II F+ It {II x(t)IIM(t)+allu(t)IIN(t) )dtI x(t00=x01, 
0 with respect to u(t). We shall consider the functional, 

(6.17)E{Ilx(T)IIF + !t{IIx(S)IIM(S)+aIIu(s)IIN(S)}ds1yt}, 
for to _st<T. Let be the class of control, 

(6.18) u(t) = ~V[t,X(tI t) ] 

and write 

(6.19) V(t,yt) = in E{Ilx(T)IIF + tt{IIx(s)II(S)+agl^p(s,XS)IIN(S)}dSlyt}, 

where xs=i(sjs). and where {is} is the process determined by letting 
u=*=4 in (6.10). Since x(sIs) is measurable relative to the sample space 
of x(tI t) for t<s, we have[90,137] 

E{4[X(sls)]Iyt} = E{gX(sIs)flk(tIt)=K}, 

where 0 is an arbitrary measurable function. 

    Applying the principle of optimality to (6.19) , we have 

(6.20) V(t,yt) = min E{ilx(T)IIF + ItIIIx(s)IIM(S) 

+allvp(S,XS)IIN(S) ]dslx(tI t)=K} 
Mill E{lux(t)IIM(t) + alllgt,Xt)pN(t)]dt 

                + E{IIx(T)IIF+ft+dt[Ox(s)II2                                         M(s) 

+AN(s,̂)IIN(S) ]dsli(t+dtl t+dt)=K+dK}Ix(tl t)=K} 
            = min E{[IIx(t)II

M(t)+ aN(t,xt)IIN(t)]dt + 
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                   +  V(t+dt,K+&)  IX(t!  t)=K}. 

    Finally, from (6.12) and (6.20), the following functional equation 

is obtained, 

(6.21) - V(t,K) = min {tr.{M(t)P(tjt)} + K'M(t)K 

                     + 4' (t,K)N(t)igt,K) + [a(t)+C(t)7~1(t,K)]'VK(t,K) 

                    +2r.{E'(t)VKK(t,K)E(t)}). 
Performing the minimization of (6.21), we have 

(6.22)°(t,K) = - N-1(                          t)C~(t)V(t,K). 

Substituting (6.22) into (6.21), we have the stochastic Hamilton-Jacobi-

Bellman equation, 

(6.23) - Vt(t,K) = tr.{M(t)P(tjt)} + K'M(t)K + a'(t)V(t,K) 

- V
K'(t,K)C(t)N(t)C'(t)VK(t,K) 

                +2r.{E'(t)VKK(t,K)E(t)}. 

6.4. Suboptimal Control for Nonlinear Systems with State-Independent 

   Noise  

    In this section, the system EO (Eqs.(6.2) and (6.3)) is limitted to 

the system with state-independent noise, defined by Def.2.5 (Sec.2.3, 

Chap.2), that is, we set G[t,x(t)]-G(t) and R[t,x(t)]=R(t) in (6.2) and 

(6.3). Then the basic filter equation is given by (5.13) with its 

associated covariance equation (5.15). For the system E1C, the partial 

differential equation (6.23) still holds. 

    In order to find a more explicit form for (6.22), we assume that 

(6.23) has a solution 

(6.24) V(t,K) = K'll(t)K + 2K'a(t) + 8(t), 

where II(t), a(t) and 8(t) are determined as the solutions of matrix, 

vector and scalar differential equations, respectively. Applying (6.24) 

to (6.22) , the optimal control is then 
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(6.25)  i°(_t,K) = K°(t)K + r°(t) 

where 

(6.26)K°(t) = --1-N-1(t)C' (t)R(t) 

and 

(6.27) r°(t) = - 1N-1(t)Cl(t)a(t). 

     It is a simple exercise to show that, for to<t<T, (see Appendix E) 

(6.28)att)AR(t)C(t)N1(t)C'(t)H(t) + M(t) = 0, 

(6.29)do--------(t)-An(t)C(t)N1(t)C' (t)a(t) + R(t)a(t) = 0,            dt 

and that, for toit<T, s(t) satisfies 

(6.30)datt)---------1l-a'(t)C(t)N-1(t)C'(t)a(t) + 2a`(t)a(t) 
               + tr.{M(t)P(tlt)} + tr.{E'(t)R(t)E(t)} = 0. 

     Since the minimal cost functional V(t,K) must satisfy the terminal 

condition, 

(6.31) V(T,KT) = E{IIx(T)IIIx(TIT)=KT} = KT'FKT + tr.{P(TIT)F}, 

the solutions R(t), a(t) and E(t) should satisfy the following condition, 

respectively, 

(6.32) R(T) = F, a(T) = 0 and E(T) = tr.{P(TIT)F}. 

     In (6.28) and (6.29), both R(t) and a(t) are actually independent 
of the dynamical characteristics of an observation mechanism, h(t,x) and 

R(t). The optimal control depends on the cost rate function matrices F, M 

and N and on the system dynamics f(t,x). An overall configuration is 
schematically shown in Fig.6.1, in a form of computer-aided feedback 
control systems. However, a serious difficulty arises in the version of 

numerical computation on (6.28), (6.29) and (6.30) with (6.32). In fact, 
the computation of (6.25) with (6.26) and (6.27) has to start with the 

preassigned initial values of the state estimation x(t0It0) and error 
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-PH2 (RR'}''H2P

Fig.6.1. Overall configuration of optimal control for 

                nonlinear dynamical systems under noisy 
                  observations. 

covariance P(t0It0) and,furthermore,with II(tO) and a(t0) which are 

determined by the so-called trial-and-error method or by an improved 

method stated later in Sec.6.6. 

    Before stating the method of numerical computations of the optimal 

control, we establish the control scheme for another system E2C defined 

in Def.2.5 (nonlinear system with state-dependent noise) in the following 

section. 

6.5. Suboptimal Control for Nonlinear Systems with State-Dependent  

   Noise  

    In this section, the system E2C (Def.2.5) is considered and the 

mathematical development follows on the basis of discussions in Sec.5.3, 

Chap.5. 

    Adding the control term to (5.50), the approximate filter dynamics 

is easily generalized as 

(6.33a)dx= (f+G2x] dt + Cidt + PH2' (RR') -1(dy-fidt) 

(6.33b) X(tOltO) = 0, 
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where the control u(t) is assumed to be an admissible control of the 
form u(t)=11,(t,i). The version of  dP/dt is the same form as is given by 

(5.51) . 
     In the present case, the basic process is x(tI t) with the stochastic 
differential (6.33) and the performance index is given by 

(6.34) J(u) = E{ft [x'(t)M(t)x(t)+u'(t)N(t)u(t)]dt}, 

0 becomes minimal, based on the a priori probability distribution on x(t0), 

where M and N are measurable, locally bounded, positive semi-definite. 

     For such a basic process, the suboptimal control problem may be 

found by the method established in the previous section. 

     The minimal cost functional is given by 

(6.35)V(t,K) = minE{ft[xs'M(s)xs+IT)'N(s)*s]dsIX(tIt)=K}, 

where xs=x(s), s=i(s,x) and where xs is the process determined by 
reviving u=)(s,x) in (5.24). Then the basic functional equation becomes 

(6.36) - Vt(t,K) = min {[a +G2K + Cli,]'VK(t,K) 

                   + 2tr.{E'VKK(t,K)E} + K'MK +11,'N(1)+ tr.(MP)}, 

where x(tIt)=K, and E(t) is the same as (6.13). and where the subscripts 
indicate the derivatives. Performing a minimization operation on the 

right-hand side of (6.36), the following partial differential equation 

which corresponds to (6.23) is obtained, 

(6.37) - Vt(t,K) = [a +2G2K]'VK(t,K) 

                     -7
4VK,(t,K)CN-1C'VK(t,K) +1tT.{E'VKK(ta10} 

                     + K'MK + tr. (MP) 

with the terminal condition, 

(6.38) V(T,KT) = 0. 

     It may be assumed that (6.38) has a solution,
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(6.39)  V(t,K) = K'II(t)K + 2K'a(t) + a(t). 

Then the optimal control is approximately obtained by 

         o(6
.40)i°= - N~1C (IIK+a) 

and this is adopted here as the suboptimal feedback control strategy. 

Applying (6.39) and (6.40) to (6.38) , H(t).  a (t) and (3(0 are respectively 

the solutions of the following differential equations, 

(6.41)d+2[G2'II+IIG2] -IICN-1C'l + M = 0, II(T) = 0, 
                ti 

(6.42)dt+-vG2a - IICN1C'a + Ha = 0, a(T) = 0, 

(6.43)dt- a'CN-1C'a + 2a'a + tr.(E'IIE) + tr.(MP) = 0, S(T) = 0. 

    The version of dQ/dt is changed from (5.54) as 

(6.44) d=XQ +QX' +ax'+ ka' - (B+CN-1C'IIki                                               )' 

             - kk'(B+CN-1C710' + (a-CN-1C'a)1V 

            + k(a-CN-1C'a)' + G0G0' + G[Q]. 

    Thus the suboptimal feedback control is obtained by solving (6.33) , 

(6.40) . (6.41) , (6.42) and (6.43) simultaneously. 

6.6. Some Aspects of Numerical Approach  

     In the sequel, we merely consider the system ElC because parallel 

discussions on E2C are possible. 

    As pointed out at the end of Sec.6.4, a serious difficulty arises 

in the numerical computations of (6.28), (6.29) and (6.30) with (6.32). 

Since the solution matrix 1(t) may uniquely be obtained with the terminal 

condition II(T)=F, we shall investigate a practical approach to find the 

solutions a(t) and s(t) of (6.29) and (6.30) satisfying their terminal 

conditions given by (6.32). 

    In this section, two possible methods of the computation are 

investigated. 
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   (1) Method I.  (Trial-and--Error Method) 

     Since the solution determined by (6.28) is independent of both the 

estimate k(tit) and P(tI t), li(t) may uniquely be obtained, which satisfies 

the terminal condition H(T)=F, if the parameter matrices C(t), N(t) and 
F are given. On the other hand, (6.29) and (6.30) contain the expansion 

coefficient a(t) as a parameter which depends on both k(tIt) and P(tit). 
Hence, we have to look for the desired initial values a(t0) and 8(t0). 

Based on the fact that both the state estimate k(tIt) and the error 
covariance P(tI t) rapidly converge to the steady state k* and P* in almost 
every case, we solve the equations with the constant term a*=a(x*,P*) 
instead of a(t) in (6.29) and (6.30) in such a way that the solutions 
satisfy their terminal conditions. Thus we may find the initial values 
a(t0) and g(t0) and use these for starting the on-line computation. 
Naturally, this procedure may not give the exact values of a(t0) and 
8(t0) which we desire. By the trial-and-error method, it is, therefore, 
necessary to improve the estimate of the initial values of a(t) and s(t) 
around the a priori estimates a(t0) and 8(t0) so as to realize the 
desired terminal conditions. The numerical procedure stated above makes 
it thus possible to perform the overall computer-aided computation 
scheme. 

   (2) Method II. (Improved Method*) 
     Assume that, at time t, a(t)=a t* and, for the time interval [t,T], 

write the following backward equation for (6.29), 

(6.45a) dad(T) +111(T)C(T)N-1(T)C(T)a(T) - II(T)at* = 0, 

(6.45b) a(T)IT=O = 0, 

where 0<T<T-t and at* is a constant. Equation (6.45a) may uniquely be 

solved in such a way that the solution a(T) satisfies the condition 

a(T)I T=O-0. However, the solution a(T) makes sense only at T=T-t, because

* The author thanks Professor T. Ono
, University of Osaka Prefecture, 

 for valuable comments on the improved method. 
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of the substitution of  at* for a(t). Thus, we may have a sequence 

{a(T)IT=T-t} (to,tsT) which finally gives us the running value of a(t). 
Similarly, for 0cr T-t, we write the following backward equation 

for (6.30), 

(6.46a)df (T)+aor,'(T)C(T)N-l(T)C'(T)a(T) - 2c0(T)a t* 

                     - tr.{M(T)P
t*} - tr.{E*'(T)II(T)E*(T)} = 0, 

(6.46b) 0(T)1T=0 = tr.{Pt*F}, 

where, at time t, P(tlt)=Pt*(constant) and, H2(t)=H2t*(constant) and 

(6.47)"(T) = Pt*H2t*'{R(T)R'(T)}(l/2). 

    By solving (6.46a), the running value of {S(T)I } is obtained. 
                                                               T=T-t 

The optimal control is thus given by 

                        o (6.48) u°(t) =i°(t,K) 

               = - I-1 (t)C'(t)I1(t)K-T-1(t)C (t) [a(T)]
T=T-t. 

     The above two methods are applied to digital simulation experiments 

for a few examples in the next section. 

6.7. Digital Simulation Studies and Illustrative Examples  

     In this section, the digital simulation scheme of the overall 

system shown by Fig.6.1 is illustrated. 

We presume that, at discrete time t., the observation Sy.can be                                                     J 

taken to be 

(6.49) ayj= y (j+l) - y(j) , 

where, here and in the sequel, t. is simply expressed by j(j=0,1,2,•••). 

The coefficients a(t), B(t), hl(t) and H2(t) can also be computed in 

discrete form, for instance, from (5.4), 

(6.50a) a(j) = E{f[j,x(j)]IV(t.(n))} f[j,x(j)l, 

(6.50b) B(j) = E{[f[j,x(j)l-f[j,x(j)]l[x(j)-(jlj)l'ly(tj(n))} 

xP-101j), 
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where 

(6.51)  x(Jlj)  E{x(j)ly(.tj(n))}, P(JO) °= cov.[x(j)ly(tj(n))]. 

The notation y(tj(n)) denotes the smallest a-algebra relative to 
which the random variables {y (t . (n)) , j=0 ,1, • • • , j (n) ; t <t . (n) <t} are 
measurable, where {y(t.(n))} are the random variables partitioned from 

the y(t)-process. 

     The discrete forms of (6.10) and (5.15) are approximately expressed 
by 

(6.52) X(j+llj+l) = x(jlj) + f[j,x(j)]Sj + C(j)W,X(ili)]Sj 

+ P(jlj)H2'(j){R(j)R'(j)}1{Sy.-h[j,x(j)]S.} 

(6.53) P(j+11j+1) = P(jlj) + B(j)P(jlj)Sj + P(jlj)B'(j)6. 

                 + G(j)G'(j)S. - P(jlj)H2'(j){R(j)R'(j)}-1 

xH2(j)P(jIi)S
j, 

whereS.=t.-t. and whereS,is sufficiently short. By usingx(j+llj+1) 
      JJ+1 J 

obtained by (6.52) , with the help of (6.25) , (6.26) and (6.27) , the 

suboptimal control signal u°(j+1) is generated by 

(6.54) u°(j+l) = Cp°[j+1,x(j+l1j+l)] 

               = K°(j+1)x(j+11 j+l) + r°(j+1), 

with 

(6.55a) K°(j+l) = ~N-1(j+l)C'(j+l)ll(j+l), 

and 

(6.55b) r°(j+1) = --1(j+l)C (j+l)a(j+l), 

where both II(j+l) and a(j+l) are, respectively, discrete forms of 

solutions of (6.28) and (6.29). 

     The generating routine of random number sequence is a combination 

of a uniform random sequence plus an approximate transformation to a 

Gaussian random sequence. To compute G(j)dw(j)=G(j){w(j+l)-w(j)}=G(j)Swj 

in (6.2), we use the Gaussian random number nl(j) with N[0 ,1], where 
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n1(j)Y(j),~_ Also, forR(j)dv(j)=R(j){v(j+l)-v(j)}=R(j)gv. in (6.3), 
the Gaussian random number n2(j) with  N[0,1] generated by the different 

population from nl(j) is used, where n2(j)=e0)V. (See Appendix F, for 
the simulation of the Brownian motion process.) Thus, (6.2) and (6.3) may, 

respectively, be simulated as 

(6.56) x(j+l) = x(j) + f[j,x(j)]5. + C(j)u°(j)Sj + G(j)nl(j)• 

(6.57) Y(j+l) = Y(j) + h[j,x(j)]dj + R(j)n2(j)f. 

    The computation procedure is thus established as follows, starting 

with X(010), P(010),  R(0) and a(0) as the initial values: 
    (i) Obtain a(t), B(t), h1(t) and H2(t) by the preassigned nonlinear 

       functions f[t,x(t)] and h[t,x(t)], and establish the forms of 

a(j) , B(j) , hl(j) and H2(j) • 

   (ii) Preassign the sample values x(OIO) and P(OIO) as the given initial 
        values. Simultaneously, by trial-and-error method, determine the 

       value of R(0) and a(0) in such a way that the terminal conditions, 
1I(n)=F and a(n)=0 are satisfied, where n=tri T. 

  (iii) Determine the value of u°(t)=°[O,x(OIO)] by invoking the pre-
      assigned value of N(0) , C(0) , X(010), R(0) and a(0) . 

   (iv) For a preassigned value of 3., by using the values of a(j), B(j), 
h1(j), H2(j), x(jIj) and newly observed data, y(j+l), compute 

       the a posteriori estimate x(j+llj+l) and the a posteriori error 
       covariance P(j+ll j+l) from (6.25) and (6.53) . 

    (v) Compute R(j+l) and a(j+l) and obtain K°(j+l) and r°(j+l). 
   (vi) With the value of ic(j+llj+l) obtained in Step (iv) and the values 

K°(j+l) and r°(j+l) obtained in Step (v), determine the sub-
      optimal control u°(j+l)=°[j+l,x(j+llj+l)] by (6.54). 

  (vii) By using the values of x(jIj) and P(jlj), compute a(j+l), B(j+l), 
      h1(j+1) and H20+1). 

    Letting j=0,1,•••, Steps (iv) to (vii) give a forwardly recurrent 
algorithm to obtain simultaneously the running estimate x(jlj), P(jl]) 
and the suboptimal control u°(j) with x(0I0), P(OIO), 1I(0) and a(0) 
as a set of given initial data.
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 Illustrative Example-6.1. For the purpose of exploring the quantitative 

aspects, we consider here the one-dimensional case where the nonlinear 

dynamical system is given by the following stochastic differential 

equation, 

(6.58) dx = f(x)dt + cudt + gdw 

with 

(6.59) f (x) _ - 1 + cos x. 

The observation process is simply given by 

(6.60) dy = xdt + rdv. 

Application of (5.4a) and (5.4b) to the present case gives 

(6.61a) a(t) = - 1 + cos x exp (- 2) , 

(6.61b) b(t) = - sink exp (- 2) . 
From (6.10a) and (6.10b), the approximate estimator dynamics and the 

related error covariance are respectively determined by 

(6.62) dx = [- 1 + cos x exp(- 2)]dt + cu°dt + pry-                                            2(dxdt)
, 

and 

(6.63) d= - 2psinxexp(-2) +g2-p2r2. 
     Letting m=0 in (6.16), the optimal control is, then, given by 

(6.64) u°(t) _°(t,K) = k°(t)K + r°(t), 

with 

(6.65a)k°(t) = -anc7r(t) , 

and 

(6.65b) r°(t) = -Anca(t), 

where 11(t), a(t) are the solutions of the following differential 

equations:
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(6.66)d~r(t)= 1 c2~2lt)  dt an 

(6.67)da(t)=—c2n(t)a(t) - r(t)a(t). dt an 

Furthermore, the scalar g(t) is the solution of the differential equation, 

(6.68) adtt)anc2a2(t) - 2a(t)a(t) - a2(t)Tr(t). 

where 

(6.69)a(t) =p(ti t). 

Equations (6.58) to (6.69) are simulated on a digital computer with the 

subroutine for the generation of random disturbances, y(t) and 0(t), 
where a=0.5 and the control interval is preassigned by [0,1.0](sec). 

     Figure 6.2(a) shows the running values of the state estimation 

i(tlt), the state of the true system x(t) and the quasi-linearized 
system x(t), where F=0.5 and n=1.0. However, in practice, the x(t)-process 

cannot be observed and this is only for convenience of discussions. 
     From Fig.6.2(a), we can observe that the sample path of the system 

state x(t) with x(0)=0.9945, subjected to the optimal control, reaches 

x(1.0)=0.0483. Comparison of the sample path of the quasi-linearized 

system with that of the true system reveals that the stochastic lineari-
zation technique presented is a useful tool for approximations to the 

state estimation and optimal control for nonlinear dynamical systems. 
The optimal control signal run is also plotted on Fig.6.2(a). Figure 

6.2(b) shows the error covariance p(tlt) of the estimating action, and 
also 11(t), a(t) and 8(t) which may be adopted as a successful set of 

trial-and-error methods. Figure 6.3 shows the numerical results of 

digital simulation studies in the case of F=1.0 and n=1.0. Figure 6.4 
shows the average run of 10 sample paths in the case of F=1.06 and n=1.0. 

Illustrative Example-6.2. In Example 6.2, the different computational 
method from Example 6.1 is applied to the same system as in Example 6.1. 

That is the Method II. A variety of single and averaged-out runs was 

obtained. In all the experiments, the control interval is preassigned
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by  (0,1.0]  and  1=0.5,  f=1,  m=0,  n=1  and  S.  0.001(sec). Furthermore, the 

system noise covariance was g2=0.2 and the observation noise covariance 

r2=0.1. The results presented below are representative of the simulation 

experiments. 

    Figure 6.5(a) shows a single run of the state estimate x(tlt), the 
true value of the system state x(t) (the solution process), the quasi-
linearized value of the system state, and the optimal control signal 
u°(t). The true initial value of the state variable was x(0)=0.9945. 
There is also interest in observing the true run of the system state 
without the control. It may be observed that, under the criterion 
adopted with 1=0.5, the sample path of the system state is transfered 
from the initial condition x(0)=0.9945 to x(l.0)=0.0826 by applying the 
optimal control. Figure 6.5(b) shows sample paths of the solutions of 
p(tlt), 71(t), a(t) and 6(t) equations. 

An averaged behavior of 10 runs with random initial conditions is 

shown by Fig.6.6(a). The initial states were approximately assumed to 

be Gaussian random variables. The mean value of the initial states was 

E{x(0)}=0.9948. Comparison of the averaged run of the true system state 

with that of the quasi-linearized system reveals that the stochastic 

linearization technique developed here is a feasible method for approxi-

mations to the state estimation and optimal control for nonlinear 

dynamical systems. 

Illustrative Example-6.3. Let us consider the one-dimensional process 

whose stochastic equation is given by 

(6.70) dx(t) = [f(t,x) +pg12x]dt + cu(t)dt 

+ g0dw1(t) + g1xdw2(t), 

where the nonlinear function is represented by*

* Although for such a nonlinear function, the conditions 

and the uniqueness of the solution of (6.70) should be 
author formally uses the function in order to show the 

the stochastic linearization technique.

 of the existence 

checked out, the 

usefullness of
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(6.71)  f(t,: 

     The observation 

(6.60) dy(t 

Application of 

A, Example A.1) 

(6.72a) a(t 

(6.72b) b(t 

where 

(6.73) erf 

From (6.33) and 

covariance are 

(6.74) dk = 

(6.75a) d 
where 

(6.75b) bX 

     The optimal con 

respectively by 

(6.76) uo = 

and 

(6.77) V(t,: 

where

     A for x>A 

      x for I xl <A 
     -A for x<-A. 

ation process is simply 

3t + rdv(t). 

       and (5.4b) to the present case gives (see Appendix 

   [(A++)erf(Ap)-(A-R)erf(AP)] 

   2-[exp{  (A11)2}-exp{  (A-P)2}] 

    [erf(A+x2p),+erf(2p))], 

       r
Oe-X2dA. 

L), the approximate filter dynamics and related error 

determined by 

         ti 
      +-12-Xg12x]dt + cudt + pr_2{dy-xdt} 

      +g02+g12q-p2r2, 

     1 L 2 
        gl . 

control and the minimal cost functional are given 

-1
(ri+a) 

     2 
     RX + 2aX + s, 
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(6.78)ddw           t—Xg12~+  c2n  1w2 - m,w(T) = 0, 

                  ti 

(6.79)-2 12 + c2n-1wa -a,a (T) = 0,        dt 2xgl 

2 -1 22-2 (6.80)d= cn a -2aa-prit-mp,8(T) =0. 

The equation corresponding to (6.44) becomes 

(6.81) d= 2~xq+ 2ax-2 (b+c2n17r)x2 
+ 2(a-c2n-1a)x + g02+g12q. 

    Equations (6.70) to (6.81) are simulated on a digital computer with 

use of a subroutine for the generation of random disturbances, w1(t), 

w2(t) and v(t). The control interval is preassigned as [0,1.0] (sec). 

In the simulations, Method II presented in Sec.6.6 was extensively used. 

    The results of single run experiments are shown by Figs.6.7 and 6.8. 

Figure 6.7(a) shows five kinds of sample runs obtained by using the 

mathematical model of the It6 type (x=0); i.e., the true solution process 

determined by (6.70), the sample path of a quasi-linear system determined 

by using (6.72a) and (6.72b), the estimation process x by (6.74) and the 

solution process without a control signal. Naturally, although the true 

solution process cannot be observed in practice, this is also shown in 

the figure only for convenience of discussion. Figure 6.7(b) shows the 

p(t!t), 7(t), a(t) and a(t) runs. In their experiments, the system noise 
covariances were respectively g0=0 and g12=0.4 and the observation noise 

covariance was r2=0.1. The true initial value of the state variable was 

x(0)=1.0. 

    The results of the simulation experiments by using the Stratonovich 

model are shown by Figs.6.8(a) and 6.8(b) under the same conditions as 

in Figs.6.7(a) and 6.7(b). 

6.8. Prevalence of Stochastic Linearization Technique  

   for the Optimal Stochastic Control  

    The stochastic linearization technique has been successfully applied 

in the previous sections to realize the optimal control configuration of 
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Table 6.1. Comparison of two methods 

 estimation-control scheme. 

      System Dynamics : dx - f(x)dt + cudt + gdw 

Observation Mechanism : dy - h(x)dt + rdv 

      Cost Functional : J(u) - B{fY(mx2+nu2]dt} 

                             0

for

Stochastic Linearization Taylor Series Expansion

Estimation 
 Process 

Covariance 
Equation 

(u0)

dia - 1(x)dt + pah2(t)r 

dpa - 2b(t)Pa + 82 - Pa 
dt

(dy-h(x)dt) 

2r -2h
22(0

did- [f(i0) + „(id)pd]dt 

   + pgh'(i)r 2 dy-[h(ig) + h"(ig)P5]dt 

dpg - 2f'(ig)pgdt - pg2r 2h'(ig)2dt + g2dt 

   -2g2r2h"(ig){dy-[h(ig) +b"(ig)pg]dt)

  Basic 
Functional 

 Equation 
(x-K) 

  Terminal 
Condition

Vt - a(t)VK - 

           + 

V(T,KT)

42n1VK2+22(t)VKK 

mK2 + mPa 

- 0

Vt-[f(K) +gf"(K)]VK -12a1VK2  Z 

        + F2(t)VKK + mc2 + mpg 
V(T.KT) - 0

Solution 
(Assumed)

V(t,K) - r(t)K 2 + 2a(t) + 5(t)
unknown at present

Optimal 

Stochastic 

 Control

e(t) - i (t,K) 

= n lc[r(t)K+a(t)]
unknown at present

nonlinear systems under noisy observations and a feasible tandem form 

of optimal estimation-control system has been established. 

     The key notion of the estimation-control in Secs.6.4 and 6.5 is 

obviously the stochastic linearization based on the first-order approxi-

mation and the assumption of quadratic solution for the basic equation. 

On the other hand, for the Taylor series expansion filter, however, the 

basic functional equation contains the nonlinear function in itself as 

shown in Table 6.1 (where the one-dimensional case is considered, and 

the subscripts a and 6 in x and p denote the approximated processes of 

estimation and covariance derived by the two methods of stochastic 

linearization and Taylor series expansion respectively as used in Sec. 

5.5, Chap.5), and therefore such a quadratic solution is extremely 

difficult to be assumed for the basic functional equation. Since the 

analytical solution is unobtainable, the avenue to success for estimation-

control scheme is almost despairingly closed. Table 6 .1 shows the 
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possibilities of both state estimation scheme and control algorithm 

for each approximation method (Stochastic linearization and Taylor 

series expansion). According to the inspection of Table 6.1, it should 

be emphasized that our stochastic linearization technique is the most 

powerful tool and plays a useful role in the version of state estimation 

and optimal control problems. 

6.9. Discussions and Summary  

    In this chapter, based on the definition of admissible controls 

defined in Sec.6.2, the stochastic Hamilton-Jacobi-Bellman equation was 

derived by using the dynamic programming approach to the quadratic cost 

functional in Sec.6.3. In Secs.6.4 and 6.5, possible solutions were 

shown to the stochastic Hamilton-Jacobi-Bellman equation for systems 

with state-independent and/or state-dependent noises, and then a practical 

method of estimation-control scheme was proposed in a form of computer-

oriented control systems. In Sec.6.6, some aspects of numerical 

approaches for estimation-control systems were stated, and in Sec.6.7, 

the method of digital simulation studies was presented with a few 

illustrative examples. In Sec.6.8, the prevalence of the stochastic 

linearization technique was emphasized. 

     It was found that both state estimation and control scheme were 

facilitated by introducing the stochastic linearization technique and 

that the joint method of estimation-control was easily  implemented by 

digital computers. Many problems remain ahead. In particular, it was 

not yet been possible to demonstrate under what conditions a unique 

solution exists to the optimization problem. The general question is 

very difficult and this is of more than purely mathematical interest. 

Although the author's many computational experiences indicate rapid and 

near-monotone convergence, nor has it been possible to prove convergence 

of the proposed algorithm. Finally, although the performance evaluation 

of the approximate filter was done in Sec.5.5, Chap.5, the accuracy of 

the estimation-control scheme established is still uncertain because the 

precise solution to the Hamilton-Jacobi-Bellman equation is almost 

unobtainable for nonlinear systems. However, the proposed technique 

offers perhaps the only computationally feasible way of arriving at 
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 CHAPTER 7. INFORMATION STATES FOR STOCHASTIC CONTROL 

        SYSTEMS

7.1. Introductory Remarks  

     In recent years much attention has been paid to the various 
"information patterns" i n the theory of classical or nonclassical 

stochastic control processes[170-172]. The information pattern represents 

all information about the past history of the process and is the specifi-

cation of the data which is available for a future control policy. In 

general the information pattern increases in size and grows in complexity 

as time goes on. Therefore when a large amount of data is available 

for performing the optimal control, it is required to summarize it in 

such a way that no valuable information is deleted. In the development 

of the theory of dynamic programming and stochastic control, for the 

purpose of data reduction the important concept of sufficient statistics 

was noted by Bellman[9,173,174]. The concept of sufficient statistics was 

particularly emphasized and developed by Striebel[125] and by Aoki[2], 

forcing us to look deeper into its mathematical importance in the optimal
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control of stochastic systems. 

     Independently, Stratonovich gave the concept of "sufficient 

coordinate" which is a change in form (applicable to the theory of  optimal 

control) of the sufficient statistics, and investigated it in Ref.[123]. 

In terms of the "information state," some interesting results of the 

sufficient statistics were obtained by Bohlin[12] and by Davis and 

Varaiya[25] for discrete- and continuous-time stochastic systems. 

     The purpose of this chapter is to find the conditions for the 
"informative" quantity — an information state — which is equivalent to 

the observation data up to the present time, all the a priori knowledges 

of the system and the past control in describing the future evolution 

of the system process. In Sec.7.3, on the analogy of the definition in 

[25], a definition of the information state is given, and an equivalent 

information state is defined in Sec.7.4. The condition of information 

states and some typical information states are presented for adaptive 

control systems and for systems in signal detection problems respectively 

in Secs.7.5 and 7.6. Summaries and discussions about the information 

states are given in the final section for various types of (classical) 

stochastic control systems. 

7.2. Preliminaries  

     The basic system under consideration is modeled by the Ito stochastic 

differential equations of the form, 

dx(t) = f[t,x(t)]dt + C(t)u(t)dt + G(t)dw(t) 
(7.1)EN: 

            dy(t) = h[t,x(t)]dt + R(t)dv(t), te[O,T], 

which is the same as E0 defined in Def.2.1 (Chap.2, Sec.2 .3), except the 

assumption c[t,u(t)]=C(t)u(t). The system (7 .1) is referred to as EN. 

In the sequel, instead of EN, some different systems such as the linear 

system EL, an adaptive system EAN, etc. are defined . 

    Let t be a fixed time, and YS and US represent the collections of 
random variables {y(T), s<T<t} and {u(T) , s<T<t}. Furthermore, let Is be 

a set of the knowledge on the system at time s , that is IsI.,Up}, 
Particularly I0 is the a priori information and consists of the initial 

state x0. The set It and also the set which is defined by 
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(7.2)  Is = {Is, Yst, Ust} 

will be called the information patterns. Obviously, It=ls. The infor-
mation pattern It determines a a-algebra in the probability space, 

(7.3) It = a{Is,y(T),u(T); S<T<t}. 

The a-algebra It will be called the information a-algebra. If the control 

u(t) is adapted to yt, u(t) is a functional on YOt, and the process u(t) 

is called a feedback control on observations[175]. 

7.3. Information State  

     Let there exist an It-measurable function at(w) having its values 

in a certain measurable space (A,A), AGR(n). For the function at, an 

information state is defined on an analogy in [25] as follows. 

Definition 7.1.(Information state for the cond. pdf) A process fat} is 

     an information state for the conditional probability density 

     function (cond. pdf) p{xtllt} if the following conditions are 
     satisfied for given It: 

      (i) at is adapted to It, 

      (ii) the density p{xtllt} depends on the information pattern It 
           only through at, 

     and 

     (iii) at can be computed recursively, i.e. for any s<t, at has 

           the form 

at = F(as,Ist). 

Roughly speaking, the information state defined by Def.7.1 is one which 

carries all the relevant information in the past observations and controls 

[25]. The condition (ii) states that at constitutes a sufficient statistic. 

The space (A,A) will be referred to as the information state space. 

Remark 7.1: If the control UOt is generated so as to be Vt-measurable, 

then It in Def.7.1 may be replaced by V. 

Theorem 7.1. If at is an information state for the cond. pdf p{xtllt}, 

    then 
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(7.4)  p{xtllt} = P{xtlat}. 

Proof. In order to prove (7.4) it suffices to show p{xtlIt}=p{xtlat} for 
every Itelt, where xt=x(t). By definition of cond. pdf 

P{xt,It} P{xt,It} 
(7.5) p{xtllt} = p{I

t}--------------------------   fE(n)p{xt,lt}dxt 

If at is an information state, that is by (ii) in Def.7.1 at is a sufficient 
statistic, then the joint pdf p{xt,It} is factored as 

(7.6) P{xt,It} = P{xt,at}g(It), 

where g is a function of It which does not depend on xt. The relation 
(7.6) is known as the factorization theorem or the Fisher-Neyman criterion 
for sufficient statistic (see, e.g. [176,p.101] or [177,pp.355-356]). 

     Substituting (7.6) into (7.5), we have 

P{xt,at}g(It) 
(7.7) p{xtllt} = ------------------------------- f

E(n)P{xt,at}g(It)dxt 

P{xt,at} _ -----------------------= p{xtlat}. f
E(n)P{xt,at}dxt 

This completes the proof. 

     Consider a linear stochastic system 

dx(t) = A(t)x(t)dt + C(t)u(t)dt + G(t)dw(t) 
(7.8) EL: 

           dy(t) = H(t)x(t)dt + R(t)dv(t), 

where u(t) is a feedback control (i.e . u is yt-measurable); and A and H 

are nxn- and mxn-matrices. For the system EL we have the important 

proposition. 

Proposition 7.1. For EL, the optimal estimate R(tlt) E{x tlyt} is an 
     information state for the cond. pdf p{xtlyt}; i.e. at=(Rt). 

Proof. Note that p{xtlIt}=p{xtly txUt}=P{xtlyt} since u is yt-measurable 
and It={yot}. First, (i) the optimal estimate R

t is yt-measurable. 
Secondly, (ii) Rt is obviously a sufficient statistic . In fact, for EL 
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the cond. pdf  p{xtlyt} is given by 

p{xtlyt} = ct exp{-2IIxt-XtIIp_1(tlt)}, 

where ct is a normalizing coefficient and P(tlt)=cov.[xtlyt]. Write this 
by g0(xt,xt). Then we have a representation for the joint pdf, 

(7.9) p{xt,YOt} = g0(xt, t)g(YOt), YOtcvt 

which is just the Fisher-Neyman criterion showing that xt is a sufficient 

statistic. Finally, (iii) xt is obtained recursively by the well-known 

Kalman-Bucy filter. (Q.E.D.) 

    In control problems, the control function u(t) is chosen so as to 

minimize a cost functional 

(7.10) J(u) = E{froL(t,xt,ut)dtlx0}, 

where L is a positive scalar function. 

    Let 4i be a mapping of [0,T]xA onto U with the properties: p(t,•) is 

Balder continuous in t and satisfies a uniform Lipschitz condition. Then 

the control u(t) is admissible if u(t)=*(t,.) (see, Sec.6.2, Chap.6). 

Proposition 7.2. If at is an information state for the cond. pdf p{xtllt}, 

    then the optimal control for (7.10) is the function of at, i.e. 

(7.11) u°(t) = * (t,at) . 

    For EL, the optimal control is 

(7.12) u°(t) = ,p (t,Xt) . 

Proof. The control function u(t) is defined for all possible values of 

the given information pattern It. Define the minimal cost functional by 

(7.13) V(t,It) = min E{ftL(s,xs,us)dslIt}. 
                      ut 

Let u(t) be an arbitrary control such that u(t)=*(t,•). Then the minimal 

cost functional V(t,It) becomes 

(7.14) V(t,It) = min E{ftL(s,xs,ps)dsllt}, 
*t 
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where  *t=*(t,•). By Theorem 7.1 (7.14) yields the dynamic programming 

equation in information state space, 

(7.15) V(t,It) = minE{fTL(s,xs,ps)dslat} 
*t t 

                 = min [E{ft+dtL(s,xs,*s)dslat} + V(t+dt,It+dt)], 
                 *t 

which gives the optimal control u°(t) as a function of at [90,p.343], 

(7.16) u°(t) = IP(t,at). 

     The second assertion follows by noting that for EL ac(it) by 

Proposition 7.1. (Q.E.D.) 

Remark 7.2: The equality (7.16) shows the separation theorem which was 

proved by Wonham[160]. 

7.4. Equivalent Information State  

     In this section a new concept of the "equivalent information state" 

is introduced. As ever seen in many stochastic control problems, the 

a posteriori pdf of the system state x(t), i.e. p{xtlIt}, plays an 
important role for calculating the optimal estimate and/or control. In 

Sec.7.3, it was shown that for the linear system EL the optimal estimate 

xt is an information state for the cond. pdf p{xtlIt} (Proposition 7.1). 
Based on this fact, one can say from a somewhat different viewpoint that 

the cond. pdf itself is equivalent to x, an information state. 

     We need the following definition. 

Definition 7.2. (Equivalent information state) A process {vt} is called 

     an equivalent information state if and only if vt carries the same 

     sufficient information It as the information state at, and is 

     determined by a recursive formula. 

     For the equivalent information state, we have the following theorem. 

Theorem 7.2. For a given information pattern It={Yot,UOt}, the a posteri-

     ori pdf p{xtlIt} constitutes an equivalent information to at, i.e. 
vt= (p {xt l It }) . Particularly, for EL vt= (p {xt l Vt }) . 

Proof. Obviously, the cond. pdf p{xtll t} carries all the information 
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about the information pattern It={YOt,UOt},and this is clearly 

to the statistic  at. 

    For EL, note that  It={Yot}_ Hence vt=(p{xtiit})-(p{xtlVt}) 

7.5. Information State and Adaptive Control Systems  

    Define a system EAN with unknown parameter 0e0 by

(7.17) EAN: 

where u is as 

theory, one t 

joint pdf of 

(7.18) p{ 

For the joint 

Theorem 7.3.  

    and yt f 

    Then p{x 

(7.19) p{ 

Proof. Step 

parameter 0, 

(7.20) p{ 

Hence 

(7.21) p{

 assumed 

e tries 

of xt and E 

P{xt, 

int pd 

3. For 

t for the c 

P{xt,e 

P{xt, 

ep 1. 

0, the 

p{ It,

equivalent 

. (Q.E.D.

Step 2. 

given e

dx(t) = f[t,x(t),e]dt + C(t,e)u(t)dt 

                 + G(t)dw(t) 

dy(t) = h[t,x(t),e]dt + R(t)dv(t), 

 ed to be a feedback control. In the Bayesian estimation 

s to obtain a recursive equation for the a posteriori 

and i, p{xt,6llt}, which can be written as 

    = p{xtl9,it}p{elit}. 

18) we have the following theorem. 

N, suppose that there exist information states St 

the ond. pdf's p{xtlit} given 0 and p{ellt}, respectively. 

lid is factored as 
     = p{xtle,st}p{elYt}. 

Since Yt is an information state about the unknown 

joint pdf p{It,e} is factored as 

p{e,Yt}g(It), Itelt.

p{elIt}
p{It,e} 

f0p{It,e}de 

P{e,Yt}g(It)

By virtue 

is written

of 

as

f0p{e,Yt}g(It)de 

Theorem 7.1, the 
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(7.22)  p{xt16,It} 

Step 3. Combining (7. 

     Consider a linear

(7.23) EAL:• 

For  EAL we have 

Proposition 7.3 

    x(tI6)=E{x 

p{xtl6,Yt) 
 is an infotheinfo 

     states StandytdefinedinTheorem7.3aregiven 

8t=(*(t10) 

Proof. By theYt-measurabilityassumptionforu(t), 

pattern is It={ 
p{xt10,R(t18))i 
     For the proof 

by the term ofA(t10).Asimilarefforttodosowas 
in [85]. Here the result is briefly obtained. Define a process 

(7.24)g(t) = -2'(t)H'(t,e){R(t)R'(t)}-1H(t,0)x(t)dt 

                    + x'(t)H'(t,0){R(t)R'(t)}-ldy(t), 

C(0) = 0. 

     Then by the representation theorem [16;54,p.176] , 

E{exp~tIxt,O,Yt}p{xt,0} 
(7.25) p{xt,elYt} _ ---------------------------------- 

E{exp~tlYt} 

and by the representation theorem for given 0, 

E{exp Ctlxt,e,Yt}p{xtle} 
(7.26) p{xtl6,Yt}= ----------------------------------E{exp ctle'Yt 
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               16,It} = p{xt10,6t}. 

iing (7.21) and (7.22) with (7.18), we have (7.19). 

                  linear system defined by 

               dx(t) = A(t,0)x(t)dt + C(t,0)u(t)dt 

                                 + G(t)dw(t) 

               dy(t) = H(t,6)x(t)dt + R(t)dv(t). 

.ForEALtheestimate*WO)given0andYt,e 

              tleat),isaninformationstateforthecond.

andytdefinedinTheorem7.3aregiven

Yt-measurabilityassumptionforu(t),

VI.Notethatfortheparticular0,

oofofyt=(A(t10)),itissufficientto
A(t10).Asimilarefforttodosowaspd

(Q.E.D.)



Use of (7.25) and (7.26) gives 

 p{xt,elyt} 
(7.27) p{elyt} = -------------- 

p{xtle,yt} 

E{exp ctle,Vt} 
----------------------------------- p{e}, 

JOE{exp ctle,Yt}p{e}de 

where p{6} is the a priori pdf of 6. Here it is easily proved that 

E{exp ctl6,Yt} is the likelihood-ratio function A(t10) for given 6 
(see, [128,178]) defined by 

(7.28) A(t16) = exp{Jx'(sI6)H'(s,6){R(s)R'(s)}-ldy(s) 

                -2JoIIH(S,e)x(sle)II{R(s)R,(s)}-lds). 
It can be shown that A(t16) satisfies the Ito stochastic differential 
equation, 

(7.29) dA(tJ6) = A(tl6)x'(tl6)H'(t,6){R(t)R'(t)}-ldy(t) 

A(0I6) = 1. 

A glance at (7.27), (7.28) and (7.29) shows that A(t10) is an information 
state about 6, i.e. Yt=(A(t16)). (Q.E.D.) 

Remark 7.3: The assertion, yt=(A(tI6)), in Proposition 7.3 holds also 
for EAN. 

Proposition 7.4. If for the system EAN with the cost functional (7.10) 

     there exists an information state at in Def.7.l, then at is given 

    by a pair 

(7.30) at = (at, Y0. 

    Hence the optimal control which minimizes (7.10) is given by 

(7.31) u° (t) = ip(t, Bt,Yt) 

Proposition 7.5. If the system is restricted to EAL in Proposition 7.4, 

    then 
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(7.32) at =  (x(tl6),A(t16)) 

     and 

(7.33) u°(t) = IP(t,x(t16),A(t1e))• 

Proof of Proposition 7.4. Note that 

E{•lit} = fE(n)(')P{xtlIt}dxt 

               = f E(n)f0(•)P{xt,ellt}d0dxt. 

Use of (7.19) in Theorem 7.3 gives 

               = f E(n)f 0(•)P{xtle,8t}P{elYt}dedxt. 

Then the minimal cost functional defined by (7.13) is written as 

(7.34) V(t,It) =min
[fE(n)fo[ftL(s,xs,Ps)ds] 

x p{xtle,Bt}p{6JYt}dedxt], 

which shows that V is a function of t, $t and Yt. Hence we know that 

V(t,It)=V(t,St,yt). Therefore we have (7.30) and (7.31) by Proposition 

7.2. (Q.E.D.) 

Proposition 7.6. The equivalent information state is vt=(p{xtl6,It}, 
p{614}) for EAN, and vt=(P{xtIO,It},P{ellt}) for EAL. 

Proof. By Theorem 7.2, vt=(p{xtllt}). Since 

p{xtlIt} = f0pfxtle,It}p{ellt}de, 

the pdf's p{xtle,It} and p{ellt} are sufficient for p{xtllt}. 
Hence 

vt = (p{xtle,It}, p{elit}). 

(Q.E.D.) 

7.6. Information State and the Signal Detection Problem  

     In this section let us consider a newly defined system EDN:
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             dx(t)  = f[t,x(t)]dt + C(t)u(t)dt 

(7.35) EDN:+ G(t)dw(t) 

             dy(t) = Xh[t,x(t)]dt + R(t)dv(t). 

In (7.35), X is an indicator variable taking its values 0 or 1, with 

known or assumed a priori probabilities p0 and pi=1-p0. For the system 

EDN, as might be expected, the optimal control problem involves making 

the decision of the existence of the signal in observed data; that is 

the signal detection procedure is required. A similar linear model to 

EDN was extensively used by Lainiotis and his co-workers[179,180], and 

a slightly modified model was used by Sunahara and the author[181; see 

also Chap.4]. 

    We have a theorem analogous to Theorem 7.3. 

Theorem 7.4. Suppose that for EDN there exist information states Bt 

    and yt for p{xtllt}andp{XIIt}respectively. Then the joint pdf 

p{xt,xlIt} is factored as 

(7.36) P{xt,xllt} = P{xtlX,lt}P{xlIt}• 

Proof. The procedure of the proof is formally the same as in Theorem 
7.3. 

Proposition 7.7. For EDN the modified likelihood-ratio function A(tIx) 

    defined below is an information state for the cond. pdf p{XIIt}, 

    i.e. yt=(A(tlx))- 
Proof. This follows from that of Proposition 7.3. A similar relation 

to (7.27) holds: 

P{xt,XIIt) 
(7.37) P{XIIt} _ --------------- 

P{xtlX,It} 

E{exp ntIX,It} 

      

l-------------------------------P{X}, 

piE{exp ntlX=i,It} 
                     i=0 

where nt is the process determined by
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(7.38) dnt= -2XhT(t,xt)(RtRt')-lh(t,xt)dt 
                   +  Xh'(t,xt)(RtRt')-ldy(t), n(0) = 0. 

In the second equality of (7.37), the relation p{X}=p06(X)+p16(X-1) was 

used. The numerator, E{exp ntlX,It}, is equal to the likelihood-ratio 

A (t l X) defined by 

(7.39) A(tIX) = exp{foXh'(s,xslX)(RsRs')-ldy(s) 

                    - 2fOIIXh(s,xsIx)II RsRs')_lds}. 

Note that A(tlx=0)=1 for X=0 and A(tIX=1) is the usual likelihood-ratio 
function appearing in the detection theory (simply, A(t)) given by 

(7.40) A(t) = exp{4hl'(s,xs)(RsRs')-ldy(s) 

                   1 - zf0IIh1(s,xs)II(RsRs')-lds}. 
In (7.39) and (7.40), h(s,xsIX)4{h(s,x0IX,It} and hl(s,xs)4(s,xsIX=1) 
Hence (7.37) becomes 

(7.41) P{XIIt} = A(tlX)  P{X}. 
PO+p1A(t) 

Therefore we see that A(tIX) (this includes A(t) as a special case of 

X=1) is an information state, that is yt=(A(tjx)). (Q.E.D.) 

Proposition 7.8. For EDN the conditional mean 5i(t)4E{XIIt} constitutes 
    an information state for p{XIIt}, i.e. yt=(R(t)). 

Proof. By (7.41) the a posteriori probability P[X=1II0 is evaluated as 

(7.42) P[X=1II= P1A(t)      t] 
p0+p1A(t) 

Obviously 

(7.43) R(t) = E{XIIt} = P[X=1II0 
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 pA(t)  
1+pA (t) 

where p=p1/p0. Since by Proposition 7.7 the likelihood-ratio A(t) 

constitutes an information state for p{Xllt}, thus X(t) also constitutes 
an information state. (Q.E.D.) 

7.7. Summaries and Discussions  

    So far we have investigated the conditions and properties of suffi-

cient statistics at (or St and yt) and vt. The role of sufficient statis-

tics is the data reduction of information pattern It, which consists of 

{y(s), 0<s<t} and {u(s), 0<s<t}, by the replacement of an information 

state. The consequences are summarized in Tables 7.1 and 7.2. Table 

7.1 shows the conditions of information states for various types of 

stochastic systems. Some typical information states are listed in Table 

7.2. 

     As is well-known, except for the LQG (linear-quadratic-Gaussian) 

problem, the information state at is in general unknown and hence the 

optimal control cannot be obtained in practice.- To see this, define 

mt=E{xtllt} and mit=E{(xt-mt)1IIt) where the one-dimensional case is 

considered. Then, the cond. pdf p{xtllt} can be represented by a function 

          Table 7.1. Condition for Information States.

Dynamical 

 System
Condition for Information States Remark

EL' EN p{xtllt} = p{xtlat} Theorem 7.1

EAL'EAN p{xt,61lt} = p{xt16,8t}p{Olyt) Theorem 7.3

EDL' EDN p{xt,XlIt} = p{xtIx,at}p{Xlyt} Theorem 7.4
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Table 7.2  . Information States.

Dynamical 

 System

Information 

  Pattern
Information States Remarks

 EL It={Yot)
at 

vt

X(tIt) 

P{xtlyt}

Prop.7.1 

Theorem 7.2

EN i t={Yo , U0 }
at 

vt

unknown 

p{xt lit) Theorem 7.2

E
AL

It={Yot}

St 

It 

vt

X(tje) 
A(tle) 

(P{xtle,yt}, P{eIyt})

Prop.7.3 

Prop.7.3 

Prop.7.6

AN
It={YO , Uo }

st 

It 

vt

  unknown 

AWE)) 
(P{xtle,Tt}, P{elIt})

Prop.7.3, 

 Remark 7.3 

Prop.7.6

E DL It={Yot }

st 

It 

vt

R(tIX) 
A(tlx) or X(t) 

(P{xtlX=l,yt}, P{X=llyt})

(Prop.7. 

(Prop.7. 

(Prop.7.

3) 

7 & 7.8) 

6)

E DN It={Yo,U0}
St 

It 

vt

  unknown 

A(tlx) or X(t) 
(P{xtlX=l,yt}, P{X=11yt})

(Prop.7. 

(Prop.7.

7 & 7_8) 

6)

  The parenthesis (•) in the remark column means that 
  result easily follows from " • ". 

of infinite moments {mt,m2
t,m3t,..-}, i.e. 

(7.44) P{xtjit} = 4(xt'mt'm2t'm3t,...), 

Hence, the information state at will be presented by 

at = a(t,mt'm2t'm3t~...), 
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for which further considerations stop here. Furthermore, since the form 

of optimal control (7.11) is given by 

(7.45)  u°(t) _(t,mt,m2tsm3t~...)s 

the precise realization of the optimal control for the nonlinear system 

EN is impossible. However, for the stochastic control of nonlinear 

systems, there are some papers in which the information state at is 

approximated by xt on an analogy of the linear case. For example, using 

the wide-sense property by Doob[28], Tse, Bar-Shalom and Meier[146] and 

Tse and Bar-Shalom[182] obtained the practical control for systems 

similar to EN and EANwhich is referred to as a wide-sense adaptive 

control law. Alternatively, Sunahara[183] and Sunahara and the author 

[129,130] obtained the suboptimal control for EN, using the concept of 

stochastic linearization in Markovian framework. In the papers [129,130, 

183], the a posteriori cond. pdf p{xtlIt} was approximated to be Gaussian 

and the information state was assumed to be at=(xt). 

    The study of information states is extremely important in the field 

of stochastic nonlinear control systems. There has been little study of 

the best approximation of the information state and of the asymptotic 

information state which will be useful for a long-term control.
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CHAPTER 8. CONCLUSIONS

8.1. Concluding Remarks  

     In Part One, a feasible method of signal detection and estimation-

control has been established in a form of computer-aided feedback system 

for a wide class of nonlinear stochastic systems under noisy observations. 

The basic notion of suboptimal control for nonlinear systems is use of 

stochastic linearization technique reviewed in Chap.3. It should be 

particularly emphasized that the stochastic linearization method plays 

a useful role to the realization of computer-oriented estimation-control 

system. 

     There are, in general, two possibilities of linearization in nonlinear 

systems as pointed out by Tsypkin and by Kashyap (cf.[27]) as 

     (a) linearization of the nonlinear element only 

     (b) linearization of the nonlinear system as a whole. 

More concretely, the category (b) may be devided into the following three 

parts; 

     (b-i) linearization of the nonlinear system dynamics 
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 (b-ii) linearization of the filter dynamics 

(b-iii) linearization of the basic Hamilton-Jacobi-Bellman equation. 

The technique in the category (a) mainly plays a useful role to analize 

and synthesize a simple system with the single input-output relation 

which contains a nonlinear element of zero-memory type. However, in the 

case of complexed large nonlinear systems, the linearization of nonlinear 

element requires tediously complexed computation. Therefore, from global 

viewpoints, the category (b) will be more preferable. By invoking the 

linearization technique for a nonlinear system as a whole, it is easy 

to obtain the approximated behavior of nonlinear systems as a birdview 

picture. 

    In particular, the linearization of a whole system may enthusiastically 

recommended in the case of optimal control of complexed nonlinear systems 

with/without noisy observation. In such the case, there are the three 

sub-categories stated above. Among them, it may be stated that the 

linearization of nonlinear dynamics, (b-i), is pleasant. Thus the 

stochastic linearization technique may be emphasized in constructing the 

overall configuration of a broad class of stochastic optimal control. 

8.2. Discussions  

    In the theory of stochastic control, it is a primary problem to 

find the "informative" quantity for control. The informative quantity 

is an important concept of sufficient statistics, and is the summary of 

a large amount of such data as observations up to the present time, all 

the a priori knowledges of the system and the past control in describing 

the future evolution of the system. 

    For linear control systems, the sufficient statistics was studied for 

the purpose of data reduction by Striebel[125], Aoki[2], Bohlin[12], and 

Davis and Varaiya[25], forcing us to look deeper into its mathematical 

importance in the optimal control of stochastic systems. 

    Up to the present time, the strict optimal control of nonlinear 

system is still impossible. The ultimate reason is due to the "curse of 

dimensionality"[9] which prevents us to use the dynamic programming. 

Therefore, the study of sufficient statistics is extremely important in 

the field of stochastic nonlinear control systems. In Chap.7, the 
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author has studied the conditions of the sufficient statistics which is 

called in terms of "information state." There has been yet little study 

about the best approximation to the sufficient statistics for nonlinear 

systems. Although Part One will contribute to the study of nonlinear 

control systems, the study of sufficient statistics and its approximation 

will be one of the topics of current researches.
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    APPENDIX A. Typical Examples of Stochastic Linearization  

    This appendix serves several typical examples of the stochastic 

linearization technique which is reviewed in Chap.3. 

 Example A.I. Saturation Element. 

     Consider the one-dimensional case. The nonlinear function f(t,x) 

is given 

A for x A 

(A.1) f(t,x) = x for Ixl<A 
-A for x<-A . 

    From (3.3a), it follows that 

(A.2) a(t) = E{f(t,x)Iyt} = f f(t,x)p{t,xlV }dx, 

where p{t,xlyt} is the conditional probability density function which is 
assumed to be 

_ 2 

(A.3) P{t,xlyt} _ ^2Trp(tlt5exp{ 2P(tlt)}. 

For the nonlinear function (A.1) , the coefficient a(t) becomes 

                               2 
(A.4) a(t) = fA(-A)exp{-(x2P) ldx 

              A1 xp{  (x-x)2}dx +f -Ax2p 

                        _2           + fAAVxp{(x2P) }dx. 

The first integral on the right-hand side of (A.4) is 

         _2a2                   1 (A.5) Ii= f-(-A)xp{-(x2p) }dx =- j0,e2 dA                  -03

= -At(a) , 

where 

(A.6) a =                 P ' 

and 

-14 5-



 2 
(A.7) $ (x) _  kfx  e-2  dA. 

The second integral is computed to be 

(A. 8) I2 -fAexP{ (x2x)2 } dx 
          ^~PP 

     _a 2 _ 
1/2~lrp------fa (X+fa)e 2 VdA 

22 
     __a           =f ase 2dA +±6fasAe 2 dA, 

where 

(A.9)B=A-x. 

A simple calculation shows that 

X2 
(A.10a) f ase 2 dA =2W[1-(1)(a)-4,(s) ] 

a2 a2 

(A.10b) f asAe 2 dA = e 2 - e 2. 

Thus 

                    2 2 

(A.11) 12 = x[l-c(a)-43.(6)] +~(e 2 -e 2 ). 

The third integral becomes 

       2A2                 1 

(A.12) I3 = fAA ;exp{ (x2P) }dx =fs c,e2 dA 
            = AgS) - 

Then combining (A.5), (A.8) and (A .12), with (A.14), 

                                                a2 (A.13) a(t) = x + aV'I(a) - S,510) +1.27.1,(e 2 -e 
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2

follows that



 2  2 

 = 

           1.4-(3erf(A)] +~      P(e 2-e2), 
where the following relation has been used: 

(A.14)(x) =2+2rf (h) . 

    The other coefficient b(t) is computed by using the relation (3.6), 

i.e. b(t)=a(t)/8X. From (A.6), (A.9) and (A.13), the coefficients are 

obtained as 

(A.15) a(t) =2[(A+x)erf(A)-(A-x)erf(p)]       V7i 

            + j[exp{ (A2xx)2}-exp{-(A2P)2  
and 

(A.16) b(t) =2[erf(A)+erf(m)]. 

Example A.2. On-Off Element. 

     The nonlinear function is given by 

(A.17) f(t,x)_A for x>0                     _A for x<0. 

This case is similar to Example A.1. The a(t) is evaluated to be 

(A.18) a(t) = f~(-A)p{t,xlyt}dx + fOAp{t,xlyt}dx. 
The first and second integrals are: 

     (x2          ^21 (A.19a)I=-Af ------exp{-2p }dx =fae2 dA 
               = Ag-a) . 

where 

(A.20)a =. 

Thus 

(A.21)a(t) = -Aga) + M(-$) 
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Table  A.l. Coefficients of Stochastic Linearization 
for Typical Examples (one-dimensional case)

Nonlinear Function 
f(t,x)

a(t) b(t)

n 
x

n=2 

n=3 

n=4 

n=5 

n=6 

n=7

          X          2+p 

       x3+3xp 

    x4+6x22           p+3p 

    X5+lOX3p+15Xp2 

 x6+15X4p+45X2p2+15p3 

X7+21x5p+105x3p2+105xp3

2X 

      3(X2+p) 

     4(X3+3Xp) 

   5(x4+6X2p+3p2) 

  6(x5+10x3p+15Xp2) 

7(X6+15x4p+45X2p2+15p3)

sin x sin X exp(--) cos X exp (-)

cos x cos X exp (- 2) -sin X exp (--)

xsin x (Xsin X+p cos X) exp (--) [(1-p) sin X+Xcos exp(-2)

Example 1 

f(x)

A

450

I 0
-A

x

1 

2 

+

 [ (A+x)erf(~')—(A—R)erf()  ] 

g[exp22       {  (A-1-;1) }—exp{—(A2 }]
1 

2 [erf()+erf( 
 A=

)]

Excnrrp Ze 2 

    f (x)

A

0
-A

x

 Aerf(  )
2 

A rlexp{2p} 4IT
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          = -A[2-Zerf(--)]+A[2+Zerf(--h)] 

           =  Aerf(-*) = Aerf(7h), 
                                P where (A.14) has been used again. Simple calculation shows that* 

                       2 (A.22) b(t)= A~pexp{-Z2 

    APPENDIX B. Derivation of E1.(4.17). 

    Write (4.16) as 

k-1 
(B.1) X P(H}){fij(Yt)-fvj(Yt)}p{yol Hj}0j=0 

                 < P(H-1){fv -1(Y0)-fi-1(YO)}p{YOIH-1}. 

Note that 

(B.2){fi3(yt1-fvj(Yt)} _ {f-lj(yt1-fvj(Yt)}- {f-lj(yt1-fij(yt)} 
and 

(B.3) { fv -1(Y0) _ fi -1(Y0) } - { fv -i(Y0) _ f-1 -1(YO) } 

                          - {f
i-1(YO)_f-1 -1(Yt0)1- 

Substituting (B.2) and (B.3) into (B.1) and rearranging terms with uses 

of (4.4) and (4.12), we have 

k-1 
(B.4) X {f-lj (Y0)-fvj (Y0) }A(t,t j) - pk{fv (Y)_f -1(y0)} 

j=0 

k-1 
        < G {f-l.(yt)-fij(Yt)}A ft, tj) - pk{fi(Y0t)-f-1(Y0)} 

j=0

* In the evaluation 

8xerf (x)

of (A.23), the 

= %exp(-x2).
following 
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from which (4.17) results. 

     APPENDIX C. Derivation of the Likelihood-Ratio. 

    The likelihood-ratio  A(t,tj) defined by (4.4) is obtained by 
considering the following detection problem between two hypotheses 

R(T)dv(T)O<T<tj 
(C.1) H.: dy(t) = 

H(T)x(T)dT + R(T)dv(T) tj<T<tk 

                   (Signal exists.) 

(C.2) H_1: dy(T) = R(T)dv(T) O<T<tk 

                    (Signal does not exist.). 

In (C.l), the state variable x(T) is the solution of the differential 
equation under Hj, 

(C.3) dx(T) = A(T)x(T)dT + G(T)dw(T) 

with x(tj)=x0. 
     Partition the interval [0,t], 

0 = s0 < sl <...< sK = t, 

such that this partition includes I, and let E=maxi (si+i-si). Construct 
the conditional density p{ys0,..•,ysxIHj} such that 

(C.4)P{Y0IHj}= l.i.m. p{ys0,...,ysKIH.}. 
E+0 
K-

Then, we have for p{ys0,•..,ys KIHj}, 
(C.5) p{ys0,...,ysKIy = E[p{ys0,...,ysKl{x(s),sE[tj,t]},Hj}] 

                   j--1       = co exp{-2 GdsvIlsy(sv)II {R(sv)R' (sv) }-l} 
                       v=0 

K 

xE[exp{-  
vLjdsvI~ay(sv)-H(sv)x(sv)SsvII{R(sv)R' (sv) }-1}] 

where co is a normalizing coefficient . Also for p{ys0,•••,ysKIH_1}, 
we have 
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                                   K 

(C.6) p{ys0,,YsKIH_1} = c0 exp{-ZvLjSsvll 
         ...6Y(sv)II{R(

sv)R'(sv)}-1}. 

Dividing (C.5) by (C.6) and cancelling the terms, it follows that 

 P{ys0,...,ysKIHj} 
(C.7) p----------------------------{ys0,...,ysKIH-l} 

K 

      = E[exp{ G x'(s0H'00{11(s0R'(s0}-14(s0 
                v=j 

               -2cK                       LIIH(sv)x(sv)II{R(sV)R'(sv)}-16sV}] 
   vj 

K 
      = exp{ E xj'(svlsv)H'(sv){R(sv)R'(sv))-16y(sv) 

v=j 

          ZCKCII''                     -vLjIIH(sv)Xj'(svlsv)p{R(sv)R+(sv)}-18sv}. 

From (C.7) we have 

                           K 

(C.8) A(t,tj) = l.i.m. exp{LC  xj'(svlsv)H'(sv){R(sv)R'(sv)}-16Y(sv) 

         K-v=j 

K                -2 2 ll11(sV)xj (sv i sv)II {R(sv)R, (sv) }_16sv} 

               = exp{f 
t.xj' (sl s)H' (s){R(s)R' (s)}-idy(s) 

                      j 

               -ZftjilH(s)xj (sIs)II{R(s)R' (s)}-ids). 
This completes the proof. (Q.E.D.) 

    APPENDIX D. Cost Assignments. 

    Let us define the following set of quadratic cost functions D in 

(4.5), 

          for i=j=-1 D[x(s),O,H_1] = 0 
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 i=-1, j0-1 D[x(s),O,Hj] = cillxj(s)02 

i#-1, j=-1 D[x(s),xi(s!s),H-1] = c2IIx(s)-ki(sIs)II2 

i#-1, j0-1 D[x(s),xi(sls),Hj] = c3llxj(s)4(i(sls)1I2, 

where xj(s) is the solution process of (4.3) with its initial time TO=tj; 

and cl, c2, c3 are weighting constants. Define also the time interval 

Sij as: S_1 _1=[tj,t], Si _1=[t,t+T1] and Sij=[t,t+Ti], where T1 is constant. 

Then, by (4.6) fij(4) are respectively as follows: 

(D.1)f-1 -1(YO) = 0 

(D.2) f-lj(YO) = JtjE{clllx. (s)II2IYD,H.}ds 

= cl(t-tj)E{Ilxj(t)1121YD,xj} = cl(t-tj)[IF j(tlt)112+tr.Pj(tIt)l 

(D.3) f ij (y0)=Jt+Tl E{c3llxj(T)-Xi(TIT)II2IYO,H]}dT 
           = c3T1E{Ilxj(t)-xi(tIt)II2IYO,Hj} = c3T1tr.Qij(tIt), 

where Qij(tlt)=E{[xj(t)-xi(tIt)][xj(t)-xi(tlt)]'lY,H.) and this is 
obtained by 

(D.4) Qij(tlt) = Pj(tlt) + [Xj(tIt)-Xi(tIt)l[Xj(tIt)-Xi(tIt)l'. 

       fi-1(yt)=Jt+TlE{c2IIx(T)_ki(TIT)II2IYt,H_l}dT 

                                    'I            = c2Jt+TlN-1                     Cp(HvIH-1)E{Nx(T)-Xi(TIT)HIY,Hv}dT 
                         vG=k 

             cN-1           = N-kE{Jt+T1IIx(T)-ki(TIT)ll2dTIY0,Hv}, 
                     v=k 

where the relations 

N-1 

E{•IYO,H-1} X E{•IYO'Hv}P(HvIH-1) 
v=k 

and 
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 P(HvIH-1) = P(Hv)/P(H-1) = 1/Pk = 1/(N-k) 

are used. Furthermore 

       tc2N--1t2t 
(D.5) fi -1(Yp)= N-kG[E{ftvllXi (TI T)IIdTIYp,Hv} 

v=k 

                 + E{ ft+Tlllxv(T)-Xi(TIT)H2dTlY0,H0] 
                                v N-1        •Nkk2, [(tv-t)IIXi(tIt)II2 

                   v=k 

                   + (t+Tl-tv)E{Ilxv(tv)-xi(tIt)Il2IY
p,Hv)] 

            Xi(tIt)IIy                        2N1      •II(t y-t) 
v=k 

N-1 

                  + [p0+llX0-Xi(tIt)II2] (t+T1-ty)} 
                                                 v=k 

          2{(T-t)IIXi(tIt)ll2+ (2T1-T+t)[pp+Ilp-Xi(tIt)II2]}. 
In the above assignments, the approximations are made from the practical 

point of view. 

    APPENDIX E. Derivation of Feedback Gains. 

    By the assumption (6.24), 

(E.1)aV(atK)=K'n(t)K + 2K'Q(t) +8(t) 

(E.2) av(t,K) = 2[11(t)K+a(t)]            at 

and 

(E.3)a2vat2K)=211(t). 

    Substituting (E.1)-(E.3) into the stochastic Hamilton-Jacobi-Bellman 

equation (6.23), we have 
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 (E.4) -  [K'll(t)K+2K'C&(t)+0(t)] 

             = tr.{M(t)P(tlt)} + K'M(t)K + 2a'(t)[I(t)K+a(t)] 

                - f[K'n(t)+a'(t)]C(t)N 1(t)C'(t)[II(t)K+a(t)] 

                 + tr.{E'(t)ll(t)E(t)}. 

 Rearranging terms in (E.4), it follows that 

 (E.5)K'[IIXIICN1C`II+M]K+ 2K'[&1IICN-1C'a+11a] 

                                                 •  

                + [5-1-a'CN-1C'a+2a'a+tr.{MP}+tr.{E'IIE}] = 0. 

      In order to hold (E.5) for every K, it is necessary to hold that 

 (E.6)II- BCN-1C'hI+ M = 0 

(E.7)&-1IICN-1C'a + IIa = 0 

(E.8) a —~l-a'CN-1              -C'a + 2a'a + tr.{MP}+ tr.{E'IIE} = 0 

which are equations (6.28), (6.29) and (6 .30). 

     APPENDIX F. Simulation of the Brownian Motion Process . 

     In this appendix, the author considers only the scalar case . The 

Brownian motion process w(t) (tia<t<co) is related to a Gaussian white 

noise process y(t) (with zero mean) by the following well -known relation, 

[163,127] 

(F.la) dw(t) = y(t)dt 

or precisely 

(F.lb) w(t) = fty(s)ds, 

where the w(t)-process has the properties 

(F.2) E{dw(t)} = 0 and E{[dw(t)}2} = odt . 

In the followings, let the parameter a be 
equal to one without loss of
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generality. 

    In the digital simulation, the time interval  [t0,0.) is partitioned 

as 

to < tl< t2<...< ti <..., 

so that, at discrete time tj, Stj=tj+l-tj 0=0,1,2,—) may be sufficiently 

short. With discretized arguments, it follows from (F.2) and (F.la) that 

(F.3) Stj = E{ (Sw)2} = E{Y2(tj)} (Stj)2, 

where 

(F.4) Su) = w(tj+l) - w(tj). 

Thus, we have 

(F.5) E{Y2(tj)} =(St~)-1, 

which means that the variance of Y(tj) is equal to (Stj)-1.If the 

partition of the time interval is constant, say, Stj=A(const.), then 

we may express the above relation as 

(F.6) y: N[0,--]. 

    Let us introduce a standard normal random sequence n(t) which can 

be generated by a suitable subroutine on a digital computer, and find 

that the relation between n and y which is the desired noise, that is 

between 

(F.7) n: N[0,1] and y: N[0,E]. 

The variance of the n-process is evaluated by 

(F.8) variance of n = E{n2} 

                            2 = f - n2~1  exp{-n}dn = 1. 
                    2,~~r•1 ̀  2.12 

On the other hand, for the 1-process, since 

(F.9) flY211exp{- Yi}dY =1, 
        2~rA 
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we have

 (F.10) 1 =0 = Af y=exp{ 

8

(/EY)
2  1  

J2m•12 

(F.10)

exp -

  2 

- 2}dY 

e (1E:02

Comparison 

(F.11)

of (F.8) 

   1 
y=n.

and

2.12 

reveals us

}/&dy.

that the evident relation,

n-process 

N[0,1]

y-process

   j 

Thus the 

following 

(F.12)

increment of 

relation: 

Sw=yA=

the

n~.

Transformation 
      1  Y =/A-n

Brownian motion process is simulated by the
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II. PART TWO. APPROXIMATE METHODS OF STATE 

 PARAMETER IDENTIFICATION AND CONTROL FOR 

  DISTRIBUTED PARAMETER SYSTEMS

ESTIMATION, 

NONLINEAR





CHAPTER 1. INTRODUCTION

     Although the recent interests in control theory have concentrated 

mainly on systems whose dynamic behaviors are described by ordinary 

differential equations, less attention has been payed to the distributed 

parameter systems (D.P.S.). Many physical systems are intrinsically 

distributed, and moreover requirements of treating more complex control 

objects are made in view of the present trend of rapidly advancing 

science and technology. The dynamic behavior of systems is governed 

by partial differential equations, integral equations or  integro-

differential equations. 

     For randomly-excited D.P.S. described by partial differential 

equation, several authors have examined the problems of estimation of 

system states including unknown parameters and of control as a first 

contribution to the control theory of stochastic D.P.S. Such works are 

surveyed in the following subsections. 

    The part two will be divided into three parts: the first is the 

filtering problem, the second the parameter identification problem, and 

the third the problem of optimal control for linear and nonlinear 

stochastic D.P.S. 
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     The part two is to provide two important phases: first to provide 

mathematical developments for filtering theory, parameter identification 

theory and control theory, and secondly to provide approximate method 

of computational implementations. 

1.1. Historical Background  

     The historical background is divided into the following three parts. 

 1.1.A. Filtering Problem 

     There is a large number of stochastic processes whose sample paths 

are determined by partial differential equations for which the solution 

of the problem of state estimation under noisy observations is extremely 

important. Physical examples of such estimation problems are found in 

the estimation of temperature profiles in a catalytic reactor or a 

furnace, in the estimation of effects of random disturbance on a trans-

mission line, the estimation of diffusions due to random excitation in 

environmental systems, etc. 

     Many studies have appeared on filtering for linear partial differential 

equations: Falb[35], Balakrishnan and Lions[5], Tzafestas and Nightingale 

[149], Thau[145], Kushner[82], and Medich[95,96]. Most of these works 

relied on extensions of lumped parameter ideas, and derived the filtering 

equation of Kalman-Bucy type described by partial integro-differential 

equations. A problem of similar nature was considered by Saridis and 

Badavas[106] who used the stochastic approximation technique. 

     Several trials have recently been made on the derivation of filter 

dynamics for nonlinear D.P.S., including proposals on a variety of 

approximate filter dynamics for the purpose of physical realizations by 

Seinfeld[112], Tzafestas and Nightingale[148,151], Seinfeld et al.[113], 

Hwang et al.[48], Lamont and Kumar[86], and Sunahara and the author[138]. 

Seinfeld[112] derived the Hamilton-Jacobi equation , based on the least 

square criterion, and then solved approximately by using a linearization 

method. Tzafestas and Nightingale[151] adopted the maximum-likelihood 

approach and derived an approximate filter dynamics by using the differen-

tial dynamic programming technique. Seinfeld et al.[113] showed a nonlinear 

filter dynamics by converting the D.P.S. into a set of lumped parameter 
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systems with the application of a finite difference approximation and 

by performing a limiting operation on the spatial increment, and Hwang 

et al.[48] converted the estimation problem into an optimal control 

problem. 

    Expanding the results of Detchmendy and  Sridhar[26], and using an 

invariant embedding technique by Bellman et al.[10], Lamont and Kumar[86] 

obtained an estimation algorithm. Introducing the Girsanov's theorem 

of the transformation of absolutely continuous measures to the filtering 

theory, Sunahara and the author[138] derived the exact filtering equation 

from the viewpoint of the conditional expectation, and presented 

a feasible method of approximation to the exact filter equation. 

1.1.B. Parameter Identification 

    It should be noted that most of physical processes exhibit a random-

ness over rather broad scales of time and space. In particular, the case 

of parameter uncertainties frequently appears in practice, where unknown 

parameters are surely constant or may be supposed to be constants over 

the operating range. 

    Recently, the problems actually encountered in the parameter 

identification for distributed systems involve an important subject in 

the detection of pollution sources of environmental systems modeld by 

linear or nonlinear partial differential equations. In most previous 

schemes, identification was performed by the coupled algorithm with the 

state estimate. Such schemes give raise to a nonlinear filtering problem 

for which an approximate solution may be found by using one of approaches 

stated in the previous subsection 1.1.A. 

    Recently, some trials have been made on the identification of unknown 

parameters which appear in the mathematical model of D.P.S. Using 

integration by parts along with measurement data, a set of algebraic 

equations in the parameters were derived by Perdreauville and Goodson[100]. 

In studies by Collins and Khatri[22], Zhivoglyadov and Kaipov[166], 

Carpenter et al.[20] and Polis et al.[101], several different methods of 

finite difference, stochastic approximations and Galerkin's criterion 

were used respectively to yield to parameter estimates. Sunahara and the 

author[139] presented a new method of parameter identification by invoking
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the Bayesian theoretic approach. Chen and Seinfeld[168] considered the 

identification problem of spatially varying unknown parameters by applying 

the nonlinear filtering theory. 

     Naturally, the filtering theory of linear and nonlinear D.P.S. is 

the background knowledge of parameter estimate. 

 1.1.C. Control Problem 

     For the control problem of D.P.S., comprehensive and excellent 

surveys were published by many investigators. The first important 

survey effort was that of Wang[153] in 1964. Butkovsky et al.[19] 

presented a survey of Soviet works in the field, and separately Brogan 

[14] published a more comprehensive survey which included a substantial 

amount of tutorial material. Recently, a short, but notable survey was 

presented by Robinson[105] in 1971, covering a list of current papers 

over 250 entries. Special mention should be made on the excellent work 

by Lions[87] who discusses the optimal problem from the viewpoint of 

a pure mathematician. 

     In the following, reviewing recent works on the optimal control 

problems, descriptions are mainly restricted to stochastic and/or 

nonlinear problems. 

     Significant advances in stochastic control were made by Kolb[72], 

Kushner[81], Tzafestas and Nightingale[150], and Sholar[117]. Most of 

all these works consider optimal control problems with use of extensions 

of lumped parameter ideas and have involved only linear systems, as 

might be expected. Kushner[81] showed that for a random parabolic 

systems with control which is a linear function of the state, the optimal 

regulator is determined by a Riccatian equation, based on amathematical 

models described by an Ito differential equation. Also, Tzafestas and 

Nightingale showed that the result is a pair of linear optimal feedback 

controllers, their common weighting function being described by a matrix 

partial integro-differential equation of the Riccatian form. When the 

system state is not exactly measured, Sholar[117] showed that the 

distributed Kalman filter is imposed and that the decoupling of the 

optimal controllers and the optimal estimator is proved . 

     It is well-known that dynamical systems to be controlled exhibit
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sometimes nonlinear characteristics. In recent years, the optimal 

control of such a nonlinear D.P.S. has received considerable attentions. 

However, a paucity of works on stochastic systems and a lack of 

consideration of nonlinear problems prevent us to study the problem 

of optimal stochastic control for nonlinear D.P.S. An important contri-

bution was given by Egorov[32,33] to obtain a formulation of the necessary 

conditions for optimality being equivalent with the formulation of 

Pontryagin's Maximum  Principle[102]. Golub'[46] considered also the 

optimal control of systems described by nonlinear partial differential 

equations and proposed an algorithm for approximate calculation of 

optimal control. In [87], Lions delt with some problems in which the 

systems are nonlinear with respect to controls, and derived necessary con-

ditions on the optimal controls. Yavin[164] derived sufficient conditions 

for two classes of nonlinear D.P.S.; and Fjeld and Kristiansen[37] obtained 

conditions for local optimality, using simple calculations of variations, 

and considered the optimization of a periodic process which consists of 

a tubular reactor. Tzafestas[147] treated the optimal final-value control 

problem for fully nonlinear composite distributed- and lumped-parameter 

systems, and obtained an iterative computational algorithm. Expanding 

the stochastic linearization technique to D.P.S., Sunahara and the author 

[141,142] made an effort to obtain a suboptimal control for a general 

class of nonlinear D.P.S. subjected by disturbances, and explored 

computational algorithm for implementing the results.

1.2. Problem Considered  

     In Part Two, we consider the problems of estimation of system state, 

parameter identification and/or optimal control for a general class of 

nonlinear distributed parameter systems subjected to disturbances, and 

develop the implementation technique for the results. Physical systems 

under consideration are shown in Fig.l.l. Environmental effects on 

the system are represented by a set of disturbances (noises). The obser-

vation mechanism corresponds to a set of transducers or measuring 

instruments which monitor system states and transform them into a set of 

output quantities. 
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OBSERVATION 

MECHANISM
OUTPUT

 Fig.l.l. System description. 

     The dynamic behavior of a large number of D.P.S. can be described 

by a partial differential equation of the form: 

(1.1)          au(t,x)_ F(t,x,u,3u/ax,32u/ax2;0) + C(t,x)f(t,x) 

                       + G(t,x,u)y(t,x), xeD 

defined on a fixed spatial domain D for te[O,T], where u(t,x) is a scalar 

system state; F is a nonlinear operator; C and G are known functions; 

y is a formal Gaussian white noise which represents the environmental 

disturvance; f is a control function; and 0 in the operator F is specified 

as a known or unknown parameter. The system state u(t,x) is observed by 

observation mechanism given by 

(1.2) z(t) = JDH(t,x,u)dx + R(t)c(t). 

The output z(t) is scalar; H is a nonlinear function; R is a parameter 

coefficient; and c is a Gaussian white noise with unit variance. 

     Since the models (1.1) and (1.2) are purely formal because of the 

existence of white noises, they are well-modeled respectively by a kind 

of stochastic differential equation of It6-type; 
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(1.3) du(t,x)  = F(t,x,u,au/ax,a2u/ax2;e)dt + C(t,x)f(t,x)dt 

                        + G(t,x,u)dw(t,x) 

and 

(1.4) dy(t) = [fDH(t,x,u)dx]dt + R(t)dv(t), 

where y(t) is a scalar observation process according to the similar 

relation to (1.5) in Sec.1.2, Chap.l of Part One, z(t)=y(t). 

    Based on the models (1.3) and (1.4), in Part Two we consider the 

following three intrinstic problems; i.e. 

     (i) Estimation of the system state u(t,x) of the system (1.3) from 

        the observation data {y(s), 0<s<t} obtained by the process (1.4), 

        in which the parameter e is assumed to be known; 

    (ii) Identification of the unknown parameter e in (1.3), which is 

        very important in the field of the system identification; 

and 

   (iii) Optimal control of the system (1.3). 

1.3. Summary of Contents  

    The orientation of Part Two is first to propose the possible solution 

for the basic and intrinstic problems, that is the problems of estimation 

of the system state, parameter estimation, and optimal control, which 

should necessarily be considered in constructing the physical distributed 

parameter control system, and then to provide the proposed approximate 

method. 

    The outline of Part Two is as follows. 

    In Chap.2, the precise mathematical models for both the dynamical 

system and the observation mechanism are established. 

     Chapter 3 provides two possible methods of expansions of a nonlinear 

function. One is based on the Taylor series and the other the stochastic 

linearization. These methods of expansion are extensively used in Chap.4 

and Chap.6. 

    In Chap.4, the nonlinear filtering theory is developed based on the 

measure-theoretic approach for a general class of nonlinear D.P.S. with 

a Gaussian white noise disturbance under noisy observations. The principal 
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method is to introduce the Girsanov's measure-transformation theorem to 

the filtering theory. Using the differential generator extended to the 

case of stochastic differential equations, a version of conditional 

expectation is derived in a form of integro-differential equations. 

Also a contribution is made to the method of physical realization of 

nonlinear filters. 

     Chapter 5 contains the development of parameter identification for 

the purpose of detecting pollution sources of environmental systems. 

Unknown parameters are contained in exciting terms of system dynamics. 

Through the Bayesian approach, a coupled scheme of state estimation and 

parameter identification is proposed in Markovian framework, and 

demonstrated by digital simulation studies. 

     In Chap.6, an extensive method is presented for the control of 

nonlinear D.P.S. under a quadratic criterion functional. Based on 

the study described in Part One, the extended stochastic linearization 

technique to D.P.S. is used to realize the optimal control system. The 

feasibility of approximate method is also emphasized by a simulation 

experiment.
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CHAPTER 2.  MATHEMATICAL PRELIMINARIES

2.1. Distributed Brownian Motion Process  

     When one wants to describe a mathematical model for the given D.P.S. 

subjected to additive Gaussian white noise disturbance, it is first 

required how one should represent mathematically the white noise distur-

bance which is spatially distributed. Secondly, it is also required 

to make clear the relation between the spatially distributed white noise 

and its associated Brownian motion process. 

    From physical viewpoints, a spatially distributed white noise, 

y(t,x) (where x is a spatial point in a fixed domain D), is considered 

to possess the following two properties: 

   (i) For each fixed xeD, the process y(t,•) is a white noise, 

  (ii) for each fixed t, y(•,x1) and y(.,x2) are mutually independent 

      random processes if x1#x2 and x1,x2eD. 

The property (ii) states that for each fixed t the function y(.,x) has 

the nature of "whiteness" with respect to the spatial point. Thus since 
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it will be clear from (i) and (ii) that the spatially distributed process 

y(t,x) has an extreme irregularity with respect to both t and x, it is 

almost impossible to treat it as a "usual" function of t and x. The 

rigorous treatment of such the process y(t,x) requires the Schwartz 

distribution  theory[110] and the theory of generalized random field 

(cf. Gel'fant and Vilenkin[43]). Such a treatment is discussed in [144]. 

     However, the distributed Gaussian white noise y(t,x) is related here 

to a spatially distributed Brownian motion process with an analogy of 

Eq.(2.2) in Sec.2.1, Chap.2 in Part One, as 

(2.1) w(t,x) = f ty(s,x)ds, xeD 

where w(t,x) is a distributed Brownian motion process. Clearly, w(t,x) 

defined by (2.1) has the properties of Brownian motion process for each 

fixed xeD. In what follows, the covariance of w is assumed to be 

(2.2) E{dw(t,x)dw(t,z)} = Q(x,z)dt, 

where Q(x,z) is a nonnegative and symmetric (in x and z) function for 

all x,zeD. If the function Q(x,z) is given by 

(2.3) Q(x,z) = Q06(x-z), 

where Q0is a nonnegative constant anddis the Dirac delta function, 

the Brownian motion process w(t,x) is spatially independent. It may be 

stated that the process having the property (2.2) is milder than the 

property stated in (ii). 

     In the following discussions, we use the model (2.1) with (2.2) 

as the spatially distributed Brownian motion process. 

2.2. System Dynamics  

     Let D be a bounded, open, Borel measurable, simply connected set 

on E(n), an n-dimensional Euclidean space, with closure D , and 8D be the 
boundary of D which is continuous and piecewise differentiable . We shall 

write R=[0,T]xD where [0,T] is the time interval . The symbol x is an n-

dimensional coordinate vector . 

     We shall consider a well-modeled nonlinear distributed parameter 

system described by 
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(2.4)  ut = F(t,x,u,ux,u ) + G(t,x,u)y(t,x)                             xx 

with the initial condition 

(2.5)  u(0,x) = 4)(x), 

                       where u(t,x)eR is a scalar function, F is a nonlinear operator, G is a 

known function, y(t,x) is a formal Gaussian white noise, and u
t, ux and 

u are partial derivatives. The version of (2.4) is interpreted more 
 xx 
adequately by the following stochastic nonlinear partial differential 

equation which may be considered as an extension of the stochastic 

ordinary differential equation of Ito-type, 

(2.6) du(t,x) = F(t,x,u,ux,uxx)dt + G(t,x,u)dw(t,x), 

where w(t,x) is a Brownian motion process in L2(D) with the zero mean 

and covariance, 

(2.7) E{dw(t,x)dw(t,z)} = Q(x,z)dt, 

where the symbol E{•} denotes a mathematical expectation and Q(x,z) is 

a symmetric nonnegative function for all x,zeD. 

    For the purpose of mathematical security, the following assumptions 

are made. 

     Suppose that, for every te[O,T] and xeD, a o--algebra St is defined, 

where S
sCSt(s<t) and that a Brownian motion process is defined on R. 

For (2.6), the following conditions hold: 

(C2.1) F(•,•,•,•,•) and G(•,-,•) are St-measurable for the fixed 

             t and x. 

     (C2.2) u, ux and uxxare Holder continuous on R. 

    (C2.3)* For all te[O,T], u tends uniformly to zero as x+aD. Fur-

              thermore, both F(•,•,•.•.•) and G(•,-,•) also tend uniformly 

             to zero as xeDD. 

    (C2.4) The initial value u(0,x) has a bounded variance and Holder 

             continuous second derivatives. The initial value u(0,x) is 

             independent of w(t,x).

* (C2 

with 
with

.3) is for convenience of theoretical 
nonhomogeneous boundary conditions may 
homogeneous conditions[169]. 
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development. The problem 
be transformed into one



     (C2.5) For all  te[O,T] and xcD, 

                fOIG(t,x,,)I2dt < 

     In the sequel, assuming that the systems (2.5)-(2.6) with its initial 

and boundary conditions are bien pose in the sense of Hadamard and that 

the existence of the solution is always guaranteed, we shall start with 

(2.6). 

2.3. Observation Mechanism  

     Let v(t) be a normalized Brownian motion process independent of the 
u(t,x)- and the w(t,x)-processes. The observation process y(t) is the 

scalar random process determined by 

(2.8a) dy(t) = [IDH(t,z,u(t,z))dz]dt + R(t)dv(t), 

(2.8b) y(0) = 0, 

where H is a nonlinear function with respect to u(t,z) and R(t) is a 

continuous, positive coefficient on [0,T]. Define 

(2.9) ht=jDH(t,z,u(t,z))dz. 

For (2.8), the following conditions are assumed: 

     (C2.6) ht is St-measurable for the fixed t and bounded on [O,T], 

             and 

              fOlhtIdt < 03,fOIR(t)I2dt < 
Remark 2.1: The operator f DH(t,z,•)dz is a convenient representation 
for scanning-type or spatial averaging-type observers[153] . If the 

function H is linear, i.e. 

fDH(t,z,•)dz = jDH(t,z)(•)dz, 

and further if H(t,z) is replaced by d(z-n) (Dirac delta function) , then 

(2.8) shows the point-wise observation at a measuring point n . Such a 
case will be used in an example in Sec .5.5, Chap.5. 

2.4. System Models  

     For convenience of the following discussions
, several types of the 
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system models which are used in Part Two of this dissertation are defined . 

Definition 2.1. (System  E1) Let u(t,x) and y(t) be scalar processes 

    of dynamical system and observation represented by 

(2.10) du(t,x) _ F(t,x,u, x,u)dt + G(t,x,u)dw(t,x), 

          I.C. u(0,x) = 0(x), xcD 

          B.C. u(t,x) = 0, xcBD, 

(2.11) dy(t) = [fDH(t,z,u)dz]dt + R(t)dv(t), 

         y(0) = 0, 

    where the assumptions (C2.1)-(C2.6) in Sec.2.2 and Sec .2.3 are made. 

    Equations (2.10) and (2.11) are collectively specified as E
l. 

Definition 2.2. (System E2) Let u(t,x) and y(t) be scalar stochastic 

    processes represented by 

(2.12) du(t,x) = Lxu(t,x)dt + g(t,x,O)dt + G(t,x)dw(t,x), 

          I.C. u(0,x) = 4(x), xeD 

          B.C. u(t,x) = 0, xe2D, 

(2.13) dy(t) = [fDH(t,z)u(t,z)dz]dt + R(t)dv(t), 

        y(0) = 0, 

    where L
x is an elliptic operator, g is known function, and 6 is 

    a vector of unknown time-invariant parameters which is considered 

    to be a random variable. For (2.12) and (2.13), the assumption 

    (C2.4) in Sec.2.2 is made and 

    (C2.7) The coefficients of Lx and their first and second derivatives 

             are continuous in R. 

    (C2.8) g is bounded and continuous on [0,T]. 

    (C2.9) For all te[0,T], u tends uniformly to zero as x9D. Further-

           more, both L
xu and G also tend uniformly to zero as x32D. 

(C2.10) For xeD, 

fTIG(t,x)I2dt < 

   Equations (2.12) and (2.13) with (C2.7)-(C2.10) are specified as E2.
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    Futhermore the following system  E3 is defined. 

Definition 2.3. (System E3) Let u(t,x) be scalar process represented 

    by 

(2.14) du(t,x) = F(t,x,u,ux,uxx)dt + C(t,x)f(t,x)dt 

                                     + G(t,x,u)dw(t,x), 

          I.C. u(0,x) = ¢(x), xeD 

           B.C. u(t,x) = 0, xeDD, 

    where f(t,x) is a control function to be specified, and for (2.14) 

    the assumptions (C2.1)-(C2.5) in Sec.2.2 are made.
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CHAPTER 3. LINEARIZATION METHODS

3.1. Introductory Remarks  

     In the theory of filtering and/or control of a class of nonlinear 

D.P.S., the approximation of the nonlinear function to some linear one 

will be expected to play a role as useful as in the lumped parameter 

systems. In this chapter, two possible methods of linearization based on 

the stochastic linearization and the Taylor series expansion are proposed. 

They are considered to be an extension of the idea of lumped parameter 

system to D.P.S. 

3.2. Method by Taylor Series Expansion  

    Let us consider the system  El defined by Def.2.1, Sec.2.4, Chap.2. 

The nonlinear function F(t,x,u,u ,u ) is expanded into a Taylor series 
xxx 

around the (u,u,u) as 
            xxx 

(3.1) F(t,x,u,ux,uxx) = F(t,x,u,u+                                 x,u) +Suu(u-u) 
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                                        2  +SSu(u-u)x.4_SuFu(u-u)xx+2Su2~u(u-u)2  +,         xluxxxlxx 
where u, ux and uxx are the conditional expectations of u, ux and uxx, 

for more concretely these are defined in Chap.4, and SF/Su, SF/Sux,••• 

are the functional derivatives[152]. For simplicity, define a vector 

(3.2) v = [uxx ux u]', 

and denote 

(3.3) F(t,x,u,ux,uxx) = F(t,x;v). 

Then, for each xeD, the Taylor series expansion (3.1) is represented as 

(3.4) F(t,x;v) = F(t,x;S) + (v-0)'-a-‘710 

                                 2 

                           +2(v-S)'-(v-v) + •• . 
                                 6v 0 

In (3.4), 6F/6v and 62F/6v2 are a vector and a matrix with components 

{SF/Su, SF/Sux, SF/Suxx} and {S2F/Su2,•••}, and these will be given in 
Sec.4.4, Chap.4. This extension of Taylor series expansion will play 

a useful role in the nonlinear filtering theory in Chap.4. 

3.3. Method by Stochastic Linearization  

     Consider the system E3 defined by Def.2.3, Sec.2.4, Chap.2. By 

invoking the stochastic linearization technique reviewed in Chap.3, Part 

One, let us consider in this section an extension of the technique to 

the D.P.S. 

     Define a vector 

(3.5a) v = [v2' vl' v0]' 

with components 

vQ=u 

(3.5b)v1=[u1 u2•••u]' 

              v2[u11u12...ul
nu22•.•u2n.••unn]'' 

where ui 8u/ax., u
i.=x                       2u/8x.,and n is the dimension of coordinate     JJ 
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vector x. Then, for each  xeD, we expand the nonlinear function F(t,x;v) 

into 

(3.6) F(t,x;v) = a(t,x) + B'(t,x)(v-v) + e(t,x), 

where v is a conditional expectation of v. The coefficients a and B are 

determined so as to minimize the conditional expectation of expansion 

error, i.e. E{le(t,x)I2I4(x)}. The procedure of the minimization is 
similar to that in Chap.3, Part One, and the results are 

(3.7) a(t,x) = E{F(t,x;v)I4)(x)} F(t,x;v) 

(3.8) B(t,x) = S-1(t,x)E{(v-;)[F(t,x;v)-F(t,x;v)]I¢(x)}, 

where 

 (3.9) S(t,x) = E{(v-v)(v-v)'I4(x)}. 

The extension of stochastic linearization established here will be used 

in Chap.6 to obtain a feasible method of optimal control.
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CHAPTER 4. STOCHASTIC ESTIMATION FOR NONLINEAR DISTRIBUTED 

 PARAMETER SYSTEMS

4.1. Introductory Remarks  

     The estimation of states in noisy D.P.S. has important applications 

to identification, optimal and adaptive control as well as for systems 

described by ordinary differential equations. Many efforts have been 

done as previously surveyed in the subsection 1.1.A, Sec.l.l, Chap.l, 

for both linear and nonlinear D.P.S. 

     In this chapter, a general theory for filtering problems is develop-

ed for dynamical systems with the system noise of white Gaussian type 

and the boundary conditions and noisy observations which are made at the 

system output in the continuous time and spatial locations. Use is made 

of the theory of measure transformation established by Girsanov[45]. 

4.2. Preliminary Lemma 

    We consider, in this chapter, the mathematical models which is 

given by El in Def.2.1, Sec.2.4, i.e.
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(4.1) du(t,x) =  F(t,x,u,uu,  u)dt + G(t,x,u)dw(t,x) 

(4.2) dy(t) = [JDH(t,z,u)dz]dt + R(t)dv(t). 
E1 

    The problem is to find the minimal variance estimate of the 

u(t,x) provided that the process y(s) (0<s<t) is obtained as the 

data. 

    In order to establish the filter dynamics via Radon-Nikodym 

approach, a newly combined system is defined. 

(4.3a) du(t,x) = F(t,x,u,ux,u )dt + G(t,x,u)dw(t,x), 

(4.3b) u(0,x) = gx), 
Eo 

(4.4a) dy(t) = R(t)dv(t). 

(4.4b) y(0) = 0. 

    Let uo and pi be the measures induced by the systems Eo and 

respectively. The process {u(t,x), (t,x)eR} and the process {y(t 

tc[O,T]} are mutually independent. Let E(i){•IYt} denote the con 

expectation with respect to pi(i=0,1) conditioned by Yt, where th 

Yt denotes the minimal a-algebra generated by y(s) where s<t. Le 

be the space of continuous functions on [O,T] (for fixed xeD). L
tthe measure on the measurable space (C(1+1), B(ut,y0),u1) for th 

El, where the basic a-algebra is the product o-algebra B(ut,yo)=S 

and p1 is the product measure p1 u
uxuy. 

    The systems E1 and Eoare respectively presented in a combin 

u(t,x) [F(t,x,u,u ,u ) 
(4.5)El:d=xxxdt 

y(t) JDH(t,z,u(t,z))dz

(4.6) Eo. d

 u(t,x) 

y(t)

+

+

 G(t,x,u) 

   0

t,x,u) 0 

 0 R(t) 

 FCt,x,u,ux, 

i H(t,z,u(t 

t,x,u) 0 

 0 R(t)

d

t,x,u,u,u 
       x 

H(t,z,u(t,

 G(t,x,u)

rw(t,x) v(t) 

xic) 

z)) dz

state 

observed 

derivative

tems EOand  E1, 

process {y(t) , 

note the conditional 

t, where the symbol 
ere s<t. Let C(1) 

xed xeD). Let uu be 

, p1) for the system 

a B(ut,y0)-Stxyt 

 in a combined form:

         0 

-R 1(t)f DH(t,z,u(t,z))dz

dt
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                    + 

    For systems  p0 and p 

Lemma 4.1.(Girsanov[45]) 

(4.7) ,t = fo[0 -11-1( 

        -2fo[0 -Rl 

     Then, for the system 

p0 with respect to p 

(4.8)du0= exp{0}. 

          1 4.3. Derivation of Filter 

     In this section, we 

tation for the conditiona 

the optimal filtering pro 

(4.9) u(t,x) - E(1){u 

and 

(4.10) P(t,x,z) - E(1 

and also define the diffe 

(4.1) as follows: 

(4.11) GV(t.u(t.x).u(

 G(t,x,u) 0 

  0 R(t) 

, we have the 

Let~0be defi 

fDH(s, z,u(s,2

 d

 ana }t1, we nave Lne 

[45]) Let ~ be defined 

-R1(s)f
DH(s,z,u(s,z))dz]c 

0 -R1(s)IDH(s,z,u(s,z))dz] 

systems 1.10 and u the Radc 

t to p1 is

w(t,x) 

v(t) 

by

the following le 

defined by 

     r(s,x (s,z))dz]dv(s)

-R

lemma

Radon-Nikodym

due to Girsanov.

 0 

1(s)J
DH(s,z,u(s,z))dzds. 

 odvm derivative of

 tion of Filter Dynamics  

s section, we shall obtain a general version of the represen-

the conditional expectation and prove that this version yields 

 filtering process. Define 

L(t,x)= E(1){u(t,x)IVt}, 

P(t,x,z) - E(1){[u(t,x)-41(t,x)][u(t,z)-u(t,z)]Iy
t1, 

fine the differential generator G of the diffusion process 

llows: 

GV(t,u(t,x),u(t,z)) =av(t,u(t,x),u(t,z))  a
t 

+ 6V(t,usu()Xj(t,z)) F(t,x,u(t,x),ux,uxx) 

+ dv(t,uau(t)Zj(t,z)) F(t,z,u(t,z),uz,uzZ) 
 1 d2V(t,u(t,x),u(t,z)) 

G2(t,x,u(t,x))q(x,x) + + 2 
Su2(t,x) 
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 +  d2V(t,u(t,x)3u(t,z)) G(t,x,u(t,x))Q(x,z)G(t,z,u(t,z)) Su(t,x)Su(t,z) 

+ S2V(t,u(t,x),u(t,z)) G2(t,z,u(t,z))Q(z,z), 
du.(t,z) 

where V is a continuously twice differentiable function defined on the 
space [0,T]xRxR, and where SV(t,u(t,x),u(t,z))/Su(t,x) denotes the partial 

derivative which is defined as the variation of V with respect to the 
function u(t,x) at a point xcD. 

Theorem 4.1. Assume that the conditions (C2.1)-(C2.6) hold. Then there 
    is a version of E(1){f(u(t,x),u(t,z))1yt} which has the stochastic 

     integro-differential, 

(4.12) dE(1){f(u(t,x),u(t,z))1yt} = E(1){Gf(u(t,x),u(t,z))Iyt}dt 

+ [E(1){f(u(t,x),u(t,z))[fDH(t,E,u(t,E))d ]Iyt} 

        - E(
1){f(u(t,x),u(t,z))1yt}E(1)ffDH(t,E,u(t, ))dlyt}] 

x R 2(t)[dy(t)-E(1){fDH(t,,u(t,t))delyt}dt], 

     for all x,zcD, w.p.1, where f(u(t,x),u(t,z)) is a continuously 

     twice differentiable function defined on the space RxR. 

Proof. Since pi and u0 are equivalent, the derivative du1/dp0 is 

obtained from (4.8) by using the relation, 

             du0 
(4.13) 00=du= exp{-0}= exp{'p0}, 

where 

(4.14) *0= f0[fDH(s,z,u(s,z))dz]R2(s)dy(s) 

- 2f0[fDH(s,z,u(s,z))dz]2R2(s)ds. 

Applying the ItO's formula to (4.13), it easily follows that [31,49] 

(4.15) d0 = OthtR2(t)dy(t), 

                                         —177—



where the stochastic differential of (2.5) has been used. 

     Let  f(•,•) be any scalar Baire function such that E(l){If(u(t,x), 

u(t,z))I}<co for all x,zeD. Then it follows that (see Loeve[90] and Zakai 

[165]) 

                              E(0){f(u(t,x) ,u(t,z))poI yt} 
(4.16) E(1){f(u(t,x),u(t,z))Iyt}= -------------------------------------- 

g(0)1°01 Yd 

Express the right-hand side of (4.16) by 

                   F 
(4.17) V(Ft,Bt)=Bt,                     B

t 

where 

(4.18) FtA- E(0){f(u(t,x),u(t,z))exp{* }lyt}, 

(4.19) Bt - E(0){exp{ip }lyt}. 

Then, it follows that 

             dFF(dF )(dB ) F 
(4.20) dV(Ft,Bt)tiBt-t2(dBt)- --------------t2t+t3(dB

t)2.         t B
tBt Bt 

Using the relations (4.15), (4.18), (4.19) and the differential generator 

defined by (4.11), we have 

(4.21) dFt = E(0){Gf(u(t,x),u(t,z))exp{4}1yt}dt 
            + E(0){f(u(t,x),u(t,z))exp{p }h

tR 2(t)Iyt}dy(t), 

(4.22) dBt = E(0){exp{4}htR 2(t)Iyt}dy(t), 

(4.23) (dFt)(dBt) = E(0){f(u(t,x),u(t2z))exp{*0}htlyt}R 2(t) 

x E(0) {exp{,p0}htI yt}dt, 
(4.24) (dBt)2 = E(0){exp-401htlyt}R 2(t)E(0){exp{4}htlyt}dt. 
Substitution of (4.21) to (4 .24) into (4.20) completes the proof. 
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Theorem 4.2. Assume that the same conditions as in  Theorem 4.1 hold . 

    Then the optimal estimate of u(t,x) is determined by the following 

     stochastic integro-differential equation, 

(4.25) du(t,x) =E(1){F(t,x,u,ux,U)lyt}dt 

               + CE (1){u(t,x)CJDH(t,z,u(t,z))dz]ly
t} 
               - E

(1){u(t,x)lyt}E(1){JDH(t,z,u(t,z))dzlyt}]R 2(t) 

xCdy(t)-E(1){JDH(t,z,u(t,z))dzlyt}dt], w.p.l. 

Proof. In Theorem 4.1, set as f(u(t,x),u(t,z))eu(t,x). Then (4.25) is 
obtained, because 

(4.26) Gu(t,x) = F(t,x,u,ux,uxx). 

Corollary 4.1. Suppose that the mathematical models of both the system 
    and the observation mechanism are respectively described by the 
    linear stochastic differential equation and the linear integro-

     differential equation, i.e. 

(4.27) F(t,x,u(t,x) ,ux,uxx) = Lxu(t,x) , 

(4.28) JDH(t,z,u(t,z))dz- JDH(t,z)u(t,z)dz, 

(4.29) G(t,x,u(t,x)) a G(t,x), 

    where L
xis an elliptic operator. 

          The optimal filter dynamics and the associated error covariance 

    equation are respectively given as follows: 

(4.30) du(t,x) = L
xc(t,x)dt 

+ CJDH(t,E)P(t,x,E)dg]R2(t){dy(t)-CJDH(t,E)u(t,E)d ]dt} 

    and 

(4.31) aP(ttx'z)_ (Lx+Lz)P(t,x,z) + G(t,x)Q(x,z)G(t,z) -
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                 -  [  f
DH(t,E)P(t,x,E)dJR  2(t)IJDH(t,E)P(t,E,z)dE] 

     and, u(t,x), Lxu(t,x), P(t,x,z), LxP(t,x,z) and LzP(t,x,z) tend 
     to 0 as x- D. 

Proof. The proof is straightforward as shown in Appendix A. Equations 

(4.30) and (4.31) coincide with the results of [82] . 

4.4. Approximate Filter Dynamics  

     The filter dynamics derived in the previous section reveals that 

an exact realization of optimal nonlinear filters requires infinite 

dimensional stochastic moments, which are practically impossible. 
     In this section, the author presents a possible method of approxi-

mation to a realizable filter by means of the local expansion of nonlinear 

functions. 

     Define a new vector which was introduced in Sec.3.2, 

(4.32) v = [uxxux u]', 

and denote 

(4.33) F(t,x,u(t,x),ux,uxx) F(t,x;v) 

(4.34) v = [uxx ux u]', 

where the symbol denotes E(1){.ly
t}. 
     Expanding the nonlinear function F(t,x,u,u

x,uxx) into a Taylor 
series, we have 

                                           2 (4.35) F(t,x;v) = F(t,x;v) + (v-i~)'av~v+2-v)'av Iv(v-v), 
where 

SFSF SF 8F (4.36)S_
v[(Su du du] ' 

xx x 

and where dF/dv denotes the vector partial derivative , and
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(4.37)
 d2F 

S v2

Then it follows  that 

(4.38) F(t,x;v 

where 

(4.39) S(t,x) 

    Similarly, since 

approximated by 

(4.40) H(t,x,u 

and 

(4.41) G(t,x,u 

then we have 

(4.42) H(t,x,u 

(4.43) G(t,x,u 

    Substituting 

(4.44) du(t,x)

62F &2F 62F  

du2 Su dSuxxxxx 
   xx 

62F  62F 62F  
Suxduxx 6u2 dx6u 

             x a2F 62F 62F 
Sudu

xx Suaux Su2 

 at 

F(t,x;-V) + 2 tr.{S(t,x) 

(1){(v-v)(v-v)'1yt1. 

nce the functions 

H(t,x,u) + (u 

G(t,x,u) + (u 

H(t,x,a) +2 

G(t,x,u) +2 

38) and (4.40) 

[F(t,x; ) + 2 

+ [!D SuluZ P(t,: 
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Sv2
Ia},

          and G(t,x,u) are respectively 

6111 , 2 -11)Tulti-r2(u-u)2S2lu 
                Su 

               2 

      2(u-u)28Zlu, 
                Su 

c,x) . 

into 25) and using (4.42) , we have 

        2 

     sv~l~}]dt 
(t) {dy(t)- [ f D(H(t,x,u)+



               +2S
S2u2 uzP(t,z,z))dz]dt}, 

where superscripts denote the spatial point. The covariance equation is 

obtained through a simple calculation by substituting (4.35), (4.38), 

(4.40)-(4.43) into (A.6) (see Appendix A). The result is* 

     x 2x 
(4.45) dP(t,x,z) _[S uIux-P(t,x,z) +SuIux8(t,x,z)            2

xx axx 

  xz2 

         +STx P(txz) +s~ I„za—P(txz)+I"z ~(txt) 
      du u'Suu2'Suuaz' 

                      zzaz 

 + Su IuzP(t,x,z)]dt + [G(t,x,u)G(t,z,u) 
                                            2x  +Suxlux SG1^z P(t,x,z) +2(t,z,u)S2Iux P(t,x,x) 

                                             Su 

2 z 

          + 
           1(t ,x,u)S-------2Iuz P(t,z,z)]Q(x,z)dt 

                      Su 

             S                      r2I             (t,x,z)[JD2laE P(t,E, )dE}R 2(t)[dy(t) 
Su 

                                           2                         -{fD(H(t,E,u) +2S2I,E P(t,E,~))d~}dt] 
                                                 Su 

          [fD SuIuP(t,x,)d }R2(t)[f 0 Su IoE P(t,E,z)dE}dt, 

where we assumed that [111] 

(4. 46)E(1){ (ux-ft) (uz-ft) (h
t t)Iyt}=

* In (4 .45), the first and the 
be interpreted respectively by 

  SFx a                 2 

i,~=1 Suxxuxaxiaxjr(t,x,z) 
       ij

second terms in the right-hand 

the more precise expressions as 

and
j~l Suxuxa-X.P(t'x,z). 
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            _-2P(t,x,z)IfDd2H2I$P(.t,E,E)d~]. 
                              611216E 

                                    u 

    Equations (4.44) and (4.45) describe the approximated  dynamic 

structure for generating the current estimates u(t,x) with the given 

initial conditions, u(0,x)=E(1){u(0,x)}, P(0,x,z)=E(1){[u(0,x)-u(0,x)] 

•[u(0,z)-u(0,z)]}, and the given boundary conditions. 

4.5. An Illustrative Example and Digital Simulations  

    For the purpose of exploring the quantitative aspects, we shall 

consider the following scalar nonlinear stochastic diffusion systems:

(4.47)

(4.48) 

where g 

motion 

(4.49) 

From (4. 

(4.50)

with the 

(4.51)

2 

     du(t,x) = [a u(t2x) + au2(t,x)]dt + Gdw(t,x) 
ax 

u(0,x) = A sin2Trx, 0<x<1 

      u(t,x) = 0 on x=0, 1 

    dy(t) = [f0 u(t,z)dz]dt + Rdv(t) 

y(0) = 0, 

  G, A, H and R are constants, and the variance of the Brow 

process w(t,x) is assumed to be 

    Q(x,z) = 6(x-z), 0<x,z<1. 

44) and (4.45), the approximate filter dynamics is determi 

2,. 
du(t,x) _ [a u(t,x) + Su2(t,x) + SP(t,x,x)]dt 

                ax 

         + [fp (t,x,c)d]R 2{dy(t)-[fp u(t,E)d]dt}, 

  covariance equation, 

2 
   aP(

ax,z) =~(t,x,z) + 2au(t,x)P(t,x,z) 
                ax 

              2 
            +a2(t,x,z) + 2Su(t,z)P(t,x,z) + G2Q(x,z) - 

                az

the Brownian

determined by
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                  - [ f
oRE(t,x,E)d]R 2j fpHP(t, ,z)d ]. 

     Equations (4.47) to (4.51) are simulated on a digital computer with 

a subroutine for the generation of random disturbances, w(t,x) and v(t). 

     Suppose that observations are taken at discrete time tj, and that 

St.=tj+l-t. (j=0,1,2,•••) where St. is sufficiently short. The obser- 

vation, Sy.,can be taken to be 

(4.52)ay.=y(tj+l) - y(t.) 

N-1 
_ [ y Hu(t.,x.)Sx.]St. + RSv., 

i=0]11 

where the spatial interval 10,l] is divided into N partitions such that 

6xi=xi+1-x.(i=0,1,2,—,N-1). and 

(4.53) Sv. = v(tj+1) - v(t.). 

Define the standard difference operators D+, D_ and Dp in the usual way, 
i.e. (e.g. see [41]) 

                        u(t,xi+1)- u(t,x.)  
            D+u(t,x.) _ S

x. 
1 

u(t,x.)- u(t,xi -1)  D 
u(t,x.) _ 

xi -1 

                         u(t,xi+1)-u(t'xi -1)             D
0u(t'x.)Sxi + Sxi -1 

     The increment of the state u at the point x ,1is 

(4.54) 6u (x.)= u(tj+1'xi) - u(t.,xi) 

                 ' [D
+D-u(t~,xi)+su2(t.,xi)]St.+ GSw.(xi), 

where 

(4.55) dw.(xi) = w(tj+1,xi) — w(tj,xi). 

Recall that increments of the Brownian motion processes
, Sw.(xi) and Svj, 
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 are respectively approximated by dw.(x.)=ti                                          n.(t .)anddv.=n (t .)                   J 1 1jJ J v J 
J' where n

i(t.) and nv(t.) are mutually independent Gaussian random numbers 
with  N[0,1] (see Sec.6.7, Chap.6 in Part One). Then (4 .52) and (4.54) 
may respectively be computed by 

N-1 
 (4.56) sy.[xu(t.,xk)dxk]dt.+xn

V(t.)~    k=0J J 

 (4.57) u.(xi) = [DDD_u(t.,xi)+Ru2(tj,xi)]dtji                                           + Gn(t.)/. 
Simple calculations show that (4.50) and (4.51) are also approximated by 

(4.58) u(tj+1'xi) = •u(tj,xi) + [D+D-u(tj,xi)+Su2(t.,x.)                                               j 

                                          +SP(t.,x .,xi)]dt. 

N-1N-1 
                   + [ X HP(t.xi,x.)dxk]R_2{dy.-[ XHux                                                      (t.,)d]dt.} 

k=0-k=0 Jkxk 

(4.59) P(t.+1'xi'x
v) = P(t.,xi,xv) 

             + [(D+D-)xP(t.,xi,xv)+2gu(t.,xi)P(t.,xi,xv)]St. 

                             1 

             + [(D+D _)xvP(t.,xi,xv)+2Ru(t.,xv)P(t.,xi,xv)]dt. 

             + G2Q(x.,x )dt. 
                1 v 

N-1
-2N-1              — [ HP(t.,x.,xk)dxk]R [L HP(t.,xk,xv)dxk]dtj, k=0 1k=0 

(v=0,1,2,...,N). 

where the operator (D D ) denotes the operation at the spatial point xi. 
                    + - xi 

Letting j=0,1,2,". , equations (4.52) to (4.59) are simulated on a digital 

computer to obtain the running values of u(tj,xi) and P(tj,xi,xv) with a 

set of preassigned initial data. 

    Figures 4.1(a) and 4.1(b) show the bird's-eye views of the states of 

the true system u(t,x) and the estimation u(t,x). Naturally, although the 

true solution process can not be observed in practice, this is shown only 

for convenience of discussions . In the digital simulations, dxi and dtj 
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are both equi-partitions, 0.02 and 0.0001 (sec) respectively. The sample 

values are depicted in 0.1 and 0.0015 (sec) intervals with respect to x 

and t. Values of each of the parameters and the initial conditions are 

also shown in the figures. Figure 4.2 shows the convergence of the approx-

imate filter at spatial locations  x=0.1 and x=0.5. From the figure it can 

be seen that the rate of convergence is rapid at respective locations . 

Figure 4.3 shows a numerical aspect of associated error variance, P(t ,x,x). 

     Although it is extremely difficult to justify analytically the accuracy 

of the proposed technique, experimental results obtained reveal that the 

approximate filter based on the second-order expansion shows good perform-

ance and will play a useful role to the realization of a broad class of 

stochastic nonlinear D.P .S. 

4.6. Discussions and Summary  

     In this chapter, the estimation problem has been solved for a general 

class of nonlinear D.P.S. In particular, the Radon-Nikodym derivative 

approach has been employed to derive the version of representations for 

conditional expectation. The result reveals that the optimal estimation 

is generated by the solution of a stochastic integro-differential equation . 

If both the system and the observation mechanism are linear , the estimation 

equation coincides with that obtained in [82].
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CHAPTER 5. PARAMETER IDENTIFICATION FOR LINEAR DISTRIBUTED 

        PARAMETER SYSTEMS

5.1. Introductory Remarks  

     Physical processes which may be modeled by a class of linear or non-

linear partial differential equations involve such real physical systems 

as heat exchangers, chemical reactors, nuclear reactors and environmental 

systems. It is a usual way that a given physical process can be specified 

by the basic conservation principles via constitutive relations. We know 

that many serious problems in real physical systems were solved formerly 

without a complete understanding of relevant physical and/or biological 

factors. However, pragmatic approaches to the solution of problems can 

be adopted only when the  cause-effect relations are readily apparent. 

     In the most cases, unknown parameters appear in the models and these 

must be identified by comparing experimental measurements of the process 

and the solutions to the equations describing the process. The unknown 

parameters are seems to be surely constant or can be assumed constant 

over an interesting range.
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      Several trials have recently been made on the parameter 

cation for  D.P.S. as surveyed in the subsection 1.1.B, Sec.l 

In this chapter, a new method of parameter identification is 

by invoking the Bayesian theoretic approach. 

     Let the mathematical models of the physical system and 

tion mechanism be given by E2 in Def.2.2, Sec.2.4, i.e. 

(5.1) du(t,x) = Lxu(t,x)dt + g(t,x,8)dt + G(t,x)dw(t,x) 

(5.2) dy(t) = (fDH(t,z)u(t,z)dz]dt + R(t)dv(t). 

     The work presented in this section was motivated by acte 

pollution problems in environmental systems. The mathematica 

given by (5.1) is a somewhat simplified diffusion model of ai 

The state of the problems is characterized by the scalar stat 

which is considered, for example, as the field of temperature 

of the air pollutant. The first term on the right-hand side 

diffusion; the second term is the representation of the air p 

source term; and the final term represents the additive syste 

caused by the environmental noise. From the viewpoint of air 

prevention, the unknown parameter 0 expresses the pollution s 

be identified. The objectives are twofold: (i) to solve some 

identification problems, and (ii) to derive systematic method

identifi-

1, Chap.l. 

presented 

the observa-

 E2

 me work presented in this section was motivated by actual air 

pollution problems in environmental systems. The mathematical model 

given by (5.1) is a somewhat simplified diffusion model of air pollution. 

The state of the problems is characterized by the scalar state u(t ,x) 
which is considered, for example, as the field of temperature or density 

of the air pollutant. The first term on the right-hand side is due to 

diffusion; the second term is the representation of the air pollution 

source term; and the final term represents the additive system noise 

caused by the environmental noise. From the viewpoint of air pollution 

prevention, the unknown parameter 0 expresses the pollution source to 

be identified. The objectives are twofold: (i) to solve some specific 

identification problems, and (ii) to derive systematic method for estab-

lishing the parameter identification and state estimation algorithm under 

noisy measurements. 

     In a practical problem, we also have an additional problem of 

determining the forcing term g and the coefficient of the model . An 

example of identifying the function g is 

                   N 
(5.3) g(t,x,0) = y C1(t)S(x-8(i)), 
                       i=1 

where C,(t) is a known function expressing the intensity of the i-th 

pollution source and 6 is a Dirac delta function. Naturally, if we 

adopt the model given by (5.3) , then there exists a violation of the 
mathematical conditions for the existence of the solution to (5 .1). 
However, since the mathematical aspect will be discussed elsewh ere, we 
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will not go into any details on the existing problem of solutions in this 

chapter.* In this situation, it is of great interest to derive the 

identification methods for the unknown parameters  0(i). To fix the ideas , 
we shall first consider the case where N=1, because the extension to N 

forcing terms is straightforward with few changes. Thus with (5.3) , 
equation (5.1) is written as 

(5.4) du(t,x) = Lxu(t,x)dt + C(t)S(x--6)dt + G(t,x)dw(t,x), 

                                     for te[O,T], xeD, 

with associated initial and boundary conditions, 

(5.5a) u(0,x) = 4(x), xeD, 

(5.5b) u(t,x) = 0, te[O,T], xc D, 

where (1)(x) is the known initial condition on u. 

    Although in most practical cases, changes of admissible values of 

0 are continuous with the a priori probability P(0), as might be expected, 

the computational requirements are in general excessive. Consequently, 

the a priori probability P(0) is assumed to be 

K 
(5.6)P(0) _ 1 P(0i)S(0-0i), 

i=1 

that is, the parameter 0 changes over the finite set of points 0l, or—, 

0K. 

     The choice of the mathematical model (5.2) implies the situation in 

which observations are continuously made on the system state with respect 

to time and spatial points. This is only for mathematical convenience to 

develop the theoretical aspect in the continuous parameter process. A 

more practical model will be taken into account later. 

    Let yt be the observation data up to the present time t. The problem 

is to find the best estimate of the unknown parameter 0 and the system 

state u(t,x) based on the observed data sequence {y(s), 0<s<t}.

* The rigorous proof of existence and uniqueness of the solution to (5.1) 
requires the knowledges of generalized random field and distribution 
theory [43,110]. 
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  5.2. Preliminary Lemmas  

       Let  A(1) be the event such that 

(5.7) A(') = {w: 8(w)=81}, (i=1,2,...,K) 

  where w is the generic point of the probability space Q. 

      With the event A(1), equation (5.2) can be expressed by 

  (5.8) A(1): dy(t) = [JDH(t,z)ui(t,z)dz]dt + R(t)dv(t), 

where u.(t,x) is the solution of 

1 

  (5.9)dui(t,x) = Lxui(t,x)dt + C(t)S(x-01)dt 

+ G(t,x)dw(t,x), 

  with the associated initial and boundary conditions 

(5.10a) u.(0,x) = •(x), xeD, 

(5.10b) u.(t,x) = 0, xcBD, te[0,T]. 

Let Pi (i=1,2,•••,K) and p0 denote respectively the measures induced 

  in the space of continuous functions by the observation {y(s), 0<s<t} 

  under A(1) and by the observation 

(5.11a) A0: dy(t) = R(t)dv(t) , 

(5.11b)y(0) = 0. 

        Then, we have the following lemma. 

  Lemma 5.1.[58,128,138] Let pi and p0 be the two measures induced by 

       (5.8) and (5.11) respectively. Then, it follows that 

       (1) P.<< P0, that is, Pi is absolutely continuous with respect to 

         ;(118]     P0 

       (2) the Radon-Nikodym derivative of pi with respect to Po is given 

         by 

           dPi
(5.12)7,W= exp{JOhi(t,ut)R2(t)dy(t)-2Jhi2(t,ut)R 2(t)dt}, 

0 

       where ut is a sample process at a fixed x and 
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(5.13) hi(t,ut) =E{JDH(t,x)u(t,x)dx1Yt,  A(1)}' 

                 = J
DH(t,x)u(t,x)dx 

    and ui(t,x) are defined by 

(5.14) ui(t,x) = E{u(t,x)IYt, A(i)1, (i=1,2,...K) 

     and these are determined by the solution processes of the filtering 

     equations given by the following lemma. 

Lemma 5.2. Assume that the conditions (C2.4) and (C2.7)-(C2.10) hold. 

Then the optimal estimates ui(t,x) of the system state u(t,x) under 

A(i) are determined by 

(5.15) dui(t,x) = Lxui(t,x)dt + C(t)6(x-U.)dt 

+ [JDH(t,E)Si(t,E,x)dE]R-2(t){dy(t)-[JDH(t,E)ui(t,E)dE]dt , 

(i=1,2,...,K), 

where S.(t,E,x) is the associated covariance defined by 

(5.16) Si(t,E,x) = E{[u(t,E)-ui(t,E)][u(t,x)-fl1 .(t,x)]1Yt, A(i)} 

     and this is determined by 

(5.17) 3tS.(t,,x) _ (L +Lx)S.(t,E,x) + G(t,E)Q(E,x)G(t,x) 

              - [J
DH(t,z)Si(t,z,E)dz]R 2(t)[JDH(t,z)Si(t,z,x)dz]. 

    The proof may easily be completed as a direct consequence of [138] 

or [82]. 

Remark 5.1: If, for the preassigned initial values, the relations 

ui(0,x)=80(x),Si(0,F,x)=S0(E,x) hold for all i, then it follows from 

(5.17) that Si(t,E,x)=Sj(t,E,x) for all i and j. 

Remark 2.2: Version of the likelihood-ratio: It is readily understood 

that the Radon-Nikodym derivative, (5.12), in Lemma 5.1 is rewritten by 

       dP. p{Y IA(1)} 
(5.18)dPlp{YA}-Ai(T), 

      0T~0 

-193-



where  Ai(T) is the likelihood-ratio. 

    By applying It8 stochastic calculus to (5.12) and (5.18), we have 

the following lemma. 

Lemma 5.3. A sample process of the likelihood-ratio function Ai(t) 

(1=1,2,. . ,K) is determined by the following stochastic differential 

     equation, 

(5.19a) dAi(t) = A.(t)hi(t,ut)R2(t)dy(t), 

(5.19b) A.(0) = 1. 

The proof is shown in Appendix B. 

Lemma 5.4. Let 8 be a vector defined by 8=[u 9']', where " ' " denotes 

     its transpose. The minimal conditional mean square performance 

     criterion, 

(5.20) J(0) = E{[0(t,x)-B(t,x)r[8(t,x)4(t,x)]lyt1, 

     is reduced to 

(5.21) J(e,u) = 41e-8(t)I121yt} + E{[u(t,x)-u(t,x)]21Vt}, 

     where the symbol "1-Il" expresses the Euclidean norm. 

5.3. Parameter Identification  

     According to Lemma 5.4, the minimal conditional mean square performance 

criterion (5.21) is used here, for which the conditional mean square errors 

with respect to identification and state estimation become minimal 

separately. 

     First, the first term of (5.21) is considered in this section. We 

shall write the conditional probability and the conditional probability 

density of the event A(i) conditioned by Vt byP(A(1)1yt) andP(A(i)I7t) 
respectively. From (5.6), it is apparent that 

(5.22) 0(t)A- E{6IVt} = 8.P(A(I)lVt). 
                            i=1 1 

The a posteriori probability P(A(1)lyt) required in (5.22) can be evaluated 
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by 

                   P (yt.I A(i) )P (A(1) ) 
(5.23) P (A(i) l yt)  = K 

 X p(yt(A(3))P(A(3)) 
                          j==1 

where P(A(1)) is the a priori probability in (5.6) and P(A(i))=P(ei). 

From (5.23), it is a simple exercise to show that 

K 

(5.24) P (A(i)Iyt) = [
,Xlaj iA..(t)}-1= Mi(t) 

where Aji(t) is the modified likelihood-ratio function defined by 

             P(yt`A(j)) 
(5.25) A..(t) = -----------------(i,j=1,2,...K)          ]1 P(ytIA(1)) 

and 

P (A(j) ) (5
.26) a. = ------------(i) 

            P (A) 

     Hence, the optimal estimation 6(t) given by (5.22) becomes 

K 

 (5.27) 6(t) = X 8 .M. (t) . 
1=111 

 In order to compute recursively the optimal estimate 6(t) in the form of 

K 

 (5.28) d6(t) = E 0.dM.(t),                   1 1                     i =1 

 the following two theorems are stated. 

 Theorem 5.1. The modified likelihood-ratio function Aji(t) defined by 

     (5.25) is determined by 

 (5.29) dA = Aji(t){hj(t,ut)-hi(t,ut)1112(t){dy(t)-hi(t,ut)dt} 

or 
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(5.30)  d[lnAji(t)] =2[fij(t,ut)-fii(t,ut)]R^2(t) 
x{2dy(t)-[hj(t,ut)+hi(t,ut)]dt} 

     with the initial condition, 

(5.31) Aji(0) = 1, for i,j=1,2,•••,K. 

Proof. Noting that, from (5.18) and (5.25) 

                  A.(t) 
(5.32) A.. (t) _ - A.(t) 

and using Lemma 5.3, we have 

(5.33) Aji(t) = exp{f[fij(s,us)-fii(s,us)1R2(s)dy(s) 

- 

                       2J0[fij2(s,^)-hi(,^)]R 2(s)ds}. 

Hence 

(5.34) dAj i(t) = A..(t)[exp{(h.-h.)R2(t)dy(t) 

                           - 2(hji2)R2(t)dt} - 1]. 
Expanding the exponential function in (5.34) and deleting the terms 

a higher order than (dt)3/2, the final result can be obtained. 

Theorem 5.2. The sample process of the Mi(t)-process defined by (5 

    is determined by 

(5.35) dMi(t)= -
JIla. Aji(t)M2(t){fij(t,ut)-fi(t,ut)1R_2(t)3i 

K K 

x{dy(t)-fi i(t,ut)dt} + 
,I1 klajiak.iA..(t)Aki(t)Mi 

               x [fij(t,u t)41(t,ut)][hk(t,ut)-hi(t,utR)]2(t)dt, 

      where i=1,2,•••,K. 
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     Theorem 5.2 can be proved via somewhat tedious calculations in the 

framework of  Ito stochastic calculus. A detailed aspect of the proof 

will be shown in Appendix C. 

     From (5.27), the covariance of the unknown parameter 8 becomes 

     K
CKCK (5.36) cov.[elyt] =Ge.e.'M.(t) — [LeiM.(t)][ I e.'M.(t)]• 

i=1i=1i=1 

    As described in this section the recursive computation can be 

performed by (5.28) and (5.35). However, it may be observed by inspection 

of (5.13) and (5.35) that the running value of the optimal estimate Ili 

is required. 

5.4. State Estimation  

    The optimal estimate u is generated by the familiar conditional 

mean estimator 

                                  co 

(5.37)u(t,x)=Jup(t,x,ul yt)du. 

    Bearing the assumption (5.7) in mind, the conditional probability 

density in (5.37) yields 

(5.38) P(t,x,ulyt) = C P(t,x,ulyt, A(1))P(A(1)lyt)• 
i=1 

Hence, the optimal estimate defined by (5.37) is 

(5.39) u(t,x) = X P(A(1)lyt)f:up(t,x,ulyt, A(1))du 
                    i=1 

K 

= XMi(t)ui(tx) 
                    1=1 

where use of (5.14) and (5.24) have been made. The i-th optimal estimate 

can be recursively computed by (5.15). 

    The covariance is defined by 

(5.40) S(t,x,z) = E{[u(t,x)-u(t,x)][u(t,z)-u(t,z)]lyt). 

Since the covariance (5.40) can be written as 
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(5.41) S(t,x,z) =  G E{u(t,x)u(t,z)IYt, A(1)}P(A(1)IYt) 
i=1 

                               - u(t,x)u(t,z), 

and 

(5.42) E{u(t,x)u(t,z)N, A(1)} = Si(t,x,z) + fii(t,x)ui(t,z), 

it follows from (5.24) that 

K 

(5.43) S(t,x,z) = X [S.(t,x,z)+n.(t,x)u.(t,z)]M.(t) 
i=1 

                                    - 

     An entire aspect of the optimal estimate is performed by use of 

(5.15), (5.17), (5.29), (5.35), (5.39) and (5.43). Their preassigned 

initial conditions are E{u.
1(0,x)}=11.(0,x) for (5.15), S.(0,E,x) for 

(5.17), (5.31) for (5.29),M.(0)=P(A(1)) for (5.35), u(0,x)=Ei_1Mi(0)- 
•u

i(0,x) for (5.39) and S(0,x,z)=E=1[Si(0,x,z)+ui(0,x)ui(0,z)]Mi(0) 
-11(0,x)u(0 ,z) for (5.43). The coupled identification-estimation 

procedure proposed here is schematically illustrated by Fig.5.1.

 Filter

(e=e1)

u1(t,x)
IN

Dynamical

System

u(t.x) Obervation

Mechanism
y(t) Filter

(6=62)

u2(t ,x) --S Aji(t)

i.1=1.• .K

Mi(t)

i =1, •,K

• i MO

I 1

A(t) u(t,x

Filter

(e=6K)

uK(t,x)
IN

Fig.5.1. Schematic diagram for calculating the estimates 

       of parameter  8 and the state u(t,x). 
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 Remark 5.3: An extension to the case N>2. For instance, we shall 

consider the case where N=2. In this case, instead of (5.7), the follow-

ing KXK joint events should be considered, i.e. 

A(ij) = {w: 8(1)(w)=8i, e(2)(w)=9]} (i,j=1,2,...K). 

Thus, although the theoretical approach is still applicable, the recursive 

computation becomes considerably complicated. 

5.5. Numerical Examples  

 5.5.1. Exan2ple-5.1. 

     The one-dimensional distributed parameter system is considered. For 

xe[0,1], te[O,T], the mathematical model is given by 

                   2 
(5.44) du(t,x) = [B(t,x)]dt + C6(x-6)dt + Gdw(t,x) 

with the associated initial and boundary conditions, 

(5.45a) u(0,x) = A sin2 irx, xe[0,1], 

(5.45b) u(t,x) = 0 at x=0, 1, 

where A, B, C and G are all constants. 

     The observation mechanism is 

(5.46a) dy(t) =[f1H6(z-n)u(t,z)dz]dt + Rdv, 
(5.46b) y(0) = 0, 

where both H and R are respectively constants and n shows the location 

of the measurements. 

    By using (5.15) and (5.17), dynamics of the state estimator and the 

associated covariance are determined as 

(5.47) du(t,x) = [B i(t,x)]dt + C6(x-8i)dt 
ax 

                         + Hs.(t,n,x)R 2{dy-Hui(t,n)dt}, 

a2 a2 
    BtS.(t,x,z) =B(+2)Si(t,x,z)+ G5(x-z) -                         ax2az 
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 -  H2R  2S .(t.n,x)S.(t,n,z). 

Futhermore, the modified likelihood-ratio function (5.29) can be obtained 

as 

(5.49) dA..(t) =A..(t)H{fl.(t,n)-u1(t,n)}R2{dy(t)-H6.(t,n)dt} 

with A..(0)=1. 

     For convenience of the simulation experiment, we assume that the 

a priori probability of the event Ai is uniformly distributed, i.e. 

P(A(1))=P(A(i)). This implies from (5.26) that aj 1 for all i, j. 

According to this assumption, the definition (5.24) is simply expressed 

by 

K 
(5.50) M.(t) = [ E A..(t)]-1. 

j=1Jl 

The optimal estimate 6 of the unknown parameter can thus be computed by 

combining (5.27) with (5.50) or by (5.28) and 

(5.51)c114.(0c114.(0 -----Aji(t)Mi2(t)H{uj(t,n)-ui(t,n)}R_2 
j=1 

x{dy(t)-Hui(t,n)dt} 

            K K 
               + y A..(t)A(t)M.3(t)H2fu(t,n)-u(t,n)} 

          j=1 k=131ki1ji 

x{uk(t,n)-ui(t,n)}R2dt. 

    The problem is simulated on a high speed digital computer. The 

computing procedure is stated in the following steps: 

(i) Write the partial differential equation as the mathematical model 

     of the system with associated initial and boundary conditions. 

      In (5.44) and (5.45), the values of known parameters were A=1.0, 

      B=1.0, C=500 and G=0.45 respectively. 

 (ii) Determine measurement locations in the spatial domain. The 

      mathematical model (5.46) implies that measurement at a preassigned 

      location n is currently made with respect to time, where two trials 
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 e(t)
1.0

0-2

(iii)

(iv)

e(=0.7923)

0.7506 

0.8757

0.0050.0100.0150.020 Ti
me 

        Fig.5.2. The e(t)-runs in Example-5.1. 

were made on the choice of the measurement locations, i.e. n=0 .7506 

and n=0.8757 with the same values of H=4.0 and R=0.2, and where we 

assumed that Q(x,z)=S(x-z). 

 Preassign the number of numerical classes M of unknown parameter 

8. Investigators are free to choose the number of numerical classes 

of unknown parameter 8. The particular choice depends on the 

situation of the problems which are being considered. A choice 

that M=7 was given in the simulation experiments and 81. was taken 
as 01=i/8, where i=1,2,—,7. 

Compute sample runs of state estimate, the associated covariance 
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              Fig.5.3. The u(t,x)-run in Example-5.1. 

     and the likelihood-ratio function. In this example, the initial 

     values of (5.47) and (5.48) were respectively set as ui(0,x)=0 and 

      Si(0,x,z)=sin2Trx sin2Trz. Sample runs were obtained by simulating 

     both (5.47) and (5.48) simultaneously on a digital computer with 

     the partitions Ax=1/24 and At=0.0005 in the spatial variable and 

      in time. By using the run of the state estimate, a sample run of 

     theA~i(t)-process was also computed simultaneously by (5.49) with 

     the initial condition A~i(0)=1. 

    A sample run of Mi(t) given by (5.50) was applied to both (5 .27) and 

(5.39). Figure 5.2 shows two sample runs of the 9(t)-process with 
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              Fig.5.4. The u(t,x)-run representing the system state. 

n=0.7506 and 0.8757 respectively. One may understand that the nearer 

measurement location to the true value 0=0.7923 shows the better identi-

fication process 8(t). Figure 5.3 depicts the u(t,x) run with n=0.7506. 

For the purpose of comparative inspection, a sample run of the system 

state determined by (5.44) was obtained with the associated initial and 

boundary conditions u(0,x)=sin2xx and u(t,0)=u(t,1)=0 as shown in Fig.5.4. 

Figure 5.5 shows the u(t,x) and u(t,x) runs at the spatial locations of 

x=0.5 and x=0.75. 

    Although it is extremely difficult to examine the convergence 

problem of the filter from theoretical point of view, one way is to observe 
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 2.0 -

1.5

1.0

0. 5

0

 u(t,0.75) 

(t,0 75)

(t,0-5)

 u(t,0.5)

0-020 Time

Fig.5.5. The u(t,x) and u(t,x) runs at the spatial 

                     points x=0.5 and x=0.75 in Example-5.1. 

sample runs of the error covariance S(t,x,x) as illustrated in Fig.5.6. 

 5.5.2. Example-5.2. 

    Another simulation experiment was performed by adopting a somewhat 

different observation model from that in Example-5.1. The observation 

mechanism was set as 

(5.52) dy(t) = [I1HY(z,2)u(t,z)dz]dt + Rdv, 
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 1.0

Variance  5(t,x,x) 

(1=0.7506)

0 0 .005 0.0100 .015Time 

                Fig.5.6. The S(t,x,x)-run in Example-5 .1. 

where the system dynamics was the same as (5 .44) with (5.45) and Y(z,•) 

is the Heaviside's step function , i.e. 

                         1 0 forz< (5.53)Y(z,2) = 
1 for z>--. 

With (5.53), the mathematical model (5 .52) is written in a simplified 

form 

(5.54) dy(t) = [fL5Hu(t,z)dz]dt + Rdv. 

The equations corresponding to (5.47), (5.48), (5.49), (5.51) are respec-

tively given by the following , 

(5.55)dui(t,x)_ [a&ui(t,x)]dt + Cd(x-6i)dt 

                 + [f0.5HSi(t,x,z)dz]R2{dy(t)-[J0.5Hu1(t'z)dz]dtl, 
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      222 

(5.56)--6.(t ,x,z) =B(ex2+8x2)Si(t,x,z) + G6(x-z)          3t1

[f0 .5HSi(t,E,x)dE]R-200.5HSi(t,E,z)dE], 

(5.57) dAji(t)= A..(t)[fO.SH{uj(t,z)-ui(t,z)}dz]R2 

                      x{dy(t)-[f0 .5Hui(t,z)dz]dt}, 

and 

(5.58) dM. (t) = - Y Aji(t)Mi2(t) [f 0.5H{fij (t,z)-fii(t,z)}dz]R_2 
 j=1 

                              x{dy(t)-[f0 .5H0i(t,z)dz]dt} 

             C
G               KcK               +L  Aji(t)Aki(t)Mi3(t)[fO .SH{fij(t,z)-fli(t,z)}dz] 

j=1 k=1 

                               x [f01.5H{fik(t,z)-fii(t,z)}dz]R 2dt. 

     A variety of single runs was also simulated for Example-5.2. The 

results presented below are representative of the simulation experiments. 

In all experiments, the computer program for the simulation follows that 

for Example-5.1 with the same values of parameters as described previous-

ly. Figures 5.7 and 5.8 are respectively the 6(t) and fi(t,x) runs. 

Figure 5.9 shows the convergence feature of the S(t,x,x) run. 

     On the basis of Fig.5.2 to Fig.5.9, as well as on the basis of many 

other runs not presented here, it is seen that both parameter identifi-

cation and state estimation depend simultaneously and strongly on the 

dynamics of the observation mechanism adopted. From the viewpoint of 

the related covariance to the state estimate, the observation dynamics 

in Example-5.2 might be more pleasant than in Example-5.1, because in 

Example-5.2 the observation data is more widely collected than in 

Example-5.1. However, for the parameter identification runs 6(t) as
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1 5.7, the difference between the observation dynamics 

 is not so remarkable because the identification 

1 depends on n which indicates the spatial location 

 final point to be discussed is thus related to the 

he optimal form of observation dynamics. This is 

 problem because, at the present time, there is no 

c procedure with a mathematical background. Trials 

er on various dynamics of the observation mechanisms 

he feasibility of the solution of the simultaneous 

identification and state estimation for distributed
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Fig.5.8. The u(t,x)-run in Example-5.2.

systems. 

5.6. Discussions and Summary  

     A method has been presented for the identification of unknown constant 

parameters and state estimation in distributed systems which can be 

modeled by partial differential equations with the specified initial 

and boundary conditions. 

     The basic notion of the method developed here is the separation 

principle of the identification scheme from the state estimation. With 

this concept, a saving in computation time and computer storage require-

ments is achieved in comparison with familiar methods in which the system 
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 1.0

Variance S(t,x,x)

1.0

0 v        (1005 0.0100.015 Time 

              Fig.5.9. The S(t,x,x)-run in Example-5.2. 

state and unknown parameter vectors combine and form a new state vector. 

The major saving in the computational scheme in this chapter is that there 

is no need to compute the covariance function between the system state 

and unknown parameters. It is not one of the purposes of this chapter 

to compare the proposed method with different identification schemes. 

    The requirement in this chapter is to show that the parameter 

identification algorithm for a partial differential equation is performed 

by using the Bayesian approach and the filtering technique in the 

Markovian framework.
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CHAPTER 6. OPTIMAL STOCHASTIC CONTROL FOR NONLINEAR 

        DISTRIBUTED PARAMETER SYSTEMS WITH COMPLETE 

         STATE INFORMATION

6.1. Introductory Remarks  

     Practical examples of the optimal control problem are found in the 

control of temperature profiles in a catalytic reactor or a furnace, the 

control of diffusions due to random excitation in environmental systems 

the control of reactions in the chemical plants, the control for the 

prevention of air pollution in urban systems, etc. 

     For the linear and/or nonlinear systems, significant advances in 

stochastic control problems were made by several investigators, as 

surveyed in  Subsec.1.1.C, Sec.l.1, Chap.l. 

     It is well known that dynamical systems to be controlled exhibit 

various kinds of nonlinear characteristics, and also that the optimal 

control problem of such nonlinear distributed systems has received 

considerable attentions in recent years. Up to the present time, a 

number of studies concerning the so-called Linear-Quadratic-Gaussian 

(LQG) problem have attained a certain degree of maturity with respect to
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both theoretical and algorithmic advances, as well as current and 

potential future applications (cf.  Subsec.l.1.C, Sec.1.1, Chap.l in 

Part One). On the other hand, the nonlinear problem contains inherent 

difficulties in itself. A ray of hope to solve such a problem will be 

only approximations for nonlinear functions to certain linear ones. The 

author, in this chapter, proposes an approximate method of stochastic 

optimal control for a class of D.P.S. which is described by stochastic 

nonlinear partial differential equation, along the line of the LQG 

context, extending the stochastic linearization technique presented in 

Sec.3.3, Chap.3. 

6.2. Problem Statements  

     In this chapter, we are concerned with a control problem of nonlinear 

D.P.S. under the complete state information. The mathematical model 

considered is E3 defined in Def.2.3, Sec.2.4, i.e. 

(6.1) du(t,x) = F(t,x,u,ux,uxx)dt + C(t,x)f(t,x)dt 

                                    + G(t,x,u)dw(t,x) : E3 

         I.C. u(0,x) = 4(x), xeD 

           B.C. u(t,x) = 0, xc D. 

In the sequel, we shall assume that the system (6.1) with its initial-

boundary conditions is bien pose in the sense of Hadamard; i.e. the 

solution of (6.1) uniquely exists and depends continuously on the initial 

and boundary data. 

     The problem is to find a control function f so as to minimize the 

 scalar functional, 

 (6.2) J(f) = E{JD[JDJDM(s,x,z)u(s,x)u(s,z)dzdx 

                           + JDN(s,x)f2(s,x)dx]ds}, 

based on the a priori probability distribution of the initial condition 

¢(•), where M and N are respectively symmetric (in x and z), nonnegative 

 on DxD and positive on D. 

     Let f(t,x) be a process such that, for each te[O,T] and xeD, f(t,x) 
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satisfies the condition, 

 (C6.1)j{If(t,x)J2}dt< 00. 

Let 'Y([O,T]xD) be the class of the f(t,x)-process which satisfies (C6.1) 

and does not violate the existence and uniqueness of the solution of (6.1) 

(w.p.l) and which tends uniformly to zero as x;BD for all te[O,T]. The 

control function f(t,x) is said to be admissible if f(t,x) is the element 

of 'Y([O,T]xD). In the sequel, the class of admissible controls is simply 

expressed by T. 

6.3. Basic Hamilton-Jacobi-Bellman Equation  

     The optimal control problem will be solved by using the method of 

dynamic programming[15,153]. 

     For (6.2), define a minimal cost functional, 

(6.3) V(t,K) = fin EK{f[JDxDM(s,x,z)u(s,x)u(s,z)dzdx 

+ JDN(s,x)f2(s,x)dx]ds}, 

where K(x)=u(t,x) at time tc[O,T], and E
K{•} denotes the conditional 

expectation conditioned by K(x). Applying the principle of optimality 

to the cost functional and using the functional Taylor series expansion 

[152], the following partial integro-differential equation is obtained: 

(6.4)-aVat,K)=i[fD{IDM(t,x,z)K(x)K(z)dz 

                     aV(t,K)[F(t
,X,K,KX,Kxx)+C(t,X)f(t,X)] aK(X) 

+ N(t,x)f2(t,x)}dx 

                 -1fS2V(t,K)                    +
2DXD SK(x)SK(z)G(t,x,K(x))Q(x,z)G(t,z,K(z))dzdx]. 

Minimization in the right-hand side of (6.4) with respect to f gives the 
optimal control, 

(6.5)f°(t,x) = -2l(t,x)C(t,x)------------SK()(xK) 
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 Substituting (6.5) into (6.4), we have the following basic Hamilton-
Jacobi-Bellman equation, 

    _ 8V(t,K)_6V(t,K)  (6.6)at=ID[fDM(t,x,z)K(x)K(z)dz + SK(X)F(t,X,K,Kx,K) 

                      -Nl(t ,x)C2(t,x)(SV(t,K))2]dx 4SK (x) 

                       2 
                 +2IDXD SK(x)SK(z)G(t,x,K(x))Q(x,z)G(t,z,K(z))dzdx 

with its terminal condition, 

(6.7) V(T,K) = 0. 

6.4. Suboptimal Control for Nonlinear D.P.S. with State-Independent  

   Noise  

     In this section, an extended method of stochastic linearization 

presented in Sec.3.3, Chap.3 is used for deriving the suboptimal control. 

For a while, we set as G(t,x,u)=G0(t,x). Define a new [n(n+l)/2 +n+1]- 

dimensional  vector 

(6.8) v = [v2' v1' v0]' 

with components,

(6.9) 

where ui 

the tran 

     For 

into 

(6.10) 

where 

(6.11)

e u=311/9x 

 transpose 

For each

v2 [u11 u12 ... uln u22 ... u2n u33 ... unn~r 

 vl= [u1 u2 ... un~r 

 V0 = U, 

i anduij=a2u/axiax. (i,j=1,2,•••,n) and the prime denotes 
 se of a vector. 

ch xcD, we expand the nonlinear function F(t,x;v)~F(t,x,u,ux,u ) 

F(t,x;v) = a(t,x) + B'(t,x)(v-v) + e(t,x), 

B(t,x) = [b2'(t,x) bl'(t,x) b0(t,x)]' 
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with components,

(6.12)

  b2(t,x) = [(b2)11 (b2)12" (b2)ln(b2)22(b2)23...(b2)~]~ 

  b1(t,x) = [(b1)1 (b1)2 ... (b1)n]' 

   b0(t,x) = b0. 

 the term e(t,x) is the collection of error terms and the 

 " denotes  E{•I4(x)} , so that 

v = [v2' v1' v0]'. 

) and B(t,x) are the coefficients of the expansion determined 

way that, for each xeD, E{IF(t,x;v)-[a(t,x)+B'(t,x)(v-;)]1210(x)} 
nimal with respect to a(t,x) and B(t,x). A simple calculation 

 the necessary and sufficient conditions for 

(t,x)I2I4(x)} for each xeD are given by 

a(t,x) = E{F(t,x;v)I4(x)} = F(t,x;v) 

B(t,x) = S-1(t,x)E{(v-;)[F(t,x;v)-F(t,x;v)]I0(x)}, 

 S(t,x) = E{(v-v)(v-v)1I0(x)}. 

he above linearization, the nonlinear process (6.1) is replaced 
roximated one, 

dii(t,x) _ {a(t,x)+B'(t,x)(v-v)}dt + C(t,x)f(t,x)dt 

                      + G0(t,x)dw(t,x) 

        = {1
x[u(t,x)-u(t,x)]+a(t,x)}dt + C(t,x)f(t,x)dt 

                       + G0(t,x)dw(t,x), 

approximate linear operator lx(-) is given by 

n
a2 n8 

   x(')i ,j=1{b2(t,x)}1J8xi8x.(•) + X {bl(t,x)}i8x(•)             i=1i 
i<j 

                  + bo(t,x)(.), 
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In (6.10), the term e(t 

symbol  "7" denotes E{• 

(6.13) v = [v2' vl' 

Both a(t,x) and B(t,x) 

by such a way that, for 

becomes minimal with re 

gives that the necessar 

mina,BE{Ie(t,x)121 (x)} 

(6.14) a(t,x) = E{F 

(6.15) B(t,x) = S-1 

where 

(6.16) S(t,x) = E{( 

By using the above line 

by the approximated one 

(6.17) du(t,x) _ {a

where the 

(6.18)



 It may easily be shown that the coefficients a and B depend on both v 

 and S which are expressed in terms of u and P, where u and P are respec-

 tively defined by 

            = E{ulgx)} 
(6.19)_ 

            P(t,x,z) = E{[u(t,x)-u(t,x)][u(t,z)-u(t,z)]14)(x)} 

 and these are the solutions of the following equations, 

 (6.20) du(t,x)/dt = a(t,x) + C(t,x)f(t,x) 

(6.21)aP(t,x,z)= (L +L )P(t,x,z) at x z 

                  + C(t,x)E{[u(t,z)-u(t,z)][f(t,x)-f(t,x)]1¢(x)} 

                   + C(t,z)E{[u(t,x)-u(t,x)][f(t,z)-f(t,z)]I4(x)} 

                   + GO(t,x)Q(x,z)GO(t,z). 

     For the approximated process (6.17), the basic equation (6.6) easily 

yields

rr  (6.22)—aVat'K)=JD[1DM(t,x,z)K(x)K(z)dz 

                              + aa
K(x)){Lt,x[K(x)-u(t,x)]+a(t,x)} 

                              --l(t ,x)C2(t,x)(SV(t,K))2]dx            4sK(x) 

                          2 
                   +2jDxD 8K(x)dK(z)G0(t,x)Q(x,z)G0(t,z)dzdx. 

 If the original process (6.1) is purely linear, then the corresponding 
 basic equation may be solved by the method of separation of variables. 

 However a striking fact arises in solving (6.22); that is, the fact that 

 (6.22) contains the linearization coefficients a and B which are the 
 functions of the current variables u, u, uxx and P(t,x,x) and that such 

 coefficients prevent us to solve (6.22) in the LQG fashon. 

     In the following, the author uses a feasible approach which is 

 similar to the method used in Sec.6.6(Method II), Chap.6 in Part One. 
 To do this, during the time interval, t<T<T, hold the sample values of 

a(t,x), B(t,x) and u(t,x) as constant, i.e. a(t,x)=at(x), B(t,x)=Wt(x) 
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          ti 

and u(t,x)=ut(x) respectively, and write 

(6.23) du(T,x) =  Txu(T,x)dT + at(x)dT + C(T,x)f(T,x)dT 

                               + GO(T,x)dw(T,x), t<T<T. 
                                ti 

In (6.23), the operator~x(•) andst(x) are respectively given by 

(6.24) tx(•) = 
i,=1/{b2t(x)}ijaxiax~(•)+i/l{blt(x)}ixi(•) 

                 J 1<_j 

+ bOt(x)(•) 

(6.25) st(x) = at(x) -Bt'(x)vt, 

where vt=[v2t'(x) vlt'(x)°Ot(x)]'. 

     It follows that, at time T, the basic equation for the process (6.23) 

becomes 

(6.26)-aV(T'K)-JDXDM(T,x,z)K(x)K(z)dzdx 

+ r 8V(T,K)D 8K(x)[1.xK(x)4t(x)}dx 

                       -  

                   41DN1(T,x)C2(T,x) (617(TK))2dx 

                           62V(T,K)  +
2JDxD6K(x)6K(z)G0(T,x)Q(x,z)G0(T,z)dzdx 

with the terminal condition 

(6.27) V(T,K) = 0, 

where K(x)=u(T,x). 

     In (6.26) and (6,27), assume that there exists a solution of the 

following form, 

(6.28) V(T,K) = JDxDII(T,x,z)K(x)K(z)dzdx + 2fDa(T,x)K(x)dx 

                           + 6(T), 

where the scalar functions 1I(T,x,z) (symmetric in x and z), a(T,x) and 

6(T) are determined by the differential equations which will be given 
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 later. Noting the relations 

          6V(T,K)   (6
.29) SK(x) =  2fDII(T,x,z)K(z)dz + 2a(T,x) 

 and 

 (6.30)d2V(T,K)  = 2I[(T,x,z) dK(x)SK(z) 

and applying (6.28), (6.29) and (6.30) to (6 .26), it follows that 

 (6.31) fo(T,x) = - N1(T,x)C(T,x)[JDf(T,x,z)K(z)dz+a(T,x)] 

and that 

           an(T,x,z)  (6.32)DT+ ax+rz)n(T,x,z) 

              - I
DN 1(T, )C2(T, )n(T,x,E)ll(T,C,z)dC + M(T,x,z) = 0 

(6.33)aaaT,x)(+ ?x*aT,x-12                             ) - IDN(T,Z)C(T,Z)II(T,X,Z)OL(T,Z)dZ 

+ IDII(T,x,z)st(z)dz = 0 

ds(T)-122ti (6.34)dT-IDN(T,x)C(T,x)a(T,x)dx + 2fDa(T,x)st(x)dx 

+ IDXDII(T,x,z)GO(T,x)Q(x,z)G0(T,z)dzdx = 0 

with their terminal-boundary conditions 

(6.35) l(T,x,z) = 0, a(T,x) = 0 and E(T) = 0 for all x,zeD 

(6.36) l(T,x,z) = 0 and a(T,x) = 0 on x,zeaD, 

where the boundary conditions are given by the definition of the admissible 
control which uniformly tends to zero as x-) D. In (6.32) and (6.33), the 

operator Tx* denotes the formal adjoint operator of 'tx. 

6.5. Suboptimal Control for Nonlinear D.P.S. with State-Dependent  

   Noise  

    Even in the case where the system noise is linearly state-dependent, 

i.e. G(t,x,u)=G1(t,x)u(t,x), the parallel discussion holds with the 

                                        -217-



solution a(T,x) determined by (6.33) and with the solutions  R(T,x,z) and 

8(T) which are respectively determined by 

(6.37) al(TTx,z) + (tx*+tz*)R(T,x,z) + 1i(T,x,z)G(T,x)Q(x,z)G(T,z) 

-f
DN1(T,E)C2(T,E)n(T,x,E)R(T,E,z)dE + M(T,x,z) = 0 

(6.38)d8(T)-fDN1(T,X)C2(T,X)a2(T,x)dx            dT

+ 21Da(T,x)st(x)dx = 0 

with the same terminal-boundary conditions as in (6.35) and (6.36). 

However, it should be noted that the R(T,x,z), a(T,x) and 8(t) (t<T<T) 

make sense only at T=t, because of the substitution of at(x), Bt(x) and 
ut(x) for a(T,x), B(T,x) and u(T,x). Consequently, at time t, the values 

of R(T,x,z)IT=t, a(T,x)IT=t and 8(T)IT=t may be used to calculate the 
coefficients of the solution V(t,K) of (6.22) and to generate the sub-

optimal control, 

(6.39) fo(t,x) _ - N 1(t,x)C(t,x){fD[R(T,x,z)]T=tK(z)dz+[a(T,x)]T =t}. 

Applying the suboptimal control (6.39) to (6.20) and (6.21), it follows 

that 

(6.40) du(t,x) = a(t,x) - N-1(t,x)C2(t,x){fD[R(t,x,z)u(t,z)dz             dt 

+a(t,x)} 

(6.41)aP(8tx,z)(Lx+Lz)P(t,x,z) 

              - IN-1(t ,x)C2(t,x)fDR(t,x,E)P(t,E,z)dE 

                +N-1(t,z)C2(t,z)f
DR(t,E,z)P(t,x,E)dE} 

               + G0(t,x)Q(x,z)G
O(t,z). 

     Thus, an approximate overall configuration of the nonlinear distri -

buted control system (6.1) has been established in a form of a feedback 

system. 
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6.6. Digital Simulations  

     We shall consider the nonlinear distributed parameter system 

described by 

(6.42a)du(t,x) = [a2u(t x) +  Bu2(t,x)]dt + Cf(t,x)dt 

                              + Gdw(t,x), 

where a is a preassigned positive constant which is not so large and 

C and G are also positive constants. Both the initial- and boundary-

conditions are respectively given by 

(6.42b) E{u(0,x)} = A sin2 irx for 0<x<1 

(6.42c) u(t,x) = 0 for x=0,1, 

where A is a positive constant. The variance of the Brownian motion 

process is given by 

(6.43) Q(x,z) = 6(x-z) for 0<x,z<1. 

The problem is to compute the optimal control f°(t,x) which minimizes the 

cost functional, 

(6.44) J(f) = E{f [JOJO (x,z)u(s,x)u(s,z)dzdx 

                        + f1Nf2(s,x)dx]ds}, 

where M is nonnegative and symmetric in x and z and N is a positive 

constant. 
    The linearization coefficients (6.14) and (6.15) are, in this case, 

respectively calculated by 

(6.45a) a(t,x) =a2u(t,x)+s[P(t,x,x)+u2(t,x)] 
ax2 

(6.45b) B(t,x) = [1 0 20u(t,x)]'. 

From (6.39), the suboptimal control is given by 

(6.46) f°(t,x) = - N-1C{J1[ll(T,x,z)]T=tu(t,z)dz+[a(T,x)]T=t}, 
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where II and  a are the solutions of differential equations, 

            22 (6.47)aII(tIIx,z)+ [(aX2+aZ2)II(T,x,z)+2s{ut(x)+ut(z)}II(T,x,z)] 
              - I11N-1C2II(T,x,E)II(T,E,z)dE + M(x,z) = 0 

(6.48)a«(T,x)+[a2(T,x)+ 28llt(x)a(T,x)] 
ax 

-fo 
   JOti                          (T,x,z)a(T,z)dz + j0II(T,x,z)st(z)dz = 0 

with their terminal-boundary conditions, 

(6.49) II(T,x,z) = 0 and a(T,x) = 0 for 0<x,z<1 

(6.50) II(T,x,z) = 0 and a(T,x) = 0 for x,z=0 and 1. 

Equations (6.42) to (6.50) are simulated on a digital computer with 

a similar procedure to that mentioned in Sec.4.5, Chap.4 or in [138]. The 

standard difference operators D+, D_ and D0 are also used in this section. 

Application of the spatial difference scheme to (6.1) gives a set of 

increments of the state, 

(6.51) Su.(xi) = u(tj+1,x.) - u(t.,x.) 

= F(t .,xi,u(t.,x.),D0u(tj,x.),D+D u(t.,x.))St.                                         i1 -jij 

                          + Cf(t.,xi)dt.+ GSw.(xi) (i=0,1,•••,I-1), 

where the spatial interval [0,1] is divided into I partitions such that 

dx xi+1-xi. The suboptimal control f°(tj,xi) given by (6.39) is approx-

imated by 

I-1 
(6.52) f°(t.,xi) _ - N 1C{ II(tj,xi,xk)u(tj,xk)dxk+a(tj,xi)} 

k=0 

(i=0,1,•••,I-1), 

where both II(tj,xi,xk) and a(tj,xi) are respectively the discrete versions 

of the solutions of (6.32) and (6.33). 

     As shown in Fig.6.1, the computational procedure is thus established 
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as the 

  (1) 

 (ii) 

(iii) 

 (iv) 

  (v)

 II(t

   Read 
Initial

Calculate 

(x.), Bj(x

Calculate 
,xi,xk),a(tm,x 

Backwards

m>j?

Stop

   Run 

Completed?

j=j+l

      Calculate 
u(tj+l,xi),u(tj+1,x 

p(tj+1,xi,xk)

Calculate 

fo(t.,x.)
3.

Fig.6.1. Flow diagram of computational procedure. 

following steps: 

 Obtain the coefficients a(t,x) and B(t,x) for the preassigned 

nonlinear function F(t,x,u,ux,u ) and write their discrete 

versions, a(tj,xi) and B(tj,x.). 

Calculate the initial values 1I(0,xi,xk) and a(O,xi) by solving 

the partial integro-differential equations for II(T,x,z) and 

a(T,x) with their terminal-boundary conditions. 

 Determine the initial value of the suboptimal control by 

I-1 

                     _ 

    fo(O,x.) = - 11C{ G 11(O,xi,xk)~(xk)dxk+a(O,xi)}. 
k=0 

By using the values of aj(x1),D.(x1) and uj(xi), compute 

u(tj+1,xi) and P(tj+l,xi,xk) from (6.40) and (6.41). 
titi 

 Compute a.+1j+1 and B.+l(x.) with use of the values u(t.+1,xi) 
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Fig.6 .3. Sample paths of the state u(t,x) at x=0.3 and x=0 .5.
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_x,x) and coefficient a(t,x). 
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      and  P(tj+l,xi,xk) determined in Step (iv). 

  (vi) Obtain II(tj+l,xi,xk) and a(tj+1,xi) which are determined by (6.32) 

      and (6.33). 

 (vii) With the newly obtained data u(tj+l,xi) and the values of 

      fl(tj+l,xi,xk) and a(tj+l,xi) obtained in Step (vi), determine 

      the suboptimal control f°(tj+1,xi) by (6.52). 

     Letting j=0,1,•••. the steps (iv) to (vii) give an algorithm to 

obtain the running values of the suboptimal control f°(t .,x.).                                             3 1 

     In digital simulations, Sxi and Stj are given as 0.1 and 0.004 respec- • 

tively and the control interval is preassigned as [0,0.06]. Figure 

6.2 shows the bird's-eye view of the state of the uncontrolled system 

under system noise and the state of the controlled system described by 

(6.42), where the coefficients are respectively 5=10, C=2.0, G=0.45, 

A=1, M=50 and N=0.1. 

     In order to compare the state u(t,x) driven by the suboptimal control 
 o,(t

,x) with the state u(t,x) without control, the convergence of the 

system states is shown in Fig.6.3 at the spatial locations x=0.3 and 

x=0.5. From Figs.6.2 and 6.3, it can be seen that an effective role of 

suboptimal control is recognized at respective locations. Figures 6.4 

and 6.5 show the sample paths of the suboptimal control f(t,x) and the 

associated feedback gain II(t,x,x) and the coefficient a(t,x). 

    Although it may be extremely difficult to justify analytically the 

accuracy of the proposed technique, numerical results obtained reveal 

that the extended stochastic linearization technique developed here is 

feasible for realizing the stochastic suboptimal control for nonlinear 

D.P.S. 

6.7. Discussions and Summary  

    In this chapter, via the method of stochastic linearization, a sub-

optimal control has been obtained for a class of nonlinear D.P.S. with 

the complete state information. It has been shown that the extended 

stochastic linearization technique to D.P.S. is attractive for a computer 

implementation of suboptimal control. 

    In the procedure to obtain the suboptimal control, the equations of
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feedback 

in Sec.6.

gains II 

4.

and a should be solved by the feasible method mentioned
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CHAPTER 7. CONCLUSIONS

7.1. Concluding Remarks  

     In Part Two, some attempts have been made to present a rather 

general discussion on various aspects of the problems associated with 

the state estimation, parameter identification and control for nonlinear 

and/or linear D.P.S., oriented in some parts by the approximation 

techniques stated in Chap.3. Although some portions of the works may 

seem to be somewhat abstract from the system engineering point of view, 

an abstract approach can provide, in general, a better understanding 

to related problems. 

    The major difficulties in the computational aspect of distributed 

parameter control processes are due to the dimensionality of the associated 

state vectors as pointed out by Bellman[184]. A fresh and effective 

approach which provides a reduction of dimensionality is certainly 

required, including computational aspects. In particular, in the problem 

associated with the nonlinear D.P.S. the curse of dimensionality is the
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crucial point and this prevents us to perform the operations of  estimation, 

identification and/or control. The proposed methods in Part Two will 

contribute to obtain feasible solutions to the practical design of D.P.S. 

7.2. Discussions  

     The model of D.P.S. is described by a partial differential equation 

with additive Gaussian noise, i.e. Egs.(1.1) or (1.3) in Sec.2.2, Chap.2. 

However, there are many cases where the coefficients in a system operator 

are inherently random (cf. Bharucha-Reid[11]). For example, instead of 

(1.1), a diffusion process in random media is modeled by a partial 

differential equation, 

(7.1) aua~,x)=Lx(w)u(t,x) + C(t,x)f(t,x), 

where Lx(m) is a random (linear) operator. The problems of estimation, 

identification and control for the system described by (7.1) are the 

future topics in the theory of distributed parameter control systems. 

Because of the fact that the theory in this area is not fully developed 

at the present time, investigations in the immediate future should be 

directed toward establishing theories to the class of D.P.S. described 

by (7.1), accompanied with the random eigenvalue problems (cf. Boyce 

[13]).
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     APPENDIX A. Proof of Corollary 4.1. 

    Equation (4.30) is easily derived from (4.25). The version of  aP/at 

is evaluated by computing 

(A.1) dP(t,x,z) = d(u(t,x)u(t,z)) - d(u(t,x)u(t,z)), 

where "c" denotes the conditional expectation E(1){•ly
t}. Let f(u(t,x), 

u(t,z))=u(t,x)u(t,z) in Theorem 4.1 and use (4.12) to find d(u ,x                                                             t)u(t,z)). 
In the sequel, in order to simplify the notation, if necessary, we shall 

drop the argument (t,x) and denote the spatial point by superscripts x, z 
or . Since 

(A.2) G[u(t,x)u(t,z)1 = uzFx + u Fz + GXGZQ(x,z), 

we have 

(A.3) d(u u ) = u F dt + uxFZdt + GXGzQ(x,z)dt 

               + [uxtuzhuuht]R2[dy-htdt]. 

Equation (4.25) may be rewritten by (4.2) and (2.6) as 

(A.4) du(t,x) = {Fx + [uxht-uXfit]R2_1^1t]}dt 

               + [uxhtuxht]Rldv. 

The samp procedure is applicable in deriving the version of du(t,z). Thus 
an application of the Ito`s formula to compute axe gives 

(A.5) d(uxuz) = uZ{Fxdt + [uxhtuxfit]R2[dy-htdt]} 

               + ux{zdt + [uzhtht]R2[dy-htdt]} 

+ [uxht-uXht]R2[uzht-uht]dt. 
Combining (A.3) and (A.5) with (A.1) , we obtain 

(A.6) dP(t,x,z) = (u/V-aZF)dt + (u F -u F )dt 

              +GGQ(x,z)dt + [uX~t-uXzht 
               -uzuXht+uzuXht-uXUZht+uxuzfit]R2[dy-htdt] -
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 fu-ht  -a  fit  ju  ht 

In the linear

(A.7)

(Q.E.D.)

 -uZFi
t]  dt. 

ear case, it follows that 

dP(t,x,z) _ (uzL u-uzL ux)dt + (uxL u-uL uz)dt 
xxZZ 

  + GG Q(x,z)dt + [uxuzJDH u dE-uuJDHu dE 

      ZXX     uzuxfDHEuEdE +uuJDHudE - u u DH u dE 

    uxuzjDHEuEd ]R 2[dy-fDHEuEdEdt] 

   [ufDH-uxfDHEuEd ]R2[uzfDH~-uzr C^Cd ]dt 

           (LXuu-Lxuzux)dt + (Lzuxuz-Lzuxuz)dt 

+ GG Q(x,z)dt + [ fDH (uuxu)dE]R2[JDH (uuuzu)dE] 

E xz,.& zx z„xE ,.x z„ 2 + (1
DH [uuu-uuu-uuu+uuu-uuu+uuu ]dC)R 

x [dy-(fDHJi dE)dt] 

         = L
xP(t,x,z)dt + LzP(t,x,z)dt + GXGZQ(x,z)dt 

  - [f
DH(t,E)P(t,x,E)dUR 2(t)[fDH(t,E)P(t,C,z)dC]dt.

     APPENDIX B. Proof of Lemma 5.3. 

    Define 

(B.1) .(t) f0i(s,us)R2(s)dy(s)2f0i2(s,us)R2(s)ds. 

Then, (5.18) is expressed as 

(B.2) Ai(t) = exp{C.(t)}. 

     Noting from (B.1) that the C.(t)-process has the stochastic 
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 differential, 

(B.3) dci(t) = 1-1i(t,ut)R2(.t)dy(t) -2i2(.t,ut)R-2(t)dt, 

and applying Ito's chain rule to the function Ai, it follows that 

3Ai DAi 1 a2Ai 2 
(B.4) dA.=atdt +8di+---aT(dC.). 

It is a simple exercise to show that 

    BAiaAia2Ai 

(B.5) at = 0,  = Ai, i;772- Ai 

and that 

(B.6) (dr .)2 = hi2(t,ut)R 2(t)dt, 

where (5.8) has been used to derive (B.6). By substituting (B.5) and 

(B.6) into (B.4), the proof has been completed. (Q.E.D.) 

    APPENDIX C. Proof of Theorem 5.2. 

    By applying the Ito's chain rule to (5.24), we have 

am. K N. BA.. 
(c.l) dMi(t) = atldt + G GA..Bdc..                     j=1 

31Jl 

K K am 
           +1G E -----------dC..dCki' 
                2j =1 k=1a~jia~3                              ki 

where the cj.(t)-process is defined by 

(C.2) Cji(t)A [f0.(s,us)R2(s)dy(s) -2f~j2(s,us)R2(s)ds] 

               [f0i(s,us)R2(s)dy(s)2f0i2(s,us)R2(s)ds] 

and this has the stochastic differential, 

(C.3)d~ji(t)_6.=-hi)R2dy -2(~j2-hi2)R2dt. 
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    In  (C.l), it can be shown from (5.24) that 

DM. DM.2DA.i 
(C.4)at =C'DA

,-ajiMi ' 8--= Aji 

and 

a2Mi  
      =/~3 (C.5a)

DC..DCki=2ajiakiA..Ak.Nifor j¢k 

(C.5b)= -a,.A..M.2 + 2a,.2A. 2M.3 for j=k. 

Substituting (C.4) and (C.5) into (C.1), we have 

     K21K22 
(C.6) dMi= - ajiAjiMidC. -2LajiAjiMi(dC..) 

                j=1j=131 

          K K 
            + E X ajak.Aj

iMi3(dC..)(dCki). 
             j=1 k=1iii 

From (C.3) it follows that 

(C.7)(d~j.)2 = (1i.4.)2R 2dt 

(C.8)(dji) (dCki) = (hj-hi) (hk-fii)R 2dt. 

Hence the substitution of (C.3), (C.7) and (C.8) into (C.6) yiels (5.35). 

(Q.E.D.)
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