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ABSTRACT

The problem of state estimation and control for a wide class of
nonlinear stochastic lumped or distributed parameter systems under
noisy observations is studied in the framework of Itdé stochastic
calculus. The purpose of this dissertation is to describe two impor-
tant phases: to give mathematical developments for the theories of
signal detection, filtering, parameter identification and control, and
to show the algorithm of computer implementations for the scheme of
control systems.

This dissertation is divided into two major parts. Part One is
devoted to the approximate methods of state estimation and control
for nonlinear systems described by the Itd stochastic differential
equation, and Part Two is devoted to provide methods of state and
parameter estimation and control for stochastic systems modeled by
partial differential equations.

The basic notion of the proposed methods developed in Part One



is a use of the stochastic linearization technique to the field of
nonlinear control systems. With this technique, 2 joint scheme of
estimation and control is presented, emphasizing that the stochastic
linearization method plays a useful role in realizing a stochastic
Optimal control system. Part One is divided mainly into four
chapters: the first is concerned with the mathematical aspect of the
models, terminology and a review of stochastic linearization technique
which is necessary to understand the treatment of problems, the second
@ possible solution to the signal detection in Gaussian noise, the
third some approximate versions of nonlinear filters in various
situations, and the final a practical scheme for estimation~control,
including the important aspect of sufficient statistics for the purpose
of observation data reduction.

In Part Two, based on an extended version of Itd stochastic
equation to the distributed Parameter systems, the model of a control
system is described by a stochastic nonlinear partial differential
equation. By using such approximation techniques as Taylor series
expansion and stochastic linearization extended to the distributed
parameter system, estimation and control problems are solved. Part
Two is divided into three main chapters: the first is concerned with
the filtering problem, the second the parameter identification, and
the third the problem of optimal control for a general class of linear
distributed systems and extensively for a class of nonlinear distributed
parameter systems.

Throughout the two parts of the dissertation, various kinds of
numerical computations are performed in order to show the practical

computer implementation.



I. PART ONE. APPROXIMATE METHODS OF STATE ESTIMATION
AND CONTROL FOR NONLINEAR LUMPED PARAMETER SYSTEMS






CHAPTER 1. INTRODUCTION

Physical systems are, in general, designed and built to perform the
minimization or the maximization of a preassigned cost functional. For
example, aircrafts, spacecrafts, submarines and some vehicles must navigate
in their respective environments to accomplish their missions. In order
to know whether or not a system is performing suitably, and ultimately to
control the system performance, the system designer must recognize the
"state" of the system at any instant of time, where in navigation systems
the state consists of position, velocity, acceleration, etc., of the craft
in question. Physical systems are often subjected to random disturbances,
so that the system state may itself be stochastic.® When the designer
wishes to know the state at hand, he will take measurements or observations
on the system through a measuring device. These measurements are generally
contaminated with noise which is called as observation noise.

It is also an inevitable feature that a dynamical system to be

controlled often exhibits various kinds of nonlinear characteristics.

* The word "stochastic" comes from Greek "oToxaotTikés" (to aim or to
guess) and is used synonymously with the word "random."



Thus, for the system designer, the general problem to be solved is to

find the control of a noisy nonlinear dynamical system in some optimal
fashion, given only an incomplete knowledge of the system. Under such
coupled constraints as the linearity of dynamical systems, noisy
observations and desired criterion given by quadratic cost functionals,

it has already been shown that the optimal control and estimation problems
of the system state may be independently solved by the versions of the
"separation theorem." However, this is not the case in general for

the optimal control of nonlinear dynamical systems, but the combined
problems of optimal control and estimation must be treated simultaneously.

Since the establishment of the precise scheme for the state estimatio:
and the optimal control of nonlinear dynamical systems is almost impos—
sible, in Part One, the author will establish an approximate method which
will be shown to play an important role to realize a broad class of
stochastic optimal control.

The part one will be divided into three major parts: first a part
on the mathematical aspects is developed of the system models and termi-
nology and some concepts necessary to understand the treatment of problems
secondly, some approximate versions of a nonlinear filter in various
Situations, and the nonlinear filtering problem as well as relations of
filtering to control theory; and finally, a practical schemes of estima-
tion~control, including the aspect of signal detection problem and also
the data reduction problem.

The part one is devoted to describe two important phases: first, to
give detailed stochastic methods suitable for research workers who are
interested 1in controlling a nonlinear system under noisy observations,
and secondly, to show the algorithm of the whole scheme of the optimal

control systems.

1.1. Historical Background

The historical background of this research is divided imto three

parts.

1.1.A. Filtering Problem

The problem of estimating a random signal process based upon inform-

_2__.



ation contained in an observation process is itself one of the basiec
contexts of classical and, still, of modern system theory. In the early
1940's, Kolmogorov[73] and Wiener[155] developed a systematic approach
for providing an estimate of a random signal process on the basis of
observation of the signal process additively corrupted by noise. Their
key notion was dependent on the assumptions of statiomarity, ergodicity,
and knowledge of the entire past of observed process. Kolmogorov solved
the discrete-time problem by "pre-whitening'" of the data, while Wiener
solved the continuous-time problem in the frequency domain employing

' The result of their investigations was the

"spectral factorization.'
specification of the weighting function of the optimal estimator as a
solution of the Wiener-Hopf equation, and these early works in filtering
theory were responsible for many advances in the statistical design of
control systems.

The next substantial development in the (linear) filtering was the
work of Kalman (1960) [64], and Kalman and Bucy (1961) [69], under weaker
agssumptions than those made in the original Wiener problem —— that is,
nonstationary, observations known within only a finite time interval in
the past, and vector observations of vector processes. The theory is
known as the Kalman-Bucy filtering, and has provided numerous applications
in the mid-1960's. Such major applications of the theory are in the
field of satellite orbit determination, submarine and aircraft navigation,
and space flight, including the Ranger, Mariner, Pioneer and historical
Apollo missions in the U.S.A.[18] However, the Kalman-Bucy filter is
rigorously valid only for linear filtering, even though, heuristically,
nonlinear extensions were developed successfully for orbit determination,
fire control and space navigation programs.

Since the work of Kalman and Bucy, there have been many variations
on the Kalman-Bucy theme; these variations and the relation of the Kalman-
Bucy theory to the Wiener-Kolmogorov theory are summarized in the tutorial
article of Kailath[57] and in the textbook of Sunahara[127].

Although the Kalman's filtering theory found immediate applications
to the problems of orbital determination, navigation, etc., it was soon
apparent from these applications that the linear assumption was not

adequate for many situations. The original investigations in nonlinear

. -



filtering were undertaken independently by Stratonovich{121] in the Soviet
Union and by Kushner[74,75] in the U.S.A., using descrete-time approxima-
tions, Bayes rule and limiting the arguments to obtain the stochastic
equation for evolution of the conditional density of the message (signal)

process relative to the observation process. Much of the subsequent

theoretical work in nomlinear continuous filtering was done by Kushner[78,

79] using Itd stochastic calculus. Bucy[l6] introduced a representation

theorem from which Kushner's result[74] can be derived and has provided
significant generalizations of the theory of nonlinear filtering. This
approach to continuous filtering was also taken by Wonham[158]. The
results of Stratonovich[121] and Wonham[158] should be interpreted in the
sense of Stratonovich for the stochastic calculus.

In the Soviet Union, since the early work of Stratonovich, several
investigations have also worked on the theory of nonlinear filtering,
notably Liptser and Shiryaev[88,89,115,116]. These works have been
concerned with finding the stochastic equations for the conditional
density function, similar to those by Wonham[158] and Kushner[78].

The probabilistic approach to nonlinear filtering which was used
by Stratonovich, Kushner and by Wonham is based on the so-called Bayesian
approach. Zakai (1969) [185] has introduced a method of nonlinear filtering
with use of the transformation of a certain class of stochastic processes
by absolutely continuous substitution of measures due to Girsanov([45] and
has given a rigorous proof of the Bucy's representation theorem. In the

Soviet Union, Ershov([34] also treats the related theoretical work.

1.1.B. Approximate Filter

Recognizing the importance of nonlinear filtering problems, various
studies have been made by many investigators as surveyed in the previous
subsection. The result reveals that an exact realization of optimal
nonlinear filters requires infinite-dimensional filters which are practi-~
cally almost impossible. In nonlinear filtering problems as well as in
the linear ones, we are interested in computing the conditional mean and
covariance matrix (these are the first~ and second-moments respectively).
Physically, the conditional mean is the minimum variance estimate, and

the covariance matrix measures the uncertainty in the estimate.



Up to the present time, approximate schemes have been suggested on
the physical realization of optimal nonlinear filters in an approximate
form of finite dimensional filters; these trials are summarized in the
textbook of Jazwinski [54, Chap.9]. The ideas of Kalman filter were
extended to the estimation of the states of nonlinear dynamical systems
using the so-called first-order, or extended Kalman filter (see, Ho and
Lee[47], Cox[23], Mowery[99], Friedland and Bernstein[42], and others).
In all of these papers different techniques such as least-squares,
maximum~-likelihood, etc., have been used to drive filter equations.

Most of these techniques use a Taylor series expansion up to second-
order terms, and derive linearized equations to compute the covariance
matrix and the filter time-varying gains.

Using the stochastic calculus, the exact filter equations have been
approximated to suboptimal finite-dimensional filters. Typical papers
along this line of approach are those of Kushner[80], Bass et al.[6],
Sorenson and Stubberud[120], etc. An suggestive approach was presented
by Kushner[80] for approximation to the exact filter via moment sequences.
The truncated second-order filter* was developed by Jazwinski [53], and
independently by Bass et al.[6] Schwartz[111] and Fisher[36] independ-
ently developed the Gaussian second-order filter. In many of these works,
second-order terms are retained in approximating the nonlinear functions.
Sunahara[126] proposed to replace the nonlinear functions by quasi-linear
functions via stochastic linearization. In this dissertation, such
technique proposed by Sunahara will be extensively used to establish an

overall system of estimation and control.

1.1.C. Control Problem
Starting about 1958, a new trend became established, stimulated

partly by the rapidly increasing accessibility of digital computers
and partly by the developing interest in particularly aerospace
optimization problems. A branch of control theory has evolved largely

within the framework of Bellman's "Dynamic Programming''[8] and "Adaptive

* The approximate filter, which is derived under the assumption that
third- and higher—order central moments are negligible, is called
the "truncated second-order filter."
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Control Processes'[9] which present a computer-oriented formulation of
a large class of Markovian decision problems. By a series of celebrated
papers by Kalman[64-69,71]], fundamental and essential researches were

done on the concepts of state estimation, optimal control, system stability,
controllability and observability in the control system theory. After
these works by Kalman, using the stochastic calculus, the stochastic
control theory has been developed mainly in the U.S.A. by Kushner[77,83],
Wonham[161], Flemming[38,39] and many other researchers.

Because of the widespread use of linear filter and the demands for
a construction of control systems, numerous papers have been written in
a framework of the so-called linear-quadratic-Gaussian (LQG) context,
celebrated by the "Separation Theorem" of Wonham[160]. Therefore it seems
that the linear control theory has almost been established[70,77,83,161].
The excellent survey of the LQG problem is Ref.[97] in the special issue
of IEEE Transaction on Automatic Control on the "Linear—Quadratic-Gaussian"
Estimation and Control Problem" (vol.AC-16, no.6, Dec. 1971).

Although the LQG problem have reached a certain degree of maturity
with respect to theoretical and algorithmic advances, on the other hand,
there have been very few investigations to date of the problem of
optimizing nonlinear stochastic systems. The control problem of nonlinear
system is a current topics. Toward this, some of papers have appeared.

Kushner[76] presented a method of computing correction to the optimal
deterministic control for the nonlinear systems where the effects of
disturbance are small. Later, Kushmer and Kleinman[84] considered several
aspects of the numerical solution of the Bellman's optimization equation
of nonlinear degenerate elliptic-type. A systematic procedure was given
by Wonham and Cashman (1969) [162] for digital computation of a suboptimal
nonlinear feedback control which is obtained by a combination of dynamic
programming and statistical linearization for a class of time-invariant
linear systems with amplitude bounded control. Alternatively, Smith and
Man (1969) [119] developed a successive approximation technique based on
statistical linearization for nonlinear time-invariant process under
complete observations, and applied the technique to a chemical process
example.

Independently, in 1969-1970, Sunahara and the author[129-131] developed

—6—



an approximate method of estimation-control for a wide class of nonlinear
stochastic systems via the stochastic linearization technique in Markovian
framework. Shapiro and Mon[114] obtained the necessary conditions for

the optimality of feedback gains for the one-dimensional nonlinear process
whose dynamics and contreol are finite-degree polynomials with respect to
the random variables via the method of expansion of the density function
in an infinite series. Raja Rao and Mahalanabis discussed in [103] the
results of application of the purturbation technique along with stochastic
approximations, where the purtubation technique is combined with the
statistical linearization in order to derive suboptimal solution. Also,
in [104], by approximating nonlinear functions by second-order polynomials,
Raja Rao and Mahalanabis obtained the suboptimal control for discrete-
time systems with a special performance criterion function. A combined
method of estimation and control was proposed by Dressler and Tabak[29],
using the extended Xalman filter, and applied to satellite tracking

system with the steady-state approximation.

Based on the Gaussian sum approximation to the a posteriori density
function, Alspach[l] calculated certain suboptimal controls for discrete-
time nonlinear systems. Recently, Tse et al.[l46] considered the use of
second-order terms and pertubation controls. The resulting control
procedure is, however, too complicated to apply this techmique to
practical problems.

The above researches may be classified into the following major five
categories:

(i) Statistical linearization method [104,119,162]

(ii) Stochastic linearization technique [29,129-131]

(1iii) Approximation of probability density function [1,114]

(iv) Perturbation method [76,103,146]

(v) Numerical approach [84].

1.2. Problem Considered

We consider the problem of finding an optimal control for a class of
nonlinear stochastic dynamical systems under noisy observations, and
establish an approximate method of optimal control in a form of computer-—

oriented feedback control systems as might be expected. Our situation to

_7_
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Fig.l.1l. Problem illustration of optimal control under
noisy observations.

control problem is shown in Fig.l.1l. The dynamical system to be controlled
under a given performance criterion is described by a vector nonlinear
differential equation of dimension n.

dx(t,w)

T = fle,x(6,0)] + clt,ule)] + 6le,x(5,0) 1Y (t,0),

(1.1)
tE[tO,T].

In (1.1), x(t,w) is an n-vector state variable; f[t,x(t,w)] and G[t,x(t,w)]
are respectively an n-vector and an nXdj-matrix nonlinear function; y(t,w)
is a dj-vector white Gaussian noise with constant spectral density
function®; c[t,u(t)] is an n-vector forcing term; u(t) is an m-dimensional
control vector (n>m); and w is the generic point of the probability space
Q.

The states of the system may not be able to be "completely" observed

* In most cases of the practical problems the system noise may not be
"white" but "colored.'" However, for convenience of discussions and with-
out loss of generality, we consider the white noise because the colored
noise is easily whitened by introducing a suitable shaping filter.




because the output observation is sometimes corrupted by noise which is

referred to the observation noise. The observation mechanism is given
by
(1.2) z(t,w) = hlt,x(t,w)] + R(£)0(t,w).

The output z(t,w) is an Z-vector, where IZ<n; h[t,x(t,w)] is an Il-vector
nonlinear function; R(t) is an Zxdz parameter matrix; and 6(t,w) is a d,-
vector white Gaussian noise with unit power spectral density.

As will be pointed out in Chap.2, Sec.2.l, the mathematical models
of both the dynamical system (1.1) and the observation mechanism (1.2)
are purely formal because of the existence of white Gaussian noise terms.
In order to make these models precise, we rewrite them as a couple of Ito

stochastic differential equations,

(1.3) dx (t,w) flt,x(t,w)]dt + e[t,u(t,w)]ldt + G[t,x(t,w)]dw(t,w)

(1.4) dy(t,w) = hlt,x(t,0)]ldt + R(t)dv(t,w),

where newly introduced processes w(t,w) and v(t,w) are mutually independent
Brownian motion processes, and y(t,w) is an l-vector observation process

which is related to z(t,w) by the intuitive relation,

(1.5) z(t,w) = y(t,w),

where the dot " - " denotes the differentiation with respect to time t.
In practical terms, our problem is to find a control vector u(t) in

such a way as to minimize the cost functional (performance criterion),

1.6)  J@) = BF[x(m),xd(D)] + Iﬁout.xm,u(t)]dt},

based on the a priori probability distribution of the initial state x(tg)
where F and L are nonnegative scalar functions of the class 6(2) and xd(T)
is the desired state at final time T.

As already known, in order to solve the optimal control problem under
noisy observations we must first solve the optimal filtering problem and
then present the solution for the optimal control problem. Such a situation
may be schematically shown as in Fig.l.2.

The important items to be emphasized in Part One are as follows:

(i) When we take the observation data, the data are always corrupted
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Fig.l.2. Overall configuration of optimal control for nonlinear
dynamical systems under noisy observations.

additively by a random noise,
(ii) There exist various kinds of nonlinear characteristics in
both the dynamical system and the observation mechanism.
Taking the item (i) into account, it is required to establish a
procedure to solve the nonlinear filtering problem. Furthermore, from
the item (i1) the possibility is no longer expected that the separation

theorem[160] holds between state estimation and optimal control.

1.3. Summary of Contents

In constructing the physical control system, the avenue taken in
this dissertation is first to establish a possible method of detection of
signals in noise, and then to provide the approximate method of estimation
based on the stochastic linearization technique, and finally to construct

an overall scheme of joint estimation and control under a certain cost

functional.
The outline of the part one is as follows.

In Chapter 2, some of general groundworks required in this study are

presented as mathematical preliminaries. The precise mathematical models



for the system are also established by the stochastic differential
equations in the senses of Ito and Stratonovich.

As the stochastic linearization technique proposed by Sunahara[126]
in Markovian framework is extensively used in the study, in Chapter 3
a brief review of the technique is given for better understanding,
emphasizing an error evaluation and the discussions of relations between
such a technique and the classical statistical equivalent linearization.

In Chapter 4, a new type of signal detection problem is formulated
and its positive solution is proposed via a modified likelihood-ratio
function. The signal detection problem in this chapter is to detect the
true initial time from which the signal is surely present in the obser-
vation data to know what signal is transmitted. This situation leads us
to the simultaneous signal detection and estimation problem.

Chapter 5 contains the development of the approximate filter equations,
based on the stochastic linearization, for a wide class of nonlinear
systems with state-independent and/or state-dependent noise or under
state-dependent observation noise, respectively. A variety of digital
simulation studies are also given with an analytical study for performance
evaluation of the approximate filter dynamics.

Using the filter dynamics derived in Chapter 5, in Chapter 6 a suc-—
cessful and effective scheme to optimal control is presented, discussing
some aspects of numerical approach.

In Chapter 7, in terms of the information state the important concept
of sufficient statistics is discussed for the purpose of observation data
reduction in stochastic control systems.

The remainder of Part One is devoted to discuss a summary of the

results and some suggestions for areas of future researches.



CHAPTER 2. MATHEMATICAL PRELIMINARIES

2.0. Basic Definitions and Symbolic Conventions

Before presenting the key aspect of this dissertationm, several
basic definitions and symbolic conventions are presented.

Let E(n) denote an n-dimensional Euclidean space. If x is an
element of E(n) (er(n)), then x' denotes the transpose of the vector X.
Similarly, if M is a matrix, then M' denotes its transpose and |M| denotes

its determinant. As a rule, vector and matrix notations follow the

usual manner, that is, lower case letters a, b and c,+-- denote column

vectors with i-th real components ags bi and B uTiin Capital letters

A, B, C and D,.-+ denote matrices with elements a,,, b,,, ¢,, and d,,,--
ij ij ij ij

respectively. Certain algebraic quantities such as algebras, fields, etc.
are expressed by the symbols, S, ¥Y...-, etc.

The following background knowledges are important.[28,31,90,156]

(1) Probability space: Let 2 be a space of points w, where £ and w are

called the sample space and the generic point, respectively. Let



S be a og-algebra of subsets of 2. And let P be a probability
measure on §, that is a measure which is normed, positive and
g-additive. The triplet (Q,S8,P) is called a probability space.
The pair (2,8) is often referred to as a measurable space, and the
pair (8,P) is called a probability field.

(2) Measurable funection: Let (ﬂlrsl) and (92,32) be two measurable
spaces, and let f be a function with domain Ql and range in 92.
The function f is said to be a measurable function or a measurable

mapping of (91,31) into (92,32) if for every set A in 32, the set

f—l(A) = {w: f(w)ea}
is in‘Sl. The set f'l(A) is called the inverse image of A.

(3) Random variable: A real-valued function x(w) defined on Q is
called a random variable if for every Borel set B in the Euclidean
space E(n) the set {w: x(w)eB} is in S.

(4) Ezpectation: The expectation of the random variable x defined on

a probability space (2,5,P) is given by
E{x} = [ xap.

(5) Conditional expectation: Let (2,S,P) be the basic probability space.
Let C be a sub o-algebra of S. Let x be an integrable random
function on 2. The conditional expectation of x with respect to C,
denoted by E{x|C}, is defined as any C-measurable random variable

satisfing
[ xdp = ICE{x]C}dP

for all ceC.
(6) Stochastic process: A stochastic process {x(t,w), tsTO} is a family
of random variables, with a real parameter t and defined on the

probability space (2,S,P).

For each t, x(t,w) is an S-measurable function. For each w, {x(t,w),
teTO} is a function defined on the parameter set T0 and is called a
sample function of the process. For economy of description, we omit to
write the symbol w in the following chapters in order to cause no confusion.
When a probability statement is true almost surely or true with

probability 1, then the abbreviation a.s. or w.p.l is used. A limit in



the mean square is denoted by 1l.i.m.

2 4 . itive
A symmetric matrix A is positive definite if there exists 2 pos

(n)

constant k such that for all xeE
x"Ax > kx'x.
The Euclidean norm of an n-vector x is given by

“x" E 2 1/2 _ (x,x)lfz

and for an n*m-matrix A

n
”A” - { Z 2)112 w 1/2
i=1

jzlaij (tr.{aa'})

where "tr.'" denotes the trace of the matrix. If A is a symmetrie, non-
negative definite matrix, then we write "x"i=x'Ax to denote the generalized
Euclidean norm. The identity matrix is I. Notation [-]ij expresses the
(i,j)-component of a matrix. A real function f(x) is said to satisfy

a Holder condition with respect to A, if for some constant k and all x

and vy,
I£-£@)| < k|x=y|*, o0<x<l.

The symbol Vt denotes the smallest g—algebra of w sets with respect
to which the random variables y(T) with 1<t are measurable. The conditional
expectation of a random variable x(t) conditioned by yt is simply expressed
by " such that ETx(t)[V }=%(t|t), where t<t.

For convenience of the present description, the principal symbols
used here are listed below:

t: Time variable, particularly present time
ty* The initial time at which observations start
T: A preassigned terminal time for optimal control
x(t), y(t): n- and I-vector stochastic processes representing
the system states and the observations respectively,
where KEE( o) and yeE(Z)
u(t): An m-dimensional control vector taking its values
in a convex compact subset UCE(m)
w(t), v(t): dl— and dz—dimensional Brownian motion processes

respectively



c(t), G(t), R(t): nxm, nxdl and Zxd2 parameter matrices whose
components depend on t
£[t,x(t)], hl[t,x(t)]: n- and l-vector-valued nonlinear functions, respec-
tively
#(t|t): Optimal estimate of x(t), i.e. ﬁ(tlt)=E{x(t)|Vt}
P(t|t): Error covarilance matrix in optimal estimate of
x(t) conditioned by Vt’ i.e. P(tlt)=cov.[x(t)jyt].

2.1. Stochastic Integral of Tto-type and Stochastic Differential
Equation

Guided by the well-known state space representation concept, the
dynamics of an important class of dynamical systems in the field of
engineerings can be described by a nonlinear vector differential equation

of the following form,

2.1) B a0 + eleu®)] + 6lex(tw ly(te),
ts[tO,T],

where x(t,w) is an n-vector, the state of the system; f[t,x(t,w)] is an
n-vector nonlinear function; c[t,u(t)] is an n-vector forcing term; u(t)
is an m-vector control signal to be specified in the later chapters;
Glt,x(t,w)] is an nxm matrix; and y(t,w) is a d,-vector white Gaussian

L
noise process with zero-mean and covariance matrix

E{y(t,wvy"(t,w) } = I§(t-1).

Much of the difficulty in the initial work in the area of optimal
nonlinear estimation centered around certain ambiguity that arose in
the interpretation of Eq.(2.1).* The white Gaussian noise process
1¥CE) s tE[tO,T]} was introduced as a means of expressing random disturbances.

Such a type as Eq.(2.1) is sometimes called a Langevin equation.

* In the early development of nonlinear filtering, there were differences
between results obtained by Kushner[74,75] and by Stratonovich[121]. It
was shown that the differences were due to the differences in the
interpretation of equations of the type given in Eq.(2.1). An excellent
discussion of these differences can be found in Jazwinski [54].



Now the {y(t)} process is delta~correlated and its sample functions
are delta functions, and as a result, y(t) is neither mean square

Riemann integrable, nor is integrable w.p.l. Consequently, (2.1) loses

its mathematical meaning. Recalling that white Gaussian noise is the

formal derivative of Brownian motion process, let us introduce a dq-

process of independent Brownian motions through the relationm,(54,127,157,

163]

(2.2)  w(t) = JSv(s)ds.
Once the Brownian motion process has been defined, the formal

equation (2.1) can be integrated and replaced by the inteéral equation,

(2.3) x(t) = x(t,) + JE fls,x(s)1ds + [% cs,u(s)]ds
tU to

+ IE Gls,x(s)1dw(s).
0

With appropriate restrictions placed on the functions f[s,x(s)] and
c[s,u(s)], the first two integrals in the above equation are the ordinary
Riemann integrals for the sample functions. Since the Brownian motion
process is of unbounded variation, the last integral which is specified
as stochastic integral cannot be interpreted in the Lebesgue-Stieltjes
sense. In order to give Eq.(2.3) a precise meaning, we must modify the
usual definition of the integral. In this section we summarize the basic
elements of the Itd theory of the stochastic integral. With this theory

EQ.(2.3) can be given a Precise interpretation.[28]

(7) Broumian motion process: Let (2,8,P) be the basic probability space.
Let SS be a monotone family of g-algebras from §. The stochastic
process {w(t), te[tD,T]} is called a Brownian motion (Wiener) process
with respect to Ss, if

(i) w(t) is St—measurable for each te[tO,T]
(ii) w(t) is a process with independent increments
(iii) the random variables w(t)-w(s) (s<t) are real-valued and

normally distributed with

E{w(t)-w(s)|S_} = 0




E{[w(t)-w(s) ] [w(t)-w(s)]']S } = I(t-s)
(iv) P{w(t0)=0} = 1.
(8) Ito stochastic integral: Let {w(t), te[tO,T]} be a scalar Brownian
motion process and let ¢(t,w) be a scalar function such that
(i) ¢(t,w) is jointly measurable in (t,w)

(ii) for each t, ¢(t,w) is measurable with respect to St

(1i4) If E{| ¢ (t,0)|2}de < =.%
0
The stochastic integral is defined as

(n)

(n)
i+l )1,

i

T n-1 ()
(2.4) J{ d(t,0aw(e) = 1w, [ o(e™ 0 [w(t
0 e i=0

Y=w(t

(D)_t ) (n))=0.

where %ig m?x (ti+1

The definition of the scalar Itd integral can be easily generalized
to the vector case.

Now the third integral in (2.3) is well defined as (7), and therefore
Eq.(2.3) can well be interpreted in a meaningful way.

In the remainder of this section, the principal concepts of the Itd
theory of stochastic differential equation are presented; this theory is
used throughout this dissertation as a model for stochastic dynamical
systems.

(9) Itd process: Let w(t) be a Brownian motion process. A stochastic
process {x(t), te[to,T}} is called an Itd process with respect to
the Brownian motion process w(t), relative to the pair of functions

f(t,w) and G(t,w) if

2.5) x(t) - x(t ) = ft f(s,w)ds + It G(s,w)dw(s).
0 o o

From the definition of Itd stochastic integral, the following

* The definition of the stochastic integral can be generalized to the
functions which are 12 a.s., that is, the functions which satisfy,

instead of (dii), P{f:0|¢(t,m)|2dt<m}=1 (see It [50], Skorokhod [118]

and McKean [91]). The condition (iii) is sufficient for our work.



conditions are sufficient to insure that the right-hand side of (2.5)

is well defined and continuous in t.
(A2.1) f(t,w) and G(t,w) are nonanticipating functions, that is these

have properties (i) and (ii) in (8).

. 2
(A2.2) jz E{|f(s,0)|}ds<w and j: E{|G(s,w) | "}ds<e.
0 0

(A2.3) x(to) is independent of w(t) for t>t0.

In later, the formal description
(2.6) dx(t) = f(t,p)dt + G(t,w)dw(t)
will be used to denote the Itdé process (2.5). A special case of practical

importance is the Itd process with

f(t,w) = flt,x(t,w)]
and

Glt,x(t,w)].

G(t,w)

(10) Diffusion process: Let w(t) be a Brownian motion process. A vector
Itd process {x(t), te[tO,T]} is called the diffusion process with
respect to the Brownian motion process w(t) relative to the drift

vector f[t,x(t)] and the diffusion matrix G[t,x(t)] if

2.7 dx(t) flt,x(t)ldt + G[t,x(t) ldw(t)

]

*o

x(ty)
where
(A2.4) The process {w(t), te[to,T]} is a Brownian motion process
of dimension dl.
(A2.5) x(to) is a random variable independent of {w(t), te[to,T]},
and E{”x(to)“2}<m.
(A2.6) Component of the drift and the diffusion vectors £(-.:)
and G(:.-) are Baire functions with respect to the pair
(t,E) for ts[tO,T] and -w<f<=, where x(t)=EL.
(A2.7) (Growth restriction) There exists a positive constant kl,
independent of &, such that,

1
lece.ol < x a+]el®z



2 2
lece, el < x, (a+El 2.

(A2.8) (Lipschitz condition) £(-,:) and G(-,+) satisfy a uniform

Lipschitz condition in &, that is
[£Ce.e)-£Ct )|
[6(t,g))-C(t, )|

|A

kol &5

kole1g,l -
(A2.9) The functions f(*,*) and G(-,:) are uniformly Holder

A

continuous in t.
Equation (2.7) with assumptions (A2.4)-(A2.9) are referred to as

the diffusion process.*

Proposition 2.1. Let {x(t), tE[tO,T]} be the diffusion process of (2.7).
Then {x(t)} has the following properties:

(i) for each t in [tO,T], x(t) is St—measurable

(i1 T Hlxo] e
0

(iii) =x(t) is sample continuous w.p.l
(iv) the process is uniquely determined by x(to) w.p.1l

(v) =x(t) is a Markov process.

This proposition will be important in this dissertation for making
sure the stochastic differential equations which model the dynamics of
the systems.

In the following chapters, an extensive use is made of the notion of

the Ito differential of an Itd process.

(11) Ito's differential rule: Let x(t) be the unique solution of the
n-vector Itd stochastic differential equation (2.7). Let ¢(t,x)
be a scalar-valued real function, continuously differentiable in t
and twice continuously differentiable in x. Then the (stochastic)

differential d¢ of ¢ is

* More strictly speaking, a diffusion process is a strong Markov process
with continuous sample paths[77,p.4]. The assumptions (A2.4)-(A2.9)
guarantee that {x(t), te[tg,T]} is a diffusion process[77,p.15].



(2.8) de¢ = [—‘2+f'—‘ﬁ+ tr. {G'——%G}]dt (%E)'de,

where 2(-)/ax denotes the gradient (column) vector and 32{‘)/3x
denotes the Hessian matrix of cross partials.

(12) Itdé-Dynkin's formula:[31,vol.1,p.133] Given the diffusion process
(2.7) and let z(t,x) be a real twice continuously differentiable

scalar function. Then the conditional expectation of z conditioned

on xo satisfies

(2.9) Exo{z(t,x)} - z(to,xo) = EXU{IEOLZ(S,x)ds},

where L is the differential generator,

(2.10) LEs = g"‘t-(-) + £

In this section a brief summary has been given of the Itd theory of
stochastic differential equations and this will be one of the main
analytical tools for deriving representations for both the optimal

estimation and the optimal control problems.

2.2. Alternative Stochastic Differential Equation

In the previous section, the dynamical system equation (2.1) is
represented by the precise version of the Ité sense as (2.7) where the
forcing term c[t,u(t)] is dropped out. It is well-known that there is
another type of versions to Eq.(2.1); i.e. if the stochastic equation
(2.1) is interpreted in the semse of Stratomovich, then the equivalent

Ito equation is represented by

n dy
(2.11) dxi(t) [f (t X)+1 E Z [G(t X)] [G(t,x)]_ ]dt
k=1 j=1 Ixy ij
dg
+ 1 [6(e,)], 399, (0.
j=1

The Stratonovich-type stochastic integral is "symmetrically" defined by




(n), (n)
n-1 t +ti+1

T i
(2.12) [, ¢(t,w(t))dw(t) = L.im. [ ¢( z
to b 52 l

(n)

witiy

Y-w(t
2

(n)
N )

)

x w(e ) -w(e (™),
where %15 max (tgn)-tgn))=0. Excellent discussions of the relation
i+l i
between Itd and Stratonovich stochastic integrals are found in [54,Chap.4].

It is obvious that the difference between (2.7) and (2.11) is the existence
of the term in (2.11),

1 0 g 3
(2.13) 3 kél jzl[G(t,x)]kjglz[G(t,x)]ij.

Such a model of (2.11) is used in Chap.5, Sec.5.3 for deriving the

filter equation of stochastic system with state-dependent noise.

2.3. Mathematical Models of Dynamical System and Observation

Mechanism

As the models given by (1.1) and (1.2) are formal because of
the white Gaussian noises, the following couple of stochastic differential
equations of the Ité-type are introduced as the precise mathematical
models for the system and the observation, based on the rigorous

mathematical background of the Itd theory reviwed in Sec.2.1:

(2.14) dx(t) = f[t,x(t)]1dt + c[t,u(t)]dt + G[t,x(t)]dw(t),
x(to) = %,

(2.15) dy(t) = hlt,x(t)]dt + R[t,x(t)]dv(t),
y(t,) = 0.

In this section, several types of the models for the dynamical

system and the observation process which are used in Part One are defined.

Definition 2.1. (System EO) Let the dynamical system and the observation

processes satisfy respectively the stochastic differential equations
(2.14) and (2.15). The processes x(t) and y(t) are n- and l-dimen-

sional vector processes respectively (n>7Z). 1In (2.14) and (2.15),



the following assumptions are made:
(C0.1) The component of the functions ET= g da B 2wslp Gl nu=] and
R[:,+] are Baire functions[28] with respect to the pair

(t,E) for t <t<T and —w<f<=, where x(t)=E.

(00.2) The functions f[‘,‘], h[.,..], G[-‘.] and R{-,!] satisf‘j'

a uniform Lipschitz condition and a growth restriction in

the variable £.

(C0.3) The functions £[-,-1, h[-,*1, G[+,-] and R[-,-] are uniform-

ly Holder continuous in €.

(C0.4) The processes w(t) and v(t) are independent Brownian motion
processes of dimensions dj and dy respectively.

(c0.5) x(to) is a random variable independent of both w(t)- and

v(t)-processes.
Equations (2.14) and (2.15) with assumptions (C0.1)-(C0.5) are

referred to collectively as the system equations XD.

The control term cf[t,u(t)] in (2.14) is specified later in Sec.6.2,

defining the class of admissible controls.

Some other systems which are used in the nonlinear filtering

problems are defined by slightly modifying the system model EO.

Definition 2.2. (System ZlF) Let x(t) and y(t) be n-vector dynamical

system and l-vector observation processes represented by

X

(2.16) dx(t) flt,zx(t)]dt + G(t)dw(t), x(to) 0

0,

I

(2173 dy(t) h[t,x(t)]dt + R(t)dv(t), y(to)

where the assumptions (C0.4) and (C0.5) are made and

(C1.1) the nonlinear functions f[+,-] and h[-.-] are Baire functioms
with respect to the pair (t,£E), and satisfy a uniform
Lipschitz condition and a growth restriction in the variable
E and are uniformly Holder continuous in t,

(Cl1.2) the parameter matrices G(t) and R(t) are nxdl- and Zxdz—
dimensional, measurable and bounded on the finite time
interval [tO,T},

(cl1.3) {R(t)R'(t)} is nonsingular and is bounded on [tO,T]_

Equations (2.16) and (2.17) are collectively specified as le_



Definition 2.3. (System I,_.) Let x(t) and v(t) be n- and l-vector

2F
stochastic processes represented by

(2.18) dx(t) = f[t,x(t)]dt + Go(t)dwl(t) + G[t,x(t)]dwz(t)

x(to) = xo
(2.19) dy(t) = hlt,x(t)]dt + R(t)dv(t)
y{to) = 0,

where the assumption (Cl.1) in Def.2.2 is made and
(C2.1) Wl(t), wz(t) and v(t) are mutually independent dlu. dz—
and d,-vector Brownian motion processes,

3
(c2.2) x(to) is independent of the Brownian motion processes,
(Cc2.3) Go(t) and R(t) are nxdl— and Zxds—matrices which are
measurable and bounded in t, and {R(t)R'(t)} is nonsingular,

(C2.4) G[t,x(t)] is given by
)

Glt,x(t)] = G, (t)x,

1=1 g i

where the Gi(t) are continuous bounded matrix-valued functions

of t with dimension nxdz.

Equations (2.18) and (2.19) with (C2.1)-(C2.4) are specified as EZF'
Further the following system XBF is defined.

Definition 2.4. (System I..) Let x(t) and y(t) be n- and l-vector

3F
processes represented by

(2.20) dx(t) fle,x(t)]dt + Go(t)dwl(t) =+ dWZ(t)x(t)

*0

h[t,x(t)]ldt + Ro(t)dvl(t) + dvz(t)r[t,x(t)]

x(to)

(2.21) dy(t)

I

Y(to) 0,

where (C1.1), (C2.2) are made and
(C3.1) wl(t), vl(t), Wz(t) and Vz(t) are mutually independent dl*
d.-vector and nxn-, Ix7-matrix Brownian motion processes with

2
zero mean, and



(c3.2)

(€3.3)

E{dwl(t)dwl'(t)} = Tdt
E{dvl(t)dvl'(t)} = Idt
¢ijdt
E{(dwzij)(dWZkl)} ={ 0
Aijdt
E{(dvzij)(dVZkZ)} = g

for

for

for

for

i=k and j=C
i#k or j#l
i=k and j=L

i#k or j#1

where ¢'j and Aij are the (i,j)-elements of the matrices &
1

and A respectively,

r(t,x) is an n-vector-valued Baire function which satisfies

Go(t) and Ro(t) are nxdl

is nonsingular.
Equations (2.20) and (2.21) with (C3.1)-(C3.3) are specified as I

a uniform Lipschitz and a growth restriction conditions.

- and Zxdz-matrices and {Ro(t)RD'(t)]

3F°

The systems ZiC (i=1,2,3) are defined which correspond to the above

defined systems I

Definition 2.5. (Systems Eic)

iF as follows.

The systems ZiC for i=1,2,3 are specified

by adding the control term c[t,u(t)]dt in the right-hand side of

(2.16), (2.18) and (2.20) respectively such as, for instance,

Zlc:

dx(t)

Il

dy(t)

hlt,x(t)]ldt + R(t)dv(t).

flt,x(t)]dt + e[t,u(t)]dt + G(t)dw(t)



CHAPTER 3. REVIEW OF STOCHASTIC LINEARIZATION
IN MARKOVIAN FRAMEWORK

3.1. Introductory Remarks

In the nonlinear filtering and control theory, the approximation of
the nonlinear function by some linear one will play an important role as
might be expected. Limiting discussions to the filtering theory,
several approximation techniques are presented as stated in Sec.l.1.B.

A familiar technique is the expansion of the nonlinear function into

a Taylor series up to the suitable order terms. Such a technique was
used by Schwartz[111]. However, anoter powerful technique was suggested
by Sunahara[l26], and the filtering problem was solved.

The author reviews briefly the stochastic linearization technique
in the following sections in order to use such linearization technique
for realizing an overall configuration of the optimal nonlinear control

system subjected to the observation noise.



3.2. Stochastic Linearization in Markovian Framework[126]

The system function f[t,x(t)] in (2.16) is expanded into
(3.1) £le,x(t)] = a(e) + B(e){x(e)-R(t|t)} + e (t),

where Ef(tJ denotes the collection of n-dimensional vector error terms
and a(t), B(t) are an n-dimensional vector and nxn matrix, respectively,
The linearization coefficients a(t) and B(t) are determined in such

@ way that the conditional expectation of the squared norm of eg(t),
2
(3.2) E{[]ef(t)”2|yt} = E{f £lt,x(t) 1-a(t)-B (t) {x(t)~-2(t| ) }] |Vt},

becomes minimal. The necessary and sufficient conditions to minimize

(3.2) are

(3.3a) a(t) = Flle,x()1]Y,} & Ele,x(6)]

and

(3.3b) B(t) = E{[f[n,x(t)]—%[t,x(t)]][x(t)—ﬁ(tlt)]'lyt}P‘lctlt),
where

(3.4) P(t|t) = cov.{x(t)lyt].

In evaluating a(t) and B(t), we have two problems at hand., One is
to compute the state estimate R(t]t) and the error covariance P(tlt)
and the other is to evaluate the conditional expectation E{-IVt}. For
evaluating the conditional probability density function p{x(t)lyt},
this is assumed to be Gaussian with the mean value 2(t|t) and the

covariance matrix P(t|t), i.e.

n 1
(3.5 plx(®)|V,} = 2m) 2 [p(e|v)| 2
xexp{-%lx(t)-ﬁ(t]t)"z_l }.

P “(t]t)

With the help of this Gaussian assumption, both a(t) and B(t) can be

obtained in the form, a(t)=a(t,ﬂ(t|t),?(t|t)) and B(t)=B(t,x(t|t),P(t|t}L--

Futhermore, the (i,3i)-th element of the matrix B(t) is simply obtained
by



-3a, (t)

_ i
(3.6) bij(t) - sgngsz.

A striking fact is that the random variables a(t) and B(t) are not
independent but dependent mutually on the state estimate &(t|t) and the
error covariance matrix P(t|t). From this point of view, more precise
symbols, a(t,&%(t|t),P(t|t)) and B(t,%(t|t),P(t|t)) should be introduced.
However, for economy of descriptions, we merely denote these by a(t) and
B(t) without indieating the dependence on both #(t|t) and P(t|t).

Using a(t) and B(t) obtained in (3.3a) and (3.3b), the nonlinear
function £[t,x(t)] is replaced by the quasi-linear function,
a(t)+B(t){x(t)-&(t|t)}, and then the nonlinear differential equation

(2.16) is approximated by

(3.7) dx(t) = B(t)x(t)dt + {a(e)-B(t)&(t|t)}dt
+ G(t)dw(t).

In the following analysis of this dissertation, the stochastic
linearization technique just reviewed shows to be very attractive and

plays an important role.

3.3. Error Evaluation of the Stochastic Linearization

In order to evaluate the stochastic linearization, let us consider

the following n-dimensional stochastic differential equation,

(3.8) dx(t) = flt,x(t)]dt + G(t)dw(t), togpgi.

In (3.8), the state x(t) is completely observable and the nonlinear
function f(t,x) satisfies a uniform Lipschitz condition and is uniformly
bounded, (see Sec.2.1, Chap.2)

(A3.1) | £Ce,x)~£(t,2)| < clx-z]
1,
(A3.2) £, < c0(1+x'x)5,
where, in (A3.1) and (A3.2), x,st(n) and ¢, ¢, are real positive constants

and independent of both t and x.

A precise interpretation of (3.8) is

(3.9) x(t) = x(ty) + [¢ fls,x(s)1ds + [} G(s)dw(s).
0 0



o .
In the sequel, the solution of (3.9) is written as x (t) in order to
discriminate it from the quasi-linearized solution xa(t) which is

generated by the quasi-linearized stochastic differential equation

described later.
The stochastic linearization technique reviewed in the previous

section is modified where the state variable is completely observable

as follows. Expand the fumction f[t,xo(t)] into
(3.10) £lt,x°(t)] = a(t) + B(t){xc(t)-xa(t)} + sf(t),

where a(t) and B(t) are determined under the criterion,

i 2
ming oy, (e) Bl e O [x°(t)=x}, as

(3-11a)  a(t) = B(£[e,x(0) 1] x%(tp)=xy} £ Fe,x%(0)]

(3:116)  B(®) = B{IELE,x" () ]-F[t,x(6) 11 Ix°(6) %, () 1" | x(e ) =x, }

<27 L(t),
where
(3.12) P(t) = eov.[x°(t)[x°(to)=x0].
Then the sample path x°(t) determined by (3.8) is approximated by
(3.13) dx,(t) = B(t)x_(t)dt + {a(0)-B(t)x_(t)}dt + G(r)dw(t),

whose interpretation is given by
(3.14) x (€)= x_(t;) + f:o[a(s)+B(s){xa(s)—ia(s)}]ds

+ f:OG(s)dw(s).

In (3.10) to (3.14), §a(t) is a solution of the differential equation

dx_(t)

(3.15) ——3;—— = Fle,x%(1) ], Ea(co) = E{x(ty)}.

We evaluate the expected squared error,

(3.16) B, {]x°()-x_ ()] %},
X9 a
where Ex {-} denotes the conditional expectation conditioned by x(t,.)=x
0 0’ 70
In the evaluation of (3.16), the following assumption and lemmas are



needed:

(A3.3) The parameter matrix G(t) is bounded; that is, there exists a

constant vy such that
m leo] = v.
E2E<T

lemma 3.1. Assume (A3.2). Then there exists a nonnegative constant §
such that

max E_(J£(e,0-F(e,0] % < 6%,
ot<T 0

Proof. Note that

t

(3.17) HeEN & I f (n)f(t,x)P{t,xle}dx“2
E

| A

2
IE(n)“f(tsx)“ P{t,xlxo}dx

| A

2
IE(“)CO (1+x x)p{t,x]xo}dx

c02[1+E {x'x}],
*0

where (A3.2) was used. Hence by (A3.2) and (3.17), we have

B, {uf(t,x)-f(t,x)uz} <2, {"f(t,x)ﬂz} + 2E {UE(t,x)nz}
0 0 *0

| A

28 {c02(1+x'x)} + 28 {c02[1+Ex {x'x}1}

0 0 0
2 '
= 4c0 [1+E_ {x'x}],
x
0
which shows that there exists a constant § such that®
- 2 2
(3.18) max E_ {|£(t,x)-E(t, [} < 6 <=,
ty<t .<T %0

(Q.E.D.)

Lemma 3.2. The linearization coefficients a(t) and B(t) are bounded; i.e.,

* Actually, Ex {"x"2}<M (const.) on {tO,T]. See [54, p.l1l06].
0



there exist some constants a and B such that

2 2
max "a(t)]l2 < az, max ||B(B)]" < B”.
£<t<T £y <t<T

Proof. The fisrt boundedness of a(t) is obvious since from (3.17) a

the footnote on p.29:

s 2
max [la()? = max [E(.x))]
£ t<T ty<t<T

2 2
c02[1 + max E_ {HxOI] ] 240
to<t<T "0

|A

Next, by (3.11b)

= - - 2
3.19) )% = [z, (e -Fex) 16 %) 12T (O
0
< B {1t -E(t. 1655 )" e H )2
XO a

< B (£, -, %E {=°-x HZ}HP“I(t)"Z
Xo XO a

2 = 12415-1 2
< '8, Aol

where the Cauchy-Buniakovskii inequality and Lemma 3.1 were used.
Now evaluate Ex {"xo—-;ca"?'} in (3.19). From (3.9) and by (3.15),
0

- 2
(3.20) Exo{“xo(t)-xa(t)“ }

EKO{”xD(tO) - X () + Itolf(s,x°)-f(s.x°)]ds

+ f:OG(s)dw(s)ﬂz}

| A

- 2
ZEXO{HxO(tO)-xa(tU)i }
+ 28 (1[5 1£(s,x™)-F(s,x%) Jas + £ a(s)aw(s)] )
0 0 0

where the relation (x4~y)2§2x2+2y2 was used. Here,

(3.21) Exo{ux°<:o)-§a<to)n2} tr. {cov. [x°(£ ) 1)

= tr. P(to)



and

(3.22) B IS 1£(s,x°)-F(s,x%) 1ds + [Te(s)au(s)|?)
* "% %o

t

< 2E {IE “f(s,xo)—f(s,xo)lzds} + 2E {"ft G(s)dw(s)ﬂz}.
Fo "o o To

In (3.22), note that by Lemma 3.1 and (A3.3)

(3.23) B[, 1£6s,x®)-E(s,xM) ] 2as} < 6% (et )
0 o
and
(.26 E_{f; aan]*t = [E eco)]as < ety
0 o 0

Then, combining (3.20)-(3.24) and rearranging terms, we have

| o) - 2 2 2
(3.25) Exo{lx (t)—xa(t)" } < 26 B(tg) + 487 T) (t-ty).

Hence from (3.19) and (3.25),

2 -
(3.26) IB()]? < 26 [tr.P(t0)+2(52+72)(t-to)]"P Lol?.
From (3.26) it is obvious that there exists a constant B such that
(3.27) max  ||B(o)|? < 8%

tyst<T
(Q.E.D.)

With hypotheses (A3.1)-(A3.3) and Lemmas 3.1 and 3.2, we have the

following theorem.
Theorem 3.1. Suppose that the hypotheses (A3.1)-(A3.3) hold. Then

(3.28) Exo{uxo(t)wxa(t)iz}‘i (t-t)a,

and
(3.29) P_{ sup "xo(s)—x (s)|>e} 5_l7(t—t L
x a € 0" 't
0 t <s<t
0__
where Px {-} denotes the conditional probability given X5 and
0



2
(3.30) q, & 2(52‘E§Eg)(“‘to)

2 2
1 487 (T-ty) (e=tg) _ 14,
taey TR+ aeylle .

Froof. The proof of the theorem is straightforward. Viewing (3.9) and

(3.13) and noting x(t0)=xa(to)=x , it follows that

0
(3.31) EXO{"xo(t)—xa(t)ﬂz}
= B Mg [ @)= lale)m (o) tx, ()% () 145 |3

< EKO{[IEOHf(s,x°(s))-[a(s)+s(s){xa(s)-ﬁacs)}]ﬂdsjz}

<E_{f; Hes, 20 -Es,x* NI+ B 1x, ()% _(9)] 12512
(N "

| A

(t—tO)ExD{fEO[Hf(s,x°(s))—E(s.x°(s))U+HB(s)uHxa<s)-§a(s)n]2a

| A

2(t-t ) (E, {[% | £(s,x°(s))-E(s,x°(s))] %as)
0 0
+ fgogxo{uus)n2||xa<53-;a<s)|[2}ds],

where the Cauchy-Buniakovskii inequality was used. Now, by Lemma 3.1 an
(A3.3), the relation (3.23) also holds; and by Lemma 3.2 the second
integrand of the right-hand side of (3.31) is evaluated as

- 2 2 = 2
(3.32) E%O{HB(st"xa(s)—xa(s)ﬂ b <8 EKO{"xa(s)—xa(s)ﬂ k,

Let us tern our eyes to evaluate B {ﬂxa(s)_ga(s)HZ}- A sipilas
0

method to Lemma 3.2 is applied. From (3.14) and (3.15), we have

= 2 -
(3.33) Exo{"xa(s)’xé(s)” } = E&gf”Ka(to)—xa(to)
* I B x (0% (D}t + /5 6(r)du( 1%
tU a a to T T)
= 2 =
E_ZExo{"xa(to)-xa(tOJH } o+ ZExO{"inB(T){xa(T)—xa(T)}dT+fi Gy dwile



Here,
(3.34) zxo{nxa(to)—Ea(:O)nz} = tr.{cov. [x_(tg)|x,1}

= tr.{cov,[xo(to)]} = tr.P(tO)

and

(3.35) EXO{HinB(T){xa(r)—Ea(T)}dr + inG(r)dw(T)"Z}

< zExo{[fioun(r){xafr)—Ea(r)}udle}

+ 28 {2 eman(]?)
0 0

|A

2 - 2
Z(S-tO)Exo{inHB{T)“ Ix,(0)-x_ ()] “ar}

+28 |3 G(n)dw(v)] %}
o %o

| A

2 = 2 2
28 (s—to)inExO{"xa(r)-xa(T)“ Yt + 2y" (s-t) .

In (3.35), Lemma 3.2 and (A3.3) were used. Then combination of (3.33)-

(3.35) and rearrangement of terms yield

(3.36) Exo{ﬂxa<s)-£a(s)nz} < 2tr.P(ry) + 4Y2(s-t0)

2 s = 2
+ 48 (s—to)ftoEgo{"xa(T)—xa(T)“ lar

2 =
< 2er.P(r) + 4y (s-ty) + ABZ(T—tO)inE%O{“xa(T)—xa(T)"z}dT-

We need the following lemma.

Lemma 3.3. (Gronwall-Bellman Lemma[21; 44,p.393]) Let da(t) denote

a nonnegative integrable fumction that is defined for tE[tO,T]
and that satisfies the inequality

(3.37) a(t) < B(t) + kIE a(s)ds,
0
where k is a nonnegative constant and B(t) is an integrable fumction



Then

(3.3 a0 < 8 + Kt <o),
0

Applying Lemma 3.3 to (3.36), we have

- 2 2
(3.39) EXO{"xa(s)—xa(s)" } < 2ex.P(ry) + 4y"(s-tp)

2
+ asz(T-tO)fioe“B (T-t0) (5= fer B (e )42y (1-tp) 1dr
2

2 2
4B7 (T- -t
= [Ztr,P(tO) + m]e B~ ( to) (s 0) = Ez_(JT’—tT-

Therefore, combining (3.23), (3.32),(3.39) with (3.31) and performing the
integration, we have the result (3.28).

In the followings, let us evaluate the probability,
Px { sup "x (s)-x (s)">e} In view of (3.31), we have

0 tySs<t
(3.40) P_{ sup uxo(s)-x (5)u>E]
X a
0 tys<t

j_Pxo{fzouf(s,xo(s))—[a(s)+B(s){xa(s)—§a(s)}]“ds>e}

= ?xo{[f';o“f(S.xo(S))-[a(SHB(S){xa(s)—ia(s)}]Ilds]2>ez}.

By using the Chebychev inequality and further the Cauchy-Buniakovskii
inequality, it follows that

P { sup "x (s)-x {s)“>e}

0 t055<t

<L Ey (U 1£600°(0)-[a()48(6) (x, (o) -3, () ] as1%}
< Srlt-t B, {f uf(s x°(5))-[a(s)+8(s) {x_(s)-% () }1] 238}

2 y
< (e (65 (et ) + BzfioExo{uxa(s)—xa(s)“2}ds].

Substitution of (3.39) into (3.41) yields (3.29).
proof.

This completes the



3.4. Relations between Stochastic Linearization and Classical

Statistical Equivalent Linearization

Although the stochastic linearization technique reviewed in Sec.3.2
. - . . .
allows us to assume that the additive random noise is nonstationary
Gaussian, we shall assume, in this section, the additive noise to be sta-

tionary Gaussian in order to examine some relations between the stochastic
linearization and the classical statistical equivalent linearization.

Consider an n-dimensional nonlinear dynamical system
(3.42) dx(t) = £f(x)dt + Gdw(t),

where w(t) is a Brownian motion process with covariance GZI. The quasi-

linearized system is given by
(3.43) dx(t) = [a+B{x(t)-x(t)}]dt + Gdw(t).

In (3.43), a and B are the linearization-coefficients and x denotes the
conditional expectation of x(t) conditioned by the initial state x(tg),
i.e. i(t)=E{x(t)|x(t0)=x0}. The covariance of x(t). P(t)=E{(x—§)(x—§)'[
x(to)}, satisfies the equation,
e L8 - gp(n + pe)B + o700

The basic concept of the classical statistical linearization which
was examined in detail by Sawaragi and Sunahara[107,108] can be shown in

Fig.3.1.

x(t) NONLINEAR z=f (%)
| ELEMENT "
ERROR
e(t)=f(x)-kx(t)
EQUIVALENT -
0 GiIN kx(t)

Fig.3.1l. Basic concept of statistical linearization.



The output of the nonlinear element z(t) is evaluated by the approxi---.
mated signal
(3.45) z(t) = kx(t), .

where k is known as the (nxn-dimensional matrix) statistical equivalent
gain of the nonlinear function f(x). The coefficient k is determined so

as to minimize the criterion
2
(3.46) E{| £(x)=xx()|[“}.
In the case where x(t) is stationary, the gain k yields to

1 * -1
(3.47) < = [jE(n)f(x)x p(x)dx][IE(n)xx p(x)dx] ~,

where p(x) is the stationary probability density fumction(pdf) of x(t).

Equation (3.47) may be represented as
(3.48) K = E{f(x)x'}wx‘l,
where ?x is the covariance of x(t) defined by

(3.49) Y = fE(n)xx'p(x)dx.

If the pdf of x(t) is assumed to be Gaussian with zero-mean and the

covariance Y.,

poli

o
2 1

(3.50) p(x) = (2m) “|v_| - 4 8

1 ,, -
xl exlx'Y

the equivalent gain k becomes a function of the covariance matrix ¥ :
X
(3.51) K = K(Tx).

On the other hand, it is well-known that the covariance ¥ is given as
x

a function of k for a given system,
(3.52) Tx = ?x(K).

The values ¥ and ?x are determined by solving (3.51) and (3.52) simul-
taneously via the graphical procedure[107,108]. The fact that x and ¥

- - x
are determined by the simultaneous equations corresponds to the situation
that the linearization-coefficient B is a function of the covariance

matrix P which is determined by a differential equation.



In order to expect the desired relation between the classical
statistical and stochastic linearizations, we consider the second-

order system,
(3.53) X+ cx + kx + £(x) = v(t),

where vy is a stationary Gaussian random process with the following
properties:

(i) mean value: my=0

(ii) auto-correlation function: ¢Y(T)= exp(—BlT|)

- ) 208
(iii) spectral density: SY(A)=§z;“I.

where o and B are positive constants and A is the angular frequency.
The block diagram of the system (3.53) is illustrated in Fig.3.2. For
the system (3.53), since the random disturbance y(t) is stationary
Caussian, we can replace the nonlinear element f(x) of zero-memory type
by an equivalent gain x. Then the equivalent system with equivalent
gain k¢ is given by the equation,

(3.54) 4+ cx + (kte)x = y(t).

The corresponding equivalent linear system to Fig.3.2 is shown in Fig.3.3.
Using the equivalent gain k, the spectral density Sx(l) of the output
x(t) is calculated by

1 2
3 sy(x).
(GA) e (G +(kt+x)

(3.55) s.(\) =
X

Then the wvariance wx of x(t) is evaluated by using the well-known

y(t) stationary Gaussian

disturbance
NONLINEAR + 1 x(t)
ELEMENT 2 =
£lx) - s +ecstk

Fig.3.2. Nonlinear system subjected to a stationary
Gaussian disturbance.



y(t) stationary Gaussian

disturbance
EQUIVALENT + 1 x(t)
GAIN = o=
¥ = s +estk

Fig.3.3. Equivalent linear system corresponding to
Fig.3.2.

Wiener-Khintchin's formula
-1 =
(3.56) Ve = 5 oS Var,

which yields, after somewhat complicated calculations,

2
G5 g =t [0 L -2 2—a
(30 2e(IN+He) | 2%+8

- a(pt+c)
c(kte) [ (k+e)+B(B+c) ]°

Keeping B/a with a constant, if a,B+» in (3.57), then we have

2

[°]
(3:38) ¥~ Gy

where 02=2u/6* which equal to the variance parameter of the Brownian
motion process w(t)=fty(1)dr. Equation (3.58) gives the stationary value
of the variance of x(t) when the system is subjected to a stationary white
Gaussian disturbance.

Alternatively, the variance of x(t) can be evaluated by the stochastic

linearization technique., By letting =¥, and i:xz, Eq.(3.53) is given
by

. 2, , 2 2
* The variance parameter o° is given b = =<2
g ¥ oSS (0==5.



ey

ax,

xzdt
(3.59)

[-kx, ~ex,=£(x)) 1de + du(t),

1

where w(t) process is related to y(t) by the relation dw(t)=y(t)dt.
Replacing f(xl) by [a+B{x1—§i}], we have the equivalent system,

dxl = x2dt
(3.60) dx, [-(k+b)x1—cx2]dt - (a—bil)dt + dw.

Define the covariance pij by

(3.61) Py = BlGx=x)(x-x)}  (1,3=1,2).

Then the covariance equations are

.
4y _ "
dt Py
dp dp
12 21
| L =
(3.62) at at (k+D)pyy = gy *+ Pyy
dp
92 2
(o = ~2(kib)py, - 2cp,, + 0",

If the process x is assumed to be stationary, then dpll/dt=dp12/dt=dp21/dt
=dp22/dt=0 and

2
o

rp11 = 2c(ktb)

(3.63) 4P12~"Pp =0
2
=g
P22 T 2¢

Therefore the stationary value of variance P is given, denoting it
simly as p, by
2

= a
(3.64) P = o)

In comparing the stochastic linearization with the classical statis-

tical one, we can observe from (3.64) and (3.58) that two lineari-

zation-coefficients b and k plays the same role with each other. 1In



. ; in
order to investigate the relation between the two linearizations
more detail, we need a further discussion.
i at:
I1f the nonlinear function f(x) in (3.53) is given, say a satur

function, as

A for x>A
(3.65) F(x) =1 x for |x|<A
-A for =x<A,
then the equivalent gain k is obtained by the assumption of Gaussian
for p(x),i.e.,

2

_ 1 X
(3.66) p(x) = ffﬁwx expf 2¢x}dx
From (3.48) and (3.66), we have
Z
_ 1 X
(3.67) K = W ffmxf(x)exp{ 2¢x}dx
1 : xz
= fjm-f(x) [exp{ 7 }]'dx
x x
1 fn x2
= _auf‘ (x) E.KP{ }dxﬁ
Fin¢x 2¢x

where the last equality follows by the integration by parts and """

denotes the differentiation with respect to x. Substituting (3.65) intc
(3.67), we have

A
=L A
(3.68) K = 75?$: I—A; exp{ zwx}dx
7_A.='
2y
2 2 A
== ID * exp(-67)ap = Erf(;ﬁﬁza-*

Parameters « and |, are simultaneously determined by (3.58) and (3.68).

On the other hand, the linearization-coefficients a and b are
determined by (see Appendix A, Table A.1)

2
* Error function: erf x =-7% fge_h dX.



Table 3.1. Comparison of Stochastic- and Statistical
Equivalent-Linearizations

Statistical Equivalent

Stochastic Linearization

Linearization
Linearization f(x) = kx(t) + e(t) £(x) = a + B{x-x} + =(t)
. A 2 2
Criterion E{|e(t)] “} E{le(t)] Ix(t0)=x0}
_l a = E{f(x)lxo}
K = E{f(x)x'}‘i'x _ _ o
CoeFficient (s) s ¥ ] B = F{(£-) (x-%) " |x,}P
x ’ where P=cov. [x[xo]
p(x) v N[O,Y ] plt,x| X} v N[x,P]
pdf
(assumed) 2 1 ,}51 A

CORIBIEE

(21 %|p| Zexpl-Hx-x)?_}
P

Example 1. 1 _ PR N e
£(x) a-= 'E[ (A'l-x)erf(Tp)—(A—x)erf(—z—p)]
Al _ -2 -2
_ A P (Atx) "y (A-x)
5450}; K = erf(7ﬁ:) il i [expl 7p }-exp{ 7 1]
: (—)A b = l'—[erf(A+;c)+erf(A.—;:)]
g 2 V2p V2p
Example 2. _
f(x) X
A a= A erf(m)
K = A % ) }—{2
0 A X b= Ajﬁ—:exp{—-g
-A




(3.69a)

(3.69b)

== %[ (A_’,;)erf(?"‘%)—(h-;:)erf(%)]

-2 -2
P (A+x) (A—x)
+ fzﬂ[ezp{— ——EE__}-eXP{- —EE““}]

B = %[erf{%%)i—erf(%%)].

1f we assume as a matter of convenience that the mean x is identica

zero, then we have from (3.69) that

(3.70a)

(3.70b)

Since in

as K and

3 = alzg = 0

A
by bI—FO = erf(pr).

this case p=¢x, this means that the coefficient bo is the same

s0 that the stochastic linearization "degenerates" to the class

ne>

statistical linearization.

From the above investigation, we conclude that:

(1)

(2)

(3)

The
in Table

If the additive Gaussian disturbance is stationary and if we
can assume that the pdf, p{t,x]XO}, is Gaussian with zero-mean,
then, for the nonlinear element which is of the zero-memory typ
and is the odd function, the coefficient a identically equals
to zero and b becomes the same form as the statistical-equivale
gain k.

The stochastic linearization technique is an extension of the
statistical equivalent linearization technique to the non-
stationary Gaussian process and to the nonlinear function whict
is not necessarily odd.

The stochastic linearization technique degenerates formally
to the statistical equivalent linearization technique if we set

x=0 in the coefficients.

correspondence of the two linearization techniques are listed
3.1.



CHAPTER 4. SIGNAL DETECTION AND ESTIMATION
IN GAUSSIAN NOISE

4.1. Introductory Remarks

Up to the present time, most part of the current researches of
filtering theory assumed a priori that the waveform of the received
signal is perfectly known as a function of time and/or that the signal
is generated by a class of dynamical systems whose initial time is
preassigned. In practical applications, however, there are many cases
where the presence of signal in up-dated observed data may be uncertain
or the initial time of the signal may not perfectly be known at the
beginning of the estimation process.

The work presented in this chapter is motivated by such applications
as the tracking of missiles or airplanes, the orbit determination of
spacecrafts, and the estimation of land and/or sea traffic flows. Its
objectives are twofold: to solve some specific signal detection problems
and to establish a coupled scheme of detection and estimation from the

detection-theoretic point of view. The objectives are associated with



the problem of extraction of the signal from noise corrupted observed
data, where the signal is formed as the output of a stochastic dynamical
system whose initial time is unknown.

The signal detection problems are solved in general by computing
the well-known likelihood-ratio function in detection theory, accompanied
by the state estimation problem[24,154]. In order to solve this
estimation problem, it is required to establish an exact mathematical
model including its initial time. Even though a mathematical model of
dynamical systems is specified by empirical relations, it is almost
impossible to compute a likelihood-ratio function unless the initial
time of the systems is a priori preassigned. It is well-known that the
computation of the likelihood-ratio function requires the computation of
the state estimation and that these two computations are mutually
interrelated. When we compute the state estimation by using filter
dynamics, it is indeed a prerequisite to know about the initial time of
the dynamical systems. Therefore we need to know the exact initial
time of the systems.

However, it goes without saying that errors are inevitable in
assigning mathematical models as well as its initial time and that
a filter model derived from the inexact dynamical model will degrade the
filter performance. 1In order to see this, let To(m) be an initial time
of the dynamical system and take its value at one of possible times,
{to, st tN—l}' Furthermore, let the symbol H. be the hypothetical
event such that

= {w: To(m)=ti}, (i=0,1,+++,N-1)

where w is the generic point of the probability space 2. Then the error
covariance matrix defined by Qi(tlt)=E{[x(t)wx (t|t)][x(t)—x (tlt)] |Y

is greater than or equal to the covariance matrix P (tIt)écov [x(t)]Y
"E’{[x(t)—xj(tlt)][x(t)—i‘:J (eleda? IYO,H b, dee. @ (tlt)>P (t|t), where
2. (tlt)ﬂE{x(t)lYo,H } is an estimatlon condltioned by the observed data

o’H ]

up to time t, YO' provided that the initial time is T (m) t This fact
means that when the hypothesis H is actually true the mlsled error
covariance is always greater than or equal to the covariance based on

the true hypothesis. Consequently, in order to perform the detection

—44—



and estimation procedure, we have to guess the initial time as precise
as possible.

., Up to the present time, concepts and methods of detection theory
have been applied to the signal detection coupled with estimation of
signals by many researchers[30,51,52,58-61,85,124,128], forcing us to
look deeper into the mathematical aspects of the detection and estimation
problems. For example, Lainiotis[85] has established a joint method of
Bayesian detection, estimation and identification for nonlinear systems.
Jaffer and Gupta[51,52] have developed a Bayes optimum theory of joint
detection and estimation of signals in white Gaussian noise by using cost
functions that reflect the coupling between the operations of detection
and estimation, and established certain explicit relations between the
procedures of detection and estimation. Recently, several efforts have
been made for the detection problem that are somewhat different from
the references [30,51,52,58-61,85,124,128]. Prabhu[l65] has proposed
a method of detection of a change in system parameters whose probability
densities are completely known. In [163], the dynamics is not found
which represents possible physical phenomena. Sanyal and Shen[167] and
Sanyal[166] have discussed the problem of detection and estimation of
an unknown impulse applied at unknown time.

In this chapter, based on the likelihood-ratio concept in the
detection theory, a procedure of detection and estimation is proposed
which will be shown to be a practical computer implementation for detection
strategies, and describe the joint method of detection and estimation.

The problem is briefly stated in Sec.4.2. TIn Sec.4.3, defining
a combined risk, a possible solution is given for a signal detection
problem. The solution needs the state estimation procedure. The relations
between signal detection and estimation are stated in Sec.4.4. Simulation

results are shown in Sec.4.5 to illustrate the proposed method of detection.

4.2. Problem Statement

The observation model is given by
R(t)dv(t) QgtcTO(w)

(4.1) dy(t) =
s(t)dt + R(t)dv(t) To(m)jt.



In (4.1), s(t) is an IZ-vector signal process; v(t) is a dluvector
additive noise which is considered to be a Brownian motion process with
unit covariance; y(t) is an Z-vector observed signal; and R(t) is an ,
Zxdl known matrix. The time Toﬁﬂ) is the random and unknown time at
which the signal s(t) becomes to be observed. The problem is to decide
from the observed signal y(t) at which time and what signal is actually
transmitted. The model (4.1) is fairly good for a variety of situations
of practical applications to the problems of tracking, orbit determinatiop
and traffic control, and it also will serve as an archetype for various
realistic models. The major oversimplification for many applications is
that the time T and/or signal s(t) are assumed to be known.

The signal process s(t) is given as the output of a dynamic System,

i.e.

(4.2) s(t) = H(t)x(t)

and

(4.3) dx(t) = A(t)x(t)dt + G(t)dw(t),

where x(t) is an n-vector state process (n>1); w(t) is a dzuvector Brownian
motion process with unit covariance, and is independent of v(t)-process;
and H, A and G are respectively Zxn, nxn and n?<d2 matrices.

The essential subject of our problem is to construct the method of
detection and estimation in order to know whether the signal is really
present or not, and to know what is the best estimate of the signal, if
it presents. For such a method, it may be required to consider a certain
joint detection-estimation procedure[52].

For further development, the following assumptions are made.

(H4.1) For To(m)gt, equation (4.3) is valid and its solution exists
and unique w.p.l.

(H4.2) {R()R'(t)} is nounsingular.

(H4.3) €Given the preassigned interval [0,T], the time TO(M) is the
random variable such that

ro(w)sI w.p.1,

where T is a finite set of the a priori known time instants,
I I={ti; i=0,1,+--,N-1} (0=t0<t1<."<tN~l<tN;T)’ A



satisfies the conditions of the separability definitions[28].

(H4.4) The a priori probabilities are uniform that the signal s(t)
to be observed begins with any one of ti's. In other words,
if Hi is the hypothesis that Toon)=ti (i=0,1,+++,N-1), then
P(H0)=P(Hl)=-o-=P(HN_1)=1/N.

In the following section, the discussions are forcussed on the

detection~estimation method.

4.3, A Multiple Alternative Hypothesis Approach to Signal Detection

and Detection Rule

In order to determine if a signal s(t) is present, and if so, to
determine which one is the true hypothesis among Hi's (i=0,1,---,N-1),
we take an approach of multiple alternative hypothesis test (cf.[154]).
At the present time t, based on the observed data YS={y(s), 0<s<t}, the

hypotheses are

B_;: dy(t) = R(t)dv(t) O<t<t

R(t)dv(1) O<t<t,

H, : dy(1)
s(t)dr + R(1)dv(r), t <1<t

where i=0,1,2,°°",k-1 and t <t<t The hypothesis H__ is the null

k-1 k’ 1

hypothesis that To(w) is not in [O,t .
The hypothesis test is performed by the following two steps:

Step I. Decide whether the signal is already present or
not,
Step II. If the signal is present, accept the likeliest

hypothesis among Hi's.

To fix the idea, consider the likelihood-ratio comparing the i-th hypothesis

with the null one defined by

t
p{¥o|H;}
(4.4) At tg) = —————El——, 1=0,1, -+ k-1

P{Y(H_1}

where p is the conditional probability density function(pdf). If none of



these is greater thanm 2 threshold,* we accept H_j (Step I). Otherwise,

we accept the hypothesis corresponding to the maximum A(t,t;) (Step ID).

The detection rule can be stated in terms of the N as follows: accept

H. if the largest A is greater than the threshold and accept H_; otherwise,

i
Thus the hypothesis test terminat

hypothesis H_; is rejected in Step I, and the likeliest hypothesis which

es at the first time at which the

corresponds to the maximum likelihood-ratio is accepted. Otherwise, if
the hypothesis H_j is accepted in Step I, then the test is continued with

the further observation.
According to the Bayes test, consider the following combined risk

of detection and estimation for ty_j<t<t;:[98,52]

k=1 k-1
(4.5) R= ] zlJzifsijjxn[x(s),xi<s\s),uj1

i:—l j:—
xp{x(s),YO,Hj}dxddeE,

where D[-,—,Hj] is a scalar-valued cost reflecting the coupling between
detection and estimation when actually hypothesis Hj is true; ii(sls) in
the cost D is the optimal estimate of x(s) given that Hi is true, i.e.
ii(s|s)=E{x(s)[Y8,Hi}; p{-,-,Hj} is a joint pdf of the state and the
observation accompanied with the hypothesis Hj; Sij 1s the time interval
over which D is considered; X is the sample space of x; and Z; is such
the family of YS in which Hi is accepted that Zt=Z_1QZOQ'--QZk_l, where

£ and ® is the direct sum.

72t is the observation data space of YO

Defining

4.6) £330 = [o [ DIx(s). %, (s]8),H,Ip{x(s) | Y, H, Yaxds

i]

. t
fsijE’{D[x(S) .xi(sIS) H, ] |Y0,Hj}ds

apd using the Bayes rule to (4.5), equation (4.5) becomes

% The threshold is giugn later in this section, depending on the preassigm
costs and the a priori probabilities of the hypotheses.



k-1
- t
(4.7) R = )I Uy, I pap)g (Yg)p{YO]H.}dYg.
i=-1 1 J="”l g
We adopt the two-step procedure for the hypothesis test by minimizing
the combined risk given by (4.7).
(i) Step I. Rewrite (4.7) as follows.

k-1
o = t t t
.8  R=[, _Z_lP(H YE_y 5 (Y p{¥g|H, avg
+f ki P(H)E, (Yt)'{Yt|H }ayt
Zy 329 o’Pl"57%0
k-1 k=1
+ ] II RICHISS (o plY, |1 yavg)
7=0 “1 j=-1
Z#l
<y t t t t
- Iz_l j};lP(H ME_ (YO)-fij(YO)}p{YOIHj}dYO
+J ki P(H)E, (Yt) {xt|u, Yaxt
zt 0P 0!%57%0
k=1
= Iy I p@f, (Yt)p{ztm.}cwt
Z_(i-1) §=-1 CI
k- k=1 .
+ 1, 1 R)E, (¥o)p{Y; |1 Y,
= 7 j=-1
I#i
where z_(i_l)=zt—(ziez_l). In (4.8), if Z*(i—l) is determined to be

constant, then the terms except the first term are considered to be
constant. Then

- k-l t t t t
(4.9) R = jz_l J_z_lP(H HE ()=, (T 3p{¥|H 1Y

+ const.

By inspection of (4.9) it follows that the detection rule for Step I is



stated as

accept H—l’ if for all i=0,1,---,k-1

k- t t t -
(4.10) ljzlP(Hj){f_lj(YO)—fij(YO)}p{YOIHj} 0

reject H-l’ othervwise.

Assume that {fi.—l (YB)_f—l.-l CY;)}>0. Then (4.10) is modified as

k=1 P(H;) {f_lj(YS)-fij(Y;)} p{Yglgi}
! 3@
j:ﬂ -—

(4.11) <1,
) t t t
i e S o L SN ¢ S L R R L

where the addend in (4.11) is a kind of cost likelihood-ratio[154].

N-1
Since H_1= U Hv’ it follows by the assumption (H4.4) that
v=k
P{H ) N-1 P(H )
(4.12) L -7 - =Nk =p

P(HE) % PO K

Noting (4.4), write the term in (4.11) as

t t
k=1 {f_lj(YO)-fij(YU)}

(4.13) A(e,t,) = A(t,t,).

L £, t
j=0 {fi_l(YO) f—l-l(YO)}
Combining (4.12) and (4.13) with (4.11), the condition (4.11) is expre:
as
(4.14) A(t,t) <o, .

(ii) Step II. Write (4.7) as

k-1
(4.15 R = P(H)E _(YHp(yt t
) s jjzl (H)E (OB, Yavp +



kil ¢ kfl
+ [

i=-1 % =11
i#v

t E t t
P(Hj){fij(YO)-fvj(Yo)}p{YolHj}dYO]

Then, since the first term is independent of Zi’ R is a minimum when
Zi (i=-1,0,-+-,k-1; i#v) is chosen as the integrand of the second integral
is negative for all v. This corresponds to choosing the hypothesis Hi

whenever, for all v,
L=y t t t
(4.16) jg;lP(Hj){fij(YD)-fvj(YO)}p{YO|Hj}_j 0.

Rearranging terms in (4.16), we have (see Appendix B)

(4.17) H(t,ti) > H(t,tv),
where

A . t, t
(4.18) M(e,t,) = (et -0, HE, [ (YO-F ()}

and H(t,tv) is defined as a similar relation to (4.18).
Then we have:
accept the hypothesis Hi which gives maxti H(t,ti) (i=0,1,---,
k-1), and decide that the initial value exists in the interval
[0,t) and that To(w)=ti where tj corresponds to the maximum II.

Combining the two steps, the detection rule is stated as follows:

Detection Rule. At the present time t (t

k_l<t§tk), according to the
following two steps the hypothesis test is performed.
Step I. Accept H_l, if

(4.19a) max ;\(t,ti) < pk (i=0,1,---,k-1)

Ly

or alternatively
(4.19b) max II(t,t;) < 0.
ti
TE H—l is rejected in Step I. Then

Step II. Accept Hi which gives max H(t,ti).

ty

If the cost function fij(YS) is preassigned as



t, _ ty = t,_ £ i=0,1 "',k-l)
(4.20a) £, -£,, 09 = £, 7Y £, 1y (1=0,1,
and

y t s fs P e e
(4.20b) £ 150 = £550 (G#L, 30,1, 7,k-1),

then }(t,ti) given by (4.13) becomes simply A(t,ti), so that the above

hypothesis test reduces to the test given by the principle of maximum
likelihood.
Detection Rule. (Special Case) If the cost functions fij(YE) are

preassigned as (4.20a) and (4.20b), then
Step I. Accept H-l' if

(4.21) max A(t,t.) < p. (i=0,1,---,k-1)
ti 1 k

Step II. Accept Hi which gives max, A(t,ti).

i

If once the decision is made that the hypothesis, say Hi’ is true,
then the other hypotheses H, (v=0,1,--+,N-1; v#i) are rejected. This
situation implies that the estimation ﬁi(tlt) is true and the other
estimations, ﬁv(tlt), are rejected by virtue of H;, and that after the
time tD where the decision was made, ﬁj(tlt) is adopted as the optimal
estimation to the control scheme. Therefore the obtained estimation is
a kind of detection-directed estimation with estimate rejection in the
sense of Middleton and Esposito[98].

With the help of Fig.4.1, the detection procedure is as follows:

(i) Preassign the cost D in (4.5).

(ii) Obtain a newly observed data dy(t), and compute the likelihood-
ratio function A(t,t3) and M(t,ty) by (4.22) or (4.23) (to be
given below) and by (4.18). Check, in Step I of Detection Rule,
whether II(t,t4) is negative or not. If I is negative, decide
that the signal is not yet present, and repeat the calculations
of A and T.

(iii) If otherwise, proceed to Step II and accept the hypothesis Hi
that maximizes the corresponding I(t,ty) with respect to L

(iv) Choose xi{t|t) by virtue of H; in the step (iii), rejecting



Obtain
Yh={y(s)}

aoan

Take a new
observation
dy(t)

o — — — ——— —— — — — —

Evaluate
max, M(t,ty)

]

Accept Hy
which gives
max, M(t,ty)

Accept H 3

Decide
T (w) =ty
and choose

Xy (t)t)

Fig.4.1.

Flow diagram for signal detection.

the other estimates iv(tlt) (v#i).

4.4. Relation between Detection and Estimation

For the computation of A(t,tj) or II(t,t;) in Detection Rule, it is
required to compute the likelihood-ratio A(t,tj) defined by (4.4).
Starting with the definition (4.4), it is verified that A(t,tj) is given

by
(4.22)

A(e,t5) = explf] %;" (s|9)B' () R(IR' ()} Ty (s) -
J



1 ¢t 5 2
-5 ftj"H(s)xj(sls)“{R(s)R.(5)}_1ds},

(t4<ty_g<tstys 3=0,1,-+,k-1)
where %j (tj|tj)=—-:’.‘:0 (preassigned const.). It also verified that (4.22) is

the unique solution of the following stochastic differential equation:

ACt,t ):‘:j(t[t)H'(t){R(t)R'(t)}_ldy(t)

(4.23) dA(t,tj) 3

A(tj,tj) Es

The detailed aspect of deriving (4.22) is carried out in Appendix C.

It is noted that in order to calculate A(t,tj), ij(sls) (t4<s<t)
is required which is the solution of the well-known Kalman-Bucy filter[69],

(4.24) dﬁj(s|s) = A(s)ij(sls)ds + Pj(s|s)a'(s){R(s)R'(s)}'l
x{dy(s)—H(s)ﬁj(s|s)dt}
dap. (s|s)
(4.25) '*%;_=Amﬁﬁﬂﬂ+Pfﬂﬂyw)+Mﬂ0@)

_ pj(sls)H'(s){R(s)R'(s)}_lﬂ(s)Pj(s[s),

where Pj(s[s)=cov.[x(s)IYg,Hj]. This situation tells us that the two
operations, detection and estimation, are not separated but are "strongly'
coupled (cf. Middleton and Esposito[98]; Jaffer and Gupta[51,52];
Lainiotis[85]).

4.5. Simulation Results

In order to examine the proposed method of the detection rule, let
us study an example of digital simulations.

System models. Let us consider the one-dimensional case where the
observation process is given by
rdv(t) Q5t<T0
(4.26) dy(t) =
s(t)dt + rdv(t), Tp<t

and where s(t)=hx(t) and x(t) is generated by



Observation process

[ rdv(t) Ost<t,
dy“)_{s(l)dtord\(t) st

r2=01 15=0.75

y(t)

(d)

1.0 (a) x=0-0 (c)
(b) 10=D-25
(¢) x5=0.5 (b)
el (d) x5 =0.7

t (sec)

Fig.4.2. Sample processes of observation y(t).

(4.27) dx(t) = ax(t)dt + gdw(t), =(1g) = xg (1g<t).

In digital simulation studies, the true value of T3 was set T0=0.75(sec),
and the time interval in which Ty exists was [0,T]=[0,1.25] (sec) which
was equi-divided into 25 intervals (N=25) by the times By (i=0,1,--+,25).
Each parameter was set as r2=0.1, gz=0.2, a=1.0 and h=3.0, and the step-
size of time was taken to be dt=0.005(sec). Figure 4.2 shows sample
values of the observation process y(t) for the four different initial
values: (a) x¢=0.0, (b) x¢=0.25, (c¢) %¢=0.50 and (d) x(=0.70.

The estimation ﬁj(t]t) which is necessary to compute the likelihood-
ratio A is recursively obtained by
(4.28) at, (e|t) = ag, (t|O)de + p (tlt)hr-z{dy(t)-hi‘:j(t|t)dt}
(3=@1y:-+)

Rj(tjltj) - g

(4.29) dpj (t]e)/dt = 2ap]-(t|t) + 82 = hzr-zpjz(tIt)

__5 5‘_
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where the initial values were given as x0=1.0 and pjo=l.0 for all j.
Cost assigmments. The cost function D and the interval Sij in (4.5)
t
are defined in Appendix D. Hence, fij(YO) given by (4.6) were

t Ey _ . o 2
£y (T}~ 0 £ = eyt N (t|t)+pj(t|t)}

£, 105 = 2 [@-0x2(e]0) + @) lpgHig &, |17

t —
£, = c3T1qij(t|t),
where

qij(tlt) = pj(tlt) + [ﬁj(tlt)—ii(tlt)]z.

In the simulation experiments, cl=60, c2=c3=1 and T1=I=l.25.

Stmulation results. Equations (4.26) to (4.29) were simulated on
a digital computer. Solving (4.23) for the likelihood-ratio A(t,ti),
I(t,t;) which is defined by (4.18) was calculated with use of the costs
assigned above. TFigures 4.3(a) and 4.4(a) illustrate the results of
M(t,ty) for x0=0.25 and x¢=0.70. 1In Fig.4.3(a), only three typical runs
are shown for I(t,0.1), N(t,0.75) and N(t,0.85) which correspond to
respective hypotheses HO.l’ H0-75 and HO.SS' In the figure, by tracing
the history of maxe . I(t,t;) (shown by a dotted line), it is observed
that (Step I) it becomes positive at time 0.90(sec), that is, the decision
was made at tD=0.90(sec), and further that (Step II) the hypothesis HU.BS
can be accepted because II(t,0.85) gives the maximum of II. As the true
value of Ty Was 0.75, the detection error was 0.10(sec).

Figures 4.3(b) and 4.4(b) shows the runs of log-likelihood ratio
1:1A(t.ti), corresponding to the parameters x; as Figs.4.3(a) and 4.4(a).
For these runs, the detection rule for special case was used. 1In the

figures the shaded line shows the threshold ljlpk‘*

* The detection rule A(t:ti)a:ﬂk is equivalent to 1n A(t,t4)> In Pi-



Table 4.1. Detection Results of Hypothesis Test*

Detection Accepted Decision Detection  Delay of

(8/M1 Rule Hypothesis  Time tp Error Decision
max Il Hy 85 0.905 0.100 0.155
(a) O E
max A Hy gs 0.905 0.100 0.155
max I Ho 85 0.900 0.100 0.150
(b) 2.5 :
max A Hy gs 0.895 0.100 0.145
max I Hy 20 0.875 0.050 0.125
(e) 5 i
max A By 85 0.885 0.100 0.135
max I H 0.855 no error 0.105
@) 7 0.75
max A Hy 5 0.875 no error 0.125

* Tn the digital simulations, the true hypothesis was Hpy 75.

Comparative aspects are given in Table 4.1 for the two detection
rules given in Sec.4.3, with the other simulation results. For convenience
of discussions, let us define the following ratio similar to the signal-

to-noise ratio by

S(To)dt hxo

r2

(4.30) s/ 4

e

(rdv)?2
Several facts are pointed out from Table 4.1. First, in order to make the
decision sufficient informations are needed regardless of the ratio (S/N)j.
Second, the detection error becomes smaller as (S/N)p becomes large.

This means that the larger the ratio becomes, the more detectable does

the signal become. Moreover, it is seen that the detection rule for
max Il gives better consequences for all ratios than one for max A; that is,

the detection errors are less smaller than the other. This is due to



the fact that the detection rule using Il considers the costs reflecting

detection and estimation and the other does not.

From the results obtained it is concluded that the proposed detection
rule performs well and is useful for detection of the signal which is

generated by a class of dynamical systems with unknown initial time.

4.6, Discussions and Summary

Formulating a multiple alternative hypothesis test, a solution of the
method has been presented for signal detection generated by the dynamical
system whose initial time is unknown. The estimation of the signal is
performed by the detection-theoretic approach; i.e. only the estimation
for which the decision is made is accepted and rest are rejected. An
example is given of the application of the proposed detection rule to
the signal detection, indicating its feasibility to engineering problems.

In this chapter, for the purpose of better understanding of the
problem, dynamics of the system and observation are limitted to the linear
case. When one or both of the dynamics are nonlinear, then the nonlinear
filtering theory is requiied. The filtering problem of nonlinear systems

is the topics in the following chapter.



CHAPTER 5. STATE ESTIMATION FOR NONLINEAR DYNAMICAL
SYSTEMS

5.1. Introductory Remarks

When we want to design a control system, the designer has to establish
first a procedure to nonlinear filtering as pointed out in Chap.l, Sec.l.2.
In Sec.5.2 to Sec.5.4, the author establishes the approximate filter
dynamics based on the stochastiec linearization technique reviewed in Chap.3
for the nonlinear systems with state-independent and/or state-dependent
noise or under state-dependent observation noise whose models are given
in Chap.2, Sec.2.3.[126,129-133,135,136,140,143] Some comparative
discussions of the approximate filter dynamics obtained here with another
approximate filter dynamics based on the Taylor series expansion[l1l] are
demonstrated, including numerical aspects performed by digital simulation
studies. Futhermore, in Sec.5.5, an analytical study for performance
evaluation is developed in order to provide deeper insight into the
ramifications of approximation techniques with a variety of digital
simulations[134], and the proposed method of state estimation is particu-

larly emphasized.



5.2. State Estimation for Nonlinear Systems with State-

Independent Noise

In this section, an approximate filter dynamics is given for nonlinear
systems with state-independent noise. The mathematical model is specifieqd
by the system ip defined in Def.2.2 (Chap.2, Sec.2.3),.that is, the dynami--..

cal system and the observation processes are respectively represented by

(5.1) dx(t) fle,x(t) 1dt + G(t)dw(t), x(to) = x

Q
hit,x(t)]dt + R(t)dv(t), y(to) = 0.

: le

(5.2) dy(t)

Expanding the nonlinear function f in (5.1) and using the stochastic

linearization reviewed in Sec.3.2, Chap.3, we have
(5.3) £le,x(6)] = a(t) + B(e){x(t)-%(t|t)} + e(r),

where e(t) denotes the collection of n-dimensional vector terms. In (5.3),
a(t) and B(t) are coefficients of the expansion determined by the specific
way that the conditional expectation of the squared norm of e(t) condi-
tioned by Vt, E{ﬂe(t)“2|yt}, becomes minimal with respect to a(t) and B(t).
The necessa and sufficient diti f i 2

ry cient con ons for mlna(t),B(t)E{"e(t)l |ye} are

given by

(5.42)  a(v) = BLE[t,x(D)]]y,} & Fle,x(t)]

(5.4b) B(t) = E{[f[t,x(t)]-f[t,x(t)]][x(t)—ﬁ(t[t)]’|yt}P_1(t[t),
where

(5.4¢) P(t|t) = cov.[x(t)IVt].

Using a(t) and B(t) determined by (5.4), (5.1) can be approximated by the
following quasi-linear stochastic differentials of Ito-type:

(5.5) dx(t) = B(t)x(t)dt + {a(t)-B(t)R(t|t) }dt + G(t)dw(t).

The same procedure of the linearization is applicable to the observa-

tion process given by (5.2). Through the expansion of the function h in
the form,

(5.6) hle,x(0)] = hy (&) + H,(e) {x(t)-%(t| )} + e, {t),

the following conditions can easily be obtained so as to minimize



E{Eeh(t)ﬂzlyt} with respect to hl(t) and Hz(t):

(5.72)  h (t) = p{hlt,x(0)]]y,} & Blt,x(0)]

and

(5.7)  Hy(t) = B{IhIt,x(0) 1-ale,x(D11x(6)-R(e| 1" |y, )27 (e[ ©).
For the observation process (5.2), we have

(5.8) dy(t) = Hz(t)x(t)dt + {hl(t)—Hz(t)i(t[t)}dt + R(t)dv(t).

We assume that the conditional pdf p{x(t)lyt} is Gaussian with the
mean value %X(t|t) and the covariance matrix P(t|t), i.e.
A A
, . 2 2 .1 x 2
(5.9) p{x(t) |y .} = (2m) "|P(t|t)| “exp{—5|x(t)-x(t|t)] ¥s
t 2 e (e )

With the help of (5.9), both a(t) and B(t) can be obtained in the form,

(5.10) a(t) = a(t,x(t|t),P(t|t))

and

(5.11a)  B(t) = B(t,%(t|t),P(t|t))

or
da, (t)

(5.11b) by;(B) =5§7ﬂ17'

Similarly, (5.7a) and (5.7b) become

(5.12a) hy (£) = by (&,%(t[ ) ,P(t]1))

and

(5.12b) H,(t) = Hz(t,ﬁ(t]t),r(t[t)

A striking fact is that the random variables a(t) and B(t) are not

independent but depend mutually on the state estimate x(t|t) and the error

covariance matrix P(t|t). From this point of view, in reality, more precise

symbols, a(t,ﬁ(t[t),P(t[t)) and B(t,i(t’t),?(t|t)) should be introduced.
However, for economy of description, we merely denote these by a(t) and
B(t) without indicating the dependence on both ﬁ(t|t) and P(t[t). Both
hj(t) and Hy(t) also follow this symbolic convention.



The problem considered in this section is to find the minimal variance
estimate of the state variable x(t), provided that the process y(s) for
tgssst is acquired as the observation process. This has already been
solved in Ref.[126]. The result is

" -1
(5.13a) ag(t|e) = £[t,x()1dt + P(t|D)H," (D) {R(OR' (D) }
x {dy(e)-hle,x(r) 1t}
with
(5.13b) x(tol ty) = E{x(ty)},
waere
(5.14) P(t|t) = cov.[x(t)|vt].

This is the solution to the differential equation,

(5.15a) inELEl

Tk B(£)P(t]t) + B(t|t)B' (£) + G(E)G" (1)
- Pt O)R," (B {R(DR' ()} R, ()P (e[ ©)
with
(5.15b) P(tolto) = cov. [x(t)].

Equations (5.13) and (5.15) describe the dynamic structure of a quasi-
linear estimator for generating a current estimate i(t]t) with the preas-

signed initial wvalues, x(tolto) and P(t0|t0).

5.3. State Estimation for Nonlinear Systems with State-Dependent

Noise

In this section, an approximate filter dynamics is established for
the system whose intensity of the stochastic disturbance depends on the
system states. Such systems stated above are called systems 'with state-
dependent noise." Physical examples of state-dependent noise are found
in [94].

For stochastic systems with state-dependent noise, McLane[92] solved
a filtering problem of linear dynamical systems with state-dependent noise

in a framework of linear filtering theory.

The general structure of the system is the system I,y defined in



Def.2.3:

(5.16) dx(t)

fle,x(t)]dt + Go(t)dwl(t)

+ G[t,x(t)]dwz(t), x(to) = x §

(5.17) dy(t) = h[t,x(t)]dt + R(t)dv(t), y(to) = 0.

In particular, the state-dependent noise term considered is given by
n
(5:18)  Clex(B)] = ] x, (65 (0,

where Gi(t) is an nxdz parameter matrix. The type given by (5.18) was
extensively used in [159], [92] and [93].

Although the system equation (5.16) is the version of the Itd sense,
it is well-known that there is another version to (5.16); i.e. if the
stochastic equation (2.1) is interpreted in the Stratonovich sense, then

the equivalent It6 equation is presented, in a component-wise one, by
(see Sec.2.2, Chap.2)

d2
1 n
(5.19)  dx,(£) = [£(t,%) +3 (6,0 ] 4 516601 Jat
. . 2 kzl jzl kj o=
dy do
* JI [Go ()1 4wy 4 (£) + jzlrctc,x)iijdwzj(t).

Excellent discussions of the relation between Itd and Stratonovich

stochastic integrals are found in [54, Chap.4]. It is obvious that the

difference between (5.16) and (5.19) is the existence of the term in (5.19),

1 5 % d
(5.20a) I I lete,®)] PR CICROD PRE
2 k=1 j=1 X ij
For convenience of discussion, with the help of (5.18), we shall

write (5.20a) as

9 n ;2 1}':1
(5.20b) (%), 8 (G (6], [G (1 .x (),
5 kzl j=1 7=1 Gk 1 ki“l

and define an n-vector by



(5.21) (sz) a [(sz)l,- meliy (_sz)nl Ty

Using the relation,

n d3 n
(5.20c) kzl jZ1 Zzl[Gk(t)]ij[Gl(t)]ijl(t)
n dy o
- jgl kzl zéllGZ(t)]ik{Gj(t)]kaj(t),

write (5.21) as
v

(5.22a) (sz) = sz,

v
where G2 is an nxn-matrix whose (i,j)-th element is given by

mz d2 g
5.22b G'l.,. = G, (t G,(t .
S TR A MCHC N
Bearing in mind (5.22a), it is convenient to express (5.16) and (5.19)
in the following form,

(5.23) Bute) = LEbead + %xczx]dt + Gy (t)dw, (£)

+ iglxi(t)Gi(t)dWZ(t)’

where is a parameter taking its values 0 or 1 and indicates whether the
presented stochastic equation might be interpreted in the sense of Ito or
of Stratonovich according to y=0 or y=1.

Note that if x=0, then (5.23) is equal to (5.16), or if x=1,
then (5.23) is equal to (5.19). Equation (5.23) is used for presenting
the two different models, (5.16) and (5.19).

The initial condition, x(to), for (5.23) is assumed to be a random
variable having a zero mean and a covariance matrix P(tolt0)=E{x(t0)x'(t&}-n.

Applications of the stochastic linearization technique to the

functions f and h in (5.19) and (5.17) yield the quasi-linearized
stochastic differentials,



v
(5.26)  dx(t) = [B(E)x(t) + {a(t)-B(DR(E| 1)} + 2xC xldr

+

n
GO(t)dwl(t) + ilei(t)Gi(t)dwz(t),

(5.25) dy(t) = [hy (E)+H, () {x(t)-(t| )} ]dt + R(t)dv(L).

We shall proceed to solve the problem including computation of the
state estimate X(t|t) and the error covariance P(t|t).

By a simple calculation, the term, B(t)x(t)+%£&2x, in (5.24) is
rewritten as follows,

"

(5.26a)  B(t)x(t) + %XGZX - B (0)x(0),
where %X(t) is an nxn-matrix whose (i,j)-th component is defined by

n v
.26 [B, (0], 8 BB, + e,

ij
Let ¢(t t ) be the formal fundamental matrlx associated with the homoge-

neous dlfferentlal equation, dx(t)/dt—B (t)x(t). Although (5.24) involves
the state-dependent noise term, it is a simple exercise to show that (5.24)

is precisely interpreted by

(5.27) x(t) = E(t,to)x(to) + f: 3(t,s) {a(s)-B(s)%(s|s) }ds
0

t t v
* ftow(t,S)GO(S)dwl(S) i £ El@(t :8)x, (8) G, (s)dw, (s).
i

Let the second term on the right-hand side of (5.27) be
t ~
(5.28) r(t) = 'ft d(t,s){a(s)-B(s)x(s|s)}ds.
0
Introducing a new stochastic process g(t) defined by

(5.29) g(t) = x(x) + z(v),

and combining (5.27) with (5.29), it follows that

(5.30) £(t) = a(t,t o) x(ty) + f ¢(t §)Gy(s)dw, (s) +



=
+
J'to i

e~

£¥(t,s)lgi(5)-gi(s)]Gi(s)dwz(S),

where the relation x(t;)=g(t;) has been used. Then the g(t)-process is

of an Ité-type and the stochastic differential is
(5.3 de(e) = By(DE(e)de + Gyt)dwy (£)
n n

+ iZlgi(t)ci(t)dwz(t) - iglci{t)Gi(t)dWZ(t)'

On the other hand, it follows from (5.25) that

(5.32) y(t) = ftoﬂz(s)x(s)ds + fﬁb{hl(s)—ﬂz(s)i(s|s)}ds

+ jtou(s)av(s).

Let the second term of the right-hand side of (5.32) be ;y(t) and define
ny(t)éy(t)-;y(t). Then it follows that

(5.33) dny(t) = Hy (©)x(t)dt + R(t)dv(t), “y(to) = 0,

Furthermore defining a new stochastic process by its stochastic differential,

(5.34a) dn(t) = dny(t) + Hz(t)c(t)dt, n(to) =0,

equation (5.34a) becomes

(5.34b) dn(t) = H,()e(t)dt + R(t)dv(t),

where (5.29) and (5.32) have been used. Since the g(t)-process is Yor
measurable, it follows from (5.29) that

(5.35) Belo) & Bl |y} = &(t]e) + £(o).

Let Ht be the cg-algebra of w sets generated by the random variable n(s)

for to<s<t. Since the n(t)-process is Ht—measurable and the y(t)-process
yt—measurable, it follows that

(5.36) BLE(O) Y} = BE(D[H Y = E(t|v).

We shall consider that the E(t)-process is the fictitious state



variable determined-by (5.31) and that (5.34) denotes the observations
which are made on the g(t)-process. This situation implies that the
problem is to find the best estimate, E(t|t), of g(t) based on the g-
algebra Ht'

In order to obtain the current estimate é(t]t), let the optimal

estimate of g(t) be generated by
(5.37) dE(t|t) = F(£)E(t| ) + K(B)dn(t), E(ty|ty) = 0.

The solution of the above-mentioned class of linear filtering problems

is achieved by use of the well-known Wiener-Hopf equation, i.e. [69,17]
(5.38) E{[g(t)-E(t|t)]dn'(s)} = O

for all t0§s<t. Computing the stochastic differential of g(t)-é(t]t)
in (5.38) and using the relation E{-}=E{E{~]Vt}}, it suffices to show
that

(5.39)  E{dg()dn'(s) |V, } = E{dE(t|t)dn' ()|}, rpss<t.

Using (5.31) and invoking the fact that wl(t) and wp(t) are independent
of dn(s) for se[to,t), the left-hand side of (5.39) becomes

(5.40) ELAE(t)dn' (s)|V.} = E{B, () E(t)dn’ (s) |V, }at.
t X £

On the other hand, by using (5.34) and (5.37), the right-hand side of
(5.39) becomes

(5.41) E{dE(t|t)dn " () |y} = E{F(t)E(t|t)dn' (s) |V }dt

+ E{K(0)H, (1) E(t)dn' (s) |V, }dt,

L4 ¥
because v(t) and dn(s) are mutually independent for sa[to,t]. Since By (t),
Hz(t). F(t) and K(t) are Vt-measurable, it follows from (5.40) and (5.41)
that

(5.42)  [By(©)-F(£)-K(D)H, (t) IE{E(t| )" (s) |V} = O.

Consider the integral form of (5.37).
(5.43) E(t|t) = [§ A(t,8)dn(s),
0

where A(t,s) is an nxn-matrix associated with F(t) and K(t). Combining
(5.42) with (5.43), we have



t Ay . [ = 0
(5.44) th [Bx(t)—F(t)—K(t)Hz(t)JA(t.T)E{dn(T)dn (s) ]y} 4
0

or equivalently,
(5.45)  [B,(6)-F()-K(t) K, (£)JACE,T) = O
for tystT<t. Thus
Y ~
(5-47) dg(t|t) = By (£)E(t])dt + K(t){dn(t)-H,(t)g(t|c)dt}.

It is a simple exercise to show that the optimal filter gain is given
by [69]

(5.48) K(t) = PE(tlt)Hz'(t){R(t)RF(t)}"l,

where Pg(t|t)=cov.[€(t)lvt].

Bearing in mind (5.35) and the definition of Ps(t]t), it follows that
(5.49)  R(t|©) & cov.x(v)]y,] = P (t|0).
Substituting (5.34) and (5.48) into (5.47) and using (5.26), (5.28), (5.29),
(5.35) and (5.49), we have

(5.50a)  ak(t|t) = [£[t,x(0)] + 2xc?R]dt

+ P(t]t)Hz'(t){R(t)R'(t)]_l{dy(t)—ﬁ[t,x(t)]dt},
(5.50b) i(tolto} = E{x(t)} = 0,

where the relations (5.4a) and (5.7a) have also been used. The associated

error covariance P(t|t) is determined by

v
(5.512) LD _F (t)p(efe) + B(e| 0B, (0) + Gy (£26," (£)
+ GIQ) - P(t|)H," () R(IR' ()} MH ()R (e 1),
(5.51b) P(ty[ty) = cov.[x(t )],

where G[Q] is an nxn-matrix defined by

ne-

(5.52) G[Q] E{(izlxi(t)Gi(t))f ¥ x,(06," () ]y}

=1

n

n
jzl izl[Q(tlt)]ijGi(t)c

j'(t).



The nxn-matrix Q in (5.51) is defined by

(5.53) a(e]t) = Blx(O)x"(0)]y,}
and determined by
"]
(5.54a) €N B,Q + Q%X' + a%' + k%a' - Bxx' - XX'B'

dt

+ GOGO' + G[Q],

(5.54)  Qtg|ty) = Elx(ry)x' (£}

Equations (5.50), (5.51) and (5.54) describe the dynamic structure
of an approximate filter for generating a current estimate i(t|t) with
the given initial values, i(to|t0), P(tolto) and Q(tolto)- From the
results obtained it is learned that if the system dynamies is linear
and the observation mechanism is also linear, then the filter dynamics
coincide with ones ohbtained in [92] where the stochastic integral is

interpreted in the Stratonovich sense.

5.4. State Estimation for Nonlinear Systems under State-Dependent

Observation Noise

5.4.1. System Models and Filter Dynamics

This section is concerned with an approximate filter dynamics for
nonlinear stochastic systems under noisy observations, where the
intensities of the system and observation noises depend on the system
state. Physical examples of state-dependent noise can be found in the
operation of radar sevo systems, aerospace systems and chemical process
control systems (for more details examples, see [94]).

We consider first the system dynamics of the type E3F in Def.2.4,
that is the system dynamics is a nonlinear vector stochastic differential

equation of the form,

(5.55) dx(t) = f[t,x(t)]dt + Go(t)dwl(t) + dW, (£)x(t),

x(to) = X,

The observations are made at the output of the nonlinear system

with additive Gaussian disturbances. The mathematical model is given by



hlt,x(t)]dt + Rg(t)dvy (t) + avy(e)r[x(t) ],

(5.56) dy(t)

y(tg) = 0,

where r(x) is an n-vector valued nonlinear function of x.

The essential aspect of the problem considered here is the existence
of the third term of the right-hand side of (5.56) which is regarded as
a term of the "state-dependent observation noise." Tf the state-dependent
noise is not involved in an observation channel the nonlinear filtering
problem has already been solved in Refs.[115], [78] and [165] and several
methods of establishing approximate filter dynamics have been proposed
[4,80,111,126]. However, the existence of the state-dependent noise
term brings a difficulty to compute the time evolution of conditional
pdf of the system state, based on the Bayesian approach. Furthermore,
undoubtedly, the resulting filter dynamics does not suffice to realize
only the first two moments even if the functions f(t,x) and h(t,x) are
linear.

Up to the present time, a few papers deal with the filtering problem
of linear dynamical systems[92]. In [92], McLane considered the filtering
problem of linear dynamical models with both the state-dependent system
and observation noises and reduced the problem to solve the Wiener-Hopf
equation under the assumption that the intensity of the state-dependent
noise is not so large as the process becomes non-Gaussian.

In the sequel, for convenience of theoretical development, the case
where the influence of the state-dependent observation noise is propor-

tional to the system state. In (5.56), this situation implies
(5.57) r(x) = x.

Thus, instead of (5.56), the following model is given:

(5.58) dy(t) = hlt,x(t)]dt + Ry(t)dvy(r) + dv, (t)x(t).

The problem is to find the minimal variance estimate of the state
x(t), provided that the process y(s) for tp<s<t is acquired as the
observation process.

With the applications of the stochastic linearization to the

functions f and h, the original processes (5.55) and (5.58) are



approximated by

(5.59) dx(t) 2 B(t)x(t)dt + {a(t)-B(t)&(t|t)}dt
+ Go(t)dwl(t) + dw, (t)x(t),
(5.60) dy (t) X Hz(t)x(t)dt + {hl(t)-Hz(t)ﬁ(t|t)}dt

+

Ro(t)dvl{t) + de(t)x(t).

Although both the nonlinear fumctions f£(t,x) in (5.55) and h(t,x)
in (5.58) are respectively approximated by the linear functions, the
state-dependent noise terms sz(t)x(t) and dVZ(t)x(t) are still remained
and these render the processes non-Gaussian. However, when the intensity
of the state-dependent noises is small, the stochastic linearization is
plausible and we may still assume that the conditional pdf is approximated
to be Gaussian with the mean value ﬁ(t|t) and the covariance matrix
P(t|t) as given by (5.9).

Equations (5.59) and (5.60) are the basic stochastic differentials
of Ito-type for the development of the following discussions.

In the case where the state-dependent noise terms sz(t)x(t) and
de(t)x(t) in (5.55)and (5.58) are identically zero, the suboptimal
filtering problem is solved in Sec.5.2, via the stochastic linearization
technique, and further the filtering problem of the special case where
the state-dependent term is given by (22=lxici)dw2(t)’ instead of
dwz(t)x(t), is solved in Sec.5.3.

Based on these researches and the Gaussian approximation (5.9), we

may assume that
(5.61) d&(t|e) = £[t,x(r)]dt + K(t) {dy(t)-A[t,x(t)]dt},

where the nx/-matrix K(t) is determined so as to minimize the conditional
expectation of square-norm of the estimation error, E{”x(t)—i(t|t)“2|yt}.
Combining equations (5.59), (5.60). (5.61) with (5.14), it follows that

the associated error covariance matrix P is the solution determined by

] ¥ 1 T
‘ — = - - +
(5.62) ddIt BP + PB KH,P - PH,'K GOGO

+ 9[Q] + K{RORD'+A[Q]}K',

where $[Q] and A[Q] are nxn- and IxI-matrices whose respective (i,j)-



element is given by

rn
k§1¢iquk for 1=j
(5.63) {¢[Q]}ij -
O for i#j ]
( n - s
kzllijqkk for i=j
(5.64) {A[Q]}ij = <
0 for i#j,

and where qij is an (i,j)-element of the matrix
(5.65) ace|v) & Bxx'(0)]v 3,

and this satisfies the differential equatiom,

(5.662) 3= BQ + QB' - BER' - &X'B' + ak' + Ra'
+ GG, + olal,
(5.66b) Qtglty) = B{x(t )x"(t)}.

Here consider the scalar quantity
5.67)  Efjx(t)-x(e[0)] *|y,},

or equivalently, tr.{P(t]t)} as a measure of the filter performance. It
is obvious that, in (5.62), if the matrices B, Hy, Gys Ry 2[Q], AlQ]
and,P(t0|t0) are assumed to be preassigned, then the value of tr.{P(t|t)}

will depend upon the choice of the filter gain matrix K(r) for t,<t<t,

0_
and that, minK(T) tr.{P(t[t)] can be evaluated. Thus, the expected

question is that, for t.<t<t, how the matrix K(1) should be chosen so as

ID.....
to minimize the "cost functional" (5.67). Although a trial has been
made on a linear time-varying dynamical system[3], use will be made of

the dynamic programming method in the sequel.

To do this, at present time t, for every fictitious time T (tOEIﬁF)=
we shall define a minimum cost functional,
(5.68) V(t,P_) & min er.{p(e|D)],
T
K(t)

where PT=P(T]T). Applying the principle of optimality to the fumectional,



we have

5.69)  V(1,P) = min {V(T+dr,P +dP )}.
( T KD ¥R

Expanding the right-hand side of (5.69) into a Taylor series and neglect-
ing the higher-order term than o(dtz), it follows that

(5.70)  V(t,P_) = min {V(1,P) + 2udr + tr.{2vdp }},
T T 3T P Tt
(1) T
where
n n
.7 erdfaryd 7Y —%g——dpi_.
T i=1 j=1 P33 M

Cancellation of the same term V(T’PT) from both sides gives

EAY sV
. o A P + L P - ' '
(5.72) = m%:)tr {aPT[Br JBB -KH, P -PH, 'K

] 1 L] 1]
+GOTGOT +¢[Q]T+KTROTRUT KT +KTA[Q]TKT 1,

where the subscript T indicates the wvalues at time t. Therefore, with

the concept of a gradient matrix[3], from (5.72), we have

(5.73)  K() = B(r| OB (D {Ry (DR, (D+Ala] 37, ¢

<t<t.

0.-
Then, by letting t=t, the optimal filter gain in (5.61) becomes

(5.74)  K(t) = P(E| DB, (D{R ()R ()+ALQ] 37

Therefore, combining (5.61) and (5.62) with (5.74), the optimal filter
dynamics and the associated error covariance matrix equation are

respectively given by
(5.75a) ax(t|t) = E[t,x(t)]dt + P(tlt)Hz‘(t){RO{t)RD'(t)M[Q]}'1

x{dy(t)-h[t,x(t)]dt},

(5.75b) x(ty|ty) = Elx(ty},
5.762)  LELEE - g(e)p(e| ) + B(e[)B' (6) + 6,(£)G," () + ola)

L) 1T _1
- P(t] B, (DR (IR ()+A1Q]}H, ()P (t] £)



(5.76b) P(tolto) = cov. [x(t) ).

Equations (5.75), (5.76) and also (5.66) describe the dynamic structure
of an approximate filter for genmerating the current estimate x(t|t) and
the associated error covariance P(t|t) with the given values, ﬁ(t0|t0),

P(ty|t,) and Q(ty|ty) as initial conditioms.

5.4.2. An Illustrative Example and Comparative Discussions

For the purpose of exploring the quantitative aspect, we shall
consider the one-dimensional case where the nonlinear dynamical system
and observation process are respectively given by the following stochastic

differential equations:

(5:77) dx (ax+EBx3)dt + xdw

27

(5.78) dy = xdt + xdv

2!

where o and B are constants and € is a sufficiently small parameter, and
where, in this example, the portions of state-independent system and
observation noises are assumed to be zero. An application of (5.4a) and

(5.4b) to the present case gives us (see also Appendix A, Table A.1)

(5.79a) a(t) = ak + eBE(R%43p),

(5.79b)  b(£) = o + 3e(3%4p).

Using (5.79a), (5.79b), (5.75a) and (5.76a) the approximate filter

dynamics and the associated covariance are determined by

(5.80) &k = {aRteBR(EH3p) 3 + i) L (ay-2dt),
and
(5.81) g%-= 2(a+3esB 24P Ip - P2OAQ) T + 4q.

Furthermore, from (5.66a), it follows that

(5.82) g%-= z{u+3es(ﬁ2+p)}(q—ﬁ2) + 2{ai+esi(ﬁ2+3p)}i + ¢q.

Equations (5.77) to (5.82) are simulated on a digital computer with
the subroutine for the generation of random disturbances wz(t) and vz(tL

The computer program for the simulation follows completely the description
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given later in Sec.6.6, where the simulation method is described in
detail associated to an optimal control, with a constant partitioned
time 6j=0.01(sec).

The results of simulation studies are shown in Fig.5.1, 5.2 and 5.3
with a variety of parameters, where both the values of o and B were fixed
to be -1.00 and 1.00 respectively. The state—dependent system noise
covariance was ¢2=0.20 for all the experiments and the observation noise
covariance was 12=0.10 for the experiment shown in Figs.5.1 and 5.2, and
A2=l.00 for the experiment shown in Fig.5.3. The initial value of the
state are approximately assumed to be Gaussian random variables. The
true run of the system state and the quasi-linearized run are shown in
Figs.5.1(a), 5.2(a) and 5.3(a). The associated p(t|t)- and q(t|t)-runs
in these three experiments are also shown in Figs.5.1(b), 5.2(b) and
5.3(b).

Figures 5.4, 5.5 and 5.6 show the results of another possible
method of approximation based on the Taylor series expansion up to the
second order[111,126]. The filter equation and the associated covariances
are shown in the figures. From a variety of runs shown in these figures,
the accuracy of the filter derived by the stochastic linearization
method contends with one of the other filter obtained by the Taylor
series expansion method.

From these experiments, it can be obtained that as the intensity
of the observation noise becomes large the accuracy of the estimation
becomes poor (Figs.5.1, 5.3, 5.4 and 5.6) and that as the quantity of
the nonlinearity becomes large the accuracies of the estimation and quasi-
linear process become wrong (Figs.5.1, 5.2, 5.4 and 5.5). These
experiments reveal that the estimation accuracy depends on both nonlinear-
ities and the intensity of observation noise.

We shall proceed to develop comparative discussions of the evaluation
of the filter performance by using the Monte Carlo trials. As a

qualitative measure of the performance evaluation, we shall consider

1= ey-2 D | 0932,

Il B~122

(5.83) el = %
i=1

where x(l)(t) and ﬁ(l)(t]t) denote the i-th true sample run of the system
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Fig.5.7. Performance evaluation for the two filters.

state and that of the estimate respectively, and N is the number of
sample runs to be averaged. Both figures 5.7 and 5.8 show the e(t) rum,
where the values of parameters correspond to those of figures 5.2, 5:5
and figures 5.3, 5.6. In the figures, the performances cs(t) of the
approximate filter dynamics derived by the stochastic linearization
method and cT(t) of the approximate filter dynamics derived by the
Taylor series expansion method are compared with each other. It can be
observed that the filter dynamics derived by the Taylor series expansion
shows a slightly better performance than that derived by the stochastic
linearization technique. However, it should be noted that the stochastic

linearization method requires the expansion of a nonlinear function up

_8 4_



-

1.0+

051 X(0)=0.9830 y(0)=0 (0/0)=0
120,20 2%=1.00

o=-1.00 B=100 g=010

»

9

= 08 N=20

@

(%]

=

)

£

G

E

@ 041 Stochastic linearization

Taylor series expansion

0.2
0

1.0 20 30 (sec)

Fig.5.8. Performance evaluation for the two filters.

to the first order of the error x-X as shown in (5.3) while the Taylor
series method requires the expansion up to the second order of x-X.
Consequently, it may be emphasized that the approximate filter dynamics
derived by stochastic linearization method can compete with another

filter dynamics through the first order expansion in the system dynamiecs.

5.5. Performance Evaluation of Approximate Filter Dynamics

This section is concerned with an analytical study on the performance
evaluation for the purpose of providing deeper insight into the ramifi-
cations of approximation techniques to nonlinear filtering problems.

Concretely speaking, the problem considered here is to evaluate the



filtering error defined by e(t)=x(t)-&(t|t). From practical viewpoints,

it is useful to compute the first, the second and more higher order
moments of ¢(t). However, the result of theoretical contributions to
nonlinear filtering problems reveals that an exact realization of optimal
nonlinear filters requires infinite dimensional filters which are practi-
cally impossible to realize those[16,78,115,123,158,185]. This implies
that the precise evaluation of the filtering error is almost impossible
and that both the construction and the related performance evaluation
of approximate filter dynamics are highly important. In [7], a trial
has been reported on the approximate evaluation of the filtering
performance by assuming an approximate filter dynamics. In this section,
however, the approximate filter dynamics will be established first and
then the approximate evaluation of the filtering error will be performed.
In order to evaluate the filtering error e(t), the two approximate
estimation processes are considered, which are respectively generated by
the filter dynamics derived by (1) the method of stochastic linearization

and (2) the method of Taylor series expansion.

5.5.1. System Models and Filter Dynamics

The mathematical models are chosen to be I defined in Def.2.2, i.e.

1F

(5.84) dx(t) flt,x(t)]dt + G(t)dw(t),
3 le

(5.85) dy (t) ht,x(t)]dt + R(t)dv(t).

Throughout this section, two Greek letters ¢ and B as subscripts
in vectors or matrices are used to distinguish them from other vector
and matrices of the same genre. For example, iu(t|t) and Pa(tlt) are
the approximate estimation process and the associated error covariance
matrix derived by the method of stochastic linearization technique and
these symbols are used to distinguish from the true estimation process
&(t|t) and the error covariance P(t|t). On the other hand, iﬁ(t[t) and
PB(t|t) are respectively the same quantities as mentioned above but
derived by the method of Taylor expansion.

The method of stochastic linearization technique used in the previous
sections is also introduced for the purpose of deriving the approximate

filter dynamics. Expand the nonlinear function f(t,x) into



(5.86) £le,x(e)] = a(t) + B(t){x(t)-% (t[t)} + eg(t)

where ef(t) denotes the collection of n-dimensional vector error terms,

and where a(t) and B(t) are respectively the coefficients of expansion
; . 2

determined under the eriterion, mina(t),B(t} E{“ef(t)ﬂ |Vt}. These

coefficients are respectively given by (see Sec.3.2)

(5.872)  a(t) = B{f[6,x(D]1]Y,} & Flt,x(0)]

(5.8m)  B(t) = B{LE(t,00-£(t,1) ] (x-1y) " |V J2 71 (e[ ),

where

(5.88) P(t|t) = cov.[x(t)lyt].

Then the sample path x(t) determined by (5.84) may be approximated by
(5.89) dxo (t) = B(t)xy(t)dt + {a(t)-B(t)x,(t|t)}dt + G(t)dw(t).

The same procedure is applicable to the observation process given

by (5.85). Through the expansion of the function h[t,x(t)] in the form,
(5.90) h[t,x(t)] = h () + Hy () {x()-%,(t[t)} + e (1),

the coefficients are determined by

(5.91a) by (£) = E{h[e,x(0)1]Y,} 8 nle,x(o)]

(5.91b)  Hy(t) = E{[h(t,)-A(t,x)](x-5y) " |V 12 (| ).

The quasi-linear stochastic differential associated with (5.85) is
(5.92)  dyqa(t) = [hy(£)+H, (£) {x(£)-%,(t| ©)}]dt + R()dv(E).

As the author pointed out in Sec.3.2, in order to calculate the
coefficients a(t). B(t), hl(t) and Hz(t), the conditional pdf of the
x(t)-process, p{t,x(t)IVt}, is assumed to be Gaussian with the mean
value %,(t|t) and the covariance matrix P (t|t). By invoking this
assumption, each coefficient listed above may be computed as a function
of t, %a(t|t) and Pa(t|t). Consequently such more precise symbols as
a(t,x,,P ), B(t,%,,P,), etc., should be used. Use of these precise
symbols will begin with the next subsection.

Based on (5.89) and (5.92), the approximate filter dynamics is given
by



|
(5.93) & (t|t) = F[t,x(t)1de + By (t[ O)H," (E){R(DIR' (1)}
x {dy(t)-h[t,x(t)]dt},
where P_(t|t) is the solution of

dPa(t|t)

(5.94) ac

= B(t)P,(t|t) + Py(t|t)B' () + G(t)C' (L)

- P, (£ H, " (D {R(OIR (D} H, (0B, (] ©

with iu(t0|t0)=i(a0|t0)=E{x(t0)} and Pa(t0|t0)=P(t0|to)*COV-[X(tO)}-

5.5.2. Performance Evaluation of the Filter Dynamics

The aim of this subsection is to investigate the possibilities and
ramifications of obtaining a useful analytical method for evaluating the
performance of the approximate filter. To pose the problem for analysis, ,

equation (5.84) is rewritten by combining it with (5.87).
(5.95) dx(t) = [a(t,ﬁa,Pa)+B(t,iu,Pa){x(t)-ﬁu(tlt)}+ef(t)]dt
+ G(t)dw(t).

The error process e(t) for the filtering process ia is defined by

a usual way:
(5.96) e(t) = x(t) - x,(t|t),

where g(t) is an n-vector. Combining (5.93) with (5.95), it follows
that

(5.97) de = [a(t,%y,Py)+B(t,%,,P ) ete ~£(t,%) ldt + Gdw

4 -1 «
- PaHZ‘(t,xa,Pa)(RR') {dy-h(t,x)dt}.
The innovation process (dy-hdt) in (5.97) is expressed by
(5.98) dy - fiCe,x)de = [h) (£,y,P,)H, (t,%,,B,)eve, -fi(t,x) ldt
+ Rdv,
where the relations (5.85), (5.90) and (5.96) have been used. Substitut- -

ing (5.98) into (5.97), we have

(5.99) g - [B—Pauz'(an')'lnzledt + (ate~Dyat -



' -1 _i _ ' 1
- Paﬂg (RR") (hl+eh h)dt + Gdw PuHZ (RR') "Rdv.

Bearing in mind the relations (5.87a). (5.87b), (5.91a), (5.91b) and
the fact that the terms es and e in (5.86) and (5.90) are of 0(52)

respectively, equation (5.99) is approximately expressed by

(5.100)  de = L(t,& ,P,)edt + Gdw - K(t,&,,P,)dv,
where

(5.101)  L(t,k,,P) & B - PgH," (RR) H,

and

(5.102)  K(t,&,P,) & P, () IR,

As the measures of performance evaluation, we shall compute the

mean value and covariance of the e(t)-process, i.e.

[[[=4

(5.103a) m(t) = Ele(t)[x(ty)=x)}

ne>

(5.103b) Q(t) = cov. [e () [x(t )=x,].

From (5.100), it is easily shown that
i X .
(5.104) dt = EolL(t,xy,Py)el,

where EO is an abbreviated symbol of the conditional expectation
E{-]x(to)=xo]. i i

Define the x(t)-process and the covariance matrix by x(t)=Eo{x(t)}
and ?(t)=cov.[x(t)|x(to)=x0] respectively. Both the time evolution of
x(t) and P(t) are precisely computed by (5.84). i.e.

(5.105) d—ﬁg = Eo{f(t,x)} 2 £(t,x)

(5.106) 9%%51-= B {[£(t,0-E(£,01(=%)")

+ EO{(x-E)[f(c,x)-f(t,x)]'} + G(t)G' (t).

Instead of the conditional expectation E{-IVt} in the relations
(5.87a) and (5.87b), if we consider the conditional expectation EO, then,
from (5.105) and (5.106), by a similar method to the stochastic lineari-

zation, it is a simple exercise to show that[132]



- dx
(5.107) &B) | Fe,0 & E;E

o . a(t,x,,P,) =
dfa - - = = - TR

(5.108) ke B(t,Xy,Py)Py + PuB'(t,%q,By) + GG',
where
(5.109a) xa(£) = x(t) = Ej{x(t)}
(5.109b) Py(t) = cov.[x(t)lx(t0)=x0]
and
(5.109¢) B(t, %, Pq) = EO{(f—E)(x—i)'}fa-l.

Noting that Eo{s(t)}=E0[E{s(t)|?t}], both the x(t)-process and Q(t)
are respectively observed as the deterministic process. Then expanding

the (i,j)-th component of L(t,%y,Py) in (5.104) into

n 9L,.
(5.110) L5 (ts%auPe) = 7, (6,%,0) + Zl % g,q(x“k-xk)
E s |
+ =t (g iy ) Rek,
k,m=1 B'Pﬁlkm x,Q T~

where Xk’ ¥ Poxm® Y%m and Zij are components of X,» ;, Pa’ Q and L,
respectively. Deleting the higher-order terms than O(e”) in (5.110),

a component-wise expression of (5.104) becomes

dm n n 23l
i - i i -
: _— = LI o = - .
(5.111) = Eo{jglt 1J(t x,Q) + k§1 s;zi qu(xuk xk)]Ej}

Performing the expectation operation in (5.111), and noting the relation
(5.101), it follows that

dm

(5.112a) at

L(t,x,Q)m

It

(5.112b) [B(t,E,Q)—QHZ'(t,i,Q)(RR')"lHZ(t,E,Q)]m-

On the other hand, from (5.100), (5.103b) and (5.112a), it is
easily shown that



(5.113) ¥ = B {L(t,ky,Po)e (e-m) Hemm)e "L (£, %,,2,)

+ GG' +-Eb{K(t,iu,Pa)K'(t,ia,Pa)}.

Expanding again L and K about X and Q, and neglecting the higher-order
terms of 0(52) in (5.113), it follows that

(5.114) = L(LEQQ + (5,0 + 66 + K(t,%,QK" (£,%,0)

+ <K(t,§,q)32K(t,§,q) : Py-Q>

B |

+

B =

<K(t,%,Q) azK(t ,X,Q) ¢ ﬁu-Q" '

+ <(3K(t,%,Q) 7% 1 B,-0,

where <K(t,§,Q)32K{t,§,Q) : Fm—Q> and <(BK(t,§,Q))2 : ﬁa-Q> are nxn-

matrices whose (i,j)-th component are respectively given by

dy

P | G z
(5.115) —7———ﬁr——J (p 2 —q; k. (t,x,Q)
vel 2,0e1 %19 %|3,q OFm W
and
;2 ¢ akiy ok 4y G e )
3 — = - P o 3
v=1 Z,ﬁFl.axul #,0 axam %x,Q b i

and where Eulm is an (I ,m)-component of the matrix fa. In the one-

dimensional case, equation (5.114) becomes

(5.116) dq

- 2 2. -
4t 2L (t,x,q)q + g~ + k" (t,x,q)

2

37k - ok G e
+ 5| kct,x,q)+(-r—|— )21 (py-a)
9%y X,q Xy [X,q

= 2 22 B =
2b(t,x,9)q + &8 - g r "h,"(t,%,9)

52h

(2 G]e )21Ea)
- _ hy(t,x,q)+(Gz |— Pg—q) -
3xa2 .4 2 Xq lXx,q

Equations (5.112) and (5.114), or (5.116), are the basic equations for
the evaluation of the filter performance. Since ﬁ(t0|to)=E{x(t0)], the
initial condition of (5.112) is m(t0)=0. With this condition, it may



easily be concluded that m(t)=0. The initial value of filtering erro
covariance Q is given by Q(t0)=cov.[g(t0)].

So far, the performance evaluation covered up to the second-orde:
moment. Computations of more higher order moment than the second ords
are obviously required in the case of nonlinear filtering problems.
Although the same procedure as described in this section is applicable
to evaluate higher order moments, an expected difficulty is tedious
calculations. From the viewpoint of practical application, we shall
expect to have so many cases where the performance is almost completec
by evaluating up to the second-order moment or, at best, up to the

third order.

5.5.3. An Tllustrative Example with Comparative Discussions

Let us consider a nonlinear dynamical system whose sample process

is approximated by a scalar nonlinear stochastic differential equation
(5.117) dx = - sinxdt + gdw.

The observation process is simply given by
(5.118) dy = xdt + rdv.

Based on a couple of equations (5.117) and (5.118), the approxima
filter dynamics and the related error variance equation are respective
determined by

A " P - &
(5.119) dx, = - sinxaexp(-ig)dt + por 2(dy—xadt)
(5.120 k... J— 2% 4+ g% - pylr
. ) 3t - 2p,cosx exp(-i—i g - Py r .

The variance equation corresponding to (5.116) becomes

(5.121) %% = - 2q cosﬁexp(—%) + gz - qzr 5

where x is a solution of the following differential equation,

* It is supposed that the noise level is not so high as to satisfy the
existence condition of the solution of (5.117).



% - P
(5.122) % = - sinx exp(-f—),

where p, is given in Table 5.1.

For the purpose of comparative discussions, another approximate
filter dynamics is taken into account which is based on the Taylor series
expansion for nonlinear function.[111,126] For the approximate filter,
the same procedure as mentioned in the preceding section is applicable

and somewhat tedious calculations bring

2 2
dm af 9h 2 =2 1.87fF oh 2 h —2
; R vt M G S ) R
(5 123) dt {ax o 9x |- ety 2[3}:2 =, OX|= 5.2|= T ol
Xg Xg g X8 %g
dq _ 3| . 2 _ 2-25h| 2
(5.124) it - Gxl-ate -ar Gl )
*B *8
2 -2.33n| sh 3%h| ,2,,-
+qr [ﬁ_ﬁ_*’(‘a—_ ) 1(pg-a) »
X7 |xg Xg X Ixg
where ;(B is the solution corresponding to (5.105), i.e.
Table 5.1. Comparison of filter dynamics.
System Dynamiea : dx = - sinxdt + gdw
Observation Mechanism : dy = xdt + rdv
Stochastic Linearization Taylor Series Expamsion
Petimation 4y = - eingeemp(R)dt + por L (dy-2,dt) dig = (- singy + Ipsetngy)de + por ~(dy-2gdt)
:;:'::g: % - lpamiue:p(—-gzg) + gz - puzr-z %9- = - 2p5cmis + 82 - pﬁzr_z
Equation % " B ESF("'%) * 82 - qzr-z %.' = = 2qcosXg + !2 - qzt-z
for where where
Performance = =
Evaluation % I w(__l’z_u) E - - sinig + lisﬂgi‘ﬁﬁ
i'::‘- = - 2P co8® e:p(—%!) + 82 % = - 2pgeosig + .




(5.125) %@= £(t,%g) +%§§§B'

B
and where the one-dimensional case is again considered. Apparently,
both equations (5.112) and (5.116) correspond to (5.123) and (5.124)
respectively, where the symbols m and g were not distinguished by adding
the subscript o and B because no confusion will result. From (5.123)
and m(t0)=0, it also follows that m(t)=0.

The results of application of the Taylor series expansion method
to (5.117) and (5.118) are listed in Table 5.1.

Comparison of twe filter dynamics is found in Table 5.1. Numerical
results are shown in Figs.5.9 and 5.10. In these figures, the solid
curves depict the q(t)-runs computed respectively by (5.121) and the
equation in Table 5.1. Simultaneously, the results of digital simulation

are shown by dotts. In Fig.5.1, the dotts were obtained by computing

N
1 i ~
5.126) g2 § M o-xPelen?,
i=1
where x(i) and ia(i)(t]t) are respectively the i-th sample process
determined by
(5.127) &1 = _ sinx P ae + gaw
and
i (1 P @ £), ~2p (A1) (L)
(5.128) dﬁacl) = - sinx, )exp(——gz——ﬁdt + pa(l)r“ {ay " -x, aty,

and where N=100. In Fig.5.10, the dotts were also obtained by replacing
2, by 3" and using Table 5.1. In the example, the system noise
and the observation noise variance were g2=0.20 and r2=0.10. The initial
value of the state variable was assumed to be Gaussian and that of the
estimation was i(t0|t0)=0.

It should be noted that the Taylor series expansion of the nonlinear
function requires at least the expansion of up to the second order, while
in the case of the stochastic linearization technique, the expansion
tequires only up to the first order of e=x-%. Then, from the numerical

results, it can be said that the approximate filter dynamics derived by
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the stochastic linearization has a pleasant performance and competes

with another approximate filter based on the Taylor series expansion.

5.6. Discussion and Summary

In this section, the approximate filter dynamics has been established
for several classes of systems of ZlF’ EZF and EBF defined in Sec.2.3,
Chap.2. Since the state variables are non-Gaussian stochastic processes
because of nonlinearities of the system dynamics and of the state-
dependent noises for & and I

2F 3
filter dynamics becomes also nonlinear. The basic notion of the

P the precise formulation of the optimal

approximation developed is the linearization techmique outlined in Chap. 3.
In the case where the state-dependent noise is proportional to the
system state, the basic notion mentioned above implies that the infinite
dimensional filter is approximated by the two-dimensional filter consist-
ing of the first- and second-order moments. However, if the state-
dependent noise term is a type of nonlinear function with respect to

the system state, then the approximation procedure will become more
complicated.

In Sec.5.5, an analytical study of performance evaluation has been
developed in order to justify the accuracy of the approximate filter
dynamics. With the help of numerical studies, it can be observed that
the approximate filter dynamics derived by the stochastic linearization
method shows a pleasant performance in comparison with another approximate
filter based on the Taylor series expansion.

In the following chapter, it will be shown that the approximate
filter derived in this chapter plays a useful role to an extensive
application to the scheme of estimation~control for nonlinear stochastic

systems.




CHAPTER 6. OPTIMAL STOCHASTIC CONTROL FOR NONLINEAR SYSTEMS
UNDER NOISY OBSERVATIONS

6.1. Introductory Remarks

During the past decade, the problem of finding the optimal control
has received a great deal of interests as results of the ever-complicated
demand to controls and ever-increasing complexity of the operation of
modern systems. However, most of this work has concentrated on completely
linear dynamical systems, neglecting the effects of nonlinear characteris-
tics exhibited in practice.

There is no need to say that dynamical systems to be controlled
exhibit various kinds of nonlinear characteristics and may operate imn
a random environment whose stochastic characteristics undergo drastic
changes. Thus, the general problem to be solved is to find the control
of a noisy nonlinear dynamical system in some optimal fashon, given only
partial and noisy observations of the system state and, possibly, only
an incomplete knowledge of the system. Under such conditions as linearity

of the dynamical system, noisy observation and performance criterion



given by a quadratic cost functional, it has already been shown that
the optimal control problem and optimal estimation problem of the system
state from the noise-corrupted observations may independently be solved.
[40,55,109,160] However, this is not the case in general for the optimal
control of nonlinear dynamical systems, and the overall problems of
optimal control and estimation must be carried out simultaneously.

Since the establishment of a precise technique for the optimal
control of nonlinear stochastic systems is almost impossible, in this
chapter the author introduces an approximate method which is shown to
play an important role in the realization of a broad class of stochastic
optimal control.

As is well-known, the optimal control is, in general, nonlinear
for the problem of designing controls of nonlinear systems. An exact
solution of the optimal control problem for nonlinear systems requires
the formulation of the stochastic Hamilton-Jacobi-Bellman equation-——a
quasilinear partial differential equation-——whose solution is almost
unobtainable without any suitable numerical method. Problems of any
significant order lead to obviously intractable computational problems.

One approach to solve such an optimal control problem of nonlinear
systems will be approximations to nonlinear functions in some sense by
a certain equivalent linear ones and developments in the linear-quadratic-
Gaussian (1QG) context. The author thus may find a suboptimal control
with use of stochastic linearization technique to approximate the system
by an equivalent linear system. Then the computational technique is
used associated with linear optimal control design, and the computa-
tional difficulties which will arise in solving the stochastic Hamilton-
Jacobi-Bellman equation are by-passed. The resulting control reveals to
be a linear feedback control which is realistic from the viewpoint of
application.

In this chapter, the mathematical formulations for the systems I

1c
and EZC are developed to the cost fumnctional,

(6-D I = BFxD D] + [T Llt,x(6),u() 1ae),
0

which is given in (1.6) (Chap.l, Sec.1.2). The definition of admissible



controls is stated in Sec.6.2, and the basic stochastic Hamilton-Jacobi-
Bellman equation is derived for the functional (6.1) in Sec.6.3.

Sections 6.4 and 6.5 are devoted to obtain suboptimal controls by an
admittedly heuristic approach for nonlinear systems with state-independent
noise and with state—dependent noise respectively. Some aspects are
considered in Sec.6.6 for numerical computations of suboptimal controls
with illustrative examples. In the final section, the prevalence of
stochastic linearization technique is emphasized from the viewpoint of

the computer-—oriented optimal estimation-control systems.

6.2. Definition of Admissible Controls[130]

In this section, let us consider the system EO defined in Def.2.1
(Chap.2, Sec.2.3):

(6.2) dx(t)

flt,x(t)]dt + c[t,u(t)]ldt + G[t,x(t) ]dw(t),

(6.3) dy (t)

hit,x(t)]dt + R[t,x(t)]ldv(t),

where ta[tO,T].

Following [160], we proceed to establish the solution of the
stochastic differential equations (6.2) and (6.3).

Let G denote the class of continuous functions g(t) defined on

[thT] with values in E(n) (n)_

, and Ft denote a functional operator in E
Clearly, if geG, then theG. Furthermore, let | denote a mapping of

[tO,T]xG onto U with the following properties:

(P6.1) For each geG, the functional y(t,g) is Holder continuous

in t (exponent a), i.e.

©.4)  Juce.e-vis. ) <K les]®,  t,selty,T].
(P6.2) For ta[tO,T], the functional Y} satisfies a uniform Lipschitz
condition
(6-5) "w(tsg])‘W(tsgz)“ iKlngl-gzusup’

where the functions gl,gzaG and KO’Kl are real positive

expresses sup norm in G.

cons tants, and where "'lsup

Let y(t,-) be an m-dimensional vector stochastic process, such that



for each te[tO,T], p(t,+) is measurable and
: 2
©.6) [y Blu(e, )] *rae <o,
0

where | - | expresses the norm in E™ . let v be the class of the y(t,.)-
process. For some ye¥, we call u(t) admissible and write ueU, if u(t)=

plt,e), telty,Tl.
Let y be a mapping of [tO,T]xE(n) onto U and let ¥ be a class of

functions @, where & is Hblder continuous (exponent a) in t and satisfies

a uniform Lipschitz condition. We write uelcU, if, for telty,T],
(6.7) u(t) = Plt,x(t|t)]

for some $e¥. In the case where the system states are corrupted by
observation noise, we call the control u(t) given by (6.7) admissible.
With the hypotheses described in Def.2.1 and the additional hypotheses
(6.6) made on the control term in (6.2), it has already been verified
that (6.2) has exactly a unique continuous solution x(t). A precise
interpretation of (6.2) and also (6.3) are respectively given by Ito

who writes them as the stochastic integral equation:

(6.8) x(t) = x(ty) + fzof[s,x(s)]ds + f:oc[s,u(s)]ds
+ [1 6ls,x(s) 1dw(s)
0
and
(6.9) yle) =

y(t,) + Itoh[s,x(s)]ds + IEOR(s)dv(s).

6.3. Stochastic Hamilton-Jacobi-Bellman Equation

The problem in this section is to derive the basic stochastic
Hamilton-Jacobi-Bellman equation in order to find the optimal control
which minimizes the cost functional (6.1). 1In this section and in the
sequel, we shall consider the case where the control term in (6.2) is
clt,u(t) ]=C(t)u(t).

Along the line of attack on the linear regulator problem in the case
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of observation noise free, we suppose that u(t)=y[t,x(t)]. Bearing

this in mind, we proceed to a generalization of the quasi-linear filtering
equation derived in Chap.5. The problem is stated as follows: Given

that x(t) and y(t) have the stochastic differentials, (6.2) and (6.3)
respectively, we derive the stochastic differential of the state estimation
ﬁ(t]t)=E{x(t)]Vt}, for te[tO,T]. This problem is easily reduced to that

in the previous chapter. The result becomes

(6.10a) dx(t|t) = E[t,x(t)1dt + c(t)y[t,x(t)]dt

+ P(t| O, (D {R(OR ()} T {ay (D-Rle,x(t)dc},

(6.10b) ﬁ(t0|t0) = E{x(to)}.
where

(6.11a) P(t|t) = cov.[x(t)[yt]
(6.11b) P(t0|t0) = cov. [x(t)].

Equation (6.10) reveals that the optimal estimator dynamics differs from
(5.13) only by the addition of the Vt-measurable drift term C(t)y[t,x(t)]dt.
It can easily be shown[31] that the filtering process determined

by (6.10a) is a diffusion process with the differential generator,
(6.12) LeV(E,v) = V (£,9) + {E[E,x]+C(0)PIEx]}'V (£,9)

1 1
+ =tr.{Z (t)Vuv(t,v)E(t)}

2

(2) (n)

whenever V is a function defined and of class C on the state space E 5

where
6:13) (o) & P(e[O)H (D {RR' ()} R(E).

Bearing in mind the estimator dynamics given by (6.10), we shall
proceed to obtain the optimal control strategy.
Let the function F[x(T)] in (6.1) be

(6.14) F[x(T)] = Hx(T)Hi,

where F is a positive semi-definite, real, constant symmetric matrix.

Furthermore, let the functiom L[t,x(t),u(t)] in (6.1) be
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2
(6.15) LIt,x(t),u(t)] = "x(t)"i(t) +Au®lgy: 0

where M(t) and N(t) are respectively measurable, locally bounded, positive
semi-definite and positive definite symmetric matrices. From (6.1),

the control problem becomes the minimization of the functional,

6 = = t)| 2 +1||u(t)|]2 Ht| x(t )=x}
(6.16) J(u) = E{Hx(T)uF jto{“x( lM(t) N(t) Y s L
with respect to u(t). We shall consider the functional,

2 T 2 2
(6.17) B{lx@| g + [otlx6)] gy rrlutedl gy asly,ds

for toitiT- Let {Lbe the c¢lass of control,

(6.18) u(t) = ple,x(t|t)]

and write

(6.19) V(t,y.) = min B{|x(D||2 + fT{ux(s)uz aitsx 12, 1as|y,}
’ i 4 é T t M(s) bis,x, N(s) Vls

where is'-'i(sls). and where {5:5} is the process determined by letting
u=y=¢ in (6.10). Since x(s|s) is measurable relative to the sample space
of i(t|t) for t<s, we have[90,137]

E{¢[k(s|s) 1]V} = E{g[&(s]8) ]| %(t] )=c},

where ¢ is an arbitrary measurable function.

Applying the principle of optimality to (6.19), we have
(6.20)  v(t,v.) = min E{|x(D|2 + [Trxo)]?
' ik ¥ F t M(s)

SV ICER] S EAEYCI ISR

e

i BNy + ()2 1ae

+ B g + [ g Ux@]

+l"@(5,is)”§(s)]dsli(t+dt|t+dt)=K+dK}|§(t|t)=K}

Il

. 2 .
i BTy + MBERDIZ  ae +

—-102—



+ V(t+dt etde) | % (| t)=¢}.

Finally, from (6.12) and (6.20), the following functional equation

is obtained,

(6.21) - v, (t,c) = min {tr. {M(£)P(t|t)} + «"M(t)k
+ A" (LL,IN(E) P(t,k) + [a(t)+C(t)$(t.K)]'VK(t,K)
+ Ferdz' (O (6,08 (1.

Performing the minimization of (6.21), we have

(6.22) P°Ctae) = - E%N—l(t)C'(t)VK(t,x).

Substituting (6.22) into (6.21), we have the stochastic Hamilton-Jacobi-

Bellman equation,

(6.23) - Vt(t,K)

tr. {M(E)P(t| )} + «"M(t)k + a' (B)V_(t,k)

- Z%VK'(t,K)C(t)N-l(t)C'(t)VK(t,K)

FEEA2' (DY (6,020}

+

6.4. Suboptimal Control for Nonlinear Systems with State-Independent

Noise

In this section, the system ZO (Eqs.(6.2) and (6.3)) is limitted to
1c° defined by Def.2.5 (Sec.2.3,
Chap.2), that is, we set G[t,x(t)]=G(t) and R[t,x(t)]=R(t) in (6.2) and
(6.3). Then the basic filter equation is given by (5.13) with its

the system with state-independent noise, &

associated covariance equation (5.15). For the system I
differential equation (6.23) still holds.
In order to find a more explicit form for (6.22), we assume that

1c? the partial

(6.23) has a solution
(6.24) V(t,k) = ' I(t)e + 2'a(t) + B(L),

where NI(t), a(t) and g(t) are determined as the solutions of matrix,
vector and scalar differential equations, respectively. Applying (6.24)
to (6.22), the optimal control is then
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(6.25) %@ ,0) = K2 + (1),

where

[

(6.26) K%)= - %N—l(t)C'(t)ﬂ(t)

and
(6.27) 208 = - %N—l(t)c'(t)u(t).

It is a simple exercise to show that, for toitiTs (see Appendix E)
(6.28) i‘é-‘t—tl - Iioye@n T @er (on +uw = o,

(6.29) Egéﬁl = %ﬂ(t)C(t)N_l(t)C'(t)a(t) + M(t)a(t) = 0,

and that, for t <t<T, B(t) satisfies

0—

(6.30) EZILt(:Q— - -]i-a‘ (t)C(t)N“l(t)C' (t)a(t) + 2a"(t)a(t)

+ tr. {M(E)P(t| )} + tr.{2'(e)N(t)Z()} = O.

Since the minimal cost functional V(t,k) must satisfy the terminal

condition,

(6.31) V(T,k,p) = E{ﬂx(T)n§|i(T|T)=KT} ® Ry By tr.{P(T| T)F},

the solutions T(t), a(t) and 8(t) should satisfy the following condition,

respectively,
(6.32) I(T) = F, a(T) = 0 and B(T) = tr.{P(T|T)F}.

In (6.28) and (6.29), both I(t) and a(t) are actually independent
of the dynamical characteristics of an observation mechanism, h(t,x) and
R(t). The optimal control depends on the cost rate function matrices F, M
and N and on the system dynamics f(t,x). An overall configuration is
schematically shown in Fig.6.1, in a form of computer-aided feedback
control systems. However, a serious difficulty arises in the version of
numerical computation on (6.28), (6.29) and (6.30) with (6.32). In fact,
the computation of (6.25) with (6.26) and (6.27) has to start with the

preassigned initial values of the state estimation i(tol to) and error
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ﬂ ﬂ Re(t)

u(Optimal) Dynamical system . ~] Observation y
A
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Fig.6.1l. Overall configuration of optimal control for
nonlinear dynamical systems under noisy
observations.

covariance P(t0|t0) and, furthermore, with H(to) and a(to) which are
determined by the so-called trial-and-error method or by an improved
method stated later in Sec.6.6.

Before stating the method of numerical computations of the optimal
control, we establish the control scheme for another system EZC defined
in Def.2.5 (nonlinear system with state-dependent noise) in the following

section.

6.5. Suboptimal Control for Nonlinear Systems with State-Dependent

Noise

In this section, the system 220 (Def.2.5) is considered and the
mathematical development follows on the basis of discussions in Sec.5.3,
Chap.5.

Adding the control term to (5.50), the approximate filter dynamics

is easily generalized as

v
(6.33a) dz = [f + Gzi]dt + Cjdt + PH2'(RR')-l(dy-ﬁdt)

N

(6.33b) &(tytg) =0,
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where the control u(t) is assumed to be an admissible control of the
form u(t)={(t,%). The version of dP/dt is the same form as is given by
(5.51).

In the present case, the basic process is %(t|t) with the stochastic

differential (6.33) and the performance index is given by
(6.34) J(u) = E{IE [x" (£)M(£)x(t)+u' ()N(t)u(t) Jdt},
0

becomes minimal, based on the a priori probability distribution on x(to),
where M and N are measurable, locally bounded, positive semi-definite.

For such a basic process, the suboptimal control problem may be
found by the method established in the previous section.

The minimal cost functional is given by
(6.35) V(t,k) = min E{jT[x "M(s)x_+P_'N(s)P_lds|x(t|t)=¢},
{]‘J t° s s 's s

where xs=x(s), $s=@(s,i) and where X is the process determined by

reviving u={(s,%) in (5.24). Then the basic functional equation becomes

v
(6.36) - V,(t,) = min {[a+ 2xCk + Gj1'V, (£,
b

+ 2t 2, (60T} + "M + NG + tr. 0P)),

where ﬁ(tlt)=x, and £(t) is the same as (6.13), and where the subscripts
indicate the derivatives. Performing a minimization operation on the
right-hand side of (6.36), the following partial differential equation
which corresponds to (6.23) is obtained,

- 12 o
(6.37) = V. (tk) = [a+ 5x6k]'V _(t,6)

1 -1 1
ZVK'(t,K)CN C'VK(t,K) - Etr.{Z'VKK(t,K)}

+ '"Mc + tr. (MP)
with the terminal conditionm,

(6.38) V(T,KT) = 0.

It may be assumed that (6.38) has a solution,
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(6.39) V(t,k) = ')k + 2c'a(t) + g(tL).
Then the optimal control is approximately obtained by

~0

6.40)  3° = = N 1¢! (Ik+w)

and this is adopted here as the suboptimal feedback control strategy.
Applying (6.39) and (6.40) to (6.38), m(t). a(t) and g(t) are respectively
the solutions of the following differential equations,

~

"\
(6.41) %% - %x[cz'n+ncz] - HCN_lC'H +M=0, m(T) =0,
do , 172 - ~
(6.42) EE-+ EXG a - ICN "C'a+ma =0, (T =0,

6.43 B o'ON 1C'a + 20'a + tr.(Z'ND) + tr.() = 0, 8(T) = O.

The version of dQ/dt is changed from (5.54) as

(6.44) % -H0+ o + k' + 2’ - (B C'DER

- ii'(B+CN-lC'H)' + (a—CN—lc'a)i'
+ #la~C Loig)" + c,Gy" + Glal.

Thus the suboptimal feedback control is obtained by solving (6.33),
(6.40), (6.41), (6.42) and (6.43) simultaneously.

6.6. Some Aspects of Numerical Approach

In the sequel, we merely consider the system le because parallel

discussions on [ c are possible.

As pointed iut at the end of Sec.6.4, a serious difficulty arises
in the numerical computations of (6.28), (6.29) and (6.30) with (6.32).
Since the solution matrix T(t) may uniquely be obtained with the terminal
condition N(T)=F, we shall investigate a practical approach to find the
solutions o(t) and B(t) of (6.29) and (6.30) satisfying their terminal
conditions given by (6.32).

In this section, two possible methods of the computation are

investigated.
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(1) Method I. (Trial-and-Error Method)

Since the solution determined by (6.28) is independent of both the
estimate i(tlt) and P(tlt), N(t) may uniquely be obtained, which satisfies
the terminal condition N(T)=F, if the parameter matrices C(t), N(t) and
F are given. On the other hand, (6.29) and (6.30) contain the expansion
coefficient a(t) as a parameter which depends on both %(t|t) and P(t|t).
Hence, we have to look for the desired initial wvalues a(to) and B(to).
Based on the fact that both the state estimate i(t[t) and the error
covariance P(t]t) rapidly converge to the steady state X* and P* in almost
every case, we solve the equations with the constant term a®=a(x* P¥)
instead of a(t) in (6.29) and (6.30) in such a way that the solutions
satisfy their terminal conditions. Thus we may find the initial values
a(to) and E(to) and use these for starting the on-line computation,
Naturally, this procedure may not give the exact values of u(to) and
B(to) which we desire. By the trial-and-error method, it is, therefore,
necessary to improve the estimate of the initial values of a(t) and B(t)
around the a priori estimates a(to) and E(to) so as to realize the
desired terminal conditions. The numerical procedure stated above makes
it thus possible to perform the overall computer-aided computation

scheme.

(2) Method II. (Improved Method*)
Assume that, at time t, a(t)=3t* and, for the time interval [t,T],

write the following backward equation for (6.29),

6.452) 42 Iy et (Male) - Twa* = 0,
(6.45b) a(D)] g =0,

where 0<t<T-t and at* is a constant. Equation (6.45a) may uniquely be
solved in such a way that the solution o(1) satisfies the condition

G(T)IT=0=0. However, the solution o(r) makes sense only at t=T-t, because

# The author thanks Professor T. Ono, University of Osaka Prefecture,
for valuable comments on the improved method.
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of the substitution of at* for a(t). Thus, we may have a sequence
{a(f)|T=T—t} (toipgj) which finally gives us the running value of o(t).

Similarly, for 0<t<T-t, we write the following backward equation
for (5. 30) 'Y

6.660 B4 Lieon e (mago - 200 (1)a *
T A t
- tr.{M(T)Pt*} - tr.{Z*"()n(x)*(x)} = 0,
(6.46b) B(1)| _o = tr.{P *F},

where, at time t, P(t[t)th*(constant) and, Hz(t)=H2t*(constant) and

(6.47)  5*(x) = P, ¥{R(R' (1)} /D,

By solving (6.46a), the running value of {B(T)[1=T—t} is obtained.
The optimal control is thus given by

(6.48) w’ () = 97(t %)

- PO ON - O O]y,

The above two methods are applied to digital simulation experiments

for a few examples in the next section.

6.7. Digital Simulation Studies and Illustrative Examples

In this section, the digital simulation scheme of the overall
system shown by Fig.6.1 is illustrated.
We presume that, at discrete time tj’ the observation Gyj can be

taken to be
(6.49) 63, 2y - v,

where, here and in the sequel, tj is simply expressed by j(j=0,1,2,-°).
The coefficients a(t), B(t), hl(t) and Hz(t) can also be computed in

discrete form, for instance, from (5.4),

(6.50a)  a(j) E{f[j,x<j)]|vctj‘“’)} 8 }r3,x(01,

(6.50b) B(§) (n)yy

E{[f[j,x(j)]—?[j,x(j)]][x(j)—i(jlj)l'|V(tj
<"1 (3] 1),
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where

6.5 2G| & Ex]yee, My, 26 8 cov.[x<j>lvttj(“’)].

The notation V(t,(n)) denotes the smallest o-algebra ril?tive to
; n
which the random variables {y(tj(n)), 30,1, 53(n); toitj <t} are
measurable, where {y(t,(n))} are the random variables partitioned from
J

the y(t)-process.
The discrete forms of (6.10) and (5.15) are approximately expressed

by

(6.52) X3+ 34D = %G| D +'%[j,x(j)]éj + C(DPLEL.EG] D8y
+ 23] DB, (DIRGR (DY 6y,-hL5,x(D16 )

(6.53) P(#L[341) = P(3]3) + BAIRG|D8, + PGB (s,

+ 616" (1S, - PG| DH) ER@OR ()Y
<8, (P18,

where 6j=t t. and where éj is sufficiently short. By using X(j+1|j+l)

415
obtained by (6.52), with the help of (6.25), (6.26) and (6.27), the

suboptimal control signal u°(j+1) is generated by

(6.54) (L) = P[5+, %(IHL]5+1) ]

= RO(GHL)R(F+1] §+1) + r°(5+1),
with
(6.552)  K°(3+1) = - 3N L(H1)C' GHDIGH),
and
(6.55b) O (3+1) = - %u”1(j+1)c'(j+1)a(j+1),

where both N(j+1l) and a(j+l) are, respectively, discrete forms of
solutions of (6.28) and (6.29).

The generating routine of random number sequence is a combination
of a uniform random sequence plus an approximate transformation to a
Gaussian random sequence. To compute G(j)dw(j)gG(j){w(j+1)-w(j)}=G(j)6w.

]
in (6.2), we use the Gaussian random number nl(j) with N[0,1], where
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n1(3)=y(j)¢€;. Also, for R(j)dv(j)lkcj){v<j+1)-v(j)}=R(j)avj in (6.3),
the Gaussian random number nz(j) with N[0,1] generated by the different

population from nl(j) is used, where nz(j)=a(j)ugg. (See Appendix F, for
the simulation of the Brownian motion process.) Thus, (6.2) and (6.3) may,

respectively, be simulated as

(6.56) x(j+1)

x(3) + £13,x(D16, + C(D (s + 6(Eny (V6.

(6.57) y(G+1) = y(3) + h[j,x(j)laj + R(j)nz(j)/ﬁg.

The computation procedure is thus established as follows, starting
with %(0|0), P(0|0), m(0) and a(0) as the initial values:
(i) Obtain a(t), B(t), hl(t) and Hz(t) by the preassigned nonlinear
functions f[t,x(t)] and h[t,x(t)], and establish the forms of
a(j), B(3), hl(j) and Hz(j)-

(ii) Preassign the sample values %(0|0) and P(0|0) as the given initial
values. Simultaneously, by trial-and-error method, determine the
value of N(0) and a(0) in such a way that the terminal conditions,
M(n)=F and a(n)=0 are satisfied, where u=tn=T.

(iii) Determine the value of uo(t)=@0[0,§(0|0)] by invoking the pre-
assigned value of N(0), C(0), %(0]|0), n(0) and a(0).

(iv) For a preassigned value of 6j, by using the values of a(j), B(j),
ho (1), Hz(j), x(j|j) and newly observed data, y(j+l), compute
the a posteriori estimate %(j+1|j+l) and the a posteriori error
covariance P(j+1|j+1) from (6.25) and (6.53).

(v) Compute M(j+1) and a(j+1) and obtain K°(i+1) and r°(j+1).

(vi) With the value of %(j+1|j+1) obtained in Step (iv) and the values
Kp(j+l) and ro(j+l) obtained in Step (v), determine the sub-
optimal control uo(j+1)=@°[j+l,ﬁ(j+l[j+1)] by (6.54).

(vii) By using the values of %(j|j) and P(j|j), compute a(j+l), B(j+l),
h, (3#1) and H,(3+1).
Letting j=0,1,---, Steps (iv) to (vii) give a forwardly recurrent
algorithm to obtain simultaneously the running estimate 23|, PG|
and the suboptimal control uo(j) with ﬁ(0|0), P(OlO), m(0) and a(0)

as a set of given initial data.
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Tllustrative Example-6.1.  For the purpose of exploring the quantitative

aspects, we consider here the one-dimensional case where the nonlinear

dynamical system is given by the following stochastic differential

equation,

(6.58) dx = f(x)dt + cudt + gdw
with ;

(6.59) f(x) = - 1 + cos x.

The observation process is simply given by
(6.60) dy = xdt + rdv.
Application of (5.4a) and (5.4b) to the present case gives

(6.61a) a(t)

-1+ cos% exp(—%),

(6.61b) b(t) = - sin% exp(—g-).

From (6.10a) and (6.10b), the approximate estimator dynamics and the

related error covariance are respectively determined by

(6.62) d = [- 1+ cos kexp(-2)1dt + cu®dt + pr % (ay-at),
and
(6.63) <= - 2psin Rexp(-B) + g% - p¥r 72

Letting m=0 in (6.16), the optimal control is, then, given by

(6.64) w’(t) = %) = k°(t)x + L2(b),
with

(6.652) k(1) = - s=en(e),

and

(6.65b) ro(t) = - X]-;;cu(t),

where m(t), a(t) are the solutions of the following differential
equations:
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Fig.6.2(a). Sample path behaviors of the system, quasi-
linearized system, estimation and optimal control (F=0.5).
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Fig.6.2(b). p(t|t), m(t), a(t) and B(t) runs.
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Fig.6.3(a). Sample path behaviors of the system, quasi-
linearized system, estimation and optimal control (F=1.0).
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Fig.6.3(b). p(t|t), m(t), a(t) and B(t).
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Fig.6.4(a). Averaged runs of ten sample paths (F=1.06).
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Fig.6.4(b). Averaged runs of ten sample paths of p(t|t),
m(t), a(t) and B(t) processes.
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22
(6.66) géiﬁ=§l§° m (t),

(6.67) dgit) f%pzn(t)uct) - n(e)a(t).

Furthermore, the scalar g(t) is the solution of the differential equation,

6.6 BB . L 2200 = Sat)ale) - e CEdnle).

where
1
(6.69) a(t) = Tp(t|t).

Equations (6.58) to (6.6%9) are simulated on a digital computer with the
subroutine for the generation of random disturbances, y(t) and 6(t),
where 3=0.5 and the control interval is preassigned by [0,1.0](sec).

Figure 6.2(a) shows the running values of the state estimation
%(t|t), the state of the true system x(t) and the quasi-linearized
system x(t), where F=0.5 and n=1.0. However, in practice, the x(t)-process
cannot be observed and this is only for convenience of discussions.

From Fig.6.2(a), we can observe that the sample path of the system
state x(t) with x(0)=0.9945, subjected to the optimal control, reaches
x(1.0)=0.0483. Comparison of the sample path of the quasi-linearized
system with that of the true system reveals that the stochastic lineari-
zation technique presented is a useful tool for approximations to the
state estimation and optimal control for nonlinear dynamical systems.
The optimal control signal run is also plotted on Fig.6.2(a). Figure
6.2(b) shows the error covariance p(t[t) of the estimating action, and
also N(t), o(t) and B(t) which may be adopted as a successful set of
trial-and-error methods. Figure 6.3 shows the numerical results of
digital simulation studies in the case of F=1.0 and n=1.0. Figure 6.4
shows the average run of 10 sample paths in the case of F=1.06 and n=1.0.

Illustrative Example-6.2. 1In Example 6.2, the different computational

method from Example 6.1 is applied to the same system as in Example 6.1.
That is the Method II. A variety of single and averaged-out runs was

obtained. In all the experiments, the control interval is preassigned
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by [0,1.0] and 3=0.5, f=1, m=0, n=1 and 6j=0.001(5ec). Furthermore, the
system noise covariance was g =0.2 and the observation noise covariance
r2=0.l. The results presented below are representative of the simulation
experiments.

Figure 6.5(a) shows a single run of the state estimate i(t]t), the
true value of the system state x(t) (the solution process), the quasi-
linearized value of the system state, and the optimal control signal
w%(t). The true initial value of the state variable was x(0)=0.9945.
There is also interest in observing the true run of the system state
without the control. It may be observed that, under the criterion
adopted with 3=0.5, the sample path of the system state is transfered
from the initial condition x(0)=0.9945 to x(1.0)=0.0826 by applying the
optimal control. Figure 6.5(b) shows sample paths of the solutiomns of
p(t]t), m(t), a(t) and B(t) equations.

An averaged behavior of 10 runs with random initial conditions is
shown by Fig.6.6(a). The initial states were approximately assumed to
be Gaussian random variables. The mean value of the initial states was
E{x(0)1}=0.9948. Comparison of the averaged run of the true system state
with that of the quasi-linearized system reveals that the stochastic
linearization technique developed here is a feasible method for approxi-
mations to the state estimation and optimal control for nonlinear

dynamical systems.

Illustrative Example-6.3. Let us consider the one-dimensional process

whose stochastic equation is given by
1 2
(6.70) dx(t) = [f(t,x)+§xgl x]dt + cu(t)dt
+ godwl(t) - glxdwz(t),

where the nonlinear function is represented by*

* Although for such a nonlinear function, the conditions of the existence
and the uniqueness of the solution of (6.70) should be checked out, the
author formally uses the function in order to show the usefullness of
the stochastiec linearization technique.

=117



Dynamical system
dl:(—lfﬁﬁlh‘o cudt. gdw
Observation
dy=xdi.rdv

Estimation process
Uncontrolled process x di=[-1+coskexp(-pl 2)1d s curdt+pr~(dy-%at)
with system noise .
Quasi-linear system
dx=[-1+ cosk exp(-p/ 2)1dt- sinf exp(-p/ 2)(x-% )dt

Estimation %

1.0
soudtegdw
Deterministic process x
( free motion) ! x(0)=0.9945 y(0)}=0 %(0I0)=0
g’=0.20 r%010
c=-1 A=0.5
0.5
0 -
04 06 08 Whzo ( sec)

Quasi-linear

Control interval

Fig.6.5(a). Sample path behaviors of the system, quasi-
linearized system, state estimate and optimal control.
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Fig.6.5(b). p(t]t), m(t), a(t) and B(t) runs.
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Fig.6.6(b). The averaged runs of p(t|t), m(t), alt)
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A for x>A

(6.71) f(t,x) = x for |x]5_A
-A for X<—A.

The observation process is simply
(6.60) dy(t) = xdt + rdv(t).
Application of (5.4a) and (5.4b) to the present case gives (see Appendix

A, Example A.1)

(6.722)  a(t) = (A erfED) - (a-wertzD]

T (a2, (A-%)2
+/;[eXP{——2P }rexp{—— 1

i At+x A-X%
(6.72b) b(t) = 2[erf(7g)+erf(7fp)],
where
2 g 22
(6.73) erf g = & foe di.

From (6.33) and (5.51), the approximate filter dynamics and related error

covariance are determined by

LY

(6.74) a% = [a(t) +3xg, "&1dt + cudt + pr ~{dy-Rdt}
d e 2 2 -

(6.75a) E£'= Zoyp + g)" + g,"a - pr 7,

where
o 1" 2

(6.75b) By = b+ 5xg, "

The optimal control and the minimal cost functional are given

respectively by

(6.76) W = - en (nta)

and

(6.77)  V(t,%) = mk> + 2ak + B8,
where
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Y
2 -12
(6.78) 'g%=-xg121r+cn T -, 7(T) = 0,
Y]
2 -1
(6.79) '%% = - %xglz + cn Two - ma, a(T) = 0,
2 -12 -
(6.80) Q‘B—=cnlu —Za&—pzrzﬁ-mp, g(T) = 0.

dt

The equation corresponding to (6.44) becomes
GAD = ol g+ 2um - Blbketn )R
dt X
+ 2(a—c2n_lu)ﬁ - 302 + g12q,

Equations (6.70) to (6.8l) are simulated on a digital computer with
use of a subroutine for the generation of random disturbances, Wl(t)’
wz(t) and v(t). The control interval is preassigned as [0,1.0] (sec).

In the simulations, Method II presented in Sec.6.6 was extensively used.

The results of single run experiments are shown by Figs.6.7 and 6.8.
Figure 6.7(a) shows five kinds of sample runs obtained by using the
mathematical model of the Ito type (x=0); i.e., the true solution process
determined by (6.70), the sample path of a quasi-linear system determined
by using (6.72a) and (6.72b), the estimation process X by (6.74) and the
solution process without a control signal. WNaturally, although the true
solution process cannot be observed in practice, this is also shown in
the figure only for convenience of discussion. Figure 6.7(b) shows the
p(t|t), m(t), a(t) and B(t) runs. In their experiments, the system noise
covariances were respectively g0=0 and g12=0.-’-1 and the observation noise
covariance was r2=0.1. The true initial value of the state variable was
x(0)=1.0.

The results of the simulation experiments by using the Stratonovich
model are shown by Figs.6.8(a) and 6.8(b) under the same conditions as
in Figs.6.7(a) and 6.7(b).

6.8. Prevalence of Stochastic Linearization Technique

for the Optimal Stochastic Control

The stochastic linearization technique has been successfully applied

in the previous sections to realize the optimal control configuration of
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Table 6.1. Comparison of two methods for
estimation-~control scheme.

System Dynamics : dx = £(x)dt + cudt + gdw
Observation Mechanism : dy = h(x)dt + rgv )
Cost Functiomal : J(uw) = E{f] [mx’+nu")de}
0

Stochastic Linearization Taylor Series Expansion
Bstimatlon 5o o R(x)dc + poh, (6)r 2{dy-h(x)de} %, = [£(Rg) + 26" (%g)pgldt
Process dity x)dt + pgh, (t)r “{dy=h(x dxg ~a! T g B
+ pgh' (T2 dy-[ng) +3n" (Rg)pglde
“ " - = 2
Covarimce 23 . 2 (t)pa + 8° - pa’F by (0 dpg = 26" (3g)pgdt - ppir 2h'(Rg)7dE + glat
o - Logr " (k) Ly~ [h () + 70" (Rdpglae}
Dasle 12-1.2_ 12 L ey, - 2o ly 2
Functional vt = a(y)v, - ze o Ve + 7 (e) Ve vt = [£(x) + 708 e = Fe D Vg
Equation 2 12 2
(x=x) + m” 4+ mpy + 397 (D) Ve + me” + mpg
C::;:i::& V(T,k) = 0 V(T = 0
i:i::;:l) V() = 1(0x” + 2a(e) + B(E) uninown at present
Optimal (J - 30
Stochastic u(e) ¥ <fi‘) unknown at present
Control = 0 elw(t)etalt)]

nonlinear systems under noisy observations and a feasible tandem form
of optimal estimation-control system has been established.

The key notion of the estimation-control in Secs.6.4 and 6.5 is
obviously the stochastic linearization based on the first-order approxi-
mation and the assumption of quadratic solution for the basic equation.
On the other hand, for the Taylor series expansion filter, however, the
basic functional equation contains the nonlinear function in itself as
shown in Table 6.1 (where the one-dimensional case is considered, and
the subscripts o and B in X and p denote the approximated processes of
estimation and covariance derived by the two methods of stochastic
linearization and Taylor series expansion respectively as used in Sec.
5.5, Chap.5), and therefore such a quadratic solution is extremely
difficult to be assumed for the basic functional equation. Since the
analytical solution is unobtainable, the avenue to success for estimation-

control scheme is almost despairingly closed. Table 6.1 shows the
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possibilities of both state estimation scheme and control algorithm

for each approximation method (Stochastic linearization and Taylor
series expansion). According to the inspection of Table 6.1, it should
be emphasized that our stochastic linearization technique is the most
powerful tool and plays a useful role in the version of state estimation

and optimal control problems.

6.9. Discussions and Summary

In this chapter, based on the definition of admissible controls
defined in Sec.6.2, the stochastic Hamilton-Jacobi-Bellman equation was
derived by using the dynamic programming approach to the quadratic cost
functional in Sec.6.3. 1In Secs.6.4 and 6.5, possible solutions were
shown to the stochastic Hamilton-Jacobi-Bellman equation for systems
with state-independent and/or state-dependent noises, and then a practical
method of estimation-control scheme was proposed in a form of computer-
oriented control systems. In Sec.6.6, some aspects of numerical
approaches for estimation-control systems were stated, and in Sec.6.7,
the method of digital simulation studies was presented with a few
illustrative examples. In Sec.6.8, the prevalence of the stochastic
linearization technique was emphasized.

It was found that both state estimation and control scheme were
facilitated by introducing the stochastic linearization technique and
that the joint method of estimation-control was easily implemented by
digital computers. Many problems remain ahead. In particular, it was
not yet been possible to demonstrate under what conditions a unique
solution exists to the optimization problem. The general question is
very difficult and this is of more than purely mathematical interest.
Although the author's many computational experiences indicate rapid and
near-monotone convergence, nor has it been possible to prove comvergence
of the proposed algorithm. Finally, although the performance evaluation
of the approximate filter was donme in Sec.5.5, Chap.5, the accuracy of
the estimation-control scheme established is still uncertain because the
precise solution to the Hamilton-Jacobi-Bellman equation is almost
unobtainable for nonlinear systems. However, the proposed technique

offers perhaps the only computationally feasible way of arriving at
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"good" controls for a broad class of nonlinear control systems under

noisy observations.

—-126—



CHAPTER 7. INFORMATION STATES FOR STOCHASTIC CONTROL
SYSTEMS

7.1. Introductory Remarks

In recent years much attention has been paid to the various
"information patterns" in the theory of classical or nonclassical
stochastic control processes[170-172]. The information pattern represents
all information about the past history of the process and is the specifi-
cation of the data which is available for a future control policy. In
general the information pattern increases in size and grows in complexity
as time goes on. Therefore when a large amount of data is available
for performing the optimal control, it is required to summarize it in
such a way that no valuable information is deleted. In the development
of the theory of dynamic programming and stochastic control, for the
purpose of data reduction the important concept of sufficient statistics
was noted by Bellman[9,173,174]. The concept of sufficient statistics was
particularly emphasized and developed by Striebel[125] and by Aoki[2],

forcing us to look deeper into its mathematical importance in the optimal
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control of stochastic systems.

Independently, Stratonovich gave the concept of "sufficient
coordinate" which is a change in form (applicable to the theory of optimal
control) of the sufficient statistics, and investigated it in Ref.[123].
In terms of the "information state,'" some interesting results of the
sufficient statistics were obtained by Bohlin[12] and by Davis and
Varaiya[25] for discrete- and continuous—-time stochastic systems.

The purpose of this chapter is to find the conditions for the
"informative" quantity — an information state — which is equivalent to
the observation data up to the present time, all the a priori knowledges
of the system and the past control in describing the future evolution
of the system process. In Sec.7.3, on the analogy of the definition in
[25], a definition of the information state is given, and an equivalent
information state is defined in Sec.7.4. The condition of information
states and some typical information states are presented for adaptive
control systems and for systems in signal detection problems respectively
in Seecs.7.5 and 7.6. Summaries and discussions about the information
states are given in the final section for various types of (classical)

stochastic control systems.

7.2. Preliminaries

The basic system under consideration is modeled by the Ité stochastic

differential equations of the form,

dx(t)

flt,x(t)]dt + C(t)u(t)dt + G(t)dw(t)
(7.1) EN:

dy(t) = hlt,x(t)]dt + R(t)dv(t), te[0,T],

which is the same as I defined in Def.2.1 (Chap.2, Sec.2.3), except the
assumption c[t,u(t)]=C(t)u(t). The system (7.1) is referred to as Iy.
In the sequel, instead of Iy, some different systems such as the linear
system EL, an adaptive system EAN’ etc. are defined.

Let t be a fixed time, and Y;; and U;: represent the collections of
random variables {y(t), s<t<t} and {u(1), s<t<t}. Furthermore, let Ig be
a set of the knowledge on the system at time s, that is 1.={Ys, U§}.
Particularly I, is the a priori information and consists of the initial

state xg. The set It and also the set which is defined by
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j t
(7.2) tr =T, 2.0, 00

will be called the information patterms. Obviously, It=1;. The infor-
mation pattern It determines a o-algebra in the probability space,
(7.3) It = o{Ig,y(1),u(t); s<t<t}.

The o-algebra I. will be called the information o-algebra. If the control
u(t) is adapted to Vt, u(t) is a functional on Yot, and the process u(t)

is called a feedback control on observations[175].

7.3. Information State

Let there exist an It-measurable function at(m) having its values

in a certain measurable space (4,A), ACR(n). For the funetion ., an

information state is defined on an analogy in [25] as follows.

Definition 7.1.(Information state for the cond. pdf) A process {a.} is
an information state for the conditional probability density
function (cond. pdf) p{xtIIt} if the following conditions are
satisfied for given I, :

(1) o, is adapted to I,
(ii) the density P{xtllt} depends on the information pattern I;
only through L
and
(iii) @y can be computed recursively, i.e. for any s<t, a; has

the form
I t
G = F(as,ls )-

Roughly speaking, the information state defined by Def.7.l1 is one which
carries all the relevant information in the past observations and controls
[25]. The condition (ii) states that o, constitutes a sufficient statistic.

The space (A,A) will be referred to as the information state space.

Remark 7.1: 1If the control Uot is generated so as to be Y -measurable,

then Iy in Def.7.1 may be replaced by Y.

Theorem 7.1. If af is an information state for the cond. pdf P{xtlIt}’

then
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(7.4) plxg 1.} = plx [a ).
Proof. 1In order to prove (7.4) it suffices to show p{xtIIt}=p{xt'at} for

every ItsIt, where xt=x(t). By definition of cond. pdf

plxe, I} p{xt,It}
(7.5) P{thlt} = p{It}

[p(myplxg, Iy dxy

If at is an information state, that is by (ii) in Def.7.1 0y is a sufficient

statistic, then the joint pdf p{xt,It} is factored as

(7.6) pix,, I} = plxg,a.}8(1,),

where g is a function of I, which does not depend on x¢. The relation

(7.6) is known as the factorization theorem or the Fisher-Neyman criterion

for sufficient statistic (see, e.g. [176,p.101] or [177,pp.355-356]).
Substituting (7.6) into (7.5), we have

p{x 2 }g(I )
(7.7) plx |1} = ikl b
J g myPlxe 0 be (Te)dx,
plxg,a¢l
= Ll = plxg|act.
IE(n)P{Xt,Ut}dXt

This completes the proof.

Consider a linear stochastic system

dx(t) = A(t)x(t)dt + C(t)u(t)dt + G(t)dw(t)

(7.8) I

dy(t) = H(t)x(t)dt + R(t)dv(t),

where u(t) is a feedback control (i.e. u is Vt—measurable); and A and H
are nxn- and mXn-matrices. For the system Iy, we have the important

proposition.

Proposition 7.1. For Ij, the optimal estimate %(t|t)=E{x.|Y,} is an
information state for the cond. pdf p{xt|Vt}; i.e. a=(%¢).

Proof. WNote that p{xt[It}=P{xt|thUt}=p{xt[Vt} since u is Vt—measurable

and It={YOt}. First, (i) the optimal estimate %, is Y -measurable.

Secondly, (ii) %, is obviously a sufficient statistic. In fact, for I,
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the cond. pdf p{xtlyt} is given by

1 N
P{xtlyt} = ct exp{—-iﬂxt—xtll %_l(tlt)}’

where ¢y is a normalizing coefficient and P(tlt)=cov.[xtlyt]. Write this
by 8y(Xrs%X.). Then we have a representation for the joint pdf,

(7.9) plxp, Yot} = golxe,%)8(Yob),  Yotely

which is just the Fisher-Neyman criterion showing that %, is a sufficient
statistic. Finally, (iii) it is obtained recursively by the well-known
Kalman-Bucy filter. (Q.E.D.)

In control problems, the control function u(t) is chosen so as to

minimize a cost functional
(7.10) J(u) = E{IEL(t,xt,ut)dtlxo},

where L is a positive scalar function.
Let ) be a mapping of [0,T]xA onto U with the properties: y(t,-) is
Holder continuous in t and satisfies a uniform Lipschitz condition. Then

the control u(t) is admissible if u(t)=¢(t,-) (see, Sec.6.2, Chap.6).

Proposition 7.2. 1If a; is an information state for the cond. pdf p{xt]It},

then the optimal control for (7.10) is the function of ay, i.e.
(7.11) uf(t) = P(t,a.).

For XL, the optimal control is
(7.12) u®(t) = p(t,%e).
Proof. The control function u(t) is defined for all possible values of

the given information pattern I. Define the minimal cost functional by

(7.13)  V(£,T,) = min B{[ L(s,xg,ug)ds|T .}
Ty

Let u(t) be an arbitrary control such that u(t)=y(t,*). Then the minimal

cost functional V(t,I+) becomes

(7.14) Ve, 1) = ﬂ}n E{fIL(s,xS,ws)ds|It},
t
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where wt=w(t,-). By Theorem 7.1 (7.14) yields the dynamic programming

equation in information state space,

(7.15)  V(t,I;) ?&nE{sz(s,xs,¢s)ds|at}
.

t+dt
t

?gn (B{ O L(s,xgs¥g)ds|a } + V(eHde, I 4y 0],

t
which gives the optimal control u®(t) as a function of ay [90,p.343],
(7.16) u®(t) = w(t,a.).

The second assertion follows by noting that for I a.=(X{) by

Proposition 7.1. (Q.E.D.)

Remark 7.2: The equality (7.16) shows the separation theorem which was

proved by Wonham[160].

7.4. Equivalent Information State

In this section a new concept of the "equivalent information state"
is introduced. As ever seen in many stochastic control problems, the
a posteriori pdf of the system state x(t), i.e. p{xtlft}, plays an
important role for calculating the optimal estimate and/or control. In
Sec.7.3, it was shown that for the linear system Ij the optimal estimate
X¢ is an information state for the cond. pdf P{xtlIt} (Proposition 7.1).
Based on this fact, one can say from a somewhat different viewpoint that
the cond. pdf itself is equivalent to %;, an information state.

We need the following definition.

Definition 7.2. (Equivalent information state) A process {v.} is called

an equivalent information state if and only if v, carries the same
sufficient information I, as the information state @, and is

determined by a recursive formula.
For the equivalent information state, we have the following theorem.

Theorem 7.2. For a given information pattern I ={Y,t,Ugt}, the a posteri-
ori pdf p{xtlIt} constitutes an equivalent information to o, i.e.
vt=(p{xt]It}). Particularly, for I, vt=(p{xt|Vt}).

Proof. Obviously, the cond. pdf p{xtllt} carries all the information
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about the information pattern It={Y0t,U0t}, and this is clearly equivalent
to the statistic o.

For Iy, note that I, ={Yy'}. Hence v¢=(p{x|T:}=(p{x¢|¥¢}). (Q.E.D.)

7.5. Information State and Adaptive Control Systems

Define a system I,y with unknown parameter 6e® by

dx(t) = f[t,x(t),0]dt + C(t,0)u(t)dt
(7.17) Iyt + G(t)dw(t)
dy(t) = h[t,x(t),0]dt + R(t)dv(t),

where u is assumed to be a feedback control. 1In the Bayesian estimation
theory, one tries to obtain a recursive equation for the a posteriori

joint pdf of x,_ and 8, p{xt,GIIt}, which can be written as

(7.18) plxe,0[T } = plx 6,1 3pl0]1.].

For the joint pdf (7.18) we have the following theorem.

Theorem 7.3. For Iy, suppose that there exist information states B¢
and vy for the cond. pdf's p{xtlft} given © and p{G]It}, respectively.
Then p{xt,elft} is factored as

(7.19) plxe, 0|1} = plx]0,8.3pl0]ve].

Proof. Step 1. Since Yy, is an information state about the unknown
parameter 6, the joint pdf p{I;,0} is factored as

(7.20) p{I.,0} = p{o,ve}e(Iy)s TIele.
Hence
p{I,,0}
(7.21) ple|I} = ——mm—
fep{ltse}de
plo,v. }8(Ty)
= £ A = p{8]y.}.
Jgplosvele(1y)de

Step 2. By virtue of Theorem 7.1, the pdf p{xtle,lt} for (particular)

given B is written as
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(7.22) pix.]8,T.} = plx.|6,8,}.

Step 3. Combining (7.21) and (7.22) with (7.18), we have (7.19). (Q.E.D.)

Consider a linear system defined by

dx(t) = A(t,0)x(t)dt + C(t,0)u(t)dt
(7.23) ZaLt + G(t)dw(t)
dy(t) = H(t,8)x(t)dt + R(t)dv(t).

For Ip; we have

Proposition 7.3. For I,; the estimate i(t[e) given 6 and Vt, i.e.
i(t|8)éE{xt]6,Vt}, is an information state for the cond. pdf

P{xtle,yt}, and the modified likelihood-ratio A(tlB) defined below
is an information state for pdf p{elyt}. That is, the information
states By and v, defined in Theorem 7.3 are given respectively by

Be=(2(t]6)) and vy =(A(t]0)).

Proof. By the Vt—measurability assumption for u(t), the information
pattern is It={Y0t}. Note that for the particular 6, p{xtle,yt}=
p{x¢|6,%(t[6)} by Theorem 7.1 and Proposition 7.1, that is B.=(&(t|e)).
For the proof of yt=(A(tle)), it is sufficient to express p{SIVt}
by the term of A(tle). A similar effort to do so was done by Lainiotis

in [85]. Here the result is briefly obtained. Define a process

(7.24) dz(t) = - %x'(t)H'(t,B){R(t)R‘(t)}-lH(t,B)x(t)dt

+ x' (£)H' (t,0){R(D)R (£)} Ly (t),

z(0) = 0.
Then by the representation theorem [16;54,p.176],

E{exp Gy |x¢,0,Y¢) plxe,0)

(7.25) plxy,8|Y ) =
E{exp gy |Y¢}

and by the representation theorem for given 9,

E{expct|xt,9,yt}p{xt|3}

(7.26) P{xt|e'vt} = E{exp §t|9,yt}
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Use of (7.25) and (7.26) gives
p{xt,e l Vt}

(7.27) plo|V ) =
plx.|6,Y,}

E{exp ct|e,Vt}

= plol,
[Elexp T|6,Y, }plo}do

where p{8} is the a priori pdf of 6. Here it is easily proved that
E{exp ;tIB,Vt} is the likelihood-ratio function A(tIB) for given 6
(see, [128,178]) defined by

(7.28) ACt]e) = exp{fgi'(sle)ﬂ'(s,B){R(s)R‘(s)}-ldy(s)

1/t = 2
_EIOHH(S‘G)K(SIe)“{R(S)RI (s)}_lds}-

It can be shown that ﬁ(t]@) satisfies the Itd stochastic differential

equation,

(7.29) dh(t]e) = A(t]|e)r" (t|e)H' (t,8){R(t)R' (t)} Ldy(t)

A0]8) = 1.

A glance at (7.27), (7.28) and (7.29) shows that A(t|9) is an information
state about 0, i.e. y.=(A(t|8)). (Q.E.D.)

Remark 7.3: The assertion, y¢=(A(t|6)), in Proposition 7.3 holds also

for Ly

Proposition 7.4. If for the system I,y with the cost functional (7.10)

there exists an information state L in Def.7.1, then o, is given

by a pair
(7.30)  ap = (Bes ¥e)-
Hence the optimal control which minimizes (7.10) is given by

(7.31) uo(t) = ‘fJ(t,BtsYt)-

Proposition 7.5. If the system is restricted to I,; in Proposition T4,

then
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(7.32) ap = (%(t]0),A(t]0))

and
(7.33) w0 () = p(t,k(t]0),A(c|0)).
Proof of Proposition 7.4. Note that

BL-|1¢} = [p(m) CIplx|Teddx,
= [p))gCIplx,,8]T Id0dxe.
Use of (7.19) in Theorem 7.3 gives
= fE(n)fe(-)p{xtle,Bt}p{9|Yt}dedxt.
Then the minimal cost functional defined by (7.13) is written as
(.34)  V(e,1) = min [ g)f gL L (s, %g¥g)ds]

xp{x,|6,8.}p{0]|y }dBdx,1,

which shows that V is a function of t, Bt and Ye- Hence we know that
V(t,It)=V(t,Bt,Yt). Therefore we have (7.30) and (7.31) by Proposition
7.2. (Q.E.D.)

Proposition 7.6. The equivalent information state is Ut=(p{xt|9,1t},
p{BIIt}) for I,y, and vt=(P{xtIa,It},p{B|It}) for Zpp.-

Proof. By Theorem 7.2, Vt=(P{xt|It})- Since

plxc|T,} = [ plxe|e,T, Ipl0]|1,}as,

the pdf's p{x.|6,1.} and p{6|T.} are sufficient for pi{x¢|I.}.

Hence
ve = (plxg[0,1.}, plo|1.)).

(Q.E.D.)

7.6. Information State and the Signal Detection Problem

In this section let us consider a newly defined system Ipy:
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dx(t) = f[t,x(t)]dt + C(t)u(t)dt
(7.35) Iyt + G(t)dw(t)
dy(t) = xh[t,x(t)]dt + R(t)dv(t).

In (7.35), X 1is an indicator variable taking its values 0 or 1, with
known or assumed a priori probabilities py and py=l-py. For the system
Lpns as might be expected, the optimal control problem involves making
the decision of the existence of the signal in observed data; that is
the signal detection procedure is required. A similar linear model to
Ipy was extensively used by Lainiotis and his co-workers[179,180], and
a slightly modified model was used by Sunahara and the author[18l; see

also Chap.4].

We have a theorem analogous to Theorem 7.3.

Theorem 7.4. Suppose that for Ipy there exist information states B,
and v for p{xtlft} and p{x[It} respectively. Then the joint pdf
p{xt,xlIt} is factored as

(7.36) plxex|Te} = plxe|xTedpix| T}

Proof. The procedure of the proof is formally the same as in Theorem

7.3.

Proposition 7.7. For Ipy the modified likelihood-ratio function A(t|x)

defined below is an information state for the cond. pdf p{x]It},

ice. ye=(A(E]X)).
Proof. This follows from that of Proposition 7.3. A similar relation

to (7.27) holds:

plxe,x|Te)

(7.37) pix|T¢)

p{xtlx’It}
E{exp ne|x>T¢}
= 1 P{X},
} piE{exp n¢|x=i,1¢}

i=0

where Ny is the process determined by

~F =



(7.38) dn, = -%xh'(t.xt)(Rth’)'lh(t.xt)dt

+ xh' (t,x.) (ReRe ") Ldy(t),  n(0) = 0.

In the second equality of (7.37), the relation p{x}=pp8(x)+p18(x-1) was
used. The numerator, E{exp nt‘x,ft}, is equal to the likelihood-ratio

A(t|x) defined by

(7.39) Act|x) = exp{jgxﬂ'(s,xslx)(RSRS')‘ldy(s)

1 5
'"EIE"Xh(S’KSIX)"%RSRS’)‘ldS}‘

Note that A(t|x=0)=1 for x=0 and A(t|x=1) is the usual likelihood-ratio
function appearing in the detection theory (simply, A(t)) given by

(7.40) A(t) = expl[hy " (s,%5) (ReRg") TLay (s)

1ty g
- 2 ID“ hl(s QXS)“ (RSRS' )_1d5} .

In (7.39) and (7.40), ﬂ(s,xslx)QE{h(s,xs)|X,It} and ﬁl(s,xs)éﬁ(s,xs|x=l).

Hence (7.37) becomes

(7.41) pix|1.} = Ao pix}.

pytP1A(E)

Therefore we see that A(t|x) (this includes A(t) as a special case of

¥=1) is an information state, that is Yt=(A(t[x)). (Q.E.D.)

Proposition 7.8. For Lpy the conditional mean i(t)éE{XITt} constitutes

an information state for p{x|I.}, i.e. y =(%(t)).

Proof. By (7.41) the a posteriori probability P[x=1]It] is evaluated as

(7.42) p[x=1[1t1 = __Blﬁﬁil__
potp A (E)
Obviously

(7.43) %(t) = Blx|1¢} = Px=1]|1,]
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_ _pA(D)
1+pA(t)

where p=p;/py. Since by Proposition 7.7 the likelihood-ratio A(t)
constitutes an information state for p{xllt}, thus X (t) also constitutes

an information state. (Q.E.D.)

7.7. Summaries and Discussions

So far we have investigated the conditions and properties of suffi-
cient statistics a. (or By and y.) and v. The role of sufficient statis-
tics is the data reduction of information pattern It, which consists of
{y(s), O<s<t} and {u(s), O<s<t}, by the replacement of an information
state. The consequences are summarized in Tables 7.1 and 7.2. Table
7.1 shows the conditions of information states for various types of
stochastic systems. Some typical information states are listed in Table
7.2,

As is well-known, except for the LQG (linear-quadratic-Gaussian)
problem, the information state a, is in general unknown and hence the
optimal control cannot be obtained in practice. To see this, define
mt=E{xt|It} and mit=E{(xt—mt)i|It} where the one-dimensional case is

considered. Then, the cond. pdf p{xtIIt} can be represented by a function

Table 7.1. Condition for Information States.

NGl Condition for Information States Remark
System
1> Iy plxe [T} = pix|a} Theorem 7.1
Zars IaN p{xt,BIIt} = plx.|8,B8:1p10]v.} Theorem 7.3
IpL» ZpN plxe,x|Ted = plxe|xsBedplx|ve? Theorem 7.4
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Table 7.2. Information States.

Dynamical  Information Information States Remarks
System Pattern
ap i(t|t) Prop.7.1
(vt
EL It'{YD } Ve P{xtlyt} Theorem 7,2
" a, unknown
- £
Iy Teslon Ugh y pixy |1 Theorem 7.2
Be %(t|e) Prop.7.3
I 1,={¥pt} Ye A(e]0) Prop.7.3
ve (Plxe]0,¥:}, pl8lY.DH Prop.7.6
Bt unknown
Prop.7.3
={yvt. Ut
Ty LU TP e Ace]O) Remark 7.3
ve (plx¢|6,1.}, p{8[I D Prop.7.6
Be £(t]%) (Prop.7.3)
ZoL I,={¥yt} Ye  At]x) or &(t) ‘(Prop.7.7 &7.8)

V¢ (P{xtlleoyt}9 P{X'_']-!Vt}) (PIUP-7-5)

B unkﬁown
DN Ie={Yg» Ug} v  ACt]x) or R(t) (Prop.7.7 &7.8)
ve (Plxe|x=1,¥¢}, p{x=1|y,}) (Prop.7.6)

The parenthesis (-) in the remark column means that the listed
result easily follows from " - ".

of infinite moments {mt,m wby Lids

2e*get "

(7.4L) plx [T} = ¢ (s smy, sMgseet),

Hence, the information state a, will be presented by
op = at,m ,m

t 2t’m3t"'°)’
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for which further considerations stop here. Furthermore, since the form

of optimal control (7.11) is given by

(7.45)  u’(t) = ¥(t,m ,m see)s

263

the precise realization of the optimal control for the nonlinear system
EN is impossible. However, for the stochastic control of nonlinear
systems, there are some papers in which the information state o is
approximated by X. on an analogy of the linear case. For example, using
the wide-sense property by Doob[28], Tse, Bar-Shalom and Meier[146] and
Tse and Bar-Shalom[182] obtained the practical control for systems
similar to ZN and XAN which is referred to as a wide-sense adaptive
control law. Alternatively, Sunahara[l83] and Sunahara and the author
[129,130] obtained the suboptimal control for Lys using the concept of
stochastic linearization in Markovian framework. In the papers [129,130,
183], the a posteriori cond. pdf p{xt|1t} was approximated to be Gaussian
and the information state was assumed to be ap=(Xt).

The study of information states is extremely important in the field
of stochastic nonlinear control systems. There has been little study of
the best approximation of the information state and of the asymptotic

information state which will be useful for a long-term control.
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CHAPTER 8. CONCLUSIONS

8.1. Concluding Remarks

In Part One, a feasible method of signal detection and estimation-
control has been established in a form of computer-aided feedback system
for a wide class of nonlinear stochastic systems under noisy observations.
The basic notion of suboptimal control for nonlinear systems is use of
stochastic linearization technique reviewed in Chap.3. It should be
particularly emphasized that the stochastic linearization method plays
a useful role to the realization of computer-oriented estimation-control
system.

There are, in general, two possibilities of linearization in nonlinear
systems as pointed out by Tsypkin and by Kashyap (cf.[27]) as

(a) linearization of the nonlinear element only

(b) linearization of the nonlinear system as a whole.

More concretely, the category (b) may be devided into the following three
parts;

(b-i) linearization of the nonlinear system dynamics
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(b-ii) 1linearization of the filter dynamics
(b-iii) 1linearization of the basic Hamilton-Jacobi-Bellman equation.

The technique in the category (a) mainly plays a useful role to analize
and synthesize a simple system with the single input-output relation
which contains a nonlinear element of zero-memory type. However, in the
case of complexed large nonlinear systems, the linearization of nonlinear
element requires tediously complexed computation. Therefore, from global
viewpoints, the category (b) will be more preferable. By invoking the
linearization technique for a nonlinear system as a whole, it is easy
to obtain the approximated behavior of nonlinear systems as a birdview
picture.

In particular, the linearization of a whole system may enthusiastically
recommended in the case of optimal control of complexed nonlinear systems
with/without noisy observation. In such the case, there are the three
sub-categories stated above. Among them, it may be stated that the
linearization of nonlinear dynamics, (b-i), is pleasant. Thus the
stochastic linearization technique may be emphasized in constructing the

overall configuration of a broad class of stochastic optimal control.

8.2. Discussions

In the theory of stochastic control, it is a primary problem to
find the "informative'" quantity for control. The informative quantity
is an important concept of sufficient statistics, and is the summary of
a large amount of such data as observations up to the present time, all
the a priori knowledges of the system and the past control in describing
the future evolution of the system.

For linear control systems, the sufficient statistics was studied for
the purpose of data reduction by Striebel[125], Aoki[2], Bohlin[12], and
Davis and Varaiya[25], forcing us to look deeper into its mathematical
importance in the optimal control of stochastic systems.

Up to the present time, the strict optimal control of nonlinear
system is still impossible. The ultimate reason is due to the "curse of
dimensionality"[9] which prevents us to use the dynamic programming.
Therefore, the study of sufficient statistics is extremely important in

the field of stochastic nonlinear control systems. In Chap.7, the
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author has studied the conditions of the sufficient statistics which is
called in terms of "information state." There has been yet little study
about the best approximation to the sufficient statistics for nonlinear
systems. Although Part One will contribute to the study of nonlinear
control systems, the study of sufficient statistics and its approximation

will be one of the topics of current researches.
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APPENDIX A. Typical Examples of Stochastic Linearization

This appendix serves several typical examples of the stochastic

linearization technique which is reviewed in Chap.3.
Example A.l. Saturation Element.
Consider the one-dimensional case. The nonlinear function f(t,x)
is given
A for A
(A.1) £(t,x) =4 x  for |x|<A
-A for =<-A.

From (3.3a), it follows that
(A.2) a(t) = E{f(t,0|V } = f:f(t,x)p{t,xlvt}dx,

where p{t,xlyt} is the conditional probability density function which is

assumed to be

1 (x-i)2
(A.3) P{tsx|Vt} = /zwp(tlt)exp{ 2P(t|t)}'

For the nonlinear function (A.1l), the coefficient a(t) becomes

.2
@4 ae) =[-8 /;ﬂp.,xp{ (x;:) }dx

~y 2
A 1 (x-x)
+ f_Ax75?;exp{-~EE—-}dx

ay 2
1 (x-x%)
+ [ty hex.

The first integral on the right-hand side of (A.4) is

2
as 2 A
_ A 1 (x—%) _ A ja -5
(A.5) I - f_m(—A)ﬁexp{-—-——zp Yx = —5=(" "2 d)
= -A$(a),
where
Arx
A.6 =
(4.6) o
and
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12
(A7) d(x) = 7%§ffme.5—dl.

The second integral is computed to be

A1 . (x=2)?
(A.8) 12 = f_Ax7i;Eexp{-——§E—~}dx

2

where

(A.9) B = T

A simple calculation shows that

2

a A
(A.10a) [FeT2ar = Vomli-a(w-e(8)]

-8 ,li _QE _ﬁz
(A.10b) fa de2di=e2 -e2.
Thus

uz _QE

(A.11) I, = &(1-8(a)-0(p) ] +E(e-§_—e 2).

The third integral becomes
2

i) e,
(A.12) I IZA;fé;exp{-£5§§l-}dx = 7%;}Eme 2 dj

1]

Ap(B).

Then combining (A.5), (A.8) and (A.12), with (A.14), it follows that
2
& o
(A.13) a(t) = x + a/po(a) - B/po(p) + /Eﬁ(e 2 —e-%*)
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2 2
o
= %VE[aerffy%)—Berf(7%)1 + /%gke 2 —e"%'},

where the following relation has been used:
_1 .1 X
(A.14) (%) 3 + Eerf(7f).
The other coefficient b(t) is computed by using the relation (3.6),

i.e. b(t)=3a(tr)/ox. TFrom (A.6), (A.9) and (A.13), the coefficients are

obtained as

(15 a) = HaertdE) --Dert gD
~, 2 .
+ [Rlep- R o521
and

(4.16)  b(t) = %—[erf(%%)+erf(%;—;f)].

Example A.2. On-0ff Element.
The nonlinear function is given by

A for =0

(A.17) f£(t,x) ='{_A for x<0.

This case is similar to Example A.l. The a(t) is evaluated to be

(A.18) a(t) = fi(-A)p{t,xIVt}dxiw [omit,x|y }dx.

The first and second integrals are:
2

(A.19a) 1. = -af° 7==e1 {ﬁﬁ}dx - A e‘g_cu
s 1 —/27p *P 2p ¥V2! —

A‘I’ ("ﬂ.) 2

where

(A.20) o = %.

Thus

(A.21) a(t) = -Ad(a) + AD(-B)
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Table A.l. Coefficients of Stochastic Linearization
for Typical Examples (one-dimensional case)

Nonlinear Function

b(t
£(t.%) a(t) ()
n=2 5 2%
n ~ A2
n=3 x3+3xp 3(x +p)
n=4 " r6x"ptap? 4(57+3%p)

n n=5 IR 155~ 5(5 W gD
- s0ana il s taagy® (e 108 pr15%0%)
n=7 274918 10587 p 2 H1055p 725158 prand p 4 15p°)

sin x sin % exp(-%) cos X ex‘p(—%)

cos x cos ¥ exp(—%) -sin % exp(-dg-)
xsin x

(%sin %tpcos X)exp (%)

[(1-p)sin #+&cos i]exp(-%)

—%[ (A+R) erf(%%) -(A-%) erf(%%) ]

o 2
+/;%[exp{—%;%—)}—exp{ A';;) 1

1 AR A-%
Elerf(ﬁ)*'erf(j,ﬁ)]
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- A[% - %erf(-%)] + A[% & 2 %erf(-—‘%)]

= Aerf(-%) = Aerf(;%),

where (A.14) has been used again. Simple calculation shows that*

_[2 2
(A.22) b(t) = A ;;exp{-z—lj}.

APPENDIX B. Derivation of Eq.(4.17),
Write (4.16) as

k=1

t t t
(8.1) j)__:DP(Hj){fij (Yp)-£, ; (Y }o{ Yo |}
t t t
< POHME)  (Y)-f, , (Y Yely |H_ .
Note that
F by a ty_ tyy _ B t
(B.2) {fij (YO)_f\Jj (YO)} = {f-lj (YO) fvj (YO)} {f—lj (Yo) fij (YO)}
and
t t _ t t
(B.3) {f, -, (AP} = (£ (Y)-f_, L)

- (£, .(@YH-f

| o
i 1% 1 (Fp)d-

Substituting (B.2) and (B.3) into (B.l) and rearranging terms with uses
of (4.4) and (4.12), we have

= t t t
(B.4) Z i, ) ~£, TP (et = o {6 (YO-E (T}

k—l
Z {f_

t t
L j )'fij(Yo)}Mt’t ) - pk{fi ~1(Y0) -f e 1('1'0)}

3

* In the evaluation of (A.23), the following formula has been used:

% erf(x) = 72'7=r exp (- xz) 5

—149-



from which (4.17) results.

APPENDIX C. Derivation of the Likelihood-Ratio.

The likelihood-ratio A(t,tj) defined by (4.4) is obtained by
considering the following detection problem between two hypotheses
R(T)dv(T) Q§I<tj
(C.1) H.: dy(t) =
4 H()x(T)dT + R()dv(T)  t3<t<ty

(Signal exists.)

(C.2) H

_17 dy(m) = R(1)dv(t)  O<t<ty

(Signal does not exist.).

In (C.1), the state variable x(t) is the solution of the differential

equation under Hj,
(C.3) dx(t) = A(T)x(T)dT + G(T)dw(T)

with x(tj)=x0.
Partition the interval [0,t],
0=15)<s <-**<sg=t,
such that this partition includes I, and let e=max; (sy43-si). Construct

the conditional density p{Yso""=YsK|Hj} such that

t _ v
(C.4) p{¥g|H,} = Lim. plygg, - vyl

Koo
Then, we have for p{yso,---,ySK[Hj},

(C.5) P{Ygps " *s sy By} = ElPLygps - -, ygel {x(s),selty,t1}, 0}

j=1
coexpl-3 ) 5eolov (oWl 2y (o yrr (o y)-L)
veo 55y {R(sy)R' (s}

xE[exp{-

t3 |

K
1 2
sz‘EE;"GY(S“)‘H(Sv)x(Sv)GSu"{R(sv)R'(sv)}'l}]’

where cp is a normalizing coefficient. Also for p{ySO,"',ysKlﬂ_l},

we have
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K
1 1 2
€6 Plysgresysgliag) = Coexp{'EQEjEEGIBY(Sv)"{R(su)R'(sv}}—l}-

Dividing (C.5) by (C.6) and cancelling the terms, it follows that

P{Yso""’ysK!Hj}
P{ySoi""ySK]H_l}

(C.7)

K
= Elexpl | x' (sy)H' (sy){R(sy)R’ (5,)} L8y (sy)
v=i

-]
~

EVEJHH(S\J)K(SU)"{R(SU)R (sv)}_lﬁsv}]

= exp{ zx (sy]s59)B' (5) {R(sy)IR' (5y) } L6y (sy)
v=j

~

-1
2.,

Ilt“-“j

" 2
J“H(S“)xj'(SV]SV)H{R(sv)R‘(sv)}‘las“}'

From (C.7) we have

(c.8) A(t,ty) = 1. igm exp{ E &y (svlsv)H'(sv){R(sv)R'(Sv)}'lﬁy(sv)
n=j

Ko

K
2
E "H(S“)&j(SU]S“)"{R(sv)R'(sv)}"lssv}

M[H

= expl/5 ;" (s| B (D R(R' ()} My (s)
J

1rt & 2
- _Z.Itj"H(S)xj (SI S)“ {R(S)R' (S)}_lds} .

This completes the proof. (Q.E.D.)

APPENDIX D. Cost Assignments.

let us define the following set of quadratic cost functions D in

(4.5),

for i=j=-1 D[x(s),0,H_1] = 0
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i=-1, j#-1 D[x(s),O,Hj] = cluxj(s)nz
i#-1, j=-1  DIx(s),%;(s]8),H 1] = colx(s)-%;(s|®)]?

i#-1, §#-1  Dlx(s),%;(s|s),Hy] = eglx;()-%i(s]9)] 2,

where xj(s) is the solution process of (4.3) with its initial time 10=tj;
and c1, cp, cg are weighting constants. Define also the time interval

Sij as: S-l,-1=[tj’t]’ Si —1=[t,t+T;1 and Sij=[t,t+T1], where T is constant,
Then, by (4.6) fij (YB) are respectively as follows:

ty _
(D.1) £, _1(fp) = 0
(D.2) f_lj(Yg) - ftjE{clnxj(S)uzlYg,Hj}ds
Y

i cl(t-tj)E{"xj(t)"zlYE,Hj} - cl(t—tj)["ij(tlt)u2+tr.Pj(t|t)]

t t+T " 2k
(D.3) 5,0 = ! E{c3"xj(T)—xi(T|T)" IYO,Hj}dT
z cBTlE{"xj(t)-ii(tlt)uzlYg,Hj} = 3Ty tr.Q, (e ),

where Qij(t|t)gE{[xj(t)-ii(tlt)][Xj(t)-ﬁi(t]t)]‘IYB,Hj} and this is
obtained by

(0.4) Qi (e[t) = Poce]e) + [%;(e[e)-%; (e| )[R (e )-%5 (] ",

+T &
fi_l(Y;) = IE 1E{C2“x(T)—Ki(T|T)"ZIY;,H_l}dT

t+T1N-1 i 2.t
aglis UEkP(Hle_l)E{HX(T)-xi(TIT)“ |Y0,Hv}&r

N-1
<2 t+T 2
N-k vZkE{Jt IHK(T)-ﬁi(TIT)" dt|Yg,Hv},

where the relations
t = t
E{'IYO,H_I} = Z E{-lYo,Hv}P(Hv]H_l)
v=k
and
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P(Hy|H_;) = P(Hy)/P(H_) = 1/py = 1/(N-k)

are used. Furthermore
N-1
t, . 52 Tyl » 2 t
(0.5) £ 1Y) —'ﬁjguzk[E{ftV"xi(T]T)" dr|Yp,ny)

+ E{fit?l“xv(r)—ii(Tlt)”zdrIYg,Hv}]

ne

N-1
C2 .
T )_: [(tv—t)"xi(tlt)llz
v=k

+ (64T =e B %y (6,5, (| ] 2[¥5, 8,3

]

cy 2 N-1
soelll%; el VZk(tv-t)

N-1
+ [pGHIiD-ii(t|t)"2] Zk(t.l-,rl—t\’)}
V=

e

523 (r-0)|%; (c| O] + 21,-T+e) [pgHlg -2 (2| 0] 213

In the above assignments, the approximations are made from the practical

point of view.

APPENDIX E. Derivation of Feedback Gains.

By the assumption (6.24),

(E.1) av ;;“) = H{t)ic + I"EE) + BlL)
(E.2) .Qiigisl = 2[N(t)kta(t)]
and
2
(E.3) ATV(,k) _ 2N(t).
BKZ

Substituting (E.1)-(E.3) into the stochastic Hamilton-Jacobi-Bellman
equation (6.23), we have
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(E.4) - [k"I(E) k26" & (£)+B () ]

= tr.{M(£)P(t|t)} +"M(t)k + 2a' (t) [M(t)r+u(t)]
-‘%Ir'ﬂ(t)+a'(t)]C(t)N*l(t)C'(t)[H(t)K+a(t)]

+ tr. {2 ()TN ()E(e)}.

Rearranging terms in (E.4), it follows that

(E.5) K'[ﬁd%HCN"IC'H+M]K + ZK'[&v%HCN'lc'a+Ha]

+ [BraroN-lc' otz ater. (MPH+er. (E'TII}] = o.

In order to hold (E.5) for every k, it is necessary to hold that

(E.6) T- %ncn‘lc'n +M=0

(E.7) & ~-%ncw'lc'a +Ta =0

(E.8) 8 - Lerenlc'a + 20%a + tr.{MP} + tr.{z'TE} = 0
)

which are equations (6.28), (6.29) and (6.30).

APPENDIX F. Simulation of the Brownian Motion Process.

In this appendix, the author considers only the scalar case. The
Brownian motion process w(t) (tgst<e) is related to a Gaussian white
noise process y(t) (with zero mean) by the following well-known relation,
[163,127]

(F.la) dw(t) = y(t)dt

or precisely

(F.1b) w(t) = [Ty(s)ds,

where the w(t)-process has the Properties

(F.2) E{dw(t)} = 0 and E{[dw(t)]2} = odt.

In the followings, let the parameter o be equal to one without loss of
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generality.
In the digital simulation, the time interval [tg»=) is partitioned

as
t0< tl < t2 <o tj <ese,

so that, at discrete time tys 5tj=tj+1—tj (3=0,1,2,-++) may be sufficiently
short. With discretized arguments, it follows from (F.2) and (F.la) that

F.3) 8ty =BLGwp? = By (ep) 6ep2,
where
(F.4) swy = w(tyqy) - wity).

Thus, we have

®5 By} = el

which means that the variance of Y(tj) is equal to (th)'l. If the
partition of the time interval is constant, say, 6tj=A(const.), then

we may express the above relation as
1
(F.6) Y N[O,Z].

Let us introduce a standard normal random sequence n(t) which can
be generated by a suitable subroutine on a digital computer, and find
that the relation between n and Yy which is the desired noise, that is

between

(F.7) n: N[0, 1] and ¥: N[O,%]-

The variance of the n—process is evaluated by
(F.8) variance of n = E{n?}

ne

exp{- }dn = 1.

2112 2-12

1}
aﬂ

On the other hand, for the y-process, since

2
exp{—l;ﬁdT =‘l,
2m p

A A

(£.9)  [7 2
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we have

(F.10) 1

2
1 _ .21 i =
&y = ATy gEexp{ Z}dT

EOE

2
exp{—ﬂ%}»’ﬁdv-

2 s
\/‘217-12 2-1

Comparison of (F.8) and (F.10) reveals us that the evident relation,

(F.11) i 713:1.
n—-process Y—-process
1
N[0,1] —= N[0,3]
Transformation
1
Y 7me

Thus the increment of the Brownian motion process is simulated by the

following relation:

(F.12) 8w = yA = nvh.
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II. PART TWO. APPROXIMATE METHODS OF STATE ESTIMATION,
PARAMETER IDENTIFICATION AND CONTROL FOR NONLINEAR
DISTRIBUTED PARAMETER SYSTEMS






CHAPTER 1. INTRODUCTION

Although the recent interests in control theory have concentrated
mainly on systems whose dynamic behaviors are described by ordinary
differential equations, less attention has been payed to the distributed
parameter systems (D.P.S.). Many physical systems are intrinsically
distributed, and moreover requirements of treating more complex control
objects are made in view of the present trend of rapidly advancing
science and technology. The dynamic behavior of systems is governed
by partial differential equations, integral equations or integro-
differential equatioms.

For randomly-excited D.P.S. described by partial differential
equation, several authors have examined the problems of estimation of
system states including unknown parameters and of control as a first
contribution to the control theory of stochastic D.P.S. Such works are
surveyed in the following subsections.

The part two will be divided into three parts: the first is the
filtering problem, the second the parameter identification problem, and
the third the problem of optimal control for linear and nonlinear

stochastic D.P.S.
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The part two is to provide two important phases: first to provide
mathematical developments for filtering theory, parameter identification
theory and control theory, and secondly to provide approximate method

of computational implementations.

1.1. Historical Background

The historical background is divided into the following three parts.

1.1.A. Filtering Problem

There is a large number of stochastic processes whose sample paths
are determined by partial differential equations for which the solution
of the problem of state estimation under noisy observations is extremely
important. Physical examples of such estimation problems are found in
the estimation of temperature profiles in a catalytic reactor or a
furnace, in the estimation of effects of random disturbance on a trans-
mission line, the estimation of diffusions due to random excitation in
environmental systems, etec.

Many studies have appeared on filtering for linear partial differential
equations: Falb[35], Balakrishnan and Lions[5], Tzafestas and Nightingale
[149], Thau[145], Kushner[82], and Medich[95,96]. Most of these works
relied on extensions of lumped parameter ideas, and derived the filtering
equation of Kalman-Bucy type described by partial integro-differential
equations. A problem of similar nature was considered by Saridis and
Badavas[106] who used the stochastic approximation technique.

Several trials have recently been made on the derivation of filter
dynamics for nonlinear D.P.S., including proposals on a variety of
approximate filter dynamics for the purpose of physical realizatioms by
Seinfeld[112], Tzafestas and Nightingale[148,151], Seinfeld et al.[113],
Hwang et al.[48], Lamont and Kumar[86], and Sunahara and the author[138].
Seinfeld[112] derived the Hamilton-Jacobi equation, based on the least
square criterion, and then solved approximately by using a linearization
method. Tzafestas and Nightingale[151] adopted the maximum-likelihood
approach and derived an approximate filter dynamics by using the differen-
tial dynamic programming techmique. Seinfeld et al.[113] showed a nonlinear

filter dynamics by converting the D.P.S. into a set of lumped parameter

—158—



systems with the application of a finite difference approximation and
by performing a limiting operation on the spatial increment, and Hwang
et al.[48] converted the estimation problem into an optimal control
problem.

Expanding the results of Detchmendy and Sridhar[26], and using an
invariant embedding technique by Bellman et al.[10], Lamont and Kumar[86]
obtained an estimation algorithm. Introducing the Girsanov's theorem
of the transformation of absolutely continuous measures to the filtering
theory, Sunahara and the author[138] derived the exact filtering equation
from the viewpoint of the conditional expectation, and presented

a feasible method of approximation to the exact filter equation.

1.1.B. Parameter Identification

It should be noted that most of physical processes exhibit a random-
ness over rather broad scales of time and space. In pérticular, the case
of parameter uncertainties frequently appears in practice, where unknown
parameters are surely constant or may be supposed to be constants over
the operating range.

Recently, the problems actually encountered in the parameter
identification for distributed systems involve an important subject in
the detection of pollution sources of envirommental systems modeld by
linear or nonlinear partial differential equations. In most previous
schemes, identification was performed by the coupled algorithm with the
state estimate. Such schemes give raise to a nonlinear filtering problem
for which an approximate solution may be found by using one of approaches
stated in the previous subsection 1.1.A.

Recently, some trials have been made on the identification of unknown
parameters which appear in the mathematical model of D.P.S. Using
integration by parts along with measurement data, a set of algebraic
equations in the parameters were derived by Perdreauville and Goodson[100].
In studies by Collins and Khatri[22], Zhivoglyadov and Kaipov[166],
Carpenter et al.[20] and Polis et al.[101], several different methods of
finite difference, stochastic approximations and Galerkin's criterion
were used respectively to yield to parameter estimates. Sunahara and the

author[139] presented a new method of parameter identification by invoking
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the Bayesian theoretic approach. Chen and Seinfeld[168] considered the
identification problem of spatially varying unknown parameters by applying
the nonlinear filtering theory.

Naturally, the filtering theory of linear and nonlinear D.P.S. is

the background knowledge of parameter estimate.

1.1.C. Control Problem

For the control problem of D.P.S., comprehensive and excellent
surveys were published by many investigators. The first important
survey effort was that of Wang[153] in 1964. Butkovsky et al.[19]
presented a survey of Soviet works in the field, and separately Brogan
[14] published a more comprehensive survey which included a substantial
amount of tutorial material. Recently, a short, but notable survey was
presented by Robinson[105] in 1971, covering a list of current papers
over 250 entries. Special mention should be made on the excellent work
by Lions[87] who discusses the optimal problem from the viewpoint of
a pure mathematician.

In the following, reviewing recent works on the optimal control
problems, descriptions are mainly restricted to stochastic and/or
nonlinear problems.

Significant advances in stochastic control were made by Kolb[72],
Kushner[81], Tzafestas and Nightingale[150], and Sholar[117]. Most of
all these works consider optimal control problems with use of extensions
of lumped parameter ideas and have involved only linear systems, as
might be expected. Kushner[81] showed that for a random parabolic
systems with control which is a linear function of the state, the optimal
regulator is determined by a Riccatian equation, based on a mathematical
models described by an It differential equation. Also, Tzafestas and
Nightingale showed that the result is a pair of linear optimal feedback
controllers, their common weighting function being described by a matrix
partial integro-differential equation of the Riccatian form. When the
system state is not exactly measured, Sholar[117] showed that the
distributed Kalman filter is imposed and that the decoupling of the
optimal controllers and the optimal estimator is proved.

Tt is well-known that dynamical systems to be controlled exhibit
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sometimes nonlinear characteristics. In recent years, the optimal

control of such a nonlinear D.P.S. has received considerable attentions.
However, a paucity of works on stochastic systems and a lack of
consideration of nonlinear problems prevent us to study the problem

of optimal stochastic control for nonlinear D.P.S. An important contri-
bution was given by Egorov[32,33] to obtain a formulation of the necessary
conditions for optimality being equivalent with the formulation of
Pontryagin's Maximum Principle[102]. Golub'[46] considered also the
optimal control of systems described by nonlinear partial differential
equations and proposed an algorithm for approximate calculation of

optimal control. In [87], Lions delt with some problems in which the
systems are nonlinear with respect to controls, and derived necessary con-
ditions on the optimal controls. Yavin[164] derived sufficient conditions
for two classes of nonlinear D.P.S.; and Fjeld and Kristiansen[37] obtained
conditions for local optimality, using simple calculations of variations,
and considered the optimization of a periodic process which consists of

a tubular reactor. Tzafestas[147] treated the optimal final-value control
problem for fully nonlinear composite distributed- and lumped-parameter
systems, and obtained an iterative computational algorithm. Expanding

the stochastic linearization techmique to D.P.S., Sunahara and the author
[141,142) made an effort to obtain a suboptimal control for a general
class of nonlinear D.P.S. subjected by disturbances, and explored

computational algorithm for implementing the results.

1.2. Problem Considered

In Part Two, we consider the problems of estimation of system state,
parameter identification and/or optimal control for a gemeral class of
nonlinear distributed parameter systems subjected to disturbances, and
develop the implementation technique for the results. Physical systems
under consideration are shown in Fig.1l.1l. Enviroomental effects on
the system are represented by a set of disturbances (noises). The obser-
vation mechanism corresponds to a set of transducers or measuring
instruments which monitor system states and transform them into a set of

output quantities.
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Fig.l.1. System description.

The dynamic behavior of a large number of D.P.S. can be described
by a partial differential equation of the form:
) BED _E i, u/0x, 0%u/0x%50) + C(E, X E(E,0)
+ G(t,x,u)y(t,x), xeD

defined on a fixed spatial domain D for te[0,T], where u(t,x) is a scalar
system state; F is a nonlinear operator; C and G are known functions;

Y is a formal Gaussian white noise which represents the environmental
disturvance; f is a control function; and 6 in the operator F is specified
as a known or unknown parameter. The system state u(t,x) is observed by

observation mechanism given by

(1.2) z(t) = [JH(t,x,u)dx + R(£)L(t).

The output z(t) is scalar; H is a nonlinear function; R is a parameter
coefficient; and ¢ is a Gaussian white noise with unit variance.

Since the models (1.1) and (1.2) are purely formal because of the
existence of white noises, they are well-modeled respectively by a kind

of stochastic differential equation of It6é-type;
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(1.3) du(t,x) = F(t,x,u,9u/9x%,3%u/0x2;0)dt + C(t,x)E(t,x)dt

+ G(t,x,u)dw(t,x)

and

(1.4) dy(t) = [fyH(t,x,u)dx]dt + R(t)dv(t),

where y(t) is a scalar observation process according to the similar
relation to (1.5) in Sec.l.2, Chap.l of Part One, z(t)=y(t).
Based on the models (1.3) and (1.4), in Part Two we consider the
following three intrinstic problems; i.e.
(i) Estimation of the system state u(t,x) of the system (1.3) from
the observation data {y(s), O<s<t} obtained by the process (1.4),
in which the parameter § is assumed to be known;
(ii) 1Identification of the unknown parameter § in (1.3), which is
very important in the field of the system identification;
and

(iii) Optimal control of the system (1.3).

1.3. Summary of Contents

The orientation of Part Two is first to propose the possible scolution
for the basic and intrinstic problems, that is the problems of estimation
of the system state, parameter estimation, and optimal control, which
should necessarily be considered in constructing the physical distributed
parameter control system, and then to provide the proposed approximate
method.

The outline of Part Two is as follows.

In Chap.2, the precise mathematical models for both the dynamical
system and the observation mechanism are established.

Chapter 3 provides two possible methods of expansions of a nonlinear
function. One is based on the Taylor series and the other the stochastic
linearization. These methods of expansion are extensively used in Chap.4
and Chap.6.

In Chap.4, the nonlinear filtering theory is developed based on the

measure-theoretic approach for a genmeral class of nonlinear D.P.S. with

a Gaussian white noise disturbance under noisy observations. The principal

—163—



method is to introduce the Girsanov's measure-transformation theorem to
the filtering theory. Using the differential generator extended to the
case of stochastic differentlal equations, a version of conditional
expectation is derived in a form of integro-differential equatioms.
Also a contribution is made to the method of physical realization of
nonlinear filters.

Chapter 5 contains the development of parameter identification for
the purpose of detecting pollution sources of envirommental systems,
Unknown parameters are contained in exciting terms of system dynamics.
Through the Bayesian approach, a coupled scheme of state estimation and
parameter identification is proposed in Markovian framework, and
demonstrated by digital simulation studies.

In Chap.6, an extensive method is presented for the control of
nonlinear D.P.S. under a quadratic criterion functional. Based on
the study described in Part One, the extended stochastic linearization
technique to D.P.S. is used to realize the optimal control system. The
feasibility of approximate method is also emphasized by a simulation

experiment.
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CHAPTER 2. MATHEMATICAL PRELIMINARIES

2.1. Distributed Brownian Motion Process

When one wants to describe a mathematical model for the given D.P.S.
subjected to additive Gaussian white noise disturbance, it is first
required how one should represent mathematically the white noise distur-
bance which is spatially distributed. Secondly, it is also required
to make clear the relation between the spatially distributed white noise
and its associated Brownian motion process.

From physical viewpoints, a spatially distributed white noise,
¥(t,x) (where x is a spatial point in a fixed domain D), is considered
to possess the following two properties:

(i) For each fixed xeD, the process y(t,-) is a white noise,
(ii) for each fixed t, y(-,x;) and Y(:,xp) are mutually independent
random processes if x1#x2 and x;,%2€D.
The property (ii) states that for each fixed t the function y(-,x) has

the nature of "whiteness" with respect to the spatial point. Thus since
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it will be clear from (i) and (ii) that the spatially distributed process
¥ (t,x) has an extreme irregularity with respect to both t and x, it is
almost impossible to treat it as a "usual" function of t and x. The
rigorous treatment of such the process Y(t,x) requires the Schwartz
distribution theory[110] and the theory of generalized random field
(cf. Gel'fant and Vilenkin[43]). Such a treatment is discussed in [144],
However, the distributed Gaussian white noise Y (t,x) is related here
to a spatially distributed Brownian motion process with an analogy of
Eq.(2.2) in Sec.2.1, Chap.2 in Part One, as

(2.1) w(t,x) = ftY(s,x)ds, xeD

where w(t,x) is a distributed Brownian motion process. Clearly, w(t,x)
defined by (2.1) has the properties of Brownian motion process for each

fixed xeD. 1In what follows, the covariance of w is assumed to be
(2.2) E{dw(t,x)dw(t,z)} = Q(x,z)dt,

where Q(x,z) is a nonnegative and symmetric (in x and z) function for

all x,zeD. If the function Q(x,z) is given by
(2.3) Qx,2) = Q46 (x-2),

where QO is a nonnegative constant and § is the Dirac delta function,
the Brownian motion process w(t,x) is spatially independent. It may be
stated that the process having the property (2.2) is milder than the
property stated in (dii).

In the following discussions, we use the model (2.1) with (2.2)

as the spatially distributed Brownian motion process.

2.2. System Dynamics

Let D be a bounded, open, Borel measurable, simply connected set

n - -
on E( ), an n-dimensional Euclidean space, with closure D, and 3D be the

boundary of D which is continuous and piecewise differentiable. We shall
write R=[0,T]xD where [0,T] is the time interval. The symbol x is an n-

dimensional coordinate vector.

We shall consider a well-modeled nonlinear distributed parameter

system described by
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(2.4) ut = F(t’x’u’ux’uxx) + G(t,x,u)yY(t,x)

with the initial condition
(2.5) u(0,x) = ¢(x),

where u(t,x)eR is a scalar function, F is a nonlinear operator, G is a
known function, Y(t,x) is a formal Gaussian white noise, and U, u and
u_ are partial derivatives. The version of (2.4) is interpreted more
adequately by the following stochastic nonlinear partial differential
equation which may be considered as an extension of the stochastic

ordinary differential equation of Itdé-type,
(2.6) du(t,x) = F(t,x,u,ux,uxx)dt + G(t,x,u)dw(t,x),

where w(t,x) is a Brownian motion process in LZ(D) with the zero mean

and covariance,
(2.7) E{dw(t,x)dw(t,z)} = Q(x,z)dt,

where the symbol E{-} denotes a mathematical expectation and Q(x,z) is
a symmetric nonnegative function for all x,zeD.

For the purpose of mathematical security, the following assumptions
are made.

Suppose that, for every te[0,T] and xeD, a o-algebra St is defined,
where SSCSt (s<t) and that a Brownian motion process is defined on R.
For (2.6), the following conditions hold:

(C2.1) F(+y*y*5°,+) and G(-,-,*) are St-measurable for the fixed

t and x.

(c2.2) u, u and u_ are H6lder continuous on R.

(C2.3)* For all te[0,T], u tends uniformly to zero as x*3D. Fur-
thermore, both F(-,+,-.-.-) and G(+,-,+) also tend uniformly
to zero as XedD.

(C2.4) The initial value u(0,x) has a bounded variance and HSlder
continuous second derivatives. The initial value u(0,x) is

independent of w(t,x).

* (C2.3) is for convenience of theoretical development. Th? problem
with nonhomogeneous boundary conditions may be transformed into ome
with homogeneous conditions[169].
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(C2.5) For all te[0,T] and xeD,
jg' G(t,x, ')I zdt % 2,

In the sequel, assuming that the systems (2.5)-(2.6) with its initial
and boundary conditions are bien posé in the sense of Hadamard and that

the existence of the solution is always guaranteed, we shall start with
(2.6).

2.3. Observation Mechanism

Let v(t) be a normalized Brownian motion process independent of the

u(t,x)- and the w(t,x)-processes. The observation process y(t) is the
scalar random process determined by

(2.8a) dy(t) = [fDH(t,z,u(t,z))dZJdt + R(t)dv(t),
(2.8b) y(0) = 0,

where H is a nonlinear function with respect to u(t,z) and R(t) is a

continuous, positive coefficient on [0,T]. Define
A
(2.9) h, = IDH(t,z,u(t,z))dz.

For (2.8), the following conditions are assumed:

(C2.6) ht is St—measurable for the fixed t and bounded on [0,T],
and

Iglhtldt < w, Iglk(t)lzdt < @,

Remark 2.1: The operator IDH(t,z,-)dz is a convenient representation

for scanning-type or spatial averaging-type observers[153]. If the
function H is linear, i.e.

IDH(t,z,-)dz = IDH(t,z)(-)dz,

and further if H(t,z) is replaced by &§(z-n) (Dirac delta function), then
(2.8) shows the point-wise observation at a measuring point n. Such a

case will be used in an example in Sec.5.5, Chap.5.

2.4, System Models

For convenience of the following discussions, several types of the
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system models which are used in Part Two of this dissertation are defined.

Definition 2.1. (System 21) Let u(t,x) and y(t) be scalar processes
of dynamical system and observation represented by

(2.10) du(t,x) = F(t,x,u,ux,uxx)dt + G(t,x,u)dw(t,x),
I.C. u(0,x) = (%), xeD
B.C. u(t,x) = 0, XedD,

(2.11)  dy(t) = [J H(t,z,u)dz]dt + R(t)dv(r),
y(0) = 0,

where the assumptions (C2.1)~(C2.6) in Sec.2.2 and Sec.?.3 are made.

Equations (2.10) and (2.11) are collectively specified as Zl.

Definition 2.2. (System 22) Let u(t,x) and y(t) be scalar stochastic

processes represented by
(2.12) du(t,x) = Lxu(t,x)dt + g(t,x,0)dt + G(t,x)dw(t,x),

I.6 u(0,x) = $(x), %D
B.C. u(t,x) = 0, xe9D,

(2.13) dy(t) = [J’DH(t,z)u(t,z)az]dt + R(t)dv(t),
y(0) = 0,

where Lx is an elliptic operator, g is known function, and 6 is

a vector of unknown time-invariant parameters which is considered

to be a random variable. For (2.12) and (2.13), the assumption

(C2.4) in Sec.2.2 is made and

(C2.7) The coefficients of Lx and their first and second derivatives
are continuous in R.

(C2.8) g is bounded and continuous on [0,T].

(C2.9) For all te[0,T], u tends uniformly to zero as x*3D. Further-
more, both Lxu and G also tend uniformly to zero as x*3D,

(C2.10) For xeD,

fg|G(t,x)|2dt < o,

Equations (2.12) and (2.13) with (C2.7)-(C2.10) are specified as 22.

—169—



Futhermore the following system 23 is defined.

Definition 2.3. (System 23) Let u(t,x) be scalar process represented

by
(2.14) du(t,x) = F(t,x,u,ux,uﬂ)dt + C(t,x)f(t,x)dt

+ G(t,x,u)dw(t,x),

L:8: a0z ¢(x), xeD
B.C. u(t,x) = 0, xedD,
where f(t,x) is a control function to be specified, and for (2,14)

the assumptions (C2.1)-(C2.5) in Sec.2.2 are made.
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CHAPTER 3. LINEARIZATION METHODS

3.1. Introductory Remarks

In the theory of filtering and/or control of a class of nonlinear
D.P.S., the approximation of the nonlinear function to some linear ome
will be expected to play a role as useful as in the lumped parameter
systems. TIn this chapter, two possible methods of linearization based on
the stochastic linearization and the Taylor series expansion are proposed.

They are considered to be an extension of the idea of lumped parameter

system to D.P.S.

3.2. Method by Taylor Series Expansion

Let us consider the system Zl defined by Def.2.1, Sec.2.4, Chap.2.
The nonlinear function F(t,x,u,ux,uxx) is expanded into a Taylor series
around the (a’ﬁx’ﬁxx) as

%W & §F _x
(3.1) F(t,x,u,ux,uxx) = F(t,x,u,ux,uxx) + % ﬁ(u a) +

=R1=



oF " &F " 1 §2%F iy2
— = —_ = + _— & = + - w
* Suy ﬁx(u u)x ¥ Suyy ﬁxx(u u)xx 2 6ul u(u ) ?

where 4, {iy and {iy, are the conditional expectations of u, uy and Ugpes
for more concretely these are defined in Chap.4, and 6F/8u, &F/8uy,---

are the functional derivatives[152]. For simplicity, define a vector
(3.2) v = [ug, ug ul’,

and denote

(3.3) F(t,x,u,ux,uxx) = F(t,x;v).

Then, for each xeD, the Taylor series expansion (3.1) is represented as

(3.4) F(t,x;v) = F(t,x;5%) + (V'ﬁ)'%%’v

1% .GZFJ 8) + v
+2(vv)m0(\rv)+ »

In (3.4), 8F/6v and GzFfﬁvz are a vector and a matrix with components
{&F/8u, SFlﬁux, 6F/8u,, } and {62F/6u2,-++}, and these will be given in
Sec.4.4, Chap.4. This extension of Taylor series expansion will play

a useful role in the nonlinear filtering theory in Chap.4.

3.3. Method by Stochastic Linearization

Consider the system f, defined by Def.2.3, Sec.2.4, Chap.2. By

3
invoking the stochastic linearization technique reviewed in Chap.3, Part
One, let us consider in this section an extension of the technique to
the D.P.S.

Define a vector

(3.5a) v = [vz' vl' vo]'

with components

V0=U
= adle '
(3.5b) vy [ul u, un]
Vo T Mgy My cee gy vy ety w T

where ui=8uf3xi, Uij=32u/3xi3xj and n is the dimension of coordinate
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vector x. Then, for each xeD, we expand the nonlinear function F(t,x;v)

into
(3.6) F(t,x;v) = a(t,x) + B'(t,x)(v-v) + e(t,x),
where v is a conditional expectation of v. The coefficients a and B are

determined so as to minimize the conditional expectation of expansion

error, i.e. E{|E(t,1)lzl¢(X)}. The procedure of the minimization is
similar to that in Chap.3, Part One, and the results are

(B.7)  a(t,x) = E{F(t,xv) ¢ )} & Fle,x3v)

(3.8)  B(t,%) = S L(t,x)E{ (v=v) [F(t,x5v)-F(t,x3v)1] 6 () },

where
(3.9) S(t,x) = E{ (v=v) (v=v)"| ¢ (x)}.

The extension of stochastic linearization established here will be used

in Chap.6 to obtain a feasible method of optimal control.
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CHAPTER 4. STOCHASTIC ESTIMATTON FOR NONLINEAR DISTRIBUTED
PARAMETER SYSTEMS

4.1. Introductory Remarks

The estimation of states in noisy D.P.S. has important applications
to identification, optimal and adaptive control as well as for systems
described by ordinary differential equations. Many efforts have been
done as previously surveyed in the subsection 1.1.A, Sec.l.l, Chap.l,
for both linear and nonlinear D.P.S.

In this chapter, a general theory for filtering problems is develop-
ed for dynamical systems with the system noise of white Gaussian type
and the boundary conditions and noisy observations which are made at the
system output in the continuous time and spatial locations. Use is made

of the theory of measure transformation established by Girsanov[45].

4.2. Preliminary Lemma

We consider, in this chapter, the mathematical models which is

given by I; in Def.2.1, Sec.2.4, i.e.
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(4.1) du(t,x) = Flt,x,u,u ,u )dt + G(t,x,u)dw(t,x)
.2 ay(o) = [ (e,2z,0dz]dt + R(t)av(r). 1

The problem is to find the minimal variance estimate of the state
u(t,x) provided that the process y(s) (0<s<t) is obtained as the observed
data.

In order to establish the filter dynamics via Radon-Nikodym derivative
approach, a newly combined system is defined.

(4.3a) du(t,x) = F(E,X,u,ux,uxx)dt + G(t,x,u)dw(t,x),
(4.3b) u(0,%) = ¢(x),

= 2 EO
(4.4a) dy(t) = R(t)dv(t),

(4.4b) ¥(0) = 0.

Let ¥ and ¥y be the measures induced by the systems ZO and El,

respectively. The process {u(t,x), (t,x)eR} and the process {y(t),

te[0,T]} are mutually independent. Let E {-[Vt} denote the conditional

(1)
expectation with respect to ui(iﬂﬂ,l) conditioned by Vt, where the symbol

Vt denotes the minimal og-algebra generated by y(s) where s<t. Let C(l)

be the space of continuous functions on [0,T] (for fixed xeD). Let My be

+
the measure on the measurable space (C(l 1

¥ BCut’yE)’ ul) for the system
El, where the basic o-algebra is the product o-algebra B(ut,yg)=3txyt

and ul is the product measure ul=uuxy .

¥y
The systems El and ZO are respectively presented in a combined form:
u(t,x) [F(t,x,u,u ,u_)
(4.5) z;: 4 r x’ xx o
y(t) [, z,u(t,2)) dz
FG(t,x,u) 0 w(t,x)
+ d
L 0 R(t)| [v(E)
u(t,x) F(t,x,u,u_,u_)
(4-6) ZO: - - X XX
y(t) fDH(t,z,u(t,z))dz
G(t,x,u) O 0
+ dt

0 R(D) || K H(E) [iE,2,ult,2))dz
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G(t,x,u) 0 w(t,x)
+ d 5
0 R(t) v(t)
For systems ¥ and By> We have the following lemma due to Girsanov.

Lemma 4.1.(Girsanov[45]) Let gg be defined by

i w(s,x)
(4.7) gé = fg[o -R (s)jDH(s.z,u(S.Z))dZJd vis)

0
1.t =1
= E-O[O -R (S)IDH(S,Z,U(S,Z))dZ] —R—l(S)jDH(S,Z,U(S,Z))dZ ds.

Then, for the systems Mo and Hy» the Radon-Nikodym derivative of
Ho with respect to ¥y is

du
0 _ T
(4.8) Qﬁ‘mem{%}.

4.3. Derivation of Filter Dynamics

In this section, we shall obtain a general version of the represen-
tation for the conditional expectation and prove that this version yields

the optimal filtering process. Define

(4.9) i(t,x) 2 Eyylule, )|V},
and
(4°10) P(t,x,z) é E(l){{u(t,x)—ﬁ(t,x)][u(t,z)—ﬁ(t,z)]IVt},

and also define the differential generator G of the diffusion process
(4.1) as follows:

(411 GV(E,u(t,x) u(t,z) = THEnED u(e,2))

8V(t,u(t,x) ,ult,z))

+
Su(t,x)

F(t,x,u(t,x),ux,uxx)

+ SV(t,u(e,x) ,u(t,z))

Salt,z) F(t,z,u(t,z),uz,uzz)

2
1
*t3 e V(t’u(;)x)’u(t’z)) Gz(t,x,u(t,X))Q(x.x) +
Su” (t,x)
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2
\'i 3 3 3 [y
¥ ® (gu?ETX§;U?EEZ§)) G(t,x’u(t’x))Q(X’Z)G(tazpu(t’Z})

+ 1 62V (e, u(t, ) ,ult,2)
2

5 Cz(t,z,u(t,z))Q(Z,Z)s
su (t,z)

where V is a continuously twice differentiable fumction defined on the
space [0,T]xRxR, and where §V(t,u(t,x),u(t,z))/su(t,x) denotes the partial
derivative which is defined as the variation of V with respect to the

function u(t,x) at a point =xeD.

Theorem 4.1. Assume that the conditions (C2.1)-(C2.6) hold. Then there

is a version of E(l){f(u(t,X),u(t,z))lyt} which has the stochastic
integro-differential,

(4.12) dE(l){f(u(t,x),u(t,z))|Vt} = E(l){Gf(u(t,x),u(t,z))|yt}dt
4+ [E(l){f(u(t.x),u(t,z))[IDH(t,g,u(t,g))dE]|yt}

= E(l){f(u(t’x)’u(t’z))Iyt}E(l){IDH(t’g’u(t’E))dg|yt}]

-2
xR (t)[dy(t)—E(l){jDH(t,s,u(t,s))dzlvt}dtl,
for all x,zeD, w.p.1l, where f£(u(t,x),u(t,z)) is a continuously
twice differentiable function defined on the space RxR.

Proof. Since My and M, are equivalent, the derivative dul/dpo is
obtained from (4.8) by using the relatiom,

du

v _ S _ T, A T

(“‘-13) eo k= E’q = EXP{'CO} =¥ e@{‘d’o}’

where

(4.14) S = JEU (2 u(s,2) dzIR () dy (5)

2.-2
- %j;IIDH(S,Z,u(S,Z))dz] R “(s)ds.
Applying the Ité's formula to (4.13), it easily follows that [31,49]

(4.15) d@S = eghtsz(t)dy(t).
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where the stochastic differential of (2.5) has been used.

Let £(*,*) be any scalar Baire function such that E(l){lf(u(t,x),
u(t,z))|}<= for all x,zeD. Then it follows that (see Lo&ve[90] and Zakai
[165])

E(O){f(u(t,x),u(t,z))eg|yt}'

(4.16) B, {f(u(t,x),ult,z)) |y } =
(1) t t

Express the right-hand side of (4.16) by

F
A _tE
(4.17) WE 8. » 5.
where
4.18) B 8 E o (Eut,0 ult,))exlyg}]Y, )
(4.19) B, - E(O){exp{¢g}lyt}-
Then, it follows that
dF F (dF )(dB,) F
AT - I _ d t t 2
(4.20) dV(Ft,Bt) = s =B ) 7 + B{dBt) ;
t B, B, B

Using the relations (4.15), (4.18), (4.19) and the differential generator
defined by (4.11), we have

(4.21) aF_ - E(U){Gf(u(t,x),u(t,z))exp{wg}lyt}dt
+ By L (ut,30) ,u(e, ) enp{yfth K 2(0) |y Jay (6)
(4.22) B = E(O){expiwg}htk'ztt)]vt}dy(t),
(4.23) (dF ) (dB) = B0 (£(u(e,x),u(t,2))explyIn |V, IR 2(e)
XE(O){eXP{wS}ht|Vt}dt-
28 (@) = B exlyIn, |V K 2(DF o) texplyIn, |V, dat.

Substitution of (4.21) to (4.24) into (4.20) completes the proof.
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Theorem 4.2. Assume that the same conditions as in Theorem 4.1 hold.
Then the optimal estimate of u(t,x) is determined by the following

stochastic integro-differential equation,

(4.25) da(t,x) = E(l){F(t,x,u,ux,uxx)|Vt}dt

+ [E(l){u(t,X)[IDH(t,z,u(t,z))dz][yt}

Eqy(u(t, 0|V I8 {2 u(t,2)) dz ]y IR (1)
x{dy(t)—E(l){IDﬁ(t,z,u(t,z))dz|vt}dt], w.p.l.
Proof. 1In Theorem 4.1, set as £(u(t,x),u(t,z))=u(t,x). Then (4.25) is

obtained, because

(4.26) Gu(t,x) = F(t,x,u,u ,u_).
x’ xx

Corollary 4.1. Suppose that the mathematical models of both the system
and the observation mechanism are respectively described by the
linear stochastic differential equation and the linear integro-

differential equation, i.e.

(4.27) F(t,x,u(t,x),ux,uxx) = Lxu(t,x),
(4.28) fDH(t,z,u(t,z))dz = fDH(t.Z)u(t,Z)dz,
(4.29) G(t,x,u(t,x)) = G6(t,x),

where Lx is an elliptic operator.

The optimal filter dynamies and the associated error covariance

equation are respectively given as follows:

(4.30) dii(t,x) = Lxﬁ(t,X)dt

+ [jDH(t,g)P(t,x.a)dg]sz(t){dy(t)—[fDH(t,E)ﬁ(t,E)dE]dt}

and
(4.31) i%ziﬂi‘—)— = (Lx+Lz)P(t,x,z) + 6(t,x)Q(x,2z)G6(t,2z) -
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- [jbﬂ(t,g)P(t,x,g)dg]R'z(t) [jDH(t,g)P(t,g,z)dg]

and, u(t,x), Lxu(t,x), P(t,x,z), LxP(t,x,z) and LZP(t,x,z) tend

to 0 as x»3D.

Proof. The proof is straightforward as shown in Appendix A. Equations
(4.30) and (4.31) coincide with the results of [82].

4.4. Approximate Filter Dynamics

The filter dynamics derived in the previous section reveals that
an exact realization of optimal nonlinear filters requires infinite
dimensional stochastic moments, which are practically impossible.

In this section, the author presents a possible method of approxi-
mation to a realizable filter by means of the local expansion of nonlinear

functions.

Define a new vector which was introduced in Sec.3.2,

(4.32) v = [uxx u ul',

and denote

(4.33) F(t,x,u(t,X),Ux.uxx) £ F(t,x;v)

(4.34) ¥ = [d a 4a)',
where the symbol "I" denotes E(l){'th}.
Expanding the nonlinear function F(t,x,u,ux,uxx) into a Taylor

series, we have

2
Y " 'OF 1 .
(4.35) F(t,x3v) = F(t,x;9) + (v-1) E;lﬁ + E{v—ﬁ) %;;]G(v—ﬁ),
where
SF _ (8F §F &F.,
(4.36) Sv [Gu Su Gu] X

and where §F/6év denotes the vector partial derivative, and

—hiBf=



’F  _&’F &%
5 2 du du du_  Su
u X
. 8% _ | &%F 82F 52F
(4.37) 2 Tu ou T Fntu |
Sv X XX Sux X
62F ’F  &%F
Sudu Sudu 2
XX X Su
Theq it follows that
1 8 F
(4.38) F(t,x;v) = F(t,x;9) + 7 tr.{s(e,x)"—]| },
5v

where

(4.39) S(t,x) E(l){(V—V)(V 9yt

Similarly, since the functions H(t,x,u) and G(t,x,u) are respectively

approximated by

(4'40) H(t,X,ll) = H(t,X,a) -+ (U-L‘I)““— -—-( — )26 Hlﬁ
Su
and
GG L 2626
(4.41) G(t,x,u) = 6(t,x,0) + (g |s + 5D,
du 9
then we have
- il azﬂ
(4.42) H(t,x,u) = H(t,x,1) + 5 —5|P(t,x,%),
2 2'u
du
- 1 s%¢
(4.43)  G(t,x,u) = G(t,x,8) + 3 “—]P(t,x,%).
2 6u2 u

Substituting (4.38) and (4.40) into (4.25) and using (4.42) , we have

o2
(4.44)  dd(e,m) = [F(E,x0) + 3 er(s(e,0° F Ha
sv

+ [fD %% a2 P(t,x,z)dz]R"z(t){dy(t)-[jD(H(t,x’ﬁ)+
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L1k
2

Su

N [

o2 P(t,z,z))dzldt},

where superscripts denote the spatial point. The covariance equation is
obtained through a simple calculation by substituting (4.35), (4.38),
(4.40)~(4.43) into (A.6) (see Appendix A). The result is%

(4.45) dP(txz)=[6Fx}x~j-2—P(txz)+-§-Ef-,.x—-iP(txz)
' e Su_ '4 gl Su_'a ax -
XX ox x
. 8FF Sltixa) + §F> | 22 ( s 4 aFZI % (¢
Su 1™ EAETEE) ¥ | GBS X ) T g B (K
zz oz z
§F>
+ 5|57 P(t,x,2) 1dt + [6(t,%,u)6(t,2,u)
86, _ sG> 1 52c*
+ Eﬁpwﬁx EE—1ﬁz P{t,x;z) + EG(t,z,u)g;E—]ﬁx P(t,x,x)
2. 2
1 8°G
+ —G(t,x,u)u—l ~z P(t,z,2z)]Q(x,z)dt
2 6u2 u

2,8
- %2 [], i‘%‘laﬁ P(,E,£)dE)R (£) [dy (£)
u
2
- (HCE £,) + 3 5‘%“&5 P(t,E,8)) deldt]
u

£ £
§H =
- Up sl g8 B(ex,0aE)R 2<t)[fD %%—lﬁz P(t,E,z)dE]dt,

where we assumed that [111]

(4.46) E(l){(ux—ﬁx)(uz-ﬁz)(ht-ﬁt)Iyt} =

* In (4.45), the first and the second terms in the right-hand side should
be interpreted respectively by the more precise expressions as

du & 3%, 9%, (6:%,2) and ]
g S, | j=1

§F* 3
6\1 ﬁx _B‘;P(t,X,Z).

xj J
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2
1 § H
= P(t,x,z)[fD Suzlﬁg P(t,z,p)de].

Equations (4.44) and (4.45) describe the approximated dynamic
structure for generating the current estimates u(t,x) with the given
initial conditioms, ﬁ(O,x)=E(l){u(0,x)}, P(O,X,Z)=E(1){[u(O,x)—u(O,x}]
-[u(0,z)-u(0,2)]}, and the given boundary conditionms.

4.5. An Illustrative Example and Digital Simulations

For the purpose of exploring the quantitative aspects, we shall

consider the following scalar nonlinear stochastic diffusion systems:

2
[ a0 = [Q—Eiﬁéil + gul(t,x)]dt + Gaw(t,x)
ox
(8.-47) u(0,x) = A sinznx, O<x<1
u(t,x) = 0 omn x%x=0, 1
[ ay(t) = [fgAu(t,z)dz]dt + Rdv(®)
(4.48)
y(0) =0,

where 8, G, A, H and R are constants, and the variance of the Brownian

motion process w(t,x) is assumed to be
(4.49) Q(x,z) = 8(x-2z), O<x,z<1.
From (4.44) and (4.45), the approximate filter dynamics is determined by

2,
4500 aa(e,m = BEE  ga? (e, + gR(Ex,0 1de
o9x

+ [fénp(t,x,g)dg]nfz{dy(t)—[jéﬁu(t,s)daldt}s

with the covariance equation,

p 2
(4.51) 9 (;;:X,Z) = Bzi"(t,x,z) + ZBu(t’x)P(t,x,Z)
9x

2 2
* iZ'P(IZ,J'I,E.") + 28U(t,z)P(t1sz) + G Q(X,Z) -
oz
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- [fgHR (t, %) dg IR 2 [[gHP (t,g,2) de -

Equations (4.47) to (4.51) are simulated on a digital computer with
a subroutine for the generation of random disturbances, w(t,x) and v(t).

Suppose that observations are taken at discrete time tj’ and that
5tj=tj+l~tj (j=0,1,2,--+) where atj is sufficiently short. The obser-

vation, ayj, can be taken to be

(4.52) 5yj = y(tj+1) - y(tj)

N-1

[}

i=0

e

+
Hu(tj,xi)axilatj Révj,

where the spatial interval [0,1] is divided into N partitions such that

6xi=x. —x, (i=0,1,2,--+,N-1), and

i+l

(4.53) 5§V, X v(t ) = w(t,).
J J

jH1

Define the standard difference operators D+, D_ and DO in the usual way,
i.e. (e.g. see [41])

u(t ,xi‘{'l) = u(trxi)

D+u(t,xi) = = ,

i

u(t,x,) - u(t,x. )

D_u(t,xi) - 1 ; e ,

*-1
B bnd = u(t,xi+1) - u(t,xiﬂl)
0 - 8%, + &x.

i i-1

The increment of the state u at the point X, is

(4.54) Guj(xi) = u(tj+l,xi) - u(tj,xi)

e

2
[D+D_u(tj,xi)+3u (tj,xi)]étj + Gﬁwj(xi),
where

"
(4.55) 6wj(xi) = w(tj+1,xi) - w(tj,xi).

Recall that increments of the Brownian motion processes, §w,(x.) and §v
joi

j’
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are respectively approximated by 5w (x )—n {t )VE?_ and 6V n (t )/EE_
where n, (tJ) and n (tj) are mutually independent Gau331an random numbers
with N[0,1] (see Sec.6.7, Chap.6 in Part One). Then (4.52) and (4.54)
may respectively be computed by

N-1
v
(4.56) Gyj = [kzoﬂu(tj,xk)éxklétj + an(tj)wstj
" 2
(4.57) uj(xi) = [D+D_u(tj,xi)+3u (tj,xi)latj + cni(tj)/atj.

Simple calculations show that (4.50) and (4.51) are also approximated by

(058) ey gm) ¥ aCe,x) + (DD Gk )+ (e, )
+BP(t.,xi,x,)]5t_
N-1
+ E HE(t,, %, %) 8% IR {Gy ~[ z Ha(t,,% ) 6% J6t,)
(4.59) P(tJ+1,x ,x ) = P(t ,xi,x )

+ [(D+D_)xiP(tj,xi,xv)+26u(tj,xi)P(tj,xi,xu)]th

+ [(D+D_)va(tj,xi.xv)+28u(tj,xv)P(tj,xi,xu)létj
+ GZQ(xi,xv)atj

N-1 N 1

[} HP (%, 0% ) 6% IR % Z HP (t.%,% )6x, 16t
k=0

1

(U=0,l,2”--,N)‘

where the operator (D+D—)xi denotes the operation at the spatial point Xj.
Letting j=0,1,2,+++, equations (4.52) to (4.59) are simulated on a digital
computer to obtain the running values of (tj,x%;) and P(tj,%j,%y) with a
set of preassigned initial data.

Figures 4.1(a) and 4.1(b) show the bird's-eye views of the states of
the true system u(t,x) and the estimation G(t,x). Naturally, although the
true solution process can not be observed in practice, this is shown only

for convenience of discussions. In the digital simulations, §x; and §tj
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Dynamical system

2
dut.)=[ 22 u(t,x) « pu’(, ]dt‘de(l.:)
System state u(t.x) ult.x) [a:@ ult.x) « pu”(t.x)

I

I.C. ul0.x)=Asin? nx Osx<l

BC. u(t,x)=0 on x=0,1

!‘I}'r

A=10 G=045 B=01

0
003 0.06 0089 time (sec)

Fig.4.1(a). True system states u(t,x).

Observation
dy(t)=[§ Hult.2)dz]at . Rav(D)  y(0)=0
a

Estimation process

A 2 el
. du(t,x):[—-.az u(t‘x}»ﬂﬁz{t.xloﬁp(t,x.x)]dt
Estimation u(t,x) ax

1 -2 LI
[S Hp(tx,E)dE|R {dy(t)-[g Hu(t.E)dE]dt}
(1] ]
10 K ;! I.C. G(0.x)=0 Osxsl
i\
;I PaX B.C. G(t,x)=0 on x=0,1
0.2 T (AW
pk | ! | 3 A=1.0 H=4.0 R=0. ﬁ.—.o‘
0.6 { I :
i/
| 1 / PNl SN R, B~
I o
0.k W S ] e
Il v/ 7 ob
|
02 I 7, P
L 0
;
02
0
0193 0.08 009 time (sec)

Fig.4.1(b). Filtered estimate u(t,x).
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e —

0 0.03 0.06 0.09 ( sec )

Fig.4.2. Comparison of true and filtering processes
at x=0.1 and x=0.5.

Variance p(t,x,x)
Error covariance
2
i%%ﬁl: (%— . ai:i)p(t,u.z) . Zﬁlﬁ(t.x).ﬁ(l.z)] pltx.z)

1.0r

+G2Q(x,2) - [S;Hp{t.:.t)GE]R" [S;Hpﬂ.g.z)dt]

I.C. pl0,x,2)=(Asin*mx-0(0,x)(Asin?wz -((0,2)

BC. p(txz)=0 on x=0,1

A=1.0 H=4.0 G=0.45 R=04 p=0.1
Q(x,z) = 6{x-z)

0.03 0.06 0.09 time (sec)

Fig.4.3. Associated error variance p(t,x,x).
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are both equi-partitions, 0.02 and 0.0001 (sec) respectively. The sample
values are depicted in 0.1 and 0.0015 (sec) intervals with respect to x
and t. Values of each of the parameters and the initial conditions are
also shown in the figures. Figure 4.2 shows the convergence of the approx-
imate filter at spatial locations x=0.1 and %=0.5. From the figure it can
be seen that the rate of convergence is rapid at respective locationms.
Figure 4.3 shows a numerical aspect of associated error variance, P(t,x,x).
Although it is extremely difficult to justify analytically the accuracy
of the proposed technique, experimental results obtained reveal that the
approximate filter based on the second-order expansion shows good perform-
ance and will play a useful role to the realization of a broad class of

stochastic nonlinear D.P.S.

4.6. Discussions and Summary

In this chapter, the estimation problem has been solved for a general
class of nonlinear D.P.S. In particular, the Radon-Nikodym derivative
approach has been employed to derive the version of representations for
conditional expectation. The result reveals that the optimal estimation
is generated by the solution of a stochastic integro-differential equation.
If both the system and the observation mechanism are linear, the estimation

equation coincides with that obtained in [82].
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CHAPTER 5. PARAMETER IDENTIFICATION FOR LINEAR DISTRIBUTED
PARAMETER SYSTEMS

5.1. Introductory Remarks

Physical processes which may be modeled by a class of linear or non-
linear partial differential equations involve such real physical systems
as heat exchangers, chemical reactors, nuclear reactors and environmental
systems. It is a usual way that a given physical process can be specified
by the basic conservation principles via constitutive relations. We know
that many serious problems in real physical systems were solved formerly
without a complete understanding of relevant physical and/or biological
factors. However, pragmatic approaches to the solution of problems can
be adopted only when the cause-effect relations are readily apparent.

In the most cases, unknown parameters appear in the models and these
must be identified by comparing experimental measurements of the process
and the solutions to the equations describing the process. The unknown

parameters are seems to be surely constant or can be assumed constant

over an interesting range.
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Several trials have recently been made on the parameter identifi-
cation for D.P.S. as surveyed in the subsection 1.1.B, Seec.l.1l, Chap.l.
In this chapter, a new method of parameter identification is presented
by invoking the Bayesian theoretic approach.

Let the mathematical models of the physical system and the observa-

tion mechanism be given by I, in Def.2.2, Sec.2.4, i.e.

2

(5.1) du(t,x) = Lxu(t,x)dt + g(t,x,0)dt + G(t,x)dw(t,x)
: I
(5.2) dy(e) = [[(t,2)ut,z)dzlde + R(t)dv(t). 2

The work presented in this section was motivated by actual air
pollution problems in environmental systems. The mathematical model
given by (5.1) is a somewhat simplified diffusion model of air pollution.
The state of the problems is characterized by the scalar state u(t,x)
which is considered, for example, as the field of temperature or density
of the air pollutant. The first term on the right-hand side is due to
diffusion; the second term is the representation of the air pollution
source term; and the final term represents the additive system noise
caused by the environmental noise. From the viewpoint of air pollution
prevention, the unknown parameter § expresses the pollution source to
be identified. The objectives are twofold: (i) to solve some specific
identification problems, and (ii) to derive systematic method for estab-
lishing the parameter identification and state estimation algorithm under
noisy measurements.

In a practical problem, we also have an additional problem of
determining the forcing term g and the coefficient of the model. An

example of identifying the function g is
- (1)

(5.3) g(t,x,8) = J C (£)8(x-6"""),
i=1

where Ci(t) is a known function expressing the intensity of the i-th
pollution source and § is a Dirac delta function. Naturally, if we
adopt the model given by (5.3), then there exists a violation of the
mathematical conditions for the existence of the solution to (5.1).

However, since the mathematical aspect will be discussed elsewhere, we
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will not go into any details on the existing problem of solutions in this
chapter.®* 1In this situation, it is of great interest to derive the
identification methods for the unknown parameters B(i). To fix the ideas,
we shall first consider the case where N=1, because the extension to N
forcing terms is straightforward with few changes. Thus with (5.3),

equation (5.1) is written as

(5.4) du(t,x) = Lxu(t,x)dt: + C(t)8(x-6)dt + G(t,x)dw(t,x),
for te[0,T], xeD,

with associated initial and boundary conditions,

(5.5a) u(0,x) = ¢(x), xeD,

(5.5b) u(t,x) = 0, te[0,T], xedD,

where ¢(x) is the known initial condition omn u.

Although in most practical cases, changes of admissible values of
§ are continuous with the a priori probability P(6), as might be expected,
the computational requirements are in general excessive. Consequently,

the a priori probability P(8) is assumed to be

K
(5.6) P(0) = .I P(6,)6(6-0,),
i=1
that is, the parameter 8 changes over the finite set of points Bl, Byseres
BK. s -
The choice of the mathematical model (5.2) implies the situation 1In
which observations are continuously made on the system state with respect
to time and spatial points. This is only for mathematical convenience to
develop the theoretical aspect in the continuous parameter process. A
more practical model will be taken into account later.
Let Vt be the observation data up to the present time t. The problem
is to find the best estimate of the unknown parameter & and the system

state u(t,x) based on the observed data sequence {y(s), O<s<t}.

* The rigorous proof of existence and uniqueness of the so%uti?n t? (5.1)
requires the knowledges of generalized random field and distribution
theory [43,110].
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5.2. Preliminary Lemmas

Let A(i) be the event such that

(5.7) A(i) = {w: 3(&\)=ei}, (i=l:2""’K),

where y is the generic point of the probability space Q.

With the event A(i), equation (5.2) can be expressed by
.9 AP gy = [JED, (k,2)dz]de + R av(E),

where ui(t,x) is the solution of

(5.9) dui(t,x) = Lxui(t,x)dt + C(t)G(x~Bi)dt

+ G(t,x)dw(t,x),

with the associated initial and boundary conditions

(5.10a) ui(O,x) = ¢(x). xeD,
(5.10b) ui(t,x) = 0, xedD, te[0,T].

Let Pi (i=1,2,-+-,K) and PO denote respectively the measures induced
in the space of continuous functions by the observation {y(s), O<s<t}
under Acl) and by the observation
(5.11a) Ayt d¥(e) = R(E)dv(t),

(5.11b) ¥(0) = o.

Then, we have the following lemma.

Lemma 5.1.[58,128,138] Let Pi and PO be the two measures induced by
(5.8) and (5.11) respectively. Then, it follows that

(1) Piq:PD, that is, Pi is absolutely continuous with respect to

PD;[118]
(2) the Radon-Nikodym derivative of Pi with respect to PO is given
by
dPy T -2 1T, 2 -2
(5.12) @, exp{[oh, (t,u )R “(£)dy(t) - 3o (£u IR (B)de},

where u is a sample process at a fixed x and
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5.13) b (eu) LE( e, 0ue,0Ely,, a0y

= [LE(t, %8, (%) dx

and ﬁi(t,x) are defined by

(5.14) 6,60 =peoly, AD), @120

and these are determined by the solution processes of the filtering

equations given by the following lemma.

Lemma 5.2. Assume that the conditions (C2.4) and (C2.7)-(C2.10) hold.

Then the optimal estimates ﬁi(t,x) of the system state u(t,x) under

A(i) are determined by

(5.15) dﬁi(t,x) = Lxﬁi(t,x)dt + C(t)a(x—ai)dt

+ [[HCE,E)S, (8,8, dE TR () {dy ()= [ H(E, )&, (¢, E)delde
(i=l,2,°",K),
where Si(t,g,x) is the associated covariance defined by

(5.16) 8 (6,63 = B{[u(t,0)-i, (6,0 1[u(t,0-8, t,0]V,, A1

and this is determined by

P _
(5.17) B 8, (t,£,x) = {Lg+Lx)Si(t’E’x) + G(t,£)Q(E,x)G(t,x)

- [[DH(t,z)Si(t,z,g)dz]R_z(t)[fDH(t.Z)Si(t,ZgX)dZ]-

The proof may easily be completed as a direct consequence of [138]
or [82].

Remark 5.1: 1f, for the preassigned initial values, the relatioms
ﬁi(o,x)=ﬁ0(x), 5, (0,£,%)=5,(E,%) hold for all i, then it follows from
(5.17) that Si(t,E,x)=Sj(t,g,x) for all i and j.

Remark 2.2: Version of the likelihood-ratio: It is readily understood
that the Radon-Nikodym derivative, (5.12), in Lemma 5.1 is rewritten by

(1)
P, p{V A7}

(5.18) AT

i
& p,m,
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where Ai(T) is the likelihood-ratio.
By applying It stochastic calculus to (5.12) and (5.18), we have
the following lemma.

Lemma 5.3. A sample process of the likelihood-ratio fumction Ai(t)
(i=1,2,+-+,K) is determined by the following stochastic differential

equation,
(5.19a) dh, (t) = Ai(t)ﬁi(t,ut)R_z(t)dy(t).
(5.19b) Ai(O) = 1.

The proof is shown in Appendix B.

Lemma 5.4. Let B be a vector defined by B=[u 6']', where " '" denotes

its transpose. The minimal conditional mean square performance

criterion,
(5.20) 3B 2 B{IB(t,0-B(t,x) 1" [B(t,0)~B(£,01]Y, ),
is reduced to
(5.21) 38,8 = E{fe-8()|?|V} + E{[u(t,x)-i(t,x)1%|Y,},

where the symbol "|-|" expresses the Euclidean norm.

5.3. Parameter Identification

According to Lemma 5.4, the minimal conditional mean square performance
criterion (5.21) is used here, for which the conditional mean square errors
with respect to identification and state estimation become minimal

separately.
First, the first term of (5.21) is considered in this section. We

shall write the conditional probability and the conditional probability
density of the event A(i) conditioned by ¥, by P(A(l)lyt) and p(A(i)[Vt)
respectively. From (5.6), it is apparent that

- K
(5.22) 8(t) 2 E{o|Ve} = aiP(A(i)|Vt).
i=1

The a posteriori probability P(A(i}|yt) required in (5.22) can be evaluated
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by

t) = K

L
j=1

(i)ly

(5.23) P(A

where P(A(l)) is the a priori probability in (5.6) and P(A(i))=P(a_)_
1

From (5.23), it is a simple exercise to show that
(1) ¥ -1
(5.24) PAMIY) = [ e A ()] =M (D)
j=1j1 Jji i

where Aji(t) is the modified likelihood-ratio function defined by

( A (t) P0ua™)
5-25) L) B (i>j=l,2:.":K)
and
(i)

_P(AY)

(5.26) aji ;z;fET;'
Hence, the optimal estimation B(t) given by (5.22) becomes
. K

(5.27) 8(t) = J o.M (t).

i=1

In order to compute recursively the optimal estimate 6 (t) in the form of
. K

(5.28) a6(t) = ) e.aM (t),

5 i i

i=1
the following two theorems are stated.
Theorem 5.1. The modified 1likelihood-ratio function Aji(t) defined by

(5.25) is determined by

~ -~ -2 ~
(5.29) dh g, (8) = Aji(t){hj(t,ut)ﬂhi(t.ut)]R (){dy(t)=h, (t,u )de}

or
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1 -2
(5.30) d[lnhji(t)] = E{ﬁj(t’“t)‘ﬁi(t’“t)]R (t)
x{2dy(t)—[ﬁj(t.ut)+ﬁi(t,ut)]dt}

with the initial condition,
(5.31) Aji(o) =1, for i,j=1,2,+--,K.
Proof. Noting that, from (5.18) and (5.25)

AL ()

Ai(t)

(5.32) Aji(t)

and using Lemma 5.3, we have

oz t.~ ~ -7
(5.33) Aji(t) = exp{fo[hj(s,us)—hi(s,us)]R (s)dy(s)
A CRIE S R L OF I3
Hence
o m =D
(5.34) dAji(t) = Aji(t)[EXP{(hj—hi)R (t)dy(t)

f.5 2 .4 2. =0
—E{hj —ﬁi YR “(t)dt} - 1].

Expanding the exponential function in (5.34) and deleting the terms of

3/2

a higher order than (dt) , the final result can be obtained.

Theorem 5.2. The sample process of the Mi(t)—process defined by (5.24)
is determined by
s B i 2
5.3 dM = - -h -
(5.35) 1€ = = 1 oy (MO By o) Fy (e )
K K

- 3
x {dy(£)-h, (t,u )dt} + 321 kzlajiakiaji(t)ﬁki(t)ni (t)

x[ﬁj(t,ut)-ﬁi(t,ut)][ﬁk(t,ut)-ﬁi(tsut)]R-z(t)dt,

where i=1,2,---,K.
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Theorem 5.2 can be proved via somewhat tedious calculations in the
framework of Ito stochastic calculus. A detailed aspect of the proof
will be shown in Appendix C.

From (5.27), the covariance of the unknown parameter 6 becomes

K
E 0. "M, (t)].

K K
(5.36) cov.[8]Y.] = ] 6.6,"M (t) - [ ) 8. M. (t)][
i=] 1=1

i=1
As described in this section the recursive computation can be
performed by (5.28) and (5.35). However, it may be observed by inspection
of (5.13) and (5.35) that the running value of the optimal estimate Gj

is required.

5.4. State Estimation

The optimal estimate U is generated by the familiar conditiomal

mean estimator
(5.37)  A(t,x) = [_up(t,x,uly,)du.

Bearing the assumption (5.7) in mind, the conditional probability
density in (5.37) yields

K (1) g, (1)
(5.38) p(t,x,ul¥y) = ) ple,xu|V,., ARG |y,
i=1

Hence, the optimal estimate defined by (5.37) is

(5.39) a(t,x)

[

K .
) P(A(i)|vt)fm up(t,x,u|Ye, A(l))du
i=1 -

K
izlmi(c)ai(t,x),

vhere use of (5.14) and (5.24) have been made. The i-th optimal estimate
can be recursively computed by (5.15).

The covariance is defined by
(5.40) S(t,x,z) = E{ [u(t,x)-u(t,x) ] [u(t,z)-a(t,2)][Y¢]

Since the covariance (5.40) can be written as
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K , .
(5.41) S(tyx,2) = ) Blu(tmule,n) Ve, APra®P vy
i=1

- a(t,x)i(t,z),

and

G.42)  Eulue,a) Y, AP = s (65,2 + 6, (5,08, (6,2),

it follows from (5.24) that

(5.43) S(t,X,2) = X [s; (c,x.z)+u (t, x)u (t, z)]M (t)
i=1

= ﬁ(t,x)ﬁ(t’Z) .

An entire aspect of the optimal estimate is performed by use of
(5.15), (5.17), (5.29), (5.35), (5.39) and (5.43). Their preassigned
initial conditions are E{u,. (O,X)}—u (0,x) for (5.15), S (0 E,x) for
(5.17), (5.31) for (5.29), M (0)=P(A(1)) for (5.35), u(O x)=54_ M, (0)-
-, (O x) for (5.39) and S(O,x z) E [Si(U x z)+ui(0 x)ui(O z)]Mi(D)
—u(O,x)u(O,z) for (5.43). The coupled identification-estimation

procedure proposed here is schematically illustrated by Fig.5.1.

| Filter Gy (t.x)
(9=9ﬂ
Dynamical | u(t,x) | Obervation | y(t) Filter Gz(t.x) = Ajitt) M; (1)
System Mechani = : ]
y echanism (e=8,) ij=tlK i=l K
CORRY
e ]
|| Filter uk(t,x)

(9=9K)

Fig.5.1. Schematic diagram for calculating the estimates
of parameter 0 and the state u(t,x).
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Remark 5.3: An extension to the case N>2. For instance, we shall
consider the case where N=2Z. 1In this case, instead of (5.7), the follow-

ing KXK joint events should be considered, i.e.

A = o 6P wy=e,, 9(2)(m)=9j} (1,3=1,2,+++,K).

Thus, although the theoretical approach is still applicable, the recursive

computation becomes considerably complicated.

5.5. Numerical Examples

5.5.1. Example-5.1.

The one-dimensional distributed parameter system is considered. For

xe[0,1], te[0,T], the mathematical model is given by
2

(5.44) du(t,x) = [Béiiu(t,x)]dt + C8(x-8)dt + Gdw(t,x)
X

with the associated initial and boundary conditionms,

(5.45a) u(0,x) = Asin?mx, xe[0,1],

[

(5.45b) u(t,x) 0 at x=0, 1,

where A, B, C and G are all constants.

The observation mechanism is
(5.46)  dy(t) = [[gHS(z-n)u(t,z)dz]dt + Rdv,
(5.46Db) y(0) = 0,

where both H and R are respectively constants and n shows the location

of the measurements.
By using (5.15) and (5.17), dynamics of the state estimator and the

associated covariance are determined as
52 .
{i = + C8(x-6.)dt
(5.47) df, (t,x) [B;;Eui(t,x)]dt €8 (x-9,)
+ HSi(t,n,x)R_z{dy—Hﬁi(t,n)dt}:

2 - _QE_ _EE. + Gzﬁ(x—z) =
(5.48) atsi(t,x,z) = B(axz-fazz)si(t,x,Z)
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- HZR_ZSi (t,n,x) Si(tsnﬁz) .

Futhermore, the modified likelihood-ratio function (5.29) can be obtained

as

(5.49) dhyy (8) (t)H{ﬁj(t,n)—ﬁi(t,n)}R—z{dy(t)—Hﬁi(t-n)dt}

= Aji

with Aji(0)=1.

For convenience of the simulation experiment, we assume that the
a priori probability of the event A, is uniformly distributed, i.e.
pa®ypa @

According to this assumption, the definition (5.24) is simply expressed

i
). This implies from (5.26) that uji=l for all i, j.

by
K -1
(5.50) M (£) = [ ) A, ()] .
i j=1 11

The optimal estimate & of the unknown parameter can thus be computed by

combining (5.27) with (5.50) or by (5.28) and

K
_ 2 2, % -2
(5.51) dHi(t) = = _Elnji(t)ui (t)H{uj(t,n)-ui(t,n)}R

x{dy(t)-Hb, (t,n)dt}
A, (E)A, . ()M 3(t)Hz{ﬁ (t,n)-t.(t,n)}
ji ki i e iv?

- A _2
{8, (£,m)-0, (£,n)IR “de.

The problem is simulated on a high speed digital computer. The

computing procedure is stated in the following steps:

(i) Write the partial differential equation as the mathematical model
of the system with associated initial and boundary conditions.
In (5.44) and (5.45), the values of known parameters were A=1.0,
B=1.0, C=500 and G=0.45 respectively.
(ii1) Determine measurement locations in the spatial domain. The
mathematical model (5.46) implies that measurement at a preassigned

location n is currently made with respect to time, where two trials
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8(1)

LO[

0-4 L

8(=0-7923)

—— %=0-7506

b= T!: 0'8757

(1ii)

(iv)

0-005 0-010 0-015 0020 Time
Fig.5.2. The 8(t)-runs in Example-5.1.

were made on the choice of the measurement locations, i.e. n=0.7506
and n=0.8757 with the same values of H=4.0 and R=0.2, and where we
assumed that Q(x,z)=6(x-z).

Preassign the mumber of numerical classes M of unknown parameter

8. Investigators are free to choose the number of numerical classes
of unknown parameter 6. The particular choice depends on the
situation of the problems which are being considered. A choice
that M=7 was given in the simulation experiments and 65 was taken
as 6{=i/8, where i=1,2,.--,7.

Compute sample runs of state estimate, the associated covariance
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cz?;;/lWi;’)’} Y

A

o EEE e e

0005 0010 0-015 Time

Fig.5.3. The u(t,x)-run in Example-5.1.

and the likelihood-ratic function. 1In this example, the initial
values of (5.47) and (5.48) were respectively set as ﬁi(O,x}=0 and
Si(O,x,z)=sin2ﬂx sinzwz. Sample runs were obtained by simulating
both (5.47) and (5.48) simultaneously on a digital computer with
the partitions Ax=1/24 and At=0.0005 in the spatial variable and
in time. By using the run of the state estimate, a sample run of
the Aji(t)—process was also computed simultaneously by (5.49) with
the initial condition Aji(0)=l.

A sample run of Mj(t) given by (5.50) was applied to both (5.27) and
(5.39). Figure 5.2 shows two sample runs of the 6(t)~process with
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0005 0010 0015 Time

Fig.5.4. The u(t,x)-run representing the system state.

n=0.7506 and 0.8757 respectively. One may understand that the nearer
measurement location to the true value 0=0.7923 shows the better identi-
fication process 6(t). Figure 5.3 depicts the G(t,x) run with n=0.7506.
For the purpose of comparative inspection, a sample run of the system
state determined by (5.44) was obtained with the associated initial and
boundary conditions U(O,x)=sin2wx and u(t,0)=u(t,1)=0 as shown in Fig.5.4.
Figure 5.5 shows the u(t,x) and i(t,x) runs at the spatial locations of
x¥=0.5 and x=0.75.

Although it is extremely difficult to examine the convergence

problem of the filter from theoretical point of view, one way is to observe
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20 -

0 / ' ¢ : "
\/ 0-005 0-010 0-015 0020 Time

Fig.5.5. The G(t,x) and u(t,x) runs at the spatial
points x=0.5 and x=0.75 in Example-5.1.

sample runs of the error covariance S(t,x,x) as illustrated in Fig.5.6.

5.5.2. Example-5.2.

Another simulation experiment was performed by adopting a somewhat
different observation model from that in Example-5.1. The observation

mechanism was set as

(5.52)  dy(t) = [[gHY(z,3)u(t,2)dz]dt + Rdv,
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Variance S(t,x,x)
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Fig.5.6. The S(t,x,x)-run in Example-5.1.

where the system dynamics was the same as (5.44) with (5.45) and Y(z,-)

is the Heaviside's step function, i.e.

1 0 for z<%
(5.53) Y(z,a) =

1
1 £ o
or z>,

With (5.53), the mathematical model (5.52) is written in a simplified

form
(5.54)  dy(t) = [fy JHu(t,z)dz]dt + Rdv.

The equations corresponding to (5.47), (5.48), (5.49), (5.51) are respec-
tively given by the following,

2
(5.55)  dig(t,x) = [Blmily(t,x)]dt + C6(x-0;)dt
Ll -2 1w at}
[IO'SHSi(t,x,z)dz]R de(t)’[IO_SHUi(t’Z)dZI th,
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D 22 jfi S5 ( ) + Gzﬁ(x-z)
(5.56) aeoi(tsx,2) = B(E;j + sz) j(t.x,2

= [Ié SHSi(tsE,X)dglﬂ—z[ft.SHSi(t,E,z)dE]’

. . -2
(5.57) ah g5 (6 = ﬁji(t)[fé_sﬂ{uj(t,z)-ui(t,z)}dz]R
x{dy(t)—[f$'SHGi(t,z)dz]dt},
and
2 2 1 . -2
(5.58) M () = - _Z Ay (M, (t)[IO_SH{uj(t,z)-ui(t,z)}dz]a

x{dy(0)-1[g_sHa, (t,2)dz)de)

3 1
+ ) ) Ayg (D8 (M (t)[fo_sa{ﬁj(t,z)-ﬁi(t,z)}dz]
1 - & =2
x [y sl (t,2)-G, (t,2) }dz]R “de.

A variety of single runs was also simulated for Example-5.2. The
results presented below are representative of the simulation experiments.
In all experiments, the computer program for the simulation follows that
for Example-5.1 with the same values of parameters as described previous-
ly. Figures 5.7 and 5.8 are respectively the é(t) and u(t,x) runs.
Figure 5.9 shows the convergence feature of the S(t,x,x) run.

On the basis of Fig.5.2 to Fig.5.9, as well as on the basis of many
other runs not presented here, it is seen that both parameter identifi-
cation and state estimation depend simultaneously and strongly on the
dynamics of the observation mechanism adopted. From the viewpoint of
the related covariance to the state estimate, the observation dynamics
in Example-5.2 might be more pleasant than in Example-5.1, because in
Example-5.2 the observation data is more widely collected than in

Example-5.1. However, for the parameter identification runs é(t) as
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B(t)

08l 8(=0-7923)

0-2

0 — . e 3

0 0-010 0-020 0030 Time

Fig.5.7. The 8(t)-run in Example-5.2.

shown in Fig.5.2 and 5.7, the difference between the observation dynamics
of (5.46) and (5.52) is not so remarkable because the identification
scheme in Example-5.1 depends on n which indicates the spatial location

The final point to be discussed is thus related to the
This is

of an observer.
problem of finding the optimal form of observation dynamics.
somewhat a difficult problem because, at the present time, there is no
simple and systematic procedure with a mathematical background. Trials
Proposed in this paper om various dynamics of the observation mechanisms
are ome way to see the feasibility of the solution of the simultaneous

aspect of parameter identification and state estimation for distributed
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Estimation G(t,x)
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v
\ 1ol
0

o 0.005 000 0015 Time

Fig.5.8. The u(t,x)-run in Example-5.2.

systems.

5.6. Discussions and Summary

A method has been presented for the identification of unknown constant
parameters and state estimation in distributed systems which can be
modeled by partial differential equations with the specified initial
and boundary conditions.

The basic notion of the method developed here is the separation
principle of the identification scheme from the state estimation. With
this concept, a saving in computation time and computer storage require-

ments is achieved in comparison with familiar methods in which the system
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variance S(t,x,x)

i
i

i

7

e 0-005 0.010 0015 Tire

Fig.5.9. The S(t,x,X)-run in Example-5.2.

state and unknown parameter vectors combine and form a new state vector.
The major saving in the computational scheme in this chapter is that there
is no need to compute the covariance function between the system state
and unknown parameters. It is not one of the purposes of this chapter
to compare the proposed method with different identification schemes.

The requirement in this chapter is to show that the parameter
identification algorithm for a partial differential equation is performed

by using the Bayesian approach and the filtering technique in the

Markovian framework.
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CHAPTER 6. OPTIMAL STOCHASTIC CONTROL FOR NONLTNEAR
DISTRIBUTED PARAMETER SYSTEMS WITH COMPLETE
STATE INFORMATION

6.1. Introductory Remarks

Practical examples of the optimal control problem are found in the
control of temperature profiles in a catalytic reactor or a furnace, the
control of diffusions due to random excitation in environmental systems
the control of reactions in the chemical plants, the control for the
prevention of air pollution in urban systems, etc.

For the linear and/or nonlinear systems, significant advances in
stochastic control problems were made by several investigators, as
surveyed in Subsec.l.1.C, Sec.l.l, Chap.l.

It is well known that dynamical systems to be controlled exhibit
various kinds of nonlinear characteristics, and also that the optimal
control problem of such nonlinear distributed systems has received
considerable attentions in recent years. Up to the present time, a
number of studies concerning the so-called Linear—-Quadratic-Gaussian

(LQG) problem have attained a certain degree of maturity with respect to
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both theoretical and algorithmic advances, as well as current and
potential future applications (cf. Subsec.1.1.C, Sec.l.l, Chap.l in

Part One). On the other hand, the nonlinear problem contains inherent
difficulties in itself. A ray of hope to solve such a problem will be
only approximations for nonlinear functions to certain linear ones. The
author, in this chapter, proposes an approximate method of stochastic
optimal control for a class of D.P.S. which is described by stochastic
nonlinear partial differential equation, along the line of the LQG
context, extending the stochastic linearization technique presented in
Sec.3.3, Chap.3.

6.2. Problem Statements

In this chapter, we are concerned with a control problem of nonlinear
D.P.S. under the complete state information. The mathematical model

considered is 23 defined in Def.2.3, Sec.2.4, i.e.
(6.1) du(t,x) = F(t,x,u,ux,uyy)dt + c(t,x)f(t,x)dt
+ G(t,x,u)dw(t,x) : I

I.C. u(0,x) = ¢(x), =xeD
B.C. uft,x) = 0, =xe3D.

In the sequel, we shall assume that the system (6.1) with its initial-
boundary conditions is bien posé in the sense of Hadamard; i.e. the
solution of (6.1) uniquely exists and depends continuously on the initial
and boundary data.

The problem is to find a contrel function f so as to minimize the

scalar functional,

6.2 3(E) = BU[glfpf M5, x,2)uls,nuls,z)dzdx

+ IDN(S.x)fz(s,x)dx]ds},

baged on the o priari probability distribution of the initial condition
$(+), where M and N are respectively symmetric (in x and 2), nonnegative
on DxD and positive om D.

Let f(t,x) be a process such that, for each te[0,1] and xeD, £(t,x)
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satisfies the condition,
T 2
(C6.1) JELE(Ex) [ "t < =.

Let ¥Y([0,T]xD) be the class of the f(t,x)-process which satisfies (C6.1)
and does not violate the existence and uniqueness of the solution of (6.1)
(w.p.1l) and which tends uniformly to zero as x>3D for all te[0,T]. The
control function f(t,x) is said to be admissible if f(t,x) is the element
of ¥([0,T]*¥D). 1In the sequel, the class of admissible controls is simply
expressed by Y.

6.3. Basic Hamilton-Jacobi-Bellman Equation

The optimal control problem will be solved by using the method of
dynamic programming[15,153].

For (6.2), define a minimal cost functiomal,

(6.3) V(t,k) 8 ninE {IT[I M(s,x,z)u(s,x)u(s,z)dzdx
fe¥ Kk °C

DXD
+ IDN(S,X)fZ(s,x)dx]ds},

where k(x)=u(t,x) at time te[0,T], and EK{'} denotes the conditional
expectation conditioned by k(x). Applying the principle of optimality
to the cost functional and using the functional Taylor series expansion

[152], the following partial integro-differential equation is obtained:

(6.4) = EE%%LEL = ?ég [ID{JDM(t,x,z)K(x)K(z)dz
4 aV(t,k)

3]((1() [F(t,X,K,Kx,Kxx)+C(t ,X)f(t,X)]

+ N(t,x)fz(t,x)}dx

i 82y (t, k)
+'§fDXD g;f;jg;f;jG(t,x,K(x))Q(x,z)G(t,z,n(z))dzdx].

Minimization in the right-hand side of (6.4) with respect to f gives the
optimal control,

(6.5) £ (t,x) = - %N_l(t,x)c(t,x)%glgiﬁl,
k(%)
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Substituting (6.5) into (6.4), we have the following basic Hamilton-

Jacobi-Bellman equation,

(6.6) —ELEAEf— I [I mit,x, 2o lde te)ds +STitL)

8k (=) F(E.X,K Ky K 5x)

- 2 e, 0P (e, x) ALK g

S (x)

v §2V(t,K)

2/ pxD 5K(X)6K(Z)G(t’x’k: (X))Q(X,Z)G{t,z,lc(z))dzdx

with its terminal condition,

(6.7) V(T,x) = 0.

6.4. Suboptimal Control for Nenlinear D.P.S. with State-Independent

Noise

In this section, an extended method of stochastic linearization
presented in Sec.3.3, Chap.3 is used for deriving the suboptimal control.
For a while, we set as G(t,x,u)=G0(t,x). Define a new [n(ntl)/2 +n+1]-

dimensional vector

(6.8) v=[v,'v," v

with components,

t— . v . e * 00 '
vy = [ugg vy 0 U1y Yy Uy, Yzg Tt U]
- . 1
(6.9) vy [u1 u, un]
vy = us

WhatE —Bu/axl S5 uy _azu,ax BXJ {i,j=1,2,'-',n) and the prime denptes
the transpose of a vector

For each xeD, we expand the nonlinear function F(t,x;v)= F(t KyUyUyrly)

into

(6.10) F(t,x;v) = a(t,x) + B'(t,x) (v-v) + e(t,%),
where

(6.11) B(t,x) = [bz'(t,x) bl'(t,x) be(t’x)]'
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with components,

by(Eax) = [(by)gy (by) gy = (By)yy (bplyy (bydpy = (Bplpp ]
(6.12) by (£,%) = [(b)); (b)), =+ (b)) 1"

bo(t,x) = bo.
In (6.10), the term e(t,x) is the collection of error terms and the

symbol " - " denotes E{-|¢(x)}, so that

S o T ¥ T g0
(6.13) v [V2 vy vo] ;

Both a(t,x) and B(t,x) are the coefficients of the expansion determined

by such a way that, for each xeD, E{]F(t,x;v)—[a(t,x)+B'(t,x)(v-;)]lz|¢(x)}
becomes minimal with respect to a(t,x) and B(t,x). A simple calculation
gives that the necessary and sufficient conditions for

mina BE{Ie(t,x)|2|¢(x)} for each xeD are given by

(6.14) a(t,x) = E{F(t,x;v) |¢(x)} = F(t,x;v)

(6.15) B(t,x) = S T(t,x)E{ (v=v) [F (t,x3v)-F (t,x39)1[ 6 ()},
where
(6.16) S(t,x) = E{ (v=v) (v=v) ' | $ (x) }.

By using the above linearization, the nonlinear process (6.1) is replaced

by the approximated one,

(6.17) du(t,x) = {a(t,x)+B' (t,x) (v-v)}dt + C(t,x)f(t,x)dt

i

-+ Go(t,x)dw(t,x)

{L [u(t,x)-u(t,x)]+a(t,x) Fdt + C(t,x)f(t,x)dt
+ GO(t,x)dw(t,x),
where the approximate linear operator Lx(') is given by

n 2

n
(6.18) Ly = § {b(t,0)},, ==2—C) + T (b, (t,x)}, =2—(-)
x 1,84 2 15 o o, izl It
i

* bo(tsx) (') .
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It may easily be shown that the coefficients a and B depend on both v
and S which are expressed in terms of u and P, where u and P are respec-
tively defined by

u = E{u|¢(x)}

(6.19) a2 =
P(t,%,z) = E{[u(t,x)-u(t,x)][u(t,2)~u(t,2z) ]| (x)}

and these are the solutions of the following equations,

(6.20) du(t,x)/dt = a(t,x) + C(t,x)f(t,x)
aP(t,.x,2) _
(6.21) S VR (L HL )P (t,x,2)

e

c(t,x)E{ [u(t,z)-u(t,z) 1[£(t,x)-E(t,x)]|¢(x)}

C(t,z)E{ [u(t,x)-u(t,x)1[£(t,z)-F(t,2z) 1l (x)}

4=

& Go(t.X)Q(X.Z)GO(t,Z)-

For the approximated process (6.17), the basic equation (6.6) easily

yields
(6.22) - Qyéfzﬁl = ID[fDM(t,x,z)K(x)x(z)dz

O

- 2
- It (e 0 (0,0 R Pax

1 82V (t,x

* EIDXD 5K(X)6K(z) O(tix)Q(xaz)GG(t,Z}dde.

If the original process (6.1) is purely linear, then the corresponding
basic equation may be solved by the method of separation of variables.
However a striking fact arises in solving (6.22); that is, the fact that
(6.22) contains the linearization coefficients a and B which are the
functions of the current variables G, Gx, Gxx and P(t,x,x) and that such
coefficients prevent us to solve (6.22) in the LQG fashon.

In the following, the author uses a feasible approach which is
similar to the method used in Sec.6.6(Method II), Chap.6 in Part One.
To do this, during the time interval, t<t<T, hold the sample values of

a(t,x), B(t,x) and u(t,x) as constant, i.e. a(t,x)=gt(x), B(t,x)=ﬁt(x)
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and G(t,x)=tt(x) respectively, and write
(6.23) du(t,x) = txu(r,x)dr + gt(x)dr + C(T,x)f(T,x)dT
+ Gy(t,x)dw(T,%x),  t=t<T.

In (6.23), the operator tx(') and gt(x) are respectively given by

n 32
= 1,
6.26) L i,§=1{ 2000}y T D * igl{bltfxy 7<)
i<j
+ boe () (+)
(6.25) S (x) = ap(x) - B.' )V,

N n o
where vt={v2t‘(x) vig' (%) vge ()1,

It follows that, at time T, the basic equation for the process (6.23)

becomes

- y% = IDXDM(T’x-Z)K(X)K(Z)dde

[ U T e 043, () Jax

(6.26)

- %TDNHI(T,x)CZ(T,X)(§%£%;§20 dx

lIDxD 5ﬁ(z);;fi) 0 (T,¥)Q(x,2) 6 (1,2)dzdx

with the terminal condition
(6.27) V(T,k) = 0,

where k(x)=u(t,x).

In (6.26) and (6,27), assume that there exists a solution of the

following form,
(6.28) V(t,k) = fDxDH(T,x,z)x(x)K(z)dzdx + 2[Da(r,x)n(x)dx
+ B(T1),

where the scalar functions II(t,x,z) (symmetric in x and 2z), a(T,x) and

B(t) are determined by the differential equations which will be given
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later. Noting the relatioms

(6.29) LK < of m(r,x,2)k(2)dz + 2a(x,x)

Sk (%)
and
2
(6.30) _8%V(t,x)  _ 2M(T,x,2)

8k (x) 8k (2)

and applying (6.28), (6.29) and (6.30) to (6.26), it follows that

(6:31)  £2(,%) = = N (1,000(1,0) [ 1(1,%,2)k (2)dzta(t,0) ]
and that
(6.32) X2 4} o} fyne g

- I L B, D (%, E) (1,6, 2)dE + M(t,x,2) = 0

] -
(6.33)  HIE 4 b raie - [, x 2)a(r,2)d2

2 IDH(T9X:Z)'1S’t(Z)dZ =0
(6.34) 9%'51 = IDN_I(T,X)CZ(T,){)GZ(T,x)dx - 2IDa(r,x)Z~’t(x)dx

+ fDxDH(T,x,z)GO(T,x)Q(x,z)GO(T,z)dzdx =0

with their terminal-boundary conditions

(6.35) I(T,x,z)

0, a(T,x) =0 and B(T) =0 for all x,zeD

(6.36) n(t,x,2) 0 and o(t,x) = 0 on x,zedD,

where the boundary conditions are given by the definition of the admissible
control which uniformly tends to zero as x*3D. In (6.32) and (6.33), the

operator tx* denotes the formal adjoint operator of Tx'

6.5. Suboptimal Control for Nonlinear D.P.S. with State-Dependent

Noise

Even in the case where the system noise is linearly state-dependent,

i.e. G(t,x,u)=G1(t,x)u(t,x), the parallel discussion holds with the

-



solution @ (T,x) determined by (6.33) and with the solutions I(t,x,z) and

B(t) which are respectively determined by

(6.37) Eﬂigiﬁlzl + (Tx*+fz*)n(r,x.z) + M(T1,x,2)6(T,x)Q(x,2)G(T,z2)

- N, E)CP (1, (T, %, EIT(T, B, 2)dE + M(T,x,2) = O

dB (1)

(6.38) g

- [t e’ (o
"
+ sza(T,x)st(x)dx =0

with the same terminal-boundary conditions as in (6.35) and (6.36).
However, it should be noted that the M(t,x,z), @(7T,x) and B(T) (t<T<T)
make sense only at T=t, because of the substitution of zt(x), %t(x) and
:t(x) for a(t,x), B(t,x) and u(t,x). Consequently, at time t, the values
of H(T,x,z)[T=t, G(T,x)lr=t and B(T),T=t may be used to calculate the
coefficients of the solution V(t,k) of (6.22) and to generate the sub-

optimal control,

(6.39)  £206,0 = - N (60000 U %2 1 k(@ dzHa(n,0 ] _ ).

Applying the suboptimal control (6.39) to (6.20) and (6.21), it follows
that

(6.40) BB o ale, 5 = N'l(t,x)cz(t,x){ID[n(t,x,z)ﬁ(c,z)dz

dt
+a(t,x)}
(6.41) Ezigtfizl = (Lytl,)B(t,x.2)

- I (6,0 (8,0 [ TICE, %, )P (L, Eu2)dE
T (5,2)6% (6, 2) [ T1(E,E,2)P(€,x, E)dE)
+ Gy (£:0)Q(x,2)6, (t,2).

Thus, an approximate overall configuration of the nonlinear distri-

buted control system (6.1) has been established in a form of a feedback
System.
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6.6. Digital Simulatioms

We shall consider the nonlinear distributed parameter system

described by

2
(6.42a) du(t,x) = [§—§£§i52-+ guZ(t,x)]dt + Cf(t,x)dt
X

+ Gdw(t,x),

where B is a preassigned positive constant which is not so large and
C and G are also positive constants. Both the initial- and boundary-

conditions are respectively given by
(6.42b) E{u(0,x)} = Asinlmx  for 0<x<1
(6.42c) u(t,x) =0 for x=0,1,

where A is a positive constant. The variance of the Brownian motion

process is given by
(6.43) Q(x,2z) = &(x-2) for O<x,z<1.
The problem is to compute the optimal control fo(t,x) which minimizes the

cost functional,

(6.44) J(f) = E{fg[féféM(x,z)u(s,x)u(s,z)dzdx

+ féﬁfz(s,x)dx]ds},

where M is nonnegative and symmetric in x and z and N is a positive
constant.
The linearization coefficients (6.14) and (6.15) are, in this case,

respectively calculated by

2= =

(6. 454) a(t,x) = 22LX) BIP(t,%,%)+a2 (t,%)]
ax

(6.45b)  B(t,x) = [1L 0 2Ba(t,x)]'.

From (6.39), the suboptimal control is given by

(6.46)  £°(t,x) = - N C{[g[N(1,x,2)] _ou(e,2)dzHa(t,0] )
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where 1 and @ are the solutions of differential equations,

2 2

sl 9 R 4"
647y  Laxez) [(;;2 + II(Ex) + 28{u, (x)+uy (2) Y (T,x%,2) ]
- [N (L, BT, £, 2)AE + Mix,2) = 0
2
(6.48) )y [;lza(T,X) + 288, (0a(1,0)]

- [ n(r,x, 2)a(r, 2)dz + [((T,%, )5 (2)dz = 0

with their terminal-boundary conditions,

(6.49) T(T,x,z)

0 and a(T,x) =0 for 0<x,z<l

(6.50) n(t,x,z) 0 and oa(t,x) =0 for x,z=0 and 1.

Equations (6.42) to (6.50) are simulated on a digital computer with
a similar procedure to that mentioned in Sec.4.5, Chap.4 or in [138]. The
standard difference operators D, D_ and D0 are also used in this section.
Application of the spatial difference scheme to (6.1) gives a set of

increments of the state,

(6.51) Guj(xi) = u(tj+l’xi) - u(tj,xi)

e

F(tj,xi,u(tj,xi).Dou(tj,xi),D+D_u(tj,xi))6tj

+ Cf(tj’xi)ﬁtj + Gﬁwj (xi) (i=0,1,---,1-1),

where the spatial interval [0,1] is divided into I partitioms such that
6xi=xi+1—xi. The suboptimal control fo(tj,xi) given by (6.39) is approx-
imated by

I-1
(6.52) fo(tj,xi) ==nter } T (k5% %) u (g% Sxpche (£4,%4) }
0

(i=0,1,+--,1I-1),

where both ﬂ(tj,xi,xk) and a(tj,x;) are respectively the discrete versions
of the solutions of (6.32) and (6.33).

As shown in Fig.6.1, the computational procedure is thus established
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as the

(1)

(ii)

(iii)

(iv)

(v)

Read
Initial Data
— NO Run
¥ Completed?
Calculate

Y]
CHCHNE NCH)

| =
N
Calculate
n(tm’xi’xk)’a(tm’xi) Calculate
Backwards u("j+1”‘1)"‘(tj+1”‘1)
[
Calculate
o
f (tj,xi)

Fig.6.1. Flow diagram of computational procedure.

following steps:

Obtain the coefficients a(t,x) and B(t,x) for the preassigned
nonlinear function F(t,x,u,ux,uxx) and write their discrete
versions, a(tj,xi) and B(tj,xi).

Calculate the initial values H(O,xi,xk) and u(O,xi) by solving
the partial integro-differential equations for T(t,x,z) and
a(t,x) with their terminal-boundary conditionms.

Determine the initial value of the suboptimal control by

I-1

i H(O.xi,xk)¢(xk)6xkfﬂ(O,xi)}-

£20,x.) = - N '¢f
. k=0

Ly o o
By using the values of aj(xi), Bj(xi) and uj(xi), compute
u ‘ d (6.41).
u(tj+1,xii and P(tj+1,xi,xk) from (6.40) and ( ) )
Compute aj+1(xi) and j+l(xi) with use of the values u(tj+l,xi)
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Dynamical system (control-free)

du(l,x]:[aij': ult,me pu‘u,;)lm +Gaw(t,x)

LC. Efu(0.x}}=Asin?mx  Osxg!

BC. uftx)=0 on x=0,1

A=10 G=045 p=10

Fig.6.2(a). Control-free with noise.

Dynamical system

System state u(l,x) du(!,l):[aa_:u(!,x}a pu’n,ﬂ]al.cm,xm.edwu,x)
x

1.C. E{ul00}=Asin? rx  Osxs1
BC. ultx)=0 on x=0,1

A=10 G=045 =10 C=20

P A S A,

oo

0
rd
,4;/ -Control interval- -

Fig.6.2(b). Controlled with noise.

Fig.6.2. Bird's-eye view of the sample path behavior
of the system state u(t,x).
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terministic process .
/D’!frn motion) (x=0:5) Dynamical system

2 b
rp_c!erministic process M) #u(!.:)- B "'ﬂ]dl
{ (tree motion) (x=0-3)
I
oL f' _Uncontrolled process «CH0)dt . Gdw(1,x)
\:'L ) with system noise (x=05)
Tnef
P _Uneontrelled process LC. E{ul0m}=Asinrnx Osxsl
0-8 (e S _ 7 with system noise ( x=0-3)
f T BC. ult.x)=0 on x=0.1
W AT
S - A S TSen Az10 C=20 6G=045 p=10
06 e e
b A R = k> N,
7 \ ,"‘\ U,
R N
0.4 v’ g+ A
_Solution process (x=0-5) =
Salution process (x=0-1)
0-2
P 010 time
< t
002 004 oeY V. VN
-~ ——Control interval— =

Fig.6.3. Sample paths of the state u(t,x) at x=0.3 and x=0.5.

Sub-optimal control — ok
f(1x) 0

' 4
R ISV S -onelf t2)dz
\{\ \)](X\,\ " o a0y #(t,x)= =N C{L[m“"z’]m"‘ 2)
5.0 g e
. NN s
\I\ ’\f\\}f_ V7 . [nh,x)]“'}

,:D'u
I

Fig.6.4. Sample path behavior of the suboptimal control £(t,x).
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nad, (2. Lo s 28[om0-00ke 12
Feedback gain 3 .
-Sorr'czm: X, E)Mt . 2)dE « M(x,2)=0

TC. M(006.22)=0 Osxzs!
BC. Mi(x,x,z)=0 on x,z=0,1

B=10 C=20

o

Fig.6.5(a). Run of I(t,x,x).

=)
<~—— Control interval ———
002 004 0-06.~

0
=1 g
o0% [ Nk YN b, gl dafy,x) @7
' O AT o a0 Heb
! A L
\ \‘! h ,T 7
\ ;\ P i ' 4’ / 1 5 |
o0 X oo -LN Czﬂ(t,x,z)a(t,z)dZoSﬁn(r,x,z}!l(z]dz =0
- NN e
NNorL ,’!’/!
X g
\(_»:‘{,;;
o1% e TC. a{006,x=0 Osxs!
BC. alt,x)=0 on x=0,1
p=10 C=20

Fig.6.5. Run of a(t,x).

Fig.6.5. Feedback gain N (t,x,x) and coefficient a(t,x).
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and P(t ,xk) determined in Step (iv).

417 %4
(vi) Obtain H(tj+1,xi,xk) and a(tj+l,xi) which are determined by (6.32)
and (6.33).
(vii) With the newly obtained data u(tj+l,xi) and the values of
n(tj+l,xi,xk) and a(tj+l;xi) obtained in Step (vi), determine
the suboptimal control f (tj+l’xi) by (6.52).
Letting j=0,1,:--. the steps (iv) to (vii) give an algorithm to

obtain the running values of the suboptimal control fo(tj,xi).

In digital simulations, Sxi and th are given as 0.1 and 0.004 respec- -
tively and the control interval is preassigned as [0,0.06]. Figure
6.2 shows the bird's-eye view of the state of the uncontrolled system
under system noise and the state of the controlled system described by
(6.42), where the coefficients are respectively g=10, C=2.0, G=0.45,

A=1, M=50 and N=0.1.

In order to compare the state u(t,x) driven by the suboptimal control
fo(t,x) with the state u(t,x) without control, the convergence of the
system states is shown in Fig.6.3 at the spatial locations x=0.3 and
x=0.5. From Figs.6.2 and 6.3, it can be seen that an effective role of
suboptimal control is recognized at respective locations. Figures 6.4
and 6.5 show the sample paths of the suboptimal control f(t,x) and the
associated feedback gain N(t,x,x) and the coefficient a(t,x).

Although it may be extremely difficult to justify analytically the
accuracy of the proposed technique, numerical results obtained reveal
that the extended stochastic linearization technique developed here is
feasible for realizing the stochastic suboptimal control for nonlinear

D.P.S.

6.7. Discussions and Summary

In this chapter, via the method of stochastic linearization, a sub-
optimal control has been obtained for a class of nonlinear D.P.S. with
the complete state information. It has been shown that the extended
stochastic linearization technique to D.P.S. is attractive for a computer

implementation of suboptimal control.
In the procedure to obtain the suboptimal control, the equations of
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feedback gains I and o should be solved by the feasible method mentioned
in Sec.6.4.
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CHAPTER 7. CONCLUSIONS

7.1. Concluding Remarks

In Part Two, some attempts have been made to present a rather
general discussion on various aspects of the problems associated with
the state estimation, parameter identification and control for nonlinear
and/or linear D.P.S., oriented in some parts by the approximation
techniques stated in Chap.3. Although some portions of the works may
seem to be somewhat abstract from the system engineering point of view,
an abstract approach can provide, in general, a better understanding
to related problems.

The major difficulties in the computational aspect of distributed
parameter control processes are due to the dimensionality of the associated
state vectors as pointed out by Bellman[184]. A fresh and effective
approach which provides a reduction of dimensionality is certainly
required, including computational aspects. In particular, in the problem

associated with the nonlinear D.P.S. the curse of dimensionality is the
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crucial point and this prevents us to perform the operations of estimation, ,
identification and/or control. The proposed methods in Part Two will

contribute to obtain feasible solutions to the practical design of D.P.S,

7.2. Discussions

The model of D.P.S. is described by a partial differential equation
with additive Gaussian noise, i.e. Egs.(1.1) or (1.3) in Sec.2.2, Chap.2.
However, there are many cases where the coefficients in a system operator
are inherently random (cf. Bharucha-Reid[11]). For example, instead of
(1.1), a diffusion process in random media is modeled by a partial
differential equation,

du(t,x)

(7.1) BE

= Lx(w)u(t,x) + C(t,x)f(t,x),

where L,(w) is a random (linear) operator. The problems of estimation,
identification and control for the system described by (7.1) are the
future topiecs in the theory of distributed parameter control systems.
Because of the fact that the theory in this area is not fully developed
at the present time, investigations in the immediate future should be
directed toward establishing theories to the class of D.P.S. described
by (7.1), accompanied with the random eigenvalue problems (cf. Boyce
[13]).
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APPENDIX A. Proof of Corollary 4.1.

Equation (4.30) is easily derived from (4.25). The versiom of 3P/3t
is evaluated by computing

(A.1) dP(t,x,z) = d(m) = d(ﬁ(t,x)ﬁ(t,z)),

where "-" denotes the conditional expectation E(l){-lyt}. Let f(u(t,x),

u(t,z))=u(t,x)u(t,z) in Theorem 4.1 and use (4.12) to find d(ﬁfE:;;;EE:Ei)..
In the sequel, in order to simplify the notation, if necessary, we shall
drop the argument (t,x) and denote the spatial point by superscripts x, z

or £. Since

(A.2) Glu(t,®u(t,z)] = v*F" + vF* + ¢"6%Q(x,2),
we have
e Py P
(A.3) d(u®u®) = o¥Ffar + u¥Flde + ¢fcq(x,z)dt
i O //\u i .
+ [uxuzh —vuh 1R 2[dy--h dc].
t t t
Equation (4.25) may be rewritten by (4.2) and (2.6) as
~ 2 /\‘ A - ~
(A.4) da(t,x) = {F + [0 -3"6 IR z[ht—ht]}dt
i TS -
+ [uxh -ah IR ldv.
t t
The same procedure is applicable in deriving the version of du(t,z). Thus

~ AKX AL z
an application of the Ito's formula to compute u u gives

. 225 _
(A.5) a(@*6% = 8*(Ffat + [ -3"R, IR z[dy—ﬁtdt]}

1

A /‘\AA ¥ R
+ 0%(Fae + [*h ~0%h IR 2 [ay-f at]}
s D o
+ [uxht—uxﬁt]R 2[uzht—uzht]dt.
Combining (A.3) and (A.5) with (A.1l), we obtain
e SR I
(A.6) P (t,x,2) = (WPF-a*FHar + F-a"F)at
-

P,
+46§;Eb(x,z)dt + [uxuzht-uxuzﬁt

/\Anha/\,\,— R
—ﬁzuxht+uzuxht—uxuzh£+uxﬁzht]R 2[dy-htdt] -
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S e B R ng
- [uxhc-uxht]R [u ht-u ﬁt]dt.
In the linear case, it follows that

T 5 .
(A.7) dP(t,x,2) = (Pl u™~8%L a%yat + (vl &L 3% de
X X z 2
e W I "
+ G%6%q(x,2)dt + [uxuszHEuEdE—uxuzfnﬂgugdg
/\ /\
- @ itubae + 0" ntafag - 6/ ptudg
- ﬂxﬁszHgﬁEdE]R_z[dy—fDHEﬁEdgdt]
//\ B /\ )
- [ufoHEUEdg—ﬁfoHEGEdE]R 2[uszHEung—ﬁszHEuEdE]dt
/‘\ /x., &
(L uiut-1L ﬁ ™) dt + (L wu —l 4°7)dt

T -
+ T%6%00x,2)de + [ gE (aub-a%a%) agIr 2 [f € (Fubid®eb) de]
+ (f H [u u ug— “E -%u® u£+ﬁz“x &% “xuzu£+ﬁx %4 g]dE)R
x [ay-(f E*ade) dr]

<2
= LxP(t,x,z)dt + LZP(t,x,z)dt + GG Q(x,z)dt

- [fDH(t.s)P(t,x,s)dsla'z(t)[fDH(t,5>P(t,z,z)daldt.
(Q.E.D.)

APPENDIX B. Proof of Lemma 5.3.

Define
(8.1) £, (6) 2 [oh, (s,u )R %(s)dy(s) - %{gﬁiz(s,us)afz(s)ds.

Then, (5.18) is expressed as

(B.2) Ai(t) = exp{ci(t)}.

Noting from (B.l) that the ;i(t)-process has the stochastic
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differential,
(B.3) dg, (£) = h, (t,u )R—Z(t)dy(t) - & 2(t )R'z( d
: 1 TR T t)dt,

and applying It6's chain rule to the function Ai, it follows that

3A aA 327
B, i 1 ¥y 2
(B.4) oy Sgpar¥ Bcidci 3 3Ciz(dgi) :

It is a simple exercise to show that

T LY 3ZA

i i g
(B.5) TR Y A 3C.2 by
1 1
and that
2 a2 -2
(B.6) (dg;)" = h;"(t,u )R “(t)dt,

where (5.8) has been used to derive (B.6). By substituting (B.5) and
(B.6) into (B.4), the proof has been completed. (Q.E.D.)

APPENDIX C. Proof of Theorem 5.2.

By applying the Ité's chain rule to (5.24), we have

aM, K BMi BA.i
€1 () = 5de + ] o
3l

at =1 aAji f il

51"
* oy 9495 .o
2 521 k=1 acjiacki Jd: Cki

where the cji(t)—process is defined by

[[[>=3

(C.2) z,. (L)

3 [fgﬁj(s,us)R-z(s)dy(s) - %f;ﬁjz(s,us)sz(s)ds]

-2 1 2 -2
[fgﬁi(s,us)R (s)dy(s) - ZI;ﬁi (s,uS)R (s)ds]
and this has the stochastic differential,

_ g -2 Ton 2 22, =2
(C.3) dcji(t) = (hj’ﬁi)R dy - 2(ﬁ]. -h,")R “dt.
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In (C.1), it can be shown from (5.24) that

BMi BM,; 2 Bh.
(C.4) == D = -a, M.°, = A,

ot " anji g Gl | az_;ji ji
and

a2M, 5

(C.5a) —— m Za b A M for j#k

a;jiacki Jluki JiAkl i

2 2 2.3 £

(C.5b) = Pujiﬁjimi -+ Zaji Aji M, for j=k.

Substituting (C.4) and (C.5) into (C.1l), we have

E 2 i % 2
(C.6) a, = - jzl ujinjiMi dcji - jzl “ji”jiﬁi (dcji)

2

K K

3
25 kzl By By Mg (dcji)(d;ki)'

+

From (C.3) it follows that

2

2
31

(c.7) (daz - 6625 g
il [
I R
(C.8) (d%iﬂdﬁi)—(hfhﬁ(m;th dt.

Hence the substitution of (C.3), (C.7) and (C.8) into (C.6) yiels (5.35).
(Q.E.D.)
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